[|
SECTION 5
PROGRAM CONTROL UNIT
L MOTOROLA PROGRAM CONTROL UNIT SN J

SECTION CONTENTS

SECTION 5.1 PROGRAM CONTROL UNIT ..ooiiiiiiiiiiiiieicieeeeeee 3
SECTION 5.2 OVERVIEW ...ttt 3
SECTION 5.3 PROGRAM CONTROL UNIT (PCU) ARCHITECTURE 5
5.3.1 Program Decode Controller ... 5
5.3.2 Program Address Generator (PAG)ueeeeiiiiiieeeeeeeieeeeeeeiiiiinnnns 5
5.3.3 Program Interrupt Controlleroooviiiiiiiiiiiii e 6
5.3.4 Instruction Pipeling FOrmMatoouiiiiiiiiiiiiiiieeee 6
SECTION 5.4 PROGRAMMING MODEL ...oovviiiiiiiiiiiiieeeeeeeeeeeeecceeee 8
5.4.1 Program COUNTETiiiiiiiiiiiiiiie et e et e et seatn s eaa e e eaa e e eann s 8
5.4.2 STAtUS REQISTEI .. .iiiiiiiiiei et 9
5.4.2.1 Carry (Bit Q) ..coooeiiiiieiiiiiiiiies e e e e e e e 10
5.4.2.2 OVErfloW (Bt 1) ovvuiiiiiiiiiii e 10
5.4.2.3 ZEI0 (BIL 2) oiiiiiiett ettt 10
5.4.2.4 Negative (Bit 3) ...cccoevuiiiiiiiiiiiiii e ee et s e e e e e e e e e e e eeeaaneens 10
5.4.2.5 Unnormalized (Bit 4)cooovuiiiiiiieii e 10
5.4.2.6 EXIENSION (BIL5) ...uuuiiiiiiiiiiiiiiiiiieieeeee e 11
5.4.2.7 LIMIt (BIt B) oeeeeeiiiiiiiiiiiiiiiiiiie ettt s 11
5.4.2.8 Scaling Bit (Bit 7) ...cccoeiiiiiiiiiiiiiieee et 11
5.4.2.9 Interrupt Masks (Bits 8 and 9)cccceeiiiiiiiiiiiiiii 12
5.4.2.10 Scaling Mode (Bits 10 and 11)cooovviiiriiiiiiiiieeeeeeeeeeeeeeeeeennns 12
5.4.2.11 Reserved Status (Bit 12)cceoiiiiiiiiiiiiiiieeeeeeeii e 13
5.4.2.12 Trace Mode (Bit 13)cuuuurmmmmimiiiiiiieieeeeeeaeeeeaasssiiiireneeeeeees 13
5.4.2.13 Double Precision Multiply Mode (Bit 14)ccccoeveeeeeeeeiiiiiiieeenns 13
5.4.2.14 LOOP Flag (Bit 15)uuuiiiiiiiiiiiiiiiiieiee e 13
5.4.3 Operating Mode ReQISIErccooiiiiiiiieecce e 14
5.4.4 SYStEM STACK ...oeviiiiiiiiiee e 14
5.4.5 Stack POINtEr REGISIENuuuiiiiiiiiiiiiiiieiii e 15
5.4.5.1 Stack Pointer (BitS 0—3)cooiiiiiiieiiiieiieieeiiiees e e e e e e e eeeeneenns 16
5.4.5.2 Stack Error Flag (Bit 4)cooooveiiiiii e 16
5.4.5.3 Underflow Flag (BIt 5)eeeeiiiiiiiiiiiiiieieiiieeeeeie e 16
5.4.5.4 Reserved Stack Pointer Registration (Bits 6—23)cccccee. 17
5.4.6 LOOP AdAreSSs REQISIEIuiiiiiiiiiie et a e 17
5.4.7 LOOP CoUNtEr REGISIENuuiiiiiiiiiiiiiieie et 17
5.4.8 Programming Model SUMMAIYcoovviiiiiiiiiiiiiieeeeeeeeeeeeeee 17

5-2 PROGRAM CONTROL UNIT MOTOROLA

PROGRAM CONTROL UNIT

51 PROGRAM CONTROL UNIT
This section describes the hardware of the program control unit (PCU) and concludes

with a description of the programming model. The instruction pipeline description is also
included since understanding the pipeline is particularly important in understanding the
DSP56K family of processors.

5.2 OVERVIEW
The program control unit is one of the three execution units in the central processing

module (see Figure 5-2). It performs program address generation (instruction prefetch),
instruction decoding, hardware DO loop control, and exception (interrupt) processing.
The programmer sees the program control unit as six registers and a hardware system
stack (SS) as shown in Figure 5-1. In addition to the standard program flow-control
resources, such as a program counter (PC), complete status register (SR), and SS, the
program control unit features registers (loop address (LA) and loop counter (LC)) dedi-
cated to supporting the hardware DO loop instruction.

