M6809PM (AD)

MC6809-MC6809E
8-BIT MICROPROCESSOR

PROGRAMMING MANUAL

Original Issue: March 1, 1981

TABLE OF CONTENTS

Paragraph No. Title Page No.
SECTION 1
GENERAL DESCRIPTION
14 INEFOAUCHION ..t s e ae e s et esa st e s 1-1
1.2 FOATUIES ..ottt e ettt e e re et es e s e sr et e et e e e e neemens 1-1
1.3 SOftWANE FOATUIESeeceeeest e et es st e ee s et eseeeaeeeessa e et aneas 1-2
1.4 Programming MO ...ttt s ese s eets st asmesesssesnasenans 1-3
1.5 INAEX REGISTRIS (X, Y} oot sse e bssse st e eeseee s eeeneeeenae e sannesteratesanans 1-3
1.6 Stack Pointer ReQISters (U, S)uccviiimeieieiiiierereeecseasesseseseesssasssssssseesssassssees 1-3
1.7 Program GOoUNLEr (PC) ...t sre s s sas s ssessn st sesnesesseaseemenas 1-4
1.8 Accumulator RegiSters (A, B, D)cciiniiieeriieceerreesseesersssssessisssorsessssssesesssssssnens 1-4
1.9 Direct Page RegQiSter (DP) et sre s e n s sresseen e e senes 1-4
1.10 Condition Code ReQiSter (CC)cccocvuieeiiecee e eeeeeeeeeeeaeeeeesessessssessersssssssssanas 1-4
1.10.1 Condition Code BitSc.cceirecrrsrnerccerite e e es e st e e e e 1-5
1.10.1.1 Half Carry (H), Bit S....covvieeeeeecceeceee et ee e eeeeesneser e senanes 1-5
1.10.1.2 Negative (N), Bit 3.ttt esas s stseeseee s ee e senearrn 1-5
1.10.1.3 ZETO (Z), Bt 2.t sres s rasss st o s e e en e e ne e e eenaren 1-5
1.10.1.4 OVEITIOW (V), Bt 1 .ottt ee e e se et s s e s st eaneeesse e seanns 1.5
1.10.1.5 Carry (C), Bit D ...t ie et e s g s st st s 1-6
1.10.2 Interrupt Mask Bits and Stacking Indicator...........cccveeivececnnceceeenrecensceesnne 1-5
1.10.2.1 Fast Interrupt Request Mask (F), Bit 6........cccoeveveeeevcreeienceveenicssenssnenecenens 1-5
1.10.2.2 Interrupt Request Mask {1), Bit 4cccecceeeeieeeeecree st eese s eeecenens 1-5
1.10.2.3 Entire FIAG (E), Bit 7coeeccceecccrieic ettt s eeee s ensee e e nenenen 1-6
1.1 Pin Assignments and Signal DescCription..........ccccevioierinerrereeeeeessessesanns 1-6
1.11.1 . MOBBOQ CIOCKScirreerriceriicee et er e evste sttt oe e e es s s esemasensenesasnessensessrsnenn 1-6
1.11.1.1 OSCIHAtOr (EXTAL, XTAL)..coviertirnieereescessresssressmscsessssssseneeressesssemsssessesssasans 1-6
1.11.1.2 Enable (E)............. b 4tuet e nnemteeeaeeaneateoerrattentrrerarna—EErN Eaae nEeiee s e beteae s e nnnnearern 17
1.11.1.3 QUArature (Q)coveerrmrcercieneinrerreere e s s e se e sr s e r e s enn s e seas 1-7
1.11.2 MCBBO9E ClOCKS (E and Q) ...cccocerecorrieririnitecmne s seress s cos s e esess eneeaene 1-7
1.11.3 Three State Control (TSC) (MCBBOGE)ooeceerrerreerresesesesseesessssseesesssases 1-7
1.11.4 Last Instruction Cycle (LIC) (MCBBOIE)ecoeeereecrrereeeeirersasecossseeorseseseseens 1-7
1.11.5 AdAress BUS (AD-A15)......c ettt e s s sae s sresar et s e s 1-7
1.11.6 Data BuS (DO-D7)....c.coecrrcrnriieniie s sseis s sssrcssssstsbsssmesesmsasamssssseseessensaseneses 1-7
1.11.7 REAAIWIIIE (RIW ...ttt stsas st eeeseen et eeneseeeeenaereas 1-8
1.11.8 Processor State INAICAtors (BA, BS)covvivceeieieeircrseoreseesseseesessassssssssssssens 1-8
1.11.8.1 N Lol 1 T OO OSSO 1-8
1.11.8.2 Interrupt or Reset ACKNOWIEdge............cccoveveriiimice s eres s cornenens 1-8
1.11.8.3 SYNC ACKNOWIEAGE......oece et se s sesr s e eessstassnenessenesee e 1-8

Paragraph No.

184
1.9
1.10
1.10.1
1.10.2
1.10.3
1.1
1.12
1.13
1.14
1.15
1.

1.1
1.1
1.1
1.1
1.1
1.1
1.1
11
1.1
1.1
1.1
1.11.16

21

2.2
2.2.1
2.2.2
223
224
225
2.2.5.1
2.25.2
2253
2254
2255
2256
2.2.6

3.1
3.2
33
3.4
35

TABLE OF CONTENTS

(CONTINUED)
Titie Page No
HAIH/BUS GFANE ..oooviiiecetiiereerstesrearessarsaeraatossstsmssmssssssssbaesssnsvasnsasnssasnassssass 1-8
RESOT (RESET) .o e s nists e msmss en e g s e as st s s s b g e 19
13T L [G OO PP O T PP RSP 1-9
Non-Maskable interrupt (NMI) ..o, 1-9
Fast Interrupt Request (FIRQ)........cccoerinmniinssecsiinnisenee 19
Interrupt Request (IRQ).......ccovvieinsiitir s st s 19
Memory Ready (MRDY) (MCB809).......c..cciviimenrmmmnmemisiconnmansn it sannss 1-9
Advanced Valid Memory Address (AVMA} (MCE809E)...........ccerrrinnrcnne 1-10
HAH (HALT) co.eeceiicaerreessesaseseessscomstsssssmmsssnsststsasssseasasssosnesarmmsessomsssssasssssssassnnnan 1-10
Direct Memory Access/Bus Request (DMA/BREQ) (MC6809) 1-10
BUSY (MCBBOOE)ccoeriiiriiriinaniii st ctesssnnessssresssonr s mom sttt 1-10
P OWET et eeeteserriaseieeriaeesssissbrantssntsanrave s s eeaes s rrassamn sk d O AT Ty AeEEr et e aa s e aa e e R aa R Erans 1-11
SECTION 2
ADDRESSING MODES
INEFOAUCEION ...ecvieerrerece e ircbiiaevrraeersse st aassre s s se s re s b soarvannesnmenannsatiavnsssassansnstavess 2-1
AdAressing MOGeS. ..o ese st sarsas s s sasasasese 2-1
1T 0= 1 | O TP OO O OO PRSPPI 21
181 T0 8= e 1T 1 - T OO OO PP YPN 21
EXTRNAOU. .. . ooiiieeeireeeie e it ecrsassresserersaessasssmseseenanesbessstssrtsnnnasmanstsestasrrassarsameasseas 2-2
DIFECE oo eeeicaesicaeersenerssesrsseessransssnesaseesaseassasasassirastsesbnesannnnnsnessasnesenssassraansrasnsnnssss 2-2
IEEXEU ...oeeiiecersrrneresesissaarssnsvasmerassessasaasasssssmesisas iR eesarnasnonanasserRTansarmnsrne st asian 2-2
Constant Offset from Register ...t 2-2

Accumulator Offset from ReGISEE........ccerrrcimmeenesmniinsiise s s 03
Autoincrement/Decrement from RegiSTer.......occuumemenrcsiissrmivessnsnean 23

INAITBCRION e e cctierrereerreeeraeessrrsarsemme s meestssbassnsesanensbasa R a s rp s mnsasrashdsn b e annsaness 2-4
EXtENAEd INAITBOT ..coceevecricrrveeerrnreeer e sorsrse s s sssanssasssansnsssannsspresesanasasssssans 24
‘Program Counter Relative ..ot 2-4
Branch RelatiVe ..o trceerirecrreee o tinie s ae s s smasssss s ses s snssmansise s se 24
SECTION 3
INTERRUPT CAPABILITIES

IO UGCTION . vreeeeeecitieessiesiisssrs s eraissb s mnesrantasensssnsssssasasisersrnasassnnsasseastassnasassennssers 31
Non-Maskable Interrupt (NMI) ...t 341
Fast Maskable Interrupt Request (FIRQ)........cconeeccninnensniniens 3-2
Normal Maskable Interrupt Request (IRQ)cccvmerrenceri i 3-2
Software Interrupts (SWI, SWI2, SWI3)ccimmiiinnrmesnnnnncnstiissens 3-2

Paragraph No.

4.1
411
412
4.1.2.1
4122
41.3
42
421
4.2.1.1
4.2.1.2
4213
422
423
4.2.4
4.2.5
426
4.2.6.1
426.2
4263
4.2.7
4.3

4.4

A
A2

B.1
B.2
B.3
B.4

TABLE OF CONTENTS

(CONCLUDED)
Title Page No.
SECTION 4
PROGRAMMING
(3307 To [FTo3 4 T] TR OO USRI 4-1
POSHION-INAEPENUENCE ...t ir e e sme st s sarsensreene s 4-1
MOdUIAr Programming ... cereerseecvevserseessiissnsssassssessssesssssessesassessasssans 4-1
[Tt LR Lo - To [= 2O OO 41
GlODAI SEOrAGR ... ettt e rr s ss e e sa s s asas st sbs st st e emesenmenenne 4-2
ReeMranCy/RECUISION ... riiience s eraes s nesse e s ese e rsassr o nassansane 4-2
MBB0O Capabilities.cooc s e 4-2
MOAUIE CONSLIUCHION ...t sassresss s s b s erbsee s e emmeen 4-2
ParAMEEEIS ..t re s s s ae e a s nen s e n e 4-3
LOGCAI STOTAQE........c et ser et ea s e sassae e re e aeva v e tosana s b smnans 43
GlODAl SLOrAQE ...t rce et ee s e st e st s ras s ses e sr e 4-3
Position-independent COdecvieniicice s s s sres s s rcssssrssssasens 4.4
Reantrant PrOQrams..........c v cessine e s ssssmsessmesssssess sssmssasans 4-5
RECUISIVE PrOOIAMScoveiiieeeecineerteecen e sas s ssssn s bessassaasss sssestenmenanesnnans 4.5
< T o T OO U 4-5
Stack Programming ... sssersessssssssssessssessssisssasssssasssesesssses 4-6
MBBO9 Stacking Operations.......ccviiiisinisne s seeessesesesesessrerssssas 4-6
SUDrouting LINKAQEccccorveiiiniiriiieiieisesess s ssssssssssnssessesesesssssesssssssassossas 4-7
SOFtWANE STACKScceecece et st as e s eme e 4-8
Real Time Programimingccicoinmireiiseiessnssesssesssssesssesssessesssessssassss sssnss 4-8
Program DOCUMENTALIONcccoecvvvmreetiiminseestis s sesese s ss s s s e ssssms s sassaesassavens 4-8
1o (g P ex o T - OO 4-9
APPENDIX A
INSTRUCTION SET DETAILS
INEPOTUCTION ..ttt e e se s e e s e sme s e e A-1
NOTALION oot s es e s s e arseesrssaena s snaten Al
Instructions {listed in alphabetical order).........ccoccirceiccvecrvn e, A-3
APPENDIX B
ASSIST09 MONITOR PROGRAM
General DesSCriptioN. ..ot e s ae v e e B-1
implementation REQUITEMENTSccceeiiiivrcenvresrcesrmiceniissniirssesvsssmssssesssesas B-1
INEEITUPE CONIIOL ...ttt st rere e e s s e se s e s e e e e e e e nessesnasesnanesasarsansnanens B-2
INIEIBHZALION ceevvrececeniti et e s sras s e sr e srnsbesReesRssben b eosssnns B-3

TABLE OF CONTENTS

(CONTINUED)

Paragraph No. Title Page No.
B.5 INPUL/OULPUL CONTIO ..iierruersseeeriscsmssssss b b B-4
B.6 COMMANG FOTMAL cuceiriemireereriererrreerersesamssaiossssesstsassms s bt s st s d s g s g B-4
B.7 COMIMANG LESE «eeeriisseutesereresssesereressass s saas s s snaass e s b p e s on e s EE bR LR s B-5
B.8 OGS s veeeeeeserceseseaseseeseseasearreesbosssananss s s s a o e L bR oA nEE O AT ST E LRSS R s s B-5
BREAKPOINT «.vuvureureersemresreossomssanesssntsans s b s s e s S B6

0T || VTR PP P T e I L LR B-6

DS PIAY . vereerusesersreecsnsasarssssnesnsseasrase a0 B-7

ETICOME orooseeeereeseeeeereatssessssraseaseaesssesaE b T AT e s rR s b e RS R TR SRR RS E S SRS S B-7

e T JHTTTRT USSP PR S SE I R TR B-8

;T VRO T OO RS OR ST P PR RS SRR I B LU B-8

ILEITIOTY «.evevurenransscaressessseasasessseta s s os s sE s Ao SRS B-9

N LUTE o oeeteeete s et eesseesesseeassaesasanes sareoEiaE erAae e e radgan RS a s b o bt R R A e P RS EEa SRS g B-10

10 18 1T TR SO PP A T L LR L B-10

1200 111 DTS ST SR TR LR LI B-11

REGISTON c...vureeecsceressesessrne s bbb b B-11

LA TS PP P IR T LI B-12

L T VoL SRR U U OO POV P AP Y SRR PRUTPREEEC IR IE AT B-12

YL L OO e PR R R B-13

NV TITICOW rireeieesseeasesesesseesasasasseseaseessessssasssaaa s e s eSS s SO ST AV RS R n RSP S S AR bR RS R4 B-13

B.9 T g Te T TUT U PPOT PRSI S E R R R I B-14
=174 =22 (OO P IS B SRR LL LU B-15

TN e | =2 TP SRR LRI I B-15

(¥ 10 NI 1 = TV OO TOR RO ORI YR IR S I B-16

613 110) - RSSO OO PP AR ST TR IO LC B-17

(o101 121 1 T O PR R EER R L B-17

DU T AH S oot ee e ecorereentrsseearsareaseesessas sEsR e S A AT A O LR LI PR ERER eSS SRS R R B-18

PAUSE oeeeeeteueeeeeeseesastasesrvas sesssssssasessssenes basastanebEEE IR L EL R TR T s s as SRS e B-18

PUORLE 1oeeieeeeeeeasessseestasessaseseessersasasendssasssana o e ar e b e EEE LR L LSRR AR AR RS sgR RS B-19

=T 0 YN - TRy OO P TR e PR L T B-19

POATAT coieesseeeeeeeseteetateseresasssssssssassassbsseasabestanasrstotsatisasenssaaassassassssassnsbananss B-20

LY =T.X o TSPV R PP RS R IR L LY B-21

VA =123 AU PSRRI SIS RIS B-21

B.10 VECTOr SWAD SBIVICE cuv ittt s s B-22
o 1 VT VR P P PPSSE R SSCRRI LIS B-23

F V2 1 = T O ORI RRSE LSRR S B-23

BODTA oo tseeeeeeeseeessesststvasessssaresssasessssasssar s sama s A e RS SR o s PR R e PR S E LGRS 2 B-24

12121 0 =1 =R P OO Uy PR RIS ST LRI B-24

BOSON oot eeeeeessresassseresssssssaressnsssssssesmastsssamassbEaE s P EE e R TR e A a4 eSS b SR R e B-25

(01101 I ORI PO PP P R ISR B-25

Fol[0) =1 =TT OO D PP PSR L B-26

L0} 01 DRSO U SO RS S R SRR T R R B-26

ol Y1 o 1K [T O OO RU PSPPI PRSI BRI B-27

[0L,Y, 1] 122U POR R PP P R T S UL LRD B-28

Vi

TABLE OF CONTENTS

(CONTINUED)
Paragraph No. Titte Page No.
L I I S S SO S B-28
(0710 10 1 o OSSO SR SR B-29
{0 1 T S SRS B-29
ECHO ettt sttt een s s e srn e s s e ee s e e s s e e anen e naens B-30
IR et rre e et e e e e e e e e e e e sae e e e s seeeasaeessae e nneeasaerasaeeanseensneeean B-30
HSDATA ..ottt st s ere s e st e s st rs e s ss e s esbe s e e e seseaesssressseensessn eessnnesan B-31
| {0 OO O B-31
A O S USSR B-32
[Y I O OO U U B-32
PAUSE ...t ctccrevar et estee bt rn e ses s sesssssrassn s saesessesassemas s snnssesanesanan B-33
P M e e e e e e et e e e e e e e e e ae s e nreaeenaansnareas b nnnrseasreanbrres B-33
o] I B-34
ROBVD o iiiirrtiiritr e rste st e rse e esse e rsa s e e e eess e sse e eseseesne eraeeneavaesassenaraeeseeeenarans B-34
LT OO OO USROS B-35
B . e ae e b s bbb et b e b s b e bt e bbe e bbensenneraa B-35
2 O OO OOV B-36
B.11 MONION LISTING .oueriee et st e e s s s s s e s s an s B-37

, APPENDIX C
MACHINE CODE TO INSTRUCTION CROSS REFERENCE

CA (a3 (0T [V T o3 4] o TSR PROTRR C-1

APPENDIX D

PROGRAMMING AID

D.1 Ihtro’duction .. D-1

APPENDIX E

ASCIl CHARACTER SET

E.1 Tk e Lo [0 T3 7T o S U OO TP O E-1
E.2 Character Representation and Code Identificationccveiiinnieninrnnnns E-1
E.3 OTo T T o T 0 T U= L =T - T U E-2
E.4 GraphiC CRArACLEIScocvcececee e terteert s ee st sesbessbbae st s s bae s aneesansesnraesaes E-2

vil

Paragraph No.

F.1
F.2

G.1

Figure No.

1.
1
1

W N -

2-1

3-1

TABLE OF CONTENTS

{CONTINUED)
Title Page No.
APPENDIX F
OPCODE MAP
[F1T A g0 0 [o3 £ Lo]2 JPRUTTR OOy S SOOI F-1
0T TeToTs T T - T2 O O OO SO F
APPENDIX G
PIN ASSIGNMENTS
TR U0 11103 K1 o] OO G-1
APPENDIX H
CONVERSION TABLES
(PR R 0 o L0 o 41 Lo F O U O PO, H-1
POWETS Of 2; POWETS OF 16 ...cuuvuiiirreervcerrreree e stcnssesansecasesmecsssnesssmnsssesissasnsssons H-1
Hexadecimal and Decimal GONVErSIiON.....cccciiviiierrrriermssmemerimareersssssinesssesenins H-2
Converting Hexadecimal 10 DeCimalcoeeieirrivntinenee s H-2
Converting Decimal to Hexadecimalcrrncrnicnniinnninnsseeises H-2

LIST OF ILLUSTRATIONS

Title Page No.
Programming MOdel..........ccmcireniin et insass e 1-3
Condition Code REGISTENccrreerecrrcrne e st e 1-4
Processor Pin ASSIgNMENTS ecrer st sassser s ssssassensssanens 16
Postbyte Usage for EXG/TFR, PSH/PUL INStIUGHIONS ...ccceeeiiiicricenicenincinas 2-2
Interrupt Processing FIOWChATM ... s et 35
SLACKING OFAEN ... et s b 4-7
MEMOTY MAP c.eccccceetete e e ress st sb s e e s rn s et s e n s p s B-2
ASCH ChAracter SOL.......covcevreremnrernrrencmsosserisssr s et e v v e s sn s s a st s sda o E-1
Pin ASSIGNMENES ...coeeeieees e e cssie st n s et g b b i sa s G-1

Table No.
1-1
2-1
3-1
4-1
4-2
4-3
4-4
4-5
46

A-1
A-2

B-1
B-2
B-3
CA1
D-1

E-1
E-2

F-1
F-2

H-1
H-2

LIST OF TABLES

Title Page No.
BA/BS Signal ENCOAING.......ccoiecrresir ettt smes s me e e same e s sanenas 1-8
Postbyte Usage for Indexed Addressing Modescccecenieincecncnienniennnens 2-3
Interrupt VECIOr LOCAtIONSeviiccieeccetinc s siise s ne e bne s e 3-1
INSEIUCHION SBE ...ttt s e ese s ae s e as e e varsavesraverenssssanvannes 4-9
8-Bit Accumulator and Memory INSIruCtioNSc.ccvrverrvvrieerneennee e s 4-11
16-Bit Accumulator and Memory InStructions........ccoencenreccinrcnicerc e 4-12
Index/Stack POinter INSIrUCHIONS ..o ses e raan e 4-12
BranCh INStrUCHIONS ...t m e s as e me s nne 4-13
Miscellaneous INSITUCTIONS ...ttt iiver vttt ees s s sa e as s st e s eeesann 4-13
Operation NOtALION ... rrree e sssesesaesrsssraresnsseernses A-1
Register NOLatioNn. ... ricnirs et nisesrte e risseranessiresmissastsesanee A-2
(0T aT4 1104 T o [I B-5
SOIVICES . verrccrrrererisstiee et esertseesnessanessnaessrassesasassnnessanesrtnsssnessnntissntiosstasertassns B-14
Vector Table ENtries ... et ee e e rane B-22
Machine Cade 10 Instruction Cross Reference........ceererincennsenncsneennens C-2
Programming Alcoreerieericmmneemiienisrmiceniieeriesriosnieree imssrrise s rnsas snsoes D-1
CONTOl ChATACIES ..ueeii et essieri e s st ee s aeeressebnassssbressaseansssensnsnsass E-2
Graphic CRATACEEIS ...t e e e e s e es s e saessas s b e s s s sae s sssmnans E-3
OPCOUE MAP.....eeeeeeeeeeemmeeeeeseereseeseesesessmesesenesssesseseesesseeseseesenersarennon — F-2
Indexed Addressing Mode Data..........ccovcivccccincnrsnnirs rereeranenae F-3
Powers of 2, POWers of 16.......o e e H-1
Hexadecimal and Decimal Conversion Chart........cccoovirvcrverrcerrcerreercceene H-2

ixXfx

SECTION 1
GENERAL DESCRIPTION

1.1 INTRODUCTION

This section contains a general description of the Motorola MC6809 and MCE809E
Microprocessor Units (MPU). Pin assignments and a brief description of each input/out-
put signal are also given. The term MPU, processor, or M6809 will be used throughout this
manual to refer to both the MC6809 and MCE809E processors. When a topic relates to
only one of the processors, that specific designator (MC6809 or MCBB09E) will be used.

1.2 FEATURES

The MC8809 and MCBB0SE microprocessors are greatly enhanced, upward compatible,
computationally faster extensions of the MC6800 microprocessor.

Enhancements such as additional registers (a Y index register, a U stack pointer, and a
direct page register) and instructions {(such as MUL) simplify software design. Improved
addressing modes have aiso been implemented.

Upward compatibility is guaranteed as MC6800 assembly language programs may be
assembled using the Motorola MC6809 Macro Assembler. This code, whiie not as com-
pact as native M8809 code, is, in most cases, 100% functional.

Both address and data are available from the processor earlier in an instruction cycle
than from the MC8800 which simplifies hardware design. Two clock signals, E (the
MC6800 ¢2) and a new quadrature clock Q {which leads E by one-quarter cycle) also
simplify hardware design.

A memory ready (MRDY) input is provided on the MC6809 for working with slow
memories. This input stretches both the processor internal cycle and direct memory ac-
cess bus cycle times but aliows internal operations to continue at full speed. A direct
memory access request (BMA/BREQ) input is provided for immediate memory access or
dynamic memory refresh operations; this input halts the internal MC6809 clocks.
Because the processor’s registers are dynamic, an internal counter periodically recovers
the bus from direct memory access operations and performs a true processor refresh
cycle to allow unlimited length direct memory access operation. An interrupt
acknowledge signal is available to allow development of vectoring by interrupt device
hardware or detection of operating system calls.

1-1

Three prioritized, vectored, hardware interrupt levels are available: non-maskable, fast,
and normal. The highest and lowest priority interrupts, non-maskable and interrupt re-
quest respectively, are the normal interrupts used in the M6800 family. A new interrupt on
this processor is the fast interrupt request which provides faster service to its interrupt
input by only stacking the program counter and condition code register and then servic-
ing the interrupt.

Modern programming techniques such as position-independent, system independent,
and reentrant programming are readily supported by these processors.

A Memory Management Unit (MMU), the MCE6829, allows a M6809 based system to ad-
dress a two megabyte memory space. Note: An arbitrary number of tasks may be sup-
ported — slower — with software.

This advanced family of processors is compatiblie with all M6B00 peripheral parts.

1.3 SOFTWARE FEATURES

Some of the software features of these processors are itemized in the following
paragraphs. Programs developed for the MC6800 can be easily converted for use with the
MC6809 or MCBBOSE by running the source code through a M6809 Macro Assembler or
any one of the many cross assemblers that are available.

The addressing modes of any microprocessor provide it with the capability to efficiently
address memory to obtain data and instructions. The MC6809 and MCB808E have a ver-
satile set of addressing modes which allow them to function using modern programming
techniques.

The addressing modes and instructions of the MC6809 and MC6809E are upward com-
patible with the MCB8800. The old addressing modes have been retained and many new
ones have been added.

A direct page register has been added which allows a 256 byte “direct” page anywhere in
the 64K logical address space. The direct page register is used to hold the most-
significant byte of the address used in direct addressing and decrease the time required
for address calculation.

Branch relative addressing to anywhere in the memory map (- 32768 to + 32767) is
available.

Program counter relative addressing is also avalilable for data access as weli as branch
instructions.

The indexed addressing modes have been expanded to include:
0-, 5-, 8-, 16-bit constant offsets,
8- or 16-bit accumulator offsets,
autoincrement/decrement (stack operation).

1-2

In addition, most indexed addressing modes may have an additional level of indirection
added.

Any or all registers may be pushed on to or pulled from either stack with a single instruc-
tion.

A multiply instruction is included which multipiies unsigned binary numbers in ac-
cumulators A and B and ptaces the unsigned result in the 18-bit accumulator D. This un-
signed multiply instruction also allows signed or unsigned multiple precision multiplica-
tion.

1.4 PROGRAMMING MODEL

The programming model (Figure 1-1) for these processors contains five 16-bit and four
8-bit registers that are available to the programmer.

X — index Register

¥ — Index Register

" - Pointer Registers
U — User Stack Pointer

$ — Hardware Stack Pointer

PC Program Counter
A l B Accumulators

- r
c
7 c
I DP] Direct Page Register
7 4]
[elr]a] 1 |n]z] v]c] condition Code Register

Figure 1-1. Programming Modet

1.5 INDEX REGISTERS (X, Y)

The index registers are used during the indexed addressing modes. The address informa-
tion in an index register is used in the calculation of an effective address. This address
may be used to point directly to data or may be modified by an optional constant or
register offset to produce the effective address.

1.6 STACK POINTER REGISTERS (U, S)

Two stack pointer registers are available in these processors. They are: a user stack
pointer register (U) controlled exclusively by the programmer, and a hardware stack
pointer register (S) which is used automatically by the processor during subroutine calls

1-3

and interrupts, but may also be used by the programmer. Both stack pointers always
point to the top of the stack.

These registers have the same indexed addressing mode capabllities as the index
registers, and also support push and pull instructions. Ali four indexable registers (X, Y,
U, S) are referred to as pointer registers.

1.7 PROGRAM COUNTER (PC)

The program counter register is used by these processors to store the address of the
next instruction to be executed. It may also be used as an index register in certain ad-
dressing modes.

1.8 ACCUMULATOR REGISTERS (A, B, D)

The accumulator registers (A, B) are general-purpose 8-bit registers used for arithmetic
calculations and data manipulation.

Certain Instructions concatenate these registers into one 16-bit accumulator with
register A positioned as the most-significant byte. When concatenated, this register is
referred to as accumulator D.

1.9 DIRECT PAGE REGISTER (DP)

This 8-bit register contains the most-significant byte of the address to be used in the
direct addressing mode. The contents of this register are concatenated with the byte
following the direct addressing mode operation code to form the 16-bit effective address.
The direct page register contents appear as bits A15 through A8 of the address. This
register is automatically cleared by a hardware reset to ensure M6800 compatibiity.

1.10 CONDITION CODE REGISTER (CC)

The condition code register contains the condition codes and the interrupt masks as
shown in Figure 1-2.

7 6 5 4 3 2 1 0
(eTrln]iInfz]vic]
L Carry
Overflow
- (]
Negative
e e |R G M ask
Half Carry
FIRQ Mask
Entire Flag

Figure 1-2. Condition Code Register

1-4

1.10.t CONDITION CODE BITS. Five bits in the condition code register are used to in-
dicate the results of instructions that manipuiate data. They are: half carry (H), negative
(N), zero (2), overflow {V), and carry (C). The effect each instruction has on these bits is
given in the detail information for each instruction {see Appendix A).

1.10.1.1 Half Carry (H), Bit 5. This bit is used to indicate that a carry was generated from
bit three in the arithmetic logic unit as a result of an 8-bit addition. This bit is undefined in
all subtract-like instructions. The decimal addition adjust (DAA) instruction uses the
state of this bit to perform the adjust operation.

1.10.1.2 Negative (N), Bit 3. This bit contains the value of the most-significant bit of the
result of the previous data operation,

1.10.1.3 Zero (2), Bit 2. This bit is used to indicate that the result of the previous opera-
tion was zero.

1.10.1.4 Overflow (V), Bit 1. This bit is used to indicate that the previous operation caused
a signed arithmetic overflow.

1.10.1.5 Carry (C), BIt 0. This bit is used to indicate that a carry or a borrow was generated
from bit seven in the arithmetic logic unit as a result of an 8-bit mathematical operation.

1.10.2 INTERRUPT MASK BITS AND STACKING INDICATOR. Two bits (I and F) are used
as mask bits for the interrupt request and the fast interrupt request inputs. When either
or both of these bits are set, their associated input will not be recognized.

One bit (E) is used to indicate how many registers (all, or only the program counter and
condition code} were stacked during the last interrupt.

1.10.2.1 Fast Interrupt Request Mask (F), Bit 6. This bit is used to mask (disable) any fast
interrupt request line (FIRQ). This bit is set automatically by a hardware reset or after
recognition of another interrupt. Execution of certain instructions such as SWI will also
inhibit recognition of a FIRQ input.

1.10.2.2 Interrupt Request Mask (I), Bit 4. This bit Is used to mask (disable) any interrupt
request input {IRQ). This bit is set automatically by a hardware reset or after recognition
of another interrupt. Execution of certain instructions such as SWI wili also inhibit
recognition of an IRQ input.

1-5

1.10.2.3 Entlre Flag (E), Bit 7. This bit is used to indicate how many registers were stack-
aed. When set, all the registers were stacked during the last interrupt stacking operation.
When clear, only the program counter and condition code registers were stacked during
the last interrupt.

The state of the E bit in the stacked condition code register is used by the return from in-
terrupt (RTI) instruction to determine the number of registers to be unstacked.
1.11 PIN ASSIGNMENTS AND SIGNAL DESCRIPTION

Figure 1-3 shows the pin assignments for the processors. The following paragraphs pro-
vide a short description of each of the input and output signals.

MCBa0a

Vssdie - 4pHALT Vss h HALT
NMI g 2 20 p xTAL i TSC
ERYE smpexTaL TRG LI
FIRQ 4 37 p RESET FIRQ RESET
Bsqs 36 P MADY BS sk AVMA
BAL G »spQ BA i
veed 7 MPpE vee b E
a0d s 33 b DMA/BREQ AQ 1 BUSY
Al whr/wW Al b R/W
A2 3 oo AZ h OO
A3 abo A3 h D1
A4 agbo2 Ad h D2
AB 2w pD3 AB D3
AB 27p 04 AB h D4
A7 6p05 A7 h DS
AB 25 P D6 AB b D6
AZ D7 A9 b D7
A10 A5 A1D b A1S
At Al4 Al hAl4
A12 A13 A12 hA13

Figure 1-3. Processor Pin Assignments

1.11.1 MC6809 CLOCKS. The MC6809 has four pins committed to developing the clock
signals needed for internal and system operation. They are: the oscillator pins EXTAL
and XTAL,; the standard M6800 enable (E) clock; and a new, quadrature {Q) ciock.

1.11.1.1 Oscillator (EXTAL, XTAL). These pins are used to connect the processor’s inter-
nal oscitlator to an external, parailel-resonant crystal. These pins can also be used for in-
put of an external TTL timing signail by grounding the XTAL pin and applying the input to
the EXTAL pin. The crystal or the external timing source is four times the resulting bus
frequency.

1-6

1.11.1.2 Enable (E). The E clock is simiiar to the phase 2 (¢2) MC6800 bus timing clock.
The leading edge indicates to memory and peripherals that the data is stable and to
begin write operations. Data movement occurs after the Q clock is high and is latched on
the trailing edge of E. Data is valid from the processor {during a write operation) by the
rising edge of E.

1.11.1.3 Quadrature (Q). The Q clock leads the E clock by approximately one half of the E
clock time. Address information from the processor is valid with the leading edge of the
Q clock. The Q clock is a new signal in these processors and does not have an equivalent
clock within the MC68800 bus timing.

1.11.2 MCB809E CLOCKS (E and Q). The MC6809E has two pins provided for the TTL
clock signal inputs required for internal operation. They are the standard M6800 enable
{E) clock and the quadrature (Q) clock. The Q input must lead the E input.

Addresses will be valid from the processor (on address deiay time after the falling edge
of E} and data will be latched from the bus by the faliing edge of E. The Q input is fully TTL
compatible. The E input is used to drive the internal MOS circuitry directly and therefore
requires input levels above the normal TTL {eveis.

1.11.3 THREE STATE CONTROLS (TSC) (MC6809E). This input is used o place the ad-
dress and data lines and the R/W line in the high-impedance state and allows the address
bus to be shared with other bus masters.

1.11.4 LAST INSTRUCTION CYCLE (LIC) (MC6809E). This output goes high during the last
cycle of every instruction and its high-to-low transition indicates that the first byte of an
opcode will be latched at the end of the present bus cycle.

1.11.5 ADDRESS BUS (A0-A15). This 16-bit, unidirectional, three-state bus is used by the
processor to provide address information to the address bus. Address information is
valid on the rising edge of the Q clock. All 16 outputs are in the high-impedance state
when the bus available (BA) signal is high, and for one bus cycle thereafter.

When the processor does not require the address bus for a data transfer, it outputs ad-
dress FFFF1g, and read/write (RMW) high. This is a “dummy access” of the least-
significant byte of the reset vector which replaces the valid memory address (VMA) func-
tions of the MC6800. For the MC6809, the memory read signal internal circultry inhibits
stretching of the clocks during non-access cycles.

1.11.6 DATA BUS (D0-D7). This 8-bit, bidirectional, three-state bus is the general purpose
data path. Alf eight outputs are in the high-impedance state when the bus available (BA)
output is high.

1-7

1.11.7 READ/WRITE (R/W). This output indicates the direction of data transfer on the data
bus. A low indicates that the processor is writing onto the data bus; a high indicates that
the processor is reading data from the data bus. The signal at the R/W output is valid at
the leading edge of the Q clock. The R/W output is in the high-impedance state when the
bus available (BA) output is high.

1.11.8 PROCESSOR STATE INDICATORS (BA, BS). The processor uses these two output
lines to indicate the present processor state. These pins are valid with the leading edge
of the Q clock.

The bus available (BA) output is used to indicate that the buses (address and data) and
the read/write output are in the high-impedance state. This signal can be used to indicate
to bus-sharing or direct memory access systems that the buses are available. When BA
goes low, an additional dead cycie will elapse before the processor regalns contro! of the
buses.

The bus status (BS) output Is used in conjunction with the BA cutput to indicate the pre-
sent state of the processor. Table 1-1 is a listing of the BA and BS outputs and the pro-
cessor states that they indicate. The following paragraphs briefly explaln each processor
state.

Table 1-1. BAJ/BS Signal Encoding

gA BS Processor State

Naormal {Running}

Interrupt or Reset Acknowledge
Sync Acknowledge

Halt/Bus Grant Acknowtedged

—moo
P N]

1.11.8.1 Normal. The processor is running and exscuting instructions.

1.11.8.2 Interrupt or Reset Acknowledge. This processor state is indicated during both
cycles of a hardware vector fetch which occurs when any of the following Interrupts have
occurred: RESET, NMI, FIRQ, 1RQ, SWI, SWI2, and SWIS.

This output, plus decoding of address lines A3 through A1 provides the user with an
indication of which interrupt is being serviced.

1.11.8.3 Sync Acknowledge. The processor is waiting for an external synchronization in-
put on an interrupt line. See SYNC instruction in Appendix A.

1.11.8.4 Halt/Bus Granmt. The processor is halted or bus control has been granted to some
other device.

1-8

1.11.9 RESET (RESET). This input is used to reset the processor. A low input lasting
longer than one bus cycle will reset the processor.

The reset vector is fetched from locations $FFFE and $FFFF when the processor enters
the reset acknolwedge state as indicated by the BA output being low and the BS output
being high.

During initial power-on, the reset input should be held low until the clock oscillator is ful-
ly operational.

1.11.10 INTERRUPTS. _The processor has three separate interrupt input_pins: non-
maskable interrupt (NMI), fast interrupt request (FIRQ), and interrupt request {IRQ). These
interrupt inputs are latched by the falling edge of every Q clock except during cycle steal-
ing operatlons where only the NMi input is latched. Using this point as a reference, a
delay of at least one bus cycle will occur before the interrupt is recognized by the pro-
Cessor.

1.11.10.1 Non-Maskable Interrupt (NMI). A negative edge on this input requests that a
non-maskable interrupt sequence be generated. This input, as the name indicates, can-
not be masked by software and has the highest priority of the three interrupt inputs. After
a reset has occurred, a NMI input will not be recognized by the processor until the first
program load of the hardware stack pointer. The entire machine state is saved on the
hardware stack during the processing of a non-maskable interrupt. This interrupt is inter-
nally blocked after a hardware reset until the stack pointer is initialized.

1.11.10.2 Fast Interrupt Request (FIRQ). This input is used to initiate a fast interrupt re-
quest sequence. Initiation depends on the F (fast interrupt request mask) bit in the condi-
tion code register being clear. This bit is set during reset. During the interrupt, only the
contents of the condition code register and the program counter are stacked resuiting in
a short amount of time required to service this interrupt. This interrupt has a higher priori-
ty than the normal interrupt request (IRQ).

1.11.10.3 Interrupt Request (IRQ). This input is used to initlate what might be considered
the “normal” interrupt request sequence. Initiation depends on the | {interrupt mask) bit
in the condition code register being clear. This bit is set during reset. The entire machine
state is saved on the hardware stack during processing of an IRQ input. This input has
the lowest priority of the three hardware interrupts.

1.11.11 MEMORY READ (MRDY) (MC6809). This input allows extension of the E and Q
clocks to allow a longer data access time. A low on this input allows extension of the E
and Q clocks (E high and Q low) in integrai multiples of quarter bus cycies {up to 10
cycles) to allow interface with slow memory devices.

19

Memory ready does not extend the E and Q clocks during non-valid memory access
cycles and therefore the processor does not slow down for “don’t care” bus accesses.
Memory ready may also be used to extend the E and Q clocks when an external device is
using the halt and direct memory access/bus request inputs.

1.11.12 ADVANCED VALID MEMORY ADDRESS (AVMA) (MC8809E). This output signal in-
dicates that the MCBB09E will use the bus in the following bus cycle. This output is low
when the MCBBO9E is in either a halt or sync state.

1.11.13 HALT. This input is used to halt the processor. A low input halts the processor at
the end of the present instruction execution cycle and the processor remains halted in-
definitely without loss of data.

When the processor is halted, the BA output is high to indicate that the buses are in the
high-impedance state and the BS output is also high to indicate that the processor is in
the halt/bus grant state.

During the hait/bus grant state, the processor will not respond to external real-time re-
quests such as FIRQ or IRQ. However, a direct memory access/bus request input will be
accepted. A non-maskable interrupt or a reset input will be latched for processing later.
The E and Q clocks continue to run during the halt/bus grant state.

1.11.14 DIRECT MEMORY ACCESS/BUS REQUEST (DMA/BREQ) (MC6809). This input is
used to suspend program execution and makse the buses avallable for another use such
as a direct memory access or a dynamic memory refresh.

A low level on this input occurring during the Q clock high time suspends instruction ex-
ecution at the end of the current cycle. The processor acknowledges acceptance of this
input by setting the BA and BS outputs high to signify the bus grant state. The requesting
device now has up to 15 bus cycles before the processor retrieves the bus for self-refresh.

Typically, a direct memory access controller will request to use the bus by setting the
DMA/BREQ input low when E goes high. When the processor acknowledges this input by
setting the BA and BS outputs high, that cycle will be a dead cycle used to transfer bus
mastership to the direct memory access controller. False memory access during any
dead cycle should be prevented by externally developing a system DMAVMA signal
which is low In any cycle when the BA output changes.

When the BA output goes low, either as a result of a direct memory access/bus request or
a processor self-refresh, the direct memory access device should be removed from the
bus. Another dead cycle will elapse before the processor accesses memory, to allow
transfer of bus mastership without contention.

1.11.15 BUSY (MC8B809E). This output indicates that bus re-arbitration should be deferred
and provides the indivisable memory operation required for a “test-and-set” primitive.

1-10

This output will be high for the first two cycles of any Read-Modify-Write instruction, high

during the first byte of a double-byte access, and high during the first byte of any indirect
access or vector-fetch operation,

1.11.16 POWER. Two inputs are used to supply power to the processor: VoG is +5.0
+ 5%, while Vgg Is ground or 0 volts.

111/1-12

SECTION 2
ADDRESSING MODES

e

2.1 INTRODUCTION

This section contains a description of each of the addressing modes available on these
processors.

2.2 ADDRESSING MODES

The addressing modes available on the MC6809 and MCB6809E are: Inherent, Immediate,
Extended, Direct, Indexed (with various offsets and autoincrementing/decrementing),
and Branch Relative. Some of these addressing modes require an additional byte after
the opcode to provide additional addressing interpretation. This byte Is called a postbyte.

The following paragraphs provide a description of each addressing mode. In these
descriptions the term effective address is used to indicate the address in memory from
which the argument for an instruction is fetched or stored, or fram which instruction pro-
cessing is to proceed.

2.2.1 INHERENT. The information necessary to execute the instruction is contained in
the opcode. Some operations specifying only the index registers or the accumuiators,
and no other arguments, are also included in this addressing mode.

Example: MUL

2.2.2 IMMEDIATE. - The operand is contained in one or two bytes immediately foliowing
the opcode. This addressing mode is used to provide constant data values that do not
change during program execution. Both 8- bit and 16-bit operands are used depending on
the size of the argument specified in the opcode.

Example: LDA #CR
LDB #7
LDA #8$F0
LDB #%1110000
LDX #$8004

Another form of immediate addressing uses a postbyte to determine the registers to be
manipulated. The exchange (EXG) and transfer (TFR) instructions use the postbyte as
shown in Figure 2-1(A). The push and pull instructions use the postbyte to designate the
registers to be pushed or pulled as shown in Figure 2-1(B).

2-1

b? b6 b5 b4 b3 b2 b1 b3

I SCURCE (A1)] DESTINATION (R2}]
Code* Registar Code* Register

0000 O (A:B) () [4] Program Counter

0001 X index 1000 A Accumuiator

0010 ¥ index 1001 B Accumulator

001 U Stack Pointer 1010 Condition Coda

0100 S Stack Pointer 1011 Direct Page

*All other combinations of bits produce undafined results.
{A) Exchange (EXG) or Transfer (TFR) instruction Postbyte

b7 b8 b5 bd b3 b2 bl b0
Iec]s/uly [x Jor]le | ajfecc]

PC = Program Counter
§/U = Hardware/User Stack Pointer
Y = Y Index Register

X = U Index Register

DP = Direct Page Register

B = B Accumulator

A = A Accumulator

cc = Condition Code Register

{B} Push (PSH) or Pull (PUL) Instruction Postbyte

Figure 2-1. Postbyte Usage for EXG/TFR, PSH/PUL Instructions

2.2.3 EXTENDED. The effective address of the argument is contained in the two bytes
following the opcode. Instructions using the extended addressing mode can reference
arguments anywhere in the 84K addressing space. Extended addressing is generally not
used in position independent programs because it supplies an absolute address.

Example: LDA $CAT

2.2.4 DIRECT. The effective address is developed by concatenation of the contents of the
direct page register with the byte immediately following the opcode. The direct page
register contents are the most-significant byte of the address. This allows accessing 256
locations within any one of 256 pages. Therefore, the entire addressing range is available
for access using a single two-byte Instruction.

Example: LDA > CAT

2.2.5 INDEXED. In these addressing modes, one of the pointer registers (X, Y, U, or 8), and
sometimes the program counter (PC) is used in the calculatlon of the effective address of
the instructlon operand. The basic types {and their varlations) of indexed addressing
available are shown in Table 2-1 along with the postbyte configuration used.

