

ª

MPC7400 RISC Microprocessor

UserÕs Manual

MPC7400UM/D
Rev. 0, 3/2000

© Motorola Inc. 1999. All rights reserved.

DigitalDNA and Mfax are trademarks of Motorola, Inc.

The PowerPC name, the PowerPC logotype, and PowerPC 603e are trademarks of International Business Machines Corporation
used by Motorola under license from International Business Machines Corporation.
I

2

C is a registered trademark of Philips Semiconductors

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this
product without notice. Information in this document is provided solely to enable system and software implementers to use PowerPC
microprocessors. There are no express or implied copyright licenses granted hereunder to design or fabricate PowerPC integrated
circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. ÒTypicalÓ parameters can and do vary in different applications. All operating parameters,
including ÒTypicalsÓ must be validated for each customer application by customerÕs technical experts. Motorola does not convey any
license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any
other application in which the failure of the Motorola product could create a situation where personal injury or death may occur.
Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and
hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the
part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Motorola Literature Distribution Centers:

USA/EUROPE:

Motorola Literature Distribution; P.O. Box 5405; Denver, Colorado 80217; Tel.: 1-800-441-2447 or 1-303-675-2140/

JAPAN: Nippon Motorola Ltd SPD, Strategic Planning Office 4-32-1, Nishi-Gotanda Shinagawa-ku, Tokyo 141, Japan Tel.: 81-3-
5487-8488

ASIA/PACIFC:

Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong;
Tel.: 852-26629298

Mfaxª:

RMFAX0@email.sps.mot.com; TOUCHTONE 1-602-244-6609; US & Canada ONLY (800) 774-1848;

World Wide Web Address:

http://sps.motorola.com/mfax

INTERNET:

http://motorola.com/sps

Technical Information:

Motorola Inc. SPS Customer Support Center 1-800-521-6274; electronic mail address:
crc@wmkmail.sps.mot.com.

Document Comments:

FAX (512) 895-2638, Attn: RISC Applications Engineering.

World Wide Web Addresses:

http://www.mot.com/PowerPC
http://www.mot.com/netcomm
http://www.mot.com/HPESD

1

A

B

IND

GLO

2

3

4

5

6

7

8

9

10

11

Overview

Programming Model

L1 and L2 Cache Operation

Exceptions

Memory Managment

Instruction Timing

The AltiVec Technology Implementation

Signal Descriptions

System Interface Operation

Power and Thermal Management

Performance Monitor

MPC7400 Instruction Set Listings

Instructions Not Implemented

Glossary of Terms and Abbreviations

Index

IND

1

A

B

IND

GLO

2

3

4

5

6

7

8

9

10

11

Overview

Programming Model

L1 and L2 Cache Operation

Exceptions

Memory Managment

Instruction Timing

The AltiVec Technology Implementation

Signal Descriptions

System Interface Operation

Power and Thermal Management

Performance Monitor

MPC7400 Instruction Set Listings

Instructions Not Implemented

Glossary of Terms and Abbreviations

Index

CONTENTS

Paragraph
Number Title Page

Number

Contents

 v

About This Book

Chapter 1
Overview

1.1 MPC7400 Microprocessor Overview ... 1-1
1.2 MPC7400 Microprocessor Features ... 1-5
1.2.1 Overview of the MPC7400 Microprocessor Features 1-5
1.2.2 Instruction Flow.. 1-9
1.2.2.1 Instruction Queue and Dispatch Unit ... 1-10
1.2.2.2 Branch Processing Unit (BPU)... 1-10
1.2.2.3 Completion Unit ... 1-11
1.2.2.4 Independent Execution Units.. 1-12
1.2.2.4.1 AltiVec Vector Permute Unit (VPU).. 1-12
1.2.2.4.2 AltiVec Vector Arithmetic Logic Unit (VALU) 1-13
1.2.2.4.3 Integer Units (IUs).. 1-13
1.2.2.4.4 Floating-Point Unit (FPU) .. 1-14
1.2.2.4.5 Load/Store Unit (LSU) ... 1-14
1.2.2.4.6 System Register Unit (SRU)... 1-14
1.2.3 Memory Management Units (MMUs).. 1-15
1.2.4 On-Chip Instruction and Data Caches .. 1-16
1.2.5 L2 Cache Implementation... 1-17
1.2.6 System Interface/Bus Interface Unit (BIU) .. 1-18
1.2.6.1 System Interface Operation .. 1-19
1.2.6.2 Signal Groupings .. 1-20
1.2.6.2.1 Signal Configuration... 1-22
1.2.6.2.2 Clocking.. 1-23
1.3 MPC7400 Microprocessor: Implementation... 1-23
1.4 PowerPC Registers and Programming Model .. 1-25
1.5 Instruction Set ... 1-30
1.5.1 PowerPC Instruction Set ... 1-30
1.5.2 AltiVec Instruction Set ... 1-32
1.5.3 MPC7400 Microprocessor Instruction Set ... 1-33
1.6 On-Chip Cache Implementation ... 1-33
1.6.1 PowerPC Cache Model... 1-33

vi

MPC7400 RISC Microprocessor UserÕs Manual

CONTENTS

Paragraph
Number Title Page

Number

1.6.2 MPC7400 Microprocessor Cache Implementation....................................... 1-34
1.7 Exception Model... 1-34
1.7.1 PowerPC Exception Model... 1-34
1.7.2 MPC7400 Microprocessor Exception Implementation 1-35
1.8 Memory Management... 1-37
1.8.1 PowerPC Memory Management Model ... 1-37
1.8.2 MPC7400 Microprocessor Memory Management Implementation............. 1-38
1.9 Instruction Timing .. 1-39
1.10 Power Management .. 1-41
1.11 Thermal Management ... 1-42
1.12 Performance Monitor .. 1-43
1.13 Differences between the MPC7400 and the MPC750 1-43

Chapter 2
Programming Model

2.1 The MPC7400 Processor Register Set.. 2-1
2.1.1 Register Set ... 2-2
2.1.2 MPC7400-Specific Registers.. 2-10
2.1.2.1 Instruction Address Breakpoint Register (IABR)..................................... 2-10
2.1.2.2 Hardware Implementation-Dependent Register 0 2-11
2.1.2.3 Hardware Implementation-Dependent Register 1 2-15
2.1.2.4 Performance Monitor Registers .. 2-15
2.1.2.4.1 Monitor Mode Control Register 0 (MMCR0) 2-16
2.1.2.4.2 User Monitor Mode Control Register 0 (UMMCR0)........................... 2-18
2.1.2.4.3 Monitor Mode Control Register 1 (MMCR1) 2-18
2.1.2.4.4 User Monitor Mode Control Register 1 (UMMCR1)........................... 2-19
2.1.2.5 Monitor Mode Control Register 2 (MMCR2) .. 2-19
2.1.2.6 User Monitor Mode Control Register 2 (UMMCR2)............................... 2-20
2.1.3 Breakpoint Address Mask Register (BAMR)... 2-20
2.1.3.1 User Breakpoint Address Mask Register (UBAMR) 2-21
2.1.3.1.1 Performance Monitor Counter Registers (PMC1ÐPMC4) 2-21
2.1.3.1.2 User Performance Monitor Counter Registers (UPMC1ÐUPMC4) 2-22
2.1.3.1.3 Sampled Instruction Address Register (SIAR)..................................... 2-22
2.1.3.1.4 User-Sampled Instruction Address Register (USIAR) 2-22
2.1.3.1.5 Sampled Data Address Register (SDA) and User-Sampled

Data Address Register (USDA).. 2-22
2.1.4 Instruction Cache Throttling Control Register (ICTC)................................. 2-23
2.1.5 Thermal Management Registers (THRM1ÐTHRM3) 2-23
2.1.6 Memory Subsystem Control Register (MSSCR0).. 2-26
2.1.7 L2 Cache Control Register (L2CR) .. 2-28
2.1.8 Reset Settings.. 2-32

CONTENTS

Paragraph
Number Title Page

Number

Contents

 vii

2.2 Operand Conventions.. 2-33
2.2.1 Floating-Point Execution ModelsÑUISA.. 2-33
2.2.2 Data Organization in Memory and Data Transfers....................................... 2-34
2.2.3 Alignment and Misaligned Accesses.. 2-34
2.2.4 Floating-Point Operands ... 2-35
2.3 Instruction Set Summary... 2-35
2.3.1 Classes of Instructions .. 2-37
2.3.1.1 Definition of Boundedly Undefined ... 2-37
2.3.1.2 Defined Instruction Class ... 2-37
2.3.1.3 Illegal Instruction Class .. 2-38
2.3.1.4 Reserved Instruction Class ... 2-38
2.3.2 Addressing Modes .. 2-39
2.3.2.1 Memory Addressing ... 2-39
2.3.2.2 Memory Operands .. 2-39
2.3.2.3 Effective Address Calculation .. 2-40
2.3.2.4 Synchronization .. 2-40
2.3.2.4.1 Context Synchronization .. 2-40
2.3.2.4.2 Execution Synchronization... 2-41
2.3.2.4.3 Instruction-Related Exceptions... 2-41
2.3.3 Instruction Set Overview .. 2-42
2.3.4 PowerPC UISA Instructions ... 2-42
2.3.4.1 Integer Instructions ... 2-42
2.3.4.1.1 Integer Arithmetic Instructions... 2-42
2.3.4.1.2 Integer Compare Instructions ... 2-43
2.3.4.1.3 Integer Logical Instructions.. 2-44
2.3.4.1.4 Integer Rotate and Shift Instructions .. 2-45
2.3.4.2 Floating-Point Instructions ... 2-46
2.3.4.2.1 Floating-Point Arithmetic Instructions ... 2-46
2.3.4.2.2 Floating-Point Multiply-Add Instructions .. 2-47
2.3.4.2.3 Floating-Point Rounding and Conversion Instructions 2-47
2.3.4.2.4 Floating-Point Compare Instructions.. 2-48
2.3.4.2.5 Floating-Point Status and Control Register Instructions 2-48
2.3.4.2.6 Floating-Point Move Instructions ... 2-48
2.3.4.3 Load and Store Instructions .. 2-49
2.3.4.3.1 Self-Modifying Code .. 2-50
2.3.4.3.2 Integer Load and Store Address Generation... 2-50
2.3.4.3.3 Register Indirect Integer Load Instructions .. 2-50
2.3.4.3.4 Integer Store Instructions.. 2-52
2.3.4.3.5 Integer Store Gathering... 2-52
2.3.4.3.6 Integer Load and Store with Byte-Reverse Instructions....................... 2-53
2.3.4.3.7 Integer Load and Store Multiple Instructions....................................... 2-53
2.3.4.3.8 Integer Load and Store String Instructions... 2-54
2.3.4.3.9 Floating-Point Load and Store Address Generation............................. 2-54

viii

MPC7400 RISC Microprocessor UserÕs Manual

CONTENTS

Paragraph
Number Title Page

Number

2.3.4.3.10 Floating-Point Store Instructions.. 2-55
2.3.4.4 Branch and Flow Control Instructions.. 2-57
2.3.4.4.1 Branch Instruction Address Calculation... 2-57
2.3.4.4.2 Branch Instructions... 2-58
2.3.4.4.3 Condition Register Logical Instructions... 2-58
2.3.4.4.4 Trap Instructions... 2-58
2.3.4.5 System Linkage InstructionÑUISA... 2-59
2.3.4.6 Processor Control InstructionsÑUISA .. 2-59
2.3.4.6.1 Move to/from Condition Register Instructions..................................... 2-59
2.3.4.6.2 Move to/from Special-Purpose Register Instructions (UISA).............. 2-60
2.3.4.7 Memory Synchronization InstructionsÑUISA .. 2-62
2.3.5 PowerPC VEA Instructions .. 2-63
2.3.5.1 Processor Control InstructionsÑVEA ... 2-64
2.3.5.2 Memory Synchronization InstructionsÑVEA ... 2-64
2.3.5.3 Memory Control InstructionsÑVEA ... 2-65
2.3.5.3.1 User-Level Cache InstructionsÑVEA ... 2-65
2.3.5.4 Optional External Control Instructions... 2-68
2.3.6 PowerPC OEA Instructions .. 2-69
2.3.6.1 System Linkage InstructionsÑOEA .. 2-69
2.3.6.2 Processor Control InstructionsÑOEA ... 2-69
2.3.6.3 Memory Control InstructionsÑOEA ... 2-70
2.3.6.3.1 Supervisor-Level Cache Management InstructionÑ(OEA) 2-70
2.3.6.3.2 Segment Register Manipulation Instructions (OEA)............................ 2-70
2.3.6.3.3 Translation Lookaside Buffer Management InstructionsÑOEA......... 2-71
2.3.7 Recommended Simplified Mnemonics... 2-71
2.4 AltiVec Instructions .. 2-72
2.5 AltiVec UISA Instructions.. 2-73
2.5.1 Vector Integer Instructions ... 2-73
2.5.1.1 Vector Integer Arithmetic Instructions ... 2-73
2.5.1.2 Vector Integer Compare Instructions.. 2-75
2.5.1.3 Vector Integer Logical Instructions .. 2-76
2.5.1.4 Vector Integer Rotate and Shift Instructions .. 2-76
2.5.2 Vector Floating-Point Instructions.. 2-76
2.5.2.1 Vector Floating-Point Arithmetic Instructions ... 2-77
2.5.2.2 Vector Floating-Point Multiply-Add Instructions 2-77
2.5.2.3 Vector Floating-Point Rounding and Conversion Instructions 2-78
2.5.2.4 Vector Floating-Point Compare Instructions.. 2-78
2.5.2.5 Vector Floating-Point Estimate Instructions .. 2-79
2.5.3 Vector Load and Store Instructions .. 2-79
2.5.3.1 Vector Load Instructions .. 2-79
2.5.3.2 Vector Load Instructions Supporting Alignment 2-80
2.5.3.3 Vector Store Instructions .. 2-80
2.5.4 Control Flow... 2-80

CONTENTS

Paragraph
Number Title Page

Number

Contents

 ix

2.5.5 Vector Permutation and Formatting Instructions.. 2-80
2.5.5.1 Vector Pack Instructions... 2-81
2.5.5.2 Vector Unpack Instructions .. 2-81
2.5.5.3 Vector Merge Instructions .. 2-82
2.5.5.4 Vector Splat Instructions .. 2-82
2.5.5.5 Vector Permute Instructions ... 2-83
2.5.5.6 Vector Select Instruction .. 2-83
2.5.5.7 Vector Shift Instructions... 2-83
2.5.5.8 Vector Status and Control Register Instructions 2-84
2.6 AltiVec VEA Instructions... 2-84
2.6.1 AltiVec Vector Memory Control InstructionsÑVEA.................................. 2-84
2.6.2 AltiVec Instructions with Specific Implementations

for the MPC7400 .. 2-85
2.6.2.1 Least-Recently-Used Instructions... 2-85

Chapter 3
L1 and L2 Cache Operation

3.1 L1 Instruction and Data Caches.. 3-1
3.2 Data Cache Organization .. 3-5
3.3 Instruction Cache Organization .. 3-6
3.4 Memory and Cache Coherency... 3-7
3.4.1 Memory/Cache Access Attributes (WIMG Bits).. 3-7
3.4.1.1 Out-of-Order Accesses to Guarded Memory.. 3-8
3.4.2 Coherency Support ... 3-9
3.4.2.1 AltiVec Transient Hint Support.. 3-11
3.4.3 Coherency Protocols ... 3-11
3.4.3.1 Snoop Response.. 3-12
3.4.3.2 Intervention... 3-13
3.4.3.3 Simplified Transaction Types... 3-14
3.4.3.4 MESI State Transitions... 3-15
3.4.3.4.1 MESI Protocol in 60x Bus Mode and MPX Bus Mode

(with L1_INTVEN = 0b000) .. 3-16
3.4.3.4.2 MESI Protocol in MPX Bus Mode with Modified

Intervention Enabled... 3-19
3.4.3.4.3 MESI Protocol in MPX Bus Mode (with L1_INTVEN = 0b110) 3-22
3.4.3.5 MERSI State Transitions .. 3-26
3.4.3.6 Reservation Snooping... 3-29
3.4.3.7 State Changes for Self-Generated Bus Transactions 3-30
3.4.4 MPC7400-Initiated Load/Store Operations .. 3-33
3.4.4.1 Performed Loads and Stores ... 3-33
3.4.4.2 Sequential Consistency of Memory Accesses .. 3-34

x

MPC7400 RISC Microprocessor UserÕs Manual

CONTENTS

Paragraph
Number Title Page

Number

3.4.4.3 Enforcing Store Ordering ... 3-34
3.4.4.4 Atomic Memory References... 3-35
3.5 Cache Control ... 3-36
3.5.1 Cache Control Parameters in HID0 .. 3-36
3.5.1.1 Enabling and Disabling the Data Cache ... 3-36
3.5.1.2 Data Cache Locking ... 3-36
3.5.1.3 Data Cache Flash Invalidation.. 3-37
3.5.1.4 Enabling and Disabling the Instruction Cache ... 3-38
3.5.1.5 Instruction Cache Locking.. 3-38
3.5.1.6 Instruction Cache Flash Invalidation .. 3-38
3.5.2 Data Cache Hardware Flush Parameter in MSSCR0.................................... 3-39
3.5.3 Cache Control Instructions ... 3-40
3.5.3.1 Data Cache Block Touch (

dcbt

)... 3-40
3.5.3.2 Data Cache Block Touch for Store (

dcbtst

)... 3-41
3.5.3.3 Data Cache Block Zero (

dcbz

) ... 3-42
3.5.3.4 Data Cache Block Store (

dcbst

) ... 3-42
3.5.3.5 Data Cache Block Flush (

dcbf

) .. 3-43
3.5.3.6 Data Cache Block Allocate (

dcba

)... 3-43
3.5.3.7 Data Cache Block Invalidate (

dcbi

) ... 3-43
3.5.3.8 Instruction Cache Block Invalidate (

icbi

)... 3-44
3.6 Cache Operations .. 3-45
3.6.1 Data Cache Block Fill Operations .. 3-45
3.6.2 Instruction Cache Block Fill Operations .. 3-45
3.6.3 Allocation on Cache Misses ... 3-45
3.6.4 Load Miss Folding .. 3-46
3.6.5 Store Miss Merging .. 3-46
3.6.6 Store Hit to a Data Cache Block Marked Recent or Shared......................... 3-47
3.6.7 Data Cache Block Push Operation.. 3-48
3.6.8 Cache Block Replacement Selection .. 3-48
3.6.8.1 AltiVec LRU Instruction Support... 3-51
3.6.9 L1 Cache Invalidation and Flushing... 3-52
3.7 L2 Cache Interface.. 3-53
3.7.1 L2 Cache Interface Overview ... 3-53
3.7.2 L2 Cache Organization ... 3-54
3.7.2.1 L2 Cache Tag Status Bits ... 3-54
3.7.3 L2 Cache Control Register (L2CR) .. 3-55
3.7.3.1 Enabling and Disabling the L2 Cache .. 3-55
3.7.3.2 L2 Cache Parity Checking and Generation .. 3-56
3.7.3.3 L2 Cache Size ... 3-56
3.7.3.4 L2 Cache SRAM Types.. 3-56
3.7.3.5 L2 Cache Write-Back/Write-Through Modes .. 3-56
3.7.3.6 L2 Cache Data-Only and Instruction-Only Operation.............................. 3-57
3.7.3.6.1 L2 Cache Locking Using L2DO and L2IO .. 3-57

CONTENTS

Paragraph
Number Title Page

Number

Contents

 xi

3.7.3.7 L2 Cache Global Invalidation... 3-57
3.7.3.8 L2 Cache Flushing.. 3-58
3.7.3.8.1 L2 Cache Hardware Flush .. 3-58
3.7.3.8.2 L2 Cache Software Flush ... 3-59
3.7.3.9 L2 Cache Clock and Timing Controls .. 3-60
3.7.3.10 L2 Cache Power Management and Test Controls 3-61
3.7.4 L2 Cache Initialization.. 3-61
3.7.5 L2 Cache Operation .. 3-62
3.7.5.1 L2 Cache Allocation on Cache Misses ... 3-64
3.7.5.2 L2 Cache Replacement Selection ... 3-64
3.7.5.3 Store Hit to a Shared or Recent L2 Cache Block 3-65
3.7.6 L2 Cache Clock Configuration ... 3-65
3.7.7 L2 Cache Testing .. 3-65
3.7.7.1 Testing Overall L2 Cache Operation.. 3-66
3.7.7.2 Testing L2 Cache External SRAMs ... 3-66
3.7.7.3 Testing L2 Cache Tags ... 3-66
3.7.8 L2 Cache SRAM Timing Examples ... 3-67
3.7.8.1 Pipelined Burst SRAM ... 3-68
3.7.8.2 Late-Write SRAM .. 3-69
3.7.8.3 PB3 SRAM ... 3-70
3.8 System Bus Interface Unit .. 3-72
3.9 MPC7400 Caches and System Bus Transactions ... 3-72
3.9.1 Bus Operations Caused by Cache Control Instructions................................ 3-73
3.9.2 Transfer Attributes.. 3-74
3.9.3 Snooping ... 3-76

Chapter 4
Exceptions

4.1 MPC7400 Microprocessor Exceptions ... 4-3
4.2 Exception Recognition and Priorities ... 4-5
4.3 Exception Processing .. 4-8
4.3.1 Enabling and Disabling Exceptions.. 4-11
4.3.2 Steps for Exception Processing... 4-12
4.3.3 Setting MSR[RI] ... 4-12
4.3.4 Returning from an Exception Handler.. 4-13
4.4 Process Switching ... 4-13
4.5 Data Stream Prefetching and Exceptions.. 4-14
4.6 Exception Definitions ... 4-14
4.6.1 System Reset Exception (0x00100).. 4-15
4.6.2 Machine Check Exception (0x00200) .. 4-16
4.6.2.1 Machine Check Exception Enabled (MSR[ME] = 1)............................... 4-18

xii

MPC7400 RISC Microprocessor UserÕs Manual

CONTENTS

Paragraph
Number Title Page

Number

4.6.2.2 Checkstop State (MSR[ME] = 0) ... 4-20
4.6.3 DSI Exception (0x00300) ... 4-20
4.6.3.1 Data Address Breakpoint Facility... 4-20
4.6.4 ISI Exception (0x00400)... 4-20
4.6.5 External Interrupt Exception (0x00500) ... 4-21
4.6.6 Alignment Exception (0x00600) .. 4-21
4.6.7 Program Exception (0x00700).. 4-22
4.6.8 Floating-Point Unavailable Exception (0x00800) .. 4-22
4.6.9 Decrementer Exception (0x00900)... 4-22
4.6.10 System Call Exception (0x00C00) ... 4-23
4.6.11 Trace Exception (0x00D00).. 4-23
4.6.12 Floating-Point Assist Exception (0x00E00) ... 4-23
4.6.13 Performance Monitor Interrupt (0x00F00) ... 4-23
4.6.14 Instruction Address Breakpoint Exception (0x01300) 4-25
4.6.15 System Management Interrupt (0x01400) .. 4-25
4.6.16 AltiVec Assist Exception (0x01600) .. 4-26
4.6.17 Thermal Management Interrupt Exception (0x01700) 4-27
4.6.18 AltiVec Unavailable Exception (0x00F20) .. 4-28

Chapter 5
Memory Management

5.1 MMU Overview.. 5-2
5.1.1 Memory Addressing ... 5-4
5.1.2 MMU Organization... 5-4
5.1.3 Address Translation Mechanisms... 5-9
5.1.4 Memory Protection Facilities.. 5-11
5.1.5 Page History Information.. 5-12
5.1.6 General Flow of MMU Address Translation.. 5-12
5.1.6.1 Real Addressing Mode and Block Address Translation

Selection ... 5-12
5.1.6.2 Page Address Translation Selection ... 5-14
5.1.7 MMU Exceptions Summary ... 5-16
5.1.8 MMU Instructions and Register Summary... 5-18
5.2 Real Addressing Mode.. 5-20
5.3 Block Address Translation.. 5-21
5.4 Memory Segment Model .. 5-21
5.4.1 Page History Recording .. 5-21
5.4.1.1 Referenced Bit .. 5-22
5.4.1.2 Changed Bit .. 5-23
5.4.1.3 Scenarios for Referenced and Changed Bit Recording 5-24
5.4.2 Page Memory Protection .. 5-25

CONTENTS

Paragraph
Number Title Page

Number

Contents

 xiii

5.4.3 TLB Description ... 5-25
5.4.3.1 TLB Organization and Operation ... 5-25
5.4.3.2 TLB Invalidation .. 5-27
5.4.3.2.1

tlbie

 Instruction .. 5-27
5.4.3.2.2

tlbsync

 Instruction.. 5-29
5.4.3.2.3 Synchronization Requirements for tlbie and tlbsync............................ 5-30
5.4.4 Page Address Translation Summary... 5-31
5.4.5 Page Table Search Operation.. 5-33
5.4.5.1 Conditions for a Page Table Search Operation... 5-33
5.4.5.2 AltiVec Line Fetch Skipping .. 5-34
5.4.5.3 Page Table Search Operation Flow .. 5-34
5.4.6 Page Table Updates .. 5-37
5.4.7 Segment Register Updates .. 5-38

Chapter 6
Instruction Timing

6.1 Terminology and Conventions.. 6-2
6.2 Instruction Timing Overview.. 6-4
6.3 Timing Considerations.. 6-9
6.3.1 General Instruction Flow .. 6-9
6.3.2 Instruction Fetch Timing .. 6-12
6.3.2.1 Cache Arbitration.. 6-12
6.3.2.2 Cache Hit .. 6-12
6.3.2.3 Cache Miss.. 6-15
6.3.3 Memory Subsystem-Specific Pipeline Diagrams ... 6-17
6.3.3.1 L2 Cache Access Timing Considerations (MPX Bus Only) 6-19
6.3.4 Instruction Dispatch and Completion Considerations 6-20
6.3.4.1 Rename Register Operation.. 6-21
6.3.4.2 Instruction Serialization.. 6-21
6.4 Execution Unit Timings.. 6-22
6.4.1 Branch Processing Unit Execution Timing .. 6-22
6.4.1.1 Branch Folding and Removal of Fall-Through Branch

Instructions ... 6-23
6.4.1.2 Branch Instructions and Completion .. 6-24
6.4.1.3 Branch Prediction and Resolution .. 6-25
6.4.1.3.1 Static Branch Prediction ... 6-27
6.4.1.3.2 Predicted Branch Timing Examples ... 6-27
6.4.2 Integer Unit Execution Timing ... 6-29
6.4.3 Floating-Point Unit Execution Timing ... 6-29
6.4.4 Effect of Floating-Point Exceptions on Performance 6-30

xiv

MPC7400 RISC Microprocessor UserÕs Manual

CONTENTS

Paragraph
Number Title Page

Number

6.4.5 Load/Store Unit Execution Timing... 6-30
6.4.5.1 Effect of Operand Placement on Performance ... 6-30
6.4.5.2 Integer Store Gathering... 6-31
6.4.6 System Register Unit Execution Timing .. 6-32
6.4.7 AltiVec Instructions Executed by the LSU... 6-32
6.4.7.1 LRU Instructions .. 6-32
6.4.7.2 Transient Instructions ... 6-32
6.4.8 AltiVec Instructions.. 6-33
6.4.8.1 AltiVec Permute Unit (VPU) Execution Timing...................................... 6-33
6.4.8.2 AltiVec Arithmetic Logical Unit (VALU) Execution Timing 6-33
6.4.8.2.1 Vector Simple Integer Unit (VSIU) Execution Timing........................ 6-33
6.4.8.2.2 Vector Complex Integer Unit (VCIU) Execution Timing.................... 6-33
6.4.8.2.3 Vector Floating-Point Unit (VFPU) Execution Timing 6-33
6.5 Memory Performance Considerations .. 6-35
6.5.1 Caching and Memory Coherency ... 6-35
6.5.2 Effect of TLB Miss on Performance... 6-36
6.6 Instruction Scheduling Guidelines.. 6-37
6.6.1 Branch, Dispatch, and Completion Unit Resource Requirements................ 6-38
6.6.1.1 Branch Resolution Resource Requirements ... 6-38
6.6.1.2 Dispatch Unit Resource Requirements ... 6-38
6.6.1.3 Completion Unit Resource Requirements .. 6-39
6.7 Instruction Latency Summary... 6-39

Chapter 7
The AltiVec Technology Implementation

7.1 AltiVec Technology and the Programming Model... 7-1
7.1.1 Register Set ... 7-2
7.1.1.1 Changes to the Condition Register ... 7-2
7.1.1.2 Addition to the Machine State Register.. 7-2
7.1.1.3 Vector Registers (VRs)... 7-2
7.1.1.4 Vector Status and Control Register (VSCR) .. 7-2
7.1.1.5 Vector Save/Restore Register (VRSAVE) ... 7-4
7.1.2 AltiVec Instruction Set ... 7-4
7.1.2.1 LRU Instructions .. 7-5
7.1.2.2 Transient Instructions ... 7-5
7.1.2.3 Data Stream Touch Instructions ... 7-6
7.1.2.4 Stream Engine Tags.. 7-7
7.1.2.4.1 Speculative Execution and Pipeline Stalls for

Data Stream Instructions .. 7-7
7.1.2.5 Static/Transient Data Stream Touch Instructions 7-8
7.1.2.5.1 Relationship with the sync/tblsync Instructions 7-8

CONTENTS

Paragraph
Number Title Page

Number

Contents

 xv

7.1.2.5.2 Data Stream Termination.. 7-8
7.1.2.5.3 Line Fetch Skipping.. 7-9
7.1.2.5.4 Context Awareness and Stream Pausing .. 7-9
7.1.2.5.5 Differences Between dst/dstt and dstst/dststt Instructions.................... 7-10
7.1.2.5.6 dss and dssall Instructions .. 7-10
7.1.3 AltiVec Instructions with Specific Implementations for

the MPC7400 .. 7-11
7.1.3.1 LRU Instructions .. 7-11
7.1.3.2 Java Mode, NaNs, Denormalized Numbers, and Zeros............................ 7-11
7.2 AltiVec Technology and the Cache Model... 7-15
7.3 AltiVec and the Exception Model... 7-15
7.4 AltiVec and the Memory Management Model ... 7-16
7.5 AltiVec Technology and Instruction Timing.. 7-16
7.5.1 Integer Store Gathering... 7-16

Chapter 8
Signal Descriptions

8.1 Signal Groupings .. 8-1
8.1.1 Signal Summary.. 8-3
8.1.2 60x Bus and MPX Bus Output Signal States During Reset 8-5
8.2 60x Bus Signal Configuration... 8-6
8.2.1 60x Bus Functional Groupings ... 8-6
8.2.2 Address Bus Arbitration Signals... 8-8
8.2.2.1 Bus Request (

BR

)ÑOutput .. 8-8
8.2.2.2 Bus Grant (

BG

)ÑInput .. 8-8
8.2.2.3 Address Bus Busy (

ABB

)ÑOutput .. 8-9
8.2.3 Address Transfer Signals .. 8-9
8.2.3.1 Address Bus (A[0:31]).. 8-9
8.2.3.1.1 Address Bus (A[0:31])ÑOutput .. 8-9
8.2.3.1.2 Address Bus (A[0:31])ÑInput ... 8-10
8.2.3.2 Address Bus Parity (AP[0:3]) ... 8-10
8.2.3.2.1 Address Bus Parity (AP[0:3])ÑOutput.. 8-10
8.2.3.2.2 Address Bus Parity (AP[0:3])ÑInput .. 8-11
8.2.4 Address Transfer Attribute Signals... 8-11
8.2.4.1 Transfer Start (

TS

) .. 8-11
8.2.4.1.1 Transfer Start (

TS

)ÑOutput... 8-11
8.2.4.1.2 Transfer Start (

TS

)ÑInput.. 8-12
8.2.4.2 Transfer Type (TT[0:4]) ... 8-12
8.2.4.2.1 Transfer Type (TT[0:4])ÑOutput .. 8-12
8.2.4.2.2 Transfer Type (TT[0:4])ÑInput... 8-12
8.2.4.3 Transfer Burst (

TBST

)ÑOutput ... 8-12

xvi

MPC7400 RISC Microprocessor UserÕs Manual

CONTENTS

Paragraph
Number Title Page

Number

8.2.4.4 Transfer Size (TSIZ[0:2])ÑOutput .. 8-13
8.2.4.5 Global (

GBL

) .. 8-13
8.2.4.5.1 Global (

GBL

)ÑOutput... 8-13
8.2.4.5.2 Global (

GBL

)ÑInput ... 8-14
8.2.4.6 Write-Through (

WT

)ÑOutput ... 8-14
8.2.4.7 Cache Inhibit (

CI

)ÑOutput.. 8-14
8.2.5 Address Transfer Termination Signals ... 8-15
8.2.5.1 Address Acknowledge (

AACK

)ÑInput .. 8-15
8.2.5.2 Address Retry (

ARTRY

) .. 8-15
8.2.5.2.1 Address Retry (

ARTRY

)ÑOutput ... 8-15
8.2.5.2.2 Address Retry (

ARTRY

)ÑInput.. 8-16
8.2.5.3 Shared (

SHD

) ... 8-17
8.2.5.3.1 Shared (

SHD

)ÑOutput.. 8-17
8.2.5.3.2 Shared (

SHD

)ÑInput... 8-17
8.2.6 Data Bus Arbitration Signals .. 8-17
8.2.6.1 Data Bus Grant (

DBG

)ÑInput... 8-18
8.2.6.2 Data Bus Write Only (

DBWO

)ÑInput.. 8-18
8.2.6.3 Data Bus Busy (

DBB

)ÑOutput.. 8-19
8.2.7 Data Transfer Signals.. 8-19
8.2.7.1 Data Bus (DH[0:31], DL[0:31]) ... 8-19
8.2.7.1.1 Data Bus (DH[0:31], DL[0:31])ÑOutput .. 8-20
8.2.7.1.2 Data Bus (DH[0:31], DL[0:31])ÑInput... 8-20
8.2.7.2 Data Bus Parity (DP[0:7]) .. 8-20
8.2.7.2.1 Data Bus Parity (DP[0:7])ÑOutput ... 8-20
8.2.7.2.2 Data Bus Parity (DP[0:7])ÑInput .. 8-21
8.2.8 Data Transfer Termination Signals... 8-21
8.2.8.1 Transfer Acknowledge (

TA

)ÑInput .. 8-21
8.2.8.2 Transfer Error Acknowledge (

TEA

)ÑInput .. 8-22
8.3 60x/MPX Bus Protocol Signal Compatibility... 8-22
8.3.1 60x Bus Signals Not in the MPC7400 .. 8-23
8.3.1.1 Address Bus Busy and Data Bus Busy (ABB and DBB) 8-23
8.3.1.2 Data Retry (DRTRY).. 8-23
8.3.1.3 Extended Transfer Protocol (XATS) .. 8-23
8.3.1.4 Transfer Code (TC[0:1])... 8-23
8.3.1.5 Cache Set Element (CSE[0:1]) ... 8-23
8.3.1.6 Address Parity Error and Data Parity Error (APE, DPE) 8-24
8.3.2 60x Signals Multiplexed with New MPX Bus Mode Signals 8-24
8.3.3 New MPX Bus Mode Signals... 8-24
8.4 MPX Bus Signal Configuration .. 8-25
8.4.1 MPX Bus Mode Functional Groupings .. 8-25
8.4.2 MPX Address Bus Arbitration Signals... 8-26
8.4.2.1 Bus Request (BR)ÑOutput .. 8-27
8.4.2.2 Bus Grant (BG)ÑInput .. 8-27

CONTENTS

Paragraph
Number Title Page

Number

Contents

 xvii

8.4.2.3 Address Bus Monitor (

AMON

)ÑOutput.. 8-27
8.4.3 Address Bus and Parity in MPX Bus Mode ... 8-28
8.4.3.1 Address Bus (A[0:31])ÑOutput... 8-28
8.4.3.2 Address Bus (A[0:31])ÑInput ... 8-28
8.4.3.3 Address Parity (AP[0:3])ÑOutput ... 8-28
8.4.3.4 Address Parity (AP[0:3])ÑInput.. 8-29
8.4.4 Address Transfer Attribute Signals in MPX Bus Mode 8-29
8.4.4.1 Transfer Start (TS)ÑOutput... 8-29
8.4.4.2 Transfer Start (TS)ÑInput ... 8-29
8.4.4.3 Transfer Type (TT[0:4]) ... 8-29
8.4.4.3.1 Transfer Type (TT[0:4])ÑOutput .. 8-29
8.4.4.3.2 Transfer Type (TT[0:4])ÑInput... 8-30
8.4.4.4 Transfer Burst (

TBST

)ÑOutput ... 8-30
8.4.4.5 Transfer Size (TSIZ[0:2])ÑOutput .. 8-30
8.4.4.6 Global (

GBL

) .. 8-30
8.4.4.6.1 Global (GBL)ÑOutput... 8-30
8.4.4.6.2 Global (GBL)ÑInput ... 8-31
8.4.4.7 Write-Through (WT) .. 8-31
8.4.4.7.1 Write-Through (WT)ÑOutput ... 8-31
8.4.4.7.2 Write-Through (WT)ÑInput.. 8-31
8.4.4.8 Cache Inhibit (CI) ... 8-31
8.4.4.8.1 Cache Inhibit (CI)ÑOutput.. 8-31
8.4.4.8.2 Cache Inhibit (CI)ÑInput .. 8-32
8.4.5 MPX Address Transfer Termination Signals.. 8-32
8.4.5.1 Address Acknowledge (AACK)ÑInput... 8-32
8.4.5.2 Address Retry (

ARTRY

) .. 8-32
8.4.5.2.1 Address Retry (ARTRY)ÑOutput ... 8-33
8.4.5.2.2 Address Retry (ARTRY)ÑInput.. 8-33
8.4.5.3 MPX Bus Shared (SHD0, SHD1) Signals .. 8-33
8.4.5.3.1 Shared (SHD0, SHD1)ÑOutput .. 8-34
8.4.5.3.2 Shared (SHD0, SHD1)ÑInput ... 8-34
8.4.5.4 Snoop Hit (HIT)ÑOutput... 8-34
8.4.6 Data Bus Arbitration Signals .. 8-35
8.4.6.1 Data Bus Grant (DBG)ÑInput ... 8-35
8.4.6.2 Data Transaction Index (DTI[0:2])ÑInput .. 8-36
8.4.6.3 Data Ready (DRDY)ÑOutput ... 8-36
8.4.6.4 Data Bus Monitor (

DMON

)ÑOutput ... 8-37
8.4.7 Data Transfer Signals in MPX Bus Mode .. 8-37
8.4.7.1 Data Bus (DH[0:31], DL[0:31]) ... 8-37
8.4.7.1.1 Data Bus (DH[0:31], DL[0:31])ÑOutput .. 8-37
8.4.7.1.2 Data Bus (DH[0:31], DL[0:31])ÑInput... 8-38
8.4.7.2 Data Bus Parity (DP[0:7])ÑOutput ... 8-38
8.4.7.3 Data Bus Parity (DP[0:7])ÑInput .. 8-38

xviii

MPC7400 RISC Microprocessor UserÕs Manual

CONTENTS

Paragraph
Number Title Page

Number

8.4.8 Data Transfer Termination Signals in MPX Bus Mode 8-38
8.4.8.1 Transfer Acknowledge (

TA

)ÑInput .. 8-39
8.4.8.2 Transfer Error Acknowledge (

TEA

)ÑInput .. 8-39
8.5 Non-Protocol Signal Descriptions .. 8-39
8.5.1 L2 Cache Address/Data .. 8-39
8.5.1.1 L2 Address (L2ADDR[17:0])ÑOutput ... 8-40
8.5.1.2 L2 Data (L2DATA[0:63]) .. 8-40
8.5.1.2.1 L2 Data (L2DATA[0:63])ÑOutput ... 8-40
8.5.1.2.2 L2 Data (L2DATA[0:63])ÑInput.. 8-40
8.5.1.3 L2 Data Parity (L2DP[0:7]).. 8-40
8.5.1.3.1 L2 Data Parity (L2DP[0:7])ÑOutput... 8-41
8.5.1.3.2 L2 Data Parity (L2DP[0:7])ÑInput ... 8-41
8.5.2 L2 Cache Clock/Control ... 8-41
8.5.2.1 L2 Chip Enable (L2CE)ÑOutput... 8-41
8.5.2.2 L2 Write Enable (L2WE)ÑOutput .. 8-41
8.5.2.3 L2 Clock Out A (L2CLK_OUTA)ÑOutput .. 8-42
8.5.2.4 L2 Clock Out B (L2CLK_OUTB)ÑOutput... 8-42
8.5.2.5 L2 Synchronize Out (L2SYNC_OUT)ÑOutput...................................... 8-42
8.5.2.6 L2 Synchronize In (L2SYNC_IN)ÑInput ... 8-42
8.5.2.7 L2 Low-Power Mode Enable (L2ZZ)ÑOutput 8-43
8.5.3 Interrupts/Reset Signals .. 8-43
8.5.3.1 Interrupt (INT)ÑInput.. 8-43
8.5.3.2 System Management Interrupt (SMI)ÑInput .. 8-43
8.5.3.3 Machine Check (MCP)ÑInput... 8-44
8.5.3.4 Reset Signals... 8-44
8.5.3.4.1 Soft Reset (

SRESET

)ÑInput ... 8-44
8.5.3.4.2 Hard Reset (

HRESET

)ÑInput... 8-44
8.5.3.5 Checkstop Input (

CKSTP_IN

)ÑInput... 8-45
8.5.3.6 Checkstop Output (

CKSTP_OUT

)ÑOutput ... 8-45
8.5.3.7 Check (CHK)ÑInput.. 8-46
8.5.4 Processor Status/Control Signals .. 8-46
8.5.4.1 Reservation (RSRV)ÑOutput .. 8-46
8.5.4.2 Timebase Enable (TBEN)ÑInput .. 8-46
8.5.4.3 Quiescent Request (QREQ)ÑOutput... 8-47
8.5.4.4 Quiescent Acknowledge (QACK)ÑInput.. 8-47
8.5.4.5 Enhanced Mode (EMODE)ÑInput .. 8-47
8.5.5 Clock Control Signals... 8-48
8.5.5.1 System Clock (SYSCLK)ÑInput... 8-48
8.5.5.2 PLL Configuration (PLL_CFG[0:3])ÑInput ... 8-49
8.5.5.3 Clock Out (CLK_OUT)ÑOutput... 8-49
8.5.6 IEEE 1149.1a-1993 (JTAG) Interface Description 8-49
8.5.6.1 JTAG Test Clock (TCK)ÑInput .. 8-50
8.5.6.2 JTAG Test Data Input (TDI)ÑInput .. 8-50

CONTENTS

Paragraph
Number Title Page

Number

Contents

 xix

8.5.6.3 JTAG Test Data Output (TDO)ÑOutput ... 8-51
8.5.6.4 JTAG Test Mode Select (TMS)ÑInput ... 8-51
8.5.6.5 JTAG Test Reset (TRST)ÑInput ... 8-51
8.5.7 Bus Voltage Select (BVSEL)/L2 Voltage Select (L2VSEL) 8-51
8.5.7.1 Bus Voltage Select (BVSEL)ÑInput ... 8-52
8.5.7.2 L2 Voltage Select (L2VSEL)ÑInput ... 8-52
8.5.8 Power and Ground Signals ... 8-52

Chapter 9
System Interface Operation

9.1 MPC7400 System Interface Overview ... 9-1
9.1.1 MPC7400 Bus Operation Features ... 9-2
9.1.1.1 60x Bus Features... 9-2
9.1.1.2 MPX Bus Features .. 9-2
9.1.2 Overview of System Interface Accesses... 9-3
9.1.3 Summary of L1 Instruction and Data Cache Operation 9-4
9.1.4 L2 Cache and System Interface .. 9-6
9.1.5 Operation of the System Interface .. 9-6
9.1.6 Memory Subsystem Control Register (MSSCR0) Effects 9-7
9.1.7 Direct-Store Accesses Not Supported... 9-7
9.2 60x Bus Protocol... 9-8
9.2.1 Arbitration SignalsÑOverview .. 9-10
9.2.2 Address Pipelining and Split-Bus Transactions.. 9-11
9.3 60x Address Bus Tenure... 9-11
9.3.1 Address Bus Arbitration ... 9-11
9.3.1.1 Qualified Bus Grant .. 9-12
9.3.1.2 Bus Parking... 9-13
9.3.1.3 Ignoring ABB ... 9-14
9.3.2 Address Transfer... 9-14
9.3.2.1 Address Bus Parity ... 9-16
9.3.2.2 Address Transfer Attribute Signals .. 9-16
9.3.2.2.1 Transfer Type (TT[0:4]) Signals in 60x Bus Mode.............................. 9-16
9.3.2.2.2 Transfer Size (TSIZ[0:2]) Signals .. 9-17
9.3.2.2.3 Write-Through (WT), Cache Inhibit (CI), and

Global (GBL) Signals ... 9-19
9.3.2.3 Burst Ordering During Data Transfers ... 9-19
9.3.2.4 Effect of Alignment in Data Transfers ... 9-19
9.3.2.4.1 Misaligment Example... 9-20
9.3.2.4.2 Alignment of External Control Instructions ... 9-21
9.3.3 Address Transfer Termination .. 9-21
9.3.3.1 Address Retry Window and Qualified

ARTRY

....................................... 9-22

xx

MPC7400 RISC Microprocessor UserÕs Manual

CONTENTS

Paragraph
Number Title Page

Number

9.3.3.2 Snoop Copyback and Window of Opportunity .. 9-22
9.3.3.3 Snoop Response and SHD Signal... 9-24
9.4 60x Data Bus Tenure .. 9-24
9.4.1 Data Bus Arbitration... 9-24
9.4.1.1 Qualified Data Bus Grant in 60x Bus Mode... 9-24
9.4.1.2 Using the DBB Signal .. 9-25
9.4.1.3 Data Bus Write Only (

DBWO

) and Data Bus Arbitration....................... 9-25
9.4.2 Data Transfer Signals and Protocol .. 9-26
9.4.3 Data Transfer Termination.. 9-27
9.4.3.1 Normal Single-Beat Termination ... 9-27
9.4.3.2 Data Transfer Termination Due to a Bus Error .. 9-29
9.4.3.3 No-

DRTRY

 Mode .. 9-30
9.4.4 Using Data Bus Write Only (

DBWO

).. 9-30
9.5 60x Bus Timing Examples.. 9-31
9.6 MPX Bus Protocol .. 9-37
9.6.1 Address Tenure in MPX Bus Mode.. 9-38
9.6.1.1 Address Arbitration Phase .. 9-38
9.6.1.1.1 Qualified Bus Grant in MPX Bus Mode .. 9-39
9.6.1.1.2 MPX Bus Mode Address Bus Parking ... 9-40
9.6.1.2 Address Transfer in MPX Bus Mode ... 9-41
9.6.1.2.1 Address Bus Driven Mode ... 9-42
9.6.1.2.2 Address Bus Streaming .. 9-42
9.6.1.2.3 Address Bus Parity ... 9-42
9.6.1.2.4 Address Pipelining.. 9-42
9.6.1.3 Transfer Attributes in MPX Bus Mode .. 9-42
9.6.1.3.1 Transfer Type 0Ð4 (TT[0:4]) in MPX Bus Mode................................. 9-43
9.6.1.3.2 Transfer Size... 9-43
9.6.1.3.3 Aligned and Misaligned Transfers.. 9-44
9.6.1.4 Address Termination Phase in MPX Bus Mode....................................... 9-44
9.6.1.4.1 Address Retry (

ARTRY

) in MPX Bus Mode....................................... 9-45
9.6.1.4.2 Shared (

SHD0

, SHD1) Signals for MPX Bus Mode........................... 9-47
9.6.1.4.3 Hit (HIT) Signal and Data Intervention ... 9-48
9.6.1.4.4 HIT Signal Timing and Data Snarfing ... 9-49
9.6.2 Data Tenure in MPX Bus Mode ... 9-50
9.6.2.1 Data Bus Arbitration Phase in MPX Bus Mode 9-50
9.6.2.1.1 Qualified Data Bus Grant in MPX Bus Mode 9-50
9.6.2.1.2 Data Streaming Constraints for Data Bus Arbitration in

MPX Bus Mode .. 9-51
9.6.2.2 Data Bus Transfers ... 9-51
9.6.2.2.1 Earliest Transfer of Data... 9-52
9.6.2.2.2 Data InterventionÑMPX Bus Mode.. 9-52
9.6.2.2.3 Data-Only Transaction Protocol ... 9-53
9.6.2.2.4 DRDY Timing (Data-Only Transactions) .. 9-54

CONTENTS
Paragraph
Number Title Page

Number

Contents xxi

9.6.2.2.5 Pipelining of Data-Only Transactions .. 9-54
9.6.2.2.6 Retrying Data-Only Transactions ... 9-55
9.6.2.2.7 Ordering of Data-Only Transactions .. 9-56
9.6.2.2.8 Data Tenure Reordering in MPX Bus Only ... 9-57
9.6.2.3 Data Termination Phase in MPX Bus Mode .. 9-57
9.7 Interrupt, Checkstop, and Reset Signal Interactions... 9-58
9.7.1 External Interrupts .. 9-58
9.7.2 Checkstops .. 9-58
9.7.3 Reset Inputs... 9-58
9.8 Processor State Signal Interactions... 9-59
9.8.1 System Quiesce Control Signals... 9-59
9.8.2 Support for the lwarx/stwcx. Instruction Pair .. 9-59
9.9 IEEE 1149.1a-1993 Compliant Interface.. 9-60
9.9.1 JTAG/COP Interface... 9-60

Chapter 10
Power and Thermal Management

10.1 Dynamic Power Management... 10-1
10.2 Programmable Power Modes.. 10-1
10.2.1 Full-Power Mode with Dynamic Power Management Disabled 10-3
10.2.2 Full-Power Mode with Dynamic Power Management Enabled 10-3
10.2.3 Doze Mode.. 10-3
10.2.3.1 Entering Doze Mode... 10-3
10.2.3.2 Returning to Full-Power Mode from Doze Mode 10-4
10.2.4 Nap Mode ... 10-4
10.2.4.1 Entering Nap Mode... 10-4
10.2.4.2 Nap Mode Bus Snooping Sequence ... 10-5
10.2.4.3 Returning to Full-Power Mode... 10-5
10.2.4.4 Sleep Mode ... 10-5
10.2.4.5 Entering Sleep Mode .. 10-6
10.2.4.6 Returning to Full-Power Mode... 10-6
10.2.5 Power Management Software Considerations.. 10-6
10.3 Thermal Assist Unit (TAU) .. 10-7
10.3.1 Thermal Assist Unit Overview ... 10-7
10.3.2 Thermal Assist Unit Operation ... 10-9
10.3.2.1 Thermal Assist Unit Single-Threshold Mode... 10-9
10.3.2.2 Thermal Assist Unit Dual-Threshold Mode ... 10-10
10.3.2.3 MPC7400 Junction Temperature Determination.................................... 10-11
10.3.2.4 Power Saving Modes and Thermal Assist Unit Operation..................... 10-11
10.4 Instruction Cache Throttling ... 10-11

xxii MPC7400 RISC Microprocessor UserÕs Manual

CONTENTS
Paragraph
Number Title Page

Number

Chapter 11
Performance Monitor

11.1 Overview... 11-2
11.2 Performance Monitor Interrupt ... 11-2
11.2.1 A Note on TBEE Usage.. 11-3
11.3 Special-Purpose Registers Used by the Performance Monitor 11-3
11.3.1 Performance Monitor Registers .. 11-4
11.3.1.1 Monitor Mode Control Register 0 (MMCR0) .. 11-4
11.3.1.2 User Monitor Mode Control Register 0 (UMMCR0)............................... 11-7
11.3.1.3 Monitor Mode Control Register 1 (MMCR1) .. 11-7
11.3.1.4 User Monitor Mode Control Register 1 (UMMCR1)............................... 11-8
11.3.1.5 Monitor Mode Control Register 2 (MMCR2) .. 11-8
11.3.1.6 User Monitor Mode Control Register 2 (UMMCR2)............................... 11-9
11.3.2 Breakpoint Address Mask Register (BAMR)... 11-9
11.3.2.1 User Breakpoint Address Mask Register (UBAMR) 11-9
11.3.2.2 Performance Monitor Counter Registers (PMC1ÐPMC4) 11-10
11.3.2.3 User Performance Monitor Counter Registers (UPMC1ÐUPMC4) 11-11
11.3.2.4 Sampled Instruction Address Register (SIAR)....................................... 11-11
11.3.2.5 User Sampled Instruction Address Register (USIAR) 11-11
11.4 Event Counting ... 11-11
11.5 Event Selection ... 11-12
11.5.1 PMC1 Events .. 11-13
11.5.2 PMC2 Events .. 11-16
11.5.3 PMC3 Events .. 11-18
11.5.4 PMC4 Events .. 11-20

Appendix A
MPC7400 Instruction Set Listings

A.1 Instructions Sorted by Mnemonic.. A-1
A.2 Instructions Sorted by Opcode... A-13
A.3 Instructions Grouped by Functional Categories .. A-25
A.4 Instructions Sorted by Form... A-41
A.5 Instruction Set Legend ... A-57

Appendix B
Instructions Not Implemented

 Glossary of Terms and Abbreviations

CONTENTS
Paragraph
Number Title Page

Number

Contents xxiii

 Index

xxiv MPC7400 RISC Microprocessor UserÕs Manual

CONTENTS
Paragraph
Number Title Page

Number

ILLUSTRATIONS

Figure
Number Title Page

 Number

Illustrations xxv

1-1 MPC7400 Microprocessor Block Diagram .. 1-4
1-2 L1 Cache Organization ... 1-16
1-3 System Interface.. 1-20
1-4 MPC7400 Microprocessor Signal Groups .. 1-22
1-5 MPC7400 Microprocessor Programming ModelÑRegisters..................................... 1-26
1-6 Pipeline Diagram .. 1-39
2-1 Programming ModelÑMPC7400 Microprocessor Registers....................................... 2-3
2-2 Instruction Address Breakpoint Register .. 2-10
2-3 Hardware Implementation-Dependent Register 0 (HID0).. 2-11
2-4 Hardware Implementation-Dependent Register 1 (HID1).. 2-15
2-5 Monitor Mode Control Register 0 (MMCR0) .. 2-16
2-6 Monitor Mode Control Register 1 (MMCR1) .. 2-18
2-7 Monitor Mode Control Register 2 (MMCR2) .. 2-19
2-8 Breakpoint Address Mask Register (BAMR) ... 2-20
2-9 Performance Monitor Counter Registers (PMC1ÐPMC4).. 2-21
2-10 Sampled Instruction Address Registers (SIAR) ... 2-22
2-11 Instruction Cache Throttling Control Register (ICTC)... 2-23
2-12 Thermal Management Registers 1Ð2 (THRM1ÐTHRM2) ... 2-24
2-13 Thermal Management Register 3 (THRM3)... 2-25
2-14 Memory Subsystem Control Register (MSSCR0).. 2-26
2-15 L2 Cache Control Register (L2CR) .. 2-28
3-1 Cache/Memory Subsystem/BIU Integration... 3-3
3-2 Data Cache Organization .. 3-5
3-3 Instruction Cache Organization .. 3-6
3-4 Read TransactionÑ60x and MPX Bus Modes, L1_INTVEN = 0b000 3-16
3-5 RWITM, Write, and Flush TransactionsÑ60x and MPX Bus Modes,

L1_INTVEN = 0b000.. 3-17
3-6 Clean TransactionÑ60x and MPX Bus Modes, L1_INTVEN = 0b000 3-17
3-7 Kill TransactionÑ60x and MPX Bus Modes, L1_INTVEN = 0b000 3-18
3-8 Read TransactionÑMPX Bus Mode, L1_INTVEN = 0b100.................................... 3-19
3-9 RWITM and Flush TransactionsÑMPX Bus Mode, L1_INTVEN = 0b100............ 3-20
3-10 Write TransactionÑMPX Bus Mode, L1_INTVEN = 0b100................................... 3-20
3-11 Clean TransactionÑMPX Bus Mode, L1_INTVEN = 0b100 3-21
3-12 Kill TransactionÑMPX Bus Mode, L1_INTVEN = 0b100...................................... 3-21
3-13 Read TransactionÑMPX Bus Mode, L1_INTVEN = 0b110.................................... 3-22
3-14 RWITM TransactionÑMPX Bus Mode, L1_INTVEN = 0b110 3-23

ILLUSTRATIONS
Figure
Number Title Page

Number

xxvi MPC7400 RISC Microprocessor UserÕs Manual

3-15 Write TransactionÑMPX Bus Mode, L1_INTVEN = 0b110................................... 3-23
3-16 Flush Transaction State DiagramÑMPX Bus Mode,

L1_INTVEN = 0b110.. 3-24
3-17 Clean TransactionÑMPX Bus Mode, L1_INTVEN = 0b110 3-24
3-18 Kill TransactionÑMPX Bus Mode, L1_INTVEN = 0b110...................................... 3-25
3-19 Read TransactionÑMPX Bus Mode, L1_INTVEN = 0b111.................................... 3-26
3-20 RWITM Transaction ÑMPX Bus Mode, L1_INTVEN = 0b111 3-27
3-21 Write TransactionÑMPX Bus Mode, L1_INTVEN = 0b111................................... 3-27
3-22 Flush TransactionÑMPX Bus Mode, L1_INTVEN = 0b111................................... 3-28
3-23 Clean TransactionÑMPX Bus Mode, L1_INTVEN = 0b111 3-28
3-24 Kill TransactionÑMPX Bus Mode, L1_INTVEN = 0b111...................................... 3-29
3-25 Read Transaction Snoop Hit on the Reservation Address Register............................ 3-29
3-26 Reskill Transaction Snoop Hit on the Reservation Address Register......................... 3-30
3-27 Transaction (other than Read or Reskill) Snoop Hit on the Reservation

Address Register ... 3-30
3-28 Self-Generated Data Read/Read-Atomic Transaction .. 3-31
3-29 Self-Generated Data RWITM/RWITM-Atomic/Kill (Caused by dcbz Miss)

Transaction.. 3-31
3-30 Self-Generated Kill (Caused by Write Hit on S or R) Transaction 3-32
3-31 Self-Generated Read (Caused by Instruction Fetch) Transaction............................... 3-32
3-32 Self-Generated RCLAIM Transaction.. 3-33
3-33 PLRU Replacement Algorithm... 3-50
3-34 Typical 1-Mbyte L2 Cache Configuration.. 3-54
3-35 Pipeline Burst SRAM Timing... 3-69
3-36 Late-Write SRAM Timing.. 3-70
3-37 PB3 SRAM Timing .. 3-71
3-38 Double-Word Address OrderingÑCritical Double Word First.................................. 3-73
4-1 Machine Status Save/Restore Register 0 (SRR0) ... 4-8
4-2 Machine Status Save/Restore Register 1 (SRR1) ... 4-9
4-3 Machine State Register (MSR) ... 4-9
5-1 MMU Conceptual Block DiagramÑ32-Bit Implementations...................................... 5-6
5-2 MPC7400 Microprocessor IMMU Block Diagram .. 5-7
5-3 MPC7400 Microprocessor DMMU Block Diagram... 5-8
5-4 Address Translation Types ... 5-10
5-5 General Flow of Address Translation (Real Addressing Mode

and Block)... 5-13
5-6 General Flow of Page and Direct-Store Interface Address Translation 5-15
5-7 Segment Register and DTLB Organization .. 5-26
5-8 tlbie Instruction Execution and Bus Snooping Flow.. 5-28
5-9 tlbsync Instruction Execution and Bus Snooping Flow ... 5-30
5-10 Page Address Translation FlowÑTLB Hit... 5-32
5-11 Primary Page Table Search... 5-36
5-12 Secondary Page Table Search Flow.. 5-37

ILLUSTRATIONS

Figure
Number Title Page

 Number

Illustrations xxvii

6-1 Pipelined Execution Unit .. 6-4
6-2 Superscalar/Pipeline Diagram... 6-5
6-3 MPC7400 Microprocessor Pipeline Stages .. 6-8
6-4 Instruction Flow Diagram... 6-11
6-5 Instruction TimingÑCache Hit .. 6-13
6-6 Instruction TimingÑCache Miss.. 6-16
6-7 Data L1 Load Hit (No Stalls).. 6-17
6-8 Data L1 Store Hit (No Stalls).. 6-17
6-9 Data L1 Load Miss, L2 Hit (No Stalls)... 6-18
6-10 Data L1 Load Miss, L2 Miss, BIU Fetch.. 6-19
6-11 Branch Folding.. 6-23
6-12 Removal of Fall-Through Branch Instruction... 6-24
6-13 Branch Completion ... 6-25
6-14 Branch Instruction Timing.. 6-28
6-15 Data Dependencies in Non-Java Mode... 6-34
6-16 Data Forwarding in Java Mode... 6-35
7-1 Vector Registers (VRs) ... 7-2
7-2 Vector Status and Control Register (VSCR) .. 7-3
7-3 Vector Save/Restore Register (VRSAVE).. 7-4
8-1 60x Bus Signal Groups ... 8-7
8-2 MPX Bus Signal Groups... 8-26
9-1 MPC7400 Microprocessor Block Diagram .. 9-5
9-2 Timing Diagram Legend... 9-8
9-3 Overlapping Tenures on the MPC7400 Bus for a Single-Beat Transfer 9-9
9-4 Address Bus Arbitration ... 9-12
9-5 Address Bus Arbitration Showing Bus Parking.. 9-14
9-6 Address Bus Transfer.. 9-15
9-7 Snooped Address Cycle with ARTRY.. 9-23
9-8 Data Bus Arbitration ... 9-24
9-9 Normal Single-Beat Read Termination .. 9-28
9-10 Normal Single-Beat Write Termination.. 9-28
9-11 Normal Burst Transaction... 9-29
9-12 Read Burst with TA Wait States ... 9-29
9-13 Fastest Single-Beat Reads... 9-32
9-14 Fastest Single-Beat Writes.. 9-33
9-15 Single-Beat Reads Showing Data-Delay Controls ... 9-34

ILLUSTRATIONS
Figure
Number Title Page

Number

xxviii MPC7400 RISC Microprocessor UserÕs Manual

9-16 Single-Beat Writes Showing Data Delay Controls... 9-35
9-17 Burst Transfers with Data Delay Controls.. 9-36
9-18 Use of Transfer Error Acknowledge (TEA) ... 9-37
9-19 MPX Bus Address Bus ArbitrationÑNon-Parked Case .. 9-39
9-20 Bus ArbitrationÑParked Case.. 9-40
9-21 Address Parking in MPX Bus Mulitprocessor Systems ... 9-41
9-22 Overlapped ARTRY and TS (with a Delayed AACK) in MPX Bus Mode 9-46
9-23 SHD0 and SHD1 Negation Timing .. 9-47
9-24 HIT and ARTRY Asserted Together .. 9-49
9-25 Data Intervention for Read (Atomic) and RWITM (Atomic) Using the

Data-Only Transfer Protocol... 9-53
9-26 Data-Only Transaction for a Flush Operation .. 9-54
9-27 Pipelined Data-Only Transactions .. 9-55
9-28 Retry Examples of Data-Only Transactions ... 9-56
9-29 IEEE 1149.1a-1993 Compliant Boundary-Scan Interface.. 9-60
10-1 Power Management State Diagram .. 10-2
10-2 Thermal Assist Unit Block Diagram... 10-7
11-1 Monitor Mode Control Register 0 (MMCR0) .. 11-5
11-2 Monitor Mode Control Register 1 (MMCR1) .. 11-7
11-3 Monitor Mode Control Register 2 (MMCR2) .. 11-8
11-4 Breakpoint Address Mask Register (BAMR) ... 11-9
11-5 Performance Monitor Counter Registers (PMC1ÐPMC4).. 11-10
11-6 Sampled instruction Address Register (SIAR) ... 11-11

Tables xxix

TABLES

Table
Number Title Page

Number

1-1 PowerPC Architecture-Defined Registers on the MPC7400
(Excluding SPRs).. 1-27

1-2 PowerPC Architecture-Defined SPRs Implemented by the MPC7400 1-28
1-3 AltiVec-Specific Registers... 1-28
1-4 MPC7400-Specific Registers... 1-29
1-5 MPC7400 Microprocessor Exception Classifications ... 1-35
1-6 Exceptions and Conditions .. 1-36
1-7 Differences between the MPC7400 and the MPC750 ... 1-44
2-1 Additional MSR Bits ... 2-6
2-2 Additional SRR1 Bits .. 2-8
2-3 Instruction Address Breakpoint Register Field Descriptions..................................... 2-11
2-4 HID0 Field Descriptions .. 2-11
2-5 HID0[BCLK] and HID0[ECLK] CLK_OUT Configuration 2-15
2-6 HID1 Field Descriptions .. 2-15
2-7 MMCR0 Field Descriptions... 2-16
2-8 MMCR1 Field Descriptions... 2-19
2-9 MMCR2 Field Descriptions... 2-20
2-10 BAMR Field Descriptions ... 2-20
2-11 PMCn Field Descriptions... 2-21
2-12 ICTC Field Descriptions .. 2-23
2-13 THRM1ÐTHRM2 Bit Settings... 2-24
2-14 Valid THRM1/THRM2 States... 2-25
2-15 THRM3 Bit Settings .. 2-25
2-16 MSSCR0 Field Descriptions.. 2-27
2-17 L2CR Field Descriptions ... 2-28
2-18 Settings Caused by Hard Reset (Used at Power-On)... 2-32
2-19 Integer Arithmetic Instructions .. 2-42
2-20 Integer Compare Instructions.. 2-44
2-21 Integer Logical Instructions ... 2-44
2-22 Integer Rotate Instructions... 2-45
2-23 Integer Shift Instructions.. 2-46
2-24 Floating-Point Arithmetic Instructions .. 2-46
2-25 Floating-Point Multiply-Add Instructions ... 2-47
2-26 Floating-Point Rounding and Conversion Instructions.. 2-47
2-27 Floating-Point Compare Instructions... 2-48
2-28 Floating-Point Status and Control Register Instructions ... 2-48

xxx MPC7400 RISC Microprocessor UserÕs Manual

TABLES
Table
Number Title Page

Number

2-29 Floating-Point Move Instructions .. 2-49
2-30 Integer Load Instructions ... 2-51
2-31 Integer Store Instructions... 2-52
2-32 Integer Load and Store with Byte-Reverse Instructions .. 2-53
2-33 Integer Load and Store Multiple Instructions .. 2-54
2-34 Integer Load and Store String Instructions .. 2-54
2-35 Floating-Point Load Instructions ... 2-55
2-36 Floating-Point Store Instructions ... 2-55
2-37 Store Floating-Point Single Behavior .. 2-56
2-38 Store Floating-Point Double Behavior.. 2-56
2-39 Branch Instructions .. 2-58
2-40 Condition Register Logical Instructions .. 2-58
2-41 Trap Instructions .. 2-59
2-42 System Linkage InstructionÑUISA.. 2-59
2-43 Move to/from Condition Register Instructions .. 2-59
2-44 Move to/from Special-Purpose Register Instructions (UISA) 2-60
2-45 PowerPC SPR Encodings .. 2-60
2-46 SPR Encodings for MPC7400-Defined Registers (mfspr) 2-61
2-47 Memory Synchronization InstructionsÑUISA ... 2-63
2-48 Move from Time Base Instruction... 2-64
2-49 Memory Synchronization InstructionsÑVEA .. 2-65
2-50 User-Level Cache Instructions.. 2-66
2-51 External Control Instructions... 2-68
2-52 System Linkage InstructionsÑOEA... 2-69
2-53 Move to/from Machine State Register Instructions ... 2-69
2-54 Move to/from Special-Purpose Register Instructions (OEA) 2-69
2-55 Supervisor-Level Cache Management Instruction... 2-70
2-56 Segment Register Manipulation Instructions... 2-70
2-57 Translation Lookaside Buffer Management Instruction .. 2-71
2-58 Vector Integer Arithmetic Instructions ... 2-73
2-59 CR6 Field Bit Settings for Vector Integer Compare Instructions.............................. 2-75
2-60 Vector Integer Compare Instructions... 2-75
2-61 Vector Integer Logical Instructions ... 2-76
2-62 Vector Integer Rotate Instructions ... 2-76
2-63 Vector Integer Shift Instructions... 2-76
2-64 Vector Floating-Point Arithmetic Instructions .. 2-77
2-65 Vector Floating-Point Multiply-Add Instructions ... 2-78
2-66 Vector Floating-Point Rounding and Conversion Instructions.................................. 2-78
2-67 Vector Floating-Point Compare Instructions ... 2-78
2-68 Vector Floating-Point Estimate Instructions.. 2-79
2-69 Vector Integer Load Instructions ... 2-79
2-70 Vector Load Instructions Supporting Alignment.. 2-80
2-71 Vector Integer Store Instructions ... 2-80

Tables xxxi

TABLES
Table
Number Title Page

Number

2-72 Vector Pack Instructions .. 2-81
2-73 Vector Unpack Instructions ... 2-82
2-74 Vector Merge Instructions ... 2-82
2-75 Vector Splat Instructions.. 2-83
2-76 Vector Permute Instruction .. 2-83
2-77 Vector Select Instruction... 2-83
2-78 Vector Shift Instructions ... 2-84
2-79 Move to/from VSCR Register Instructions.. 2-84
2-80 AltiVec User-Level Cache Instructions .. 2-85
3-1 Data Cache Status Bits.. 3-9
3-2 Allowed Data Cache States.. 3-10
3-3 Coherency Protocols in 60x Bus Mode .. 3-11
3-4 Coherency Protocols in MPX Bus Mode.. 3-12
3-5 Snoop Response Summary ... 3-13
3-6 Snoop Intervention Summary ... 3-14
3-7 Simplified Transaction Types ... 3-15
3-8 PLRU Replacement Way Selection ... 3-49
3-9 PLRU Bit Update Rules... 3-51
3-10 PLRU Bit Update Rules for AltiVec LRU Instructions... 3-52
3-11 Legal L2 Cache States ... 3-55
3-12 L2 Cache Sizes and Data RAM Organizations.. 3-56
3-13 Bus Operations Caused by Cache Control Instructions (WIM = 001) 3-73
3-14 Address/Transfer Attributes Generated by the MPC7400 ... 3-75
3-15 Snooped Bus Transaction Summary .. 3-77
4-1 MPC7400 Microprocessor Exception Classifications ... 4-3
4-2 Exceptions and Conditions .. 4-3
4-3 MPC7400 Exception Priorities .. 4-7
4-4 MSR Bit Settings ... 4-9
4-5 IEEE Floating-Point Exception Mode Bits.. 4-11
4-6 MSR Setting Due to Exception.. 4-14
4-7 System Reset ExceptionÑRegister Settings ... 4-16
4-8 HID0 Machine Check Enable Bits.. 4-17
4-9 Machine Check ExceptionÑRegister Settings.. 4-18
4-10 Performance Monitor Interrupt ExceptionÑRegister Settings................................... 4-24
4-11 Instruction Address Breakpoint ExceptionÑRegister Settings................................. 4-25
4-12 System Management Interrupt ExceptionÑRegister Settings 4-26
4-13 AltiVec Assist ExceptionÑRegister Settings.. 4-27
4-14 Thermal Management Interrupt ExceptionÑRegister Settings................................. 4-27
4-15 AltiVec Unavailable ExceptionÑRegister Settings .. 4-28
5-1 MMU Feature Summary .. 5-3
5-2 Access Protection Options for Pages ... 5-11
5-3 Translation Exception Conditions.. 5-16
5-4 Other MMU Exception Conditions for the MPC7400 Processor 5-18

xxxii MPC7400 RISC Microprocessor UserÕs Manual

TABLES
Table
Number Title Page

Number

5-5 MPC7400 Microprocessor Instruction SummaryÑControl MMUs 5-19
5-6 MPC7400 Microprocessor MMU Registers ... 5-20
5-7 Table Search Operations to Update History BitsÑTLB Hit Case 5-22
5-8 Model for Guaranteed R and C Bit Settings .. 5-24
6-1 Performance Effects of Memory Operand Placement .. 6-31
6-2 Effect of TLB Miss on Performance... 6-36
6-3 Branch Operation Execution Latencies .. 6-40
6-4 SRU Execution Latencies ... 6-40
6-5 Condition Register Logical Execution Latencies ... 6-40
6-6 Integer Unit Execution Latencies.. 6-41
6-7 Floating-Point Unit Execution Latencies.. 6-43
6-8 Load/Store Instruction Latencies .. 6-44
6-9 AltiVec Instruction Latencies ... 6-46
7-1 VSCR Field Descriptions.. 7-3
7-2 VRSAVE Bit Settings... 7-4
7-3 AltiVec User-Level Cache Instructions .. 7-6
7-4 DST[STRM] Description.. 7-7
7-5 The dstx Stream Termination Conditions ... 7-9
7-6 Denormalization for AltiVec Instructions .. 7-12
7-7 Vector Floating-Point Compare, Min, and Max in Non-Java Mode 7-12
7-8 Vector Floating-Point Compare, Min, and Max in Java Mode................................... 7-13
7-9 Round-to-Integer Instructions in Non-Java Mode .. 7-14
7-10 Round-to-Integer Instructions in Java Mode .. 7-14
8-1 MPC7400 Signal Cross Reference.. 8-3
8-2 Output Signal States During System Reset... 8-5
8-3 Address Parity Bit Assignments ... 8-10
8-4 Data Bus Lane Assignments ... 8-19
8-5 DP[0:7] Signal Assignments... 8-21
8-6 Signal Compatibility Summary... 8-23
8-7 IEEE Interface Pin Descriptions ... 8-50
9-1 Transfer Type Encodings for 60x Bus Mode.. 9-16
9-2 TBST and TSIZ[0:2] Encodings in 60x Bus Mode .. 9-18
9-3 Burst Ordering .. 9-19
9-4 Aligned Data Transfers ... 9-20
9-5 Misaligned Data Transfers (Four-Byte Examples) ... 9-21
9-6 Transfer Type Encodings for MPX Bus Mode ... 9-43
9-7 TBST and TSIZ[0:2] Encodings in MPX Bus Mode.. 9-43
10-1 Programmable Power Modes.. 10-1
10-2 THRM1 and THRM2 Field Descriptions .. 10-8
10-3 THRM3 Bit Field Settings ... 10-9
10-4 Valid THRM1 and THRM2 Bit Settings .. 10-10
10-5 ICTC Field Descriptions .. 10-12
11-1 Performance Monitor SPRsÑSupervisor-Level.. 11-4

Tables xxxiii

TABLES
Table
Number Title Page

Number

11-2 Performance Monitor SPRsÑUser Level (Read Only)... 11-4
11-3 MMCR0 Field Descriptions... 11-5
11-4 MMCR1 Field Descriptions... 11-8
11-5 MMCR2 Field Descriptions... 11-8
11-6 BAMR Field Descriptions ... 11-9
11-7 PMCn Field Descriptions... 11-10
11-8 PMC1 EventsÑMMCR0[19Ð25] Select Encodings ... 11-13
11-9 PMC2 EventsÑMMCR0[26Ð31] Select Encodings .. 11-16
11-10 PMC3 EventsÑMMCR1[0Ð4] Select Encodings .. 11-18
11-11 PMC4 EventsÑMMCR1[5Ð9] Select Encodings .. 11-20
A-1 Complete Instruction List Sorted by Mnemonic.. A-1
A-2 Complete Instruction List Sorted by Opcode... A-13
A-3 Integer Arithmetic Instructions .. A-25
A-4 Integer Compare Instructions... A-26
A-5 Integer Logical Instructions ... A-26
A-6 Integer Rotate Instructions... A-27
A-7 Integer Shift Instructions.. A-27
A-8 Floating-Point Arithmetic Instructions .. A-27
A-9 Floating-Point Multiply-Add Instructions ... A-28
A-10 Floating-Point Rounding and Conversion Instructions.. A-28
A-11 Floating-Point Compare Instructions... A-29
A-12 Floating-Point Status and Control Register Instructions ... A-29
A-13 Integer Load Instructions ... A-30
A-14 Integer Store Instructions... A-31
A-15 Integer Load and Store with Byte Reverse Instructions .. A-31
A-16 Integer Load and Store Multiple Instructions .. A-32
A-17 Integer Load and Store String Instructions .. A-32
A-18 Memory Synchronization Instructions... A-32
A-19 Floating-Point Load Instructions ... A-32
A-20 Floating-Point Store Instructions ... A-33
A-21 Floating-Point Move Instructions .. A-33
A-22 Branch Instructions .. A-33
A-23 Condition Register Logical Instructions .. A-34
A-24 System Linkage Instructions.. A-34
A-25 Trap Instructions .. A-34
A-26 Processor Control Instructions... A-34
A-27 Cache Management Instructions.. A-35
A-28 Segment Register Manipulation Instructions... A-35
A-29 Lookaside Buffer Management Instructions.. A-35
A-30 External Control Instructions... A-35
A-31 Vector Integer Arithmetic Instructions .. A-36
A-32 Floating-Point Compare Instructions... A-38
A-33 Floating-Point Estimate Instructions.. A-38

xxxiv MPC7400 RISC Microprocessor UserÕs Manual

TABLES
Table
Number Title Page

Number

A-34 Vector Load Instructions Supporting Alignment... A-38
A-35 Integer Store Instructions... A-38
A-36 Vector Pack Instructions .. A-39
A-37 Vector Unpack Instructions ... A-39
A-38 Vector Splat Instructions.. A-39
A-39 Vector Permute Instruction .. A-40
A-40 Vector Select Instruction.. A-40
A-41 Vector Shift Instructions .. A-40
A-42 Move to/from Condition Register Instructions .. A-40
A-43 User-Level Cache Instructions... A-40
A-44 I-Form .. A-41
A-45 B-Form... A-41
A-46 SC-Form... A-41
A-47 D-Form\X-Form... A-41
A-48 XL-Form .. A-47
A-49 XFX-Form.. A-48
A-50 XFL-Form.. A-48
A-51 XO-Form.. A-48
A-52 A-Form... A-49
A-53 M-Form.. A-50
A-54 VA-Form.. A-50
A-55 VX-Form.. A-51
A-56 VXR-Form ... A-54
A-57 MPC7400 Instruction Set Legend.. A-57
B-1 32-Bit Instructions Not Implemented by the MPC7400 ProcessorB-1
B-2 64-Bit Instructions Not Implemented by the MPC7400 ProcessorB-1

About This Book xxxv

About This Book

The primary objective of this userÕs manual is to deÞne the functionality of the MPC7400
and MPC740 microprocessors for use by software and hardware developers. Although the
emphasis of this manual is upon the MPC7400, unless otherwise noted, all information here
applies to MPC740. This book is intended as a companion to the PowerPCª
Microprocessor Family: The Programming Environments (referred to as The Programming
Environments Manual).

About the Companion Programming Environments Manual
The MPC7400 RISC Microprocessor UserÕs Manual, which
describes MPC7400 features not deÞned by the architecture, is
to be used with the PowerPC Microprocessor Family: The
Programming Environments, Rev. 1, referred to as The
Programming Environments Manual.

Because the PowerPC architecture is designed to be ßexible to
support a broad range of processors, The Programming
Environments Manual provides a general description of
features that are common to PowerPC processors and indicates
those features that are optional or that may be implemented
differently in the design of each processor.

Note that The Programming Environments Manual exists in
two versions. PowerPC Microprocessor Family: The
Programming Environments, Rev. 1 describes features of the
PowerPC architecture for both 64- and 32-bit implementations.
This version may be more useful if migration to 64-bit
processors is critical to the reader. PowerPC Microprocessor
Family: The Programming Environments for 32-Bit
Microprocessors, Rev. 1 describes features of the PowerPC
architecture only for 32-bit implementations. Because it
describes only those features that support 32-bit processors,
this manual may be more practical if the reader is concerned
primarily with the MPC7400 processor.

Contact your sales representative for a copy of The
Programming Environments Manual.

xxxvi MPC7400 RISC Microprocessor UserÕs Manual

This document and The Programming Environments Manual distinguish between the three
levels, or programming environments, of the PowerPC architecture, which are as follows:

¥ PowerPC user instruction set architecture (UISA)ÑThe UISA deÞnes the level of
the architecture to which user-level software should conform. The UISA deÞnes the
base user-level instruction set, user-level registers, data types, memory conventions,
and the memory and programming models seen by application programmers.

¥ PowerPC virtual environment architecture (VEA)ÑThe VEA, which is the smallest
component of the PowerPC architecture, deÞnes additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processors or other devices can
access external memory and deÞnes aspects of the cache model and cache control
instructions from a user-level perspective. The resources deÞned by the VEA are
particularly useful for optimizing memory accesses and for managing resources in
an environment in which other processors and other devices can access external
memory.

Implementations that conform to the PowerPC VEA also conform to the PowerPC
UISA, but may not necessarily adhere to the OEA.

¥ PowerPC operating environment architecture (OEA)ÑThe OEA deÞnes
supervisor-level resources typically required by an operating system. The OEA
deÞnes the PowerPC memory management model, supervisor-level registers, and
the exception model.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.

It is important to note that some resources are deÞned more generally at one level in the
architecture and more speciÞcally at another. For example, conditions that cause a
ßoating-point exception are deÞned by the UISA, while the exception mechanism itself is
deÞned by the OEA.

Because it is important to distinguish between the levels of the architecture in order to
ensure compatibility across multiple platforms, those distinctions are shown clearly
throughout this book.

For ease in reference, the arrangement of topics in this book follows that of The
Programming Environments Manual. Topics build upon one another, beginning with a
description and complete summary of MPC7400-speciÞc registers and instructions and
progressing to more specialized topics such as MPC7400-speciÞc details regarding the
cache, exception, and memory management models. As such, chapters may include
information from multiple levels of the architecture. (For example, the discussion of the
cache model uses information from both the VEA and the OEA.) The AltiVec logo in the
margin indicates a substantial reference to the AltiVec architecture.

About This Book xxxvii

Audience

Additionally, the MPC7400 implements the AltiVecª technology resources. There are two
books which describe the AltiVec technology:

¥ AltiVec Technology Programming Environments Manual (AltiVec PEM) is used as a
reference guide for programmers. The AltiVec PEM provides a description for each
instruction that includes the instruction format, an individualized legend that
provides such information as the level(s) of the PowerPC architecture in which the
instruction may be found, the privilege level of the instruction, and Þgures to help in
understanding how the instruction works.

¥ AltiVec Technology Programming Interface (AltiVec PI) is used to provide an
efÞcient and expressive mechanism for programmers to access AltiVec technologyÕs
functionality from programming languages such as C and C++. The AltiVec PI
deÞnes a programming model for use with the AltiVec instruction set extension to
the PowerPC architecture. There are three types of programming interfaces
described in the document:

The PowerPC Architecture: A SpeciÞcation for a New Family of RISC Processors deÞnes
the architecture from the perspective of the three programming environments and remains
the deÞning document for the PowerPC architecture. For information about ordering
PowerPC documentation, see ÒSuggested Reading,Ó on page xxxix.

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the
readersÕ responsibility to be sure they are using the most recent version of the
documentation. For more information, contact your sales representative or visit our web
site at http://www.motorola.com/semiconductors.

To locate any published errata or updates for this document, refer to the world-wide web at
http://www.mot.motorola.com/semiconductors.

Audience
This manual is intended for system software and hardware developers and applications
programmers who want to develop products for the MPC7400. It is assumed that the reader
understands operating systems, microprocessor system design, basic principles of RISC
processing, and details of the PowerPC architecture.

Organization
Following is a summary and a brief description of the major sections of this manual:

¥ Chapter 1, ÒOverview,Ó is useful for readers who want a general understanding of
the features and functions of the PowerPC architecture and the MPC7400. This
chapter describes the ßexible nature of the PowerPC architecture deÞnition, and

xxxviii MPC7400 RISC Microprocessor UserÕs Manual

Organization

provides an overview of how the PowerPC architecture deÞnes the register set,
operand conventions, addressing modes, instruction set, cache model, exception
model, and memory management model.

¥ Chapter 2, ÒProgramming Model,Ó is useful for software engineers who need to
understand the MPC7400-speciÞc registers, operand conventions, and details
regarding how PowerPC instructions are implemented on the MPC7400.
Instructions are organized by function.

¥ Chapter 3, ÒL1 and L2 Cache Operation,Ó discusses the cache and memory model as
implemented on the MPC7400.

¥ Chapter 4, ÒExceptions,Ó describes the exception model deÞned in the PowerPC
OEA and the speciÞc exception model implemented on the MPC7400.

¥ Chapter 5, ÒMemory Management,Ó describes the MPC7400Õs implementation of
the memory management unit speciÞcations provided by the PowerPC OEA for
PowerPC processors.

¥ Chapter 6, ÒInstruction Timing,Ó provides information about latencies, interlocks,
special situations, and various conditions to help make programming more efÞcient.
This chapter is of special interest to software engineers and system designers.

¥ Chapter 7, ÒThe AltiVec Technology Implementation,Ó summarizes the features and
functionality provided by the implementation of the AltiVec technology.

¥ Chapter 8, ÒSignal Descriptions,Ó provides descriptions of individual signals of the
MPC7400.

¥ Chapter 9, ÒSystem Interface Operation,Ó describes signal timings for various
operations. It also provides information for interfacing to the MPC7400.

¥ Chapter 10, ÒPower and Thermal Management,Ó provides information about power
saving and thermal management modes for the MPC7400.

¥ Chapter 11, ÒPerformance Monitor,Ó describes the operation of the performance
monitor diagnostic tool incorporated in the MPC7400.

¥ Appendix A, ÒMPC7400 Instruction Set Listings,Ó lists all the PowerPCª
instructions while indicating those instructions that are not implemented by the
MPC7400; it also includes the instructions that are speciÞc to the MPC7400.
Instructions are grouped according to mnemonic, opcode, function, and form. Also
included is a quick reference table that contains general information, such as the
architecture level, privilege level, and form, and indicates if the instruction is 64-bit
and optional.

¥ Appendix B, ÒInstructions Not Implemented,Ó provides a list of the 32-bit and 64-bit
PowerPC instructions that are not implemented in the MPC7400.

¥ This manual also includes a glossary and an index.

About This Book xxxix

Suggested Reading

Suggested Reading
This section lists additional reading that provides background for the information in this
manual as well as general information about the PowerPC architecture.

General Information

The following documentation provides useful information about the PowerPC architecture
and computer architecture in general:

¥ The following books are available from the Morgan-Kaufmann Publishers, 340 Pine
Street, Sixth Floor, San Francisco, CA 94104; Tel. (800) 745-7323 (U.S.A.), (415)
392-2665 (International); web site: www.mkp.com; internet address:
mkp@mkp.com.

Ñ The PowerPC Architecture: A SpeciÞcation for a New Family of RISC
Processors, Second Edition, by International Business Machines, Inc.

Updates to the architecture speciÞcation are accessible via the world-wide web
at http://www.austin.ibm.com/tech/ppc-chg.html.

Ñ PowerPC Microprocessor Common Hardware Reference Platform: A System
Architecture, by Apple Computer, Inc., International Business Machines, Inc.,
and Motorola, Inc.

Ñ Macintosh Technology in the Common Hardware Reference Platform, by Apple
Computer, Inc.

Ñ Computer Architecture: A Quantitative Approach, Second Edition, by
John L. Hennessy and David A. Patterson

Ñ Computer Organization and Design: The Hardware/Software Interface, Second
Edition, by David A. Patterson and John L. Hennessy.

¥ Inside Macintosh: RISC System Software, Addison-Wesley Publishing Company,
One Jacob Way, Reading, MA, 01867; Tel. (800) 282-2732 (U.S.A.), (800)
637-0029 (Canada), (716) 871-6555 (International).

PowerPC Documentation

The PowerPC documentation is available from the sources listed on the back cover of this
manual:

¥ UserÕs manualsÑThese books provide details about individual PowerPC
implementations and are intended to be used in conjunction with The Programming
Environments Manual.

xl MPC7400 RISC Microprocessor UserÕs Manual

Suggested Reading

¥ PowerPC Microprocessor Family: The Programming Environments for 32-Bit
Microprocessors, Rev. 1:
Motorola order #: MPCFPE32B/AD

This book provides information about resources deÞned by the PowerPC
architecture that are common to PowerPC processors.

¥ MPC7400 RISC Microprocessor Family: MPC7400 Hardware SpeciÞcations:
Motorola order #: MPC7400EC/D

This document provides speciÞc data regarding bus timing, signal behavior, and AC,
DC, and thermal characteristics, as well as other design considerations for each
PowerPC implementation.

¥ MPC7400 RISC Microprocessor Technical Summary:
Motorola order #: MPC7400TS/D

Each PowerPC implementation has a technical summary that provides an overview
of its features. This document is roughly the equivalent to the overview (Chapter 1)
of an implementationÕs userÕs manual.

¥ PowerPC Microprocessor Family: 60x Bus Interface for 32-Bit Microprocessors:
Motorola order #: MPCBUSIF/AD

This document provides a detailed functional description of the 60x bus interface, as
implemented on the MPC603, MPC604, and MPC750 families of PowerPC
microprocessors; and it is intended to help system and chip set developers by
providing a centralized reference source to identify the bus interface presented by
the 60x family of PowerPC microprocessors.

¥ PowerPC Microprocessor Family: The ProgrammerÕs Reference Guide:
Motorola order #: MPCPRG/D

This document is a concise reference that includes the register summary, memory
control model, exception vectors, and the PowerPC instruction set.

PowerPC Microprocessor Family: The ProgrammerÕs Pocket Reference Guide:
Motorola order #: MPCPRGREF/D

This foldout card provides an overview of the PowerPC registers, instructions, and
exceptions for 32-bit implementations.

¥ Application notesÑThese short documents contain useful information about
speciÞc design issues useful to programmers and engineers working with PowerPC
processors.

¥ Documentation for support chipsÑThese include the following:

Ñ MPC106 PCI Bridge/Memory Controller UserÕs Manual:
Motorola order #: MPC106UM/AD

Ñ MPC107 PCI Bridge/Memory Controller Technical Summary:
Motorola order #: MPC107TS/D

About This Book xli

Conventions

Additional literature on PowerPC implementations is being released as new processors
become available. For a current list of PowerPC documentation, refer to the world-wide
web at http://www.motorola.com/semiconductors.

Conventions
Throughout the documentation when a register or bit is ÒsetÓ it means the register or bit is
set to 1, and when a register is ÒclearedÓ it means the register or bit is set to 0.

This document uses the following notational conventions:

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for example, bcctrx.

Book titles in text are set in italics

Internal signals are set in italics, for example, qual BG

Book titles in text are set in italics.

0x0 PreÞx to denote hexadecimal number

0b0 PreÞx to denote binary number

rA, rB Instruction syntax used to identify a source GPR

rD Instruction syntax used to identify a destination GPR

frA, frB, frC Instruction syntax used to identify a source FPR

frD Instruction syntax used to identify a destination FPR

REG[FIELD] Abbreviations or acronyms for registers are shown in uppercase text.
SpeciÞc bits, Þelds, or ranges appear in brackets. For example,
MSR[LE] refers to the little-endian mode enable bit in the machine
state register.

x In certain contexts, such as a signal encoding, this indicates a donÕt
care.

n Used to express an undeÞned numerical value

Â NOT logical operator

& AND logical operator

| OR logical operator

Indicates reserved bits or bit Þelds in a register. Although these bits
may be written to as either ones or zeros, they are always read as
zeros.

Indicates functionality deÞned by the AltiVec technology.

0 0 0 0

xlii MPC7400 RISC Microprocessor UserÕs Manual

Acronyms and Abbreviations

Acronyms and Abbreviations
Table i contains acronyms and abbreviations that are used in this document.

Table i. Acronyms and Abbreviated Terms

Term Meaning

ALU Arithmetic logic unit

ASR Address space register

BAT Block address translation

BIST Built-in self test

BHT Branch history table

BIU Bus interface unit

BPU Branch processing unit

BTIC Branch target instruction cache

BSDL Boundary-scan description language

BUID Bus unit ID

CMOS Complementary metal-oxide semiconductor

COP Common on-chip processor

CR Condition register

CQ Completion queue

CTR Count register

DABR Data address breakpoint register

DAR Data address register

DBAT Data BAT

DCMP Data TLB compare

DEC Decrementer register

DLL Delay-locked loop

DMISS Data TLB miss address

DMMU Data MMU

DSISR Register used for determining the source of a DSI exception

DTLB Data translation lookaside buffer

EA Effective address

EAR External access register

ECC Error checking and correction

FIFO First-in-Þrst-out

About This Book xliii

Acronyms and Abbreviations

FPR Floating-point register

FPSCR Floating-point status and control register

FPU Floating-point unit

GPR General-purpose register

HIDn Hardware implementation-dependent register

IABR Instruction address breakpoint register

IBAT Instruction BAT

ICTC Instruction cache throttling control register

IEEE Institute for Electrical and Electronics Engineers

IMMU Instruction MMU

ITLB Instruction translation lookaside buffer

IQ Instruction queue

ITLB Instruction translation lookaside buffer

IU Integer unit

JTAG Joint Test Action Group

L2 Secondary cache (Level 2 cache)

L2CR L2 cache control register

LIFO Last-in-Þrst-out

LR Link register

LRU Least recently used

LSB Least-signiÞcant byte

lsb Least-signiÞcant bit

LSU Load/store unit

LSQ Least-signiÞcant quad-word

lsq Least-signiÞcant quad-word

MEI ModiÞed/exclusive/invalid

MERSI ModiÞed/exclusive/recent/shared/invalid

MESI ModiÞed/exclusive/shared/invalid

MMCRn Monitor mode control registers

MMU Memory management unit

MSB Most-signiÞcant byte

msb Most-signiÞcant bit

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning

xliv MPC7400 RISC Microprocessor UserÕs Manual

Acronyms and Abbreviations

MSQ Most-signiÞcant quad-word

msq Most-signiÞcant quad-word

MSR Machine state register

NaN Not a number

No-op No operation

OEA Operating environment architecture

PID Processor identiÞcation tag

PLL Phase-locked loop

PLRU Pseudo least recently used

PMCn Performance monitor counter registers

POR Power-on reset

POWER Performance Optimized with Enhanced RISC architecture

PTE Page table entry

PTEG Page table entry group

PVR Processor version register

RAW Read-after-write

RISC Reduced instruction set computing

RTL Register transfer language

RWITM Read with intent to modify

RWNITM Read with no intent to modify

SDA Sampled data address register

SDR1 Register that speciÞes the page table base address for virtual-to-physical address translation

SIA Sampled instruction address register

SIMM Signed immediate value

SPR Special-purpose register

SRn Segment register

SRU System register unit

SRR0 Machine status save/restore register 0

SRR1 Machine status save/restore register 1

SRU System register unit

TB Time base facility

TBL Time base lower register

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning

About This Book xlv

Terminology Conventions

Terminology Conventions
Table ii describes terminology conventions used in this manual and the equivalent
terminology used in the PowerPC architecture speciÞcation.

TBU Time base upper register

THRMn Thermal management registers

TLB Translation lookaside buffer

TTL Transistor-to-transistor logic

UIMM Unsigned immediate value

UISA User instruction set architecture

UMMCRn User monitor mode control registers

UPMCn User performance monitor counter registers

USIA User sampled instruction address register

VEA Virtual environment architecture

VPN Virtual page number

VR Vector register

VSCR Vector status and control register

VSID V

VTQ Vector touch queue

WAR Write-after-read

WAW Write-after-write

WIMG Write-through/caching-inhibited/memory-coherency enforced/guarded bits

XATC Extended address transfer code

XER Register used for indicating conditions such as carries and overßows for integer operations

Table ii. Terminology Conventions

The Architecture SpeciÞcation This Manual

Data storage interrupt (DSI) DSI exception

Extended mnemonics SimpliÞed mnemonics

Fixed-point unit (FXU) Integer unit (IU)

Instruction storage interrupt (ISI) ISI exception

Interrupt Exception

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning

xlvi MPC7400 RISC Microprocessor UserÕs Manual

Terminology Conventions

Table iii describes instruction Þeld notation used in this manual.

Privileged mode (or privileged state) Supervisor-level privilege

Problem mode (or problem state) User-level privilege

Real address Physical address

Relocation Translation

Storage (locations) Memory

Storage (the act of) Access

Store in Write back

Store through Write through

Table iii. Instruction Field Conventions

The Architecture SpeciÞcation Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)

BF, BFA crfD, crfS (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

U IMM

UI UIMM

/, //, /// 0...0 (shaded)

Table ii. Terminology Conventions (Continued)

The Architecture SpeciÞcation This Manual

Chapter 1. Overview 1-1

Chapter 1
Overview
This chapter provides an overview of the MPC7400 microprocessor features, including a
block diagram showing the major functional components. It also provides information
about how the MPC7400 implementation complies with the PowerPCª architecture
deÞnition.

AltiVecª Technology and the MPC7400

AltiVec technology features are described in the following sections:

¥ AltiVec registers are described in Table 1-3.

¥ AltiVec instructions are described in Section 1.5.2, ÒAltiVec Instruction Set.Ó

¥ Execution units for AltiVec instructions are described in Section 1.2.2.4.1, ÒAltiVec
Vector Permute Unit (VPU),Ó and Section 1.2.2.4.2, ÒAltiVec Vector Arithmetic
Logic Unit (VALU).Ó

1.1 MPC7400 Microprocessor Overview
This section describes the features and general operation of the MPC7400 and provides a
block diagram showing major functional units. The MPC7400 is an implementation of the
PowerPC microprocessor family of reduced instruction set computer (RISC)
microprocessors. The MPC7400 implements the 32-bit portion of the PowerPC
architecture, which provides 32-bit effective addresses, integer data types of 8, 16, and 32
bits, and ßoating-point data types of 32 and 64 bits.

The MPC7400 also implements the AltiVec instruction set architectural extension of the
PowerPC architecture. The MPC7400 is a superscalar processor that can dispatch and
complete two instructions simultaneously. It incorporates the following execution units:

¥ Floating-point unit (FPU)

¥ Branch processing unit (BPU)

¥ System register unit (SRU)

¥ Load/store unit (LSU)

¥ Two integer units (IUs):

Ñ IU1 executes all integer instructions.

Ñ IU2 executes all integer instructions except multiply and divide instructions.

1-2 MPC7400 RISC Microprocessor UserÕs Manual

MPC7400 Microprocessor Overview

¥ Two vector units that support AltiVec instructions:

Ñ Vector permute unit (VPU)

Ñ Vector arithmetic logic unit (VALU), which consists of the following
independent subunits:

Ð Vector simple integer unit (VSIU)

Ð Vector complex integer unit (VCIU)

Ð Vector ßoating-point unit (VFPU)

The ability to execute several instructions in parallel and the use of simple instructions with
rapid execution times yield high efÞciency and throughput for MPC7400-based systems.
Most integer instructions (including VSIU instructions) have a one-clock cycle execution
latency.

The FPU and VFPU are pipelined; that is, the tasks they perform are broken into subtasks
executed in successive stages. Typically, a ßoating-point instruction occupies only one of
the three FPU stages at a time, freeing the previous stage to work on the next ßoating-point
instruction. Thus, three ßoating-point instructions can be in the FPU execute stage at a time
and one ßoating-point instruction can Þnish executing per processor clock cycle.

The VFPU has four pipeline stages when executing in non-Java mode and Þve when
executing in Java mode.

Note that for the MPC7400, double- and single-precision versions of ßoating-point
instructions have the same latency. For example, a ßoating-point multiply-add instruction
takes three cycles to execute, regardless of whether it is single- (fmadds) or
double-precision (fmadd).

Figure 1-1 shows the parallel organization of the execution units (shaded in the diagram).
The instruction unit fetches, dispatches, and predicts branch instructions. Note that this is
a conceptual model that shows basic features rather than attempting to show how features
are implemented physically.

The MPC7400 has independent on-chip, 32-Kbyte, eight-way set-associative, physically-
addressed L1 (level-one) caches for instructions and data and independent instruction and
data memory management units (MMUs). Each MMU has a 128-entry, two-way
set-associative translation lookaside buffer (DTLB and ITLB) that saves recently used page
address translations. Block address translation is implemented with the four-entry
instruction and data block address translation (IBAT and DBAT) arrays, deÞned by the
PowerPC architecture. During block translation, effective addresses are compared
simultaneously with all four BAT entries, as described in Chapter 5, ÒMemory
Management.Ó For information about the L1 caches, see Chapter 3, ÒL1 and L2 Cache
Operation.Ó

The L2 cache is implemented with an on-chip, two-way, set-associative tag memory, and
with external, synchronous SRAMs for data storage. The external SRAMs are accessed
through a dedicated L2 cache port that supports a single bank of 0.5, 1, or 2 Mbyte of

Chapter 1. Overview 1-3

MPC7400 Microprocessor Overview

synchronous SRAMs. For information about the L2 cache implementation, see Chapter 3,
ÒL1 and L2 Cache Operation.Ó

The MPC7400 has four software-controllable power-saving modes. Three static modes,
doze, nap, and sleep, progressively reduce power dissipation. When functional units are
idle, a dynamic power management mode causes those units to enter a low-power mode
automatically without affecting operational performance, software execution, or external
hardware. The MPC7400 also provides a thermal assist unit (TAU) and a way to reduce the
instruction fetch rate for limiting power dissipation. Power management is described in
Chapter 10, ÒPower and Thermal Management.Ó

The MPC7400 uses an advanced CMOS process technology and is fully compatible with
TTL devices.

1-4 MPC7400 RISC Microprocessor UserÕs Manual

MPC7400 Microprocessor Overview

Figure 1-1. MPC7400 Microprocessor Block Diagram

Ad
di

tio
na

l F
ea

tu
re

s
¥ T

im
e

Ba
se

 C
ou

nt
er

/D
ec

re
m

en
te

r
¥ C

lo
ck

 M
ul

tip
lie

r
¥ J

TA
G

/C
O

P
In

te
rfa

ce
¥ T

he
rm

al
/P

ow
er

 M
an

ag
em

en
t

¥ P
er

fo
rm

an
ce

 M
on

ito
r

+

+

Fe
tc

he
r

Br
an

ch
 P

ro
ce

ss
in

g

BT
IC

(6
4

En
try

)

+
 x

 Ö
F

P
S

C
R

VS
C

R
FP

SC
R

L2
C

R

C
TR

LR

PAEA

+
 x

 Ö

In
st

ru
ct

io
n

Un
it

Un
it

In
st

ru
ct

io
n

Q
ue

ue
(6

 W
or

d)

2
In

st
ru

ct
io

ns

R
es

er
va

tio
n

In
te

ge
r

Sy
st

em

D
is

pa
tc

h
U

ni
t

64
-B

it
(2

 In
st

ru
ct

io
ns

)

12
8-

Bi
t

(4
 In

st
ru

ct
io

ns
)

32
-B

it

Fl
oa

tin
g-

Po
in

t U
ni

t
32

-B
it

64
-B

it

R
es

er
va

tio
n

Lo
ad

/S
to

re
 U

ni
t

(E
A

C
al

cu
la

tio
n)

Fi
ni

sh
ed

32
-B

it

Co
m

pl
et

io
n

Un
it

C
om

pl
et

io
n

Q
ue

ue
(8

 E
nt

ry
)

Ta
gs

32
-K

by
te

D
 C

ac
he

M
em

or
y

Su
bs

ys
te

m

In
st

ru
ct

io
n

D
at

a
R

el
oa

d
L2

 C
on

tro
lle

r
L2

 T
ag

s
Bu

s
In

te
rfa

ce
 U

ni
t

L2
 C

as
to

ut

32
-B

it
Ad

dr
es

s
Bu

s
64

-B
it

D
at

a
Bu

s

18
-B

it
L2

 A
dd

re
ss

 B
us

64
-B

it
L2

 D
at

a
Bu

s

In
te

ge
r

St
at

io
n

R
es

er
va

tio
n

St
at

io
n

R
es

er
va

tio
n

St
at

io
n

Re
gi

st
er

 U
ni

t
Un

it
1

Un
it

2

R
es

er
va

tio
n

St
at

io
n

FP
R

 F
ile

6
R

en
am

e
Bu

ffe
rs

St
at

io
n

(2
 E

nt
ry

)
G

PR
 F

ile

6
R

en
am

e
Bu

ffe
rs

V
C

IU

Ve
ct

or

Ve
ct

or
 A

LU

R
es

er
va

tio
n

St
at

io
n

R
es

er
va

tio
n

St
at

io
n

Pe
rm

ut
e

VR
 F

ile

6
R

en
am

e
Bu

ffe
rs

Un
it

64
-B

it

R
el

oa
d

Ta
bl

e

V
S

IU
V

F
P

U

12
8-

Bi
t

12
8-

Bi
t

Ab
ilit

y
to

 c
om

pl
et

e
up

C
om

pl
et

ed

In
st

ru
ct

io
n

M
M

U

SR
s

(S
ha

do
w

)

12
8-

En
try

IB
AT

Ar
ra

y
IT

LB
BH

T
(5

12
 E

nt
ry

)

L2
 M

is
s

D
at

a
Tr

an
sa

ct
io

n
Ta

bl
e

Ta
gs

32
-K

by
te

I C
ac

he

D
at

a
R

el
oa

d
Q

ue
ue

In
st

ru
ct

io
n

R
el

oa
d

Q
ue

ue

to
 tw

o
in

st
ru

ct
io

ns
 p

er
 c

lo
ck

Da
ta

 M
M

U

SR
s

(O
rig

in
al

)

12
8-

En
try

D
BA

T
Ar

ra
y

D
TL

B Lo
ad

 F
ol

d

L1
St

or
es

St
or

es

O
pe

ra
tio

ns

L2
 D

at
a

Tr
an

sa
ct

io
n

Ve
ct

or
To

uc
h

Q
ue

ue

Chapter 1. Overview 1-5

MPC7400 Microprocessor Features

1.2 MPC7400 Microprocessor Features
This section lists features of the MPC7400. The interrelationships of these features are
shown in Figure 1-1.

1.2.1 Overview of the MPC7400 Microprocessor Features

Major features of the MPC7400 are as follows:

¥ High-performance, superscalar microprocessor

Ñ As many as four instructions can be fetched from the instruction cache per clock
cycle

Ñ As many as two instructions can be dispatched per clock

Ñ As many as eight instructions can execute per clock (including two integer
instructions and four AltiVec instructions)

Ñ Single-clock-cycle execution for most instructions

Ñ One instruction per clock throughput for most instructions

¥ Eight independent execution units and three register Þles

Ñ Branch processing unit (BPU) features static and dynamic branch prediction

Ð 64-entry (16-set, four-way set-associative) branch target instruction cache
(BTIC), a cache of branch instructions that have been encountered in
branch/loop code sequences. If a target instruction is in the BTIC, it is fetched
into the instruction queue a cycle sooner than it can be made available from
the instruction cache. Typically, if a fetch access hits the BTIC, it provides the
Þrst two instructions in the target stream.

Ð 512-entry branch history table (BHT) with two bits per entry for four levels of
predictionÑnot-taken, strongly not-taken, taken, strongly taken

Ð Branch instructions that do not update the count register (CTR) or link register
(LR) are removed from the instruction stream.

Ñ Two integer units (IUs) that share 32 GPRs for integer operands

Ð IU1 can execute any integer instruction.

Ð IU2 can execute all integer instructions except multiply and divide
instructions (shift, rotate, arithmetic, and logical instructions). Most
instructions that execute in the IU2 take one cycle to execute. The IU2 has a
single-entry reservation station.

Ñ Three-stage FPU and a 32-entry FPR Þle

Ð Fully IEEE 754-1985-compliant FPU for both single- and double-precision
operations

Ð Supports non-IEEE mode for time-critical operations

Ð Hardware support for denormalized numbers

1-6 MPC7400 RISC Microprocessor UserÕs Manual

MPC7400 Microprocessor Features

Ð Single-entry reservation station

Ð Thirty-two 64-bit FPRs for single- or double-precision operands

Ñ Two vector units and 32-entry vector register Þle (VRs)

Ð Vector permute unit (VPU)

Ð Vector arithmetic logic unit (VALU), which consists of the three independent
subunits: vector simple integer unit (VSIU), vector complex integer unit
(VCIU), and vector ßoating-point unit (VFPU)

Ñ Two-stage LSU

Ð Supports integer, ßoating-point and vector instruction load/store trafÞc

Ð Four-entry vector touch queue (VTQ) supports all four architected AltiVec
data stream operations

Ð Two-entry reservation station

Ð Single-cycle, pipelined load or store cache accesses (byte, half, word, double
word) including misaligned accesses within a double-word boundary

Ð Dedicated adder calculates effective addresses (EAs)

Ð Supports store gathering

Ð Performs alignment, normalization, and precision conversion for
ßoating-point data

Ð Executes cache control and TLB instructions

Ð Performs alignment, zero padding, and sign extension for integer data

Ð Hits under misses (multiple outstanding misses) supported

Ð Six-entry store queue

Ð Sequencing for load/store multiples and string operations

Ð Supports both big- and little-endian modes, including misaligned little-endian
accesses

Ñ SRU handles miscellaneous instructions

Ð Executes CR logical and move to/move from SPR instructions (mtspr and
mfspr)

Ð Single-entry reservation station

¥ Rename buffers

Ñ Six GPR rename buffers

Ñ Six FPR rename buffers

Ñ Six VR rename buffers

Ñ Condition register buffering supports two CR writes per clock

Chapter 1. Overview 1-7

MPC7400 Microprocessor Features

¥ Completion unit

Ñ The completion unit retires an instruction from the eight-entry reorder buffer
(completion queue) when all instructions ahead of it have been completed, the
instruction has Þnished execution, and no exceptions are pending.

Ñ Guarantees sequential programming model (precise exception model)

Ñ Monitors all dispatched instructions and retires them in order

Ñ Tracks unresolved branches and ßushes instructions from the mispredicted
branch

Ñ Retires as many as two instructions per clock

¥ Separate on-chip L1 instruction and data caches (Harvard architecture)

Ñ 32-Kbyte, eight-way set-associative instruction and data caches

Ñ Pseudo least-recently-used (PLRU) replacement algorithm

Ñ 32-byte (eight-word) L1 cache block

Ñ Physically indexed/physical tags. (Note that the PowerPC architecture refers to
physical address space as real address space.)

Ñ Cache write-back or write-through operation programmable on a per-page or
per-block basis

Ñ Instruction cache can provide four instructions per clock; data cache can provide
four words per clock

Ñ Caches can be disabled in software

Ñ Caches can be locked in software

Ñ Data cache coherency (MEI, MESI, and MERSI) maintained in hardware

Ñ Separate copy of data cache tags for efÞcient snooping

Ñ No snooping of instruction cache except for icbi instruction

Ñ Data cache supports AltiVec LRU and transient instructions, as described in
Section 1.5.2, ÒAltiVec Instruction Set.Ó

Ñ The critical double word is made available to the requesting unit when it is burst
into the reload data queue. The caches are nonblocking, so they can be accessed
during this operation.

¥ Level 2 (L2) cache interface

Ñ L2 is fully pipelined to provide 64 bits per L2 clock cycle to the L1 caches

Ñ On-chip two-way set-associative L2 cache controller and tags

Ñ External data SRAMs

Ñ Support for 512-Kbyte, 1-Mbyte, and 2-Mbyte L2 caches

Ñ Copyback or write-through data cache (on a page basis, or for all L2)

Ñ 32-byte (512 K), 64-byte (1 M), or 128-byte (2 M) sectored line size

1-8 MPC7400 RISC Microprocessor UserÕs Manual

MPC7400 Microprocessor Features

Ñ Supports pipelined (register-register) synchronous burst SRAMs, PB3 pipelined
(register-register) synchronous burst SRAMs, and pipelined (register-register)
late-write synchronous burst SRAMs

Ñ Core-to-L2 frequency divisors of ¸1, ¸1.5, ¸2, ¸2.5, ¸3, ¸3.5, and ¸4 supported

Ñ 64-bit data bus

¥ Separate memory management units (MMUs) for instructions and data

Ñ 52-bit virtual address; 32-bit physical address

Ñ Address translation for 4-Kbyte pages, variable-sized blocks, and 256-Mbyte
segments

Ñ Memory programmable as write-back/write-through, cacheable/noncacheable,
and coherency enforced/coherency not enforced on a page or block basis

Ñ Separate IBATs and DBATs (four each) also deÞned as SPRs

Ñ Separate instruction and data translation lookaside buffers (TLBs)

Ð Both TLBs are 128-entry, two-way set associative, and use LRU replacement
algorithm

Ð TLBs are hardware-reloadable (that is, the page table search is performed in
hardware)

¥ EfÞcient data ßow

Ñ All data buses between VRs, LSU, L1 and L2 caches, and the bus are 128 bits
wide

Ñ The L1 data cache is fully pipelined to provide 128 bits/cycle to/from the VRs

Ñ The L2 cache is fully pipelined to provide 64 bits per L2 clock cycle to the L1
caches

Ñ Up to 8 outstanding, out-of-order, cache misses allowed between the L1 data
cache and L2/bus

Ñ Up to seven out-of-order transactions on the bus, one in progress and six pending

Ñ Load folding to fold new L1 data cache misses into older, outstanding load and
store misses to the same line

Ñ Store miss merging for multiple store misses to the same line. Only coherency
action taken (address-only) for store misses merged to all 32 bytes of a cache
block (no data tenure needed).

Ñ Two-entry Þnished store queue and 4-entry completed store queue between the
LSU and the L1 data cache

Ñ Separate additional queues for efÞcient buffering of outbound data (such as cast
outs and write throughs) from the L1 data cache and L2

¥ Multiprocessing support features include the following:

Ñ Hardware-enforced, cache coherency protocols for data cache

Ð 3-state (MEI) similar to the MPC750

Chapter 1. Overview 1-9

MPC7400 Microprocessor Features

Ð 4-state (MESI) similar to the MPC604

Ð 5-state (MERSI), where the new R state allows shared intervention

Ñ Load/store with reservation instruction pair for atomic memory references,
semaphores, and other multiprocessor operations

¥ Power and thermal management

Ñ Three static modes, doze, nap, and sleep, progressively reduce power
dissipation:

Ð DozeÑAll the functional units are disabled except for the time
base/decrementer registers and the bus snooping logic.

Ð NapÑThe nap mode further reduces power consumption by disabling bus
snooping, leaving only the time base register and the PLL in a powered state.

Ð SleepÑAll internal functional units are disabled, after which external system
logic may disable the PLL and SYSCLK.

Ñ Thermal management facility provides software-controllable thermal
management. Thermal management is performed through the use of three
supervisor-level registers and an MPC7400-speciÞc thermal management
exception.

Ñ Instruction cache throttling provides control of instruction fetching to limit
power consumption.

¥ Performance monitor can be used to help debug system designs and improve
software efÞciency.

¥ In-system testability and debugging features through JTAG boundary-scan
capability

1.2.2 Instruction Flow

As shown in Figure 1-1, the MPC7400 instruction unit provides centralized control of
instruction ßow to the execution units. The instruction unit contains a sequential fetcher,
six-entry instruction queue (IQ), dispatch unit, and BPU. It determines the address of the
next instruction to be fetched based on information from the sequential fetcher and from
the BPU.

See Chapter 6, ÒInstruction Timing,Ó for a detailed discussion of instruction timing.

The sequential fetcher loads instructions from the instruction cache into the instruction
queue. The BPU extracts branch instructions from the sequential fetcher. Branch
instructions that cannot be resolved immediately are predicted using either the
MPC7400-speciÞc dynamic branch prediction or the architecture-deÞned static branch
prediction.

1-10 MPC7400 RISC Microprocessor UserÕs Manual

MPC7400 Microprocessor Features

Branch instructions that do not affect the LR or CTR are removed from the instruction
stream. The BPU folds branch instructions when a branch is taken (or predicted as taken);
branch instructions that are not taken, or predicted as not taken, are removed from the
instruction stream through the dispatch mechanism.

Instructions issued beyond a predicted branch do not complete execution until the branch
is resolved, preserving the programming model of sequential execution. If branch
prediction is incorrect, the instruction unit ßushes all predicted path instructions, and
instructions are fetched from the correct path.

1.2.2.1 Instruction Queue and Dispatch Unit

The instruction queue (IQ), shown in Figure 1-1, holds as many as six instructions and
loads up to four instructions from the instruction cache during a single processor clock
cycle. The instruction fetcher continuously attempts to load as many instructions as there
were vacancies in the IQ in the previous clock cycle. All instructions except branch, Return
from Interrupt (rÞ), System Call (sc), and Instruction Synchronize (isync) instructions are
dispatched to their respective execution units from the bottom two positions in the
instruction queue (IQ0 and IQ1) at a maximum rate of two instructions per cycle.
Reservation stations are provided for the IU1, IU2, FPU, LSU, SRU, VPU, and VALU. The
dispatch unit checks for source and destination register dependencies, determines whether
a position is available in the completion queue, and inhibits subsequent instruction
dispatching as required.

Branch instructions can be detected, decoded, and predicted from anywhere in the
instruction queue. For a more detailed discussion of instruction dispatch, see Section 6.3.4,
ÒInstruction Dispatch and Completion Considerations.Ó

1.2.2.2 Branch Processing Unit (BPU)

The BPU receives branch instructions from the sequential fetcher and performs CR
lookahead operations on conditional branches to resolve them early, achieving the effect of
a zero-cycle branch in many cases.

Unconditional branch instructions and conditional branch instructions in which the
condition is known can be resolved immediately. For unresolved conditional branch
instructions, the branch path is predicted using either the architecture-deÞned static branch
prediction or the MPC7400-speciÞc dynamic branch prediction. Dynamic branch
prediction is enabled if HID0[BHT] = 1.

When a prediction is made, instruction fetching, dispatching, and execution continue from
the predicted path, but instructions cannot complete and write back results to architected
registers until the prediction is determined to be correct (resolved). When a prediction is
incorrect, the instructions from the incorrect path are ßushed from the processor and
processing begins from the correct path. The MPC7400 allows a second branch instruction
to be predicted; instructions from the second predicted instruction stream can be fetched
but cannot be dispatched.

Chapter 1. Overview 1-11

MPC7400 Microprocessor Features

Dynamic prediction is implemented using a 512-entry branch history table (BHT), a cache
that provides two bits per entry that together indicate four levels of prediction for a branch
instructionÑnot-taken, strongly not-taken, taken, strongly taken. When dynamic branch
prediction is disabled, the BPU uses a bit in the instruction encoding to predict the direction
of the conditional branch. Therefore, when an unresolved conditional branch instruction is
encountered, the MPC7400 executes instructions from the predicted target stream although
the results are not committed to architected registers until the conditional branch is
resolved. This execution can continue until a second unresolved branch instruction is
encountered.

When a branch is taken (or predicted as taken), the instructions from the untaken path must
be ßushed and the target instruction stream must be fetched into the IQ. The BTIC is a
64-entry, four-way set associative cache that contains the most recently used branch target
instructions, typically in pairs. When an instruction fetch hits in the BTIC, the instructions
arrive in the instruction queue in the next clock cycle, a clock cycle sooner than they would
arrive from the instruction cache. Additional instructions arrive from the instruction cache
in the next clock cycle. The BTIC reduces the number of missed opportunities to dispatch
instructions and gives the processor a one-cycle head start on processing the target stream.

The BPU contains an adder to compute branch target addresses and three user-control
registersÑthe link register (LR), the count register (CTR), and the condition register (CR).
The BPU calculates the return pointer for subroutine calls and saves it into the LR for
certain types of branch instructions. The LR also contains the branch target address for the
Branch Conditional to Link Register (bclrx) instruction. The CTR contains the branch
target address for the Branch Conditional to Count Register (bcctrx) instruction. Because
the LR and CTR are SPRs, their contents can be copied to or from any GPR. Because the
BPU uses dedicated registers rather than GPRs or FPRs, execution of branch instructions
is largely independent from execution of integer and ßoating-point instructions.

1.2.2.3 Completion Unit

The completion unit operates closely with the instruction unit. Instructions are fetched and
dispatched in program order. At the point of dispatch, the program order is maintained by
assigning each dispatched instruction a successive entry in the eight-entry completion
queue. The completion unit tracks instructions from dispatch through execution and retires
them in program order from the two bottom entries in the completion queue (CQ0 and
CQ1).

Instructions cannot be dispatched to an execution unit unless there is a vacancy in the
completion queue. Branch instructions that do not update the CTR or LR are removed from
the instruction stream and do not take an entry in the completion queue. Instructions that
update the CTR and LR follow the same dispatch and completion procedures as non-branch
instructions, except that they are not issued to an execution unit.

Completing an instruction commits execution results to architected registers (GPRs, FPRs,
VRs, LR, and CTR). In-order completion ensures the correct architectural state when the

1-12 MPC7400 RISC Microprocessor UserÕs Manual

MPC7400 Microprocessor Features

MPC7400 must recover from a mispredicted branch or any exception. Retiring an
instruction removes it from the completion queue.

For a more detailed discussion of instruction completion, see Section 6.3.4, ÒInstruction
Dispatch and Completion Considerations.Ó

1.2.2.4 Independent Execution Units

In addition to the BPU, the MPC7400 provides the seven execution units described in the
following sections.

1.2.2.4.1 AltiVec Vector Permute Unit (VPU)

The VPU performs the following permutations on vector operands:

¥ PackÑVector pack instructions truncate the contents of two concatenated source
operands (grouped as eight words or sixteen half words) into a single result of eight
half words or sixteen bytes, respectively.

¥ UnpackÑVector unpack instructions unpack the 8 low or high bytes (or 4 low or
high half words) of one source operand into 8 half words (or 4 words) using sign
extension to Þll the most signiÞcant bytes (MSBs).

¥ MergeÑByte vector merge instructions interleave the 8 low bytes (or 8 high bytes)
from two source operands producing a result of 16 bytes. Similarly, half-word vector
merge instructions interleave the 4 low half words (or 4 high half words) of two
source operands producing a result of 8 half words, and word vector merge
instructions interleave the 2 low words (or 2 high words) from two source operands
producing a result of 4 words. The vector merge instruction has many uses, notable
among them is a way to efÞciently transpose SIMD vectors.

¥ SplatÑVector splat instructions prepare vector data for performing operations for
which one source vector is to consist of elements that all have the same value (for
example, multiplying all elements of a vector register by a constant). Vector splat
instructions also can move data. For example to multiply all elements of a vector
register by a constant, the vector splat instructions can be used to splat the scalar into
a vector register. Likewise, when storing a scalar into an arbitrary memory location,
it must be splatted into a vector register, and that register speciÞed as the source of
the store. This guarantees that the data appears in all possible positions of that scalar
size for the store.

¥ PermuteÑPermute instructions allow any byte in any two source vector registers to
be directed to any byte in the destination vector. The Þelds in a third source operand
specify from which Þeld in the source operands the corresponding destination Þeld
is to be taken. The Vector Permute (vperm) instruction provides many useful
functions. For example, it can be used efÞciently to perform table lookups and data
alignment. An example of how to use the command in aligning data is found in
Section 3.1.6, ÒQuad-Word Data Alignment,Ó in the AltiVec Technology
Programming Environments Manual.

Chapter 1. Overview 1-13

MPC7400 Microprocessor Features

¥ SelectÑData ßow in the vector unit can be controlled without branching by using a
vector compare instruction and the vector select (vsel) instruction. In this case, the
compare result vector is used directly as a mask operand to vector select
instructions.The vsel instruction selects one Þeld from one or the other of two source
operands under control of its mask operand. Use of the TRUE/FALSE compare
result vector with select in this manner produces a two instruction equivalent of
conditional execution on a per-Þeld basis.

These instructions are described in detail in Chapter 2, ÒAddressing Modes and Instruction
Set Summary,Ó in the AltiVec Technology Programming Environments Manual.

1.2.2.4.2 AltiVec Vector Arithmetic Logic Unit (VALU)

As shown in Figure 1-1, the VALU consists of the following three independent subunits:

¥ Vector simple integer unit (VSIU)Ñexecutes simple vector integer computational
instructions, such as addition, subtraction, maximum and minimum comparisons,
averaging, rotation, shifting, comparisons, and Boolean operations

¥ Vector complex integer unit (VCIU)Ñexecutes longer-latency vector integer
instructions, such as multiplication, division, multiplication/addition, and
sum-across with saturation

¥ Vector ßoating-point unit (VFPU)Ñexecutes all vector ßoating-point instructions

Although only one instruction can be dispatched to the VALU per processor clock cycle, all
three subunits can execute simultaneously. For example, if instructions are dispatched one
at a time to the VFPU, VCIU, and VSIU, all three subunits can be executing separate
instructions, and, if enough VR rename resources are available, two of them can write back
their results in the same clock cycle.

1.2.2.4.3 Integer Units (IUs)

The integer units IU1 and IU2 are shown in. The IU1 can execute any integer instruction;
the IU2 can execute any integer instruction except multiplication and division instructions.
Each IU has a single-entry reservation station that can receive instructions from the
dispatch unit and operands from the GPRs or the rename buffers.

Each IU consists of three single-cycle subunitsÑa fast adder/comparator, a subunit for
logical operations, and a subunit for performing rotates, shifts, and count-leading-zero
operations. These subunits handle all one-cycle arithmetic instructions; only one subunit
can execute an instruction at a time.

The IU1 has a 32-bit integer multiplier/divider as well as the adder, shift, and logical units
of the IU2. The multiplier supports early exit for operations that do not require full 32- x
32-bit multiplication.

Each IU has a dedicated result bus (not shown in Figure 1-1) that connects to rename
buffers.

1-14 MPC7400 RISC Microprocessor UserÕs Manual

MPC7400 Microprocessor Features

1.2.2.4.4 Floating-Point Unit (FPU)

The FPU, shown in Figure 1-1, is designed such that single-precision operations require
only a single pass, with a latency of three cycles. As instructions are dispatched to the FPUÕs
reservation station, source operand data can be accessed from the FPRs or from the FPR
rename buffers. Results in turn are written to the rename buffers and are made available to
subsequent instructions. Instructions pass through the reservation station in dispatch order.

The FPU contains a single-precision multiply-add array and the ßoating-point status and
control register (FPSCR). The multiply-add array allows the MPC7400 to efÞciently
implement multiply and multiply-add operations. The FPU is pipelined so that one single-
or double-precision instruction can be issued per clock cycle. Thirty-two 64-bit
ßoating-point registers are provided to support ßoating-point operations. Stalls due to
contention for FPRs are minimized by automatic allocation of the six ßoating-point rename
registers. The MPC7400 writes the contents of the rename registers to the appropriate FPR
when ßoating-point instructions are retired by the completion unit.

The MPC7400 supports all IEEE 754 ßoating-point data types (normalized, denormalized,
NaN, zero, and inÞnity) in hardware, eliminating the latency incurred by software
exception routines.

1.2.2.4.5 Load/Store Unit (LSU)

The LSU executes all load and store instructions as well as the AltiVec LRU and transient
instructions and provides the data transfer interface between the GPRs, FPRs, VRs, and the
cache/memory subsystem. The LSU calculates effective addresses, performs data
alignment, and provides sequencing for load/store string and multiple instructions.

Load and store instructions are issued and translated in program order; however, some
memory accesses can occur out of order. Synchronizing instructions can be used to enforce
strict ordering. When there are no data dependencies and the guarded bit for the page or
block is cleared, a maximum of one out-of-order cacheable load operation can execute per
cycle from the perspective of the LSU, with a two-cycle total latency on a cache hit. Data
returned from the cache is held in a rename register until the completion logic commits the
value to a GPR, FPR, or VR. Stores cannot be executed out of order and are held in the store
queue until the completion logic signals that the store operation is to be completed to
memory. The MPC7400 executes store instructions with a maximum throughput of one per
cycle and a three-cycle total latency to the data cache. The time required to perform the
actual load or store operation depends on the processor/bus clock ratio and whether the
operation involves the on-chip cache, the L2 cache, system memory, or an I/O device.

1.2.2.4.6 System Register Unit (SRU)

The SRU executes various system-level instructions, as well as condition register logical
operations and move to/from special-purpose register instructions. To maintain system
state, most instructions executed by the SRU are execution-serialized; that is, the
instruction is held for execution in the SRU until all previously issued instructions have

Chapter 1. Overview 1-15

MPC7400 Microprocessor Features

executed. Results from execution-serialized instructions executed by the SRU are not
available or forwarded for subsequent instructions until the instruction completes.

1.2.3 Memory Management Units (MMUs)

The MPC7400Õs MMUs support up to 4 Petabytes (252) of virtual memory and 4 Gigabytes
(232) of physical memory for instructions and data. The MMUs control access privileges for
these spaces on block and page granularities. Referenced and changed status is maintained
by the processor for each page to support demand-paged virtual memory systems.

The LSU calculates effective addresses for data loads and stores; the instruction unit
calculates effective addresses for instruction fetching. The MMU translates the effective
address to determine the correct physical address for the memory access.

The MPC7400 supports the following types of memory translation:

¥ Real addressing modeÑIn this mode, translation is disabled by clearing bits in the
machine state register (MSR): MSR[IR] for instruction fetching or MSR[DR] for
data accesses. When address translation is disabled, the physical address is identical
to the effective address.

¥ Page address translationÑtranslates the page frame address for a 4-Kbyte page size

¥ Block address translationÑtranslates the base address for blocks (128 Kbytes to 256
Mbytes)

If translation is enabled, the appropriate MMU translates the higher-order bits of the
effective address into physical address bits. The lower-order address bits (that are
untranslated and therefore, considered both logical and physical) are directed to the on-chip
caches where they form the index into the eight-way set-associative tag array. After
translating the address, the MMU passes the higher-order physical address bits to the cache
and the cache lookup completes. For caching-inhibited accesses or accesses that miss in the
cache, the untranslated lower-order address bits are concatenated with the translated
higher-order address bits; the resulting 32-bit physical address is used by the memory unit
and the system interface, which accesses external memory.

The TLBs store page address translations for recent memory accesses. For each access, an
effective address is presented for page and block translation simultaneously. If a translation
is found in both the TLB and the BAT array, the block address translation in the BAT array
is used. Usually the translation is in a TLB and the physical address is readily available to
the on-chip cache. When a page address translation is not in a TLB, hardware searches for
one in the page table following the model deÞned by the PowerPC architecture.

Instruction and data TLBs provide address translation in parallel with the on-chip cache
access, incurring no additional time penalty in the event of a TLB hit. The MPC7400Õs
instruction and data TLBs are 128-entry, two-way set-associative caches that contain
address translations. The MPC7400 automatically generates a TLB search on a TLB miss.

1-16 MPC7400 RISC Microprocessor UserÕs Manual

MPC7400 Microprocessor Features

1.2.4 On-Chip Instruction and Data Caches

The MPC7400 implements separate L1 instruction and data caches. Each cache is 32-Kbyte
and eight-way set associative. As deÞned by the PowerPC architecture, they are physically
indexed. Each cache block contains eight contiguous words from memory that are loaded
from an 8-word boundary (that is, bits EA[27Ð31] are zeros); thus, a cache block never
crosses a page boundary. An entire cache block can be updated by a four-beat burst load
across a 64-bit system bus. Misaligned accesses across a page boundary can incur a
performance penalty. Caches are nonblocking, write-back caches with hardware support
for reloading on cache misses. The critical double word is transferred on the Þrst beat and
is simultaneously written to the cache and forwarded to the requesting unit, minimizing
stalls due to load delays. The cache being loaded is not blocked to internal accesses while
the load completes.

The MPC7400 cache organization is shown in Figure 1-2.

Figure 1-2. L1 Cache Organization

Within one cycle, the data cache provides quad-word access to the LSU. Like the
instruction cache, the data cache can be invalidated all at once or on a per-cache-block
basis. The data cache can be disabled and invalidated by clearing HID0[DCE] and setting
HID0[DCFI]. The data cache can be locked by setting HID0[DLOCK]. The data cache tags
are dual-ported, so a load or store can occur simultaneously with a snoop.

Within one cycle, the instruction cache provides up to four instructions to the instruction
queue. The instruction cache can be invalidated entirely or on a cache-block basis. The
instruction cache can be disabled and invalidated by clearing HID0[ICE] and setting

8 Words/Block

128 Sets

Block 5

Block 6

Block 7

Block 4 Address Tag 4

Address Tag 5

Address Tag 6

Address Tag 7

Block 1

Block 2

Block 3

Block 0 Address Tag 0

Address Tag 1

Address Tag 2

Address Tag 3

State

State

State

Words [0Ð7]

State

Words [0Ð7]

Words [0Ð7]

Words [0Ð7]

State

State

State

Words [0Ð7]

State

Words [0Ð7]

Words [0Ð7]

Words [0Ð7]

Chapter 1. Overview 1-17

MPC7400 Microprocessor Features

HID0[ICFI]. The instruction cache can be locked by setting HID0[ILOCK]. The instruction
cache supports only the valid/invalid states.

The MPC7400 also implements a 64-entry (16-set, four-way set-associative) branch target
instruction cache (BTIC). The BTIC is a cache of branch instructions that have been
encountered in branch/loop code sequences. If the target instruction is in the BTIC, it is
fetched into the instruction queue a cycle sooner than it can be made available from the
instruction cache. Typically the BTIC contains the Þrst two instructions in the target stream.
The BTIC can be disabled and invalidated through software.

For more information and timing examples showing cache hit and cache miss latencies, see
Section 6.3.2, ÒInstruction Fetch Timing.Ó

1.2.5 L2 Cache Implementation

The L2 cache is a uniÞed cache that receives memory requests from both the L1 instruction
and data caches independently. The L2 cache is implemented with an on-chip, two-way,
set-associative tag memory, and with external, synchronous SRAMs for data storage. The
external SRAMs are accessed through a dedicated L2 cache port that supports a single bank
of 512-Kbyte, 1-Mbyte, or 2-Mbyte synchronous SRAMs. The L2 cache normally operates
in write-back mode and supports system cache coherency through snooping.

Depending on its size, the L2 cache is organized into 32-, 64-, or 128-byte lines. Lines are
subdivided into 32-byte sectors (blocks), the unit at which cache coherency is maintained.

The L2 cache controller contains the L2 cache control register (L2CR), which includes bits
for enabling parity checking, setting the L2-to-processor clock ratio, and identifying the
type of RAM used for the L2 cache implementation. The L2 cache controller also manages
the L2 cache tag array, two-way set-associative with 8K tags per way. Each sector (32-byte
cache block) has its own valid, shared. and modiÞed status bits. The L2 implements the
MERSI protocol using three status bits per sector.

Requests from the L1 cache generally result from instruction misses, data load or store
misses, write-through operations, or cache management instructions. Requests from the L1
cache are looked up in the L2 tags and serviced by the L2 cache if they hit; they are
forwarded to the bus interface if they miss.

The L2 cache can accept multiple, simultaneous accesses. The L1 instruction cache can
request an instruction at the same time that the L1 data cache is requesting data. The L1
data cache requests are handled through the data reload table (shown in Figure 1-1), which
can have up to eight outstanding data cache misses. The L2 cache also services snoop
requests from the bus. If there are multiple pending requests to the L2 cache, snoop requests
have highest priority. The next priority are load and store requests from the L1 data cache.
The next priority are instruction fetch requests from the L1 instruction cache. For more
information, see Chapter 3, ÒL1 and L2 Cache Operation.Ó

1-18 MPC7400 RISC Microprocessor UserÕs Manual

MPC7400 Microprocessor Features

1.2.6 System Interface/Bus Interface Unit (BIU)

The MPC7400 processor bus interface is based on the 60x bus, but it includes several
features that allow it to provide signiÞcantly higher memory bandwidth. The MPC7400 can
be conÞgured to support either an MPC750-compatible 60x mode or an expanded bus mode
called MPX bus mode.

The MPC7400 has a separate address and data bus, each with its own set of arbitration and
control signals. This allows for the decoupling of the data tenure from the address tenure of
a transaction, and provides for a wide range of system bus implementations including:

¥ Non-pipelined bus operation

¥ Pipelined bus operation

¥ Split transaction operation

¥ Enveloped cache line push

The MPC7400 supports only the normal memory-mapped address segments deÞned in the
PowerPC architecture. Access to direct store segments results in a DSI exception.

A summary of 60x bus interface features are listed below:

¥ 32-bit address bus (plus 4 bits of odd parity)

¥ 64-bit data bus (plus 8 bits of odd parity); a 32-bit data bus mode is not provided

¥ Supports two cache coherency protocols:

Ñ Three-state (MEI) similar to the MPC750

Ñ Four-state (MESI) similar to the MPC604 processors

¥ On-chip snooping to maintain L1 data cache and L2 cache coherency for
multiprocessing applications

¥ Supports address-only transfers (useful for a variety of broadcast operations in
multiprocessor applications)

¥ Support for limited out-of-order transactions

¥ Support for up to seven transactions (six pending plus one data tenure in progress)

¥ TTL-compatible interface

In addition to the 60x bus features, to gain increased performance, the MPX bus mode has
the following features:

¥ Increased address bus bandwidth by eliminating dead cycles under some
circumstances

¥ Full data streaming for burst reads and burst writes

¥ Increased levels of address pipelining

¥ Support for full out-of-order transactions

¥ Support for data intervention in multiprocessing systems

Chapter 1. Overview 1-19

MPC7400 Microprocessor Features

¥ Support for third cache coherency protocol: Five-state (MERSI), where the new R
state allows shared intervention

¥ Improved electrical timings (for example, programmable option for keeping address
bus driven)

1.2.6.1 System Interface Operation

The primary activity of the MPC7400 system interface is transferring data and instructions
between the processor and system memory. There are three types of 60x bus memory
accesses:

¥ Single-beat transfersÑThese memory accesses allow transfer sizes of 8, 16, 24, 32,
or 64 bits in one bus clock cycle. Single-beat transactions are caused by uncacheable
read and write operations that access memory directly (that is, when caching is
disabled), cache-inhibited accesses, and stores in write-through mode.

¥ Two-beat burst (16 bytes) data transfersÑGenerated to support caching-inhibited or
write-through AltiVec loads and stores (MPX bus mode only).

¥ Four-beat burst (32 bytes) data transfersÑInitiated when an entire cache block is
transferred. Because the Þrst-level caches on the MPC7400 are write-back caches,
burst-read memory operations are the most common memory accesses, followed by
burst-write memory operations, and single-beat (noncacheable or write-through)
memory read and write operations.

The MPC7400 also supports address-only operations, variants of the burst and single-beat
operations (for example, atomic memory operations and global memory operations that are
snooped), and address retry activity (for example, when a snooped read access hits a
modiÞed block in the cache). Because all I/O is memory-mapped, I/O accesses use the
same protocol as memory accesses. The MPX bus also supports data-only operations to
provide data intervention in MERSI systems.

Access to the system interface is granted through an external arbitration mechanism that
allows devices to compete for bus mastership. This arbitration mechanism is ßexible,
allowing the MPC7400 to be integrated into systems that implement various fairness and
bus parking procedures to avoid arbitration overhead.

Typically, memory accesses are weakly orderedÑsequences of operations, including
load/store string and multiple instructions, do not necessarily execute in the order they
beginÑmaximizing the efÞciency of the bus without sacriÞcing data coherency. The
MPC7400 allows read operations to go ahead of store operations (except when a
dependency exists, or in cases where a noncacheable access is performed). The MPC7400
provides support for a write operation to go ahead of a previously queued read data tenure
(for example, letting a snoop push be enveloped between address and data tenures of a read
operation) in 60x bus mode and full data tenure reordering in MPX bus mode. Because the
MPC7400 can dynamically optimize run-time ordering of load/store trafÞc, overall
performance is improved.

1-20 MPC7400 RISC Microprocessor UserÕs Manual

MPC7400 Microprocessor Features

The system interface supports address pipelining, which allows the address tenure of one
transaction to overlap the data tenure of another. The extent of the pipelining depends on
external arbitration and control circuitry. Similarly, the MPC7400 supports split-bus
transactions for systems with multiple potential bus mastersÑone device can have
mastership of the address bus while another has mastership of the data bus. Allowing
multiple bus transactions to occur simultaneously increases the available bus bandwidth for
other activity.

The system interface is speciÞc for each PowerPC microprocessor implementation.

1.2.6.2 Signal Groupings

The MPC7400 signals are grouped as shown in Figure 1-3. Signals are provided for
implementing the bus protocol, clocking and control of the L2 caches, as well as separate
L2 address and data buses. Test and control signals provide diagnostics for selected internal
circuits.

Figure 1-3. System Interface

The signals used for the 60x and MPX bus protocols are largely identical, except that the
MPX bus mode doesnÕt use the ABB and DBB output signals, replaces the DBWO input
with the DTI[0:2] inputs, and replaces the SHD signal with SHD[0:1]. The MPC7400 bus
protocol signals are grouped as follows:

¥ Address arbitration signalsÑThe MPC7400 uses these signals to arbitrate for
address bus mastership.

¥ Address start signalsÑThese signals indicate that a bus master has begun a
transaction on the address bus.

¥ Address transfer signalsÑThese signals include the address bus and address parity
signals. They are used to transfer the address and to ensure the integrity of the
transfer.

¥ Transfer attribute signalsÑThese signals provide information about the type of
transfer, such as the transfer size and whether the transaction is bursted,
write-through, or caching-inhibited.

Address Arbitration

Address Start

Address Transfer

Transfer Attribute

Address Termination

Clocks

Data Arbitration

Data Transfer

Data Termination

Processor Status/Control

Test and Control

L2 Cache Address/Data

L2 Cache Clock/Control

System Status

VDD VDD (I/O)

MPC7400

Chapter 1. Overview 1-21

MPC7400 Microprocessor Features

¥ Address termination signalsÑThese signals are used to acknowledge the end of the
address phase of the transaction. They also indicate whether a condition exists that
requires the address phase to be repeated.

¥ Data arbitration signalsÑThe MPC7400 uses these signals to arbitrate for data bus
mastership.

¥ Data transfer signalsÑThese signals, which consist of the data bus and data parity
signals, are used to transfer the data and to ensure the integrity of the transfer.

¥ Data termination signalsÑData termination signals are required after each data beat
in a data transfer. In a single-beat transaction, a data termination signal also indicates
the end of the tenure; in burst accesses, data termination signals apply to individual
beats and indicate the end of the tenure only after the Þnal data beat. They also
indicate whether a condition exists that requires the data phase to be repeated.

The remaining signals are used for functions other than the bus protocol and they are
grouped as follows:

¥ L2 cache clock/control signalsÑThese signals provide clocking and control for the
L2 cache.

¥ L2 cache address/dataÑThe MPC7400 has separate address and data buses for
accessing the L2 cache.

¥ Interrupt and reset signalsÑThese signals include the interrupt signal, checkstop
signals, and both soft reset and hard reset signals. These signals are used to generate
interrupt exceptions and, under various conditions, to reset the processor.

¥ Processor status/control signalsÑThese signals are used to set the reservation
coherency bit, enable the time base, and other functions.

¥ Miscellaneous signalsÑThese signals are used in conjunction with such resources
as secondary caches and the time base facility.

¥ JTAG/COP interface signalsÑThe common on-chip processor (COP) unit provides
a serial interface to the system for performing board-level boundary scan
interconnect tests.

¥ Clock signalsÑThese signals determine the system clock frequency. These signals
can also be used to synchronize multiprocessor systems.

NOTE:
Active-low signals are shown with overbarsÑfor example,
ARTRY (address retry) and TS (transfer start). Active-low
signals are referred to as asserted (active) when they are low
and negated when they are high. Signals that are not active low,
such as AP[0:3] (address bus parity signals) and TT[0:4]
(transfer type signals) are referred to as asserted when they are
high and negated when they are low.

1-22 MPC7400 RISC Microprocessor UserÕs Manual

MPC7400 Microprocessor Features

1.2.6.2.1 Signal ConÞguration

Figure 1-4 shows the MPC7400's logical pin conÞguration. The signals are grouped by
function.

Figure 1-4. MPC7400 Microprocessor Signal Groups

Signal functionality is described in detail in Chapter 8, ÒSignal Descriptions,Ó and
Chapter 9, ÒSystem Interface Operation.Ó

32

HIT

BUS REQUEST

BUS GRANT

TRANSFER START

ADDR. PARITY

GLOBAL

TRANSFER SIZE

ADDRESS ACK.

ADDRESS RETRY

SYSTEM CLOCK

DATA

DATA PARITY

TRANSFER ACK.

EXT INTERRUPT

RESERVATION

JTAG / COP

FACTORY TEST

1

1

1

5

3

4

TRANSFER BURST

WRITE THROUGH

PLL CONFIG.

TRANSFER TYPE 5

4

TIME BASE ENABLE

1 CLOCK OUT

MACHINE CHECK

SOFT RESET

L2 ADDRESS

SMI INTERRUPT

HARD RESET

PERF. MON. IN

QUIESCENT REQ

QUIESCENT ACK.

CHECKSTOP IN

Address Bus:
ARBITRATION

Address Bus:
TERMINATION

Address Bus:
TXFR. START /
ADDRESS /
ATTRIBUTES

Data Bus:
DATA

MPX Bus Signals

L2 DATA

L2 DATA PARITY

L2 ENABLE

L2 WRITE

L2 CLOCK OUT

L2 SYNC IN

L2 Interface and Other Signals

1

3

1

1

1

3

1

1

1

1

1

1

1

1

18

1

1

1

1

1

1

1

5

1

1

1

64

8

L2 Cache:
ADDRESS /
DATA

Processor:
INTERRUPTS /
RESETS

Processor:
STATE /
CONTROL

L2 Cache:
CONTROL /
CLOCKS

CLOCK
CONTROL

TEST
INTERFACE

CACHE-INHIBIT

ADDRESS

1 L2 CONTROL

DATA TRANS. INDEX

DATA SIZE

DATA READY

DATA BUS GRANT

2

1

1

1

64

8

TRANSFER ERR. ACK.

Data Bus:
ARBITRATION

Data Bus:
TERMINATION

1

1

ADDR. MONITOR

DATA MONITOR

BUS SELECT

1 L2 AVDD

AVDD

CHECKSTOP OUT

BUS MODE

1

1

SHARED

1 L2 DATA SIZE
1

1

1
AND

 The data transaction Index includes DBWO for 60x compatibility.
 The bus monitor signals include ABB and DBB for 60x compatibility.

L2 VOLTAGE SELECT

BUS VOLT. SEL.

MONITORING

CHECK

1

1

2

Note: 266 total signal pins are shown (including analog V

DD

s)

L2ZZ
1

Chapter 1. Overview

 1-23

MPC7400 Microprocessor: Implementation

1.2.6.2.2 Clocking

For functional operation, the MPC7400 uses a single clock input signal, SYSCLK, from
which clocking is derived for the processor core, the L2 interface, and the MPX bus
interface. Additionally, internal clock information is made available at the pins to support
debug and development.

The MPC7400Õs clocking structure supports a wide range processor-to-bus clock ratios.
The internal processor core clock is synchronized to SYSCLK

with the aid of a VCO-based
PLL. The PLL_CFG[0Ð3] signals are used to program the internal clock rate to a multiple
of SYSCLK as deÞned in the MPC7400 hardware speciÞcation. The bus clock is
maintained at the same frequency as SYSCLK. SYSCLK does not need to be a 50%
duty-cycle signal.

The MPC7400 generates the clock for the external L2 synchronous data RAMs. The clock
frequency for the RAMs is divided down from (and phase-locked to) the core clock
frequency of MPC7400. The core-to-L2 frequency divisor for the L2 PLL is selected
through L2CR[L2CLK]. The L2 RAM frequency can be divided down by 1, 1.5, 2, 2.5, 3,
3.5, or 4 from the core operating frequency.

1.3 MPC7400 Microprocessor: Implementation

The PowerPC architecture is derived from the POWER architecture (Performance
Optimized with Enhanced RISC architecture). The PowerPC architecture shares the
beneÞts of the POWER architecture optimized for single-chip implementations. The
PowerPC architecture design facilitates parallel instruction execution and is scalable to take
advantage of future technological gains.

This section describes the PowerPC architecture in general, and speciÞc details about the
implementation of the MPC7400 as a low-power, 32-bit member of the PowerPC processor
family. The structure of this section follows the organization of the userÕs manual; each
subsection provides an overview of each chapter.

¥ Registers and programming modelÑSection 1.4, ÒPowerPC Registers and
Programming Model,Ó describes the registers for the operating environment
architecture common among PowerPC processors and describes the programming
model. It also describes the registers that are unique to the MPC7400. The
information in this section is described more fully in Chapter 2, ÒProgramming
Model.Ó

Ð Instruction set and addressing modesÑSection 1.5, ÒInstruction Set,Ó
describes the PowerPC instruction set and addressing modes for the PowerPC
operating environment architecture, and deÞnes and describes the PowerPC
instructions implemented in the MPC7400. The information in this section is
described more fully in Chapter 2, ÒProgramming Model.Ó

1-24

MPC7400 RISC Microprocessor UserÕs Manual

MPC7400 Microprocessor: Implementation

¥ Cache implementationÑSection 1.6, ÒOn-Chip Cache Implementation,Ó describes
the cache model that is deÞned generally for PowerPC processors by the virtual
environment architecture. It also provides speciÞc details about the MPC7400 cache
implementation. The information in this section is described more fully in
Chapter 3, ÒL1 and L2 Cache Operation.Ó

¥ Exception modelÑSection 1.7, ÒException Model,Ó describes the exception model
of the PowerPC operating environment architecture and the differences in the
MPC7400 exception model. The information in this section is described more fully
in Chapter 4, ÒExceptions.Ó

¥ Memory managementÑSection 1.8, ÒMemory Management,Ó describes generally
the conventions for memory management among the PowerPC processors. This
section also describes the MPC7400Õs implementation of the 32-bit PowerPC
memory management speciÞcation. The information in this section is described
more fully in Chapter 5, ÒMemory Management.Ó

¥ Instruction timingÑSection 1.9, ÒInstruction Timing,Ó provides a general
description of the instruction timing provided by the superscalar, parallel execution
supported by the PowerPC architecture and the MPC7400. The information in this
section is described more fully in Chapter 6, ÒInstruction Timing.Ó

¥ Power managementÑSection 1.10, ÒPower Management,Ó describes how the power
management can be used to reduce power consumption when the processor, or
portions of it, are idle. The information in this section is described more fully in
Chapter 10, ÒPower and Thermal Management.Ó

¥ Thermal managementÑSection 1.11, ÒThermal Management,Ó describes how the
thermal management unit and its associated registers (THRM1ÐTHRM3) and
exception can be used to manage system activity in a way that prevents exceeding
system and junction temperature thresholds. This is particularly useful in
high-performance portable systems, which cannot use the same cooling mechanisms
(such as fans) that control overheating in desktop systems. The information in this
section is described more fully in Chapter 10, ÒPower and Thermal Management.Ó

¥ Performance monitorÑSection 1.12, ÒPerformance Monitor,Ó describes the
performance monitor facility, which system designers can use to help bring up,
debug, and optimize software performance. The information in this section is
described extensively in Chapter 11, ÒPerformance Monitor.Ó

The following sections summarize the features of the MPC7400, distinguishing those that
are deÞned by the architecture from those that are unique to the MPC7400 implementation.

The PowerPC architecture consists of the following layers, and adherence to the PowerPC
architecture can be described in terms of which of the following levels of the architecture
is implemented:

Chapter 1. Overview

 1-25

PowerPC Registers and Programming Model

¥ PowerPC user instruction set architecture (UISA)ÑDeÞnes the base user-level
instruction set, user-level registers, data types, ßoating-point exception model,
memory models for a uniprocessor environment, and programming model for a
uniprocessor environment.

¥ PowerPC virtual environment architecture (VEA)ÑDescribes the memory model
for a multiprocessor environment, deÞnes cache control instructions, and describes
other aspects of virtual environments. Implementations that conform to the VEA
also adhere to the UISA, but may not necessarily adhere to the OEA.

¥ PowerPC operating environment architecture (OEA)ÑDeÞnes the memory
management model, supervisor-level registers, synchronization requirements, and
the exception model. Implementations that conform to the OEA also adhere to the
UISA and the VEA.

The PowerPC architecture allows a wide range of designs for such features as cache and
system interface implementations. The MPC7400 implementations support the three levels
of the architecture described above. For more information about the PowerPC architecture,
see

PowerPC Microprocessor Family: The Programming Environments

.

SpeciÞc features of the MPC7400 are listed in Section 1.2, ÒMPC7400 Microprocessor
Features.Ó

1.4 PowerPC Registers and Programming Model

The PowerPC architecture deÞnes register-to-register operations for most computational
instructions. Source operands for these instructions are accessed from the registers or are
provided as immediate values embedded in the instruction opcode. The three-register
instruction format allows speciÞcation of a target register distinct from the two source
operands. Load and store instructions transfer data between registers and memory.

PowerPC processors have two levels of privilegeÑsupervisor mode of operation (typically
used by the operating system) and user mode of operation (used by the application
software). The programming models incorporate 32 GPRs, 32 FPRs, 32 VRs,
special-purpose registers (SPRs), and several miscellaneous registers. Each PowerPC
microprocessor also has its own unique set of implementation-speciÞc registers to support
functionality that may not be deÞned by the PowerPC architecture.

Having access to privileged instructions, registers, and other resources allows the operating
system to control the application environment (providing virtual memory and protecting
operating-system and critical machine resources). Instructions that control the state of the
processor, the address translation mechanism, and supervisor registers can be executed only
when the processor is operating in supervisor mode.

Figure 1-5 shows all the MPC7400 registers available at the user and supervisor level. The
numbers to the right of the SPRs indicate the number that is used in the syntax of the
instruction operands to access the register. For more information, see Chapter 2,
ÒProgramming Model.Ó

1-26

MPC7400 RISC Microprocessor UserÕs Manual

PowerPC Registers and Programming Model

Figure 1-5. MPC7400 Microprocessor Programming ModelÑRegisters

SPR 937

SPR 938

SPR 941

SPR 942

Performance Counters

1

Sampled Instruction

Address

1

DSISR

Data Address
Register

SPRGs

Exception Handling Registers

Save and Restore
Registers

Instruction BAT
Registers

Data BAT
Registers

Memory Management Registers

Machine State Register

MSR

Processor Version
Register

SPR 287PVR

ConÞguration Registers

Hardware
Implementation
Registers

1

SPR 1

USER MODELÑUISA

Floating-Point
Status and

Control Register

FPSCR

Condition
Register

General-Purpose
Registers

XER

XER

SPR 8

Link Register

LR

SUPERVISOR MODELÑOEA

DecrementerExternal Address
Register

2

EAR

SDR1

SPR 9

Count Register

Miscellaneous Registers

Segment
Registers

CR

Vector Registers

3

Performance
Monitor Registers

Performance Counters

1

Monitor Control

1

SPR 939USIAR

Sampled Instruction
Address

1

Performance Monitor Registers

Monitor Control

1

Time Base
(For Writing)

USER MODELÑVEA

TBL TBR 268

Time Base Facility (For Reading)

CTR
GPR0

GPR1

GPR31

TBU TBR 269

IBAT0U

IBAT0L

IBAT1U

IBAT1L

IBAT2U

IBAT2L

IBAT3U

IBAT3L

SPR 528

SPR 529

SPR 530

SPR 531

SPR 532

SPR 533

SPR 534

SPR 535

SPR 536

SPR 537

SPR 538

SPR 539

SPR 540

SPR 541

SPR 542

SPR 543

DBAT0U

DBAT0L

DBAT1U

DBAT1L

DBAT2U

DBAT2L

DBAT3U

DBAT3L

SR0

SR1

SR15

SDR1 SPR 25

HID0

HID1

SPR 1008

SPR 1009

VR0

VR1

VR31

UPMC1

UPMC2

UPMC3

UPMC4

UMMCR0

UMMCR1

UMMCR2

SPR 936

SPR 940

SPR 928

SPR 953

SPR 954

SPR 957

SPR 958

PMC1

PMC2

PMC3

PMC4

SIAR SPR 955
MMCR0

MMCR1

MMCR2

SPR 952

SPR 956

SPR 944

SPRG0

SPRG1

SPRG2

SPRG3

SPR 272

SPR 273

SPR 274

SPR 275

DAR

DSISR

SPR 19

SPR 18

SRR0 SPR 26

SRR1 SPR 27

SPR 282 TBL TBR 284

TBU TBR 285

DEC SPR 22

Data Address
Breakpoint Register

DABR SPR 1013

L2 Control
Register

1, 2

L2CR SPR 1017

Instruction Address
Breakpoint Register

1

IABR SPR 1010

Breakpoint Address
Mask Register

1

BAMR SPR 951

Breakpoint Address
Mask Register

1

UBAMR SPR 935

Vector Status and
Control Register

3

VSCR

Processor ID Register

2

PIR SPR 1023

MSSCR0 SPR1014

Memory Subsystem Registers

Memory Subsystem Control Register 0

1

AltiVec Registers

Vector Save/Restore
Register

3

VRSAVE SPR 256

ICTC SPR 1019
SPR 1020

SPR 1021

SPR 1022

Power/Thermal Management Registers

 Thermal Assist Registers
1

 Instruction Cache Throttling
Control Register

 1

Floating-Point
Registers

FPR0

FPR1

FPR31

1

 These MPC7400-speciÞc registers may not be supported
by other PowerPC processors.

2

 Optional register deÞned by the PowerPC architecture.

3

 These registers are deÞned by the AltiVec technology.

THRM1

THRM2

THRM3

Chapter 1. Overview

 1-27

PowerPC Registers and Programming Model

The following tables summarize the PowerPC registers implemented in the MPC7400;
Table 1-1 describes registers (excluding SPRs) deÞned by the PowerPC architecture.

The OEA deÞnes numerous special-purpose registers that serve a variety of functions, such
as providing controls, indicating status, conÞguring the processor, and performing special
operations. During normal execution, a program can access the registers, shown in
Figure 1-5, depending on the programÕs access privilege (supervisor or user, determined by
the privilege-level (PR) bit in the MSR). GPRs and FPRs are accessed through operands
that are part of the instructions. Access to registers can be explicit (that is, through the use
of speciÞc instructions for that purpose such as Move to Special-Purpose Register (

mtspr

)
and Move from Special-Purpose Register (

mfspr

) instructions) or implicit, as the part of
the execution of an instruction. Some registers can be accessed both explicitly and
implicitly.

In the MPC7400, all SPRs are 32 bits wide. Table 1-2 describes the architecture-deÞned
SPRs implemented by the MPC7400.

The

Programming Environments Manual

 describes
these registers in detail, including bit descriptions. Section 2.1.1, ÒRegister Set,Ó describes
how these registers are implemented in the MPC7400. In particular, this section describes
which features the PowerPC architecture deÞnes as optional are implemented on the
MPC7400.

Table 1-1. PowerPC Architecture-Defined Registers on the MPC7400
(Excluding SPRs)

Register Level Function

CR User The condition register (CR) consists of eight four-bit Þelds that reßect the results of certain
operations, such as move, integer and ßoating-point compare, arithmetic, and logical
instructions, and provide a mechanism for testing and branching.

FPRs User The 32 ßoating-point registers (FPRs) serve as the data source or destination for
ßoating-point instructions. These 64-bit registers can hold either single- or double-precision
ßoating-point values.

FPSCR User The ßoating-point status and control register (FPSCR) contains the ßoating-point exception
signal bits, exception summary bits, exception enable bits, and rounding control bits
needed for compliance with the IEEE-754 standard.

GPRs User The 32 GPRs serve as the data source or destination for integer instructions.

MSR Supervisor The machine state register (MSR) deÞnes the processor state. Its contents are saved when
an exception is taken and restored when exception handling completes. The MPC7400
implements MSR[POW], (deÞned by the architecture as optional), which is used to enable
the power management feature. The MPC7400-speciÞc MSR[PM] bit is used to mark a
process for the performance monitor.

SR0ÐSR15 Supervisor The sixteen 32-bit segment registers (SRs) deÞne the 4-Gbyte space as sixteen 256-Mbyte
segments. The MPC7400 implements segment registers as two arraysÑa main array for
data accesses and a shadow array for instruction accesses; see Figure 1-1. Loading a
segment entry with the Move to Segment Register

(

mtsr

)

instruction loads both arrays. The

mfsr

 instruction reads the master register, shown as part of the data MMU in Figure 1-1.

1-28

MPC7400 RISC Microprocessor UserÕs Manual

PowerPC Registers and Programming Model

Table 1-3 describes the two registers defined by the AltiVec technology.

Table 1-2. PowerPC Architecture-Defined SPRs Implemented by the MPC7400

Register Level Function

LR User The link register (LR) can be used to provide the branch target address and to hold the
return address after branch and link instructions.

BATs Supervisor The architecture deÞnes 16 block address translation (BAT) registers, which operate in
pairs. There are four pairs of data BATs (DBATs) and four pairs of instruction BATs
(IBATs). BATs are used to deÞne and conÞgure blocks of memory.

CTR User The count register (CTR) is decremented and tested by branch-and-count instructions.

DABR Supervisor The optional

data address breakpoint register (DABR) supports the data address
breakpoint facility.

DAR User The data address register (DAR) holds the address of an access after an alignment or
DSI exception.

DEC Supervisor The decrementer register (DEC) is a 32-bit decrementing counter that provides a way to
schedule decrementer exceptions.

DSISR User The DSISR deÞnes the cause of data access and alignment exceptions.

EAR Supervisor The external access register (EAR) controls access to the external access facility through
the External Control In Word Indexed (

eciwx

) and External Control Out Word Indexed
(

ecowx

) instructions.

PIR Supervisor The processor ID register (PIR) is used to differentiate between processors in a
multiprocessor system.

PVR Supervisor The processor version register (PVR) is a read-only register that identiÞes the processor.

SDR1 Supervisor SDR1 speciÞes the page table format used in virtual-to-physical page address translation.

SRR0 Supervisor The machine status save/restore register 0 (SRR0) saves the address used for restarting
an interrupted program when a Return from Interrupt (

rÞ

) instruction executes.

SRR1 Supervisor The machine status save/restore register 1 (SRR1) is used to save machine status on
exceptions and to restore machine status when an

rÞ

 instruction is executed.

SPRG0Ð
SPRG3

Supervisor SPRG0ÐSPRG3 are provided for operating system use.

TB User: read
Supervisor:
read/write

The time base register (TB) is a 64-bit register that maintains the time of day and operates
interval timers. The TB consists of two 32-bit ÞeldsÑtime base upper (TBU) and time
base lower (TBL).

XER User The XER contains the summary overßow bit, integer carry bit, overßow bit, and a Þeld
specifying the number of bytes to be transferred by a Load String Word Indexed (

lswx

) or
Store String Word Indexed (

stswx

) instruction.

Table 1-3. AltiVec-Specific Registers

Register Level Function

VRs User The 32 vector registers (VRs) serve as the data source or destination for AltiVec

instructions.

VSCR User The 32-bit vector status and control register (VSCR). A 32-bit vector register that is read
and written in a manner similar to the FPSCR.

VRSAVE User The 32-bit vector save (VRSAVE) register is deÞned by the AltiVec technology to assist
application and operating system software in saving and restoring the architectural state
across process context-switched events.

Chapter 1. Overview

 1-29

PowerPC Registers and Programming Model

Table 1-4 describes the supervisor-level SPRs in the MPC7400 that are not deÞned by the
PowerPC architecture. Section 2.1.2, ÒMPC7400-SpeciÞc Registers,Ó gives detailed
descriptions of these registers, including bit descriptions.

Table 1-4. MPC7400-Specific Registers

Register Level Function

BAMR Supervisor Breakpoint address mask register is used in conjunction with the events that monitor
IABR and DABR hits.

HID0 Supervisor The hardware implementation-dependent register 0 (HID0) provides checkstop enables
and other functions.

HID1 Supervisor The hardware implementation-dependent register 1 (HID1) allows software to read the
conÞguration of the PLL conÞguration signals.

IABR Supervisor The instruction address breakpoint register (IABR) supports instruction address
breakpoint exceptions. It can hold an address to compare with instruction addresses in
the IQ. An address match causes an instruction address breakpoint exception.

ICTC Supervisor The instruction cache-throttling control register (ICTC) has bits for controlling the interval
at which instructions are fetched into the instruction queue in the instruction unit. This
helps control the MPC7400Õs overall junction temperature.

L2CR Supervisor The L2 cache control register (L2CR) is used to conÞgure and operate the L2 cache. It
has bits for enabling parity checking, setting the L2-to-processor clock ratio, and
identifying the type of RAM used for the L2 cache implementation.

