
The Hardware Architecture o f the C R I S P Microprocessor

David R. Ditzel
Hubert R. McLellan

A T & T Bell Labora tor ies
M u r r a y Hill, N.J. 07974

Alan D. Berenbaum

A T & T Informat ion Systems
Holmdel , N.J . 07733

The CRISP Microprocessor
The AT&T CRISP Microprocessor is a high performance

general purpose 32-bit processor. It has been implemented as a
single CMOS chip containing 172,163 transistors in a 1.75~t
CMOS technology and runs at a clock frequency of 16 MHz. 1
The CRISP Microprocessor achieves performance through tradi-
tional techniques, such as pipelining, and from several new tech-
niques not before found in microprocessor designs. This paper
focuses on a detailed description of hardware architecture,
including the pipeline structure and details of the architectural
innovations. A brief introduction to the instruction-set and
major features are given for background.

The CRISP instruction-set is carefully streamlined to allow
an efficient pipelined implementation. CRISP consists of two
logically separate machines, a Prefetch and Decode Unit and an
Execution Unit. These units are connected by a decoded-
instruction cache. With this decoupled parallel operation and
internal pipelining, CRISP is capable of issuing a new instruc-
tion every cycle. Fast operand access is accomplished with
Stack Cache registers 2 instead of general purpose data registers.
Efficient procedure calls are possible because of the Stack
Cache and a minimal subroutine linkage mechanism. Branches
can be executed in zero time by Branch Folding. 3 A highly
decoded instruction cache allows memory-to-memory style
instructions to be often executed in a single cycle by a RISC
style Execution Unit. Code generation by compilers is simpli-
fied as there are only a few instructions and addressing modes to
chose from, and register allocation is not required. A variable-
length instruction-encoding yields good code density (equal to
the VAX) and reduces off-chip instruction traffic. These
instructions are translated by the Prefetch Decode Unit to a
fixed-length internal format for high speed execution.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

Genesis of the Design
Since 1975 the Bell Labs C Machine Project has designed

several computer architectures to support efficiently the C Pro-
gramming Language. 2,4,5,6 These designs evolved into the
current C Machine instruction-set architecture. The CRISP
Microprocessor represents a particular implementation of the C
Machine architecture. The current architecture stabilized in
1981 for an ECL implementation that was never completed.
The design team for CRISP was formed in April 1983 and the
first mask was submitted for fabrication in February 1986.

The goal of the C Machine Project was to design and build
a computer with significantly better cost/performance charac-
teristics than commercially available computers. We were seek-
ing architectural changes that could provide an order of magni-
tude greater performance than the machines commonly available
to us. The C Machine was designed with an iterative methodol-
ogy based on extensive measurements of C programs. Part of
the method consisted of a cycle of proposing a machine, writing
a compiler, running a large body of UNIX software through the
compiler and analysis tools, and then using measurements to add
or delete features and propose a new machine. These measure-
ments guided the hardware/software tradeoffs made between
compiler technology, well known architectural techniques, and
hardware limitations.

In particular, these measurements focused our efforts on
four areas. First, we reduced the cost of procedure calls,
because up to half of the execution time of our VAX programs
was consumed by procedure call overhead. Second, we looked
for ways to use a large number of registers effectively without
placing the burden on complex compiler technology that we
might never achieve. Third, we concentrated on simple instruc-
tions, streamlining them to permit an efficient pipelined imple-
mentation. Fourth, we sought to avoid performance problems
caused by pipeline breakage from branches.

309
© 1987 ACM 0084-7495/87/0600-0309500.75

Instruction Set Architecture

The CRISP instruction-set contains a small number of
instructions and addressing modes. The instruction-set architec-
ture is a registerless, 2~/2 address memory-to-memory machine.
The 1/2 address refers to being able store the destination of an
operation in a single location called the accumulator, which is
implemented as the first variable location on the stack frame.
Two, one, and zero address instructions are also supported.

CRISP is a full 32-bit machine. The wordsize and
addresses are 32-bits. Integer values may be 32-bit words, 16-
bit halfwords or 8-bit bytes. Bytes and halfwords are either sign
extended or zero filled to 32-bit values before an ALU operation
takes place.

CRISP provides four addressing modes per operand for
accessing most data. Bytes, halfwords and words can be speci-
fied with an absolute address, an offset from a stack pointer, or
indirectly though an address specified by an offset from a stack
pointer. Immediate constants can be placed in the instruction
itself.

ALU-type instructions are a minimal and sufficient set for
compiler writers. Operations are addition, subtraction, multipli-
cation, division, logical and arithmetic shifts, and bitwise and,
or, and exclusive or. Both 2 address and 21/2 address forms are
provided for most ALU operations. A compare instruction tests
two operands for equality, signed less than, and unsigned less
than. Only the compare instruction can set a single condition
code flag; no other ALU operations affect it. The flag may be
used later by a conditional branch instruction to branch if the
flag is true, or if it is false. Conditional branch instructions also
contain a single static branch prediction bit, which may be set
by a compiler. This bit specifies whether the branch is normally
expected to be taken. Four instructions are used for procedure
calling: call saves the return PC and branches to the subroutine;
enter allocates space for a new stack frame and flushes Stack
Cache entries if necessary; return dealloeates the stack frame
and branches back to the caller; and catch restores Stack Cache
entries from memory if necessary. A summary of CRISP
instructions is shown is Table 1. A more complete description of
the instruction-set can be found elsewhere. 7

