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Abstract 

A new method of implementing branch instructions is 
presented. This technique has been implemented in the CRISP 
Microprocessor. With a combination of hardware and software 
techniques the execution time cost for many branches can be 
effectively reduced to zero. Branches are folded into other 
instructions, making their execution as separate instructions 
unnecessary. Branch Folding can reduce the apparent number 
of instructions needed to execute a program by the number of 
branches in that program, as well as reducing or eliminating 
pipeline breakage. Statistics are presented demonstrating the 
effectiveness of Branch Folding and associated techniques used 
in the CRISP Microprocessor. 

Introduction 

The efficient implementation of branches is of major con- 
cern in the implementation of high performance pipelined com- 
puters. This paper discusses branch problems and attempted 
solutions in various machines. The implementation of branches 
in the CRISP Microprocessor is then described. The two pri- 
mary results are shown. First. pipeline breakage is reduced. 
Second, the total number of instructions executed by the execu- 
tion pipeline is reduced by the number of (folded) branches. 
Since branch instructions account for a large fraction of all com- 
puter instructions executed, this reduction offers a correspond- 
ingly large execution time speedup. 

The CRISP Microprocessor 

The CRISP Microprocessor is a high performance single 
chip general purpose microprocessor. I The CMOS chip contains 
172,163 transistors and is capable of achieving a peak execution 
rate of greater than 16 MIPS with a clock frequency of 16 Mhz. 
Part of CRISP's performance comes from a high degree of pipe- 
lining. 2 Early in the design we realized that the full potential of 
pipelining could be achieved only if some method was found to 
eliminate traditional problems with branches. Our solution 
involves the synergistic combination of three techniques. First, 
from new hardware structures to implement Branch Folding. 
Second, from software techniques, in particular the application 
of compiler technology. Third, from designing the instruction 
set to match a high performance implementation and the avail- 
able compiler technology. 
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The Branch Problem and Some Solutions 

The implementation of branch instructions is one of the 
hardest and most important problems to be dealt with in the 
implementation of high performance pipelined computers. 
Branch instructions tend to interrupt the smooth flow of instruc- 
tions through an instruction pipeline making the average 
instruction throughput rate much lower than the peak rate. For 
example, early studies for the pipelined MU5 computer showed 
that if branches occurred in only one out of ten instructions 
then performance would be reduced by a factor of three, unless 
special precautions were taken. 3 Branches occur very frequently 
in programs; various studies show the dynamic frequency of 
branches can be as much as one third of all instructions exe- 
cuted.4.5, 6 

The peak rate of instruction flow in a pipelined machine 
can only be obtained if the pipeline can be kept full. Discon- 
tinuities can occur because a branch may be several stages deep 
in the pipeline before it takes effect. In this case, all instruc- 
tions introduced to the pipeline after the branch would have to 
be flushed, causing useless empty pipeline bubbles to occur. 
Conditional branches have two possible paths to follow. Unless 
instructions can be cancelled or backed up without side effects, 
it would be necessary to stall the pipeline until the correct out- 
come of the branch was known. Finally, a branch can interfere 
with program prefetching strategies, causing waits due to main 
memory latency. 

The importance of dealing with the performance degrada- 
tion due to branch instructions has been recognized for a long 
time. A description of the design of the STRETCH (1BM 
7030) computer relates how branches can spoil the flow of 
instructions to the instruction unit, and how a computer can use 
branch prediction to improve performance. 7 Implementing 
branch instructions so that a branch transfer does not take 
effect until instructions after the branch are also executed can 
be used to reduce branch delay; this technique is commonly 
referred to as "delayed branch." The technique of delayed 
branch was used as early as 1952 in the Los Alamos MANIAC 
computer. Delayed branch has seen a recent resurgence in 
popularity with machines such as the IBM 801, 8 the Berkeley 
RISC l, 9 Stanford MIPS, I° the MIPS Inc. R2000, II and HP 
Spectrum 12 computers. McFarling and Hennessy have reviewed 
the costs associated with variations on the delayed branch 
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scheme. 13 

The Manchester MU5 computer system uses a Jump Trace 
that caches the address of instructions which have caused a 
branch. A cache hit causes pre-fetching to continue at the 
jumped-to address stored in the jump trace cache, rather than 
with the next sequential instruction. 14.15 Lee and Smith 
describe this technique as a Branch Target Buffer, and show 
improvements over the MU5 approach. 