The SS is a 15-level by 32-bit separate internal memory which stores the PC and SR for
subroutine calls, long interrupts, and program looping. The SS also stores the LC and LA
registers. Each location in the SS is addressable as a 16-bit register, system stack high
(SSH) and system stack low (SSL). The stack pointer (SP) points to the SS locations.

PAB PDB

A
16 24

4 N

CLOCK ——>»

Y Y ¥
INTERRUPTS ——> P
= 32x 15
CONTROL <—> sp___pm STACK
KOMR [sr /
A
24 24

GLOBAL DATA BUS

Figure 5-1 Program Address Generator

L MOTOROLA PROGRAM CONTROL UNIT 55 J

OVERVIEW

EXPANSION
AREA
- PROGRAM X MEMORY Y MEMORY
- PERIPHERAL RAM/ROM RAM/ROM RAM/ROM
4 MODULES EXPANSION EXPANSION EXPANSION
&
w 1
I Y
:)
%)
iz
o %
ADDRESS [—|- EXTERNAL LDI:J
. GENERATION |~ ADDRESS a
56K Mod- SWITCH
<
BUS 3)k
14
CONTROL |« > E 8
o]
O
YDB
| <t 1 e — - ————
INTERNAL XDB EXTERNAL
oA DATA BUS ,S
sv‘\gnLﬁ:H —p-| SWITCH 05‘:
GDB
— —\— =
- »~| PLL ’]
PROGRAM PROGRAM PROGRAM DATA ALU
INTERRUPT DECODE . ADDRESS 24X24+56 - 56-BIT MAC ONCE™ | -
kock | | CONTROLLER 'CONTROLLER | GENERATOR | | TWO 56-BIT ACCUMULATORS
A A T T Program Control Unit
L Mobc/iNmi
—— 16 BITS
MODB/IRQB 24 BITS
MODA/IRQA
RESET

Figure 5-2 DSP56K Block Diagram

All of the PCU registers are read/write to facilitate system debugging. Although none of
the registers are 24 bits, they are read or written over 24-bit buses. When they are read,
the least significant bits (LSBs) are significant, and the most significant bits (MSBs) are
zeroed as appropriate. When they are written, only the appropriate LSBs are significant,
and the MSBs are written as don'’t care.

t 5-4

PROGRAM CONTROL UNIT

MOTOROLA J

(PROGRAM CONTROL UNIT (PCU) ARCHITECTURE \]

The program control unit implements a three-stage (prefetch, decode, execute) pipeline
and controls the five processing states of the DSP: normal, exception, reset, wait, and
stop.

5.3 PROGRAM CONTROL UNIT (PCU) ARCHITECTURE
The PCU consists of three hardware blocks: the program decode controller (PDC), the

program address generator (PAG), and the program interrupt controller (PIC).

5.3.1 Program Decode Controller
The PDC contains the program logic array decoders, the register address bus generator,

the loop state machine, the repeat state machine, the condition code generator, the inter-
rupt state machine, the instruction latch, and the backup instruction latch. The PDC
decodes the 24-bit instruction loaded into the instruction latch and generates all signals
necessary for pipeline control. The backup instruction latch stores a duplicate of the
prefetched instruction to optimize execution of the repeat (REP) and jump (JMP)
instructions.

5.3.2 Program Address Generator (PAG)
The PAG contains the PC, the SP, the SS, the operating mode register (OMR), the SR,

the LC register, and the LA register (see Figure 5-1).

The PAG provides hardware dedicated to support loops, which are frequent constructs in
DSP algorithms. A DO instruction loads the LC register with the number of times the loop
should be executed, loads the LA register with the address of the last instruction word in
the loop (fetched during one loop pass), and asserts the loop flag in the SR. The DO in-
struction also supports nested loops by stacking the contents of the LA, LC, and SR prior
to the execution of the instruction. Under control of the PAG, the address of the first in-
struction in the loop is also stacked so the loop can be repeated with no overhead. While
the loop flag in the SR is asserted, the loop state machine (in the PDC) will compare the
PC contents to the contents of the LA to determine if the last instruction word in the loop
was fetched. If the last word was fetched, the LC contents are tested for one. If LC is not
equal to one, then it is decremented, and the SS is read to update the PC with the address
of the first instruction in the loop, effectively executing an automatic branch. If the LC is
equal to one, then the LC, LA, and the loop flag in the SR are restored with the stack con-
tents, while instruction fetches continue at the incremented PC value (LA + 1). More
information about the LA and LC appears in Section 5.3.4 Instruction Pipeline Format.

