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Preface

Introduction

Welcome to SPARC-V8E, the real-time / embedded extension of SPARC, the most preva-

lent RISC architecture for general purpose computing. SPARC-V8E adds instructions for

increased performance and fast interrupt response time, defines critical system features

and provides a reference architecture to support real-time debugging.

SPARC-V8E is a microprocessor specification created by the SPARC Embedded Commit-

tee of EuroSPARC and reviewed by the SPARC Architecture Committee of SPARC Inter-

national. SPARC-V8E is not a specific chip; it is an architectural specification that can be

implemented as a microprocessor by anyone securing a license from SPARC Interna-

tional.

EuroSPARC is an open membership SPARC user group in Europe who counts among its

members real-time / embedded computer makers, semiconductor designers and manufac-

turers, as well as software development tools and operating systems vendors. SPARC

International is a consortium of computer makers with membership open to any company

in the world. The SPARC Embedded Committee has been chartered to enable and support

the use of SPARC as the embedded architecture of choice. The SPARC Architecture Com-

mittee is composed of voting members each of whom represents one of SPARC Interna-

tional’s Executive Member companies.

General purpose architectures are normally evolved to anticipate increasing demands of

applications as well as to take advantage of state-of-the-art technology. SPARC-V8 and

V9 are good examples. The Embedded Committee of EuroSPARC has identified an addi-

tional direction, that of creating a chip architecture that can bring RISC research and expe-

rience to real-time / embedded systems at volume prices. By using SPARC-V8

architecture as the base for enhancement, the Embedded Committee of EuroSPARC

allows both workstations and embedded systems to share the benefits of volume prices and

ongoing research. And the simplicity of V8 implementation has already made it a prefer-

ence for custom modular chips such as the ones being designed for the SMILE project, a

major European investment The resulting real-time/embedded extension of the V8 archi-

tecture creates a processor with high performance suitable for operating systems ranging

from Solaris (tm), down to fully predictable, high speed real-time operation on minimum-

sized executives. It also ensures that this processor, unlike others that were dedicated only

to real-time / embedded use, will be long lived because it will profit from all of the innova-

tion and investment going into the SPARC chips for workstation use.
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Learning from experience obtained from Fujitsu’s “SPARClite” chips, “DIVIDE STEP”

instructions have been introduced to minimize interrupt response time. Additional instruc-

tions such as SCAN and MAC are intended to provide hardware support for high perfor-

mance execution. The MMU has been extended, e.g. it supports global context and

optional protection of a smaller page size. System features have been added: input han-

dlers, interrupt mechanisms, counters, timers, pulsers. Finally, a complete real-time debug

architecture has been defined to support breakpointing, tracing and emulation.

Architecture compatibility for implementations, is based on the common denominator, the

V8 Architecture definition and enhancements. Compliance with the specification can be

obtained either via complete H/W implementation or by instruction emulation.

Audience for this Specification

The audience for this specification includes implementors of the architecture and develop-

ers of SPARC-V8E system software (simulators, compilers, debuggers, and operating sys-

tems, for example). Software developers who need to write SPARC-V8E software in

assembly language will also find this information useful.

Where to Start?

If you are new to the SPARC architecture, read The SPARC Architecture Manual, Version

8 for background. Then look into the subsequent sections and annexes of this document

for more details in areas of interest to you.

If you are already familiar with SPARC-V8, you will want to review the list of new fea-

tures listed below and in the next section, Scope.

Specification Contents

The first section, Scope, describes the overall content of the document, and its relationship

to SPARC-V8E. Section 2, “Instructions,” reviews the Instruction Set Architecture (ISA)

Extensions and enhancements to ASI accessibility. Section 3, “Memory Management

Unit,” is a description of the Memory Management Unit (MMU), Section 4, “Traps”,

describes the single-vector trapping features, Section 5, “Peripheral Extensions”, covers

Timers, Counters, and Interrupt Facilities, and Section 6, “Diagnostic Facilities” includes

instruction tracing, setting and using breakpoints, single stepping and emulation.

Annexes follow the sections and include the following: Annex A, “Programming Tech-

niques”, Annex B, “Alternative Window Usage Models”, and Annex C, “Summary of

Operation codes, ASI’s and ASR’s”.

Acknowledgments

The members of the SPARC- V8 Embedded architecture committee, set up in December
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1991, devoted a great deal of time describing and discussing the design of the SPARC-

V8E architecture. Originators of various sections of the initial draft specification include:

Frits Zandveld (Philips) - Secretary, MMU, Counters, Timers and Interrupts; Bruce

McKeever (Fujitsu)- instructions, counters and timers, interrupt control, diagnostics; Anna

Hedbrant (Ellemtel)- MMU; Patrik Strömblad (Ellemtel)- MMU; Yves Roumazeilles

(SAGEM)- Counters and timers; Cesar Douady (MHS)- general comments and instruc-

tions; Rafael Guzman (TGI)- Chair; Alain Fanet (MHS)- Chair.

Additional contributors and reviewers include: Max Baron (Sun); Edmund Kelly (Sun)-

MMU; Rudolf Usselman (S-I)- instructions; Les Kohn (Sun)- evaluation of bitfield pro-

posals; David Weaver (Sun)- interrupts, counters, timers, and overall editing and review

support.

Others who contributed either via the “Task Force” to get the committee started or through

the SPARC-V8E Architecture Subcommittee to finalize and produce the final specification

include: J.J. Whelan (S-I)- Chair; Bruce McKeever (Fujitsu); Craig Nelson (LSI); Edmund

Kelly (Sun); Mike Rayfield (TI); and Dalibor Vrsalovic (SunSoft).

Final consolidation of draft material and technical editing was provided by Morris Enfield

(Enmor Associates) on contract to SPARC International.
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1   Scope

This supplementary specification defines a 32-bit enhanced SPARC-V8 archi-
tecture called SPARC-V8E that is upward-compatible with the existing 32-bit
SPARC-V8 processor architecture. This specification includes, but is not lim-
ited to, the definition of the enhanced instruction set, ASI access, trap model,
memory management unit, diagnostic facilities, and timers and counters. Spe-
cific implementations may selectively include one or more of the specified sup-
plementary features and functions.

1.1   SPARC-V8E Attributes

SPARC-V8E is a CPU instruction set architecture (ISA) and a set of facil-
ities to improve programmer control over processor behavior and to improve
processor responsiveness to the outside world in the context of embedded
applications. It is derived from SPARC-V8. Both architectures come from a
reduced instruction set computer (RISC) lineage. As architectures, SPARC-
V8E and SPARC-V8 provide a basis for a spectrum of chip and system imple-
mentations at a variety of price/performance points. SPARC-V8E may be
employed in a range of applications, including most embedded applications
such as real-time, process control, medical, imaging, digital telecommunica-
tions, local area networking (LAN), and other time-critical and dedicated or
embedded scientific and commercial applications.

1.1.1   Design Goals

SPARC-V8E, as specified, is a platform for optimizing and standardizing soft-
ware systems, diagnostic tools, and high-performance hardware implementa-
tions.

1.1.2   Architectural Enhancements

SPARC-V8E is derived from SPARC-V8, which in turn is derived from SPARC,
which was formulated at Sun Microsystems in 1985. SPARC is based on the
RISC I & II designs engineered at the University of California at Berkeley
from 1980 through 1982. Enhancements have been made based on require-
ments for improved performance and lower cost of operation in time-critical
and dedicated processing environments.
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The architecture provides for a spectrum of input/output (I/O) and memory-
management unit (MMU) sub-architectures. SPARC-V8E assumes that these
elements are best defined by the specific requirements of particular systems.
Note that they are invisible to nearly all user programs, and the interfaces to
them can be limited to localized modules in an associated operating system.

1.2   SPARC-V8E Features

SPARC-V8E includes the following enhanced features:

— Divide Step Instruction:

The Divide Step instruction, DIVScc, provides for implementation
of an interruptible divide algorithm.

— Scan Instruction:

The Scan instruction, SCAN, provides the capability for quickly
locating the first bit set, cleared, or differing from the sign in a word.
Such operations occur frequently in embedded systems, especially
for scheduling and interrupt case detection.

— Multiply Accumulate Instruction:

The Multiply Accumulate instruction, MAC, enhances e.g. (integer)
fast Fourier transform operations.

— Alternate Window Pointer Register:

The Alternate Window Pointer Register, AWP, helps reducing the
amount of time a SPARC-V8E is not interruptible during register
save operations.

— Partial Write Program Status Word:

Write Program Status Word, WRPSR, with a special value for the
rd field allows atomic setting and resetting of the ET field in the Pro-
gram Status Word.

— Non-Privileged ASI Access:

Allows LOAD and STORE from Alternate space instruction access
to some ASI’s in user mode.
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— MMU:

Improvements have been made to the Reference MMU to provide
enhanced functionality while retaining compatibility with the
SPARC-V8 Reference MMU.

The improvements include software table walk, page protection
down to 1k bytes, bypass of context number checking in the address
translation phase, and TLB entry locking.

— Traps:

A facility supporting single vector trapping has been provided.

— Interrupt Handlers:

A set of features to shape and prioritize interrupt signals has been
added.

— Timers/Counters/Pulsers:

Improved timer/counter/pulser facilities will be provided as part of
the Peripheral Extensions expanded functionality.

— Diagnostic Facilities:

Initial diagnostic features have been provided based on Fujitsu’s
SPARCLite Debug Support Unit specification.

1.3   SPARC-V8E Definition

The SPARC Version 8 embedded architecture, SPARC-V8E, is defined by the
sections and normative annexes of this document. A correct implementation of
the architecture provides for execution of a program strictly according to the
rules and algorithms specified in the sections and normative annexes. The
informative annexes provide supplementary information such as program-
ming tips, expected usage, and assembly language syntax. These annexes are
not binding on an implementation or user of a SPARC-V8e system.

The Architecture Committee of SPARC International has sole responsibility
for clarification of the definitions in this document.



SPARC-V8E SPARC-V8E Release 1  Architecture Specification

8 1 Scope

1.4   SPARC-V8E Compliance

Compliance to this specification may be claimed only by implementations
which have been submitted to SPARC International for testing and which
have been issued a certificate of compliance. Testing and certification of
SPARC-V8E compliance requires that the implementation also be tested and
certified as SPARC-V8 compliant with the exception of SPARC-V8E function-
ality which differs from SPARC-V8.

A compliant implementation need not implement all of the features described
in section 1.2 or Annex D of this document. Each of the features identified in
section 1.2 or Annex D can be individually implemented and certified as com-
pliant. In order for a feature to be so certified it must be implemented as
defined in this document. Claims of compliance to this specification must have
the form, “Compliant to SPARC-V8E, Release 1 <feature list>” where <feature
list> is the list of features certified as tested to be compliant by SPARC Inter-
national. Compliance to SPARC-V8E must not be claimed without the feature
list.

Annex D of this document formally lists all features and their legal combina-
tions.

Prior to compliance testing, a statement must be submitted to SPARC Inter-
national for each implementation that:

— specifies the individual features and functions of this specification
selected for implementation and to be tested for compliance

— specifies the implementation choice for all implementation dependen-
cies

— specifies any subsetting of function as allowed by this document

This information becomes the property of SPARC International and may be
released publicly as part of a list of compliant implementations.
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2   Instructions

The following instructions and Non-Privileged ASI access have been added to
SPARC-V8 in order to improve performance and provide additional function-
ality especially for embedded, time critical applications. Divide Step, Scan,
and ASI Non-Privileged access may be included individually or in any combi-
nation for implementation in a SPARC-V8E implementation.
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2.1   Divide Step

Format (3):

Description:

The DIVScc instruction performs one bit-cycle of a non-restoring, shift-before-
add, signed or unsigned division. Initially, the more significant half of the div-
idend is in the Y register, the less significant 32 bits are in r[rs1]. The divisor
is in r[rs2]. Subsequently, the more significant half of the partial remainder is
in the Y register, the less significant half is in r[rs1], along with another quo-
tient bit.

DIVScc operates as follows:

(1) The true sign is formed using the negative (n) and overflow (v) integer
condition codes from the Processor Status Register.

True sign= PSR.n xor PSR.v.

(2) The remainder is formed by left shifting the Y register (initially the
more significant word of the dividend) one bit, and setting the least sig-
nificant bit of the remainder equal to the most significant bit of r[rs1]
(initially the less significant word of the dividend).

(3) The divisor is r[rs2] if the i field is 0, or simm13, sign-extended to 32
bits, if the i field is 1.

(4) If true sign = 0 (+), the ALU computes (remainder - divisor). If true
sign = 1 (-), the ALU computes (remainder + divisor).

(5) Carry-out from the ALU operation is noted as c0. The negative (n) con-
dition code is set to bit 31 of the ALU result. The zero (z) condition code
is set if the ALU result is 0 and the true sign equals Y[31], otherwise it
is cleared.

opcode op3 operation

DIVScc 011101 Divide Step (and modify cc’s)

Suggested Assembly Language Syntax

divscc regrs1, reg_or_imm, regrd

31 141924 18 13 12 5 4 02530 29

10 op3 unused (zero)rd rs1 i=0 rs2

10 op3rd rs1 i=1 simm13
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(6) The new true sign is formed as (true sign and not Y[31]) or (not c0
and (true sign or not Y[31]))

(7) The overflow (v) condition code is formed as new true sign xor bit 31 of
the ALU result. The carry (c) condition code is set to not new true sign.
Y is set to the 32-bit ALU result. If r[rd] is not 0, then r[rd] is set to
r[rs1], left shifted one bit with not new true sign (the new quotient bit)
in the least significant bit position.

Note:

Usage of DIVScc in other algorithms than in a division algorithm is not advised. This

same warning applies to MULScc in SPARC Version 8 and Version 9.