2.2.5.1 Constant Oftset from Register. The contents of the register designated in the
postbyte are added to a twos complement offset value to form the effective address of

22

the instruction operand. The contents of the designated register are not affected by this
addition. The offset sizes avallable are:

No
offset — designated register contains the effective
address

5bit — 1610 +15
8-bit — 128 to + 127
16-bit — 32768 to + 32767

Table 2-1. Postbyte Usage for Indexed Addressing Modes

Mode Typa Variation Direct Indirect
Constant Offset from Register No Offset 1RRO0I00 | 1RR10100
{twos Complement Offset) 5-Bit Offset ORRnnnnn | Defaults 10 8-bit]
8-Bit Cffset 1RRO1400 | 1RR11000
16-Bit Offsat 1RRO100T | 1RR11001
Accumulator Offsat from Register | A Accumulator Offset 1RRO0O11D | 1RR101t0
{twos Complement QOffset) B Accumulator Offset TRRO0101 | 1RAR101N
D Accumnulator Offset 1RRO1011 | 1RR11011
Auto Increment/ Decrement from Ingrement by 1 1RRODNAG | Not Allowed
Register Increment by 2 1RRO00O01 TRR10001
Decremant by 1 ‘1 JRRO0OID | Not Allowsd
Decrement by 2 1RR0001Y TRR10011
Constant Offset from Pragram 8-Bit Cffset 1XX01100 | ¥XX11100
Counter 16-Bit Offset 1XX01101 | $XX1111
Extendad Indirect 16-Bit Address @ | -——--- 1001111

The 5-bit offset value is contained in the postbyte. The 8- and 16-bit offset values are con-
tained In the byte or bytes immediately following the postbyte. If the Motorola assembler
is used, it will automatically determine the most efflcient offset; thus, the programmer
need not be concerned about the offset size.

Examples: LDA X LDY -64000,U
LDB 0,Y LDA 17,PC
LDX 64,0005 LDA There,PCR

2.2.5.2 Accumulator Offset from Register. The contents of the index or pointer register
designed in the postbyte are temporarily added to the twos compiement offset value con-
tained in an accumulator (A, B, or D) also designated in the postbyte. Nelther the
designated reglster nor the accumulator contents are affected by this addition.

Example: LDA AX LDA DU
LDA B)Y

2.2.5.3 Autoincrement/Decrement from Register. This addressing mode works in a
postincrementing or predecrementing manner. The amount of increment or decrement,
one or two positions, is designated in the postbyte.

in the autoincrement mode, the contents of the effective address contained in the
pointer register, designated In the postbyte, and then the pointer register is automatical-
ly incremented; thus, the pointer register is postincremented.

In the autodecrement mode, the pointer register, designated in the postbyte, is
automatically decremented first and then the contents of the new address are used;
thus, the pointer register Is predecremented.

Examples: Autoincrement Autodecrement
LDA X+ LDY X+ + LDA ,-X LDY ,--X
LDA Y+ LDX Y+ + LDA ,-Y LDX ,—--Y
LDA S+ LDX U+ + LDA ,-S8 LDX ,--U
LDA U+ LDX S+ + LDA ,-U LDX ,--S

2.2 5.4 Indirection. When using indirection, the effective address of the base indexed ad-
dressing mode is used to fetch two bytes which contain the final effective address of the
operand. It can be used with all the Indexed addressing modes and the program counter
relative addressing mode.

2.2 5.5 Extended Indirect. The effective address of the argument is located at the ad-
dress specified by the two bytes following the postbyte. The postbyte is used to indicate
indirection.

Example: LDA [$FO000]

2.2.5.8 Program Counter Relative. The program counter can also be used as a pointer
with either an 8- or 16-bit signed constant offset. The offset value is added to the program
counter to develop an etfective address. Part of the postbyte is used to indicate whether
the offset is 8 or 16 bits.

2 2 6 BRANCH RELATIVE. This addressing mode s used when branches from the current
instruction location to some other locatlon relative to the current program counter are
desired. If the test condition of the branch instruction is true, then the effective address
is calculated (program counter plus twos complement offset) and the branch s taken. If
the test conditlon is false, the processor proceeds to the next in-line instruction. Note
that the program counter is always pointing to the next instruction when the offset is ad-
ded. Branch relative addressing Is always used in position independent programs for all
control transfers.

For short branches, the byte following the branch instruction opcode is treated as an
8-bit signed offset to be used to calculate the effective address ot the next instruction |f
the branch is taken. This is called a short relative branch and the range is limited to plus
127 or minus 128 bytes from the following opcode.

For long branches, the two bytes after the opcode are used to calculate the effective ad-
dress. This is called a long relative branch and the range is plus 32,767 or minus 32,768

2-4

SECTION 3
INTERRUPT CAPABILITIES

3.1 INTRODUCTION

The MC6809 and MCB809E microprocessors have six vectored interrupts (three hardware
and three software). The hardware Interrupts are the non-maskable interrupt (NMi), the
fast maskable interrupt request (FIRQ), and the normal maskable interrupt request (1RQ).
The software interrupts consist of SWI, SWI2, and SWI3. When an interrupt request is
acknowledged, all the processor registers are pushed onto the hardware stack, except in
the case of FIRQ where only the program counter and the condition code register is sav-
ed, and control is transferred to the address in the interrupt vector. The priority of these
interrupts is, highest to lowest, NMI, SWI, FIRQ, IRQ, SWI2, and SWI3. Figure 3-1 is a
detailed flowchart of interrupt processing In these processors. The interrupt vector loca-
tions are given in Table 3-1. The vector locations contain the address for the interrupt
routine,

Additional information on the SWI, SWI2, and SWI3 interrupts is given in Appendix A. The

hardware interrupts, NMI, FIRQ, and IRQ are listed alphabetically at the end of Appendix
A.

Table 3-1. Interrupt Vector Locations

interrupt Vector Location
Description MS Byte | LS Byte
Reset (NESET) FFFE “FFFF |
Non-Maskabie Interrupt (NKD FFFC FFFD
Software Interrupt {SWH) FFFA FFFB
Interrupt Request (IRQ) FFF8 FFF9
Fast Interrupt Request {FIRG) FFFB FFF7
Software Intarrupt 2 (SWI2} FFF4 FFFE
Software Interrupt 3 ISWI3} FFF2 FFF3
Reserved FFFO FFF1

3.2 NON-MASKABLE INTERRUPT (NM)

The non-maskable interrupt is edge-sensitive in the sense that if it is sampled low one cy-
cle after it has been sampled high, a non-maskable interrupt will be triggered. Because
the non-maskable interrupt cannot be masked by execution of the non-maskable inter-
rupt handler routine, it is possible to accept another non-maskable Interrupt before ex-
ecuting the first Instruction of the interrupt routine. A fatal error will exist if a non-
maskable interrupt is repeatedly allowed to occur before completing the return from in-
terrupt (RTI) instruction of the previous non-maskable interrupt request, since the stack

3-1

will eventuaily overflow. This interrupt Is especially applicable to gaining immediate pro-
cessor response for powerfail, software dynamic memory refresh, or other non-delayable
events,

3.3 FAST MASKABLE INTERRUPT REQUEST (FIRQ)

A low level on the FIRQ input with the F (fast interrupt request mask) bit in the condition
code register clear triggers this interrupt sequence. The fast interrupt request provides
fast interrupt response by stacking only the program counter and condition code
register. This allows fast context switching with minimal overhead. If any registers are
used by the interrupt routine then they can be saved by a single push instruction.

After accepting a fast interrupt request, the processor clears the E flag, saves the pro-
gram counter and condition code register, and then sets both the | and F bits to mask any
further IRQ and FIRQ interrupts. After servicing the original interrupt, the user may selec-
tively clear the | and F bits to allow multiple-level interrupts if so desired.

3.4 NORMAL MASKABLE INTERRUPT REQUEST (IRQ)

A low level on the IRQ input with the | {interrupt request mask) bit in the condition code
register clear triggers this interrupt sequence. The normai maskabie interrupt request
provides a slower hardware response to interrupts because it causes the entire machine
state to be stacked. However, this means that interrupting software routines can use all
procassor resources without fear of damaging the interrupted routine. A normal interrupt
request, having lower priority than the fast interrupt request, is prevented from interrup-
ting the fast interrupt handler by the automatic setting of the | bit by the fast interrupt re-
quest handler.

After accepting a normal interrupt request, the processor sets the E flag, saves the entire
machine state, and then sets the | bit to mask any further interrupt request inputs. After
servicing the original interrupt, the user may clear the | bit to allow muitiple-level normal
interrupts.

All interrupt handling routines should return to the formerly executing tasks using a
return from interrupt) instruction. This instruction recovers the saved machine state
from the hardware stack and control is returned to the Iinterrupted program. If the
recovered E bit is clear, it indicates that a fast interrupt request occurred and only the
program counter address and condition code register are to be recovered.

3.5 SOFTWARE INTERRUPTS (SWI, SW12, SWI3)

The software interrupts cause the processor to go through the normal interrupt request
sequence of stacking the complete machine state even though the interrupting source is
the processor itself. These interrupts are commonly used for program debugging and for
calls to an operating system.

3-2

Normal processing of the SWI input sets the | and F bits to prevent either of these inter-
rupt requests from affecting the completion of a software interrupt request. The remain-
ing software interrupt request inputs (SWI2 and SW13) do not have the priority of the SWI
input and therefore do not mask the two hardware interrupt request inputs (FIRQ and
IRQ).

3-3

ueyomol4 Buissedsold ydnueju -¢ einbi4

(360890} BI0AD Yoiay J0103A 1si1y Buunp ubiy st ASNQ T
“UBUOMOY} BY) Ul 1utod Aue Wwody 8aUBNbas 1asas ayl Bundlu Ul 3nsas fim 1353y Buiiessy | 'S3ION

JAN N
oY
S
1 1 abpajmoudy 1jeH o} slupm
0 i abpajmouydy SUAS new
i 0 abpajmouydy 1asay 10 1dnuaiu|
0 0 Buiuuny
A
wm (ﬂ Dﬂsw Q—Jm uondNIsu|
J0
uonnoaxg
2d N A X dO Jd
' ‘v x2eISUN Fomsurny
s8-0
®
7143 [oms
-1
9341 | owl4
8444 | owl Aluo 360890 -4
vidd | IMS &&T&»m
F—————— - —— - —— - 2433 | AN Jd =010
Bussea0r 2d —(OWOA) caon
awnsay $8-0
ve-0
038Yna AIUO 360890 o1-0
218071 JAN 1D
20A3 3 | 104 L+IND3

Burssaoo1d

awnsay
038vWa
S8'vaaoisay|

>
<

vH

IIMS
IWN Wiesi)
WA Ed.mﬂ
Ll 1NN J1D
e
IYMD 13-
Hd0~-0

signuaiuy
["elal

232'v '8 °da ‘X
A ‘N ‘Jd Weis

bes 1353y

aouanbeg
03uvnd

60890 EReLIE]

SECTION 4
PROGRAMMING

4.1 INTRODUCTION

These processors are designed to be source-code compatible with the M6800 to make
use of the substantial existing base of M6800 software and training. However, this asset
should not overshadow the capabilities bullt into these processors that allow more
modern programming techniques such as position-independence, modular programm-
ing, and reentrancy/recursion to be used on a microprocessor-based system. A brief
review of these methods is given in the following paragraphs.

4.1.1 POSITION INDEPENDENCE. A program is said to be “position-independent” if it
will run correctly when the same machine code is positioned arbitrarily in memory. Such
a program is useful in many different hardware configurations, and might be copied from
a disk into RAM when the operating system first sees a request to use a system utility.
Position-independent programs never use absolute (extended or direct) addressing: in-
stead, inherent immediate, register, indexed and relative modes are used. In particular,
there should be no jump (absolute) or jump to subroutine instructions nor should ab-
solute addresses be used. A position-independent program is almost always preferable
to a position-dependent program (aithough position-independent code is usually 5 to
10% slower than normal code).

4.1.2 MODULAR PROGRAMMING. Modular programming is another indication of quality
code. A module is a program element which can be easlly disconnected from the rest of
the program either for re-use in a new environment or for replacement. A module s usual-
ly a subroutine (although a subroutine Is not necessarily a module); frequently, the pro-
grammer isolates register changes internal to the module by pushing these registers
onto the stack upon entry, and pulling them off the stack before the return. Isolating
register changes in the called module, to that module alone, aliows the code in the call-
ing program to be more easily analyzed since It can be assumed that all registers (except
those specifically used for parameter transfer are unchanged by each called module.
This leaves the processor’'s registers free at each level for loop counts, address com-
parisons, stc.

4.1.2.1 Local Storage. A clean method for allocating “local” storage s required both by
position-independent programs as well as modular programs. Local or temporary storage
is used to hoid values only during execution of a module {or called modules) and is releas-
ed upon return. One way to allocate local storage is to decrement the hardware stack

polnter(s) by the number of bytes needed. Interrupts will then leave this area intact and it
can be de-allocated on exiting the module. A module will aimost always need more tem-
porary storage than just the MPU registers.

4.1.2.2 Global Storage. Even in a modular environment there may be a need for “global”
values which are accessible by many modules within a given system. These provide a
convenient means for storing values from one invocation to another invocation of the
same routine. Global storage may be created as local storage at some level, and a
pointer register (usually U) used to point at this area. This register is passed unchanged
in all subroutines, and may be used to index into the global area.

4.1.3 REENTRANCY/RECURSION. Many programs will eventually involve execution in an
interrupt-driven environment. If the interrupt handlers are complex, they might well call
the same routine which has just been interrupted. Therefore, to protect present programs
against certain obsolescencae, all programs should be written to be reentrant. A reentrant
routine alocates different local variable storage upon each entry. Thus, a later entry
does not destroy the processing assoclated with an earlier entry.

The same technique which was implemented to allow reentrancy also allows recursion.
A recursive routine is defined as a routine that calis itself. A recursive routine might be
written to simplify the solution of certain types of problems, especially those which have
a data structure whose elements may themselves be a structure. For example, a paren-
thetical equation represents a case where the expression in parenthesis may be con-
sidered to be a value which is operated on by the rest of the equatlon. A programmer
might choose to write an expression evaluator passing the parenthetical expression
(which might also contain parenthetical expressions) in the call, and receive back the
returned value of the expression within the parenthesis.

4.2 M8809 CAPABILITIES

The following paragraphs briefly explain how the MC8809 is used with the programming
technlques mentloned earlier.

4.2.1 MODULE CONSTRUCTION. A module can be defined as a logically self-contained
and discrete part of a larger program. A properly constructed module accepts well defin-
ed inputs, carries out a set of processing actions, and produces a specified output. The
use of parameters, local storage, and global storage by a program module is given in the
following paragraphs. Since registers will be used inslde the module (essentially a form
of local storage), the first thing that is usually done at entry to a module is to push (save)
them on to the stack. This can be done with one instruction (e.g., PSHS Y, X, B, A). After
the body of the module is executed, the saved registers are collected, and a subroutine
return is performed, at one time, by pulling the program counter from the stack (e.g.,
PULS A,B,X,Y,PC).

4.2.1.1 Parameters. Parameters may be passed to or from modules elther in registers, if
they will provide sufficient storage for parameter passage, or on the stack. if parameters
are passed on the stack, they are placed there before calling the iower level module. The
called module is then written to use local storage inside the stack as needed (e.g., ADDA
offset,S). Notice that the required offset consists of the number of bytes pushed (upon
entry), plus two from the stacked return address, plus the data offset at the time of the
call. This value may be calculated, by hand, by drawing a “stack picture” diagram
representing module entry, and assigning convenient mnemonics to these offsets with
the assembler. Returned parameters replace those sent to the routine. If more
parameters are to be returned on the stack than would normally be sent, space for their
return is allocated by the calling routine before the actual call (if four additional bytes are
to be returned, the caller would execute LEAS —4,S to acquire the additional storage).

4.2.1.2 Local Storage. Local storage space Is acquired from the stack while the present
routine is executing and then returned to the stack prior to exit. The act of pushing
registers which will be used in later calculations essentially saves those registers in tem-
porary local storage. Additional local storage can easily be acquired from the stack e.g.,
executing LEAS - 2048,S acquires a buffer area running from the 0,8 to 2047,S inclusive.
Any byts in this area may be accessed directly by any instruction which has an indexed
addresing mode. At the end of the routine, the area acquired for local storage Is released
(.., LEAS 2048,8) prior to the final pull. For cleaner programs, local storage should be
allocated at entry to the module and released at the exit of the module.

4.2.1.3 Global Storage. The area required for global storage is also most effectively ac-
quired from the stack, probably by the highest level routine in the standard package.
Although this is local storage to the highest level routine, it becomes “global” by posi-
tioning a register to point at this storage, (sometimas referred to as a stack mark) then
establishing the conventlon that all modules pass that same pointer value when calling
lower |level modules. In practice, It is convenient to leave this stack mark register un-
changed in all modules, especlally if global accesses are common. The highest level
routine in the standard package would execute the following sequence upon entry (to in-
itialize the global area):

PSHS U higher level mark, if any
TFR S,U new stack mark
LEAS -17,U allocate global storage

Note that the U register now defines 17-bytes of locally allocated (permanent) globals
{(which are —1,U through - 17,U) as well as other external globals (2,U and above) which
have been passed on the stack by the routine which called the standard package. Any
global may be accessed by any module using exactly the same offset value at any level
{e.9., ROL, RAT,U; where RAT EQU - 11 has been defined). Furthermore, the values stack-
ed prior to invoking the standard package may include pointers to data or l/O peripherals.
Any indexed operation may be performed indexed indirect through those pointers, which
means, for example, that the module need know nothing about the actual hardware con-
figuration, except that (upon entry) the pointer to an /O register has been placed at a
given location on the stack.

4.2.2 POSITION-INDEPENDENT CODE. Posltlon-independent code means that the same
machine language code can be placed anywhere in memory and still functlon correctly.
The MB809 has a long relative (16-bit offset) branch mode along with the common
MC8800 branches, plus program-counter relative addressing. Program-counter relative
addressing uses the program counter like an indexable register, which allows all instruc-
tions that reference memory to also reference data relative to the program counter. The
M6809 also has load effective address (LEA) instructions which aliow the user to point to
data in a ROM in a position-independent manner.

An important rule for gensrating position-independent code is: NEVER USE ABSOLUTE
ADDRESSING.

Program-counter relative addressing on the M6809 is a form of indexed addressing that
uses the program counter as the base register for a constant-otfset indexing operation.
Howaever, the M6809 assembler treats the PCR address fleld differently from that used in
other indexed instructions. in PCR addressing, the assembly time location value is sub-
tracted from the (constant) value of the PCR offset. The resuiting distance to the desired
symbol is the value placed into the machine language object code. During execution, the
processor adds the value of the run time PC to the distance to get a position-independent
absolute address.

The PCR indexed addressing form can be used to point at any location relative to the pro-
gram regardless of position in memory. The PCR form of indexed addressing allows ac-
caess to tables within the program space In a position-independent manner via use of the
load effective address instruction.

in a program which is completely position-independent, some absolute locations are
usually required, particularly for l/O. If the locations of /O devices are placed on the
stack (as globais) by a small setup routine before the standard package is invoked, all in-
ternal modules can do their /O through that pointer (e.g., STA [ACIAD, U)), allowing the
hardware to be easily changed, if desired. Only the single, small, and obvious setup
routine need be rewritten for each different hardware configuration.

Global, permanent, and temporary values need to be easily available in a position-
independent manner. Use the stack for this data since the stacked data is directly ac-
cessible. Stack the absolute address of /O devices before calling any standard software
package since the package can use the stacked addresses for /O in any system.

The LEA instructions allow access to tables, data, or immediate values in the text of the
program in a position-independent manner as shown in the following example:

LEAX " MSG1,PCR
LBSR PDATA
MSG1 FCC " JPRINT THISY

4-4

Here we wish to point at a message to be printed from the body of the program. By
writing “MSG1, PCR” we signal the assembler to compute the distance between the pre-
sent address (the address of the LBSR) and MSG1. This resuit is inserted as a constant
into the LEA instruction which will be indexed from the program counter value at the time
of execution. Now, no matter where the code is located, when it is executed the com-
puter offset from the program counter will point at MSG1. This code is position-
independent.

It Is common to use space in the hardware stack for temporary storage. Space Is made
for temporary variables from 0,S through TEMP-1, $ by decrementing the stack pointer
equal to the length ot required storage. We could use:

LEAS - TEMP,S.

Not only does this facilitate position-independent code but it is structursd and helps
reentrancy and recursion.

4.2.3 REENTRANT PROQGRAMS. A program that can be executed by several different
users sharing the same copy of It in memory is called reentrant. This is important for in-
terrupt driven systems. This method saves considerable memory space, especially with
large interrupt routines. Stacks are required for reentrant programs, and the M6809 can
support up to four stacks by using the X and Y index registers as stack pointers.

Stacks are simple and convenient mechanisms for generating reentrant programs.
Subroutines which use stacks for passing paramseters and results can be easily made to
be reentrant. Stack accesses use the indexed addressing mode for fast, efficient execu-
tion. Stack addressing is quick.

Pure code, or code that is not self-modifying, is mandatory to produce reentrant code. No
internal information within the code is subject to modification. Reentrant code never has
internal temporary storage, is simpler to debug, can be placed in ROM, and must be inter-
ruptable.

4.2.4 RECURSIVE PROGRAMS. A recursive program is one that can call itself. They are
quite convenient for parsing mechanisms and certain arithmetic functions such as com-
puting factorlals. As with reentrant programming, stacks are very useful for this techni-
que.

4.2.5 LOOPS. The usual structured loops (i.e., REPEAT...UNTIL, WHILE...DO, FOR..,, etc.)
are avaliable in assembly language in exactly the same way a high-level language com-
piler could translate the construct for execution on the target machine. Using a
FOR...NEXT loop as an example, it is possible to push the loop count, increment value,
and termination value on the stack as variables local to that loop. On sach pass through
the loop, the working register is saved, the loop count picked up, the increment added in,
and the result compared to the termination value. Based on this comparison, the 1oop
counter might be updated, the working register recovered and the loop resumed, or the
working register recovered and the loop varlables de-allocated. Reasonable macros

could make the source form for loop trivial, even in assembly language. Such macros
might reduce errors resulting from the use of multiple instructions simply to implement a
standard control structure.

4.2.6 STACK PROGRAMMING. Many microprocessor applications require data stored as
continguous pieces of Information in memory. The data may be temporary, that is, sub-
ject to change or it may be permanent. Temporary data wili most likely be stored in RAM.
Permanent data will most likely be stored in ROM.

it is important to allow the main program as well as subroutines access to this block of
data, especially if arguments are to be passed from the main program to the subroutines
and vice versa.

4,2.6.1 M6B09 Stacking Operations. Stack pointers are markers which point to the stack
and its internal contents. Although all four index registers may be used as stack
registers, the S (hardware stack pointer) and the U (user stack pointer) are generally
preferred because the push and pull instructions apply to these registers. Both are 16-bit
indexable registers. The processor uses the S register automatically during interrupts
and subroutine calls. The U register is free for any purpose needed. It is not affected by
interrupts or subroutine calls Implemented by the hardware.

Either stack pointer can be specified as the base address in indexed addressing. One use
of the indirect addressing mode uses stack pointers to allow addresses of data to be
passed to a subroutine on a stack as arguments to a subroutine. The subroutine can now
reference the data with one instruction. High-level language calls that pass arguments
by reterence are now more efficiently coded. Also, each stack push or pull operation In &
program uses a postbyte which specifies any register or set of registers to be pushed or
pulled from either stack. With this option, the overhead assoclated with subroutine calls
in both assembly and high-level language programs is greatly decreased. In fact, with the
large number of instructions that use autoincrement and autodecrement, the M8809 can
emulate a true stack computer architecture.

Using the S or U stack pointer, the order in which the registers are pushed or pulled is
shown in Figure 4-1, Notice that we push *onto” the stack towards decreasing memory
locations. The program counter is pushed first. Then the stack pointer is decremented
and the “other” stack pointer is pushed onto the stack. Decrementing and storing con-
tinues until all the registers requested by the postbyte are pushed onto the stack. The
stack pointer points to the top of the stack after the push operation.

The stacking order Is specified by the processor. The stacking order is identical to the
order used for all hardware and software interrupts. The same order is used even if a
subset of the reglsters is pushed.

Without stacks, most modern block-structured high-level languages would be cumber-

some to implement. Subroutine linkage is very important in high-level language genera-
tion. Paragraph 4.2.6.2 describes how to use a stack mark pointer for this important task.

46

Good programming practice dictates the use of the hardware stack for temporary
storage. To reserve space, decrement the stack pointer by the amount of storage re-
quired with the instruction LEAS - TEMPS, 8. This instruction makes space for tem-
porary variables from 0,S through TEMPS —1,S.

Memory
0000
= 2
" Stack Pointer . c } " .
‘ After Stacking C Condition Code Register Contents
A } A Accumulatar Contents
B } 8 Accumulator Contents
Op] Direct Page Register Contents
X.H
- — —
3 3 XL] X Contents
] -
— = ¢ Y Contents
Y.L
UHor S H .
— —{ ¢ Other Stack Pointer Contents
U.Lor S.L.
PC.H
- - Progeam Counter Contents
PC.L
Stack Pointer
Before Stacking "]
FFFF

Figure 4-1. Stacking Order

4.2.6.2 Subroutine Linkage. In the highest level routine, global variables are sometimes
considered to be local. Therefore, global storage is allocated at this point, but access to
these same variables requires different offset values depending on subroutine depth.
Because subroutine depth changes dynamically, the length may not be known
beforehand. This problem s solved by assigning one pointer (U will be used in the follow-
ing description, but X or Y could also be used) to “mark” a location on the hardware stack
by using the instruction TFR S,U. If the programmer does this immediately prior to
allocating global storage, then all variables will then be available at a constant negative
offset location from this stack mark. If the stack is marked after the global variables are

allocated, then the global variables are available at a constant positive oftset from U.
Register U is then called the stack mark pointer. Recall that the hardware stack pointer
may be modified by hardware interrupts. For this reason, it is fatal to use data referred to
by a negative offset with respect to the hardware stack pointer, S.

4.26.3 Software Stacks. If more than two stacks are needed, autoincrement and
autodecrement mode of addressing can be used to generate additional software stack
polinters.

The X, Y, and U index registers are quite useful in loops for incrementing and decremen-
ting purposes. The pointer Is used for searching tables and also to move data from one
area of memory to another (block moves). This autoincrement and autodecrement
feature Is avallable in the indexed addressing mode of the M6809 to facilitate such opera-
tions.

In autoincrement, the value contained in the index register (X or Y, U or S) is used as the
effective address and then the register is incremented {postincremented). In autodecre-
ment, the index register is first decremented and then used to obtain the effective ad-
dress (predecremented). Postincrement or predecrement is always performed in this ad-
dressing mode. This is equivalent in operation to the push and pull from a stack. This
equivalence allows the X and Y index registers to be used as software stack pointers. The
indexed addressing mode can also implement an extra level of post indirection. This
feature supports parameter and pointer operations.

4.2.7 REAL TIME PROGRAMMING. Real time programming requires speclal care.
Sometimes a peripheral or task demands an immediate response from the processor,
other times it can wait. Most real time applications are demanding in terms of processor
response.

A common solution is to use the interrupt capability of the processor in solving real time
problems. Interrupts mean just that; they request a break in the current sequence of
avents to solve an asynchronous service request. The system designer must consider all
variations of the conditions to be encountered by the system including software interac-
tion with interrupts. As a result, problems due to software design are more common in in-
terrupt implementation code for real time programming than most other sltuations. Soft-
ware timeouts, hardware interrupts, and program control interrupts are typically used in
solving real time programming problems.

4.3 PROGRAM DOCUMENTATION

Common sense dictates that a well documented program is mandatory. Comments are
needed to explain each group of instructions since thelr use is not always cbvious from
looking at the code. Program boundaries and branch instructions need full clarification.
Consider the following points when writing comments: up-to-date, accuracy, com-
pleteness, conciseness, and understandability.

4-8

Accurate documentation enables you and others to maintain and adapt programs for up-
dating and/or additional use with other programs.

The following program documentation standards are suggested.

A) Each subroutine should have an associated header block containing at least the
following elements:

1)} A full specification for this subroutine — including associated data struc-
tures — such that replacement code could be generated from this description
alone.

2) All usage of memory resources must be defined, including:

a) All RAM needed from temorary (local) storage used during execution of
this subroutine or called subroutines.
b) All RAM needed for permanent storage (used to transfer values from one
exscution of the subroutine to future executions).
¢) All RAM accessed as global storage (used to transfer values from or to
higher-level subroutines).
d) All possible exlt-state conditions, if these are to be used by calling
routines to test occurrences internal to the subroutine.
B) Code internal to each subroutine should have sutficient associated line com-
ments to hslp in understanding the code.
C) All code must be non-self-modifying and position-independent.
D) Each subroutine which includes a loop must be separately documented by a
flowchart or pseudo high-level language aigorithm.
E) Any module or subroutine should be executable starting at the first location and
exit at the last location.

4.4 INSTRUCTION SET

The complete instruction set for the MB803 is given in Table 4-1.

Table 4-1. Instruction Set

Instruction Description
ABX Add Accumulator B into Index Register X
ADC Add with Carry into Register
ADD Add Memory into Register
AND Logical AND Memory intc Register
ASL Arithmetic Shift Left
ASR Arithmetic Shift Right
BCC Branch on Carry Clear
BCS Branch on Carry Set
BEQ Branch on Equal
BGE Branch on Greater Than or Equal to Zero
BGT Branch on Greater
BHI Branch if Higher
BHS Branch if Higher or Same
BIT Bit Test

BLE Branch if Less than or Equai to Zero

Table 4-1. Instruction Set (Continued)

Instruction Deascription
BLO Branch an Lower
BLS Branch on Lower or Same
BLT Branch on Less than Zero
BMI Branch on Minus
BNE Branch Not Equal
BPL Branch on Plus
BRA Branch Always
BAN Branch Never
BSA Branch to Subroutine
BvC Branch on Overflow Clear
BvS Branch on Overflow Set
CLR Clear
CMP Compare Memory from a Register
COM Complement
CWAI Clear CC bits and Wait for Interrupt
DAA Decimal Addition Adjust
DEC Decrement
ECOR Exclusive OR
EXG Exchange Registers
INC Increment
JMP Jump
JSR Jump to Subroutine
LD Load Register from Memory
LEA Load Effective Address
LSL Logical Shift Left
LSR Logical Shift Right
MUL Multiply
NEG Negate
NOP No Operation
OR Inclusive OR Memory into Register
PSH Push Registers
PUL Pull Registers
ROL Rotate Left
ROR Rotate Right
RTI Retum from Interrupt
RTS Return from Subroutine
SBC Subtract with Borrow
SEX Sign Extend
1) Store Register into Memory
sus Subtract Memory from Register
Swi Sacftware interrupt
SYNC Synchronize to External Event
TFR Transter Register to Register
TST Test

4-10

The instruction set ¢an be functionally divided into five categories. They are:

8-Bit Accumulator and Memory Instructions
16-Bit Accumulator and Memory Instructions
Index Register/Stack Pointer Instructions

Branch Instructions
Miscellaneous Instructions

Tables 4-2 through 4-8 are listings of the M6809 instructions and their variations grouped

into the five categories listed.

Table 4-2. 8-Bit Accumulator and Memory Instructions

Instruction Description

ADCA, ADCB Add memary to accumulator with carry

ADDA, ADDB Add memory to accumulator

ANDA, ANDB And memaory with accumulator

ASL, ASLA, ASLB Arithmetic shift of accumulator or memory left
ASR, ASRA, ASRB Arithmetic shift of accumulator or memory right
'BTA. BITE Bit test memory with accumulator

CLR, CLRA, CLRB Clear accurnuiator or memory location
WB Compare memory from accumulator

COM, COMA, COMB Complement accumulator or memory location
DAA Decimal adjust A accumulator

DEC, DECA, DECB Decrement accumulator or memory location
EORA, EORB Exclusive or memory with accumulator

EXG R1, R2 Exchange R1 with B2 {R1, R2=A, B, CC, DP}
INC, INCA, INCB Increment accumulator or memory focation
LDA, LDB Load accumulator from memcry
JCSC. TSR [BLE Togical shift [eft accumulator or memory jocation
LSR, LSRA, LSRB Logical shift right accumulator or memory location
MUL Unsigned multiply tAx B—D)

NEG, NEGA, NEGB Negate accumulator or mernory

ORA, ORB Or memory with accumulatar

ROL, ROLA, ROLB Rotate accumulator or memory left

[ROA, AURA, RORB Rotate accumulator or memary fight

SBCA, SBCB Subtract memory from accumulator with borrow
STA, §TB Store accumuiator 1o mamroy

SUBA, SUBB Subtract memary from accurnulator

TST, TSTA, TSTB Test accumulator or memory location

TFR A1, R2 Transfer A1 to R2 (R1, R2=A, B, CC, DP)

NOTE: A, B, CC, or DP may be pushed ta {pulled from) either stack with PSHS, PSHU
{PLILS, PULU) instructions.

4-11

Table 4-3. 16-Bit Accumulator and Memory Instructions

Instruction Deacription
ADDD Add memaory to D accumulator
CMPD Comparg memory from D accumulator
EXG D, R Exchange D with X, ¥, S, U, or PC
LDD Load D accumulator from memory
SEX Sign Extend B accurmutator into A accumulator
STD Store D accumulator to memory
SUBD Subtract memory from D accumulator
TFR O, R Transfer Dto X, Y, 5, U, or PC
TFR R, D Transfer X, ¥, S, U, or PCto D

NOTE: D may be pushed (pulled) 10 sither stack with PSHS, PSHU {PULS, PULU)

instructions.

Table 4-4. Index/Stack Pointer instructions

Instruction Deacription
CMPS, CMPU Compare memory from stack pointer
CMPX, CMPY Compare memory from index register

[EXG AT, A2 Exchange I, X, ¥, 5, Uor PCwWith D, X, Y, &, U of PL

LEAS, LEAU Load eftective address into stack pointer
LEAX, LEAY Load effective address into index register
LDS, LOU Load stack pointer from memory
LDX, LDY Load index register from memory
PSHS Push A, B, CC, DP, D, X, ¥, U, or PC onto hardware stack
PSHU Push A, B, CC, DP, D, X, Y, X, or PC onta user stack
PULS Pull A, B, CC, DP, D, X, Y, U, or PC from hardware stack
PULU Pull A, B, CC, DP, D, X, ¥, 8, or PC from hardware stack
STS, 8TU Store stack pointer to memory
STX, STY Store index ragisier to memory
TFR R1, R2 Transfer D, X, ¥, 8, U, orPCto D, X, Y, 8, U, ar PC
ABX Add B accumulator to X {unsigned)

4-12

Table 4-5. Branch Instructions

Instruction | Description
SIMPLE BRANCHES
BEQ, LBEQ Branch if equal
BNE, LBNE Branch if not equal
BMI, LEMI Branch if minus
BPL, LBPL Branch if pius
BCS, LBCS Branch if carry set
BCC, LBCC Branch if carry clear
BVS, LBVS Branch if overflow set
BVC, LBVC Branch if overflow claar
SIGNED BRANCHES
BGT, LBGT Branch if greater (signad)
8VS, LBVS Branch if invalid twos complement result
B8GE, LBGE Branch if greater than or equal {signed}
8EQ, LBEQ Branch if equal
BNE, LBNE Branch if not equat
BLE, LBLE Branch if less than or equal {signed}
BVC, LBVC Branch if valid twos complement result
BLT, LBLT Branch if less than isigned)
UNSIGNED BRANCHES
BH1, LBHI Branch if higher {unsigned)
BCC, LBCC Branch if higher or same (unsigned}
BHS, LBHS Branch if higher or same {unsigned}
BEQ, LBEQ Branch if equal
BNE, LBNE Branch if not equal
BLS, LBLS Branch if lower or sama {unsigned)
BCS, LBCS Branch if lower {unsigned}
BLO, LBLO Branch If fower (unsignea)
OTHER BRANCHES
"BSR, LBSR Branch to subroutine
[BRA, LBRA Branch always
[BRN,_LBRN Branch never
Table 4-6. Miscellaneous Instructions
Instruction Description
ANDCC AND condition code register
[CWAI AND condition code register, then wait for interrupt
NOP No operation
QRCC CR condition code register
JMP Jump
JSR Jump 1o subrouting
ATI Return from interrupt
RTS Return from subroutine
SWI, SWiZ, SWI3 Software interrupt {absolute indirect
SYNC Synchronize with interrupt line

4-13/4-14

APPENDIX A
INSTRUCTION SET DETAILS

A.1 INTRODUCTION

This appendix contains detailed information about each instruction in the MC6809 in-
struction set. They are arranged in an alphabetical order with the mnemonic heading set
in larger type for easy reference.

A.2 NOTATION

In the operation description for each instruction, symbols are used to indicate the opera-
tion. Table A-1 lists these symbois and their meanings. Abbreviations for the varlous
registers, bits, and bytes are also used. Table A-2 lists these abbreviations and their
meanings.

Table A-1. Operation Notation

Symbol Meaning
-— is transferred 1o
A Boolean AND
v Boolean OR
* Baolean exclusive OR
~ [Overingl Boclean NOT
: Concatenation

Arithmetic plus
- Arithmetic minus
X Arithmetic muitiply

A1

Table A-2. Register Notation

Abbreviation
ACCA or A
ACCBorB
ACCAACCB or D
ACCX
CCR or CC
DPR or DP
EA
IFF
X or X
WoryY
LSN
M
M
MSN
PC
R
R
TEMP
xxH
xxL
Spor$§

Us or U

dd
oDDD

[}

Meaning
Accurmulator A
Accumulator B
Double accumulator D
Either accumulator A or B
Condition code register
Direct page register
Effective address
If and only if
Index register X
Index register Y
Least significant nibble
Memory location
Memory immediata
Maost significant nibble
Program countar
A register bafore the operation
A register after the oparation
Temporary storage location
Most signifcant byte of any 16-bit register
Least significant byte of any 16-bit register
Hardware Stack pointer
User Stack pointer

A memcry argumant with Immediate, Di-
rect, Extended, and indexed addressing
modes

A read-modify-write argument with Direct,
Indexed, and Extended addressing modes

The data pointed to by tha enclosed
(16-bit address)

8-bit branch offset

1B-bit branch offset
Immediate value follows
Hexadecimal value follows
Indirection

Indicates indexed addressing

A-2

ABX Add Accumulator B into Index Register X ABX

Source Form: ABX

Operatlon: IX'—IX+ACCB

Condition Codes: Not affected.

Description: Add the 8-bit unsigned value in accumulator B into index register X.

Addressing Mode: Inherent

A-3

ADC Add with Carry into Register ADC

Source Forms: ADCA P; ADCB P
Operatlon: R—~R + M+C

Condlitlon Codes: H — Set if a half-carry is generated; cleared otherwise.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set iIf an overflow is generated; cleared otherwise.
C — Set if a carry is generated; cleared otherwise.

Description: Adds the contents of the C (carry) bit and the memory byte into an
8-bit accumulator.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-4

ADD (B‘Bit) Add Memory into Register ADD (8'Bit)

Source Forms: ADDA P; ADDB P
Operation: R—R+M

Condition Codes: H — Set if a half-carry is generated; cleared otherwise.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if an overflow is generated; cleared otherwise.
C — Set it a carry is generated; cleared otherwise.

Description: Adds the memory byte into an 8-bit accumulator.
Addressing Modes: Immediate

Extended

Direct

Indexed

A5

ADD (1 B'Bit) Add Memory into Register AD D (1 S'Bit)

Source Forms: ADDD P
Operation: R'~—R + M\M+1

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if an overflow is generated; cleared otherwise.
C — Set if a carry is generated; cleared otherwise.

Description: Adds the 16-bit memory value into the 16-bit accumulator
Addressing Modes: Immediate

Extended

Direct

Indexed

A-6

AN D Logical AND Memory into Register AN D

Source Forms: ANDA P; ANDB P
Operation: R—RAM

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero, cleared otherwise.
V - Always cleared.
C — Not affected.

Description: Performs the logical AND operation between the contents of an ac-
cumuiator and the contents of memory tocation M and the result is
stored in the accumulator.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-7

AN D Logical AND Immediate Memory into Condition Code Register AN D

Source Form: ANDCC #xx

Operation: R—RAM!

Condition Codes: Affected according to the operation.

Description: Performs a logicat AND between the condition code register and the
timmediate byte specified in the instruction and places the result in

the condition code register.

Addressing Mode: Immediate

A-8

ASL

Source Forms:

Operation:

Conditlon Codes:

Description:

Addressing Modaes:

Arithmetic Shift Left ASL

ASL Q; ASLA; ASLB

G — (0

b7 +—— b0

H — Undefined

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Loaded with the result of the exclusive OR of bits six and
seven of the original operand.

C — Loaded with bit seven of the original operand.

Shifts ali bits of the operand one place to the left. Bit zero is loaded
with a zero. Bit seven is shifted into the C (carry) bit.

inherent
Extended
Direct
Indexed

A-9

ASR Arithmetic Shift Right AS R

Source Forms: ASR Q; ASRA; ASRB

Operation: Ly
b? b0

Conditlon Codes: H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Not affected.
C — Loaded with bit zero of the original operand.

Description: Shifts all bits of the operand one place to the right. Bit seven Is held
constant. Bit zero is shifted into the C (carry) bit.

Addressing Modes: Inherent
Extended
Direct
Indexed

A-10

B C C Branch on Carry Clear B C C

Source Forms: BCC dd; LBCC DDDD

Operation: TEMP— M|
IFF C=0 then PC'—PC + TEMP

Condition Codes: Not affected.

Description: Tests the state of the C (carry) bit and causes a branch if it is clear.
Addressing Mode: Relative

Comments: Equivalent to BHS dd; LBHS DDDD

A-11

BCS Branch on Carry Set BCS

Source Forms: BCS dd; LBCS DDDD

Operation: TEMP—MI|
IFF C=1 then PC'—PC + TEMP

Condition Codes: Not affected.
Description: Tests the state of the C (carry) bit and causes a branch if it is set.
Addressing Mode: Relative

Comments: Equivalent to BLO dd; LBLO DDDD

A-12

B EQ Branch on Equal B EQ

Source Forms: BEQ dd; LBEQ DDDD

Operation: TEMP—Mi
IFF Z=1 then PC’'—PC 4+ TEMP

Conditlon Codes: Not affected.
Description: Tests the state of the Z (zero) bit and causes a branch if it is set.

When used after a subtract or compare operation, this instruction
will branch if the compared values, signed or unsigned, were exactly

the same.

Addressing Mode: Relative

A-13

BG E Branch on Greater than or Equal to Zero BG E

Source Forms: BGE dd; LBGE DDDD

Operation: TEMP — M|
IFF [N e V]=0 then PC'—PC + TEMP

Condition Codes: Not affected.

Description: Causes a branch if the N (negative) bit and the V (overflow) bit are
either both set or both clear. That is, branch if the sign of a valid
twos complement resuit is, or would be, positive. When used after a
subtract or compare operation on twos complement values, this in-
struction will branch if the register was greater than or equal to the

memory operand.

Addressing Mode: Relative

A-14

BGT

Source Forms:

Operation:

Condition Codes:
Description:

Addressing Mode:

Branch on Greater B GT

BGT dd; LBGT DDDD

TEMP—MI
IFF Z A [Ne V]=0 then PC'—PC + TEMP

Not affected.

Causes a branch if the N (negative) bit and V (overflow) bit are either
both set or both clear and the Z (zero) bit is clear. In other words,
branch if the sign of a valid twos complement result is, or would be,
positive and not zero. When used after a subtract or compare opera-
tion on twos compiement values, this instruction will branch if the
register was greater than the memory operand.

Relative

A-15

B H I Branch it Higher B H I

Source Forms: BHI dd; LBH!I DDDD

Operation: TEMP—Mi
IFF [C v Z]=0 then PC'—PC + TEMP

Condition Codes: Not affected.
Description: Causes a branch if the previous operation caused neither a carry nor
a zero result. When used after a subtract or compare operaticn on

unsigned binary values, this instruction wili branch if the register
was higher than the memory operand.

Addressing Mode: Relative

Comments: Generally not useful after INC/DEC, LD/TST, and TST/CLR/COM in-
structions.

A-16

BHS

Source Forms:

Operation:

Condition Codes:
Description:

Addressing Mode:

Comments:

Branch it Higher or Same B H s

BHS dd; LBHS DDDD

TEMP - M|
IFF C =0 then PC'~—PC + MI

Not affected.

Tests the state of the C (carry) bit and causes a branch if it is clear.
When used after a subtract or compare on unsigned binary values,
this instruction will branch if the register was higher than or the
same as the memory operand.

Relative

This is a duplicate assembly-language mnemonic for the single

machine instruction BCC. Generally not useful after INC/DEC,
LD/ST, and TST/CLR/COM instructions.

