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The CRISP Microprocessor 
The AT&T CRISP Microprocessor is a high performance 

general purpose 32-bit processor. It has been implemented as a 
single CMOS chip containing 172,163 transistors in a 1.75~t 
CMOS technology and runs at a clock frequency of 16 MHz. 1 
The CRISP Microprocessor achieves performance through tradi- 
tional techniques, such as pipelining, and from several new tech- 
niques not before found in microprocessor designs. This paper 
focuses on a detailed description of hardware architecture, 
including the pipeline structure and details of the architectural 
innovations. A brief introduction to the instruction-set and 
major features are given for background. 

The CRISP instruction-set is carefully streamlined to allow 
an efficient pipelined implementation. CRISP consists of two 
logically separate machines, a Prefetch and Decode Unit and an 
Execution Unit. These units are connected by a decoded- 
instruction cache. With this decoupled parallel operation and 
internal pipelining, CRISP is capable of issuing a new instruc- 
tion every cycle. Fast operand access is accomplished with 
Stack Cache registers 2 instead of general purpose data registers. 
Efficient procedure calls are possible because of the Stack 
Cache and a minimal subroutine linkage mechanism. Branches 
can be executed in zero time by Branch Folding. 3 A highly 
decoded instruction cache allows memory-to-memory style 
instructions to be often executed in a single cycle by a RISC 
style Execution Unit. Code generation by compilers is simpli- 
fied as there are only a few instructions and addressing modes to 
chose from, and register allocation is not required. A variable- 
length instruction-encoding yields good code density (equal to 
the VAX) and reduces off-chip instruction traffic. These 
instructions are translated by the Prefetch Decode Unit to a 
fixed-length internal format for high speed execution. 
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Genesis of the Design 
Since 1975 the Bell Labs C Machine Project has designed 

several computer architectures to support efficiently the C Pro- 
gramming Language. 2,4,5,6 These designs evolved into the 
current C Machine instruction-set architecture. The CRISP 
Microprocessor represents a particular implementation of the C 
Machine architecture. The current architecture stabilized in 
1981 for an ECL implementation that was never completed. 
The design team for CRISP was formed in April 1983 and the 
first mask was submitted for fabrication in February 1986. 

The goal of the C Machine Project was to design and build 
a computer with significantly better cost/performance charac- 
teristics than commercially available computers. We were seek- 
ing architectural changes that could provide an order of magni- 
tude greater performance than the machines commonly available 
to us. The C Machine was designed with an iterative methodol- 
ogy based on extensive measurements of C programs. Part of 
the method consisted of a cycle of proposing a machine, writing 
a compiler, running a large body of UNIX software through the 
compiler and analysis tools, and then using measurements to add 
or delete features and propose a new machine. These measure- 
ments guided the hardware/software tradeoffs made between 
compiler technology, well known architectural techniques, and 
hardware limitations. 

In particular, these measurements focused our efforts on 
four areas. First, we reduced the cost of procedure calls, 
because up to half of the execution time of our VAX programs 
was consumed by procedure call overhead. Second, we looked 
for ways to use a large number of registers effectively without 
placing the burden on complex compiler technology that  we 
might never achieve. Third, we concentrated on simple instruc- 
tions, streamlining them to permit an efficient pipelined imple- 
mentation. Fourth, we sought to avoid performance problems 
caused by pipeline breakage from branches. 
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Instruction Set Architecture 

The CRISP instruction-set contains a small number of 
instructions and addressing modes. The instruction-set architec- 
ture is a registerless, 2~/2 address memory-to-memory machine. 
The 1/2 address refers to being able store the destination of an 
operation in a single location called the accumulator, which is 
implemented as the first variable location on the stack frame. 
Two, one, and zero address instructions are also supported. 

CRISP is a full 32-bit machine. The wordsize and 
addresses are 32-bits. Integer values may be 32-bit words, 16- 
bit halfwords or 8-bit bytes. Bytes and halfwords are either sign 
extended or zero filled to 32-bit values before an ALU operation 
takes place. 

CRISP provides four addressing modes per operand for 
accessing most data. Bytes, halfwords and words can be speci- 
fied with an absolute address, an offset from a stack pointer, or 
indirectly though an address specified by an offset from a stack 
pointer. Immediate constants can be placed in the instruction 
itself. 

ALU-type instructions are a minimal and sufficient set for 
compiler writers. Operations are addition, subtraction, multipli- 
cation, division, logical and arithmetic shifts, and bitwise and, 
or, and exclusive or. Both 2 address and 21/2 address forms are 
provided for most ALU operations. A compare instruction tests 
two operands for equality, signed less than, and unsigned less 
than. Only the compare instruction can set a single condition 
code flag; no other ALU operations affect it. The flag may be 
used later by a conditional branch instruction to branch if the 
flag is true, or if it is false. Conditional branch instructions also 
contain a single static branch prediction bit, which may be set 
by a compiler. This bit specifies whether the branch is normally 
expected to be taken. Four instructions are used for procedure 
calling: call saves the return PC and branches to the subroutine; 
enter allocates space for a new stack frame and flushes Stack 
Cache entries if necessary; return dealloeates the stack frame 
and branches back to the caller; and catch restores Stack Cache 
entries from memory if necessary. A summary of CRISP 
instructions is shown is Table 1. A more complete description of 
the instruction-set can be found elsewhere. 7 