MMCR0Ð
MMCR2

Supervisor The monitor mode control registers (MMCR0ÐMMCR1) are used to enable various
performance monitoring interrupt functions. UMMCR0ÐUMMCR1 provide user-level read
access to MMCR0ÐMMCR1.

MSSCR0 Supervisor The memory subsystem control register is used to conÞgure and operate the memory
subsystem.

PMC1Ð
PMC4

Supervisor The performance monitor counter registers (PMC1ÐPMC4) are used to count speciÞed
events. UPMC1ÐUPMC4 provide user-level read access to these registers.

SIA Supervisor The sampled instruction address register (SIA) holds the EA of an instruction executing at
or around the time the processor signals the performance monitor interrupt condition. The
USIA register provides user-level read access to the SIA.

THRM1,
THRM2

Supervisor THRM1 and THRM2 provide a way to compare the junction temperature against two
user-provided thresholds. The thermal assist unit (TAU) can be operated so that the
thermal sensor output is compared to only one threshold, selected in THRM1 or THRM2.

THRM3 Supervisor THRM3 is used to enable the TAU and to control the output sample time.

UBAMR The user breakpoint address mask register (UBAMR) provides user-level read access to
BAMR.

UMMCR0Ð
UMMCR2

User The user monitor mode control registers (UMMCR0ÐUMMCR1) provide user-level read
access to MMCR0ÐMMCR2.

UPMC1Ð
UPMC4

User The user performance monitor counter registers (UPMC1ÐUPMC4) provide user-level
read access to PMC1ÐPMC4.

USIA User The user sampled instruction address register (USIA) provides user-level read access to
the SIA register.

1-30

MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set

1.5 Instruction Set

All PowerPC instructions are encoded as single-word (32-bit) opcodes. Instruction formats
are consistent among all instruction types, permitting efÞcient decoding to occur in parallel
with operand accesses. This Þxed instruction length and consistent format greatly simpliÞes
instruction pipelining.

For more information, see Chapter 2, ÒProgramming Model.Ó

1.5.1 PowerPC Instruction Set

The PowerPC instructions are divided into the following categories:

¥ Integer instructionsÑThese include computational and logical instructions.

Ñ Integer arithmetic instructions

Ñ Integer compare instructions

Ñ Integer logical instructions

Ñ Integer rotate and shift instructions

¥ Floating-point instructionsÑThese include ßoating-point computational
instructions, as well as instructions that affect the FPSCR.

Ñ Floating-point arithmetic instructions

Ñ Floating-point multiply/add instructions

Ñ Floating-point rounding and conversion instructions

Ñ Floating-point compare instructions

Ñ Floating-point status and control instructions

¥ Load/store instructionsÑThese include integer and ßoating-point load and store
instructions.

Ñ Integer load and store instructions

Ñ Integer load and store multiple instructions

Ñ Floating-point load and store

Ñ Primitives used to construct atomic memory operations (

lwarx

and

 stwcx.

instructions)

¥ Flow control instructionsÑThese include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction ßow.

Ñ Branch and trap instructions

Ñ Condition register logical instructions

Chapter 1. Overview

 1-31

Instruction Set

¥ Processor control instructionsÑThese instructions are used for synchronizing
memory accesses and management of caches, TLBs, and the segment registers.

Ñ Move to/from SPR instructions

Ñ Move to/from MSR

Ñ Synchronize

Ñ Instruction synchronize

Ñ Order loads and stores

¥ Memory control instructionsÑThese instructions provide control of caches, TLBs,
and SRs.

Ñ Supervisor-level cache management instructions

Ñ User-level cache instructions

Ñ Segment register manipulation instructions

Ñ Translation lookaside buffer management instructions

This grouping does not indicate the execution unit that executes a particular instruction or
group of instructions.

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision (one word) and double-precision (one double
word) ßoating-point operands. The PowerPC architecture uses instructions that are four
bytes long and word-aligned. It provides for byte, half-word, and word operand loads and
stores between memory and a set of 32 GPRs. It also provides for word and double-word
operand loads and stores between memory and a set of 32 ßoating-point registers (FPRs).

Computational instructions do not modify memory. To use a memory operand in a
computation and then modify the same or another memory location, the memory contents
must be loaded into a register, modiÞed, and then written back to the target location with
distinct instructions.

PowerPC processors follow the program ßow when they are in the normal execution state.
However, the ßow of instructions can be interrupted directly by the execution of an
instruction or by an asynchronous event. Either kind of exception may cause one of several
components of the system software to be invoked.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit 0 is ignored in 32-bit implementations.

1-32

MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set

1.5.2 AltiVec Instruction Set

¥ Vector integer arithmetic instructionsÑThese include arithmetic, logical, compare,
rotate and shift instructions, described in Section 2.5.1, ÒVector Integer
Instructions.Ó

¥ Vector ßoating-point arithmetic instructionsÑThese include ßoating-point
arithmetic instructions, as well as a discussion on ßoating-point modes, described in
Section 2.5.2, ÒVector Floating-Point Instructions.Ó

¥ Vector load and store instructionsÑThese include load and store instructions for
vector registers, described in Section 2.5.3, ÒVector Load and Store Instructions.Ó
The AltiVec technology deÞne LRU and transient type instructions that can be used
to optimize memory accesses.

Ñ LRU instructions. The AltiVec architecture speciÞes that the

lvxl

 and

stvxl

instructions differ from other AltiVec load and store instructions in that they
leave cache entries in a least-recently-used (LRU) state instead of a
most-recently-used state.

Ñ Transient instructions. The AltiVec architecture describes a difference between
static and transient memory accesses. A static memory access should have some
reasonable degree of locality and be referenced several times or reused over
some reasonably long period of time. A transient memory reference has poor
locality and is likely to be referenced a very few times or over a very short period
of time.

The following instructions are interpreted to be transient:

Ð

dstt

 and

dststt

(transient forms of the two data stream touch instructions)

Ð

lvxl

and

stvxl

¥ Vector permutation and formatting instructionsÑThese include pack, unpack,
merge, splat, permute, select and shift instructions, described in Section 2.5.5,
ÒVector Permutation and Formatting Instructions.Ó

¥ Processor control instructionsÑThese instructions are used to read and write from
the AltiVec Status and Control Register., described in Section 2.3.4.6, ÒProcessor
Control InstructionsÑUISA.Ó

¥ Memory control instructionsÑThese instructions are used for managing of caches
(user level and supervisor level), described in Section 2.3.5.3, ÒMemory Control
InstructionsÑVEA.Ó

Chapter 1. Overview

 1-33

On-Chip Cache Implementation

1.5.3 MPC7400 Microprocessor Instruction Set

The MPC7400 instruction set is deÞned as follows:

¥ The MPC7400 provides hardware support for all 32-bit PowerPC instructions.

¥ The MPC7400 implements the following instructions optional to the PowerPC
architecture:

Ñ External Control In Word Indexed (eciwx)

Ñ External Control Out Word Indexed (ecowx)
Ñ Data Cache Block Allocate (dcba)

Ñ Floating Select (fsel)
Ñ Floating Reciprocal Estimate Single-Precision (fres)

Ñ Floating Reciprocal Square Root Estimate (frsqrte)

Ñ Store Floating-Point as Integer Word (stÞwx)

1.6 On-Chip Cache Implementation
The following subsections describe the PowerPC architectureÕs treatment of cache in
general, and the MPC7400-speciÞc implementation, respectively. A detailed description of
the MPC7400 cache implementation is provided in Chapter 3, ÒL1 and L2 Cache
Operation.Ó

1.6.1 PowerPC Cache Model

The PowerPC architecture does not deÞne hardware aspects of cache implementations. For
example, PowerPC processors can have uniÞed caches, separate L1 instruction and data
caches (Harvard architecture), or no cache at all. PowerPC microprocessors control the
following memory access modes on a page or block basis:

¥ Write-back/write-through mode
¥ Caching-inhibited mode
¥ Memory coherency

The caches are physically addressed, and the data cache can operate in either write-back or
write-through mode as speciÞed by the PowerPC architecture.

The PowerPC architecture deÞnes the term Ôcache blockÕ as the cacheable unit. The VEA
and OEA deÞne cache management instructions a programmer can use to affect cache
contents.

1-34 MPC7400 RISC Microprocessor UserÕs Manual

Exception Model

1.6.2 MPC7400 Microprocessor Cache Implementation

The MPC7400 cache implementation is described in Section 1.2.4, ÒOn-Chip Instruction
and Data Caches,Ó and Section 1.2.5, ÒL2 Cache Implementation.Ó The BPU also contains
a 64-entry BTIC that provides immediate access to cached target instructions. For more
information, see Section 1.2.2.2, ÒBranch Processing Unit (BPU).Ó

1.7 Exception Model
The following sections describe the PowerPC exception model and the MPC7400
implementation. A detailed description of the MPC7400 exception model is provided in
Chapter 4, ÒExceptions.Ó

1.7.1 PowerPC Exception Model

The PowerPC exception mechanism allows the processor to interrupt the instruction ßow
to handle certain situations caused by external signals, errors, or unusual conditions arising
from the instruction execution. When exceptions occur, information about the state of the
processor is saved to certain registers and the processor begins execution at an address
(exception vector) predetermined for each exception. Exception processing occurs in
supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
speciÞc condition may be determined by examining a register associated with the
exceptionÑfor example, the DSISR and the FPSCR. Additionally, some exception
conditions can be enabled or disabled explicitly by software.

The PowerPC architecture requires that exceptions be handled in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are handled in order. When an instruction-caused exception is recognized, any unexecuted
instructions that appear earlier in the instruction stream, including any that are
undispatched, are required to complete before the exception is taken, and any exceptions
those instructions cause must also be handled Þrst. Likewise, asynchronous, precise
exceptions are recognized when they occur, but are not handled until the instructions
currently in the completion queue successfully retire or generate an exception, and the
completion queue is emptied.

Unless a catastrophic condition causes a system reset or machine check exception, only one
exception is handled at a time. For example, if one instruction encounters multiple
exception conditions, those conditions are handled sequentially. After the exception handler
handles an exception, the instruction processing continues until the next exception
condition is encountered. Recognizing and handling exception conditions sequentially
guarantees that exceptions are recoverable.

When an exception is taken, information about the processor state before the exception was
taken is saved in SRR0 and SRR1. Exception handlers should save the information stored

Chapter 1. Overview 1-35

Exception Model

in SRR0 and SRR1 early to prevent the program state from being lost due to a system reset
and machine check exception or to an instruction-caused exception in the exception
handler, and before enabling external interrupts.

The PowerPC architecture supports four types of exceptions:

¥ Synchronous, preciseÑThese are caused by instructions. All instruction-caused
exceptions are handled precisely; that is, the machine state at the time the exception
occurs is known and can be completely restored. This means that (excluding the trap
and system call exceptions) the address of the faulting instruction is provided to the
exception handler and that neither the faulting instruction nor subsequent
instructions in the code stream will complete execution before the exception is
taken. Once the exception is processed, execution resumes at the address of the
faulting instruction (or at an alternate address provided by the exception handler).
When an exception is taken due to a trap or system call instruction, execution
resumes at an address provided by the handler.

¥ Synchronous, impreciseÑThe PowerPC architecture deÞnes two imprecise
ßoating-point exception modes: recoverable and nonrecoverable. Even though the
MPC7400 provides a means to enable the imprecise modes, it implements these
modes identically to the precise mode (that is, enabled ßoating-point exceptions are
always precise).

¥ Asynchronous, maskableÑThe PowerPC architecture deÞnes external and
decrementer interrupts as maskable, asynchronous exceptions. When these
exceptions occur, their handling is postponed until the next instruction, and any
exceptions associated with that instruction, completes execution. If no instructions
are in the execution units, the exception is taken immediately upon determination of
the correct restart address (for loading SRR0). As shown in Table 1-5, the MPC7400
implements additional asynchronous, maskable exceptions.

¥ Asynchronous, nonmaskableÑThere are two nonmaskable asynchronous
exceptions: system reset and the machine check exception. These exceptions may
not be recoverable, or may provide a limited degree of recoverability. Exceptions
report recoverability through the MSR[RI] bit.

1.7.2 MPC7400 Microprocessor Exception Implementation

The MPC7400 exception classes described above are shown in Table 1-5.
Table 1-5. MPC7400 Microprocessor Exception Classifications

Synchronous/Asynchronous Precise/Imprecise Exception Type

Asynchronous, nonmaskable Imprecise Machine check, system reset

Asynchronous, maskable Precise External, decrementer, system management, thermal
management, and performance monitor interrupts

Synchronous Precise Instruction-caused exceptions

1-36 MPC7400 RISC Microprocessor UserÕs Manual

Exception Model

Although exceptions have other characteristics, such as priority and recoverability,
Table 1-5 describes categories of exceptions the MPC7400 handles uniquely. Table 1-5
includes no synchronous imprecise exceptions; although the PowerPC architecture
supports imprecise handling of ßoating-point exceptions, the MPC7400 implements these
exception modes precisely.

Table 1-6 lists MPC7400 exceptions and conditions that cause them. Exceptions speciÞc to
the MPC7400 are indicated. Note that only three exceptions may result from execution of
an AltiVec instruction:

¥ AltiVec unavailable exception. Taken if there is an attempt to execute any
non-stream vector instruction with MSR[VA] = 0. After this exception, execution
resumes at offset 0x00F20. This exception does not happen for stream instructions
(dst[t], dstst[t], or dss). Note that the VRSAVE register is not protected by this
exception, which is consistent with the AltiVec speciÞcation.

¥ A DSI exception. Taken if a vector load or store operation encounters a page fault
(does not Þnd a valid PTE) or a protection violation. Also a DSI occurs if a vector
load or store attempts to access T = 1 (PIO) space.

¥ AltiVec assist interrupt. Taken in some cases if a vector ßoating-point instruction
detects denormalized data as an input or output in Java mode.

Table 1-6. Exceptions and Conditions

Exception Type
Vector Offset

(hex)
Causing Conditions

Reserved 00000 Ñ

System reset 00100 Assertion of either HRESET or SRESET or at power-on reset

Machine check 00200 Assertion of TEA during a data bus transaction, assertion of MCP, or an
address, data, or L2 bus parity error. MSR[ME] must be set.

DSI 00300 As speciÞed in the PowerPC architecture. For TLB misses on load, store, or
cache operations, a DSI exception occurs if a page fault occurs. The
MPC7400 takes a DSI if a lwarx or stwcx. instruction is executed to an
address marked write-through or if the data cache is enabled and locked.

ISI 00400 As deÞned by the PowerPC architecture.

External interrupt 00500 MSR[EE] = 1 and INT is asserted.

Alignment 00600 ¥ A ßoating-point load/store, stmw, stwcx, lmw, lwarx, eciwx or ecowx
instruction operand is not word-aligned.

¥ A multiple/string load/store operation is attempted in little-endian mode.
¥ The operand of dcbz is in memory that is write-through-required or

caching-inhibited or the cache is disabled

Program 00700 As deÞned by the PowerPC architecture.

Floating-point
unavailable

00800 As deÞned by the PowerPC architecture.

Decrementer 00900 As deÞned by the PowerPC architecture, when the most signiÞcant bit of the
DEC register changes from 0 to 1 and MSR[EE] = 1.

Reserved 00A00Ð00BFF Ñ

Chapter 1. Overview 1-37

Memory Management

1.8 Memory Management
The following subsections describe the memory management features of the PowerPC
architecture, and the MPC7400 implementation, respectively. A detailed description of the
MPC7400 MMU implementation is provided in Chapter 5, ÒMemory Management.Ó

1.8.1 PowerPC Memory Management Model

The primary functions of the MMU are to translate logical (effective) addresses to physical
addresses for memory accesses and to provide access protection on blocks and pages of
memory. There are two types of accesses generated by the MPC7400 that require address
translationÑinstruction accesses, and data accesses to memory generated by load, store,
and cache control instructions.

System call 00C00 Execution of the System Call (sc) instruction.

Trace 00D00 MSR[SE] = 1 or a branch instruction completes and MSR[BE] = 1. Unlike the
architecture deÞnition, isync does not cause a trace exception

Reserved 00E00 The MPC7400 does not generate an exception to this vector. Other
PowerPC processors may use this vector for ßoating-point assist exceptions.

Reserved 00E10Ð00EFF Ñ

Performance monitor1 00F00 The limit speciÞed in a PMC register is reached and MMCR0[ENINT] = 1

AltiVec unavailable1 00F20 Occurs due to an attempt to execute any non-stream AltiVec instruction
while MSR[VA] = 0. This exception is not taken for stream instructions
(dst[t], dstst[t] or dss).

Instruction address
breakpoint1

01300 IABR[0Ð29] matches EA[0Ð29] of the next instruction to complete, IABR[TE]
matches MSR[IR], and IABR[BE] = 1.

System management
interrupt1

01400 MSR[EE] = 1 and SMI is asserted.

Reserved 01500Ð015FF Ñ

AltiVec assist1 01600 Supports denormalization detection in Java mode as deÞned by the AltiVec
speciÞcation.

Thermal management
interrupt1

01700 Thermal management is enabled, the junction temperature exceeds the
threshold speciÞed in THRM1 or THRM2, and MSR[EE] = 1.

Reserved 01800Ð02FFF Ñ

1 MPC7400-speciÞc

Table 1-6. Exceptions and Conditions (Continued)

Exception Type
Vector Offset

(hex)
Causing Conditions

1-38 MPC7400 RISC Microprocessor UserÕs Manual

Memory Management

The PowerPC architecture deÞnes different resources for 32- and 64-bit processors; the
MPC7400 implements the 32-bit memory management model. The memory-management
model provides 4 Gbytes of logical address space accessible to supervisor and user
programs with a 4-Kbyte page size and 256-Mbyte segment size. BAT block sizes range
from 128 Kbytes to 256 Mbytes and are software selectable. In addition, it deÞnes an
interim 52-bit virtual address and hashed page tables for generating 32-bit physical
addresses.

The architecture also provides independent four-entry BAT arrays for instructions and data
that maintain address translations for blocks of memory. These entries deÞne blocks that
can vary from 128 Kbytes to 256 Mbytes. The BAT arrays are maintained by system
software.

The PowerPC MMU and exception model support demand-paged virtual memory. Virtual
memory management permits execution of programs larger than the size of physical
memory; demand-paged implies that individual pages are loaded into physical memory
from system memory only when they are Þrst accessed by an executing program.

The hashed page table is a variable-sized data structure that deÞnes the mapping between
virtual page numbers and physical page numbers. The page table size is a power of 2, and
its starting address is a multiple of its size. The page table contains a number of page table
entry groups (PTEGs). A PTEG contains eight page table entries (PTEs) of eight bytes
each; therefore, each PTEG is 64 bytes long. PTEG addresses are entry points for table
search operations.

Setting MSR[IR] enables instruction address translations and MSR[DR] enables data
address translations. If the bit is cleared, the respective effective address is the same as the
physical address.

1.8.2 MPC7400 Microprocessor Memory Management
Implementation

The MPC7400 implements separate MMUs for instructions and data. It implements a copy
of the segment registers in the instruction MMU, however, read and write accesses (mfsr
and mtsr) are handled through the segment registers implemented as part of the data MMU.
The MPC7400 MMU is described in Section 1.2.3, ÒMemory Management Units
(MMUs).Ó

The R (referenced) bit is updated in the PTE in memory (if necessary) during a table search
due to a TLB miss. Updates to the C (changed) bit are treated like TLB misses. A complete
table search is performed and the entire TLB entry is rewritten to update the C bit.

Chapter 1. Overview 1-39

Instruction Timing

1.9 Instruction Timing
The MPC7400 is a pipelined, superscalar processor. A pipelined processor is one in which
instruction processing is divided into discrete stages, allowing work to be done on different
instructions in each stage. For example, after an instruction completes one stage, it can pass
on to the next stage leaving the previous stage available to the subsequent instruction. This
improves overall instruction throughput.

A superscalar processor is one that issues multiple independent instructions into separate
execution units, allowing instructions to execute in parallel. The MPC7400 has eight
independent execution units, two for integer instructions, and one each for ßoating-point,
branch, load/store, system register, vector permute, and vector arithmetic logic unit
instructions. Having separate GPRs, FPRs, and VRs allows integer, ßoating-point, and
vector calculations, and load and store operations to occur simultaneously without
interference. Additionally, rename buffers are provided to allow operations to post
execution results for use by subsequent instructions without committing them to the
architected FPRs, GPRs, and VRs.

As shown in Figure 1-6, the common pipeline of the MPC7400 has four stages through
which all instructions must passÑfetch, decode/dispatch, execute, and complete/write
back. Some instructions occupy multiple stages simultaneously and some individual
execution units have additional stages. For example, the ßoating-point pipeline consists of
three stages through which all ßoating-point instructions must pass.

Figure 1-6. Pipeline Diagram

Fetch

Complete (Write-Back)

Dispatch

Execute Stage

Maximum three-instruction dispatch
per clock cycle (includes one branch
instruction)

Maximum two-instruction
completion per clock cycle

Maximum four-instruction fetch
per clock cycle

BPU

FPU3SRU IU2IU1

FPU2

FPU1

LSU1

LSU2
VFPU4VSIU VCIU3

VFPU3

VFPU2

VPU

VALU
VFPU1

VCIU2

VCIU1

1-40 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Timing

Note that Figure 1-6 does not show features, such as reservation stations and rename buffers
that reduce stalls and improve instruction throughput.

The instruction pipeline in the MPC7400 has four major pipeline stages, described as
follows:

¥ The fetch pipeline stage primarily involves retrieving instructions from the memory
system and determining the location of the next instruction fetch. The BPU decodes
branches during the fetch stage and removes those that do not update CTR or LR
from the instruction stream.

¥ The dispatch stage is responsible for decoding the instructions supplied by the
instruction fetch stage and determining which instructions can be dispatched in the
current cycle. A rename ID is given to instructions with a target destination. If source
operands for the instruction are available, they are read from the appropriate register
Þle or rename register to the execute pipeline stage. If a source operand is not
available, dispatch provides a tag that indicates which rename register will supply
the operand when it becomes available. At the end of the dispatch stage, the
dispatched instructions and their operands are latched by the appropriate execution
unit.

¥ Instructions executed by the IUs, FPU, SRU, LSU, VPU, and VALU are dispatched
from the bottom two positions in the instruction queue. In a single clock cycle, a
maximum of two instructions can be dispatched to these execution units in any
combination. When an instruction is dispatched, it is assigned a position in the
eight-entry completion queue. A branch instruction can be issued on the same clock
cycle for a maximum three-instruction dispatch.

¥ During the execute pipeline stage, each execution unit that has an executable
instruction executes the selected instruction (perhaps over multiple cycles), writes
the instruction's result into the appropriate rename register, and notiÞes the
completion stage that the instruction has Þnished execution. In the case of an internal
exception, the execution unit reports the exception to the completion pipeline stage
and (except for the FPU) discontinues instruction execution until the exception is
handled. The exception is not signaled until that instruction is the next to be
completed.

Execution of most ßoating-point instructions is pipelined within the FPU allowing
up to three instructions to be executing in the FPU concurrently. The FPU stages are
multiply, add, and round-convert. Execution of most load/store instructions is also
pipelined. The load/store unit has two pipeline stages. The Þrst stage is for effective
address calculation and MMU translation and the second stage is for accessing the
data in the cache.

¥ The complete pipeline stage maintains the correct architectural machine state and
transfers execution results from the rename registers to the GPRs and FPRs (and
CTR and LR, for some instructions) as instructions are retired. As with dispatching
instructions from the instruction queue, instructions are retired from the two bottom

Chapter 1. Overview 1-41

Power Management

positions in the completion queue. If completion logic detects an instruction causing
an exception, all following instructions are cancelled, their execution results in
rename registers are discarded, and instructions are fetched from the appropriate
exception vector.

Because the PowerPC architecture can be applied to such a wide variety of
implementations, instruction timing varies among PowerPC processors.

For a detailed discussion of instruction timing with examples and a table of latencies for
each execution unit, see Chapter 6, ÒInstruction Timing.Ó

1.10 Power Management
The MPC7400 provides four power modes, selectable by setting the appropriate control
bits in the MSR and HID0 registers. The four power modes are as follows:

¥ Full-powerÑThis is the default power state of the MPC7400. The MPC7400 is fully
powered and the internal functional units are operating at the full processor clock
speed. If the dynamic power management mode is enabled, functional units that are
idle will automatically enter a low-power state without affecting performance,
software execution, or external hardware.

¥ DozeÑAll the functional units of the MPC7400 are disabled except for the time
base/decrementer registers, the thermal assist unit, and the bus snooping logic.
When the processor is in doze mode, an external asynchronous interrupt, a system
management interrupt, a decrementer exception, a hard or soft reset, or machine
check brings the MPC7400 into the full-power state. The MPC7400 in doze mode
maintains the PLL in a fully powered state and locked to the system external clock
input (SYSCLK) so a transition to the full-power state takes only a few processor
clock cycles.

¥ NapÑThe nap mode further reduces power consumption by disabling bus snooping,
leaving only the decrementer/time base registers, the thermal assist unit, the PLL,
and the DLL (for L2 RAM clocks) in a powered state. The MPC7400 returns to the
full-power state upon receipt of an external asynchronous interrupt, a system
management interrupt, a decrementer exception, a hard or soft reset, or a machine
check input (MCP). A return to full-power state from a nap state takes only a few
processor clock cycles. When the processor is in nap mode, if QACK is negated, the
processor is put in doze mode to support snooping.

¥ SleepÑSleep mode minimizes power consumption by disabling all internal
functional units, after which external system logic may disable the PLL and
SYSCLK. Returning the MPC7400 to the full-power state requires the enabling of
the PLL and SYSCLK, followed by the assertion of an external asynchronous
interrupt, a system management interrupt, a hard or soft reset, or a machine check
input (MCP) signal after the time required to relock the PLL.

1-42 MPC7400 RISC Microprocessor UserÕs Manual

Thermal Management

Chapter 10, ÒPower and Thermal Management,Ó provides information about power saving
and thermal management modes for the MPC7400.

1.11 Thermal Management
The MPC7400Õs thermal assist unit (TAU) provides a way to control heat dissipation. This
ability is particularly useful in portable computers, which, due to power consumption and
size limitations, cannot use desktop cooling solutions such as fans. Therefore, better heat
sink designs coupled with intelligent thermal management is of critical importance for high
performance portable systems.

Primarily, the thermal management system monitors and regulates the systemÕs operating
temperature. For example, if the temperature is about to exceed a set limit, the system can
be made to slow down or even suspend operations temporarily in order to lower the
temperature.

The thermal management facility also ensures that the processorÕs junction temperature
does not exceed the operating speciÞcation. To avoid the inaccuracies that arise from
measuring junction temperature with an external thermal sensor, the MPC7400Õs on-chip
thermal sensor and logic tightly couples the thermal management implementation.

The TAU consists of a thermal sensor, digital-to-analog convertor, comparator, control
logic, and the dedicated SPRs described in Section 1.4, ÒPowerPC Registers and
Programming Model.Ó The TAU does the following:

¥ Compares the junction temperature against user-programmable thresholds

¥ Generates a thermal management interrupt if the temperature crosses the threshold

¥ Enables the user to estimate the junction temperature by way of a software
successive approximation routine

The TAU is controlled through the privileged mtspr/mfspr instructions to the three SPRs
provided for conÞguring and controlling the sensor control logic, which function as
follows:

¥ THRM1 and THRM2 provide the ability to compare the junction temperature
against two user-provided thresholds. Having dual thresholds gives the thermal
management software Þner control of the junction temperature. In single threshold
mode, the thermal sensor output is compared to only one threshold in either THRM1
or THRM2.

¥ THRM3 is used to enable the TAU and to control the comparator output sample
time. The thermal management logic manages the thermal management interrupt
generation and time multiplexed comparisons in the dual threshold mode as well as
other control functions.

Chapter 1. Overview 1-43

Performance Monitor

Instruction cache throttling provides control of the MPC7400Õs overall junction
temperature by determining the interval at which instructions are fetched. This feature is
accessed through the ICTC register.

Chapter 10, ÒPower and Thermal Management,Ó provides information about power saving
and thermal management modes for the MPC7400.

1.12 Performance Monitor
The MPC7400 incorporates a performance monitor facility that system designers can use
to help bring up, debug, and optimize software performance. The performance monitor
counts events during execution of code, relating to dispatch, execution, completion, and
memory accesses.

The performance monitor incorporates several registers that can be read and written to by
supervisor-level software. User-level versions of these registers provide read-only access
for user-level applications. These registers are described in Section 1.4, ÒPowerPC
Registers and Programming Model.Ó Performance monitor control registers, MMCR0 or
MMCR1, can be used to specify which events are to be counted and the conditions for
which a performance monitoring interrupt is taken. Additionally, the sampled instruction
address register, SIA (USIA), holds the address of the Þrst instruction to complete after the
counter overßowed.

Attempting to write to a user-read-only performance monitor register causes a program
exception, regardless of the MSR[PR] setting.

When a performance monitoring interrupt occurs, program execution continues from
vector offset 0x00F00.

Chapter 11, ÒPerformance Monitor,Ó describes the operation of the performance monitor
diagnostic tool incorporated in the MPC7400.

1.13 Differences between the MPC7400 and the
MPC750

The design philosophy on the MPC7400 is to change from the MPC750 base only where
required to gain compelling multimedia and multiprocessor performance. The MPC7400Õs
core is essentially the same as the MPC750Õs, except that whereas the MPC750 has a
6-entry completion queue and has slower performance on some ßoating-point
double-precision operations, the MPC7400 has an 8-entry completion queue and a full
double-precision FPU. The MPC7400 also adds the AltiVec instruction set, has a new
memory subsystem (MSS), and can interface to an improved bus, the MPX bus. Differences
are summarized in Table 1-7.

1-44 MPC7400 RISC Microprocessor UserÕs Manual

Differences between the MPC7400 and the MPC750

Table 1-7. Differences between the MPC7400 and the MPC750

Feature Difference

Core

Sequencing The MPC750 has a 6-entry IQ and a 6-entry CQ. For each clock, it can fetch four instructions, dispatch
two instructions, fold one branch, and complete two instructions. The MPC7400 is identical, except for an
eight-entry CQ, as shown in Figure 1-1. The extra CQ entries reduce the opportunity for dispatch
bottlenecks to the MPC7400Õs additional execution units.

FPU On the MPC750, single-precision operations involving multiplication have a 3-cycle latency, while their
double-precision equivalents take an additional cycle. Because the MPC7400 has a full double-precision
FPU, double- and single-precision multiplies have the same latency: 3 cycles. Floating-point divides have
the same latency for both designs (17 cycles for single-precision, 31 for double-precision).

MPC750 Double-precision ßoating-point multiply 4 cycles

All other ßoating-point add and multiply 3 cycles

MPC7400 All ßoating-point add and multiply 3 cycles

AltiVec
technology

The MPC7400 implements all instructions deÞned by the AltiVec speciÞcation. Two dispatchable AltiVec
functional units were added, a vector permute unit (VPU) and a vector ALU unit (VALU). The VALU
comprises a simple integer unit, a complex integer unit, and a ßoating-point unit. As shown in Figure 1-1,
the MPC7400 also adds 32 128-bit vector registers (VRs) and 6 VR rename registers.
The VPU handles permute and shift operations and the VALU handles calculations. The LSU handles
AltiVec load and store operations. To support AltiVec operations, all memory subsystem (MSS) data
buses are 128 bits wide (as opposed to 64 bits in the MPC750). Queues have been added and queue
sizes have been increased to sustain heavy AltiVec technology usage.
The AltiVec technology is designed to improve the performance of vector-intensive code, in applications
such as multimedia and digital signal processing. AltiVec-targeted code can accelerate 2D and 3D
graphics functions 3Ð5 times, especially core functions in 3D engines and game-related 2D functions.

Memory Subsystem (MSS)
The MPC7400 has a new memory subsystem designed to support AltiVec technology loads, the new MPX bus protocol,
and 5-state multiprocessing capabilities. Queues and queue sizes are designed to support more efÞcient data ßow. For
example, the MPC750 has a three-entry LSU store queue, while the MPC7400 has a six-entry LSU store queue.
The MPC7400 adds an eight-entry reload buffer, where L1 data cache misses can wait for their data to be loaded. This
enables load miss folding and store miss merging.

Load miss
folding

In the MPC750, if a second load misses to the same cache block, the second load must wait for the
critical word of the Þrst load before it can access its data, and subsequent accesses are also stalled. In
the MPC7400, the Þrst load or store causes an entry to be allocated in the reload buffer. A subsequent
load to the same cache block is placed aside in the load fold queue (LFQ), and it can return its data
immediately when available. Also, subsequent accesses to the cache are not blocked and can be
processed.
For example, on the MPC750 if a load or store (access A) misses in the data cache. Then a subsequent
load (access B) to the same cache block must wait until the critical word for A is retired. Because of this,
any subsequent loads or stores after access B also cannot access the data cache until the reload for
access A completes.
On the other hand, with the MPC7400, load or store access A misses in the data cache, and while the
data is coming back, up to four subsequent misses to the same cache block can be folded into the LFQ,
and subsequent instructions can access the data cache. Loads are blocked only when the reload table or
the LFQ are full.

Store miss
merging

In the MPC750, if a second store misses to the same cache block, it must wait for the critical word of the
Þrst store before it can write its data. The MPC7400 can merge several stores to the same cache block
into the same entry in its reload buffer. If enough stores merge to write all 32 bytes of the cache block
(usually via two back-to-back AltiVec store misses), then no data needs to be loaded from the bus and an
address-only transaction (KILL) is broadcast instead.

Chapter 1. Overview 1-45

Differences between the MPC7400 and the MPC750

Cache

Allocate on
reload

Both designs have the same L1 cache size, but differ in their block allocation policy. The MPC750 has an
allocate-on-miss policy, while the MPC7400 has an allocate-on-reload policy, which allows better cache
allocation and replacement and more efÞcient use of data bus bandwidth.
If access A misses in the cache, the MPC750 immediately identiÞes the victim block (call it X) if there is
one and allocates its space for the new data (call it Y) to be loaded. If a subsequent access (access B)
needs this victim block, even if access B occurs before Y has been loaded, then it will miss because as
soon as X is allocated it is no longer valid. After Y has loaded (and, if X is modiÞed, after X has been cast
out), X must be reloaded, and B must wait until its data is valid again.
The MPC7400, on the other hand, delays allocation/victimization until the block reload occurs. In the
example above, while Y is being loaded, B can hit block X, and a different block is victimized. This allows
more efÞcient use of the cache and can reduce thrashing.
On the MPC7400, allocation occurs in parallel with reload which uses the cache more efÞciently.

MPC750 MPC7400

1-cycle load arbitration 1-cycle load arbitration

1-cycle allocate 4-beat reload

4-cycle victimization (if castout needed)

4-beat reload (64 bits/beat)

Total = 6 or 10 cycles Total = 5 cycles

Outstanding
misses

The MPC750 allows one outstanding data side miss and one outstanding instruction side miss
(accessing the L2 or the bus) at any time. The MPC7400 allows one instruction side miss and up to eight
data side misses (maximum of 8). Note that the L2 can queue up to four hits but with a fast L2 (1:1 mode)
it is impossible to Þll this queue with data cache misses. The L2 miss queue can queue four transactions
waiting to access the processor address bus.

Miss under
miss

While processing a miss, the MPC750Õs data cache allows subsequent loads and stores to hit in the data
cache (hit under miss), but it blocks on the next miss until the Þrst miss Þnishes reloading. The MPC7400
allows subsequent accesses that miss in the data cache to propagate to the L2 and beyond (miss under
miss).

Table 1-7. Differences between the MPC7400 and the MPC750 (Continued)

Feature Difference

1-46 MPC7400 RISC Microprocessor UserÕs Manual

Differences between the MPC7400 and the MPC750

L2 cache The MPC7400 has twice as many on-chip L2 tags per way (8192) than the MPC750 and can support
twice the L2 cache size (up to 2 Mbyte). The sectoring conÞguration is differs as follows:

Assigning fewer sectors per tag uses the cache more efÞciently.
The MPC7400 and MPC750 also have different cache reload policies. On the MPC750, an L1 cache miss
that also misses in the L2 causes a reload from the bus to both L1 and L2. On the MPC7400, misses to
the L1 instruction cache behave the same way, but misses to the L1 data cache cause data to be
reloaded into the L1 only. Thus, with respect to the L1 data cache, the L2 holds only blocks that are cast
out; it acts as a giant victim cache for the L1 data cache. This improves performance because the data is
duplicated in the L1 data cache and L2 less often.

60x bus/
MPX bus

The MPC7400 supports the 60x bus used by the MPC750, but it also supports a new bus (MPX bus). It
implements a 5-state cache-coherency protocol (MERSI) and the MESI and MEI subsets. This provides
better hardware support of multiprocessing.
For example, the MPX bus supports data intervention. On the 60x bus, if one processor does a read of
data that is marked modiÞed in another processorÕs cache, the transaction is retried and the data is
pushed to memory, after which the transaction is restarted. The MPX bus allows data to be forwarded
directly to the requesting processor from the processor that has it cached. (The MPC7400 also supports
intervention for data marked exclusive and shared.)
The MPC7400 supports up to seven simultaneous transactions on the 60x or MPX bus interface (one in
progress and six pending); the MPC750 supports only two.

Table 1-7. Differences between the MPC7400 and the MPC750 (Continued)

Feature Difference

MPC750 MPC7400

1 Mbyte 4 sectors/tag 2 Mbyte 4 sectors/tag
512 Kbyte 2 sectors/tag 1 Mbyte 2 sectors/tag
256 Kbyte 2 sectors/tag 512 Kbyte 1 sector/tag

Chapter 2. Programming Model 2-1

Chapter 2
Programming Model
This chapter describes the MPC7400 programming model, emphasizing those features
speciÞc to the MPC7400 processor and summarizing those that are common to PowerPC
processors. It consists of three major sections, which describe the following:

¥ Registers implemented in the MPC7400

¥ Operand conventions

¥ The MPC7400 instruction set

For detailed information about architecture-deÞned features, see The Programming
Environments Manual and The AltiVec Technology Programming Environments Manual.

AltiVec Technology and the Programming Model

AltiVec features are described in the following sections:

¥ Three additional registersÑVRs, VRSAVE, and VSCR. See Section 7.1, ÒAltiVec
Technology and the Programming Model.Ó

2.1 The MPC7400 Processor Register Set
This section describes the registers implemented in the MPC7400. It includes an overview
of registers deÞned by the PowerPC architecture and the AltiVec technology, highlighting
differences in how these registers are implemented in the MPC7400, and a detailed
description of MPC7400-speciÞc registers. Full descriptions of the architecture-deÞned
register set are provided in Chapter 2, ÒPowerPC Register Set,Ó in The Programming
Environments Manual and Chapter 2, ÒAltiVec Register Set,Ó in The AltiVec Technology
Programming Environments Manual.

Registers are deÞned at all three levels of the PowerPC architectureÑuser instruction set
architecture (UISA), virtual environment architecture (VEA), and operating environment
architecture (OEA). The PowerPC architecture deÞnes register-to-register operations for all
computational instructions. Source data for these instructions are accessed from the on-chip
registers or are provided as immediate values embedded in the opcode. The three-register
instruction format allows speciÞcation of a target register distinct from the two source
registers, thus preserving the original data for use by other instructions and reducing the
number of instructions required for certain operations. Data is transferred between memory
and registers with explicit load and store instructions only.

2-2 MPC7400 RISC Microprocessor UserÕs Manual

The MPC7400 Processor Register Set

2.1.1 Register Set

Figure 2-1 shows the MPC7400 register set. The number to the right of the special-purpose
registers (SPRs) is the number used in the syntax of the instruction operands to access the
register (for example, the number used to access the XER register is SPR 1). These registers
can be accessed using mtspr and mfspr.

Chapter 2. Programming Model 2-3

The MPC7400 Processor Register Set

Figure 2-1. Programming ModelÑMPC7400 Microprocessor Registers

SPR 937

SPR 938

SPR 941

SPR 942

Performance Counters1 Sampled Instruction
Address1

DSISR

Data Address
Register

SPRGs

Exception Handling Registers

Save and Restore
Registers

Instruction BAT
Registers

Data BAT
Registers

Memory Management Registers

Machine State Register

MSR

Processor Version
Register

SPR 287PVR

ConÞguration Registers
Hardware
Implementation
Registers1

SPR 1

USER MODELÑUISA

Floating-Point
Status and

Control Register

FPSCR

Condition
Register

General-Purpose
Registers

XER

XER

SPR 8
Link Register

LR

SUPERVISOR MODELÑOEA

DecrementerExternal Address
Register 2

EAR

SDR1

SPR 9

Count Register

Miscellaneous Registers

Segment
Registers

CR

Vector Registers 3

Performance
Monitor Registers

Performance Counters1

Monitor Control1

SPR 939USIAR

Sampled Instruction
Address1

Performance Monitor Registers

Monitor Control1

Time Base
(For Writing)

USER MODELÑVEA

TBL TBR 268

Time Base Facility (For Reading)

CTR
GPR0

GPR1

GPR31

TBU TBR 269

IBAT0U

IBAT0L

IBAT1U

IBAT1L

IBAT2U

IBAT2L

IBAT3U

IBAT3L

SPR 528

SPR 529

SPR 530

SPR 531

SPR 532

SPR 533

SPR 534

SPR 535

SPR 536

SPR 537

SPR 538

SPR 539

SPR 540

SPR 541

SPR 542

SPR 543

DBAT0U

DBAT0L

DBAT1U

DBAT1L

DBAT2U

DBAT2L

DBAT3U

DBAT3L

SR0

SR1

SR15

SDR1 SPR 25

HID0

HID1

SPR 1008

SPR 1009

VR0

VR1

VR31

UPMC1

UPMC2

UPMC3

UPMC4

UMMCR0

UMMCR1

UMMCR2

SPR 936

SPR 940

SPR 928

SPR 953

SPR 954

SPR 957

SPR 958

PMC1

PMC2

PMC3

PMC4

SIAR SPR 955
MMCR0

MMCR1

MMCR2

SPR 952

SPR 956

SPR 944

SPRG0

SPRG1

SPRG2

SPRG3

SPR 272

SPR 273

SPR 274

SPR 275

DAR

DSISR

SPR 19

SPR 18

SRR0 SPR 26

SRR1 SPR 27

SPR 282 TBL TBR 284

TBU TBR 285

DEC SPR 22

Data Address
Breakpoint Register

DABR SPR 1013

L2 Control
Register1, 2

L2CR SPR 1017

Instruction Address
Breakpoint Register1

IABR SPR 1010

Breakpoint Address
Mask Register1

BAMR SPR 951

Breakpoint Address
Mask Register1

UBAMR SPR 935

Vector Status and
Control Register 3

VSCR

Processor ID Register 2

PIR SPR 1023

MSSCR0 SPR1014

Memory Subsystem Registers

Memory Subsystem Control Register 01

AltiVec Registers
Vector Save/Restore
Register 3

VRSAVE SPR 256

ICTC SPR 1019
SPR 1020

SPR 1021

SPR 1022

Power/Thermal Management Registers

Thermal Assist Registers1 Instruction Cache Throttling
Control Register1

Floating-Point
Registers

FPR0

FPR1

FPR31

1 These MPC7400-speciÞc registers may not be supported
by other PowerPC processors.

2 Optional register deÞned by the PowerPC architecture.
3 These registers are deÞned by the AltiVec technology.

THRM1

THRM2

THRM3

2-4 MPC7400 RISC Microprocessor UserÕs Manual

The MPC7400 Processor Register Set

The PowerPC UISA registers are user-level. General-purpose registers (GPRs) and
ßoating-point registers (FPRs) are accessed through instruction operands. Access to
registers can be explicit (by using instructions for that purpose such as Move to
Special-Purpose Register (mtspr) and Move from Special-Purpose Register (mfspr)
instructions) or implicit as part of the execution of an instruction. Some registers are
accessed both explicitly and implicitly.

Implementation NotesÑThe MPC7400 fully decodes the SPR Þeld of the instruction. If
the SPR speciÞed is undeÞned, the illegal instruction program exception occurs. The
PowerPCÕs user-level registers are described as follows:

¥ User-level registers (UISA)ÑThe user-level registers can be accessed by all
software with either user or supervisor privileges. They include the following:

Ñ General-purpose registers (GPRs). The thirty-two GPRs (GPR0ÐGPR31) serve
as data source or destination registers for integer instructions and provide data
for generating addresses. See ÒGeneral Purpose Registers (GPRs),Ó in Chapter 2,
ÒPowerPC Register Set,Ó of The Programming Environments Manual for more
information.

Ñ Floating-point registers (FPRs). The thirty-two FPRs (FPR0ÐFPR31) serve as
the data source or destination for all ßoating-point instructions. See
ÒFloating-Point Registers (FPRs),Ó in Chapter 2, ÒPowerPC Register Set,Ó of The
Programming Environments Manual.

Ñ Vector registers (VRs). The thirty-two VRs (VR0ÐVR31) serve as the data
source or destination for all AltiVec instructions. See Section 7.1.1.4, ÒVector
Status and Control Register (VSCR).Ó

Ñ Condition register (CR). The 32-bit CR consists of eight 4-bit Þelds, CR0ÐCR7,
that reßect results of certain arithmetic operations and provide a mechanism for
testing and branching. See ÒCondition Register (CR),Ó in Chapter 2, ÒPowerPC
Register Set,Ó of The Programming Environments Manual.

Ñ Floating-point status and control register (FPSCR). The FPSCR contains all
ßoating-point exception signal bits, exception summary bits, exception enable
bits, and rounding control bits needed for compliance with the IEEE 754
standard. See ÒFloating-Point Status and Control Register (FPSCR),Ó in
Chapter 2, ÒPowerPC Register Set,Ó of The Programming Environments Manual.

Ñ Vector status and control register (VSCR). A 32-bit vector register that is read
and written in a manner similar to the FPSCR. See Section 7.1.1.4, ÒVector
Status and Control Register (VSCR).Ó

The remaining user-level registers are SPRs. Note that the PowerPC architecture
provides a separate mechanism for accessing SPRs (the mtspr and mfspr
instructions). These instructions are commonly used to explicitly access certain
registers, while other SPRs can be more typically accessed as the side effect of
executing other instructions.

Ñ XER register. The XER indicates overßow and carries for integer operations. See

Chapter 2. Programming Model 2-5

The MPC7400 Processor Register Set

ÒXER Register (XER),Ó in Chapter 2, ÒPowerPC Register Set,Ó of The
Programming Environments Manual for more information.

Implementation NoteÑTo allow emulation of the lscbx instruction deÞned by
the POWER architecture, XER[16Ð23] are implemented so that they can be read
with mfspr[XER] and written with mtspr[XER] instructions.

Ñ Link register (LR). The LR provides the branch target address for the Branch
Conditional to Link Register (bclrx) instruction, and can be used to hold the
logical address of the instruction that follows a branch and link instruction,
typically used for linking to subroutines. See ÒLink Register (LR),Ó in Chapter 2,
ÒPowerPC Register Set,Ó of The Programming Environments Manual.

Ñ Count register (CTR). The CTR holds a loop count that can be decremented
during execution of appropriately coded branch instructions. The CTR can also
provide the branch target address for the Branch Conditional to Count Register
(bcctrx) instruction. See ÒCount Register (CTR),Ó in Chapter 2, ÒPowerPC
Register Set,Ó of The Programming Environments Manual.

Ñ Vector save/restore register (VRSAVE). The VRSAVE register is deÞned by the
AltiVec technology to assist application and operating system software in saving
and restoring the architectural state across process context-switched events. See
Section 7.1.1.5, ÒVector Save/Restore Register (VRSAVE).Ó

¥ User-level registers (VEA)ÑThe PowerPC VEA deÞnes the time base facility
(TB), which consists of two 32-bit registersÑtime base upper (TBU) and time base
lower (TBL). The time base registers can be written only by supervisor-level
instructions but can be read by both user- and supervisor-level software. For more
information, see ÒPowerPC VEA Register SetÑTime Base,Ó in Chapter 2,
ÒPowerPC Register Set,Ó of The Programming Environments Manual.

¥ Supervisor-level registers (OEA)ÑThe OEA deÞnes the registers an operating
system uses for memory management, conÞguration, exception handling, and other
operating system functions. The OEA deÞnes the following supervisor-level
registers for 32-bit implementations:

Ñ ConÞguration registers

Ð Machine state register (MSR). The MSR deÞnes the state of the processor.
The MSR can be modiÞed by the Move to Machine State Register (mtmsr),
System Call (sc), and Return from Exception (rÞ) instructions. It can be read
by the Move from Machine State Register (mfmsr) instruction. When an
exception is taken, the contents of the MSR are saved to the machine status
save/restore register 1 (SRR1), which is described below. See ÒMachine State
Register (MSR),Ó in Chapter 2, ÒPowerPC Register Set,Ó of The Programming
Environments Manual for more information.

Implementation NoteÑTable 2-1 describes MSR bits the MPC7400
implements that are not required by the PowerPC architecture.

2-6 MPC7400 RISC Microprocessor UserÕs Manual

The MPC7400 Processor Register Set

Note that setting MSR[EE] masks not only the architecture-deÞned external
interrupt and decrementer exceptions but also the MPC7400-speciÞc system
management, performance monitor, and thermal management exceptions.

Ð Processor version register (PVR). This register is a read-only register that
identiÞes the version (model) and revision level of the PowerPC processor.
For more information, see ÒProcessor Version Register (PVR),Ó in Chapter 2,
ÒPowerPC Register Set,Ó of The Programming Environments Manual.

Implementation NoteÑThe processor version number is 0x0008 for the
MPC7400. The processor revision level starts at 0x0100 and is updated for
each silicon revision.

Ð Processor ID register. Implemented as deÞned in the OEA.

Ñ Memory management registers

Ð Block-address translation (BAT) registers. The PowerPC OEA includes an
array of block address translation registers that can be used to specify four
blocks of instruction space and four blocks of data space. The BAT registers
are implemented in pairsÑfour pairs of instruction BATs (IBAT0UÐIBAT3U
and IBAT0LÐIBAT3L) and four pairs of data BATs (DBAT0UÐDBAT3U and
DBAT0LÐDBAT3L). Figure 2-1 lists the SPR numbers for the BAT registers.
For more information, see ÒBAT Registers,Ó in Chapter 2, ÒPowerPC Register
Set,Ó of The Programming Environments Manual. Because BAT upper and
lower words are loaded separately, software must ensure that BAT translations
are correct during the time that both BAT entries are being loaded.

The MPC7400 implements the G bit in the IBAT registers; however,
attempting to execute code from an IBAT area with G = 1 causes an ISI

Table 2-1. Additional MSR Bits

Bits Name Description

6 VEC AltiVec available. The AltiVec technology is optional to the PowerPC architecture.
0 AltiVec technology is disabled.
1 AltiVec technology is enabled.
Note: Any attempt to execute a non-stream AltiVec instruction when the bit is cleared causes the
processor to execute an ÒAltiVec Unavailable ExceptionÓ when the instruction accesses the vector
register Þle (VRF) or VSCR register. This exception does not happen for data streaming instructions
(dst(t), dstst(t), and dss), that is, the VRF and VSCR registers are available to the data streaming
instructions even when the MSR[VEC] is cleared.
The VRSAVE register is not protected by MSR [VEC], that is, it can be accessed
even when MSR[VEC] is cleared.

13 POW Power management enable. Optional to the PowerPC architecture.
0 Power management is disabled.
1 Power management is enabled. The processor can enter a power-saving mode when additional

conditions are present. The mode chosen is determined by the DOZE, NAP, and SLEEP bits in
the hardware implementation-dependent register 0 (HID0), described in Table 2-4.

29 PM Performance monitor marked mode. This bit is speciÞc to the MPC7400, and is deÞned as reserved
by the PowerPC architecture. See Chapter 11, ÒPerformance Monitor.Ó
0 Process is not a marked process.
1 Process is a marked process for the performance monitor.

Chapter 2. Programming Model 2-7

The MPC7400 Processor Register Set

exception. This complies with the revision of the architecture described in The
Programming Environments Manual.

Ð SDR1. The SDR1 register speciÞes the page table base address used in
virtual-to-physical address translation. See ÒSDR1,Ó in Chapter 2, ÒPowerPC
Register Set,Ó of The Programming Environments Manual.

Ð Segment registers (SRs). The PowerPC OEA deÞnes sixteen 32-bit segment
registers (SR0ÐSR15). Note that the SRs are implemented on 32-bit
implementations only. The Þelds in the segment register are interpreted
differently depending on the value of bit 0. See ÒSegment Registers,Ó in
Chapter 2, ÒPowerPC Register Set,Ó of The Programming Environments
Manual for more information.

Note that the MPC7400 implements separate memory management units
(MMUs) for instruction and data. It associates the architecture-deÞned SRs
with the data MMU (DMMU). It reßects the values of the SRs in separate,
so-called ÔshadowÕ segment registers in the instruction MMU (IMMU).

Ñ Exception-handling registers

Ð Data address register (DAR). After a DSI or an alignment exception, DAR is
set to the effective address (EA) generated by the faulting instruction. See
ÒData Address Register (DAR),Ó in Chapter 2, ÒPowerPC Register Set,Ó of
The Programming Environments Manual for more information.

Ð SPRG0ÐSPRG3. The SPRG0ÐSPRG3 registers are provided for operating
system use. See ÒSPRG0ÐSPRG3,Ó in Chapter 2, ÒPowerPC Register Set,Ó of
The Programming Environments Manual for more information.

Ð DSISR. The DSISR register deÞnes the cause of DSI and alignment
exceptions. See ÒDSISR,Ó in Chapter 2, ÒPowerPC Register Set,Ó of The
Programming Environments Manual for more information.

Ð Machine status save/restore register 0 (SRR0). The SRR0 register is used to
save the address of the instruction at which execution continues when rÞ
executes at the end of an exception handler routine. See ÒMachine Status
Save/Restore Register 0 (SRR0),Ó in Chapter 2, ÒPowerPC Register Set,Ó of
The Programming Environments Manual for more information.

Ð Machine status save/restore register 1 (SRR1). The SRR1 register is used to
save machine status on exceptions and to restore machine status when rÞ
executes. See ÒMachine Status Save/Restore Register 1 (SRR1),Ó in
Chapter 2, ÒPowerPC Register Set,Ó of The Programming Environments
Manual for more information.

Implementation NoteÑWhen a machine check exception occurs, the
MPC7400 sets one or more error bits in SRR1. Table 2-2 describes SRR1 bits
the MPC7400 implements that are not required by the PowerPC architecture.

2-8 MPC7400 RISC Microprocessor UserÕs Manual

The MPC7400 Processor Register Set

Ñ Miscellaneous registers

Ð Time base (TB). The TB is a 64-bit structure provided for maintaining the
time of day and operating interval timers. The TB consists of two 32-bit
registersÑtime base upper (TBU) and time base lower (TBL). The time base
registers can be written to only by supervisor-level software, but can be read
by both user- and supervisor-level software. See ÒTime Base Facility
(TB)ÑOEA,Ó in Chapter 2, ÒPowerPC Register Set,Ó of The Programming
Environments Manual for more information.

Ð Decrementer register (DEC). This register is a 32-bit decrementer counter that
provides a mechanism for causing a decrementer exception after a
programmable delay; the frequency is a subdivision of the processor clock.
See ÒDecrementer Register (DEC),Ó in Chapter 2, ÒPowerPC Register Set,Ó of
The Programming Environments Manual for more information.

Implementation NoteÑIn the MPC7400, the decrementer register is
decremented and the time base increments at a speed that is one-fourth the
speed of the system bus clock.

Ð Data address breakpoint register (DABR)ÑThis optional register is used to
cause a breakpoint exception if a speciÞed data address is encountered. See
ÒData Address Breakpoint Register (DABR),Ó in Chapter 2, ÒPowerPC
Register Set,Ó of The Programming Environments Manual.

Ð External access register (EAR). This optional register is used in conjunction
with eciwx and ecowx. Note that the EAR register and the eciwx and ecowx
instructions are optional in the PowerPC architecture and may not be
supported in all PowerPC processors that implement the OEA. See ÒExternal
Access Register (EAR),Ó in Chapter 2, ÒPowerPC Register Set,Ó of The
Programming Environments Manual for more information.

Table 2-2. Additional SRR1 Bits

Bits Name Description

1 ICERR Instruction Cache error

2 DCERR Data Cache error

3 L2ERR L2 Tag error

4 TLBERR TLB array error

5 BRERR BHT/BTIC array error

10 OTHERR Other Internal Error

11 L2DP Set by a data parity error on the L2 bus.

12 MCPIN Set by the assertion of MCP

13 TEA Set by a TEA assertion on the 60x bus

14 DP Set by a data parity error on the 60x bus

15 AP Set by an address parity error on the 60x bus

Chapter 2. Programming Model 2-9

The MPC7400 Processor Register Set

¥ MPC7400-speciÞc registersÑThe PowerPC architecture allows for
implementation-speciÞc SPRs. Those incorporated in the MPC7400 are described
as follows. Note that in the MPC7400, these registers are all supervisor-level
registers.

Ñ Instruction address breakpoint register (IABR)ÑThis register can be used to
cause a breakpoint exception if a speciÞed instruction address is encountered.

Ñ Hardware implementation-dependent register 0 (HID0)ÑThis register controls
various functions, such as enabling checkstop conditions, and locking, enabling,
and invalidating the instruction and data caches.

Ñ Hardware implementation-dependent register 1 (HID1)ÑThis register reßects
the state of PLL_CFG[0:3] clock signals.

Ñ The L2 cache control register (L2CR) is used to conÞgure and operate the L2
cache. It includes bits for enabling parity checking, setting the L2-to-processor
clock ratio, and identifying the type of RAM used for the L2 cache
implementation.

Ñ Memory subsystem control register (MSSCR0) is used to conÞgure and operate
the memory subsystem.

Ñ Performance monitor registers. The following registers are used to deÞne and
count events for use by the performance monitor:

Ð The performance monitor counter registers (PMC1ÐPMC4) are used to record
the number of times a certain event has occurred. UPMC1ÐUPMC4 provide
user-level read access to these registers.

Ð The monitor mode control registers (MMCR0ÐMMCR2) are used to enable
various performance monitor interrupt functions. UMMCR0ÐUMMCR2
provide user-level read access to these registers.

Ð The sampled instruction address register (SIAR) contains the effective
address of an instruction executing at or around the time that the processor
signals the performance monitor interrupt condition. USIAR provides
user-level read access to the SIAR.

Ð The MPC7400 does not implement the sampled data address register (SDA)
or the user-level, read-only USDA registers. However, for compatibility with
processors that do, those registers can be written to by boot code without
causing an exception. SDA is SPR 959; USDA is SPR 943.

Ð The breakpoint address mask register (BAMR) is used in conjunction with the
events that monitor IABR and DABR hits.

Ñ The instruction cache throttling control register (ICTC) has bits for enabling the
instruction cache throttling feature and for controlling the interval at which
instructions are forwarded to the instruction buffer in the fetch unit. This
provides control over the processorÕs overall junction temperature.

Ñ Thermal management registers (THRM1, THRM2, and THRM3). Used to
enable and set thresholds for the thermal management facility.

2-10 MPC7400 RISC Microprocessor UserÕs Manual

The MPC7400 Processor Register Set

Ð THRM1 and THRM2 provide the ability to compare the junction temperature
against two user-provided thresholds. The dual thresholds allow the thermal
management software differing degrees of action in lowering the junction
temperature. The TAU can be also operated in a single threshold mode in
which the thermal sensor output is compared to only one threshold in either
THRM1 or THRM2.

Ð THRM3 is used to enable the thermal management assist unit (TAU) and to
control the comparator output sample time.

Ð The processor identiÞcation register (PIR) is provided for use by the system.
MPC7400 does not do anything to the contents of this register.

Note that while it is not guaranteed that the implementation of MPC7400-speciÞc registers
is consistent among PowerPC processors, other processors can implement similar or
identical registers.

2.1.2 MPC7400-SpeciÞc Registers

This section describes registers that are deÞned for the MPC7400 but are not included in
the PowerPC architecture. All the registers described in The AltiVec Technology
Programming Environments Manual are implemented in MPC7400. See Chapter 2,
ÒAltiVec Register Set,Ó in The AltiVec Technology Programming Environments Manual for
details about these registers.

2.1.2.1 Instruction Address Breakpoint Register (IABR)

The instruction address breakpoint register (IABR), shown in Table 2-2, supports the
instruction address breakpoint exception. When this exception is enabled, instruction fetch
addresses are compared with an effective address stored in the IABR. If the word speciÞed
in the IABR is fetched, the instruction breakpoint handler is invoked. The instruction that
triggers the breakpoint does not execute before the handler is invoked. For more
information, see Section 4.6.14, ÒInstruction Address Breakpoint Exception (0x01300).Ó
The IABR can be accessed with mtspr and mfspr using the SPR 1010. The MPC7400
requires that an mtspr(IABR) be followed by a context synchronizing instruction.

Figure 2-2. Instruction Address Breakpoint Register
0 29 30 31

Address BE TE

Chapter 2. Programming Model 2-11

The MPC7400 Processor Register Set

The IABR bits are described in Table 2-3.

2.1.2.2 Hardware Implementation-Dependent Register 0

The hardware implementation-dependent register 0 (HID0) controls the state of several
functions within the MPC7400. The HID0 register is shown in Figure 2-3.

Figure 2-3. Hardware Implementation-Dependent Register 0 (HID0)

The HID0 bits are described in Table 2-4.

Table 2-3. Instruction Address Breakpoint Register Field Descriptions

Bits Name Description

0Ð29 Address Word instruction breakpoint address to be compared with the EA[0Ð29] of the next
instruction.

30 BE Breakpoint enabled. Setting this bit indicates that breakpoint checking is to be done.

31 Ñ Reserved. DeÞned as TE bit on some earlier processors.

Table 2-4. HID0 Field Descriptions

Bits Name Function

0 EMCP Enable MCP. The primary purpose of this bit is to mask out further machine check exceptions
caused by assertion of MCP, similar to how MSR[EE] can mask external interrupts.
0 Masks MCP. Asserting MCP stops generation of a machine check exception or a checkstop.
1 Asserting MCP causes a checkstop if MSR[ME] = 0, or a machine check exception if

MSR[ME] = 1.

1 Ñ Reserved. DeÞned as the DBP bit on some earlier processors.
Parity generation is always enabled but parity checking on the address or data
buses is only enabled when the corresponding bit HID[EBA] or HID[EBD] is set.

2 EBA Enable/disable system bus address parity checking.
0 Prevents address parity checking.
1 Allows bus address parity error to cause a checkstop if MSR[ME] = 0 or a machine check

exception if MSR[ME] = 1.
EBA and EBD allow the processor to operate with memory subsystems that do not generate
parity.

3 EBD Enable system bus data parity checking.
0 Data parity checking is disabled.
1 Allows a data parity error to cause a checkstop if MSR[ME] = 0 or a machine check

exception if MSR[ME] = 1.
EBA and EBD allow the processor to operate with memory subsystems that do not generate
parity.

4 BCLK CLK_OUT output enable and clock type selection. Used in conjunction with HID0[ECLK] and
the HRESET signal to conÞgure CLK_OUT. See Table 2-5.

5 Ñ Reserved. DeÞned as EICE on some earlier processors.

EBDEBA PAR NAP DPM NHR ICE DCE

DCFIEMCP BCLK ECLK DOZE SLEEP ILOCK
DLOCK

ICFI SPD

DCFA
BTIC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved

BHT000 0

EIEC IFTT

SGE

NOPTI

0 0

NOPDST

2-12 MPC7400 RISC Microprocessor UserÕs Manual

The MPC7400 Processor Register Set

6 ECLK CLK_OUT output enable and clock type selection. Used in conjunction with HID0[BCLK] and
the HRESET signal to conÞgure CLK_OUT. See Table 2-5.

7 PAR Disable precharge of ARTRY and SHD[0] or SHD[1].
0 Precharge of ARTRY enabled
1 Alters bus protocol slightly by preventing the processor from driving ARTRY to high

(negated) state. If this is done, the system must restore the signals to the high state.

8 DOZE Doze mode enable. Operates in conjunction with MSR[POW].
0 Doze mode disabled.
1 Doze mode enabled. Doze mode is invoked by setting MSR[POW] while this bit is set. In

doze mode, the PLL, time base, and snooping remain active.

9 NAP Nap mode enable. Operates in conjunction with MSR[POW].
0 Nap mode disabled.
1 Nap mode enabled. Doze mode is invoked by setting MSR[POW] while this bit is set. In nap

mode, the PLL and the time base remain active.

10 SLEEP Sleep mode enable. Operates in conjunction with MSR[POW].
0 Sleep mode disabled.
1 Sleep mode enabled. Sleep mode is invoked by setting MSR[POW] while this bit is set.

QREQ is asserted to indicate that the processor is ready to enter sleep mode. If the system
logic determines that the processor can enter sleep mode, the quiesce acknowledge signal,
QACK, is asserted back to the processor. When the QACK signal assertion is detected, the
processor enters sleep mode after several processor clocks. At this point, the system logic
can turn off the PLL by Þrst conÞguring PLL_CFG[0:3] to PLL bypass mode, then disabling
SYSCLK.

11 DPM Dynamic power management enable.
0 Dynamic power management is disabled.
1 Functional units enter a low-power mode automatically if the unit is idle. This does not affect

operational performance and is transparent to software or any external hardware.

12 RISEG Read I SEG (test only).
0 Data segreg services mfsr.
1 Instruction segreg services mfsr.
See Section 2.3.6.3.2, ÒSegment Register Manipulation Instructions (OEA).Ó

13 EIEC Enable internal error checking.
0 Errors disabled.
1 Error enabled for DCERR, ICERR, L2ERR, BRERR, TLBERR, and OTHERR errors. The

processor will only take checkstop and machine check action for these error if EIEC is set

14 Ñ Reserved.

15 NHR Not hard reset (software-use only)ÑHelps software distinguish a hard reset from a soft reset.
0 A hard reset occurred if software had previously set this bit.
1 A hard reset has not occurred. If software sets this bit after a hard reset, when a reset occurs

and this bit remains set, software can tell it was a soft reset.
The MPC7400 never writes this bit unless executing an mtspr(HID0).

16 ICE Instruction cache enable.
0 The instruction cache is neither accessed nor updated. All pages are accessed as if they

were marked cache-inhibited (WIM = x1x). Potential cache accesses from the bus (snoop
and cache operations) are ignored. In the disabled state for the L1 caches, the cache tag
state bits are ignored and all accesses are propagated to the L2 cache or bus as single-beat
transactions. For those transactions, CI is asserted regardless of address translation. ICE is
zero at power-up.

1 The instruction cache is enabled.

Table 2-4. HID0 Field Descriptions (Continued)

Bits Name Function

Chapter 2. Programming Model 2-13

The MPC7400 Processor Register Set

17 DCE Data cache enable.
0 The data cache is neither accessed nor updated. All pages are accessed as if they were

marked cache-inhibited (WIM = x1x). Potential cache accesses from the bus (snoop and
cache operations) are ignored. In the disabled state for the L1 caches, the cache tag state
bits are ignored and all accesses are propagated to the L2 cache or bus as cache-inhibited.
For those transactions, CI is asserted regardless of address translation. ICE is zero at
power-up.

1 The data cache is enabled.

18 ILOCK Instruction cache lock.
0 Normal operation.
1 Instruction cache is locked. A locked cache supplies data normally on a read hit. On a miss,

the bus request will be a 32-byte burst read, but the cache will not be loaded with data. The
data will be reloaded into the L2, unless the L2DO bit of the L2CR is set.

19 DLOCK Data cache lock.
0 Normal operation.
1 Data cache is locked. A locked cache supplies data normally on a read hit but is treated as a

cache-inhibited transaction on a miss. On a miss, a load transaction still reads a full cache
line from the L2 or bus but does not reload that line into the dL1. Any store miss will be
treated like a write-through store and will show up on the bus with the WT signal asserted. A
snoop hit to a locked L1 data cache performs as if the cache were not locked. A cache block
invalidated by a snoop remains invalid until the cache is unlocked.

To prevent locking during a cache access, a sync instruction must precede the setting of
DLOCK.

20 ICFI Instruction cache ßash invalidate.
0 The instruction cache is not invalidated. The bit is cleared when the invalidation operation

begins (usually the next cycle after the write operation to the register). The instruction cache
must be enabled for the invalidation to occur.

1 An invalidate operation is issued that marks the state of each instruction cache block as
invalid. Cache access is blocked during this time. Setting ICFI clears all the valid bits of the
blocks and the PLRU bits to point to way L0 of each set. When the L1 ßash invalidate bits are
set through an mtspr operation, hardware automatically resets these bits in the next cycle
(provided that the corresponding cache enable bits are set in HID0).

Note, in the MPC603 and MPC603e processors, the proper use of the ICFI and DCFI bits was
to set them and clear them in two consecutive mtspr operations. Software that already has
this sequence of operations does not need to be changed to run on the MPC7400.

21 DCFI Data cache ßash invalidate.
0 The data cache is not invalidated. The bit is cleared when the invalidation operation begins

(usually the next cycle after the write operation to the register). The data cache must be
enabled for the invalidation to occur.

1 An invalidate operation is issued that marks the state of each data cache block as invalid
without writing back modiÞed cache blocks to memory. Cache access is blocked during this
time. Bus accesses to the cache are signaled as a miss during invalidate-all operations.
Setting DCFI clears all the valid bits of the blocks and the PLRU bits to point to way L0 of
each set. When the L1 ßash invalidate bits are set through an mtspr operation, hardware
automatically resets these bits in the next cycle (provided that the corresponding cache
enable bits are set in HID0).

Setting this bit clears all the valid bits of the blocks and the PLRU bits to point to way L0 of
each set.
Note, In the MPC603 and MPC603e processors, the proper use of the ICFI and DCFI bits was
to set them and clear them in two consecutive mtspr operations. Software that already has
this sequence of operations does not need to be changed to run on the MPC7400.

22 SPD Speculative data cache and instruction cache access disable.
0 Speculative bus accesses to nonguarded space (G = 0) from both the instruction and data

caches is enabled.
1 Speculative bus accesses to nonguarded space in both caches is disabled.

Table 2-4. HID0 Field Descriptions (Continued)

Bits Name Function

2-14 MPC7400 RISC Microprocessor UserÕs Manual

The MPC7400 Processor Register Set

23 IFTT I-Fetch TTx encoding differentiation.
0 I-cache and D-cache reads are not differentiated.
1 TTx code for all D-cache reads are changed from READ (TTx = 01010) to READ

ATOMIC(TTx = 11010). I-cache reads continue to be identiÞed as READ (TTx = 01010).
DeÞned as IFEM on some earlier PowerPC microprocessors.

24 SGE Store gathering enable.
0 Store gathering is disabled.
1 Integer store gathering is performed for write-through to nonguarded space or for

cache-inhibited stores to nonguarded space for 4-byte, word-aligned stores. The LSU
combines stores to form a double word that is sent out on the system bus as a single-beat
operation. Stores are gathered only if successive, eligible stores, are queued and pending.
Store gathering is performed regardless of address order or endian mode.

25 DCFA Data cache ßush assist. (Force data cache to ignore invalid sets on miss replacement
selection.)
0 The data cache ßush assist facility is disabled.
1 The miss replacement algorithm ignores invalid entries and follows the replacement

sequence deÞned by the PLRU bits. This reduces the series of uniquely addressed load or
dcbz instructions to eight per set. The bit should be set just before beginning a cache ßush
routine and should be cleared when the series of instructions is complete.

26 BTIC Branch target instruction cache enable. Used to enable use of the 64-entry branch instruction
cache.
0 The BTIC contents are invalidated and the BTIC behaves as if it were empty. New entries

cannot be added until the BTIC is enabled.
1 The BTIC is enabled and new entries can be added.

27 Ñ Reserved. DeÞned as FBIOB on some earlier processors.

28 Ñ Reserved. DeÞned as ABE on some earlier processors.

29 BHT Branch history table enable.
0 BHT disabled. The MPC7400 uses static branch prediction as deÞned by the PowerPC

architecture (UISA) for those branch instructions the BHT would have otherwise used to
predict (that is, those that use the CR as the only mechanism to determine direction). For
more information on static branch prediction, see ÒConditional Branch Control,Ó in Chapter 4
of The Programming Environments Manual.

1 Allows the use of the dynamic prediction 512-entry branch history table (BHT).
The BHT is disabled at power-on reset. All entries are set to weakly, not-taken.

30 NOPDST No-op dst, dstt, dstst, and dststt instructions.
0 The dst, dstt, dstst, and dststt instructions are enabled.
1 The dst, dstt, dstst, and dststt instructions are no-oped globally and all previously executed

dst streams will be cancelled.

31 NOPTI No-op the data cache touch instructions.
0 The dcbt and dcbtst instructions are enabled.
1 The dcbt and dcbtst instructions are no-oped globally.

Table 2-4. HID0 Field Descriptions (Continued)

Bits Name Function

Chapter 2. Programming Model 2-15

The MPC7400 Processor Register Set

Table 2-5 shows how HID0[BCLK], HID0[ECLK], and HRESET are used to conÞgure
CLK_OUT. See Section 8.5.5.3, ÒClock Out (CLK_OUT)ÑOutput,Ó for more
information.

HID0 can be accessed with mtspr and mfspr using SPR 1008.

2.1.2.3 Hardware Implementation-Dependent Register 1

The hardware implementation-dependent register 1 (HID1) reßects the state of the
PLL_CFG[0:3] signals. The HID1 bits are shown in Figure 2-4.

Figure 2-4. Hardware Implementation-Dependent Register 1 (HID1)

The HID1 bits are described in Table 2-6.

HID1 can be accessed with mtspr and mfspr using SPR 1009.

2.1.2.4 Performance Monitor Registers

This section describes the registers used by the performance monitor, which is described in
Chapter 11, ÒPerformance Monitor.Ó

Table 2-5. HID0[BCLK] and HID0[ECLK] CLK_OUT Configuration

HRESET HID0[ECLK] HID0[BCLK] CLK_OUT

Asserted x x Bus

Negated 0 0 High impedance

Negated 0 1 Bus/ 2

Negated 1 0 Core

Negated 1 1 Bus

Table 2-6. HID1 Field Descriptions

Bits Name Description

0 PC0 PLL conÞguration bit 0 (read-only)

1 PC1 PLL conÞguration bit 1 (read-only)

2 PC2 PLL conÞguration bit 2 (read-only)

3 PC3 PLL conÞguration bit 3 (read-only)

4Ð31 Ñ Reserved

Note: The clock conÞguration bits reßect the state of the PLL_CFG[0:3] signals.

PC2PC0

0 1 2 3 4 31

PC1

Reserved

PC3 Ê Ê0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ

2-16 MPC7400 RISC Microprocessor UserÕs Manual

The MPC7400 Processor Register Set

2.1.2.4.1 Monitor Mode Control Register 0 (MMCR0)

The monitor mode control register 0 (MMCR0), shown in Figure 2-5, is a 32-bit SPR
provided to specify events to be counted and recorded. The MMCR0 can be accessed only
in supervisor mode. User-level software can read the contents of MMCR0 by issuing an
mfspr instruction to UMMCR0, described in Section 2.1.2.4.2, ÒUser Monitor Mode
Control Register 0 (UMMCR0).Ó

Figure 2-5. Monitor Mode Control Register 0 (MMCR0)

This register must be cleared at power-up. Reading this register does not change its
contents. Table 2-7 describes the Þelds of MMCR0 register.

Table 2-7. MMCR0 Field Descriptions

Bits Name Description

0 FC Freeze counters.
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented (performance monitor counting is disabled). The

processor sets this bit when an enabled condition or event occurs and
MMCR0[FCECE] = 1. Note that SIAR is not updated if performance monitor
counting is disabled.

1 FCS Freeze counters in supervisor state.
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented if MSR[PR] = 0.

2 FCP Freeze counters in problem state.
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented if MSR[PR] = 1.

3 FCM1 Freeze counters while mark = 1.
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented if MSR[PMM] = 1.

4 FCM0 Freeze counters while mark = 0.
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented if MSR[PMM] = 0.

5 PMXE Performance monitor exception enable.
0 Performance monitor exceptions are disabled.
1 Performance monitor exceptions are enabled until a performance monitor interrupt

occurs, at which time MMCR0[PMXE] is cleared
Software can clear PMXE to prevent performance monitor interrupts. Software can set
PMXE and then poll it to determine whether an enabled condition or event occurred.

0 1 2 3 4 5 6 7 8 9 10 15 16 17 18 19 25 26 31

FCP THRESHOLD

FCECE

FCM0

PMC1SELFCS PMC2SELFC

PMC1CEFCM1

PMCjCE

PMXE

TRIGGER

TBSEL

TBEE

Chapter 2. Programming Model 2-17

The MPC7400 Processor Register Set

6 FCECE Freeze counters on enabled condition or event.
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are incremented (if permitted by other MMCR bits) until an enabled

condition or event occurs when MMCR0[TRIGGER] = 0, at which time MMCR0[FC]
is set If the enabled condition or event occurs when MMCR0[TRIGGER] = 1,
FCECE is treated as if it were 0.

The use of the trigger and freeze counter conditions depends on the enabled
conditions and events described in Section 11.2, ÒPerformance Monitor Interrupt.Ó

7Ð8 TBSEL Time base selector. Selects the time base bit that can cause a time base transition
event (the event occurs when the selected bit changes from 0 to 1).
00 TB[63] (TBL[31])
01 TB[55] (TBL[23])
10 TB[51] (TBL[19])
11 TB[47] (TBL[15])
Time base transition events can be used to periodically collect information about
processor activity. In multiprocessor systems in which TB registers are synchronized
among processors, time base transition events can be used to correlate the
performance monitor data obtained by the several processors. For this use, software
must specify the same TBSEL value for all the processors in the system. Because the
time-base frequency is implementation-dependent, software should invoke a system
service program to obtain the frequency before choosing a value for TBSEL.

9 TBEE Time base event enable.
0 Time-base transition events are disabled.
1 Time-base transition events are enabled. A time-base transition is signaled to the

performance monitor if the TB bit speciÞed in MMCR0[TBSEL] changes from 0 to 1.
Time-base transition events can be used to freeze the counters (MMCR0[FCECE]),
trigger the counters (MMCR0[TRIGGER]), or signal an exception (MMCR0[PMXE]).

Changing the bits speciÞed in MMCR0[TBSEL] while MMCR0[TBEE] is enabled may
cause a false 0 to 1 transition that signals the speciÞed action (freeze, trigger, or
exception) to occur immediately.

10Ð15 THRESHOLD Threshold. Contains a threshold value, which is a value such that only events that
exceed the value are counted (PMC1 events 11, 19, and 20).
By varying the threshold value, software can obtain a proÞle of the characteristics of
the events subject to the threshold. For example, if PMC1 counts cache misses for
which the duration exceeds the threshold value, software can obtain the distribution of
cache miss durations for a given program by monitoring the program repeatedly using
a different threshold value each time.
Note that MMCR2[THRESHMULT] chooses whether this value is multiplied by 2 or 32.

16 PMC1CE PMC1 condition enable. Controls whether counter negative conditions due to a
negative value in PMC1 are enabled.
0 Counter negative conditions for PMC1 are disabled.
1 Counter negative conditions for PMC1 are enabled. These events can be used to

freeze the counters (MMCR0[FCECE]), trigger the counters (MMCR0[TRIGGER]),
or signal an exception (MMCR0[PMXE]).

17 PMCjCE PMCj condition enable. Controls whether counter negative conditions due to a
negative value in any PMCj (that is, in any PMC except PMC1) are enabled.
0 Counter negative conditions for all PMCjs are disabled.
1 Counter negative conditions for all PMCjs are enabled. These events can be used to

freeze the counters (MMCR0[FCECE]), trigger the counters (MMCR0[TRIGGER]),
or signal an exception (MMCR0[PMXE]).

Table 2-7. MMCR0 Field Descriptions (Continued)

Bits Name Description

2-18 MPC7400 RISC Microprocessor UserÕs Manual

The MPC7400 Processor Register Set

MMCR0 can be accessed with mtspr and mfspr using SPR 952.

2.1.2.4.2 User Monitor Mode Control Register 0 (UMMCR0)

The contents of MMCR0 are reßected to UMMCR0, which can be read by user-level
software. MMCR0 can be accessed with mfspr using SPR 936.

2.1.2.4.3 Monitor Mode Control Register 1 (MMCR1)

The monitor mode control register 1 (MMCR1) functions as an event selector for
performance monitor counter registers 3 and 4 (PMC3 and PMC4). The MMCR1 register
is shown in Figure 2-6.

Figure 2-6. Monitor Mode Control Register 1 (MMCR1)

18 TRIGGER Trigger.
0 The PMCs are incremented (if permitted by other MMCR bits).
1 PMC1 is incremented (if permitted by other MMCR bits). The PMCjs are not

incremented until PMC1 is negative or an enabled condition or event occurs, at
which time the PMCjs resume incrementing (if permitted by other MMCR bits) and
MMCR0[TRIGGER] is cleared. The description of FCECE explain the interaction
between TRIGGER and FCECE.

Uses of TRIGGER include the following:
¥ Resume counting in the PMCjs when PMC1 becomes negative without causing a

performance monitor interrupt. Then freeze all PMCs (and optionally cause a
performance monitor interrupt) when a PMCj becomes negative. The PMCjs then
reßect the events that occurred after PMC1 became negative and before PMCj
becomes negative. This use requires the following MMCR0 bit settings.
Ð TRIGGER = 1
Ð PMC1CE = 0
Ð PMCjCE = 1
Ð TBEE = 0
Ð FCECE = 1
Ð PMXE = 1 (if a performance monitor interrupt is desired)

¥ Resume counting in the PMCjs when PMC1 becomes negative, and cause a
performance monitor interrupt without freezing any PMCs. The PMCjs then reßect
the events that occurred between the time PMC1 became negative and the time the
interrupt handler reads them. This use requires the following MMCR0 bit settings.
Ð TRIGGER = 1
Ð PMC1CE = 1
Ð TBEE = 0
Ð FCECE = 0
Ð PMXE = 1

The use of the trigger and freeze counter conditions depends on the enabled
conditions and events described in Section 11.2, ÒPerformance Monitor Interrupt.Ó

19Ð25 PMC1SEL PMC1 selector. Contains a code (one of at most 128 values) that identiÞes the event
to be counted in PMC1. See Table 11-8.

26Ð31 PMC2SEL PMC2 selector. Contains a code (one of at most 64 values) that identiÞes the event to
be counted in PMC2. See Table 11-9.

Table 2-7. MMCR0 Field Descriptions (Continued)

Bits Name Description

0 4 5 9 10 31

Reserved

PMC3SELECT PMC4SELECT 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ

Chapter 2. Programming Model 2-19

The MPC7400 Processor Register Set

Bit settings for MMCR1 are shown in Table 2-8. The corresponding events are described
in Section 2.1.3.1.1, ÒPerformance Monitor Counter Registers (PMC1ÐPMC4).Ó

MMCR1 can be accessed with mtspr and mfspr using SPR 956. User-level software can
read the contents of MMCR1 by issuing an mfspr instruction to UMMCR1, described in
Section 2.1.2.4.4, ÒUser Monitor Mode Control Register 1 (UMMCR1).Ó

2.1.2.4.4 User Monitor Mode Control Register 1 (UMMCR1)

The contents of MMCR1 are reßected to UMMCR1, which can be read by user-level
software. MMCR1 can be accessed with mfspr using SPR 940.

2.1.2.5 Monitor Mode Control Register 2 (MMCR2)

The monitor mode control register 2 (MMCR2) functions as an event selector for
performance monitor counter registers 3 and 4 (PMC3 and PMC4). The MMCR2 register
is shown in Figure 2-7.

Figure 2-7. Monitor Mode Control Register 2 (MMCR2)

Table 2-8. MMCR1 Field Descriptions

Bits Name Description

0Ð4 PMC3SELECT PMC3 selector. Contains a code (one of at most 32 values) that identiÞes the event to
be counted in PMC3. See Table 11-10.

5Ð9 PMC4SELECT PMC4 selector. Contains a code (one of at most 32 values) that identiÞes the event to
be counted in PMC4. See Table 11-11.

10Ð31 Ñ Reserved.

0 1 2 3 4 31

SMCNTENABLE
SMINTENABLE

THRESHMULT

 Ê 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ

2-20 MPC7400 RISC Microprocessor UserÕs Manual

The MPC7400 Processor Register Set

Table 2-9 describes MMCR2 fields.

2.1.2.6 User Monitor Mode Control Register 2 (UMMCR2)

The contents of MMCR2 are reßected to UMMCR2, which can be read by user-level
software. UMMCR2 can be accessed with the mfspr instruction using SPR 928.

2.1.3 Breakpoint Address Mask Register (BAMR)

The breakpoint address mask register (BAMR), shown in Table 2-8, is used in conjunction
with the events that monitor IABR and DABR hits.

Figure 2-8. Breakpoint Address Mask Register (BAMR)

Table 2-10 describes BAMR Þelds.

Table 2-9. MMCR2 Field Descriptions

Bits Name Description

0 THRESHMULT Threshold multiplier. Used to extend the range of the THRESHOLD Þeld, MMCR0[10Ð15].
0 Threshold Þeld is multiplied by 2.
1 Threshold Þeld is multiplied by 32.

1 SMCNTENABLE SMCNTENABLE is used to mask the request from a peripheral performance monitor.
0 Ignore PMON_IN.
1 Start counting when PMON_IN is asserted.
Note that counting is subject to other enabling control bits in MMCR0.

2 SMINTENABLE SMINTENABLE is used to mask the performance monitor interrupt request from a
peripheral performance monitor.
0 Ignore SMI.
1 When SMI is asserted, take a performance monitoring interrupt if enabled in MMCR0

and MSR[EE]. This event can be used to freeze the counters (MMCR0[FCECE]), trigger
the counters (MMCR0[TRIGGER]), or signal an exception (MMCR0[PMXE]).

When SMINTENABLE = 1, the MPC7400 never takes an SMI.

Table 2-10. BAMR Field Descriptions

Bit Name Description

0Ð31 MASK Used with events (PMC1 events 9 and 10) that monitor IABR and DABR hits. The addresses to be
compared for an IABR or DABR match are affected by the value in BAMR:

¥ IABR hit (PMC1, event 8) occurs if IABR_CMP (that is, IABR AND BAMR) =
instruction_address_compare (that is, EA AND BAMR)
IABR_CMP[0Ð29] = IABR[0Ð29] AND BAMR[0Ð29]
instruction_addr_cmp[0Ð29] = instruction_addr[0Ð29] AND BAMR[0Ð29]

¥ DABR hit (PMC1, event 9) occurs if DABR_CMP (that is, DABR AND BAMR) =
effective_address_compare (that is, EA AND BAMR).
DABR_CMP[0Ð28] = DABR[0Ð28] AND BAMR[0Ð28]
effective_addr_cmp[0Ð28] = effective_addr[0Ð28] AND BAMR[0Ð28]

Be aware that breakpoint events 9 and 10 of PMC1 can be used to trigger ISI and DSI exceptions
when the performance monitor detects an enabled overßow. This feature supports debug purposes
and occurs only when IABR[30] and/or DABR[30Ð31] are set. To avoid taking one of the above
interrupts, make sure that IABR[30] and/or DABR[30Ð31] are cleared.

0 31

MASK

Chapter 2. Programming Model 2-21

The MPC7400 Processor Register Set

2.1.3.1 User Breakpoint Address Mask Register (UBAMR)

The contents of BAMR are reßected to UBAMR, which can be read by user-level software.
UBAMR can be accessed with the mfspr instructions using SPR 935.

2.1.3.1.1 Performance Monitor Counter Registers (PMC1ÐPMC4)

PMC1ÐPMC4, shown in Figure 2-9, are 32-bit counters that can be programmed to
generate interrupt signals when they overßow.

Figure 2-9. Performance Monitor Counter Registers (PMC1ÐPMC4)

The bits contained in the PMC registers are described in Table 2-11.

Counters overßow when the high-order bit (the sign bit) becomes set; that is, they reach the
value 2,147,483,648 (0x8000_0000). However, an interrupt is not signaled unless both
MMCR0[PMXE] and either MMCR0[PMC1CE] or MMCR0[PMCjCE] are also set as
appropriate.

Note that the interrupts can be masked by clearing MSR[EE]; the interrupt signal condition
may occur with MSR[EE] cleared, but the exception is not taken until MSR[EE] is set.
Setting MMCR0[FCECE] forces counters to stop counting when a counter interrupt or any
enabled condition or event occurs. Setting MMCR0[TRIGGER] forces counters PMCj
(j > 1), to begin counting with PMC1 goes negative or an enabled condition or event occurs.

Software is expected to use the mtspr instruction to explicitly set PMC to non-overßowed
values. Setting an overßowed value may cause an erroneous exception. For example, if both
MMCR0[PMXE] and either MMCR0[PMC1CE] or MMCR0[PMCjCE] are set and the
mtspr instruction loads an overßow value, an interrupt signal may be generated without an
event counting having taken place.

The event to be monitored can be chosen by setting MMCRx bits, as described in
Section 11.5, ÒEvent Selection.Ó

Table 2-11. PMCn Field Descriptions

Bits Name Description

0 OV Overßow. When this bit is set, it indicates that this counter has reached its maximum value.

1Ð31 Counter value Indicates the number of occurrences of the speciÞed event.

OV

0 1 31

Counter Value

2-22 MPC7400 RISC Microprocessor UserÕs Manual

The MPC7400 Processor Register Set

The PMC registers can be accessed with mtspr and mfspr using following SPR numbers:

¥ PMC1 is SPR 953

¥ PMC2 is SPR 954

¥ PMC3 is SPR 957

¥ PMC4 is SPR 958

2.1.3.1.2 User Performance Monitor Counter Registers (UPMC1ÐUPMC4)

The contents of the PMC1ÐPMC4 are reßected to UPMC1ÐUPMC4, which can be read by
user-level software. The UPMC registers can be read with mfspr using the following SPR
numbers:

¥ UPMC1 is SPR 937

¥ UPMC2 is SPR 938

¥ UPMC3 is SPR 941

¥ UPMC4 is SPR 942

2.1.3.1.3 Sampled Instruction Address Register (SIAR)

The sampled instruction address register (SIAR) is a supervisor-level register that contains
the effective address of the last instruction to complete before the performance monitor
exception is signaled. The SIAR is shown in Figure 2-10.

Figure 2-10. Sampled Instruction Address Registers (SIAR)

Note that SIAR is not updated if performance monitor counting has been disabled by
setting MMCR0[0]. SIAR can be accessed with the mtspr and mfspr instructions using
SPR 955.

2.1.3.1.4 User-Sampled Instruction Address Register (USIAR)

The contents of SIAR are reßected to USIAR, which can be read by user-level software.
USIAR can be accessed with the mfspr instructions using SPR 939.

2.1.3.1.5 Sampled Data Address Register (SDA) and User-Sampled Data
Address Register (USDA)

The MPC7400 does not implement the sampled data address register (SDA) or the
user-level, read-only USDA registers. However, for compatibility with processors that do,
those registers can be written to by boot code without causing an exception. SDA is
SPR 959; USDA is SPR 943.

0 31

Instruction Address

Chapter 2. Programming Model 2-23

The MPC7400 Processor Register Set

2.1.4 Instruction Cache Throttling Control Register (ICTC)

Reducing the rate of instruction fetching can control junction temperature without the
complexity and overhead of dynamic clock control. System software can control
instruction forwarding by writing a nonzero value to the ICTC register, a supervisor-level
register shown in Figure 2-11. The overall junction temperature reduction comes from the
dynamic power management of each functional unit when the MPC7400 is idle in between
instruction fetches. Phase-locked loop (PLL) and delay-locked loop (DLL) conÞgurations
are unchanged.

Figure 2-11. Instruction Cache Throttling Control Register (ICTC)

Table 2-12 describes the bit Þelds for the ICTC register.

Instruction cache throttling is enabled by setting ICTC[E] and writing the instruction
forwarding interval into ICTC[FI]. Enabling, disabling, and changing the instruction
forwarding interval affect instruction forwarding immediately.

The ICTC register can be accessed with the mtspr and mfspr instructions using SPR 1019.

2.1.5 Thermal Management Registers (THRM1ÐTHRM3)

The on-chip thermal management assist unit provides the following functions:

¥ Compares the junction temperature against user programmed thresholds

¥ Generates a thermal management interrupt if the temperature crosses the threshold

¥ Provides a way for a successive approximation routine to estimate junction
temperature

Table 2-12. ICTC Field Descriptions

Bits Name Description

0Ð22 Ñ Reserved.

23Ð30 FI Instruction forwarding interval expressed in processor clocks.
0x00 0 clock cycle.
0x01 1 clock cycle
.
.
.
0xFF 255 clock cycles

31 E Cache throttling enable
0 Disable instruction cache throttling.
1 Enable instruction cache throttling.

0 22 23 30 31

EFI

Reserved

 Ê 0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 ÊÊ

2-24 MPC7400 RISC Microprocessor UserÕs Manual

The MPC7400 Processor Register Set

Control and access to the thermal management assist unit is through the privileged
mtspr/mfspr instructions to the three THRM registers. THRM1 and THRM2, shown in
Figure 2-12, provide the ability to compare the junction temperature against two
user-provided thresholds. Having dual thresholds allows thermal management software
differing degrees of action in reducing junction temperature. Thermal management can use
a single-threshold mode in which the thermal sensor output is compared to only one
threshold in either THRM1 or THRM2.

Figure 2-12. Thermal Management Registers 1Ð2 (THRM1ÐTHRM2)

The bits in THRM1 and THRM2 are described in Table 2-13.

If an mtspr affects a THRM register that contains operating parameters for an ongoing
comparison during operation of the thermal assist unit, the respective TIV bits are cleared
and the comparison is restarted. Changing THRM3 forces the TIV bits of both THRM1 and
THRM2 to 0, and restarts the comparison if THRM3[E] is set.

Table 2-13. THRM1ÐTHRM2 Bit Settings

Bits Field Description

0 TIN Thermal management interrupt bit (read-only). This bit is set if the thermal sensor output crosses
the threshold speciÞed in the SPR. The state of TIN is valid only if TIV is set. The interpretation of
TIN is controlled by TID. See Table 2-14.

1 TIV Thermal management interrupt valid (read-only). This bit is set by the thermal assist logic to
indicate that the thermal management interrupt (TIN) state is valid. See Table 2-14.

2Ð8 Threshold Threshold that the thermal sensor output is compared to. The range is 0¡Ð127¡ C, and each bit
represents 1¡ C. Note that this is not the resolution of the thermal sensor.

9Ð2
8

Ñ Reserved. System software should clear these bits when writing to the THRMn SPRs.

29 TID Thermal management interrupt direction bit. Selects the result of the temperature comparison to
set TIN and to assert a thermal management interrupt if TIE is set. If TID is cleared, TIN is set and
an interrupt occurs if the junction temperature exceeds the threshold. If TID is set, TIN is set and
an interrupt is indicated if the junction temperature is below the threshold. See Table 2-14.

30 TIE Thermal management interrupt enable. The thermal management interrupt is maskable by the
MSR[EE] bit. If TIE is cleared and THRMn is valid, the TIN bit records the status of the junction
temperature vs. threshold comparison without causing an exception. This lets system software
successively approximate the junction temperature. See Table 2-14.

31 V SPR valid bit. Setting this bit indicates the SPR contains a valid threshold, TID and TIE controls
bits. THRM1[V] = 1, THRM2[V] = 1, and THRM3[E] = 1 enables the thermal sensor operation. See
Table 2-14.

TIV THRESHOLD

0 1 2 8 9 28 29 30 31

TIDTIN

Reserved

TIE V Ê Ê 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 ÊÊ

Chapter 2. Programming Model 2-25

The MPC7400 Processor Register Set

Examples of valid THRM1/THRM2 bit settings are shown in Table 2-14.

The THRM3 register, shown in Figure 2-13, is used to enable the thermal assist unit and to
control the comparator output sample time. The thermal assist logic manages the thermal
management interrupt generation and time-multiplexed comparisons in dual-threshold
mode as well as other control functions.

Figure 2-13. Thermal Management Register 3 (THRM3)

The bits in THRM3 are described in Table 2-15.

Table 2-14. Valid THRM1/THRM2 States

TIN1

1 TIN and TIV are read-only status bits.

TIV1 TID TIE V Description

x x x x 0 Invalid entry. The threshold in the SPR is not used for comparison.

x x x 0 1 Disable thermal management interrupt assertion.

x x 0 x 1 Set TIN and assert thermal management interrupt if TIE = 1 and the junction
temperature exceeds the threshold.

x x 1 x 1 Set TIN and assert thermal management interrupt if TIE = 1 and the junction
temperature is less than the threshold.

x 0 x x 1 The state of the TIN bit is not valid.

0 1 0 x 1 The junction temperature is less than the threshold and as a result the thermal
management interrupt is not generated for TIE = 1.

1 1 0 x 1 The junction temperature is greater than the threshold and as a result the
thermal management interrupt is generated if TIE = 1.

0 1 1 x 1 The junction temperature is greater than the threshold and as a result the
thermal management interrupt is not generated for TIE = 1.

1 1 1 x 1 The junction temperature is less than the threshold and as a result the thermal
management interrupt is generated if TIE = 1.

Table 2-15. THRM3 Bit Settings

Bits Name Description

0Ð17 Ñ Reserved for future use. System software should clear these bits when writing to the THRM3.

18Ð30 SITV Sample interval timer value. Number of elapsed processor clock cycles before a junction
temperature vs. threshold comparison result is sampled for TIN bit setting and interrupt
generation. This is necessary due to the thermal sensor, DAC, and the analog comparator settling
time being greater than the processor cycle time. The value should be conÞgured to allow a
sampling interval of 20 microseconds.

31 E Enables the thermal sensor compare operation if either THRM1[V] or THRM2[V] is set.

0 17 18 30 31

Reserved

ESampled Interval Timer Value Ê0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 ÊÊ

2-26 MPC7400 RISC Microprocessor UserÕs Manual

The MPC7400 Processor Register Set

The THRM registers can be accessed with the mtspr and mfspr instructions using the
following SPR numbers:

¥ THRM1 is SPR 1020
¥ THRM2 is SPR 1021
¥ THRM3 is SPR 1022

2.1.6 Memory Subsystem Control Register (MSSCR0)

The MSS control register (MSSCR0), shown in Figure 2-14, is used to conÞgure and
operate the memory subsystem for the MPC7400. It is accessed as SPR 1014. The
MSSCR0 is initialized to all 0s except for the read-only bits.

Because MSSCR0 alters how the MPC7400 responds to snoop requests, it is important that
changes to the value of MSCCR0 are handled correctly. The correct sequence necessary to
change that value of MSSCR0 is as follows:

1. disable interrupts

2. dssall

3. sync

4. Flush L1 data cache

5. Flush L2 cache

6. sync

7. mtspr(MSSCR0)

8. sync

Figure 2-14. Memory Subsystem Control Register (MSSCR0)

L1_INTVEN

SHDEN

L2_INTVEN

DL1HWF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved

SHDPEN3

EMODE

ABD

1 Ê 0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0ÊÊ

Chapter 2. Programming Model 2-27

The MPC7400 Processor Register Set

Table 2-16 describes MSSCR0 Þelds.
Table 2-16. MSSCR0 Field Descriptions

Bits Name Function

0 SHDEN Shared-state enable. The MPC7400 implements both a 3-state MEI coherency protocol
similar to the MPC750 and a 4-state MESI protocol similar to the MPC604e family of
processors.
0 3-state MEI protocol
1 4-state MESI protocol

1 SHDPEN3 SHD0/SHD1 signal enable in 3-state MEI mode.
0 SHD0/SHD1 signals are not sampled and are not driven when SHDEN = 0. SHD0 and

SHD1 are always seen as negated by the processor.
1 SHD0/SHD1 signals sampled when SHDEN = 0.
For some system implementations, MPC7400 can be inserted into an MPC750 socket that
has no SHD0 and SHD1 connection. In this case, this control bit (and SHDEN) should remain
cleared to prevent the processor from sampling indeterminate or ßoating signal input values
on these signals.
SHDPEN3 has an effect only when SHDEN = 0. If SHDEN = 1, SHD0 is sampled if
EMODE = 0, and SHD0 and SHD1 is sampled if EMODE = 1.
For multiprocessor systems, when SHDEN = 0, SHDPEN3 must be set and the SHDx
signal(s) must be connected between the processors. If either of these conditions are not
met, the processor cannot guarantee the atomicity of an lwarx/stwcx. instruction pair.
Note that SHD1 is driven or sampled only in MPX bus mode (EMODE = 1), regardless of the
state of this control bit. In 60x bus mode (EMODE = 0), the above statements apply to the
SHD signal (multiplexed with SHD0).

2Ð4 L1_INTVEN L1 data cache HIT intervention enable.
000 HIT intervention disabled. All ModiÞed intervention is performed using the 60x-style

ARTRY/window-of-opportunity write-with-kill push
HIT intervention occurs for snoop hits to lines in the following states:
100 ModiÞed
110 ModiÞed or exclusive.
111 ModiÞed, exclusive, or recent. Shared (recent) intervention uses a 5-state MERSI

coherency protocol.
001, 010, 011, and 101 are illegal
These bits have an effect only when the processor is conÞgured in MPX bus mode (EMODE
signal asserted during HRESET, which sets MSSCR0[EMODE]).
The following is the only legal combination of values for L1 and L2 intervention enables:
L1_INTVEN[0Ð2]||L2INTVEN[0Ð2] =
000 || 000 No HIT intervention
100 || 000
110 || 000
111 || 000
100 || 100
110 || 100
111 || 100
110 || 110
111 || 110
111 || 111 Full HIT intervention.
MPC7400 does not support different L1_INTVEN or L2_INTVEN settings in different
MPC7400 processors in a multiple processor system.

5Ð7 L2_INTVEN L2 HIT intervention enable.
Same deÞnition as for L1_INTVEN.

8 DL1HWF L1 data cache hardware ßush.

9 Ñ Reserved.

2-28 MPC7400 RISC Microprocessor UserÕs Manual

The MPC7400 Processor Register Set

2.1.7 L2 Cache Control Register (L2CR)

The L2 cache control register, shown in Figure 2-15, is a supervisor-level,
implementation-speciÞc SPR used to conÞgure and operate the L2 cache. It is cleared by a
hard reset or power-on reset.

Figure 2-15. L2 Cache Control Register (L2CR)

The L2 cache interface is described in Chapter 3, ÒL1 and L2 Cache Operation.Ó The L2CR
bits are described in Table 2-17.

10 EMODE MPX bus mode (read-only).
0 Processor is in 60x bus mode (EMODE was sampled negated at HRESET negation).
1 Processor is in MPX bus mode. (EMODE was sampled asserted at HRESET negation).

11 ABD Address bus driven (read-only). This bit is valid only when EMODE = 1.
0 Processor drives the address bus only in the interval from TS through AACK (if after

HRESET is negated, EMODE is detected as negated).
1 Processor drives the address bus to a stable value every cycle following a qualiÞed bus

grant (EMODE is asserted after HRESET is negated).
This mode is provided to enhance the electrical characteristics of the address bus in MPX
bus mode by not allowing the address bus to ßoat to indeterminate values when this
processor is parked on the bus.

12Ð31 Ñ Reserved, should be cleared.

Table 2-17. L2CR Field Descriptions

Bits Name Function

0 L2E L2 enable. Enables L2 cache operation (including snooping) starting with the next transaction
the L2 cache unit receives. Before enabling the L2 cache, the L2 clock must be conÞgured
through L2CR[2CLK], and the L2 DLL must stabilize (see the MPC7400 hardware
speciÞcation for further details). All other L2CR bits must be set appropriately. The L2 cache
may need to be invalidated globally.

1 L2PE L2 data parity generation and checking enable. Enables odd parity generation and checking
for the L2 data RAM interface. When L2PE is set, it allows data parity error on the L2 bus to
cause a checkstop if MSR[ME] = 0, or a machine check interrupt if MSR[ME] = 1. When
disabled, generated parity is always zeros which prevents L2 data parity checking.

Table 2-16. MSSCR0 Field Descriptions (Continued)

Bits Name Function

L2SIZ L2CLK L2RAM L2OH

0 1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 30 31

L2E

L2PE
L2WT

L2I

L2DO L2CTL L2TS L2SL
L2DF

L2BYP L2IPL2DRO
L2CLKSTP

L2IOL2HWFL2FA

20 21 22 23 24

Reserved

0 0 0 0 ÊÊ0 0 0ÊÊ

Chapter 2. Programming Model 2-29

The MPC7400 Processor Register Set

2Ð3 L2SIZ L2 sizeÑShould be set according to the size of the L2 data RAMs used. A 256-Kbyte L2
cache requires a data RAM conÞguration of 32 Kbytes x 64 bits; a 512-Kbyte L2 cache
requires a conÞguration of 64 Kbytes x 64 bits; a 1-Mbyte L2 cache requires a conÞguration of
128 Kbytes x 64 bits.
00 2 Mbytes, 128 bytes (4 sectors) per tag
01 256 Kbytes, 16 bytes per tag
10 512 Kbytes, 32 bytes (1 sector) per tag
11 1 Mbyte, 64 bytes (2 sectors) per tag

4Ð6 L2CLK L2 clock ratio (core-to-L2 frequency divider). SpeciÞes the clock divider ratio based from the
core clock frequency at which the L2 data RAM interface is to operate. When these bits are
cleared, the L2 clock is stopped and the on-chip DLL for the L2 interface is disabled. For
nonzero values, the processor generates the L2 clock and the on-chip DLL is enabled. After
the L2 clock ratio is chosen, the DLL must stabilize before the L2 interface can be enabled.
(See the MPC7400 hardware speciÞcation for further details). The resulting L2 clock
frequency cannot be slower than the clock frequency of the 60x bus interface.
000 L2 clock and DLL disabled
001 ¸1
010 ¸1.5
011 ¸3.5
100 ¸2
101 ¸2.5
110 ¸3
111 ¸4

7Ð8 L2RAM L2 RAM typeÑConÞgures the L2 RAM interface for the type of synchronous SRAMs used:
¥ Flow-through (register-buffer) synchronous burst SRAMs that clock addresses in and ßow

data out
¥ Pipelined (register-register) synchronous burst SRAMs that clock addresses in and clock

data out
¥ Late-write synchronous SRAMs, for which the MPC7400 requires a pipelined

(register-register) conÞguration. Late-write RAMs require write data to be valid on the
cycle after WE is asserted, rather than on the same cycle as the write enable as with
traditional burst RAMs.

For burst RAM selections, the MPC7400 does not burst data into the L2 cache; it generates
an address for each access. Pipelined SRAMs can be used for all L2 clock modes. Note that
ßow-through SRAMs can be used only for L2 clock modes divide-by-2 or slower (divide-by-1
and divide-by-1.5 not allowed).
00 Flow-through (register-buffer) synchronous burst SRAM
01 Reserved
10 Pipelined (register-register) synchronous burst SRAM
11 Pipelined (register-register) synchronous late-write SRAM

9 L2DO L2 data-only. Setting this bit enables data-only operation in the L2 cache. For this operation,
only transactions from the L1 data cache can be cached in the L2 cache. The L2 cache will not
be reloaded for L1 instruction cache misses.

10 L2I L2 global invalidate. Setting L2I invalidates the L2 cache globally by clearing the L2 bits
including status bits. This bit must not be set while the L2 cache is enabled.

11 L2CTL L2 RAM control (ZZ enable). Setting L2CTL enables the automatic operation of the L2ZZ
(low-power mode) signal for cache RAMs that support the ZZ function. While L2CTL is
asserted, L2ZZ asserts automatically when the MPC7400 enters nap or sleep mode and
negates automatically when the MPC7400 exits nap or sleep mode. This bit should not be set
when the MPC7400 is in nap mode and snooping is to be performed through the deassertion
of QACK.

Table 2-17. L2CR Field Descriptions (Continued)

Bits Name Function

2-30 MPC7400 RISC Microprocessor UserÕs Manual

The MPC7400 Processor Register Set

12 L2WT L2 write-through. Setting L2WT selects write-through mode (rather than the default write-back
mode) so all writes to the L2 cache also write through to the system bus. For these writes, the
L2 cache entry is always marked as clean (valid unmodiÞed) rather than dirty (valid modiÞed).
This bit must never be asserted after the L2 cache has been enabled as previously-modiÞed
lines can get remarked as clean during normal operation.

13 L2TS L2 test support. Setting L2TS causes cache block pushes from the L1 data cache that result
from dcbf and dcbst instructions to be written only into the L2 cache and marked valid, rather
than being written only to the system bus and marked invalid in the L2 cache in case of a hit.
This bit allows a dcbz/dcbf instruction sequence to be used with the L1 cache enabled to
easily initialize the L2 cache with any address and data information. This bit also keeps dcbz
instructions from being broadcast on the system and single-beat cacheable store misses in
the L2 from being written to the system bus.

14Ð15 L2OH L2 output hold. These bits conÞgure output hold time for address, data, and control signals
driven by the MPC7400 to the L2 data RAMs. They should generally be set according to the
SRAMÕs input hold time requirements, for which late-write SRAMs usually differ from
ßow-through or burst SRAMs.
00 Shortest output hold, recommended for pipelined burst SRAM
01 Second output hold
10 Third output hold, recommended for pipelined late-write synchronous burst SRAM
10 Longest output hold
For speciÞc times on the SRAM see the MPC7400 hardware speciÞcation.

16 L2SL L2 DLL slow. Setting L2SL increases the delay of each tap of the DLL delay line. It is intended
to increase the delay through the DLL to accommodate slower L2 RAM bus frequencies.
Generally, L2SL should be set if the L2 RAM interface is operated below 100 MHz.

17 L2DF L2 differential clock. Setting L2DF conÞgures the two clock-out signals (L2CLK_OUTA and
L2CLK_OUTB) of the L2 interface to operate as one differential clock. In this mode, the B
clock is driven as the logical complement of the A clock. This mode supports the differential
clock requirements of late-write SRAMs. Generally, this bit should be set when late-write
SRAMs are used.

18 L2BYP L2 DLL bypass. The DLL unit receives three input clocks:
¥ A square-wave clock from the PLL unit to phase adjust and export
¥ A non-square-wave clock for the internal phase reference
¥ A feedback clock (L2SYNC_IN) for the external phase reference.

Asserting L2BYP causes clock #2 to be used as clocks #1 and #2. (Clock #2 is the actual
clock used by the registers of the L2 interface circuitry.) L2BYP is intended for use when the
PLL is being bypassed. If the PLL is being bypassed, the DLL must be operated in divide-by-1
mode, and SYSCLK must be fast enough for the DLL to support.

19 L2FA L2 ßush assist (for software ßush). When this bit is negated, all lines castout from the dL1
which have a state of CDMRSV = 01xxx1 (that is, the C-bit is negated), will not allocate in the
L2 if they miss. Asserting this bit forces every castout from the dL1 to allocate an entry in the
L2 if that castout misses in the L2 regardless of the state of the C-bit. The L2FA bit must be set
and the L2IO bit must be cleared in order to use the software ßush algorithm.

Table 2-17. L2CR Field Descriptions (Continued)

Bits Name Function

Chapter 2. Programming Model 2-31

The MPC7400 Processor Register Set

The L2CR register can be accessed with the mtspr and mfspr instructions using SPR 1017.

20 L2HWF L2 hardware ßush. When the processor detects the value of L2HWF set to 1, the L2 will begin
a hardware ßush. The ßush will be done by starting with low cache indices and increment
these indices, for way 0 of the cache, one index at a time until the maximum index value is
obtained. Then, the index will be cleared to 0 and the same process is repeated for way 1 of
the cache. For each index and way of the cache, the processor will generate a castout
operation to the system bus for all modiÞed 32-byte sectors. At the end of the hardware ßush,
all lines in the L2 tag will be invalidated.
During the ßush, all memory activity from the icache and dcache are blocked from accessing
the L2 until the ßush is complete. Snoops, however, are fully serviced by the L2 during the
ßush.
When the L2 Tags have been fully ßushed of all valid entries, this bit will be reset to 0b0000 by
hardware. When this bit is cleared, it does not necessarily guarantee that all lines from the L2
have been written completely to the system interface. L2 copybacks can still be queued in the
bus interface unit.
Below is the code which must be run to use L2 hardware ßush. When the Þnal sync
completes, all modiÞed lines in the L2 will have been written to the system address bus.

¥ Disable interrupts
¥ dssall
¥ sync
¥ set L2HWF
¥ sync

21 L2IO L2 instruction-only.
Setting this bit enables instruction-only operation in the L2 cache. For this operation, only
transactions from the L1 instruction cache are allowed to be reloaded in the L2 cache. Data
addresses already in the cache will still hit for the L1 data cache. When both L2DO and L2IO
are asserted, the L2 cache is effectively locked.

22 L2CLKSTP L2 clock stop.
Setting this bit enables the automatic stopping of the L2CLK_OUT signals for cache RAMs
that support this function. While L2CLKSTP is set, the L2CLK_OUT signals will automatically
be stopped when MPC7400 enters nap or sleep mode, and automatically restarted when
MPC7400 exits nap or sleep.

23 L2DRO L2DLL rollover checkstop enable.
Setting this bit enables a potential rollover (or actual rollover) condition of the DLL to cause a
checkstop for the processor. A potential rollover condition occurs when the DLL is selecting
the last tap of the delay line, and thus can risk rolling over to the Þrst tap with one adjustment
while in the process of keeping in sync. Such a condition is improper operation for the DLL,
and while this condition is not expected, this bit allows detection for added security. This bit
can be set when the DLL is Þrst enabled (set with the L2CLK bits) to detect rollover during
initial synchronization. It can also be set when the L2 cache is enabled (with L2E bit) after the
DLL has achieved initial lock.

24Ð30 Ñ Reserved.

31 L2IP L2 global invalidate in progress (read only).
This read-only bit indicates whether an L2 global invalidate is occurring. It should be
monitored after an L2 global invalidate has been initiated by the L2I bit to determine when it
has completed.

Table 2-17. L2CR Field Descriptions (Continued)

Bits Name Function

2-32 MPC7400 RISC Microprocessor UserÕs Manual

The MPC7400 Processor Register Set

2.1.8 Reset Settings

Table 2-18 shows the state of the registers and other resources after a hard reset and before
the Þrst instruction is fetched from address 0xFFF0_0100 (the system reset exception
vector).

Table 2-18. Settings Caused by Hard Reset (Used at Power-On)

Resource Setting

BAMR 0x0000_0000

BATs UndeÞned

Caches (L1 /L2)1 Invalidated and disabled

CR UndeÞned

CTR UndeÞned

DABR Breakpoint is disabled. Address is undeÞned.

DAR 0x0000_0000

DEC 0xFFFF_FFFF

DSISR 0x0000_0000

EAR 0x0000_0000

FPRs UndeÞned

FPSCR 0x0000_0000

GPRs UndeÞned

HID0 0x0000_0000

HID1 0x0000_0000

IABR 0x0000_0000 (Breakpoint is disabled.)

ICTC 0x0000_0000

L2CR 0x0000_0000

LR 0x0000_0000

MMCRn 0x0000_0000

MSSCR0 0x0040_0000

MSR 0x0000_0040 (only IP set)

PIR 0x0000_0000

PMCn UndeÞned

PVR ROM value

Reservation address UndeÞned

Reservation ßag Cleared

SDR1 0x0000_0000

SIAR 0x0000_0000

SPRG0ÐSPGR3 0x0000_0000

SRs UndeÞned

Chapter 2. Programming Model 2-33

Operand Conventions

2.2 Operand Conventions
This section describes the operand conventions as they are represented in two levels of the
PowerPC architectureÑUISA and VEA. Detailed descriptions are provided of conventions
used for storing values in registers and memory, accessing PowerPC registers, and
representation of data in these registers.

2.2.1 Floating-Point Execution ModelsÑUISA

The IEEE 754 standard deÞnes conventions for 64- and 32-bit arithmetic. The standard
requires that single-precision arithmetic be provided for single-precision operands. The
standard permits double-precision arithmetic instructions to have either (or both)
single-precision or double-precision operands, but states that single-precision arithmetic
instructions should not accept double-precision operands.

The PowerPC UISA follows these guidelines:

¥ Double-precision arithmetic instructions can have single-precision operands but
always produce double-precision results.

¥ Single-precision arithmetic instructions require all operands to be single-precision
and always produce single-precision results.

SRR0 0x0000_0000

SRR1 0x0000_0000

TBU and TBL 0x0000_0000

THRM1ÐTHRM3 0x0000_0000

TLBs UndeÞned

UBAMR 0x0000_0000

UMMCRn 0x0000_0000

UPMCn 0x0000_0000

USIAR 0x0000_0000

VRs UndeÞned

VRSAVE 0x0000_0000

VSCR 0x0000_0000

XER 0x0000_0000

1 The processor automatically begins operations by issuing an instruction fetch. Because caching is
inhibited at start-up, this generates a single-beat load operation on the bus.

Table 2-18. Settings Caused by Hard Reset (Used at Power-On) (Continued)

Resource Setting

2-34 MPC7400 RISC Microprocessor UserÕs Manual

Operand Conventions

For arithmetic instructions, conversion from double- to single-precision must be done
explicitly by software, while conversion from single- to double-precision is done implicitly
by the processor.

All PowerPC implementations provide the equivalent of the following execution models to
ensure that identical results are obtained. The deÞnition of the arithmetic instructions for
inÞnities, denormalized numbers, and NaNs follow conventions described in the following
sections.

Although the double-precision format speciÞes an 11-bit exponent, exponent arithmetic
uses two additional bit positions to avoid potential transient overßow conditions. An extra
bit is required when denormalized double-precision numbers are prenormalized. A second
bit is required to permit computation of the adjusted exponent value in the following
examples when the corresponding exception enable bit is one:

¥ Underßow during multiplication using a denormalized operand

¥ Overßow during division using a denormalized divisor

2.2.2 Data Organization in Memory and Data Transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands can be bytes, half words, words, or double words, quad words, or, for the
load/store multiple and load/store string instructions, a sequence of bytes or words. The
address of a memory operand is the address of its Þrst byte (that is, of its lowest-numbered
byte). Operand length is implicit for each instruction.

2.2.3 Alignment and Misaligned Accesses

The operand of a single-register memory access instruction has an alignment boundary
equal to its length. An operandÕs address is misaligned if it is not a multiple of its width.

The concept of alignment is also applied more generally to data in memory. For example,
a 12-byte data item is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition,
alignment can affect performance. For single-register memory access instructions, the best
performance is obtained when memory operands are aligned.

Instructions are 32 bits (one word) long and must be word-aligned.

The MPC7400 does not provide hardware support for ßoating-point memory that is not
word-aligned. If a ßoating-point operand is not word-aligned, the MPC7400 invokes an
alignment exception, and it is left up to software to break up the offending storage access
operation appropriately. In addition, some non-double-wordÐaligned memory accesses
suffer performance degradation as compared to an aligned access of the same type.

Chapter 2. Programming Model 2-35

Instruction Set Summary

In general, ßoating-point word accesses should always be word-aligned and ßoating-point
double-word accesses should always be double-wordÐaligned. Frequent use of misaligned
accesses is discouraged because they can degrade overall performance.

2.2.4 Floating-Point Operands

The MPC7400 provides hardware support for all single- and double-precision
ßoating-point operations for most value representations and all rounding modes. This
architecture provides for hardware to implement a ßoating-point system as deÞned in
ANSI/IEEE standard 754-1985, IEEE Standard for Binary Floating Point Arithmetic.
Detailed information about the ßoating-point execution model can be found in Chapter 3,
ÒOperand Conventions,Ó in The Programming Environments Manual.

The MPC7400 supports non-IEEE mode when FPSCR[29] is set. In this mode,
denormalized numbers are treated in a non-IEEE conforming manner. This is accomplished
by delivering results that are forced to the value zero.

2.3 Instruction Set Summary
This chapter describes instructions and addressing modes deÞned for the MPC7400. These
instructions are divided into the following functional categories:

¥ Integer instructionsÑThese include arithmetic and logical instructions. For more
information, see Section 2.3.4.1, ÒInteger Instructions.Ó

¥ Floating-point instructionsÑThese include ßoating-point arithmetic instructions, as
well as instructions that affect the ßoating-point status and control register (FPSCR).
For more information, see Section 2.3.4.2, ÒFloating-Point Instructions.Ó

¥ Load and store instructionsÑThese include integer and ßoating-point load and store
instructions. For more information, see Section 2.3.4.3, ÒLoad and Store
Instructions.Ó

¥ Flow control instructionsÑThese include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction ßow. For more information, see Section 2.3.4.4, ÒBranch and Flow
Control Instructions.Ó

¥ Processor control instructionsÑThese instructions are used for synchronizing
memory accesses and managing caches, TLBs, and segment registers. For more
information, see Section 2.3.4.6, ÒProcessor Control InstructionsÑUISA,Ó
Section 2.3.5.1, ÒProcessor Control InstructionsÑVEA,Ó and Section 2.3.6.2,
ÒProcessor Control InstructionsÑOEA.Ó

¥ Memory synchronization instructionsÑThese instructions are used for memory
synchronizing. See Section 2.3.4.7, ÒMemory Synchronization
InstructionsÑUISA,Ó and Section 2.3.5.2, ÒMemory Synchronization
InstructionsÑVEA,Ó for more information.

2-36 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set Summary

¥ Memory control instructionsÑThese instructions provide control of caches, TLBs,
and segment registers. For more information, see Section 2.3.5.3, ÒMemory Control
InstructionsÑVEA,Ó and Section 2.3.6.3, ÒMemory Control InstructionsÑOEA.Ó

¥ External control instructionsÑThese include instructions for use with special
input/output devices. For more information, see Section 2.3.5.4, ÒOptional External
Control Instructions.Ó

¥ AltiVec instructionsÐAltiVec technology does not have optional instructions
deÞned, so all instructions listed in The AltiVec Technology Programming
Environments Manual are implemented for MPC7400. Instructions that are
implementation speciÞc are described in Section 2.6.2, ÒAltiVec Instructions with
SpeciÞc Implementations for the MPC7400.Ó

Note that this grouping of instructions does not necessarily indicate the execution unit that
processes a particular instruction or group of instructions. This information, which is useful
for scheduling instructions most effectively, is provided in Chapter 6, ÒInstruction Timing.Ó

Integer instructions operate on word operands. Floating-point instructions operate on
single-precision and double-precision ßoating-point operands. AltiVec instructions operate
on byte, half-word, word, and quad-word operands. The PowerPC architecture uses
instructions that are four bytes long and word-aligned. It provides for byte, half-word, and
word operand loads and stores between memory and a set of 32 general-purpose registers
(GPRs). It provides for word and double-word operand loads and stores between memory
and a set of 32 ßoating-point registers (FPRs). It also provides for byte, half-word, word,
and quad-word operand loads and stores between memory and a set of 32 vector registers
(VRs).

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into a register, modiÞed, and then written to the target
location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands.
To simplify assembly language programming, a set of simpliÞed mnemonics and symbols
is provided for some of the frequently-used instructions; see Appendix F, ÒSimplified
Mnemonics,Ó in The Programming Environments Manual for a complete list of simpliÞed
mnemonics. Note that the architecture speciÞcation refers to simpliÞed mnemonics as
extended mnemonics. Programs written to be portable across the various assemblers for the
PowerPC architecture should not assume the existence of mnemonics not described in that
document.

Chapter 2. Programming Model 2-37

Instruction Set Summary

2.3.1 Classes of Instructions

The MPC7400 instructions belong to one of the following three classes:

¥ DeÞned

¥ Illegal

¥ Reserved

Note that while the deÞnitions of these terms are consistent among the PowerPC
processors, the assignment of these classiÞcations is not. For example, PowerPC
instructions deÞned for 64-bit implementations are treated as illegal by 32-bit
implementations such as the MPC7400.

The class is determined by examining the primary opcode and the extended opcode, if any.
If the opcode, or combination of opcode and extended opcode, is not that of a deÞned
instruction or of a reserved instruction, the instruction is illegal.

Instruction encodings that are now illegal can become assigned to instructions in the
architecture or can be reserved by being assigned to processor-speciÞc instructions.

2.3.1.1 DeÞnition of Boundedly UndeÞned

If instructions are encoded with incorrectly set bits in reserved Þelds, the results on
execution can be said to be boundedly undeÞned. If a user-level program executes the
incorrectly coded instruction, the resulting undeÞned results are bounded in that a spurious
change from user to supervisor state is not allowed, and the level of privilege exercised by
the program in relation to memory access and other system resources cannot be exceeded.
Boundedly-undeÞned results for a given instruction can vary between implementations,
and between execution attempts in the same implementation.

2.3.1.2 DeÞned Instruction Class

DeÞned instructions are guaranteed to be supported in all PowerPC implementations,
except as stated in the instruction descriptions in Chapter 8, ÒInstruction Set,Ó in The
Programming Environments Manual. The MPC7400 provides hardware support for all
instructions deÞned for 32-bit implementations. It does not support the optional fsqrt,
fsqrts, and tlbia instructions.

A PowerPC processor invokes the illegal instruction error handler (part of the program
exception) when it encounters a PowerPC instructions that has not been implemented. The
instruction can be emulated in software, as required. Note that the architecture speciÞcation
refers to exceptions as interrupts.

A deÞned instruction can have invalid forms. The MPC7400 provides limited support for
instructions represented in an invalid form.

2-38 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set Summary

2.3.1.3 Illegal Instruction Class

Illegal instructions can be grouped into the following categories:

¥ Instructions not deÞned in the PowerPC architecture.The following primary opcodes
are deÞned as illegal but can be used in future extensions to the architecture:

1, 5, 6, 9, 22, 56, 57, 60, 61

Future versions of the PowerPC architecture can deÞne any of these instructions to
perform new functions.

¥ Instructions deÞned in the PowerPC architecture but not implemented in a speciÞc
PowerPC implementation. For example, instructions that can be executed on 64-bit
PowerPC processors are considered illegal by 32-bit processors such as the
MPC7400.

The following primary opcodes are deÞned for 64-bit implementations only and are
illegal on the MPC7400:

2, 30, 58, 62

¥ All unused extended opcodes are illegal. The unused extended opcodes can be
determined from information in Section A.2, ÒInstructions Sorted by Opcode,Ó and
Section 2.3.1.4, ÒReserved Instruction Class.Ó Notice that extended opcodes for
instructions deÞned only for 64-bit implementations are illegal in 32-bit
implementations, and vice versa. The following primary opcodes have unused
extended opcodes.

17, 19, 31, 59, 63 (Primary opcodes 30 and 62 are illegal for all 32-bit
implementations, but as 64-bit opcodes they have some unused extended opcodes.)

¥ An instruction consisting of only zeros is guaranteed to be an illegal instruction. This
increases the probability that an attempt to execute data or memory that was not
initialized invokes the system illegal instruction error handler (a program
exception). Note that if only the primary opcode consists of all zeros, the instruction
is considered a reserved instruction, as described in Section 2.3.1.4, ÒReserved
Instruction Class.Ó

The MPC7400 invokes the system illegal instruction error handler (a program exception)
when it detects any instruction from this class or any instructions deÞned only for 64-bit
implementations.

See Section 4.6.7, ÒProgram Exception (0x00700),Ó for additional information about illegal
and invalid instruction exceptions. Except for an instruction consisting of binary zeros,
illegal instructions are available for additions to the PowerPC architecture.

2.3.1.4 Reserved Instruction Class

Reserved instructions are allocated to speciÞc implementation-dependent purposes not
deÞned by the PowerPC architecture. Attempting to execute a reserved instruction that has
not been implemented invokes the illegal instruction error handler (a program exception).

Chapter 2. Programming Model 2-39

Instruction Set Summary

See ÒProgram Exception (0x0_0700),Ó in Chapter 6, ÒExceptions,Ó in The Programming
Environments Manual for information about illegal and invalid instruction exceptions.

The PowerPC architecture deÞnes four types of reserved instructions:

¥ Instructions in the POWER architecture not part of the PowerPC UISA. For details
on POWER architecture incompatibilities and how they are handled by PowerPC
processors, see Appendix B, ÒPOWER Architecture Cross Reference,Ó in The
Programming Environments Manual.

¥ Implementation-speciÞc instructions required for the processor to conform to the
PowerPC architecture (none of these are implemented in the MPC7400)

¥ All other implementation-speciÞc instructions

¥ Architecturally-allowed extended opcodes

2.3.2 Addressing Modes

This section provides an overview of conventions for addressing memory and for
calculating effective addresses as deÞned by the PowerPC architecture for 32-bit
implementations. For more detailed information, see ÒConventions,Ó in Chapter 4,
ÒAddressing Modes and Instruction Set Summary,Ó of The Programming Environments
Manual.

2.3.2.1 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a memory access or branch instruction or when it fetches the
next sequential instruction.

Bytes in memory are numbered consecutively starting with zero. Each number is the
address of the corresponding byte.

2.3.2.2 Memory Operands

Memory operands can be bytes, half words, words, double words, or quad words or, for the
load/store multiple and load/store string instructions, a sequence of bytes or words. The
address of a memory operand is the address of its Þrst byte (that is, of its lowest-numbered
byte). Operand length is implicit for each instruction. The PowerPC architecture supports
both big-endian and little-endian byte ordering. The default byte and bit ordering is
big-endian. See ÒByte Ordering,Ó in Chapter 3, ÒOperand Conventions,Ó of The
Programming Environments Manual for more information about big- and little-endian byte
ordering.

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the ÒnaturalÓ address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned. For a detailed discussion about

2-40 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set Summary

memory operands, see Chapter 3, ÒOperand Conventions,Ó of The Programming
Environments Manual.

2.3.2.3 Effective Address Calculation

An effective address is the 32-bit sum computed by the processor when executing a
memory access or branch instruction or when fetching the next sequential instruction. For
a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address through effective address 0, as described in the
following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit 0 is ignored.

Load and store operations have the following modes of effective address generation:

¥ EA = (rA|0) + offset (including offset = 0) (register indirect with immediate index)

¥ EA = (rA|0) + rB (register indirect with index)

Refer to Section 2.3.4.3.2, ÒInteger Load and Store Address Generation,Ó for a detailed
description of effective address generation for load and store operations.

Branch instructions have three categories of effective address generation:

¥ Immediate
¥ Link register indirect
¥ Count register indirect

2.3.2.4 Synchronization

The synchronization described in this section refers to the state of the processor that is
performing the synchronization.

2.3.2.4.1 Context Synchronization

The System Call (sc) and Return from Interrupt (rÞ) instructions perform context
synchronization by allowing previously issued instructions to complete before performing
a change in context. Execution of one of these instructions ensures the following:

¥ No higher priority exception exists (sc).

¥ All previous instructions have completed to a point where they can no longer cause
an exception. If a prior memory access instruction causes direct-store error
exceptions, the results are guaranteed to be determined before this instruction is
executed.

Chapter 2. Programming Model 2-41

Instruction Set Summary

¥ Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

¥ The instructions following the sc or rÞ instruction execute in the context established
by these instructions.

2.3.2.4.2 Execution Synchronization

An instruction is execution synchronizing if all previously initiated instructions appear to
have completed before the instruction is initiated or, in the case of sync and isync, before
the instruction completes. For example, the Move to Machine State Register (mtmsr)
instruction is execution synchronizing. It ensures that all preceding instructions have
completed execution and cannot cause an exception before the instruction executes, but
does not ensure subsequent instructions execute in the newly established environment. For
example, if the mtmsr sets the MSR[PR] bit, unless an isync immediately follows the
mtmsr instruction, a privileged instruction could be executed or privileged access could be
performed without causing an exception even though the MSR[PR] bit indicates user mode.

2.3.2.4.3 Instruction-Related Exceptions

There are two kinds of exceptions in the MPC7400Ñthose caused directly by the execution
of an instruction and those caused by an asynchronous event (or interrupts). Either can
cause components of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

¥ An attempt to execute an illegal instruction causes the illegal instruction (program
exception) handler to be invoked. An attempt by a user-level program to execute the
supervisor-level instructions listed below causes the privileged instruction (program
exception) handler to be invoked. The MPC7400 provides the following
supervisor-level instructionsÑdcbi, mfmsr, mfspr, mfsr, mfsrin, mtmsr, mtspr,
mtsr, mtsrin, rÞ, tlbie, and tlbsync. Note that the privilege level of the mfspr and
mtspr instructions depends on the SPR encoding.

¥ Any mtspr, mfspr, or mftb instruction with an invalid SPR (or TBR) Þeld causes
an illegal type program exception. Likewise, a program exception is taken if
user-level software tries to access a supervisor-level SPR. An mtspr instruction
executing in supervisor mode (MSR[PR] = 0) with the SPR Þeld specifying HID1
or PVR (read-only registers) executes as a no-op.

¥ An attempt to access memory that is not available (page fault) causes the ISI or DSI
exception handler to be invoked.

¥ The execution of an sc instruction invokes the system call exception handler that
permits a program to request the system to perform a service.

¥ The execution of a trap instruction invokes the program exception trap handler.

¥ The execution of an instruction that causes a ßoating-point exception while
exceptions are enabled in the MSR invokes the program exception handler.

A detailed description of exception conditions is provided in Chapter 4, ÒExceptions.Ó

2-42 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set Summary

2.3.3 Instruction Set Overview

This section provides a brief overview of the PowerPC instructions implemented in the
MPC7400 and highlights any special information with respect to how the MPC7400
implements a particular instruction. Note that the categories used in this section correspond
to those used in Chapter 4, ÒAddressing Modes and Instruction Set Summary,Ó in The
Programming Environments Manual. These categorizations are somewhat arbitrary and are
provided for the convenience of the programmer and do not necessarily reßect the PowerPC
architecture speciÞcation.

Note that some instructions have the following optional features:

¥ CR UpdateÑThe dot (.) sufÞx on the mnemonic enables the update of the CR.

¥ Overßow optionÑThe o sufÞx indicates that the overßow bit in the XER is enabled.

2.3.4 PowerPC UISA Instructions

The PowerPC UISA includes the base user-level instruction set (excluding a few user-level
cache control, synchronization, and time base instructions), user-level registers,
programming model, data types, and addressing modes. This section discusses the
instructions deÞned in the UISA.

2.3.4.1 Integer Instructions

This section describes the integer instructions. These consist of the following:

¥ Integer arithmetic instructions

¥ Integer compare instructions

¥ Integer logical instructions

¥ Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs, the XER register, and condition register (CR) Þelds.

2.3.4.1.1 Integer Arithmetic Instructions

Table 2-19 lists the integer arithmetic instructions for the PowerPC processors.
Table 2-19. Integer Arithmetic Instructions

Name Mnemonic Syntax

Add Immediate addi rD,rA,SIMM

Add Immediate Shifted addis rD,rA,SIMM

Add add (add. addo addo.) rD,rA,rB

Subtract From subf (subf. subfo subfo.) rD,rA,rB

Add Immediate Carrying addic rD,rA,SIMM

Add Immediate Carrying and Record addic. rD,rA,SIMM

Chapter 2. Programming Model 2-43

Instruction Set Summary

Although there is no Subtract Immediate instruction, its effect can be achieved by using an
addi instruction with the immediate operand negated. SimpliÞed mnemonics are provided
that include this negation. The subf instructions subtract the second operand (rA) from the
third operand (rB). SimpliÞed mnemonics are provided in which the third operand is
subtracted from the second operand. See Appendix F, ÒSimplified Mnemonics,Ó in The
Programming Environments Manual for examples.

The UISA states that an implementation that executes instructions that set the overßow
enable bit (OE) or the carry bit (CA) can either execute these instructions slowly or prevent
execution of the subsequent instruction until the operation completes. Chapter 6,
ÒInstruction Timing,Ó describes how the MPC7400 handles CR dependencies. The
summary overßow bit (SO) and overßow bit (OV) in the XER register are set to reßect an
overßow condition of a 32-bit result. This can happen only when OE = 1.

2.3.4.1.2 Integer Compare Instructions

The integer compare instructions algebraically or logically compare the contents of register
rA with either the zero-extended value of the UIMM operand, the sign-extended value of
the SIMM operand, or the contents of rB. The comparison is signed for the cmpi and cmp
instructions, and unsigned for the cmpli and cmpl instructions. Table 2-20 summarizes the
integer compare instructions.

Subtract from Immediate Carrying subÞc rD,rA,SIMM

Add Carrying addc (addc. addco addco.) rD,rA,rB

Subtract from Carrying subfc (subfc. subfco subfco.) rD,rA,rB

Add Extended adde (adde. addeo addeo.) rD,rA,rB

Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA,rB

Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA

Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA

Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA

Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA

Negate neg (neg. nego nego.) rD,rA

Multiply Low Immediate mulli rD,rA,SIMM

Multiply Low mullw (mullw. mullwo mullwo.) rD,rA,rB

Multiply High Word mulhw (mulhw.) rD,rA,rB

Multiply High Word Unsigned mulhwu (mulhwu.) rD,rA,rB

Divide Word divw (divw. divwo divwo.) rD,rA,rB

Divide Word Unsigned divwu divwu. divwuo divwuo. rD,rA,rB

Table 2-19. Integer Arithmetic Instructions (Continued)

Name Mnemonic Syntax

2-44 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set Summary

The crfD operand can be omitted if the result of the comparison is to be placed in CR0.
Otherwise the target CR Þeld must be speciÞed in crfD, using an explicit Þeld number.

For information on simpliÞed mnemonics for the integer compare instructions see
Appendix F, ÒSimplified Mnemonics,Ó in The Programming Environments Manual.

2.3.4.1.3 Integer Logical Instructions

The logical instructions shown in Table 2-21 perform bit-parallel operations on the
speciÞed operands. Logical instructions with the CR updating enabled (uses dot sufÞx) and
instructions andi. and andis. set CR Þeld CR0 to characterize the result of the logical
operation. Logical instructions do not affect XER[SO], XER[OV], or XER[CA].

See Appendix F, ÒSimplified Mnemonics,Ó in The Programming Environments Manual for
simpliÞed mnemonic examples for integer logical operations.

Table 2-20. Integer Compare Instructions

Name Mnemonic Syntax

Compare Immediate cmpi crfD,L,rA,SIMM

Compare cmp crfD,L,rA,rB

Compare Logical Immediate cmpli crfD,L,rA,UIMM

Compare Logical cmpl crfD,L,rA,rB

Table 2-21. Integer Logical Instructions

Name Mnemonic Syntax Implementation Notes

AND Immediate andi. rA,rS,UIMM Ñ

AND Immediate Shifted andis. rA,rS,UIMM Ñ

OR Immediate ori rA,rS,UIMM The PowerPC architecture deÞnes ori r0,r0,0 as the
preferred form for the no-op instruction. The
dispatcher discards this instruction (except for
pending trace or breakpoint exceptions).

OR Immediate Shifted oris rA,rS,UIMM Ñ

XOR Immediate xori rA,rS,UIMM Ñ

XOR Immediate Shifted xoris rA,rS,UIMM Ñ

AND and (and.) rA,rS,rB Ñ

OR or (or.) rA,rS,rB Ñ

XOR xor (xor.) rA,rS,rB Ñ

NAND nand (nand.) rA,rS,rB Ñ

NOR nor (nor.) rA,rS,rB Ñ

Equivalent eqv (eqv.) rA,rS,rB Ñ

AND with Complement andc (andc.) rA,rS,rB Ñ

OR with Complement orc (orc.) rA,rS,rB Ñ

Extend Sign Byte extsb (extsb.) rA,rS Ñ

Chapter 2. Programming Model 2-45

Instruction Set Summary

2.3.4.1.4 Integer Rotate and Shift Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the
result, is returned to a GPR. See Appendix F, ÒSimplified Mnemonics,Ó in The
Programming Environments Manual for a complete list of simpliÞed mnemonics that
allows simpler coding of often-used functions such as clearing the leftmost or rightmost
bits of a register, left justifying or right justifying an arbitrary Þeld, and simple rotates and
shifts.

Integer rotate instructions rotate the contents of a register. The result of the rotation is either
inserted into the target register under control of a mask (if a mask bit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is 0 the associated
bit in the target register is unchanged), or ANDed with a mask before being placed into the
target register.

The integer rotate instructions are summarized in Table 2-22.

The integer shift instructions perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for certain
rotate instructions. SimpliÞed mnemonics (shown in Appendix F, ÒSimplified
Mnemonics,Ó in The Programming Environments Manual) are provided to make coding of
such shifts simpler and easier to understand.

Multiple-precision shifts can be programmed as shown in Appendix C, ÒMultiple-Precision
Shifts,Ó in The Programming Environments Manual. The integer shift instructions are
summarized in Table 2-23.

Extend Sign Half Word extsh (extsh.) rA,rS Ñ

Count Leading Zeros
Word

cntlzw (cntlzw.) rA,rS Ñ

Table 2-22. Integer Rotate Instructions

Name Mnemonic Syntax

Rotate Left Word Immediate then AND with Mask rlwinm (rlwinm.) rA,rS,SH,MB,ME

Rotate Left Word then AND with Mask rlwnm (rlwnm.) rA,rS,rB,MB,ME

Rotate Left Word Immediate then Mask Insert rlwimi (rlwimi.) rA,rS,SH,MB,ME

Table 2-21. Integer Logical Instructions (Continued)

Name Mnemonic Syntax Implementation Notes

2-46 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set Summary

2.3.4.2 Floating-Point Instructions

This section describes the ßoating-point instructions, which include the following:

¥ Floating-point arithmetic instructions
¥ Floating-point multiply-add instructions
¥ Floating-point rounding and conversion instructions
¥ Floating-point compare instructions
¥ Floating-point status and control register instructions
¥ Floating-point move instructions

See Section 2.3.4.3, ÒLoad and Store Instructions,Ó for information about ßoating-point
loads and stores.

The PowerPC architecture supports a ßoating-point system as deÞned in the IEEE 754
standard, but requires software support to conform with that standard. All ßoating-point
operations conform to the IEEE 754 standard, except if software sets the non-IEEE mode
FPSCR[NI].

2.3.4.2.1 Floating-Point Arithmetic Instructions

The ßoating-point arithmetic instructions are summarized in Table 2-24.

Table 2-23. Integer Shift Instructions

Name Mnemonic Syntax

Shift Left Word slw (slw.) rA,rS,rB

Shift Right Word srw (srw.) rA,rS,rB

Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH

Shift Right Algebraic Word sraw (sraw.) rA,rS,rB

Table 2-24. Floating-Point Arithmetic Instructions

Name Mnemonic Syntax

Floating Add (Double-Precision) fadd (fadd.) frD,frA,frB

Floating Add Single fadds (fadds.) frD,frA,frB

Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB

Floating Subtract Single fsubs (fsubs.) frD,frA,frB

Floating Multiply (Double-Precision) fmul (fmul.) frD,frA,frC

Floating Multiply Single fmuls (fmuls.) frD,frA,frC

Floating Divide (Double-Precision) fdiv (fdiv.) frD,frA,frB

Floating Divide Single fdivs (fdivs.) frD,frA,frB

Floating Reciprocal Estimate Single1

1 These instructions are optional in the PowerPC architecture.

fres (fres.) frD,frB

Floating Reciprocal Square Root Estimate1 frsqrte (frsqrte.) frD,frB

Floating Select1 fsel frD,frA,frC,frB

Chapter 2. Programming Model 2-47

Instruction Set Summary

All single-precision arithmetic instructions are performed using a double-precision format.
The ßoating-point architecture is a single-pass implementation for double-precision
products. In most cases, a single-precision instruction using only single-precision
operands, in double-precision format, has the same latency as its double-precision
equivalent.

2.3.4.2.2 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding
operation. The ßoating-point multiply-add instructions are summarized in Table 2-25.

2.3.4.2.3 Floating-Point Rounding and Conversion Instructions

The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit
double-precision number to a 32-bit single-precision ßoating-point number. The
ßoating-point convert instructions convert a 64-bit double-precision ßoating-point number
to a 32-bit signed integer number.

Examples of uses of these instructions to perform various conversions can be found in
Appendix D, ÒFloating-Point Models,Ó in The Programming Environments Manual.

Table 2-25. Floating-Point Multiply-Add Instructions

Name Mnemonic Syntax

Floating Multiply-Add (Double-Precision) fmadd (fmadd.) frD,frA,frC,frB

Floating Multiply-Add Single fmadds (fmadds.) frD,frA,frC,frB

Floating Multiply-Subtract (Double-Precision) fmsub (fmsub.) frD,frA,frC,frB

Floating Multiply-Subtract Single fmsubs (fmsubs.) frD,frA,frC,frB

Floating Negative Multiply-Add (Double-Precision) fnmadd (fnmadd.) frD,frA,frC,frB

Floating Negative Multiply-Add Single fnmadds (fnmadds.) frD,frA,frC,frB

Floating Negative Multiply-Subtract (Double-Precision) fnmsub (fnmsub.) frD,frA,frC,frB

Floating Negative Multiply-Subtract Single fnmsubs (fnmsubs.) frD,frA,frC,frB

Table 2-26. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Syntax

Floating Round to Single frsp (frsp.) frD,frB

Floating Convert to Integer Word fctiw (fctiw.) frD,frB

Floating Convert to Integer Word with Round toward Zero fctiwz (fctiwz.) frD,frB

2-48 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set Summary

2.3.4.2.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two ßoating-point registers.
The comparison ignores the sign of zero (that is +0 = Ð0). The ßoating-point compare
instructions are summarized in Table 2-27.

The PowerPC architecture allows an fcmpu or fcmpo instruction with the Rc bit set to
produce a boundedly-undeÞned result, which can include an illegal instruction program
exception. In the MPC7400, crfD should be treated as undeÞned

2.3.4.2.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of all ßoating-point
instructions executed by a given processor. Executing an FPSCR instruction ensures that all
ßoating-point instructions previously initiated by the given processor appear to have
completed before the FPSCR instruction is initiated and that no subsequent ßoating-point
instructions appear to be initiated by the given processor until the FPSCR instruction has
completed. The FPSCR instructions are summarized in Table 2-28.

Implementation NoteÑThe PowerPC architecture states that in some implementations,
the Move to FPSCR Fields (mtfsf) instruction can perform more slowly when only some
of the Þelds are updated as opposed to all of the Þelds. In the MPC7400, there is no
degradation of performance.

2.3.4.2.6 Floating-Point Move Instructions

Floating-point move instructions copy data from one FPR to another. The ßoating-point
move instructions do not modify the FPSCR. The CR update option in these instructions
controls the placing of result status into CR1. Table 2-29 summarizes the ßoating-point
move instructions.

Table 2-27. Floating-Point Compare Instructions

Name Mnemonic Syntax

Floating Compare Unordered fcmpu crfD,frA,frB

Floating Compare Ordered fcmpo crfD,frA,frB

Table 2-28. Floating-Point Status and Control Register Instructions

Name Mnemonic Syntax

Move from FPSCR mffs (mffs.) frD

Move to Condition Register from FPSCR mcrfs crfD,crfS

Move to FPSCR Field Immediate mtfsÞ (mtfsÞ.) crfD,IMM

Move to FPSCR Fields mtfsf (mtfsf.) FM,frB

Move to FPSCR Bit 0 mtfsb0 (mtfsb0.) crbD

Move to FPSCR Bit 1 mtfsb1 (mtfsb1.) crbD

Chapter 2. Programming Model 2-49

Instruction Set Summary

2.3.4.3 Load and Store Instructions

Load and store instructions are issued and translated in program order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering. This section describes the load and store instructions, which consist of the
following:

¥ Integer load instructions

¥ Integer store instructions

¥ Integer load and store with byte-reverse instructions

¥ Integer load and store multiple instructions

¥ Floating-point load instructions

¥ Floating-point store instructions

¥ Memory synchronization instructions

Implementation NotesÑThe following describes how the MPC7400 handles
misalignment:

The MPC7400 provides hardware support for misaligned memory accesses. It performs
those accesses within a single cycle if the operand lies within a double-word boundary.
Misaligned memory accesses that cross a double-word boundary degrade performance.

For string operations, the hardware makes no attempt to combine register values to reduce
the number of discrete accesses. Combining stores enhances performance if store gathering
is enabled and the accesses meet the criteria described in Section 6.4.5.2, ÒInteger Store
Gathering.Ó Note that the PowerPC architecture requires load/store multiple instruction
accesses to be aligned. At a minimum, additional cache access cycles are required.

Although many misaligned memory accesses are supported in hardware, the frequent use
of them is discouraged because they can compromise the overall performance of the
processor.

Accesses that cross a translation boundary can be restarted. That is, a misaligned access that
crosses a page boundary is completely restarted if the second portion of the access causes
a page fault. This can cause the Þrst access to be repeated.

Table 2-29. Floating-Point Move Instructions

Name Mnemonic Syntax

Floating Move Register fmr (fmr.) frD,frB

Floating Negate fneg (fneg.) frD,frB

Floating Absolute Value fabs (fabs.) frD,frB

Floating Negative Absolute Value fnabs (fnabs.) frD,frB

2-50 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set Summary

On some processors, such as the MPC603, a TLB reload operation causes an instruction
restart. On the MPC7400, TLB reloads are performed transparently and only a page fault
causes a restart.

2.3.4.3.1 Self-Modifying Code

When a processor modiÞes a memory location that can be contained in the instruction
cache, software must ensure that memory updates are visible to the instruction fetching
mechanism. This can be achieved by the following instruction sequence:

dcbst |update memory
sync |wait for update
icbi |remove (invalidate) copy in instruction cache

sync |ensure that icbi invalidate at the icache has completed
isync |remove copy in own instruction buffer

These operations are required because the data cache is a write-back cache. Because
instruction fetching bypasses the data cache, changes to items in the data cache can not be
reßected in memory until the fetch operations complete. The sync after the icbi is required
to ensure that the icbi invalidation at the icache has completed

Special care must be taken to avoid coherency paradoxes in systems that implement uniÞed
secondary caches, and designers should carefully follow the guidelines for maintaining
cache coherency that are provided in the VEA, and discussed in Chapter 5, ÒCache Model
and Memory Coherency,Ó in The Programming Environments Manual.

2.3.4.3.2 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. See
Section 2.3.2.3, ÒEffective Address Calculation,Ó for information about calculating
effective addresses. Note that in some implementations, operations that are not naturally
aligned can suffer performance degradation. Refer to Section 4.6.6, ÒAlignment Exception
(0x00600),Ó for additional information about load and store address alignment exceptions.

2.3.4.3.3 Register Indirect Integer Load Instructions

For integer load instructions, the byte, half word, word, or double word addressed by the
EA (effective address) is loaded into rD. Many integer load instructions have an update
form, in which rA is updated with the generated effective address. For these forms, if
rA ¹ 0 and rA ¹ rD (otherwise invalid), the EA is placed into rA and the memory element
(byte, half word, word, or double word) addressed by the EA is loaded into rD. Note that
the PowerPC architecture deÞnes load with update instructions with operand rA = 0 or
rA = rD as invalid forms.

Chapter 2. Programming Model 2-51

Instruction Set Summary

Implementation NotesÑThe following notes describe the MPC7400 implementation of
integer load instructions:

¥ The PowerPC architecture cautions programmers that some implementations of the
architecture can execute the load half algebraic (lha, lhax) instructions with greater
latency than other types of load instructions. This is not the case for the MPC7400;
these instructions operate with the same latency as other load instructions.

¥ The PowerPC architecture cautions programmers that some implementations of the
architecture can run the load/store byte-reverse (lhbrx, lbrx, sthbrx, stwbrx)
instructions with greater latency than other types of load/store instructions. This is
not the case for the MPC7400. These instructions operate with the same latency as
the other load/store instructions.

¥ The PowerPC architecture describes some preferred instruction forms for load and
store multiple instructions and integer move assist instructions that can perform
better than other forms in some implementations. None of these preferred forms
affect instruction performance on the MPC7400.

¥ The PowerPC architecture deÞnes the lwarx and stwcx. as a way to update memory
atomically. In the MPC7400, reservations are made on behalf of aligned 32-byte
sections of the memory address space. Executing lwarx and stwcx. to a page marked
write-through does cause a DSI exception if the page is marked cacheable
write-through (WIM = 10x), but as with other memory accesses, DSI exceptions can
result for other reasons such as a protection violations or page faults.

Table 2-30 summarizes the integer load instructions.
Table 2-30. Integer Load Instructions

Name Mnemonic Syntax

Load Byte and Zero lbz rD,d(rA)

Load Byte and Zero Indexed lbzx rD,rA,rB

Load Byte and Zero with Update lbzu rD,d(rA)

Load Byte and Zero with Update Indexed lbzux rD,rA,rB

Load Half Word and Zero lhz rD,d(rA)

Load Half Word and Zero Indexed lhzx rD,rA,rB

Load Half Word and Zero with Update lhzu rD,d(rA)

Load Half Word and Zero with Update Indexed lhzux rD,rA,rB

Load Half Word Algebraic lha rD,d(rA)

Load Half Word Algebraic Indexed lhax rD,rA,rB

Load Half Word Algebraic with Update lhau rD,d(rA)

Load Half Word Algebraic with Update Indexed lhaux rD,rA,rB

Load Word and Zero lwz rD,d(rA)

Load Word and Zero Indexed lwzx rD,rA,rB

2-52 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set Summary

2.3.4.3.4 Integer Store Instructions

For integer store instructions, the contents of rS are stored into the byte, half word, word or
double word in memory addressed by the EA (effective address). Many store instructions
have an update form, in which rA is updated with the EA. For these forms, the following
rules apply:

¥ If rA ¹ 0, the effective address is placed into rA.

¥ If rS = rA, the contents of register rS are copied to the target memory element, then
the generated EA is placed into rA (rS).

The PowerPC architecture deÞnes store with update instructions with rA = 0 as an invalid
form. In addition, it deÞnes integer store instructions with the CR update option enabled
(Rc Þeld, bit 31, in the instruction encoding = 1) to be an invalid form. Table 2-31
summarizes the integer store instructions.

2.3.4.3.5 Integer Store Gathering

The MPC7400 performs store gathering for write-through accesses to nonguarded space or
to cache-inhibited stores to nonguarded space if the stores are 4 bytes and they are
word-aligned. These stores are combined in the load/store unit (LSU) to form a double
word and are sent out on the system bus as a single-beat operation. However, stores can be
gathered only if the successive stores that meet the criteria are queued and pending. Store

Load Word and Zero with Update lwzu rD,d(rA)

Load Word and Zero with Update Indexed lwzux rD,rA,rB

Table 2-31. Integer Store Instructions

Name Mnemonic Syntax

Store Byte stb rS,d(rA)

Store Byte Indexed stbx rS,rA,rB

Store Byte with Update stbu rS,d(rA)

Store Byte with Update Indexed stbux rS,rA,rB

Store Half Word sth rS,d(rA)

Store Half Word Indexed sthx rS,rA,rB

Store Half Word with Update sthu rS,d(rA)

Store Half Word with Update Indexed sthux rS,rA,rB

Store Word stw rS,d(rA)

Store Word Indexed stwx rS,rA,rB

Store Word with Update stwu rS,d(rA)

Store Word with Update Indexed stwux rS,rA,rB

Table 2-30. Integer Load Instructions (Continued)

Name Mnemonic Syntax

Chapter 2. Programming Model 2-53

Instruction Set Summary

gathering takes place regardless of the address order of the stores. The store gathering
feature is enabled by setting HID0[SGE]. Store gathering is done for both big- and
little-endian modes.

Store gathering is not done for the following:

¥ Stores to guarded cache-inhibited or write-through space

¥ Byte-reverse store

¥ stwcx. and ecowx accesses

¥ Floating-point stores

¥ Store operations attempted during a hardware table search

¥ Store operations in LE = 1 mode

If store gathering is enabled and the stores do not fall under the above categories, an eieio
or sync instruction must be used to prevent two stores from being gathered.

2.3.4.3.6 Integer Load and Store with Byte-Reverse Instructions

Table 2-32 describes integer load and store with byte-reverse instructions. When used in a
PowerPC system operating with the default big-endian byte order, these instructions have
the effect of loading and storing data in little-endian order. Likewise, when used in a
PowerPC system operating with little-endian byte order, these instructions have the effect
of loading and storing data in big-endian order. For more information about big-endian and
little-endian byte ordering, see ÒByte Ordering,Ó in Chapter 3, ÒOperand Conventions,Ó in
The Programming Environments Manual.

2.3.4.3.7 Integer Load and Store Multiple Instructions

The load/store multiple instructions are used to move blocks of data to and from the GPRs.
The load multiple and store multiple instructions can have operands that require memory
accesses crossing a 4-Kbyte page boundary. As a result, these instructions can be
interrupted by a DSI exception associated with the address translation of the second page.

The PowerPC architecture deÞnes the Load Multiple Word (lmw) instruction with rA in the
range of registers to be loaded as an invalid form.

Table 2-32. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic Syntax

Load Half Word Byte-Reverse Indexed lhbrx rD,rA,rB

Load Word Byte-Reverse Indexed lwbrx rD,rA,rB

Store Half Word Byte-Reverse Indexed sthbrx rS,rA,rB

Store Word Byte-Reverse Indexed stwbrx rS,rA,rB

2-54 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set Summary

2.3.4.3.8 Integer Load and Store String Instructions

The integer load and store string instructions allow movement of data from memory to
registers or from registers to memory without concern for alignment. These instructions can
be used for a short move between arbitrary memory locations or to initiate a long move
between misaligned memory Þelds. However, in some implementations, these instructions
are likely to have greater latency and take longer to execute, perhaps much longer, than a
sequence of individual load or store instructions that produce the same results. Table 2-34
summarizes the integer load and store string instructions.

In the MPC7400 implementation operating with little-endian byte order, execution of a load
or string instruction will take an alignment exception.

Load string and store string instructions can involve operands that are not word-aligned.

Implementation NoteÑThe following describes the MPC7400 implementation of
load/store string instructions:

¥ For load/store string operations, the hardware does not combine register values to
reduce the number of discrete accesses. However, if store gathering is enabled and
the accesses fall under the criteria for store gathering the stores can be combined to
enhance performance. At a minimum, additional cache access cycles are required.

2.3.4.3.9 Floating-Point Load and Store Address Generation

Floating-point load and store operations generate effective addresses using the register
indirect with immediate index addressing mode and register indirect with index addressing
mode. Floating-point loads and stores are not supported for direct-store accesses. The use
of ßoating-point loads and stores for direct-store access results in an alignment exception.

There are two forms of the ßoating-point load instructionÑsingle-precision and
double-precision operand formats. Because the FPRs support only the ßoating-point
double-precision format, single-precision ßoating-point load instructions convert
single-precision data to double-precision format before loading an operand into an FPR.

Table 2-33. Integer Load and Store Multiple Instructions

Name Mnemonic Syntax

Load Multiple Word lmw rD,d(rA)

Store Multiple Word stmw rS,d(rA)

Table 2-34. Integer Load and Store String Instructions

Name Mnemonic Syntax

Load String Word Immediate lswi rD,rA,NB

Load String Word Indexed lswx rD,rA,rB

Store String Word Immediate stswi rS,rA,NB

Store String Word Indexed stswx rS,rA,rB

Chapter 2. Programming Model 2-55

Instruction Set Summary

Implementation NotesÑThe MPC7400 treats exceptions as follows:

¥ The FPU can be run in two different modesÑIgnore exceptions mode (MSR[FE0] =
MSR[FE1] = 0) and precise mode (any other settings for MSR[FE0,FE1]). For the
MPC7400, ignore exceptions mode allows ßoating-point instructions to complete
earlier and thus can provide better performance than precise mode.

¥ The ßoating-point load and store indexed instructions (lfsx, lfsux, lfdx, lfdux, stfsx,
stfsux, stfdx, stfdux) are invalid when the Rc bit is one. In the MPC7400, executing
one of these invalid instruction forms causes CR0 to be set to an undeÞned value.

The PowerPC architecture deÞnes a load with update instruction with rA = 0 as an invalid
form. Table 2-35 summarizes the ßoating-point load instructions.

2.3.4.3.10 Floating-Point Store Instructions

This section describes ßoating-point store instructions. There are three basic forms of the
store instructionÑsingle-precision, double-precision, and integer. The integer form is
supported by the optional stÞwx instruction. Because the FPRs support only ßoating-point,
double-precision format for ßoating-point data, single-precision ßoating-point store
instructions convert double-precision data to single-precision format before storing the
operands. Table 2-36 summarizes the ßoating-point store instructions.

Table 2-35. Floating-Point Load Instructions

Name Mnemonic Syntax

Load Floating-Point Single lfs frD,d(rA)

Load Floating-Point Single Indexed lfsx frD,rA,rB

Load Floating-Point Single with Update lfsu frD,d(rA)

Load Floating-Point Single with Update Indexed lfsux frD,rA,rB

Load Floating-Point Double lfd frD,d(rA)

Load Floating-Point Double Indexed lfdx frD,rA,rB

Load Floating-Point Double with Update lfdu frD,d(rA)

Load Floating-Point Double with Update Indexed lfdux frD,rA,rB

Table 2-36. Floating-Point Store Instructions

Name Mnemonic Syntax

Store Floating-Point Single stfs frS,d(rA)

Store Floating-Point Single Indexed stfsx frS,r B

Store Floating-Point Single with Update stfsu frS,d(rA)

Store Floating-Point Single with Update Indexed stfsux frS,r B

Store Floating-Point Double stfd frS,d(rA)

Store Floating-Point Double Indexed stfdx frS,rB

Store Floating-Point Double with Update stfdu frS,d(rA)

2-56 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set Summary

Some ßoating-point store instructions require conversions in the LSU. Table 2-37 shows
conversions the LSU makes when executing a Store Floating-Point Single instruction.

Table 2-38 shows the conversions made when performing a Store Floating-Point Double
instruction. Most entries in the table indicate that the ßoating-point value is simply stored.
Only in a few cases are any other actions taken.

Architecturally, all ßoating-point numbers are represented in double-precision format
within the MPC7400. Execution of a store ßoating-point single (stfs, stfsu, stfsx, stfsux)
instruction requires conversion from double- to single-precision format. If the exponent is

Store Floating-Point Double with Update Indexed stfdux frS,r B

Store Floating-Point as Integer Word Indexed1 stÞwx frS,rB

1 The stÞwx instruction is optional to the PowerPC architecture

Table 2-37. Store Floating-Point Single Behavior

FPR Precision Data Type Action

Single Normalized Store

Single Denormalized Store

Single Zero, inÞnity, QNaN Store

Single SNaN Store

Double Normalized If(exp £ 896)
then Denormalize and Store
else
 Store

Double Denormalized Store zero

Double Zero, inÞnity, QNaN Store

Double SNaN Store

Table 2-38. Store Floating-Point Double Behavior

FPR Precision Data Type Action

Single Normalized Store

Single Denormalized Normalize and Store

Single Zero, inÞnity, QNaN Store

Single SNaN Store

Double Normalized Store

Double Denormalized Store

Double Zero, inÞnity, QNaN Store

Double SNaN Store

Table 2-36. Floating-Point Store Instructions (Continued)

Name Mnemonic Syntax

Chapter 2. Programming Model 2-57

Instruction Set Summary

not greater than 896, this conversion requires denormalization. The MPC7400 supports this
denormalization by shifting the mantissa one bit at a time. Anywhere from 1 to 23 clock
cycles are required to complete the denormalization, depending upon the value to be stored.

Because of how ßoating-point numbers are implemented in the MPC7400, there is also a
case when execution of a store ßoating-point double (stfd, stfdu, stfdx, stfdux) instruction
can require internal shifting of the mantissa. This case occurs when the operand of a store
ßoating-point double instruction is a denormalized single-precision value. The value could
be the result of a load ßoating-point single instruction, a single-precision arithmetic
instruction, or a ßoating round to single-precision instruction. In these cases, shifting the
mantissa takes from 1 to 23 clock cycles, depending upon the value to be stored. These
cycles are incurred during the store.

2.3.4.4 Branch and Flow Control Instructions

Some branch instructions can redirect instruction execution conditionally based on the
value of bits in the CR. When the processor encounters one of these instructions, it scans
the execution pipelines to determine whether an instruction in progress can affect the
particular CR bit. If no interlock is found, the branch can be resolved immediately by
checking the bit in the CR and taking the action deÞned for the branch instruction.

2.3.4.4.1 Branch Instruction Address Calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word aligned; the PowerPC processors ignore the two low-order
bits of the generated branch target address.