Instruction Encoding

The instruction encoding is designed with two primary con-
siderations. First, the instruction length must be easily deter-
mined. Therefore, the length is encoded in the first two bits of
each instruction. Since all instructions are multiples of two
bytes, this unit is referred to as an instruction parcel. Second,
static and dynamic code size should be made as small as possible
without interfering with performance issues. Instructions that
require two 32-bit addresses or operands, can use the five parcel
form shown in Figure 1. The three parcel form can be used to
provide a single 32-bit operand or two 16-bit operands. The sin-
gle parcel format has a 5-bit opcode field which defines the most
frequent combinations of operations and addressing modes
occurring in the three and five parcel forms. This highly
encoded single parcel form typically accounts for 80 percent of
all instructions. The resulting programs are compact despite
only three instruction lengths and a simple instruction-set --
program size is about the same as that of the VAX with its mul-
titude of complex modes and instruction lengths.

Architectural Overview

Figure 2 illustrates the basic functional blocks of the
CRISP microprocessor. There are three distinct caches, two
major data-path blocks and an I /O section to communicate off-
chip. These six functional blocks operate autonomously, without
any central controller. These units are (roughly in order of
instruction flow):

Input/Output. The CRISP I /O is fully synchronous, and can
complete an I /O transaction every clock cycle. There are
separate address and data busses. The data bus is 32 bits wide,
while the address bus provides 30-bit word addresses. Bytes
within words are accessed via four byte-mark strobes. Although
the I /O can maintain a one transaction-per-cycle rate, this rate
is not mandatory. Performance degrades gracefully as wait
states are added. In addition, a block transfer mode is provided
for systems using nibble-mode or page-mode RAMS, where the
first access to a block may take more time than subsequent
sequential accesses. The I /O protocol also supports coproces-
sors, wait states, slow tri-stating peripherals, interlocked bus
operations and the parallel connection of multiple CPU chips for
fault-tolerant, self-checking operation. The microprocessor is
packaged in a 125-pin pin grid array, using 96 active signal pins
and 20 power and ground pins.

Prefetch Buffer. The Prefetch Buffer is an instruction cache
similar to those found in the Motorola 68020 or A T & T
WE32100. The purpose of the Prefetch Buffer is to match the
limited bandwidth through the microprocessor data pins to the
internal demands of instruction decode and execution. The Pre-
fetch Buffer is implemented as a direct-mapped sector-cache
with two valid bits per line. There are 32 lines, each of which
contains two double-word blocks, for a total of 512 bytes.
Instructions are stored in the cache with the same compact
encoding as in main memory. All program text is fetched with
double-word block I /O transactions. The Prefetch Buffer can
deliver a 64-bit block of encoded instructions to the
Prefetch/Decode Unit every cycle.

Prefetch/Decode Unit. The job of the Prefetch and Decode
Uni t (PDU) job is to take the highly encoded instructions stored
in the Prefetch Buffer and decode them into a canonical 192-bit
internal instruction that can be efficiently executed by the Exe-
cution Unit. Before decoding, the PDU must align instructions
from the double-word blocks delivered by the Prefetch Buffer
and the I/O. The alignment is achieved by an eight entry, 16-
bit parcel instruction queue that emits one to five parcels every
cycle. The PDU as a whole can decode and deliver up to two
decoded instructions every cycle. Once started, the PDU
operates autonomously. It follows the instruction stream,
including data-independent branches, retrieves instructions from
the Prefetch Buffer, decodes them, and deposits them into the
Decoded Instruction Cache.

Decoded Instruction Cache. The Decoded Instruction Cache
acts as a buffer between the PDU and the Execution Unit. Like
the Prefetch Buffer, it is organized as a direct-mapped cache,
with 32 192-bit entries. Each entry is a fully decoded instruc-
tion, so that instructions that issue from the Decoded Instruction
Cache can be executed without any further sign-extension, field
extraction, or decode delay. Because of branch folding, to be
described later, each Decoded Instruction Cache entry can hold
two instructions. The Decoded Instruction Cache, during each
clock cycle, can receive an instruction from the PDU, as well as
deliver an instruction to the Execution Unit. Like the Prefetcb
Buffer, the Decoded Instruction Cache can also bypass data
directly from the PDU to the Execution Unit.

310

Execution Unit. The Execution Unit (EU) is optimized for high
speed execution, and in some ways resembles RISC machines
such as the IBM 801.8 It consists of three pipeline stages, with a
straightforward sequence of operand fetch, ALU operation, then
register update. Because CRISP is a memory-to-memory archi-
tecture, the EU can calculate addresses, fetch data and align
and sign-extend two operands simultaneously. Although most
instructions flow through the pipeline in three cycles, for a net
rate of one instruction per cycle, more complex instructions such
as multiply and divide can take multiple cycles. With the help
of branch folding, the peak execution rate can be as high as two
instructions every cycle. The 192-bit decoded instruction resem-
bles horizontal microcode, and like a typical microprogrammed
machine the EU sees only fixed length instructions. This simpli-
fies next address calculation and makes it easier to issue new
instructions every cycle. Unlike other RISC machines, CRISP's
internal instruction width is not limited to 32-bits, and unlike
CISC machines CRISP does not require a large, static
microprogram ROM. CRISP takes instructions that are com-
pact and easy for a compiler to generate and dynamically
transforms them into easy to execute RISC instructions.