Register Manipulation Description:

Divide step performs one bit cycle of a non-restoring, shift-before-add, signed
or unsigned division. It operates on a signed or unsigned dividend with an
unsigned divisor. It uses standard condition code bits to carry true sign,
remainder, and previous quotient bit information from one cycle to the next.
Therefore, standard SPARC instructions are sufficient for correct initializa-
tion for signed or unsigned divide, eliminating the need for a special divide
initialize instruction. Use of shift-before-add and the functional equivalent of
33rd- bit add/subtract maintains remainder and quotient in correct relative
position with respect to their holding registers, eliminating the need for a spe-
cial divide terminate instruction to shift the last quotient without shifting the
last remainder.

For non-overflow divisions, the non-restoring division leaves a last partial
remainder bounded by: absolute divisor - 1 (|divisor| - 1), and, - absolute divi-
sor (-|divisor|). With true sign last partial remainder carried by standard
condition code bits, standard SPARC instructions are sufficient to produce the
correct remainder, eliminating the need for a special remainder correction
instruction.

Note:

Expected use of divide step will have r[rd] = r[rs1]. A useful exception is the first

divide step of 32 by 32 signed division, which preserves the original dividend for later

testing by r[rd] = r[rs1].

Traps:

none
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2.2   Scan

Format (3):

Description:

The SCAN instruction can be used to return the location of the first bit in
r[rs1] that differs from its most-significant bit or the location of the first 1 bit
or first 0 bit of source register r[rs1].

SCAN works as follows:

(1) The value in r[rs1] is “xored” on a bit-wise basis with the mask
obtained by shifting right by one bit and sign-extending the value in
r[rs2] if the i field is 0, or with sign_ext(simm13) if the i field is 1.

(2) The number of the bit position of the first “1” in the result from (1)
above is returned to the destination register r[rd]. Bit numbers range
from 0 for the most significant bit to 31 for the least significant bit. A
“1” in the most significant bit (MSB) position returns a value of 0, while
the first “1” in the least significant bit (LSB) position returns a value of
31. If no bit is set (the two operands are identical), an implementation
dependent unsigned value greater than or equal to 32 is written to
r[rd].

Implementation notes:

Use of an unsigned value with bit 31 set (but in any case greater than or equal to 64)

is recommended for use in new implementations.The opcode for Scan is op=2, op3=

2C. The Scan instruction conflicts with SPARC Version 9 opcode for MOVcc.

Programming Note:

For portability, software must perform unsigned comparisons with the result produced

by SCAN, since SCAN may return a value with bit 31 set to ‘1’.

Traps:
none

opcode op3 operation

SCAN 101100 scan for first occurrence of ‘1’ or ‘0’ bit

Suggested Assembly Language Syntax

scan regrs1, reg_or_imm, regrd

31 141924 18 13 12 5 4 02530 29

10 op3 unused (zero)rd rs1 i=0 rs2

10 op3rd rs1 i=1 simm13
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2.3   Mac

Format (3):

Description:

These instructions use ASRxx (xx tbd), Y and ASRyy (yy tbd) as an accumula-
tor, ASRxx being the most significant word, Y the middle word and ASRyy the
least significant word.

The product of both operands is computed as for the corresponding MUL
instructions, but the result is operand1*operand2+ASRxx|Y|ASRyy. This
result is stored in ASRxx (most significant word), Y (middle word) and both
r[rd] and ASRyy (least significant word).

The width of ASRxx is implementation dependant. Its size can be observed
from the software by writing full 1’s in it and reading back to see set bits. In
particular, ASRxx may contains no bits at all, in which case RDASRxx will
return 0.

UMAC and SMAC do not affect the condition code bits. UMACcc and SMACcc
set the condition codes the following way :

N, Z : As specified in V8, but replacing “product” by “result” (i.e. the accumu-
lated result).

V, C : The condition out of the final addition, i.e. the result is computed on 1

opcode op3 operation

UMAC tbd Multiply and accumulate unsigned

UMACcc tbd Multiply and accumulate unsigned

and modify cc

SMAC tbd Multiply and accumulate signed

SMACcc tbd Multiply and accumulate signed

and modify cc

Suggested Assembly Language Syntax

umac regrs1, reg_or_imm, regrd

umaccc regrs1, reg_or_imm, regrd

smac regrs1, reg_or_imm, regrd

smaccc regrs1, reg_or_imm, regrd

31 141924 18 13 12 5 4 02530 29

tbd op3 unused (zero)rd rs1 i=0 rs2

tbd op3rd rs1 i=1 simm13



SPARC-V8E SPARC-V8E Release 1  Architecture Specification

14 2 Instructions

more bit than the width of the accumulator and :

C is set if the extra bit is set and the operation is unsigned.

V is set if the extra bit is different from the most significant bit of the accumu-
lator and the operation is signed.

ASRzz (zz tbd) contains 2 bits :

AccruedOverflow : Bit 1, set each time V=1.

AccruedCarry : Bit 0, set each time C=1.

ASRzz is only reset by writing to it.

ASRzz is updated even for instructions which do not affect condition codes.

The MUL instructions also sets ASRyy to the same value as r[rd] and ASRxx
to 0 or full 1’s depending on the result sign. Note that MUL is equivalent to
ASRxx|Y|ASRyy=0 followed by MAC.

Traps:

none
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2.4   Alternate Window Pointer

Description:

AWP (Alternate Window Pointer) is a field of ASRxx (no relation with previous
section).

PSR contains two additional bits AW (Alternate Window, place tbd) and PAW
(Previous AW, place tbd) which are reset on RESET. The current window is the
one pointed to by CWP when AW=0 and the one pointed to by AWP when
AW=1.

When a trap is taken, in addition to the normal behavior, AW is copied to PAW
and AW is reset. Upon execution of RETT, PAW is copied back to AW.

This mechanism allows routines which manipulate windows other than the
current window (such as context switching routines) to run with ET=1 thus
reducing the maximum interrupt latency.

2.5   Partial WRPSR

Description:

When a WRPSR instruction with a non null rd is executed, only some fields of
PSR are written rather than all the defined fields of PSR.The mapping “rd =>
fields” is tbd. However:

— rd=0 => all fields written (for compatibility)

— rd=tbd => only ET is written.

The second point allows to overcome the explicitly stated weakness of V8 (pro-
gramming note 3 of the WRPSR instruction):

If traps are enabled (ET=1), care must be taken if software is to disable
them (ET=0) since the “RDPSR, WRPSR” sequence is interruptible -
allowing PSR to be changed between the two instructions - this
sequence is not a reliable mechanism to disable traps.

2.6   Non-Privileged ASI Access

In SPARC-V8E implementations providing for non-privileged ASI access func-
tions, LOAD and STORE from Alternate space instructions accessing ASI’s
0016 - 7F16 are privileged instructions. LOAD and STORE from Alternate
space instructions accessing ASI’s 8016 - FF16 are non-privileged instructions.
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3 Memory Management Unit (MMU)

3.1   Overview

This specification describes a reference MMU for SPARC-V8E and a simple
feature to indicate cacheability for those cases where no full reference MMU is
to be implemented: a minimal MMU. The SPARC-V8E reference MMU is an
extension to the existing reference MMU as described in the SPARC-V8 Archi-
tecture Specification. This specification covers the enhancements and modifi-
cations to the existing SPARC-V8 reference MMU to support embedded
applications. It assumes an understanding of the architecture of the SPARC-
V8 reference MMU.

The enhanced features and functionality offered by an embedded SPARC-V8E
reference MMU are covered in Section 3.2 below. They include:

— Sub-page protection down to 1k byte level

— Support for disabling of context number match

— Support for software table walk

— Support for locking TLB entries

The Minimal MMU cacheability control can be provided in the case where no
actual MMU is to be implemented.

3.2   Reference MMU architecture

3.2.1   Overview

The Embedded SPARC-V8E MMU architecture has been enhanced and/or
modified in four principal areas:

(1) Memory protection has been extended down to a level of 1k bytes. This
is done by splitting 4k byte pages into four subpages and providing pro-
tection for each of the four subpages. However, pages are always
aligned to 4k byte boundaries, and, 4k bytes remains the minimum
page size that may be addressed.
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(2) Context Number matching in the Page Descriptor Cache (a.k.a. Trans-
lation Lookaside Buffer, or TLB) has been provided with an optional
bypass. This provides for establishing global pages (as opposed to only
local) that are accessible across process contexts.

(3) Support has been provided for a software table walk in addition to the
hardware table walk of the SPARC-V8 MMU.

(4) Support has been provided for locking TLB entries.

Each of these enhancements are described in the following sections as specific
modifications to the existing SPARC-V8 reference MMU. No attempt has been
made to provide a full description of the existing SPARC-V8 reference MMU,
however, some portions of the V8 reference MMU architecture are replicated
here for background clarification of the Embedded V8e enhancements.

Note:

The SPARC-V8E MMU Specification uses the term TLB interchangeably with the

term PDC (as currently used in the V8 reference MMU Specification).

3.2.2   Virtual Address Format

As defined in the reference MMU, the 32 bit address is subdivided into the fol-
lowing fields:

The lower 12 bits are used as an offset within the physical page.

Two bits of the page offset may be used during the comparison phase to pro-
vide protection for 1k byte pages. However, addressing itself is not modified
and remains based on a minimum of 4k byte pages (see physical address
below).

The three index fields correspond to lookup keys into three different transla-
tion structures, mapping 4k, 256k, 16M, or 4G of virtual addresses.

Implementation Note:

When only software table walk is supported, then the above format does not have to

be followed in full and the detailed structure of the tables and their contents are

purely a software matter. If hardware table walk is supported, table structures and

table elements are as specified in a section below.

31 1724 18 1112 023

Index 2Index 1 Index 3 Page offset

10 9
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3.2.3   Physical Address Format

The physical address is a 36 bit field:

Note that the lower 12 bits of the physical address are the same as the lower
12 bits of the virtual address: they are not translated. This allows the imple-
mentation of virtually addressed, physically tagged caches with set sizes up to
4k bytes.

Implementation Note:

Implementation of all 36 physical address bits is not required.

3.2.4   Address Translation

The virtual address along with the context number are compared with the vir-
tual address tags stored in the TLB. A match indicates that the translation
from virtual to physical address is already in the TLB.

When a miss occurs, system hardware and/or software (See section on Hard-
ware and Software Table Walk), will cause a trap that fetches the required
PTE from the structures in memory. Due to sparse population and the use of
large linear mappings, a full set of structures in most cases is not needed.

Access permissions are checked by hardware for each translation. If the
requested access violates those permissions, a fault is generated and the
appropriate status information is stored in the Fault Status Register and the
Fault Address Register.

3.2.5   Contexts

Each virtual address is associated with a “context” number. The management
of context numbers is the responsibility of the memory management software.
The context number of the current running process is stored in the context
register. In this architecture, the context number has one purpose:

By comparing the context number in the TLB entry field with the
virtual address context, memory protection between different
processes is provided during address translation.

The context number can also be used as an index into a list of translation
table structures.

35 1112 0

Physical page number (PPN) Page offset
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Implementation Note:

The range of context numbers is implementation dependent, but can not be greater

than 0...127.

The primary difference between SPARC-V8E and the SPARC-V8 reference
MMU, with respect to context number matching, is that the context number
match can be disabled in SPARC-V8E. When disabled, the comparison of con-
text number is not performed during address translation.

3.2.6   Tables

Elements of the V8e MMU table structure and contents have been enhanced
to provide for:

— protection down to 1k byte pages

— support for disabling context number matching on address transla-
tion; this provides support for both “local” and “global” pages

The following diagram shows the hardware table walk for a matching virtual
address. I3 (6 bits) may be extended by two bits (total 8 bits) from the VA page
offset to provide 256 PTE Level-3 Table entries for 1k byte page protection.

.

Figure 1: Page Table Search

The root pointer is unique to each context. It is found in the Context Table (see
SPARC-V8 reference MMU description).
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3.2.7   Page Table Descriptor (PTD)

The Page Table Descriptor is shown below. It has been enhanced to include a
1k byte subpage protection enable flag:

PTP = Page Table Pointer value:
The PTP appears on bits 35 through 8 of the physical address
bus during miss processing. The page table pointed to by a PTP
must be aligned on a boundary equal to the size of the page
table. The sizes of the three levels of page tables are the same
as in the SPARC-V8 MMU

R = Reserved

KE= 1k byte protection enable (only at level 2):

KE = 0: I3 provides 6 bits- 64 page table entries;
page offset provides 12 bits- 4k bytes per page

KE= 1: I3 provides 8 bits- 256 page table entries;
page offset provides 10 bits- 1k bytes per subpage

ET = 01
Other entry types:
00: invalid
10: valid PTE (see PTE below)
11: valid PTE (see PTE below)

3.2.8   Page Table Entry (PTE)

The PTE has been enhanced in SPARC-V8E to support bypassing context
number matching on address translation. This optionally provides for two
types of pages:

— local pages, local to a particular context

— global pages, pages shared between contexts

31 12 0

PTP ET

3

KE

PTD:

R

4
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PPN = Physical Page Number value:

The high-order 24 bits of the 36-bit physical address of the sub-
page. The PPN appears on bits 35 through 12 of the physical
address bus when translation completes

CMR = C,M and R bits as in V8 reference MMU

ACC = ACC bits as in V8 reference MMU

ET = 10: valid PTE for “local” subpage: perform the context number
check

11: valid PTE for “global” subpage: do not perform the context
number check

Other entry types:
00: invalid PTD
01: valid PTD

3.2.9   Translation Lookaside Buffer (TLB)

Miss processing of the TLB on virtual address translation may be provided by
either hardware or software mechanisms or a combination of both. As previ-
ously noted, the TLB is referred to as a Page Descriptor Cache (PDC) in the
V8 reference MMU specification. The terminology has been updated in this
supplement to be consistent with the SPARC-V9 specification and industry
convention.

3.2.9.1   Hardware and Software Table Walk

(1) Software Table Walk:

Software handling of miss processing uses an openly defined table orga-
nization and layout for the TLB. Details on loading a TLB element are
specified in the sections below on “Writing TLB Entries”.

