
Branch Folding in the CRISP Microprocessor:
Reducing Branch Delay to Zero

David R. Ditzel
Hubert R. McLellan

AT&T Bell Laboratories
Murray Hill, N.J. 07974

Abstract

A new method of implementing branch instructions is
presented. This technique has been implemented in the CRISP
Microprocessor. With a combination of hardware and software
techniques the execution time cost for many branches can be
effectively reduced to zero. Branches are folded into other
instructions, making their execution as separate instructions
unnecessary. Branch Folding can reduce the apparent number
of instructions needed to execute a program by the number of
branches in that program, as well as reducing or eliminating
pipeline breakage. Statistics are presented demonstrating the
effectiveness of Branch Folding and associated techniques used
in the CRISP Microprocessor.

Introduction

The efficient implementation of branches is of major con-
cern in the implementation of high performance pipelined com-
puters. This paper discusses branch problems and attempted
solutions in various machines. The implementation of branches
in the CRISP Microprocessor is then described. The two pri-
mary results are shown. First. pipeline breakage is reduced.
Second, the total number of instructions executed by the execu-
tion pipeline is reduced by the number of (folded) branches.
Since branch instructions account for a large fraction of all com-
puter instructions executed, this reduction offers a correspond-
ingly large execution time speedup.

The CRISP Microprocessor

The CRISP Microprocessor is a high performance single
chip general purpose microprocessor. I The CMOS chip contains
172,163 transistors and is capable of achieving a peak execution
rate of greater than 16 MIPS with a clock frequency of 16 Mhz.
Part of CRISP's performance comes from a high degree of pipe-
lining. 2 Early in the design we realized that the full potential of
pipelining could be achieved only if some method was found to
eliminate traditional problems with branches. Our solution
involves the synergistic combination of three techniques. First,
from new hardware structures to implement Branch Folding.
Second, from software techniques, in particular the application
of compiler technology. Third, from designing the instruction
set to match a high performance implementation and the avail-
able compiler technology.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

The Branch Problem and Some Solutions

The implementation of branch instructions is one of the
hardest and most important problems to be dealt with in the
implementation of high performance pipelined computers.
Branch instructions tend to interrupt the smooth flow of instruc-
tions through an instruction pipeline making the average
instruction throughput rate much lower than the peak rate. For
example, early studies for the pipelined MU5 computer showed
that if branches occurred in only one out of ten instructions
then performance would be reduced by a factor of three, unless
special precautions were taken. 3 Branches occur very frequently
in programs; various studies show the dynamic frequency of
branches can be as much as one third of all instructions exe-
cuted.4.5, 6

The peak rate of instruction flow in a pipelined machine
can only be obtained if the pipeline can be kept full. Discon-
tinuities can occur because a branch may be several stages deep
in the pipeline before it takes effect. In this case, all instruc-
tions introduced to the pipeline after the branch would have to
be flushed, causing useless empty pipeline bubbles to occur.
Conditional branches have two possible paths to follow. Unless
instructions can be cancelled or backed up without side effects,
it would be necessary to stall the pipeline until the correct out-
come of the branch was known. Finally, a branch can interfere
with program prefetching strategies, causing waits due to main
memory latency.

The importance of dealing with the performance degrada-
tion due to branch instructions has been recognized for a long
time. A description of the design of the STRETCH (1BM
7030) computer relates how branches can spoil the flow of
instructions to the instruction unit, and how a computer can use
branch prediction to improve performance. 7 Implementing
branch instructions so that a branch transfer does not take
effect until instructions after the branch are also executed can
be used to reduce branch delay; this technique is commonly
referred to as "delayed branch." The technique of delayed
branch was used as early as 1952 in the Los Alamos MANIAC
computer. Delayed branch has seen a recent resurgence in
popularity with machines such as the IBM 801, 8 the Berkeley
RISC l, 9 Stanford MIPS, I° the MIPS Inc. R2000, II and HP
Spectrum 12 computers. McFarling and Hennessy have reviewed
the costs associated with variations on the delayed branch

2
© 1987 ACM 0084-7495/87/0600-0002500.75

scheme. 13

The Manchester MU5 computer system uses a Jump Trace
that caches the address of instructions which have caused a
branch. A cache hit causes pre-fetching to continue at the
jumped-to address stored in the jump trace cache, rather than
with the next sequential instruction. 14.15 Lee and Smith
describe this technique as a Branch Target Buffer, and show
improvements over the MU5 approach.

