

MOTOROLA

 DATA ARITHMETIC LOGIC UNIT 3 - 1

SECTION 3
DATA ARITHMETIC LOGIC UNIT

SECTION CONTENTS

3 - 2 DATA ARITHMETIC LOGIC UNIT

MOTOROLA

SECTION 3.1 DATA ARITHMETIC LOGIC UNIT ... 3

SECTION 3.2 OVERVIEW AND DATA ALU ARCHITECTURE 3
3.2.1 Data ALU Input Registers (X1, X0, Y1, Y0) .. 5
3.2.2 MAC and Logic Unit .. 6
3.2.3 Data ALU A and B Accumulators .. 7
3.2.4 Accumulator Shifter .. 9
3.2.5 Data Shifter/Limiter ... 9

3.2.5.1 Limiting (Saturation Arithmetic) .. 9
3.2.5.2 Scaling .. 10

SECTION 3.3 DATA REPRESENTATION AND ROUNDING 10

SECTION 3.4 DOUBLE PRECISION MULTIPLY MODE 16

SECTION 3.5 DATA ALU PROGRAMMING MODEL 19

SECTION 3.6 DATA ALU SUMMARY .. 19

DATA ARITHMETIC LOGIC UNIT

MOTOROLA

 DATA ARITHMETIC LOGIC UNIT 3 - 3

3.1 DATA ARITHMETIC LOGIC UNIT

This section describes the operation of the Data ALU registers and hardware. It dis-
cusses data representation, rounding, and saturation arithmetic used within the Data
ALU, and concludes with a discussion of the programming model.

3.2 OVERVIEW AND DATA ALU ARCHITECTURE

As described in Section 2, The DSP56K family central processing module is composed
of three execution units that operate in parallel. They are the Data ALU, address genera-
tion unit (AGU), and the program control unit (PCU) (see Figure 3-1). These three units
are register oriented rather than bus oriented and interface over the system buses with
memory and memory-mapped I/O devices.

The Data ALU (see Figure 3-2) is the first of these execution units to be presented. It bal-
ances speed with the capability to process signals that have a wide dynamic range and
performs all arithmetic and logical operations on data operands.

The Data ALU registers may be read or written over the XDB and the YDB as 24- or 48-
bit operands. The source operands for the Data ALU, which may be 24, 48, or 56 bits,
always originate from Data ALU registers. The results of all Data ALU operations are
stored in an accumulator.

The 24-bit data words provide 144 dB of dynamic range. This range is sufficient for most
real-world applications since the majority of data converters are 16 bits or less – and cer-
tainly not greater than 24 bits. The 56-bit accumulator inside the Data ALU provides 336
dB of internal dynamic range so that no loss of precision will occur due to intermediate
processing. Special circuitry handles data overflows and roundoff errors.

The Data ALU can perform any of the following operations in a single instruction cycle:
multiplication, multiply-accumulate with positive or negative accumulation, convergent
rounding, multiply-accumulate with positive or negative accumulation and convergent
rounding, addition, subtraction, a divide iteration, a normalization iteration, shifting, and
logical operations.

The components of the Data ALU are:

• Four 24-bit input registers
• A parallel, single-cycle, nonpipelined multiply-accumulator/logic unit (MAC)
• Two 48-bit accumulator registers
• Two 8-bit accumulator extension registers
• An accumulator shifter
• Two data bus shifter/limiter circuits

OVERVIEW AND DATA ALU ARCHITECTURE

3 - 4 DATA ARITHMETIC LOGIC UNIT

MOTOROLA

The following paragraphs describe each of these components and provide a description
of data representation, rounding, and saturation arithmetic.