(2) Hardware Table Walk:

In the case of hardware miss processing of the TLB during virtual
address translation, the software user is still required to know how to
prepare the tables to be used by hardware address translation and
table walk. However, the exact format of the transfer by hardware from
these tables to a TLB is transparent to the software implementor.

31 4 12 0

PPN ETACCCMR

78 5

PTE:
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(3) Hardware and Software Table Walk:

Even in the case of exclusive hardware miss processing, there exist
requirements for software visible interfaces since software must ini-
tially construct the tables. For example, locking of TLB elements can
only be provided by software, even when the table walk is in hardware.
Consequently such functions as entering a lock bit into the hardware
are detailed in the specification below. Moreover, even in a fully hard-
ware tablewalk environment, reading and writing of TLB elements by
software for diagnostic purposes may be useful along with other func-
tionality.

3.2.9.2   TLB Contents

TLB entries are specified for software miss processing and other software
access to the TLB. The TLB entry consists of two parts, an associative and a
data part. The associative part is used during comparison matching with the
virtual address. If an entry matches the virtual page address, then a physical
page number (PPN) is directly provided by the data part of the TLB to gener-
ate the physical address. The TLB is composed of the following fields:

• PPN: Physical Page Number (up to 24 bits, implementation defined)

• C, M, R and ACC bits (as in V8)

• OL: Offset Length Indicator:
11: use 12 bits offset (1k subpages or 4k byte pages)
10: use 18 bits offset (256k byte pages)
01: use 24 bits offset (16M byte pages)
00: use 32 bits offset (4G byte pages

• VPN: Virtual Page Number, 20 virtual address bits comprised of
Indexes: I1, I2, and I3

• K: 1k byte subpage identifier- equals two most significant bits of
untranslated 12 bit VA page offset

• CN: Context Number

• KE: 1k byte subpage protection indicator:
KE =1: 1k byte subpage protection is enabled. Match 20 bits of

VPN plus 2 bits from K (total 22 bits)
KE = 0: 4k byte page. Match only 20 bits of VPN

• V: Valid bit,
V=1: valid entry.

• G: Global bit, enabling switch for context field,
G = 1: do not check Context Number (global page)
G = 0: do compare Context Number (local page)

•TLB- Lock Bit: Locks the TLB entry- not to be changed by tablewalk
hardware; can only be handled by software.
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3.2.9.3   Address Translation

The following diagram illustrates the comparison and matching of TLB fields
during translation of a virtual address into a physical address:

Figure 2: TLB Address Translation

3.2.9.4   Writing TLB Entries-Hardware Table Walk

When hardware miss processing is implemented, the required data elements
can be derived from the following sources:

element Source

PPN from the PTE being loaded

C,M,R,ACC from the PTE being loaded

OL (offset length ind) From table walk

VPN-virt page number Virtual Address

CN-Context Number Context Register

KE- protect enable PTD- Level 2 (last read)

V-Valid Bit Set to 1 if Table Walk ok (otherwise not entered)

G-Global Bit from the PTE being loaded (least significant bit of ET)

LB-Lock Bit Only manipulated by Software (can not be changed by hardware)

Table 1: TLB Entry Sources-H/W Table Walk

Index 2Index 1 Index 3 Context Number KE G OL

31 1724 18 1112 023

Index 2Index 1 Index 3 Page offset

910

TLB HIT

Virtual Address

TLB

comcompare compare compare compare

K
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3.2.9.5   Writing TLB Entries- Software Table Walk

When software miss processing is implemented, the required TLB elements
are available as a set of page descriptors located in a 4k byte area in an imple-
mentation defined location in ASI space (see TLB Mapping below).

16 bytes are allocated to each page descriptor, hence a maximum of 256 page
descriptors can be supported. Page descriptor n is mapped on the 4 word area
starting at byte address 16x n within the 4k byte space.

(1) Word 0 of a page descriptor is the physical address page descriptor
word; it contains (in ASI address space):

(2) Word 1 of a page descriptor is the TLB page descriptor word; It con-
tains:

(3) Word 2 of a page descriptor contains the Lock Bit;

(4) Word 3 of a page descriptor is not used.

Page Descriptor Word 0: Physical Address Data and Control Bits

31 2 1

PPN OLACCCMR

58 047

Page Descriptor Word 1: VA Tag and Control Bits

31 1112 0

Context Number KE V G

123910

VPN •K

31 0

Page Descriptor Word 2: Lock Bit

LB

31 0

Page Descriptor Word 3: NA

Not Used
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3.2.9.6   TLB Mapping

The following is an example of a reference implementation of MMU features
for page descriptor mapping within the implementation dependent alternate
address space.

Within this address space, TLB page descriptors may be accessed as shown in
the following table:

Implementation note:

For software portability across implementations, 1k byte subpages are assumed to be

referenced by the same Physical Page Number (PPN). However, this does not preclude

individual implementations with 1k byte mapping.

3.3   Cacheability Control (Minimal MMU)

If the reference MMU is not implemented, it may be desirable to control cach-
ing of memory accesses, e.g. to prevent caching data from blocks where DMA
is in progress. In such cases, the following function may be implemented:

When the most significant bit (MSB) of an instruction address or data
address equals one, the item referenced is not cacheable. The remaining
31 virtual address bits are used, without translation, as physical
address bits.

Word No. Bytes Address

0 4 16n to 16n+3

1 4 16n+4 to 16n+7

2 4 16n+8 to 16n+11

3 4 16n+12 to 16n+15- Not Used

Table 2: TLB Page Descriptor Mapping
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4 Traps

4.1   Overview

This section contains enhancements to the SPARC-V8 trap specifications. Vectoring all

traps through a single vector, single-vector trapping, can improve performance and mem-

ory utilization if all trap service routines can fit into cache memory.

4.2   Single-Vector Trapping

As an alternative to the standard SPARC-V8 trap mechanism, a single vector trap mecha-

nism is provided in SPARC-V8E. When this mechanism is implemented:

•trap type = 0: reset- vectors to a fixed physical address, 0x0

•trap type > 0: all other traps- vector to Trap Base Address + 0

After a trap has been taken, its Trap Type can be determined by reading the Trap Type

field, TT, of the Trap Base Register (TBR). This can be used by software to determine sub-

sequent processing of the trap. The trap base register has the same layout as in SPARC-

V8:

Single vector trapping can save code space and improve the response time of traps, since

the most frequent trap service routines for a given application may fit and be locked in

cache as needed.

Single vector trapping is enabled by setting the SVT flag, bit 0 of ASR 17, to a 1. A reset

trap clears the SVT flag, making V8e implementations consistent with the SPARC-V8

specification.

All other trap features are as specified in the SPARC-V8 specification and the reader is

referred to that document for their detailed description.

Trap Base Address (high order 20 bits) 0 0 0 0

Trap Base Register

Trap Type (tt)

31 12 03411
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5 Peripheral Extensions

5.1   Overview

This section supplements the SPARC-V8 features and functions in areas peripheral to the

basic processor such as: input handlers, interrupt mechanisms, timers, counters and

pulsers. The peripheral extensions may be included individually in specific implementa-

tions.

The input handler described in 5.2 can be used to shape, buffer, mask and reduce noise on

any inputs. Control of the features (polarity, noise immunity, buffering, masking) is con-

trolled on an input - by - input basis: one register controls all such features for one input.

The interrupt prioritizer as in 5.3 makes use of input handlers as in 5.2; it furthermore

merely prioritizes interrupts in one or more levels.

The integrated interrupt request controller as in 5.4 combines functions comparable to

those of of input handlers as in 5.2 and prioritizer as in 5.3; furthermore control is on a

function - by - function basis: one register controls polarity and noise reduction for all

inputs; one register controls all masks, etc. This difference in control philosophy reflects

two sets of user desires.

The counter-timer-pulser as in 5.5 standardizes a rather simple but nevertheless versatile

counter, prescaler and counter output control construction.

The simple counters as in 5.6 support routine capabilities such as DRAM refresh signal-

ing. The simple timers as in 5.6 support more demanding tasks such as periodic interrupt,

simple and watchdog timeout signaling and square wave generation.

5.2   Input Handler

A generalized Input Handler for SPARC-V8E is specified. An Input Handler can drive the

interrupt handling circuitry or drive or control a timer or counter. Input signals are first

handled by a standardized edge control, noise immunity control, buffer and enable circuit.

Noise immunity is attained by synchronizing the input sample clock with the processor

clock. The input sample clock may have the same period as the processor clock or it may

be divided down. The ratio of processor clock to input sample clock is an implementation

parameter. The number of samples taken can be controlled.

Control of each separate input line is done via one control register, controlling edge as

well as number of samples, buffering and masking.
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5.2.1   Input Handler Circuit

The following diagram shows the basic Input Handler Circuit:

Figure 3: Input Handler Circuitry

• IN:  the input signal to be handled

• INV: control signal:
0 = do not invert IN
1 = invert IN

• INP: IN xor INV

• SHIFT: a 6 bit shift register with INP as its input and shifted by the
system clock.

• WIDTH: control signal:
00 => set BUF to 1 when INP = 1
01 => set BUF to 1 when INP = 1 and SHIFT[5] = 1
10 => set BUF to 1 when INP = 1 and SHIFT[5:3] = 111
11 => set BUF to 1 when INP = 1 and SHIFT[5:0] = 111111

• EN: control signal; which enables BUF to the output of the input
handler.

• BUF: output signal; the latched result

o

INV WIDTH PULS MSK

OUT

M U X

Delay shift register

BUF
IN
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Control signals INV, WIDTH, EN and the buffered result BUF can all be read and written

by software. Reading will usually be done for diagnostic reasons only; BUF may be

polled. IN, INP, and SHIFT can not be read or written by software. Each set of 5 signals

(INV, WIDTH, EN and BUF) is mapped to one ASI word (see below).

Note:

An output should be disabled before its INV control or its WIDTH control are changed, otherwise

an output signal change not reflecting an input signal change may occur. This mechanism may be

used to produce a desired interrupt on a selected line.

5.2.2   ASI Mapping for Input Handler

All circuitry for one input is mapped on one ASI as follows:

— ASI 116 or C116 is used for Input Handlers.

— Input Handlers are mapped in the 4k byte page starting at address 100016 (4k

bytes).

— each Input Handler is mapped onto a full word in the alternate address space (this

permits up to 1024 input handlers). The bits are mapped as specified in the follow-

ing table:

Input handlers come in groups of 15. The outputs, OUT (16n + 1 through 16n + 15), are

mapped on the word at address (16n + 0)∗4; this allows reading (polling) all outputs of a

group and finding the leftmost ‘1’ using the SCAN instruction.

Bit Description

32:5 unused

4 INV

3:2 WIDTH

1 EN

0 BUF

Table 3: Input Handler Mapping
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5.3   Interrupts

This section contains enhancements to the basic SPARC-V8 interrupt specification.

5.3.1   Overview:

The interrupt handler, when combined with a sufficient number of input mechanisms as

described in 5.2, constructs a 15 channel programmable trigger input controller that arbi-

trates pending unmasked interrupt requests, encodes the highest priority interrupt request

into a 4 bit code compatible with the SPARC-V8 defined Interrupt Request Level (IRL),

and applies this code to IRL[3:0].

On top of this, a way is described to extend the number of interrupts handled over 15.

The following extensions are made to the SPARC-V8 interrupt specification:

— deriving the 4-bit IRL signal, as defined in V8, from (15) separate interrupt signals

— buffering of pulse-shaped interrupt signals

— establishing the polarity of interrupt signals

— supporting more than 15 interrupt sources

— masking interrupts

The basic mechanism contains up to 15 Input Handlers (as previously described). The

Input Handlers are in turn connected to a priority circuit, thus generating a 4 bit code to be

used as the Interrupt Request Level (IRL). The basic interrupt circuit is shown below.

5.3.2   The basic circuitry

Figure 4: Basic Interrupt Mechanism

•
•
•

I W P V
OUT IRLIN

15

14
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Each set of flip-flops, INV, BUF, WIDTH, and EN can be separately read and written by

software. Reading will usually only be done for diagnostic (or polling) purposes. Reset-

ting the actual input signals is not part of the interrupt mechanism.

Note:

An interrupt INT should be disabled before its INV or its WIDTH controls are changed, otherwise

an output signal change not reflecting an input signal change may occur.

5.3.3   Extended Interrupt Mechanism

If more than 15 interrupts are to be provided, then the outputs of the Input Handlers can be

grouped together by means of an or gate replacing the priority encoder in order to imple-

ment an extended interrupt mechanism. This extended interrupt mechanism is depicted

below.

Figure 5: Extended Interrupt Mechanism (example configuration)

The exact interrupt within the inputs to such an or circuit must be detected by software

scanning all BUF flip-flops driving those inputs. There is no limit to the number of

“branches” in the extended circuit.

IRL

•
•

15

14

2

1
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5.4   Integrated Interrupt Request Controller

5.4.1   Block Diagram and Overview

The Integrated Interrupt Request Controller(IIRC) is a 15 channel, programmable trigger

interrupt controller that arbitrates pending unmasked interrupt requests, encodes the high-

est priority interrupt request into a 4 bit code compatible with SPARC-V8 defined Inter-

rupt Request Level(IRL), and applies this code to IRL<3:0>. If traps are enabled and the

code on IRL<3:0> is greater than the processor interrupt level set in the processor state

register or the code is 15, then the processor is interrupted. The processor responds by ser-

vicing the interrupt and clearing the latched interrupt request in IIRC. Figure 6 shows a

block diagram of the IIRC.

Control of the IIRC is on a feature-by-feature basis: all inputs share the input control reg-

ister, the latch register and the mask register.

Figure 6: IIRC Block Diagram

Trigger Mode Control logic selects one of four trigger modes for each channel: high level,

low level, rising edge or falling edge. The program sets the selection code by writing to the

Trigger Mode registers.

Each Interrupt Request that satisfies the trigger mode conditions is captured in the IRQ

latch. The program may read the latch through the Request Sense register and may clear

the latch by writing to the Request Clear register.

