
TOAD

-

1 System

Architecture Reference Manual

special purpose computer design, manufacturing, and sales

XKL LLC

8420 154th Avenue NE

Redmond, Washington 98052

(

425

)

869-9050 FAX:

(

425

)

861-7863

All material contained herein is proprietary to XKL LLC.

Printed copies of this manual often omit Chapter 4, the description of the older processors.

Part Number 50103{00001

Revision 03

January 13, 1999



ii

Copyright
c

1995, 1996, 1997 XKL LLC.

This document contains information which is protected by copyright. All rights are reserved. Repro-

duction, adaptation, or translation without prior written permission is prohibited, except as allowed

under the copyright laws.

Restricted Rights Legend. Use, duplication, or disclosure by the United States Government

is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data

and Computer Software clause at DFARS 252.227{7013 for Department of Defense agencies, and

subparagraphs (c)(1) and (c)(2) of the Commercial Computer Software Restricted Rights clause at

FAR 52.227{19 for other agencies.

Warranty

The information in this publication is subject to change without notice. The

information contained herein should not be construed as a commitment by

XKL LLC.

XKL LLC makes no warranty of any kind with regard to this mate-

rial, including, but not limited to, the implied warranties of mer-

chantability and �tness for a particular purpose.

XKL LLC shall not be liable for errors contained herein or for incidental or

consequential damages in connection with the furnishing, performance, or

use of this material.

The information presented here is derived in part from DECsystem{10 DECSYSTEM{20 Processor

Reference Manual by Digital Equipment Corporation, Marlboro, Massachusetts, July 1980 (and

previous editions), with revisions provided by a Technical Newsletter dated June 1982. This material

is used here under license from Digital Equipment Corporation.

Notice:

The TOAD

-

1 System has been tested and found to comply with the limits for

a Class A digital device, pursuant to part 15 of the (U.S.) FCC Rules. These

limits are designed to provide reasonable protection against harmful interference

when the equipment is operated in a commercial environment. This equipment

generates, uses, and can radiate radio frequency energy and, if not installed and

used in accordance with the instruction manual, may cause harmful interference to

radio communications. Operation of this equipment in a residential area is likely

to cause harmful interference in which case the user will be required to correct the

interference at his own expense.

Instruction times, operating speeds, and the like are included here for reference only; they are not

to be taken as speci�cations.

This manuscript was prepared using character recognition software developed by Ibuki, Inc, Los Al-

tos, California, and editing and text formatting facilities of the DECSYSTEM{20. The �nal version



iii

was prepared using the L

a

T

E

X text formatting program and the PostScript document description

language.

PostScript is trademark of Adobe Systems, Inc.

The following are trademarks of Digital Equipment Corporation: CI, DEC, DECnet, DECUS,

DECsystem{10, DECSYSTEM{20, DDT, HSC, HSC{50, MASSBUS, PDP, PDP{10, TOPS{10,

TOPS{20, TOPS{20AN, UETP, and d i g i t a l



iv



v

Preface

This manual explains the machine language programming and operation, for both instructional and

reference purposes, of the PDP{10 central processors used in the TOAD

-

1 System, the DECsystem{

10 and the DECSYSTEM{20. Basically, the manual de�nes in detail how each processor functions,

exactly what its instructions do, how it handles data, what its control and status information mean,

and what programming techniques and procedures must be employed to utilize it e�ectively. The

programming is given in machine language, in that it uses only the basic instruction and device

mnemonics and symbolic addressing de�ned by the assembler. The treatment relies on neither any

other software nor any of the more sophisticated features of the assembler; moreover the manual is

completely self{contained: no prior knowledge of the assembler is required.

The text of the manual is devoted entirely to functional description and programming. Chapter 1

discusses the general characteristics of the system, de�nes the formats of the words used for numbers

and instructions, and explains the conventions needed to program the system and understand the

examples given in the text.

Chapter 2 covers all operations regularly available to the user. It includes a general discussion of

user programming. Chapter 2 also de�nes the in{out instructions, even though they are available to

the user only in special circumstances; the discussion of the use of in{out instructions for handling

the peripheral equipment is not included. For completeness, individual instruction descriptions do

include special e�ects unrelated to user programming, but the detailed treatment of such e�ects is

left for the discussion of system operations.

Subsequent chapters describe the system operation features that provide the means by which a

system programmer can create software to manage a system that has many simultanous users. These

features, such as a priority interrupt system and a memory management system, are implemented

di�erently in the di�erent processors. Chapter 3 discusses these features in the XKL

-

1 processor

and TOAD

-

1 System. Chapter 4 discusses these features in the earlier processors: the KL10, the

KS10, the KI10, and the KA10.

The �rst three appendices contain the basic reference tables for the programmer: word formats,

instruction and internal device mnemonics, ASCII code, bit assignments showing conditions and

status, and a shorthand presentation of instruction actions in symbolic form.

Although speci�c knowledge of Macro, the assembler, is not required to read this manual, this

information will usually be used in the context of assembly language programs. So, for the con-

venience of Macro users, and in an e�ort to standardize usage, symbolic de�nitions relating to

the TOAD

-

1 System hardware are made at various places in the text. These de�nitions appear in

typewriter font and they are collected in the Macro source �le TD1DEF.MAC and in the universal



vi

�le TD1DEF.UNV.

Caution

Every e�ort has been expended to ensure that this manual presents a complete descrip-

tion of the architecture of the TOAD

-

1 System, the XKL

-

1 processor, and the several

PDP{10 compatible processors. If there is anything you cannot �nd, please do not make

assumptions | write to:

TOAD

-

1 System Architecture Committee

XKL LLC

8420 154th Avenue NE

Redmond, Washington 98052

In some instances the result of an operation using particular operands or given in par-

ticular circumstances is indicated as being \indeterminate." This means simply that no

guarantee is made of what that result will be. If you experiment and �nd a result to your

liking, you are hereby warned that, if you use the operation, your program may well not

be compatible with any other processor, with any other model of your processor, with the

same model of your processor at some other installation, or even with your own processor

running at some other time with a di�erent version of the microcode or Monitor.



vii

Revision History

This revision history is provided for two purposes. First, a reader who has seen an earlier version of

this manual can quickly scan for the areas that have changed. Second, although this history includes

many items that are trivial, some items re
ect engineering and architectural decisions which may

be of interest to readers.

31 August 1993 { 11 January 1994

� This revision list has been created and added to the manual.

� The Preface now explains TD1DEF.MAC.

� Each �gure now displays the source �le name from which it is derived.

� An accurate drawing of the CPU data paths, HRMF-TD1CPU, �gure 1.2, has been provided.

Section 1.1.1 has changed accordingly but it is still preliminary.

� Minor correction to �gure 1.10.

� The description of BLT and examples of its use have been changed to more clearly explain the

e�ects of BLT when extended addressing is used.

� Omitted the word \preferred" in describing \JFCL 0," as a no{op.

� Corrected the description of the PC 
ags for the XKL

-

1 processor: no \Public" 
ag and no

\Previous Context Public" 
ag in Exec mode.

� Changed the speci�cation of SFM, XJRSTF, and XPCW. In Exec mode, SFM and XPCW store

CAC, PAC, and PCS in the right half of the 
ag word. In Exec mode, XJRSTF and XPCW

set CAC, PAC, and PCS from the right half of the 
ag word.

� HALTRM added (to JRST) for the XKL

-

1 processor.

� Changed the speci�cation of Arithmetic and Stack Over
ow trapping. Provided an 8{word

trap data vector in the UPT and EPT for each kind of trap. Combined the User Trap/No{Trap

MUUO new PC words; combined the Executive Trap/No{Trap MUUO new PC words. \Trap

MUUOs" no longer exist. Split 2.9.6 into 2.9.6.1 and 2.9.6.2.

� The description of byte pointers has been rewritten. One{word globals apply in all sections of

extended processors.



viii

� The description of LDB now states explicity that when S is zero, LDB clears the AC.

� Changed the speci�cation of the LUUO trap location in section 0 of the XKL

-

1 processor to

make it match the KL/KS.

� Changed the speci�cation of the MUUO block in the UPT: the �rst two words now look like

an exec{style double word saved PC (with CAC, PAC, and PCS stored in the right half of the


ag word). The next two words are the instruction image and E . RDUBR data is no longer

stored in the MUUO block. Eliminated \Trap MUUOs". Only Executive and User MUUOs

exist now. Added a subsection to 2.16 for LUUOs.

� In Section 3.1.3, added description of Need DC and System Active.

� In Section 3.1.4, the bus address word format changed. (This was announced on the disclaimer

page at the front of the 8/31/93 edition.) The 4{bit slot number, formerly adjacent to \D",

has been moved right two bits. The two{bit gap between \D" and the slot number is reserved

for expansion of the slot number �eld. Corresponding changes to the immediate page pointer

format in 3.6.1.4 and in 3.6.1.2 have been made.

� \Non-existent memory trap" has been replaced by \page trap with a page{fail word indicating

a bus timeout."

� No microcode implementation of the material described in 3.2.2.3, Console Micro{command

Mode, has yet been attempted. This material is highly susceptible to change. The Disable

command has been deleted: the function is accomplished via Enable with a null password.

� An implementation of BOOT is partly complete. There are many more commands than those

mentioned in 3.2.4, but they will be described in a di�erent document (or perhaps in an

appendix to this document).

� In 3.2.5, the section in which the BOOT ROM is addressed is 10 (octal).

� The old subsection 3.2.6 has been removed. There is no BOOT RAM.

� In 3.2.6 (formerly 3.2.7), various locations in NVRAM have been assigned.

� Subsection 3.3.7 describing the Interrupt register has been added.

� In 3.3.8 (the former 3.3.7), SIMIRD instruction has been added.

� In 3.4.3, the cache diagnostic instructions data formats have been changed to account for the

movement of the slot number �eld.

� In 3.6.1, �gure 3.2 has been changed to re
ect the MUUO block in the UPT, the Executive

and User MUUO new PCs, and the User and Executive trap vector blocks. (These are in the

UPT except the Executive trap vector blocks are in the EPT.)

� Table 3.2 (in 3.6.1.6) has been updated with additional (reordered and renamed) page{failure

codes.

� The data formats for the Pager Diagnostic instructions have been changed to re
ect the shifted

position of the slot number �eld in the bus address word.

� The SYSID instruction has been added to 3.6.2. The data formats for WREBR, WRUBR, etc.

have been changed to re
ect the shifted position of the slot number �eld in the bus address

word.



ix

� In 3.6.2., changed format of RDCTX/WRCTX to put the CAC and PAC �elds in bits 18{23,

to conform with SFM.

� The description of pager{disabled mode and system initialization in 3.6.2.1 has been enhanced.

Even while the pager is disabled, traps are possible. Therefore, it is mandatory to set up a

vestigial EPT/UPT to catch them. (Generally, that is done by BOOT.) The starting address

of BOOT, 10003000 has been documented.

� Time Base locations in MemA have been assigned. The syncopated clock is documented in a

footnote.

� In 3.8.2,WCTRLF and RCTRLF have been added.

� In 3.11, many changes have been made to the description of the XRH

-

1 Mass{Storage Interface

Processor. The Communications Region has been developed. The format of the Mass{Storage

Control Block has been changed.

� In 3.12, Status Read from Address 1 has changed considerably. Packet snoop registers have

been introduced. The boundary between the control registers and the data register was moved.

Control register assignments were revised. The Message Control Block format has been up-

dated.

� Appendix A.2.1 has been updated to re
ect the additional instructions SYSID, WCTRLF,

RCTRLF, and SIMIRD. The spelling of RDTIME was corrected.

� Appendix A.3 has been changed to re
ect the addition of the instructions mentioned above

and HALTRM. The spelling of RDTIME was corrected.

� The index has been enhanced.

� The year has been changed in the copyright notice on page ii.

12 January 1994 { 8 October 1994

� XJRST has been documented. It is implemented in the KL.

� The EXTEND instruction has been added to the index.

� The names of the former MS%xxx symbols, de�ned for the XRH

-

1, have been changed to MX%xxx.

This eliminates a con�ct with some MONSYM names for the MSTR JSYS. Likewise .MSxxx and

MS.xxx have been changed to .MXxxx and MX.xxx, respectively.

� Additional symbolic names for MemA locations were de�ned.

� Request to Send has been added to the signals controled via WCTRLF. The Need DC and

System Active Light control bits have moved.

� The description of the virtual memory space created by Boot for programs that it loads has

been revised and expanded. Boot does not create a CST; programs loaded by Boot are un-

cached until they create a CST for themselves.

� In the description of the cache, explicit reference is made to the need for the CST to exist and

to specify that a page is cacheable in order for data to be cached



x

� The description of the CST (in 3.6.1.3) has been corrected: the CST must be aligned on a

page boundary.

� The location of the sense and status bytes in the MSCB have been exchanged. MX%SS and

MX%SN have been changed accordingly.

� The wording in the description of SFM has been changed. The semantics are not changed.

� A new privileged instruction, LDLPN, has been de�ned. Bits 9{35 of C(E) are interpreted as a

PAW; the PAW is converted to an LPN, and the LPN is stored in AC. If the conversion fails,

a page{failure trap occurs with page{fail code PF.NLP.

� Symbolic names have changed. EPT locations formerly EP%xxx have been renamed EP.xxx.

This is to follow a general monitor convention that �eld names and bit names include \%" but

location names within structures include \.". Also a�ected: UP.SS0.

� The Keep{Alive Trap Control Block has been added at EPT locations 50{53. Keep{Alive

monitoring is turned on and o� via WCTRLF. The Keep-Alive \timer" is reset by WCTRLF.

� Wrote speci�cation for CMOVE and CMOVEM instructions, analogs of PMOVE and PMOVEM,

which look for the data in the cache before trying memory. [This speci�cation was removed

on 10/19/94.]

� Changed WRCSB to allow bit 35 of the bus address word to specify the cachability of the

CST. The is required to remove circularity in de�ning the cachability of pages. (This is

not implemented in the prototype processor: CST, SPT, map pages, EPT and UPT are all

uncached in the prototype.) [However, see 9/14/94.]

� In the description of the XRH

-

1, clari�ed that system error report, MX.CSX, returns an ex-

planatory byte in Status.

� Assigned names to bits in the interval timer.

� Added to the de�nition of trapping. A trap to executive mode loads the PC 
ags from the

New Flags halfword; it loads CAC and PAC in the machine context from bits 18{23 of the

same word; it loads PCS from the old PC. A trap to user mode loads PC 
ags from the New

Flags halfword; the right half of that word is ignored: machine context is unchanged.

� Added to the de�nition of MUUOs. An MUUO will store the present machine context (CAC,

PAC, and PCS) in the right half of the 
ags word in the MUUO block in the UPT. The new

machine context will set PCU according to the state of User in the old PC 
ags. No other PC


ags are set. The new machine context will have PCS set to the section number speci�ed in

the old PC.

� Added to the de�nition of PXCT. Made explict mention of the three quantities that de�ne the

previous context: PCU, PCS, and PAC.

� Reserve MSCB �elds for the XRH

-

1. Change Bu�er Capacity �eld to Byte Count.

� De�ned formats 2{7 in the MSCB as permuations of 32 bit/36 bit mode and cache look and

cache load. [This scheme was abandoned in favor of an explicit command to turn on caching

for a particular target.]



xi

� Figure 3.2 has been changed. In UPT, 0{420 and 600{777 are marked as \Available to Soft-

ware." The MUUO handling has been revised to make the MUUO blocks (executive and user)

identical in format to the trap blocks. The MUUO writeup in chapter 2 and �gure 2.3 have

also changed.

� In Table 3.2, page{failure codes PF.OFF and PF.NLP have been changed to show H=1. With

this change, codes in the range 1-27 all have H=1, and codes 0 (no failure) and 40{65 have

H=0.

� 4/4/94. Added a sentence to MAP explaining that the result when E = 1,,0 is that of virtual

page 1000 (and not the meaningless mapping of AC 0).

� 4/16/94. Added a sentence to XJRSTF explaining that, in exec mode, this instruction restores

CAC, PAC, and PCS from the right half of the word addressed by E .

� 4/22/94. Clari�ed warning text regarding byte pointers. Stated also that a byte pointer is

interpreted in the context of the section from which it is read.

� 4/25/94. In Table 3.2, page{failure code 0, no failure, is now marked as reserved for software

use. At XGCCHK, TOPS{20 simulates a page{failure with code 0 to force a garbage collection.

� 5/3/94. The SWPIA instruction does not clear the \modi�ed" bit in the cache lines. To the

extent that this is necessary, do it via the DWRCSH instruction.

� 5/5/94. Additional values were de�ned for XRH

-

1 system error report.

� 5/8/94. A footnote has been added to report that the KL10 fails to provide the correct result

in ADJBP when AC initially contains 400000,,0.

� 5/12/94. De�ned unused �elds in the data supplied by the program to DRDCSH as ignored by

hardware; de�ned �elds returned by DRDCSH as zero. The corresponding changes have been

made in the descriptions of DRDPTB and DWRPTB.

� 5/19/94. The appendix \Processor Compatibility" has been moved to Appendix C and con-

tains some new material.

� 5/20/94. Added a de�nition, AM%CAP, the capacity of MemA in words, 8192.

� 5/24/94. Added a paragraph to XCT describing the e�ect of executing an instruction in a

di�erent section. Also, added a footnote regarding XCT of a trap instruction, JSYS, or MUUO

in a section other than the PC section.

� 5/29/94. In 2.9, the numeric opcodes for JFFO and JFCL have been corrected.

� 6/7/94. In the description of the XRH

-

1 and MSCBs, the name of Command Block Status 0

when returned by the XRH

-

1 has been changed from \SCSI Command Complete" to \SCSI

Command was Performed." This is to emphasize that the command has been attempted and

that the success or failure of the command is indicated by the contents of the status �eld. See

also changes to Command Block Status 3, \SCSI Error Status Report", in which the XRH

-

1

reports that the SCSI Bus and/or protocol failed, as distinct from a report from a speci�c

device.

� 6/12/94. MSCBs to read and write the DRAM have been de�ned. These are intended to

diagnose the DRAM and the path between system memory and the XRH

-

1.



xii

� 6/20/94. Clari�ed that the SPT contains entries in the format of a Page Address Word.

� 6/27/94. Corrected the de�nition of WRSPB in TD1DEF.MAC.

� 6/27/94. The spelling of WCTRLF and RCTRLF in the table in Appendix A (A.2.1, AC �eld

decodes for APR0, APR1, APR2, and APR3) has been corrected.

� 6/27/94. Added RDCFG instruction to read per-slot device and memory con�guration infor-

mation in a way that keeps the monitor independent of the implementation.

� 6/30/94. Added new codes to MSCB for the System Error Report. Added XRH

-

1 device

status register 2, the BAW of the most recent system bus error. Added four error 
ags to the

status word 0.

� 7/01/94. Declared that silly combinations of bits in WRPI are unde�ned.