A number of hardware strategies specifically to deal with
branches have been employed in recent machines. The IBM
360 series model 9116 duplicates some logic to start prefetching
the unpredicted branch target as well as the predicted path. A
more extreme approach is taken by the IBM 303317 by simul-
taneously following both possible paths of conditional branch
instructions. Other proposed schemes include using up to 24
separate condition code registers to allow the compiler to
precompute tests, 18 and using high level language control
semantics embedded in the object code.19

Lee and Smith 2° provide a more general survey of previ-
ously used approaches, and in particular results on the efficacy
of the Branch Target Buffer approach.

Branches in the CRISP Instruction Set

Branches may be either conditional or unconditional.
Conditional branches are conditioned on the value of a single
flag bit, kept in the Program Status Word register. Two
instruction forms of conditional branch are provided; one that
branches if the flag bit is true, and another that branches if the
flag bit is false. Conditional branches also contain a single
static branch prediction bit, which may be set by the compiler.
This bit is used as a hint to the hardware as to whether the
branch will transfer or not.

CRISP instructions are encoded in three different lengths,
composed of either one, three or five 16-bit instruction parcels.
Two instructi~on lengths are provided to encode conditional and
unconditional branches. A one parcel branch instruction con-
tains a 10-bit PC relative offset. Since CRISP instructions are
aligned on 16-bit boundaries, this allows for a range of -1024 to
+ 1022 bytes. A three parcel branch instruction contains a 32-
bit branch specifier field. This field is typically used to hold an
absolute address, but may also specify a branch indirect through
an absolute address, or a branch indirect though the address
specified by a 32-bit offset from the Stack Pointer. Dynamic
instruction measurements show that around 95% of the
branches executed are encoded in the one parcel instruction for-
mat. Most of the remainder use the three parcel form with an
absolute address. Indirect branches are only occasionally gen-
erated by our compiler for such constructs as case statements.

The condition code flag can only be modified as the result
of a compare instruction. A compare instruction can compare
two operands located in memory via four standard addressing
modes. Details on these addressing modes and the rest of the
instruction-set are not further relevant to the discussion on
branches, and may be found elsewhere. 21

Three specific choices were made in the design of the
instruction set to match high performance implementations.
First, we chose to have separate compare and conditional
branch instructions, rather than an integrated compare and

branch. The motivation was that the outcome of a branch
needs to be determined at the head of the pipeline, so that
instructions following the branch may be entered into the pipe-
line as soon as possible. Unfortunately, the resolution of a
compare is generally only known at the tail of the pipeline. It
is not possible for a single compare-and-branch instruction to be
both places at once. (Some optimizations are possible, e.g.
Katevenis' Fast Compare and Branch 22 scheme.) Second, the
compare instruction is the only instruction that can modify the
condition code flag. This reduces the number of instructions in
the pipeline that can affect the outcome of a conditional branch,
making code motion and branch prediction techniques more
effective. Avoiding the modification of the condition code by
non-comparison instructions has other benefits as well. 23'24
Third, the instruction set was designed to avoid side effects
(such as auto-increment), so that instructions could be easily
cancelled before the result write of the last pipeline stage. This
allows mis-predicted branches and instructions following them
in the pipeline to be easily cancelled.

Branch Prediction

Up to 3 cycles may be lost if the initial path of a condi-
tional branch is incorrectly chosen in the Execution 'Tnit. It is
therefore important to chose the correct path with high proba-
bility. Because basic block sizes in CRISP are typically short,
on the order of 3 instructions, we decided that branch predic-
tion would be a better technique than delayed branch. Delayed
branch might be more effective for load/store machines where
the basic blocks are somewhat larger, and offer more opportun-
ities for scheduling branch delay slots. For our branch predic-
tion technique we wanted to make the best compromise between
performance and simplicity of implementation. A variety of
branch prediction techniques have been suggested by J. Smith 25
and Lee and Smith. 26

The decision to use a single static branch prediction bit in
CRISP was made after comparing the effectiveness of this tech-
nique against other proposed schemes. Static prediction is
clearly the simplest approach. The more complex schemes
involve keeping a dynamic history in an instruction cache or
branch target buffer. Because our instruction set and workload
are somewhat different than those described in the literature,
we made additional tests to judge the effectiveness of the vari-
ous schemes. Rather than the traditional evaluation method of
using trace tapes, we modified a VAX C compiler to generate
additional code which would simultaneously apply several dif-
ferent branch prediction techniques as the program ran. This
allowed us to measure many long running programs with ease.
The branch prediction strategies measured were static predic-
tion, and one, two and three bits of dynamic prediction. The
static prediction numbers report accuracy for optimal setting of
a branch prediction bit in the branch instruction. One bit of
dynamic history predicts to branch the same as the last time.
The two and three bit dynamic history algorithms provide
weighting, as descibed by J. Smith. The dynamic history
assumes an infinite size table, this makes the dynamic numbers
somewhat optimistic. In practice only a small number, of recent
predictions would be cached.