Branch instructions compute the EA of the next instruction address using the following
addressing modes:

¥ Branch relative

¥ Branch conditional to relative address

¥ Branch to absolute address

¥ Branch conditional to absolute address

¥ Branch conditional to link register

¥ Branch conditional to count register

Note that in the MPC7400, all branch instructions (b, ba, bl, bla, bc, bca, bcl, bcla, bclr,
bclrl, bcctr, bcctrl) and condition register logical instructions (crand, cror, crxor,
crnand, crnor, crandc, creqv, crorc, and mcrf) are executed by the BPU. Some of these
instructions can redirect instruction execution conditionally based on the value of bits in the
CR. When the CR bits resolve, the branch direction is either marked as correct or
mispredicted. Correcting a mispredicted branch requires that the MPC7400 ßush
speculatively executed instructions and restore the machine state to immediately after the
branch. This correction can be done immediately upon resolution of the condition register
bits.

2-58 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set Summary

2.3.4.4.2 Branch Instructions

Table 2-39 lists the branch instructions provided by the PowerPC processors. To simplify
assembly language programming, a set of simpliÞed mnemonics and symbols is provided
for the most frequently used forms of branch conditional, compare, trap, rotate and shift,
and certain other instructions. See Appendix F, ÒSimpliÞed Mnemonics,Ó in The
Programming Environments Manual for a list of simpliÞed mnemonic examples.

2.3.4.4.3 Condition Register Logical Instructions

Condition register logical instructions, shown in Table 2-40, and the Move Condition
Register Field (mcrf) instruction are also deÞned as ßow control instructions.

Note that if the LR update option is enabled for any of these instructions, the PowerPC
architecture deÞnes these forms of the instructions as invalid.

2.3.4.4.4 Trap Instructions

The trap instructions shown in Table 2-41 are provided to test for a speciÞed set of
conditions. If any of the conditions tested by a trap instruction are met, the system trap type
program exception is taken. For more information, see Section 4.6.7, ÒProgram Exception
(0x00700).Ó If the tested conditions are not met, instruction execution continues normally.

Table 2-39. Branch Instructions

Name Mnemonic Syntax

Branch b (ba bl bla) target_addr

Branch Conditional bc (bca bcl bcla) BO,BI,target_addr

Branch Conditional to Link Register bclr (bclrl) BO,BI

Branch Conditional to Count Register bcctr (bcctrl) BO,BI

Table 2-40. Condition Register Logical Instructions

Name Mnemonic Syntax

Condition Register AND crand crbD,crbA,crbB

Condition Register OR cror crbD,crbA,crbB

Condition Register XOR crxor crbD,crbA,crbB

Condition Register NAND crnand crbD,crbA,crbB

Condition Register NOR crnor crbD,crbA,crbB

Condition Register Equivalent creqv crbD,crbA, crbB

Condition Register AND with Complement crandc crbD,crbA, crbB

Condition Register OR with Complement crorc crbD,crbA, crbB

Move Condition Register Field mcrf crfD,crfS

Chapter 2. Programming Model 2-59

Instruction Set Summary

See Appendix F, ÒSimpliÞed Mnemonics,Ó in The Programming Environments Manual for
a complete set of simpliÞed mnemonics.

2.3.4.5 System Linkage InstructionÑUISA

The System Call (sc) instruction permits a program to call on the system to perform a
service; see Table 2-42 and also Section 2.3.6.1, ÒSystem Linkage InstructionsÑOEA,Ó for
additional information.

Executing this instruction causes the system call exception handler to be evoked. For more
information, see Section 4.6.10, ÒSystem Call Exception (0x00C00).Ó

2.3.4.6 Processor Control InstructionsÑUISA

Processor control instructions are used to read from and write to the condition register
(CR), machine state register (MSR), and special-purpose registers (SPRs). See
Section 2.3.5.1, ÒProcessor Control InstructionsÑVEA,Ó for the mftb instruction and
Section 2.3.6.2, ÒProcessor Control InstructionsÑOEA,Ó for information about the
instructions used for reading from and writing to the MSR and SPRs.

2.3.4.6.1 Move to/from Condition Register Instructions

Table 2-43 summarizes the instructions for reading from or writing to the condition register.

Implementation NoteÑThe PowerPC architecture indicates that in some implementations
the Move to Condition Register Fields (mtcrf) instruction can perform more slowly when
only a portion of the Þelds are updated as opposed to all of the Þelds. The condition register
access latency for the MPC7400 is the same in both cases.

Table 2-41. Trap Instructions

Name Mnemonic Syntax

Trap Word Immediate twi TO,rA,SIMM

Trap Word tw TO,rA,rB

Table 2-42. System Linkage InstructionÑUISA

Name Mnemonic Syntax

System Call sc Ñ

Table 2-43. Move to/from Condition Register Instructions

Name Mnemonic Syntax

Move to Condition Register Fields mtcrf CRM,rS

Move to Condition Register from XER mcrxr crfD

Move from Condition Register mfcr rD

2-60 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set Summary

2.3.4.6.2 Move to/from Special-Purpose Register Instructions (UISA)

Table 2-44 lists the mtspr and mfspr instructions.

Table 2-45 lists the SPR numbers for both user- and supervisor-level PowerPC SPR
accesses.

Table 2-44. Move to/from Special-Purpose Register Instructions (UISA)

Name Mnemonic Syntax

Move to Special-Purpose Register mtspr SPR,rS

Move from Special-Purpose Register mfspr rD,SPR

Table 2-45. PowerPC SPR Encodings

Register Name
SPR

1

Access mfspr/mtspr
Decimal spr[5Ð9] spr[0Ð4]

CTR 9 00000 01001 User (UISA) Both

DABR 1013 11111 10101 Supervisor (OEA) Both

DAR 19 00000 10011 Supervisor (OEA) Both

DBAT0L 537 10000 11001 Supervisor (OEA) Both

DBAT0U 536 10000 11000 Supervisor (OEA) Both

DBAT1L 539 10000 11011 Supervisor (OEA) Both

DBAT1U 538 10000 11010 Supervisor (OEA) Both

DBAT2L 541 10000 11101 Supervisor (OEA) Both

DBAT2U 540 10000 11100 Supervisor (OEA) Both

DBAT3L 543 10000 11111 Supervisor (OEA) Both

DBAT3U 542 10000 11110 Supervisor (OEA) Both

DEC 22 00000 10110 Supervisor (OEA) Both

DSISR 18 00000 10010 Supervisor (OEA) Both

EAR 282 01000 11010 Supervisor (OEA) Both

IBAT0L 529 10000 10001 Supervisor (OEA) Both

IBAT0U 528 10000 10000 Supervisor (OEA) Both

IBAT1L 531 10000 10011 Supervisor (OEA) Both

IBAT1U 530 10000 10010 Supervisor (OEA) Both

IBAT2L 533 10000 10101 Supervisor (OEA) Both

IBAT2U 532 10000 10100 Supervisor (OEA) Both

IBAT3L 535 10000 10111 Supervisor (OEA) Both

IBAT3U 534 10000 10110 Supervisor (OEA) Both

LR 8 00000 01000 User (UISA) Both

PIR 1023 11111 11111 Supervisor (OEA) Both

PVR 287 01000 11111 Supervisor (OEA) mfspr

Chapter 2. Programming Model 2-61

Instruction Set Summary

Encodings for the MPC7400-speciÞc SPRs are listed in Table 2-46.

SDR1 25 00000 11001 Supervisor (OEA) Both

SPRG0 272 01000 10000 Supervisor (OEA) Both

SPRG1 273 01000 10001 Supervisor (OEA) Both

SPRG2 274 01000 10010 Supervisor (OEA) Both

SPRG3 275 01000 10011 Supervisor (OEA) Both

SRR0 26 00000 11010 Supervisor (OEA) Both

SRR1 27 00000 11011 Supervisor (OEA) Both

TBL 2 268 01000 01100 Supervisor (OEA) mtspr

284 01000 11100 Supervisor (OEA) mtspr

TBU 2 269 01000 01101 Supervisor (OEA) mtspr

285 01000 11101 Supervisor (OEA) mtspr

VRSAVE 256 01000 00000 User (AltiVec/UISA) Both

XER 1 00000 00001 User (UISA) Both

1 The order of the two 5-bit halves of the SPR number is reversed compared with actual instruction coding. For
mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly as a
10-bit binary number in the instruction. The number coded is split into two 5-bit halves that are reversed in
the instruction, with the high-order Þve bits appearing in bits 16Ð20 of the instruction and the low-order Þve
bits in bits 11Ð15.

2 The TB registers are referred to as TBRs rather than SPRs and can be written to using the mtspr instruction
in supervisor mode and the TBR numbers here. The TB registers can be read in user mode using either the
mftb or mtspr instruction and specifying TBR 268 for TBL and TBR 269 for TBU.

Table 2-46. SPR Encodings for MPC7400-Defined Registers (mfspr)

Register
Name

SPR 1

Access mfspr/mtspr
Decimal spr[5Ð9] spr[0Ð4]

BAMR 951 11101 10110 Supervisor Both

DABR 1013 11111 10101 User Both

HID0 1008 11111 10000 Supervisor Both

HID1 1009 11111 10001 Supervisor Both

IABR 1010 11111 10010 Supervisor Both

ICTC 1019 11111 11011 Supervisor Both

L2CR 1017 11111 11001 Supervisor Both

MMCR0 952 11101 11000 Supervisor Both

MMCR1 956 11101 11100 Supervisor Both

MMCR2 944 11101 10000 Supervisor Both

Table 2-45. PowerPC SPR Encodings (Continued)

Register Name
SPR

1

Access mfspr/mtspr
Decimal spr[5Ð9] spr[0Ð4]

2-62 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set Summary

2.3.4.7 Memory Synchronization InstructionsÑUISA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Section 3.4.4.4, ÒAtomic
Memory References,Ó for additional information about these instructions and about related
aspects of memory synchronization. See Table 2-47 for a summary.

MSSCR0 1014 11111 10110 Supervisor Both

PMC1 953 11101 11001 Supervisor Both

PMC2 954 11101 11010 Supervisor Both

PMC3 957 11101 11101 Supervisor Both

PMC4 958 11101 11110 Supervisor Both

SIAR 955 11101 11011 Supervisor Both

UBAMR 935 11101 00110 User mfspr

THRM1 1020 11111 11100 Supervisor Both

THRM2 1021 11111 11101 Supervisor Both

THRM3 1022 11111 11110 Supervisor Both

UMMCR0 936 11101 01000 User mfspr

UMMCR1 940 11101 01100 User mfspr

UMMCR2 928 11101 00111 User mfspr

UPMC1 937 11101 01001 User mfspr

UPMC2 938 11101 01010 User mfspr

UPMC3 941 11101 01101 User mfspr

UPMC4 942 11101 01110 User mfspr

USIAR 939 11101 01011 User mfspr

1 Note that the order of the two 5-bit halves of the SPR number is reversed compared with actual instruction
coding. For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear
directly as a 10-bit binary number in the instruction. The number coded is split into two 5-bit halves that are
reversed in the instruction, with the high-order 5 bits appearing in bits 16Ð20 of the instruction and the
low-order 5 bits in bits 11Ð15.

Table 2-46. SPR Encodings for MPC7400-Defined Registers (mfspr) (Continued)

Register
Name

SPR 1

Access mfspr/mtspr
Decimal spr[5Ð9] spr[0Ð4]

Chapter 2. Programming Model 2-63

Instruction Set Summary

System designs with an external cache should take special care to recognize the hardware
signaling caused by a SYNC bus operation and perform the appropriate actions to
guarantee that memory references that can be queued internally to the external cache have
been performed globally.

See Section 2.3.5.2, ÒMemory Synchronization InstructionsÑVEA,Ó for details about
additional memory synchronization (eieio and isync) instructions.

In the PowerPC architecture, the Rc bit must be zero for most load and store instructions.
If Rc is set, the instruction form is invalid for sync and lwarx instructions. If the MPC7400
encounters one of these invalid instruction forms, it sets CR0 to an undeÞned value.

2.3.5 PowerPC VEA Instructions

The PowerPC virtual environment architecture (VEA) describes the semantics of the
memory model that can be assumed by software processes, and includes descriptions of the
cache model, cache control instructions, address aliasing, and other related issues.
Implementations that conform to the VEA also adhere to the UISA, but do not necessarily
adhere to the OEA.

This section describes additional instructions that are provided by the VEA.

Table 2-47. Memory Synchronization InstructionsÑUISA

Name Mnemonic Syntax Implementation Notes

Load Word
and Reserve
Indexed

lwarx rD,rA,rB Programmers can use lwarx with stwcx. to emulate common semaphore
operations such as test and set, compare and swap, exchange memory, and
fetch and add. Both instructions must use the same EA. Reservation
granularity is implementation-dependent. The MPC7400 makes reservations
on behalf of aligned 32-byte sections of the memory address space. Executing
lwarx and stwcx. to a page marked write-through (WIMG = 10xx) or when the
L1 Data Cache is locked causes a DSI exception if the data cache is locked. If
the location is not word-aligned, an alignment exception occurs.
The stwcx. instruction is the only load/store instruction with a valid form if Rc
is set. If Rc is zero, executing stwcx. sets CR0 to an undeÞned value.

Store Word
Conditional
Indexed

stwcx. rS,rA,rB

Synchronize sync Ñ Because it delays execution of subsequent instructions until all previous
instructions complete to where they cannot cause an exception, sync is a
barrier against store gathering. Additionally, all load/store cache/bus activities
initiated by prior instructions are completed. Touch load operations (dcbt,
dcbtst) must complete address translation, but need not complete on the bus.
The sync completes after a successful broadcast on the system bus.
The latency of sync depends on the processor state when it is dispatched and
on various system-level situations. Note that, frequent use of sync will
degrade performance.

2-64 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set Summary

2.3.5.1 Processor Control InstructionsÑVEA

In addition to the move to condition register instructions (speciÞed by the UISA), the VEA
deÞnes the mftb instruction (user-level instruction) for reading the contents of the time base
register; see Chapter 3, ÒL1 and L2 Cache Operation,Ó for more information. Table 2-48
shows the mftb instruction.

SimpliÞed mnemonics are provided for the mftb instruction so it can be coded with the
TBR name as part of the mnemonic rather than requiring it to be coded as an operand. See
Appendix F, ÒSimpliÞed Mnemonics,Ó in The Programming Environments Manual for
simpliÞed mnemonic examples and for simpliÞed mnemonics for Move from Time Base
(mftb) and Move from Time Base Upper (mftbu), which are variants of the mftb
instruction rather than of mfspr. The mftb instruction serves as both a basic and simpliÞed
mnemonic. Assemblers recognize an mftb mnemonic with two operands as the basic form,
and an mftb mnemonic with one operand as the simpliÞed form. Note that the MPC7400
ignores the extended opcode differences between mftb and mfspr by ignoring bit 25 and
treating both instructions identically.

Implementation NotesÑIn the MPC7400, note the following:

¥ The MPC7400 allows user-mode read access to the time base counter through the
use of the Move from Time Base (mftb) and the Move from Time Base Upper
(mftbu) instructions. As a 32-bit PowerPC implementation, the MPC7400 can
access TBU and TBL separately only.

¥ The time base counter is clocked at a frequency that is one-fourth that of the bus
clock. Counting is enabled by assertion of the time base enable (TBEN) input signal.

2.3.5.2 Memory Synchronization InstructionsÑVEA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, ÒL1 and L2
Cache Operation,Ó for more information about these instructions and about related aspects
of memory synchronization.

In addition to the sync instruction (speciÞed by UISA), the VEA deÞnes the Enforce
In-Order Execution of I/O (eieio) and Instruction Synchronize (isync) instructions. The
number of cycles required to complete an eieio instruction depends on system parameters
and on the processor's state when the instruction is issued. As a result, frequent use of this
instruction can degrade performance.

Table 2-48. Move from Time Base Instruction

Name Mnemonic Syntax

Move from Time Base mftb rD, TBR

Chapter 2. Programming Model 2-65

Instruction Set Summary

Table 2-49 describes the memory synchronization instructions deÞned by the VEA.

2.3.5.3 Memory Control InstructionsÑVEA

Memory control instructions can be classiÞed as follows:

¥ Cache management instructions (user-level and supervisor-level)

¥ Segment register manipulation instructions (OEA)

¥ Translation lookaside buffer management instructions (OEA)

This section describes the user-level cache management instructions deÞned by the VEA.
See Section 2.3.6.3, ÒMemory Control InstructionsÑOEA,Ó for information about
supervisor-level cache, segment register manipulation, and translation lookaside buffer
management instructions.

2.3.5.3.1 User-Level Cache InstructionsÑVEA

The instructions summarized in this section help user-level programs manage on-chip
caches if they are implemented. See Chapter 3, ÒL1 and L2 Cache Operation,Ó for more
information about cache topics. The following sections describe how these operations are
treated with respect to the MPC7400Õs caches.

As with other memory-related instructions, the effects of cache management instructions
on memory are weakly-ordered. If the programmer must ensure that cache or other
instructions have been performed with respect to all other processors and system
mechanisms, a sync instruction must be placed after those instructions.

Note that the MPC7400 interprets cache control instructions (icbi, dcbi, dcbf, dcbz, and
dcbst) as if they pertain only to the local L1 and L2 caches. A dcbz (with M set) is always
broadcast on the bus interface.

Table 2-49. Memory Synchronization InstructionsÑVEA

Name Mnemonic Syntax Implementation Notes

Enforce
In-Order
Execution of
I/O

eieio Ñ The eieio instruction is dispatched to the LSU and executes after all previous
cache-inhibited or write-through accesses are performed; all subsequent
instructions that generate such accesses execute after eieio. The eieio
operation bypasses the L2 cache and is forwarded to the bus unit. An EIEIO
operation is broadcast on the external bus to enforce ordering in the external
memory system. Because the MPC7400 does reorder noncacheable accesses,
eieio is needed to force ordering. However, if store gathering is enabled and an
eieio is detected in a store queue, stores are not gathered. Broadcasting eieio
prevents external devices, such as a bus bridge chip, from gathering stores.

Instruction
Synchronize

isync Ñ The isync instruction is refetch serializing; that is, it causes the MPC7400 to
purge its instruction queue and wait for all prior instructions to complete before
refetching the next instruction, which is not executed until all previous
instructions complete to the point where they cannot cause an exception. The
isync instruction does not wait for all pending stores in the store queue to
complete. Any instruction after an isync sees all effects of prior instructions
occurring before the isync.

2-66 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set Summary

The MPC7400 always broadcasts an icbi. All cache control instructions to direct-store
space are no-ops. For information how cache control instructions affect the L2 cache, see
Section 3.7.5, ÒL2 Cache Operation.Ó

Table 2-50 summarizes the cache instructions deÞned by the VEA. Note that these
instructions are accessible to user-level programs.

Table 2-50. User-Level Cache Instructions

Name Mnemonic Syntax Implementation Notes

Data Cache Block
Touch 1

dcbt rA,rB The VEA deÞnes this instruction to allow for potential system
performance enhancements through the use of software-initiated
prefetch hints. Implementations are not required to take any action
based on execution of this instruction, but they can prefetch the cache
block corresponding to the EA into their cache. When dcbt executes, the
MPC7400 checks for protection violations (as for a load instruction). This
instruction is treated as a no-op for the following cases:

¥ The access causes a protection violation.
¥ The page is mapped cache-inhibited, or direct-store (T = 1).
¥ The cache is locked or disabled
¥ HID0[NOOPTI] = 1

Otherwise, if no data is in the cache location, the MPC7400 requests a
cache line Þll (with intent to modify). Data brought into the cache is
validated as if it were a load instruction. The memory reference of a dcbt
sets the reference bit.

Data Cache Block
Touch for Store 1

dcbtst rA,rB This instruction dcbtst can by setting HID0[31].
The dcbtst instruction behaves similarly to a dcbt instruction, except
that the lineÞll request on the bus is signaled as Òintent-to-modifyÓ or
Òread-claimÓ, and the data is marked as exclusive in the L1 data cache.
More speciÞcally, the following action cases occur depending on where
the line currently exists or does not exist in the MPC7400.

¥ dcbtst hits in the L1 data cache. In this case, the dcbtst will do
nothing and the state of the line in the cache is not changed. Thus, if
the line was in the shared or recent states, a subsequent store will
hit on this shared line and incur the associated latency penalties.

¥ dcbtst misses in the L1 data cache and hits in the L2 cache. In this
case, the dcbtst will reload the L1 data cache with the state found in
the L2 cache. Again, if the line was in the shared or recent states in
the L2, a subsequent store will hit on this shared line and incur the
associated latency penalties.

¥ dcbtst misses in L1 data cache and L2 cache. In this case,
MPC7400 will request the line from memory with Òintent-to-modifyÓ
or Òread-claimÓ and reload the L1 data cache in the exclusive state.
As subsequent store will hit on exclusive and can perform the store
to the L1 data cache immediately.

In addition, a dcbtst instruction will be no-oped if the target address of
the dcbtst is mapped as write-through.

Chapter 2. Programming Model 2-67

Instruction Set Summary

Data Cache Block
Set to Zero

dcbz rA,rB The EA is computed, translated, and checked for protection violations.
For cache hits, two beats of zeros are written to the cache block and the
tag is marked M. For cache misses with the replacement block marked
not modiÞed (M = 0), the zero reload is performed and the cache block is
marked M. However, if the replacement block is marked M, the contents
are written back to memory Þrst. The instruction takes an alignment
exception if the cache is locked or disabled or if the cache is marked WT
or CI. If M = 1 (coherency enforced), the address is broadcast to the bus
before the zero reload Þll.
The exception priorities (from highest to lowest) are as follows:
1 Cache disabledÑAlignment exception
2 Cache is LockedÑAlignment exception
2 Page marked write-through or cache-inhibitedÑAlignment exception
3 BAT protection violationÑDSI exception
4 TLB protection violationÑDSI exception
dcbz is broadcast if M bit is set (M = 1) (coherency enforced).

Data Cache Block
Allocate

dcba rA,rB The EA is computed, translated, and checked for protection violations.
For cache hits, two beats of zeros are written to the cache block and the
tag is marked M. For cache misses with the replacement block marked
non-dirty, the zero reload is performed and the cache block is marked M.
However, if the replacement block is marked M, the contents are written
back to memory Þrst. The instruction takes a no-op if the cache is locked
or disabled or if the cache is marked WT or CI, a no-op occurs. If M = 1
(coherency enforced), the address is broadcast to the bus before the
zero reload Þll
A no-op occurs for the following:

¥ Cache is disabled
¥ Cache is locked
¥ Page marked write-through or cache-inhibited
¥ BAT protection violation
¥ TLB protection violation

dcba is broadcast if M bit is set (M = 1) (coherency enforced).

Data Cache Block
Store

dcbst rA,rB The EA is computed, translated, and checked for protection violations.
¥ For cache hits with the tag marked not modiÞed (M = 0), no further

action is taken.
¥ For cache hits with the tag marked modiÞed (M), the cache block is

written back to memory and marked exclusive (E).
If M = 1 (coherency enforced) dcbst is broadcast. The instruction acts
like a load with respect to address translation and memory protection. It
executes regardless of whether the cache is disabled or locked.
The exception priorities (from highest to lowest) for dcbst are as follows:

¥ BAT protection violationÑDSI exception
¥ TLB protection violationÑDSI exception

Table 2-50. User-Level Cache Instructions (Continued)

Name Mnemonic Syntax Implementation Notes

2-68 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set Summary

2.3.5.4 Optional External Control Instructions

The PowerPC architecture deÞnes an optional external control feature that, if implemented,
is supported by the two external control instructions, eciwx and ecowx. These instructions
allow a user-level program to communicate with a special-purpose device. These
instructions are provided in the MPC7400 and are summarized in Table 2-51.

The eciwx/ecowx instructions let a system designer map special devices in an alternative
way. The MMU translation of the EA is not used to select the special device, as it is used
in most instructions such as loads and stores. Rather, the EA is used as an address operand
that is passed to the device over the address bus. Four other signals (the burst and size
signals on the system bus) are used to select the device; these four signals output the 4-bit
resource ID (RID) field located in the EAR. The eciwx instruction also loads a word from
the data bus that is output by the special device. For more information about the relationship
between these instructions and the system interface, refer to Chapter 8, ÒSignal
Descriptions.Ó

Data Cache Block
Flush

dcbf rA,rB The EA is computed, translated, and checked for protection violations:
¥ For cache hits with the tag marked modiÞed (M), the cache block is

written back to memory and the cache entry is invalidated.
¥ For cache hits with the tag marked not modiÞed (M), the entry is

invalidated.
¥ For cache misses, no further action is taken.

A dcbf is broadcast if M = 1 (coherency enforced).The instruction acts
like a load with respect to address translation and memory protection. It
executes regardless of whether the cache is disabled or locked.
The exception priorities (from highest to lowest) for dcbf are as follows:

¥ BAT protection violationÑDSI exception
¥ TLB protection violationÑDSI exception

Instruction Cache
Block Invalidate

icbi rA,rB This instruction is always broadcast on the bus (independent of the M
state). icbi should always be followed by a sync and an isync to make
sure that the effects of the icbi are seen by the instruction fetches
following the icbi itself.

1 A program that uses dcbt and dcbtst instructions improperly performs less efÞciently. To improve performance,
HID0[NOOPTI] can be set, which causes dcbt and dcbtst to be no-oped at the cache. They do not cause bus
activity and cause only a 1-clock execution latency. The default state of this bit is zero which enables the use of
these instructions.

Table 2-51. External Control Instructions

Name Mnemonic Syntax Implementation Notes

External
Control In
Word Indexed

eciwx rD,rA,rB A transfer size of 4 bytes is implied; the TBST and TSIZ[0:2] signals are
redeÞned to specify the resource ID (RID), copied from bits EAR[28Ð31].
For these operations, TBST carries the EAR[28] data. Misaligned operands
for these instructions cause an alignment exception. Addressing a location
where SR[T] = 1 causes a DSI exception. If MSR[DR] = 0 a programming
error occurs and the physical address on the bus is undeÞned.
Note: These instructions are optional to the PowerPC architecture.

External
Control Out
Word Indexed

ecowx rS,rA,rB

Table 2-50. User-Level Cache Instructions (Continued)

Name Mnemonic Syntax Implementation Notes

Chapter 2. Programming Model 2-69

Instruction Set Summary

2.3.6 PowerPC OEA Instructions

The PowerPC operating environment architecture (OEA) includes the structure of the
memory management model, supervisor-level registers, and the exception model.
Implementations that conform to the OEA also adhere to the UISA and the VEA. This
section describes the instructions provided by the OEA.

2.3.6.1 System Linkage InstructionsÑOEA

This section describes the system linkage instructions (see Table 2-52). The user-level sc
instruction lets a user program call on the system to perform a service and causes the
processor to take a system call exception. The supervisor-level rÞ instruction is used for
returning from an exception handler.

2.3.6.2 Processor Control InstructionsÑOEA

This section describes the processor control instructions used to access the MSR and the
SPRs. Table 2-53 lists instructions for accessing the MSR.

The OEA deÞnes encodings of mtspr and mfspr to provide access to supervisor-level
registers. The instructions are listed in Table 2-54.

Encodings for the architecture-deÞned SPRs are listed in Table 2-45. Encodings for
MPC7400-speciÞc, supervisor-level SPRs are listed in Table 2-46. SimpliÞed mnemonics
are provided for mtspr and mfspr in Appendix F, ÒSimpliÞed Mnemonics,Ó in The
Programming Environments Manual. For a discussion of context synchronization
requirements when altering certain SPRs, refer to Appendix E, ÒSynchronization
Programming Examples,Ó in The Programming Environments Manual.

Table 2-52. System Linkage InstructionsÑOEA

Name Mnemonic Syntax Implementation Notes

System Call sc Ñ The sc instruction is context-synchronizing.

Return from
Interrupt

rÞ Ñ The rÞ instruction is context-synchronizing. For the MPC7400, this means
the rÞ instruction works its way to the Þnal stage of the execution pipeline,
updates architected registers, and redirects the instruction ßow.

Table 2-53. Move to/from Machine State Register Instructions

Name Mnemonic Syntax

Move to Machine State Register mtmsr rS

Move from Machine State Register mfmsr rD

Table 2-54. Move to/from Special-Purpose Register Instructions (OEA)

Name Mnemonic Syntax

Move to Special-Purpose Register mtspr SPR,rS

Move from Special-Purpose Register mfspr rD,SPR

2-70 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set Summary

2.3.6.3 Memory Control InstructionsÑOEA

Memory control instructions include the following:

¥ Cache management instructions (supervisor-level and user-level)
¥ Segment register manipulation instructions
¥ Translation lookaside buffer management instructions

This section describes supervisor-level memory control instructions. Section 2.3.5.3,
ÒMemory Control InstructionsÑVEA,Ó describes user-level memory control instructions.

2.3.6.3.1 Supervisor-Level Cache Management InstructionÑ(OEA)

Table 2-55 lists the only supervisor-level cache management instruction.

See Section 2.3.5.3.1, ÒUser-Level Cache InstructionsÑVEA,Ó for cache instructions that
provide user-level programs the ability to manage the on-chip caches. If the effective
address references a direct-store segment, the instruction is treated as a no-op.

2.3.6.3.2 Segment Register Manipulation Instructions (OEA)

The instructions listed in Table 2-56 provide access to the segment registers for 32-bit
implementations. These instructions operate completely independently of the MSR[IR] and
MSR[DR] bit settings. Refer to ÒSynchronization Requirements for Special Registers and
for Lookaside Buffers,Ó in Chapter 2, ÒPowerPC Register Set,Ó of The Programming
Environments Manual for serialization requirements and other recommended precautions
to observe when manipulating the segment registers.

Table 2-55. Supervisor-Level Cache Management Instruction

Name Mnemonic Syntax Implementation Notes

Data
Cache
Block
Invalidate

dcbi rA,rB The EA is computed, translated, and checked for protection violations. For cache
hits, the cache block is marked I regardless of prior state. A dcbi is broadcast if
M = 1 (coherency enforced). The instruction acts like a store with respect to
address translation and memory protection. It executes regardless of whether the
cache is disabled or locked.
The exception priorities (from highest to lowest) for dcbi are as follows:

¥ BAT protection violationÑDSI exception
¥ TLB protection violationÑDSI exception

Table 2-56. Segment Register Manipulation Instructions

Name Mnemonic Syntax Implementation Notes

Move to Segment Register mtsr SR,rS Ñ

Move to Segment Register Indirect mtsrin rS,rB Ñ

Move from Segment Register mfsr rD,SR The shadow SRs in the instruction MMU can be
read by setting HID0[RISEG] before executing mfsr.

Move from Segment Register Indirect mfsrin rD,rB Ñ

Chapter 2. Programming Model 2-71

Instruction Set Summary

2.3.6.3.3 Translation Lookaside Buffer Management InstructionsÑOEA

The address translation mechanism is deÞned in terms of the segment descriptors and page
table entries (PTEs) PowerPC processors use to locate the logical-to-physical address
mapping for a particular access. These segment descriptors and PTEs reside in on-chip
segment registers and page tables in memory, respectively.

See Chapter 7, ÒMemory Management,Ó for more information about TLB operations.
Table 2-57 summarizes the operation of the TLB instructions in the MPC7400.

Implementation NoteÑThe tlbia instruction is optional for an implementation if its
effects can be achieved through some other mechanism. Therefore, it is not implemented
on the MPC7400. As described above, tlbie can be used to invalidate a particular index of
the TLB based on EA[14Ð19]Ña sequence of 64 tlbie instructions followed by a tlbsync
instruction invalidates all the TLB structures (for EA[14Ð19] = 0, 1, 2,..., 63). Attempting
to execute tlbia causes an illegal instruction program exception.

The presence and exact semantics of the TLB management instructions are
implementation-dependent. To minimize compatibility problems, system software should
incorporate uses of these instructions into subroutines.

2.3.7 Recommended SimpliÞed Mnemonics

The description of each instruction includes the mnemonic and a formatted list of operands.
PowerPC-compliant assemblers support the mnemonics and operand lists. To simplify
assembly language programming, a set of simpliÞed mnemonics and symbols is provided
for some of the most frequently-used instructions; refer to Appendix F, ÒSimpliÞed
Mnemonics,Ó in the The Programming Environments Manual for a complete list. Programs
written to be portable across the various assemblers for the PowerPC architecture should
not assume the existence of mnemonics not described in this document.

Table 2-57. Translation Lookaside Buffer Management Instruction

Name Mnemonic Syntax Implementation Notes

TLB
Invalidate
Entry

tlbie rB Invalidates both ways in both instruction and data TLB entries at the index
provided by EA[14Ð19]. It executes regardless of the MSR[DR] and MSR[IR]
settings. To invalidate all entries in both TLBs, the programmer should issue 64
tlbie instructions that each successively increment this Þeld.

TLB
Synchronize

tlbsync Ñ TLBSYNC is broadcast.

2-72 MPC7400 RISC Microprocessor UserÕs Manual

AltiVec Instructions

2.4 AltiVec Instructions
The following sections provide a general summary of the instructions and addressing
modes deÞned by the AltiVec Instruction Set Architecture (ISA). For speciÞc details on the
AltiVec instructions see The AltiVec Technology Programming Environments Manual for
more information. AltiVec instructions belong primarily to the UISA, unless otherwise
noted. AltiVec instructions are divided into the following categories:

¥ Vector integer arithmetic instructionsÑThese include arithmetic, logical, compare,
rotate and shift instructions, described in Section 2.3.4.1, ÒInteger Instructions.Ó

¥ Vector ßoating-point arithmetic instructionsÑThese ßoating-point arithmetic
instructions and ßoating-point modes are described in Section 2.3.4.2,
ÒFloating-Point Instructions.Ó

¥ Vector load and store instructionsÑThese load and store instructions for vector
registers are described in Section 2.3.4.3, ÒLoad and Store Instructions.Ó

¥ Vector permutation and formatting instructionsÑThese include pack, unpack,
merge, splat, permute, select and shift instructions, and are described in
Section 2.5.5, ÒVector Permutation and Formatting Instructions.Ó

¥ Processor control instructionsÑThese instructions are used to read and write from
the AltiVec Status and Control Register, and are described in Section 2.3.4.6,
ÒProcessor Control InstructionsÑUISA.Ó

¥ Memory control instructionsÑThese instructions are used for managing caches
(user level and supervisor level), and are described in Section 2.6.1, ÒAltiVec Vector
Memory Control InstructionsÑVEA.Ó

This grouping of instructions does not necessarily indicate the execution unit that processes
a particular instruction or group of instructions within a processor implementation.

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision operands. The AltiVec ISA uses instructions that
are four bytes long and word-aligned. It provides for byte, half-word, word, and quad-word
operand fetches and stores between memory and the vector registers (VRs).

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into a register, modiÞed, and then written to the target
location using load and store instructions.

Memory operands can be bytes, half words, words, or quad words for AltiVec instructions.
The AltiVec ISA supports both big-endian and little-endian byte ordering. The default byte
and bit ordering is big-endian; see ÒByte Ordering,Ó in Chapter 3, ÒOperand Conventions,Ó
of The AltiVec Technology Programming Environments Manual for more information.

Chapter 2. Programming Model 2-73

AltiVec UISA Instructions

2.5 AltiVec UISA Instructions
This section describes the instructions deÞned in the AltiVec user instruction set
architecture (UISA).

2.5.1 Vector Integer Instructions

The following are categories for vector integer instructions:

¥ Vector integer arithmetic instructions

¥ Vector integer compare instructions

¥ Vector integer logical instructions

¥ Vector integer rotate and shift instructions

Integer instructions use the content of VRs as source operands and also place results into
VRs. Setting the Rc bit of a vector compare instruction causes the CR6 Þeld of the PowerPC
condition register (CR) to be updated; refer to Section 2.5.1.2, ÒVector Integer Compare
InstructionsÓ for more details.

The AltiVec integer instructions treat source operands as signed integers unless the
instruction is explicitly identiÞed as performing an unsigned operation. For example, both
the Vector Add Unsigned Word Modulo (vadduwm) and Vector Multiply Odd Unsigned
Byte (vmuloub) instructions interpret the operands as unsigned integers.

2.5.1.1 Vector Integer Arithmetic Instructions

Table 2-58 lists the integer arithmetic instructions for the PowerPC processors.
Table 2-58. Vector Integer Arithmetic Instructions

Name Mnemonic Syntax

Vector Add Unsigned Integer [b,h,w] Modulo1 vaddubm
vadduhm
vadduwm

vD,vA,vB

Vector Add Unsigned Integer [b,h,w] Saturate vaddubs
vadduhs
vadduws

vD,vA,vB

Vector Add Signed Integer[b.h.w] Saturate vaddsbs
vaddshs
vaddsws

vD,vA,vB

Vector Add and Write Carry-out Unsigned Word vaddcuw vD,vA,vB

Vector Subtract Unsigned Integer Modulo vsububm
vsubuhm
vsubuwm

vD,vA,vB

Vector Subtract Unsigned Integer Saturate vsububs
vsubuhs
vsubuws

vD,vA,vB

2-74 MPC7400 RISC Microprocessor UserÕs Manual

AltiVec UISA Instructions

Vector Subtract Signed Integer Saturate vsubsbs
vsubshs
vsubsws

vD,vA,vB

Vector Subtract and Write Carry-out Unsigned Word vsubcuw vD,vA,vB

Vector Multiply Odd Unsigned Integer [b,h] Modulo vmuloub
vmulouh

vD,vA,vB

Vector Multiply Odd Signed Integer [b,h] Modulo vmulosb
vmulosh

vD,vA,vB

Vector Multiply Even Unsigned Integer [b,h] Modulo vmuleub
vmuleuh

vD,vA,vB

Vector Multiply Even Signed Integer [b,h] Modulo vmulesb
vmulesh

vD,vA,vB

Vector Multiply-High and Add Signed Half-Word Saturate vmhaddshs vD,vA,vB, vC

Vector Multiply-High Round and Add Signed Half-Word Saturate vmhraddshs vD,vA,vB,vC

Vector Multiply-Low and Add Unsigned Half-Word Modulo vmladduhm vD,vA,vB,vC

Vector Multiply-Sum Unsigned Integer [b,h] Modulo vmsumubm
vmsumuhm

vD,vA,vB,vC

Vector Multiply-Sum Signed Half-Word Saturate vmsumshs vD,vA,vB,vC

Vector Multiply-Sum Unsigned Half-Word Saturate vmsumuhs vD,vA,vB,vC

Vector Multiply-Sum Mixed Byte Modulo vmsummbm vD,vA,vB,vC

Vector Multiply-Sum Signed Half-Word Modulo vmsumshm vD,vA,vB,vC

Vector Sum Across Signed Word Saturate vsumsws vD,vA,vB

Vector Sum Across Partial (1/2) Signed Word Saturate vsum2sws vD,vA,vB

Vector Sum Across Partial (1/4) Unsigned Byte Saturate vsum4ubs vD,vA,vB

Vector Sum Across Partial (1/4) Signed Integer Saturate vsum4sbs
vsum4shs

vD,vA,vB

Vector Average Unsigned Integer vavgub
vavguh
vavguw

vD,vA,vB

Vector Average Signed Integer vavgsb
vavgsh
vavgsw

vD,vA,vB

Vector Maximum Unsigned Integer vmaxub
vmaxuh
vmaxuw

vD,vA,vB

Vector Maximum Signed Integer vmaxsb
vmaxsh
vmaxsw

vD,vA,vB

Table 2-58. Vector Integer Arithmetic Instructions (Continued)

Name Mnemonic Syntax

Chapter 2. Programming Model 2-75

AltiVec UISA Instructions

2.5.1.2 Vector Integer Compare Instructions

The vector integer compare instructions algebraically or logically compare the contents of
the elements in vector register vA with the contents of the elements in vB. Each compare
result vector is comprised of TRUE (0xFF, 0xFFFF, 0xFFFF_FFFF) or FALSE (0x00,
0x0000, 0x0000_0000) elements of the size speciÞed by the compare source operand
element (byte, half word, word, or quad word). The result vector can be directed to any VR
and can be manipulated with any of the instructions as normal data (for example,
combining condition results).

Vector compares provide equal-to and greater-than predicates. Others are synthesized from
these by logically combining and/or inverting result vectors.

The integer compare instructions (shown in Table 2-60) can optionally set the CR6 Þeld of
the PowerPC condition register. If Rc = 1 in the vector integer compare instruction, then
CR6 is set to reßect the result of the comparison, as follows in Table 2-59.

Table 2-60 summarizes the vector integer compare instructions.

Vector Minimum Unsigned Integer vminub
vminuh
vminuw

vD,vA,vB

Vector Minimum Signed Integer vminsb
vminsh
vminsw

vD,vA,vB

Table 2-59. CR6 Field Bit Settings for Vector Integer Compare Instructions

CR Bit CR6 Bit Vector Compare

24 0 1 Relation is true for all element pairs (that is, vD is set to all ones)

25 1 0

26 2 1 Relation is false for all element pairs (that is, register vD is cleared)

27 3 0

Table 2-60. Vector Integer Compare Instructions

Name Mnemonic Syntax

Vector Compare Greater than Unsigned
Integer

vcmpgtub[.]
vcmpgtuh[.]
vcmpgtuw[.]

CR06,vD,vA,vB

Vector Compare Greater than Signed Integer vcmpgtsb[.]
vcmpgtsh[.]
vcmpgtsw[.]

CR06,vD,vA,vB

Vector Compare Equal to Unsigned Integer vcmpequb[.]
vcmpequh[.]
vcmpequw[.]

vD,vA,vB

Table 2-58. Vector Integer Arithmetic Instructions (Continued)

Name Mnemonic Syntax

2-76 MPC7400 RISC Microprocessor UserÕs Manual

AltiVec UISA Instructions

2.5.1.3 Vector Integer Logical Instructions

The vector integer logical instructions shown in Table 2-61 perform bit-parallel operations
on the operands.

2.5.1.4 Vector Integer Rotate and Shift Instructions

The vector integer rotate instructions are summarized in Table 2-62.

The vector integer shift instructions are summarized in Table 2-63.

2.5.2 Vector Floating-Point Instructions

This section describes the vector ßoating-point instructions, that include the following:

¥ Vector ßoating-point arithmetic instructions

¥ Vector ßoating-point rounding and conversion instructions

¥ Vector ßoating-point compare instructions

¥ Vector ßoating-point estimate instructions

Table 2-61. Vector Integer Logical Instructions

Name Mnemonic Syntax

Vector Logical AND vand vD,vA,vB

Vector Logical OR vor vD,vA,vB

Vector Logical XOR vxor vD,vA,vB

Vector Logical AND with Complement vandc vD,vA,vB

Vector Logical NOR vnor vD,vA,vB

Table 2-62. Vector Integer Rotate Instructions

Name Mnemonic Syntax

Vector Rotate Left Integer vrlb
vrlh
vrlw

vD,vA,vB

Table 2-63. Vector Integer Shift Instructions

Name Mnemonic Syntax

Vector Shift Left Integer vslb
vslh
vslw

vD,vA,vB

Vector Shift Right Integer vsrb
vsrh
vsrw

vD,vA,vB

Vector Shift Right Algebraic
Integer

vsrab
vsrah
vsraw

vD,vA,vB

Chapter 2. Programming Model 2-77

AltiVec UISA Instructions

The AltiVec ßoating-point data format complies with the ANSI/IEEE-754 standard as
deÞned for single precision. A quantity in this format represents a signed normalized
number, a signed denormalized number, a signed zero, a signed inÞnity, a quiet not a
number (QNaN), or a signaling NaN (SNaN). Operations perform to a
Java/IEEE/C9X-compliant subset of the IEEE standard; for further details on the Java or
Non-Java mode see ÒJava Mode,Ó in Chapter 3, ÒOperand Conventions,Ó of The AltiVec
Technology Programming Environments Manual.

Section 7.1.3.2, ÒJava Mode, NaNs, Denormalized Numbers, and Zeros,Ó describes how the
MPC7400 handles denormalization for AltiVec ßoating-point instructions.

The AltiVec ISA does not report IEEE exceptions but rather produces default results as
speciÞed by the Java/IEEE/C9X Standard; for further details on exceptions see
ÒFloating-Point Exceptions,Ó in Chapter 3, ÒOperand Conventions,Ó of The AltiVec
Technology Programming Environments Manual.

2.5.2.1 Vector Floating-Point Arithmetic Instructions

The ßoating-point arithmetic instructions are summarized in Table 2-64.

2.5.2.2 Vector Floating-Point Multiply-Add Instructions

Vector multiply-add instructions are critically important to performance because a multiply
followed by a data dependent addition is the most common idiom in DSP algorithms. In
most implementations, ßoating-point multiply-add instructions perform with the same
latency as either a multiply or add alone, thus doubling performance in comparing to the
otherwise serial multiply and adds.

AltiVec ßoating-point multiply-add instructions fuse (a multiply-add fuse implies that the
full product participates in the add operation without rounding, only the Þnal result rounds).
This not only simpliÞes the implementation and reduces latency (by eliminating the
intermediate rounding) but also increases the accuracy compared to separate multiply and
adds.

The ßoating-point multiply-add instructions are summarized in Table 2-65.

Table 2-64. Vector Floating-Point Arithmetic Instructions

Name Mnemonic Syntax

Vector Add Floating-Point vaddfp vD,vA,vB

Vector Subtract Floating-Point vsubfp vD,vA,vB

Vector Maximum Floating-Point vmaxfp vD,vA,vB

Vector Minimum Floating-Point vminfp vD,vA,vB

2-78 MPC7400 RISC Microprocessor UserÕs Manual

AltiVec UISA Instructions

2.5.2.3 Vector Floating-Point Rounding and Conversion Instructions

All AltiVec ßoating-point arithmetic instructions use the IEEE default rounding mode
round-to-nearest. The AltiVec ISA does not provide the IEEE directed rounding modes.

The AltiVec ISA provides separate instructions for converting ßoating-point numbers to
integral ßoating-point values for all IEEE rounding modes as follows:

¥ Round-to-nearest (vrÞn) (round)

¥ Round-toward-zero (vrÞz) (truncate)

¥ Round-toward-minus-inÞnity (vrÞm) (ßoor)

¥ Round-toward-positive-inÞnity (vrÞp) (ceiling).

Floating-point conversions to integers (vctuxs, vctsxs) use round-toward-zero (truncate)
rounding. The ßoating-point rounding instructions are shown in Table 2-66.

2.5.2.4 Vector Floating-Point Compare Instructions

The ßoating-point compare instructions are summarized in Table 2-67.

Table 2-65. Vector Floating-Point Multiply-Add Instructions

Name Mnemonic Syntax

Vector Multiply-Add Floating-Point vmaddfp vD,vA,vC,vB

Vector Negative Multiply-Subtract Floating-Point vnmsubfp vD,vA,vC,vB

Table 2-66. Vector Floating-Point Rounding and Conversion Instructions

Name Mnemonic Syntax

Vector Round to Floating-Point Integer Nearest vrÞn vD,vB

Vector Round to Floating-Point Integer toward Zero vrÞz vD,vB

Vector Round to Floating-Point Integer toward Positive InÞnity vrÞp vD,vB

Vector Round to Floating-Point Integer toward Minus InÞnity vrÞm vD,vB

Vector Convert from Unsigned Fixed-Point Word vcfux vD,vB,UIMM

Vector Convert from Signed Fixed-Point Word vcfsx vD,vB,UIMM

Vector Convert to Unsigned Fixed-Point Word Saturate vctuxs vD,vB,UIMM

Vector Convert to Signed Fixed-Point Word Saturate vctsxs vD,vB,UIMM

Table 2-67. Vector Floating-Point Compare Instructions

Name Mnemonic Syntax

Vector Compare Greater Than Floating-Point [Record] vcmpgtfp[.] Rc,vD,vA,vB

Vector Compare Equal to Floating-Point [Record] vcmpeqfp[.] Rc,vD,vA,vB

Vector Compare Greater Than or Equal to Floating-Point [Record] vcmpgeqfp[.] Rc,vD,vA,vB

Vector Compare Bounds Floating-Point [Record] vcmpbfp[.] Rc,vD,vA,vB

Chapter 2. Programming Model 2-79

AltiVec UISA Instructions

2.5.2.5 Vector Floating-Point Estimate Instructions

The ßoating-point estimate instructions are summarized in Table 2-68.

2.5.3 Vector Load and Store Instructions

Only very basic load and store operations are provided in the AltiVec ISA. This keeps the
circuitry in the memory path fast so the latency of memory operations is minimized.
Instead, a powerful set of Þeld manipulation instructions are provided to manipulate data
into the desired alignment and arrangement after the data has been brought into the VRs.

Load vector indexed (lvx, lvxl) and store vector indexed (stvx, stvxl) instructions transfer
an aligned quad-word vector between memory and VRs. Load vector element indexed
(lvebx, lvehx, lvewx) and store vector element indexed instructions (stvebx, stvehx,
stvewx) transfer byte, half-word, and word scalar elements between memory and VRs.

2.5.3.1 Vector Load Instructions

For vector load instructions, the byte, half word, word, or quad word addressed by the EA
(effective address) is loaded into vD.

The default byte and bit ordering is big-endian as in the PowerPC architecture; see ÒByte
Ordering,Ó in Chapter 3, ÒOperand Conventions,Ó of The AltiVec Technology Programming
Environments Manual for information about little-endian byte ordering.

Table 2-69 summarizes the vector load instructions.

Table 2-68. Vector Floating-Point Estimate Instructions

Name Mnemonic Syntax

Vector Reciprocal Estimate Floating-Point vrefp vD,vB

Vector Reciprocal Square Root Estimate Floating-Point vrsqrtefp vD,vB

Vector Log2 Estimate Floating-Point vlogefp vD,vB

Vector 2 Raised to the Exponent Estimate Floating-Point vexptefp vD,vB

Table 2-69. Vector Integer Load Instructions

Name Mnemonic Syntax

Load Vector Element Integer Indexed lvebx
lvehx
lvewx

vD,rA,rB

Load Vector Element Indexed lvx vD,rA,rB

Load Vector Element Indexed LRU 1

1 On the MPC7400, lvxl, stvxl are interpreted to be transient. See Section 7.1.2.5,
ÒStatic/Transient Data Stream Touch Instructions.Ó

lvxl vD,rA,rB

2-80 MPC7400 RISC Microprocessor UserÕs Manual

AltiVec UISA Instructions

2.5.3.2 Vector Load Instructions Supporting Alignment

The lvsl and lvsr instructions can be used to create the permute control vector to be used
by a subsequent vperm instruction. Let X and Y be the contents of vA and vB specified by
vperm. The control vector created by lvsl causes the vperm to select the high-order 16
bytes of the result of shifting the 32-byte value X || Y left by sh bytes (sh = the value in
EA[60Ð63]). The control vector created by lvsr causes the vperm to select the low-order
16 bytes of the result of shifting X || Y right by sh bytes.

Table 2-70 summarizes the vector alignment instructions.

2.5.3.3 Vector Store Instructions

For vector store instructions, the contents of the VR used as a source (vS) are stored into
the byte, half word, word or quad word in memory addressed by the effective address (EA).
Table 2-71 provides a summary of the vector store instructions.

2.5.4 Control Flow

AltiVec instructions can be freely intermixed with existing PowerPC instructions to form a
complete program. AltiVec instructions provide a vector compare and select mechanism to
implement conditional execution as the preferred mechanism to control data ßow in AltiVec
programs. In addition, AltiVec vector compare instructions can update the condition
register thus providing the communication from AltiVec execution units to PowerPC
branch instructions necessary to modify program ßow based on vector data.

2.5.5 Vector Permutation and Formatting Instructions

Vector pack, unpack, merge, splat, permute, and select can be used to accelerate various
vector math operations and vector formatting. Details of these instructions follow.

Table 2-70. Vector Load Instructions Supporting Alignment

Name Mnemonic Syntax

Load Vector for Shift Left lvsl vD,rA,rB

Load Vector for Shift Right lvsr vD,rA,rB

Table 2-71. Vector Integer Store Instructions

Name Mnemonic Syntax

Store Vector Element Integer Indexed svetbx
svethx
svetwx

vS,rA,rB

Store Vector Element Indexed stvx vS,rA,rB

Store Vector Element Indexed LRU 1

1 On the MPC7400, lvxl, stvxl are interpreted to be transient. See Section 7.1.2.5,
ÒStatic/Transient Data Stream Touch Instructions.Ó

stvxl vS,rA,rB

Chapter 2. Programming Model 2-81

AltiVec UISA Instructions

2.5.5.1 Vector Pack Instructions

Half-word vector pack instructions (vpkuhum, vpkuhus, vpkshus, vpkshss) truncate the
sixteen half words from two concatenated source operands producing a single result of
sixteen bytes (quad word) using either modulo (28), 8-bit signed-saturation, or 8-bit
unsigned-saturation to perform the truncation. Similarly, word vector pack instructions
(vpkuwum, vpkuwus, vpkswus, vpksws) truncate the eight words from two concatenated
source operands producing a single result of eight half words using modulo (216), 16-bit
signed-saturation, or 16-bit unsigned-saturation to perform the truncation.

Table 2-72 describes the vector pack instructions.

2.5.5.2 Vector Unpack Instructions

Byte vector unpack instructions unpack the 8 low bytes (or 8 high bytes) of one source
operand into 8 half words using sign extension to Þll the most-signiÞcant bytes (MSBs).
Half word vector unpack instructions unpack the 4 low half words (or 4 high half words) of
one source operand into 4 words using sign extension to Þll the MSBs.

Two special purpose forms of vector unpack are providedÑthe Vector Unpack Low Pixel
(vupklpx) and the Vector Unpack High Pixel (vupkhpx) instructions for 1/5/5/5 aRGB
pixels. The 1/5/5/5 pixel vector unpack, unpacks the four low 1/5/5/5 pixels (or four 1/5/5/5
high pixels) into four 32-bit (8/8/8/8) pixels. The 1-bit a element in each pixel is sign
extended to 8 bits, and the 5-bit R, G, and B elements are each zero extended to 8 bits.

Table 2-72. Vector Pack Instructions

Name Mnemonic Syntax

Vector Pack Unsigned Integer [h,w]
Unsigned Modulo

vpkuhum
vpkuwum

vD, vA, vB

Vector Pack Unsigned Integer [h,w]
Unsigned Saturate

vpkuhus
vpkuwus

vD, vA, vB

Vector Pack Signed Integer [h,w]
Unsigned Saturate

vpkshus
vpkswus

vD, vA, vB

Vector Pack Signed Integer [h,w]
Unsigned Saturate

vpkshss
vpkswss

vD, vA, vB

Vector Pack Pixel vpkpx vD, vA, vB

2-82 MPC7400 RISC Microprocessor UserÕs Manual

AltiVec UISA Instructions

Table 2-73 describes the unpack instructions.

2.5.5.3 Vector Merge Instructions

Byte vector merge instructions interleave the 8 low bytes (or 8 high bytes) from two source
operands producing a result of 16 bytes. Similarly, half-word vector merge instructions
interleave the 4 low half words (or 4 high half words) of two source operands producing a
result of 8 half words, and word vector merge instructions interleave the 2 low words (or 2
high words) from two source operands producing a result of 4 words. The vector merge
instruction has many uses. For example, it can be used to efÞciently transpose SIMD
vectors. Table 2-74 describes the merge instructions.

2.5.5.4 Vector Splat Instructions

When a program needs to perform arithmetic vector operations, the vector splat instructions
can be used in preparation for performing arithmetic for which one source vector is to
consist of elements that all have the same value. Vector splat instructions can be used to
move data where it is required. For example to multiply all elements of a vector register
(VR) by a constant, the vector splat instructions can be used to splat the scalar into the VR.
Likewise, when storing a scalar into an arbitrary memory location, it must be splatted into
a VR, and that VR must be speciÞed as the source of the store. This guarantees that the data
appears in all possible positions of that scalar size for the store.

Table 2-73. Vector Unpack Instructions

Name Mnemonic Syntax

Vector Unpack High Signed Integer vupkhsb
vupkhsh

vD, vB

Vector Unpack High Pixel vupkhpx vD, vB

Vector Unpack Low Signed Integer vupklsb
vupklsh

vD, vB

Vector Unpack Low Pixel vupklpx vD, vB

Table 2-74. Vector Merge Instructions

Name Mnemonic Syntax

Vector Merge High Integer vmrghb
vmrghh
vmrghw

vD, vA, vB

Vector Merge Low Integer vmrglb
vmrglh
vmrglw

vD, vA, vB

Chapter 2. Programming Model 2-83

AltiVec UISA Instructions

2.5.5.5 Vector Permute Instructions

Permute instructions allow any byte in any two source VRs to be directed to any byte in the
destination vector. The Þelds in a third source operand specify from which Þeld in the
source operands the corresponding destination Þeld is taken. The Vector Permute (vperm)
instruction is a very powerful one that provides many useful functions. For example, it
provides a way to perform table-lookups and data alignment operations. An example of
how to use the vperm instruction in aligning data is described in ÒQuad-Word Data
Alignment,Ó in Chapter 3, ÒOperand Conventions,Ó of The AltiVec Technology
Programming Environments Manual. Table 2-72 describes the vector permute instruction.

2.5.5.6 Vector Select Instruction

Data ßow in the vector unit can be controlled without branching by using a vector compare
and the Vector Select (vsel) instructions. In this use, the compare result vector is used
directly as a mask operand to vector select instructions.The vsel instruction selects one Þeld
from one or the other of two source operands under control of its mask operand. Use of the
TRUE/FALSE compare result vector with select in this manner produces a two instruction
equivalent of conditional execution on a per-Þeld basis. Table 2-77 describes the vsel
instruction.

2.5.5.7 Vector Shift Instructions

The vector shift instructions shift the contents of a VR, or of a pair of VRs, left or right by
a speciÞed number of bytes (vslo, vsro, vsldoi) or bits (vsl, vsr). Depending on the
instruction, this shift count is speciÞed either by low-order bits of a VR or by an immediate
Þeld in the instruction. In the former case the low-order 7 bits of the shift count register give
the shift count in bits (0 £ count £ 127). Of these 7 bits, the high-order 4 bits give the

Table 2-75. Vector Splat Instructions

Name Mnemonic Syntax

Vector Splat Integer vspltb
vsplth
vspltw

vD, vB, UIMM

Vector Splat Immediate Signed Integer vspltisb
vspltish
vspltisw

vD, SIMM

Table 2-76. Vector Permute Instruction

Name Mnemonic Syntax

Vector Permute vperm vD, vA,vB,vC

Table 2-77. Vector Select Instruction

Name Mnemonic Syntax

Vector Select vsel vD,vA,vB,vC

2-84 MPC7400 RISC Microprocessor UserÕs Manual

AltiVec VEA Instructions

number of complete bytes by which to shift and are used by vslo and vsro; the low-order 3
bits give the number of remaining bits by which to shift and are used by vsl and vsr.

Table 2-78 describes the vector shift instructions.

2.5.5.8 Vector Status and Control Register Instructions

Table 2-79 summarizes the instructions for reading from or writing to the AltiVec status
and control register (VSCR), described in Section 7.1.1.5, ÒVector Save/Restore Register
(VRSAVE).Ó

2.6 AltiVec VEA Instructions
The PowerPC virtual environment architecture (VEA) describes the semantics of the
memory model that can be assumed by software processes, and includes descriptions of the
cache model, cache-control instructions, address aliasing, and other related issues.
Implementations that conform to the VEA also adhere to the UISA, but may not necessarily
adhere to the OEA. For further details see Chapter 4, ÒAddressing Mode and Instruction Set
Summary,Ó in The Programming Environments Manual.

This section describes the additional instructions that are provided by the AltiVec ISA for
the VEA.

2.6.1 AltiVec Vector Memory Control InstructionsÑVEA

Memory control instructions include the following types:

¥ Cache management instructions (user-level and supervisor-level)

¥ Segment register manipulation instructions

¥ Segment lookaside buffer management instructions

¥ Translation lookaside buffer (TLB) management instructions

Table 2-78. Vector Shift Instructions

Name Mnemonic Syntax

Vector Shift Left vsl vD,vA,vB

Vector Shift Right vsr vD,vA,vB

Vector Shift Left Double by Octet Immediate vsldoi vD,vA,vB,SH

Vector Shift Left by Octet vslo vD,vA,vB

Vector Shift Right by Octet vsro vD,vA,vB

Table 2-79. Move to/from VSCR Register Instructions

Name Mnemonic Syntax

Move to AltiVec Status and Control Register mtvscr vB

Move from AltiVec Status and Control Register mfvscr vB

Chapter 2. Programming Model 2-85

AltiVec VEA Instructions

This section brießy summarizes the user-level cache management instructions deÞned by
the AltiVec VEA. See Chapter 4, ÒAddressing Mode and Instruction Set Summary,Ó in The
Programming Environments Manual for more information about supervisor-level cache,
segment register manipulation, and TLB management instructions.

The AltiVec architecture speciÞes the data stream touch instructions dst(t), dstst(t), and it
speciÞes two data stream stop (dss(all)) instructions. The MPC7400 implements all of
them. The term dstx used below refers to all of the stream touch instructions.

The instructions summarized in this section provide user-level programs the ability to
manage on-chip caches, see Chapter 5, ÒCache Model and Memory Coherency,Ó in The
Programming Environments Manual for more information about cache topics.

Bandwidth between the processor and memory is managed explicitly by the programmer
through the use of cache management instructions. These instructions provide a way for
software to communicate to the cache hardware how it should prefetch and prioritize the
writeback of data. The principal instruction for this purpose is a software directed cache
prefetch instruction called Data Stream Touch (dst). Other related instructions are provided
for complete control of the software directed cache prefetch mechanism.

Table 2-80 summarizes the directed prefetch cache instructions defined by the AltiVec
VEA. Note that these instructions are accessible to user-level programs.

For detailed information for how to use these instruction, see Section 7.1.2.3, ÒData Stream
Touch Instructions.Ó

2.6.2 AltiVec Instructions with SpeciÞc Implementations for
the MPC7400

Instructions which are implementation speciÞc for MPC7400 are described in this section.

2.6.2.1 Least-Recently-Used Instructions

The AltiVec architecture speciÞes Load Vector Indexed LRU (lvxl) and Store Vector
Indexed LRU (stvxl) instructions. The architecture suggests that these instructions differ
from regular AltiVec load and store instructions in that they leave cache entries in a

Table 2-80. AltiVec User-Level Cache Instructions

Name Mnemonic Syntax Implementation Notes

Data Stream Touch (non-transient) dst rA,rB,STRM Ñ

Data Stream Touch Transient dstt rA,rB,STRM Used for last access

Data Stream Touch for Store dstst rA,rB,STRM Not recommended for use in MPC7400

Data Stream Touch for Store Transient dststt rA,rB,STRM, Not recommended for use in MPC7400

Data Stream Stop (one stream) dss STRM Ñ

Data Stream Stop All dssall STRM Ñ

2-86 MPC7400 RISC Microprocessor UserÕs Manual

AltiVec VEA Instructions

least-recently-used (LRU) state instead of a most-recently-used (MRU) state. This supports
efÞcient processing of data which is known to have little reuse and poor caching
characteristics. The MPC7400 implements these instructions as suggested. They follow all
the cache allocation and replacement policies described in Section 3.6, ÒCache
Operations,Ó but they leave their addressed cache entries in the LRU state. In addition, all
LRU instructions are also interpreted to be transient and are also treated as described in
Section 7.1.2.2, ÒTransient Instructions.Ó

Chapter 3. L1 and L2 Cache Operation 3-1

Chapter 3
L1 and L2 Cache Operation
The MPC7400 microprocessor contains separate 32-Kbyte, eight-way set associative
level 1 (L1) instruction and data caches to allow the execution units and registers rapid
access to instructions and data. In addition, the MPC7400 microprocessor features an
integrated level 2 (L2 cache) cache controller.

This chapter describes the organization of the on-chip L1 instruction and data caches, cache
coherency protocols, cache control instructions, various cache operations, the L2 cache
controller, and the interaction between the caches, the load/store unit (LSU), the instruction
unit, the memory subsystem, and the bus interface unit (BIU).

Note that in this chapter, the term ÔmultiprocessorÕ is used in the context of maintaining
cache coherency. These multiprocessor devices could be actual processors or other devices
that can access system memory, maintain their own caches, and function as bus masters
requiring cache coherency.

AltiVec Technology and the Cache Implementation

The implementation of AltiVec technology in the MPC7400 has implications that affect the
cache model, speciÞcally:

¥ AltiVec transient instructions (dstt, dststt, lvxl, stvxl), described in Section 3.4.2.1,
ÒAltiVec Transient Hint SupportÓ

¥ Store miss merging, described in Section 3.6.5, ÒStore Miss MergingÓ

¥ AltiVec LRU instructions (lvxl, stvxl), described in Section 3.6.8.1, ÒAltiVec LRU
Instruction SupportÓ

¥ External system bus transactions caused by caching-inhibited AltiVec loads and
stores, or write-through AltiVec stores, described in Section 3.9, ÒMPC7400 Caches
and System Bus TransactionsÓ

3.1 L1 Instruction and Data Caches
The MPC7400 L1 cache implementation has the following characteristics:

¥ Two separate 32-Kbyte instruction and data caches (Harvard architecture).

¥ Both instruction and data caches are eight-way set associative.

3-2 MPC7400 RISC Microprocessor UserÕs Manual

L1 Instruction and Data Caches

¥ The cache directories are physically addressed. The physical (real) address tag is
stored in the cache directory.

¥ Both the instruction and data caches have 32-byte cache blocks. A cache block is the
block of memory that a coherency state describes, also referred to as a cache line.

¥ Six status bits for each data cache block allow encoding for coherency and
victimization, as follows:

Ñ Castout (C)

Ñ Dirty (D)

Ñ ModiÞed (M)

Ñ Recent (R)

Ñ Shared (S)

Ñ Valid (V)

¥ A single coherency status bit for each instruction cache block allows encoding for
the following two possible states:

Ñ Invalid (INV)

Ñ Valid (VAL)

¥ The MPC7400 supports a Þve- (MERSI) modiÞed/exclusive/recent/shared/invalid,
four- (MESI), or three-state (MEI) coherency protocol.

¥ The L1 data cache supports load-miss folding.

¥ The L1 data cache supports store-miss merging.

¥ Each cache can be invalidated or locked by setting the appropriate bits in the
hardware implementation-dependent register 0 (HID0), a special-purpose register
(SPR) speciÞc to the MPC7400.

¥ The caches implement a pseudo least-recently-used (PLRU) replacement algorithm
within each set. The caches also support AltiVec LRU instructions.

The MPC7400 supports a fully-coherent 4-Gbyte physical memory address space. Bus
snooping is used to ensure the coherency of global memory with respect to the data cache.

On a cache miss, cache blocks are Þlled in four beats of 64 bits each. The burst Þll is
performed as a critical-double-word-Þrst operation.

For the instruction cache, the critical double word is simultaneously written to the cache
and forwarded to the instruction queue, thus minimizing stalls due to cache Þll latency. The
instruction cache is not blocked to internal accesses while a load completes, providing for
hits under misses.

For the data cache, an entire cache block is collected in a reload buffer before being loaded
into the cache. This allows the data cache to service multiple outstanding misses while at
the same time staying available to subsequent load and store hits.

Chapter 3. L1 and L2 Cache Operation 3-3

L1 Instruction and Data Caches

The instruction and data caches are integrated into the MPC7400 as shown in Figure 3-1.

Figure 3-1. Cache/Memory Subsystem/BIU Integration

Both caches are tightly coupled to the MPC7400Õs L2 cache controller and bus interface
unit to allow efÞcient access to the L2 cache or the system memory controller and other bus

L2
Status

L2
Tags

L2 Controller

Data
Reload
Table

Data
Reload
Buffer

Instruction
MMU

I-Cache
Tags

I-Cache
Status

I-CacheÑ32-Kbyte
8-Way, Set Associative

Bus Interface Unit Memory Subsystem

Instruction
Reload
Table

Data
Transaction

Queue

L2
Miss

Queue

L2
Castout
Queue

L2 Data
Transaction

Queue

L2 Address Bus

Instruction
Unit

7 Bits
EA[20:26]

20 Bits
PA[0:19]

128 Bits
4 Instructions

D-Cache
Tags

D-Cache
Status

D-CacheÑ32-Kbyte
8-Way, Set Associative

Load
Fold

Queue

Load/Store Unit

Data
MMU

7 Bits
EA[20:26]

20 Bits
PA[0:19]

Instruction
Reload
Buffer

18 Bits 64 Bits

L2 Data Bus

32 Bits 64 Bits

System Address Bus

System Data Bus

128 Bits

Internal Bus

PA: Physical Address
EA: Effective Address

L1 Operation
Queue

(dRLT) (dRLDB)

L1 Write
Data
Buffer

L2
Castout

Data
Buffer

3-4 MPC7400 RISC Microprocessor UserÕs Manual

L1 Instruction and Data Caches

masters. The bus interface unit receives requests for bus operations from the instruction and
data caches, and executes the operations per the 60x or MPX bus protocol. The BIU
provides address queues, prioritizing logic, and bus control logic. The BIU captures snoop
addresses for data cache, address queue, and memory reservation (lwarx and stwcx.)
operations.

The memory subsystem provides an eight-entry data reload table (dRLT) and an associated
eight-entry data reload buffer (dRLDB) for performing loads and store reloads and store
miss merging. A four-entry load fold queue (LFQ) holds consecutive load misses to
outstanding load miss operations. A four-entry L1 operation queue (L1OPQ) holds
outstanding cache operations, cast-outs, and caching-inhibited or
caching-allowed/write-through stores. An eight-entry L1 write data buffer holds data for
cast-outs and caching-inhibited or caching-allowed/write-through stores. A two-entry
instruction reload table (iRLT) and an associated two-entry instruction reload buffer
(iRLDB) performs instruction cache miss reloads and holds the instruction until it is
reloaded into the L2 cache.

The data cache supplies data to the general-purpose registers (GPRs), ßoating-point
registers (FPRs), and vector registers (VRs) by means of the load/store unit (LSU). The
MPC7400Õs LSU is directly coupled to the data cache to allow efÞcient movement of data
to and from the GPRs, FPRs, and VRs. The LSU provides all logic required to calculate
effective addresses, handles data alignment to and from the data cache, and provides
sequencing for load and store string and multiple operations. Write operations to the data
cache can be performed on a byte, half word, word, double word, or quad-word basis.

The instruction cache provides a 128-bit interface to the instruction unit, so four
instructions can be made available to the instruction unit in a single clock cycle. The
instruction unit accesses the instruction cache frequently in order to sustain the high
throughput provided by the six-entry instruction queue.

Chapter 3. L1 and L2 Cache Operation 3-5

Data Cache Organization

3.2 Data Cache Organization
The data cache is organized as 128 sets of eight blocks as shown in Figure 3-2.

Figure 3-2. Data Cache Organization

Each block consists of 32 bytes of data, six status bits, and an address tag. Note that in the
PowerPC architecture, the term Ôcache block,Õ or simply Ôblock,Õ when used in the context
of cache implementations, refers to the unit of memory at which coherency is maintained.
For the MPC7400, this is the 32-byte cache line. This value may be different for other
PowerPC implementations.

Each cache block contains eight contiguous words from memory that are loaded from an
eight-word boundary (that is, bits A[27:31] of the logical (effective) addresses are zero); as
a result, cache blocks are aligned with page boundaries. Address bits A[20:26] provide the
index to select a cache set. The tags consist of physical address bits PA[0:19]. Address
translation occurs in parallel with set selection (from A[20:26]). The data cache tags are
dual-ported and non-blocking, for efÞcient load/store and snooping operations. Logical
address bits A[27:31] locate a byte within the selected block.

There are six status bits associated with each cache block. These bits are used to implement
the modiÞed/exclusive/recent/shared/invalid (MERSI), MESI, and MEI cache coherency
protocols and to support the AltiVec transient instructions. The coherency protocols are
described in Section 3.4, ÒMemory and Cache Coherency.Ó

128 Sets

Block 5

Block 6

Block 7

Block 4 Address Tag 4

Address Tag 5

Address Tag 6

Address Tag 7

Block 1

Block 2

Block 3

Block 0 Address Tag 0

Address Tag 1

Address Tag 2

Address Tag 3

Status

Status

Status

Words [0Ð7]

Status

Words [0Ð7]

Words [0Ð7]

Words [0Ð7]

Status

Status

Status

Words [0Ð7]

Status

Words [0Ð7]

Words [0Ð7]

Words [0Ð7]

8 Words/Block

3-6 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Cache Organization

3.3 Instruction Cache Organization
The instruction cache also consists of 128 sets of eight blocks, as shown in Figure 3-3.

Figure 3-3. Instruction Cache Organization

Each block consists of 32 bytes, a single status bit, and an address tag. As with the data
cache, each instruction cache block contains eight contiguous words from memory that are
loaded from an eight-word boundary (that is, bits A[27:31] of the logical (effective)
addresses are zero); as a result, cache blocks are aligned with page boundaries. Also,
address bits A[20:26] provide the index to select a set, and bits A[27:29] select a word
within a block. The tags consist of bits PA[0:19]. Address translation occurs in parallel with
set selection (from A[20:26]).

The instruction cache differs from the data cache in that it does not implement a multiple
state cache coherency protocol. A single status bit indicates only whether a cache block is
valid or invalid. The instruction cache is not snooped, so if a processor modiÞes a memory
location that may be contained in the instruction cache, software must ensure that such
memory updates are visible to the instruction fetching mechanism. This can be achieved
with the following instruction sequence:

dcbst # update memory
sync # wait for update
icbi # remove (invalidate) copy in instruction cache
sync # wait for ICBI operation to be globally performed
isync # remove copy in own instruction buffer

128 Sets

Block 5

Block 6

Block 7

Block 4 Address Tag 4

Address Tag 5

Address Tag 6

Address Tag 7

Block 1

Block 2

Block 3

Block 0 Address Tag 0

Address Tag 1

Address Tag 2

Address Tag 3

Status

Status

Status

Words [0Ð7]

Status

Words [0Ð7]

Words [0Ð7]

Words [0Ð7]

Status

Status

Status

Words [0Ð7]

Status

Words [0Ð7]

Words [0Ð7]

Words [0Ð7]

8 Words/Block

Chapter 3. L1 and L2 Cache Operation 3-7

Memory and Cache Coherency

These operations are necessary because the processor does not maintain instruction
memory coherent with data memory. Software is responsible for enforcing coherency of
instruction caches and data memory. Since instruction fetching may bypass the data cache,
changes made to items in the data cache may not be reßected in memory until after the
instruction fetch completes.

3.4 Memory and Cache Coherency
The primary objective of a coherent memory system is to provide the same image of
memory to all devices using the system. Coherency allows synchronization and cooperative
use of shared resources. Otherwise, multiple copies of a memory location, some containing
stale values, could exist in a system resulting in errors when the stale values are used. Each
potential bus master must follow rules for managing the state of its cache. This section
describes the coherency mechanisms of the PowerPC architecture and the cache coherency
protocols that the MPC7400 data cache supports.

Note that unless speciÞcally noted, the discussion of coherency in this section applies to the
MPC7400Õs data cache only. The instruction cache is not snooped. Instruction cache
coherency must be maintained by software. However, the MPC7400 does support a fast
instruction cache invalidate capability as described in Section 3.5.1.6, ÒInstruction Cache
Flash Invalidation.Ó

3.4.1 Memory/Cache Access Attributes (WIMG Bits)
Some memory characteristics can be set on either a memory management block or page
basis by using the WIMG bits in the BAT registers or page table entrys (PTE), respectively.
These bits allow both uniprocessor and multiprocessor system designs to exploit numerous
system-level performance optimizations. The WIMG attributes control the following
functionality:

¥ Write-through (W bit)

¥ Caching-inhibited (I bit)

¥ Memory-coherency-required (M bit)

¥ Guarded (G bit)

The WIMG attributes are programmed by the operating system for each page and block.
The W and I attributes control how the processor performing an access uses its own cache.
The M attribute ensures that coherency is maintained for all copies of the addressed
memory location. The G attribute prevents out-of-order loading and prefetching from the
addressed memory location.

The WIMG attributes occupy four bits in the BAT registers for block address translation
and in the PTEs for page address translation. The WIMG bits are programmed as follows:

3-8 MPC7400 RISC Microprocessor UserÕs Manual

Memory and Cache Coherency

¥ The operating system uses the mtspr instruction to program the WIMG bits in the
BAT registers for block address translation. The IBAT register pairs do not have a
G bit and all accesses that use the IBAT register pairs are considered not guarded.

¥ The operating system writes the WIMG bits for each page into the PTEs in system
memory as it sets up the page tables.

When an access requires coherency, the processor performing the access must inform the
coherency mechanisms throughout the system that the access requires memory coherency.
The M attribute determines the kind of access performed on the bus (global or non-global).

Software must exercise care with respect to the use of these bits if coherent memory support
is desired. Careless speciÞcation of these bits may create situations that present coherency
paradoxes to the processor. These coherency paradoxes can occur within a single processor
or across several processors. It is important to note that in the presence of a paradox, the
operating system software is responsible for correctness.

In particular, a coherency paradox can occur when the state of these bits is changed without
appropriate precautions (such as ßushing the pages that correspond to the changed bits from
the caches of all processors in the system) or when the address translations of aliased real
addresses specify different values for certain WIMG bit values. The MPC7400 supports
aliasing for WIMG = 100x and WIMG = 000x; however, the MPC7400 does not support
aliasing WIMG = 101x and WIMG = 001x. SpeciÞcally, this means that for a given physical
address, the MPC7400 only supports simultaneous memory/cache access attributes for that
physical address of caching-allowed, write-through, memory-coherency-not-required
(WIMG = 100x) and caching-allowed, write-back, memory-coherency-not-required
(WIMG = 000x).

For real addressing mode (that is, for accesses performed with address translation
disabledÑMSR[IR] = 0 or MSR[DR] = 0 for instruction or data access, respectively), the
WIMG bits are automatically generated as 0b0011 (all memory is write-back,
caching-allowed, memory-coherency-required, and guarded).

3.4.1.1 Out-of-Order Accesses to Guarded Memory
Guarded memory may be accessed out of order if the load is guaranteed to be executed. In
this case, the entire cache block containing the referenced data may be loaded into the
cache.

In addition, out-of-order accesses to non-guarded space (G = 0), from both the instruction
and data caches, can be disabled by setting speculative access disable bit, HID0[SPD].

For the MPC7400, a guarded load is not allowed to access the system interface until that
load is at the bottom of the completion buffer. This means that all prior load accesses to the
system interface must have already returned data to the processor before the subsequent
guarded load is allowed to access the system address bus. This prevents the MPC7400 from
pipelining a guarded load with any other type of load on the system interface. Note that this

Chapter 3. L1 and L2 Cache Operation 3-9

Memory and Cache Coherency

has a large negative effect on load miss bandwidth performance. For this reason, it is not
recommended to have guarded loads in code streams that require high system bandwidth
utilization.

3.4.2 Coherency Support
The MPC7400 provides full hardware support for PowerPC cache coherency and ordering
instructions (dcbz, dcbi, dcbf, sync, icbi, and eieio) and full hardware implementation of
the TLB management instructions (tlbie, and tlbsync). Snooping, described in
Section 3.9.3, ÒSnooping,Ó is integral to the memory subsystem design and operation. The
MPC7400 is self-snooping and can ARTRY its own tlbie, tlbsync, icbi, and sync
broadcasts.

Each 32-byte cache block in the data cache contains 6 status bits (CDMRSV). The
MPC7400 uses these bits to support the coherency protocols and to direct castout and
reload operations. The L1 data cache status bits and the conditions that cause them to be set
or cleared are deÞned in Table 3-1.

Table 3-1. Data Cache Status Bits

Status
Bit

Name Meaning Set Conditions Clear Conditions

C Castout The cache block should be
castout from the L1 data cache to
the L2 cache when selected for
replacement

Non-transient reload
from BIU

Transient hit

D Dirty The cache block has been stored
to since it was reloaded into the
L1 data cache

Store miss reload from
BIU or L2
Writeback store hit on ÂS
& ÂR

dcbst hit

M ModiÞed The cache block is modiÞed with
respect to the external system
interface

Store miss reload from
BIU or L2
Writeback store hit on ÂS
& ÂR

dcbst hit
Snoop clean hit
Snoop read hit

R Recent This is the most recent processor
to perform a read transaction to
the cache block while other
processors have a shared copy

Load miss reload from
BIU with SHD response
Load miss reload from
L2 cache with L2 cache
status = R

Snoop read hit

3-10 MPC7400 RISC Microprocessor UserÕs Manual

Memory and Cache Coherency

Every L1 data cache blockÕs state is deÞned by its CDMRSV status bits. Table 3-2
describes the allowed states for the status bits.

S Shared The cache block is shared with
other processors and is read-only

Load miss reload from
BIU with SHD response
Load miss reload from
L2 cache with L2 cache
status = R or S

None

V Valid The cache block is valid Reload from BIU or L2
cache

dcbi, dcbf hit
Writeback store hit to R
or S (see Section 3.6.6,
ÒStore Hit to a Data
Cache Block Marked
Recent or Shared,Ó)
dcbz, dcba hit (see
Section 3.5.3.3, ÒData
Cache Block Zero
(dcbz))
snoop invalidate hit

Table 3-2. Allowed Data Cache States

CDMRSV value Extended
State

MERSI
state

Comments
C D M R S V

x x x x x 0 I I Invalid line

1 0 0 0 0 1 EC E Reload from BIU, or dcbst hit on MCD

0 0 0 0 0 1 E E Load miss reload from L2 cache, or transient load miss
reload from BIU, or transient load hit

1 1 0 0 0 1 ECD E Snooped clean hit on MCD, caused push

0 1 0 0 0 1 ED E Snooped clean hit on MD, caused push

1 0 0 0 1 1 SC S Load miss reload from BIU

0 0 0 0 1 1 S S Load miss reload from L2 cache, or transient load hit

1 1 0 0 1 1 SCD S Snooped read hit on MCD, caused push

0 1 0 0 1 1 SD S Snooped read hit on MD, caused push

1 0 0 1 1 1 RC R Reload from BIU

0 0 0 1 1 1 R R Reload from L2 cache, or transient load miss reload from
BIU, or transient hit

0 0 1 0 0 1 M M Load miss reload from L2 cache

1 1 1 0 0 1 MCD M Store hit on E or M, or caching-allowed store miss reloaded
from BIU

0 1 1 0 0 1 MD M Store hit on E or M after reloading from L2 cache, or after a
transient hit

Table 3-1. Data Cache Status Bits (Continued)

Status
Bit

Name Meaning Set Conditions Clear Conditions

Chapter 3. L1 and L2 Cache Operation 3-11

Memory and Cache Coherency

Note that any state not shown in Table 3-2 is not allowed. Also note that any valid line with
either the C or D bit set is cast out from the data cache when it is selected for replacement.

3.4.2.1 AltiVec Transient Hint Support
The C status bit in the data cache tags may be cleared if a transient type access hits in the
data cache. In addition, the C bit is not set upon reload from the BIU if the miss is a transient
type access. The dstt, dststt, lvxl, and stvxl instructions are considered to be transient.

3.4.3 Coherency Protocols
When conÞgured for either MPX bus or 60x bus modes, the MPC7400 can be conÞgured
to support a four-state MESI protocol (similar to the MPC604-family microprocessors) or
a three-state MEI protocol (similar to the MPC603- and 750-family microprocessors).

When conÞgured for MPX bus mode, the MPC7400 supports an additional Þve-state cache
coherency protocol, referred to as the MERSI protocol. The additional state in this protocol
is the recent state. This state is used for shared data intervention. It indicates that a cache
block is shared and is the most recently read version of the data. A cache block is placed in
the R state when it is loaded after a shared snoop response was detected. The cache block
is downgraded to the S state when another snoop read access for this line is performed. The
cache block in the recent state is the one used to supply intervention data. This ensures that
only one processor supplies data for intervention. The MERSI coherency protocol together
with the MPX bus protocol allows for data-only intervention between caches.

The MESI or MEI coherency protocol is selected by the MSSCR0[SHDEN] parameter.
SHDEN = 0b1 indicates that the MPC7400 uses the shared state and follows the MESI
protocol. SHDEN = 0b0 indicates that MPC7400 does not use the shared state and follows
the MEI protocol. The MERSI protocol is a superset of the MESI protocol requiring
SHDEN = 1. The MERSI coherency protocol is selected by enabling full L1 intervention
in MSSCR0 (L1_INTVEN = 0b111) when SHDEN = 0b1.

Table 3-3 summarizes the coherency protocols and intervention supported in 60x bus mode
(MSSCR0[EMODE] = 0b0). The intervention types are described in Table 3-6.

Note that L1_INTVEN is only recognized when the MPC7400 is conÞgured for MPX bus
mode.

Table 3-3. Coherency Protocols in 60x Bus Mode

Coherency
Protocol

SHDEN Intervention Type1

1 See Section 3.4.3.2, ÒIntervention,Ó for information about Intervention types.

L1_INTVEN

MEI 0 Window-of-opportunity for hits on modiÞed N/A

MESI 1 Window-of-opportunity for hits on modiÞed N/A

3-12 MPC7400 RISC Microprocessor UserÕs Manual

Memory and Cache Coherency

Table 3-4 summarizes the coherency protocols and interventions supported in MPX bus
mode (MSSCR0[EMODE] = 0b1). The intervention types are described in Table 3-6.

Note that the snoop intervention when L1_INTVEN = 0b000 is the same as that for 60x bus
mode. Also note that when SHDEN = 0b0, the SI bit of the L1_INTVEN parameter has no
effect (that is, when cleared, the SHDEN parameter overrides the SI bit).

3.4.3.1 Snoop Response
Table 3-5 describes the snoop responses used by the MPC7400. See Chapter 8, ÒSignal
Descriptions,Ó and Chapter 9, ÒSystem Interface Operation,Ó for detailed signal timing and
bus protocol information.

Table 3-4. Coherency Protocols in MPX Bus Mode

Coherency
Protocol

SHDEN Intervention Type1

1 See Section 3.4.3.2, ÒIntervention,Ó for information about Intervention types

L1_INTVEN

MI2

2 MI is the modiÞed intervention enable bit in L1_INTVEN

EI3

3 EI is the exclusive intervention enable bit in L1_INTVEN

SI4

4 SI is the shared intervention enable bit in L1_INTVEN

MEI 0 Window-of-opportunity for hits on modiÞed 0 0 0

Cache-to-cache/window-of-opportunity for hits on
modiÞed

1 0 0

Cache-to-cache/window-of-opportunity for hits on
modiÞed
Cache-to-cache for hits on exclusive

1 1 x

MESI 1 Window-of-opportunity for hits on modiÞed 0 0 0

Cache-to-cache/window-of-opportunity for hits on
modiÞed

1 0 0

Cache-to-cache/window-of-opportunity for hits on
modiÞed
Cache-to-cache for hits on exclusive

1 1 0

MERSI 1 Cache-to-cache/window-of-opportunity for hits on
modiÞed
Cache-to-cache for hits on exclusive and recent

1 1 1

Chapter 3. L1 and L2 Cache Operation 3-13

Memory and Cache Coherency

3.4.3.2 Intervention
Table 3-6 brießy describes the intervention types used by the MPC7400. See Chapter 9,
ÒSystem Interface Operation,Ó for signaling protocol information for each intervention
type.

Table 3-5. Snoop Response Summary

Snoop Response

State
Transition
Diagram
Symbol

Description

No response Ñ (no symbol) The processor does not contain any memory at the snooped
address or the coherency protocol does not require a response. The
snoop has been fully serviced and no internal pipeline collisions
occured that would require a busy response.

SHD asserted S The processor contains data from the snooped address or a
reservation on the snooped address.

ARTRY asserted A The processor cannot service the snoop due to an internal pipeline
collision (busy). The same address tenure must be re-run at a later
time.

ARTRY and SHD asserted AS The processor contains a modiÞed copy of data from the snooped
address and is prepared to perform a window-of-opportunity (W)
snoop push.

HIT asserted for one cycle H1
(MPX bus mode
only)

The processor contains a modiÞed copy of data from the snooped
address and is prepared to perform cache-to-cache/window-of-
opportunity (CW) intervention.

HIT asserted for two cycles H2
(MPX bus mode
only)

The processor contains an exclusive or recent copy of data from the
snooped address and is prepared to perform cache-to-cache (C)
intervention. This is an optional extended meaning of HIT response
that indicates that data snarÞng by the system is not necessary.

3-14 MPC7400 RISC Microprocessor UserÕs Manual

Memory and Cache Coherency

3.4.3.3 SimpliÞed Transaction Types
For the purposes of snooping bus transactions, the MPC7400 treats related (but distinct)
transaction types as a single simpliÞed transaction type. Table 3-7 deÞnes the mapping of
simpliÞed transaction types to actual transaction types.

Table 3-6. Snoop Intervention Summary

Intervention Type

State
Transition
Diagram
Symbol

Description

No intervention Ñ (no symbol) The processor does not contain any memory at the snooped address or
the coherency protocol does not require intervention.

Window-of-opportunity W Window-of-opportunity snoop push for hits on modiÞed data. The
processor performs a write-with-kill, snoop-push transaction in the next
address tenure. The MPC7400 asserts BR in the window of opportunity to
initiate the snoop push operation. The window of opportunity is deÞned as
the second cycle after an AACK that has been ARTRYed. Only the
intervening master can assert BR in the window of opportunity.

When a master asserts BR in the window of opportunity, it uses it to
perform a snoop push (write-with-kill) to the most previous snoop address
(unless the master still has a write-with-kill pending due to a previous
window-of-opportunity request that is not yet satisÞed). The MPC7400
always presents a cache-block aligned address (that is,
A[27Ð31] = 0b0_0000) for every window-of-opportunity snoop push.

Cache-to-cache/
window-of-opportunity

CW
(MPX bus
mode only)

Cache-to-cache intervention or window-of-opportunity snoop push for hits
on modiÞed data. The processor has queued up a data-only write
transaction to provide data to the snooping master (cache-to-cache
intervention). If another master asserts ARTRY coincident with the
assertion of HIT, the MPC7400 cancels the queued-up data-only write
transaction and asserts BR in the window of opportunity to perform a
write-with-kill, snoop push in the next address tenure
(window-of-opportunity snoop push).

Cache-to-cache C
(MPX bus
mode only)

Cache-to-cache intervention for hits on exclusive or shared data. The
processor has queued up a data-only write transaction to provide data to
the snooping master (cache-to-cache intervention). If another master
asserts ARTRY coincident with the assertion of HIT, the MPC7400
cancels the queued-up data-only transaction but does not attempt to
perform a snoop push. The cache block state is already changed to the
new state due to the snoop. Thus, the intervening processor (the one that
asserted HIT) does not contain the cache block in a state suitable for
intervention when the retried snoop transaction is rerun on the bus.

Chapter 3. L1 and L2 Cache Operation 3-15

Memory and Cache Coherency

Note that when SHDEN = 0b0, the MPC7400 snoops read transactions as if they were
RWITM transactions. Also when SHDEN = 0b0, any MPC7400-initiated read transaction
that generates a SHD-assertion response is treated as an invalidate operation.

In the following state transition diagrams, RWNITC is not explicitly shown. For state
transitions (for example, modiÞed to exclusive) RWNITC is treated like a clean operation.
For intervention purposes (for example a W or H intervention) RWNITC is treated like a
read operation.

3.4.3.4 MESI State Transitions
In the following state transition diagrams, all snooped transactions are assumed to be global
(GBL asserted), caching-allowed (CI negated), and write-back (WT negated). If either CI
or WT is asserted, then the state transitions remain the same, but no data intervention
occurs. Instead, a window-of-opportunity snoop push is performed only for snoop hits to
modiÞed cache blocks.

The state diagrams use symbols on the transistion lines for snoop response and intervention
type. For example, H1S-CW would denote a one-cycle HIT and SHD asserted snoop

Table 3-7. Simplified Transaction Types

SimpliÞed Transaction
Type

Actual Transaction Type
MESI or MERSI Protocol

(SHDEN = 1)

Actual Transaction Type
MEI Protocol
(SHDEN = 0)

Read Read
Read-atomic

Ñ

RWITM RWITM
RWITM-atomic
RCLAIM

Read
Read-atomic
RWITM
RWITM-atomic
RCLAIM

RWNITC RWNITCÑActs like a read transaction for
snoop response purposes; acts like a clean
transaction for MESI state change
purposes.

RWNITCÑActs like a RWITM transaction
for snoop response purposes; acts like a
clean transaction for MEI state change
purposes.

Write Write-with-ßush
Write-with-ßush-atomic

Flush Flush

Clean Clean

Kill Kill
Write-with-kill

Reskill
(Used for reservation
snooping only)

RWITM
RWITM-atomic

RCLAIM
Write-with-ßush

Write-with-ßush-atomic
Kill

Write-with-kill

3-16 MPC7400 RISC Microprocessor UserÕs Manual

Memory and Cache Coherency

response and a cache-to-cache/window-of-opportunity intervention type. See Table 3-5 and
Table 3-6 for the symbols used in the state diagrams.

3.4.3.4.1 MESI Protocol in 60x Bus Mode and MPX Bus Mode (with
L1_INTVEN = 0b000)

The following state diagrams show the MESI state transitions when the MPC7400 is
conÞgured for 60x bus mode and for MPX bus mode when hit intervention is disabled
(L1_INTVEN = 0b000).

Figure 3-4. Read TransactionÑ60x and MPX Bus Modes, L1_INTVEN = 0b000

Invalid Shared

ExclusiveModified

S

AS-W

S

Chapter 3. L1 and L2 Cache Operation 3-17

Memory and Cache Coherency

Figure 3-5. RWITM, Write, and Flush TransactionsÑ60x and MPX Bus Modes,
L1_INTVEN = 0b000

Figure 3-6. Clean TransactionÑ60x and MPX Bus Modes, L1_INTVEN = 0b000

Invalid Shared

ExclusiveModified

AS-W

Invalid Shared

ExclusiveModified AS-W

3-18 MPC7400 RISC Microprocessor UserÕs Manual

Memory and Cache Coherency

Figure 3-7. Kill TransactionÑ60x and MPX Bus Modes, L1_INTVEN = 0b000

Invalid Shared

ExclusiveModified

See note

Note: If another master asserts ARTRY, the MPC7400 performs a
window-of-opportunity style push. Otherwise, there is no intervention.

Chapter 3. L1 and L2 Cache Operation 3-19

Memory and Cache Coherency

3.4.3.4.2 MESI Protocol in MPX Bus Mode with ModiÞed Intervention
Enabled

The following state diagrams show the MESI state transitions when the MPC7400 is
conÞgured for MPX bus mode with only modiÞed intervention enabled
(L1_INTVEN = 0b100).

Figure 3-8. Read TransactionÑMPX Bus Mode, L1_INTVEN = 0b100

Invalid Shared

ExclusiveModified

S

H1S-CW

S

3-20 MPC7400 RISC Microprocessor UserÕs Manual

Memory and Cache Coherency

Figure 3-9. RWITM and Flush TransactionsÑMPX Bus Mode, L1_INTVEN = 0b100

Figure 3-10. Write TransactionÑMPX Bus Mode, L1_INTVEN = 0b100

Invalid Shared

ExclusiveModified

H1-CW

Invalid Shared

ExclusiveModified

AS-W

Chapter 3. L1 and L2 Cache Operation 3-21

Memory and Cache Coherency

Figure 3-11. Clean TransactionÑMPX Bus Mode, L1_INTVEN = 0b100

Figure 3-12. Kill TransactionÑMPX Bus Mode, L1_INTVEN = 0b100

Invalid Shared

ExclusiveModified H1-CW

Invalid Shared

ExclusiveModified

See note

Note: If another master asserts ARTRY, the MPC7400 performs a
window-of-opportunity style push. Otherwise, there is no intervention.

3-22 MPC7400 RISC Microprocessor UserÕs Manual

Memory and Cache Coherency

3.4.3.4.3 MESI Protocol in MPX Bus Mode (with L1_INTVEN = 0b110)

The following state diagrams show the MESI state transitions when the MPC7400 is
conÞgured for MPX bus mode with modiÞed and exclusive intervention (but not shared
intervention) enabled (L1_INTVEN = 0b110).

Figure 3-13. Read TransactionÑMPX Bus Mode, L1_INTVEN = 0b110

Invalid Shared

ExclusiveModified

H2S-C

H1S-CW

S

Chapter 3. L1 and L2 Cache Operation 3-23

Memory and Cache Coherency

Figure 3-14. RWITM TransactionÑMPX Bus Mode, L1_INTVEN = 0b110

Figure 3-15. Write TransactionÑMPX Bus Mode, L1_INTVEN = 0b110

Invalid Shared

ExclusiveModified

H2-CH1-CW

Invalid Shared

ExclusiveModified

AS-W

3-24 MPC7400 RISC Microprocessor UserÕs Manual

Memory and Cache Coherency

Figure 3-16. Flush Transaction State DiagramÑMPX Bus Mode,
L1_INTVEN = 0b110

Figure 3-17. Clean TransactionÑMPX Bus Mode, L1_INTVEN = 0b110

Invalid Shared

ExclusiveModified

H1-CW

Invalid Shared

ExclusiveModified H1-CW

Chapter 3. L1 and L2 Cache Operation 3-25

Memory and Cache Coherency

Figure 3-18. Kill TransactionÑMPX Bus Mode, L1_INTVEN = 0b110

Invalid Shared

ExclusiveModified

See note

Note: If another master asserts ARTRY, the MPC7400 performs a
window-of-opportunity style push. Otherwise, there is no intervention.

3-26 MPC7400 RISC Microprocessor UserÕs Manual

Memory and Cache Coherency

3.4.3.5 MERSI State Transitions
The following state diagrams show the MERSI state transitions when the MPC7400 is
conÞgured for MPX bus mode with full (modiÞed, exclusive, and shared) hit intervention
enabled ([L1_INTVEN = 0b111).

Figure 3-19. Read TransactionÑMPX Bus Mode, L1_INTVEN = 0b111

Note that when the MPC7400 detects a snoop hit for a read transaction for a cache block
marked recent (R), it asserts SHD and HIT, and transitions the cache block to the shared (S)
state. When the MPC7400 detects a snoop hit for data in the S state, it asserts SHD, but it
does not try to intervene by asserting HIT. In this manner, only one version of shared data
is ever available for intervention. This is strictly an optional extension and is not needed for
masters that do not support shared intervention.

Invalid Recent

ExclusiveModified

Shared

S

H2S-CH1S-CW

H2S-C

Chapter 3. L1 and L2 Cache Operation 3-27

Memory and Cache Coherency

Figure 3-20. RWITM Transaction ÑMPX Bus Mode, L1_INTVEN = 0b111

Figure 3-21. Write TransactionÑMPX Bus Mode, L1_INTVEN = 0b111

Invalid Recent

ExclusiveModified

H2-C

H1-CW

H2-C

Shared

Invalid Recent

ExclusiveModified

AS-W Shared

3-28 MPC7400 RISC Microprocessor UserÕs Manual

Memory and Cache Coherency

Figure 3-22. Flush TransactionÑMPX Bus Mode, L1_INTVEN = 0b111

Figure 3-23. Clean TransactionÑMPX Bus Mode, L1_INTVEN = 0b111

Invalid Recent

ExclusiveModified

H1-CW Shared

Invalid Recent

ExclusiveModified

Shared

H1-CW

Chapter 3. L1 and L2 Cache Operation 3-29

Memory and Cache Coherency

Figure 3-24. Kill TransactionÑMPX Bus Mode, L1_INTVEN = 0b111

3.4.3.6 Reservation Snooping
The MPC7400 snoops all transactions against the contents of the reservation address
register independent of the cache snooping. The following state diagrams show the
response to those snoops.

Figure 3-25. Read Transaction Snoop Hit on the Reservation Address Register

Invalid Recent

ExclusiveModified

Shared

Note: If another master asserts ARTRY, the MPC7400 performs a
window-of-opportunity style push. Otherwise, there is no intervention.

See note

No Reservation Reservation

S

3-30 MPC7400 RISC Microprocessor UserÕs Manual

Memory and Cache Coherency

Figure 3-26. Reskill Transaction Snoop Hit on the Reservation Address Register

Figure 3-27. Transaction (other than Read or Reskill) Snoop Hit on the Reservation
Address Register

3.4.3.7 State Changes for Self-Generated Bus Transactions
The MPC7400 snoops its own transactions and monitors the response from other masters.
The following Þgures show the state changes for self-generated bus transactions. State
transitions and snoop responses are shown. Each diagram denotes a speciÞc bus transaction
that the MPC7400 generates. The snoop responses from other masters in the system are
shown beside each state transition line.

ReservationNo Reservation
Reservation released

No Reservation Reservation

Chapter 3. L1 and L2 Cache Operation 3-31

Memory and Cache Coherency

Figure 3-28. Self-Generated Data Read/Read-Atomic Transaction

Figure 3-29. Self-Generated Data RWITM/RWITM-Atomic/Kill (Caused by dcbz Miss)
Transaction

Invalid Recent

ExclusiveModified

Shared

ARTRY or
(SHD using MEI)

SHD but no ARTRY
using MERSI

No SHD and
no ARTRY

SHD but no ARTRY
using MESI

Invalid Recent

ExclusiveModified

SharedNo ARTRY

ARTRY

3-32 MPC7400 RISC Microprocessor UserÕs Manual

Memory and Cache Coherency

Figure 3-30. Self-Generated Kill (Caused by Write Hit on S or R) Transaction

Figure 3-31. Self-Generated Read (Caused by Instruction Fetch) Transaction

Invalid Recent

ExclusiveModified

Shared

No ARTRY

No ARTRY

ARTRY

ARTRY

Invalid Recent

ExclusiveModified

Shared

ARTRY or
(SHD using MEI)

SHD but no ARTRY

No SHD and
no ARTRY

SHD but no ARTRY

using MERSI

using MESI

Chapter 3. L1 and L2 Cache Operation 3-33

Memory and Cache Coherency

Figure 3-32. Self-Generated RCLAIM Transaction

3.4.4 MPC7400-Initiated Load/Store Operations
Load and store operations are assumed to be weakly ordered on the MPC7400. The
load/store unit (LSU) can perform load operations that occur later in the program ahead of
store operations, even when the data cache is disabled (see Section 3.4.4.2, ÒSequential
Consistency of Memory AccessesÓ). However, strongly ordered load and store operations
can be enforced through the setting of the I bit (of the page WIMG bits) when address
translation is enabled. Note that when address translation is disabled (real addressing
mode), the default WIMG bits cause the I bit to be cleared (accesses are assumed to be
caching-allowed), and thus the accesses are weakly ordered. Refer to Section 5.2, ÒReal
Addressing Mode,Ó for a description of the WIMG bits when address translation is disabled.

The MPC7400 does not provide support for direct-store segments. Operations attempting
to access a direct-store segment will invoke a DSI exception. For additional information
about DSI exceptions, refer to Section 4.6.3, ÒDSI Exception (0x00300).Ó

3.4.4.1 Performed Loads and Stores
The PowerPC architecture deÞnes a performed load operation as one that has the addressed
memory location bound to the target register of the load instruction. The architecture
deÞnes a performed store operation as one where the stored value is the value that any other
processor will receive when executing a load operation (that is, of course, until it is changed
again). With respect to the MPC7400, caching-allowed (WIMG = x0xx) loads and
caching-allowed, write-back (WIMG = 00xx) stores are performed when they have

Invalid Recent

ExclusiveModified

Shared

No ARTRY

ARTRY

3-34 MPC7400 RISC Microprocessor UserÕs Manual

Memory and Cache Coherency

arbitrated to address the cache block in the L1 data cache, the L2 cache, or the system bus.
Note that loads are considered performed at the L1 data cache and L2 cache only if the
respective cache contains a valid copy of that address. Write-back stores are considered
performed at the L1 data cache and L2 cache only if the respective cache contains a valid,
non-shared copy of that address. Caching-inhibited (WIMG = x1xx) loads,
caching-inhibited (WIMG = x1xx) stores, and write-through (WIMG = 10xx) stores are
performed when they have been successfully presented to the external system bus.

3.4.4.2 Sequential Consistency of Memory Accesses
The PowerPC architecture requires that all memory operations executed by a single
processor be sequentially consistent with respect to that processor. This means that all
memory accesses appear to be executed in program order with respect to exceptions and
data dependencies.

The MPC7400 achieves sequential consistency by operating a single pipeline to the
cache/MMU. All memory accesses are presented to the MMU in exact program order and
therefore exceptions are determined in order. Loads are allowed to bypass stores once
exception checking has been performed for the store, but data dependency checking is
handled in the load/store unit so that a load will not bypass a store with an address match.
Newer caching-allowed loads can bypass older caching-allowed loads only if the two loads
are to different 32-byte address granules. Newer caching-allowed write-back stores can
bypass older caching-allowed write-back stores if they do not store to overlapping bytes of
data.

Note that although memory accesses that miss in the cache are forwarded to the reload
buffer for future arbitration for the L2 cache and external bus, all potential synchronous
exceptions have been resolved before the cache. In addition, although subsequent memory
accesses can address the cache, full coherency checking between the cache and the memory
queue is provided to avoid dependency conßicts.

3.4.4.3 Enforcing Store Ordering
For caching-allowed memory accesses, or write-through, non-guarded memory accesses,
an eieio instruction must be used to ensure ordering. The eieio instruction is used to ensure
storage ordering. Because the MPC7400 does not reorder cache-inhibited memory accesses
or write-through, guarded memory accesses, the eieio instruction is not necessary to force
ordering for these types of stores.

If store gathering is enabled, the eieio instruction may be used to keep stores from being
gathered. If an eieio instruction is detected in the store queues, then store gathering is not
performed. The eieio instruction causes a system bus broadcast, which may be used to
prevent external devices, such as a bus bridge chip, from gathering stores.

Chapter 3. L1 and L2 Cache Operation 3-35

Memory and Cache Coherency

3.4.4.4 Atomic Memory References
The PowerPC architecture deÞnes the Load Word and Reserve Indexed (lwarx) and the
Store Word Conditional Indexed (stwcx.) instructions to provide an atomic update function
for a single, aligned word of memory. These instructions can be used to develop a rich set
of multiprocessor synchronization primitives. Note that atomic memory references
constructed using lwarx/stwcx. instructions depend on the presence of a coherent memory
system for correct operation. These instructions should not be expected to provide atomic
access to noncoherent memory. For detailed information on these instructions, refer to
Chapter 2, ÒProgramming Model,Ó in this book and Chapter 8, ÒInstruction Set,Ó in The
Programming Environments Manual.

The lwarx instruction performs a load word from memory operation and creates a
reservation for the 32-byte section of memory that contains the accessed word. The
reservation granularity is 32 bytes. The lwarx instruction makes a non-speciÞc reservation
with respect to the executing processor and a speciÞc reservation with respect to other
masters. This means that any subsequent stwcx. executed by the same processor, regardless
of address, will cancel the reservation. Also, any bus write or invalidate operation from
another processor to an address that matches the reservation address will cancel the
reservation.

The stwcx. instruction does not check the reservation for a matching address. The stwcx.
instruction is only required to determine whether a reservation exists. The stwcx.
instruction performs a store word operation only if the reservation exists. If the reservation
has been cancelled for any reason, then the stwcx. instruction fails and clears the CR0[EQ]
bit in the condition register. The architectural intent is to follow the lwarx/stwcx.
instruction pair with a conditional branch which checks to see whether the stwcx.
instruction failed.

Executing an lwarx or stwcx. instruction to areas marked write-through or when the L1
data cache is enabled and locked causes a DSI exception.

If the page table entry is marked caching-allowed (WIMG = x0xx), and an lwarx access
misses in the cache, then the MPC7400 performs a cache block Þll. If the page is marked
caching-inhibited (WIMG = x1xx) and the access misses, then the lwarx instruction
appears on the bus as a single-beat load. All bus operations that are a direct result of either
an lwarx instruction or an stwcx. instruction are placed on the bus with a special encoding.
Note that this does not force all lwarx instructions to generate bus transactions, but rather
provides a means for identifying when an lwarx instruction does generate a bus transaction.
If an implementation requires that all lwarx instructions generate bus transactions, then the
associated pages should be marked as caching-inhibited. Note also that the MPC7400 uses
the lwarx encoding to differentiate instruction fetches from data loads when HID0[IFTT]
is set.

3-36 MPC7400 RISC Microprocessor UserÕs Manual

Cache Control

The MPC7400 implements a reservation signal (RSRV) as on the MPC604- and the
MPC750-family processors. The state of the reservation is always presented onto the RSRV
output signal. This can be used to determine when an internal condition has caused a change
in the reservation state.

3.5 Cache Control
The MPC7400Õs L1 caches are controlled by programming speciÞc bits in the HID0 and
MSSCR0 special-purpose registers and by issuing dedicated cache control instructions.
Section 3.5.1, ÒCache Control Parameters in HID0,Ó describes the HID0 cache control bits,
Section 3.5.2, ÒData Cache Hardware Flush Parameter in MSSCR0,Ó describes the data
cache hardware ßush control in MSSCR0, and Section 3.5.3, ÒCache Control Instructions,Ó
describes the cache control instructions.

3.5.1 Cache Control Parameters in HID0
The HID0 special-purpose register contains several bits that invalidate, disable, and lock
the instruction and data caches. The following sections describe these facilities.

3.5.1.1 Enabling and Disabling the Data Cache
The data cache may be enabled or disabled by using the data cache enable bit, HID0[DCE].
HID0[DCE] is cleared on power-up, disabling the data cache. Snooping is not performed
when the data cache is disabled. Note that if the data cache is disabled, the L2 cache must
also be disabled. The L2 cache is enabled/disabled by L2CR[L2E].

When the data cache is in the disabled state (HID0[DCE] = 0), the cache tag status bits are
ignored, and all accesses are propagated to the system bus as single-beat transactions. Note
that the CI (cache inhibit) signal always reßects the state of the caching-inhibited
memory/cache access attribute (the I bit) independent of the state of HID0[DCE]. Also note
that disabling the data cache does not affect the translation logic; translation for data
accesses is controlled by MSR[DR].

The setting of the DCE bit must be preceded by a sync instruction to prevent the cache from
being enabled or disabled in the middle of a data access. In addition, the cache must be
globally ßushed before it is disabled to prevent coherency problems when it is re-enabled.

The dcbz instruction causes an alignment exception when the data cache is disabled. The
touch load (dcbt and dcbtst) instructions are no-ops when the data cache is disabled;
however, address translation is still performed for these instructions. Other cache
instructions (dcbf, dcbst, and dcbi) do not affect the data cache when it is disabled.

3.5.1.2 Data Cache Locking
The contents of the data cache can be locked by setting the data cache lock bit,
HID0[DLOCK]. For a locked data cache, there are no new tag allocations. Store hits and

Chapter 3. L1 and L2 Cache Operation 3-37

Cache Control

snoop hits are the only operations that can cause a tag state change in a locked data cache.
The setting of the DLOCK bit must be preceded by a sync instruction to prevent the data
cache from being locked during a data access.

The MPC7400 treats a load hit to a locked data cache the same as a load hit to an unlocked
data cache. That is, the data cache services the load with the requested data. However, a load
that misses in a locked data cache is passed to the reload buffer and propagated to the L2
cache or system bus as a caching-allowed, 32-byte burst read. But even though the reload
buffer is Þlled with an entire cache block, the data cache is not updated with the new data.
This allows for load miss folding for subsequent accesses to the cache block in the reload
buffer without updating the locked cache.

As with load hits, write-back store hits to a locked data cache are treated the same as
write-back store hits to an unlocked cache. Write-back store misses to a locked data cache
are treated as if they were marked write-through. Note that because write-back store misses
to a locked data cache are treated as write-through, store reordering may occur on the
system bus when the processor is in the MPX bus mode (MSSCR0[EMODE] = 0b1). This
can only occur if snoops are performed to the target address of the store when the address
is not contained in the data cache but is contained in the L2 cache. To prevent this
reordering, software must disable the exclusive and recent types of L2 cache HIT
intervention when the data cache is locked by setting MSSCR0[L2_INTVEN] = 0bn00.

The MPC7400 treats snoop hits to a locked data cache the same as snoop hits to an unlocked
data cache. However, any cache block invalidated by a snoop hit remains invalid until the
cache is unlocked.

3.5.1.3 Data Cache Flash Invalidation
The data cache ßash invalidate bit, HID0[DCFI], is used to invalidate the entire data cache
in a single operation. Note that there is no broadcast of a Flash invalidate operation and any
modiÞed data in the cache will be lost. Individual data cache blocks are invalidated using
the dcbi instruction. See Section 3.5.3.7, ÒData Cache Block Invalidate (dcbi),Ó for more
information about the dcbi instruction.

DCFI is set through an mtspr operation. The MPC7400 automatically clears DCFI in the
clock cycle after it is set (provided that the data cache is enabled in the HID0 register). Note
that some PowerPC microprocessors accomplish data cache ßash invalidation by setting
and clearing HID0[DCFI] with two consecutive mtspr instructions (that is, the bit is not
automatically cleared by the microprocessor). Software that has this sequence of operations
does not need to be changed to run on the MPC7400.

The data cache is automatically invalidated when the MPC7400 is powered up and during
a hard reset. However, a soft reset does not automatically invalidate the data cache.
Software must set HID0[DCFI] to invalidate the entire data cache after a soft reset.

3-38 MPC7400 RISC Microprocessor UserÕs Manual

Cache Control

3.5.1.4 Enabling and Disabling the Instruction Cache
The instruction cache may be enabled or disabled through the use of the instruction cache
enable bit, HID0[ICE]. HID0[ICE] is cleared on power-up, disabling the instruction cache.
The setting of the ICE bit must be preceded by an isync instruction to prevent the cache
from being enabled or disabled in the middle of an instruction fetch. The icbi instruction is
not affected by disabling the instruction cache.

When the instruction cache is in the disabled state (HID[ICE] = 0), the cache tag status bits
are ignored, and all instruction fetches are propagated to the system bus as single-beat
transactions. Note that the CI signal always reßects the state of the caching-inhibited
memory/cache access attribute (the I bit) independent of the state of HID0[ICE]. Also note
that disabling the instruction cache does not affect the translation logic; translation for
instruction accesses is controlled by MSR[IR].

3.5.1.5 Instruction Cache Locking
The contents of the instruction cache can be locked by setting the instruction cache lock bit,
HID0[ILOCK]. For a locked instruction cache, there are no new tag allocations. Snoop hits
are the only operations that can cause a tag state change in a locked instruction cache. The
setting of the ILOCK bit must be preceded by an isync instruction to prevent the instruction
cache from being locked during an instruction fetch.

An instruction fetch that hits in a locked instruction cache is serviced by the cache. An
instruction fetch that misses in a locked instruction cache is propagated to the system bus
as a 32-byte burst read. However, the data is not loaded into the instruction cache. The data
is loaded into the L2 cache (unless L2CR[L2DO] = 1).

Note that the CI signal always reßects the state of the caching-inhibited memory/cache
access attribute (the I bit) independent of the state of HID0[ILOCK].

3.5.1.6 Instruction Cache Flash Invalidation
The instruction cache ßash invalidate bit, HID0[ICFI], is used to invalidate the entire
instruction cache in a single operation. Note that there is no broadcast of a ßash invalidate
operation. Individual instruction cache blocks are invalidated using the icbi instruction. See
Section 3.5.3.8, ÒInstruction Cache Block Invalidate (icbi),Ó for more information about the
icbi instruction.

ICFI is set through an mtspr operation. Once set, the MPC7400 automatically clears ICFI
in the next clock cycle (provided that the instruction cache is enabled in the HID0 register).
Note that some PowerPC microprocessors accomplish instruction cache ßash invalidation
by setting and clearing HID0[ICFI] with two consecutive mtspr instructions (that is, the bit
is not automatically cleared by the microprocessor). Software that has this sequence of
operations does not need to be changed to run on the MPC7400.

Chapter 3. L1 and L2 Cache Operation 3-39

Cache Control

The instruction cache is automatically invalidated when the MPC7400 is powered up and
during a hard reset. However, a soft reset does not automatically invalidate the instruction
cache. Software must set HID0[ICFI] to invalidate the entire instruction cache after a soft
reset.

3.5.2 Data Cache Hardware Flush Parameter in MSSCR0
The MPC7400 provides a hardware ßush mechanism to ease ßushing of the data cache. It
is controlled by MSSCR0[dL1HWF]. When the processor detects a state transistion from
0 to 1 in dL1HWF, the MPC7400 initiates a hardware ßush of the data cache.

The ßush is performed by starting with low cache indices and increments through way 0 of
the cache one index at a time until the maximum index value is obtained. Then, the index
is reset to zero and the same process is repeated for ways 1, 2, 3, 4, 5, 6, and 7 of the data
cache. For each index and way of the cache, the processor generates a non-global
Write-with-Kill operation to the system bus for all modiÞed cache blocks. At the end of the
hardware ßush, all lines in the data cache are invalidated.

During the ßush, all memory subsystem requests to the data cache are stalled until the ßush
is complete. Snoops, however, are fully serviced by the data cache during the ßush.

When the data cache tags have been fully ßushed of all valid entries, the dL1HWF bit is
cleared by hardware. Note that when dL1HWF is cleared, data cache ßushes can still exist
in the L1OPQ or below. A Þnal sync instruction is required to guarantee that all data from
the data cache has been written to the system address interface.

The recommended sequence to ßush the data cache follows:

1. disable interrupts

2. dssall

3. sync

4. set MSSCR0[dL1HWF] = 1

5. sync

The data cache hardware ßush mechanism is not present in earlier PowerPC
microprocessor implementations. Using MSSCR0[dL1HWF] is the preferred mechanism
for ßushing the data cache on the MPC7400.

3-40 MPC7400 RISC Microprocessor UserÕs Manual

Cache Control

3.5.3 Cache Control Instructions
The PowerPC architecture deÞnes instructions for controlling both the instruction and data
caches (when they exist). The cache control instructions: dcbt, dcbtst, dcbz, dcbst, dcbf,
dcba, dcbi, and icbiÑare intended for the management of the local L1 and L2 caches. The
MPC7400 interprets the cache control instructions as if they pertain only to its own L1 or
L2 caches. These instructions are not intended for managing other caches in the system
(except to the extent necessary to maintain coherency).

The MPC7400 snoops all global (GBL asserted) cache control instruction broadcasts. The
dcbst, dcbf, and dcbi instructions cause a broadcast on the system bus (when M = 1) to
maintain coherency. The icbi instruction is always broadcast, regardless of the state of the
memory-coherency-required attribute. The MPC7400 treats any cache control instruction
directed to a direct-store segment [T = 1] as a no-op.

3.5.3.1 Data Cache Block Touch (dcbt)
The Data Cache Block Touch (dcbt) instruction provides potential system performance
improvement through the use of a software-initiated prefetch hint. Note that PowerPC
implementations are not required to take any action based on the execution of these
instructions, but they may choose to prefetch the cache block corresponding to the effective
address into their cache.

If the effective address of a dcbt instruction is directed to a direct-store segment [T = 1], or
if HID0[NOPTI] = 1, the MPC7400 treats the instruction as a no-op without translation.
This means that a tablewalk is not initiated and the reference (R) bit is not set.

If the effective address of a dcbt instruction is not directed to a direct-store segment [T = 0]
and HID0[NOPTI] = 0, the effective address is computed, translated, and checked for
protection violations as deÞned in the PowerPC architecture. The dcbt instruction is treated
as a load to the addressed byte with respect to address translation and protection.

The MPC7400 treats the dcbt instruction as a no-op if any of the following occur:

¥ A valid address translation is not found in the BAT, TLB, or through a tablewalk

¥ Load accesses are not permitted to the addressed page (protection violation)

¥ The BAT or PTE is marked caching-inhibited (I = 1)

¥ The cache is locked or disabled

Under these conditions, tablewalks are performed and the reference bit is set, even though
the instruction is treated as a no-op.

If none of the conditions for a no-op are met, the MPC7400 checks if the addressed cache
block is in the L1 data cache. If the cache block is not in the L1 data cache, the MPC7400
checks if the addressed cache block is in the L2 cache. If the cache block is not in the L2
cache, the MPC7400 initiates a burst read (with no intent to modify) on the system bus.

Chapter 3. L1 and L2 Cache Operation 3-41

Cache Control

The data brought into the cache as a result of this instruction is validated in the same manner
that a load instruction would be (that is, it is marked as exclusive or shared). The memory
reference of a dcbt instruction causes the reference bit to be set. Note also that the
successful execution of the dcbt instruction affects the state of the TLB and cache LRU bits
as deÞned by the PLRU algorithm (see Section 3.6.8, ÒCache Block Replacement
SelectionÓ).

3.5.3.2 Data Cache Block Touch for Store (dcbtst)
The Data Cache Block Touch for Store (dcbtst) instruction behaves similarly to the dcbt
instruction except for the following:

¥ If the target address of a dcbtst instruction is marked write-through (W = 1), the
instruction is treated as a no-op

¥ If the dcbtst hits in the L1 data cache, the state of the block is not changed

¥ If the dcbtst misses in the L1 data cache, but hits in the L2 cache, the data is brought
into the L1 data cache and is marked with the same state as in the L2 cache

¥ If the the dcbtst misses in both the L1 data cache and the L2 cache, the cache block
Þll request is signaled on the bus as a read-with-intent-to-modify (60x-bus mode) or
as a read-claim (MPX bus mode) and the data is marked exclusive when it is brought
into the L1 data cache from the system bus

Note that since the dcbtst instruction is treated like a load in the cache hierarchy, cache
blocks fetched by the dcbtst can not participate in the store-miss-merging mechanism.
From a programming point of view, it is not wise to use a dcbtst unless the dcbtst can be
placed sufÞciently far ahead of any subsequent store to that same cache block such that the
dcbtst can fully reload the L1 data cache before the store is attempted. If the store is
attempted while the dcbtst cache block Þll is still outstanding, the store will stall until the
dcbtst has reloaded the L1. This can back up the load/store unitÕs committed store queue
(CSQ). If the dcbtst instruction cannot be placed sufÞciently ahead of the subsequent store
instruction, it may be better to omit the dcbtst entirely.

If dcbtst (or dstst) is being used to prefetch a 32-byte coherency granule that will
eventually be fully consumed by 32-byteÕs worth of stores (that is, two back-to-back
AltiVec stvx instructions), the inclusion of touch-for-store may reduce performance if the
system is bandwidth-limited. This is due to the fact that a touch-for-store must perform both
a 32-byte coherency operation on the address bus (two or more bus cycles) and a 32-byte
data transfer (four or more bus cycles). On the other hand, caching-allowed, write-back
stores that merge to 32-bytes only require a 32-byte coherency operation (two or more bus
cycles) because of the store-miss-merging mechanism. Since these store misses are already
fully pipelined on MPC7400, placing a touch-for-store before a series of adjacent stores
that will naturally merge may in fact degrade performance due to data bus bandwidth
limitations.

3-42 MPC7400 RISC Microprocessor UserÕs Manual

Cache Control

3.5.3.3 Data Cache Block Zero (dcbz)
The effective address EA is computed, translated, and checked for protection violations as
deÞned in the PowerPC architecture. The dcbz instruction is treated as a store to the
addressed byte with respect to address translation and protection.

For the dcbz instruction, after translating the EA, the MPC7400 establishes a block of all
zeros in the reload buffer. The MPC7400 then performs one of the following coherency
actions:

¥ If the corresponding memory page or block is marked
memory-coherency-not-required, the block of zeros from the reload buffer is
immediately written to the data cache.

¥ If the corresponding memory page or block is marked memory-coherency-required,
and the dcbz hits to a cache block marked modiÞed or exclusive, the block of zeros
from the reload buffer is immediately written to the data cache.

¥ If the corresponding memory page or block is marked memory-coherency-required,
and the dcbz hits to a cache block marked shared or recent, an address-only bus
transaction (kill) is run prior to the block of zeros from the reload buffer being
written to the data cache.

¥ If the corresponding memory page or block is marked memory-coherency-required,
and the dcbz misses in the cache, an address-only bus transaction (kill) is run prior
to the block of zeros from the reload buffer being written to the data cache.

Note that after any required coherency operations have been performed, the block of zeros
from the reload buffer is written to the data cache, and the cache block is marked modiÞed.
The dcbz instruction does not alter the state of the L2 cache; however, it does check the L2
cache for normal cache coherent ownership by the MPC7400.

Executing a dcbz instruction to a disabled or locked data cache generates an alignment
exception. Executing a dcbz instruction to an EA with caching-inhibited or write-through
attributes also generates an alignment exception. BAT and TLB protection violations
generate DSI exceptions.

3.5.3.4 Data Cache Block Store (dcbst)
The effective address is computed, translated, and checked for protection violations as
deÞned in the PowerPC architecture. This instruction is treated as a load with respect to
address translation and memory protection.

If the address hits in the cache and the cache block is in the modiÞed state, the modiÞed
block is written back to memory and the cache block is placed in the exclusive state. If the
address hits in the cache and the cache block is in any state other than modiÞed, an
address-only broadcast (clean) is performed.

Chapter 3. L1 and L2 Cache Operation 3-43

Cache Control

The function of this instruction is independent of the WIMG bit settings of the block or PTE
containing the effective address. However, if the address is marked memory-coherency-
required, the execution of dcbst causes an address broadcast on the system bus. Execution
of a dcbst instruction does not affect the data cache or L2 cache if they are disabled.

A BAT or TLB protection violation generates a DSI exception.

3.5.3.5 Data Cache Block Flush (dcbf)
The effective address is computed, translated, and checked for protection violations as
deÞned in the PowerPC architecture. This instruction is treated as a load with respect to
address translation and memory protection.

If the address hits in the cache, and the block is in the modiÞed state, the modiÞed block is
written back to memory and the cache block is invalidated. If the address hits in the cache,
and the cache block is in the exclusive or shared state, the cache block is invalidated. If the
address misses in the cache, no action is taken.

The function of this instruction is independent of the WIMG bit settings of the block or PTE
containing the effective address. However, if the address is marked memory-coherency-
required, the execution of dcbf broadcasts an address-only FLUSH transaction on the
system bus. Execution of a dcbf instruction does not affect data cache or L2 cache if they
are disabled.

A BAT or TLB protection violation generates a DSI exception.

3.5.3.6 Data Cache Block Allocate (dcba)
The MPC7400 implements the data cache block allocate (dcba) instruction. This is
currently an optional instruction in the PowerPC virtual environment architecture (VEA);
however, it may become required in future versions of the architecture. The dcba
instruction provides potential system performance improvement through the use of a
software-initiated pre-store hit. This allows software to establish a block in the data cache
in anticipation of a store into that block, without loading the block from memory.

The MPC7400 executes the dcba instruction the same as a dcbz instruction, with one major
exception. In cases when dcbz causes an exception, a dcba will no-op. Note that this means
that a dcba/DABR address match does not cause an exception.

3.5.3.7 Data Cache Block Invalidate (dcbi)
The effective address is computed, translated, and checked for protection violations as
deÞned in the PowerPC architecture. This instruction is treated as a store with respect to
address translation and memory protection.

If the address hits in the cache, the cache block is invalidated, regardless of the state of the
cache block. Because this instruction may effectively destroy modiÞed data, it is privileged
(that is, dcbi is available to programs at the supervisor privilege level, MSR[PR] = 0).

3-44 MPC7400 RISC Microprocessor UserÕs Manual

Cache Control

The function of this instruction is independent of the WIMG bit settings of the block or PTE
containing the effective address. However, if the address is marked memory-coherency-
required, the execution of dcbi broadcasts an address-only kill transaction on the system
bus. Execution of a dcbi instruction does not affect data cache or L2 cache if they are
disabled.

A BAT or TLB protection violation for a dcbi translation generates a DSI exception.

3.5.3.8 Instruction Cache Block Invalidate (icbi)
The icbi instruction invalidates a matching entry in the instruction cache. During execution,
the effective address for the instruction is translated through the data MMU, and broadcasts
on the system bus using the memory-coherency attribute from translation. The MPC7400
always snoops global icbi transactions from the bus (even if it is the bus master that is
broadcasting) and sends it to the instruction cache for cache block address comparison and
invalidation. The MPC7400 snoops its own icbi broadcast regardless of the state of the
GBL signal. The icbi instruction invalidates a matching cache entry regardless of whether
the instruction cache is disabled or locked. The L2 cache is not affected by the icbi
instruction.

An icbi instruction should always be followed by a sync and an isync instruction. This
ensures that the effects of the icbi are seen by the instruction fetches following the icbi
itself. For self-modifying code, the following sequence should be used to synchronize the
instruction stream:

1. dcbst (push new code from data cache and L2 cache out to memory)

2. sync (wait for the dcbst to complete)

3. icbi (invalidate the old instruction cache entry in this processor and, by broadcasting
the icbi to the bus, invalidate the entry in all snooping processors)

4. sync (wait for the icbi to complete its bus operation)

5. isync (re-sync this processorÕs instruction fetch)

The second sync instruction ensures completion of all prior icbi instructions. Note that the
second sync instruction is not shown in Section 5.1.5.2, ÒInstruction Cache Instructions,Ó
in The Programming Environments Manual. This sync is required on the MPC7400.

Since the sync instruction strongly serializes the MPC7400Õs memory subsystem,
performance of code containing several icbi instructions can be improved by batching the
icbi instructions together such that only one sync instruction is used to synchronize all the
icbi instructions in the batch.

Chapter 3. L1 and L2 Cache Operation 3-45

Cache Operations

3.6 Cache Operations
This section describes the MPC7400 cache operations.

3.6.1 Data Cache Block Fill Operations
The MPC7400Õs data cache blocks are Þlled (sometimes referred to as a cache reload) from
an eight-entry reload buffer. Thirty two bytes of data are Þrst collected in one of the reload
data buffer entries before being reloaded into the data cache. This allows the data cache to
service multiple outstanding misses while at the same time staying available to subsequent
load and store hits. This behavior is described in Section 3.6.4, ÒLoad Miss Folding,Ó and
Section 3.6.5, ÒStore Miss Merging.Ó

A data cache block Þll is caused by a load miss or write-back store miss in the cache. The
cache block that corresponds to the missed address is updated by a burst transfer of the data
from the L2 cache or system memory after any necessary coherency actions have
completed.

3.6.2 Instruction Cache Block Fill Operations
The MPC7400Õs instruction cache blocks are loaded in four beats of 64 bits each, with the
critical double word loaded Þrst. The instruction cache is not blocked to internal accesses
while the fetch (caused by a cache miss) completes. This functionality is sometimes
referred to as Ôhits under misses,Õ because the cache can service a hit while a cache miss Þll
is waiting to complete. On a cache miss, the critical and following double words read from
memory are simultaneously written to the instruction cache and forwarded to the
instruction queue, thus minimizing stalls due to cache Þll latency.

3.6.3 Allocation on Cache Misses
Instruction cache misses cause allocation into both the instruction cache and the L2 cache
(assuming an L2 cache miss). Data cache misses cause allocation into the data cache only.
They do not cause allocation into the L2 cache; the L2 cache is solely a victim cache for
the data cache. The L2 cache allocates new entries for data accesses only when blocks are
cast out of the data cache.

The castout (C), dirty (D), and modiÞed (M) bits in the data cache tags are used to
determine how a data cache replacement target is treated. If the replacement target is valid,
then it is queued up as a castout if either the C or D bits are set. See Table 3-1 for the speciÞc
conditions for which the C and D bits are set and cleared.

When a block is queued up as a data cache castout and the L2 cache is enabled, the L2 cache
allocates a new tag for the castout in the L2 cache if it misses and the C bit is set. If the C
bit is cleared and the block misses in the L2 cache, the L2 cache does not allocate a tag.
Instead, it passes the castout on to the system interface if the block is marked modiÞed. If

3-46 MPC7400 RISC Microprocessor UserÕs Manual

Cache Operations

the data cache castout hits in the L2 cache, the castout data is written to the L2 cache
regardless of the state of the C bit.

If the L2 cache is disabled, then the block replaced from the data cache is cast out to the
system interface if the block is marked modiÞed.

3.6.4 Load Miss Folding
The MPC7400Õs memory subsystem contains an eight entry reload buffer for L1 data cache
reloads. The reload buffer consists of two main parts: an eight entry reload table (dRLT)
which contains addresses and attributes, and an eight entry reload data buffer (dRLDB)
which can store 32 bytes (a data cache block) per entry.

When a caching-allowed load or store misses in the data cache, an entry is allocated in the
dRLT. If a subsequent load hits on a dRLT entry, it is placed in a four entry load fold queue
(LFQ) with a tag pointing to the dRLT entry upon which it hit. When the proper bytes of
data in the dRLDB become valid, then the load in the LFQ reads the data from the dRLDB
and forwards it to the appropriate result bus. This is known as load miss folding.

Load miss folding effectively puts aside subsequent load misses to the same 32-byte data
cache block to allow subsequent load and store access to the data cache.

Caching-inhibited loads are also allocated in the dRLT; however, subsequent loads are not
allowed to fold into a dRLT entry allocated for a caching-inhibited load.

3.6.5 Store Miss Merging
When a caching-allowed store misses in the data cache, an entry is allocated in the dRLT
and the store data is written into dRLDB. The remainder of the bytes not written by the store
data are Þlled in when the cache block is eventually fetched from the L2 cache or the BIU.
When all 32 bytes are valid, the cache block in the dRLDB is reloaded into the data cache.

If a subsequent store miss hits on a dRLT entry for a previous store miss, the subsequent
store miss also writes its data into the dRLDB for that entry. The store can then drain from
the completed store queue as it writes data to the dRLDB. The MPC7400 uses the
coherency action performed by the Þrst store miss for any subsequent stores to the same
cache block in the reload buffer. When the coherency action for the original store miss that
allocated the dRLT entry is complete and all 32 bytes of data are valid in the dRLDB, the
cache block in the dRLDB is reloaded into the data cache. This behavior is known as store
miss merging.

If a sufÞcient number of stores merge to the same dRLT entry such that all 32 bytes are
written by store data, then the reload buffer no longer needs to Þll from the L2 cache or BIU.
If the original store that allocated the entry was marked memory-coherency-not-required,
the cache block is immediately reloaded into the data cache without waiting for coherency
action or data from the L2 cache or BIU.

Chapter 3. L1 and L2 Cache Operation 3-47

Cache Operations

In the case of a dRLT entry that was allocated by a store marked memory-coherency
required, when subsequent stores have merged to all 32 bytes, the dRLT signals the BIU
that it no longer needs data for that entry. If the cache block Þll request in the BIU for the
reload buffer entry has not yet propagated to the bottom of the BIUÕs address queue, the
transaction is completely dropped and does not appear on the address bus. In this case, store
miss merging to non-global space enables the processor to silently allocate a new cache
block in the data cache.

If the cache block Þll request in the BIU is at the bottom of the BIU's address queue but has
not received a qualiÞed bus grant for the read-with-intent-to-modify (RWITM) transaction,
it performs an address-only kill broadcast instead. If the cache block Þll request has already
received a qualiÞed bus grant, the transaction completes as a RWITM, but the data is
discarded.

Note that two back-to-back AltiVec store misses can write a full 32-byte dRLT entry. For
these back-to-back AltiVec stores, the MPC7400 nearly always performs kill coherency
actions instead of RWITM transactions. Note that the chances of this happening decrease
if other instructions are placed between the two stores or if a data dependency stalls the
second store.

For large block copies to either global (memory-coherency-required) or non-global
(memory-coherency-not-required) address space, the MPC7400 is more efÞcient if
adjacent stores are used instead of dcbz or dcba instructions. This is due to the following
three reasons:

¥ store hits to the data cache are fully pipelined whereas dcbz/dcba hits to the data
cache can happen only once every four cycles best case

¥ the store miss merge mechanism allows the MPC7400 to issue kill transactions
similar to dcbz/dcba

¥ dcbz/dcba instructions are usually used for prefetching; the real purpose of a copy
is to perform real stores which the MPC7400 can perform just as efÞciently without
dcbz/dcba prefetches.

3.6.6 Store Hit to a Data Cache Block Marked Recent or
Shared

Write-back stores that hit to a data cache block in the R or S state cannot be performed
without Þrst obtaining exclusive ownership of that block by a kill broadcast on the system
bus.

When a write-back store hits on shared or recent cache block, the target block is invalidated
in the data cache. The current data from the target block is merged with the new store data
and is copied into a reload buffer entry. A kill operation is propagated to the system bus.
When the kill broadcast is successful, the target block is reloaded into the data cache in the
MCD state.

3-48 MPC7400 RISC Microprocessor UserÕs Manual

Cache Operations

Using the reload buffer for hit-on-shared/hit-on-recent simpliÞes snooping. If a snoop
operation invalidates ownership of the target block before the kill operation is successful,
then the reload buffer entry is changed to treat the entry like a normal store miss. In this
case, the MPC7400 performs a RWITM operation on the address bus instead, and reloads
the data cache in the MCD state.

3.6.7 Data Cache Block Push Operation
When a cache block in the MPC7400 is snooped and hit by another bus master and the data
is modiÞed, the cache block must be written to memory and made available to the snooping
device. The cache block that is hit is said to be pushed out onto the system bus. The
MPC7400 supports two kinds of snoop push operationsÑnormal push operations and
enveloped high-priority push operations, which are described in Section 9.4.4, ÒUsing Data
Bus Write Only (DBWO).Ó

3.6.8 Cache Block Replacement Selection
Both the instruction and data cache use a pseudo least-recently-used (PLRU) replacement
algorithm when a new block needs to be placed in the cache. Note that data cache
replacement selection is performed at reload time, not when a miss occurs. Instruction
cache replacement selection occurs when an instruction cache miss is Þrst recognized. This
is fundamentally different from the data cache in that the replacement target is selected
upon miss and not upon reload.

Each cache is organized as eight blocks (ways) per set by 128 sets. There is a valid bit for
each way in the cache, L[0Ð7]. The replacement logic Þrst checks to see if there are any
invalid ways in the set and chooses the lowest-order, invalid block (L[0Ð7]) as the
replacement target. When all eight ways in the set are valid, the PLRU algorithm is used to
select the replacement target. There are seven PLRU bits, B[0Ð6] for each set in the cache.

Chapter 3. L1 and L2 Cache Operation 3-49

Cache Operations

A way is selected for replacement according to the PLRU bit encodings shown in Table 3-8.

Table 3-8. PLRU Replacement Way Selection

If the PLRU bits are:

Then the way
selected for
replacement

is:

B0

0

B1

0
B3

0 L0

0 0 1 L1

0 1
B4

0 L2

0 1 1 L3

1

B2

0
B5

0 L4

1 0 1 L5

1 1
B6

0 L6

1 1 1 L7

3-50 MPC7400 RISC Microprocessor UserÕs Manual

Cache Operations

The PLRU algorithm is shown graphically in Figure 3-33.

Figure 3-33. PLRU Replacement Algorithm

Data cache replacement selection can be modiÞed by the data cache ßush assist bit,
HID0[DCFA]. When set, HID0[DCFA] forces the PLRU replacement algorithm to ignore
any invalid entries and follow the replacement sequence deÞned by the PLRU bits. This can

Replace
L0

Replace
L1

Replace
L2

Replace
L3

Replace
L4

Replace
L5

Replace
L6

Replace
L7

B0 = 0

B4 = 0

B1 = 0 B1 = 1 B2 = 1B2 = 0

B0 = 1

B3 = 0 B3 = 1 B4 = 1 B5 = 0 B5 = 1 B6 = 0 B6 = 1

Replace
L0L0 invalid

Replace
L2L2 invalid

Replace
L1L1 invalid

Replace
L3L3 invalid

Replace
L4L4 invalid

Replace
L5L5 invalid

Replace
L6L6 invalid

Replace
L7L7 invalid

L7 valid

L0 valid

L1 valid

L2 valid

L3 valid

L4 valid

L5 valid

L6 valid

Chapter 3. L1 and L2 Cache Operation 3-51

Cache Operations

be used to simplify software ßushing of the data cache. See Section 3.6.9, ÒL1 Cache
Invalidation and Flushing,Ó for more information. HID0[DCFA] does not affect instruction
cache replacement selection. If any of the valid bits (L[0Ð7]) for a given set in the
instruction cache are invalid, the Þrst invalid entry (from L0 to L7) is always chosen as the
replacement way.

During power-up or hard reset, all the valid bits of the ways are cleared and the PLRU bits
are cleared to point to way L0 of each set. Note that this is also the state of the data or
instruction cache after setting their respective ßash invalidate bits (HID0[DCFI] or
HID0[ICFI]).

Each time a cache block is accessed, it is tagged as the most recently used way of the set
(unless accessed by the AltiVec LRU instructions; refer to Section 7.1.2.1, ÒLRU
InstructionsÓ). For every hit in the cache or when a new block is reloaded, the PLRU bits
for the set are updated using the rules speciÞed in Table 3-9.

Note that only three PLRU bits are updated for any given access.

3.6.8.1 AltiVec LRU Instruction Support
The data cache fully supports the AltiVec LRU instructions (lvxl, stvxl). If one of these
instructions causes a hit in the data cache, then the PLRU bits are updated such that the way
which hit is marked as least-recently-used by using the PLRU update rules shown in
Table 3-10. If no other hit to the cache index occurs, this way is victimized upon the next
data cache reload. Similarly, if an lvxl or stvxl instruction misses in the cache, the PLRU
bits are updated as shown in Table 3-10 when that cache block reloads the data cache. Note
that the instruction cache is not subject to any AltiVec LRU accesses.

Table 3-9. PLRU Bit Update Rules

If the
current

access is
to:

Then the PLRU bits in the set are changed to:

B0 B1 B2 B3 B4 B5 B6

L0 1 1 x 1 x x x

L1 1 1 x 0 x x x

L2 1 0 x x 1 x x

L3 1 0 x x 0 x x

L4 0 x 1 x x 1 x

L5 0 x 1 x x 0 x

L6 0 x 0 x x x 1

L7 0 x 0 x x x 0

x = Does not change

3-52 MPC7400 RISC Microprocessor UserÕs Manual

Cache Operations

Note that an AltiVec LRU access simply inverts the update value of the three PLRU bits
when compared to the normal (MRU) update rules.

3.6.9 L1 Cache Invalidation and Flushing
The data cache can be invalidated by executing a series of dcbi instructions or by setting
HID0[DCFI]. The instruction cache can be invalidated by executing a series of icbi
instructions or by setting HID0[ICFI].

Any modiÞed entries in the data cache can be copied back to memory (ßushed) by using
the hardware ßush mechanism described in Section 3.5.2, ÒData Cache Hardware Flush
Parameter in MSSCR0.Ó Because the instruction cache never contains modiÞed entries, no
ßushing mechanism is necessary.

While the hardware ßush mechanism for the data cache is the preferred ßush mechanism,
software ßush routines used for the MPC750 can also be used to ßush the MPC7400 data
cache. Note that future MPC7400 derivatives may not support the MPC750 software ßush
mechanism.

The software ßush routines ßush the data cache by using the dcbf instruction or by
executing a series of 12 uniquely addressed load or dcbz instructions to each of the 128 sets.
The address space should not be shared with any other process to prevent snoop hit
invalidations during the ßushing routine. Exceptions should be disabled during this time so
that the PLRU algorithm does not get disturbed.

The data cache ßush assist bit, HID0[DCFA], simpliÞes the software ßushing process.
When set, HID0[DCFA] forces the PLRU replacement algorithm to ignore the invalid
entries and follow the replacement sequence deÞned by the PLRU bits. This reduces the

Table 3-10. PLRU Bit Update Rules for AltiVec LRU Instructions

If the
current

AtiVec LRU
access is

to:

Then the PLRU bits in the set are changed to:

B0 B1 B2 B3 B4 B5 B6

L0 0 0 x 0 x x x

L1 0 0 x 1 x x x

L2 0 1 x x 0 x x

L3 0 1 x x 1 x x

L4 1 x 0 x x 0 x

L5 1 x 0 x x 1 x

L6 1 x 1 x x x 0

L7 1 x 1 x x x 1

x = Does not change

Chapter 3. L1 and L2 Cache Operation 3-53

L2 Cache Interface

series of uniquely addressed load or dcbz instructions to eight per set. HID0[DCFA] should
be set just prior to the beginning of the cache ßush routine and cleared after the series of
instructions is complete.

3.7 L2 Cache Interface
This section describes the MPC7400 microprocessor L2 cache interface, and its
conÞguration and operation. It describes how the MPC7400 signals, deÞned in Chapter 8,
ÒSignal Descriptions,Ó interact to perform address and data transfers to and from the L2
cache.

3.7.1 L2 Cache Interface Overview
The MPC7400Õs L2 cache interface is implemented with an on-chip, two-way set
associative tag memory with 8192 (8K) tags per way, and a dedicated interface with support
for up to 2 Mbyte of external synchronous SRAMs. The tags are sectored to support either
four, two, or one cache blocks per tag entry depending on the L2 cache size. Each sector
(32-byte cache block) in the L2 cache has three status bits that are used to implement the
MERSI cache coherency protocol (or the MESI and MEI subsets). The MPC7400Õs L2
cache may be conÞgured to operate in write-back or write-through mode and maintains
cache coherency through snooping.

The L2 cache control register (L2CR) allows control of L2 cache conÞguration and
interface timing. The L2 cache interface provides two clock outputs that allow the clock
inputs of the SRAMs to be driven at select frequency divisions of the processor core
frequency.

3-54 MPC7400 RISC Microprocessor UserÕs Manual

L2 Cache Interface

Figure 3-34 shows the MPC7400 conÞgured with a 1-Mbyte L2 cache.

Figure 3-34. Typical 1-Mbyte L2 Cache Configuration

3.7.2 L2 Cache Organization
The L2 cache tags are conÞgured for four sectors (128 bytes) for every tag entry when
2 Mbyte of external SRAM is used. The L2 cache tags are conÞgured for two sectors
(64-bytes) for every tag entry when 1 Mbyte of external SRAM is used. If the L2 cache is
conÞgured for 256 Kbytes or 512 Kbytes of external SRAM, the tags are conÞgured for one
sector (32-bytes) per tag entry.

3.7.2.1 L2 Cache Tag Status Bits
The L2 cache tag contains modiÞed (M), shared (S), and valid (V) status bits for each of
the two ways and four sectors. Table 3-11 describes the supported L2 cache states.

L2ADDR[16Ð0]
L2DATA[0Ð63]

L2DP[0Ð7]
L2CE
L2WE
L2ZZ

L2CLK_OUTA

L2SYNC_OUT
L2SYNC_IN

L2CLK_OUTB

ADDR[16Ð0]
DATA[0Ð31]
PARITY[0Ð3]
E
W
ADSC
ADSP
ZZ
K

MPC7400
ADDR[16Ð0]
DATA[0Ð31]
PARITY[0Ð3]
E
W
ADSC
ADSP
ZZ
K

1
0

0
1

(Optional)

(Optional)

Notes:
For a 2-Mbyte L2 cache, use address bits 17Ð0 (bit 0 is LSB).
For a 1-Mbyte L2 cache, use address bits 16Ð0 (bit 0 is LSB).
For a 512-Kbyte L2 cache, use address bits 15Ð0 (bit 0 is LSB).
For a 256-Kbyte L2 cache, use address bits 14Ð0 (bit 0 is LSB).
External clock routing should ensure that the rising edge of the L2 cache clock is

coincident at the K input of all SRAMs and at the L2SYNC_In input of the
MPC7400. The clock A network can be used solely or the clock B network can
also be used depending on loading, frequency, and number of SRAMs.

No pull-up resistors are normally required for the L2 cache interface.
The MPC7400 supports only one bank of SRAMs.
For high-speed operation, no more than two loads should be presented on each

(Optional)

128k x 36
SRAM

128k x 36
SRAM

Chapter 3. L1 and L2 Cache Operation 3-55

L2 Cache Interface

The L2 cache tag also contains a FIFO replacement bit (F-bit) for each index. The F-bit is
used for selecting a replacement target upon L2 cache reload. It is updated when a new tag
is allocated in the L2 cache tag.

3.7.3 L2 Cache Control Register (L2CR)
The L2 cache control register (L2CR) allows control of L2 cache conÞguration, timing, and
operation. The following sections describe the L2 cache control parameters in the L2CR.

The L2CR is a supervisor-level read/write, implementation-speciÞc register that is accessed
as SPR 1017. The contents of the L2CR are cleared during power-on reset. See
Section 2.1.7, ÒL2 Cache Control Register (L2CR),Ó for additional information about the
conÞguration of the L2CR.

3.7.3.1 Enabling and Disabling the L2 Cache
The L2 cache may be enabled or disabled by programming the L2CR[L2E] parameter. This
parameter enables or disables the operation of the L2 cache (including snooping) starting
with the next transaction that the L2 cache unit receives. When the L2 cache is disabled, the
cache tag status bits are ignored and all accesses are propagated to the system bus. Note that
if the L2 cache is enabled, the L1 data cache must also be enabled. Conversely, if the L1
data cache is disabled, the L2 cache must also be disabled.

Before enabling the L2 cache, the L2 clock must Þrst be conÞgured through the
L2CR[L2CLK] bits, and a period of time must elapse for the L2 DLL to stabilize. See the
MPC7400 hardware speciÞcations for the DLL stabilization interval. Also before enabling
the L2 cache, all other bits in the L2CR must be set appropriately, and the L2 cache may
need to be globally invalidated. See Section 3.7.4, ÒL2 Cache Initialization,Ó for a
description of the L2 cache initialization procedures.

Before the L2 cache is disabled it must be ßushed to prevent coherency problems. The
cache management instructions dcbf, dcbst, and dcbi do not affect the L1 data cache or L2
cache when they are disabled.

Table 3-11. Legal L2 Cache States

MSV value
MERSI state Comments

M S V

1 0 1 ModiÞed cast out from data cache

0 0 1 Exclusive could be instruction or data

1 1 1 Recent could be instruction or data

0 1 1 Shared could be instruction or data

x x 0 Invalid invalid line

3-56 MPC7400 RISC Microprocessor UserÕs Manual

L2 Cache Interface

3.7.3.2 L2 Cache Parity Checking and Generation
The L2CR[L2PE] parameter enables or disables parity checking for the L2 data RAM
interface. When L2PE is cleared, L2 parity checking is disabled. Note that The L2 interface
always generates and drives parity on the L2DP[0:7] signals for writes to the SRAM array.

3.7.3.3 L2 Cache Size
The L2CR[L2SIZ] bits conÞgure the size of the L2 cache. They should be set according to
the organization of the L2 data RAMs that are present. Table 3-12 lists the data RAM
organizations for the various L2 cache sizes. Table 3-12 also indicates typical SRAM sizes
that might be used to construct such a cache.

3.7.3.4 L2 Cache SRAM Types
The L2CR[L2RAM] bits conÞgure the L2 RAM interface for the type of synchronous
SRAMs that are used. The MPC7400 supports:

¥ Pipelined (register-register) burst SRAMs which clock addresses in and clock data
out

¥ Late-write SRAMs which are required by the MPC7400 to be of the pipelined
(register-register) conÞgurations

¥ Newer generation pipeline burst SRAMs, referred to as PB3-type SRAMs

Note that the burst feature built into standard burst SRAMs and late-write SRAMs is not
used by the MPC7400. The PB3-type SRAMs, however, require the burst feature to be
used. The MPC7400 supports a 4-beat burst mode for PB3-type SRAMs.

3.7.3.5 L2 Cache Write-Back/Write-Through Modes
The L2 cache normally operates in write-back mode. The L2CR[L2WT] parameter may be
used to select write-through mode. In write-through mode, all writes to the L2 cache are
also written to the system bus. For these writes, the L2 cache entry is always marked as
exclusive rather than modiÞed. L2WT must never be set after the L2 cache has been
enabled as previously modiÞed lines may get re-marked as exclusive during the course of
normal operation.

Table 3-12. L2 Cache Sizes and Data RAM Organizations

L2 Cache
Size

L2 Data Bus
Size

L2 Data RAM
Organization

Example SRAM sizes
that might be used

256 Kbyes 64/72 bit 32K x 64/72 (2) 32K x 32/36

512 Kbytes 64/72 bit 64K x 64/72 (2) 64K x 32/36

1 Mbyte 64/72 bit 128K x 64/72 (2) 128K x 32/36

2 Mbytes 64/72 bit 256K x 64/72 (4) 256K x 16/18

Note:
The MPC7400 supports only one bank of SRAMs.
For very high speed operation, no more than two SRAMs should be used.

Chapter 3. L1 and L2 Cache Operation 3-57

L2 Cache Interface

3.7.3.6 L2 Cache Data-Only and Instruction-Only Operation
The L2CR[L2DO] parameter enables data-only operation in the L2 cache. For data-only
operation, only transactions from the L1 data cache are allowed to be reloaded into the L2
cache. Instruction addresses already in the cache still hit for the L1 instruction cache. L2DO
may be dynamically programmed as needed.

The L2CR[L2IO] parameter enables instruction-only operation in the L2 cache. For
instruction-only operation, only transactions from the L1 instruction cache are allowed to
be reloaded into the L2 cache. Data addresses already in the cache still hit for the L1 data
cache. L2IO may be dynamically programmed as needed.

3.7.3.6.1 L2 Cache Locking Using L2DO and L2IO

The MPC7400Õs L2 cache can be locked by setting both the L2DO and L2IO bits of the
L2CR. This prevents instruction cache misses from reloading the L2 cache and prevents
data cache castouts from allocating entries in the L2 cache. Data cache castouts in the
modiÞed state are forwarded to the system interface. Note that locking the L2 cache using
this mechanism is completely independent of L1 data or instruction cache locking.

3.7.3.7 L2 Cache Global Invalidation
The MPC7400 supports global (not ßash) invalidation of the L2 cache through the
L2CR[L2I] parameter. Setting L2I causes a global invalidation of the L2 cache. A global
invalidation is performed by automatically sequencing through the L2 cache tags and
clearing all bits of the tag (tag data bits, tag status bits, and FIFO bit). The global
invalidation function must be performed only while the L2 cache is disabled. L2I must
never be set while the L2 cache is enabled. During the invalidation, all memory activity
from the L1 data and instruction caches are blocked from accessing the L2 until the
invalidation is complete.

The L1 caches are invalidated automatically upon power-up (hard reset), but the L2 cache
tags must be explicitly invalidated by software setting the L2I bit.

L2CR[L2IP] is a read-only bit that indicates whether an L2 global invalidate is in progress.
It should be monitored after an L2 global invalidate has been initiated to determine when
the global L2 invalidation has completed.

The sequence for performing a global invalidation of the L2 cache is as follows:

1. Execute a dssall instruction to cancel any pending data stream touch instructions.

2. Execute a sync instruction to Þnish any pending store operations in the load/store
unit, disable the L2 cache by clearing L2CR[L2E], and execute an additional sync
instruction after disabling the L2 cache to ensure that any pending operations in the
L2 cache unit have completed.

3. Initiate the global invalidation operation by setting the L2CR[L2I] bit.

3-58 MPC7400 RISC Microprocessor UserÕs Manual

L2 Cache Interface

4. Monitor the L2CR[L2P] bit to determine when the global invalidation operation is
completed (indicated by the clearing of L2CR[L2IP]). The global invalidation
requires approximately 16K core clock cycles to complete.

5. After detecting the clearing of L2CR[L2IP], clear L2CR[L2I] and re-enable the L2
cache for normal operation by setting L2CR[L2E].

3.7.3.8 L2 Cache Flushing
In the MPC7400, the L2 cache is a victim cache for the L1 data cache. As such, the L2 cache
ßush routines used for MPC750-based systems will not work on the MPC7400. The
MPC7400 provides a hardware ßush mechanism through L2CR[HWF]. This hardware
ßush method is the recommended method for ßushing the L2 cache. Although the hardware
ßush mechanism is the preferred method of ßushing the cache, if for some reason a
software ßush is desired, the MPC7400 provides a software ßush assist bit L2CR[L2FA] to
facilitate software ßushing of the L2 cache. The following sections describe ßushing the L2
cache using the hardware and software methods.

3.7.3.8.1 L2 Cache Hardware Flush

The hardware ßush mechanism is controlled by L2CR[L2HWF]. When the processor
detects a state transistion from 0 to 1 in L2HWF, the MPC7400 initiates a hardware ßush
of the L2 cache.

The ßush is performed by starting with low cache indices and increments through way 0 of
the cache one index at a time until the maximum index value is obtained. Then, the index
is reset to zero and the same process is repeated for way 1 of the L2 cache. For each index
and way of the cache, the processor generates a castout operation to the system bus for all
modiÞed cache blocks. At the end of the hardware ßush, all lines in the L2 cache tags are
in the invalid state.

During the ßush, all memory activity from the L1 intruction and L1 data cache are blocked
from accessing the L2 until the ßush is complete. Snoops, however, are fully serviced by
the L2 cache during the ßush.

When the L2 cache tags have been fully ßushed of all valid entries, the L2CR[L2HWF] bit
is cleared by hardware. Note that when L2HWF is cleared, it does not guarantee that all
lines from the L2 have been written completely to the system interface. L2 copybacks may
still be queued up in the bus interface unit. A Þnal sync instruction is required to guarantee
that all data from the L2 cache has been written to the system address bus.

The recommended sequence to ßush the L2 cache follows:

1. disable interrupts
2. dssall
3. sync
4. set L2CR[L2HWF] = 1
5. sync

Chapter 3. L1 and L2 Cache Operation 3-59

L2 Cache Interface

The L2 cache hardware ßush mechanism is not present in earlier PowerPC microprocessor
implementations. Using L2CR[L2HWF] is the preferred mechanism for ßushing the L2
cache on the MPC7400.

3.7.3.8.2 L2 Cache Software Flush

There are a variety of methods to ßush the L2 cache using load, dcbz, dcbf, or AltiVec stvxl
instructions. The L2 cache ßush assist bit, L2CR[L2FA], simpliÞes the software ßushing
process. In normal (non-ßushing) operations, L2FA is cleared and all lines are cast out from
the L1 data cache that have a status of CDMRSV = 01xxx1 (that is, the C bit is negated),
does not allocate in the L2 cache if they miss. However, when set, L2FA forces every
castout from the L1 data cache to allocate an entry in the L2 cache if that castout misses in
the L2 regardless of the state of the C bit.

L2FA should be set just prior to the beginning of the cache ßush routine and cleared after
the series of instructions is complete. The address space should not be shared with any other
process to prevent snoop hit invalidations during the ßushing routine. Exceptions should be
disabled during this time so that the FIFO replacement logic is not disturbed.

The following procedure is an efÞcient L2 cache software ßush algorithm using stvxl:

1. Set HID0[DCFA]

2. Set L2CR[L2FA] and clear L2CR[L2IO]

3. Set L2CR[L2DO] (to prevent instruction reloads of the L2)

4. Disable all interrupts (to avoid disturbing cache replacement pointers)

5. Execute three uniquely addressed stvxl instructions to each 32-byte block of the L2
cache. The three stores must be to the same L2 index (that is, bits 12Ð26 of the
physical address must be equal). The following pseudo-C code provides an example
of how to do this. Note that this example assumes data transalation is disabled
(MSR[DR] = 0):

r1=0x00000000;/* r1, r2, and r3 can be any values as long */
r2=0x10000000;/* as bits 12-26 are the same for all three */
r3=0x20000000;/* and bits 0-11 are different between all three */
r4=0x0;
r5=0x10;
for (i=0; i<L2_SIZE_IN_BYTES / 32; i++) {

stvxl r0, r1, r4; stvxl r0, r1, r5;
stvxl r0, r2, r4; stvxl r0, r2, r5;
stvxl r0, r3, r4; stvxl r0, r3, r5;
r4 += 0x20; r5 +=0x20;}

The second store to each cache block (using r5) is for performance reasons. The MPC7400
merges the entire 32-byte cache block for each stvxl pair. If the stores are mapped global
(M = 1), then the stores perform address-only kill transactions on the bus because they
merge to the full 32-byte cache block. If the stores are mapped non-global
(M = 0), then the stores merge to 32 bytes and silently allocate in the L1 data cache. See
Section 3.6.5, ÒStore Miss Merging,Ó for more information on store miss merging, Note

3-60 MPC7400 RISC Microprocessor UserÕs Manual

L2 Cache Interface

that this algorithm does not require knowledge of how the L2 cache is sectored for each size
conÞguration and works for all L2 sizes.

3.7.3.9 L2 Cache Clock and Timing Controls
The L2CR[L2CLK] parameter speciÞes the operating frequency for the L2 data RAM
interface. This is expressed as a clock divider ratio relative to the MPC7400Õs core clock
frequency. When cleared to all 0s, the on-chip DLL for the L2 interface is disabled (and
held in reset), and the L2 clock outputs are turned off. When set to a non-zero value, the
on-chip DLL is enabled, and the L2 clocks are generated. After setting the L2 clock ratio,
a period of time must elapse for the DLL to stabilize before enabling the L2 interface. See
the MPC7400 hardware speciÞcations for more information.

The L2CR[L2OH] parameter determines the output hold time of the address, data, and
control signals driven by the MPC7400 to the L2 data RAMs. L2OH should generally be
set according to the input hold time requirements of the SRAMs in the system. Typically
burst RAMs require an input hold time of 0.5 ns, and late-write RAMs require an input hold
time of 1.0 ns. See the MPC7400 hardware speciÞcations for more information.

The L2CR[L2SL] parameter is used to slow down the L2 bus interface by increasing the
delay through the DLL. Setting L2SL increases the delay of each tap of the DLL delay line.
It is intended to slow down the L2 bus interface to accommodate slower L2 bus frequencies.
L2SL should generally be set if the L2 RAM interface is being operated at lower
frequencies. See the MPC7400 hardware speciÞcations for more information.

The L2CR[L2DF] parameter controls the behavior of the L2 clock output signals. Setting
L2DF conÞgures the two L2 clock outputs, L2CLK_OUTA, and L2CLK_OUTB, to
operate as a differential clock pair (L2CLK_OUTA/L2CLK_OUTB). In this mode, the B
clock is driven as the logical complement of the A clock. This mode is provided to support
late-write SRAMs, many of which require a differential clock.

The L2CR[L2BYP] parameter is intended for use when the PLL is being bypassed, and for
engineering evaluation. The DLL requires the following three input clocks:

¥ An internal square wave clock from the PLL to phase adjust and export

¥ An internal non-square wave clock for the internal phase reference

¥ A feedback clock (L2SYNC_IN) for the external phase reference

When L2BYP is set, the MPC7400 uses the non-square wave clock (#2) for both phase
adjust and phase reference (#1 and #2) thus bypassing the square wave clock from the PLL.
Note that the non-square wave clock (#2) is the actual clock used by the the MPC7400Õs L2
interface circuitry. If the PLL is being bypassed, the DLL must operate in 1:1 mode, and
SYSCLK must be fast enough for the DLL to support.

The L2CR[L2DRO] parameter controls the behavior of the MPC7400 when it encounters
a potential (or actual) DLL rollover. A potential rollover condition occurs when the DLL

Chapter 3. L1 and L2 Cache Operation 3-61

L2 Cache Interface

selects the last tap of the delay line and risks rolling over to the Þrst tap while trying to keep
in sync. Such a condition is improper operation for the DLL, and while this condition is not
expected, L2DRO allows detection for added security. Setting L2DRO causes a checkstop
when a potential rollover (or actual rollover) condition occurs. L2DRO may be set when
the DLL is Þrst enabled (set with the L2CLK bits) to detect rollover during initial
synchronization. It may also be set when the L2 cache is enabled (with L2E bit) after the
DLL has achieved initial lock.

3.7.3.10 L2 Cache Power Management and Test Controls
The L2CR[L2CTL] parameter enables/disables automatic operation of the L2 low-power
mode signal, L2ZZ, for cache RAMs that support the ZZ function. When L2CTL is set, the
MPC7400 automatically asserts L2ZZ when entering nap or sleep mode, and automatically
negates L2ZZ when exiting nap or sleep. L2CTL should not be set when the MPC7400 is
in nap mode and dynamic snooping is being performed through negation of QACK. The
relatively long recovery time from ZZ negation that many SRAM vendors require may only
allow use of this function for deep-sleep operation.

The L2CR[L2CLKSTP] parameter controls automatic stopping of the L2 clock output
signals for cache RAMs that support this function. When L2CLKSTP is set, the L2 clock
output signals automatically stop when the MPC7400 enters nap or sleep mode, and
automatically restart when the MPC7400 exits nap or sleep.

The L2CR[L2TS] parameter is provided to support L2 cache testing. See Section 3.7.7, ÒL2
Cache Testing,Ó for more information.

3.7.4 L2 Cache Initialization
Following a power-on or hard reset, the L2 cache and the L2 cache DLL are disabled
initially. Before enabling the L2 cache, the L2 cache DLL must Þrst be conÞgured through
the L2CR register, and the DLL must be allowed 640 L2 cache clock periods to achieve
phase lock. Before enabling the L2 cache, other conÞguration parameters must be set in the
L2CR, and the L2 cache tags must be globally invalidated. The L2 cache should be
initialized during system start-up.