A-17

BIT

Source Form:
Operation:

Condition Codes:

Description:

Addressing Modes:

Bit Test B IT

Bit P
TEMP—RAM

H — Not affected.

N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.

V — Always cleared.

C — Not affected.

Performs the logical AND of the contents of accumulator A or B and
the contents of memory location M and modifies the condition
codes accordingly. The contents of accumulator A or B and memory
location M are not affected.

immediate
Extended
Direct
Indexed

A-18

B L E Branch on Less than or Equal to Zero B L E

Source Forms: BLE dd; LBLE DDDD

Operation: TEMP-—-MI
IFF Z v [N® V]=1 then PC’'—PC + TEMP

Condition Codes: Not affected.

Description: Causes a branch if the exclusive OR of the N (negative) and V
(overflow) bits is 1 or if the Z (zero) bit is set. That is, branch if the
sign of a valid twos complement result is, or would be, negative.
When used after a subtract or compare operation on twos comple-
ment values, this instruction will branch if the register was less than

or equat to the memory operand.

Addressing Mode: Relative

A-19

BLO

Source Forms:

Operation:

Condition Codes:
Description:

Addressing Mode:

Comments:

Branch on Lower B LO

BLO dd; LBLO DDDD

TEMP—MI
IFF C=1 then PC'—PC + TEMP

Not affected.

Tests the state of the C (carry) bit and causes a branch if it is set.
When used after a subtract or compare on unsigned binary values,
this instruction will branch if the register was lower than the
memory operand.

Relative

This is a duplicate assembly-language mnemonic for the single

machine instruction BCS. Generally not useful after INC/DEC,
LD/ST, and TST/CLR/COM instructions.

A-20

BLS

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Mode:

Comments:

Branch on Lower or Same B Ls
BLS dd; LBLS DDDD

TEMP—MI
IFF (C v 2)=1 then PC'—PC + TEMP

Not affected.

Causes a branch if the previous operation caused either a carry or a
zero result. When used after a subtract or compare operation on un-
signed binary values, this instruction will branch if the register was
lower than or the same as the memory operand.

Relative

Generally not useful after INC/DEC, LD/ST, and TST/CLR/COM in-
structions.

A-21

B LT Branch on Less than Zero B LT

Source Forms: BLT dd; LBLT DDDD

Operation: TEMP—MI
IFF [Ne V]=1 then PC’' - PC + TEMP

Condition Codes: Not affected.

Description: Causes a branch if either, but not both, of the N (negative) or V
(overflow) bits is set. That is, branch if the sign of a valid twos com-
plement result is, or would be, negative. When used after a subtract

or compare operation on twos complement binary values, this in-
struction will branch if the register was less than the memory

operand.

Addressing Mode: Relative

A-22

B M I Branch on Minus B M I

Source Forms: BMI dd; LBMI DDDD

Operation: TEMP - MI
IFF N =1 then PC'~PC + TEMP

Conditlon Codes: Not affected.

Description: Tests the state of the N (negative) bit and causes a branch if set.
That is, branch if the sign of the twos complement result is negative.

Addressing Mode: Relative
Comments: When used after an operation on signed binary values, this instruc-

tion will branch if the result is minus. It is generally preferred to use
the LBLT instruction after signed operations.

A-23

B N E Branch Not Equal B N E

Source Forms: BNE dd; LBNE DDDD

Operation: TEMP «— M1
IFF Z=0 then PC'—PC + TEMP

Condition Codes: Not affected.

Description: Tests the state of the Z (zero) bit and causes a branch if it is clear.
When used after a subtract or compare operation on any binary
values, this instruction will branch if the register is, or would be, not
equal to the memory operand.

Addressing Mode: Relative

A-24

|

BPL

Source Forms:

Operatlon:

Condition Codes:
Description:

Addressing Mode:

Comments:

Branch on Plus B P L

BPL dd; LBPL DDDD

TEMP—MI
IFF N =0 then PC'—PC + TEMP

Not affected.

Tests the state of the N (negative) bit and causes a branch if it is
clear. That is, branch if the sign of the twos complement result is
positive.

Relative

When used after an operation on signed binary values, this instruc-

tion will branch if the resuit (possibly invalid} is positive. It is general-
ly preferred to use the BGE instruction after signed operations.

A-25

BRA

Source Forms:

Operation:

Condition Codes:
Description:

Addressing Mode:

Branch Always

BRA dd; LBRA DDDD

TEMP—MI
PC'—PC + TEMP

Not affected.

Causes an unconditional branch.

Relative

A-26

BRA

B R N Branch Never B R N

Source Forms: BRN dd; LBRN DDDD
Operation: TEMP «— Ml
Condition Codes: Not affected.

Description: Does not cause a branch. This instruction is essentially a no opera-
tion, but has a bit pattern logically related to branch always.

Addressing Mode: Relative

A-27

BS R Branch to Subroutine B S R

Source Forms: BSR dd; LBSR DDDD

Operatlon: TEMP—MI
SP'—SP -1, (SP)~—PCL
SP'~SP -1, (SP)—PCH
PC'—PC + TEMP

Conditlon Codes: Not affected.

Description: The program counter is pushed onto the stack. The program counter
is then loaded with the sum of the program counter and the offset.

Addressing Mode: Relative

Comments: A return from subroutine (RTS) instruction is used to reverse this pro-
cess and must be the last instruction executed in a subroutine.

A-28

BVC

Source Forms:

Operation:

Condlition Codes:

Description:

Addressing Mode:

Branch on Overflow Clear BVC

BVC dd; LBVC DDDD

TEMP—MI|
IFF V =0 then PC'—PC + TEMP

Not affected.

Tests the state of the V (overflow) bit and causes a branch if it is
clear, That is, branch if the twos complement result was valid. When
used after an operation on twos complement binary values, this in-
struction will branch if there was no overflow.

Relative

A-29

BVS Branch on Qverflow Set BVS

Source Forms: BVS dd; LBVS DDDD

Operation: TEMP —M|
IFF V =1 then PC’'—PC + TEMP

Condition Codes: Not affected.
Description: Tests the state of the V (overflow) bit and causes a branch if it is set.
That is, branch if the twos complement result was invalid. When us-

ed after an operation on twos complement binary values, this in-
struction will branch if there was an overflow.

Addressing Mode: Relative

A-30

CLR Clear CLR

Source Form: CLRQ
Operation: TEMP~—M
M—0016

Condition Codes: H — Not affected.
N - Always cleared.
Z — Always set.
V — Always cleared.
C — Always cleared.

Description: Accumulator A or B or memory location M is loaded with 00000000.
Note that the EA is read during this operation.

Addressing Modes: Inherent
Extended
Direct
Indexed

A-31

C M P (8' Bit) Compare Memory from Reglster CM P (8' Bit)

Source Forms: CMPA P; CMPB P
Operation: TEMP—R-M

Conditlon Codes: H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero, cleared otherwise.
V — Set it an overflow is generated; cleared otherwise.
C — Set if a borrow is generated; cleared otherwise.

Description: Compares the contents of memory location to the contents of the
specified register and sets the appropriate condition codes. Neither
memory location M nor the specified register is modified. The carry
flag represents a borrow and s set to the inverse of the resulting
binary carry.

Addressing Modes: Immaediate
Extended
Direct
Indexed

C M P (1 6' Bit) Compare Memory from Register CM P (1 6' Bit)

Source Forms:
Operation:
Condition Codes:

Description:

Addressing Modes:

CMPD P; CMPX P; CMPY P; CMPU P; CMPS P
TEMP—R - MM +1

H — Not affected.

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Set if an overflow is generated; cleared otherwise.
C — Set if a borrow is generated; cleared otherwise.

Compares the 16-bit contents of the concatenated memory locations
M:M + 1 to the contents of the specified register and sets the ap-
propriate condition codes. Neither the memory locations nor the
specified register is modified unless autoincrement or autodecre-
ment are used. The carry flag represents a borrow and is set to the
inverse of the resulting binary carry.

immediate
Extended
Direct
Indexed

COM

Source Forms:
Operatlon:
Condition Codes:

Description:

Addressing Modes:

Complement C 0 M

COM Q; COMA; COMB
M+—0O+M

H — Not affected.

N — Set If the result is negative; cleared otherwise.
Z - Set if the result is zero; cleared otherwise.

V — Always cleared.

C — Always set.

Replaces the contents of memory location M or accumulator A or B
with its logical complement. When operating on unsigned values,
only BEQ and BNE branches can be expected to behave properly
following a COM instruction. When operating on twos complement
values, all signed branches are avallable.

Inherent
Extended
Direct
Indexed

A-34

CWAI

Source Form:

Operation:

Condition Codes:

Description:

Addressing Mode:

Comments:

Clear CC bits and Walt for Interrupt CWAI

CWAI #$XX E{F|IH|IIN|[Z{V|C

CCR+~—CCR A MI {Possibly clear masks)
Set E (entire state saved)
SP'—SP -1, (SP)—PCL
SP'—SP -1, (SP)~—PCH
SP'—S8P-1, (SP)~—USL
SP’+—SP -1, (SP)—USH
SP'—SP-1, (SP}—IYL
SP’—SP -1, (SP)~—IYH
SP’~—SP -1, (SP)—IXL
SP'—SP -1, (§P)~—IXH
SP'~—SP -1, (SP)—DPR
SP'—SP -1, (SP)— ACCB
SP'—SP -1, (SP)—ACCA
SP'—S8SP-1, (SP)—CCR

Affected according to the operation.

This instruction ANDs an immediate byte with the condition code
register which may clear the interrupt mask bits | and F, stacks the
entire machine state on the hardware stack and then looks for an in-
terrupt. When a non-masked interrupt occurs, no further machine
state information need be saved before vectoring to the interrupt
handling routine. This instruction replaced the MC8800 CLI WAI se-
quencs, but does not place the buses in a high-impedance state. A
FIRQ (fast interrupt request) may enter its interrupt handler with its
entire machine state saved. The RTI {return from interrupt) instruc-
tion wiil automatically return the entire machine state after testing
the E (entire) bit of the recovered condition code register.

Immediate

The following immediate values will have the following results:
FF = enable neither
EF = enable TRQ
BF = enable FIRQ
AF =enable both

A-35

DAA

Source Form:

Operation:

Condition Codes:

Description:

Addressing Mode:

Decimal Addition Adjust DAA

DAA

ACCA'+—ACCA + CF (MSN):CF(LSN)
where CF is a Correction Factor, as follows: the CF for each nibble
(BCD) digit is determined separately, and is either 6 or 0.

Least Significant Nibble
CF(LSN)=6IFF 1) C=1
or 2) LSN>9

Most Significant Nibble
CF(MSN)=8IFF 1) C=1

or 2) MSN>9

or 3) MSN>8 and LSN>9

H — Not affected.

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Undefined.

C — Set if a carry is generated or if the carry bit was set before the
operation; cleared otherwise.

The sequence of a single-byte add instruction on accumulator A
(either ADDA or ADCA) and a following decimai addition adjust in-
struction results in a BCD addition with an appropriate carry bit.
Both values to be added must be in proper BCD form (each nibble
such that; 0=<nibble=<8). Multiple-precision addition must add the
carry generated by this decimal addition adjust into the next higher
digit during the add operation (ADCA) immediately prior to the next
decimal addition adjust.

inherent

DEC

Source Forms:
Operation:
Condition Codes:

Description:

Addressing Modes:

Decrement D E C

DEC Q; DECA; DECB
M~—M-1

H — Not affected.

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Set if the original operand was 10000000; cleared otherwise.
C — Not affected.

Subtract one from the operand. The carry bit is not affected, thus
atlowing this instruction to be used as a loop counter in multiple-
precision computations. When operating on unsigned values, only
BEQ and BNE branches can be expected to behave consistently.,
When operating on twos complement values, all signed branches
are available.

Inherent
Extended
Direct
Indexed

A-37

EO R Exclusive OR EO R |

Source Forms: EORA P; EORB P
Oporation: R'—RaM

Conditlon Codes: H — Not affected.
N - Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Always cleared.
C — Not affected.

Description: The contents of memory location M is exclusive ORed into an 8-bit
register.

Addressing Modes: immediate
Extended
Direct
Indexed

A-38

EXG Exchange Registers EXG

Source Form: EXG R1,R2

Operation: R1-R2

Condition Codes: Not affected (unless one of the registers is the condition code
register).

Description: Exchanges data between two designated registers. Bits 3-0 of the
postbyte define one register, while bits 7-4 define the other, as
follows:

0000 =A:B 1000=A

0001 =X 1001=B
0010=Y 1010=CCR

0011 =US 1011 =DPR
0100=SP 1100 = Undefined
0101 =PC 1101 = Undefined

0110 = Undefined 1110 = Undefined
0111 = Undefined 1111 = Undefined

Only like size registers may be exchanged. (8-bit with 8-bit or 16-bit
with 16-bit.)

Addressing Mode: Immediate

A-39

INC

Source Forms:
Operation:
Condition Codes:

Description:

Addressing Modes:

Increment I N C

INC Q; INCA; INCB
M’ M+ 1

H — Not affected.

N — Set if the result is negative; cleared otherwise.

Z — Set it the result is zero; cleared otherwise.

V — Set if the original operand was 01111111; cleared otherwise.
C — Not affected.

Adds to the operand. The carry bit is not affected, thus allowing this
instruction to be used as a loop counter in multiple-precision com-
putations. When operating on unsigned values, only the BEQ and
BNE branches can be expected to behave consistently. When
operating on twos complement values, all signed branches are cor-
rectly available.

inherent
Extended
Direct
indexed

A-40

JMP Jump JMP

Source Form: JMP EA
Operation: PC'—EA

Condition Codes: Not affected.

Description: Program control is transferred to the effective address.
Addressing Modes: Extended

Direct

Indexed

A-41

J S R Jump to Subroutine J S R

Source Form: JSR EA

Operation: SP'—8P-1, (SP)—PCL
SP'—SP -1, (SP)~ PCH
PC'—EA

Condition Codes: Not affected.

Description: Program control is transferred to the effective address after storing
the return address on the hardware stack. A RTS instruction should
be the last executed instruction of the subroutine.

Addressing Modes: Extended

Direct
Indexed

A-42

L D (8' B it) Load Register from Memory L D (8' B it)

Source Forms: LDA P; LDB P
Operation: R'—M

Conditlon Codes: H — Not affected.
- N — Set if the loaded data is negative; cleared otherwise.
Z — Set if the loaded data is zero; cleared otherwise.
V — Always cleared.
C — Not affected.

Description: Loads the contents of memory location M into the designated
register.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-43

LD (1 6' Bit) Load Register from Memory L D (1 6' Bit)

Source Forms:
Operation:
Condition Codes:

Description:

Addressing Modes:

LDD P; LDX P: LDY P; LDS P; LDU P
R'—~MM +1

H — Not affected.

N — Set if the loaded data is negative; cleared otheriwse.
Z — Set if the loaded data is zero; cleared otherwise.

V — Always cleared.

C — Not atfected.

Load the contents of the memory location M:M+1 into the
designated 16-bit register.

immediate
Extended
Direct
Indexed

A-44

LEA

Saurce Forms:
Operation:

Condition Codes:

Description:

Addressing Mode:

Comments:

Load Effective Address L EA

LEAX, LEAY, LEAS, LEAU
R'—EA

H — Not affected.

N — Not affected.

Z — LEAX, LEAY: Set if the result is zero; cleared otherwise.
LEAS, LEAU: Not affected.

V — Not affected.

C — Not affected.

Calculates the effective address from the indexed addressing mode
and places the address in an indexable register.

LEAX and LEAY affect the Z (zero) bit to allow use of these registers
as counters and for MC6800 INX/DEX compatibility.

LEAU and LEAS do not affect the Z bit to allow cleaning up the stack
while returning the Z bit as a parameter to a calling routine, and also
for MC6800 INS/DES compatibility.

Indexed

Due to the order in which effective addresses are calculated inter-
nally, the LEAX, X+ 4+ and LEAX, X + do not add 2 and 1 (respective-
ly) to the X register; but instead leave the X register unchanged. This
also applies to the Y, U, and S registers. For the expected results,
use the faster instruction LEAX 2, X and LEAX 1, X.

Some examples of LEA instruction uses are given in the following
table.

Instruction Operation Comment

LEAX 10, X X+10-X Adds 5-bit constant 10 to X
LEAX 500, X X+5800-X Adds 18-bit constant 500 to X

LEAY AY Y+A-Y Adds 8-bit accumulator to Y
LEAY D, Y Y+D-Y Adds 16-bit D accumulator to Y
LEAU -10,U U-10-U Subtracts 10 from U

LEAS -10,S S-10-8 Used to reserve area on stack
LEAS 10,8 S+10-8 Used to ‘clean up’ stack

LEAX 55 S+5-X Transfers as well as adds

A-45

LSL

Source Forms:

Operation:

Conditlon Codes:

Description:

Addressing Modes:

Comments:

Logical Shift Left LS L

LSL Q; LSLA; LSLB

C— L b
b7 b0

H — Undefined.

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Loaded with the result of the exclusive OR of bits six and
seven of the original operand.

C — Loaded with bit seven of the original operand.

Shifts all bits of accumulator A or B or memory location M one place
to the ieft. Bit zero is loaded with a zero. Bit seven of accumulator A
or B or memory tocation M is shifted into the C (carry) bit.

Inherent
Extended
Direct
Indexed

This is a duplicate assembly-language mnemonic for the single
machine instruction ASL.

A-46

LSR

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Modes:

Logical Shiit Right LS R

LSR Q; LSRA; LSRB

O—»| —C

b7 b0

H — Not affected.

N — Always cleared.

Z — Set if the result is zero; cleared otherwise.
V — Not affected.

C — Loaded with bit zero of the original operand.

Performs a logical shift right on the operand. Shifts a zero into bit
seven and bit zero into the C (carry) bit.

Inherent
Extended
Direct
indexed

A-47

MUL

Source Form:
Operation:

Condition Codes:

Description:

Addressing Mode:
Comments:

— MUL

MUL
ACCA":ACCE’ — AUCA x ACCB

H — Not affected.

N — Not affected

Z — Set if the resuR is 2000 cleared otherwise.

V — Not affected.

C — Set if ACCS bt 7 of result is set; cleared otherwise.

Muitiply the uneigned binary numbers in the accumulators and
place the result in both accumulators (ACCA contains the most-
significant byte of the result). Unsigned multiply allows multiple-
precision operations.

inherent

The C (carry) bit aliows rounding the most-significant byte through
the sequence: MUL, ADCA #0.

A-48

NEG

Source Forms:
Operation:
Condition Codes:

Description:

Addressing Modes:

Negate N EG

NEG Q; NEGA; NEGB
M+—0-M

H — Undefined.

N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.

V — Set if the original operand was 10000000.

C - Set if a borrow is generated; cleared otherwise.

Replaces the operand with its twos complement. The C (carry) bit
represents a borrow and is set to the inverse of the resulting binary
carry. Note that 8016 is replaced by itself and only in this case is the
V (overflow) bit set. The value 001g is also replaced by itself, and only
in this case is the C (carry) bit cleared.

Inherent

Extended
Direct

A-49

N 0 P No Operation N 0 P

Source Form: NOP
Operation: Not affected.

Condition Codes: This instruction causes only the program counter to be incremented.
No other registers or memory locations are affected.

Addressing Mode: Inherent

A-50

OR Inclusive OR Memory into Register 0 R

Source Forms: ORAP,ORB P
Operation: R—~RvM

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Always cleared.
C — Not affected.

Description: Pertorms an inclusive OR operation between the contents of ac-
cumulator A or B and the contents of memory location M and the
result is stored in accumulator A or B.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-51

0 R inclusive OR Memory Immediate into Condition Code Register 0 R

Source Form: ORCC #XX

Operation: R'—Rv Ml

Condition Codes: Affected according to the operation.

Description: Performs an inclusive OR operation between the contents of the
condition code registers and the immediate value, and the result is
placed in the condition code register. This instruction may be used
to set interrupt masks (disable interrupts) or any other bit(s).

Addressing Mode: Immediate

A-52

PS H S Push Registers on the Hardware Stack PS H S

Source Form: PSHS register list
PSHS #LABEL
Postbyte:
b7 b6 bS5 b4 b3 b2 b1 bl
[rclu |y [x]op{B | Alcc|
push order~=«-a»

Operation: IFF b7 of postbyte set, then: SP'—8P -1, (SP)~—PCL
SP'—8P -1, (SP)—PCH
IFF b6 of postbyte set, then: SP'—SP -1, (SP}—USL
SP’—SP-1, (SP)—USH
IFF b5 of postbyte set, then: SP'—8SP -1, (SP)— 1YL
SP'—SP -1, (SP)—IYH
IFF b4 of postbyte set, then: SP'~—SP -1, (SP)—IXL
SP'—8SP 1, (SP)~—IXH
IFF b3 of postbyte set, then: SP'—8P -1, (SP)—DPR
IFF b2 of postbyte set, then: SP'—SP -1, (SP)— ACCB
IFF b1 of postbyte set, then: SP'~—SP -1, (SP)~— ACCA
IFF b0 of postbyte set, then: SP’—SP -1, (SP)~— CCR

Condition Codes: Not affected.

Description: All, soms, or none of the processor registers are pushed onto the
hardware stack (with the exception of the hardware stack pointer
itself).

Addressing Mode: Immediate

Comments: A single register may be placed on the stack with the condition

codes set by doing an autodecrement store onto the stack (example:
STX,- -8).

A-53

PSH U Push Registers on the User Stack Ps H U

Source Form: PSHU register list
PSHU #LABEL
Postbyte:

b? b6 b5 b4 b3 b2 bl bo
[PClu Y | x|prP{B{A]cCC|
push order----- -

Operation: IFF b7 of postbyte set, then: US'—US -1, (US}—PCL
Us'—Us -1, {US)—PCH
IFF b6 of postbyte set, then: US'—US -1, (US)—SPL
Us'—UuUs -1, {US)—SPH
IFF b5 of postbyte sat, then: US'—US -1, (US)—IYL
US'—US -1, (US)—IYH
IFF b4 of postbyte set, then: US'—US -1, (US)—IXL
US'—US —1, (US)—IXH
IFF b3 of postbyte set, then: US'—US -1, {US)—DPR
IFF b2 of postbyte set, then: US'—US -1, (US)—ACCB
IFF b1 of postbyte set, then: US'—US -1, {US)—ACCA
IFF b0 of postbyte set, then: U8’ +—US -1, (US)—CCR

Condition Codes: Not affected.

Description: All, some, or none of the processor registers are pushed onto the
user stack (with the exception of the user stack pointer itself).

Addressing Mode: Immediate
Comments: A single register may be placed on the stack with the condition

codes set by doing an autodecrement store onto the stack (example:
STX ,— — Ul

A-54

PU LS Pull Reglsters from the Hardware Stack PU LS

Source Form: PULS register list
PULS #LLABEL
Postbyte:

b7 b6 b5 b4 b3 b2 b1 bl
[rclu]y [x]|prPlB | Alcc]
-« e pull order

Operation: IFF b0 of postbyte set, then: CCR' —(SP), SP'—SP +1
IFF b1 of postbyte set, then: ACCA'~(SP), SP'~SP +1
IFF b2 of postbyte set, then: ACCB' «(SP), SP'~SP+1
IFF b3 of postbyte set, then: DPR' —(SP), SP'~—S8P+1
IFF b4 of postbyte set, then: IXH' «—{(SP), SP'~—SP+1

IXL' —{SP), SP'~—SP+1
IFF b5 of postbyte set, then: IYH' ~—{SP), SP'—SP+1
IYL' —(SP),SP'—SP+1
IFF b6 of postbyte set, then: USH' —(SP), SP'~—SP +1
USL’ —(SP), SP'~—SP+1
IFF b7 of postbyte set, then: PCH’' -—(SP), SP'—SP +1
PCL' ~—(SP), SP'—SP+1

Condition Codes: May be pulled from stack; not affected otherwise.

Description: All, some, or none of the processor registers are putled from the
hardware stack {with the exception of the hardware stack pointer
itself).

Addressing Mode: immediate

Comments: A single register may be pulled from the stack with condition codes

set by doing an autoincrement load from the stack (example:
LDX ,S+ +).

A-55

PULU PULU

Pull Registers from the User Stack

Source Form: PULU register list
PULU #LABEL
Postbyte:
b7 b6 bS5 b4 b3 b2 b1 b0
(Pcfu [y Ix|ppfB | A]cc
‘- pull order
Operation: IFF b0 of postbyte set, then: CCR’ —(US), US'—US +1

IFF b1 of postbyte set, then:
IFF b2 of postbhyte set, then:

ACCA’ —(US), US'—US + 1
ACCB' ~(US), US'—US +1

IFF b3 of postbyte set, then:
{FF b4 of postbyte set, then:

DPR' —{US), US'—US +1
IXH' —{US), US'—US +1
IXL' +-(US), US'—US +1
IYH' —{US), US'—US +1
IYL® —{US), US'—US +1
SPH' —(US), US'—US +1
SPL’ «—{US), US'—US +1
PCH —{US), US'—US +1
PCL’ —{US), US'—US +1

IFF b5 of postbyte set, then:
IFF b6 of postbyte set, then:

IFF b7 of postbyte set, then:

Condition Codes: May be pulited from stack; not affected otherwise.

Description: All, some, or none of the processor registers are pulled from the user
stack (with the exception of the user stack pointer itself).

Addressing Mode: Immediate

Comments: A single register may be pulied from the stack with condition codes
set by doing an autoincrement load from the stack {example:

LDX U+ +).

A-56

ROL

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Mode:

Rotate Left RO L

ROL Q; ROLA; ROLB

L=
o 19

b7 b0

H — Not affected.

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Loaded with the result of the exclusive OR of bits six and
seven of the original operand.

C — Loaded with bit seven of the criginal operand.

Rotates all bits of the operand one place left through the C (carry)
bit. This is a 9-bit rotation.

inherent
Extended
Direct
Indexed

A-57

RO R Rotate Right RO R

Source Forms: ROR Q; RORA; RORB

Operation: @f
t |

b7 * b0

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Not affected.
C — Loaded with bit zero of the previous operand.

Description: Rotates all bits of the operand one place right through the C (carry}
bit. This is a 9-bit rotation.

Addressing Modes: Inherent
Extended
Direct
Indexed

A-58

RTI Return from Interrupt RTI

Source Form: RTI
Operation: CCR'~—(SP), SP'~—SP + 1, then

IFF CCR bit E is set, then: ACCA’'—(SP), SP'—S8P +1
ACCB' —(SP), SP'—SP +1
DPR’ «~(SP), SP'—SP+1
IXH* (8P}, SP'—SP + 1
IXL' «(SP}, SP'~—SP+1
IYH' < (SP), SP'—SP +1
IYL" <« (SP), SP'—SP +1
USH' -—(SP), SP'—SP+1
USL' —(SP),SP'—SP+1
PCH' ~—(SP), SP'—SP +1
PCL’ «(SP), SP'~—SP+1

IFF CCR bit E is clear, then: PCH' «—(SP), SP'— SP+ 1
PCL' - (SP), SP'~SP +1

Conditlon Codes: Recovered from the stack.

Description: The saved machine state is recovered from the hardware stack and
control is returned to the interrupted program. If the recovered E (en-
tire) bit is clear, it indicates that only a subset of the machine state
was saved (return address and condition codes) and only that subset
is recovered.

Addressing Mode: inherent

A-59

RTS

Source Form:

Operation:

Condition Codes:

Description:

Addressing Mode:

Return from Subroutine RTS

RTS

PCH’ —(SP), SP'—SP + 1
PCL’ = (SP), SP' —SP + 1

Not affected.

Program control is returned from the subroutine to the calling pro-
gram. The return address is pulled from the stack.

Inherent

A-60

S B C Subtract with Borrow S B C

Source Forms: SBCA P; SBCB P
Operation: R'~R-M-C

Condition Codes: H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if an overflow is generated; cleared otherwise.
C — Set if a borrow is generated; cleared otherwise.

Description: Subtracts the contents of memory jocation M and the borrow (in the
C (carry) bit) from the contents of the designated 8-bit register, and
places the result in that register. The C bit represents a borrow and
is set to the inverse of the resulting binary carry.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-61

S Ex Sign Extended S EX

Source Form: SEX

Operatlon: If bit seven of ACCB is set then ACCA’'~—FF1g
else ACCA’—001¢

Condition Codes: H — Not affected.
N — Set if the result Is negative; cleared otherwiss.
Z — Set It the result is zero; cleared otherwise.
V — Not affected.
C -— Not affected.

Description: This instruction transforms a twos complement 8-bit value in ac-
cumulator B into a twos complement 16-bit value in the D ac-
cumulator.

Addressing Mode: inherent

A-62

ST (8" B it) Store Register into Memory ST (8' B it)

Source Forms: STAP,STBP
Operation: M'—R

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Always cleared.
C — Not affected.

Description: Writes the contents of an 8-bit register into a memory location.
Addressing Modes: Extended

Direct

Indexed

A-63

ST (1 B'Bit) Store Register Into Memory ST (1 6'Bit)

Source Forms: STD P; STX P; STY P; STS P; STU P
Operation: M'"M+1t+~—R

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Always cleared.
C — Not affected.

Description: Writes the contents of a 16-bit register into two consecutive memory
locations.

Addressing Modes: Extended

Direct
Indexed

A-64

S U B (8' Bit) Subtract Memory from Register S U B (8" B it)

Source Forms: SUBA P; SUBB P
Operation: R~—-R-M

Condition Codes: H — Undefined. _
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if the overflow is generated; cleared otherwise.
C — Set if a borrow is generated; cleared otherwise.

Description: Subtracts the value in memory location M from the contents of a
designated 8-bit register. The C (carry) bit represents a borsow and is
set to the inverse of the resulting binary carry.

Addressing Modes: Immesdiate
Extended
Direct
Indexed

A-65

SU B (1 6'Bit) Subtract Memory from Register SU B (1 6'Bit)

Source Forms: SuUBD P
Operation: R'—R - M\M+1

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if the overflow is generated; cleared otherwise.
C — Set if a borrow is generated; cleared otherwise.

Description: Subtracts the value in memory location M:M + 1 from the contents of
a designated 16-bit register. The C (carry)} bit represents a borrow
and is set to the inverse of the resulting binary carry.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-66

SWI Software Interrupt SW'

Source Form: SWi

Operation: Set £ (entire state will be saved)
SP'—SP-1, (SP)—PCL
SP'—SP-1, (SP)~PCH
SP'~—8SP -1, {(SP)—USL
SP'—S8SP-1, (SP)~—USH
SP'+—8P -1, (SP)—IYL
SP'—8P -1, (SP)~—IYH
SP'—8P-1, (SP)—IXL
SP'—SP -1, (SP)—IXH
SP'—SP-1, (SP)~—DPR
SP'—SP-1, (SP)—ACCB
SP'—SP -1, (SP)—ACCA
SP'—SP -1, (8P)—CCR
Set |, F {mask interrupts)
PC’'— (FFFA)(FFFB)

Condition Codes: Not atfected.

Description: All of the processor registers are pushed onto the hardware stack
(with the exception of the hardware stack pointer itself), and control
is transferred through the software interrupt vector. Both the normal
and fast interrupts are masked {(disabled).

Addressing Mode: Inherent

A-67

SWI2

Source Form:

Operation:

Condition Codes:

Description:

Addressing Mode:

Software Interrupt 2

SwWi2

Set E (entire state saved)
SP'—SP —1, (SP}—PCL
SP'—SP -1, (SP)—PCH
SP'—SP -1, (SP)~—USL
SP'—SP -1, (SP)~—USH
SP'—SP -1, (SP(—IYL
SP'~-SP -1, (SP)—IYH
SP' —SP -1, (SP)~IXL
SP'—SP -1, (SP)—IXH
SP’'~-SP -1, (SP)~DPR
SP'—SP -1, {SP)~— ACCB
SP'—SP -1, (SP)—ACCA
SP'—SP -1, (SP)~—CCR
PC’ — (FFF4).(FFF5)

Not affected.

SWI2

All of the processor registers are pushed onto the hardware stack
(with the exception of the hardware stack pointer itself), and control
is transferred through the software interrupt 2 vector. This interrupt
is available to the end user and must not be used in packaged soft-
ware. This interrupt does not mask (disable) the normal and fast in-

terrupts.

Inherent

A-68

SW I 3 Software Interrupt 3 SWI 3

Source Form: SWI 3

Operation: Set E (entire state will be saved)
SP'—SP -1, (SP)~—PCL
SP'—SP-1, (SP)—PCH
SP'«—SP -1, (SP)~—USL
SP'—SP -1, (SP)—USH
SP'—SP -1, {SP)—IYL
SP'«~SP -1, (SP)~—IYH
SP'—SP -1, (SP)—IXL
SP'«~—8SP -1, (SP)—IXH
SP'—SP -1, (SP)—DPR
SP'—SP-1, (SP)~—ACCB
SP'—SP -1, (SP)~— ACCA
SP'+—SP -1, (SP)~—CCR
PC'— (FFF2){FFF3)

Condition Codes: Not affected.

Description: All of the processor registers are pushed onto the hardware stack
(with the exception of the hardware stack pointer itseif), and control
is transferred through the software interrupt 3 vector. This interrupt
does not mask (disable) the normal and fast interrupts.

Addressing Mode: Inherent

A-69

SYNC

Source Form:
Operation:
Conditlon Codes:

Description:

Addressing Mode:

Synchronize to External Event SY N C

SYNC
Stop processing instructions
Not affected.

When a SYNC instruction is excuted, the processor enters a syn-
chronizing state, stops processing instructions, and waits for an In-
terrupt. When an interrupt occurs, the synchronizing state is cleared
and processing continues. If the interrupt is enabled, and it lasts
three cycles or more, the processor will perform the interrupt
routine. if the interrupt is masked or is shorter than three cycles, the
processor simply continues to the next instruction. While in the syn-
chronizing state, the address and data buses are in the high-
impedance state.

This instruction provides software synchronization with a hardware
process. Consider the foliowing example for high-speed acquisition
of data:

FAST SYNC WAIT FOR DATA
Iinterrupt!
LDA DISC DATA FROM DISC AND CLEAR INTERRUPT
STA X+ PUTIN BUFFER
DECB COUNT IT, DONE?
BNE FAST GO AGAIN IF NOT.

The synchronizing state is cleared by any interrupt. Ot course, enabl-
ed interrupts at this point may destroy the data transfer and, as
such, should represent only emergency conditions.

The same connection used for interrupt-driven I/O service may aiso
be used for high-speed data transfers by setting the interrupt mask
and using the SYNC instruction as the above example
demonstrates.

inherent

A-70

TFR

Source Form:
Operation:
Condition Code:

Description:

Addressing Mode:

Transfer Register to Register T F R

TFR R1, R2

R1—R2

Not affected unless R2 is the condition code register.

Transfers data between two designated registers. Bits 7-4 of the

postbyte define the source register, while bits 3-0 define the destina-
tion register, as follows:

0000=A:B 1000=A

0001 =X 1001 =B
0010=Y 1010=CCR
0011=US 1011=DPR
0100=8P 1100 = Undefined
0101 =PC 1101 = Undefined

0110 =Undefined 1110 =Undefined
0111 = Undefined 1111 = Undefined

Only like size registers may be transferred. (8-bit to 8-bit, or 16-bit to
16-bit.)

Immediate

A-71

TST

Source Forms:
Operation:

Condition Codes:

Description:

Addressing Modes:

Comments:

Test TST

TST Q, TSTA; TSTB
TEMP—M -0

H -— Not affected.

N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise,

V — Always cleared.

C — Not affected.

Set the N {negative) and Z {(zero) bits according to the contents of
memory location M, and clear the V (overflow) bit. The TST instruc-
tion provides only minimum information when testing unsigned
values; since no unsigned value is less than zero, BLO and BLS have
no utility. While BHI could be used after TST, it provides exactly the
same control as BNE, which is preferred. The signed branches are
available.

Inherent
Extended
Direct
Indexed

The MCB800 processor clears the C (carry) bit.

A-72

FIRQ

Operation:

Condition Codes:

Description:

Addressing Mode:

Fast Interrupt Request (Hardware Interrupt) FI RQ

\FF F bit clear, then: SP'—SP -1, (SP)—PCL
SP'—SP -1, (SP)~—PCH
Clear E (subset state is saved)
SP'+—-SP -1, (SP)—CCR
Set F, | (mask further interrupts)
PC’'—(FFFB6):(FFF7)

Not affected.

A FIRQ (fast interrupt request) with the F (fast interrupt request
mask) bit clear causes this interrupt sequence to occur at the end of
the current instruction. The program counter and condition code
register are pushed onto the hardware stack. Program control is
transferred through the fast interrupt request vector. An RTI {return
from interrupt) instruction returns the processor to the original task.
It is possible to enter the fast interrupt request routine with the en-
tire machine state saved if the fast interrupt request occurs after a
clear and wait for interrupt instruction. A normal interrupt request
has lower priority than the fast interrupt request and is prevented
from interrupting the fast interrupt request routine by automatic set-
ting of the I (interrupt request mask) bit. This mask bit could then be
reset during the interrupt routine if priority was not desired. The fast
interrupt request allows operations on memory, TST, INC, DEC, etc.
instructions without the overhead of saving the entire machine state
on the stack.

Inherent

A-73

I RQ Interrupt Request (Hardware Interrupt) I RQ

Operation: \FF | bit clear, then: SP'—SP -1, (SP)—PCL
SP'—SP -1, (SP)~—PCH
SP'—SP -1, (SP)~—USL
SP'~-SP -1, (SP)—USH
SP'—SP -1, (SP)—IYL
SP'—SP -1, (SP)~-1YH
SP'—SP -1, (SP)~IXL
SP'—SP -1, (SP})—IXH
SP'+—SP -1, (SP)~—DPR
SP'—SP -1, (SP}—ACCB
SP'—SP -1, (SP)—ACCA
Set E (entire state saved)
SP'—SP -1, (SP)—CCR
Set I (mask further IRQ interrupts)
PC'—(FFF8):(FFF9)

Condition Codes: Not affected.

Description: If the | (interrupt request mask) bit is clear, a iow level on the IRQ in-
put causes this interrupt sequence to occur at the end of the current
instruction. Control is returned to the interrupted program using a
RTI (return from interrupt) instruction. A FIRQ (fast interrupt request)
may interrupt a normal 1RQ (interrupt request) routine and be
recognized anytime after the interrupt vector is taken.

Addressing Mode: Inherent

A-74

NMI

Operation:

Condition Codes:

Description:

Addressing Mode:

Non-Maskable Interrupt (Hardware Interrupt)

SP'~—SP -1, (SP)~—PCL
SP'—SP-1, (SP}—PCH
SP'—S8P -1, (SP)~—USL
SP'— 8P -1, (SP)—USH
SP'+—SP -1, (SP)—1YL
SP'+-8P -1, {SP)~—IYH
SP'~—8P -1, (SP)—IXL
SP'—S8P -1, (SP)«—IXH
SP'—SP -1, (SP)~DPR
SP'—SP-1, (SP)—ACCB
SP'—S8P -1, (SP)—ACCA
Set E {entire state save)
SP'—8P -1, {(SP)~—CCR
Set |, F {(mask interrupts)
PC’'—(FFFC):(FFFD)

Not affected.

A negative edge on the NMI (non-maskable interrupt) input causes
all of the processor’s registers (except the hardware stack pointer)
to be pushed onto the hardware stack, starting at the end of the cur-
rent instruction. Program control is transferred through the NMI vec-
tor. Successive negative edges on the NMI input will cause suc-
cessive NMI operations. Non-maskable interrupt operation can be
internaily blocked by a RESET operation and any non-maskable in-
terrupt that occurs will be latched. If this happens, the non-
maskabie interrupt operation will occur after the first load into the
stack pointer (LDS; TFR r,s; EXG r,s; etc.) after RESET.

Inherent

A-75

R ESTA RT Restart (Hardware Interrupt) R ESTA RT

Operation: CCR'— X1X1XXXX
DPR'— 0016
PC'—(FFFE)(FFFF)

Condition Codes: Not affected.

Description: The processor is initialized (required after power-on) to start pro-
gram execution. The starting address is fetched from the restart vec-
tor.

Addressing Mode: Extended Indirect

A-76

APPENDIX B
ASSIST09 MONITOR PROGRAM

B.1 GENERAL DESCRIPTION

The M6809 is a high-performance microprocessor which supports modern programming
techniques such as position-independent, reentrancy, and modular programming. For a
software monitor to take advantage of such capabilities demands a more refined and
sophisticated user interface than that provided by previous monitors. ASSIST09 is a
monitor which supports the advanced features that the M6809 makes possible.
ASSISTO09 features include the following:

® Coded in a position (address) independent manner. Will execute anywhere in the
64K address space.

® Multiple means available for installing user modifications and extensions.

® Full complement of commands for program development including breakpoint and
trace.

® Sophisticated monitor calls for completely address-independent user program ser-
vices.

® RAM work area is located relative to the ASSIST09 ROM, not at a fixed address as
with other monitors.

® Easily adapted to real-time environments.

® Hooks for user command tables, /0 handlers, and default specifications.

® A complete user interface with services normally only seen in full disk operating
systems.

The concise instruction set of the M6809 allows all of these functions and more to be
contained in only 2048 bytes.

The ASSIST09 monitor is easily adapted to run under control of a real-time operating
system. A special function is available which allows voluntary time-slicing, as well as
forced time-slicing upon the use of several service routines by a user program.

B.2 IMPLEMENTATION REQUIREMENTS

Since ASSIST09 was coded in an address-independent manner, it will properly execute
anywhere in the 64K address space of the M6809. However, an assumption must be made
regarding the location of a work area needed to hold miscellaneous variables and the
default stack location. This work area is called the page work area and it is addressed
within ASSIST09 by use of the direct page register. It is located relative to the start of the

B-1

ASSIST09 ROM by an offset of —1900 hexadecimal. Assuming ASSISTO09 resides at the
top of the memory address space for direct control of the hardware interrupt vectors, the
memory map would appear as shown in Figure B-1.

FFFF ASSISTOS at Top of
ASSISTO08 Memory Map
Base ROM

F800 Extension ROM or Other Use

User
Extension ROM

FO0O Unused 2K
(Unused)
EB00 Default PTM and ACIA
Locations
PTM/ACIA
EQOO Work Page and Default
Work Page/Stack Stack (DFFF and Down)

A~

Figure B-1. Memory Map

If F800 is not the start of the monitor ROM the addresses would change, but the relative
locations would remain the same except for the programmable timer module (PTM) and
asynchronous communications interface adapter (ACIA) default addresses which are fix-
ed.

The default console input/output handlers access an ACIA located at E008. For trace
commands, a PTM with default address E00O is used to force an NMI so that single in-
structions may be executed. These default addresses may easily be changed using one
of several methods. The console /O handlers may also be replaced by user routines. The
PTM is initialized during the MONITR service call (see Paragraph B.9 SERVICES) to fireup
the monitor unless its default address has been changed to zero, in which case no PTM
references will occur.

B.3 INTERRUPT CONTROL

Upon reset, a vector table is created which contains, among other things, default inter-
rupt vector handler appendage addresses. These routines may easily be replaced by user
appendages with the vector swap service described later. The default actions taken by
the appendages are as follows:

RESET — Build the ASSISTO09 vector table and setup monitor defaults, then invoke
the monitor startup routine.

SWI — Request a service from ASSISTO09.
FIRQ — An immediate RTI is done.

SWI2, SWI3, IRQ, Reserved, NMI — Force a breakpoint and enter the command
processor.

B-2

The use of IRQ is recommended as an abort function during program debugging ses-
sions, as breakpoints and other ASSIST09 defaults are reinitialized upon RESET. Only the
primary software interrupt instruction (SWI) is used, not the SWI2 or SWI3. This avoids
page fault problems which would otherwise occur with a memory management unit as
the SWI2 and SWI3 instructions do not disable interrupts.

Counter number one of the PTM is used to cause an NMT interrupt for the trace and break-
point commands. At RESET the control register for timer one is initialized for tracing pur-
poses. If no tracing or breakpointing is done then the entire PTM is available to the user.
Otherwise, only counters two and three are available. Although control register two must
be used to initialize control register one, ASSIST09 returns control register two to the
same value it has after a RESET occurs. Therefore, the only condition imposed on a user
program is that if the “‘operate/preset” bit in control register one must be turned on, $A7
should be stored, $A6 should be stored if it must be turned off.

B.4 INITIALIZATION

During ASSIST09 execution, a vector table is used to address certain service routines
and default values. This table is generated to provide easily changed control information
for user modifications. The first byte of the ASSISTO9 ROM contains the start of a
subroutine which initializes the vector table along with setting up certain default values
before returning to the caller.

If the ASSIST09 RESET vector receives control, it does three things:
1. Assigns a default stack in the work space,
2. Calls the aforementioned subroutine to initialize the vector table, and
3. Fires up the ASSIST09 monitor proper with a MONITR SWI service request.

However, a user routine can perform the same functions with a bonus. After calling the
vector intitialization subroutine, it may examine or alter any of the vector table values
before starting normal ASSIST09 processing. Thus, a user routine may “bootstrap”
ASSIST09 and alter the default standard values.