Table 1 shows the prediction accuracy for several bench-
marks. The benchmarks include three large programs and three

common benchmark programs. The large programs are the
troff text processor, the C compiler, and a VLSI design rule
checker. The results show that the dynamic techniques are not
significantly better than what is possible with static prediction.

On the commonly used benchmarks (Dhrystone, Cwhet
and Puzzle), static prediction was actually superior to the more
complex dynamic schemes. This result is somewhat unexpected
and is due to the conditional branches either branching one
direction all the time, or alternating. For the case of branching
in one direction, all schemes get essentially 100% correct pred-
iction. For the case where branches alternate direction, static
prediction gets 50% correct, while all the dynamic schemes get
0% correct.

Given the increased complexity of the dynamic strategies,
the use of a single static prediction bit in CRISP seems to be a
reasonable choice. The setting of CRISP's branch prediction bit
is normally be done by the compiler, though other techniques
are possible. The particular heuristics used by the compiler are
discussed elsewhere. 27

Program static I bit of 2 bits of 3 bits of Number of
branch dynamic dynamic dynamic branches

prediction.prediction.prediction ,prediction executed
Troff .94 .93 .95 .95 22 Million

C compiler .74 .77 .77 .74 1.5 Million
VLSI DRC .89 .95 .95 .95 38 Million
Dhrystone i .86 .72 .79 .79 1.5 Mi lion

Cwhet .84 .68 .79 .79 33,550
Puzzle .92 .87 .87 .87 I 741

Table I. Accuracies of branch prediction techniques.

Branch Spreading
Branch prediction is useful when a conditional branch

instruction enters the pipeline before the result of a preceding
compare can be computed. If, however, there are no compare
instructions in the pipeline then there is no need for branch
prediction because the outcome of the conditional branch is
known with certainty. In such a situation, the correct next
instruction address can be determined for the conditional
branch as soon as it enters the execution pipeline.

Because CRISP has separate compare and conditional
branch instructions it is possible to have the compiler assure
that no comparison instructions will be in the pipeline when a
conditional branch is read from the instruction cache. The sim-
plest approach is to have the compiler generate a sufficient
number of no-op instructions between a compare instruction
and the corresponding conditional branch instruction. Use of
code motion can do much better by moving useful non-
condition code setting instructions between the compare instruc-
tion and the conditional branch instruction.

This form of code motion is similar to that used with
delayed branch instructions, and has been found to be very
effective. 28 The main difference is that CRISP does not require
delay slots as part of the definition of the instruction-set. The
use of delayed branch instruction still costs the delay of a full
instruction to simply move the branch through the pipeline.
This branch slot is not required in CRISP when Branch Folding
is used.

Branch Folding
A simplified block diagram of the CRISP architecture is

shown in Figure 1. Instructions are fetched from main memory
by a three stage pipelined Prefetch and Decode Unit (PDU),
decoded into a more easily executed internal form, and placed
into a Decoded Instruction Cache. A three stage pipelined Exe-
cution Unit (EU) reads the instructions from the cache and exe-
cutes them. Placing the Decoded Instruction Cache in the mid-
dle of what would otherwise be a six stage pipeline is to key a
number of performance and implementation details. First, the
cache decouples the PDU from the EU, allowing each to
operate independently. If the PDU has to wait for memory,
this does not necessarily stall the EU. Second, pipeline break-
age problems have been reduced by cutting the length of the
pipeline in half. Third, executing decoded instructions is con-
siderably easier than encoded instructions. Encoded instruc-
tions may be as short as 16-bits, the decoded instruction cache
makes all instructions appear in a canonical fixed 192-bit
length, similar to a horizontal microinstruction.

Main Memory
Prefetch and]
Decode Unit

iDecodcd I nstructlon
Cache

_1 Execution]
q Unit

Figure 1. Simplified block diagram of CRISP Microprocessor.

An instruction may be executed several times from the
instruction cache and each time (except for conditional
branches) the next address is always the same. Instead of
recalculating this address every time the instruction is executed,
the next address logic is moved to the input side of the instruc-
tion cache and a 31-bit (parcel aligned) "next-address" field is
added to the cache. As instructions are placed in the cache,
their next-address value (Next-PC) is stored with them. When
the EU reads an instruction from cache, the next address value
is immediately available to address the next instruction from the
cache.

This machine organization is similar to many speed optim-
ized microprogrammed machines where each microinstruction
has its own next address field. What we have done differently
is to achieve the same benefits for computer macro instructions
by dynamically generating the contents of the next address field
rather than storing it with each instruction in main memory.