Instruction Encoding 

The instruction encoding is designed with two primary con- 
siderations. First, the instruction length must be easily deter- 
mined. Therefore, the length is encoded in the first two bits of 
each instruction. Since all instructions are multiples of two 
bytes, this unit is referred to as an instruction parcel. Second, 
static and dynamic code size should be made as small as possible 
without interfering with performance issues. Instructions that  
require two 32-bit addresses or operands, can use the five parcel 
form shown in Figure 1. The three parcel form can be used to 
provide a single 32-bit operand or two 16-bit operands. The sin- 
gle parcel format has a 5-bit opcode field which defines the most 
frequent combinations of operations and addressing modes 
occurring in the three and five parcel forms. This highly 
encoded single parcel form typically accounts for 80 percent of 
all instructions. The resulting programs are compact despite 
only three instruction lengths and a simple instruction-set -- 
program size is about the same as that of the VAX with its mul- 
titude of complex modes and instruction lengths. 

Architectural Overview 

Figure 2 illustrates the basic functional blocks of the 
CRISP microprocessor. There are three distinct caches, two 
major data-path blocks and an I /O section to communicate off- 
chip. These six functional blocks operate autonomously, without 
any central controller. These units are (roughly in order of 
instruction flow): 

Input/Output. The CRISP I /O is fully synchronous, and can 
complete an I /O transaction every clock cycle. There are 
separate address and data busses. The data bus is 32 bits wide, 
while the address bus provides 30-bit word addresses. Bytes 
within words are accessed via four byte-mark strobes. Although 
the I /O can maintain a one transaction-per-cycle rate, this rate 
is not mandatory. Performance degrades gracefully as wait 
states are added. In addition, a block transfer mode is provided 
for systems using nibble-mode or page-mode RAMS,  where the 
first access to a block may take more time than subsequent 
sequential accesses. The I /O  protocol also supports coproces- 
sors, wait states, slow tri-stating peripherals, interlocked bus 
operations and the parallel connection of multiple CPU chips for 
fault-tolerant, self-checking operation. The microprocessor is 
packaged in a 125-pin pin grid array, using 96 active signal pins 
and 20 power and ground pins. 

Prefetch Buffer. The Prefetch Buffer is an instruction cache 
similar to those found in the Motorola 68020 or A T & T  
WE32100. The purpose of the Prefetch Buffer is to match the 
limited bandwidth through the microprocessor data pins to the 
internal demands of instruction decode and execution. The Pre- 
fetch Buffer is implemented as a direct-mapped sector-cache 
with two valid bits per line. There are 32 lines, each of which 
contains two double-word blocks, for a total of 512 bytes. 
Instructions are stored in the cache with the same compact 
encoding as in main memory. All program text is fetched with 
double-word block I /O  transactions. The Prefetch Buffer can 
deliver a 64-bit block of encoded instructions to the 
Prefetch/Decode Unit every cycle. 

Prefetch/Decode Unit. The job of the Prefetch and Decode 
Uni t (PDU) job is to take the highly encoded instructions stored 
in the Prefetch Buffer and decode them into a canonical 192-bit 
internal instruction that  can be efficiently executed by the Exe- 
cution Unit. Before decoding, the PDU must align instructions 
from the double-word blocks delivered by the Prefetch Buffer 
and the I/O. The alignment is achieved by an eight entry, 16- 
bit parcel instruction queue that emits one to five parcels every 
cycle. The PDU as a whole can decode and deliver up to two 
decoded instructions every cycle. Once started, the PDU 
operates autonomously. It follows the instruction stream, 
including data-independent branches, retrieves instructions from 
the Prefetch Buffer, decodes them, and deposits them into the 
Decoded Instruction Cache. 

Decoded Instruction Cache. The Decoded Instruction Cache 
acts as a buffer between the PDU and the Execution Unit. Like 
the Prefetch Buffer, it is organized as a direct-mapped cache, 
with 32 192-bit entries. Each entry is a fully decoded instruc- 
tion, so that  instructions that issue from the Decoded Instruction 
Cache can be executed without any further sign-extension, field 
extraction, or decode delay. Because of branch folding, to be 
described later, each Decoded Instruction Cache entry can hold 
two instructions. The Decoded Instruction Cache, during each 
clock cycle, can receive an instruction from the PDU, as well as 
deliver an instruction to the Execution Unit. Like the Prefetcb 
Buffer, the Decoded Instruction Cache can also bypass data 
directly from the PDU to the Execution Unit. 
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Execution Unit. The Execution Unit (EU) is optimized for high 
speed execution, and in some ways resembles RISC machines 
such as the IBM 801.8 It consists of three pipeline stages, with a 
straightforward sequence of operand fetch, ALU operation, then 
register update. Because CRISP is a memory-to-memory archi- 
tecture, the EU can calculate addresses, fetch data and align 
and sign-extend two operands simultaneously. Although most 
instructions flow through the pipeline in three cycles, for a net 
rate of one instruction per cycle, more complex instructions such 
as multiply and divide can take multiple cycles. With the help 
of branch folding, the peak execution rate can be as high as two 
instructions every cycle. The 192-bit decoded instruction resem- 
bles horizontal microcode, and like a typical microprogrammed 
machine the EU sees only fixed length instructions. This simpli- 
fies next address calculation and makes it easier to issue new 
instructions every cycle. Unlike other RISC machines, CRISP's 
internal instruction width is not limited to 32-bits, and unlike 
CISC machines CRISP does not require a large, static 
microprogram ROM. CRISP takes instructions that are com- 
pact and easy for a compiler to generate and dynamically 
transforms them into easy to execute RISC instructions. 