Another method of inserting user modifications is to have a user routine reside at an ex-
tension ROM location 2K below the start of the ASSIST09 ROM. The vector table in-
itialization routine mentioned above, looks for a “BRA*” flag ($20FE) at this address, and
if found calls the location following the flag as a subroutine with the U register pointing
to the vector table. Since this is done after vector table initialization, any or all defaults
may be altered at this time. A big advantage to using this method is that the modifica-
tions are “automatic” in that upon a RESET condition the changes are made without
overt action required such as the execution of a memory change command.

No special stack is used during ASSIST09 processing. This means that the stack pointer
must be valid at all interruptable times and should contain enough room for the stacking
of at least 21 bytes of information. The stack in use during the initial MONITR service call
to start up ASSIST09 processing becomes the “official”’ stack. If any later stack validity
checks occur, this same stack will be re-based before entering the command handler.

B-3

ASSIST09 uses a work area which is addressed at an offset from the start of the
ASSIST09 ROM. The offset value is —1900 hexadecimal. This points to the base page us-
ed during monitor execution and contains the vector table as well as the start of the
default stack. If the default stack is used and it exceeds 81 bytes in size, then contiguous
RAM must exist below this base work page for proper extension of the stack.

B5. INPUT/OUTPUT CONTROL

Output generated by use of the ASSIST09 services may be halted by pressing any key,
causing a ‘FREEZE’ mode to be entered. The next keyboard entry will release this condi-
tion allowing normal output to continue. Commands which generate large amounts of
output may be aborted by entering CANCEL (CONTROL-X). User programs may also
monitor for CANCEL along with the ‘FREEZE’ condition even when not performing con-
sole 1/0 (PAUSE service).

B.6 COMMAND FORMAT

There are three possible formats for a command:
<Command> CR

<Command> < Expression1i> CR
<Command> < Expression1> <Expression2> CR

The space character is used as the delimiter between the command and all arguments.
Two special quick commands need no carriage return, “”and “/”. To re-enter a command
once a mistake is made, type the CANCEL (CONTROL-X) key.

Each “expression” above consists of one or more values separated by an operator.
Values can be hex strings, the letters “P”, “M”, and “W”, or the result of a function. Each
hexadecimal string is converted internally to a 16-bit binary number. The letter “P”
stands for the current program counter, “M” for the last memory examine/change ad-
dress, and “W” for the window value. The window value is set by using the WINDOW
command.

One function exists and it is the INDIRECT function. The character “@” foliowing a value
replaces that value with the 16-bit number obtained by using that value as an address.

Two operators are allowed, “ +” and *“ —"" which cause addition and subtraction. Values
are operated on in a left-to-right order.
Examples:

480 — hexadecimal 480

W + 3 — value of window plus three

P-200 — current program counter minus 200 hexadecimal

M —W — current memory pointer minus window value

100@ — value of word addressed by the two bytes at 100 hexadecimal

P + 1@ — value addressed by the word located one byte up from the current program
counter

B-4

B.7 COMMAND LIST

Table B-1 lists the commands available in the ASSIST09 monitor.

Table B-1. Command List

Command Name Description Command Entry
Breakpoint Set, clear, display, or delete breakpoints B
Call Call program as subroutine C
Display Display memory block in hex and ASCII D
Encode Return indexed postbyte value E
Go Start or resume program execution G
Load Load memory from tape L
Memory Examine or alter memory M

Memory change or examine last referenced /

Memory change or examine hex/
Null Set new character and new line padding N
Offset Compute branch offsets o
Punch Punch memory on tape P
Registers Display or alter registers R
Stlevel Alter stack trace level value S
Trace Trace number of instructions T

Trace one instruction .
Verify Verify tape to memory load \
Window Set a window valye w

B.8 COMMANDS
Each of the commands are explained on the following pages. They are arranged in

alphabetical order by the command name used in the command list. The command name
appears at each margin and in slightly larger type for easy reference.

B-5

BREAKPOINT BREAKPOINT

Format: Breakpoint
Breakpoint —
Breakpoint <Address>
Breakpoint — < Address>

Operation: Set or change the breakpoint table. The first format displays all breakpoints.
The second clears the breakpoint table. The third enters an address into the
table. The fourth deletes an address from the table. At reset, all breakpoints
are deleted. Only instructions in RAM may be breakpointed.

CALL CALL

Format: Call
Call < Address>

Operation: Call and execute a user routine as a subroutine. The current program counter
will be used unless the address is specified. The user routine should eventual-
ly terminate with a “RTS” instruction. When this occurs, a breakpoint will en-
sue and the program counter will point into the monitor.

B-6

DISPLAY DISPLAY

Format: Display <From>
Display < From> <Length>
Display < From> <To>

Operation: Display contents of memory in hexadecimal and ASCII characters. The se-
cond argument, when entered, is taken to be a length if it is less than the first,
otherwise it is the ending address. A default length of 16 decimal is assumed
for the first format. The addresses are adjusted to iricluce all bytes within the
surrounding modulo 16 address byte boundary. The CANCEL (CONTROL-X)
key may be entered to abort the display. Care must be exercised when the last
15 bytes of memory are to be displayed. The < Length> option should always
be used in this case to assure proper termination: D FFEOQ 40

Examples:

D M 10 — Display 16 bytes surrounding the last memory
location examined.

D EO00 FO000 — Display memory from EQ00 to FOOO hex.

ENCODE ENCODE

Format: Encode <Indexed operand>

Operation: The encode command will return the indexing instruction mode postbyte
value from the entered assembler-like syntax operand. This is useful when
hand coding instructions. The letter “H” is used to indicate the number of hex
digits needed in the expression as shown in the following examples:

E\Y — Return zero offset to Y register postbyte.

E [HHHH,PCR] — Return two byte PCR offset using indirection.
E[[S+ +] — Return autoincrement S by two indirect.

E HX — Return 5-bit offset from X.

Note that one “H” specifies a 5-bit offset, and that the result given will have
zeros in the offset value position. This comand does not detect all incorrectly
specified syntax or illegal indexing modes.

B-7

GO GO

Format: Go
Go < Address>

Operation: Execute starting from the address given. The first format will continue from
the current program counter setting. If it is a breakpoint no break will be
taken. This allows continuation from a breakpoint. The second format will
breakpoint if the address specified is in the breakpoint list.

LOAD LOAD

Format: Load
Load < Offset>

Operation: Load a tape file created using the S1-S9 format. The offset option, if used, is
added to the address on the tape to specify the actual load address. All off-
sets are positive, but wrap around memory modulo 64K. Depending on the
equipment involved, after the load is complete a few spurious characters may
still be sent by the input device and interpreted as command characters. If
this happens, a CANCEL (CONTROL-X) should be entered to cause such
characters to be ignored. If the load was not successful a “?” is displayed.

B-8

MEMORY MEMORY

Format: MEMORY < Address>/
< Address>/
/

Operation: Initiate the memory examine/change function. The second format will not ac-
cept an expression for the address, only a hex string. The third format
defaults to the address displayed during the last memory changelexamine
function. (The same value is obtained in expressions by use of the letter “M"’.)
After activation, the following actions may be taken until a carriage return is

entered:

<Expr> Replaces the byte with the specified value. The value may
be an expression.

SPACE Go to next address and print the byte value.

, (Comma) Go to next address without printing the byte
value.

LF (Line feed) Go to next address and print it along with the
byte value on the next line.

A (Circumflex or Up arrow) Go the previous address and print
it along with the byte value on the next line.

/ Print the current address with the byte value on the next
line.

CR (Carriage return) Terminate the command.

‘< Text>’ Replace succeeding bytes with ASCII characters until the

second apostrophe is entered.

If a change attempt fails (i.e., the location is not valid RAM) then a question
mark will appear and the next location displayed.

B-9

NULL NULL

Format: Null <Specification>

Operation: Set the new line and character padding count values. The expression value is
treated as two values. The upper two hex represent the character pad count,
and the lower two the new line pad count (triggered by a carriage return). An
expression of less than three hex digits will set the character pad count to
zero. The values must range from zero to 7F hexadecimal (127 decimal).
Example:

N 3 — Set the character count to zero and new line count
to three.

N 207 — Set character padding count to two and new line
count to seven.

Settings for Tl Silent 700 terminals are:
Baud Setting

100 0

300 4
1200 317
2400 72F

OFFSET | OFFSET

Format: Offset <Offset addr> <To instruction>

Operation: Print the one and two byte offsets needed to perform a branch from the first
expression to the instruction. Thus, offsets for branches as well as indexed
mode instructions which use offsets may be obtained. If only a four byte
value is printed, then a short branch count cannot be done between the two
addresses.

Example:

0 P+2 A000 — Compute offsets needed from the current pro-
gram counter plus two to A0OO.

B-10

PUNCH PUNCH

Format: Punch <From> <To>

Operation: Punch or record formatted binary object tape in $1-S9 (MIKBUG) format.

REGISTER REGISTER

Format: Register

Operation: Print the register set and prompt for a change. At each prompt the following
may be entered.

SPACE Skip to the next register prompt

<Expr> SPACE Replace with the specified value and prompt for the next
register.

<Expr> CR (carriage return) Replace with the specified value and ter-
minate the command.

CR Terminate the command.

MIKBUG is a trademark of Motorola Inc.

B-11

STLEVEL STLEVEL

Format:

Operation:

Stlevel
Stlevel < Address>

Set the stack trace level for inhibiting tracing information. As long as the
stack is at or above the stack level address, the trace display will continue.
However, when lower than the address it is inhibited. This allows tracing of a
routine without including all subroutine and lower level calls in the trace in-
formation. Note that tracing through a ASSIST09 “SWI” service request may
also temporarily supress trace output as explained in the description of the
trace command. The first format sets the stack trace level to the current pro-
gram stack value.

TRACE TRACE

Format:

Operation:

Trace <Count>
. (period)

Trace the specified number of instructions. At each trace, the opcode just ex-
ecuted will be shown along with the register set. The program counter in the
register display points to the NEXT instruction to be executed. A CANCEL
(CONTROL-X) will prematurely halt tracing. The second format (period) will
cause a single trace to occur. Breakpoints have no effect during the trace.
Selected portions of a trace may be disabled using the STLEVEL command.
Instructions in ROM and RAM may be traced, whereas breakpoints may be
done only in RAM. When tracing through a ASSIST09 service request, the
trace display will be supressed starting two instructions into the monitor until
shortly before control is returned to the user program. This is done to avoid an
inordinate amount of displaying because ASSIST09, at times, performs a
sizeable amount of processing to provide the requested services.

B-12

VERIFY VERIFY

Format: Verify
Verify <Offset>

Operation: Verify or compare the contents of memory to the tape file. This command has

the same format and operation as a LOAD command except the file is com-
pared to memory. If the verify fails for any reason a “?” is displayed.

WINDOW WINDOW

Format: Window <Value>

Operation: Set the window to a value. This value may be referred to when entering ex-
pressions by use of the letter “W”. The window may be set to any 16-bit value.

B-13

B.9 SERVICES

The following describes services provided by the ASSIST09 monitor. These services are
invoked by using the “SWI” instruction followed by a one byte function code. All services
are designed to allow complete address independence both in invocation and operation.
Unless specified otherwise, all registers are transparent over the “SWI” call. In the
following descriptions, the terms “input handler” and “output handler” are used to refer
to appendage routines which may be replaced by the user. The default routines perform
standard 1/0 through an ACIA for console operations to a terminal. The ASCII CANCEL
code can be entered on most terminals by depressing the CONTROL and X keys
simultaneously. A list of services is given in Table B-2.

Table B-2. Services

Service Entry Code Description
Obtain input character INCHP 0 Obtain the input character in register A from the input handler
Output a character OUTCH 1 Send the character in the register A to the output handler
Send string PDATA1 2 Send a string of characters to the output handler
Send new line and string PDATA 3 Send a carriage return, line feed, and string of characters to the

output handler

Convert byte to hex OUT2HS 4 Display the byte pointed to by the X register in hex
Convert word to hex OUT4HS 5 Display the word pointed to by the X register in hex
Output to next line PCRLF 6 Send a carriage return and line feed to the output handler
Send space SPACE 7 Send a blank to the output handler

Fireup ASSIST09 MONITR 8 Enter the ASSISTO2 monitor

Vector swap VCTRSW 9 Examine or exchange a vector table entry

User breakpoint BRKPT 10 Dispiay registers and enter the command handler

Program break and check PAUSE 1" Stop processing and check for a freeze or cancel condition

B-14

B R K PT User Breakpoint B R K PT

Code: 10
Arguments: None

Result: A disabled breakpoint is taken. The registers are displayed and the com-
mand handler of ASSISTO9 is entered.

Description: Establishes user breakpoints. Both SWI2 and SWI3 default appendages
cause a breakpoint as well, but do not set the | and F mask bits. However,
since they may both be replaced by user routines the breakpoint service
always ensures breakpoint availability. These user breakpoints have
nothing to do with system breakpoints which are handled differently by the
ASSIST09 monitor.

Example: BRKPT EQU 10 INPUT CODE FOR BRKPT
SWI REQUEST SERVICE
FCB BRKPT FUNCTION CODE BYTE

I N C H P Obtain Input Character l N C H P

Code: 0
Arguments: None
Result: Register A contains a character obtained from the input handler.

Description: Control is not returned until a valid input character is received from the in-
put handler. The input character will have its parity bit (bit 7) stripped and
forced to a zero. All NULL ($00) and RUBOUT ($7F) characters are ignored
and not returned to the caller. The ECHO flag, which may be changed by
the vector SWAP service, determines whether or not the input character is
echoed to the output handler (full duplex operation). The default at reset is
to echo input. When a carriage return ($0D) is received, line feed ($A0) is
automatically sent back to the output handler.

Example: INCHNP EQUO INPUT CODE FOR INCHP
SWiI PERFORM SERVICE CALL
FCB INCHNP FUNCTION FOR INCHNP

A REGISTER NOW CONTAINS NEXT CHARACTER

B-15

MONITR Startup ASSIST09 MONITR

Code:

Arguments:

Result:

Description:

Example:

8

S— Stack to become the “official” stack

DP— Direct page default for executed user programs

A =0 Call input and output console initialization handlers and give the
“ASSIST09” startup message

A#0 Go directly to the command handler

ASSISTO09 is entered and the comand handler given control

The purpose for this function is to enter ASSIST09, either after a system
reset, or when a user program desires to terminate. Control is not returned
unless a “GO” or “CALL” command is done without altering the program
counter. ASSIST09 runs on the passed stack, and if a stack error is
detected during user program execution this is the stack that is rebased.
The direct page register value in use remains the default for user program
execution.

The ASSISTO09 restart vector routine uses this function to startup monitor
processing after calling the vector build subroutine as explained in IN-
ITIALIZATION.

If indicated by the A register, the input and output initialization handlers
are called followed by the sending of the string “ASSIST09” to the output
handler. The programmable timer (PTM) is initialized, if its address is not
zero, such that register 1 can be used for causing an NMI during trace com-
mands. The command handler is then entered to perform the command re-
quest prompt.

MONITR EQU 8 INPUT CODE FOR MONITR
LOOP CLRA PREPARE ZERO PAGE REGISTER AND
* INITIALIZATION PARAMETER

TFR ADP SET DEFAULT PAGE VALUE

LEAS STACK, PCR SETUP DEFAULT STACK VALUE

SWiI REQUEST SERVICE

FCB MONITR FUNCTION CODE BYTE

BRA LOOP REENTER IF FALLOUT OCCURS

B-16

O UTC H Output a Character 0 UTC H

Code:
Arguments:

Result:

Description:

Example:

1
Register A contains the byte to transmit.

The character is sent to the output handier

The character is set as follows ONLY if a LINEFEED was the character to
transmit:

CC =0 if normal output occurred.

CC =1 if CANCEL was entered during output.

If a FREEZE Occurs (any input character is received) then control is not
returned to the user routine until the condition is released. The FREEZE
condition is checked for only when a linefeed is being sent. Padding null
characters ($00) may be sent following the outputted character depending
on the current setting of the NULLS command. For DLE (Data Link Escape),
character nulls are never sent. Otherwise, carriage returns ($00) receive the
new line count of nulls, all other characters the character count of nulls.

OUTCH EQU 1 INPUT CODE FOR OUTCH
LDA #0 LOAD CHARACTER *“0”
SWi SEND OUT WITH MONITOR CODE
FCB OUTCH SERVICE CODE BYTE

OUT2HS Convert Byte to Hex OUT2HS

Code:
Arguments:

Result:

Example:

4
Register X points to a byte to display in hex.

The byte is converted to two hex digits and sent to the output handler
followed by a blank.

OUT2HS EQU 4 INPUT CODE FOR OUT2HS
LEAX DATA, PCR POINT TO ‘DATA’ TO DECODE
SWI REQUEST SERVICE
FCB OUT2HS SERVICE CODE BYTE

B-17

OUT4HS Convert Word to Hex 0UT4HS

Code:
Arguments:

Result:

Example:

5
Register X points to a word (two bytes) to display in hex.

The word is converted to four hex digits and sent to the output handler
followed by a blank.

OUT4HS EQUS INPUT CODE FOR OUT4HS
LEAX DATA, PCR LOAD ‘DATA’ ADDRESS TO DECODE
SWI REQUEST ASSIST09 SERVICE
FCB OUT4HS SERVICE CODE BYTE

PA U S E Program Break and Check PA U S E

Code:
Arguments:

Result:

Description:

ik
None

CC =0 For a normal return.
CC=1 If a CANCEL was entered during the interim.

The PAUSE service should be used whenever a significant amount of pro-
cessing is done by a program without any external interaction (such as con-
sole 1/0). Another use of the PAUSE service is for the monitoring of FREEZE

~ or CANCEL requests from the input handler. This allows multi-tasking

operating systems to receive control and possibly re-dispatch other pro-
grams in a timeslice-like fashion. Testing for FREEZE and CANCEL condi-
tions is performed before return. Return may be after other tasks have had
a chance to execute, or after a FREEZE condition is lifted. In a one task
system, return is always immediate unless a FREEZE occurs.

B-18

PCRLF Output to Next Line PCRLF

Code: 6

Arguments: None

Result: A carriage return and line feed are sent to the output handler.
C =1 if normal output occurred.
C=1if CONTROL-X was entered during output.

Description: If a FREEZE occurs (any input character is received), then control is not
returned to the user routine until the condition is released. The string is
completely sent regardiess of any FREEZE or CANCEL events occurring.
Padding characters may be sent as described under the OUTCH service.

Example: PCRLF EQU 6 INPUT CODE PCRLF
SwWi REQUEST SERVICE
FCB PCRLF SERVICE CODE BYTE

P DATA Send New Line and String P DATA

Code: 3
Arguments: Register X points to an output string terminated with an ASCIl EOT ($04).

Result: The string is sent to the output handler following a carriage return and line
feed.
CC =0 if normal output occurred.
CC =1 if CONTROL-X was entered during output.

Description: The output string may contain embedded carriage returns and line feeds
thus allowing several lines of data to be sent with one function call. If a
FREEZE occurs (any input character is received), then control is not return-
ed to the user routine until the condition is released. The string is complete-
ly sent regardless of any FREEZE or CANCEL events occurring. Padding
characters may be sent as described by the OUTCH function.

B-19

PDATA P Continued PDATA

Example: PDATA EQU 3 INPUT CODE FOR PDATA
MSGOUT FCC ‘THIS IS A MULTIPLE LINE MESSAGE.’
FCB $0A, $0D LINE FEED, CARRIAGE RETURN
FCC ‘THIS IS THE SECOND LINE.
FCB $04 STRING TERMINATOR
LEAX MSGOUT, PCR LOAD MESSAGE ADDRESS
SWi REQUEST A SERVICE
FCB PDATA SERVICE CODE BYTE

P DATA1 Send String P DATA1

Code: 2
Arguments: Register X points to an output string terminated with an ASCIl EOT ($04).

Result: The string is sent to the output handler.
CC =0 if normal output occurred.
CC =1 if CONTROL-X was entered during output.

Description: The output string may contain embedded carriage returns and line feeds
thus allowing several lines of data to be sent with one function call. If a
FREEZE occurs (any input character is received), then control is not return-
ed to the user routine until the condition is released. The string is complete-
ly sent regardless of any FREEZE or CANCEL events occurring. Padding
characters may be sent as described by the OUTCH function.

Example: PDATA EQU 2 INPUT CODE FOR PDATA1
MSG FCC ‘THIS IS AN OUTPUT STRING’
FCB $04 STRING TERMINATOR
LEAX MSG, PCR LOAD ‘MSG’ STRING ADDRESS
SWi REQUEST A SERVICE
FCB PDATA1 SERVICE CODE BYTE

B-20

S PAC E Single Space Output S PAC E

Code: 7
Arguments: None
Result: A space is sent to the output handler.

Description: Padding characters may be sent as described under the OUTCH service.

Example: SPACE EQU 7 INPUT CODE SPACE
SWi REQUEST ASSIST09 SERVICE
FCB SPACE SERVICE CODE BYTE

VCT RSW Vector Swap VCT RSW

Code: 9

Arguments: Register A contains the vector swap input code.
Register X contains zero or a replacement value.

Result: Register X contains the previous value for the vector.

Description: The vector swap service examines/aiters a word entry in the ASSISTO09 vec-
tor table. This table contains pointers and default values used during
monitor processing. The entry is repiaced with the value contained in the X
register unless it is zero. The codes available are listed in Table B-3.

Example: VCTRSW EQU 9 INPUT CODE VCTRSW
IRQ EQU 12 IRQ APPENDAGE SWAP FUNCTION
CODE
LEAX MYIRQH,PCR LOAD NEW IRQ HANDLER ADDRESS
LDA #.IRQ LOAD SUBCODE FOR VECTOR SWAP
SwWiI REQUEST SERVICE
FCB VCTRSW SERVICE CODE BYTE

X NOW HAS THE PREVIOUS APPENDAGE ADDRESS

B-21

B.10 VECTOR SWAP SERVICE

The vector swap service allows user modifications of the vector table to be easily install-
ed. Each vector handler, including the one for SWI, performs a validity check on the stack
before any other processing. If the stack is not pointing to valid RAM, it is reset to the in-
itial value passed to the MONITR request which fired-up ASSIST09 after RESET. Also, the
current register set is printed following a “?” (question mark) and then the command
handler is entered. A list of each entry in the vector table is given in Table B-3.

Table B-3. Vector Table Entries

Entry Code Description
AVTBL 0 Returns address of vector table
.CMDL1 2 Primary command list
.RSVD 4 Reserved MC6809 interrupt vector appendage
.SWI3 6 Software interrupt 3 interrupt vector appendage
.SWI2 8 Software interrupt 2 interrupt vector appendage
.FIRQ 10 Fast interrupt request vector appendage
JIRQ 12 Interrupt request vector appendage
.Swi 14 Software interrupt vector appendage
NMI 16 Non-maskabie interrupt vector appendage
.RESET 18 Reset interrupt vector appendage
.CION 20 Input console intiialization routine
.CIDTA 22 Input data byte from console routine
.CIOFF 24 Input console shutdown routine
.COON 26 Output console initialization routine
.CODTA 28 Output/data byte to console routine
.COOFF 30 Output console shutdown routine
.HSDTA 32 High speed display handler routine
.BSON 34 Punch/load initialization routine
.BSDTA 36 Punch/load handler routine
.BSOFF 38 Punch/load shutdown routine
.PAUSE 40 Processing pause routine
.CMDL2 44 Secondary command list
LACIA 46 Address of ACIA
.PAD 48 Character and new line pad counts
.ECHO 50 Echo flag
.PTM 52 Programmable timer module address

The following pages describe the purpose of each entry and the requirements which
must be met for a user replaceable value or routine to be successfully substituted.

B-22

-AClA ACIA Address -AC'A

Code: 46

Description: This entry contains the address of the ACIA used by the default console in-
put and output device handlers. Standard ASSIST09 initialization sets this
value to hexadecimal EQ08. If this must be altered, then it must be done
before the MONITR startup service is invoked, since that service calls the
.COON and .COIN input and output device initialization routines which in-
itialize the ACIA pointed to by this vector slot.

-AVT B L Return Address of Vector Table .AVT B L

Code: 0

Description: The address of the vector table is returned with this code. This allows mass
changes to the table without individual calls to the vector swap service.
The code values are identical to the offsets in the vector table. This entry
should never be changed, only examined.

B-23

. BS DTA Punch/Load Handler Routine . BS DTA

Code:

Description:

36

This entry contains the address of a routine which performs punch, load,
and verify operations. The .BSON routine is always executed before the
routine is given control. This routine is given the same parameter list
documented for .BSON. The default handler uses the .CODTA routine to
punch or the .CIDTA routine to read data in $S1/S9 (MIKBUG) format. The
function code byte must be examined to determine the type request being
handled.

A return code must be given which reflects the final processing disposition:

Z =1 Successful completion
or
Z =0 Unsuccessful completion.

The .BSOFF routine will be calied after this routine is completed.

n Bso F F Punch/Load Shutdown Routine . BSO F F

Code:

Description:

38

This entry points to a subroutine which is designated to terminate device
processing for the punch, load, and verify handler .BSDTA. The stack con-
tains a parameter list as documented for the .BSON entry. The default
ASSISTO09 routine issues DC4 ($14 or stop) and DC3 ($13 or x-off) followed
by a one second delay to give the reader/punch time to stop. Also, an inter-
nally used flag by the INCHP service routine is cieared to reverse the ef-
fect caused by its setting in the .BSON handler. See that description for an
explanation of the proper use of this flag.

B-24

. BSO N Punch/Load Initialization Routine . BSO N

Code:

Description:

34

This entry points to a subroutine with the assigned task of turning on the
device used for punch, load, and verify processing. The stack contains a
parameter list describing which function is requested. The default routine
sends an ASCII “reader on” or “punch on” code of DC1 ($11) or DC2 ($12)
respectively to the output handler (CODTA). A flag is also set which
disables test for FREEZE conditions during INCHNP processing. This is
done so characters are not lost by being interpreted as FREEZE mode in-
dicators. If a user replacement routine also uses the INCHNP service, then
it also should set this same byte non-zero and clear it in the .BSOFF
routine. The ASSIST09 source listing should be consulted for the location
of this byte.

The stack is setup as follows:
S + 6 = Code byte, VERIFY (- 1), PUNCH (0), LOAD (1)
S + 4 = Start address for punch only
S + 2=End address for punch, or offset for READ/LOAD
S + 0 = Return address

.Cl DTA Input Data Byte from Console Routine .CI DTA

Code:

Description:

22

This entry determines the console input handler appendage. The respon-
sibility of this routine is to furnish the requested next input character in the
A register, if available, and return with a condition code. The INCHP ser-
vice routine calls this appendage to supply the next character. Also, a
“FREEZE” mode routine calls at various times to test for a FREEZE condi-
tion or determine if the CANCEL key has been entered. Processing for this
appendage must abide by the following conventions:

Input: PC— ASSIST09 work page
S— Return address
Output: C=0, A=input character

C =1 if no input character is yet available
Volatile Registers: U, B

The handler should always pass control back immediately even if no
character is yet available. This enables other tasks to do productive work
while input is unavailable. The default routine reads an ACIA as explained
in Paragraph B.2 Implementation Requirements.

B-25

" C l 0 F F input Console Shutdown Routine . C I O F F

Code: 24

Description: This entry points to a routine which is called to terminate input processing.
It is not called by ASSIST09 at any time, but is included for consistency.
The default routine merely does an “RTS”. The environment is as follows:

Input: None
Output: Input device terminated
Volatile Registers: None

. C l 0 N Input Console Initialization Routine . C ' 0 N

Code: 20

Description: This entry is called to initiate the input device. It is called once during the
MONITR service which initializes the monitor so the command processor
may obtain commands to process. The default handlier resets the ACIA
used for standard input and output and sets up the following default condi-
tions: 8-bit word length, no parity checking, 2 stop bits, divide-by-16 counter
ratio. The effect of an 8-bit word with no parity checking is to accept 7-bit
ASCII and ignore the parity bit.

Input: .ACIA Memory address of the ACIA
Output: The output device is initialized
Volatile Registers: A, X

B-26

-C M D L1 Primary Command List -C M D L1

Code:

2

Description: User supplied command tables may either substitute or replace the

ASSIST09 standard tables. The command handler scans two lists, the
primary table first followed by the secondary table. The primary table is
pointed to by this entry and contains, as a default, the ASSIST09 command
table. The secondary table defaults to a null list. A user may insert their own
table into either position. If a user list is installed in the secondary table
position, then the ASSIST09 list will be searched first. The default
ASSISTO09 list contains all one character command names. Thus, a user
command “PRINT” would be matched if the letters “PR” are typed, but not
just a “P” since the system command list would match first. A user may
replace the primary system list if desired. A command is chosen on a first
match basis comparing only the character(s) entered. This means that two
or more commands may have the same initial characters and that if only
that much is entered then the first one in the list(s) is chosen.

Each entry in the users command list must have the following format:

+0 FCB L Where “L” is the size of the entry in-
cluding this byte

+1 FCC ‘<string>’ Where “<string>" is the command
name

+N FDB EP-* Where “EP” represents the symbol de-
fining the start of the command rou-
tine
The first byte is an entry length byte and is always three more than the
length of the command string (one for the length itself plus two for the
routine offset). The command string must contain only ASCII alphanumeric
characters, no special characters. An offset to the start of the command
routine is used instead of an absolute address so that position-
independent programs may contain command tables. The end of the com-
mand table is a one byte flag. A — 1 (§FF) specifies that the secondary table
is to be searched, or a —2 ($FE) that command list searching is to be ter-
minated. The table represented as the secondary command list must end
with —2. The first list must end with a —1 if both lists are to be searched, or
a —2if only one list is to be used.

A command routine is entered with the following registers set:
DPR— ASSIST09 page work area.
S— A return address to the command processor.
1 A carriage return terminated the command name.
=0 A space delimiter followed the command name.

B-27

.CMDL1 P oty .CMDL1

A command routine is entered after the delimiter following the command
name is typed in. This means that a carriage return may be the delimiter
entered with the input device resting on the next line. For this reason the Z
bit in the condition code is set so the command routine may determine the
current position of the input device. The command routine should ensure
that the console device is left on a new line before returning to the com-
mand handler.

. C M D L2 Secondary Command List -C M D L2

Code:

44

Description: This entry points to the second list table. The default is a null list followed

by a byte of —2. A complete explanation of the use for this entry is provided
under the description of the .CMDL1 entry.

.CO DTA Output Data Byte to Console Routine -CO DTA

Code:

Description:

28

The responsibility of this handler is to send the character in the A register
to the output device. The default routine also follows with padding
characters as explained in the description of the OUTCH service. If the out-
put device is not ready to accept a character, then the “pause” subroutine
should be called repeatedly while this condition lasts. The address of the
pause routine is obtained from the .PAUSE entry in the vector table. The
character counts for padding are obtained from the .PAD entry in the table.
All ASSISTO09 output is done with a call to this appendage. This includes
punch processing as well. The default routine sends the character to an
ACIA as explained in Paragraph B.2 Implementation Requirements. The
operating environment is as follows:

Input: A = Character to send
DP = ASSIST09 work page
.PAD = Character and new line padding counts
(in vector table)
.PAUSE = Pause routine (in vector table)
Output: Character sent to the output device
Volatile Registers: None. All work registers must be restored

B-28

.COO F F Output Console Shutdown Routine -COO F F

Code: 30

Description: This entry addresses the routine to terminate output device processing.
ASSISTO09 does not call this routine. It is included for completeness. The
default routine is an “RTS”.

Input: DP— ASSIST09 work page
Output: The output device is terminated
Volatile Registers: None

.COO N Output Console Initialization Routine .COO N

Code: 26

Description: This entry points to a routine to initialize the standard output device. The
default routine initializes an ACIA and is the very same one described
under the .CION vector swap definition.

input: .ACIA vector entry for the ACIA address
Output: The output device is initialized
Volatile Registers: A, X

B-29

-ECHO Echo Flag -ECHO

Code:

Description:

.FIRQ

Code:

Description:

50

The first byte of this word is used as a flag for the INCHP service routine
to determine the requirement of echoing input received from the input
handler. A non-zero value means to echo the input; zero not to echo. The
echoing will take place even if user handlers are substituted for the default
CIDTA handler as the INCHP service routine performs the echo.

Fast Interrupt Request Vector Appendage . Fl RQ

10

The fast interrupt request routine is located via this pointer. The MC6809
addresses hexadecimal FFF6 to locate the handler when_processing a
EIRQ. The stack and machine status is as defined for the FIRQ interrupt
upon entry to this appendage. It should be noted that this routine is
“jumped” to with an indirect jump instruction which adds eleven cycles to
the interrupt time before the handler actually receives control. The default
handler does an immediate “RTI” which, in essence, ignores the interrupt.

B-30

. H S DTA High Speed Display Handler Routine . H s DTA

Code:

Description:

IRQ

Code:

Description:

32

This entry is invoked as a subroutine by the DISPLAY command and passed
a parameter list containing the “TO” and “FROM” addresses. The from
value is rounded down to a 16 byte address boundary. The default routine
displays memory in both hexadecimal and ASCI| representations, with a
title produced on every 128 byte boundary. The purpose for this vector table
entry is for easy implementation of a user routine for special purpose
handling of a block of data. (The data could, for example, be sent to a high
speed printer for later analysis.) The parameters are all passed on the
stack. The environment is as follows:

Input: S + 4 = Start address

S + 2 = Stop address

S + 0 = Return Address

DP— ASSIST09 work page
Output: Any purpose desired
Volatile Registers: X, D

Interrupt Request Vector Appendage -I RQ

12

All interrupt requests are passed to the routine pointed to by this vector.
Hexadecimal FFF8 is the MC6809 location where this interrupt vector is
fetched. The stack and processor status is that defined for the IRQ inter-
rupt upon entry to the handler. Since the routine’s address is in the vector
table, an indirect jump must be done to invoke it. This adds eleven cycles to
the interrupt time before the iRQ handler receives control. The default IRQ
handler prints the registers and enters the ASSIST09 command handler.

B-31

.NMi|

Code:

Description:

.PAD

Code:

Description:

Non-Maskable Interrupt Vector Appendage . N M I

16

This entry points to the non-maskable interrupt handler to receive control
whenever the processor branches to the address at hexadecimal FFFC.
Since ASSISTO09 uses the NMI interrupt during trace and breakpoint pro-
cessing, such commands should not be used if a user handler is in control.
This is true unless the user handler has the intelligence to forward control
to the default handler if the NMI interrupt has not been generated due to
user facilities. The NMT handler given control will have an eleven cycle
overhead as its address must be fetched from the vector table.

Character and New Line Pad Count . PAD

48

This entry contains the pad count for characters and new lines. The first of
the two bytes is the count of nulis for other characters, and the second is
the number of nulls ($00) to send out after any line feed is transmitted. The
ASCII Escape character ($10) never has nulls sent following it. The default
'CODTA handler is responsible for transmitting these nulls. A user handier
may or may not use these counts as required.

The “NULLS” command also sets these two bytes with user specified
values.

B-32

= PAU S E Processing Pause Routine . PAU S E

Code:

Description:

.PTM

Code:

Description:

40

In order to support real-time (also known as multi-tasking) environments
ASSIST09 calls a dead-time routine whenever processing must wait for
some external change of state. An example would be when the OUTCH ser-
vice routine attempts the sending of a character to the ACIA through the
default .CODTA handier and the ACIA status registers shows that it cannot
yet be accepted. The default dead-time routine resides in a reserved four
byte area which contains the single instruction, “RTS”. The .PAUSE vector
entry points to this routine after standard initialization. This pointer may be
changed to point to a user routine which dispatches other programs so that
the MC6809 may be utilized more efficiently. Another example of use would
be to increment a counter so that dead-time cycle counts may be ac-
cumulated for statistical or debugging purposes. The reason for the four
byte reserved area (which exists in the ASSIST09 work page) is so other
code may be overlayed without the need for another space in the address
map to be assigned. For example, a master monitor may be using a memory
management unit to assign a complete 64K block of memory to ASSIST09
and the programs being executed/tested under ASSIST09 control. The
master monitor wishes, or course, to be reentered when any ‘“dead time”
occurs, so it overlays the default routine (‘‘RTS”) with its own “SWI”. Since
the master monitor would be “front ending” all “SWI's” anyway, it knows
when a “pause’” call is being performed and can redispatch other systems
on a time-slice basis.

All registers must be transparent across the pause handler. Along with
selected points in ASSISTO09 user service processing, there is a special ser-
vice call specifically for user programs to invoke the pause routine. It may
be suggested that if no services are being requested for a given time period
(say 10 ms) user programs should call the .PAUSE service routine so that
fair-task dispatching can be guaranteed.

Programmable Timer Module Address . PTM

53

This entry contains the address of the MC6840 programmable timer module
(PTM). Alteration of this slot should occur before the MONITR startup ser-
vice is called as explained in Paragraph B.4 Initialization. If no PTM is
available, then the address should be changed to a zero so that no in-
itialization attempt will take place. Note that if a zero is supplied, ASSIST09
Breakpoint and Trace commands should not be issued.

B-33

. R ES ET Reset Interrupt Vector Appendage . R ES ET

Code: 18

Description: This entry returns the address of the RESET routine which initializes
ASSIST09. Changing it has no effect, but it is included in the vector tablein
case a user program wishes to determine where the ASSISTO09 restart code
resides. For example, if ASSIST09 resides in the memory map such that it
does not control the MC6809 hardware vectors, a user routine may wish to
start it up and thus need to obtain the standard RESET vector code ad-
dress. The ASSISTO09 reset code assigns the default in the work page, calls
the vector build subroutine, and then starts ASSIST09 proper with the
MONITR service call.

. RSV D Reserved MC6809 Interrupt Vector Appendage . RSV D

Code: 4

Description: This is a pointer to the reserved interrupt vector routine addressed at hex-
adecimal FFFO. This MC6809 hardware vector is not defined as yet. The
default routine setup by ASSIST09 will cause a register display and en-
trance to the command handler.

B-34

SWi SWi

Softare Interrupt Vector Appendage

Code: 14

Description: This vector entry contains the address of the Software Interrupt routine.
Normally, ASSIST09 handles these interrupts to provide services for user
programs. If a user handler is in place, however, these facilities cannot be
used unless the user routine “passes on” such requests to the ASSIST09
default handler. This is easy to do, since the vector swap function passes
back the address of the default handler when the switch is made by the
user. This “front ending”’ allows a user routine to examine all serivce calls,
or alter/replace/extend them to his requirements. Of course, the registers
must be transparent across the transfer of control from the user to the
standard handler. A “JMP” instruction branches directly to the routine
pointed to by this vector entry when a SWI occurs. Therefore, the environ-
ment is that as defined for the “SWI” interrupt.

. SWI 2 Software Interrupt 2 Vector Appendage -SW' 2

Code: 8

Description: This entry contains a pointer to the SWI2 handier entered whenever that in-
struction is executed. The status of the stack and machine are those defin-
ed for the SWI2 interrupt which has its interrupt vector address at FFF4
hexadecimal. The default handler prints the registers and enters the
ASSIST09 command handier.

B-35

-SWI 3 Software Interrupt 3 Vector Appendage . SWI 3

Code: 6

Description: This entry contains a pointer to the SWI3 handler entered whenever that in-
struction is executed. The status of the stack and machine are those defin-
ed for the SWI3 interurpt which has its interrupt vector address located at

hexadecimal FFF2. The default handler prints the registers and enters the
ASSIST09 command handler.

B-36

PLEASE NOTE:

| did not scan this ASSISTO09 listing from the Motorola book. The listing was very
large, and | was scanning a bound book which required each page to be scanned
individually. Instead, | assembled the ASSISTO09 source code using my own
ASMO09 assembler and placed the resultant listing into these pages. This has the
added advantage that the text is searchable and can be extracted if you wish to use
code snippets in other places. It does mean however that this listing is not precicely
identical to the one originally printed in the Motorola MC6809-MCG6809E
Programming Reference manual.

Also note: | found the source code on which this listing is based via an internet
search. It appears to be the original Motorola source code, however it had been
modified both in function (code changes) and source format (different assembler). |
have attempted to restore it as closely as possible to the original - please notify me if
you find errors. For the most part, the source was compatible with my assembler. |
did have to change the single-quote character constants to double-quote format ('a'
instead of 'a), and some of the directives are slightly different. (TITLE instead of
TTL for example).

Dave Dunfield

DUNFI ELD 6809 ASSEMBLER: ASSI ST09

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
F800
E700
0800
FO00
E008
E000
0000
0005
003E
0008
0000
0000
0000
0000
0000
0004
0007
000A
000D
0010
0018
0000
E001
E000
E001
E002
E004
E006
0000
008C
0000
0000
0000
0000
0000
0000
0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
000B
0000
0000
0000

©CoO~NOOWNE

PAGE: 1

EE R R R R R R R R

* COPYRI GHT (C) MOTOROLA

I'NC. 1979 *

EE R R R R R R R R R R

R R R R R R R R R R R R R

THI S | S THE BASE ASSI ST09 ROM
IT MVAY RUN WTH OR W THOUT THE

EXTENSI ON ROM WH CH

I NCORPORATED BY THE BLDVTR

SUBRQUTI NE

*
*
*
* WHEN PRESENT W LL BE AUTQVATI CALLY
*
*
*

kkkkkkhkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkkk*x

EE R R R Sk S S kS S S R Sk kS R S kS kS Sk S kS S S

GLOBAL MODULE EQUATES

R SR R Sk Sk Sk S T kS S S S kS R S R Sk Sk S Sk S S S S S

*

ROVBEG
RAMOFS
ROVBI Z
ROMRCF
ACI A

PTM

DFTCHP
DFTNLP
PROVPT
NUMBKP

EQU
EQU
EQU
EQU
EQU

$F800

-$1900

2048

ROM START ASSEMBLY ADDRESS
ROM OFFSET TO RAM WORK PAGE
ROM S| ZE

ROMBEG ROVSI Z START OF EXTENSI ON ROM

$E008
$E000
0

O
8

DEFAULT ACI A ADDRESS
DEFAULT PTM ADDRESS

DEFAULT CHARACTER PAD COUNT
DEFAULT NEW LI NE PAD COUNT
PROVPT CHARACTER

NUMBER OF BREAKPO NTS

EE R R R R R R R R R R R R R R R

EE R R R R R R R R R R R R R R R

* M SCELANEQUS EQUATES

EE R R R R R R R R R R R R R

EOT EQU $04
BELL EQU $07
LF EQU $0A
CR EQU $0D
DLE EQU $10
CAN EQU $18

* PTM ACCESS DEFI NI TI ONS
PTMBTA EQU PTM+1
PTMC13 EQU PTM
PTM2 EQU PTM+1
PTMIML EQU PTM+2
PTMIV2 EQU PTM+4
PTMIMB EQU PTM+6
SKIP2 EQU $8C

END OF TRANSM SSI ON
BELL CHARACTER

LI NE FEED

CARRI AGE RETURN
DATA LI NK ESCAPE
CANCEL (CTL- X)

READ STATUS REG STER
CONTROL REG STERS 1 AND 3
CONTROL REG STER 2

LATCH 1

LATCH 2

LATCH 3

"CWPX #" OPCODE - SKIPS TWO BYTES

R SR SR Sk Sk Sk Sk S Sk S S S S S kS Sk Sk S Sk kS Sk S Sk S R

* ASSI STO9 MONI TOR SW FUNCTI ONS
* THE FOLLOW NG EQUATES DEFI NE FUNCTI ONS PROVI DED
* BY THE ASSI ST0O9 MONI TOR VI A THE SW | NSTRUCTI ON.

R SR SR Sk Sk S Sk S S Sk S kR S S S S Sk S S S Sk R S S R Sk Sk S Sk S S S

I NCHNP
QUTCH
PDATAL
PDATA
QUT2HS
OQUT4HS
PCRLF
SPACE
MONI TR
VCTRSW
BRKPT
PAUSE
NUMFUN

EQU
EQU
EQU
EQU

0

11

INPUT CHAR IN A REG - NO PARITY
OUTPUT CHAR FROM A REG
OUTPUT STRI NG

OUTPUT CR/LF THEN STRI NG
OUTPUT TWD HEX AND SPACE
OUTPUT FOUR HEX AND SPACE
QUTPUT CR/LF

OUTPUT A SPACE

ENTER ASSI ST09 MONI TOR
VECTOR EXAM NE/ SW TCH

USER PROGRAM BREAKPO NT

TASK PAUSE FUNCTI ON

NUMBER OF AVAI LABLE FUNCTI ONS

* NEXT SUB- CODES FOR ACCESSI NG THE VECTCR TABLE
* THEY ARE EQUI VALENT TO OFFSETS I N THE TABLE
* RELATI VE PCSI TI ONI NG MUST BE MAI NTAI NED.