CLOCK
GENERATOR

P
E

R
IP

H
E

R
A

L
P

IN
S

INTERNAL
DATA
BUS

SWITCH

PROGRAM
RAM/ROM

EXPANSION

PROGRAM
INTERRUPT

CONTROLLER

PROGRAM
DECODE

CONTROLLER

PROGRAM
ADDRESS

GENERATOR

YAB
XAB
PAB

YDB

XDB

PDB

GDB

MODC/NMI

MODB/IRQB

RESET

DATA ALU
24X24+56→56-BIT MAC

TWO 56-BIT ACCUMULATORS

EXTERNAL
ADDRESS

BUS
SWITCH

BUS
CONTROL

EXTERNAL
DATA BUS
SWITCH

A
D

D
R

E
S

S
D

AT
A

16 BITS
24 BITS

P
O

R
T

 A

MODA/IRQA

PLL

X MEMORY
RAM/ROM

EXPANSION

Y MEMORY
RAM/ROM

EXPANSION

ADDRESS
GENERATION

UNIT

OnCE™

PERIPHERAL
MODULES

EXPANSION
AREA

C
O

N
T

R
O

L

24 Bit 56K
Module

Figure 3-1 DSP56K Block Diagram

Program Control Unit

OVERVIEW AND DATA ALU ARCHITECTURE

MOTOROLA

 DATA ARITHMETIC LOGIC UNIT 3 - 5

3.2.1 Data ALU Input Registers (X1, X0, Y1, Y0)

X1, X0, Y1, and Y0 are four 24-bit, general-purpose data registers. They can be treated
as four independent, 24-bit registers or as two 48-bit registers called X and Y, developed
by concatenating X1:X0 and Y1:Y0, respectively. X1 is the most significant word in X and
Y1 is the most significant word in Y. The registers serve as input buffer registers between
the XDB or YDB and the MAC unit. They act as Data ALU source operands and allow
new operands to be loaded for the next instruction while the current instruction uses the

56

24

24

5656

56

56

X DATA BUS

Y DATA BUS

2424

X0

X1

Y0

Y1

24 24

MULTIPLIER

ACCUMULATOR,
ROUNDING,

AND LOGIC UNIT

SHIFTER

A (56)

B (56)

SHIFTER/LIMITER

Figure 3-2 Data ALU

OVERVIEW AND DATA ALU ARCHITECTURE

3 - 6 DATA ARITHMETIC LOGIC UNIT

MOTOROLA

register contents. The registers may also be read back out to the appropriate data bus to
implement memory-delay operations and save/restore operations for interrupt service
routines.

3.2.2 MAC and Logic Unit

The MAC and logic unit shown in Figure 3-3 conduct the main arithmetic processing and
perform all calculations on data operands in the DSP.

For arithmetic instructions, the unit accepts up to three input operands and outputs one
56-bit result in the following form: extension:most significant product:least significant
product (EXT:MSP:LSP). The operation of the MAC unit occurs independently and in par-
allel with XDB and YDB activity, and its registers facilitate buffering for Data ALU inputs
and outputs. Latches on the MAC unit input permit writing an input register which is the
source for a Data ALU operation in the same instruction.

The arithmetic unit contains a multiplier and two accumulators. The input to the multiplier
can only come from the X or Y registers (X1, X0, Y1, Y0). The multiplier executes 24-bit
x 24-bit, parallel, twos-complement fractional multiplies. The 48-bit product is right justi-
fied and added to the 56-bit contents of either the A or B accumulator. The 56-bit sum is
stored back in the same accumulator (see Figure 3-3). An 8-bit adder, which acts as an
extension accumulator for the MAC array, accommodates overflow of up to 256 and al-
lows the two 56-bit accumulators to be added to and subtracted from each other. The
extension adder output is the EXT portion of the MAC unit output. This multiply/accumu-
late operation is not pipelined, but is a single-cycle operation. If the instruction specifies a
multiply without accumulation (MPY), the MAC clears the accumulator and then adds the
contents to the product.

In summary, the results of all arithmetic instructions are valid (sign-extended and zero-
filled) 56-bit operands in the form of EXT:MSP:LSP (A2:A1:A0 or B2:B1:B0). When a 56-
bit result is to be stored as a 24-bit operand, the LSP can be simply truncated, or it can be
rounded (using convergent rounding) into the MSP.

Convergent rounding (round-to-nearest) is performed when the instruction (for example,
the signed multiply-accumulate and round (MACR) instruction) specifies adding the mul-
tiplier’s product to the contents of the accumulator. The scaling mode bits in the status
register specify which bit in the accumulator shall be rounded.

The logic unit performs the logical operations AND, OR, EOR, and NOT on Data ALU reg-
isters. It is 24 bits wide and operates on data in the MSP portion of the accumulator. The
LSP and EXT portions of the accumulator are not affected.