Stack Cache. Unlike most computers CRISP has no visible data
or address registers. Instead, 32 internal Stack Cache registers
are mapped into the address space corresponding to the top of
the stack. The Stack Cache is byte-addressable and looks like
memory in every way. It can contain strings, structures and
arrays. The Stack Cache is implemented as a circular buffer of
registers, maintained by a head and tail pointer, called the Stack
Pointer (SP) and Maximum Stack Pointer (MSP). Memory
references that fall between the bounds of the SP and MSP are
address the on-chip Stack Cache registers. Management of the
Stack Cache is controlled with the enter and catch instructions
during procedure calling. The Stack Cache registers are imple-
mented with two 32-entry, 32-bit wide memories. During every
cycle the Stack Cache performs two distinct reads and a single
write.

Pipeline Structure and Terminology

Pipeline stages are clocked once each cycle. Each clock
cycle is subdivided into four equal duration phases, numbered 1
to 4. Pipeline registers are built from a master/slave register
pair. The master registers are always clocked during phase 4,
whereas the slave registers are conditionally clocked during the
following phase 1. Registers are implemented with transparent
latches.

To balance the amount of computation in each pipeline
stage, assumptions were made about the time required for vari-
ous functions. A 32-bit addition and an on-chip memory access
are roughly comparable and take approximately half a clock
cycle. An ALU operation including shifting, sign extension, and
the result alignment was allocated a full clock cycle. The cache
memories are sequenced twice each clock cycle. They are read
in the first half of a cycle, and written in the second half of a
cycle. These constraints define the clock cycle time of the
machine.

We will use the notion <pipe-stage>.<register-name>
to identify particular pipeline registers. For example, PDR.PC
is the PC register of the PDR pipeline stage. Particular bits of
a register are described by following the name of the register
with the selected bits enclosed in angle brackets. Thus, x < 2 : 6 >
specifies bits 2 through 6 of the x field. The names of busses or
functional units are shown in italics, the names of explicit
instructions are shown in bold face.

The Prefetch and Decode Unit

The PDU is a 3-stage pipeline responsible for the fetching
instructions from external memory and then decoding and stor-
ing them in the Decoded Instruction Cache. Externally, instruc-
tions are either one, three or five parcels in length. The PDU
translates these variable length instructions into a single 192-bit
canonical internal form. Once started, the PDU fetches instruc-
tions on its own, decoding and following branches and calls in
the instruction stream. This autonomous action is only stopped
by a demand request from the EU, or an inability to continue
following the instruction path. This might occur when the
address of the next instruction is data-dependent as in a pro-
cedure return or indirect jump.

The PDU's pipeline stages will now be described in the
order the instructions flow through them. The PDU's three
pipeline stages are: the Prefetch Buffer Register (PBR), the
Prefetch Decode Register (PDR), and the Prefetch Instruction
Register (PIR). A simplified schematic of the PDU is shown in
Figure 3.

PBR Stage: The PBR stage is the head of the PDU pipe-
line and consists of a single register, the PBR.PC. The PBR.PC
addresses the Prefetch Buffer and performs a blind prefetch of
64-bit instruction blocks. During the first half of each cycle, the
Prefetch Buffer is indexed by the low-order bits of PBR.PC and
the four instruction parcels retrieved are placed in the W, X, Y,
and Z registers. If the high-order bits of the PBR.PC match the
tag associated with this entry, these four parcels are valid and
may be loaded into the Instruction Queue during phase 4 of the
same cycle. When there is space in the Instruction Queue for
these four parcels, the PBR.PC is incremented and the next Pre-
fetch Buffer entry is accessed. This sequence continues every
cycle until an instruction discontinuity occurs. A new PBR.PC
is then loaded and a new instruction stream is started.

The Prefetch Buffer is a direct-mapped sector-cache, con-
taining 64 64-bit sub-blocks and 32 22-bit tags, each with 2
valid bits and 1 execution level privilege bit per tag. The two
valid bits implement a four-word line comprised of two 64-bit
entries. These bits define which of the two entries are valid.
The Prefetch Buffer Tag memory contains an integral compara-
tor to determine a cache hit/miss. If a miss occurs in the first
block of a four-word cache line, two requests for double-word
block transfers are made to the I/O, at the memory address
specified by the PBR.PC. If the miss occurs in the second
block, only one double-word 1/O request is made. If the PDU is
waiting for an instruction because of a Prefetch Buffer cache
miss, when a double-word arrives from the I /O at the input side
of the Prefetch Buffer, it is written both into the cache and the
W, X, Y, and Z registers. This bypassing capability saves a
clock cycle instead of having to wait for the data to be written
into the Prefetch Buffer first.

There are two advantages to this cache organization. If
the PBR.PC points to the second double-word (as it might after
an instruction discontinuity), it can be fetched without having to
wait for the entire four word line. Also, system performance is
improved by allowing other I /O activity to intervene during
instruction prefetches. Block transfers of greater than two
words were found to degrade performance by stalling EU execu-
tion.

PDR Stage: The PDR stage consists of an eight parcel
Instruction Queue, PDR.QA through PDR.QH, and the
PDR.PC, which contains the address of the QA parcel. The
eight-entry Queue aligns the variable length instructions for the
benefit of the next pipeline stage. Five parcels, QA through QE

311

are available as outputs from the Queue.

An instruction is decoded from the Queue each cycle.
After decoding, the one to five parcels comprising that instruc-
tion are removed from the Queue. Any remaining valid parcels
in the Queue are shifted to fill the vacated entries. Finally, if
there is room, the Queue is loaded with the four W, X, Y, and
Z parcels from the Prefetch Buffer.