DUNFI ELD 6809 ASSEMBLER: ASSI ST09

0000
0002
0004
0006
0008
000A
000C
000E
0010
0012
0014
0016
0018
001A
001C
001E
0020
0022
0024
0026
0028
002A
002C
002E
0030
0032
0034
001B
0034

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

. AVTBL
. CVDL1
. RSVD
.SW3
.SW2
.FIRQ
. SW

. NM

. RESET
.CION
. Cl DTA
. Cl OFF

. CODTA
. COOFF
. HSDTA
. BSON
. BSDTA
. BSOFF
. PAUSE
. EXPAN
. CMVDL2
.ACIA
. PAD

. ECHO
. PT™M
NUWTR
H VTR

52
52/ 2+1
52

PAGE: 2

ADDRESS OF VECTOR TABLE
FI RST COMVAND LI ST
RESERVED HARDWARE VECTCR
SW 3 ROUTI NE

SW 2 ROUTI NE

FI RQ ROUTI NE

I RQ ROUTI NE

SW ROUTI NE

NM ROUTI NE

RESET ROUTI NE

CONSCOLE ON

CONSOLE | NPUT DATA
CONSOLE | NPUT OFF
CONSOLE OUTPUT ON
CONSOLE QUTPUT DATA
CONSOLE QUTPUT COFF

H GH SPEED PRI NTDATA
PUNCH LOAD ON

PUNCH LQAD DATA

PUNCH LOAD OFF

TASK PAUSE ROUTI NE
EXPRESSI ON ANALYZER
SECOND COMMAND LI ST
ACI A ADDRESS

CHARACTER PAD AND NEW LI NE PAD
ECHO' LOAD AND NULL BKPT FLAG
PTM ADDRESS

NUMBER OF VECTORS

H GHEST VECTOR OFFSET

DUNFI ELD 6809 ASSEMBLER: ASSI ST09 PAGE: 3

0000
0000
0000
0000
0000
0000
0000
0000
0000
DFOO
0000
E000
E000
E000
DFFC
DFFC
DFFB
DFFB
DFFA
DFFA
DFF8
DFF8
DFC2
DFC2
DFB2
DFB2
DFA2
DFA2
DFAO
DFAO
DF9E
DF9E
DF9D
DFOD
DF9B
DF9B
DF99
DF99
DF97
DF97
DF95
DF95
DF93
DF93
DF91
DF91
DF90
DF90
DF8F
DF8F
DFSE
DF8SE
DF66
DF66
DF51
DF51
DF51

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

LR R R R R R R R R R R R R R R R R R R

WORK AREA
* THIS WORK AREA | S ASSI GNED TO THE PAGE ADDRESSED BY
* -$1800, PCR FROM THE BASE ADDRESS OF THE ASSI ST09
* ROM THE DI RECT PAGE REG STER DURI NG MOST ROUTI NE
* OPERATIONS WLL PO NT TO TH' S WORK AREA. THE STACK
* INITIALLY STARTS UNDER THE RESERVED WORK AREAS AS
* DEFI NED HEREI N
*

LR R R R R R R R R R R R R R

WORKPG EQU ROMBEG+RAMOFS SETUP DI RECT PACGE ADDRESS
SETDP =WORKPG NOTI FY ASSEMBLER
ORG WORKPG+256 READY PAGE DEFI NI TI ONS

* THE FOLLOW NG THRU BKPTOP MUST RESIDE IN THI S ORDER
* FOR PROPER | NI TI ALI ZATI ON

ORG x4
PAUSER EQU * PAUSE ROUTI NE
ORG *.1
SWBFL EQU * BYPASS SW AS BREAKPO NT FLAG
ORG *.1
BKPTCT EQU * BREAKPO NT COUNT
ORG *.2
SLEVEL EQU * STACK TRACE LEVEL
ORG * - (NUWTR* 2)
VECTAB EQU * VECTOR TABLE
ORG * - (2* NUVBKP)
BKPTBL EQU * BREAKPO NT TABLE
ORG * - (2* NUVBKP)
BKPTOP EQU * BREAKPO NT OPCODE TABLE
ORG *.2
W NDOW EQU * W NDOW
ORG *.2
ADDR EQU * ADDRESS PO NTER VALUE
ORG *.1
BASEPG EQU * BASE PAGE VALUE
ORG *.2
NUVBER EQU * BI NARY BUI LD AREA
ORG *.2
LASTOP EQU * LAST OPCODE TRACED
ORG *.2
RSTACK EQU * RESET STACK PO NTER
ORG *.2
PSTACK EQU * COMMAND RECOVERY STACK
ORG *.2
PCNTER EQU * LAST PROGRAM COUNTER
ORG *.2
TRACEC EQU * TRACE COUNT
ORG *.1
SWONT EQU * TRACE "SW" NEST LEVEL COUNT
ORG *.1 (M SFLG MUST FOLLOWN SW CNT)
M SFLG EQU * LOAD CMD THRU BREAKPO NT FLAG
ORG *.1
DELIM EQU * EXPRESSI ON DELI M TER/ WORK BYTE
ORG .40
ROVVK EQU * EXTENS| ON ROM RESERVED AREA
ORG *.21
TSTACK EQU * TEMPORARY STACK HOLD
*

STACK EQU START OF I NI TI AL STACK

DUNFI ELD 6809 ASSEMBLER: ASSI ST09

DF51
DF51
DF51
DF51
DF51
DF51
DF51
F800
F800
F800
F800
F800
F800
F800
F800
F800
F800
F800
F800
F800
F800
F800
F800
F800
F804
F806
F808
F80A
F80C
F80F
F811
F813
F815
F817
F819
F81B
F81D
F81F
F821
F823
F825
F826
F828
F82C
F82F
F831
F833
F835
F837
F837
F837
F837
F837
F837
F837
F837
F837
F837
F83B
F83D
F83E
F840
F841
F842
F844
F844
F844
F844

30
1F
1F
97
33
31
EF

34
1F
E3
ED
6A
26

A6
A7
5A
26
31
8E
AC
26
AD
35

32
8D
4F
1F
3F
08
20

8D E7 BE
10
8B
9D
84
8C 35
81

16

04

20

Al

81

E4

F6
(0] D]
A0

80

F9

8D F7 D4
20 FE
Al

02

A4

84

8D E7 16

8B

F9

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

PAGE: 4

LR R R R R R R R R R R R R R R R R R R

* DEFAULT THE ROM BEG NNI NG ADDRESS TO ' ROVBEG

* ASSI STO9 |'S PCSI TI ON ADDRESS | NDEPENDENT, HOWEVER

* WE ASSEMBLE ASSUM NG CONTROL OF THE HARDWARE VECTORS
* NOTE THAT THE WORK RAM PAGE MUST BE ' RAMOFS

* FROM THE ROM BEG NNI NG ADDRESS

LR R R R R R R R R R

ORG

ROVBEG

ROM ASSEMBLY/ DEFAULT ADDRESS

R R R Sk S Sk S S Sk S S S kS Sk Sk S R R S Sk kS Sk S S S S kS S kS S

BLDVTR -

BUI LD ASSI ST0O9 VECTOR TABLE

HARDWARE RESET CALLS TH S SUBRCUTI NE TO BU LD THE

ASSI ST0O9 VECTOR TABLE

THI'S SUBROUTI NE RESI DES AT

THE FI RST BYTE OF THE ASSI ST09 ROM AND CAN BE
CALLED VI A EXTERNAL CONTROL CODE FOR REMOTE

I NPUT: S->VALI D STACK RAM
QUTPUT: U >VECTOR TABLE ADDRESS

DPR- >ASSI ST09 WORK AREA PAGE

THE VECTOR TABLE AND DEFAULTS ARE | NI TI ALI ZED
ALL REG STERS VOLATI LE

R E SR R Sk Sk Sk kS R Sk Sk Sk S Sk Sk R Sk S S

*
*
*
*
*
*
* ASSI ST09 EXECUTI ON.
*
*
*
*
*
*

ADDRESS VECTOR TABLE

OBTAI N BASE PAGE ADDRESS
SETUP DPR

STORE FOR QUI CK REFERENCE
RETURN TABLE TO CALLER
LOAD FROM ADDR

INIT VECTOR TABLE ADDRESS
NUMBER RELOCATABLE VECTORS
STORE | NDEX ON STACK
PREPARE ADDRESS RESOLVE

TO ABSCLUTE ADDRESS

I NTO VECTOR TABLE

COUNT DOWN

BRANCH | F MORE TO | NSERT
STATI C VALUE | NI T LENGTH
LOAD NEXT BYTE

STORE | NTO PGCsI TI ON

COUNT DON

LOOP UNTI L DONE

TEST PGSSI BLE EXTENSI ON ROV
LOAD "BRA *" FLAG PATTERN

? EXTENDED ROM HERE

BRANCH NOT OQUR ROM TO RETURN
CALL EXTENDED ROM | NI TI ALI ZE
RETURN TO I NI TI ALI ZER

R R R SR S Sk S S S S Sk Sk S S S kS Sk S R Sk S kR Sk S S S S S Sk R S S S S Sk kS

RESET ENTRY PO NT

HARDWARE RESET ENTERS HERE | F ASSI STO9 | S ENABLED

VE CALL

THE BLDVTR SUBROUTI NE TO I NI TI ALI ZE THE VECTCR
TABLE, STACK, AND THEN FI REUP THE MONI TOR VI A SW

EE R

SETUP I NI TI AL STACK

BU LD VECTOR TABLE

| SSUE STARTUP MESSAGE
DEFAULT TO PAGE ZERO
PERFORM MONI TOR FI REUP

TO ENTER COMVAND PROCESSI NG
REENTER MONI TOR | F ' CONTI NUE

R R SR Sk Sk Sk Sk S S S S S S kS Sk S R R R S Sk kS Sk S S S S Sk Sk Sk S S S S kS S S

BLDVTR LEAX VECTAB, PCR
TFR X, D
TFR ADP
STA BASEPG
LEAU X
LEAY <IN TVT, PCR
STU X+
LDB #NUWTR: 5
PSHS B
BLD2 TFR Y, D
ADDD |, Y++
STD X+
DEC .S
BNE BLD2
LDB #1 NTVE- | NTVS
BLDS LDA Y+
STA X+
DECB
BNE BLD3
LEAY ROMRCF, PCR
LDX #$20FE
CWPX , Y++
BNE BLDRTN
JSR Y
BLDRTN PULS PC B
*
*
* TO RECEI VE THE MC6809 HARDWARE VECTORS
*
*
* CALL.
RESET LEAS STACK PCR
BSR BLDVTR
RESET2 CLRA
TFR A, DP
sw
FCB MONI TR
BRA RESET?2
* INITVT -

I NI TI AL VECTOR TABLE

* TH S TABLE IS RELOCATED TO RAM AND REPRESENTS THE

DUNFI ELD 6809 ASSEMBLER: ASSI ST09 PAGE: 5

F844 225 * INITIAL STATE OF THE VECTOR TABLE. ALL ADDRESSES

F844 226 * ARE CONVERTED TO ABSCLUTE FORM THI' S TABLE STARTS
F844 227 * WTH THE SECOND ENTRY, ENDS W TH STATI C CONSTANT

F844 228 * I NITIALI ZATI ON DATA WH CH CARRI ES BEYOND THE TABLE.
F844 229 LR R R R R R R R R R R R R R R

F844 01 58 230 INITVT FDB CMVDTBL- * DEFAULT FI RST COMVAND TABLE
F846 02 92 231 FDB RSRVDR- * DEFAULT UNDEFI NED HARDWARE VECTOR
F848 02 90 232 FDB SW 3R-* DEFAULT SW 3

F84A 02 8E 233 FDB SW 2R- * DEFAULT SW 2

F84C 02 70 234 FDB FI ROR-* DEFAULT FI RQ

F84E 02 8A 235 FDB I RQR-* DEFAULT | RQ ROUTI NE

F850 00 45 236 FDB SWR-* DEFAULT SW ROUTI NE

F852 02 2B 237 FDB NM R-* DEFAULT NM ROUTI NE

F854 FF E3 238 FDB RESET- * RESTART VECTOR

F856 02 90 239 FDB Cl ON-* DEFAULT CI ON

F858 02 84 240 FDB Cl DTA-* DEFAULT Cl DTA

F85A 02 96 241 FDB Cl OFF-* DEFAULT ClI OFF

F85C 02 8A 242 FDB COON- * DEFAULT COON

F85E 02 93 243 FDB CODTA- * DEFAULT CODTA

F860 02 90 244 FDB COCFF- * DEFAULT COCFF

F862 03 9A 245 FDB HSDTA- * DEFAULT HSDTA

F864 02 B7 246 FDB BSON- * DEFAULT BSON

F866 02 D2 247 FDB BSDTA- * DEFAULT BSDTA

F868 02 BF 248 FDB BSOFF- * DEFAULT BSCFF

F86A E7 92 249 FDB PAUSER- * DEFAULT PAUSE ROUTI NE
F86C 04 7D 250 FDB EXP1- * DEFAULT EXPRESSI ON ANALYZER
F86E 01 2D 251 FDB CMVDTB2- * DEFAULT SECOND COMVAND TABLE
F870 252 * CONSTANTS

F870 EO 08 253 INTVS FDB ACI A DEFAULT ACI A

F872 00 05 254 FCB DFTCHP, DFTNLP ~ DEFAULT NULL PADDS

F874 00 00 255 FDB 0 DEFAULT ECHO

F876 EO 00 256 FDB PTM DEFAULT PTM

F878 00 00 257 FDB 0 I NI TI AL STACK TRACE LEVEL
F87A 00 258 FCB 0 I'NI TI AL BREAKPO NT COUNT
F87B 00 259 FCB 0 SW BREAKPO NT LEVEL
F87C 39 260 FCB $39 DEFAULT PAUSE ROUTI NE (RTS)
F87D 261 |INTVE EQU *

F87D 262 *B

F87D 263

F87D 264 R SR SR S S Sk S S kS S S S S S S S S kR S S S Sk Sk S Sk S S S Sk Sk Sk S S O

F87D 265 * ASSI STO9 SW HANDLER

F87D 266 * THE SW HANDLER PROVI DES ALL | NTERFACI NG NECESSARY
F87D 267 * FOR A USER PROGRAM A FUNCTI ON BYTE | S ASSUMED TO
F87D 268 * FOLLOWTHE SW INSTRUCTION. IT IS BOUND CHECKED
F87D 269 * AND THE PROPER ROUTINE IS G VEN CONTROL. THI'S

F87D 270 * | NVOCATI ON MAY ALSO BE A BREAKPO NT | NTERRUPT.

F87D 271 * | F SO THE BREAKPO NT HANDLER | S ENTERED.

F87D 272 * | NPUT: MACHI NE STATE DEFI NED FOR SW

F87D 273 * QUTPUT: VARI ES ACCORDI NG TO FUNCTI ON CALLED. PC ON
F87D 274 * CALLERS STACK | NCREMENTED BY ONE | F VALI D CALL.
F87D 275 * VOLATI LE REG STERS: SEE FUNCTI ONS CALLED

F87D 276 * STATE: RUNS DI SABLED UNLESS FUNCTI ON CLEARS | FLAG
F87D 277 ER R

F87D 278

F87D 279 * SW FUNCTI ON VECTOR TABLE

F87D 01 94 280 SWVTB FDB ZI NCH SW VTB I NCHNP

F87F 01 Bl 281 FDB ZOTCH1-SWVTB QUTCH

F881 01 CB 282 FDB ZPDTA1- SWVTB PDATAL

F883 01 C3 283 FDB ZPDATA- SWVTB PDATA

F885 01 75 284 FDB ZOT2HS- SWVTB QUT2HS

F887 01 73 285 FDB ZOT4HS- SWVTB QUT4HS

F889 01 CO 286 FDB ZPCRLF-SWVTB PCRLF

F88B 01 79 287 FDB ZSPACE- SWVTB SPACE

F88D 00 55 288 FDB ZMONTR-SWVTB MONI TR

F88F 01 7D 289 FDB ZVSWH- SWVTB VCTRSW

F891 02 56 290 FDB ZBKPNT- SWVTB BREAKPO NT

F893 01 D1 291 FDB ZPAUSE- SWVTB TASK PAUSE

F895 292

DUNFI ELD

F895
F899
F89C
F89C
F89E
F8AO
F8A2
F8A4
F8A7
F8A8
F8A9
F8AB
F8AE
F8B0
F8B2
F8B5
F8B7
F8B9
F8BB
F8BF
F8C1
F8C2
F8C5
F8C7
F8C9
F8C9
F8C9
F8C9
F8C9
F8C9
F8C9
F8C9
F8C9
F8C9
F8C9
F8C9
F8C9
F8C9
F8C9
F8C9
F8C9
F8C9
F8C9
F8C9
F8C9
F8C9
F8C9
F8D1
F8D2
F8D2
F8D5
F8D7
F8D9
F8DD
F8EL
F8E4
F8ES5
F8E6
F8E8
F8EA
F8EC
F8EE
F8F1
F8F3
F8F5
F8F5
F8F7
F8F7

6A
17

EE
33
(0] D]
26
17
50
5A
2B
11
26
EF
16
OF
37
c1
10
EF
58
33
EC
6E

41
04

10
6D
26
AD
AD
30
3F
03
9E
27
6F
6F

A7
E7

6F

6809 ASSEMBLER. ASSI ST09

8D
02

6A
5F
FB
11
06

0A
A3
F8
6A
02
FB
06
0B
22
6A

8C
c5
CB

53

DF
61
(0])
9D
9D
8C

F6
ob
02
03
01
01
00

01

E6 F7
25

9B

1E

02 OF

B8

53 49 53 54 +

97

E6 F9
E6 FB
E5

A6

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

SWR DEC SW CNT, PCR
LBSR LDDP
* CHECK FOR BREAKPO NT TRAP
LDU 10, S
LEAU -1, U
TST SW BFL
BNE SW DNE
LBSR CBKLDR
NEGB
SWLP DECB
BM SW DNE
CwPU , Y++
BNE SWLP
STU 10, S
LBRA ZBKPNT
SWDNE CLR SW BFL
PULU D
CwPB #NUMFUN
LBHI ERROR
STU 10, S
ASLB FUNCTI ON
LEAU SW VTB, PCR
LDD B, U
JMP DU

PAGE: 6

UP "SW" LEVEL FOR TRACE
SETUP PAGE AND VERI FY STACK

LOAD PROGRAM COUNTER

BACK TO SW ADDRESS

? TH S "SW" BREAKPO NT
BRANCH | F SO TO LET THROUGH
OBTAI N BREAKPO NT PO NTERS
OBTAI N PCsI Tl VE COUNT

COUNT DOWN

BRANCH WHEN DONE

? WAS TH S A BREAKPO NT
BRANCH | F NOT

SET PROGRAM COUNTER BACK
GO DO BREAKPO NT

CLEAR I N CASE SET

OBTAI N FUNCTI ON BYTE, UP PC
? TOO H CGH

YES, DO BREAKPQO NT

BUMP PROGRAM COUNTER PAST SW
CODE TI MES TVO

OBTAI N VECTOR BRANCH ADDRESS
LOAD OFFSET

JUWMP TO ROUTI NE

R R SR Sk Sk Sk Sk S Sk S S S S kS S Sk R S R Sk Sk Sk Sk R S S S R R R

* REGQ STERS TO FUNCTI ON ROUTI NES
* DP-> WORK AREA PAGE
* D, Y, UEUNRELI ABLE

* S=AS FROM SW

I NTERRUPT

X=AS CALLED FROM USER

EE R R R R R R R R R R R R R

LR R

* [SW FUNCTI ON 8]

* MONI TOR ENTRY

* FIREUP THE ASSI STO9 MONI TOR

* THE STACK WTH I TS VALUES FOR THE DI RECT PAGE

* REQ STER AND CONDI TI ON CODE FLAGS ARE USED AS IS.

* 1) INITIALI ZE CONSCLE I/0

* 2) OPTIONALLY PRI NT SI GNON

* 3) INITIALI ZE PTM FOR SI NGLE STEPPI NG

* 4) ENTER COMMAND PROCESSOR

* |NPUT: A=0 INIT CONSCLE AND PRI NT STARTUP MESSAGE

* A#0 OM T CONSOLE | NI T AND STARTUP MESSAGE

IR RS S RS RS R RS E SRS SRR E SRS EEEEEEEREEREEEESERESEEESEESESSES

SIGNON FCC | ASSI ST09/ SI GNON EYE- CATCHER
FCB EOT

ZMONTR STS RSTACK SAVE FOR BAD STACK RECOVERY
TST 1,S 2 INIT CONSOLE AND SEND MBG
BNE ZMONT2 BRANCH | F NOT
JSR [VECTAB+. Cl ON, PCR] READY CONSOLE | NPUT
JSR [VECTAB+. COON, PCR] READY CONSCLE OUTPUT
LEAX S| GNON, PCR READY SI GNON EYE- CATCHER
SW PERFORM
FCB PDATA PRI NT STRI NG

ZMONT2 DX VECTAB+. PTM LOAD PTM ADDRESS
BEQ CMD BRANCH | F NOT TO USE A PTM
CLR PTMIML- PTM X SET LATCH TO CLEAR RESET
CLR PTMIML+1- PTM X AND SET GATE HI GH
LDD #$01A6 SETUP TIMER 1 MODE
STA PTMC2- PTM X SETUP FOR CONTROL REG STERIL
STB PTMC13- PTM X SET OUTPUT ENABLED/

* SINGLE SHOT/ DUAL 8 BI T/ | NTERNAL MODE/ OPERATE
CLR PTMC2- PTM X SET CR2 BACK TO RESET FORM

* FALL | NTO COMWWAND PROCESSOR

DUNFI ELD 6809 ASSEMBLER: ASSI ST09

F8F7
F8F7
F8F7
F8F7
F8F7
F8F7
F8F7
F8F7
F8F7
F8F7
F8F7
F8F7
F8F7
F8F7
F8F7
F8F7
F8F7
F8F8
F8F9
F8F9
F8FC
F8FE
F8FF
Fo01
F902
F904
F906
F908
FO0A
FooC
FOOE
F910
Fo11
F912
F914
F916
Fo17
F918
FO1A
Fo1C
FO1E
F920
F922
F922
F925
F929
F92B
F92D
F931
F933
F935
F935
F937
F939
Fo3B
F93D
FO3F
Fo41
Fo44
F946
F948
F94B
F94D
F94D
FO4F
F951
F953
F955

17
30
81
27
30
81
27

81
23
34
6C
81
27
17
27
6A
17
20

80
A7
9E
E6
2A

06
ocC

FA

06
30
Bl
F7
6A
93
3E

E4
95

9B
8F
91
02
07

04

8D 05 81

2E
5A

8D 04 E9

2F
52

20
14
02
5F
2F
4F
04
02
5E
04
E8

ob
5D

80
10

46

54

0B

2E

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428

PAGE: 7

LR R R R R R R R R R R R R R R R R R R Rk

COMVAND HANDLER

* BREAKPOI NTS ARE REMOVED AT THIS TIME.
* PROMPT FOR A COVMAND, AND STORE ALL CHARACTERS
* UNTIL A SEPARATOR ON THE STACK.
* SEARCH FOR FI RST MATCH NG COMMAND SUBSET,
* CALL IT OR G VE '? RESPONSE.
* DURI NG COVMAND SEARCH
* B=OFFSET TO NEXT ENTRY ON X
* U=SAVED S
* U- 1=ENTRY S| ZE+2
* U- 2=VALI D NUMBER FLAG (>=0 VALI D)/ COMPARE CNT
* U- 3=CARRI AGE RETURN FLAG (0=CR HAS BEEN DONE)
* U-4=START OF COVMAND STORE
* S+0=END OF COMVAND STORE
khkkkhkkhkhkhhkhkhhhhkhkhhdhhhhhdhhdrdhhdrdhhdrdhhdrrdxhdx
oD sw TO NEW LI NE
FCB PCRLF FUNCTI ON
* DI SARM THE BREAKPOI NTS
CVMDNEP LBSR ~ CBKLDR OBTAI N BREAKPOI NT POl NTERS
BPL CVDNOL BRANCH | F NOT ARMED OR NONE
NEGB MAKE POSI Tl VE
STB BKPTCT FLAG AS DI SARVED
CMDDDL DECB ? FI NI SHED
BM CVDNOL BRANCH | F SO
LDA - NUVBKP* 2, Y LOAD OPCODE STORED
STA [, Y++] STORE BACK OVER "SW "
BRA CVDDDL LOOP UNTI L DONE
CMDNOL LDX 10, S LOAD USERS PROGRAM COUNTER
STX PCNTER SAVE FOR EXPRESS| ON ANALYZER
LDA #PROWPT LOAD PROMPT CHARACTER
sw SEND TO OUTPUT HANDLER
FCB QUTCH FUNCTI ON
LEAU S REMEMBER STACK RESTORE ADDRESS
STU PSTACK REMEMBER STACK FOR ERROR USE
CLRA PREPARE ZERO
CLRB PREPARE ZERO
STD NUVBER CLEAR NUMBER BUI LD AREA
STD M SFLG CLEAR M SCEL. AND SWCNT FLAGS
STD TRACEC CLEAR TRACE COUNT
LDB #2 SET D TO TWO
PSHS D, CC PLACE DEFAULTS ONTO STACK
* CHECK FOR "QUI CK" COMVANDS.
LBSR READ OBTAI N FI RST CHARACTER
LEAX CDOT+2, PCR PRESET FOR S| NGLE TRACE
CVWPA # . ? QUI CK TRACE
BEQ OMDXQT BRANCH EQUAL FOR TRACE ONE
LEAX ~ CWPADP+2, PCR READY MEMORY ENTRY POINT
CVWPA #[? OPEN LAST USED MEMORY
BEQ OVDXQT BRANCH TODO I T I F SO
* PROCESS NEXT CHARACTER
VM2 CVWPA # ? BLANK OR DELI M TER
BLS CVDGOT BRANCH YES, VE HAVE I T
PSHS A BUI LD ONTO STACK
I NC -1,U COUNT THI'S CHARACTER
CVPA # [? MEMORY COMVAND
BEQ CMVDVEM BRANCH | F SO
LBSR BLDHXC TREAT AS HEX VALUE
BEQ OV BRANCH | F STILL VALI D NUMBER
DEC -2,U FLAG AS | NVALI D NUVBER
CMDB LBSR READ OBTAI N NEXT CHARACTER
BRA cvD2 TEST NEXT CHARACTER
* GOT COVMAND, NOW SEARCH TABLES
CMDGOT SUBA #CR SET ZERO | F CARRI AGE RETURN
STA -3,U SETUP FLAG
LDX VECTAB+. CMDL1 ~ START W TH FIRST CMVD LI ST
CVMDSCH LDB , X+ LOAD ENTRY LENGTH
BPL CVDSME BRANCH | F NOT LI ST END

DUNFI ELD 6809 ASSEMBLER: ASSI ST09 PAGE: 8

F957 9E EE 429 LDX VECTAB+. CVDL2 NOW TO SECOND CMD LI ST
F959 5C 430 I NCB ? TO CONTI NUE TO DEFAULT LI ST
FO5A 27 F7 431 BEQ CMVDSCH BRANCH | F SO

F95C 10 DE 95 432 CNMDBAD LDS PSTACK RESTCRE STACK

FO5F 30 8D 01 5A 433 LEAX ERRMSG, PCR PO NT TO ERROR STRI NG
F963 3F 434 SW SEND OUT

F964 02 435 FCB PDATAL TO CONSOLE

F965 20 90 436 BRA CvD AND TRY AGAI N

Fo67 437 * SEARCH NEXT ENTRY

F967 5A 438 CMDSME DECB TAKE ACCOUNT COF LENGTH BYTE
F968 E1 5F 439 CwPB -1, U ? ENTERED LONGER THAN ENTRY
F96A 24 03 440 BHS CMVDSI Z BRANCH | F NOT TOO LONG
F96C 3A 441 CMDFLS ABX SKI P TO NEXT ENTRY

F96D 20 E4 442 BRA CVDSCH AND TRY NEXT

FO96F 31 5D 443 CMDSIZ LEAY -3,U PREPARE TO COVPARE

F971 A6 5F 444 LDA -1, U LOAD SI ZE+2

F973 80 02 445 SUBA #2 TO ACTUAL SI ZE ENTERED
F975 A7 5E 446 STA -2,U SAVE S| ZE FOR COUNTDOWN
F977 5A 447 CNVDCWP DECB DOWN ONE BYTE

F978 A6 80 448 LDA , X+ NEXT COMVAND CHARACTER
FO7A Al A2 449 CVPA =Y ? SAME AS THAT ENTERED
F97C 26 EE 450 BNE CMDFLS BRANCH TO FLUSH | F NOT
FO7E 6A 5E 451 DEC -2,U COUNT DOWN LENGTH OF ENTRY
F980 26 F5 452 BNE CVDCVP BRANCH | F MORE TO TEST
F982 3A 453 ABX TO NEXT ENTRY

F983 EC 1E 454 LDD -2, X LOAD OFFSET

F985 30 8B 455 LEAX D, X COVPUTE ROUTI NE ADDRESS+2
F987 6D 5D 456 CVDXQT TST -3, U SET CC FOR CARRI AGE RETURN TEST
F989 32 C4 457 LEAS ,U DELETE STACK WORK AREA
F98B AD 1E 458 JSR -2, X CALL COMVAND

FO98D 16 FF 7A 459 LBRA CVDNOL GO GET NEXT COMVAND

F990 6D 5E 460 CMDMEM TST -2,U ? VALI D HEX NUMBER ENTERED
F992 2B C8 461 BM CVDBAD BRANCH ERROR | F NOT

F994 30 88 AE 462 LEAX <CMEMN- CMPADP, X TO DI FFERENT ENTRY

F997 DC 9B 463 LDD NUMBER LOAD NUMBER ENTERED

F999 20 EC 464 BRA CVDXQT AND ENTER MEMORY COMVAND
Fo9B 465

F99B 466 ** COWANDS ARE ENTERED AS A SUBROUTI NE W TH:

Fo9B 467 ** DPR- >ASSI ST09 DI RECT PAGE WORK AREA

F99B 468 ** Z=1 CARRI AGE RETURN ENTERED

Fo9B 469 ** Z=0 NON CARRI AGE RETURN DELI M TER

F99B 470 ** S=NORMAL RETURN ADDRESS

Fo9B 471 ** THE LABEL "CMDBAD' MAY BE ENTERED TO | SSUE AN

F99B 472 ** AN ERROR FLAG (*).

Fo9B 473

FggB 474 R R Sk Sk Sk Sk S S Sk S Sk S R S Sk kR Sk S S kS R Sk kS S S S S S Sk S

Fo9B 475 * ASSI ST0O9 COMWAND TABLES

F99B 476 * THESE ARE THE DEFAULT COMVAND TABLES. EXTERNAL

Fo9B 477 * TABLES OF THE SAME FORVAT MAY EXTEND/ REPLACE

F99B 478 * THESE BY USI NG THE VECTOR SWAP FUNCTI ON.

Fo9B 479 *

F99B 480 * ENTRY FORMAT:

Fo9B 481 * +0... TOTAL SI ZE OF ENTRY (I NCLUDI NG TH S BYTE)

F99B 482 * +1... COWAND STRI NG

Fo9B 483 * +N. .. TWO BYTE OFFSET TO COWAND (ENTRYADDR- *)

F99B 484 *

Fo9B 485 * THE TABLES TERM NATE WTH A ONE BYTE -1 OR -2.

F99B 486 * THE -1 CONTI NUES THE COMVAND SEARCH W TH THE

Fo9B 487 * SECOND COMMVAND TABLE.

F99B 488 * THE -2 TERM NATES COMMVAND SEARCHES.

FggB 489 LR Sk R
F99B 490

Fo9B 491 * THIS IS THE DEFAULT LI ST FOR THE SECOND COMVAND

F99B 492 * LI ST ENTRY.

FO9B FE 493 CMDTB2 FCB -2 STOP COMMAND SEARCHES
F99C 494

Fo9C 495 * THI S IS THE DEFAULT LI ST FOR THE FI RST COMVAND

F99C 496 * LI ST ENTRY.

DUNFI ELD

F99C
F99C
F99D
FO9E
FOA0
FOAL
FOA2
FOA4
FOA5
FOAG
FOA8
FOA9
FOAA
FOAC
FOAD
FOAE
FO9BO
F9B1
FoB2
FOB4
FOB5
FOB6
FOB8
FO9B9
FOBA
F9BC
FOBD
FOBE
FOC0
FOC1
FoC2
FOC4
FOC5
F9C6
FOC8
FO9C9
FOCA
F9CC
FOCD
FOCE
FODO
FOD1
FOD2
FOD4
FOD5
FOD6
FOD8
FOD9
FOD9
FOD9
FOD9
FOD9
FOD9
FOD9
FOD9
FOD9
FOD9
FOD9
FoDB
FODD
FODF
FOEO
FOE2
FOE4
FOEG
FOES
FOE9
FOEB

04
42
05
04
43
04
04
44
04
04
45
05
04
47
03
04
4C
04
04
4D
04
04
4E
04
04
4F
05
04
50
04
04
52
02
04
53
04
04
54
04
04
56
04
04
57
04
FF

A6
34

3D
8D
35
84
8B
19
89
19

6809 ASSEMBLER. ASSI ST09

4D

17

9D

9F

oD

FD

OA

AF

84

F2

68

80
06
10

04
06
OF
90

40

497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

CMDTBL EQU
FCB
FCC
FDB
FCB
FCC
FDB
FCB
FCC
FDB
FCB
FCC
FDB
FCB
FCC
FDB
FCB
FCC
FDB
FCB
FCC
FDB
FCB
FCC
FDB
FCB
FCC
FDB
FCB
FCC
FDB
FCB
FCC
FDB
FCB
FCC
FDB
FCB
FCC
FDB
FCB
FCC
FDB
FCB
FCC
FDB
FCB

/L/
CLOAD- *
4

I'M
CMVEM *

4

I N
CNULLS- *
4

jxe]
COFFS- *
4

| P/
CPUNCH- *
4

I R
CREG *

4

/S
CSTLEV- *
4

1T/
CTRACE- *
4

VI
CVER- *

4

/W

CW NDO- *
-1

PAGE: 9
MONI TOR COMVAND TABLE
' BREAKPO NT' COMVAND

" CALL" COMVAND

' DI SPLAY" COMVAND

' ENCODE' COVVAND

' GO COMIVAND

'LOAD COMVAND

' MEMORY' COMVAND

" NULLS' COMVAND

' OFFSET" COMVAND

' PUNCH COMVAND

' REG STERS' COMVAND

" STLEVEL' COWNVAND

' TRACE' COMVAND

' VERI FY' COVMAND

" W NDOW COMVAND

END, CONTI NUE W TH THE SECOND

LR R R R R R R R R R R R R R R R R

[SW FUNCTI ONS 4 AND 5]
4 - QUT2HS - DECCDE BYTE TO HEX AND ADD SPACE
5 - OUT4HS - DECODE WORD TO HEX AND ADD SPACE

OQUTPUT: CHARACTERS SENT TO OUTPUT HANDLER

X->NEXT BYTE OR WORD

*
*
* | NPUT: X->BYTE OR WORD TO DECODE
*
*
*

R R R Sk Sk Sk Sk S S S S S S S R Sk S S S Sk Sk R Sk S S S Sk R Sk S Sk S S S S S S S

ZQUT2H LDA
PSHS
LDB
MJL
BSR
PULS
ANDA

ZQUTHX ADDA
DAA
ADCA
DAA

. X+
D
#16

ZOUTHX
D
#$0F
#$90
ADJUST
#$40
ADJUST

LOAD NEXT BYTE

SAVE - DO NOT REREAD
SH FT BY 4 BI TS

W TH MULTI PLY

SEND QUT AS HEX
RESTORE BYTES

| SOLATE RI GHT HEX
PREPARE A-F ADJUST

PREPARE CHARACTER BI TS

DUNFI ELD

FOEC
FOFO
FOFO
FOF2
FOF4
FOF6
FOF6
FOF6
FOF6
FOF6
FOF6
FOF6
FOF6
FOF6
FOF8
FOFA
FOFA
FOFA
FOFA
FOFA
FOFA
FOFA
FOFA
FOFA
FOFC
FOFE
FAOO
FAO3
FAO5
FAO7
FAO09
FAOB
FAOD
FAOF
FAOF
FAOF
FAOF
FAOF
FAOF
FAOF
FAOF
FAOF
FAOF
FAOF
FA11
FA13
FA15
FA16
FA18
FA1A
FA1C
FALE
FA20
FA22
FA24
FA26
FA28
FA2A
FA2C
FA2E
FA2E
FA2E
FA2E
FA2E
FA2E
FA2E
FA2E
FA2E

6E

8D
8D
AF

86
20

A6
81
22
10
EE
EF
AF
27
AF
20

8D
8D
24
4D
27
81
27
A7
ob
26
81
26
86
8D
ob
26

6809 ASSEMBLER. ASSI ST09

9D E5 EE

E7
E5
64

20
3D

61
34
39
9E @2
A6
64
7E
2E
A6
2A

5D
5F
FA

F9
7F
F5
61
8F
17
(0] D]
04
OA

F4
0B

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632

PAGE: 10
SEND JMWP [VECTAB+. CODTA, PCR] SEND TO QUT HANDLER
ZOT4HS BSR ZOUT2H CONVERT FI RST BYTE
ZOT2HS BSR ZOUT2H CONVERT BYTE TO HEX
STX 4,s UPDATE USERS X REG STER
* FALL | NTO SPACE ROUTI NE
R R R R R R R E R EEEEEEEEEEEEEEEEEEEE RS EE SRS EEEEEE SRS EEES
* [SW FUNCTI ON 7]
* SPACE - SEND BLANK TO OUTPUT HANDLER

* I NPUT. NONE

* OUTPUT: BLANK SEND TO CONSOLE HANDLER

LR R R I R R R R R R R R R R R R R R R R

LOAD BLANK
ZOTCH2 SEND AND RETURN

LR R R R R R I R R R R R R R R R R R R R R R R R

ZSPACE LDA
BRA

*

* SWAP

* I NPUT: A=VECT

*

[SW FUNCTI ON 9]

VECTOR TABLE ENTRY
OR TABLE CCDE (OFFSET)

X=0 OR REPLACEMENT VALUE

* OUTPUT: X=PREVI QUS VALUE

LR R R R R R R R R R R R R R R R R R R R

ZVSWIH LDA 1,8 LOAD REQUESTERS A
CWPA #H VIR ? SUB- CCDE TOO Hi GH
BH ZOTCH3 I GNORE CALL | F SO
LDY VECTAB+ AVTBL ~ LOAD VECTCR TABLE ADDRESS
LU AY U=OLD ENTRY
STU 4,5 RETURN OLD VALUE TO CALLERS X
STX -2,S ? X=0
BEQ ZOTCH3 YES, DO NOT CHANGE ENTRY
STX AY REPLACE ENTRY
BRA zotcoHs RETURN FROM SW
*D
LR R R R R R R R R R R R R R EEEEEE R R R R R R R R R
* [SW FUNCTI ON 0]
* INCHNP - OBTAIN I NPUT CHAR IN A (NO PARI TY)
* NULLS AND RUBOUTS ARE | GNORED.
* AUTOVATI C LINE FEED |'S SENT UPON RECI EVI NG A
* CARRI AGE_RETURN.
* UNLESS WE ARE LOADI NG FROM TAPE.
R EEEE SRS SRS EEEEEREEEEREREEEEEEEEEEEEEEEEEEEEEEEEES
ZINCHP BSR XQPAUS RELEASE PROCESSOR
ZINCH BSR XQCl DT CALL | NPUT DATA APPENDAGE
BCC ZINCHP LOOP | F NONE AVAI LABLE
TSTA 2 TEST FOR NULL
BEQ ZINCH | GNORE NULL
CVPA #STF ? RUBOUT
BEQ ZINCH BRANCH YES TO | GNORE
STA 1,8 STORE | NTO CALLERS A
TST M SFLG ? LOAD | N PROGRESS
BNE ZoTcH3 BRANCH | F SO TO NOT ECHO
CWPA #CR ? CARRI AGE RETURN
BNE zZINe NO, TEST ECHO BYTE
LDA #LF LOAD LI NE FEED
BSR SEND ALWAYS ECHO LI NE FEED
zZiNe ST VECTAB+ ECHO ~ ? ECHO DESI RED
BNE ZOTCH3 NO, RETURN

* FALL THROUGH TO QUTCH

EE R SR R Sk Sk S Sk kS S Sk R Sk S kS Rk S S S S

[SW FUNCTI ON 1]

QUTCH - QOUTPUT CHARACTER FROM A

QUTPUT: | F L

*
*
* INPUT: NONE
*
* Cc=0
*

I NEFEED | S THE OUTPUT CHARACTER THEN
NO CTL- X RECI EVED, C=1 CTL-X RECI EVED

R SR Sk S Sk Sk S S kS S S S Sk S S S S R Sk S Sk Sk Sk S Sk S S Sk kS

DUNFI ELD 6809 ASSEMBLER: ASSI ST09 PAGE: 11

FA2E A6 61 633 ZOTCH1L LDA 1,S LOAD CHARACTER TO SEND
FA30 30 8C 09 634 LEAX <ZPCRLS, PCR DEFAULT FOR LI NE FEED
FA33 81 OA 635 CVPA #LF ? LI NE FEED

FA35 27 OF 636 BEQ ZPDTLP BRANCH TO CHECK PAUSE | F SO
FA37 8D B3 637 ZOTCH2 BSR SEND SEND TO QUTPUT ROUTI NE
FA39 0C 90 638 ZOTCH3 |INC SW CNT BUWP UP "SW" TRACE NEST LEVEL
FA3B 3B 639 RTI RETURN FROM " SW " FUNCTI ON
FA3C 640

FASC 641 EE R
FA3C 642 * [SW FUNCTI ON 6]

FA3C 643 * PCRLF - SEND CR/LF TO CONSOLE HANDLER

FA3C 644 * | NPUT: NONE

FA3C 645 * QUTPUT: CR AND LF SENT TO HANDLER

FA3C 646 * C=0 NO CTL-X, C=1 CTL-X RECI EVED

FASC 647 LR R
FA3C 648

FA3C 04 649 ZPCRLS FCB EOT NULL STRI NG

FA3D 650

FA3SD 30 8C FC 651 ZPCRLF LEAX ZPCRLS, PCR READY CR, LF STRI NG
FA40 652 * FALL | NTO CR/ LF CODE

FAAQ 653

FAAO 654 R R Sk Sk Sk R S S Sk S Sk S S S Sk kS S S S S R S Rk kS S S S Sk S S S
FAAQ 655 * [SW FUNCTI ON 3]

FA40 656 * PDATA - OUTPUT CR/LF AND STRI NG

FAAOQ 657 * I NPUT: X->STRI NG

FA40 658 * QUTPUT: CR/LF AND STRI NG SENT TO OUTPUT CONSOLE

FAAQ 659 * HANDLER

FA40 660 * C=0 NO CTL-X, C=1 CTL-X RECI EVED

FAAQ 661 * NOTE: LINE FEED MUST FOLLOW CARRI AGE RETURN FOR

FA40 662 * PROPER PUNCH DATA.

FA40 663 LR R
FA40 86 0D 664 ZPDATA LDA #CR LOAD CARRI AGE RETURN
FA42 8D A8 665 BSR SEND SEND I T

FA44 86 OA 666 LDA #LF LOAD LI NE FEED

FAAG 667 * FALL | NTO PDATA1l

FA46 668

FA46 669 LR R R R R R R R R R R R R R R R R

FA46 670 * [SW FUNCTI ON 2]

FAAG 671 * PDATAL - QUTPUT STRING Tl LL EOT ($04)

FA46 672 * TH' S ROUTI NE PAUSES | F AN | NPUT BYTE BECOMES

FAAG 673 * AVAI LABLE DURI NG QUTPUT TRANSM SSI ON UNTIL A

FA46 674 * SECOND | S RECI EVED.

