
D
R

A
F

T

Last updated 19 March 2002

PRELIMINARY DATA

SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

SuperHTM (SH)
64-bit RISC Series

SH-5 System
Architecture, Volume 3:

Debug

2

D
R

A
F

T

PRELIMINARY DATA

SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

SuperH, Inc.

This publication contains proprietary information of SuperH, Inc., and is not to be copied in whole or part.

Issued by the SuperH Documentation Group on behalf of SuperH, Inc.

Information furnished is believed to be accurate and reliable. However, SuperH, Inc. assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of SuperH, Inc. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information

previously supplied. SuperH, Inc. products are not authorized for use as critical components in life support devices or
systems without the express written approval of SuperH, Inc.

 is a registered trademark of SuperH, Inc.

SuperH is a registered trademark for products originally developed by Hitachi, Ltd. and is owned by Hitachi
Ltd.

© 2001, 2002 SuperH, Inc. All Rights Reserved.

SuperH, Inc.
San Jose, U.S.A. - Bristol, United Kingdom - Tokyo, Japan

www.superh.com

http://www.superh.com/

PRELIMINARY DATA
Contents

D

R
A

F
T

Preface 9

1 Debug/trace architecture 11

1.1 Overview of debug features 11
1.1.1 Communication with a tool 11

1.1.2 Trigger pins 12
1.1.3 Watchpoint detection 12
1.1.4 Watchpoint actions 13
1.1.5 Fast printf 13

1.1.6 Bus analyzer 13
1.1.7 Performance counters 14

1.2 Key concepts 14
1.2.1 SHdebug link 14
1.2.2 JTAG debug interface 16
1.2.3 Watchpoint controller (WPC) 16

1.2.4 Debug registers 16
1.2.5 Debug module 19
1.2.6 Bus analyzers 20
1.2.7 Debug monitor 20
1.2.8 Chain latches 21

1.2.9 Event counters 26
1.2.10 Performance counters 28
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

4
PRELIMINARY DATA
D
R

A
F

T

1.3 CPU control 30
1.3.1 Suspending/resuming the CPU 30

1.3.2 Control operations 31
1.3.3 Changing DBRMODE and/or DBRVEC whilst the CPU is suspended

33
1.3.4 Debug interrupt 33

1.4 Watchpoint channels 35
1.4.1 WP channel type 35
1.4.2 WP Channel - generic register structure 36

1.5 Debug event actions 48
1.5.1 WPC.ADDR_IN_TRACE register definition 65

1.6 WP channel matching 66
1.6.1 SR.WATCH bit 66
1.6.2 Precondition terms 67
1.6.3 Actions 68
1.6.4 Behavior when more than one WPC channel matches an instruction

70
1.6.5 Handling of non-debug exceptions 72

1.7 Reset, panic and debug events 73
1.7.1 RESVEC/DBRVEC selection 74
1.7.2 Event handling sequence 77
1.7.3 Event specific information 80

1.8 Debug module 85
1.8.1 Address spaces 87
1.8.2 Fast printf 87
1.8.3 DM FIFO/trace buffer in target system memory 88
1.8.4 Watchpoint hit buffering and trace message generation 90
1.8.5 IA watchpoint trace modes 92

1.8.6 Timestamping and reference messages 93
1.8.7 Trigger-in chain-latch 94
1.8.8 Trigger-out 95
1.8.9 DM.FPF register definition 97
1.8.10 DM.TRCTL (trace/trigger register) 97
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

5
PRELIMINARY DATA
D
R

A
F

T

1.8.11 DM.TRBUF (trace buffer register) 107
1.8.12 DM.TRPTR (trace pointer register) 110
1.8.13 DM.FIFO_0/DM.FIFO_1/DM.FIFO_2 (FIFO port register) 112

1.8.14 DM.PC (shadow program counter register) 117

1.9 Debug protocols and interfaces 118
1.9.1 Endianness 118
1.9.2 Overall message structure 118
1.9.3 DTRC messages 119
1.9.4 DBUS messages 136

1.10 WP channel type BRK 136
1.10.1 Match registers 137
1.10.2 Event specifics 137

1.11 WP channel type IA 139
1.11.1 Match registers 139
1.11.2 Address comparison 141
1.11.3 SHcompact behavior 141

1.11.4 Event specifics 141

1.12 WP channel type OA 143
1.12.1 Match registers 143
1.12.2 Address comparison 145
1.12.3 Data match registers 147
1.12.4 SHcompact behavior 149

1.12.5 Interrupt action 150
1.12.6 Event specifics 150

1.13 WP channel type IV 152
1.13.1 Match registers 153
1.13.2 SHcompact mode 154
1.13.3 Event specifics 154

1.14 WP channel type BR 156
1.14.1 Branch filter register 156
1.14.2 Event specifics 160
1.14.3 Precondition checking for events and RTE 161
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

6
PRELIMINARY DATA
D
R

A
F

T

1.14.4 Source and destination addresses in branch trace messages 161

1.15 WP channel type FPF 163
1.15.1 Match registers 163
1.15.2 Event specifics 163

1.16 WP channel type PL 164
1.17 WP channel type DM 164

1.17.1 Match registers 164
1.17.2 Event specifics 164

1.18 WP channel type WPC_PERF 165
1.18.1 Match registers 166
1.18.2 Operand cache access types 176

1.18.3 Event specifics 177

2 SuperHyway bus analyzer 179

2.1 Introduction 179
2.2 SuperHyway watchpoint comparators 180
2.3 Matching on devices with wide address ranges 182
2.4 Address comparison 183
2.5 Bus watchpoint hit action 184
2.6 Freezing bus masters 185
2.7 Unfreezing bus masters 186
2.8 WP channel type PL 187

3 External debug interfaces 199

3.1 Introduction 199
3.2 SHdebug link 200

3.2.1 Key features 200

3.2.2 Protocol levels 201
3.2.3 External pins 201
3.2.4 Clocking 202
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

7
PRELIMINARY DATA
D
R

A
F

T

3.2.5 Pin state during reset 203
3.2.6 Start of message indication 204
3.2.7 Flow control 204

3.2.8 SHdebug link output protocol 205
3.2.9 SHdebug link input protocol 208
3.2.10 Debug-link message examples 209
3.2.1 SHdebug link control registers 211

3.3 JTAG interface 212
3.3.1 Introduction 212

3.3.2 Basic concepts 212
3.3.3 Debug interface selection 213
3.3.4 JTAG debug message protocol 213

3.4 Debug tool reset/suspend behavior 219
3.4.1 DEBUG reset 219

3.4.2 Reset functions available from debug tools 219
3.4.3 CPU suspend function 223

3.5 Trigger functions 225
3.6 DBUS protocol 226

3.6.1 Overview 226
3.6.2 Nibble order 228

3.6.3 Pipelining of DBUS requests 228
3.6.4 Unsolicited responses 229
3.6.5 Critical word ordering 229
3.6.6 Endian-specific behavior 230
3.6.7 Opcode definition 231

3.6.8 DBUS transactions 232

4 Implementation specifics 241

4.1 Scalable parameters 241
4.1.1 WP channels 241
4.1.2 Event counters 242
4.1.3 Performance counters 243

4.1.4 Chain latches 243
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

8
PRELIMINARY DATA
D
R

A
F

T

4.1.5 DM FIFO 246
4.1.6 Trace message header fields 247
4.1.7 Action and trace generation timing 248

4.1.8 Timestamping 249
4.1.9 Trigger out pulse width 249
4.1.10 JTAG IR DEBUG codes 249
4.1.11 DM.VCR register 250

4.1.12 Bus analyzer module/SuperHyway mapping 251

4.2 Debug register address map 252
4.2.1 WPC registers 252
4.2.2 DM registers 253
4.2.3 Complete register list 255

Index 265
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

PRELIMINARY DATA
Preface

D

R
A

F
T

This document is part of the SuperH SH-5 CPU system documentation suite
detailed below. Comments on this or other books in the documentation suite should
be made by contacting your local sales office or distributor.

SuperH SH-5 document identification and
control
Each book in the documentation suite carries a unique identifier in the form:

05-SA-nnnnn Vx.x

Where, n is the document number and x.x is the revision.

Whenever making comments on a SuperH SH-5 document the complete
identification 05-SA-1000n Vx.x should be quoted.
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

10
PRELIMINARY DATA
D
R

A
F

T

SuperH SH-5 system architecture
documentation suite
The SuperH SH-5 system architecture documentation suite comprises the following
volumes:

• SH-5 System Architecture, Volume 1: System (05-SA-10001)

• SH-5 System Architecture, Volume 2: Peripherals (05-SA-10002)

• SH-5 System Architecture, Volume 3: Debug (05-SA-10003)
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

05-SA-10003 v1.0 SH-5 S

PRELIMINARY DATA
1
Debug/trace
architecture
D
R

A
F

T
1.1 Overview of debug features

The SH-5 debug system provides both traditional CPU debug, and advanced CPU
and system debug features.

A number of different features are available, the number of instances is scalable on
a per-implementation basis. A brief overview of these debug features is given below.

In the following description of debug features, the term ‘tool’ refers to any form of
software development system, typically consisting of a computer plus a debug
adaptor or emulator.

1.1.1 Communication with a tool

SH-5 provides two interfaces through which it can communicate with a software
development tool; a dedicated high-speed interface (called the SHdebug link) and a
JTAG interface. A tool can use only one of these interfaces at a time.

The SHdebug link is the preferred debug interface as communications between a
tool and SH-5 is much faster using the SHdebug link rather than JTAG. However,
some future SH-5 based ASICs may be pin-limited and not have enough pins
available for a SHdebug link interface. The JTAG interface allows a tool to
communicate with SH-5 and have access to all the on-chip debug features described
in this document but at a substantially reduced performance compared with that
offered by the SHdebug link. In addition to being used for system debug, the JTAG
interface can also be used for its normal functions of boundary scan and internal
scan.
ystem Architecture, Volume 3: Debug

12 Overview of debug features
PRELIMINARY DATA
D
R

A
F

T

Either debug interface provides a logical connection between a tool and the SH-5
SuperHyway bus. This logical connection gives the tool full access to the physical
address map, and all the nodes connected to the bus.

A 16 Mbyte portion of the address map is mapped to memory physically located
within the tool. Accesses to this area result in read or write messages over the
selected debug interface. These can then be handled by the tool to provide
“remote-memory” systems. By using this feature in conjunction with facilities to
stop, start and run the CPU from a specified address, ROM-less target systems are
possible during product development phases.

In addition to these download and control operations, the selected debug interface
may also be used to either spill or read-out trace information.

1.1.2 Trigger pins

SH-5 provides a trigger in (DM_TRIG_N) and a trigger out pin (DM_TROUT_N). These
allow external analysis hardware (such as a logic analyzer) to be connected.

The trigger out pin can also be configured to provide external visibility of timing
events (such as interrupt latency), and to detect internal states (such as FIFO
overflow).

1.1.3 Watchpoint detection

The CPU includes facilities to watchpoint on several events which occur in normal
code execution:

• Instruction address - for breakpoints in ROM, or ranged breakpoints.

• Operand address - to detect range-based memory writes.

• Instruction value - to perform flexible profiling and register watchpoints.

• PC branch - to perform branch tracing, call graph profiling and sample based
profiling.

The watchpoints can be triggered in complex manners using generic pre-conditions
to combine them in sequence, and also to combine them with event counters. The
pre-conditions also allow them be made process (ASID) and instruction mode
(SHmedia vs. SHcompact) specific.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Overview of debug features 13
PRELIMINARY DATA
D
R

A
F

T

1.1.4 Watchpoint actions

Watchpoints can perform a number of actions:

• Raise a CPU debug exception (to invoke the debug exception handler).

• Capture all parameters associated with the debug event, and generate a trace
message. The trace message can optionally include timestamp information, and
can also include data values.

• Set or clear chain latches, which allow debug events to be chained together in
complex sequences.

• Decrement event counters, which allow events to be disabled until they have
occurred a specified number of times.

• Increment performance counters.

• Reset all performance counters.

• Control the state of the trigger-out pin.

1.1.5 Fast printf

A memory-mapped register is available, which when written to results in a specified
message being sent to the tool. These messages can be read by the tool and used to
implement arbitrary communication functions, such as:

• Dump of specific trace/data or timing information.

Can be used to provide minimally intrusive code instrumentation facilities.

• Virtual I/O - for target/tool communications (such as file/tty access to the tool).

These facilities are used to implement “software backplanes” (scalable host/
target debug systems).

1.1.6 Bus analyzer

A bus analyzer is provided on SH-5’s SuperHyway bus.

This provides SuperHyway request or SuperHyway response packet watchpoint
facilities, and can be used to generate trace information, and provide performance
information. The bus analyzer can be combined with CPU watchpoints in order to
provide sophisticated conditions for filtering debug events.
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

14 Key concepts
PRELIMINARY DATA
D
R

A
F

T

1.1.7 Performance counters

A number of CPU based events can be setup to increment a number of performance
counters. These can be used to count arbitrary debug events from the CPU and the
bus analyzers.

CPU performance monitor channels are also available which allow a number of
distinct CPU states (cache hits/misses, interrupts taken) to be observed.

1.2 Key concepts
This section defines some key concepts and mechanisms associated with the debug
system.

The following “shorthand” terms are used throughout this document:

• WPC - watchpoint controller.

• DM - debug module.

• BA - bus analyzer.

• WP - watchpoint. Used as in “WP channel”.

Note: Some WP channels are implemented in the WPC, others are implemented in the
debug module or the bus analyzers.

1.2.1 SHdebug link

The SHdebug link is one of the two debug interfaces which can be selected for
target/tool communications. It provides a full-duplex interface, with a 1-bit wide
input path, and a 4-bit wide output path. It is implemented as part of the debug
module (Section 1.9: Debug protocols and interfaces on page 118). The design of this
module allows the width of the output data path to be increased to meet the
debugging bandwidth needs of different applications.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Key concepts 15
PRELIMINARY DATA
D
R

A
F

T

The SHdebug link provides:

• Full access to the physical address map (RAM, ROM, on-chip devices,
external-devices). This allows access to the debug registers (see Section
1.2.4: Debug registers on page 16).

• SH-5-originated access to a 16 Mbyte address space mapped over the SHdebug
link.

Allows a target debug agent (or any other code) to execute on the CPU without
requiring any external RAM or ROM, and thus enables use of SH-5 without a
traditional monitor ROM.

The debug/development tool must not access this 16 Mbyte region via the
SHdebug link (this would require the SH-5 reflect the request back to the tool).
The SH-5 behavior is undefined if this is attempted. The tool is expected to
service such memory accesses locally, without involving the SH-5.

• Control of the CPU via memory-mapped register.

Allows the CPU to be suspended, resumed, forced to execute from a specified
address, forced to generate a fast printf message, or forced to take a debug
interrupt.

• Streaming operations for CPU and bus trace information.

Allows trace information gathered from the CPU and the on-chip busses to be
copied to a specified area in the physical memory map (such as RAM or the
SHdebug link). This area acts as an external FIFO. The trace information can
also be sent directly to the SHdebug link using a special mode which compresses
the trace message contents. This gives better throughput on the link.

The SHdebug link is suitable for connection to a debug adaptor board as part of a
development tool (to provide code download and debug facilities). It can also be
connected to specialized hardware debug systems (such as logic analyzers) to
provide more complex facilities.
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

16 Key concepts
PRELIMINARY DATA
D
R

A
F

T

1.2.2 JTAG debug interface

The JTAG port of SH-5 is the other interface which can be selected for target/tool
communications. The JTAG debug interface provides the same communication
functions between target and tool as described in Section 1.2.1 above, except that it
uses the standard JTAG access method and has a much lower bandwidth.

The other key difference is that JTAG does not support target-initiated
communications. In order for the tool to recognize that SH-5 has an unsolicited
message pending, the tool must poll the target at regular intervals.

1.2.3 Watchpoint controller (WPC)

The WPC is part of the CPU. It provides “CPU-centric” debugging operations. It is
based on two main features:

• Instruction architecture debug support. The provision of a BRK instruction,
single stepping, instruction address/operand address/instruction value
watchpoints, branch detection facilities, and a dedicated exception vector.

• The ability to cause a context switch from application being debugged to
debugger externally from the CPU (via the tool or via another CPU). This can be
achieved without the co-operation of the application being debugged or its
operating system.

1.2.4 Debug registers

Locality of registers

The debug mechanisms are implemented in the watchpoint controller, the bus
analyzer channels and the debug module.

In order to provide the necessary control information, the registers associated with
the debug system are located in one of these modules. This locality does not affect
the high-level semantics of the operations, but it is naturally exposed as part of the
register’s address. Therefore a naming convention is used to denote this:

DM.* debug module (including SuperHyway bus analyzer registers). All DM.
register addresses are offsets from DM_BASE_ADDR.

WPC.* watchpoint controller. All WPC register addresses are offsets from
WPC_BASE_ADDR.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Key concepts 17
PRELIMINARY DATA
D
R

A
F

T

Access to registers

The debug registers implemented both inside and outside of the WPC (that is,
outside of the CPU) are memory mapped. They are accessed using the physical
address map and thus can be accessed:

• Via the CPU instruction stream. Following any store, a SYNCO instruction
followed by a SYNCI instruction can be used to ensure that the updated WPC
and DM states take effect before the instruction after the SYNCI.

• Externally using a debug tool connected to either of the selectable debug
interfaces (that is, without involving the CPU).

Accesses to the WPC and DM registers should only be performed with Load8/
Store8 transactions with a mask value of 0xFF. All other accesses are
undefined. The instructions listed in Table 1 may be used to correctly access
these registers from the instruction stream.

Mode Direction Instruction Notes

SHmedia store8 ST.Q

STHI.Q Effective address = 8N+7

STLO.Q Effective address = 8N

FST.D

FST.P

load8 LD.Q

LDHI.Q Effective address = 8N+7

LDLO.Q Effective address = 8N

FLD.D

FLD.P

Table 1: Instructions for accessing WPC and DM registers
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

18 Key concepts
PRELIMINARY DATA
D
R

A
F

T
Access to undefined areas of the WPC/DM address map

Accesses to memory addresses within the WPC/DM address map which do not
correspond to architected registers are undefined.

Whilst being undefined, these accesses have the following properties:

• They will not lock the SuperHyway (that is, SuperHyway success or error
responses will be generated).

• Reads will return undefined data.

• Writes will potentially affect other architected registers (that is, the WPC/DM
architected registers do not necessarily have their addresses fully decoded).

SHcompact store8 FMOV DRm, @Rn

FMOV DRm, @-Rn

FMOV DRm, @(R0,Rn)

FMOV XDm, @Rn

FMOV XDm, @-Rn

FMOV XDm, @(R0,Rn)

load8 FMOV @Rm, DRn

FMOV @Rm+, DRn

FMOV @(R0,Rm), DRn

FMOV @Rm, XDn

FMOV @Rm+, XDn

FMOV @(R0,Rm), XDn

Mode Direction Instruction Notes

Table 1: Instructions for accessing WPC and DM registers
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Key concepts 19
PRELIMINARY DATA
D
R

A
F

T

1.2.5 Debug module

The debug module manages:

• The SHdebug link and the debug interface to the JTAG TAP controller.

Provides a connection to the SuperHyway bus, and also a route to extract trace
information.

• The DM_TRIN_N and the DM_TROUT_N pins.

• An on-chip FIFO (known as the DM FIFO).

This acts as a temporary buffer for trace messages. Trace messages from the DM
FIFO can be dealt with as follows:

- Sent to the selected debug interface, JTAG or SHdebug link. If trace
messages are generated faster than they can be transferred to the selected
debug interface, either the CPU can be stalled or new trace messages can be
discarded.

- Accumulated in the DM FIFO until it fills. Once the DM FIFO fills, either the
CPU can be stalled or new trace messages are discarded. In this mode,
memory-mapped registers allow the DM FIFO contents to be read.

- Old messages in the DM FIFO overwritten by new ones so that the DM FIFO
contains the most recent trace messages generated. In this mode,
memory-mapped registers allow the DM FIFO contents to be read.

- Written to an area of the target system’s RAM (known as a trace buffer).

• Trace buffer

One of the available destinations for trace messages is to write these into an
area of target system memory allocated as a trace buffer. Debug module register
fields set the size and the base address of this trace buffer area. The size can set
between 64 Kbytes and 64 Mbytes.

The trace buffer can operate in two different ways:

- As circular buffer, with old entries being overwritten by new entries once the
buffer fills. The buffer always contains the most recent trace messages.

- As a fixed length buffer which does not wrap around. Once the buffer fills,
trace messages are discarded which means that the buffer contains the
earliest trace messages.
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

20 Key concepts
PRELIMINARY DATA
D
R

A
F

T

1.2.6 Bus analyzers

As part of SH-5’s on-chip debug capability, the SuperHyway bus arbiter contains bus
analyzer channels to provide:

• SuperHyway request packet or response packet watchpoints.
These allow either requests or responses to be monitored, and a normal
watchpoint action (see Section 1.1.4: Watchpoint actions on page 13) to be
generated.

• A bus capture buffer for capturing complete bus transactions whenever a bus
watchpoint hit occurs. These captured SuperHyway packets are sent to the
debug module and used to create trace messages which are written to the debug
module FIFO. These trace messages can be sent either to the tool or written to a
FIFO area in target system memory.

• Capture selected performance parameters of the on-chip bus to allow system
software to “tune” the parameters of individual application-specific modules or
bus arbiters.

1.2.7 Debug monitor

Whenever a watchpoint matches, a debug monitor can optionally be invoked. The
debug monitor consists of a debug exception handler whose code and data can exist
in any location in the physical memory map. For example:

• Partly in an area of the target system flash memory and partly in target system
RAM memory.

• Totally in an area of the target system RAM memory or flash ROM memory.

• In the debug adapter portion of a tool where the debug adapter contains its own
processor and local memory.

• In the development host portion of a tool in which the debug adapter is simply a
signal converter.

In these last two alternatives, the debug exception vector is setup to force the CPU’s
MMU and cache to be disabled, and the vector points to an address in the debug
module’s address space. Instruction fetches (SuperHyway Load8/16/32 requests)
are passed to the tool, either via the SHdebug link or via JTAG depending on which
interface is configured as the debug interface.

Similarly, data accesses within the debug module’s address space result in
SuperHyway requests (for example, Load8/16/32, Store8/16/32, Swap8) being
passed to the tool through the SHdebug link or JTAG port.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Key concepts 21
PRELIMINARY DATA
D
R

A
F

T

1.2.8 Chain latches

SH-5 provides a series of chain-latches. Chain-latches allow watchpoint hits, in the
WPC or bus analyzers, to enable or disable any other watchpoints.

Chain latches consist of an item of state, which is either set or clear. No assumptions
are made about the type of sequential device which will be used in the
implementation. Figure 1 shows a functional block diagram of the chain-latches.

Figure 1: Chain-latch concept

 Select one
chain-latch

&Other WP
pre-conditions

WPC
watchpoint
enable

Repeat for all
other WPC
watchpoints

WPC
chain-latch set/
cleared by
WPC
watchpoint hit
action

Chain-latches in WPC Chain-latches in DM

WP Hit
Actions

Set

Clear
 Select one
chain-latch

&Other WP
pre-conditions

bus analyzer
watchpoint enable

WP Hit
Actions

+

Shared
chain-latch can
be set/cleared
by any
watchpoint hit
action

Repeat for all other
bus analyzer
watchpoints

Shared
chain-latch

WPC.
CHAIN_x

Set

Clear

DM.
CHAN_x

Set

Clear

IAx
Watchp
oint

Full hit

WPC.IA_C
HAIN_x

&
Address
comparison
valid

Set

Clear

TRIG_IN
LATCH

OR

dm_trin_n pin
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

22 Key concepts
PRELIMINARY DATA
D
R

A
F

T

All of the watchpoints (including the branch trace and the fast printf function) can
use a chain-latch to enable or disable the function.

An implementation may provide a maximum of 16 chain-latches, thus a 4-bit field is
used for the chain-latch ID. Section 4.1.4: Chain latches on page 243 defines the
chain-latch IDs.

Note The trigger-in signal shown in Figure 1 has some of the characteristics of a chain latch
and is described in Trigger-in chain-latch on page 24.

Chain-latch capabilities

There are three groups of chain-latches with slightly different capabilities.

1 Each of the IA watchpoints has an associated chain-latch. There is no ACTION
register field for controlling these chain-latches. Instead, the state of each
chain-latch is determined solely by whether a full hit occurred for the
corresponding IA channel on the immediately preceding instruction. The
chain-latch outputs are available as pre-conditions for all WPC and debug
module/bus analyzer watchpoints.

2 Generic chain-latches in the WPC which can be set or cleared by any WPC
watchpoint hits. The chain-latch outputs are available as pre-conditions for all
WPC and bus analyzer watchpoints.

3 Generic chain-latches in the DM which can be set or cleared by WPC or bus
analyzer watchpoint hits. The chain-latch outputs are available as
pre-conditions for all WPC and bus analyzer watchpoints.

Table 2 summarizes the control and use of all chain-latches.

Latch name
Pre-condition

for WPC
watchpoint

WPC
watchpoint can

alter

Pre-condition
for DM and bus

analyzer
watchpoint

Bus analyzer
watchpoint can

alter

WPC.IAX_CHAIN OA, IV,
WPC_PERF

no FPF, BR, PL no

WPC.CHAIN_X IA, OA, IV,
WPC_PERF

yes (IA, OA, IV
only)

FPF, BR, PL no

Table 2: Chain-latch use
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Key concepts 23
PRELIMINARY DATA
D
R

A
F

TChain state

Each latch has 1 bit of state. This denotes if the latch is set (1) or clear (0). The state
is affected by the WP channels.

If the state of a chain latch is being changed by conflicting conditions, for example,
being set by a watchpoint hit and being cleared by a different watchpoint hit on the
same clock cycle, then the resulting state of the chain-latch is undefined.

Chain-latches can be included in the pre-trigger and action-condition operations of
each of the watchpoint channels.

The pre-conditions of each WP channel allow the WP match to succeed only if the
specified chain latch is set.

Table 3 shows how the state of the generic chain-latches in the WPC and the DM
can be changed. Table 4 gives similar information for the IA watchpoints in the
WPC. Refer to Section 1.6: WP channel matching on page 66 for a definition of
Full-Hit.

DM.CHAIN_X IA, OA, IV,
WPC_PERF

yes (IA, OA, IV
only)

FPF, BR, PL yes

Latch name
Pre-condition

for WPC
watchpoint

WPC
watchpoint can

alter

Pre-condition
for DM and bus

analyzer
watchpoint

Bus analyzer
watchpoint can

alter

Table 2: Chain-latch use

Chain alter (see Table 18 on page 49)
FULL_WP_HIT

(see Section 1.6: on page 66)
New state

0bxx 0 Unchanged

0b00 or 0b01 1 Unchanged

0b10 1 Clear

0b11 1 Set

Table 3: Generic chain-latch action
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

24 Key concepts
PRELIMINARY DATA
D
R

A
F

TTrigger-in chain-latch

The DM_TRIN_N pin is manifested as a chain-latch (see Section 1.8.7: Trigger-in
chain-latch on page 94). This chain-latch has some special properties which allow its
state to be directly affected by the level on the DM_TRIN_N pin, or to be edge
triggered.

The resynchronization circuitry used to manifest the pin state as a chain-latch state
results in an implementation-defined delay (see Chain-latch latency on page 244)
delay between the pin changing state and the chain-latch’s value altering.

The normal chain-latch operations are available on the WP channels to clear or set
the trigger chain-latch’s state as required.

Instruction comparison valid Full-hit New state

1 1 Set

0 x Unchanged

1 0 Clear

Table 4: IA chain-latch action
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Key concepts 25
PRELIMINARY DATA
D
R

A
F

T

{WPC/DM}_CHAIN_x control register description

These registers allow debug software to read the state of the chain latches and to
directly set or clear these latches.

{WPC/DM}.CHAIN_x
where

x = chain ID OR = TRIG_IN

Field Bits Size Volatile? Synopsis Type

CHAIN_
STATE

0 1 � Chain-latch state RW

Operation Contains a chain-latch’s value.

The chain-latch can be set or cleared by watchpoint being hit,
according to the programming of the watchpoint’s ACTION registers.

Software can read the state of this latch at any time, and can also
directly set or clear the latch.

When read Returns 0 when the latch is clear and 1 when the latch is set.

When written Sets or clears the chain-latch.

Value - Description

0: Clear the chain-latch

1: Ignored

HARD reset Undefined

— [63:1] 63 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

Table 5: {WPC/DM}_CHAIN_x definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

26 Key concepts
PRELIMINARY DATA
D
R

A
F

T
1.2.9 Event counters

SH-5 provides a series of event counters, these are used in conjunction with WP
channels to provide count-based matching of debug events.

An implementation may provide a maximum of 16 event counters, thus a 4-bit field
is used for the event counter ID. The counter has a maximum size of 64 bits.

Any particular implementation may provide fewer than 16 counters, and those
provided may have fewer than 64 bits. See Section 4.1.2: Event counters on page 242
for implementation-specific details.

A number of event counters are available, some are implemented in the WPC and
are accessible only by CPU core watchpoint channels, whilst others are
implemented in the DM and are accessible only by bus analyzer watchpoint
channels.

WPC.IA_CHAIN_x where x = chain ID

Field Bits Size Volatile? Synopsis Type

CHAIN_
STATE

0 1 � Chain-latch state RO

Operation Contains an IA watchpoint chain-latch’s value.

The chain-latch is set whenever an IA watchpoint full-hit occurs. It is
cleared whenever an IA watchpoint full-hit does not occur. The new
value is visible to precondition checks from the next instruction
(inclusive) onwards.

Software can read the state of this latch at any time.

When read Returns 0 when the latch is clear and 1 when the latch is set.

When written Ignored

HARD reset Undefined

— [63:1] 63 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

Table 6: WPC.IA_CHAIN_x definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Key concepts 27
PRELIMINARY DATA
D
R

A
F

T

If multiple WP channels are setup to affect the same event counter, only a single
event counter decrement will be performed for each simultaneous channel match
(rather than the alternative of performing one decrement per simultaneous WP
channel match).

Register description

{WPC/DM}.ECOUNT_VALUE_x
where

x = event counter ID

Field Bits Size Volatile? Synopsis Type

VALUE [63:0] 64 � Counter value RW

Operation Contains the counter’s value.

The implementation defines the significant size of the counter
(known as ECOUNT.SIZE, see Section 4.1.2: Event counters on
page 242).

Bits [0:(ECOUNT.SIZE-1)] count down when a WP channel is set
to decrement this counter. When the counter value reaches zero,
no further decrementing occurs. Even if a watchpoint PRE
register has an event counter enabled, debug software can
disable the counter by setting the value to zero.

Bits [ECOUNT.SIZE, 63] are undefined.

When read Returns current value

When written Updates value

HARD reset Undefined

Table 7: {WPC/DM}.ECOUNT_VALUE_x register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

28 Key concepts
PRELIMINARY DATA
D
R

A
F

T

1.2.10 Performance counters

SH-5 provides a series of performance counters, these are used in conjunction with
the WP channels and WP facilities to provide observation of internal CPU and bus
events. Some of the counters are physically located within the WPC and others are
physically located within the debug module.

• Performance counters within the WPC may be incremented either when a WPC
watchpoint hit occurs or when a WPC_PERF channel match occurs. Refer to
Section 1.18: WP channel type WPC_PERF on page 165.

• Performance counters within the DM may be incremented when a PL watchpoint
hit occurs.

An implementation may provide a maximum of 16 performance counters, thus a 4
bit field is used for the performance counter ID. The counter has a maximum size of
64 bits.

Any particular implementation may provide fewer than 16 counters, and those
provided may have fewer than 64 bits. See Section 4.1.3: Performance counters on
page 243 for implementation-specific details.

The counters may be written to at any time. They are modulo-N counters, and thus
will wrap around.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Key concepts 29
PRELIMINARY DATA
D
R

A
F

T

Register description

{WPC/DM}.PCOUNT_VALUE_x where
x = performance counter ID

Field Bits Size Volatile? Synopsis Type

VALUE [63:0] 64 � Counter value RW

Operation Contains the counter’s value.

The implementation defines the significant size of the counter
(known as PCOUNT.SIZE, see Section 4.1.3: Performance
counters on page 243).

Bits [0, (PCOUNT.SIZE - 1)] count up when a WP channel is set
to increment this counter.

Bits [PCOUNT.SIZE, 63] are undefined.

When read Returns current value

When written Updates value

HARD reset Undefined

Table 8: {WPC/DM}.PCOUNT_VALUE_x register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

30 CPU control
PRELIMINARY DATA
D
R

A
F

T

1.3 CPU control
The CPU has a memory-mapped register (WPC.CPU_CTRL_ACTION) which can be used
to control it (both from the instruction stream, and from the tool directly).

The DM has a memory-mapped register (DM.FORCE_DEBUGINT) which can be used to
force a debug interrupt on the CPU.

1.3.1 Suspending/resuming the CPU

The CPU can be made to cease fetching and issuing instructions and enter the
suspended state by writing CPU_CTRL_OP_SUSPEND to WPC.CPU_CTRL_ACTION.

The suspended state may be exited by writing CPU_CTRL_OP_RESUME to
WPC.CPU_CTRL_ACTION.

Entering the suspended state causes a CPU to drain its execution pipelines. This
takes an implementation defined period of time. When a CPU is suspended its
execution context may be changed in any of the following ways:

• The selection of either RESVEC or DBRVEC vectoring through DBRMODE, and the
DBRVEC value may be changed (see Section 1.7: Reset, panic and debug events on
page 73);

• The CPU may be manually reset;

• The state of peripherals may be examined or safely changed.

• The state of memory may be examined or safely changed.

These operations can be performed when the CPU is running, but by suspending it
beforehand it is possible to determine that no CPU state is changing apart from that
being affected by operations being applied from the tool.

When the CPU is suspended, the stall_state bit of the DM.TRCTL register is set (see
Section 1.8.10: DM.TRCTL (trace/trigger register) on page 97).

When suspending the CPU from the instruction stream1, the store instruction
which writes to WPC.CPU_CTRL_ACTION should be followed by a sequence of NOP
instructions, sufficient to allow the CPU pipeline to drain before the suspend takes
effect.

1. In a single CPU system this is not generally a useful thing to do.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

CPU control 31
PRELIMINARY DATA
D
R

A
F

T

1.3.2 Control operations

The control operation is defined by a 2-bit value:

WPC.CPU_CTRL_ACTION register definition

When written to, this register performs a CPU control operation:

Operation name value Explanation

CPU_CTRL_OP_SUSPEND 0b00 Suspends execution of the receiving CPU. See
Section 1.3.1: Suspending/resuming the CPU on
page 30.

CPU_CTRL_OP_RESUME 0b01 Resumes execution from suspended state of the
receiving CPU

CPU_CTRL_OP_CPURESET 0b10 Generate a CPURESET event on the receiving CPU.

See Section 1.7: Reset, panic and debug events on
page 73.

CPU_CTRL_OP_DEBUGRESET 0b11 Generate a DEBUGRESET event for the whole
device.

See Section 1.7: Reset, panic and debug events on
page 73.

Table 9: CPU control operation values

WPC.CPU_CTRL_ACTION 0x104000

Field Bits Size Volatile? Synopsis Type

OPCODE [1:0] 2 — Control operation code RW

Operation A CPU control operation as defined in Table 9 on page 31.

When read Returns current value

When written Performs the operation defined in Table 9 on page 31.

HARD reset Undefined

Table 10: WPC.CPU_CTRL_ACTION register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

32 CPU control
PRELIMINARY DATA
D
R

A
F

T
If the value CPU_CTRL_OP_DEBUGRESET is written to WPC.CPU_CTRL_ACTION twice or
more in succession, the second and subsequent writes will be ignored. To perform a
second DEBUGRESET event, the WPC.CPU_CTRL_ACTION register must have a different
value (such as CPU_CTRL_OP_RESUME) written to it before writing
CPU_CTRL_OP_DEBUGRESET for the second time. In particular, it is assumed that the
bootstrap code entered after a DEBUGRESET event will write CPU_CTRL_OP_RESUME
to WPC.CPU_CTRL_ACTION as one of its steps.

In contrast, each write of the value CPU_CTRL_OP_CPURESET to the
WPC.CPU_CTRL_ACTION register will cause a CPURESET event, regardless of the
previous value written to the register.

— [63:2] 62 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

WPC.CPU_CTRL_ACTION 0x104000

Field Bits Size Volatile? Synopsis Type

Table 10: WPC.CPU_CTRL_ACTION register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

CPU control 33
PRELIMINARY DATA
D
R

A
F

T

1.3.3 Changing DBRMODE and/or DBRVEC whilst the CPU is
suspended

If the values of DBRMODE and DBRVEC are modified whilst the CPU is suspended, the
SH-5 will ignore the new values unless a CPURESET occurs before the CPU resumes.

The correct sequence of actions for setting a new PC to be used when the CPU
resumes is:

• write CPU_CTRL_OP_SUSPEND to WPC.CPU_CTRL_ACTION (or bring the SH-5 up in
a suspended state by a hardware reset).

• set DBRMODE to 1 and DBRVEC to the required address

• write CPU_CTRL_OP_CPURESET to WPC.CPU_CTRL_ACTION

• write CPU_CTRL_OP_RESUME to WPC.CPU_CTRL_ACTION

If the CPURESET action is not used, the effect will be to ignore the new settings of
DBRMODE and DBRVEC. In particular:

• If the SH-5 was brought up in a suspended state by a hardware reset (see the
discussion of DM_ISYNC and SUSPEND in Section 3.4.2: Reset functions available
from debug tools on page 219), the PC after the CPU resumes will be 0x0 (the
power-on reset value of RESVEC).

• If the SH-5 was suspended by writing CPU_CTRL_OP_SUSPEND to
WPC.CPU_CTRL_ACTION, the PC will not be modified by the suspend and resume
operation.

1.3.4 Debug interrupt

A non-maskable, but blockable debug interrupt is available (see Section 1.7.3: Event
specific information on page 80). DEBUGINT has a priority level of 16, thus it can be
taken regardless of the value of SR.IMASK.

Occurrence of DEBUGINT forces execution of the event handler (see Section
1.7: Reset, panic and debug events on page 73). If the CPU was in sleep mode, a
wake-up transition will occur prior to the DEBUGINT launch.

This interrupt is forced using the DM.FORCE_DEBUGINT register (seeTable 11 on
page 34). Full details of the interrupt mechanism are given in Section : DEBUGINT
- debug interrupts on page 81. (That section also describes how to clear DEBUGINT
conditions.)
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

34 CPU control
PRELIMINARY DATA
D
R

A
F

T

DM.FORCE_DEBUGINT register definition

DM.FORCE_DEBUGINT 0x100088

Field Bits Size Volatile? Synopsis Type

FORCE 0 1 � DEBUGINT force RW

Operation Forces a DEBUGINT event on the CPU.

When read Returns an undefined value.

When written Writing ‘1’ sets the FORCED_DEBUG_INTERRUPT bit of
DM.EXP_CAUSE and will force a DEBUGINT event (see Section
: on page 81). Subsequent writes of ‘1’ will have no effect until
the DEBUGINT has been cleared.

Writing ‘0’ has no effect.

HARD reset 0

— [63:1] 63 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

Table 11: DM.FORCE_DEBUGINT register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Watchpoint channels 35
PRELIMINARY DATA
D
R

A
F

T

1.4 Watchpoint channels
SH-5 supports a number of WP channels, these provide differing features, but have
a common overall structure.

The WP channels are implemented in different parts of the SH-5, some are in the
WPC controller itself (that is, within the SH-5 CPU), others are within the debug
module, whilst others are in the bus analyzer.

1.4.1 WP channel type

The SH-5 debug system supports up to 16 distinct channel types. Each WP channel
has a single fixed, unchangeable type.

Channel name
WP channel
type (4 Bits)

Type of
watchpoint hit

Explanation

BRK 0b0000 Breakpoint or single
step

Execution of an embedded BRK
instruction, a single step, or a forced
debug interrupt.

This is not a true WP channel - it has no
precondition or action
registers. See Section 1.10: WP channel
type BRK on page 136.

IA 0b0001 Instruction address
watchpoint

CPU is about to execute an
instruction from a PC address within a IA
watchpoint range.

OA 0b0010 Operand address
watchpoint

CPU is about to execute an
instruction which will write to memory
within a memory range covered by an OA
watchpoint.

IV 0b0011 Instruction value
watchpoint

CPU is about to execute an
instruction which has a bit pattern
matching an IV watchpoint.

BR 0b0100 Non-sequential PC
branch

CPU has branched to a non-sequential
PC value (either conditional branch,
unconditional branch, subroutine call or
exception/interrupt).

Table 12: WP Channel Types
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

36 Watchpoint channels
PRELIMINARY DATA
D
R

A
F

T
1.4.2 WP Channel - generic register structure

Each WP channel is controlled by a set of registers. Most WP channels follow a
generic register form (some channels have implicit features and so have a reduced
set of registers). All the WP channel registers appear in the physical memory map.

The generic form of WP channels consists of:

• PRE condition registers, which must all match in order to trigger the WP
channel.

• Optional channel-specific MATCH condition registers, which must match in order
to trigger the WP channel.

• ACTION registers which define the action to perform when the WP channel
triggers.

The following WP channels do not follow the generic form:

• The BR channel has only a single register, DM.WP_BR_FILTER, defining all of its
PRE conditions, MATCH conditions and ACTIONS.

• The FPF and PERF channels have implicit actions, and so does not have ACTION
registers.

• The BRK and DM channels have implicit preconditions and actions, and so do
not have these registers.

FPF 0b0101 Fast printf Fast printf forced (see Section 1.1.5: Fast
printf on page 13, and Section 1.15)

PL 0b0110 SuperHyway bus
analyzer watchpoint

SuperHyway bus analyzer watchpoint has
occurred. See Section 1.16: WP channel
type PL on page 164.

DM 0b1000 FIFO activity Debug module’s FIFO activity (as
selected by Section 1.8.10: on page 97).

WPC_PERF 0b1001 Performance events Performance information updated (see
Section 1.18).

* All other values N/A

Channel name
WP channel
type (4 Bits)

Type of
watchpoint hit

Explanation

Table 12: WP Channel Types
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Watchpoint channels 37
PRELIMINARY DATA
D
R

A
F

T

The WP channel match sequence described in Section 1.6: WP channel matching on
page 66.

Each WPC channel has two PRE registers, one which is implemented in the WPC
and the second which is implemented in the debug module.

WP-channel Register name Abbreviation

IA, OA, IV,
WPC_PERF

WPC.WP_NX_PRE

DM.WP_NX_PRE

Defines a set of pre conditions to apply when
performing channel matching.

Described in Section 1.6: WP channel matching on
page 66.PL, FPF DM.WP_NX_PRE

IA, OA, IV WPC.WP_NX_ACTION

DM.WP_NX_ACTION

Defines a set of actions to apply when the debug event
matches.