Providing a next address field for every instruction in the
cache has the same effect as turning every instruction into a
branch instruction. But since every instruction in the cache can
perform a branch, there is no need for separate branch instruc-
tions. During decoding the CRISP PDU recognizes when a
non-branching instruction is followed by a branch instruction
and "folds" the two instructions together. This single

instruction is then placed into the Decoded Instruction Cache.
The separate branch instruction disappears entirely from the
Execution Unit pipeline and the program executes as if the
branch were executed in zero time. We refer to this technique
as Branch Folding.

For the conditional branch instruction the next instruction
address is not invariant after an instruction is read from the
instruction cache. Condit ional branch instructions will either
execute the next sequential instruction or will branch to another
instruction, depending on the value of the condition code flag.
If conditional branches are also to be folded, then some addi-
tional mechan i sm is needed. We therefore added a second 31-
bit address field to the instruction cache called the Alternate
Next-PC. This field is used to hold the second possible next
instruction address of a conditional branch instruction. When a
folded conditional branch instruction is read from the instruc-

tion cache one of the two paths for the branch is selected for
the next instruction address , and the address that was not used
is retained with each instruction as it proceeds down the execu-
tion pipeline. The Alternate Next-PC field is to be retained

with each pipeline stage until the logic can determine whether
the selected branch path was correct or not. When the outcome
of the branch condition is known, if the wrong next address was
selected, any instructions in progress in the pipeline following
the conditional branch are f lushed and the Alternate Next-PC
from the folded conditional branch is re-introduced as the next
instruction address at the beginning of the instruction pipeline.

Implementation of Branch Folding

Figure 2 shows a schematic of the essential da tapaths used
in the CRISP microprocessor for the implementat ion of Branch
Folding. The implementat ion is shown to illustrate the amount
of extra logic needed to implement branch folding, and to show
the actual implementat ion and design decisions used in CRISP.
Not shown in the schematic are the paths in the PDU used to
fetch instructions f rom main memory , as this is independent of
Branch Folding.

CRISP does not try to fold all branch instructions, only
those that occur with the greatest frequency. CRISP's policy is
to only fold one and three parcel non-branching instructions
with one parcel branches. Doing the remaining cases signifi-
cantly increases the amount of hardware required, with only a
marginal increase in performance.

In the PDU, the instruction to be decoded comes from the
output of an Instruction Queue in the Prefetch Decode Register
(PDR) pipeline stage. The address of the first parcel in the
Queue (QA) is held in the PDR.PC pipeline register. The out-
put of five instruction parcels, Q A - Q E , are available s imul tane-
ously for decoding. Decoded instructions are clocked into the
Prefetch Instruction Register (PIR) stage one clock cycle after
they enter the PDR stage. The Next-PC field (or Alternate
Next-PC field) can have one of three sources. For a sequential
instruction, or the sequential part of a conditional branch, the
next address is found by adding the instruction length
(i l e n < 0 : 2 >) to instruction address (PDR.PC) . Second, if the
branch uses a 32-bit address , this address is selected directly
from the QB and QC parcels. Third , the branch target address
may come from a one parcel branch, either folded or not.

For folded instructions the branch is always the one parcel

format , and must follow a one or three parcel instruction. It
follows then that the 10-bit PC relative offset is found in the
QB parcel if the previous instruction was one parcel, or in the
QD parcel if the previous instruction was three parcels long.
This 10-bit offset is selected by the tpcmx multiplexor and then
added to a 2-bit branch adjust. The branch adjust is necessary
because the PC relative offset is relative to the address of the
branch, not the instruction it is being folded with. The value of
the branch adjust is simply the size of the instruction start ing in
the QA parcel. The adjusted offset is then added to the
address of the instruction being folded (in the PDR.PC register)
to yield the branch target address . For cases where a one par-

cel branch is not folded, (for example , a branch after a call),
the offset is selected from the QA parcel, and the branch adjust
field is zero.

If the branch prediction bit is set to indicate that the
branch will likely be taken, then the Next-PC of the PIR stage
will the appropriate branch target address , and the Alternate-
PC will contain the address of the next sequential instruction.
If the branch prediction bit is set to indicate that the branch will
not likely be taken, then the Next-PC will contain the sequen-
tial instruction address and the Next-PC will contain the branch
target address .

In the Execution Unit , there are three pipeline stages.
Instructions are read from the Decoded Instruction Cache into
the Instruction Register (IR) stage, operands are accessed and
placed into the Operand Register (OR) stage, then an A L U
operation takes place and the A L U result placed in the Resul t
Register (RR) stage, and finally the result write occurs. The
flow of instructions in the EU is controlled by the IR stage
Next-PC register. This register specifies the next instruction to
be loaded into the IR stage, the low five bits are used to
address the Decoded Instruction Cache. When the CPU is ini-
tially reset, the IR.Next-PC is set to zero, this is where the first
instruction fetch will start.