OVERVIEW AND DATA ALU ARCHITECTURE

MOTOROLA

 DATA ARITHMETIC LOGIC UNIT 3 - 7

3.2.3 Data ALU A and B Accumulators

The Data ALU features two general-purpose, 56-bit accumulators, A and B. Each con-
sists of three concatenated registers (A2:A1:A0 and B2:B1:B0, respectively). The 8-bit
sign extension (EXT) is stored in A2 or B2 and is used when more than 48-bit accuracy is
needed; the 24-bit most significant product (MSP) is stored in A1 or B1; the 24-bit least

Figure 3-3 MAC Unit

24 BITS
48 BITS
56 BITS

X0,X1,

Y0, OR Y1

X0,X1,

Y0, OR Y1

X0,X1,

Y0, OR Y1

24-BITx24-BIT
FRACTIONAL
MULTIPLIER

56 - BIT
ARITHMETIC AND

LOGIC UNIT

R24

S
H
I
F
T
E
R

CONVERGENT - ROUNDING
FORCING FUNCTION

SCALING
MODE BITS

CONDITION
CODE GENERATOR

ACCUMULATOR A ACCUMULATOR B

+–

OVERVIEW AND DATA ALU ARCHITECTURE

3 - 8 DATA ARITHMETIC LOGIC UNIT

MOTOROLA

significant product (LSP) is stored in A0 or B0 as shown in Figure 3-4.

Overflow occurs when a source operand requires more bits for accurate representation
than are available in the destination. The 8-bit extension registers offer protection
against overflow. In the DSP56K chip family, the extreme values that a word operand
can assume are - 1 and + 0.9999998. If the sum of two numbers is less than - 1 or
greater than + 0.9999998, the result (which cannot be represented in a 24 bit word oper-
and) has underflowed or overflowed. The 8-bit extension registers can accurately repre-
sent the result of 255 overflows or 255 underflows. Whenever the accumulator extension
registers are in use, the V bit in the status register is set.

Automatic sign extension occurs when the 56-bit accumulator is written with a smaller
operand of 48 or 24 bits. A 24-bit operand is written to the MSP (A1 or B1) portion of the
accumulator, the LSP (A0 or B0) portion is zero filled, and the EXT (A2 or B2) portion is
sign extended from MSP. A 48-bit operand is written into the MSP:LSP portion (A1:A0 or
B1:B0) of the accumulator, and the EXT portion is sign extended from MSP. No sign
extension occurs if an individual 24-bit register is written (A1, A0, B1, or B0).When either
A or B is read, it may be optionally scaled one bit left or one bit right for block floating-
point arithmetic. Sign extension can also occur when writing A or B from the XDB and/or
YDB or with the results of certain Data ALU operations (such as the transfer conditionally
(Tcc) or transfer Data ALU register (TFR) instructions).

Overflow protection occurs when the contents of A or B are transferred over the XDB and
YDB by substituting a limiting constant for the data. Limiting does not affect the content
of A or B – only the value transferred over the XDB or YDB is limited. This overflow pro-
tection occurs after the contents of the accumulator has been shifted according to the
scaling mode. Shifting and limiting occur only when the

entire

 56-bit A or B accumulator
is specified as the source for a parallel data move over the XDB or YDB. When individual
registers A0, A1, A2, B0, B1, or B2 are specified as the source for a parallel data move,

55 055 0

* A2 A1 A0
7 0 23 0 23 0

* B2 B1 B0
7 0 23 0 23 0

DATA ALU ACCUMULATOR REGISTERS

*Read as sign extension bits, written as don’t care.

Accumulator A Accumulator B

EXT MSP LSPEXT MSP LSP

Figure 3-4 DATA ALU Accumulator Registers

OVERVIEW AND DATA ALU ARCHITECTURE

MOTOROLA

 DATA ARITHMETIC LOGIC UNIT 3 - 9

shifting and limiting are not performed.

3.2.4 Accumulator Shifter

The accumulator shifter (see Figure 3-3) is an asynchronous parallel shifter with a 56-bit
input and a 56-bit output that is implemented immediately before the MAC accumulator
input. The source accumulator shifting operations are as follows:

• No Shift (Unmodified)
• 1-Bit Left Shift (Arithmetic or Logical) ASL, LSL, ROL
• 1-Bit Right Shift (Arithmetic or Logical) ASR, LSR, ROR
• Force to zero

3.2.5 Data Shifter/Limiter

The data shifter/limiter circuits (see Figure 3-3) provide special post-processing on data
read from the Data ALU A and B accumulators out to the XDB or YDB. There are two in-
dependent shifter/limiter circuits (one for XDB and one for the YDB); each consists of a
shifter followed by a limiting circuit.