� 7/03/94. Shu�ed the location of the various 
ags in WCTRLF and RCTRLF to make them

easier to microcode.

� 7/05/94. Shu�ed bits in the right half of the interrupt register.

� 7/05/94. Rewrote Section 3.4.9 \Special Considerations" regarding interrupts. Removed ref-

erences to \trap instructions" as not pertinent to the XKL

-

1 processor.

� 7/05/94. Added WRTIME to initialize the timebase in an implementation{independent man-

ner.

� 7/17/94. Symbolic names have been added for the o�sets within the UPT that address the

LUUO, Executive MUUO, and User MUUO blocks. Symbolic names have been added for the

o�sets within the Trap 1, Trap 2, and Trap 3 trap vector blocks. Symbolic names have been

added for the o�sets within the EMUUO and UMUUO blocks; the same names apply to the

o�sets within the trap vector blocks. Symbolic names have been added for the six UPT o�sets

associated with page{failure traps.

� 7/17/94. Some controversy has arisen regarding MUUOs and traps.

On MUUO, will PCS be set to the PC section of the MUUO or will it be set to the section

from which the MUUO was fetched? The former is easier, the latter is more analogous with

how XCT performs. (The question arises only when a XCT in one section targets an MUUO

in another section.)

Can we microcode the machine so that all the information pertaining to a trapping instruction

can be saved in a trap block? That would mean preserving the opcode, AC, and E during the

execution of every instruction so they could be saved in the trap block before trapping. If that

is done, we would not need TRAP 1 and TRAP 2 
ags anymore. Otherwise, we can not save

that info in the trap block, so we might as well go back to having trap instructions instead of

trap vector blocks.

As of 7/17/94 the manual calls for the more di�cult implementation. [However, see 7/22/94

and 10/4/94.]

� 7/21/94. The locations of the LEDs controlled by WCTRLF have been described.

� 7/22/94. Rede�ned trap blocks, MUUO blocks, and page{failure block. In all cases, 8 words

have been reserved for the block, the last four of which are essentially an XPCW block, i.e., a

double word in which to store the old 
ags, context, and PC and a double word from which to



xiii

load new 
ags, partial new context, and the new PC. (The partial new context is composed of

CAC and PAC. PCS is set by the processor to a value that is still controversial.) [See 10/4/94]

The trap blocks no longer contain an image of the trap instruction.

The MUUO block image of the the MUUO now puts the opcode and AC �eld in the left half

of the word.

An illustration of the page{failure block has been added.

Figure 3.2, TOPS-20 Process Table Con�guration, now omits details that are recorded else-

where in the text. Added cross{references in the �gure.

� 7/22/94. Described new XRH

-

1 functionality. Device Control word 0 now includes a Bus

Reset bit and a �eld in which to specify the number of the a�ected bus.

� 7/28/94. A value of zero in the Executive Base Register is invalid. A value of zero in the User

Base Register is invalid. On initialization, the EBR and UBR are zero.

When the Executive Base Register is invalid, executive traps (arithmetic, PDLOV, Trap 3)

are disabled; all other implicit references to the EBR (e.g., interrupts, Enable Paging, etc.)

will halt the processor.

When the User Base Register is invalid, user traps are disabled; all other implicit references

to the UBR (e.g., page{failure, MUUOs, etc.) will halt the processor.

The UBR should be set up via WRUBR before the EBR is set up.

� 7/28/94. The symbol formerly AM%CAP, the capacity of AMEM (number of words), has been

renamed AM.CAP.

� 8/3/94. The Keep{Alive timer has been assigned its own opcode, WRKPA, an immediate

operation to set the value of the time period. Keep{Alive facilities in WCTRLF have been

expunged (and the diagram was updated 5/2/95). The locations AM%KPV and AM%KPI have

been removed and AM%KPA has been added.

� 8/31/94. Page{failure traps and codes have been changed.

A new bit, N , meaningful only when H=0, has been introduced. (It overlaps B , valid only

when H=1.) When N is 1, the second page{failure word is not determinate. This code is

used in codes 2, 5, and 6, which are now marked H=0, N=1. These were codes for hardware-

detected programming errors: illegal indirect, pager is o�, and LDLPN failure). As these are

programming faults, they are now reported as \soft" failures.

Address Failure and Illegal Address (codes 1 and 3, respectively) have been recategorized as

\soft" failures, H=0, N=0.

When H=1, the failure is hard; e.g., a parity error, bus timeout, bus busy, etc. These failures,

mostly unexpected by the software, are not generally a user{related fault. Hence, these trap

through the EPT instead of the UPT (same locations though). One further di�erence is that,

if the PI system was on at the time of the trap, it is turned o� and bit 13 of the saved 
ags

and context word will be set to 1. XJRSTF in exec mode will restore PI on from this 
ag bit,

if set. [However, some of these changes were reversed on 9/27/94.]

The page{failure code �eld (PF%FLC) has been moved right four bits (to 12{17) for the sake of

being able to read it in octal.

� 9/9/94. An explanation of how E + 1 is calculated when the in{section component of E is

777777 has been added to the explanation of DMOVE. Reference to that explanation has been

added to other instructions that have double word and multi{word operands.



xiv

� 9/13/94. Symbolic names have been added for bits and �elds in the CST word. The bits are

CST%WB, CST%CB, and CST%MB; the �elds are CST%SC (state code) and CST%AG (age �eld of state

code).

� 9/13/94. Corrected the description of the XNI

-

1 Control Registers, addresses 0 and 1. The

description incorrectly referred to bits 1{4 as containing a slot number; in bus address word

format (since 8/31/93), the slot number is in bits 3{6.

� 9/14/94. A new scheme for setting the cacheability of references made by the page re�ll mi-

crocode has been developed. The microcode page re�ll procedure makes refrence to memory

in terms of bus addresses, not virtual addresses. In virtual references, the pager entry deter-

mines the cacheability of the reference from data in the CST. Because the re�ll is a physical

reference, the CST data is not immediately available. Logically, it is su�cient to have only a

special mechanism to de�ne the cacheability of the CST. However, for performance reasons,

we also provide special mechanisms for accessing the SPT, EPT, and UPT:

{ In WRCSB, bit 0 (CS%CSH) of the data word, if set, means the CST is cacheable.

{ In WRSPB, bit 0 (SP%CSH) of the data word, if set, means the SPT is cacheable.

{ In WREBR, bit 9 (PG%CSH) of the data word, if set, means the EPT is cacheable.

{ In WRUBR, bit 9 (UB%CSH) of the data word, if set, means the UPT is cacheable.

� 9/15/94. The XRH

-

1 format codes have been interchanged and augmented.

� 9/19/94. The contents of E must be zero at the start of any cache Sweep All instruction; C(E )

may be changed by a sweep all instruction that is interrupted. [Withdrawn 3/13/95.]

� 9/26/94. In immediate pointers (also in Page Address Words), we have de�ned that zero

in bits 5{7 means \in{memory" and non{zero means not in{memory. We allow bit 8 to be

used by software. In not{in{memory pointers, mentions in this manual of \bits 4{35" being

available to software have been corrected: bits 8{35 are available subject to bits 5{7 not all

being zero.

� 9/27/94. In an MUUO, bit 35 of UP.UOP (previously unde�ned) will be set to 1 if the EA

Calculation for the MUUO resulted in a global address. Thus, the program that responds to

the MUUO can know whether or not the MUUO speci�ed a global address.

� 9/27/94. Rescinded a portion of the change announced 8/31/94. In hard page{failures, the

condition of the PI system (on or o�) will be reported in bit 0 of the UP.PFF word. The bits

called B , N , and Y in the page{failure word and in the MAP word have been removed.

� 9/28/94. Added page{failure code PF.ZPC, Zero PC. Marked the three Write Not Allowed

codes with V = 1. Changed the Cache Line Scrambled de�nition to set B = 0 and to delete

mention of Y . Added new page{failure bit PF.RTP, recursive trap, a modi�er to hard failure

codes.

� 10/3/94. Changed page{failure codes per new microcode speci�cation. Added codes distin-

guishing cache data/tag parity errors physical/virtual. Deleted the code for MemA parity

error; the condition causes a microcode halt/reboot.

� 10/4/94. De�ned that MUUOs shall set PCS to the PC section from which the MUUO is

executed. This is compatible with what the KL10 does. Nothwithstanding the failure to be

analogous with how XCT computes addresses local to a target instruction in a di�erent section,

this method is simple, easy to remember, and implementable.



xv

� 10/6/94. In the description of the use of the A �eld in PXCT in the XKL

-

1 processor, the text

has been updated to mention the use that XBLT makes of bits 11 and 12.

� 10/8/94. Split instruction index from main index in preparation for reissue of the hardcopy

version.

18 October 1994 { 7 July 1995

� 10/18/94. Editorial corrections to the manual published 10/8/94: broken reference to �gure

1.2; removed bits N , B , and Y from the description of the �rst MAP word and the �rst

page{failure word (this completes the change started 9/27/94).

� 10/18/94. Added a new instruction, XJRSTP, JRST 11,. E points to a three word block. The

�rst word contains the 
ags and context; the second the new PC; the right half of the third

word provides data for WRPI. This instruction provides atomic restoration of PI, PC, 
ags,

and previous context, for DDT.

� 10/19/94. Instructions CMOVE and CMOVEM have been deleted. The de�nitions of PMOVE

and PMOVEM have been changed to re
ect that they use the cache when making references

to memory pages that are de�ned as cacheable in the CST.

� 10/19/94. Changes have been made to DRDCSH and DRDPTB. These instructions no longer

cause parity-error traps when parity errors occur. Instead, parity information is reported as

part of the returned data.

� 10/19/94. Changed the name of page{failure code PF.TTM to be PF.P2M: \Pager Two Tags

Matched". Added new page{failure codes for \Write Not Allowed by CST" and \Two Cache

Tags Matched".

� 11/2/94. The sense of the error bit in XNI

-

1 device status address 0 has been inverted: the

bit is 0 to denote an error.

� 11/3/94. Corrected the Global Index Register �gure in Appendix A. Bits 1-5 need not be zero.

An index register used in a global indirect word is always global: bits 6{35 are used by the

hardware; bits 0{5 are ignored. In Chapter 1, added explanatory words to the description of

Global Indexing and Local Indexing.

� 11/7/94. Revised the description of the XRH

-

1 and the CPU's communication with it. De�ned

additional status bits in reading device status address 0. De�ned techniques for reading SRAM

and DRAM. De�ned Target Blocking, Target Blocking Control commands, and Target is

Blocked status. De�ned a format bit as controlling the interpretation of .MXDBA as a Command

List Address or Data Bu�er Address. Deleted use of Message In bytes. Added subsubsections

on Error Reporting, Error Handling, Long Transfers, and Unaligned Transfers.

� 11/8/94. Removed \I/O Instructions" from the list to which PXCT does not apply: there are

no I/O instructions. Added UMOVE and UMOVEM to the list to which PXCT does not apply.

� 11/9/94. Added a warning in WRPI regarding setting the \write bad parity bits" while the PI

system is on. (See 11/23/94.)

� 11/9/94. More XRH

-

1 changes: the Byte Count �eld returns the residual count, i.e., the count

of bytes allocated for the command but not used for data. The description of the contents and

handling of Report Asynchronous or Error Status MSCBs has been changed and elaborated.



xvi

� 11/9/94. Network interface Device Status Address 0 format has been changed. When other

device subtype �elds were expanded, this device was overlooked. The subtype has expanded

from 3 bits to 6 bits. The Hardware Revision and Microcode Version �elds have been shifted

to the right by 3 bits, obliterating three formerly unused bits at 18{20.

� 11/11/94. Added bits in page{failure word. PF%VMA means the second word is a virtual

address; PF%PMA means the second word is a bus address word. PF%DIA, available for hard

failures only, means that additional, implementation{speci�c diagnostic information has been

stored (at an as{yet unde�ned location). \Implementation{speci�c" means that the format of

this information is not speci�ed as part of the architecture. (A revision of the page{failure

codes, coalescing most hard failure codes, is in the works but not yet implemented.)

� 11/16/94. Data format changes have been made in RDAPR and WRAPR. Added two 
ags,

AP%SHT and AP%INT, by which the console requests system shutdown and kernel DDT (an

unsolicited breakpoint), respectively. Moved the NVRAMBattery Low 
ag to bit 28 of RDAPR.

� 11/16/94. Described XRH

-

1 changes. Renamed error status .MXMSC to .MXIES, internal error

status. Documented the ASC �eld corresponding to these codes.

� 11/17/94. Although MAP does not reference memory, it interprets its e�ective address as a

memory address. Therefore, PXCT henceforth shall treat MAP as a memory reference instruc-

tion.

� 11/23/94. Page{failure PF.ZPC now reports the BAW of the word from which the zero PC was

fetched.

� 11/23/94. Data for diagnostic read/write cache/pager have been rearranged. The \write bad

parity bits" have been removed from WRPI.

� 11/23/94. CLRPT may now be executed under PXCT for the purpose of clearing user entries

in the pager.

� 11/28/94. Provided new diagrams, bits, text for DRDCSH, DWRCSH, DRDPTB, DWRPTB.

Write bad parity tag/data was removed from the diagram for WRPI.

� 11/30/94. The descriptions of SKIP, TDN, and TSN have been rewritten to emphasize that,

although the instruction is overtly a no{op, the instruction reads memory and may cause side

e�ects from the read. Likewise, the side e�ects of MOVES have been emphasized. A paragraph

at the start of Chapter 2 has been added to explain that the instructions are described in terms

of their overt e�ects and that side e�ects not visible to the user (e.g., pager re�ls, CST updates,

changes to the cache contents) are to be expected.

� 12/2/94. Changed APRID and SYSID data formats. APRID data has expanded to 3 words.

Device Status Read directed to the XKL

-

1 processor at addresses 0, 1, and 2 now return the

APRID data. Device Status Read directed to the XKL

-

1 at addresses 3{7 now return the data

in MemA locations 323{327, respectively.

� 12/3/94. The text has been changed to emphasize that the response by the XKL

-

1 to Device

Status Request is handled by microcode, not by hardware. The CPU does not respond with

alacrity to Device Status Request.

� 12/7/94. Added comments to some TD1DEF.MAC entries.



xvii

� 12/7/94. Cleaned up de�nitions to synchronize with new TDBOOT and Microcode. Moved

some NVRAM locations: magic numbers, password, default boot path name, and default

dump path name. Sixty{four locations at the high end of NVRAM have been reserved for

microcode. Allocated some MemA locations for page{failure diagnosis; moved others to be

consistent with new allocation; aligned MemA locations to UPT/EPT o�sets. Decomitted

some MemA locations. Collapsed the hard page{failure codes to four basic codes, with details

of \other hard failure(s)" to be decoded from other information.

� 12/19/94. In the appendix, corrected the spelling of the mnemonics for the compare string

(CMPS|) instructions.

� 12/28/94. Added E=0 to the description of RDCFG.

� 1/13/95. Changed the date of copyright notice.

� 1/13/95. Updated the description of the memory's response to device status requests. Docu-

mented how the ID ROM is read. The board serial number is held in the �rst three bytes of

the ID ROM.

� 1/13/95. PXCT documentation change: Immediate instructions are now documented as re-

quiring the A �eld of PXCT to be either 4 or 14. This is the same as is documented for

\general" instructions.

� 1/30/95. Local Address Word , a term used in Chapter 1 but not de�ned, has been de�ned.

Some wording changes were made to the extended e�ective address calculation.

� 1/30/95. Added a footnote concerning KL10's handling of S=0 in ADJBP: it gives a No Divide,

etc. in this case.

� 1/31/95. Revised the description of the XRH

-

1's MX%INV bit in Device Status at address 0.

When set, it now means that the in{memory status is stale.

� 2/1/95. In RDCFG, the contents of AC+1 have been de�ned for the case when the slot contains

an XRH

-

1. For an XRH

-

1, documented that the 200 bit in a SCSI ID byte means to take the

corresponding channel o�ine.

� 2/3/95. In the XRH

-

1, documented Device Control Request to address 3: the program pro-

vides a BAW and the XRH

-

1 returns its main status word at the speci�ed address. Further

emphasized the potential bus timeout and/or busy problems of Device Status Request to the

XRH

-

1. Added two more miscellaneous error codes: \emulex gross error" and \emulex rejects

an illegal command".

� 2/20/95. Added TD1DEF de�nitions for memory and XNI

-

1 registers.

� 2/22/95. Rede�ned SWPIO, SWPUO, and SWPVO. All now require that bits 27{35 of the

contents of E (a BAW) must be zero when the instruction is started. Contents of E may be

changed by the execution of this instruction.

� 2/25/95. Rede�ned NA%CSN as 77, address of XNI

-

1 serial number register.

� 2/25/95. Corrected a typo in the description of MOVSRJ.



xviii

� 3/2/95. Added to documentation of the string instructions. In MOVSO and MOVST, empha-

sized that if the instruction terminates because of a source data condition, the source byte

pointer addresses the byte that caused the termination and the destination byte pointer ad-

dresses the last byte that was stored successfully. In CMPS|, repeated the notice that the

comparision is on unsigned bytes. (This a�ects only comparisions of 36{bit bytes.) Revised

footnotes whose numbers were skewed.

� 3/2/95. Corrected the description of the interval timer to refer to locations 100{103 of the

EPT.

� 3/2/95. Corrected the description of the 
ags inWCTRLF and RCTRLF for the third prototype

board.

� 3/10/95. Cleaned up diagrams, etc. to reduce the number of complaints from T

E

X.

� 3/13/95. Revised the descriptions of the Sweep All instructions. The instructions are inter-

ruptable, but they save their state internally, not externally. Caveats have been added warning

about executing any Sweep All instruction at interrupt level or in a page{failure trap handler.

(See also 4/3/95.)

Added Machine Check page{failure trap code.

Added material describing the XRH

-

1's processing of Report Asynchronous or Error Status

MSCBs. Added material regarding the XRH

-

1's cache. Described the Bus Bad bits in Device

Status Read at address 0.

� 4/3/95. Revised de�niton of SWPUA and SWPVA. If a SWPUA is interrupted and the interrupt

program performs another SWPUA, then the interrupt program's SWPUA will start at the

beginning and perform the entire sweep; after the interrupt program dismisses, the interruped

SWPUA will terminate immediately. The CPU handles an interrupted SWPVA similarly.

The rationale for this is that the interrupt program has requested a complete sweep, which

might as well be started from the beginning; after that sweep is complete, it may be presumed

that the interrupted sweep is logically complete as well.

� 4/5/95. Added bits to WCTRLF for dump, diagnose, and reboot functions in TDBOOT.

� 4/6/95. Clari�ed that XBLT is legal in section 0 and that PXCT of XBLT ignores PCS.

� 4/7/95. Clari�ed that the XRH

-

1 will not alter the slot number in the BAW that describes a

transfer; hence, all words speci�ed by a BAW (or by one command of a command list) are in

the same slot.