Under the normal condition of loading a new instruction
into the IR, the IR.Next-PC is loaded directly from the Next-
PC field of the instruction coming from the Decoded Instruc-
tion Cache. For this case, the al ternate address for a condi-
tional branch is loaded into the IR stage Alternate-PC registers.
The PC of each instruction is carried with each each pipeline
stage to identify the instruction in the case of an interrupt or
other exception.

For the case of indirect jumps , the IR.Next-PC m ay be
loaded from the Stack Cache, or f rom off-chip via the data_in
bus.

Condit ional branches may or may not be predicted
correctly via the single static branch prediction bit. The direc-
tion not predicted is kept with each pipeline stage in the
Al ternate-PC field. CRISP tries to minimize the penalty for in
incorrectly predicted branch by recovering as soon as the
correct instruction path is known.

if the conditional branch has been folded with a compare
in the same instruction, the true outcome of the branch is not
resolved until the instruction reached the RR stage. If the
branch is de termined to be incorrectly predicted when the
branch reaches the RR stage, the RR.Al te rna te -PC will be
placed in the IR.Next-PC at the next clock, and the instructions

being clocked into the IR, OR and RR will have their valid bit

set to zero. Because side-effects were avoided in the instruction
set, any instruction may be turned into a no-op by resett ing the
valid bit associated with each stage. Three clock ticks will be
lost in this case.

If the compare is one stage ahead of the conditional
branch, the correct address is obtained from the OR.Al te rna te -
PC and only two clock ticks are lost. If the compare is two
stages ahead of the conditional branch then the correct address
is obtained from the IR.Al ternate-PC and only one clock tick is
lost. If however , the compare is three stages ahead of the con-
ditional branch, the compare will have left the pipeline before
the conditional branch is place in the IR. For this case, the
condition code will not change, and the branch need not be
predicted. If the current condition code is not the same as that
predicted for the conditional branch about to be loaded into the
IR, then the IR.Next-PC is taken from the Al ternate-PC field
of the Decoded Instruction Cache and zero cycles can be lost
due to incorrectly setting the branch prediction bit. The condi-

tional branch has effectively been turned into an uncondit ional
branch. Branch Spreading tries to take advantage of this last
case.

Evaluation

Branch Folding, Branch Prediction, and Branch Spreading

are techniques used in the CRISP Microprocessor to reduce the
execution time incurred for branches. A simple example will
illustrate their use, and quanti tat ively show their effect in our
implementa t ion. The short C program shown in Figure 3 was
picked to isolate the per formance effects related to branches,
rather than other CRISP features. The loop count of 1024 is
high enough to overcome about 50 cycles of initial overhead in
calling the main routine without significantly affecting statistics.
This allows our tools to measure the entire program rather than
having to measure isolated instructions. The results are rela-
tively independent of the actual loop count. The CRISP code
generated for the loop is s t ra ightforward, and contains two con-
ditional branches , one for the if and one at the end of the code
to branch to the top of the loop. An uncondit ional branch is
used to branch around the else clause. The if s ta tement in the
program was chosen to be difficult for branch prediction, as the
expression will al ternate between evaluat ing true and false.
The conditional branch at the end of the loop would be
predicted by a compiler to branch back to the top of the loop.
No special optimizations other than those described were used.

To show the number of branches, and for comparison pur-

poses, the p rogram of Figure 3 was analyzed for both CRISP
and the VAX. The code for both machines was generated
directly f rom our s tandard compilers. The instruction distribu-
tion is shown in Table 2. The result in te rms of number of
instructions executed was essentially identical.

This same program was run in four different ways, selec-
tively enabling the use of Branch Folding, Branch Prediction
and Branch Spreading. Branch prediction yes means that the
end of loop branch is set to branch taken, no means not taken.
The prediction bit for the conditional branch of the if was set to
yes in all cases, as the particular setting is irrelevant. No

Branch Spreading means that compares were immediate ly fol-
lowed by the conditional branches, yes means that code motion

was used to separate the compare and branch. For compar ison,

the CRISP code for the loop before and after branch folding is
shown in Table 3.