Stack Cache. Unlike most computers CRISP has no visible data 
or address registers. Instead, 32 internal Stack Cache registers 
are mapped into the address space corresponding to the top of 
the stack. The Stack Cache is byte-addressable and looks like 
memory in every way. It can contain strings, structures and 
arrays. The Stack Cache is implemented as a circular buffer of 
registers, maintained by a head and tail pointer, called the Stack 
Pointer (SP) and Maximum Stack Pointer (MSP). Memory 
references that fall between the bounds of the SP and MSP are 
address the on-chip Stack Cache registers. Management of the 
Stack Cache is controlled with the enter and catch instructions 
during procedure calling. The Stack Cache registers are imple- 
mented with two 32-entry, 32-bit wide memories. During every 
cycle the Stack Cache performs two distinct reads and a single 
write. 

Pipeline Structure and Terminology 

Pipeline stages are clocked once each cycle. Each clock 
cycle is subdivided into four equal duration phases, numbered 1 
to 4. Pipeline registers are built from a master/slave register 
pair. The master registers are always clocked during phase 4, 
whereas the slave registers are conditionally clocked during the 
following phase 1. Registers are implemented with transparent 
latches. 

To balance the amount of computation in each pipeline 
stage, assumptions were made about the time required for vari- 
ous functions. A 32-bit addition and an on-chip memory access 
are roughly comparable and take approximately half a clock 
cycle. An ALU operation including shifting, sign extension, and 
the result alignment was allocated a full clock cycle. The cache 
memories are sequenced twice each clock cycle. They are read 
in the first half of a cycle, and written in the second half of a 
cycle. These constraints define the clock cycle time of the 
machine. 

We will use the notion <pipe-stage>.<register-name> 
to identify particular pipeline registers. For example, PDR.PC 
is the PC register of the PDR pipeline stage. Particular bits of 
a register are described by following the name of the register 
with the selected bits enclosed in angle brackets. Thus, x < 2 : 6 >  
specifies bits 2 through 6 of the x field. The names of busses or 
functional units are shown in italics, the names of explicit 
instructions are shown in bold face. 

The Prefetch and Decode Unit 

The PDU is a 3-stage pipeline responsible for the fetching 
instructions from external memory and then decoding and stor- 
ing them in the Decoded Instruction Cache. Externally, instruc- 
tions are either one, three or five parcels in length. The PDU 
translates these variable length instructions into a single 192-bit 
canonical internal form. Once started, the PDU fetches instruc- 
tions on its own, decoding and following branches and calls in 
the instruction stream. This autonomous action is only stopped 
by a demand request from the EU, or an inability to continue 
following the instruction path. This might occur when the 
address of the next instruction is data-dependent as in a pro- 
cedure return or indirect jump. 

The PDU's pipeline stages will now be described in the 
order the instructions flow through them. The PDU's three 
pipeline stages are: the Prefetch Buffer Register (PBR), the 
Prefetch Decode Register (PDR), and the Prefetch Instruction 
Register (PIR). A simplified schematic of the PDU is shown in 
Figure 3. 

PBR Stage: The PBR stage is the head of the PDU pipe- 
line and consists of a single register, the PBR.PC. The PBR.PC 
addresses the Prefetch Buffer and performs a blind prefetch of 
64-bit instruction blocks. During the first half of each cycle, the 
Prefetch Buffer is indexed by the low-order bits of PBR.PC and 
the four instruction parcels retrieved are placed in the W, X, Y, 
and Z registers. If the high-order bits of the PBR.PC match the 
tag associated with this entry, these four parcels are valid and 
may be loaded into the Instruction Queue during phase 4 of the 
same cycle. When there is space in the Instruction Queue for 
these four parcels, the PBR.PC is incremented and the next Pre- 
fetch Buffer entry is accessed. This sequence continues every 
cycle until an instruction discontinuity occurs. A new PBR.PC 
is then loaded and a new instruction stream is started. 

The Prefetch Buffer is a direct-mapped sector-cache, con- 
taining 64 64-bit sub-blocks and 32 22-bit tags, each with 2 
valid bits and 1 execution level privilege bit per tag. The two 
valid bits implement a four-word line comprised of two 64-bit 
entries. These bits define which of the two entries are valid. 
The Prefetch Buffer Tag memory contains an integral compara- 
tor to determine a cache hit/miss. If a miss occurs in the first 
block of a four-word cache line, two requests for double-word 
block transfers are made to the I/O, at the memory address 
specified by the PBR.PC. If the miss occurs in the second 
block, only one double-word 1/O request is made. If the PDU is 
waiting for an instruction because of a Prefetch Buffer cache 
miss, when a double-word arrives from the I /O at the input side 
of the Prefetch Buffer, it is written both into the cache and the 
W, X, Y, and Z registers. This bypassing capability saves a 
clock cycle instead of having to wait for the data to be written 
into the Prefetch Buffer first. 

There are two advantages to this cache organization. If 
the PBR.PC points to the second double-word (as it might after 
an instruction discontinuity), it can be fetched without having to 
wait for the entire four word line. Also, system performance is 
improved by allowing other I /O activity to intervene during 
instruction prefetches. Block transfers of greater than two 
words were found to degrade performance by stalling EU execu- 
tion. 