The repeat (REP) instruction loads the LC with the number of times the next instruction is
to be repeated. The instruction to be repeated is only fetched once, so throughput is in-
creased by reducing external bus contention. However, REP instructions are not

L MOTOROLA PROGRAM CONTROL UNIT 5-5 J

(PROGRAM CONTROL UNIT (PCU) ARCHITECTURE \]

interruptible since they are fetched only once. A single-instruction DO loop can be used
in place of a REP instruction if interrupts must be allowed.

5.3.3 Program Interrupt Controller
The PIC receives all interrupt requests, arbitrates among them, and generates the inter-

rupt vector address.

Interrupts have a flexible priority structure with levels that can range from zero to three.
Levels O (lowest level), 1, and 2 are maskable. Level 3 is the highest interrupt priority level
(IPL) and is not maskable. Two interrupt mask bits in the SR reflect the current IPL and
indicate the level needed for an interrupt source to interrupt the processor. Interrupts
cause the DSP to enter the exception processing state which is discussed fully in SEC-
TION 7 — PROCESSING STATES.

The four external interrupt sources include three external interrupt request inputs (IRQA,
IRQB, and NMI) and the RESET pin. IRQA and IRQB can be either level sensitive or neg-
ative edge triggered. The nonmaskable interrupt (NMI) is edge sensitive and is a level 3
interrupt. MODA/IRQA, MODB/IRQB, and MODC/NMI pins are sampled when RESET is
deasserted. The sampled values are stored in the operating mode register (OMR) bits
MA, MB, and MC, respectively (see Section 5.4.3 for information on the OMR). Only the
fourth external interrupt, RESET, and lllegal Instruction have higher priority than NMI.

The PIC also arbitrates between the different 1/O peripherals. The currently selected pe-
ripheral supplies the correct vector address to the PIC.

5.3.4 Instruction Pipeline Format
The program control unit uses a three-level pipelined architecture in which concurrent in-

struction fetch, decode, and execution occur. This pipelined operation remains essentially
hidden from the user and makes programming straightforward. The pipeline is illustrated
in Figure 5-3, which shows the operations of each of the execution units and all initial con-
ditions necessary to follow the execution of the instruction sequence shown in the figure.
The pipeline is described in more detail in Section 7.2.1 Instruction Pipeline.

The first instruction, 11, should be interpreted as follows: multiply the contents of X0 by the
contents of YO, add the product to the contents already in accumulator A, round the result
to the “nearest even,” store the result back in accumulator A, move the contents in X data
memory (pointed to by RO) into X0 and postincrement RO, and move the contents in Y
data memory (pointed to by R4) into Y1 and postincrement R4. The second instruction,
12, should be interpreted as follows: clear accumulator A, move the contents in X0 into the
location in X data memory pointed to by RO and postincrement RO. Before the clear oper-

t 5-6 PROGRAM CONTROL UNIT MOTOROLA J

(PROGRAM CONTROL UNIT (PCU) ARCHITECTURE \]

EXAMPLE PROGRAM SEGMENT

Instruction 1 MACR X0,Y1,A X:(R0)+,X0 Y:(R4)+,Y1
Instruction2 CLR A X0,X:(RO)+ A,Y:(R4)-
Instruction 3 MAC X0,Y1,A X:(RO)+,X0 Y:(R4)+,Y1

SEQUENCE OF OPERATIONS

\/

SERIAL EXECUTION OF INSTRUCTIONS

Instruction Cycle 5

% Instruction Cycle 1 | Instruction Cycle 2, Instruction Cycle 3, Instruction Cycle

o

5 INSTRUCTION INSTRUCTION INSTRUCTION
O |nstruction/Data Fetch | |NSTRUCTION INSTRUCTION e S Ruch

=) FETCH FETCH

s LOGIC 1 LOGIC LoGIC 4 LoGIC LoGIC ¢
%)

= N AN N

[e) INSTRUCTION INSTRUCTION INSTRUCTION INSTRUCTION
O] Instruction Decode DECODE DECODE DECODE DECODE

= LOGIC LOGIC , LoGIC 3 LOGIC 4
7]