� 4/9/95. Added AP%IOR, I/O Reset, to WRAPR. The e�ect is to clear all APR 
ags, to clear

the Interval Timer, and to clear selected bits in the Console Terminal Status.

� 4/14/95. The name \MSIP" has been changed to XRH

-

1, corresponding to the name on the

board edge. A new returned CBS �eld in the MSCB has been added: Bus is Being Reset, to

aid in restarting MSCBs that were not �nished due to a SCSI bus hang.

� 4/28/95. Revised the description of WRITM.

� 4/30/95. Added an explicit description of the main status word of general backplane devices to

the explanation of the backplane. Expanded DS%TYP to be three bits; shortened DS%STY to �ve

bits. Added DS%TST, the symbolic name of the device and subtype �elds together. Removed

MX%STP, the subtype �eld for the XRH

-

1, in favor of DS%STY.



xix

� 5/1/95. Added an appendix containing program{generated documentation for TDBOOT.

� 5/2/95. Added an NVRAM location for auxiliary terminal port parameters. Added a 
ag in

WCTRLF and RCTRLF to enable the auxiliary terminal port.

� 5/17/95. De�ned names for XRH

-

1 cache control functions.

� 5/17/95. Renamed and repositioned the 
ag in WCTRLF that enables the auxiliary terminal

port. Enabling the port lights the corresponding \Port OK" LED.

� 5/18/95. Added a note to WRAPR: it does not sequence through selected options.

� 5/18/95. Added CF%KPA to WCTRLF and RCTRLF: Keep Alive counting enable.

� 5/30/95. Reorganized the discussion of page{failure. Described the implementation{speci�c

information stored by the XKL

-

1 for a hard page{failure.

� 6/1/95. Renamed \TD{1" to be \TOAD

-

1 System" or \XKL

-

1 processor", as appropriate.

� 6/12/95. Updated the discussion of XNI

-

1 to re
ect the changed status word.

� 6/12/95. Renamed \keep{alive trap" as \keep{alive interrupt." The keep{alive interrupt is

e�ective regardless of the state of the PI system; it does not change the state of the PI system.

We expect to revisit keep{alive.

� 6/13/95. Removed XNI

-

1 commands for port, serial number, and microcode version number.

These will be replaced with �xed locations in XNI

-

1 memory from which these values can be

read. The command reservation scheme will be revised also. RWF will write new descriptions

of the Message Control Blocks, since they di�er from the description.

� 7/6/95. Replaced section 3.2, Initialization and Console, with sections 3.2, Console, and 3.3,

Initialization.

� 7/7/95. Added a warning about bus writes to empty slots. Made minor edits to �gures.

� 7/7/95. Prepared the 7/7 printing.

9 July 1995 { 12 October 1995

� 7/19/95. Figures for the KI10 and KA10 section of Chapter 4 have been created.

� 7/21/95. The description of the Word Read Response bus transaction mentions that MISC[7] is

the parity error signal. The description of the Status Read Response bus transaction mentions

that MISC[7] should be driven to 0 by the responding device.

� 7/26/95. Documented the purpose of the option jumpers; added \jumper" to the index.

� 8/15/95. Documented XRH

-

1 restrictions in long transfers: the �rst word of a long transfer

command list must be aligned to the �rst word of a memory line; the address in a \jump"

command must likewise be aligned.

� 8/19/95. Corrected an inconsistency in the de�nition of a global stack pointer. In a global

stack pointer, bit 0 is 0, bits 1{5 are unspeci�ed, and bits 6{17 are non{zero. Changed a �gure

in the appendix.



xx

� 8/21/95. Corrected a note regarding MOVNI. MOVNI AC,0 sets both Carry 0 and Carry 1.

� 8/27/95. After having to re{derive the algorithm twice, the footnote on DIV has been ex-

panded.

� 9/1/95. De�ned \Release Cache Data" command in XRH

-

1. It pertains to recovery of cached

operations that could not be completed without error.

� 9/5/95. Updated the table to decode the status of MSCBs returned because of a bus reset.

� 9/6/95. De�ned MSCB for negotiating synchronous transfers.

� 9/12/95. De�ned Environmental Sense bits in RCTRLF (read{only). The AC Fail signal on

the backplane is actually (AC Fail) OR (Thermal Warning).

� 9/13/95. Added a new XRH

-

1 error message: CBS �eld invalid.

� 9/13/95. Documented console parameters.

� 9/21/95. Documented restrictions on XRH

-

1 unaligned transfers.

� 9/28/95. An explanation of how to do transfers of less than integral disk sectors has been

added to the XRH

-

1 documentation.

� 9/28/95. Added further clari�cation of the interval timer.

� 10/4/95. Changed XRH

-

1 de�nitions of soft reset; added quietus reset.

� 10/6/95. Added de�nition of .MDERR memory error register.

17 October 1995 { June 1996 (Revision 01)

� 10/17/95. Updated a �gure in the XRH

-

1 description to show the quietus reset bit.

� 10/24/95. In the description of the GFLTR and DGFLTR instructions, supplied correct values

for the inserted exponents.

� 10/31/95. Added further explanation of the behavior of PXCT when the EA calculation is in

current context and data reference is in previous context.

� 11/29/95. Added material on the behavior of the XRH

-

1 as a target.

� 1/2/96. Editorial revisions to prepare Revision 01. Changed the date of the copyright notice.

� 1/17/96. The format of data stored in hard page{failures has been revised. EPT word 501

now contains page{failure data, (o�set UP.PFD), speci�cally, the contents of the \D to D" latch

at the time of the failure. The state of the PI system (PION) prior to to the failure is stored

in EPT word 502, bit 11.

Temporarily, 1B1 in microcode options (\exotic microcode") will be set to 1 to indicate the new

microcode. When we upgrade all systems, we will decomission the bit. (Meanwhile TOPS{20

needs to know where the PI state was stored.)



xxi

� 4/3/96. XRH

-

1 documentation changes: When a target is blocked, all MSCBs are returned

marked \Target is Blocked"; the former exception for a Request Sense command is removed.

When a \Clear Target is Blocked" command is received, the XRH

-

1 will force any pending

MSCBs back to the CPU before returning the \Clear Target is Blocked" MSCB.

� 4/24/96. In an extended KL10, an LUUO from a non{zero section in exec mode uses the

contents of EPT location 420 as the exec address of a 4{word LUUO block, by analogy of the

behavior in user mode. Formerly, the manual said that an LUUO trapped as an MUUO. The

behavior of the XKL

-

1 has been changed to correspond to the actual behavior of the KL10 in

this case.

� 4/29/96. The section on the XNI

-

1 has been replaced.

� 5/2/96. Added two more 
ags to WCTRLF and RCTRLF: CF%ATO (automatic), and CF%DBG

(debug). These to increase the amount of information that TDBoot can pass to a newly{

loaded monitor.

� 5/3/96. Miscellaneous cleanup. Tied up some loose ends.

Moved the de�nitions of MemA and NVRAM locations to an appendix: these are not part of

the architectural speci�cation.

Zero PC is a \hard" page-failure.

The initialization error codes have been documented.

The interrupt FIFO bits 18{25 have been documented more accurately.

The CST bits used by the microcode are described.

The description of \permanent" executive PTB entries has been omitted. Nothing has been

implemented as yet.

� 5/8/96 The password for the auxiliary console has not been implemented. The battery life

estimation has not been implemented. References to these have been deleted.

� 5/10/96 The description of RDPI now omits mention of write bad parity; this should have been

changed 11/28/94.

� 5/16/96 Examples of processor di�erences have been cleaned up. An example in which the

XKL

-

1 was said to produce a di�erent result than the KL10 for FAD has been omitted.

� 5/23/96 Added NVRAM location for auto{boot delay.

� 5/28/96 The Processor Identi�cation code fragment was rewritten to more accurately select

between processors.

� 5/30/96 Additional material clarifying BLT.

� 6/1/96 Added footnote in DFMP: the KL10 does not round negative numbers according to

the usual rules of 
oating{point rounding. When the result is negative and the fraction being

dropped is precisely 1/2 LSB, the KL10 adds 1 LSB. In twos complement, 1 should be added

to the LSB of a negative result only if the fraction is strictly greater than 1/2 LSB.



xxii

6 June 1996 { 30 April 1997 (Revision 02)

� 6/6/96. Corrected the description of MemA location AM%PFD. It contains a copy of the data

found in the DtoD latch when a hard page failure occurs. (This was part of the change made

1/17/96.)

� 6/6/96. Corrected the depiction of a local stack pointer in Appendix A. The right half is

now labeled \Local Address of the Latest Element". Formerly it was \In{Section Address ...",

the distinction being that local 0 is an accumulator, whereas, above section 1, in{section 0 is

memory.

� 6/6/96 Additional material clarifying BLT behavior in the KL10.

� 6/7/96. Additional clari�cation regarding extended addressing, in chapter 1, in BLT, and in

EDIT.

� 6/17/96. New page failure code, PF.HMC, for hard failures delivered subsequent to processing

by the macro{console.

� 6/18/96. Added symbols to support TDBoot and its new facility for inspecting/correcting

the cache and Pager Translation Bu�er.

� 6/24/96. To support TDBoot, added symbolic names for the hard page{failure bits in EPT

500. Added AP%HPM.

� 6/29/96. Corrected de�nition of AP%DPC.

� 7/17/96. New bit in hard page{failure or MAP word, PF%HMF, hard map failure. Added

explanation to the description of MAP.

� 7/21/96. De�nitions for the AC block addresses in MemA, AM%AB0 ... AM%AB7, have been

added.

� 8/9/96. De�nitions for �elds in the data for WRADB have been added.

� 8/31/96. Locations 421-423 in the UPT are reserved for software. (For compatibility with the

KL10 and TOPS-10, the Monitor is allowed to store images of the user's \trap instructions" in

these locations. TOAD

-

1 System does not support trap instructions, but this is a convenient

place for the software to store the instructions to emulate for the user.) Revised �gure 3.3.

(Added a second version of the UPT/EPT con�guration for KI10 Paging Mode. We have not

yet commited to support KI paging.) [Subsequently, we have decided not to support KI paging

and this second version has been omitted from the document.]

� 10/27/96. Slightly revised the description of the XNI

-

1's response to a Device Control bus

cycle.

� 12/24/96. Added an example of comparison of two double{length 
oating numbers.

� 1/3/97. Incorporated corrections suggested by customer review. Updated copyright year.

Changed company name to \XKL LLC".

� 1/3/97. The instructions that perform G{format 
oating{point operations are not imple-

mented in the XKL

-

1. Instead, they trap as unassigned codes and are simulated by the

operating system.



xxiii

� 3/31/97. Added a description of new backplane bus cycle types, \DoubleWord Write Multi-

ple" and \DoubleWord Read Multiple Request". These have not yet been implemented in any

component of the present TOAD

-

1 System.

� 4/16/97. Changed telephone area code on the title page. (Our local provider says that the

new 425 area code will be usable by the beginning of May, 1997 and mandatory before the end

of the year. If 425 fails, try area 206.)

� 4/24/97. Corrected typographical errors. Updated certain portions to re
ect changes made

by the June 1982 updates to the Digital version of this manual.

30 April 1997 | present (Revision 03)

� 6/4/97. Reformatted Table 3.2 to �t properly on one page. Fixed title page to show the new

revision number.

� 10/6/97. Corrected the spelling of the instruction mnemonics for GDFIX and GDFIXR in Ap-

pendix A.2. Corrected a sorting problem in Appendix A.3.

� 9/26/98. Added a preliminary description of XMG

-

3. Corrected the names and descriptions

of backplane cycle types that support longword transfers (that were added 3/31/97). The

XMG

-

3implements these.

� 9/26/98. Added a description of TDBoot's \de�ne slot n o�{line" and \... on{line" com-

mands. Added de�nitions of NVRAM and AMEM locations needed to support this command.