Described in Section 1.5: Debug event actions on
page 48.DM, PL DM.WP_NX_ACTION

IA, OA, IV,
WPC_PERF,
PL, DM

WPC.WP_NX_MATCH

DM.WP_NX_MATCH

Defines a set of match criteria which are specific to the
WP Channel’s type (that is, IA watchpoints contain an
address range, IV watchpoints contain an instruction
value and instruction mask).

Described in
Section 1.9: Debug protocols and interfaces on
page 118
Section : Implicit action: on page 138
Section 1.12: WP channel type OA on page 143
Section 1.13: WP channel type IV on page 152
Section 1.15: WP channel type FPF on page 163
Section 1.16: WP channel type PL on page 164
Section 1.17: WP channel type DM on page 164
Section 1.18: WP channel type WPC_PERF on
page 165

n = name of the channel (for example IA for IA channel)
x = a 4 bit value to specify the channel ID (relative to n), for example x= 2 for IA2.

Table 13: WP channel generic registers
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

38 Watchpoint channels
PRELIMINARY DATA
D
R

A
F

T

WPC.WP_nx_PRE

Each channel has a PRE register implemented in the WPC.

WPC.WP_nx_PRE where
n = {IA/OA/IV/WPC_PERF},

x = channel ID

Field Bits Size Volatile? Synopsis Type

BASIC_ENABLE 0 1 — Enable RW

Operation Enables or disables the WP channel.

Value - Description

0: basic match disabled

1: basic match enabled

When read Returns current value

When written Updates value

HARD reset 0

ASID_ENABLE 1 1 — ASID match enable RW

Operation Enables or disables the inclusion of the current ASID value in
the debug event match.

Value - Description

0: ASID match disabled

1: ASID match enabled. Will only trigger when the current ASID
matches the ASID_VALUE field.

When read Returns current value

When written Updates value

HARD reset Undefined

Table 14: WPC.WP_{IA/OA/IV/WPC_PERF}x_PRE register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Watchpoint channels 39
PRELIMINARY DATA
D
R

A
F

T

CHAIN_ENABLE 2 1 — Chain-latch enable RW

Operation Enables or disables the inclusion of a specified chain-latch in
the debug event match.

Value - Description

0: Chain-latch match disabled

1: Chain-latch match enabled. Will only trigger when the
chain-latch specified by CHAIN_ID is set.

When read Returns current value

When written Updates value

HARD reset Undefined

CHAIN_ID [6:3] 4 — Chain-latch ID RW

Operation Defines the chain-latch used in the debug event match. Chain
latches located in the WPC and in the DM are all available for
selection. See Section 4.1.4: Chain latches on page 243.

When read Returns current value

When written Updates value

HARD reset Undefined

WPC.WP_nx_PRE where
n = {IA/OA/IV/WPC_PERF},

x = channel ID

Field Bits Size Volatile? Synopsis Type

Table 14: WPC.WP_{IA/OA/IV/WPC_PERF}x_PRE register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

40 Watchpoint channels
PRELIMINARY DATA
D
R

A
F

T

ECOUNT_ENABLE 7 1 — Event counter enable RW

Operation Enables or disables the inclusion of a specified event counter in
the debug event match.

Value - Description

0: Event count match disabled

1: Event count match enabled.

Will only trigger when the event counted defined by ECOUNT_ID
contains 0.

When read Returns current value

When written Updates value

HARD reset Undefined

ECOUNT_ID [11:8] 4 — Event counter ID RW

Operation Defines the event counter used in the debug event match. See
Section 4.1.2: Event counters on page 242.

When read Returns current value

When written Updates value

HARD reset Undefined

ASID_VALUE [19:12] 8 — ASID match value RW

Operation Defines the ASID value in the debug event match.

When read Returns current value

When written Updates value

HARD reset Undefined

WPC.WP_nx_PRE where
n = {IA/OA/IV/WPC_PERF},

x = channel ID

Field Bits Size Volatile? Synopsis Type

Table 14: WPC.WP_{IA/OA/IV/WPC_PERF}x_PRE register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Watchpoint channels 41
PRELIMINARY DATA
D
R

A
F

T

ISAMODE_
ENABLE

[21:20] 2 — CPU ISA mode selection RW

Operation Allows the CPU ISA mode to be included in the debug event
match.

For the IV WP channels, this field is still present, but its value is
ignored in the pre-condition checking. IV channels never match
in SHcompact mode.

Value - Description

0b00, 0b11: match irrespective of the current CPU ISA mode.

0b01: only match if CPU is executing SHmedia instructions.

0b10: only match if CPU is executing SHcompact instructions.

When read Returns current value

When written Updates value

HARD reset Undefined

SR_MD_
ENABLE

[23:22] 2 — CPU user/privileged mode selection RW

Operation Allows the CPU user/privileged mode to be included in the
debug event match.

Value - Description

0b00, 0b11: match irrespective of the current CPU user/
privileged mode.

0b01: only match if CPU is in user mode.

0b10: only match if CPU is in privileged mode.

When read Returns current value

When written Updates value

HARD reset Undefined

WPC.WP_nx_PRE where
n = {IA/OA/IV/WPC_PERF},

x = channel ID

Field Bits Size Volatile? Synopsis Type

Table 14: WPC.WP_{IA/OA/IV/WPC_PERF}x_PRE register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

42 Watchpoint channels
PRELIMINARY DATA
D
R

A
F

T
DM.WP_{IA/OA/IV}x_PRE:

Each channel has a PRE register implemented in the DM.

— [63:24] 40 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

WPC.WP_nx_PRE where
n = {IA/OA/IV/WPC_PERF},

x = channel ID

Field Bits Size Volatile? Synopsis Type

Table 14: WPC.WP_{IA/OA/IV/WPC_PERF}x_PRE register definition

DM.WP_nx_PRE where
n= {IA/OA/IV},

x = channel ID (relative to N)

Field Bits Size Volatile? Synopsis Type

— 0 1 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

Table 15: DM.WP_{IA/OA/IV}x_PRE register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Watchpoint channels 43
PRELIMINARY DATA
D
R

A
F

T

ASID_ENABLE 1 1 — ASID match enable RW

Operation The WPC.WP_NX_ PRE register determines the inclusion of the
current ASID value in the debug event match.

The field defined here is not involved in the debug event match,
it determines whether the ASID value is placed into trace
messages.

Value - Description

0: include the ASID value (at the point of the trigger) in the trace
message.

1: do not include ASID value in trace message.

When read Returns current value

When written Updates value

HARD reset Undefined

— [63:2] 62 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

DM.WP_nx_PRE where
n= {IA/OA/IV},

x = channel ID (relative to N)

Field Bits Size Volatile? Synopsis Type

Table 15: DM.WP_{IA/OA/IV}x_PRE register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

44 Watchpoint channels
PRELIMINARY DATA
D
R

A
F

T

DM.WP_PLx_PRE:

Each bus analyzer WP channel has one PRE register implemented in the debug
module:

DM.WP_PLx_PRE where x = channel ID

Field Bits Size Volatile? Synopsis Type

BASIC_ENABLE 0 1 — Enable RW

See BASIC_ENABLE field of Table 14 on page 38.

— 1 1 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

CHAIN_ENABLE 2 1 — Chain-latch enable RW

Operation See the CHAIN_ENABLE field of Table 14 on page 38.

When read Returns current value

When written Updates value

HARD reset Undefined

CHAIN_ID [6:3] 4 — Chain-latch ID RW

Operation See the CHAIN_ID field of Table 15 on page 42

When read Returns current value

When written Updates value

HARD reset Undefined

Table 16: DM.WP_PLx_PRE register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Watchpoint channels 45
PRELIMINARY DATA
D
R

A
F

T
DM.WP_FPF_PRE:

The fast printf function has an associated PRE register.

ECOUNT_ENABLE 7 1 — Event counter enable RW

Operation See the ECOUNT_ENABLE field of Table 14 on page 38.

When read Returns current value

When written Updates value

HARD reset Undefined

ECOUNT_ID [11:8] 4 — Event counter ID RW

Operation See the ECOUNT_ID field of Table 14 on page 38

When read Returns current value

When written Updates value

HARD reset Undefined

— [63:12] 52 — Reserved RES

Operation Reserved

When read Return 0

When written Ignored

HARD reset 0

DM.WP_PLx_PRE where x = channel ID

Field Bits Size Volatile? Synopsis Type

Table 16: DM.WP_PLx_PRE register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

46 Watchpoint channels
PRELIMINARY DATA
D
R

A
F

T

DM.WP_FPF_PRE 0x800280

Field Bits Size Volatile? Synopsis Type

BASIC_ENABLE 0 1 — Enable RW

Operation See BASIC_ENABLE field of Table 14 on page 38.

When read Returns current value

When written Updates value

HARD reset Undefined

ASID_ENABLE 1 1 — ASID match enable RW

Operation Enables or disables the inclusion of the current ASID value in
the debug event match. Irrespective of this setting, the ASID
value is always included in the FPF message.

Value - Description

0: ASID match disabled.

1: ASID match enabled. Will only trigger when the current ASID
matches the ASID_VALUE field.

When read Returns current value

When written Updates value

HARD reset Undefined

CHAIN_ENABLE 2 1 — Chain-latch enable RW

Operation See the CHAIN_ENABLE field of Table 14 on page 38.

When read Returns current value

When written Updates value

HARD reset Undefined

Table 17: DM.WP_FPF_PRE register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Watchpoint channels 47
PRELIMINARY DATA
D
R

A
F

T

CHAIN_ID [6:3] 4 — Chain-latch ID RW

Operation See the CHAIN_ID field of Table 15 on page 42

When read Returns current value

When written Updates value

HARD reset Undefined

— [11:7] 5 — Reserved RES

Operation RESERVED

When read Returns 0

When written Ignored

HARD reset 0

ASID_VALUE [19:12] 8 — ASID match value RW

Operation See the ASID_VALUE field of Table 14 on page 38

When read Returns current value

When written Updates value

HARD reset Undefined

— [20,63] 44 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

DM.WP_FPF_PRE 0x800280

Field Bits Size Volatile? Synopsis Type

Table 17: DM.WP_FPF_PRE register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

48 Debug event actions
PRELIMINARY DATA
D
R

A
F

T

1.5 Debug event actions
Multiple actions can be raised when a debug event is detected:

• Raise a CPU debug exception event (to involve the event handler).

The event handler vector is separate from the normal exception vectors. This
allows a target-debug agent to be loosely integrated, or even totally decoupled
from the target software being debugged.

The event handler mechanism is described in Section 1.7: Reset, panic and debug
events on page 73.

For all WPC watchpoint channels, a CPU debug exception causes all other
potential watchpoint hit actions for this channel (except decrement of WPC
event counters) to be ignored. This ensures that a consistent set of state is made
available to the exception handler at launch1. It also causes suppression of
actions from other watchpoint channels that hit on the same instruction; see
Section 1.6.4: Behavior when more than one WPC channel matches an instruction
on page 70.

• Capture all parameters associated with the debug event, and generate a trace
message of a defined flavor.

• Set or clear chain latches, which allow debug events to be connected together.

• Decrement event counters.

• Increment performance counters.

• Reset all performance counters.

• Control the state of a trigger-out pin (which is used to interface to external debug
equipment).

• Perform an action specific to the WP channel type.

Some WP channels support a subset of the above actions, these subsets are
described in the following channels.

Each WPC channel has two ACTION registers to define its event actions, one
(WPC.WP_{IA/OA/IV}X_ACTION) which is implemented in the WPC and the second

1. Different actions are potentially carried out on different clock cycles to that on
which a debug exception is raised. Thus enabling the multiple actions with
exception would present inconsistent state to the exception handler at launch
time.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug event actions 49
PRELIMINARY DATA
D
R

A
F

T

(DM.WP_{IA/OA/IV}X_ACTION) which is implemented in the debug module. This is
because WPC channel actions can affect architectural state in both the WPC and in
the DM. Actions are always specified in a control register that is in the module
where the affected state is. In contrast, bus analyzer watchpoint channels can only
affect architectural state in the debug module, so they each have just a single
ACTION register (DM.WP_PLX_ACTION) which is in the debug module.

WPC.WP_{IA/OA/IV}x_ACTION:

WPC.WP_nx_ACTION where
n = {IA/OA/IV}

x = channel ID (relative to N)

Field Bits Size Volatile? Synopsis Type

ACTION_
EXCEPTION

0 1 — Exception enable RW

Operation Enables or disables a debug exception for the WPC watchpoint
channel.

Value - Description

0: debug exception disabled

1: debug exception enabled

If debug exception is enabled, all the other action fields
specified for this channel in its WPC and DM action registers
(except ACTION_ECOUNT) are ignored when the watchpoint hit
occurs.

When read Returns current value

When written Updates value

HARD reset Undefined

Table 18: WPC.WP_{IA/OA/IV}x_ACTION register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

50 Debug event actions
PRELIMINARY DATA
D
R

A
F

T

ACTION_ECOUNT 1 1 — Event count decrement enable RW

Operation Enables or disables decrement of an event counter for the WP
channel. The event counter is specified by the ECOUNT_ID field
of this register.

Section 1.6: WP channel matching on page 66 defines the
terms used below.

Value - Description

0: event count decrement disabled

1: if PARTIAL_WP_HIT, decrement enabled. No other action will
occur unless the specified event counter contains 0.

When read Returns current value

When written Updates value

HARD reset Undefined

ECOUNT_ID [5:2] 4 — Event counter ID RW

Operation Defines the event counter used in the debug event match. See
Section 4.1.2: Event counters on page 242. Only those event
counters located in the WPC can be used. If the value in this
field refers to a DM event counter, no counter decrement action
occurs.

When read Returns current value

When written Updates value

HARD reset Undefined

WPC.WP_nx_ACTION where
n = {IA/OA/IV}

x = channel ID (relative to N)

Field Bits Size Volatile? Synopsis Type

Table 18: WPC.WP_{IA/OA/IV}x_ACTION register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug event actions 51
PRELIMINARY DATA
D
R

A
F

T

ACTION_CHAIN_
ALTER

[7:6] 2 — Enable chain-latch alteration RW

Operation Specifies if and how a chain latch is modified according to the
match state. The chain latch is specified by the CHAIN_ID field.
Section 1.6: WP channel matching on page 66 defines the
terms used below.

Value - Description

0b00: do not alter the chain latch.

0b01: do not alter the chain latch.

0b10: if EXTRA_HIT, clear the chain latch.

0b11: if EXTRA_HIT, set the chain latch.

When read Returns current value

When written Updates value

HARD reset Undefined

CHAIN_ID [11:8] 4 — Chain-latch ID RW

Operation Defines the chain-latch used in conjunction with
ACTION_CHAIN_ALTER. Only certain chain-latches can be
controlled by each watchpoint. See Section 4.1.4: Chain latches
on page 243.

When read Returns current value

When written Updates value

HARD reset Undefined

WPC.WP_nx_ACTION where
n = {IA/OA/IV}

x = channel ID (relative to N)

Field Bits Size Volatile? Synopsis Type

Table 18: WPC.WP_{IA/OA/IV}x_ACTION register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

52 Debug event actions
PRELIMINARY DATA
D
R

A
F

T

— [12,17] 6 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

ACTION_PCOUNT 18 1 — Performance counter increment enable RW

Operation Enables or disables increment of a performance counter
(specified by PCOUNT_ID) for the WP channel.

Value - Description

0: performance count increment disabled

1: performance count increment enabled

When read Returns current value

When written Updates value

HARD reset Undefined

ACTION_RESET_
ALL_PCOUNT

19 1 — Reset all performance counters RW

Operation Allows all the WPC performance counters to be reset when the
WP channel triggers. The performance counters in the DM are
not affected.

Value - Description

0: do not reset

1: reset all performance counters

When read Returns current value

When written Updates value

HARD reset Undefined

WPC.WP_nx_ACTION where
n = {IA/OA/IV}

x = channel ID (relative to N)

Field Bits Size Volatile? Synopsis Type

Table 18: WPC.WP_{IA/OA/IV}x_ACTION register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug event actions 53
PRELIMINARY DATA
D
R

A
F

T

PCOUNT_ID [23:20] 4 — Performance counter ID RW

Operation Defines the WPC performance counter used in the counter
increment. See Section 1.2.10: Performance counters on
page 28. Only those performance counters located in the WPC
can be used. If the value in this field refers to a DM performance
counter undefined effects will occur.

When read Returns current value

When written Updates value

HARD reset Undefined

— [63:24] 40 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

WPC.WP_nx_ACTION where
n = {IA/OA/IV}

x = channel ID (relative to N)

Field Bits Size Volatile? Synopsis Type

Table 18: WPC.WP_{IA/OA/IV}x_ACTION register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

54 Debug event actions
PRELIMINARY DATA
D
R

A
F

T

DM.WP_{IA/OA/IV}x_ACTION:

DM.WP_nx_ACTION
where

n= {IA/OA/IV},
x = channel ID (relative to N)

Field Bits Size Volatile? Synopsis Type

ACTION_
INTERRUPT

0 1 — OA data match interrupt RW

Operation This field applies only to OA watchpoints. When
DM.WP_OAX_ACTION.OA_MATCH == 1, it determines whether
an interrupt is generated when an OA watchpoint hit is detected
and a successful OA data match occurs.

If DM.WP_OAX_ACTION.OA_MATCH == 0, the data match is not
considered and a debug interrupt will be generated regardless
of the data value.
Normally, the WPC.WP_OAX_ACTION.ACTION_EXCEPTION field
would be more useful in this case, because it will raise a
pre-execution exception on the instruction that hit the
watchpoint. A debug interrupt is always asynchronous and could
be delivered long after the instruction has completed.

Undefined effects may occur if this bit is set to ‘1’ and the
action_exception bit of the corresponding WPC.WP_X_ACTION
register is also set to ‘1’.

Value - Description

0: debug interrupt disabled.

1: debug interrupt enabled.

When read Returns current value

When written Updates value

HARD reset Undefined

Table 19: DM.WP_{IA/OA/IV}x_ACTION register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug event actions 55
PRELIMINARY DATA
D
R

A
F

T

— [5:1] 5 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

ACTION_CHAIN_
ALTER

[7:6] 2 — Enable chain-latch alteration RW

See the ACTION_CHAIN_ALTER field of Table 18 on page 49

CHAIN_ID [11:8] 4 — Chain-latch ID RW

This field should be set to the same value as corresponding CHAIN_ID field of
Table 18 on page 49

DM.WP_nx_ACTION
where

n= {IA/OA/IV},
x = channel ID (relative to N)

Field Bits Size Volatile? Synopsis Type

Table 19: DM.WP_{IA/OA/IV}x_ACTION register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

56 Debug event actions
PRELIMINARY DATA
D
R

A
F

T

ACTION_TRACE [13:12] 2 — Trace enable RW

Operation Enables or disables generation of a trace message for the WP
channel (see Section 1.8.5: IA watchpoint trace modes on
page 92). The trace information generated varies according to
the WP channel. Section 1.6: WP channel matching on page 66
defines the terms used below.

Trace for the OA WP channels can be further controlled using
the DM.WP_OAX_ACTION:OA_MATCH field and the
DM.OA_MATCH_* registers (see Section 1.12.3: Data match
registers on page 147).

Trace is generated as described in Section 1.8.5: on page 92,
according to the mode specified:

Value - Description

0b00: trace generation disabled

0b01: trace generation disabled

0b10: trace generation enabled - single trace mode. This only
applies for IA watchpoints, undefined effects occur if this is
programmed for non-IA channels.

0b11: trace generation enabled - multi trace mode

When read Returns current value

When written Updates value

HARD reset Undefined

DM.WP_nx_ACTION
where

n= {IA/OA/IV},
x = channel ID (relative to N)

Field Bits Size Volatile? Synopsis Type

Table 19: DM.WP_{IA/OA/IV}x_ACTION register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug event actions 57
PRELIMINARY DATA
D
R

A
F

T

TRACE_TYPE 14 1 — Trace message type RW

Operation Specifies the type of the trace message generated (see Section
: Trace message types on page 119).:

Value - Description

0: trigger trace message

1: background trace message

When read Returns current value

When written Updates value

HARD reset Undefined

ENABLE_TRACE

_TIMESTAMP

15 1 — Enable trace timestamp RW

Operation Enable timestamp in trace message:

Value - Description

0: no timestamp

1: trace message includes timestamp value

When read Returns current value

When written Updates value

HARD reset Undefined

DM.WP_nx_ACTION
where

n= {IA/OA/IV},
x = channel ID (relative to N)

Field Bits Size Volatile? Synopsis Type

Table 19: DM.WP_{IA/OA/IV}x_ACTION register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

58 Debug event actions
PRELIMINARY DATA
D
R

A
F

T

ACTION_TRIG_
OUT

16 1 — Trigger out enable RW

Operation Enables or disables generation of a trigger out message for the
WP channel. The effect of this on the DM_TROUT_N pin is
determined by the programming of the DM.TRCTL register. See
Section 1.8.10: DM.TRCTL (trace/trigger register) on page 97.

Value - Description

0: The DM_TROUT_N pin is unaffected by hits on this WP
channel.

1: If DM.TRCTL.DM_TRIG_OUT_MODE == 0b001, then an
active-low pulse is produced on the DM_TROUT_N pin each time
a hit occurs on this WP channel (see Section
1.8.10: DM.TRCTL (trace/trigger register) on page 97). If
DM.TRCTL.DM_TRIG_OUT_MODE has any other value, hits on
this WP channel have no effect on the DM_TROUT_N pin.

When read Returns current value

When written Updates value

HARD reset Undefined

OA_MATCH 17 1 — OA data match enable RW

Operation This field applies only to OA watchpoints. It determines whether
DM chain latch, trace generation and interrupt actions are
dependent on a successful OA data match.

Value - Description

0: data match function is not enabled.

1: data match function is enabled.

When read Returns current value

When written Updates value

HARD reset Undefined

DM.WP_nx_ACTION
where

n= {IA/OA/IV},
x = channel ID (relative to N)

Field Bits Size Volatile? Synopsis Type

Table 19: DM.WP_{IA/OA/IV}x_ACTION register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug event actions 59
PRELIMINARY DATA
D
R

A
F

T
DM.WP_PLx_ACTION

— [63:18] 46 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

DM.WP_PLx_ACTION where x = channel ID (relative to PL)

Field Bits Size Volatile? Synopsis Type

ACTION_
INTERRUPT

0 1 — Interrupt enable RW

Operation Enables or disables a debug interrupt for a bus analyzer WP
channel.

Value - Description

0: debug interrupt disabled

1: debug interrupt enabled

When read Returns current value

When written Updates value

HARD reset Undefined

Table 20: DM.WP_PLx_ACTION register definition

DM.WP_nx_ACTION
where

n= {IA/OA/IV},
x = channel ID (relative to N)

Field Bits Size Volatile? Synopsis Type

Table 19: DM.WP_{IA/OA/IV}x_ACTION register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

60 Debug event actions
PRELIMINARY DATA
D
R

A
F

T

ACTION_
ECOUNT

1 1 — Event count decrement enable RW

Operation Enables or disables decrement of an event counter for a bus
analyzer WP channel.

The event counter is specified by the ECOUNT_ID field of this
register.

Section 1.6: WP channel matching on page 66 defines the
terms used below.

Value - Description

0: event count decrement disabled

1: if PARTIAL_WP_HIT, decrement enabled. No other action will
occur unless the specified event counter contains 0.

When read Returns current value

When written Updates value

HARD reset Undefined

ECOUNT_ID [5:2] 4 — Event counter ID RW

Operation Defines the event counter used in the debug event match. See
Section 4.1.2: Event counters on page 242. Only those event
counters located in the DM can be used.

When read Returns current value

When written Updates value

HARD reset Undefined

ACTION_CHAIN_
ALTER

[7:6] 2 — Enable chain-latch alteration RW

See the action_chain_alter field of Table 18 on page 49

DM.WP_PLx_ACTION where x = channel ID (relative to PL)

Field Bits Size Volatile? Synopsis Type

Table 20: DM.WP_PLx_ACTION register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug event actions 61
PRELIMINARY DATA
D
R

A
F

T

CHAIN_ID [11:8] 4 — Chain-latch ID RW

Operation Defines the chain-latch used in conjunction with
ACTION_CHAIN_ALTER. Only certain chain-latches can be
controlled by each watchpoint. See Section 4.1.4: Chain
latches on page 243.

When read Returns current value

When written Updates value

HARD reset Undefined

ACTION_TRACE [13:12] 2 — Trace enable RW

See the ACTION_TRACE field of Table 19 on page 54

TRACE_TYPE 14 1 — Trace message type RW

See the TRACE_TYPE field of Table 19 on page 54

ENABLE_TRACE

_TIMESTAMP

15 1 — Enable trace timestamp RW

See the ENABLE_TRACE_TIMESTAMP field of Table 19 on page 54

ACTION_TRIG_
OUT

16 1 — Trigger out enable RW

Operation Enables or disables generation of a trigger out message for the
WP channel. The effect of this on the DM_TROUT_N pin is
determined by the programming of the DM.TRCTL register. See
Section 1.8.10: DM.TRCTL (trace/trigger register) on page 97.

Value - Description

0: The DM_TROUT_N pin is unaffected by hits on this WP
channel.

1: If DM.TRCTL.DM_TRIG_OUT_MODE == 0b010, then a
low-going pulse is produced on the DM_TROUT_N pin each
time a hit occurs on this WP channel (see Section
1.8.10: DM.TRCTL (trace/trigger register) on page 97). If
DM.TRCTL.DM_TRIG_OUT_MODE has any other value, hits on
this WP channel have no effect on the DM_TROUT_N pin.

DM.WP_PLx_ACTION where x = channel ID (relative to PL)

Field Bits Size Volatile? Synopsis Type

Table 20: DM.WP_PLx_ACTION register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

62 Debug event actions
PRELIMINARY DATA
D
R

A
F

T

ACTION_
PCOUNT

17 1 — Performance counter increment enable RW

See the action_pcount field of Table 18 on page 49

ACTION_RESET_
ALL_PCOUNT

18 1 — Reset all performance counters RW

Operation Allows all the DM performance counters to be reset when the
WP channel triggers. The performance counters in the WPC
are not affected.

Value - Description

0: do not reset

1: reset all performance counters

When read Returns current value

When written Updates value

HARD reset Undefined

ACTION_
PCOUNT_ID

[22:19] 4 — Performance counter ID RW

Operation Defines the DM performance counter used in the counter
increment. See Section 1.2.10: Performance counters on
page 28. Only those performance counters located in the DM
can be used. If the value in this field refers to a WPC
performance counter, no counter increment action occurs

When read Returns current value

When written Updates value

HARD reset Undefined

DM.WP_PLx_ACTION where x = channel ID (relative to PL)

Field Bits Size Volatile? Synopsis Type

Table 20: DM.WP_PLx_ACTION register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug event actions 63
PRELIMINARY DATA
D
R

A
F

T

PL_MODULE [30:23] 8 — SuperHyway bus physical module
number

RW

Operation This field only applies to SuperHyway bus analyzer
watchpoints. Defines the identity of a physical SuperHyway bus
master module (one of 256 possible masters) associated with
the DM.WP_PLX_CTRL.SRC field for the purpose of freezing the
bus master when a watchpoint hit occurs. The relationship
between physical module number and SuperHyway protocol
source ID is specific to the chip implementation and known to
the debug programmer. The implementation specific
information is held in Table 91: DM.PLx_ACTION.pl_module/
DM.PLX_FRZ.freeze_x/SuperHyway module mapping on
page 251.

When read Returns current value

When written Updates value

HARD reset Undefined

DM.WP_PLx_ACTION where x = channel ID (relative to PL)

Field Bits Size Volatile? Synopsis Type

Table 20: DM.WP_PLx_ACTION register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

64 Debug event actions
PRELIMINARY DATA
D
R

A
F

T

FREEZ_EN 31 1 — Freeze enable RW

Operation This field only applies to SuperHyway bus analyzer
watchpoints. It has no effect on WPC watchpoints.

Specifies whether the SuperHyway bus master specified by the
PL_MODULE field will be inhibited from generating further
SuperHyway transactions. This “freeze” function should be
enabled only when a specific source is defined.

Value - Description

0: No freeze action

1: Freeze is enabled.

Note: For SuperHyway bus, the freeze action logic has no
knowledge of whether the DM.WP_PLX_CTRL register specifies
a specific source or any source. If “any source” is selected and
FREEZ_EN is set, the results of the freeze action are undefined.

When read Returns current value

When written Updates current value

HARD reset Undefined

— [63:32] 32 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

DM.WP_PLx_ACTION where x = channel ID (relative to PL)

Field Bits Size Volatile? Synopsis Type

Table 20: DM.WP_PLx_ACTION register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug event actions 65
PRELIMINARY DATA
D
R

A
F

T

1.5.1 WPC.ADDR_IN_TRACE register definition

This register defines what information is passed from the WPC to the DM whenever
an OA or IV watchpoint hit occurs. This information determines the contents of the
DATA_ADDRESS field of OA and IV trace messages, and also determines the data seen
by the OA channel’s data match comparator (see Section 1.12.3: Data match
registers on page 147).

WPC.ADDR_IN_TRACE 0x104018

Field Bits Size Volatile? Synopsis Type

MUX_ADDR 0 1 — Control of WPC/DM interconnect RW

Operation Controls the information generated for OA/IV watchpoint hits,
and thus the information placed in the DATA_ADDRESS fields of
OA/IV trace messages, and the data seen by the OA data
match comparator.

Value - Description

0: information generated does not contain the operand address
but instead contains the 64-bit data word written to memory by
the instruction.

1: information generated contains both the 32-bit operand
address and least significant 32-bits (bits [0, 31]) of the data
written to memory by the instruction.

When read Returns current value

When written Updates value

HARD reset Undefined

— [63:1] 63 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

Table 21: WPC.ADDR_IN_TRACE register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

66 WP channel matching
PRELIMINARY DATA
D
R

A
F

T

1.6 WP channel matching
The following subsections and diagram explain how watchpoint channel matching is
achieved. Where:

PRE = precondition register (WPC or DM as appropriate),

ACTION = action register (WPC or DM as appropriate).

1.6.1 SR.WATCH bit

The SR.WATCH bit is used to enable or disable all actions related to WPC-based WP
channels (IA, OA, IV, BR, WPC_PERF) in both the WPC and the DM. It has no effect
on the other WP channels (BRK, FPF, PL, DM).

If SR.WATCH is ‘0’, all the action conditions (Section 1.5: Debug event actions on
page 48) associated with all the WPC-based WP channels defined above are
disabled. Thus these channel’s actions which would normally launch the event
handler, affect event/performance counters, chain latches, trigger out pins or
generate trace for example, will be voided.

SR.WATCH is automatically cleared to ‘0’ by the hardware when launching a reset,
panic or debug event handler. This allows all instructions executed within the event
handler to be invisible to the debug system itself in order to prevent generation of
unwanted trace, and to prevent the CPU from trying to launch a debug exception
during the execution of the event handler itself.

This may appear to be a nontypical situation (that is, breakpoints would not be set
in the debug event handler code), but unexpected exceptions might occur due to
“wide” programming of IA/OA and particularly IV watchpoint channels.

Event handler software should re-enable action conditions by restoring SR.WATCH to
‘1’ when leaving its critical region. This is achieved using the RTE instruction to
write the contents of the saved status register (SSR) to the status register (SR). This
will not result in the BR channel triggering for the branch caused by the RTE
instruction, as the state of SR.WATCH is considered at the start of an RTE
instruction’s execution (see WP channel type BR on page 156).
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel matching 67
PRELIMINARY DATA
D
R

A
F

T

1.6.2 Precondition terms

INITIAL_HIT includes the state of SR.WATCH for some WPC channels, and is always 1
for other WPC channels.

If channel is of type {IA, OA, IV, BR, WPC_PERF }
INITIAL_HIT = SR.WATCH

else INITIAL_HIT = 1

PARTIAL_WP_HIT includes INITIAL_HIT, basic enable, optional ASID value, optional
CPU mode checks, optional chain-latch, match conditions specific to the channel.

PARTIAL_WP_HIT =
 ((INITIAL_HIT && pre.basic_enable) &&

((!pre.asid_enabled) || (pre.asid_enabled && pre.asid_value ==
<ASID>)) &&
 (CPUMODE_OK (pre.isamode_enable, pre.sr_md_enable)) &&

((!pre.chain_enable) ||
(pre.chain_enable && (CHAIN_LATCH_VALUE[pre.chain_id] == 1)))

&&
(ChannelSpecificMatches))

FULL_WP_HIT includes event counter.

PARTIAL_WP_HIT and FULL_WP_HIT are not evaluated sequentially - the event
counter state used when evaluating FULL_WP_HIT is the same state used when
evaluating the corresponding PARTIAL_WP_HIT.

 Thus a PARTIAL_WP_HIT which decrements an event counter such that it reaches ‘0’
will not result in FULL_WP_HIT occurring for this hit. This will happen for the
subsequent PARTIAL_WP_HIT.

FULL_WP_HIT = (PARTIAL_WP_HIT &&
((!pre.ecount_enable) || (pre.ecount_enable &&

(ECOUNT_VALUE[pre.ecount_id] == 0))))
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

68 WP channel matching
PRELIMINARY DATA
D
R

A
F

T

1.6.3 Actions

The following actions are carried out, for each attempt at matching a given channel.

Potentially decrement the event counter, irrespective of FULL_WP_HIT.

if ((PARTIAL_WP_HIT) && (action.action_ecount)) {
 DecrementEventCounter (action.event_id);
}

If FULL_WP_HIT generate an exception:

if (FULL_WP_HIT && action.action_exception) {
 GenerateException();
}

Generation of trigger-out, interrupts, trace and DM chain-latch modification is more
complex, as for OA channels it can involve the use of the DM’s data/value mask
comparator.

For OA channels, EXTRA_HIT may include a match dependant on the DM’s data
value/mask comparator matching the data written by the instruction which
triggered the OA channel. For all other channels EXTRA_HIT is always ‘1’.

If channels is of type {OA} {
EXTRA_HIT = (!DM.WP_OAx_ACTION.oa_match) ||

 (DM.WP_OAx_ACTION.oa_match &&
((oa_data_written & DM.OA_MATCH_DATAMASK &

mask_out_invalid_bits() ==
(DM.OA_MATCH_DATAVALUE & DM.OA_MATCH_DATAMASK &

mask_out_invalid_bits())))
} else EXTRA_HIT == 1

Potentially either clear or set a WPC chain latch:

if (FULL_WP_HIT && (!action.action_exception)) {
 maybeUpdateWPCChainLatch = 1;

} else {
maybeUpdateWPCChainLatch = 0;

}
if (maybeUpdateWPCChainLatch && action.action_chain_alter == 0b10) {

 CHAIN_LATCH[action.chain_id] = 0;
}
if (maybeUpdateWPCChainLatch && action.action_chain_alter == 0b11) {

CHAIN_LATCH[action.chain_id] = 1;
}

SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel matching 69
PRELIMINARY DATA
D
R

A
F

T

Potentially either clear or set a DM chain latch:

if ((FULL_WP_HIT && EXTRA_HIT) && (!action.action_exception)) {
 maybeUpdateDMChainLatch = 1;

} else {
maybeUpdateDMChainLatch = 0;

}
if (maybeUpdateDMChainLatch && action.action_chain_alter == 0b10) {

 CHAIN_LATCH[action.chain_id] = 0;
}
if (maybeUpdateDMChainLatch && action.action_chain_alter == 0b11) {

CHAIN_LATCH[action.chain_id] = 1;
}

Potentially generate trace (see Section 1.8.5: IA watchpoint trace modes on page 92
for full details):

if ((FULL_WP_HIT && EXTRA_HIT) && action.action_trace &&
!action.action_exception) {

 GenerateTrace();
}

Potentially generate an interrupt:

if ((FULL_WP_HIT && EXTRA_HIT) && !action.action_exception &&
action.action_interrupt) {

GenerateInterrupt();
}

Potentially modify performance counters:

if (FULL_WP_HIT && !action.action_exception && action.action_pcount)
{

IncrementPerformanceCounter(action.pcount_id);
}
if (FULL_WP_HIT && !action.action_exception &&
action.reset_all_pcount) {

ResetAllPerformanceCounters();
}

Potentially signal the trigger out pin:

if ((FULL_WP_HIT && EXTRA_HIT) &&
!action.action_exception && action.action_trig_out) {

PulseTriggerOutPin();
}

SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

70 WP channel matching
PRELIMINARY DATA
D
R

A
F

T

Note: The ACTION_TRACE, ACTION_TRIG_OUT and ACTION_CHAIN_ALTER actions can occur
regardless of whether action_interrupt is enabled.

1.6.4 Behavior when more than one WPC channel matches an
instruction

This section describes the defined behavior when more than one WPC channel (IA,
IV or OA) matches on the same instruction. Most of the text describes the behavior
when in SHmedia mode. The SHcompact behavior is similar, but with some
divergence; it is described at the end.

Figure 2: Channel matching algorithm

PARTIAL_WP_HIT FULL_WP_HIT

basic_enable �

asid_ok �

isa/cpumode ok �

chain ok �

specific matches �

INITIAL_WP_HIT

IA, OA, IV, BR and
WPC_PERF channels are
gated by SR.WATCH, all
others are un-gated

EXTRA_HIT (always
‘1’ for non-OA WP

channels)
action.exception == 1

raise a debug
exception (note, all
other actions are

ignored)

raise appropriate
actions

action.exception == 0

if (action.ecount)
decrement ecounter
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel matching 71
PRELIMINARY DATA
D
R

A
F

T

When none of the matching channels have ACTION_EXCEPTION programmed in their
action registers, the effect is to logically ‘OR’ together the actions across all the
matching channels. Thus, if 2 channels both specify the same performance counter
decrement, that performance counter will still only be decremented by 1 per
matching instruction.

When one or more of the matching channels have ACTION_EXCEPTION programmed
in their action registers, the behavior is as follows. The following WPC and DM
actions are suppressed, regardless of which matching channel (excepting or
non-excepting) requests them:

• set or clear WPC or DM generic chain latch,

• increment WPC performance counter,

• reset WPC performance counters,

• trace generation,

• raise debug interrupt,

• trigger out message generation.

If some matching channels specify ACTION_ECOUNT in their action registers,
whether or not a particular WPC event counter is decremented is determined by
whether the following conditions hold:

• there must be at least one matching channel with ACTION_EXCEPTION and
ACTION_ECOUNT set, with ECOUNT_ID referring to the particular event counter

AND

• at least one such channel must be of the type corresponding to the debug
exception that is actually launched.

For example,

• if DEBUGIA is launched, only matching IA channels with both ACTION_EXCEPTION
and ACTION_ECOUNT set can cause a WPC event counter to be decremented.
Matching IV and OA channels have their ACTION_ECOUNT settings ignored.

When a SHcompact mode instruction hits multiple WPC channels, there may be
some divergence from the above description, depending on the particular
SHcompact instruction involved. In particular, non-exception actions programmed
on a matching IA channel may occur even when a DEBUGOA exception is launched
from a matching OA channel.
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

72 WP channel matching
PRELIMINARY DATA
D
R

A
F

T

The SHcompact instructions that are affected are:

AND.B #imm, @(R0, GBR)
OR.B #imm, @(R0, GBR)
STS.L FPSCR, @-Rn
STS.L MACH, @-Rn
TAS.B @Rn
XOR.B #imm, @(R0, GBR)

1.6.5 Handling of non-debug exceptions

This section describes the behavior when a WPC channel (IA, IV, OA or BR) matches
on an instruction that causes any non-debug pre-execution exception to be launched.
A non-debug exception is one other than DEBUGIA, DEBUGIV, or DEBUGOA.

When executing in SHmedia mode, the actions associated with all IA, IV, OA and
BR channels are suppressed. Thus the debug handler sees all WPC event counters,
performance counters and chain latches in the state they were prior to the
instruction.

When executing in SHcompact mode, the behavior is similar. However
non-exception actions programmed on an IA channel may still occur, even if an
non-debug exception occurs, for certain instructions in some situations. The affected
instructions and exception types are listed in Table 22.

SHcompact instruction
Exception type(s) that do not suppress IA channel
actions

AND.B #imm, @(R0, GBR) WRITEPROT

LDS.L @Rm+, FPSCR FPUDIS

MAC.L @Rm+, @Rn+ RADDERR, RTLBMISS, READPROT (for @Rm+)

MAC.W @Rm+, @Rn+ RADDERR, RTLBMISS, READPROT (for @Rm+)

MOV.L @(disp, PC), Rn RADDERR, RTLBMISS, READPROT

MOV.W @(disp, PC), Rn RADDERR, RTLBMISS, READPROT

OR.B #imm, @(R0, GBR) WRITEPROT

STS.L FPSCR, @-Rn WADDERR, WTLBMISS, WRITEPROT

STS.L MACH, @-Rn WADDERR, WTLBMISS, WRITEPROT

Table 22: SHcompact exceptions which do not suppress IA channel actions
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Reset, panic and debug events 73
PRELIMINARY DATA
D
R

A
F

T1.7 Reset, panic and debug events
The SH-5 instruction set architecture defines a control register (RESVEC) which
defines a vector used to handle reset, panic and debug events (refer to the Core
Architecture manuals for full details). It is assumed that the reader is familiar with
this document.

As described in the instruction set architecture, SH-5 provides the ability to divert
these events from the normal RESVEC vector, to a separate vector known as DBRVEC.

This allows a debugger to be loosely coupled to the application it is debugging, such
that it can “intercept” all the reset, panic and debug events by overlaying its own
event handler in the place of RESVEC, and thus can handle these events within the
debug agent, or vector them to the application’s normal event handler as required.

Irrespective of whether RESVEC or DBRVEC is selected, each cause of reset, panic,
debug event uses the same:

• vector offsets,

• EXPEVT codes,

• DM.EXP_CAUSE values (see DEBUGINT - debug interrupts on page 81).

These registers and values are defined in Section 1.7.3: Event specific information
on page 80.

TAS.B @Rn WRITEPROT

TRAPA #imm TRAP

XOR.B #imm, @(R0, GBR) WRITEPROT

any ILLSLOT, SLOTFPUDIS (if preceding branch instruction had
IA channel hit)

SHcompact instruction
Exception type(s) that do not suppress IA channel
actions

Table 22: SHcompact exceptions which do not suppress IA channel actions
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

74 Reset, panic and debug events
PRELIMINARY DATA
D
R

A
F

T

1.7.1 RESVEC/DBRVEC selection

By default, any occurrence of reset, panic or debug events will vector through
RESVEC as defined in the instruction set architecture. The WPC provides two
memory mapped registers which allow this behavior to be modified:

• WPC.CPU_DBRVEC

Defines a separate vector known as DBRVEC. The least significant bit of DBRVEC
provides the same facilities as RESVEC in that it allows the MMU to be disabled
when launching the DBRVEC handler in response to debug events (DEBUGIA,
DEBUGIV, DEBUGOA, DEBUGSS, BREAK, PANIC and CPURESET).