The sequence for initializing the L2 cache is as follows:

1. Power-on reset (automatically performed by the assertion of HRESET).

2. Disable L2 cache by clearing L2CR[L2E].

3. Set the L2CR[L2CLK] bits to the desired clock divider setting. Setting a nonzero
value automatically enables the DLL. All other L2 cache conÞguration bits should
be set to properly conÞgure the L2 cache interface for the SRAM type, size, and
interface timing required.

3-62 MPC7400 RISC Microprocessor UserÕs Manual

L2 Cache Interface

4. Wait for the L2 cache DLL to achieve phase lock. This can be timed by setting the
decrementer for a time period equal to 640 L2 cache clocks, or by performing an L2
cache global invalidate.

5. Perform an L2 cache global invalidate. The global invalidate could be performed
before enabling the DLL, or in parallel with waiting for the DLL to stabilize. Refer
to Section 3.7.3.7, ÒL2 Cache Global Invalidation,Ó for more information about L2
cache global invalidation. Note that a global invalidate always takes much longer
than it takes for the DLL to stabilize.

6. After the DLL stabilizes, an L2 cache global invalidate has been performed, and the
other L2 cache conÞguration bits have been set, enable the L2 cache for normal
operation by setting the L2CR[L2E] bit to 1.

3.7.5 L2 Cache Operation
The MPC7400Õs L2 cache is a combined instruction and data cache that receives memory
requests from both L1 instruction and data caches independently. The L1 requests are
generally the result of instruction fetch misses, data load or store misses, L1 data cache
castouts, write-through operations, or cache management instructions. Each L1 request
generates an address lookup in the L2 cache tags. If a hit occurs, the instructions or data are
forwarded to the appropriate L1 cache. A miss in the L2 cache tags causes the L1 request
to be forwarded to the system bus interface. The L2 cache also services snoop requests from
the system bus.

Generally, the L2 cache operates according to the following rules:

¥ In case of multiple pending requests to the L2 cache, snoop requests have the highest
priority. The next priority is a data cache reload, unless there is an address conßict
with an L1 data cache castout. In this case, the L1 castout will have higher priority.
This insures that reads and writes to the same cache block are kept in order. The
lowest priorities are instruction fetches from the L1 instruction cache and L2
instruction reloads.

¥ All requests to the L2 cache that are marked caching-inhibited bypass the L2 cache
(even if they would have normally hit), and do not cause any L2 tag state changes.

¥ Requests to the L2 cache that are marked caching-allowed (even if the respective L1
cache is locked) are serviced by the L2 cache. Caching-allowed burst requests are
serviced in their entirety. Caching-allowed single-beat requests are allowed to hit
and update in case of a store hit, but do not cause allocation or deallocation. Note
that these comments apply only if the cache disabling conditions of Section 3.7.3.1,
ÒEnabling and Disabling the L2 Cache,Ó are met.

¥ Burst read and single-beat read requests from the L1 instruction or data caches that
hit in the L2 cache are forwarded data from the L2 SRAMs.

Chapter 3. L1 and L2 Cache Operation 3-63

L2 Cache Interface

¥ Burst read requests from the L1 instruction or data caches that miss in the L2 cache
will initiate a burst read operation from the system interface for the cache block that
missed. The cache block that is received from the bus is forwarded to the appropriate
L1 cache. L1 instruction cache misses are also allocated into the L2. If the L2
allocate requires a new tag entry and the current tag is modiÞed, any modiÞed
sectors of the tag to be replaced are castout from the L2 cache to the system
interface, and the F-bit is updated to point to the other cache way. If the L2 cache is
disabled (L2E = 0) or data only (L2D0 = 0), then L1 instruction cache misses are not
allocated into L2.

¥ Normal burst writes from the L1 data cache due to castouts (also referred to as
replacement copybacks) are written to the L2 cache with the same state (MERSI)
information as they had in the L1. If the L2 is conÞgured as write-through
(L2WT = 1), they are marked exclusive instead, and are also forwarded to the
system interface. If the L1 castout requires a new tag entry to be allocated in the L2
cache and the current tag is modiÞed, any modiÞed sectors of the tag to be replaced
are castout from the L2 cache to the system interface, unless the C bit of the L1 cast
out is clear. If the C bit is clear, and the L1 castout misses in the L2, it does not
allocate a new entry and is forwarded to the system interface. If a new tag is
allocated, the F-bit is updated to point to the other cache way. Note that setting the
L2IO bit of the L2CR forces the C bit of all L1 castouts to be cleared. In this case,
L1 castouts will never allocate in the L2.

¥ Normal burst writes to the L2, on behalf of instruction cache misses that cause L2
allocates, are written to the L2 with the state (RSI) information obtained from the
system interface. If this write ever hits in the L2 (due to data and instructions
occupying the same block), then it is discarded.

¥ Normal single-beat writes (not stwcx.) that are marked write-through (by address
translation or because the L1 cache is locked) are written to the L2 cache if they hit,
and they are also written to the system interface independent of L2 hit/miss status.
In case of a hit to a line in the L2 not marked modiÞed, the status (MERSI)
information and F-bit remain unchanged. In case of a hit to a line in the L2 that is
marked modiÞed, the entire line is pushed to memory and the state is changed to
exclusive. The F-bit remains unchanged.

¥ Caching-allowed stwcx. operations are handled by the L1 data cache similarly to
normal caching-allowed stores. The L2 data cache does not treat stwcx. differently
than a normal caching-allowed store. Caching-inhibited stwcx. operations do not
access the L2 tags and are forwarded to the system interface.

¥ The dcbz instruction does not affect the L2 cache state. The dcbz instruction is
handled entirely by the L1.

¥ On the MPC7400, dcba differs from dcbz only in its exception generation. As such,
it is identical to dcbz from an L2 perspective. The dcba instruction does not affect
the L2 cache state.

3-64 MPC7400 RISC Microprocessor UserÕs Manual

L2 Cache Interface

¥ A dcbf instruction is issued to the L2 cache after being processed by the L1 data
cache. If a dcbf hits in the L2 cache, it invalidates the block. If the dcbf requires a
cache block push from the L1 data cache, the push is forwarded to the system
interface. If the dcbf does not require a cache block push from the L1 data cache,
and hits on a block marked modiÞed in the L2 cache, the L2 pushes the data to the
system interface. In either case, if the cache block existed in the L2, it is marked
invalid. If the dcbf is marked global, it is forwarded to the system interface.

¥ A dcbst instruction is issued to the L2 cache after being processed by the L1 data
cache. If the dcbst requires a cache block push in the L1 data cache, this data is
written to the L2, the cache block is marked exclusive, and the push is forwarded to
the system interface. If the dcbst does not require a cache block push from the L1
data cache, and the cache block is modiÞed in the L2 cache, the L2 pushes the data
to the system interface and marks the cache block exclusive. If the dcbst misses in
the L2 cache and is marked global, it is forwarded to the system interface.

¥ A dcbi instruction is always issued to the L2 cache, and causes the cache block to
be invalidated in the L2 in case of a hit. A dcbi instruction is also issued to the system
interface if they are marked global.

¥ The icbi instruction never affects the L2 cache. All icbi instructions are passed to the
system interface.

¥ sync, eieio, eciwx, ecowx, tlbi, and tlbsync instructions bypass the L2 cache, and
are forwarded to the system interface for further processing.

3.7.5.1 L2 Cache Allocation on Cache Misses
The L2 cache is a victim cache for the L1 data cache. The L2 cache allocates new entries
for data accesses only when blocks are cast out of the L1 data cache. When a block is
queued up as a data cache castout and the L2 cache is enabled, the L2 cache allocates a new
tag for the castout in the L2 cache if it misses and the C bit is set. If the C bit is cleared and
the block misses in the L2 cache, the L2 cache does not allocate a tag. Instead, it passes the
castout to the system interface if the cache block is marked modiÞed. If the data cache
castout hits in the L2 cache, the castout data is written to the L2 cache regardless of the state
of the C bit.

If the L2 cache is disabled, then the block replaced from the L1 data cache is cast out to the
system interface if the cache block is marked modiÞed.

3.7.5.2 L2 Cache Replacement Selection
L2 cache victims are selected based on the FIFO replacement bit (F-bit) in the cache tags.
When an L1 data cache castout or L1 instruction cache reload allocates a new tag in the L2
cache, the F bit is updated to point to the other cache way. L2 cache victim selection is
performed at reload time, not at demand-miss time.

Chapter 3. L1 and L2 Cache Operation 3-65

L2 Cache Interface

3.7.5.3 Store Hit to a Shared or Recent L2 Cache Block
If a write-back store misses in the L1 data cache but hits on an L2 cache block in the shared
or recent state, the L2 cache provides the cache block to the reload data buffer. A kill
operation is then propagated to the system bus. The reload data buffer treats the entry as a
hit-on-shared/hit-on-recent and waits for the bus to complete the kill broadcast before
reloading the data cache.

As in the data cache hit-on-shared/hit-on-recent case, if a snoop operation invalidates
ownership of the target block before the kill operation is successful, the reload buffer entry
changes to treat the entry like a normal store miss. In this case, the MPC7400 performs a
RWITM operation on the address bus instead and reloads the L1 data cache in the modiÞed
state.

3.7.6 L2 Cache Clock ConÞguration
The MPC7400 provides a programmable clock for the L2 cache external synchronous data
RAM. The clock frequency for the external SRAM is provided by dividing the MPC7400Õs
internal clock by ratios of 1, 1.5, 2, 2.5, 3, 3.5, or 4 programmed through the L2CR[CLK]
bit. The L2 cache clock is phase-adjusted to synchronize the clocking of the latches in the
MPC7400Õs L2 cache interface with the clocking of the external SRAM by means of an
on-chip delay-locked loop (DLL).

The ratio selected for the L2 cache clock is dependent on the frequency supported by the
external SRAMs, the MPC7400Õs internal operation frequency, and the range of phase
adjustment supported by the L2 cache DLL. Refer to the MPC7400 hardware speciÞcations
for additional information about L2 cache clock conÞguration.

3.7.7 L2 Cache Testing
In the course of system power-up, testing may be required to verify proper operation of the
L2 cache tags, external SRAMs, and overall L2 cache system. This section describes
features and methods for testing the L2 cache.

L2CR[L2DO] and L2CR[L2TS] support the testing of the L2 cache. L2CR[L2DO]
prevents instructions from being cached in the L2 cache. This allows the L1 instruction
cache to remain enabled during the testing process without having L1 instruction cache
misses affect the contents of the L2 cache and allows all L2 cache activity to be controlled
by program-speciÞed load and store operations.

L2CR[L2TS] is used with the dcbf and dcbst instructions to push data into the L2 cache.
When L2TS is set, dcbf pushes from the L1 data cache are allocated in the L2 cache (rather
than stored to the system bus as with normal dcbf operations) and all dcbz operations are
treated as non-global (to suppress address broadcasts). In addition, write-through stores are
not forwarded to the system interface. Write-through stores that hit in the L2 cache update
the cache data RAMs. L2TS allows general testing of the L2 cache data RAMs and tags by

3-66 MPC7400 RISC Microprocessor UserÕs Manual

L2 Cache Interface

allowing a dcbz/dcbf loop to initialize the L2 cache with address and data information, and
then allowing various read/write operations to test the L2 cache data RAMs and/or tags.

3.7.7.1 Testing Overall L2 Cache Operation
One method for testing overall L2 cache operation is to enable the caches for normal
operation and run a comprehensive program designed to exercise all the caches, including
L2 reload and castout activity. The performance monitors may be used to monitor hits,
misses, and castouts of cacheable operations.

3.7.7.2 Testing L2 Cache External SRAMs
The L2 cache external SRAMs may be tested using the following procedure:

1. Disable address translation (MSR[DR] = 0) to invoke the default WIMG setting of
0b0011.

2. Set L2CR[L2DO] and L2CR[L2TS], and perform a global invalidation of the L1
data cache and the L2 cache. The L1 instruction cache can remain enabled to
improve execution efÞciency.

3. Enable the L2 cache and the L1 data cache.

4. Execute a series of dcbz and dcbf instructions to initialize the cache with a
sequential range of addresses and with cache data consisting of zeroes. Although the
L2 cache is in data-only mode at this point, instruction accesses may still hit in the
L2 cache, so ensure that the sequential range of addresses selected does not overlap
with any existing instruction address space.

5. Invalidate and lock the L1 data cache.

6. Perform a series of store and load operations using a variety of non-zero bit patterns
to test for stuck bits and pattern sensitivities in the L2 cache SRAMs. These loads
and stores should be in the range of addresses used to initialize the caches in step 4
so that each access hits in the L2 cache.

3.7.7.3 Testing L2 Cache Tags
The L2 cache internal tags may be tested using the following procedure:

1. Disable address translation (MSR[DR] = 0) to invoke the default WIMG setting of
0b0011.

2. Set L2CR[L2DO] and L2CR[L2TS], and perform a global invalidation of the L1
data cache and the L2 cache. The L1 instruction cache can remain enabled to
improve execution efÞciency.

3. Enable the L2 cache and the L1 data cache.

Chapter 3. L1 and L2 Cache Operation 3-67

L2 Cache Interface

4. Execute a series of dcbz and dcbf instructions to initialize the cache with a
sequential range of addresses and with cache data consisting of zeroes. Although the
L2 cache is in data-only mode at this point, instruction accesses may still hit in the
L2 cache, so ensure that the sequential range of addresses selected does not overlap
with any existing instruction address space.

5. Invalidate and lock the L1 data cache.

6. Perform a series of non-zero stores to a range of addresses not currently in the L2
cache. Each of these stores should miss.

7. Initialize the performance monitor counters to zero, and set the MMCR registers to
count the number of L2 cache hits.

8. Perform a series of reads from the original range of addresses located in the cache
and verify that the data read was not affected by the stores performed in step 6. For
accurate reporting of the number of hits, only one load per cache line should be
performed.

9. Disable the performance monitor counters and verify that the number of hits
matches the accesses performed by the test program. All accesses to the original
region should hit.

Note that when running these cache tests, the performance monitor counters can only be
used to count load hits/misses in the L2 cache. Hits or misses that result from stores cannot
be counted. This is due to the L1 data cache being locked during the test procedure, which
means that data store operations are treated as write-through. Loads are treated as cacheable
when the L1 data cache is locked, and can therefore be counted by the performance
monitors.

3.7.8 L2 Cache SRAM Timing Examples
This section describes the signal timing for the three types of SRAM (pipelined burst
SRAM, late-write SRAM, and PB3 SRAM) supported by the MPC7400Õs L2 cache
interface. The timing diagrams illustrate the best case logical (ideal, non AC-timing
accurate) interface operations. For proper interface operation, the designer must select
SRAMs that support the signal sequencing illustrated in the timing diagrams.

3-68 MPC7400 RISC Microprocessor UserÕs Manual

L2 Cache Interface

The SRAM selected for a system design is usually a function of desired system
performance, L2 cache bus frequency, and SRAM unit cost. The following sections
describe the operation of the three SRAM types supported by the MPC7400, and the design
trade-offs associated with each.

3.7.8.1 Pipelined Burst SRAM
Pipelined burst SRAMs are sometimes referred to as PB2 (pipelined burst, 2nd generation)
SRAMs to distinguish them from PB3 SRAMs. Pipelined burst SRAMs operate by
clocking read data from the memory array into a buffer before driving the data onto the data
bus. This causes an extra clock cycle of latency for initial read accesses, but the L2 cache
bus frequencies supported can be higher. Note that the MPC7400Õs L2 cache interface
requires the use of single-cycle deselect pipelined burst SRAM for proper operation.

Note that during burst transfers into and out of the SRAM array, the MPC7400 generates
an address for each data beat. That is, the MPC7400 does not use the burst feature (one
address, many data beats) of the pipelined burst SRAMs.

Figure 3-35 shows memory access timings when the L2 cache interface is conÞgured for
pipelined burst SRAM.

Chapter 3. L1 and L2 Cache Operation 3-69

L2 Cache Interface

Figure 3-35. Pipeline Burst SRAM Timing

3.7.8.2 Late-Write SRAM
Late-write SRAMs offer improved performance when compared to pipelined burst SRAMs
by not requiring an extra read cycle during read operations, and requiring one cycle less
when transitioning from a read to a write operation. Late-write SRAMs implement an
internal write queue, allowing write data to be provided one cycle after the write operation
is signaled on the address and control buses. In this manner, write operations are queued on
the address and data bus in the same manner as read operations, allowing transitions
between read and write operations to occur more efÞciently.

Note that during burst transfers into and out of the SRAM array, the MPC7400 generates
an address for each data beat. That is, the MPC7400 does not use the burst feature (one
address, many data beats) of the late-write SRAMs.

Figure 3-36 shows memory access timings when the L2 cache interface is conÞgured for
late-write SRAM.

SRAM Addr Bus

SRAM Memory

SRAM Data Bus

SRAM Clock

R0 R1 R2 R3 Rxtr

R0 R1 R2 R3 Rxtr

R0 R1 R2 R3Rdrv W4 W5 W6 W7

W4 W5 W6 W7

W4 W5 W6 W7

R8 R9 R10 R11 Rxtr

R8 R9 R10 R11 Rxtr

R8 R9 R10 R11RdrvhiZhiZ

idle idle

idle idle

burst rd burst wr burst rd

L2CE

L2WE

SRAM Addr Bus

SRAM Memory

SRAM Data Bus

SRAM Clock

R0 R1 R2 R3

R0 R1 R2 R3

R0 R1 R2 R3Rdrv R4 R5 R6 R7

R4 R5 R6 R7

R4 R5 R6 R7

R8 W9idleidleRxtr

R8 W9idle idleRxtr

R8 W9hiZ

L2WE

burst rd burst rd rd modify wr

W10 W11 W12 W13

W10 W11 W12 W13

W10 W11 W12 W13

burst wr

L2CE

Notes: Rdrv indicates where some burst RAMs may begin driving the data bus.
Rxtr indicates where an extra read cycle is signaled to keep the burst RAM driving the data bus for the last
read. The MPC7400 does not support aborted reads

3-70 MPC7400 RISC Microprocessor UserÕs Manual

L2 Cache Interface

Figure 3-36. Late-Write SRAM Timing

3.7.8.3 PB3 SRAM
PB3 (pipelined burst, third generation) SRAMs are a later generation of SRAM than either
pipelined burst SRAM (PB2) or late-write SRAM. PB3 SRAMs mimic the efÞciencies of
the late-write SRAMs, but operate more like traditional PB2 SRAMs (that is, they have no
internal write queue). PB3 SRAMs stage the initial internal array access over two clock
cycles, thereby requiring an additional wait state for the Þrst read data beat.

Note that for PB3 SRAMs, the MPC7400 generates a single address for burst transfers of
four data beats (32-bytes) into and out of the SRAM array. That is, the MPC7400 does use
the burst feature (one addrees, many data beats) of the PB3 SRAMs.

Figure 3-37 shows memory access timings when the L2 cache interface is conÞgured for
PB3 SRAM.

SRAM Addr Bus

SRAM Memory

SRAM Data Bus

SRAM Clock

R0 R1 R2 R3

R0 R1 R2 R3

R0 R1 R2 R3 W4 W5 W6 W7

W4 W5 W6 W7

(WQ) W4 W5 W6

R8 R9 R10 R11

R8 R9 R10 R11

R8 R9 R10 R11hiZhiZ

idle

idle

burst rd burst wr burst rd

L2CE

L2WE

SRAM Addr Bus

SRAM Memory

SRAM Data Bus

SRAM Clock

R0 R1 R2 R3

R0 R1 R2 R3

R0 R1 R2 R3 R4 R5 R6 R7

R4 R5 R6 R7

R4 R5 R6 R7

R8 W9idleidle

R8 (WQ)idle idle

R8 W9hiZ

L2WE

burst rd burst rd rd modify wr

W10 W11 W12 W13

W10 W11 W12 W13

W9 W10 W11 W12

burst wr

L2CE

idle

idle

Note: WQ is the last previous write that was queued in the late-write RAM.

(see W7 note, below)

W7 Note: W7 is queued in the late-write device and wonÕt appear in SRAM Memory until the next write.

Chapter 3. L1 and L2 Cache Operation 3-71

L2 Cache Interface

Figure 3-37. PB3 SRAM Timing

SRAM Addr Bus

SRAM Array

SRAM Data Bus

SRAM Clock

L2CE

L2WE

burst wr burst wr

w0a w0b w0c w0d

sel0 w0a w0b w0c w0d

w0 idle

r0

idlehi-z

idle

burst rd burst wr burst rd

idle

idlesel0 r0a r0b r0c r0d

r0a r0b r0c r0d w1a w1b w1c w1d

sel1 w1a w1b w1c w1d

w1

r2a r2b r2c r2d

sel2 r2a r2b r2c r2d

r2idleidle

idle hi-z

idle

r0

hi-zhi-z

idle

burst rd burst rd

idle

sel0 r0a r0b r0c r0d

r0a r0b r0c r0d r1a r1b r1c r1d

sel1 r1a r1b r1c r1d

r1 r2

sel2 r2a r2b r2c r2d

r2a r2b r2c r2d

burst rd

SRAM Addr Bus

SRAM Array

SRAM Data Bus

SRAM Clock

L2CE

L2WE

SRAM Addr Bus

SRAM Array

SRAM Data Bus

SRAM Clock

L2CE

L2WE

sel1 w1a w1b w1c w1d

w1a w1b w1c w1d

w1 w2

sel2 w2a w2b w2c w2d

w2a w2b w2c w2d

burst wr

idle

idle idle

1 62 3 4 5 117 8 9 10 1612 13 14 15 17 18 19

1 62 3 4 5 117 8 9 10 1612 13 14 15 17 18 19

1 62 3 4 5 117 8 9 10 1612 13 14 15 17 18 19

For PB3, L2ZZ is reused as L2ADS and asserts during the first clock only of each L2CE assertion.

idle

idleidle

idle

dsel dsel dsel

dsel

idle

For PB3, internal array access requires 1 cycle to row select, 1 cycle for each column select of burst (a-d), 1 cycle deselect if write.

(hold) (hold) (hold)

(hold)(hold)(hold)

(hold) (hold) (hold)idle

3-72 MPC7400 RISC Microprocessor UserÕs Manual

System Bus Interface Unit

3.8 System Bus Interface Unit
The bus interface unit buffers bus requests from the L1 instruction cache, the L1 data cache,
and the L2 cache, and executes the requests per the system bus protocol. It includes address
register queues, prioritizing logic, and bus control logic. The bus interface unit includes a
six-entry data transaction queue to support pipelining of multiple transactions. The bus
interface also captures snoop addresses for snooping in the caches, the address register
queues, and the reservation address. For additional information about the MPC7400 bus
interface and the bus protocols, refer to Chapter 9, ÒSystem Interface Operation.Ó

3.9 MPC7400 Caches and System Bus Transactions
The MPC7400 transfers data to and from the cache in single-beat transactions of up to eight
bytes, in two-beat burst transfers of 16 bytes for caching-inhibited (WIMG = x1xx) or
caching-allowed,write-through (WIMG = 10xx) AltiVec loads and stores (in MPX bus
mode), or in four-beat transactions of 32 bytes for cache block Þlls. The MPC7400 transfer
burst (TBST) output signal indicates to the system whether the current transaction is a
single-beat transaction or burst (two- or four-beat) transfer.

Single-beat bus transactions can transfer from one to eight bytes to or from the MPC7400,
and can be misaligned. Single-beat transactions can be caused by caching-allowed,
write-through accesses (WIMG = 10xx), caching-inhibited accesses (WIMG = x1xx),
accesses when the cache is disabled (HID0[DCE] is cleared), or accesses when the cache
is locked (HID0[DLOCK] is set).

In MPX bus mode, two-beat burst transactions are caused by quad-word (128-bit) AltiVec
loads and stores that are marked write-through or caching-inhibited. These two-beat burst
transactions are always aligned to a quad-word boundary. In 60x bus mode, quad-word
AltiVec loads and stores are split into two separate 8-byte, single-beat transactions on the
system bus.

Cache block burst transactions on the MPC7400 always transfer 32-bytes of data in four
beats of 8-bytes each, and are aligned to a double-word boundary. Burst transactions have
an assumed address order. For caching-allowed read operations, instruction fetches, or
caching-allowed, non-write-through write operations that miss in the cache, the MPC7400
presents the double-word-aligned address associated with the load/store instruction or
instruction fetch that initiated the transaction.

As shown in Figure 3-38, the Þrst double word contains the address of the load/store or
instruction fetch that missed the cache. This minimizes latency by allowing the critical code
or data to be forwarded to the processor before the rest of the block is Þlled. For all other
burst operations, however, the entire block is transferred in order (oct-word-aligned).
Critical-double-word-Þrst fetching on a cache miss applies to both the data and instruction
cache.

Chapter 3. L1 and L2 Cache Operation 3-73

MPC7400 Caches and System Bus Transactions

Figure 3-38. Double-Word Address OrderingÑCritical Double Word First

3.9.1 Bus Operations Caused by Cache Control Instructions
The cache control, TLB management, and synchronization instructions supported by the
MPC7400 may affect or be affected by the operation of the system bus. The operation of
the instructions may also indirectly cause bus transactions to be performed, or their
completion may be linked to the bus.

When memory coherency is required (WIMG = xx1x), the dcbst, dcbf, and dcbi
instructions cause a broadcast on the system bus to maintain coherency. The icbi instruction
is always broadcast, regardless of the state of the memory-coherency-required attribute. For
detailed information on the cache control instructions, refer to Chapter 2, ÒProgramming
Model,Ó in this book and Chapter 8, ÒInstruction Set,Ó in The Programming Environments
Manual.

Table 3-13 provides an overview of the bus operations initiated by cache control
instructions. Note that Table 3-13 assumes that the WIM bits are set to 001; that is, the
cache is operating in write-back mode, caching is allowed, and memory coherency is
enforced.

Table 3-13. Bus Operations Caused by Cache Control
Instructions (WIM = 001)

Instruction
Current Cache

State
Next Cache

State
Bus Operation Comment

sync DonÕt care No change sync Waits for memory queues to
complete bus activity

tlbie DonÕt care No change tlbie Ñ

If the address requested is in double word A, the address placed on the bus is that of double word A, and
the four data beats are ordered in the following manner:

If the address requested is in double word C, the address placed on the bus will be that of double word C,
and the four data beats are ordered in the following manner:

A B C D

111000 01

A B C D

320 1
Beat

MPC7400 Cache Address
Bits (27... 28)

C D A B

320 1
Beat

3-74 MPC7400 RISC Microprocessor UserÕs Manual

MPC7400 Caches and System Bus Transactions

For additional details about the speciÞc bus operations performed by the MPC7400, see
Chapter 9, ÒSystem Interface Operation.Ó

3.9.2 Transfer Attributes
In addition to the address and transfer type signals, the MPC7400 supports the transfer
attribute signals TBST, TSIZ[0:2], WT, CI, and GBL. The TBST and TSIZ[0:2] signals
indicate the data transfer size for the bus transaction.

The WT signal reßects the write-through/write-back status (the complement of the W bit)
for the transaction as determined by the MMU address translation during write operations.
WT is also asserted for burst writes due to dcbf (ßush) and dcbst (clean) instructions, snoop
pushes, and eciwx transactions; WT is negated for ecowx transactions.

The CI signal reßects the caching-inhibited/caching-allowed status (the complement of the
I bit) of the transaction as determined by the MMU address translation even if the L1 caches
are locked. The CI signal is asserted for data loads or stores if the L1 data cache is disabled,
The CI signal is also always asserted for eciwx/ecowx bus transactions independent of the
address translation.

tlbsync DonÕt care No change tlbsync Address-only bus operation

eieio DonÕt care No change eieio Address-only bus operation

dcbt M, E, R, S No change None Ñ

dcbt I E or S Read Fetched cache block is stored
in the cache

dcbtst M, E, R, S No change None Ñ

dcbtst I E RWITM (60x bus mode)
RCLAIM (MPX bus mode)

Fetched cache block is stored
in the cache

dcbz M, E M None Writes over modiÞed data

dcbz R, S, I M Kill Ñ

dcbst M E Write with kill Block is pushed

dcbst E, R, S, I No change Clean Address-only bus operation

dcbf M I Write with kill Block is pushed

dcbf E, R, S, I I Flush Address-only bus operation

dcba M, E M None Writes over modiÞed data

dcba R, S, I M Kill Ñ

dcbi DonÕt care I Kill Address-only bus operation

icbi DonÕt care I icbi Ñ

Table 3-13. Bus Operations Caused by Cache Control
Instructions (WIM = 001) (Continued)

Instruction
Current Cache

State
Next Cache

State
Bus Operation Comment

Chapter 3. L1 and L2 Cache Operation 3-75

MPC7400 Caches and System Bus Transactions

The GBL signal reßects the memory coherency requirements (the complement of the M bit)
of the transaction as determined by the MMU address translation. Address bus masters
assert GBL to indicate that the current transaction is a global access (that is, an access to
memory shared by more than one device). Because cache block castouts and snoop pushes
do not require snooping, the GBL signal is not asserted for these operations. Note that GBL
is asserted for all data read or write operations when using real addressing mode (that is,
address translation is disabled).

Table 3-14 summarizes the address and transfer attribute information presented on the bus
by the MPC7400 for various master or snoop-related transactions.

Table 3-14. Address/Transfer Attributes Generated by the MPC7400

Bus Transaction A[0:31] TT[0Ð4] TBST TSIZ[0:2] WT CI GBL

Instruction fetch operations:

Burst (caching-allowed) PA[0:28] || 0b000 0 1 0 1 0 0 0 1 0 Â W 1 Â M

Single-beat read
(caching-inhibited or cache
disabled)

PA[0:28] || 0b000 0 1 0 1 0 1 0 0 0 Â W 0 Â M

Data cache operations:

Cache block Þll (due to load
miss)

PA[0:28] || 0b000 F 1 0 1 0 0 0 1 0 Â W 1* Â M

Cache block Þll (due to store
miss)

PA[0:28] || 0b000 A 1 1 1 0 0 0 1 0 1 1* Â M

Store hit on shared/store miss
merge

PA[0:26] || 0b00000 0 1 1 0 0 0 0 1 0 Â W 1* Â M

Castout
(normal replacement)

CA[0:26] || 0b00000 0 0 1 1 0 0 0 1 0 1 1* 1

Cache block clean due to dcbst
hit to modiÞed

PA[0:26] || 0b00000 0 0 1 1 0 0 0 1 0 0 1* 1

Cache block ßush due to dcbf hit
to modiÞed

PA[0:26] || 0b00000 0 0 1 1 0 0 0 1 0 0 1* 1

Snoop copyback CA[0:26] || 0b00000 0 0 1 1 0 0 0 1 0 0 1* 1

dcbt, dst, dstt PA[0:26] || 0b00000 F 1 0 1 0 0 0 1 0 Â W 1* Â M

dcbtst, dstst, dststt (60x bus
mode)

PA[0:26] || 0b00000 0 1 1 1 0 0 0 1 0 Â W 1* Â M

dcbtst, dstst, dststt (MPX bus
mode)

PA[0:26] || 0b00000 0 1 1 1 1 0 0 1 0 Â W 1* Â M

Data cache bypass operations:

Single-beat read
(caching-inhibited or cache
disabled)

PA[0:31] F 1 0 1 0 1 S S S Â W Â I Â M

AltiVec load (caching-inhibited,
write-through, or cache disabled)
in MPX bus mode

PA[0:28] || 0b000 F 1 0 1 0 0 0 0 1 Â W Â I Â M

3-76 MPC7400 RISC Microprocessor UserÕs Manual

MPC7400 Caches and System Bus Transactions

Notes:
PA = Physical address, CA = Cache address, EA = Effective address.
W,I,M = WIM state from address translation; Â = complement; 0 or 1 = WIM state implied by transaction type
in table.
F = Instruction fetch transfer type mode; high if HID0[IFTT] = 0b1, high if lwarx, low otherwise.
A = Atomic; high if stwcx., low otherwise
S = Transfer size
Special instructions listed may not generate bus transactions depending on cache state.
TT[0Ð4] = 0b01011 (RWNITC) is snooped by the MPC7400, but is not generated by the MPC7400.
TT[0Ð4] = 0b00001 (lwarx reservation set) is neither snooped nor generated by the MPC7400.

3.9.3 Snooping
The MPC7400 maintains data cache coherency in hardware by coordinating activity
between the data cache, the memory subsystem, the L2 cache, and the bus interface unit.
The MPC7400 has a copyback cache that relies on bus snooping to maintain cache
coherency with other caches in the system. For the MPC7400, the coherency size of the bus
is 32 bytes, the size of a cache block. This means that any bus transactions that cross an
aligned 32-byte boundary must present a new address onto the bus at that boundary for
proper snoop operation by the MPC7400, or they must operate noncoherently with respect
to the MPC7400.

Single-beat write
(caching-inhibited, write-through,
or cache disabled)

PA[0:31] 0 0 0 1 0 1 S S S Â W Â I Â M

AltiVec store (caching-inhibited,
write-through, or cache disabled)
in MPX bus mode

PA[0Ð28] || 0b000 0 0 0 1 0 0 0 0 1 Â W Â I Â M

stwcx. (caching-inhibited) PA[0Ð29] || 0b00 1 0 0 1 0 1 1 0 0 Â W 0 Â M

Special instructions:

icbi (addr-only) PA[0Ð26] || 0b00000 0 1 1 0 1 0 0 1 0 Â W Â I Â M

dcba (addr-only) PA[0Ð26] || 0b00000 0 1 1 0 0 0 0 1 0 1 1 0

dcbz (addr-only) PA[0Ð26] || 0b00000 0 1 1 0 0 0 0 1 0 1 1 0

dcbi (addr-only) PA[0Ð26] || 0b00000 0 1 1 0 0 0 0 1 0 Â W Â I Â M

dcbf (addr-only) PA[0Ð26] || 0b00000 0 0 1 0 0 0 0 1 0 Â W Â I Â M

dcbst (addr-only) PA[0Ð26] || 0b00000 0 0 0 0 0 0 0 1 0 Â W Â I Â M

sync (addr-only) 0x0000_0000 0 1 0 0 0 0 0 1 0 1 1 0

tlbsync (addr-only) 0x0000_0000 0 1 0 0 1 0 0 1 0 1 1 0

tlbie (addr-only) EA[0Ð31] 1 1 0 0 0 0 0 1 0 1 1 0

eieio (addr-only) 0x0000_0000 1 0 0 0 0 0 0 1 0 1 1 0

eciwx PA[0Ð29] || 0b00 1 1 1 0 0 EAR[28Ð31] 0 0 1

ecowx PA[0Ð29] || 0b00 1 0 1 0 0 EAR[28Ð31] 1 0 1

Table 3-14. Address/Transfer Attributes Generated by the MPC7400 (Continued)

Bus Transaction A[0:31] TT[0Ð4] TBST TSIZ[0:2] WT CI GBL

Chapter 3. L1 and L2 Cache Operation 3-77

MPC7400 Caches and System Bus Transactions

As bus operations are performed on the bus by other bus masters, the MPC7400 bus
snooping logic monitors the addresses and transfer attributes that are referenced. The
MPC7400 must see all system coherency snoops to function properly in a symmetric
multiprocessing (SMP) environment. The MPC7400 cannot support external devices that
Þlter out snoop trafÞc on the bus (for example, an external, in-line cache).

The MPC7400 snoops bus transactions during the cycle that TS is asserted for all global
transactions (GBL asserted).

The state of ABB is not sampled to determine a qualiÞed snoop condition. All transactions
snooped by the MPC7400 are checked for correct odd address bus parity. Every assertion
of TS detected by the MPC7400 (whether snooped or not) must be followed by an
accompanying assertion of AACK.

There are several bus transaction types deÞned for the system bus. As shown in Table 3-15,
the MPC7400 snoops many, but not all, system transactions. The transactions in Table 3-15
correspond to the transfer type signals TT[0:4], which are described in Section 8.2.4.2,
ÒTransfer Type (TT[0:4]).Ó

Table 3-15. Snooped Bus Transaction Summary

Transaction TT[0Ð4]
Snooped by

MPC7400

Clean 00000 Yes

Flush 00100 Yes

sync 01000 Yes

Kill 01100 Yes

eieio 10000 No

External control word write 10100 No

TLB invalidate 11000 Yes

External control word read 11100 No

lwarx reservation set 00001 No

Reserved 00101 No

tlbsync 01001 Yes

icbi 01101 Yes

Reserved 1XX01 No

Write-with-ßush 00010 Yes

Write-with-kill 00110 Yes

Read
(or instruction fetch if HID0[IFTT] = 0b1)

01010 Yes

Read-with-intent-to-modify (RWITM) 01110 Yes

Write-with-ßush-atomic 10010 Yes

Reserved 10110 No

3-78 MPC7400 RISC Microprocessor UserÕs Manual

MPC7400 Caches and System Bus Transactions

Once a qualiÞed snoop condition is detected on the bus, the snooped address associated
with TS is compared against the data cache tags, reload buffer table entries, memory
queues, reservation address, and/or other storage elements as appropriate. The L1 data
cache tags and L2 cache tags are snooped for standard data cache coherency support. No
snooping is done in the instruction cache for coherency.

The memory queues are snooped for pipeline collisions and memory coherency collisions.
A pipeline collision is detected when another bus master addresses any portion of a line that
this MPC7400Õs reload data buffer is currently in the process of loading (dRLDB loading
from L2 cache, or dRLDB/L2 cache loading from memory). A memory coherency collision
occurs when another bus master addresses any portion of a line that the MPC7400 has
currently queued to write to memory from the data cache (castout or copyback), but has not
yet been granted bus access to perform.

If the snooped address does not hit in the cache, snooping Þnishes with no action taken. If,
however, the address hits in the cache, the MPC7400 reacts according to the coherency
protocol diagrams shown in Section 3.4.3, ÒCoherency Protocols.Ó

Read-atomic
(or data read if HID0[IFTT] = 0b1)

11010 Yes

Read-with-intent-to-modify-atomic 11110 Yes

Reserved 00011 No

Reserved 00111 No

Read-with-no-intent-to-cache (RWNITC) 01011 Yes

Read-claim (RCLAIM)
(MPX bus mode only)

01111 Yes

Reserved 1XX11 No

Table 3-15. Snooped Bus Transaction Summary (Continued)

Transaction TT[0Ð4]
Snooped by

MPC7400

Chapter 4. Exceptions 4-1

Chapter 4
Exceptions
The OEA portion of the PowerPC architecture deÞnes the mechanism by which PowerPC
processors implement exceptions (referred to as interrupts in the architecture speciÞcation).
Exception conditions may be deÞned at other levels of the architecture. For example, the
UISA deÞnes conditions that may cause ßoating-point exceptions; the OEA deÞnes the
mechanism by which the exception is taken.

AltiVec Technology and the Exception Model

Only the three following exceptions may result from execution of an AltiVec instruction:

¥ An AltiVec unavailable exception occurs with an attempt to execute any non-stream
AltiVec instruction with MSR[VEC] = 0. After this exception occurs, execution
resumes at offset 0x00F20 from the base real address indicated by MSR[IP]. This
exception does not happen for data streaming instructions (dst[t], dstst[t] dss, and
dssall). Also note that the VRSAVE register is not protected by this exception (this
is consistent with the AltiVec speciÞcation).

¥ A DSI exception occurs only if an AltiVec load or store operation encounters a page
fault (does not Þnd a valid PTE during a table search operation) or a protection
violation. Also a DSI exception occurs if an AltiVec load or store attempts to access
a T = 1 (direct-store) memory location.

¥ An AltiVec assist exception may occur if an AltiVec ßoating-point instruction
detects denormalization data as an input or output in Java mode.

The PowerPC exception mechanism allows the processor to change to supervisor state as a
result of unusual conditions arising in the execution of instructions and from external
signals, bus errors, or various internal conditions. When exceptions occur, information
about the state of the processor is saved to certain registers and the processor begins
execution at an address (exception vector) predetermined for each exception. Processing of
exceptions begins in supervisor mode.

Although multiple exception conditions can map to a single exception vector, often a more
speciÞc condition may be determined by examining a register associated with the
exceptionÑfor example, the DSISR and the ßoating-point status and control register
(FPSCR). Also, software can explicitly enable or disable some exception conditions.

4-2 MPC7400 RISC Microprocessor UserÕs Manual

The PowerPC architecture requires that exceptions be taken in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are handled strictly in order with respect to the instruction stream. When an
instruction-caused exception is recognized, any unexecuted instructions that appear earlier
in the instruction stream, including any that have not yet entered the execute state, are
required to complete before the exception is taken. In addition, if a single instruction
encounters multiple exception conditions, those exceptions are taken and handled
sequentially. Likewise, exceptions that are asynchronous and precise are recognized when
they occur, but are not handled until all instructions currently in the execute stage
successfully complete execution and report their results.

To prevent loss of state information, exception handlers must save the information stored
in the machine status save/restore registers, SRR0 and SRR1, soon after the exception is
taken to prevent this information from being lost due to another exception being taken.
Because exceptions can occur while an exception handler routine is executing, multiple
exceptions can become nested. It is up to the exception handler to save the necessary state
information if control is to return to the excepting program.

In many cases, after the exception handler handles an exception, there is an attempt to
execute the instruction that caused the exception. Instruction execution continues until the
next exception condition is encountered. Recognizing and handling exception conditions
sequentially guarantees that the machine state is recoverable and processing can resume
without losing instruction results.

In this book, the following terms are used to describe the stages of exception processing:

Recognition Exception recognition occurs when the condition that can cause an
exception is identiÞed by the processor.

Taken An exception is said to be taken when control of instruction
execution is passed to the exception handler; that is, the context is
saved and the instruction at the appropriate vector offset is fetched
and the exception handler routine is begun in supervisor mode.

Handling Exception handling is performed by the software linked to the
appropriate vector offset. Exception handling is begun in supervisor
mode (referred to as privileged state in the architecture
speciÞcation).

Note that the PowerPC architecture documentation refers to exceptions as interrupts. In this
book, the term ÔinterruptÕ is reserved to refer to asynchronous exceptions and sometimes to
the event that causes the exception. Also, the PowerPC architecture uses the word
ÔexceptionÕ to refer to IEEE-deÞned ßoating-point exception conditions that may cause a
program exception to be taken; see Section 4.6.7, ÒProgram Exception (0x00700).Ó The
occurrence of these IEEE exceptions may not cause an exception to be taken. IEEE-deÞned
exceptions are referred to as IEEE ßoating-point exceptions or ßoating-point exceptions.

Chapter 4. Exceptions 4-3

MPC7400 Microprocessor Exceptions

4.1 MPC7400 Microprocessor Exceptions
As speciÞed by the PowerPC architecture, exceptions can be either precise or imprecise and
either synchronous or asynchronous. Asynchronous exceptions are caused by events
external to the processorÕs execution; synchronous exceptions are caused by instructions.

The types of exceptions are shown in Table 4-1. Note that all exceptions except for the
system management interrupt and performance monitor exception are deÞned, at least to
some extent, by the PowerPC architecture.

These classiÞcations are discussed in greater detail in Section 4.2, ÒException Recognition
and Priorities.Ó For a better understanding of how the MPC7400 implements precise
exceptions, see Chapter 6, ÒInstruction Timing.Ó Exceptions implemented in the MPC7400,
and conditions that cause them, are listed in Table 4-2.

Table 4-1. MPC7400 Microprocessor Exception Classifications

Synchronous/Asynchronous Precise/Imprecise Exception Types

Asynchronous, nonmaskable Imprecise System reset, machine check

Asynchronous, maskable Precise External interrupt, decrementer exception, system
management interrupt, performance monitor exception, thermal
management exception

Synchronous Precise Instruction-caused exceptions

Table 4-2. Exceptions and Conditions

Exception Type
Vector Offset

(hex)
Causing Conditions

Reserved 00000 Ñ

System reset 00100 Assertion of either HRESET or SRESET or at power-on reset

Machine check 00200 Assertion of TEA during a data bus transaction, assertion of MCP, an address
bus parity error, a data bus parity error, an L2 bus parity error, a data cache
error, an instruction cache error, or an L2 cache tag error. MSR[ME] must be
set.

DSI 00300 As speciÞed in the PowerPC architecture. Also includes:
¥ A hardware table walk due to a TLB miss on load, store, or cache

operations results in a page fault.
¥ Any load or store to a direct-store segment (SR[T] = 1).
¥ A lwarx or stwcx. instruction to memory with write-through memory/cache

access attributes.

ISI 00400 As speciÞed in the PowerPC architecture

External interrupt 00500 MSR[EE] = 1 and INT is asserted

4-4 MPC7400 RISC Microprocessor UserÕs Manual

MPC7400 Microprocessor Exceptions

Alignment 00600 ¥ A ßoating-point load/store, stmw, stwcx., lmw, lwarx, eciwx, or ecowx
instruction operand is not word-aligned.

¥ A multiple/string load/store operation is attempted in little-endian mode
¥ An operand of a dcbz instruction is on a page that is write-through or

cache-inhibited for a virtual mode access.
¥ An attempt to execute a dcbz instruction occurs when the cache is

disabled or locked.

Program 00700 As speciÞed in the PowerPC architecture

Floating-point
unavailable

00800 As speciÞed in the PowerPC architecture

Decrementer 00900 As deÞned by the PowerPC architecture, when the most-signiÞcant bit of the
DEC register changes from 0 to 1 and MSR[EE] = 1

Reserved 00A00Ð00BFF Ñ

System call 00C00 Execution of the System Call (sc) instruction

Trace 00D00 MSR[SE] =1 or a branch instruction is completing and MSR[BE] =1. The
MPC7400 differs from the OEA by not taking this exception on an isync.

Reserved 00E00 The MPC7400 does not generate an exception to this vector. Other PowerPC
processors may use this vector for ßoating-point assist exceptions.

Reserved 00E10Ð00EFF Ñ

Performance monitor 00F00 The limit speciÞed in PMCn is met and MMCR0[ENINT] = 1
(MPC7400-speciÞc)

AltiVec unavailable 00F20 Occurs due to an attempt to execute any nonstreaming AltiVec instruction
when MSR[VEC] = 0. This exception is not taken for data streaming
instructions (dstx , dss, or dssall). (MPC7400-speciÞc)

Instruction address
breakpoint

01300 IABR[0Ð29] matches EA[0Ð29] of the next instruction to complete, IABR[TE]
matches MSR[IR], and IABR[BE] = 1 (MPC7400-speciÞc)

System management
interrupt

01400 MSR[EE] = 1 and SMI is asserted (MPC7400-speciÞc)

Reserved 01500Ð015FF Ñ

AltiVec assist 01600 This MPC7400-speciÞc exception supports denormalization detection in Java
mode as speciÞed in the AltiVec Technology Programming Environments
Manual.

Reserved 01700 The MPC7400 does not generate an exception to this vector. Other PowerPC
processors may use this vector for thermal management interrupts.

Thermal
management

01700 Generated when the thermal management assist unit detects the temperature
has exceeded the programmed threshold.

Reserved 01800Ð02FFF Ñ

Table 4-2. Exceptions and Conditions (Continued)

Exception Type
Vector Offset

(hex)
Causing Conditions

Chapter 4. Exceptions 4-5

Exception Recognition and Priorities

4.2 Exception Recognition and Priorities
Exceptions are roughly prioritized by exception class, as follows:

1. Nonmaskable, asynchronous exceptions have priority over all other
exceptionsÑsystem reset and machine check exceptions (although the machine
check exception condition can be disabled so the condition causes the processor to
go directly into the checkstop state). These exceptions cannot be delayed and do not
wait for completion of any precise exception handling.

2. Synchronous, precise exceptions are caused by instructions and are taken in strict
program order.

3. Imprecise exceptions (imprecise mode ßoating-point enabled exceptions) are
caused by instructions and they are delayed until higher priority exceptions are
taken. Note that the MPC7400 does not implement an exception of this type.

4. Maskable asynchronous exceptions (external, decrementer, system management,
thermal management, and performance monitor interrupts) are delayed until higher
priority exceptions are taken.

The following list of exception categories describes how the MPC7400 handles exceptions
up to the point of signaling the appropriate interrupt to occur. Note that a recoverable state
is reached if the completed store queue is empty (drained, not canceled) and any instruction
that is next in program order, and has been signaled to complete, has completed. If
MSR[RI] = 0, the MPC7400 is in a nonrecoverable state. Also, instruction completion is
deÞned as updating all architectural registers associated with that instruction, and then
removing that instruction from the completion buffer.

¥ Exceptions caused by asynchronous events (interrupts). These exceptions are further
distinguished by whether they are maskable and recoverable.

Ñ Asynchronous, nonmaskable, nonrecoverable

System reset for assertion of HRESETÑHas highest priority and is taken
immediately regardless of other pending exceptions or recoverability (includes
power-on reset).

Ñ Asynchronous, maskable, nonrecoverable

Machine check exceptionÑHas priority over any other pending exception
except system reset for assertion of HRESET (or power-on reset). Taken
immediately regardless of recoverability.

Ñ Asynchronous, nonmaskable, recoverable

System reset for SRESETÑHas priority over any other pending exception
except system reset for HRESET (or power-on reset), or machine check. Taken
immediately when a recoverable state is reached.

4-6 MPC7400 RISC Microprocessor UserÕs Manual

Exception Recognition and Priorities

Ñ Asynchronous, maskable, recoverable

System management, performance monitor, thermal management, external, and
decrementer interruptsÑBefore handling this type of exception, the next
instruction in program order must complete. If that instruction causes another
type of exception, that exception is taken and the asynchronous, maskable
recoverable exception remains pending, until the instruction completes. Further
instruction completion is halted. The asynchronous, maskable recoverable
exception is taken when a recoverable state is reached.

¥ Instruction-related exceptions. These exceptions are further organized into the point
in instruction processing in which they generate an exception.

Ñ Instruction fetch

ISI exceptionsÑOnce this type of exception is detected, dispatching stops and
the current instruction stream is allowed to drain out of the machine. If
completing any of the instructions in this stream causes an exception, that
exception is taken and the instruction fetch exception is discarded (but may be
encountered again when instruction processing resumes). Otherwise, once all
pending instructions have executed and a recoverable state is reached, the ISI
exception is taken.

Ñ Instruction dispatch/execution

Program, DSI, alignment, ßoating-point unavailable, system call, instruction
address breakpoint, and data address breakpointÑThis type of exception is
determined during dispatch or execution of an instruction. The exception
remains pending until all instructions before the exception-causing instruction in
program order complete. The exception is then taken without completing the
exception-causing instruction. If completing these previous instructions causes
an exception, that exception takes priority over the pending instruction
dispatch/execution exception, which is discarded (but may be encountered again
when instruction processing resumes).

Ñ Post-instruction execution

TraceÑTrace exceptions are generated following execution and completion of
an instruction while trace mode is enabled. If executing the instruction produces
conditions for another type of exception, that exception is taken and the
post-instruction exception is forgotten for that instruction.

Chapter 4. Exceptions 4-7

Exception Recognition and Priorities

Note that these exception classiÞcations correspond to how exceptions are prioritized, as
described in Table 4-3.

Table 4-3. MPC7400 Exception Priorities

Priority Exception Cause

Asynchronous Exceptions (Interrupts)

0 System reset Power-on reset, assertion of HRESET and TRST (hard reset)

1 Machine check Any enabled machine check condition (assertion of TEA or MCP, system address
or data parity error, L1 address or data parity error, data cache error, instruction
cache error, L2 data parity error, L2 tag error)

2 System reset Assertion of SRESET (soft reset)

3 System management Assertion of SMI

4 External interrupt Assertion of INT

5 Performance monitor Any programmer-speciÞed performance monitor condition

6 Decrementer Decrementer passes through zero

7 Thermal management Any programmer-speciÞed thermal management condition

Instruction Fetch Exceptions

0 ISI Any ISI exception condition

Instruction Dispatch/Execution Exceptions

0 Instruction address
breakpoint

Any instruction address breakpoint exception condition

1 Program Illegal instruction, privileged instruction, or trap exception condition. Note that
ßoating-point enabled program exceptions have lower priority.

2 System call System Call (sc) instruction

3 Floating-point
unavailable

Any ßoating-point unavailable exception condition

3 AltiVec unavailable Any AltiVec unavailable exception condition

5 Program A ßoating-point enabled exception condition (lowest-priority program exception)

6 DSI DSI exception due to eciwx, ecowx with EAR[E] = 0 (DSISR[11]). Lower priority
DSI exception conditions are shown below.

7 Alignment Any alignment exception condition, prioritized as follows:
1 Floating-point access not word-aligned
2 lmw, stmw, lwarx, stwcx. not word-aligned
3 eciwx or ecowx not word-aligned
4 Multiple or string access with MSR[LE] set
5 dcbz to a locked L1 data cache

8 DSI Page fault with SR[T] = 0

9 Alignment dcbz to memory with write-through memory/cache access attributes or a disabled
L1 data cache

4-8 MPC7400 RISC Microprocessor UserÕs Manual

Exception Processing

System reset and machine check exceptions may occur at any time and are not delayed even
if an exception is being handled. As a result, state information for an interrupted exception
may be lost; therefore, these exceptions are typically nonrecoverable. An exception may not
be taken immediately when it is recognized.

4.3 Exception Processing
When an exception is taken, the processor uses SRR0 and SRR1 to save the contents of the
MSR for the current context and to identify where instruction execution should resume after
the exception is handled.

When an exception occurs, the address saved in SRR0 helps determine where instruction
processing should resume when the exception handler returns control to the interrupted
process. Depending on the exception, this may be the address in SRR0 or at the next address
in the program ßow. All instructions in the program ßow preceding this one will have
completed execution and no subsequent instruction will have begun execution. This may be
the address of the instruction that caused the exception or the next one (as in the case of a
system call, trace, or trap exception). The SRR0 register is shown in Figure 4-1.

Figure 4-1. Machine Status Save/Restore Register 0 (SRR0)

10 DSI DSI due to BAT/page protection violation (DSISR[4]) or lwarx/stwcx. to BAT entry
with write-through attributes (W = 1) or to BAT entry with caching-allowed attributes
(I = 0) but with a locked L1 data cache (DSISR[5])
Note that if both occur simultaneously, both bits 4 and 5 of the DSISR are set.

11 DSI Any access except cache operations to a segment where SR[T] = 1 (DSISR[5]) or
an access crosses from a T = 0 segment to one where T = 1 (DSISR[5])

12 DSI TLB page protection violation or lwarx/stwcx. to page table entry with
write-through attributes (W = 1) or to a page table entry with caching-allowed
attributes (I = 0) but with a locked L1 data cache (DSISR[5]).
Note that if both occur simultaneously, both bits 4 and 5 of the DSISR are set.

13 DSI DABR address match (DSISR[11]). Note that even though DSISR[5] and
DSISR[11] are set by exceptions with different priorities, they can be set
simultaneously.

14 AltiVec assist Denormalized data detected as input or output in the AltiVec vector ßoating-point
unit (VFPU) while in Java mode

Post-Instruction Execution Exceptions

15 Trace MSR[SE] = 1 (or MSR[BE] = 1 for branches)

Table 4-3. MPC7400 Exception Priorities (Continued)

Priority Exception Cause

SRR0 (Holds EA for Instruction in Interrupted Program Flow)

0 31

Chapter 4. Exceptions 4-9

Exception Processing

SRR1 is used to save machine status (selected MSR bits and possibly other status bits as
well) on exceptions and to restore those values when an rÞ instruction is executed. SRR1
is shown in Figure 4-2.

Figure 4-2. Machine Status Save/Restore Register 1 (SRR1)

For most exceptions, bits 0Ð5 and 7Ð15 of SRR1 are cleared and MSR[6, 16Ð31] are placed
into the corresponding bit positions of SRR1.

The MPC7400Õs MSR is shown in Figure 4-3.

Figure 4-3. Machine State Register (MSR)

The MSR bits are deÞned in Table 4-4.

Table 4-4. MSR Bit Settings

Bit(s) Name Description

0Ð5 Ñ Reserved.

6 VEC AltiVec vector unit available
0 The processor prevents access to the vector register Þle (VRF) and the vector status and control

register (VSCR). Any attempt to execute an AltiVec instruction that accesses the VRF or VSCR,
excluding the data streaming instructionsÑdst, dstt, dstst, dststt, dss, and dssall, generates
the AltiVec unavailable exception. The data streaming instructions are not affected by this bit; the
VRF and VSCR registers are available to the data streaming instructions even when the
MSR[VEC] is cleared.

1 The VRF and VSCR registers are accessible to all AltiVec instructions.
Note that the VRSAVE register is not protected by MSR[VEC].

7Ð12 Ñ Reserved

13 POW Power management enable
0 Power management disabled (normal operation mode).
1 Power management enabled (reduced power mode).
Power management functions are implementation-dependent. See Chapter 10, ÒPower and Thermal
Management.Ó

14 Ñ Reserved. Implementation-speciÞc

15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to select the
endian mode for the context established by the exception.

16 EE External interrupt enable
0 The processor delays recognition of external interrupts and decrementer exception conditions.
1 The processor is enabled to take an external interrupt or the decrementer exception.

Exception-Specific Information and MSR Bit Values

0 31

ILE EE PR SEFE0 BE IP IR

0 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PM0

Reserved

LERIDR0FE1MEFP0POW0 000000VEC00000

4-10 MPC7400 RISC Microprocessor UserÕs Manual

Exception Processing

17 PR Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

18 FP Floating-point available
0 The processor prevents dispatch of ßoating-point instructions, including ßoating-point loads,

stores, and moves.
1 The processor can execute ßoating-point instructions and can take ßoating-point enabled program

exceptions.

19 ME Machine check enable
0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.

20 FE0 IEEE ßoating-point exception mode 0 (see Table 4-5).

21 SE Single-step trace enable
0 The processor executes instructions normally.
1 The processor generates a single-step trace exception upon the successful execution of every

instruction except rÞ, isync, and sc. Successful execution means that the instruction caused no
other exception.

22 BE Branch trace enable
0 The processor executes branch instructions normally.
1 The processor generates a branch type trace exception when a branch instruction executes

successfully.

23 FE1 IEEE ßoating-point exception mode 1 (see Table 4-5).

24 Ñ Reserved. This bit corresponds to the AL bit of the POWER architecture.

25 IP Exception preÞx. The setting of this bit speciÞes whether an exception vector offset is prepended
with Fs or 0s. In the following description, nnnnn is the offset of the exception.
0 Exceptions are vectored to the physical address 0x000n_nnnn.
1 Exceptions are vectored to the physical address 0xFFFn_nnnn.

26 IR Instruction address translation
0 Instruction address translation is disabled.
1 Instruction address translation is enabled.
For more information see Chapter 5, ÒMemory Management.Ó

27 DR Data address translation
0 Data address translation is disabled.
1 Data address translation is enabled.
For more information see Chapter 5, ÒMemory Management.Ó

28 Ñ Reserved.

29 PM Performance monitor marked mode
0 Process is not a marked process.
1 Process is a marked process.
MPC7400ÐspeciÞc; deÞned as reserved by the PowerPC architecture. For more information about
the performance monitor, see Section 4.6.13, ÒPerformance Monitor Interrupt (0x00F00).Ó

Table 4-4. MSR Bit Settings (Continued)

Bit(s) Name Description

Chapter 4. Exceptions 4-11

Exception Processing

The IEEE ßoating-point exception mode bits (FE0 and FE1) together deÞne whether
ßoating-point exceptions are handled precisely, imprecisely, or whether they are taken at
all. As shown in Table 4-5, if either FE0 or FE1 are set, the MPC7400 treats exceptions as
precise. MSR bits are guaranteed to be written to SRR1 when the Þrst instruction of the
exception handler is encountered. For further details, see Chapter 6, ÒExceptions,Ó of The
Programming Environments Manual.

4.3.1 Enabling and Disabling Exceptions
When a condition exists that may cause an exception to be generated, it must be determined
whether the exception is enabled for that condition.

¥ System reset exceptions cannot be masked.

¥ A machine check exception can occur only if the machine check enable bit,
MSR[ME], is set. If MSR[ME] is cleared, the processor goes directly into checkstop
state when a machine check exception condition occurs. Individual machine check
exceptions can be enabled and disabled through bits in the HID0 register, which is
described in Table 4-8.

¥ Asynchronous, maskable exceptions (such as the external and decrementer
interrupts) are enabled by setting MSR[EE]. When MSR[EE] = 0, recognition of
these exception conditions is delayed. MSR[EE] is cleared automatically when an
exception is taken to delay recognition of conditions causing those exceptions.

¥ The performance monitor exception is enabled by setting MSR[PM].

30 RI Indicates whether system reset or machine check exception is recoverable.
0 Exception is not recoverable.
1 Exception is recoverable.
The RI bit indicates whether from the perspective of the processor, it is safe to continue (that is,
processor state data such as that saved to SRR0 is valid), but it does not guarantee that the
interrupted process is recoverable.

31 LE Little-endian mode enable
0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.

Table 4-5. IEEE Floating-Point Exception Mode Bits

FE0 FE1 Mode

0 0 Floating-point exceptions disabled

0 1 Imprecise nonrecoverable. For this setting, the MPC7400 operates in ßoating-point precise mode.

1 0 Imprecise recoverable. For this setting, the MPC7400 operates in ßoating-point precise mode.

1 1 Floating-point precise mode

Table 4-4. MSR Bit Settings (Continued)

Bit(s) Name Description

4-12 MPC7400 RISC Microprocessor UserÕs Manual

Exception Processing

¥ The ßoating-point unavailable exception can be masked by setting MSR[FP].

¥ The AltiVec unavailable exception can be masked by setting MSR[VEC].

¥ IEEE ßoating-point enabled exceptions (a type of program exception) are ignored
when both MSR[FE0] and MSR[FE1] are cleared. If either bit is set, all IEEE
enabled ßoating-point exceptions are taken and cause a program exception.

¥ The trace exception is enabled by setting either MSR[SE] or MSR[BE].

4.3.2 Steps for Exception Processing
After it is determined that the exception can be taken (all instruction-caused exceptions
occurring earlier in the instruction stream have been handled, the instruction that caused the
exception is next to be retired, and by conÞrming that the exception is enabled for the
exception condition), the processor does the following:

1. SRR0 is loaded with an instruction address that depends on the type of exception.
See the individual exception description for details about how this register is used
for speciÞc exceptions.

2. SRR1[0, 7Ð9] are cleared;
SRR1[1Ð5, 10Ð15] are loaded with information speciÞc to the exception type;
and SRR1[6, 16Ð31] are loaded with a copy of the corresponding MSR bits.

3. The MSR is set as described in Table 4-4. The new values take effect as the Þrst
instruction of the exception-handler routine is fetched.

Note that MSR[IR] and MSR[DR] are cleared for all exception types; therefore,
address translation is disabled for both instruction fetches and data accesses
beginning with the Þrst instruction of the exception-handler routine.

4. Instruction fetch and execution resumes, using the new MSR value, at a location
speciÞc to the exception type. The location is determined by adding the exception's
vector (see Table 4-2) to the base address determined by MSR[IP]. If IP is cleared,
exceptions are vectored to the physical address 0x000n_nnnn. If IP is set, exceptions
are vectored to the physical address 0xFFFn_nnnn. For a machine check exception
that occurs when MSR[ME] = 0 (machine check exceptions are disabled), the
checkstop state is entered (the machine stops executing instructions). See
Section 4.6.2, ÒMachine Check Exception (0x00200).Ó

4.3.3 Setting MSR[RI]
An operating system may handle MSR[RI] as follows:

¥ In the machine check and system reset exceptionsÑIf MSR[RI] is cleared, the
exception is not recoverable. If it is set, the exception is recoverable with respect to
the processor.

Chapter 4. Exceptions 4-13

Process Switching

¥ In each exception handlerÑWhen enough state information has been saved that a
machine check or system reset exception can reconstruct the previous state, set
MSR[RI].

¥ In each exception handlerÑClear MSR[RI], set SRR0 and SRR1 appropriately, and
then execute rÞ.

¥ Note that the RI bit being set indicates that, with respect to the processor, enough
processor state data remains valid for the processor to continue, but it does not
guarantee that the interrupted process can resume.

4.3.4 Returning from an Exception Handler
The Return from Interrupt (rÞ) instruction performs context synchronization by allowing
previously-issued instructions to complete before returning to the interrupted process. In
general, execution of the rÞ instruction ensures the following:

¥ All previous instructions have completed to a point where they can no longer cause
an exception. If a previous instruction causes a direct-store interface error exception,
the results must be determined before this instruction is executed.

¥ Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

¥ The rÞ instruction copies SRR1 bits back into the MSR.

¥ Instructions fetched after this instruction execute in the context established by this
instruction.

¥ Program execution resumes at the instruction indicated by SRR0.

For a complete description of context synchronization, refer to Chapter 6, ÒExceptions,Ó of
The Programming Environments Manual.

4.4 Process Switching
The following instructions are useful for restoring proper context during process switching:

¥ The sync instruction orders the effects of instruction execution. All instructions
previously initiated appear to have completed before the sync instruction completes,
and no subsequent instructions appear to be initiated until the sync instruction
completes. For an example showing use of sync, see Chapter 2, ÒPowerPC Register
Set,Ó of The Programming Environments Manual.

¥ The isync instruction waits for all previous instructions to complete and then
discards any fetched instructions, causing subsequent instructions to be fetched (or
refetched) from memory and to execute in the context (privilege, translation, and
protection) established by the previous instructions.

¥ The stwcx. instruction clears any outstanding reservations, ensuring that an lwarx
instruction in an old process is not paired with an stwcx. instruction in a new one.

4-14 MPC7400 RISC Microprocessor UserÕs Manual

Data Stream Prefetching and Exceptions

The operating system should set MSR[RI] as described in Section 4.3.3, ÒSetting
MSR[RI].Ó

4.5 Data Stream Prefetching and Exceptions
As described in Chapter 5, ÒCache, Exceptions, and Memory Management,Ó of the AltiVec
Technology Programming Environments Manual, exceptions do not automatically cancel
data stream prefetching. The operating system must stop streams explicitly when
warrantedÑfor example, when switching processes or changing virtual memory context.
Care must be taken if data stream prefetching is used while in supervisor mode
(MSR[PR] = 0).

4.6 Exception DeÞnitions
Table 4-6 shows all the types of exceptions that can occur with the MPC7400 and MSR
settings when the processor goes into supervisor mode due to an exception. Depending on
the exception, certain of these bits are stored in SRR1 when an exception is taken.

Table 4-6. MSR Setting Due to Exception

Exception Type
MSR Bit

VEC POW ILE EE PR FP ME FE0 SE BE FE1 IP IR DR PM RI LE

System reset 0 0 Ñ 0 0 0 Ñ 0 0 0 0 Ñ 0 0 0 0 ILE

Machine check 0 0 Ñ 0 0 0 0 0 0 0 0 Ñ 0 0 0 0 ILE

DSI 0 0 Ñ 0 0 0 Ñ 0 0 0 0 Ñ 0 0 0 0 ILE

ISI 0 0 Ñ 0 0 0 Ñ 0 0 0 0 Ñ 0 0 0 0 ILE

External interrupt 0 0 Ñ 0 0 0 Ñ 0 0 0 0 Ñ 0 0 0 0 ILE

Alignment 0 0 Ñ 0 0 0 Ñ 0 0 0 0 Ñ 0 0 0 0 ILE

Program 0 0 Ñ 0 0 0 Ñ 0 0 0 0 Ñ 0 0 0 0 ILE

Floating-point
unavailable

0 0 Ñ 0 0 0 Ñ 0 0 0 0 Ñ 0 0 0 0 ILE

Decrementer
interrupt

0 0 Ñ 0 0 0 Ñ 0 0 0 0 Ñ 0 0 0 0 ILE

System call 0 0 Ñ 0 0 0 Ñ 0 0 0 0 Ñ 0 0 0 0 ILE

Trace exception 0 0 Ñ 0 0 0 Ñ 0 0 0 0 Ñ 0 0 0 0 ILE

System
management

0 0 Ñ 0 0 0 Ñ 0 0 0 0 Ñ 0 0 0 0 ILE

Performance
monitor

0 0 Ñ 0 0 0 Ñ 0 0 0 0 Ñ 0 0 0 0 ILE

Chapter 4. Exceptions 4-15

Exception DeÞnitions

The setting of the exception preÞx bit (IP) determines how exceptions are vectored. If the
bit is cleared, exceptions are vectored to the physical address 0x000n_nnnn (where nnnnn
is the vector offset); if IP is set, exceptions are vectored to physical address 0xFFFn_nnnn.
Table 4-2 shows the exception vector offset of the Þrst instruction of the exception handler
routine for each exception type.

4.6.1 System Reset Exception (0x00100)
The MPC7400 implements the system reset exception as deÞned in the PowerPC
architecture (OEA). The system reset exception is a nonmaskable, asynchronous exception
signaled to the processor through the assertion of system-deÞned signals. In the MPC7400,
the exception is signaled by the assertion of either the HRESET or SRESET input signals,
described more fully in Chapter 8, ÒSignal Descriptions.Ó

A hard reset is initiated by asserting HRESET. A hard reset is used primarily for power-on
reset (POR) (in which case TRST must also be asserted), but can also be used to restart a
running processor. The HRESET signal must be asserted during power up and must remain
asserted for a period that allows the PLL to achieve lock and the internal logic to be reset.
This period is speciÞed in the hardware speciÞcations. If HRESET is asserted for less than
the required interval, the results are not predictable.

If a hard reset request occurs (HRESET asserted), the processor immediately branches to
the system reset exception vector (0xFFF0_0100) without attempting to reach a recoverable
state. If HRESET is asserted during normal operation, all operations cease and the machine
state is lost. The MPC7400 internal state after a hard reset is deÞned in Table 2-18.

A soft reset is initiated by asserting SRESET. If SRESET is asserted, the processor is Þrst
put in a recoverable state. To do this, the MPC7400 allows any instruction at the point of
completion to either complete or take an exception, blocks completion of any following
instructions and allows the completion queue to drain. The state before the exception
occurred is then saved as speciÞed in the PowerPC architecture and instruction fetching
begins at the system reset interrupt vector offset, 0x00100. The vector address on a soft
reset depends on the setting of MSR[IP] (either 0x0000_0100 or 0xFFF0_0100). Soft resets

Thermal
management

0 0 Ñ 0 0 0 Ñ 0 0 0 0 Ñ 0 0 0 0 ILE

AltiVec
unavailable

0 0 Ñ 0 0 0 Ñ 0 0 0 0 Ñ 0 0 0 0 ILE

0 Bit is cleared.
ILE Bit is copied from the MSR[ILE].
Ñ Bit is not altered
Reserved bits are read as if written as 0.

Table 4-6. MSR Setting Due to Exception (Continued)

Exception Type
MSR Bit

VEC POW ILE EE PR FP ME FE0 SE BE FE1 IP IR DR PM RI LE

4-16 MPC7400 RISC Microprocessor UserÕs Manual

Exception DeÞnitions

are third in priority, after hard reset and machine check. This exception is recoverable
provided attaining a recoverable state does not generate a machine check.

SRESET is an edge-sensitive signal that can be asserted and deasserted asynchronously,
provided the minimum pulse width speciÞed in the hardware speciÞcations is met.
Asserting SRESET causes the MPC7400 to take a system reset exception. This exception
modiÞes the MSR, SRR0, and SRR1, as described in The Programming Environments
Manual. Unlike hard reset, soft reset does not directly affect the states of output signals.
Attempts to use SRESET during a hard reset sequence or while the JTAG logic is non-idle
can cause unpredictable results.

The MPC7400 implements HID0[NHR], which helps software distinguish a hard reset
from a soft reset. Because this bit is cleared by a hard reset, but not by a soft reset, software
can set this bit after a hard reset and tell whether a subsequent reset is a hard or soft reset
by examining whether this bit is still set. See Section 2.1.2.2, ÒHardware
Implementation-Dependent Register 0.Ó

Table 4-7 lists register settings when a system reset exception is taken.

4.6.2 Machine Check Exception (0x00200)
The MPC7400 implements the machine check exception as deÞned in the PowerPC
architecture (OEA). The MPC7400 conditionally initiates a machine check exception if
MSR[ME] = 1 and a system bus error (TEA), system bus address parity, system bus data
parity, L2 bus data parity, data cache, instruction cache, or L2 cache tag error occurs. The
exception is also generated by the assertion of the machine check (MCP) signal. As deÞned
in the PowerPC architecture, the exception is not taken if MSR[ME] is cleared, in which
case the processor enters checkstop state.

Table 4-7. System Reset ExceptionÑRegister Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0Ð5 Cleared
6 Loaded with equivalent MSR bit
7Ð15 Cleared
16Ð31Loaded with equivalent MSR bits
Note that if the processor state is corrupted to the extent that execution cannot resume reliably,
MSR[RI] (SRR1[30]) is cleared.

MSR VEC 0
POW 0
ILE Ñ
EE 0
LE Set to value of ILE

PR 0
FP 0
ME Ñ
FE0 0

SE 0
BE 0
FE1 0
IP Ñ

IR 0
DR 0
PM 0
RI 0

Chapter 4. Exceptions 4-17

Exception DeÞnitions

Certain machine check conditions can be enabled and disabled using HID0 bits, as
described in Table 4-8.

A TEA indication on the bus can result from any load or store operation initiated by the
processor. In general, TEA is expected to be used by a memory controller to indicate that a
memory parity error or an uncorrectable memory ECC error has occurred. Note that the
resulting machine check exception is imprecise and unordered with respect to the
instruction that originated the bus operation.

If MSR[ME] and the appropriate HID0 bits are set, the exception is recognized and
handled; otherwise, the processor generates an internal checkstop condition. When a
processor is in checkstop state, instruction processing is suspended and generally cannot
continue without restarting the processor. Note that many conditions may lead to the
checkstop condition; the disabled machine check exception is only one of these.

A machine check exception may result from referencing a nonexistent physical address,
either directly (with MSR[DR] = 0) or through an invalid translation. If a dcbz instruction
introduces a block into the cache associated with a nonexistent physical address, a machine
check exception can be delayed until an attempt is made to store that block to main memory.
Not all PowerPC processors provide the same level of error checking. Checkstop sources
are implementation-dependent.

Table 4-8. HID0 Machine Check Enable Bits

Bit Name Function

0 EMCP Enable MCP. The primary purpose of this bit is to mask out further machine check exceptions caused
by assertion of MCP, similar to how MSR[EE] can mask external interrupts.
0 Masks MCP. Asserting MCP does not generate a machine check exception or a checkstop.
1 Asserting MCP causes a checkstop if MSR[ME] = 0 or a machine check exception if MSR[ME] = 1.

1 DBP Enable/disable 60x bus address and data parity generation.
0 If address or data parity is not used by the system and the respective parity checking is disabled

(HID0[EBA] or HID0[EBD] = 0), input receivers for those signals are disabled, do not require pull-up
resistors, and therefore should be left unconnected. If all parity generation is disabled, all parity
checking should also be disabled and parity signals need not be connected.

1 Parity generation is enabled.

2 EBA Enable/disable 60x bus address parity checking.
0 Prevents address parity checking.
1 Allows an address parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if

MSR[ME] = 1.
EBA and EBD allow the processor to operate with memory subsystems that do not generate parity.

3 EBD Enable 60x bus data parity checking
0 Parity checking is disabled.
1 Allows a data parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if

MSR[ME] = 1.
EBA and EBD allow the processor to operate with memory subsystems that do not generate parity.

15 NHR Not hard reset (software use only)
0 A hard reset occurred if software had previously set this bit
1 A hard reset has not occurred.

4-18 MPC7400 RISC Microprocessor UserÕs Manual

Exception DeÞnitions

Machine check exceptions are enabled when MSR[ME] = 1; this is described in
Section 4.6.2.1, ÒMachine Check Exception Enabled (MSR[ME] = 1).Ó If MSR[ME] = 0
and a machine check occurs, the processor enters the checkstop state. Checkstop state is
described in Section 4.6.2.2, ÒCheckstop State (MSR[ME] = 0).Ó

4.6.2.1 Machine Check Exception Enabled (MSR[ME] = 1)
Machine check exceptions are enabled when MSR[ME] = 1. When a machine check
exception is taken, registers are updated as shown in Table 4-9.

When the MPC7400 takes the machine check exception, it sets one or more error bits in
SRR1. The MPC7400 has two data parity error sources that can cause a machine check
interrupt. The L2DP bit indicates a data parity error on the L2 bus, and DP indicates a data
parity error on the system bus. The MCP bit indicates that the machine check pin was
asserted. The TEA bit indicates the machine check was caused by a TEA assertion on the
system bus. The AP bit indicates that an address parity error was detected on the system bus.

The setting of the CHK signal during the assertion of HRESET enables a post power-on
reset (post-POR) internal memory test to be executed. This post-POR internal memory test
can cause a machine check exception to occur and itÕs cause to be reßected in bits 1Ð5 of
the SRR1.

Table 4-9. Machine Check ExceptionÑRegister Settings

Register Setting Description

SRR0 On a best-effort basis the MPC7400 can set this to an EA of some instruction that was executing or
about to be executing when the machine check condition occurred.

SRR1 0 Cleared
1 Set when an instruction cache error is detected (ICERR), otherwise zero
2 Set when a data cache error is detected (DCERR), otherwise zero
3 Set when an L2 cache tag error is detected (L2ERR), otherwise zero
4 Set when a TLB array error is detected (TLBERR), otherwise zero
5 Set when a BHT/BTIC array error is detected (BRERR), otherwise zero
6 Loaded with equivalent MSR bit
7Ð9 Cleared
10 Set when an internal error is detected (OTHERR), otherwise zero
11 Set when an L2 data cache parity error is detected (L2DP), otherwise zero
12 Set when MCP signal is asserted (MCP), otherwise zero
13 Set when TEA signal is asserted (TEA), otherwise zero
14 Set when a data bus parity error is detected (DP), otherwise zero
15 Set when an address bus parity error is detected (AP), otherwise zero
16Ð31Loaded with equivalent MSR bits

MSR POW 0
ILE Ñ
EE 0
PR 0

FP 0
ME 0
FE0 0
SE 0

BE 0
FE1 0
IP Ñ
IR 0

DR 0
PM 0
RI 0
LE Set to value of ILE

Note that to handle another machine check exception, the exception handler should set MSR[ME] as soon as it is
practical after a machine check exception is taken. Otherwise, subsequent machine check exceptions cause the
processor to enter the checkstop state.

Chapter 4. Exceptions 4-19

Exception DeÞnitions

The DCERR bit indicates one or more of the following has occurred:

¥ Two or more ways of the data-port of the L1 data cache tags hit simultaneously

¥ Two or more ways of the snoop-port of the L1 data cache tags hit simultaneously

¥ Two or more ways were selected simultaneously as victims during an L1 data cache
reload

¥ No way (zero ways) was selected as a victim during an L1 data cache reload

¥ A post-POR internal memory test failure was detected in the L1 data cache array,
data tag, snoop tag, or status tag

The ICERR bit indicates one or more of the following has occurred:

¥ Two or more ways of the instruction cache tags hit simultaneously

¥ A post-POR internal memory test failure was detected in the L1 instruction cache
array or tag

The L2ERR bit indicates one or more of the following has occurred:

¥ Both ways of the L2 cache tag hit simultaneously

¥ A post-POR internal memory test failure was detected in the L2 cache tag

The BRERR bit is set if a post-POR internal memory test failure was detected in the branch
history table (BHT) or branch target instruction cache (BTIC).

The TLBERR bit indicates one or more of the following has occurred:

¥ Both ways of the data TLB hit simultaneously

¥ A post-POR internal memory test failure was detected in the instruction or data TLB
arrays

The OTHERR bit indicates one or more of the following has occurred:

¥ A hit occurred simultaneously in the L1 data cache tags and the data reload table

¥ Two or more entries of the data reload table provided a hit simultaneously

Note that the processor only takes checkstop or machine check action for errors that result
in DCERR, ICERR, L2ERR, BRERR, TLBERR, and OTHERR if the enable internal error
checking (HID0[EIEC]) bit is set.

The machine check exception is usually unrecoverable in the sense that execution cannot
resume in the context that existed before the exception. If the condition that caused the
machine check does not otherwise prevent continued execution, MSR[ME] is set to allow
the processor to continue execution at the machine check exception vector address.
Typically, earlier processes cannot resume; however, operating systems can use the
machine check exception handler to try to identify and log the cause of the machine check
condition.

4-20 MPC7400 RISC Microprocessor UserÕs Manual

Exception DeÞnitions

When a machine check exception is taken, instruction fetching resumes at offset 0x00200
from the physical base address indicated by MSR[IP].

4.6.2.2 Checkstop State (MSR[ME] = 0)
If MSR[ME] = 0 and a machine check occurs, the processor enters the checkstop state.

When a processor is in checkstop state, instruction processing is suspended and generally
cannot resume without the processor being reset. The contents of all latches are frozen
within two cycles upon entering checkstop state.

4.6.3 DSI Exception (0x00300)
A DSI exception occurs when no higher priority exception exists and an error condition
related to a data memory access occurs. The DSI exception is implemented as it is deÞned
in the PowerPC architecture (OEA). In case of a TLB miss for a load, store, or cache
operation, a DSI exception is taken if the resulting hardware table search causes a page
fault. A lwarx or stwcx. instruction that addresses memory mapped with the write-through
(W = 1) attribute causes a DSI exception. Also, a DSI exception is taken when a load or
store is attempted to a direct-store segment (SR[T] = 1). Note that in the MPC7400, a
ßoating-point load or store to a direct-store segment causes a DSI exception rather than an
alignment exception, as speciÞed by the PowerPC architecture.

4.6.3.1 Data Address Breakpoint Facility
The MPC7400 also implements the data address breakpoint facility, which is deÞned as
optional in the PowerPC architecture and is supported by the optional data address
breakpoint register (DABR). Although the architecture does not strictly prescribe how this
facility must be implemented, the MPC7400 follows the recommendations provided by the
architecture and described in the Chapter 2, ÒProgramming Model,Ó and Chapter 6
ÒExceptions,Ó in The Programming Environments Manual. The granularity of the data
address breakpoint compares is a double-word for all accesses except AltiVec quad-word
loads and stores. For AltiVec accesses, the least signiÞcant bit of the DAB Þeld
(DABR[28]) is ignored, thus providing quad-word granularity. For these quad-word DAB
matches, the DAR register is loaded with a quad-word aligned address.

4.6.4 ISI Exception (0x00400)
An ISI exception occurs when no higher priority exception exists and an attempt to fetch
the next instruction fails. This exception is implemented as it is deÞned by the PowerPC
architecture (OEA), and is taken for the following conditions:

¥ The effective address cannot be translated.

¥ The fetch access is to a no-execute segment (SR[N] = 1).

¥ The fetch access is to guarded storage and MSR[IR] = 1.

Chapter 4. Exceptions 4-21

Exception DeÞnitions

¥ The fetch access is to a segment for which SR[T] is set.

¥ The fetch access violates memory protection.

When an ISI exception is taken, instruction fetching resumes at offset 0x00400 from the
physical base address indicated by MSR[IP].

4.6.5 External Interrupt Exception (0x00500)
An external interrupt is signaled to the processor by the assertion of the external interrupt
signal (INT). The INT signal is expected to remain asserted until the MPC7400 takes the
external interrupt exception. If INT is negated early, recognition of the interrupt request is
not guaranteed. After the MPC7400 begins execution of the external interrupt handler, the
system can safely negate the INT. When the MPC7400 detects assertion of INT, it stops
dispatching and waits for all pending instructions to complete. This allows any instructions
in progress that need to take an exception to do so before the external interrupt is taken.
After all instructions have vacated the completion buffer, the MPC7400 takes the external
interrupt exception as deÞned in the PowerPC architecture (OEA).

An external interrupt may be delayed by other higher priority exceptions or if MSR[EE] is
cleared when the exception occurs. Register settings for this exception are described in
Chapter 6, ÒExceptions,Ó in The Programming Environments Manual.

When an external interrupt exception is taken, instruction fetching resumes at offset
0x00500 from the physical base address indicated by MSR[IP].

4.6.6 Alignment Exception (0x00600)
The MPC7400 implements the alignment exception as deÞned by the PowerPC architecture
(OEA). An alignment exception is initiated when any of the following occurs:

¥ The operand of a ßoating-point load or store is not word-aligned.

¥ The operand of lmw, stmw, lwarx, or stwcx. is not word-aligned.

¥ The operand of dcbz is in a page that is write-through or cache-inhibited.

¥ An attempt is made to execute dcbz when the data cache is disabled.

¥ An eciwx or ecowx is not word-aligned

¥ A multiple or string access is attempted with MSR[LE] set

Note that in the MPC7400, a ßoating-point load or store to a direct-store segment causes a
DSI exception rather than an alignment exception, as speciÞed by the PowerPC
architecture. For more information, see Section 4.6.3, ÒDSI Exception (0x00300).Ó

4-22 MPC7400 RISC Microprocessor UserÕs Manual

Exception DeÞnitions

4.6.7 Program Exception (0x00700)
The MPC7400 implements the program exception as it is deÞned by the PowerPC
architecture (OEA). A program exception occurs when no higher priority exception exists
and one or more of the exception conditions deÞned in the OEA occur.

The MPC7400 invokes the system illegal instruction program exception when it detects any
instruction from the illegal instruction class. The MPC7400 fully decodes the SPR Þeld of
the instruction. If an undeÞned SPR is speciÞed, a program exception is taken.

The UISA deÞnes mtspr and mfspr with the record bit (Rc) set as causing a program
exception or giving a boundedly-undeÞned result. In the MPC7400, the appropriate
condition register (CR) should be treated as undeÞned. Likewise, the PowerPC architecture
states that the Floating Compared Unordered (fcmpu) or Floating Compared Ordered
(fcmpo) instructions with the record bit set can either cause a program exception or provide
a boundedly-undeÞned result. In the MPC7400, the BF Þeld in an instruction encoding for
these cases is considered undeÞned.

The MPC7400 does not support either of the two ßoating-point imprecise modes supported
by the PowerPC architecture. Unless exceptions are disabled (MSR[FE0] = MSR[FE1] =
0), all ßoating-point exceptions are treated as precise.

When a program exception is taken, instruction fetching resumes at offset 0x00700 from
the physical base address indicated by MSR[IP]. Chapter 6, ÒExceptions,Ó in The
Programming Environments Manual describes register settings for this exception.

4.6.8 Floating-Point Unavailable Exception (0x00800)
The ßoating-point unavailable exception is implemented as deÞned in the PowerPC
architecture. A ßoating-point unavailable exception occurs when no higher priority
exception exists, an attempt is made to execute a ßoating-point instruction (including
ßoating-point load, store, or move instructions), and the ßoating-point available bit in the
MSR is disabled, (MSR[FP] = 0). Register settings for this exception are described in
Chapter 6, ÒExceptions,Ó in The Programming Environments Manual.

When a ßoating-point unavailable exception is taken, instruction fetching resumes at offset
0x00800 from the physical base address indicated by MSR[IP].

4.6.9 Decrementer Exception (0x00900)
The decrementer exception is implemented in the MPC7400 as it is deÞned by the PowerPC
architecture. The decrementer exception occurs when no higher priority exception exists, a
decrementer exception condition occurs (for example, the decrementer register has
completed decrementing), and MSR[EE] = 1. In the MPC7400, the decrementer register is
decremented at one fourth the bus clock rate. Register settings for this exception are
described in Chapter 6, ÒExceptions,Ó in The Programming Environments Manual.

Chapter 4. Exceptions 4-23

Exception DeÞnitions

When a decrementer exception is taken, instruction fetching resumes at offset 0x00900
from the physical base address indicated by MSR[IP].

4.6.10 System Call Exception (0x00C00)
A system call exception occurs when a System Call (sc) instruction is executed. In the
MPC7400, the system call exception is implemented as it is deÞned in the PowerPC
architecture. Register settings for this exception are described in Chapter 6, ÒExceptions,Ó
in The Programming Environments Manual.

When a system call exception is taken, instruction fetching resumes at offset 0x00C00 from
the physical base address indicated by MSR[IP].

4.6.11 Trace Exception (0x00D00)
The trace exception is taken if MSR[SE] = 1 or if MSR[BE] = 1 and the currently
completing instruction is a branch. Each instruction considered during trace mode
completes before a trace exception is taken. Register settings for this exception are
described in Chapter 6, ÒExceptions,Ó in The Programming Environments Manual.

Implementation NoteÑThe MPC7400 processor diverges from the PowerPC architecture
in that it does not take trace exceptions on the isync instruction.

When a trace exception is taken, instruction fetching resumes as offset 0x00D00 from the
base address indicated by MSR[IP].

4.6.12 Floating-Point Assist Exception (0x00E00)
The optional ßoating-point assist exception deÞned by the PowerPC architecture is not
implemented in the MPC7400.

4.6.13 Performance Monitor Interrupt (0x00F00)
The MPC7400 microprocessor provides a performance monitor facility to monitor and
count predeÞned events such as processor clocks, misses in either the instruction cache or
the data cache, instructions dispatched to a particular execution unit, mispredicted
branches, and other occurrences. The count of such events can be used to trigger the
performance monitor exception. The performance monitor facility is not deÞned by the
PowerPC architecture.

4-24 MPC7400 RISC Microprocessor UserÕs Manual

Exception DeÞnitions

The performance monitor can be used for the following:

¥ To increase system performance with efÞcient software, especially in a
multiprocessing system. Memory hierarchy behavior must be monitored and studied
to develop algorithms that schedule tasks (and perhaps partition them) and that
structure and distribute data optimally.

¥ To help system developers bring up and debug their systems.

The performance monitor uses the following SPRs:

¥ The performance monitor counter registers (PMC1ÐPMC4) are used to record the
number of times a certain event has occurred. UPMC1ÐUPMC4 provide user-level
read access to these registers.

¥ The monitor mode control registers (MMCR0ÐMMCR1) are used to enable various
performance monitor interrupt functions. UMMCR0ÐUMMCR1 provide user-level
read access to these registers.

¥ The sampled instruction address register (SIAR) contains the effective address of an
instruction executing at or around the time that the processor signals the
performance monitor interrupt condition. The USIAR register provides user-level
read access to the SIAR.

Table 4-10 lists register settings when a performance monitor interrupt exception is taken.

As with other PowerPC exceptions, the performance monitor interrupt follows the normal
PowerPC exception model with a deÞned exception vector offset (0x00F00). The priority
of the performance monitor interrupt lies between the external interrupt and the
decrementer interrupt (see Table 4-3). The contents of the SIAR are described in
Section 2.1.2.4, ÒPerformance Monitor Registers.Ó The performance monitor is described
in Chapter 11, ÒPerformance Monitor.Ó

Table 4-10. Performance Monitor Interrupt ExceptionÑRegister Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0Ð5 Cleared
6 Loaded with equivalent MSR bit
7Ð15 Cleared
16Ð31Loaded with equivalent MSR bits

MSR VEC 0
POW 0
ILE Ñ
EE 0
LE Set to value of ILE

PR 0
FP 0
ME Ñ
FE0 0

SE 0
BE 0
FE1 0
IP Ñ

IR 0
DR 0
PM 0
RI 0

Chapter 4. Exceptions 4-25

Exception DeÞnitions

4.6.14 Instruction Address Breakpoint Exception (0x01300)
An instruction address breakpoint interrupt occurs when the following conditions are met:

¥ The instruction breakpoint address IABR[0Ð29] matches EA[0Ð29] of the next
instruction to complete in program order. The instruction that triggers the instruction
address breakpoint exception is not executed before the exception handler is
invoked.

¥ The translation enable bit (IABR[TE]) matches MSR[IR].

¥ The breakpoint enable bit (IABR[BE]) is set. The address match is also reported to
the JTAG/COP block, which may subsequently generate a soft or hard reset. The
instruction tagged with the match does not complete before the breakpoint exception
is taken.

Table 4-11 lists register settings when an instruction address breakpoint exception is taken.

The MPC7400 requires that an mtspr to the IABR be followed by a context-synchronizing
instruction. The MPC7400 cannot generate a breakpoint response for that
context-synchronizing instruction if the breakpoint is enabled by the mtspr[IABR]
immediately preceding it. The MPC7400 also cannot block a breakpoint response on the
context-synchronizing instruction if the breakpoint was disabled by the mtspr[IABR]
instruction immediately preceding it. The format of the IABR register is shown in
Section 2.1.2.1, ÒInstruction Address Breakpoint Register (IABR).Ó

When an instruction address breakpoint exception is taken, instruction fetching resumes as
offset 0x01300 from the base address indicated by MSR[IP].

4.6.15 System Management Interrupt (0x01400)
The MPC7400 implements a system management interrupt exception, which is not deÞned
by the PowerPC architecture. The system management exception is very similar to the
external interrupt exception and is particularly useful in implementing the nap mode. It has

Table 4-11. Instruction Address Breakpoint ExceptionÑRegister Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0Ð5 Cleared
6 Loaded with equivalent MSR bit
7Ð15 Cleared
16Ð31Loaded with equivalent MSR bits

MSR VEC 0
POW 0
ILE Ñ
EE 0
LE Set to value of ILE

PR 0
FP 0
ME Ñ
FE0 0

SE 0
BE 0
FE1 0
IP Ñ

IR 0
DR 0
PM 0
RI 0

4-26 MPC7400 RISC Microprocessor UserÕs Manual

Exception DeÞnitions

priority over an external interrupt (see Table 4-3), and it uses a different vector in the
exception table (offset 0x01400).

Table 4-12 lists register settings when a system management interrupt exception is taken.

Like the external interrupt, a system management interrupt is signaled to the MPC7400 by
the assertion of an input signal. The system management interrupt signal (SMI) is expected
to remain asserted until the interrupt is taken. If SMI is negated early, recognition of the
interrupt request is not guaranteed. After the MPC7400 begins execution of the system
management interrupt handler, the system can safely negate SMI. After the assertion of
SMI is detected, the MPC7400 stops dispatching instructions and waits for all pending
instructions to complete. This allows any instructions in progress that need to take an
exception to do so before the system management interrupt is taken.

When a system management interrupt exception is taken, instruction fetching resumes as
offset 0x01400 from the base address indicated by MSR[IP].

4.6.16 AltiVec Assist Exception (0x01600)
The MPC7400 implements an AltiVec assist exception to handle denormalized numbers in
Java mode. An AltiVec assist exception occurs when no higher priority exception exists and
an instruction causes trap condition as deÞned in Section 7.1.3.2, ÒJava Mode, NaNs,
Denormalized Numbers, and Zeros.Ó Note that the MPC7400 handles most denormalized
numbers in Java mode by taking a trap to the AltiVec assist exception, but for some
instructions the MPC7400 can produce the exact result without trapping.

Table 4-12. System Management Interrupt ExceptionÑRegister Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0Ð5 Cleared
6 Loaded with equivalent MSR bit
7Ð15 Cleared
16Ð31Loaded with equivalent MSR bits

MSR VEC 0
POW 0
ILE Ñ
EE 0
LE Set to value of ILE

PR 0
FP 0
ME Ñ
FE0 0

SE 0
BE 0
FE1 0
IP Ñ

IR 0
DR 0
PM 0
RI 0

Chapter 4. Exceptions 4-27

Exception DeÞnitions

Table 4-12 lists register settings when an AltiVec assist exception is taken.

When an AltiVec assist exception is taken, instruction fetching resumes as offset 0x01600
from the base address indicated by MSR[IP].

4.6.17 Thermal Management Interrupt Exception (0x01700)
A thermal management interrupt is generated when the junction temperature crosses a
threshold programmed in either THRM1 or THRM2. The exception is enabled by the TIE
bit of either THRM1 or THRM2, and can be masked by setting MSR[EE].

Table 4-14 lists register settings when a thermal management interrupt exception is taken.

The thermal management interrupt is similar to the system management and external
interrupts. The MPC7400 requires the next instruction in program order to complete or take
an exception, blocks completion of any following instructions, and allows the completed
store queue to drain. Any exceptions encountered in this process are taken Þrst and the
thermal management interrupt exception is delayed until a recoverable halt is achieved, at
which point the MPC7400 saves the machine state, as shown in Table 4-14. When a thermal

Table 4-13. AltiVec Assist ExceptionÑRegister Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the exception.

SRR1 0Ð5 Cleared
6 Loaded with equivalent MSR bits
7Ð15 Cleared
16Ð31Loaded with equivalent MSR bits

MSR VEC 0
POW 0
ILE Ñ
EE 0
LE Set to value of ILE

PR 0
FP 0
ME Ñ
FE0 0

SE 0
BE 0
FE1 0
IP Ñ

IR 0
DR 0
PM 0
RI 0

Table 4-14. Thermal Management Interrupt ExceptionÑRegister Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0Ð5 Cleared
6 Loaded with equivalent MSR bit
7Ð15 Cleared
16Ð31Loaded with equivalent MSR bits

MSR VEC 0
POW 0
ILE Ñ
EE 0
LE Set to value of ILE

PR 0
FP 0
ME Ñ
FE0 0

SE 0
BE 0
FE1 0
IP Ñ

IR 0
DR 0
PM 0
RI 0

4-28 MPC7400 RISC Microprocessor UserÕs Manual

Exception DeÞnitions

management interrupt exception is taken, instruction fetching resumes as offset 0x01700
from the base address indicated by MSR[IP].

Chapter 10, ÒPower and Thermal Management,Ó gives details about thermal management.

4.6.18 AltiVec Unavailable Exception (0x00F20)
The AltiVec facility includes an additional instruction-caused, precise exception to those
deÞned by the PowerPC architecture (OEA) and discussed in Chapter 6, ÒExceptions,Ó in
the PowerPC Programming Environments Manual. An AltiVec unavailable exception
occurs when no higher priority exception exists (see Table 4-3), an attempt is made to
execute an AltiVec instruction that accesses the vector register Þle (VRF) and the vector
status and control register (VSCR), and MSR[VEC] = 0.

Note that the data streaming instructions, dst, dstt, dstst, dststt, dss, and dssall, do not
cause an AltiVec unavailable exception; the VRF and VSCR registers are available to the
data streaming instructions even when the MSR[VEC] is cleared. Note also that the
VRSAVE register is not protected by MSR[VEC].

Table 4-15 lists register settings when an AltiVec unavailable exception is taken.

When an AltiVec unavailable exception is taken, instruction execution resumes as offset
0x00F20 from the base address determined by MSR[IP].

Table 4-15. AltiVec Unavailable ExceptionÑRegister Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the exception.

SRR1 0Ð5 Cleared
6 Loaded with equivalent MSR bit
7Ð15 Cleared
16Ð31Loaded with equivalent MSR bits

MSR VEC 0
POW 0
ILE Ñ
EE 0
LE Set to value of ILE

PR 0
FP 0
ME Ñ
FE0 0

SE 0
BE 0
FE1 0
IP Ñ

IR 0
DR 0
PM 0
RI 0

Chapter 5. Memory Management 5-1

Chapter 5
Memory Management
This chapter describes the MPC7400 microprocessorÕs implementation of the memory
management unit (MMU) speciÞcations provided by the operating environment
architecture (OEA) for PowerPC processors. The primary function of the MMU in a
PowerPC processor is the translation of logical (effective) addresses to physical addresses
(referred to as real addresses in the architecture speciÞcation) for memory accesses and I/O
accesses (I/O accesses are assumed to be memory-mapped). In addition, the MMU
provides access protection on a segment, block, or page basis. This chapter describes the
speciÞc hardware used to implement the MMU model of the OEA in the MPC7400. Refer
to Chapter 7, ÒMemory Management,Ó in The Programming Environments Manual for a
complete description of the conceptual model. Note that the MPC7400 does not implement
the optional direct-store facility and it is not likely to be supported in future devices.

AltiVec Technology and the MMU Implementation

The AltiVec functionality in the MPC7400 affects the MMU model in the following ways:

¥ A data stream instruction (dst[t] or dstst[t]) can cause table search operations to
occur after the instruction is retired

¥ MMU exception conditions can cause a data stream operation to abort

¥ Aborted VTQ-initiated table search operations can cause a line fetch skip

¥ Execution of a tlbsync instruction can cancel an outstanding table search operation
for a VTQ

Two general types of memory accesses generated by PowerPC processors require address
translationÑinstruction accesses and data accesses generated by load and store
instructions. Generally, the address translation mechanism is deÞned in terms of the
segment descriptors and page tables PowerPC processors use to locate the
effective-to-physical address mapping for memory accesses. The segment information
translates the effective address to an interim virtual address, and the page table information
translates the interim virtual address to a physical address.

The segment descriptors, used to generate the interim virtual addresses, are stored as
on-chip segment registers on 32-bit implementations (such as the MPC7400). In addition,
two translation lookaside buffers (TLBs) are implemented on the MPC7400 to keep
recently-used page address translations on-chip. Although the PowerPC OEA describes one

5-2 MPC7400 RISC Microprocessor UserÕs Manual

MMU Overview

MMU (conceptually), the MPC7400 hardware maintains separate TLBs and table search
resources for instruction and data accesses that can be performed independently (and
simultaneously). Therefore, the MPC7400 is described as having two MMUs, one for
instruction accesses (IMMU) and one for data accesses (DMMU).

The block address translation (BAT) mechanism is a software-controlled array that stores
the available block address translations on-chip. BAT array entries are implemented as pairs
of BAT registers that are accessible as supervisor special-purpose registers (SPRs). There
are separate instruction and data BAT mechanisms, and in the MPC7400, they reside in the
instruction and data MMUs, respectively.

The MMUs, together with the exception processing mechanism, provide the necessary
support for the operating system to implement a paged virtual memory environment and for
enforcing protection of designated memory areas. Exception processing is described in
Chapter 4, ÒExceptions.Ó Section 4.3, ÒException Processing,Ó describes the MSR, which
controls some of the critical functionality of the MMUs.

5.1 MMU Overview
The MPC7400 implements the memory management speciÞcation of the PowerPC OEA
for 32-bit implementations. Thus, it provides 4 Gbytes of effective address space accessible
to supervisor and user programs, with a 4-Kbyte page size and 256-Mbyte segment size. In
addition, the MMUs of 32-bit PowerPC processors use an interim virtual address (52 bits)
and hashed page tables in the generation of 32-bit physical addresses. PowerPC processors
also have a BAT mechanism for mapping large blocks of memory. Block sizes range from
128 Kbyte to 256 Mbyte and are software-programmable.

Basic features of the MPC7400 MMU implementation deÞned by the OEA are as follows:

¥ Support for real addressing modeÑEffective-to-physical address translation can be
disabled separately for data and instruction accesses.

¥ Block address translationÑEach of the BAT array entries (four IBAT entries and
four DBAT entries) provides a mechanism for translating blocks as large as
256 Mbytes from the 32-bit effective address space into the physical memory space.
This can be used for translating large address ranges whose mappings do not change
frequently.

¥ Segmented address translationÑThe 32-bit effective address is extended to a 52-bit
virtual address by substituting 24 bits of upper address bits from the segment
register, for the 4 upper bits of the EA, which are used as an index into the segment
register Þle. This 52-bit virtual address space is divided into 4-Kbyte pages, each of
which can be mapped to a physical page.

Chapter 5. Memory Management 5-3

MMU Overview

The MPC7400 processor also provides the following features that are not required by the
PowerPC architecture:

¥ Separate translation lookaside buffers (TLBs)ÑThe 128-entry, two-way
set-associative ITLBs and DTLBs keep recently-used page address translations
on-chip.

¥ Table search operations performed in hardwareÑThe 52-bit virtual address is
formed and the MMU attempts to fetch the PTE, which contains the physical
address, from the appropriate TLB on-chip. If the translation is not found in a TLB
(that is, a TLB miss occurs), the hardware performs a table search operation (using
a hashing function) to search for the PTE.

¥ TLB invalidationÑThe MPC7400 implements the optional TLB Invalidate Entry
(tlbie) and TLB Synchronize (tlbsync) instructions, which can be used to invalidate
TLB entries. For more information on the tlbie and tlbsync instructions, see
Section 5.4.3.2, ÒTLB Invalidation.Ó

Table 5-1 summarizes the MPC7400 MMU features, including those deÞned by the
PowerPC architecture (OEA) for 32-bit processors and those speciÞc to the MPC7400.

Table 5-1. MMU Feature Summary

Feature Category
Architecturally DeÞned/

MPC7400-SpeciÞc
Feature

Address ranges Architecturally deÞned 232 bytes of effective address

252 bytes of virtual address

232 bytes of physical address

Page size Architecturally deÞned 4 Kbytes

Segment size Architecturally deÞned 256 Mbytes

Block address
translation

Architecturally deÞned Range of 128 KbyteÐ256 Mbyte sizes

Implemented with IBAT and DBAT registers in BAT array

Memory protection Architecturally deÞned Segments selectable as no-execute

Pages selectable as user/supervisor and read-only or guarded

Blocks selectable as user/supervisor and read-only or guarded

Page history Architecturally deÞned Referenced and changed bits deÞned and maintained

Page address
translation

Architecturally deÞned Translations stored as PTEs in hashed page tables in memory

Page table size determined by mask in SDR1 register

TLBs Architecturally deÞned Instructions for maintaining TLBs (tlbie and tlbsync instructions
in MPC7400)

MPC7400-speciÞc 128-entry, two-way set associative ITLB
128-entry, two-way set associative DTLB
LRU replacement algorithm

5-4 MPC7400 RISC Microprocessor UserÕs Manual

MMU Overview

5.1.1 Memory Addressing
A program references memory using the effective (logical) address computed by the
processor when it executes a load, store, branch, or cache instruction, and when it fetches
the next instruction. The effective address is translated to a physical address according to
the procedures described in Chapter 7, ÒMemory Management,Ó in The Programming
Environments Manual, augmented with information in this chapter. The memory subsystem
uses the physical address for the access.

For a complete discussion of effective address calculation, see Section 2.3.2.3, ÒEffective
Address Calculation.Ó

5.1.2 MMU Organization
Figure 5-1 shows the conceptual organization of a PowerPC MMU in a 32-bit
implementation; note that it does not describe the speciÞc hardware used to implement the
memory management function for a particular processor. Processors may optionally
implement on-chip TLBs, hardware support for the automatic search of the page tables for
PTEs, and other hardware features (invisible to the system software) not shown.

The MPC7400 processor maintains two on-chip TLBs with the following characteristics:

¥ 128 entries, two-way set associative (64 x 2), LRU replacement
¥ Data TLB supports the DMMU; instruction TLB supports the IMMU
¥ Hardware TLB update
¥ Hardware update of referenced (R) and changed (C) bits in the translation table

In the event of a TLB miss, the hardware attempts to load the TLB based on the results of
a translation table search operation.

Figure 5-2 and Figure 5-3 show the conceptual organization of the MPC7400 instruction
and data MMUs, respectively. The instruction addresses shown in Figure 5-2 are generated
by the processor for sequential instruction fetches and addresses that correspond to a
change of program ßow. Data addresses shown in Figure 5-3 are generated by load, store,
and cache instructions.

As shown in the Þgures, after an address is generated, the high-order bits of the effective
address, EA[0:19] (or a smaller set of address bits, EA[0:n], in the cases of blocks), are

Segment descriptors Architecturally deÞned Stored as segment registers on-chip (two identical copies
maintained)

Page table search
support

MPC7400-speciÞc The MPC7400 performs the table search operation in hardware.

Table 5-1. MMU Feature Summary (Continued)

Feature Category
Architecturally DeÞned/

MPC7400-SpeciÞc
Feature

Chapter 5. Memory Management 5-5

MMU Overview

translated into physical address bits PA[0:19]. The low-order address bits, A[20:31], are
untranslated and are therefore identical for both effective and physical addresses. After
translating the address, the MMUs pass the resulting 32-bit physical address to the memory
subsystem.

The MMUs record whether the translation is for an instruction or data access, whether the
processor is in user or supervisor mode and, for data accesses, whether the access is a load
or a store operation. The MMUs use this information to appropriately direct the address
translation and to enforce the protection hierarchy programmed by the operating system.
Section 4.3, ÒException Processing,Ó describes the MSR, which controls some of the
critical functionality of the MMUs.

The Þgures show how address bits A[20:26] index into the on-chip instruction and data
caches to select a cache set. The remaining physical address bits are then compared with
the tag Þelds (comprised of bits PA[0:19]) of the two selected cache blocks to determine if
a cache hit has occurred. In the case of a cache miss on the MPC7400, the instruction or
data access is then forwarded to the L2 interface tags to check for an L2 cache hit. In case
of a miss the access is forwarded to the bus interface unit which initiates an external
memory access.

5-6 MPC7400 RISC Microprocessor UserÕs Manual

MMU Overview

Figure 5-1. MMU Conceptual Block DiagramÑ32-Bit Implementations

Optional

Instruction
Accesses

Data
Accesses

EA[0:19]

Segment Registers

¥
¥
¥

On-Chip
TLBs

(Optional)

Page Table
Search Logic

(Optional)

SDR1 SPR 25

PA[0:14]

X

PA[0:19]

PA[15:19]

PA[0:31]

A[20:31]

IBAT0U
IBAT0L

IBAT3U
IBAT3L

¥
¥

DBAT0U
DBAT0L

DBAT3U
DBAT3L

¥
¥

EA[0:14]

EA[15:19]

EA[0:14]

EA[15:19]

A[20:31]

BAT
Hit

Upper 24-Bits
of Virtual Address

0

15

MMU
(32-Bit)

EA[0:3]

EA[4:19]

EA[0:19]

X

X

X

Chapter 5. Memory Management 5-7

MMU Overview

Figure 5-2. MPC7400 Microprocessor IMMU Block Diagram

BPU

ITLB

IBAT Array

0

63

127

Tag

PA[0:19]

I Cache

Select

I Cache

Compare

CompareCompare
0

7

Instruction
Unit A[20:31]

Hit/Miss

Segment Registers

¥
¥
¥

0

15

IBAT0U
IBAT0L

IBAT3U
IBAT3L

¥
¥

X

PA[0:31]

SDR1 SPR25

EA[0:14]

EA[0:3]

Select

EA[4:19]

EA[0:19]

Page Table
Search Logic

EA[0:19]

A[20:26]

PA[0:19]

IMMU

7

0

5-8 MPC7400 RISC Microprocessor UserÕs Manual

MMU Overview

Figure 5-3. MPC7400 Microprocessor DMMU Block Diagram

DTLB

DBAT Array

0

63

127

Tag

PA[0:19]

D Cache

Select

D Cache

Compare

CompareCompare
0

7

A[20:31]

Hit/Miss

Segment Registers

¥
¥
¥

0

15

DBAT0U
DBAT0L

DBAT3U
DBAT3L

¥
¥

X

PA[0:31]

SDR1 SPR 25

EA[0:14]

EA[0:3]

Select

EA[4:19]

EA[0:19]

Page Table
Search Logic

EA[0:19]

A[20:26]

PA[0:19]

DMMU

Load/Store
Unit

7

0

Chapter 5. Memory Management 5-9

MMU Overview

5.1.3 Address Translation Mechanisms
PowerPC processors support the following three types of address translation:

¥ Page address translationÑTranslates the page frame address for a 4-Kbyte page size

¥ Block address translationÑTranslates the block number for blocks that range in size
from 128 Kbytes to 256 Mbytes.

¥ Real addressing mode address translationÑWhen address translation is disabled,
the physical address is identical to the effective address.

Figure 5-4 shows the three address translation mechanisms provided by the MMUs. The
segment descriptors shown in the Þgure control the page address translation mechanism.
When an access uses page address translation, the appropriate segment descriptor is
required. In 32-bit implementations, the appropriate segment descriptor is selected from the
16 on-chip segment registers by the four highest-order effective address bits.

A control bit in the corresponding segment descriptor then determines if the access is to
memory (memory-mapped) or to the direct-store interface space. Note that the direct-store
interface was present in the architecture only for compatibility with existing I/O devices
that used this interface. However, it is being removed from the architecture, and the
MPC7400 does not support it. When an access is determined to be to the direct-store
interface space, the MPC7400 takes a DSI exception if it is a data access (see Section 4.6.3,
ÒDSI Exception (0x00300)Ó), and takes an ISI exception if it is an instruction access (see
Section 4.6.4, ÒISI Exception (0x00400)Ó).

For memory accesses translated by a segment descriptor, the interim virtual address is
generated using the information in the segment descriptor. Page address translation
corresponds to the conversion of this virtual address into the 32-bit physical address used
by the memory subsystem. In most cases, the physical address for the page resides in an
on-chip TLB and is available for quick access. However, if the page address translation
misses in the on-chip TLB, the MMU causes a search of the page tables in memory (using
the virtual address information and a hashing function) to locate the required physical
address.

Because blocks are larger than pages, there are fewer upper-order effective address bits to
be translated into physical address bits (more low-order address bits (at least 17) are
untranslated to form the offset into a block) for block address translation. Also, instead of
segment descriptors and a TLB, block address translations use the on-chip BAT registers as
a BAT array. If an effective address matches the corresponding Þeld of a BAT register, the
information in the BAT register is used to generate the physical address; in this case, the
results of the page translation (occurring in parallel) are ignored.

5-10 MPC7400 RISC Microprocessor UserÕs Manual

MMU Overview

Figure 5-4. Address Translation Types

When the processor generates an access, and the corresponding address translation enable
bit in MSR is cleared, the resulting physical address is identical to the effective address and
all other translation mechanisms are ignored. Instruction address translation and data
address translation are enabled by setting MSR[IR] and MSR[DR], respectively.

(T = 1)

0 31

Physical Address

0 31

Physical Address

0 31

Physical Address

(T = 0)

0 31

Effective Address

0 51

Virtual Address

Segment
Descriptor
Located

Match with
BAT

Registers

Look Up in
Page Table

Address Translation Disabled

Page Address
Translation

Direct-Store
Interface

Translation

(MSR[IR] = 0, or MSR[DR] = 0)

Real Addressing Mode
Effective Address = Physical

Address
(See Section 5.2, ÒReal Addressing

Mode)

Block Address
Translation

(See Section 5.3, ÒBlock Address
Translation)

DSI/ISI Exception

Chapter 5. Memory Management 5-11

MMU Overview

5.1.4 Memory Protection Facilities
In addition to the translation of effective addresses to physical addresses, the MMUs
provide access protection of supervisor areas from user access and can designate areas of
memory as read-only as well as no-execute or guarded. Table 5-2 shows the protection
options supported by the MMUs for pages.

The no-execute option provided in the segment register lets the operating system program
determine whether instructions can be fetched from an area of memory. The remaining
options are enforced based on a combination of information in the segment descriptor and
the page table entry. Thus, the supervisor-only option allows only read and write operations
generated while the processor is operating in supervisor mode (MSR[PR] = 0) to access the
page. User accesses that map into a supervisor-only page cause an exception.

Finally, a facility in the VEA and OEA allows pages or blocks to be designated as guarded,
preventing out-of-order accesses that may cause undesired side effects. For example, areas
of the memory map used to control I/O devices can be marked as guarded so accesses do
not occur unless they are explicitly required by the program.

For more information on memory protection, see ÒMemory Protection Facilities,Ó in
Chapter 7, ÒMemory Management,Ó in the The Programming Environments Manual.

Table 5-2. Access Protection Options for Pages

Option
User Read User

Write

Supervisor Read Supervisor
WriteI-Fetch Data I-Fetch Data

Supervisor-only Ñ Ñ Ñ Ö Ö Ö

Supervisor-only-no-execute Ñ Ñ Ñ Ñ Ö Ö

Supervisor-write-only Ö Ö Ñ Ö Ö Ö

Supervisor-write-only-no-execute Ñ Ö Ñ Ñ Ö Ö

Both (user/supervisor) Ö Ö Ö Ö Ö Ö

Both (user-/supervisor) no-execute Ñ Ö Ö Ñ Ö Ö

Both (user-/supervisor) read-only Ö Ö Ñ Ö Ö Ñ

Both (user/supervisor)
read-only-no-execute

Ñ Ö Ñ Ñ Ö Ñ

Ö Access permitted
 Ñ Protection violation

5-12 MPC7400 RISC Microprocessor UserÕs Manual

MMU Overview

5.1.5 Page History Information
The MMUs of PowerPC processors also deÞne referenced (R) and changed (C) bits in the
page address translation mechanism that can be used as history information relevant to the
page. The operating system can use these bits to determine which areas of memory to write
back to disk when new pages must be allocated in main memory. While these bits are
initially programmed by the operating system into the page table, the architecture speciÞes
that they can be maintained either by the processor hardware (automatically) or by some
software-assist mechanism.

When loading the TLB, the MPC7400 checks the state of the changed and referenced bits
for the matched PTE. If the referenced bit is not set and the table search operation is initially
caused by a load operation or by an instruction fetch, the MPC7400 automatically sets the
referenced bit in the translation table. Similarly, if the table search operation is caused by a
store operation and either the referenced bit or the changed bit is not set, the hardware
automatically sets both bits in the translation table. In addition, when the address translation
of a store operation hits in the DTLB, the MPC7400 checks the state of the changed bit. If
the bit is not already set, the hardware automatically updates the DTLB and the translation
table in memory to set the changed bit. For more information, see Section 5.4.1, ÒPage
History Recording.Ó

5.1.6 General Flow of MMU Address Translation
The following sections describe the general ßow used by PowerPC processors to translate
effective addresses to virtual and then physical addresses.

5.1.6.1 Real Addressing Mode and Block Address Translation
Selection

When an instruction or data access is generated and the corresponding instruction or data
translation is disabled (MSR[IR] = 0 or MSR[DR] = 0), real addressing mode is used
(physical address equals effective address) and the access continues to the memory
subsystem as described in Section 5.2, ÒReal Addressing Mode.Ó

Figure 5-5 shows the ßow the MMUs use in determining whether to select real addressing
mode, block address translation, or the segment descriptor to select page address
translation.

Chapter 5. Memory Management 5-13

MMU Overview

Figure 5-5. General Flow of Address Translation (Real Addressing Mode
and Block)

Note that if the BAT array search results in a hit, the access is qualiÞed with the appropriate
protection bits. If the access violates the protection mechanism, an exception (ISI or DSI
exception) is generated.

Perform Address
Translation with Segment

Descriptor

Access Faulted

Compare Address with
Instruction or Data BAT Array

(As Appropriate)

Translate Address

Perform Real
Addressing Mode

Translation

Effective Address
Generated

Continue Access
to Memory
Subsystem

(See The Programming
Environments Manual)

(See Figure 5-6)

Instruction
Translation Disabled

(MSR[IR] = 0)

BAT Array
Miss

I-Access

Access
Protected

Access
Permitted

Instruction
Translation Enabled

(MSR[IR] = 1)

Data
Translation Enabled

(MSR[DR] = 1)

Data
Translation Disabled

(MSR[DR] = 0)

D-Access

BAT Array
Hit

Perform Real
Addressing Mode

Translation

5-14 MPC7400 RISC Microprocessor UserÕs Manual

MMU Overview

5.1.6.2 Page Address Translation Selection
If address translation is enabled and the effective address information does not match a BAT
array entry, the segment descriptor must be located. When the segment descriptor is located,
the T bit in the segment descriptor selects whether the translation is to a page or to a
direct-store segment as shown in Figure 5-6. For 32-bit implementations, the segment
descriptor for an access is contained in one of 16 on-chip segment registers; effective
address bits EA[0:3] select one of the 16 segment registers.

Note that the MPC7400 does not implement the direct-store interface, and accesses to these
segments cause a DSI or ISI exception. In addition, Figure 5-6 also shows the way in which
the no-execute protection is enforced; if the N bit in the segment descriptor is set and the
access is an instruction fetch, the access is faulted as described in Chapter 7, ÒMemory
Management,Ó in The Programming Environments Manual. Note that the Þgure shows the
ßow for these cases as described by the PowerPC OEA, and so the TLB references are
shown as optional. Because the MPC7400 implements TLBs, these branches are valid and
are described in more detail throughout this chapter.

Chapter 5. Memory Management 5-15

MMU Overview

Figure 5-6. General Flow of Page and Direct-Store Interface Address Translation

Address Translation with
Segment Descriptor

Access Faulted

Access Faulted

Perform Page Table
Search Operation

Continue Access to
Memory Subsystem

Translate Address

*In the case of
instruction accesses,
causes ISI exception

Load TLB Entry

(See Figure 5-8)

(See Figure 5-9)

Otherwise

Check T-Bit in
Segment Descriptor

Use EA[0:3] to
Select One of 16 On-Chip

Segment Registers

Page Address
Translation

(T = 0)

Direct-Store
Segment Address

(T = 1)*

I-Fetch with N-Bit Set in
Segment Descriptor

 (No-Execute)

PTE Not
Found PTE Found

Access
ProtectedAccess

Permitted

Optional to the PowerPC architecture. Implemented in the MPC7400.

DSI/ISI Exception

Compare Virtual Address with
TLB Entries

Generate 52-Bit Virtual Address
from Segment Descriptor

TLB
Hit

TLB
Miss

5-16 MPC7400 RISC Microprocessor UserÕs Manual

MMU Overview

If SR[T] = 0, page address translation is selected. The information in the segment descriptor
is then used to generate the 52-bit virtual address. The virtual address is then used to
identify the page address translation information (stored as page table entries (PTEs) in a
page table in memory). For increased performance, the MPC7400 has two on-chip TLBs to
cache recently-used translations on-chip.

If an access hits in the appropriate TLB, page translation succeeds and the physical address
bits are forwarded to the memory subsystem. If the required translation is not resident, the
MMU performs a search of the page table. If the required PTE is found, a TLB entry is
allocated and the page translation is attempted again. This time, the TLB is guaranteed to
hit. When the translation is located, the access is qualiÞed with the appropriate protection
bits. If the access causes a protection violation, either an ISI or DSI exception is generated.

If the PTE is not found by the table search operation, a page fault condition exists, and an
ISI or DSI exception occurs so software can handle the page fault.

5.1.7 MMU Exceptions Summary
To complete any memory access, the effective address must be translated to a physical
address. As speciÞed by the architecture, an MMU exception condition occurs if this
translation fails for one of the following reasons:

¥ Page faultÑThere is no valid entry in the page table for the page speciÞed by the
effective address (and segment descriptor) and there is no valid BAT translation.

¥ An address translation is found but the access is not allowed by the memory
protection mechanism.

The translation exception conditions deÞned by the OEA for 32-bit implementations cause
either the ISI or the DSI exception to be taken as shown in Table 5-3.

The state saved by the processor for each of these exceptions contains information that
identiÞes the address of the failing instruction. Refer to Chapter 4, ÒExceptions,Ó for a more
detailed description of exception processing.

Table 5-3. Translation Exception Conditions

Condition Description Exception

Page fault (no PTE found) No matching PTE found in page tables (and no
matching BAT array entry)

I access: ISI exception
SRR1[1] = 1

D access: DSI exception
DSISR[1] =1

Block protection violation Conditions described for block in ÒBlock
Memory ProtectionÓ in Chapter 7, ÒMemory
Management,Ó in The Programming
Environments Manual.Ò

I access: ISI exception
SRR1[4] = 1

D access: DSI exception
DSISR[4] =1

Chapter 5. Memory Management 5-17

MMU Overview

In addition to the translation exceptions, there are other MMU-related conditions (some of
them deÞned as implementation-speciÞc, and therefore not required by the architecture)
that can cause an exception to occur. These exception conditions map to processor
exceptions as shown in Table 5-4. The only MMU exception conditions that occur when
MSR[DR] = 0 are those that cause an alignment exception for data accesses. For more
detailed information about the conditions that cause an alignment exception (in particular
for string/multiple instructions), see Section 4.6.6, ÒAlignment Exception (0x00600).Ó

Note that some exception conditions depend upon whether the memory area is set up as
write-though (W = 1) or cache-inhibited (I = 1). These bits are described fully in
ÒMemory/Cache Access Attributes,Ó in Chapter 5, ÒCache Model and Memory Coherency,Ó
of The Programming Environments Manual. Refer to Chapter 4, ÒExceptions,Ó and to
Chapter 6, ÒExceptions,Ó in The Programming Environments Manual for a complete
description of the SRR1 and DSISR bit settings for these exceptions.

For data accesses, the MPC7400 LSU initiates out-of-order accesses without knowledge of
whether it is legal to do so. The MMU detects protection violations and dcbz alignment
exceptions. The MMU prevents the changed bit in the PTE from being updated erroneously
in these cases, but the LRU algorithm is updated. The MMU does not initiate exception
processing for any exception conditions until the instruction that caused the exception is the
next instruction to be retired. Also, the MPC7400 MMU does not perform a hardware table
search operation due to TLB misses until the request is required by the program ßow.

Page protection violation Conditions described for page in ÒPage
Memory ProtectionÓ in Chapter 7, ÒMemory
Management,Ó in The Programming
Environments Manual.

I access: ISI exception
SRR1[4] = 1

D access: DSI exception
DSISR[4] =1

No-execute protection violation Attempt to fetch instruction when SR[N] = 1 ISI exception
SRR1[3] = 1

Instruction fetch from
direct-store segment

Attempt to fetch instruction when SR[T] = 1 ISI exception
SRR1[3] =1

Data access to direct-store
segment (including ßoating-point
accesses)

Attempt to perform load or store (including FP
load or store) when SR[T] = 1

DSI exception
DSISR[5] =1

Instruction fetch from guarded
memory

Attempt to fetch instruction when MSR[IR] = 1
and either matching xBAT[G] = 1, or no
matching BAT entry and PTE[G] = 1

ISI exception
SRR1[3] =1

Table 5-3. Translation Exception Conditions (Continued)

Condition Description Exception

5-18 MPC7400 RISC Microprocessor UserÕs Manual

MMU Overview

5.1.8 MMU Instructions and Register Summary
The MMU instructions and registers allow the operating system to set up the block address
translation areas and the page tables in memory.

Note that because the implementation of TLBs is optional, the instructions that refer to
these structures are also optional. However, as these structures serve as caches of the page
table, the architecture speciÞes a software protocol for maintaining coherency between
these caches and the tables in memory whenever the tables in memory are modiÞed. When
the tables in memory are changed, the operating system purges these caches of the
corresponding entries, allowing the translation caching mechanism to refetch from the
tables when the corresponding entries are required.

Note that the MPC7400 implements all TLB-related instructions except tlbia, which is
treated as an illegal instruction.

Because the MMU speciÞcation for PowerPC processors is so ßexible, it is recommended
that the software that uses these instructions and registers be encapsulated into subroutines
to minimize the impact of migrating across the family of implementations.

Table 5-4. Other MMU Exception Conditions for the MPC7400 Processor

Condition Description Exception

dcbz with W = 1 or I = 1 dcbz instruction to write-through or
cache-inhibited segment or block

Alignment exception (not
required by architecture for
this condition)

lwarx, stwcx., eciwx, or ecowx
instruction to direct-store segment

Reservation instruction or external control
instruction when SR[T] =1

DSI exception
DSISR[5] =1

Floating-point load or store to
direct-store segment

FP memory access when SR[T] =1 See data access to
direct-store segment in
Table 5-3.

Load or store that results in a
direct-store error

Does not occur in MPC7400 Does not apply

eciwx or ecowx attempted when
external control facility disabled

eciwx or ecowx attempted with EAR[E] = 0 DSI exception
DSISR[11] = 1

lmw, stmw, lswi, lswx, stswi, or
stswx instruction attempted in
little-endian mode

lmw, stmw, lswi, lswx, stswi, or stswx
instruction attempted while MSR[LE] = 1

Alignment exception

Operand misalignment Translation enabled and a ßoating-point
load/store, stmw, stwcx., lmw, lwarx, eciwx,
or ecowx instruction operand is not
word-aligned

Alignment exception (some
of these cases are
implementation-speciÞc)

Chapter 5. Memory Management 5-19

MMU Overview

Table 5-5 summarizes MPC7400 instructions that speciÞcally control the MMU. For more
detailed information about the instructions, refer to Chapter 2, ÒProgramming Model,Ó in
this book and Chapter 8, ÒInstruction Set,Ó in The Programming Environments Manual.

Table 5-6 summarizes the registers that the operating system uses to program the MPC7400
MMUs. These registers are accessible to supervisor-level software only. These registers are
described in Chapter 2, ÒProgramming Model.Ó

Table 5-5. MPC7400 Microprocessor Instruction SummaryÑControl MMUs

Instruction Description

mtsr SR,rS Move to Segment Register
SR[SR#]¬ rS

mtsrin rS,rB Move to Segment Register Indirect
SR[rB[0Ð3]]¬rS

mfsr rD,SR Move from Segment Register
rD¬SR[SR#]

mfsrin rD,rB Move from Segment Register Indirect
rD¬SR[rB[0Ð3]]

tlbie rB* TLB Invalidate Entry
For effective address speciÞed by rB, TLB[V]¬0
The tlbie instruction invalidates all TLB entries indexed by the EA, and operates on both the
instruction and data TLBs simultaneously invalidating four TLB entries. The index corresponds to
bits 14Ð19 of the EA.
In addition, execution of this instruction causes all entries in the congruence class corresponding
to the EA to be invalidated in the other processors attached to the same bus.
Software must ensure that instruction fetches or memory references to the virtual pages speciÞed
by the tlbie instruction have been completed prior to executing the tlbie instruction.

tlbsync* TLB Synchronize
Synchronizes the execution of all other tlbie instructions in the system. SpeciÞcally, this instruction
causes a global (M = 1) TLBSYNC address-only transaction (TT[0:4] = 01001) on the bus. The
TLBSYNC transaction terminates normally (without a retry) when all processors on the bus have
completed pending TLB invalidations. See Section 5.4.3.2, ÒTLB Invalidation,Ó for more detailed
information on the tlbsync instruction

*These instructions are deÞned by the PowerPC architecture, but are optional.

5-20 MPC7400 RISC Microprocessor UserÕs Manual

Real Addressing Mode

If an MMU register is being accessed by an instruction in the instruction stream, the IMMU
stalls for one translation cycle to perform that operation. The sequencer serializes
instructions to ensure the data correctness. Updates to the IBATs and SRs are classiÞed as
fetch serializing operations by the sequencer. After such an instruction is dispatched, the
instruction buffer is ßushed and the fetch stalls until the instruction completes. Reads from
the IBATs are classiÞed as execution serializing. Once the LSU ensures that all previous
instructions can be executed, subsequent instructions can be fetched and dispatched.

5.2 Real Addressing Mode
If address translation is disabled (MSR[IR] = 0 or MSR[DR] = 0) for a particular access,
the effective address is treated as the physical address and is passed directly to the memory
subsystem as described in Chapter 7, ÒMemory Management,Ó in The Programming
Environments Manual.

Note that the default WIMG bits (0b0011) cause data accesses to be considered cacheable
(I = 0) and thus load and store accesses are weakly ordered. This is the case even if the data
cache is disabled in the HID0 register (as it is out of hard reset). If I/O devices require load
and store accesses to occur in strict program order (strongly ordered), translation must be
enabled so that the corresponding I bit can be set. Note also, that the G bit must be set to
ensure that the accesses are strongly ordered. For instruction accesses, the default memory
access mode bits (WIMG) are also 0b0011. That is, instruction accesses are considered
cacheable (I = 0), and the memory is guarded. Again, instruction accesses are considered
cacheable even if the instruction cache is disabled in the HID0 register (as it is out of hard
reset). The W and M bits have no effect on the instruction cache.

For information on the synchronization requirements for changes to MSR[IR] and
MSR[DR], refer to Section 2.3.2.4, ÒSynchronization,Ó in this manual, and
ÒSynchronization Requirements for Special Registers and for Lookaside BuffersÓ in
Chapter 2, ÒPowerPC Register Set,Ó in The Programming Environments Manual.

Table 5-6. MPC7400 Microprocessor MMU Registers

Register Description

Segment registers
(SR0ÐSR15)

The sixteen 32-bit segment registers are present only in 32-bit implementations of the
PowerPC architecture. The Þelds in the segment register are interpreted differently
depending on the value of bit 0. The segment registers are accessed by the mtsr,
mtsrin, mfsr, and mfsrin instructions.

BAT registers
(IBAT0UÐIBAT3U,
IBAT0LÐIBAT3L,
DBAT0UÐDBAT3U, and
DBAT0LÐDBAT3L)

There are 16 BAT registers, organized as four pairs of instruction BAT registers
(IBAT0UÐIBAT3U paired with IBAT0LÐIBAT3L) and four pairs of data BAT registers
(DBAT0UÐDBAT3U paired with DBAT0LÐDBAT3L). The BAT registers are deÞned as
32-bit registers in 32-bit implementations. These are special-purpose registers that
are accessed by the mtspr and mfspr instructions.

SDR1 The SDR1 register speciÞes the variables used in accessing the page tables in
memory. SDR1 is deÞned as a 32-bit register for 32-bit implementations. This
special-purpose register is accessed by the mtspr and mfspr instructions.

Chapter 5. Memory Management 5-21

Block Address Translation

5.3 Block Address Translation
The block address translation (BAT) mechanism in the OEA provides a way to map ranges
of effective addresses larger than a single page into contiguous areas of physical memory.
Such areas can be used for data that is not subject to normal virtual memory handling
(paging), such as a memory-mapped display buffer or an extremely large array of numerical
data.

Block address translation in the MPC7400 is described in Chapter 7, ÒMemory
Management,Ó in The Programming Environments Manual for 32-bit implementations.

The MPC7400 BAT registers are not initialized by the hardware after the power-up or reset
sequence. Consequently, all valid bits in both instruction and data BATs must be cleared
before setting any BAT for the Þrst time. This is true regardless of whether address
translation is enabled. Also, software must avoid overlapping blocks while updating a BAT
or areas. Even if translation is disabled, multiple BAT hits are treated as programming
errors and can corrupt the BAT registers and produce unpredictable results.

5.4 Memory Segment Model
The MPC7400 adheres to the memory segment model as deÞned in Chapter 7, ÒMemory
Management,Ó in The Programming Environments Manual for 32-bit implementations.
Memory in the PowerPC OEA is divided into 256-Mbyte segments. This segmented
memory model provides a way to map 4-Kbyte pages of effective addresses to 4-Kbyte
pages in physical memory (page address translation), while providing the programming
ßexibility afforded by a large virtual address space (52 bits).

The segment/page address translation mechanism may be superseded by the block address
translation (BAT) mechanism described in Section 5.3, ÒBlock Address Translation.Ó If not, the
translation proceeds in the following two steps:

1. from effective address to the virtual address (which never exists as a speciÞc entity
but can be considered to be the concatenation of the virtual page number and the byte
offset within a page), and

2. from virtual address to physical address.

This section highlights those areas of the memory segment model deÞned by the OEA that
are speciÞc to the MPC7400.

5.4.1 Page History Recording
Referenced (R) and changed (C) bits in each PTE keep history information about the page.
They are maintained by a combination of the MPC7400 table search hardware and the
system software. The operating system uses this information to determine which areas of
memory to write back to disk when new pages must be allocated in main memory.

5-22 MPC7400 RISC Microprocessor UserÕs Manual

Memory Segment Model

Referenced and changed recording is performed only for accesses made with page address
translation and not for translations made with the BAT mechanism or for accesses that
correspond to direct-store (T = 1) segments. Furthermore, R and C bits are maintained only
for accesses made while address translation is enabled (MSR[IR] = 1 or MSR[DR] = 1).

In the MPC7400, the referenced and changed bits are updated as follows:

¥ For TLB hits, the C bit is updated according to Table 5-7.

¥ For TLB misses, when a table search operation is in progress to locate a PTE. The
R and C bits are updated (set, if required) to reßect the status of the page based on
this access.

Table 5-7 shows that the status of the C bit in the TLB entry (in the case of a TLB hit) is
what causes the processor to update the C bit in the PTE (the R bit is assumed to be set in
the page tables if there is a TLB hit). Therefore, when software clears the R and C bits in
the page tables in memory, it must invalidate the TLB entries associated with the pages
whose referenced and changed bits were cleared.

In some previous implementations, the dcbt and dcbtst instructions would execute only if
there was a TLB/BAT hit or if the processor is in real addressing mode. In case of a TLB or
BAT miss, these instructions would be treated as no-ops and did not initiate a table search
operation and did not set either the R or C bits. In the MPC7400, the dcbt, dcbtst, and data
stream touch instructions (dst[t] and dstst[t]) do cause a table search operation in the case
of a TLB miss. However, they never cause the C bit to be set.

As deÞned by the PowerPC architecture, the referenced and changed bits are updated as if
address translation were disabled (real addressing mode). If these update accesses hit in the
data cache, they are not seen on the external bus. If they miss in the data cache, they are
performed as typical cache line Þll accesses on the bus (if the data cache is enabled), or as
discrete read and write accesses (if the data cache is disabled).

5.4.1.1 Referenced Bit
The referenced (R) bit of a page is located in the PTE in the page table. Every time a page
is referenced (with a read or write access) and the R bit is zero, the MPC7400 sets the R bit

Table 5-7. Table Search Operations to Update History BitsÑTLB Hit Case

R and C bits
in TLB Entry

Processor Action

00 Combination doesnÕt occur

01 Combination doesnÕt occur

10 Read: No special action
Write: The MPC7400 initiates a table search operation to update C.

11 No special action for read or write

Chapter 5. Memory Management 5-23

Memory Segment Model

in the page table. The OEA speciÞes that the referenced bit may be set immediately, or the
setting may be delayed until the memory access is determined to be successful. Because the
reference to a page is what causes a PTE to be loaded into the TLB, the referenced bit in all
MPC7400 TLB entries is effectively always set. The processor never automatically clears
the referenced bit.

The referenced bit is only a hint to the operating system about the activity of a page. At
times, the referenced bit may be set although the access was not logically required by the
program or even if the access was prevented by memory protection. Examples of this in
PowerPC systems include the following:

¥ Fetching of instructions not subsequently executed

¥ A memory reference caused by a speculatively executed instruction that is
mispredicted

¥ Accesses generated by an lswx or stswx instruction with a zero length

¥ Accesses generated by an stwcx. instruction when no store is performed because a
reservation does not exist

¥ Accesses that cause exceptions and are not completed

5.4.1.2 Changed Bit
The changed bit of a page is located both in the PTE in the page table and in the copy of the
PTE loaded into the TLB (if a TLB is implemented, as in the MPC7400). Whenever a data
store instruction is executed successfully, if the TLB search (for page address translation)
results in a hit, the changed bit in the matching TLB entry is checked. If it is already set, it
is not updated. If the TLB changed bit is 0, the MPC7400 initiates the table search operation
to set the C bit in the corresponding PTE in the page table. The MPC7400 then reloads the
TLB (with the C bit set).

The changed bit (in both the TLB and the PTE in the page tables) is set only when a store
operation is allowed by the page memory protection mechanism and the store is guaranteed
to be in the execution path (unless an exception, other than those caused by the sc, rÞ, or
trap instructions, occurs). Furthermore, the following conditions may cause the C bit to be
set:

¥ The execution of an stwcx. instruction is allowed by the memory protection
mechanism but a store operation is not performed.

¥ The execution of an stswx instruction is allowed by the memory protection
mechanism but a store operation is not performed because the speciÞed length is
zero.

¥ The store operation is not performed because an exception occurs before the store is
performed.

5-24 MPC7400 RISC Microprocessor UserÕs Manual

Memory Segment Model

Again, note that the execution of the dcbt, dcbtst and data stream touch instructions (dst[t]
and dstst[t]) never cause the C bit to be set.

5.4.1.3 Scenarios for Referenced and Changed Bit Recording
This section provides a summary of the model (deÞned by the OEA) that is used by
PowerPC processors for maintaining the referenced and changed bits. In some scenarios,
the bits are guaranteed to be set by the processor, in some scenarios, the architecture allows
that the bits may be set (not absolutely required), and in some scenarios, the bits are
guaranteed to not be set. Note that when the MPC7400 updates the R and C bits in memory,
the accesses are performed as if MSR[DR] = 0 and G = 0 (that is, as nonguarded cacheable
operations in which coherency is required).

Table 5-8 deÞnes a prioritized list of the R and C bit settings for all scenarios. The entries
in the table are prioritized from top to bottom, such that a matching scenario occurring
closer to the top of the table takes precedence over a matching scenario closer to the bottom
of the table. For example, if an stwcx. instruction causes a protection violation and there is
no reservation, the C bit is not altered, as shown for the protection violation case. Note that
in the table, load operations include those generated by load instructions, by the eciwx
instruction, and by the cache management instructions that are treated as a load with respect
to address translation. Similarly, store operations include those operations generated by
store instructions, by the ecowx instruction, and by the cache management instructions that
are treated as a store with respect to address translation.

Table 5-8. Model for Guaranteed R and C Bit Settings

Priority Scenario
Causes Setting of R Bit Causes Setting of C Bit

OEA MPC7400 OEA MPC7400

1 No-execute protection violation No No No No

2 Page protection violation Maybe Yes No No

3 Out-of-order instruction fetch or load operation Maybe No No No

4 Out-of-order store operation. Would be required by
the sequential execution model in the absence of
system-caused or imprecise exceptions, or of
ßoating-point assist exception for instructions that
would cause no other kind of precise exception.

Maybe1 No No No

5 All other out-of-order store operations Maybe1 No Maybe1 No

6 Zero-length load (lswx) Maybe No No No

7 Zero-length store (stswx) Maybe1 No Maybe1 No

8 Store conditional (stwcx.) that does not store Maybe1 Yes Maybe1 Yes

9 In-order instruction fetch Yes2 Yes No No

10 Load instruction or eciwx Yes Yes No No

11 Store instruction, ecowx or dcbz instruction Yes Yes Yes Yes

12 icbi, dcbt, or dcbtst instruction Maybe No No No

Chapter 5. Memory Management 5-25

Memory Segment Model

For more information, see ÒPage History RecordingÓ in Chapter 7, ÒMemory
Management,Ó of The Programming Environments Manual.

5.4.2 Page Memory Protection
The MPC7400 implements page memory protection as it is deÞned in Chapter 7, ÒMemory
Management,Ó in The Programming Environments Manual.

5.4.3 TLB Description
The MPC7400 implements separate 128-entry data and instruction TLBs to maximize
performance. This section describes the hardware resources provided in the MPC7400 to
facilitate page address translation. Note that the hardware implementation of the MMU is
not speciÞed by the architecture, and while this description applies to the MPC7400, it does
not necessarily apply to other PowerPC processors.

5.4.3.1 TLB Organization and Operation
Because the MPC7400 has two MMUs (IMMU and DMMU) that operate in parallel, some
of the MMU resources are shared, and some are actually duplicated (shadowed) in each
MMU to maximize performance. For example, although the architecture deÞnes a single
set of segment registers for the MMU, the MPC7400 maintains two identical sets of
segment registers, one for the IMMU and one for the DMMU; when an instruction that
updates the segment register executes, the MPC7400 automatically updates both sets.

The TLB entries are on-chip copies of PTEs in the page tables in memory and are similar
in structure. To uniquely identify a TLB entry as the required PTE, the TLB entry also
contains four more bits of the page index, EA[10:13], called the extended API (EAPI) in
addition to the API bits in of the PTE.

Each TLB contains 128 entries organized as a two-way set-associative array with 64 sets as
shown in Figure 5-7 for the DTLB (the ITLB organization is the same). When an address
is being translated, a set of two TLB entries is indexed in parallel with the access to a
segment register. If the address in one of the two TLB entries is valid and matches the 40-bit
virtual page number, that TLB entry contains the translation. If no match is found, a TLB
miss occurs.

13 dcbst or dcbf instruction Maybe Yes No No

14 dcbi instruction Maybe1 Yes Maybe1 Yes

1 If C is set, R is guaranteed to be set also.
2 Includes the case in which the instruction is fetched out of order and R is not set (does not apply for MPC7400).

Table 5-8. Model for Guaranteed R and C Bit Settings (Continued)

Priority Scenario
Causes Setting of R Bit Causes Setting of C Bit

OEA MPC7400 OEA MPC7400

5-26 MPC7400 RISC Microprocessor UserÕs Manual

Memory Segment Model

Figure 5-7. Segment Register and DTLB Organization

Unless the access is the result of an out-of-order access, a hardware table search operation
begins if there is a TLB miss. If the access is out of order, the table search operation is
postponed until the access is required, at which point the access is no longer out of order.
When the matching PTE is found in memory, it is loaded into the TLB entry selected by the
least-recently-used (LRU) replacement algorithm, and the translation process begins again,
this time with a TLB hit.

Software cannot access the TLB arrays directly, except to invalidate an entry with the tlbie
instruction.

Each set of TLB entries has one associated LRU bit. The LRU bit for a set is updated any
time either entry is used, even if the access is speculative. Invalid entries are always the Þrst
to be replaced.

T

0 7 8 31

0

15 T VSID

Segment Registers

V
DTLB

0

63

V

EA[0:31]

EA[0:3]

EA[14:19]

VSID

Select

Compare

Compare

EA[4:13]

Line 1

Line 0

MUX

RPN
Line1/Line 0 Hit

PA[0:19]

Chapter 5. Memory Management 5-27

Memory Segment Model

Although both MMUs can be accessed simultaneously (both sets of segment registers and
TLBs can be accessed in the same clock), only one exception condition is reported at a time.
Exceptions are processed in strict program order, and a particular exception is processed
when the instruction that caused it is the next instruction to be retired. When a particular
instruction causes an instruction MMU exception, that exception is processed before that
instruction can cause a data MMU exception.

ITLB miss conditions are reported when there are no more instructions to be dispatched or
retired (the pipeline is empty), and DTLB miss conditions are reported when the load or
store instruction is the next instruction to be retired. In the case that both an ITLB and
DTLB miss are reported in the same clock, the DTLB miss takes precedence and is handled
Þrst. Refer to Chapter 6, ÒInstruction Timing,Ó for more detailed information about the
internal pipelines and the reporting of exceptions.

Although address translation is disabled on a soft or hard reset condition, the valid bits of
TLB entries are not automatically cleared. Thus, TLB entries must be explicitly cleared by
the system software (with the tlbie instruction) before address translation is enabled. Also,
note that the segment registers do not have a valid bit, and so they should also be initialized
before translation is enabled.

5.4.3.2 TLB Invalidation
The MPC7400 implements the optional tlbie and tlbsync instructions, which are used to
invalidate TLB entries.

The tlbia instruction is not implemented on the MPC7400 and when its opcode is
encountered, an illegal instruction program exception is generated. To invalidate all entries
of both TLBs, 64 tlbie instructions must be executed, incrementing the value in
EA14ÐEA19 by one each time. See Chapter 8, ÒInstruction Set,Ó in The Programming
Environments Manual for architecture information about the tlbie instruction.

5.4.3.2.1 tlbie Instruction

The execution of the tlbie instruction always invalidates four entriesÑboth the ITLB and
DTLB entries indexed by EA[14:19]. The tlbie instruction executes regardless of the
setting of the MSR[DR] and MSR[IR] bits.

The architecture allows tlbie to optionally enable a TLB invalidate signaling mechanism in
hardware so that other processors also invalidate their resident copies of the matching PTE.
When an MPC7400 processor executes a tlbie instruction it always broadcasts this
operation on the system bus as a global (M = 1) TLBIE address-only transaction
(TT[0:4] = 11000) with the 32-bit effective (not physical) address reßected on the address
bus. Figure 5-8 shows the ßow of events caused by execution of the tlbie instruction as well
as the actions taken by the MPC7400 when a TLBIE transaction is detected on the
processor bus.

5-28 MPC7400 RISC Microprocessor UserÕs Manual

Memory Segment Model

Figure 5-8. tlbie Instruction Execution and Bus Snooping Flow

The execution of the tlbie instruction is performed as if the TLBIE operation was snooped
from the system bus by loading a single-entry TLBIQ that contains EA[14:19] and a valid
bit. When the invalidation of the TLBs is complete, the TLBIQ is invalidated. Also, all valid
queues in the machine that contain a previously translated address (physical address) are
internally marked because these queues could contain references to addresses from the just
invalidated TLB entries. These references propagate through to completion, but are marked
for the purposes of synchronizing multiple TLB invalidations in multiple processors. See
Section 5.4.3.2.2, Òtlbsync Instruction,Ó for more information on the use of these internal
marks.

When another processor on the system bus performs a TLBIE address-only transaction, the
MPC7400 snoops the transaction and checks the status of its internal TLBIQ. If the TLBIQ
is valid (that is, the processor is in the process of performing a TLB invalidation), it causes
a retry of the transaction until the TLBIQ empties. If the TLBIQ is invalid and the
transaction is not retried by any other processor, the MPC7400 loads the TLBIQ with
EA[14:19] and sets the TLBIQ valid bit. This causes the MPC7400 to invalidate the four

TLBIE transaction
TT[0:4] ¬ 11000

Initiate TLBIE transaction on bus
A[14:19] ¬ EA[14:19]

TT[0:4] ¬ 11000

Retry the transaction

MPC7400 Bus
Snooping Logic

Otherwise

tlbie

end of tlbie ßow

no other retry signaled;
transaction completes

Continue with bus
snooping and

instruction execution

All pending accesses with previously
translated addresses ¬ Mark

Invalidate the
2 indexed ITLB entries and the

2 indexed DTLB entries

Pending accesses with
previously translated

addresses
propagate through

As each access completes, its
associated mark is cleared

transaction is retried
by another processor

Otherwise

Otherwise

TLBIQ[V] = 1

TLBIQ ¬ A[14:19]

TLBIQ[V] ¬ 1

TLBIQ[V] ¬ 0

Chapter 5. Memory Management 5-29

Memory Segment Model

TLB entries (both the ITLB and DTLB entries indexed by EA[14:19]), and internally mark
all accesses with previously translated addresses.

The tlbie instruction does not affect the instruction fetch operationÑthat is, the prefetch
buffer is not purged and the machine does not cause these instructions to be refetched.

5.4.3.2.2 tlbsync Instruction

The tlbsync instruction ensures that all previous tlbie instructions executed by the system
have completed. SpeciÞcally, tlbsync causes a global (M = 1) TLBSYNC address-only
transaction (TT[0:4] = 01001) on the bus if that processor has completed all previous tlbie
instructions and any memory operations based on the contents of those invalidated TLB
entires have propagated through to completion.

Execution of a tlbsync instruction affects outstanding VTQ operations in the same way as
a sync instruction, (see Chapter 7, ÒThe AltiVec Technology ImplementationÓ) with the
following additional effect: an outstanding table search operation for a VTQ-initiated
access is cancelled when tlbsync is dispatched to the LSU, possibly causing a line fetch
skip as described in Section 5.4.5, ÒPage Table Search Operation.Ó

The tlbsync instruction does not complete until it is the oldest instruction presented to the
on-chip memory subsystem. This occurs when all of the following conditions exist:

¥ The tlbsync instruction is the oldest instruction in the store queue,

¥ The instruction and data cache reload tables are idle, and

¥ There are no outstanding table search operations (note that a table search operation
for a VTQ-initiated access may have been cancelled as described above).

Figure 5-9 shows the ßow of events caused by execution of the tlbsync instruction as well
as the actions taken by the MPC7400 when a TLBSYNC transaction is detected on the
processor bus.

5-30 MPC7400 RISC Microprocessor UserÕs Manual

Memory Segment Model

Figure 5-9. tlbsync Instruction Execution and Bus Snooping Flow

When an MPC7400 processor detects a TLBSYNC broadcast transaction, it causes a retry
of that transaction until all pending TLB invalidate operations have completed. In this
snoop process, the MPC7400 checks its TLBIQ and any pending marks for previously
translated addresses. If the queue is valid or if any marks exist, the TLBSYNC transaction
is retried, until the queue is invalid (idle) and no marks exist.

5.4.3.2.3 Synchronization Requirements for tlbie and tlbsync

In order to guarantee that a particular MPC7400 processor executing a tlbie instruction has
completed the operation, a sync instruction must be placed after the tlbie instruction. A
tlbsync instruction can also be used instead of the sync instruction for this purpose, but a
sync will sufÞce for that processor. However, in order to guarantee that all MPC7400
processors in a system have coherently invalidated their respective TLB entries due to a
tlbie instruction executing on any one of those processors, a tlbsync instruction is required.

The PowerPC architecture requires that when a tlbsync instruction has been executed by a
processor, a sync instruction must be executed by that processor before a tlbie or tlbsync
instruction is executed by another processor. If this requirement is not met, a livelock
situation may occur in a system with multiple MPC7400 processors. SpeciÞcally, if more
than one processor executes tlbie or tlbsync instructions simultaneously, it is likely that
these processors will cause a system livelock.

TLBSYNC transaction
TT[0:4] ¬ 01001 Initiate TLBSYNC transaction on bus

TT[0:4] ¬ 01001

Retry the transaction

MPC7400
Bus Snooping Logic

Otherwise

tlbsync

end of tlbsync ßow
Continue with bus

snooping and
instruction execution

Otherwise

TLBIQ[V] = 1 or
marks exist

Allow transaction
to complete

tlbsync is the oldest instruction
presented to the memory subsystem

Otherwise

Retry

No retry

Other processors
snoop

Otherwise

TLBIQ[V] = 1 or
marks exist

Retry the transaction

Chapter 5. Memory Management 5-31

Memory Segment Model

5.4.4 Page Address Translation Summary
Figure 5-10 provides the detailed ßow for the page address translation mechanism.

When an instruction or data access occurs, the effective address is routed to the appropriate
MMU. EA0ÐEA3 select one of the 16 segment registers and the remaining effective address
bits and the VSID Þeld from the segment register are passed to the TLB. EA[14:19] then
select two entries in the TLB; the valid bits are checked and the 40-bit virtual page number
(24-bit VSID concatenated with EA4:EA19]) must match the VSID, EAPI, and API Þelds
of the TLB entries. If one of the entries hits, the PP bits are checked for a protection
violation. If these bits do not cause an exception, the C bit is checked. If the C bit must be
updated, a table search operation is initiated. If the C bit does not require updating, the RPN
value is passed to the memory subsystem and the WIMG bits are then used as attributes for
the access.

Figure 5-10 includes the checking of the N bit in the segment descriptor and then expands
on the ÔTLB HitÕ branch of Figure 5-6. The detailed ßow for the ÔTLB MissÕ branch of
Figure 5-6 is described in Section 5.4.5, ÒPage Table Search Operation.Ó Note that as in the
case of block address translation, if an attempt is made to execute a dcbz instruction to a
page marked either write-through or caching-inhibited (W = 1 or I = 1), an alignment
exception is generated. The checking of memory protection violation conditions is
described in Chapter 7, ÒMemory Management,Ó in The Programming Environments
Manual.

5-32 MPC7400 RISC Microprocessor UserÕs Manual

Memory Segment Model

Figure 5-10. Page Address Translation FlowÑTLB Hit

(See The
Programming
Environments

Manual)

(See Figure 5-9)

(See The Programming
Environments Manual)

TLB Hit Case

Alignment Excep-

Effective Address
Generated

Continue Access to Memory Sub-
system with WIMG-Bits from PTE

Page Table
Search Operation

PA[0:31]¬RPN||A[20:31]

Page Address
Translation

Check Page Memory
 Protection Violation Conditions

Instruction Fetch with N-Bit
Set in Segment Descriptor

 (No-Execute)

Page Memory
Protection Violation

Access Permitted

Otherwise
Store Access with

PTE[C] = 0

Otherwise
dcbz Instruction
with W or I = 1

Otherwise

(See Figure 5-6)

Generate 52-Bit Virtual
Address

from Segment Descriptor

Compare Virtual Address
with TLB Entries

Access Prohibited

Chapter 5. Memory Management 5-33

Memory Segment Model

5.4.5 Page Table Search Operation
If the translation is not found in the TLBs (a TLB miss), the MPC7400 initiates a table
search operation which is described in this section. Formats for the PTE are given in ÒPTE
Format for 32-Bit Implementations,Ó in Chapter 7, ÒMemory Management,Ó of The
Programming Environments Manual.

5.4.5.1 Conditions for a Page Table Search Operation
For instruction accesses, the MPC7400 processor does not initiate a table search operation
for an ITLB miss until the completion buffer is empty and the completed store queue is
empty. Also, the instruction buffer must be empty, and there must be no other exceptions
pending.

Also, the MMU does not perform a hardware table search due to DTLB misses (or to
modify the C bit) until the access is absolutely required by the program ßow and there are
no other exceptions pending.

In the MPC7400, a TLB miss (and subsequent page table search operation) occurs
transparently to the program. Thus, if a TLB miss occurs as a misaligned access crosses a
translation boundary, the second portion of the misaligned access is completed
automatically once the table search operation completes successfully. If the table search
operation results in a page fault, an exception occurs and upon returning from the page fault
handling routine, the entire misaligned access is restarted beginning with the Þrst portion
of the access.

Note that, as described in Chapter 6, ÒInstruction Timing,Ó store gathering does not occur
while a page table search operation is in progress.

The AltiVec data stream touch instructions (dst[t] and dstst[t]) provide the ability to
prefetch up to 128 Kbytes of data per instruction. As described in Chapter 6, ÒInstruction
Timing,Ó a dst[t] or dstst[t] instruction can be retired from the completion buffer as soon
as the instruction is loaded into the vector touch queue (VTQ). However, if a line fetch in
the VTQ requires a table search operation before the instruction is retired, then the table
search operation is delayed until the instruction is retired. If a line fetch in the VTQ requires
a table search operation after the instruction has been retired, the table search operation is
initiated immediately.

To further increase performance, the VTQ stream engines operate in parallel with the other
execution units. Thus, the TLBs are non-blocking, and are available to the instruction unit
and LSU for both instruction and data address translation during a VTQ-initiated table
search operation.

5-34 MPC7400 RISC Microprocessor UserÕs Manual

Memory Segment Model

5.4.5.2 AltiVec Line Fetch Skipping
As described in Chapter 7, ÒThe AltiVec Technology Implementation,Ó there are many
conditions (exceptions, etc.) that cause the stream fetch performed by a VTQ stream engine
to abort. In the case of a VTQ-initiated table search operation, when an exception or
interrupt condition occurs, the stream engine pauses, the line-fetch that caused the table
search operation is effectively dropped, and no MMU exceptions are reported for this
line-fetch. When the stream engine resumes operation, the next line fetch is attempted,
causing a skip of one line fetch in the stream engine.

Also, when a tlbsync instruction is executed while a VTQ-initiated table search operation
is in progress, that table search operation is aborted, potentially causing a line fetch skip.

5.4.5.3 Page Table Search Operation Flow
The following is a summary of the page table search process performed by the MPC7400:

1. The 32-bit physical address of the primary PTEG is generated as described in ÒPage
Table AddressesÓ in Chapter 7, ÒMemory Management,Ó of The Programming
Environments Manual.

2. The Þrst PTE (PTE0) in the primary PTEG is read from memory. PTE reads occur
with an implied WIM memory/cache mode control bit setting of 0b001. Therefore,
they are considered cacheable and read (burst) from memory and placed in the
cache. Because the table search operation is never speculative and is cacheable, the
G-bit has no effect

3. The PTE in the selected PTEG is tested for a match with the virtual page number
(VPN) of the access. The VPN is the VSID concatenated with the page index Þeld
of the virtual address. For a match to occur, the following must be true:

Ñ PTE[H] = 0
Ñ PTE[V] = 1
Ñ PTE[VSID] = VA[0:23]
Ñ PTE[API] = VA[24:29]

4. If a match is not found, step 3 is repeated for each of the other seven PTEs in the
primary PTEG. If a match is found, the table search process continues as described
in step 8. If a match is not found within the 8 PTEs of the primary PTEG, the address
of the secondary PTEG is generated.

5. The Þrst PTE (PTE0) in the secondary PTEG is read from memory. Again, because
PTE reads have a WIM bit combination of 0b001, an entire cache line is read into
the on-chip cache.

Chapter 5. Memory Management 5-35

Memory Segment Model

6. The PTE in the selected secondary PTEG is tested for a match with the virtual page
number (VPN) of the access. For a match to occur, the following must be true:

Ñ PTE[H] = 1
Ñ PTE[V] = 1
Ñ PTE[VSID] = VA[0:23]
Ñ PTE[API] = VA[24:29]

7. If a match is not found, step 6 is repeated for each of the other seven PTEs in the
secondary PTEG. If it is never found, an exception is taken (step 9).

8. If a match is found, the PTE is written into the on-chip TLB and the R bit is updated
in the PTE in memory (if necessary). If there is no memory protection violation, the
C bit is also updated in memory (if the access is a write operation) and the table
search is complete.

9. If a match is not found within the 8 PTEs of the secondary PTEG, the search fails,
and a page fault exception condition occurs (either an ISI exception or a DSI
exception).

Figure 5-11 and Figure 5-12 show how the conceptual model for the primary and secondary
page table search operations, described in The Programming Environments Manual, are
realized in the MPC7400.

Figure 5-11 shows the case of a dcbz instruction that is executed with W = 1 or I = 1, and
that the R bit may be updated in memory (if required) before the operation is performed or
the alignment exception occurs. The R bit may also be updated if memory protection is
violated.

5-36 MPC7400 RISC Microprocessor UserÕs Manual

Memory Segment Model

Figure 5-11. Primary Page Table Search

(From Figure 5-10)

Fetch PTE from PTEG

Otherwise

Perform Secondary
Page Table Search

Alignment Exception
TLB[PTE[C]] ¬ 1

Generate PA Using Primary Hash Function
PA ¬ Base PA of PTEG

PA ¬ PA+ 8
(Fetch Next PTE in PTEG)

Fetch PTE (64-Bits)
from PA

PTE [VSID, API, H, V] =
Segment Descriptor [VSID], EA[API], 0, 1

PTE[C] ¬ 1
(Update PTE[C] in

Memory)
Also Update PTE[R]

in Memory if R_Flag = 1

PTE[R] ¬ 1
(Update PTE[R]

in Memory)

Last PTE in PTEG PTE[R] = 0

R_Flag = 1

Store Operation
with PTE[C] = 0

Otherwise

R_Flag = 1

PTE[R] ¬1 (Update
PTE[R] in Memory)

Primary Page
Table Search

Write PTE into
TLB

Otherwise

Secondary Page
Table Search Hit

PTE[R] = 1

dcbz Instruction
with W or I = 1

Check Memory
Protection

Violation Conditions
R_Flag = 1

PTE[R] ¬1
(Update PTE[R]

in Memory)

Otherwise

PTE[R] ¬ 1
R_Flag ¬ 1

Memory Protection
Violation

Page Table
Search Complete

Page Table
Search Complete

OtherwiseOtherwise

Access Permitted
Access Prohibited

Otherwise

Chapter 5. Memory Management 5-37

Memory Segment Model

Figure 5-12. Secondary Page Table Search Flow

5.4.6 Page Table Updates
When TLBs are implemented (as in the MPC7400) they are deÞned as noncoherent caches
of the page tables. TLB entries must be ßushed explicitly with the TLB invalidate entry
instruction (tlbie) whenever the corresponding PTE is modiÞed.

Chapter 7, ÒMemory Management,Ó in The Programming Environments Manual describes
some required sequences of instructions for modifying the page tables. In a multiprocessor
MPC7400 environment, PTEs can only be modiÞed by adhering to the procedure for
deleting a PTE, followed by the procedure for adding a PTE. Thus, the following code
should be used:

Page Fault (See Figure 5-9)

Fetch PTE from PTEG

Otherwise

Generate PA Using Primary Hash Function
PA ¬ Base PA of PTEG

PA ¬ PA+ 8
(Fetch Next PTE in PTEG)

Fetch PTE (64-Bits)
from PA

PTE [VSID, API, H, V] =
Segment Descriptor [VSID], EA[API], 1, 1

Last PTE in PTEG

Secondary Page
Table Search

Otherwise

Secondary Page
Table Search Hit

ISI Exception DSI Exception

Set SRR1[1] = 1 Set DSISR[1] = 1

Instruction Access Data Access

5-38 MPC7400 RISC Microprocessor UserÕs Manual

Memory Segment Model

/* Code for Modifying a Page Table Entry */
/* First delete the current page table entry */
PTEV <- 0 /* (other fields donÕt matter) */
sync /* ensure update completed */
tlbie(old_EA)/* invalidate old translation */
eieio /* order tlbie before tlbsync */
tlbsync /* ensure tlbie completed on all processors */
sync /* ensure tlbsync completed */
/* Then add new PTE over old */
PTERPN,R,C,WIMG,PP <- new values
eieio /* order 1st PTE update before 2nd */
PTEVSID,API,H,V <- new values (V=1)
sync /* ensure updates completed */

Processors may write referenced and changed bits with unsynchronized, atomic byte store
operations. Note that the V, R, and C bits each reside in a distinct byte of a PTE. Therefore,
extreme care must be taken to use byte writes when updating only one of these bits.