xxiv



CONTENTS xxv

Contents

Preface v

Revision History vii

List of Figures xxxi

List of Tables xxxiv

1 Introduction 1

1.1 TOAD

-

1 System Organization : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

1.1.1 The XKL

-

1 Central Processor : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

1.1.2 TOAD

-

1 System Memory : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

1.2 KL10{based System Organization : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

1.2.1 The KL10 Processor : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

1.2.2 KL10 Memory : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

1.2.3 Memory Characteristics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

1.3 KS10{based System Organization : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

1.3.1 KS10 Memory : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24

1.4 Timesharing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25

1.5 Number System : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29

1.5.1 Fixed{Point Numbers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29

1.5.2 Floating Point Numbers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 31

1.5.3 G{format Floating{Point Numbers : : : : : : : : : : : : : : : : : : : : : : : : 32

1.6 Instruction Format : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33

1.7 E�ective{Address Calculation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36

1.7.1 Section Zero E�ective{Address Calculation : : : : : : : : : : : : : : : : : : : 36

1.7.2 Extended E�ective{Address Calculation : : : : : : : : : : : : : : : : : : : : : 38

1.8 Programming Conventions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43

1.9 KI10 and KA10 Characteristics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 46

1.9.1 Memory : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47

2 User Operations 51

2.1 Full{Word Data Transmission : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 53

2.1.1 Exchange Instruction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 53

2.1.2 Move Instruction Class : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 53

2.1.3 Extended Move Immediate : : : : : : : : : : : : : : : : : : : : : : : : : : : : 56



xxvi CONTENTS

2.1.4 Double Move Instructions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 56

2.1.5 Block Transfers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 58

2.2 Fixed{Point Arithmetic : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 62

2.2.1 Single{Precision Instructions : : : : : : : : : : : : : : : : : : : : : : : : : : : 63

2.2.2 Double{Precision Instructions : : : : : : : : : : : : : : : : : : : : : : : : : : : 66

2.3 Floating{Point Arithmetic : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 67

2.3.1 Scaling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 69

2.3.2 Number Conversion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 70

2.3.3 Single{Precision with Rounding : : : : : : : : : : : : : : : : : : : : : : : : : : 76

2.3.4 Single{Precision without Rounding : : : : : : : : : : : : : : : : : : : : : : : : 78

2.3.5 Double{Precision : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 80

2.3.6 Giant{Format Extended{Range Double Precision : : : : : : : : : : : : : : : : 82

2.3.7 KA10 Software Double{Precision : : : : : : : : : : : : : : : : : : : : : : : : : 84

2.4 Boolean Functions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 87

2.5 Shift and Rotate : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 94

2.6 Arithmetic Testing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 97

2.6.1 Add One to Both Halves of AC and Jump : : : : : : : : : : : : : : : : : : : : 97

2.6.2 Comparisons, Skips, and Jumps : : : : : : : : : : : : : : : : : : : : : : : : : : 98

2.7 Logical Testing and Modi�cation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 103

2.8 Half{Word Data Transmission : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 110

2.8.1 Extended Half{Word Left to Left Immediate : : : : : : : : : : : : : : : : : : 118

2.9 Program Control : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 118

2.9.1 The Execute Instruction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 119

2.9.2 Conditional Jumps : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 120

2.9.3 Program Flags : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 121

2.9.4 The JRST Instruction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 126

2.9.5 Subroutine Calling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 131

2.9.6 Over
ow Trapping : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 134

2.9.6.1 Over
ow Trapping in the KL10, KS10, and KI10 Processors : : : : 135

2.9.6.2 Over
ow Trapping in the XKL

-

1 Processor : : : : : : : : : : : : : : 136

2.10 Stack Operations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 137

2.11 Byte Manipulation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 143

2.12 String Manipulation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 149

2.13 Decimal Conversion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 158

2.14 String Editing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 163

2.15 Programming Examples : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 170

2.15.1 Processor Identi�cation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 170

2.15.2 Parity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 171

2.15.3 Reversing the Order of Digits : : : : : : : : : : : : : : : : : : : : : : : : : : : 174

2.15.4 Counting Ones : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 175

2.15.5 Number Conversion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 177

2.15.6 Table Searching : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 178

2.15.7 List Manipulation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 179

2.15.8 Extended Addressing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 179

2.16 Unimplemented Operations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 182

2.16.1 LUUOs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 182



CONTENTS xxvii

2.16.2 MUUOs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 183

2.16.2.1 XKL

-

1 MUUOs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 184

2.16.2.2 Extended KL10 MUUOs : : : : : : : : : : : : : : : : : : : : : : : : 184

2.16.2.3 Single{section KL10 MUUOs : : : : : : : : : : : : : : : : : : : : : : 186

2.16.2.4 KS10 MUUOs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 186

2.16.2.5 KI10 MUUOs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 186

2.16.2.6 KA10 MUUOs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 187

2.17 KS10 Input{Output Instructions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 187

2.18 Pre{KS10 Input{Output Instructions : : : : : : : : : : : : : : : : : : : : : : : : : : : 191

2.19 User Programming : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 195

3 TOAD

-

1 System and XKL

-

1 Processor Operations 197

3.1 TOAD

-

1 System Backplane Bus : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 198

3.1.1 Request Transactions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 200

3.1.2 Request{and{Return Transactions : : : : : : : : : : : : : : : : : : : : : : : : 201

3.1.3 Special Bus Functions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 203

3.1.4 XKL

-

1 Bus Operation Instructions : : : : : : : : : : : : : : : : : : : : : : : : 203

3.1.5 Communication Between the Processor and Devices : : : : : : : : : : : : : : 206

3.1.6 Identi�cation of Backplane Devices : : : : : : : : : : : : : : : : : : : : : : : : 206

3.2 Console : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 207

3.2.1 Console State Transitions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 210

3.2.2 Micro{Console Messages : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 210

3.2.3 Console Terminal Programming : : : : : : : : : : : : : : : : : : : : : : : : : : 211

3.2.4 Auxiliary Port : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 214

3.2.5 Console Commands : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 214

3.2.6 Console Communication Characteristics : : : : : : : : : : : : : : : : : : : : : 214

3.3 Processor Initialization : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 214

3.3.1 Boot ROM : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 216

3.3.2 Initial Program Environment : : : : : : : : : : : : : : : : : : : : : : : : : : : 217

3.4 Priority Interrupt : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 217

3.4.1 Sources of Interrupts : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 217

3.4.2 Priority Levels : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 218

3.4.3 Interrupt Requests : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 218

3.4.4 Interrupt Acceptance : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 219

3.4.5 Interrupt Processing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 220

3.4.6 Interrupt Dismissal : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 220

3.4.7 Interrupt Register : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 221

3.4.8 Program Control of the Priority Interrupt System : : : : : : : : : : : : : : : 223

3.4.9 Special Considerations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 225

3.4.10 Programming Suggestions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 226

3.5 Cache Operations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 226

3.5.1 Cache Programming : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 227

3.5.2 Cache Sweeping Instructions : : : : : : : : : : : : : : : : : : : : : : : : : : : 228

3.5.3 Cache Diagnostic Instructions : : : : : : : : : : : : : : : : : : : : : : : : : : : 230

3.5.4 Cache Management : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 233

3.6 XKL

-

1 Processor Internal Memory : : : : : : : : : : : : : : : : : : : : : : : : : : : : 233



xxviii CONTENTS

3.6.1 MemA : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 233

3.6.1.1 Operations on MemA : : : : : : : : : : : : : : : : : : : : : : : : : : 234

3.6.1.2 MemA Speci�c Locations : : : : : : : : : : : : : : : : : : : : : : : : 234

3.6.2 Non{Volatile RAM : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 234

3.6.2.1 Operations on NVRAM : : : : : : : : : : : : : : : : : : : : : : : : : 234

3.6.2.2 NVRAM Speci�c Locations : : : : : : : : : : : : : : : : : : : : : : : 235

3.7 Paging and Memory Management : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 235

3.7.1 Paging : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 236

3.7.1.1 Pager Translation Bu�er : : : : : : : : : : : : : : : : : : : : : : : : 238

3.7.1.2 Pager Translation Bu�er Diagnostic Instructions : : : : : : : : : : : 241

3.7.1.3 Use of the PTB : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 244

3.7.1.4 Page Re�ll : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 245

3.7.1.5 Special Tables : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 246

3.7.1.6 Paging Pointers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 248

3.7.1.7 Re�ll Procedure : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 252

3.7.1.8 Page Failure : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 254

3.7.2 Memory Management : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 263

3.7.2.1 Pager Programming : : : : : : : : : : : : : : : : : : : : : : : : : : : 269

3.7.2.2 Use of Paging to Support TOPS{20 : : : : : : : : : : : : : : : : : : 270

3.7.3 MAP Instruction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 270

3.7.4 Previous{Context Reference : : : : : : : : : : : : : : : : : : : : : : : : : : : : 272

3.7.4.1 Previous{Context Execute : : : : : : : : : : : : : : : : : : : : : : : 273

3.7.4.2 Other References to the Previous Context : : : : : : : : : : : : : : : 276

3.7.5 Address Debugging : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 276

3.8 Timing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 278

3.8.1 Interval Timer Programming : : : : : : : : : : : : : : : : : : : : : : : : : : : 278

3.8.2 Time{Base : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 280

3.8.3 Keep{Alive Timer : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 281

3.9 Other CPU Controls and Status : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 282

3.9.1 Error Monitoring : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 282

3.9.2 Control Flags : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 285

3.9.3 Processor and System Identi�cation : : : : : : : : : : : : : : : : : : : : : : : 287

3.10 Response by the XKL

-

1 Processor as a Device : : : : : : : : : : : : : : : : : : : : : : 290

3.10.1 Processor Response to Device Status Request : : : : : : : : : : : : : : : : : : 290

3.10.2 Processor Response to Device Control : : : : : : : : : : : : : : : : : : : : : : 290

3.11 XMG

-

1 Memory System : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 291

3.11.1 The XMG

-

1 Memory Board : : : : : : : : : : : : : : : : : : : : : : : : : : : : 291

3.11.1.1 XMG

-

1 Device Status Request Functions : : : : : : : : : : : : : : : 291

3.11.1.2 XMG

-

1 Device Control Functions : : : : : : : : : : : : : : : : : : : 293

3.11.1.3 XMG

-

1 Response to Memory Cycles : : : : : : : : : : : : : : : : : : 294

3.11.1.4 XMG

-

1 Initialization : : : : : : : : : : : : : : : : : : : : : : : : : : 294

3.11.2 The XMG

-

3 Memory Board : : : : : : : : : : : : : : : : : : : : : : : : : : : : 294

3.11.2.1 XMG

-

3 Device Status Request Functions : : : : : : : : : : : : : : : 294

3.11.2.2 XMG

-

3 Device Control Functions : : : : : : : : : : : : : : : : : : : 297

3.11.2.3 XMG

-

3 Response to Memory Cycles : : : : : : : : : : : : : : : : : : 298

3.11.2.4 XMG

-

3 Initialization : : : : : : : : : : : : : : : : : : : : : : : : : : 298



CONTENTS xxix

3.11.2.5 XMG

-

3 Flash Card : : : : : : : : : : : : : : : : : : : : : : : : : : : 298

3.12 XRH

-

1 Mass{Storage Interface Processor : : : : : : : : : : : : : : : : : : : : : : : : 299

3.12.1 XRH

-

1 Mass{Storage Interface Processor I/O Registers : : : : : : : : : : : : 299

3.12.1.1 Device Status : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 300

3.12.1.2 Device Control : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 302

3.12.2 Communication Between the CPU and the XRH

-

1 : : : : : : : : : : : : : : : 304

3.12.2.1 Communications Region : : : : : : : : : : : : : : : : : : : : : : : : : 304

3.12.2.2 Communications Protocol : : : : : : : : : : : : : : : : : : : : : : : : 307

3.12.2.3 Mass{Storage Control Block : : : : : : : : : : : : : : : : : : : : : : 307

3.12.2.4 Error Reporting : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 321

3.12.2.5 Error Handling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 322

3.12.2.6 Long Transfers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 323

3.12.2.7 Unaligned Transfers : : : : : : : : : : : : : : : : : : : : : : : : : : : 324

3.12.3 Operation of the XRH

-

1 as a SCSI Target : : : : : : : : : : : : : : : : : : : : 326

3.12.3.1 Commands recognized as a Target : : : : : : : : : : : : : : : : : : : 327

3.12.3.2 Response to Request Sense Command : : : : : : : : : : : : : : : : : 327

3.12.3.3 Response to Inquiry Command : : : : : : : : : : : : : : : : : : : : : 327

3.12.3.4 Response to Send Command : : : : : : : : : : : : : : : : : : : : : : 327

3.12.3.5 Response to Send Diagnostic Command : : : : : : : : : : : : : : : : 327

3.12.3.6 Response to Test Unit Ready : : : : : : : : : : : : : : : : : : : : : : 328

3.12.3.7 Initialization for Operation as a Target : : : : : : : : : : : : : : : : 328

3.13 XNI

-

1 Network Adapter : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 329

3.13.1 XNI

-

1 Network Adapter I/O Registers : : : : : : : : : : : : : : : : : : : : : : 329

3.13.1.1 Device Status : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 329

3.13.1.2 Device Control : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 332

3.13.2 XNI

-

1 Network Adapter Memory Registers : : : : : : : : : : : : : : : : : : : 332

3.13.2.1 XNI

-

1 Control Register Addresses : : : : : : : : : : : : : : : : : : : 333

3.13.2.2 XNI

-

1 Data Register Addresses : : : : : : : : : : : : : : : : : : : : : 334

3.13.2.3 XNI

-

1 Packet Snoop Register Addresses : : : : : : : : : : : : : : : : 335

3.13.3 Communication Between the CPU and the XNI

-

1 : : : : : : : : : : : : : : : 335

3.13.3.1 Message Control Block : : : : : : : : : : : : : : : : : : : : : : : : : 336

3.13.4 Commands and Result Blocks : : : : : : : : : : : : : : : : : : : : : : : : : : : 339

4 Earlier Processors 343

4.1 KL10 System Operations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 343

4.1.1 Priority Interrupt : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 344

4.1.2 Cache Management : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 352

4.1.3 TOPS{10 Paging and Process Tables : : : : : : : : : : : : : : : : : : : : : : : 358

4.1.4 TOPS{20 Paging and Process Tables : : : : : : : : : : : : : : : : : : : : : : : 366

4.1.5 Memory Management : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 381

4.1.6 Timing and Accounting : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 391

4.1.7 Front End Functions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 399

4.1.8 Error and Diagnostic Instructions : : : : : : : : : : : : : : : : : : : : : : : : 400

4.2 KS10 System Operations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 406

4.2.1 Priority Interrupt : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 407

4.2.2 Cache : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 411



xxx CONTENTS

4.2.3 TOPS{10 Paging and Process Tables : : : : : : : : : : : : : : : : : : : : : : : 412

4.2.4 TOPS{20 Paging and Process Tables : : : : : : : : : : : : : : : : : : : : : : : 419

4.2.5 Memory Management : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 430

4.2.6 System Timing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 437

4.2.7 Halt Status : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 440

4.2.8 System Conditions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 441

4.3 KI10 and KA10 System Operations : : : : : : : : : : : : : : : : : : : : : : : : : : : : 447

4.3.1 Console : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 447

4.3.2 KI10 Priority Interrupt : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 449

4.3.3 KI10 Processor Conditions : : : : : : : : : : : : : : : : : : : : : : : : : : : : 457

4.3.4 KI10 Program and Memory Management : : : : : : : : : : : : : : : : : : : : 460

4.3.5 KA10 Priority Interrupt : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 474

4.3.6 KA10 Processor Conditions : : : : : : : : : : : : : : : : : : : : : : : : : : : : 478

4.3.7 KA10 Program and Memory Management : : : : : : : : : : : : : : : : : : : : 480

4.3.8 Real Time Clock DK10 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 483

Appendices 487

A Instructions and Mnemonics 487

A.1 Formats : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 487

A.1.1 Instruction Words : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 487

A.1.2 Address and Program Control Words : : : : : : : : : : : : : : : : : : : : : : : 488

A.1.3 Stack, Byte Pointers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 489

A.1.4 Arithmetic Operands : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 490

A.2 Instruction Mnemonics { Numeric Listing : : : : : : : : : : : : : : : : : : : : : : : : 491

A.2.1 APR0, APR1, APR2, and APR3 Instructions (XKL

-

1 only) : : : : : : : : : : 493

A.3 Instruction Mnemonics { Alphabetic Listing : : : : : : : : : : : : : : : : : : : : : : : 494

A.4 Algebraic Representation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 497

A.5 Powers of Two : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 498

B Character Codes 499

C Processor Compatibility 501

D Internal Device Bit Assignments 503

D.1 XKL

-

1 processor Internal Device Bit Assignments : : : : : : : : : : : : : : : : : : : 503

D.2 KL10 Internal Device Bit Assignments : : : : : : : : : : : : : : : : : : : : : : : : : : 510

D.2.1 TOPS{10 (KI or non{extended KL) Paging : : : : : : : : : : : : : : : : : : : 515

D.2.2 Extended KL Paging (TOPS{20 or TOPS{10 7.02 and later) : : : : : : : : : 515

E TDBOOT Command Summary 519

E.1 Macro{console commands : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 519

E.2 Micro{console commands : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 555

F XKL

-

1 Processor Arcana 565

F.1 MemA Speci�c Locations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 565

F.2 NVRAM Speci�c Locations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 568

F.3 XKL

-

1 Board Option Jumpers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 569



CONTENTS xxxi

G Non{existent Appendices 571

G.1 Timing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 571

G.2 Processor Operation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 571

G.3 Handling Memory : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 571

H Glossary 573

Index of Instructions 577

Index 583



xxxii CONTENTS



LIST OF FIGURES xxxiii

List of Figures

1.1 TOAD

-

1 System Con�guration : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

1.2 XKL

-

1 Central Processor Data Paths : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

1.3 KL10{based DECSYSTEM{20 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

1.4 KL10{based DECsystem{10 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

1.5 KL10 Processor Simpli�ed : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

1.6 DECSYSTEM{2020 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21

1.7 KS10 Processor Simpli�ed : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22

1.8 Possible TOPS{10 Virtual Address Space Con�guration : : : : : : : : : : : : : : : : 27

1.9 Single{Section E�ective{Address Computation : : : : : : : : : : : : : : : : : : : : : 37

1.10 Extended Address Space : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39

1.11 Extended E�ective{Address Computation : : : : : : : : : : : : : : : : : : : : : : : : 42

1.12 DECsystem{10 Based on KI10 or KA10 : : : : : : : : : : : : : : : : : : : : : : : : : 48

2.1 Accumulator Bit Flow in Shift and Rotate Instructions : : : : : : : : : : : : : : : : : 95

2.2 XKL

-

1 Trap Vector : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 137

2.3 EDIT Instruction Flowchart : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 164

2.4 User Process Table MUUO Con�guration : : : : : : : : : : : : : : : : : : : : : : : : 185

3.1 Bus Address Word : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 203

3.2 Console State Transitions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 208

3.3 Virtual{Address Space and Process Table Layout : : : : : : : : : : : : : : : : : : : : 239

3.4 Process Table Con�guration : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 240

3.5 Page Pointer Evaluation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 253

3.6 XRH

-

1 Communications Region Format : : : : : : : : : : : : : : : : : : : : : : : : : 305

3.7 Mass{Storage Control Block Format : : : : : : : : : : : : : : : : : : : : : : : : : : : 308

3.8 Transmit Message Control Block Format : : : : : : : : : : : : : : : : : : : : : : : : : 336

3.9 Receive Message Control Block Format : : : : : : : : : : : : : : : : : : : : : : : : : : 338

4.1 KL10 TOPS{10 Virtual Address Space and Process Tables : : : : : : : : : : : : : : 360

4.2 TOPS{10 Process Table Con�guration (KL10) : : : : : : : : : : : : : : : : : : : : : 361

4.3 TOPS{20 Virtual Address Space and Process Table Layout : : : : : : : : : : : : : : 368

4.4 Extended TOPS{20 Process Table Con�guration : : : : : : : : : : : : : : : : : : : : 369

4.5 Single{Section TOPS{20 Process Table Con�guration : : : : : : : : : : : : : : : : : 370

4.6 TOPS{20 Paging Pointer Evaluation (Extended KL10) : : : : : : : : : : : : : : : : : 377

4.7 KS10 TOPS{10 Virtual Address Space and Process Tables : : : : : : : : : : : : : : : 414

4.8 KS10 TOPS{10 Process Table Con�guration : : : : : : : : : : : : : : : : : : : : : : 415



xxxiv LIST OF FIGURES

4.9 KS10 TOPS{20 Process Table Con�guration : : : : : : : : : : : : : : : : : : : : : : 421

4.10 TOPS{20 Paging Pointer Evaluation (KS10) : : : : : : : : : : : : : : : : : : : : : : 427

4.11 Virtual Address Space and Page Map Layout (KI10) : : : : : : : : : : : : : : : : : : 463

4.12 Process Table Con�guration (KI10) : : : : : : : : : : : : : : : : : : : : : : : : : : : : 464

4.13 Relocation of User Addresses in the KA10 : : : : : : : : : : : : : : : : : : : : : : : : 482



LIST OF TABLES xxxv

List of Tables

1.1 KL10 Memory Characteristics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19

2.1 Domains in which JRST Functions are Legal : : : : : : : : : : : : : : : : : : : : : : 130

3.1 EPT Locations for Interrupt Control Blocks : : : : : : : : : : : : : : : : : : : : : : : 220

3.2 Page{Failure Codes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 255

3.3 Page{Failure Block at EPT 500 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 258

3.4 XKL

-

1 Permissible PXCT Addressing Modes : : : : : : : : : : : : : : : : : : : : : : : 275

3.5 XRH

-

1 Status Read Request Addresses : : : : : : : : : : : : : : : : : : : : : : : : : 302

3.6 Byte Count Adjustment and Divisors : : : : : : : : : : : : : : : : : : : : : : : : : : : 326

4.1 KL10 Permissible PXCT Addressing Modes : : : : : : : : : : : : : : : : : : : : : : : 389

4.2 KS10 Permissible PXCT Addressing Modes : : : : : : : : : : : : : : : : : : : : : : : 438



xxxvi LIST OF TABLES



1

Chapter 1

Introduction

A TOAD

-

1 System, DECsystem{10, or DECSYSTEM{20 is a general{purpose, stored{program

computing system that includes at least one PDP{10 compatible central processor, a memory with

error{checking capability, and a variety of peripheral equipment. Each central processor is the

control unit for an entire large{scale subsystem, in which it is connected by buses to random{

access storage modules and peripheral equipment, some of which may be shared with other central

processors. Within a given system the central processor governs all peripheral equipment, either

directly or indirectly; sequences the program; and performs all arithmetic, logical, and data{handling

operations.

A given system may also contain other kinds of processors.

� A TOAD

-

1 System is based on an XKL

-

1 central processor; all in{out and memory operations

are performed over a high{speed backplane bus. The console functions are supported by

microcode in the CPU (with a terminal). Communications equipment (other than the console

terminal) and unit{record peripherals are supported indirectly via a network.

� A system based on the KL10 central processor contains a small PDP{11 front{end processor;

this acts as the system console and it may also handle communications equipment and the

unit{record peripheral equipment via a Unibus.

� The DECSYSTEM{2020, the only system based on the KS10 processor, contains a micro-

processor for handling console functions (with a terminal). All of its peripheral equipment is

handled over two or more Unibuses.

� Earlier central processors (the KI10 and the KA10) have manual consoles and handle unit{

record equipment directly via an in{out bus.

A system may also include direct{access processors, which have much more limited program capa-

bility and serve to connect large, fast peripheral devices to memory, bypassing the central processor.

Every direct{access processor is connected, for control purposes, to some central processor, to which

it appears as a peripheral device. The direct{access processor is also connected to its peripheral

equipment by a device bus, and to memory either directly by its own memory bus or via a channel

bus through the memory control part of the central processor. Although a DECSYSTEM{2020 can-

not include direct{access processors, the Unibus adapters themselves have much of the capability



2 CHAPTER 1. INTRODUCTION

of such processors: in particular, an adapter can gain direct access to memory via the same KS10

system bus used by the processor.

A system may also contain peripheral subsystems, such as for data communications, which are

themselves based on small computers; from the point of view of the PDP{10, such a subsystem

in toto is regarded as a peripheral device. Unless otherwise speci�ed, the words \processor" and

\central processor" refer to the large{scale PDP{10 central processor.

Five types of PDP{10 central processors are discussed in this publication: the XKL

-

1, the KL10, the

KS10, the KI10, and the KA10. The XKL

-

1 processor in the TOAD

-

1 System implements full 30{bit

extended addressing and the largest instruction set (that of the KL10) including string manipulation

and double precision in �xed point, 
oating point, and extended{range 
oating point.

The KL10, which exists in two versions, with and without extended addressing, is the fastest and

most powerful processor in the K{series; the KL10 implements the largest instruction set.

The KS10 executes a subset of the KL10 instructions: the extended{range 
oating point instructions

are omitted. The KS10 lacks extended addressing and is slower than the KL10; on the other hand,

it is also considerably less expensive.

All systems handle words of thirty{six bits. Earlier memories store these with a parity bit for

detecting single{bit errors. In the MOS memories on the KL10 and KS10, each word is accompanied

by a 7{bit code for correction of single errors and detection of double errors. The TOAD

-

1 System

memory, also MOS, implements a single parity bit for detecting single{bit errors. Maximummemory

capacity depends upon the physical addressing capability of the processor. However, the physical

capacity of the memory is not particularly relevant to a typical user programmer, as all recent

processors are structured to operate in a sophisticated virtual memory environment.

The fundamental virtual address is thirty bits, although only the TOAD

-

1 System is capable of

using all of them. The virtual memory space is divided into sections of 256K each, whose locations

are speci�ed by the right eighteen address bits (the \in{section" address). Paging hardware further

divides each section into 512 pages of 512 locations each. The actual size of the virtual address space

for a given processor depends on how many out of the twelve possible section bits it implements.