0

o) INSTRUCTION INSTRUCTION INSTRUCTION
E Instruction Execution EXECUTION EXECUTION EXECUTION
2 LOGIC 1 LOGIC , LOGIC 3
5

—

<

o

£

EXECUTION OF EXAMPLE PROGRAM

Instruction Cycle 1 |Instruction Cycle 2|Instruction Cycle 3|Instruction Cycle 4|Instruction Cycle 5
INSTRUCTION FETCH —» 11— | 22— | 13— | 14— | 15
INSTRUCTION DECODE —» Tl 12— [»I13— [>4
INSTRUCTION EXECUTION —» 11 12 I3
PARALLEL INITIAL
OPERATIONS CONDITIONS
ADDRESS
UPDATE R0=$0005 > RO=5+1 RO=6+1 RO=7+1
(AGU) R4=$0008 > R4=8+1 R4=9-1 R4=8+1
A: » | A A: A:
INSTRUCTION | A2=$00 A2=$00 A2=$00 A2=$00
EXECUTION A1=$000066 A1=$0000A2 A1=$000000 A1=$000000
A0=$000000 A0=$000000 A0=$000000 A0=$000050
(DATA ALU) X0=$400000 » | X0=$000005 X0=$000005 X0=$000007
Y1=$000077 » | Y1=$000008 Y1=$000008 Y1=$000008
X MEMORY DATA
AT ADDRESS
$0005 $000005 > $000005 $000005 $000005
$0006 $000006 - $000006 $000005 $000005
$0007 $000007 > $000007 $000007 $000007
Y MEMORY DATA
AT ADDRESS
$0008 $000008 > $000008 $000008 $000008
$0009 $000009 > $000009 $0000A2 $0000A2

Figure 5-3 Three-Stage Pipeline

PROGRAM CONTROL UNIT

=

t MOTOROLA

(PROGRAMMING MODEL

PROGRAM CONTROL UNIT

23 1615 023 1615 0

L+] L * | |
LOOP ADDRESS LOOP COUNTER (LC)
REGISTER (LA)

23 1615 023 1615 87 0 23 87 6 5 4 3 2 1 0

[+] o] w] o | [Do pdo[oelw]
PROGRAM STATUS OPERATING MODE REGISTER (OMR)
COUNTER (PC) REGISTER (SR)

31 SSH 1615 SSL 0 23 6 5 0

- [« | |
STACK POINTER (SP)

* READ AS ZERO, SHOULD BE WRITTEN
WITH ZERO FOR FUTURE COMPATIBILITY

15

SYSTEM STACK

Figure 5-4 Program Control Unit Programming Model

ation, move the contents in accumulator A into the location in Y data memory pointed to
by R4 and postdecrement R4. The third instruction, 13, is the same as I1, except the
rounding operation is not performed.

54 PROGRAMMING MODEL
The program control unit features LA and LC registers which support the DO loop instruc-

tion and the standard program flow-control resources, such as a PC, complete SR, and
SS. With the exception of the PC, all registers are read/write to facilitate system debug-
ging. Figure 5-4 shows the program control unit programming model with the six registers
and SS. The following paragraphs give a detailed description of each register.

5.4.1 Program Counter
This 16-bit register contains the address of the next location to be fetched from program

memory space. The PC can point to instructions, data operands, or addresses of oper-
ands. References to this register are always inherent and are implied by most instructions.

t 5-8 PROGRAM CONTROL UNIT MOTOROLA

(PROGRAMMING MODEL \]

MR > CCR >

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LFIDM| T | 4 |S1|SO |11 |10 S|L|E|JU|[N|Z |V |C

L CARRY
OVERFLOW
ZERO
NEGATIVE
UNNORMALIZED
EXTENSION
LIMIT

SCALING
INTERRUPT MASK
SCALING MODE
RESERVED

TRACE MODE
DOUBLE PRECISION
MULTIPLY MODE

LOOP FLAG

All bits are cleared after hardware reset except bits 8 and 9 which are set to ones.
Bits 12 and 16 to 23 are reserved, read as zero and should be written with zero for future compatibility

Figure 5-5 Status Register Format

This special-purpose address register is stacked when program looping is initialized,
when a JSR is performed, or when interrupts occur (except for no-overhead fast
interrupts).

5.4.2 Status Register
The 16-bit SR consists of a mode register (MR) in the high-order eight bits and a condition

code register (CCR) in the low-order eight bits, as shown in Figure 5-5. The SR is stacked
when program looping is initialized, when a JSR is performed, or when interrupts occur,
(except for no-overhead fast interrupts).

The MR is a special purpose control register which defines the current system state of the
processor. The MR bits are affected by processor reset, exception processing, the DO,
end current DO loop (ENDDO), return from interrupt (RTI), and SWI instructions and by
instructions that directly reference the MR register, such as OR immediate to control reg-
ister (ORI) and AND immediate to control register (ANDI). During processor reset, the
interrupt mask bits of the MR will be set. The scaling mode bits, loop flag, and trace bit will
be cleared.

t MOTOROLA PROGRAM CONTROL UNIT 5= ¢ J

(PROGRAMMING MODEL \]

The CCR is a special purpose control register that defines the current user state of the
processor. The CCR bits are affected by data arithmetic logic unit (ALU) operations, par-
allel move operations, and by instructions that directly reference the CCR (ORI and
ANDI). The CCR bits are not affected by parallel move operations unless data limiting oc-
curs when reading the A or B accumulators. During processor reset, all CCR bits are
cleared.

5.4.2.1 Carry (Bit 0)

The carry (C) bit is set if a carry is generated out of the MSB of the result in an addition.
This bit is also set if a borrow is generated in a subtraction. The carry or borrow is gener-
ated from bit 55 of the result. The carry bit is also affected by bit manipulation, rotate, and
shift instructions. Otherwise, this bit is cleared.