Individual Interrupt Requests may be blocked by the IRQ Mask logic. The program con-

trols the masking by writing to the Mask register.

•
•
•

•
•
•

•
•
•
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All unmasked Interrupt Requests are examined by the Priority Encoder. The highest prior-

ity is encoded. IRQ15 has the highest priority and IRQ1 the lowest.

That encoded interrupt level from the Priority Encoder is captured in the IRL Latch.

The IRL Mask logic can block all interrupt requests by forcing the output of the IRL Latch

going to the IRL lines to zero. The program controls IRL masking by writing to a reserved

bit in the Mask register. Even if the IRL Latch is masked off, programs may poll for pend-

ing interrupts by reading the Request Sense register.

5.4.2   IIRC Registers

The IIRC has six internal registers that allow the program to control IIRC operation and to

monitor interrupt requests that may be pending. Registers are mapped, aligned by func-

tion, into ASI 1 at successive word addresses as shown in Table X.

5.4.2.1   Trigger Modes Register Operation

Trigger Mode registers control the trigger mode for each interrupt channel. Trigger Mode

Register 0 controls modes for channels 8-15. Trigger Mode Register 1 controls modes for

channels 1-7.

Address Register Required Access

IRC-REG + 0 Trigger Mode 0 Write

IIRC-REG + 4 Trigger Mode 1 Write

IIRC-REG + 8 Request Sense Read

IIRC-REG + C Request Clear Write

IIRC-REG +10 Mask Write

IIRC-REG +14 IRL Latch/Clear Read/Write

Table 4: IIRC Register Memory Map
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Each two bit field in the registers selects one of four trigger modes for each channel as fol-

lows:

Reset clears the Trigger Mode registers, initializing high level triggering for all interrupt

channels.

Trigger modes will be explained in 5.4.3.3.

Note:

 Changing trigger mode of an unmasked channel may result in a false interrupt.

5.4.2.2   Request Sense Register Operation

The program reads the state of the IRQ Latch through the Request Sense Register. Each

one bit indicates a pending interrupt.

MDx Trigger Mode

0 high level

1 low level

2 rising edge

3 falling edge

Table 5: Trigger Mode

31 16 1112 010 9 12345678131415

md8md9md10md11md12md13md14md15reserved

Trigger Mode Register 0

31 16 1112 010 9 12345678131415

md 1md 2md 3md 4md 5md 6md 7reserved

Trigger Mode Register 1

r
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.

Reset clears the Request Sense Register.

5.4.2.3   Request Clear Register Operation

Writing one's to selected bits of the Request Clear Register clears corresponding elements

of the IRQ Latch. The program typically uses this register to clear the latch element asso-

ciated with the interrupt channel that it has begun to service.

Reset clears the Request Clear Register.

Note:

When changing trigger mode for an interrupt channel, its IRQ Latch element may be set and if not

cleared after the change in trigger mode, may result in a false interrupt.

5.4.2.4   Mask Register Operation

Ones in the Mask Register block corresponding outputs of the IRQ Latch from examina-

tion by Priority Encoder, or, alternatively with a one in bit zero of the Mask Register,

block the output of the IRL Latch from driving the IRL<3:0> lines. Using the Mask Regis-

ter, the program may mask unused interrupt channels, temporarily mask individual active

interrupt channels or mask all interrupt channels.

Reset clears the Mask Register.

31 16 0115

reserved

Request Sense Register

rRequest Sense

31 16 0115

reserved

Request Clear Register

rRequest Clear

31 16 0115

reserved

Mask Register

Mask MKIRL
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5.4.2.5   IRL Latch/Clear Register Operation

The program uses the IRL Latch/Clear register to read or clear the IRL Latch. Reading this

register will return the IRL code on bits 3:0. Writing one to bit 4 of this register will clear

the IRL Latch. These capabilities permit optionally handling interrupt requests by polling

rather than vectored interrupts.

Reset clears the IRL Latch/Clear Register

5.4.3   IIRC Operation

The IIRC latches interrupt requests into the IRQ Latch according to the trigger mode

option selected for each interrupt channel. The Priority Encoder prioritizes unmasked

interrupts and generates an encoded interrupt level code for the highest priority interrupt.

The IRL Latch holds that code which is transferred through the IRL Mask logic to the

IRL<3:0> lines for processor interrupt. If an interrupt occurs, the response program ser-

vices the interrupt request identified on IRL<3:0> and clears both the IRL Latch and the

latched interrupt request in the IRQ Latch.

5.4.3.1   Polling

The processor can poll interrupts by reading either the IRQ Latch via the Request Sense

register or the IRL Latch via the IRL Latch/Clear register.

The processor may mask interrupts that it polls via the Request Sense Register by masking

individual elements of the IRQ Latch or by masking the entire IRL Latch. Typically the

processor periodically reads the IRQ Latch and clears interrupts from the latch as they are

serviced. In case of multiple entries in the IRQ Latch, the SCAN instruction can be used to

identify the one entry in the highest bit position. The IRL Latch may remain unmasked to

allow vectored interrupt servicing of some interrupt requests if polled interrupts are

masked in the IRQ Latch field of the Mask Register so that they are blocked from the Pri-

ority Encoder.

The processor may mask all interrupts when it polls via the IRL Latch/Clear Register by

masking the IRL Latch, Mask Register bit 0 = 1. Typically, the processor periodically

reads the IRL Latch for the highest level pending interrupt and clears both the IRL Latch

and the interrupt from the IRQ Latch once the interrupt is serviced.

31 16 0415

reserved

IRL Latch/Clear Register

reserved int. level

35

Cl

Cl= clear
int. level= interrupt

level
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5.4.3.2   Initialization

All IIRC registers are cleared to 0 by Reset. This results in high level trigger mode for all

interrupts and all masks disabled.

After reset, the interrupt trigger should be changed after the interrupts are masked with the

IRQ mask to eliminate false interrupts. Following this, the IRQ Latches should be cleared,

then the masks can be disabled.

5.4.3.3   Noise Immunity

The interrupt sample clock is synchronized with the processor clock and it is used to

examine IRL<3:0> and engage the trap mechanism. The interrupt sample clock may have

the same period as the processor clock or may be divided down. The ratio of processor

clock to interrupt sample clock is an implementation parameter. Sampling of the incoming

interrupt request signals takes place at the rising or falling edge of the interrupt sample

clock. This is also an implementation parameter.

For level mode triggering, a number of successive samples at the required level must

occur. That number is also an implementation parameter.

For edge mode triggering, the signal must currently satisfy high level conditions for rising

edge or low level conditions for falling edge. Additionally, prior to the signal satisfying

the appropriate current conditions, it must have satisfied the opposite level condition for

another number of successive samples. That second number is an implementation parame-

ter. Figure 7 shows an example of level detection for processor to interrupt sample clock

ratio = 2, sample on clock rising edge and number of successive clocks at required level =

2.

Figure 7: IRC Level Mode Trigger Sample Timing
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Internal
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Figure 8 shows an example of edge detection with the same implementation parameters

plus number of prior opposite level samples = 1.

Figure 8: Edge Mode Trigger Sample Timing

5.4.4   Extension for Additional Interrupt Sources

SPARC-V8 provides for 15 interrupt request levels. If there are more than 15 interrupt

sources, then a multi-stage interrupt processor must be constructed, with inputs of compa-

rable priority being latched and grouped together into a single IRQ line of the Integrated

Interrupt Request Controller. After interrupt servicing begins, the program must read the

register of the grouped inputs and determine which one within the group has the highest

priority. With appropriate conventions of bit position mapping, this can be done efficiently

using the SCAN instruction.

5.4.4.1   Use of Input Handlers

Signals at a second or higher stage, that are grouped into a single first stage IRQ line, may

be conditioned through Input Handlers as described in 5.2.1 and the grouping may be done

through the ORing as described in Section 5.3.3. When resolution of specific individual

inputs to be serviced is required, the grouped Input Handler Outputs can be read and

scanned.

System clock

Sample clock

Valid

Valid

Valid

Not Valid

Not Valid

Not Valid

Not Valid

Not Valid



SPARC-V8E

5 Peripheral Extensions 41

5.4.4.2   Use of Externally Latched and Buffered Signals

Signals at a second or higher stage, that are grouped into a single first stage IRQ line, may

be conditioned through a reduced IIRC. This consists of the Trigger Mode Control, IRQ

Latch and IRQ Mask. The 15 outputs are ORed to a single value which is masked by bit 0

of the IRQ Mask and then connected to a single group input. This is a single first stage

IRQ line or input to another stage. When resolution of specific individual inputs to be ser-

viced is required, the grouped Input Handler Outputs can be read and scanned.
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5.5   Timers and Counters

5.5.1   Programmable Pulse Generators

5.5.1.1   Overview

The following extended timer and counter features and functions are specified for SPARC-

V8E. This specification provides, in addition to a generalized counter mechanism, a two

stage counter mechanism for setting the step size in which actual time counts are per-

formed. It also provides increased flexibility in implementing various types of signals gen-

erated when a counter overflows.

SPARC-V8E timers and counters are designed to deliver a pulse of a certain shape to be

used, for example, as an interrupt. Hence, a timer/counter is actually a pulse generator that

produces a pulse after a specified delay.

For example, a pulse generator is required for slow I/O (as in actuator signals and slow

serial output ports) or to reset an interrupt source, regardless of whether it originates on- or

off-chip. This specification describes a bank of general purpose timer/counter pulse gener-

ators that may be employed in varying implementation contexts.

This specification does not stipulate what is to be counted, as that is left to specific imple-

mentations of the general mechanism(s). Examples of elements that can be implemented

include:

— processor clock pulses

— processor clock pulses divided by n (where n=16, for example)

— input pulses for an on-chip device or an off-chip device (possibly handled first by

an input handler as specified in the section on Input Handlers).

This specification does not stipulate the destinations for generated counter/timer pulse val-

ues as that is left to specific implementations. Examples of generated pulse destinations

include:

— interrupt line(s) (see interrupt specification)

— on-chip device(s)

— off-chip device(s) (output via a chip output pin)
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5.5.1.2   Timer/Counter Mapping

A bank of n general purpose timer/counter pulse generators is defined. Each timer,

counter, and generator consists of three parts:

— (step-) pre-SCALER

— (step-) COUNTER

— (pulse-) SHAPER

The timer/counter pulse generators are mapped on an alternate address space (ASI 116 or

8116) (see below). A bank of 4096 addresses is reserved for timer/counters. Each timer/

counter occupies 32 bytes within this bank, although not every byte is used. A maximum

of 128 timer/counter pulse generators can be mapped.

5.5.1.3   SCALER

SCALER is a counter to adjust the value by which COUNTER is incremented. It is the

first stage of a two-stage general counting mechanism. An important example of its usage

is to compensate for differences in clock frequency among various implementations of

SPARC-V8E. The SCALER counts processor clock cycles (or other inputs to the counting

circuitry, such as clock cycle/16).

For example, for COUNTER to count in milliseconds in an application where the clock

frequency is 100 MHz, SCALER would be set to 100,000 (or to 100,000/16 when clock

cycle/16 is used as input to the counting circuitry). Frequently, all SCALERs will hold the

same value (e.g. corresponding to 1 msec) which can be written at system start-up time

and never changed. Software executing after SCALER is set could then be written to be

portable across SPARC-V8E implementations.

SCALER can be controlled by two “external” signals, each provided by an input handler

(see section on Input Handlers).

SCALER consists of s-bit registers, SCALER.set and SCALER.cnt. s is implementation

dependent but within the range of 8 to 32, inclusive.

SCALER.cnt decrements at every count pulse (in a particular reference implementation,

the actual count pulse is an external pulse handled by an input handler; refer to section on

Input Handler).

SCALER has an Enable input signal whose particular reference implementation is typi-

cally provided by an input handler. Counting is enabled when the Enable signal=1. If the

Enable signal is driven by the output of a signal handler:
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• counting can be controlled by an external signal after handling by the

INV, WIDTH, BUF and EN construct (see Input Handler)

• counting can also be controlled by software:

-count when BUF=1 and EN=1

-stop when BUF=0 or EN=0

When SCALER.cnt reaches zero (as controlled by SHAPER) it either:

• stops counting or

• copies SCALER.set and continues decrementing

Which action is taken depends on the associated SHAPER value. When SCALER.cnt con-

tinues after reaching zero, it sends one count pulse to COUNT. The counter mechanism is

started by writing a 1 into the SCALER copy bit (see Shaper below). SCALER.cnt then

copies SCALER.set and starts counting

5.5.1.4   COUNTER

COUNTER is a counter to actually count in steps as set by the value in SCALER.

COUNTER is decremented when SCALER.cnt reaches zero.

COUNTER consists of:

— Two c-bit registers, COUNTER.set and COUNTER.cnt.

c is implementation dependent and may vary from 8 to 32 bits.

COUNTER operates as follows:

— COUNTER.cnt and COUNTER.set are written simultaneously with the same start

value

— COUNTER.cnt can be read; Readability of COUNTER.set is not required

— COUNTER.cnt is decremented by 1 when SCALER.cnt reaches zero

— When COUNTER.cnt reaches zero (as controlled by SHAPER, see section 5.4.5

below):

• Counting stops, or

• The value in COUNTER.set is copied into COUNTER.cnt and count-

ing continues.
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5.5.1.5   SHAPER

When the Counter.cnt reaches zero, the pulse generated may take one of various forms,

including:

— a Positive Step

— a Negative Pulse

— Pulse after delay

— Pulse of specified width

— Series of pulses as depicted in the following figure

:

Figure 9: SHAPER Pulse Generation

The SHAPER controls a generalized pulse generation facility. The SHAPER is imple-

mented as an 8-bit register. The SHAPER register values are mapped on 8 bits as follows

(bit 0 is the least significant bit)

Note: Bits 6:4 of the SHAPER control the values of the output signal;

Bits 3:0 of the SHAPER control counters stopping, starting and continuing.