• WPC.CPU_DBRMODE

Selects whether debug events vector through RESVEC or through DBRVEC.

Note: From the CPU core’s viewpoint, DEBUGRESET is indistinguishable from POWERON
reset. Thus DEBUGRESET will always vector through RESVEC irrespective of the setting
of WPC.CPU_DBRMODE..

WPC.CPU_DBRMODE

WPC.CPU_DBRMODE 0x104008

Field Bits Size Volatile? Synopsis Type

ENABLE 0 1 — DBRVEC enable RW

Operation Selects whether RESVEC or DBRVEC is used for reset, panic
and debug Events.

Value - Description

0: Use RESVEC

1: Use DBRVEC

When read Returns current value

When written Updates value

HARD reset 0

Table 23: WPC.CPU_DBRMODE register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Reset, panic and debug events 75
PRELIMINARY DATA
D
R

A
F

T

— [63:1] 63 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

WPC.CPU_DBRMODE 0x104008

Field Bits Size Volatile? Synopsis Type

Table 23: WPC.CPU_DBRMODE register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

76 Reset, panic and debug events
PRELIMINARY DATA
D
R

A
F

T

WPC.CPU_DBRVEC

WPC.CPU_DBRVEC 0x104010

Field Bits Size Volatile? Synopsis Type

MMUOFF 0 1 — MMU (and hence cache) disable RW

Operation Specifies whether the MMU is disabled when raising debug
events through DBRVEC.

Value - Description

0: Do not alter the state of SR.MMU.

1: Upon launch of the DBRVEC event handler for debug events,
the MMU will be forced to be disabled (that is, the MMU bit of
SR will be forced to 0).

When read Returns current value

When written Updates value

HARD reset Undefined

— 1 1 — Reserved RES

Operation Software should always write 0 to these bits. Software should
always ignore the value read from these bits.

When read Reads as 0 (behavior of other implementations may vary).

When written Writes ignored (behavior of other implementations may vary).

HARD reset 0 (behavior of other implementations may vary).

ADDRESS [2,31] 30 — DBRVEC address RW

Operation Defines the address used for Reset, Panic and debug Events
when DBRVEC is selected.

Note that DEBUGRESET is always vectored through RESVEC.

When read Returns current value

When written Updates value

HARD reset Undefined

Table 24: WPC.CPU_DBRVEC register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Reset, panic and debug events 77
PRELIMINARY DATA
D
R

A
F

T
1.7.2 Event handling sequence

The reset, panic and debug event handler sequence is as per the normal event
handling sequence as defined in event handling in SH-5 Core Architecture Volume 1.

Some important additional behavior, specific to debug events is provided in the
following sections.

Multiple simultaneous debug events

Debug events are a subclass of reset, panic and debug events. They correspond to
the cases where:

• A synchronous CPU watchpoint match occurs on the BRK, instruction address,
operand address or instruction value WP channels.

• A debug interrupt, bus analyzer or debug module watchpoint match occurs on
the BRK channel (due to a debug interrupt), or due to bus analyzer or debug
module WP channels.

EXP [63:32] 32 — EXPANSION EXP

Operation These bits may be used on future implementations to expand
the address space using a sign-extended convention. Software
should always write a sign-extension of bit 31 into these bits.
This approach is necessary if software on this implementation
is to be executed on a future implementation with more
implemented address space.

When read Reads as a sign-extension of bit 31 (behavior of other
implementations may vary).

When written Writes ignored (behavior of other implementations may vary).

HARD reset Sign-extension of bit 31 (behavior of other implementations
may vary).

WPC.CPU_DBRVEC 0x104010

Field Bits Size Volatile? Synopsis Type

Table 24: WPC.CPU_DBRVEC register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

78 Reset, panic and debug events
PRELIMINARY DATA
D
R

A
F

T

The debug event sequence is identical for both of these circumstances, but there are
differences in the data available to the exception handler according to the WP
channel type. This state is described in the WP channel type sections of this
document (Section 1.10 through Section 1.18).

In a given processor cycle, multiple debug events can match, each of which can
potentially have its action set to raise a debug exception. In these circumstances, a
single debug event (the highest priority debug exception which matches) will be
raised. These priorities are defined in Section 1.7.3: Event specific information on
page 80. There are two general approaches that can be used to cope with
instructions that hit more than one excepting condition:

1 The debug event handler could work out which other conditions would have hit
and carry out all the actions.

2 The debug handler can temporarily disable the exception action from the
channel(s) which hit and caused the exception. When the excepting instruction is
restarted by the RTE at the end of the handler, lower priority exceptions will get
a chance to launch. The handler should enable single stepping, so that a
DEBUGSS exception will be taken on completion of the instruction. The DEBUGSS
handler can re-instate any channels’ ACTION_EXCEPTION actions that were
temporarily disabled.

MMU disable

Either RESVEC or DBRVEC is used to vector debug events (see Section 1.7.1).

Both RESVEC and DBRVEC provide a MMUOFF field to allow the MMU to be disabled
when launching the event handler due to debug events (when launching for
non-debug events such as reset or panic, the MMU is always disabled).

Disabling the MMU allows the debug event handler to execute without having to
reserve TLB entries in the application being debugged. Thus it is possible to totally
decouple the debug event handler from the debugger. It also allows execution of code
with the caches disabled, thus it is possible to perform debug event handling
without perturbing the caches.

If the MMUOFF bit of RESVEC/DBRVEC is set, the MMU will be forced to be disabled
whenever the debug event handler is launched (that is, the MMU bit of SR will be
forced to 0).
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Reset, panic and debug events 79
PRELIMINARY DATA
D
R

A
F

T

The MMU bit of the status register determines whether the MMU is enabled. The
standard exception handler launch sequence involves copying the status register
(SR) to the saved status register (SSR). Therefore the previous enable/disable status
of the MMU is available such that it can be restored by the exception handler’s exit
sequence (that is, the RTE instruction).

SR.BL bit

When the BL bit of SR is ‘1’:

• Attempts to raise a debug exception of type DEBUGIA, DEBUGIV, DEBUGOA,
DEBUGSS or BREAK will result in a panic event being raised instead. EXPEVT will
be set to indicate the normal event type, even though a panic event is generated.
This allows the panic handler to distinguish between the synchronous debug
event types.

Panic events can be recovered from (as the previous EXPEVT contents are
recorded in PEXPEVT), thus a target debug agent will need to handle both panic
events and other types of debug event.

• Attempts to raise a debug interrupt (DEBUGINT) will block until the BL bit is
cleared.

Note: If the cause of the debug interrupt is de-asserted whilst BL is set, the debug interrupt
will be lost.

SR.WATCH bit

See Section 1.6.1: SR.WATCH bit on page 66.

SR.STEP bit

When SR.STEP is ‘1’, an event will be raised whenever an instruction execution
completes. The type of event generated depends on the value of SR.BL:

• If SR.BL is ‘0’, a debug exception of type DEBUGSS will be raised.

• If SR.BL is ‘1’, a panic event will be raised.

In both these cases EXPEVT is set as per Table 26: Synchronous debug exceptions on
page 81
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

80 Reset, panic and debug events
PRELIMINARY DATA
D
R

A
F

T

1.7.3 Event specific information

The reset, panic and debug event vector and offset values are shown below. The
following subsections define the codes used to identify the individual reasons for the
debug events.

Event Base + Offset Used when

POWERON 0x0 Power-on/debug
reset (EXPEVT for
DEBUGRESET is the
same as that for
POWERON reset).

The instruction set architecture
defines EXPEVT event codes for
these events.DEBUGRESET 0x0

CPURESET RESVEC + 0x0 RESVEC enabled

DBRVEC + 0x0 DBRVEC enabled

PANIC RESVEC + 0x0 RESVEC enabled

DBRVEC + 0x0 DBRVEC enabled

DEBUGIA,
DEBUGIV,
DEBUGOA,
DEBUGSS,
BREAK

RESVEC + 0x100 RESVEC enabled EXPEVT defines the reason (see
Section : Synchronous debug
exceptions on page 81DBRVEC + 0x100 DBRVEC enabled

DEBUGINT RESVEC + 0x200 RESVEC enabled DM.EXP_CAUSE defines the
reason (see Section : DEBUGINT
- debug interrupts on page 81). It
is also used to clear the sources
of the debug Interrupt.

DBRVEC + 0x200 DBRVEC enabled

Table 25: Reset, panic, debug event vectoring
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Reset, panic and debug events 81
PRELIMINARY DATA
D
R

A
F

T

Synchronous debug exceptions

The synchronous debug exceptions are shown in Table 26.They are listed in
decreasing order of priority.

DEBUGINT - debug interrupts

DEBUGIA/IV/OA/SS, BREAK: RESVEC/DBRVEC offset 0x100

WP Channel details Exception type EXPEVT

IA Instruction Address DEBUGIA 0x900

IV Instruction Value DEBUGIV 0x920

BRK BRK executed BREAK 0x940

OA Operand Address DEBUGOA 0x960

BRK Single step DEBUGSS 0x980

Table 26: Synchronous debug exceptions

DEBUGINT: RESVEC/DBRVEC offset = 0x200

WP Channel details
Bits of DM.EXP_CAUSE set for

this channel

DM FIFO activity .DM_FIFO_INTERRUPT == 1

PL SuperHyway bus analyzer .PL_INTERRUPT == 1

BRK debug Interrupt .FORCED_DEBUG_INTERRUPT == 1

OA OA interrupt with data comparison (see Section
1.12.3: Data match registers on page 147)

.OA_MATCH_INTERRUPT == 1

Table 27: Debug interrupt reasons
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

82 Reset, panic and debug events
PRELIMINARY DATA
D
R

A
F

T

The CPU will launch a DEBUGINT when these 3 conditions are met:

• SR.BL = 0

• At least one bit of DM.EXP_CAUSE is set. If SR.BL=1 when a cause bit is first
asserted, at least one cause bit must still be asserted when SR.BL changes to 0.

• In at least one clock cycle since the last DEBUGINT launch or reset (of any kind),
all bits of DM.EXP_CAUSE have been clear.

If a bit in DM.EXP_CAUSE is set then subsequently cleared, with SR.BL=1 all the time,
no DEBUGINT will occur.

If the handler for DEBUGINT deals with some conditions signalled in DM.EXP_CAUSE
but leaves others asserted, there will not be another DEBUGINT after the handler
returns. A handler for DEBUGINT must be written to handle all asserted conditions,
clear the handled conditions in DM.EXP_CAUSE (see below) and ensure that
DM.EXP_CAUSE has been read back with all bits clear before returning. This ensures
a new DEBUGINT can occur when a cause is next asserted.

The write semantics of DM.EXP_CAUSE are such that a handler can clear the cause
bits selectively.

Each bit of DM.EXP_CAUSE corresponds to a source of DEBUGINT, Table 28 shows the
state indicated when reading these bits, and the effect of writing them. Table 29
shows which bits in the register correspond to specific interrupt sources.

State of DM.EXP_CAUSE bits

Value
read

Meaning
Value

written
Effect

0 Interrupt source was not
asserted

0 The interrupt source will remain not asserted.

If the interrupt source has been asserted since
the register was read, this will actually clear the
interrupt without its condition being properly
handled. For this reason, writing 0 to a bit which
was read as 0 is not advised.

1 Writing 1 has no effect on the bit’s value.

Table 28: State of reading/writing DM.EXP_CAUSE bits
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Reset, panic and debug events 83
PRELIMINARY DATA
D
R

A
F

TThe DEBUGINT handler should write ‘0’ to the appropriate bit(s) in DM.EXP_CAUSE as
soon as it can. This will minimize the risk of losing new interrupts that arrive
during the execution of the DEBUGINT handler.

1 Interrupt source was
asserted

0 The interrupt source will be de-asserted.

Note that some interrupt sources require
additional actions to fully de-assert them (see
Table 29 on page 83).

1 Writing 1 has no effect on the bit’s value.

State of DM.EXP_CAUSE bits

Value
read

Meaning
Value

written
Effect

Table 28: State of reading/writing DM.EXP_CAUSE bits

DM.EXP_CAUSE 0x100010

Field Bits Size Volatile? Synopsis Type

DM_FIFO_INTERRUPT 0 1 � DM FIFO interrupt RW

Operation This field is set whenever an interrupt is generated due to
DM FIFO activity as selected by the FF_THRESH field of
DM.TRCTL (see Table 31 on page 97).

When read Returns current value

When written Updates value.

Writing 0 Will partially clear the cause of the DM FIFO
interrupt. In order to fully clear the interrupt, the DM FIFO
must be setup to remove the cause (either reprogram
DM.TRCTL.FF_THRESH such that it will not generate debug
Interrupts or empty the DM FIFO).

Writing 1 has no effect - any pending DM FIFO interrupts will
not be lost, and subsequent reads will return 1 (unless the
source of the interrupt is unexpectedly removed).

HARD reset 0

Table 29: DM.EXP_CAUSE register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

84 Reset, panic and debug events
PRELIMINARY DATA
D
R

A
F

T

PL_INTERRUPT 1 1 � SuperHyway watchpoint interrupt RW

Operation This field is set due to a transitory state on the SuperHyway
triggering a bus analyzer watchpoint which has
.ACTION_EXCEPTION set as 1.

When read Returns current value

When written Updates value.

Writing 0 will clear the PL_INTERRUPT.

Writing 1 has no effect - any pending SuperHyway interrupts
will not be lost, and subsequent reads will return 1 (unless
the source of the interrupt is unexpectedly removed).

HARD reset 0

FORCED_DEBUG_
INTERRUPT

2 1 � Forced debug interrupt RW

Operation Contains 1 if the debug interrupt was raised by writing ‘1’ to
the DM.FORCE_DEBUGINT.FORCE register field (see Section
1.3.4: on page 33).

When read Returns current value

When written Updates value.

Writing 0 will clear the forced debug interrupt.

Writing 1 has no effect - any pending forced debug interrupts
will not be lost, and subsequent reads will return 1 (unless
the source of the interrupt is unexpectedly removed).

HARD reset 0

DM.EXP_CAUSE 0x100010

Field Bits Size Volatile? Synopsis Type

Table 29: DM.EXP_CAUSE register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug module 85
PRELIMINARY DATA
D
R

A
F

T
1.8 Debug module

The debug module, as shown in Figure 3, connects to the:

• SHdebug link interface,

• JTAG TAP controller,

• Watchpoint controller (WPC) logic in the CPU core,

• SuperHyway bus (as both a master and as a slave),

OA_MATCH_
INTERRUPT

3 1 � OA watchpoint data match interrupt RW

Operation This field is set due to a transitory state in the instruction
stream triggering an OA watchpoint channel which resulted
in a successful data match and has .ACTION_INTERRUPT set
as 1, and subsequent reads will return 1 (unless the source
of the interrupt is unexpectedly removed).

When read Returns current value

When written Updates value.

Writing 0 will clear the OA watchpoint data match interrupt.

Writing 1 has no effect. Any pending OA watchpoint data
match interrupts will not be lost.

HARD reset 0

— [63:4] 60 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

DM.EXP_CAUSE 0x100010

Field Bits Size Volatile? Synopsis Type

Table 29: DM.EXP_CAUSE register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

86 Debug module
PRELIMINARY DATA
D
R

A
F

T

• Bus capture buffers in the SuperHyway bus analyzers.

The debug module has the following main functions:

• Determine the destination of trace messages received from the watchpoint
controller (WPC) in the CPU core, or from either of the bus analyzers.

• Provide FIFO buffering for trace messages awaiting transmission to a tool or
writing to target memory trace buffer.

• Send trace messages to a tool using either the SHdebug link or the JTAG debug
interface.

Figure 3: Debug module functions

FIFO for
compressed
messages

debug-link
Transmit

Write to
Memory
Function

Trigger
latch &
pulse
generator

SHdebug
link

Trace bus from
WPC in core

SuperHyway
Master

Watchpoint
trigger signals
from WPC in
core and bus
Analyzers

SuperHyway
Slave

debug-link
Receive

SHdebug link

SuperHyway

Select

Chain
latches

Event
counters

Time reference
counter (40-bit)

Time difference
counter (8-bit)

Pre-scaler

Generate
Reference
message

CPU core
clock

bus
capture

Trace bus from
SuperHyway bus
analyzer

Create trace
message

Calculate
address offsets

Determine
latch/counter
action

Performance
counters

Capture
buffer

JTAG portJTAG TAP
controller
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug module 87
PRELIMINARY DATA
D
R

A
F

T

• Write trace messages into a trace buffer in the target system’s memory.

• Set and clear any of the chain-latches in the debug module.

• Control the trigger-out signal (DM_TROUT_N).

• Route SuperHyway bus transactions to or from the tool using either the
SHdebug link or the JTAG debug interface.

1.8.1 Address spaces

The debug module is assigned 32 Mbytes of SuperHyway target address space. 16
Mbytes of this consists of DM registers, the other 16 Mbytes is mapped to the tool
via the SHdebug link/JTAG port.

1.8.2 Fast printf

Fast printf is an extremely simple and powerful technique in which the processor
emits a piece of data and the current PC value whenever a program writes to a
special CPU register. External hardware and software print this data as requested
by the programmer, usually in the “console” window of a graphical debugger
running on a tool. Support of fast printf requires enhancements to the programming
tools, as well as appropriate debugging facilities. The fast printf function allows a
programmer to embed fast printf code into programs and probe any register or
memory contents.

The fast printf function is part of the debug module logic and uses the DM.FPF
register. Whenever the DM.FPF register is written, the debug module creates a trace
message containing the program counter, ASID and the data value. This trace
message is sent directly to the tool, bypassing the DM FIFO, irrespective of how the
trace destination is configured. The FPF trace message is sent to the tool at the first
opportunity, that is, immediately following any other trace message currently being
sent.

Writes to the DM.FPF register are treated differently from writes to other
SuperHyway bus registers. The debug module delays the SuperHyway bus response
to such writes until the FPF trace message has been sent to the tool.

The fast printf function is available as a WP channel (see Section 1.4: Watchpoint
channels on page 35). This allows its operation to be selectively enabled and
disabled by one of the chain latches.
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

88 Debug module
PRELIMINARY DATA
D
R

A
F

T

This facility will be used to implement efficient tool/target data communications.
This operation will typically be performed in an environment where tracing may
also be performed at the same time. Thus, it is sensible if the fast printf data is
always written directly to the debug port to avoid interfering with the FIFO
operation.

1.8.3 DM FIFO/trace buffer in target system memory

The debug module contains a FIFO (see Section 4.1.5: DM FIFO on page 246) which
holds trace messages awaiting transmission to the tool, or waiting to be written into
a trace buffer in the target system’s memory.

The DM.TRCTL.DESTN (Section 1.8.10: DM.TRCTL (trace/trigger register) on page 97)
determines one of the following actions for all trace data loaded into the DM FIFO:

• Trace messages in the DM FIFO are sent to the tool using the currently-selected
debug interface (known as “trace link” mode).

• Trace messages in the DM FIFO are written into an area of target system memory
assigned as a trace buffer (known as “trace buffer” mode). The DM.TRBUF register
(Table 32 on page 107) allows this to be further selected as either “circular trace
buffer” mode or “trace buffer hold” mode. The format is which the trace messages
are written is described in Section 1.8.12: DM.TRPTR (trace pointer register) on
page 110.

Note: In “trace buffer” mode the DM writes the trace messages to target system memory
using SuperHyway Store8/16/32 transactions. These transactions are visible to the
SuperHyway bus analyzers (see Chapter 2: SuperHyway bus analyzer on page 179),
and thus if a bus analyzer is programmed such that it will match on these
transactions, an infinite number of bus analyzer hits (and thus an infinite number of
trace message) will be generated.

• Trace messages remain in the DM FIFO until read by the CPU or by the tool
(known as “DM FIFO trace hold” mode).

• old messages in the DM FIFO are overwritten by new ones so that the DM FIFO
contains the most recent trace messages generated (known as “circular DM FIFO”
mode).
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug module 89
PRELIMINARY DATA
D
R

A
F

T

When in “trace link”, “DM FIFO trace hold” or “trace buffer hold” mode the trace
system can be programmed to either stall the CPU, or discard trace messages (see
Stall/discard overview on page 91). In the FIFO modes, trace messages are packed
into the DM FIFO in an implementation defined manner, according to the size of the
trace message:

• Some DM FIFO implementations may be byte-based so that a variant number of
trace messages can be held in the DM FIFO, this provides “best fit” and thus
makes most efficient use of the available FIFO space.

• Some DM FIFO implementations may pack trace entries in a fixed manner (that
is, 3*64-bit) intervals.

In normal operation, fields of trace messages corresponding to PC values or bus
analyzer address values are encoded relative to the last such address in order to
make the trace messages as compact as possible. If the trace message which
“seeded” these values is lost, the subsequent trace messages using relative values
cannot be interpreted until a further absolute value is issued in a subsequent trace
message.

For this reason, when in “DM FIFO trace hold”/“trace buffer hold” mode or “circular
DM FIFO”/“circular trace buffer” mode, all trace messages use absolute rather than
relative values to ensure that the trace messages can be utilized even when a
preceding message which “seeded” these values has been lost. See Section
: Encoding of address offsets on page 120 for full details.

Trace messages can be read from the DM FIFO an entry at a time using the
DM.FIFO_{0/1/2} registers (see Section 1.8.13: DM.FIFO_0/DM.FIFO_1/DM.FIFO_2
(FIFO port register) on page 112). When the DM FIFO is in “circular DM FIFO” mode,
care must be taken to ensure trace is not being generated whilst it is being extracted
or trace messages may be lost. See Section 1.8.13: DM.FIFO_0/DM.FIFO_1/
DM.FIFO_2 (FIFO port register) on page 112 for full details.
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

90 Debug module
PRELIMINARY DATA
D
R

A
F

T

1.8.4 Watchpoint hit buffering and trace message generation

Figure 4 is a functional block diagram showing the buffering within the DM for
watchpoint hit information used to create trace messages.

The trace bus which connects the WPC to the DM is able to transfer information
about watchpoint hits every CPU clock cycle. The bus contains individual tag bits
for each WPC watchpoint, permitting multiple watchpoint hits detected in the same
clock cycle to be signalled. This raw watchpoint hit information is loaded into a
capture buffer, together with the current value of the shadow program counter (see
Section 1.8.14: DM.PC (shadow program counter register) on page 117). The trace
message generation logic of the DM extracts watchpoint hit details from the capture
buffer and loads corresponding trace messages into the DM FIFO.

WPC watchpoint hit actions performed within the DM include:

• trace generation,

• setting/clearing a shared chain-latch,

• controlling the trigger-out signal,

• generating an OA data match interrupt.

Figure 4: Buffering within the DM

Detect when
entries in buffer
reach
high-water
mark

Trace bus from
WPC

Capture Buffer to
hold watchpoint
hit data

Extract entries from
Capture Buffer and
generate trace
messages

DM FIFO to hold
trace messages

CPU stall
signal

CPU stall
acknowledge
signal

Trigger-out action

Shared chain-latch
and OA data match
actions
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug module 91
PRELIMINARY DATA
D
R

A
F

T

Stall/discard overview

The DM.TRCTL register (see Section 1.8.10: DM.TRCTL (trace/trigger register) on
page 97) has a field (DM.TRCTL.STALL_MODE) which determines the action if there is
no space available in the capture buffer at the time a WPC watchpoint hit or BR
watchpoint hit occurs. The two possible actions are:

• stall the CPU until space becomes available in the capture buffer or

• discard watchpoint hits which are unable to be written to the capture buffer.

All actions (other than controlling the non-BR hit trigger-out signal) are performed
at the output of the capture buffer. This means that in stall mode (see
Table 31: DM.TRCTL definition on page 97), actions will be delayed when the
capture buffer fills and the processor stalls. In discard mode, when the capture
buffer fills, the following occur until space becomes available:

• subsequent watchpoint hits will be discarded,

When space does become available in the capture buffer, the next trace message
generated due to a WP hit will have its overstall bit set to 1 to denote that WP
hits have been lost.

• DM ACTION_CHAIN_ALTER actions for IA/IV/OA/BR hits are voided,

• ACTION_TRIG_OUT actions for BR hits are voided,

• ACTION_TRACE actions for IA/IV/OA/BR hits are voided.

(WPC ACTION_CHAIN_ALTER actions for IA/IV/OA hits are performed normally in
this situation and are not voided.)

Generation of trigger-out pulses for IA/IV/OA hits is performed at the input to the
capture buffer, and thus is performed even in discard mode. However, the length of
the trigger-out pulse can cover several distinct WP hits occurring.

Stall mode

The CPU pipeline cannot be instantly stalled. When a stall signal from the DM is
asserted, the pipeline stops fetching new instructions which causes the pipeline to
empty an implementation defined number of clock cycles later (see DM FIFO
high-water mark on page 246). Only at this time is the CPU stalled and unable to
generate any more watchpoint hits.

The determination of the size of the capture buffer must allow for this CPU stall
latency. The capture buffer includes “high-water” detection logic which asserts the
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

92 Debug module
PRELIMINARY DATA
D
R

A
F

T

CPU stall signal when the number of entries in the buffer is within an
implementation defined number of entries of the maximum size of the buffer. This
ensures that the capture buffer has sufficient space for possible further watchpoint
hit entries produced during the time that the CPU pipeline is draining.

Stall/discard status

Regardless of whether stall mode or discard mode is selected, the hit which is
written into the capture buffer (either overwriting the previous hit or after the CPU
stall has ended) has a status bit set to indicate that the stall/discard action occurred.
This status bit is included in the trace message sent to the tool or stored in target
system memory.

1.8.5 IA watchpoint trace modes

When an IA watchpoint hit invokes a CPU debug exception, the resident monitor
has the option of changing the watchpoint parameters to avoid another immediate
hit as soon as the monitor returns to the original running thread.

This behavior is not possible when the watchpoint action is trace, but involves no
exception handling. Trace is entirely passive, and thus unless a exception handler is
invoked there is no mechanism to prevent further trace messages from being
emitted.

This can generate large amounts of trace, which are not necessarily useful.

For example:

Consider an instruction address watchpoint placed on address range A(n) to
A(m).

1 The first instruction execution between A(n) to A(m) will generate a instruction
address trace message.

2 All subsequent executions within A(n) to A(m) will also generate trace.

In many circumstances, only the first trace message is of interest, subsequent
accesses within A(n) to A(m) are not of interest until the execution has proceeded
outside of A(n) to A(m) that is, until the WP channel match has failed.

SH-5’s IA WP channels support two trace modes to allow such filtering to occur
without exception handler intervention. These modes are known as multi-trace and
single-trace mode.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug module 93
PRELIMINARY DATA
D
R

A
F

T

Multi-trace mode

Each and every watchpoint hit for the WP channel generates a trace message.

This mode of operation is likely to generate a large volume of trace messages and
thus is mainly suitable for use when a large FIFO is available, or either when CPU
stall mode is enabled, or when the chain-latches are being used to filter the trace
data to manageable quantities.

Single trace mode

A single trace message is produced for a given IA WP channel, until the channel
fails to match.

The other actions associated with the channel (such as incrementing performance
counters, affecting chain-latches for example) are handled regardless of the trace
mode.

Trace generation algorithm

Each IA channel has a 1 bit state value (TRACE_GENERATED).

Whenever the channel fails to match, TRACE_GENERATED is set to 0.

The following pseudo-C details the trace generation process.

IF (WPchannel.matched) { // match obeys WP channel pre conditions
IF ((WPchannel.multi_mode) || (!WPchannel.trace_match_state)) {

WPchannel.trace_match_state = 1;
GenerateTraceMessage();

} ELSE {
// trace already generated for this match, so don’t generate one
increment performance counters etc. as defined by action

} ELSE {
// channel match failed
WPchannel.trace_match_state = 0;

}

1.8.6 Timestamping and reference messages

The debug module includes a single 40-bit timestamp counter. This can be used to
add timing information to both CPU trace and bus analyzer trace information.
Using a single timestamp counter ensures that both trace types are coherent in a
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

94 Debug module
PRELIMINARY DATA
D
R

A
F

T

single time domain. The timestamp function in the debug module includes a
programmable pre-scaler driven from the DM clock (see Table 31: DM.TRCTL
definition on page 97). This allows a debug user to set the timestamp increment size
to suit the application being debugged.

Reference messages (Table 47 on page 133) are occasionally generated to “reseed”
the absolute values used in the address and timestamp value compression scheme.

The circumstances under which reference messages are generated are:

• Immediately prior to the generation of the first non-FPF trace message.

Thus SH-5 will not generate any reference messages until the point at which
other trace would be generated. This will only occur if the debug tool has
programmed sources of trace generation (that is, watchpoint channels), and has
suitably configured the trace destination. From this point onwards, reference
messages may be generated at regular intervals.

• Immediately prior to the generation of a non-FPF trace message which was
generated at least 256 time intervals after the previous trace message.

This provides regular “reseeding” of the absolute address and timestamp values.

Each DM.WP_{IA/OA/IV/PL}X_ACTION register has a field which determines whether
timestamps are added to trace messages. If added, the single byte timestamp field
specifies a time difference from the last reference message.

1.8.7 Trigger-in chain-latch

The DM_TRIN_N pin is manifested as a chain-latch, in order to allow for its inclusion
in WP channel pre-conditions and actions. It has no associated action, and thus
must be used in conjunction with a WP channel in order to cause an action.

The DM.TRCTL register (Section 1.8.10: DM.TRCTL (trace/trigger register) on
page 97) determines how the trigger chain-latch’s state is determined. It can be set
in “manual mode” where the DM_TRIN_N pin does not affect it, or connected to the
DM_TRIN_N as either edge or level triggered, with both rising and falling triggers
supported.

The normal chain-latch operations are available on the WP channels to clear or set
the trigger chain-latches state as required. However, these do not apply when it is in
manual mode.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug module 95
PRELIMINARY DATA
D
R

A
F

T

1.8.8 Trigger-out

The trigger-out (DM_TROUT_N) pin can be configured by the DM.TRCTL register to
operate in one of the following modes:

1 Each time a WPC watchpoint (a CPU core watchpoint) trigger-out event is
detected, an active-low pulse is output on the DM_TROUT_N pin.

This allows the trigger-out pin to be used to trigger external equipment to assist
with system-level debugging. For example, triggering a logic analyzer or
qualifying a logic analyzer trigger so that the analyzer is able to capture
system-level states/events only following a specific watchpoint hit. Alternatively,
the trigger-out pin can be used to accurately measure certain real-time
performance characteristics of the SH-5 system-on-a-chip. A logic analyzer can
capture all activity from the pin and be used to show the occurrences of a specific
watchpoint hit, for example, indicating how often a particular routine is being
invoked.

It is possible for CPU watchpoint hits to occur every CPU clock period but it is
impractical for the trigger-out signal to respond to watchpoint hits occurring at
this rate since this would require output pulses of width equal to half the CPU
clock period (that is, a pulse width of 1.25 ns at 400 MHz). Instead, trigger-out
watchpoint hits are sent to pulse stretching logic within the debug module which
asserts the DM_TROUT_N pin for a longer period. Trigger-out watchpoint hits
which occur during the time the DM_TROUT_N signal is asserted or during the
equal time the signal is recovering are ignored. The pulse width and recovery
times for SH-5 are specified in Section 4.1.9: Trigger out pulse width on
page 249.

2 Each time a bus analyzer watchpoint trigger-out event is detected, an active-low
pulse is output on the DM_TROUT_N pin.

This mode of operation of trigger-out can be used for the same functions
described above but relating to bus analyzer watchpoint hits.

It is possible for bus analyzer watchpoint hits to occur every bus clock period.
Even though the bus clock frequency is lower than that of the CPU core, the
frequency is still too high for a trigger-out pulse to occur every bus clock period.
bus analyzer trigger-out watchpoint hits are sent to pulse stretching logic
similar to that described above.

3 The trigger-out pin is connected to the output of the WPC.CHAIN_0 chain-latch.
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

96 Debug module
PRELIMINARY DATA
D
R

A
F

T

Since the chain-latch can be directly set by one WPC watchpoint hit and directly
cleared by a different WPC watchpoint hit, the trigger-out pin can be used to
accurately measure the time between different WPC watchpoint events.

4 The trigger-out pin is connected to the output of the DM.CHAIN_0 chain-latch.

Since the chain-latch can be directly set by one WPC or bus analyzer watchpoint
hit and directly cleared by a different watchpoint hit, the trigger-out pin can be
used to measure the time between different watchpoint events. There are two
main differences between this TRIGGER-OUT function and the one described above
for the WPC.CHAIN_0 chain-latch:

• The DM.CHAIN_0 chain latch can be set or cleared by any bus analyzer or WPC
watchpoint.

• The action logic for DM.CHAIN_0 chain-latch setting/clearing is located at the
output of the capture buffer. If stall-mode is selected, the chain-latch setting/
clearing action will be delayed by an unpredictable amount of time as the
capture buffer fills. If discard-mode is selected, watchpoint hit events will be
discarded when the capture buffer fills and expected chain-latch setting/
clearing actions may not occur.

5 If stall mode is selected, the trigger-out pin goes low during the time that the
CPU is stalled. This allows external equipment connected to the trigger-out pin
to observe CPU stall behavior.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug module 97
PRELIMINARY DATA
D
R

A
F

T

1.8.9 DM.FPF register definition

When written to, this register generates a fast printf message which is sent to the
tool (see Section 1.15: WP channel type FPF on page 163).

1.8.10 DM.TRCTL (trace/trigger register)

This register determines the destination of trace messages, the stall/discard mode
and controls the function assigned to the trigger-out (DM_TROUT_N) pin.

DM.FPF 0x100018

Field Bits Size Volatile? Synopsis Type

VALUE [63:0] 64 — Fast Printf data value RW

Operation Specifies the data value to be placed in the FPF_DATA field of
the fast printf message.

When read Returns last written value

When written Generates a fast printf message as defined in Table 45 on
page 130. Unless a SYNCO instruction follows the store
instruction which writes to this register, a bogus PC value may
be placed in the FPF message generated. See Access to
registers on page 17.

HARD reset Undefined

Table 30: DM.FPF register definition

DM.TRCTL 0x100040

Field Bits Size Volatile? Synopsis Type

— 0 1 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

Table 31: DM.TRCTL definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

98 Debug module
PRELIMINARY DATA
D
R

A
F

T

DM_TRIG_
IN_MODE

[2:1] 2 — Trigger-in mode RW

Operation Determines the state of the trigger chain-latch relative to the
DM_TRIN_N pin as follows:

Value - Description

0b00: edge triggered, a rising edge on DM_TRIN_N sets the trigger
chain-latch. The latch is only automatically cleared by a WP
channel’s action explicitly clearing it.

0b01: edge triggered, a falling edge on DM_TRIN_N sets the trigger
chain-latch. The latch is only automatically cleared by a WP
channel’s action explicitly clearing it.

0b10: continuous sampling, level ==1 on DM_TRIN_N sets
the trigger chain-latch, level == 0 on DM_TRIN_N clears the trigger
chain-latch

0b11: manual mode. The trigger chain latch will only be set or
cleared by explicit writes to the DM.CHAIN_TRIG_IN register.
Alterations attempted by WP channel’s action_chain_alter setting
have no effect.

The trigger chain-latch can be manually set or cleared by writing to
DM.CHAIN_TRIG_IN, but this is not recommended.

When read Returns current value

When written Updates value

HARD reset 0b11

DM.TRCTL 0x100040

Field Bits Size Volatile? Synopsis Type

Table 31: DM.TRCTL definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug module 99
PRELIMINARY DATA
D
R

A
F

T

FF_CLEAR 3 1 — DM FIFO clear RW

Operation Used by software to change the DM FIFO status to empty when the
trace destination is “DM FIFO trace hold”.

Value - Description

0: No action

1: Clear FIFO. This operation is not instantaneous, the value of the
FF_CLEAR field can be used to determine that the clear operation
has completed.

When read Returns current value.

0 if the FIFO is empty

1 otherwise

When written If trace destination is “DM FIFO trace hold” mode, writing 1 will clear
the FIFO.

Writing 1 in other modes will produce undefined effects.

Writing 0 in any mode produces no effect.

HARD reset 0

DM.TRCTL 0x100040

Field Bits Size Volatile? Synopsis Type

Table 31: DM.TRCTL definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

100 Debug module
PRELIMINARY DATA
D
R

A
F

T

FF_THRESH [5:4] 2 — DM FIFO interrupt threshold RW

Operation Controls the generation of a debug interrupt when the trace
destination is “DM FIFO trace hold” mode (destn = 0b00). With other
trace destinations no interrupt can ever be generated due to trace
messages.

Value - Description

0b00: No debug interrupt generated in response to DM FIFO writes.

0b01: Generate debug interrupt whenever an entry is written to the
DM FIFO.

0b10: Generate debug interrupt when DM FIFO reaches its
high-water mark (see DM FIFO high-water mark on page 246).

0b11: Undefined

When read Returns current value

When written Updates current value

HARD reset 0b00

DM.TRCTL 0x100040

Field Bits Size Volatile? Synopsis Type

Table 31: DM.TRCTL definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug module 101
PRELIMINARY DATA
D
R

A
F

T

FF_STATUS [7:6] 2 � DM FIFO status RO

Operation Indicates the status of the DM FIFO. When the trace destination is
programmed as “DM FIFO trace hold” mode (destn == 0b00) or
“Circular DM FIFO” mode (destn == 0b11), this indicates whether
there are trace messages waiting to be read. In “Trace link mode” or
“Trace buffer mode”, this indicates whether there are trace
messages still waiting to be written to the selected trace destination.

Note: These status bits do not show whether there are
any WPC watchpoint hits waiting in the capture
buffer. Depending on the programming of the DM
action registers, these may cause new trace
messages to be generated later.

Value - Description

0b00: DM FIFO contains some trace data.

0b01: DM FIFO is empty.

0b10: DM FIFO is full.

0b11: Undefined

When read Returns current value

When written Ignored

HARD reset 0b01

DM.TRCTL 0x100040

Field Bits Size Volatile? Synopsis Type

Table 31: DM.TRCTL definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

102 Debug module
PRELIMINARY DATA
D
R

A
F

T

STALL_MODE 8 1 — CPU stall mode RW

Operation Defines the current CPU stall mode. This determines what happens
when the DM capture buffer fills.

Value - description

0: (Discard mode). Do not stall the CPU when the capture buffer
reaches its almost-full threshold. Instead, keep filling the capture
buffer with watchpoint hit entries from the WPC and when no space
is available, discard watchpoint hits which are unable to be written
into the capture buffer.

1: (Stall mode). Stall the CPU when the DM capture buffer reaches
its almost-full threshold. The CPU does not instantly react to a stall
request from the DM and by using an almost-full threshold, enough
space is available in the capture buffer for any additional watchpoint
hit entries which may occur.

When read Returns current value

When written Updates value

HARD reset 0

STALL_STATE 9 1 � Current CPU stall/suspend state RO

Operation Defines if the CPU is currently stalled due to the DM’s capture buffer
being almost-full or if the CPU is suspended.

Stall behavior is controlled by the stall_mode field.

Suspend behavior is controlled by the WPC.CPU_CTRL_ACTION
register (Section 1.3.1: Suspending/resuming the CPU on page 30).

When read Returns current value.

Value - Description

0: not stalled.
1: stalled

When written Ignored

HARD reset 0

DM.TRCTL 0x100040

Field Bits Size Volatile? Synopsis Type

Table 31: DM.TRCTL definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug module 103
PRELIMINARY DATA
D
R

A
F

T

DESTN [11:10] 2 — Trace destination RW

Operation Determines the destination of trace messages generated by the
CPU core watchpoint controller or either of the two bus
Analyzers.

Value - Description

0b00: (DM FIFO trace hold mode). All trace messages are held in
the DM FIFO until read. Data can be read from the DM FIFO at any
time. When the DM FIFO fills, DM.TRCTL.STALL_MODE determines
whether the CPU is stalled or whether new trace messages are
discarded.

0b01: (Trace link mode). Trace messages in the DM FIFO are sent
to the currently-selected debug interface (SHdebug link or JTAG).
Data in the DM FIFO cannot be accessed in this mode and
undefined data will be returned if the DM FIFO register is read.

0b10: (Trace buffer mode). Trace messages in the DM FIFO are
written to a trace buffer area in target system memory. Data in the
DM FIFO cannot be accessed in this mode and undefined data will
be returned if the DM FIFO register is read. The trace buffer can be
configured into “trace buffer hold” or “circular trace buffer” mode
using the DM.TRBUF register (see Table 32: DM.TRBUF definition
on page 107).

0b11: (Circular DM FIFO Mode). Trace messages are held in the
DM FIFO until read. As new trace messages are generated they
overwrite the oldest messages in the DM FIFO. Debug software can
read these messages as described in Section 1.8.13: DM.FIFO_0/
DM.FIFO_1/DM.FIFO_2 (FIFO port register) on page 112.

When read Returns current value

When written Updates current value

HARD reset 0

DM.TRCTL 0x100040

Field Bits Size Volatile? Synopsis Type

Table 31: DM.TRCTL definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

104 Debug module
PRELIMINARY DATA
D
R

A
F

T

PRESCALER [19:12] 8 — Timestamp counter pre-scaler RW

Operation The timestamp counter is driven by a pre-scaler which uses DM
clock as its source. The value of the pre-scaler determines the time
increment of the timestamp counter.

Value - Description

0x00: No division, the time increment is the same as DM clock

0x01 to 0xFF - DM clock divided by (value + 1)

When read Returns current value

When written Updates current value

HARD reset 0xFF

DL_N_JTAG 20 1 — Debug interface selected RO

Operation This field shows the debug interface which is currently selected.
Refer to Section 3.3.3: Debug interface selection on page 213.

Value - Description

0- JTAG interface selected

1- SHdebug link interface selected

When read Returns current value

When written Ignored

HARD reset 1

DM.TRCTL 0x100040

Field Bits Size Volatile? Synopsis Type

Table 31: DM.TRCTL definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug module 105
PRELIMINARY DATA
D
R

A
F

T

DM_TRIG_
OUT_MODE

[23:21] 3 — Trigger-out mode RW

Operation Defines the mode of operation of the trigger-out function.

Section 4.1.3: Performance counters on page 243 defines the
length of trigger out pin pulses.

Value - Description

0b000: The trigger-out function is disabled and the DM_TROUT_N
pin is held high.

0b001: An active-low pulse is output each time a WPC (a CPU core
watchpoint) channel triggers, and the triggering channel has
.ACTION_TRIG_OUT set as one of its actions.

0b010: An active-low pulse is output each time a bus analyzer
channel triggers, and the triggering channel has
.ACTION_TRIG_OUT set as one of its actions.

0b100: The trigger-out pin is connected to the output of the WPC
chain-latch, WPC.CHAIN_0.