PIR Stage: The PIR Stage contains a completely decoded
instruction, composed of six 32-bit fields. These fields are: the
PC of the instruction, the Next-PC address, the Alternate
Next-PC address, a constant or address for the left and right
operands, and 32-bits of control.

At the beginning of a cycle, the QA parcel is fed into a
PLA, the PDUPLA, for decoding. The PDUPLA detects unim-
plemented or illegal instruction and generates the control signals
for the PIR.control field. The PIR.control register contains 32
relatively independent bits containing decoded opcode, address-
ing mode, and other control information to be used in the EU.
The control field contains 5-bits for an internal opcode; the Exe-
cution Unit only has to deal with a simple instruction set of 25
instructions. Instructions of different lengths with the same
function are translated into a single decoded instruction. For
example, one, three and five parcel encodings of an add instruc-
tion will all be translated to the same internal opcode, whose bit
encoding is different from the external form. The external
encodings are selected for the best code compaction, whereas the
internal encodings are selected for speed of execution by the EU.

The PIR.LOP and PIR.ROP registers hold the left and
right operands of a specified operation. (The left operand field is
the combination source/destination field for two-address opera-
tions, the right operand field is the source and also holds the
operand for monadic operations.) The operands are sign
extended 32-bit values of either constants, offsets or absolute
addresses extracted from the QA-QE registers of the PDR. The
PDUPLA also generates signals to control the multiplexors
sourcing the PIR.LOP and PIR.ROP registers. The PDUPLA
uses the high order bit of the B and C parcels to sign extend
16-bit constants with the PIR.LOP and PIR.ROP multiplexors

The address of the newly decoded instruction is copied
from the PDR.PC to the PIR.PC. The PIR.PC serves as the
tag in the decoded instruction cache.

Like microinstructions in some microcoded engines, a
decoded CRISP instruction contains an explicit "next address"
field, the PIR.Next-PC. Unlike these other machines, this next
address field is dynamically generated, rather than being stored
with each instruction in a control memory. For non-branching
instructions, the next address is calculated by adding the address
of the current instruction, the PDR.PC, to the length of the
current instruction using the sequential PC adder, spcadd. For
branching instructions, the next address can be specified either
by a 32-bit absolute address in the instruction, or by a PC rela-
tive offset.

This organization leads to a significant optimization. Since
every decoded instruction contains a next address field, every
decoded instruction is capable of branching to any other instruc-
tion. Since every instruction is therefore a branch, there is no
need to execute separate branch instructions. Whenever a non-
branching instruction is followed immediately by a branch, the
two are folded together to form a single new decoded instruc-
tion. To fold branches, CRISP decodes two instructions simul-
taneously. When a non-branching instruction is followed by a
branch, the address of the branch target is used as the next
address of the folded pair. This technique is called Branch

Folding.
Branch Folding can be applied to conditional as well as

unconditional branches. Unconditional branches require only a
single Next-PC field, namely the target address of the branch.
Conditional branches additionally require a sequential address
field, as the true outcome of the branch can not be decided until
the instruction reaches the Execution Unit. A second field,
called the Alternate Next-PC holds this second address.

Forming the Next-PC field for a folded instruction is more
difficult than for a non-folded instruction. The main problem is
that PC relative branches are relative to their own addresses, not
the address of the instruction in the PDR.PC. To compensate,
the length of the non-branch instruction being folded must be
added to the branch offset before it is added to the PDR.PC.
CRISP only folds one parcel branches with one and three parcel
non-branching instructions. This decision was based on meas-
urements that showed that about 95% of all branches executed
used the one parcel instruction format. The proper 10-bit
branch offset is selected by the tpc multiplexor and added to the
length of the instruction preceding the branch by the tpinc
adder. The next address is then obtained by adding this
adjusted offset to the PDR.PC with the tpcadd adder. Separate
non-folded branches are also allowed for the infrequently occur-
ring case when folding is not permitted. For this case, a PC
relative next address is obtained by adding the 10-bit offset from
the PDR.QA parcel to a branch offset of zero, then adding to
the PDR.PC with the tpcadd adder.

If the instruction being decoded is a branch that is
predicted to be taken, the Next-PC will be selected from the
branch target tpc, or from the 32-bit address in the QB and QC
parcels. Otherwise, the Next-PC will be the next sequential
instruction address via the spc bus. The Alternate-PC value will
select the alternative not selected by the Next-PC.

The PDU follows the path of branches and calls, and the
predicted path of conditional branches. The flow of control in
the PDU is directed by the instruction being decoded in the
PDR stage. For a three parcel branch or call, the target address
is brought from the QB and QC parcels into the PBR.PC and
PDR.PC. For PC relative and folded branches the target
address is brought to the PBR.PC via the tpc bus.

As mentioned before, the PDU may be stopped from its
prefetching by the EU to do a demand fetch. The EU redirects
the PDU with a new PBR.PC and PDR.PC from the eunpc bus.
Often the PDU is only slightly behind the current execution of
the EU, and may already be fetching and decoding the instruc-
tion requested by the EU. Rather than throw away this useful
work by completely restarting the PDU, two comparators, the
pdeq and pieq, check to see if the requested instruction is
already in the pipeline. If so, the PDU ignores the request and
continues prefetching.