This is explained in the table below:

shaper=010xx00

shaper=101xx11

EXAMPLE:

Positive
pulse:

Negative
pulse series:

6 5 4Shaper Bit:
(see table below)
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:

5.5.1.6   ASI Mapping for Counters and Timers

When mapping counters and timers on an alternate address space, it is recommended that

ASI 116 or 8116 be used. Addresses aligned on 4k byte blocks are available, providing 128

counter/timer/pulsers:

— COUNTER.set[n] is the word at address: 32n to 32n+3

— COUNTER.cnt[n] is the word at address: 32n+4 to 32n+7

— SCALER.set[n] is the word at address: 32n+8 to 32n+11

— SCALER.cnt[n] is the word at address: 32n+12 to 32n+15

— SHAPER[n] is the word at address: 32n+16

Note:

Elements containing less than 32 bits are mapped on the least significant bits (LSB) of these words.

The remaining higher order bits in the word are unused.

Bit Description

31:7 Undefined (may be used for extensions)

6 Start value of the output signal: The value of the output signal when COUNTER is

started by writing a 1 to the start bit-2

5 Value of the output signal when COUNTER reaches zero for the first time after restart

4 Value of the output signal when SCALER reaches zero for the first time after

COUNTER reached 0

3 Reserved

2 When value is written to 1, starts the counter by copying SCALER.set into

SCALER.cnt and COUNTER.set into COUNTER.cnt and outputting a signal- bit 6.

This is used to start a prepared counter at a precise instant. The degree of precision is as

precise as the input (which e.g. may be clock/16)

1 Bit 1=0: when COUNTER reaches 0, stop COUNTER.

Bit 1=1: when COUNTER reaches 0, copy COUNTER.set and restart counting.

0 Bit 0=0: when SCALER and COUNTER reach 0, stop SCALER.

Bit 0=1: when SCALER and COUNTER reach 0, copy SCALER.set; restart counting.

Table 6: Shaper Register Mapping
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5.5.1.7   Examples

A continuous timer with a large capacity can be mapped.

In this example:

— set SCALER to FFFF FFFF16

— set COUNTER to FFFF FFFF16

— set SHAPER to x01x x1xx2 (x= don’t care)

— when:

• SCALER is 16 bits (FFFF) and

• COUNTER is 24 bits (FF FFFF) and

• input is clock/16 then

COUNTER concatenated with SCALER will show FF FFFF FFFF16 minus the number of

input pulses since it was set.

COUNTER, concatenated with SCALER, has, at 100 MHz processor clock frequency, a

“capacity” of 16 x 216 x 224/ 100M = 176k sec = 49 hr = just over 2 days.

An interval or watchdog timer with an interval of X msec.

This can be implemented in many ways. One example follows:

— set SCALER to 100 microsec. (expressed in input pulses) at system start-up. Do

not change after start-up

— set COUNTER to 10 x X

— set SHAPER to x010 x111 (repeated “1” pulses, 100 microseconds wide) which

indicates:

• pulse start value = 0 (see bit 6);

• when COUNTER reaches zero, Output pulse value = 1 and remains 1

until SCALER reaches zero (as indicated by bit 5):

• when SCALER reaches zero, output value = 0 and remains 0 until

changed (as indicated by bit 4 being 0):

• repeat by restarting COUNTER and SCALER when they reach zero (as

indicated by bits 1 and 0 being ‘112’
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Time can be measured in milliseconds:

— set SCALER to 1 msec (expressed in input pulses). Do this at system start-up and

do not change

— set COUNTER to FFFF FFFF FFFF16

— set SHAPER to xxxx x1xx to start it

— start the event timer via the Enable input mechanism

Input handlers may be used to construct counters for counting any input. A counter con-

structed from a general input handler will count the applied input pulses. Such a counter

may also be started and stopped by applying the input handler’s EN bit.

5.5.2   Simple Counters

Simple counters ranging from 8 to 32 bits may be implemented to support routine capabil-

ities. The number of bits and the number of counters is an implementation parameter.

The counters are driven by the processor clock and are mapped into memory at ASI 1 or

C116. Each counter occupies a whole word address. Associated with each counter, at the

next word address in the same ASI, is its preload register. The counter and preload register

must be writable. Readability is an implementation parameter.

When enabled, the counter does one of the following:

— increments and generates an overflow signal when it passes maximum value

— decrements and generates an equal_zero signal when it reaches zero

— decrements and generates an underflow signal when it passes zero

The direction of counting and the form of strobe signal are implementation parameters.

The strobe signal causes the contents of the associated preload register to be loaded into

the counter and the counter continues counting.

If the strobe signal is delivered to an output pin, then it may be used to control periodic

events in the external system such as DRAM refresh. If the strobe signal is delivered to an

interrupt request line, then it may be used to periodically activate service routines such as

polling external requests for service that do not activate vectored priority interrupts. Each

counter is enabled by an associated bit in a system control register field when the bit is set

to one. The counter is disabled by the associated bit being set to zero. The system control

register is mapped into memory at ASI 1 or 0xC1. The address of the system control regis-

ter and the mapping of counters to enable bits are implementation parameters.
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5.5.3   Simple Timers

Timers ranging from 8 to 32 bits may be implemented to support more demanding timing

tasks. The number of bits and the number of timers are implementation parameters.

Clocking of the timers and associated prescalers or reload registers is done with either or

both a timer clock or an asynchronous external signal. Which one or both is an implemen-

tation parameter.

The timer clock is synchronized with the processor clock and may have the same period or

may be divided down. The ratio of processor clock to timer clock is an implementation

parameter. If divided down, transitions of the timer clock may be synchronized with the

rising or falling edge of the processor clock. This is also an implementation parameter.

Asynchronous external signals are gated by the timer clock for internal synchronization.

Therefore, the minimum duration of the asynchronous signal for its zero condition and for

its one condition is some multiple of the timer clock period, which is an implementation

parameter.

Each timer can be independently programmed to operate in one of the following five

modes:

— Mode 0: Periodic Interrupt Mode

— Mode 1: Timeout Interrupt Mode

— Mode 2: Square Wave Generator Mode

— Mode 3: Software Trigger Watchdog Mode

— Mode 4: External Trigger Watchdog mode

Figure 10 below shows a block diagram of timers, prescalers and clock options. Prescalars

and timer counters may be driven by the timer clock or an asynchronous external signal.

Those timer units that have prescalers may also drive their timer counter with the prescaler

output.
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Figure 10: Timer Prescaler Block Diagram

Each timer unit has three or four internal registers that allow the program to control and

monitor its operation. These registers are mapped into ASI 1 or 0xC1 at successive word

addresses as shown in Table 7. Each starting address, TUC-REGn, is aligned on a quad

word boundary (address modulo 16=0).

Determination of timers having prescalers is an implementation parameter. Likewise,

which count values can be written is an implementation parameter.

Address Register Required Access Reset State

TUC-REGn + 0 Prescale control/reserved Read/Write 1

TUC-REGn + 4 Timer control Read/Write 0

TUC-REGn + 8 Reload value Read/Write 0

TUC-REGn + C Count value Read 0

Table 7: Timer Unit Control Register Memory Map

MUX Synchronize Timer 0

MUX Synchronize Timer 1

MUX Synchronize Timer 2

MUX Synchronize Timer 3

•

•

•

•

•

••

MUX Prescaler

MUX Prescaler

PCLK Peripheral clock

ACK1 ACK0 PRSK1 PRSK0
CLK
3 2 1  0
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5.5.3.1   Prescaler Control Registers

Three fields are defined for each prescaler control register.

(1) Prescalar counter value- This determines the frequency of the prescaler counter

output signal. The value of this field is written into the prescaler counter when this

field is written and the timer clock is the prescaler counter clock or when prescaler

timeout (counter reaches zero) occurs. This field must be greater than zero. A

value of one produces the maximum prescaler counter output frequency, on half of

its input frequency. The number of bits for this field is 8 to 16 and is an implemen-

tation parameter.

(2) Prescaler output select- This selects the prescaler output clock rate as the prescaler

counter output frequency divided by the power of two indicated by this field. Zero

means the prescaler output clock rate is the prescaler counter output frequency.

One means the output clock rate is the prescaler counter output frequency divided

by two. Two means the output clock rate is the prescaler counter output frequency

divided by four, etc. Note that the maximum output clock rate is half the prescaler

input frequency. The number of bits for this field is 2 to 14 and is an implementa-

tion parameter.

(3) Enable external clock- This one bit field enables asynchronous external signals

when the prescaler input clock is one. When zero, the timer clock is the prescaler

input clock.

All undefined bits are reserved and one bit is reserved for device test purposes.

5.5.3.2   Timer Control Registers

Eight fields are defined for each timer control register. A three bit Mode field selects which

timer mode is active.

Mode Field Operating Mode

0 Periodic Interrupt

1 Timeout Interrupt

2 Square Wave Generator

3 Software Trigger Watchdog

4 External Trigger Watchdog

5 Reserved

6 Reserved

7 Reserved

Table 8: Timer Control Register Entries
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A three bit event field selects the condition for which the timer event input signal is active

as an event gate or trigger depending on the mode.

A two bit Output Signal field selects the state of the output signals when the timer is

stopped.

A one bit Invert field modifies the output signal. If Invert is one, then the actual output sig-

nal is the normal output signal inverted. If Invert is zero, then the actual output signal is the

normal output signal.

A two bit Clock Select field selects the input clock to the timer counter.

Event Field Active Gate/Trigger Event Applicable Modes

0 Low Level Gate 0,1,2

1 High Level Gate 1.1.2

2 Rising Edge Trigger 4

3 Falling Edge Trigger 4

4 Rising/Falling Edge Triggers 4

5 Reserved

6 Reserved

7 Reserved

Table 9: Timer Event Fields

Output Signal Field Timer Inactive Output State

0 Remains in current state

1 External clock

2 Prescaler output clock

3 Reserved

Table 10: Timer Output Signal Field

Clock Select Field Counter Clock Source

0 Timer clock

1 External Clock

2 Prescaler output clock

3 Reserved

Table 11: Timer Clock Select Field
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A one bit Count Enable field, when one, enables the timer counter for counting. When

Count Enable is zero, the counter stops.  While enabled, the counter will not count until its

specified input occurs. If a timer does not have a prescaler or if its prescaler output clock is

not selected as its counter clock source, then configuring the timer counter and starting it

can be done with a single STA instruction.

If a timer is to use its prescaler output clock as its counter clock source, then the prescaler

configuration, the counter configuration, and starting can be done with a single STDA

instruction since the two control registers are mapped into adjacent memory addresses that

are double word aligned.  Note that the first cycle of the counter action may differ from the

later ones because the prescaler becomes active one store memory time before the timer

counter. If the prescaler uses the timer clock to drive its counter, then the prescaler counter

will be reloaded at the second memory cycle when the timer counter is loaded with its

reload value.

A one bit Input Signal status field, which must be read only, allows the program to exam-

ine the Input Signal. A one bit Output Signal status field, which must be read only, allows

the program to examine the Output Signal.

All undefined bits are reserved and one bit is reserved for device test purposes.

5.5.3.3   Prescaler Operation

Figure 11 shows an example prescaler block diagram consisting of an 8 bit counter, 7-

divide by 2 flip-flops and selector logic

Figure 11: Prescaler Block Diagram

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Prescaler register

BIT

Clock 8 Bit Cnt +2 +2 +2 +2 +2 +2 +2

PRSCK

PRSCK for internal use

+256
Max
Count SELECTOR
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(1) Prescaler Counter:

The prescaler counter is loaded with the prescaler count value field concurrently

with that field being written into the prescaler control register when the timer clock

drives the counter.  The counter then begins to decrement at its clock frequency

and generates an output each time it reaches zero. This output is delivered to the

first flip-flop input in the divide by 2 flip-flop cascade and the output selector. This

output also reloads the counter with the prescaler count value field and continues

the count.

If the associated timer counter uses the prescaler output clock as its input clock and

if the prescaler uses the timer clock as its input, then when the timer reload value is

loaded or reloaded into the timer counter, the prescaler count value is loaded into

the prescaler counter and a fresh prescaler count cycle begins.

When the prescaler counter is driven by the external clock, the count value is

loaded into the counter only when it reaches zero.If the count value is changed in

the prescaler counter register, it will not be loaded into the counter until the

counter reaches zero, finishing the previous count sequence. To reduce this delay,

switch the prescaler counter drive to timer clock, then change the count value and

switch to external clock.

(2) Prescaler Divide by 2 Cascade:

At each flip-flop output in the divide by 2 cascade, the frequency is halved. Each

output is delivered to the next flip-flop input in the chain and the output selector.

The flip-flops in the divide by 2 cascade are cleared whenever the prescaler counter

is loaded or reloaded.

(3) Prescaler Output Selector

The selector logic selects the counter output or one of the flip-flop outputs in the

divide by 2 cascade as determined by the prescaler output select field of the pres-

caler control register. Code 0 selects the counter output. Code 1 selects the first

divide by 2 flip-flop output. Code 2 selects the second divide by 2 flip-flop output,

etc.

When one of the divide by 2 flip-flop outputs is the selected prescaler  output clock

then the duty cycle will be 50%. However, when the counter output is the selected

prescaler output clock, then the output will be one more than zero except at the

highest frequency.

The counter output is one until the counter decrements to one. Then the counter

output is zero for one count cycle. Then when the counter reaches zero, the counter

output returns to one while the counter is reloaded and begins a new count down.

Therefore the prescaler output clock is zero for one count cycle and one all the rest

of the count cycles.

However, if the prescaler count value is one, which selects the maximum prescaler

counter frequency, the counter output is forced to zero at the same time the pres-
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caler count value is loaded into the counter. The next cycle, with the counter at

zero, the counter output goes to one and the counter is reloaded. For this case, the

prescaler output clock has a 50% duty cycle.

5.5.3.4   Timer Operation and Timer Operating Modes

Figure 12 shows a block diagram of a timer.