The addressing characteristics of the various processors are these:



3

Single{

Extended section

XKL

-

1 KL10 KL10 KS10 KI10 KA10

Physical address 4+29

?

22 22 20

z

22 18

(number of address bits)

Physical memory capacity 128M

y

4M 4M 512K 4M 256K

(number of locations)

Section bits implemented 12 5 0 0 0 0

Number of sections 4096 32 1 1 1 1

Virtual address 30 23 18 18 18 18

(number of bits)

Virtual address space 1024M 8M 256K 256K 256K 256K

(number of locations)

K = 1024 (decimal); M = 1,048,576 (decimal).

?

4{bit physical slot number and 29{bit in{module address

y

Four 32M memory boards.

z

The maximum physical memory capacity of the KS10 is 512K.

In an Extended KL10 whose operating system supports extended addressing only in executive ad-

dress space, user space is the same as that in a single{section KL10.

The XKL

-

1 processor, by using all twelve section bits, has a virtual memory larger than its physical

memory capacity. The extended KL10, by using �ve section bits, has a virtual memory twice the

size of the maximum physical memory. All other processor con�gurations use only the 18{bit in{

section address, so all access is de�ned as being in section zero. This means that the KS10 has a

physical memory that can be twice as large as the virtual space available to a single program; and

the single{section KL10 and the KI10 can have a physical memory sixteen times as large. However,

a virtual address limitation of 256K may be problematic in some applications, thus the KS10 and

other single{section processors may be unsuited for large applications. All processors except the

KA10 have features that allow for dynamic paging and working{set management so that the system

may obtain the best utilization of physical resources. KA10 memory management is limited to a

basic one{ or two{part protection and relocation scheme.

The bits of a word are numbered 0{35, left to right (most signi�cant to least signi�cant), as are the

bits in the registers that hold the words. All processors handle half words and bytes. The XKL

-

1,

KL10, and KS10 can also handle double words and strings.

In this manual bit numbers are given in decimal notation. However, most other numbers are in

octal, i.e., radix 8, notation. Speci�cally, memory addresses are in octal unless otherwise speci�ed.

Half words are simply the two halves of a word, wherein the left half is bits 0{17 and the

right half is bits 18{35. In operations on half words, the two halves of a given word are

handled independently; e.g., when both are incremented, no carry from right to left can

occur. (However, this is not true on the KA10, where incrementing both halves is done



4 CHAPTER 1. INTRODUCTION

by adding 1000001 to the entire word.)

A byte is any contiguous set of bits within a word. It is identi�ed by a byte pointer.

A double word is two adjacent words treated as a single 72{bit entity, where the word

with the lower address is on the left. In some operations, such as the product in double{

precision multiplication, this concept is extended to multiple{length operands involving

more than two consecutive words. The direction from more to less signi�cance is always

from lower to higher addresses. (The KA10 cannot handle double words, except to the

limited extent of double{length products and dividends; the KI10 handles double words

to the extent of operands in double{precision 
oating{point operations.)

A string is a sequence of bytes packed into and encompassing an arbitrary number of

words. It is de�ned by its length in number of bytes and an initial value for a pointer

that is incremented automatically for handling the bytes. (Neither the KI10 nor the

KA10 have string hardware.) (Hardware strings do not necessarily correspond to the

implementation of the \string" data type in high{level languages.)

Processor internal registers speci�cally for holding addresses have a number of bits appropriate to the

type of processor and whether the address is physical or virtual. Address bits are numbered according

to the right{justi�ed position of an address in a word. Thus the bits of an in{section address are

numbered 18{35, and those of a TOAD

-

1 System 29{bit in{module address are numbered 7{35.

Words are used either as instructions in the program, as addresses, or as operands (data for the

program).

Most of this introductory chapter, x1.5 through x1.8, is applicable to any PDP{10 compatible pro-

cessor, although the discussion tends to be oriented towards the TOAD

-

1 System's XKL

-

1 processor

or systems based on the KL10; these sections are germane to anyone who wants to program these

systems in assembly language. Section 1.4 may be of interest only to system programmers. Section

1.1 applies only to the TOAD

-

1 System; x1.2 applies only to the KL10; and x1.3 applies only to the

KS10. Much of the information for the KL10 applies also to systems based on the KI10 and KA10;

x1.9 explains the ways in which those earlier processors di�er from the architecture de�ned in the

preceding sections.

At various points, this manual contains symbolic de�nitions for individual bits and �elds. These

de�nitions are signalled in the text by typewriter font; they are suitable for use with Macro, the

assembler. The collected de�nitions are available through a universal �le called TD1DEF.UNV.

1.1 TOAD

-

1 System Organization

Figure 1.1 shows the organization of the TOAD

-

1 System, which is e�ectively a collection of proces-

sors and memory organized around a backplane bus. At least one XKL

-

1 central processor must be

present in the system. The other processors (e.g., device controllers) generally act at the direction

of the XKL

-

1 processor but perform their actions asynchronously.

The TOAD

-

1 System backplane bus may have as many as fourteen devices attached. (The initial

TOAD

-

1 System has capacity for just seven devices.) A minimum system consists of the XKL

-

1

processor (including console terminal ports, cache, and pager), memory, a SCSI subsystem, and

a network control subsystem. No direct provision is made for unit{record equipment (e.g., line



1.1. TOAD

-

1 SYSTEM ORGANIZATION 5

Figure 1.1: TOAD

-

1 System Con�guration

HRMF-TD1SYS.TEX

XKL

-

1 Processor,

Cache, and Pager

<

>

-�

-�

Console

Terminal

-�

Auxiliary

Console

Memory

Subsystem

16 or 32 M words

<

>

-�

SCSI

Interface

<

>

-�

-�

?

6

��

��

Disk

?

6

��

��

Disk

-�

?

6

��

��

Disk

?

6

��

��

Disk

-�

?

6

��

��

Disk

?

6

��

��

Disk

-�

?

6

��

��

Tape

Ethernet

Interface

<

>

-�

-�

-�

-�

-�

. . .

<

>

-�



6 CHAPTER 1. INTRODUCTION

printers) or for terminal connections (excepting the console terminal); these can be handled swiftly

and e�ciently via the network.

The SCSI and network subsystems are designed to read in{memory command lists and transfer data

directly to and from memory without interrupting the XKL

-

1 processor. These devices can request

priority interrupts to alert the XKL

-

1 processor to a change in status (a message queue going from

empty to non{empty, a semaphore state change, etc.) or an event (e.g., error conditions) that is

beyond the ability of the subsystem to handle.

1.1.1 The XKL

-

1 Central Processor

Figure 1.2 shows the internal data paths and main processing elements of the XKL

-

1 processor.

Omitted from the �gure is the microcontroller, which, through its programmed instructions (the

microcode), controls the operation of the processor by providing step{by{step directions to the

various data{path components. The illustration also omits most of the control lines emanating from

the microcontroller and extending throughout the machine. Some of the control lines are illustrated:

\GP" signi�es the general{purpose �eld of the microcode; thus, some of the microcontroller program

is used as data in controlling the data{path elements.

Of the registers shown, only PC (the program counter, labeled \Macro PC & Section"), the Program

Flags (in the \D to D Latch/Gate"), and one set of accumulators (within \Mem A") are directly

relevant to a typical user. The processor performs a program by executing instructions retrieved

from the memory locations addressed by PC. For the normal program sequence, PC is regularly

incremented by one so that instructions are taken from consecutive locations. Sequential program


ow is altered by changing the contents of PC, either by incrementing it an extra time in a skip

instruction, or by replacing its contents with the value speci�ed by a jump instruction. Throughout

the text, the phrase \jump to location n" means to load the value n into PC and to continue

performing instructions in the normal counting sequence, beginning at the location then speci�ed

by PC. When counting the PC, no carry is allowed into the section part. Hence, although large data

structures can arbitrarily cross section boundaries, the program cannot. The program count wraps

around in the current PC section, which is speci�ed by PC bits 6{17. For the program to go from

one section to another requires an explicit transfer of control by jumping to another section.

Each instruction retrieved from memory contains information identifying the operands and an in-

struction code specifying the operation to be performed using those operands. The instruction is

decoded by the microcontroller, which in turn performs the instruction by manipulating all of the

other processor elements and making the necessary requests to the memory. The microcontroller also

executes the more fundamental operations of sequencing the program, handling TOPS{20 paging

operations beyond the basic address translation made by the pager, processing interrupts, and so

forth.

The microcontroller operates from microcode contained in a control store. This microcode bears

the same relation to the microcontroller as the program does to the processor. Microprocessing is

invisible to the programmer, who need not be concerned with the microcode. The reader should,

however, note an important implication of this type of processor implementation: a single XKL

-

1

could potentially process a di�erent instruction{set by loading a di�erent microcode.

The major working area of the processor is the arithmetic logic unit (ALU). This unit performs

36{bit integer arithmetic, half{word arithmetic, and logic functions. Double{precision integer and



1
.
1
.
T
O
A
D

-

1
S
Y
S
T
E
M

O
R
G
A
N
I
Z
A
T
I
O
N

7

Figure 1.2: XKL

-

1 Central Processor Data Paths

HRMF-XKL1.TEX

H�

�
A

A Bus

�
H

H
�

D Bus

E�ective Address Latch

6 17 18 35

A
�

�
A

�
A

A to D Gate and Swap

�
A

�
A

D to A Gate and Swap

A
�

A
�

ALU low (right)

A
�

A
�

ALU high (left)

A
�

A
�

Mem A

8192�36

�
A

Address

A
�

�
A

Data

D to D

Latch/Gate

Flags

A
�

�
A

�
A

GP

Mem A Address Translator

A
�

A
�

Macro PC & Section

A
�

A
�

�H

�
A

R Bus

Floating/

Long

ALU

�
A

�
A

GP

�
A

�
A

Shifter/

Masker/

Timer

�
A

�
A

GP

A
�

�
A

UART

�
A

GP

A
�

�
A

?
6

Auxiliary

Console

Terminal

?
6

Console

Terminal

R | D

Interface

<

>

A
�

�
A

A
�

�
A

ROM/RAM

Address

Latch

�
A

GP

�
A

Non

Volatile

RAM

D A

A
�

�
A

A
�

Serial

Number

PROM

D A

A
�

A
�

Lookup

ROM

D
D

A

A
�

A
�

To Cond Mux

A
�

�
H

H
�

DPM Write Data

Read Diag Latch

�H

�H

IA Bus

<

>

A
�

�
A

A
�

�
A

DPM Address Bus

DPM Address Latch

0,3{35

H�

H�

H�

27{35

Address

Break

Comparator

�
A

�
H

H
�

D

H�

A

Pager

Tag

H�

A

Pager

Data

�
H

H
�

D

H�

0,3{6,7{26

H�

Phys Addr

Bypass

Gate

H�

<

>

A
�

�
A

A
�

�
A

Physical

Address

Latch

H�

27{35

H�

<

>

A
�

�
A

A
�

�
A

0,3{6,7{35

PA (Physical Address) Bus

�
H

H
�

D

H�

A

H�

A

Cache

Tag

Cache

Data

�
H

H
�

D

H�

A

Boot ROM

256K�36

H�

D

Write

Data

Gate

A
�

A
�

CD BusRead

Data

Gate

A
�

H�

Backplane

Address

Gate

H�

A
�

�
A

Backplane Bus

�
H

H
�

Backplane

Data

Latch

�
H

H
�

Device

Status

0

H�

A
�

Interrupt

Register

& FIFO

A
�

H�

Cache

Mode

Control

�
H

H
�

DPM Read

Data Latch

A
�

�
A

�H



8 CHAPTER 1. INTRODUCTION


oating{point arithmetic are handled in the Floating/Long ALU. The shift matrix is employed in

shift and rotate instructions and in operations that imply shifting, such as 
oating{point arithmetic

and the byte and string operations. Combinations of these registers play a role in all arithmetic,

logical, and data handling operations and in program control operations. Although almost all of

the operations necessary for the execution of a program are performed in the ALU, the details of

its operation are not important to the programmer because the ALU does not retain information

from one instruction to the next. Computations either a�ect control elements such as PC and the

program 
ags, or produce results that are stored and must be retrieved if they are to be used as

operands in other instructions. The program 
ags report conditions of interest to the programmer,

such as arithmetic and stack over
ow, which can cause program traps.

Although all computations on both operands and addresses are performed in the arithmetic logic,

the computer actually has sixteen accumulators, �fteen of which can double as index registers. The

�rst sixteen memory addresses correspond to the accumulators instead of locations in the storage

modules. The factor that determines whether one of the �rst sixteen locations in memory is used

as an accumulator or as an index register is not the information it contains nor how its contents are

used, but rather how the location is addressed. The accumulators can be addressed in three ways.

First, any instruction can access an accumulator by specifying one of the �rst sixteen addresses, i.e.,

addresses 0 through 17. Second, most instructions (including all that combine two operands) can

access an accumulator as one of the operands by putting the accumulator number in the accumulator

�eld of the instruction. Third, �fteen of the accumulators can be accessed as index registers by

specifying a non{zero accumulator number in the index{register address �eld of an instruction. (A

zero in the index{register address �eld speci�es no indexing, hence, accumulator zero can not be

used as an index register.)

These �rst sixteen locations are not actually in the storage modules|they are in MemA, the fast

memory contained in the processor. This allows much quicker access to these locations, whether they

are addressed as accumulators, index registers, or ordinary memory locations. They can even be

addressed by the program counter so that short instruction sequences can be run in them. Provision

is made for referencing these locations from non{zero sections. Moreover, there are actually eight of

these fast memory blocks (also referred to as \AC blocks"), but generally only one is available to a

program at any given time. The Monitor usually reserves block 0 for itself and assigns the others to

user programs.

As mentioned above, the accumulator blocks occupy a portion of the processor's private random{

access memory called MemA. In addition to the accumulators, MemA also holds various parameters

that control the pager, the timebase, etc.

An instruction word has one 18{bit address �eld for addressing any location in the current PC

section. Every instruction has a 4{bit index{register address �eld, which can address �fteen of the

accumulator locations for use as index registers in modifying a memory address. Any instruction

that requires a second operand has a 4{bit accumulator address �eld which can address one of the

sixteen accumulators. In other words, any accumulator can be addressed as though it were a result

held over in the processor from some previous instruction. (The programmer usually has a choice of

whether the result of the instruction will go to the location addressed as an accumulator or to that

addressed by the 18{bit address �eld, or to both.)

Addresses, whether from the PC or from the e�ective address calculation for an instruction, are

held in the DPM Address Latch as they are presented to the pager. The DPM Address Latch holds

either a 30{bit virtual address or a 34{bit backplane bus address. A virtual address is translated by

the pager to a 34{bit backplane bus address that is supplied to the backplane bus via the Backplane



1.1. TOAD

-

1 SYSTEM ORGANIZATION 9

Address Gate and the bus control logic. The bus address is composed of the D (device) bit, a 4{bit

physical slot number, and a 29{bit in{module address.

The cache speeds up average memory access and increases the e�ciency of the storage module. This

facility has 131,072 locations that temporarily substitute for a selection of the most{frequently used

storage locations. Hence, the cache may be regarded in some respects as a set of general purpose

registers. A program loop, once read from storage and then resident in the cache, may be executed

hundreds of times without further instruction fetches from storage. Data produced by the program

is written in the cache. Thus, if the program sets up a location to be a counter, that location may

be read and written thousands of times with only the initial storage access. When the cache does

not contain the word the program wants, memory control gets a line of eight adjacent words from

storage, including the requested one, and places them in the cache, on the assumption the program

will probably want the other seven and can thus get them more quickly. This is a reasonable

assumption, since the program generally executes from consecutive locations and many forms of

data manipulation are sequential as well. Cache control has a mechanism for determining frequency

of use, and it writes the least{recently used line back into storage (or discards it if unchanged) when

the cache space is needed for new references. There are 8,192 two{way associative 8{word lines in

the cache. Physical address bits 20{32 select a cache line, and bits 33{35 select the word within the

line. Only two lines with the same address in bits 20{32 can �t in the cache at a time; but, since user

programs have no control over the physical addresses allocated to their programs, there is nothing

to do and nothing to avoid in trying to improve a user program's utilization of the cache. There

may be complete pages in the cache, but it is more likely to have a selection of lines from a selection

of pages depending on frequency of use. Generally the cache contains words for the current user and

for the Monitor, as well as for handling interrupts for many users. The reader should be aware that

the cache contains representations of memory word lines, not necessarily the actual storage contents.

For example, when the program writes a word, the contents of that cache location then di�er from

the contents of the corresponding storage location. This caution is of interest, however, only to the

operating system. A typical program simply makes memory references; the more of these in which

the cache substitutes invisibly for storage, the better.

Also included within the processor are a number of internal devices that are similar to external

controllers in that they operate asynchronously but are controlled by the program. Some of these

have already been mentioned: the program sets up the pager, instructs cache control to update

storage, sets up the memory system, and gets diagnostic information from the memory controllers

and storage modules. Other such \devices" are the console terminal, the interval timer, the timebase,

the error logic, and the priority interrupt system. The priority interrupt system facilitates processor

control of the entire system by means of a number of priority{ordered levels through which external

signals may interrupt the normal program 
ow. The processor acknowledges an interrupt request by

transferring control (by means of XPCW) to a memory location selected by the backplane location

(slot number) of the requesting device. Assignment of levels to devices is entirely under program

control. Among the devices to which the program can assign levels are the error logic, the console

port, and the interval counter.

1.1.2 TOAD

-

1 System Memory

The TOAD

-

1 System main memory is organized as modules of 16{ or 32{million (2

25

) 36{bit words,

with single{bit error detection. More than one module may be present in a system. The physical

constraint on memory capacity is complicated to state. The initial TOAD

-

1 System has seven device

slots, with a mandatory processor, memory, SCSI subsystem, and network subsystem occupying four



10 CHAPTER 1. INTRODUCTION

slots. Up to three memory boards could be added to a minimum system, bringing the maximum

memory capacity to 128 megawords, but that may not be a well{balanced system. The architectural

constraint on memory capacity is more liberal, allowing for larger capacities in the future: the

backplane bus provides four address bits for slot selection (slots 1{15 are allowable; slot 0 has

special meaning) and a 29{bit in{module address.

The memory is organized to read and write single words or to read and write 8{word \lines" of

memory corresponding to the cache structure of the TOAD

-

1 System.

With the cache enabled for a given page, memory access is handled using the cache wherever possible;

when storage access is required, transfers are in 8{word lines. For a read request, the processor reads

from the cache if the word is there; otherwise, it initiates a storage{to{cache transfer, which may

require a prior cache{to{storage transfer to make room for the new data. For a write request, the

processor always writes in the cache, and this too may require a cache{to{storage transfer to make

room. When a write operation is directed to a storage location not already represented in the cache,

a storage{to{cache transfer is performed to initialize the cache line to which the write is directed.