5.4.2.2 Overflow (Bit 1)
The overflow (V) bit is set if an arithmetic overflow occurs in the 56-bit result. This bit indi-

cates that the result cannot be represented in the accumulator register; thus, the register
has overflowed. Otherwise, this bit is cleared.

5.4.2.3 Zero (Bit 2)
The zero (Z) bit is set if the result equals zero; otherwise, this bit is cleared.

5.4.2.4 Negative (Bit 3)
The negative (N) bit is set if the MSB (bit 55) of the result is set; otherwise, this bit is

cleared.

5.4.2.5 Unnormalized (Bit 4)
The unnormalized (U) bit is set if the two MSBs of the most significant product (MSP)

portion of the result are identical. Otherwise, this bit is cleared. The MSP portion of the A
or B accumulators, which is defined by the scaling mode and the U bit, is computed as
follows:

S1 | SO | Scaling Mode U Bit Computation

0 0 | No Scaling U = (Bit 47 [Bit 46)
0 1 Scale Down U = (Bit 48 [] Bit 47)
1 0 | Scale Up U = (Bit 46 [] Bit 45)

t 5-10 PROGRAM CONTROL UNIT MOTOROLA J

(PROGRAMMING MODEL \]

5.4.2.6 Extension (Bit 5)
The extension (E) bit is cleared if all the bits of the integer portion of the 56-bit result are

all ones or all zeros; otherwise, this bit is set. The integer portion, defined by the scaling
mode and the E bit, is computed as follows:

S1 | SO | Scaling Mode Integer Portion
0 0 No Scaling Bits 55,54........ 48,47
0 1 | Scale Down Bits 55,54........ 49,48
1 0 Scale Up Bits 55,54........ 47,46

If the E bit is cleared, then the low-order fraction portion contains all the significant bits;
the high-order integer portion is just sign extension. In this case, the accumulator exten-
sion register can be ignored. If the E bit is set, it indicates that the accumulator extension
register is in use.

5.4.2.7 Limit (Bit 6)
The limit (L) bit is set if the overflow bit is set. The L bit is also set if the data shifter/limiter

circuits perform a limiting operation; otherwise, it is not affected. The L bit is cleared only
by a processor reset or by an instruction that specifically clears it, which allows the L bit
to be used as a latching overflow bit (i.e., a “sticky” bit). L is affected by data movement
operations that read the A or B accumulator registers.

5.4.2.8 Scaling Bit (Bit 7)
The scaling bit (S) is used to detect data growth, which is required in Block Floating Point

FFT operation. Typically, the bit is tested after each pass of a radix 2 FFT and, if it is set,
the scaling mode should be activated in the next pass. The Block Floating Point FFT al-
gorithm is described in the Motorola application note APR4/D, “Implementation of Fast
Fourier Transforms on Motorola’s DSP56000/DSP56001 and DSP96002 Digital Signal
Processors.” This bit is computed according to the following logical equations when the
result of accumulator A or B is moved to XDB or YDB. It is a “sticky” bit, cleared only by
an instruction that specifically clears it.

L MOTOROLA PROGRAM CONTROL UNIT 5-11 J

PROGRAMMING MODEL

If S1=0 and S0=0 (no scaling)
then S = (A46 XOR A45) OR (B46 XOR B45)

If S1=0 and S0=1 (scale down)

then S =(A47 XOR A46) OR (B47 XOR B46)

If S1=1 and S0=0 (scale up)
then S = (A45 XOR A44) OR (B45 XOR B44)

If S1=1 and S0=1 (reserved)
then the S flag is undefined.

where Ai and Bi means bit i in accumulator A or B.

5.4.2.9 Interrupt Masks (Bits 8 and 9)
The interrupt mask bits, 11 and 10, reflect the current IPL of the processor and indicate

the IPL needed for an interrupt source to interrupt the processor. The current IPL of the
processor can be changed under software control. The interrupt mask bits are set during
hardware reset but not during software reset.

11 0] Exceptions Permitted Exceptions Masked
0 0 IPL0,1,2,3 None

0 1 IPL 1,2,3 IPLO

1 0 IPL 2,3 IPLO,1

1 1 IPL 3 IPL0,1,2

5.4.2.10 Scaling Mode (Bits 10 and 11)
The scaling mode bits, S1 and SO, specify the scaling to be performed in the data ALU

shifter/limiter, and also specify the rounding position in the data ALU multiply-accumula-

t 5-12

PROGRAM CONTROL UNIT

MOTOROLA J

(PROGRAMMING MODEL

tor (MAC). The scaling modes are shown in the following table:

S1 | SO RouBni(:mg Scaling Mode

0 0 23 No Scaling

0 1 24 Scale Down (1-Bit Arithmetic Right Shift)
1 0 22 Scale Up (1-Bit Arithmetic Left Shift)

1 1 — Reserved for Future Expansion

The scaling mode affects data read from the A or B accumulator registers out to the XDB
and YDB. Different scaling modes can occur with the same program code to allow dynam-
ic scaling. Dynamic scaling facilitates block floating-point arithmetic. The scaling mode
also affects the MAC rounding position to maintain proper rounding when different por-
tions of the accumulator registers are read out to the XDB and YDB. The scaling mode
bits, which are cleared at the start of a long interrupt service routine, are also cleared dur-
ing a processor reset.