The results of running these programs are shown in Table
4. The CRISP Execution Unit is capable of issuing a new
instruction every clock cycle. In most pipelined machines , one
instruction per cycle is the theoretical peak rate. Case A is
used as a performance reference. Because of pipeline breakage
case A requires an average of 1.48 cycles to execute each
instruction. (Note that pipeline breakage might be much worse
without the Decoded Instruction Cache, which shor tens the exe-
cution pipeline.) By simply sett ing the branch prediction bit
properly, case B speeds up by a factor of 1.3. In case C branch
folding is turned on. The effect here is that the Execution Unit
does not have to issue a separate instruction for the branches.
Technically, the Execution Unit is only issuing instructions at a
rate of 1.22 cycles per instruction, when instructions mean
those issued by the the pipeline. However , the apparent
number of number of clocks per instruction when viewed as a

black box is 0.90, so CRISP appears to be executing 1.1 instruc-
tions every clock cycle. The performance for case C is still
degraded due to incorrect prediction for the conditional branch
of the if every other t ime through the loop. Use of branch
spreading in case D allows the proper branch direction for this
conditional branch to be de termined correctly every time. The
performance for case D is twice that of case A, with an
apparent instruction execution rate of 1.35 instructions per
cycle. In the loop (discounting the initial cycles of overhead)
CRISP is issuing exactly I new decoded instruction every cycle
despite branches. Effectively, all uncondit ional and conditional
branches are executed in zero t ime.

Finally, case E provides a comparison against delayed
branch schemes. Delayed branch is similar to branch spreading
where it is manda to ry to schedule instructions after the branch.
By turning off branch folding, but using branch spreading, the
relative improvement is 1.5, only half as much improvement as
with branch folding. For this example both machines are exe-
cuting 1.01 cycles/ issued-instruction, CRISP 's advantage over
delayed branch is in executing fewer instructions.

The performance improvements shown for the example are
meant to be illustrative, not an indication that this per formance
improvement will happen in every case. The actual improve-
ment is a function of the particular application being run.

main()
{ int i, j, zeros, ones, sum;

j = ones = zeros = O;

for(i=O; i < 1024; i++
{ sum += i;

if (i & I)

odd++ ;

else even++ ;
j = sum;

}

}

Figure 3. A C program for evaluation.

CRISP
Total of 9734 instructions

Opcode Count Percent

add 3072 31.55%
if-jump 2048 21.04%

cmp 2048 21.04%
move 1027 10.55%
and 1024 10.52%

jump 513 05.27%
enter 1 00.01%

return 1 00.01%

VAX
Total of 9736 instructions

Opcode Count Percent

incl 2048 21.04%
jbr 1536 15.78%

movl 1026 10.54%
cmpl 1025 10.53%
jgeq 1025 10.53%
addl2 1024 10.52%

bitl 1024 10.52%
jeql 1024 10.52%
clrl 2 00.02%
ret 1 00.01%

subl2 1 00.01%

Table 2. Instruction counts for the program of Figure 3.

CRISP code without CRISP Code with
Branch Spreading Branch Spreading

_4: add sum,i _4: and3 i, 1

_5:
_6:

and3 i,I
cmp. = Accum,0
ifTjmpy 5
add odd, 1
jmp _6
add even, I
mov j ,sum
add i, I
cmp. s< i, 1024
i f r jmpn 4

_5:
_6:

cmp. = Accum,0
add sum,i
add i, I
mov j ,sum
i f r jmpy 5
add odd, I
jmp _6
add even, 1
crop.s< i, 1024
ifTjmpy 4

Table 3. CRISP Code for loop before and after Branch Spreading.

Comparison to Other Schemes

The techniques used in the CRISP microprocessor for
reducing the cost of branches are a significant improvement
over schemes which have been implemented in other machines.
With delayed branch, the branch itself must still be executed;
this requires at least one clock cycle. Machines having a single
compare and branch can get some of the effect that CRISP
requires branch folding to achieve, but they have no assistance
with unconditional branches.

The use of a Branch Target Buffer, as described by Lee
and Smith, can provide reasonable branch prediction based on
dynamic history. On most machines using a BTB, the benefit is
in avoiding pipeline breakage, both conditional and uncondi-
tional branches still require at least a clock for their execution.
McFarling and Hennessy discuss the possibility of storing the
target instruction in the BTB as a way to eliminate the cost of
unconditional branches. The effectiveness of BTB's varies.
Results for the MU5 show only a 40-65 percent correct predic-
tion rate for an eight entry jump-trace, barely better than toss-
ing a coin. Lee and Smith report effectiveness as high as 78 per-
cent for a BTB of 128 sets of 4 entries. The BTB is usually
implemented as a separate associatively addressed function unit.
Branch Folding in CRISP is different in that it adds the next
address fields to each instruction in the Decoded Instruction
Cache, and occurs later in the pipeline. Branches in CRISP

need not occupy a pipeline slot to themselves. A final deciding
factor against the BTB in microprocessors might be the imple-
mentation cost. A 128 set 4 entry BTB would be nearly as
large as our entire microprocessor chip.