A number of hardware strategies specifically to deal with 
branches have been employed in recent machines. The IBM 
360 series model 9116 duplicates some logic to start prefetching 
the unpredicted branch target as well as the predicted path. A 
more extreme approach is taken by the IBM 303317 by simul- 
taneously following both possible paths of conditional branch 
instructions. Other proposed schemes include using up to 24 
separate condition code registers to allow the compiler to 
precompute tests, 18 and using high level language control 
semantics embedded in the object code.19 

Lee and Smith 2° provide a more general survey of previ- 
ously used approaches, and in particular results on the efficacy 
of the Branch Target Buffer approach. 

Branches in the CRISP Instruction Set 

Branches may be either conditional or unconditional. 
Conditional branches are conditioned on the value of a single 
flag bit, kept in the Program Status Word register. Two 
instruction forms of conditional branch are provided; one that 
branches if the flag bit is true, and another that branches if the 
flag bit is false. Conditional branches also contain a single 
static branch prediction bit, which may be set by the compiler. 
This bit is used as a hint to the hardware as to whether the 
branch will transfer or not. 

CRISP instructions are encoded in three different lengths, 
composed of either one, three or five 16-bit instruction parcels. 
Two instructi~on lengths are provided to encode conditional and 
unconditional branches. A one parcel branch instruction con- 
tains a 10-bit PC relative offset. Since CRISP instructions are 
aligned on 16-bit boundaries, this allows for a range of -1024 to 
+ 1022 bytes. A three parcel branch instruction contains a 32- 
bit branch specifier field. This field is typically used to hold an 
absolute address, but may also specify a branch indirect through 
an absolute address, or a branch indirect though the address 
specified by a 32-bit offset from the Stack Pointer. Dynamic 
instruction measurements show that around 95% of the 
branches executed are encoded in the one parcel instruction for- 
mat. Most of the remainder use the three parcel form with an 
absolute address. Indirect branches are only occasionally gen- 
erated by our compiler for such constructs as case statements. 

The condition code flag can only be modified as the result 
of a compare instruction. A compare instruction can compare 
two operands located in memory via four standard addressing 
modes. Details on these addressing modes and the rest of the 
instruction-set are not further relevant to the discussion on 
branches, and may be found elsewhere. 21 

Three specific choices were made in the design of the 
instruction set to match high performance implementations. 
First, we chose to have separate compare and conditional 
branch instructions, rather than an integrated compare and 

branch. The motivation was that the outcome of a branch 
needs to be determined at the head of the pipeline, so that 
instructions following the branch may be entered into the pipe- 
line as soon as possible. Unfortunately, the resolution of a 
compare is generally only known at the tail of the pipeline. It 
is not possible for a single compare-and-branch instruction to be 
both places at once. (Some optimizations are possible, e.g. 
Katevenis' Fast Compare and Branch 22 scheme.) Second, the 
compare instruction is the only instruction that can modify the 
condition code flag. This reduces the number of instructions in 
the pipeline that can affect the outcome of a conditional branch, 
making code motion and branch prediction techniques more 
effective. Avoiding the modification of the condition code by 
non-comparison instructions has other benefits as well. 23'24 
Third, the instruction set was designed to avoid side effects 
(such as auto-increment), so that instructions could be easily 
cancelled before the result write of the last pipeline stage. This 
allows mis-predicted branches and instructions following them 
in the pipeline to be easily cancelled. 