Explicitly altering certain MSR bits (using the mtmsr instruction), or explicitly altering
PTEs, or certain system registers, may have the side effect of changing the effective or
physical addresses from which the current instruction stream is being fetched. This kind of
side effect is deÞned as an implicit branch. Implicit branches are not supported and an
attempt to perform one causes boundedly-undeÞned results. Therefore, PTEs must not be
changed in a manner that causes an implicit branch. Chapter 2, ÒPowerPC Register Set,Ó in
The Programming Environments Manual, lists the possible implicit branch conditions that
can occur when system registers and MSR bits are changed.

5.4.7 Segment Register Updates
Synchronization requirements for using the move to segment register instructions are
described in ÒSynchronization Requirements for Special Registers and for Lookaside
BuffersÓ in Chapter 2, ÒPowerPC Register Set,Ó in The Programming Environments
Manual.

Chapter 6. Instruction Timing 6-1

Chapter 6
Instruction Timing
This chapter describes how the MPC7400 microprocessor fetches, dispatches, and executes
instructions and how it reports the results of instruction execution. It gives detailed
descriptions of how the MPC7400 execution units work and how those units interact with
other parts of the processor, such as the instruction fetching mechanism, register Þles, and
caches. It gives examples of instruction sequences, showing potential bottlenecks and how
to minimize their effects. Finally, it includes tables that identify the unit that executes each
instruction implemented on the MPC7400, the latency for each instruction, and other
information that is useful for the assembly language programmer.

AltiVec Technology and Instruction Timing

The AltiVec functionality in the MPC7400 affects instruction timing in the following ways:

¥ Additional execution units are provided for handling AltiVec permute (VPU) and
ALU instructions (VALU)

¥ The VALU consists of three independent execution units:

Ñ Vector simple integer unit (VSIU). See Section 6.4.8.2.1, ÒVector Simple Integer
Unit (VSIU) Execution Timing.Ó

Ñ Vector complex integer unit (VCIU). See Section 6.4.8.2.2, ÒVector Complex
Integer Unit (VCIU) Execution Timing.Ó

Ñ Vector ßoating-point unit (VFPU). See Section 6.4.8.2.3, ÒVector Floating-Point
Unit (VFPU) Execution Timing.Ó

¥ The AltiVec technology deÞnes data streaming instruction that allows automated
loading of data for nonspeculative accesses. These instructions can be identiÞed as
either static (likely to be reused) or transient (unlikely to be reused). See
Section 7.1.2, ÒAltiVec Instruction Set.Ó

¥ The AltiVec technology deÞnes load and store instructions that can be identiÞed as
least-recently-used, in order to free up data with low likelihood for reuse. See
Section 6.4.7.1, ÒLRU Instructions.Ó

¥ Latencies for AltiVec instructions are listed in Table 6-9

6-2 MPC7400 RISC Microprocessor UserÕs Manual

Terminology and Conventions

6.1 Terminology and Conventions
This section provides an alphabetical glossary of terms used in this chapter. These
deÞnitions are provided as a review of commonly used terms and as a way to point out
speciÞc ways these terms are used in this chapter.

¥ Branch predictionÑThe process of guessing whether a branch will be taken. Such
predictions can be correct or incorrect; the term ÔpredictedÕ as it is used here does
not imply that the prediction is correct (successful). The PowerPC architecture
deÞnes a means for static branch prediction as part of the instruction encoding.

¥ Branch resolutionÑThe determination of whether a branch is taken or not taken. A
branch is said to be resolved when the processor can determine which instruction
path to take. If the branch is resolved as predicted, the instructions following the
predicted branch that may have been speculatively executed can complete (see
completion). If the branch is not resolved as predicted, instructions on the
mispredicted path, and any results of speculative execution, are purged from the
pipeline and fetching continues from the nonpredicted path.

¥ CompletionÑCompletion occurs when an instruction has Þnished executing,
written back any results, and is removed from the completion queue (CQ). When an
instruction completes, it is guaranteed that this instruction and all previous
instructions can cause no exceptions.

¥ Fall-through (branch fall-through)ÑA not-taken branch. On the MPC7400,
fall-through branch instructions are removed from the instruction stream at dispatch.
That is, these instructions are allowed to fall through the instruction queue via the
dispatch mechanism, without either being passed to an execution unit and or given
a position in the CQ.

¥ FetchÑThe process of bringing instructions from memory (such as a cache or
system memory) into the instruction queue. In this chapter, the fetch stage is
considered to end when the instruction is dispatched.

¥ Folding (branch folding)ÑThe replacement with target instructions of a branch
instruction and any instructions along the not-taken path when a branch is either
taken or predicted as taken.

¥ FinishÑFinishing occurs in the last cycle of execution. In this cycle, the CQ entry
is updated to indicate that the instruction has Þnished executing.

¥ LatencyÑ The number of clock cycles necessary to execute an instruction and make
ready the results of that execution for a subsequent instruction.

¥ PipelineÑIn the context of instruction timing, the term ÔpipelineÕ refers to the
interconnection of the stages. The events necessary to process an instruction are
broken into several cycle-length tasks to allow work to be performed on several
instructions simultaneouslyÑanalogous to an assembly line. As an instruction is
processed, it passes from one stage to the next. When it does, the stage becomes
available for the next instruction.

Chapter 6. Instruction Timing 6-3

Terminology and Conventions

Although an individual instruction may take many cycles to complete (the number
of cycles is called instruction latency), pipelining makes it possible to overlap the
processing so that the throughput (number of instructions completed per cycle) is
greater than if pipelining were not implemented.

¥ Program orderÑThe order of instructions in an executing program. More
speciÞcally, this term is used to refer to the original order in which program
instructions are fetched into the instruction queue from the cache.

¥ Rename registerÑTemporary buffers used by instructions that have Þnished
execution but have not completed.

¥ Reservation stationÑA buffer between the dispatch and execute stages that allows
instructions to be dispatched even though the results of instructions on which the
dispatched instruction may depend are not available.

¥ RetirementÑRemoval of the completed instruction from the CQ.

¥ StageÑThe term ÔstageÕ is used in two different senses, depending on whether the
pipeline is being discussed as a physical entity or a sequence of events. In the latter
case, a stage is an element in the pipeline during which certain actions are
performed, such as decoding the instruction, performing an arithmetic operation, or
writing back the results. Typically, the latency of a stage is one processor clock
cycle. Some events, such as dispatch, write-back, and completion, happen
instantaneously and may be thought to occur at the end of a stage.

An instruction can spend multiple cycles in one stage. An integer multiply, for
example, takes multiple cycles in the execute stage. When this occurs, subsequent
instructions may stall.

An instruction may also occupy more than one stage simultaneously, especially in
the sense that a stage can be seen as a physical resourceÑfor example, when
instructions are dispatched they are assigned a place in the CQ at the same time they
are passed to the execute stage. They can be said to occupy both the complete and
execute stages in the same clock cycle.

¥ StallÑAn occurrence when an instruction cannot proceed to the next stage.

¥ SuperscalarÑA superscalar processor is one that can issue multiple instructions
concurrently from a conventional linear instruction stream. In a superscalar
implementation, multiple instructions can be in the execute stage at the same time.

¥ ThroughputÑA measure of the number of instructions that are processed per cycle.
For example, a series of double-precision ßoating-point multiply instructions has a
throughput of one instruction per clock cycle.

¥ Write-backÑWrite-back (in the context of instruction handling) occurs when a
result is written into the architectural registers (typically the GPRs, FPRs, and VRs).
Results are written back at completion time. Results in the write-back buffer cannot
be ßushed. If an exception occurs, results from previous instructions must write back
before the exception is taken.

6-4 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Timing Overview

6.2 Instruction Timing Overview
The MPC7400 design minimizes average instruction execution latency, the number of
clock cycles it takes to fetch, decode, dispatch, and execute instructions and make the
results available for a subsequent instruction. Some instructions, such as loads and stores,
access memory and require additional clock cycles between the execute phase and the
write-back phase. These latencies vary depending on whether the access is to cacheable or
noncacheable memory, whether it hits in the L1 or L2 cache, whether the cache access
generates a write-back to memory, whether the access causes a snoop hit from another
device that generates additional activity, and other conditions that affect memory accesses.

The MPC7400 implements many features to improve throughput, such as pipelining,
superscalar instruction issue, branch folding, removal of fall-through branches, two-level
speculative branch handling, and multiple execution units that operate independently and
in parallel.

As an instruction passes from stage to stage in a pipelined system, the following instruction
can follow through the stages as the former instruction vacates them, allowing several
instructions to be processed simultaneously. While it may take several cycles for an
instruction to pass through all the stages, when the pipeline has been Þlled, one instruction
can complete its work on every clock cycle.

Figure 6-1 represents a generic pipelined execution unit.

Figure 6-1. Pipelined Execution Unit

The entire path that instructions take through the fetch, decode/dispatch, execute, complete,
and write-back stages is considered the MPC7400Õs master pipeline, and four of the
MPC7400's execution units (FPU, LSU, VCIU, and VFPU) are also multiple-stage
pipelines.

The MPC7400 contains the following execution units that operate independently and in
parallel:

¥ Branch processing unit (BPU)
¥ Integer unit 1 (IU1)Ñexecutes all integer instructions

Clock 0

Clock 1

Clock 2

Clock 3

Instruction A Ñ Ñ

Instruction B

Instruction C

Instruction D

Instruction A

Instruction B

Instruction C

Ñ

Instruction A

Instruction B

Stage 1 Stage 2 Stage 3

Chapter 6. Instruction Timing 6-5

Instruction Timing Overview

¥ Integer unit 2 (IU2)Ñexecutes all integer instructions except multiplies and divides
¥ 64-bit ßoating-point unit (FPU)
¥ Load/store unit (LSU)
¥ System register unit (SRU)
¥ AltiVec permute unit (VPU)
¥ AltiVec arithmetic logical unit (VALU), which contains the following three

independent execution units for vector computations:

Ñ Vector simple integer unit (VSIU)

Ñ Vector complex integer unit (VCIU)

Ñ Vector ßoating-point unit (VFPU)

One instruction can be dispatched to the VALU per clock cycle; however, the three
vector arithmetic units are independent and can simultaneously execute separate
instructions. Moreover, the VCIU and VFPU are pipelined, so they can operate on
multiple instructions.

The MPC7400 can retire two instructions on every clock cycle. In general, the MPC7400
processes instructions in four stagesÑfetch, decode/dispatch, execute, and complete as
shown in Figure 6-2. Note that the example of a pipelined execution unit in Figure 6-1 is
similar to the three-stage FPU pipeline in Figure 6-2.

Figure 6-2. Superscalar/Pipeline Diagram

Fetch

Complete (Write-Back)

Dispatch

Execute Stage

Maximum three-instruction dispatch
per clock cycle (includes one branch
instruction)

Maximum two-instruction
completion per clock cycle

Maximum four-instruction fetch
per clock cycle

BPU

FPU3SRU IU2IU1

FPU2

FPU1

LSU1

LSU2
VFPU4 1VSIU VCIU3

VFPU3

VFPU2

VPU

VALU
VFPU1

VCIU2

VCIU1

1 In non-Java mode, all VFPU instructions are pipelined as shown. In Java mode, all VFPU instructions need a Þfth
execution cycle; however, data forwarding for instruction depedency can still occur at the end of the fourth
execution cycle as in non-Java mode.

6-6 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Timing Overview

The instruction pipeline stages are described as follows:

¥ Instruction fetchÑIncludes the clock cycles necessary to request instructions from
the memory system and the time the memory system takes to respond to the request.
Instruction fetch timing depends on many variables, such as whether the instruction
is in the branch target instruction cache, the on-chip instruction cache, or the L2
cache. Those factors increase when it is necessary to fetch instructions from system
memory, and include the processor-to-bus clock ratio, the amount of bus trafÞc, and
whether any cache coherency operations are required.

Because there are so many variables, unless otherwise speciÞed, the instruction
timing examples below assume optimal performance and show the portion of the
fetch stage in which the instruction is already in the instruction queue. The fetch
stage ends when the instruction is dispatched.

¥ The decode/dispatch stage consists of the time it takes to fully decode the instruction
and dispatch it from the instruction queue to the appropriate execution unit.
Instruction dispatch requires the following:

Ñ Instructions can be dispatched only from the two lowest instruction queue
entries, IQ0 and IQ1.

Ñ A maximum of two instructions can be dispatched per clock cycle (although an
additional branch instruction can be handled by the BPU).

Ñ Only one instruction can be dispatched to each execution unit (IU1, IU2, FPU,
LSU, SRU, VPU, and VALU) per clock cycle.

Ñ There must be a vacancy in the speciÞed execution unit.

Ñ A rename register must be available for each destination operand speciÞed by the
instruction.

Ñ For an instruction to dispatch, the appropriate execution unit must be available
and there must be an open position in the CQ. If no entry is available, the
instruction remains in the IQ.

¥ The execute stage consists of the time between dispatch to the execution unit (or
reservation station) and the point at which the instruction vacates the execution unit.

Most integer instructions have a one-cycle latency; results of these instructions can
be used in the clock cycle after an instruction enters the execution unit. However,
integer multiply and divide instructions take multiple clock cycles to complete. The
IU1 can process all integer instructions; the IU2 can process all integer instructions
except multiply and divide instructions.

The LSU, FPU, VCIU and VFPU units are pipelined, as shown in Figure 6-2.

Chapter 6. Instruction Timing 6-7

Instruction Timing Overview

Note the following regarding AltiVec instruction latency:

Ñ In non-Java mode, all VFPU instructions are pipelined as shown in Figure 6-2.
In Java mode, all VFPU instructions need an additional execution cycle before
they can get to the completion stage; however, they can still forward their result
to subsequent dependent instructions at the end of the fourth execution cycle as
in non-Java mode

Ñ All VSIU instructions have a one-cycle latency, except mfvscr and mtvscr,
which may need additional execution cycles because of execution serialization.

¥ The complete (complete/write-back) pipeline stage maintains the correct
architectural machine state and commits it to the architectural registers at the proper
time. If the completion logic detects an instruction containing an exception status,
all following instructions are canceled, their execution results in rename registers are
discarded, and the correct instruction stream is fetched.

The complete stage ends when the instruction is retired. Two instructions can be
retired per cycle. Instructions are retired only from the two lowest CQ entries, CQ0
and CQ1.

The notation conventions used in the instruction timing examples are as follows:

 FetchÑAlthough it is not shown in these Þgures, the fetch stage includes the
time between when an instruction is requested and when it is dispatched from
the instruction queue. The latency associated with accessing an instruction
varies greatly, depending upon whether the instruction is in the BTIC, the
on-chip cache, the L2 cache, or system memory (in which case latency can
be affected by bus speed and trafÞc on the system bus, and address translation
issues). Therefore, in the examples in this chapters, the fetch stage is usually
idealized, that is, an instruction is usually shown to be in the fetch stage when
it is a valid instruction in the instruction queue. The instruction queue has six
entries, IQ0ÐIQ5.

 In dispatch entry (IQ0/IQ1)ÑInstructions can be dispatched from IQ0 and
IQ1. Because dispatch is instantaneous, it is perhaps more useful to describe
it as an event that marks the point in time between the last cycle in the fetch
stage and the Þrst cycle in the execute stage.

 ExecuteÑThe operations speciÞed by an instruction are being performed by
the appropriate execution unit. The black stripe is a reminder that the
instruction occupies an entry in the CQ, described in Figure 6-3.

 CompleteÑThe instruction is in the CQ. In the Þnal stage, the results of the
executed instruction are written back and the instruction is retired. The CQ
has eight entries, CQ0ÐCQ7.

6-8 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Timing Overview

 In retirement entryÑCompleted instructions can be retired from CQ0 and
CQ1. Like dispatch, retirement is an event that in this case occurs at the end
of the Þnal cycle of the complete stage.

Figure 6-3 shows the stages of MPC7400 execution units.

Figure 6-3. MPC7400 Microprocessor Pipeline Stages

Fetch
In Dispatch Execute1, 2 Complete/Retire

In Dispatch Complete/RetireEA

In Dispatch Complete/Retire

IU1/IU2/SRU/VPU/VSIU Instructions

LSU Instructions

FPU Instructions

NormalizeMultiply Add Round/

1 Several integer instructions, such as multiply and divide instructions, require multiple cycles in the execute stage.

Execute

Execute

Calculation
Cache Align

Entry

Entry

Entry

BPU Instructions

Fetch
Predict

Complete/Retire 3In Dispatch
Entry

In Completion
Queue 3

3 Only those branch instructions that update the LR or CTR take an entry in the completion queue.

In Dispatch Complete/Retire

VCIU Instructions

Execute
Entry

Complete/Retire

VFPU Instructions

Execute 4

2 mtvscr and mfvscr may need additional execution cycles because of execution serialization.

4 In Java mode, VFPU instructions require an additional (fifth) execution cycle; however, data forwarding

Fetch

Fetch

Fetch

Fetch

In Dispatch
Entry

Fetch

 for instruction dependency can still occur at the end of the fourth execution cycle .

Chapter 6. Instruction Timing

 6-9

Timing Considerations

6.3 Timing Considerations

The MPC7400 is a superscalar processor; as many as three instructions can be issued to the
execution units (one branch instruction to the BPU, and two instructions issued from the IQ
to the other execution units) during each clock cycle. Only one instruction can be
dispatched to each execution unit.

Although instructions appear to the programmer to execute in program order, the MPC7400
improves performance by executing multiple instructions at a time, using hardware to
manage dependencies. When an instruction is dispatched, the register Þle provides the
source data to the execution unit. The register Þles and rename register have sufÞcient
bandwidth to allow dispatch of two instructions per clock under most conditions.

The MPC7400Õs BPU decodes and executes branches immediately after they are fetched.
When a conditional branch cannot be resolved due to a CR data dependency, the branch
direction is predicted and execution continues from the predicted path. If the prediction is
incorrect, the following steps are taken:

1. The instruction queue is purged and fetching continues from the correct path.

2. Any instructions ahead of the predicted branch in the CQ are allowed to complete.

3. Instructions after the mispredicted branch are purged.

4. Dispatching resumes from the correct path.

After an execution unit Þnishes executing an instruction, it places resulting data into the
appropriate GPR, FPR, or VR rename register. The results are then stored into the correct
GPR, FPR, or VR during the write-back stage. If a subsequent instruction needs the result
as a source operand, it is made available simultaneously to the appropriate execution unit,
which allows a data-dependent instruction to be decoded and dispatched without waiting to
read the data from the register Þle. Branch instructions that update either the LR or CTR
write back their results in a similar fashion.

The following section describes this process in greater detail.

6.3.1 General Instruction Flow

As many as four instructions can be fetched into the instruction queue (IQ) in a single clock
cycle. Instructions are issued to the various execution units from the IQ. The MPC7400 tries
to keep the IQ full at all times, unless instruction cache throttling is operating.

The number of instructions requested in a clock cycle is determined by the number of
vacant spaces in the IQ during the previous clock cycle. This is shown in the examples in
this chapter. Although the instruction queue can accept as many as four new instructions in
a single clock cycle, if only one IQ entry is vacant, only one instruction is fetched. Typically
instructions are fetched from the on-chip instruction cache, but they may also be fetched
from the branch target instruction cache (BTIC). If the instruction request hits in the BTIC,
it can usually present the Þrst two instructions of the new instruction stream in the next

6-10

MPC7400 RISC Microprocessor UserÕs Manual

Timing Considerations

clock cycle, giving enough time for the next pair of instructions to be fetched from the
instruction cache with no idle cycles. If instructions are not in the BTIC or the on-chip
instruction cache, they are fetched from the L2 cache or from system memory.

The MPC7400Õs instruction cache throttling feature, managed through the instruction
cache throttling control (ICTC) register, can lower the processorÕs overall junction
temperature by slowing the instruction fetch rate. See Chapter 10, ÒPower and Thermal
Management.Ó

Branch instructions are identiÞed by the fetcher, and forwarded to the BPU directly,
bypassing the IQ. If the branch is unconditional or if the speciÞed conditions are already
known, the branch can be resolved immediately. That is, the branch direction is known and
instruction fetching can continue from the correct location. Otherwise, the branch direction
must be predicted. The MPC7400 offers several resources to aid in quick resolution of
branch instructions and for improving the accuracy of branch predictions. These include the
following:

¥ Branch target instruction cacheÑThe 64-entry (four-way-associative) branch target
instruction cache (BTIC) holds branch target instructions so when a branch is
encountered in a repeated loop, usually the Þrst two instructions in the target stream
can be fetched into the instruction queue on the next clock cycle. The BTIC can be
disabled and invalidated through bits in HID0.

¥ Dynamic branch predictionÑThe 512-entry branch history table (BHT) is
implemented with two bits per entry for four degrees of predictionÑnot taken,
strongly not taken, taken, strongly taken. Whether a branch instruction is taken or
not taken can change the strength of the next prediction. This dynamic branch
prediction is not deÞned by the PowerPC architecture.

To reduce aliasing, only predicted branches update the BHT entries. Dynamic
branch prediction is enabled by setting HID0[BHT]; otherwise, static branch
prediction is used.

¥ Static branch predictionÑStatic branch prediction is deÞned by the PowerPC
architecture and involves encoding the branch instructions. See Section 6.4.1.3.1,
ÒStatic Branch Prediction.Ó

Branch instructions that do not update the LR or CTR are removed from the instruction
stream either by branch folding or removal of fall-through branch instructions, as described
in Section 6.4.1.1, ÒBranch Folding and Removal of Fall-Through Branch Instructions.Ó
Branch instructions that update the LR or CTR are treated as if they require dispatch (even
though they are not issued to an execution unit in the process). They are assigned a position
in the CQ to ensure that the CTR and LR are updated sequentially.

All other instructions are issued from the IQ0 and IQ1. The dispatch rate depends upon the
availability of resources such as the execution units, rename registers, and CQ entries, and
upon the serializing behavior of some instructions. Instructions are dispatched in program
order; an instruction in IQ1 cannot be dispatched ahead of one in IQ0.

Chapter 6. Instruction Timing

 6-11

Timing Considerations

Figure 6-4 shows the paths taken by instructions.

 Figure 6-4. Instruction Flow Diagram

Store Queue

SRUIU2

FPU

Complete (Retire)

Fetch

LSU

DispatchBranch

Instruction Queue

Completion Queue

Completion Queue

IU1

Processing Unit

(In program order)

Assignment

(In program order)

CQ5 CQ4 CQ3 CQ2 CQ1 CQ0

IQ5 IQ4 IQ3 IQ2 IQ1 IQ0

(Maximum 2 instructions per clock cycle; 1 instruction per unit)

(Maximum four instructions per clock cycle)

Reservation
Stations

CQ7 CQ6

VALU

Updates completion queue when execution is finished

VSIU

VFPU

VCIU

VPU

6-12

MPC7400 RISC Microprocessor UserÕs Manual

Timing Considerations

6.3.2 Instruction Fetch Timing

Instruction fetch latency depends on whether the fetch hits the BTIC, the on-chip
instruction cache, or the L2 cache, if one is implemented. If no cache hit occurs, a memory
transaction is required in which case fetch latency is affected by bus trafÞc, bus clock speed,
and memory translation. These issues are discussed further in the following sections.

6.3.2.1 Cache Arbitration

When the instruction fetcher requests instructions from the instruction cache, two things
may happen. If the instruction cache is idle and the requested instructions are present, they
are provided on the next clock cycle. However, if the instruction cache is busy due to a
cache-line-reload operation, instructions cannot be fetched until that operation completes.

6.3.2.2 Cache Hit

If the instruction fetch hits the instruction cache, it takes only one clock cycle after the
request for as many as four instructions to enter the instruction queue. Note that the cache
is not blocked to internal accesses during a cache reload completes (hits under misses). The
critical double word is written simultaneously to the cache and forwarded to the requesting
unit, minimizing stalls due to load delays.

Figure 6-5 shows a simple example of instruction fetching that hits in the on-chip cache.
This example uses a series of integer add and double-precision ßoating-point add
instructions to show how the number of instructions to be fetched is determined, how
program order is maintained by the IQ and CQ, how instructions are dispatched and retired
in pairs (maximum), and how the FPU, IU1, and IU2 pipelines function. The following
instruction sequence is examined:

0 add
1 fadd
2 add
3 fadd
4 br 6
5 fsub
6 fadd
7 fadd
8 add
9 add
10 add
11 add
12 fadd
13 add
14 fadd
15 .
16 .
17 .

Chapter 6. Instruction Timing

 6-13

Timing Considerations

Figure 6-5. Instruction TimingÑCache Hit

6 fadd

1 fadd

0 add

10 11

8 add

1 2 3 4 5 6 7 80

Fetch (in IQ)

In dispatch entry (IQ0/IQ1)

Execute

2 add

3 fadd

9 add

4 b

10 add

11 add

12 fadd

9

7 fadd

¥¥¥

Complete (In CQ)

13 add

14 fadd

IQ5
IQ4
IQ3 3
IQ2 2
IQ1 1
IQ0 0

7
6

11
10
9
8
7

12
11
10
9
8
7

12
11
10
9

14
13
12
11

14
13

5
4
3
2

CQ7
CQ6
CQ5
CQ4
CQ3
CQ2
CQ1
CQ0

3
2
1

6
3
2
1

6
3
2
1

8
7
6
3

10
9
8
7
6

12
11
10
9
8
7

14
13
12
11
10
9
8
7

14
13
12
11
10
9

14
13
12
11

14
13

1
0

Instruction Queue

Completion Queue

5 fsub

In retirement entry (CQ0/CQ1)

Only the portion of the fetch
stage during which the
instruction is in the IQ is shown.

6-14

MPC7400 RISC Microprocessor UserÕs Manual

Timing Considerations

The instruction timing for this example is described cycle-by-cycle as follows:

0. In cycle 0, instructions 0Ð3 are fetched from the instruction cache. Instructions 0 and
1 are placed in the two entries in the instruction queue from which they can be
dispatched on the next clock cycle.

1. In cycle 1, instructions 0 and 1 are dispatched to the IU2 and FPU, respectively.
Notice that for instructions to be dispatched they must be assigned positions in the
CQ. In this case, because the CQ is empty, instructions 0 and 1 take the two lowest
entries in the CQ. This cycle also shows a special case for instruction 0. Because it
can take a position in CQ0, this single-cycle integer instruction can execute and
complete in the same cycle.

Instructions 2 and 3 drop into the two dispatch positions in the instruction queue.
Because there were two positions available in the instruction queue in clock cycle 0,
two instructions (4 and 5) are fetched into the instruction queue. Instruction 4 is a
branch unconditional instruction, which resolves immediately as taken. Because the
branch is taken, it can therefore be folded from the instruction queue.

2. In cycle 2, assume a BTIC hit occurs and target instructions 6 and 7 are fetched into
the instruction queue, replacing the folded

b

 instruction (4) and instruction 5.
Instruction 0 completes, writes back its results and vacates the CQ by the end of the
clock cycle. Instruction 1 enters the second FPU execute stage, instruction 2 is
dispatched to the IU2, and instruction 3 is dispatched into the Þrst FPU execute
stage. Because the taken branch instruction (4) does not update either CTR or LR, it
does not require a position in the CQ and can be folded.

3. In cycle 3, target instructions (6 and 7) are fetched, replacing instructions 4 and 5 in
IQ0 and IQ1. This replacement on taken branches is called branch folding.
Instruction 1 proceeds through the last of the three FPU execute stages. Instruction
2 has executed but must remain in the CQ until instruction 1 completes. Instruction
3 replaces instruction 1 in the second stage of the FPU, and instruction 6 replaces
instruction 3 in the Þrst stage. Also, as will be shown in cycle 4, there is a
single-cycle stall that occurs when the FPU pipeline is full.

Because there were three vacancies in the instruction queue in the previous clock
cycle, instructions 8Ð11 are fetched in this clock cycle.

4. Instruction 1 completes in cycle 4, allowing instruction 2 to complete. Instructions
3 and 6 continue through the FPU pipeline. Although instruction 7 is in IQ1, it
cannot be dispatched because the FPU is busy, and because instruction 7 cannot be
dispatched neither can instruction 8. The additional cycle stall allows the instruction
queue to be completely Þlled. Because there was one opening in the instruction
queue in clock cycle 3, one instruction is fetched (12) and the instruction queue is
full.

Chapter 6. Instruction Timing

 6-15

Timing Considerations

5. In cycle 5, instruction 3 completes, allowing instruction 7 to be dispatched to the
FPU, which in turn allows instruction 8 to be dispatched to the IU2. Instructions 9
and 10 drop to the dispatch positions in the instruction queue. No instructions are
fetched in this clock cycle because there were no vacant IQ entries in clock cycle 4.

6. In cycle 6, instruction 6 completes, instruction 7 is in stage 2 of the FPU execute
stage, and although instruction 8 has executed, it must wait for instruction 7 to
complete. The two integer instructions, 9 and 10, are dispatched to the IU2 and IU1,
respectively. Fetching resumes with instructions 13 and 14.

7. In cycle 7, instruction 7 is in the Þnal FPU execute stage and instructions 8Ð10 wait
in the CQ for instruction 7 to complete. Instructions 11 and 12 are dispatched to the
IU2 and FPU, respectively.

8. In cycle 8, instructions 7Ð11 are through executing. Instructions 7 and 8 complete,
write back, and vacate the CQ. Instruction 12 is in FPU stage 2 Instructions 13 and
14 are dispatched, Þlling the CQ.

9. In cycle 9, two more instructions (instructions 9 and 10) are retired from the CQ.

6.3.2.3 Cache Miss

Figure 6-6 shows an instruction fetch that misses both the on-chip cache and L2 cache. A
processor/bus clock ratio is 1:2 is used. The same instruction sequence is used as in
Section 6.3.2.2, ÒCache Hit,Ó however in this example, the branch target instruction is not
in either the L1 or L2 cache. Because the target instruction is not in the L1 cache, it cannot
be in the BTIC.

A cache miss extends the latency of the fetch stage, so in this example, the fetch stage
shown represents not only the time the instruction spends in the IQ, but the time required
for the instruction to be loaded from system memory, beginning in clock cycle 2.

During clock cycle 3, the target instruction for the

b

 instruction is not in the BTIC, the
instruction cache or the L2 cache; therefore, a memory access must occur. During clock
cycle 5, the address of the block of instructions is sent to the system bus. During clock cycle
7, two instructions (64 bits) are returned from memory on the Þrst beat and are forwarded
both to the cache and the instruction fetcher.

6-16

MPC7400 RISC Microprocessor UserÕs Manual

Timing Considerations

Figure 6-6. Instruction TimingÑCache Miss

6 fadd *

7 fadd *

1 fadd

0 add

10 11

8 add *

1 2 3 4 5 6 7 80

2 add

3 fadd

9 add *

4 b

10 add *

11 add *

12 add *

9

¥¥¥

IQ5
IQ4
IQ3 3
IQ2 2
IQ1 1
IQ0 0 7

9
8

5
4
3
2

CQ7
CQ6
CQ5
CQ4
CQ3
CQ2
CQ1
CQ0

3
2
1

3
2
1

3
2
1 3 6

7
6

9
8
7
6

1
0

Instruction Queue

Completion Queue

5 fsub
Address

Data

Fetch *

In dispatch entry (IQ0/IQ1)

Execute

Complete (In CQ)

7
6

13 add *

* Here, the fetch stage includes cycles spent before the instruction enters the IQ.

I6 and I7 I8 and I9 I10 and I11

Chapter 6. Instruction Timing

 6-17

Timing Considerations

6.3.3 Memory Subsystem-SpeciÞc Pipeline Diagrams

Figure 6-7 shows the pipelining for a series of three loads.

Figure 6-7. Data L1 Load Hit (No Stalls)

Figure 6-8 shows a series of three store operations that hit in the L1.

Figure 6-8. Data L1 Store Hit (No Stalls)

Figure 6-9 shows an L2 hit after an L1 miss. The L2 data queue queues operations that have
accessed the L2 tags and are waiting to access the off-chip SRAMs. This example assumes
an ideal case using a Ö1 clock and the fastest possible L2 response. This performance may
not be available in an actual system, given SRAM timing constraints.

Fetch

Dispatch

Execute-EA Calculation

Execute-Cache Access (Hit)

L1 L2

L1 L2

L1 L2

L1 L2

Result Bus
L1 L2

1 2 3 4 5 6 7

L3

L3

L3

L3

Complete/writeback
L1 L2

L3

L3

Fetch

Dispatch

Execute-EA Calculation

Finish

S1 S2

S1 S2

S1 S2

S1 S2

FSQ S1 S2

1 2 3 4 5 6 7 8

S3

S3

S3

S3

Complete S1 S2

S3

S3

CSQ S1 S2 S3

Data L1 Arbitration

Cache Access (Hit on E or M)

S1 S2

S1 S2

S3

S3

6-18

MPC7400 RISC Microprocessor UserÕs Manual

Timing Considerations

Figure 6-9. Data L1 Load Miss, L2 Hit (No Stalls)

Figure 6-10 shows a load that misses both the L1 and L2 caches. This example assumes an
ideal case using a Ö2 clock and the fastest possible L2 response. This performance may not
be available in an actual system, given controller and DRAM timing constraints. To
illustrate the pipeline, this example shows 4-1 latency, which is unrealistic for 100-MHz
SDRAM.

The L2 miss queue holds addresses that accessed the L2 tag and are waiting to access the
system address bus (60x or MPX bus). The 60x/MPX bus data transaction queue queues
information about system bus transactions that MPC7400 has performed on the system
address bus or interventions and whose corresponding data transactions are pending.

Fetch

Dispatch

Execute-EA calculation

L2 arbitration

Execute-cache access (miss)

L2 tag (hit)

L1 L2

L1 L2

L1 L2

L1 L2

L1 L2

L1 L2

L2 address bus L1-0 L1-1

L2 data bus L1-0 L1-1

L1-2 L1-3

L1-2 L1-3

Result bus

dL1 reload arbitration

dL1 reload cache access

L2L1

L1

L2L2 data queue

L2-0 L2-1

Complete/writeback L2L1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

L2-3

L2 L2 L2

L2-0 L2-1 L2-2 L2-3

0,1
L1
2,3
L1
0,1

L1
2,3

L2
0,1

L2
2,3
L2
0,1

L2
2,3

19 20

(allows subsequent loads and stores
to access cache in gaps)

dL1 reload pacing

Chapter 6. Instruction Timing

 6-19

Timing Considerations

Figure 6-10. Data L1 Load Miss, L2 Miss, BIU Fetch

6.3.3.1 L2 Cache Access Timing Considerations (MPX Bus Only)

If an instruction fetch misses both the BTIC and the on-chip instruction cache, the
MPC7400 next looks in the L2 cache. If the requested instructions are there, they are burst
into the MPC7400 in much the same way as shown in Figure 6-6. The formula for the L2
cache latency for instruction accesses is as follows:

1 processor clock + 3 L2 clocks + 1 processor clock

Therefore, if the L2 is in 2:1 mode, the instruction fetch takes 8 processor clock cycles.
Additional factors can also affect this latency, including the type of memory used to
implement the L2 and whether the processor clock and L2 clocks are aligned immediately.

Fetch

Dispatch

Execute-EA calc

L2 arbitration

Execute-cache acc (miss)

L2 tag (miss)

L1

Result bus

dL1 reload arbitration

dL1 reload cache access

1 2 3 4 8 9 10 1411 12 13

Complete/writeback

L2 miss queue entry 1

L2 miss queue entry 0

System address bus L1

60x data queue entry 1

60x data queue entry 0

System data bus

L1

L2

L1 L2

L1 L2

L1 L2

L1 L2

L1 L2

L2

L1

L2

L1-0 L1-1

L2

L1-2 L1-3

L1

L2L1

L1

5 6 7 15 16 17 1819 20 21 22 23 24

Bus Clock Edges

L2

L2

25 26 27 28 29 30 31

L2-0 L2-1 L2-2 L2-3

0,1
L1
0,1

L1
2,3

L1
2,3

L1
0,1

L1
0,1

L1
0,1

L1
0,1

L2
2,3

L2
2,3

L2
0,1

L2
0,1

Address Streaming

Data Streaming

6-20

MPC7400 RISC Microprocessor UserÕs Manual

Timing Considerations

6.3.4 Instruction Dispatch and Completion Considerations

Several factors affect the MPC7400Õs ability to dispatch instructions at a peak rate of two
per cycleÑthe availability of the execution unit, destination rename registers, and CQ, as
well as the handling of completion-serialized instructions. Several of these limiting factors
are illustrated in the previous instruction timing examples.

To reduce dispatch unit stalls due to instruction data dependencies, the MPC7400 provides
a single-entry reservation station for the FPU, SRU, VPU, VALU, and each IU, and a
two-entry reservation station for the LSU. If a data dependency keeps an instruction from
starting execution, that instruction is dispatched to the reservation station associated with
its execution unit (and the rename registers are assigned), thereby freeing the positions in
the instruction queue so instructions can be dispatched to other execution units. Execution
begins during the same clock cycle that the rename buffer is updated with the data the
instruction is dependent on.

If both instructions in IQ0 and IQ1 require the same execution unit, the instruction in IQ1
cannot be dispatched until the Þrst instruction proceeds through the pipeline and provides
the subsequent instruction with a vacancy in the requested execution unit.

The completion unit maintains program order after instructions are dispatched from the
instruction queue, guaranteeing in-order completion and a precise exception model.
Completing an instruction implies committing execution results to the architected
destination registers. In-order completion ensures the correct architectural state when the
MPC7400 must recover from a mispredicted branch or an exception.

Instruction state and all information required for completion is kept in the eight-entry, FIFO
completion queue. A CQ entry is allocated for each instruction when it is dispatched to an
execute unit; if no entry is available, the dispatch unit stalls. A maximum of two instructions
per cycle may be completed and retired from the CQ, and the ßow of instructions can stall
when a longer-latency instruction reaches the last position in the CQ. Subsequent
instructions cannot be completed and retired until that longer-latency instruction completes
and retires. Examples of this are shown in Section 6.3.2.2, ÒCache Hit,Ó and
Section 6.3.2.3, ÒCache Miss.Ó

The MPC7400 also allows an instruction to Þnish and complete in the same cycle. If an
instruction is in CQ0 and it Þnishes, it completes in the same cycle. Likewise, if the
instruction in CQ1 also Þnishes in the same cycle with the instruction in CQ0, both can also
be simultaneously retired.

The MPC7400 can execute instructions out-of-order, but in-order completion by the
completion unit ensures a precise exception mechanism. Program-related exceptions are
signaled when the instruction causing the exception reaches the last position in the CQ.
Prior instructions are allowed to complete before the exception is taken.

Chapter 6. Instruction Timing

 6-21

Timing Considerations

6.3.4.1 Rename Register Operation

To avoid contention for a given register Þle location in the course of out-of-order execution,
the MPC7400 provides rename registers for holding instruction results before the
completion commits them to the architected register. There are six GPR rename registers,
six FPR rename registers, six VR rename registers, and one each for the CR, LR, and CTR.

When the dispatch unit dispatches an instruction to its execution unit, it allocates a rename
register (or registers) for the results of that instruction. If an instruction is dispatched to a
reservation station associated with an execution unit due to a data dependency, the
dispatcher also provides a tag to the execution unit identifying the rename register that
forwards the required data at completion. When the source data reaches the rename register,
execution can begin.

Instruction results are transferred from the rename registers to the architected registers by
the completion unit when an instruction is retired from the CQ without exceptions and after
any predicted branch conditions preceding it in the CQ have been resolved correctly. If a
branch prediction was incorrect, the instructions following the branch are ßushed from the
CQ, and any results of those instructions are ßushed from the rename registers.

6.3.4.2 Instruction Serialization

Although the MPC7400 can dispatch and complete two instructions per cycle, so-called
serializing instructions limit dispatch and completion to one instruction per cycle. There are
Þve types of instruction serialization:

¥ Execution serializationÑExecution serialized instructions are dispatched, held in
the functional unit and do not execute until all prior instructions have completed. A
functional unit holding an execution serialized instruction will not accept further
instructions from the dispatcher. For example, execution serialization is used for
instructions that modify non-renamed resources. Results from these instructions are
generally not available or are forwarded to subsequent instructions until the
instruction completes (using

mtspr

 to write to LR or CTR provides forwarding to
branch instructions).

¥ Store serialization (LSU only)ÑStore serialized instructions are dispatched, held in
the LSUÕs Þnished store queue, and are not committed for memory until all prior
instructions have completed. While the store serialized instruction waits in the
Þnished store queue, other load/store instructions can be freely executed. Store
serialized instructions complete only from the bottom of the CQ. Thus, only one
store-serialized instruction can complete per cycle, although non-serialized
instructions can complete in the same cycle as a store serialized instruction. In
general, all stores and cache operation instructions are store serialized.

¥ Sync serializationÑSync serialized instructions are dispatched and held in the LSU
and are not performed until all prior instructions complete. Any load/store
instructions dispatched behind the sync instruction remain in the reservation station
until the

sync

 serialized instruction completes. Because

sync

-serialized instructions

6-22

MPC7400 RISC Microprocessor UserÕs Manual

Execution Unit Timings

complete only from the bottom of the CQ. Thus, only one

sync

-serialized instruction
can complete in a given cycle. Non-serialized instructions can complete in the same
cycle as a sync-serialized instruction.

¥ Completion serialization (post-dispatch or tail serialization)ÑCompletion
serialized instructions inhibit dispatching of subsequent instructions until the
serialized instruction completes. Completion serialization is used for instructions
that bypass the normal rename mechanism.

¥ Refetch serialization (ßush serialization)ÑA subset of serialized instructions are
also refetch serialized. Refetch serialized instructions inhibit dispatching of
subsequent instructions and force refetching of subsequent instructions after
completion.

6.4 Execution Unit Timings

The following sections describe instruction timing considerations within each of the
respective execution units in the MPC7400.

6.4.1 Branch Processing Unit Execution Timing

Flow control operations (conditional branches, unconditional branches, and traps) are
typically expensive to execute in most machines because they disrupt normal ßow in the
instruction stream. When a change in program ßow occurs, the IQ must be reloaded with
the target instruction stream. Previously issued instructions will continue to execute while
the new instruction stream makes its way into the IQ, but depending on whether the target
instruction is in the BTIC, instruction cache, L2 cache, or in system memory, some
opportunities may be missed to execute instructions, as the example in Section 6.3.2.3,
ÒCache Miss,Ó shows.

Performance features such as the branch folding, removal of fall-through branch
instructions, BTIC, dynamic branch prediction (implemented in the BHT), two-level
branch prediction, and the implementation of nonblocking caches minimize the penalties
associated with ßow control operations on the MPC7400. The timing for branch instruction
execution is determined by many factors including the following:

¥ Whether the branch is taken

¥ Whether instructions in the target stream, typically the Þrst two instructions in the
target stream, are in the branch target instruction cache (BTIC)

¥ Whether the target instruction stream is in the on-chip cache

¥ Whether the branch is predicted

¥ Whether the prediction is correct

Chapter 6. Instruction Timing

 6-23

Execution Unit Timings

6.4.1.1 Branch Folding and Removal of Fall-Through Branch
Instructions

When a branch instruction is encountered by the fetcher, the BPU immediately begins to
decode it and tries to resolve it. All branch instructions except those that update either the
LR or CTR are removed from the instruction ßow before they would take a position in the
CQ.

Branch folding occurs either when a branch is taken or is predicted as taken (as is the case
with unconditional branches). When the BPU folds the branch instruction out of the
instruction stream, the target instruction stream that is fetched into the instruction queue
overwrites the branch instruction.

Figure 6-11 shows branch folding. Here a

br

 instruction is encountered in a series of

add

instructions. The branch is resolved as taken. What happens on the next clock cycle depends
on whether the target instruction stream is in the BTIC, the instruction cache, or if it must
be fetched from the L2 cache or from system memory.

Figure 6-11 shows cases where there is a BTIC hit, and when there is a BTIC miss (and
instruction cache hit).

If there is a BTIC hit on the next clock cycle the

b

 instruction is replaced by the target
instruction, and1, that was found in the BTIC; the second and instruction is also fetched
from the BTIC. On the next clock cycle, the next four and

instructions from the target
stream are fetched from the instruction cache.

If the target instruction is not in the BTIC, there is an idle cycle while the fetcher attempts
to fetch the Þrst four instructions from the instruction cache (on the next clock cycle). In
the example in Figure 6-11, the Þrst four target instructions are fetched on the next clock.

If it misses in the caches, an L2 cache or memory access is required, the latency of which
is dependent on several factors, such as processor/bus clock ratios. In most cases, new
instructions arrive in the IQ before the execution units become idle.

Figure 6-11. Branch Folding

Figure 6-12 shows the removal of fall-through branch instructions, which occurs when a
branch is not taken or is predicted as not taken.

IQ5 add5
IQ4 add4
IQ3 add3
IQ2 b
IQ1 add2
IQ0 add1

and2
and1

and6
and5
and4
and3

Branch Folding
(Taken Branch/BTIC Hit)

IQ5 add5
IQ4 add4
IQ3 add3
IQ2 b
IQ1 add2
IQ0 add1

and4
and3
and2
and1

Branch Folding
(Taken Branch/BTIC Miss)

Clock 0 Clock 1 Clock 2 Clock 0 Clock 1 Clock 2

6-24

MPC7400 RISC Microprocessor UserÕs Manual

Execution Unit Timings

Figure 6-12. Removal of Fall-Through Branch Instruction

In this case the branch instruction remains in the instruction queue and is removed from the
instruction stream as if it were dispatched. However, it is not dispatched to an execution unit
and is not assigned an entry in the CQ.

When a branch instruction is detected before it reaches a dispatch position, and if the branch
is correctly predicted as taken, folding the branch instruction (and any instructions from the
incorrect path) reduces the latency required for ßow control to zero; instruction execution
proceeds as though the branch was never there.

The advantage of removing the fall-through branch instructions at dispatch is only
marginally less than that of branch folding. Because the branch is not taken, only the branch
instruction needs to be discarded. The only cost of expelling the branch instruction from
one of the dispatch entries rather than folding it is missing a chance to dispatch an
executable instruction from that position.

6.4.1.2 Branch Instructions and Completion

As described in the previous section, instructions that do not update either the LR or CTR
are removed from the instruction stream before they reach the CQ, either by branch folding
(in the case of taken branches) or by removing fall-through branch instructions at dispatch
(in the case of non-taken branches). However, branch instructions that update the
architected LR and CTR must do so in program order and therefore must perform
write-back in the completion stage, like the instructions that update the FPRs, GPRs, and
VRs.

Branch instructions that update the CTR or LR pass through the instruction queue like
no-branch instructions. At the point of dispatch, however, they are not sent to an execution
unit, but rather are assigned a slot in the CQ, as shown in Figure 6-13.

IQ5 add5
IQ4 add4
IQ3 add3
IQ2 b
IQ1 add2
IQ0 add1

add5
add4
add3

b

add7
add6
add5
add4

Branch Fall-Through
(Not-Taken Branch)

Clock 0 Clock 1 Clock 2

Chapter 6. Instruction Timing

 6-25

Execution Unit Timings

Figure 6-13. Branch Completion

In this example, the

bc

 instruction is encoded to decrement the CTR. It is predicted as
not-taken in clock cycle 0. In clock cycle 2,

bc

 and add3 are both dispatched. In clock cycle
3, the architected CTR is updated and the

bc

 instruction is retired from the CQ.

6.4.1.3 Branch Prediction and Resolution

The MPC7400 supports the following two types of branch prediction:

¥ Static branch predictionÑThis is deÞned by the PowerPC architecture as part of the
encoding of branch instructions.

¥ Dynamic branch predictionÑThis is a processor-speciÞc mechanism implemented
in hardware (in particular the branch history table, or BHT) that monitors branch
instruction behavior and maintains a record from which the next occurrence of the
branch instruction is predicted.

When a conditional branch cannot be resolved due to a CR data dependency, the BPU
predicts whether it will be taken, and instruction fetching proceeds down the predicted path.
If the branch prediction resolves as incorrect, the instruction queue and all subsequently
executed instructions are purged, instructions executed prior to the predicted branch are
allowed to complete, and instruction fetching resumes down the correct path.

The MPC7400 executes through two levels of prediction. Instructions from the Þrst
unresolved branch can execute, but they cannot complete until the branch is resolved. If a
second branch instruction is encountered in the predicted instruction stream, it can be
predicted and instructions can be fetched, but not executed, from the second branch. No
action can be taken for a third branch instruction until at least one of the two previous
branch instructions is resolved.

IQ5 add5
IQ4 add4
IQ3 add3
IQ2 bc
IQ1 add2
IQ0 add1

add5
add4
add3

bc

Branch Completion
(LR/CTR Write-Back)

CQ7
CQ6
CQ5
CQ4
CQ3
CQ2
CQ1
CQ0

add2
add1

Clock 0 Clock 1

add7
add6
add5
add4

add3
bc

Clock 2

add9
add8
add7
add6

add5
add4

Clock 3

6-26

MPC7400 RISC Microprocessor UserÕs Manual

Execution Unit Timings

The number of instructions that can be executed after the issue of a predicted branch
instruction is limited by the fact that no instruction executed after a predicted branch may
actually update the register Þles or memory until the branch is completed. That is,
instructions may be issued and executed, but cannot reach the write-back stage in the
completion unit. When an instruction following a predicted branch completes execution, it
does not write back its results to the architected registers, instead, it stalls in the CQ. Of
course, when the CQ is full, no additional instructions can be dispatched, even if an
execution unit is idle.

In the case of a misprediction, the MPC7400 can easily redirect its machine state because
the programming model has not been updated. When a branch is mispredicted, all
instructions that were dispatched after the predicted branch instruction are ßushed from the
CQ and any results are ßushed from the rename registers.

The BTIC is a cache of recently used branch target instructions. If the search for the branch
target hits in the cache, the Þrst one or two branch instructions is available in the instruction
queue on the next cycle (shown in Figure 6-5). Two instructions are fetched on a BTIC hit,
unless the branch target is the last instruction in a cache block, in which case one instruction
is fetched.

In some situations, an instruction sequence creates dependencies that keep a branch
instruction from being resolved immediately, thereby delaying execution of the subsequent
instruction stream based on the predicted outcome of the branch instruction. The instruction
sequences and the resulting action of the branch instruction are described as follows:

¥ An

mtspr

(LR) followed by a

bclr

ÑFetching stops and the branch waits for the

mtspr

 to execute.

¥ An

mtspr(CTR) followed by a bcctrÑFetching stops and the branch waits for the
mtspr to execute.

¥ An mtspr(CTR) followed by a bc (CTR decrement)ÑFetching stops and the branch
waits for the mtspr to execute.

¥ A third bc (based-on-CR) is encountered while there are two unresolved
bc(based-on-CR). The third bc(based-on-CR) is not executed and fetching stops
until one of the previous bc (based-on-CR) is resolved. (Note that branch conditions
can be a function of the CTR and the CR; if the CTR condition is sufÞcient to resolve
the branch, then a CR-dependency is ignored.)

Chapter 6. Instruction Timing 6-27

Execution Unit Timings

6.4.1.3.1 Static Branch Prediction

The PowerPC architecture provides a Þeld in branch instructions (the BO Þeld) to allow
software to hint whether a branch is likely to be taken. Rather than delaying instruction
processing until the condition is known, the MPC7400 uses the instruction encoding to
predict whether the branch is likely to be taken and begins fetching and executing along that
path. When the branch condition is known, the prediction is evaluated. If the prediction was
correct, program ßow continues along that path; otherwise, the processor ßushes any
instructions and their results from the mispredicted path, and program ßow resumes along
the correct path.

Static branch prediction is used when HID0[BHT] is cleared. That is, the branch history
table, which is used for dynamic branch prediction, is disabled. For information about static
branch prediction, see ÒConditional Branch Control,Ó in Chapter 4, ÒAddressing Modes and
Instruction Set Summary,Ó in The Programming Environments Manual.

6.4.1.3.2 Predicted Branch Timing Examples

Figure 6-14 shows cases where branch instructions are predicted. It shows how both taken
and not-taken branches are handled and how the MPC7400 handles both correct and
incorrect predictions. The example shows the timing for the following instruction sequence:
0 add
1 add
2 bc
3 mulhw
4 bc T0
5 fadd
6 and

add
T7 add
T8 add
T9 add
T10 add
T11 or

6-28 MPC7400 RISC Microprocessor UserÕs Manual

Execution Unit Timings

Figure 6-14. Branch Instruction Timing

0. During clock cycle 0, instructions 0 and 1 are dispatched to their respective
execution units. Instruction 2 is a branch instruction that updates the CTR. It is
predicted as not taken in clock cycle 0. Instruction 3 is a mulhw instruction on which
instruction 4 depends.

5 fadd

4 bc

1 2 3 4 5 6 7 80 9 10

¥¥¥

¥¥¥

1 add

IQ5
IQ4
IQ3 3
IQ2 2 (bc)
IQ1 1
IQ0 0

T1
T0

T5
T4
T3
T2

T5
T4
T3
T2

(8)
(7)
6
5

5
4
3
2

CQ7
CQ6
CQ5
CQ4
CQ3
CQ2
CQ1
CQ0

3
2

T1
T0
3
2

T1
T0
3

6
5

(8)
(7)
6
5

(8)
(7)
6
5

(8)
(7)
6
5

1
0

Instruction Queue

Completion Queue

0 add

T1 add

T0 add

2 bc

3 mulhw

T5 or

T4 and

5 fadd *

6 and*

* Instructions 5 and 6 are not in the IQ in clock cycle 5. Here, the fetch stage shows cache latency.

Fetch (in IQ)

In dispatch entry (IQ0/IQ1)

Execute

Complete (In CQ)

In retirement entry (CQ0/CQ1)

Only the portion of the fetch
stage during which the
instruction is in the IQ is shown.

T2 add

T3 add

Chapter 6. Instruction Timing 6-29

Execution Unit Timings

1. In clock cycle 1, instructions 0 and 1 execute and complete. Instructions 2 and 3
enter the dispatch entries in the IQ. Instruction 4 (a second bc instruction) and 5 are
fetched. The second bc instruction is predicted as taken. It can be folded, but it
cannot be resolved until instruction 3 writes back.

2. In clock cycle 2, instruction 4 has been folded and instruction 5 has been ßushed
from the IQ. The two target instructions, T0 and T1, are both in the BTIC, so they
are fetched in this cycle. Note that even though the Þrst bc instruction may not have
resolved by this point (we can assume it has), the MPC7400 allows fetching from a
second predicted branch stream. However, these instructions could not be
dispatched until the previous branch has resolved.

3. In clock cycle 3, target instructions T2ÐT5 are fetched as T0 and T1 are dispatched.

4. In clock cycle 4, instruction 3, on which the second branch instruction depended,
writes back and the branch prediction is proven incorrect. Even though T0 is in CQ1,
from which it could be written back, it is not written back because the branch
prediction was incorrect. All target instructions are ßushed from their positions in
the pipeline at the end of this clock cycle, as are any results in the rename registers.

After one clock cycle required to refetch the original instruction stream, instruction 5, the
same instruction that was fetched in clock cycle 1, is brought back into the IQ from the
instruction cache, along with three others (not all of which are shown).

6.4.2 Integer Unit Execution Timing

The MPC7400 has two integer units. The IU1 can execute all integer instructions; and the
IU2 can execute all integer instructions except multiply and divide instructions. As shown
in Figure 6-2, each integer unit has one execute pipeline stage, thus when a multicycle
integer instruction is being executed, no other integer instructions can begin to execute.
Table 6-6 lists integer instruction latencies.

Most integer instructions have an execution latency of one clock cycle.

6.4.3 Floating-Point Unit Execution Timing

The ßoating-point unit on the MPC7400 executes all ßoating-point instructions. Execution
of most ßoating-point instructions is pipelined within the FPU, allowing up to three
instructions to be executing in the FPU concurrently. Although most ßoating-point
instructions execute with three-cycle latency and one-cycle throughput, three instructions
(fdivs, fdiv, and fres) execute with latencies of 17 to 31 cycles. The fdivs, fdiv, fres, mcrfs,
mtfsb0, mtfsb1, mtfsÞ, mffs, and mtfsf instructions block the ßoating-point unit pipeline
until they complete execution, and thereby inhibit the dispatch of additional ßoating-point
instructions. See Table 6-7 for ßoating-point instruction execution timing.

6-30 MPC7400 RISC Microprocessor UserÕs Manual

Execution Unit Timings

6.4.4 Effect of Floating-Point Exceptions on Performance

For the highest and most predictable ßoating-point performance, all exceptions should be
disabled in the FPSCR and MSR and FPSCR[NI] should be set.

If any exceptions are enabled (through a combination of MSR[FE] and one or more of the
FPSCR enable bits), the MPC7400 FPU takes one addition cycle to complete instructions.
This does not affect latency for data dependency. It may however, degrade performance by
consuming limited CQ resources for 1 extra cycle per instruction.

6.4.5 Load/Store Unit Execution Timing

In addition to executing the PowerPC load and store instructions, the LSU also executes the
AltiVec LRU and transient instructions. The execution of most load and store instructions
is pipelined. The LSU has two pipeline stages. The Þrst is for effective address calculation
and MMU translation and the second is for accessing data in the cache. Load and store
instructions have a two-cycle latency and one-cycle throughput.

If operands are misaligned, additional latency may be required either for an alignment
exception to be taken or for additional bus accesses. Load instructions that miss in the cache
block subsequent cache accesses during the cache line reÞll. Table 6-8 gives load and store
instruction execution latencies.

6.4.5.1 Effect of Operand Placement on Performance

The PowerPC VEA states that the placement (location and alignment) of operands in
memory may affect the relative performance of memory accesses, and in some cases affect
it signiÞcantly. The effects memory operand placement has on performance are shown in
Table 6-1.

The best performance is guaranteed if memory operands are aligned on natural boundaries.
For the best performance across the widest range of implementations, the programmer
should assume the performance model described in Chapter 3, ÒOperand Conventions,Ó in
The Programming Environments Manual.

The effect of misalignment on memory access latency is the same for big- and little-endian
addressing modes except for multiple and string operations that cause an alignment
exception in little-endian mode.

In Table 6-1, optimal means that one effective address (EA) calculation occurs during the
memory operation. Good means that multiple EA calculations occur during the operation,
which may cause additional bus activities with multiple bus transfers. Poor means that an
alignment exception is generated.

Chapter 6. Instruction Timing 6-31

Execution Unit Timings

Note that the MPC7400 differs from the MPC750 in some aspects of little-endian
operation; in little-endian mode, MPC7400 does not work with the MPC106.

6.4.5.2 Integer Store Gathering

The MPC7400 performs store gathering for write-through operations to nonguarded space.
It performs cache-inhibited stores to nonguarded space for 4-byte, word-aligned stores.
These stores are combined in the LSU to form a double word sent out on the 60x bus as a
single-beat operation. However, stores are gathered only if the successive stores meet the
criteria and are queued and pending. Store gathering occurs regardless of the address order
of the stores. Store gathering is enabled by setting HID0[SGE]. Stores can be gathered in
big-endian modes.

Store gathering is not done for the following:

¥ Stores to guarded cache-inhibited or write-through space
¥ Byte-reverse store operations
¥ stwcx. instructions
¥ ecowx instructions
¥ A store that occurs during a table search operation

Table 6-1. Performance Effects of Memory Operand Placement

Operand Boundary Crossing 1

1 Vector operands are not shown because they are always aligned.
optimal: One EA calculation occurs.

good: Multiple EA calculations occur which may cause additional bus activities with multiple bus transfers.
poor: Alignment exception occurs.

Size Byte Alignment None 8 Byte Cache Line Protection Boundary

Integer

4 Byte 4
<4

Optimal
Optimal

Ñ
Good

Ñ
Good

Ñ
Good

2 Byte 2
<2

Optimal
Optimal

Ñ
Good

Ñ
Good

Ñ
Good

1 Byte 1 Optimal Ñ Ñ Ñ

lmw, stmw 2

2 These operations are not supported in little-endian mode, and would cause an alignment exception.

4
<4

Good
Poor

Good
Poor

Good
Poor

Good
Poor

String 2 Good Good Good Good

Floating-Point

8 Byte 8
4

<4

Optimal
Ñ
Ñ

Ñ
Good
Poor

Ñ
Good
Poor

Ñ
Good
Poor

4 Byte 4
<4

Optimal
Poor

Ñ
Poor

Ñ
Poor

Ñ
Poor

6-32 MPC7400 RISC Microprocessor UserÕs Manual

Execution Unit Timings

¥ Little-endian store operations
¥ Floating-point store operations

If store gathering is enabled and the stores do not fall under the above categories, an eieio
or sync instruction must be used to prevent two stores from being gathered.

6.4.6 System Register Unit Execution Timing

Most instructions executed by the SRU either directly access renamed registers or either
access or modify nonrenamed registers. Instructions generally execute in strict order.
Results from these instructions are not available to subsequent instructions until the
instruction completes and is retired. See Section 6.3.4.2, ÒInstruction Serialization,Ó for
more information on serializing instructions executed by the SRU. Table 6-4 and Table 6-5
show SRU instruction execution timings.

6.4.7 AltiVec Instructions Executed by the LSU

The LSU execute the AltiVec LRU and transient instructions.

6.4.7.1 LRU Instructions

The AltiVec architecture speciÞes that the lvxl and stvxl instructions differ from other
AltiVec load and store instructions in that they leave cache entries in a least-recently-used
(LRU) state instead of a most-recently-used state. This is used to identify data that is known
to have little reuse and poor caching characteristics.

On the MPC7400, these instructions follow the cache allocation and replacement policies
described in Chapter 3, ÒL1 and L2 Cache Operation,Ó but they leave their addressed cache
entries in the LRU state. In addition, all LRU instructions are also interpreted to be transient
and are also treated as described in the next section. Additional discussion on LRU effects
may be found in Chapter 3, ÒL1 and L2 Cache Operation.Ó

6.4.7.2 Transient Instructions

The AltiVec architecture describes a difference between static and transient memory
accesses.

A static memory access should have some reasonable degree of locality and be referenced
several times or reused over some reasonably long period of time. A transient memory
reference has poor locality and is likely to be referenced a very few times or over a very
short period of time.

The MPC7400 supports both static and transient memory access behavior.

Chapter 6. Instruction Timing 6-33

Execution Unit Timings

If a memory access is designated as to transient, that cache block is marked not to be cast
out to the L2 unless it has been modiÞed in the L1 data cache. If it is modiÞed in the L1,
the block is not allocated in the L2 cache when it is victimized from the L1 data cache.
Instead, the block is written directly to main memory, bypassing the L2 cache.

The following instructions are interpreted to be transient:

¥ dstt and dststt (transient forms of the two data stream touch instructions)

¥ lvxl and stvxl

6.4.8 AltiVec Instructions

The MPC7400 implements all instructions in the AltiVec speciÞcation. The AltiVec
instruction set has no optional instructions; however, a few instructions associated with the
load/store model are deÞned to allow signiÞcant differences between implementations. The
following sections describe the MPC7400Õs implementation of these options.

6.4.8.1 AltiVec Permute Unit (VPU) Execution Timing

All AltiVec permute instructions are executed in a single cycle

6.4.8.2 AltiVec Arithmetic Logical Unit (VALU) Execution Timing

The AltiVec arithmetic logical unit (VALU) contains the following three independent
execution units for vector computations:

¥ Vector simple integer unit (VSIU)

¥ Vector complex integer unit (VCIU)

¥ Vector ßoating-point unit (VFPU)

Execution timing for these units are described in the following sections.

6.4.8.2.1 Vector Simple Integer Unit (VSIU) Execution Timing

Except mtvscr and mfvscr, the VSIU executes all AltiVec simple integer instructions and
all AltiVec ßoating-point compare, minimum, and maximum instructions, all of which have
single-cycle latency.

6.4.8.2.2 Vector Complex Integer Unit (VCIU) Execution Timing

The VCIU executes all AltiVec complex integer instructions, which have a three-cycle
latency.

6.4.8.2.3 Vector Floating-Point Unit (VFPU) Execution Timing

In non-Java mode, all AltiVec ßoating-point instructions (except for the ßoating-point
compare, minimum, and maximum instructions, which are executed in the VSIU) have a
four-cycle latency.

6-34 MPC7400 RISC Microprocessor UserÕs Manual

Execution Unit Timings

In Java mode, they have a Þve-cycle latency. However, similar to non-Java mode, data
forwarding for instructions with dependencies can occur at the end of the fourth execution
cycle as shown in the following examples.

Consider the data dependency in the following two-instruction sequence:

0 vaddfp V0,V1,V2
1 vaddfp V3,V0,V4

Figure 6-15 shows the instruction timing for the sequence in non-Java mode. Note that
instruction 1 is dispatched in clock cycle 2, but remains in the reservation station until clock
cycle 5 when the source operand, v0, is available from instruction 0. At this point,
instruction 1 enters the Þrst execute stage.

Figure 6-15. Data Dependencies in Non-Java Mode

Figure 6-16 shows that even though the execution pipeline is Þve stages deep in Java mode,
data forwarding can still occur at the end of the fourth execution stage, just as in the
non-Java mode example in Figure 6-15.

1 2 3 4 5 6 7 80

¥¥¥

0 vaddfp

IQ5
IQ4
IQ3
IQ2
IQ1 1
IQ0 0 1

CQ7
CQ6
CQ5
CQ4
CQ3
CQ2
CQ1
CQ0

1
0

1
0

1
0 1 1 1 10

Instruction Queue

Completion Queue

Fetch (in IQ) Execute

Complete (In CQ)

In retirement entry (CQ0/CQ1)

In dispatch entry (IQ0/IQ1)

In reservation station

I vaddfp

Chapter 6. Instruction Timing 6-35

Memory Performance Considerations

Figure 6-16. Data Forwarding in Java Mode

6.5 Memory Performance Considerations
Because the MPC7400 can have a maximum instruction throughput of three instructions
per clock cycle, lack of memory bandwidth can affect performance. For the MPC7400 to
maximize performance, it must be able to read and write data efÞciently. If a system has
multiple bus devices, one of them may experience long memory latencies while another bus
master (for example, a direct-memory access controller) is using the external bus.

6.5.1 Caching and Memory Coherency

To minimize the effect of bus contention, the PowerPC architecture deÞnes WIM bits that
are used to conÞgure memory regions as caching-enforced or caching-inhibited. Accesses
to such memory locations never update the on-chip cache. If a cache-inhibited access hits
the on-chip cache, the cache block is invalidated. If the cache block is marked modiÞed, it
is copied back to memory before being invalidated. Where caching is permitted, memory
is conÞgured as either write-back or write-through, which are described as follows:

1 2 3 4 5 6 7 80

¥¥¥

IQ5
IQ4
IQ3
IQ2
IQ1 1
IQ0 0 1

CQ7
CQ6
CQ5
CQ4
CQ3
CQ2
CQ1
CQ0

1
0

1
0

1
0

1
0 1 1 10

Instruction Queue

Completion Queue

9

1

Fetch (in IQ) Execute

Complete (In CQ)

In retirement entry (CQ0/CQ1)

In dispatch entry (IQ0/IQ1)

In reservation station

1 vaddfp

0 vaddfp

6-36 MPC7400 RISC Microprocessor UserÕs Manual

Memory Performance Considerations

¥ Write-backÑConÞguring a memory region as write-back lets a processor modify
data in the cache without updating system memory. For such locations, memory
updates occur only on modiÞed cache block replacements, cache ßushes, or when
one processor needs data that is modiÞed in anotherÕs cache. Therefore, conÞguring
memory as write-back can help when bus trafÞc could cause bottlenecks, especially
for multiprocessor systems and for regions in which data, such as local variables, is
used often and is coupled closely to a processor.

If multiple devices use data in a memory region marked write-through, snooping
must be enabled to allow the copyback and cache invalidation operations necessary
to ensure cache coherency. The MPC7400Õs snooping hardware keeps other devices
from accessing invalid data. For example, when snooping is enabled, the MPC7400
monitors transactions of other bus devices. For example, if another device needs data
that is modiÞed on the MPC7400Õs cache, the access is delayed so the MPC7400 can
copy the modiÞed data to memory.

¥ Write-throughÑStore operations to memory marked write-through always update
both system memory and the on-chip cache on cache hits. Because valid cache
contents always match system memory marked write-through, cache hits from other
devices do not cause modiÞed data to be copied back as they do for locations marked
write-back. However, all write operations are passed to the bus, which can limit
performance. Load operations that miss the on-chip cache must wait for the external
store operation.

Write-through conÞguration is useful when cached data must agree with external
memory (for example, video memory), when shared (global) data may be needed
often, or when it is undesirable to allocate a cache block on a cache miss.

Chapter 3, ÒL1 and L2 Cache Operation,Ó describes the caches, memory conÞguration, and
snooping in detail.

6.5.2 Effect of TLB Miss on Performance

TLB misses causes a hardware table search for the PTE tables and the TLB to be loaded.
Table 6-2 shows some estimated latencies. These latencies are a sum of the latencies for the
table search, TLB reload, and a reaccess of the TLB.

Table 6-2. Effect of TLB Miss on Performance

Cache Hit/Miss Latency

100% L1 cache hit 9 cycles

100% L1 cache miss with 100% L2 cache hit with L2 core running at 1:1 15 cycles

100% L1 cache miss with 100% L2 cache hit with L2 core running at 1.5:1 17 cycles

100% L1 cache miss with 100% L2 cache hit with L2 core running at 2:1 18 cycles

100% L1 & L2 cache miss with bus running at 2.5:1 with 6:3:3:3 memory 28 cycles

Chapter 6. Instruction Timing 6-37

Instruction Scheduling Guidelines

The PTE table search assumes a hit in the Þrst entry of the primary PTEG and no RC
updates.

6.6 Instruction Scheduling Guidelines
The performance of the MPC7400 can be improved by avoiding resource conßicts and
scheduling instructions to take fullest advantage of the parallel execution units. Instruction
scheduling on the MPC7400 can be improved by observing the following guidelines:

¥ To reduce mispredictions, separate the instruction that sets CR bits from the branch
instruction that evaluates them. Because there can be no more than 12 instructions
in the processor (with the instruction that sets CR in CQ0 and the dependent branch
instruction in IQ5), there is no advantage to having more than 10 instructions
between them.

¥ Likewise, when branching to a location speciÞed by the CTR or LR, separate the
mtspr instruction that initializes the CTR or LR from the dependent branch
instruction. This ensures the register values are immediately available to the branch
instruction.

¥ Schedule instructions such that two can be dispatched at a time.

¥ Schedule instructions to minimize stalls due to busy execution units.

¥ Avoid scheduling high-latency instructions close together. Interspersing
single-cycle latency instructions between longer-latency instructions minimizes the
effect that instructions such as integer divide and multiply can have on throughput.

¥ Avoid using serializing instructions.

¥ Schedule instructions to avoid dispatch stalls:

Ñ Eight instructions can be tracked in the CQ; therefore, eight instructions can be
in the execute stages at any one time

Ñ There are six GPR rename registers; therefore only six GPRs can be speciÞed as
destination operands at any time. If no rename registers are available,
instructions cannot enter the execute stage and remain in the reservation station
or instruction queue until they become available.

Note that load with update address instructions use two destination registers

Ñ Similarly, there are six FPR rename registers and six VR rename registers, so
only six FPR and six VR destination operands can be in the execute and complete
stages at any time.

100% L1 & L2 cache miss with bus running at 4:1 with 5:2:2:2 memory 33 cycles

100% L1 & L2 cache miss with bus running at 4:1 with 11:1:1:1 memory 57 cycles

Table 6-2. Effect of TLB Miss on Performance (Continued)

Cache Hit/Miss Latency

6-38 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Scheduling Guidelines

6.6.1 Branch, Dispatch, and Completion Unit Resource
Requirements

This section describes the speciÞc resources required to avoid stalls during branch
resolution, instruction dispatching, and instruction completion.

6.6.1.1 Branch Resolution Resource Requirements

The following is a list of branch instructions and the resources required to avoid stalling the
fetch unit in the course of branch resolution:

¥ The bclr instruction requires LR availability.

¥ The bcctr instruction requires CTR availability.

¥ Branch and link instructions require shadow LR availability.

¥ The Òbranch conditional on counter decrement and the CRÓ condition requires CTR
availability or the CR condition must be false, and the MPC7400 cannot execute
instructions after an unresolved predicted branch when the BPU encounters a
branch.

¥ A branch conditional on CR condition cannot be executed following an unresolved
predicted branch instruction.

6.6.1.2 Dispatch Unit Resource Requirements

The following is a list of resources required to avoid stalls in the dispatch unit. IQ[0] and
IQ[1] are the two dispatch entries in the instruction queue:

¥ Requirements for dispatching from IQ[0] are as follows:

Ñ Needed execution unit available
Ñ Needed GPR rename registers available
Ñ Needed FPR rename registers available
Ñ Needed VR rename registers available
Ñ CQ is not full.
Ñ A completion-serialized instruction is not being executed.

¥ Requirements for dispatching from IQ[1] are as follows:

Ñ Instruction in IQ[0] must dispatch.
Ñ Instruction dispatched by IQ[0] is not completion- or refetch-serialized.
Ñ Needed execution unit is available (after dispatch from IQ[0]).
Ñ Needed GPR rename registers are available (after dispatch from IQ[0]).
Ñ Needed FPR rename register is available (after dispatch from IQ[0]).
Ñ Needed VR rename registers available (after dispatch from IQ[0]).
Ñ CQ is not full (after dispatch from IQ[0]).

Chapter 6. Instruction Timing 6-39

Instruction Latency Summary

6.6.1.3 Completion Unit Resource Requirements

The following is a list of resources required to avoid stalls in the completion unit; note that
the two completion entries are described as CQ[0] and CQ[1], where CQ[0] is the CQ
located at the end of the CQ (see Figure 6-4).

¥ Requirements for completing an instruction from CQ[0] are as follows:

Ñ Instruction in CQ[0] must be Þnished.
Ñ Instruction in CQ[0] must not follow an unresolved predicted branch.
Ñ Instruction in CQ[0] must not cause an exception.

¥ Requirements for completing an instruction from CQ[1] are as follows:

Ñ Instruction in CQ[0] must complete in same cycle.
Ñ Instruction in CQ[1] must be Þnished.
Ñ Instruction in CQ[1] must not follow an unresolved predicted branch.
Ñ Instruction in CQ[1] must not cause an exception.
Ñ Instruction in CQ[1] must be an integer, load, dcbt, data streaming, or AltiVec

instruction.
Ñ Number of CR updates from both CQ[0] and CQ[1] must not exceed two.
Ñ Number of GPR updates from both CQ[0] and CQ[1] must not exceed two.
Ñ Number of FPR updates from both CQ[0] and CQ[1] must not exceed two.
Ñ Number of VR updates from both CQ[0] and CQ[1] must not exceed two.

6.7 Instruction Latency Summary
Instruction timing in number of processor clock cycles is shown in Table 6-3 through
Table 6-9. The latency tables use the following conventions:

¥ Pipelined load /store instructions are shown with cycles of total latency and
throughput cycles separated by a colon.

¥ The variable ÔbÕ represents the processor/system-bus clock ratio.

¥ ÔBroadcastÕ indicates a bus broadcast that has a minimum value of 3*b.

¥ Pipelined ßoating-point instructions are shown with number of clocks in each
pipeline stage separated by dashes.

¥ In addition, additional cycles due to serializations are indicated in the cycles column
with the following:

Ñ c (completion serialization)

Ñ s (store serialization)

Ñ y (sync serialization)

Ñ e (execution serialization)

Ñ r (refetch serialization)

6-40 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Latency Summary

Table 6-3 through Table 6-9 list latencies associated with instructions executed by each
execution unit. Table 6-3 describes branch instruction latencies.

Table 6-4 lists system register instruction latencies.

Table 6-5 lists condition register logical instruction latencies.

Table 6-3. Branch Operation Execution Latencies

Mnemonic Primary Extend Form Unit Cycles 1

1 Taken branches may be folded for an effective cycle time of 0.

b[l][a] 18 Ñ I BPU 1

bc[l][a] 16 Ñ B BPU 1

bcctr[l] 19 528 XL BPU 1

bclr[l] 19 016 XL BPU 1

Table 6-4. SRU Execution Latencies

Mnemonic Primary Extend Form Unit Cycles

isync 19 150 XL SRU 2 {c,r}

mfmsr 31 083 X SRU 1

mfspr (DBATs) 31 339 XFX SRU 3 {e}

mfspr (IBATs) 31 339 XFX SRU 3

mfspr (not BATs) 31 339 XFX SRU 1 {e}

mfsr 31 595 X SRU 3

mfsrin 31 659 X SRU 3 {e}

mftb 31 371 X SRU 1

mtmsr 31 146 X SRU 1 {e}

mtspr (DBATs) 31 467 XFX SRU 2 {e}

mtspr (IBATs) 31 467 XFX SRU 2 {e}

mtspr (not BATs) 31 467 XFX SRU 2 {e}

mtsr 31 210 X SRU 2 {e}

mtsrin 31 242 X SRU 3 {e}

mttb 31 467 XFX SRU 1 {e}

rÞ 19 050 XL SRU 2 {c,r}

sc 17 - -1 SC SRU 2 {c,r}

Table 6-5. Condition Register Logical Execution Latencies

Mnemonic Primary Extend Form Unit Cycles

mcrf 19 000 XL SRU 1 {e}

crand 19 257 XL SRU 1 {e}

crandc 19 129 XL SRU 1 {e}

Chapter 6. Instruction Timing 6-41

Instruction Latency Summary

Table 6-6 shows integer instruction latencies. Note that the IU1 executes all integer
arithmetic instructionsÑmultiply, divide, shift, rotate, add, subtract, and compare. The IU2
executes all integer instructions except multiply and divide (that is, shift, rotate, add,
subtract, and compare).

creqv 19 289 XL SRU 1 {e}

crnand 19 225 XL SRU 1 {e}

crnor 19 033 XL SRU 1 {e}

cror 19 449 XL SRU 1 {e}

crorc 19 417 XL SRU 1 {e}

crxor 19 193 XL SRU 1 {e}

mcrxr 31 512 X SRU 1 {e}

mfcr 31 019 X SRU 1 {e}

mtcrf 31 144 XFX SRU 1 {e}

Table 6-6. Integer Unit Execution Latencies

Mnemonic Primary Extend Form Unit Cycles

addc[o][.] 31 010 XO IU 1

adde[o][.] 31 138 XO IU 1 {e}

addi 14 Ñ D IU 1

addic 12 Ñ D IU 1

addic. 13 Ñ D IU 1

addis 15 Ñ D IU 1

addme[o][.] 31 234 XO IU 1 {e}

addze[o][.] 31 202 XO IU 1 {e}

add[o][.] 31 266 XO IU 1

andc[.] 31 060 X IU 1

andi. 28 Ñ D IU 1

andis. 29 Ñ D IU 1

and[.] 31 028 X IU 1

cmp 31 000 X IU 1

cmpi 11 Ñ D IU 1

cmpl 31 032 X IU 1

cmpli 10 Ñ D IU 1

cntlzw[.] 31 026 X IU 1

divwu[o][.] 31 459 XO IU 19

divw[o][.] 31 491 XO IU 19

Table 6-5. Condition Register Logical Execution Latencies (Continued)

Mnemonic Primary Extend Form Unit Cycles

6-42 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Latency Summary

Table 6-7 shows latencies for ßoating-point instructions. Floating-point instructions with a
single entry in the cycles column are not pipelined. Thus, the unit executing these
nonpipelined instructions is busy for the full duration of the instruction execution and is not
available for additional instruction execution.

eqv[.] 31 284 X IU 1

extsb[.] 31 954 X IU 1

extsh[.] 31 922 X IU 1

mulhwu[.] 31 011 XO IU 2,3,4,5,6

mulhw[.] 31 075 XO IU 2,3,4,5

mulli 07 Ñ D IU 2,3

mull[o][.] 31 235 XO IU 2,3,4,5

nand[.] 31 476 X IU 1

neg[o][.] 31 104 XO IU 1

nor[.] 31 124 X IU 1

orc[.] 31 412 X IU 1

ori 24 Ñ D IU 1

oris 25 Ñ D IU 1

or[.] 31 444 X IU 1

rlwimi[.] 20 Ñ M IU 1

rlwinm[.] 21 Ñ M IU 1

rlwnm[.] 23 Ñ M IU 1

slw[.] 31 024 X IU 1

srawi[.] 31 824 X IU 1

sraw[.] 31 792 X IU 1

srw[.] 31 536 X IU 1

subfc[o][.] 31 008 XO IU 1

subfe[o][.] 31 136 XO IU 1 {e}

subÞc 08 Ñ D IU 1

subfme[o][.] 31 232 XO IU 1 {e}

subfze[o][.] 31 200 XO IU 1 {e}

subf[.] 31 040 XO IU 1

tw 31 004 X IU 2

twi 03 Ñ D IU 2

xori 26 Ñ D IU 1

xoris 27 Ñ D IU 1

xor[.] 31 316 X IU 1

Table 6-6. Integer Unit Execution Latencies (Continued)

Mnemonic Primary Extend Form Unit Cycles

Chapter 6. Instruction Timing 6-43

Instruction Latency Summary

Pipelined ßoating-point instructions are shown with number of clocks in each pipeline
stage separated by dashes.

Table 6-7. Floating-Point Unit Execution Latencies

Mnemonic Primary Extend Form Unit Cycles

fabs[.] 63 264 X FPU 1-1-1

fadds[.] 59 021 A FPU 1-1-1

fadd[.] 63 021 A FPU 1-1-1

fcmpo 63 032 X FPU 1-1-1

fcmpu 63 000 X FPU 1-1-1

fctiwz[.] 63 015 X FPU 1-1-1

fctiw[.] 63 014 X FPU 1-1-1

fdivs[.] 59 018 A FPU 17

fdiv[.] 63 018 A FPU 31

fmadds[.] 59 029 A FPU 1-1-1

fmadd[.] 63 029 A FPU 1-1-1

fmr[.] 63 072 X FPU 1-1-1

fmsubs[.] 59 028 A FPU 1-1-1

fmsub[.] 63 028 A FPU 1-1-1

fmuls[.] 59 025 A FPU 1-1-1

fmul[.] 63 025 A FPU 1-1-1

fnabs[.] 63 136 X FPU 1-1-1

fneg[.] 63 040 X FPU 1-1-1

fnmadds[.] 59 031 A FPU 1-1-1

fnmadd[.] 63 031 A FPU 1-1-1

fnmsubs[.] 59 030 A FPU 1-1-1

fnmsub[.] 63 030 A FPU 1-1-1

fres[.] 59 024 A FPU 10

frsp[.] 63 012 X FPU 1-1-1

frsqrte[.] 63 026 A FPU 1-1-1

fsel[.] 63 023 A FPU 1-1-1

fsubs[.] 59 020 A FPU 1-1-1

fsub[.] 63 020 A FPU 1-1-1

mcrfs 63 064 X FPU 3 {e}

mffs[.] 63 583 X FPU 3 {e}

mtfsb0[.] 63 070 X FPU 3{e}

mtfsb1[.] 63 038 X FPU 3{e}

mtfsÞ[.] 63 134 X FPU 3{e}

mtfsf[.] 63 711 XFL FPU 3 {e}

6-44 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Latency Summary

Table 6-8 shows load and store instruction latencies. Load/store multiple and string
instruction cycles are represented as a Þxed number of cycles plus a variable number of
cycles, where n = the number of words accessed by the instruction. Pipelined load/store
instructions are shown with cycles of total latency and throughput cycles separated by a
colon.

Table 6-8. Load/Store Instruction Latencies

Mnemonic Primary Extend Form Unit Cycles 1 MMU Updates Speculatively Executed

dcba 31 758 X LSU 2:3* {s} R, C No

dcbf 31 086 X LSU 2:3*b {s} R No

dcbi 31 470 X LSU 2:3*b {s} R, C No

dcbst 31 054 X LSU 2:3*b {s} R No

dcbt 31 278 X LSU 2:1 R Yes

dcbtst 31 246 X LSU 2:1 R Yes

dcbz 31 1014 X LSU 2:3* {s} R, C No

eciwx 31 310 X LSU 2:1 R Yes

ecowx 31 438 X LSU 2:1 {s} R, C No

eieio 31 854 X LSU 2:3*b {y} None No

icbi 31 982 X LSU 2:3*b {s} R No

lbz 34 Ñ D LSU 2:1 R Yes

lbzu 35 Ñ D LSU 2:1 R Yes

lbzux 31 119 X LSU 2:1 R Yes

lbzx 31 087 X LSU 2:1 R Yes

lfd 50 Ñ D LSU 2:1 R Yes

lfdu 51 Ñ D LSU 2:1 R Yes

lfdux 31 631 X LSU 2:1 R Yes

lfdx 31 599 X LSU 2:1 R Yes

lfs 48 Ñ D LSU 2:1 R Yes

lfsu 49 Ñ D LSU 2:1 R Yes

lfsux 31 567 X LSU 2:1 R Yes

lfsx 31 535 X LSU 2:1 R Yes

lha 42 Ñ D LSU 2:1 R Yes

lhau 43 Ñ D LSU 2:1 R Yes

lhaux 31 375 X LSU 2:1 R Yes

lhax 31 343 X LSU 2:1 R Yes

lhbrx 31 790 X LSU 2:1 R Yes

lhz 40 Ñ D LSU 2:1 R Yes

lhzu 41 Ñ D LSU 2:1 R Yes

lhzux 31 311 X LSU 2:1 R Yes

Chapter 6. Instruction Timing 6-45

Instruction Latency Summary

lhzx 31 279 X LSU 2:1 R Yes

lmw 46 Ñ D LSU 2 + n {c,e} R No

lswi 31 597 X LSU 2 + n {c,e} R No

lswx 31 533 X LSU 2 + n {c,e} R No

lwarx 31 020 X LSU 3:3 {e} R No

lwbrx 31 534 X LSU 2:1 R Yes

lwz 32 Ñ D LSU 2:1 R Yes

lwzu 33 Ñ D LSU 2:1 R Yes

lwzux 31 055 X LSU 2:1 R Yes

lwzx 31 023 X LSU 2:1 R Yes

stb 38 Ñ D LSU 2:1 {s} R, C No

stbu 39 Ñ D LSU 2:1 {s} R, C No

stbux 31 247 X LSU 2:1 {s} R, C No

stbx 31 215 X LSU 2:1 {s} R, C No

stfd 54 Ñ D LSU 2:1 R, C No

stfdu 55 Ñ D LSU 2:1 R, C No

stfdux 31 759 X LSU 2:1 {s} R, C No

stfdx 31 727 X LSU 2:1 {s} R, C No

stÞwx 31 983 X LSU 2:1 {s} R, C No

stfs 52 Ñ D LSU 2:1 R, C No

stfsu 53 Ñ D LSU 2:1 R, C No

stfsux 31 695 X LSU 2:1 {s} R, C No

stfsx 31 663 X LSU 2:1 {s} R, C No

sth 44 Ñ D LSU 2:1 {s} R, C No

sthbrx 31 918 X LSU 2:1 {s} R, C No

sthu 45 Ñ D LSU 2:1 {s} R, C No

sthux 31 439 X LSU 2:1 {s} R, C No

sthx 31 407 X LSU 2:1 {s} R, C No

stmw 47 Ñ D LSU 2 + n {e} R, C No

stswi 31 725 X LSU 2 + n {e} R, C No

stswx 31 661 X LSU 2 + n {e} R, C No

stw 36 Ñ D LSU 2:1 {s} R, C No

stwbrx 31 662 X LSU 2:1 {s} R, C No

stwcx. 31 150 X LSU 5:5 {s} R, C No

stwu 37 Ñ D LSU 2:1 {s} R, C No

stwux 31 183 X LSU 2:1 {s} R, C No

Table 6-8. Load/Store Instruction Latencies (Continued)

Mnemonic Primary Extend Form Unit Cycles 1 MMU Updates Speculatively Executed

6-46 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Latency Summary

Table 6-9 describes AltiVec instruction latencies.

stwx 31 151 X LSU 2:1 {s} R, C No

sync 31 598 X LSU 8+broadcast {y} None No

tlbie 31 306 X LSU 2:3*b {s} None No

tlbsync 31 566 X LSU 8+broadcast {y} None No

1 For cache-ops, the Þrst number indicates the latency in Þnishing a single instruction, and the second number denotes
the throughput for back to back cache-ops. The throughput cycle may be larger than the initial latency due to the fact
that more cycles may be needed to complete the instruction to the cache which remains busy preventing subsequent
cache-ops from executing. These numbers also assume that there is a bus broadcast (i.e. M = 1). For M = 0, the number
will be a minimum of 3 cycles.

Table 6-9. AltiVec Instruction Latencies

Mnemonic Primary Extend Form Unit Cycles 1 MMU Update

dss 31 Ñ X LSU 2:1 Ñ

dssall 31 Ñ X LSU 2:1 Ñ

dst 31 Ñ X LSU 2:2 2 R

dstst 31 Ñ X LSU 2:2 2 R

dststt 31 Ñ X LSU 2:2 2 R

dstt 31 Ñ X LSU 2:2 2 R

lvebx 31 Ñ X LSU 2:1 R

lvehx 31 Ñ X LSU 2:1 R

lvewx 31 Ñ X LSU 2:1 R

lvsl 31 Ñ X LSU 2:1 Ñ

lvsr 31 Ñ X LSU 2:1 Ñ

lvx 31 Ñ X LSU 2:1 R

lvxl 31 Ñ X LSU 2:1 R

mfvscr 04 Ñ VX VALU(VSIU) 1{e} Ñ

mtvscr 04 Ñ VX VALU(VSIU) 1 {e} Ñ

stvebx 31 Ñ X LSU 2:1 R, C

stvehx 31 Ñ X LSU 2:1 R, C

stvewx 31 Ñ X LSU 2:1 R, C

stvx 31 Ñ X LSU 2:1 R, C

stvxl 31 Ñ X LSU 2:1 R, C

vaddcuw 04 Ñ VX VALU(VSIU) 1 Ñ

vaddfp 04 Ñ VX VALU(VFPU) 4:1 (non-Java)/
5:1 (Java)

Ñ

vaddsbs 04 Ñ VX VALU(VSIU) 1 Ñ

Table 6-8. Load/Store Instruction Latencies (Continued)

Mnemonic Primary Extend Form Unit Cycles 1 MMU Updates Speculatively Executed

Chapter 6. Instruction Timing 6-47

Instruction Latency Summary

vaddshs 04 Ñ VX VALU(VSIU) 1 Ñ

vaddsws 04 Ñ VX VALU(VSIU) 1 Ñ

vaddubm 04 Ñ VX VALU(VSIU) 1 Ñ

vaddubs 04 Ñ VX VALU(VSIU) 1 Ñ

vadduhm 04 Ñ VX VALU(VSIU) 1 Ñ

vadduhs 04 Ñ VX VALU(VSIU) 1 Ñ

vadduwm 04 Ñ VX VALU(VSIU) 1 Ñ

vadduws 04 Ñ VX VALU(VSIU) 1 Ñ

vand 04 Ñ VX VALU(VSIU) 1 Ñ

vandc 04 Ñ VX VALU(VSIU) 1 Ñ

vavgsb 04 Ñ VX VALU(VSIU) 1 Ñ

vavgsh 04 Ñ VX VALU(VSIU) 1 Ñ

vavgsw 04 Ñ VX VALU(VSIU) 1 Ñ

vavgub 04 Ñ VX VALU(VSIU) 1 Ñ

vavguh 04 Ñ VX VALU(VSIU) 1 Ñ

vavguw 04 Ñ VX VALU(VSIU) 1 Ñ

vcfsx 04 Ñ VX VALU(VFPU) 4:1 (non-Java)/
5:1 (Java)

Ñ

vcfux 04 Ñ VX VALU(VFPU) 4:1 (non-Java)/
5:1 (Java)

Ñ

vcmpbfp 04 Ñ VX VALU(VSIU) 1 Ñ

vcmpeqfp 04 Ñ VX VALU(VSIU) 1 Ñ

vcmpequb 04 Ñ VX VALU(VSIU) 1 Ñ

vcmpequh 04 Ñ VX VALU(VSIU) 1 Ñ

vcmpequw 04 Ñ VX VALU(VSIU) 1 Ñ

vcmpgefp 04 Ñ VX VALU(VSIU) 1 Ñ

vcmpgtfp 04 Ñ VX VALU(VSIU) 1 Ñ

vcmpgtsb 04 Ñ VX VALU(VSIU) 1 Ñ

vcmpgtsh 04 Ñ VX VALU(VSIU) 1 Ñ

vcmpgtsw 04 Ñ VX VALU(VSIU) 1 Ñ

vcmpgtub 04 Ñ VX VALU(VSIU) 1 Ñ

vcmpgtuh 04 Ñ VX VALU(VSIU) 1 Ñ

vcmpgtuw 04 Ñ VX VALU(VSIU) 1 Ñ

vctsxs 04 Ñ VX VALU(VFPU) 4:1 (non-Java)/
5:1 (Java)

Ñ

vctuxs 04 Ñ VX VALU(VFPU) 4:1 (non-Java)/
5:1 (Java)

Ñ

Table 6-9. AltiVec Instruction Latencies (Continued)

Mnemonic Primary Extend Form Unit Cycles 1 MMU Update

6-48 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Latency Summary

vexptefp 04 Ñ VX VALU(VFPU) 4:1 (non-Java)/
5:1 (Java)

Ñ

vlogefp 04 Ñ VX VALU(VFPU) 4:1 (non-Java)/
5:1 (Java)

Ñ

vmaddfp 04 Ñ VA VALU(VFPU) 4:1 (non-Java)/
5:1 (Java)

Ñ

vmaxfp 04 Ñ VX VALU(VSIU) 1 Ñ

vmaxsb 04 Ñ VX VALU(VSIU) 1 Ñ

vmaxsh 04 Ñ VX VALU(VSIU) 1 Ñ

vmaxsw 04 Ñ VX VALU(VSIU) 1 Ñ

vmaxub 04 Ñ VX VALU(VSIU) 1 Ñ

vmaxuh 04 Ñ VX VALU(VSIU) 1 Ñ

vmaxuw 04 Ñ VX VALU(VSIU) 1 Ñ

vmhaddshs 04 Ñ VA VALU(VCIU) 3:1 Ñ

vmhraddshs 04 Ñ VA VALU(VCIU) 3:1 Ñ

vminfp 04 Ñ VX VALU(VSIU) 1 Ñ

vminsb 04 Ñ VX VALU(VSIU) 1 Ñ

vminsh 04 Ñ VX VALU(VSIU) 1 Ñ

vminsw 04 Ñ VX VALU(VSIU) 1 Ñ

vminub 04 Ñ VX VALU(VSIU) 1 Ñ

vminuh 04 Ñ VX VALU(VSIU) 1 Ñ

vminuw 04 Ñ VX VALU(VSIU) 1 Ñ

vmladduhm 04 Ñ VA VALU(VCIU) 3:1 Ñ

vmrghb 04 Ñ VX VPU 1 Ñ

vmrghh 04 Ñ VX VPU 1 Ñ

vmrghw 04 Ñ VX VPU 1 Ñ

vmrglb 04 Ñ VX VPU 1 Ñ

vmrglh 04 Ñ VX VPU 1 Ñ

vmrglw 04 Ñ VX VPU 1 Ñ

vmsummbm 04 Ñ VA VALU(VCIU) 3:1 Ñ

vmsumshm 04 Ñ VA VALU(VCIU) 3:1 Ñ

vmsumshs 04 Ñ VA VALU(VCIU) 3:1 Ñ

vmsumubm 04 Ñ VA VALU(VCIU) 3:1 Ñ

vmsumuhm 04 Ñ VA VALU(VCIU) 3:1 Ñ

vmsumuhs 04 Ñ VA VALU(VCIU) 3:1 Ñ

vmulesb 04 Ñ VX VALU(VCIU) 3:1 Ñ

vmulesh 04 Ñ VX VALU(VCIU) 3:1 Ñ

Table 6-9. AltiVec Instruction Latencies (Continued)

Mnemonic Primary Extend Form Unit Cycles 1 MMU Update

Chapter 6. Instruction Timing 6-49

Instruction Latency Summary

vmuleub 04 Ñ VX VALU(VCIU) 3:1 Ñ

vmuleuh 04 Ñ VX VALU(VCIU) 3:1 Ñ

vmulosb 04 Ñ VX VALU(VCIU) 3:1 Ñ

vmulosh 04 Ñ VX VALU(VCIU) 3:1 Ñ

vmuloub 04 Ñ VX VALU(VCIU) 3:1 Ñ

vmulouh 04 Ñ VX VALU(VCIU) 3:1 Ñ

vnmsubfp 04 Ñ VA VALU(VFPU) 4:1 (non-Java)/
5:1 (Java)

Ñ

vnor 04 Ñ VX VALU(VSIU) 1 Ñ

vor 04 Ñ VX VALU(VSIU) 1 Ñ

vperm 04 Ñ VA VPU 1 Ñ

vpkpx 04 Ñ VX VPU 1 Ñ

vpkshss 04 Ñ VX VPU 1 Ñ

vpkshus 04 Ñ VX VPU 1 Ñ

vpkswss 04 Ñ VX VPU 1 Ñ

vpkswus 04 Ñ VX VPU 1 Ñ

vpkuhum 04 Ñ VX VPU 1 Ñ

vpkuhus 04 Ñ VX VPU 1 Ñ

vpkuwum 04 Ñ VX VPU 1 Ñ

vpkuwus 04 Ñ VX VPU 1 Ñ

vrefp 04 Ñ VX VALU(VFPU) 4:1 (non-Java)/
5:1 (Java)

Ñ

vrÞm 04 Ñ VX VALU(VFPU) 4:1 (non-Java)/
5:1 (Java)

Ñ

vrÞn 04 Ñ VX VALU(VFPU) 4:1 (non-Java)/
5:1 (Java)

Ñ

vrÞp 04 Ñ VX VALU(VFPU) 4:1 (non-Java)/
5:1 (Java)

Ñ

vrÞz 04 Ñ VX VALU(VFPU) 4:1 (non-Java)/
5:1 (Java)

Ñ

vrlb 04 Ñ VX VALU(VSIU) 1 Ñ

vrlh 04 Ñ VX VALU(VSIU) 1 Ñ

vrlw 04 Ñ VX VALU(VSIU) 1 Ñ

vrsqrtefp 04 Ñ VX VALU(VFPU) 4:1 (non-Java)/
5:1 (Java)

Ñ

vsel 04 Ñ VA VALU(VSIU) 1 Ñ

vsl 04 Ñ VX VALU(VSIU) 1 Ñ

vslb 04 Ñ VX VALU(VSIU) 1 Ñ

Table 6-9. AltiVec Instruction Latencies (Continued)

Mnemonic Primary Extend Form Unit Cycles 1 MMU Update

6-50 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Latency Summary

vsldoi 04 Ñ VA VPU 1 Ñ

vslh 04 Ñ VX VALU(VSIU) 1 Ñ

vslo 04 Ñ VX VPU 1 Ñ

vslw 04 Ñ VX VALU(VSIU) 1 Ñ

vspltb 04 Ñ VX VPU 1 Ñ

vsplth 04 Ñ VX VPU 1 Ñ

vspltisb 04 Ñ VX VPU 1 Ñ

vspltish 04 Ñ VX VPU 1 Ñ

vspltisw 04 Ñ VX VPU 1 Ñ

vspltw 04 Ñ VX VPU 1 Ñ

vsr 04 Ñ VX VALU(VSIU) 1 Ñ

vsrab 04 Ñ VX VALU(VSIU) 1 Ñ

vsrah 04 Ñ VX VALU(VSIU) 1 Ñ

vsraw 04 Ñ VX VALU(VSIU) 1 Ñ

vsrb 04 Ñ VX VALU(VSIU) 1 Ñ

vsrh 04 Ñ VX VALU(VSIU) 1 Ñ

vsro 04 Ñ VX VPU 1 Ñ

vsrw 04 Ñ VX VALU(VSIU) 1 Ñ

vsubcuw 04 Ñ VX VALU(VSIU) 1 Ñ

vsubfp 04 Ñ VX VALU(VFPU) 4:1 (non-Java)/
5:1 (Java)

Ñ

vsubsbs 04 Ñ VX VALU(VSIU) 1 Ñ

vsubshs 04 Ñ VX VALU(VSIU) 1 Ñ

vsubsws 04 Ñ VX VALU(VSIU) 1 Ñ

vsububm 04 Ñ VX VALU(VSIU) 1 Ñ

vsububs 04 Ñ VX VALU(VSIU) 1 Ñ

vsubuhm 04 Ñ VX VALU(VSIU) 1 Ñ

vsubuhs 04 Ñ VX VALU(VSIU) 1 Ñ

vsubuwm 04 Ñ VX VALU(VSIU) 1 Ñ

vsubuws 04 Ñ VX VALU(VSIU) 1 Ñ

vsum2sws 04 Ñ VX VALU(VCIU) 3:1 Ñ

vsum4sbs 04 Ñ VX VALU(VCIU) 3:1 Ñ

vsum4shs 04 Ñ VX VALU(VCIU) 3:1 Ñ

vsum4ubs 04 Ñ VX VALU(VCIU) 3:1 Ñ

vsumsws 04 Ñ VX VALU(VCIU) 3:1 Ñ

vupkhpx 04 Ñ VX VPU 1 Ñ

Table 6-9. AltiVec Instruction Latencies (Continued)

Mnemonic Primary Extend Form Unit Cycles 1 MMU Update

Chapter 6. Instruction Timing 6-51

Instruction Latency Summary

vupkhsb 04 Ñ VX VPU 1 Ñ

vupkhsh 04 Ñ VX VPU 1 Ñ

vupklpx 04 Ñ VX VPU 1 Ñ

vupklsb 04 Ñ VX VPU 1 Ñ

vupklsh 04 Ñ VX VPU 1 Ñ

vxor 04 Ñ VX VALU(VSIU) 1 Ñ

1 In Java mode, all VFPU instructions need a Þfth execution cycle; however, data forwarding for instruction
depedency can still occur at the end of the fourth execution cycle as in non-Java mode.

2 Data streaming instructions can request a maximum of one line fetch at the L1 data cache every 2 cycles.

Table 6-9. AltiVec Instruction Latencies (Continued)

Mnemonic Primary Extend Form Unit Cycles 1 MMU Update

6-52 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Latency Summary

Chapter 7. The AltiVec Technology Implementation 7-1

Chapter 7
The AltiVec Technology Implementation
The AltiVec technology, a short vector parallel architecture, extends the instruction set
architecture (ISA) of the PowerPC architecture. AltiVec technology is. The AltiVec ISA is
based on separate vector/SIMD-style (single instruction stream, multiple data streams)
execution units that have high-data parallelism. That is, the AltiVec technology operations
can perform on multiple data elements in a single instruction. The term ÔvectorÕ in this
document refers to the spatial parallel processing of short, Þxed-length, one-dimensional
matrices performed by an execution unit. It should not be confused with the temporal
parallel (pipelined) processing of long, variable-length vectors performed by classical
vector machines. High degrees of parallelism are achievable with simple in-order
instruction dispatch and low-instruction bandwidth. However, the ISA is designed so as not
to impede additional parallelism through superscalar dispatch to multiple execution units
or multithreaded execution unit pipelines.

The AltiVec speciÞcation describes, but does not require, many aspects of a preferred
implementation. The MPC7400 implements the following key features of a preferred
implementation:

¥ All data paths and execution units are 128 bits wide

¥ There are two independent AltiVec subunits, one for permute (VPU) and one for all
arithmetic and logical (VALU) instructions

¥ The memory subsystem is redesigned to provide very high bandwidth

¥ The data stream touch instructions, dst(t) (for loads) and dstst(t) are implemented
in their full, four-tag form.

The AltiVec instruction set both deÞnes entirely new resources and extends the
functionality of the PowerPC architecture. These changes are described in the following
sections.

7.1 AltiVec Technology and the Programming Model
The following sections describe how the AltiVec technology affects features of the
programming model as described in Chapter 2, ÒProgramming Model.Ó Although the
AltiVec speciÞcation describes four optional user-mode SPRs for thread management, the
MPC7400 does not implement these registers.

7-2 MPC7400 RISC Microprocessor UserÕs Manual

AltiVec Technology and the Programming Model

7.1.1 Register Set
The incorporation of AltiVec technology affects the register set as described in the
following sections. Details on these features are described in the AltiVec Programming
Environments Manual.

7.1.1.1 Changes to the Condition Register
AltiVec vector compare operations with Rc set can update condition register Þeld 6 (CR[6])
in user mode.

7.1.1.2 Addition to the Machine State Register
The AltiVec available bit, MSR[VEC], indicates the availability of the AltiVec instruction
set. Its default state for the MPC7400 is a zero (not available). It can be set by the
supervisor-level mtmsr instruction.

7.1.1.3 Vector Registers (VRs)
The AltiVec programming model deÞnes vector registers (VRs), which are used as source
and destination operands for AltiVec load, store, and computational instructions.

The vector register Þle (VRF), shown in Figure 7-1, shows the 32 registers. Each is 128 bits
wide and can hold sixteen 8-bit elements, eight 16-bit elements, or four 32-bit elements.

Figure 7-1. Vector Registers (VRs)

7.1.1.4 Vector Status and Control Register (VSCR)
The vector status and control register (VSCR) is a 32-bit vector register (not an SPR) that
functions similarly to the FPSCR and is accessed by AltiVec instructions. The Move from
Vector Status and Control Register (mfvscr) and Move to Vector Status and Control Reg-

Vector Registers (VRs)

VR0

VR1

VR2

VR30

VR31

VR3

32-Bits

16-Bits

8-Bits

128-Bits

32
Vector

Registers

1 9 10 11 12 13 14 15 16

1

1

2

2

2

3

3

3

4

4

4

5

5

6

6

7

7

8

8

Chapter 7. The AltiVec Technology Implementation 7-3

AltiVec Technology and the Programming Model

ister (mtvscr) instructions are provided to move the VSCR from and to the least-signiÞ-
cant bits of a vector register. The VSCR is shown in Figure 7-2.

Figure 7-2. Vector Status and Control Register (VSCR)

The VSCR has two deÞned bits, the AltiVec non-Java mode bit (VSCR[NJ]) and the
AltiVec saturation bit (VSCR[SAT]). The remaining bits are reserved.

VSCR bits are described in Table 7-1.

Table 7-1. VSCR Field Descriptions

Bits Name Description

0Ð14 Ñ Reserved. The handling of reserved bits is the same as the normal PowerPC implementation,
(that is, system registers such as XER and FPSCR are implementation-dependent). Software
is permitted to write any value to such a bit. A subsequent reading of the bit returns 0 if the
value last written to the bit was 0 and returns an undeÞned value (0 or 1) otherwise.

15 NJ Non-Java. A mode control bit that determines whether AltiVec ßoating-point operations will be
performed in a Java-IEEE-C9XÐcompliant mode or a possibly faster non-Java/non-IEEE mode.
0 The Java-IEEE-C9XÐcompliant mode is selected. Denormalized values are handled as

speciÞed by Java, IEEE, and C9X standard.
1 The non-Java/non-IEEEÐcompliant mode is selected. If an element in a source vector

register contains a denormalized value, the value 0 is used instead. If an instruction causes
an underßow exception, the corresponding element in the target VR is cleared to 0. In both
cases the 0 has the same sign as the denormalized or underßowing value.

16Ð30 Ñ Reserved. The handling of reserved bits is the same as the normal PowerPC implementation,
that is, system registers such as XER and FPSCR are implementation-dependent. Software is
permitted to write any value to such a bit. A subsequent reading of the bit returns 0 if the value
last written to the bit was 0 and returns an undeÞned value (0 or 1) otherwise.

31 SAT Saturation. A sticky status bit indicating that some Þeld in a saturating instruction saturated
since the last time SAT was cleared. In other words when SAT = 1 it remains set to 1 until it is
cleared to 0 by an mtvscr instruction.
1 The AltiVec saturate instruction implicitly sets when saturation has occurred on the results

 of one of the AltiVec instructions having saturate in its name:
Move To VSCR (mtvscr)
Vector Add Integer with Saturation (vaddubs, vadduhs, vadduws, vaddsbs, vaddshs,
vaddsws)
Vector Subtract Integer with Saturation (vsububs, vsubuhs, vsubuws, vsubsbs, vsubshs,
vsubsws)
Vector Multiply-Add Integer with Saturation (vmhaddshs, vmhraddshs)
Vector Multiply-Sum with Saturation (vmsumuhs, vmsumshs, vsumsws)
Vector Sum-Across with Saturation (vsumsws, vsum2sws, vsum4sbs, vsum4shs,
vsum4ubs)
Vector Pack with Saturation (vpkuhus, vpkuwus, vpkshus, vpkswus, vpkshss, vpkswss)
Vector Convert to Fixed-Point with Saturation (vctuxs, vctsxs)

0 Indicates no saturation occurred, mtvscr can explicitly clear this bit.

00 SAT00000000000000NJ00000000000000

31301615140

Reserved

7-4 MPC7400 RISC Microprocessor UserÕs Manual

AltiVec Technology and the Programming Model

7.1.1.5 Vector Save/Restore Register (VRSAVE)
The vector save/restore register (VRSAVE) is a new user-mode register used to assist in
application and operating system software in saving and restoring the architectural state
across process context-switched events. VRSAVE is a 32-bit special-purpose register
(SPR 256) that helps software provide efÞcient save and restore operations. VRSAVE is
entirely maintained and managed by software.

Figure 7-3. Vector Save/Restore Register (VRSAVE)

VRSAVE bit settings are shown in Table 7-2.

7.1.2 AltiVec Instruction Set
The MPC7400 implements all of the deÞned AltiVec instructions. The AltiVec instruction
set has no optional instructions; however, a few instructions associated with the load/store
model are deÞned to allow signiÞcant differences between implementations. The following
sections describe the MPC7400Õs implementation of these options.

AltiVec instructions are primarily user-level and are divided into the following categories:

¥ Vector integer arithmetic instructionsÑThese include arithmetic, logical, compare,
rotate, and shift instructions.

¥ Vector ßoating-point arithmetic instructions.

¥ Vector load and store instructions.

¥ Vector permutation and formatting instructionsÑThese include pack, unpack,
merge, splat, permute, select, and shift instructions.

¥ Processor control instructionsÑThese instructions are used to read and write from
the VSCR.

¥ Memory control instructionsÑThese instructions are used for managing caches
(user- and supervisor-level).

Table 7-2. VRSAVE Bit Settings

Bits Name Description

0Ð31 VRn These bits determine which VRs are used in the current process.
1 VRn is uses VR0 for the current process
0 VRn is not being used for the current process

VR31VR2VR1VR0

275 313029282625242322212019181716151413121110987643210

VR3 VR4 VR5 VR6 VR7 VR8 VR9VR10 VR12VR11 VR13 VR14 VR15 VR18 VR19 VR20VR16 VR17 VR22VR21 VR23 VR24VR25 VR28 VR29 VR30VR26VR27

Chapter 7. The AltiVec Technology Implementation 7-5

AltiVec Technology and the Programming Model

7.1.2.1 LRU Instructions
The AltiVec architecture suggests that the lvxl and stvxl instructions differ from other
AltiVec load and store instructions in that they leave data cache entries in a
least-recently-used (LRU) state instead of a most-recently-used state (MRU).This is used
to identify data known to have little reuse and poor caching characteristics.

On the MPC7400, these instructions follow the cache allocation and replacement policies
described in Section 3.7.7, ÒL2 Cache Testing,Ó but they leave their addressed data cache
entries in the LRU state. In addition, all LRU instructions are also interpreted to be transient
and are also treated as described in the following section.

7.1.2.2 Transient Instructions
The MPC7400 supports both static and transient memory access behavior as deÞned by the
AltiVec technology.

A static memory assumes a reasonable degree of locality and that the data is needed several
times over a relatively long period. A transient memory reference has poor locality and is
likely to be referenced a very few times or over a very short period of time.

If a memory access is designated as transient, that cache block is marked to not be cast out
to the L2 unless it has been modiÞed in the L1 data cache. If it is modiÞed in the L1, the
block is not allocated in the L2 cache when it is cast out from the L1 data cache. Instead,
the block is written directly to main memory, bypassing the L2 cache.

The following instructions are interpreted to be transient:

¥ lvxl and stvxl

¥ dstt and dststt (transient forms of the two data stream touch instructions). These are
described in detail in the following section.

The AltiVec architecture speciÞes the data stream touch instructions dst(t), dstst(t), and it
speciÞes two data stream stop (dss(all)) instructions. MPC7400 implements all of them.
The term dstx used below refers to all of the data stream touch instructions. The T Þeld in
the dstx instruction is used as the transient hint bit indicator.

The instructions summarized in this section provide user-level programs the ability to
manage on-chip caches, see Chapter 5, ÒCache Model and Memory Coherency,Ó in
PowerPC: The Programming Environments Manual for more information about cache
topics.

7-6 MPC7400 RISC Microprocessor UserÕs Manual

AltiVec Technology and the Programming Model

Bandwidth between the processor and memory is managed explicitly through the use of
cache management instructions, which provide a way to indicate to the cache hardware how
it should prefetch and prioritize the writeback of data. The principal instruction for this
purpose is a software-directed cache prefetch instruction called Data Stream Touch (dst).
Other related instructions are provided for complete control of the software directed cache
prefetch mechanism.

Table 7-3 summarizes the directed prefetch cache instructions defined by the AltiVec
VEA. Note that these instructions are accessible to user-level programs.

7.1.2.3 Data Stream Touch Instructions
Note that, in general, prefetching data to which the program is only going to perform store
instructions does not help and can sometimes hinder performance. User-level programs
should not use the touch-for-store prefetches (dstt, dstst, and dststt) unless the program is
performing loads and stores to the data that is being prefetched. If the user is only
performing stores to the data, then performance is almost certainly better by not prefetching
and simply performing the stores by themselves.

So, in general, touch-for-store instructions (dstt, dstst, and dststt) should not be used and
should be used only for prefetch data that is going to be both loaded from then stored to.
Otherwise, a programmer should use the normal touch-for-load instruction (dst) only to
prefetch data that the program is loading.

If HID0[NOPDST] = 1, all subsequent dstx instructions are treated as no-ops and all
previously executed dst streams are canceled. This no-op means that the touch does not
cause a load operation and cannot perform address translation. Therefore, no table search
operations are initiated, and no page table entry (PTE) referenced bits are set.

The dstx instructions are broken into one or more self-initiated dcbt-like touch line fetches
by the memory subsystem. When the dstx instruction is dispatched to the LSU and all of
its operands are available, the dstx is queued in a vector-touch queue (VTQ) in the next
cycle. There are four data stream engines within the VTQÑdata stream 0 uses engine VT1
within the VTQ, and data stream 1 uses VT1, and so forth.

Table 7-3. AltiVec User-Level Cache Instructions

Name Mnemonic Syntax Implementation Notes

Data Stream Touch (non-transient) dst rA,rB,STRM Ñ

Data Stream Touch Transient dstt rA,rB,STRM Used for last access

Data Stream Touch for Store dstst rA,rB,STRM Not recommended for use in the MPC7400

Data Stream Touch for Store Transient) dststt rA,rB,STRM Not recommended for use in the MPC7400

Data Stream Stop (one stream) dss STRM Ñ

Data Stream Stop All dssall STRM Ñ

Chapter 7. The AltiVec Technology Implementation 7-7

AltiVec Technology and the Programming Model

The operation of a VT data stream engine does not consume any dispatch or completion
resources. A VT is an asynchronous line-fetch or line-touch engine that can prefetch data
in units of 32-byte cache blocks by inserting touch requests into the normal load/store
pipeline.

After the dstx is queued in the VTQ, the VTQ begins to unroll the stream into 32-byte line
touches. As early as the second cycle after the LSU sends its request to the VTQ, the VTQ
could make its Þrst line-fetch touch request to the data cache.

Note that a data stream engine bases its accesses on effective addresses. This means that
each line fetch within a stream accesses the data MMU simultaneously with the L1 data
cache and performs a normal translation. There are no arbitrary address boundaries that
affect the progress of a given stream.

In addition, if a VTQ line touch accesses a page that does not reside in the data MMU, a
table search operation is performed to load that PTE into the data TLB. The TLB is
non-blocking during a VTQ-initiated table search operation, meaning that normal loads and
stores can hit in the TLB (and in the data cache) during the table search.

7.1.2.4 Stream Engine Tags
The STRM Þeld in the dstx instruction designates which of the four data stream engines
(VT0, VT1, VT2, or VT3) is used by a given instruction, as described in Table 7-4.

Bits 7 and 8 of the dstx opcode are reserved. If bit 7 is set, it is ignored. If bit 8 is set, the
VTQ does not queue up the stream and that dstx instruction is ignored.

7.1.2.4.1 Speculative Execution and Pipeline Stalls for Data Stream
Instructions

Like a load miss instruction or a dcbt/dcbtst instruction, a dstx instruction is executed
speculatively. If the target of a particular dstx line fetch is mapped G = 1 (guarded), any
reload for that line fetch is under the same constraints as a guarded load. If any of the four
data stream engines encounter a TLB miss, all four pause until the dstx access that caused
the TLB miss is retired from the completion queue or is the oldest instruction in the queue.
The dstx then initiates a table search and completes its current cache access.

If a dstx instruction to a given data stream is dispatched and the VTQ is processing a
previous dstx to the same data stream, the second dst to that tag supersedes the Þrst one,

Table 7-4. DST[STRM] Description

Value of STRM Field in dstx instruction Data Stream Engines (VTs)

00 VT0

01 VT1

10 VT2

11 VT3

7-8 MPC7400 RISC Microprocessor UserÕs Manual

AltiVec Technology and the Programming Model

but only after the second dstx becomes non-branch-speculative (it can still be speculative
with respect to exceptions). If a third dstx is ready for dispatch while the second is waiting
for branch-speculation to resolve, instruction dispatch stalls.

7.1.2.5 Static/Transient Data Stream Touch Instructions
The AltiVec ISA deÞnes two of the dstx instructions as static (dst, dstst) and two as
transient (dstt, dststt). Static data is likely to have a reasonable degree of locality and to be
referenced several times or over a reasonably long period of time. Transient data is assumed
to have poor locality and is likely to be referenced only a few times over a very short period
of time.

The MPC7400 supports both static and transient memory-access behavior. The lvxl and
stvxl instructions are interpreted to access transient data.

7.1.2.5.1 Relationship with the sync/tblsync Instructions

If a sync instruction is executed while a dstx is in progress, the following happens for each
of the four VTs:

¥ Any cache line fetch in progress continues until that single cache line reÞll has
completed.

¥ The VTQ pauses and does not continue to its next line-fetch location.

¥ When all other necessary conditions are met in the machine, the sync instruction is
completed.

¥ The dstx resumes with cache accesses/reloads to the next line-fetch location.

The net effect of the sync is a short pause in dstx operation. Code sequences that are truly
intended to quiet the machine, like those used to enter reduced-power states, must use
dss/dssall followed by a sync instruction to kill outstanding transactions initiated by dstx
instructions.

Note that a tlbsync instruction affects the VTQ identically as a sync instruction with the
following additional effect:

¥ An outstanding VTQ-initiated table search operation is canceled when a tlbsync is
dispatched to the LSU.

7.1.2.5.2 Data Stream Termination

If one of the conditions in Table 7-5 is determined to be true when a given line fetch of a
dstx stream is translated, the entire dstx stream is terminated.

Note that this can occur in the middle of many line fetches for a dstx stream.

If the condition involves page mapping and the dstx stream speciÞes an access that would
cross into another page, the processor does not attempt to continue the dstx stream at those
new pages if it had an opportunity to fully translate the access.

Chapter 7. The AltiVec Technology Implementation 7-9

AltiVec Technology and the Programming Model

Like all other termination conditions not mentioned in Table 7-5, asserting SRESET does
not terminate a dstx stream.

7.1.2.5.3 Line Fetch Skipping

When an exception condition occurs, the MPC7400 terminates any dstx-initiated table
search operations and pauses the stream engine that initiated the table search. In this
situation, the line fetch of the dst that caused the table search is effectively dropped and any
translation exception that would have terminated the stream had the table search operation
completed does not occur. Instead, the engine attempts the next line fetch when the stream
resumes. This, in effect, causes a skip of one line fetch in the stream engine.

Also note that the execution of a tlbsync instruction cancels any dstx-initiated table search
operation in progress, which can cause a line fetch skip.

7.1.2.5.4 Context Awareness and Stream Pausing

Stream accesses can take place only when data translation is enabled (MSR[DR] = 1), and
when the processor is in the same privilege state as it was when the dstx instruction was
executed.

If the value privilege level changes or if data translation is disabled, the stream engine
suspends generation of new accesses. Any outstanding transactions initiated before the
pause (like cache reÞlls and bus activity) Þnish normally. The stream engine resumes when
translation is again enabled and the privilege level again matches the level in place when
the dstx instruction for that stream was executed.

Table 7-5. The dstx Stream Termination Conditions

 Conditions

Successfully reached end of stream

dstx stream is still speculative with respect to program ßow and the control unit issues a cancel due to a mispredicted
branch or exception.

Another dstx instruction to this stream tag is executed and this new dstx is non-speculative with respect to branch
prediction.

A dss instruction to this stream tag is completed.

Current line fetch caused a table search operation that did not Þnd a matching entry in the page table.

Current line fetch is translated as cache-inhibited.

Current line fetch is translated as write-through and the stream is a touch-for-store.

Current line fetch is translated to direct-store space.

Current line fetch is to a protected page.

L1 data cache is locked or disabled.

The processor has encountered a condition that causes a machine check exception.

7-10 MPC7400 RISC Microprocessor UserÕs Manual

AltiVec Technology and the Programming Model

7.1.2.5.5 Differences Between dst/dstt and dstst/dststt Instructions

The only difference between touch-for-load (dst/dstt) and touch-for-store (dstst/dststt)
streams is that touch-for-load streams are subdivided into line fetches that are treated
identically to individual dcbt fetches, while touch-for-store streams are subdivided into line
fetches that are treated identically to individual dcbtst fetches.

Note that if a touch-for-store stream instruction is mapped to a write-through page, that
stream is terminated. The use of the touch-for-store streams is not recommended when
store-miss merging is enabled, which is the default case.

Although the MPC7400 implements touch-for-store stream instructions, their use is
discouraged. If dstst is used to prefetch a 32-byte a cache block that would eventually be
fully consumed by 32 bytes worth of stores (that is, two back-to-back stvx instructions), the
inclusion of touch-for-store can reduce performance for systems with limited bandwidth.
This is because a touch-for-store must perform both a 32-byte coherency operation on the
address bus (two or more bus cycles) and 32-bytes of data transfer (four or more 64-bit bus
cycles). On the other hand, cacheable write-back stores that merge to 32 bytes require only
a 32-byte coherency operation (two or more bus cycles) because of the store-miss-merging
mechanism. Because these store misses are already fully pipelined on the MPC7400,
placing a touch-for-store before a series of adjacent stores that merge naturally anyway can
degrade performance.

7.1.2.5.6 dss and dssall Instructions

The Data Stream Stop instruction dss is never executed speculatively. Instead, dss
instructions ßow into a four-entry dss queue (DSSQ) in which one entry is dedicated to
each possible tag. If another dss is dispatched with a tag that matches a non-completed but
valid DSSQ entry, then that new dss remains in a hold queue and waits for the previous dss
in the DSSQ to be completed.

If a subsequent dstx is queued in the VTQ, it cancels an older dss entry in the DSSQ (same
tag).

When a given DSSQ entry completes, the valid bit for the VTQ entry corresponding to that
tag is immediately cleared.

If a dssall instruction is executed, the DSSQ queues up all four queue entries in order to
terminate all four VT streams when the dssall instruction is the oldest. The dssall opcode
differs from dss in that bit 6 (the A Þeld) is set and bits 7Ð10 are ignored.

Note that line fetches in progress for a given dstx stream are not canceled by the dss
instruction. Only subsequent line fetches are prevented. To ensure that all line fetches from
a dstx are completed, a sync instruction must be issued after the dss instruction.

Chapter 7. The AltiVec Technology Implementation 7-11

AltiVec Technology and the Programming Model

7.1.3 AltiVec Instructions with SpeciÞc Implementations for
the MPC7400

Instructions which are implementation speciÞc for MPC7400 are described in this section.

7.1.3.1 LRU Instructions
The MPC7400 follows the AltiVec architectureÕs suggestion that the lvxl and stvxl
instructions differ from regular AltiVec load and store instructions in that they leave cache
entries in an LRU rather than an MRU state.

7.1.3.2 Java Mode, NaNs, Denormalized Numbers, and Zeros
This section describes the MPC7400 ßoating-point behavior for various special-case data
types. The descriptions cover both Java and non-Java modes, including the following:

¥ Denormalization for all instructions

¥ NaNs, denormalized numbers, and zeros for compare, min, and MPC7400
operations

¥ Zero and NaN data for round-to-ßoat integral operations

Note the following:

¥ The MPC7400 handles NaNs the same way regardless of Java or non-Java mode.

¥ The MPC7400 handles most denormalized numbers in Java mode by taking a trap
to exception 0x01600, but for some instructions the MPC7400 can produce the exact
result without trapping.

Table 7-6 describes how denormalization is handled for the following instructions:

¥ vaddfp, vsubfp, vmaddfp, vnmsubfp

¥ vrefp

¥ vrsqrtefp

¥ vlogefp

¥ vexptefp

¥ vcfux, vcfsx

¥ vctsxs, vctuxs

Subsequent tables describe the behavior of the vminfp, vmaxfp, vcmpgtfp, vcmpgefp,
vcmpeqfp, and vcmpbfp instructions.

7-12 MPC7400 RISC Microprocessor UserÕs Manual

AltiVec Technology and the Programming Model

Table 7-7 describes the behavior of the vector ßoating-point compare, min, and max
instructions in Non-Java mode. These consist of the following:

¥ vminfp

¥ vmaxfp

¥ vcmpgtfp

¥ vcmpgefp

¥ vcmpeqfp

¥ vcmpbfp

Table 7-6. Denormalization for AltiVec Instructions

Instruction
Input Denormalization Detected Output Denormalization Detected

Java Non-Java Java NonÐJava

vaddfp, vsubfp,
vmaddfp, vnmsubfp

Trap (unless another
input is a NaN) 1

1 May change in the future to produce an IEEE default result in hardware instead of trapping.

Input treated as correctly
signed zero

Trap Result squashed to
correctly signed
zero

vrefp Trap Denormalized number
squashed to zero,
returning +/-¥

Trap Result squashed to
zero

vrsqrtefp Trap Denormalized number
squashed to zero,
returning +/-¥

Never produces a
denormalized
number

Never produces a
denormalized
number

vlogefp Trap Denormalized number
squashed to zero,
returning -¥

Never produces a
denormalized
number

Never produces a
denormalized
number

vexptefp Result is +1.0 Input squashed to zero,
output result is +1.0

Trap Result squashed to
zero

vcfux, vcfsx Never detects denormalized numbers

vctsxs, vctuxs Trap 1 Output result is 0x0 Never produces a
denormalized
number

Never produces a
denormalized
number

Table 7-7. Vector Floating-Point Compare, Min, and Max in
Non-Java Mode

vA vB vminfp vmaxfp vcmpgtfp vcmpgefp vcmpeqfp
vcmpbfp

LE GE

NaN_A Ñ QNaN_A QNaN_A False False False 0 0

Ñ NaN_B QNaN_B QNaN_B False False False 0 0

+Den_A -B -B +Zero True True False 0 0

-Den_A -B -B -Zero True True False 0 0

+Den_A +B +Zero +B False False False 1 1

Chapter 7. The AltiVec Technology Implementation 7-13

AltiVec Technology and the Programming Model

Table 7-8 describes the behavior of the same instructions in Java mode.

-Den_A +B -Zero +B False False False 1 1

-A +Den_B -A +Zero False False False 1 0

-A -Den_B -A -Zero False False False 1 0

+A +Den_B +Zero +A True True False 0 1

+A -Den_B -Zero +A True True False 0 1

+Den_A/+Zero +Den_B/+Zero +Zero +Zero False True True 1 1

+Den_A/+Zero -Den_B/-Zero -Zero +Zero False True True 1 1

-Den_A/-Zero +Den_B/+Zero -Zero +Zero False True True 1 1

-Den_A/-Zero -Den_B/-Zero -Zero -Zero False True True 1 1

Table 7-8. Vector Floating-Point Compare, Min, and Max in Java Mode

vA vB vminfp vmaxfp vcmpgtfp vcmpgefp vcmpeqfp
vcmpbfp

LE GE

NaN_A Ñ QNaN_A QNaN_A False False False 0 0

Ñ NaN_B QNaN_B QNaN_B False False False 0 0

+Den_A -B -B +Den_A True True False 0 0

-Den_A -B -B -Den_A True True False 0 0

+Den_A +B +Den_A +B False False False 1 1

-Den_A +B -Den_A +B False False False 1 1

-A +Den_B -A +Den False False False 1 0

-A -Den_B -A -Den False False False 1 0

+A +Den_B +Den_B +A True True False 0 1

+A -Den_B -Den_B +A True True False 0 1

+Den_A ±Zero ±Zero +Den_A True True False 0 1

-Den_A ±Zero -Den_A +Zero False False False 1 0

±Zero +Den_B ±Zero +Den_B False False False 1 1

±Zero -Den_B -Den_B ±Zero True True False 0 0

-Den_A +Den_B -Den_A +Den_B False False False 1 Result depends on
input operands

+Den_A -Den_B -Den_B +Den_A True True False 0

-Den_A -Den_B Result depends on input operands 0

+Den_A +Den_B 1

Table 7-7. Vector Floating-Point Compare, Min, and Max in
Non-Java Mode (Continued)

vA vB vminfp vmaxfp vcmpgtfp vcmpgefp vcmpeqfp
vcmpbfp

LE GE

7-14 MPC7400 RISC Microprocessor UserÕs Manual

AltiVec Technology and the Programming Model

Table 7-9 describes the behavior of round-to-integer instructions (vrÞn, vrÞz, vrÞp, and
vrÞm) in non-Java mode.

Table 7-10 describes round-to-integer instructions in Java mode. Note that round-to-integer
instructions never produce denormalized numbers.

Table 7-9. Round-to-Integer Instructions in Non-Java Mode

VB Sign VB exponent vrÞn vrÞz vrÞp vrÞm

neg 127 > exp > 24 VB VB VB VB

23 > exp > 0 Round towards
nearest

Truncate fraction Round towards
+inf

Round towards
-Inf

Exp = -1 Round to nearest -Zero -Zero -1.0

-2 > exp > -126 -Zero -Zero -Zero -1.0

Input is
denormalized

-Zero -Zero -Zero -Zero

Input is zero -Zero -Zero -Zero -Zero

pos input is zero +Zero +Zero +Zero +Zero

Input is
denormalized

+Zero +Zero +Zero +Zero

-126 < exp < -2 +Zero +Zero +1.0 +Zero

exp = -1 Round towards
nearest

+Zero +1.0 +Zero

0 < exp < 23 Round towards
nearest

Truncate fraction Round towards
+Inf

Round towards
-Inf

24 < exp < 126 VB VB VB VB

Table 7-10. Round-to-Integer Instructions in Java Mode

VB Sign VB Exponent vrÞn vrÞz vrÞp vrÞm

neg 127 > exp > 24 VB VB VB VB

23 > exp > 0 Round towards nearest Truncate fraction Round towards +¥ Round towards -¥

Exp = -1 Round to nearest -Zero -Zero -1.0

-2 > exp > -126 -Zero -Zero -Zero -1.0

Input is
denormalized

Trap Trap Trap Trap

Input is zero -Zero -Zero -Zero -Zero

pos Input is zero +Zero +Zero +Zero +Zero

Input is
denormalized

Trap Trap Trap Trap

-126 < exp < -2 +Zero +Zero +1.0 +Zero

Exp = -1 Round towards nearest +Zero +1.0 +Zero

0 < exp < 23 Round to nearest Truncate fraction Round To +¥ Round To -¥

24 < exp < 126 VB VB VB VB

Chapter 7. The AltiVec Technology Implementation 7-15

AltiVec Technology and the Cache Model

The MPC7400 detects underßows and production of denormalized numbers on vector ßoat
results before rounding, not after. Future versions of the AltiVec Technology Programming
Environments Manual may reßect this ordering.

7.2 AltiVec Technology and the Cache Model
The MPC7400 uses a uniÞed LSU to load and store operands into the GPRs, FPRs, and
VRs. The MPC7400Õs high-bandwidth memory subsystem supports anticipated AltiVec
workloads.

The memory subsystem features summarized in the following sections combine to provide
high bandwidth while maintaining latencies and cache capacities similar to the MPC750.

The following list summarizes features of the MPC7400 L1 cache implementation that are
affected by the AltiVec implementation:

¥ The 32-Kbyte 8-way set associative data cache is fully non-blocking.

Ñ 128-bit interface designed to support AltiVec load/store operations.

Ñ Supports both MRU (most-recently-used) and LRU (least-recently-used) vector
loads.

Ñ New castout and modiÞed bits support lvx/stvx LRU operations.

¥ Pseudo LRU (PLRU) replacement algorithm

¥ Support for AltiVec LRU instructions. LRU instructions are described in
Section 7.1.2.1, ÒLRU Instructions.Ó

¥ Support for AltiVec transient instructions. Transient instructions are described in
Section 7.1.2.2, ÒTransient Instructions.Ó

7.3 AltiVec and the Exception Model
Only the three following exceptions can result from execution of an AltiVec instruction:

¥ An AltiVec unavailable exception occurs with an attempt to execute any non-stream
AltiVec instruction with MSR[VEC] = 0. After this exception occurs, execution
resumes at offset 0x00F20 from the base real address indicated by MSR[IP]. This
exception does not happen for data streaming instructions (dst(t), dstst(t), and dss).
Also note that VRSAVE is not protected by this exception which is consistent with
the AltiVec PEM. In other words, any access to the VRSAVE register will not cause
an exception when MSR[VEC] = 0.

7-16 MPC7400 RISC Microprocessor UserÕs Manual

AltiVec and the Memory Management Model

¥ A DSI exception occurs only if an AltiVec load or store operation encounters a
protection violation or a page fault (does not Þnd a valid PTE during a table search
operation). Also a DSI exception occurs if an AltiVec load or store attempts to access
a T = 1 (direct-store) memory location.

¥ An AltiVec assist exception may occur if an AltiVec ßoating-point instruction
detects denormalization data as an input or output in Java mode.

7.4 AltiVec and the Memory Management Model
The AltiVec functionality in the MPC7400 affects the MMU model in the following ways:

¥ A data stream instruction (dst(t) or dstst(t)) can cause table search operations to
occur after the instruction is retired.

¥ MMU exception conditions can cause a data stream operation to abort.

¥ Aborted VTQ-initiated table search operations can cause a line fetch skip.

¥ Execution of a tlbsync instruction can cancel an outstanding table search operation
for a VTQ.

Data stream touch instructions may use either of the two translation mechanisms
MSR[DR] = 1 as speciÞed by the PowerPC architectureÑsegment/page, or BAT. For more
information, see Chapter 5, ÒMemory Management.Ó

7.5 AltiVec Technology and Instruction Timing
The AltiVec technology deÞnes additional data streaming instructions to help improve
throughput. Those instructions are described in Section 7.1.2.3, ÒData Stream Touch
Instructions,Ó

7.5.1 Integer Store Gathering
The MPC7400 performs store gathering for write-through operations to nonguarded space.
It performs cache-inhibited stores to nonguarded space for 4-byte, word-aligned stores.
These stores are combined in the LSU to form a double word sent out on the 60x bus as a
single-beat operation. However, stores are gathered only if the successive stores meet the
criteria and are queued and pending. Store gathering occurs regardless of the address order
of the stores. Store gathering is enabled by setting HID0[SGE]. Stores can be gathered in
big-endian modes.

Store gathering is not done for the following:

¥ Stores to guarded cache-inhibited or write-through space
¥ Byte-reverse store operations
¥ stwcx. instructions

Chapter 7. The AltiVec Technology Implementation 7-17

AltiVec Technology and Instruction Timing

¥ ecowx instructions
¥ A store that occurs during a table search operation
¥ Floating-point store operations

If store gathering is enabled and the stores do not fall under the above categories, an eieio
or sync instruction must be used to prevent two stores from being gathered.

7-18 MPC7400 RISC Microprocessor UserÕs Manual

AltiVec Technology and Instruction Timing

Chapter 8. Signal Descriptions 8-1

Chapter 8
Signal Descriptions
This chapter describes the MPC7400 microprocessorÕs external signals. It contains a
concise description of individual signals, showing behavior when the signal is asserted,
negated, or tristated, and when the signal is an input or an output.

NOTE:
A bar over a signal name indicates that the signal is active
lowÑfor example, ARTRY (address retry) and TS (transfer
start). Active-low signals are referred to as asserted (active)
when they are low and negated when they are high. Signals that
are not active low, such as AP[0:3] (address bus parity signals)
and TT[0:4] (transfer type signals) are referred to as asserted
when they are high and negated when they are low.

The MPC7400 provides a mode switch (via the EMODE signal) that enables either the 60x
bus protocol or MPX bus protocol operation. The 60x bus interface implements the protocol
described in the PowerPC Microprocessor Family: The Bus Interface for 32-Bit
Microprocessors; note that although this protocol is implemented by the MPC603e,
MPC604 and MPC740/750 processors, it is referenced as the 60x bus interface. The MPX
bus mode includes several additional features that allow it to provide higher memory
bandwidth than the 60x bus.

Refer to the MPC7400 hardware speciÞcation for detailed electrical and mechanical
information for each signal.

8.1 Signal Groupings
The MPC7400 60x bus and MPX bus interface protocol signals are grouped as follows:

¥ Address arbitrationÑThe MPC7400 uses these signals to arbitrate for address bus
mastership.

¥ Address transfer startÑThese signals indicate that a bus master has begun a
transaction on the address bus.

¥ Address transferÑThese signals include the address bus and address parity signals.
They are used to transfer the address and to ensure the integrity of the transfer.

8-2 MPC7400 RISC Microprocessor UserÕs Manual

Signal Groupings

¥ Transfer attributeÑThese signals provide information about the type of transfer,
such as the transfer size and whether the transaction is bursted, write-through, or
cache-inhibited.

¥ Address transfer terminationÑThese signals are used to acknowledge the end of the
address phase of the transaction. They also indicate whether a condition exists that
requires the address phase to be repeated.

¥ Data arbitrationÑThe MPC7400 uses these signals to arbitrate for data bus
mastership.

¥ Data transferÑThese signals, which consist of the data bus and data parity, are used
to transfer the data and to ensure the integrity of the transfer.

¥ Data transfer terminationÑData termination signals are required after each data
beat in a data transfer. In a single-beat transaction, the data termination signals also
indicate the end of the tenure. In burst accesses, the data termination signals apply
to individual beats and indicate the end of the tenure only after the Þnal data beat.
The data termination signals also indicate whether a condition exists that requires
the data phase to be repeated.

In addition there are many other signals on the MPC7400 that control and affect other
aspects of the device, aside from the bus protocol as follows:

¥ L2 cache address/dataÑThe MPC7400 has separate address and data buses for
accessing the L2 cache.

¥ L2 cache clock/controlÑThese signals provide clocking and control for the L2
cache.

¥ Interrupts/resetsÑThese signals include the external interrupt signal, checkstop
signals, and both soft reset and hard reset signals. They are used to interrupt and,
under various conditions, to reset the processor.

¥ Processor status and controlÑThese signals are used to set the reservation
coherency bit, and enable the time base and other functions. They are also used in
conjunction with such resources as secondary caches and the time base facility.

¥ Clock controlÑThese signals determine the system clock frequency. They are also
used to synchronize multiprocessor systems.

¥ Test interfaceÑThe JTAG (IEEE 1149.1a-1993) interface and the common on-chip
processor (COP) unit provide a serial interface to the system for performing
board-level boundary-scan interconnect tests.

¥ Voltage selectÑ These signals control the voltages of the L2 interface and the rest
of the device.

Chapter 8. Signal Descriptions 8-3

Signal Groupings

8.1.1 Signal Summary

Table 8-1 lists all the MPC7400 signals in alphabetical order and provides a cross-reference
to the section of this chapter that contains the detailed description for each. The table also
shows which signals provide multiple functions and are multiplexed on the MPC7400.

Table 8-1. MPC7400 Signal Cross Reference

Signal Signal Name Interface
Alternate
Function

Pins I/O Section #

A[0:31] Address 60x, MPX Ñ 32 I/O 8.2.3.1
8.4.3 (MPX)

AACK Address acknowledge 60x, MPX Ñ 1 I 8.2.5.1
8.4.5.1 (MPX)

ABB Address bus busy 60x AMON 1 O 8.2.2.3

AMON Address bus monitor MPX ABB 1 O 8.4.2.3

AP[0:3] Address Parity 60x, MPX Ñ 4 I/O 8.2.3.2
8.4.3(MPX)

ARTRY Address retry 60x, MPX Ñ 1 I/O 8.2.5.2
8.4.5.2 (MPX)

BG Bus grant 60x, MPX Ñ 1 I 8.2.2.2
8.4.2.2 (MPX)

BR Bus request 60x, MPX Ñ 1 O 8.2.2.1
8.4.2.1 (MPX)

BVSEL Bus voltage select 60x, MPX Ñ 1 I 8.5.7.1

CI Cache-inhibited 60x, MPX Ñ 1 I/O 8.2.4.7
8.4.4.8 (MPX)

CHK Check 60x, MPX Ñ 1 I 8.5.3.7

CKSTP_IN Checkstop in 60x, MPX Ñ 1 I 8.5.3.5

CKSTP_OUT Checkstop out 60x, MPX Ñ 1 O 8.5.3.6

CLK_OUT Clock out 60x, MPX Ñ 1 O 8.5.5.3

DBB Data bus busy 60x DMON 1 O 8.2.6.3

DBG Data bus grant 60x, MPX Ñ 1 I 8.2.2.2
8.4.6.1 (MPX)

DBWO Data bus write only 60x DTI0 1 I 8.2.6.2

DH[0:31] Data bus high 0:31 60x, MPX Ñ 32 I/O 8.2.7.1
8.4.7.1 (MPX)

DL[0:31] Data bus low 0:31 60x, MPX Ñ 32 I/O 8.2.7.1
8.4.7.1 (MPX)

DMON Data bus monitor MPX DBB 1 O 8.4.6.4

DP[0:7] Data parity 60x, MPX Ñ 8 I/O 8.2.7.2
8.4.3 (MPX)

DRDY Data ready MPX Ñ 1 O 8.4.6.3

DTI0 Data transaction index MPX DBWO 1 I 8.4.6.2

DTI[1:2] Data transaction index MPX Ñ 2 I 8.4.6.2

8-4 MPC7400 RISC Microprocessor UserÕs Manual

Signal Groupings

EMODE Enhanced mode 60x, MPX Ñ 1 I 8.5.4.5

GBL Global 60x, MPX Ñ 1 I/O 8.2.4.5
8.4.4.6 (MPX)

HIT Snoop hit MPX Ñ 1 O 8.4.5.4

HRESET Hard reset 60x, MPX Ñ 1 I 8.5.3.4.2

INT Interrupt request 60x, MPX Ñ 1 I 8.5.3.1

L2ADDR[17:0] L2 address 60x, MPX Ñ 18 O 8.5.1.1

L2CE L2 chip enable 60x, MPX Ñ 1 O 8.5.2.1

L2CLK_OUT[A:B] L2 60x, MPX Ñ 2 O 8.5.2.3

L2DATA[0:63] L2 data 60x, MPX Ñ 64 I/O 8.5.1.2

L2DP[0:7] L2 data parity 60x, MPX Ñ 8 I/O 8.5.1.3

L2SYNC_IN L2 sync in 60x, MPX Ñ 1 I 8.5.2.6

L2SYNC_OUT L2 sync out 60x, MPX Ñ 1 O 8.5.2.5

L2VSEL L2 voltage select 60x, MPX Ñ 1 I 8.5.7.2

L2WE L2 write enable 60x, MPX Ñ 1 O 8.5.2.2

L2ZZ L2 low-power mode enable 60x, MPX Ñ 1 O 8.5.2.7

MCP Machine check 60x, MPX Ñ 1 I 8.5.3.3

PLL_CFG[0:3] PLL conÞguration 60x, MPX Ñ 4 I 8.5.5.2

QACK Quiesce acknowledge 60x, MPX Ñ 1 I 8.5.4.4

QREQ Quiesce request 60x, MPX Ñ 1 O 8.5.4.3

RSRV Reservation 60x, MPX Ñ 1 O 8.5.4.1

SRESET Soft reset 60x, MPX Ñ 1 I 8.5.3.4.1

SHD Shared 60x SHD0 1 I/O 8.2.5.3

SHD0 Shared 0 MPX SHD 1 I/O 8.4.5.3

SHD1 Shared 1 MPX Ñ 1 I/O 8.4.5.3

SMI System management
interrupt

60x, MPX Ñ 1 I 8.5.3.2

SYSCLK System clock 60x, MPX Ñ 1 I 8.5.5.1

TA Transfer acknowledge 60x, MPX Ñ 1 I 8.2.8.1
8.4.8.1 (MPX)

TBEN Time base enable 60x, MPX Ñ 1 I 8.5.4.2

TBST Transfer burst 60x, MPX Ñ 1 O 8.2.4.3
8.4.4.4 (MPX)

TCK Scan clock 60x, MPX Ñ 1 I 8.5.6.1

TDI Serial scan input 60x, MPX Ñ 1 I 8.5.6.2

TDO Serial scan output 60x, MPX Ñ 1 O 8.5.6.3

Table 8-1. MPC7400 Signal Cross Reference (Continued)

Signal Signal Name Interface
Alternate
Function

Pins I/O Section #

Chapter 8. Signal Descriptions 8-5

Signal Groupings

8.1.2 60x Bus and MPX Bus Output Signal States During
Reset

The assertion of HRESET causes all bi-directional signals to be in the input state. Table 8-2
shows the state of MPC7400 output signals during HRESET assertion.

TEA Transfer error acknowledge 60x, MPX Ñ 1 I 8.2.8.2
8.4.8.2 (MPX)

TMS Test mode select 60x, MPX Ñ 1 I 8.5.6.4

TS Transfer start 60x, MPX Ñ 1 I/O Figure 8.2.4.1
8.4.4 (MPX)

TRST Test reset 60x, MPX Ñ 1 I 8.5.6.5

TSIZ[0:2] Transfer size 60x, MPX Ñ 3 O 8.2.4.4
8.4.4.5 (MPX)

TT[0:4] Transfer type 60x, MPX Ñ 5 I/O 8.2.4.2
8.4.4.3 (MPX)

WT Write-through 60x, MPX Ñ 1 I/O 8.2.4.6
8.4.4.7 (MPX)

Table 8-2. Output Signal States During System Reset

Signal Group Signals State During System Reset

Address arbitration BR
ABB/AMON

High impedance

Address bus A[0:31]
AP[0:3]

High impedance

Address transfer
Attributes

TBST
TSIZ[0:2]

High impedance

Address termination HIT High impedance

Data arbitration DRDY
DBB/DMON

High impedance

L2 cache address/data L2ADD[17:0] High impedance

L2 cache clock/control L2CE
L2WE
L2CLK_OUT[A:B]
L2SYNC_OUT
L2ZZ

Driven negated
Driven negated
Driven low
Driven low
Driven negated

Interrupts/Resets CKSTP_OUT Driven negated

Processor
status/control

RSRV
QREQ

High impedance

Clock control CLK_OUT High impedance

Test interface TDO High impedance

Table 8-1. MPC7400 Signal Cross Reference (Continued)

Signal Signal Name Interface
Alternate
Function

Pins I/O Section #

8-6 MPC7400 RISC Microprocessor UserÕs Manual

60x Bus Signal ConÞguration

8.2 60x Bus Signal ConÞguration
The following sections describe the signals that implement the 60x bus protocol on the
MPC7400. The MPX bus protocol signals start in Section 8.4, ÒMPX Bus Signal
ConÞguration,Ó on page 8-25.

8.2.1 60x Bus Functional Groupings

Figure 8-1 illustrates the MPC7400Õs signal conÞguration in 60x bus mode, showing how
the signals are grouped. A pinout showing pin numbers is included in the MPC7400
hardware speciÞcation. Note that the left side of the Þgure depicts the signals that
implement the 60x bus protocol and the right side of the Þgure shows the remaining signals
on the MPC7400 (not part of the bus protocol).

Chapter 8. Signal Descriptions 8-7

60x Bus Signal ConÞguration

Figure 8-1. 60x Bus Signal Groups

Note that the following sections summarize signal functions. Chapter 9, ÒSystem Interface
Operation,Ó describes many of these signals in greater detail, both with respect to how
individual signals function and how groups of signals interact.

Data
Arbitration

BR
BG

TS

AP[0:3]

GBL

TSIZ[0:2]

AACK

ARTRY

DBG

DBWO

DH[0:31]

DP[0:7]

TA
TEA

1

1

1

4

TBST

WT

TT[0:4]
5
1

3
1

1

1
1

1

1

8

32

1
1

CI 1

A[0:31]
32

Address
Arbitration

Address
Bus

Address
Termination

Address
Transfer

Attributes

Data
Transfer

Data
Termination

OVDD AVDD

MPC7400

L2OVDD L2AVDDVDD

SHD 1

DBB 1

ABB 1

L2 Cache
Address/

Data

SYSCLK

JTAG/COP

Factory Test

1

5

3

PLL_CFG[0:3]4

1 CLK_OUT

L2ADDR[17:0]

L2DATA[0:63]

L2DP[0:7]

L2CE
L2WE
L2CLK_OUT[A:B]

L2SYNC_OUT

L2SYNC_IN

L2ZZ

L2 Cache
Clock/

Control

Clock
Control

Test
Interface

18

2

1

1

1

64
8

1

1

INT

TBEN

MCP

SRESET

SMI

HRESET

QREQ

QACK

CKSTP_IN

CKSTP_OUT

1

1

1

1

1

1

1

1

1

1
1

Interrupts/
Resets

Processor
Status/
Control

RSRV

CHK1

L2VSEL1
BVSEL1

Voltage
Select

EMODE1

DL[0:31]
32

8-8 MPC7400 RISC Microprocessor UserÕs Manual

60x Bus Signal ConÞguration

8.2.2 Address Bus Arbitration Signals

The address arbitration signals are input and output signals the MPC7400 uses to request
the address bus, recognize when the request is granted, and indicate to other devices when
mastership is granted. For a detailed description of how these signals interact, see
Section 9.3.1, ÒAddress Bus Arbitration.Ó

8.2.2.1 Bus Request (BR)ÑOutput

Following are the state meaning and timing comments for the BR output signal.

State Meaning AssertedÑIndicates that the MPC7400 is requesting mastership of
the address bus. Note that BR may be asserted for one or more
cycles, and then negated due to an internal cancellation of the bus
request. See Section 9.3.1, ÒAddress Bus Arbitration,Ó for more
information.

NegatedÑIndicates that the MPC7400 is not requesting the address
bus. The MPC7400 may have no bus operation pending, the address
bus may be parked, or the ARTRY input was asserted on the previous
bus clock cycle.

Timing Comments AssertionÑOccurs when the MPC7400 is not parked and a bus
transaction is needed.

NegationÑOccurs for at least one bus clock cycle after an accepted,
qualiÞed bus grant (see BG), even if another transaction is pending.
It is also negated for at least one bus clock cycle when the assertion
of ARTRY is detected on the bus.

High ImpedanceÑOccurs during a hard reset or checkstop
condition.

8.2.2.2 Bus Grant (BG)ÑInput

Following are the state meaning and timing comments for the BG input signal.

State Meaning AssertedÑIndicates that the MPC7400 may, with proper
qualiÞcation, assume mastership of the address bus. The conditions
for a qualiÞed bus grant are described in Section 9.3.1, ÒAddress Bus
Arbitration.Ó

NegatedÑ Indicates that the MPC7400 is not the next potential
address bus master.

Timing Comments AssertionÑMay occur at any time to indicate the MPC7400 can use
the address bus. In 60x bus mode, the MPC7400 does not accept a
BG in the cycles between the assertion of any TS and AACK.

NegationÑMay occur at any time to indicate the MPC7400 cannot
use the bus. The MPC7400 may still assume bus mastership on the

Chapter 8. Signal Descriptions 8-9

60x Bus Signal ConÞguration

bus clock cycle of the negation of BG because during the previous
cycle BG indicated to the MPC7400 that it could take mastership (if
qualiÞed).

8.2.2.3 Address Bus Busy (ABB)ÑOutput

Unlike other processors that implement the 60x bus protocol, the address bus busy (ABB)
signal is strictly an output signal on the MPC7400. Use of this signal is optional in the 60x
bus protocol. See Section 9.3.1, ÒAddress Bus Arbitration,Ó for a detailed description of the
operation of ABB in the MPC7400. Following are the state meaning and timing comments
for ABB.

State Meaning AssertedÑIndicates that the MPC7400 is the address bus master.
See Section 9.3.1, ÒAddress Bus Arbitration.Ó

NegatedÑIndicates that the MPC7400 is not using the address bus.
If ABB is negated during the bus clock cycle following a qualiÞed
bus grant, the MPC7400 did not accept mastership even if BR was
asserted. This can occur if a potential transaction is aborted
internally before the transaction begins.

Timing Comments AssertionÑOccurs on the bus clock cycle following a qualiÞed BG
that is accepted by the processor.

NegationÑOccurs for a minimum of one-half bus clock cycle
following the assertion of AACK. If ABB is negated during the bus
clock cycle after a qualiÞed bus grant, the MPC7400 did not accept
mastership, even if BR was asserted.

High ImpedanceÑOccurs after ABB is negated.

8.2.3 Address Transfer Signals

The address transfer signals are used to transmit the address and to generate and monitor
parity for the address transfer. For a detailed description of how these signals interact, refer
to Section 9.3.2, ÒAddress Transfer.Ó

8.2.3.1 Address Bus (A[0:31])

The address bus (A[0:31]) consists of 32 signals that are both input and output signals.

8.2.3.1.1 Address Bus (A[0:31])ÑOutput

Following are the state meaning and timing comments for the A[0:31] output signals.

State Meaning Asserted/NegatedÑRepresents the physical address (real address in
the architecture speciÞcation) of the data to be transferred. On burst
transfers, the address bus presents the double-word-aligned address
containing the critical code/data that missed the cache on a read
operation, or the Þrst double word of the cache line on a write

8-10 MPC7400 RISC Microprocessor UserÕs Manual

60x Bus Signal ConÞguration

operation. Note that the address output during burst operations is not
incremented. See Section 9.3.2, ÒAddress Transfer.Ó

Timing Comments Assertion/NegationÑOccurs on the bus clock cycle after a qualiÞed
bus grant (coincides with assertion of ABB and TS).

High ImpedanceÑOccurs one bus clock cycle after AACK is
asserted.

8.2.3.1.2 Address Bus (A[0:31])ÑInput

Following are the state meaning and timing comments for the A[0:31] input signals.

State Meaning Asserted/NegatedÑRepresents the physical address of a snoop
operation.

Timing Comments Assertion/NegationÑMust be valid on the same bus clock cycle as
the assertion of TS; it is sampled by MPC7400 only on this cycle.

8.2.3.2 Address Bus Parity (AP[0:3])

The address bus parity (AP[0:3]) signals, both input and output, reßect one bit of odd-byte
parity for each of the 4 bytes of address when a valid address is on the bus.

8.2.3.2.1 Address Bus Parity (AP[0:3])ÑOutput

Following are the state meaning and timing comments for the AP[0:3] output signals on the
MPC7400.

State Meaning Asserted/NegatedÑRepresents odd parity for each of the 4 bytes of
the physical address for a transaction. Odd parity means that an odd
number of bits, including the parity bit, are driven high. Table 8-3
shows the address parity signal assignments. For more information,
see Section 9.3.2.1, ÒAddress Bus Parity.Ó

Timing Comments Assertion/NegationÑThe same as A[0:31]

High ImpedanceÑThe same as A[0:31]

Table 8-3. Address Parity Bit Assignments

Address Parity Bit Address Bus Signals

AP0 A[0:7]

AP1 A[8:15]

AP2 A[16:23]

AP3 A[24:31]

Chapter 8. Signal Descriptions 8-11

60x Bus Signal ConÞguration

8.2.3.2.2 Address Bus Parity (AP[0:3])ÑInput

Following are the state meaning and timing comments for the AP[0:3] input signal on the
MPC7400.

State Meaning Asserted/NegatedÑRepresents odd parity for each of the 4 bytes of
the physical address for snooping operations. Detected even parity
causes the processor to take a machine check exception or enter the
checkstop state if address parity checking is enabled
(HID0[EBA] = 1); see Section 2.1.2.2, ÒHardware
Implementation-Dependent Register 0.Ó

Timing Comments Assertion/NegationÑThe same as A[0:31]

8.2.4 Address Transfer Attribute Signals

The transfer attribute signals are a set of signals that characterize the following:

¥ The size of the transfer

¥ Whether it is a read or write operation.

¥ Whether it is a burst or single-beat transfer.

For a detailed description of how these signals interact, see Section 9.3.2, ÒAddress
Transfer.Ó

8.2.4.1 Transfer Start (TS)

The address transfer start (TS) signal is both an input and an output signal on the MPC7400,
and indicates that an address bus transfer has begun.

8.2.4.1.1 Transfer Start (TS)ÑOutput

Following are the state meaning and timing comments for the TS output signal.

State Meaning AssertedÑIndicates that the MPC7400 has begun a bus transaction
and that the address bus and transfer attribute signals are valid. When
asserted with the appropriate TT[0:4] signals; it is also an implied
data bus request for a memory transaction (unless it is an
address-only operation).

NegatedÑIndicates that no bus transaction is occurring during
normal operation.

Timing Comments AssertionÑMay occur on any cycle following a qualiÞed BG.

NegationÑOccurs one bus clock cycle after TS is asserted.

High ImpedanceÑOccurs two bus clock cycles after TS is asserted.

8-12 MPC7400 RISC Microprocessor UserÕs Manual

60x Bus Signal ConÞguration

8.2.4.1.2 Transfer Start (TS)ÑInput

Following are the state meaning and timing comments for the TS input signal.

State Meaning AssertedÑIndicates that another master has begun a bus transaction
and that the address bus and transfer attribute signals are valid for
snooping; see Section 8.2.4.5, ÒGlobal (GBL).Ó

NegatedÑIndicates that no bus transaction is occurring.

Timing Comments AssertionÑMay occur on any cycle following a qualiÞed BG.

NegationÑMust occur one bus clock cycle after TS is asserted.

8.2.4.2 Transfer Type (TT[0:4])

The transfer type (TT[0:4]) signals consist of Þve input/output signals on the MPC7400.
For a complete description of TT[0:4] signals and for transfer type encodings, see
Section 9.3.2.2.1, ÒTransfer Type (TT[0:4]) Signals in 60x Bus Mode.Ó

8.2.4.2.1 Transfer Type (TT[0:4])ÑOutput

Following are the state meaning and timing comments for the TT[0:4] output signals on the
MPC7400.

State Meaning Asserted/NegatedÑIndicates the type of transfer in progress.

Timing Comments Assertion/NegationÑThe same as A[0:31]

High ImpedanceÑThe same as A[0:31]

8.2.4.2.2 Transfer Type (TT[0:4])ÑInput

Following are the state meaning and timing comments for the TT[0:4] input signals on the
MPC7400.

State Meaning Asserted/NegatedÑIndicates the type of transfer in progress.

Timing Comments Assertion/NegationÑThe same as A[0:31].

8.2.4.3 Transfer Burst (TBST)ÑOutput

Unlike other processors that implement the 60x bus protocol, the transfer burst (TBST)
signal is an output-only signal on the MPC7400.

Following are the state meaning and timing comments for the TBST output signal.

State Meaning AssertedÑIndicates that a burst transfer is in progress.

For transactions initiated by external control instructions (eciwx and
ecowx), TBST forms part of the 4-bit Resource ID Þeld on the bus as
follows:

TBST || TSIZ(0:2) ¬ EAR(28:31)

NegatedÑIndicates that a burst transfer is not in progress.

Chapter 8. Signal Descriptions 8-13

60x Bus Signal ConÞguration

Timing Comments Assertion/NegationÑThe same as A[0:31]

High ImpedanceÑThe same as A[0:31]

8.2.4.4 Transfer Size (TSIZ[0:2])ÑOutput

Following are the state meaning and timing comments for the transfer size (TSIZ[0:2])
output signals on the MPC7400.

State Meaning Asserted/NegatedÑFor memory accesses, these signals along with
TBST, indicate the data transfer size for the current bus operation.
See Section 9.3.2.2.2, ÒTransfer Size (TSIZ[0:2]) Signals.Ó Also,
Section 9.3.2.4, ÒEffect of Alignment in Data Transfers,Ó shows how
the transfer size signals are used with the address signals for aligned
and misaligned transfers. Note that the MPC7400 does not generate
all possible TSIZ[0:2] encodings.

For transactions initiated by external control instructions (eciwx and
ecowx), TSIZ[0:2] signals form part of the 4-bit resource ID Þeld
(they are used to output bits 29Ð31 of the external access register
(EAR)) on the bus as follows:

TBST || TSIZ(0:2) ¬ EAR(28:31)

Timing Comments Assertion/NegationÑThe same as A[0:31]

High ImpedanceÑThe same as A[0:31]

8.2.4.5 Global (GBL)

The global (GBL) signal is an input/output signal on the MPC7400.

8.2.4.5.1 Global (GBL)ÑOutput

Following are the state meaning and timing comments for the GBL output signal.

State Meaning AssertedÑIndicates that a transaction is global, reßecting the setting
of the M bit for the block or page that contains the address of the
current transaction (except during certain data cache, memory
synchronization, TLB management, and external control operations
as described in Table 3-14 on page 3-75). Thus, this transaction must
be snooped.

NegatedÑIndicates that a transaction is not global and does not need
to be snooped by other masters.

Timing Comments Assertion/NegationÑThe same as A[0:31]

High ImpedanceÑThe same as A[0:31]

8-14 MPC7400 RISC Microprocessor UserÕs Manual

60x Bus Signal ConÞguration

8.2.4.5.2 Global (GBL)ÑInput

Following are the state meaning and timing comments for the GBL input signal.

State Meaning AssertedÑIndicates that a transaction must be snooped by the
MPC7400.

NegatedÑIndicates that a transaction must not be snooped by the
MPC7400.

Timing Comments Assertion/NegationÑThe same as A[0:31].

8.2.4.6 Write-Through (WT)ÑOutput

The write-through (WT) signal is an output signal on the MPC7400 in 60x bus mode.
Following are the state meaning and timing comments for the WT signal in 60x bus mode.

State Meaning AssertedÑIndicates that a single-beat write transaction is
write-through, reßecting the value of the W bit for the block or page
that contains the address of the current transaction (except during
certain data cache, memory synchronization, TLB management, and
external control operations as described in Table 3-14).

Note that on the MPC750, WT assertion during a read operation
indicates an instruction fetch. The MPC7400 does not use WT to
indicate instruction fetches. Instead, the MPC7400 uses the TT0
signal (if HID0[IFFT] = 1) to indicate an instruction fetch.

NegatedÑIndicates that a write transaction is not write-through.

Timing Comments Assertion/NegationÑThe same as A[0:31]

High ImpedanceÑThe same as A[0:31]

8.2.4.7 Cache Inhibit (CI)ÑOutput

The cache inhibit (CI) signal is an output signal on the MPC7400 in 60x bus mode.
Following are the state meaning and timing comments for the CI signal in 60x bus mode.

State Meaning AssertedÑIndicates that a single-beat transfer is not cached,
reßecting the setting of the I bit for the block or page that contains
the address of the current transaction (except during certain data
cache, memory synchronization, TLB management, and external
control operations as described in Table 3-14).

NegatedÑIndicates that a burst transfer allocates an MPC7400 data
cache block.

Timing Comments Assertion/NegationÑThe same as A[0:31]

High ImpedanceÑThe same as A[0:31]

Chapter 8. Signal Descriptions 8-15

60x Bus Signal ConÞguration

8.2.5 Address Transfer Termination Signals

The address transfer termination signals are used to indicate either that the address phase
of the transaction has completed successfully or must be repeated, and when it must be
terminated. For detailed information about how these signals interact, see Section 9.3.3,
ÒAddress Transfer Termination.Ó

8.2.5.1 Address Acknowledge (AACK)ÑInput

The address acknowledge (AACK) signal is an input-only signal on the MPC7400.
Following are the state meaning and timing comments for the AACK signal.