Practical Considerations

Use of a Decoded Instruction Cache simplifies the imple-
mentation in many ways. For example, one of the decoded
instruction bits is used exclusively to specify whether the
instruction can modify the condition code flag. This bit is car-
ried with each pipeline stage in the execution unit, and used to
evaluate if the correct branch target can be determined without
prediction. The use of a Decoded Instruction Cache helps
improve pipeline performance by separating decoding from
instruction execution. This can smooth out pipeline blockages
giving the same advantages as Kogge's description of the use of
a FIFO queue, 29 but without the problems of having to flush
the queue when a branch occurs.

For our machine, including a Next-PC field and alternate
Next-PC field in the Decoded Instruction Cache caused the
cache to grow 64-bits wider than it otherwise might have been.
This extra memory turned out not to cost any area in CRISP
since the pitch of the datapath was the constraining factor.
Many of our initial design decisions were based on trying to
make CRISP a memory intensive, rather than control-logic
intensive design. In retrospect, this decision turned out to be
far wiser than we had originally imagined.

Finally, true zero delay for branches can only occur if the
instruction cache has a hit. Being careful with the design of the
instruction prefetch unit and instruction cache should not be
overlooked 30

Conclusion

We have described a general technique called branch fold-
ing, and associated hardware/software techniques that have the
potential to totally eliminate many of the problems with
branches that have plagued high performance computer designs.
The number of instructions issued to the pipeline to execute a
given program can be reduced by the number of branches in the
program. This can be as much as 30% of instructions being
executed. The resulting reduction in number of instructions
executed and eliminating pipeline breakage can lead to signifi-
cant performance improvements.

Although the implementation was described only for the
CRISP Microprocessor, the technique may prove valuable for
other computer designs, particularly those for which compatibil-
ity does not allow the use of other techniques such as delayed
branch.

Case Branch Branch Branch Cycles to
Folding Prediction Spreading Execute

A no no no 14,422
B no yes no 11,359
C yes yes no 8,789
D yes yes yes 7,250
E no yes yes I 9,815

Instructions Relative
Issued Perf.

9,734 1.0
9,734 1.3
7,174 1.6
7,174 2.0
9,734 1.5

Table 4. Execution Statistics on CRISP for program of Figure 3.

References

I. A . D . Berenbaum, B. W. Colbry, D. R. Ditzel, R. D.
Freeman, H. R. McLellan, K. J. O'Connor, and M. Shoji,
"A Pipelined 32b Microprocessor with 13Kb of Cache
Memory," Proceedings of the 1987 International Solid State
Circuits Conference, pp. 34-35 (February, 1987).

2. D . R . Ditzel, H. R. McLellan, and A. D. Berenbaum,
"The Hardware Architecture of the CRISP Microproces-
sor," Proceedings of the 14th Annual Symposium on Com-
puter Architecture (June 2-5, 1987).

3. D. Morris and R. N. lbbet, The MU5 Computer System,
Springer-Verlag (1979), p. 59.

4. Douglas W. Clark and Henry M. Levy, "Measurement
and Analysis of Instruction Use in the VAX-I 1/780," The
9th Annual Symposium on Computer Architecture 10(3),
pp. 9-17 (April, 1982).

5. Cheryl A. Wiecek, "A Case Study of VAX-II Instruction
. Set Usage for Compiler Execution," Proceedings of the

Symposium on Architectural Support for Programming
Languages and Operating Systems, pp. 177-184 (March
1982).

6. L. J. Shustek, Analysis and Performance of Computer
Instruction Sets, Stanford Linear Accelerator Center (May
1978). Ph.D. Dissertation

7. Werner Bucholz, Editor, Planning a Computer System: Pro-
ject Stretch, McGraw-Hill (1962), pp. 238-239.

8. George Radin, "The 801 Minicomputer," Proceedings of
the Symposium on Architectural Support for Programming
Languages and Operating Systems, pp. 39-47 (March,
1982).

9. David A. Patterson, "RISC-I: A Reduced Instruction Set
VLSI Computer," Proceedings of the 8th International Sym-
posium on Computer Architecture (May 1981).

I0. J. L. Hennessy, N. Jouppi, F. Baskett, and J. Gill,
"MIPS: A VLSI Processor Architecture," Proceedings of
the CMU Conference on VLSI Systems and Computations
(October 1981).

II. J. Moussouris, L. Crudele, D. Freitas, C. Hansen, E.
Hudson, R. March, S. Przybylski, T. Riordan, C. Rowan,
and D. Van't Hof, "A CMOS RISC Processor with
Integrated System Functions," Spring COMPCON 1986,
p. 126.

12. J. S. Birnbaum and W. S. Worley, "Beyond RISC: High-
Precision Architecture," Spring COMPCON 1986, p. 40.

13. S. McFarling and J. Hennessy, "Reducing the Cost of
Branches," Proceedings of the 13th Annual International
Symposium on Computer Architecture, pp. 396-403.