Other than the cache{to{storage transfers, the processor writes in storage only when the cache is

not being used or when the Monitor speci�cally updates storage from the contents of the cache.

A cache{to{storage transfer occurs when the Monitor needs to be sure that memory is validated

(i.e., updated according to the written{in portions of the cache); for example, just prior to a device

output operation. Cache{to{storage transfers are also performed when a cache line is needed and the

least{recently used line is \modi�ed" (i.e., has data that needs to be written). A cache{to{storage

transfer will send all eight words in the line in one bus transaction of �ve bus cycles.

A storage{to{cache transfer occurs when a word that is not in the cache is read or written. The

storage{to{cache transfer may initiate a cache{to{storage transfer in order to make a cache line

available, as described above. When space in the cache is available, the cache control will ask the

memory to �ll the line; the request will also specify which pair of words to send �rst. The memory

will respond with the designated pair of words. In the case of a read, one of these is the data for

which the processor was waiting, so the processor continues. In the case of a write, the processor

was not waiting, and a word is available to replace one of the words read from memory; when the

�rst pair of words is read, one will go to the cache, the other is discarded and the newly written data

is put in the cache instead. Then, in sequence, in the next three bus cycles, the memory supplies

data to �ll in the other six words of the line.

Memory is addressed on the backplane bus by means of a physical slot number and an in{module

address. The pager (x3.7) translates virtual addresses to bus addresses for memory references.

The TOAD

-

1 System hardware interprets virtual addresses 0{17 as accumulators (in the currently{

selected AC block) in MemA; these addresses are not interpreted by the pager.

Although backplane physical slot number 0 does not exist, the XKL

-

1 processor makes its boot

program and a collection of diagnostic software in read{only memory (the boot ROM) addressable

via slot number 0; thus, in a multiprocessor system, each processor accesses its unique boot ROM.

Processor microcode also makes use of the fast, on{board, random{access memory known as MemA.

MemA cannot be accessed by regular instructions, but two privileged instructions provide system and

diagnostic access to MemA. Particular locations within MemA that may be of interest to operating

system programmers are discussed in x3.6.1. All other hardware{de�ned addresses are relative to

pages, such as the process tables, whose physical location are speci�ed by the Monitor. Physical

memory in a system is a constant, unless a storage module is actually added or removed. The

virtual address space accessible to a particular program is entirely a function of the way in which



1.2. KL10{BASED SYSTEM ORGANIZATION 11

the Monitor sets up user operating conditions, except that any space and any restrictions must

encompass an integral number of pages.

1.2 KL10{based System Organization

The illustrations that follow show the organization of the two types of computer systems based on

the KL10 central processor and the internal organization of that processor. A KL10{based system

is e�ectively a group of processors organized around an E or execution bus. The other processors

(controllers, interfaces) generally act at the direction of the central processor but carry out those

actions independently of it.

On the E bus of a DECSYSTEM{20, there may be up to four DTE20 interfaces, each of which

connects to a PDP{11 front{end processor, and up to eight RH20 Massbus controllers (Figure 1.3).

An RH20 handles disks or tapes via a Massbus; although fundamentally under control of the KL10,

the RH20 operates from its own command list in memory and uses a separate C or channel bus for

data transfers to and from internal memory via the M box, bypassing the E box. All DECSYSTEM{

20 memory is internal: the memory controllers with their storage modules are connected directly

to the S or storage bus, and access to them is possible only through the M box.

1

Unit record

equipment, such as line printers and card readers, and communication subsystems are handled by

PDP{11 front{end processors. The data path to memory for these is via the E bus, but it uses

automatic features of the priority interrupt, thus interfering minimally with the KL10 program.

Among the front{end processors, one is master: it acts as the system console and bootstraps the

system by loading the KL10 microcode from disk; it is also the system diagnostic facility (for which

it has a direct connection to one of the disks on the RH20).

Figure 1.4 shows a typical DECsystem{10 based on a KL10. In terms of memory and peripherals,

such a system is much like a KI10{based DECsystem{10, but it has the faster and more powerful

central processor. Here external memory is on a KI10 memory bus interfaced to the S bus by a

DMA20, and the peripherals are on a KI10 in{out bus interfaced to the E bus by a DIA20. Massbus

devices are handled by an RH10, which maintains a direct path to external memory by way of a

data channel. Such a system generally has only one front{end processor, which acts as the console

and diagnostic facility and bootstraps the microcode from disk or DECtape. One version of the

DECsystem{10 is more of a hybrid 10{20: a machine in the 1090 series has KI10 memory and

in{out buses but uses the RH20 Massbus controller, which is located on the E bus and maintains a

path to external memory by way of the C bus through the M box.

There are also two versions of the operating system for use with the KL10: the TOPS{20 Monitor

and the TOPS{10 Monitor. The Extended KL10 with both user and executive space extended is

available only in TOPS{20 systems. In a TOPS{10 system, an Extended KL10 can have extended

addressing only in executive space, and for this it must run microcode version 271 or greater (in

which case, the TOPS{10 Monitor actually uses so{called \TOPS{20 paging"). In other words and

Extended KL10, regardless of Monitor, has TOPS{20 paging; in a single{section KL10 the paging

always matches the Monitor.

1.2.1 The KL10 Processor

1

MOS and core memory cannot be mixed on the same bus. If the system includes both, there must be two S buses.



12 CHAPTER 1. INTRODUCTION

Figure 1.3: KL10{based DECSYSTEM{20

HRMF-KL10SYS20.TEX

Console

Terminal

6

?

Floppy

Disk

6

?

Line

Printer

6

?

Card

Reader

6

?

Communications

Subsystem

6

?

PDP 11

Processor

?

6

PDP 11

Memory

?

6

DTE20

Interface

?

6

6

?

RH11 Massbus

Controller

?

6

RH20 Massbus

Controller

?

6

6

?

MA20, MB20, MF20 or MG20

Internal Controller

and Storage Modules

MA20, MB20, MF20 or MG20

Internal Controller

and Storage Modules

E Box

M Box

KL10

Processor

E Bus

C Bus

S Bus

?

6

?

6

UNIBUS

Massbus

��

��

Disk

?

6

��

��

Disk

6

?

6

?



1.2. KL10{BASED SYSTEM ORGANIZATION 13

Figure 1.4: KL10{based DECsystem{10

HRMF-KL10SYS10.TEX

Console

Terminal

6

?

DECtape

6

?

DTE20

Interface

?

6

6

?

UNIBUS

PDP 11

Processor

?

6

PDP 11

Memory

?

6

E Box

M Box

KL10

Processor

E Bus

DIA20

In{Out Bus

Controller

?

6

6

?

Line

Printer

6

?

RH10

Massbus

Controller

?

6

Massbus

6

?

��

��

Disk

6

?

��

��

Disk

DF10

Data Channel

-�

6

?

Channel Memory Bus

Card

Reader

6

?

Communication

Subsystem

6

?

KI10 In{Out Bus

External

Core Storage

Modules

?

6

?

6

External

Core Storage

Modules

?

6

?

6

DMA20

Memory Bus

Controller

KI10 Memory Bus

6

?

S Bus



14 CHAPTER 1. INTRODUCTION

Figure 1.5: KL10 Processor Simpli�ed

HRMF-KL10CPU.TEX

Meters

?

6

Error

Logic

?

6

Program

Flags

6

?

Priority

Interrupt

?

6

6

PC

23Section

13 17 18 35

-

VMA

23
Section

13 17 18 35

6

?

6 6

-

Arithmetic

Logic

(AD, AR, etc.)

Micro

Controller

� - -�

IR

13

-

-

?

Fast Memory

8� 16� 37

-

6

?

�

PMA

2214 35

-

Pager

6

-�

Channel

Control

6

?

C Bus

-�

-

Memory

Control

6

?

S Bus

-�

?

6

?

6

-�

E Bus

2K Cache

(4K if MCA25)

?

6

M BOX

E BOX



1.2. KL10{BASED SYSTEM ORGANIZATION 15

Figure 1.5 shows the internal con�guration of the KL10 processor. Of the registers shown, only

PC (the program counter), Program Flags, and one set of sixteen Fast Memory accumulators are

directly relevant to a typical user. The processor performs a program by executing instructions

retrieved from the memory locations addressed by PC. For the normal program sequence, PC is

regularly incremented by one so that instructions are taken from consecutive locations. Sequential

program 
ow is altered by changing the contents of PC, either by incrementing it an extra time

in a skip instruction or by replacing its contents with the value speci�ed by a jump instruction.

Throughout the text the phrase \jump to location n" means to load the value n into PC and continue

performing instructions in the normal counting sequence beginning at the location then speci�ed

by PC. Physically PC is not a counter at all|it just holds the program count; the actual counting

is done in the virtual memory address register VMA. The entire VMA functions as a counter, but

no carry is allowed into the section part in program counting. Hence, large data structures can

arbitrarily cross section boundaries, but the program cannot. The program count wraps around in

the current PC section, which is speci�ed by PC bits 13{17. For the program to go from one section

to another requires an explicit transfer of control by jumping to another section. In a single{section

KL10, all section bits are held at zero, so VMA and PC function as 18{bit registers. The virtual

address from VMA, whether eighteen bits or twenty-three, is translated by the pager to a 22{bit

physical address that is supplied to memory via PMA.

Each instruction retrieved from memory contains information identifying the operands and an in-

struction code specifying the operation to be performed using those operands. The code goes to the

instruction register IR, from which it is decoded by the microcontroller, which in turn performs the

instruction by manipulating all of the other E box elements and making the necessary requests to

the M box. The microcontroller also executes the more fundamental operations of sequencing the

program, handling TOPS{20 paging operations beyond the basic address translation made by the

pager (TOPS{10 operations are built into the M box pager), processing interrupts, and so forth.

(Not shown in the illustration is a multitude of control lines emanating from the microcontroller and

extending throughout the machine.) The microcontroller operates from a microcode contained in a

control store. This microcode bears the same relation to the microcontroller as the program does

to the processor. Microprocessing is invisible to the programmer, and he need not be concerned

with the microcode except to the extent of loading it at system initialization. The reader should,

however, note an important implication of this type of processor implementation: a single KL10

processor can actually be any one of a number of di�erent processors merely by loading di�erent

microcodes.

The major working area of the processor is the arithmetic logic. This contains three full{word

registers: the arithmetic register (AR), the bu�er register (BR), and the multiplier{quotient register

(MQ). For handling double{length operands, AR and BR have 36{bit right extensions, called ARX

and BRX, respectively, Various combinations of these registers play a role in all arithmetic, logical,

and data handling operations and in program control operations as well. Also included in the

arithmetic logic are an extremely fast, double{length adder, AD{ADX, and smaller registers that

handle 
oating{point exponents and control shift operations and byte manipulation. However, from

the point of view of the programmer, the arithmetic logic can be disregarded. Almost all of the

operations necessary for the execution of a program are performed in it, but it never retains any

information from one instruction to the next. Computations either a�ect control elements, such as

PC and the program 
ags, or produce results that are stored and must be retrieved if they are to

be used as operands in other instructions. The program 
ags report conditions of interest to the

programmer, such as arithmetic and stack over
ow; some of these conditions also are reported via

program traps.



16 CHAPTER 1. INTRODUCTION

An instruction word has only one 18{bit address �eld for addressing any location in the current PC

section. Most instructions have two 4{bit �elds for addressing the �rst sixteen memory locations.

Any instruction that requires a second operand has an accumulator address �eld which can address

one of these sixteen locations as an accumulator; in other words as though it were a result held over

in the processor from some previous instruction. (The programmer usually has a choice of whether

the result of the instruction will go to the location addressed as an accumulator, to that addressed

by the 18{bit address �eld, or to both.) Every instruction has a 4{bit index{register address �eld

which can address �fteen of these locations for use as index registers in modifying a memory address

(a zero index{register address speci�es no indexing). Although all computations on both operands

and addresses are performed in the arithmetic logic, the computer actually has sixteen accumulators,

�fteen of which can double as index registers. The factor that determines whether one of the �rst

sixteen locations in memory is an accumulator or an index register is not the information it contains

nor how its contents are used, but rather how the location is addressed. These �rst sixteen locations

are not actually in the storage modules|they are in a fast memory contained in the processor. This

allows much quicker access to these locations, whether they are addressed as accumulators, index

registers, or ordinary memory locations. They can even be addressed from the program counter, and

provision is made for referencing them from non{zero sections. Moreover, there are actually eight of

these fast memory blocks (also referred to as \AC blocks"), but generally only one is available to a

program at any given time. Blocks 6 and 7 are reserved speci�cally for the microcode; the Monitor

usually reserves block 0 for itself and assigns the others to user programs.

An optional feature that speeds up memory access and increases the e�ciency of storage module

use is a cache. This facility has 2048 locations that temporarily substitute for a selection of the

most-frequently used storage locations. Hence, the cache may be regarded in some respects as a set

of general{purpose registers. A program loop once read from storage and then resident in the cache

may be executed hundreds of times without further instruction fetches from storage. Data produced

by the program is written in the cache. Thus, if the program sets up a location to be a counter, that

location may be read and written thousands of times with no storage access, even initially. When

the cache is present but does not contain the word the program wants, memory control gets a group

of four adjacent words from storage, including the requested one, and places them in the cache, on

the assumption the program will probably want the other three and can thus get them more quickly.

This is a reasonable assumption, since the program counts sequentially and data manipulation is

frequently sequential as well. Cache control has a mechanism for determining frequency of use, and

it writes the least{recently used word groups back into storage (or discards them if unchanged) when

the cache space is needed for new references. The only address restriction on the 512 4{word groups

is that the cache can have the same groups from, at most, four pages. There may be complete pages

in the cache, but it is more likely to have a selection of groups from a selection of pages depending

on frequency of use. Generally the cache contains words for the current user and for the Monitor, as

well as for handling interrupts for many users. The reader should be aware that the cache contains

representations of memory word groups, not necessarily the actual storage contents. For example,

when the program writes a word, the contents of that cache location then di�er from the contents of

the corresponding storage location, and the other words in the group may not even be in the cache.

This caution is of interest, however, only to the operating system. A typical program simply makes

memory references; the more of these in which the cache substitutes invisibly for storage, the better.

The MCA25 cache and pager upgrade (part of the extended KL10) expands the size of the cache

to 4096 words, organized as 1024 four{word groups; this cache can hold the same groups from, at

most, eight pages.

Also included within the processor are a number of internal devices that are similar to external



1.2. KL10{BASED SYSTEM ORGANIZATION 17

controllers in that they operate independently of the program but are controlled by it over the E

bus. Some of these have already been mentioned: the program sets up the pager, instructs cache

control to update storage, sets up the memory system, and gets diagnostic information from the

memory controllers and storage modules. Other such \devices" are the error logic, the meters,

and the priority interrupt. By means of the error logic, the program can monitor conditions in

the processor. The meters provide a time base, an interval counter, and facilities for keeping track

of program use of the system and for analyzing system performance. The interrupt facilitates

processor control of the entire system by means of a number of priority{ordered levels over which

external signals may interrupt the normal program 
ow. The processor acknowledges an interrupt

request by executing the instruction contained in a particular location for the level or by doing some

special operation speci�ed by the device (such as incrementing the contents of a memory location).

Assignment of levels to devices is entirely under program control. Two of the devices to which the

program can assign levels are the error logic and the interval counter.

1.2.2 KL10 Memory

When dealing with storage modules, the processor need not wait the entire memory cycle time. To

read, the processor waits only until the information is available and then continues its operations,

regardless of whatever else the memory must do to complete the read cycle. To write, the processor

waits only until the data is accepted; the memory then performs an entire cycle to write that

data. To save time in an instruction that fetches an operand and then writes new data into the

same location, the processor can request a read{modify{write cycle from the memory, in which

the memory performs only the read part initially and then completes the cycle when the processor

supplies the new data. This procedure is not used however in a lengthy instruction (such as multiply

or divide), which would tie up a storage module that may be needed by some other processor. Such

instructions instead request separate read and write access. However, the above considerations apply

only when the cache is not in use or is not present, thus requiring that the processor always deal

with the storage modules and that it request one word at a time.

With the cache in use for a given page, memory access is handled using the cache wherever possible,

and when storage access is required, transfers are in 4{word groups. For a read request, the M

box reads from the cache if the word is there; otherwise, it initiates a storage{to{cache transfer,

which may require a prior cache{to{storage transfer to make room for the new data. For a write

request, the M box always writes in the cache, and this too may require a cache{to{storage transfer

to make room; otherwise, the M box writes in storage only when the cache is not in use, the Monitor

speci�cally updates memory, or the data is supplied by an internal channel.

For handling storage transfers for a channel or with a cache, the M box interprets physical addresses

in this format:

Word

Page Group

14 26 27 33 34 35

�

�

When the E box requests a word that is not in the cache, the M box gets the four words in the

group speci�ed by bits 27{33 or, more speci�cally, gets whichever of them are not already in the



18 CHAPTER 1. INTRODUCTION

cache. For the quickest possible service, the M box �rst gets the particular word requested; e.g., if

the program requests word 2 in a group, the M box retrieves word 2 �rst, followed by words 3, 0,

and 1. Even without a cache, channel transfers are always in groups of four, except perhaps for the

�rst or last group in a block. Except with an MF20 memory, the processor further increases the

speed of memory operation by overlapping memory cycles: it can start one module to read a word

before receiving a word previously requested from a di�erent one. Such speedup is unnecessary with

an MF20 memory because it is four words wide. Of course fast memory and the cache have no basic

cycle; with them the processor reads or writes a word directly.

From the simple hardware addressing point of view, the entire physical memory is a set of locations

whose addresses range from zero to a maximum dependent upon the capacity of the particular

installation. In a system with the greatest possible capacity, the largest address is 17777777 (decimal

4,194,303). The whole memory would usually be made up of a number of storage modules of di�erent

capacities. Hence, a given address actually selects a particular module and a speci�c location within

it. For a 64K module with 22{bit addressing, the high{order six address bits select the module, and

the remaining sixteen bits address a single location in it; selecting a 32K memory takes seven bits,

leaving �fteen for the location. The times given below assume the addressed memory is idle when

access is requested. The processor can avoid waiting for its own previously requested memory cycles

to end by making consecutive requests to di�erent storage modules. With an MF20 or an MG20

memory, almost all transfers are of four words at a time, so there is seldom any con
ict among

requests. With other memories, and provided a cache is in use, ordering requests among modules

can be guaranteed by interleaving them in sets of four in such a way that requests for the words in

a group are cycled through the four modules in the set. Interleaving is e�ected by assigning four

modules, each of n locations, to the same 4n{location area of the address space, and setting each

module to respond only to one request out of the four in a group. Hence, within the given area,

all addresses ending in 0 or 4 are locations in one module, those ending in 1 or 5 are locations in a

second, and so forth. Some of the earlier modules can be interleaved only in pairs, which is not as

e�ective but is worthwhile. Without a cache, interleaving is not as e�ective, but it is still advisable

since the program is sequential. Without interleaving or a cache, some alternation between modules

is produced by keeping instructions in one and operands in another. Interleaving, assigning module

numbers, and so forth, are done by the program for internal memories but by manual switch settings

for external memories. Complete information is given in Appendix G.3.