Figure 12: Timer Block Diagram

The data path to the processor is capable of  both input and output. In addition to the timer

clock, there are two other clock inputs, prescaler output clock and external clock. Also

there is an In Signal that serves as input to count gating logic or event trigger logic.

Finally, there is the timer Out Signal which may be delivered to an output pin and used to

control external system activities or delivered to interrupt request lines and used to period-

ically activate service routines or used to  activate exception routines if events fail to hap-

pen within preset time limits.

The In Signal can be used as a gating signal in Modes 0, 1, 2 and 3 to mask the timer

counter input clock and temporarily stop the timer. It can be used in Mode 4 as a trigger

event to start a new timer count sequence.

To use the In Signal as a gating signal in Modes 0, 1, 2  and 2, the Event field is set to

make In active when one or when zero. When active, clocks to the input of the timer

counter are inhibited and the counter does not count.

To use the In Signal as a triggering signal in Mode 4, the Event field is set to make the trig-

ger event a rising edge, falling edge or both a rising and falling edge. When In Signal gen-

erates a trigger event, timer output is forced to value of Invert bit in timer control register,
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reload value is forced into timer counter and a new timer count sequence begins. At time-

out, timer output changes to not Invert bit value.

The Out Signal is used to indicate timeout, occurrence of an event at the In Signal, or

counter reaching half reload value during the count sequence. The Out Signal control

determines the value of the Out Signal when the timer is stopped. The Invert bit deter-

mines the inactive level of Out Signal when the timer is running.

When the Invert bit is 0, for each mode, the following conditions set and reset the Out Sig-

nal:

Set and Reset are swapped when the Invert bit is 1.

Timers are stopped following processor reset. Timer operation is initialized in all modes

by first writing the timer mode into the Mode field of the Timer Control Register, setting

the Count Enable field to 1 and writing any other appropriate fields of the Timer Control

Register. Timer operation in modes 0, 1, 2 and 3 begins when the reload register is written.

Then the reload value is set in the counter and decrementing begins.

Timer operation in mode 4 begins when a trigger event occurs at In Signal. Then the

reload value is set in the counter and decrementing begins.

Once operating, each timer stops in the various modes as follows:

Note that timers can be stopped in all modes by writing to the Timer Control Register.

Mode Set Out Signal Reset Out Signal

0 Timeout Writing reload register/reading counter

1 Timeout Writing reload register/reading counter

2 Timeout Counter = half reload register

3 Timeout Writing reload register

4 Timeout Trigger event occurs at In Signal

Table 12: Output Signal Conditions

Mode Stop Timer

0 Writing TCR, In Signal active

1 Writing TCR, In Signal active, timeout

2 Writing TCR, In Signal active

3 Writing TCR, In Signal active, timeout

4 Writing TCR, timeout

Table 13: Timer Stop Modes
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With respect to timer operating modes, each timer can be independently programmed to

operate in one of the following five modes:

The selection of a particular operating mode is controlled by the value of the Mode field in

the Timer Control Register.

(1) Periodic Interrupt:

The Out Signal is initially set to the timer stopped state as determined by the Out

Signal control of TCR, Timer is enabled, Count Enable =1 and Mode =0. When the

reload register is written with the reload value, the reload value is set into the

counter, the counter begins decrementing, and Out Signal is driven to the value of

Invert.

When the counter reaches zero, timeout, the Out Signal changes to NOT Invert and

remains at this level until the counter is read or reload register is written.However,

the counter is automatically set with the reload value and continues decrementing.

When the counter is read or reload register is written, Out Signal returns to Invert

level.

(2) Time Out Interrupt:

This mode differs from Mode 0 at timeout. In Mode 1, the timer halts instead of

reloading and decrementing the counter. Then, when the count register is read or

the reload register is written, the Out Signal returns to Invert level, the counter is

set with the reload value and begins decrementing again,

Mode Operation

0 Periodic Interrupt Mode

1 Timeout Interrupt Mode

2 Square Wave Generator Mode

3 Software Trigger Watchdog Mode

4 External Trigger Watchdog Mode

Table 14: Timer Operating Modes
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(3) Square Wave Generator:

This mode differs from Mode 0 in the transition of Out Signal.

The Out Signal is initially set to the timer stopped state as determined by the Out
Signal control of TCR, Timer is enabled, Count Enable =1 and Mode =2. When the
reload register is written with the reload value, the reload value is set into the
counter, the counter  begins decrementing, however, Out Signal remains at the ini-
tial value.

When the counter decrements to half of reload value, Out Signal is driven to Invert
value. When counter reaches 0, timeout, Out Signal changes to NOT Invert value.
The counter is set with the reload value and continues decrementing. After the first
count sequence, Out Signal will be approximately a square wave.

For reload value =1, Out Signal will be at Invert and not Invert level one timer
count cycle each, with a period of two timer count cycles.

For reload value =N, N>1, Out Signal will be at Invert level for Int(N/2) timer
count cycles. Out Signal will be at NOT Invert level for Int((N+1)/2) +1 timer
count cycles. The period will be N+1 timer count cycles.

(4) Software Trigger Watchdog:

The Out Signal is initially set to the timer stopped state as determined by the Out
Signal control of TCR, Timer is enabled, Count Enable =1 and Mode = 3. When
the reload register is written with the reload value, the reload value is set into the
counter, the counter begins decrementing, and Out Signal is driven to the value of
Invert.

When counter = 0, timeout, Out Signal changes to not Invert value and remains at
this value. The timer halts. However, writing to the reload register before timeout,
updates the counter with the reload value and delays timeout.

After the timer halts, it can be restarted by writing to the reload register. The reload
value is set into counter and the watchdog count restarts.

(5) Hardware Trigger Watchdog:

The Out Signal is initially set to the timer stopped state as determined by the Out
Signal control of TCR, Timer is enabled, Count Enable =1 and Mode =4. Then the
reload register is written with the reload value.

When a trigger event occurs at In Signal, the reload value is set into the counter,
the counter begins decrementing, and Out Signal is driven to the value of Invert.

When counter = 0, timeout, Out Signal changes to NOT Invert value and remains
at this value and the timer halts. However, occurrences of another trigger event at
In Signal before timeout, updates the counter with the reload value and delays tim-
eout.

The timer is restarted after halting at timeout by another trigger event at In Signal.
The In Signal trigger event is determined by the Event field in TCR and can be a
rising edge, falling edge or both.
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6 Diagnostic Facilities

6.1   Introduction

As an option, a V8E SPARC can be equipped with a Debug Support Unit (DSU). This unit

provides functions such as

• setting hardware breakpoints on instruction and data, on address and value;

• single stepping;

• instruction trace generation;

• reading and writing of on chip registers;

• emulation.

They are detailed in the subsequent sections of this chapter.

Two implementations with different emphasis are defined. Both support the above fea-

tures. They are:

• a trace enhancing implementation

• a pin effective implementation.

6.1.1   The trace enhancing implementation.

This implementation makes use of a number of extra pins to allow a sufficient number of

instruction address bits per SPARC instruction to reconstruct a full address trace. The

same pins are used to control the further diagnostic features introduced above and to be

detailed in the subsequent sections of this chapter. Implementor defined further features

may be added to this implementation; these further features are not subject of the V8E

specification.

6.1.2 The pin effective implementation.

This implementation relies an a JTAG interface for control as well as for information

transport to and from the DSU and for control as well as for information transport to and

from any further features that can be reached via the DSU.
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This implementation also relies heavily on DMA; using JTAG and DMA it allows soft-

ware independent access to all DSU functions described in the subsequent sections. Since

the JTAG, in this implementation, is a DMA master and the DSU is a DMA slave, it can

not only reach the DSU functions specified here and any implementor defined further

DSU functions but also: - any (further) DMA mapped sources and destinations, on or off

chip; - any (further) ASI mapped sources and destinations, on or off chip; - any (further)

memory mapped sources and destinations, on or off chip, e.g. . on chip or off chip RAM; .

on chip or off chip ROM. Obviously, all of the above, being mapped on space that can be

reached via software, can also be read, written and controlled via software.

Unlike conventional debuggers, this implementation can be used before system I/O is

available to e.g. load RAM; to access internal address and data buses and to break-point or

single-step through code sequences.

6.2   List of features

The following features will be detailed in subsequent detailed sections in a next release of

this spec.

— BREAK:

•HARDWARE BREAK

INSTRUCTION ADDRESS MATCH BREAK

DATA ADDRESS AND DATA MATCH BREAK

DSU Register Write Exception Break

DSU Register Read/Write Exception Break

External (-EMU_BRK Pin) Break

Hardware Break Request

•Software Break

Hardware/Software Break Request Disable

Ret-Break (Return from Break)

Disable_match_match flag

Trap_Disabled_Break_Point

Break on RETT

— Single Step:

•Single Step general behavior

•Single Step behavior over trap

•Single Step behavior on RETT
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— ICE Port:

— Debug Mode and State:

— Instruction Trace

— DSU registers:

Obviously, the DSU register sets of the two implementations are not identical.
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Annex A   Programming Techniques

(Informative)

A.1   Overview

This section provides information to assist in programming the SPARC-V8E embedded

processor. It covers the additional instructions, Divide Step and Scan, provided by

SPARC-V8E. Code fragments are provided to illustrate the use of these instructions. This

section presumes familiarity with the SPARC-V8 Programmer’s Model and SPARC

assembly language as specified in The SPARC Architecture Manual, Version 8.

A.2   Division Performance Using DIVScc

A.2.1   divs1 - divide signed, 1 word dividend

Signed division of 32 bit dividend by 32 bit divisor produces a signed 32 bit quotient and a

signed 32 bit remainder (same sign as dividend or zero if exact). Since the only overflow is

divide by zero, this routine does not check for divide by zero, leaving it up to caller to test

and abort just after the call. Division without fault takes 47 to 58 cycles assuming each

instruction takes one cycle, except retl which takes two.

!DIVISION SUBROUTINE - DIVS1

!This subroutine for signed division of 32 bit dividend by 32 bit divisor

!produces 32 bit signed quotient and 32 bit remainder using divide

!step instruction. Remainder is zero if division is exact

!or same sign as original dividend if not. There is no check for divide

!by zero. It is not possible to overflow with non zero divisor. If the

!calling routine knows that divide by zero cannot happen, no test is

!needed. If divide by zero is possible, a simple test just after the call

!can abort the division. Division without fault takes 47 to 58 cycles.

!Exact division with last partial remainder =0 takes 47 cycles. Exact

!division with last partial remainder = +/-divisor, as happens with

!non-restoring division algorithms, takes 51 or 52 cycles.Inexact

!division, with non-zero final remainder, takes 54 to 58 cycles.

!call so:

! mov %l1,%o0!dvdnd->o0

! orcc %g0,%l2,%o2!dvsr->o2 & test

! call divs1!DIVISION SUBROUTINE CALL
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! be dvby0 !abort division if divide by zero

!

! Register Map

!reg#

!out0 dividend/remainder

!out1 quotient

!out2 divisor

!out4 scratch for final remainder calculations

!out5 absolute value of divisor

!y initially sign extension of dividend/successive partial remainders

!call to divs1 must be made with cc indicating sign of divisor

!

.global divs1

divs1:mov %g0,%y!0 -> Y

mov %o2,%o5!copy divisor in o5, D

bl,a 1f

sub %g0,%o5,%o5!if divsr neg, D=-divsr

1: tst %o0 !initialize cc for first divide step

!with sign dividend for signed divide

bl,a 2f

mov -1,%y!-1 -> Y only if dvdnd neg

2: divscc %o0,%o5,%o1!divide step 1

!leave original dividend in o0

!do partial remainders & quotient in o1

!don’t change cc except by divscc until last divide step done

divscc %o1,%o5,%o1!divide step 2

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1
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divscc %o1,%o5,%o1

divscc %o1,%o5,%o1!divide step 32

be 6f !if final remainder is zero,

!go fix quotient polarity

mov %y, %o4 !final remainder from Y to o4

bg 4f !skip ahead if rmdr+; continue if rmdr-

addcc %o4,%o5,%g0 !is neg rmdr + abs divsr =0

mov %g0,%o4!clear rmdr. if not, don’t clear

tst %o0 !test original dvdnd

bl 5f !if neg, go check neg Q

tst %o1 !sign Q

ba 5f

add %o4,%o5,%o4!if orig dvdnd pos and final rmdr neg,

!correct rmdr; then go check neg Q

4: subcc %o4,%o5,%g0 !is pos rmdr - abs divsr =0

be,a 6f !if so, go fix quotient polarity and

mov %g0,%o4!clear rmdr. if not, don’t clear

tst %o0 !test original dvdnd

bge 5f !if pos, go check neg Q

tst %o1 !sign Q

sub %o4,%o5,%o4!if orig dvdnd neg and final rmdr pos,

!correct rmdr; then go check neg Q

5: bl,a 6f !skip ahead if Q pos

add %o1,1,%o1!if neg Q, 1’s complement to

!2’s complement; annul if pos Q

6: tst %o2 !check original divisor sign

bl,a 7f

sub %g0,%o1,%o1!if neg divsr, negate quotient

7: retl !exit

mov %o4,%o0!with correct remainder in o0

A.2.2   divs2 - divide signed, 2 word dividend

Signed division of a 64 bit dividend by a 32 bit divisor produces a signed 32 bit quotient

and a signed 32 bit remainder with the same sign as dividend or zero if exact. Division

with divide by zero fault takes 6 cycles. Division with non zero divisor overflow fault takes

17 to 23 cycles. Division without fault takes 49 to 60 cycles. This assumes each instruction

takes one cycle except retl which takes two.