State Meaning AssertedÑIndicates that the address phase of a transaction is
complete; the address bus is released to high-impedance on the next
bus clock cycle.

Note that the address tenure does not terminate until the assertion of
AACK, even if the associated data tenure has completed. As a
snooping device, the MPC7400 requires that AACK be asserted for
every assertion of TS that it detects.

NegatedÑ(During an address tenure) indicates that the address bus
and the transfer attributes must remain driven.

Timing Comments AssertionÑMay occur as early as the bus clock cycle after TS is
asserted; assertion can be delayed to allow adequate address access
time for slow devices. For example, if an implementation supports
slow snooping devices, an external arbiter can postpone the assertion
of AACK.

NegationÑMust occur one bus clock cycle after the assertion of
AACK.

8.2.5.2 Address Retry (ARTRY)

The address retry (ARTRY) signal is both an input and output signal on the MPC7400.

8.2.5.2.1 Address Retry (ARTRY)ÑOutput

Following are the state meaning and timing comments for the ARTRY output signal.

State Meaning AssertedÑIndicates that the MPC7400, as a snooping device,
detects a condition in which a snooped address tenure must be
retried. If the MPC7400 needs to update memory as a result of the
snoop that caused the retry, the MPC7400 asserts BR in the bus clock
cycle following the assertion of ARTRY.

High ImpedanceÑIndicates that the MPC7400 does not need the
snooped address tenure to be retried.

8-16 MPC7400 RISC Microprocessor UserÕs Manual

60x Bus Signal ConÞguration

Timing Comments AssertionÑAsserted the second bus cycle following the assertion of
TS if a retry is required.

Negation/High ImpedanceÑDriven asserted until the bus clock
cycle following the assertion of AACK. Because this signal may be
simultaneously driven by multiple devices, it negates in a unique
fashion. First the output buffer goes to high impedance for a fraction
of a bus clock cycle (dependent on the clock modeÑmiminum of
one-half of a bus clock cycle), then it is driven negated for one bus
clock cycle before returning to high impedance.

This special method of negation may be disabled by setting the
precharge disable bit in HID0.

8.2.5.2.2 Address Retry (ARTRY)ÑInput

Following are the state meaning and timing comments for the ARTRY input signal.

State Meaning AssertedÑIf the MPC7400 is the address bus master, ARTRY
indicates that the MPC7400 must retry the preceding address tenure
and immediately negate BR (if asserted). If the associated data
tenure has already started, the MPC7400 also aborts the data tenure
immediately, even if data has been received.

If the MPC7400 is not the address bus master, this input indicates
that the MPC7400 must immediately negate BR to allow an
opportunity for a copyback operation to main memory after a
snooping bus master asserts ARTRY. Note that the subsequent
address presented on the address bus may not be the same one
associated with the assertion of the ARTRY signal.

Note that the MPC7400 ignores the BG signal on the cycle in which
ARTRY is detected and the cycle following the assertion of ARTRY.

Negated/High ImpedanceÑIndicates that the MPC7400 does not
need to retry the last address tenure.

Timing Comments AssertionÑMay occur as early as the second cycle following the
assertion of TS and must occur by the bus clock cycle immediately
following the assertion of AACK if an address retry is required; must
remain asserted until the clock cycle following the assertion of
AACK.

Negation/High ImpedanceÑMust occur two bus clock cycles after
the assertion of AACK.

Note that during the second bus clock cycle after the assertion of
AACK, masters release ARTRY to high impedance and then negate
it. Thus, care must be taken when sampling ARTRY during this clock
period as it could be sampled in an indeterminate state.

Chapter 8. Signal Descriptions 8-17

60x Bus Signal ConÞguration

8.2.5.3 Shared (SHD)

The shared, SHD signal is both an input and an output on the MPC7400 in 60x bus mode.
In the MPX bus mode, this signal is used as the SHD0 signal. The shared state is enabled
with the SHDEN bit in the memory subsystem control register, MSSCR0. See
Section 2.1.6, ÒMemory Subsystem Control Register (MSSCR0).Ó

8.2.5.3.1 Shared (SHD)ÑOutput

Following are state and timing descriptions for shared (SHD) as an output signal.

State Meaning AssertedÑIf ARTRY is negated, indicates that after this transaction
completes successfully, the MPC7400 will keep a valid shared copy
of the address or that a reservation exists on this address. If SHD and
ARTRY are asserted for a snooping master, the snoop hit modiÞed
data is pushed as the masterÕs next address transaction.

Negated/High ImpedanceÑAfter this address is transferred, the
processor no longer has a valid copy of the snooped address.

Timing Comments Assertion/NegationÑSame as ARTRY.

High ImpedanceÑSame as ARTRY.

8.2.5.3.2 Shared (SHD)ÑInput

Following are state and timing descriptions for (SHD) as an input signal.

State Meaning AssertedÑIf ARTRY is negated, the MPC7400 allocates the
incoming cache block as shared (S) for a self-generated transaction.
Applies only to read and read atomic transactions.

If ARTRY is asserted, SHD is ignored as an input.

NegatedÑIf ARTRY is negated and SHD is negated, the MPC7400
allocates the incoming cache block as exclusive (E) for a
self-generated read or read-atomic transaction.

Timing Comments Assertion/NegationÑThe same as ARTRY

8.2.6 Data Bus Arbitration Signals

Like the address bus arbitration signals, data bus arbitration signals maintain an orderly
process for determining data bus mastership. Note that there is no data bus arbitration signal
equivalent to the address bus arbitration signal BR (bus request), because, except for
address-only transactions, TS implies data bus requests. For a detailed description on how
these signals interact, see Section 9.4.1, ÒData Bus Arbitration.Ó

One special signal, DBWO, allows the MPC7400 to be conÞgured dynamically to write
data out of order with respect to read data. For detailed information about using DBWO,
see Section 9.4.4, ÒUsing Data Bus Write Only (DBWO).Ó

8-18 MPC7400 RISC Microprocessor UserÕs Manual

60x Bus Signal ConÞguration

8.2.6.1 Data Bus Grant (DBG)ÑInput

The data bus grant (DBG) signal is an input-only signal on the MPC7400. Following are
the state meaning and timing comments for the DBG signal.

State Meaning AssertedÑIndicates that the MPC7400 may, with the proper
qualiÞcation, assume ownership of the data bus.

QDBG = DBG & Â(ARTRY & retriable) & Â(state_variables)

where retriable indicates whether or not the current transaction can
still be retried; and state variables include whether or not:

¥ The data bus is being used by this master

¥ Whether or not the master has back-to-back burst accesses in progress

¥ The processor has already received the next-to-last TA for the current burst.

Thus, a qualiÞed data bus grant occurs when:

¥ DBG is asserted.

¥ ARTRY was not asserted in the address retry window for the address phase of this
transaction.

¥ The MPC7400 is ready to begin a data transaction.

Note that data streaming is not supported in 60x bus mode.

NegatedÑIndicates that the MPC7400 must hold off its data tenures.

Timing Comments AssertionÑMay occur any time to indicate the MPC7400 is free to
take data bus mastership. It is not sampled until TS is asserted.

NegationÑMay occur at any time to indicate the MPC7400 cannot
assume data bus mastership.

8.2.6.2 Data Bus Write Only (DBWO)ÑInput

The data bus write only (DBWO) signal is an input-only signal on the MPC7400. Following
are the state meaning and timing comments for the DBWO signal. See Section 9.4.4,
ÒUsing Data Bus Write Only (DBWO),Ó for a detailed description of the use of this signal.

Note that DBWO functions as DTI0 in the MPX bus mode.

State Meaning AssertedÑIndicates that the MPC7400 may run the data bus tenure
for an outstanding write address even if a read address is pipelined
before the write address.

NegatedÑIndicates that the MPC7400 must run the data bus tenures
in the same order as the address tenures.

Chapter 8. Signal Descriptions 8-19

60x Bus Signal ConÞguration

Timing Comments AssertionÑMust occur no later than a qualiÞed DBG for an
outstanding write tenure. DBWO is sampled by the MPC7400 on the
clock of a qualiÞed DBG. If no write requests are pending, the
MPC7400 ignores DBWO and assumes data bus mastership for the
next pending read request.

NegationÑMay occur any time after a qualiÞed DBG and before the
next assertion of DBG.

8.2.6.3 Data Bus Busy (DBB)ÑOutput

The data bus busy (DBB) signal is strictly an output signal on the MPC7400. See
Section 9.4.1.2, ÒUsing the DBB Signal,Ó for more information. Following are the state
meaning and timing comments for DBB.

State Meaning AssertedÑIndicates that the MPC7400 is the data bus master. The
MPC7400 always assumes data bus mastership if it needs the data
bus and is given a qualiÞed data bus grant (see DBG).

NegatedÑIndicates that the MPC7400 is not using the data bus.

Timing Comments AssertionÑOccurs during the bus clock cycle following a qualiÞed
DBG.

NegationÑOccurs for a minimum of one-half bus clock cycle
(dependent on clock mode) following the assertion of the Þnal TA.

High ImpedanceÑOccurs after DBB is negated.

8.2.7 Data Transfer Signals

Like the address transfer signals, the data transfer signals are used to transmit data and to
generate and monitor parity for the data transfer. For a detailed description of how the data
transfer signals interact, see Section 9.4.2, ÒData Transfer Signals and Protocol.Ó

8.2.7.1 Data Bus (DH[0:31], DL[0:31])

The data bus (DH[0:31] and DL[0:31]) consists of 64 signals that are both inputs and
outputs on the MPC7400. The data bus is driven once for single-beat transactions and four
times for burst transactions. See Table 8-4 for the data bus lane assignments.

Table 8-4. Data Bus Lane Assignments

Data Bus Signals Byte Lane

DH[0:7] 0

DH[8:15] 1

DH[16:23] 2

DH[24:31] 3

DL[0:7] 4

8-20 MPC7400 RISC Microprocessor UserÕs Manual

60x Bus Signal ConÞguration

8.2.7.1.1 Data Bus (DH[0:31], DL[0:31])ÑOutput

Following are the state meaning and timing comments for DH[0:31] and DL[0:31] as
output signals.

State Meaning Asserted/NegatedÑRepresent the state of data during a data write.
Byte lanes not selected for data transfer do not supply valid data.

Timing Comments Assertion/NegationÑInitial beat coincides with DBB and, for
bursts, transitions on the bus clock cycle following each assertion of
TA.

High ImpedanceÑOccurs on the bus clock cycle after the Þnal
assertion of TA, following the assertion of TEA, or in certain ARTRY
cases.

8.2.7.1.2 Data Bus (DH[0:31], DL[0:31])ÑInput

Following are the state meaning and timing comments for DH[0:31] and DL[0:31] as input
signals.

State Meaning Asserted/NegatedÑRepresent the state of data during a data read
transaction.

Timing Comments Assertion/NegationÑData must be valid on the same bus clock cycle
that TA is asserted.

8.2.7.2 Data Bus Parity (DP[0:7])

The eight data bus parity (DP[0:7]) signals on the MPC7400 are both output and input.

8.2.7.2.1 Data Bus Parity (DP[0:7])ÑOutput

Following are the state meaning and timing comments for DP[0:7] as output signals.

State Meaning Asserted/NegatedÑRepresents odd parity for each of the eight bytes
during data write transactions. Odd parity means that an odd number
of bits, including the parity bit, are driven high. The generation of
parity is enabled through HID0. The signal assignments are listed in
Table 8-5.

Timing Comments Assertion/NegationÑThe same as DL[0:31]
High ImpedanceÑThe same as DL[0:31

DL[8:15] 5

DL[16:23] 6

DL[24:31] 7

Table 8-4. Data Bus Lane Assignments (Continued)

Data Bus Signals Byte Lane

Chapter 8. Signal Descriptions 8-21

60x Bus Signal ConÞguration

]

8.2.7.2.2 Data Bus Parity (DP[0:7])ÑInput

Following are the state meaning and timing comments for DP[0:7] as input signals.

State Meaning Asserted/NegatedÑRepresents odd parity for each byte of read data.
Parity is checked on all data byte lanes, regardless of the size of the
transfer. Detected even parity causes a checkstop if data parity errors
are enabled in the HID0 register.

Timing Comments Assertion/NegationÑThe same as DL[0:31]

8.2.8 Data Transfer Termination Signals

Data termination signals are required after each data beat in a data transfer. Note that in a
single-beat transaction, the data termination signals also indicate the end of the tenure;
while in burst accesses, the data termination signals apply to individual beats and indicate
the end of the tenure only after the Þnal data beat.

For a detailed description of how these signals interact, see Section 9.4.3, ÒData Transfer
Termination.Ó

8.2.8.1 Transfer Acknowledge (TA)ÑInput

Following are the state meaning and timing comments for the TA signal.

State Meaning AssertedÑIndicates that a single-beat data transfer or a data beat in
a burst transfer completed successfully. Note that TA must be
asserted for each data beat in a burst transaction.

NegatedÑ(During a data tenure) indicates that, until TA is asserted,
the MPC7400 must continue to drive the data for the current write or
must wait to sample the data for reads.

Table 8-5. DP[0:7] Signal Assignments

Signal Name Signal Assignments

DP0 DH[0:7]

DP1 DH[8:15]

DP2 DH[16:23]

DP3 DH[24:31]

DP4 DL[0:7]

DP5 DL[8:15]

DP6 DL[16:23]

DP7 DL[24:31]

8-22 MPC7400 RISC Microprocessor UserÕs Manual

60x/MPX Bus Protocol Signal Compatibility

Timing Comments AssertionÑMust not occur before ARTRY for the current
transaction (if the address retry mechanism is to be used to prevent
invalid data from being used by the processor); otherwise, assertion
may occur at any time during a data tenure. The system can withhold
assertion of TA to indicate that the MPC7400 should insert wait
states to extend the duration of the data beat.

NegationÑMust occur after the bus clock cycle of the Þnal (or only)
data beat of the transfer. For a burst transfer, the system can assert TA
for one bus clock cycle and then negate it to advance the burst
transfer to the next beat and insert wait states during the next beat.

8.2.8.2 Transfer Error Acknowledge (TEA)ÑInput

Following are the state meaning and timing comments for the TEA signal.

State Meaning AssertedÑIndicates that a bus error occurred. Causes a machine
check exception (and possibly causes the processor to enter
checkstop state if machine check enable bit is cleared
(MSR[ME] = 0)). For more information, see Section 4.6.2.2,
ÒCheckstop State (MSR[ME] = 0).Ó Assertion terminates the current
transaction; that is, assertion of TA is ignored. The assertion of TEA
causes the negation/high impedance of DBB in the next clock cycle.
However, data entering the GPR or the cache is not invalidated.

NegatedÑIndicates that no bus error was detected.

Timing Comments AssertionÑMay be asserted while DBB is asserted, up to and
including the cycle of the Þnal TA. TEA should be asserted for one
cycle only.

NegationÑTEA must be negated one cycle after it is asserted.

8.3 60x/MPX Bus Protocol Signal Compatibility
The MPX bus mode protocol deÞnes several new signals not present in the 60x bus
protocol. Also, there are 60x signals not supported by the MPC7400. These signal
differences are summarized in Table 8-6. Note that a few 60x signals have expanded or
modiÞed functionality in the MPX bus mode.

Chapter 8. Signal Descriptions 8-23

60x/MPX Bus Protocol Signal Compatibility

The three types of signals in Table 8-6 (shown in the column headings) are described in the
following three sections.

8.3.1 60x Bus Signals Not in the MPC7400

Several signals deÞned in the 60x bus protocol are not implemented in the MPC7400;
however, new signals provide similar functionality for compatibility reasons.

8.3.1.1 Address Bus Busy and Data Bus Busy (ABB and DBB)

The MPC7400 does not use the ABB or DBB signals as inputs. The MPC7400 tracks its
own outstanding transactions and relies on the system arbiter to provide grants for the
address and data buses only when the bus is available and the grant may be accepted.

8.3.1.2 Data Retry (DRTRY)

The data retry input signal is not implemented on the MPC7400. Only the no-DRTRY mode
deÞned in the 60x bus protocol is supported.

8.3.1.3 Extended Transfer Protocol (XATS)

The extended transfer protocol signal, used for accesses to direct-store segments, is not
supported by the MPC7400 processor interface.

8.3.1.4 Transfer Code (TC[0:1])

The transfer code signals are not implemented on the MPC7400. Other processors that
implement the 60x bus provided an indication of whether a read access was instruction or
data by the encoding of these signals. This information is now provided on TT0 (driven high
for instruction fetches if HID0[IFFT] = 1).

8.3.1.5 Cache Set Element (CSE[0:1])

These signals are not implemented in the MPC7400 as the MPC7400 does not support
snoop-Þltering devices.

Table 8-6. Signal Compatibility Summary

60x Bus Signals
not in MPC7400

60x Bus Signals
Multiplexed with new

MPX Bus Mode Signals

New MPX Bus Mode
Signals

Address bus busy (as input) ABBin
Data bus busy (as input) DBBin
Data retry DRTRY
Extended transfer protocol XATS
Transfer code TC[0:1]
Cache set element CSE[0:1]
Address parity error APE
Data parity error DPE

Data bus write only DBWOÞ Data transfer
index DTI[0:2]

(Shared) SHD Þ SHD0
Address bus busy (as output) ABBÞAMON
Data bus busy (as output) DBBÞDMON

Hit HIT
Data ready DRDY
(Shared) SHD1

8-24 MPC7400 RISC Microprocessor UserÕs Manual

60x/MPX Bus Protocol Signal Compatibility

8.3.1.6 Address Parity Error and Data Parity Error (APE, DPE)

The address parity and data parity error signals are not implemented in the MPC7400.

8.3.2 60x Signals Multiplexed with New MPX Bus Mode
Signals

The DBWO signal is implemented similarly on the MPC7400 as in the MPC750. In MPX
bus mode, this signal is multiplexed with the new DTI0 signal, and together with the new
DTI[1:2] signals, implements more extensive data reordering functionality. See
Section 8.4.6.2, ÒData Transaction Index (DTI[0:2])ÑInput.Ó

The SHD signal is implemented similarly on the MPC7400 as in the MPC604e. In MPX
bus mode, this signal is multiplexed with the new SHD0 signal, and together with the new
SHD1 signal, provides the cache coherency shared indication in a multiprocessor system.
See Section 8.2.5.3, ÒShared (SHD).Ó

As described in Section 8.3.1.1, the ABB and DBB signals are implemented only as outputs
on the MPC7400 in 60x bus mode. In MPX bus mode, these signals are multiplexed with
the new AMON and DMON signals that provide essentially the same functionality as the
ABB and DBB outputs. However, these signals are strictly optional and may not be
implemented in subsequent products that support the MPX bus protocol.

8.3.3 New MPX Bus Mode Signals

The MPX bus modeÕs support for data intervention and full data streaming for burst reads
and writes is realized through the addition of two new signalsÑHIT and DRDY. See
Section 9.6.2, ÒData Tenure in MPX Bus Mode,Ó for a complete description of this
functionality.

The HIT signal is a point-to-point signal output from the processor or local bus slave to the
system arbiter. This signal is a snoop response valid in the address retry (ARTRY) window
(the cycle after an address acknowledge (AACK) that indicates that the MPC7400 will
supply intervention data. That is, the MPC7400 has found the data in its L1 or L2 cache that
has been requested by another masterÕs bus transaction. Instead of asserting ARTRY and
ßushing the data to memory, the MPC7400 may assert HIT to indicate that it can supply the
data directly to the other master. This functionality is enabled separately for the L1 and L2
caches by Þelds in the MSSCR0 register.

The DRDY signal is also used by the MPX bus protocol to implement data intervention in
the case of a cache hit. See Section 8.4.6.3, ÒData Ready (DRDY)ÑOutput.Ó

The SHD1 signal operates in conjunction with the SHD0 signal to indicate that a cached
item is shared. See Section 8.4.5.3, ÒMPX Bus Shared (SHD0, SHD1) Signals.Ó

Chapter 8. Signal Descriptions 8-25

MPX Bus Signal ConÞguration

8.4 MPX Bus Signal ConÞguration
The MPC7400 has a new bus interface that is derived from the 60x bus. This new interface,
the MPX bus, includes several additional features that provide higher memory bandwidth
than the 60x bus and more efÞcient use of the system bus in a multiprocessing environment.

The value of the EMODE signal at the negation of HRESET determines whether the
MPC7400 operates with the 60x bus or the MPX bus. This value is stored in and readable
from the EMODE bit in MSSCR0. The state of MSSR0[EMODE] is active high, meaning
that if EMODE is detected as asserted at the negation of HRESET, MSSR0[EMODE] = 1
and MPX bus mode is selected; otherwise, MSSR0[EMODE] = 0 and 60x bus mode is
selected.

8.4.1 MPX Bus Mode Functional Groupings

Figure 8-2 illustrates the MPC7400Õs signal conÞguration, showing how the signals are
grouped in MPX bus mode. A pinout showing pin numbers is included in the MPC7400
hardware speciÞcations. See Section 9.6, ÒMPX Bus Protocol,Ó for a complete functional
description of the MPX bus protocol.

8-26 MPC7400 RISC Microprocessor UserÕs Manual

MPX Bus Signal ConÞguration

Figure 8-2. MPX Bus Signal Groups

8.4.2 MPX Address Bus Arbitration Signals

The address arbitration signals are the input and output signals the MPC7400 uses to
request the address bus, recognize when the request is granted, and indicate to other devices
when mastership is granted. For a detailed description of how these signals interact, see
Section 9.3.1, ÒAddress Bus Arbitration.Ó

Data
Arbitration

L2 Cache
Address/

Data

BR
BG

TS

AP[0:3]

GBL

TSIZ[0:2]

AACK

ARTRY

SYSCLK

DBG

DRDY

TA
TEA

JTAG/COP

Factory Test

1

1

1

1

5

3

4

TBST

WT

PLL_CFG[0:3]

TT[0:4]
5

4

1 CLK_OUT

L2ADDR[17:0]

L2DATA[0:63]

L2DP[0:7]

L2CE
L2WE
L2CLK_OUT[A:B]

1

3
1

1

1

1

1

1

1
1

CI 1

A[0:31]
32

L2SYNC_OUT

Address
Arbitration

Address
Bus

L2SYNC_IN

L2ZZ

L2 Cache
Clock/

Control

Address
Termination

Address
Transfer

Attributes

Data
Termination

OVDD AVDD

Clock
Control

Test
Interface

18

2

1

1

1

64
8

1

1

MPC7400

L2OVDD L2AVDDVDD

HIT 1

SHD[0:1]
2

DTI[0:2] 3

INT

TBEN

MCP

SRESET

SMI

HRESET

QREQ

QACK

CKSTP_IN

CKSTP_OUT

1

1

1

1

1

1

1

1

1

1
1

Interrupts/
Resets

Processor
Status/
Control

RSRV

CHK1

L2VSEL
1

BVSEL1
Voltage
Select

EMODE
1

DH[0:31]

DP[0:7] 8

32
Data

Transfer
DL[0:31]

32

AMON 1

BR 1

Chapter 8. Signal Descriptions 8-27

MPX Bus Signal ConÞguration

8.4.2.1 Bus Request (BR)ÑOutput

Following are the state meaning and timing comments for the BR output signal on the
MPC7400 in MPX bus mode.

State Meaning AssertedÑSame as 60x bus interface

NegatedÑSame as 60x bus interface

Timing Comments AssertionÑSame as 60x bus interface

NegationÑNote that BR is negated during the cycle in which the
processor is asserting TS unless the processor has another pending
transaction to perform in MPX bus mode.

High ImpedanceÑSame as 60x bus interface

8.4.2.2 Bus Grant (BG)ÑInput

Following are the state meaning and timing comments for the BG output signal on the
MPC7400 in MPX bus mode.

State Meaning AssertedÑIndicates that the MPC7400 may, with the proper
qualiÞcation, begin a bus transaction. A qualiÞed bus grant is
determined from the bus state as follows:

QBG = BG ¥ ÂARTRY ¥ ÂTS ¥ Â(latched state variables)

NegatedÑIndicates that the MPC7400 is not granted next address
bus ownership.

Timing Comments AssertionÑMay occur on any cycle.

NegationÑMay occur whenever the MPC7400 must be prevented
from starting a bus transaction. The MPC7400 may still assume
address bus ownership on the cycle BG is negated if BG was asserted
the previous cycle with other bus grant qualiÞcations. Negation must
occur in every cycle the arbiter delays AACK. Since AACK is not in
the qualiÞed bus grant equation and ABB is not generated by the
MPC7400 in MPX bus mode, the bus arbiter must negate BG in
every cycle the arbiter is delaying AACK in order to prevent a
qualiÞed bus grant.

8.4.2.3 Address Bus Monitor (AMON)ÑOutput

The address bus monitor (AMON) signal is strictly optional in the MPX bus protocol.
Following are the state meaning and timing comments for AMON.

State Meaning AssertedÑSame as 60x bus interface ABB signal

NegatedÑSame as 60x bus interface ABB signal

8-28 MPC7400 RISC Microprocessor UserÕs Manual

MPX Bus Signal ConÞguration

Timing Comments AssertionÑSame as 60x bus interface ABB signal

NegationÑSame as 60x bus interface ABB signal

High ImpedanceÑSame as 60x bus interface ABB signal

8.4.3 Address Bus and Parity in MPX Bus Mode

The following sections describe the address bus and parity signals in MPX bus mode. The
address bus driven mode is enabled with the assertion of EMODE after HRESET negation.
Note that this selection is reßected in the read-only ABD bit in the memory subsystem
control register, MSSCR0. See Section 2.1.6, ÒMemory Subsystem Control Register
(MSSCR0).Ó

8.4.3.1 Address Bus (A[0:31])ÑOutput

Following are the state meaning and timing comments for the address bus A[0:31] output
signals on the MPC7400 in MPX bus mode.

State Meaning Asserted/NegatedÑSame as 60x bus interface

Timing Comments Assertion/NegationÑSame as 60x bus interface

High ImpedanceÑOccurs one bus clock cycle following the
assertion of AACK unless address bus streaming is occurring and the
MPC7400 qualiÞed a BG on the previous cycle.

Note that if MSSCR0[ABD] is set and MSSCR0[EMODE] is set, the
address bus is always driven on the bus clock cycle after BG is
asserted to the processor, regardless of whether the MPC7400 has a
queued transaction.

8.4.3.2 Address Bus (A[0:31])ÑInput

Following are the state meaning and timing comments for the address bus A[0:31] input
signals on the MPC7400 in MPX bus mode.

State Meaning Asserted/NegatedÑSame as 60x bus interface

Timing Comments Assertion/NegationÑSame as 60x bus interface

High ImpedanceÑOccurs on the bus clock cycle after the assertion
of AACK unless address bus streaming is occurring and the
MPC7400 qualiÞed a BG on the previous cycle.

8.4.3.3 Address Parity (AP[0:3])ÑOutput

Following are the state meaning and timing comments for the AP[0:3] output signals on the
MPC7400.

State Meaning Asserted/NegatedÑSame as A[0:31]

Timing Comments Assertion/NegationÑSame as A[0:31]

Chapter 8. Signal Descriptions 8-29

MPX Bus Signal ConÞguration

8.4.3.4 Address Parity (AP[0:3])ÑInput

Following are the state meaning and timing comments for the AP[0:3] input signals on the
MPC7400.

State Meaning Asserted/NegatedÑSame as A[0:31]

Timing Comments Assertion/NegationÑSame as A[0:31]

8.4.4 Address Transfer Attribute Signals in MPX Bus Mode

The transfer attribute signal functions in MPX bus mode are very similar to that of 60x bus
mode, with the exceptions noted in the following subsections.

8.4.4.1 Transfer Start (TS)ÑOutput

Following are the state meaning and timing comments for the transfer start TS output signal
on the MPC7400.

State Meaning AssertedÑSame as 60x bus interface

NegatedÑSame as 60x bus interface

Timing Comments AssertionÑSame as 60x bus interface

NegationÑSame as 60x bus interface

High ImpedanceÑOccurs two bus clock cycles after TS is asserted,
unless address bus streaming is occurring and the MPC7400
qualiÞed a BG on the previous cycle.

8.4.4.2 Transfer Start (TS)ÑInput

Following are the state meaning and timing comments for the transfer start TS input signal
on the MPC7400.

State Meaning AssertedÑSame as 60x bus interface

NegatedÑSame as 60x bus interface

Timing Comments AssertionÑCan occur on any bus clock cycle following a qualiÞed
BG that is accepted by the processor.

NegationÑ Must occur one bus clock cycle after assertion.

8.4.4.3 Transfer Type (TT[0:4])

The transfer type (TT[0:4]) signals consist of Þve input/output signals on the MPC7400.

8.4.4.3.1 Transfer Type (TT[0:4])ÑOutput

Following are the state meaning and timing comments for the transfer type TT[0:4] output
signals on the MPC7400 in MPX bus mode. Note that there is a new transfer type called
read claim (RCLAIM; TT[0:4] = 0b0111) deÞned for MPX bus mode that is used for
accesses generated by touch-for-store instructions.

8-30 MPC7400 RISC Microprocessor UserÕs Manual

MPX Bus Signal ConÞguration

State Meaning Asserted/NegatedÐSame as 60x bus interface except for RCLAIM as
deÞned in Section 9.6.1.3.1, ÒTransfer Type 0Ð4 (TT[0:4]) in MPX
Bus Mode.Ó

Timing Comments Assertion/NegationÑSame as A[0:31]

8.4.4.3.2 Transfer Type (TT[0:4])ÑInput

Following are the state meaning and timing comments for the transfer type TT[0:4] input
signals on the MPC7400 in MPX bus mode.

State Meaning Asserted/NegatedÐSame as 60x bus interface except for RCLAIM as
deÞned in Section 9.6.1.3.1, ÒTransfer Type 0Ð4 (TT[0:4]) in MPX
Bus Mode.Ó

Timing Comments Assertion/NegationÑSame as A[0:31]

8.4.4.4 Transfer Burst (TBST)ÑOutput

The transfer burst (TBST) signal is an output signal on the MPC7400.

Following are the state meaning and timing comments for the transfer burst TBST output
signal on the MPC7400 in MPX bus mode.

State Meaning AssertedÑSame as 60x bus interface

NegatedÑSame as 60x bus interface

Timing Comments Assertion/NegationÑSame as A[0:31]

High ImpedanceÑSame as A[0:31]

8.4.4.5 Transfer Size (TSIZ[0:2])ÑOutput

Following are the state meaning and timing comments for the transfer size TSIZ[0:2] output
signals on the MPC7400 in MPX bus mode.

State Meaning Asserted/NegatedÑSame as 60x bus interface

Timing Comments Assertion/NegationÑSame as A[0:31]

High ImpedanceÑSame as A[0:31]

8.4.4.6 Global (GBL)

The global (GBL) signal is an input/output signal on the MPC7400.

8.4.4.6.1 Global (GBL)ÑOutput

Following are the state meaning and timing comments for the global GBL output signal on
the MPC7400 in MPX bus mode.

State Meaning AssertedÑSame as 60x bus interface

NegatedÑSame as 60x bus interface.

Timing Comments Assertion/NegationÑSame as A[0:31]

Chapter 8. Signal Descriptions 8-31

MPX Bus Signal ConÞguration

8.4.4.6.2 Global (GBL)ÑInput

Following are the state meaning and timing comments for the global GBL input signal on
the MPC7400 in MPX bus mode.

State Meaning AssertedÑSame as 60x bus interface

NegatedÑSame as 60x bus interface

Timing Comments Assertion/NegationÑSame as A[0:31]

8.4.4.7 Write-Through (WT)

The WT signal is both an input and output signal on the MPC7400 in MPX bus mode (note
that it is output-only in 60x bus mode).

8.4.4.7.1 Write-Through (WT)ÑOutput

Following are the state meaning and timing comments for the write-through WT output
signal on the MPC7400 in MPX bus mode.

State Meaning Asserted/NegatedÑSame as 60x bus interface

Timing Comments Assertion/NegationÑSame as A[0:31]

8.4.4.7.2 Write-Through (WT)ÑInput

Following are the state meaning and timing comments for the write-through WT signal as
an input on the MPC7400 in MPX bus mode.

State Meaning AssertedÑIndicates that the MPC7400 should not assert HIT to
provide data intervention in response to a snoop because data
intervention is not allowed for write-through accesses.

NegatedÑIndicates that the MPC7400 may assert HIT to provide
data intervention in response to a snoop, provided CI is not asserted.

Timing Comments Assertion/NegationÑSame as A[0:31]

8.4.4.8 Cache Inhibit (CI)

The CI signal is both an input and output signal on the MPC7400 in MPX bus mode (note
that it is output-only in 60x bus mode).

8.4.4.8.1 Cache Inhibit (CI)ÑOutput

The cache inhibit (CI) signal is an output signal on the MPC7400. Following are the state
meaning and timing comments for the CI signal in MPX bus mode.

State Meaning Asserted/NegatedÑSame as 60x bus interface

Timing Comments Assertion/NegationÑSame as A[0:31]

8-32 MPC7400 RISC Microprocessor UserÕs Manual

MPX Bus Signal ConÞguration

8.4.4.8.2 Cache Inhibit (CI)ÑInput

The cache inhibit (CI) signal is an input signal on the MPC7400. Following are the state
meaning and timing comments for the CI signal as an input in MPX bus mode.

State Meaning AssertedÑIndicates that the MPC7400 should not assert HIT to
provide data intervention in response to a snoop because data
intervention is not allowed for cache-inhibited accesses.

NegatedÑIndicates that the MPC7400 may assert HIT to provide
data intervention in response to a snoop, provided WT is not asserted

Timing Comments Assertion/NegationÑThe same as A[0:31]

8.4.5 MPX Address Transfer Termination Signals

The address transfer termination signal functions in MPX bus mode are very similar to that
of 60x bus mode, with the exceptions noted in the following subsections. For detailed
information about how these signals interact, see Section 9.6.1.4, ÒAddress Termination
Phase in MPX Bus Mode.Ó

8.4.5.1 Address Acknowledge (AACK)ÑInput

The address acknowledge (AACK) signal is an input signal on the MPC7400. Following
are the state meaning and timing comments for the AACK signal in MPX bus mode.

State Meaning AssertedÑThe same as 60x bus interface except the MPC7400, as
address bus master, does not release the address and transfer attribute
signals to high impedance in response to AACK when the following
conditions are met:

¥ Address bus driven mode is enabled (MSSCR0[ABD] = 1) and
there was a BG to the MPC7400 on the previous clock cycle.

¥ Address bus streaming is occurring and the MPC7400 qualiÞed
a BG in the previous clock cycle.

NegatedÑSame as 60x bus interface

Timing Comments AssertionÑThe same as 60x bus interface except that because
AACK is not in the qualiÞed bus grant equation and a synthesized
ABB is not generated in MPX bus mode, the bus arbiter must negate
BG in every cycle the arbiter is delaying AACK to prevent a qualiÞed
bus grant in those cases.

NegationÑSame as 60x bus interface

8.4.5.2 Address Retry (ARTRY)

The address retry (ARTRY) signal is both an input and output signal on the MPC7400 in
MPX bus mode.

Chapter 8. Signal Descriptions 8-33

MPX Bus Signal ConÞguration

8.4.5.2.1 Address Retry (ARTRY)ÑOutput

The address retry (ARTRY) signal is an output signal on the MPC7400. Following are the
state meaning and timing comments for the ARTRY signal in MPX bus mode.

State Meaning AssertedÑSame as 60x bus interface

Negation/High ImpedanceÑSame as 60x bus interface

Timing Comments AssertionÑSame as 60x bus interface

8.4.5.2.2 Address Retry (ARTRY)ÑInput

The address retry (ARTRY) signal is an input signal on the MPC7400. Following are the
state meaning and timing comments for the ARTRY signal in MPX bus mode.

State Meaning AssertedÑThe same as 60x bus interface except that if address bus
streaming is occurring and a TS from this MPC7400 coincides with
the bus cycle of the ARTRY input, the MPC7400 also aborts
subsequent transactions that may have already begun as an additional
response to the assertion of ARTRY.

NegatedÑSame as 60x bus interface

Timing Comments AssertionÑSame as 60x bus interface

Negation/High ImpedanceÑSame as 60x bus interface

8.4.5.3 MPX Bus Shared (SHD0, SHD1) Signals

The SHD0 and SHD1 signals act together to indicate a shared snoop response. In 60x bus
mode, the SHD0 signal is used as the SHD signal, analogous to the SHD signal of the
MPC604e. The MPX bus mode interface allows a given master to drive a new address
tenure every other cycle, so the shared signal must be able to be driven every other cycle.
But, because it must be actively negated and might be driven by multiple masters at any
given time, in MPX mode, electrical requirements dictate that two versions of the SHD
signal be implemented. When signaling a snoop response of shared, the MPC7400 must
assert SHD0 unless SHD0 was asserted in any of the three cycles prior to the snoop
response window for the current transaction. In that case, the MPC7400 asserts SHD1.
Thus, each of SHD0 and SHD1 can be released to high-impedance, driven negated, then
released to high-impedance again before it needs to be reasserted. When the MPC7400 is a
bus master, the MPC7400 considers the snoop response to be shared if either SHD0 or
SHD1 is asserted.

In MEI mode (MSSCR[SHDEN] = 0), the shared signals are enabled with
MSSCR0[SHDPEN3]. In MESI or MERSI mode (MSSCR[SHDEN] = 1), the SHDPEN3
bit in MSSCR0 is ignored. See Section 2.1.6, ÒMemory Subsystem Control Register
(MSSCR0).Ó

8-34 MPC7400 RISC Microprocessor UserÕs Manual

MPX Bus Signal ConÞguration

8.4.5.3.1 Shared (SHD0, SHD1)ÑOutput

If SHD0 was asserted in any of the three cycles before the snoop response window for the
current transaction, then SHD1 is used to indicate a shared response in this cycle. Following
are the state meaning and timing comments for the SHD0 and SHD1 output signals.

State Meaning AssertedÑIf ARTRY is not asserted, it indicates that the MPC7400
had a cache hit on a shared block or the reservation address.

If ARTRY is asserted, a snoop push of modiÞed data is required.

Negated/High ImpedanceÑIndicates that the processor did not
contain the data or has invalidated the snooped address.

Timing Comments Assertion/NegationÑSame as SHD in 60x bus interface (same as
ARTRY).

High ImpedanceÑSame as SHD in 60x bus interface (same as
ARTRY).

8.4.5.3.2 Shared (SHD0, SHD1)ÑInput

Following are the state meaning and timing comments for the SHD0 and SHD1 input
signals.

State Meaning AssertedÑSame as SHD in 60x bus interface.

NegatedÑSame as SHD in 60x bus interface.

Timing Comments Assertion/NegationÑSame as SHD in 60x bus interface (same as
ARTRY).

8.4.5.4 Snoop Hit (HIT)ÑOutput

The snoop response in MPX mode of the MPC7400 uses the HIT output signal to
communicate to the system whether or data intervention occurs for the current transaction.
See Section 9.6.1, ÒAddress Tenure in MPX Bus Mode,Ó and Section 9.6.2, ÒData Tenure
in MPX Bus Mode,Ó for more detailed information about the data-only transactions used
by the MPC7400 in MPX bus mode for data intervention.

Additionally, if the MPC7400 intervenes with shared or exclusive data rather than modiÞed
data, the HIT signal is asserted for a second cycle after AACK. This second HIT cycle
signals to the memory controller that the copy of data in memory is up-to-date, and snarÞng
is not required. (SnarÞng is when a device provides data speciÞcally for another device and
a third device reads the data also). L1 and L2 data cache hit intervention (and the assertion
of HIT) is enabled individually with the L1_INTVEN and L2_INTVEN bits in the memory
subsystem control register, MSSCR0. See Section 2.1.6, ÒMemory Subsystem Control
Register (MSSCR0).Ó

It is possible for the MPC7400 to assert both ARTRY and HIT simultaneously for the same
snoop response. When simultaneously asserted, ARTRY supersedes HIT and HIT should
be ignored by the system.

Chapter 8. Signal Descriptions 8-35

MPX Bus Signal ConÞguration

Following are the state meaning and timing comments for the HIT signal.

State Meaning AssertedÑThe MPC7400 has the requested data in its cache and will
supply it through a data-only transaction. HIT is asserted for a
second cycle if the snoop data does not need to be forwarded to
memory because it was not modiÞed.

NegatedÑThe MPC7400 cannot provide data for a snoop request
through the HIT intervention protocol.

Timing Comments AssertedÑLike other snoop responses, HIT can be driven as soon as
the second cycle after TS. If AACK is delayed, the response needs to
be held until the cycle after AACK (for example, HIT is asserted with
the same timing as ARTRY).

HIT is held asserted for one cycle beyond the assertion of AACK if
the snoop hit data is modiÞed and must be forwarded to memory.
HIT is asserted for two cycles beyond the assertion of AACK if the
snoop hit data is not modiÞed and does not need to be forwarded to
memory.

NegatedÑHIT is negated the cycle after the appropriate response
window (one cycle after AACK for modiÞed data and two cycles
after AACK for non-modiÞed data) unless it must be asserted again
immediately for another snoop response.

8.4.6 Data Bus Arbitration Signals

The data bus arbitration signals for MPX bus mode operate similarly to 60x bus mode
except as noted in the following subsections. See Section 9.6.2.1, ÒData Bus Arbitration
Phase in MPX Bus Mode,Ó for more information about data bus arbitration in MPX bus
mode.

8.4.6.1 Data Bus Grant (DBG)ÑInput

The data bus grant (DBG) signal is an input signal on the MPC7400. Following are the state
meaning and timing comments for the DBG signal in MPX bus mode.

State Meaning AssertedÑSame as 60x bus interface, except that data streaming is
allowed in MPX bus mode.

NegatedÑSame as 60x bus interface

Timing Comments AssertionÑSame as 60x bus interface

NegationÑSame as 60x bus interface

8-36 MPC7400 RISC Microprocessor UserÕs Manual

MPX Bus Signal ConÞguration

8.4.6.2 Data Transaction Index (DTI[0:2])ÑInput

The 60x bus transaction reordering scheme is implemented with the DBWO signal. The
MPX bus mode can be conÞgured to support a generalized reordering scheme using the
new 3-bit data transfer index (DTI[0:2]) input signals.

The DTI signals can be bused or point-to-point. They must be driven valid by the system
arbiter on the cycle before a data bus grant (DBG). They are sampled on each bus clock
cycle by the MPC7400 and are qualiÞed by the assertion of DBG on the following cycle.

The data transfer index is a pointer into the MPC7400Õs queue of outstanding transactions,
indicating which transaction is to be serviced by the subsequent data tenure. Note that this
protocol is a generalization of the DBWO protocol in which the assertion of DBWO
indicated that the Þrst write operation in the queue was to be serviced. For example,
DTI = 0b000 means that the oldest transaction is to be serviced, DTI = 0b001 means the
second oldest transaction is to be serviced up to DTI = 0b101 meaning the 6th oldest
transaction is to be serviced. Note that because the MPC7400 only supports six outstanding
data transactions, the maximum setting for DTI is 0b101.

Data tenure reordering can be disabled by setting DTI[0:2] to 0b000. This setting causes
the MPC7400 to select always the oldest transaction in the outstanding transaction queue.
See Section 9.6.2.2.8, ÒData Tenure Reordering in MPX Bus Only.Ó

Following are the state meaning and timing comments for the DTI[0:2] signals.

State Meaning AssertedÑThe DTI[0:2] signals act as a pointer into the queue of
outstanding transactions for the MPC7400, indicating which
transaction is to be served by the subsequent data tenure. For
example, DTI = 0b000 means that the oldest transaction is to be
serviced, DTI = 0b001 means the second oldest transaction is to be
serviced up to DTI = 0b101 meaning the 6th oldest transaction is to
be serviced.

NegatedÑDTI = 0b000 indicates that the MPC7400 must run the
data bus tenures in the same order as the address tenures

Timing Comments Assertion/NegationÑSampled each cycle and qualiÞed by a
qualiÞed DBG in the following cycle.

8.4.6.3 Data Ready (DRDY)ÑOutput

The data ready (DRDY) signal is an output signal on the MPC7400 used in conjunction
with HIT to perform data intervention in MPX bus mode. Note that the L1_INTVEN and
L2_INTVEN Þelds of MSSCR0 control the way that the MPC7400 uses data intervention
for the L1 and L2 caches. See Section 2.1.6, ÒMemory Subsystem Control Register
(MSSCR0).Ó Also, see Section 9.6.2, ÒData Tenure in MPX Bus Mode,Ó for more
information about the data intervention functionality. Following are the state meaning and
timing comments for the DRDY signal.

Chapter 8. Signal Descriptions 8-37

MPX Bus Signal ConÞguration

State Meaning AssertedÑThe MPC7400 has data ready for a pending bus operation
initiated elsewhere in the system (for which the MPC7400 has
previously signaled HIT during the snoop response window), and the
MPC7400 is requesting the data bus in order to service that bus
operation.

NegatedÑThe MPC7400 is not requesting the data bus to service an
outstanding bus request.

Timing Comments AssertedÑDRDY is asserted no earlier than HIT and no earlier than
two cycles before the MPC7400 is able to drive the data (since
DRDY may be followed immediately by DBG and then TA).

NegatedÑDRDY is negated on the cycle after it is asserted unless
another DRDY is asserted for the next transaction. DRDY may be
fully pipelined on back-to-back cycles when multiple hits are
outstanding.

8.4.6.4 Data Bus Monitor (DMON)ÑOutput

The data bus monitor (DMON) signal is strictly optional in the MPX bus protocol.
Following are the state meaning and timing comments for DMON.

State Meaning AssertedÑSame as 60x bus interface DBB signal

NegatedÑSame as 60x bus interface DBB signal

Timing Comments AssertionÑSame as 60x bus interface DBB signal

NegationÑSame as 60x bus interface DBB signal

High ImpedanceÑSame as 60x bus interface DBB signal

8.4.7 Data Transfer Signals in MPX Bus Mode

The data transfer signals in MPX bus mode transmit data and generate and monitor parity
for the data transfer similarly to that in 60x bus mode, except that they are also used for
data-only transactions. For a detailed description of how the data transfer signals interact in
MPX bus mode, see Section 9.6.2, ÒData Tenure in MPX Bus Mode.Ó

8.4.7.1 Data Bus (DH[0:31], DL[0:31])

The following subsections describe the operation of the data bus signals as inputs and
outputs in MPX bus mode.

8.4.7.1.1 Data Bus (DH[0:31], DL[0:31])ÑOutput

Following are the state meaning and timing comments for the DH[0:31], DL[0:31] signals
as outputs in MPX bus mode.

8-38 MPC7400 RISC Microprocessor UserÕs Manual

MPX Bus Signal ConÞguration

State Meaning Asserted/NegatedÑRepresent the state of data during a data write
transaction or a data-only (data intervention) transaction. Byte lanes
not selected for data transfer do not supply valid data.

Timing Comments Assertion/NegationÑInitial beat occurs one bus clock cycle after a
qualiÞed DBG is sampled, and, for bursts, transitions on the bus in
the clock cycle following each assertion of TA.

High ImpedanceÑSame as 60x bus interface

8.4.7.1.2 Data Bus (DH[0:31], DL[0:31])ÑInput

Following are the state meaning and timing comments for the DH[0:31], DL[0:31] signals
as inputs in MPX bus mode.

State Meaning Asserted/NegatedÑSame as 60x bus interface, except that these
signals are also used for data-only transactions in MPX bus mode.

Timing Comments Assertion/NegationÑSame as 60x bus interface

8.4.7.2 Data Bus Parity (DP[0:7])ÑOutput

Following are the state meaning and timing comments for the DP[0:7] signals as outputs in
MPX bus mode.

State Meaning Asserted/NegatedÑSame as 60x bus interface, except that they are
also driven for data-only transactions in MPX bus mode.

High ImpedanceÑSame as 60x bus interface

Timing Comments Assertion/NegationÑSame as DH[0:31], DL[0:31]

High ImpedanceÑSame as DH[0:31], DL[0:31]

8.4.7.3 Data Bus Parity (DP[0:7])ÑInput

Following are the state meaning and timing comments for the DP[0:7] signals as inputs in
MPX bus mode.

State Meaning Asserted/NegatedÑSame as 60x bus interface., except that these
signals are also used for data-only transactions in MPX bus mode.

Timing Comments Assertion/NegationÑSame as DH[0:31], DL[0:31]

8.4.8 Data Transfer Termination Signals in MPX Bus Mode

The function of the data termination signals in MPX bus mode is similar to that in 60x bus
mode. The differences are described in the following subsections. For a detailed description
of how these signals interact in MPX bus mode, see Section 9.6.2.3, ÒData Termination
Phase in MPX Bus Mode.Ó

Chapter 8. Signal Descriptions 8-39

Non-Protocol Signal Descriptions

8.4.8.1 Transfer Acknowledge (TA)ÑInput

Following are the state meaning and timing comments for the TA signal.

State Meaning AssertedÑSame as 60x bus interface

NegatedÑSame as 60x bus interface

Timing Comments AssertionÑSame as 60x bus interface

NegationÑSame as 60x bus interface

8.4.8.2 Transfer Error Acknowledge (TEA)ÑInput

Following are the state meaning and timing comments for the TEA signal.

State Meaning AssertedÑThe same as the 60x bus interface except for the comment
about the assertion of TA causing DBB to negate (because the MPX
bus mode does not use DBB, although similar functionality is
provided by the DMON signal in MPX bus mode).

NegatedÑSame as 60x bus interface

Timing Comments AssertionÑMay be asserted on any bus clock cycle during a normal
data tenure, from the cycle following a qualiÞed data bus grant to the
cycle of the Þnal TA.

NegationÑSame as 60x bus interface

8.5 Non-Protocol Signal Descriptions
The following sections describe the signals on the MPC7400 that do not speciÞcally
implement the 60x or MPX bus protocols. These signals include the L2 interface signals,
the interrupt and reset signals, processor status and control signals, clock control signals,
and JTAG test signals.

8.5.1 L2 Cache Address/Data

The MPC7400Õs dedicated L2 cache interface provides all the signals required for the
support of up to 1 Mbyte of synchronous SRAM for data storage. The use of the L2 data
parity (L2DP[0:7]) and L2 low-power mode enable (L2ZZ) signals is optional, and depends
on the SRAMs selected for use with the MPC7400. Note that the least-signiÞcant bit of the
L2 address (L2ADDR[17:0]) is identiÞed as bit 0, and the most-signiÞcant bit is identiÞed
as bit 17. See Section 3.7, ÒL2 Cache Interface,Ó for more information on the operation of
the L2 interface and the interactions of these signals.

8-40 MPC7400 RISC Microprocessor UserÕs Manual

Non-Protocol Signal Descriptions

8.5.1.1 L2 Address (L2ADDR[17:0])ÑOutput

Following are the state meaning and timing comments for the L2 address output signals.

State Meaning Asserted/NegatedÑRepresents the address of the data to be
transferred to the L2 cache. The L2 address bus is conÞgured with
bit 0 as the least-signiÞcant bit. Address bit 14 determines which
cache tag set is selected.

Timing Comments Assertion/NegationÑDriven valid by the MPC7400 during read and
write operations; driven with static data when the L2 cache memory
is not being accessed.

8.5.1.2 L2 Data (L2DATA[0:63])

The data bus (L2DATA[0:63]) consists of 64 signals that are both input and output on the
MPC7400.

8.5.1.2.1 L2 Data (L2DATA[0:63])ÑOutput

Following are the state meaning and timing comments for the L2 data output signals.

State Meaning Asserted/NegatedÑRepresents the state of data during a data write
transaction; data is always transferred as double words.

Timing Comments Assertion/NegationÑDriven valid by MPC7400 during write
operations; driven with static data when the L2 cache memory is not
being accessed by a read operation.

High ImpedanceÑOccurs for at least one cycle when transitioning
between read and write operations to the L2 cache memory.

8.5.1.2.2 L2 Data (L2DATA[0:63])ÑInput

Following are the state meaning and timing comments for the L2 data input signals.

State Meaning Asserted/NegatedÑRepresents the state of data during a data read
transaction; data is always transferred as double words.

Timing Comments Assertion/NegationÑDriven valid by L2 cache memory during read
operations.

8.5.1.3 L2 Data Parity (L2DP[0:7])

The eight data bus parity (L2DP[0:7]) signals on the MPC7400 are both output and input
signals.

Chapter 8. Signal Descriptions 8-41

Non-Protocol Signal Descriptions

8.5.1.3.1 L2 Data Parity (L2DP[0:7])ÑOutput

Following are the state meaning and timing comments for the L2 data parity output signals.

State Meaning Asserted/NegatedÑRepresents odd parity for each of the 8 bytes of
L2 cache data during write transactions. Odd parity means that an
odd number of bits, including the parity bit, are driven high. Note
that parity bit 0 is associated with bits 0:7 (byte lane 0) of the
L2DATA bus.

Timing Comments Assertion/NegationÑThe same as L2DATA[0:63].
High ImpedanceÑThe same as L2DATA[0:63].

8.5.1.3.2 L2 Data Parity (L2DP[0:7])ÑInput

Following are the state meaning and timing comments for the L2 parity input signals.

State Meaning Asserted/NegatedÑRepresents odd parity for each byte of L2 cache
read data.

Timing Comments Assertion/NegationÑThe same as L2DATA[0:63]

8.5.2 L2 Cache Clock/Control

The following sections describe the L2 clock and control signals.

8.5.2.1 L2 Chip Enable (L2CE)ÑOutput

Following are the state meaning and timing comments for the L2CE signal.

State Meaning AssertedÑIndicates that the L2 cache memory devices are being
selected for a read or write operation.

NegatedÑIndicates that the MPC7400 is not selecting the L2 cache
memory devices for a read or write operation.

Timing Comments Assertion/NegationÑMay occur on any cycle. L2CE is driven high
during HRESET assertion.

8.5.2.2 L2 Write Enable (L2WE)ÑOutput

Following are the state meaning and timing comments for the L2WE signal.

State Meaning AssertedÑIndicates that the MPC7400 is performing a write
operation to the L2 cache memory.

NegatedÑIndicates that the MPC7400 is not performing an L2
cache memory write operation.

Timing Comments Assertion/NegationÑMay occur on any cycle. L2WE is driven high
during HRESET assertion.

8-42 MPC7400 RISC Microprocessor UserÕs Manual

Non-Protocol Signal Descriptions

8.5.2.3 L2 Clock Out A (L2CLK_OUTA)ÑOutput

Following are the state meaning and timing comments for the L2CLK_OUTA signal.

State Meaning Asserted/NegatedÑClock output for L2 cache memory devices. The
L2CLK_OUTA signal is identical and synchronous with the
L2CLK_OUTB signal and provides the capability to drive up to four
L2 cache memory devices. If differential L2 clocking is conÞgured
through the setting of the L2CR, the L2CLK_OUTB signal is driven
phase-inverted with relation to the L2CLK_OUTA signal.

Timing Comments Assertion/NegationÑRefer to the MPC7400 hardware
specifications for timing comments. The L2CLK_OUTA signal is
driven low during assertion of HRESET.

8.5.2.4 L2 Clock Out B (L2CLK_OUTB)ÑOutput

Following are the state meaning and timing comments for the L2CLK_OUTB signal.

State Meaning Asserted/NegatedÑClock output for L2 cache memory devices. The
L2CLK_OUTB signal is identical and synchronous with the
L2CLK_OUTA signal, and provides the capability to drive up to four
L2 cache memory devices. If differential L2 clocking is conÞgured
through the setting of the L2CR, the L2CLK_OUTA signal is driven
phase inverted with relation to the L2CLK_OUTB signal.

Timing Comments Assertion/NegationÑSee the MPC7400 hardware specifications for
timing comments. The L2CLK_OUTB signal is driven low during
assertion of HRESET.

8.5.2.5 L2 Synchronize Out (L2SYNC_OUT)ÑOutput

Following are the state meaning and timing comments for the L2SYNC_OUT signal.

State Meaning Asserted/NegatedÑClock output for L2 clock synchronization. The
L2SYNC_OUT signal should be routed half of the trace length to the
L2 cache memory devices and returned to the L2SYNC_IN signal
input.

Timing Comments Assertion/NegationÑSee the MPC7400 hardware specifications for
timing comments. The L2SYNC_OUT signal is driven low during
assertion of HRESET.

8.5.2.6 L2 Synchronize In (L2SYNC_IN)ÑInput

Following are the state meaning and timing comments for the L2SYNC_IN signal.

State Meaning Asserted/NegatedÑClock input for L2 clock synchronization. The
L2SYNC_IN signal is driven by the L2SYNC_OUT signal output.

Chapter 8. Signal Descriptions 8-43

Non-Protocol Signal Descriptions

Timing Comments Assertion/NegationÑRefer to the MPC7400 hardware
specifications for timing comments. The routing of this signal on the
printed circuit board should ensure that the rising edge at
L2SYNC_IN is coincident with the rising edge of the clock at the
clock input of the L2 cache memory devices.

8.5.2.7 L2 Low-Power Mode Enable (L2ZZ)ÑOutput

Following are the state meaning and timing comments for the L2ZZ signal.

State Meaning Asserted/NegatedÑEnables low-power mode for certain L2 cache
memory devices. Operation of the signal is enabled through the
L2CR.

Timing Comments Assertion/NegationÑOccurs synchronously with the L2 clock when
the MPC7400 enters and exits the nap or sleep power modes; after
negation of this signal, at least two L2 clock cycles must elapse
before L2 cache operations can resume. The L2ZZ signal is driven
low during assertion of HRESET.

8.5.3 Interrupts/Reset Signals

Most system status signals are input signals that indicate when exceptions are received,
when checkstop conditions have occurred, and when the MPC7400 must be reset. The
MPC7400 generates the output signal, CKSTP_OUT, when it detects a checkstop
condition. For a detailed description of these signals, see Section 9.7, ÒInterrupt,
Checkstop, and Reset Signal Interactions.Ó

8.5.3.1 Interrupt (INT)ÑInput

The interrupt (INT) signal is an input signal on the MPC7400. Following are the state
meaning and timing comments for the INT signal.

State Meaning AssertedÑIndicates that the MPC7400 should initiate an external
interrupt if enabled in the MSR.

NegatedÑIndicates that the interrupt is not being requested.

Timing Comments AssertionÑMay occur at any time asynchronously to SYSCLK; The
INT input is level-activated.

NegationÑShould not occur until after the interrupt is taken.

8.5.3.2 System Management Interrupt (SMI)ÑInput

The system management interrupt (SMI) signal is an input signal on the MPC7400.
Following are the state meaning and timing comments for the SMI signal.

8-44 MPC7400 RISC Microprocessor UserÕs Manual

Non-Protocol Signal Descriptions

State Meaning AssertedÑIndicates that the MPC7400 should initiate a system
management interrupt if enabled in the MSR.

NegatedÑIndicates that the interrupt is not being requested.

Timing Comments AssertionÑMay occur at any time asynchronously to SYSCLK; The
SMI input is level-activated.

NegationÑShould not occur until after the interrupt is taken.

8.5.3.3 Machine Check (MCP)ÑInput

The machine check (MCP) signal is an input signal on the MPC7400. Following are the
state meaning and timing comments for the MCP signal.

State Meaning AssertedÑIndicates that the MPC7400 should initiate a machine
check interrupt or enter the checkstop state as directed by the MSR.

NegatedÑIndicates that machine check handling is not being
requested.

Timing Comments AssertionÑMay occur at any time asynchronously to SYSCLK; The
MCP input is falling-edge activated.

NegationÑMay occur any time after the minimum MCP pulse width
has been met; see the MPC7400 hardware speciÞcations.

8.5.3.4 Reset Signals

There are two reset signals on the MPC7400Ñhard reset (HRESET) and soft reset
(SRESET).

8.5.3.4.1 Soft Reset (SRESET)ÑInput

Following are the state meaning and timing comments for the SRESET signal.

State Meaning AssertedÑInitiates processing for a reset exception as described in
Section 4.6.1, ÒSystem Reset Exception (0x00100).Ó

NegatedÑIndicates that normal operation should proceed. See
Section 9.7.3, ÒReset Inputs.Ó

Timing Comments AssertionÑMay occur at any time and may be asserted
asynchronously to the MPC7400 input clock. The SRESET input is
negative edge-sensitive.

NegationÑMay be negated two bus cycles after assertion.

This input has additional functionality in certain test modes.

8.5.3.4.2 Hard Reset (HRESET)ÑInput

The hard reset (HRESET) signal must be used at power-on to reset properly the processor.
Following are the state meaning and timing comments for the HRESET signal.

Chapter 8. Signal Descriptions 8-45

Non-Protocol Signal Descriptions

State Meaning AssertedÑInitiates a complete hard reset operation when this input
transitions from negated to asserted. Causes a reset exception as
described in Section 4.6.1, ÒSystem Reset Exception (0x00100).Ó
Output drivers are released to high impedance within Þve clocks
after the assertion of HRESET.

NegatedÑIndicates that normal operation should proceed. See
Section 9.7.3, ÒReset Inputs.Ó

Timing Comments AssertionÑMay occur at any time and may be asserted
asynchronously to the MPC7400 input clock; must be held asserted
for a minimum of 255 clock cycles after the PLL lock time has been
met. Refer to the MPC7400 hardware specification for further timing
comments.

NegationÑMay occur any time after the minimum reset pulse width
has been met.

This input has additional functionality in certain test modes.

8.5.3.5 Checkstop Input (CKSTP_IN)ÑInput

Following are the state meaning and timing comments for the CKSTP_IN signal.

State Meaning AssertedÑIndicates that the MPC7400 must terminate operation by
internally gating off all clocks, and release all outputs (except
CKSTP_OUT, L2CE, L2WE, and L2CLK_OUTx) to the
high-impedance state. Once CKSTP_IN has been asserted; it must
remain asserted until the system has been reset.

NegatedÑIndicates that normal operation should proceed. See
Section 9.7.2, ÒCheckstops.Ó

Timing Comments AssertionÑMay occur at any time and may be asserted
asynchronously to the input clocks.

NegationÑMay occur any time after the CKSTP_OUT output signal
has been asserted.

8.5.3.6 Checkstop Output (CKSTP_OUT)ÑOutput

Note that the CKSTP_OUT signal is an open-drain type output, and requires an external
pull-up resistor (for example, 10 kW to VDD) to assure proper negation of the CKSTP_OUT
signal. Following are the state meaning and timing comments for the CKSTP_OUT signal.

State Meaning AssertedÑIndicates that the MPC7400 has detected a checkstop
condition and has ceased operation.

NegatedÑIndicates that the MPC7400 is operating normally.
See Section 9.7.2, ÒCheckstops.Ó

8-46 MPC7400 RISC Microprocessor UserÕs Manual

Non-Protocol Signal Descriptions

Timing Comments AssertionÑMay occur at any time and may be asserted
asynchronously to the MPC7400 input clocks.

NegationÑIs negated upon assertion of HRESET.

8.5.3.7 Check (CHK)ÑInput

Following are the state meaning and timing comments for the CHK signal.

State Meaning AssertedÑSampled at HRESET negation to select post-POR
internal memory test and initialization if asserted, or not if negated.
See Section 4.6.2.1, ÒMachine Check Exception Enabled
(MSR[ME] = 1),Ó for more information about the post-POR internal
memory tests and the effects of failures.

NegatedÑAfter HRESET negation, CHK must remain negated for
normal operation.

Timing Comments Assertion/NegationÑMay be tied high for normal operation or may
be tied to HRESET to select post-POR internal memory test as
described above.

8.5.4 Processor Status/Control Signals

Processor status signals indicate the state of the processor. This includes the memory
reservation signal, machine quiesce control signals, and time base enable signal.

8.5.4.1 Reservation (RSRV)ÑOutput

The reservation (RSRV) signal is an output signal on the MPC7400. Following are the state
meaning and timing comments for the RSRV signal.

State Meaning Asserted/NegatedÑIndicates the state of the internal reservation
coherency bit used by the lwarx and stwcx. instructions.

Timing Comments Assertion/NegationÑMay occur on any cycle; occurs immediately
following a transition of the reservation coherency bit.

8.5.4.2 Timebase Enable (TBEN)ÑInput

The timebase enable (TBEN) signal is an input signal on the MPC7400. Following are the
state meaning and timing comments for the TBEN signal.

State Meaning AssertedÑIndicates that the timebase and decrementer should
continue clocking. This signal functions as a count enable control for
the timebase and decrementer counter.

NegatedÑIndicates that the timebase and decrementer should stop
clocking.

Timing Comments Assertion/NegationÑMay occur at any time asynchronously to
SYSCLK

Chapter 8. Signal Descriptions 8-47

Non-Protocol Signal Descriptions

8.5.4.3 Quiescent Request (QREQ)ÑOutput

The quiescent request (QREQ) signal is an output signal on the MPC7400. See Chapter 10,
ÒPower and Thermal Management,Ó for more information about the power management
modes of the MPC7400. Following are the state meaning and timing comments for the
QREQ signal.

State Meaning AssertedÑIndicates that the MPC7400 is requesting all bus activity
to terminate or pause so that it may enter a quiescent (low-power)
state. Once in this state, the MPC7400 stops snooping further bus
activity.

NegatedÑIndicates that the MPC7400 is not requesting to enter a
quiescent state.

Timing Comments Assertion/NegationÑMay occur on any cycle. QREQ remains
asserted for the duration of the quiescent state.

8.5.4.4 Quiescent Acknowledge (QACK)ÑInput

The quiescent acknowledge (QACK) signal is an input signal on the MPC7400. See
Chapter 10, ÒPower and Thermal Management,Ó for more information about the power
management modes of the MPC7400. Following are the state meaning and timing
comments for the QACK signal.

State Meaning AssertedÑIndicates that all bus activity has terminated or paused,
and the MPC7400 may enter nap or sleep mode.

NegatedÑIndicates that the MPC7400 may not enter nap or sleep
mode, or it must return to doze mode from nap mode in order to
snoop.

Timing Comments Assertion/NegationÑMay occur on any cycle following the
assertion of QREQ. When negated for at least 8 bus cycles; it ensures
that the MPC7400 has returned to doze mode from nap mode.

8.5.4.5 Enhanced Mode (EMODE)ÑInput

The enhanced mode (EMODE) signal is an input signal on the MPC7400 sampled at
HRESET negation used to select the MPX bus mode operation. The state of EMODE
sampled at HRESET negation is stored and readable from the EMODE bit in MSSCR0. The
state of MSSR0[EMODE] is active high, meaning that if EMODE is detected as asserted at
the negation of HRESET, MSSR0[EMODE] = 1. Section 9.6, ÒMPX Bus Protocol,Ó
describes the MPX bus mode operation on the MPC7400.

The EMODE signal is also used to select address bus driven mode after HRESET is negated
in MPX bus mode. If EMODE is asserted after HRESET is negated, address bus driven
mode is selected; if EMODE is negated after HRESET is negated, normal address bus
driving mode (address bus not always driven) is selected. The address bus driven mode is
stored and readable from the MSSCR0[ABD] bit. See Section 9.6.1.2.1, ÒAddress Bus

8-48 MPC7400 RISC Microprocessor UserÕs Manual

Non-Protocol Signal Descriptions

Driven Mode,Ó for more information. Note that address bus driven mode is only available
in MPX bus mode.

Following are the state meaning and timing comments for the EMODE signals.

State Meaning AssertedÑSampled at HRESET negation to select the bus mode. If
EMODE is asserted at HRESET negation, MPX bus mode is
selected.

Additionally, if MPX mode is selected, EMODE is used after
HRESET negation to select address bus driven mode. Address bus
driven mode causes the MPC7400 to drive the address bus whenever
BG is asserted independent of whether the MPC7400 has a bus
transaction to run or not.

NegatedÑIf EMODE is negated at the negation of HRESET, 60x
bus mode is selected. Addtionally, if EMODE remains negated after
HRESET negation (in MPX bus mode), then the address bus driven
mode is not selected. The state of EMODE after HRESET negation
is ignored in 60x bus mode.

Timing Comments Assertion/NegationÑMay be tied high to select 60x bus interface
operation; may be tied to HRESET to select MPX bus interface
operation (without address bus driven mode); may be tied low to
select MPX bus plus address bus driven mode.

8.5.5 Clock Control Signals

The MPC7400 clock signal inputs determine the system clock frequency and provide a
ßexible clocking scheme that allows the processor to operate at an integer multiple of the
system clock frequency.

Refer to the MPC7400 hardware specification for the exact timing relationships of the
clock signals and other signals.

8.5.5.1 System Clock (SYSCLK)ÑInput

The MPC7400 requires a single system clock (SYSCLK) input. This input sets the
frequency of operation for the bus interface. Internally, the MPC7400 uses a phase-locked
loop (PLL) circuit to generate a master clock for all the CPU circuitry (including the bus
interface circuitry) which is phase-locked to the SYSCLK input. The master clock may be
set to an integer or half-integer multiple of the SYSCLK frequency as deÞned in the
MPC7400 hardware specification, allowing the CPU core to operate at an equal or greater
frequency than the bus interface.

Following are the state meaning and timing comments for the SYSCLK signals.

State Meaning Asserted/NegatedÑThe SYSCLK input is the primary clock input
for the MPC7400 and represents the bus clock frequency for

Chapter 8. Signal Descriptions 8-49

Non-Protocol Signal Descriptions

MPC7400 bus operation. Internally, the MPC7400 may be operating
at an integer or half-integer multiple of the bus clock frequency.

Timing Comments Duty cycleÑRefer to the MPC7400 hardware specification for
timing comments and supported ratios.

SYSCLK is used as the frequency reference for the internal PLL
clock generator and must not be suspended or varied during normal
operation to ensure proper PLL operation.

8.5.5.2 PLL ConÞguration (PLL_CFG[0:3])ÑInput

The PLL (phase-locked loop) is conÞgured by the PLL_CFG[0:3] signals. For a given
SYSCLK (bus) frequency, the PLL conÞguration signals set the internal CPU frequency of
operation. See the MPC7400 hardware specification for PLL conÞguration information.

Following are the state meaning and timing comments for the PLL_CFG[0:3] signals.

State Meaning Asserted/NegatedÑConÞgure the operation of the PLL and the
internal processor clock frequency. Settings are based on the desired
bus frequency and internal frequency of operation.

Timing Comments Assertion/NegationÑMust remain stable during operation; should
only be changed during the assertion of HRESET or during sleep
mode. These bits may be read through the PC[0Ð3] bits in the HID1
register.

8.5.5.3 Clock Out (CLK_OUT)ÑOutput

The clock out (CLK_OUT) signal is an output signal (output-only) on the MPC7400.
Following are the state meaning and timing comments for the CLK_OUT signal.

State Meaning Asserted/NegatedÑProvides a PLL clock output for PLL testing and
monitoring. The conÞguration of the HID0[SBCLK] and
HID0[ECLK] bits determines whether the CLK_OUT signal clocks
at the processor clock frequency, the bus clock frequency, or half of
the bus clock frequency. See Table 2-5 for HID0 register
conÞguration of the CLK_OUT signal. The CLK_OUT signal
defaults to a high-impedance state following the assertion of
HRESET. The CLK_OUT signal is provided for testing only.

Timing Comments Assertion/NegationÑRefer to the MPC7400 hardware specification
for timing comments.

8.5.6 IEEE 1149.1a-1993 (JTAG) Interface Description

The MPC7400 has Þve dedicated JTAG signals which are described in Table 8-7. The test
data input (TDI) and test data output (TDO) scan ports are used to scan instructions as well
as data into the various scan registers for JTAG operations. The scan operation is controlled

8-50 MPC7400 RISC Microprocessor UserÕs Manual

Non-Protocol Signal Descriptions

by the test access port (TAP) controller which in turn is controlled by the test mode select
(TMS) input sequence. The scan data is latched in at the rising edge of test clock (TCK).

Test reset (TRST) is an optional JTAG signal which is used in the MPC7400 to reset the
TAP controller asynchronously. The TRST signal assures that the JTAG logic does not
interfere with the normal operation of the device. It is recommended that TRST be asserted
and negated coincident with the assertion of the HRESET signal.

These signals are not used during normal operation. TMS, TDI, and TRST have internal
pull-ups provided; TCK does not. For normal operation, TMS and TDI may be left
unconnected, and TCK must be set high or low. TRST must be asserted sometime during
power-up for JTAG logic initialization. Note that if TRST is tied low, then unnecessary
power is consumed.

8.5.6.1 JTAG Test Clock (TCK)ÑInput

The JTAG test clock (TCK) signal is an input on the MPC7400. Following is the state
meaning for the TCK input signal.

State Meaning Asserted/NegatedÑThis input should be driven by a free-running
clock signal. Input signals to the test access port are clocked in on the
rising edge of TCK. Changes to the test access port output signals
occur on the falling edge of TCK. The test logic allows TCK to be
stopped.

8.5.6.2 JTAG Test Data Input (TDI)ÑInput

Following is the state meaning for the TDI input signal.

State Meaning Asserted/NegatedÑThe value presented on this signal on the rising
edge of TCK is clocked into the selected JTAG test instruction or
data register.

Note that this input contains an internal pull-up resistor to ensure that
an unterminated input appears as a high signal level to the test logic.

Table 8-7. IEEE Interface Pin Descriptions

Signal Name Input/Output
Weak Pullup

Provided
IEEE 1149.1a Function

TCK Input No Scan clock

TDI Input Yes Serial scan input signal

TDO Output No Serial scan output signal

TMS Input Yes TAP controller mode signal

TRST Input Yes TAP controller reset

Chapter 8. Signal Descriptions 8-51

Non-Protocol Signal Descriptions

8.5.6.3 JTAG Test Data Output (TDO)ÑOutput

The JTAG test data output signal is an output on the MPC7400. Following is the state
meaning for the TDO output signal.

State Meaning Asserted/NegatedÑThe contents of the selected internal instruction
or data register are shifted out onto this signal on the falling edge of
TCK. The TDO signal remains in a high-impedance state except
when scanning of data is in progress.

8.5.6.4 JTAG Test Mode Select (TMS)ÑInput

The test mode select (TMS) signal is an input on the MPC7400. Following is the state
meaning for the TMS input signal.

State Meaning Asserted/NegatedÑThis signal is decoded by the internal JTAG TAP
controller to distinguish the primary operation of the test support
circuitry.

Note that this input contains an internal pull-up resistor to ensure that
an unterminated input appears as a high signal level to the test logic.

8.5.6.5 JTAG Test Reset (TRST)ÑInput

The test reset (TRST) signal is an input on the MPC7400. Following is the state meaning
for the TRST input signal.

State Meaning AssertedÑThis input causes asynchronous initialization of the
internal JTAG test access port controller. Note that the signal must be
asserted during the assertion of HRESET in order to properly
initialize the JTAG test access port.

NegatedÑIndicates normal operation.

Note that this input contains an internal pull-up resistor to ensure that
an unterminated input appears as a high signal level (negated) to the
test logic.

8.5.7 Bus Voltage Select (BVSEL)/L2 Voltage Select
(L2VSEL)

The MPC7400 provides several I/O voltages to support both compatibility with existing
systems and migration to future systems. See the MPC7400 hardware specification for
more information on the BVSEL and L2VSEL signals, which control various I/O voltage
options.

8-52 MPC7400 RISC Microprocessor UserÕs Manual

Non-Protocol Signal Descriptions

8.5.7.1 Bus Voltage Select (BVSEL)ÑInput
State Meaning Assertion/NegationÑSelects the high voltage level for all main bus

and utility signals (for example, all signals except L2 interface
signals). See the MPC7400 hardware speciÞcation for more
information.

Note that this input contains an internal pull-up resistor to ensure that
an unterminated input appears as a high signal level to the test logic.

Timing Comments Assertion/NegationÑMust remain asserted or negated during
normal operation.

8.5.7.2 L2 Voltage Select (L2VSEL)ÑInput
State Meaning Assertion/NegationÑSelects the high voltage level for all L2

interface signals. See the MPC7400 hardware speciÞcation for more
information.

Note that this input contains an internal pull-up resistor to ensure that
an unterminated input appears as a high signal level to the test logic.

Timing Comments Assertion/NegationÑMust remain asserted or negated during
normal operation.

8.5.8 Power and Ground Signals

The MPC7400 provides the following connections for power and ground:

¥ VDDÑThe VDD signals provide the supply voltage connection for the processor
core.

¥ OVDDÑThe OVDD signals provide the supply voltage connection for the system
interface drivers.

¥ L2OVDDÑThe L2OVDD signals provide the supply voltage connection for the L2
cache interface drivers. These power supply signals are isolated from the VDD and
OVDD power supply signals.

¥ AVDDÑThe AVDD power signal provides power to the clock generation
phase-locked loop. See the MPC7400 hardware specifications for information on
how to use this signal.

¥ L2AVDDÑThe L2AVDD power signal provides power to the L2 delay-locked loop.
See the MPC7400 hardware specifications for information on how to use this signal.

Chapter 8. Signal Descriptions 8-53

Non-Protocol Signal Descriptions

¥ GND and OGNDÑThe GND and OGND signals provide the connection for
grounding the MPC7400. On the MPC7400, there is no electrical distinction
between the GND and OGND signals.

¥ L2GNDÑThe L2GND signals provide the ground connection for the L2 cache
interface. These ground signals are isolated from the GND and OGND ground
signals.

See the MPC7400 hardware speciÞcation for detailed electrical and mechanical
information for each signal.

8-54 MPC7400 RISC Microprocessor UserÕs Manual

Non-Protocol Signal Descriptions

Chapter 9. System Interface Operation 9-1

Chapter 9
System Interface Operation
This chapter describes the MPC7400 microprocessor bus interface and its operation. It
shows how the MPC7400 signals, deÞned in Chapter 8, ÒSignal Descriptions,Ó interact to
perform address and data transfers.

9.1 MPC7400 System Interface Overview
There are two interface protocols used by the MPC7400Ñthe 60x bus interface and the
MPX bus interface. The 60x bus interface implements the protocol described in the
PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors. Note that
although this protocol is implemented by the MPC603e, MPC604, MPC740 and MPC750
processors, it is referenced as the 60x bus interface.

The MPX protocol is derived from the 60x bus interface. This new interface includes
several additional features that provide higher memory bandwidth than the 60x bus and
more efÞcient use of the system bus in a multiprocessing environment.

The value of the EMODE signal at the negation of HRESET determines whether the
MPC7400 operates with the 60x bus or the MPX bus protocol. This value is stored in and
readable from the EMODE bit in MSSCR0. The state of MSSR0[EMODE] is active high,
meaning that if EMODE is detected as asserted at the negation of HRESET,
MSSR0[EMODE] = 1 and MPX bus mode is selected; otherwise, MSSR0[EMODE] = 0
and 60x bus mode is selected.

When operating in 60x bus mode, the MPC7400 is logically and mechanically compatible
with the MPC750, although a few parameters may vary such as the number of outstanding
transactions. Also, it may not be electrically compatible due to voltage differences. Refer
to the MPC7400 Hardware SpeciÞcations for electrical information on I/O levels and power
supply levels.

9-2 MPC7400 RISC Microprocessor UserÕs Manual

MPC7400 System Interface Overview

9.1.1 MPC7400 Bus Operation Features

The MPC7400 has a separate address and data bus, each with its own set of arbitration and
control signals. This allows for the decoupling of the data tenure from the address tenure of
a transaction and provides for a wide range of system bus implementations including:

¥ Nonpipelined bus operation

¥ Pipelined bus operation

¥ Split transaction operation

¥ Enveloped transaction operation

The MPC7400 supports only the normal memory-mapped address segments deÞned in the
PowerPC architecture. Access to direct-store segments results in a DSI exception.

9.1.1.1 60x Bus Features

The following list summarizes the 60x bus interface features:

¥ 32-bit address bus (plus 4 bits of odd parity)

¥ 64-bit data bus (plus 8 bits of odd parity); a 32-bit data bus mode is not provided

¥ Support for two cache coherency protocols:

Ñ Three-state (MEI) similar to the MPC750

Ñ Four-state (MESI) similar to the MPC604 processors

¥ On-chip snooping to maintain L1 data cache and L2 cache coherency for
multiprocessing applications

¥ Support for address-only transfers (useful for a variety of broadcast operations in
multiprocessor applications)

¥ Support for limited out-of-order transactions

¥ Support for up to seven outstanding transactions (six pending plus one data tenure
in progress).

¥ TTL-compatible interface

9.1.1.2 MPX Bus Features

The MPX bus mode provides increased performance over the 60x bus mode.

The following list summarizes the MPX bus mode features:

¥ Increased address bus bandwidth by eliminating dead cycles under some
circumstances

¥ Full data streaming for reads and writes under some circumstances

¥ Support for full out-of-order transactions

¥ Support for data intervention in multiprocessing systems

Chapter 9. System Interface Operation 9-3

MPC7400 System Interface Overview

¥ Support for third cache Þve-state coherency protocol, ModiÞed, Exclusive,
Reserved, Shared, Invalid (MERSI), where the new R state allows shared
intervention

¥ Improved electrical timings (for example, programmable option for keeping address
bus driven)

9.1.2 Overview of System Interface Accesses

The system interface includes address register queues, prioritization logic, and a bus control
unit. The system interface latches snoop addresses for snooping in the L1 and L2 data
caches, in the memory hierarchy address register queues, and the reservation controlled by
the Load Word and Reserve Indexed (lwarx) and Store Word Conditional Indexed (stwcx.)
instructions. Accesses are prioritized with load operations preceding store operations.

Instructions are automatically fetched from the memory system into the instruction unit
where they are dispatched to the execution units at a peak rate of two instructions per clock.
Conversely, load and store instructions explicitly specify the movement of operands to and
from the integer, ßoating-point, and AltiVec register Þles and the memory system.

When the MPC7400 encounters an instruction or data access, it calculates the effective
address and uses the low-order address bits to check for a hit in the on-chip, 32-Kbyte L1
instruction and data caches. During L1 cache lookup, the instruction and data memory
management units (MMUs) use the higher-order address bits to calculate the virtual
address, from which they calculate the physical address (real address in the architecture
speciÞcation). The physical address bits are then compared with the corresponding cache
tag bits to determine if a cache hit occurred in the L1 instruction or data cache. If the access
misses in the corresponding cache, the physical address is used to access the L2 cache tags
(if the L2 cache is enabled). If no match is found in the L2 cache tags, the physical address
is used to access system memory.

In addition to the loads, stores, and instruction fetches, the MPC7400 performs hardware
table search operations following TLB misses, L2 cache castout operations when
least-recently used cache lines are written to memory after a cache miss, and cache-line
snoop push-out operations when a modiÞed cache line detects a snoop hit from another bus
master.

Figure 9-1 shows a block diagram of the MPC7400, including the address path from the
execution units and instruction fetcher, through the translation logic to the caches and
system interface logic.

The MPC7400 uses separate address and data buses and a variety of control and status
signals for performing external reads and writes. The address bus is 32 bits wide and the
data bus is 64 bits wide. The interface is synchronousÑall MPC7400 inputs are sampled at
and all outputs are driven from the rising edge of the bus clock. The processor runs at a
multiple of the bus-clock speed.

9-4 MPC7400 RISC Microprocessor UserÕs Manual

MPC7400 System Interface Overview

9.1.3 Summary of L1 Instruction and Data Cache Operation

The MPC7400 provides independent L1 instruction and data caches. Each cache is a
physically-addressed, 32-Kbyte cache with 8-way set associativity. Both caches consist of
128 sets of 8 cache lines, with 8 words in each cache line.

The MPC7400 data cache tags are dual-ported and non-blocking allowing efÞcient
load/store and snoop operations.

When conÞgured for MPX bus mode and with data intervention enabled, the MPC7400
supports a Þve-state cache coherency protocol that includes ModiÞed (M), Exclusive (E),
Reserved (R), Shared (S), and Invalid (I) cache states. The MERSI protocol together with
the MPX bus allows for data intervention between caches. Alternately, when conÞgured for
either MPX bus or 60x bus modes, the MPC7400 can be conÞgured to support a four-state
MESI protocol (similar to the MPC604-family microprocessors) or a three-state MEI
protocol (similar to the MPC603- and the MPC750-family microprocessors). MESI or MEI
coherency protocol is selected by the MSSCR0[SHDEN] parameter.

The cache control instructions, dcbt, dcbtst, dcbz, dcbst, dcbf, dcba, dcbi, and icbi, are
intended for the management of the local L1 and L2 caches. The MPC7400 interprets the
cache control instructions as if they pertain only to its own L1 or L2 caches. These
instructions are not intended for managing other caches in the system (except to the extent
necessary to maintain coherency). The MPC7400 snoops all global (GBL asserted) cache
control instruction broadcasts. The dcbst, dcbf, and dcbi instructions cause a broadcast on
the system bus (when M = 1) to maintain coherency. The icbi instruction is always
broadcast, regardless of the state of the memory-coherency-required attribute.

Because the data cache on the MPC7400 is an on-chip, write-back primary cache, the
predominant type of transaction for most applications is burst-read memory operations,
followed by burst-write memory operations and single-beat (caching-inhibited or
write-through) memory read and write operations. Additionally, there can be address-only
operations, variants of the burst and single-beat operations (for example, global memory
operations that are snooped, and atomic memory operations), and address retry activity (for
example, when a snooped read access hits a modiÞed line in the cache).

On a cache miss, cache blocks are Þlled in four beats of 64 bits each. The burst Þll is
performed as a critical-double-word-Þrst operation. For the instruction cache, the critical
double word is simultaneously written to the cache and forwarded to the instruction queue,
thus minimizing stalls due to cache Þll latency. The instruction cache is not blocked to
internal accesses while a load completes, providing for Òhits under misses.Ó For the data
cache, an entire cache block is collected in a reload buffer before being loaded into the
cache. This allows the data cache to service multiple outstanding misses while at the same
time staying available to subsequent load and store hits.

Chapter 9. System Interface Operation 9-5

MPC7400 System Interface Overview

Figure 9-1. MPC7400 Microprocessor Block Diagram

Ad
di

tio
na

l F
ea

tu
re

s
¥ T

im
e

Ba
se

 C
ou

nt
er

/D
ec

re
m

en
te

r
¥ C

lo
ck

 M
ul

tip
lie

r
¥ J

TA
G

/C
O

P
In

te
rfa

ce
¥ T

he
rm

al
/P

ow
er

 M
an

ag
em

en
t

¥ P
er

fo
rm

an
ce

 M
on

ito
r

+

+

Fe
tc

he
r

Br
an

ch
 P

ro
ce

ss
in

g

BT
IC

(6
4

En
try

)

+
 x

 Ö
F

P
S

C
R

VS
C

R
FP

SC
R

L2
C

R

C
TR

LR

PAEA

+
 x

 Ö

In
st

ru
ct

io
n

Un
it

Un
it

In
st

ru
ct

io
n

Q
ue

ue
(6

 W
or

d)

2
In

st
ru

ct
io

ns

R
es

er
va

tio
n

In
te

ge
r

Sy
st

em

D
is

pa
tc

h
U

ni
t

64
-B

it
(2

 In
st

ru
ct

io
ns

)

12
8-

Bi
t

(4
 In

st
ru

ct
io

ns
)

32
-B

it

Fl
oa

tin
g-

Po
in

t U
ni

t
32

-B
it

64
-B

it

R
es

er
va

tio
n

Lo
ad

/S
to

re
 U

ni
t

(E
A

C
al

cu
la

tio
n)

Fi
ni

sh
ed

32
-B

it

Co
m

pl
et

io
n

Un
it

C
om

pl
et

io
n

Q
ue

ue
(8

 E
nt

ry
)

Ta
gs

32
-K

by
te

D
 C

ac
he

M
em

or
y

Su
bs

ys
te

m

In
st

ru
ct

io
n

D
at

a
R

el
oa

d
L2

 C
on

tro
lle

r
L2

 T
ag

s
Bu

s
In

te
rfa

ce
 U

ni
t

L2
 C

as
to

ut

32
-B

it
Ad

dr
es

s
Bu

s
64

-B
it

D
at

a
Bu

s

18
-B

it
L2

 A
dd

re
ss

 B
us

64
-B

it
L2

 D
at

a
Bu

s

In
te

ge
r

St
at

io
n

R
es

er
va

tio
n

St
at

io
n

R
es

er
va

tio
n

St
at

io
n

Re
gi

st
er

 U
ni

t
Un

it
1

Un
it

2

R
es

er
va

tio
n

St
at

io
n

FP
R

 F
ile

6
R

en
am

e
Bu

ffe
rs

St
at

io
n

(2
 E

nt
ry

)
G

PR
 F

ile

6
R

en
am

e
Bu

ffe
rs

V
C

IU

Ve
ct

or

Ve
ct

or
 A

LU

R
es

er
va

tio
n

St
at

io
n

R
es

er
va

tio
n

St
at

io
n

Pe
rm

ut
e

VR
 F

ile

6
R

en
am

e
Bu

ffe
rs

Un
it

64
-B

it R
el

oa
d

Ta
bl

e

V
S

IU
V

F
P

U

12
8-

Bi
t

12
8-

Bi
t

Ab
ilit

y
to

 c
om

pl
et

e
up

C
om

pl
et

ed

In
st

ru
ct

io
n

M
M

U

SR
s

(S
ha

do
w

)

12
8-

En
try

IB
AT

Ar
ra

y
IT

LB
BH

T
(5

12
 E

nt
ry

)

L2
 M

is
s

D
at

a
Tr

an
sa

ct
io

n
Ta

bl
e

Ta
gs

32
-K

by
te

I C
ac

he

D
at

a
R

el
oa

d
Q

ue
ue

In
st

ru
ct

io
n

R
el

oa
d

Q
ue

ue

to
 tw

o
in

st
ru

ct
io

ns
 p

er
 c

lo
ck

Da
ta

 M
M

U

SR
s

(O
rig

in
al

)

12
8-

En
try

D
BA

T
Ar

ra
y

D
TL

B Lo
ad

 F
ol

d

L1
St

or
es

St
or

es

O
pe

ra
tio

ns

L2
 D

at
a

Tr
an

sa
ct

io
n

Ve
ct

or
To

uc
h

Q
ue

ue

9-6 MPC7400 RISC Microprocessor UserÕs Manual

MPC7400 System Interface Overview

Cache lines are selected for replacement based on a pseudo least-recently-used (PLRU)
algorithm. Each time a cache block is accessed, it is tagged as the most recently used way
of the set (unless accessed by the AltiVec LRU instructions, see Section 3.6.8.1, ÒAltiVec
LRU Instruction SupportÓ). For every hit in the cache or when a new block is reloaded, the
PLRU bits for the set are updated. Data cache replacement selection is performed at reload
time, not when a miss occurs. However, instruction cache replacement selection occurs
when an instruction cache miss is Þrst recognizedÑthat is, the instruction cache
replacement target is selected upon miss and not at reload.

A data cache block Þll is caused by a load miss or write-back store miss in the cache. The
cache block that corresponds to the missed address is updated by a burst transfer of the data
from the L2 cache or system memory after any necessary coherency actions have
completed.

For more information about the interactions of the instruction and data caches and the
system interface, see Section 3.8, ÒSystem Bus Interface Unit.Ó

9.1.4 L2 Cache and System Interface

The MPC7400 provides an on-chip, two-way set associative tag memory, and a dedicated
L2 cache port with support for up to 2 Mbyte of external synchronous SRAMs for data
storage. The L2 cache usually operates in write-back mode and supports system cache
coherency through snooping.

The L2 cache receives independent memory access requests from both the L1 instruction
and data caches. The L1 accesses are compared to the L2 cache tags and the data or
instructions are forwarded from the L2 to the L1 cache if there is a cache hit, or are
forwarded on to the bus interface unit if there is an L2 cache miss, or if the address being
accessed is from a page marked as caching-inhibited. Burst read accesses that miss in the
L2 cache initiate a load operation from the bus interface. L1 data cache misses cause
allocates into the data cache only; they do not cause allocation into the L2 cache. The L2
cache is solely a victim cache for the L1 data cache. The L2 cache allocates new entries for
data accesses only when blocks are cast out of the data cache.

An L1 load, store, or castout operation can cause an L2 cache block allocation resulting in
the castout of an L2 cache block marked modiÞed to the bus interface. For additional
information about the operation of the L2 cache, refer to Section 3.7, ÒL2 Cache Interface.Ó

9.1.5 Operation of the System Interface

Memory accesses can occur in single-beat (1, 2, 3, 4, and 8 bytes), double-beat (16 bytes),
and four-beat (32 bytes) burst data transfers. For memory accesses, the address and data
buses are independent to support pipelining and split transactions. The MPX bus protocol
can pipeline as many as seven transactions and supports full out-of-order split-bus
transactions.

Chapter 9. System Interface Operation 9-7

MPC7400 System Interface Overview

Access to the system interface is granted through an external arbitration mechanism that
allows devices to compete for bus mastership. This arbitration mechanism is ßexible,
allowing the MPC7400 to be integrated into systems that implement various fairness and
bus-parking procedures to avoid arbitration overhead.

Typically, memory accesses are weakly ordered to maximize the efÞciency of the bus
without sacriÞcing coherency of the data. The MPC7400 allows load operations to bypass
store operations (except when a dependency exists). Because the processor can
dynamically optimize run-time ordering of load/store trafÞc, overall performance is
improved.

Note that the synchronize (sync) and enforce in-order execution of I/O (eieio) instructions
can be used to enforce strong ordering.

The following sections describe how the MPC7400 interfaces operate, providing detailed
timing diagrams that illustrate how the signals interact. Several general timing diagrams are
included as examples of typical bus operations. See Figure 9-2 for the conventions used in
the timing diagrams.

This is a synchronous interfaceÑall MPC7400 input signals are sampled and output signals
are driven on the rising edge of the bus clock cycle (see MPC7400 Hardware SpeciÞcation
for exact timing information).

9.1.6 Memory Subsystem Control Register (MSSCR0)
Effects

The MSSCR0 control register is used to conÞgure many aspects of the memory subsystem
and bus protocols for the MPC7400. It is a supervisor-only read/write,
implementation-speciÞc register accessed as SPR 1014. MSSCR0 alters how the MPC7400
responds to snoop requests, see Section 2.1.6, ÒMemory Subsystem Control Register
(MSSCR0),Ó for more details. MSSCR0 enables the shared cache coherency state (MEI vs.
MESI), disables the sampling of the SHD[0:1] signals in MEI coherency mode, enables L1
and L2 data cache intervention in MPX bus mode, enables L1 data cache ßushing in
hardware, reßects the address bus driven mode state in MPX bus mode, and reßects the state
of the EMODE signal during power-on reset. See Section 2.1.6, ÒMemory Subsystem
Control Register (MSSCR0),Ó for more detailed information about the bits of MSSCR0.

9.1.7 Direct-Store Accesses Not Supported

The MPC7400 does not support the extended transfer protocol for accesses to the
direct-store storage space. The transfer protocol used for any given access is selected by the
T bit in the MMU segment registers; if the T bit is set, the memory access is a direct-store
access. An attempt to access instructions or data in a direct-store segment causes the
MPC7400 to take an ISI or DSI exception.

9-8 MPC7400 RISC Microprocessor UserÕs Manual

60x Bus Protocol

Figure 9-2. Timing Diagram Legend

9.2 60x Bus Protocol
Memory accesses that use the 60x bus protocol are divided into address and data tenures.
Each tenure has three phasesÑbus arbitration, transfer, and termination. The MPC7400
60x bus protocol also supports address-only transactions. Note that address and data
tenures can overlap, as shown in Figure 9-3.

Figure 9-3 shows that the address and data tenures in the 60x bus protocol are distinct from
one another consist of three phasesÑarbitration, transfer, and termination. Address and
data tenures are independent; that is, the data tenure begins before the address tenure ends,
which allows split-bus transactions to be implemented at the system level in multiprocessor
sytems (see Figure 9-3). Figure 9-3 shows a data transfer that consists of a single-beat
transfer of as many as 64 bits. Four-beat burst transfers of 32-byte cache lines require data
transfer termination signals for each beat of data.

MPC7400 input (while MPC7400 is a bus master)

MPC7400 output (while MPC7400 is a bus master)

MPC7400 output (grouped: here, address plus attributes)

MPC7400 internal signal (inaccessible to the user, but
used in diagrams to clarify operations)

Compelling dependencyÑevent will occur on the next
clock cycle

Prerequisite dependencyÑevent will occur on an
undetermined subsequent clock cycle

MPC7400 three-state output or input

MPC7400 nonsampled input

Signal with sample point

A sampled condition (dot on high or low state) with
multiple dependencies

Timing for a signal had it been asserted (it is not
actually asserted)

Bar over signal name indicates active low

BG

BR

ADDR+

qual BG

Chapter 9. System Interface Operation 9-9

60x Bus Protocol

Figure 9-3. Overlapping Tenures on the MPC7400 Bus for a Single-Beat Transfer

The basic functions of the address and data tenures are as follows:

¥ Address tenure

Ñ Arbitration: During arbitration, address bus arbitration signals are used to gain
mastership of the address bus.

Ñ Transfer: After the MPC7400 is the address bus master, it transfers the address
on the address bus. The address signals and the transfer attribute signals control
the address transfer. The address parity signals ensure the integrity of the address
transfer.

Ñ Termination: After the address transfer, the system signals that the address tenure
is complete or that it must be repeated.

¥ Data tenure

Ñ Arbitration: To begin the data tenure, the MPC7400 arbitrates for mastership of
the data bus.

Ñ Transfer: After the MPC7400 is the data bus master, it samples the data bus for
read operations or drives the data bus for write operations. The data parity signals
ensure the integrity of the data transfer.

Ñ Termination: Data termination signals are required after each data beat in a data
transfer. Note that in a single-beat transaction, the data termination signals also
indicate the end of the tenure, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the tenure only after the
Þnal data beat.

The MPC7400 generates an address-only bus transfer during the execution of the dcbz,
sync, and eieio instructions and in some instances of the dcbf and dcbst instructions (when
they do not result in a hit of modiÞed data in the cache). Additionally, the MPC7400Õs retry
capability provides an efÞcient snooping protocol for systems with multiple memory
systems (including caches) that must remain coherent.

Address Tenure

Data Tenure

Independent Address and Data

Arbitration Transfer Termination

Arbitration Single-beat Transfer Termination

9-10 MPC7400 RISC Microprocessor UserÕs Manual

60x Bus Protocol

9.2.1 Arbitration SignalsÑOverview

Arbitration for both address and data bus mastership is performed by a central, external
arbiter and, minimally, by the arbitration signals shown in Section 8.2.2, ÒAddress Bus
Arbitration Signals.Ó Most arbiter implementations require additional signals to coordinate
bus master/slave/snooping activities. Note that while address bus busy (ABB) and data bus
busy (DBB) are bidirectional signals on other processors that implement the 60x bus, they
are output-only on the MPC7400. However, they must be connected high through pull-up
resistors, so that they remain negated when no devices have control of the buses.

The following list describes the address arbitration signals:

¥ BR (bus request)ÑAssertion indicates that the MPC7400 is requesting mastership
of the address bus.

¥ BG (bus grant)ÑAssertion indicates that the MPC7400 may, with the proper
qualiÞcation, assume mastership of the address bus. A qualiÞed bus grant occurs
when BG is asserted and ARTRY is negated in the current and previous cycle, TS is
negated, and the internally-generated address bus busy (abb) signal is negated.

If the MPC7400 is parked, BR need not be asserted for the qualiÞed bus grant.

¥ ABB (address bus busy)Ñ Assertion by the MPC7400 indicates that the MPC7400
is the address bus master.

The following list describes the data arbitration signals:

¥ DBG (data bus grant)ÑIndicates that the MPC7400 may, with the proper
qualiÞcation, assume mastership of the data bus. A qualiÞed data bus grant occurs
when DBG is asserted, ARTRY is not asserted (for the current transaction), and the
MPC7400 has a data transaction to perform.

Note that DRTRY is not implemented on the MPC7400 and thus the 60x bus mode
implemented in the MPC7400 is a 60x no-DRTRY mode protocol.

¥ DBWO (data bus write only)ÑAssertion indicates that the MPC7400 may perform
the data bus tenure for an outstanding write address even if a read address is
pipelined before the write address. If DBWO is asserted, the MPC7400 assumes
data bus mastership for a pending data bus write operation; the MPC7400 assumes
data bus mastership for a pending read operation if this input is asserted along with
DBG and no write is pending. Care must be taken with DBWO to ensure the desired
write is queued (for example, a cache-line snoop push-out operation). See
Section 9.4.4, ÒUsing Data Bus Write Only (DBWO),Ó for more information.

¥ DBB (data bus busy)ÑAssertion by the MPC7400 indicates that the MPC7400 is
the data bus master. The MPC7400 always assumes data bus mastership if it needs
the data bus and is given a qualiÞed data bus grant (see DBG above).

For more detailed information on the arbitration signals, refer to Section 8.2.2,
ÒAddress Bus Arbitration Signals,Ó and Section 8.2.6, ÒData Bus Arbitration
Signals.Ó

Chapter 9. System Interface Operation 9-11

60x Address Bus Tenure

9.2.2 Address Pipelining and Split-Bus Transactions

The 60x bus protocol provides independent address and data bus capability to support
pipelined and split-bus transaction system organizations. Address pipelining allows the
address tenure of a new bus transaction to begin before the data tenure of the current
transaction has Þnished. Split-bus transaction capability allows other bus activity to occur
(either from the same master or from different masters) between the address and data
tenures of a transaction.

While this capability does not inherently reduce memory latency, support for address
pipelining and split-bus transactions can greatly improve effective bus/memory throughput.
For this reason, these techniques are most effective in shared-memory multimaster
implementations where bus bandwidth is an important measurement of system
performance.

External arbitration is required in systems in which multiple devices must compete for the
system bus. The external arbiter must control the pipeline depth and synchronization
between masters and slaves.

The design of the external arbiter affects pipelining by regulating address bus grant (BG),
data bus grant (DBG), and address acknowledge (AACK) signals. For example, a one-level
pipeline is enabled by asserting AACK to the current address bus master and granting
mastership of the address bus to the next requesting master before the current data bus
tenure has completed. The MPC7400 can pipeline up to six address tenures before starting
a data tenure. A seventh address tenure can be initiated once the DBG for the Þrst data
tenure has occurred.

In a pipelined implementation, data bus tenures are kept in strict order with respect to
address tenures. The MPC7400 60x bus protocol supports a limited intraprocessor
out-of-order, split-transaction capability via the data bus write only (DBWO) signal. For
more information about using DBWO, see Section 9.4.4, ÒUsing Data Bus Write Only
(DBWO).Ó

9.3 60x Address Bus Tenure
This section describes the three phases of the address tenure used in the 60x bus
protocolÑaddress bus arbitration, address transfer, and address transfer termination.

9.3.1 Address Bus Arbitration

When the MPC7400 needs access to the external bus and it is not parked (BG is negated),
it asserts bus request (BR) until it is granted mastership of the bus and the bus is available;
see Figure 9-4. The external arbiter must grant master-elect status to the potential master
by asserting the bus grant (BG) signal after an externally synthesized version of ABB is
negated.

9-12 MPC7400 RISC Microprocessor UserÕs Manual

60x Address Bus Tenure

When designing external bus arbitration logic, note that the MPC7400 may assert BR
without using the bus after it receives the qualiÞed bus grant. For example, in a system using
bus snooping, if the MPC7400 asserts BR to perform a replacement copyback operation,
another device can invalidate that line before the MPC7400 is granted mastership of the
bus. When the MPC7400 is granted mastership of the bus, it no longer needs to perform the
copyback operation; therefore, the MPC7400 does not assert ABB and does not use the bus
for the copyback operation. Another example is the case of a transaction generated by a
stwcx. instruction whose reservation is cancelled by the snoop of another master currently
using the bus. Note that the MPC7400 asserts BR for at least one clock cycle before
negating it in these instances.

9.3.1.1 QualiÞed Bus Grant

A qualiÞed bus grant occurs when BG is asserted, TS is negated, ARTRY is negated in both
the current cycle and the preceding cycle, and the internally generated abb signal is
negated. The MPC7400 asserts ABB when it receives a qualiÞed bus grant.

Figure 9-4. Address Bus Arbitration

Ð1 0 1

need_bus

BG

ARTRY

qual BG

ABB

BR

SYSCLK

TS

Chapter 9. System Interface Operation 9-13

60x Address Bus Tenure

9.3.1.2 Bus Parking

External arbiters must allow only one device at a time to be the address bus master. In
systems where no other device can be a master, BG can be grounded (always asserted) to
grant continually mastership of the address bus to the MPC7400 (called bus parking).

If the MPC7400 asserts BR before the external arbiter asserts BG, the MPC7400 is
considered to be unparked, as shown in Figure 9-4. Figure 9-5 shows the parked case,
where a qualiÞed bus grant exists on the clock edge following a need_bus condition. Notice
that the bus clock cycle required for arbitration is eliminated if the MPC7400 is parked,
reducing overall memory latency for a transaction. The MPC7400 always negates ABB for
at least one bus clock cycle after AACK is asserted, even if it is parked and has another
transaction pending.

The MPC7400 qualiÞes BG in 60x bus mode with the negation of an internally generated
ABB as well as the previously deÞned terms before accepting address bus ownership. Thus,
the qualiÞed bus grant (QBG) is as follows:

QBG = BG & ÂARTRY & ÂTS & Â(latched state variables) & Âabb (internally generated)

where Òlatched state variablesÓ include latched ARTRY. Thus, a qualiÞed bus grant occurs
when BG is asserted, ARTRY is not asserted in the current or in the preceding cycle, and
TS is not asserted by this or any other processor.

The negation of ABB indicates that the MPC7400 is not currently using the address bus.
The negation of ARTRY indicates that the address retry window for any just-completed
address tenure has passed. The ARTRY input is only monitored for a qualiÞed bus grant on
the cycle after the assertion of AACK. (Note that, in general, the sampling of ARTRY may
require qualiÞcation since ARTRY may be set to the high-impedance state the 2nd cycle
following the assertion of AACK and cannot be sampled reliably on that clock.) Upon
recognizing a qualiÞed bus grant, the processor takes address bus mastership by asserting
ABB and negating BR (non-parked case). At this time or later, the processor drives the
address and transfer attributes for the requested access and asserts TS to indicate the start
of a new transaction. Note that the MPC7400 may not be ready to immediately assert TS
after a qualiÞed BG. The timing of TS may be dependent on resource constraints and may
require forward progress on the data bus.

Typically, bus parking is provided to the device that was the most recent bus master;
however, system designers may choose other schemes such as providing unrequested bus
grants in situations where it is easy to predict correctly the next device requesting bus
mastership.

9-14 MPC7400 RISC Microprocessor UserÕs Manual

60x Address Bus Tenure

Figure 9-5. Address Bus Arbitration Showing Bus Parking

9.3.1.3 Ignoring ABB

The 60x bus protocol allows for masters that do not implement the ABB signal as an input,
such as the MPC7400. The elimination of ABB from the MPC7400 interfaces removes
logic from critical timing paths in the processor interface, allowing higher frequency bus
operation. It does, however, put more responsibility on the system arbiter; the arbiter must
synthesize its own version of ABB and must not issue an address bus grant (BG) to a
processor when it would cause a collision on the address bus with an address tenure from
another processor.

The ABB signal may be ignored if ABB and TS are asserted simultaneously by all masters,
or where arbitration (through assertion of BG) is properly managed in cases where the
regenerated ABB may not properly track the ABB signal on the bus. If the MPC7400Õs ABB
signal is ignored by the system, it must be connected to a pull-up resistor to ensure proper
operation.

9.3.2 Address Transfer

During the address transfer, the physical address and all attributes of the transaction are
transferred from the bus master to the slave device(s). Snooping logic may monitor the
transfer to enforce cache coherency; see the description of bus snooping in Section 9.3.3,
ÒAddress Transfer Termination.Ó

The MPC7400 supports a little-endian mode in which the low-order address bits are
operated on (or munged) based on the program-requested data transfer size. This munging
is performed internally before the address reaches the internal caches and bus units. When
little-endian mode is selected, the 60x bus interface still operates in big-endian mode. That

Ð1 0 1

need_bus

BG

ARTRY

qual BG

ABB

BR

SYSCLK

TS

Chapter 9. System Interface Operation 9-15

60x Address Bus Tenure

is, byte address 0 of a double wordÑas selected by A[29:31] on the bus, still selects the
most signiÞcant (left-most) byte of the double word on data bus byte D[0:7]. Byte lane
swapping or other operations may have to be performed externally by the system if the
MPC7400 is interfaced to a true little-endian environment.

Note that the MPC7400 does not work with the MPC106 bridge device in little-endian
mode if misaligned data is accessed.

The signals used in the address transfer include the following signal groups:

¥ Address transfer start signalÑtransfer start (TS)

¥ Address transfer signalsÑaddress bus (A[0:31]), and address parity (AP[0:3])

¥ Address transfer attribute signalsÑtransfer type (TT[0:4]), transfer size
(TSIZ[0:2]), transfer burst (TBST), cache inhibit (CI), write-through (WT), and
global (GBL)

Figure 9-6 shows that the timing for all of these signals, except TS, is identical. All of the
address transfer and address transfer attribute signals are combined into the ADDR+
grouping in Figure 9-6. The TS signal indicates that the MPC7400 has begun an address
transfer and the address and transfer attributes are valid (within the context of a
synchronous bus). The MPC7400 always asserts TS coincident with ABB.

In Figure 9-6, the address transfer occurs during bus clock cycles 1 and 2 (arbitration occurs
in bus clock cycle 0, and the address transfer is terminated in bus clock 3). In this diagram,
the address bus termination input, AACK, is asserted to the MPC7400 on the bus clock
following assertion of TS (as shown by the dependency line). This is the minimum duration
of the address transfer for the MPC7400; the duration can be extended by delaying the
assertion of AACK for one or more bus clock cycles.

Figure 9-6. Address Bus Transfer

0 1 2

SYSCLK

ABB

ADDR+

ARTRY_IN

TS

3 4

qual BG

AACK

9-16 MPC7400 RISC Microprocessor UserÕs Manual

60x Address Bus Tenure

9.3.2.1 Address Bus Parity

The MPC7400 always generates one bit of correct odd-byte parity for each of the four bytes
of address when a valid address is on the bus. The calculated values are placed on the
AP[0:3] outputs when the MPC7400 is the address bus master. See Section 8.2.3.2,
ÒAddress Bus Parity (AP[0:3]),Ó for the parity bit assignments. If the MPC7400 is not the
master and TS and GBL are asserted together (qualiÞed condition for snooping memory
operations), the MPC7400 calculates parity values for the address bus and the calculated
values are compared with the AP[0:3] inputs. If there is an error, and address parity
checking is enabled (HID0[EBA] = 1), a machine check exception is generated. An address
bus parity error causes a checkstop condition if MSR[ME] is cleared to 0. For more
information about checkstop conditions, see Chapter 4, ÒExceptions.Ó

9.3.2.2 Address Transfer Attribute Signals

The transfer attribute signals include several encoded signals such as the transfer type
(TT[0:4]) signals, transfer burst (TBST) signal, transfer size (TSIZ[0:2]) signals,
write-through (WT), cache inhibit (CI), and global (GBL).

9.3.2.2.1 Transfer Type (TT[0:4]) Signals in 60x Bus Mode

Snooping logic should fully decode the transfer type signals if the GBL signal is asserted.
Slave devices can sometimes use the individual transfer type signals without fully decoding
the group. Table 9-1 describes the 60x bus speciÞcation transfer encodings and the behavior
of the MPC7400 as a bus master.

Table 9-1. Transfer Type Encodings for 60x Bus Mode

Generated by MPC7400
as Bus Master TT0 TT12 TT2 TT3 TT4

60x Bus SpeciÞcation

Type Source Command Type

Address only dcbst 0 0 0 0 0 Clean block Address only

Address only dcbf 0 0 1 0 0 Flush block Address only

Address only sync 0 1 0 0 0 sync Address only

Address only dcba, dcbz, dcbi,
store hit on shared
block, or store miss
merge to 32 bytes

0 1 1 0 0 Kill block Address only

Address only eieio 1 0 0 0 0 eieio Address only

Single-beat
write (nonGBL)

ecowx 1 0 1 0 0 External control
word write

Single-beat
write

Address only tlbie 1 1 0 0 0 TLB invalidate Address only

Single-beat read
(nonGBL)

eciwx 1 1 1 0 0 External control
word read

Single-beat
read

N/A N/A 0 0 0 0 1 lwarx
reservation set

Address only

N/A N/A 0 0 1 0 1 Reserved Ñ

Chapter 9. System Interface Operation 9-17

60x Address Bus Tenure

9.3.2.2.2 Transfer Size (TSIZ[0:2]) Signals

The TSIZ[0:2] signals indicate the size of the requested data transfer. The TSIZ[0:2] signals
may be used along with TBST and A[29:31] to determine which portion of the data bus
contains valid data for a write transaction or which portion of the bus should contain valid
data for a read transaction.

Address only tlbsync 0 1 0 0 1 tlbsync Address only

Address only icbi 0 1 1 0 1 icbi Address only

N/A N/A 1 X X 0 1 Reserved Ñ

Single-beat
write or burst

Caching-inhibited
or write-through
store

0 0 0 1 0 Write-with-ßush Single-beat
write or burst

Burst (nonGBL) Cast-out, dcbf,
dcbst push, or
snoop copyback

0 0 1 1 0 Write-with-kill Burst

Single-beat read
or burst

Data load or
instruction fetch

01 1 0 1 0 Read Single-beat
read or burst

Burst Store miss, dcbtst,
dstst, dststt3

0 1 1 1 0 Read-with-intent-to-
modify

Burst

Single-beat
write

stwcx.
(caching-inhibited
store)

1 0 0 1 0 Write-with-ßush-
atomic

Single-beat
write

N/A N/A 1 0 1 1 0 Reserved N/A

Single-beat read
or burst

lwarx
(caching-inhibited
load)

11 1 0 1 0 Read-atomic Single-beat
read or burst

Burst stwcx. 1 1 1 1 0 Read-with-intent-to-
modify-atomic

Burst

N/A N/A 0 0 0 1 1 Reserved Ñ

N/A N/A 0 0 1 1 1 Reserved Ñ

N/A N/A 0 1 0 1 1 Read-with-no-intent-
to-cache

Single-beat
read or burst

N/A N/A 0 1 1 1 1 Reserved Ñ

N/A N/A 1 X X 1 1 Reserved Ñ

1. If HID0[IFFT] = 0b0, TT0 differentiates between a Read-atomic (lwarx) operationÑTT0 high, and a Read
(cache-inhibiting load or instruction fetch) operationÑTT0 low. If HID0[IFFT] = 1, TT0 differentiates between
data loads (including both atomic and non-atomic loads)ÑTT0 high, and instruction fetchesÑTT0 low.

2. TT1 can generally be interpreted as a read/write indicator for the bus.
3. In 60x bus mode, TT[0:4] = 0b01110 for reads caused by dcbtst, dstst, and dststt. In MPX bus mode,

TT[0:4] = 0b01111 for reads caused by dcbtst, dstst, and dststt. See Section 9.6.1.3.1, ÒTransfer Type 0Ð4
(TT[0:4]) in MPX Bus Mode,Ó for more information.

Table 9-1. Transfer Type Encodings for 60x Bus Mode (Continued)

Generated by MPC7400
as Bus Master TT0 TT12 TT2 TT3 TT4

60x Bus SpeciÞcation

Type Source Command Type

9-18 MPC7400 RISC Microprocessor UserÕs Manual

60x Address Bus Tenure

In 60x bus mode, the MPC7400 only supports bursting for cache block transfers (4 double
words). In 60x bus mode, quad-word AltiVec loads and stores are split into two separate
8-byte, single-beat transactions on the system bus. Table 9-2 deÞnes the TBST and
TSIZ[0:2] encodings used by the MPC7400 in 60x bus mode.

The basic coherency size of the bus is deÞned to be 32 bytes (corresponding to one cache
line). Data transfers that cross an aligned, 32-byte boundary either must present a new
address onto the bus at that boundary (for coherency consideration) or must operate as
noncoherent data with respect to the MPC7400. The MPC7400 never generates a bus
transaction with a transfer size of 5 bytes, 6 bytes, or 7 bytes.

For operations generated by the eciwx/ecowx instructions, a transfer size of 4 bytes is
implied, and the TBST and TSIZ[0:2] signals are redeÞned to specify the resource ID
(RID). The RID is copied from bits 28Ð31 of the external access register (EAR). For these
operations, the TBST signal carries the EAR[28] data without inversion (active high).

Table 9-2. TBST and TSIZ[0:2] Encodings in 60x Bus Mode

TBST TSIZ0 TSIZ1 TSIZ2 Transfer Size

Asserted 0 0 0 undefined

Asserted 0 0 1 undefined

Asserted 0 1 0 4 double-word burst

Asserted 0 1 1 undefined

Asserted 1 0 0 undefined

Asserted 1 0 1 undefined

Asserted 1 1 0 undefined

Asserted 1 1 1 undefined

Negated 0 0 0 8 bytes

Negated 0 0 1 1 byte

Negated 0 1 0 2 bytes

Negated 0 1 1 3 bytes

Negated 1 0 0 4 bytes

Negated 1 0 1 5 bytes (N/A)

Negated 1 1 0 6 bytes (N/A)

Negated 1 1 1 7 bytes (N/A)

Notes:
3-byte transfers may be requested by the MPC7400 starting at

any byte address within the double word from byte address 0 to
byte address 5.

4-byte transfers may be requested by MPC7400 starting at any
byte address within the double word from byte address 0 to
byte address 4.

Chapter 9. System Interface Operation 9-19

60x Address Bus Tenure

9.3.2.2.3 Write-Through (WT), Cache Inhibit (CI), and Global (GBL) Signals

In general, the MPC7400 provides the WT, CI, and GBL signals to indicate the status of a
transaction target as determined by the WIM bit settings during address translation by the
MMU. There are exceptions, as described in Section 3.9.2, ÒTransfer Attributes.Ó

9.3.2.3 Burst Ordering During Data Transfers

During burst data transfer operations, 32 bytes of data (one cache line) are transferred to or
from the cache in order. However, since burst reads are performed critical double word Þrst,
a burst read transfer may not start with the Þrst double word of the cache line, and the cache
line Þll may wrap around the end of the cache line. Non-intervention burst write transfers
(the only burst writes performed in 60x bus mode) are always performed zero double word
Þrst. Intervention burst writes (see Section 9.6.2, ÒData Tenure in MPX Bus Mode,Ó) are
performed critical double word Þrst.

The MPC7400 allows the transfer of any block of contiguous bytes within a double word.
No single bus transactions may cross a double-word boundary. Transfers of strings of data
that are aligned in such a way that they cross a double-word boundary must be broken down
into multiple bus transactions.

Table 9-3 describes the order of the double words (DW) transferred during burst operations.

9.3.2.4 Effect of Alignment in Data Transfers

Table 9-4 lists the aligned transfers that can occur on the MPC7400 bus. These are transfers
in which the data is aligned to an address that is an integral multiple of the size of the data.
For example, Table 9-4 shows that 1-byte data is always aligned; however, for a 4-byte
word to be aligned, it must be oriented on an address that is a multiple of 4.

Table 9-3. Burst Ordering

Data Transfer
For Starting Address:

A[27:28] = 00 A[27:28] = 01 A[27:28] = 10 A[27:28] = 11

First data beat DW0 DW1 DW2 DW3

Second data beat DW1 DW2 DW3 DW0

Third data beat DW2 DW3 DW0 DW1

Fourth data beat DW3 DW0 DW1 DW2

Note: A[29:31] are always 0b000 for burst transfers performed by the MPC7400.

9-20 MPC7400 RISC Microprocessor UserÕs Manual

60x Address Bus Tenure

All transactions generated by AltiVec instructions must be aligned to a natural boundary.
All burst transactions must be double-word aligned. Note that the MPC7400 does not work
with the MPC106 bridge device in little-endian mode if misaligned data is accessed.

The MPC7400 supports misaligned memory operations, although their use may
substantially degrade performance. Misaligned memory transfers address memory that is
not aligned to the size of the data being transferred (such as, a word read of an odd byte
address).

9.3.2.4.1 Misaligment Example

Although most operations hit in the primary cache (or generate burst memory operations if
they miss), the MPC7400 interface supports misaligned transfers within a double-word
(64-bit aligned) boundary, as shown in Table 9-5. Note that the 4-byte transfer in Table 9-5
is only one example of misalignment. As long as the attempted transfer does not cross a
double-word boundary, the MPC7400 can transfer the data on the misaligned address (for

Table 9-4. Aligned Data Transfers

Transfer Size TSIZ[0:2] A[29:31]
Data Bus Byte Lane(s)1

1 A These entries indicate the byte portions of the requested operand that are read or written during that bus
transaction.
ÑThese entries are not required and are ignored during read transactions; they are driven with undeÞned data
during all write transactions.

0 1 2 3 4 5 6 7

Byte 0 0 1 000 A Ñ Ñ Ñ Ñ Ñ Ñ Ñ

0 0 1 001 Ñ A Ñ Ñ Ñ Ñ Ñ Ñ

0 0 1 010 Ñ Ñ A Ñ Ñ Ñ Ñ Ñ

0 0 1 011 Ñ Ñ Ñ A Ñ Ñ Ñ Ñ

0 0 1 100 Ñ Ñ Ñ Ñ A Ñ Ñ Ñ

0 0 1 101 Ñ Ñ Ñ Ñ Ñ A Ñ Ñ

0 0 1 110 Ñ Ñ Ñ Ñ Ñ Ñ A Ñ

0 0 1 111 Ñ Ñ Ñ Ñ Ñ Ñ Ñ A

Half word 0 1 0 0 0 0 A A Ñ Ñ Ñ Ñ Ñ Ñ

0 1 0 0 1 0 Ñ Ñ A A Ñ Ñ Ñ Ñ

0 1 0 1 0 0 Ñ Ñ Ñ Ñ A A Ñ Ñ

0 1 0 1 1 0 Ñ Ñ Ñ Ñ Ñ Ñ A A

Word 1 0 0 0 0 0 A A A A Ñ Ñ Ñ Ñ

1 0 0 1 0 0 Ñ Ñ Ñ Ñ A A A A

Double word 0 0 0 0 0 0 A A A A A A A A

Chapter 9. System Interface Operation 9-21

60x Address Bus Tenure

example, a half-word read from an odd byte-aligned address). An attempt to address data
that crosses a double-word boundary requires two bus transfers to access the data.

Due to the performance degradations, misaligned memory operations should be avoided. In
addition to the double-word straddle boundary condition, the address translation logic can
generate substantial exception overhead when the load/store multiple and load/store string
instructions access misaligned data. It is strongly recommended that software attempt to
align data where possible.

9.3.2.4.2 Alignment of External Control Instructions

The size of the data transfer associated with eciwx and ecowx instructions is always four
bytes. If an operand for an eciwx or ecowx instruction is misaligned and crosses any word
boundary, the MPC7400 generates an alignment exception.

9.3.3 Address Transfer Termination

The address tenure of a bus operation is terminated when completed with the assertion of
AACK (address acknowledge), or retried with the assertion of ARTRY (address retry). The
MPC7400 does not terminate the address transfer until the AACK input is asserted;
therefore, the system can extend the address transfer phase by delaying the assertion of
AACK to the MPC7400. The assertion of AACK can be as early as the bus clock cycle
following TS (see Figure 9-7), which allows a minimum address tenure of two bus cycles.

Table 9-5. Misaligned Data Transfers (Four-Byte Examples)

Transfer Size
(Four Bytes)

TSIZ[0:2] A[29:31]
Data Bus Byte Lanes1

1 A Byte lane used
ÑByte lane not used

0 1 2 3 4 5 6 7

Aligned 1 0 0 0 0 0 A A A A Ñ Ñ Ñ Ñ

Misaligned 1 0 0 0 0 1 Ñ A A A A Ñ Ñ Ñ

Misaligned 1 0 0 0 1 0 Ñ Ñ A A A A Ñ Ñ

Misaligned 1 0 0 0 1 1 Ñ Ñ Ñ A A A A Ñ

Aligned 1 0 0 1 0 0 Ñ Ñ Ñ Ñ A A A A

MisalignedÑÞrst access

second access

0 1 1 1 0 1 Ñ Ñ Ñ Ñ Ñ A A A

0 0 1 0 0 0 A Ñ Ñ Ñ Ñ Ñ Ñ Ñ

MisalignedÑÞrst access

second access

0 1 0 1 1 0 Ñ Ñ Ñ Ñ Ñ Ñ A A

0 1 0 0 0 0 A A Ñ Ñ Ñ Ñ Ñ Ñ

MisalignedÑÞrst access

second access

0 0 1 1 1 1 Ñ Ñ Ñ Ñ Ñ Ñ Ñ A

0 0 1 1 1 1 Ñ Ñ Ñ Ñ Ñ Ñ Ñ A

9-22 MPC7400 RISC Microprocessor UserÕs Manual

60x Address Bus Tenure

Both ARTRY and SHD go through a precharge cycle unless this is disabled by setting the
precharge disable bit in HID0. As shown in Figure 9-7, these signals are asserted for one
bus clock cycle, released to high-impedance for half the next clock cycle, driven high for
one clock cycle, and Þnally, released to high-impedance for the remaining half clock cycle.
Note that AACK must be asserted for only one bus clock cycle.

The address transfer can be terminated with the requirement to retry if ARTRY is asserted
anytime during the address tenure and through the cycle following AACK. The assertion of
ARTRY causes the entire transaction (address and data tenure) to be rerun. As a snooping
device, the MPC7400 asserts ARTRY for a snooped transaction that hits modiÞed data in
the data cache that must be written back to memory, or if the snooped transaction could not
be serviced. As a bus master, the MPC7400 responds to the assertion of ARTRY by aborting
the bus transaction and re-requesting the bus. Note that after recognizing the assertion of
ARTRY and aborting the transaction in progress, the MPC7400 is not guaranteed to run the
same transaction the next time it is granted the bus due to internal reordering of load and
store operations.

Note that the MPC7400 implements a shared state (MESI instead of MEI) cache coherency
protocol based on the setting of MSSCR0[SHDEN]. See Section 2.1.6, ÒMemory
Subsystem Control Register (MSSCR0),Ó for more detailed information about the bits of
MSSCR0.

9.3.3.1 Address Retry Window and QualiÞed ARTRY

If an address retry is required, ARTRY is asserted by a bus snooping device as early as the
second cycle after the assertion of TS. Once asserted, ARTRY must remain asserted through
the cycle after the assertion of AACK; the bus clock cycle starting two clock cycles after
TS and ending with the cycle after the assertion of AACK is referred to as the address retry
window.

The assertion of ARTRY during the cycle after the assertion of AACK is referred to as a
qualiÞed ARTRY. An earlier assertion of ARTRY during the address tenure is referred to as
an early ARTRY.

As a bus master, the MPC7400 recognizes either an early or qualiÞed ARTRY and preempts
the data tenure associated with the retried address tenure. If the data tenure has already
begun, the MPC7400 aborts and terminates the data tenure immediately even if the burst
data has been received. If the assertion of ARTRY is received up to or on the bus cycle of
the Þrst (or only) assertion of TA for the data tenure, the MPC7400 ignores the Þrst data
beat, and if it is a load operation, does not forward data internally to the cache and execution
units. If ARTRY is asserted after the Þrst (or only) assertion of TA, improper operation of
the bus interface may result.

9.3.3.2 Snoop Copyback and Window of Opportunity

During the clock cycle of a qualiÞed ARTRY, the MPC7400 also determines if it should
negate BR and ignore BG on the following cycle. On the following cycle, all other bus

Chapter 9. System Interface Operation 9-23

60x Address Bus Tenure

devices negate address bus requests, and they do not qualify address bus grants. This cycle
is the window of opportunity for the snooping master that asserted ARTRY and needs to
perform a snoop copyback operation. Thus, the snooping master that asserted ARTRY is
the only device allowed to assert BR. Note that a nonclocked bus arbiter may detect the
assertion of address bus request by the bus master that asserted ARTRY, and return a
qualiÞed bus grant one cycle earlier than shown in Figure 9-7.

When the MPC7400 asserts ARTRY due to a snoop operation and is ready to perform the
snoop push, it always asserts BR in the window of opportunity to obtain bus mastership for
the copyback cycle. (A copyback operation due to a snoop hit to a modiÞed block is
sometimes referred to as a snoop push.) Note that the copyback is a non-global (GBL
negated) transaction. External devices on the 60x bus must not assert ARTRY for
non-global transactions.

Note that even if the MPC7400 asserts BR in the window of opportunity for a snoop push,
it may be several bus cycles later before the MPC7400 is able to perform the necessary
transaction. The timing of TS may be dependent on resource constraints and may require
forward progress on the data bus. The bus arbiter should keep BG asserted until it detects
that BR is negated or TS is asserted from the MPC7400 indicating that the snoop copyback
has begun. The system should ensure that no other address tenures occur until the current
snoop push from the MPC7400 is completed.

It may occur in some systems that the MPC7400 was unable to perform a pending snoop
copyback when a new snoop operation is performed. In this case, the MPC7400 requests
the bus in the window of opportunity if it hits on the new snooped address, and it performs
the snoop copyback operation for the earlier snooped address rather than for the current
snooped address in order to clear its internal snoop queue.

Figure 9-7. Snooped Address Cycle with ARTRY

5 6 7 8

SYSCLK

ABB

ADDR

ARTRY

AACK

TS

BR

qual BG

ABB

4321

9-24 MPC7400 RISC Microprocessor UserÕs Manual

60x Data Bus Tenure

9.3.3.3 Snoop Response and SHD Signal

The MPC7400 asserts the SHD signal as an output coincident with the ARTRY output
signal if the cache block that caused a snoop hit is pushed as the processorÕs next address
transaction.

9.4 60x Data Bus Tenure
This section describes the data bus arbitration, transfer, and termination phases deÞned by
the 60x bus protocol used by the MPC7400. The phases of the data tenure are identical to
those of the address tenure, underscoring the symmetry in the control of the two buses.

9.4.1 Data Bus Arbitration

Data bus arbitration uses the data arbitration signal groupÑDBG, DBWO, and DBB.
Additionally, the combination of TS and TT[0:4] provides information about the data bus
request to external logic.

9.4.1.1 QualiÞed Data Bus Grant in 60x Bus Mode

The TS signal is an implied data bus request from the MPC7400; the arbiter must qualify
TS with the transfer type (TTx) encodings to determine if the current address transfer is an
address-only operation, which does not require a data bus transfer. If the data bus is needed,
the arbiter grants data bus mastership by asserting the DBG input to the MPC7400. As with
the address bus arbitration phase, the MPC7400 must qualify the DBG input with a number
of input signals before assuming bus mastership, as shown in Figure 9-8.

Figure 9-8. Data Bus Arbitration

0 1 2

SYSCLK

qual DBG

TS

3

DBG

DBB

Chapter 9. System Interface Operation 9-25

60x Data Bus Tenure

A qualiÞed data bus grant can be expressed as follows:

QDBG = DBG & Â(ARTRY & retriable) & Â(state_variables) & Âdbb (internal)

with any of the following conditions present:

¥ Retriable indicates if current transaction can still be retried

¥ State variables indicate if the data bus is being used by this master and if the
processor has already received the next-to-last TA for the current burst.

Thus, a qualiÞed data bus grant occurs when DBG is asserted, ARTRY was not asserted in
the address retry window for the address phase of this transaction, and the MPC7400 is
ready to begin a data transaction. Note that in some systems, it may be possible to have a
qualiÞed data bus grant as early as the clock cycle when TS is asserted.

When a data tenure overlaps with its associated address tenure, a qualiÞed ARTRY
assertion coincident with a data bus grant signal does not result in data bus mastership
(DBB is not asserted). Otherwise, the MPC7400 always asserts DBB on the bus clock cycle
after recognition of a qualiÞed data bus grant. Because the MPC7400 can pipeline
transactions, there may be an outstanding data bus transaction when a new address
transaction is retried. In this case, the MPC7400 becomes the data bus master to complete
the previous transaction and the ARTRY does not affect the data tenure.

9.4.1.2 Using the DBB Signal

The 60x bus protocol allows for masters that do not implement the DBB signal as an input,
such as the MPC7400. The elimination of DBB from the MPC7400 interfaces removes
logic from critical timing paths in the processor interface, allowing higher frequency bus
operation. However, this puts more responsibility on the data bus arbiter. The memory
system can control data tenure scheduling directly with DBG. It is possible to ignore the
DBB signal in the system if the DBB input is not used as the Þnal data bus allocation control
between data bus masters, and if the memory system can track the start and end of the data
tenure. If DBB is not used to signal the end of a data tenure, DBG is only asserted to the
next bus master the cycle before the cycle that the next bus master may actually begin its
data tenure. Even if DBB is ignored in the system, the MPC7400 always recognizes its own
assertion of DBB, and requires one cycle after data tenure completion to negate its own
DBB before recognizing a qualiÞed data bus grant for another data tenure. If DBB is
ignored in the system, it must still be connected to a pull-up resistor on the MPC7400 to
ensure proper operation.

9.4.1.3 Data Bus Write Only (DBWO) and Data Bus Arbitration

As a result of address pipelining, the MPC7400 may have up to six data tenures queued to
perform when it receives a qualiÞed DBG. Generally, the data tenures should be performed
in strict order (the same order) as their address tenures were performed. The MPC7400,
however, also supports a limited out-of-order capability with the data bus write only
(DBWO) input signal. When recognized on the clock of a qualiÞed DBG, DBWO may

9-26 MPC7400 RISC Microprocessor UserÕs Manual

60x Data Bus Tenure

direct the MPC7400 to perform the next pending data write tenure even if a pending read
tenure would have normally been performed Þrst. For more information on the operation of
DBWO, refer to Section 9.4.4, ÒUsing Data Bus Write Only (DBWO).Ó

If the MPC7400 has any data tenures to perform, it always accepts data bus mastership to
perform a data tenure when it recognizes a qualiÞed DBG. If DBWO is asserted with a
qualiÞed DBG and no write tenure is queued to run, the MPC7400 still assumes mastership
of the data bus to perform the next pending read data tenure.

Generally, DBWO should only be used to allow a copyback operation (burst write) to occur
before a pending read operation. If DBWO is used for single-beat write operations, it may
negate the effect of the eieio instruction by allowing a write operation to precede a
program-scheduled read operation.

9.4.2 Data Transfer Signals and Protocol

The data transfer signals include DH[0:31], DL[0:31], and DP[0:7]. For memory accesses,
the DH and DL signals form a 64-bit data path for read and write operations.

The MPC7400 transfers data in either single- or 4-beat burst transfers. Single-beat
transactions represent caching-inhibited or write-through operations and they can transfer
from 1 to 8 bytes at a time. They can also be misaligned; see Section 9.3.2.4, ÒEffect of
Alignment in Data Transfers.Ó Burst operations always transfer eight words and are aligned
on eight-word address boundaries. In 60x bus mode, 128-bit, caching-inhibited or
write-through, AltiVec loads or stores are broken into two separate double-word
transactions. The four double-word burst transaction is used for transferring a cache block.
Burst transfers can achieve signiÞcantly higher bus throughput than single-beat operations.

The type of transaction initiated by the MPC7400 depends on whether the code or data is
caching-inhibited or caching-allowed and, for store operations, whether the cache is in
write-back or write-through mode which is controlled by software on either a page or block
basis. Burst transfers support caching-allowed operations only; that is, memory structures
must be marked as caching-allowed (and write-back for data store operations) in the
respective page or block descriptor to take advantage of burst transfers.

The MPC7400 TBST output indicates to the system whether the current transaction is a
single- or four-beat transfer (except during eciwx/ecowx transactions, when it signals the
state of EAR[28]). A burst transfer has an assumed address order. For load or store
operations that miss in the cache (and are marked as caching-allowed and, for stores,
write-back in the MMU), the MPC7400 uses the double-word-aligned address associated
with the critical code or data that initiated the transaction. This minimizes latency by
allowing the critical code or data to be forwarded to the processor before the rest of the
cache line is Þlled. For all other burst operations, however, the cache line is transferred
beginning with the eight-word-aligned data.

Chapter 9. System Interface Operation 9-27

60x Data Bus Tenure

Because there is not a DRTRY mode in the MPC7400, data must never be transferred before
the Þrst cycle of the systemÕs address retry window. That is, valid data must never precede
a possible ARTRY for that transaction.

9.4.3 Data Transfer Termination

The 60x bus interface deÞnes four signals to terminate data bus transactionsÑTA, DRTRY
(data retry), TEA (transfer error acknowledge), and ARTRY. Note that the MPC7400 does
not implement the DRTRY signal; therefore, the 60x interface on the MPC7400 is always
operating in the higher-performance, no-DRTRY mode.

The TA signal indicates normal termination of data transactions. It must always be asserted
on the bus cycle coincident with the data it is qualifying. It may be withheld by the slave
for any number of clocks until valid data is ready to be supplied or accepted.

If the ARTRY and TEA signals are asserted in the same clock, the ARTRY signal takes
precedence and the TEA signal is ignored. This means that the transaction is repeated until
the ARTRY condition is resolved.

An assertion of ARTRY causes the data tenure to be terminated immediately if the ARTRY
for the address tenure is associated with the data tenure in operation. If ARTRY is
connected for the MPC7400, the earliest allowable assertion of TA to the MPC7400 is
directly dependent on the earliest possible assertion of ARTRY to the MPC7400; see
Section 9.3.3, ÒAddress Transfer Termination.Ó

The TEA input is used to signal a nonrecoverable error during the data transaction. It may
be asserted on any cycle during DBB. The assertion of TEA terminates the data tenure
immediately, even if in the middle of a burst; however, it does not prevent incorrect data
that has just been acknowledged with TA from being written into the MPC7400Õs cache or
GPRs. The assertion of TEA initiates either a machine check exception or a checkstop
condition based on the setting of the MSR[ME] bit.

Upon receiving a Þnal (or only) termination condition, the MPC7400 always negates DBB
for one cycle.

9.4.3.1 Normal Single-Beat Termination

Normal termination of a single-beat data read operation occurs when TA is asserted by a
responding slave. The TEA signal must remain negated during the transfer (see Figure 9-9).

9-28 MPC7400 RISC Microprocessor UserÕs Manual

60x Data Bus Tenure

Figure 9-9. Normal Single-Beat Read Termination

Figure 9-10 shows a write operation with a normal termination.

Figure 9-10. Normal Single-Beat Write Termination

Normal termination of a burst transfer occurs when TA is asserted for four bus clock cycles,
as shown in Figure 9-11. The bus clock cycles in which TA is asserted need not be
consecutive, thus allowing pacing of the data transfer beats. For read bursts to terminate
successfully, TEA must remain negated during the transfer. For write bursts, TEA must
remain negated for a successful transfer.

0 1 2

SYSCLK

DBB

DATA

qual DBG

3 4

TS

TA

AACK

0 1 2 3 4

SYSCLK

DBB

DATA

qual DBG

TS

TA

AACK

Chapter 9. System Interface Operation 9-29

60x Data Bus Tenure

Figure 9-11. Normal Burst Transaction

Figure 9-12 shows the effect of using TA to pace the data transfer rate. Notice that in bus
clock cycle 4 of Figure 9-12, TA is negated for the second data beat. The MPC7400 data
pipeline does not proceed until bus clock cycle 5 when TA is reasserted.

Figure 9-12. Read Burst with TA Wait States

9.4.3.2 Data Transfer Termination Due to a Bus Error

The TEA signal indicates that a bus error occurred. It may be asserted while DBB is
asserted. Asserting TEA to the MPC7400 terminates the transaction; that is, subsequent
assertions of TA are ignored and DBB is negated.

Assertion of the TEA signal causes a machine check exception (and possibly a checkstop
condition within the MPC7400). For more information, see Section 4.6.2, ÒMachine Check
Exception (0x00200).Ó Note that the MPC7400 does not implement a synchronous error
capability for memory accesses. This means that the exception instruction pointer saved
into the SRR0 register does not point to the memory operation that caused the assertion of

1 2 3 4 5 6 7 8

SYSCLK

qual DBG

DBB

TA

DATA

TS

TEA

1 2 3 4 5 6 7

SYSCLK

qual DBG

DBB

TA

DATA

TS

8 9

9-30 MPC7400 RISC Microprocessor UserÕs Manual

60x Data Bus Tenure

TEA, but to the instruction about to be executed (perhaps several instructions later). Also
note that assertion of TEA does not invalidate data entering the GPR or the cache.
Additionally, the address corresponding to the access that caused TEA to be asserted is not
latched by the MPC7400. To recover, the exception handler must determine and remedy the
cause of the TEA, or the MPC7400 must be reset; therefore, this function should only be
used to indicate fatal system conditions to the processor (such as parity or uncorrectable
ECC errors).

After the MPC7400 has committed to run a transaction, that transaction must eventually
complete. Address retry causes the transaction to be restarted; TA wait states delay
termination of individual data beats. Eventually, however, the system must either terminate
the transaction or assert the TEA signal. For this reason, care must be taken to check for the
end of physical memory and the location of certain system facilities to avoid memory
accesses that result in the assertion of TEA.

Note that TEA generates a machine check exception depending on MSR[ME]. Clearing
the machine check exception enable control bits leads to a true checkstop condition
(instruction execution halted and processor clock stopped).

9.4.3.3 No-DRTRY Mode

The MPC7400 disallows the use of the data retry function provided by some 60x
processors, and no-DRTRY mode is always selected. The no-DRTRY mode provides
higher performance because it allows the forwarding of data during load operations to the
internal CPU one bus cycle sooner than in the standard 60x bus protocol that implements
DRTRY.

Because the MPC7400 always operates in no-DRTRY mode, the assertion of ARTRY by a
snooping device must occur prior to or coincident with the Þrst assertion of TA to the
MPC7400; assertion of ARTRY must never occur on the cycle after the Þrst assertion of
TA.

9.4.4 Using Data Bus Write Only (DBWO)

The MPC7400 supports split-bus pipelined transactions and a limited out-of-order
capability for its own pipelined transactions through the data bus write only (DBWO)
signal. When recognized on the clock of a qualiÞed DBG, the assertion of DBWO directs
the MPC7400 to perform the next pending data write tenure (if any), even if a pending read
tenure would have normally been performed because of address pipelining. The DBWO
signal does not change the order of write tenures with respect to other write tenures from
the same MPC7400. It only allows that a write tenure be performed ahead of a pending read
tenure from the same MPC7400.

Note that DBWO can be asserted if no data bus read is pending, but it has no effect on write
ordering.

Chapter 9. System Interface Operation 9-31

60x Bus Timing Examples

The arbiter must monitor bus operations and coordinate the various masters and slaves with
respect to the use of the data bus when DBWO is used. Individual DBG signals associated
with each bus device should allow the arbiter to synchronize both pipelined and
split-transaction bus organizations. Individual DBG and DBWO signals provide a primitive
form of source-level tagging for the granting of the data bus.

Note that use of the DBWO signal allows some operation-level tagging with respect to the
MPC7400 and the use of the data bus.

9.5 60x Bus Timing Examples
This section shows timing diagrams for various scenarios using the 60x bus interface.
Figure 9-13 illustrates the fastest single-beat reads possible for the MPC7400 and shows
both minimal latency and maximum single-beat throughput. By delaying the data bus
tenure, the latency increases, but, because of split-transaction pipelining, the overall
throughput is not affected unless the data bus latency causes the third address tenure to be
delayed.

Note that all bidirectional signals are released to high-impedance between bus tenures.

9-32 MPC7400 RISC Microprocessor UserÕs Manual

60x Bus Timing Examples

Figure 9-13. Fastest Single-Beat Reads

1 2 3 4 5 6 7 8 9 10 11 12

BR

BG

ABB

TS

A[0:31]

TT[0:4]

TBST

GBL

AACK

ARTRY

DBG

DBB

D[0:63]

TA

TEA

SYSCLK

Read

1 2 3 4 5 6 7 8 9 10 11 12

SYSCLK

CPU A CPU A

Read

CPU A

Read

In InIn

Chapter 9. System Interface Operation 9-33

60x Bus Timing Examples

Figure 9-14 illustrates the fastest single-beat writes supported by the MPC7400. All
bidirectional signals are released to high-impedance between bus tenures.

Figure 9-14. Fastest Single-Beat Writes

1 2 3 4 5 6 7 8 9 10 11 12

BR

BG

ABB

TS

A[0:31]

TT[0:4]

TBST

GBL

AACK

ARTRY

DBG

DBB

D[0:63]

TA

TEA

SYSCLK

SBW

1 2 3 4 5 6 7 8 9 10 11 12

SYSCLK

CPU A CPU A

SBW

CPU A

SBW

Out OutOut

9-34 MPC7400 RISC Microprocessor UserÕs Manual

60x Bus Timing Examples

Figure 9-15 shows two ways that single-beat reads are delayed:

¥ The TA signal is negated to insert wait states in clock cycles 4 and 5.
¥ For the second access, DBG is delayed until clock cycle 8 (could have been asserted

in clock cycle 7).

Figure 9-15. Single-Beat Reads Showing Data-Delay Controls

1 2 3 4 5 6 7 8 9 10 11 12

BR

BG

ABB

TS

A[0:31]

TT[0:4]

TBST

GBL

AACK

ARTRY

DBG

DBB

D[0:63]

TA

TEA

SYSCLK

Read

1 2 3 4 5 6 7 8 9 10 11 12

SYSCLK

CPU A CPU A

Read

CPU A

Read

In InIn

Chapter 9. System Interface Operation 9-35

60x Bus Timing Examples

Figure 9-16 shows data-delay controls in a single-beat write operation. Note that all
bidirectional signals are released to high-impedance between bus tenures. Data transfers are
delayed in the following ways:

¥ The TA signal is held negated to insert wait states in clocks 4 and 5.
¥ In clock 7, DBG is held negated, delaying the start of the data tenure.

Figure 9-16. Single-Beat Writes Showing Data Delay Controls

1 2 3 4 5 6 7 8 9 10 11 12

BR

BG

ABB

TS

A[0:31]

TT[0:4]

TBST

GBL

AACK

ARTRY

DBG

DBB

D[0:63]

TA

TEA

SYSCLK

SBW

1 2 3 4 5 6 7 8 9 10 11 12

SYSCLK

CPU A CPU A

SBW

CPU A

SBW

Out OutOut

9-36 MPC7400 RISC Microprocessor UserÕs Manual

60x Bus Timing Examples

Figure 9-17 shows the use of data-delay controls with burst transfers. Note that all
bidirectional signals are released to high-impedance between bus tenures. Burst transfers
are delayed in the following ways:

¥ The Þrst data beat of bursted read data (clock 4) is the critical quad word.

¥ The write burst shows the use of TA signal negation to delay the third data beat.

Figure 9-17. Burst Transfers with Data Delay Controls

1 2 3 4 5 6 7 8 9 10 11 12

BR

BG

ABB

TS

A[0:31]

TT[0:4]

TBST

GBL

AACK

ARTRY

DBG

DBB

D[0:63]

TA

TEA

SYSCLK

Read

1 2 3 4 5 6 7 8 9 10 11 12

SYSCLK

CPU A CPU A

Write

CPU A

Read

13

13

In 0 In 3In 1 In 2 Out 0 Out 1 Out 3Out 2

14

14

Chapter 9. System Interface Operation 9-37

MPX Bus Protocol

Figure 9-18 shows the use of the TEA signal. Note that all bidirectional signals are released
to high-impedance between bus tenures. Note the following:

¥ The Þrst data beat of the read burst (in clock 4) is the critical quad word.

¥ The TEA signal truncates the burst write transfer on the third data beat.

¥ The TEA eventually causes the MPC7400 to take an exception.

Figure 9-18. Use of Transfer Error Acknowledge (TEA)

9.6 MPX Bus Protocol
The MPX bus protocol is based on the 60x bus protocol, except that it includes several
additional features that allow it to provide higher memory bandwidth than the 60x bus, and
more efÞcient utilization of the system bus in an multiprocessing environment.

As described before, the value of the EMODE signal at the negation of HRESET
determines whether the MPC7400 operates in 60x bus mode or MPX bus mode. This value

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Out 0 Out 2

BR

BG

ABB

TS

A[0:31]

TT[0:4]

TBST

GBL

AACK

ARTRY

DBG

DBB

D[0:63]

TA

TEA

SYSCLK

SYSCLK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CPU A

Write

CPU A

Read

CPU A

Read

In 0 In 1 In 2 In 3 Out 1 In 0 In 1 In 2 In 3

17

17

9-38 MPC7400 RISC Microprocessor UserÕs Manual

MPX Bus Protocol

is stored and readable from the EMODE bit in MSSCR0. The state of MSSR0[EMODE] is
active high, meaning that if EMODE is detected as asserted at the negation of HRESET,
MSSR0[EMODE] = 1 and MPX bus mode is selected; otherwise, MSSR0[EMODE] = 0
and 60x bus mode is selected.

All signals for the MPX interface are speciÞed with respect to the rising-edge of the
external system clock input (SYSCLK), and they are guaranteed to be sampled as inputs or
changed as outputs with respect to that edge.

Since the same clock edge is referenced for driving or sampling the bus signals, the
possibility of clock skew could exist between various modules in a system due to routing
or the use of multiple clock lines. It is the responsibility of the system to handle any such
clock skew problems that might occur.

The following sections provide a description of how the MPX interface operates and notes
or points to consider when designing a system with it.

In addition to the basic transfer protocol of the 60x bus interface, the MPX bus also supports
a data-only transfer in order to support cache-to-cache transfers (or data intervention) and
a local bus slave. The HIT and DRDY signals are deÞned in the MPX bus protocol to
support this type of transfer.

9.6.1 Address Tenure in MPX Bus Mode

The address tenure in MPX bus mode is very similar to that in 60x bus mode, except for
those differences outlined in the following subsections.

An address retry capability, similar to 60x bus mode, is provided to support the snoop
coherency protocol. In MPX bus mode, the MPC7400 additionally supports data
intervention for more efÞcient coherency management. Address retry is used only when
HIT-style data intervention is not enabled or in those cases where HIT-style data
intervention is not allowed. An address retry response is issued by a snooping master in
order to interrupt another masterÕs transaction on the bus, usually to write back that memory
which it has modiÞed in its own cache. The address retry causes the original master to abort
the current transaction and rerun the transaction at a later time.

9.6.1.1 Address Arbitration Phase

Address bus arbitration in MPX mode differs from arbitration in the 60x interface in that
the MPC7400 can drive consecutive address tenures without a dead cycle on the address
bus in MPX bus mode if those address tenures are from the same processor. The MPC7400
does not use the ABB signal as an input (in 60x or MPX bus mode). When conÞgured for
MPX bus mode, the MPC7400 does provide an indication when the address bus is busy on
the AMON output signal. Note that this signal is not a requirement of the MPX bus protocol
and may not be available on future products.

Chapter 9. System Interface Operation 9-39

MPX Bus Protocol

9.6.1.1.1 QualiÞed Bus Grant in MPX Bus Mode

In MPX bus mode, the MPC7400 has a different equation from 60x bus mode for the
qualiÞcation of BG. The internally-generated address bus busy (abb) is not used to qualify
BG. This removes the timing dependence of a qualiÞed bus grant on the AACK signal,
which is used to terminate the internally-generated abb in 60x bus mode. However, this
means that in MPX bus mode the system arbiter must not assert BG to a second master until
the cycle after AACK is asserted to end an address tenure from the Þrst master. Another
consequence of removing the dependence on the internally-generated abb is that BG must
be negated in every cycle that AACK is delayed from the clock cycle after the assertion of
TS. The TS signal is still used to qualify bus grant in order to optimize speculative bus
parking.

To gain access to the address bus, a bus master asserts BR and holds it asserted until it
detects a qualiÞed bus grant (QBG). The equation for a qualiÞed bus grant for the MPC7400
in MPX bus mode is:

QBG = BG & ÂARTRY & ÂTS &Â (latched state variables)

where Òlatched state variablesÓ include latched ARTRY. Thus, a qualiÞed bus grant occurs
when BG is asserted, ARTRY is not asserted in the current or the preceding cycle, and TS
is not asserted by this or any other processor.

A typical arbitration sequence is illustrated in Figure 9-19. When the MPC7400 needs to
perform a bus access, it asserts BR to the arbiter (non-parked case). Xs in the Þgure mark
the values of the signals that allow a qualiÞed bus grant.

Figure 9-19. MPX Bus Address Bus ArbitrationÑNon-Parked Case

Arbiter designs must ensure that no more than one address bus master can be granted the
bus at one time (that is, bus grants must be mutually exclusive). In single-master
applications, BG can effectively be tied asserted, always granting the bus (called bus
parking). However, as explained above, BG must be negated in every cycle that the arbiter
delays AACK.

SYSCLK

1 2 30

need_bus

BR

BG

ARTRY

TS

Arbitrate Assume control of bus

9-40 MPC7400 RISC Microprocessor UserÕs Manual

MPX Bus Protocol

As is the case with 60x bus mode, the MPC7400 may assert BR but not use the bus after it
receives a qualiÞed bus grant, or it may negate (cancel) BR before accepting a qualiÞed bus
grant.

9.6.1.1.2 MPX Bus Mode Address Bus Parking

In the non-parked case, the processor must Þrst assert BR to the arbiter to request the bus,
and then wait to receive a bus grant from the arbiter on a later (or possibly the same) cycle.

Address parking becomes a very important feature of the MPX bus interface, because
address bus tenures may be driven every other cycle by the same master. By speculatively
parking the current masterÕs bus grant, the system gains back not only the arbitration
latency, but also the dead cycle that exists between each tenure in 60x bus protocol.

As shown in Figure 9-20 bus parking for the MPX interface is the same as that for the 60x
interface from the bus masterÕs perspective. If a master needs the bus and receives a bus
grant and all qualifying conditions are met, the master may immediately assume control of
the address bus. Note that the qualiÞcations for the bus grant condition are different from
that of the 60x interface, as described above.

Figure 9-20. Bus ArbitrationÑParked Case

From the system arbiterÕs perspective, address bus parking must be implemented more
carefully in MPX bus systems than in 60x bus systems because the qualiÞed bus grant
equation no longer includes a synthesized internal abb.

SYSCLK

1 2 30

need_bus

BR

BG

ARTRY

TS

Arbitrate Assume control of bus

4

Chapter 9. System Interface Operation 9-41

MPX Bus Protocol

As shown in Figure 9-21, optimal address parking can be implemented in a multimaster
system because TS is still in the qualiÞed bus grant equation for MPX bus masters.

Figure 9-21. Address Parking in MPX Bus Mulitprocessor Systems

9.6.1.2 Address Transfer in MPX Bus Mode

During the address transfer phase in MPX bus mode, the physical address and transfer
attributes are transferred from the master to the slave(s) similar to 60x bus mode. However,
two differences in the address transfer phase in MPX bus mode are the addition of address
bus driven mode and support for address bus streaming, described in the following sections.

SYSCLK

BG0

BR1

1 2 3 4 5 6 7 8

BG1

TS

AACK

ADDR

Cycle 1: Master 0 has a parked address bus grant. Master 0 has an address tenure
ready and a qualiÞed bus grant, so it queues an address tenure for the next cycle.
Also in cycle 1, the arbiter samples a bus request from master 1, so the arbiter
queues a switch of the bus grants from master 0 to master 1. The arbiter can
safely do this, because the qualiÞed bus grant equation for MPX bus masters
includes ÂTS.

Cycle 2: Master 0 begins an address tenure, and master 1 does NOT get a qualiÞed
bus grant.

Cycle 3: The arbiter MUST negate the bus grant to master 1, because without ABB
or AACK in the QBG equation, nothing would prevent master 1 from beginning an
address tenure in cycle 4, colliding with the end of master 0Õs address tenure.
Since it would introduce a difÞcult timing path to require the arbiter to sample TS
in cycle 2 and negate BG1 in cycle 3, it is suggested that arbiters always pulse
BGx high a cycle after swapping BGx and BGy, only reasserting BGx after AACK
has been driven.

Cycle 4: The arbiter reasserts BG1 because it asserted AACK in the previous cycle.
(If the arbiter does not know in advance when AACK is to be asserted, this timing
might be difÞcult, and the reassertion of bus grant may have to be delayed a
cycle, but most systems should be able to do this.)

Cycle 5: Master 1 gets to start its address tenure. Note that this is the optimal timing
for a new master to drive the address bus.

Cycles 5 and 6: The arbiter speculatively parks BG1 enabling master 1 to begin
another address tenure immediately in cycle 7.

Cycle

9-42 MPC7400 RISC Microprocessor UserÕs Manual

MPX Bus Protocol

9.6.1.2.1 Address Bus Driven Mode

In addition to selecting MPX bus mode at the negation of HRESET, the EMODE signal is
also used to select address bus driven mode after HRESET is negated. This mode provides
for improved electrical characteristics on the address and attributes signals by reducing the
time that these signals are not actively driven.

If EMODE is asserted after HRESET is negated, address bus driven mode is selected; if
EMODE is negated after HRESET is negated, normal address bus driving mode (address
bus not always driven) is selected. The read-only ABD bit in MSSCR0 indicates whether
the MPC7400 is in address bus driven mode. Note that address bus driven mode is only
available in MPX bus mode.

9.6.1.2.2 Address Bus Streaming

The 60x bus protocol forces a turn-around cycle on the bus between each address tenure
implying that 60x address tenures last at least three bus clock cycles (because the system
must provide AACK no earlier than the cycle following the assertions of TS).

In MPX bus mode, the MPC7400 can drive consecutive address tenures without a dead
cycle in between. So, two-cycle address tenures are possible if AACK is not delayed and
the same master receives a qualiÞed bus grant to drive another address tenure. This is
referred to as address bus streaming.

9.6.1.2.3 Address Bus Parity

The MPC7400 address parity generation and reporting in MPX bus mode operates
identically to that in 60x bus mode.

9.6.1.2.4 Address Pipelining

Address pipelining in the MPX bus mode uses split transactions in the same way as the 60x
interface with the exception that data need not necessarily be returned in order. Generalized
data tenure reordering, beyond that allowed by the DBWO function, is possible in the MPX
interface. This generalized reordering protocol is described in Section 9.6.2.2.8, ÒData
Tenure Reordering in MPX Bus Only.Ó

9.6.1.3 Transfer Attributes in MPX Bus Mode

The transfer attribute signals for the MPC7400 include the TT[0:4] and TSIZ[0:2] signals,
as well as TBST, CI, WT, and GBL. There is no change to the implementation of the GBL
signal in MPX bus mode. In MPX bus mode, the CI and WT signals function as inputs (as
well as outputs). They are used as inputs in determining illegal conditions for data-only
intervention where ARTRY must be asserted instead of HIT in response to a snooped
transaction.

Chapter 9. System Interface Operation 9-43

MPX Bus Protocol

Attribute differences from the 60x bus are as follows:

¥ The deÞnition of the TSIZ signals is expanded

¥ The read claim (RCLAIM) transfer type is added to the MPX bus mode for
touch-for-store instructions.

9.6.1.3.1 Transfer Type 0Ð4 (TT[0:4]) in MPX Bus Mode

The TTx encodings for the MPX bus mode are the same as in Section 9.3.2.2.1, ÒTransfer
Type (TT[0:4]) Signals in 60x Bus Mode,Ó with one new addition, RCLAIM. RCLAIM is
used to identify touch-for-store instructions on the MPX bus. The effect of the RCLAIM
transaction is to establish exclusive ownership of a cache line without marking that cache
line as modiÞed in the requesting processorÕs cache.

Note that in 60x bus mode, TT[0:4] = 0b01110 for reads caused by dcbtst, dstst, and dststt.
See Section 9.3.2.2.1, ÒTransfer Type (TT[0:4]) Signals in 60x Bus Mode,Ó for more
information.

9.6.1.3.2 Transfer Size

The transfer size (TSIZ[0:2]) signals indicate the size of the requested data transfer. The
MPC7400 allows for two burst sizes in order to support both cache block transfers (32
bytes) and quad-word AltiVec loads and stores (16 bytes). Thus the deÞnition of the
TSIZ[0:2] bits when TBST is asserted is expanded from that in 60x bus mode. Table 9-7
deÞnes the TBST and TSIZ[0:2] encodings used by the MPC7400 in MPX bus mode.

Table 9-6. Transfer Type Encodings for MPX Bus Mode

Generated by MPC7400
as Bus Master TT0 TT1 TT2 TT3 TT4 Command

Type Source

Burst dstst, dststt, or dcbtst 0 1 1 1 1 Read claim (RCLAIM)

Table 9-7. TBST and TSIZ[0:2] Encodings in MPX Bus Mode

TBST TSIZ0 TSIZ1 TSIZ2 Transfer Size

Asserted 0 0 0 reserved

Asserted 0 0 1 2 double-word burst

Asserted 0 1 0 4 double-word burst

Asserted 0 1 1 undefined

Asserted 1 0 0 reserved

Asserted 1 0 1 undefined

Asserted 1 1 0 undefined

Asserted 1 1 1 undefined

Negated 0 0 0 8 bytes

9-44 MPC7400 RISC Microprocessor UserÕs Manual

MPX Bus Protocol

9.6.1.3.3 Aligned and Misaligned Transfers

Performance on misaligned transfers may be substantially less than on aligned transfers,
and it is recommended that software attempt to align code and data if possible. See
Section 9.3.2.4, ÒEffect of Alignment in Data Transfers,Ó for a detailed description of
alignment considerations for transactions in 60x and MPX bus modes.

9.6.1.4 Address Termination Phase in MPX Bus Mode

The address tenure is terminated by the assertion of the AACK input. In 60x bus mode, the
60x interface forces a turn-around cycle on the bus between each address tenure (because
the system must provide AACK no earlier than the cycle following the assertions of TS)
implying that 60x address tenures last at least three bus clock cycles.

Because MPX bus mode supports address bus streaming, the MPC7400 can drive
consecutive address tenures without a dead cycle in between. Using address bus streaming,
two-cycle address tenures are possible if AACK is not delayed and the same master receives
a qualiÞed bus grant to drive another address tenure. Note that to accommodate address bus
streaming, AACK must be asserted for only one bus clock cycle in MPX bus mode.

The address tenure can be terminated with the assertion of ARTRY anytime during the
address tenure and through the cycle following AACK in MPX bus mode the same as in
60x bus mode. As a snooper (if data intervention is not enabled), the MPC7400 asserts
ARTRY similarly (and for the same conditions) to the 60x bus mode. As a bus master, the
MPC7400 also responds to the assertion of ARTRY in the same way as in 60x bus mode.
See Section 3.4.3, ÒCoherency Protocols.Ó

Negated 0 0 1 1 byte

Negated 0 1 0 2 bytes

Negated 0 1 1 3 bytes

Negated 1 0 0 4 bytes

Negated 1 0 1 5 bytes (N/A)

Negated 1 1 0 6 bytes (N/A)

Negated 1 1 1 7 bytes (N/A)

Notes:
3-byte transfers may be requested by the MPC7400 starting at

any byte address within the double word from byte address 0 to
byte address 5.

4-byte transfers may be requested by MPC7400 starting at any
byte address within the double word from byte address 0 to
byte address 4.

Table 9-7. TBST and TSIZ[0:2] Encodings in MPX Bus Mode (Continued)

TBST TSIZ0 TSIZ1 TSIZ2 Transfer Size

Chapter 9. System Interface Operation 9-45

MPX Bus Protocol

Note that the snoop response in MPX bus mode is composed of the ARTRY signal, the
shared (SHD[0:1]) signals, and the HIT signal. These signals must be driven in the address
retry window (as deÞned for 60x bus interface) and remain asserted until the end of the
window. See Section 9.3.3.1, ÒAddress Retry Window and QualiÞed ARTRY,Ó for more
information.

9.6.1.4.1 Address Retry (ARTRY) in MPX Bus Mode

The following list identiÞes the cases in which ARTRY is asserted in the address retry
window (when using MPX bus mode):

¥ No device on the bus has the required buffer space to handle the transaction.

¥ A device has a transient pipeline collision.

¥ A snooping device must push modiÞed data to maintain coherency and data
intervention is not enabled (L1_INTVEN and L2_INTVEN bits cleared in
MSSCR0).

¥ A snooping device must push modiÞed data to maintain coherency and data
intervention is enabled but intervention is not possible for this transaction because
the transaction is not for a full cache-line (detected by WT or CI asserted).

Note that in some instances, a single master may assert both ARTRY and HIT in response
to a snooped transaction. In this case, the ARTRY has precedence and the HIT signal is
ignored.