PDR Stage: The PDR stage consists of an eight parcel 
Instruction Queue, PDR.QA through PDR.QH, and the 
PDR.PC, which contains the address of the QA parcel. The 
eight-entry Queue aligns the variable length instructions for the 
benefit of the next pipeline stage. Five parcels, QA through QE 
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are available as outputs from the Queue. 

An instruction is decoded from the Queue each cycle. 
After decoding, the one to five parcels comprising that instruc- 
tion are removed from the Queue. Any remaining valid parcels 
in the Queue are shifted to fill the vacated entries. Finally, if 
there is room, the Queue is loaded with the four W, X, Y, and 
Z parcels from the Prefetch Buffer. 

PIR Stage: The PIR Stage contains a completely decoded 
instruction, composed of six 32-bit fields. These fields are: the 
PC of the instruction, the Next-PC address, the Alternate 
Next-PC address, a constant or address for the left and right 
operands, and 32-bits of control. 

At the beginning of a cycle, the QA parcel is fed into a 
PLA, the PDUPLA, for decoding. The PDUPLA detects unim- 
plemented or illegal instruction and generates the control signals 
for the PIR.control field. The PIR.control register contains 32 
relatively independent bits containing decoded opcode, address- 
ing mode, and other control information to be used in the EU. 
The control field contains 5-bits for an internal opcode; the Exe- 
cution Unit only has to deal with a simple instruction set of 25 
instructions. Instructions of different lengths with the same 
function are translated into a single decoded instruction. For 
example, one, three and five parcel encodings of an add instruc- 
tion will all be translated to the same internal opcode, whose bit 
encoding is different from the external form. The external 
encodings are selected for the best code compaction, whereas the 
internal encodings are selected for speed of execution by the EU. 

The PIR.LOP and PIR.ROP registers hold the left and 
right operands of a specified operation. (The left operand field is 
the combination source/destination field for two-address opera- 
tions, the right operand field is the source and also holds the 
operand for monadic operations.) The operands are sign 
extended 32-bit values of either constants, offsets or absolute 
addresses extracted from the QA-QE registers of the PDR. The 
PDUPLA also generates signals to control the multiplexors 
sourcing the PIR.LOP and PIR.ROP registers. The PDUPLA 
uses the high order bit of the B and C parcels to sign extend 
16-bit constants with the PIR.LOP and PIR.ROP multiplexors 

The address of the newly decoded instruction is copied 
from the PDR.PC to the PIR.PC. The PIR.PC serves as the 
tag in the decoded instruction cache. 

Like microinstructions in some microcoded engines, a 
decoded CRISP instruction contains an explicit "next address" 
field, the PIR.Next-PC. Unlike these other machines, this next 
address field is dynamically generated, rather than being stored 
with each instruction in a control memory. For non-branching 
instructions, the next address is calculated by adding the address 
of the current instruction, the PDR.PC, to the length of the 
current instruction using the sequential PC adder, spcadd. For 
branching instructions, the next address can be specified either 
by a 32-bit absolute address in the instruction, or by a PC rela- 
tive offset. 

This organization leads to a significant optimization. Since 
every decoded instruction contains a next address field, every 
decoded instruction is capable of branching to any other instruc- 
tion. Since every instruction is therefore a branch, there is no 
need to execute separate branch instructions. Whenever a non- 
branching instruction is followed immediately by a branch, the 
two are folded together to form a single new decoded instruc- 
tion. To fold branches, CRISP decodes two instructions simul- 
taneously. When a non-branching instruction is followed by a 
branch, the address of the branch target is used as the next 
address of the folded pair. This technique is called Branch 

Folding. 
Branch Folding can be applied to conditional as well as 

unconditional branches. Unconditional branches require only a 
single Next-PC field, namely the target address of the branch. 
Conditional branches additionally require a sequential address 
field, as the true outcome of the branch can not be decided until 
the instruction reaches the Execution Unit. A second field, 
called the Alternate Next-PC holds this second address. 

Forming the Next-PC field for a folded instruction is more 
difficult than for a non-folded instruction. The main problem is 
that PC relative branches are relative to their own addresses, not 
the address of the instruction in the PDR.PC. To compensate, 
the length of the non-branch instruction being folded must be 
added to the branch offset before it is added to the PDR.PC. 
CRISP only folds one parcel branches with one and three parcel 
non-branching instructions. This decision was based on meas- 
urements that showed that about 95% of all branches executed 
used the one parcel instruction format. The proper 10-bit 
branch offset is selected by the tpc multiplexor and added to the 
length of the instruction preceding the branch by the tpinc 
adder. The next address is then obtained by adding this 
adjusted offset to the PDR.PC with the tpcadd adder. Separate 
non-folded branches are also allowed for the infrequently occur- 
ring case when folding is not permitted. For this case, a PC 
relative next address is obtained by adding the 10-bit offset from 
the PDR.QA parcel to a branch offset of zero, then adding to 
the PDR.PC with the tpcadd adder. 

If the instruction being decoded is a branch that is 
predicted to be taken, the Next-PC will be selected from the 
branch target tpc, or from the 32-bit address in the QB and QC 
parcels. Otherwise, the Next-PC will be the next sequential 
instruction address via the spc bus. The Alternate-PC value will 
select the alternative not selected by the Next-PC. 