Branch Prediction 

Up to 3 cycles may be lost if the initial path of a condi- 
tional branch is incorrectly chosen in the Execution 'Tnit. It is 
therefore important to chose the correct path with high proba- 
bility. Because basic block sizes in CRISP are typically short, 
on the order of 3 instructions, we decided that branch predic- 
tion would be a better technique than delayed branch. Delayed 
branch might be more effective for load/store machines where 
the basic blocks are somewhat larger, and offer more opportun- 
ities for scheduling branch delay slots. For our branch predic- 
tion technique we wanted to make the best compromise between 
performance and simplicity of implementation. A variety of 
branch prediction techniques have been suggested by J. Smith 25 
and Lee and Smith. 26 

The decision to use a single static branch prediction bit in 
CRISP was made after comparing the effectiveness of this tech- 
nique against other proposed schemes. Static prediction is 
clearly the simplest approach. The more complex schemes 
involve keeping a dynamic history in an instruction cache or 
branch target buffer. Because our instruction set and workload 
are somewhat different than those described in the literature, 
we made additional tests to judge the effectiveness of the vari- 
ous schemes. Rather than the traditional evaluation method of 
using trace tapes, we modified a VAX C compiler to generate 
additional code which would simultaneously apply several dif- 
ferent branch prediction techniques as the program ran. This 
allowed us to measure many long running programs with ease. 
The branch prediction strategies measured were static predic- 
tion, and one, two and three bits of dynamic prediction. The 
static prediction numbers report accuracy for optimal setting of 
a branch prediction bit in the branch instruction. One bit of 
dynamic history predicts to branch the same as the last time. 
The two and three bit dynamic history algorithms provide 
weighting, as descibed by J. Smith. The dynamic history 
assumes an infinite size table, this makes the dynamic numbers 
somewhat optimistic. In practice only a small number, of recent 
predictions would be cached. 

Table 1 shows the prediction accuracy for several bench- 
marks. The benchmarks include three large programs and three 



common benchmark programs. The large programs are the 
troff text processor, the C compiler, and a VLSI design rule 
checker. The results show that the dynamic techniques are not 
significantly better than what is possible with static prediction. 

On the commonly used benchmarks (Dhrystone, Cwhet 
and Puzzle), static prediction was actually superior to the more 
complex dynamic schemes. This result is somewhat unexpected 
and is due to the conditional branches either branching one 
direction all the time, or alternating. For the case of branching 
in one direction, all schemes get essentially 100% correct pred- 
iction. For the case where branches alternate direction, static 
prediction gets 50% correct, while all the dynamic schemes get 
0% correct. 

Given the increased complexity of the dynamic strategies, 
the use of a single static prediction bit in CRISP seems to be a 
reasonable choice. The setting of CRISP's branch prediction bit 
is normally be done by the compiler, though other techniques 
are possible. The particular heuristics used by the compiler are 
discussed elsewhere. 27 

Program static I bit of 2 bits of 3 bits of Number of 
branch dynamic dynamic dynamic branches 

prediction.prediction.prediction ,prediction executed 
Troff .94 .93 .95 .95 22 Million 

C compiler .74 .77 .77 .74 1.5 Million 
VLSI DRC .89 .95 .95 .95 38 Million 
Dhrystone i .86 .72 .79 .79 1.5 Mi lion 

Cwhet .84 .68 .79 .79 33,550 
Puzzle .92 .87 .87 .87 I 741 

Table I. Accuracies of branch prediction techniques. 

Branch Spreading 
Branch prediction is useful when a conditional branch 

instruction enters the pipeline before the result of a preceding 
compare can be computed. If, however, there are no compare 
instructions in the pipeline then there is no need for branch 
prediction because the outcome of the conditional branch is 
known with certainty. In such a situation, the correct next 
instruction address can be determined for the conditional 
branch as soon as it enters the execution pipeline. 

Because CRISP has separate compare and conditional 
branch instructions it is possible to have the compiler assure 
that no comparison instructions will be in the pipeline when a 
conditional branch is read from the instruction cache. The sim- 
plest approach is to have the compiler generate a sufficient 
number of no-op instructions between a compare instruction 
and the corresponding conditional branch instruction. Use of 
code motion can do much better by moving useful non- 
condition code setting instructions between the compare instruc- 
tion and the conditional branch instruction. 