The Decoded Instruction Cache

Decoded instructions waiting in the PDU's PIR stage are
written into the Decoded Instruction Cache in the second half of
a clock cycle. During the first half of a clock cycle decoded
instructions are read by the Execution Unit. The output of the
Decoded Instruction Cache is latched every cycle into a tem-
porary register at the end of phase 2. If the EU is waiting for
an instruction because of a Decoded Instruction Cache miss, the
instruction will be bypassed to the EU through the Decoded
Instruction Cache directly from the PDU's PIR stage. This
optimization saves one cycle latency in recovering from a
Decoded Instruction Cache miss.

312

The Execution Unit

The Execution Unit is responsible for the execution of
instructions from the Decoded Instruction Cache. The EU is an
autonomous unit and only communicates with the PDU when it
can no longer proceed because of a Decoded Instruction Cache
miss. The EU contains a few processor registers dedicated to
specific functions. These are the Program Status Word (PSW),
Stack Pointer (SP), Maximum Stack Pointer (MSP), Interrupt
Stack Pointer (ISP), Vector Base (VB) register, and Timer.
Only one of the SP or ISP is enabled at any one time and it is
referred to as the current stack pointer. The Timer register can
be configured to count either clock ticks, or instructions exe-
cuted. The SP, MSP, ISP and VB are aligned on four-word
boundaries. This alignment allows indexing within four words of
these register values without the use of a full 32-bit adder. An
address is formed by or'ing into the low 'order bits.

The EU has three major pipeline stages, as shown in the
simplified schematic of Figure 4. Instructions flow from the
Instruction Register (IR) stage to the Operand Register (OR)
stage and then to the Result Register (RR) stage. Although
most instructions can pass from one stage to the next in one
cycle, some instructions, such as multiply, can take multiple
cycles. Indirect memory references and some data hazards can
also cause instructions to take more than one cycle in a single
pipeline stage. Each pipeline stage has a field for the instruc-
tion address (PC) -- there is no explicit "PC" register. A PC
for every instruction in the pipeline is necessary for the precise
handling of faults and interrupts.

IR Stage: The IR stage holds the addresses of the operands
of an instruction, so the addresses of all data fetches come from
the IR. It holds an operand's value if it is an immediate con-
stant. For sequencing control the IR stage also contains the PC
of the instruction, the Next-PC, and Alternate-PC. When the
IR is ready to be loaded it fetches the next instruction from the
Decoded Instruction Cache. If the IR.Next-PC is the same as
the tag, a Decoded Instruction Cache hit occurs and the entry is
marked valid, by setting the IR.valid bit. If there is not a hit,
the IR.valid bit will be turned off to invalidate the pipeline
stage. If an operand is an immediate constant, or its addressing
mode is absolute, its data is copied directly from the Decoded
Instruction Cache into the left operand or right operand fields of
the IR. If its addressing mode is stack-relative, the data in the
operand field of the Decoded Instruction Cache is used as an
offset and added to the Stack Pointer before it is loaded into the
IR. Two 28-bit adders allow the simultaneous calculation of left
and right operand addresses. The SP adders operate on only the
top 28-bits of the operand offset and SP. As the SP is aligned on
four word boundaries, its four low order bits are zero, and the
low four bits of the operand address are simply copied to the low
four bits of the operand address to complete the full 32-bit
address.

If an indirect memory reference is selected, then the
address of the operand must first be fetched. Since the IR stage
is responsible for operand addresses, the indirect fetch of an
operand address from the IR.rop or IR.lop is returned back to
the IR.rop or IR.lop, respectively. After the indirect fetch is
completed, the addressing mode for that operand is changed to
eliminate indirection and normal execution resumes. The
pointer being fetched for an indirect operation may be located in
either the Stack Cache or in off-chip memory. If the operand is
located off-chip, it is returned to the IR.lop or IR.rop via the
d a t a j n bus. If the operand is located in the Stack Cache, it is
returned to the IR.lop via the left stack cache bus, or to the

IR.rop via the right stack cache bus. Indirect jumps are treated
similarly except that the data is returned to the IR.Next-PC
field instead of the IR.rop.

In the first half of every cycle address bits < 2 : 6 > from
the IR stage's left and right operand fields are sent to the Stack
Cache and used to perform two simultaneous reads from the
memory. At the same time, range check circuitry checks the
full virtual addresses to see if they reference operands in the
Stack Cache. If an address is greater than or equal to the SP
and less than the MSP, then data is returned from the Stack
Cache. If this condition is not met, then data must be fetched
from off chip. We note that this particular implementation of
the Stack cache is essentially the same as that proposed for an
earlier C Machine, 2 but in CRISP the addition of the SP to an
offset is done in the EU rather than in the PDU.

Pipelining introduces the potential for a Read after Write
(RAW) hazard. 9 If the operand address to be fetched by the
IR.lop or IR.rop is to be written by an instruction one to two
instructions ahead of the instruction in that IR, then the correct
value must be bypassed back to the IR stage. The bypassed
operand may come from the output of the ALU result on the
alubd bus (one stage bypassing), or from the output of the RR
stage result register on the rra bus (two stage bypassing).

OR Stage: The OR stage holds the actual operands for an
instruction, rather than the addresses as in the IR stage. If the
operand is a constant, the value is copied directly from the IR
stage operand registers. If memory was referenced in the IR,
then the data may come from the Stack Cache or from off-chip.
Since read after write hazards may also occur in fetching data
for the OR stage, one and two stage bypassing are also possible
sources for the OR stage operand registers. Finally, the con-
tents of the machine registers, such as the SP and PSW, may be
a source for the OR stage operand registers.