FAAG 675 * I NPUT: X->STRI NG

FA46 676 * OUTPUT: STRING SENT TO OUTPUT CONSCLE DRI VER

FAAG 677 C=0 NO CTL-X, C=1 CTL-X RECI EVED

FAAG 678 R R R Sk Sk Sk Sk S Sk S S S S R S S S S S R S S Sk S Sk S Sk R Sk S S S S S S S S S S

FAA6 8D A4 679 ZPDTLP BSR SEND SEND CHARACTER TO DRI VER
FA48 A6 80 680 ZPDTA1 LDA , X+ LOAD NEXT CHARACTER
FAAA 81 04 681 CVPA #EQOT ? EOT

FAAC 26 F8 682 BNE ZPDTLP LOOP | F NOT

FAAE 683 * FALL | NTO PAUSE CHECK FUNCTI ON

FAAE 684

FA4E 685 LR R R R R R R R R R R

FAAE 686 * [SW FUNCTI ON 12]

FAAE 687 * PAUSE - RETURN TO TASK DI SPATCHI NG AND CHECK
FAAE 688 * FOR FREEZE CONDI TI ON OR CTL- X BREAK

FAAE 689 * TH'S FUNCTI ON ENTERS THE TASK PAUSE HANDLER SO
FAAE 690 * OPTIONALLY OTHER 6809 PROCESSES MAY GAI N CONTRCL.
FAAE 691 * UPON RETURN, CHECK FOR A ' FREEZE' CONDI Tl ON

FAAE 692 * WTH A RESULTING WAIT LOOP, OR CONDI TI ON CODE

FAAE 693 * RETURN I F A CONTROL-X | S ENTERED FROM THE | NPUT
FAAE 694 * HANDLER

FAAE 695 * QUTPUT: C=1 | F CTL-X HAS ENTERED, C=0 OTHERW SE
FAAE 696 R R SR Sk Sk R Sk S S S S kR S Sk S S S Sk R S R Sk Sk S Sk S S S

FAAE 8D 1E 697 ZPAUSE BSR XQPAUS RELEASE CONTROL AT EVERY LI NE
FA50 8D 06 698 BSR CHKABT CHECK FOR FREEZE OR ABCRT
FA52 1F A9 699 TFR CC, B PREPARE TO REPLACE CC

FA54 E7 EA4 700 STB , S OVERLAY COLD ONE ON STACK

DUNFI ELD

FA56
FA58
FA58
FA58
FA58
FA58
FASA
FA5C
FASE
FAG0
FAG1
FAG2
FAG4
FAG6
FAG8
FAGA
FAGC
FA6D
FAGE
FAGE
FAGE
FAT72
FA76
FA78
FA79
FA79
FA79
FA79
FA79
FA79
FA79
FA79
FA79
FA79
FA79
FA7D
FA7D
FATF
FA81
FA83
FA85
FA87
FA89
FA8B
FA8D
FA90
FA91
FA92
FA94
FA98
FA99
FA9A
FA9C
FASE
FAAO
FAA2
FAAA
FAAG
FAA8
FAAA
FAAC
FAAE
FABO
FAB3
FAB3
FABG
FAB7
FAB7

20

8D
24
81
26
53
39
8D
8D
24
81
27
4F
39

6E
AD
84
39

4F

8D
(o])
26
(o])
2B
30
9C
25
30
3F
02
09
30
3F
05
8D
25
06
25
9E
27
30
9F
27
8D
25
16

17
39

6809 ASSEMBLER: ASS| ST09 PAGE: 12
El 701 BRA ZOTCH3 RETURN FROM " SwW'*"
702
703 * CHKABT - SCAN FOR | NPUT PAUSE/ ABORT DURI NG OUTPUT
704 * QUTPUT: C=0 OK, C=1 ABORT (CTL-X | SSUED)
705 * VOLATILE: U, X D
18 706 CHKABT BSR XQCl DT ATTEMPT | NPUT
05 707 BCC CHKRTN BRANCH NO TO RETURN
18 708 CVPA #CAN ? CTL- X FOR ABORT
02 709 BNE CHKWI BRANCH NO TO PAUSE
710 CHKSEC COvB SET CARRY
711 CHKRTN RTS RETURN TO CALLER WTH CC SET
OA 712 CHKWI BSR XQPAUS PAUSE FOR A MOVENT
ocC 713 BSR XQCl DT ? KEY FOR START
FA 714 BCC CHKWI LOOP UNTI L RECI EVED
18 715 CVPA #CAN ? ABORT S| GNALED FROM WAI T
F4 716 BEQ CHKSEC BRANCH YES
717 CLRA SET C=0 FOR NO ABORT
718 RTS AND RETURN
719
720 * SAVE MEMORY W TH JUWMPS
9D E5 78 721 XQPAUS JMP [VECTAB+. PAUSE, PCR] TO PAUSE RQUTI NE
9D E5 62 722 XQC DI JSR [VECTAB+. Cl DTA, PCR] TO I NPUT ROUTI NE
7F 723 ANDA H#ETF STRI P PARITY
724 RTS RETURN TO CALLER
;gg R SR R Sk S Sk S S Sk S S S S S S S Sk R R Sk S Sk Sk S Sk S S Sk S
727 * NM DEFAULT | NTERRUPT HANDLER
728 * THE NM HANDLER IS USED FOR TRACI NG | NSTRUCTI ONS.
729 * TRACE PRI NTOQUTS OCCUR ONLY AS LONG AS THE STACK
730 * TRACE LEVEL | S NOT BREACHED BY FALLI NG BELOW I T.
731 * TRACI NG CONTI NUES UNTIL THE COUNT TURNS ZERO OR
732 * A CTL-X IS ENTERED FROM THE | NPUT CONSCOLE DEVI CE.
733 EE R R R R R R R R R R R R R R R
734
50 2D 04 735 MSHOWP FCB '0,'P,"'-",EOT OPCODE PREP
736
42 737 NMR BSR LDDP LOAD PAGE AND VERI FY STACK
8F 738 TST M SFLG ? THRU A BREAKPO NT
34 739 BNE NM CON BRANCH | F SO TO CONTI NUE
90 740 TST SW CNT ? INHIBIT "SW" DURI NG TRACE
29 741 BM NM TRC BRANCH YES
6C 742 LEAX 12, S OBTAI N USERS STACK PO NTER
F8 743 CVPX SLEVEL ? TO TRACE HERE
23 744 BLO NM TRC BRANCH | F TOO LOW TO DI SPLAY
8C E9 745 LEAX MSHOWP, PCR LOAD OP PREP
746 SW SEND TO CONSOLE
747 FCB PDATAL FUNCTI ON
8E 748 ROL DELI M SAVE CARRY BIT
8D E5 01 749 LEAX LASTOP, PCR PO NT TO LAST OP
750 SW SEND QUT AS HEX
751 FCB QUT4HS FUNCTI ON
17 752 BSR REGPRS FOLLOW MEMORY W TH REG STERS
37 753 BCS ZBKCVD BRANCH | F " CANCEL"
8E 754 ROR DELI M RESTCRE CARRY BI T
33 755 BCS ZBKCMVD BRANCH | F " CANCEL"
91 756 LDX TRACEC LOAD TRACE COUNT
2F 757 BEQ ZBKCVD I F ZERO TO COMVAND HANDLER
1F 758 LEAX -1, X M NUS ONE
91 759 STX TRACEC REFRESH
29 760 BEQ ZBKCMD STOP TRACE WHEN ZERO
AA 761 BSR CHKABT ? ABORT THE TRACE
25 762 BCS ZBKCMD BRANCH YES TO COMVAND HANDLER
03 F7 763 NM TRC LBRA CTRCE3 NO, TRACE ANOTHER | NSTRUCTI ON
764
01 B9 765 REGPRS LBSR REGPRT PRI NT REG STERS AS FROM COMVAND
766 RTS RETURN TO CALLER
767
768 * JUST EXECUTED THRU A BRKPNT. NOW CONTI NUE NORVALLY

DUNFI ELD

FAB7
FAB9
FABC
FABD
FABD
FABD
FABD
FABD
FABD
FABD
FABD
FAC1
FAC1
FAC5
FAC7
FAC9
FACB
FACE
FAD1
FAD2
FAD3
FAD3
FAD3
FAD3
FAD3
FAD3
FAD3
FAD3
FAD5
FAD8
FAD8
FAD8
FAD8
FAD8
FADS
FAD8
FADS
FAD8
FADA
FADC
FADC
FADC
FADC
FADC
FABC
FADC
FADC
FADC
FADC
FADC
FADC
FADC
FADC
FADC
FADE
FAEO
FAE1
FAE3
FAES
FAE6
FAEG6
FAE6
FAEG6
FAE6
FAE6
FAES
FAEA
FAEC

OF
17
3B

3F

E6
1F
Al
27
10
30
3F
03

8D
16

8D
20

A6
44
24
A6
39

86
9E
A7
86

6809 ASSEMBLER ASSI ST09 PAGE: 13
8F 769 NM CON CLR M SFLG CLEAR THRU FLAG
02 EB 770 LBSR ARMBK2 ARM BREAKPOI NTS
771 RTI RTI AND CONTI NUE USERS PROGRAM
772
773 * LDDP - SETUP DI RECT PAGE REG STER, VERI FY STACK.
774 * AN | NVALI D STACK CAUSES A RETURN TO THE COVMAND
775 * HANDLER
776 * INPUT: FULLY STACKED REG STERS FROM AN | NTERRUPT
777 * OUTPUT: DPR LOADED TO WORK PAGE
778
07 20 04 779 ERRMSG FCB " 2" BELL, $20, EOT ERROR RESPONSE
780
8D E4 D8 781 LDDP LDB BASEPG, PCR LOAD DI RECT PAGE HI GH BYTE
9B 782 TFR B, DP SETUP DI RECT PAGE REG STER
63 783 CWPA 3,S ? 1S STACK VALID
25 784 BEQ RTS YES, RETURN
DE 97 785 LDS RSTACK RESET TO | NI TI AL STACK PO NTER
8C EC 786 ERROR LEAX ERRMSG PCR LOAD ERROR REPCRT
787 Sw SEND OUT BEFORE REG STERS
788 FCB PDATA ON NEXT LINE
789 * FALL | NTO BREAKPO NT HANDLER
790
791 IR R S S RS RS R R RS RS R SRR SRS EE R EEEEREEEEEESEREEEEESES]
792 * [SW FUNCTI ON 10]
793 * BREAKPOl NT PROGRAM FUNCTI ON
794 * PRINT REG STERS AND GO TO COMMAND HANLER
795 IR RS R RS RS RS S E SRS S S SRR E SRS REEREEEEEEEEEEESEESESEEESES
DE 796 ZBKPNT BSR REGPRS PRINT OUT REQ STERS
FE 21 797 ZBKCMD LBRA CMDNEP NOW ENTER COMMVAND HANDLER
798
799 IR RS R RS RS R SRS RS R R R SRR REEEEREEESEEREEEEESEESSESESE]
800 * IRQ RESERVED, SW2 AND SW3 | NTERRUPT HANDLERS
801 * THE DEFAULT HANDLING | S TO CAUSE A BREAKPO NT.
802 R R R R R EEEEEEEEEEEEEEEEEEEEEEE RS EEEEE RS RS E SR
803 SW2R EQ * SW2 ENTRY
804 SW3R EQU * SW 3 ENTRY
805 IRR EQU * | RQ ENTRY
E7 806 RSRVDR BSR LDDP SET BASE PAGE, VALIDATE STACK
F7 807 BRA ZBKPNT FORCE A BREAKPO NT
808
809 IR R RS RS RS EE SRS RS EE R E R EEEEEEEEEESEEEEESEESEESE]
810 * FI RQ HANDLER
811 * JUST RETURN FOR THE FI RQ | NTERRUPT
812 kkhkkhkkhkkkhkkkhkkhkkhkhkkhhkhhkhhkhkkhkhkdhkhhkhhhdhkhhkhhhkkhkdkkxk
813 FIRQR EQ RTI | MVEDI ATE RETURN
814
815 IR RS R R SRS RS R RS RS RS EE R E SRS EEREEREEEEEEEEEESESREEESESESS
816 * DEFAULT |/ O DRI VERS
817 IR RS R R SRS RS R E SRS RS R SRR SRS REEREREEEEEEEEEESESREEESESESS
818
819 * CIDTA - RETURN CONSOLE | NPUT CHARACTER
820 * OUTPUT: C=0 |F NO DATA READY, C=1 A=CHARACTER
821 * U VOLATILE
FO 822 CIDIA LDU VECTAB+. ACIA LOAD ACI A ADDRESS
c4 823 LDA U LOAD STATUS REG STER
824 LSRA TEST RECEI VER REG STER FLAG
02 825 BCC Cl RTN RETURN | F NOTHI NG
41 826 LDA 1,U LOAD DATA BYTE
827 CIRTN RTS RETURN TO CALLER
828
829 * CION - | NPUT CONSOLE I NI TI ALI ZATI ON
830 * COON - OUTPUT CONSOLE | NI TI ALI ZATI ON
831 * A X VOLATILE
832 GON EQU *
03 833 COON LDA #3 RESET ACI A CODE
FO 834 LDX VECTAB+. ACCA LOAD ACI A ADDRESS
84 835 STA . X STORE | NTO STATUS REG STER
51 836 LDA #$51 SET CONTROL

DUNFI ELD 6809 ASSEMBLER: ASSI ST09

FAEE A7 84

FAFO
FAF1
FAF1
FAFO
FAFO
FAF1
FAF1
FAF1
FAF1
FAF1
FAF1
FAF1
FAF3
FAF5
FAF7
FAF9
FAFB
FAFD
FAFF
FBO1
FBO3
FBO4
FBO6
FBO7
FBO9
FBOB
FBOD
FBOF
FBOF
FB12
FB14
FB16
FB18
FB1A
FB1B
FB1B
FB1B
FB1B
FB1B
FB1B
FB1D
FB1F
FB21
FB22
FB23
FB24
FB26
FB27
FB27
FB27
FB27
FB29
FB2A
FB2B
FB2C
FB2D
FB2E
FB30
FB33
FB35
FB37
FB38
FB38
FB38
FB38
FB38
FB38

39

34

8D
81
27

81
26

4F
E7
8C
8D
6A
2A
35

17
E6

26
A7
39

86
6D
26
4C
3F
01
ocC
39

86
3F
01
4A
3F
01
OA
8E
30
26
39

47
FO
1B
10
12
F2
oD
02
F3

E4

09
E4
FA

FF

02
F7
41

11
66
01

8F

14

8F
61
1F
FC

5C

837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904

PAGE: 14
REG STER UP
RETURN TO CALLER

CONSOLE | NPUT OFF
CONSOLE QUTPUT OFF

STA , X
RTS RTS
* THE FOLLOW NG HAVE NO DUTI ES TO PERFORM
Cl OFF EQU RTS
COCFF EQU RTS

* CODTA - QUTPUT CHARACTER TO CONSOLE DEVI CE

* I NPUT. A=CHARACTER TO SEND

* OUTPUT: CHAR SENT TO TERM NAL W TH PROPER PADDI NG

* ALL REG STERS TRANSPARENT

CODTA PSHS U, D CC

LDU VECTAB+. ACl A

BSR CODTAO

CVPA #DLE

BEQ CODTRT

LDB VECTAB+. PAD

CVPA #CR

BNE CCDTPD

LDB VECTAB+. PAD+1
CODTPD CLRA

STB , S

FCB SKI P2
CODTLP BSR CODTAO

DEC , S

BPL CODTLP
CODTRT PULS PC, U, D, CC
CCODTAD LBSR XQPAUS
CODTAO LDB ,U

Bl TB #3$02

BNE CODTAD

STA 1,U

RTS
*E

SAVE REGQ STERS, WORK BYTE
ADDRESS ACI A

CALL QUTPUT CHAR SUBROTI NE
? DATA LI NE ESCAPE

YES, RETURN

DEFAULT TO CHAR PAD COUNT
? CR

BRANCH NO

LCAD NEW LI NE PAD COUNT
CREATE NULL

SAVE COUNT

ENTER LOCP

SEND NULL

? FI NI SHED

NO, CONTI NUE W TH MORE
RESTORE REG STERS AND RETURN

TEMPORARY G VE UP CONTRCL
LCAD ACI A CONTROL REG STER

? TX REG STER CLEAR >LSAB FI XME

RELEASE CONTROL | F NOT
STORE | NTO DATA REG STER
RETURN TO CALLER

* BSON - TURN ON READ/ VERI FY/ PUNCH MECHANI SM

* A 1S VOLATILE

BSON LDA #$11
TST 6,S
BNE BSON2
I NCA

BSON2 SW
FCB QUTCH
I NC M SFLG
RTS

SET READ CODE

? READ OR VERI FY

BRANCH YES

SET TO WRI TE

PERFORM QUTPUT

FUNCTI ON

SET LOAD I N PROGRESS FLAG
RETURN TO CALLER

* BSOFF - TURN OFF READ/ VERI FY/ PUNCH MECHANI SM

* A X VOLATI LE

BSOFF LDA #$14 TO DC4 - STOP
SwW SEND OUT
FCB OUTCH FUNCTI ON
DECA CHANGE TO DC3 (X- OFF)
SW SEND OUT
FCB OUTCH FUNCTI ON
DEC M SFLG CLEAR LOAD | N PROGRESS FLAG
LDX #25000 DELAY 1 SECOND (2MHZ CLOCK)
BSOFLP LEAX -1, X COUNT DON
BNE BSOFLP LOOP TILL DONE
RTS RETURN TO CALLER
* BSDTA - READ/ VERI FY/ PUNCH HANDLER
* |NPUT: S+6=CODE BYTE, VERI FY(-1), PUNCH(0), LOAD(1)
* S+4=START ADDRESS
* S+2=STOP ADDRESS
*

S+0=RETURN ADDRESS

DUNFI ELD 6809 ASSEMBLER: ASSI ST09 PAGE: 15

FB38 905 * OUTPUT: Z=1 NORVAL COWPLETI ON, Z=0 | NVALID LOAD/ VER
FB38 906 * REGQ STERS ARE VOLATI LE
FB38 907
FB38 EE 62 908 BSDTA LDU 2,S U=TO ADDRESS OR CFFSET
FB3A 6D 66 909 TST 6,S ? PUNCH
FB3C 27 54 910 BEQ BSDPUN BRANCH YES
FB3E 911 * DURI NG READ/ VERI FY: S+2=MSB ADDRESS SAVE BYTE
FB3E 912 * S+1=BYTE COUNTER
FB3E 913 * S+0=CHECKSUM
FB3E 914 * U HOLDS OFFSET
FB3E 32 7D 915 LEAS -3,S ROOM FOR WORK/ COUNTER/ CHECKSUM
FB40 3F 916 BSDLDL SWwW GET NEXT CHARACTER
FB41 00 917 FCB I NCHNP FUNCTI ON
FB42 81 53 918 BSDLD2 CMPA # S ? START OF S1/S9
FB44 26 FA 919 BNE BSDLD1 BRANCH NOT
FB46 3F 920 SW GET NEXT CHARACTER
FB47 00 921 FCB I NCHNP FUNCTI ON
FB48 81 39 922 CVPA #9' ? HAVE S9
FB4A 27 22 923 BEQ BSDSRT YES, RETURN GOCD CODE
FB4C 81 31 924 CVPA # 1 ? HAVE NEW RECORD
FB4E 26 F2 925 BNE BSDLD2 BRANCH | F NOT
FB50 6F E4 926 CLR , S CLEAR CHECKSUM
FB52 8D 21 927 BSR BYTE OBTAI N BYTE COUNT
FB54 E7 61 928 STB 1,S SAVE FOR DECREMENT
FB56 929 * READ ADDRESS
FB56 8D 1D 930 BSR BYTE OBTAI N H GH VALUE
FB58 E7 62 931 STB 2,S SAVE | T
FB5A 8D 19 932 BSR BYTE OBTAI N LOW VALUE
FB5C A6 62 933 LDA 2,S MAKE D=VALUE
FB5E 31 CB 934 LEAY DU Y=ADDRESS+OFFSET
FB60 935 * STORE TEXT
FB60 8D 13 936 BSDNXT BSR BYTE NEXT BYTE
FB62 27 OC 937 BEQ BSDEOL BRANCH | F CHECKSUM
FB64 6D 69 938 TST 9,8 ? VERI FY ONLY
FB66 2B 02 939 BM BSDCWP YES, ONLY COWPARE
FB68 E7 A4 940 STB Y STORE | NTO MEMORY
FB6A E1 A0 941 BSDCWP CWPB , Y+ ? VALI D RAM
FB6C 27 F2 942 BEQ BSDNXT YES, CONTI NUE READI NG
FB6E 35 92 943 BSDSRT PULS PC, X, A RETURN W TH Z SET PROPER
FB70 944
FB70 4C 945 BSDEOL | NCA ? VALI D CHECKSUM
FB71 27 CD 946 BEQ BSDLD1 BRANCH YES
FB73 20 F9 947 BRA BSDSRT RETURN Z=0 | NVALI D
FB75 948
FB75 949 * BYTE BU LDS 8 BIT VALUE FROM TWO HEX DIG@ TS I N
FB75 8D 12 950 BYTE BSR BYTHEX OBTAI N FI RST HEX
FB77 C6 10 951 LDB #16 PREPARE SHI FT
FB79 3D 952 MUL OVER TO A
FB7A 8D 0D 953 BSR BYTHEX OBTAI N SECOND HEX
FB7C 34 04 954 PSHS B SAVE HI GH HEX
FB7E AB EO 955 ADDA , S+ COMVBI NE BOTH SI DES
FB8O 1F 89 956 TFR A B SEND BACK IN B
FB82 AB 62 957 ADDA 2,8 COVPUTE NEW CHECKSUM
FB84 A7 62 958 STA 2,S STORE BACK
FB86 6A 63 959 DEC 3,S DECREMENT BYTE COUNT
FB88 39 960 BYTRTS RTS RETURN TO CALLER
FB89 961
FB89 3F 962 BYTHEX SW GET NEXT HEX
FB8A 00 963 FCB I NCHNP CHARACTER
FB8B 17 01 D4 964 LBSR CNVHEX CONVERT TO HEX
FBBE 27 F8 965 BEQ BYTRTS RETURN | F VALI D HEX
FB90 35 F2 966 PULS PC, U Y, X A RETURN TO CALLER W TH Z=0
FB92 967
FB92 968 * PUNCH STACK USE: S+8=TO ADDRESS
FB92 969 * S+6=RETURN ADDRESS
FB92 970 * S+4=SAVED PADDI NG VALUES
FB92 971 * S+2 FROM ADDRESS

*

FB92 972 S+1=FRAME COUNT/ CHECKSUM

DUNFI ELD

FB92
FB92
FB94
FB96
FB98
FB9B
FBOD
FBOE
FBOF
FBA1
FBA3
FBA3
FBAS
FBA7
FBAB
FBAD
FBAF
FBBO
FBB2
FBB4
FBB6
FBB6
FBB9
FBBA
FBBB
FBBB
FBBC
FBBE
FBCO
FBCO
FBC2
FBC4
FBC4
FBC6
FBC8
FBCA
FBCC
FBCE
FBCE
FBCF
FBD1
FBD3
FBD5
FBD7
FBD9
FBDB
FBDE
FBDF
FBEO
FBE2
FBE4
FBE5
FBE7
FBE7
FBE9
FBEC
FBEC
FBEF
FBF9
FBFC
FBFC
FBFC
FBFC
FBFC
FBFC
FBFC
FBFC
FBFC

DE
AE
34
cC
D7
3F
01
C6
DD

EC
A3
10
25
C6
5C
E7
cB
E7

30
3F
03

5F
30
8D

8D
8D

AE
8D
6A
26
AF

53
E7
30
8D
AE
AC
24
30
3F
03
EC
DD
4F
35

EB
16

53

53
ob

3F

6809 ASSEMBLER. ASSI ST09

F2
64
56
00
F2

04
F2

68
62
83
02
17

E4
03
61

8C

61
27

25
23

62
1F
E4
FA
62

61
61
14
68
62

8C

64
F2

84
FD

31
39
0A

18

00 18

33

11

ED

04
30 33 30 30 +
04

973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040

*

PAGE: 16

S+0=BYTE COUNT

BSDPUN LDU VECTAB+. PAD
LDX 4,S
PSHS U X, D
LDD #24
STB VECTAB+. PAD
SW
FCB QUTCH
LDB #4
STD VECTAB+. PAD
* CALCULATE SI ZE
BSPGO LDD 8,S
SUBD 2,8
CvPD #24
BLO BSPOK
LDB #23
BSPOK | NCB
STB , S
ADDB #3
STB 1,S
*PUNCH CR, LF, NULS, S, 1
LEAX <BSPSTR, PCR
SW
FCB PDATA
* SEND FRAME COUNT
CLRB
LEAX 1,S
BSR BSPUN2
*DATA ADDRESS
BSR BSPUN2
BSR BSPUN2
*PUNCH DATA
LDX 2,S
BSPMRE BSR BSPUN2
DEC , S
BNE BSPVRE
STX 2,S
* PUNCH CHECKSUM
covB COVPLEMENT
STB 1,S
LEAX 1,S
BSR BSPUNC
LDX 8,S
CWPX 2,S
BHS BSPGO
LEAX <BSPEOF, PCR
SW
FCB PDATA
LDD 4,S
STD VECTAB+. PAD
CLRA
PULS PC, U, X D
BSPUN2 ADDB , X
BSPUNC LBRA ZQUT2H
BSPSTR FCB 'S ,'1', EOT
BSPECF FCC / S9030000FC/
FCB CR, LF, EOT

HSDTA -

I NPUT: S+4=START ADDRESS

S+0=RETURN ADDRESS

*
*
* S+2=STOP ADDRESS
*
*

X, D VOLATI LE
* SEND TITLE

HSDTA SW

LOAD PADDI NG VALUES
X=FROM ADDRESS

CREATE STACK WORK AREA
SET A=0, B=24

SETUP 24 CHARACTER PADS
SEND NULLS OUT

FUNCTI ON

SETUP NEW LI NE PAD TO 4
SETUP PUNCH PADDI NG

LOAD TO

M NUS FROMELENGTH

? MORE THAN 23

NO, K

FORCE TO 23 MAX
PREPARE COUNTER
STORE BYTE COUNT
ADJUST TO FRAME COUNT
SAVE

LOAD START RECORD HEADER
SEND OUT
FUNCTI ON

I' NI TI ALl ZE CHECKSUM
PO NT TO FRAME COUNT AND ADDR
SEND FRAME COUNT

SEND ADDRESS H
SEND ADDRESS LOW

LCAD START DATA ADDRESS
SEND QUT NEXT BYTE

? FINAL BYTE

LOOP | F NOT DONE

UPDATE FROM ADDRESS VALUE

STORE FOR SENDOUT
PONT TOIT

SEND QUT AS HEX
LCAD TOP ADDRESS

? DONE

BRANCH NOT

PREPARE END OF FI LE
SEND QUT STRI NG
FUNCTI ON

RECOVER PAD COUNTS
RESTORE

SET Z=1 FOR OK RETURN
RETURN W TH OK CODE

ADD TO CHECKSUM
SEND QUT AS HEX AND RETURN

CR LF, NULLS, S, 1
ECF STRI NG

H GH SPEED PRI NT MEMORY

SEND NEW LI NE

DUNFI ELD

FBFD
FBFE
FC00
FCO1
FC02
FC03
FC05
FC06
FC08
FCOB
FCOC
FCOD
FQOE
FCOF
FC10
FC12
FC14
FC15
FC16
FC18
FCLA
FC1B
FC1C
FCLE
FC20
FC21
FC22
FC23
FC25
FC26
FC27
FC29
FC2B
FC2D
FC2F
FC31
FC33
FC35
FC36
FC37
FC38
FC3A
FC3C
FC3E
FC40
FC42
FCA3
FC45
FCA7
FC48
FCA49
FC4AA
FCAA
FC4AA
FCAA
FC4AA
FCAA
FC4AA
FCAA
FC4AC
FCAD
FCAF
FC50
FC50
FC50
FC50
FC50
FC50

06
C6
3F
07
5A
26
5F
1F
17
3F
07
3F
07
5C
Cl
25
3F
06
25
30
3F
05
AE
C6
3F
04
5A
26
3F
07
AE
C6
A6
2B
81
24
86
3F
01
5A
26
AC
24
AF
A6
48
26
20
3F
06
39

8D
4C
8D
39

6809 ASSEMBLER. ASSI ST09

06

FB

98
FD DB

10
F2

2F
64

64
10

FB

64
10
80
04
20
02
2E

F1
62
09
64
65

B5

23
21

1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108

HSBLNK

HSHTTL

HSHLNE

HSHNXT

HSHCHR

HSHDOT
HSHCOK

HSDRTN

*F
*kkkkkkk*k

* A

*kkkkkkkk

*kkkkkkkk

CREG

FCB
LDB
SW

FCB
DECB
BNE
CLRB
TFR
LBSR
SW

FCB
SW

FCB
I NCB
CwvPB
BLO
SW

FCB
BCS
LEAX
SW

FCB
LDX
LDB
SW

FCB
DECB
BNE
SW

FCB
LDX
LDB
LDA
BM

CVPA
BHS
LDA
SW

FCB
DECB
BNE
CWPX
BHS
STX
LDA
ASLA
BNE
BRA
SW

FCB
RTS

PCRLF
#6

SPACE
HSBLNK
B, A

ZQUTHX
SPACE
SPACE

#3$10
HSHTTL

PCRLF
HSDRTN
4,8

QUT4HS

4,S
#16

HSHLNE
HSDTA

PCRLF

PAGE: 17

FUNCTI ON

PREPARE 6 SPACES
SEND BLANK

FUNCTI ON

COUNT DOWN

LOCOP | F MORE

SETUP BYTE COUNT
PREPARE FOR CONVERT
CONVERT TOA HEX DIG T
SEND BLANK

FUNCTI ON

SEND ANOTHER

BLANK

UP ANOTHER

? PAST 'F

LOOP UNTIL SO

TO NEXT LINE

FUNCTI ON

RETURN | F USER ENTERED CTL- X
PO NT AT ADDRESS TO CONVERT
PRI NT OUT ADDRESS
FUNCTI ON

LCAD ADDRESS PRCPER
NEXT SI XTEEN

CONVERT BYTE TO HEX AND SEND
FUNCTI ON

COUNT DOWN

LOOP | F NOT SI XTEENTH
SEND BLANK

FUNCTI ON

RELOAD FROM ADDRESS
COUNT

NEXT BYTE

TOO LARGE, TO A DOT

? LONER THAN A BLANK
NO, BRANCH OK

CONVERT I NVALI D TO A BLANK
SEND CHARACTER
FUNCTI ON

? DONE

BRANCH NO

? PAST LAST ADDRESS
QUTIF SO

UPDATE FROM ADDRESS
LOAD LOW BYTE ADDRESS
TO SECTI ON BOUNDRY
BRANCH | F NOT

BRANCH | F SO

SEND NEW LI NE
FUNCTI ON

RETURN TO CALLER

R SR R Sk Sk Sk S S S S S Rk S S Sk Sk Sk S kS S Sk S S Sk S R

S S

STOO9

COMMANDS

R SR SR Sk Sk R S S S S S S Rk S S Sk Sk Sk S kS Sk S S Sk

*****REQ STERS -

BSR
I NCA
BSR
RTS

REGPRT

REGCHG

DI SPLAY AND CHANGE REG STERS

PRI NT REG STERS

SET FOR CHANGE FUNCTI ON

GO CHANGE, DI SPLAY REG STERS
RETURN TO COMMAND PROCESSOR

R SR SR S SR Sk S S Sk S S S S S S S kR R S S Sk R Sk S S kS

PRI NT/ CHANGE REG STERS SUBROUTI NE

REGPRT -
* WLL ABORT TO ' CVMDBAD

| F OVERFLOW DETECTED DURI NG

* A CHANGE CPERATI ON. CHANGE DI SPLAYS REG STERS WHEN

* DONE

DUNFI ELD 6809 ASSEMBLER: ASSI ST09

FC50
FC50
FC50
FC50
FC50
FC50
FC50
FC50
FC50
FC50
FC50
FC50
FC54
FC57
FC5A
FC5D
FC60
FC63
FC66
FC6A
FCGE
FC6F
FC6F
FC70
FC73
FC75
FC78
FC7A
FC7B
FC7D
FC7E
FC7F
FC81
FC83
FC84
FC85
FC87
FC89
FC8B
FC8D
FC8F
FCo0
FCo1
FCo2
FCO3
FCo4
FCO6
FCo7
FCO9
FCOA
FCoB
FCOD
FCOD
FCOF
FCAlL
FCA3
FCA5
FCA7
FCA8
FCA9
FCAA
FCAB
FCAC
FCAD
FCAF
FCB1
FCB3
FCB3

50
41
42
58
59
55
53
43
44
00

4F
30
34
31
EC
4D
2F
3F
01
20
86
3F
01
30
6D
26
6D
27
3F
05
8C
3F
04
EC
5D
26
3F
06
35

8D
27
81
27
E6
5A
50
58
3F
07
5A
26
20
A7

43
00
00
FF
FF
FF
FF
43
50

E8
32
8C
A0

04

F7
2D

E5
E4
12
3F
03

A0

B2

40
10
(0])
1E
3F

FB
E3
E4

9B

FF
0A
0B
oD
OF
11
01
00
00

10

13

09
ocC

1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

PAGE: 18

REG STER MASK LI ST CONSI STS OF
A) CHARACTERS DENOTI NG REG STER
B) ZERO FOR ONE BYTE, -1 FOR
C) OFFSET ON STACK TO REG STER PCsI Tl ON

OUTPUT:

T™O

A=0 PRI NT, A#0 PRI NT AND CHANGE

(ONLY FOR REG STER DI SPLAY)

C=1 CONTRCOL- X ENTERED, C=0 OTHERW SE
VOLATI LE: D, X (CHANGE)
*

*
*
*
*
* I NPUT: SP+4=STACKED REG STERS
*
*
*
*

B, X (DI SPLAY)

EE R R R R I R R R R R R R S R R R R

REGVSK

REGPRT
REGCHG

REGP1

REGP2

REGRTN
REGCNG

REGSKP

REGNXC
*

FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB

CLRA
LEAX
PSHS
LEAY
LDD
TSTA
BLE
SW
FCB
BRA
LDA
SW
FCB
LEAX
TST
BNE
TST
BEQ
SW
FCB
FCB
SW
FCB
LDD
TSTB
BNE
SW
FCB
PULS

BSR
BEQ
CVPA
BEQ
LDB
DECB
NEGB
ASLB
SW
FCB
DECB
BNE
BRA
STA

LDD

'P,"CL,-1,19

"A, 0,10 A REG
'B',0,11 B REG
,-1,13 X REG
,-1,15 Y REG
,-1,17 U REG
,-1,1 S REG

X ®

'C,0,9
'P, 0,12

aoana<

o -

4+12, S
Y, X, A
REGVBK, PCR
Y+

?

REGP2

QUTCH
REGP1
#

QUTCH
B, S

,S
REGCNG
-1, Y
REGP3

OQUT4HS
SKI P2

QUT2HS
Y+

?
REGP1

PCRLF
PC, Y, X, A

BLDNNB
REGNXC
#CR
REGAGN
-1, Y

TI MES
SPACE

REGSKP
REGA
.S

(ALWAYS >
NUVBER

PC REG

CC REG
DP REG
END OF LI ST

SETUP PRINT ONLY FLAG
READY STACK VALUE

SAVE ON STACK W TH OPTI ON
LOAD REG STER MASK
LCAD NEXT CHAR OR <=0
END OF CHARACTERS
BRANCH NOT CHARACTER
SEND TO CONSOLE
FUNCTI ON BYTE

CHECK NEXT

READY ' -'

SEND OUT

W TH QUTCH

X->REG STER TO PRI NT

? CHANGE CPTI ON
BRANCH YES

? ONE OR TWO BYTES
BRANCH ZERO MEANS ONE
PERFORM WORD HEX
FUNCTI ON

SKI P BYTE PRI NT
PERFORM BYTE HEX
FUNCTI ON

TO FRONT OF NEXT ENTRY
END OF ENTRI ES

LOOP | F MORE

FORCE NEW LI NE
FUNCTI ON

RESTORE STACK AND RETURN

I NPUT BI NARY NUVBER
| F CHANGE THEN JUNP
? NO MORE DESI RED
BRANCH NOPE

LOAD S| ZE FLAG

M NUS ONE

MAKE POSI TI VE

TWO (=2 OR =4)
PERFORM SPACES
FUNCTI ON

LOOP | F MORE

CONTI NUE W TH NEXT REG STER
SAVE DELIM TER I N OPTI ON

0)

OBTAI N Bl NARY RESULT

DUNFI ELD 6809 ASSEMBLER: ASSI ST09 PAGE: 19

FCB5 6D 3F 1177 TST -1, Y ? TWO BYTES WORTH

FCB7 26 02 1178 BNE REGIWO BRANCH YES

FCB9 A6 82 1179 LDA , =X SETUP FOR TWO

FCBB ED 84 1180 REGIWO STD , X STORE | N NEW VALUE

FCBD A6 E4 1181 LDA , S RECOVER DELI M TER

FCBF 81 0D 1182 CVPA #CR ? END OF CHANGES

FCC1 26 D1 1183 BNE REGA NO, KEEP ON TRUCK' N
FCC3 1184 * MOVE STACKED DATA TO NEW STACK I N CASE STACK

FCC3 1185 * PO NTER HAS CHANGED

FCC3 30 8D E2 8A 1186 REGAGN LEAX TSTACK, PCR LOAD TEMP AREA

FCC7 C6 15 1187 LDB #21 LOAD COUNT

FCC9 35 02 1188 REGIF1 PULS A NEXT BYTE

FCCB A7 80 1189 STA , X+ STORE | NTO TEMP

FCCD 5A 1190 DECB COUNT DOWN

FCCE 26 F9 1191 BNE REGTF1 LOOP | F MORE

FCDO 10 EE 88 EC 1192 LDS -20, X LOAD NEW STACK PO NTER
FCD4 C6 15 1193 LDB #21 LOAD COUNT AGAI N

FCD6 A6 82 1194 REGIF2 LDA ,-X NEXT TO STCORE

FCD8 34 02 1195 PSHS A BACK ONTO NEW STACK
FCDA 5A 1196 DECB COUNT DOWN

FCDB 26 F9 1197 BNE REGTF2 LOOP | F MORE

FCDD 20 BC 1198 BRA REGRTN GO RESTART COMVAND
FCDF 1199

FCU: 1200 EE R R R Sk Sk S S S kR Sk S R Sk S Sk kS Sk S kS S S

FCDF 1201 * BLDNUM - BU LDS BI NARY VALUE FROM | NPUT HEX

FCDF 1202 * THE ACTI VE EXPRESSI ON HANDLER | S USED.

FCDF 1203 * I NPUT: S=RETURN ADDRESS

FCDF 1204 * OUTPUT: A=DELI M TER WHI CH TERM NATED VALUE

FCDF 1205 ~* (1'F DELM NOT ZERO)

FCDF 1206 * "NUMBER' =WORD BI NARY RESULT

FCDF 1207 * Z=1 | F I NPUT RECI EVED, Z=0 |F NO HEX RECI EVED
FCDF 1208 * REG STERS ARE TRANSPARENT

FC:I]: 1209 LR R R R R R R R R R R R R R R

FCDF 1210

FCDF 1211 * EXECUTE SI NGLE OR EXTENDED ROM EXPRESSI ON HANDLER
FCDF 1212 *

FCDF 1213 * THE FLAG "DELIM 1S USED AS FOLLOWE:

FCDF 1214 * DELI M=0 NO LEADI NG BLANKS, NO FORCED TERM NATOR
FCDF 1215 * DELI M=CHR ACCEPT LEADI NG ' CHR' S, FORCED TERM NATOR
FCDF 4F 1216 BLDNNB CLRA NO DYNAM C DELI M TER
FCEO 8C 1217 FCB SKI P2 SKI P NEXT | NSTRUCTI ON
FCE1 1218 * BU LD W TH LEADI NG BLANKS

FCE1L 86 20 1219 BLDNUM LDA # ALLOW LEADI NG BLANKS
FCE3 97 8E 1220 STA DELI M STORE AS DELI M TER

FCE5 6E 9D E3 03 1221 JMP [VECTAB+. EXPAN, PCR] TO EXP ANALYZER
FCE9 1222

FCE9 1223 * THIS IS THE DEFAULT SI NGLE ROM ANALYZER WE ACCEPT:
FCE9 1224 * 1) HEX | NPUT

FCE9 1225 * 2) 'M FOR LAST MEMORY EXAM NE ADDRESS

FCE9 1226 * 3) 'P" FOR PROGRAM COUNTER ADDRESS

FCE9 1227 * 4) "W FOR W NDOW VALUE

FCE9 1228 * 5) '@ FOR | NDI RECT VALUE

FCEQ 34 14 1229 EXP1 PSHS X, B SAVE REG STERS

FCEB 8D 5C 1230 EXPDLM BSR BLDHXI CLEAR NUMBER, CHECK FI RST CHAR
FCED 27 18 1231 BEQ EXP2 IF HEX DI G T CONTI NUE BU LDI NG
FCEF 1232 * SKI P BLANKS | F DESI RED

FCEF 91 8E 1233 CVPA DELI M ? CORRECT DELI M TER
FCF1 27 F8 1234 BEQ EXPDLM YES, IGNCRE IT

FCF3 1235 * TEST FOR MOR P

FCF3 9E 9E 1236 LDX ADDR DEFAULT FOR ' M

FCF5 81 4D 1237 CVPA # M ? MEMORY EXAM NE ADDR WANTED
FCF7 27 16 1238 BEQ EXPTDL BRANCH | F SO

FCF9 9E 93 1239 LDX PCNTER DEFAULT FOR ' P

FCFB 81 50 1240 CVPA # P ? LAST PROGRAM COUNTER WANTED
FCFD 27 10 1241 BEQ EXPTDL BRANCH | F SO

FCFF 9E A0 1242 LDX W NDOW DEFAULT TO W NDOW

FDO1 81 57 1243 CVPA # W ? W NDOW WANTED

FDO3 27 OA 1244 BEQ EXPTDL

DUNFI ELD 6809 ASSEMBLER: ASSI ST09 PAGE: 20

FDO5 35 94 1245 EXPRTN PULS PC X B RETURN AND RESTORE REGQ STERS
FDO7 1246 * GOT HEX, NOW CONTI NUE BU LDI NG

FDO7 8D 44 1247 EXP2 BSR BLDHEX COVPUTE NEXT DIG T
FDO9 27 FC 1248 BEQ EXP2 CONTI NUE | F MORE

FDOB 20 OA 1249 BRA EXPCDL SEARCH FOR +/ -

FDOD 1250 * STORE VALUE AND CHECK | F NEED DELI M TER

FDOD AE 84 1251 EXPTDI LDX , X | NDI RECTI ON DESI RED
FDOF 9F 9B 1252 EXPTDL STX NUMBER STORE RESULT

FD11 0D 8E 1253 TST DELI M ? TO FORCE A DELI M TER
FD13 27 FO 1254 BEQ EXPRTN RETURN | F NOT W TH VALUE
FD15 8D 62 1255 BSR READ OBTAI N NEXT CHARACTER
FD17 1256 * TEST FOR + OR -

FD17 9E 9B 1257 EXPCDL LDX NUMBER LOAD LAST VALUE

FD19 81 2B 1258 CVPA # + ? ADD OPERATOR

FD1B 26 OE 1259 BNE EXPCHM BRANCH NOT

FD1D 8D 23 1260 BSR EXPTRM COVPUTE NEXT TERM
FDLF 34 02 1261 PSHS A SAVE DELI M TER

FD21 DC 9B 1262 LDD NUMBER LOAD NEW TERM

FD23 30 8B 1263 EXPADD LEAX D, X ADD TO X

FD25 O9F 9B 1264 STX NUMBER STORE AS NEW RESULT
FD27 35 02 1265 PULS A RESTORE DELI M TER

FD29 20 EC 1266 BRA EXPCDL NOWTEST I T

FD2B 81 2D 1267 EXPCHM CMPA # - ? SUBTRACT OPERATOR
FD2D 27 07 1268 BEQ EXPSUB BRANCH | F SO

FD2F 81 40 1269 CVPA # @ ? | NDI RECTI ON DESI RED
FD31 27 DA 1270 BEQ EXPTDI BRANCH | F SO

FD33 5F 1271 CLRB SET DELI M TER RETURN
FD34 20 CF 1272 BRA EXPRTN AND RETURN TO CALLER
FD36 8D OA 1273 EXPSUB BSR EXPTRM OBTAI N NEXT TERM

FD38 34 02 1274 PSHS A SAVE DELI M TER

FD3A DC 9B 1275 LDD NUMBER LOAD UP NEXT TERM
FD3C 40 1276 NEGA NEGATE A

FD3D 50 1277 NEGB NEGATE B

FD3E 82 00 1278 SBCA #0 CORRECT FCOR A

FD40 20 E1 1279 BRA EXPADD GO ADD TO EXPRESI ON
FD42 1280 * COWPUTE NEXT EXPRESSI ON TERM

FD42 1281 * QUTPUT: X=0OLD VALUE

FD42 1282 * " NUMBER =NEXT TERM

FD42 8D 9D 1283 EXPTRM BSR BLDNUM OBTAI N NEXT VALUE

FD44 27 32 1284 BEQ CNVRTS RETURN | F VALI D NUMBER
FD46 16 FC 13 1285 BLDBAD LBRA CVDBAD ABORT COMMAND | F | NVALI D
FD49 1286

FD49 1287 EE R R R R R R R R R R R R R R R R

FD49 1288 * BUILD BI NARY VALUE USI NG | NPUT CHARACTERS.