This form of code motion is similar to that used with 
delayed branch instructions, and has been found to be very 
effective. 28 The main difference is that CRISP does not require 
delay slots as part of the definition of the instruction-set. The 
use of delayed branch instruction still costs the delay of a full 
instruction to simply move the branch through the pipeline. 
This branch slot is not required in CRISP when Branch Folding 
is used. 

Branch Folding 
A simplified block diagram of the CRISP architecture is 

shown in Figure 1. Instructions are fetched from main memory 
by a three stage pipelined Prefetch and Decode Unit (PDU), 
decoded into a more easily executed internal form, and placed 
into a Decoded Instruction Cache. A three stage pipelined Exe- 
cution Unit (EU) reads the instructions from the cache and exe- 
cutes them. Placing the Decoded Instruction Cache in the mid- 
dle of what would otherwise be a six stage pipeline is to key a 
number of performance and implementation details. First, the 
cache decouples the PDU from the EU, allowing each to 
operate independently. If the PDU has to wait for memory, 
this does not necessarily stall the EU. Second, pipeline break- 
age problems have been reduced by cutting the length of the 
pipeline in half. Third, executing decoded instructions is con- 
siderably easier than encoded instructions. Encoded instruc- 
tions may be as short as 16-bits, the decoded instruction cache 
makes all instructions appear in a canonical fixed 192-bit 
length, similar to a horizontal microinstruction. 

Main Memory 
Prefetch and ] 
Decode Unit 

iDecodcd I nstructlon 
Cache 

_1 Execution ] 
q Unit 

Figure 1. Simplified block diagram of CRISP Microprocessor. 

An instruction may be executed several times from the 
instruction cache and each time (except for conditional 
branches) the next address is always the same. Instead of 
recalculating this address every time the instruction is executed, 
the next address logic is moved to the input side of the instruc- 
tion cache and a 31-bit (parcel aligned) "next-address" field is 
added to the cache. As instructions are placed in the cache, 
their next-address value (Next-PC) is stored with them. When 
the EU reads an instruction from cache, the next address value 
is immediately available to address the next instruction from the 
cache. 

This machine organization is similar to many speed optim- 
ized microprogrammed machines where each microinstruction 
has its own next address field. What we have done differently 
is to achieve the same benefits for computer macro instructions 
by dynamically generating the contents of the next address field 
rather than storing it with each instruction in main memory. 

Providing a next address field for every instruction in the 
cache has the same effect as turning every instruction into a 
branch instruction. But since every instruction in the cache can 
perform a branch, there is no need for separate branch instruc- 
tions. During decoding the CRISP PDU recognizes when a 
non-branching instruction is followed by a branch instruction 
and "folds" the two instructions together. This single 



instruction is then placed into the Decoded Instruction Cache.  
The  separate branch instruction disappears  entirely from the 
Execution Unit pipeline and the program executes  as if the 
branch were executed in zero time. We refer to this technique 
as Branch Folding. 

For the conditional branch instruction the next instruction 
address  is not invariant after an instruction is read from the 
instruction cache. Condit ional  branch instructions will either 
execute the next sequential  instruction or will branch to another  
instruction,  depending on the value of  the condition code flag. 
If conditional branches  are also to be folded, then some addi- 
tional mechan i sm is needed.  We therefore added a second 31- 
bit address  field to the instruction cache called the Alternate  
Next-PC. This  field is used to hold the second possible next 
instruction address  of  a conditional branch instruction. When  a 
folded conditional branch instruction is read from the instruc- 

tion cache one of  the two paths  for the branch is selected for 
the next instruction address ,  and the address  that was not used 
is retained with each instruction as it proceeds down the execu- 
tion pipeline. The Alternate  Next-PC field is to be retained 

with each pipeline stage until the logic can determine whether  
the selected branch path was correct or not. When the outcome 
of  the branch condition is known,  if the wrong next address  was 
selected, any instructions in progress  in the pipeline following 
the conditional branch are f lushed and the Alternate  Next-PC 
from the folded conditional branch is re-introduced as the next 
instruction address  at the beginning of  the instruction pipeline. 