The only physical locations uniquely de�ned by the hardware are those in fast memory, locations

0{17. All other hardware{de�ned addresses are relative to pages, such as the process tables, whose

physical locations are speci�ed by the Monitor. Physical memory in a system is a constant unless a

storage module is actually added or removed. The virtual address space accessible to a particular

program is entirely a function of the way in which the Monitor sets up user operating conditions,

except that any space and any restrictions must encompass an integral number of pages.

1.2.3 Memory Characteristics

Table 1.1 gives the characteristics of the various memories for the two types of KL10 processor.

Times are in microseconds, and for external memories they include the delay introduced by 10 feet

(3 meters) of cable. Read access for a single word or the �rst word in a group is the time from the

request until the word is in AR. For an entire 4{word group, read access is the time from the request

until the last word is in the cache. Write access is the time from the request until the processor

receives the memory acknowledgment, for either the �rst word or the fourth. Except for the MF20,

these �gures de�ne the system access rates for storage modules with 4{way interleaving, since all



1.2. KL10{BASED SYSTEM ORGANIZATION 19

Table 1.1: KL10 Memory Characteristics

Physical Characteristics

Number of Modules Size

MF10 Core Memory 1 32K, 64K

MG10 Core Memory 2 64K, 128K

MH10 Core Memory 2 128K, 256K

MA20 Core Memory 4, 8 64K, 128K

MB20 Core Memory 4, 8 128K, 256K

MF20 MOS Memory 1 256K

MG20 MOS Memory 1 1024K

KL10 Fast Memory 16 [�8 sets]

KL10 Cache 0 or 2K (MCA20) or 4K (MCA25)

Extended Processor Timing

First or Single{Word Access Four{Word Access

Read Write Read Write

MF10 Core Memory 1.493 1.084 2.227 1.484

MG10 Core Memory 1.553 1.134 2.287 1.534

MH10 Core Memory 1.633 1.134 2.367 1.534

MA20 Core Memory .883 .40 1.467 1.60

MB20 Core Memory 1.017 .40 1.60 1.60

MF20 MOS Memory .800 .267 1.40 .667

MG20 MOS Memory .550 .160 1.10 .550

KL10 Fast Memory .067 .067

KL10 Cache .133 .133

Single{section Processor Timing

First or Single{Word Access Four{Word Access

Read Write Read Write

MF10 Core Memory 1.627 1.217 2.507 1.697

MG10 Core Memory 1.687 1.267 2.567 1.747

MH10 Core Memory 1.767 1.267 2.647 1.747

MA20 Core Memory 1.06 .48 1.76 1.92

MB20 Core Memory 1.22 .48 1.92 1.92

KL10 Fast Memory .080 .080

KL10 Cache .160 .160



20 CHAPTER 1. INTRODUCTION

memory operations are absorbed within them: by the time the processor receives the data or the

acknowledgment, it can make a new request, for which the memory will be ready. Sizes given are

those in which the units are available. Note that interleaving depends on the number of modules,

not the number of units, most of which contain more than one module. Hence, 4{way interleaving

can be done with a single MA20 or MB20 memory, whereas it requires two MH10s or MG10s and

four MF10s.

With MF20 memories, there is only one module per unit and interleaving is not used. (Each

controller can handle three units or \groups".) The times given in the table are the actual times

the processor must wait to get data or an acknowledgement, except that hitting a refresh cycle can

cause a delay of up to 533 ns (refreshing requires about 3.5% of total memory time). Following a

read, the processor can make another request immediately. Following a write, it must wait from 467

to 867 ns before another request can be handled by the same controller. However, since a single

MF20 handles four words at once, one request following another within that time is unlikely.

Fast memory times are for referencing a memory location for an operand; a fast memory instruction

fetch takes slightly more time than a cache access. When a fast memory location is addressed as an

accumulator or index register, the access time is considerably shorter and usually takes no time at

all, as it is done in parallel with instruction operations that are required anyway.

The MF20 and MG20 have a 7{bit error correction code; all other units have only a single parity

bit. The MF20 and MG20 also have a spare bit that can be substituted for a known bad bit.

1.3 KS10{based System Organization

Figure 1.6 and Figure 1.7 show the organization of the DECSYSTEM{2020 and the KS10 processor

used in it. The overall system (Figure 1.6) comprises a number of major units or subsystems that

communicate with one another over a bus built into the backplane. The minimal system has �ve

subsystems: processor, MOS storage, console, and two in{out subsystems, each based on a Unibus.

One Unibus adapter handles the disk system, the second handles all other peripheral equipment.

Depending on the device, these adapters can make direct access to storage or request that the

processor handle the transfer via the program. The console, which is based on a microprocessor,

boots the system from disk and handles interaction of the operator or a remote diagnostic link with

the other subsystems. The backplane bus and most other full{word data paths are actually thirty{

eight bits, having a parity bit for each half word. The system can run under either the TOPS{20 or

TOPS{10 Monitor.

Of the elements shown in the processor illustration (Figure 1.7), only fast memory, the program


ags, and the program counter PC are directly relevant to a typical user. The processor performs

a program by executing instructions retrieved from the memory locations addressed by PC. For the

normal program sequence, PC is regularly incremented by one so that instructions are taken from

consecutive locations. Sequential program 
ow is altered by changing the contents of PC, either

by incrementing it an extra time in a skip instruction or by replacing its contents with the value

speci�ed by a jump instruction. Throughout the text the phrase \jump to location n" means to

load the value n into PC and continue performing instructions in the normal counting sequence

beginning at the location then speci�ed by PC. Physically PC is not a counter at all|it is a register

in the register �le (described below). This register just holds the program address, and the actual

counting is done by the arithmetic logic, which wraps the count around in eighteen bits because the

virtual space is limited to section zero. Addresses from PC, or calculated by the arithmetic logic, go



1.3. KS10{BASED SYSTEM ORGANIZATION 21

Figure 1.6: DECSYSTEM{2020

HRMF-KS10SYS20.TEX

KS10 Backplane Bus

A

A

�

�

�

�

A

A

UNIBUS

A

A

�

�

�

�

A

A

Tape

6

?

Line

Printer

6

?

Communications

Subsystem

6

?

Card

Reader

6

?

Operator

Terminal

6

?

Remote

Diagnostic

Link

6

?

UNIBUS

Disk

System

6

?

First

UNIBUS

Adapter

18{bit

6

?

Second

UNIBUS

Adapter

8{ or 16{bit

6

?

?

6

Console

(8080)

6

?

Processor

6

?

Storage

Controller

with 2{8

64K Modules

6

?



22 CHAPTER 1. INTRODUCTION

Figure 1.7: KS10 Processor Simpli�ed

HRMF-KS10CPU.TEX

Timer

-

?

6

System

Flags

-

Priority

Interrupt

?

6

Arithmetic Unit

Arithmetic Logic

and Register File

(PC, AR, etc.)

?

6

6

?

Program

Flags

-�

Micro

Controller

-�

IR

18

-

�

VMA

22

14 17 18 35

6

-

6

-

RAM File

1777

1000

Cache

512

777

200

Workspace

384

177

0

Fast Memory

128

1K � 38

Pager

Bus

Transceivers

-

-

?

�

6

?

KS10 Backplane Bus

A

A

�

�

�

�

A

A



1.3. KS10{BASED SYSTEM ORGANIZATION 23

to the virtual memory address register VMA. Each virtual storage address from VMA is translated

by the pager to a 20{bit physical address that is supplied to the storage subsystem via the bus.

VMA actually has twenty{two bits, for handling both physical storage addresses and addresses for

other types of bus transactions, such as those to the console, to in{out equipment, and to memory

status.

Each instruction retrieved from memory contains information identifying the operands and an in-

struction code specifying the operation to be performed using those operands. The code goes to the

instruction register IR, from which it is decoded by the microcontroller, which in turn performs the

instruction by manipulating all of the other processor elements and making the necessary requests for

bus transactions. The microcontroller also executes the more fundamental operations of sequencing

the program, handling paging operations beyond the basic address translation made by the pager,

processing interrupts, and so forth. (Not shown in the illustration is a multitude of control lines

emanating from the microcontroller and extending throughout the machine.) The microcontroller

operates from a microcode contained in a control store. This microcode bears the same relation

to the microcontroller as the program does to the processor. Microprocessing is invisible to the

programmer, and he need not be concerned with the microcode except to the extent of loading it

at system initialization. The reader should, however, note an important implication of this type of

processor implementation: a single KS10 processor can actually be any one of a number of di�erent

processors merely by loading di�erent microcodes.

The major working area of the processor is the arithmetic unit. Central to this unit is a set of

ten 4{bit microprocessor slices, which together contain the full{word arithmetic logic and a �le of

ten registers. The register �le includes, besides PC, the arithmetic register (AR); other associated

registers used in manipulating data and performing arithmetic and logical operations; and registers

that contain system addresses, status information, and constants. The arithmetic logic includes a

full{word adder, shifter, and mixers. It also contains complete 10{bit logic for direct manipulation of


oating{point exponents, standard 7{bit bytes, and for controlling shifting and operations on bytes

of other sizes. Multiple{length operands are handled by separately manipulating their higher{ and

lower{order words using the registers in the �le. Like the microcontroller, the arithmetic unit (except

for PC) can be disregarded by the user. Almost all of the operations necessary for the execution

of a program are performed in it, but it never retains any information from one instruction to the

next. Computations either a�ect control elements such as PC and the program 
ags, or produce

results that are stored and must be retrieved if they are to be used as operands in other instructions.

The program 
ags report conditions of interest to the programmer, such as arithmetic and stack

over
ow; some of these conditions may also be reported via program traps. (Several registers in the

�le do retain information of interest to the system programmer, however.)

An instruction word has only one 18{bit address �eld for addressing any location in the virtual

space. Most instructions have two 4{bit �elds for addressing the �rst sixteen memory locations.

Any instruction that requires a second operand has an accumulator address �eld which can address

one of these sixteen locations as an accumulator; in other words, as though it were a result held over

in the processor from some previous instruction. (The programmer usually has a choice of whether

the result of the instruction will go to the location addressed as an accumulator, to that addressed

by the 18{bit address �eld, or to both). Every instruction has a 4{bit index{register address �eld

which can address �fteen of these locations for use as index registers in modifying a memory address.

(A zero index{register address speci�es no indexing.) Although all computations on both operands

and addresses are performed in the arithmetic unit, the computer actually has sixteen accumulators,

�fteen of which can double as index registers. The factor that determines whether one of the �rst

sixteen locations in memory is an accumulator or an index register is not the information it contains



24 CHAPTER 1. INTRODUCTION

nor how its contents are used, but rather how the location is addressed. These �rst sixteen locations

are not actually in the storage modules|they are in a fast memory contained in the processor. This

allows much quicker access to these locations, whether they are addressed as accumulators, index

registers, or ordinary memory locations. They can even be addressed from the program counter.

Moreover there are actually eight of these fast memory blocks (also referred to as \AC blocks"), but

generally only one is available to a program at any given time. Block 7 is reserved speci�cally for the

microcode; the Monitor usually reserves block 0 for itself and assigns the others to user programs.

A feature that speeds up memory access and increases the e�ciency of storage module use is a virtual

cache. This facility has 512 locations that duplicate the contents of storage locations in current use

in the virtual address space of the program. Every time a word is read from storage or written

in storage, it is also written in the cache location selected by the right{most nine virtual address

bits, which represent position within the virtual page. Provided there is no intervening reference

to the same position in some other page, a subsequent read reference to the same virtual location

can be made to the cache (referred to as a \cache hit") instead of going over the bus to storage. A

program loop, once read from storage and then resident in the cache, may be executed hundreds of

times without further instruction fetches from storage; and data produced by the program can be

retrieved without requiring bus transactions. To a great extent the cache is also invisible. A typical

program simply makes memory references; the more of these in which a word is read from the cache

instead of storage, the better. However, a program that tends to settle in one virtual page at a time,

instead of alternating references among a number of pages, will maintain a much higher cache hit

rate, saving considerable time.

Fast memory and the cache are contained respectively in the bottom 128 and top 512 locations in

a RAM �le in the processor. The remaining 384 locations are a workspace used by the microcode

as a scratch pad and for handy storage of various system quantities and constants that expedite

the execution of the more complicated instructions. Also included within the processor are several

elements, such as the pager already mentioned, that are similar to external controllers in that they

operate independently of the program but are controlled by it. The timer provides a time base

and an interval counter. By means of the system 
ags, the program can monitor various conditions

throughout the system and can interrupt the console or be interrupted by it. The interrupt facilitates

processor control of the entire system by means of a number of priority{ordered levels over which

external signals may interrupt the normal program 
ow. The processor acknowledges an interrupt

request by executing the instruction contained in a particular location for the level or the source of

the request. Assignment of levels is entirely under program control. Two levels can be assigned to

each Unibus adapter, and one can be assigned to the system 
ags.

1.3.1 KS10 Memory

Any subsystem can request use of the bus to write a word into storage or read a word from it. To

save time in byte input operations, a Unibus adapter can also get the bus for a read{modify{write

cycle. In this transaction a word goes from memory to the adapter, which inserts the byte and

immediately sends the modi�ed word back. A requesting subsystem may have to wait until the bus

is free and it has priority, and even then there may occasionally be a further wait of up to 750 ns

for memory refresh (which requires about 5% of total memory time). Reading from storage takes

900 ns. Writing to storage takes 600 ns, although the memory remains busy for an additional 300

ns. Whenever the processor writes or reads a word in storage, that word is automatically written

in the cache. Thus, if the processor wishes to read the same word at a later time, retrieval requires

only 300 ns. The cache hit rate is generally about 80%.



1.4. TIMESHARING 25

The following table gives the characteristics of KS10 memory with times in nanoseconds.

Read Write Size Error Facility

MOS Memory 900 600 128K{512K 7{bit correction code

Fast Memory 300 300 16 2 parity bits

Cache 300 512 2 parity bits

There is no cache write time, because writing is automatic and is absorbed in storage access time.

Fast memory times are for addressing accumulators as memory locations. Access to an accumulator

as an accumulator or as an index register is made in a single microinstruction period of 150 ns;

frequently this represents no extra time, because the same microinstruction often performs other

functions.

The memory array comprises from two to eight storage modules of 64K each. From the hardware

addressing point of view, the entire physical memory is simply a set of locations whose addresses

range from zero to a maximum dependent upon the capacity of the particular installation. In a

system with the greatest possible capacity, the largest address is 1777777 (decimal 524,287).

At a halt, the microcode places a halt code and PC in storage locations 0 and 1. The only other

physical locations uniquely de�ned by the hardware are those in fast memory, locations 0{17. All

other hardware{de�ned addresses, such as the process tables or the halt{status block, are relative

to physical locations speci�ed by the Monitor. Physical memory in a system is a constant unless a

storage module is actually added or removed. The virtual address space accessible to a particular

program is entirely a function of the way in which the Monitor sets up user operating conditions,

except that any space and any restrictions must encompass an integral number of pages.

1.4 Timesharing

Inherent in the machine hardware are restrictions that apply universally: only certain instructions

can be used to respond to a priority interrupt, and certain memory locations have prede�ned uses.

Above this fundamental level, the timeshare hardware provides for di�erent modes of processor

operation and establishes certain instruction and memory restrictions so that the processor can

handle a number of user programs (programs run in user mode) without their interfering with

one another. The memory restrictions are dependent to a great extent on the type of processor;

however, the instruction restrictions are not, and these are relatively obvious: a program that is

sharing the system with others cannot usually be allowed to halt the processor or to operate the

in{out equipment arbitrarily. (Some processors permit unrestricted access to a limited set of in{out

devices for the use of special real{time applications.) A program that runs in executive mode|the

Monitor|is responsible for scheduling user programs, servicing interrupts, handling input{output

needs, and taking action when control is returned to it from a user program. Any violation of an

instruction or memory restriction by a user transfers control back to the Monitor. Dedication of

the entire facility to a single purpose, i.e., operation for only one user, is equivalent to operation in

executive mode.

The paging hardware maps pages from the virtual address space into pages anywhere in physical

memory. A page map for each program speci�es not only the correspondence from virtual address

to physical address, but also whether or not an individual virtual page is accessible and alterable,



26 CHAPTER 1. INTRODUCTION

and whether or not the cache can be used for references to it. In the KL10 and KI10, both user and

executive modes are subdivided according to whether the program is running in a public area or a

concealed area; these areas are distinguished by whether or not their pages are labeled public. Within

user mode these submodes are public and concealed; within executive mode they are supervisor and

kernel. A program in concealed mode can reference all accessible user memory, but the public

program cannot reference the concealed area except to transfer control into it at certain legitimate

entry points. The concealed area would ordinarily be used for proprietary programs that the user

can call but cannot read or alter.

In the XKL

-

1 and KS10, all pages may be regarded as concealed, because none are labeled public;

but in reality the concept of public vs concealed simply does not apply. In the XKL

-

1 and KS10,

executive mode is identical to kernel mode in that supervisor restrictions do not exist. In this

treatment of timesharing, any mention of public in contrast to private is irrelevant to the XKL

-

1

and KS10, and functions indicated as being performed by the kernel or supervisor program are all

handled by the executive in these processors.

In kernel mode the Monitor handles the in{out for the system, handles priority interrupts, con-

structs page maps, and performs those functions that a�ect all users. This mode has no instruction

restrictions, the program can even turn o� the pager to address memory directly, using physical ad-

dresses; the address space is then said to be unpaged. In paged address space, individual pages may

be restricted as inaccessible or write{protected, but it is the kernel program that establishes these

restrictions. In supervisor mode the Monitor handles the general management of the system and

those functions that a�ect only one user at a time. This mode has essentially the same instruction

and memory restrictions as user mode, although the supervisor program can read, but not alter, the

concealed areas; in this way the kernel mode Monitor supplies the supervisor program with infor-

mation the latter cannot a�ect, even though the locations are not write{protected in kernel mode.

The kernel program generally assigns fast memory block 0 for use by the Monitor in either mode

(especially in a TOPS{10 system|to be compatible with the KI10 where the hardware requires it).

Typically, the Monitor assigns block 1 to all users and uses blocks 2 and 3 for handling interrupts

(e. g. block 2 just for the highest priority level and block 3 for the others).

The most extensive hardware features for timesharing exist in the KL10 and KI10. The reason for

this is that the newest software is much more sophisticated and thus requires less hardware to do

the job| the XKL

-

1 and KS10 take advantage this fact to cut cost.