0b101: The trigger-out pin (DM_TROUT_N) is connected to the
output of the DM shared chain-latch, DM.CHAIN_0.

0b110: The trigger-out pin is connected to the stall-acknowledge
signal from the CPU core. If stall mode is selected, the
DM_TROUT_N signal goes low during the time that the CPU is
stalled when the capture buffer is full.

0b111: Undefined

When read Returns current value

When written Updates current value

HARD reset 0

DM.TRCTL 0x100040

Field Bits Size Volatile? Synopsis Type

Table 31: DM.TRCTL definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

106 Debug module
PRELIMINARY DATA
D
R

A
F

T

— [63:24] 40 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

DM.TRCTL 0x100040

Field Bits Size Volatile? Synopsis Type

Table 31: DM.TRCTL definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug module 107
PRELIMINARY DATA
D
R

A
F

T

1.8.11 DM.TRBUF (trace buffer register)

This register is specified in Table 32. Fields in this register are used only when
debug software allocates a portion of target system memory space as a trace buffer.

DM.TRBUF 0x100048

Field Bits Size Volatile? Synopsis Type

TR_MODE [1:0] 2 — Trace Buffer mode selection RW

Operation Defines the mode of operation of the trace buffer in the target
system’s memory.

The value in this field is only significant if DM.TRCTL.DESTN = 0b10
(that is, the trace destination is programmed as trace buffer mode).

Value - Description

0b00: Trace buffer disabled. This allows debug software to disable
tracing whilst the other fields (such as TR_SIZE and TR_BASE) are
programmed.

0b01: “Circular trace buffer” mode. The trace buffer acts as a
wrap-around buffer with the newest trace entry overwriting the
oldest.

0b10: “Trace buffer hold” mode. The trace buffer acts as a fixed
length buffer. DM.TRCTL.STALL_MODE (see Section 1.8.10: on
page 97 effects the behavior (see Section : Stall/discard overview
on page 91).

0b11: Undefined

When read Returns current value

When written Updates current value.

Undefined behavior may result if this field is changed whilst a trace
message is being written to memory. Software should disable all
watchpoint channel actions that could produce trace messages and
wait long enough to allow any pending messages to drain to
memory. The time to wait is implementation-dependent.

HARD reset 0

Table 32: DM.TRBUF definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

108 Debug module
PRELIMINARY DATA
D
R

A
F

T

TR_SIZE [5:2] 4 — Trace buffer size RW

Operation Defines the size of the trace buffer in the target system’s memory.

The trace buffer should be disabled (by writing 0b00 to .TR_MODE)
before writing this field.

Value - Description

0x0: 64 Kb

0x1: 128 Kb

0x2: 256 Kb

0x3: 512 Kb

0x4: 1 Mb

0x5: 2 Mb

0x6: 4 Mb

0x7: 8 Mb

0x8: 16 Mb

0x9: 32 Mb

0xA: 64 Mb

0x[B, F]: Undefined

When read Returns current value

When written Updates current value

HARD reset Undefined

— [15:6] 10 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

DM.TRBUF 0x100048

Field Bits Size Volatile? Synopsis Type

Table 32: DM.TRBUF definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug module 109
PRELIMINARY DATA
D
R

A
F

T

TR_BASE [31:16] 16 — Trace Buffer base RW

Operation When an area of target system memory is to be configured as a
trace buffer, bits [31:16] of DM.TRBUF represent bits [31:16] of the
physical base address of the trace buffer. The trace buffer must be
aligned on a 64 Kbyte boundary.

The trace buffer should be disabled (by writing 0b00 to .TR_MODE)
before writing this field.

Setting TR_BASE to the value of the DM (that is, to spill trace to the
debug link) will lead to undefined effects. If this mode of operation is
desired, it should be achieved by programming DM.TRCTL.DESTN to
trace link mode.

When read Returns current value

When written Updates current value

HARD reset Undefined

— [63:32] 32 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

DM.TRBUF 0x100048

Field Bits Size Volatile? Synopsis Type

Table 32: DM.TRBUF definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

110 Debug module
PRELIMINARY DATA
D
R

A
F

T

1.8.12 DM.TRPTR (trace pointer register)

This register is specified in Table 33. The TR_PTR field of this register allows debug
software to determine the location in the trace buffer where the next trace message
will be written

Trace messages vary in size, the largest sized message fits within 3 64-bit words. In
order that debug software can read the trace messages backwards, the DM writes
trace messages into the trace buffer at fixed 3 * 64-bit intervals.

When extracting trace messages, the debug software must be aware of whether the
trace buffer is in “circular trace buffer” mode and if so, use modulo arithmetic on the
addresses as appropriate. When the trace buffer is about to wrap around, trace
messages will not be “split” between the top of the buffer and the bottom, the
complete message will be written from offset 0.

Figure 5: DTRC messages in trace buffer

DM.TRPTR.tr_ptr

Byte 0Byte 7

Header byte of most
recent trace message

Three 64-bit words
per trace entry

Address n

Address n+8

Increasing
address
values

Address n+16
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug module 111
PRELIMINARY DATA
D
R

A
F

T

DM.TRPTR 0x100050

Field Bits Size Volatile? Synopsis Type

— [2:0] 3 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

TR_PTR [31:3] 29 3 Next message pointer RO

Operation This field is used to determine the start address at which the next
trace entry will be written into the trace buffer, and thus is used to
determine how many entries have been written.

It is automatically set to the value of DM.TRBUF.TR_BASE whenever
DM.TRBUF.TR_BASE is written.

When the DM generates a trace entry, it is updated to indicate the
address at which the next entry will be written.

The implementation is free to update this field during the process of
writing the trace entry to the trace buffer. Thus the field may
temporarily contain a value which is not an exact multiple of the
trace entry size above DM.TRBUF.TR_BASE (the trace entry size is
implementation specific - see Section 4.1.5: DM FIFO on page 246).

The number of complete entries present in the trace buffer is
determined by subtracting the value of DM.TRBUF.TR_BASE from
the value in this field, dividing by the implementation-specific trace
entry size, and rounding down.

Figure 5: DTRC messages in trace buffer on page 110 shows an
example of a trace buffer and the pointer value.

When read Returns current value

When written Ignored

HARD reset Undefined

Table 33: DM.TRPTR definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

112 Debug module
PRELIMINARY DATA
D
R

A
F

T
1.8.13 DM.FIFO_0/DM.FIFO_1/DM.FIFO_2 (FIFO port register)

The DM.FIFO_X registers allow debug software to read trace data from the debug
module FIFO when the trace destination is in either “DM FIFO trace hold” mode or
“circular DM FIFO” mode.

Care should be taken to ensure that trace is not being generated whilst the trace is
being extracted, as this can result in the loss of trace messages.

Trace data is extracted one trace message at a time, 3 registers are used due to the
maximum size of a trace entry (<=3*64 bits).

The 3 FIFO port registers are indirectly coupled to the FIFO. The mechanism for
transferring the oldest trace message from the FIFO into the FIFO port registers
consists of the following sequence:

• Software writes a ‘1’ into the FF_READ_REQ field of the DM.FIFO_REQ register.
This initiates the transfer of the oldest trace message from the FIFO to the FIFO
port registers.

• Software reads the FF_READ_ACK field of the DM.FIFO_ACK register until its value
is ‘1’. Table 34 shows all possible values of FF_READ_REQ and FF_READ_ACK.

• Trace data can now be read from the FIFO port registers. Normally, DM.FIFO_0
will be read first to determine the size of the trace message but the registers can
be read in any order and can be read any number of times.

— [63:32] 32 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

DM.TRPTR 0x100050

Field Bits Size Volatile? Synopsis Type

Table 33: DM.TRPTR definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug module 113
PRELIMINARY DATA
D
R

A
F

T

• Before requesting another trace message transfer, software should read the
FF_STATUS field of the DM.TRCTL register to determine if more trace messages
exist in the FIFO.

A suitable pseudo-code sequence to transfer and read a FIFO entry is given below:

if (DM.TRCTL.ff_status}
// FIFO contains at least 1 entry so transfer it
// request that the FIFO transfers 1 entry
write (DM.FIFO_REQ.ff_read_req = 1)

// wait until the FIFO has signalled the transfer operation is
complete

while (DM.FIFO_ACK.ff_read_ack == 0) {
donothing

}

// the FIFO has now transferred an entry
read DM.FIFO_0, DM.FIFO_1, DM.FIFO_2

}

Note: If a FIFO transfer is requested when the FIFO is empty, the contents of DM.FIFO_0,
DM.FIFO_1 and DM.FIFO_2 are undefined.

FF_READ_REQ FF_READ_ACK Meaning

0 0 No FIFO transfer has ever been requested.

1 0 FIFO transfer in progress.

0 1 Transfer complete. This state exists until the next transfer
request.

Table 34: FIFO transfer request/acknowledge states
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

114 Debug module
PRELIMINARY DATA
D
R

A
F

T

DM.FIFO_x where x = {0/1/2}

Field Bits Size Volatile? Synopsis Type

FF_PORT [63:0] 64 � DM FIFO data port RO

Operation Trace data in the debug module FIFO can be read via this port when
the FIFO is in “DM FIFO trace hold” mode or “circular DM FIFO”
mode.

When read Returns a DM FIFO data word when the FIFO is in “DM FIFO trace
hold” mode or “circular DM FIFO” mode (DM.TRCTL.DESTN = 0b00
or 0b11). When the trace message destination is the development
tool or target system trace buffer, reads have no effect on the DM
FIFO and return undefined data.

Section 1.9.3: DTRC messages on page 119 defines the format of
trace messages.

When written Ignored

HARD reset Undefined

Table 35: DM.FIFO_{0/1/2} definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug module 115
PRELIMINARY DATA
D
R

A
F

T

DM.FIFO_REQ 0x100070

Field Bits Size Volatile? Synopsis Type

FF_READ_
REQ

0 1 � DM FIFO transfer request RW

Operation In “DM FIFO trace hold” mode or “circular DM FIFO” mode, this is
one of the fields used to transfer data from the DM FIFO to the DM
FIFO port registers.

When read Undefined

When written Value - Description

0: No action

1: Initiates a transfer of the oldest trace message in the DM FIFO to
the DM FIFO port registers.

HARD reset 0

— [63:1] 63 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

Table 36: DM.FIFO_REQ definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

116 Debug module
PRELIMINARY DATA
D
R

A
F

T

DM.FIFO_ACK 0x100078

Field Bits Size Volatile? Synopsis Type

FF_READ_
ACK

0 1 � DM FIFO transfer acknowledge RO

Operation In “DM FIFO trace Hold” mode or “circular DM FIFO” mode, this is
one of the fields used to transfer data from the DM FIFO to the DM
FIFO port registers.

When read Value - Description

0: Transfer of trace message data between the DM FIFO and the
DM FIFO port registers is in progress. Software should not attempt
to read the DM FIFO port registers.

1: One trace message has been transferred from the DM FIFO to
the DM FIFO port registers. The DM FIFO port registers can now be
read. This field will remain set until another transfer request
command has been written to the DM.FIFO_REQ.FF_READ_REQ
field.

When written Ignored

HARD reset 0

— [63:1] 63 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

Table 37: DM.FIFO_ACK definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug module 117
PRELIMINARY DATA
D
R

A
F

T

1.8.14 DM.PC (shadow program counter register)

This register allows debug software to read the current value of the shadow PC and
the shadow ASID registers both located in the debug module.

DM.PC 0x100020

Field Bits Size Volatile? Synopsis Type

SHADOW_PC [31:0] 32 � Program counter RO

Operation The debug module maintains a shadow program counter which is
kept in step with the program counter of the CPU core.

The LSB of this field indicates the current ISA Mode (1 ==
SHmedia, 0 == SHcompact).

When read Returns the current value of the shadow program counter. Reads
do not affect the value of this counter.

When written Ignored

HARD reset Undefined

SHADOW_
ASID

[39:32] 8 � Application space ID RO

Operation The debug module maintains a shadow ASID register which is
kept in step with the ASID field of the SR register in the CPU core.

When read Returns the current value of the shadow ASID register. Reads do
not affect the value of this register.

When written Ignored

HARD reset Undefined

— [63:40] 24 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

Table 38: DM.PC definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

118 Debug protocols and interfaces
PRELIMINARY DATA
D
R

A
F

T

1.9 Debug protocols and interfaces

1.9.1 Endianness

The debug system is entirely little endian in respect of:

• all FIFO contents,

• all trace messages generated,

• all values encoded in DBUS transactions.

However, within DBUS transactions the correlation between mask values and
addresses is dependant on the endianness of the SH-5 system. This is defined in
Section 3.6: DBUS protocol on page 226.

1.9.2 Overall message structure

The SH-5 debug module can initiate two types of transaction over the
currently-configured debug interface (SHdebug link or JTAG):

• those associated with SuperHyway bus transactions (called DBUS messages),

• trace messages from on-chip debug logic (called DTRC).

In the reverse direction, the tool can generate only DBUS messages.

The message structure is the same, regardless of the width of the SHdebug link data
path or which debug interface is used. A 3-bit message type field in the first word of
the message defines the message contents.

First word of message

The 3-bit message type field in the first word of each debug message can be used by
the tool to determine the action required for the message:

• Process the DBUS request or response.

• Write the background trace message into FIFO memory within the tool.

• Forward the trigger trace message to tool software for immediate action.

• Update the reference time register in the tool.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug protocols and interfaces 119
PRELIMINARY DATA
D
R

A
F

T

When the SHdebug link is the currently-selected debug interface and SH-5 has no
data to send, the debug module maintains a line idle condition on the SHdebug link.

1.9.3 DTRC messages

DTRC messages contain information captured by both the WPC, DM and bus
analyzers.

These are stored in the debug FIFO, or sent to the tool without any CPU
involvement. Such trace messages, sent by the on-chip debug module, include:

• information from each CPU watchpoint hit,

• branch trace information,

• fast printf output,

• information captured in bus analyzer bus capture buffers.

Trace message types

Watchpoints and bus analyzer bus capture buffers can generate two types of trace
message:

• a trigger trace message,

• a background trace message.

The watchpoint hit information contained in these two types of message is the same;
the only difference is the use of a different message header code. The use of different
message header codes permits the tool to take different actions for the two types of
trace message.

Message type name Message type field Meaning

MHDR_IDLE 0b000 Line idle condition

MHDR_DBUS 0b001 DBUS message.

MHDR_DTRC_BACK 0b010 DTRC background trace message.

MHDR_DTRC_TRIG 0b011 DTRC trigger trace message.

MHDR_REF 0b100 Reference message

0b101, 0b110 or 0b111 Not currently defined

Table 39: Message type values
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

120 Debug protocols and interfaces
PRELIMINARY DATA
D
R

A
F

T

Each WP channel’s action register allows the type of trace message generated to be
defined. See Section 1.5: Debug event actions on page 48.

Encoding of address offsets

To minimize the sizes of trace messages being sent over the SHdebug link, program
counter addresses, and bus analyzer addresses are compressed wherever possible.

However, when the trace destination is configured as “DM FIFO trace hold”,
“circular DM FIFO”, “circular trace buffer” or “trace buffer hold” mode, addresses
are always encoded as absolute values. This allows trace to be reconstructed even if
some trace packets are lost, as each message can be interpreted without reference to
other messages.

An encoding method is used whereby either one or two bytes are used to represent
signed address offsets as either a 7-bit or a 15-bit 2’s complement value. These
offsets are relative to the previous address of the same type. If the address cannot be
expressed as an offset, an absolute 32-bit value is encoded instead. Therefore:

• Program counter addresses are stored as effective addresses, and are encoded
either as an 32-bit absolute address, or as a 7-bit or 15-bit 2’s complement value
relative to the previous PC address.

• Bus analyzer addresses are encoded either as absolute 32-bit addresses, or as a
7-bit or 15-bit 2’s complement value relative to the previous bus analyzer
address.

Address offsets are calculated as [NEW_ADDRESS - PREVIOUSLY_SENT_ADDRESS]. As
shown in Figure 5, bit-7 of the first byte is used to indicate whether a second byte
follows.

Absolute or relative encoding of an address is indicated by one of the following
header fields:

• PC_ABSOLUTE

• SRC_ABSOLUTE (in branch trace messages only)

• DEST_ABSOLUTE (in branch trace messages only)

• ADDR_ABSOLUTE (in bus analyzer trace messages only)

When debug software is analyzing trace message information, it uses an absolute
address as the reference for reconstructing the addresses in subsequent trace
messages. The reference message (Section 1.8.6: Timestamping and reference
messages on page 93 and Table 47 on page 133) also contains the absolute PC and
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug protocols and interfaces 121
PRELIMINARY DATA
D
R

A
F

T

bus analyzer addresses and provides a regular source of reference addresses to
assist in address reconstruction.

Note that FPF messages contain an absolute PC value, but that they do not reseed
the PC reference value.

A “C” implementation of a compression decode routine is given below.

/* _DecodeCompressedOffset
 pre: byteStream points to signed compressed value
 post: returns decoded value
*/
int _DecodeCompressedOffset (char *byteStream)
{
 int result;

 if ((byteStream[0] & 128) == 0) {
 // its a 1 byte value
 //

 result = (byteStream[0] & 63); // extract the least sig 6 bits

 // check if its negative (include bit 7)
 if (byteStream[0] & 64) {
 result = (-64 + result);
 }

 } else {
 // its a 2 byte value
 //

Figure 6: Encoding of address offsets

7-bit 2’s complement value

07

0

077815

One byte encodes a 7-bit offset

Two bytes encodes a 15-bit offset

least significant 7 bits of
15-bit 2’s complement value

most significant 8 bits of
15-bit 2’s complement value 1
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

122 Debug protocols and interfaces
PRELIMINARY DATA
D
R

A
F

T

 // extract the least sig 7 bits
 result = (byteStream[0] & 127);

 // additionally, extract the most sig 7 bits
 result = result | ((byteStream[1] & 127) << 7);

 // check if its negative (include bit 15)
 if (byteStream[1] & 128) {
 result = (-16384 + result);
 }
 }
 return result;
}

DTRC message definitions

Each trace message consists of a 16-bit header followed by a variable number of
bytes depending on the message type, options enabled and the amount of
compression achieved.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug protocols and interfaces 123
PRELIMINARY DATA
D
R

A
F

T

Common trace message fields

Common trace message fields

Field Size
Header

bit
positions

Description

MESSAGE_TYPE 3-bits [2:0] Defines the basic contents of the debug message as
described in Section : First word of message on page 118.
Only field values of 0b010 (DTRC background trace
message) and 0b011 (DTRC trigger trace message)
relate to trace messages.

SOURCE_MODULE 3-bits [5:3] Defines the on-chip source module which provides the

information in the trace messagea.

Value - Description

0: WPC (CPU watchpoint controller)

1: SuperHyway bus analyzer

2-7 - Reserved for watchpoint logic in additional CPU
cores or future accelerator modules.

EVENT_TYPE 5-bits [10:6] Defines the watchpoint channel in the source module
which generated the trace message. Refer to
Table 4.1.6: Trace message header fields on page 247 for
watchpoint channel numbers in the WPC and each of the
bus analyzers.

OVER_STALL 1-bit [11] This bit has two meanings depending on whether the
stall-mode field of DM.TRCTL selects CPU stall mode or
discard mode. See Table 31: DM.TRCTL definition on
page 97.

In stall mode, this bit is set when the CPU was stalled for
some indeterminate time prior to this trace message being
generated because there was no space available in the
debug module FIFO.

In discard mode, this bit is set to indicate that one or more
watchpoint hits before this hit were discarded because
there was no space available in the capture buffer.

Table 40: Common trace message fields
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

124 Debug protocols and interfaces
PRELIMINARY DATA
D
R

A
F

T

PC_ABSOLUTE 1-bits [12] Defines whether the PC field contains a 4-byte absolute
address or a 1- or 2-byte relative address. A relative
address is the signed offset from the most recent PC
value sent in a previous trace message (of any type).

Value - Description

0: Relative address offset

1: Absolute 4-byte address

OTHER 3-bits [15:13] Specific for each watchpoint channel type.

TIMESTAMP 1-byte N/A This optional field occurs in the trace message when the
WP channel’s action includes enable_trace_timestamp ==
1 (see Section 1.5: Debug event actions on page 48).

This one-byte value specifies a number of timer
increments since the last Reference trace message (see
Table 47).

ASID 1-byte N/A This optional field occurs whenever the watchpoint
channel if setup to match any ASID.

When the WP channel’s pre condition includes
asid_enable ==1 (see Section 1.6: WP channel matching
on page 66), then the ASID field does not appear in the
trace messages.

PC 1, 2 or
4
bytes

N/A If PC_Absolute is ‘0’, this field is a 1-byte or 2-byte
compressed address as a signed offset from the most
recent PC value sent in a previous trace message (of any
type).

If PC_Absolute is ‘1’, this field consists of the 4-byte
absolute value of the PC at the point of the WP trigger.

a. Although the FPF function is implemented in the DM, its header denotes as appearing
from the WPC (as there is no specified DM header).

Common trace message fields

Field Size
Header

bit
positions

Description

Table 40: Common trace message fields
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug protocols and interfaces 125
PRELIMINARY DATA
D
R

A
F

T

Specific trace messages

IA watchpoint trace message (3-bytes minimum, 8-bytes maximum)

Field Size
Header bit
positions

Description

MESSAGE_TYPE 3-bits [2:0] 0b010 or 0b011

SOURCE_MODULE 3-bits [5:3] 0 (WPC)

EVENT_TYPE 5-bits [10:6] 0x00 through 0x03 (see Table 89: SH-5 evaluation
device trace message codes on page 247).

OVER_STALL 1-bit [11]

PC_ABSOLUTE 1-bits [12]

Reserved 3-bits [15:13] Not used

TIMESTAMP 0 or 1
byte

N/A

ASID 0 or 1
byte

N/A

PC 1, 2 or 4
bytes

N/A

Table 41: IA watchpoint trace message

OA watchpoint trace message (7-bytes minimum, 16-bytes maximum)

Field Size
Header bit
positions

Description

MESSAGE_TYPE 3-bits [2:0] 0b010 or 0b011

SOURCE_MODULE 3-bits [5:3] 0 (WPC)

EVENT_TYPE 5-bits [10:6] 0x04 through 0x05 (see Table 83: SH-5 evaluation
device WP channels on page 241).

OVER_STALL 1-bit [11]

PC_ABSOLUTE 1-bits [12]

Table 42: OA watchpoint trace message
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

126 Debug protocols and interfaces
PRELIMINARY DATA
D
R

A
F

T

DATA_FIELD_SIZE 3-bits [15:13] Defines how much data was stored to memory by the
triggering instruction.

Value - Description

0b000: The instruction which hit the watchpoint did not
write to a memory location.

0b001: Undefined

0b010: Undefined.

0b011: Undefined.

0b100: 1 byte. The instruction which hit the watchpoint
did a 1 byte write to a memory location.

0b101: 2 byte write (as above)

0b110: 4 byte write (as above)

0b111: 8 byte write (as above)

TIMESTAMP 0 or 1
byte

N/A

ASID 0 or 1
byte

N/A

PC 1, 2 or 4
bytes

N/A

OA watchpoint trace message (7-bytes minimum, 16-bytes maximum)

Field Size
Header bit
positions

Description

Table 42: OA watchpoint trace message
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug protocols and interfaces 127
PRELIMINARY DATA
D
R

A
F

T

DATA_ADDRESS 4, 5, 6 or
8 bytes

N/A If .DATA_FIELD_SIZE indicates a 0 byte store, this field
is 4 bytes in length.

If .DATA_FIELD_SIZE indicates a 1 byte store, this field
is 5 bytes in length. Bits [39:32] correspond to the
8-bits of data stored to memory.

If .DATA_FIELD_SIZE indicates a 2 byte store, this field
is 6 bytes in length. Bits [47:32] correspond to the
16-bits of data stored to memory.

If .DATA_FIELD_SIZE indicates a 4 byte store, this field
is 8 bytes in length. Bits [63:32] correspond to the
32-bits of data stored to memory.

If .DATA_FIELD_SIZE indicates an 8 byte store, this
field is 8 bytes in length. Bits [63:32] correspond to
bits [31:0] of the 64 bits of data stored to memory.

The meaning of bits [31:0] is dependant on the setting
of WPC.ADDR_IN_TRACE:

If .MUX_ADDR == 1, bits[31:0] correspond to the
operand address at which the triggering instruction
stored data to memory.

If .MUX_ADDR == 0, bits[31:0] correspond to bits
[63:32] of the 64 bits of data stored to memory by the
triggering instruction. They only contain valid
information if .DATA_FIELD_SIZE indicates an 8 byte
store.

For the store instructions that support misaligned
addresses, the contents of this field are described in
Handling of misaligned store instructions on page 134

OA watchpoint trace message (7-bytes minimum, 16-bytes maximum)

Field Size
Header bit
positions

Description

Table 42: OA watchpoint trace message
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

128 Debug protocols and interfaces
PRELIMINARY DATA
D
R

A
F

T

IV watchpoint trace message (7-bytes minimum, 16-bytes maximum)

Field Size
Header bit
positions

Description

MESSAGE_TYPE 3-bits [2:0] 0b010 or 0b011

SOURCE_MODULE 3-bits [5:3] 0 (WPC)

EVENT_TYPE 5-bits [10:6] 0x06 through 0x07 (see Table 89: SH-5 evaluation
device trace message codes on page 247).

OVER_STALL 1-bit [11]

PC_ABSOLUTE 1-bit [12]

DATA_FIELD_SIZE 3-bits [15:13] Defines how much data was stored to memory by the
triggering instruction.

Value - Description

0b000: The instruction which hit the watchpoint did
not write to a memory location

0b001: Undefined

0b010: Undefined

0b011: Undefined

0b100: 1 byte. The instruction which hit the watchpoint
did a 1 byte write to a memory location

0b101: 2 byte write (as above)

0b110: 4 byte write (as above)

0b111: 8 byte write (as above)

TIMESTAMP 0 or 1
byte

N/A

ASID 0 or 1
byte

N/A

PC 1, 2 or 4
bytes

N/A

Table 43: IV watchpoint trace message
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug protocols and interfaces 129
PRELIMINARY DATA
D
R

A
F

T

DATA_ADDRESS 4, 5, 6 or
8 bytes

N/A Identical to the DATA_ADDRESS field of OA trace
messages (see Table 42: OA watchpoint trace
message on page 125).

However, as IV channels can trigger for instructions
which do not write to memory a further clarification is
required - If the triggering instruction did not write to
memory, bits[31:0] contain undefined data.

IV watchpoint trace message (7-bytes minimum, 16-bytes maximum)

Field Size
Header bit
positions

Description

Table 43: IV watchpoint trace message

BR watchpoint trace message (4-bytes minimum, 12-bytes maximum)

Field Size
Header bit
positions

Description

MESSAGE_TYPE 3-bits [2:0] 0b010 (Always defined as a background trace
message)

SOURCE_MODULE 3-bits [5:3] 0 (WPC)

EVENT_TYPE 5-bits [10:6] 0x08 (see Table 89: SH-5 evaluation device trace
message codes on page 247).

OVER_STALL 1-bit [11]

DEST_ABSOLUTE 1-bits [12]

SRC_ABSOLUTE 1-bits [13]

RESERVED 2-bits [15:14]

TIMESTAMP 0 or 1
byte

N/A

ASID 0 or 1
byte

N/A

Table 44: BR watchpoint trace message
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

130 Debug protocols and interfaces
PRELIMINARY DATA
D
R

A
F

T

DESTN_ADDRESS 1, 2 or 4
bytes

N/A If DEST_ABSOLUTE is ‘0’, this field is a 1-byte or 2-byte
compressed address as a signed offset from the most
recent PC value sent in a previous trace message (of
any type).

If DEST_ABSOLUTE is ‘1’, this field consists of the
4-byte absolute value of the destination address for
the branch.

SOURCE_ADDRESS 1, 2 or 4
bytes

N/A If SRC_ABSOLUTE is ‘0’, this field is a 1-byte or 2-byte
compressed address as a signed offset from the most
recent PC value sent in a previous trace message (of
any type).

If SRC_ABSOLUTE is ‘1’, this field consists of the
4-byte absolute value of the source address of the
branch.

Note: For SHcompact delayed branches, the
source address is that of the branch
delay slot, not of the branching
instruction.

BR watchpoint trace message (4-bytes minimum, 12-bytes maximum)

Field Size
Header bit
positions

Description

Table 44: BR watchpoint trace message

FPF watchpoint trace message (15-bytes)

Field Size
Header bit
positions

Description

MESSAGE_TYPE 3-bits [2:0] 0b011 (Always defined as a trigger trace message)

SOURCE_MODULE 3-bits [5:3] 0 (WPC). The actual source module is DM, but there is
no value reserved for this, so the WPC value is used.

EVENT_TYPE 5-bits [10:6] 0x09 (see Table 89: SH-5 evaluation device trace
message codes on page 247).

Table 45: FPF Watchpoint Trace Message
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug protocols and interfaces 131
PRELIMINARY DATA
D
R

A
F

T

OVER_STALL 1-bit [11]

RESERVED 4-bits [15:12]

ASID 1 byte N/A The ASID is always included in the trace message.

PC 4 bytes N/A A full PC address is always sent.

Note that this value does not reseed the PC reference
value.

FPF_DATA 8 bytes N/A The data written to the fast printf register is always a
64 bit value.

FPF watchpoint trace message (15-bytes)

Field Size
Header bit
positions

Description

Table 45: FPF Watchpoint Trace Message

PL Watchpoint trace message (7-bytes minimum, 20-bytes maximum)

Field Size
Header bit
positions

Description

MESSAGE_TYPE 3-bits [2:0] 0b010 or 0b011

SOURCE_MODULE 3-bits [5:3] 1 (SuperHyway bus analyzer)

EVENT_TYPE 5-bits [10:6] 0x00 through 0x01 (see Table 89: SH-5 evaluation
device trace message codes on page 247).

OVER_STALL 1-bit [11] Set to indicate that one or more trace messages
before this one were discarded because there was no
space available in the debug module FIFO.

Table 46: PL Watchpoint trace message
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

132 Debug protocols and interfaces
PRELIMINARY DATA
D
R

A
F

T

MATCH_LOSS 1-bits [12] Set to indicate that some SuperHyway cells/tokens
which should have been captured were lost because
the hit occurred when either:

- The previous, or current) captured cell/token was
being transferred to the DM.

- The bus capture buffer was frozen (by the PL
channel raising a debug interrupt). See Debug
interrupt actions on page 184).

No watchpoint hit is registered for these additional bus
transactions.

ADDR_ABSOLUTE 1-bits [13]

RESERVED 2-bits [15:14]

TIMESTAMP 0 or 1
byte

N/A

SOURCE 1-byte N/A

DESTINATION 1-byte N/A

OPCODE 1-byte N/A

TRANSACTION ID 1-byte N/A

DATA_MASK 0 or 1
byte

N/A When the opcode corresponds to a Flush (0x18),
Purge (0x8), Success (0x80) or Failure (0x81) this
field is 0 bytes in length (that is, it is not encoded)

For other opcodes it is encoded as a 1 byte field and
contains the mask value from the captured bus
packet.

PL Watchpoint trace message (7-bytes minimum, 20-bytes maximum)

Field Size
Header bit
positions

Description

Table 46: PL Watchpoint trace message
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug protocols and interfaces 133
PRELIMINARY DATA
D
R

A
F

T

ADDRESS 0, 1, 2 or
4 bytes

N/A If Opcode is Success (0x80) or Failure (0x81) this
field is 0 bytes in length (that is, an address is not
encoded). Otherwise:

If ADDR_ABSOLUTE is ‘0’, this field is a 1-byte or
2-byte compressed address as a signed offset from
the bus transaction address calculated for the
previous trace message for this watchpoint.

If ADDR_ABSOLUTE is ‘1’, this field consists of the
4-byte absolute value of the transaction address.

TRANSACTION_
DATA

0 or 8
bytes

N/A When the opcode is Load8 (0x31), Load16 (0x41),
Load32 (0x51) or Failure (0x81) this field is 0 bytes in
length (that is, it is not encoded).

For all other opcodes this field is 8 bytes in length, and
corresponds either to valid data from the captured bus
packet, or undefined data when the captured bus
packet contained no data.

The opcode field can be used to determine whether
the bus packet was a request which contained data as
described above.

If the opcode shows the bus packet was a Success
(0x80) response, software will need knowledge of the
corresponding request to determine whether valid
data is encoded here.

Reference message (14-bytes)

Field Size
Header bit
positions

Description

MESSAGE_TYPE 3-bits [2:0] 0b100

RESERVED 5-bits [7:3]

Table 47: Reference message

PL Watchpoint trace message (7-bytes minimum, 20-bytes maximum)

Field Size
Header bit
positions

Description

Table 46: PL Watchpoint trace message
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

134 Debug protocols and interfaces
PRELIMINARY DATA
D
R

A
F

T
Handling of misaligned store instructions

This section describes the contents of the DATA_FIELD_SIZE and DATA_ADDRESS fields
in OA and IV trace messages that result from STHI.Q, STHI.L, STLO.Q or STLO.L
instructions. The field contents are shown in Table 49. The 8 bytes within the
register containing the data for the store are identified by A, B, C, D, E, F, G, H. The
association between these labels and the bytes in the register is shown in Table 48.

TIME_VALUE 5-bytes N/A The value of the 40-bit timestamp counter in the
debug module.

PC_ADDRESS 4-bytes The absolute 4-byte address of the shadow program
counter at the time this message is generated. This
address becomes the new reference PC value and the
relative address in a trace message which follows will
be based on this value.

BA_ADDRESS 4-bytes The absolute 4-byte reference address associated
with the SuperHyway bus analyzer. This value
becomes the new bus analyzer reference address and
the relative address in a bus analyzer trace message
which follows will be based on this value.

Reference message (14-bytes)

Field Size
Header bit
positions

Description

Table 47: Reference message

Data source register for store (referred to as Ry in the instruction definitions)

MSB LSB

Bits
[63:56]

Bits
[55:48]

Bits
[47:40]

Bits
[39:32]

Bits
[31:24]

Bits
[23:16]

Bits
[15:8]

Bits
[7:0]

Byte name
in Table 49

H G F E D C B A

Table 48: Byte naming convention used in table Table 49
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug protocols and interfaces 135
PRELIMINARY DATA
D
R

A
F

T

Where an entry in Table 49 is shown as ?, it means the contents of that byte are
unspecified.

E
n

d
ia

n
 m

o
d

e

In
st

ru
ct

io
n

E
A

[2
:0

]

by

te
s

st
o

re
d

A
D

D
R

_I
N

_T
R

A
C

E

D
A

T
A

_F
IE

L
D

_S
IZ

E Data_address

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte
1 Byte 0

Bits
[63:56]

Bits
[55:48]

Bits
[47:40]

Bits
[39:32]

Bits
[31:24]

Bits
[23:16]

Bits
[15:8]

Bits
[7:0]

Little STHI.Q 0..3 0..3 0 0b110 H G F E ? ? ? ?

1 H G F E Operand address

4..7 4..7 0 0b111 D C B A H G F E

1 D C B A Operand address

STLO.Q 0..3 7..4 0 0b111 D C B A H G F E

1 D C B A Operand address

4..7 3..0 0 0b110 D C B A ? ? ? ?

1 D C B A Operand address

Big STHI.Q 0..3 0..3 0 0b110 D C B A ? ? ? ?

1 D C B A Operand address

4..7 4..7 0 0b111 D C B A H G F E

1 D C B A Operand address

STLO.Q 0..3 7..4 0 0b111 D C B A H G F E

1 D C B A Operand address

4..7 3..0 0 0b110 H G F E ? ? ? ?

1 H G F E Operand address

Any STHI.L 0..3 0..3 0 0b110 D C B A ? ? ? ?

1 D C B A Operand address

Any STLO.L 0..3 3..0 0 0b110 D C B A ? ? ? ?

1 D C B A Operand address

Table 49: DATA_FIELD_SIZE and DATA_ADDRESS in IV/OA traces for misaligned store instructions
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

136 WP channel type BRK
PRELIMINARY DATA
D
R

A
F

T

The trace data is usually the unshifted register contents, except when 4 or fewer
bytes are stored from the upper half of the register, in which case a 32-bit right shift
is applied.

1.9.4 DBUS messages

DBUS transactions occur when the CPU or any other bus master module sends a
Load, Store or Swap request over the SuperHyway bus to the target address space
assigned to the tool. This is the mechanism by which the CPU boots via the
currently-selected debug interface and how a debug monitor running on the CPU
communicates with the tool.

The tool can also initiate data and control transactions in the reverse direction over
the currently-selected debug interface. Such data transactions include:

• Reads and writes to any memory-mapped on-chip resources, without affecting
the CPU. The on-chip module’s registers appear in the memory map, thus this
mechanism allows the resource’s state to be inspected, altered and controlled.

• Control of the CPU. As defined in Section 1.3: CPU control on page 30.

1.10 WP channel type BRK
Break watchpoints trigger whenever:

• BRK-BRK

The BRK instruction is executed. The trigger occurs prior to the instruction
executing.

• BRK-STEP:

An instruction is completed in single step mode. The trigger occurs after the
instruction executes.

• BRK-INT:

A debug interrupt was forced by writing to DM.FORCE_DEBUGINT.

All BRK channel triggers (BRK-BRK, BRK-STEP and BRK-DEBUGINT) are unaffected by
SR.WATCH.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type BRK 137
PRELIMINARY DATA
D
R

A
F

T

The BRK channel is not a true WP channel - it has no generic PRE and ACTION
registers, and instead has some implicit behavior. BRK is manifested as a WP
channel in order to make its exception state available in a uniform manner (see
Section 1.7: Reset, panic and debug events on page 73).

1.10.1 Match registers

There are no associated PRE or MATCH registers as BRK watchpoints cannot be
filtered.

There is no associated ACTION register as the BRK watchpoint implicitly takes a
debug exception.

1.10.2 Event specifics

Source CPU

Reason: Execution of a BRK instruction, execution of a single-stepped instruction,
or a forced debug interrupt.
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

138 WP channel type BRK
PRELIMINARY DATA
D
R

A
F

T

 Implicit action:

Exception: Standard event handling sequence is followed.

• If due to a BRK instruction execution:

If SR.BL == ‘0’, the RESVEC/DBRVEC offset is 0x100 (to denote a
synchronous debug event of type BREAK).

If SR.BL == ‘1’, the RESVEC/DBRVEC offset is 0x0 (to denote a
PANIC event).

EXPEVT is set to 0x940 to denote a BREAK exception.

The SPC register contains the address at which the BRK
instruction was placed.

• If due to a single step:

If SR.BL == ‘0’, the RESVEC/DBRVEC offset is 0x100 (to denote a
synchronous debug event of type DEBUGSS).

If SR.BL == ‘1’, the RESVEC/DBRVEC offset is 0x0 (to denote a
PANIC event).

EXPEVT is set to 0x980 to denote a DEBUGSS exception.

The SPC register contains the PC value of the next
instruction to be executed.

In SHcompact mode, the delayed branch and delay slot
instructions are executed indivisibly - a single step will not be
raised between them. Upon occurrence of the step exception,
SPC will refer to the delayed branch and the next single step
will occur for the first instruction which executes after the
delay slot instruction (depending on whether the branch is
taken or not taken).

• If due to a forced debug interrupt:

The RESVEC/DBRVEC offset is 0x200 (to denote a DEBUGINT
event).

DM.EXP_CAUSE.FORCED_DEBUG_INTERRUPT is set to 1.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type IA 139
PRELIMINARY DATA
D
R

A
F

T

1.11 WP channel type IA
Instruction address watchpoints trigger whenever an instruction fetch occurs
within the defined range.

The trigger occurs only for instruction fetches which will result in an instruction
executing (that is, speculative fetches do not trigger).

If SR.WATCH == 0, IA channels will not trigger.

The trigger occurs prior to the instruction executing.

1.11.1 Match registers

Two registers are used to define a start and end address.

WPC.WP_IAx_MATCH_START where x = channel ID

Field Bits Size Volatile? Synopsis Type

ADDRESS [31:0] 32 — Start address RW

Operation Defines the start address for the instruction address range.
When the MMU is enabled, this contains an effective address.
When the MMU is disabled, this contains a physical address.

The least significant bit (bit 0) should always be written as zero.
The effect of writing 1 to bit 0 is implementation-defined.

When read Returns current value

When written Updates value

HARD reset Undefined

— [63:32] 32 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

Table 50: WPC.WP_IAx_MATCH_START register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

140 WP channel type IA
PRELIMINARY DATA
D
R

A
F

T

WPC.WP_IAx_MATCH_END where x = channel ID

Field Bits Size Volatile? Synopsis Type

ADDRESS [31:0] 32 — End address RW

Operation Defines the end address for the instruction address range.
When the MMU is enabled, this contains an effective address.
When the MMU is disabled, this contains a physical address.

The least significant bit (bit 0) should always be written as zero.
The effect of writing 1 to bit 0 is implementation-defined.

The address comparison is performed using the start address
of a SHmedia or SHcompact instruction (shown as Iaddr
below). The comparison is inclusive of the match start address,
but not of the match end address:

Iaddr >= start && Iaddr< end

When read Returns current value

When written Updates value

HARD reset Undefined

— [63:32] 32 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

Table 51: WPC.WP_IAx_MATCH_END register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type IA 141
PRELIMINARY DATA
D
R

A
F

T

1.11.2 Address comparison

The address comparison is performed using the effective address supplied to the
instruction (known as Aeffective). When the MMU is enabled, this is an effective
address. When the MMU is disabled, this is a physical address.

The comparisons are unsigned. If the start/end address range straddles the
unimplemented part of the effective address space (that is, it contains addresses in
the range [2(neff - 1), 2(64 - neff - 1)) where neff is the number of implemented effective
address bits, the behavior is architecturally undefined. If this type of ‘stradding’
behavior is required, two IA channels must be programmed, each one limited to
addresses in a single region of the implemented address space.

1.11.3 SHcompact behavior

SH-5 may implement SHcompact instruction execution by actual execution of a
sequence of SHmedia instructions. In such implementations, IA watchpoint
matches are made against the address of the single SHcompact instruction (as the
sequence of SHmedia instructions generated have no PC address).

1.11.4 Event specifics

Source CPU

Reason: Fetch of an instruction at an address which is within an enabled IA
watchpoint.

Undefined behavior

The following operations of the IAx registers are undefined:

• Writing to WPC.WP_IAX_{PRE/MATCH/ACTION}, DM.WP_IAX_{PRE/ACTION} when the
WP channel is enabled.