The PDU follows the path of branches and calls, and the 
predicted path of conditional branches. The flow of control in 
the PDU is directed by the instruction being decoded in the 
PDR stage. For a three parcel branch or call, the target address 
is brought from the QB and QC parcels into the PBR.PC and 
PDR.PC. For PC relative and folded branches the target 
address is brought to the PBR.PC via the tpc bus. 

As mentioned before, the PDU may be stopped from its 
prefetching by the EU to do a demand fetch. The EU redirects 
the PDU with a new PBR.PC and PDR.PC from the eunpc bus. 
Often the PDU is only slightly behind the current execution of 
the EU, and may already be fetching and decoding the instruc- 
tion requested by the EU. Rather than throw away this useful 
work by completely restarting the PDU, two comparators, the 
pdeq and pieq, check to see if the requested instruction is 
already in the pipeline. If so, the PDU ignores the request and 
continues prefetching. 

The Decoded Instruction Cache 

Decoded instructions waiting in the PDU's PIR stage are 
written into the Decoded Instruction Cache in the second half of 
a clock cycle. During the first half of a clock cycle decoded 
instructions are read by the Execution Unit. The output of the 
Decoded Instruction Cache is latched every cycle into a tem- 
porary register at the end of phase 2. If the EU is waiting for 
an instruction because of a Decoded Instruction Cache miss, the 
instruction will be bypassed to the EU through the Decoded 
Instruction Cache directly from the PDU's PIR stage. This 
optimization saves one cycle latency in recovering from a 
Decoded Instruction Cache miss. 
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The Execution Unit 

The Execution Unit  is responsible for the execution of 
instructions from the Decoded Instruction Cache. The EU is an 
autonomous unit and only communicates with the PDU when it 
can no longer proceed because of a Decoded Instruction Cache 
miss. The EU contains a few processor registers dedicated to 
specific functions. These are the Program Status Word (PSW), 
Stack Pointer (SP), Maximum Stack Pointer (MSP), Interrupt 
Stack Pointer (ISP), Vector Base (VB) register, and Timer. 
Only one of the SP or ISP is enabled at any one time and it is 
referred to as the current stack pointer. The Timer register can 
be configured to count either clock ticks, or instructions exe- 
cuted. The SP, MSP, ISP and VB are aligned on four-word 
boundaries. This alignment allows indexing within four words of 
these register values without the use of a full 32-bit adder. An 
address is formed by or'ing into the low 'order bits. 

The EU has three major pipeline stages, as shown in the 
simplified schematic of Figure 4. Instructions flow from the 
Instruction Register (IR) stage to the Operand Register (OR) 
stage and then to the Result Register (RR) stage. Although 
most instructions can pass from one stage to the next in one 
cycle, some instructions, such as multiply, can take multiple 
cycles. Indirect memory references and some data hazards can 
also cause instructions to take more than one cycle in a single 
pipeline stage. Each pipeline stage has a field for the instruc- 
tion address (PC) -- there is no explicit "PC"  register. A PC 
for every instruction in the pipeline is necessary for the precise 
handling of faults and interrupts. 

IR Stage: The IR stage holds the addresses of the operands 
of an instruction, so the addresses of all data fetches come from 
the IR. It holds an operand's value if it is an immediate con- 
stant. For sequencing control the IR stage also contains the PC 
of the instruction, the Next-PC, and Alternate-PC. When the 
IR is ready to be loaded it fetches the next instruction from the 
Decoded Instruction Cache. If the IR.Next-PC is the same as 
the tag, a Decoded Instruction Cache hit occurs and the entry is 
marked valid, by setting the IR.valid bit. If there is not a hit, 
the IR.valid bit will be turned off to invalidate the pipeline 
stage. If an operand is an immediate constant, or its addressing 
mode is absolute, its data is copied directly from the Decoded 
Instruction Cache into the left operand or right operand fields of 
the IR. If its addressing mode is stack-relative, the data in the 
operand field of the Decoded Instruction Cache is used as an 
offset and added to the Stack Pointer before it is loaded into the 
IR. Two 28-bit adders allow the simultaneous calculation of left 
and right operand addresses. The SP adders operate on only the 
top 28-bits of the operand offset and SP. As the SP is aligned on 
four word boundaries, its four low order bits are zero, and the 
low four bits of the operand address are simply copied to the low 
four bits of the operand address to complete the full 32-bit 
address. 

If an indirect memory reference is selected, then the 
address of the operand must first be fetched. Since the IR stage 
is responsible for operand addresses, the indirect fetch of an 
operand address from the IR.rop or IR.lop is returned back to 
the IR.rop or IR.lop, respectively. After the indirect fetch is 
completed, the addressing mode for that  operand is changed to 
eliminate indirection and normal execution resumes. The 
pointer being fetched for an indirect operation may be located in 
either the Stack Cache or in off-chip memory. If  the operand is 
located off-chip, it is returned to the IR.lop or IR.rop via the 
d a t a j n  bus. If the operand is located in the Stack Cache, it is 
returned to the IR.lop via the left stack cache bus, or to the 

IR.rop via the right stack cache bus. Indirect jumps are treated 
similarly except that the data is returned to the IR.Next-PC 
field instead of the IR.rop. 