5.4.2.11 Reserved Status (Bit 12)
This bits is reserved for future expansion and will read as zero during DSP read opera-

tions.

5.4.2.12 Trace Mode (Bit 13)
The trace mode (T) bit specifies the tracing function of the DSP56000/56001 only. (With

other members of the DSP56K family, use the OnCE trace mode described in Section
10.5.) For the DSP56000/56001, if the T bit is set at the beginning of any instruction exe-
cution, a trace exception will be generated after the instruction execution is completed. If
the T bit is cleared, tracing is disabled and instruction execution proceeds normally. If a
long interrupt is executed during a trace exception, the SR with the trace bit set will be
stacked, and the trace bit in the SR is cleared (see SECTION 7 — PROCESSING
STATES for a complete description of a long interrupt operation). The T bit is also
cleared during processor reset.

5.4.2.13 Double Precision Multiply Mode (Bit 14)
The processor is in double precision multiply mode when this bit is set. (See Section 3.4

for detailed information on the double precision multiply mode.) When the DM bit is set,
the operations performed by the MPY and MAC instructions change so that a double
precision 48-bit by 48-bit double precision multiplication can be performed in six instruc-

L MOTOROLA PROGRAM CONTROL UNIT 5-13

(PROGRAMMING MODEL \]

23 8 7 6 5 4 3 2 1 0

OPERATING MODE A, B

DATA ROM ENABLE
INTERNALY MEMORY DISABLE
OPERATING MODE C
RESERVED

STOP DELAY

RESERVED

RESERVED

Figure 5-6 OMR Format

tions. The DSP56K software simulator accurately shows how the MPY, MAC, and other
Data ALU instructions operate while the processor is in the double precision multiply
mode.

5.4.2.14 Loop Flag (Bit 15)
The loop flag (LF) bit is set when a program loop is in progress. It detects the end of a

program loop. The LF is the only SR bit that is restored when a program loop is termi-
nated. Stacking and restoring the LF when initiating and exiting a program loop, respec-
tively, allow the nesting of program loops. At the start of a long interrupt service routine,
the SR (including the LF) is pushed on the SS and the SR LF is cleared. When returning
from the long interrupt with an RTI instruction, the SS is pulled and the LF is restored.
During a processor reset, the LF is cleared.

5.4.3 Operating Mode Register
The OMR is a 24-bit register (only six bits are defined) that sets the current operating

mode of the processor. Each chip in the DSP56K family of processors has its own set of
operating modes which determine the memory maps for program and data memories, and
the startup procedure that occurs when the chip leaves the reset state. The OMR bits are
only affected by processor reset and by the ANDI, ORI, and MOVEC instructions, which
directly reference the OMR.

The OMR format with all of its defined bits is shown in Figure 5-6. For product-specific
OMR bit definitions, see the individual chip’s user manual for details on its respective op-
erating modes.

5.4.4 System Stack
The SS is a separate 15X32-bit internal memory divided into two banks, the SSH and the

L 5-14 PROGRAM CONTROL UNIT MOTOROLA J

(PROGRAMMING MODEL

SSL, each 16 bits wide. The SSH stores the PC contents, and the SSL stores the SR con-
tents for subroutine calls, long interrupts, and program looping. The SS will also store the
LA and LC registers. The SS is in stack memory space; its address is always inherent and
implied by the current instruction.

The contents of the PC and SR are pushed on the top location of the SS when a subrou-
tine call or long interrupt occurs. When a return from subroutine (RTS) occurs, the
contents of the top location in the SS are pulled and put in the PC; the SR is not affected.
When an RTI occurs, the contents of the top location in the SS are pulled to both the PC
and SR.

The SSis also used to implement no-overhead nested hardware DO loops. When the DO
instruction is executed, the LA:LC are pushed on the SS, then the PC:SR are pushed on
the SS. Since each SS location can be addressed as separate 16-bit registers (SSH and
SSL), software stacks can be created for unlimited nesting.

The SS can accommodate up to 15 long interrupts, seven DO loops, 15 JSRs, or combi-
nations thereof. When the SS limit is exceeded, a nonmaskable stack error interrupt
occurs, and the PC is pushed to SS location zero, which is not implemented in hardware.
The PC will be lost, and there will be no SP from the stack interrupt routine to the program
that was executing when the error occurred.