Supported fields in WPC.WP_IAx_PRE:

BASIC_ENABLE, ASID_ENABLE, ASID_VALUE, ISAMODE_ENABLE, SR_MD_ENABLE,
ECOUNT_ENABLE, ECOUNT_ID, CHAIN_ENABLE, CHAIN_ID
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

142 WP channel type IA
PRELIMINARY DATA
D
R

A
F

T

Supported fields in DM.WP_IAx_PRE:

ASID_ENABLE

Supported fields in WPC.WP_IAx_ACTION:

ACTION_EXCEPTION: Standard event handling sequence is followed.

If SR.BL == ‘0’, the RESVEC/DBRVEC offset is 0x100 (to denote a synchronous debug
event of type DEBUGIA). Otherwise, if SR.BL == ‘1’, the RESVEC/DBRVEC offset is 0x0
(to denote a PANIC event).

EXPEVT is set to 0x900 to denote a DEBUGIA exception.

In addition, the effective instruction address is placed into the SPC register.

ACTION_ECOUNT supported.

ACTION_CHAIN_ALTER/CHAIN_ID supported.

ACTION_PCOUNT/ACTION_RESET_ALL_PCOUNT/PCOUNT_ID supported

Supported fields in DM._WP_IAx_ACTION:

ACTION_TRACE/TRACE_TYPE/ENABLE_TRACE_TIMESTAMP: See Table 41: IA watchpoint
trace message on page 125

ACTION_TRIG_OUT: Supported

ACTION_CHAIN_ALTER/CHAIN_ID Supported

FREEZE_EN Not supported
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type OA 143
PRELIMINARY DATA
D
R

A
F

T

1.12 WP channel type OA
Operand watchpoints trigger whenever an instruction performs a memory write
within the defined range.

The trigger occurs prior to the instruction executing (that is, prior to the write
occurring).

If SR.WATCH == 0, OA channels will not trigger.

Two registers are in the WPC are used to define a start and end address, two
registers in the DM are used to define a data value and data mask.

1.12.1 Match registers

WPC.WP_OAx_MATCH_START where x = channel ID

Field Bits Size Volatile? Synopsis Type

— [4:0] 5 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

ADDRESS [31:5] 27 — Start address RW

Operation Defines the start address for the operand address range.

See Section 1.12.2: on page 145.

When read Returns current value

When written Updates value

HARD reset Undefined

Table 52: WPC.WP_OAx_MATCH_START register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

144 WP channel type OA
PRELIMINARY DATA
D
R

A
F

T

— [63:32] 32 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

WPC.WP_OAx_MATCH_END where x = channel ID

Field Bits Size Volatile? Synopsis Type

— [4:0] 5 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

ADDRESS [31:5] 27 — End address RW

Operation Defines the end address for the operand address range.
See Section 1.12.2: on page 145.

When read Returns current value

When written Updates value

HARD reset Undefined

Table 53: WPC.WP_OAx_MATCH_END register definition

WPC.WP_OAx_MATCH_START where x = channel ID

Field Bits Size Volatile? Synopsis Type

Table 52: WPC.WP_OAx_MATCH_START register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type OA 145
PRELIMINARY DATA
D
R

A
F

T
1.12.2 Address comparison

The address comparison is performed using the effective address supplied to the
instruction (known as Aeffective). When the MMU is enabled this is an effective
address. When the MMU is disabled, this is a physical address.

The comparisons are unsigned. If the start/end address range straddles the
unimplemented part of the effective address space (that is, it contains addresses in
the range [2(neff - 1), 2(64 - neff - 1)) where neff is the number of implemented effective
address bits, the behavior is architecturally undefined. If this type of ‘stradding’
behavior is required, two OA channels must be programmed, each one limited to
addresses in a single region of the implemented address space. OA channels will
never match for store addresses that lie in the unimplemented part of the effective
address space. WADDERR exceptions will always be raised for such cases, never
DEBUGOA exceptions.

The following instructions can cause OA watchpoint triggers:

— [63:32] 32 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

WPC.WP_OAx_MATCH_END where x = channel ID

Field Bits Size Volatile? Synopsis Type

Table 53: WPC.WP_OAx_MATCH_END register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

146 WP channel type OA
PRELIMINARY DATA
D
R

A
F

T

SHmedia

• An ST, FST, SWAP, STLO, ALLOCO or OCBI instruction.

The instruction will access memory from Aeffective upwards (for example,
mem[Aeffective +0], mem[Aeffective + 1]).

Oaddr corresponds to Aeffective with the lower 5 bits masked out.

• A STHI instruction.

The instruction will access memory from Aeffective downwards (for example,
mem[Aeffective - 0], mem[Aeffective - 1]).

Oaddr corresponds to Aeffective with the lower 5 bits masked out.

SHcompact

• All SHcompact store instructions which use the @ addressing mode.

The instruction will access memory from Aeffective upwards (for example,
mem[Aeffective +0], mem[Aeffective + 1]).

Oaddr corresponds to Aeffective with the lower 5 bits masked out.

The start and end address values (and thus the address comparator) are cache-block
size aligned. Thus they ignore the lower 5 bits of the address, and can only be set at
32-byte aligned addresses. This ensures that the OA comparator will not “miss”
accesses which would straddle narrower address settings, it also ensures that the
relevant caching instructions can correctly trigger the OA channels.

The comparison is inclusive of the match start address and the match end address:

Oaddr = (Aeffective & 0x1F)

addressMatch = ((Oaddr >= start) && (Oaddr <= end))
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type OA 147
PRELIMINARY DATA
D
R

A
F

T

1.12.3 Data match registers

The DM provides a single data value/data mask comparator (controlled by
additional DM.OA_MATCH_* registers) which is used to provide additional filtering of
OA channels.

The standard ACTION_EXCEPTION, ACTION_ECOUNT, ACTION_CHAIN_ALTER and
PRE_CHAIN_CLEAR (as specified by WPC.WP_OAX_ACTION) apply as normal and are
totally unaffected by the programming of these additional DM.OA_MATCH_*
registers.

The debug module’s data value/data mask comparator can be combined with one, or
several of the standard OA channels. This allows an additional set of actions to be
performed:

• Trace data can be made conditional on the data value written matching a
specified value/mask.

This is determined by the oa_match field of DM.WP_OAX_ACTION.

• A debug interrupt can be generated, which is triggered whenever a specified OA
channel triggers, and the DM data value/mask comparison also triggers.

This is determined by the action_interrupt field of DM.WP_OAX_ACTION but
differs from the standard DEBUGOA exception (specified by the action_exception
field of WPC.WP_OAX_ACTION) as follows:

- It generates an interrupt rather than an exception.

Interrupts are asynchronous to the instruction stream, and thus do not occur
precisely;

- As it is a DEBUGINT event, it uses offset 0x200 to RESVEC/DBRVEC;

- The TEA register does not contain the data address.

- The interrupt is distinguished from other causes of debug interrupt, by
DM.EXP_CAUSE.OA_MATCH_INTERRUPT == 1.
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

148 WP channel type OA
PRELIMINARY DATA
D
R

A
F

T

Note: The data value/mask comparison is performed on the data passed between the WPC
and DM. This is controlled by the WPC.ADDR_IN_TRACE register (see Section
1.5.1: WPC.ADDR_IN_TRACE register definition on page 65). When programmed to
transfer data address, and 32 bits of data, DM.OA_MATCH_DATAMASK should be setup
to only match on the lower 32 bits of data written by triggering instructions. When an
OA channel hit occurs on a misaligned store instruction (STHI.Q, STLO.Q, STHI.L or
STLO.L), the 64 bits of data available for comparison are the same as the data that
would appear in a trace message. The composition of the 64 bits of data is described
in Section : Handling of misaligned store instructions on page 134.

DM.OA_MATCH_DATAVAL:

DM.OA_MATCH_DATAVAL 0x100030

Field Bits Size Volatile? Synopsis Type

DATA [63:0] 64 — Data value RW

Operation Defines a data value which is combined with the data mask
specified in DM.OA_MATCH_DATAMASK.

When read Returns current value

When written Updates value

HARD reset Undefined

Table 54: DM.OA_MATCH_DATAVAL register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type OA 149
PRELIMINARY DATA
D
R

A
F

T

DM.OA_MATCH_DATAMASK:

1.12.4 SHcompact behavior

The SH-5 may implement SHcompact instruction execution by actual execution of a
sequence of SHmedia instructions. In such implementations, OA watchpoint
matches are made against this sequence of SHmedia instructions. At most a single
OA watchpoint will trigger for this sequence of instructions.

DM.OA_MATCH_DATAMASK 0x100038

Field Bits Size Volatile? Synopsis Type

MASK [63:0] 64 — Data mask RW

Operation Defines a data mask.

A value of ‘1’ in a bit position causes the data comparator to
ignore the corresponding bit of the DM.OA_MATCH_DATAVAL
field.

A value of ‘0’ in a bit position makes the comparison significant
when the bit is valid for the size of data written by the triggering
instruction.

When the bit value is ‘0’ and the data bit is not valid for the size
of data written by the triggering instruction, the data comparator
ignores the corresponding bit in the comparison.

When read Returns current value

When written Updates value

HARD reset Undefined

Table 55: DM.OA_MATCH_DATAMASK register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

150 WP channel type OA
PRELIMINARY DATA
D
R

A
F

T

1.12.5 Interrupt action

The OA data match function occurs at the output of the capture buffer. If the OA
watchpoint action includes generating an interrupt when a data match occurs, this
action may be affected by the stall/discard mode:

• In stall mode, the generation of the interrupt will be delayed when the capture
buffer fills and the processor stalls.

• In discard mode, watchpoint hits will be discarded when the capture buffer fills.
This means that an expected OA data match interrupt may not occur. The user
must use caution when enabling OA data match interrupts with discard mode
selected.

1.12.6 Event specifics

Source CPU

Reason: Execution of an instruction which will write data at an address which is
within an enabled OA watchpoint.

Undefined behavior

The operation of the OAx registers is undefined if a write is made to
WPC.WP_OAX_{PRE/MATCH/ACTION}_* or DM.WP_OAX_{PRE/MATCH/ACTION} when the
WP channel is enabled.

Supported fields in WPC.WP_OAx_PRE:

BASIC_ENABLE, ASID_ENABLE, ASID_VALUE, ISAMODE_ENABLE, SR_MD_ENABLE,
ECOUNT_ENABLE, ECOUNT_ID, CHAIN_ENABLE, CHAIN_ID

Supported fields in DM.WP_OAx_PRE:

ASID_ENABLE
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type OA 151
PRELIMINARY DATA
D
R

A
F

T

Fields in WPC.WP_OAx_ACTION:

ACTION_EXCEPTION: Standard event handling sequence is followed. If SR.BL == ‘0’,
the RESVEC/DBRVEC offset is 0x100 (to denote a synchronous debug event of type
DEBUGOA). Otherwise, if SR.BL == ‘1’, the RESVEC/DBRVEC offset is 0x0 (to denote a
PANIC event).

EXPEVT is set to 0x960 to denote a DEBUGOA exception.

In addition, the effective operand address, is put into the TEA register.

ACTION_ECOUNT Supported.

ACTION_CHAIN_ALTER/CHAIN_ID Supported.

ACTION_PCOUNT/ACTION_RESET_ALL_PCOUNT/PCOUNT_ID: Supported

Fields in DM.WP_OAx_ACTION:

OA_MATCH: Supported

ACTION_INTERRUPT: Standard event handling sequence is followed. The RESVEC/
DBRVEC offset is 0x200 (to denote a DEBUGINT event).

EXPEVT is not set as this is a debug interrupt, not an exception.

DM.EXP_CAUSE.OA_MATCH_INTERRUPT is set to ‘1’.

ACTION_TRACE/TRACE_TYPE/ENABLE_TRACE_TIMESTAMP:

The data included in trace messages is the same as that used for comparison with
the DM.OA_MATCH_* registers. See Section 1.12.3: Data match registers on page 147
and Table 42: OA watchpoint trace message on page 125.

The contents of OA trace messages is controlled by the WPC.ADDR_IN_TRACE register
(see Section 1.5.1: on page 65).

OA trace messages include a field (DATA_FIELD_SIZE) which indicates the size of the
data written (see Table 42: OA watchpoint trace message on page 125).

This field specifies the amount of data written as being either 0, 1, 2, 4 or 8 bytes. It
also determines which bits of the data are included in the data comparison, valid
bits are compared and invalid bits are ignored.

Normally the value encoded corresponds directly to the amount of data written by
the triggering instruction.
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

152 WP channel type IV
PRELIMINARY DATA
D
R

A
F

T

However, the STHI and STLO instructions are an exception, they can store 3, 5, 6 or
7 bytes. In these cases the value denoted by the DATA_FIELD_SIZE is the actual value
rounded up to either 4 or 8. The data included in the trace message for these
instructions is defined in Table 49: DATA_FIELD_SIZE and DATA_ADDRESS in IV/OA
traces for misaligned store instructions on page 135

OCBI and ALLOCO instructions store no data, thus they encode DATA_FIELD_SIZE to
show 0 bytes were written, and always trigger irrespective of how the data mask/
value comparator is setup.

ACTION_TRIG_OUT: Supported

ACTION_CHAIN_ALTER/CHAIN_ID: Supported

FREEZE_EN Not supported

1.13 WP channel type IV
Instruction value watchpoints trigger when an instruction is executed whose bit
pattern matches an instruction value and mask. The mask field allows isolation of
specific fields of the instruction (such as opcode, register fields).

The trigger occurs prior to the instruction executing.

If SR.WATCH == 0, IV channels will not trigger.

One register is used to define an instruction bit pattern and instruction mask.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type IV 153
PRELIMINARY DATA
D
R

A
F

T

1.13.1 Match registers

WPC.WP_IVx_MATCH_VALUE where x = channel ID

Field Bits Size Volatile? Synopsis Type

IVALUE [31:0] 32 — Instruction value RW

Operation Defines an instruction value

When read Returns current value

When written Updates value

HARD reset Undefined

— [63:32] 32 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

Table 56: WPC.WP_IVx_MATCH_VALUE register definition

WPC.WP_IVx_MATCH_MASK where x = channel ID

Field Bits Size Volatile? Synopsis Type

IMASK [31:0] 32 — Instruction mask RW

Operation Defines an instruction mask. A value of ‘1’ in a bit position
causes the watchpoint comparator to ignore the corresponding
bit of the IVALUE field, whereas a value of ‘0’ in a bit position
makes the comparison significant.

When read Returns current value

When written Updates value

HARD reset Undefined

Table 57: WPC.WP_IVx_MATCH_MASK register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

154 WP channel type IV
PRELIMINARY DATA
D
R

A
F

T
1.13.2 SHcompact mode

IV watchpoints are not supported for SHcompact instructions and will never trigger
when the SH-5 is operating in SHcompact mode.

1.13.3 Event specifics

Source CPU

Reason: Execution of an instruction whose bit pattern matches a defined bit
pattern, when used in conjunction with a mask value.

Undefined behavior

The operation of the IVx registers is undefined if a write is made to
WPC.WP_IVX_{PRE/MATCH/ACTION}_* or to DM.WP_IVX_{PRE/ACTION} when the WP
channel is enabled.

Supported fields in WPC.WP_IVx_PRE:

BASIC_ENABLE, ASID_ENABLE, ASID_VALUE, SR_MD_ENABLE, ECOUNT_ENABLE,
ECOUNT_ID, CHAIN_ENABLE, CHAIN_ID.

ISAMODE_ENABLE Not supported - IV watchpoints only match for SHmedia
instructions.

— [63:32] 32 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

WPC.WP_IVx_MATCH_MASK where x = channel ID

Field Bits Size Volatile? Synopsis Type

Table 57: WPC.WP_IVx_MATCH_MASK register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type IV 155
PRELIMINARY DATA
D
R

A
F

T

Supported fields in DM.WP_IVx_PRE:

ASID_ENABLE, CHAIN_ENABLE, CHAIN_ID

Fields in WPC.WP_IVx_ACTION:

ACTION_EXCEPTION: Standard event handling sequence is followed. If SR.BL == ‘0’,
the RESVEC/DBRVEC offset is 0x100 (to denote a synchronous debug event of type
DEBUGIV). Otherwise, if SR.BL == ‘1’, the RESVEC/DBRVEC offset is 0x0 (to denote a
PANIC event).

EXPEVT is set to 0x920 to denote a DEBUGIV exception.

In addition, the effective instruction address is placed into the TEA register.

ACTION_ECOUNT/ECOUNT_ID Supported.

ACTION_CHAIN_ALTER/CHAIN_ID Supported

ACTION_PCOUNT/ACTION_RESET_ALL_PCOUNT/PCOUNT_ID: Supported

Fields in DM.WP_IVx_ACTION:

ACTION_TRACE/TRACE_TYPE/ENABLE_TRACE_TIMESTAMP See Table 43: IV watchpoint
trace message on page 128.

The contents of IV trace messages is controlled by the WPC.ADDR_IN_TRACE register
(see Section 1.5.1: on page 65).

IV trace messages include a field (DATA_FIELD_SIZE) which indicates the size of the
data written (see Table 43: IV watchpoint trace message on page 128).

This field specifies the amount of data written as being either 0, 1, 2, 4 or 8 bytes.

Normally the value encoded corresponds directly to the amount of data written by
the triggering instruction.

However, the STHI and STLO instructions are an exception, they can store 3, 5, 6 or
7 bytes. In these cases the value denoted by the DATA_FIELD_SIZE is the actual value
rounded up to either 4 or 8. The data included in the trace message for these
instructions is defined in Table 49: DATA_FIELD_SIZE and DATA_ADDRESS in IV/OA
traces for misaligned store instructions on page 135

ALLOCO and OCBI instructions store no data, thus they encode DATA_FIELD_SIZE to
show 0 bytes were written.
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

156 WP channel type BR
PRELIMINARY DATA
D
R

A
F

T

Note: If the triggering instruction stores 8 bytes of data, and an OA watchpoint channel
also triggers for the same instruction, the contents of the DESTINATION_DATA field of
the trace message is as determined by the WPC.ADDR_IN_TRACE register (see
Section 1.5.1 on page 65).

 ACTION_TRIG_OUT: Supported.

ACTION_CHAIN_ALTER/CHAIN_ID: Supported

ACTION_TRIG_OUT: Supported

FREEZE_EN Not supported

1.14 WP channel type BR
Branch trace watchpoints trigger whenever an non-sequential control flow occurs.

For BR channels to trigger on unconditional or conditional branches or on event
launches, SR.WATCH must be 1 at the branch destination. For these types of branch,
it means SR.WATCH must be 1 before the branch, and that the BR channel can never
trigger on the launch of a debug event.

For BR channels to trigger on an RTE, SR.WATCH must be 1 both before and after the
RTE instruction. This conveniently avoids BR channel triggers on return from debug
event handlers, mirroring the lack of triggers on their launches.

The trigger occurs immediately after the completion of the branching instruction or
action.

One register is used to define the type of branch to trace.

1.14.1 Branch filter register

The branch channel register, DM.WP_BR_FILTER, contains all PRE, MATCH and ACTION
fields associated with branch tracing.

There are no PRE or ACTION registers associated with branch tracing. The ACTION is
implicitly to generate a trace message. Rather than having an ACTION register, the
ENABLE_TRACE_TIMESTAMP and ACTION_TRIG_OUT bits normally present in the
ACTION register are held in the DM.WP_BR_FILTER register.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type BR 157
PRELIMINARY DATA
D
R

A
F

T

DM.WP_BR_FILTER 0x100028

Field Bits Size Volatile? Synopsis Type

BASIC_ENABLE 0 1 — Enable RW

See basic_enable field of Table 14 on page 38.

ASID_ENABLE 1 1 — ASID match enable RW

Operation Enables or disables the inclusion of the current ASID value in
the debug event match, and determines whether an ASID field
appears in BR trace messages.

Value - Description

0: ASID match disabled. Thus the ASID value at the point of
trigger will be included in BR trace messages.

1: ASID match enabled. Will only trigger when the current ASID
matches the ASID_VALUE field, thus ASID value will not be
included in BR trace messages.

When read Returns current value

When written Updates value

HARD reset Undefined

CHAIN_ENABLE 2 1 — Chain-latch enable RW

See the CHAIN_ENABLE field of Table 14 on page 38.

CHAIN_ID [6:3] 4 — Chain-latch ID RW

See the CHAIN_ID field of Table 15 on page 42

ASID_VALUE [14:7] 8 — ASID match value RW

See the ASID_VALUE field of Table 14 on page 38

SR_MD_
ENABLE

[16:15] 2 — CPU user/privileged mode selection RW

See the SR_MD_ENABLE field of Table 14 on page 38

See Section 1.14.3: Precondition checking for events and RTE on page 161
regarding precondition checks for SR_MD_ENABLE when tracing events and RTE.

Table 58: DM.WP_BR_FILTER register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

158 WP channel type BR
PRELIMINARY DATA
D
R

A
F

T

CONDITIONAL 17 1 — Conditional branch trace enable RW

Operation Match for all conditional branches.

SHmedia instructions:

BEQ, BNE, BGT, BGE, BGTU, BGEU, BEQI, BNEI

SHcompact instructions:

BF, BF/S, BT, BT/S

When read Returns current value

When written Updates value

HARD reset Undefined

UNCONDITIONAL 18 1 — Unconditional branch trace enable RW

Operation Match for all unconditional branches.

SHmedia instructions:

BLINK

SHcompact instructions:

BRA, BRAF, BSR, BSRF , JMP, JSR, RTS

When read Returns current value

When written Updates value

HARD reset Undefined

DM.WP_BR_FILTER 0x100028

Field Bits Size Volatile? Synopsis Type

Table 58: DM.WP_BR_FILTER register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type BR 159
PRELIMINARY DATA
D
R

A
F

T

RTE 19 1 — RTE branch trace enable RW

Operation Match for RTE instruction executions (apart from those which
restore SR.WATCH to ‘1’, see Section 1.6.1: SR.WATCH bit on
page 66).

See Section 1.14.3: Precondition checking for events and RTE
on page 161 regarding precondition checks for SR_MD_ENABLE
when tracing RTE.

When read Returns current value

When written Updates value

HARD reset Undefined

EVENT 20 1 — Event branch trace enable RW

Operation Match for all interrupts and all exceptions.

See Section 1.14.3: Precondition checking for events and RTE
on page 161 regarding precondition checks for SR_MD_ENABLE
when tracing events.

When read Returns current value

When written Updates value

HARD reset Undefined

ENABLE_TRACE

_TIMESTAMP

21 1 — Enable trace timestamp RW

See the ENABLE_TRACE_TIMESTAMP field of Table 19 on page 54

ACTION_TRIG_
OUT

22 1 — Trigger out enable RW

See the ACTION_TRIG_OUT field of Table 19 on page 54

DM.WP_BR_FILTER 0x100028

Field Bits Size Volatile? Synopsis Type

Table 58: DM.WP_BR_FILTER register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

160 WP channel type BR
PRELIMINARY DATA
D
R

A
F

T
1.14.2 Event specifics

Source CPU

Reason: Execution of an instruction which performs a branch, or launch of a trap or
interrupt handler.

Undefined behavior

The operationsof the BR register are undefined as writing to other fields in
DM.WP_BRX_FILTER when the WP channel is enabled.

WPC.WP_BRX_PRE does not exist.

DM.WP_BRX_PRE does not exist.

WPC.WP_BRX_ACTION does not exist.

DM.WP.BRX_ACTION does not exist

Some ACTION bits are available in DM.WP_BRX_FILTER:

ACTION_TRACE/TRACE_TYPE Is implicit - there is no ACTION_TRACE bit in
DM.WP_BRX_FILTER. Thus background trace messages are always generated for the
BR channel when it triggers.

TRACE_TYPE/ENABLE_TRACE_TIMESTAMP See Table 44: BR watchpoint trace message
on page 129.

ACTION_TRIG_OUT: Supported.

— [63:23] 41 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

DM.WP_BR_FILTER 0x100028

Field Bits Size Volatile? Synopsis Type

Table 58: DM.WP_BR_FILTER register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type BR 161
PRELIMINARY DATA
D
R

A
F

T

1.14.3 Precondition checking for events and RTE

When an event is traced, the DM.WP_BRX_FILTER.SR_MD_ENABLE field is checked
against the CPU mode (SR.MD) of the interrupted or excepting instruction.

This allows the branch channel to filter between interrupts/exceptions occurring in
user mode and those occurring in privileged mode.

When an RTE is traced, the DM.WP_BRX_FILTER.SR_MD_ENABLE field is checked
against the CPU mode (SR.MD) of the first instruction executed after the RTE.

This allows the branch channel to filter between RTEs which return to user mode
and those which return to privileged mode.

An RTE instruction may return to a user-mode instruction which itself excepts and
causes a new exception handler to be launched. In this case, it is
implementation-defined whether the user-mode instruction is treated as having run
in user mode or privileged mode. The DM.WP_BRX_FILTER.SR_MD_MODE bits might
not work as expected in this situation.

1.14.4 Source and destination addresses in branch trace
messages

Table 59 defines the selection of source and destination addresses for branch trace
messages in a number of situations. The branch source address is always the
address of the most recent completed instruction occurring before the jump in PC
value. In particular, this means an excepting instruction’s PC can never be shown as
the source of a branch.

Scenario No.a
Source

Destin-
ation Branch

typeb

(See footnotec)

SHmedia branch at PC=X, target PC=Y X Y Branch

SHcompact non-delayed branch at PC=X, target PC=Y X Y Branch

SHcompact delayed branch at PC=X, target PC=Y X+2 Y Branch

RTE at PC=X, new PC=Y, Y does not except X Y RTE

Table 59: Selection of branch source and destination addresses
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

162 WP channel type BR
PRELIMINARY DATA
D
R

A
F

T

RTE at PC=X, new PC=Y, Y excepts, handler at PC=Z 1 X Y RTE

2 X Z Event

SHmedia PC=X excepts, handler at PC=Z (X is not the tar-
get of a taken branch)

X-4 Z Event

SHcompact PC=X excepts, handler at PC=Z (X is not the
target of a taken branch)

X-2 Z Event

SHmedia branch at PC=X, target at PC=Y excepts, handler
at PC=Z

1 X Y Branch

2 X Z Event

SHcompact delayed branch at PC=X, delay slot at
PC=X+2, target at PC=Y excepts, handler at PC=Z

1 X+2 Y Branch

2 X+2 Z Event

SHcompact branch (delayed or non-delayed) at PC=X
excepts, handler at PC=Z

X-2 Z Event

SHcompact delayed branch at PC=X, delay slot at X+2
excepts, handler at PC=Z

X Z Event

RTE at PC=X, new PC=Y is a SHcompact branch which
excepts, handler at PC=Z

1 X Y RTE

2 X Z Event

RTE at PC=X, new PC=Y is a SHcompact delayed branch
whose delay slot excepts, handler at PC=Z

1 X Y RTE

2 Y Z Event

a. Some scenarios generate more than one BR channel trigger. When this happens, the
triggers are numbered in the order they occur.

b. Where branch is shown in this column, it means either unconditional or conditional,
depending on the branch type.

c. For addresses of instructions in SHmedia mode, the value in the trace packet has the
least significant bit set. For addresses of instructions in SHcompact mode, the value in
the trace packet has the least significant bit clear.

Scenario No.a
Source

Destin-
ation Branch

typeb

(See footnotec)

Table 59: Selection of branch source and destination addresses
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type FPF 163
PRELIMINARY DATA
D
R

A
F

T

1.15 WP channel type FPF
Triggers whenever DM.FPF register is written. The trigger occurs immediately after
the execution of the memory write instruction which caused it.

The FPF channel is unaffected by SR.WATCH.

1.15.1 Match registers

There are no associated match or action registers. Certain fields in the generic
DM.WP_FPF_PRE register define the pre-conditions.

1.15.2 Event specifics

Source CPU

Reason: The DM.FPF register was written to.

Undefined behavior

Writing to the DM.WP_FPF_PRE register when the WP channel is enabled.

Note: As explained in Access to registers on page 17, instructions which write to WPC/DM
memory mapped registers should be followed by a SYNCO instruction. In the case of
writing to DM.FPF, omitting the SYNCO instruction may result in the FPF message
having an incorrect PC value.

Fields in DM.WP_FPF_PRE:

BASIC_ENABLE, ASID_ENABLE, ASID_VALUE, CHAIN_ENABLE, CHAIN_ID - Supported

ECOUNT_ENABLE, ECOUNT_ID Not supported

WPC.WP_FPFX_PRE does not exist

WPC.WP_FPFX_ACTION does not exist

DM.WP_FPFX_ACTION does not exist:

The action is implicit, a trigger trace message is generated (see Figure 45: FPF
Watchpoint Trace Message on page 130):
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

164 WP channel type PL
PRELIMINARY DATA
D
R

A
F

T

1.16 WP channel type PL
Bus analyzer watchpoints trigger whenever the bus analyzer(s) detect a matching
transaction on the internal interconnect.

These channels are defined in Chapter 2: SuperHyway bus analyzer on page 179.

1.17 WP channel type DM
Debug module watchpoints trigger whenever the DM’s FIFO is operating in “trace
hold” mode, and entries are written to the FIFO as configured by the DM.TRCTL
register (see Section 1.8.10: DM.TRCTL (trace/trigger register) on page 97).

The DM channel is unaffected by SR.WATCH.

1.17.1 Match registers

There is no associated match register.

1.17.2 Event specifics

The DM channel is not a normal WP channel - it does not use the generic
{WPC/DM}.WP_NX_PRE and {WPC/DM}.WP_NX_ACTION register formats as it only has
one precondition, and only one action. This precondition and action are implicit, so
there are no PRE or ACTION registers for the DM channel.

Source: Debug module

Reason: FIFO activity

The FF_THRESH field of DM.TRCTL (see Section 1.8.10: DM.TRCTL (trace/trigger
register) on page 97) is used to specify that the DM will raise a debug interrupt when
the FIFO has either:

• had an entry written to it,

• reached its high-water mark.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type WPC_PERF 165
PRELIMINARY DATA
D
R

A
F

T

Supported actions (determined by ff_thresh field of
DM.TRCTL)

INTERRUPT: Standard Event Handling sequence is followed. The RESVEC/DBRVEC
offset is 0x200 (to denote a DEBUGINT event).

DM.EXP_CAUSE.DM_FIFO_INTERRUPT is set to 1.

The trace information present in the FIFO can be emptied one entry at a time, this
is described in Section 1.8.13: DM.FIFO_0/DM.FIFO_1/DM.FIFO_2 (FIFO port
register) on page 112.

1.18 WP channel type WPC_PERF
SH-5 has four performance counters, two located within the WPC and two located in
the DM.

A WPC performance counter is incremented when either of the following types of
events occur:

• A WPC watchpoint hit occurs and the watchpoint has its action_pcount field == 1
and pcount_id field selecting a specific performance counter.

• Whenever a CPU core event specified by fields of the
WPC.WP_PERFX_MATCH_TYPE occurs and the conditions specified by fields of the
WPC.WP_PERFX_PRE exist.

One register per WPC_PERF channel is used to define the match conditions. The WPC
performance counter channels do not have a WPC.WP_PERFX_ACTION register, they
have an implicit action to increment the corresponding WPC performance counter.
For example, the WPC.WP_PERF0 channel increments the WPC.PCOUNT_VALUE_0
counter.

The specified match conditions are detected at different blocks of the CPU, and at
different stages of the CPU pipeline. Thus the exact timing relationship between
different match conditions is implementation dependant.

On each cycle, the match conditions are “OR”ed together and processed, yielding
either 0 or 1 increments per cycle. The descriptions of the individual filters (in
Table 60) specify whether this results in either 0..1 or 0..N increments per
instruction.
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

166 WP channel type WPC_PERF
PRELIMINARY DATA
D
R

A
F

T

The counter is incremented a bounded number of cycles after the watchpoint hit or
the CPU state occurred. The bounded time is fixed, and thus allows timing
relationships between CPU states to be observed.

If SR.WATCH is ‘0’, WPC_PERF channels will not trigger.

1.18.1 Match registers

WPC.WP_WPC_PERFx_MATCH_TYPE where x = channel ID

Field Bits Size Volatile? Synopsis Type

ITLB_MISS 0 1 — Instruction TLB miss RW

Operation Instruction fetch access failed (due to a lack of an instruction
TLB translation).

Results in either 0 or 1 increments per instruction.

When read Returns current value

When written Updates value

HARD reset Undefined

ICACHE_ACCESS 1 1 — Instruction Cache Access RW

Operation An instruction fetch successfully hit the Instruction cache.

This includes preload accesses (due to PT instructions), and
cache coherency (ICBI) accesses, but excludes prefetches
(PREFI).

Results in either 0 or 1 increments per instruction.

When read Returns current value

When written Updates value

HARD reset Undefined

Table 60: WPC.WP_WPC_PERFx_MATCH_TYPE register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type WPC_PERF 167
PRELIMINARY DATA
D
R

A
F

T

ICACHE_MISS 2 1 — Instruction Cache Miss RW

Operation An instruction fetch missed the Instruction cache.

This excludes prefetches (PREFI).

Results in either 0 or 1 increments per instruction.

When read Returns current value

When written Updates value

HARD reset Undefined

OTLB_MISS 3 1 — OTLB miss RW

Operation Operand access failed (due to a lack of an data TLB
translation).

Results in either 0 or 1 increments per instruction.

When read Returns current value

When written Updates value

HARD reset Undefined

OCACHE_ACCESS 4 1 — Operand Cache Access RW

Operation See Section 1.18.2: Operand cache access types on
page 176.

Results in either 0 or 1 increments per instruction.

When read Returns current value

When written Updates value

HARD reset Undefined

WPC.WP_WPC_PERFx_MATCH_TYPE where x = channel ID

Field Bits Size Volatile? Synopsis Type

Table 60: WPC.WP_WPC_PERFx_MATCH_TYPE register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

168 WP channel type WPC_PERF
PRELIMINARY DATA
D
R

A
F

T

OCACHE_MISS 5 1 — Operand Cache Miss RW

Operation See Section 1.18.2: Operand cache access types on
page 176.

Results in either 0 or 1 increments per instruction.

When read Returns current value

When written Updates value

HARD reset Undefined

OCACHE_ALIAS 6 1 — Operand Cache Alias RW

Operation See Section 1.18.2: Operand cache access types on
page 176.

Results in either 0 or 1 increments per instruction.

When read Returns current value

When written Updates value

HARD reset Undefined

NONCACHE_
ACCESS

7 1 — Non-cache Access RW

Operation See Section 1.18.2: Operand cache access types on
page 176.

Results in either 0 or 1 increments per instruction.

When read Returns current value

When written Updates value

HARD reset Undefined

WPC.WP_WPC_PERFx_MATCH_TYPE where x = channel ID

Field Bits Size Volatile? Synopsis Type

Table 60: WPC.WP_WPC_PERFx_MATCH_TYPE register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type WPC_PERF 169
PRELIMINARY DATA
D
R

A
F

T

COND_TAKEN_
PREDICTED

8 1 — Predicted conditional branch taken RW

Operation SHmedia: Conditional branch predicted taken (L-bit of
opcode set) and actually taken. Instructions:

BEQ, BNE, BGT, BGE, BGTU, BGEU, BEQI, BNEI

SHcompact: Conditional branch taken. Instructions:

BF, BF/S, BT, BT/S

Results in either 0 or 1 increments per instruction.

When read Returns current value

When written Updates value

HARD reset Undefined

COND_TAKEN_
MISPREDICTED

9 1 — Mispredicted conditional branch taken RW

Operation SHmedia: Conditional branch predicted not taken (L-bit of
opcode clear) but actually taken. Instructions:

BEQ, BNE, BGT, BGE, BGTU, BGEU, BEQI, BNEI

SHcompact branch instructions do not use prediction and so
are not counted by this featured.

Results in either 0 or 1 increments per instruction.

When read Returns current value

When written Updates value

HARD reset Undefined

WPC.WP_WPC_PERFx_MATCH_TYPE where x = channel ID

Field Bits Size Volatile? Synopsis Type

Table 60: WPC.WP_WPC_PERFx_MATCH_TYPE register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

170 WP channel type WPC_PERF
PRELIMINARY DATA
D
R

A
F

T

COND_NOT_TAKEN

_PREDICTED

10 1 — Predicted conditional branch not
taken

RW

Operation SHmedia: Conditional branch predicted not taken (L-bit of
opcode clear) and actually not taken. Instructions:

BEQ, BNE, BGT, BGE, BGTU, BGEU, BEQI, BNEI

SHcompact: Conditional branch not taken. Instructions:

BF, BF/S, BT, BT/S

Results in either 0 or 1 increments per instruction.

When read Returns current value

When written Updates value

HARD reset Undefined

COND_NOT_TAKEN

_MISPREDICTED

11 1 — Mispredicted conditional branch not
taken

RW

Operation SHmedia: Conditional branch predicted not taken (L-bit of
opcode clear), but actually taken. Instructions:

BEQ, BNE, BGT, BGE, BGTU, BGEU, BEQI, BNEI

SHcompact branch instructions do not use prediction and so
are not counted by this featured

Results in either 0 or 1 increments per instruction.

When read Returns current value

When written Updates value

HARD reset Undefined

WPC.WP_WPC_PERFx_MATCH_TYPE where x = channel ID

Field Bits Size Volatile? Synopsis Type

Table 60: WPC.WP_WPC_PERFx_MATCH_TYPE register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type WPC_PERF 171
PRELIMINARY DATA
D
R

A
F

T

EXCEPTION_TAKEN 12 1 — Exception taken RW

Operation A exception has been taken.

This covers all CPU generated exceptions.

Results in either 0 or 1 increments per instruction.

When read Returns current value

When written Updates value

HARD reset Undefined

INTERRUPT_TAKEN 13 1 — Interrupt taken RW

Operation An interrupt has been taken.

This covers all interrupts (and resets) caused from outside of
the CPU.

Results in either 0 or 1 increments per instruction.

When read Returns current value

When written Updates value

HARD reset Undefined

SHMEDIA_
SHCOMPACT_
SWITCH

14 1 — Instruction mode switched RW

Operation SHmedia to SHcompact, or SHcompact to SHmedia
instruction mode switched.

Results in either 0 or 1 increments per instruction.

When read Returns current value

When written Updates value

HARD reset Undefined

WPC.WP_WPC_PERFx_MATCH_TYPE where x = channel ID

Field Bits Size Volatile? Synopsis Type

Table 60: WPC.WP_WPC_PERFx_MATCH_TYPE register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

172 WP channel type WPC_PERF
PRELIMINARY DATA
D
R

A
F

T

USER_
PRIVILEGED_
SWITCH

15 1 — User/privileged mode switched RW

Operation User mode to privileged mode, or privileged mode to user
mode switched.

Results in either 0 or 1 increments per instruction.

When read Returns current value

When written Updates value

HARD reset Undefined

SHMEDIA_RETIRED 16 1 — SHmedia instruction retired RW

Operation A SHmedia instruction was retired without raising an
exception (that is, it completed normally).

This only applies to pure SHmedia instructions, it does not
include SHmedia instructions executed as part of
SHcompact.

Results in either 0 or 1 increments per instruction.

When read Returns current value

When written Updates value

HARD reset Undefined

SHCOMPACT_
RETIRED

17 1 — SHcompact instruction retired RW

Operation A SHcompact instruction was retired without raising an
exception (that is, it completed normally).

Results in either 0 or 1 increments per instruction.

When read Returns current value

When written Updates value

HARD reset Undefined

WPC.WP_WPC_PERFx_MATCH_TYPE where x = channel ID

Field Bits Size Volatile? Synopsis Type

Table 60: WPC.WP_WPC_PERFx_MATCH_TYPE register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type WPC_PERF 173
PRELIMINARY DATA
D
R

A
F

T

PIPE_STALL 18 1 — Pipeline stall RW

Operation A pipeline stall occurred, due to a register or resource hazard
in the CPU or FPU.

Results in either 0 or N increments per instruction
(depending on number of stall cycles for that instruction’s
execution).

When read Returns current value

When written Updates value

HARD reset Undefined

TARGET_ADDRESS

_STALL

19 1 — Target address stall RW

Operation A branch caused a pipeline stall (or NOP execution) due to
its target address not being available (that is, the prepare
target instruction (PTA, PTB, PTABS or PTREL) and branch
instruction were too close together).

Results in either 0 or N increments per instruction
(depending on number of stall cycles for that instruction’s
execution).

When read Returns current value

When written Updates value

HARD reset Undefined

WPC.WP_WPC_PERFx_MATCH_TYPE where x = channel ID

Field Bits Size Volatile? Synopsis Type

Table 60: WPC.WP_WPC_PERFx_MATCH_TYPE register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

174 WP channel type WPC_PERF
PRELIMINARY DATA
D
R

A
F

T

INSTR_BRANCH_
STALL

20 1 — Instruction branch stall RW

Operation A branch caused a pipeline stall (or NOP execution) as the
instruction following the branch was not available in the
instruction queue), however the branch target address was
available (so this match type is distinct from
TARGET_ADDRESS_STALL).

Results in either 0 or N increments per instruction
(depending on number of stall cycles for that instruction’s
execution).

When read Returns current value

When written Updates value

HARD reset Undefined

STALL_CYCLE 21 1 — Stall cycle RW

Operation A stall cycle occurred - this covers all cases of stall.

Results in either 0 or N increments per instruction
(depending on number of stall cycles for that instruction’s
execution).

When read Returns current value

When written Updates value

HARD reset Undefined

CPU_CYCLE 22 1 — CPU Clock Cycle RW

Operation A CPU clock cycle occurred. When this field is set to ‘1’, the
match will occur on every CPU clock cycle regardless of all
other performance monitoring causes. This can be used to
count CPU clock cycles.

When read Returns current value

When written Updates value

HARD reset Undefined

WPC.WP_WPC_PERFx_MATCH_TYPE where x = channel ID

Field Bits Size Volatile? Synopsis Type

Table 60: WPC.WP_WPC_PERFx_MATCH_TYPE register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type WPC_PERF 175
PRELIMINARY DATA
D
R

A
F

T

— [63:23] 41 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

WPC.WP_WPC_PERFx_MATCH_TYPE where x = channel ID

Field Bits Size Volatile? Synopsis Type

Table 60: WPC.WP_WPC_PERFx_MATCH_TYPE register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

176 WP channel type WPC_PERF
PRELIMINARY DATA
D
R

A
F

T

1.18.2 Operand cache access types

Table 60 defines four modes of operand cache access (OCACHE_ACCESS,
OCACHE_MISS, OCACHE_ALIAS, NONCACHE_ACCESS) that can be seperately counted.
The selection of which mode applies to each case is shown in Table 61. The terms
ACCESS, ALIAS and MISS mean OCACHE_ACCESS, OCACHE_ALIAS and OCACHE_MISS
respectively. The “—” symbol indicates that no performance counter trigger occurs in
that situation. For example, the GETCFG and PUTCFG instructions never increment
performance counters.