In the first half of every cycle address bits < 2 : 6 >  from 
the IR stage's left and right operand fields are sent to the Stack 
Cache and used to perform two simultaneous reads from the 
memory. At the same time, range check circuitry checks the 
full virtual addresses to see if they reference operands in the 
Stack Cache. If an address is greater than or equal to the SP 
and less than the MSP, then data is returned from the Stack 
Cache. If this condition is not met, then data must be fetched 
from off chip. We note that this particular implementation of 
the Stack cache is essentially the same as that proposed for an 
earlier C Machine, 2 but in CRISP the addition of the SP to an 
offset is done in the EU rather than in the PDU. 

Pipelining introduces the potential for a Read after Write 
(RAW) hazard. 9 If the operand address to be fetched by the 
IR.lop or IR.rop is to be written by an instruction one to two 
instructions ahead of the instruction in that IR, then the correct 
value must be bypassed back to the IR stage. The bypassed 
operand may come from the output of the ALU result on the 
alubd bus (one stage bypassing), or from the output of the RR 
stage result register on the rra bus (two stage bypassing). 

OR Stage: The OR stage holds the actual operands for an 
instruction, rather than the addresses as in the IR stage. If the 
operand is a constant, the value is copied directly from the IR 
stage operand registers. If memory was referenced in the IR, 
then the data may come from the Stack Cache or from off-chip. 
Since read after write hazards may also occur in fetching data 
for the OR stage, one and two stage bypassing are also possible 
sources for the OR stage operand registers. Finally, the con- 
tents of the machine registers, such as the SP and PSW, may be 
a source for the OR stage operand registers. 

The detection of RAW hazards is accomplished with four 
comparators, shown in Figure 4 near the OR.destination and 
RR.destination address registers. Partial word hazards may be 
resolved with bypassing only if the data being read is no longer 
than the data being written and the alignments are compatible. 
Partial word hazards that do not meet this condition are resolved 
by stalling the instruction in the IR stage until the data can be 
correctly read. 

The destination address for instructions that do writes is 
generated in the OR.dest register. For 2-address instructions, 
the destination address is the same as the IR.lop address. For 
the call instruction, the PC return address is stored at the 
address of the current stack pointer, obtained via the spbus. For 
2½-address instructions, the destination address is that of the 
accumulator. The accumulator is always one word above that 
pointed to by the current stack pointer. The address for the 
accumulator is generated by taking the current stack pointer 
value and or'ing a one into the address bit 2 position. The abil- 
ity to add four to the current stack pointer by the use of a single 
or gate is one of the benefits of quad-word alignment of the 
stack pointer. 

RR stage: The RR result register contains the result of the 
ALU operation. To perform an ALU operation, operands from 
the OR.lop and OR.rop stage are first aligned to extract the 
proper byte, half-word or word. After alignment, the values are 
sign extended according to whether the values were specified to 
be signed or unsigned. The ALU always operates on full 32-bit 
values. Byte and halfword values are not special data types so 
much as they are ways of compactly storing a representation of 
a 32-bit value. After the ALU operation is completed, the 32- 
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bit ALU output is realigned for proper storage in memory or the 
Stack Cache without further shifting. Writes to the Stack 
Cache or memory occur during the following cycle. 

Branch Control in the EU. The control point for the entire 
machine is the IR stage's Next-PC register. The IR.Next-PC is 
used to index the Decoded Instruction Cache to read a new 
instruction into the IR. When a new instruction is read, the 
IR.Next-PC may come from the cache's Next-PC or Alternate- 
PC field. For conditional branches, the Alternate-PC is kept for 
each pipeline stage in case the branch prediction was wrong. 
When an incorrectly predicted branch is discovered, the 
Alternate-PC is placed in the IR.Next-PC and instructions in 
the pipeline that have followed the wrong path are invalidated. 

Pipeline Control 

In most cases, instructions flow from one pipeline stage to 
the next whenever the next stage is ready. A pipeline stage is 
ready if it does not contain a valid instruction (the VALID bit is 
not set), or if all its data has arrived and the following stage is 
ready to accept it. If a pipeline stage is busy and the subse- 
quent stage is ready, no-op instructions will be propagated down 
the pipeline. While the stage is busy, instructions will be held 
up in previous stages. This back-up stops at the Decoded 
Instruction Cache: even though the IR may be busy, the 
Decoded Instruction Cache accepts new instructions from the 
PDU. The cache decouples the two units and allows them to 
run autonomously. 

Multi-cycle instructions occupy the OR stage of the pipe- 
line, although they may keep the entire EU busy. Shifts and 
multiplies sit in the OR until they complete, sending no-op 
instructions down to the RR, but allowing the next instruction to 
enter the IR. Divides and any sequence which requires I /O 
(such as catch and enter) require all three pipe stages; when the 
EU's Sequence PLA is on for these sequences the IR is 
automatically marked busy. When the Sequence PLA com- 
pletes, it releases the stages it was holding and goes into an idle 
state, allowing normal control to resume. 