The detection of RAW hazards is accomplished with four
comparators, shown in Figure 4 near the OR.destination and
RR.destination address registers. Partial word hazards may be
resolved with bypassing only if the data being read is no longer
than the data being written and the alignments are compatible.
Partial word hazards that do not meet this condition are resolved
by stalling the instruction in the IR stage until the data can be
correctly read.

The destination address for instructions that do writes is
generated in the OR.dest register. For 2-address instructions,
the destination address is the same as the IR.lop address. For
the call instruction, the PC return address is stored at the
address of the current stack pointer, obtained via the spbus. For
2½-address instructions, the destination address is that of the
accumulator. The accumulator is always one word above that
pointed to by the current stack pointer. The address for the
accumulator is generated by taking the current stack pointer
value and or'ing a one into the address bit 2 position. The abil-
ity to add four to the current stack pointer by the use of a single
or gate is one of the benefits of quad-word alignment of the
stack pointer.

RR stage: The RR result register contains the result of the
ALU operation. To perform an ALU operation, operands from
the OR.lop and OR.rop stage are first aligned to extract the
proper byte, half-word or word. After alignment, the values are
sign extended according to whether the values were specified to
be signed or unsigned. The ALU always operates on full 32-bit
values. Byte and halfword values are not special data types so
much as they are ways of compactly storing a representation of
a 32-bit value. After the ALU operation is completed, the 32-

313

bit ALU output is realigned for proper storage in memory or the
Stack Cache without further shifting. Writes to the Stack
Cache or memory occur during the following cycle.

Branch Control in the EU. The control point for the entire
machine is the IR stage's Next-PC register. The IR.Next-PC is
used to index the Decoded Instruction Cache to read a new
instruction into the IR. When a new instruction is read, the
IR.Next-PC may come from the cache's Next-PC or Alternate-
PC field. For conditional branches, the Alternate-PC is kept for
each pipeline stage in case the branch prediction was wrong.
When an incorrectly predicted branch is discovered, the
Alternate-PC is placed in the IR.Next-PC and instructions in
the pipeline that have followed the wrong path are invalidated.

Pipeline Control

In most cases, instructions flow from one pipeline stage to
the next whenever the next stage is ready. A pipeline stage is
ready if it does not contain a valid instruction (the VALID bit is
not set), or if all its data has arrived and the following stage is
ready to accept it. If a pipeline stage is busy and the subse-
quent stage is ready, no-op instructions will be propagated down
the pipeline. While the stage is busy, instructions will be held
up in previous stages. This back-up stops at the Decoded
Instruction Cache: even though the IR may be busy, the
Decoded Instruction Cache accepts new instructions from the
PDU. The cache decouples the two units and allows them to
run autonomously.

Multi-cycle instructions occupy the OR stage of the pipe-
line, although they may keep the entire EU busy. Shifts and
multiplies sit in the OR until they complete, sending no-op
instructions down to the RR, but allowing the next instruction to
enter the IR. Divides and any sequence which requires I /O
(such as catch and enter) require all three pipe stages; when the
EU's Sequence PLA is on for these sequences the IR is
automatically marked busy. When the Sequence PLA com-
pletes, it releases the stages it was holding and goes into an idle
state, allowing normal control to resume.

Opcodes in the fully decoded instructions represent classes
of external instructions, so there is not a one-to-one match
between internal and external opcodes. For example, there is
only one internal add opcode. There are separate control bits to
indicate accumulator destinations and interlocked operations.
As another example, the interlock bit, used to specify semaphore
operations, could be applied to any instruction, but the PDU
only decodes it for add, and and or. Several control bits are
used to speed decoding. One bit tells the control logic that the
current instruction can set the condition code, although this
information could be obtained by decoding the internal opcode.
Additional bits control side effects. If the VALID bit is not set
the pipe stage is considered empty. Therefore, when it is neces-
sary to cancel an instruction, it is sufficient to clear the VALID
bit in the appropriate pipe stage. If the IS_STORE bit is set,
the instruction will do a store when it reaches the bottom of the
pipeline. By turning off the IS_STORE bit, it is possible to
mark an instruction's presence but preventing it from modifying
memory.

Architectural Evaluation

Although the CRISP pipeline is capable of issuing one
instruction every cycle (greater than one if folded branches are
counted), large programs will usually not attain that rate. Many
different events can stall the pipeline, although the precise
effects will be different for different programs. With the

CRISP implementation of the C Machine, the principal delay
comes from Prefetch Buffer cache misses, because the Prefetch
Buffer cache is currently relatively small. (This was an inten-
tional tradeoff so that CRISP could provide good performance
in systems without an off-chip cache.) Other major delays
include fetching operands from off chip, indirect operand
address resolution, incorrectly predicted branches (which cause
partially completed instructions to be cancelled), and Stack
Cache filling and flushing.

Because the biggest contributor to performance loss is the
delay in the PDU, program performance depends to a large
degree on the size and behavior of the program. If the Prefetch
Buffer hit rate is sufficiently high the PDU can keep up with
the EU, and instructions will issue in the EU at close to a one-
per-cycle rate. Larger programs will have proportionately larger
miss rates and hence a slower instruction issue rate.

Table 2 illustrates the instruction issue rate of three dif-
ferent programs. The first is a small synthetic benchmark,
about 2K bytes of text, and executes about 14,000 instructions.
The second is a Unix program (sed, the stream editor) of about
15K bytes of text, which executes about 25,000 instructions.
The third is a large Unix program (the C compiler), of about
80K bytes and executes about 200,000 instructions.