SR.MMU=1 SR.MMU=0

Effective address in operand cache Yes No No No N/A

Physical address in operand cache Yes Yes No No N/A

Cacheable translation Yes Yes Yes No N/A

Mode Instruction

SHmedia LD, ST, FLD, FST ACCESS ALIAS MISS NONCACHE_ACCESS

LD .., R63 (prefetch) ACCESS ALIAS MISS NONCACHE_ACCESS

ALLOCO ACCESS ALIAS MISS NONCACHE_ACCESS

SWAP.Q ALIAS ALIAS MISS NONCACHE_ACCESS

OCBI, OCBP, OCBWB ALIAS ALIAS MISS NONCACHE_ACCESS

GETCFG/PUTCFG — — — —

SHcompact All instructions using the
@-addressing mode with
the exclusion of JMP, JSR,
MOVA, OCBI, OCBP,
OCBWB

ACCESS ALIAS MISS NONCACHE_ACCESS

OCBI, OCBP, OCBWB ALIAS ALIAS MISS NONCACHE_ACCESS

Table 61: Operand cache access modes for performance counting
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type WPC_PERF 177
PRELIMINARY DATA
D
R

A
F

T

1.18.3 Event specifics

Source CPU

Reason: CPU state change detected

Undefined behavior

The following operations of the WPC.WP_WPC_PERFX* registers are undefined:

• Writing to WPC.WP_WPC_PERFX_PRE, or to WPC.WP_WPC_PERFX_MATCH when the
WP channel is enabled.

Fields in WPC.WP_WPC_PERFx_PRE:

BASIC_ENABLE, ASID_ENABLE, ASID_VALUE, ISAMODE_ENABLE, SR_MD_ENABLE,
CHAIN_ENABLE, CHAIN_ID - Supported

ECOUNT_ENABLE, ECOUNT_ID Not supported

WPC.WP_WPC_PERFX_ACTION Does not exist
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

178 WP channel type WPC_PERF
PRELIMINARY DATA
D
R

A
F

T

SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

05-SA-10003 v1.0 SH-5 S

PRELIMINARY DATA
2
SuperHyway
bus analyzer
D
R

A
F

T
2.1 Introduction

As part of SH-5’s on-chip debug capability, the SuperHyway router contains a bus
analyzer, which provides two SuperHyway watchpoints (WP channel PL).

These provide the same set of pre and action conditions as the other watchpoint
channels (Section 1.6: WP channel matching on page 66 and Section 1.5: Debug
event actions on page 48). In addition, an extra action feature is available to stop a
specific bus initiator from making any further bus requests, that is, to freeze a bus
master.

The bus analyzer includes a bus capture buffer for capturing part of a bus request or
bus response (called a token) whenever a bus watchpoint hit occurs. A token
includes the transaction header plus one 64-bit data word, regardless of the size of
the bus transaction. These captured tokens can be sent to the debug module and
used to create trace messages which are written to the debug module FIFO, from
which they can be sent to a specified destination (see Section 1.8: Debug module on
page 85). The capture buffer is memory-mapped and when trace mode is not
enabled, debug software can directly read a token from the capture buffer.

It is also possible to use the bus analyzers, in conjunction with performance
counters (Section 1.1.7: Performance counters on page 14) to capture selected
performance parameters of the SuperHyway bus to allow system software to “tune”
the parameters of individual application-specific modules or bus arbiters.
ystem Architecture, Volume 3: Debug

180 SuperHyway watchpoint comparators
PRELIMINARY DATA
D
R

A
F

T

The SuperHyway bus may be implemented with multiple bus segments to improve
performance by permitting transactions to occur on multiple segments concurrently.
In such a multi-segment implementation, the SuperHyway bus analyzer will be
physically implemented with multiple watchpoint comparators, one set on each
segment. Functionally however, watchpoint sets on multiple bus segments are
treated as a single set, controlled by the same registers.

SuperHyway bus analyzer watchpoints include the standard WP channel features,
and so can make use of chain-latches, event counters, performance counters:

• Chain-latches can be used to combine arbitrary WP channels in sequence
(including combining CPU and bus analyzer watchpoints).

• Event counters can be used to provide “trigger after N hits” functionality.

Accesses from the CPU to the WPC memory-mapped registers (resulting from loads
and stores in the instruction stream) may be routed internally to the CPU,
bypassing the SuperHyway. Whether this happens is implementation-dependent.
Hence, whether such loads and stores can be detected by the bus analyzer channels
is implementation-dependent.

Accesses to the WPC registers from other SuperHyway modules (for example, the
SHdebug link via the debug module) are visible to the bus analyzer channels.

2.2 SuperHyway watchpoint comparators
Control registers associated with each SuperHyway watchpoint allow the following
SuperHyway specific parameters to be defined:

• Bus transaction type: Opcode value and opcode mask fields allow any type of
request or response to be matched.

• Source device ID (specific ID or any source).

• Destination device ID (top 8-bits of address, maskable).

• Destination address comparison range, for requests only.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

SuperHyway watchpoint comparators 181
PRELIMINARY DATA
D
R

A
F

T

Transaction type

The SuperHyway bus may be implemented with multiple segments and separate
request and response segments. At a functional level, the SuperHyway bus analyzer
has no knowledge of multiple bus segments or separate request and response
segments. The debug user sets a single opcode value and an associated opcode mask
in DM.WP_PLX_CTRL and this can be a request opcode or a response opcode depending
on the type of transaction the debug user wants to monitor. This single opcode is
used by the comparators which exist on each request segment and response
segment.

Transaction source

Each SuperHyway request and response carries an 8-bit field that identifies the
originator of the bus request. Each watchpoint has two fields associated with the
source device, one field for the source device value and a second field for a mask. The
mask field allows requests and responses from different devices to be matched.

Destination device

The destination device field in the SuperHyway request and response consists of the
top bits of the address. In the case of SH-5, the destination field is the top 8-bits of
the 32-bit address. Each watchpoint has two fields associated with the destination
device, one field for the destination device value and a second field for a mask. The
mask field allows requests and responses to different devices to be matched.

It is an implementation specific property as to whether the destination comparator
is implemented.

Address

The address field in the request header defines an address in the specified
destination device. In the case of SH-5, this address field is 24-bits wide with the
least-significant 3-bits forced to zero, that is, addresses are always 8-byte aligned.
Watchpoint registers define an address range by means of start address and end
address parameters. The address comparison range can be as small as one bus word
(8-bytes).

SuperHyway responses do not have an address field, so that the watchpoint address
range comparison is ignored for responses.
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

182 Matching on devices with wide address ranges
PRELIMINARY DATA
D
R

A
F

T

2.3 Matching on devices with wide address
ranges
Some SuperHyway devices (for example, the external memory interface (EMI)) have
address ranges that occupy more than one value in the most significant byte. When
programming a bus analyzer channel to match accesses to such a device, the
programming must be as though multiple devices are being matched, one per value
of the highest byte. The following paragraphs give some examples.

• If the desired address range is [0x81001000, 0x81002000], this can be
programmed by setting the address start and end registers to 0x1000 and
0x2000 respectively, and the source/destination device value and mask to match
precisely the value 0x81.

• If the desired address range is [0x80000000, 0x81FFFFF8], this can be
programmed by setting the address start and end registers to 0x0 and
0xFFFFF8 respectively, and the source/destination device value and mask to
match the values 0x80 and 0x81 (that is, with a wildcard LSB).

• If the desired address range consists of the 2 subranges [0x80000000,
0x807FFFF8] and [0x810000000, 0x817FFFF8], this can be programmed by
setting the address start and end registers to 0x0 and 0x7FFFF8 respectively,
and the source/destination device value and mask to match the values 0x80 and
0x81 (that is, with a wildcard LSB).

• It is not possible to match a range like [0x80800000, 0x817FFFF8]. This would
require the end address to be set less than the start address, so no address would
match for both address comparators.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Address comparison 183
PRELIMINARY DATA
D
R

A
F

T

2.4 Address comparison
For multiple data phase transactions (Load16/Load32 and Store16/Store32) the
address on the SuperHyway request bus is the address of the first data word of the
transaction. The burst address ordering is linear. Burst requests issued by the
MMU/Cache are always critical-word-first and bits [4:3] of the address determine
the word order of Store requests and of Load responses as shown in Table 62 and
Table 63.

Since the request contains a single address corresponding to the first word of the
transaction, the SuperHyway bus analyzer computes the implied address of each
subsequent data phase.

Address Bits [3,4] Word Order

00 0, 1, 2, 3

01 1, 2, 3, 0

10 2, 3, 0, 1

11 3, 0, 1, 2

Table 62: SuperHyway word order for Store32, Load32

Address Bit [3] Word Order

0 0, 1

1 1, 0

Table 63: SuperHyway word order for Store16, Load16
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

184 Bus watchpoint hit action
PRELIMINARY DATA
D
R

A
F

T

2.5 Bus watchpoint hit action
When a bus watchpoint is enabled and a hit occurs, the bus analyzer signals the
debug module that the hit has occurred and also optionally captures the bus
transaction in a bus capture buffer. Action conditions for the PL watchpoint
channels are the same as for other watchpoint channels, but additionally include the
inhibition of the originating bus module from generating further bus transactions,
that is, freeze the source.

Because of the pipelined nature of bus arbitration, it is not possible to immediately
“freeze” a bus master following a bus analyzer watchpoint hit.

This ability to “freeze” the originating bus master applies only if the
DM.WP_PLX_CTRL.SRC field identifies the bus master uniquely.

Debug interrupt actions

When bus analyzer debug interrupt is not enabled, but trace is enabled and a
watchpoint hit occurs, the contents of the bus capture buffer are immediately sent to
the debug module so that a trace message can be generated. The capture buffer is
then available to capture another watchpoint hit token.

However, when a bus analyzer has debug interrupt enabled and a watchpoint hit
occurs, the contents of the bus capture buffer are not sent to the debug module.
Instead, a 1-bit register, DM.WP_PLS_EXCTRL.CBUF_FREEZE, is set by the watchpoint
hit and stops the capture buffer from being overwritten by another watchpoint hit.
The debug event handler is able to directly read the bus capture buffer to get details
of the bus transaction which caused the watchpoint hit and can then re-enable the
capture buffer by clearing DM.WP_PLS_EXCTRL.CBUF_FREEZE.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Freezing bus masters 185
PRELIMINARY DATA
D
R

A
F

T

2.6 Freezing bus masters
A watchpoint hit can cause the SuperHyway arbiter to suspend bus transactions
from any SuperHyway bus master by controlling the relevant arbiter signal.

When a bus analyzer watchpoint hit occurs, one of the possible actions is to stop the
requesting bus master (except the MMU/cache) from initiating further bus
transactions.

This “freeze” action is commonly required when the watchpoint hit causes a debug
interrupt. In addition to this automatic “freeze” action, control register fields exist
to allow software to “freeze” bus masters (except the MMU/Cache) at any time.
Debug software can then “unfreeze” the bus master module when appropriate by
writing to the DM.PL_FRZ register.

Because of the pipelined nature of bus arbitration, it is not possible to immediately
“freeze” a bus master following a bus analyzer watchpoint.

The DM.PL_FRZ register has individual 1-bit fields for each SuperHyway bus master
capable of being frozen. In the initial SH-5 evaluation device implementation, the
DM.PL_FRZ register has only the least significant 16-bits implemented, giving the
capability of freezing up to 16 SuperHyway bus masters. The outputs of this register
go to the SuperHyway router as individual signals and the freeze action involves the
control of the request signal from a specific physical SuperHyway bus master within
the arbiter function of the SuperHyway router. The relationship between
SuperHyway source ID and physical SuperHyway module may change in different
chips which use the SH-5 core and is specified in the SuperHyway Router
Micro-architecture document.

When the DM.WP_PLX_CTRL.SRC field defines a specific bus master, it is the
responsibility of debug software to set up the value in the
DM.WP_PLX_ACTION.PL_MODULE field to match the chip’s implementation of source
ID and physical module.

Figure 7: DM to PL arbiter interconnect

Debug Module

DM.PL_FRZ[0,15]

SuperHyway Arbiter

16
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

186 Unfreezing bus masters
PRELIMINARY DATA
D
R

A
F

T

As shown in Figure 7, the least-significant 16-bits of DM.PL_FRZ connect directly to
the SuperHyway arbiter and the individual signals are used by the arbiter to freeze/
unfreeze a given master.

2.7 Unfreezing bus masters
The DM.PL_FRZ register allows software to determine which bus masters are
currently frozen and to unfreeze one or more bus masters. This register contains 16
identical single bit fields which are associated with up to 16 SuperHyway bus
master modules capable of being frozen. Modules not capable of being frozen and
which do not have a corresponding FREEZE_X field include the CPU and the DM. The
identity of the SuperHyway physical module associated with each FREEZE_X field is
chip-specific (see Section 4.1.12: Bus analyzer module/SuperHyway mapping on
page 251).

DM.PL_FRZ 0x100080

Field Bits Size Volatile? Synopsis Type

FREEZE_X [15:0] 16 � Bus master freeze control RW

Operation A value of 1 in this field inhibits the bus request signal for the
corresponding SuperHyway bus master, stopping the bus
master from initiating any further bus transactions.

The freeze state can be set either by a watchpoint hit action or
by software writing to this field.

When read Returns 0 when the bus master is able to operate normally and
1 when it is frozen.

When written Sets or clears the freeze state.

Value - Description

0: unfrozen

1: frozen

HARD reset 0

Table 64: DM.PL_FRZ register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type PL 187
PRELIMINARY DATA
D
R

A
F

T
2.8 WP channel type PL

Separate sets of pre-condition, match, and action-condition registers exist for each of
the SuperHyway bus analyzer watchpoints. The fields of the pre-condition registers
are described in Table 16: DM.WP_PLx_PRE register definition on page 44. The
fields of the action-condition registers are described in
Table 20: DM.WP_PLx_ACTION register definition on page 60.

Match registers

Control registers for each watchpoint channel defines the conditions which enable
the watchpoint. Refer to the generic description in Section 1.6: WP channel
matching on page 66.

In addition to the generic pre registers, special match registers are also used. These
are defined in the tables that follow. These registers must only be modified with the
watchpoint channel disabled (DM.WP_PLX_PRE.BASIC_ENABLE==0). If they are
modified with the channel enabled, the behavior is architecturally undefined.

— [16,63] 48 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

DM.PL_FRZ 0x100080

Field Bits Size Volatile? Synopsis Type

Table 64: DM.PL_FRZ register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

188 WP channel type PL
PRELIMINARY DATA
D
R

A
F

T

DM.WP_PLx_MATCH_START where x = channel id

Field Bits Size Volatile? Synopsis Type

— [2:0] 3 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

ADDRESS [23:3] 21 — Start address RW

Operation Represents the base (lower) address of the watchpoint
comparator address range. Addresses are bus-word
aligned (bits [2:0] are forced to zero). For burst
transactions, the address on the SuperHyway bus is always
critical-word-first and bits [4:3] determine the word order as
shown in Table 62 on page 183.

When read Returns current value

When written Updates value

HARD reset Undefined

— [63:24] 40 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

Table 65: DM.WP_PLx_MATCH_START register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type PL 189
PRELIMINARY DATA
D
R

A
F

T

DM.WP_PLx_MATCH_END where x= channel id

Field Bits Size Volatile? Synopsis Type

— [2:0] 3 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

ADDRESS [23:3] 21 — End address RW

Operation Represents the limit (upper) address of the watchpoint
comparator address range. A watchpoint hit is possible if the
transaction address is >= DM.WP_PLX_MATCH_START and <=
DM.WP_PLX_MATCH_END.

Addresses are bus-word aligned (bits [2:0] are forced to zero).

When read Returns current value

When written Updates value

HARD reset Undefined

— [63:24] 40 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

Table 66: DM.WP_PLx_MATCH_END register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

190 WP channel type PL
PRELIMINARY DATA
D
R

A
F

T

DM.WP_PLx_CTRL where x= channel id

Field Bits Size Volatile? Synopsis Type

DEST_MSK [7:0] 8 — Watchpoint destination mask RW

Operation Defines which bits in the DEST_VAL field must match for the
watchpoint to trigger.

A value of ‘1’ in a bit position causes the watchpoint comparator to
ignore the corresponding bit of the DEST_VAL field, a value of ‘0’ in
a bit position causes the watchpoint comparator include the bit in
the comparison.

Thus, a value of 0xFF causes the destination field in each
transaction to be ignored and the watchpoint will match all
destinations.

It is an implementation specific property as to whether the
destination comparator is implemented.

When read Returns current value

When written Updates current value

HARD reset Undefined

— [15:8] 8 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

DEST_VAL [23:16] 8 — Watchpoint destination value RW

Operation Combined with the DEST_MSK field and is matched against the
destination field of each SuperHyway bus transaction.

It is an implementation specific property as to whether the
destination comparator is implemented.

When read Returns current value

When written Updates current value

HARD reset Undefined

Table 67: DM.WP_PLx_CTRL register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type PL 191
PRELIMINARY DATA
D
R

A
F

T

SRC_MSK [31:24] 8 — Watchpoint source mask RW

Operation Defines which bits in the SRC_VAL field must match for the
watchpoint to trigger.

A value of ‘1’ in a bit position causes the watchpoint comparator to
ignore the corresponding bit of the SRC_VAL field, a value of ‘0’ in a
bit position causes the watchpoint comparator include the bit in the
comparison.

Thus, a value of 0xFF causes the source field in each transaction
to be ignored and the watchpoint will match all sources.

When read Returns current value

When written Updates current value

HARD reset Undefined

SRC_VAL [39:32] 8 — Watchpoint transaction source RW

Operation Defines the identity of the transaction source.

A value of 0xFF means that the watchpoint ignores the source field
and will match the transaction generated by any source.

When read Returns current value

When written Updates current value

HARD reset Undefined

— [47:40] 8 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

DM.WP_PLx_CTRL where x= channel id

Field Bits Size Volatile? Synopsis Type

Table 67: DM.WP_PLx_CTRL register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

192 WP channel type PL
PRELIMINARY DATA
D
R

A
F

T

OPCODE_MSK [55:48] 8 — Transaction opcode mask RW

Operation Defines which bits in the OPCODE_VAL field must match for the
watchpoint to trigger.

A value of ‘1’ in a bit position causes the watchpoint comparator to
ignore the corresponding bit of the OPCODE_VAL field, a value of ‘0’
in a bit position causes the watchpoint comparator include the bit
in the comparison.

Thus, a value of 0xFF causes the opcode field in each bus request
and response to be ignored and the watchpoint will match all
opcodes.

When read Returns current value

When written Updates current value

HARD reset Undefined

OPCODE_VAL [63:56] 8 — Transaction opcode value RW

Operation Combined with the OPCODE_MSK field and is matched against the
8-bit opcode field of each SuperHyway bus request and response.

When read Returns current value

When written Updates current value

HARD reset Undefined

DM.WP_PLx_CTRL where x= channel id

Field Bits Size Volatile? Synopsis Type

Table 67: DM.WP_PLx_CTRL register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type PL 193
PRELIMINARY DATA
D
R

A
F

T

Debug interrupt action registers

In addition to the generic DM.WP_PLX_ACTION registers, the following registers
provide additional functions associated with bus analyzer debug interrupts.

DM.WP_PLx_EXCTRL where x = channel id

Field Bits Size Volatile? Synopsis Type

CBUF_FREEZE 0 1 � Capture buffer status/freeze control RW

Operation Controls the bus analyzer capture buffer when debug interrupt is
enabled. This register is set by hardware following a PL
watchpoint hit when debug interrupt is enabled. Debug event
handling software should read the contents of the capture buffer,
and then finally clear the CBUF_FREEZE register.

If PL debug interrupt is not enabled, the contents of this register
are undefined.

When read Returns 0 when the capture buffer is empty, 1 when it is frozen
following a watchpoint hit resulting in a debug interrupt.

When written Provides a write-1-clear function for clearing the capture buffer
frozen state.

Value - Description

0: no action.

1: clears the CBUF_FREEZE register if it had previously been set by
hardware. No action if debug interrupt is not enabled or if this
register is already clear.

HARD reset 0

— [63:1] 63 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

Table 68: DM.WP_PLx_EXCTRL register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

194 WP channel type PL
PRELIMINARY DATA
D
R

A
F

T

Note: If debug interrupt and trace actions are both enabled, the debug interrupt action
described above takes priority. Since the contents of the bus capture buffer are not
automatically sent to the debug module, no trace message is generated.

DM.WP_PLx_CBHDR

where x = channel id

Note that when the PLx channel is not enabled,
the contents of all fields of this register are

undefined.

Field Bits Size Volatile? Synopsis Type

PLINK_DEST [7:0] 8 � SuperHyway transaction header RO

Operation This register provides access to the header captured in the bus
analyzer capture buffer following a watchpoint hit when debug
interrupt is enabled. This field is the destination specified in the
bus request or response.

When read Returns current value

When written Ignored

HARD reset Undefined

PLINK_OPCODE [15:8] 8 � SuperHyway transaction header RO

Operation This field is the opcode specified in the bus request or response.

When read Returns current value

When written Ignored

HARD reset Undefined

PLINK_TID [23:16] 8 � SuperHyway transaction header RO

Operation This field is the transaction ID specified in the bus request or
response.

When read Returns current value

When written Ignored

HARD reset Undefined

Table 69: DM.WP_PLx_CBHDR register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type PL 195
PRELIMINARY DATA
D
R

A
F

T

PLINK_SOURCE [31:24] 8 � SuperHyway transaction header RO

Operation This field is the source specified in the bus request or response.

When read Returns current value

When written Ignored

HARD reset Undefined

PLINK_ADDRESS [55:32] 24 � SuperHyway transaction header RO

Operation This field is the address specified in the bus request.

When read Returns current value

When written Ignored

HARD reset Undefined

PLINK_MASK [63:56] 8 � SuperHyway transaction header RO

Operation This field is the mask specified in the bus request.

When read Returns current value

When written Ignored

HARD reset Undefined

DM.WP_PLx_CBHDR

where x = channel id

Note that when the PLx channel is not enabled,
the contents of all fields of this register are

undefined.

Field Bits Size Volatile? Synopsis Type

Table 69: DM.WP_PLx_CBHDR register definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

196 WP channel type PL
PRELIMINARY DATA
D
R

A
F

T
Event specifics

Source SuperHyway

Reason Occurrence of a SuperHyway bus transaction which matches
according to the PL channel’s comparator settings.

Undefined behavior

Writing to DM.WP_PLX_* (except DM.WP_PLX_PRE) when the WP channel is enabled is
undefined.

Supported fields in DM.WP_PLx_PRE:

BASIC_ENABLE, ECOUNT_ENABLE, ECOUNT_ID, CHAIN_ENABLE, CHAIN_ID

DM.WP_PLx_CBDATA

where x = channel id

Note that when the PLx channel is not enabled,
the contents of all fields of this register are

undefined.

Field Bits Size Volatile? Synopsis Type

PLINK_DATA [63:0] 64 � SuperHyway transaction data RO

Operation This register provides access to the data word captured in the
bus analyzer capture buffer following a watchpoint hit when
debug interrupt is enabled.

When read Returns current value

When written Ignored

HARD reset Undefined

Table 70: DM.WP_PLx_CBDATA register definition
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

WP channel type PL 197
PRELIMINARY DATA
D
R

A
F

T

Supported actions in DM.WP_PLx_ACTION:

INTERRUPT: Standard hardware debug handling sequence is followed.
DM.EXP_CAUSE.PL_INTERRUPT is set to denote the bus analyzer
channel. The RESVEC/DBRVEC offset is 0x200 (to denote an
asynchronous debug interrupt).

TRACE: See Table 46: PL Watchpoint trace message on page 131.

Note: In “trace buffer” mode (see Section 1.8.3: DM FIFO/trace buffer in target system
memory on page 88) the DM writes the trace messages to target system memory using
SHwy store8 transactions. These transactions are visible to the SHwy bus analyzers,
and thus if a bus analyzer is programmed such that it will match on these
transactions, an infinite number of bus analyzer hits (and thus an infinite number of
trace messages) will be generated.

TRIG_OUT: supported.

ECOUNT: supported.

PCOUNT: supported.

ALTER: supported.

FREEZE_EN: supported.
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

198 WP channel type PL
PRELIMINARY DATA
D
R

A
F

T

SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

05-SA-10003 v1.0 SH-5 S

PRELIMINARY DATA
3
External debug
interfaces
D
R

A
F

T
3.1 Introduction

A development tool can communicate with SH-5’s on-chip debug functions through
one of two possible interfaces; a dedicated high-speed interface called the SHdebug
link and the JTAG interface.

The JTAG interface is controlled by the on-chip JTAG TAP controller and when
JTAG is the currently-selected debug interface, debug messages are transferred
between the TAP controller and the debug module. When the SHdebug link is the
currently-selected debug interface, the debug module directly controls all SHdebug
link functions.

Other pins provide trigger-in and trigger-out signals which allow some of the debug
functions to be monitored and controlled by a logic analyzer or other external test
equipment.

Refer to Chapter 1: Debug/trace architecture on page 11 for a description of the
debugging functions incorporated into SH-5.
ystem Architecture, Volume 3: Debug

200 SHdebug link
PRELIMINARY DATA
D
R

A
F

T

3.2 SHdebug link

3.2.1 Key features

The SHdebug link has completely separate input and output interfaces which
provide communication with a debug adapter. The SH-5 evaluation device
implementation has an input data path 1-bit wide and an output data path 4-bits
wide. These widths may be increased in subsequent SH-5 chips to meet the
debugging bandwidth needs of different implementations and applications.

The SHdebug link provides:

• Full access by a tool to the SH-5 physical address map (RAM, ROM, on-chip
devices, external-devices).

• SH-5-originated access to a 16 Mbyte address space mapped over the SHdebug
link into tool memory.

This allows a target debug agent (or any other code) to execute on the CPU
without requiring any external RAM or ROM, and thus enables use of SH-5
without a traditional monitor ROM.

• Control of the CPU via memory-mapped register.

See Section 1.3: CPU control on page 30.

• Streaming operations for CPU and bus trace information.

Allows trace information gathered from the CPU and the on-chip busses to be
copied to a specified FIFO in the physical memory map (such as RAM or the
SHdebug link).

See Section 1.8: Debug module on page 85.

The SHdebug link is normally connected to a tool’s debug adaptor board (to provide
code download and debug facilities). It can also be connected to specialized
hardware debug systems (such as logic analyzers) to provide more complex facilities.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

SHdebug link 201
PRELIMINARY DATA
D
R

A
F

T

3.2.2 Protocol levels

The SHdebug link has two protocol levels in each direction:

• A low-level protocol which provides start-of-message indication, end-of-message
indication and flow control. At this level, message input and message output are
completely independent and messages can flow in both directions at the same
time.

• A higher-level protocol which identifies the message contents and specifies the
response required to each request. Certain message types, that is, trace
messages from SH-5 are output-only and require no response from the tool.

The protocol is encoded little endian.

3.2.3 External pins

The SHdebug link interface pins are described in Table 71.

Signal Lines Type
Internal
pull-up

Description

DM_CLKIN 1 IN_TBD Yes Clock from debug adapter, in
phase with DM_IN and DM_ISYNC.

DM_CLKOUT 1 OUT_TBD No SHdebug link clock source.

DM_OUT[0,3] 4 OUT_TBD No Output data, synchronous to the
rising edge of DM_CLKOUT.

DM_OSYNC 1 OUT_TBD No Output sync, synchronous to the
rising edge of DM_CLKOUT.

DM_IN 1 IN_TBD Yes Input data, synchronous to the
rising edge of DM_CLKIN.

DM_ISYNC 1 IN_TBD Yes Input sync, synchronous to the
rising edge of DM_CLKIN.

DM_TRIN_N 1 IN_LVTTL Yes Trigger input.

DM_TROUT_N 1 OUT_LVTTL No Trigger output.

Table 71: SHdebug link external pins
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

202 SHdebug link
PRELIMINARY DATA
D
R

A
F

T

3.2.4 Clocking

The data provided by the SH-5 on the DM_OSYNC and DM_OUT[3:0] pins is stable on the
rising edge of DM_CLKOUT.

The SH-5 debug module divides down the bus clock to provides the DM_CLKOUT clock
source for the SHdebug link. The divider has a power-on default value of 0xFFFF,
giving a SHdebug link clock frequency of approximately 3 kHz with a bus clock
speed of 200 MHz. The divider is a field in memory-mapped register DM.CLKOUTDIV,
which can be changed by host debug software. Debug software must have knowledge
of the bus clock frequency and the maximum operating speed of the debug adapter
before changing the divider value.

In the initial SH-5 evaluation device implementation, the divider cannot be set to
give a division smaller than 2. With a bus clock frequency of 200 MHz, a value of 2
gives a debug-link clock speed of 100 MHz.

In some applications, the CPU and bus clock frequencies can be dynamically
changed by power-management software. By deriving the SHdebug link clock from
bus clock, the SHdebug link clock speed automatically follows changes in bus clock
speed allowing SHdebug link communication to be maintained over any bus speed
range. When SH-5 enters standby state, both the PLL and the master oscillator are
disabled which means that the DM_CLKOUT signal assumes a steady DC level. The
tool should monitor the STATUS0 and STATUS1 signals to determine when SH-5 has
entered standby state.

A tool can issue a command to wake up SH-5 from standby state. However, once the
wake-up command has been issued, it can take up to a millisecond for the PLL to
stabilize and internal clocks to be enabled. The tool must therefore monitor the
STATUS0 and STATUS1 signals and delay any DBUS requests until the chip is
operating normally.

The input clock, DM_CLKIN, is independent of the output clock and is used by the
debug module to extract serial data from the DM_IN and DM_ISYNC pins.

At high clock speeds, the design of the debug adapter must ensure that the
DM_CLKIN, DM_IN and DM_ISYNC signals all have approximately the same I/O pad
delays and interconnect delays. The frequency of DM_CLKIN may be higher or lower
than the frequency of DM_CLKOUT up to the maximum permitted by the electrical
specification of SH-5.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

SHdebug link 203
PRELIMINARY DATA
D
R

A
F

T

3.2.5 Pin state during reset

Three pins are sampled during a reset sequence initiated externally to the SH-5
through NOTRESETP or NOTRESETM. These pins allow the following to be determined
as part of the external reset sequence:

• debug module to be enabled or disabled.

The signal used is referred to as DM_ENABLE. It is obtained by sampling the
DM_CLKIN pin during reset.

• CPU to be brought up in a suspended or running state.

The signal used is referred to as SUSPEND. It is obtained by sampling the DM_ISYNC
pin during reset.

• Reset to be forced to be a DEBUG reset, rather than the normal POWERON or MANUAL
reset specified by the RESETP and RESETM pins.

The signal used is referred to as RESET_MODE. It is obtained by sampling the
DM_IN pin during reset.

The pins are not sampled in this way when a reset is generated by the watchdog
timer or from software (see Section 1.3.2: Control operations on page 31 and
Section 1.7: Reset, panic and debug events on page 73).

Section 3.4.2: Reset functions available from debug tools on page 219 defines the
reset sequence in detail. Further information is available in the PMU chapter
(Refer to the reset controller chapter in Volume 1.).
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

204 SHdebug link
PRELIMINARY DATA
D
R

A
F

T

3.2.6 Start of message indication

The input and output portions of the SHdebug link operate completely
independently. SHdebug link messages can flow in both directions simultaneously.

Output from SH-5

The length of output messages is not fixed but is determined by the message
contents.

The DM_OSYNC signal is asserted to indicate either a output-idle condition or the
start of a new message. Output-idle is represented by a header type field of 0b000.
During output-idle, the debug module forces the value of ‘0’ on the DM_OUT[2:0] pins
and asserts DM_OSYNC. The first word of a SHdebug link message is indicated by the
DM_OSYNC signal being asserted and the output data bus having a data value other
than 0b000 on the DM_OUT[2:0] pins.

Messages are output in little-endian order (that is, bit 0 of byte 0 first).

Input to SH-5

Data being sent by an external debug adapter to SH-5 uses a similar method of
achieving message-level synchronization. Since all messages in this direction are
DBUS requests or responses, there is no need for a header with a message type field.
In this direction, the start of each message is indicated by a 1 to 0 transition of the
DM_ISYNC signal.

Messages are input in little-endian order (that is, bit 0 of byte 0 first).

3.2.7 Flow control

Flow control of messages from SH-5

SH-5 can send a DBUS request or response message to the tool only when the DBUS
receive buffer within the tool (that is, within the debug adapter) can accept another
message. During the input-idle state, DM_IN indicates whether the DBUS receive
buffer within the tool can accept another message (DM_IN == 0) or is full (DM_IN == 1).
The debug module uses this debug adapter receive buffer status to determine when
it can send another DBUS request or response message to the tool.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

SHdebug link 205
PRELIMINARY DATA
D
R

A
F

T

This debug adapter receive buffer status has no effect on SH-5 sending trace
messages to the debug adapter. The debug module assumes that the debug adapter
can process a continuous stream of trace messages, separated by single idle words,
at the selected SHdebug link clock speed.

Flow control of messages from tool

The tool can send a DBUS request or response message to SH-5 only when the
DBUS receive buffer within the debug module is empty. Data bit DM_OUT[3], in every
output-idle word, indicates whether the SH-5 receive buffer is empty (DM_OUT[3] ==
0) or still contains a request or response previously sent by the tool (DM_OUT[3] == 1).
The tool uses this buffer status condition to determine when it can send a new
message to SH-5.

Undefined behavior will occur if the tool ignores the buffer status indication and
sends a message to SH-5 when its DBUS receive buffer is not empty.

3.2.8 SHdebug link output protocol

The SH-5 debug module can initiate two types of transaction over the SHdebug link:

1 Those associated with SuperHyway bus transactions (called DBUS messages).
These DBUS transactions occur when a tool reads or writes to SH-5 internal
address space and when the SH-5 CPU or other bus master reads or writes
address space in the tool.

2 Trace messages from on-chip debug logic (called DTRC).

The protocol is the same, regardless of the width of the SHdebug link output data
path. A 3-bit type field in the header word of the message defines the message
contents.
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

206 SHdebug link
PRELIMINARY DATA
D
R

A
F

T

Start and end of messages

Output-idle words are transmitted over the SHdebug link during times when the
debug module has no data to send, for example, when the DM FIFO is empty.

When the FIFO contains several trace messages, they are sent over the SHdebug
link with a minimum of one idle (4-bit) word separating the messages.

Output-idle words serve another purpose; as the means of telling the tool the status
of the debug module DBUS receive buffer. See Section : Flow control of messages
from tool on page 205.

Message structure

The values signalled on dm_out[2:0] when DM_OSYNC is asserted are defined in First
word of message on page 118.

Table 72 and Table 73 provide some examples of DTRC and DBUS packets as they
appear on the SHdebug link, and give details of the meaning assigned to DM_OUT[3]
during non-idle transmissions.

Figure 8: Debug-link output

A B C

A

B

C

A B C

dm_clkout

dm_osync

dm_out[3:0]

output-idle state, DM_OUT[2:0] = 0B000,
DM_OUT[3] = SH-5 DBUS receive buffer busy (1) or empty (0)

start of message, DM_OUT[2:0] = message type

message data
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

SHdebug link 207
PRELIMINARY DATA
D
R

A
F

T

DBUS messages

A DBUS message is sent from SH-5 whenever the CPU or another bus master issues
requests to the debug module’s SuperHyway target address space. For each request
message sent from SH-5 there is a corresponding response message sent back from
the external debug adapter or development host. The DBUS request message has
the same format as the originating SuperHyway message but with the addition of a
header to identify it as a DBUS message.

The message type field occupies the least-significant 3-bits of the first byte of the
message. The remaining 5-bits of this first byte are unused.

DTRC messages

There are two types of DTRC messages:

• trigger trace messages (message type MHDR_DTRC_TRIG == 0b011)

• background trace messages (message type MHDR_DTRC_BACK == 0b010).

They are distinguished by the message type field, but contain exactly the same data.

The debug adapter can perform different functions with these two types of trace
message (using a different message type field simplifies the design of the debug
adapter as the message header allows a simple comparison to be made).

Typically, the debug adapter will store background trace messages in a trace buffer
memory area for later analysis but will forward trigger trace messages to debug
software running on the development host for immediate processing.

DTRC transactions are output-only and require no response.

Figure 9: DTRC protocol

Message
Type field

No Response

Trace Information

DTRC message from SH-5

Bit 0 BitN
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

208 SHdebug link
PRELIMINARY DATA
D
R

A
F

T

With DTRC messages, all bits of the first byte contain useful information. There are
not the same unused bit positions that exist in DBUS messages.

Refer to Section 1.9.3: DTRC messages on page 119 for details of trace message
contents.

3.2.9 SHdebug link input protocol

No message header is used on messages sent to SH-5 from the debug adapter since
all SHdebug link transactions in this direction are implicitly DBUS requests or
responses.

Start and end of input messages

The DM_ISYNC signal is used to distinguish message data on the DM_IN pin from line idle.
The transition from DM_ISYNC == 1 to DM_ISYNC == 0 indicates the start of a message and
the transition from DM_ISYNC == 0 to DM_ISYNC == 1 indicates the end of a message.
Messages are separated by one or more clock periods of idle (DM_ISYNC == 1).

Figure 10: SHdebug link Input

A

B

A B A B

dm_clkin

dm_isync

dm_in

message data (no header needed)

input-idle state
DM_IN = 0 (debug adapter DBUS receive queue ready),
DM_IN = 1 (debug adapter DBUS receive queue busy)
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

SHdebug link 209
PRELIMINARY DATA
D
R

A
F

T

3.2.10 Debug-link message examples

IA watchpoint trace message

Clock cycle DM_OSYNC state DM_OUT[0,3] contents

-1 1 Output-Idle
[2:0] == 0b000 (MHDR_IDLE)
[3] = buffer status

0 1 Header [3:0]
[2:0] == 0b010/0b011 (MHDR_DTRC_{BACK/TRIG})
[3] == bit 3 of trace header

1 0 Header [7:4]

2 0 Header [11:8]

3 0 Header [15:12]

4 0 PC Value [3:0]

5 0 PC Value [7:4]

6 0 PC Value [11:8]

7 0 PC Value [15:12]

8 0 PC Value [19:16]

9 0 PC Value [23:20]

10 0 PC Value [27:24]

11 0 PC Value [31:28]

12 1 Output-Idle
[2:0] = 0b000 (MHDR_IDLE)
[3] = Buffer status

Table 72: Trace message example
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

210 SHdebug link
PRELIMINARY DATA
D
R

A
F

T

DBUS request message

Clock Cycle DM_OSYNC state DM_OUT[0,3] contents

-1 1 Output-Idle
[2:0] == 0b000 (MHDR_IDLE),
[3] == Buffer status

0 1 Header [0,3]
[2:0] == 0b001 (MHDR_DBUS)
[3] = No useful data

1 0 Dummy nibble (no useful data)

2 0 Opcode [3:0]

3 0 Opcode [7:4]

4 0 Address [3:0]

5 0 Address [7:4]

6 0 Address [11:8]

7 0 Address [15:12]

8 0 Address [19:16]

9 0 Address [23:20]

10 0 Address [27:24]

11 0 Address [31:28]

12 0 Source [3:0]

13 0 Source [7:4]

14 0 TID [3:0]

15 0 TID [7:4]

16 0 Mask [3:0]

17 0 Mask [7:4]

18 1 Output-idle
[2:0] == 0b000 (MHDR_IDLE)
[3] = Buffer status

Table 73: DBUS Load8 request message example
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

SHdebug link 211
PRELIMINARY DATA
D
R

A
F

T

3.2.1 SHdebug link control registers

3.2.1.1 DM.CLKOUTDIV (debug-link control register)

This register is specified in Table 74. The divider field of this register allows debug
software to change the clock speed of the SHdebug link.

DM.CLKOUTDIV 0x100090

Field Bits Size Volatile? Synopsis Type

DIVIDER [15:0] 16 — SHdebug link clock divider RW

Operation This register determines the speed of the SHdebug link clock source
(DM_CLKOUT). The input to the divider is bus clock. A value of n
corresponds to a clock division of 2(n+1). The maximum SHdebug
link output clock speed (divider value = 0) is half the speed of bus
clock.

When read Returns current value

When written Updates current value. Debug software must ensure that the debug
link and the debug adapter are capable of supporting the selected
clock speed. All communication between SH-5 and the debug
adapter may be lost if the clock speed is set too high.

HARD reset 0xFFFF

— [63:16] 48 — Reserved RES

Operation Reserved

When read Returns 0

When written Ignored

HARD reset 0

Table 74: DM.CLKOUTDIV definition
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

212 JTAG interface
PRELIMINARY DATA
D
R

A
F

T

3.3 JTAG interface

3.3.1 Introduction

The JTAG interface can be used for connection to a debug tool as an alternative to
the SHdebug link, however, the effective bandwidth (messages per second) is much
lower. All messages capable of being sent over the SHdebug link can also be sent via
the JTAG interface. Because of the lower bandwidth available, configuring SH-5’s
debug functionality to send trace messages via JTAG may give unacceptable
performance but this still may be a useful capability for some applications.

3.3.2 Basic concepts

The implementation of the SH-5 debug interface via a JTAG connection has the
following characteristics:

• Standard JTAG functionality is not compromised (for example, the standard
JTAG instruction “space” remains unpolluted).

• The port is drivable from standard JTAG state-machine interface devices.

• The port allows “unsolicited” messages to be sent from SH-5 to the tool.

• Realistic real-time performance is achievable.

• Uses identical message structure as the SHdebug link.

The SH-5 JTAG TAP controller implements all the mandatory features of a
standard JTAG port, including the “BYPASS” and “IDCODE” instructions. The
JTAG instruction register defaults to the “IDCODE” instruction.

Access to debug features is enabled by the loading of a single command (“DEBUG”)
to the JTAG instruction register. The value of this “DEBUG” instruction is
implementation specific, and is defined in Section 4.1.10: JTAG IR DEBUG codes on
page 249. An additional command (“WAKEUP”) is used to wake the SH-5 from a
sleep state via the JTAG port. This is also defined in Section 4.1.10: JTAG IR
DEBUG codes on page 249.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

JTAG interface 213
PRELIMINARY DATA
D
R

A
F

T

3.3.3 Debug interface selection

A debug tool can communicate with SH-5 using either the SHdebug link or the
JTAG interface. At power-on, the debug module defaults to select the SHdebug link
as the debug interface.

The debug module changes its selection to the JTAG interface whenever it detects
that the “DEBUG” command has been written into the JTAG instruction register.
This must only be done when the SHdebug-Link is idle, if the JTAG port is selected
whilst there is SHdebug-Link traffic outstanding, undefined effects will occur.

Once JTAG has been selected as the debug interface, it remains selected until SH-5
is reset. Software can determine the interface selection state from the read-only
field DM.TRCTL.DL_N_JTAG.

3.3.4 JTAG debug message protocol

The input and output debug messages transferred via the JTAG port are identical to
those which can be sent via the SHdebug link, including the standard message-type
header.