3.2.5.1 Limiting (Saturation Arithmetic)

The A and B accumulators serve as buffer registers between the MAC unit and the XDB
and/or YDB. They act both as Data ALU source and destination operands.Test logic exists
in each accumulator register to support the operation of the data shifter/limiter circuits.
This test logic detects overflows out of the data shifter so that the limiter can substitute
one of several constants to minimize errors due to the overflow. This process is called sat-
uration arithmetic

The Data ALU A and B accumulators have eight extension bits. Limiting occurs when the
extension bits are in use and either A or B is the source being read over XDB or YDB. If
the contents of the selected source accumulator can be represented without overflow in
the destination operand size (i.e., accumulator extension register not in use), the data lim-
iter is disabled, and the operand is not modified. If contents of the selected source
accumulator cannot be represented without overflow in the destination operand size, the
data limiter will substitute a limited data value with maximum magnitude (saturated) and
with the same sign as the source accumulator contents: $7FFFFF for 24-bit or $7FFFFF
FFFFFF for 48-bit positive numbers, $800000 for 24-bit or $800000 000000 for 48-bit neg-
ative numbers. This process is called saturation arithmetic. The value in the accumulator
register is not shifted and can be reused within the Data ALU. When limiting does occur,
a flag is set and latched in the status register.Two limiters allow two-word operands to be
limited independently in the same instruction cycle. The two data limiters can also be com-

DATA REPRESENTATION AND ROUNDING

3 - 10 DATA ARITHMETIC LOGIC UNIT

MOTOROLA

bined to form one 48-bit data limiter for long-word operands.

For example, if the source operand were 01.100 (+ 1.5 decimal) and the destination reg-
ister were only four bits, the destination register would contain 1.100 (- 1.5 decimal) after
the transfer, assuming signed fractional arithmetic. This is clearly in error as overflow has
occurred. To minimize the error due to overflow, it is preferable to write the maximum
(“limited”) value the destination can assume. In the example, the limited value would be
0.111 (+ 0.875 decimal), which is clearly closer to + 1.5 than - 1.5 and therefore intro-
duces less error.

Figure 3-5 shows the effects of saturation arithmetic on a move from register A1 to regis-
ter X0. The instruction “MOVE A1,X0” causes a move without limiting, and the instruction
“MOVE A,X0” causes a move of the same 24 bits with limiting. The error without limiting
is 2.0; whereas, it is 0.0000001 with limiting. Table 3-1 shows a more complete set of
limiting situations.

3.2.5.2 Scaling

The data shifters can shift data one bit to the left or one bit to the right, or pass the data
unshifted. Each data shifter has a 24-bit output with overflow indication and is controlled
by the scaling mode bits in the status register. These shifters permit dynamic scaling of
fixed-point data without modifying the program code. For example, this permits block
floating-point algorithms such as fast Fourier transforms to be implemented in a regular
fashion.

3.3 DATA REPRESENTATION AND ROUNDING

The DSP56K uses a fractional data representation for all Data ALU operations. Figure 3-

Figure 3-5 Saturation Arithmetic

55 0

7 0 23 0 23 0

0. . . 0 1 0 0 0 0 0 0 0 0

55 0

7 0 23 0 23 0

0 . . . 0 1 0 0 0 0 0 0 0 0

WITHOUT LIMITING* WITH LIMITING*

A = +1.0

1 0 0 0 0 0 1 1 1 1

23 0 23 0

MOVE A1, X0 MOVE A, X0

X0 = -1.0 X0 = +0.9999999

|ERROR| = 2.0

A = +1.0

|ERROR| = .0000001

* Limiting automatically occurs when the 56 - bit operands A or B (not A2, A1, A0, B2, B1, or B0) are read. The contents
of A or B are NOT changed.

DATA REPRESENTATION AND ROUNDING

MOTOROLA

 DATA ARITHMETIC LOGIC UNIT 3 - 11

7 shows the bit weighting of words, long words, and accumulator operands for this repre-
sentation. The decimal points are all aligned and are left justified.