FD49 1289 * INPUT: A=ASCI| HEX VALUE OR DELI M TER

FD49 1290 * SP+0=RETURN ADDRESS

FD49 1291 ~* SP+2=16 BI T RESULT AREA

FD49 1292 * QUTPUT: Z=1 A=BI NARY VALUE

FD49 1293 * Z=0 | F I NVALI D HEX CHARACTER (A UNCHANGED)
FD49 1294 * VOLATILE: D

FD49 1295 LR R R R R R R R R R R R R R R R

FD49 OF 9B 1296 BLDHXI CLR NUMBER CLEAR NUMBER

FD4B OF 9C 1297 CLR NUVBER+1 CLEAR NUMBER

FD4D 8D 2A 1298 BLDHEX BSR READ GET | NPUT CHARACTER
FDAF 8D 11 1299 BLDHXC BSR CNVHEX CONVERT AND TEST CHARACTER
FD51 26 25 1300 BNE CNVRTS RETURN | F NOT A NUMBER
FD53 C6 10 1301 LDB #16 PREPARE SHI FT

FD55 3D 1302 MUL BY FOUR PLACES

FD56 86 04 1303 LDA #4 ROTATE BI NARY | NTO VALUE
FD58 58 1304 BLDSHF ASLB OBTAI N NEXT BI T

FD59 09 9C 1305 ROL NUVBER+1 I NTO LOW BYTE

FD5B 09 9B 1306 ROL NUMBER INTO H BYTE

FD5D 4A 1307 DECA COUNT DOWN

FDSE 26 F8 1308 BNE BLDSHF BRANCH | F MORE TO DO
FD6O 20 14 1309 BRA CNVOK SET GOOD RETURN CODE
FD62 1310

sz 1311 LR R R R R R S R R R R R R R R R

FD62 1312 * CONVERT ASCI 1 CHARACTER TO BI NARY BYTE

DUNFI ELD 6809 ASSEMBLER: ASSI ST09 PAGE: 21

FD62 1313 * INPUT: A=ASCl |

FD62 1314 * QUTPUT: Z=1 A=BI NARY VALUE

FD62 1315 * Z=0 | F I NVALI D

FD62 1316 * ALL REG STERS TRANSPARENT

FD62 1317 * (A UNALTERED | F | NVALI D HEX)

sz 1318 kkkkkkhkkhkkhkkkhkkhkkkhkkhkkhkkhhkkhkkhkkhkkhkhkkhkkhkkkkkhkkkkkkkkk*x

FD62 81 30 1319 CNVHEX CMPA #0' ? LOAER THAN A ZERO

FD64 25 12 1320 BLO CNVRTS BRANCH NOT VALUE

FD66 81 39 1321 CVPA # 9 ? POSSI BLE A-F

FD68 2F OA 1322 BLE CNVGOT BRANCH NO TO ACCEPT

FD6A 81 41 1323 CVPA # A ? LESS THEN TEN

FD6C 25 OA 1324 BLO CNVRTS RETURN | F M NUS (| NVALI D)
FDGE 81 46 1325 CVPA #F ? NOT TOO LARGE

FD70 22 06 1326 BHI CNVRTS NO, RETURN TOO LARGE

FD72 80 07 1327 SUBA #7 DOWN TO BI NARY

FD74 84 OF 1328 CNVGOT ANDA #$0F CLEAR HI GH HEX

FD76 1A 04 1329 CNVOK ORCC #4 FORCE ZERO ON FOR VALI D HEX
FD78 39 1330 CNVRTS RTS RETURN TO CALLER

FD79 1331

FD79 1332 * GET I NPUT CHAR, ABORT COMVAND | F CONTROL- X (CANCEL)

FD79 3F 1333 READ SW GET NEXT CHARACTER

FD7A 00 1334 FCB I NCHNP FUNCTI ON

FD7B 81 18 1335 CVPA #CAN ? ABORT COMVAND

FD7D 27 C7 1336 BEQ BLDBAD BRANCH TO ABORT | F SO
FD7F 39 1337 RTS RETURN TO CALLER

FD80 1338 *G

FD80 1339

FD80 1340 *F*xxxxxAAxxxx*Q0 - START PROGRAM EXECUTI ON

FD8O 8D 01 1341 CGO BSR GOADDR BU LD ADDRESS | F NEEDED
FD82 3B 1342 RTI START EXECUTI NG

FD83 1343

FD83 1344 * FIND OPTI ONAL NEW PROGRAM COUNTER. ALSO ARM THE

FD83 1345 * BREAKPO NTS.

FD83 35 30 1346 GOADDR PULS Y, X RECOVER RETURN ADDRESS
FD85 34 10 1347 PSHS X STORE RETURN BACK

FD87 26 19 1348 BNE GONDFT I F NO CARRI AGE RETURN THEN NEW PC
FD89 1349 * DEFAULT PROGRAM COUNTER, SO FALL THROUGH | F

FD89 1350 * | MMVEDI ATE BREAKPO NT.

FD89 17 01 B6 1351 LBSR CBKLDR SEARCH BREAKPO NTS

FD8C AE 6C 1352 LDX 12, S LOAD PROGRAM COUNTER

FDBE 5A 1353 ARMBLP DECB COUNT DOWN

FD8F 2B 16 1354 BM ARMBK2 DONE, NONE TO SI NGLE TRACE
FD91 A6 30 1355 LDA - NUMBKP* 2, Y PRE- FETCH OPCCODE

FD93 AC Al 1356 CVPX , Y++ ? 1S TH'S A BREAKPO NT
FDO5 26 F7 1357 BNE ARMBLP LOOP | F NOT

FD97 81 3F 1358 CVPA #$3F ? SW BREAKPO NTED

FDO9 26 02 1359 BNE ARMNSW NO, SKI P SETTI NG OF PASS FLAG
FD9B 97 FB 1360 STA SW BFL SHOW UPCOVMM NG SW NOT BRKPNT
FDOD OC 8F 1361 ARWNSW INC M SFLG FLAG THRU A BREAKPO NT
FDOF 16 01 06 1362 LBRA CDar DO SI NGLE TRACE W O BREAKPO NTS
FDA2 1363 * OBTAI N NEW PROGRAM COUNTER

FDA2 17 00 BB 1364 GONDFT LBSR CDNUM OBTAI N NEW PROGRAM COUNTER
FDA5 ED 6C 1365 STD 12, S STORE | NTO STACK

FDA7 17 01 98 1366 ARMBK2 LBSR CBKLDR OBTAI N TABLE

FDAA 00 FA 1367 NEG BKPTCT COVPLEMENT TO SHOW ARMED
FDAC 5A 1368 ARMLCP DECB ? DONE

FDAD 2B C9 1369 BM CNVRTS RETURN WHEN DONE

FDAF A6 B4 1370 LDA [.VY] LOAD OPCODE

FDB1 A7 30 1371 STA - NUMBKP* 2, Y STORE | NTO OPCODE TABLE
FDB3 86 3F 1372 LDA #$3F READY " SW" OPCODE

FDB5 A7 Bl 1373 STA [, Y++4] STORE AND MOVE UP TABLE
FDB7 20 F3 1374 BRA ARM_CP AND CONTI NUE

FDB9 1375

FDB9 1376 *FF*FxxxxkAAkdkxxkAkkxxCALL - CALL ADDRESS AS SUBROUTI NE

FDB9 8D C8 1377 CCALL BSR GOADDR FETCH ADDRESS | F NEEDED
FDBB 35 7F 1378 PULS U Y, X DP,D,CC RESTORE USERS REG STERS
FDBD AD F1 1379 JSR [, S++] CALL USER SUBROUTI NE

FDBF 3F 1380 CGOBRK SW PERFORM BREAKPO NT

DUNFI ELD

FDCO
FDC1
FDC3
FDC3
FDC3
FDC3
FDC3
FDC6
FDC8
FDCA
FDCD
FDCF
FDDO
FDD1
FDD4
FDD6
FDD6
FDD8
FDDA
FDDC
FDDE
FDEO
FDE2
FDE4
FDEG6
FDES8
FDE8
FDEA
FDEC
FDEE
FDFO
FDF2
FDF4
FDF6
FDF8
FDF8
FDFA
FDFC
FDFE
FDFF
FEOO
FEO2
FEO2
FEO4
FEOG6
FEO8
FEQ09
FEOA
FEOC
FEOE
FEOE
FE10
FE12
FE14
FE16
FE17
FE18
FE1A
FE1C
FE1C
FELE
FE20
FE21
FE21
FE21
FE23
FE25
FE27

0A
20

17

9E
17
86
3F
01
17
27

81
26
9F
30
20

8D
81
27

81
26
8D
81
27
1F
8D
20

81
26
9F
3F
07
20

81
26
86
3F
01
9F
20

81
26
30
9F
3F
06
8D
20

81
27
39

9E
34
30
3F

6809 ASSEMBLER. ASSI ST09

FC

00
9E
9E
FC
2D

FF
0A

2C
OE
9E
01
F1
9C
47
2C
E9

27
ocC
8B
27
ocC
89
35
F4

20
06
9E

0A
08
(0])

9E
0A

5E
0A
1E
9E

07
AC

2F
F6

9E
10
E4

9A

oC

0B

1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448

FCB BRKPT
BRA CGOBRK
****************'\E'\mY -

PAGE: 22

FUNCTI ON
LOOP UNTI L USER CHANGES PC

DI SPLAY/ CHANGE MEMORY

* CMEMN AND CMPADP ARE DI RECT ENTRY PO NTS FROM
* THE COMVAND HANDLER FOR QUI CK COMVANDS

OBTAI N ADDRESS

STORE DEFAULT

LOAD PO NTER

SEND OQUT HEX VALUE OF BYTE
LOAD DELI M TER

SEND OUT

FUNCTI ON

OBTAI N NEW BYTE VALUE
BRANCH | F NUMBER

? COMMVA

BRANCH NOT

UPDATE PO NTER

TO NEXT BYTE

AND I NPUT I T

LOAD LOW BYTE VALUE

GO OVERLAY MEMORY BYTE

? CONTI NUE W TH NO DI SPLAY
BRANCH YES

? QUOTED STRI NG
BRANCH NO

OBTAI N NEXT CHARACTER
? END OF QUOTED STRI NG
YES, QUI'T STRI NG MODE
TO B FOR SUBROUTI NE
GO UPDATE BYTE

GET NEXT CHARACTER

? BLANK FOR NEXT BYTE
BRANCH NOT

UPDATE PO NTER

G VE SPACE

FUNCTI ON

NOW PROVPT FOR NEXT

? LINE FEED FOR NEXT BYTE
BRANCH NO

G VE CARRI AGE RETURN

TO CONSOLE

HANDLER

STORE NEXT ADDRESS
BRANCH TO SHOW

? UP ARROW FOR PREVI QUS BYTE
BRANCH NOT

DOM TO PREVI QUS BYTE

STORE NEW POl NTER

FORCE NEW LI NE

FUNCTI ON

GO PRINT I TS VALUE

THEN PROVPT FOR | NPUT

? SLASH FOR CURRENT DI SPLAY
YES, SEND ADDRESS
RETURN FROM COVVAND

LCAD PO NTER VALUE
SAVE X ON STACK
PO NT TO IT FOR DI SPLAY

CMEM LBSR CDNUM
CMEMN STD ADDR
CMEM2 LDX ADDR
LBSR ZOUT2H
LDA #
SW
FCB OUTCH
CMEMA LBSR BLDNNB
BEQ CVENUM
* COMA - SKI P BYTE
CVPA # '
BNE CMNOTC
STX ADDR
LEAX 1,X
BRA CVEMA
CMENUM LDB NUVBER+1
BSR MUPDAT
CVPA # '
BEQ CVEMA
* QUOTED STRI NG
CMNOTC CMPA #$27
BNE CMNOTQ
CMESTR BSR READ
CVPA #$27
BEQ CMBPCE
TFR A B
BSR MUPDAT
BRA CMESTR
* BLANK - NEXT BYTE
CMNOTQ CMPA #$20
BNE CMNOTB
STX ADDR
CMBPCE SW
FCB SPACE
BRA CVEMR
* LINE FEED - NEXT BYTE W TH ADDRESS
CMNOTB CMPA #LF
BNE CMNOTL
LDA #CR
SW
FCB OUTCH
STX ADDR
BRA CMPADP
* UP ARROW - PREVI OUS BYTE AND ADDRESS
CMNOTL CMPA # A
BNE CMNOTU
LEAX -2, X
STX ADDR
CMPADS SW
FCB PCRLF
CMPADP BSR PRTADR
BRA CVEMR
* SLASH - NEXT BYTE W TH ADDRESS
CMNOTU CMPA #' /"
BEQ CMPADS
RTS
* PRI NT CURRENT ADDRESS
PRTADR LDX ADDR
PSHS X
LEAX S
SW

DI SPLAY PO NTER | N HEX

DUNFI ELD

FE28
FE29
FE2B
FE2B
FE2B
FE2D
FE2F
FE31
FE33
FE35
FE36
FE38
FE3A
FE3B
FE3C
FE3E
FE3E
FE3E
FE40
FE42
FEA43
FE43
FEA43
FE45
FEA7
FE49
FEAB
FE4AD
FEAF
FE51
FE53
FE56
FE58
FE5A
FESE
FE60
FE6O
FE60
FE6O
FE60
FE6O
FE63
FEG5
FE67
FEG9
FE6B
FE6D
FEGE
FE71
FE71
FE71
FE73
FE75
FE77
FE79
FE7B
FE7F
FE83
FE85
FE89
FE8SB
FE8D
FE8F
FEBF
FE8F
FE91
FE92
FE92

05
35

9E
E7
El
26
9F
39
34
86
3F
01
35

8D
DD
39

8D
cA
1F
30
25
8D
30
34
10
23
ED
AD
35

17
26
81
22
81

39
16

8D
1F
8D
6F
34
AD
AD
34
AD
35
26
35

8D
01

33

6809 ASSEMBLER. ASSI ST09

90

9E
80
1F
03
9E

02
3F

82

20
A0

1B
FO
02
2F
04
11
AB
30

02
E4
9D E1
EO

FE 7E
09
2F
05
OE
9B

FA EB

ED
02
E9
E2
26
9D E1
9D E1
01
9D E1
01
El
B2

01

F1

84

65
63

5F

1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516

FCB QUT4HS
PULS PC, X

* UPDATE BYTE
MUPDAT LDX ADDR

STB , X+
CwPB -1, X
BNE MUPBAD
STX ADDR
RTS
MJUPBAD PSHS A
LDA # ?
SW
FCB QUTCH
PULS PC, A
********************W Nm/v
CWNDO BSR CDNUM
STD W NDOW
RTS
******************D‘ SPLAY -
CDISP BSR CDNUM
ANDB #3$FO0
TFR DY
LEAX 15, Y
BCS CDI SPS
BSR CDNUM
LEAX DY
CDI SPS PSHS Y, X
CwPD 2,S
BLS CDCNT
STD , S
CDCNT JSR

PULS PC, U Y

* OBTAIN NUMBER - ABORT | F NONE
* ONLY DELIM TERS OF CR, BLANK, OR '/’

[VECTAB+. HSDTA, PCR]

PAGE: 23

FUNCTI ON
RECOVER PO NTER AND RETURN

LOAD NEXT BYTE PO NTER
STORE AND | NCREMENT X
? SUCCESFULL STORE
BRANCH FOR ' ?' | F NOT
STORE NEW PO NTER VALUE
BACK TO CALLER

SAVE A REG STER
SHOW | NVALI D

SEND OQUT

FUNCTI ON

RETURN TO CALLER

SET W NDOW VALUE

OBTAI N W NDOW VALUE
STORE I T IN
END COMVAND

Hl GH SPEED DI SPLAY MEMORY

FETCH ADDRESS

FORCE TO 16 BOUNDRY

SAVE INY

DEFAULT LENGTH

BRANCH | F END OF | NPUT
OBTAI N COUNT

ASSUME COUNT, COVPUTE END ADDR
SETUP PARAMETERS FOR HSDATA
? WAS | T COUNT

BRANCH YES

STORE HI GH ADDRESS

CALL PRI NT ROUTI NE
CLEAN STACK AND END COMVAND

ARE ACCEPTED

* OUTPUT. D=VALUE, C=1 |F CARRI AGE RETURN DELM TER

*

CDNUM LBSR BLDNUM
BNE CDBADN
CVPA #'/
BHI CDBADN
CVPA #CR+1
LDD NUMBER
RTS

CDBADN LBRA CNVDBAD

*****************PU’\O_' -

ELSE C=0
OBTAI N NUMBER
BRANCH | F | NVALI D
? VALID DELI M TER
BRANCH | F NOT FOR ERRCR
LEAVE COMPARE FOR CARRI AGE RET
LCAD NUMBER
RETURN W TH COVPARE
RETURN TO ERROR MECHANI SM

PUNCH MEMORY | N S1-S9 FORVAT

CPUNCH BSR CDNUM OBTAI' N START ADDRESS
TFR DY SAVE IN Y
BSR CDNUM OBTAI'N END ADDRESS
CLR ,-S SETUP PUNCH FUNCTI ON CCDE
PSHS Y, D STORE VALUES ON STACK
CCALBS JSR [VECTAB+. BSON, PCR] I NI TI ALl ZE HANDLER
JSR [VECTAB+. BSDTA, PCR] PERFORM FUNCTI ON
PSHS cc SAVE RETURN CODE
JSR [VECTAB+. BSOFF, PCR] TURN OFF HANDLER
PULS cc OBTAI' N CONDI TI ON CODE SAVED
BNE CDBADN BRANCH | F ERROR

PULS PC Y, X A

*****************LmD -

CLOAD BSR CLVOFS
FCB 1
CLVOFS LEAU [, S++]

RETURN FROM COVVAND

LOAD MEMORY FROM S1-S9 FORVAT

CALL SETUP AND PASS CODE
LOAD FUNCTI ON CODE FOR PACKET

LOAD CODE IN HI GH BYTE CF U

DUNFI ELD

FE94
FE96
FE98
FE9A
FE9B
FE9SC
FE9D
FE9F
FEAL
FEAL
FEAL
FEA3
FEAA
FEA4
FEAA
FEA4
FEAG
FEA8
FEAA
FEAD
FEAF
FEB1
FEB4
FEB6
FEB7
FEB7
FEB7
FEB9
FEBB
FEBC
FEBC
FEBC
FEBE
FECO
FEC2
FEC3
FEC5
FEC7
FEC8
FEC8
FEC8
FEC8
FECA
FECC
FECE
FECE
FEDO
FED2
FED4
FEDG6
FED8
FED9
FEDB
FEDD
FEDE
FEDF
FEE1
FEE3
FEES5
FEEG6
FEE7
FEES
FEE9
FEEB
FEEB
FEEB
FEEB
FEEB

33
27
8D
8C
4F
5F
34
20

8D
FF

8D

32
EE

ED
3B

8D
39

27
8D

39
30
9F
39

8D
1F
8D

30
34

ED
30
1D

26
3F
04
EE
33
EF
3F
05
3F
06
35

27

6809 ASSEMBLER: ASS| ST09 PAGE: 24
D4 1517 LEAU [,U NOT CHANG NG CC AND RESTORE S
03 1518 BEQ CLVDFT BRANCH | F CARRI AGE RETURN NEXT
C6 1519 BSR CDNUM OBTAI N OFFSET
1520 FCB SKI P2 SKI P DEFAULT OFFSET
1521 CLVDFT CLRA CREATE ZERO OFFSET
1522 CLRB AS DEFAULT
4E 1523 PSHS U, DP, D SETUP CODE, NULL WORD, OFFSET
DA 1524 BRA CCALBS ENTER CALL TO BS ROUTI NES
1525
1526 *FFFFxxxxAAFAxxAAAXVERI FY - COVPARE MEMORY W TH FI LES
EF 1527 CVER BSR CLVOFS COVPUTE OFFSET | F ANY
1528 FCB -1 VERI FY FNCTN CODE FOR PACKET
12%3 FrREEAF I XA A XXX A XXX XTRACE - TRACE | NSTRUCTI ONS
1531 khkkkkkkkkkkkkkkkkk*x i - Sl ,\G_E STEP TRAC:E
BA 1532 CTRACE BSR CDNUM OBTAI N TRACE COUNT
91 1533 STD TRACEC STORE COUNT
62 1534 CDOT LEAS 2,S RI D COVMAND RETURN FROM STACK
F8 OA 1535 CTRCE3 LDU [10, 9] LOAD OPCODE TO EXECUTE
99 1536 STU LASTCP STORE FOR TRACE | NTERRUPT
F6 1537 LDU VECTAB+. PTM LOAD PTM ADDRESS
07 01 1538 LDD #$0701 7,1 CYCLES DOWA+CYCLES UP
42 1539 STD PTMIML- PTM U START NM Tl MEOUT
1540 RTI RETURN FOR ONE | NSTRUCTI ON
1541
1542 ***xxxxxxkkxxxNULLS - SET NEWLINE AND CHAR PADDI NG
A7 1543 CNULLS BSR CDNUM OBTAI N NEW LI NE PAD
F2 1544 STD VECTAB+. PAD RESET VALUES
1545 RTS END COMVAND
1546
1547 xxxxxxxxxxxxxxx*x*x*STLEVEL - SET STACK TRACE LEVEL
05 1548 CSTLEV BEQ STLDFT TAKE DEFAULT
A0 1549 BSR CDNUM OBTAI N NEW STACK LEVEL
F8 1550 STD SLEVEL STORE NEW ENTRY
1551 RTS TO COMVAND HANDLER
6E 1552 STLDFT LEAX 14, S COVPUTE NM COVPARE
F8 1553 STX SLEVEL AND STORE I T
1554 RTS END COMVAND
1555
1556 *FFFFxxxxAAkdkxxAAx X OFFSET - COVPUTE SHORT AND LONG
1557 kkkkkkhkkkkkkkkkkk*x BRA,\D_' O:FSETS
96 1558 COFFS BSR CDNUM OBTAI N | NSTRUCTI ON ADDRESS
01 1559 TFR D, X USE AS FROM ADDRESS
92 1560 BSR CDNUM OBTAI N TO ADDRESS
1561 * D=TO I NSTRUCTI ON, X=FROM | NSTRUCTI ON OFFSET BYTE(S)
01 1562 LEAX 1, X ADJUST FOR *+2 SHORT BRANCH
30 1563 PSHS Y, X STORE WORK WORD AND VALUE ON S
E4 1564 SUBD , S FI ND OFFSET
E4 1565 STD , S SAVE OVER STACK
61 1566 LEAX 1,S PO NT FOR ONE BYTE DI SPLAY
1567 SEX SI GN EXTEND LOW BYTE
E4 1568 CVPA , S ? VALI D ONE BYTE OFFSET
02 1569 BNE COFNOL BRANCH | F NOT
1570 SW SHOW ONE BYTE OFFSET
1571 FCB QUT2HS FUNCTI ON
E4 1572 COFNOL LDU , S RELCAD OFFSET
5F 1573 LEAU -1, U CONVERT TO LONG BRANCH OFFSET
84 1574 STU , X STORE BACK WHERE X PO NTS NOW
1575 SW SHOW TWO BYTE OFFSET
1576 FCB QUT4HS FUNCTI ON
1577 SW FORCE NEW LI NE
1578 FCB PCRLF FUNCTI ON
96 1579 PULS PC, X, D RESTORE STACK AND END COMVAND
1580 *H
1581
1582 *rxxxxxxxxxxxx BREAKPOI NT - DI SPLAY/ ENTER/ DELETE/ CLEAR
1583 *kkkkkkkkkkkk* BREAKPO NTS
23 1584 CBKPT BEQ CBKDSP BRANCH DI SPLAY OF JUST 'B

DUNFI ELD

FEED
FEFO
FEF2
FEF4
FEF6
FEF9
FEFB
FEFD
FEFE
FEFE
FFOO
FFO1
FFO3
FFO5
FFO7
FFO7
FFO9
FFOB
FFOC
FFOE
FF10
FF12
FF14
FF16
FF17
FF18
FF19
FF1B
FF1C
FF1D
FF1E
FF1E
FF20
FF22
FF24
FF26
FF28
FF2A
FF2C
FF2E
FF2F
FF31
FF33
FF35
FF38
FF3A
FF3C
FF3E
FF40
FF40
FF42
FF46
FF48
FF49
FF49
FF49
FF4B
FFAC
FFAF
FF50
FF51
FF53
FF55
FF57
FF59
FF5A
FF5B
FF5D

17
27
81
26
17
27
OF
39

8D
5A
2B
AC
26

AE
AF
5A
2A
OA
8D
27
30
3F
05
5A
26
3F
06
39

8D
C1
27
A6
E7
El
26
A7
5A
2B
AC
26
16
AF
6F
ocC
20

9E
31
D6
39

6F
5F
30
3F
00
81
26
86
A7
3F
00
81
27

6809 ASSEMBLER. ASSI ST09

PAGE: 25

FD F1 1585 LBSR BLDNUM ATTEMPT VALUE ENTRY
2C 1586 BEQ CBKADD BRANCH TO ADD | F SO
2D 1587 CVPA # - ? CORRECT DELIM TER
3F 1588 BNE CBKERR NO, BRANCH FOR ERROR
FD E8 1589 LBSR BLDNUM ATTEMPT DELETE VALUE
03 1590 BEQ CBKDLE GOT ONE, GO DELETE IT
FA 1591 CLR BKPTCT WAS 'B -', SO ZERO COUNT
1592 CBKRTS RTS END COMVAND
1593 * DELETE THE ENTRY
40 1594 CBKDLE BSR CBKSET SETUP REG STERS AND VALUE
1595 CBKDLP DECB ? ANY ENTRIES IN TABLE
32 1596 BM CBKERR BRANCH NO, ERRCR
Al 1597 CVPX , Y++ ? IS TH'S THE ENTRY
F9 1598 BNE CBKDLP NO, TRY NEXT
1599 * FOUND, NOW MOVE OTHERS UP IN I TS PLACE
Al 1600 CBKDLM LDX , Y++ LOAD NEXT ONE UP
3C 1601 STX -4, Y MOVE DOWN BY ONE
1602 DECB ? DONE
F9 1603 BPL CBKDLM NO, CONTI NUE MOVE
FA 1604 DEC BKPTCT DECREMENT BREAKPQO NT COUNT
2E 1605 CBKDSP BSR CBKSET SETUP REG STERS AND LOAD VALUE
E9 1606 BEQ CBKRTS RETURN | F NONE TO DI SPLY
Al 1607 CBKDSL LEAX , Y++ PO NT TO NEXT ENTRY
1608 SW DI SPLAY I N HEX
1609 FCB QUT4HS FUNCTI ON
1610 DECB COUNT DOWN
F9 1611 BNE CBKDSL LOCOP | F NGABLE RAM
1612 SW SKI' P TO NEW LI NK
1613 FCB PCRLF FUNCTI ONRTS
1614 RTS
1615 * ADD NEW ENTRY
20 1616 CBKADD BSR CBKSET SETUP REGQ STERS
08 1617 CwvPB #NUVBKP ? ALREADY FULL
11 1618 BEQ CBKERR BRANCH ERROR | F SO
84 1619 LDA , X LCAD BYTE TO TRAP
84 1620 STB , X TRY TO CHANGE
84 1621 CwvPB , X ? CHANGEABLE RAM
09 1622 BNE CBKERR BRANCH ERROR | F NOT
84 1623 STA , X RESTORE BYTE
1624 CBKADL DECB COUNT DOWN
07 1625 BM CBKADT BRANCH | F DONE TO ADD I T
Al 1626 CVPX , Y++ ? ENTRY ALREADY HERE
F9 1627 BNE CBKADL LOCP | F NOr
FA 24 1628 CBKERR LBRA CNVDBAD RETURN TO ERROR PRODUCE
Al 1629 CBKADT STX Y ADD THI' S ENTRY
31 1630 CLR - NUMBKP*2+1,Y CLEAR OPTI ONAL BYTE
FA 1631 I NC BKPTCT ADD ONE TO COUNT
DO 1632 BRA CBKDSP AND NOW DI SPLAY ALL CF 'EM
1633 * SETUP REG STERS FOR SCAN
9B 1634 CBKSET LDX NUMBER LOAD VALUE DESI RED
8D EO 6C 1635 CBKLDR LEAY BKPTBL, PCR LCAD START OF TABLE
FA 1636 LDB BKPTCT LOAD ENTRY COUNT
1637 RTS RETURN
1638
1639 *xxxxxkxxxiikkxxxENCODE - ENCODE A POSTBYTE
E2 1640 CENCDE CLR ,-S DEFAULT TO NOT | NDI RECT
1641 CLRB ZERO PCSTBYTE VALUE
8C 3F 1642 LEAX <CONV1, PCR START TABLE SEARCH
1643 SW OBTAI'N FI RST CHARACTER
1644 FCB I NCHNP FUNCTI ON
5B 1645 CVPA # [? | NDI RECT HERE
06 1646 BNE CEN2 BRANCH | F NOT
10 1647 LDA #3$10 SET INDI RECT BIT ON
E4 1648 STA S SAVE FOR LATER
1649 CENGET SwW OBTAI N NEXT CHARACTER
1650 FCB I NCHNP FUNCTI ON
0D 1651 CEN2 CVPA #CR ? END OF ENTRY
ocC 1652 BEQ CEND1 BRANCH YES

DUNFI ELD

FF5F
FF61
FF63
FF65
FF67
FF69
FF6B
FF6E
FF70
FF72
FF74
FF76
FF78
FF7A
FF7C
FF7E
FF80
FF82
FF84
FF86
FF88
FF89
FF8A
FF8B
FF8C
FFSE
FF8E
FFSE
FF96
FFOE
FFA6
FFAE
FFB6
FFB7
FFB7
FFB7
FFBB
FFBF
FFC3
FFC7
FFCB
FFCF
FFD3
FFD4
FFD4
FFD4
FFD4
FFD4
FFD8
FFDC
FFEO
FFE4
FFES
FFEC
FFFO
FFFO
FFFO
FFFO
FFFO
FFFO
FFFO
FFFO
FFF2
FFF4
FFF6
FFF8
FFFA
FFFC

6D
2B
Al
26
EB
20
30
1F
84
AA
A7
cA
6D
27
El
26
E6
EA
E7
30
3F
04
3F
06
35

41
48
2D
55
50
FF

10
12
14
16
18
1A
83
00

6E
6E
6E
6E
6E
6E
6E

FF
FF
FF
FF
FF
FF
FF

6809 ASSEMBLER. ASSI ST09

84
D2
81
F8
1F
EE
8C
98
60
E4
E4
9F
84
B9
81
F8
1F
E4
E4
E4

84

04
01
09
50
80

84
88
86
8B
81
83
8D

9D
9D
9D
9D
9D
9D
9D

EO
E4
E8
EC

49

42
48
2D
58
43

FRRERRT

05
01
01
10
00

00
89
85
80
82
8C
9F

EE
EC

E8
E6
E4
E2

44 06
48 00
53 70
2B 07
52 00

1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720

PAGE: 26

CENLP1 TST . X ? END OF TABLE
BM CBKERR BRANCH ERRCR | F SO
CVWPA , X++ 2 TH'S THE CHARACTER
BNE CENLP1 BRANCH | F NOT
ADDB -1, X ADD THI S VALUE
BRA CENGET GET NEXT | NPUT
CENDL LEAX <CONV2, PCR PO NT AT TABLE 2
TFR B, A SAVE CCPY IN A
ANDA #$60 | SOLATE REG STER MASK
ORA .S ADD I N | NDI RECTI ON BI T
STA .S SAVE BACK AS POSTBYTE SKELETON
ANDB #$9F CLEAR REG STER BI TS
CENLP2 TST , X ? END OF TABLE
BEQ CBKERR BRANCH ERRCR | F SO
CWPB , X++ ? SAME VALUE
BNE CENLP2 LOOP | F NOT
LDB -1, X LOAD RESULT VALUE
ORB .S ADD TO BASE SKELETON
STB .S SAVE POSTBYTE ON STACK
LEAX S PONT TO I T
SW SEND OUT AS HEX
FCB OUT2HS FUNCTI ON
SW TO NEXT LINE
FCB PCRLF FUNCTI ON
PULS PC B END OF COMMAND
* TABLE ONE DEFI NES VALID | NPUT | N SEQUENCE
COW1 FCB "A,$04,' B',$05,' D, $06, ' H , $01
FCB "H,$01,'H,$01,'H,$00,',", $00
FCB *.',$09,'-',$01,' S, $70,' Y, $30
FCB ‘U, $50,' X, $10,' +, $07, '+, $01
FCB ‘P, $80,' C,$00,'R,$00,']",$00
FCB $FF END OF TABLE
*CONV2 USES ABOVE CONVERSI ON TO SET PCSTBYTE
* BI T SKELETON
CONV2 FDB $1084, $1100 R, H R
FDB $1288, $1389 HH, R HHHH, R
FDB $1486, $1585 AR B, R
FDB $168B, $1780 D, R R+
FDB $1881, $1982 R+ ,-R
FDB $1A83, $828C ,--R HH, PCR
FDB $838D, $039F HHHH, PCR [HHHH]
FCB 0 END OF TABLE
R R R R RS RS R E SRS RS SRR E SRS EE SRR RS EEEEEEEEEESEERESEESESSEESEES
* DEFAULT | NTERRUPT TRANSFERS *
R R R R RS RS R E SRS RS SRR E SRS EE SRR EEEEEEEEEEEESEEESEESESSEESEES
RSRVD JMWP [VECTAB+. RSVD, PCR] RESERVED VECTOR
SW 3 IVP [VECTAB+. SW 3, PCR] SW 3 VECTCR
SW 2 VP [VECTAB+. SW 2, PCR] SW 2 VECTOR
FIRQ JW [VECTAB+. FI RQ PCR] FI RQ VECTOR
I RQ VP [VECTAB+. | RQ PCR] | RQ VECTOR
SW IVP [VECTAB+. SW, PCR] SW VECTOR
NM VP [VECTAB+. NM , PCR] NM VECTOR

R R SR Sk Sk R Sk S S S S S kS S S R R S S kS Sk S S S S Sk kS S S S kS S S

*

ASSI STO9 HARDWARE VECTOR TABLE

* TH S TABLE IS USED | F THE ASSI ST09 ROM ADDRESSES
* THE MC6809 HARDWARE VECTORS

R R SR Sk Sk S Sk S S S S S S kS S R Sk Sk kS S S S Sk Sk Sk Sk S S S Sk Sk kS S

ORG
FDB
FDB
FDB
FDB
FDB
FDB
FDB

ROVBEG+ROMSI Z- 16

RSRVD
SW 3
SW 2
FI RQ
I RQ
Sw
NM

SETUP HARDWARE VECTORS
RESERVED SLOT
SOFTWARE | NTERRUPT 3
SOFTWARE | NTERRUPT 2
FAST | NTERRUPT REQUEST
| NTERRUPT REQUEST
SOFTWARE | NTERRUPT
NON- MASKABLE | NTERRUPT

DUNFI ELD 6809 ASSEMBLER: ASSI ST09 PAGE: 27

FFFE F8 37 1721 FDB RESET RESTART
0000 1722

DUNFI ELD 6809 ASSEMBLER: ASSI ST09 PAGE: 28
SYMBOL TABLE:
.ACIA -002E .AVIBL -0000 .BSDTA -0024 .BSOFF -0026 .BSON -0022

.CI DTA -0016 .G CFF -0018 .CON -0014 .CMDL1 -0002 .CMDL2 -002C
.CODTA -001C .COOFF -001E .COON -001A .ECHO -0032 . EXPAN -002A

.FIRQ -000A .HSDTA -0020 . IRQ -000C . NM - 0010 . PAD - 0030
. PAUSE -0028 . PTM -0034 . RESET -0012 .RSVD -0004 . SW - 000E
. SW 2 - 0008 .SW3 -0006 ACA -EO08 ADDR -DF9E ARMBK2 - FDA7Y
ARMBLP -FDSBE ARMLCP -FDAC ARMNSW -FDOD BASEPG -DF9D BELL - 0007
BKPTBL - DFB2 BKPTCT -DFFA BKPTOP - DFA2 BLD2 -F815 BLD3 -F821

BLDBAD - FD46 BLDHEX -FD4AD BLDHXC -FDAF BLDHXI - FD49 BLDNNB - FCDF
BLDNUM - FCE1 BLDRTN - F835 BLDSHF - FD58 BLDVTR - F800 BRKPT - 000A
BSDCWMP -FB6A BSDEOL -FB70 BSDLD1 - FB40 BSDLD2 -FB42 BSDNXT - FB60
BSDPUN - FB92 BSDSRT -FB6E BSDTA - FB38 BSOFF - FB27 BSOFLP - FB33

BSON -FB1B BSON2 - FB22 BSPEOF -FBEF BSPGO - FBA3 BSPVRE - FBC6
BSPOK -FBAF BSPSTR -FBEC BSPUN2 -FBE7 BSPUNC - FBE9 BYTE - FB75
BYTHEX - FB89 BYTRTS - FB88 CAN -0018 CBKADD -FF1E CBKADL -FF2E

CBKADT - FF38 CBKDLE -FEFE CBKDLM -FFO7 CBKDLP - FFOO CBKDSL - FF14
CBKDSP - FF10 CBKERR - FF35 CBKLDR - FF42 CBKPT -FEEB CBKRTS -FEFD
CBKSET - FF40 CCALBS -FE7B CCALL - FDB9 CDBADN -FEGE CDCNT - FE5A

CDISP -FE43 CDI SPS - FE51 CDNUM - FE60 CDOT - FEA8 CEN2 - FF5B
CENCDE - FF49 CENDL1 -FF6B CENGET - FF59 CENLP1 -FF5F CENLP2 -FF78
C&0 - FD80 CGOBRK -FDBF CHKABT -FA58 CHKRTN - FA61 CHKSEC - FA60
CHKWI - FA62 CIDTA -FADC CIOFF -FAFO Cl ON - FAEG CIRTN - FAE5
CLOAD -FE8F CLVDFT -FE9B CLVOFS -FE92 CVD - F8F7 CVD2 -F935
CMVD3 - F948 CMVMDBAD -F95C CVDCWP - F977 CvDDDL - F901 CMDFLS - F96C

CMDGOT -F94D CMDMVEM - F990 CVMDNEP - F8F9 CMDNOL -F90A CMDSCH - F953
CMDSI Z -F96F CVDSME - F967 CVMDTB2 -F99B CMDTBL -F99C CMVDXQT - F987
CVEM - FDC3 CVEMR - FDC8 CVEMA - FDD1 CMEMN - FDC6 CMENUM - FDEO
CMESTR -FDEC CWNOIB - FEO2 CMNOTC - FDE8 CMNOTL -FEOE CWNOTQ -FDF8
CWOruU -FE1C CMPADP - FE18 CMPADS - FE16 CVMSPCE -FDFE CNULLS - FEB7
CNVGOT - FD74 CNVHEX - FD62 CNVOK - FD76 CNVRTS - FD78 CCODTA - FAF1
CODTAD -FBOF CODTAO -FB12 CODTLP - FBO7 CODTPD - FBO3 CODTRT - FBOD
COFFS - FEC8 COFNOL - FEDF CONV1 -FF8E CONV2 - FFB7 COCFF - FAFO

COON - FAE6 CPUNCH -FE71 CR -000D CREG -FC4AA CSTLEV -FEBC
CTRACE - FEA4 CTRCE3 -FEAA CVER - FEAL CWNDO -FESE DELIM -DFSE
DFTCHP - 0000 DFTNLP -0005 DLE - 0010 EOT - 0004 ERRMSG - FABD
ERROR -FACE EXP1 - FCE9 EXP2 - FDO7 EXPADD - FD23 EXPCDL - FD17
EXPCHM -FD2B EXPDLM -FCEB EXPRTN - FD05 EXPSUB - FD36 EXPTDI - FDOD
EXPTDL - FDOF EXPTRM - FD42 FI RQ - FFEO FIRQR -FABC GOADDR -FD83

GONDFT - FDA2 H VTR -0034 HSBLNK - FCOO0 HSDRTN - FCA7 HSDTA - FBFC
HSHCHR -FC2B HSHCOOK - FC35 HSHDOT - FC33 HSHLNE - FCl4 HSHNXT - FC20
HSHTTL - FC06 I NCHNP - 0000 INITVT -F844 INTVE -F87D INTVS -F870

I RQ - FFE4 I ROR - FADS LASTCOP - DF99 LDDP - FACL LF - 000A
M SFLG - DF8F MONI TR - 0008 MBHOWP - FA79 MJUPBAD - FE36 MJUPDAT - FE2B
NM -FFEC NM CON - FAB7 NM R -FA7TD NM TRC - FABO NUMBER - DF9B

NUMBKP - 0008 NUMFUN -000B NUWTR -001B OQUT2HS -0004 QUT4HS -0005
OQUTCH -0001 PAUSE -000B PAUSER -DFFC PCNTER -DF93 PCRLF -0006
PDATA -0003 PDATAL -0002 PROWT -003E PRTADR -FE21 PSTACK - DF95
PTM - EO0O0 PTMC13 - EO00 PTMC2 - E0O01 PTMSTA - EO01 PTMIML - E002
PTMIMZ - EO04 PTMIMB - E006 RAMOFS - E700 READ - FD79 REG4 - FC94
REGAGN - FCC3 REGCHG - FC70 REGCNG -FCO9D REGVBK - FC50 REGNXC - FCB1
REGP1 -FC78 REGP2 - FC81 REGP3 - FC92 REGPRS - FAB3 REGPRT - FC6F
REGRTN -FC9B REGSKP -FCAA REGIF1 -FCC9 REGTF2 - FCD6 REGTWO - FCBB
RESET - F837 RESET2 -F83D ROWRCF -F000 ROVMVK - DF66 ROMBEG - F800

ROVSI Z - 0800 RSRVD - FFD4 RSRVDR - FADS RSTACK - DF97 RTI - FABC
RTS - FAFO SEND -FOEC SI GNON - F8C9 SKI P2 -008C SLEVEL -DFF8
SPACE -0007 STACK - DF51 STLDFT - FEC3 SW - FFE8 SW 2 - FFDC
SW2R -FAD8 SW 3 - FFD8 SW3R -FAD8 SWBFL -DFFB SWCNT -DF90
SW DNE - F8B5 SWLP -F8A8 SWR - F895 SWVTB -F87D TRACEC -DF91
TSTACK -DF51 VCTRSW -0009 VECTAB - DFC2 W NDOW - DFAO WORKPG - DFOO
XQCI DT - FA72 XQPAUS -FAGE ZBKCMD - FADS5 ZBKPNT - FAD3 ZI N2 - FA2A

ZINCH -FAll ZINCHP -FAOF ZMONT2 - F8E6 ZMONTR - F8D2 ZOT2HS - F9F2
ZOT4AHS -F9F0 ZOTCHL -FA2E ZOTCH2 - FA37 ZOTCH3 - FA39 ZQUT2H - F9D9
ZQUTHX - FOE6 ZPAUSE -FAME ZPCRLF -FA3D ZPCRLS -FA3C ZPDATA -FA40
ZPDTAl1 -FA48 ZPDTLP - FA46 ZSPACE - F9F6 ZVSWH - FOFA

Synbol Defi ne Ref er ences

ACI A 92

AVTBL 69

BSDTA 87

BSOFF 88

BSON 86

Cl DTA 80

Cl OFF 81

.G ON 79

. CMDL1 70

. CVDL2 91

. CODTA 83

. COOFF 84

. COON 82

. ECHO 94

. EXPAN 90

.FIRQ 74

. HSDTA 85

.IRQ 75

. NM 77

. PAD 93

. PAUSE 89

. PTM 95

. RESET 78

. RSVD 71

. SW 76

.SW2 73

.SW3 72
ACI A 21 253 822 834 850
ADDR 130 1236 1388 1389 1399 1418 1428 1434 1445 1453 1457
ARVBK2 1366 770 1354
ARVBLP 1353 1357
ARMLCP 1368 1374
ARMNSW 1361 1359
BASEPG 132 183 781
BELL 33 779
BKPTBL 124 1635
BKPTCT 118 383 1367 1591 1604 1631 1636
BKPTOP 126

BLD2 189 193

BLD3 195 198
BLDBAD 1285 1336
BLDHEX 1298 1247
BLDHXC 1299 418
BLDHXI 1296 1230
BLDNNB 1216 1161 1394
BLDNUM 1219 1283 1489 1585 1589
BLDRTN 204 202
BLDSHF 1304 1308
BLDVTR 180 215

BRKPT 63 1381
BSDCMP 941 939
BSDECL 945 937
BSDLDL 916 919 946
BSDLD2 918 925
BSDNXT 936 942
BSDPUN 974 910
BSDSRT 943 923 947
BSDTA 908 247 1505
BSOFF 888 248 1507
BSCFLP 896 897

BSON 877 246 1504
BSON2 881 879
BSPEOF 1030 1018
BSPGO 984 1017
BSPMVRE 1006 1008

BSPOK 989 987
BSPSTR 1029 994
BSPUN2 1026 1000 1002 1003 1006
BSPUNC 1027 1014

BYTE 950 927 930 932 936
BYTHEX 962 950 953
BYTRTS 960 965

CAN 37 708 715 1335
CBKADD 1616 1586
CBKADL 1624 1627
CBKADT 1629 1625
CBKDLE 1594 1590
CBKDLM 1600 1603
CBKDLP 1595 1598
CBKDSL 1607 1611
CBKDSP 1605 1584 1632

CBKERR 1628 1588 1596 1618 1622 1654 1666

CBKLDR
CBKPT

CBKRTS
CBKSET
CCALBS
CCALL

CDBADN

CDI SP
CDI SPS
CDNUM

1635
1584
1592
1634
1504
1377
1496
1482
1471
1478
1489

1534
1651
1640
1659
1649
1653
1665
1341
1380
706
711
710
712
822
841
832
827
1513
1521
1516
377
412
421
432
447
384
441
424
460
380
389
427
443
438
493
497
456
1387
1389
1394
1388
1402
1409
1423
1407
1431
1416
1440
1437
1435
1419
1543
1328
1319
1329
1330
849
866
867
861
858
864
1558
1572
1680
1688
842
833
1499
35
1099
1548