ARTRY assertions in MPX bus mode can have additional implications because the
MPC7400 allows new address tenures to begin without a dead cycle in between. The
MPC7400 allows a new address tenure from the same master to begin the cycle after
AACK, which overlaps the address retry window of the previous address tenure. If this
happens, the system and all bus devices must recognize that the second TS is implicitly
retried as well. As with the 60x interface, however, ARTRY does not affect the termination
of an address tenureÑaddress tenures are only terminated by AACK. Therefore, even if an
address tenure is to be retried by ARTRY for the previous address tenure, AACK is asserted
to terminate the second address tenure (shown in Figure 9-22).

Note that in Figure 9-22, the AACK for the second address tenure is delayed by a clock
cycle. This is to demonstrate how a system must handle a delayed AACK overlapping the
window of opportunity after a retry. In this case the address bus grant for the snoop push
requested in the window of opportunity must be delayed until at least the cycle after AACK.
This may be required to avoid critical timing conßicts between ARTRY and AACK. Note
that the grant could be delayed further to avoid any critical timing conßicts between AACK
and the bus grant, if necessary. In any case, if the address tenure of the second transaction
extends past the window of opportunity after the assertion of ARTRY, the arbiter must not
rearbitrate and grant the address bus to any device that may have requested the bus after the
window of opportunity but before the address tenure for the snoop push.

9-46 MPC7400 RISC Microprocessor UserÕs Manual

MPX Bus Protocol

)

Figure 9-22. Overlapped ARTRY and TS (with a Delayed AACK) in MPX Bus Mode

Cycle 1: The master has requested the bus and receives a qualiÞed bus grant.
Cycle 2: The master begins the address tenure by driving TS and the address.
Cycle 3: The system responds with AACK, ending the address tenure. The master

receives another (parked) address bus grant.
Cycle 4: The master begins a new address tenure by driving TS and a new address.

Some snooping device, however, asserts ARTRY for the Þrst transaction. Bus grant
remains parked to processor 0.

Cycle 5: The system delays AACK for the second transaction for some reason. BG0 is
negated to allow the retrying processor to request the bus. Processor 1 takes
advantage of this window of opportunity and requests the bus to perform a push of the
data that caused the retry.

Cycle 6: The system asserts AACK to terminate the second address tenure. Since the
window of opportunity has passed, processor 0 requests the address bus again to
retry its transaction. But the arbiter may NOT rearbitrate and grant the address bus to
processor 0 before the push requested in the window of opportunity.

Cycle 7: Even though this cycle would be the address retry window for the second
address tenure, no processor may assert ARTRY, because that transaction was
implicitly canceled by the ARTRY. (If AACK had not been delayed, an assertion of
ARTRY here could cause contention with the snooper that would be driving ARTRY
negated from the address retry window of the Þrst address tenure.) A bus grant is
given to processor 1 to perform its push.

Cycle 8: Processor 1 begins its snoop push.
Cycle 9: The snoop push address tenure is acknowledged and terminated.
Cycle 10: The arbiter now grants processor 0 the address bus to retry its transaction.

SYSCLK

BR0

BG0

BR1

9 10

BG1

TS

AACK

ARTRY1

ADDR

1 2 3 4 5 6 7 8Cycle

Chapter 9. System Interface Operation 9-47

MPX Bus Protocol

9.6.1.4.2 Shared (SHD0, SHD1) Signals for MPX Bus Mode

In 60x bus mode the shared response (SHD) is multiplexed with the SHD0 output signal as
described in Section 8.4.5.3, ÒMPX Bus Shared (SHD0, SHD1) Signals.Ó The shared
response for the MPC7400 in MPX bus mode is divided into two separate output signals,
SHD0 and SHD1. The MPX bus mode requires two signals because address tenures may
be produced every other cycle in this mode. Because the shared response must be driven
negated between assertions, and since multiple devices may drive a shared response in a
given address retry window, it is necessary to release the shared signal to high-impedance
after asserting it, drive it negated, and then release it to high-impedance again. Timing
requirements make this very difÞcult for a single signal that may need to be asserted on the
second cycle after a previous assertion.

If the MPC7400 needs to assert a shared snoop response and SHD0 was not asserted in any
of the three cycles prior to the address retry window for the current transaction, then it
asserts SHD0 during the address retry window. If SHD0 was asserted in the three cycles
before the shared response needs to be asserted, then the MPC7400 asserts SHD1 instead.
A master observing the snoop response must consider the shared response asserted if either
SHD0 or SHD1 is asserted.

The timing for the release to high-impedance, negating, and re-release to high-impedance,
of SHD0 and SHD1 may vary. To ensure compatibility with the standard 60x interface in
which SHDx might need to be asserted up to every three bus cycles, the MPC7400
implements the 60x-style timing for both SHD0 and SHD1; that is SHD0 and SHD1 have
the same timing as ARTRY, in which the signal is released to high-impedance for a fraction
of a cycle, then negated for up to an entire cycle (crossing a bus cycle boundary) before
being released to high-impedance again. Note that future implementations with the MPX
protocol may deÞne this timing differently. The MPC7400 does not assert either SHD0 or
SHD1 as outputs to be asserted more often than every fourth bus clock cycle. Addtionally,
it does not allow either SHD0 or SHD1 as inputs to be asserted more often than every fourth
bus clock cycle. See Figure 9-23.

_

Figure 9-23. SHD0 and SHD1 Negation Timing

SYSCLK

SHD0

1 2 3 4

SHD0 or SHD1

(60x bus timing)

(used in MPX
bus mode)

0Cycle

9-48 MPC7400 RISC Microprocessor UserÕs Manual

MPX Bus Protocol

To ease timing requirements, devices detecting SHD0 or SHD1 should not sample these
signals beyond the second cycle after AACK, since the signals can either be released to
high-impedance or fractionally precharged in those cycles.

9.6.1.4.3 Hit (HIT) Signal and Data Intervention

The HIT signal in MPX bus mode was added to support direct cache-to-cache transfers
(also called data intervention) and local bus slaves. A device that asserts HIT in the address
retry window indicates to the system that it owns the data for the requested load, and that it
will supply the data by performing a data-only transaction. Note that the HIT signal is a
point-to-point signal between the MPC7400 and the central arbiter/memory controller. The
master that requested the load does not see the HIT signal and does not know that the data
is coming from a master or local bus slave rather than memory.

When data intervention is enabled with the L1_INTVEN or L2_INTVEN bits set in
MSSCR0, the MPC7400 attempts to intervene to service a load when it detects a snoop hit
for data it owns exclusively (modiÞed or not) or data that is in the recent (R) state
Section 3.4.3, ÒCoherency Protocols.Ó Unless ARTRY is asserted simultaneously by
another bus device, the MPC7400 requests a data-only transaction by using the DRDY
protocol described in Section 9.6.2.2.2, ÒData InterventionÑMPX Bus Mode.Ó

When the MPC7400 performs data intervention, it always provides 32-bytes of intervention
data in critical double-word Þrst ordering, regardless of the TSIZ[0:2] encoding or the state
of TBST for the snooped transaction. Thus, if a system implementation provides global
snoop trafÞc to the MPC7400 that:

a) could result in data intervention from the MPC7400, and

b) does not consist of 32-byte transfers,

the system must either sink the entire 32-bytes of intervention data from the MPC7400, or
else disable all types data intervention in the MPC7400 with the L1_INTVEN and
L2_INTVEN bits of MSSCR0.

If a snoop is sampled by the MPC7400 with either the WT or CI signal asserted, the
MPC7400 does not assert HIT in response. If for any reason, this access with WT or CI
asserted generates a snoop hit on a cache line in the modiÞed state, the MPC7400 performs
a window of opportunity-style write-with-kill push operation. This occurs if one of the
following programming errors exists:

¥ A global W = 1 (write-through) page was aliased with a W = 0 (write-back) page, or

¥ A global I = 1 (caching-inhibited) page was aliased with a I = 0 (caching-allowed)
page.

Neither of these types of aliasing are supported by the MPC7400.

Because the coherency protocol insures that only one device has the ability to supply
intervention data, an ARTRY asserted by a second device when one master is asserting HIT
can only occur when that second device cannot handle the snooping of the address due to

Chapter 9. System Interface Operation 9-49

MPX Bus Protocol

buffer space limitations or pipeline collisions. In this case, the device asserting ARTRY is
not trying to intervene or perform a snoop push. Therefore, if the MPC7400 asserts HIT
because it detected a snoop hit for modiÞed data and ARTRY is asserted simultaneously by
another device, the MPC7400 takes advantage of the window of opportunity to perform a
push operation. Note that if the HIT occurred in order to supply intervention data that was
shared or exclusive unmodiÞed, the MPC7400 does not perform a push after another device
asserts ARTRY because the data is still clean and valid in both the cache and main memory.

Figure 9-24 shows an example timing diagram of HIT and ARTRY being asserted together.

Figure 9-24. HIT and ARTRY Asserted Together

9.6.1.4.4 HIT Signal Timing and Data SnarÞng

The MPC7400 distinguishes between shared and exclusive intervention in the system and
the intervention of modiÞed data with the timing of HIT negation. For shared or exclusive
intervention, the MPC7400 holds the HIT signal asserted for a second cycle after the
address retry window indicating to the system that the data being supplied through
intervention does not need to be forwarded to memory (snarfed) because the data is not
modiÞed.

SnarÞng is necessary when a processor forwards modiÞed data through intervention
because the processor performing the read operation will mark the data exclusive even
though the data has been modiÞed. SnarÞng is not necessary for RWITM transactions

SYSCLK

TS

ADDR/TTx

AACK

HIT

ARTRY

(master 0)

(master 1)

(device 2)

BR
(master 1)

BG
(master 1)

TS
(master 1)

Write w/ Kill

Cycle 3: Master 1 asserts HIT, but device 2 retries the transaction.
Cycle 4: Master 1 asserts BR to take advantage of the window of opportunity to

ßush the data, just as if it had asserted ARTRY itself instead of HIT.
Cycles 6 and 7: Master 1 gains control of the address bus and begins a Write w/

Kill transaction to ßush the data.

RWITM

1 2 3 4 5 6 7 8Cycle

9-50 MPC7400 RISC Microprocessor UserÕs Manual

MPX Bus Protocol

serviced via intervention because the data will be marked modiÞed in the requesting
processorÕs cache.

9.6.2 Data Tenure in MPX Bus Mode

The MPX bus mode implements several new features to improve both bandwidth and
utilization of the data bus compared with the 60x bus mode. These include:

¥ SimpliÞcation of signals and modes to optimize the most timing-critical logic paths.

¥ A new data-only transaction type to support cache-to-cache data transfers (data
intervention) and data transfers from local bus slaves

¥ Support for generalized data tenure reordering

The MPX bus mode supports a streaming mode of data transfer. This, in general, allows
burst data tenures from a single source to be driven back-to-back without a dead cycle in
between.

9.6.2.1 Data Bus Arbitration Phase in MPX Bus Mode

Data bus arbitration in MPX bus mode uses some of the same data arbitration signal group
(DBG, and DBG) as 60x bus mode except that DTI[0:2] are used instead of DBWO for data
tenure reordering.

9.6.2.1.1 QualiÞed Data Bus Grant in MPX Bus Mode

The use of data streaming requires signiÞcant changes to the qualiÞcation of DBG by a
master in MPX bus mode. In MPX bus mode, the equation for a qualiÞed data bus grant is:

QDBG = DBG & Â(ARTRY & retriable) & Â(state_variables)

where retriable indicates whether or not the current transaction can still be retried, and
where state variables include whether or not:

¥ The data bus is being used by this master.

¥ The master has back-to-back burst accesses in progress.

¥ The processor has already received the next-to-last TA for the current burst.

Thus, a qualiÞed data bus grant occurs when:

¥ DBG is asserted.

¥ ,ARTRY was not asserted in the address retry window for the address phase of this
transaction.

¥ The MPC7400 is ready to begin a data transaction.

The use of this equation in MPX bus mode means that the system arbiter must never assert
DBG to a processor when the data bus is busy with a transaction for another processor. The
system arbiter must synthesize its own data bus busy state. Note, however, that if a
transaction for device A is currently receiving its last TA and the same device is ready to

Chapter 9. System Interface Operation 9-51

MPX Bus Protocol

source data to processor B, DBG to processor B may be asserted, and the data source can
continue to stream another data tenure.

The negation of ARTRY for that address tenure indicates that the address tenure associated
with the data tenure about to be granted was not retried by a snooping device. Because of
address pipelining, an assertion of ARTRY may not be for the data tenure about to be
granted; therefore, it may not affect data bus grant qualiÞcation.

One bus clock cycle after accepting a qualiÞed data bus grant, the MPC7400 begins driving
or sampling the data bus and sampling the transfer acknowledge signals.

9.6.2.1.2 Data Streaming Constraints for Data Bus Arbitration in MPX Bus
Mode

Data streaming from one data tenure to the next in MPX mode is supported only for data
tenures in which the source of the data is the same. A dead cycle must be placed in between
two adjacent data tenures when the data is driven by two different devices. For example, if
the Þrst data transfer is a processor read from memory and the second data transfer is a
processor write to memory, data streaming is not supported; a minimum of one dead cycle
must be inserted between the Þnal TA of the read and the Þrst TA of the write. In this
example, the earliest cycle that the processor accepts DBG as a qualiÞed DBG is the cycle
after the Þnal TA of the read.

In addition, data streaming from one data transfer to a second is only allowed if the Þrst
transfer is a multiple-beat transfer (requiring at least two TAs). If the Þrst data transfer is a
single-beat transfer (only one TA), then the earliest that the processor will accept a DBG as
a qualiÞed DBG is the cycle after the single TA assertion.

Note that with these two constraints, it is possible to stream from a multiple-beat
transaction into a single-beat transaction. While this may not affect overall system
performance, it may simplify the design of the data bus arbiter and memory controller.

9.6.2.2 Data Bus Transfers

The MPC7400 in MPX bus mode expects data transactions to be carried out in 64-bit beats
just like in the 60x bus interface. Four-beat burst transfers are used by the MPC7400 to
transfer cache lines into or out of its internal cache. Two-beat burst transfers are used for
caching-inhibited or write-through 128-bit AltiVec loads or stores. Non-burst transfers are
performed for non-AltiVec caching-inhibited or write-through operations. The MPC7400
does not directly support dynamic interfacing to subsystems with less than a 64-bit wide
data path, and it does not support a static 32-bit data bus mode. (See Section 9.6.1.3,
ÒTransfer Attributes in MPX Bus ModeÓ).

Note that the operation of the data and data parity signals is the same as that in the 60x bus
mode (see Section 9.4.2, ÒData Transfer Signals and Protocol,Ó) except as noted in the
following subsections.

9-52 MPC7400 RISC Microprocessor UserÕs Manual

MPX Bus Protocol

9.6.2.2.1 Earliest Transfer of Data

In 60x bus mode, data must never be transferred before the Þrst cycle of the address retry
window (that is, valid data must never precede a possible ARTRY for that transaction). This
same restriction applies for MPX bus mode.

An additional requirement in systems that support data intervention or local bus slaves that
use the HIT/DRDY protocol is that data must only be driven or sampled after the
completion of the address retry window, so that the HIT signal can be sampled.

9.6.2.2.2 Data InterventionÑMPX Bus Mode

If the MPC7400 performs a read or RWITM of data that exists modiÞed in another
processorÕs cache, the 60x bus requires that the transaction be retried and data pushed to
memory before the transaction is begun a second time. A more efÞcient approach, used by
the MPC7400 in MPX bus mode, is to allow the data to be forwarded directly to the
requesting master from the processor that has it cached. This is called data intervention. The
MPC7400 performs this function through the HIT/DRDY protocol and data-only
transactions. The MPC7400 also supports intervention for data that is not modiÞed.
Exclusive data can also be forwarded through intervention, and even shared data can be
forwarded by using the MERSI coherency protocol described in. Each of these intervention
types is selected by the setting of the L1_INTVEN and L2_INTVEN bits in MSSCR0 in
MPX bus mode.

Note that data intervention is only allowed for full cache-line transfers. A snooping
MPC7400 does not assert HIT if it detects WT or CI asserted because data intervention is
not supported for caching-inhibited or write-through accesses.

An important implication of data intervention is that data must always be pushed with the
critical data Þrst, and the full double-word address must always be placed on the address
bus. Otherwise, data could be received in the wrong order by the requesting master.

Intervention allows the latency for data that exists in another processorÕs cache to be
reduced from over 20 bus cycles to as low as 5 or 6 cycles, as shown in Figure 9-25.
Figure 9-25 shows transfer involving different DTI indices occuring in 6 cycles. Note that
this could be reduced in some systems to 5 cycles if the DTI index provided to both
processors is the same for this transfer and the DTI is able to be presented in clock cycle 3.

Chapter 9. System Interface Operation 9-53

MPX Bus Protocol

Figure 9-25. Data Intervention for Read (Atomic) and RWITM (Atomic) Using the
Data-Only Transfer Protocol

9.6.2.2.3 Data-Only Transaction Protocol

A data-only transaction in MPX bus mode is differentiated from a typical address and data
transaction in the 60x protocol in that the data bus is explicitly requested by the snooper or
slave involved in the transaction, and no new address is speciÞed by the snooper or slave.
Data-only transactions are responses by snoopers or slaves to a transaction already initiated
by a master with an address tenure, so the address is already known to the system.

Data-only transactions can be issued in response to address-only transactions (for example,
Flush or Clean), or address and data transactions (for example, read or RWITM) to which
the MPC7400 asserted the HIT response in the address retry window. The MPC7400 can
use data-only transactions to supply intervention data in response to a read or RWITM, or
to push data in response to an address-only Flush or Clean.

SYSCLK

TS

ADDR

AACK

HIT

DRDY

(master 0)

(master 1)

(master 1)

DBG
(master 0)

DBG
(master 1)

DATA

TA

1 2 3 4 5 6 7 8Cycle 9 10

DTI[0:2]
(master 1)

DTI[0:2]
(master 0)

9-54 MPC7400 RISC Microprocessor UserÕs Manual

MPX Bus Protocol

Figure 9-26 shows an example of a data-only transaction for a Flush.

Figure 9-26. Data-Only Transaction for a Flush Operation

As with the 60x bus, address and data transactions do not need to request explicitly the data
bus, since the request is implicit in an address tenure for an address and data transaction.
However, processors performing data-only transactions request the data bus by asserting
DRDY when they have the data available. The DRDY causes the arbiter to assert DBG to
all devices participating in the transaction. Whichever device in the system is responsible
for asserting TA then does so to complete the transaction.

9.6.2.2.4 DRDY Timing (Data-Only Transactions)

DRDY may be asserted simultaneously with HIT, but it must be asserted no sooner than
two cycles before the device is ready to supply data because as shown above, TA may be
driven two cycles after DRDY. DRDY is a pulsed signal and must be negated on the cycle
after it is asserted unless pipelining of data-only intervention requests would naturally
require consecutive assertions of DRDY. Because DRDY is a pulsed signal, it is not held
when AACK is delayed (unlike HIT).

9.6.2.2.5 Pipelining of Data-Only Transactions

The MPC7400 may pipeline multiple data-only transactions. That is, it may assert HIT for
additional transactions, even if it has not been able to complete data-only transactions for
prior snoop hits. It may do this until its internal buffers Þll up. Similarly, a device may assert

SYSCLK

TS

ADDR

AACK

HIT

DRDY

(master 0)

(master 1)

(master 1)

DBG
(master 0)

DBG
(master 1)

DATA

TA

1 2 3 4 5 6 7 8Cycle 9 10

DTI[0:2]
(master 1)

DTI[0:2]
(master 0)

Chapter 9. System Interface Operation 9-55

MPX Bus Protocol

DRDY for additional data-only transactions before previous data-only transactions have
completed their data tenures. There is no restriction on the maximum number of
outstanding DRDY assertions. The MPC7400 can assert DRDY for the same number of
times corresponding to the number of outstanding HIT assertions. The MPC7400 supports
six outstanding transactions if no DBGs have been issued for any of the queued data
transactions.

Because DRDY is a pulsed signal, if DRDY is held low for multiple cycles, the system
interprets this as multiple assertions of DRDY. If a device asserts DRDY when the system
is not expecting a DRDY (no pending data-only transaction has been indicated), the system
ignores the DRDY signal. An important example of this would be the cycle after an ARTRY.
See Section 9.6.2.2.6, ÒRetrying Data-Only Transactions.Ó An example of pipelined
data-only transactions is shown in Figure 9-27. (Note that Figure 9-27 assumes that data is
all driven from the same source, so that data streaming is possible.)

Figure 9-27. Pipelined Data-Only Transactions

9.6.2.2.6 Retrying Data-Only Transactions

As described in Section 9.6.1.4.4, ÒHIT Signal Timing and Data SnarÞng,Ó it is possible for
the MPC7400 to signal a data-only transaction with the HIT signal while another device
asserts ARTRY. In this case the data-only transaction must be considered retried, and the
system does not expect a corresponding DRDY. If DRDY was asserted simultaneously with
HIT, it is ignored. In general, if DRDY is asserted by the MPC7400 when the system is not
expecting a DRDY, it will be ignored. So if the MPC7400 asserts DRDY after the

D

B C D

SYSCLK

Cycles 0, 2, 4, and 6: The device asserts HIT for transactions A, B, C, and D.
Cycles 0 and 2: The device asserts DRDY for the Þrst A and B respectively.
Cycle 4: DBG for transaction A issued. DRDY for transaction C is delayed for some

reason.
Cycle 5: Data for transaction A is driven. DRDY for transaction C still delayed.
Cycle 6: Transaction D can be driven even though no DRDY for transaction C and DBG

for transactions B and C have been received.
Cycle 8: DBG for transaction B issued. DRDY for transaction C still delayed.
Cycle 9: Data for transaction B is driven. DRDY for transaction C still delayed.
Cycle 11: DRDY for transaction C is driven.
Cycle 12: DRDY for transaction D is pipelined. DBG for transaction C issued.

B C

B C DA

B C D

DRDY

DBG

TA A

1 2 3 4 5 6Cycle

HIT

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

A

A

9-56 MPC7400 RISC Microprocessor UserÕs Manual

MPX Bus Protocol

transaction has been retried, the system should ignore it. However, the MPC7400 does not
assert DRDY after the transaction has been retried (or any other spurious DRDY) if the
system is expecting a DRDY for another transaction from that device. That is, there is no
ambiguity between a spurious DRDY from a retried transaction and a valid DRDY for a
later transaction.

Note that if data-only tenures are being pipelined, and the DRDY for a previous HIT is
asserted at the same time as a new HIT and ARTRY, the DRDY must not be ignored.

Examples of retrying data-only transactions, including pipelined HITs and DRDYs are
shown below in Figure 9-28.

Figure 9-28. Retry Examples of Data-Only Transactions

9.6.2.2.7 Ordering of Data-Only Transactions

All data-only transactions for a given MPC7400 processor must be handled in order. This
does not mean that other data tenures must be handled in order with respect to data-only
transactions, or that data-only transactions from different devices must maintain order
relative to one another. See Section 9.6.2.2.8, ÒData Tenure Reordering in MPX Bus Only.Ó
However, if the MPC7400 has asserted HIT for more than one transaction, the
corresponding data-only transactions must be serviced in the same order, since there is no
deÞned way for the arbiter to distinguish between them except to expect them in order.

B C DA

SYSCLK

AACK

Note: Cycle 2: Transaction A receives an ARTRY so the HIT and DRDY signals are ignored by the
system.

Note: Cycle 5: Transaction B starts. This is the earliest possible TS after an ARTRY.
Note: Cycle 7: Transaction B receives a HIT response. DRDY is delayed.
Note: Cycle 9: Transaction C receives a HIT and an ARTRY. The system understands that the DRDY is

for transaction B and considers it valid.
Note: Cycle 10: If the processor cannot gate off DRDY for the canceled transaction in this cycle, the

system will ignore it since there are no outstanding valid transactions.
Note: Cycle 11: HIT for transaction D is asserted. The bus master must not assert DRDY for transaction

C at this point since the system would interpret it as the DRDY for transaction D.

TS
(device 0)

HIT
(device 1)

ARTRY
(device 2)

DRDY
(device 1)

B C DA

B C DA

CA

B CA

9 10 111 2 3 4 5 6 7 8Cycle

Chapter 9. System Interface Operation 9-57

MPX Bus Protocol

9.6.2.2.8 Data Tenure Reordering in MPX Bus Only

The MPC7400 allows data tenures to be executed out of order with respect to their
corresponding address tenures in MPX bus mode. The system must supply an index with
each data bus grant to indicate which of the masterÕs outstanding data tenures is being
serviced. The data transfer index inputs, DTI[0:2], provide this function.

The DTI[0:2] signals act as a pointer into the queue of outstanding transactions within the
MPC7400. The MPC7400 supports up to six outstanding transactions. DTI[0:2] for a given
data bus tenure is driven by the system on the cycle prior to the associated DBG. The
MPC7400 continually samples DTI[0:2] and qualiÞes the pointer on the subsequent cycle
if the data bus grant is qualiÞed.

A DTI value of 0b000 indicates that the data tenure for the oldest remaining transaction is
to be serviced; a value of 0b001 indicates that the second oldest remaining transaction is to
be serviced, etc. A value of 0b101 selects the sixth and oldest MPC7400 transaction. The
system tracks the status of the MPC7400 queues by monitoring the TS and DBG. The
MPC7400 adds a new transaction to the tail of its queue with each assertion of TS for an
address and data transaction and each assertion of HIT for data-only transactions. It
removes an entry if the transaction is retried with ARTRY, or when it receives a qualiÞed
DBG. When a transaction is removed from the queue, all transactions newer than the
transaction removed shift forward.

The system must not provide an illegal DTI value the cycle before any qualiÞed data bus
grant when the processor has one or more valid data transactions queued. An illegal DTI
value is deÞned as one of the following:

¥ A DTI value greater than 0b101

¥ A DTI value that does not have any valid corresponding data transaction unless the
DTI value is 0b000. For instance, if only two data transactions are queued, a DTI
value of 0b010 or greater is illegal.

The processorÕs behavior is boundedly undeÞned if an illegal DTI value is detected at this
time.

9.6.2.3 Data Termination Phase in MPX Bus Mode

Three signals are used to terminate the individual data beats of the data tenure and the data
tenure itselfÑTA, TEA and ARTRY. In MPX bus mode, they function as in the 60x bus
mode.

9-58 MPC7400 RISC Microprocessor UserÕs Manual

Interrupt, Checkstop, and Reset Signal Interactions

9.7 Interrupt, Checkstop, and Reset Signal
Interactions

This section describes external interrupts, checkstop operations, and hard and soft reset
inputs. See Chapter 4, ÒExceptions,Ó and Chapter 8, ÒSignal Descriptions,Ó for more
information on the exceptions caused by these signals and for signal descriptions,
respectively.

9.7.1 External Interrupts

The external interrupt input signals (INT, SMI and MCP) of the MPC7400 force the
processor to take the external interrupt vector or the system management interrupt vector if
the MSR[EE] is set, or the machine check interrupt if the MSR[ME] and the HID0[EMCP]
bits are set.

9.7.2 Checkstops

The MPC7400 has two checkstop input signalsÑCKSTP_IN (nonmaskable) and MCP
(enabled when MSR[ME] is set, and HID0[EMCP] is set), and a checkstop output
(CKSTP_OUT) signal. If CKSTP_IN or MCP is asserted, the MPC7400 halts operations
by gating off all internal clocks. The MPC7400 asserts CKSTP_OUT if CKSTP_IN is
asserted.

If CKSTP_OUT is asserted by the MPC7400, it has entered the checkstop state, and
processing has halted internally. The CKSTP_OUT signal can be asserted for various
reasons including receiving a TEA signal and detection of external parity errors. For more
information about checkstop state, see Section 4.6.2.2, ÒCheckstop State (MSR[ME] = 0).Ó

9.7.3 Reset Inputs

The MPC7400 has two reset inputs, described as follows:

¥ HRESET (hard reset)ÑThe HRESET signal is used for power-on reset sequences,
or for situations in which the MPC7400 must go through the entire cold start
sequence of internal hardware initializations.

¥ SRESET (soft reset)ÑThe soft reset input provides warm reset capability. This
input can be used to avoid forcing the MPC7400 to complete the cold start sequence.

When either reset input negates, the processor attempts to fetch code from the system reset
exception vector. The vector is located at offset 0x00100 from the exception preÞx (all
zeros or ones, depending on the setting of the exception preÞx bit in the machine state
register (MSR[IP])). The MSR[IP] bit is set when HRESET negates.

Chapter 9. System Interface Operation 9-59

Processor State Signal Interactions

9.8 Processor State Signal Interactions
This section describes the MPC7400's support for power management and atomic update
and memory access through the use of the lwarx/stwcx. opcode pair.

9.8.1 System Quiesce Control Signals

The system quiesce control signals (QREQ and QACK) allow the processor to enter the nap
or sleep low-power states and bring bus activity to a quiescent state in an orderly fashion.

Prior to entering the nap or sleep-power state, the MPC7400 asserts the QREQ signal. This
signal allows the system to terminate or pause any bus activities that are normally snooped.
When the system is ready to enter the system quiesce state, it asserts the QACK signal. At
this time the MPC7400 may enter the nap or sleep power-saving state. When the MPC7400
is in the quiescent state, it stops snooping bus activity.

While the MPC7400 is in one of these power-saving states, the system power controller can
enable snooping by the MPC7400 by negating the QACK signal for at least eight bus clock
cycles, after which the MPC7400 is capable of snooping bus transactions. The reassertion
of QACK following the snoop transactions causes the MPC7400 to reenter the nap power
state. See Chapter 10, ÒPower and Thermal Management,Ó for more information on the
power-saving modes of the MPC7400.

Once the MPC7400 has made a request to enter the nap power-saving state, the QREQ
signal may be negated on any clock cycle to service an internal interrupt (such as a
decrementer or time base exception). The TS for the exception vector fetch can occur as
early as the clock cycle that QREQ is negated.

9.8.2 Support for the lwarx/stwcx. Instruction Pair

The Load Word and Reserve Indexed (lwarx) and the Store Word Conditional Indexed
(stwcx.) instructions provide a means for atomic memory updating. Memory can be
updated atomically by setting a reservation on the load and checking that the reservation is
still valid before the store is performed. In the MPC7400, the reservations are made on
behalf of aligned, 32-byte sections of the memory address space.

The reservation (RSRV) output signal is driven synchronously with the bus clock and
reßects the status of the reservation coherency bit in the reservation address register; see
Chapter 3, ÒL1 and L2 Cache Operation,Ó for more information. For information about
RSRV signal timing, see Section 8.5.4.1, ÒReservation (RSRV)ÑOutput.Ó

9-60 MPC7400 RISC Microprocessor UserÕs Manual

IEEE 1149.1a-1993 Compliant Interface

9.9 IEEE 1149.1a-1993 Compliant Interface
The MPC7400 boundary-scan interface is a fully-compliant implementation of the IEEE
1149.1a-1993 standard. This section brießy describes the MPC7400Õs IEEE 1149.1a-1993
(JTAG) interface. See Section 8.5.6, ÒIEEE 1149.1a-1993 (JTAG) Interface Description,Ó
for more information on the function of the JTAG signals.

9.9.1 JTAG/COP Interface

The MPC7400 has extensive on-chip test capability including the following:

¥ Debug control/observation (COP)
¥ Boundary scan (standard IEEE 1149.1a-1993 (JTAG) compliant interface)
¥ Support for manufacturing test

¥ Support for the following standard JTAG instructions:

Ñ BYPASS

Ñ EXTEST

Ñ SAMPLE/PRELOAD

Ñ CLAMP

Ñ HIGHZ

The COP and boundary-scan logic are not used under typical operating conditions. Detailed
discussion of the MPC7400 test functions is beyond the scope of this document; however,
sufÞcient information has been provided to allow the system designer to disable the test
functions that would impede normal operation.

The JTAG/COP interface is shown in Figure 9-29. For more information, refer to IEEE
Standard Test Access Port and Boundary Scan Architecture IEEE STD 1149-1a-1993.

Figure 9-29. IEEE 1149.1a-1993 Compliant Boundary-Scan Interface

TDI (Test Data Input)

TMS (Test Mode Select)

TCK (Test Clock Input)

TDO (Test Data Output)

TRST (Test Reset)

Chapter 10. Power and Thermal Management 10-1

Chapter 10
Power and Thermal Management
The MPC7400 is designed for low-power operation. It provides both automatic and
program-controlled power reduction modes. The thermal assist unit (TAU) allows on-chip
thermal measurement and management for portable systems. This chapter describes the
operation of the MPC7400 power and thermal management features.

10.1 Dynamic Power Management
Dynamic power management automatically supplies or withholds power to execution units
individually, based upon the contents of the instruction stream.

Because CMOS circuits consume negligible power when they are not switching, stopping
the clock to an execution unit effectively eliminates its power consumption. Each
MPC7400 execution unit has an independent clock input that is controlled automatically on
a clock-by-clock basis; for example, clocking is withheld from the ßoating-point unit if no
ßoating-point instructions are being executed. The operation of dynamic power
management is transparent to software and any external hardware.

Dynamic power management is enabled by setting HID0[DPM], as described in
Section 2.1.2.2, ÒHardware Implementation-Dependent Register 0.Ó The mode is triggered
by setting MSR[POW].

10.2 Programmable Power Modes
Table 10-1 describes the four programmable power modesÑfull power, doze, nap, and
sleep.

Table 10-1. Programmable Power Modes

Mode Functioning Units Activation Method Full-Power Wake-Up Method

Full power
(DPM
disabled)

All units active Ñ Ñ

Full power
(DPM
enabled)

Requested logic by demand Instruction dispatch Ñ

10-2 MPC7400 RISC Microprocessor UserÕs Manual

Programmable Power Modes

Software selects these modes by setting one (and only one) of the three power saving mode
bits in HID0. Hardware can enable a power management state through external
asynchronous interrupts. Such a hardware interrupt transfers the program ßow to the
system management interrupt (SMI) exception handler, which then sets the appropriate
power-saving mode. A decrementer interrupt can be used to return to full power from nap
or doze mode after a predetermined duration.

Figure 10-1 shows the MPC7400 power management state diagram. Because bus snooping
is disabled in sleep mode, a hardware handshake is provided to ensure coherency before the
MPC7400 enters this power management mode.

Figure 10-1. Power Management State Diagram

Doze Bus snooping
Data cache as needed
Decrementer timer

Software External asynchronous exceptions
Decrementer interrupt
Performance monitor interrupt
Thermal management interrupt
Reset

Nap Snooping enabled by negating
QACK
Decrementer timer

Hardware and software External asynchronous exceptions
Decrementer interrupt
Performance monitor interrupt
Thermal management interrupt
Reset

Sleep None Hardware and software External asynchronous exceptions
Performance monitor interrupt
Thermal management interrupt
Reset

Table 10-1. Programmable Power Modes (Continued)

Mode Functioning Units Activation Method Full-Power Wake-Up Method

Full On

HID0[DOZE] = 1 & MSR[POW] £ 1

INT, SMI, HRESET, SRESET, DEC,

HID0[NAP] = 1 & INT, SMI, HRESET, SRESET,

Nap

QACK asserted

QACK negated

PFM, TMI, machine check interrupts

Doze

HID0[SLEEP] = 1 & MSR[POW] £ 1

INT, SMI, HRESET, SRESET,

Sleep

PFM, TMI, MCP

and bus unit idle

for at least 4 clocks

MSR[POW] £ 1 DEC, PFM, TMI, MCP

Chapter 10. Power and Thermal Management 10-3

Programmable Power Modes

The following sections describe the characteristics of the power management modes, the
requirements for entering and exiting the various modes, and the capabilities available for
each mode.

10.2.1 Full-Power Mode with Dynamic Power Management
Disabled

Full-power mode with dynamic power management disabled is selected when the
HID0[DPM] = 0 and has the following characteristics:

¥ Default state after power-up and HRESET

¥ All functional units operate at full processor speed at all times

10.2.2 Full-Power Mode with Dynamic Power Management
Enabled

Full-power mode with dynamic power management enabled (HID0[DPM] = 1) provides
on-chip power management without affecting functionality or performance, and has the
following characteristics:

¥ Functional units are clocked only when needed.

¥ Required functional units operate at full processor speed.

¥ No software or hardware intervention is required after the mode is set.

¥ Power management is transparent to software and hardware.

10.2.3 Doze Mode

Doze mode disables most functional units but maintains cache coherency by enabling the
bus interface unit and snooping (L1 and L2 caches and snooping logic). A snoop hit causes
the MPC7400 to enable the caches, copy the data back to memory, disable the caches, and
fully return to the doze state.

Note the following with respect to doze mode:

¥ Most functional units are disabled (excluding thermal assist unit, performance
monitor, bus snooping, time base, and decrementer).

¥ Phase-locked loop (PLL) and delay-locked loop (DLL) are running and locked to
SYSCLK.

10.2.3.1 Entering Doze Mode

Doze mode is entered by setting the doze bit (HID0[8] = 1), clearing the nap and sleep bits
(HID0[9] and HID0[10] = 0), and setting MSR[POW]. The MPC7400 enters doze mode
after several processor clocks.

10-4 MPC7400 RISC Microprocessor UserÕs Manual

Programmable Power Modes

10.2.3.2 Returning to Full-Power Mode from Doze Mode

The MPC7400 returns to full-power mode when INT, SMI, or MCP are asserted, when a
decrementer or performance monitor or thermal management interrupt occurs, or when a
hard or soft reset occurs. Transition to full-power state takes only a few processor cycles.

10.2.4 Nap Mode

The nap mode disables the MPC7400 but maintains clocking for the PLL and DLL outputs,
the L2 clock pins (L2CLK_OUT[AÐB] and L2SYNC_OUT), the time base/decrementer,
thermal unit, and performance monitor. The time base can be used to restore the MPC7400
to full-power state after a programmed period.

As Figure 10-1 shows, the MPC7400 supports switching between nap and doze modes,
allowing snooping to happen even if the MPC7400 spends most of its time in nap mode.
This is described further in Section 10.2.4.2, ÒNap Mode Bus Snooping Sequence.Ó

To maintain data coherency, bus snooping is disabled for nap and sleep modes through a
hardware handshake sequence using the quiesce request (QREQ) and quiesce acknowledge
(QACK) signals. The MPC7400 asserts QREQ to indicate it is ready to disable bus
snooping and enter nap or sleep mode. When the system ensures that snooping is no longer
necessary, it asserts QACK and the MPC7400 enters nap mode. If the system determines
that a bus snoop cycle is required while in nap or sleep mode, QACK is deasserted to the
MPC7400 for at least 4 bus clock cycles and the MPC7400 can then respond to a snoop
cycle. Asserting QACK after the snoop cycle again disables snooping; the MPC7400
returns to nap or sleep mode after the snoop completes. Power dissipation while in nap
mode with QACK deasserted is the same as the power dissipation while in doze mode.

In nap mode, the DLL remains locked to enable a quick recovery to full-power mode
without waiting for the DLL to relock. Additionally, the MPC7400Õs L2 cache interface
provides the L2ZZ signal to drive external SRAM into a low-power mode when nap or
sleep modes are invoked. To enable L2ZZ, set L2CR[CTL]. Note that if bus snooping is to
be performed through the negation of QACK, L2CR[CTL] should always be cleared.

Note the following with respect to nap mode:

¥ The time base, decrementer, and thermal assist unit are still enabled.

¥ Most functional units are disabled.

¥ All nonessential input receivers are disabled.

¥ PLL and DLL are running and locked to SYSCLK.

10.2.4.1 Entering Nap Mode

Nap mode is entered by setting the nap bit (HID0[9] = 1) and MSR[POW] and clearing the
doze and sleep bits (HID0[8] and HID0[10] = 0). At this point, the MPC7400 asserts
QREQ, and the system asserts QACK. The MPC7400 enters nap mode after several
processor clocks.

Chapter 10. Power and Thermal Management 10-5

Programmable Power Modes

10.2.4.2 Nap Mode Bus Snooping Sequence

The MPC7400 also allows dynamic switching between nap and doze mode to allow use of
nap mode without sacriÞcing hardware snoop coherency. For this operation, negating
QACK at any time for at least 4 bus cycles guarantees that the MPC7400 has changed from
nap to doze mode in order to snoop. Reasserting QACK then allows the MPC7400 to return
to nap mode. QACK can be reasserted one cycle (or more) after TS is asserted for the snoop.
The MPC7400 re-enters nap mode after it completes all operations necessary to service the
snoop (assuming that QACK was not negated for eight consecutive cycles again). Nap
mode resumes within a few cycles of the snoopÕs address tenure if no snoop push is
required. If a snoop push is required, the MPC7400 does not re-enter nap mode until a few
cycles after the pushÕs data tenure ends.

It is always necessary to negate QACK for 4 consecutive cycles before presenting a napping
MPC7400 with a snoop, regardless of how many cycles QACK had been asserted
previously. Because of this 4-cycle requirement, a system could try to predict bursts of
snoops by negating QACK for, say, 32 or 64 clocks every time a snoop is presented. In that
way, if a subsequent snoop is within tens of cycles of the previous one, the 4-cycle
requirement would have already been met for that snoop.

The process for handling bus snooping is described as follows:

1. The system negates QACK for four or more bus clock cycles.

2. The MPC7400 snoops address tenures on the bus.

3. The system asserts QACK to restore full nap mode.

10.2.4.3 Returning to Full-Power Mode

The MPC7400 can be returned to full-power mode by asserting INT, SMI, or MCP by
taking a decrementer, performance monitor, or thermal management interrupt, or by
asserting hard reset or soft reset. The transition to full-power takes only a few processor
cycles.

10.2.4.4 Sleep Mode

Sleep mode consumes the least amount of power of the four modes because all functional
units (except the thermal assist and performance monitor units) are disabled. To maximize
power conservation, the PLL may be disabled in the following two ways:

¥ Placing the PLL_CFG signals in PLL bypass mode and disabling SYSCLK. Note
that forcing SYSCLK into a static state does not disable the MPC7400Õs PLL, which
continues to operate internally at an undeÞned frequency unless placed in PLL
bypass mode. Additionally, if the PLL is enabled, the L2 cache interface DLL
remains locked and the Þve L2 clock signals remain active. The DLL is disabled by
clearing L2CR[L2E].

¥ Placing the PLL_CFG signals in kill mode. In this case, SYSCLK can continue to
operate.

10-6 MPC7400 RISC Microprocessor UserÕs Manual

Programmable Power Modes

Due to the fully static design of the MPC7400, the internal processor state is preserved
when no internal clock is present. Because the time base and decrementer are disabled
while the MPC7400 is in sleep mode, the MPC7400Õs time base contents must be updated
from an external time base after exiting sleep mode if accurate time-of-day is required.
Before entering sleep mode, the MPC7400 asserts QREQ to indicate that it is ready to
disable bus snooping. When the system ensures that snooping is no longer necessary, it
asserts QACK and the MPC7400 enters sleep mode.

Note the following with respect to sleep mode:

¥ All functional units are disabled (including bus snooping and time base).

¥ All nonessential input receivers are disabled:

Ñ Internal clock regenerators are disabled.

Ñ PLL and DLL are still running (see below).

¥ PLL and DLL may be disabled and SYSCLK may be removed while in sleep mode.

10.2.4.5 Entering Sleep Mode

Sleep mode is entered by setting the sleep bit (HID0[10]) and MSR[POW]) and clearing
the doze and nap bits (HID0[8] and HID0[9]). The MPC7400 asserts QREQ and the system
asserts QACK. The MPC7400 enters sleep mode after several processor clocks.

10.2.4.6 Returning to Full-Power Mode

When the processor is recovering from sleep mode, SYSCLK must be enabled before the
PLL if it had been stopped in sleep mode. If the PLL had not been disabled after PLL
start-up and re-lock time (indicated in the hardware speciÞcations) has elapsed, the system
logic should assert one of the sleep mode recovery signals, such as INT or SMI. After the
PLL is enabled, the DLL is reconÞgured and the DLL relock time has elapsed (640 L2
clock cycles), the L2 cache may be reenabled through the L2CR.

10.2.5 Power Management Software Considerations

Because the MPC7400 is a dual-issue processor with out-of-order execution capability,
care must be taken in how the power management mode is entered. Furthermore, nap and
sleep modes require all outstanding bus operations to be completed before these power
management modes are entered. Normally, during system conÞguration time, a power
management mode would be selected by setting the appropriate HID0 mode bit. Later on,
the power management mode is invoked by setting MSR[POW]. To ensure a clean
transition into and out of a power management mode, execute the following code sequence:

Chapter 10. Power and Thermal Management 10-7

Thermal Assist Unit (TAU)

loop dssall
sync
mtmsr[POW = 1]
isync

loop: b loop

The dssall instruction is needed to kill any outstanding stream touch instructions, which are
not killed by a sync.

10.3 Thermal Assist Unit (TAU)
With the increasing power dissipation of high-performance processors and operating
conditions that span a wider range of temperatures than desktop systems, thermal
management becomes an essential part of system design to ensure reliable operation of
portable systems. One key aspect of thermal management is ensuring that the junction
temperature of the microprocessor does not exceed the operating speciÞcation. While the
case temperature can be measured with an external thermal sensor, the thermal constant
from the junction to the case can be large, and accuracy can be a problem. This may lead to
lower overall system performance due to the necessary compensation to alleviate
measurement deÞciencies.

The MPC7400 provides the system designer an efÞcient means of monitoring junction
temperature through the incorporation of an on-chip thermal sensor and programmable
control logic to enable a thermal management implementation tightly coupled to the
processor for improved performance and reliability.

10.3.1 Thermal Assist Unit Overview

The on-chip thermal assist unit, shown in Figure 10-2, consists of a thermal sensor, a
digital-to-analog converter (DAC), a comparator, control logic, and three dedicated SPRs.

Figure 10-2. Thermal Assist Unit Block Diagram

Thermal

Thermal Sensor
Control Logic

DAC

Decoder

Latch

Interrupt

THRM1 THRM2

T
H

R
M

3

Thermal Interrupt
Request
(0x1700)

Sensor

Control

10-8 MPC7400 RISC Microprocessor UserÕs Manual

Thermal Assist Unit (TAU)

The thermal assist unit provides thermal control by periodically comparing the MPC7400Õs
junction temperature against user-programmed thresholds, and generating a thermal
management interrupt if the threshold values are reached. The thermal assist unit also
enables the user to determine the junction temperature through a software successive
approximation routine.

The thermal assist unit is controlled through three supervisor-level SPRs, accessed through
the mtspr/mfspr instructions. Two SPRs (THRM1 and THRM2) provide temperature
threshold values that can be compared to the junction temperature value, and control bits
that enable comparison and thermal interrupt generation. The third SPR (THRM3) provides
a thermal assist unit enable bit and a sample interval timer. Note that all the bits in THRM1,
THRM2, and THRM3 are cleared during a hard reset, and the thermal assist unit remains
idle and in a low-power state until conÞgured and enabled.

The Þelds in the THRM1 and THRM2 SPRs are described in Table 10-2.

Table 10-2. THRM1 and THRM2 Field Descriptions

Bits Field Description

0 TIN Thermal management interrupt bit. Read only. Set if the thermal sensor output crosses the
threshold speciÞed in the SPR. The state of this bit is valid only if TIV is set. The interpretation of
the TIN bit is controlled by the TID bit.

1 TIV Thermal management interrupt valid. Read only. This bit is set by the thermal assist logic to
indicate that the thermal management interrupt (TIN) state is valid.

2Ð8 Threshold Threshold value that the output of the thermal sensor is compared to. The threshold range is
between 0¡ and 127¡C, and each bit represents 1¡C. Note that this is not the resolution of the
thermal sensor.

9Ð28 Ñ Reserved, for future use. The MPC7400 always returns zeros on a read of these bits. For
maximum ßexibility with other implementations, system software should clear these bits when
writing to the ICTC.

29 TID Thermal management interrupt direction bit. Selects the result of the temperature comparison to
set TIN. If TID = 0, TIN is set and an interrupt occurs if the junction temperature exceeds the
threshold. If TID = 1, TIN is set and an interrupt is indicated if the junction temperature is below the
threshold.

30 TIE Thermal management interrupt enable. Enables assertion of the thermal management interrupt
signal. The thermal management interrupt is maskable by the MSR[EE] bit. If TIE = 0 and THRMn
is valid, the TIN bit records the status of the junction temperature vs. threshold comparison
without asserting an interrupt signal. This feature allows system software to make a successive
approximation to estimate the junction temperature.

31 V SPR valid bit. Set to indicate that the SPR contains valid threshold, TID, and TIE control bits.
Setting THRM1[V], THRM2[V], and THRM3[E] enables operation of the thermal sensor.

Chapter 10. Power and Thermal Management 10-9

Thermal Assist Unit (TAU)

The bit Þelds in the THRM3 SPR are described in Table 10-3.

10.3.2 Thermal Assist Unit Operation

The thermal assist unit can be programmed to operate in single- or dual-threshold modes,
which results in the thermal assist unit generating a thermal management interrupt when
one or both threshold values are crossed. In addition, with the appropriate software routine,
the thermal assist unit can also directly determine the junction temperature. The following
sections describe the conÞguration of the thermal assist unit to support these modes of
operation.

10.3.2.1 Thermal Assist Unit Single-Threshold Mode

When the thermal assist unit is conÞgured for single-threshold mode, either THRM1 or
THRM2 can be used to contain the threshold value, and a thermal management interrupt is
generated when the threshold value is crossed. To conÞgure the thermal assist unit for
single threshold operation, set the desired temperature threshold, TID, TIE, and V bits for
either THRM1 or THRM2. The unused THRMn threshold SPR should be disabled by
clearing the V bit. In this discussion THRMn refers to the THRM threshold SPR (THRM1
or THRM2) selected to contain the active threshold value.

After setting the desired operational parameters, the thermal assist unit is enabled by setting
THRM3[E] and placing a value allowing a sample interval of 20 microseconds or greater
in THRM3[SITV]. The THRM3[SITV] setting determines the number of processor clock
cycles between input to the DAC and sampling of the comparator output; accordingly, the
use of a value smaller than recommended in THRM3[SITV] can cause inaccuracies in the
sensed temperature.

If the junction temperature does not cross the programmed threshold, THRMn[TIN] is
cleared to indicate that no interrupt is required and THRMn[TIV] is set to indicate that the
TIN bit state is valid. If the threshold value has been crossed, THRMn[TIN] and
THRMn[TIV] are set and a thermal management interrupt is generated if THRMn[TIE] and
MSR[EE] = 1.

A thermal management interrupt is held asserted internally until recognized by the
MPC7400Õs interrupt unit. Once a thermal management interrupt is recognized, further

Table 10-3. THRM3 Bit Field Settings

Bits Name Description

0Ð17 Ñ Reserved for future use. System software should clear these bits.

18Ð30 SITV Sample interval timer value. Number of elapsed processor clock cycles before a junction
temperature vs. threshold comparison result is sampled for TIN bit setting and interrupt generation.
This is necessary due to the thermal sensor, DAC, and the analog comparator settling time being
greater than the processor cycle time. The value should be conÞgured to allow a 20-µs sampling
interval.

31 E Enables the thermal sensor compare operation if either THRM1[V] or THRM2[V] = 1.

10-10 MPC7400 RISC Microprocessor UserÕs Manual

Thermal Assist Unit (TAU)

temperature sampling is suspended, and the THRMn[TIN] and THRMn[TIV] values are
held until an mtspr instruction is executed to THRMn.

The execution of an mtspr instruction to THRMn anytime during thermal assist unit
operation clears THRMn[TIV] and restarts the temperature comparison. Executing an
mtspr instruction to THRM3 clears THRM1[TIV] and THRM2[TIV] and restarts
temperature comparison in THRMn if THRM3[E] = 1.

Examples of valid THRM1 and THRM2 bit settings are shown in Table 10-4.

10.3.2.2 Thermal Assist Unit Dual-Threshold Mode

The conÞguration and operation of dual-threshold mode is similar to single-threshold
mode, except both THRM1 and THRM2 are conÞgured with desired threshold and TID
values, and the TIE and V bits are set. When THRM3[E] is set, enabling temperature
measurement and comparison, the Þrst comparison is made with THRM1. If no thermal
management interrupt results from the comparison, the number of processor cycles
speciÞed in THRM3[SITV] elapses, and the next comparison is made with THRM2. If no
thermal management interrupt results from the THRM2 comparison, the time speciÞed by
THRM3[SITV] again elapses, and the comparison returns to THRM1.

This sequence of comparisons continues until a thermal management interrupt occurs, or
the thermal assist unit is disabled. When a comparison results in an interrupt, the

Table 10-4. Valid THRM1 and THRM2 Bit Settings

TIN1

1 The TIN and TIV bits are read-only status bits.

TIV1 TID TIE V Description

x x x x 0 The threshold in the SPR is not used for comparison.

x x x 0 1 Threshold is used for comparison, thermal management interrupt assertion is disabled.

x x 0 0 1 Set TIN and do not assert thermal management interrupt if the junction temperature
exceeds the threshold.

x x 0 1 1 Set TIN and assert thermal management interrupt if the junction temperature exceeds
the threshold.

x x 1 0 1 Set TIN and do not assert thermal management interrupt if the junction temperature is
less than the threshold.

x x 1 1 1 Set TIN and assert thermal management interrupt if the junction temperature is less
than the threshold.

x 0 x x 1 The state of the TIN bit is not valid.

0 1 0 x 1 The junction temperature is less than the threshold and as a result the thermal
management interrupt is not generated for TIE = 1.

1 1 0 x 1 The junction temperature is greater than the threshold and as a result the thermal
management interrupt is generated if TIE = 1.

0 1 1 x 1 The junction temperature is greater than the threshold and as a result the thermal
management interrupt is not generated for TIE = 1.

1 1 1 x 1 The junction temperature is less than the threshold and as a result the thermal
management interrupt is generated if TIE = 1.

Chapter 10. Power and Thermal Management 10-11

Instruction Cache Throttling

comparison with the threshold SPR causing the interrupt is halted, but comparisons
continue with the other threshold SPR. Following a thermal management interrupt, the
interrupt service routine must read both THRM1 and THRM2 to determine which threshold
was crossed. Note that it is possible for both threshold values to have been crossed, in which
case the thermal assist unit stops making temperature comparisons until an mtspr
instruction is executed to one or both of the threshold SPRs.

10.3.2.3 MPC7400 Junction Temperature Determination

While the MPC7400Õs thermal assist unit does not implement an analog-to-digital converter
to enable the direct determination of the junction temperature, system software can execute
a simple successive approximation routine to Þnd the junction temperature.

The thermal assist unit conÞguration used to approximate the junction temperature is the
same required for single-threshold mode, except that the threshold SPR selected has its TIE
bit cleared to disable thermal management interrupt generation. Once the thermal assist unit
is enabled, the successive approximation routine loads a threshold value into the active
threshold SPR, and then continuously polls the threshold SPRÕs TIV bit until it is set,
indicating a valid TIN bit. The successive approximation routine can then evaluate the TIN
bit value, and then increment or decrement the threshold value for another comparison. This
process is continued until the junction temperature is determined.

10.3.2.4 Power Saving Modes and Thermal Assist Unit Operation

The static power saving modes (nap, doze, and sleep) allow the processor temperature to be
lowered quickly and can be invoked through the use of the thermal assist unit and associated
thermal management interrupt. The thermal assist unit remains operational in nap and doze
modes, and it remains operational in sleep mode as long as the SYSCLK input remains
active. If SYSCLK is made static when sleep mode is invoked, the thermal assist unit is
rendered inactive. If the MPC7400 is entering sleep mode with SYSCLK disabled, the
thermal assist unit should be conÞgured to disable thermal management interrupts to avoid
an unwanted thermal management interrupt when the SYSCLK input signal is restored.

10.4 Instruction Cache Throttling
The MPC7400 provides an instruction cache throttling mechanism to effectively reduce the
instruction execution rate without the complexity and overhead of dynamic clock control.
When used with the thermal assist unit and dynamic power management, instruction cache
throttling provides the system designer with a ßexible way to control device temperature
while allowing the processor to continue operating.

The instruction cache throttling mechanism simply reduces the instruction forwarding rate
from the instruction cache to the instruction dispatcher. Normally, the instruction cache
forwards four instructions to the instruction dispatcher every clock cycle if all the
instructions hit in the cache. For thermal management, the MPC7400 provides a
supervisor-level instruction cache throttling control SPR (ICTC). The instruction

10-12 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Cache Throttling

forwarding rate is reduced by writing a nonzero value into ICTC[FI], and enabling
instruction cache throttling by setting ICTC[E]. The overall junction temperature reduction
results from dynamic power management reducing the power to the execution units while
waiting for instructions to be forwarded from the instruction cache; thus, instruction cache
throttling does not provide thermal reduction unless HID0[DPM] = 1. Note that during
instruction cache throttling the conÞguration of the PLL and DLL remain unchanged.

Table 10-5 describes ICTC Þelds.

Table 10-5. ICTC Field Descriptions

Bits Name Description

0Ð22 Ñ Reserved, for future use. The MPC7400 always returns zeros on a read of these bits. For maximum
ßexibility with other implementations, system software should clear these bits when writing to the
ICTC.

23Ð30 FI Instruction forwarding interval expressed in processor clocks.
0x00Ñ0 clock cycle
0x01Ñ1 clock cycle
...
0xFFÑ255 clock cycles

31 E Cache throttling enable.
0 Disable instruction cache throttling.
1 Enable instruction cache throttling.

Chapter 11. Performance Monitor 11-1

Chapter 11
Performance Monitor
The PowerPC architecture deÞnes an optional performance monitor facility that provides
the ability to monitor and count predeÞned events such as processor clocks, misses in the
instruction cache, data cache, or L2 cache, types of instructions dispatched, mispredicted
branches, and other occurrences. The count of such events (which may be an
approximation) can be used to trigger the performance monitor exception. Note that some
earlier PowerPC processors implemented the performance monitor facility before it was
deÞned by the PowerPC architecture.

The performance monitor can be used for the following:

¥ To increase system performance with efÞcient software, especially in a
multiprocessing systemÑMemory hierarchy behavior may be monitored and
studied in order to develop algorithms that schedule tasks (and perhaps partition
them) and that structure and distribute data optimally.

¥ To characterize processorsÑSome environments may not be easily characterized by
a benchmark or trace.

¥ To help system developers bring up and debug their systems

AltiVec Technology and the Performance Monitor

The AltiVec technology features do not affect the basic implementation of the performance
monitor. The performance monitor does provide the ability to monitor the following
AltiVec operations:

¥ Maintains individual counts of instructions executed by the AltiVec execution units,
the vector simple integer execution unit (VSIU), vector complex integer execution
unit (VCIU), vector ßoating-point unit (VFPU), and vector permute unit (VPU)

¥ Counts AltiVec load instructions completed

¥ Maintains individual counts of cycles during which the VSIU, VCIU, VFPU, and
VPU had a valid dispatch but invalid operands

¥ Counts VFPU traps that can be generated in Java mode

¥ Counts mtvscr and mtvrsave instructions

¥ Counts settings of the VSCR saturate bit

¥ Counts completions of dss and dssall instructions

11-2 MPC7400 RISC Microprocessor UserÕs Manual

Overview

¥ Counts dstx instruction eventsÑdispatches, misses, refreshes, suspensions,
premature cancellations, and resumptions

¥ Counts cycles in which the VALU had a valid mfvscr dispatch but could not execute
it because it is not at the bottom of the completion queue (CQ)

11.1 Overview
The performance monitor uses the following resources deÞned by the PowerPC
architecture:

¥ The performance monitor mark bit in the MSR (MSR[PMM]). This bit identiÞes
programs to be monitored.

¥ Special-purpose registers (SPRs):

Ñ The performance monitor counter registers (PMC1ÐPMC4) are 32-bit counters
used to record the number of times a software-selectable event has occurred.
UPMC1ÐUPMC4 provide user-level read access to these registers.

Ñ The monitor mode control registers (MMCR0ÐMMCR2). Control Þelds in the
MMCRx registers select events to be counted, determine whether performance
monitor exceptions are caused by a time base register transition, counter
overßow, or assertion of SMI, and specify the conditions under which counting
is enabled. UMMCR0ÐUMMCR2 provide user-level read access to these
registers.

Ñ The sampled instruction address register (SIAR) contains the effective address
of the last instruction that completes before the performance monitor exception
is signaled. USIAR provides user-level read access to the SIAR.

Note that the MPC7400 does not implement the sampled data address register
(SDAR) or the user-level, read-only USDAR register deÞned by the architecture.
However, for compatibility with processors that do, those registers can be written
to by boot code without causing an exception.

¥ The performance monitor interrupt exception follows the normal PowerPC
exception model and has a deÞned exception vector offset (0x00F00). Its priority is
below the external interrupt and above the decrementer interrupt.

11.2 Performance Monitor Interrupt
The performance monitor provides the ability to generate a performance monitor interrupt
triggered by an enabled condition or event. This exception is triggered by an enabled
condition or event deÞned as follows:

¥ A PMCx register overßow condition occurs

Ñ MMCR0[PMC1CE] and PMC1[0] are both set

Ñ MMCR0[PMCjCE] and PMCj[0] are both set (j > 1)

Chapter 11. Performance Monitor 11-3

Special-Purpose Registers Used by the Performance Monitor

¥ A time base eventÑMMCR0[TBEE] = 1 and the TBL bit speciÞed in
MMCR0[TBSEL] changes from 0 to 1

¥ An SMI eventÑMMCR2[SMINTENABLE] = 1 and SMI is asserted

MMCR0[PMXE] must be set for any of these conditions to signal a performance monitor
exception.

Although the interrupt signal condition may occur with MSR[EE] = 0, the exception cannot
be taken until MSR[EE] = 1.

As a result of a performance monitor interrupt being signaled, the performance monitor
saves in the SIAR the effective address of the last instruction completed before the
exception is signaled. Note that SIAR is not updated if performance monitor counting has
been disabled by setting MMCR0[0].

The performance monitor can receive a performance monitor interrupt request from an
off-chip performance monitor or device. This is accomplished by setting a mask bit in
MMCR2[2] and asserting SMI. Under this condition, the MPC7400 takes a performance
monitor interrupt exception rather than an SMI exception.

The priority of the performance monitor interrupt exception is greater than the decrementer
interrupt and lower than the external interrupt.

Exception handling for the performance monitor interrupt exception is described in
Section 4.6.13, ÒPerformance Monitor Interrupt (0x00F00).Ó

11.2.1 A Note on TBEE Usage

The use of the trigger and freeze counter conditions depends on these enabled conditions
and events. When MMCR0[TBEE] (timebase enable event) is 1, a timebase transition is
signaled to the performance monitor if the TB bit speciÞed in MMCR0[TBSEL] changes
from 0 to 1. Timebase transition events can be used to freeze the counters
(MMCR0[FCECE]), trigger the counters (MMCR0[TRIGGER]), or signal an exception
(MMCR0[PMXE]).

Changing the bits speciÞed in MMCR0[TBSEL] while MMCR0[TBEE] is enabled may
cause a false 0 to 1 transition that signals the speciÞed action (freeze, trigger, or exception)
to occur immediately.

11.3 Special-Purpose Registers Used by the
Performance Monitor

The performance monitor incorporates the SPRs listed in Table 11-1 and Table 11-2. The
supervisor-level registers in Table 11-1 are accessed through mtspr and mfspr instructions.

11-4 MPC7400 RISC Microprocessor UserÕs Manual

Special-Purpose Registers Used by the Performance Monitor

The user-level registers in Table 11-2 are read-only and are accessed with the mfspr
instruction. Attempting to write to one of these registers in either supervisor or user mode
causes a program exception.

11.3.1 Performance Monitor Registers

This section describes the registers used by the performance monitor.

11.3.1.1 Monitor Mode Control Register 0 (MMCR0)

The monitor mode control register 0 (MMCR0), shown in Figure 11-1, is a 32-bit SPR
provided to specify events to be counted and recorded. MMCR0 can be written to only in
supervisor mode. User-level software can read the contents of MMCR0 by issuing an
mfspr instruction to UMMCR0, described in Section 11.3.1.2, ÒUser Monitor Mode
Control Register 0 (UMMCR0).Ó

Table 11-1. Performance Monitor SPRsÑSupervisor-Level

SPR Number spr[5Ð9] || spr[0Ð4] Register Name

944 0b11101 10000 Monitor mode control register 2ÑMMCR2

951 0b11101 10111 Breakpoint address mask registerÑBAMR

952 0b11101 11000 Monitor mode control register 0ÑMMCR0

953 0b11101 11001 Performance monitor counter register 1ÑPMC1

954 0b11101 11010 Performance monitor counter register 2ÑPMC2

955 0b11101 11011 Sampled instruction address registerÑSIAR

956 0b11101 11100 Monitor mode control register 1ÑMMCR1

957 0b11101 11101 Performance monitor counter register 3ÑPMC3

958 0b11101 11110 Performance monitor counter register 4ÑPMC4

Table 11-2. Performance Monitor SPRsÑUser Level (Read Only)

SPR Number spr[5Ð9] || spr[0Ð4] Register Name

928 0b11101 00000 User monitor mode control register 2ÑUMMCR2

935 0b11101 00111 User breakpoint address mask registerÑUBAMR

936 0b11101 01000 User monitor mode control register 0ÑUMMCR0

937 0b11101 01001 User performance monitor counter register 1ÑUPMC1

938 0b11101 01010 User performance monitor counter register 2ÑUPMC2

939 0b11101 01011 User sampled instruction address registerÑUSIAR

940 0b11101 01100 User monitor mode control register 1ÑUMMCR1

941 0b11101 01101 User performance monitor counter register 3ÑUPMC3

942 0b11101 01110 User performance monitor counter register 4ÑUPMC4

Chapter 11. Performance Monitor 11-5

Special-Purpose Registers Used by the Performance Monitor

Figure 11-1. Monitor Mode Control Register 0 (MMCR0)

This register must be cleared at power up. Reading this register does not change its
contents. Table 11-3 describes the Þelds of the MMCR0 register.

Table 11-3. MMCR0 Field Descriptions

Bits Name Description

0 FC Freeze counters.
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented (performance monitor counting is disabled).The

processor sets this bit when an enabled condition or event occurs and
MMCR0[FCECE] = 1. Note that SIAR is not updated if performance monitor counting is
disabled.

1 FCS Freeze counters in supervisor state.
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented if MSR[PR] = 0.

2 FCP Freeze counters in problem state.
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented if MSR[PR] = 1.

3 FCM1 Freeze counters while mark = 1.
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented if MSR[PMM] = 1.

4 FCM0 Freeze counters while mark = 0.
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented if MSR[PMM] = 0.

5 PMXE Performance monitor exception enable.
0 Performance monitor exceptions are disabled.
1 Performance monitor exceptions are enabled until a performance monitor interrupt

occurs, at which time MMCR0[PMXE] is cleared.
Software can clear PMXE to prevent performance monitor interrupts. Software can set
PMXE and then poll it to determine whether an enabled condition or event occurred.

6 FCECE Freeze counters on enabled condition or event.
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are incremented (if permitted by other MMCR bits) until an enabled condition

or event occurs when MMCR0[TRIGGER] = 0, at which time MMCR0[FC] is set If the
enabled condition or event occurs when MMCR0[TRIGGER] = 1, FCECE is treated as if it
were 0.

The use of the trigger and freeze counter conditions depends on the enabled conditions and
events described in Section 11.2, ÒPerformance Monitor Interrupt.Ó

0 1 2 3 4 5 6 7 8 9 10 15 16 17 18 19 25 26 31

FCP THRESHOLD

FCECE

FCM0

PMC1SELFCS PMC2SELFC

PMC1CEFCM1

PMCjCE

PMXE

TRIGGER

TBSEL

TBEE

11-6 MPC7400 RISC Microprocessor UserÕs Manual

Special-Purpose Registers Used by the Performance Monitor

7Ð8 TBSEL Time base selector. Selects the time base bit that can cause a time base transition event
(the event occurs when the selected bit changes from 0 to 1).
00 TB[63] (TBL[31])
01 TB[55] (TBL[23])
10 TB[51] (TBL[19])
11 TB[47] (TBL[15])
Time base transition events can be used to periodically collect information about processor
activity. In multiprocessor systems in which TB registers are synchronized among
processors, time base transition events can be used to correlate the performance monitor
data obtained by the several processors. For this use, software must specify the same
TBSEL value for all the processors in the system. Because the time-base frequency is
implementation-dependent, software should invoke a system service program to obtain the
frequency before choosing a value for TBSEL.

9 TBEE Time base event enable.
0 Time-base transition events are disabled.
1 Time-base transition events are enabled. A timebase transition is signaled to the

performance monitor if the TB bit speciÞed in MMCR0[TBSEL] changes from 0 to 1.
Time-base transition events can be used to freeze the counters (MMCR0[FCECE]),
trigger the counters (MMCR0[TRIGGER]), or signal an exception (MMCR0[PMXE]).

Changing the bits speciÞed in MMCR0[TBSEL] while MMCR0[TBEE] is enabled may cause
a false 0 to 1 transition that signals the speciÞed action (freeze, trigger, or exception) to
occur immediately.

10Ð15 THRESHOLD Threshold. Contains a threshold value, which is a value such that only events that exceed
the value are counted (PMC1 events 11, 19, and 20).
By varying the threshold value, software can obtain a proÞle of the characteristics of the
events subject to the threshold. For example, if PMC1 counts cache misses for which the
duration exceeds the threshold value, software can obtain the distribution of cache miss
durations for a given program by monitoring the program repeatedly using a different
threshold value each time.
Note that MMCR2[THRESHMULT] chooses whether this value is multiplied by 2 or 32.

16 PMC1CE PMC1 condition enable. Controls whether counter negative conditions due to a negative
value in PMC1 are enabled.
0 Counter negative conditions for PMC1 are disabled.
1 Counter negative conditions for PMC1 are enabled. These events can be used to freeze

the counters (MMCR0[FCECE]), trigger the counters (MMCR0[TRIGGER]), or signal an
exception (MMCR0[PMXE]).

17 PMCjCE PMCj condition enable. Controls whether counter negative conditions due to a negative
value in any PMCj (that is, in any PMC except PMC1) are enabled.
0 Counter negative conditions for all PMCjs are disabled.
1 Counter negative conditions for all PMCjs are enabled. These events can be used to

freeze the counters (MMCR0[FCECE]), trigger the counters (MMCR0[TRIGGER]), or
signal an exception (MMCR0[PMXE]).

Table 11-3. MMCR0 Field Descriptions (Continued)

Bits Name Description

Chapter 11. Performance Monitor 11-7

Special-Purpose Registers Used by the Performance Monitor

MMCR0 can be accessed with the mtspr and mfspr instructions using SPR 952.

11.3.1.2 User Monitor Mode Control Register 0 (UMMCR0)

The contents of MMCR0 are reßected to UMMCR0, which can be read by user-level
software. UMMCR0 can be accessed with the mfspr instructions using SPR 936.

11.3.1.3 Monitor Mode Control Register 1 (MMCR1)

The monitor mode control register 1 (MMCR1) functions as an event selector for
performance monitor counter registers 3 and 4 (PMC3 and PMC4). The MMCR1 register
is shown in Figure 11-2.

Figure 11-2. Monitor Mode Control Register 1 (MMCR1)

18 TRIGGER Trigger.
0 The PMCs are incremented (if permitted by other MMCR bits).
1 PMC1 is incremented (if permitted by other MMCR bits). The PMCjs are not incremented

until PMC1 is negative or an enabled condition or event occurs, at which time the PMCjs
resume incrementing (if permitted by other MMCR bits) and MMCR0[TRIGGER] is
cleared. The description of FCECE explains the interaction between TRIGGER and
FCECE.

Uses of TRIGGER include the following:
¥ Resume counting in the PMCjs when PMC1 becomes negative without causing a

performance monitor interrupt. Then freeze all PMCs (and optionally cause a
performance monitor interrupt) when a PMCj becomes negative. The PMCjs then reßect
the events that occurred after PMC1 became negative and before PMCj becomes
negative. This use requires the following MMCR0 bit settings:
Ð TRIGGER = 1
Ð PMC1CE = 0
Ð PMCjCE = 1
Ð TBEE = 0
Ð FCECE = 1
Ð PMXE = 1 (if a performance monitor interrupt is desired)

¥ Resume counting in the PMCjs when PMC1 becomes negative, and cause a
performance monitor interrupt without freezing any PMCs. The PMCjs then reßect the
events that occurred between the time PMC1 became negative and the time the
interrupt handler reads them. This use requires the following MMCR0 bit settings:
Ð TRIGGER = 1
Ð PMC1CE = 1
Ð TBEE = 0
Ð FCECE = 0
Ð PMXE = 1

The use of the trigger and freeze counter conditions depends on the enabled conditions and
events described in Section 11.2, ÒPerformance Monitor Interrupt.Ó

19Ð25 PMC1SEL PMC1 selector. Contains a code (one of at most 128 values) that identiÞes the event to be
counted in PMC1. See Table 11-8.

26Ð31 PMC2SEL PMC2 selector. Contains a code (one of at most 64 values) that identiÞes the event to be
counted in PMC2. See Table 11-9.

Table 11-3. MMCR0 Field Descriptions (Continued)

Bits Name Description

0 4 5 9 10 31

Reserved

PMC3SELECT PMC4SELECT 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ

11-8 MPC7400 RISC Microprocessor UserÕs Manual

Special-Purpose Registers Used by the Performance Monitor

Bit settings for MMCR1 are shown in Table 11-4. The corresponding events are described
in Section 11.3.2.2, ÒPerformance Monitor Counter Registers (PMC1ÐPMC4).Ó

MMCR1 can be accessed with the mtspr and mfspr instructions using SPR 956. User-level
software can read the contents of MMCR1 by issuing an mfspr instruction to UMMCR1,
described in Section 11.3.1.6, ÒUser Monitor Mode Control Register 2 (UMMCR2).Ó

11.3.1.4 User Monitor Mode Control Register 1 (UMMCR1)

The contents of MMCR1 are reßected to UMMCR1, which can be read by user-level
software. MMCR1 can be accessed with mfspr using SPR 940.

11.3.1.5 Monitor Mode Control Register 2 (MMCR2)

The monitor mode control register 2 (MMCR2), shown in Figure 11-3, provides bits for
masking PMON_IN and SMI, and for extending the range of MMCR0[THRESHOLD].

Figure 11-3. Monitor Mode Control Register 2 (MMCR2)

Table 11-5 describes MMCR2 fields.

Table 11-4. MMCR1 Field Descriptions

Bits Name Description

0Ð4 PMC3SELECT PMC3 selector. Contains a code (one of at most 32 values) that identiÞes the event to
be counted in PMC3. See Table 11-10.

5Ð9 PMC4SELECT PMC4 selector. Contains a code (one of at most 32 values) that identiÞes the event to
be counted in PMC4. See Table 11-11.

10Ð31 Ñ Reserved

Table 11-5. MMCR2 Field Descriptions

Bits Name Description

0 THRESHMULT Threshold multiplier. Used to extend the range of the THRESHOLD Þeld, MMCR0[10Ð15].
0 Threshold Þeld is multiplied by 2
1 Threshold Þeld is multiplied by 32

1 SMCNTENABLE SMCNTENABLE is used to mask the request from a peripheral performance monitor.
0 Ignore PMON_IN.
1 Start counting when PMON_IN is asserted.
Note that counting is subject to other enabling control bits in MMCR0.

0 1 2 3 4 31

SMCNTENABLE
SMINTENABLE

THRESHMULT

 Ê 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ0 0 0 0 ÊÊ

Chapter 11. Performance Monitor 11-9

Special-Purpose Registers Used by the Performance Monitor

11.3.1.6 User Monitor Mode Control Register 2 (UMMCR2)

The contents of MMCR2 are reßected to UMMCR2, which can be read by user-level
software. UMMCR2 can be accessed with the mfspr instructions using SPR 928.

11.3.2 Breakpoint Address Mask Register (BAMR)

The breakpoint address mask register (BAMR), shown in Table 11-4, is used in conjunction
with the events that monitor IABR and DABR hits.

Figure 11-4. Breakpoint Address Mask Register (BAMR)

Table 11-6 describes BAMR Þelds.

11.3.2.1 User Breakpoint Address Mask Register (UBAMR)

The contents of BAMR are reßected to UBAMR, which can be read by user-level software.
UBAMR can be accessed with the mfspr instructions using SPR 935.

2 SMINTENABLE SMINTENABLE is used to mask the performance monitor interrupt request from a
peripheral performance monitor.
0 Ignore SMI.
1 When SMI is asserted, take a performance monitoring interrupt if enabled in MMCR0

and MSR[EE]. This event can be used to freeze the counters (MMCR0[FCECE]), trigger
the counters (MMCR0[TRIGGER]), or signal an exception (MMCR0[PMXE]).

When SMINTENABLE = 1, the MPC7400 never takes an SMI.

Table 11-6. BAMR Field Descriptions

Bit Name Description

0Ð31 MASK Used with events (PMC1 events 9 and 10) that monitor IABR and DABR hits. The addresses to be
compared for an IABR or DABR match are affected by the value in BAMR:

¥ IABR hit (PMC1, event 8) occurs if IABR_CMP (that is, IABR AND BAMR) =
instruction_address_compare (that is, EA AND BAMR)
IABR_CMP[0Ð29] = IABR[0Ð29] AND BAMR[0Ð29]
instruction_addr_cmp[0Ð29] = instruction_addr[0Ð29] AND BAMR[0Ð29]

¥ DABR hit (PMC1, event 9) occurs if DABR_CMP (that is, DABR AND BAMR) =
effective_address_compare (that is, EA AND BAMR).
DABR_CMP[0Ð28] = DABR[0Ð28] AND BAMR[0Ð28]
effective_addr_cmp[0Ð28] = effective_addr[0Ð28] AND BAMR[0Ð28]

Be aware that breakpoint events 9 and 10 of PMC1 can be used to trigger ISI and DSI exceptions
when the performance monitor detects an enabled overßow. This feature supports debug purposes
and occurs only when IABR[30] and/or DABR[30Ð31] are set. To avoid taking one of the above
interrupts, make sure that IABR[30] and/or DABR[30Ð31] are cleared.

Table 11-5. MMCR2 Field Descriptions (Continued)

Bits Name Description

0 31

MASK

11-10 MPC7400 RISC Microprocessor UserÕs Manual

Special-Purpose Registers Used by the Performance Monitor

11.3.2.2 Performance Monitor Counter Registers (PMC1ÐPMC4)

The performance monitor counter registers, PMC1ÐPMC4, shown in Figure 11-5, are
32-bit counters that can be programmed to generate interrupt signals when they overßow.

Figure 11-5. Performance Monitor Counter Registers (PMC1ÐPMC4)

The bits contained in the PMC registers are described in Table 11-7.

Counters overßow when the high-order bit (the sign bit) becomes set; that is, they reach the
value 2,147,483,648 (0x8000_0000). However, an interrupt is not signaled unless both
MMCR0[PMXE] and either MMCR0[PMC1CE] or MMCR0[PMCjCE] are also set as
appropriate.

Note that the interrupts can be masked by clearing MSR[EE]; the interrupt signal condition
may occur with MSR[EE] cleared, but the exception is not taken until MSR[EE] is set.
Setting MMCR0[FCECE] forces counters to stop counting when a counter interrupt or any
enabled condition or event occurs. Setting MMCR0[TRIGGER] forces counters PMCj
(j > 1), to begin counting when PMC1 goes negative or an enabled condition or event
occurs.

Software is expected to use the mtspr instruction to explicitly set PMC to non-overßowed
values. Setting an overßowed value may cause an erroneous exception. For example, if both
MMCR0[PMXE] and either MMCR0[PMC1CE] or MMCR0[PMCjCE] are set and the
mtspr instruction loads an overßow value, an interrupt signal may be generated without an
event counting having taken place.

The PMC registers can be accessed with the mtspr and mfspr instructions using the
following SPR numbers:

¥ PMC1 is SPR 953
¥ PMC2 is SPR 954
¥ PMC3 is SPR 957
¥ PMC4 is SPR 958

Table 11-7. PMCn Field Descriptions

Bits Name Description

0 OV Overßow. When this bit is set, it indicates this counter reaches its maximum value.

1Ð31 Counter value Indicates the number of occurrences of the speciÞed event.

0 1 31

OV Counter Value

Chapter 11. Performance Monitor 11-11

Event Counting

11.3.2.3 User Performance Monitor Counter Registers
(UPMC1ÐUPMC4)

The contents of the PMC1ÐPMC4 are reßected to UPMC1ÐUPMC4, which can be read by
user-level software. The UPMC registers can be read with the mfspr instructions using the
following SPR numbers:

¥ UPMC1 is SPR 937
¥ UPMC2 is SPR 938
¥ UPMC3 is SPR 941
¥ UPMC4 is SPR 942

11.3.2.4 Sampled Instruction Address Register (SIAR)

The sampled instruction address register (SIAR) is a supervisor-level register that contains
the effective address of the last instruction to complete before the performance monitor
exception is signaled. The SIAR is shown in Figure 11-6.

Figure 11-6. Sampled instruction Address Register (SIAR)

Note that SIAR is not updated if performance monitor counting has been disabled by
setting MMCR0[0]. SIAR can be accessed with the mtspr and mfspr instructions using
SPR 955.

11.3.2.5 User Sampled Instruction Address Register (USIAR)

The contents of SIAR are reßected to USIAR, which can be read by user-level software.
USIAR can be accessed with the mfspr instructions using SPR 939.

11.4 Event Counting
Counting can be enabled if conditions in the processor state match a software-speciÞed
condition. Because a software task scheduler may switch a processorÕs execution among
multiple processes and because statistics on only a particular process may be of interest, a
facility is provided to mark a process. The performance monitor bit, MSR[PMM], is used
for this purpose. System software may set this bit when a marked process is running. This
enables statistics to be gathered only during the execution of the marked process. The states
of MSR[PR] and MSR[PMM] together deÞne a state that the processor (supervisor or user)
and the process (marked or unmarked) may be in at any time. If this state matches a state
speciÞed in the MMCR, the state for which monitoring is enabled, counting is enabled.

0 31

Instruction Address

11-12 MPC7400 RISC Microprocessor UserÕs Manual

Event Selection

The following are states that can be monitored:

¥ (Supervisor) only
¥ (User) only
¥ (Marked and user) only
¥ (Not marked and user) only
¥ (Marked and supervisor) only
¥ (Not marked and supervisor) only
¥ (Marked) only
¥ (Not marked) only

In addition, one of two unconditional counting modes may be speciÞed:

¥ Counting is unconditionally enabled regardless of the states of MSR[PMM] and
MSR[PR]. This can be accomplished by clearing MMCR0[0Ð4].

¥ Counting is unconditionally disabled regardless of the states of MSR[PMM] and
MSR[PR]. This is done by setting MMCR0[0]. Note that SIAR is not updated if
MMCR0[0] = 0.

11.5 Event Selection
Event selection is handled through the MMCRx registers, described in Table 11-3,
Table 11-4, and Table 11-5. Event selection is described as follows:

¥ The four event-select Þelds in MMCR0 and MMCR1 are as follows:

Ñ MMCR0[19Ð25] PMC1SELÑPMC1 input selector, 128 events selectable. See
Table 11-8.

Ñ MMCR0[26Ð31] PMC2SELÑPMC2 input selector, 64 events selectable. See
Table 11-9.

Ñ MMCR1[0Ð4] PMC3SELÑPMC3 input selector, 32 events selectable. See
Table 11-10.

Ñ MMCR1[5Ð9] PMC4SELÑPMC4 input selector, 32 events selectable. See
Table 11-11.

¥ In Table 11-8 through Table 11-11, a correlation is established between each
counter, events to be traced, and the pattern required for the desired selection.

¥ As shown in Table 11-8 through Table 11-9, the Þrst Þve events are common to all
four counters and are considered to be reference events. These are as follows:

Ñ 00000ÑRegister holds current value

Ñ 00001ÑNumber of processor cycles

Ñ 00010ÑNumber of completed instructions, not including folded branches

Chapter 11. Performance Monitor 11-13

Event Selection

Ñ 00011ÑNumber of TBL bit transitions from 0 to 1 of speciÞed TBL bits. Bits
are speciÞed through MMCR0[TBSEL]:

Ð 00 = TB[63] (TBL[31])

Ð 01 = TB[55] (TBL[23])

Ð 10 = TB[51] (TBL[19])

Ð 11 = TB[47] (TBL[15])

Ñ 00100ÑNumber of instructions dispatched. 0, 1, or 2 per cycle

11.5.1 PMC1 Events

The event to be monitored can be chosen by setting MMCR0[19Ð31]. The selected events
are counted beginning when MMCR0 is set until either MMCR0 is reset or a performance
monitor interrupt is generated. Table 11-8 lists the selectable events and their encodings.

Table 11-8. PMC1 EventsÑMMCR0[19Ð25] Select Encodings

Number Event Description

0 (000_0000) Nothing Register counter holds current value

1 (000_0001) Processor cycles Counts every processor cycle

2 (000_0010) Instructions completed Counts completed instructions. Does not include folded branches. 0, 1, or 2
instructions per cycle.

3 (000_0011) TBL bit transitions Count transitions from 0 to 1 of TBL bits speciÞed through MMCR0[TBSEL]

4 (000_0100) Instructions
dispatched

Counts dispatched instructions. 0, 1, or 2 instructions per cycle.

5 (000_0101) eieio instructions
completed

Counts eieio instructions completed

6 (000_0110) ITLB table search
cycles

Counts cycles spent performing ITLB table search operations

7 (000_0111) VPU instructions
completed

Counts instructions completed by the VPU (0, 1, or 2 instructions per cycle)

8 (000_1000) VSIU wait Counts cycles the AltiVec simple integer unit had a valid dispatch but invalid
operands

9 (000_1001) Instruction breakpoint
matches

Counts the times that the address of an instruction being completed
matches the address in the IABR. Both the address in the IABR and the
completed instruction address are masked by BAMR. Some instruction
addresses (such as folded branches) never produce hits.
IABR_hit = [(IABR AND BAMR) == (EA AND BAMR)]
See Table 11-6 for more information on this event.

10 (000_1010) Data breakpoint
matches

Data breakpoint matches. DABR hit = [(DABR[0Ð28] AND BAMR[0Ð28]) ==
(EA AND BAMR)]. See Table 11-6 for more information on this event.

11-14 MPC7400 RISC Microprocessor UserÕs Manual

Event Selection

11 (000_1011) Load miss latency
over threshold

Counts the times a load that misses in the L1 data cache needs more than
the threshold number of cycles to write back to the rename registers. The
cycle count compared to the threshold value represents the number of
cycles starting with allocation in the load-fold-queue or data reload table.
Note that MMCR2[0] determines whether the value in the MMCR0 threshold
Þeld is multiplied by 2 or 32.
Note that misaligned loads require two cache accesses. The miss latency
threshold is measured from the Þrst access that misses up until both halves
of load are written to the rename registers. Load multiple/string instructions
can generate many separate cache accesses. For these loads, the
threshold is measured starting with the Þrst access that misses until the
entire multiple or string operation is complete.

12 (000_1100) Unresolved branches Counts branches that are unresolved when processed

13 (000_1101) Dispatch stall due to
speculative branches

Counts cycles the dispatcher halts due to a second unresolved branch in
the instruction stream

14 (000_1110) mfvscr
synchronization

Count cycles the VALU had a valid mfvscr dispatch but could not execute it
because it is not at the bottom of the completion queue

15 (000_1111) mtvscr instructions
completed

Counts completed mtvscr instructions

16 (001_0000) mtvrsave instructions
completed

Counts completed mtvrsave instructions

17 (001_0001) VSCR[SAT] set Counts whenever VSCR[SAT] goes from 0 to 1

18 (001_0010) Clean L1 castouts to
L2

Counts times the L1 casts out clean data to the L2.

19 (001_0011) Instruction table
search latency over
threshold

Counts when an instruction table search requires more than the threshold
number of cycles to complete. Includes searches that do not Þnd a matching
PTE. Note that MMCR2[0] determines whether the value in the MMCR0
threshold Þeld is multiplied by 2 or 32.

20 (001_0100) Data table search
latency over threshold

Counts when a data table search requires more than the threshold number
of cycles to complete. Includes searches that do not Þnd a matching PTE
and searches caused by dstx instructions. Note that MMCR2[0] determines
whether the value in the MMCR0 threshold Þeld is multiplied by 2 or 32.

21 (001_0101) Completed stores Counts all store instructions completed.

22 (001_0110) dL1 load hit Counts each data L1 cache load hit; misaligned load accesses are counted
separately. Does not include MMU table search lookups.

23 (001_0111) dL1 store hit Counts write-back store hit attempts that successfully hit on the L1 data
cache. Does not count if store hit on shared cache block.

24 (001_1000) dL1 hits Counts data L1 load, store, and touch hits

25 (001_1001) L2 tag lookup Counts once per each L2 tag lookup. Does not include snoop look-ups.

26 (001_1010) L2 tag accesses Counts L2 tag accesses, including L2 tag lookups, writes, snoop look-ups,
and snoop writes

27 (001_1011) BIU non-ARTRYed
data TS assertions

Counts read and write transactions performed on the system interface.
Does not count address only transaction types.

28 (001_1100) BIU read cycle of 8
bytes or fewer

Counts TA assertions for 64-bit reads. Anything less than 8 bytes counts as
8.

Table 11-8. PMC1 EventsÑMMCR0[19Ð25] Select Encodings (Continued)

Number Event Description

Chapter 11. Performance Monitor 11-15

Event Selection

29 (001_1.101) LFQ entries Load fold queue entries. Counts loads that miss in the L1 data cache but hit
on an already outstanding reload to that same cache block in the data
reload table.

30 (001_1110) dL1
write-hit-on-shared

Counts write-back stores that hit a shared cache block in the data L1 and
begin to claim the cache block as exclusive.

31 (001_1111) Write through stores Counts write-through stores written to bus. If store gathering is occurring,
counts stores after gathering.

32 (010_0000) iL1 miss fetches Counts instruction L1 miss fetches (both cacheable and cache-inhibited)

33 (010_0001) L2 data-side hits Counts data L1 cacheable load/store misses that hit in the L2 cache. Does
not include hits due to L1 data cache cast outs, cache operations, or
write-through stores.

34 (010_0010) L2 instruction-side
misses

Counts cacheable instruction misses in the L2 (L2 reloads due to instruction
reload table)

35 (010_0011) L2 dL1 castout hits Counts data L1 castouts to L2 that hit on a valid sector in the L2 cache

36 (010_0100) L2 allocations Counts when a new valid tag is allocated in the L2. This is
sector-independent.

37 (010_0101) Speculative stalled
BIU cycles

Counts cycles in which BIU cannot request the address bus because it is
waiting for a guarded load to become nonspeculative

38 (010_0110) dst instructions
dispatched

Counts dst instructions dispatched to the vector touch queue engine.
Includes speculative dst instructions that are cancelled.

39 (010_0111) dst stream 0 cache
block fetches

Counts dst stream 0 cache block fetches

40 (010_1000) Refreshed dst
instructions

Counts each new dst instruction issued to already active stream,
overwriting the old stream

41 (010_1001) dst suspensions due
to change of context

Counts dst instructions suspended due to change of context; that is, the
number of times any number of streams pause due to change in MSR[PR]
or MSR[DR]

42 (010_1010) Raw snoop request External snoop requests

43 (010_1011) WOOP push address
tenures

Window of opportunity push address tenures. DoesnÕt count if ARTRY is
asserted for WR/KILL.

44 (010_1100) L2CO snoop hits Counts snoop requests that hit in the L2 cast-out buffer

45 (010_1101) Hit-style intervention
data-only transfers

Counts data-only transfers (data intervention) that can occur when
enhanced mode is enabled. Includes all three types (exclusive, modiÞed,
and shared(R)) of cache-to-cache, data-intervention transfers.

46 (010_1110) LFQ touch entries Counts load-fold queue entries that fold into a touch-initiated L1 data cache
miss (data reload table entry). Occurs when load hits on an outstanding
cache block prefetch initiated by a dstx, dcbt, or dcbtst instruction. This
event indicates that the touch prefetch is in progress when the demand load
occurred but the prefetch is not sufÞciently ahead of the load for the load to
achieve a L1 data cache hit.

47 (010_1111) L1 operations queue
snoop hits

Counts snoop requests that hit in the L1 operations queue (contains L1 data
cache castouts)

Table 11-8. PMC1 EventsÑMMCR0[19Ð25] Select Encodings (Continued)

Number Event Description

11-16 MPC7400 RISC Microprocessor UserÕs Manual

Event Selection

11.5.2 PMC2 Events

Bits MMCR0[26Ð31] specify events associated with PMC2, as shown in Table 11-9.

48 (011_0000) AltiVec loads
completed

Counts AltiVec load instructions completed (0, 1, or 2 instructions per cycle)

All others Ñ Reserved

Table 11-9. PMC2 EventsÑMMCR0[26Ð31] Select Encodings

Number Event Description

0 (00_0000) Nothing Register counter holds current value

1 (00_0001) Processor cycles Counts every processor cycle

2 (00_0010) Instructions
completed

Counts completed instructions. Does not include folded branches. 0, 1, or 2
instructions per cycle.

3 (00_0011) TBL bit transitions Count transitions from 0 to 1 of TBL bits speciÞed through MMCR0[TBSEL]

4 (00_0100) Instructions
dispatched

Counts dispatched instructions (0, 1, or 2 instructions per cycle)

5 (00_0101) Number of fall
through branches

Counts branches resolved as not taken

6 (00_0110) ITLB misses Counts times that a requested address translation was not in the ITLB

7 (00_0111) VSIU instructions
completed

Counts instructions completed by the VSIU (0, 1, or 2 instructions per cycle)

8 (00_1000) VCIU wait Counts cycles for which the VCIU had a valid dispatch but invalid operands

9 (00_1001) User/supervisor
mode switches

Counts the times MSR[PR] toggles

10 (00_1010) Reserved loads Counts completed reserved load instructions

11 (00_1011) Loads Counts completed load instructions (0, 1, or 2 instructions per cycle)

12 (00_1100) Snoops serviced Counts snoops serviced to the L1 and the L2

13 (00_1101) Dirty L1 castouts to
L2

Incremented whenever the L1 casts out dirty data to the L2. A dirty castout is a
cache block whose D bit is 1.

14 (00_1110) SRU instructions
completed

Counts completed instructions executed by the system register unit (SRU)

15 (00_1111) dL1 load misses Counts speculative load attempts that miss in the L1 data cache and were
queued either in the data reload table or load-fold queue. Does not include MMU.

16 (01_0000) dL1 store misses Counts write-back store attempts that missed in the L1 data cache and queued
up a new entry in the data reload table or store-miss-merged to a current data
reload table entry

17 (01_0001) dL1 misses Counts L1 data cache load, store, and touch misses

18 (01_0010) L2 tag writes Counts whenever an L2 tag needed to be written to a new state. Does not include
writes due to snoop state updates.

Table 11-8. PMC1 EventsÑMMCR0[19Ð25] Select Encodings (Continued)

Number Event Description

Chapter 11. Performance Monitor 11-17

Event Selection

19 (01_0011) L2SRAM read
cycles

Incremented for each beat of a read from the L2SRAM. A beat consists of 8 bytes
if L2CR[L2DSIZ] = 0, otherwise it is 16 bytes.

20 (01_0100) BIU ARTRYed TS
assertions

Counts transactions initiated by this processor retried on the system interface.

21 (01_0101) BIU 16-byte read
cycles

Counts assertions of TA for (16-byte) 128-bit reads

22 (01_0110) dRLT SMMs Counts data reload table store-miss merges

23 (01_0111) L2 write-hit-on-SHD
occurrence

Counts store misses from the data reload table that hit on a shared cache block
in the L2 tag

24 (01_1000) Cache-inhibited
stores

Counts cache-inhibited stores written to bus. If store gathering is occurring, this
counts stores after gathering

25 (01_1001) iL1 reloads Counts 32-byte cache blocks loaded into the L1 instruction cache

26 (01_1010) L2 data side misses Counts times a load or store miss from the data reload table missed in the L2 tag.
Does not include hits due to L1 data cache cast outs, cache operations, or
write-through stores.

27 (01_1011) L2 instruction side
hits

L1 instruction cache cacheable misses that hit in the L2 cache

28 (01_1100) L2 dL1 castout
misses

L1 data cache castouts to L2 that miss in the L2 cache

29 (01_1101) L2 sectors castout Counts 0, 1, 2, 3, or 4 for a given L2 sector cast out

30 (01_1110) dst L1 cache block
misses

Counts dst and dstst instructions that miss in the L1 data cache and queue in
the data reload table. This event counts the times the dst cache block fetch
precedes the demand load or store by enough cycles to access the L1 data
cache Þrst.

31 (01_1111) dst stream 1 cache
block fetches

Counts dst stream 1 cache block fetches

32 (10_0000) dst cache block
fetches

dst cache block fetchesÑIncludes all streams

33 (10_0001) dsts prematurely
cancelled

Incremented when a stream is cancelled due to branch speculation cancel,
inappropriate translation protection, or WIMG. Includes whenever a dst stream is
cancelled for any reason other than reaching the end of the stream, refresh, or
dss. Can count 0, 1, 2, 3, or 4 at a time.

34 (10_0010) VFPU traps Counts VFPU traps. These conditions are generated from certain operations
when in JAVA-mode.

35 (10_0011) dRLT snoop hits Counts serviced snoop requests that also hit on a data reload table entry

36 (10_0100) Hit-style modiÞed
intervention
data-only transfers

Increments when modiÞed data is provided to the system interface using data
intervention (enhanced mode is enabled) due to a snoop

37 (10_0101) Snoop hits Counts serviced snoop requests that hit on one or more caches or buffers

38 (10_0110) First speculative
branch predicted
correctly

Counts correctly predicted branches in the Þrst speculative stream

Table 11-9. PMC2 EventsÑMMCR0[26Ð31] Select Encodings (Continued)

Number Event Description

11-18 MPC7400 RISC Microprocessor UserÕs Manual

Event Selection

11.5.3 PMC3 Events

Bits MMCR1[0Ð4] specify events associated with PMC3, as shown in Table 11-10.

39 (10_0111) dst resumptions
due to change of
context

Counts times any number of dst streams resume due to a change in MSR[PR] or
MSR[DR]

40 (10_1000) TLBI instructions Counts completed tlbi instructions

41 (10_1001) Snooped TLB
invalidations

Counts TLB invalidations performed due to another masterÕs tlbi broadcast

42 (10_1010) BIU TA cycles Counts TA assertions (64-bit or 128-bit, read or write). Indicates system interface
bandwidth consumed when compared to the number of elapsed bus cycles.

All others Ñ Reserved

Table 11-10. PMC3 EventsÑMMCR1[0Ð4] Select Encodings

Number Event Description

0 (0_0000) Nothing Register counter holds current value

1 (0_0001) Processor cycles Counts every processor clock cycle

2 (0_0010) Instructions
completed

Counts instructions that have completed. Does not include folded branches. 0, 1,
or 2 instructions per cycle.

3 (0_0011) TBL bit transitions Count transitions from 0 to 1 of TBL bits speciÞed through MMCR0[TBSEL]

4 (0_0100) Instructions
dispatched

Counts instructions dispatched (0, 1, or 2 instructions per cycle)

5 (0_0101) Branches taken Counts branches resolved as taken

6 (0_0110) DTLB misses Counts DTLB misses. Indicates the number of times that a requested data
address translation was not in the DTLB.

7 (0_0111) VCIU instructions
completed

Counts completed VCIU instructions (0, 1, or 2 instructions per cycle)

8 (0_1000) VFPU wait Counts cycles the AltiVec FPU had a valid dispatch, but not valid operands

9 (0_1001) Ñ Reserved

10 (0_1010) tlbsync
instructions

Counts completed tlbsync instructions

11 (0_1011) FPU instructions Counts completed FPU instructions (0, 1, or 2 instructions per cycle)

12 (0_1100) Conditional stores Counts completed conditional store instructions

13 (0_1101) L2 snoop
interventions

Counts snoop interventions from L2, that is, times when a 32-byte cache block is
supplied to the system interface from the L2SRAMs.

14 (0_1110) Second speculative
branch predicted
correctly

Counts correctly predicted branches in the second speculative stream

15 (0_1111) Stall on LR/CTR
dependency.

Counts cycles the BPU stalls due to the LR or CTR being unresolved

Table 11-9. PMC2 EventsÑMMCR0[26Ð31] Select Encodings (Continued)

Number Event Description

Chapter 11. Performance Monitor 11-19

Event Selection

16 (1_0000) dL1 touch hit Counts once per dcbt or dcbtst instruction or dstx cache block fetch that hits in
the data L1 cache.

17 (1_0001) Miscellaneous dL1
cache operation
cycles

Counts cycles spent on dcbf, dcbst, dcbi, sync, eieio, icbi, tlbi, tlbsync,
write-hit-shared, MMU loads, retried operations, etc., that are not counted
elsewhere. These are the miscellaneous data L1 cache overhead operations.

18 (1_0010) dL1 cycles used Counts cycles when the data L1 cache is used for any reason. Indicates data L1
cache bandwidth consumed when compared to the number of processor cycles
elapsed.

19 (1_0011) L2 tag snoop
lookup

Counts once per snoop query of the L2 tag

20 (1_0100) L2SRAM write
cycles

Counts once for each beat of a write to the L2SRAM. A beat is 8 bytes if
L2CR[L2DSIZ] = 0, otherwise it is 16bytes.

21 (1_0101) dRLT SMM to 32
bytes

Counts when the store-miss merging mechanism merges misses to a full 32-byte
cache block. If merged before the RWITM bus transaction obtains a bus grant,
the RWITM converts to an address-only KILL transaction.

22 (1_0110) dst cache block
fetch dRLT hit

Counts dstx cache block fetches that miss in the data L1 cache and hit in the
data reload table. This event indicates another load, store, or touch miss to the
same cache block is already in the data reload table. When this occurs the dst
cache block fetch has occurred slightly too late to prefetch the cache block before
the demand load or store is attempted at the data L1 cache.

23 (1_0111) dst stream 2 cache
block fetches

Counts dst stream 2 cache block fetches.

24 (1_1000) dss instructions
completed

Counts single-stream dss instructions (does not count dssall instructions). 0, 1,
or 2 instructions per cycle.

25 (1_1001) Ñ Reserved

26 (1_1010) Snoop busies Counts when the processor could not service a snoop request and asserted
ARTRY as a snoop response

27 (1_1011) L2 snoop hits Counts snoop requests that hit in the L2 tag.

28 (1_1100) Hit-style exclusive
intervention
data-only transfers

Counts times exclusive data is provided to the system interface using data
intervention (enhanced mode enabled) due to a snoop.

29 (1_1101) BIU write cycles of
8 bytes or fewer

Counts TA assertions for 64-bit writes. Includes intervention. Anything less than 8
bytes counts as 8.

30 (1_1110) dL1 reloads Counts the times that the data L1 cache is reloaded with a new cache block from
the data reload table.

All others Ñ Reserved

Table 11-10. PMC3 EventsÑMMCR1[0Ð4] Select Encodings (Continued)

Number Event Description

11-20 MPC7400 RISC Microprocessor UserÕs Manual

Event Selection

11.5.4 PMC4 Events

Bits MMCR1[5Ð9] specify events associated with PMC4, as shown in Table 11-11.

Table 11-11. PMC4 EventsÑMMCR1[5Ð9] Select Encodings

Number Event Description

0 (0_0000) Nothing Register counter holds current value.

1 (0_0001) Processor cycles Counts every processor cycle.

2 (0_0010) Instructions
completed

Counts completed instructions. Does not include folded branches. 0, 1, or 2
instructions per cycle.

3 (0_0011) TBL bit transitions Count transitions from 0 to 1 of TBL bits speciÞed through MMCR0[TBSEL]

4 (0_0100) Instructions
dispatched

Counts dispatched instructions. 0, 1, or 2 instructions per cycle.

5 (0_0101) Mispredicted
branches

Counts mispredicted branches

6 (0_0110) DTLB tablewalk
cycles

Counts cycles spent performing table searches for the DTLB. Does not include
cycles performing dstx-initiated table searches.

7 (0_0111) VFPU instructions
completed

Counts instructions completed by the VFPU. 0, 1, or 2 instructions per cycle

8 (0_1000) VPU wait Counts cycles that the VPU had a valid dispatch but invalid operands

9 (0_1001) Ñ Reserved.

10 (0_1010) Conditional stores
successful

Counts completed store conditionals with reservation intact

11 (0_1011) sync instructions Counts completed sync instructions

12 (0_1100) BIU KILLs Counts successful (that is, non-ARTRYed) KILL transactions.

13 (0_1101) Integer operations Counts completed integer operations. 0, 1, or 2 instructions per cycle.

14 (0_1110) Speculative
branches fetch
stall

Counts cycles the branch unit cannot process new branches due to having two
unresolved branches.

15 (0_1111) dL1 touch miss Counts once for every dstx cache block fetch, dcbt, or dcbtst L1 data cache miss
that causes a data L1 cache reload

16 (1_0000) dL1 snoop
intervention cycles

Counts cycles for which the L1 data cache is occupied reading data from the data
cache for a snoop intervention. Two cycles per intervention.

17 (1_0001) L2 tag snoop write Counts L2 tag writes due to snoop state updates

18 (1_0010) L2SRAM cycles
used

Counts L2SRAM read cycles, L2SRAM write cycles, and turnaround dead cycles
required between reads and writes. Indicates L2SRAM bandwidth consumed
when compared to the number of L2 clock cycles elapsed.

19 (1_0011) dL1 castouts Counts castouts from the L1 data cache to the L2.

20 (1_0100) dst cache block
fetch dL1 hits

Counts dstx cache block fetches that hit in the L1 data cache. This event indicates
another load, store, or touch already brought the cache block into the L1 data
cache. This occurs when the dst cache block fetch occurs too late to prefetch the
cache block and wasted a cycle of L1 data cache bandwidth.

21 (1_0101) dst stream 3
cache block
fetches

Counts dst stream 3 cache block fetches

Chapter 11. Performance Monitor 11-21

Event Selection

22 (1_0110) dssall instructions Counts completed dssall instructions

23 (1_0111) dL1 snoop hits Counts snoop requests that hit in the L1 data cache

24 (1_1000) Hit-style shared
intervention
data-only transfers

Counts the times shared (R) data is provided to the system interface using data
intervention (enhanced mode is enabled) due to a snoop.

25 (1_1001) BIU write cycle of
16 bytes

Counts assertions of TA for 128-bit writes

26 (1_1010) dL1 snoop
interventions

Counts times a 32-byte cache block of data is supplied to the system interface
from the L1 data cache for a snoop intervention.

27 (1_1011) dstx-initiated
successful table
searches

Incremented whenever a dst instruction initiates a data address translation table
search that results in a successful match in the page table.

All others Ñ Reserved

Table 11-11. PMC4 EventsÑMMCR1[5Ð9] Select Encodings (Continued)

Number Event Description

Chapter 11. Performance Monitor 11-22

Appendix A. MPC7400 Instruction Set Listings A-1

Appendix A
MPC7400 Instruction Set Listings
This appendix lists the MPC7400 microprocessorÕs instruction set as well as the additional
PowerPC instructions not implemented in the MPC7400. Instructions are sorted by
mnemonic, opcode, function, and form. Also included in this appendix is a quick reference
table that contains general information, such as the architecture level, privilege level, and
form, and indicates if the instruction is 64-bit and optional. Note that the MPC7400 is a
32-bit microprocessor, and doesnÕt implement any 64-bit instructions.

Note that split fields, that represent the concatenation of sequences from left to right, are
shown in lowercase. For more information refer to Chapter 8, ÒInstruction Set,Ó in The
Programming Environments Manual.

A.1 Instructions Sorted by Mnemonic
Table A-1 lists the instructions implemented in the MPC7400 architecture in alphabetical
order by mnemonic.

Table A-1. Complete Instruction List Sorted by Mnemonic

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addcx 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

addmex 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

andx 31 S A B 28 Rc

Reserved bits

Key:

A-2 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Sorted by Mnemonic

andcx 31 S A B 60 Rc

andi. 28 S A UIMM

andis. 29 S A UIMM

bx 18 LI AA LK

bcx 16 BO BI BD AA LK

bcctrx 19 BO BI 0 0 0 0 0 528 LK

bclrx 19 BO BI 0 0 0 0 0 16 LK

cmp 31 crfD 0 L A B 0 0

cmpi 11 crfD 0 L A SIMM

cmpl 31 crfD 0 L A B 32 0

cmpli 10 crfD 0 L A UIMM

cntlzwx 31 S A 0 0 0 0 0 26 Rc

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

dcba1 31 0 0 0 0 0 A B 758 0

dcbf 31 0 0 0 0 0 A B 86 0

dcbi2 31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

divwx 31 D A B OE 491 Rc

divwux 31 D A B OE 459 Rc

dss3 31 A 0 0 STRM 0 0 0 0 0 0 0 0 0 0 822 0

dssall3 31 A 0 0 STRM 0 0 0 0 0 0 0 0 0 0 822 0

dst3 31 T 0 0 STRM A B 342 0

dstst3 31 T 0 0 STRM A B 374 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix A. MPC7400 Instruction Set Listings A-3

Instructions Sorted by Mnemonic

dststt3 31 1 0 0 STRM A B 374 0

dstt3 31 1 0 0 STRM A B 342 0

eciwx1 31 D A B 310 0

ecowx1 31 S A B 438 0

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

eqvx 31 S A B 284 Rc

extsbx 31 S A 0 0 0 0 0 954 Rc

extshx 31 S A 0 0 0 0 0 922 Rc

fabsx 63 D 0 0 0 0 0 B 264 Rc

faddx 63 D A B 0 0 0 0 0 21 Rc

faddsx 59 D A B 0 0 0 0 0 21 Rc

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

fctiwx 63 D 0 0 0 0 0 B 14 Rc

fctiwzx 63 D 0 0 0 0 0 B 15 Rc

fdivx 63 D A B 0 0 0 0 0 18 Rc

fdivsx 59 D A B 0 0 0 0 0 18 Rc

fmaddx 63 D A B C 29 Rc

fmaddsx 59 D A B C 29 Rc

fmrx 63 D 0 0 0 0 0 B 72 Rc

fmsubx 63 D A B C 28 Rc

fmsubsx 59 D A B C 28 Rc

fmulx 63 D A 0 0 0 0 0 C 25 Rc

fmulsx 59 D A 0 0 0 0 0 C 25 Rc

fnabsx 63 D 0 0 0 0 0 B 136 Rc

fnegx 63 D 0 0 0 0 0 B 40 Rc

fnmaddx 63 D A B C 31 Rc

fnmaddsx 59 D A B C 31 Rc

fnmsubx 63 D A B C 30 Rc

fnmsubsx 59 D A B C 30 Rc

fresx 1 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frspx 63 D 0 0 0 0 0 B 12 Rc

frsqrtex 1 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-4 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Sorted by Mnemonic

fselx 1 63 D A B C 23 Rc

fsqrtx 4 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrtsx 4 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsubx 63 D A B 0 0 0 0 0 20 Rc

fsubsx 59 D A B 0 0 0 0 0 20 Rc

icbi 31 0 0 0 0 0 A B 982 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

lbz 34 D A d

lbzu 35 D A d

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

lfd 50 D A d

lfdu 51 D A d

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfs 48 D A d

lfsu 49 D A d

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

lha 42 D A d

lhau 43 D A d

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhbrx 31 D A B 790 0

lhz 40 D A d

lhzu 41 D A d

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lmw5 46 D A d

lswi5 31 D A NB 597 0

lswx5 31 D A B 533 0

lvebx3 31 vD A B 7 0

lvehx3 31 vD A B 39 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix A. MPC7400 Instruction Set Listings A-5

Instructions Sorted by Mnemonic

lvewx3 31 vD A B 71 0

lvsl3 31 vD A B 6 0

lvsr3 31 vD A B 38 0

lvx3 31 vD A B 103 0

lvxl3 31 vD A B 359 0

lwarx 31 D A B 20 0

lwbrx 31 D A B 534 0

lwz 32 D A d

lwzu 33 D A d

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

 mcrxr 31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mffsx 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mfmsr 2 31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfspr6 31 D spr 339 0

mfsr2 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 2 31 D 0 0 0 0 0 B 659 0

mftb 31 D tbr 371 0

mfvscr3 04 vD 0 0 0 0 0 0 0 0 0 0 1540 0

mtcrf 31 S 0 CRM 0 144 0

mtfsb0x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1x 63 crbD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfx 63 0 FM 0 B 711 Rc

mtfsfix 63 crfD 0 0 0 0 0 0 0 IMM 0 134 Rc

mtmsr2 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtspr6 31 S spr 467 0

mtsr2 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 2 31 S 0 0 0 0 0 B 242 0

mtvscr3 04 0 0 0 0 0 0 0 0 0 0 vB 1604 0

mulhwx 31 D A B 0 75 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-6 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Sorted by Mnemonic

mulhwux 31 D A B 0 11 Rc

mulli 7 D A SIMM

mullwx 31 D A B OE 235 Rc

nandx 31 S A B 476 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

norx 31 S A B 124 Rc

orx 31 S A B 444 Rc

orcx 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM

rfi2 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

rlwimix 20 S A SH MB ME Rc

rlwinmx 21 S A SH MB ME Rc

rlwnmx 23 S A B MB ME Rc

sc 17 0 1 0

slwx 31 S A B 24 Rc

srawx 31 S A B 792 Rc

srawix 31 S A SH 824 Rc

srwx 31 S A B 536 Rc

stb 38 S A d

stbu 39 S A d

stbux 31 S A B 247 0

stbx 31 S A B 215 0

stfd 54 S A d

stfdu 55 S A d

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx1 31 S A B 983 0

 stfs 52 S A d

stfsu 53 S A d

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

sth 44 S A d

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix A. MPC7400 Instruction Set Listings A-7

Instructions Sorted by Mnemonic

sthbrx 31 S A B 918 0

sthu 45 S A d

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stmw5 47 S A d

stswi5 31 S A NB 725 0

stswx5 31 S A B 661 0

stvebx3 31 S A B 135 0

stvehx3 31 S A B 167 0

stvewx3 31 S A B 199 0

stvx3 31 S A B 231 0

stvxl3 31 S A B 487 0

stw 36 S A d

stwbrx 31 S A B 662 0

stwcx. 31 S A B 150 1

stwu 37 S A d

stwux 31 S A B 183 0

stwx 31 S A B 151 0

subfx 31 D A B OE 40 Rc

subfcx 31 D A B OE 8 Rc

subfex 31 D A B OE 136 Rc

subfic 08 D A SIMM

subfmex 31 D A 0 0 0 0 0 OE 232 Rc

subfzex 31 D A 0 0 0 0 0 OE 200 Rc

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

tlbia4 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie1,2 31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbsync1,2 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

tw 31 TO A B 4 0

twi 03 TO A SIMM

vaddcuw3 04 vD vA vB 384 0

vaddfp3 04 vD vA vB 10 0

vaddsbs3 04 vD vA vB 768 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-8 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Sorted by Mnemonic

vaddshs3 04 vD vA vB 832 0

vaddsws3 04 vD vA vB 896 0

vaddubm3 04 vD vA vB 0 0

vaddubs3 04 vD vA vB 512 0

vadduhm3 04 vD vA vB 64 0

vadduhs3 04 vD vA vB 576 0

vadduwm3 04 vD vA vB 128 0

vadduws3 04 vD vA vB 640 0

vand3 04 vD vA vB 1028 0

vandc3 04 vD vA vB 1092 0

vavgsb3 04 vD vA vB 1282 0

vavgsh3 04 vD vA vB 1346 0

vavgsw3 04 vD vA vB 1410 0

vavgub3 04 vD vA vB 1026 0

vavguh3 04 vD vA vB 1090 0

vavguw3 04 vD vA vB 1154 0

vcfsx3 04 vD UIMM vB 842

vcfux3 04 vD UIMM vB 778 0

vcmpbfpx3 04 vD vA vB Rc 966

vcmpeqfpx3 04 vD vA vB Rc 198

vcmpequbx3 04 vD vA vB Rc 6

vcmpequhx3 04 vD vA vB Rc 70

vcmpequwx3 04 vD vA vB Rc 134

vcmpgefpx3 04 vD vA vB Rc 454

vcmpgtfpx3 04 vD vA vB Rc 710

vcmpgtsbx3 04 vD vA vB Rc 774

vcmpgtshx3 04 vD vA vB Rc 838

vcmpgtswx3 04 vD vA vB Rc 902

vcmpgtubx3 04 vD vA vB Rc 518

vcmpgtuhx3 04 vD vA vB Rc 582

vcmpgtuwx3 04 vD vA vB Rc 646

vctsxs3 04 vD UIMM vB 970

vctuxs3 04 vD UIMM vB 906

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix A. MPC7400 Instruction Set Listings A-9

Instructions Sorted by Mnemonic

vexptefp3 04 vD 0 0 0 0 0 vB 394

vlogefp3 04 vD 0 0 0 0 0 vB 458

vmaddfp3 04 vD vA vB vC 46

vmaxfp3 04 vD vA vB 1034

vmaxsb3 04 vD vA vB 258

vmaxsh3 04 vD vA vB 322

vmaxsw3 04 vD vA vB 386

vmaxub3 04 vD vA vB 2

vmaxuh3 04 vD vA vB 66

vmaxuw3 04 vD vA vB 130

vmhaddshs3 04 vD vA vB vC 32

vmhraddshs3 04 vD vA vB vC 33

vminfp3 04 vD vA vB 1098

vminsb3 04 vD vA vB 770

vminsh3 04 vD vA vB 834

vminsw3 04 vD vA vB 898

vminub3 04 vD vA vB 514

vminuh3 04 vD vA vB 578

vminuw3 04 vD vA vB 642

vmladduhm3 04 vD vA vB vC 34

vmrghb3 04 vD vA vB 12

vmrghh3 04 vD vA vB 76

vmrghw3 04 vD vA vB 140

vmrglb3 04 vD vA vB 268

vmrglh3 04 vD vA vB 332

vmrglw3 04 vD vA vB 396

vmsummbm3 04 vD vA vB vC 37

vmsumshm3 04 vD vA vB vC 40

vmsumshs3 04 vD vA vB vC 41

vmsumubm3 04 vD vA vB vC 36

vmsumuhm3 04 vD vA vB vC 38

vmsumuhs3 04 vD vA vB vC 39

vmulesb3 04 vD vA vB 776

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-10 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Sorted by Mnemonic

vmulesh3 04 vD vA vB 840

vmuleub3 04 vD vA vB 520

vmuleuh3 04 vD vA vB 584

vmulosb3 04 vD vA vB 264

vmulosh3 04 vD vA vB 328

vmuloub3 04 vD vA vB 8

vmulouh3 04 vD vA vB 72

vnmsubfp3 04 vD vA vB vC 47

vnor3 04 vD vA vB 1284

vor3 04 vD vA vB 1156

vperm3 04 vD vA vB vC 43

vpkpx3 04 vD vA vB 782

vpkshss3 04 vD vA vB 398

vpkshus3 04 vD vA vB 270

vpkswss3 04 vD vA vB 462

vpkswus3 04 vD vA vB 334

vpkuhum3 04 vD vA vB 14

vpkuhus3 04 vD vA vB 142

vpkuwum3 04 vD vA vB 78

vpkuwus3 04 vD vA vB 206

vrefp3 04 vD 0 0 0 0 0 vB 266

vrÞm3 04 vD 0 0 0 0 0 vB 714

vrÞn3 04 vD 0 0 0 0 0 vB 522

vrÞp3 04 vD 0 0 0 0 0 vB 650

vrÞz3 04 vD 0 0 0 0 0 vB 586

vrlb3 04 vD vA vB 4

vrlh3 04 vD vA vB 68

vrlw3 04 vD vA vB 132

vrsqrtefp3 04 vD 0 0 0 0 0 vB 330

vsel3 04 vD vA vB vC 42

vsl3 04 vD vA vB 452

vslb3 04 vD vA vB 260

vsldoi3 04 vD vA vB 0 SH 44

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix A. MPC7400 Instruction Set Listings A-11

Instructions Sorted by Mnemonic

vslh3 04 vD vA vB 324

vslo3 04 vD vA vB 1036

vslw3 04 vD vA vB 388

vspltb3 04 vD UIMM vB 524

vsplth3 04 vD UIMM vB 588

vspltisb3 04 vD SIMM 0 0 0 0 0 780

vspltish3 04 vD SIMM 0 0 0 0 0 844

vspltisw3 04 vD SIMM 0 0 0 0 0 908

vspltw3 04 vD UIMM vB 652

vsr3 04 vD vA vB 708

vsrab3 04 vD vA vB 772

vsrah3 04 vD vA vB 836

vsraw3 04 vD vA vB 900

vsrb3 04 vD vA vB 516

vsrh3 04 vD vA vB 580

vsro3 04 vD vA vB 1100

vsrw3 04 vD vA vB 644

vsubcuw3 04 vD vA vB 1408

vsubfp3 04 vD vA vB 74

vsubsbs3 04 vD vA vB 1792

vsubshs3 04 vD vA vB 1856

vsubsws3 04 vD vA vB 1920

vsububm3 04 vD vA vB 1024

vsububs3 04 vD vA vB 1536

vsubuhm3 04 vD vA vB 1088

vsubuhs3 04 vD vA vB 1600

vsubuwm3 04 vD vA vB 1152

vsubuws3 04 vD vA vB 1664

vsumsws3 04 vD vA vB 1928

vsum2sws3 04 D A B 1672

vsum4sbs3 04 D A B 1800

vsum4shs3 04 D A B 1608

vsum4ubs3 04 D A B 1544

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-12 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Sorted by Mnemonic

vupkhpx3 04 D 0 0 0 0 0 B 846

vupkhsb3 04 D 0 0 0 0 0 B 526

vupkhsh3 04 D 0 0 0 0 0 B 590

vupklpx3 04 D 0 0 0 0 0 B 974

vupklsb3 04 D 0 0 0 0 0 B 654

vupklsh3 04 D 0 0 0 0 0 B 718

vxor3 04 D A B 1220

xorx 31 S A B 316 Rc

xori 26 S A UIMM

xoris 27 S A UIMM

1Optional to the PowerPC architecture but implemented by the MPC7400
2Supervisor-level instruction
3AltiVec technology-speciÞc instruction
4Optional instruction not implemented by the MPC7400
5Load/store string/multiple instruction
6Supervisor- and user-level instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix A. MPC7400 Instruction Set Listings A-13

Instructions Sorted by Opcode

A.2 Instructions Sorted by Opcode
Table A-2 lists the instructions deÞned in the MPC7400 architecture in numeric order by
opcode.

Table A-2. Complete Instruction List Sorted by Opcode

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23242526272829 30 31

twi 000011 TO A SIMM

mulli 000111 D A SIMM

subfic 001000 D A SIMM

vmhaddshs1 000100 vD vA vB vC 10 0000

vmhraddshs1 000100 vD vA vB vC 10 0001

vmladduhm1 000100 vD vA vB vC 10 0010

vmsumubm1 000100 vD vA vB vC 10 0100

vmsummbm1 000100 vD vA vB vC 10 0101

vmsumuhm1 000100 vD A vB vC 10 0110

vmsumuhs1 000100 vD vA vB vC 10 0111

vmsumshm1 000100 vD vA vB vC 10 1000

vmsumshs1 000100 vD vA vB vC 10 1001

vsel1 000100 vD vA vB vC 10 1010

vperm1 000100 vD vA vB vC 10 1011

vsldoi1 000100 vD vA vB 0 SH 10 1100

vmaddfp1 000100 vD vA vB 000 0010 1110

vnmsubfp1 000100 vD vA vB vC 10 1111

vaddubm1 000100 vD vA vB 000 0000 0000

vadduhm1 000100 vD vA vB 000 0100 0000

vadduwm1 000100 vD vA vB 000 1000 0000

vaddcuw1 000100 vD vA vB 001 1000 0000

vaddubs1 000100 vD vA vB 010 0000 0000

vadduhs1 000100 vD vA vB 010 0100 0000

vadduws1 000100 vD vA vB 010 1000 0000

vaddsbs1 000100 vD vA vB 011 0000 0000

vaddshs1 000100 vD vA vB 011 0100 0000

Reserved bits

Key:

A-14 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Sorted by Opcode

vaddsws1 000100 vD vA vB 011 1000 0000

vsububm1 000100 vD vA vB 100 0000 0000

vsubuhm1 000100 vD vA vB 100 0100 0000

vsubuwm1 000100 vD vA vB 100 1000 0000

vsubcuw1 000100 vD vA vB 101 1000 0000

vsububs1 000100 vD vA vB 110 0000 0000

vsubuhs1 000100 vD vA vB 110 0100 0000

vsubuws1 000100 vD vA vB 110 1000 0000

vsubsbs1 000100 vD vA vB 111 0000 0000

vsubshs1 000100 vD vA vB 111 0100 0000

vsubsws1 000100 vD vA vB 111 1000 0000

vmaxub1 000100 vD vA vB 000 0000 0010

vmaxuh1 000100 vD vA vB 000 0100 0010

vmaxuw1 000100 vD vA vB 000 1000 0010

vmaxsb1 000100 vD vA vB 001 0000 0010

vmaxsh1 000100 vD vA vB 001 0100 0010

vmaxsw1 000100 vD vA vB 001 1000 0010

vminub1 000100 vD vA vB 010 0000 0010

vminuh1 000100 vD vA vB 010 0100 0010

vminuw1 000100 vD vA vB 010 1000 0010

vminsb1 000100 vD vA vB 011 0000 0010

vminsh1 000100 vD vA vB 011 0100 0010

vminsw1 000100 vD vA vB 011 1000 0010

vavgub1 000100 vD vA vB 100 0000 0010

vavguh1 000100 vD vA vB 100 0100 0010

vavguw1 000100 vD vA vB 100 1000 0010

vavgsb1 000100 vD vA vB 101 0000 0010

vavgsh1 000100 vD vA vB 101 0100 0010

vavgsw1 000100 vD vA vB 101 1000 0010

vrlb1 000100 vD vA vB 000 0000 0100

vrlh1 000100 vD vA vB 000 0100 0100

vrlw1 000100 vD vA vB 000 1000 0100

vslb1 000100 vD vA vB 001 0000 0100

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23242526272829 30 31

Appendix A. MPC7400 Instruction Set Listings A-15

Instructions Sorted by Opcode

vslh1 000100 vD vA vB 001 0100 0100

vslw1 000100 vD vA vB 001 1000 0100

vsl1 000100 vD vA vB 001 1100 0100

vsrb1 000100 vD vA vB 010 0000 0100

vsrh1 000100 vD vA vB 010 0100 0100

vsrw1 000100 vD vA vB 010 1000 0100

vsr1 000100 vD vA vB 010 1100 0100

vsrab1 000100 vD vA vB 011 0000 0100

vsrah1 000100 vD vA vB 011 0100 0100

vsraw1 000100 vD vA vB 011 1000 0100

vand1 000100 vD vA vB 100 0000 0100

vandc1 000100 vD vA vB 100 0100 0100

vor1 000100 vD vA vB 100 1000 0100

vxor1 000100 vD vA vB 100 1100 0100

vnor1 000100 vD vA vB 101 0000 0100

mfvscr1 000100 vD 0 0 0 0 0 0 0 0 0 0 11 0000 0010 0

mtvscr1 000100 0 0 0 0 0 0 0 0 0 0 vB 11 0010 0010 0

vcmpequbx1 000100 vD vA vB Rc 00 0000 0110

vcmpequhx1 000100 vD vA vB Rc 00 0100 0110

vcmpequwx1 000100 vD vA vB Rc 00 1000 0110

vcmpeqfpx1 000100 vD vA vB Rc 00 1100 0110

vcmpgefpx1 000100 vD vA vB Rc 01 1100 0110

vcmpgtubx1 000100 vD vA vB Rc 10 0000 0110

vcmpgtuhx1 000100 vD vA vB Rc 10 0100 0110

vcmpgtuwx1 000100 vD vA vB Rc 10 1000 0110

vcmpgtfpx1 000100 vD vA vB Rc 10 1100 0110

vcmpgtsbx1 000100 vD vA vB Rc 11 0000 0110

vcmpgtshx1 000100 vD vA vB Rc 11 0100 0110

vcmpgtswx1 000100 vD vA vB Rc 11 1000 0110

vcmpbfpx1 000100 vD vA vB Rc 11 1100 0110

vmuloub1 000100 vD vA vB 000 0000 1000

vmulouh1 000100 vD vA vB 000 0100 1000

vmulosb1 000100 vD vA vB 001 0000 1000

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23242526272829 30 31

A-16 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Sorted by Opcode

vmulosh1 000100 vD vA vB 001 0100 1000

vmuleub1 000100 vD vA vB 010 0000 1000

vmuleuh1 000100 vD vA vB 010 0100 1000

vmulesb1 000100 vD vA vB 011 0000 1000

vmulesh1 000100 vD vA vB 011 0100 1000

vsum4ubs1 000100 vD vA vB 110 0000 1000

vsum4sbs1 000100 vD vA vB 111 0000 1000

vsum4shs1 000100 vD vA vB 110 0100 1000

vsum2sws1 000100 vD vA vB 110 1000 1000

vsumsws1 000100 vD vA vB 111 1000 1000

vaddfp1 000100 vD vA vB 000 0000 1010

vsubfp1 000100 vD vA vB 000 0100 1010

vrefp1 000100 vD 0 0 0 0 0 vB 001 0000 1010

vrsqrtefp1 000100 vD 0 0 0 0 0 vB 001 0100 1010

vexptefp1 000100 vD 0 0 0 0 0 vB 001 1000 1010

vlogefp1 000100 vD 0 0 0 0 0 vB 001 1100 1010

vrfin1 000100 vD 0 0 0 0 0 vB 010 0000 1010

vrfiz1 000100 vD 0 0 0 0 0 vB 010 0100 1010

vrfip1 000100 vD 0 0 0 0 0 vB 010 1000 1010

vrfim1 000100 vD 0 0 0 0 0 vB 010 1100 1010

vcfux1 000100 vD UIMM vB 011 0000 1010

vcfsx1 000100 vD UIMM vB 011 0100 1010

vctuxs1 000100 vD UIMM vB 011 1000 1010

vctsxs1 000100 vD UIMM vB 011 1100 1010

vmaxfp1 000100 vD vA vB 100 0000 1010

vminfp1 000100 vD vA vB 100 0100 1010

vmrghb1 000100 vD vA vB 000 0000 1100

vmrghh1 000100 vD vA vB 000 0100 1100

vmrghw1 000100 vD vA vB 000 1000 1100

vmrglb1 000100 vD vA vB 001 0000 1100

vmrglh1 000100 vD vA vB 001 0100 1100

vmrglw1 000100 vD vA vB 001 1000 1100

vspltb1 000100 vD UIMM vB 010 0000 1100

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23242526272829 30 31

Appendix A. MPC7400 Instruction Set Listings A-17

Instructions Sorted by Opcode

vsplth1 000100 vD UIMM vB 010 0100 1100

vspltw1 000100 vD UIMM vB 010 1000 1100

vspltisb1 000100 vD SIMM 0 0 0 0 0 011 0000 1100

vspltish1 000100 vD SIMM 0 0 0 0 0 011 0100 1100

vspltisw1 000100 vD SIMM 0 0 0 0 0 011 1000 1100

vslo1 000100 vD vA vB 100 0000 1100

vsro1 000100 vD vA vB 100 0100 1100

vpkuhum1 000100 vD vA vB 000 0000 1110

vpkuwum1 000100 vD vA vB 000 0100 1110

vpkuhus1 000100 vD vA vB 000 1000 1110

vpkuwus1 000100 vD vA vB 000 1100 1110

vpkshus1 000100 vD vA vB 001 0000 1110

vpkswus1 000100 vD vA vB 001 0100 1110

vpkshss1 000100 vD vA vB 001 1000 1110

vpkswss1 000100 vD vA vB 001 1100 1110

vupkhsb1 000100 vD 0 0 0 0 0 vB 010 0000 1110

vupkhsh 000100 vD 0 0 0 0 0 vB 010 0100 1110

vupklsb1 000100 vD 0 0 0 0 0 vB 010 1000 1110

vupklsh1 000100 vD 0 0 0 0 0 vB 010 1100 1110

vpkpx1 000100 vD vA vB 011 0000 1110

vupkhpx1 000100 vD 0 0 0 0 0 vB 011 0100 1110

vupklpx1 000100 vD 0 0 0 0 0 vB 011 1100 1110

cmpli 001010 crfD 0 L A UIMM

cmpi 001011 crfD 0 L A SIMM

addic 001100 D A SIMM

addic. 001101 D A SIMM

addi 001110 D A SIMM

addis 001111 D A SIMM

bcx 010000 BO BI BD AA LK

sc 10001 0 1 0

bx 010010 LI AA LK

mcrf 010011 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bclrx 010011 BO BI 0 0 0 0 0 00 0001 0000 LK

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23242526272829 30 31

A-18 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Sorted by Opcode

crnor 010011 crbD crbA crbB 00 0010 0001 0

rfi2 010011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0011 0010 0

crandc 010011 crbD crbA crbB 00 1000 0001 0

isync 010011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 1001 0110 0

crxor 010011 crbD crbA crbB 00 1100 0001 0

crnand 010011 crbD crbA crbB 00 1110 0001 0

crand 010011 crbD crbA crbB 01 0000 0001 0

creqv 010011 crbD crbA crbB 01 0010 0001 0

crorc 010011 crbD crbA crbB 01 1010 0001 0

cror 010011 crbD crbA crbB 01 1100 0001 0

bcctrx 010011 BO BI 0 0 0 0 0 10 0001 0000 LK

rlwimix 010100 S A SH MB ME Rc

rlwinmx 010101 S A SH MB ME Rc

rlwnmx 010111 S A B MB ME Rc

ori 011000 S A UIMM

oris 011001 S A UIMM

xori 011010 S A UIMM

xoris 011011 S A UIMM

andi. 011100 S A UIMM

andis. 011101 S A UIMM

cmp 011111 crfD 0 L A B 00 0000 0000 0

dstt1 011111 1 0 0 STRM A B 00 0000 0000 0

tw 011111 TO A B 00 0000 0100 0

lvsl1 011111 vD A B 00 0000 0110 0

lvebx1 011111 vD A B 00 0000 0111 0

subfcx 011111 D A B OE 00 0000 1000 Rc

addcx 011111 D A B OE 00 0000 1010 Rc

mulhwux 011111 D A B 0 00 0000 1011 Rc

mfcr 011111 D 0 0 0 0 0 0 0 0 0 0 00 0001 0011 0

lwarx 011111 D A B 00 0001 0100 0

lwzx 011111 D A B 00 0001 0111 0

slwx 011111 S A B 00 0001 1000 Rc

cntlzwx 011111 S A 0 0 0 0 0 00 0001 1010 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23242526272829 30 31

Appendix A. MPC7400 Instruction Set Listings A-19

Instructions Sorted by Opcode

andx 011111 S A B 00 0001 1100 Rc

cmpl 011111 crfD 0 L A B 00 0010 0000 0

lvsr1 011111 vD A B 00 0010 0110 0

lvehx1 011111 vD A B 00 0010 0111 0

subfx 011111 D A B OE 00 0010 1000 Rc

dcbst 011111 0 0 0 0 0 A B 00 0011 0110 0

lwzux 011111 D A B 00 0011 0111 0

andcx 011111 S A B 00 0011 1100 Rc

lvewx1 011111 vD A B 00 0100 0111 0

mulhwx 011111 D A B 0 00 0100 1011 Rc

mfmsr 011111 D 0 0 0 0 0 0 0 0 0 0 00 0101 0011 0

dcbf 011111 0 0 0 0 0 A B 00 0101 0110 0

lbzx 011111 D A B 00 0101 0111 0

lvx1 011111 vD A B 00 0110 0111 0

negx 011111 D A 0 0 0 0 0 OE 00 0110 1000 Rc

lbzux 011111 D A B 00 0111 0111 0

norx 011111 S A B 00 0111 1100 Rc

stvebx1 011111 vS A B 00 1000 0111 0

subfex 011111 D A B OE 00 1000 1000 Rc

addex 011111 D A B OE 00 1000 1010 Rc

mtcrf 011111 S 0 CRM 0 00 1001 0000 0

mtmsr 011111 S 0 0 0 0 0 0 0 0 0 0 00 1001 0010 0

stwcx. 011111 S A B 00 1001 0110 1

stwx 011111 S A B 00 1001 0111 0

stvehx1 011111 vS A B 00 1010 0111 0

stwux 011111 S A B 00 1011 0111 0

stvewx1 011111 vS A B 00 1100 0111 0

subfzex 011111 D A 0 0 0 0 0 OE 00 1100 1000 Rc

addzex 011111 D A 0 0 0 0 0 OE 00 1100 1010 Rc

mtsr 011111 S 0 SR 0 0 0 0 0 00 1101 0010 0

stbx 011111 S A B 00 1101 0111 0

stvx1 011111 vS A B 00 1110 0111 0

subfmex 011111 D A 0 0 0 0 0 OE 00 1110 1000 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23242526272829 30 31

A-20 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Sorted by Opcode

addmex 011111 D A 0 0 0 0 0 OE 00 1110 1010 Rc

mullwx 011111 D A B OE 00 1110 1011 Rc

mtsrin 011111 S 0 0 0 0 0 B 00 1111 0010 0

dcbtst 011111 0 0 0 0 0 A B 00 1111 0110 0

stbux 011111 S A B 00 1111 0111 0

addx 011111 D A B OE 01 0000 1010 Rc

dcbt 011111 0 0 0 0 0 A B 1 0001 0110 0

lhzx 011111 D A B 01 0001 0111 0

eqvx 011111 S A B 01 0001 1100 Rc

tlbie2,3 011111 0 0 0 0 0 0 0 0 0 0 B 01 0011 0010 0

eciwx2 011111 D A B 01 0011 0110 0

lhzux 011111 D A B 01 0011 0111 0

xorx 011111 S A B 01 0011 1100 Rc

mfspr 4 011111 D spr 01 0101 0011 0

dst1 011111 T 0 0 STRM A B 01 0101 0110 0

lhax 011111 D A B 0 1010 10111 0

lvxl1 011111 vD A B 01 0110 0111 0

tlbia 2,5 011111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0111 0010 0

mftb 011111 D tbr 01 0111 0011 0

dstst 011111 T 0 0 STRM A B 01 0111 0110 0

dststt1 011111 1 0 0 STRM A B 1011 1 0110 0

lhaux 011111 D A B 01 0111 0111 0

sthx 011111 S A B 01 1001 0111 0

orcx 011111 S A B 01 1001 1100 Rc

ecowx2 011111 S A B 01 1011 0110 0

sthux 011111 S A B 01 1011 0111 0

orx 011111 S A B 01 1011 1100 Rc

divwux 011111 D A B OE 01 1100 1011 Rc

mtspr 4 011111 S spr 01 1101 0011 0

dcbi 011111 0 0 0 0 0 A B 01 1101 0110 0

nandx 011111 S A B 01 1101 1100 Rc

stvxl1 011111 vS A B 01 1110 0111 0

divwx 011111 D A B OE 01 1110 1011 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23242526272829 30 31

Appendix A. MPC7400 Instruction Set Listings A-21

Instructions Sorted by Opcode

 mcrxr 011111 crfD 0 0 0 0 0 0 0 0 0 0 0 0 10 0000 0000 0

lswx6 011111 D A B 10 0001 0101 0

lwbrx 011111 D A B 10 0001 0110 0

lfsx 011111 D A B 10 0001 0111 0

srwx 011111 S A B 10 0001 1000 Rc

tlbsync 2,3 011111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0011 0110 0

lfsux 011111 D A B 10 0011 0111 0

mfsr 3 011111 D 0 SR 0 0 0 0 0 10 0101 0011 0

lswi 6 011111 D A NB 10 0101 0101 0

sync 011111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0101 0110 0

lfdx 011111 D A B 10 0101 0111 0

lfdux 011111 D A B 10 0111 0111 0

mfsrin 3 011111 D 0 0 0 0 0 B 10 1001 0011 0

stswx 6 011111 S A B 10 1001 0101 0

stwbrx 011111 S A B 10 1001 0110 0

stfsx 011111 S A B 10 1001 0111 0

stfsux 011111 S A B 10 1011 0111 0

stswi6 011111 S A NB 10 1101 0101 0

stfdx 011111 S A B 10 1101 0111 0

dcba2 011111 0 0 0 0 0 A B 10 1111 0110 0

stfdux 011111 S A B 10 1111 0111 0

lhbrx 011111 D A B 11 0001 0110 0

srawx 011111 S A B 11 0001 1000 Rc

dss1 011111 A 0 0 STRM 0 0 0 0 0 0 0 0 0 0 11 0011 0110 0

dssall1 011111 A 0 0 STRM 0 0 0 0 0 0 0 0 0 0 11 0011 0110 0

srawix 011111 S A SH 11 0011 1000 Rc

eieio 011111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0101 0110 0

sthbrx 011111 S A B 11 1001 0110 0

extshx 011111 S A 0 0 0 0 0 11 1001 1010 Rc

extsbx 011111 S A 0 0 0 0 0 11 1011 1010 Rc

icbi 011111 0 0 0 0 0 A B 11 1101 0110 0

stfiwx 2 011111 S A B 11 1101 0111 0

dcbz 011111 0 0 0 0 0 A B 11 1111 0110 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23242526272829 30 31

A-22 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Sorted by Opcode

lwz 100000 D A d

lwzu 100001 D A d

lbz 100010 D A d

lbzu 100011 D A d

stw 100100 S A d

stwu 100101 S A d

stb 100110 S A d

stbu 100111 S A d

lhz 101000 D A d

lhzu 101001 D A d

lha 101010 D A d

lhau 101011 D A d

sth 101100 S A d

sthu 101101 S A d

lmw 6 101110 D A d

stmw 6 101111 S A d

lfs 110000 D A d

lfsu 110001 D A d

lfd 110010 D A d

lfdu 110011 D A d

 stfs 110100 S A d

stfsu 110101 S A d

stfd 110110 S A d

stfdu 110111 S A d

fdivsx 111011 D A B 0 0 0 0 0 1 0010 Rc

fsubsx 111011 D A B 0 0 0 0 0 1 0100 Rc

faddsx 111011 D A B 0 0 0 0 0 1 0101 Rc

fsqrtsx 2,5 11011 D 0 0 0 0 0 B 0 0 0 0 0 1 0110 Rc

fresx 2 111011 D 0 0 0 0 0 B 0 0 0 0 0 1 1000 Rc

fmulsx 111011 D A 0 0 0 0 0 C 1 1001 Rc

fmsubsx 111011 D A B C 1 1100 Rc

fmaddsx 111011 D A B C 1 1101 Rc

fnmsubsx 111011 D A B C 1 1110 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23242526272829 30 31

Appendix A. MPC7400 Instruction Set Listings A-23

Instructions Sorted by Opcode

fnmaddsx 111011 D A B C 1 1111 Rc

fcmpu 111111 crfD 0 0 A B 00 0000 0000 0

frspx 111111 D 0 0 0 0 0 B 00 0000 1100 Rc

fctiwx 111111 D 0 0 0 0 0 B 00 0000 1110

fctiwzx 111111 D 0 0 0 0 0 B 00 0000 1111 Rc

fdivx 111111 D A B 0 0 0 0 0 1 0010 Rc

fsubx 111111 D A B 0 0 0 0 0 1 0100 Rc

faddx 111111 D A B 0 0 0 0 0 1 0101 Rc

fsqrtx 2,5 111111 D 0 0 0 0 0 B 0 0 0 0 0 1 0110 Rc

fselx 5 111111 D A B C 1 0111 Rc

fmulx 111111 D A 0 0 0 0 0 C 1 1001 Rc

fmsubx 111111 D A B C 1 1100 Rc

fmaddx 111111 D A B C 1 1101 Rc

fnmsubx 111111 D A B C 1 1110 Rc

fnmaddx 111111 D A B C 1 1111 Rc

fcmpo 111111 crfD 0 0 A B 00 0010 0000 0

mtfsb1x 111111 crbD 0 0 0 0 0 0 0 0 0 0 0000100110 Rc

fnegx 111111 D 0 0 0 0 0 B 0 000101000 Rc

mcrfs 111111 crfD 0 0 crfS 0 0 0 0 0 0 0 0001000000 0

mtfsb0x 111111 crbD 0 0 0 0 0 0 0 0 0 0 00 0100 0110 Rc

fmrx 111111 D 0 0 0 0 0 B 00 0100 1000 Rc

mtfsfix 111111 crfD 0 0 0 0 0 0 0 IMM 0 00 1000 0110 Rc

fnabsx 111111 D 0 0 0 0 0 B 00 1000 1000 Rc

fabsx 111111 D 0 0 0 0 0 B 01 0000 1000 Rc

mffsx 111111 D 0 0 0 0 0 0 0 0 0 0 10 0100 0111 Rc

mtfsfx 111111 0 FM 0 B 10 1100 0111 Rc

1AltiVec technology-speciÞc instruction
2Optional to the PowerPC architecture but implemented by the MPC7400
3Supervisor-level instruction
4Supervisor- and user-level instruction
5Optional instruction not implemented by the MPC7400
6Load/store string/multiple instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23242526272829 30 31

A-24 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Sorted by Opcode

Appendix A. MPC7400 Instruction Set Listings A-25

Instructions Grouped by Functional Categories

A.3 Instructions Grouped by Functional Categories
Table A-3 through Table A-43 list the MPC7400 instructions grouped by function.

Table A-3. Integer Arithmetic Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addcx 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

addmex 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

divwx 31 D A B OE 491 Rc

divwux 31 D A B OE 459 Rc

mulhwx 31 D A B 0 75 Rc

mulhwux 31 D A B 0 11 Rc

mulli 07 D A SIMM

mullwx 31 D A B OE 235 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

subfx 31 D A B OE 40 Rc

subfcx 31 D A B OE 8 Rc

subficx 08 D A SIMM

subfex 31 D A B OE 136 Rc

subfmex 31 D A 0 0 0 0 0 OE 232 Rc

subfzex 31 D A 0 0 0 0 0 OE 200 Rc

Reserved bitsKey:

A-26 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Grouped by Functional Categories

Table A-4. Integer Compare Instructions

Table A-5. Integer Logical Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

cmp 31 crfD 0 L A B 0 0 0 0 0 0 0 0 0 0 0

cmpi 11 crfD 0 L A SIMM

cmpl 31 crfD 0 L A B 32 0

cmpli 10 crfD 0 L A UIMM

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

andx 31 S A B 28 Rc

andcx 31 S A B 60 Rc

andi. 28 S A UIMM

andis. 29 S A UIMM

cntlzwx 31 S A 0 0 0 0 0 26 Rc

eqvx 31 S A B 284 Rc

extsbx 31 S A 0 0 0 0 0 954 Rc

extshx 31 S A 0 0 0 0 0 922 Rc

nandx 31 S A B 476 Rc

norx 31 S A B 124 Rc

orx 31 S A B 444 Rc

orcx 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM

vand1

1 AltiVec technology-speciÞc instruction

04 vD vA vB 1028 0

vandc 1 04 vD vA vB 1092 0

vnor 1 04 vD vA vB 1284

vor 1 04 vD vA vB 1156

vxor 1 04 D A B 1220

xorx 31 S A B 316 Rc

xori 26 S A UIMM

xoris 27 S A UIMM

Appendix A. MPC7400 Instruction Set Listings A-27

Instructions Grouped by Functional Categories

Table A-6. Integer Rotate Instructions

Table A-7. Integer Shift Instructions

Table A-8. Floating-Point Arithmetic Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rlwimix 22 S A SH MB ME Rc

rlwinmx 20 S A SH MB ME Rc

rlwnmx 21 S A SH MB ME Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

slwx 31 S A B 24 Rc

srawx 31 S A B 792 Rc

srawix 31 S A SH 824 Rc

srwx 31 S A B 536 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

faddx 63 D A B 0 0 0 0 0 21 Rc

faddsx 59 D A B 0 0 0 0 0 21 Rc

fdivx 63 D A B 0 0 0 0 0 18 Rc

fdivsx 59 D A B 0 0 0 0 0 18 Rc

fmulx 63 D A 0 0 0 0 0 C 25 Rc

fmulsx 59 D A 0 0 0 0 0 C 25 Rc

fresx 1

1 Optional to the PowerPC architecture but implemented by the MPC7400

59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frsqrtex 1 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fsubx 63 D A B 0 0 0 0 0 20 Rc

fsubsx 59 D A B 0 0 0 0 0 20 Rc

fselx 63 D A B C 23 Rc

fsqrtx 1,2

2 Optional instruction not implemented by the MPC7400

63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrtsx 1, 2 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

vaddfp3

3 AltiVec technology-speciÞc instruction

04 vD vA vB 10 0

vmaxfp 3 04 vD vA vB 1034

vminfp 3 04 vD vA vB 1098

vsubfp 3 04 vD vA vB 74

A-28 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Grouped by Functional Categories

Table A-9. Floating-Point Multiply-Add Instructions

Table A-10. Floating-Point Rounding and Conversion Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fmaddx 63 D A B C 29 Rc

fmaddsx 59 D A B C 29 Rc

fmsubx 63 D A B C 28 Rc

fmsubsx 59 D A B C 28 Rc

fnmaddx 63 D A B C 31 Rc

fnmaddsx 59 D A B C 31 Rc

fnmsubx 63 D A B C 30 Rc

fnmsubsx 59 D A B C 30 Rc

vmaddfp1

1 AltiVec technology-speciÞc instruction

04 vD vA vB vC 46

vnmsubfp 1 04 vD vA vB vC 47

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fctiwx 63 D 0 0 0 0 0 B 14 Rc

fctiwzx 63 D 0 0 0 0 0 B 15 Rc

frspx 63 D 0 0 0 0 0 B 12 Rc

vcfsx1

1 AltiVec technology-speciÞc instruction

04 vD UIMM vB 842

vcfux 1 04 vD UIMM vB 778 0

vctsxs 1 04 vD UIMM vB 970

vctuxs 1 04 vD UIMM vB 906

vrÞm 1 04 vD 0 0 0 0 0 vB 714

vrÞn 1 04 vD 0 0 0 0 0 vB 522

vrÞp 1 04 vD 0 0 0 0 0 vB 650

vrÞz 1 04 vD 0 0 0 0 0 vB 586

Appendix A. MPC7400 Instruction Set Listings A-29

Instructions Grouped by Functional Categories

Table A-11. Floating-Point Compare Instructions

Table A-12. Floating-Point Status and Control Register Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

vcmpbfpx1

1 AltiVec technology-speciÞc instruction

04 vD vA vB Rc 966

vcmpeqfpx 1 04 vD vA vB Rc 198

vcmpgefpx 1 04 vD vA vB Rc 454

vcmpgtfpx 1 04 vD vA vB Rc 710

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

mffsx 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mtfsb0x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1x 63 crbD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfx 31 0 FM 0 B 711 Rc

mtfsfix 63 crfD 0 0 0 0 0 0 0 IMM 0 134 Rc

A-30 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Grouped by Functional Categories

Table A-13. Integer Load Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lbz 34 D A d

lbzu 35 D A d

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

lha 42 D A d

lhau 43 D A d

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhz 40 D A d

lhzu 41 D A d

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lvebx1

1 AltiVec technology-speciÞc instruction

31 vD A B 7 0

lvehx 1 31 vD A B 39 0

lvewx 1 31 vD A B 71 0

lvx 1 31 vD A B 103 0

lvxl 1 31 vD A B 359 0

lwz 32 D A d

lwzu 33 D A d

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

Appendix A. MPC7400 Instruction Set Listings A-31

Instructions Grouped by Functional Categories

Table A-14. Integer Store Instructions

Table A-15. Integer Load and Store with Byte Reverse Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stb 38 S A d

stbu 39 S A d

stbux 31 S A B 247 0

stbx 31 S A B 215 0

sth 44 S A d

sthu 45 S A d

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stw 36 S A d

stwu 37 S A d

stwux 31 S A B 183 0

stwx 31 S A B 151 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lhbrx 31 D A B 790 0

lwbrx 31 D A B 534 0

sthbrx 31 S A B 918 0

stwbrx 31 S A B 662 0

A-32 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Grouped by Functional Categories

Table A-16. Integer Load and Store Multiple Instructions

Table A-17. Integer Load and Store String Instructions

Table A-18. Memory Synchronization Instructions

Table A-19. Floating-Point Load Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lmw1

1 Load/store string/multiple instruction

46 D A d

stmw1 47 S A d

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lswi1

1 Load/store string/multiple instruction

31 D A NB 597 0

lswx1 31 D A B 533 0

stswi1 31 S A NB 725 0

stswx1 31 S A B 661 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

lwarx 31 D A B 20 0

stwcx. 31 S A B 150 1

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lfd 50 D A d

lfdu 51 D A d

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfs 48 D A d

lfsu 49 D A d

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

Appendix A. MPC7400 Instruction Set Listings A-33

Instructions Grouped by Functional Categories

Table A-20. Floating-Point Store Instructions

Table A-21. Floating-Point Move Instructions

Table A-22. Branch Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stfd 54 S A d

stfdu 55 S A d

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx1

1 Optional to the PowerPC architecture but implemented by the MPC7400

31 S A B 983 0

 stfs 52 S A d

stfsu 53 S A d

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fabsx 63 D 0 0 0 0 0 B 264 Rc

fmrx 63 D 0 0 0 0 0 B 72 Rc

fnabsx 63 D 0 0 0 0 0 B 136 Rc

fnegx 63 D 0 0 0 0 0 B 40 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bx 18 LI AA LK

bcx 16 BO BI BD AA LK

bcctrx 19 BO BI 0 0 0 0 0 528 LK

bclrx 19 BO BI 0 0 0 0 0 16 LK

A-34 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Grouped by Functional Categories

Table A-23. Condition Register Logical Instructions

Table A-24. System Linkage Instructions

Table A-25. Trap Instructions

Table A-26. Processor Control Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rfi1

1 Supervisor-level instruction

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

sc 17 0 1 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tw 31 TO A B 4 0

twi 03 TO A SIMM

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 mcrxr 31 crfS 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mfmsr1

1 Supervisor-level instruction

31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfspr2

2 Supervisor- and user-level instruction

31 D spr 339 0

mftb 31 D tpr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtmsr1 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtspr2 31 D spr 467 0

Appendix A. MPC7400 Instruction Set Listings A-35

Instructions Grouped by Functional Categories

Table A-27. Cache Management Instructions

Table A-28. Segment Register Manipulation Instructions

Table A-29. Lookaside Buffer Management Instructions

Table A-30. External Control Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dcba1

1 Optional to the PowerPC but implemented by the MPC7400

31 0 0 0 0 0 A B 758 0

dcbf 31 0 0 0 0 0 A B 86 0

dcbi2

2 Supervisor-level instruction

31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

icbi 31 0 0 0 0 0 A B 982 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfsr1

1 Supervisor-level instruction

31 D 0 SR 0 0 0 0 0 595 0

mfsrin1 31 D 0 0 0 0 0 B 659 0

mtsr1 31 S 0 SR 0 0 0 0 0 210 0

mtsrin1 31 S 0 0 0 0 0 B 242 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tlbia1

1 Optional instruction not implemented by the MPC7400

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie2,3

2 Optional to the PowerPC architecture but implemented by the MPC7400
3 Supervisor-level instruction

31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbsync2,3 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eciwx1

1 Optional to the PowerPC architecture but implemented by the MPC7400

31 D A B 310 0

ecowx1 31 S A B 438 0

A-36 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Grouped by Functional Categories

Table A-31. Vector Integer Arithmetic Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vaddcuw1 04 vD vA vB 384 0

vaddsbs 1 04 vD vA vB 768 0

vaddshs 1 04 vD vA vB 832 0

vaddsws 1 04 vD vA vB 896 0

vaddubm 1 04 vD vA vB 0 0

vaddubs 1 04 vD vA vB 512 0

vadduhm 1 04 vD vA vB 64 0

vadduhs 1 04 vD vA vB 576 0

vadduwm 1 04 vD vA vB 128 0

vadduws 1 04 vD vA vB 640 0

vavgsb 1 04 vD vA vB 1282 0

vavgsh 1 04 vD vA vB 1346 0

vavgsw 1 04 vD vA vB 1410 0

vavgub 1 04 vD vA vB 1026 0

vavguh 1 04 vD vA vB 1090 0

vavguw 1 04 vD vA vB 1154 0

vmaxsb 1 04 vD vA vB 258

vmaxsh 1 04 vD vA vB 322

vmaxsw 1 04 vD vA vB 386

vmaxub 1 04 vD vA vB 2

vmaxuh 1 04 vD vA vB 66

vmaxuw 1 04 vD vA vB 130

vmhaddshs 1 04 vD vA vB vC 32

vmhraddshs 1 04 vD vA vB vC 33

vminsb 1 04 vD vA vB 770

vminsh 1 04 vD vA vB 834

vminsw 1 04 vD vA vB 898

vminub 1 04 vD vA vB 514

vminuh 1 04 vD vA vB 578

vminuw 1 04 vD vA vB 642

vmladduhm 1 04 vD vA vB vC 34

vmsummbm 1 04 vD vA vB vC 37

Appendix A. MPC7400 Instruction Set Listings A-37

Instructions Grouped by Functional Categories

vmsumshm 1 04 vD vA vB vC 40

vmsumshs 1 04 vD vA vB vC 41

vmsumubm 1 04 vD vA vB vC 36

vmsumuhm 1 04 vD vA vB vC 38

vmsumuhs 1 04 vD vA vB vC 39

vmulesb 1 04 vD vA vB 776

vmulesh 1 04 vD vA vB 840

vmuleub 1 04 vD vA vB 520

vmuleuh 1 04 vD vA vB 584

vmulosb 1 04 vD vA vB 264

vmulosh 1 04 vD vA vB 328

vmuloub 1 04 vD vA vB 8

vmulouh 1 04 vD vA vB 72

vsubcuw 1 04 vD vA vB 1408

vsubsbs 1 04 vD vA vB 1792

vsubshs 1 04 vD vA vB 1856

vsubsws 1 04 vD vA vB 1920

vsububm 1 04 vD vA vB 1024

vsububs 1 04 vD vA vB 1536

vsubuhm 1 04 vD vA vB 1088

vsubuhs 1 04 vD vA vB 1600

vsubuwm 1 04 vD vA vB 1152

vsubuws 1 04 vD vA vB 1664

vsumsws 1 04 vD vA vB 1928

vsum2sws 1 04 D A B 1672

vsum4sbs 1 04 D A B 1800

vsum4shs 1 04 D A B 1608

vsum4ubs 1 04 D A B 1544
1 AltiVec technology-speciÞc instruction

A-38 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Grouped by Functional Categories

Table A-32. Floating-Point Compare Instructions

Table A-33. Floating-Point Estimate Instructions

Table A-34. Vector Load Instructions Supporting Alignment

Table A-35. Integer Store Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vcmpbfpx 04 vD vA vB Rc 966

vcmpeqfpx 04 vD vA vB Rc 198

vcmpgefpx 04 vD vA vB Rc 454

vcmpgtfpx 04 vD vA vB Rc 710

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vexptefp 04 vD 0 0 0 0 0 vB 394

vlogefp 04 vD 0 0 0 0 0 vB 458

vrefp 04 vD 0 0 0 0 0 vB 266

vrsqrtefp 04 vD 0 0 0 0 0 vB 330

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lvsl 31 vD A B 6 0

lvsr 31 vD A B 38 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stvebx 31 S A B 135 0

stvehx 31 S A B 167 0

stvewx 31 S A B 199 0

stvx 31 S A B 231 0

stvxl 31 S A B 487 0

Appendix A. MPC7400 Instruction Set Listings A-39

Instructions Grouped by Functional Categories

Table A-36. Vector Pack Instructions

Table A-37. Vector Unpack Instructions

Table A-38. Vector Splat Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vpkpx 04 vD vA vB 782

vpkshss 04 vD vA vB 398

vpkshus 04 vD vA vB 270

vpkswss 04 vD vA vB 462

vpkswus 04 vD vA vB 334

vpkuhum 04 vD vA vB 14

vpkuhus 04 vD vA vB 142

vpkuwum 04 vD vA vB 78

vpkuwus 04 vD vA vB 206

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vmrghb 04 vD vA vB 12

vmrghh 04 vD vA vB 76

vmrghw 04 vD vA vB 140

vmrglb 04 vD vA vB 268

vmrglh 04 vD vA vB 332

vupkhpx 04 D 0 0 0 0 0 B 846

vupkhsb 04 D 0 0 0 0 0 B 526

vupkhsh 04 D 0 0 0 0 0 B 590

vupklpx 04 D 0 0 0 0 0 B 974

vupklsb 04 D 0 0 0 0 0 B 654

vupklsh 04 D 0 0 0 0 0 B 718

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vspltb 04 vD UIMM vB 524

vsplth 04 vD UIMM vB 588

vspltisb 04 vD SIMM 0 0 0 0 0 780

vspltish 04 vD SIMM 0 0 0 0 0 844

vspltisw 04 vD SIMM 0 0 0 0 0 908

vspltw 04 vD UIMM vB 652

A-40 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Grouped by Functional Categories

Table A-39. Vector Permute Instruction

Table A-40. Vector Select Instruction

Table A-41. Vector Shift Instructions

Table A-42. Move to/from Condition Register Instructions

Table A-43. User-Level Cache Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vperm 04 vD vA vB vC 43

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vsel 04 vD vA vB vC 42

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vsl 04 vD vA vB 452

vsldoi 04 vD vA vB 0 SH 44

vslo 04 vD vA vB 1036

vsro 04 vD vA vB 1100

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfvscr 04 vD 0 0 0 0 0 0 0 0 0 0 1540 0

mtvscr 04 0 0 0 0 0 0 0 0 0 0 vB 1604

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dss 31 A 0 0 STRM 0 0 0 0 0 0 0 0 0 0 822 0

dssall 31 A 0 0 STRM 0 0 0 0 0 0 0 0 0 0 822 0

dst 31 T 0 0 STRM A B 342 0

dstst 31 T 0 0 STRM A B 374 0

dststt 31 1 0 0 STRM A B 374 0

dstt 31 1 0 0 STRM A B 342 0

Appendix A. MPC7400 Instruction Set Listings A-41

Instructions Sorted by Form

A.4 Instructions Sorted by Form
Table A-44 through Table A-54 list the MPC7400 instructions grouped by form.