5 4 3 2 1 0

UF SE P3 P2 P1 PO

STACK POINTER
STACK ERROR FLAG
UNDERFLOW FLAG

Figure 5-7 Stack Pointer Register Format

5.4.5 Stack Pointer Register
The 6-bit SP register indicates the location of the top of the SS and the status of the SS

(underflow, empty, full, and overflow). The SP register is referenced implicitly by some in-
structions (DO, REP, JSR, RTI, etc.) or directly by the MOVEC instruction. The SP
register format is shown in Figure 5-7. The SP register works as a 6-bit counter that ad-
dresses (selects) a 15-location stack with its four LSBs. The possible SP values are
shown in Figure 5-8 and described in the following paragraphs.

5.4.5.1 Stack Pointer (Bits 0-3)
The SP points to the last location used on the SS. Immediately after hardware reset,

L MOTOROLA PROGRAM CONTROL UNIT 5-15

(PROGRAMMING MODEL \]

these bits are cleared (SP=0), indicating that the SS is empty.

Data is pushed onto the SS by incrementing the SP, then writing data to the location to
which the SP points. An item is pulled off the stack by copying it from that location and
then by decrementing the SP.

5.45.2 Stack Error Flag (Bit 4)
The stack error flag indicates that a stack error has occurred, and the transition of the

stack error flag from zero to one causes a priority level-3 stack error exception.

When the stack is completely full, the SP reads 001111, and any operation that pushes
data onto the stack will cause a stack error exception to occur. The SR will read 010000
(or 010001 if an implied double push occurs).

Any implied pull operation with SP equal to zero will cause a stack error exception, and
the SP will read 111111 (or 111110 if an implied double pull occurs).

The stack error flag is a “sticky bit” which, once set, remains set until cleared by the user.
There is a sequence of instructions that can cause a stack overflow and, without the sticky
bit, would not be detected because the stack pointer is decremented before the stack error
interrupt is taken. The sticky bit keeps the stack error bit set until the user clears it by writ-
ing a zero to SP bit 4. It also latches the overflow/underflow bit so that it cannot be
changed by stack pointer increments or decrements as long as the stack error is set. The
overflow/underflow bit remains latched until the first move to SP is executed.

Note: When SP is zero (stack empty), instructions that read the stack without SP post-
decrement and instructions that write to the stack without SP preincrement do not cause
a stack error exception (i.e., 1) DO SSL,xxxx 2) REP SSL 3) MOVEC or move peripheral

UF SE P3 P2 P1 PO

1 1 1 1 1 0 4+ STACK UNDERFLOW CONDITION AFTER DOUBLE PULL
1 1 1 1 1 1 4+ STACK UNDERFLOW CONDITION

0 0 0 0 0 0 4= STACK EMPTY (RESET); PULL CAUSES UNDERFLOW

0 0 0 0 0 1 4 STACK LOCATION 1

N~

STACK LOCATION 14

STACK LOCATION 15; PUSH CAUSES OVERFLOW
STACK OVERFLOW CONDITION

STACK OVERFLOW CONDITION AFTER DOUBLE PUSH

Figure 5-8 SP Register Values

t 5-16 PROGRAM CONTROL UNIT MOTOROLA J

(PROGRAMMING MODEL \]

data (MOVEP) when SSL is specified as a source or destination).

5.4.5.3 Underflow Flag (Bit 5)
The underflow flag is set when a stack underflow occurs. The underflow flag is a “sticky

bit” when the stack error flag is set. That is, when the stack error flag is set, the underflow
flag will not change state. The combination of “underflow=1" and “stack error=0" is an
illegal combination and will not occur unless it is forced by the user. If this condition is
forced by the user, the hardware will correct itself based on the result of the next stack
operation.

5.4.5.4 Reserved Stack Pointer Registration (Bits 6—-23)
SP register bits 6 through 23 are reserved for future expansion and will read as zero dur-

ing read operations.

5.4.6 Loop Address Register
The LA is a read/write register which is stacked into the SSH by a DO instruction and is

unstacked by end-of-loop processing or by an ENDDO instruction. The contents of the LA
register indicate the location of the last instruction word in a program loop. When that last
instruction is fetched, the processor checks the contents of the LC register (see the fol-
lowing section). If the contents are not one, the processor decrements the LC and takes
the next instruction from the top of the SS. If the LC is one, the PC is incremented, the
loop flag is restored (pulled from the SS), the SS is purged, the LA and LC registers are
pulled from the SS and restored, and instruction execution continues normally.