Opcodes in the fully decoded instructions represent classes 
of external instructions, so there is not a one-to-one match 
between internal and external opcodes. For example, there is 
only one internal add opcode. There are separate control bits to 
indicate accumulator destinations and interlocked operations. 
As another example, the interlock bit, used to specify semaphore 
operations, could be applied to any instruction, but the PDU 
only decodes it for add, and and or. Several control bits are 
used to speed decoding. One bit tells the control logic that  the 
current instruction can set the condition code, although this 
information could be obtained by decoding the internal opcode. 
Additional bits control side effects. If the VALID bit is not set 
the pipe stage is considered empty. Therefore, when it is neces- 
sary to cancel an instruction, it is sufficient to clear the VALID 
bit in the appropriate pipe stage. If the IS_STORE bit is set, 
the instruction will do a store when it reaches the bottom of the 
pipeline. By turning off the IS_STORE bit, it is possible to 
mark an instruction's presence but preventing it from modifying 
memory. 

Architectural Evaluation 

Although the CRISP pipeline is capable of issuing one 
instruction every cycle (greater than one if folded branches are 
counted), large programs will usually not attain that  rate. Many 
different events can stall the pipeline, although the precise 
effects will be different for different programs. With the 

CRISP implementation of the C Machine, the principal delay 
comes from Prefetch Buffer cache misses, because the Prefetch 
Buffer cache is currently relatively small. (This was an inten- 
tional tradeoff so that  CRISP could provide good performance 
in systems without an off-chip cache.) Other major delays 
include fetching operands from off chip, indirect operand 
address resolution, incorrectly predicted branches (which cause 
partially completed instructions to be cancelled), and Stack 
Cache filling and flushing. 

Because the biggest contributor to performance loss is the 
delay in the PDU, program performance depends to a large 
degree on the size and behavior of the program. If the Prefetch 
Buffer hit rate is sufficiently high the PDU can keep up with 
the EU, and instructions will issue in the EU at close to a one- 
per-cycle rate. Larger programs will have proportionately larger 
miss rates and hence a slower instruction issue rate. 

Table 2 illustrates the instruction issue rate of three dif- 
ferent programs. The first is a small synthetic benchmark, 
about 2K bytes of text, and executes about 14,000 instructions. 
The second is a Unix program (sed, the stream editor) of about 
15K bytes of text, which executes about 25,000 instructions. 
The third is a large Unix program (the C compiler), of about 
80K bytes and executes about 200,000 instructions. 

Factor Benchmark 1 
Basic Instruction 1.0 
PDU 0.6 
Data Fetch 0.3 
Indirect Operands 
Branch Miss 

0.2 
0.05 

Data Stores 0.1 
Stack Fill/Flush 0.2 
Folded Branches -0.5 
Miscellaneous 0.05 
Totals 2.0 

Sed C Compiler 
1.0 1.0 
0.75 1.4 
0.5 0.5 
0.3 0.3 
0.2 0.1 
0.15 0.1 
0 0.2 

-0.9 -0.7 
0.05 0.3 
2.15 2.9 

Table 2. Breakdown of instruction delay in cycles/instruction. 

All instructions take at least one cycle for the basic 
instruction. Misses in the EU requiring that  the PDU fetch a 
new instruction contributed another 0.6 to 1.4 cycles for every 
instruction. Folded branches have a negative contribution in 
terms of cycles per instruction, since the instructions are exe- 
cuted in zero time. 

Many features were evaluated in this manner to determine 
if they should be included in the final implementation of the 
CRISP Microprocessor. For example, removing the one-stage 
bypass paths would add about 0.25 to 0.5 cycles per instruction, 
while removing the two-stage bypass would add about 0.1 cycles 
per instruction. The current CRISP implementation folds only 
one-parcel jumps, and only with one or three parcel instructions. 
This strategy successfully folds 90 to 95% of all branches. 

Performance Evaluation 

The bottom line in CPU performance is the length of time 
required to execute a user's program. This is usually factored 
into three terms: the total number of instructions required, the 
average number of cycles per instruction, and the clock rate. 
With CRISP's  2Y2 address memory-to-memory instruction-set, 
the number of instructions executed more closely resembles that  
of a CISC computer like a VAX than that of a load/store RISC 
machine. When Branch Folding is included, the CRISP Execu- 
tion Unit  needs to execute fewer instructions than a machine 
with an extensive instruction set such as the VAX. The combi- 
nation of pipelining, and integrated caches helps reduce the 
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average number of clocks per instruction. The simple instruc- 
tion set contributes to a high clock rate for a pipelined imple- 
mentation. The CRISP architecture was specifically designed to 
be cache-memory intensive. With better VLSI technology, a 
higher performance migration path is easily realized by increas- 
ing the size of on-chip caches. In particular, from Table 2, we 
can see that increasing the size of the the Prefetch Buffer and 
Stack Cache might reduce the number of cycles/instruction to 
as low as 2.9-(1.4-1-.2) = 1.3 cycles/instruction for the C com- 
piler. 

Branch Folding allows most branches to execute in zero 
time. Evaluation and a more detailed description of Branch 
Folding can be found elsewhere. 3 

Procedure Call overhead is low. Procedure calling is 
implemented with four instructions: call saves the return PC and 
branches to the subroutine; enter allocates space for a new stack 
frame and flushes Stack Cache entries if necessary; return deal- 
locates the stack frame and branches back to the caller; and 
catch restores Stack Cache entries from memory if necessary. 
When no Stack Cache registers need to be saved and instruc- 
tions are in the on-chip caches, these four instructions can be 
executed in a total of only five clock cycles. 

Stack Cache registers greatly speed operand access and 
reduce off-chip memory traffic. Measurements on large pro- 
grams, such as the C compiler, show 80% of all data references 
are resolved by the Stack Cache. 