Data must be converted to a fractional number by scaling before being used by the DSP
or the user will have to be very careful in how the DSP manipulates the data. Moving $3F
to a 24-bit Data ALU register does not result in the contents being $00003F as might be
expected. Assuming numbers are fractional, the DSP left justifies rather than right justi-
fies. As a result, storing $3F in a 24-bit register results in the contents being $3F0000.
The simplest example of scaling is to convert all integer numbers to fractional numbers
by shifting the decimal 24 places to the left (see Figure 3-6). Thus, the data has not
changed; only the position of the decimal has moved.

For words and long words, the most negative number that can be represented is -1
whose internal representation is $800000 and $800000000000, respectively. The most
positive word is $7FFFFF or 1 - 2

-23

 and the most positive long word is $7FFFFFFFFFFF

Destination
Memory Reference

Source
Operand

Accumulator
Sign

Limited Value (Hexadecimal) Type of
Access

XDB YDB

X
X:A
X:B

+
-

7FFFFF
800000

—
—

One 24 bit

Y
Y:A
Y:B

+
-

—
—

7FFFFF
800000

One 24 bit

X and Y

X:A Y:A
X:A Y:B
X:B Y:A
X:B Y:B
L:AB
L:BA

+
-
+
-
+
-

7FFFFF
800000
7FFFFF
800000
7FFFFF
800000

7FFFFF
800000
7FFFFF
800000
7FFFFF
800000

Two 24 bit

L (X:Y)
L:A
L:B

+
-

7FFFFF
800000

FFFFFF
000000

One 48 bit

Table 3-1 Limited Data Values

S 3F.

S. 3F

S = SIGN BIT

3F = HEXADECIMAL DATA TO BE CONVERTED

Figure 3-6 Integer-to-Fractional Data Conversion

DATA REPRESENTATION AND ROUNDING

3 - 12 DATA ARITHMETIC LOGIC UNIT

MOTOROLA

or 1 - 2

-47

. These limitations apply to all data stored in memory and to data stored in the
Data ALU input buffer registers. The extension registers associated with the accumula-
tors allow word growth so that the most positive number that can be used is approxi-
mately 256 and the most negative number is approximately -256. When the accumulator
extension registers are in use, the data contained in the accumulators cannot be stored
exactly in memory or other registers. In these cases, the data must be limited to the most
positive or most negative number consistent with the size of the destination and the sign
of the accumulator (the most significant bit (MSB) of the extension register).

To maintain alignment of the binary point when a word operand is written to accumulator
A or B, the operand is written to the most significant accumulator register (A1 or B1), and
its MSB is automatically sign extended through the accumulator extension register. The
least significant accumulator register is automatically cleared. When a long-word oper-
and is written to an accumulator, the least significant word of the operand is written to the
least significant accumulator register A0 or B0 and the most significant word is written to

2–472–2420–28

2–472–24

–20 2–23

–20

*

A2, B2 A1, B1 A0, B0

SIGN EXTENSION OPERAND ZERO

DATA ALU

WORD OPERAND

X1, X0
Y1, Y0
A1, A0
B1, B0

LONG - WORD OPERAND

X1:X0 = X
Y1:Y0 = Y
A1:A0 = A10
B1:B0 = B10

ACCUMULATOR A OR B

Figure 3-7 Bit Weighting and Alignment of Operands

DATA REPRESENTATION AND ROUNDING

MOTOROLA

 DATA ARITHMETIC LOGIC UNIT 3 - 13

A1 or B1(see Figure 3-8).

A comparison between integer and fractional number representation is shown in Figure
3-8. The number representation for integers is between

±

2

(N-1)

; whereas, the fractional
representation is limited to numbers between

±

1. To convert from an integer to a frac-
tional number, the integer must be multiplied by a scaling factor so the result will always
be between

±

1. The representation of integer and fractional numbers is the same if the
numbers are added or subtracted but is different if the numbers are multiplied or divided.
An example of two numbers multiplied together is given in Figure 3-9. The key difference
is that the extra bit in the integer multiplication is used as a duplicate sign bit and as the
least significant bit (LSB) in the fractional multiplication. The advantages of fractional
data representation are as follows:

• The MSP (left half) has the same format as the input data.