5.4.7 Loop Counter Register
The LC register is a special 16-bit counter which specifies the number of times a hardware

program loop shall be repeated. This register is stacked into the SSL by a DO instruction
and unstacked by end-of-loop processing or by execution of an ENDDO instruction. When
the end of a hardware program loop is reached, the contents of the LC register are tested
for one. If the LC is one, the program loop is terminated, and the LC register is loaded with
the previous LC contents stored on the SS. If LC is not one, it is decremented and the
program loop is repeated. The LC can be read under program control, which allows the
number of times a loop will be executed to be monitored/changed dynamically. The LC is
also used in the REP instruction

5.4.8 Programming Model Summary
The complete programming model for the DSP56K central processing module is shown

in Figure 5-9. Programming models for the peripherals are shown in the appropriate user
manuals.

L MOTOROLA PROGRAM CONTROL UNIT 5-17 J

PROGRAMMING MODEL

DATA ARITHMETIC LOGIC UNIT

INPUT REGISTERS

47 X 0 47 Y 0
X1 | X0 | | Y1 | YO
23 0 23 0 23 0 23 0
ACCUMULATOR REGISTERS
55 A 0
| # | A2 | Al | A0 |
23 87 0 23 023 0
55 B 0
| # | B2 | B1 | BO |
23 87 0 23 023 0
ADDRESS GENERATION UNIT
23 1615 0 23 1615 0 23 1615 0
* R7 * N7 * M7
- R6 « N6 - M6 \ UPPER FILE
* R5 * N5 * M5
* R4 * N4 * M4
* R3 * N3 * M3
* R2 * N2 * M2
* R1 * N1 * M1 y LOWER FILE
* RO * NO * MO
POINTER OFFSET MODIFIER
REGISTERS REGISTERS REGISTERS
PROGRAM CONTROL UNIT
23 1615 023 1615 0
L+ L * |
LOOP ADDRESS LOOP COUNTER (LC)
REGISTER (LA)
23 1615 023 1615 87 0 23 87 6 5 4 3 2 1 0
| * | || * | MR | CCR | | * | *|SD|*|M0|YD|DE|MB|MA|
PROGRAM STATUS OPERATING MODE REGISTER (OMR)
COUNTER (PC) REGISTER (SR)
31 SSH 16 15 SSL 0 23 65 0
1
= | |

15

SYSTEM STACK

STACK POINTER (SP)

* READ AS ZERO, SHOULD BE WRITTEN
WITH ZERO FOR FUTURE COMPATIBILITY

READ AS SIGN EXTENSION BITS,
WRITTEN AS DON'T CARE

Figure 5-9 DSP56K Central Processing Module Programming Model

L 5-18

PROGRAM CONTROL UNIT

MOTOROLA J

	5.1 PROGRAM CONTROL UNIT
	5.2 OVERVIEW
	Figure 5-2 DSP56K Block Diagram
	Figure 5-1 Program Address Generator

	5.3 PROGRAM CONTROL UNIT (PCU) ARCHITECTURE
	5.3.1 Program Decode Controller
	5.3.2 Program Address Generator (PAG)
	5.3.3 Program Interrupt Controller
	5.3.4 Instruction Pipeline Format
	Figure 5-3 Three-Stage Pipeline

	5.4 PROGRAMMING MODEL
	Figure 5-4 Program Control Unit Programming Model
	5.4.1 Program Counter
	5.4.2 Status Register
	Figure 5-5 Status Register Format

	5.4.2.1 Carry (Bit 0)
	5.4.2.2 Overflow (Bit 1)
	5.4.2.3 Zero (Bit 2)
	5.4.2.4 Negative (Bit 3)
	5.4.2.5 Unnormalized (Bit 4)
	5.4.2.6 Extension (Bit 5)
	5.4.2.7 Limit (Bit 6)
	5.4.2.8 Scaling Bit (Bit 7)
	5.4.2.9 Interrupt Masks (Bits 8 and 9)
	5.4.2.10 Scaling Mode (Bits 10 and 11)
	5.4.2.11 Reserved Status (Bit 12)
	5.4.2.12 Trace Mode (Bit 13)
	5.4.2.13 Double Precision Multiply Mode (Bit 14)
	5.4.2.14 Loop Flag (Bit 15)
	5.4.3 Operating Mode Register
	Figure 5-6 OMR Format

	5.4.4 System Stack
	Figure 5-7 Stack Pointer Register Format

	5.4.5 Stack Pointer Register
	Figure 5-8 SP Register Values

	5.4.5.1 Stack Pointer (Bits 0–3)
	5.4.5.2 Stack Error Flag (Bit 4)
	Note: When SP is zero (stack empty), instructions ...

	5.4.5.3 Underflow Flag (Bit 5)
	5.4.5.4 Reserved Stack Pointer Registration (Bits ...
	5.4.6 Loop Address Register
	5.4.7 Loop Counter Register
	5.4.8 Programming Model Summary
	Figure 5-9 DSP56K Central Processing Module Progra...

	SECTION 5 SECTION 5 PROGRAM CONTROL UNIT