Implementation of Branch Folding 

Figure 2 shows a schematic  of  the essential da tapaths  used 
in the CRISP microprocessor  for the implementat ion of  Branch 
Folding. The implementat ion is shown to illustrate the amount  
of  extra logic needed to implement  branch folding, and to show 
the actual implementat ion and design decisions used in CRISP. 
Not shown in the schematic  are the paths  in the PDU used to 
fetch instructions f rom main memory ,  as this is independent  of  
Branch Folding. 

CRISP does not try to fold all branch instructions,  only 
those that occur with the greatest frequency.  CRISP's  policy is 
to only fold one and three parcel non-branching instructions 
with one parcel branches.  Doing the remaining cases signifi- 
cantly increases the amount  of  hardware  required,  with only a 
marginal  increase in performance.  

In the PDU,  the instruction to be decoded comes from the 
output  of  an Instruction Queue  in the Prefetch Decode Register 
(PDR) pipeline stage. The address  of  the first parcel in the 
Queue  (QA) is held in the PDR.PC pipeline register. The out- 
put of  five instruction parcels, Q A - Q E ,  are available s imul tane-  
ously for decoding. Decoded instructions are clocked into the 
Prefetch Instruction Register  (PIR) stage one clock cycle after 
they enter  the PDR stage. The Next-PC field (or Alternate 
Next-PC field) can have one of  three sources.  For a sequential  
instruction,  or the sequential  part of  a conditional branch,  the 
next address  is found by adding the instruction length 
( i l e n < 0 : 2 > )  to instruction address  (PDR.PC) .  Second, if the 
branch uses  a 32-bit address ,  this address  is selected directly 
from the QB and QC parcels. Third ,  the branch target address  
may  come from a one parcel branch,  either folded or not. 

For folded instructions the branch is always the one parcel 

format ,  and must  follow a one or three parcel instruction. It 
follows then that the 10-bit PC relative offset is found in the 
QB parcel if the previous instruction was one parcel, or in the 
QD parcel if the previous instruction was three parcels long. 
This  10-bit offset is selected by the tpcmx multiplexor and then 
added to a 2-bit branch adjust.  The branch adjust  is necessary 
because the PC relative offset is relative to the address  of  the 
branch,  not the instruction it is being folded with. The value of  
the branch adjust is simply the size of  the instruction start ing in 
the QA parcel. The adjusted offset is then added to the 
address  of  the instruction being folded (in the PDR.PC register) 
to yield the branch target address .  For cases where a one par- 

cel branch is not folded, (for example ,  a branch after a call), 
the offset is selected from the QA parcel, and the branch adjust  
field is zero. 

If the branch prediction bit is set to indicate that the 
branch will likely be taken,  then the Next-PC of  the PIR stage 
will the appropriate branch target address ,  and the Alternate-  
PC will contain the address  of  the next sequential  instruction. 
If the branch prediction bit is set to indicate that the branch will 
not likely be taken,  then the Next-PC will contain the sequen-  
tial instruction address  and the Next-PC will contain the branch 
target address .  

In the Execution Unit ,  there are three pipeline stages. 
Instructions are read from the Decoded Instruction Cache into 
the Instruction Register  (IR) stage,  operands  are accessed and 
placed into the Operand Register  (OR)  stage, then an A L U  
operation takes place and the A L U  result placed in the Resul t  
Register  (RR)  stage, and finally the result write occurs.  The 
flow of  instructions in the EU is controlled by the IR stage 
Next-PC register.  This  register specifies the next instruction to 
be loaded into the IR stage,  the low five bits are used to 
address  the Decoded Instruction Cache.  When the CPU is ini- 
tially reset,  the IR.Next-PC is set to zero, this is where the first 
instruction fetch will start.  

Under  the normal  condition of loading a new instruction 
into the IR, the IR.Next-PC is loaded directly from the Next- 
PC field of  the instruction coming from the Decoded Instruc- 
tion Cache.  For this case, the al ternate address  for a condi- 
tional branch is loaded into the IR stage Alternate-PC registers.  
The PC of each instruction is carried with each each pipeline 
stage to identify the instruction in the case of  an interrupt or 
other exception. 