!DIVISION SUBROUTINE - DIVS2 REVA

!This subroutine for signed division of 64 bit dividend by 32 bit divisor

!produces 32 bit signed quotient and 32 bit remainder using divide

!step instruction. Special treatment is given to borderline overflow

!with absolute value quotient = 2^31 to support math operator INTEGER

!PART OF: Q=-2^31 does not overflow; Q=+2^31 overflows as before but

!with different overflow code. Remainder is zero if division is exact

!or same sign as original dividend if not. There is a check for divide

!by zero and a check for overflow with non-zero divisor. Check for divide

!by zero is kept separate to support possible SUN recommended trap for

!divide by zero. In applications where user knows numerical ranges or

!controls them, these checks can be omitted. Division with divide by zero

!fault takes 6 cycles; sets overflow flag in condition code; leaves



SPARC-V8E SPARC-V8E Release 1  Architecture Specification

66

!0xfffff800 in register out3. Division with non-zero divisor overflow

!takes 17 to 23 cycles (17 or 19 if original dividend plus, 18 or 23 if

!original dividend minus); sets overflow flag in condition code; leaves

!0x800 in register out3. Division leading to absolute value quotient =

!2^31 takes 20 cycles if original dividend plus, 23 cycles if original

!dividend minus. It leaves correct remainder in register out0, -2^31 in

!out1 as quotient and 0 in out3. It clears overflow cc if actual quotient

!is -2^31 and sets overflow cc if actual quotient is +2^31. Division

!without fault takes 49 to 60 cycles; clears overflow flag in condition

!code; leaves 0 in register out3. Exact division with last partial

!remainder =0 takes 49 cycles. Exact division with last partial

!remainder=+/-divisor, as happens with non-restoring division

!algorithms, takes 53 or 54 cycles. Inexact division, with non-zero final

!remainder, takes 56 to 60 cycles.

!call so:

! mov %l0,%o0 !msh dvdnd->o0

! mov %l1,%o1 !lsh dvdnd->o1

! call divs2 !DIVISION SUBROUTINE CALL

! orcc %g0,%l2,%o2 !dvsr->o2 & test

!

!Register Map

!reg#

!out0 msh dividend/remainder

!out1 lsh dividend/quotient

!out2 divisor

!out3 overflow indication

!overflowdivide by zero/0xfffff800 and V=1

!overflowdivide by non-zero/0x800 and V=1

!overflowquotient =+2^31/0 and V=1

!no overflow/0 and V=0

!out4 scratch for final remainder calculations

!out5 absolute value of divisor

!y msh dividend/successive partial remainders

!call to divs2 must be made with cc indicating sign of divisor

!

.global divs2

divs2:bne 0f !go on if divisor not zero

mov %o2,%o5!copy divisor in o5, D

sethi 0x1fffff,%o3!divide by zero indicator

retl !exit with

addcc %o3,%o3,%o3 !overflow set

0: bl,a 1f

sub %g0,%o5,%o5!if divsr neg, D=-divsr

1: mov %o0,%y!msh dvdnd->Y

tst %o0 !initialize cc for first divide step

!with sign dividend for signed divide

bl 2f !skip ahead for negative dividend

divscc %o1,%o5,%o1!divide step 1

!don’t change cc except by divscc until last divide step done

bl 3f !ok if different

mov %g0,%o3!clear overflow indicator

srl %o1,1,%o4!get lsh rmdr

bg 8f !if msh rmdr >0 then overflow

subcc %o4,%o5,%g0!if lsh rmdr <D then Q is +/-2^31
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bge 8f !& o4 is correct final rmdr

!check if overflow on Q = +2^31

sethi 0x200000,%o1!set -2^31 -> Q

!else overflow

tst %o2 !if original divisor >0

bg,a 9f !which implies quotient =+2^31

addcc %o1,%o1,%g0!set ovrlfw cc with o3 = 0

9: retl !exit

mov %o4,%o0!with correct remainder in o0

8: sethi 0x200001,%o3!overflow divide by non-zero indicator

retl !exit with

addcc %o3,%o3,%o3 !overflow set

2: bge 3f !ok if different

mov %g0,%o3!clear overflow indicator

mov %y,%o0!get msh rmdr

addcc %o0,1,%g0!is it -1

bne 8f !if <-1 then overflow

srl %o1,1,%o4!get lsh rmdr except for leading 1

sethi 0x200000,%o1!set -2^31 ->Q

or %o1,%o4,%o4!insert leading 1 in lsh rmdr

addcc %o4,%o5,%g0!if lsh rmdr >-D then q is +/-2^31

ble 8f !& o4 is correct final rmdr

!check if overflow on Q = +2^31

!else overflow

tst %o2 !if original divisor <0

bl,a 9f !which implies quotient =+2^31

addcc %o1,%o1,%g0!set ovrlfw cc with o3 = 0

9: retl !exit

mov %o4,%o0!with correct remainder in o0

8: sethi 0x200001,%o3 !overflow divide by non-zero indicator

retl !exit with

addcc %o3,%o3,%o3!overflow set

3: divscc %o1,%o5,%o1!divide step 2

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1
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divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1

divscc %o1,%o5,%o1!divide step 32

be 6f !if final remainder is zero,

!go fix quotient polarity

mov %y, %o4 !final remainder from Y to o4

bg 4f !skip ahead if rmdr+; continue if rmdr-

addcc %o4,%o5,%g0!is neg rmdr + abs divsr =0

be,a 6f !if so, go fix quotient polarity and

mov %g0,%o4!clear rmdr. if not, don’t clear

tst %o0 !test original dvdnd

bl 5f !if neg, go check neg Q

tst %o1 !sign Q

ba 5f

add %o4,%o5,%o4!if orig dvdnd pos and final rmdr neg,

!correct rmdr; then go check neg Q

4: subcc %o4,%o5,%g0!is pos rmdr - abs divsr =0

be,a 6f !if so, go fix quotient polarity and

mov %g0,%o4!clear rmdr. if not, don’t clear

tst %o0 !test original dvdnd

bge 5f !if pos, go check neg Q

tst %o1 !sign Q

sub %o4,%o5,%o4!if orig dvdnd neg and final rmdr pos,

!correct rmdr; then go check neg Q

5: bl,a 6f !skip ahead if Q pos

add %o1,1,%o1!if neg Q, 1’s complement to

!2’s complement; annul if pos Q

6: tst %o2 !check original divisor sign

bl,a 7f

sub %g0,%o1,%o1!if neg divsr, negate quotient

7: retl !exit

mov %o4,%o0!with correct remainder in o0

A.2.3   divu1 - divide unsigned, 1 word dividend

Unsigned division of a 32 bit dividend by a 32 bit divisor produces an unsigned 32 bit quo-

tient and an unsigned 32 bit remainder that is positive or zero if exact. Since only overflow

is divide by zero, this routine does not check for divide by zero, leaving it up to caller to

test and abort just after the call. Division without fault takes 39 cycles. If remainder is of

no interest and only the quotient corresponding to INTEGER(dvdnd/dvsr) or

FLOOR(dvdnd/dvsr) for unsigned numbers is wanted then the last steps of this routine can

be modified as indicated and quotient only unsigned division will take 36 cycles. This

assumes each instruction takes one cycle except retl which takes two.
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!DIVISION SUBROUTINE - DIVU1

!This subroutine for unsigned division of 32 bit dividend by 32 bit

!divisor produces 32 bit unsigned quotient and 32 bit remainder using

!divide step instruction. Remainder is zero if division is exact

!or positive if not. There is no check for divide by zero. It is not

!possible to overflow with non zero divisor. If the calling routine

!knows that divide by zero cannot happen, no test is needed. If divide

!by zero is possible, a simple test just after the call can abort the

!division. If not aborted, division takes 39 cycles; clears overflow

!flag; leaves 0 in register out3.

!If remainder is of no interest and only the quotient corresponding to

!INTEGER(dvdnd/dvsr) or FLOOR(dvdnd/dvsr) for unsigned numbers is wanted

!then the last steps of this routine can be modified as indicated and

!quotient only unsigned division will take 36 cycles.

!call so:

! mov %l1,%o1!dvdnd->o1

! orcc %g0,%l2,%o2!dvsr->o2 & test

! call divu1!DIVISION SUBROUTINE CALL

! be dvby0 !abort division if divide by zero

!

!Register Map

!reg#

!out0 remainder

!out1 dividend/quotient

!out2 divisor

!out3 0 if divide by non zero

!y  initially zero/successive partial remainders

!

.global divu1

divu1:mov %g0,%y!0->Y

orcc %g0,0,%o3!initialize cc for first divide step

!with positive sign for unsigned divide

!clear divide by zero indicator

divscc %o1,%o2,%o1!divide step 1

!don’t change cc except by divscc until last divide step done

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1
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divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

! retl !exit for quotient only divide

divscc %o1,%o2,%o1!divide step 32

!ALL the following steps may be omitted for quotient only divide

bl 1f !skip ahead if rmdr-

mov %y,%o0!final rmdr from Y to o0

retl !exit

addcc %o0,0,%o0!clear ovrflw cc if on

1: retl !exit

addcc %o0,%o2,%o0!correct rmdr & clear ovrflw cc if on

A.2.4   divu2 - divide unsigned, 2 word dividend

Unsigned division of a 64 bit dividend by a 32 bit divisor produces an unsigned 32 bit quo-

tient and an unsigned 32 bit remainder that is positive or zero if exact. Division with divide

by zero fault takes 6 cycles. Division with non zero divisor overflow fault takes 9 cycles.

Division without fault takes 42 cycles. This assumes each instruction takes one cycle

except retl which takes two.

!DIVISION SUBROUTINE - DIVU2

!This subroutine for unsigned division of 64 bit dividend by 32 bit

!divisor produces 32 bit unsigned quotient and 32 bit remainder using

!divide step instruction. Remainder is zero if division is exact

!or positive if not. There is a check for divide by zero and a check for

!overflow with non-zero divisor. Check for divide by zero is kept

!separate to support possible SUN recommended trap for divide by zero. In

!applications where user knows numerical ranges or controls them, these

!checks can be omitted. Division with divide by zero fault takes 6

!cycles; sets overflow flag in condition code; leaves 0xfffff800 in

!register out3. Division with non-zero divisor overflow takes 9 cycles;

!sets overflow flag in condition code; leaves 0x800 in register out3.

!Division without fault takes 42 cycles; clears overflow flag in

!condition code; leaves 0 in register out3.

!call so:

! mov %l0,%o0!msh dvdnd->o0

! mov %l1,%o1!lsh dvdnd->o1

! call divu2!DIVISION SUBROUTINE CALL

! orcc %g0,%l2,%o2!dvsr->o2 & test

!

!Register Map

!reg#
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!out0 msh dividend/remainder

!out1 lsh dividend/quotient

!out2 divisor

!out3 overflow indication

!overflow divide by zero/0xfffff800 and V=1

!overflow divide by non-zero/0x800 and V=1

!no overflow/0 and V=0

!y msh dividend/successive partial remainders

!call to divs2 must be made with cc indicating if divisor zero

!

.global divu2

divu2:bne 1f !go on if divisor not zero

mov %o0,%y!msh dvdnd->Y

sethi 0x1fffff,%o3!divide by zero indicator

retl !exit with

addcc %o3,%o3,%o3 !overflow set

1: subcc %o0,%o2,%g0!is msh dvdnd < dvsr

bcs 2f !ok if so

orcc %g0,0,%o3 !initialize cc for first divide step

!with positive sign for unsigned divide

!clear overflow indicator

sethi 0x200001,%o3!overflow divide by non-zero indicator

retl !exit with

addcc %o3,%o3,%o3 !overflow set

2: divscc %o1,%o2,%o1!divide step 1

!don’t change cc except by divscc until last divide step done

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1
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divscc %o1,%o2,%o1

divscc %o1,%o2,%o1

divscc %o1,%o2,%o1!divide step 32

bl 3f !skip ahead if rmdr-

mov %y,%o0!final remdr from Y to o0

retl !exit

addcc %o0,0,%o0!clear ovrflw cc if on

3: retl !exit

addcc %o0,%o2,%o0!correct rmdr & clear ovrflw cc if on

A.3   SCAN Instruction Examples

A.3.1   Software floating point with SCAN

The following code fragment shows post normalization of floating point add or subtract

for the case where the result requires calculating the difference of the magnitudes of the

numbers. The IEEE754 format, which is used in SPARC-V8 architecture is assumed. This

uses sign, offset exponent, hidden leading bit when normalized and fraction. Only the

logic of normalize numbers is shown here. Number values are in sign and magnitude form

rather than two’s complement.

bit 31| 30 23| 22 0normalized values

fields | e| f 0<e<255

x = (-1)^s * 2^(e-127) * (1 + f*2^-23)

The operation is x+y=z or x−y=z. If subtract, then sign y is complemented. The magni-

tudes of the numbers have to be compared and the one with the lesser exponent right

shifted to align its decimal point with the greater exponent. If exponents are equal, magni-

tudes must be compared if signs differ to determine what the sign of the result will be.

This is assumed to have taken place before the code fragment shown here, which shows

the logic of handling numbers with different signs and different exponents. Symbol x

points to the larger number; y to smaller.

sethi 0x3fe, %g5!mask for sign and exponent with and

!or for fraction with andn

sll %g5,1,%g4

xor %g4,%g5,%g4!single one at bit 23 for hidden bit

srl x,23,%g2

and %g2,0xff,%g2!x exponent

srl y,23,%g3

and %g3,0xff,%g3!y exponent

sub %g2,%g3,%g1!alignment difference

andn y,%g5,%g3!y fraction

or %g3,%g4,%g3!y hidden bit

srl %g3,%g1,%g2!downshift y magnitude to g2

sub %g0,%g1,%g1!complement of shift

sll %g3,%g1,%g3!upshift left over y for test
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addcc %g3,%g3,%g0!test left over for rounding

!note: not IEEE754 rounding here

andn x,%g5,%g1!x fraction

or %g1,%g4,%g1!x hidden bit

subx %g1,%g2,%g1!difference of magnitudes with

!simple rounding

scan %g1,0,%g2!scan difference for leading one.

!Use of 0 as the scan mask is because

!of sign magnitude arithmetic assumed

!in this example. Leading 8 bits are

!guaranteed to be zero because of

!format. Question is, how many more

!till the first one?