Factor Benchmark 1
Basic Instruction 1.0
PDU 0.6
Data Fetch 0.3
Indirect Operands
Branch Miss

0.2
0.05

Data Stores 0.1
Stack Fill/Flush 0.2
Folded Branches -0.5
Miscellaneous 0.05
Totals 2.0

Sed C Compiler
1.0 1.0
0.75 1.4
0.5 0.5
0.3 0.3
0.2 0.1
0.15 0.1
0 0.2

-0.9 -0.7
0.05 0.3
2.15 2.9

Table 2. Breakdown of instruction delay in cycles/instruction.

All instructions take at least one cycle for the basic
instruction. Misses in the EU requiring that the PDU fetch a
new instruction contributed another 0.6 to 1.4 cycles for every
instruction. Folded branches have a negative contribution in
terms of cycles per instruction, since the instructions are exe-
cuted in zero time.

Many features were evaluated in this manner to determine
if they should be included in the final implementation of the
CRISP Microprocessor. For example, removing the one-stage
bypass paths would add about 0.25 to 0.5 cycles per instruction,
while removing the two-stage bypass would add about 0.1 cycles
per instruction. The current CRISP implementation folds only
one-parcel jumps, and only with one or three parcel instructions.
This strategy successfully folds 90 to 95% of all branches.

Performance Evaluation

The bottom line in CPU performance is the length of time
required to execute a user's program. This is usually factored
into three terms: the total number of instructions required, the
average number of cycles per instruction, and the clock rate.
With CRISP's 2Y2 address memory-to-memory instruction-set,
the number of instructions executed more closely resembles that
of a CISC computer like a VAX than that of a load/store RISC
machine. When Branch Folding is included, the CRISP Execu-
tion Unit needs to execute fewer instructions than a machine
with an extensive instruction set such as the VAX. The combi-
nation of pipelining, and integrated caches helps reduce the

314

average number of clocks per instruction. The simple instruc-
tion set contributes to a high clock rate for a pipelined imple-
mentation. The CRISP architecture was specifically designed to
be cache-memory intensive. With better VLSI technology, a
higher performance migration path is easily realized by increas-
ing the size of on-chip caches. In particular, from Table 2, we
can see that increasing the size of the the Prefetch Buffer and
Stack Cache might reduce the number of cycles/instruction to
as low as 2.9-(1.4-1-.2) = 1.3 cycles/instruction for the C com-
piler.

Branch Folding allows most branches to execute in zero
time. Evaluation and a more detailed description of Branch
Folding can be found elsewhere. 3

Procedure Call overhead is low. Procedure calling is
implemented with four instructions: call saves the return PC and
branches to the subroutine; enter allocates space for a new stack
frame and flushes Stack Cache entries if necessary; return deal-
locates the stack frame and branches back to the caller; and
catch restores Stack Cache entries from memory if necessary.
When no Stack Cache registers need to be saved and instruc-
tions are in the on-chip caches, these four instructions can be
executed in a total of only five clock cycles.

Stack Cache registers greatly speed operand access and
reduce off-chip memory traffic. Measurements on large pro-
grams, such as the C compiler, show 80% of all data references
are resolved by the Stack Cache.

Our original performance goal was to provide at least an
order of magnitude better performance than a VAX-11/750. At
16 MHz with no wait states, CRISP achieves a performance
rating of 13,560 Dhrystones, compared to 997 for a VAX-
11/750. This benchmark shows CRISP to be 13.6 times faster.

Performance for several other benchmarks is shown in
Table 3. Comparison is made with the DEC VAX-11/780 and
with the MIPS Computer Systems R2000 processor as imple-
mented in the M/500 Development System. The figures for
CRISP show a system running at 16 MHz with no wait states.
A second mask of CRISP using the same technology is expected
to run above 20 MHz. The numbers show CRISP to be sub-
stantially faster than the VAX, and slightly faster than the
MIPS R2000.

For smaller systems CRISP provides a distinct advantage
in having the caches on-chip. A one wait-state system can be
built at 16 Mhz interfacing directly to dynamic memory with a
loss in performance of only about 20% compared to a zero wait-
state system. CRISP saves substantially in board area and parts
cost being a complete one chip CPU, compared to the R2000
which requires an implementation using two external caches and
various support chips, for a total of about 30 chips. CRISP's
good code density is also important in some applications where
memory costs are still a large portion of system costs, compared
to the poorer code density typically found in load/store RISC
machines.

Benchmark VAX-780 R2000 CRISP CRISP/~
ackerman 20.9 sec 1.6 sec 1.1 sec 19.0
word count 55.0 sec 5.2 sec 4.2 sec 13.1
quicksort 36.2 sec 4.0 sec 3.4 sec 10.6
tty driver 17.4 sec 2.2 see 1.2 sec 14.5
symbol table 14.6 sec 1.3 see 1.2 sec 12.2
buffer release 9.9 see 0.9 sec 0.8 sec 12.4
arithmetic 12.8 sec 2.7 sec 1.6 sec 8.0

Table 3. Relative performance

CRISP/VAX i CRISP/R2000
1.5
1.2
1.2
1.8
1.1
1.1
1.7

of a 16 MHz CRISP.