For the case of  indirect jumps ,  the IR.Next-PC m ay  be 
loaded from the Stack Cache,  or f rom off-chip via the data_in 
bus. 

Condit ional  branches may or may  not be predicted 
correctly via the single static branch prediction bit. The direc- 
tion not predicted is kept with each pipeline stage in the 
Al ternate-PC field. CRISP tries to minimize the penalty for in 
incorrectly predicted branch by recovering as soon as the 
correct instruction path is known.  

if the conditional branch has  been folded with a compare 
in the same instruction, the true outcome of  the branch is not 
resolved until the instruction reached the RR stage. If the 
branch is de termined to be incorrectly predicted when the 
branch reaches the RR stage, the RR.Al te rna te -PC will be 
placed in the IR.Next-PC at the next clock, and the instructions 



being clocked into the IR, OR and RR will have their valid bit 

set to zero. Because side-effects were avoided in the instruction 
set, any instruction may be turned into a no-op by resett ing the 
valid bit associated with each stage. Three  clock ticks will be 
lost in this case. 

If the compare  is one stage ahead of  the conditional 
branch,  the correct address  is obtained from the OR.Al te rna te -  
PC and only two clock ticks are lost. If the compare is two 
stages ahead of  the conditional branch then the correct address  
is obtained from the IR.Al ternate-PC and only one clock tick is 
lost. If however ,  the compare  is three stages ahead of  the con- 
ditional branch,  the compare  will have left the pipeline before 
the conditional branch is place in the IR. For this case, the 
condition code will not change,  and the branch need not be 
predicted. If the current  condition code is not the same as that 
predicted for the conditional branch about to be loaded into the 
IR, then the IR.Next-PC is taken from the Al ternate-PC field 
of  the Decoded Instruction Cache and zero cycles can be lost 
due to incorrectly setting the branch prediction bit. The condi- 

tional branch has  effectively been turned into an uncondit ional  
branch.  Branch Spreading tries to take advantage  of this last 
case. 

Evaluation 

Branch Folding, Branch Prediction, and Branch Spreading 

are techniques used in the CRISP Microprocessor to reduce the 
execution time incurred for branches.  A simple example will 
illustrate their use, and quanti tat ively show their effect in our 
implementa t ion.  The short  C program shown in Figure 3 was 
picked to isolate the per formance  effects related to branches,  
rather  than other CRISP features.  The loop count of  1024 is 
high enough to overcome about 50 cycles of  initial overhead in 
calling the main routine without significantly affecting statistics. 
This  allows our tools to measure  the entire program rather than 
having to measure  isolated instructions.  The results are rela- 
tively independent  of  the actual loop count.  The CRISP code 
generated for the loop is s t ra ightforward,  and contains two con- 
ditional branches ,  one for the if and one at the end of  the code 
to branch to the top of the loop. An uncondit ional  branch is 
used to branch around the else clause. The if s ta tement  in the 
program was chosen to be difficult for branch prediction, as the 
expression will al ternate between evaluat ing true and false. 
The conditional branch at the end of the loop would be 
predicted by a compiler to branch back to the top of the loop. 
No special optimizations other  than those described were used. 

To show the number  of  branches,  and for comparison pur-  

poses,  the p rogram of  Figure 3 was analyzed for both CRISP 
and the VAX.  The code for both machines  was generated 
directly f rom our  s tandard compilers.  The instruction distribu- 
tion is shown in Table 2. The result in te rms  of  number  of  
instructions executed was essentially identical. 

This  same program was run in four different ways,  selec- 
tively enabling the use of Branch Folding, Branch Prediction 
and Branch Spreading. Branch prediction yes  means  that the 
end of  loop branch is set to branch taken,  no means  not taken.  
The prediction bit for the conditional branch of the if was set to 
yes  in all cases, as the particular setting is irrelevant. No 

Branch Spreading means  that compares  were immediate ly  fol- 
lowed by the conditional branches,  yes  means  that code motion 

was used to separate the compare and branch.  For compar ison,  

the CRISP code for the loop before and after branch folding is 
shown in Table 3. 