Our original performance goal was to provide at least an 
order of magnitude better performance than a VAX-11/750. At 
16 MHz with no wait states, CRISP achieves a performance 
rating of 13,560 Dhrystones, compared to 997 for a VAX- 
11/750. This benchmark shows CRISP to be 13.6 times faster. 

Performance for several other benchmarks is shown in 
Table 3. Comparison is made with the DEC VAX-11/780 and 
with the MIPS Computer Systems R2000 processor as imple- 
mented in the M/500 Development System. The figures for 
CRISP show a system running at 16 MHz with no wait states. 
A second mask of CRISP using the same technology is expected 
to run above 20 MHz. The numbers show CRISP to be sub- 
stantially faster than the VAX, and slightly faster than the 
MIPS R2000. 

For smaller systems CRISP provides a distinct advantage 
in having the caches on-chip. A one wait-state system can be 
built at 16 Mhz interfacing directly to dynamic memory with a 
loss in performance of only about 20% compared to a zero wait- 
state system. CRISP saves substantially in board area and parts 
cost being a complete one chip CPU, compared to the R2000 
which requires an implementation using two external caches and 
various support chips, for a total of about 30 chips. CRISP's  
good code density is also important in some applications where 
memory costs are still a large portion of system costs, compared 
to the poorer code density typically found in load/store RISC 
machines. 

Benchmark VAX-780 R2000 CRISP CRISP/~ 
ackerman 20.9 sec 1.6 sec 1.1 sec 19.0 
word count 55.0 sec 5.2 sec 4.2 sec 13.1 
quicksort 36.2 sec 4.0 sec 3.4 sec 10.6 
tty driver 17.4 sec 2.2 see 1.2 sec 14.5 
symbol table 14.6 sec 1.3 see 1.2 sec 12.2 
buffer release 9.9 see 0.9 sec 0.8 sec 12.4 
arithmetic 12.8 sec 2.7 sec 1.6 sec 8.0 

Table 3. Relative performance 

CRISP/VAX i CRISP/R2000 
1.5 
1.2 
1.2 
1.8 
1.1 
1.1 
1.7 

of a 16 MHz CRISP. 

Conclusion 

The CRISP Microprocessor combines several new architec- 
tural techniques into a single design. A highly Decoded Instruc- 
tion Cache facilitates Branch Folding, reduces pipeline breakage 
problems caused by branches, and allows peak one cycle execu- 
tion for fixed length instructions originally generated from a 
variable length instruction set. Branch Folding gives the 
appearance that branches can be executed in zero time. The use 
of a Stack Cache gives efficient use of registers without resort- 
ing to complex compiler technology. The Stack Cache substan- 
tially reduces procedure call overhead compared to general 
register approaches, leading to fast procedure calls. These tech- 
niques have been implemented in a working, highly pipelined 
microprocessor. 
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Table 1. CRISP Instructions 

Address 
Type 
2 and 

21/2 
address 

2 
address 

1 
address 

0 
address 

Name Function Addressing Modes Data Types 

add 
sub 
mul 
quo 
and 
or 
xor 
shr 
ushl 
ushr 
umul 
uquo 
urem 
emp.~ 
cmp.s < 
cmp.u < 
move 
mova 
addi 
andi 
ori 
jmp 
ifTjmp 
ifFjmp 
ifCjmp 

addition 
subtraction 
multiplication 
division 
bitwise and 
bitwise or 
bitwise exclusive or 
arithmetic shift right 
unsigned shift left 
unsigned shift right 
unsigned multiply 
unsigned divide 
unsigned remainder 
equality comparison 
signed less than comparison 
unsigned less than comparison 
move 
move effective address 
bitwise add interlocked 
bitwise and interlocked 
bitwise or interlocked 
unconditional jump 
conditional jump if True 
conditional jump if False 
conditional jump if Carry 

Immediate 

Absolute 

Stack 
Offset 

Stack 
Offset 

Indirect 

Absolute 
Absolute Indirect 

Stack Offset Indirect 
ifOjmp conditional jump if Overflow 
call procedure call PC Relative 
kcall kernel call 
enter allocate new stack space 
return de-allocate space and return Immediate 
catch restore stack cache 
nop no operation 
cpu internal register access 
kret kernel return 

unsigned byte 

signed byte 

unsigned 
half word 

signed 
half word 

word 

Five Parcel 

[11 Iopcode(6)[smode(4)Idmode(4) I I 

Three Parcel 

[101opcode(6) [smode(4)Idmode(4) I [ 

[10[opcode(6)[smode(4) I 1111 I [ 

One Parcel 

[0 [opcode(5) I src(5) I dst(5) I 

[0 [opcod¢(5) I sr¢(lO) I 

src(32) dst(32) ] 

src(16) ] [ dst(16) 

src(32) 

Figure I. Instruction Encoding Formats. 
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data in bus 

Prefetch Buffer 

P32 

Stack 
Cache 

512 bytes 

-•64 
Prefetch/Decode 

Unit 

3 stage pipeline 

~ 192 

Decoded Instruction 
Cache 

32 x 192 bits 

~ 1 9 2  

Execution Unit 

3 stage pipeline 

data out bus 

address , 
[ w 

32 

32 

I /O 

data 

address 

control 

Figure  2. C R I S P  Microprocessor Block Diagram 
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