Conclusion

The CRISP Microprocessor combines several new architec-
tural techniques into a single design. A highly Decoded Instruc-
tion Cache facilitates Branch Folding, reduces pipeline breakage
problems caused by branches, and allows peak one cycle execu-
tion for fixed length instructions originally generated from a
variable length instruction set. Branch Folding gives the
appearance that branches can be executed in zero time. The use
of a Stack Cache gives efficient use of registers without resort-
ing to complex compiler technology. The Stack Cache substan-
tially reduces procedure call overhead compared to general
register approaches, leading to fast procedure calls. These tech-
niques have been implemented in a working, highly pipelined
microprocessor.

Acknowledgements

We wish to thank Brian Colbry, Don Freeman, Fred Hea-
ton, George Janac, Kerry Maletsky, Kevin O'Connor, and Shoji
for their assistance in the design and implementation of CRISP.
Additionally we wish to give our sincere thanks to the many oth-
ers who supported and contributed to CRISP, particularly those
who worked on the 3B-40 and HAWK implementations.

References

1. A .D . Berenbaum, B. W. Colbry, D. R. Ditzel, R. D. Free-
man, H. R. McLellan, K. J. O'Connor, and M. Shoji, "A
Pipelined 32b Microprocessor with 13Kb of Cache
Memory," Proceedings of the 1987 International Solid
State Circuits Conference, pp. 34-35 (February, 1987).

2. D . R . Ditzel and H. R. McLellan, "Register Allocation for
Free: The C Machine Stack Cache," Proc. of Symposium
on Architectural Support for Programming Languages and
Operating Systems, Palo Alto, California, pp. 48-56
(March 1982).

3. D . R . Ditzel and H. R. McLellan, "Branch Folding in the
CRISP Microprocessor: Reducing Branch Delay to Zero,"
Proceedings of the 14th Annual Symposium on Computer
Architecture (June 3-5, 1987).

4. A. G. Fraser, "An Introduction to the C-Machine,"
Proceedings of the BTLIWE Microcomputer Symposium,
pp. 9-1 to 9-7 (November 1977).

5. S . C . Johnson, "A 32-Bit Processor Design," Computing
Science Technical Report No. 80 (April 1979).

6. D . R . Ditzel and D. A. Patterson, "The Case for the
Reduced Instruction Set Computer," Computer Architec-
ture News 8(7) (1980).

7. A. Berenbaum, D. Ditzel, and R. McLellan, Introduction
to the CRISP Instruction-Set Architecture, Proceedings of
the Spring COMPCON (February, 1987), pp. 86-90.

8. G. Radin, "The 801 Minicomputer," Proceedings of the
Symposium on Architectural Support for Programming
Languages in Operating Systems, Palo Alto, CA, pp. 39-47
(March 1982).

9. P . M . Kogge, The Architecture of Pipelined Computers,
McGraw-Hill Publisher (1981).

315

Table 1. CRISP Instructions

Address
Type
2 and

21/2
address

2
address

1
address

0
address

Name Function Addressing Modes Data Types

add
sub
mul
quo
and
or
xor
shr
ushl
ushr
umul
uquo
urem
emp.~
cmp.s <
cmp.u <
move
mova
addi
andi
ori
jmp
ifTjmp
ifFjmp
ifCjmp

addition
subtraction
multiplication
division
bitwise and
bitwise or
bitwise exclusive or
arithmetic shift right
unsigned shift left
unsigned shift right
unsigned multiply
unsigned divide
unsigned remainder
equality comparison
signed less than comparison
unsigned less than comparison
move
move effective address
bitwise add interlocked
bitwise and interlocked
bitwise or interlocked
unconditional jump
conditional jump if True
conditional jump if False
conditional jump if Carry

Immediate

Absolute

Stack
Offset

Stack
Offset

Indirect

Absolute
Absolute Indirect

Stack Offset Indirect
ifOjmp conditional jump if Overflow
call procedure call PC Relative
kcall kernel call
enter allocate new stack space
return de-allocate space and return Immediate
catch restore stack cache
nop no operation
cpu internal register access
kret kernel return

unsigned byte

signed byte

unsigned
half word

signed
half word

word

Five Parcel

[11 Iopcode(6)[smode(4)Idmode(4) I I

Three Parcel

[101opcode(6) [smode(4)Idmode(4) I [

[10[opcode(6)[smode(4) I 1111 I [

One Parcel

[0 [opcode(5) I src(5) I dst(5) I

[0 [opcod¢(5) I sr¢(lO) I

src(32) dst(32)]

src(16)] [dst(16)

src(32)

Figure I. Instruction Encoding Formats.

316

data in bus

Prefetch Buffer

P32

Stack
Cache

512 bytes

-•64
Prefetch/Decode

Unit

3 stage pipeline

~ 192

Decoded Instruction
Cache

32 x 192 bits

~ 1 9 2

Execution Unit

3 stage pipeline

data out bus

address ,
[w

32

32

I /O

data

address

control

Figure 2. C R I S P Microprocessor Block Diagram

317

to ' d; ^ ~ d :~
. . ~ ~, ~ .~1 ~1 a ~" ~1

• i','J ~ v , , 11 . ~ . - ,

-~ ~ ~i~l r~

I I~~"- I ~.~ o ~ I ~

~.~

°~i -1 ~
~ -

e~
^ u . l . u

~ o

^

-'°° ~ ~1

o =
° ~

318

1 ^

0 1 ~

h~
Z u .

~Z ._
2 m

e S ~
D

^

"5
¢.) LV.

i I
~ l ~^

¢D

o °~

°~

^

319