The results of  running  these programs are shown in Table 
4. The CRISP Execution Unit is capable of  issuing a new 
instruction every clock cycle. In most  pipelined machines ,  one 
instruction per cycle is the theoretical peak rate. Case A is 
used as a performance  reference.  Because of  pipeline breakage 
case A requires  an average of  1.48 cycles to execute each 
instruction. (Note that pipeline breakage might be much  worse 
without the Decoded Instruction Cache,  which shor tens  the exe- 
cution pipeline.) By simply sett ing the branch prediction bit 
properly, case B speeds up by a factor of  1.3. In case C branch 
folding is turned on. The effect here is that the Execution Unit 
does not have to issue a separate instruction for the branches.  
Technically,  the Execution Unit is only issuing instructions at a 
rate of  1.22 cycles per instruction,  when instructions mean  
those issued by the the pipeline. However ,  the apparent  
number  of  number  of  clocks per instruction when viewed as a 

black box is 0.90, so CRISP appears  to be executing 1.1 instruc- 
tions every clock cycle. The performance  for case C is still 
degraded due to incorrect prediction for the conditional branch 
of  the if every other  t ime through the loop. Use of  branch 
spreading in case D allows the proper branch direction for this 
conditional branch to be de termined correctly every time. The 
performance  for case D is twice that of  case A, with an 
apparent  instruction execution rate of  1.35 instructions per 
cycle. In the loop (discounting the initial cycles of  overhead)  
CRISP is issuing exactly I new decoded instruction every cycle 
despite branches.  Effectively, all uncondit ional  and conditional 
branches  are executed in zero t ime. 

Finally, case E provides a comparison against  delayed 
branch schemes.  Delayed branch is similar to branch spreading 
where it is manda to ry  to schedule instructions after the branch.  
By turning off  branch folding, but using branch spreading,  the 
relative improvement  is 1.5, only half  as much  improvement  as 
with branch folding. For this example both machines  are exe- 
cuting 1.01 cycles/ issued-instruction,  CRISP 's  advantage  over 
delayed branch is in executing fewer instructions.  

The  performance  improvements  shown for the example are 
meant  to be illustrative, not an indication that this per formance  
improvement  will happen in every case. The actual improve-  
ment  is a function of  the particular application being run.  

main( ) 
{ int i, j, zeros, ones, sum; 

j = ones = zeros = O; 

for( i=O; i < 1024; i++ 
{ sum += i; 

if ( i & I ) 

odd++ ; 

else even++ ; 
j = sum; 

} 

} 

Figure 3. A C program for evaluation. 



CRISP 
Total of  9734 instructions 

Opcode Count Percent 

add 3072 31.55% 
if-jump 2048 21.04% 

cmp 2048 21.04% 
move 1027 10.55% 
and 1024 10.52% 

jump 513 05.27% 
enter 1 00.01% 

return 1 00.01% 

VAX 
Total of 9736 instructions 

Opcode Count Percent 

incl 2048 21.04% 
jbr 1536 15.78% 

movl 1026 10.54% 
cmpl 1025 10.53% 
jgeq 1025 10.53% 
addl2 1024 10.52% 

bitl 1024 10.52% 
jeql 1024 10.52% 
clrl 2 00.02% 
ret 1 00.01% 

subl2 1 00.01% 

Table 2. Instruction counts for the program of Figure 3. 

CRISP code without CRISP Code with 
Branch Spreading Branch Spreading 

_4: add sum,i _4: and3 i, 1 

_5: 
_6: 

and3 i,I 
cmp. = Accum,0 
ifTjmpy 5 
add odd, 1 
jmp _6 
add even, I 
mov j ,sum 
add i, I 
cmp. s<  i, 1024 
i f r jmpn 4 

_5: 
_6: 

cmp. = Accum,0 
add sum,i 
add i, I 
mov j ,sum 
i f r jmpy 5 
add odd, I 
jmp _6 
add even, 1 
crop.s< i, 1024 
ifTjmpy 4 

Table 3. CRISP Code for loop before and after Branch Spreading. 