Table A-44. I-Form

Table A-45. B-Form

Table A-46. SC-Form

Table A-47. D-Form\X-Form

OPCD LI AA LK

SpeciÞc Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bx 18 LI AA LK

OPCD BO BI BD AA LK

SpeciÞc Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bcx 16 BO BI BD AA LK

OPCD 0 1 0

SpeciÞc Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sc 17 0 1 0

OPCD D A d

OPCD D A SIMM

OPCD S A d

OPCD S A UIMM

OPCD crfD 0 L A SIMM

OPCD crfD 0 L A UIMM

OPCD TO A SIMM

Reserved bits

Key:

A-42 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Sorted by Form

SpeciÞc Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

andi. 28 S A UIMM

andis. 29 S A UIMM

cmpi 11 crfD 0 L A SIMM

cmpli 10 crfD 0 L A UIMM

lbz 34 D A d

lbzu 35 D A d

lfd 50 D A d

lfdu 51 D A d

lfs 48 D A d

lfsu 49 D A d

lha 42 D A d

lhau 43 D A d

lhz 40 D A d

lhzu 41 D A d

lmw1 46 D A d

lwz 32 D A d

lwzu 33 D A d

mulli 7 D A SIMM

ori 24 S A UIMM

oris 25 S A UIMM

stb 38 S A d

stbu 39 S A d

stfd 54 S A d

stfdu 55 S A d

 stfs 52 S A d

stfsu 53 S A d

sth 44 S A d

sthu 45 S A d

Appendix A. MPC7400 Instruction Set Listings A-43

Instructions Sorted by Form

stmw1 47 S A d

stw 36 S A d

stwu 37 S A d

subfic 08 D A SIMM

twi 03 TO A SIMM

xori 26 S A UIMM

xoris 27 S A UIMM

1 Load/store string/multiple instruction

OPCD D A B XO 0

OPCD D A NB XO 0

OPCD D 0 0 0 0 0 B XO 0

OPCD D 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD D 0 SR 0 0 0 0 0 XO 0

OPCD S A B XO Rc

OPCD S A B XO 1

OPCD S A B XO 0

OPCD S A NB XO 0

OPCD S A 0 0 0 0 0 XO Rc

OPCD S 0 0 0 0 0 B XO 0

OPCD S 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD S 0 SR 0 0 0 0 0 XO 0

OPCD S A SH XO Rc

OPCD crfD 0 L A B XO 0

OPCD crfD 0 0 A B XO 0

OPCD crfD 0 0 crfS 0 0 0 0 0 0 0 XO 0

OPCD crfD 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD crfD 0 0 0 0 0 0 0 IMM 0 XO Rc

OPCD TO A B XO 0

OPCD D 0 0 0 0 0 B XO Rc

OPCD D 0 0 0 0 0 0 0 0 0 0 XO Rc

OPCD crbD 0 0 0 0 0 0 0 0 0 0 XO Rc

OPCD 0 0 0 0 0 A B XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 B XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

A-44 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Sorted by Form

OPCD vD vA vB XO 0

OPCD vS vA vB XO 0

OPCD T 0 0 STR
M

A B XO 0

SpeciÞc Instructions

andx 31 S A B 28 Rc

andcx 31 S A B 60 Rc

cmp 31 crfD 0 L A B 0 0

cmpl 31 crfD 0 L A B 32 0

cntlzwx 31 S A 0 0 0 0 0 26 Rc

dcba1 31 0 0 0 0 0 A B 758 0

dcbf 31 0 0 0 0 0 A B 86 0

dcbi2 31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

dst 31 T 0 0 STRM A B 342 0

dstt3 31 1 0 0 STRM A B 342 0

dstst3 31 T 0 0 STRM A B 374 0

dststt3 31 1 0 0 STRM A B 374 0

dss3 31 A 0 0 STRM 0 0 0 0 0 0 0 0 0 0 822 0

dssall3 31 A 0 0 STRM 0 0 0 0 0 0 0 0 0 0 822 0

eciwx1 31 D A B 310 0

ecowx1 31 S A B 438 0

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

eqvx 31 S A B 284 Rc

extsbx 31 S A 0 0 0 0 0 954 Rc

extshx 31 S A 0 0 0 0 0 922 Rc

fabsx 63 D 0 0 0 0 0 B 264 Rc

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

fctiwx 63 D 0 0 0 0 0 B 14 Rc

fctiwzx 63 D 0 0 0 0 0 B 15 Rc

Appendix A. MPC7400 Instruction Set Listings A-45

Instructions Sorted by Form

fmrx 63 D 0 0 0 0 0 B 72 Rc

fnabsx 63 D 0 0 0 0 0 B 136 Rc

fnegx 63 D 0 0 0 0 0 B 40 Rc

frspx 63 D 0 0 0 0 0 B 12 Rc

icbi 31 0 0 0 0 0 A B 982 0

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhbrx 31 D A B 790 0

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lswi4 31 D A NB 597 0

lswx4 31 D A B 533 0

lvebx3 31 vD vA vB 7 0

lvehx3 31 vD A B 39 0

lvewx3 31 vD A B 71 0

lvsl3 31 vD A B 6 0

lvsr3 31 vD A B 38 0

lvx3 31 vD A B 103 0

lvxl3 31 vD A B 359 0

lwarx 31 D A B 20 0

lwbrx 31 D A B 534 0

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

 mcrxr 31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mffsx 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mfmsr2 31 D 0 0 0 0 0 0 0 0 0 0 83 0

A-46 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Sorted by Form

mfsr2 31 D 0 SR 0 0 0 0 0 595 0

mfsrin2 31 D 0 0 0 0 0 B 659 0

mtfsb0x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1x 63 crfD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfix 63 crbD 0 0 0 0 0 0 0 IMM 0 134 Rc

mtmsr2 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtsr2 31 S 0 SR 0 0 0 0 0 210 0

mtsrin2 31 S 0 0 0 0 0 B 242 0

nandx 31 S A B 476 Rc

norx 31 S A B 124 Rc

orx 31 S A B 444 Rc

orcx 31 S A B 412 Rc

slwx 31 S A B 24 Rc

srawx 31 S A B 792 Rc

srawix 31 S A SH 824 Rc

srwx 31 S A B 536 Rc

stbux 31 S A B 247 0

stbx 31 S A B 215 0

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx1 31 S A B 983 0

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

sthbrx 31 S A B 918 0

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stswi4 31 S A NB 725 0

stswx4 31 S A B 661 0

stvebx3 31 vS A B 135 0

stvehx3 31 vS A B 167 0

stvewx3 31 vS A B 199 0

stvx3 31 vS A B 231 0

stvxl3 31 vS A B 487 0

stwbrx3 31 S A B 662 0

Appendix A. MPC7400 Instruction Set Listings A-47

Instructions Sorted by Form

Table A-48. XL-Form

stwcx. 31 S A B 150 1

stwux 31 S A B 183 0

stwx 31 S A B 151 0

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

tlbia5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie2 31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbsync2 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

tw 31 TO A B 4 0

xorx 31 S A B 316 Rc

1 Optional to the PowerPC architecture but implemented by the MPC7400
2 Supervisor-level instruction
3 Altivec technology-speciÞc instruction
4 Load/store string/multiple instruction
5 Optional instruction not implemented by the MPC7400

OPCD BO BI 0 0 0 0 0 XO LK

OPCD crbD crbA crbB XO 0

OPCD crfD 0 0 crfS 0 0 0 0 0 0 0 XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

SpeciÞc Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bcctrx 19 BO BI 0 0 0 0 0 528 LK

bclrx 19 BO BI 0 0 0 0 0 16 LK

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0

rfi1

1 Supervisor-level instruction

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

A-48 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Sorted by Form

Table A-49. XFX-Form

Table A-50. XFL-Form

Table A-51. XO-Form

OPCD D spr XO 0

OPCD D 0 CRM 0 XO 0

OPCD S spr XO 0

OPCD D tbr XO 0

SpeciÞc Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfspr1

1 Supervisor- and user-level instruction

31 D spr 339 0

mftb 31 D tbr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtspr1 31 D spr 467 0

OPCD 0 FM 0 B XO Rc

SpeciÞc Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mtfsfx 63 0 FM 0 B 711 Rc

OPCD D A B OE XO Rc

OPCD D A B 0 XO Rc

OPCD D A 0 0 0 0 0 OE XO Rc

SpeciÞc Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addcx 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addmex 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

divwx 31 D A B OE 491 Rc

divwux 31 D A B OE 459 Rc

mulhwx 31 D A B 0 75 Rc

mulhwux 31 D A B 0 11 Rc

Appendix A. MPC7400 Instruction Set Listings A-49

Instructions Sorted by Form

Table A-52. A-Form

mullwx 31 D A B OE 235 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

subfx 31 D A B OE 40 Rc

subfcx 31 D A B OE 8 Rc

subfex 31 D A B OE 136 Rc

subfmex 31 D A 0 0 0 0 0 OE 232 Rc

subfzex 31 D A 0 0 0 0 0 OE 200 Rc

OPCD D A B 0 0 0 0 0 XO Rc

OPCD D A B C XO Rc

OPCD D A 0 0 0 0 0 C XO Rc

OPCD D 0 0 0 0 0 B 0 0 0 0 0 XO Rc

SpeciÞc Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

faddx 63 D A B 0 0 0 0 0 21 Rc

faddsx 59 D A B 0 0 0 0 0 21 Rc

fdivx 63 D A B 0 0 0 0 0 18 Rc

fdivsx 59 D A B 0 0 0 0 0 18 Rc

fmaddx 63 D A B C 29 Rc

fmaddsx 59 D A B C 29 Rc

fmsubx 63 D A B C 28 Rc

fmsubsx 59 D A B C 28 Rc

fmulx 63 D A 0 0 0 0 0 C 25 Rc

fmulsx 59 D A 0 0 0 0 0 C 25 Rc

fnmaddx 63 D A B C 31 Rc

fnmaddsx 59 D A B C 31 Rc

fnmsubx 63 D A B C 30 Rc

fnmsubsx 59 D A B C 30 Rc

fresx 1 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frsqrtex 1 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fselx 1 63 D A B C 23 Rc

fsqrtx 2 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrtsx 2 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

A-50 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Sorted by Form

Table A-53. M-Form

Table A-54. VA-Form

fsubx 63 D A B 0 0 0 0 0 20 Rc

fsubsx 59 D A B 0 0 0 0 0 20 Rc

1 Optional to the PowerPC architecture but implemented by the MPC7400
2 Optional instruction not implemented by the MPC7400

OPCD S A SH MB ME Rc

OPCD S A B MB ME Rc

SpeciÞc Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rlwimix 20 S A SH MB ME Rc

rlwinmx 21 S A SH MB ME Rc

rlwnmx 23 S A B MB ME Rc

OPCD vD vA vB vC XO

OPCD vD vA vB 0 SH XO

SpeciÞc Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vmhaddshs1

1 AltiVec technology-speciÞc instruction

04 vD vA vB vC 32

vmhraddshs1 04 vD vA vB vC 33

vmladduhm1 04 vD vA vB vC 34

vmsumubm1 04 vD vA vB vC 36

vmsummbm1 04 vD vA vB vC 37

vmsumuhm1 04 vD vA vB vC 38

vmsumuhs1 04 vD vA vB vC 39

vmsumshm1 04 vD vA vB vC 40

vmsumshs1 04 vD vA vB vC 41

vsel1 04 vD vA vB vC 42

vperm1 04 vD vA vB vC 43

vsldoi1 04 vD vA vB 0 SH 44

vmaddfp1 04 vD vA vB vC 46

vnmsubfp1 04 vD vA vB vC 47

Appendix A. MPC7400 Instruction Set Listings A-51

Instructions Sorted by Form

Table A-55. VX-Form

OPCD vD vA vB XO

OPCD vD 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 vB XO 0

OPCD vD 0 0 0 0 0 vB XO

OPCD vD UIMM vB XO

OPCD vD SIMM 0 0 0 0 0 XO

SpeciÞc Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vaddubm1 04 vD vA vB 0

vadduhm1 04 vD vA vB 64

vadduwm1 04 vD vA vB 128

vaddcuw1 04 vD vA vB 384

vaddubs1 04 vD vA vB 512

vadduhs1 04 vD vA vB 576

vadduws1 04 vD vA vB 640

vaddsbs1 04 vD vA vB 768

vaddshs1 04 vD vA vB 832

vaddsws1 04 vD vA vB 896

vsububm1 04 vD vA vB 1024

vsubuhm1 04 vD vA vB 1088

vsubuwm1 04 vD vA vB 1152

vsubcuw1 04 vD vA vB 1408

vsububs1 04 vD vA vB 1536

vsubuhs1 04 vD vA vB 1600

vsubuws1 04 vD vA vB 1664

vsubsbs1 04 vD vA vB 1792

vsubshs1 04 vD vA vB 1856

vsubsws1 04 vD vA vB 1920

vmaxub1 04 vD vA vB 2

vmaxuh1 04 vD vA vB 66

vmaxuw1 04 vD vA vB 130

vmaxsb1 04 vD vA vB 258

vmaxsh1 04 vD vA vB 322

vmaxsw1 04 vD vA vB 386

vminub1 04 vD vA vB 514

vminuh1 04 vD vA vB 578

A-52 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Sorted by Form

vminuw1 04 vD vA vB 642

vminsb1 04 vD vA vB 770

vminsh1 04 vD vA vB 834

vminsw1 04 vD vA vB 898

vavgub1 04 vD vA vB 1026

vavguh1 04 vD vA vB 1090

vavguw1 04 vD vA vB 1154

vavgsb1 04 vD vA vB 1282

vavgsh1 04 vD vA vB 1346

vavgsw1 04 vD vA vB 1410

vrlb1 04 vD vA vB 4

vrlh1 04 vD vA vB 68

vrlw1 04 vD vA vB 132

vslb1 04 vD vA vB 260

vslh1 04 vD vA vB 324

vslw1 04 vD vA vB 388

vsl1 04 vD vA vB 452

vsrb1 04 vD vA vB 516

vsrh1 04 vD vA vB 580

vsrw1 04 vD vA vB 644

vsr1 04 vD vA vB 708

vsrab1 04 vD vA vB 772

vsrah1 04 vD vA vB 836

vsraw1 04 vD vA vB 900

vand1 04 vD vA vB 1028

vandc1 04 vD vA vB 1092

vor1 04 vD vA vB 1156

vnor1 04 vD vA vB 1284

mfvscr1 04 vD 0 0 0 0 0 0 0 0 0 0 1540 0

mtvscr1 04 0 0 0 0 0 0 0 0 0 0 vB 1604 0

vmuloub1 04 vD vA vB 8

vmulouh1 04 vD vA vB 72

vmulosb1 04 vD vA vB 264

vmulosh1 04 vD vA vB 328

vmuleub1 04 vD vA vB 520

vmuleuh1 04 vD vA vB 584

SpeciÞc Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix A. MPC7400 Instruction Set Listings A-53

Instructions Sorted by Form

vmulesb1 04 vD vA vB 776

vmulesh1 04 vD vA vB 840

vsum4ubs1 04 vD vA vB 1544

vsum4sbs1 04 vD vA vB 1800

vsum4shs1 04 vD vA vB 1608

vsum2sws1 04 vD vA vB 1672

vsumsws1 04 vD vA vB 1928

vaddfp1 04 vD vA vB 10

vsubfp1 04 vD vA vB 74

vrefp1 04 vD 0 0 0 0 0 vB 266

vrsqrtefp1 04 vD 0 0 0 0 0 vB 330

vexptefp1 04 vD 0 0 0 0 0 vB 394

vlogefp1 04 vD 0 0 0 0 0 vB 458

vrfin1 04 vD 0 0 0 0 0 vB 522

vrfiz1 04 vD 0 0 0 0 0 vB 586

vrfip1 04 vD 0 0 0 0 0 vB 650

vrfim1 04 vD 0 0 0 0 0 vB 714

vcfux1 04 vD UIMM vB 778

vcfsx1 04 vD UIMM vB 842

vctuxs1 04 vD UIMM vB 906

vctsxs1 04 vD UIMM vB 970

vmaxfp1 04 vD vA vB 1034

vminfp1 04 vD vA vB 1098

vmrghb1 04 vD vA vB 12

vmrghh1 04 vD vA vB 76

vmrghw1 04 vD vA vB 140

vmrglb1 04 vD vA vB 268

vmrglh1 04 vD vA vB 332

vmrglw1 04 vD vA vB 396

vspltb1 04 vD UIMM vB 524

vsplth1 04 vD UIMM vB 588

vspltw1 04 vD UIMM vB 652

vspltisb1 04 vD SIMM 0 0 0 0 0 780

vspltish1 04 vD SIMM 0 0 0 0 0 844

vspltisw1 04 vD SIMM 0 0 0 0 0 908

vslo1 04 vD vA vB 1036

SpeciÞc Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-54 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Sorted by Form

Table A-56. VXR-Form

vsro1 04 vD vA vB 1100

vpkuhum1 04 vD vA vB 14

vpkuwum1 04 vD vA vB 78

vpkuhus1 04 vD vA vB 142

vpkuwus1 04 vD vA vB 206

vpkshus1 04 vD vA vB 270

vpkswus1 04 vD vA vB 334

vpkshss1 04 vD vA vB 398

vpkswss1 04 vD vA vB 462

vpkswus1 04 vD vA vB 334

vupkhsb1 04 vD 0 0 0 0 0 vB 526

vupkhsh1 04 vD 0 0 0 0 0 vB 590

vupklsb1 04 vD 0 0 0 0 0 vB 654

vupklsh1 04 vD 0 0 0 0 0 vB 718

vpkpx1 04 vD vA vB 12 782

vupkhpx1 04 vD 0 0 0 0 0 vB 846

vupklpx1 04 vD 0 0 0 0 0 vB 974

vxor1 04 vD vA vB 1220

1 AltiVec technology-speciÞc instruction

OPCD vD vA vB Rc XO

SpeciÞc Instructions

Name 05 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vcmpbfpx1 04 vD vA vB Rc 966

vcmpeqfpx1 04 vD vA vB Rc 198

vcmpequbx1 04 vD vA vB Rc 6

vcmpequhx1 04 vD vA vB Rc 70

vcmpequwx1 04 vD vA vB Rc 134

vcmpgefpx1 04 vD vA vB Rc 454

vcmpgtfpx1 04 vD vA vB Rc 710

vcmpgtsbx1 04 vD vA vB Rc 774

vcmpgtshx1 04 vD vA vB Rc 838

vcmpgtswx1 04 vD vA vB Rc 902

SpeciÞc Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix A. MPC7400 Instruction Set Listings A-55

Instructions Sorted by Form

vcmpgtubx1 04 vD vA vB Rc 518

vcmpgtuhx1 04 vD vA vB Rc 582

vcmpgtuwx1 04 vD vA vB Rc 646

1 AltiVec techlogy-speciÞc instruction

A-56 MPC7400 RISC Microprocessor UserÕs Manual

Instructions Sorted by Form

Appendix A. MPC7400 Instruction Set Listings A-57

Instruction Set Legend

A.5 Instruction Set Legend
Table A-57 provides general information on the MPC7400 instruction set (such as the
architectural level, privilege level, and form).

Table A-57. MPC7400 Instruction Set Legend

UISA VEA OEA
Supervisor

Level
64-Bit
Only

64-Bit
Bridge

Optional
AltiVec

Technology
For
m

addx Ö XO

addcx Ö XO

addex Ö XO

addi Ö D

addic Ö D

addic. Ö D

addis Ö D

addmex Ö XO

addzex Ö XO

andx Ö X

andcx Ö X

andi. Ö D

andis. Ö D

bx Ö I

bcx Ö B

bcctrx Ö XL

bclrx Ö XL

cmp Ö X

cmpi Ö D

cmpl Ö X

cmpli Ö D

cntlzdx Ö Ö X

cntlzwx Ö X

crand Ö XL

crandc Ö XL

creqv Ö XL

crnand Ö XL

crnor Ö XL

A-58 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set Legend

cror Ö XL

crorc Ö XL

crxor Ö XL

dcba1 Ö Ö X

dcbf Ö X

dcbi Ö Ö X

dcbst Ö X

dcbt Ö X

dcbtst Ö X

dcbz Ö X

divdx Ö Ö XO

divdux Ö Ö XO

divwx Ö XO

divwux Ö XO

dss2 Ö Ö VX

dssall2 Ö Ö VX

dst2 Ö Ö VX

dstst2 Ö Ö VX

dststt2 Ö Ö VX

dstt2 Ö Ö VX

eciwx1 Ö Ö X

ecowx1 Ö Ö X

eieio Ö X

eqvx Ö X

extsbx Ö X

extshx Ö X

extswx Ö Ö X

fabsx Ö X

faddx Ö A

faddsx Ö A

fcfidx Ö Ö X

Table A-57. MPC7400 Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor

Level
64-Bit
Only

64-Bit
Bridge

Optional
AltiVec

Technology
For
m

Appendix A. MPC7400 Instruction Set Listings A-59

Instruction Set Legend

fcmpo Ö X

fcmpu Ö X

fctidx Ö Ö X

fctidzx Ö Ö X

fctiwx Ö X

fctiwzx Ö Ö X

fdivx Ö A

fdivsx Ö A

fmaddx Ö A

fmaddsx Ö A

fmrx Ö X

fmsubx Ö A

fmsubsx Ö A

fmulx Ö A

fmulsx Ö A

fnabsx Ö X

fnegx Ö X

fnmaddx Ö A

fnmaddsx Ö A

fnmsubx Ö A

fnmsubsx Ö A

fresx Ö Ö A

frspx Ö X

frsqrtex Ö Ö A

fselx Ö Ö A

fsqrtx 3 Ö Ö A

fsqrtsx 3 Ö Ö A

fsubx Ö A

fsubsx Ö A

icbi Ö X

isync Ö XL

Table A-57. MPC7400 Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor

Level
64-Bit
Only

64-Bit
Bridge

Optional
AltiVec

Technology
For
m

A-60 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set Legend

lbz Ö D

lbzu Ö D

lbzux Ö X

lbzx Ö X

ld Ö Ö DS

ldarx Ö Ö X

ldu Ö Ö DS

ldux Ö Ö X

ldx Ö Ö X

lfd Ö D

lfdu Ö D

lfdux Ö X

lfdx Ö X

lfs Ö D

lfsu Ö D

lfsux Ö X

lfsx Ö X

lha Ö D

lhau Ö D

lhaux Ö X

lhax Ö X

lhbrx Ö X

lhz Ö D

lhzu Ö D

lhzux Ö X

lhzx Ö X

lmw4 Ö D

lswi4 Ö X

lswx4 Ö X

lvebx2 Ö Ö X

lvehx2 Ö Ö X

Table A-57. MPC7400 Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor

Level
64-Bit
Only

64-Bit
Bridge

Optional
AltiVec

Technology
For
m

Appendix A. MPC7400 Instruction Set Listings A-61

Instruction Set Legend

lvewx2 Ö Ö X

lvsl2 Ö Ö X

lvsr2 Ö Ö X

lvx2 Ö Ö X

lvxl2 Ö Ö X

lwa Ö Ö DS

lwarx Ö X

lwaux Ö Ö X

lwax Ö Ö X

lwbrx Ö X

lwz Ö D

lwzu Ö D

lwzux Ö X

lwzx Ö X

mcrf Ö XL

mcrfs Ö X

mcrxr Ö X

mfcr Ö X

mffs Ö X

mfmsr Ö Ö X

mfspr5 Ö Ö Ö XFX

mfsr6 Ö Ö Ö Ö X

mfsrin6 Ö Ö Ö Ö X

mfvscr2 Ö Ö VX

mftb Ö XFX

mtcrf Ö XFX

mtfsb0x Ö X

mtfsb1x Ö X

mtfsfx Ö XFL

mtfsfix Ö X

mtmsr6 Ö Ö Ö Ö X

Table A-57. MPC7400 Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor

Level
64-Bit
Only

64-Bit
Bridge

Optional
AltiVec

Technology
For
m

A-62 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set Legend

mtmsrd Ö Ö Ö X

mtspr5 Ö Ö Ö XFX

mtsr6 Ö Ö Ö Ö X

mtsrin6 Ö Ö Ö Ö X

mtvscr2 Ö Ö VX

mulhdx Ö Ö XO

mulhdux Ö Ö XO

mulhwx Ö XO

mulhwux Ö XO

mulldx Ö Ö XO

mulli Ö D

mullwx Ö XO

nandx Ö X

negx Ö XO

norx Ö X

orx Ö X

orcx Ö X

ori Ö D

oris Ö D

rfi6 Ö Ö Ö Ö XL

rldclx Ö Ö MDS

rldcrx Ö Ö MDS

rldicx Ö Ö MD

rldiclx Ö Ö MD

rldicrx Ö Ö MD

rldimix Ö Ö MD

rlwimix Ö M

rlwinmx Ö M

rlwnmx Ö M

sc Ö Ö SC

slbia Ö Ö Ö Ö X

Table A-57. MPC7400 Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor

Level
64-Bit
Only

64-Bit
Bridge

Optional
AltiVec

Technology
For
m

Appendix A. MPC7400 Instruction Set Listings A-63

Instruction Set Legend

slbie Ö Ö Ö Ö X

sldx Ö Ö X

slwx Ö X

sradx Ö Ö X

sradix Ö Ö XS

srawx Ö X

srawix Ö X

srdx Ö Ö X

srwx Ö X

stb Ö D

stbu Ö D

stbux Ö X

stbx Ö X

std Ö Ö DS

stdcx. Ö Ö X

stdu Ö Ö DS

stdux Ö Ö X

stdx Ö Ö X

stfd Ö D

stfdu Ö D

stfdux Ö X

stfdx Ö X

stfiwx1 Ö Ö X

stfs Ö D

stfsu Ö D

stfsux Ö X

stfsx Ö X

sth Ö D

sthbrx Ö X

sthu Ö D

sthux Ö X

Table A-57. MPC7400 Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor

Level
64-Bit
Only

64-Bit
Bridge

Optional
AltiVec

Technology
For
m

A-64 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set Legend

sthx Ö X

stmw4 Ö D

stswi4 Ö X

stswx4 Ö X

stvebx2 Ö Ö X

stvehx2 Ö Ö X

stvewx2 Ö Ö X

stvx2 Ö Ö X

stvxl2 Ö Ö X

stw Ö D

stwbrx Ö X

stwcx. Ö X

stwu Ö D

stwux Ö X

stwx Ö X

subfx Ö XO

subfcx Ö XO

subfex Ö XO

subfic Ö D

subfmex Ö XO

subfzex Ö XO

sync Ö X

td Ö Ö X

tdi Ö Ö D

tlbia3 Ö Ö Ö X

tlbie1,6 Ö Ö Ö X

tlbsync1,6 Ö Ö Ö X

tw Ö X

twi Ö D

vaddcuw2 Ö Ö VX

vaddfp2 Ö Ö VX

Table A-57. MPC7400 Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor

Level
64-Bit
Only

64-Bit
Bridge

Optional
AltiVec

Technology
For
m

Appendix A. MPC7400 Instruction Set Listings A-65

Instruction Set Legend

vaddsbs2 Ö Ö VX

vaddshs2 Ö Ö VX

vaddsws2 Ö Ö VX

vaddubm2 Ö Ö VX

vaddubs2 Ö Ö VX

vadduhm2 Ö Ö VX

vadduhs2 Ö Ö VX

vadduwm2 Ö Ö VX

vadduws2 Ö Ö VX

vand2 Ö Ö VX

vandc2 Ö Ö VX

vavgsb2 Ö Ö VX

vavgsh2 Ö Ö VX

vavgsw2 Ö Ö VX

vavgub2 Ö Ö VX

vavguh2 Ö Ö VX

vavguw2 Ö Ö VX

vcfsx2 Ö Ö VX

vcfux2 Ö Ö VX

vcmpbfpx2 Ö Ö VXR

vcmpeqfpx2 Ö Ö VXR

vcmpequbx2 Ö Ö VXR

vcmpequhx2 Ö Ö VXR

vcmpequwx2 Ö Ö VXR

vcmpgefpx2 Ö Ö VXR

vcmpgtfpx2 Ö Ö VXR

vcmpgtsbx2 Ö Ö VXR

vcmpgtshx2 Ö Ö VXR

vcmpgtswx2 Ö Ö VXR

vcmpgtubx2 Ö Ö VXR

vcmpgtuhx2 Ö Ö VXR

Table A-57. MPC7400 Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor

Level
64-Bit
Only

64-Bit
Bridge

Optional
AltiVec

Technology
For
m

A-66 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set Legend

vcmpgtuwx2 Ö Ö VXR

vctsxs2 Ö Ö VX

vctuxs2 Ö Ö VX

vexptefp2 Ö Ö VX

vlogefp2 Ö Ö VX

vmaddfp2 Ö Ö VA

vmaxfp2 Ö Ö VX

vmaxsb2 Ö Ö VX

vmaxsh2 Ö Ö VX

vmaxsw2 Ö Ö VX

vmaxub2 Ö Ö VX

vmaxuh2 Ö Ö VX

vmaxuw2 Ö Ö VX

vmhaddshs2 Ö Ö VA

vmhraddshs2 Ö Ö VA

vminfp2 Ö Ö VX

vminsb2 Ö Ö VX

vminsh2 Ö Ö VX

vminsw2 Ö Ö VX

vminub2 Ö Ö VX

vminuh2 Ö Ö VX

vminuw2 Ö Ö VX

vmladduhm2 Ö Ö VA

vmrghb2 Ö Ö VX

vmrghh2 Ö Ö VX

vmrghw2 Ö Ö VX

vmrglb2 Ö Ö VX

vmrglh2 Ö Ö VX

vmrglw2 Ö Ö VX

vmsummbm2 Ö Ö VA

vmsumshm2 Ö Ö VA

Table A-57. MPC7400 Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor

Level
64-Bit
Only

64-Bit
Bridge

Optional
AltiVec

Technology
For
m

Appendix A. MPC7400 Instruction Set Listings A-67

Instruction Set Legend

vmsumshs2 Ö Ö VA

vmsumubm2 Ö Ö VA

vmsumuhm2 Ö Ö VA

vmsumuhs2 Ö Ö VA

vmulesb2 Ö Ö VX

vmulesh2 Ö Ö VX

vmuleub2 Ö Ö VX

vmuleuh2 Ö Ö VX

vmulosb2 Ö Ö VX

vmulosh2 Ö Ö VX

vmuloub2 Ö Ö VX

vmulouh2 Ö Ö VX

vnmsubfp2 Ö Ö VA

vnor2 Ö Ö VX

vor2 Ö Ö VX

vperm2 Ö Ö VA

vpkpx2 Ö Ö VX

vpkshss2 Ö Ö VX

vpkshus2 Ö Ö VX

vpkswss2 Ö Ö VX

vpkswus2 Ö Ö VX

vpkuhum2 Ö Ö VX

vpkuhus2 Ö Ö VX

vpkuwum2 Ö Ö VX

vpkuwus2 Ö Ö VX

vrefp2 Ö Ö VX

vrfim2 Ö Ö VX

vrfin2 Ö Ö VX

vrfip2 Ö Ö VX

vrfiz2 Ö Ö VX

vrlb2 Ö Ö VX

Table A-57. MPC7400 Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor

Level
64-Bit
Only

64-Bit
Bridge

Optional
AltiVec

Technology
For
m

A-68 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set Legend

vrlh2 Ö Ö VX

vrlw2 Ö Ö VX

vrsqrtefp2 Ö Ö VX

vsel2 Ö Ö VA

vsl2 Ö Ö VX

vslb2 Ö Ö VX

vsldoi2 Ö Ö VA

vslh2 Ö Ö VX

vslo2 Ö Ö VX

vslw2 Ö Ö VX

vspltb2 Ö Ö VX

vsplth2 Ö Ö VX

vspltisb2 Ö Ö VX

vspltish2 Ö Ö VX

vspltisw2 Ö Ö VX

vspltw2 Ö Ö VX

vsr2 Ö Ö VX

vsrab2 Ö Ö VX

vsrah2 Ö Ö VX

vsraw2 Ö Ö VX

vsrb2 Ö Ö VX

vsrh2 Ö Ö VX

vsro2 Ö Ö VX

vsrw2 Ö Ö VX

vsubcuw2 Ö Ö VX

vsubfp2 Ö Ö VX

vsubsbs2 Ö Ö VX

vsubshs2 Ö Ö VX

vsubsws2 Ö Ö VX

vsububm2 Ö Ö VX

vsubuhm2 Ö Ö VX

Table A-57. MPC7400 Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor

Level
64-Bit
Only

64-Bit
Bridge

Optional
AltiVec

Technology
For
m

Appendix A. MPC7400 Instruction Set Listings A-69

Instruction Set Legend

.

vsububs2 Ö Ö VX

vsubuhs2 Ö Ö VX

vsubuwm2 Ö Ö VX

vsubuws2 Ö Ö VX

vsumsws2 Ö Ö VX

vsum2sws2 Ö Ö VX

vsum4sbs2 Ö Ö VX

vsum4shs2 Ö Ö VX

vsum4ubs2 Ö Ö VX

vupkhpx2 Ö Ö VX

vupkhsb2 Ö Ö VX

vupkhsh2 Ö VX

vupklpx2 Ö VX

vupklsb2 Ö VX

vupklsh2 Ö Ö VX

vxor2 Ö Ö VX

xorx Ö X

xori Ö D

xoris Ö D

1. Optional to the PowerPC architecture but implemented by the MPC7400
2. AltiVec technology-speciÞc instruction
3. Optional instruction not implemented by the MPC7400
4. Load/store string /multiple instruction
5. Supervisor- and user-level instruction
6. Supervisor-level

Table A-57. MPC7400 Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor

Level
64-Bit
Only

64-Bit
Bridge

Optional
AltiVec

Technology
For
m

A-70 MPC7400 RISC Microprocessor UserÕs Manual

Instruction Set Legend

Appendix B. Instructions Not Implemented B-1

Appendix B
Instructions Not Implemented
This appendix provides a list of the 32-bit and 64-bit PowerPC instructions that are not
implemented in the MPC7400 microprocessor. Note that any attempt to execute
instructions that are not implemented on the MPC7400 will generate an illegal instruction
exception. Note that exceptions are referred to as interrupts in the architecture speciÞcation.

Table B-1 provides the 32-bit PowerPC instructions that are optional to the PowerPC
architecture but not implemented by the MPC7400.

Table B-2 provides a list of 64-bit instructions that are not implemented by the MPC7400.

Table B-1. 32-Bit Instructions Not Implemented by the MPC7400 Processor

Mnemonic Instruction

dcba Data Cache Block Allocate

fsqrt Floating Square Root (Double-Precision)

fsqrts Floating Square Root Single

tlbia TLB Invalidate All

Table B-2. 64-Bit Instructions Not Implemented by the
MPC7400 Processor

Mnemonic Instruction

cntlzd Count Leading Zeros Double Word

divd Divide Double Word

divdu Divide Double Word Unsigned

extsw Extend Sign Word

fcÞd Floating Convert From Integer Double Word

fctid Floating Convert to Integer Double Word

fctidz Floating Convert to Integer Double Word with Round toward Zero

ld Load Double Word

ldarx Load Double Word and Reserve Indexed

ldu Load Double Word with Update

ldux Load Double Word with Update Indexed

ldx Load Double Word Indexed

lwa Load Word Algebraic

B-2 MPC7400 RISC Microprocessor UserÕs Manual

lwaux Load Word Algebraic with Update Indexed

lwax Load Word Algebraic Indexed

mtmsrd Move to Machine State Register Double Word

mtsrd Move to Segment Register Double Word

mtsrdin Move to Segment Register Double Word Indirect

mulld Multiply Low Double Word

mulhd Multiply High Double Word

mulhdu Multiply High Double Word Unsigned

rldcl Rotate Left Double Word then Clear Left

rldcr Rotate Left Double Word then Clear Right

rldic Rotate Left Double Word Immediate then Clear

rldicl Rotate Left Double Word Immediate then Clear Left

rldicr Rotate Left Double Word Immediate then Clear Right

rldimi Rotate Left Double Word Immediate then Mask Insert

slbia SLB Invalidate All

slbie SLB Invalidate Entry

sld Shift Left Double Word

srad Shift Right Algebraic Double Word

sradi Shift Right Algebraic Double Word Immediate

srd Shift Right Double Word

std Store Double Word

stdcx. Store Double Word Conditional Indexed

stdu Store Double Word with Update

stdux Store Double Word Indexed with Update

stdx Store Double Word Indexed

td Trap Double Word

tdi Trap Double Word Immediate

Table B-2. 64-Bit Instructions Not Implemented by the
MPC7400 Processor (Continued)

Mnemonic Instruction

Glossary of Terms and Abbreviations Glossary-1

Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this
book. Some of the terms and deÞnitions included in the glossary are reprinted from IEEE
Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, copyright ©1985 by
the Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE.

Architecture. A detailed speciÞcation of requirements for a processor or
computer system. It does not specify details of how the processor or
computer system must be implemented; instead it provides a
template for a family of compatible implementations.

Asynchronous exception. Exceptions that are caused by events external to
the processorÕs execution. In this document, the term Ôasynchronous
exceptionÕ is used interchangeably with the word interrupt.

Atomic access. A bus access that attempts to be part of a read-write operation
to the same address uninterrupted by any other access to that address
(the term refers to the fact that the transactions are indivisible). The
PowerPC architecture implements atomic accesses through the
lwarx/stwcx. instruction pair.

BAT (block address translation) mechanism. A software-controlled array
that stores the available block address translations on-chip.

Biased exponent. An exponent whose range of values is shifted by a constant
(bias). Typically a bias is provided to allow a range of positive values
to express a range that includes both positive and negative values.

Big-endian. A byte-ordering method in memory where the address n of a
word corresponds to the most-signiÞcant byte. In an addressed
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0
being the most-signiÞcant byte. See Little-endian.

Block. An area of memory that ranges from 128 Kbyte to 256 Mbyte whose
size, translation, and protection attributes are controlled by the BAT
mechanism.

Boundedly undeÞned. A characteristic of certain operation results that are
not rigidly prescribed by the PowerPC architecture. Boundedly-

A

B

Glossary-2 MPC7400 RISC Microprocessor UserÕs Manual

undeÞned results for a given operation may vary among
implementations and between execution attempts in the same
implementation.

Although the architecture does not prescribe the exact behavior for
when results are allowed to be boundedly undeÞned, the results of
executing instructions in contexts where results are allowed to be
boundedly undeÞned are constrained to ones that could have been
achieved by executing an arbitrary sequence of deÞned instructions,
in valid form, starting in the state the machine was in before
attempting to execute the given instruction.

Branch folding. The replacement with target instructions of a branch
instruction and any instructions along the not-taken path when a
branch is either taken or predicted as taken.

Branch predictionÑThe process of guessing whether a branch will be
taken. Such predictions can be correct or incorrect; the term
ÔpredictedÕ as it is used here does not imply that the prediction is
correct (successful). The PowerPC architecture deÞnes a means for
static branch prediction as part of the instruction encoding.

Branch resolutionÑThe determination of whether a branch is taken or not
taken. A branch is said to be resolved when the processor can
determine which instruction path to take. If the branch is resolved as
predicted, the instructions following the predicted branch that may
have been speculatively executed can complete (see completion). If
the branch is not resolved as predicted, instructions on the
mispredicted path, and any results of speculative execution, are
purged from the pipeline and fetching continues from the
nonpredicted path.

Burst. A multiple-beat data transfer whose total size is typically equal to a
cache block.

Cache. High-speed memory containing recently accessed data and/or
instructions (subset of main memory).

Cache block. A small region of contiguous memory that is copied from
memory into a cache. The size of a cache block may vary among
processors; the maximum block size is one page. In PowerPC
processors, cache coherency is maintained on a cache-block basis.
Note that the term Ôcache blockÕ is often used interchangeably with
Ôcache lineÕ.

C

Glossary of Terms and Abbreviations Glossary-3

Cache coherency. An attribute wherein an accurate and common view of
memory is provided to all devices that share the same memory
system. Caches are coherent if a processor performing a read from
its cache is supplied with data corresponding to the most recent value
written to memory or to another processorÕs cache.

Cache ßush. An operation that removes from a cache any data from a
speciÞed address range. This operation ensures that any modiÞed
data within the speciÞed address range is written back to main
memory. This operation is generated typically by a Data Cache
Block Flush (dcbf) instruction.

Caching-inhibited. A memory update policy in which the cache is bypassed
and the load or store is performed to or from main memory.

Cast-outs. Cache blocks that must be written to memory when a cache miss
causes a cache block to be replaced.

Changed bit. One of two page history bits found in each page table entry
(PTE). The processor sets the changed bit if any store is performed
into the page. See also Page access history bits and Referenced bit.

Clean. An operation that causes a cache block to be written to memory, if
modiÞed, and then left in a valid, unmodiÞed state in the cache.

Clear. To cause a bit or bit Þeld to register a value of zero. See also Set.

Completion. Completion occurs when an instruction has Þnished executing,
written back any results, and is removed from the completion queue.
When an instruction completes, it is guaranteed that this instruction
and all previous instructions can cause no exceptions.

Context synchronization. An operation that ensures that all instructions in
execution complete past the point where they can produce an
exception, that all instructions in execution complete in the context
in which they began execution, and that all subsequent instructions
are fetched and executed in the new context. Context synchronization
may result from executing speciÞc instructions (such as isync or rÞ)
or when certain events occur (such as an exception).

Copy-back. An operation in which modiÞed data in a cache block is copied
back to memory.

Data intervention. An approach used in MPX bus mode to allow data to be
forwarded directly to the requesting master from the processor that
has it cached. A cache-to-cache data transfer.

D

Glossary-4 MPC7400 RISC Microprocessor UserÕs Manual

Denormalized number. A nonzero ßoating-point number whose exponent
has a reserved value, usually the format's minimum, and whose
explicit or implicit leading signiÞcand bit is zero.

Direct-mapped cache. A cache in which each main memory address can
appear in only one location within the cache, operates more quickly
when the memory request is a cache hit.

Effective address (EA). The 32- or 64-bit address speciÞed for a load, store,
or an instruction fetch. This address is then submitted to the MMU
for translation to either a physical memory address or an I/O address.

Exception. A condition encountered by the processor that requires special,
supervisor-level processing.

Exception handler. A software routine that executes when an exception is
taken. Normally, the exception handler corrects the condition that
caused the exception, or performs some other meaningful task (that
may include aborting the program that caused the exception). The
address for each exception handler is identiÞed by an exception
vector offset deÞned by the architecture and a preÞx selected via the
MSR.

Execution synchronization. A mechanism by which all instructions in
execution are architecturally complete before beginning execution
(appearing to begin execution) of the next instruction. Similar to
context synchronization but doesn't force the contents of the
instruction buffers to be deleted and refetched.

Exponent. In the binary representation of a ßoating-point number, the
exponent is the component that normally signiÞes the integer power
to which the value two is raised in determining the value of the
represented number. See also Biased exponent.

Fall-through (branch fall-through)ÑA not-taken branch. On the
MPC7400, fall-through branch instructions are removed from the
instruction stream at dispatch. That is, these instructions are allowed
to fall through the instruction queue via the dispatch mechanism,
without either being passed to an execution unit and or given a
position in the completion queue.

Fetch. Retrieving instructions from either the cache or main memory and
placing them into the instruction queue.

E

F

Glossary of Terms and Abbreviations Glossary-5

Finish. Finishing occurs in the last cycle of execution. In this cycle, the CQ
entry is updated to indicate that the instruction has Þnished
executing.

Floating-point register (FPR). Any of the 32 registers in the ßoating-point
register Þle. These registers provide the source operands and
destination results for ßoating-point instructions. Load instructions
move data from memory to FPRs and store instructions move data
from FPRs to memory. The FPRs are 64 bits wide and store ßoating-
point values in double-precision format

Flush. An operation that causes a cache block to be invalidated and the data,
if modiÞed, to be written to memory.

Fraction. In the binary representation of a ßoating-point number, the Þeld of
the signiÞcand that lies to the right of its implied binary point.

General-purpose register (GPR). Any of the 32 registers in the general-
purpose register Þle. These registers provide the source operands and
destination results for all integer data manipulation instructions.
Integer load instructions move data from memory to GPRs and store
instructions move data from GPRs to memory.

Guarded. The guarded attribute pertains to out-of-order execution. When a
page is designated as guarded, instructions and data cannot be
accessed out-of-order.

Harvard architecture. An architectural model featuring separate caches for
instructions and data.

Hashing. An algorithm used in the page table search process.

IEEE 754. A standard written by the Institute of Electrical and Electronics
Engineers that deÞnes operations and representations of binary
ßoating-point numbers.

Illegal instructions. A class of instructions that are not implemented for a
particular PowerPC processor. These include instructions not deÞned
by the PowerPC architecture. In addition, for 32-bit
implementations, instructions that are deÞned only for 64-bit
implementations are considered to be illegal instructions. For 64-bit
implementations instructions that are deÞned only for 32-bit
implementations are considered to be illegal instructions.

G

H

HI

Glossary-6 MPC7400 RISC Microprocessor UserÕs Manual

Implementation. A particular processor that conforms to the PowerPC
architecture, but may differ from other architecture-compliant
implementations for example in design, feature set, and
implementation of optional features. The PowerPC architecture has
many different implementations.

Imprecise exception. A type of synchronous exception that is allowed not to
adhere to the precise exception model (see Precise exception). The
PowerPC architecture allows only ßoating-point exceptions to be
handled imprecisely.

Instruction queue. A holding place for instructions fetched from the current
instruction stream.

Integer unit. A functional unit in the MPC750 responsible for executing
integer instructions.

In-order. An aspect of an operation that adheres to a sequential model. An
operation is said to be performed in-order if, at the time that it is
performed, it is known to be required by the sequential execution
model. See Out-of-order.

Instruction latency. The total number of clock cycles necessary to execute
an instruction and make ready the results of that instruction.

Interrupt. An asynchronous exception. On PowerPC processors, interrupts
are a special case of exceptions. See also asynchronous exception.

Key bits. A set of key bits referred to as Ks and Kp in each segment register
and each BAT register. The key bits determine whether supervisor or
user programs can access a page within that segment or block.

Kill. An operation that causes a cache block to be invalidated without writing
any modiÞed data to memory.

Latency. The number of clock cycles necessary to execute an instruction and
make ready the results of that execution for a subsequent instruction.

L2 cache. See Secondary cache.

Least-signiÞcant bit (lsb). The bit of least value in an address, register, data
element, or instruction encoding.

Least-signiÞcant byte (LSB). The byte of least value in an address, register,
data element, or instruction encoding.

K

L
L

Glossary of Terms and Abbreviations Glossary-7

Little-endian. A byte-ordering method in memory where the address n of a
word corresponds to the least-signiÞcant byte. In an addressed
memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with 3
being the most-signiÞcant byte. See Big-endian.

MEI (modiÞed/exclusive/invalid). Cache coherency protocol used to
manage caches on different devices that share a memory system.
Note that the PowerPC architecture does not specify the
implementation of a MEI protocol to ensure cache coherency.

Memory access ordering. The speciÞc order in which the processor
performs load and store memory accesses and the order in which
those accesses complete.

Memory-mapped accesses. Accesses whose addresses use the page or block
address translation mechanisms provided by the MMU and that
occur externally with the bus protocol deÞned for memory.

Memory coherency. An aspect of caching in which it is ensured that an
accurate view of memory is provided to all devices that share system
memory.

Memory consistency. Refers to agreement of levels of memory with respect
to a single processor and system memory (for example, on-chip
cache, secondary cache, and system memory).

Memory management unit (MMU). The functional unit that is capable of
translating an effective (logical) address to a physical address,
providing protection mechanisms, and deÞning caching methods.

MERSI (modiÞed/exclusive/recent/shared/invalid). Cache coherency
protocol used to manage caches on different devices that share a
memory system. Note that the PowerPC architecture does not
specify the implementation of a MERSI protocol to ensure cache
coherency.

MESI (modiÞed/exclusive/shared/invalid). Cache coherency protocol used
to manage caches on different devices that share a memory system.
Note that the PowerPC architecture does not specify the
implementation of a MESI protocol to ensure cache coherency.

Most-signiÞcant bit (msb). The highest-order bit in an address, registers,
data element, or instruction encoding.

Most-signiÞcant byte (MSB). The highest-order byte in an address,
registers, data element, or instruction encoding.

M

Glossary-8 MPC7400 RISC Microprocessor UserÕs Manual

NaN. An abbreviation for not a number; a symbolic entity encoded in
floating-point format. There are two types of NaNsÑsignaling NaNs
and quiet NaNs.

No-op. No-operation. A single-cycle operation that does not affect registers
or generate bus activity.

Normalization. A process by which a ßoating-point value is manipulated
such that it can be represented in the format for the appropriate
precision (single- or double-precision). For a ßoating-point value to
be representable in the single- or double-precision format, the
leading implied bit must be a 1.

OEA (operating environment architecture). The level of the architecture
that describes PowerPC memory management model, supervisor-
level registers, synchronization requirements, and the exception
model. It also deÞnes the time-base feature from a supervisor-level
perspective. Implementations that conform to the PowerPC OEA
also conform to the PowerPC UISA and VEA.

Optional. A feature, such as an instruction, a register, or an exception, that is
deÞned by the PowerPC architecture but not required to be
implemented.

Out-of-order. An aspect of an operation that allows it to be performed ahead
of one that may have preceded it in the sequential model, for
example, speculative operations. An operation is said to be
performed out-of-order if, at the time that it is performed, it is not
known to be required by the sequential execution model. See
In-order.

Out-of-order execution. A technique that allows instructions to be issued
and completed in an order that differs from their sequence in the
instruction stream.

Overßow. An condition that occurs during arithmetic operations when the
result cannot be stored accurately in the destination register(s). For
example, if two 32-bit numbers are multiplied, the result may not be
representable in 32 bits.

Page. A region in memory. The OEA deÞnes a page as a 4-Kbyte area of
memory, aligned on a 4-Kbyte boundary.

Page access history bits. The changed and referenced bits in the PTE keep
track of the access history within the page. The referenced bit is set

N

O

P

Glossary of Terms and Abbreviations Glossary-9

by the MMU whenever the page is accessed for a read or write
operation. The changed bit is set when the page is stored into. See
Changed bit and Referenced bit.

Page fault. A page fault is a condition that occurs when the processor
attempts to access a memory location that does not reside within a
page not currently resident in physical memory. On PowerPC
processors, a page fault exception condition occurs when a
matching, valid page table entry (PTE[V] = 1) cannot be located.

Page table. A table in memory is comprised of page table entries, or PTEs.
It is further organized into eight PTEs per PTEG (page table entry
group). The number of PTEGs in the page table depends on the size
of the page table (as speciÞed in the SDR1 register).

Page table entry (PTE). Data structures containing information used to
translate effective address to physical address on a 4-Kbyte page
basis. A PTE consists of 8 bytes of information in a 32-bit processor
and 16 bytes of information in a 64-bit processor.

Physical memory. The actual memory that can be accessed through the
systemÕs memory bus.

Pipelining. A technique that breaks operations, such as instruction
processing or bus transactions, into smaller distinct stages or tenures
(respectively) so that a subsequent operation can begin before the
previous one has completed.

Precise exceptions. A category of exception for which the pipeline can be
stopped so instructions that preceded the faulting instruction can
complete, and subsequent instructions can be ßushed and
redispatched after exception handling has completed. See Imprecise
exceptions.

Primary opcode. The most-signiÞcant 6 bits (bits 0Ð5) of the instruction
encoding that identiÞes the type of instruction.

Program order. The order of instructions in an executing program. More
speciÞcally, this term is used to refer to the original order in which
program instructions are fetched into the instruction queue from the
cache

Protection boundary. A boundary between protection domains.

Protection domain. A protection domain is a segment, a virtual page, a BAT
area, or a range of unmapped effective addresses. It is deÞned only
when the appropriate relocate bit in the MSR (IR or DR) is 1.

Glossary-10 MPC7400 RISC Microprocessor UserÕs Manual

Quiesce. To come to rest. The processor is said to quiesce when an exception
is taken or a sync instruction is executed. The instruction stream is
stopped at the decode stage and executing instructions are allowed to
complete to create a controlled context for instructions that may be
affected by out-of-order, parallel execution.. See Context
synchronization.

Quiet NaN. A type of NaN that can propagate through most arithmetic
operations without signaling exceptions. A quiet NaN is used to
represent the results of certain invalid operations, such as invalid
arithmetic operations on inÞnities or on NaNs, when invalid. See
Signaling NaN.

rA. The rA instruction Þeld is used to specify a GPR to be used as a source
or destination.

rB. The rB instruction Þeld is used to specify a GPR to be used as a source.

rD. The rD instruction Þeld is used to specify a GPR to be used as a
destination.

rS. The rS instruction Þeld is used to specify a GPR to be used as a source.

Real address mode. An MMU mode when no address translation is
performed and the effective address speciÞed is the same as the
physical address. The processorÕs MMU is operating in real address
mode if its ability to perform address translation has been disabled
through the MSR registers IR and/or DR bits.

Record bit. Bit 31 (or the Rc bit) in the instruction encoding. When it is set,
updates the condition register (CR) to reßect the result of the
operation.

Referenced bit. One of two page history bits found in each page table entry
(PTE). The processor sets the referenced bit whenever the page is
accessed for a read or write. See also Page access history bits.

Register indirect addressing. A form of addressing that speciÞes one GPR
that contains the address for the load or store.

Register indirect with immediate index addressing. A form of addressing
that speciÞes an immediate value to be added to the contents of a
speciÞed GPR to form the target address for the load or store.

Q

R

Glossary of Terms and Abbreviations Glossary-11

Register indirect with index addressing. A form of addressing that speciÞes
that the contents of two GPRs be added together to yield the target
address for the load or store.

Rename register. Temporary buffers used by instructions that have Þnished
execution but have not completed.

Reservation. The processor establishes a reservation on a cache block of
memory space when it executes an lwarx instruction to read a
memory semaphore into a GPR.

Reservation station. A buffer between the dispatch and execute stages that
allows instructions to be dispatched even though the results of
instructions on which the dispatched instruction may depend are not
available.

Retirement. Removal of the completed instruction from the CQ

RISC (reduced instruction set computing). An architecture characterized
by Þxed-length instructions with nonoverlapping functionality and
by a separate set of load and store instructions that perform memory
accesses.

Secondary cache. A cache memory that is typically larger and has a longer
access time than the primary cache. A secondary cache may be
shared by multiple devices. Also referred to as L2, or level-2, cache.

Sector. A 32-byte cache block.

Set (v). To write a nonzero value to a bit or bit Þeld; the opposite of clear. The
term ÔsetÕ may also be used to generally describe the updating of a
bit or bit Þeld.

Set (n). A subdivision of a cache. Cacheable data can be stored in a given
location in any one of the sets, typically corresponding to its lower-
order address bits. Because several memory locations can map to the
same location, cached data is typically placed in the set whose cache
block corresponding to that address was used least recently. See Set-
associative.

Set-associative. Aspect of cache organization in which the cache space is
divided into sections, called sets. The cache controller associates a
particular main memory address with the contents of a particular set,
or region, within the cache.

S

Glossary-12 MPC7400 RISC Microprocessor UserÕs Manual

Signaling NaN. A type of NaN that generates an invalid operation program
exception when it is speciÞed as arithmetic operands. See Quiet
NaN.

SigniÞcand. The component of a binary ßoating-point number that consists
of an explicit or implicit leading bit to the left of its implied binary
point and a fraction Þeld to the right.

SimpliÞed mnemonics. Assembler mnemonics that represent a more
complex form of a common operation.

Slave. The device addressed by a master device. The slave is identiÞed in the
address tenure and is responsible for supplying or latching the
requested data for the master during the data tenure.

SnarÞng. When one device provides data speciÞcally for another device and
a third device samples the data for its own purposes.

Snooping. Monitoring addresses driven by a bus master to detect the need for
coherency actions.

Snoop push. Response to a snooped transaction that hits a modiÞed cache
block. The cache block is written to memory and made available to
the snooping device.

Split-transaction. A transaction with independent request and response
tenures.

Split-transaction bus. A bus that allows address and data transactions from
different processors to occur independently.

Stage. The term ÔstageÕ is used in two different senses, depending on whether
the pipeline is being discussed as a physical entity or a sequence of
events. In the latter case, a stage is an element in the pipeline during
which certain actions are performed, such as decoding the
instruction, performing an arithmetic operation, or writing back the
results. Typically, the latency of a stage is one processor clock cycle.
Some events, such as dispatch, write-back, and completion, happen
instantaneously and may be thought to occur at the end of a stage. An
instruction can spend multiple cycles in one stage. An integer
multiply, for example, takes multiple cycles in the execute stage.
When this occurs, subsequent instructions may stall. An instruction
may also occupy more than one stage simultaneously, especially in
the sense that a stage can be seen as a physical resourceÑfor
example, when instructions are dispatched they are assigned a place
in the CQ at the same time they are passed to the execute stage. They

Glossary of Terms and Abbreviations Glossary-13

can be said to occupy both the complete and execute stages in the
same clock cycle.

Stall. An occurrence when an instruction cannot proceed to the next stage.

Static branch prediction. Mechanism by which software (for example,
compilers) can hint to the machine hardware about the direction a
branch is likely to take.

Static memory. Memory that assumes a reasonable degree of locality and
that the data is needed several times over a relatively long period.

Superscalar machine. A machine that can issue multiple instructions
concurrently from a conventional linear instruction stream.

Supervisor mode. The privileged operation state of a processor. In
supervisor mode, software, typically the operating system, can
access all control registers and can access the supervisor memory
space, among other privileged operations.

Synchronization. A process to ensure that operations occur strictly in order.
See Context synchronization and Execution synchronization.

Synchronous exception. An exception that is generated by the execution of
a particular instruction or instruction sequence. There are two types
of synchronous exceptions, precise and imprecise.

System memory. The physical memory available to a processor.

Tenure. A tenure consists of three phases: arbitration, transfer, termination.
There can be separate address bus tenures and data bus tenures.

TLB (translation lookaside buffer) A cache that holds recently-used page
table entries.

Throughput. The measure of the number of instructions that are processed
per clock cycle.

Transaction. A complete exchange between two bus devices. A transaction
is typically comprised of an address tenure and one or more data
tenures, which may overlap or occur separately from the address
tenure. A transaction may be minimally comprised of an address
tenure only.

Transfer termination. Signal that refers to both signals that acknowledge the
transfer of individual beats (of both single-beat transfer and
individual beats of a burst transfer) and to signals that mark the end
of the tenure.

T

Glossary-14 MPC7400 RISC Microprocessor UserÕs Manual

Transient memory. Memory that has poor locality and is likely to be
referenced very few times or over a very short period of time.

UISA (user instruction set architecture). The level of the architecture to
which user-level software should conform. The UISA deÞnes the
base user-level instruction set, user-level registers, data types,
ßoating-point memory conventions and exception model as seen by
user programs, and the memory and programming models.

Underßow. A condition that occurs during arithmetic operations when the
result cannot be represented accurately in the destination register.
For example, underßow can happen if two ßoating-point fractions
are multiplied and the result requires a smaller exponent and/or
mantissa than the single-precision format can provide. In other
words, the result is too small to be represented accurately.

User mode. The operating state of a processor used typically by application
software. In user mode, software can access only certain control
registers and can access only user memory space. No privileged
operations can be performed. Also referred to as problem state.

VEA (virtual environment architecture). The level of the architecture that
describes the memory model for an environment in which multiple
devices can access memory, deÞnes aspects of the cache model,
deÞnes cache control instructions, and deÞnes the time-base facility
from a user-level perspective. Implementations that conform to the
PowerPC VEA also adhere to the UISA, but may not necessarily
adhere to the OEA.

Virtual address. An intermediate address used in the translation of an
effective address to a physical address.

Vector. The spatial parallel processing of short, Þxed-length, one-
dimensional matrices performed by an execution unit.

Virtual memory. The address space created using the memory management
facilities of the processor. Program access to virtual memory is
possible only when it coincides with physical memory.

Way. A location in the cache that holds a cache block, its tags and status bits.

Word. A 32-bit data element.

Write-back. A cache memory update policy in which processor write cycles
are directly written only to the cache. External memory is updated

U

V

VW

Glossary of Terms and Abbreviations Glossary-15

only indirectly, for example, when a modiÞed cache block is cast out
to make room for newer data.

Write-through. A cache memory update policy in which all processor write
cycles are written to both the cache and memory.

Glossary-16 MPC7400 RISC Microprocessor UserÕs Manual

INDEX

Index Index-1

A
AACK (address acknowledge) signal, 8-15, 8-32
ABB (address bus busy) signal, 8-9, 9-10
Abbreviations and acronyms, xlii
About this book, xxxv
Acronyms and abbreviations, xlii
Address bus

60x bus mode
address arbitration, 9-11
address bus streaming, 9-42
address tenure, 9-9
address transfer attribute signals, 8-12, 9-16
address transfer signals, 8-9, 9-15
address transfer start signals, 8-11
address transfer termination, 8-15, 9-21
address transfer timing diagrams, 9-15
arbitration signals, 8-8, 9-10
bus parking, 9-13
split-bus transactions, 9-11

MPX bus mode
address bus streaming, 9-42
address transfer attribute signals, 8-29
address transfer signals, 8-28, 9-41
address transfer start signals, 8-29
address transfer termination, 8-32
arbitration signals, 8-26

Address translation, see Memory management unit
Addressing modes, 2-39
Alignment

data transfers, 9-19, 9-21, 9-44
exception, 4-21
misaligned accesses, 2-34
rules, 2-34

AltiVec technology
cache

LRU instruction support, 3-51
overview, 7-15
transient hint support (data), 3-11

exceptions
AltiVec assist exception, 4-1, 4-26
AltiVec unavailable exception, 4-1, 4-28
DSI exception, 4-1, 4-20
overview, 7-15

instruction timing
data stream termination, 7-8
data stream touch instructions and sync, 7-8
data stream touch instructions and tlbsync, 7-8
dss and dssall instructions, 7-10

dst vs. dstt instructions (differences), 7-10
dstst vs. dststt instructions (differences), 7-10
execution latency, 6-46
implementation-specific features, 7-1
LRU instructions, 7-5
overview, 6-1, 7-1, 7-16
pipeline stalls (data stream instructions), 7-7
speculative execution (data stream

instructions), 7-7
static data stream touch instructions, 7-8
stream engine tags, 7-7
transient data stream touch instructions, 7-8
VALU execution timing, 6-33
VCIU execution timing, 6-33
vector float behavior, 7-11
vector FP compare, min, max in Java mode, 7-13
vector FP compare, min, max in non-Java

mode, 7-12
VFPU execution timing, 6-33
VPU execution timing, 6-33
VSIU execution timing, 6-33

instructions
denormalization, 7-12
implementation-specific LRU instruction, 7-11
instruction set, 1-32, 2-72, 6-33, 7-4
round-to-integer in Java mode, 7-14
round-to-integer in non-Java mode, 7-14

integer store gathering, 7-16
memory management unit, 5-1, 7-16
performance monitor, 11-1
programming model, 7-1
reference books, xxxvii
register file structure, 7-2
registers, 1-28
transient instructions, 7-5
vector arithmetic logic unit (VALU), 1-13
vector permute unit (VPU), 1-12

AMON (address bus monitor) signal, 8-27
An (address bus) signals, 8-9, 8-28
APE (address parity error) signal, 9-16
APn (address parity) signals, 8-10, 8-28
Arbitration, system bus, 9-24
Arithmetic instructions

floating-point, A-27
integer, 2-72, A-25
vector floating-point, 2-77
vector integer, 2-73

ARTRY (address retry) signal, 8-15, 8-32

INDEX

Index-2 MPC7400 RISC Microprocessor UserÕs Manual

B
BAMR (breakpoint address mask register), 2-20, 11-9
BG (bus grant) signal, 8-8, 8-27, 9-10
Block address translation

block address translation flow, 5-12
definition, 1-15
registers

description, 2-6
initialization, 5-21

selection of block address translation, 5-9
Boundedly undefined, definition, 2-37
BR (bus request) signal, 8-8, 8-27, 9-10
Branch fall-through, 6-23
Branch folding, 6-23
Branch instructions

address calculation, 2-57
condition register logical, 2-58, A-34
description, A-33
list of instructions, 2-58, A-33
system linkage, 2-59, 2-69, A-34
trap, 2-58, A-34

Branch prediction, 6-2, 6-27
Branch processing unit

branch instruction timing, 6-28
execution timing, 6-22
overview, 1-10

Branch resolution
definition, 6-2
resource requirements, 6-38

BTIC (branch target instruction cache), 6-10
Burst data transfers

burst ordering, 9-19
transfers with data delays, timing, 9-36

Bus arbitration, see Data bus
Bus configurations, 9-30
Bus interface unit (BIU)

60x bus mode
address bus streaming, 9-42
address tenure, 9-9, 9-11
address transfer timing diagrams, 9-15
aligned data transfers, 9-19
arbitration signals, 9-10
bus parking, 9-13
data tenure, 9-9
DBWO, timing, 9-30
eciwx/ecowx alignment, 9-21
error termination, 9-29
features, 1-18, 9-2
memory accesses, 9-8
misaligned data transfers, 9-21
no-DRTRY mode, 9-30
qualified data bus grant, 9-24
single-beat transfer termination, 9-27
snoop copyback, 9-22

snoop response and SHD signal, 9-24
split-bus transactions, 9-11
timing examples, 9-31
transfer type encodings, 9-16
TSIZn, 9-17
window of opportunity, 9-22

accesses, 9-3
bus transactions and caches, 3-72
cache operation, 3-72
cache/memory subsystem/BIU integration, 3-3
checkstop operation, 9-58
direct-store accesses, 9-7
features, 9-2
memory accesses, 9-6
memory subsystem, 1-44
MPX bus mode

address arbitration, 9-38
address bus parity, 9-42
address bus streaming, 9-42
address pipelining, 9-42
address tenure, 9-38
address termination, 9-44
address transfer, 9-41
aligned data transfers, 9-44
ARTRY, 9-45
bus parking, 9-40
data bus arbitration, 9-50
data bus transfers, 9-51
data intervention, 9-48, 9-52
data snarfing, 9-49
data streaming constraints, 9-51
data tenure, 9-50
data tenure reordering, 9-57
data termination, 9-57
data-only transaction protocol, 9-53
external interrupts, 9-58
features, 1-18, 9-2
HIT, 9-48
misaligned data transfers, 9-44
overview, 9-37
qualified bus grant, 9-39
qualified data bus grant, 9-50
reset signal interactions, 9-58
SHD, 9-47
transfer attributes, 9-42
transfer type encodings, 9-43
TSIZn, 9-43
TTn, 9-43

MSSCR0 effects, 2-26, 9-7
overview, 1-18, 9-1

BVSEL (bus voltage select) signal, 8-51
Byte ordering

default, 2-72
support, 2-39

INDEX

Index Index-3

C
Cache

60x bus mode
coherency protocol, 3-11
MESI protocol, 3-15

AltiVec technology
LRU instruction support, 3-51
overview, 7-15
transient hint support, 3-11

atomic memory references, 3-35
bus interface unit, 3-3, 3-72
bus transactions, 3-72
cache arbitration, 6-12
cache block, definition, 3-5
cache coherency, 3-7
cache control

bus operations, 3-73
dcbi, 2-70
dcbt, 2-66
instructions, 3-36, 3-40
overview, 3-36

cache hit, 6-12
cache management instructions, 2-85, 7-6, A-35
cache miss, 6-15
cache miss allocation, 3-45
cache operations

data cache block fill, 3-45
data cache block push, 3-48
instruction cache block fill, 3-45
load/store operations, processor initiated, 3-33
operations, 3-45

cache/memory subsystem/BIU integration, 3-3
cache-inhibited accesses (I bit), 3-7
coherency protocols, 3-11
coherency support, 3-9
data cache

allowed cache states, 3-10
block fill operations, 3-45
block push operation, 3-48
cache block replacement selection, 3-48
configuration, 3-5
dcba instruction, 3-43
dcbf instruction, 3-43
dcbi instruction, 3-43
dcbst instruction, 3-42
dcbt instruction, 3-40
dcbtst instruction, 3-41
dcbz instruction, 3-42
enabling/disabling with HID0, 3-36
flash invalidation, 3-37
hardware flush parameter in MSSCR0, 3-39
locking using HID0, 3-36
operation, 9-4
organization, 3-5

snooping, 3-76
status bits, 3-9
store hit, 3-47

enforcing store ordering, 3-34
guarded memory bit (G bit), 3-7
instruction cache

block fill operations, 3-45
cache block replacement selection, 3-48
configuration, 3-6
enabling/disabling with HID0, 3-38
flash invalidation, 3-38
icbi instruction, 3-44
locking using HID0, 3-38
organization, 3-6

instruction cache throttling, 10-11
intervention, 3-13
L1 cache

features list, 3-1
flushing, 3-52
invalidation, 3-52
operation, 9-4

L2 cache
cache miss allocation, 3-64
cache size, 3-56
clock and timing controls, 3-60
clock configuration, 3-65
configuration, 3-54
considerations, 6-19
enabling/disabling, 3-55
flushing, 3-58
generation, 3-56
global invalidation, 3-57
hardware flush, 3-58
initialization, 3-61
interface signals, 8-39
locking using L2DO and L2IO, 3-57
operation, 3-62
organization, 3-54
overview, 3-53
parity checking, 3-56
power management, 3-61
replacement selection, 3-64
software flush, 3-59
SRAM timing examples, 3-67
SRAM types, 3-56
status bits, 3-54
store hit, 3-65
system interface operation, 9-6
test controls, 3-61
testing, 3-65
write-back/write-through modes, 3-56

load miss folding, 3-46
load/store operations, processor initiated, 3-33
memory access and sequential consistency, 3-34
memory coherency, 6-35

INDEX

Index-4 MPC7400 RISC Microprocessor UserÕs Manual

memory coherency bit (M bit), 3-7
memory/cache access attributes, 3-7
MERSI state transitions, 3-26
MESI state transitions, 3-15
MPX bus mode

cache-to-cache intervention, 3-14
coherency protocol, 3-12
HIT signal, 8-34, 9-48
MERSI protocol, 3-26
MESI protocol, 3-15
SHDn signals, 8-33, 9-47
window of opportunity snoop push, 3-14

out-of-order accesses to guarded memory, 3-8
overview, 1-16, 1-33, 3-1
PLRU replacement, 3-50
reservation snooping, 3-29
self-generated bus transactions (state changes), 3-30
snoop response, 3-12
store miss merging, 3-46
transaction types, 3-14
transfer attribute signals, 3-74
WIMG bits, 3-7
write-through mode (W bit), 3-7

Cache management instructions, 2-85, 7-6, A-35
Changed (C) bit maintenance recording, 5-12, 5-23
Checkstop

operation, 9-58
signal, 8-45, 9-58
state, 4-20

CHK (check) signal, 8-46
CI (cache inhibit) signal, 8-14, 8-31, 9-19
CKSTP_IN/CKSTP_OUT (checkstop input/output)

signals, 8-45, 9-58
Classes of instructions, 2-37
CLK_OUT signal, 8-49
Clocks

CLK_OUT, 8-49
overview, 1-23
signals, 8-48

Compare instructions
floating-point, A-29
integer, A-26
vector floating-point, 2-78
vector integer, 2-75

Completion
completion unit

overview, 1-11
resource requirements, 6-39

considerations, 6-20
definition, 6-2

Context synchronization, 2-40
Conventions, xli, xlv, 6-2
CR (condition register)

CR logical instructions, 2-58, A-34

CR, description, 2-4
CR6 bit settings for vector integer compare

instructions, 2-75
execution latencies, 6-40

CSEn (cache set element) signal, 8-23
CTR (count register), 2-5

D
DABR (data address breakpoint register), 2-8
DAR (data address register), 2-7
Data address breakpoint and exceptions, 4-20
Data bus

arbitration signals, 8-17, 8-35, 9-10
bus arbitration, 9-24
data bus transfers, 9-51
data intervention in MPX bus mode, 9-48, 9-52
data snarfing, 9-49
data tenure, 9-9
data transfer, 8-19, 8-37, 9-26
data transfer termination, 8-21, 8-38, 9-27
qualified data bus grant, 9-24

Data cache
block fill operations, 3-45
block push operation, 3-48
configuration, 3-5
enabling/disabling, 3-36
flash invalidation, 3-37
hardware flush parameter in MSSCR0, 3-39
locking, 3-36
operation, 9-4
organization, 3-5

Data organization in memory, 2-34
Data stream prefetching and exceptions, 4-14
Data stream touch instructions

overview, 7-6
sync, 7-8
termination, 7-8
tlbsync, 7-8

Data transfers
alignment, 9-19
burst ordering, 9-19
eciwx and ecowx instructions, alignment, 9-21
operand conventions, 2-34
protocol, 9-26
signals, 9-26

DBB (data bus busy) signal, 8-19, 9-10, 9-25
DBG (data bus grant) signal, 8-18, 8-35, 9-10
DBWO (data bus write only)

signal, 8-18, 9-10, 9-25, 9-30
dcba instruction, 3-43
dcbf instruction, 3-43
dcbi instruction, 2-70, 3-43
dcbst instruction, 3-42
dcbt instruction, 2-66, 3-40

INDEX

Index Index-5

dcbtst instruction, 3-41
dcbz instruction, 3-42
DEC (decrementer register), 2-8
Decrementer exception, 4-22
Defined instruction class, 2-37
DHn/DLn (data bus) signals, 8-19, 8-37
Direct-store accesses, 9-7
Dispatch

considerations, 6-20
dispatch unit

overview, 1-10
resource requirements, 6-38

DMON (data bus monitor) signal, 8-37
DPn (data bus parity) signals, 8-20, 8-38
DRDY (data ready) signal, 8-36, 9-54
DRTRY (data retry) signal, 8-23, 9-27
DSI exception, 4-20
DSISR register, 2-7
DTIn (data transaction index) signals, 8-36
DTLB organization, 5-25
Dynamic branch prediction, 6-10

E
EAR (external access register), 2-8
Effective address calculation

address translation, 5-4
branches, 2-40
loads and stores, 2-40, 2-50, 2-54

eieio, 2-65
EMODE (enhanced mode) signal, 8-47, 9-42
Error termination, 9-29
Event counting, 11-11
Event selection

MMCRn registers, 11-12
PMCn registers, 11-13Ð11-21

Exceptions
alignment exception, 4-21
AltiVec assist exception, 4-1, 4-26
AltiVec technology overview, 7-15
AltiVec unavailable exception, 4-1, 4-28
checkstop state, 4-20
classification of exceptions, 4-3
conditions and exception types, 1-36
data address breakpoint facility, 4-20
data stream prefetching, 4-14
decrementer exception, 4-22
definitions, 4-14
DSI exception, 4-20
enabling and disabling exceptions, 4-11
exception prefix (IP) bit, 4-15
exception priorities, 4-5
exception processing, 4-8, 4-12
exception types and conditions, 1-36
external interrupt, 4-21

FP assist exception, 4-23
FP unavailable exception, 4-22
instruction-related exceptions, 2-41
ISI exception, 4-20
machine check exception, 4-16
overview, 1-34
performance monitor interrupt, 4-23, 11-2
PowerPC exception model, 1-34
program exception, 4-22
register settings

MSR, 4-9, 4-14
SRR0/SRR1, 4-8

reset exception, 4-15
returning from an exception handler, 4-13
summary table, 4-3
system call exception, 4-23
system management interrupt, 4-25
terminology, 4-2
thermal management interrupt exception, 4-27
trace exception, 4-23

Execution synchronization, 2-41
Execution units

floating-point unit (FPU), 1-14
integer units (IUs), 1-13
load/store unit (LSU), 1-14
system register unit (SRU), 1-14
timing examples, 6-22
Vector arithmetic logic unit (VALU), 1-13
Vector permute unit (VPU), 1-12

External control instructions, 2-68, 9-21, A-35, A-38

F
Finish cycle, definition, 6-2
Floating-point model

execution timing, 6-29
FE0/FE1 bits, 4-11
floating-point operands, 2-35
FP arithmetic instructions, 2-46, A-27
FP assist exceptions, 4-23
FP compare instructions, 2-48, A-29
FP load instructions, A-32
FP move instructions, A-33
FP multiply-add instructions, 2-47, A-28
FP rounding/conversion instructions, 2-47, A-28
FP store instructions, 2-56, A-33
FP unavailable exception, 4-22
FPSCR instructions, 2-48, A-29
IEEE-754 compatibility, 2-33
overview, 1-14
vector

FP arithmetic instructions, 2-77
FP compare instructions, 2-78
FP multiply-add, 2-77
FP rounding/conversion instructions, 2-78

INDEX

Index-6 MPC7400 RISC Microprocessor UserÕs Manual

FPRn (floating-point registers), 2-4
FPSCR (floating-point status and control register)

FPSCR instructions, 2-48, A-29
FPSCR register description, 2-4
NI bit, 2-35

FPU (floating-point unit)
execution latencies, 6-43
overview, 1-14
see also Floating-point model

G
GBL (global) signal, 8-13, 8-30, 9-19
GPRn (general-purpose registers), 2-4

H
HIDn (hardware implementation-dependent) registers

HID0
cache control parameters, 3-36
data cache

enabling/disabling, 3-36
flash invalidation, 3-37
locking, 3-36

doze bit, 10-3
DPM enable bit, 2-11, 10-3
instruction cache

enabling/disabling, 3-38
flash invalidation, 3-38
locking, 3-38

nap bit, 10-4
HID1

description, 2-15
PLL configuration, 2-15, 8-49

HIT (snoop hit) signal, 8-34, 9-48
HRESET (hard reset) signal, 8-44, 9-58

I
IABR (instruction address breakpoint register), 2-10
icbi instruction, 3-44
ICTC (instruction cache throttling control)

register, 2-23
IEEE 1149.1-compliant interface, 9-60
Illegal instruction class, 2-38
Implementation differences, MPC750 vs.

MPC7400, 1-43
Instruction cache

block fill operations, 3-45
configuration, 3-6
enabling/disabling, 3-38
flash invalidation, 3-38
locking, 3-38
organization, 3-6

Instruction cache throttling, 10-11

Instruction queue, 1-10
Instruction timing

AltiVec technology
execution latency, 6-46
execution timing, 6-33
instructions, 6-33
overview, 6-1, 6-33, 7-16
VCIU execution timing, 6-33
VFPU execution timing, 6-33
VSIU execution timing, 6-33

branch instruction latencies, 6-40
CR execution latencies, 6-40
examples

cache hit, 6-13
cache miss, 6-16

execution unit, 6-22
FPU execution latencies, 6-43
instruction flow, 1-9, 6-9
IU execution latencies, 6-41
LSU execution latencies, 6-44
memory coherency and the cache, 6-35
memory performance considerations, 6-35
overview, 1-9, 1-39, 6-4
terminology, 6-2

Instructions
addressing modes, 2-39
AltiVec instructions

cache management instructions, 2-85
execution latency, 6-46
instruction set, 7-4
overview, 1-32
transient instructions, 7-5
user-level instructions, 2-85

boundedly undefined, 2-37
branch address calculation, 2-57
branch instruction latencies, 6-40
branch instructions, 6-10, 6-23, 6-24, A-33
cache control instructions, 3-40
cache management instructions, 2-85, 7-6, A-35
classes of instructions, 2-37
condition register logical, 2-58, A-34
condition register logical execution latencies, 6-40
context synchronization, 2-40
defined instruction class, 2-37
effective address calculation, 2-40
exceptions, 2-41
execution synchronization, 2-41
external control instructions, 2-68, A-35, A-38
floating-point

arithmetic, 2-46, A-27
compare, 2-48, A-29
FP estimate instructions, A-38
FP load instructions, A-32
FP move instructions, A-33

INDEX

Index Index-7

FP rounding and conversion, 2-47, A-28
FP status and control register, 2-48
FP store instructions, A-33
FPSCR instructions, A-29
multiply-add, 2-47, A-28

floating-point instructions execution
latencies, 6-43

flow control, 2-80
illegal instruction class, 2-38
implementation-specific instructions, 1-33
instruction cache throttling, 10-11
instruction flow diagram, 6-11
instruction serialization, 6-21
instruction set summary, 2-35
instruction timing, 6-33
instructions not implemented, B-1
integer

arithmetic, 2-42, 2-72, A-25
compare, 2-43, A-26
load, A-30
load/store multiple, A-32
load/store string, A-32
load/store with byte reverse, A-31
logical, 2-44, 2-72, A-26
rotate and shift, 2-45, A-27
store, A-31

integer instruction execution latencies, 6-41
isync, 4-13
latency summary, 6-39
load and store

address generation, floating-point, 2-54
address generation, integer, 2-50
byte reverse instructions, 2-53, A-31
execution latencies, 6-44
floating-point load, A-32
floating-point move, 2-48, A-33
floating-point store, 2-55
handling misalignment, 2-49
integer load, 2-50, A-30
integer multiple, 2-53
integer store, 2-52, A-31
memory synchronization, 2-63, 2-64, A-32
multiple instructions, A-32
string instructions, 2-54, A-32
vector load, 2-79

lookaside buffer management instructions, A-35
LRU instructions, 2-85
memory control instructions, 2-65, 2-70
memory synchronization instructions,

 2-63, 2-64, A-32
move to/from VSCR register instructions, 2-84
PowerPC instructions, 1-30
PowerPC instructions, list, A-1, A-13, A-25
processor control instructions,

 2-59, 2-64, 2-69, A-34

reserved instruction class, 2-38
rfi, 4-13
segment register manipulation

instructions, A-35
stwcx., 4-13
support for lwarx/stwcx., 9-59
sync, 4-13
synchronization, 2-40
system linkage instructions, 2-59, A-34
system register instruction latencies, 6-40
TLB management instructions, A-35
trap instructions, 2-58, A-34
vector

floating-point arithmetic, 2-77
floating-point compare, 2-78
floating-point multiply-add, 2-77
floating-point rounding/conversion, 2-78
integer arithmetic, 2-73, A-36
integer compare, 2-75
integer logical, 2-76
integer rotate/shift, 2-76
load (alignment support), 2-80
load instructions, A-38
memory control instructions, 2-84
merge instructions, 2-82
pack instructions, 2-81, A-39
permute instructions, 2-83, A-40
select instructions, 2-83, A-40
shift instructions, A-40
splat instructions, 2-82, A-39
status and control register instructions, 2-84
store, 2-80

INT (interrupt) signal, 8-43, 9-58
Integer

arithmetic instructions, 2-42, 2-72, A-25
compare instructions, 2-43, A-26
integer unit execution timing, 6-29
load instructions, 2-50, A-30
logical instructions, 2-44, 2-72, A-26
rotate/shift instructions, 2-45, A-27
store gathering, 6-31, 7-16
store instructions, 2-52, A-31

Interrupt, external, 4-21
ISI exception, 4-20
isync, 2-65, 4-13
ITLB organization, 5-25
IUn (integer units 1 and 2), 1-13, 6-41

L
L1/L2 interface operation, see Cache
L2ADDRn (L2 address) signals, 8-40
L2CE (L2 chip enable) signals, 8-41
L2CLK_OUTA (L2 clock out A) signal, 8-42
L2CLK_OUTB (L2 clock out B) signal, 8-42

INDEX

Index-8 MPC7400 RISC Microprocessor UserÕs Manual

L2CR (L2 cache control register), 2-28, 3-55
L2DATAn (L2 data) signals, 8-40
L2DPn (L2 data parity) signals, 8-40
L2SYNC_IN (L2 sync in) signal, 8-42
L2SYNC_OUT (L2 sync out) signal, 8-42
L2VSEL (L2 voltage select) signal, 8-51
L2WE (L2 write enable) signal, 8-41
L2ZZ (L2 low-power mode enable) signal, 8-43
Latency, definition, 6-2
Load/store

address generation, 2-50
byte reverse instructions, 2-53, A-31
execution timing, 6-30
floating-point load instructions, 2-55, A-32
floating-point move instructions, 2-48, A-33
floating-point store instructions, 2-55, A-33
handling misalignment, 2-49
integer load instructions, 2-50, A-30
integer store instructions, 2-52, A-31
load/store multiple instructions, 2-53, A-32
memory synchronization instructions, A-32
string instructions, 2-54, A-32
vector load instructions, 2-79
vector load instructions (alignment support), 2-80
vector load/store instructions, 2-79
vector store instructions, 2-80

Logical address translation, 5-1
Logical instructions

integer, 2-72, A-26
vector integer, 2-76

Lookaside buffer management instructions, A-35
LR (link register), 2-5
LRU (least-recently-used)

instructions, 2-85, 7-5, 7-11
LSU (load/store unit)

execution latencies, 6-44
overview, 1-14

lwarx/stwcx. support, 9-59

M
Machine check exception, 4-16
MCP (machine check) signal, 8-44
Memory accesses, 9-6
Memory control instructions

description, 2-65, 2-70
segment register manipulation, A-35
user-level cache, 2-85, 7-5

Memory management unit
access protection, 5-1
address translation

flow, 5-12
mechanisms, 5-9, 5-12

AltiVec technology overview, 5-1, 7-16
block address translation, 5-9, 5-12, 5-21

block diagrams
32-bit implementations, 5-6
DMMU, 5-8
IMMU, 5-7

data stream touch instructions, 5-22, 5-24
effective address calculation, 5-4
exceptions summary, 5-16
features summary, 5-3
implementation-specific

exceptions, 5-18
features, 5-3
MMU, 1-38

instruction summary, 5-19
memory protection, 5-11
memory segment model, 5-21
no-execute protection, 5-14
organization, 5-4
overview, 1-15, 1-37, 5-2
page address translation, 5-9, 5-12, 5-31
page history status, 5-12, 5-21Ð5-25
real addressing mode

block address translation selection, 5-12
support or real addressing mode, 5-2
translation disabled, 5-20

referenced and changed bit scenarios, 5-24
register summary, 5-20
table search operations

conditions, 5-33
hardware, 5-3
TLB miss, 5-26
updating history bits, 5-22

translation exception conditions, 5-16
Memory synchronization

instructions, 2-63, 2-64, A-32
MERSI

(modified/exclusive/recent/shared/invalid), 3-2
Misalignment

misaligned accesses, 2-34
misaligned data transfer, 9-21, 9-44

MMCRn (monitor mode control
registers), 2-16, 4-24, 11-4Ð11-9, 11-12

MPC750 vs. MPC7400
(implementation differences), 1-43

MSR (machine state register)
bit settings, 2-6, 4-9
description, 2-5
FE0/FE1 bits, 4-11
IP bit, 4-15
RI bit, 4-12
settings due to exception, 4-14

MSSCR0 (memory subsystem control
register 0), 2-26, 9-7

Multiple-precision shifts, 2-45
Multiply-add instructions, 2-47, 2-77, A-28

INDEX

Index Index-9

N
No-DRTRY mode, 9-30

O
Operand conventions, 2-33
Operand placement and performance, 6-30
Operating environment architecture (OEA)

exception mechanism, 4-1
memory management unit, 5-1
overview, xxxvi, 1-25
registers, 2-5

Operations
bus operations caused by cache control

instructions, 3-73
data cache block fill, 3-45
data cache block push, 3-48
instruction cache block fill, 3-45
response to snooped bus transactions, 3-77
single-beat write operations, 9-33
table search operations

hardware, 5-3
TLB miss, 5-26
updating history bits, 5-22

Optional instructions, A-57

P
Page address translation

definition, 1-15
page address translation flow, 5-31
page size, 5-21
selection of page address translation, 5-9, 5-16
TLB organization, 5-26

Page history status
dcbt and dcbtst misses, 5-22
R and C bit recording, 5-12, 5-21Ð5-25

Page table updates, 5-37
Performance monitor

AltiVec technology, 11-1
event counting, 11-11
event selection, 11-12
overview, 1-43, 11-1
performance monitor interrupt, 4-23, 11-2
registers, 11-4
TBEE (timebase enable event) usage, 11-3
uses for the performance monitor, 11-1

Physical address translation, 5-1
Pipeline

instruction timing, definition, 6-2
pipeline stages, 6-8
pipelined execution unit, 6-4
superscalar/pipeline diagram, 6-5

PMCn (performance monitor counter)
registers, 2-21, 4-24, 11-10, 11-13Ð11-21

Power and ground signals, 8-52
Power management

doze mode, 10-3
dynamic power management, 10-1
full-power mode, 10-3
nap mode, 10-4
overview, 1-41
programmable power modes, 10-1
sleep mode, 10-5
software considerations, 10-6

Power-on reset settings, 2-32, 8-5
PowerPC architecture

byte ordering support, 2-39
exceptions, 1-34
instruction list, A-1, A-13, A-25
instruction set, 1-30
memory accesses and sequential consistency, 3-34
memory management unit, 1-37
operating environment architecture

(OEA), xxxvi, 1-25
user instruction set architecture

(UISA), xxxvi, 1-25
virtual environment architecture

(VEA), xxxvi, 1-25
Process switching, 4-13
Processor control instructions, 2-59, 2-64, 2-69, A-34
Program exception, 4-22
Program order, definition, 6-3
Programmable power states

doze mode, 10-3
full-power mode with DPM enabled/disabled, 10-3
nap mode, 10-4
sleep mode, 10-5

Protection of memory areas
no-execute protection, 5-14
options available, 5-11
protection violations, 5-16

PVR (processor version register), 2-6

Q
QACK (quiescent acknowledge) signal, 8-47, 9-59
QREQ (quiescent request) signal, 8-47, 9-59
Qualified bus grant, 9-10, 9-12
Qualified data bus grant, 9-25

R
Real addressing mode (translation disabled)

data accesses, 5-12, 5-20
instruction accesses, 5-12, 5-20
support for real addressing mode, 5-2

Referenced (R) bit maintenance
recording, 5-12, 5-22, 5-35

Registers

INDEX

Index-10 MPC7400 RISC Microprocessor UserÕs Manual

AltiVec register file, 7-2
AltiVec-specific registers, 1-28
implementation-specific

BAMR, 2-20, 11-9
HID1, 2-15
IABR, 2-10
ICTC, 2-23
L2CR, 2-28, 3-55
list of implementation-specific registers, 1-29
MMCRn, 2-16Ð2-20, 4-24, 11-4Ð11-9, 11-12
MSSCR0, 2-26, 9-7
PMCn, 2-21, 4-24, 11-10, 11-13Ð11-21
SIAR, 2-22, 4-24, 11-11
THRMn, 2-23, 10-8
UBAMR, 2-21, 11-9
UMMCRn, 2-18Ð2-20, 11-7Ð11-9
UPMCn, 2-22, 11-11
USIAR, 2-22, 11-11

not implemented
SDA, 2-22
USDA, 2-22

performance monitor registers, 2-15, 11-4
programming model, 2-3
register set, 2-3
reset settings, 2-32
SPR encodings, 2-61
supervisor-level

BAMR, 2-20, 11-9
BAT registers, 2-6
DABR, 2-8
DAR, 2-7
DEC, 2-8
DSISR, 2-7
EAR, 2-8
HID0, 2-11, 10-3
HID1, 2-15
IABR, 2-10
ICTC, 2-23
L2CR, 2-28, 3-55
list of supervisor-level registers, 1-29
MMCRn, 2-16Ð2-20, 4-24, 11-4Ð11-9, 11-12
MSR, 2-5
MSSCR0, 2-26, 9-7
performance monitor SPRs, 11-4
PMCn, 2-21, 4-24, 11-10, 11-13Ð11-21
PVR, 2-6
SDR1, 2-7
SIAR, 2-22, 4-24, 11-11
SPRGn, 2-7
SPRs for performance monitor, 11-3
SRn, 2-7
SRR0/SRR1, 2-7
THRMn, 2-23, 10-8
time base (TB), 2-8

user-level
CR, 2-4
CTR, 2-5
FPRn, 2-4
FPSCR, 2-4
GPRn, 2-4
LR, 2-5
performance monitor SPRs, 11-4
time base (TB), 2-5, 2-8
UBAMR, 2-21, 11-9
UMMCRn, 2-18Ð2-20, 11-7Ð11-9
UPMCn, 2-22, 11-11
USIAR, 2-22, 11-11
VRn, 2-4
VRSAVE, 2-5, 7-4
VSCR, 2-4, 7-2
XER, 2-4

VRn, 7-2
Rename buffer, definition, 6-3
Rename register operation, 6-21
Reservation station, definition, 6-3
Reserved instruction class, 2-38
Reset

HRESET signal, 8-44, 9-58
reset exception, 4-15
settings at power-on, 2-32
SRESET signal, 8-44, 9-58

Retirement, definition, 6-3
rfi, 4-13
Rotate/shift instructions, 2-45, 2-76, A-27
Rounding/conversion instructions, vector FP, 2-78
RSRV (reservation) signal, 8-46, 9-59

S
SDA (sampled data address) register, 2-22
SDR1 register, 2-7
Segmented memory model, see Memory

management unit
Serializing instructions, 6-21
SHDn (shared) signal, 8-17, 8-33, 9-24, 9-47
Shift/rotate instructions, 2-45, A-27
SIAR (sampled instruction address

register), 2-22, 4-24, 11-11
Signals

60x bus mode
AACK, 8-15
ABB, 8-9, 9-10
address arbitration signals, 8-8, 9-10
address termination signals, 8-15
address transfer attribute signals, 8-11
address transfer signals, 8-9, 9-15
An, 8-9
APn, 8-10
ARTRY, 8-15, 9-27

INDEX

Index Index-11

BG, 8-8, 9-10
BR, 8-8, 9-10
CI, 8-14, 9-19
CSEn, 8-23
data bus arbitration signals, 8-17, 9-10, 9-24
data transfer signals, 8-19
data transfer termination, 9-27
data transfer termination signals, 8-21
DBB, 8-19, 9-10, 9-25
DBG, 8-18, 9-10
DBWO, 8-18, 9-10, 9-25, 9-30
DHn/DLn, 8-19
DPn, 8-20
DRTRY, 8-23, 9-27
GBL, 8-13, 9-19
MPX bus mode compatibility, 8-22
overview, 8-6
SHDn, 8-17, 9-24
signal state at hard reset, 8-5
signals multiplexed with MPX bus mode, 8-24
signals not implemented, 8-23
TA, 8-21
TBST, 8-12, 9-26
TCn, 8-23
TEA, 8-22, 9-27, 9-29
transfer encoding, 9-16
TS, 8-11
TSIZn, 8-13, 9-17
TTn, 8-12, 9-16
WT, 8-14, 9-19
XATS, 8-23

address transfer attribute signals, 9-16
configuration, 8-6
GBL, 8-30
L2 cache interface signals, 8-39
MPX bus mode

60x bus mode compatibility, 8-22
AACK, 8-32
address arbitration, 8-26
address bus and parity signals, 8-28
address transfer attribute signals, 8-29
address transfer termination signals, 8-32
AMON, 8-27
An, 8-28
APn, 8-28
ARTRY, 8-32, 9-45
BG, 8-27
BR, 8-27
CI, 8-31
data bus arbitration signals, 8-35
data transfer signals, 8-37
data transfer termination signals, 8-38
DBG, 8-35
DHn/DLn, 8-37
DMON, 8-37

DPn, 8-38
DRDY, 8-36, 9-54
DTIn, 8-36
HIT, 8-34, 9-48
overview, 8-24
SHDn, 8-33, 9-47
signal state at hard reset, 8-5
signals multiplexed with 60x bus mode, 8-24
TA, 8-39
TBST, 8-30
TEA, 8-39
transfer type encodings, 9-43
TS, 8-29
TSIZn, 8-30, 9-43
TTn, 8-29, 9-43
WT, 8-31

non-protocol specific
BVSEL, 8-51
CHK, 8-46
CKSTP_IN/CKSTP_OUT, 8-45, 9-58
CLK_OUT, 8-49
clock control signals, 8-48
EMODE, 8-47, 9-42
HRESET, 8-44, 9-58
INT, 8-43, 9-58
interrupts/reset signals, 8-43
JTAG interface, 8-49, 9-60
L2 cache clock/control signals, 8-41
L2ADDRn, 8-40
L2CE, 8-41
L2CLK_OUTA, 8-42
L2CLK_OUTB, 8-42
L2DATAn, 8-40
L2DP, 8-40
L2SYNC_IN, 8-42
L2SYNC_OUT, 8-42
L2VSEL, 8-51
L2WE, 8-41
L2ZZ, 8-43
MCP, 8-44
overview, 8-39
PLL_CFGn, 8-49
power and ground signals, 8-52
processor status/control signals, 8-46
QACK, 8-47, 9-59
QREQ, 8-47, 9-59
RSRV, 8-46, 9-59
SMI, 4-26
SMI, 8-43
SRESET, 8-44, 9-58
SYSCLK, 8-48
TBEN, 8-46
TCK (JTAG test clock), 8-50
TDI (JTAG test data input), 8-50
TDO (JTAG test data output), 8-51

INDEX

Index-12 MPC7400 RISC Microprocessor UserÕs Manual

TMS (JTAG test mode select), 8-51
TRST (JTAG test reset), 8-51

output signal states at power-on reset, 8-5
system quiesce control, 9-59

Simplified mnemonics, 2-71
Single-beat transfer

reads with data delays, timing, 9-34
reads, timing, 9-32
termination, 9-27
writes, timing, 9-33

SMI (system management interrupt)
signal, 4-26, 8-43

Snooping, 3-76
Split-bus transaction, 9-11
SPRGn registers, 2-7
SRESET (soft reset) signal, 8-44, 9-58
SRn (segment registers)

description, 2-7
manipulation instructions, 2-70, A-35

SRR0/SRR1 (status save/restore registers)
description, 2-7
exception processing, 4-8

SRU (system register unit)
execution latencies, 6-40
execution timing, 6-32
overview, 1-14

Stage, definition, 6-3
Stall, definition, 6-3
Static branch prediction, 6-10, 6-27
stwcx., 4-13
Superscalar, definition, 6-3
sync, 4-13
Synchronization

context/execution synchronization, 2-40
execution of rfi, 4-13
memory synchronization

instructions, 2-63, 2-64, A-32
SYSCLK (system clock) signal, 8-48
System call exception, 4-23
System interface, see Bus interface unit (BIU)
System linkage instructions, 2-59, 2-69, A-34
System management interrupt, 4-25, 10-2
System quiesce control signals (QACK/QREQ), 9-59

T
TA (transfer acknowledge) signal, 8-21, 8-39
Table search flow (primary and secondary), 5-35
TAU (thermal assist unit), 1-42, 10-7
TBEN (timebase enable) signal, 8-46
TBL/TBU (time base lower and upper)

registers, 2-5, 2-8
TBST (transfer burst) signal, 8-12, 8-30, 9-26
TCK (JTAG test clock) signal, 8-50
TCn (transfer code) signal, 8-23

TDI (JTAG test data input) signal, 8-50
TDO (JTAG test data output) signal, 8-51
TEA (transfer error acknowledge)

signal, 8-22, 8-39, 9-29
Termination, address transfer, 9-21
Terminology, xlv
Thermal assist unit (TAU), 1-42, 10-7
Thermal management

interrupt exception, 4-27
overview, 1-42

THRMn (thermal management) registers, 2-23, 10-8
Throughput, definition, 6-3
Timing considerations, 6-9
Timing diagrams, interface

address transfer signals, 9-15
burst transfers with data delays, 9-36
L2 cache SRAM timing, 3-67
single-beat reads, 9-32
single-beat reads with data delays, 9-34
single-beat writes, 9-33
single-beat writes with data delays, 9-35
using DBWO, 9-30
using TEA, 9-37

Timing, instruction
BPU execution timing, 6-22
branch timing example, 6-28
cache hit, 6-13
cache miss, 6-16
execution unit, 6-22
FPU execution timing, 6-29
instruction dispatch, 6-20
instruction flow, 6-9
instruction scheduling guidelines, 6-37
IU execution timing, 6-29
latency summary, 6-39
load/store unit execution timing, 6-30
overview, 6-4
SRU execution timing, 6-32
stage, definition, 6-3

TLB
description, 5-25
effect of a TLB miss, 6-36
invalidate (tlbie instruction), 5-27, 5-37
invalidate, description, 5-3, 5-27
LRU replacement, 5-26
organization for ITLB and DTLB, 5-25
TLB management instructions, 2-71, 3-9, A-35
TLB miss and table search operation, 5-26, 5-33

TMS (JTAG test mode select) signal, 8-51
Trace exception, 4-23
Trap instructions, 2-58
TRST (JTAG test reset) signal, 8-51
TS (transfer start) signal, 8-11, 8-29

INDEX

Index Index-13

TSIZn (transfer size) signals, 8-13, 8-30, 9-17, 9-43
TTn (transfer type) signals, 8-12, 8-29, 9-16, 9-43

U
UBAMR (user breakpoint address mask

register), 2-21, 11-9
UMMCRn (user monitor mode control

registers), 2-18Ð2-20, 11-7Ð11-9
UPMCn (user performance monitor counter)

registers, 2-22, 11-11
USDA (user sampled data address) register, 2-22
Use of TEA, timing, 9-37
User instruction set architecture (UISA)

description, xxxvi, 1-25
registers, 2-4

USIAR (user sampled instruction address
register), 2-22, 11-11

V
VALU (vector arithmetic logic unit), 1-13
VALU (vector arithmetic logical unit), 6-33
VCIU (vector complex integer unit), 6-33
Vector instructions

integer
arithmetic instructions, 2-73, A-36
compare instructions, 2-75
logical instructions, 2-76
rotate/shift instructions, 2-76

load
alignment support, 2-80
alignment support instructions, A-38
load instructions, 2-79, A-38

memory control instructions, 2-84
merge instructions, 2-82
pack instructions, 2-81, A-39
permutation and formatting instructions, 2-80
permute instructions, 2-83, A-40
select instructions, 2-83, A-40
shift instructions, 2-83, A-40
splat instructions, 2-82, A-39
status and control register instructions, 2-84
store instructions, 2-80
unpack instructions, 2-81

VFPU (vector floating-point unit), 6-33
Virtual environment architecture (VEA), xxxvi, 1-25
VPU (vector permute unit), 1-12, 6-33
VRn (vector registers), 2-4, 7-2
VRSAVE (vector save/restore) register, 2-5, 7-4
VSCR (vector status and control register), 2-4, 7-2
VSIU (vector simple integer unit), 6-33

W
WIMG bits, 3-7
Window of opportunity, 9-22
Write-back, definition, 6-3
WT (write-through) signal, 8-14, 8-31, 9-19

X
XATS (extended transfer protocol) signal, 8-23
XER register, 2-4

INDEX

Index-14 MPC7400 RISC Microprocessor UserÕs Manual

1

A

B

IND

GLO

2

3

4

5

6

7

8

9

10

11

Overview

Programming Model

L1 and L2 Cache Operation

Exceptions

Memory Managment

Instruction Timing

The AltiVec Technology Implementation

Signal Descriptions

System Interface Operation

Power and Thermal Management

Performance Monitor

MPC7400 Instruction Set Listings

Instructions Not Implemented

Glossary of Terms and Abbreviations

Index

1

A

B

IND

GLO

2

3

4

5

6

7

8

9

10

11

Overview

Programming Model

L1 and L2 Cache Operation

Exceptions

Memory Managment

Instruction Timing

The AltiVec Technology Implementation

Signal Descriptions

System Interface Operation

Power and Thermal Management

Performance Monitor

MPC7400 Instruction Set Listings

Instructions Not Implemented

Glossary of Terms and Abbreviations

Index

Attention!
This book is a companion to the PowerPC Microprocessor Family: The Programming
Environments, referred to as The Programming Environments Manual. Note that the
companion Programming Environments Manual exists in two versions. See the Preface
for a description of the following two versions:

¥ PowerPC Microprocessor Family: The Programming Environments, Rev 1
Order #: MPCFPE/AD

¥ PowerPC Microprocessor Family: The Programming Environments for 32-Bit
Microprocessors, Rev 1
Order #: MPCFPE32B/AD

Call the Motorola LDC at 1-800-441-2447 or contact your local sales ofÞce to obtain
copies.

	Title
	Contents
	Illustrations
	Tables
	About This Book
	Chapter�1 Overview
	1.1 MPC7400 Microprocessor Overview
	Figure�1-1. MPC7400 Microprocessor Block Diagram

	1.2 MPC7400 Microprocessor Features
	1.2.1 Overview of the MPC7400 Microprocessor Features
	1.2.2 Instruction Flow
	1.2.2.1 Instruction Queue and Dispatch Unit
	1.2.2.2 Branch Processing Unit (BPU)
	1.2.2.3 Completion Unit
	1.2.2.4 Independent Execution Units
	1.2.2.4.1 AltiVec Vector Permute Unit (VPU)
	1.2.2.4.2 AltiVec Vector Arithmetic Logic Unit (VALU)
	1.2.2.4.3 Integer Units (IUs)
	1.2.2.4.4 Floating-Point Unit (FPU)
	1.2.2.4.5 Load/Store Unit (LSU)
	1.2.2.4.6 System Register Unit (SRU)

	1.2.3 Memory Management Units (MMUs)
	1.2.4 On-Chip Instruction and Data Caches
	Figure�1-2. L1 Cache Organization

	1.2.5 L2 Cache Implementation
	1.2.6 System Interface/Bus Interface Unit (BIU)
	1.2.6.1 System Interface Operation
	1.2.6.2 Signal Groupings
	Figure�1-3. System Interface
	1.2.6.2.1 Signal Configuration
	Figure�1-4. MPC7400 Microprocessor Signal Groups

	1.2.6.2.2 Clocking

	1.3 MPC7400 Microprocessor: Implementation
	1.4 PowerPC Registers and Programming Model
	Figure�1-5. MPC7400 Microprocessor Programming Model—Registers
	Table�1-1. PowerPC Architecture-Defined Registers on the MPC7400 (Excluding SPRs) �
	Table�1-2. PowerPC Architecture-Defined SPRs Implemented by the MPC7400 �
	Table�1-3. AltiVec-Specific Registers �
	Table�1-4. MPC7400-Specific Registers �

	1.5 Instruction Set
	1.5.1 PowerPC Instruction Set
	1.5.2 AltiVec Instruction Set
	1.5.3 MPC7400 Microprocessor Instruction Set

	1.6 On-Chip Cache Implementation
	1.6.1 PowerPC Cache Model
	1.6.2 MPC7400 Microprocessor Cache Implementation

	1.7 Exception Model
	1.7.1 PowerPC Exception Model
	1.7.2 MPC7400 Microprocessor Exception Implementation
	Table�1-5. MPC7400 Microprocessor Exception Classifications�
	Table�1-6. Exceptions and Conditions�

	1.8 Memory Management
	1.8.1 PowerPC Memory Management Model
	1.8.2 MPC7400 Microprocessor Memory Management Implementation

	1.9 Instruction Timing
	Figure�1-6. Pipeline Diagram

	1.10 Power Management
	1.11 Thermal Management
	1.12 Performance Monitor
	1.13 Differences between the MPC7400 and the MPC750
	Table�1-7. Differences between the MPC7400 and the MPC750�

	Chapter�2 Programming Model
	2.1 The MPC7400 Processor Register Set
	2.1.1 Register Set
	Figure�2-1. Programming Model—MPC7400 Microprocessor Registers
	Table�2-1. Additional MSR Bits
	Table�2-2. Additional SRR1 Bits�

	2.1.2 MPC7400-Specific Registers
	2.1.2.1 Instruction Address Breakpoint Register (IABR)
	Figure�2-2. Instruction Address Breakpoint Register
	Table�2-3. Instruction Address Breakpoint Register Field Descriptions

	2.1.2.2 Hardware Implementation-Dependent Register 0
	Figure�2-3. Hardware Implementation-Dependent Register 0 (HID0)
	Table�2-4. HID0 Field Descriptions�
	Table�2-5. HID0[BCLK] and HID0[ECLK] CLK_OUT Configuration

	2.1.2.3 Hardware Implementation-Dependent Register 1
	Figure�2-4. Hardware Implementation-Dependent Register 1 (HID1)
	Table�2-6. HID1 Field Descriptions

	2.1.2.4 Performance Monitor Registers
	2.1.2.4.1 Monitor Mode Control Register 0 (MMCR0)
	Figure�2-5. Monitor Mode Control Register 0 (MMCR0)
	Table�2-7. MMCR0 Field Descriptions�

	2.1.2.4.2 User Monitor Mode Control Register 0 (UMMCR0)
	2.1.2.4.3 Monitor Mode Control Register 1 (MMCR1)
	Figure�2-6. Monitor Mode Control Register 1 (MMCR1)
	Table�2-8. MMCR1 Field Descriptions

	2.1.2.4.4 User Monitor Mode Control Register 1 (UMMCR1)

	2.1.2.5 Monitor Mode Control Register 2 (MMCR2)
	Figure�2-7. Monitor Mode Control Register 2 (MMCR2)
	Table�2-9. MMCR2 Field Descriptions�

	2.1.2.6 User Monitor Mode Control Register 2 (UMMCR2)

	2.1.3 Breakpoint Address Mask Register (BAMR)
	Figure�2-8. Breakpoint Address Mask Register (BAMR)
	Table�2-10. BAMR Field Descriptions�
	2.1.3.1 User Breakpoint Address Mask Register (UBAMR)
	2.1.3.1.1 Performance Monitor Counter Registers (PMC1–PMC4)
	Figure�2-9. Performance Monitor Counter Registers (PMC1–PMC4)
	Table�2-11. PMCn Field Descriptions

	2.1.3.1.2 User Performance Monitor Counter Registers (UPMC1–UPMC4)
	2.1.3.1.3 Sampled Instruction Address Register (SIAR)
	Figure�2-10. Sampled Instruction Address Registers (SIAR)

	2.1.3.1.4 User-Sampled Instruction Address Register (USIAR)
	2.1.3.1.5 Sampled Data Address Register (SDA) and User-Sampled Data Address Register (USDA)

	2.1.4 Instruction Cache Throttling Control Register (ICTC)
	Figure�2-11. Instruction Cache Throttling Control Register (ICTC)
	Table�2-12. ICTC Field Descriptions

	2.1.5 Thermal Management Registers (THRM1–THRM3)
	Figure�2-12. Thermal Management Registers 1–2 (THRM1–THRM2)
	Table�2-13. THRM1–THRM2 Bit Settings
	Table�2-14. Valid THRM1/THRM2 States�
	Figure�2-13. Thermal Management Register 3 (THRM3)
	Table�2-15. THRM3 Bit Settings

	2.1.6 Memory Subsystem Control Register (MSSCR0)
	Figure�2-14. Memory Subsystem Control Register (MSSCR0)
	Table�2-16. MSSCR0 Field Descriptions �

	2.1.7 L2 Cache Control Register (L2CR)
	Figure�2-15. L2 Cache Control Register (L2CR)
	Table�2-17. L2CR Field Descriptions�

	2.1.8 Reset Settings
	Table�2-18. Settings Caused by Hard Reset (Used at Power-On)�

	2.2 Operand Conventions
	2.2.1 Floating-Point Execution Models—UISA
	2.2.2 Data Organization in Memory and Data Transfers
	2.2.3 Alignment and Misaligned Accesses
	2.2.4 Floating-Point Operands

	2.3 Instruction Set Summary
	2.3.1 Classes of Instructions
	2.3.1.1 Definition of Boundedly Undefined
	2.3.1.2 Defined Instruction Class
	2.3.1.3 Illegal Instruction Class
	2.3.1.4 Reserved Instruction Class

	2.3.2 Addressing Modes
	2.3.2.1 Memory Addressing
	2.3.2.2 Memory Operands
	2.3.2.3 Effective Address Calculation
	2.3.2.4 Synchronization
	2.3.2.4.1 Context Synchronization
	2.3.2.4.2 Execution Synchronization
	2.3.2.4.3 Instruction-Related Exceptions

	2.3.3 Instruction Set Overview
	2.3.4 PowerPC UISA Instructions
	2.3.4.1 Integer Instructions
	2.3.4.1.1 Integer Arithmetic Instructions
	Table�2-19. Integer Arithmetic Instructions�

	2.3.4.1.2 Integer Compare Instructions
	Table�2-20. Integer Compare Instructions

	2.3.4.1.3 Integer Logical Instructions
	Table�2-21. Integer Logical Instructions�

	2.3.4.1.4 Integer Rotate and Shift Instructions
	Table�2-22. Integer Rotate Instructions�
	Table�2-23. Integer Shift Instructions�

	2.3.4.2 Floating-Point Instructions
	2.3.4.2.1 Floating-Point Arithmetic Instructions
	Table�2-24. Floating-Point Arithmetic Instructions�

	2.3.4.2.2 Floating-Point Multiply-Add Instructions
	Table�2-25. Floating-Point Multiply-Add Instructions�

	2.3.4.2.3 Floating-Point Rounding and Conversion Instructions
	Table�2-26. Floating-Point Rounding and Conversion Instructions�

	2.3.4.2.4 Floating-Point Compare Instructions
	Table�2-27. Floating-Point Compare Instructions

	2.3.4.2.5 Floating-Point Status and Control Register Instructions
	Table�2-28. Floating-Point Status and Control Register Instructions�

	2.3.4.2.6 Floating-Point Move Instructions
	Table�2-29. Floating-Point Move Instructions�

	2.3.4.3 Load and Store Instructions
	2.3.4.3.1 Self-Modifying Code
	2.3.4.3.2 Integer Load and Store Address Generation
	2.3.4.3.3 Register Indirect Integer Load Instructions
	Table�2-30. Integer Load Instructions�

	2.3.4.3.4 Integer Store Instructions
	Table�2-31. Integer Store Instructions�

	2.3.4.3.5 Integer Store Gathering
	2.3.4.3.6 Integer Load and Store with Byte-Reverse Instructions
	Table�2-32. Integer Load and Store with Byte-Reverse Instructions�

	2.3.4.3.7 Integer Load and Store Multiple Instructions
	Table�2-33. Integer Load and Store Multiple Instructions�

	2.3.4.3.8 Integer Load and Store String Instructions
	Table�2-34. Integer Load and Store String Instructions�

	2.3.4.3.9 Floating-Point Load and Store Address Generation
	Table�2-35. Floating-Point Load Instructions�

	2.3.4.3.10 Floating-Point Store Instructions
	Table�2-36. Floating-Point Store Instructions�
	Table�2-37. Store Floating-Point Single Behavior�
	Table�2-38. Store Floating-Point Double Behavior�

	2.3.4.4 Branch and Flow Control Instructions
	2.3.4.4.1 Branch Instruction Address Calculation
	2.3.4.4.2 Branch Instructions
	Table�2-39. Branch Instructions

	2.3.4.4.3 Condition Register Logical Instructions
	Table�2-40. Condition Register Logical Instructions�

	2.3.4.4.4 Trap Instructions
	Table�2-41. Trap Instructions

	2.3.4.5 System Linkage Instruction—UISA
	Table�2-42. System Linkage Instruction—UISA

	2.3.4.6 Processor Control Instructions—UISA
	2.3.4.6.1 Move to/from Condition Register Instructions
	Table�2-43. Move to/from Condition Register Instructions

	2.3.4.6.2 Move to/from Special-Purpose Register Instructions (UISA)
	Table�2-44. Move to/from Special-Purpose Register Instructions (UISA)
	Table�2-45. PowerPC SPR Encodings�
	Table�2-46. SPR Encodings for MPC7400-Defined Registers (mfspr)�

	2.3.4.7 Memory Synchronization Instructions—UISA
	Table�2-47. Memory Synchronization Instructions—UISA �

	2.3.5 PowerPC VEA Instructions
	2.3.5.1 Processor Control Instructions—VEA
	Table�2-48. Move from Time Base Instruction

	2.3.5.2 Memory Synchronization Instructions—VEA
	Table�2-49. Memory Synchronization Instructions—VEA

	2.3.5.3 Memory Control Instructions—VEA
	2.3.5.3.1 User-Level Cache Instructions—VEA
	Table�2-50. User-Level Cache Instructions �

	2.3.5.4 Optional External Control Instructions
	Table�2-51. External Control Instructions

	2.3.6 PowerPC OEA Instructions
	2.3.6.1 System Linkage Instructions—OEA
	Table�2-52. System Linkage Instructions—OEA

	2.3.6.2 Processor Control Instructions—OEA
	Table�2-53. Move to/from Machine State Register Instructions
	Table�2-54. Move to/from Special-Purpose Register Instructions (OEA)

	2.3.6.3 Memory Control Instructions—OEA
	2.3.6.3.1 Supervisor-Level Cache Management Instruction—(OEA)
	Table�2-55. Supervisor-Level Cache Management Instruction

	2.3.6.3.2 Segment Register Manipulation Instructions (OEA)
	Table�2-56. Segment Register Manipulation Instructions

	2.3.6.3.3 Translation Lookaside Buffer Management Instructions—OEA
	Table�2-57. Translation Lookaside Buffer Management Instruction

	2.3.7 Recommended Simplified Mnemonics

	2.4 AltiVec Instructions
	2.5 AltiVec UISA Instructions
	2.5.1 Vector Integer Instructions
	2.5.1.1 Vector Integer Arithmetic Instructions
	Table�2-58. Vector Integer Arithmetic Instructions�

	2.5.1.2 Vector Integer Compare Instructions
	Table�2-59. CR6 Field Bit Settings for Vector Integer Compare Instructions �
	Table�2-60. Vector Integer Compare Instructions�

	2.5.1.3 Vector Integer Logical Instructions
	Table�2-61. Vector Integer Logical Instructions�

	2.5.1.4 Vector Integer Rotate and Shift Instructions
	Table�2-62. Vector Integer Rotate Instructions�
	Table�2-63. Vector Integer Shift Instructions

	2.5.2 Vector Floating-Point Instructions
	2.5.2.1 Vector Floating-Point Arithmetic Instructions
	Table�2-64. Vector Floating-Point Arithmetic Instructions�

	2.5.2.2 Vector Floating-Point Multiply-Add Instructions
	Table�2-65. Vector Floating-Point Multiply-Add Instructions�

	2.5.2.3 Vector Floating-Point Rounding and Conversion Instructions
	Table�2-66. Vector Floating-Point Rounding and Conversion Instructions�

	2.5.2.4 Vector Floating-Point Compare Instructions
	Table�2-67. Vector Floating-Point Compare Instructions

	2.5.2.5 Vector Floating-Point Estimate Instructions
	Table�2-68. Vector Floating-Point Estimate Instructions�

	2.5.3 Vector Load and Store Instructions
	2.5.3.1 Vector Load Instructions
	Table�2-69. Vector Integer Load Instructions�

	2.5.3.2 Vector Load Instructions Supporting Alignment
	Table�2-70. Vector Load Instructions Supporting Alignment

	2.5.3.3 Vector Store Instructions
	Table�2-71. Vector Integer Store Instructions�

	2.5.4 Control Flow
	2.5.5 Vector Permutation and Formatting Instructions
	2.5.5.1 Vector Pack Instructions
	Table�2-72. Vector Pack Instructions�

	2.5.5.2 Vector Unpack Instructions
	Table�2-73. Vector Unpack Instructions�

	2.5.5.3 Vector Merge Instructions
	Table�2-74. Vector Merge Instructions�

	2.5.5.4 Vector Splat Instructions
	Table�2-75. Vector Splat Instructions

	2.5.5.5 Vector Permute Instructions
	Table�2-76. Vector Permute Instruction

	2.5.5.6 Vector Select Instruction
	Table�2-77. Vector Select Instruction

	2.5.5.7 Vector Shift Instructions
	Table�2-78. Vector Shift Instructions

	2.5.5.8 Vector Status and Control Register Instructions
	Table�2-79. Move to/from VSCR Register Instructions�

	2.6 AltiVec VEA Instructions
	2.6.1 AltiVec Vector Memory Control Instructions—VEA
	Table�2-80. AltiVec User-Level Cache Instructions�

	2.6.2 AltiVec Instructions with Specific Implementations for the MPC7400
	2.6.2.1 Least-Recently-Used Instructions

	Chapter�3 L1 and L2 Cache Operation
	3.1 L1 Instruction and Data Caches
	Figure�3-1. Cache/Memory Subsystem/BIU Integration

	3.2 Data Cache Organization
	Figure�3-2. Data Cache Organization

	3.3 Instruction Cache Organization
	Figure�3-3. Instruction Cache Organization

	3.4 Memory and Cache Coherency
	3.4.1 Memory/Cache Access Attributes (WIMG Bits)
	3.4.1.1 Out-of-Order Accesses to Guarded Memory

	3.4.2 Coherency Support
	Table�3-1. Data Cache Status Bits�
	Table�3-2. Allowed Data Cache States �
	3.4.2.1 AltiVec Transient Hint Support

	3.4.3 Coherency Protocols
	Table�3-3. Coherency Protocols in 60x Bus Mode �
	Table�3-4. Coherency Protocols in MPX Bus Mode�
	3.4.3.1 Snoop Response
	Table�3-5. Snoop Response Summary�

	3.4.3.2 Intervention
	Table�3-6. Snoop Intervention Summary�

	3.4.3.3 Simplified Transaction Types
	Table�3-7. Simplified Transaction Types�

	3.4.3.4 MESI State Transitions
	3.4.3.4.1 MESI Protocol in 60x Bus Mode and MPX Bus Mode (with L1_INTVEN�=�0b000)
	Figure�3-4. Read Transaction—60x and MPX Bus Modes, L1_INTVEN �=�0b000
	Figure�3-5. RWITM, Write, and Flush Transactions—60x and MPX Bus Modes, L1_INTVEN �=�0b000
	Figure�3-6. Clean Transaction—60x and MPX Bus Modes, L1_INTVEN �=�0b000
	Figure�3-7. Kill Transaction—60x and MPX Bus Modes, L1_INTVEN �=�0b000

	3.4.3.4.2 MESI Protocol in MPX Bus Mode with Modified Intervention Enabled
	Figure�3-8. Read Transaction—MPX Bus Mode, L1_INTVEN �=�0b100
	Figure�3-9. RWITM and Flush Transactions—MPX Bus Mode, L1_INTVEN �=�0b100
	Figure�3-10. Write Transaction—MPX Bus Mode, L1_INTVEN �=�0b100
	Figure�3-11. Clean Transaction—MPX Bus Mode, L1_INTVEN �=�0b100
	Figure�3-12. Kill Transaction—MPX Bus Mode, L1_INTVEN �=�0b100

	3.4.3.4.3 MESI Protocol in MPX Bus Mode (with L1_INTVEN�=�0b110)
	Figure�3-13. Read Transaction—MPX Bus Mode, L1_INTVEN �=�0b110
	Figure�3-14. RWITM Transaction—MPX Bus Mode, L1_INTVEN �=�0b110
	Figure�3-15. Write Transaction—MPX Bus Mode, L1_INTVEN �=�0b110
	Figure�3-16. Flush Transaction State Diagram—MPX Bus Mode, L1_INTVEN �=�0b110
	Figure�3-17. Clean Transaction—MPX Bus Mode, L1_INTVEN �=�0b110
	Figure�3-18. Kill Transaction—MPX Bus Mode, L1_INTVEN �=�0b110

	3.4.3.5 MERSI State Transitions
	Figure�3-19. Read Transaction—MPX Bus Mode, L1_INTVEN �=�0b111
	Figure�3-20. RWITM Transaction —MPX Bus Mode, L1_INTVEN �=�0b111
	Figure�3-21. Write Transaction—MPX Bus Mode, L1_INTVEN �=�0b111
	Figure�3-22. Flush Transaction—MPX Bus Mode, L1_INTVEN �=�0b111
	Figure�3-23. Clean Transaction—MPX Bus Mode, L1_INTVEN �=�0b111
	Figure�3-24. Kill Transaction—MPX Bus Mode, L1_INTVEN �=�0b111

	3.4.3.6 Reservation Snooping
	Figure�3-25. Read Transaction Snoop Hit on the Reservation Address Register
	Figure�3-26. Reskill Transaction Snoop Hit on the Reservation Address Register
	Figure�3-27. Transaction (other than Read or Reskill) Snoop Hit on the Reservation Address Register

	3.4.3.7 State Changes for Self-Generated Bus Transactions
	Figure�3-28. Self-Generated Data Read/Read-Atomic Transaction
	Figure�3-29. Self-Generated Data RWITM/RWITM-Atomic/Kill (Caused by dcbz Miss) Transaction
	Figure�3-30. Self-Generated Kill (Caused by Write Hit on S or R) Transaction
	Figure�3-31. Self-Generated Read (Caused by Instruction Fetch) Transaction
	Figure�3-32. Self-Generated RCLAIM Transaction

	3.4.4 MPC7400-Initiated Load/Store Operations
	3.4.4.1 Performed Loads and Stores
	3.4.4.2 Sequential Consistency of Memory Accesses
	3.4.4.3 Enforcing Store Ordering
	3.4.4.4 Atomic Memory References

	3.5 Cache Control
	3.5.1 Cache Control Parameters in HID0
	3.5.1.1 Enabling and Disabling the Data Cache
	3.5.1.2 Data Cache Locking
	3.5.1.3 Data Cache Flash Invalidation
	3.5.1.4 Enabling and Disabling the Instruction Cache
	3.5.1.5 Instruction Cache Locking
	3.5.1.6 Instruction Cache Flash Invalidation

	3.5.2 Data Cache Hardware Flush Parameter in MSSCR0
	3.5.3 Cache Control Instructions
	3.5.3.1 Data Cache Block Touch (dcbt)
	3.5.3.2 Data Cache Block Touch for Store (dcbtst)
	3.5.3.3 Data Cache Block Zero (dcbz)
	3.5.3.4 Data Cache Block Store (dcbst)
	3.5.3.5 Data Cache Block Flush (dcbf)
	3.5.3.6 Data Cache Block Allocate (dcba)
	3.5.3.7 Data Cache Block Invalidate (dcbi)
	3.5.3.8 Instruction Cache Block Invalidate (icbi)

	3.6 Cache Operations
	3.6.1 Data Cache Block Fill Operations
	3.6.2 Instruction Cache Block Fill Operations
	3.6.3 Allocation on Cache Misses
	3.6.4 Load Miss Folding
	3.6.5 Store Miss Merging
	3.6.6 Store Hit to a Data Cache Block Marked Recent or Shared
	3.6.7 Data Cache Block Push Operation
	3.6.8 Cache Block Replacement Selection
	Table�3-8. PLRU Replacement Way Selection
	Figure�3-33. PLRU Replacement Algorithm
	Table�3-9. PLRU Bit Update Rules �
	3.6.8.1 AltiVec LRU Instruction Support
	Table�3-10. PLRU Bit Update Rules for AltiVec LRU Instructions �

	3.6.9 L1 Cache Invalidation and Flushing

	3.7 L2 Cache Interface
	3.7.1 L2 Cache Interface Overview
	Figure�3-34. Typical 1-Mbyte L2 Cache Configuration

	3.7.2 L2 Cache Organization
	3.7.2.1 L2 Cache Tag Status Bits
	Table�3-11. Legal L2 Cache States

	3.7.3 L2 Cache Control Register (L2CR)
	3.7.3.1 Enabling and Disabling the L2 Cache
	3.7.3.2 L2 Cache Parity Checking and Generation
	3.7.3.3 L2 Cache Size
	Table�3-12. L2 Cache Sizes and Data RAM Organizations

	3.7.3.4 L2 Cache SRAM Types
	3.7.3.5 L2 Cache Write-Back/Write-Through Modes
	3.7.3.6 L2 Cache Data-Only and Instruction-Only Operation
	3.7.3.6.1 L2 Cache Locking Using L2DO and L2IO

	3.7.3.7 L2 Cache Global Invalidation
	3.7.3.8 L2 Cache Flushing
	3.7.3.8.1 L2 Cache Hardware Flush
	3.7.3.8.2 L2 Cache Software Flush

	3.7.3.9 L2 Cache Clock and Timing Controls
	3.7.3.10 L2 Cache Power Management and Test Controls

	3.7.4 L2 Cache Initialization
	3.7.5 L2 Cache Operation
	3.7.5.1 L2 Cache Allocation on Cache Misses
	3.7.5.2 L2 Cache Replacement Selection
	3.7.5.3 Store Hit to a Shared or Recent L2 Cache Block

	3.7.6 L2 Cache Clock Configuration
	3.7.7 L2 Cache Testing
	3.7.7.1 Testing Overall L2 Cache Operation
	3.7.7.2 Testing L2 Cache External SRAMs
	3.7.7.3 Testing L2 Cache Tags

	3.7.8 L2 Cache SRAM Timing Examples
	3.7.8.1 Pipelined Burst SRAM
	Figure�3-35. Pipeline Burst SRAM Timing

	3.7.8.2 Late-Write SRAM
	Figure�3-36. Late-Write SRAM Timing

	3.7.8.3 PB3 SRAM
	Figure�3-37. PB3 SRAM Timing

	3.8 System Bus Interface Unit
	3.9 MPC7400 Caches and System Bus Transactions
	Figure�3-38. Double-Word Address Ordering—Critical Double Word First
	3.9.1 Bus Operations Caused by Cache Control Instructions
	Table�3-13. Bus Operations Caused by Cache Control Instructions (WIM = 001)�

	3.9.2 Transfer Attributes
	Table�3-14. Address/Transfer Attributes Generated by the MPC7400�

	3.9.3 Snooping
	Table�3-15. Snooped Bus Transaction Summary�

	Chapter�4 Exceptions
	4.1 MPC7400 Microprocessor Exceptions
	Table�4-1. MPC7400 Microprocessor Exception Classifications�
	Table�4-2. Exceptions and Conditions�

	4.2 Exception Recognition and Priorities
	Table�4-3. MPC7400 Exception Priorities�

	4.3 Exception Processing
	Figure�4-1. Machine Status Save/Restore Register 0 (SRR0)
	Figure�4-2. Machine Status Save/Restore Register 1 (SRR1)
	Figure�4-3. Machine State Register (MSR)
	Table�4-4. MSR Bit Settings�
	Table�4-5. IEEE Floating-Point Exception Mode Bits�
	4.3.1 Enabling and Disabling Exceptions
	4.3.2 Steps for Exception Processing
	4.3.3 Setting MSR[RI]
	4.3.4 Returning from an Exception Handler

	4.4 Process Switching
	4.5 Data Stream Prefetching and Exceptions
	4.6 Exception Definitions
	Table�4-6. MSR Setting Due to Exception�
	4.6.1 System Reset Exception (0x00100)
	Table�4-7. System Reset Exception—Register Settings�

	4.6.2 Machine Check Exception (0x00200)
	Table�4-8. HID0 Machine Check Enable Bits
	4.6.2.1 Machine Check Exception Enabled (MSR[ME] = 1)
	Table�4-9. Machine Check Exception—Register Settings�

	4.6.2.2 Checkstop State (MSR[ME] = 0)

	4.6.3 DSI Exception (0x00300)
	4.6.3.1 Data Address Breakpoint Facility

	4.6.4 ISI Exception (0x00400)
	4.6.5 External Interrupt Exception (0x00500)
	4.6.6 Alignment Exception (0x00600)
	4.6.7 Program Exception (0x00700)
	4.6.8 Floating-Point Unavailable Exception (0x00800)
	4.6.9 Decrementer Exception (0x00900)
	4.6.10 System Call Exception (0x00C00)
	4.6.11 Trace Exception (0x00D00)
	4.6.12 Floating-Point Assist Exception (0x00E00)
	4.6.13 Performance Monitor Interrupt (0x00F00)
	Table�4-10. Performance Monitor Interrupt Exception—Register Settings�

	4.6.14 Instruction Address Breakpoint Exception (0x01300)
	Table�4-11. Instruction Address Breakpoint Exception—Register Settings�

	4.6.15 System Management Interrupt (0x01400)
	Table�4-12. System Management Interrupt Exception—Register Settings�

	4.6.16 AltiVec Assist Exception (0x01600)
	Table�4-13. AltiVec Assist Exception—Register Settings�

	4.6.17 Thermal Management Interrupt Exception (0x01700)
	Table�4-14. Thermal Management Interrupt Exception—Register Settings�

	4.6.18 AltiVec Unavailable Exception (0x00F20)
	Table�4-15. AltiVec Unavailable Exception—Register Settings�

	Chapter�5 Memory Management
	5.1 MMU Overview
	Table�5-1. MMU Feature Summary�
	5.1.1 Memory Addressing
	5.1.2 MMU Organization
	Figure�5-1. MMU Conceptual Block Diagram—32-Bit Implementations
	Figure�5-2. MPC7400 Microprocessor IMMU Block Diagram
	Figure�5-3. MPC7400 Microprocessor DMMU Block Diagram

	5.1.3 Address Translation Mechanisms
	Figure�5-4. Address Translation Types

	5.1.4 Memory Protection Facilities
	Table�5-2. Access Protection Options for Pages�

	5.1.5 Page History Information
	5.1.6 General Flow of MMU Address Translation
	5.1.6.1 Real Addressing Mode and Block Address Translation Selection
	Figure�5-5. General Flow of Address Translation (Real Addressing Mode and Block)

	5.1.6.2 Page Address Translation Selection
	Figure�5-6. General Flow of Page and Direct-Store Interface Address Translation

	5.1.7 MMU Exceptions Summary
	Table�5-3. Translation Exception Conditions�
	Table�5-4. Other MMU Exception Conditions for the MPC7400 Processor

	5.1.8 MMU Instructions and Register Summary
	Table�5-5. MPC7400 Microprocessor Instruction Summary—Control MMUs
	Table�5-6. MPC7400 Microprocessor MMU Registers�

	5.2 Real Addressing Mode
	5.3 Block Address Translation
	5.4 Memory Segment Model
	5.4.1 Page History Recording
	Table�5-7. Table Search Operations to Update History Bits—TLB Hit Case
	5.4.1.1 Referenced Bit
	5.4.1.2 Changed Bit
	5.4.1.3 Scenarios for Referenced and Changed Bit Recording
	Table�5-8. Model for Guaranteed R and C Bit Settings �

	5.4.2 Page Memory Protection
	5.4.3 TLB Description
	5.4.3.1 TLB Organization and Operation
	Figure�5-7. Segment Register and DTLB Organization

	5.4.3.2 TLB Invalidation
	5.4.3.2.1 tlbie Instruction
	Figure�5-8. tlbie Instruction Execution and Bus Snooping Flow

	5.4.3.2.2 tlbsync Instruction
	Figure�5-9. tlbsync Instruction Execution and Bus Snooping Flow

	5.4.3.2.3 Synchronization Requirements for tlbie and tlbsync

	5.4.4 Page Address Translation Summary
	Figure�5-10. Page Address Translation Flow—TLB Hit

	5.4.5 Page Table Search Operation
	5.4.5.1 Conditions for a Page Table Search Operation
	5.4.5.2 AltiVec Line Fetch Skipping
	5.4.5.3 Page Table Search Operation Flow
	Figure�5-11. Primary Page Table Search
	Figure�5-12. Secondary Page Table Search Flow

	5.4.6 Page Table Updates
	5.4.7 Segment Register Updates

	Chapter�6 Instruction Timing
	6.1 Terminology and Conventions
	6.2 Instruction Timing Overview
	Figure�6-1. Pipelined Execution Unit
	Figure�6-2. Superscalar/Pipeline Diagram
	Figure�6-3. MPC7400 Microprocessor Pipeline Stages

	6.3 Timing Considerations
	6.3.1 General Instruction Flow
	Figure�6-4. Instruction Flow Diagram

	6.3.2 Instruction Fetch Timing
	6.3.2.1 Cache Arbitration
	6.3.2.2 Cache Hit
	Figure�6-5. Instruction Timing—Cache Hit

	6.3.2.3 Cache Miss
	Figure�6-6. Instruction Timing—Cache Miss

	6.3.3 Memory Subsystem-Specific Pipeline Diagrams
	Figure�6-7. Data L1 Load Hit (No Stalls)
	Figure�6-8. Data L1 Store Hit (No Stalls)
	Figure�6-9. Data L1 Load Miss, L2 Hit (No Stalls)
	Figure�6-10. Data L1 Load Miss, L2 Miss, BIU Fetch
	6.3.3.1 L2 Cache Access Timing Considerations (MPX Bus Only)

	6.3.4 Instruction Dispatch and Completion Considerations
	6.3.4.1 Rename Register Operation
	6.3.4.2 Instruction Serialization

	6.4 Execution Unit Timings
	6.4.1 Branch Processing Unit Execution Timing
	6.4.1.1 Branch Folding and Removal of Fall-Through Branch Instructions
	Figure�6-11. Branch Folding
	Figure�6-12. Removal of Fall-Through Branch Instruction

	6.4.1.2 Branch Instructions and Completion
	Figure�6-13. Branch Completion

	6.4.1.3 Branch Prediction and Resolution
	6.4.1.3.1 Static Branch Prediction
	6.4.1.3.2 Predicted Branch Timing Examples
	Figure�6-14. Branch Instruction Timing

	6.4.2 Integer Unit Execution Timing
	6.4.3 Floating-Point Unit Execution Timing
	6.4.4 Effect of Floating-Point Exceptions on Performance
	6.4.5 Load/Store Unit Execution Timing
	6.4.5.1 Effect of Operand Placement on Performance
	Table�6-1. Performance Effects of Memory Operand Placement �

	6.4.5.2 Integer Store Gathering

	6.4.6 System Register Unit Execution Timing
	6.4.7 AltiVec Instructions Executed by the LSU
	6.4.7.1 LRU Instructions
	6.4.7.2 Transient Instructions

	6.4.8 AltiVec Instructions
	6.4.8.1 AltiVec Permute Unit (VPU) Execution Timing
	6.4.8.2 AltiVec Arithmetic Logical Unit (VALU) Execution Timing
	6.4.8.2.1 Vector Simple Integer Unit (VSIU) Execution Timing
	6.4.8.2.2 Vector Complex Integer Unit (VCIU) Execution Timing
	6.4.8.2.3 Vector Floating-Point Unit (VFPU) Execution Timing
	Figure�6-15. Data Dependencies in Non-Java Mode
	Figure�6-16. Data Forwarding in Java Mode

	6.5 Memory Performance Considerations
	6.5.1 Caching and Memory Coherency
	6.5.2 Effect of TLB Miss on Performance
	Table�6-2. Effect of TLB Miss on Performance�

	6.6 Instruction Scheduling Guidelines
	6.6.1 Branch, Dispatch, and Completion Unit Resource Requirements
	6.6.1.1 Branch Resolution Resource Requirements
	6.6.1.2 Dispatch Unit Resource Requirements
	6.6.1.3 Completion Unit Resource Requirements

	6.7 Instruction Latency Summary
	Table�6-3. Branch Operation Execution Latencies �
	Table�6-4. SRU Execution Latencies �
	Table�6-5. Condition Register Logical Execution Latencies�
	Table�6-6. Integer Unit Execution Latencies�
	Table�6-7. Floating-Point Unit Execution Latencies�
	Table�6-8. Load/Store Instruction Latencies�
	Table�6-9. AltiVec Instruction Latencies�

	Chapter�7 The AltiVec Technology Implementation
	7.1 AltiVec Technology and the Programming Model
	7.1.1 Register Set
	7.1.1.1 Changes to the Condition Register
	7.1.1.2 Addition to the Machine State Register
	7.1.1.3 Vector Registers (VRs)
	Figure�7-1. Vector Registers (VRs)

	7.1.1.4 Vector Status and Control Register (VSCR)
	Figure�7-2. Vector Status and Control Register (VSCR)
	Table�7-1. VSCR Field Descriptions�

	7.1.1.5 Vector Save/Restore Register (VRSAVE)
	Figure�7-3. Vector Save/Restore Register (VRSAVE)
	Table�7-2. VRSAVE Bit Settings�

	7.1.2 AltiVec Instruction Set
	7.1.2.1 LRU Instructions
	7.1.2.2 Transient Instructions
	Table�7-3. AltiVec User-Level Cache Instructions�

	7.1.2.3 Data Stream Touch Instructions
	7.1.2.4 Stream Engine Tags
	Table�7-4. DST[STRM] Description
	7.1.2.4.1 Speculative Execution and Pipeline Stalls for Data Stream Instructions

	7.1.2.5 Static/Transient Data Stream Touch Instructions
	7.1.2.5.1 Relationship with the sync/tblsync Instructions
	7.1.2.5.2 Data Stream Termination
	Table�7-5. The dstx Stream Termination Conditions

	7.1.2.5.3 Line Fetch Skipping
	7.1.2.5.4 Context Awareness and Stream Pausing
	7.1.2.5.5 Differences Between dst/dstt and dstst/dststt Instructions
	7.1.2.5.6 dss and dssall Instructions

	7.1.3 AltiVec Instructions with Specific Implementations for the MPC7400
	7.1.3.1 LRU Instructions
	7.1.3.2 Java Mode, NaNs, Denormalized Numbers, and Zeros
	Table�7-6. Denormalization for AltiVec Instructions�
	Table�7-7. Vector Floating-Point Compare, Min, and Max in Non-Java Mode�
	Table�7-8. Vector Floating-Point Compare, Min, and Max in Java Mode �
	Table�7-9. Round-to-Integer Instructions in Non-Java Mode �
	Table�7-10. Round-to-Integer Instructions in Java Mode �

	7.2 AltiVec Technology and the Cache Model
	7.3 AltiVec and the Exception Model
	7.4 AltiVec and the Memory Management Model
	7.5 AltiVec Technology and Instruction Timing
	7.5.1 Integer Store Gathering

	Chapter�8 Signal Descriptions
	8.1 Signal Groupings
	8.1.1 Signal Summary
	Table�8-1. MPC7400 Signal Cross Reference�

	8.1.2 60x Bus and MPX Bus Output Signal States During Reset
	Table�8-2. Output Signal States During System Reset�

	8.2 60x Bus Signal Configuration
	8.2.1 60x Bus Functional Groupings
	Figure�8-1. 60x Bus Signal Groups

	8.2.2 Address Bus Arbitration Signals
	8.2.2.1 Bus Request (BR)—Output
	8.2.2.2 Bus Grant (BG)—Input
	8.2.2.3 Address Bus Busy (ABB)—Output

	8.2.3 Address Transfer Signals
	8.2.3.1 Address Bus (A[0:31])
	8.2.3.1.1 Address Bus (A[0:31])—Output
	8.2.3.1.2 Address Bus (A[0:31])—Input

	8.2.3.2 Address Bus Parity (AP[0:3])
	8.2.3.2.1 Address Bus Parity (AP[0:3])—Output
	Table�8-3. Address Parity Bit Assignments

	8.2.3.2.2 Address Bus Parity (AP[0:3])—Input

	8.2.4 Address Transfer Attribute Signals
	8.2.4.1 Transfer Start (TS)
	8.2.4.1.1 Transfer Start (TS)—Output
	8.2.4.1.2 Transfer Start (TS)—Input

	8.2.4.2 Transfer Type (TT[0:4])
	8.2.4.2.1 Transfer Type (TT[0:4])—Output
	8.2.4.2.2 Transfer Type (TT[0:4])—Input

	8.2.4.3 Transfer Burst (TBST)—Output
	8.2.4.4 Transfer Size (TSIZ[0:2])—Output
	8.2.4.5 Global (GBL)
	8.2.4.5.1 Global (GBL)—Output
	8.2.4.5.2 Global (GBL)—Input

	8.2.4.6 Write-Through (WT)—Output
	8.2.4.7 Cache Inhibit (CI)—Output

	8.2.5 Address Transfer Termination Signals
	8.2.5.1 Address �Acknowledge (AACK)—Input
	8.2.5.2 Address Retry (ARTRY)
	8.2.5.2.1 Address Retry (ARTRY)—Output
	8.2.5.2.2 Address Retry (ARTRY)—Input

	8.2.5.3 Shared (SHD)
	8.2.5.3.1 Shared (SHD)—Output
	8.2.5.3.2 Shared (SHD)—Input

	8.2.6 Data Bus Arbitration Signals
	8.2.6.1 Data Bus Grant (DBG)—Input
	8.2.6.2 Data Bus Write Only (DBWO)—Input
	8.2.6.3 Data Bus Busy (DBB)—Output

	8.2.7 Data Transfer Signals
	8.2.7.1 Data Bus (DH[0:31], DL[0:31])
	Table�8-4. Data Bus Lane Assignments�
	8.2.7.1.1 Data Bus (DH[0:31], DL[0:31])—Output
	8.2.7.1.2 Data Bus (DH[0:31], DL[0:31])—Input

	8.2.7.2 Data Bus Parity (DP[0:7])
	8.2.7.2.1 Data Bus Parity (DP[0:7])—Output
	Table�8-5. DP[0:7] Signal Assignments�

	8.2.7.2.2 Data Bus Parity (DP[0:7])—Input

	8.2.8 Data Transfer Termination Signals
	8.2.8.1 Transfer �Acknowledge (TA)—Input
	8.2.8.2 Transfer Error Acknowledge (TEA)—Input

	8.3 60x/MPX Bus Protocol Signal Compatibility
	Table�8-6. Signal Compatibility Summary
	8.3.1 60x Bus Signals Not in the MPC7400
	8.3.1.1 Address Bus Busy and Data Bus Busy (ABB and DBB)
	8.3.1.2 Data Retry (DRTRY)
	8.3.1.3 Extended Transfer Protocol (XATS)
	8.3.1.4 Transfer Code (TC[0:1])
	8.3.1.5 Cache Set Element (CSE[0:1])
	8.3.1.6 Address Parity Error and Data Parity Error (APE, DPE)

	8.3.2 60x Signals Multiplexed with New MPX Bus Mode Signals
	8.3.3 New MPX Bus Mode Signals

	8.4 MPX Bus Signal Configuration
	8.4.1 MPX Bus Mode Functional Groupings
	Figure�8-2. MPX Bus Signal Groups

	8.4.2 MPX Address Bus Arbitration Signals
	8.4.2.1 Bus Request (BR)—Output
	8.4.2.2 Bus Grant (BG)—Input
	8.4.2.3 Address Bus Monitor (AMON)—Output

	8.4.3 Address Bus and Parity in MPX Bus Mode
	8.4.3.1 Address Bus (A[0:31])—Output
	8.4.3.2 Address Bus (A[0:31])—Input
	8.4.3.3 Address Parity (AP[0:3])—Output
	8.4.3.4 Address Parity (AP[0:3])—Input

	8.4.4 Address Transfer Attribute Signals in MPX Bus Mode
	8.4.4.1 Transfer Start (TS)—Output
	8.4.4.2 Transfer Start (TS)—Input
	8.4.4.3 Transfer Type (TT[0:4])
	8.4.4.3.1 Transfer Type (TT[0:4])—Output
	8.4.4.3.2 Transfer Type (TT[0:4])—Input

	8.4.4.4 Transfer Burst (TBST)—Output
	8.4.4.5 Transfer Size (TSIZ[0:2])—Output
	8.4.4.6 Global (GBL)
	8.4.4.6.1 Global (GBL)—Output
	8.4.4.6.2 Global (GBL)—Input

	8.4.4.7 Write-Through (WT)
	8.4.4.7.1 Write-Through (WT)—Output
	8.4.4.7.2 Write-Through (WT)—Input

	8.4.4.8 Cache Inhibit (CI)
	8.4.4.8.1 Cache Inhibit (CI)—Output
	8.4.4.8.2 Cache Inhibit (CI)—Input

	8.4.5 MPX Address Transfer Termination Signals
	8.4.5.1 Address Acknowledge (AACK)—Input
	8.4.5.2 Address Retry (ARTRY)
	8.4.5.2.1 Address Retry (ARTRY)—Output
	8.4.5.2.2 Address Retry (ARTRY)—Input

	8.4.5.3 MPX Bus Shared (SHD0, SHD1) Signals
	8.4.5.3.1 Shared (SHD0, SHD1)—Output
	8.4.5.3.2 Shared (SHD0, SHD1)—Input

	8.4.5.4 Snoop Hit (HIT)—Output

	8.4.6 Data Bus Arbitration Signals
	8.4.6.1 Data Bus Grant (DBG)—Input
	8.4.6.2 Data Transaction Index (DTI[0:2])—Input
	8.4.6.3 Data Ready (DRDY)—Output
	8.4.6.4 Data Bus Monitor (DMON)—Output

	8.4.7 Data Transfer Signals in MPX Bus Mode
	8.4.7.1 Data Bus (DH[0:31], DL[0:31])
	8.4.7.1.1 Data Bus (DH[0:31], DL[0:31])—Output
	8.4.7.1.2 Data Bus (DH[0:31], DL[0:31])—Input

	8.4.7.2 Data Bus Parity (DP[0:7])—Output
	8.4.7.3 Data Bus Parity (DP[0:7])—Input

	8.4.8 Data Transfer Termination Signals in MPX Bus Mode
	8.4.8.1 Transfer �Acknowledge (TA)—Input
	8.4.8.2 Transfer Error Acknowledge (TEA)—Input

	8.5 Non-Protocol Signal Descriptions
	8.5.1 L2 Cache Address/Data
	8.5.1.1 L2 Address (L2ADDR[17:0])—Output
	8.5.1.2 L2 Data (L2DATA[0:63])
	8.5.1.2.1 L2 Data (L2DATA[0:63])—Output
	8.5.1.2.2 L2 Data (L2DATA[0:63])—Input

	8.5.1.3 L2 Data Parity (L2DP[0:7])
	8.5.1.3.1 L2 Data Parity (L2DP[0:7])—Output
	8.5.1.3.2 L2 Data Parity (L2DP[0:7])—Input

	8.5.2 L2 Cache Clock/Control
	8.5.2.1 L2 Chip Enable (L2CE)—Output
	8.5.2.2 L2 Write Enable (L2WE)—Output
	8.5.2.3 L2 Clock Out A (L2CLK_OUTA)—Output
	8.5.2.4 L2 Clock Out B (L2CLK_OUTB)—Output
	8.5.2.5 L2 Synchronize Out (L2SYNC_OUT)—Output
	8.5.2.6 L2 Synchronize In (L2SYNC_IN)—Input
	8.5.2.7 L2 Low-Power Mode Enable (L2ZZ)—Output

	8.5.3 Interrupts/Reset Signals
	8.5.3.1 Interrupt (INT)—Input
	8.5.3.2 System Management Interrupt (SMI)—Input
	8.5.3.3 Machine Check (MCP)—Input
	8.5.3.4 Reset Signals
	8.5.3.4.1 Soft Reset (SRESET)—Input
	8.5.3.4.2 Hard Reset (HRESET)—Input

	8.5.3.5 Checkstop Input (CKSTP_IN)—Input
	8.5.3.6 Checkstop Output (CKSTP_OUT)—Output
	8.5.3.7 Check (CHK)—Input

	8.5.4 Processor Status/Control Signals
	8.5.4.1 Reservation (RSRV)—Output
	8.5.4.2 Timebase Enable (TBEN)—Input
	8.5.4.3 Quiescent Request (QREQ)—Output
	8.5.4.4 Quiescent Acknowledge (QACK)—Input
	8.5.4.5 Enhanced Mode (EMODE)—Input

	8.5.5 Clock Control Signals
	8.5.5.1 System Clock (SYSCLK)—Input
	8.5.5.2 PLL Configuration (PLL_CFG[0:3])—Input
	8.5.5.3 Clock Out (CLK_OUT)—Output

	8.5.6 IEEE 1149.1a-1993 (JTAG) Interface Description
	Table�8-7. IEEE Interface Pin Descriptions�
	8.5.6.1 JTAG Test Clock (TCK)—Input
	8.5.6.2 JTAG Test Data Input (TDI)—Input
	8.5.6.3 JTAG Test Data Output (TDO)—Output
	8.5.6.4 JTAG Test Mode Select (TMS)—Input
	8.5.6.5 JTAG Test Reset (TRST)—Input

	8.5.7 Bus Voltage Select (BVSEL)/L2 Voltage Select (L2VSEL)
	8.5.7.1 Bus Voltage Select (BVSEL)—Input
	8.5.7.2 L2 Voltage Select (L2VSEL)—Input

	8.5.8 Power and Ground Signals

	Chapter�9 System Interface Operation
	9.1 MPC7400 System Interface Overview
	9.1.1 MPC7400 Bus Operation Features
	9.1.1.1 60x Bus Features
	9.1.1.2 MPX Bus Features

	9.1.2 Overview of System Interface Accesses
	9.1.3 Summary of L1 Instruction and Data Cache Operation
	Figure�9-1. MPC7400 Microprocessor Block Diagram

	9.1.4 L2 Cache and System Interface
	9.1.5 Operation of the System Interface
	9.1.6 Memory Subsystem Control Register (MSSCR0) Effects
	9.1.7 Direct-Store Accesses Not Supported
	Figure�9-2. Timing Diagram Legend

	9.2 60x Bus Protocol
	Figure�9-3. Overlapping Tenures on the MPC7400 Bus for a Single-Beat Transfer
	9.2.1 Arbitration Signals—Overview
	9.2.2 Address Pipelining and Split-Bus Transactions

	9.3 60x Address Bus Tenure
	9.3.1 Address Bus Arbitration
	9.3.1.1 Qualified Bus Grant
	Figure�9-4. Address Bus Arbitration

	9.3.1.2 Bus Parking
	Figure�9-5. Address Bus Arbitration Showing Bus Parking

	9.3.1.3 Ignoring ABB

	9.3.2 Address Transfer
	Figure�9-6. Address Bus Transfer
	9.3.2.1 Address Bus Parity
	9.3.2.2 Address Transfer Attribute Signals
	9.3.2.2.1 Transfer Type (TT[0:4]) Signals in 60x Bus Mode
	Table�9-1. Transfer Type Encodings for 60x Bus Mode�

	9.3.2.2.2 Transfer Size (TSIZ[0:2]) Signals
	Table�9-2. TBST and TSIZ[0:2] Encodings in 60x Bus Mode

	9.3.2.2.3 Write-Through (WT), Cache Inhibit (CI), and Global (GBL) Signals

	9.3.2.3 Burst Ordering During Data Transfers
	Table�9-3. Burst Ordering

	9.3.2.4 Effect of Alignment in Data Transfers
	Table�9-4. Aligned Data Transfers�
	9.3.2.4.1 Misaligment Example
	Table�9-5. Misaligned Data Transfers (Four-Byte Examples)�

	9.3.2.4.2 Alignment of External Control Instructions

	9.3.3 Address Transfer Termination
	9.3.3.1 Address Retry Window and Qualified ARTRY
	9.3.3.2 Snoop Copyback and Window of Opportunity
	Figure�9-7. Snooped Address Cycle with ARTRY

	9.3.3.3 Snoop Response and SHD Signal

	9.4 60x Data Bus Tenure
	9.4.1 Data Bus Arbitration
	9.4.1.1 Qualified Data Bus Grant in 60x Bus Mode
	Figure�9-8. Data Bus Arbitration

	9.4.1.2 Using the DBB Signal
	9.4.1.3 Data Bus Write Only (DBWO) and Data Bus Arbitration

	9.4.2 Data Transfer Signals and Protocol
	9.4.3 Data Transfer Termination
	9.4.3.1 Normal Single-Beat Termination
	Figure�9-9. Normal Single-Beat Read Termination
	Figure�9-10. Normal Single-Beat Write Termination
	Figure�9-11. Normal Burst Transaction
	Figure�9-12. Read Burst with TA Wait States

	9.4.3.2 Data Transfer Termination Due to a Bus Error
	9.4.3.3 No-DRTRY Mode

	9.4.4 Using Data Bus Write Only (DBWO)

	9.5 60x Bus Timing Examples
	Figure�9-13. Fastest Single-Beat Reads
	Figure�9-14. Fastest Single-Beat Writes
	Figure�9-15. Single-Beat Reads Showing Data-Delay Controls
	Figure�9-16. Single-Beat Writes Showing Data Delay Controls
	Figure�9-17. Burst Transfers with Data Delay Controls
	Figure�9-18. Use of Transfer Error Acknowledge (TEA)

	9.6 MPX Bus Protocol
	9.6.1 Address Tenure in MPX Bus Mode
	9.6.1.1 Address Arbitration Phase
	9.6.1.1.1 Qualified Bus Grant in MPX Bus Mode
	Figure�9-19. MPX Bus Address Bus Arbitration—Non-Parked Case

	9.6.1.1.2 MPX Bus Mode Address Bus Parking
	Figure�9-20. Bus Arbitration—Parked Case
	Figure�9-21. Address Parking in MPX Bus Mulitprocessor Systems

	9.6.1.2 Address Transfer in MPX Bus Mode
	9.6.1.2.1 Address Bus Driven Mode
	9.6.1.2.2 Address Bus Streaming
	9.6.1.2.3 Address Bus Parity
	9.6.1.2.4 Address Pipelining

	9.6.1.3 Transfer Attributes in MPX Bus Mode
	9.6.1.3.1 Transfer Type 0–4 (TT[0:4]) in MPX Bus Mode
	Table�9-6. Transfer Type Encodings for MPX Bus Mode

	9.6.1.3.2 Transfer Size
	Table�9-7. TBST and TSIZ[0:2] Encodings in MPX Bus Mode�

	9.6.1.3.3 Aligned and Misaligned Transfers

	9.6.1.4 Address Termination Phase in MPX Bus Mode
	9.6.1.4.1 Address Retry (ARTRY) in MPX Bus Mode
	Figure�9-22. Overlapped ARTRY and TS (with a Delayed AACK) in MPX Bus Mode

	9.6.1.4.2 Shared (SHD0, SHD1) Signals for MPX Bus Mode
	Figure�9-23. SHD0 and SHD1 Negation Timing

	9.6.1.4.3 Hit (HIT) Signal and Data Intervention
	Figure�9-24. HIT and ARTRY Asserted Together

	9.6.1.4.4 HIT Signal Timing and Data Snarfing

	9.6.2 Data Tenure in MPX Bus Mode
	9.6.2.1 Data Bus Arbitration Phase in MPX Bus Mode
	9.6.2.1.1 Qualified Data Bus Grant in MPX Bus Mode
	9.6.2.1.2 Data Streaming Constraints for Data Bus Arbitration in MPX Bus Mode

	9.6.2.2 Data Bus Transfers
	9.6.2.2.1 Earliest Transfer of Data
	9.6.2.2.2 Data Intervention—MPX Bus Mode
	Figure�9-25. Data Intervention for Read (Atomic) and RWITM (Atomic) Using the Data-Only Transfer ...

	9.6.2.2.3 Data-Only Transaction Protocol
	Figure�9-26. Data-Only Transaction for a Flush Operation

	9.6.2.2.4 DRDY Timing (Data-Only Transactions)
	9.6.2.2.5 Pipelining of Data-Only Transactions
	Figure�9-27. Pipelined Data-Only Transactions

	9.6.2.2.6 Retrying Data-Only Transactions
	Figure�9-28. Retry Examples of Data-Only Transactions

	9.6.2.2.7 Ordering of Data-Only Transactions
	9.6.2.2.8 Data Tenure Reordering in MPX Bus Only

	9.6.2.3 Data Termination Phase in MPX Bus Mode

	9.7 Interrupt, Checkstop, and Reset Signal Interactions
	9.7.1 External Interrupts
	9.7.2 Checkstops
	9.7.3 Reset Inputs

	9.8 Processor State Signal Interactions
	9.8.1 System Quiesce Control Signals
	9.8.2 Support for the lwarx/stwcx. Instruction Pair

	9.9 IEEE 1149.1a-1993 Compliant Interface
	9.9.1 JTAG/COP Interface
	Figure�9-29. IEEE 1149.1a-1993 Compliant Boundary-Scan Interface

	Chapter�10 Power and Thermal Management
	10.1 Dynamic Power Management
	10.2 Programmable Power Modes
	Table�10-1. Programmable Power Modes�
	Figure�10-1. Power Management State Diagram
	10.2.1 Full-Power Mode with Dynamic Power Management Disabled
	10.2.2 Full-Power Mode with Dynamic Power Management Enabled
	10.2.3 Doze Mode
	10.2.3.1 Entering Doze Mode
	10.2.3.2 Returning to Full-Power Mode from Doze Mode

	10.2.4 Nap Mode
	10.2.4.1 Entering Nap Mode
	10.2.4.2 Nap Mode Bus Snooping Sequence
	10.2.4.3 Returning to Full-Power Mode
	10.2.4.4 Sleep Mode
	10.2.4.5 Entering Sleep Mode
	10.2.4.6 Returning to Full-Power Mode

	10.2.5 Power Management Software Considerations

	10.3 Thermal Assist Unit (TAU)
	10.3.1 Thermal Assist Unit Overview
	Figure�10-2. Thermal Assist Unit Block Diagram
	Table�10-2. THRM1 and THRM2 Field Descriptions
	Table�10-3. THRM3 Bit Field Settings

	10.3.2 Thermal Assist Unit Operation
	10.3.2.1 Thermal Assist Unit Single-Threshold Mode
	Table�10-4. Valid THRM1 and THRM2 Bit Settings�

	10.3.2.2 Thermal Assist Unit Dual-Threshold Mode
	10.3.2.3 MPC7400 Junction Temperature Determination
	10.3.2.4 Power Saving Modes and Thermal Assist Unit Operation

	10.4 Instruction Cache Throttling
	Table�10-5. ICTC Field Descriptions

	Chapter�11 Performance Monitor
	11.1 Overview
	11.2 Performance Monitor Interrupt
	11.2.1 A Note on TBEE Usage

	11.3 Special-Purpose Registers Used by the Performance Monitor
	Table�11-1. Performance Monitor SPRs—Supervisor-Level�
	Table�11-2. Performance Monitor SPRs—User Level (Read Only)�
	11.3.1 Performance Monitor Registers
	11.3.1.1 Monitor Mode Control Register 0 (MMCR0)
	Figure�11-1. Monitor Mode Control Register 0 (MMCR0)
	Table�11-3. MMCR0 Field Descriptions�

	11.3.1.2 User Monitor Mode Control Register 0 (UMMCR0)
	11.3.1.3 Monitor Mode Control Register 1 (MMCR1)
	Figure�11-2. Monitor Mode Control Register 1 (MMCR1)
	Table�11-4. MMCR1 Field Descriptions�

	11.3.1.4 User Monitor Mode Control Register 1 (UMMCR1)
	11.3.1.5 Monitor Mode Control Register 2 (MMCR2)
	Figure�11-3. Monitor Mode Control Register 2 (MMCR2)
	Table�11-5. MMCR2 Field Descriptions�

	11.3.1.6 User Monitor Mode Control Register 2 (UMMCR2)

	11.3.2 Breakpoint Address Mask Register (BAMR)
	Figure�11-4. Breakpoint Address Mask Register (BAMR)
	Table�11-6. BAMR Field Descriptions�
	11.3.2.1 User Breakpoint Address Mask Register (UBAMR)
	11.3.2.2 Performance Monitor Counter Registers (PMC1–PMC4)
	Figure�11-5. Performance Monitor Counter Registers (PMC1–PMC4)
	Table�11-7. PMCn Field Descriptions�

	11.3.2.3 User Performance Monitor Counter Registers (UPMC1–UPMC4)
	11.3.2.4 Sampled Instruction Address Register (SIAR)
	Figure�11-6. Sampled instruction Address Register (SIAR)

	11.3.2.5 User Sampled Instruction Address Register (USIAR)

	11.4 Event Counting
	11.5 Event Selection
	11.5.1 PMC1 Events
	Table�11-8. PMC1 Events—MMCR0[19–25] Select Encodings�

	11.5.2 PMC2 Events
	Table�11-9. PMC2 Events—MMCR0[26–31] Select Encodings�

	11.5.3 PMC3 Events
	Table�11-10. PMC3 Events—MMCR1[0–4] Select Encodings�

	11.5.4 PMC4 Events
	Table�11-11. PMC4 Events—MMCR1[5–9] Select Encodings�

	Appendix�A MPC7400 Instruction Set Listings
	A.1 Instructions Sorted by Mnemonic
	Table�A-1. Complete Instruction List Sorted by Mnemonic

	A.2 Instructions Sorted by Opcode
	Table�A-2. Complete Instruction List Sorted by Opcode

	A.3 Instructions Grouped by Functional Categories
	Table�A-3. Integer Arithmetic Instructions
	Table�A-4. Integer Compare Instructions
	Table�A-5. Integer Logical Instructions
	Table�A-6. Integer Rotate Instructions
	Table�A-7. Integer Shift Instructions
	Table�A-8. Floating-Point Arithmetic Instructions
	Table�A-9. Floating-Point Multiply-Add Instructions
	Table�A-10. Floating-Point Rounding and Conversion Instructions
	Table�A-11. Floating-Point Compare Instructions
	Table�A-12. Floating-Point Status and Control Register Instructions
	Table�A-13. Integer Load Instructions
	Table�A-14. Integer Store Instructions
	Table�A-15. Integer Load and Store with Byte Reverse Instructions
	Table�A-16. Integer Load and Store Multiple Instructions
	Table�A-17. Integer Load and Store String Instructions
	Table�A-18. Memory Synchronization Instructions
	Table�A-19. Floating-Point Load Instructions
	Table�A-20. Floating-Point Store Instructions
	Table�A-21. Floating-Point Move Instructions
	Table�A-22. Branch Instructions
	Table�A-23. Condition Register Logical Instructions
	Table�A-24. System Linkage Instructions
	Table�A-25. Trap Instructions
	Table�A-26. Processor Control Instructions
	Table�A-27. Cache Management Instructions
	Table�A-28. Segment Register Manipulation Instructions
	Table�A-29. Lookaside Buffer Management Instructions
	Table�A-30. External Control Instructions
	Table�A-31. Vector Integer Arithmetic Instructions
	Table�A-32. Floating-Point Compare Instructions
	Table�A-33. Floating-Point Estimate Instructions
	Table�A-34. Vector Load Instructions Supporting Alignment
	Table�A-35. Integer Store Instructions
	Table�A-36. Vector Pack Instructions
	Table�A-37. Vector Unpack Instructions
	Table�A-38. Vector Splat Instructions
	Table�A-39. Vector Permute Instruction
	Table�A-40. Vector Select Instruction
	Table�A-41. Vector Shift Instructions
	Table�A-42. Move to/from Condition Register Instructions
	Table�A-43. User-Level Cache Instructions

	A.4 Instructions Sorted by Form
	Table�A-44. I-Form
	Table�A-45. B-Form
	Table�A-46. SC-Form
	Table�A-47. D-Form\X-Form
	Table�A-48. XL-Form
	Table�A-49. XFX-Form
	Table�A-50. XFL-Form
	Table�A-51. XO-Form
	Table�A-52. A-Form
	Table�A-53. M-Form
	Table�A-54. VA-Form
	Table�A-55. VX-Form�
	Table�A-56. VXR-Form

	A.5 Instruction Set Legend
	Table�A-57. MPC7400 Instruction Set Legend �

	Appendix�B Instructions Not Implemented
	Table�B-1. 32-Bit Instructions Not Implemented by the MPC7400 Processor
	Table�B-2. 64-Bit Instructions Not Implemented by the MPC7400 Processor�

	Glossary of Terms and Abbreviations
	Index