An inherent characteristic of messages between SH-5 and a tool is that messages
are of different lengths depending on the message type. The longest message is 41
bytes (a DBUS Store32 request message from SH-5) and the shortest message is 3
bytes (an IA trace message). The JTAG debug message protocol defined in this
section provides a method for both the tool and the SH-5 target to determine the
start and end of these variable-length messages.

There are two parts to the JTAG debug message protocol. At the lowest level, data
and status bits are transferred between a tool and the debug serial shift register. At
a higher level, the protocol provides the mechanism for detecting the start and end
of messages consisting of a variable number of bytes.
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

214 JTAG interface
PRELIMINARY DATA
D
R

A
F

T
Figure 11: TAP control state transition diagram
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

JTAG interface 215
PRELIMINARY DATA
D
R

A
F

T

As shown in Figure 12, the SH-5 JTAG debug data register is 74 bits long, consisting
of:

• four valid input message status bits (VIM3, VIM2, VIM1, VIM0), one associated with
each of the four byte positions,

• 32 data input bits,

• 32 data output bits,

• an input buffer full (IBF) status bit,

• four valid output message status bits (VOM3, VOM2, VOM1, VOM0), one associated
with each of the four byte positions.

Figure 12: JTAG debug DR register connections

TDO

VIM0
VIM1
VIM2
VIM3
Spare
DIN0

.

.

.
DIN31

DOUT31
.
.
.

DOUT0
IBF

VOM3
VOM2
VOM1
VOM0

32
data
bits

32
data
bits

74-bit DR
Register
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

216 JTAG interface
PRELIMINARY DATA
D
R

A
F

T
The use of a single 74-bit DR register allows the following alternative transfers to
take place:

1 The tool can poll just the output status from SH-5 (5 bits of DR shifted).

2 The tool can poll the output status plus from one byte to four bytes of an output
message from SH-5 (13, 21, 29 or 37 bits of DR shifted).

3 The tool can send status and from one byte to four bytes of an input message to
SH-5 (13, 21, 29 or 37 bits of DR shifted).

4 The tool can poll status and from one byte to four bytes of an output message
from SH-5 and at the same time send status and from one byte to four bytes of
an input message to SH-5 (13, 21, 29 or 37 bits of DR shifted).

As shown in Figure 12, when SH-5 is connected to a tool capable of shifting variable
length data words, the tool transfers 13, 21, 29 or 37 bits into the DR register giving
8, 16, 24, or 32 message data bits status plus bits to indicate valid input data in each
of the four byte positions (plus one unused bit). When polling out an output message,
the tool shifts 13, 21, 29 or 37 bits out of the DR register with four of these bits
indicating valid output data and a another status bit indicating the state of the
SH-5 tap controller debug message input buffer.

Status Bit Meaning

VIMx 0: Input byte position has no valid data.

1: The serial word which has just been shifted in contains
one byte of an input message in the corresponding byte
position.

VOMx 0: Output byte position has no valid data.

1: The serial word which has just been shifted out contains
one byte of an output message in the corresponding byte
position.

IBF 0: The input message buffer in SH-5’s JTAG tap controller is
available for a new message.

1: The input message buffer in SH-5’s JTAG tap controller is
full.

Table 75: Status bit meaning
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

JTAG interface 217
PRELIMINARY DATA
D
R

A
F

T

Polling to detect a SH-5 pending output message

In order that the tool can detect when SH-5 has a pending output message and to
determine when the input buffer is available for a new input message, the tool must
poll the JTAG debug logic at regular intervals to shift out the IBF and VOMx status
bits.

The VOMx status bits are located closest to the TDO end of the shift register. The
tool can therefore poll out the VOMx and IBF status by shifting just five bits out of
the shift register following the capture-DR state. At the same time as these five
status bits are being shifted out of the shift register, the VIM status bits are shifted
into the input end of the shift register from the TDI pin and is latched during the
update-DR state. When the tool has no pending input message to send, and it simply
wants to poll the IBF and VOMx status bits, the tool sets all VIMx bits to ’0’ during
the five shift cycles.

Figure 13: JTAG data transferred using variable shift length

Data shifted out
of SH-5

0

1

2

3

4
5

6

7

8

9

VOM3

IBF

Data 0

Data 1

Data 31

Data shifted into
SH-5

VIM0

Spare

Data 0

Data 1

Data 31

Data 30

Data 4

Data 3

Data 2

Data 30

Data 29

Data 3

Data 2VOM2

VOM1

VOM0

35

36

VIM1

VIM2

VIM3

0

1

2

3

29

30

31

32

33

35

36

34
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

218 JTAG interface
PRELIMINARY DATA
D
R

A
F

T

Polling out a message

After the five status bits have been shifted out, the tool can determine that an
output message exists and then continues shifting a further 8, 16, 24 or 32 times
depending on which VOMx bits = ‘1’. The tool now has assembled the first bytes of
an output message.

The tool continues this process of shifting out just the IBF and VOMx bits, testing
the VOMx bits and then shifting data bits depending on which VOMx bits = ‘1’. The
detection of any VOMx bit = ‘0’ indicates the end of the message. Once the end of the
message has been reached, the tool does not need to shift any more data bits out.

Tool sending a message to SH-5

Input messages, longer than 4-bytes, are sent as one or more 4-byte segments
possibly followed by a segment containing fewer bytes. For each 4-byte segment of a
message, the tool shifts 37 bits into TDI with the VIMx status bits in the last
positions (the positions closest to TDI). For the last segment of a message containing
fewer than 4 bytes, the tool shifts 13, 21 or 29 bits into TDI with appropriate VIMx
bits indicating the number of valid bytes.

During message transfers, the first VIMx bit = '0' indicates the end of the input
message. When the length of an input message is a multiple of 4 bytes, the end of
the message is indicated by a 1-byte segment (13 bits) with all VIMx bits = ‘0’.

Flow control

The SH-5 JTAG tap controller has an input message buffer large enough to hold the
largest input message plus an output message buffer large enough to hold the
largest output message. The DBUS protocol allows one outstanding response in
each direction, so it is possible that the tool may want to send a response message
immediately following a new request. Flow control is needed to eliminate the
possibility of ever having a message in the input buffer overwritten before its has
been moved into the DM. This flow control is done by sending including an input
buffer status bit in the DR register, adjacent to the VOM3 bit. The tool can poll out
just five bits (if it can handle variable-length shifting), one of which determines
whether the input buffer can accept a new message and the other four determine
whether there is an output message pending.

There is no need for a tool input buffer status bit in the other direction. The tool will
only poll SH-5 when its input buffer has space for a new message from SH-5.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug tool reset/suspend behavior 219
PRELIMINARY DATA
D
R

A
F

T

3.4 Debug tool reset/suspend behavior

3.4.1 DEBUG reset

DEBUG reset is similar to POWERON reset except:

1 It does not reset debug registers in the WPC or DM.

2 It does reset the DM’s internal state. The following DM features are reset to
their power on state:

- DM FIFO,

- DM capture buffers (from WPC and bus analyzers),

- Any pending debug interrupts are cleared,

- Any CPU stall signals applied from the DM to the CPU are cleared.

As described in 2 above, DM internal state is reset. Thus DM registers which
reflect this state (for example, the FIFO registers) are updated in the normal
manner to correspond to the new internal state of the debug system.

3 It does not reset the active debug link.

Thus the active debug link (either SHdebug link or JTAG) remains the same.

DEBUG reset should not be applied whilst the active debug link (either the SHdebug
link or the JTAG port) is transferring information, or undefined behavior will occur.

As explained in Section 1.7.1: RESVEC/DBRVEC selection on page 74, DEBUG reset
always vectors through RESVEC.

3.4.2 Reset functions available from debug tools

Debug tool connected via SH debug-link

A debug tool such as an ST JEI debug adapter connects to a SH-5 board-level
product via a SHdebug link header. The tool is able to directly reset SH-5 using the
RESET signal on the header. A jumper on the target board connects this signal to
either the RESETP pin or the RESETM pin.

During the reset sequencing initiated by a pulling either RESETP or RESETM low, SH-5
senses the state of the DM_IN. If DM_IN is low, a DEBUG reset is initiated regardless of
whether the RESETP pin or the RESETM pin was asserted.
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

220 Debug tool reset/suspend behavior
PRELIMINARY DATA
D
R

A
F

T

DEBUG reset from an SHdebug link tool can also be performed by writing to the
WPC.CPU_CTRL_ACTION register.

Signal Source Meaning

DM_CLKOUT From SH-5 SHdebug link output clock.

DM_OSYNC From SH-5 SHdebug link output sync.

DM_OUT[3:0] From SH-5 SHdebug link output data.

DM_CLKIN From tool SHdebug link input clock. Also debug module enable/disable
control, sampled at the rising edge of RESETP/RESETM.

Value - Description

0: The debug module is enabled following reset.

1: The debug module is disabled with its clock source turned
off following reset.

DM_ISYNC From tool SHdebug link input sync. Also CPU suspend mode (known
as the multi-function SUSPEND pin), sampled at the rising
edge of RESETP/RESETM.

Value - Description

0: CPU remains suspended following reset.

1: CPU operates normally following reset.

DM_IN From tool SHdebug link input data. Also provides the RESET_MODE
signal. The value is sampled during the entire period when
RESETP/RESETM are low.

Value - Description

0: Forces a DEBUG reset regardless of whether the RESETP or
RESETM pin is asserted.

1: A normal POWERON reset or MANUAL reset is initiated when
the corresponding reset pin is asserted.

RESET Bi-directional Reset signal driven by Tool (open drain). Tool can also
monitor this signal to detect when board-level reset is
initiated.

Table 76: SHdebug link header signals
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug tool reset/suspend behavior 221
PRELIMINARY DATA
D
R

A
F

T

Debug tool connected via JTAG

A debug tool such as a Hitachi E20 connects to a SH-5 board-level product via a
JTAG debug header. For debug tools such as a Hitachi E20, the RESET signal in the
JTAG interface is an output from the target board which allows the tool to detect
when a board-level reset function has occurred, for example, when a user has
pressed the reset button.

The E20 does not have the capability to initiate a POWERON, MANUAL or DEBUG reset
via signals in the interface. However, the E20 can perform either a CPU reset or a
DEBUG reset by writing to the WPC.CPU_CTRL_ACTION register. The E20 has some
control over the type of reset performed by a board-level reset button. A RESET_MODE
signal is assigned to an E20 pin not currently connected and this allows the tool to
force a DEBUG reset when the reset button on the board is pressed.

With an appropriate design of target board, the RESET signal in the JTAG debug
interface could be bi-directional allowing the tool to initiate one type of hard reset,
either POWERON, MANUAL or DEBUG depending on board-level jumpers.

Signal Source Meaning

TCK From tool JTAG clock

TDI From tool JTAG data in

TDO From SH-5 JTAG data out

TMS From tool JTAG test mode select

TRST From tool JTAG reset. The tap controller finite state machine is reset
by TRST going low. This pin has no effect on other chip
functions.

RESET Bi-directional Tool can monitor this signal to detect when board-level
reset is initiated.

SUSPEND From tool CPU suspend mode following reset, sampled at the rising
edge of RESETP/RESETM. Refer to Section 3.4.3: CPU
suspend function on page 223 for more details.

Value - Description

0: CPU remains suspended following reset

1: CPU operates normally following reset

Table 77: JTAG debug header signals
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

222 Debug tool reset/suspend behavior
PRELIMINARY DATA
D
R

A
F

T

RESET_MODE From tool Allows the tool to determine the type of reset function
performed. The value is sampled during the entire period
when NOTRESETP/NOTRESETM are low.

Value - Description

0: Forces a DEBUG reset regardless of whether the
NOTRESETP or NOTRESETM pin is asserted.

1: A normal POWERON reset or MANUAL reset is initiated
when the corresponding reset pin is asserted.

DM_ENABLE From tool debug module state following reset, sampled at the rising
edge of NOTRESETP/NOTRESETM. Refer to Section 3.2.5: Pin
state during reset on page 203 for more details.

Value - Description

0: The debug module is enabled following reset.

1: The debug module is disabled with its clock source
turned off following reset.

Signal Source Meaning

Table 77: JTAG debug header signals
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug tool reset/suspend behavior 223
PRELIMINARY DATA
D
R

A
F

T

3.4.3 CPU suspend function

The DM_ISYNC signal has two functions. Its primary function is the synchronization
pin for messages sent to SH-5 from a SHdebug link-connected tool. Its secondary
function controls CPU suspend state.

At the end of a POWERON, MANUAL or DEBUG reset function, when NOTRESET is pulled
high, the CPU can either start executing boot code or can enter a suspended state
depending on the state of the DM_ISYNC signal sampled when NOTRESET goes from
low to high. If DM_ISYNC is sampled low at the end of the reset phase, the CPU
remains suspended on the assumption that various SH-5 registers will be loaded by
a connected tool. At some later time, the tool will release the CPU from its
suspended state by writing to the WPC.CPU_CTRL_ACTION register. If DM_ISYNC is
sampled high at the end of the reset phase, the CPU starts executing boot code.

This DM_ISYNC pin has an internal pull-up resistor to ensure that when no debug tool
is connected to a debug connector, the CPU is not suspended at the end of reset.

The CPU suspend function is also available to JTAG-connected tools. The JTAG
debug header signal SUSPEND_ is an AC-decoupled version of the DM_ISYNC pin. Since
DM_ISYNC is a high-speed signal used by the SHdebug link, board-level products must
include a series resistor between SUSPEND_ pin in the JTAG header and the DM_ISYNC
pin. This resistor (of value around 1K ohm) must be located close to the DM_ISYNC pin
to minimize the effect of the extra trace length on the printed circuit board. A bypass
capacitor is also required.
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

224 Debug tool reset/suspend behavior
PRELIMINARY DATA
D
R

A
F

T

Summary of all functions using RESETP and RESETM

DM_IN state
Action when NOTRESETP

asserted
Action when NOTRESETM

asserted

High (internal pull-up resistor) POWERON reset MANUAL reset

Low DEBUG reset DEBUG reset

Table 78: Alternative reset functions

Figure 14: POWERON, MANUAL or DEBUG Resetting (via Reset Signal)

Pre-reset period

Reset
Post -reset

DM pin
sampling

Normal
operation

RESET

RESETMODE
(DM.CLKIN)

Normal
operation

0 = DM will be enabled
1 = DM will be disabled

SUSPEND
(DM.ISYNC)

0 = CPU will be suspend
1 = CPU will not be suspended

RESET_MODE
(DM.IN)

0 = force DEBUG reset
1 = normal POWER/MANUAL reset

CPU fetching
instructions (if
not suspended)

dm.clkout
(if DM enable)

Slow speed
(as PLL disabled after

RESET, and
DM.CLKOUTDIV

reset to 0xFFFF for
non-DEBUG reset)

Normal speed dm.clkout
(according to onboard PLL

and setting of DM.CLKOUTDIV)

STATUS0/
STATUS1 IN_RESETNORMAL NORMAL

Note conservative setup/hold time on sampled
signals of 1 phase prior to falling edge, and 1 phase post

(turn off DM.CLKIN
before de-asserting

RESET == INPUT

rising edge of RESET.

idle link state sequence
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Trigger functions 225
PRELIMINARY DATA
D
R

A
F

T

3.5 Trigger functions
SH-5 provides a trigger-in (DM_TRIN_N) and a trigger-out pin (DM_TROUT_N). These
allow external analysis hardware (such as a logic analyzer) to control and monitor
specific watchpoints.

The trigger out pin can also be configured to provide external visibility of timing
events (such as interrupt latency), and to detect internal states (such as trace buffer
overflow).

Refer to Section 1.8.10: DM.TRCTL (trace/trigger register) on page 97 for details of
the control register fields that determine the functions of the trigger-in and
trigger-out pins.

Figure 15: DEBUG reset (via write to WPC.CPU_CTRL_ACTION)

Write DEBUG reset opcode to
WPC.CPU_CTRL_ACTION

‘n’ clocks

Reset operation
completes

DM_CLKOUT

CPU fetching
instructions

Normal speed
DM_CLKOUT

Slow speed
DM_CLKOUT

STATUS0/

STATUS1
signals

NORMALNORMAL IN_RESET

(‘n’ is approximately
10 PP-bus cycles)
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

226 DBUS protocol
PRELIMINARY DATA
D
R

A
F

T

3.6 DBUS protocol

3.6.1 Overview

DBUS supports the following command types:

• Load8 - read 8 bytes (1 * 64 bit word)

• Load16 - read 16 bytes (2 * 64 bit words)

• Load32 - read 32 bytes (4 * 64 bit words)

• Store8 - write 8 bytes (1* 64 bit words)

• Store16 - write 16 bytes (2 * 64 bit words)

• Store32 - write 32 bytes (4 * 64 bit words)

• Swap8 - swap 8 bytes (1 * 64 bit word)

• Flush (address)

• Purge (address)

Figure 16: DBUS transaction originated by SH-5

Message
Type field
+ dummy

tidopc addr msk/data pairs

r_opc

1 byte1 byte 4 bytes 1 byte 0 - 36 bytes

1 byte

Request message originated by SH-5

Response message from external agent

1 byte

src

r_tid r_data

0 - 32 bytes

r_src

1 byte

Bit N

Bit N

Bit 0

Bit 0

1 byte
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

DBUS protocol 227
PRELIMINARY DATA
D
R

A
F

T

Opcode (opc, r_opc)

Opcode is a 1-byte field which defines the contents of the message.

Address (addr)

For request messages originated by the CPU or other SuperHyway module
addressed to the SHdebug link portion of the debug module address space (that is,
the remote memory area which is hosted on the development host or debug adaptor),
the top 8-bits of the address field contain the SuperHyway device code for the debug
module.

For request messages originated by the development host or debug adapter, the top
8-bits of the address field identifies the destination SuperHyway device. The top 8
bits of the address must not be the value associated with the remote memory area.
The SH-5 behavior is undefined if such an access is attempted.

Source (src, r_src)

This field identifies the source of the request. When generating a response, the tool
must ensure that the value in the source field matches the Source field of the
original request.

Figure 17: DBUS transaction originated by external agent

tidopc addr msk/data pairs

r_opc

1 byte1 byte 4 bytes 1 byte 0 - 36 bytes

1 byte

Request message originated by external agent

Response message from SH-5

src

r_tid r_data

0 - 32 bytes

r_src

1 byte

Bit N

Bit N

Bit 0

Bit 0

1 byte

Message
Type field
+ dummy

1 byte
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

228 DBUS protocol
PRELIMINARY DATA
D
R

A
F

T

Mask (msk)

This field appears in request transactions, and is used to define which bytes within
the data field are significant.

Note: For load requests the DBUS protocol only transfers a single 8-bit msk value, which is
used for the series of underlying 8-byte load operations.

The address of individual bytes within the data field is determined by the msk
value, and the relationship between these values varies according to the endian
mode of the SH-5 system. This is described in Section 3.6.6: Endian-specific
behavior on page 230.

TID (tid, r_tid)

Transaction identifier. When generating a response, R_TID must match the TID value
of the original request.

Dummy

Dummy bits which are included in order to pad the packet to certain alignment and
size constraints. Any value can be supplied for the dummy bits.

3.6.2 Nibble order

For SH-5 implementations using a 4-bit-wide output data port (DM_OUT[0,3]), the
least-significant nibble of each byte is transmitted first, that is, BYTE-I[0,3] followed
by BYTE-I[4,7]. See Table 73: DBUS Load8 request message example on page 210 for
more details.

3.6.3 Pipelining of DBUS requests

The SHdebug link does not support pipelined DBUS requests. The debug module
will accept only a single SuperHyway request addressed to the SHdebug link and
will forward this over the SHdebug link as a DBUS message. When the DBUS
response is received by the debug module from the tool, it is forwarded to
SuperHyway. Only then will the debug module accept another SuperHyway request
addressed to the SHdebug link.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

DBUS protocol 229
PRELIMINARY DATA
D
R

A
F

T

This means that the transaction ID field in the DBUS message has no useful
function since there can never be more than one outstanding transaction. However,
checking of the TID in the response is still performed by the SuperHyway initiator
and the tool must ensure that the TID in the response message generated by the tool
is identical to the TID in request message received from SH-5.

3.6.4 Unsolicited responses

Undefined effects will occur if a tool sends an unsolicited DBUS response to the
SH-5.

3.6.5 Critical word ordering

For multiple data phase transactions (that is, Load16, Store16, Load32, Store32),
the address on the SuperHyway request bus is the address of the first data word of
the transaction. The burst address ordering is linear. Burst requests issued by the
MMU/cache are always critical-word-first and the low order bits of the address
determine the word order of Store requests and of Load responses as shown in
Table 79 and Table 80 below.

Address bits[0, 3] Word order

0b0xxx 0, 1

0b1xxx 1, 0

Table 79: Word order for Store16, Load16

Address bits[0,4] Word order

0b00xxx 0, 1, 2, 3

0b01xxx 1, 2, 3, 0

0b10xxx 2, 3, 0, 1

0b11xxx 3, 0, 1, 2

Table 80: Word order for Store32, Load32
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

230 DBUS protocol
PRELIMINARY DATA
D
R

A
F

T

3.6.6 Endian-specific behavior

The msk field determines which bytes in the data field are significant. The manner
in which the bytes within the data field correspond to offsets from the address field
is dependant on the endianness of the target system.

This is illustrated in Table 81.

Data
size

Mask
Byte positions within 8-byte data field

Address offset in
endian mode:

7 6 5 4 3 2 1 0 Big Little

8 0xFF MSB LSB 0 0

4 0x0F MSB LSB 4 0

4 0xF0 MSB LSB 0 4

2 0x03 MSB LSB 6 0

2 0x0C MSB LSB 4 2

2 0x30 MSB LSB 2 4

2 0xC0 MSB LSB 0 6

1 0x1 7 0

1 0x2 6 1

1 0x4 5 2

1 0x8 4 3

1 0x10 3 4

1 0x20 2 5

1 0x40 1 6

1 0x80 0 7

Table 81: DBUS mask/address mapping for big and little endian modes
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

DBUS protocol 231
PRELIMINARY DATA
D
R

A
F

T

3.6.7 Opcode definition

Opcode
type

Value
Name Reference

Binary Hexadecimal

Requests 0b00110001 0x31 Load8 Load8 on page 232.

0b01000001 0x41 Load16 Load16 on page 233.

0b01010001 0x51 Load32 Load32 on page 234

0b00110010 0x32 Store8 Store8 on page 235

0b01000010 0x42 Store16 Store16 on page 236

0b01010010 0x52 Store32 Store32 on page 237

0b00110101 0x35 Swap8 Swap8 - swap 8 bytes on
page 238

0b00011000 0x18 Flush Flush - flush a physical address
on page 239

0b00001000 0x8 Purge Purge - purge a physical
address on page 240

Responses 0b10000000 0x80 Success

0b10000001 0x81 Failure

Table 82: DBUS opcode values
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

232 DBUS protocol
PRELIMINARY DATA
D
R

A
F

T

3.6.8 DBUS transactions

Load8

Request

OPC[7:0] Opcode Load8 (0x31).

ADDR[31:0] Address, where ADDR[31:24] identifies the module.

ADDR[23:0] specifies the offset within the module.

ADDR[2:0] is not significant.

SRC[0, 7] Source identifier, defined by the system not the module.

TID[0, 7] Transaction identifier, defined by the module not the system.

MSK[7:0] Byte significance within data (‘1’ == significant, ‘0’ == not
significant).

Where the target device is not read sensitive it is acceptable to
the target to read all bytes, however the initiator must assume
bytes for which MSK == ‘0’ are invalid.

See Table 81: DBUS mask/address mapping for big and little
endian modes on page 230.

Response
R_OPC[7:0] Response type, either 0x80 for Success, or 0x81 for Failure.

R_SRC[7:0] Copy of SRC.

R_TID[7:0] Copy of TID.

R_DATA[7:0] Response data, see MSK for significance of each byte.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

DBUS protocol 233
PRELIMINARY DATA
D
R

A
F

T

Load16

Request
OPC[7:0] Opcode Load16 (0x41).

ADDR[31:0] Address, where ADDR[31:24] identifies the module.

ADDR[23:4] specifies the offset within the module.

ADDR[3] specifies the address of the critical word within a 16 byte
quantity (see Section 3.6.5: Critical word ordering on page 229).

ADDR[2:0] is not significant.

SRC[7:0] Source identifier, defined by the system not the module.

TID[7:0] Transaction identifier, defined by the module not the system.

MSK[7:0] Byte significance within data (‘1’ == significant, ‘0’ == not
significant).

A single 8 bit mask value is supplied with the request, this value
is used for the two 8 byte loads which will be performed by this
transaction.

When dealing with Load16 requests issued from SH-5 to the
debug link, the off-chip protocol handling software and hardware
can be simplified by ignoring the mask, and thus supplying the
R_DATA field of the response with all bytes containing valid data
(that is, as if MSK was supplied as a 16-bit value == 0xFFFF).

When a debug tool issues a Load16 request to SH-5, it must be
aware that SH-5 will use the same msk value for both of the 8
byte load operations.

See Table 81: DBUS mask/address mapping for big and little
endian modes on page 230.

Response
R_OPC[7:0] Response type, either 0x80 for Success, or 0x81 for Failure.

R_SRC[7:0] Copy of SRC.

R_TID[7:0] Copy of TID.

R_DATA[127:0] Response data, see MSK for significance of each byte.
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

234 DBUS protocol
PRELIMINARY DATA
D
R

A
F

T

Load32

Request
OPC[7:0] Opcode Load32 (0x51).

ADDR[31:0] Address, where ADDR[31:24] identifies the module.

ADDR[23:5] specifies the offset within the module

ADDR[4:3] specifies the address of the critical word within a 32
byte quantity (see Section 3.6.5: Critical word ordering on
page 229).

ADDR[2:0] is not significant.

SRC[7:0] Source identifier, defined by the system not the module.

TID[7:0] Transaction identifier, defined by the module not the system.

MSK[7:0] Byte significance within data (‘1’ == significant, ‘0’ == not
significant).

A single 8 bit mask value is supplied with the request, this value
is used for the four 8 byte loads which will be performed by this
transaction.

When dealing with Load32 requests issued from SH-5 to the
debug link, the off-chip protocol handling software and hardware
can be simplified by ignoring the mask, and thus supplying the
R_DATA field of the response with all bytes containing valid data
(that is, as if MSK was supplied as a 32-bit value of 0xFFFFFFFF).

When a debug tool issues a Load32 request to SH-5, it must be
aware that SH-5 will use the same MSK value for the four 8 byte
load operations.

See Table 81: DBUS mask/address mapping for big and little
endian modes on page 230.

Response
R_OPC[7:0] Response type, either 0x80 for Success, or 0x81 for Failure.

R_SRC[7:0] Copy of SRC.

R_TID[7:0] Copy of TID.

R_DATA[255:0] Response data.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

DBUS protocol 235
PRELIMINARY DATA
D
R

A
F

T

Store8

Request
OPC[7:0] Opcode Store8 (0x32).

ADDR[31:0] Address, where ADDR[31:24] identifies the module.

ADDR[23:3] specifies the offset within the module.

ADDR[2:0] is not significant.

SRC[7:0] Source identifier, defined by the system not the module.

TID[7:0] Transaction identifier, defined by the module not the system.

MSK[7:0] Byte significance within word (‘1’ == significant, ‘0’ == not
significant).

See Table 81: DBUS mask/address mapping for big and little
endian modes on page 230.

DATA[63:0] Data to write.

Response

R_OPC[7:0] Response type, either 0x80 for Success, or 0x81 for Failure.

R_SRC[7:0] Copy of SRC.

R_TID[7:0] Copy of TID.
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

236 DBUS protocol
PRELIMINARY DATA
D
R

A
F

T

Store16

Request
OPC[7:0] Opcode Store16 (0x42).

ADDR[31:0] Address, where ADDR[31:24] identifies the module.

ADDR[23:4] specifies the offset within the module.

ADDR[3] specifies the address of the critical word within a 16 byte
quantity (see Section 3.6.5: Critical word ordering on page 229).

ADDR[2:0] is not significant.

SRC[7:0] Source identifier, defined by the system not the module.

TID[7:0] Transaction identifier, defined by the module not the system.

MSK0[7:0] Byte significance within word (‘1’ == significant, ‘0’ == not
significant).

See Table 81: DBUS mask/address mapping for big and little
endian modes on page 230.

DATA0[63:0] First 8 byte quantity to write.

MSK1[7:0] As MSK0 but for DATA1 rather than DATA0.

DATA1[63:0] Second 8 byte quantity to write.

Response
R_OPC[7:0] Response type, either 0x80 for Success, or 0x81 for Failure.

R_SRC[7:0] Copy of SRC.

R_TID[7:0] Copy of TID.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

DBUS protocol 237
PRELIMINARY DATA
D
R

A
F

T

Store32

Request
OPC[7:0] Opcode Store32 (0x52).

ADDR[31:0] Address, where ADDR[31:24] identifies the module.

ADDR[23:5] specifies the offset within the module.

ADDR[4:3] specifies the address of the critical word within a 32
byte quantity (see Section 3.6.5: Critical word ordering on
page 229).

ADDR[2:0] is not significant.

SRC[7:0] Source identifier, defined by the system not the module.

TID[7:0] Transaction identifier, defined by the module not the system.

MSK0[7:0] Byte significance within word (‘1’ == significant, ‘0’ == not
significant).

See Table 81: DBUS mask/address mapping for big and little
endian modes on page 230.

DATA0[63:0] First 8 byte quantity to write.

MSK1[7:0] As MSK0 but for DATA1 rather than DATA0.

DATA1[63:0] Second 8 byte quantity to write.

MSK2[7:0] As MSK0 but for DATA2 rather than DATA0.

DATA2[63:0] Third 8 byte quantity to write.

MSK3[7:0] As MSK0 but for DATA3 rather than DATA0.

DATA3[63:0] Fourth 8 byte quantity to write.

Response

R_OPC[7:0] Response type, either 0x80 for Success, or 0x81 for Failure.

R_SRC[7:0] Copy of SRC.

R_TID[7:0] Copy of TID.
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

238 DBUS protocol
PRELIMINARY DATA
D
R

A
F

T

Swap8 - swap 8 bytes

Perform a 8 byte write and 8 byte read atomically.

Request

OPC[7:0] Opcode Swap8 (0x35).

ADDR[31:0] Address, where ADDR[31:24] identifies the module.

ADDR[23:3] specifies the offset within the module.

ADDR[2:0] is not significant.

SRC[7:0] Source identifier, defined by the system not the module.

TID[7:0] Transaction identifier, defined by the module not the system.

MSK[7:0] Byte significance within word (‘1’ == significant, ‘0’ == not
significant).

See Table 81: DBUS mask/address mapping for big and little
endian modes on page 230.

DATA[63:0] Data to write.

Response

R_OPC[7:0] Response type, either 0x80 for Success, or 0x81 for Failure.

R_SRC[7:0] Copy of SRC.

R_TID[7:0] Copy of TID.

R_DATA[7:0] Data read.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

DBUS protocol 239
PRELIMINARY DATA
D
R

A
F

T

Flush - flush a physical address

Forces any data held by a module and associated with a physical address to be made
coherent with the actual data held at the physical address. The target device may
retain a copy of the data.

Request
OPC[7:0] Opcode Flush (0x18).

ADDR[31:0] Address, where ADDR[31:24] identifies the module.

ADDR[23:3] specifies the offset within the module.

ADDR[2:0] is not significant.

SRC[7:0] Source identifier, defined by the system not the module.

TID[7:0] Transaction identifier, defined by the module not the system.

DUMMY[7:0] Dummy bits.

DATA[63:0] Address to be flushed.

Response

R_OPC[7:0] Response type, either 0x80 for Success, or 0x81 for Failure.

R_SRC[7:0] Copy of SRC.

R_TID[7:0] Copy of TID.
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

240 DBUS protocol
PRELIMINARY DATA
D
R

A
F

T

Purge - purge a physical address

Forces any data held by a module and associated with a physical address to be made
coherent with the actual data held at the physical address whilst removing any
copies of the data held in the target module.

Request
OPC[7:0] Opcode Purge (0x8).

ADDR[31:0] Address, where ADDR[31:24] identifies the module.

ADDR[23:3] specifies the offset within the module.

ADDR[2:0] is not significant.

SRC[7:0] Source identifier, defined by the system not the module.

TID[7:0] Transaction identifier, defined by the module not the system.

DUMMY[7:0] Dummy bits.

DATA[63:0] Address to be purged.

Response

R_OPC[7:0] Response type, either 0x80 for Success, or 0x81 for Failure.

R_SRC[7:0] Copy of SRC.

R_TID[7:0] Copy of TID.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

05-SA-10003 v1.0 SH-5 S

PRELIMINARY DATA
4
Implementation
specifics
D
R

A
F

T
4.1 Scalable parameters

The number of various debug facilities is scalable.

This section defines these specifics for the SH-5 evaluation device.

4.1.1 WP channels

SH-5 evaluation device provides the following channels:

Base channel
name

Locality Function
Number of
channels

Actual channel
names

BRK WPC CPU 1 BRK0

IA WPC Instruction address 4 IA0 thru IA3

OA WPC Operand address 2 OA0 thru OA1

IV WPC Instruction value 2 IV0 thru IV1

BR DM Branch trace 1 BR0

FPF DM Fast printf 1 FPF0

PL DM SuperHyway bus analyzer 2 PL0 thru PL1

DM DM Debug module 1 DM0

WPC_PERF WPC CPU performance monitor 2 WPC_PERF0 thru
WPC_PERF1

Table 83: SH-5 evaluation device WP channels
ystem Architecture, Volume 3: Debug

242 Scalable parameters
PRELIMINARY DATA
D
R

A
F

T

4.1.2 Event counters

SH-5 evaluation device provides two 16-bit event counters

One event counter is implemented in the WPC (for timing critical exception
matching). This counter is only accessible to WPC implemented channels.

One event counter is implemented in the DM. This counter is only accessible to the
PL watchpoint channels.

Event counter latency

Table 85 shows the latency for the event counters.

The latency for WPC.ECOUNT_VALUE_X means that the new value is visible between 1
and 4 instructions after the one that hits a WPC channel and causes the change in
value. Put another way, between 0 and 3 following instructions will use the old value
of WPC.ECOUNT_VALUE_X in their precondition checks. The actual number of
instructions involved depends on whether stalls occur in the pipeline (for example,
due to resource or operand dependencies, or delays in instruction fetching).

ECOUNT.SIZE = 16

Event counter ID (4 bits) Name

0b0000 WPC.ECOUNT_VALUE_0

0b0001 DM.ECOUNT_VALUE_0

All other values Undefined

Table 84: SH-5 evaluation device event counter Ids

Event counter name

Delay from WPC watchpoint hit (CPU
cycles) Delay from Bus

Analyzer
watchpoint hit (DM

cycles)
For use in

precondition
check

For use in
subsequent

counter update

WPC.ECOUNT_VALUE_X 4 1 Not applicable

DM.ECOUNT_VALUE_X Not applicable Not applicable TBD

Table 85: Update latency for event counters
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Scalable parameters 243
PRELIMINARY DATA
D
R

A
F

T

However, the new value will be used immediately if the following instruction also
requires a decrement to the counter. That is, no updates are lost if a succession of
instructions each cause a decrement to the counter.

4.1.3 Performance counters

SH-5 evaluation device provides four 48 bit performance counters, two located
within the WPC and two located in the DM.

4.1.4 Chain latches

SH-5 evaluation device provides 6 chain latches, these latches are not all globally
accessible.

The WPC based latches are only available to WPC implemented channels, expect
the IA chain latches which are globally readable. The DM based latches are
available to all WP channels.

Setting a WP channel to affect unavailable chain-latches will result in undefined
behavior.

PCOUNT.SIZE = 48

Performance counter ID (4 bits) Name .PCOUNT_ID availability

0b0000 WPC.PCOUNT_VALUE_0 Only for WPC channels.

0b0001 WPC.PCOUNT_VALUE_1

0b0010 DM.PCOUNT_VALUE_0 Only for DM channels.

0b0011 DM.PCOUNT_VALUE_1

All other values Undefined

Table 86: SH-5 evaluation device performance counter Ids
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

244 Scalable parameters
PRELIMINARY DATA
D
R

A
F

T
There is not global connectivity for the ACTION_CHAIN_ALTER actions between the
WPC and DM based WP channels. Thus, the appropriate registers must be used to
achieve this effect - for a WPC channel to alter a DM chain latch, the WPC channel’s
DM.WP_NX_ACTION.ACTION_CHAIN_ALTER field and the CHAIN_ID fields are used (the
channel’s WPC.WP_NX_ACTION.ACTION_CHAIN_ALTER field should be set to not alter a
chain-latch).

Chain-latch latency

Due to inter-module delays, not all chain latches change state immediately upon the
detection of a watchpoint hit. Table 88 specifies the latency for each of the
chain-latch groups.

Chain-latch
ID (4-bits)

Latch name
Pre-condition for WPC

watchpoints

Pre-condition for
DM and bus

analyzer
watchpoints

Changeable by
watchpoint hits

0x0 WPC.IA0_CHAIN OA, IV, WPC_PERF FPF, BR, PL Auto by IA0

0x1 WPC.IA1_CHAIN OA, IV, WPC_PERF FPF, BR, PL Auto by IA1

0x2 WPC.IA2_CHAIN OA, IV, WPC_PERF FPF, BR, PL Auto by IA2

0x3 WPC.IA3_CHAIN OA, IV, WPC_PERF FPF, BR, PL Auto by IA3

0x8 WPC.CHAIN_0 IA, OA, IV, WPC_PERF FPF, BR, PL IA, OA, IV

0xC DM.CHAIN_0 IA, OA, IV, WPC_PERF FPF, BR, PL IA, OA, IV, PL

0xF DM.CHAIN_TRIG_IN IA, OA, IV, WPC_PERF FPF, BR, PL, IA, OA, IV, PL

All other
values

undefined

Table 87: SH-5 evaluation device chain latch IDs
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Scalable parameters 245
PRELIMINARY DATA
D
R

A
F

T
The latency for the WPC.IAX_CHAIN latches means that the new value is always
visible to the following instruction.

The latency for the WPC.CHAIN_X latch means that the new value is visible between
1 and 4 instructions later than the instruction that causes the change to the latch
value. Put another way, between 0 and 3 following instructions will use the old value
of WPC.CHAIN_X in their precondition checks. The actual number of instructions
involved depends on whether stalls occur in the pipeline (for example, due to
resource or operand dependencies, or delays in instruction fetching).

Latency for DM.CHAIN_x

No figures are specified for the latency of DM.CHAIN_X in association with the
watchpoint controller channels. The timing relationship between particular
SuperHyway transactions and particular instructions being executed in the CPU is
partially asynchronous, due to the presence of caches and instruction buffers inside
the CPU core.

There is no general way to specify whether the altering of DM.CHAIN_X by a bus
analyzer hit on a particular SuperHyway transaction will or will not influence the
precondition checks for a particular CPU instruction on the WPC’s IA/IV/OA
channels.

Latch name
Delay from WPC

watchpoint Hit (CPU
clocks)

Delay from bus analyzer
watchpoint hit (DM

clocks)

WPC.IAX_CHAIN 1 Not applicable

WPC.CHAIN_X 4 Not applicable

DM.CHAIN_X Not specified - see below. 1

Latch name
Cycles from pin assertion and chain latch state change

(DM Clocks)

DM.CHAIN_TRIGIN 3 to 4 (depending on resynchronization)

Table 88: Chain-latch latency
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

246 Scalable parameters
PRELIMINARY DATA
D
R

A
F

T

Equivalently, if DM.CHAIN_X is altered as a result of an IA/IV/OA channel hit by a
particular CPU instruction, there is no general way to specify whether this will or
will not influence the precondition checks for the bus analyzer channels on a
particular SuperHyway transaction. Moreover, the number of outstanding hits in
the debug module’s capture buffer also affects the time taken between the
watchpoint hit and the update to DM.CHAIN_X.

4.1.5 DM FIFO

SH-5 evaluation device provides a DM FIFO of 504 bytes.

This is arranged a 21 entries each 3*64-bits wide.

Trace entries are packed into the DM FIFO at constant 3*64 bit intervals, thus the
DM FIFO can hold a maximum of 21 trace messages at a time.

DM FIFO high-water mark

SH-5 evaluation device’s FIFO high-water mark is 8 entries from the FIFO-full
condition.

DM capture buffer high-water mark

SH-5 evaluation device’s capture buffer high-water mark is 8 entries from the full
condition.

When stall mode is selected and a high-water mark detection occurs, the CPU will
be stalled in time to avoid overfilling the capture buffer.

Clearing the DM FIFO in DM FIFO trace hold or circular DM
FIFO mode.

Even when the source of trace generation are disabled, there is a bounded period
when trace can be generated from previously occurring events which are held in the
capture buffer.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Scalable parameters 247
PRELIMINARY DATA
D
R

A
F

T

Thus the recommended sequence for clearing the FIFO is:

... disable all sources of trace generation
while (DM.TRCTL.ff_status != empty) {

-- attempt to clear it
write DM.TRCTL.ff_clear = 1

-- loop for the implementation defined limit at which captured
trace may be generated

tries = 0;
while ((DM.ff_status != empty) &&

(tries < MAX_CLEAR_RETRIES)) {
tries++;

}

}

Note: For SH-5 evaluation device, MAX_CLEAR_RETRIES is 400.

4.1.6 Trace message header fields

SH-5 evaluation device provides the following watchpoint channels which can
generate trace messages:

Channel name Function
Source_module

code
Event_type code

IA0 Instruction address 0 0x00

IA1 Instruction address 0 0x01

IA2 Instruction address 0 0x02

IA3 Instruction address 0 0x03

OA0 Operand address 0 0x04

OA1 Operand address 0 0x05

IV0 Instruction value 0 0x06

IV1 Instruction value 0 0x07

BR Branch trace 0 0x08

Table 89: SH-5 evaluation device trace message codes
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

248 Scalable parameters
PRELIMINARY DATA
D
R

A
F

T4.1.7 Action and trace generation timing

Within the debug module, the state machine which extracts watchpoint hit entries
from the capture buffer and processes actions defined by the associated
DM.WP_X_ACTION register requires the following DM clock cycles to perform the
actions:

Example

A branch trace message consists of three fields (header, source address, destination
address) and can vary in size from 4 bytes to 11 bytes. It takes 11 DM clock periods
to extract the entry from the capture buffer and generate a branch trace message,
which is the same as 22 CPU clock periods.

FPF Fast printf 0 0x09

PL0 SuperHyway bus analyzer 1 0x00

PL1 SuperHyway bus analyzer 1 0x01

Channel name Function
Source_module

code
Event_type code

Table 89: SH-5 evaluation device trace message codes

Action Number of DM clock periods to perform the action

All actions except trace message
generation

4

Trace message generation 8 plus one clock cycle for each trace message fielda.