300
500
1606
1594
1524
503
1490
1480
506
1475
1364
1549
405
1646
509
1652
1658
1656
1668
512
1382
698
707
716
709
240
241
239
825
515
1518
1513
351
422
419
461
452
388
450
413
417
797
381
431
440
428
251
230
407
518
1421
1401
462
1395
1414
1417
1398
1424
1408
1432
408
1441
1411
521
1322
964
1309
1284
243
869
851
863
856
853
524
1569
1642
1659
244
242
527
424
530
533

380

1605

1492

1387
1558
1362

761
714
722
345

1527
436

1285

385
442

410

1438
1405

462

1299

1300
565

861

346
618

1351

1616

1509

1466
1560

1496

459

464

1429

1320

664

1366

1471

1628

1324

855

1476

1326

1031

1499

1369

1163

1501

1182

1519

1425

1532

1493

1543

1651

CTRACE
CTRCE3
CVER
CW NDO
DELI M
DFTCHP
DFTNLP
DLE
EOT
ERRMBG
ERROR
EXP1
EXP2
EXPADD
EXPCDL
EXPCHM
EXPDLM
EXPRTN
EXPSUB
EXPTDI
EXPTDL
EXPTRM
FI RQ
FI RQR
GOADDR
GONDFT
H VTR
HSBLNK
HSDRTN
HSDTA
HSHCHR
HSHOOK
HSHDOT
HSHLNE
HSHNXT
HSHTTL
| NCHNP
I NITVT
| NTVE

I NTVS

I'RQ

LASTOP
LDDP
LF

M SFLG
MONI TR
MSHOWP
MJUPBAD
MUPDAT
NM

NM CON
NM R
NM TRC
NUMBER

NUMBKP
NUMFUN
NUMVTR
QUT2HS
QUT4HS
QUTCH

PAUSE
PAUSER
PCNTER
PCRLF
PDATA
PDATAL
PROVPT
PRTADR
PSTACK
PTM

PTMC13
PTMC2
PTMSTA
PTMIML
PTMIM2
PTMIMB
RAMOFS
READ
REG4
REGAGN

1532
1535
1527
1466
150
23
24
36
32
779
786
1229
1247
1263
1257
1267
1230
1245
1273
1251
1252
1283
1703
813
1346
1364
97
1043
1089
1040
1073
1078
1077
1057
1065
1048
53
230
261
253
1704
805
136
781
34
148
61
735
1459
1453
1706
769
737
763
134

26
65
96
57
58
54

64
114
142

59

56

55

25

1445
140
22

40
41
39
42
43
44
18
1333
1154
1186

536
763
539
542
748
254
254
852
340
433
311
250
1231
1279
1249
1259
1234
1254
1268
1270
1238
1260
1703
234
1341
1348
589
1046
1059
245
1081
1076
1074
1087
1068
1056
917
185
194
194
1704
235
749
294
620
399
219
745
1456
1403
1706
739
237
741
398
1305
123
310
121
1066
751
393
1462
721
249
390
378
349
435
391
1437
395
39
355
356
355

352

108
404
1173
1164

754

649
786

1248
1266

1272

1241
1273
1717

1377

1083
1088

921

1718

1536
737
635
616

1413
1720

744
463
1306
125

187
1153
1062

882

1239
1041
788
747

432

40
356
358

353

421
1183

1220

681

1244

1482

963

806
666
738

1176
1402
386

1571
1150
890

1058
996

41
358

1539

1255

1233

735

1334

1031
769

1252
1494
1355

1674
1449
893

1090
1020

42
1537

1298

1253

779

1644

1423
883

1257
1634
1371

1576

980

1158

43
1539

1409

1029

1650

894

1262
1617

1609

1079

1436

44

1031

1361

1264
1630

1139

1578

256

1275

1143

1613

350

1296

1393

1676

352

1297

1427

353

REGCHG
REGCNG
REGVBK
REGNXC
REGP1
REGP2
REGP3
REGPRS
REGPRT
REGRTN
REGSKP
REGTF1
REGTF2
REGTVO
RESET
RESET2
ROM2OF
ROMRVIK
ROVBEG
ROVSI Z
RSRVD
RSRVDR
RSTACK
RTI
RTS
SEND
S| GNON
SKI P2
SLEVEL
SPACE
STACK
STLDFT
SW
SW 2
SW 2R
SW 3
SW 3R
SW BFL
SW CNT
SW DNE
SWLP
SWR
SW VTB

TRACEC
TSTACK
VCTRSW
VECTAB

W NDOW
WORKPG
XQC! DT
XQPAUS
ZBKCMVD
ZBKPNT
ZIN2

ZI NCH
ZI NCHP
ZMONT2
ZMONTR
ZOT2HS
ZOT4HS
ZOTCHL
ZOTCH2
ZOTCH3
ZOUT2H
ZOUTHX
ZPAUSE
ZPCRLF
ZPCRLS
ZPDATA
ZPDTAL
ZPDTLP
ZSPACE
ZVSWIH

Synbol s:

1132
1161
1120
1174
1135
1141
1152
765
1131
1159
1169
1188
1194
1180
214
216
20
152
17
19
1700
806
138
771
838
565
339
46
120
60
155
1552
1705
1702
803
1701
804
116
146
308
302
293
280

144
154

62
122

128
108
722
721
797
796
622
609
608
350
342
568
567
633
637
638
554
561
697
651
649
664
680
679
578
588

1101
1146
1134
1162
1140
1137
1148

752

765
1198
1172
1191
1197
1178

238

220

199

20
20
1714
231
342
813
784
621
347
860
743
1044
214
1548
1705
1702
233
1701
232
298
293
299
305
236
280
290
400
1186

180
722
1221
1703
1242
109
609
608
753
290
619
280
610
344
288
284
285
281
579
590
567
558
291
286
634
283
282
636
287
289

319, References:

1156

796
1099

1721

108
1713

785

841
637

1151
1550
1051

1719
1716

1715

308
638
303

281
291
756

345
822
1482
1704
1467
110
706
697
755
307

612

595
568
1049

651

682

610

164

842
665

1217
1553
1053

1360
740

282
314
759

346
834
1504
1705

713
712
757
807

614

597
1027

1713

679
1520
1070 1170 1420

283 284 285
1533

350 426 429
850 854 857
1505 1507 1537
1706

866
760 762

617 623 701
1390

286

565
974
1544

287

591
978
1700

288

622
982
1701

289

721
1022
1702

APPENDIX C
MACHINE CODE TO INSTRUCTION CROSS REFERENCE

C.1 INTRODUCTION

This appendix contains a cross reference between the machine code, represented in hex-
adecimal and the instruction and addressing mode that it represents. The number of
MPU cycles and the number of program bytes is also given. Refer to Table C-1.

C-1

OP Mnem
00 NEG
01 ¢

02 ¢

03 CcoM
04 LSR
05 *

06 ROR
07 ASR
08 ASL, LSL
09 ROL
0A DEC
[¢]] *

ocC INC
oD TST
OE JMP
OF CLR
10 Page 2
1 Page 3
12 NOP
13 SYNC
14 .

15 *

16 LBRA
17 LBSR
18 *

19 DAA
1A ORCC
1B *

1C ANDCC
1D SEX
1E EXG
1F TFR
20 BRA
21 BRN
22 BHI
23 BLS
24 BHS, BCC
25 BLO, BCS
26 BNE
27 BEQ
28 BVC
29 BVS
2A BPL
2B BMI
2C BGE
2D BLT
2E BGT
2F BLE
LEGEND:

Table C-1. Machine Code to Instruction Cross Reference

Mode
Direct
3

\

Direct

inherent
inherent

Relative
Relative

Inherent
Immed
Immed

Inherent

Immed

Immed

Relative

A

Relative

1

N

NNDDNNDN

NN NN

w

N —

NN - N

RNNRNNODMRPDNNNODNNNNRNNONRNODNON

op

30
31

32
33
34
36
36
37
38
39
3A
3B
3C
3D
3t
3F

40
41

42
43
44
45
46
47
48
49
4A
48
4C
4D
4E
4F

50
51

52
53
54
55
56
57
58
59
5A
58
5C
5D
5E
5F

Mnem
LEAX
LEAY
LEAS
LEAU
PSHS
PULS
PSHU
PULU

RTS
ABX
RTI
CWA!
MUL

SWi

NEGA

COMA
LSRA

RORA
ASRA
ASLA,
ROLA
DECA

INCA
TSTA

CLRA
NEGB

COMB
LSRB

RORB
ASRB
ASLB,
ROLB
DECB

INCB
TST8B

CLRB

Mode
Indexed

Indexed
Immed

Immed
Inherent

Inherent

Inherent

A

LSLA

\

Inherent

Inherent

A

LSLB

Inherent

~Number of MPU cycles {less possible push pull or indexed-mode cycles)

Number of program bytes

* Denotes unused opcode

4+
4+
4+
4+
5+
5+
5+
5+

5

3
6/15
20
"

19

2

NN

NN NDN NN N NN NNRNNDN

N

2+
2+
2+
2+

N NN

_. N =

opP

60
61

62
63
64
65
66
67

68
69
6A
68
6C
6D
6E
6F

70
Al

72
73
74
75
76
77
78
79
7A
7B
7C
70
7E
7F

80
81

82
83
84
85
86
87
88
89
8A
88
8C
8D
8E
8F

Mnem
NEG

COM
LSR

ROR
ASR
ASL, LSL
ROL
DEC

INC

TST
JMP
CLR

NEG

COM
LSR

ROR
ASR
ASL, LSL
ROL
DEC

INC

TST
JMP
CLR

SUBA
CMPA
SBCA
SUBD
ANDA
BITA
LDA

EORA
ADCA
ORA
ADDA
CMPX
BSR
LDX

Mode
Indexed
A

v

Indexed

Extended

A

\
Extended

Immed

A

\

Immed
Relative
Immed

6+
6+

6+
6+
6+
6+
6+

6+
6+
3+
6+

3

2+
2+

2+
2+
2+
2+
2+

2+
2+
2+
2+

w

Wwww W wwww

NNNWNNDN

WRNWNNONN

NOTE:

Mnem
SUBA
CMPA
SBCA
SUBD
ANDA
BITA
LDA
STA
EORA
ADCA
ORA
ADDA
CMPX
JSR
LDX
STX

SUBA
CMPA
SBCA
SUBD
ANDA
BITA
LDA
STA
EORA
ADCA
ORA
ADDA
CMPX
JSR
LDX
STX

SUBA
CMPA
SBCA
SUBD
ANDA
BITA
LDA
STA
EORA
ADCA
ORA
ADDA
CMPX
JSR
LDX
STX

All unused opcodes are both undefined

and illegal

Table C-1. Machine Code to Instruction Cross Reference (Continued)

Mode
Direct

A

\J

Direct

Indexed

A

\J

Indexed

Extended

0

Y
Extended

t

AN PDdPEEDEELADMOODALN

4+
4+
4+
6+
4+
4+
4+
4+
44
4+
4+
4+
6+
7+
5+
5+

5
5
5
7
5
5
5
3
5
5
5
5
7
8
6
6

NRORNRNRNPRDNONRNNONRNRRNRNRNRNDRNNDRN g

2+
2+
2+
2+
2+
2+
2+

2+
2+
2+
2+
2+

2+

WWwWwWwwwwwwwwwwwww

oP

Co
a1

c2
C3
C4
Cb
Cé
c7
c8
C9
CA
cs
cC
CcD
CE
CF

DO
D1

D2
D3
D4
D6
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF

EO
E1

E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF

FO
F1

F2
F3
F4
F5
F6
F7
F8
Fo
FA
FB
FC
FD
FE
FF

Mnem

suBs
CMPB
SBCB
ADDD
ANDB
BITB

LDB

EORB
ADCB
ORB
ADI 3
LDD

LDU

suBB
CMPB
SBCB
ADDD
ANDB
BITB
LDB
STB
EORB
ADCB
ORB
ADDB
LDD
STD
LDU
STU

SuBB
CMPB
SBCB
ADDD
ANDB
BITB
LDB
STB
EORB
ADCB
ORB
ADDB
LDD
STD
LDU
STU

suss
CMPB
SBCB
ADDD
ANDB
BITB
LDB
STB
EORB
ADCB
ORB
ADDB
LDD
STD
LDU
STU

C-3/C-4

Mode
Immed

Immed
Immed

Immed

Direct

A

Direct

Indexed

Y

Indexed

Extended

A

Y
Extended

Extended

Extended

5
5
7
5
5
5
5
5
5
5
5
6
6
6
6

NN WNRNN =

WNRDDNOR

w

RMRORNRNNRNONNONMNONNONNRODNONNN NN

N

NNV NNONNRNONNRNNDNNRNNDNONNDN
++ 4+ A+ A+ + o+

WWwwwwwwwowwwwwwoww

opP

1021
1022
1023
1024
1025
1026
1027
1028
1029
102A
1028
102C
102D
102E
102F
103F
1083
108C
108E
1093
108C
109k
109F
10A3
10AC
10AE
10AF
1083
10BC
10BE
10BF
10CE
10DE
10DF
10EE
10EF
10FE
10FF
113F
1183
118C
1193
119C
11A3
1AC
1183
118C

Mnem

Page 2 and 3 Machine

LBRN
LBH
LBLS

LBHS, LBCC

LBCS,
LBNE
LBEQ
LBVC
LBVS
LBPL
LBMi
LBGE
LBLT
LBGT
LBLE
SWI2
CMPD
CMPY
LDY
CMPD
CMPY
LDY
STY
CMPD
CMPY
LDY
STY
CMPD
CMPY
LDY
STY
LDS
LDS
STS
LDS
STS
LDS
STS
SWI3
CMPU
CMPS
CMPU
CMPS
CMPU
CMPS
CMPU
CMPS

LBLO

Mode

Codes

Relative

A

Y

Relative

Inherent
ImTed
Immed
Direct

Direct
Indexed

Indexed
Extended

Extended
Immed
Direct
Direct
Indexed
Indexed
Extended
Extended
Inherent
Immed
Immed
Direct
Direct
Indexed
Indexed
Extended
Extended

5
5(6)
5(6)
5(6)
5(6)
5(6)
5(6)
5(6)
5(6)
5(6)
5(6)
5(6)
5(6)
5(6)
5(6)
20
5

[o> B NN

(o >IN o> BN BN e)]
+ + + +

NN A NN 0D
+ +

7+
7+
8
8

WWWWPLPrPEANLELAELPADMDBMRAMRALDNLDAELADDSD

+ +

APALAOWOWWWEPRNDDEDRAWWWWLEDAMDN
+ ¥

APPENDIX D
PROGRAMMING AID

D.1 INTRODUCTION

This appendix contains a compilation of data that will assist you in programming the
M6809 processor. Refer to Table D-1.

Table D-1. Programming Aid

Branch Instructions

Addressing Addressing
Mode Mode
Relative 6/3j2[1]0 ive | 513]2
Instruction| Forms | OP| ~ | # Description HIN[Z[V]|C Instruction| Forms |OP| ~ | # Description H{N|[Z
BCC BCC 24| 3| 2 |Branch C=0 sje|efele BLS BLS 23| 3 | 2 |Branch Lower o]
LBCC 10 {5i6)| 4 |Long Branch o oo eje or Same
24 C=0 LBLS 10 {5(6)| 4 lLong Branch Lower (e |
BCS BCS 25| 3 | 2 {Branch C=1 efefofele 2 or Same
LBCS 10 {56} 4 [Long Branch o (v efefe BLT LT 20| 3 | 2 |Branch<Zero ofe
25 C=1 LBLT 10 [5i6)| 4 |Long Branch<Zero |e|e
BEQ BEQ 27) 3 | 2 |Branch Z2=0 ojo|ofefe 2D
LBEQ 10 {5(6)| 4 {Long Branch eie|elele BMt BMI 2B1 3 | 2 [Branch Minus
27 Z=0 LBMI 10 [5i6)} 4 |Long Branch Minus |[e | e
BGE BGE 2C| 3 | 2 [BranchzZero efefo]ele 28
LBGE 101561 4 |Long BranchzZero {eje|e|ele BNE BNE 261 3 | 2 {Branch Z#0 ofe
2C LBNE 10 [516)| 4 |Long Branch LR
BGT BGT 26| 3 | 2 |Branch>Zero elofefe]e 2 2#0
LBGT 105(6); 4 [Long Branch>Zero |e|{e|e|l e[BPL BPL 2A1 7 2 |Branch Plus oo
2E LBPL 10 |5(6)| 4 |Long Branch Plus ol
BH! BHI 22| 3 | 2 [Branct. Higher efefee]e 2A
LBHI 10 [56} 4 JLong Branch Higher [| e[o] o] e BRA BRA 207 3 2 (Branch Always oo
22 LBRA 161 b 3 |Long Branch Always |e | @
BHS BHS 24| 3 | 2 |Branch Higher efejoelols BRN 8RN 21| 3 | 2 |Branch Never sle
or Same LBRN 10} 5 | 4 [Long Branch Never |e | e
LBHS 10 1 6(6)| 4 |Long Branch Higher | e{ e | eje| e 21
24 or Same BSR BSR 8D [7 | 2 [Branch to Subroutinefe | »
BLE BLE 2F| 3 | 2 [Branch=Zero ele|oies LBSR 171 9 | 3 |Long Branch to oo
LBLE 10 5i6)| 4 |Long Branch=sZero | e|s{e|e] s Subroutine
2F BVC BVC 281 3 | 2 [Branch v=0 ole
BLO BLO 26| 3 [2 |Branch lower elo|eiele LBVC 10 [5(6) | 4 JLong Branch oo
LBLO 10 | 6(6)| 4 |Long Branch Lower | e | el el e e 28 V=0
% BVS BVS 29 3 | 2 [Branch V=1 T
LBVS 10 |5(6){ 4 |Long Branch . i .
29 V=1

D-1

Table D-1. Programming Aid (Continued)

SIMPLE BRANCHES

op_ -~ # SIMPLE CONDITIONAL BRANCHES (Notes 1-4)
BRA 20 3 2 Test True oP False oP
LBRA 16 5 3 N=1 BM| 28 BPL 2A
BRN 21 3 2 Z=1 BEQ 27 BNE 26
LBRN 1021 5 4 V=1 BVS 29 BVC 28
BSR 8D 7 2 C=1 BCS 25 BCC 24
LBSR 17 9 3
SIGNED CONDITIONAL BRANCHES (Notes 1-4) UNSIGNED CONDITIONAL BRANCHES (Notes 1-4)
Test True OP False oP Test True oP False OP
r>m BGT 2E BLE 2F r>m BHI 22 BLS 23
rzm BGE 2C BLT 2D r=zm BHS 24 BLO 25
r=m BEQ 27 BNE 26 r=m BEQ 27 BNE 26
r<m BLE 2F BGT 2E rsm BLS 23 BHI 22
r<m BLT 2D BGE 2c r<m 8LO 25 BHS 24

Notes:
1. All conditional branches have both short and long variations.
Al short branches are 2 bytes and require 3 cycles.
All conditional long branches are formed by prefixing the short branch opcode with $10 and using a 18-bit destination offset.
All conditional long branches require 4 bytes and 6 cycies if the branch is taken or 5 cycles if the branch is not taken.

~ON

D-2

Table D-1. Programming Aid (Continued)

Addressing Modes 1
Immediate Direct Indexed Extended Inherent 5j]3]2(1]0
Instruction| Forms |Op [-] #] Op[~] #] Op[~] # | Op| ~| # Op| ~ | # Description HIN|Z|V{C
ABX 3A] 3 1|8+ X—X {Unsigned) elejo oo
ADC ADCA 83 | 2 21 99 | 4 21 A9(4+12+] B9 5 3 A+M+C—~A e
ADCB C9 |2 2] D9 | 4 2| EQ{4+]|2+]| FO{ b 3 B+M+C—B R RE AR
ADD ADDA 88 | 2 21 9B | 4 2] AB|4+] 2+ BB| 5 3 A+M=A SRR YRR
ADDB CB |2 21081 4 2| EBJ4+1 2+ FB| 5 3 B+M-—B A RERERER]
ADDD C3| 4 3| D3 |6 2] E3[6+]|2+]| F3| 7 3 D+MM+1=-D el
AND ANDA 84 |2 2] %4 |4 2| Ad{4+] 2+ B4| B 3 AAM=-A t]t{0] e
ANDB Ca |2 21 D44 2| E4(4+] 2+| F4| B 3 BAM-B t{1[{Ofe
ANDCC 1C | 3 2 CC A IMM—=CC 7
ASL ASLA 8| 2| 1 A - sltft]tf
ASLB | 2| 1| eI o [oft|t|1]:
ASL 08|61 2 68[6+[2+4[78] 7] 3 MIT b7 bo 8lt1|t]|1]1
ASR ASRB 471 2 1 A — 8l1]t1]|ef
ASR g7 2] 1] B } I{D]:DIQ—»D sleft]|ef
ASR 07 |61} 2|67|6+|2+]77] 7| 3 M 7 0 ¢© 81|11
BIT BITA 85 | 2 21 95 1 4 2] A5(4+]|2+]|B5 5 3 Bit Test A {M A A) o110
BITB Co |2 2|1 D[4 21 EB|4+| 2+ F5 3 Bit Te<t B (M A Bj e|ltit|0]e
CLR CLRA aF | 2| 1]0—A s|0]1]0]0
CLRB 5F | 2 1/0-8 «|0|1|010
CLR OF 16 2| 6F |6+ 2+ 7F | 7 3 0—-M e|[0]1]|0|O
CMP CMPA 81 |2 21 9 |4 2] A1]4+|2+|B1| b 3 Compare M from A i1ttt
CMPB C1|2 21 DV |4 21 BV {4+ 2+1 F1| 5 3 Compare M from B 8ltftiti
CMPD 10165 41 1017 3] 10(7+(3+] 10} 8 4 Compare M:M + 1 from D AR RERER
83 93 A3 B3
CMPS Mmils| 4] n 7 31 117+ 3+ 111 8 4 Compare M:M + 1 from S el |ttt
8C 9C AC BC
CMPU M 5 41 N 7 37 M |[7+]3+] 11| 8 4 Compare M:M + 1 from U ettt
83 a3 A3 B3
CMPX 8C | 4 3] 9C |6 2| AC|6+]2+(|BC| 7 3 Compare M:M + 1 from X AR RN RN
CMPY 10|65 41 10 |7 31 107+ 3+|10] 8 4 Compare M:M + 1 from Y ettt
8C 9C AC BC
COM COMA 43¢ 21 1|A-A elt|1|o]n
ComB 83| 2| 1|B-8 slt|t]of1
COM 03 |6 21 63|6+12+| 73] 7 3 M—-M eli1ft]|0O]
CWA| 3C 220 2 CC A IMM —~CC Wait for Interrupt 7
DAA 19 2 1 | Decimal Adjust A o1 |t10(1
DEC DECA A4A [2 11A-1-A eftltlt]e
DECB bA} 2 1{8-1-8B ettt
DEC OA | 6 2] 6A[6+1 2+ 70 7 3 M-1-M ety t] e
EOR EORA 88 | 2 2| 9814 2] AB|4+|2+{ B8] b 3 A¥M-—A ol1}1]|0]e
EORB c8 | 2 21 D8 |4 2] EBid4+]2+| FB| b 3 B&¥M—-B slt]1]0fe
EXG R,R2 |1 8] 2 R1-—R22 ole|e|e|e
INC INCA acl 2 1Ja+1-A eftfifefe
INCB 5C| 2| 1|B+1-8 elt]t]t]e
INC oc |6 | 2| 6c|e+|2+]|7c] 7| 3 M+1=M el
JMP oE [3]| 2| 6|3+]2+]7e] a3 EAS—pC ofof|ofefe
JSR 9D | 7 2| AD|7+} 2+ | BD| 8 3 Jump to Subroutine ejoejeeloe
LD LDA 86 |2 2] 9|4 2] a6la+|2+|B6]| 5] 3 M—A olt]i|ofs
LDB C6|2| 2| D6 |4 2| E6la+|2+]|F6| 5] 3 M—B ejtft]|ofe
LDD cc| 3 31 DCI5 2| EC|[B+|2+| FC] 6 3 MM+1-D o1 f110]e
LDS 101 4 41 10} 6 3] w06+ 3+] 10| 7 4 MM+1=S el111]|0]e
CE DE EE FE
LDU CE| 3 31 DE|S 2| EE{B5+|2+| FE| 6 3 MM+1-U o(t]1]0]e
LDX 8E | 3 3| 9 | b 2| AE[B5+]| 2+ | BE| 6 3 MM+ 1-X e|lt1]31]|0]e
LDY 10| 4 41 106 3] 10(6+[3+} 10} 7 4 MM+ 1=Y elt1]1[0O]e
8E 9t AE BE
LEA LEAS 32 |4+ 2+ EAS~S sfefe]e]e
LEAU Bl4+| 2+ EAS-y elofe|e|e
LEAX 30(4+| 2+ EA3—-X olet]|efs
LEAY 31| 4+| 24 £AS-y eflejr|efe
Legend: M Complement of M 1 Test and set if true, cleared otherwise
OP Operation Code (Hexadecimal} — Transfer Into * Not Affected
~ Number of MPU Cycles H Half-carry (from bit 3) CC Condition Code Register
Number of Program Bytes N Negative (sign bit) Concatenation
+ Arithmetic Plus Z Zero (Reset) V Logical or
— Arithmetic Minus V Overflow, 2's complement A Logical and
s Multiply C Carry from ALU - Logical Exclusive or

D-3

Table D-1. Programming Aid (Continued)

Addressing Modes

Immediate Direct Indexed1 Extended Inherent 51312[1]0
Instruction| Forms [Op] ~ T#[Op] ~] #] Op] -~ #[Op][-~ #[Op| ~] # Description HIN[Z|V|C
LSL LSLA 8| 211 A i, S— ettt
Lste so| 2| 1| SIO{TTIIII0 |«|t|s ||t
LSL 8| 6| 2| es|6+| 2+ 78| 7| 3 MIT 5y bo oly {1l
LSR LSRA aj 2 1] A o011
LsRe s 2| 1| 8o I |«]o]|e]
LSR 04| 6| 2| 64|6+| 2+]| 74 3 by bp € [e|O|1]|*]1
MUL 30| 11| 1 [AxB—~D (Unsigned) efelt{e]|0
NEG NEGA 0] 2] 1[A+1—A glaft |t
NEGB 50| 2| 1|B+1-8 g1t}
NEG 00| 6| 2| 60|66+ 2+| 70| 7| 3 M+1=M gttt
NOP 12 2 1 {No Operation s e je e o
OR ORA gal 2 | 2| 9a] 4] 2] AA[4a+]| 2+ BA| 5] 3 AV M=A 111]0]fe
ORB CA| 2 | 2| DA] 4§ 2| EA| +| 2+} FA| 5| 3 BVM=8 1|1]0]fe

ORCC 1Al 3]2 CCV IMM~CC 7
PSH PSHS | 34(5+%4] 2 Push Registers on S Stack olo|ofe]e
PSHU 36|5+4] 2 Push Registers on U Stack oo ole |
PUL PULS 35 [5+4] 2 Pull Registers from S Stack oo jofele
PULU 37 (544 2 Pull Registers from U Stack oo |o]e e

ROL ROLA 49| 2 11 A .
M c by bg

tptrl

Pttt

ROL Q9] 6 2] 6916+ 2+ 791 7 3 L ERSEEREE

ROR RORA 46| 2 11 A LRI S O I
RORB s6| 2| 1] elt 1o

ROR 06| 6] 2| 66|6+f2+| 76] 7| 3 c by bo o1 i1 et

RTI 3B |6/15 1 |Return From interrupt 7
RTS 39| 5 1 |Return from Subroutine oo (oo fe
SBC SBCA 82 2 |2 924 2| A2l4+|2+| B2[5| 3 A-M-C—A AERERERE
SBCB Cc2| 2 2] D2 4 2 BE214+] 2+ F2| 5 3 B-M-C-8B 81t ittt

SEX | 2 1 |Sign Extend B into A et |1 |C]|e
ST STA 97 | 4 2| A7]|4+] 2+| B7| B 3 A—-M e (1|1 |Ofe
STB D7] 4 2| E7 |4+ 2+ F7| 5 3 B—~M e (1|1 |O]|e

STD DD| 5 2| ED|{5+]| 2+| FD| 6 3 D-MM+1 st 1t |0

8TS 10| 6 31 106+ 3+] 10| 7 4 S—-MM+1 et |1 |0

DF EF FF

STU DF| 5 2| EF |5+]| 2+| FF| 6 3 U—-M:M+1 it j1 (0]

STX 9F | 5 21 AF |5+ 2+| BF| 6 3 X—=MM+1 s 1t 11|01

STY 0] 6 3| 10 10| 7 4 Y-MM+1 e 1t 11 10|

9F AF|6+| 3+| BF

sus SUBA 80| 2 219] 4 2| A0|4+]2+| BO| B 3 A-M-—A 8 i ittt
SuBB col 2 21001 4 2| EO|4a+]|2+| FO}| B 3 B-M-B 8L |t |t 1t

SUBD 83| 4 3]1931]68 21 A3|6+|2+]| B3} 7 3 D-MM+1-D ettty

SWI swib 3F [19| 1 [Software Interrupt 1 s le (o0 0
Swi26 10 | 20 | 2 |Software Interrupt 2 oo (o |0 e

3F
sSwi3b 111 20| 1 [Software Interrupt 3 oo lo e |e
3F

SYNC 13 | 24| 1 |Synchronize to Interrupt [BERENERL
TFR R1,R2 |IF| 6 |2 R1—R22 oo fofe]e
TST TSTA an| 2 1 |Test A e it it |0 |e
TST8B 5D | 2 1 {Test B o (1 110 |e

TST ob| 6 2160[|6+{2+]|7D} 7 3 ITest M ot |1 [0 |e

Notes:
1. This column gives a base cycle and byte count. To obtain total count, add the values obtained from the INDEXED ADDRESSING MODE table,

in Appendix F.

2. R1and R2 may be any pair of 8 bit or any pair of 16 bit registers.

The 8 bit registers are: A, B, CC, DP

The 16 bit registers are: X, Y, U, S, D, PC
EA is the effective address.
The PSH and PUL instructions require 5 cycles plus 1 cycle for each byte pushed or pulled.
5(6) means: b cycles if branch not taken, 6 cycles if taken (Branch instructions).
SWiI sets | and F bits. SWI2 and SWI3 do not affect | and F.
Conditions Codes set as a direct result of the instruction.
Value of half-carry flag is undefined.
Special Case — Carry set if b7 is SET.

© o N e W

APPENDIX E
ASCIll CHARACTER SET

E.1 INTRODUCTION

This appendix contains the standard 112 character ASCll character set (7-bit code).

E.2 CHARACTER REPRESENTATION AND CODE IDENTIFICATION

The ASCII character set is given in Figure E-1.

b7 0 0 0 0 1 1 1 1
b6 0 0 1 1 0 0 1 1
% bb 0 1 0 1 0 1 0 1

b41b3] b2] b1 Column] 0 1 2 3 4 5 6 7
i | | | | Row | Hex 0 1 2 3 4 5 6 7
01010 0] O 0 NUL DLE SP 0 @ P ! p
0J]o0 0 1 1 1 SOH DC1 | 1 A Q a q
OjJoJ1]of 2 2 STX | bCc2 2 B R b r
o]0 1 1 3 3 ETX DC3 3 C S c]
0 1 0 0] 4 4 EQT DC4 $ 4 D T d t
0 1 0 1 5 5 ENQ NAK % 5 E U e u
0 1 1 0] 6 6 ACK SYN & 6 F \ f v
0 1 1 1 7 7 BEL ETB 7 G W g w
1 0 ojo] 8 8 BS CAN (8 H X h X
1 [“H ¢ 1 9 9 HT EM) 9 | Y i y
1 0 1 0] 10 A LF SuUB * : J Z j z
1 0 1 111N B vT ESC + s K [k {
1 1 0 0] 12 C FF FS , < L \ | |
1 1 0 1113 D CR GS - = M] m }
1 1 1 0] 14 E SO RS . > N A n ~
1 1 1 11156 F Si US / ? [e] __ 0 DEL

Figure E-1. ASCII Character Set

Each 7-bit character is represented with bit seven as the high-order bit and bit one as the
low-order bit as shown in the following example:

b7 b6 b5 b4 b3 b2 b1l b0
1 0 0 0 O O o0 1

The bit representation for the character “A” is developed from the bit pattern for bits
seven through five found above the column designated 4 and the bit pattern for bits four
through one found to the left of the row designated 1.

A hexadecimal notation is commonly used to indicate the code for each character. This
is easily developed by assuming a logic zero in the non-existant bit eight position for the
column numbers and using the hexadecimal number for the row numbers.

E.3 CONTROL CHARACTERS

The characters located in columns zero and one of Figure E-1 are considered control
characters. By definition, these are characters whose occurrance in a particular context
initiates, modifies, or stops an action that affects the recording, processing, transmis-
sion, or interpretation of data. Table E-1 provides the meanings of the control characters.

Table E-1. Control Characters

Mnemonic Meaning Mnemonic Meaning
NUL Null DLE Data Link Escape
SOH Start of Heading DC1 Device Control 1
STX Start of Text DC2 Device Control 2
ETX End of Text DC3 Device Control 3
EOT End of Transmission DC4 Device Control 4
ENQ Enquiry NAK Negative Acknowledge
ACK Acknowledge SYN Synchronous |dle
BEL Bell ETB End of Transmission Block
BS Backspace CAN Cancel
HT Horizontal Tabulation EM End of Medium
LF Line Feed suB Substitute
vT Vertical Tabulation ESC Escape
FF Form Feed FS File Separator
CR Carriage Return GS Group Separator
SO Shift Out RS Record Separator
Si Shift in us Unit Separator
DEL Delete

E.4 GRAPHIC CHARACTERS

The characters in columns two through seven are considered graphic characters. These
characters have a visual representation which is normally displayed or printed. These
characters and their names are given in Table E-2.

E-2

Ao

Table E-2. Graphic Characters

Name
Space (Normally Nonprinting)
Exclamation Point
Quotation Marks (Diaeresis)
Number Sign
Dollar Sign
Percent Sign
Ampersand
Apostrophe (Closing Single Quotation Mark; Acute Accent)
Opening Parenthesis
Closing Parenthesis
Asterisk
Plus
Comma (Cedilla)
Hyphen (Minus)
Period (Decimal Point)
Slant
Digits O Through 9
Colon
Semicolon
Less Than
Equals
Greater Than
Question Mark
Commercial At
Uppercase Latin Letters A Through Z
Opening Bracket
Reverse Slant
Closing Bracket
Circumflex
Underline
Opening Single Quotation Mark (Grave Accent)
Lowercase Latin Letters a Through z
Opening Brace
Vertical Line
Closing Brace
Tilde

E-3/E-4

APPENDIX F
OPCODE MAP

F.1 INTRODUCTION

This appendix contains the opcode map and additional information for calculating re-
quired mchine cycles.

F.2 OPCODE MAP

Table F-1 is the opcode map for M6809 processors. The number(s) by each instruction in-
dicates the number of machine cycles required to execute that instruction. When the
number contains an “I”’ (e.g., 4 + 1), it indicates that the indexed addressing mode is being
used and that an additional number of machine cycles may be required. Refer to Table
F-2 to determine the additional machine cycles to be added.

Some instructions in the opcode map have two numbers, the second one in parenthesis.
This indicates that the instruction involves a branch. The parenthetical number applies if
the branch is taken.

The “page 2, page 3” notation in column one means that all page 2 instructions are

preceded by a hexadecimal 10 opcode and all page 3 instructions are preceded by a hex-
adecimal 11 opcode.

F-1

SiS \ nis AlLS \ X1S 410 €/Z/iMS | 318106 Y4l | HID]4 L1l
L'1+9'9 9'L+4'g L'L+9'9 9'L +6'G L 1+9 A z 0z/0z/6l /378 g L 9
Sal \ nal AQ \ xXa dwr 1991 (9)5] 9%x3{ dWr|3 otiL
L'1L+9'9Y 9'L+G'G'E L'1+9'0'Y 9'L +G'G'E |4 L+€ /198 € 8 £
als ysr ysa 1Sl W | 1sr@g x3as| 1si]o ioit
9 L+§ S 8 L+L L L L 1+9 4 4 11 /118 € 4 9
aal SdWD \ AdWD XdWD ONI VMO | 3941 (9)9j00aNy | oni]o oott
9 L+G] € gL+11'g g'L+L'1'S LUL+9'9'Y L 1+9 z z 0z /394 ¢ £ 9
aaav vaav iy fwavog] | 9 oL
g L+¥ 12 z g L+¥ ¥ [4 GL/9 /IN8 €
a40 VHO 234 xav { 1da19i6] 2080 | o3a]v oiol
S L+b v 4 G L+¥ 14 [4 L L+9 z z € /1d8 €| € 9 -
20av voav 704 Sid Jsag19g wvva] ou]s tooi |8
g L+¥ 4 4 S L+¥ 4 4 L L+9 14 4 S /SAE € z 9 A
g403 VvHO3 (s 1sv ongrigl ____ | (ism]s oool &
g L+t 4 [4 g L+t 14 (4 L 1+9 [4 Z /OA8 € 1SV 9 %
1S V1S HSY nnd | 03871 9)g] use1| usv|c 110]8
g L+t 4 S L+¥ 14 L 1+9 A 4 Ag/L+G /039 € 6 9 2
aan val HOoH NHSd | 3NA1(9i5] wda1 | Houlo oLLo m_
] L+y ¥ 14 g L+t 14 4 L 1+9 z z Aq/L+¢ /INS € S 9 ®
g118 via sind jsom@sl | s 10i0]&
S 1+ v z] L+y 14 z Aq/L+g 078 €
aaNv VANV HS1 SHSd [(228) (94 4S1| ¥ 00i0
g L+y ¥ 4] L+y 4 z L L+9 z 4 Ag/L+9 SHE € 9
aaav NdND \ adwo aans W02 Nv3al | s181(9)gf ONAS] wodle 1100
L 1+9 9 4 g'L+L'L'S 8'L+LL'S L'L+99'y L L+9 Z z L+¥ /S14 € Zz 9
808as vo8s Sv31 | tHE1 (9G] d4ON 1z o100
g L+¥ 14 z g L+¥ ¥ z L+¥ /1HE € z
adWD VdWD AV3IT NY81 6] £39vd 1 1000
S L+¥ ¥ z] L+¥ 14 z L+t /NH8 €
aans vans 93N Xv31 Z39vd | 93IN|0o 0000
S L+¥ 4 z g 1+ ¥ z L 1+9 z [4 L+t vHe € 9
4 3 a o) q v 6 8 L 9 S v € z 1 0
i oLLlL 1011 0011 t10L oLoL L00L 0001 LLL0 oLL0 10L0 0010 L1100 0L00 1000 [0000
] ant "I WII a aNI dia WII b ani a20v VIV 134 Hia
sig Jno4 jueoyiubig-ison

dew epoddp °|-4 ejqelL

F-2

Table F-2. Indexed Addressing Mode Data

+ and ; Indicate the number of additional cycles and bytes for the particular variation.

F-3/F-4

Non Indirect Indirect
Assembler Postbyte x[+ 1 Assembler Postbyte +H +
Type Forms Form OP Code | ~| # Form OP Code | ~| #
Constant Offset From R No Offset R 1RR00100 { 0] O [.R] 1RR10100 | 3]0
(twos complement offset) 5 Bit Offset n R ORRnnnnn | 1} 0 defaults to 8-bit
8 Bit Offset n, R 1RRO1000 | 1] 1 [n. R] 1RR11000 | 4] 1
16 Bit Offset n, R 1RR0O1001 41 2 [n, R] 1RR11001 712
Accumulator Offset From R A — Register Offset A R 1RR0O0110 110 [A, R] 1RR10110 { 4|0
{twos complement offset) B — Register Offset B, R 1RR0O0101 1[0 [B. R] 1RR10101 | 4]0
D — Register Offset D, R TRRO1011 410 [D, R] 1RR11011 710
Auto Increment/Decrement R Increment By 1 R+ 1RRO0000 | 2] 0 not allowed
Increment By 2 JR++ 1RR0O0001 310 [,R++] | 1RR10001 610
Decrement By 1 -R 1RR0OQ010 2{0 not allowed
Decrement By 2 ,--R 1RR0O0011 3f0 [.--R] 1RR10011 610
Constant Offset From PC 8 Bit Offset n, PCR 1XX01100 11 [n, PCR] 1XX11100 | 41
(twos complement offset) 16 Bit Offset n, PCR 1XX01101 [5]2 [n, PCR]) 1XX11101] 82
Extended Indirect 16 Bit Address — — —— [n] 10011111 512
R=X,Y,Uor$S X =00 Y=01
X = Don’t Care U=10 S=1

APPENDIX G
PIN ASSIGNMENTS

G.1 INTRODUCTION

This appendix is provided for a quick reference of the pin assignments for the MC6809
and MC6809E processors. Refer to Figure G-1. Descriptions of these pin assignments are
given in Section 1.

MC6809
Vssffie 7 4pHALT Vss HALT
NMI g 2 39 XTAL NMI i Tsc
rRaf 3 3BPEXTAL TRQ) LIC
FIRQ(4 37 RESET FIRQ D RESET

8BS s 36) MRDY BS h AVMA
BAl 6 3spQ BA 1 Q
veeq 7 upE vVee hE
AL 8 33h DMA/BREQ AO N BUSY
Alll g 32PR/IW Al 0 R/W
A20 10 31p D0 A2 h DO
A3q 11 30p D1 A3 h D1
aag 12 290 D2 A4 h D2
As(13 28phD3 AB h D3
A6 (14 27p D4 A6 h D4
A7(15 26p D5 A7 D D5
A8q 16 25P D6 A8 b D6
asd 7 24 1D7 A9 h D7
A10d 18 23p A5 A10) A15
Aa11d 19 2h A4 A1l h A14
A12d 20 21pA13 A12 hA13

Figure G-1. Pin Assignments

G-1/G-2

APPENDIX H
CONVERSION TABLES

H.1 INTRODUCTION

This appendix provides some conversion tables for your convenience.

H.2 POWERS OF 2, POWERS OF 16

Refer to Table H-1.

Table H-1. Powers of 2; Powers of 16

6m | 2n 6m| 2n

m= { n= Value |m= | n= Value
0 0 11 4 16 65,536
- 1 2] - 17 131,072
- 2 41 — 18 262,144
- 3 8l — 19 524,288
1 4 161 5. 20 1,048,576
- 5 32] - 21 2,097,162
- 6 641 — 22 4,194,304
- 7 128} — 23 8,388,608
2 8 56| 6 24 16,777,216
- 9 5121 — 25 33,554,432
— 10 1,024) — 26 67,108,864
- 1 2,048 — 27 134,217,728
3 12 4,096] 7 28 268,435,456
- 13 8,192 - 29 536,870,912
- 14 16,384] - 30 |1,073,741,824
- 156 32,768] — 31 | 2,147,483,648

H-1

H.3 HEXADECIMAL AND DECIMAL CONVERSION

Table H-2 is a chart that can be used for converting numbers from either hexadecimal to
decimal or decimal to hexadecimal.

H.3.1 CONVERTING HEXADECIMAL TO DECIMAL. Find the decimal weights for cor-
responding hexadecimal characters beginning with the least-significant character. The
sum of the decimal weights is the decimal value of the hexadecimal number.

H.3.2 CONVERTING DECIMAL TO HEXADECIMAL. Find the highest decimal value in the
table which is lower than or equal to the decimal number to be converted. The correspon-
ding hexadecimal character is the most-significant digit of the final number. Subtract the
decimal value found from the decimal number to be converted. Repeat the above step to
determine the hexadecimai character. Repeat this process to find the subsequent hex-
~adecimal numbers.

Table H-2. Hexadecimal and Decimal Conversion Chart

15 Byte 817 Byte 0
15 Char 12 |11 Char 8] 7 Char 413 Char 0
Hex Dec | Hex Dec | Hex Dec | Hex Dec
0 0]o0 0]o 01]0 0
1 4,096 | 1 256 | 1 16 11 1
2 8,192 | 2 512]| 3 3212 2
3 12,288 | 3 768 | 3 48 | 3 3
4 16,384 | 4 1,024 | 4 64 | 4 4
5 20,480 | 5 1,280 5 80 |5 5
6 24,576 | 6 1,636 | 6 9% | 6 6
7 28,672 | 7 1,792 | 7 112 } 7 7
8 32,768 | 8 2,048 | 8 128 | 8 8
9 36,864 | 9 2,304 | 9 144 | 9 9
A 40,960 | A 2,560 | A 160 | A 10
B 45,056 | B 2816 | B 176 | B 1
(ot 49,152 | C 3072 C 192 1 C 12
D 53,248 | D 338 | D 208 | D 13
E 57,344 | E 3584 | E 224 | E 14
F 61,440 } F 3840 | F 240 | F 15

H-2