• The LSP (right half) can be rounded into the MSP without shifting or updating the
exponent.

• A significant bit is not lost through sign extension.

• Conversion to floating-point representation is easier because the industry-standard
floating-point formats use fractional mantissas.

• Coefficients for most digital filters are derived as fractions by the high-level language
programs used in digital-filter design packages, which implies that the results can be
used without the extensive data conversions that other formats require.

Should integer arithmetic be required in an application, shifting a one or zero, depending
on the sign, into the MSB converts a fraction to an integer.

The Data ALU MAC performs rounding of the accumulator register to single precision if
requested in the instruction (the A1 or B1 register is rounded according to the contents of
the A0 or B0 register). The rounding method is called round-to-nearest (even) number, or
convergent rounding. The usual rounding method rounds up any value above one-half

S

S

N BITS

N BITS

–2(N–1) TO [+2(N–1) –1]

–1 TO [+1–2–(N–1)]

TWOS COMPLEMENT INTEGER

TWOS COMPLEMENT FRACTIONAL

FRACTIONAL = INTEGER EXCEPT FOR X AND ÷

•

•

Figure 3-8 Integer/Fractional Number Comparison

DATA REPRESENTATION AND ROUNDING

3 - 14 DATA ARITHMETIC LOGIC UNIT

MOTOROLA

and rounds down any value below one-half. The question arises as to which way one-
half should be rounded. If it is always rounded one way, the results will eventually be
biased in that direction. Convergent rounding solves the problem by rounding down if the
number is odd (LSB=0) and rounding up if the number is even (LSB=1). Figure 3-10
shows the four cases for rounding a number in the A1 (or B1) register. If scaling is set in
the status register, the resulting number will be rounded as it is put on the data bus. How-
ever, the contents of the register are not scaled.

S S

...

SIGNED MULTIPLIER

S S MSP LSP •

2N — 1 PRODUCT
SIGN EXTENSION

2N BITS

S S

...

SIGNED MULTIPLIER

0S• MSP LSP

2N — 1 PRODUCT
ZERO FILL

2N BITS

INTEGER FRACTIONAL

SIGNED MULTIPLICATION N x N - 2N – 1 BITS

Figure 3-9 Integer/Fractional Multiplication Comparison

DATA REPRESENTATION AND ROUNDING

MOTOROLA

 DATA ARITHMETIC LOGIC UNIT 3 - 15

A2 A1 A0
XX . . XX XXX . . . XXX0100 011XXX XXX
55 48 47 24 23 0

CASE I: IF A0 < $800000 (1/2), THEN ROUND DOWN (ADD NOTHING)

BEFORE ROUNDING AFTER ROUNDING

AFTER ROUNDING

AFTER ROUNDING

BEFORE ROUNDING

BEFORE ROUNDING

0

A2 A1 A0*
XX . . XX XXX . . . XXX0100 000 000
55 48 47 24 23 0

CASE II: IF A0 > $800000 (1/2), THEN ROUND UP (ADD 1 TO A1)

A2 A1 A0
XX . . XX XXX . . . XXX0100 1110XX XXX
55 48 47 24 23 0

1

A2 A1 A0*
XX . . XX XXX . . . XXX0101 000 000
55 48 47 24 23 0

CASE III: IF A0 = $800000 (1/2), AND THE LSB OF A1 = 0,THEN ROUND DOWN (ADD NOTHING)

A2 A1 A0
XX . . XX XXX . . . XXX0100 10000 000
55 48 47 24 23 0

0

A2 A1 A0*
XX . . XX XXX . . . XXX0100 000 000
55 48 47 24 23 0

CASE IV: IF A0 = $800000 (1/2), AND THE LSB = 1, THEN ROUND UP (ADD 1 TO A1)

BEFORE ROUNDING

A2 A1 A0
XX . . XX XXX . . . XXX0101 10000 000
55 48 47 24 23 0

1
AFTER ROUNDING

A2 A1 A0*
XX . . XX XXX . . . XXX0110 000 000
55 48 47 24 23 0

Figure 3-10 Convergent Rounding

*A0 is always clear; performed during RND, MPYR, MACR

DOUBLE PRECISION MULTIPLY MODE

3 - 16 DATA ARITHMETIC LOGIC UNIT

MOTOROLA

3.4 DOUBLE PRECISION MULTIPLY MODE

The Data ALU double precision multiply operation multiplies two 48-bit operands with a
96-bit result. The processor enters the dedicated Double Precision Multiply Mode when
the user sets bit 14 (DM) of the Status Register (bit 6 of the MR register). The mode is
disabled by clearing the DM bit. For information on the DM bit, see Section 5.4.2.13 -
Double Precision Multiply Mode (Bit 14).