Table 1 SH-5 evaluation device action timing
a. The 16-bit header of each message is considered to be a single field. The size of the

field does not affect the number of clock cycles, for example, a 1-byte ASID field and a
4-byte full address field both take one clock cycle to process.
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Scalable parameters 249
PRELIMINARY DATA
D
R

A
F

T

4.1.8 Timestamping

Trace messages are generated by emptying information from the capture buffer(s)
into the DM FIFO. If the capture buffer(s) or DM are full, the trace message will not
be generated until space is available.

Thus the timestamp value generated in the trace message is that at the point of
generation (TGEN), not the point of WP triggering (TTRIG).

Normally TGEN == TTRIG. However if the capture buffer(s) or DM FIFO are full and
trace message generation is delayed, TGEN = (TTRIG + TDELAY) where TDELAY is the
number of timestamp cycles the generation was delayed for. Thus TTRIG > TGEN can
also result in reference messages being generated to reseed the timestamp counter.

This is not regarded as a problem, as all trace messages are generated in the same
manner, and thus the timestamp values are all in the same time domain, and
typically TDELAY will range from 0 to a small number of cycles.

4.1.9 Trigger out pulse width

SH-5 evaluation device’s (low-going) trigger-out pulse width is a minimum of 1 DM
clock cycle followed by a recovery period also of a minimum of 1 DM clock cycle.

4.1.10 JTAG IR DEBUG codes

DEBUG - the JTAG instruction code used to enable the JTAG port as the debug link
is 0b11100.

WAKEUP - the JTAG instruction code used to wake a system from a standby state is
0b10101.
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

250 Scalable parameters
PRELIMINARY DATA
D
R

A
F

T

4.1.11 DM.VCR register

The definition of DM.VCR for this implementation is given below..

DM.VCR 0x000000

Field Bits Size Volatile? Synopsis Type

PERR_FLAGS [7:0] 8 � P-port error flags Varies

Operation Standard PERR_FLAGS, see System Architecture Volume 1.

When read

When written

HARD reset 0

MERR_FLAGS [15:8] 8 � P-module error flags (module specific) Varies

Operation Standard MERR_FLAGS, see System Architecture Volume 1.

When read

When written

HARD reset 0

MOD_VERS [31:16] 16 — Module version RO

Operation Used to indicate module version number

When read Returns 0x0

When written Ignored

HARD reset 0x0

MOD_ID [47:32] 16 — Module identity RO

Operation Used to identify module

When read Returns 0x1823

When written Ignored

HARD reset 0x1823

Table 90: DM.VCR
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Scalable parameters 251
PRELIMINARY DATA
D
R

A
F

T
4.1.12 Bus analyzer module/SuperHyway mapping

The mapping from physical module number to SuperHyway module numbers as
used by the PL_MODULE field of DM.WP_PLX_ACTION (Table 20: DM.WP_PLx_ACTION
register definition on page 60) is given below:

BOT_MB [55:48] 8 — Bottom memory block RO

Operation Used to identify bottom memory block

When read Returns 0x01

When written Ignored

HARD reset 0x01

TOP_MB [63:56] 8 — Top memory block RO

Operation Used to identify top memory block

When read Returns 0x01

When written Ignored

HARD reset 0x01

DM.VCR 0x000000

Field Bits Size Volatile? Synopsis Type

Table 90: DM.VCR

DM.PLx_ACTION.pl_
module

DM.PLx_FRZ.freeze_x
SuperHyway module

name
SuperHyway

source iD

0 bit 0 S5 CPU 0x0D

1 bit 1 DM 0x0C

2 bit 2 DMA 0x0E

3 bit 3 PCI 0x60

4 bit 4 SuperHyway socket 0x70

5 bit 5 F_EMI 0x08

Table 91: DM.PLx_ACTION.pl_module/DM.PLX_FRZ.freeze_x/SuperHyway module mapping
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

252 Debug register address map
PRELIMINARY DATA
D
R

A
F

T

Bus analyzer destination mask/value implementation

The current SuperHyway implementation does not provide the bus analyzer with
SRC information on response segments. Therefore the bus analyzer’s destination
mask/value fields and comparators are not implemented, and thus behave as if the
destination always matches.

4.2 Debug register address map
All the registers associated with the debug architecture are detailed in the following
section.

Registers implemented in the WPC have memory mapped addresses within the
WPC address range. Registers implemented outside of the WPC have memory
mapped addresses within the DM address range.

4.2.1 WPC registers

Each WP channel has eight 64-bit registers available, these consist of:

• a PRE register;

• an ACTION register;

• space for six further registers, used as required by each channel.

Thus, a single instance of a given WPC WP channel type can occupy up to 0x40
bytes.

There are up to 16 instances of each WPC WP channel type, and up to 0x400 bytes
per channel type can be occupied.

There are up to 16 different channel types, and thus the WPC CPU channels in total
can occur 0x4000 bytes.

All other values All other bit positions Unused Undefined

DM.PLx_ACTION.pl_
module

DM.PLx_FRZ.freeze_x
SuperHyway module

name
SuperHyway

source iD

Table 91: DM.PLx_ACTION.pl_module/DM.PLX_FRZ.freeze_x/SuperHyway module mapping
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug register address map 253
PRELIMINARY DATA
D
R

A
F

T

This split denotes the address encoding appropriate for mapping all the WPC
registers into the WPC address space.

4.2.2 DM registers

The basic ordering is DM, WPC. Within each of these there is a regular structure as
shown in Table 92.

Bank
Address

Offset range
Bit 23:20 Bit 14

Chain-latches 0b0001 0b0 0x100000 .. 0x103FFF

CPU control 0b0001 0b1 0x104000 .. 0x104018

Event counters 0b0010 0b0 0x200000 .. 0x203FFF

Performance counters 0b0010 0b1 0x204000 .. 0x207FFF

IA and IV WP channels 0b0100 0b0 0x400000 .. 0x403FFF

OA WP channels 0b0100 0b1 0x404000 .. 0x407FFF

Table 92: WPC debug register layout

Module bank In-bank ordering Offset range

Number of
64-bit

registers
assigned

Debug module
(includes bus
analyzer
registers)

Module specific setup and
chain-latches

0x100000 .. 0x100080 17

Event and performance
counters

0x200000 .. 0x200018 3

Registers physically located in
bus analyzer

0x400000 .. 0x4000F8 16 per
channel, 2
channels

WP channels, including bus
analyzer registers physically
located in DM

0x800000 .. 0x800248 8 per
channel, 10
channels

Table 93: Debug register layout
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

254 Debug register address map
PRELIMINARY DATA
D
R

A
F

T

Figure 18: DM control register groups

DM.WP_IA0_PRE

DM.WP_IA0_ACTION

6-words per
channel spare

DM.WP_IA1_PRE

DM.WP_IA1_ACTION

DM.WP_PL1_PRE

DM.WP_PL1_ACTION

Watchpoint channels
address group

10 watchpoint channels
currently assigned

DM module-specific
control registers

17 registers currently
assigned

DM.ECOUNT_VALUE0

DM.PCOUNT_VALUE0

DM.PCOUNT_VALUE1

Six
DM.WP_PL0_Regs

10-words per
channel spare

Six
DM.WP_PL1_Regs

Module-specific
address group

Counter address
group

Bus analyzer address
group
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug register address map 255
PRELIMINARY DATA
D
R

A
F

T

4.2.3 Complete register list

Note: The offsets given below are relative to either the CPU base address, or the DM base
address, according to whether the register name prefix is “WPC” or “DM”. See the
SH-5 System Architecture Manual for the address map.

All registers shown in this table must be accessed using 64-bit operations. When
writing to the registers from the instruction stream, suitable instructions are listed
in Table 1: Instructions for accessing WPC and DM registers on page 17.

Register name Offset References

WPC chain latches

WPC.IA_CHAIN_0 0x100000 Section 1.2.8: Chain latches
on page 21 and
Table 6: WPC.IA_CHAIN_x
definition on page 26

WPC.IA_CHAIN_1 0x100008

WPC.IA_CHAIN_2 0x100010

WPC.IA_CHAIN_3 0x100018

WPC.CHAIN_0 0x100020

WPC event counters

WPC.ECOUNT_VALUE_0 0x200000 Section 1.2.8: Chain latches
on page 21.

WPC performance counters

WPC.PCOUNT_VALUE_0 0x204000 Section 1.2.10: Performance
counters on page 28 and
Table 8 on page 29.WPC.PCOUNT_VALUE_1 0x204008

WPC CPU control

WPC.CPU_CTRL_ACTION 0x104000 Section 1.3: CPU control on
page 30.

WPC.CPU_DBRMODE 0x104008 WPC.CPU_DBRMODE on
page 74.

WPC.CPU_DBRVEC 0x104010 WPC.CPU_DBRVEC on
page 76

Table 94: Register map and references
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

256 Debug register address map
PRELIMINARY DATA
D
R

A
F

T

WPC/DM interconnect control

WPC.ADDR_IN_TRACE 0x104018 Section
1.5.1: WPC.ADDR_IN_TRA
CE register definition on
page 65.

WPC channel-specific registers

OA WPC.WP_OA0_PRE 0x404000 Table 14: WPC.WP_{IA/OA/
IV/WPC_PERF}x_PRE
register definition on
page 38

WPC.WP_OA0_ACTION 0x404008 Table 18: WPC.WP_{IA/OA/
IV}x_ACTION register
definition on page 49

WPC.WP_OA0_MATCH_START 0x404010 Table 52: WPC.WP_OAx_M
ATCH_START register
definition on page 143

WPC.WP_OA0_MATCH_END 0x404018 Table 53: WPC.WP_OAx_M
ATCH_END register
definition on page 144

WPC.WP_OA1_PRE 0x404040 See cross references for
channel WP_OA0.

WPC.WP_OA1_ACTION 0x404048

WPC.WP_OA1_MATCH_START 0x404050

WPC.WP_OA1_MATCH_END 0x404058

IA WPC.WP_IA0_PRE 0x400000 Table 14: WPC.WP_{IA/OA/
IV/WPC_PERF}x_PRE
register definition on
page 38

WPC.WP_IA0_ACTION 0x400008 Table 18: WPC.WP_{IA/OA/
IV}x_ACTION register
definition on page 49

Register name Offset References

Table 94: Register map and references
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug register address map 257
PRELIMINARY DATA
D
R

A
F

T

WPC.WP_IA0_MATCH_START 0x400010 Table 50: WPC.WP_IAx_MA
TCH_START register
definition on page 139

WPC.WP_IA0_MATCH_END 0x400018 Table 51: WPC.WP_IAx_MA
TCH_END register definition
on page 140

WPC.WP_IA1_PRE 0x400040 See cross references for
channel WP_IA0.

WPC.WP_IA1_ACTION 0x400048

WPC.WP_IA1_MATCH_START 0x400050

WPC.WP_IA1_MATCH_END 0x400058

WPC.WP_IA2_PRE 0x400080

WPC.WP_IA2_ACTION 0x400088

WPC.WP_IA2_MATCH_START 0x400090

WPC.WP_IA2_MATCH_END 0x400098

WPC.WP_IA3_PRE 0x4000C0

WPC.WP_IA3_ACTION 0x4000C8

WPC.WP_IA3_MATCH_START 0x4000D0

WPC.WP_IA3_MATCH_END 0x4000D8

Register name Offset References

Table 94: Register map and references
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

258 Debug register address map
PRELIMINARY DATA
D
R

A
F

T

IV WPC.WP_IV0_PRE 0x400400 Table 14: WPC.WP_{IA/OA/
IV/WPC_PERF}x_PRE
register definition on
page 38

WPC.WP_IV0_ACTION 0x400408 Table 18: WPC.WP_{IA/OA/
IV}x_ACTION register
definition on page 49

WPC.WP_IV0_MATCH_VALUE 0x400410 Table 56: WPC.WP_IVx_MA
TCH_VALUE register
definition on page 153

WPC.WP_IV0_MATCH_MASK 0x400418 Table 57: WPC.WP_IVx_MA
TCH_MASK register
definition on page 153

WPC.WP_IV1_PRE 0x400440 See cross references for
channel WP_IV0.

WPC.WP_IV1_ACTION 0x400448

WPC.WP_IV1_MATCH_VALUE 0x400450

WPC.WP_IV1_MATCH_MASK 0x400458

WPC.
PERF

WPC.WP_WPC_PERF0_PRE 0x400200 Table 14: WPC.WP_{IA/OA/
IV/WPC_PERF}x_PRE
register definition on
page 38

WPC.WP_WPC_PERF0_MATCH_TYPE 0x400208 Table 60: WPC.WP_WPC_P
ERFx_MATCH_TYPE
register definition on
page 166

WPC.WP_WPC_PERF1_PRE 0x400210 Table 14: WPC.WP_{IA/OA/
IV/WPC_PERF}x_PRE
register definition on
page 38

WPC.WP_WPC_PERF1_MATCH_TYPE 0x400218 Table 60: WPC.WP_WPC_P
ERFx_MATCH_TYPE
register definition on
page 166

Register name Offset References

Table 94: Register map and references
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug register address map 259
PRELIMINARY DATA
D
R

A
F

T

DM version control/error rags

DM.VCR 0x0 Section 4.1.11: DM.VCR
register on page 250.

DM chain latches

DM.CHAIN_0 0x100000 Section 1.2.8: Chain latches
on page 21 and
Table 5: {WPC/
DM}_CHAIN_x definition on
page 25

DM.CHAIN_TRIG_IN 0x100008

DM event counters

DM.ECOUNT_VALUE_0 0x200000 Table 7: {WPC/
DM}.ECOUNT_VALUE_x
register definition on
page 27.

DM performance counters

DM.PCOUNT_VALUE_0 0x200008 Section 1.2.10: Performance
counters on page 28.

DM.PCOUNT_VALUE_1 0x200010

Register name Offset References

Table 94: Register map and references
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

260 Debug register address map
PRELIMINARY DATA
D
R

A
F

T

DM misc.

DM.EXP_CAUSE 0x100010 Table 11: DM.FORCE_DEB
UGINT register definition on
page 34.

DM.FPF 0x100018 Section 1.8.9: DM.FPF
register definition on
page 97.

DM.PC 0x100020 Section 1.8.13: DM.FIFO_0/
DM.FIFO_1/DM.FIFO_2
(FIFO port register) on
page 112.

DM.WP_BR_FILTER 0x100028 Table 58: DM.WP_BR_FILT
ER register definition on
page 157

DM.OA_MATCH_DATAVAL 0x100030 Section 1.12.3: Data match
registers on page 147

DM.OA_MATCH_
DATAMASK

0x100038

DM.FORCE_DEBUGINT 0x100088 DM.FORCE_DEBUGINT
register definition on
page 34.

Register name Offset References

Table 94: Register map and references
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug register address map 261
PRELIMINARY DATA
D
R

A
F

T

DM trace/FIFO control

DM.TRCTL 0x100040 Table 31: DM.TRCTL
definition on page 97.

DM.TRBUF 0x100048 Table 32: DM.TRBUF
definition on page 107.

DM.TRPTR 0x100050 Table 33: DM.TRPTR
definition on page 111.

DM.FIFO_0 0x100058 Table 35: DM.FIFO_{0/1/2}
definition on page 114

DM.FIFO_1 0x100060

DM.FIFO_2 0x100068

DM.FIFO_REQ 0x100070 Table 36: DM.FIFO_REQ
definition on page 115.

DM.FIFO_ACK 0x100078 Table 37: DM.FIFO_ACK
definition on page 116.

DM.CLKOUTDIV 0x100090 Table 74: DM.CLKOUTDIV
definition on page 211.

Register name Offset References

Table 94: Register map and references
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

262 Debug register address map
PRELIMINARY DATA
D
R

A
F

T

SuperHyway bus analyzer

PL DM.WP_PL0_PRE 0x800200 Table 16 on page 44

DM.WP_PL0_ACTION 0x800208 Table 20 on page 60

DM.WP_PL0_CTRL 0x400000 Table 67 on page 190.

DM.WP_PL0_EXCTRL 0x400008 Table 68 on page 193.

DM.WP_PL0_MATCH_START 0x400010 Table 65 on page 188.

DM.WP_PL0_MATCH_END 0x400018 Table 66 on page 189.

DM.WP_PL0_CBHDR 0x400020 Table 69 on page 194.

DM.WP_PL0_CBDATA 0x400028 Table 70 on page 196.

DM.WP_PL1_PRE 0x800240 See cross references for
channel WP_PL0.

DM.WP_PL1_ACTION 0x800248

DM.WP_PL1_CTRL 0x400080

DM.WP_PL1_EXCTRL 0x400088

DM.WP_PL1_MATCH_START 0x400090

DM.WP_PL1_MATCH_END 0x400098

DM.WP_PL1_CBHDR 0x4000A0

DM.WP_PL1_CBDATA 0x4000A8

DM.PL_FRZ 0x100080 Table 64 on page 186.

Register name Offset References

Table 94: Register map and references
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

Debug register address map 263
PRELIMINARY DATA
D
R

A
F

T

DM channel-specific registers

IA DM.WP_IA0_PRE 0x800000 Table 15: DM.WP_{IA/OA/
IV}x_PRE register definition
on page 42

DM.WP_IA0_ACTION 0x800008 Table 19: DM.WP_{IA/OA/
IV}x_ACTION register
definition on page 54

DM.WP_IA1_PRE 0x800040 See cross references for
channel WP_IA0.

DM.WP_IA1_ACTION 0x800048

DM.WP_IA2_PRE 0x800080

DM.WP_IA2_ACTION 0x800088

DM.WP_IA3_PRE 0x8000C0

DM.WP_IA3_ACTION 0x8000C8

OA DM.WP_OA0_PRE 0x800100 See cross references for
channel WP_IA0.

DM.WP_OA0_ACTION 0x800108

DM.WP_OA1_PRE 0x800140

DM.WP_OA1_ACTION 0x800148

IV DM.WP_IV0_PRE 0x800180 See cross references for
channel WP_IA0.

DM.WP_IV0_ACTION 0x800188

DM.WP_IV1_PRE 0x8001C0

DM.WP_IV1_ACTION 0x8001C8

FPF DM.WP_FPF_PRE 0x800280 Table 17: DM.WP_FPF_PR
E register definition on
page 46

Register name Offset References

Table 94: Register map and references
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

264 Debug register address map
PRELIMINARY DATA
D
R

A
F

T

SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

PRELIMINARY DATA
Index

D

R
A

F
T

A
Actions 13, 20, 37, 48, 66, 68, 120, 124,

179, . 184
Address 12, 15-16, 19-20, 26, 35, 37, 65,

. .76-77, 81, 87, 89, 92, 94, 109, 120-
121, . . . 124, 127, 130-131, 133-134,
136, 138-146, 150-151, 155, 173-174,
180-181, 183, 188-189, 195, 200, 205,
. . . 207, 210, 226-227, 229, 232-241,
247- 248, 252-253, 255

Address map 12, 15, 17, 200, 255
Addressing mode 146
Aligned 146, 181, 188-189
Alignment . 228
ALLOCO . 146

B
BA . 14, 134
BEQI 158, 169-170
BF 158, 169-170
BGE 158, 169-170
BGEU 158, 169-170
BGT 158, 169-170
BGTU 158, 169-170
BNE 158, 169-170
BNEI 158, 169-170

Bot_mb . 251
BRAF . 158
BREAK . 138
Break . 136
BRK . . 16, 35, 66, 77, 81, 136-138, 241
BT 158, 169-170
Bus Analyzer . .13-14, 16, 20-22, 35-36,

64, . 77, 81, 86, 89, 93, 103, 119-121,
123, . . . 131, 164, 179-180, 183-185,
187, . . . 241, 244-245, 248, 253, 262

Byte . 232-238

C
Cache 14, 20, 76, 78, 146, 166-168, 183,

. 185, 229
Coherency 166

Channel 14, 16, 20, 23-24, 26-29, 35-38,
41- . 42, 44, 48-52, 54, 56, 58, 60, 62,
66-68, 70, 77-78, 81, 87, 92-94, 97-98,
105, 120, 123-124, 136-137, 139-141,
143-144, 146-147, 150, 152-154, 156,
. . . 160, 163-166, 177, 179-180, 184,
187-190, 193-194, 196-197, 241-243,
247, 252-253, 256-258, 262-263

Char . 121
Conditional branch 158, 169-170
Context . 16, 30
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

266
PRELIMINARY DATA
D
R

A
F

T

Control flow 156
Control registers (CR) 25, 180, 185, 187,

225
CPU_CTRL 30-31
CPURESET 31, 80

D
Data 13-14, 20, 54, 59, 65, 68, 78, 81, 85,

87-88, 90, 93, 97, 101, 103, 112, 114-
116, . . .119, 126, 128, 131-132, 136,
143, . . .147-150, 167, 179, 183, 196,
200-202, 204-208, 210, 213, 215-218,
. 220-221, 228-229, 232-240

DBRVEC . 30, 73-74, 76, 78, 80-81, 138,
142, 147, 151, 155, 165, 197

DEBUG 203, 212, 219-225, 249
Debug . . 11-17, 19-20, 22, 25-28, 30-31,

33, . 35-41, 43-44, 46, 48-50, 54, 59-
61, . 63, 66, 73-74, 76-81, 84-88, 92-
95, 100, 103-104, 107, 110, 112, 114,
117-120, 123, 131, 134, 136-138, 147,
. . .151, 157, 164, 179, 181, 184-185,
193-194, 196-197, 199-209, 211-213,
215-217, 219-223, 227-228, 233-234,
241,248-249, 252-253, 260

DEBUGINT 33-34, 74, 79-81, 138, 147,
151, . 165

DEBUGSS . 138
Delayed branch 138
DM 14, 16, 19, 22-23, 25-30, 33-34, 36-

37, . 39, 42, 44-46, 49-50, 52-54, 56,
58- . 66, 68, 73, 80-81, 83-84, 87-91,
94- 103, 105, 107, 110-117, 119, 123-
124, . . .132, 136, 138, 141-143, 147-
151, . . . 154-157, 160, 163-165, 181,
184-186, 188-190, 193-194, 196-197,
202- . . 203, 206, 211, 213, 218, 222,
241- 246, 248-250, 252-256, 259-263

Dm_trig_n . 12
Dm_trout_n . . 12, 19, 58, 62, 87, 95, 97,

105, 201, 225

E
Effective address 141, 145
ELSE . 93
Encoding 120-121
Endian

Endianess 118
Little-endian 118, 201, 204

Environment . 88
Event 12-14, 26-28, 30-31, 33-34, 36-41,

43, 45-46, 48, 50, 60-61, 66-68, 73-74,
76-80, 91, 95-96, 120, 123-125, 128-

131, 137-138, 141-142, 147, 150-151,
154-155, 157, 159-160, 163-165, 177,
. . . 179-180, 184, 193, 196, 225, 242,
247, 253, 255, 259-260

Exception .13, 16, 20, 48-49, 66, 68, 78-
81, . 92, 137-138, 142, 147, 151, 155,
159, 171, 242

F
FIFO . 12, 19-20, 36, 81, 83, 86-91, 93,

99- 101, 103, 112-116, 118-119, 164-
165, 200, 206, 246

Flash . 20
Flush . 239
FPU . 173
Freeze . 64, 142, 152, 156, 179, 184-186,

197
Function . . 22, 45, 59, 64, 87, 94, 96-97,

105, . . . 124, 150, 185, 193, 221-223,
229, 241, 247

Functions . 11, 13, 16, 86, 95, 193, 199,
207, 219, 221, 223-225

I
IA . 22-24, 26, 35, 37, 56, 66, 81, 92-93,

125, . . 139, 141, 209, 213, 241, 243-
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

267
PRELIMINARY DATA
D
R

A
F

T

244, 247, 256, 263
ICBI . 166
Identifier 228, 232-240
IF . 93
ISA . 41, 117
IV . . 22-23, 35, 37-38, 41-42, 48-49, 54,

66- . . 67, 81, 94, 128, 152, 154, 213,
241, 244, 247, 256, 258, 263

J
JEI . 219
JMP . 158
JSR . 158
JTAG . . 11, 16, 19-20, 85-87, 103-104,

118, . . . 199, 212-213, 215-218, 221,
223, . 249

K
Kernel . 172

L
Link . 11, 14-15, 19-20, 85-88, 103-104,

118-120, 199-202, 204-206, 208, 211-
213, 219-220, 223, 227-228, 233-234,
. 249

Load 136, 183, 229, 232-234
Load16 . 183
Load32 . 183
Loading . 212
Long . 215

M
Map 15, 20, 36, 200, 255
Memory 12-13, 15, 19-20, 30, 35, 86-88,

92, 103, 107-109, 118, 126, 128, 136,
. . .143, 146, 163, 179, 200, 202, 207

Memory block 251
Memory map 136

Merr_flags . 250
Message 12-13, 15-16, 19-20, 48, 56-58,

61- . . 62, 86-90, 92-94, 97, 100, 103,
110-116, 118-120, 122-125, 128-131,
133-134, 136, 142, 151, 155-156, 160,
. . 163, 179, 184, 194, 197, 199, 201,
204-210, 212-213, 215-218, 223, 227-
229, 246-248

MMU . 20, 74, 76, 78-79, 183, 185, 229
MMUOFF . 78
Mod_id . 250
Mod_vers . 250
Mode . 12, 19, 33, 41, 56, 67, 69, 88-89,

91-93, 95-98, 100-103, 105, 107, 110,
112, 114-117, 123, 136, 138-140, 145,
. . 150, 154, 157, 164, 172, 179, 220-
221, . 246

User . 41, 172
Monitoring . 174
Msk 228, 232-238

N
Name 22, 35, 37, 231, 241-245, 247, 255
NOP 30, 173-174

O
OA .22-23, 35, 37-38, 42, 48-49, 54, 56,

59, . . 65-68, 81, 85, 90, 94, 125, 143,
145-147, 149-150, 241, 244, 247, 256,
. 258, 263

OCBI . 146
Opcode 31, 132-133, 152, 180-181, 192,

194, 210, 227, 231-240
Operand 12, 16, 35, 65, 77, 81, 143-144,

151, 167-168, 241, 247
OR . 25
Outputs 22, 185
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

268
PRELIMINARY DATA
D
R

A
F

T

P
Pack . 89
PANIC 79-80, 138, 142, 151, 155
Panic . 30-31, 33, 48, 66, 73-74, 76-80,

137
PC . .12, 35, 87, 89, 117, 120, 124-126,

128, . . . 130-131, 134, 138, 141, 209
Performance counters .13-14, 28, 48, 52-

53, .62-63, 66, 93, 165, 179-180, 243
Perr_flags . 250
Physical memory 15, 20, 36, 200
Pipelining . 228
PLL . 202
PMU . 203
POWERON 80, 203, 220-224
Power-on reset 80
P-port . 250
PREFI . 166-167
Printf 13, 15, 22, 36, 45, 87-88, 97, 119,

131, 241, 248
Priority 33, 78, 194
Process 12, 93, 118, 205, 218, 248
Profiling . 12
Purge . 240

R
R_data 232-234, 238
R_src 227, 232-240
R_tid 228, 232-240
Real-time 95, 212
Reference 93-94, 118-121, 124, 133-134,

.231, 255-258, 262-263
Register 12-13, 15-17, 19, 22, 25, 27, 29-

31, . 33-38, 42, 44-46, 48-50, 54, 56,
58, . 60, 62, 64-66, 73-74, 76, 81, 83-
84, . . . 87-91, 94-95, 97-98, 102-103,
107, . . . 110, 112-113, 115-118, 120,
131, 136-144, 147-157, 160, 163-166,

173, 177, 180-181, 184-190, 193-194,
. . . 196, 200, 202, 211-213, 215-218,
220-221, 223, 225, 248, 250, 252-260,
. 263

DR 215-216, 218
EXPEVT 73, 79-81, 138, 142, 151, 155
Field Type

EXPANSION 77
READ-ONLY . 26, 101-102, 104, 111,

114, . 116-117, 194-196, 250-251
READ-WRITE 25, 27, 29, 31, 34, 38-

41, . .43-47, 49-65, 74, 76, 83-85,
97- . 100, 102-105, 107-109, 115,
139- 140, 143-144, 148-149, 153,
157- 159, 166-174, 186, 188-193,
211

RESERVED 25-26, 32, 34, 42-45, 47,
. .52-53, 55, 59, 64-65, 75-76, 85,
97, . 106, 108-109, 111-112, 115-
117, .139-140, 143-145, 153-154,
160, 175, 187-191, 193, 211

PEXPEVT . 79
SR 66, 76, 78-79
SR.BL 79, 138, 142, 151, 155
SR.MMU . 76
SR.STEP . 79
SR.WATCH . . 33, 66-67, 79, 136, 139,

143, 152, 156, 163-164, 166
SSR . 66, 79
TEA . 147, 151
TR . 103

Registers
Program Counter 87, 90, 117, 120, 134

RESERVED 25-26, 32, 34, 42-45, 47, 52-
53, 55, 59, 64-65, 75-76, 85, 97, 106,
108-109, 111-112, 115-117, 139-140,
143-145, 153-154, 160, 175, 187-191,
. 193, 211

RESET 203, 219-223
Reset 13, 25-27, 29-32, 34, 38-66, 73-78,

80, 83-85, 97-109, 111-112, 114-117,
139-140, 143-145, 148-149, 153-154,
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

269
PRELIMINARY DATA
D
R

A
F

T

158-160, 166-175, 186-196, 203, 211,
.213, 219-225, 250-251

Response . 13, 20, 74, 87, 100, 118, 179-
181, . . . 192, 194-195, 201, 204-205,
207- 208, 218, 227-229, 231-240

RESVEC 30, 73-74, 78, 80-81, 138, 142,
147, 151, 155, 165, 197

Rising edge 98, 201
RTE 66, 79, 159

S
Second . 37, 48, 120, 181, 212, 236-237
Section . 14-16, 20, 22-24, 26-31, 33-37,

39-40, 48, 50-51, 53, 56-58, 60-63, 66,
. 69, 73, 77-81, 84, 87-91, 94-95, 97,
100, . . .102-105, 107, 114, 120, 123-
124, . . . 136-137, 143-144, 148, 151,
164- . . 165, 179, 187, 200, 206, 208,
212-213, 221-222, 225, 231, 233-234,
236-237, 241, 252, 255-256, 258-260

Segment 180-181, 218
SHcompact .12, 117, 138, 140-141, 146,

149, 154, 158, 169-172
SHmedia . . .12, 117, 140-141, 146, 149,

154, 158, 169-172
Signed 120-121, 124, 130, 133
Sleep . 33
SPC . 138, 142
SRC 120, 129-130
Src 191, 227, 232-240
Standard 16, 79, 138, 142, 146-147, 151,

. . . 155, 165, 180, 197, 212-213, 250
Standby . 202
Status bit 92, 213, 215-218
Status register (SR) 66, 79
Status register field

ASID 12, 38, 40, 43, 46-47, 67, 87, 117,
. . .124-126, 128-129, 131, 157, 248

BL .79

S 158, 169-170
Store 136, 183, 207, 229, 235-237
Store instruction 30
Store16 . 183
Store32 . 183
SuperHyway 12-13, 16, 19-20, 36, 63-64,

. . 81, 84-87, 118, 123, 131-132, 134,
136, . . . 179-181, 183, 185-188, 190,
192, . . . 194-196, 205, 207, 227-229,
241, 248, 262

SWAP . 146
Synchronization 24, 204, 223

T
Thread . 92
Tid 228, 232-240
TLB . 78, 166
Top_mb . 251
Trace Buffer . . 19, 87-89, 103, 107-111,

114
Trace buffer 110, 207, 225
Tracing 12, 88, 107, 156
Trap . 35, 160
Trigger Pins . 12
Type 21, 25-29, 31, 34-38, 42, 44, 46, 48-

49, . 54, 57, 60-61, 65, 67-68, 74, 76,
78- 79, 83, 93, 97, 107, 111, 114-120,
122, . . .124, 130, 136, 139-140, 143-
144, 148-149, 152-153, 156-157, 163-
166, 174, 180-181, 186-190, 193-194,
. . . 196, 201, 204-205, 207, 211, 213,
221- . . . 222, 226, 231-240, 250, 252

U
Unconditional branch 35, 158

V
Volatile 25-27, 29, 31, 34, 38, 42, 44, 46,
SuperH, Inc.
05-SA-10003 v1.0 SH-5 System Architecture, Volume 3: Debug

270
PRELIMINARY DATA
D
R

A
F

T

. . 49, 54, 60, 65, 74, 76, 83, 97, 107,
111, 114-117, 139-140, 143-144, 148-
149, . . .153, 157, 166, 186, 188-190,
193- 194, 196, 211, 250

W
Watchpoint 12-14, 16, 20-23, 26-28, 35-

37, . 48-49, 51, 54, 56, 59, 61, 63-66,
69, . 77, 84-86, 90-96, 102-103, 105,
119, 123-126, 128-133, 136-137, 141-
143, . . . 145, 149-156, 160, 163-166,
179-181, 184-194, 196-197, 209, 225,
.244-245, 247-248

Width . . 14, 95, 105, 118, 200, 205, 249
WPC 14, 16-17, 21-23, 26, 28, 30-31, 35-

39, . 48-50, 52-54, 62-67, 74, 76, 85-
86, 90-91, 95-96, 102, 105, 119, 123-
125, 128-130, 139-144, 147-148, 150-
151, . . . 153-155, 160, 163, 165-166,
177, . . . 220-221, 223, 225, 241-245,
252- 253, 255-258

Wrap-around 107
SuperH, Inc.
SH-5 System Architecture, Volume 3: Debug 05-SA-10003 v1.0

	Preface
	SuperH SH-5 document identification and control
	SuperH SH-5 system architecture documentation suite

	Debug/trace architecture
	1.1 Overview of debug features
	1.1.1 Communication with a tool
	1.1.2 Trigger pins
	1.1.3 Watchpoint detection
	1.1.4 Watchpoint actions
	1.1.5 Fast printf
	1.1.6 Bus analyzer
	1.1.7 Performance counters

	1.2 Key concepts
	1.2.1 SHdebug link
	1.2.2 JTAG debug interface
	1.2.3 Watchpoint controller (WPC)
	1.2.4 Debug registers
	Locality of registers
	Access to registers
	Access to undefined areas of the WPC/DM address map
	1.2.5 Debug module
	1.2.6 Bus analyzers
	1.2.7 Debug monitor
	1.2.8 Chain latches
	Chain-latch capabilities
	Chain state
	Trigger-in chain-latch
	{WPC/DM}_CHAIN_x control register description
	1.2.9 Event counters
	Register description
	1.2.10 Performance counters
	Register description

	1.3 CPU control
	1.3.1 Suspending/resuming the CPU
	1.3.2 Control operations
	WPC.CPU_CTRL_ACTION register definition
	1.3.3 Changing DBRMODE and/or DBRVEC whilst the CPU is suspended
	1.3.4 Debug interrupt
	DM.FORCE_DEBUGINT register definition

	1.4 Watchpoint channels
	1.4.1 WP channel type
	1.4.2 WP Channel - generic register structure
	WPC.WP_nx_PRE
	DM.WP_{IA/OA/IV}x_PRE:
	DM.WP_PLx_PRE:
	DM.WP_FPF_PRE:

	1.5 Debug event actions
	WPC.WP_{IA/OA/IV}x_ACTION:
	DM.WP_{IA/OA/IV}x_ACTION:
	DM.WP_PLx_ACTION
	1.5.1 WPC.ADDR_IN_TRACE register definition

	1.6 WP channel matching
	1.6.1 SR.WATCH bit
	1.6.2 Precondition terms
	1.6.3 Actions
	1.6.4 Behavior when more than one WPC channel matches an instruction
	1.6.5 Handling of non-debug exceptions

	1.7 Reset, panic and debug events
	1.7.1 RESVEC/DBRVEC selection
	WPC.CPU_DBRMODE
	WPC.CPU_DBRVEC
	1.7.2 Event handling sequence
	Multiple simultaneous debug events
	MMU disable
	SR.BL bit
	SR.WATCH bit
	SR.STEP bit
	1.7.3 Event specific information

	1.8 Debug module
	1.8.1 Address spaces
	1.8.2 Fast printf
	1.8.3 DM FIFO/trace buffer in target system memory
	1.8.4 Watchpoint hit buffering and trace message generation
	Stall/discard overview
	Stall mode
	Stall/discard status
	1.8.5 IA watchpoint trace modes
	Multi-trace mode
	Single trace mode
	Trace generation algorithm
	1.8.6 Timestamping and reference messages
	1.8.7 Trigger-in chain-latch
	1.8.8 Trigger-out
	1.8.9 DM.FPF register definition
	1.8.10 DM.TRCTL (trace/trigger register)
	1.8.11 DM.TRBUF (trace buffer register)
	1.8.12 DM.TRPTR (trace pointer register)
	1.8.13 DM.FIFO_0/DM.FIFO_1/DM.FIFO_2 (FIFO port register)
	1.8.14 DM.PC (shadow program counter register)

	1.9 Debug protocols and interfaces
	1.9.1 Endianness
	1.9.2 Overall message structure
	First word of message
	1.9.3 DTRC messages
	1.9.4 DBUS messages

	1.10 WP channel type BRK
	1.10.1 Match registers
	1.10.2 Event specifics

	1.11 WP channel type IA
	1.11.1 Match registers
	1.11.2 Address comparison
	1.11.3 SHcompact behavior
	1.11.4 Event specifics
	Undefined behavior
	Supported fields in WPC.WP_IAx_PRE:
	Supported fields in DM.WP_IAx_PRE:
	Supported fields in WPC.WP_IAx_ACTION:
	Supported fields in DM._WP_IAx_ACTION:

	1.12 WP channel type OA
	1.12.1 Match registers
	1.12.2 Address comparison
	SHmedia
	SHcompact
	1.12.3 Data match registers
	DM.OA_MATCH_DATAVAL:
	DM.OA_MATCH_DATAMASK:
	1.12.4 SHcompact behavior
	1.12.5 Interrupt action
	1.12.6 Event specifics
	Undefined behavior
	Supported fields in WPC.WP_OAx_PRE:
	Supported fields in DM.WP_OAx_PRE:
	Fields in WPC.WP_OAx_ACTION:
	Fields in DM.WP_OAx_ACTION:

	1.13 WP channel type IV
	1.13.1 Match registers����
	1.13.2 SHcompact mode
	1.13.3 Event specifics
	Undefined behavior
	Supported fields in WPC.WP_IVx_PRE:
	Supported fields in DM.WP_IVx_PRE:
	Fields in WPC.WP_IVx_ACTION:
	Fields in DM.WP_IVx_ACTION:

	1.14 WP channel type BR
	1.14.1 Branch filter register
	1.14.2 Event specifics
	Undefined behavior
	1.14.3 Precondition checking for events and RTE
	1.14.4 Source and destination addresses in branch trace messages

	1.15 WP channel type FPF
	1.15.1 Match registers
	1.15.2 Event specifics
	Undefined behavior
	Fields in DM.WP_FPF_PRE:

	1.16 WP channel type PL
	1.17 WP channel type DM
	1.17.1 Match registers
	1.17.2 Event specifics
	Supported actions (determined by ff_thresh field of DM.TRCTL)

	1.18 WP channel type WPC_PERF
	1.18.1 Match registers
	1.18.2 Operand cache access types
	1.18.3 Event specifics
	Undefined behavior
	Fields in WPC.WP_WPC_PERFx_PRE:

	SuperHyway bus analyzer
	2.1 Introduction
	2.2 SuperHyway watchpoint comparators
	Transaction type
	Transaction source
	Destination device
	Address

	2.3 Matching on devices with wide address ranges
	2.4 Address comparison
	2.5 Bus watchpoint hit action
	Debug interrupt actions

	2.6 Freezing bus masters
	2.7 Unfreezing bus masters
	2.8 WP channel type PL
	Match registers
	Debug interrupt action registers
	Event specifics
	Undefined behavior
	Supported fields in DM.WP_PLx_PRE:
	Supported actions in DM.WP_PLx_ACTION:

	External debug interfaces
	3.1 Introduction
	3.2 SHdebug link
	3.2.1 Key features
	3.2.2 Protocol levels
	3.2.3 External pins
	3.2.4 Clocking
	3.2.5 Pin state during reset
	3.2.6 Start of message indication
	Output from SH-5
	Input to SH-5
	3.2.7 Flow control
	Flow control of messages from SH-5
	Flow control of messages from tool
	3.2.8 SHdebug link output protocol
	Start and end of messages
	Message structure
	DBUS messages
	DTRC messages
	3.2.9 SHdebug link input protocol
	Start and end of input messages
	3.2.10 Debug-link message examples
	IA watchpoint trace message
	DBUS request message
	3.2.1 SHdebug link control registers

	3.3 JTAG interface
	3.3.1 Introduction
	3.3.2 Basic concepts
	3.3.3 Debug interface selection
	3.3.4 JTAG debug message protocol
	Polling to detect a SH-5 pending output message
	Polling out a message
	Tool sending a message to SH-5
	Flow control

	3.4 Debug tool reset/suspend behavior
	3.4.1 DEBUG reset
	3.4.2 Reset functions available from debug tools
	Debug tool connected via SH debug-link
	Debug tool connected via JTAG
	3.4.3 CPU suspend function
	Summary of all functions using RESETP and RESETM�������

	3.5 Trigger functions
	3.6 DBUS protocol
	3.6.1 Overview
	Opcode (opc, r_opc)
	Address (addr)
	Source (src, r_src)
	Mask (msk)
	TID (tid, r_tid)
	Dummy
	3.6.2 Nibble order
	3.6.3 Pipelining of DBUS requests
	3.6.4 Unsolicited responses
	3.6.5 Critical word ordering
	3.6.6 Endian-specific behavior
	3.6.7 Opcode definition
	3.6.8 DBUS transactions
	Load8
	Request
	Response
	Load16
	Request
	Response
	Load32
	Request
	Response
	Store8
	Request
	Response
	Store16
	Request
	Response
	Store32
	Request
	Response
	Swap8 - swap 8 bytes
	Request
	Response
	Flush - flush a physical address
	Request
	Response
	Purge - purge a physical address
	Request
	Response

	Implementation specifics
	4.1 Scalable parameters
	4.1.1 WP channels
	4.1.2 Event counters
	Event counter latency
	4.1.3 Performance counters
	4.1.4 Chain latches
	Chain-latch latency
	Latency for DM.CHAIN_x
	4.1.5 DM FIFO
	DM FIFO high-water mark
	DM capture buffer high-water mark
	Clearing the DM FIFO in DM FIFO trace hold or circular DM FIFO mode.
	4.1.6 Trace message header fields
	4.1.7 Action and trace generation timing
	Example
	4.1.8 Timestamping
	4.1.9 Trigger out pulse width
	4.1.10 JTAG IR DEBUG codes
	4.1.11 DM.VCR register
	4.1.12 Bus analyzer module/SuperHyway mapping
	Bus analyzer destination mask/value implementation

	4.2 Debug register address map
	4.2.1 WPC registers
	4.2.2 DM registers
	4.2.3 Complete register list

	Index