14. R. W. Holgate and R. N. lbbet, "An Analysis of
Instruction-Fetching Strategies in Pipelined Computers,"
IEEE Transactions on Computers C-29(4), pp. 325-329
(April 1980).

15. D. Morris and R. N. Ibbet, The MU5 Computer System,

Issued Apparent
Cycles/lnstr Cycles/lnstr

1.48 1.48
1.16 1.16
1.22 0.90
1.01 0.74
1.01 1.01

Springer-Verlag (1979).

16. D. W. Anderson, "The System/360 Model 91: Machine
Philosophy and Instruction Handling," IBM Journal ~f
Research and Development 11(8), pp. 8-24 (January 1967).

17. W. D. Connors, "The IBM 3033: An Inside Look," Data-
mation, pp. 198-218 (May 1979).

18. H. Schorr, "Design Principles for a High-Performance Sys-
tem," Proceedings of the Symposium on Computers and
Automata XXI, pp. 165-192 (April, 1971).

19. Robert G. Wedig and Marc A. Rose, "The Reduction of
Branch Instruction Execution Overhead Using Structured
Control Flow," The Ilth Annual International Symposium
on Computer Architecture 12, pp. "119-125, 3 (June, 1984).

20. J. K. F. Lee and A. J. Smith, "Branch Prediction Stra-
tegies and Branch Target Buffer Design,'~ Computer 17(1)
(January, 1984).

21. A. D. Berenbaum, D. R. Ditzel, and H. R. McLellan,
"Introduction to the CRISP Instruction Set Architecture,"
Proceedings of the 1987 Spring COMPCON, pp. 86-90
(February, 1987).

22. M . G . H . Katevenis, Reduced Instruction Set Computerli for
VLSI, MIT Press (1984), p. 150.

23. R . D . Russell, "The PDP-II: A Case Study of How Not to
Design Condition Codes," Proceedings of the 5th Annual
Symposium on Computer Architecture, pp. 190-194 (April
1978).

24. J. L. Hennessy, N. Jouppi, F. Baskett, and J. Gill,
"Hardware/Software Tradeoffs for Increased Perfor-
mance," Proceedings of the Symposium on Architectural
Support for Programming Languages and Operating Systems,
pp. 2-11 (March 1982).

25. James E. Smith, "A Study of Branch Prediction Stra-
tegies," Proceedings of the 8th International Symposium on
Computer Architecture, pp. 135-148 (June, 1981).

26. J. K. F. Lee and A. J. Smith, "Branch Prediction Stra-
tegies and Branch Target Buffer Design," Computer 17(I)
(January, 1984).

27. S. Bandyopadhyay, V. Begwani, and R. Murray, "Com-
piling for the CRISP Microprocessor," Proceedings of the
Spring 1987 COMPCON, pp. 96-100 (February, 1987).

28. J. L. Hennessy and T. R. Gross, "Optimizing Branch
Delays," Computer Systems Lab Technical Report, Stan-
ford University (1981).

29. Peter M. Kogge, The Architecture of Pipelined Computers,
McGraw-Hill (1981), pp. 237-243.

30. Hubert Rae McLellan, Jr., "Instruction Prefetch Strategies
in a Pipelined Processor," Master of Science Thesis, Mas-
sachusetts Institute of Technology (February 1983).

H G F

Instruction Queue 1
Contains 8 16-bit entries I
4 16-bit inputs, 5 16-bit outputs. I

/
I E l g I c I B I A I

L.~.C<0:I 5> QA<0:I 5>
QD<0:15> QA<0:9>

FF[_~ QB<0:9> D<0:9>
~ tpcmx

bradj<0:l> . 1L°ffset<0:9>
branch adjust ~ ipinc

~Ltpinc<01:31 >
~ PDR.pc<1:31>

~,~ tpcadd

tpc<01:31> J .
. . ~ spc<01 31> l

QrCB]<0:15>I '

Control
Field

Left
Operand

Right Alternate
D e OoPdred dl n St r u N~n Pcach e I

32 1 92-bit ~ntr es

Next-PC
Field

-.k--

__l
spbus<4:31>

Ispadd

7

I irl I I

I orlop I

rspadd

7,--

/
IR Stage

\
I irrop ~

[-
\ /

• ALU ~ I OR Stage I--~ Pc--~--I

I RR Stage

PDR Stage

lien<0:2>

(~spcadd

s---l PIR Stage

PC Tag I ~ " ~

eunpc<01:31>

icnpc<1:31 >

orapc<1:31 > rrapc<1:31> tack cache R<1:31>

+ , T ~ h,,,---

eunpc<01:31 >

Figure 2. CRISP datapaths used in Branch Folding.