!If two’s complement arithmetic had

!been assumed, then there could have

!been leading ones or leading zeros

!depending on sign of result. Then

!instead of 0 as mask, scan would have

!used %g1 as mask as well as value.

!Question would have been, how many

!leading bits are the same as the sign?

subcc %g2,32,%g0!test if all significant bits lost

blu 1f !use unsigned compare for future compatibility

sub %g2,8,%g2!remove effect of format’s 8 leading 0’s

!underflow due to loss of significant bits code would follow here

1: sll %g1,%g2,%g1!normalize result

andn %g1,%g4,%g1!hide leading bit

srl x,23,%g3

and %g3,0xff,%g4!x exponent in g4

subcc %g4,%g2,%g0!test exponent underflow

bgu 2f !use unsigned compare for future compatability

sub %g3,%g2,%g3!subtract normalization shift from

!result sign and exponent

!exponent underflow code would follow here

2: sll %g3,23,%g3!place sign and exponent result in

!format position

retl !exit(2 cycles)

or %g1,%g3,z!combine with fraction

Each instruction in this code fragment runs one cycle out of the instruction cache except

for the leaf routine which takes two. That’s 32 cycles for this fragment. Without scan as a

hardware instruction, the function would have to be performed as a software routine that

takes 43 to 52 cycles for the usual cases. The fragment would take 74 to 83 cycles, more

than double the cycles. A software substitute for scan would consume instruction cache

space. Attempts to speed up the binary tree search in the software routine by look up tables

based on leading bits would consume data cache space.
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A.3.2   Run length encoding with SCAN

The following code fragment shows compression of long binary strings by looking for

runs of all ones or all zeros and coding these so that lossless reconstruction is possible. For

the example, runs less than four in length are ignored and directly transmitted and runs

greater than sixteen are broken up for coding efficiency and coding simplification. Best

compression occurs for low information content long binary strings such as background

sections of black and white raster lines.
code value

00000reserved

00001“

00010“

00011“

------------------------------

0010000001... or 11110...

00101000001... or 111110...

001100000001... or 1111110...

...

011110000 0000 0000 0001... or 1111 1111 1111 1110...

100000000 0000 0000 0000 1... or 1111 1111 1111 1111 0...

-------------------------------------------------------

100010001...

100100010...

100110011...

...

111101110...

-----------------

11111toggle

The code fragment omits starting up the loop, reloading buffers with new data, storing

code and terminating the loop. Symbol x points to data segment in some register ready for

compression and symbol y points to its immediate successor. Symbol z points to some reg-

ister that will hold code for compression data.

0: scan x,x,%g1!scan for how many bits are same as msb.

!g1 = 1 to 31 or >32 if all in x register.

!x is used as both the value to be scanned(rs1)

!and the mask(rs2).

subcc %g1,4,%g0!test if run at least length 4

bgeu 1f !use unsigned compare for future compatability

subcc %g1,16,%g0!test if run greater than length 16

!handle fixed length code, g1<4

srl x,28,%g2!extract leading 4 bits of x as compression code

or %g2,16,%g2!insert leading bit of code for fixed length

sll x,3,x!shift rest of x in 2 steps

addcc x,x,x!complete x shift and test last of 4 bits

bcs 2f !separate cases for 1 or 0

addcc x,x,%g0!test without shifting first of remaining bits

bcs 3f !if last out bit =0 and first remaining bit =1

mov 1,%g4!set new low priority toggle indicator

ba 3f

mov 0,%g4!otherwise clear toggle indicator

!fixed length code overwrites any pending toggle
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2: bcc 3f !if last out bit =1 and first remaining bit =0

mov 1,%g4!set new low priority toggle indicator

mov 0,%g4!otherwise clear toggle indicator

!fixed length code overwrites any pending toggle

3: srl y,28,%g3!extract leading 4 bits of y

or x,%g3,x!move them to right end of x

sll y,4,y!shift rest of y with incoming trailing zeros

ba 5f

subcc %g5,4,%g5!decrement counter of how many bits of x left

!handle run length code

1: blu 4f !skip ahead if run less than 16

!use unsigned compare for future compatability

sll %g4,1,%g4!shift incomming toggle indicator to higher

!priority; handle runs at least 16

mov 16,%g2!set compression code to 16

sll x,16,x!ignore leading 16 bits of x and shift rest of x

srl y,16,%g3!extract leading 16 bits of y

or x,%g3,x!move them to right end of x

sll y,16,y!shift rest of y with incomming trailing zeros

ba 5f

subcc %g5,16,%g5!decrement counter of how many bits of x left

!handle runs of length 4 to 15

4: mov %g1,%g2!set compression code to scan result

sub %g0,%g1,%g1!complement scan result

sll x,%g2,x!ignore leading g2 bits of x and shift rest of x

srl y,%g1,%g3!extract leading 32-g1 bits of y

or x,%g3,x!move them to right end of x

sll y,%g2,y!shift rest of y with incomming trailing zeros

subcc %g5,%g2,%g5!decrement counter of how many bits of x left

or %g4,1,%g4!toggle following compression code too

!one compression code to go

5: bgu 6f !skip ahead if there are still bits of x left

!use unsigned compare for future compatability

subcc %g6,1,%g6!decrement counter of code fields left

!code for reloading y and shifting part of it into x if the old y had

!trailing zeros and resetting g5 to 32-#trailing zeros.

 ...

6: bg 7f !skip ahead if room for more codes

andcc %g4,2,%g0!test if toggle has priority

!code for storing codes and reinitializing g6

 ...

7: sll z,5,z!make room for new code

be,a 0b !if g4 bit1 off then no additional code

!if g4 bit1 on then insert toggle code first

or z,%g2,z!insert new data code

andn %g4,2,%g4!clear high priority toggle indicator

!without disturbing low priority toggle indicator

ba 5b!check on how much code space left and append toggle

or z,0x1f,z!back through 5,6,7 just once

 ...

Each instruction in this code fragment runs one cycle out of the instruction cache if it is in

the active path for a particular case. Scan is in the active path for all cases. Without hard-

ware implementation of Scan, the function would require a software subroutine taking 43
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to 52 cycles instead of only 1. Additionally, that routine would consume instruction cache

space. Alternate versions that might attempt to speed up the binary tree search with table

look up using leading bits as an index would consume data cache space.
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Annex B   Alternative Window Usage Models

(Informative)

B.1   Overview

This section provides an alternative to the standard SPARC programming model for the

SPARC-V8E processor. SPARC-V8 processors provide a large number of general purpose

registers. At any instant, the SPARC CPU has 32 working registers available. They are

divided into 8 global registers, and 24 registers that compose a current overlapped “regis-

ter window”. The SPARC Architecture Manual, Version 8 requires that the number of reg-

ister windows on any implementation fall between 2 and 32.

The abundance of registers and the window register model provided by SPARC-V8 incurs

several drawbacks and performance penalties when implemented in high performance,

real-time applications associated with embedded systems such as SPARC-V8E. One such

problem encountered is the large number of registers that may need to be saved at context

switch time leading to high context switch overhead. Another, is the difficulty in predict-

ing the number of registers that will need to be saved at context switch time. This results in

all registers being saved with associated performance penalties.

In embedded applications, the following factors take precedence:

— Reduced average context-switch times

— Constant (or small worst-case deterministic) context-switch and procedure-call

times

There are several alternatives known to accommodate the above criteria.

Note:
See Section D.8 of the SPARC Architecture Manual, Version 8, for descriptions of other register-

window usage models. (Note that model “[C]” in D.8 is the one described in more detail below.)
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B.2   Single Register Window Model

An alternate mechanism for the SPARC-V8E window register programming model, The

Single Register Window Model, is described. This Model:

— Avoids the typical window “overflow” processing overhead

— Reduces the number of registers that need to be saved on a context switch

This model avoids using the standard SPARC-V8 register windowing mechanism; instead,

it treats the SPARC processor as a conventional CPU with a flat set of 32 general purpose

registers. The compiler generates code to save registers around procedure calls when nec-

essary. Dedicating a register window to a single process is possible. If a process has a win-

dow dedicated to it, the context of a process is always available without reference to

memory. Thus, little memory access is required for a context switch. In the example illus-

trated in Figure 3, four of the eight register windows are dedicated to four processes.

When an interrupt or another context switching event is detected, the SPARC processor

automatically switches to a new window (which is not shown in diagram). Thus, the local

registers between the reserved windows are reserved for interrupt handling.

Figure 13: Alternative Window Model for Machine with 8 Register Windows

Table3 below shows how a Single Register Window Model compiler will use registers.

Notice that the “in,” “local,” and “out” grouping have been replaced by a flat register file

%r0 through %r31. Even with two registers reserved for future use, 11 registers are now

available for local variables, thereby minimizing expensive load/store operations.

Single Register

Window

r8 - r31

•

•

•

Stack

Process 3

Process 4

Process 1

Process 2

Global

r0 - r7

r8 - r31

r8 - r31

r8 - r31

•

•

•

Stack

•

•

•

Stack

•

•

•

Stack

r0 - r7      Global Register

r8 - r31    Local Registers

Working Registers
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B.3   Conclusion

The above alternative window register model, The Single Window Register Model, pro-

vides enhanced functionality for the SPARC-V8E processor. Both improvements in the

speed of procedure calls and returns and the guaranteeing of constant or worst-case deter-

ministic context switch times are accommodated by the enhanced window register model.

Other solutions have been proposed and may be equally efficient.

Compatibility Note:

Assembly language or computer output from SPARC-V8 ABI conforming programs will not run

on the single register window model.

Register Use Comments

r31 Stack Pointer also referred to as sp

r30 Frame Pointer also referred to as fp

r25 - r29 Scratch Registers used by the compiler for temporary values

r24 Return value start of quad precision value or address of

struct

r16 - r23 Input Parameters additional parameters placed on the stack

r15 Return Address address of the procedure call instruction

r4 - r14 Register Variables local variables

r3 Special Use reserved for the user

r1 - r2 Reserved reserved for future (position-independent

code)

r0 Zero Value always contains the value zero

Table 15: Register Usage in the Single Register Window Model
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Annex C   Summary of Operation Codes, ASIs and ASRs

(Normative)

C.1   Operation Codes

— Divide Step-DIVScc: op=2, op3= 0111012 /(1D16)

— Scan-SCAN: op=2, op3=1011002/ (2C16)

Compatibility Note

The SCAN operation code, op3= 2C16, conflicts with the SPARC-V9 opcode for MOVcc.

C.2   ASI Assignments

The following revision is made to the recommended ASI assignments for ASI’s 3016-FF16

from Table I-1 in the SPARC-V8 Architecture Manual:

C.3   ASRs

— ASR-17: Trap SVT Flag, bit 0

ASI Function

30-6F unassigned

70-7F reserved for diagnostic facility

80-BF reserved*

C0-EF unassigned*

F0-FF reserved for diagnostic facility*

*may be accessible in user mode

Table 16: ASI Assignments
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Annex D   List of options

(Normative)

D.1   Introduction

The list included in this annex shows which V8E extensions to the SPARC-V8 architec-

ture there are, in which combinations they are allowed or advised, and where in the

SPARC-V8E spec they are described.

The options are numbered according to the chapters in the SPARC-V8E spec in which

they are described; the sub numbering does, though, not necessarily follow the section

numbering and subsection numbering as in the SPARC-V8E spec..

D.2   Instructions

The following options are defined.

They can be implemented not at all, separately or in any combination:

2.1. Divide Step: See Chapter 2.1

2.2. Scan See Chapter 2.2

2.3. Multiply Accumulate See Chapter 2.3

2.4. Alternate Window Pointer See Chapter 2.4

2.5. Partial WRPSR See Chapter 2.5

2.6. Non Privileged ASI Access See Chapter 2.6

D.3   MMU

None or just one of the options below can be implemented:

3.1. Basic reference MMU See SPARC-V8 spec

3.2. Embedded Reference MMU See Chapter 3.2

3.3. Cacheability Control See Chapter 3.3
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D.4   Traps

The option below may or may not be supported:

4.1. Single Vector Trapping See Chapter 4.

D.5   Peripheral Extensions

5.1. Input Handler: See Chapter 5.2

 Any number of input handlers can be supported. They will usually but not necessarily

be used as inputs to other options as described in chapter 5.

5.2. Interrupt Controller: See Chapter 5.3.1 and 5.3.2.

 One or more such controllers may be implemented. They will usually be preceded by

Input Handlers <5.1>, and if more than one Interrupt Controller <5.2> is implemented,

then their outputs are combined as an Extended Interrupt Controller <5.3>.

5.3. Extended Interrupt Controller: See Chapter 5.3.3.

If more than one Interrupt Controller <5.2> is implemented then they should be com-

bined into an Extended Interrupt Controller <5.3>.

5.4. Integrated Interrupt Request Controller: See Chapter 5.4.

None or one “IIRC” <5.4> can be implemented.

<5.4> can not be implemented together with circuitry <5.2> or <5.3>.

5.5. Programmable Pulse Generators: See Chapter 5.5.1.

Any number of such Counter/Timer/Pulsers may be implemented. They will usually

be preceded by Input Handlers <5.1>; their outputs will usually be connected to Inter-

rupt Controllers <5.2> but they can also be otherwise connected; that is implementor

defined.

5.6. Simple Counters See Chapter 5.5.2.

Any number of Simple Counters may be implemented. They may be preceded by

Input Handlers <5.1>; their outputs may be connected to Interrupt circuitry <5.2> or

<5.4>

5.7. Simple Timers See Chapter 5.5.3.

Any number of Simple Timers may be implemented. They may be preceded by Input

Handlers <5.1>; their outputs may be connected to Interrupt circuitry <5.2> or <5.4>.

D.6   Diagnostics

None or just one of the options below may be implemented: They share functionality; their

implementation is optimized for different desires.

6.1. Trace enhancing DSU: See Chapter 6.1.1.

A next version of the SPARC-V8E spec will contain more details.

6.2. Pin effective DSU: See Chapter 6.1.2.

 A next version of the SPARC-V8E spec will contain more details.