Comparison to Other Schemes 

The techniques used in the CRISP microprocessor for 
reducing the cost of branches are a significant improvement 
over schemes which have been implemented in other machines. 
With delayed branch, the branch itself must still be executed; 
this requires at least one clock cycle. Machines having a single 
compare and branch can get some of the effect that CRISP 
requires branch folding to achieve, but they have no assistance 
with unconditional branches. 

The use of  a Branch Target Buffer, as described by Lee 
and Smith, can provide reasonable branch prediction based on 
dynamic history. On most machines using a BTB, the benefit is 
in avoiding pipeline breakage, both conditional and uncondi- 
tional branches still require at least a clock for their execution. 
McFarling and Hennessy discuss the possibility of  storing the 
target instruction in the BTB as a way to eliminate the cost of  
unconditional branches. The effectiveness of BTB's varies. 
Results for the MU5 show only a 40-65 percent correct predic- 
tion rate for an eight entry jump-trace,  barely better than toss- 
ing a coin. Lee and Smith report effectiveness as high as 78 per- 
cent for a BTB of 128 sets of  4 entries. The BTB is usually 
implemented as a separate associatively addressed function unit. 
Branch Folding in CRISP is different in that it adds the next 
address fields to each instruction in the Decoded Instruction 
Cache, and occurs later in the pipeline. Branches in CRISP 

need not occupy a pipeline slot to themselves. A final deciding 
factor against the BTB in microprocessors might be the imple- 
mentation cost. A 128 set 4 entry BTB would be nearly as 
large as our entire microprocessor chip. 

Practical Considerations 

Use of a Decoded Instruction Cache simplifies the imple- 
mentation in many ways. For example, one of the decoded 
instruction bits is used exclusively to specify whether the 
instruction can modify the condition code flag. This bit is car- 
ried with each pipeline stage in the execution unit, and used to 
evaluate if the correct branch target can be determined without 
prediction. The use of a Decoded Instruction Cache helps 
improve pipeline performance by separating decoding from 
instruction execution. This can smooth out pipeline blockages 
giving the same advantages as Kogge's description of  the use of 
a FIFO queue, 29 but without the problems of  having to flush 
the queue when a branch occurs. 

For our machine, including a Next-PC field and alternate 
Next-PC field in the Decoded Instruction Cache caused the 
cache to grow 64-bits wider than it otherwise might have been. 
This extra memory turned out not to cost any area in CRISP 
since the pitch of  the datapath was the constraining factor. 
Many of  our initial design decisions were based on trying to 
make CRISP a memory intensive, rather than control-logic 
intensive design. In retrospect, this decision turned out to be 
far wiser than we had originally imagined. 

Finally, true zero delay for branches can only occur if the 
instruction cache has a hit. Being careful with the design of the 
instruction prefetch unit and instruction cache should not be 
overlooked 30 

Conclusion 

We have described a general technique called branch fold- 
ing, and associated hardware/software techniques that have the 
potential to totally eliminate many of  the problems with 
branches that have plagued high performance computer designs. 
The number of  instructions issued to the pipeline to execute a 
given program can be reduced by the number of branches in the 
program. This can be as much as 30% of  instructions being 
executed. The resulting reduction in number of  instructions 
executed and eliminating pipeline breakage can lead to signifi- 
cant performance improvements.  

Although the implementation was described only for the 
CRISP Microprocessor,  the technique may prove valuable for 
other computer designs, particularly those for which compatibil- 
ity does not allow the use of other techniques such as delayed 
branch. 



Case Branch Branch Branch Cycles to 
Folding Prediction Spreading Execute 

A no no no 14,422 
B no yes no 11,359 
C yes yes no 8,789 
D yes yes yes 7,250 
E no yes yes I 9,815 

Instructions Relative 
Issued Perf. 

9,734 1.0 
9,734 1.3 
7,174 1.6 
7,174 2.0 
9,734 1.5 

Table 4. Execution Statistics on CRISP for program of Figure 3. 
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Figure 2. CRISP datapaths used in Branch Folding. 