CAUTION:

While in the Double Precision Multiply Mode, only the double precision multiply algorithms
shown in Figure 3-11, Figure 3-12, and Figure 3-13 may be executed by the Data ALU;
any other Data ALU operation will give indeterminate results.

Figure 3-11 shows the full double precision multiply algorithm. To allow for pipeline
delay, the ANDI instruction should not be immediately followed by a Data ALU instruc-
tion. For example, the ORI instruction sets the DM mode bit, but, due to the instruction
execution pipeline, the Data ALU enters the Double Precision Multiply mode only after

Y:X:

R5
MSP2
LSP2

MSP1
LSP1R1

DP2
DP0

DP3
DP1 R0R0

DP3_DP2_DP1_DP0 = MSP1_LSP1 x MSP2_LSP2

ori #$40,mr ;enter mode

move x:(r1)+,x0 y:(r5)+,y0 ;load operands

mpy y0,x0,a x:(r1)+,x1 y:(r5)+,y1 ;LSP*LSP➞a

mac x1,y0,a a0,y:(r0) ;shifted(a)+

; MSP*LSP➞a

mac x0,y1,a ;a+LSP*MSP➞a

mac y1,x1,a a0,x:(r0)+ ;shifted(a)+

; MSP*MSP➞a

move a,l:(r0)+

andi #$bf,mr ;exit mode

non-Data ALU operation ;pipeline delay

Figure 3-11 Full Double Precision Multiply Algorithm

DOUBLE PRECISION MULTIPLY MODE

MOTOROLA DATA ARITHMETIC LOGIC UNIT 3 - 17

one instruction cycle. The ANDI instruction clears the DM mode bit, but, due to the
instruction execution pipeline, the Data ALU leaves the mode after one instruction cycle.

The double precision multiply algorithm uses the Y0 register at all stages. If the use of
the Data ALU is required in an interrupt service routine, Y0 should be saved together
with other Data ALU registers to be used, and should be restored before leaving the
interrupt routine.

If just single precision times double precision multiply is desired, two of the multiply oper-
ations may be deleted and replaced by suitable initialization and clearing of the accumu-
lator and Y0. Figure 3-12 shows the single precision times double precision algorithm.

Figure 3-13 shows a single precision times double precision multiply-accumulate algo-
rithm. First, the least significant parts of the double precision values are multiplied by the
single precision values and accumulated in the “Double Precision Multiply” mode. Then
the DM bit is cleared and the least significant part of the result is saved to memory. The
most significant parts of the double precision values are then multiplied by the single pre-

Y:X:

R5SPMSP1
LSP1R1

DP2DP3
DP1

R0
R0

DP3_DP2_DP1 = MSP1_LSP1 x SP

clr a #0,y0 ;clear a and y0

ori #$40,mr ;enter DP mode

move x:(r1)+,x0 y:(r5)+,y1 ;load LSP1 and SP

mac x0,y1,a x:(r1)+,x1 ;LSP1*SP➞a,

;load MSP1

mac y1,x1,a a0,x:(r0)+ ;shifted(a)+

; SP*MSP1➞a,

;save DP1

move a,l:(r0)+ ;save DP3_DP2

andi #$bf,mr ;exit DP mode

non-Data ALU operation ;pipeline delay

Figure 3-12 Single × Double Multiply Algorithm

DOUBLE PRECISION MULTIPLY MODE

3 - 18 DATA ARITHMETIC LOGIC UNIT MOTOROLA

cision values and accumulated using regular MAC instructions. Note that the maximum
number of single times double MAC operations in this algorithm are limited to 255 since
overflow may occur (the A2 register is just eight bits long). If a longer sequence is
required, it should be split into sub-sequences each with no more than 255 MAC opera-
tions.

Y:X:

R5SPiMSPi

LSPiR1

DP2DP3
DP1

R0
R0

DP3_DP2_DP1 = ∑ MSPi_LSPi x SPi

move #N-1,m5

clr a #0,y0 ;clear a and y0

ori #$40,mr ;enter DP mode

move x:(r1)+,x0 y:(r5)+,y1 ;load LSPi and SPi

rep #N ;0<N<256

mac x0,y1,a x:(r1)+,x0 y:(r5)+,y1 ;LSPi*SPi➞a

andi #$bf,mr ;exit DP mode

move a0,x:(r0)+ ;save DP1

move a1,y0

move a2,a

move y0,a0 ;a2:a1➞a1:a0

rep #N

mac x0,y1,a x:(r1)+,x0 y:(r5)+,y1 ;load MSPi and SPi

move a,l:(r0)+ ;save DP3_DP2

Figure 3-13 Single × Double Multiply-Accumulate Algorithm

DATA ALU PROGRAMMING MODEL

MOTOROLA DATA ARITHMETIC LOGIC UNIT 3 - 19

3.5 DATA ALU PROGRAMMING MODEL
The Data ALU features 24-bit input/output data registers that can be concatenated to ac-
commodate 48-bit data and two 56-bit accumulators, which are segmented into three 24-
bit pieces that can be transferred over the buses. Figure 3-14 illustrates how the registers
in the programming model are grouped.

3.6 DATA ALU SUMMARY
The Data ALU performs arithmetic operations involving multiply and accumulate opera-
tions. It executes all instructions in one machine cycle and is not pipelined. The two 24-bit
numbers being multiplied can come from the X registers (X0 or X1) or Y registers (Y0 or
Y1). After multiplication, they are added (or subtracted) with one of the 56-bit accumula-
tors and can be convergently rounded to 24 bits. The convergent-rounding forcing
function detects the $800000 condition in the LSP and makes the correction as neces-
sary. The final result is then stored in one of the accumulators as a valid 56-bit number.
The condition code bits are set based on the rounded output of the logic unit.

47 0

55 055 0

DATA ALU

X0
23 0 23 0

47 0
Y1 Y0

23 0 23 0

DATA ALU

* A2 A1 A0
23 8 7 0 23 0 23 0

* B2 B1 B0
23 8 7 0 23 0 23 0

X1

INPUT REGISTERS

ACCUMULATOR REGISTERS

*Read as sign extension bits, written as don’t care.

X Y

A B

Figure 3-14 DSP56K Programming Model

DATA ALU SUMMARY

3 - 20 DATA ARITHMETIC LOGIC UNIT MOTOROLA

	3.1 DATA ARITHMETIC LOGIC UNIT
	3.2 OVERVIEW AND DATA ALU ARCHITECTURE
	Figure 3-1 DSP56K Block Diagram
	Figure 3-2 Data ALU
	3.2.1 Data ALU Input Registers (X1, X0, Y1, Y0)
	3.2.2 MAC and Logic Unit
	Figure 3-3 MAC Unit

	3.2.3 Data ALU A and B Accumulators
	Figure 3-4 DATA ALU Accumulator Registers

	3.2.4 Accumulator Shifter
	3.2.5 Data Shifter/Limiter
	3.2.5.1 Limiting (Saturation Arithmetic)
	Figure 3-5 Saturation Arithmetic

	Table 3-1 Limited Data Values
	3.2.5.2 Scaling

	3.3 DATA REPRESENTATION AND ROUNDING
	Figure 3-7 Bit Weighting and Alignment of Operands...
	Figure 3-6 Integer-to-Fractional Data Conversion
	Figure 3-8 Integer/Fractional Number Comparison
	Figure 3-9 Integer/Fractional Multiplication Compa...
	Figure 3-10 Convergent Rounding

	3.4 DOUBLE PRECISION MULTIPLY MODE
	Figure 3-11 Full Double Precision Multiply Algorit...
	Figure 3-12 Single ¥ Double Multiply Algorithm
	Figure 3-13 Single ¥ Double Multiply-Accumulate Al...

	3.5 DATA ALU PROGRAMMING MODEL
	Figure 3-14 DSP56K Programming Model

	3.6 DATA ALU SUMMARY
	SECTION 3 SECTION 3 DATA ARITHMETIC LOGIC UNIT