Figure 1.8 shows an example of the use of the most extensive timeshare hardware. This diagram

shows the layout of a single{section KL10 address space that is con�gured to make full use of the

various modes, be used with a TOPS{10 Monitor, and be compatible with earlier machines. The

space is 256K, made up of 512 pages numbered 0{777 octal. Any program can address locations 0{

17, because these are in fast memory and are completely unrestricted (although the same addresses

may be in di�erent blocks for di�erent programs). The public user program operates in the public

area, part of which may be write{protected. The public program cannot access any locations in

the concealed areas except to fetch instructions from prescribed entry points. The concealed user

program has access to both public and concealed areas, but it cannot alter any write{protected

location, whether public or concealed, and fetching an instruction from the public area automatically

returns the processor to public mode.

In a TOPS{20 system, an area labeled \write{protected" might better be called \copy{on{write."

Write protection is generally for \pure" code (i.e., those portions of the program that are not

expected to be changed by the execution of the program) shared by a number of users. If one user

attempts to alter a copy{on{write page, the TOPS{20 Monitor will ordinarily make a separate copy



1.4. TIMESHARING 27

Figure 1.8: Possible TOPS{10 Virtual Address Space Con�guration

HRMF-T10VASC.TEX

Public Concealed

Supervisor

Kernel

User Mode Executive Mode

0 0 0 0

Fast Memory Fast Memory Fast Memory Fast Memory

Public

Writeable

Public

Writeable

Concealed

Writeable

Inaccessible

in KI10

Concealed

Write{Protected

Unpaged

in KI10

340

340

Public

Concealed

Public

Concealed

400 400 400 400

Public

Write{Protected

Concealed

Entry Points

Public

Write{Protected

Concealed

Write{Protected

Public

Writeable

Public

Writeable

Public

Write{Protected

Public

Write{Protected

Concealed

Concealed

Writeable

Concealed

Write{Protected

777 777 777 777

Shaded Areas are Inaccessible

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�



28 CHAPTER 1. INTRODUCTION

for that user in his alterable space and keep the original write{protected page for the remaining

users to continue sharing.

In our example, write{protected user pages are in the high address half of the space for compatibility

with the two{part protection and relocation scheme of the KA10. We de�ne the supervisor program

as con�ned to pages 340 and above, even though there is actually nothing to prevent it from reading

that part of the kernel program shown in the lower numbered pages. The reason for specifying it

this way is for compatibility with the KI10, where the bottom 112K of executive space is unpaged

and accessible only in kernel mode. Part of the executive public area may be write{protected; and,

even though the supervisor can read concealed information, it cannot change a concealed location

whether write{protected or not. For executive concealed areas, the distinction between writable

and write{protected applies only to kernel mode. As in the case of concealed user mode, when the

kernel program fetches an instruction from a public area, the processor returns to supervisor mode.

With TOPS{10 paging, pages 340{377 constitute the per{process area, which contains information

speci�c to individual users and whose mapping accompanies the user page map. In other words, the

physical memory corresponding to these virtual pages can be changed simply by switching from one

user to another, rather than the Monitor changing its own page map.

In the executive space of an XKL

-

1 there is no requirement to use section zero; the TOPS{20 monitor

avoids all use of section zero.

In executive space of an extended KL10, the interrupt code must be in section zero. The rest of

the KL10's executive program is usually in section one; but the two sections are mapped identically,

so a given in{section address in either section refers to the same physical location. In terms of

instructions implemented and procedures used, the KS10 acts like an extended processor that is

con�ned to section zero.

A single{section user program would ordinarily be run in section zero for compatibility with an

unextended processor. For the multisection case, the program might be in section 1, special tables

in section 3, and a large data structure, such as an immense matrix, might occupy sections 10{12.

To manage the system e�ectively, the Monitor keeps a special table for each process in each processor.

These process tables are de�ned in physical memory; each requires a single page whose whereabouts

must be speci�ed by the Monitor, which keeps an executive table for itself and a user table for each

user. In a TOPS{10 processor, the �rst half of the table holds the page map for the process;

2

in

a TOPS{20 processor, the process table contains a table of (super{) section pointers to page maps

for whatever (super{) sections are in use. The hardware de�nes the use of many other locations

in the process tables, especially in the KL10: these include locations that hold trap and interrupt

instructions, control blocks for channels and front{end processors, and various quantities associated

with paging and the meters. In the KS10 there are no control blocks since there are no channels or

front{end processors; moreover timing information and many of the words associated with paging

are kept in the workspace instead of the process tables. In the XKL

-

1, many of the parameters that

control the paging environment are kept in MemA. Parts of a process table not used by or set aside

for the hardware are available to the software. In each user process table the Monitor generally

keeps a stack for use with the process, job tables, and various user statistics such as memory space

and billing information. In the text the phrase \user process table" refers to the table currently

speci�ed by the Monitor as the one for the user, even if that user is not currently running.

2

This distinction is no longer strictly true: advanced versions of TOPS{10 use TOPS{20 paging.



1.5. NUMBER SYSTEM 29

1.5 Number System

Fundamentally, the computer memory stores 36 bits (i.e., binary digits) in each word. The in-

terpretation of the contents of a memory word, whether as a �xed{point number, as text, as a


oating{point number, as an instruction, or whatever else, rests entirely with the programmer's

selection of which instruction(s) interpret the data. This section discusses two broad classes of data:

�xed{point and 
oating{point numbers.

1.5.1 Fixed{Point Numbers

One of the usual interpretations of a data word is as a signed integer with 35 magnitude bits.

However, a program can interpret a data word as a 36{bit, unsigned binary number, or the left and

right halves of a word can be taken as separate 18{bit numbers. The PDP{10 repertory includes

instructions that add or subtract one from both halves of a word, so the right half can be used for

address modi�cation when the word is addressed as an index register, while the left half is used to

keep a control count.

The �xed{point arithmetic instructions use twos{complement representations to do binary arith-

metic. In a word used as a number, bit 0 (the leftmost bit) represents the sign: 0 for positive, 1 for

negative. In a positive number the remaining thirty{�ve bits are the magnitude in ordinary binary

notation. In a negative number the sign bit is 1 and the remaining bits are the twos complement of

the magnitude.

Arithmetically, if x is an n{bit binary number, its twos complement is 2

n

� x. The twos comple-

ment is actually formed by computing the equivalent, (2

n

� 1)� x+ 1. Although the latter seems

more complicated, it is quite easy to do in hardware. The expression (2

n

� 1)� x represents the

ones complement (also called the logical complement, or simply the complement) of x. The ones

complement is easy to compute because (2

n

� 1) is a word containing n consecutive 1s. When x

is subtracted from a word containing all ones, the result is a word in which every bit that was 1

in x is now 0, and every bit that was 0 in x is now 1. Thus each bit of x has been changed to its

complement. To form the twos complement of x, 1 is added to the ones complement of x. (The

adder is directed to use the ones complement of its input as one operand, zero as the other operand,

and a carry is injected at the right end of the adder; the result is the twos{complement of the orginal

operand.)

+153

10

= +231

8

= 000 000 000 000 000 000 000 000 000 010 011 001

�153

10

= �231

8

= 111 111 111 111 111 111 111 111 111 101 100 111

0 35

0 35

A twos{complement addition actually acts as though the words represented 36{bit unsigned numbers;

i.e., the sign bits are treated just the same as the magnitude bits. In the absence of a carry into

the sign stage, adding two numbers with the same sign produces a plus sign in the result. The

presence of a carry gives a positive answer when the addends have di�erent signs. The result has

a minus sign when there is a carry into the sign bit and the addends have the same sign, or when

the addends have di�erent signs and there is no carry. Thus the program can interpret the numbers

processed in �xed{point addition and subtraction as signed numbers with thirty{�ve magnitude bits



30 CHAPTER 1. INTRODUCTION

or as unsigned 36{bit numbers.

A computation on signed numbers produces a result that is correct as an unsigned 36{bit number

even if over
ow occurs. The hardware interprets the result as a signed number for the purpose of

detecting and indicating over
ow. Adding two positive numbers whose sum is greater than or equal

to 2

35

gives a negative result, indicating over
ow; but that result, which has a 1 in the sign bit, is

the correct answer interpreted as a 36{bit unsigned number in positive form. Similarly, adding two

negatives gives a result which is always correct as an unsigned number in negative form.

Zero is represented by a word containing all 0s. Complementing this number produces a word

containing all 1s, and adding 1 to that produces all 0s again. Hence, there is only one representation

for the number zero and its sign is positive. Since the numbers are symmetrical in magnitude about

a single zero representation, all even numbers, both positive and negative, end in 0. All odd numbers

end in 1. (A number containing all 1s represents �1.) However, since there are the same number

of numbers with each sign and zero has a plus sign, there is one more negative number than there

are strictly positive numbers (non{zero numbers with a plus sign). This is the largest negative

number and it cannot be produced by negating any positive number. Its octal representation is

400000000000, meaning �2

35

, i.e., decimal {34,359,738,386. The magnitude of this number is one

greater than the largest positive number.

If ones complement were used for negatives a person could read a negative number by attaching

signi�cance to the 0s instead of the 1s. In twos complement notation each negative number is one

greater than the complement of the positive number of the same magnitude, so a negative number

can be read by attaching signi�cance to the rightmost 1 and to the 0s to the left of it. (The negative

number of largest magnitude has a 1 in only the sign position.) In a negative integer, 1s may be

discarded at the left, just as leading 0s may be dropped in a positive integer. In a negative fraction,

0s may be discarded at the right. So long as only 0s are discarded, the number remains in twos{

complement form because it still has a 1 that possesses signi�cance; but if a portion including the

rightmost 1 is discarded, the remaining part of the fraction is now a ones{complement number. For

example, single{precision multiplication (the MUL instruction) produces a double{length product;

the programmer must remember that discarding the low{order part of a double{length negative

leaves the high{order part in correct twos{complement form only if the low{order part is zero.

The computer does not keep track of a binary point|the programmermust adopt a point convention

and shift the magnitude of the result to conform to the convention used. Two common conventions

are to regard a number as an integer (binary point at the right) or as a proper fraction (binary point

at the left); in these two cases the range of numbers represented by a single word is �2

35

to 2

35

� 1,

or �1 to 1� 2

�35

. Since multiplication and division make use of double{length numbers, there are

special instructions for performing these operations with integral operands.

The format for double{length �xed{point numbers is just an extension of the single{length format.

The magnitude (or its twos{complement) is the 70{bit string in bits 1{35 of the high{ and low{order

words. Bit 0 of the high{order word is the sign, and bit 0 of the low{order word is made equal to the

sign in any result. The range for double{length integers and proper fractions is thus �2

70

to 2

70

� 1

and �1 to 1 � 2

�70

. The double{precision instructions actually use quadruple{length numbers for

products and dividends. Numbers of any length are just a further extension of the basic format:

thirty{�ve additional bits of the number in each lower{order word, with bit 0 made equal to the

sign in results. Remember that truncating a multiple{length negative requires an adjustment for

the twos{complement unless the part discarded is zero. The convention for bit 0 of lower{order

words is inconsistent with that used for 
oating{point format (see below). This does not a�ect

the arithmetic instructions themselves, as they ignore bit 0 in all lower{order words. However,



1.5. NUMBER SYSTEM 31

the instructions that negate a double{word (e.g., DMOVN) follow the 
oating{point convention.

This means that, if such instructions are used for �xed{point numbers, a problem could arise when

comparing one double{precision integer with another.

1.5.2 Floating Point Numbers

The 
oating{point instructions provide for conversion between �xed and 
oating forms and handle

both single{ and double{precision 
oating{point numbers. The same format is used for a single{

precision number and the high{order word of a double{precision number. A 
oating{point instruc-

tion interprets bit 0 as the sign but interprets the rest of the word as an 8{bit exponent and a

27{bit fraction. For a positive number, the sign is 0, as before. However, the contents of bits 9{35

are now interpreted as a binary fraction and the contents of bits 1{8 are interpreted as an integral

exponent in excess{128 (decimal, i.e., excess{200

8

) code. Exponents from (decimal) �128 to +127

are therefore represented by the binary equivalents of 0 to 255 (i.e., 000

8

{ 377

8

). Floating{point

zero is represented by a word containing all 0s. Negative 
oating{point numbers is represented by

the twos{complement of its positive counterpart. A negative number has a 1 for its sign and the

twos{complement of the fraction; since every fraction must ordinarily contain a 1 unless the entire

number is zero (see below), it has the ones{complement of the exponent code in bits 1{8. Since the

exponent is in excess{128 code, an actual exponent x is represented in a positive number by x+128,

in a negative number by 127�x. The programmer, however, need not be overly concerned with the

details of these representations because the hardware compensates automatically. For example, for

the instruction that scales the exponent, the hardware interprets the integral scale factor in standard

twos{complement form but produces the correct ones complement result for the exponent.

+153

10

= +231

8

= +0:462

8

� 2

8

= 0 10 001 000 100 110 010 000 000 000 000 000 000

�153

10

= �231

8

= �0:462

8

� 2

8

= 1 01 110 111 011 001 110 000 000 000 000 000 000

0 1 8 9 35

0 1 8 9 35

The 
oating{point instructions assume that all non{zero operands are normalized. The 
oating{

point instructions normalize a non{zero result. A 
oating{point number is considered normalized if

the magnitude of the fraction is greater than or equal to

1

2

and less than 1. The hardware may give

incorrect or imprecise results if the program supplies an operand that is not normalized or that has

a zero fraction with a non{zero exponent.

Single{precision 
oating{point numbers have a fractional range in magnitude of

1

2

to 1 � 2

�27

,

about eight signi�cant decimal digits. Increasing the length of a number to two words does not

signi�cantly change the range but rather increases the precision; in any format the magnitude range

of the fraction is

1

2

to 1 decreased by the value of the least{signi�cant bit. In these formats the

exponent range is �128 to +127, giving a decimal range of approximately 1:5� 10

�39

to 1:7� 10

38

.

The G{format 
oating{point numbers (described below) extend the range of the exponent.

The precaution about truncation given for �xed{point multiplication applies to single{precision


oating{point operations because they are done in extra length; but the programmer may request



32 CHAPTER 1. INTRODUCTION

rounding, which automatically restores the high{order part (the result) to twos{complement form

if it is negative. In double{precision 
oating{point instructions, all operands and results are double

length, and all instructions calculate an extra length{answer, which is rounded to double length

with the appropriate adjustment for a twos{complement negative. In double{precision format the

high{order word is the same as a single{precision number, and bits 1{35 of the low{order word are

simply an extension of the fraction, which is now sixty{two bits, or over eighteen decimal digits.

Bit 0 of the low{order word is made 0 in a result but it is ignored in all operands; e.g., the number

2

18

+ 2

�18

has this two{word representation in double{precision format,

0 10 010 011 100 000 000 000 000 000 000 000 000

0 00 000 000 010 000 000 000 000 000 000 000 000

0 1 8 9 35

0 1 35

and its negative is

1 01 101 100 011 111 111 111 111 111 111 111 111

0 11 111 111 110 000 000 000 000 000 000 000 000

0 1 8 9 35

0 1 35

1.5.3 G{format Floating{Point Numbers

A collection of instructions to handle extended{range (or \giant") 
oating{point numbers has been

included in the KL10, and XKL

-

1.

3

These instructions include the usual arithmetic operations as

well as conversions between G{format 
oating{point numbers and integers, double word integers,

single{precision 
oating{point, and double{precision 
oating point. The G{format operands are

similar to double{precision 
oating{point numbers; however, in G{format numbers, the exponent

�eld has been expanded by three bits at the expense of losing bits in the fraction. For this small

loss in precision, one decimal digit of signi�cance, the range has been greatly extended.

In G{format, bit 0 of the �rst word is interpreted as the sign; the next eleven bits are the exponent;

twenty{four bits of binary fraction follow in the �rst word with thirty{�ve additional fraction bits

in the second word, for a total of �fty{nine fraction bits. For positive numbers, the sign is 0; the

contents of bits 1{11 are interpreted as an integral exponent in excess{1024 (decimal, i.e., excess{

2000

8

) code. Exponents from decimal �1024 to +1023 are represented by the binary equivalents

of 0 to 2047 (0000

8

{ 3777

8

). Floating{point zero is represented by a double word containing all 0

bits. Negative numbers have the sign bit set to 1, the ones complement of the exponent in bits 1{11,

and the twos{complement of the fraction in bits 12{35 of the �rst word and bits 1{35 of the second

word. Bit 0 of the second word is zero in results and ignored in operands.

For example, the number 2

18

+ 2

�18

has this two{word representation in G{format,

3

In XKL

-

1, these instructions trap to a macro{code simulator.



1.6. INSTRUCTION FORMAT 33

0 10 000 010 011 100 000 000 000 000 000 000 000

0 00 000 000 000 010 000 000 000 000 000 000 000

0 1 11 12 35

0 1 35

and its negative is

1 01 111 101 100 011 111 111 111 111 111 111 111

0 11 111 111 111 110 000 000 000 000 000 000 000

0 1 11 12 35

0 1 35

These numbers give a decimal range of approximately 2:8� 10

�309

to 9� 10

307

.

1.6 Instruction Format

Memory Address

Index Register

Address

�

��

Address Type

0 12 13 14 17 18 358 9

Instruction Code

Accumulator

Address

@

@

Basic Instruction Format

In the basic instruction format, the nine high{order bits (0{8) specify the operation, and bits 9{12

address an accumulator. The rest of the instruction word supplies information for calculating the

e�ective address, which is the actual address used to fetch the operand or alter program 
ow. Bit 13

speci�es the type of addressing, bits 14{17 specify an index register for use in address modi�cation,

and the remaining eighteen bits (18{35) address a memory location. In variations on this basic

format, bits 9{12 may be used for addressing 
ags, or all thirteen high order bits (0{12) may be

used for an expanded instruction code. The instruction codes that are not assigned as speci�c

instructions are performed by the processor as so{called \unimplemented operations." Among the

unimplemented operations are some that are speci�ed as \unimplemented user operations" or UUOs

(a mnemonic that means nothing to the assembler). Some of these are for the local use of a program

(LUUOs) and some are for communication with the Monitor (MUUOs). In general, unassigned

codes act like MUUOs.

In the KL10 and earlier processors, three 1s in bits 0{2 indicate an input{output instruction; these

instructions have a di�erent format, as indicated below. In the IO instruction format used in the

KL10 and earlier processors, bits 3{9 address the in{out device to be used in executing the instruction

and bits 10{12 specify the operation. The rest of the word is the same as in other instructions.



34 CHAPTER 1. INTRODUCTION

Memory Address

Index Register

Address

�

��

Address Type

0 12 13 14 17 18 352 3

7

9 10

Device Code

Instruction

Code

�

�

@

@

Pre{KS10 In{Out Instruction Format

In all processors from the KS10 on, in{out instructions use the basic instruction format, but for

consistency they always do have 1s in the leftmost three bits. (Note there are also non{IO instruction

codes beginning with 7.) Post{KL10 IO instruction codes are opportunely chosen so equivalent

instructions generally have the same con�guration in all processors.

Note that bits 13{35 have the same format in both types of instructions; in fact these bits are the

same in every instruction, whether it addresses a memory location or not. In the format illustrations

throughout the manual, this part of an instruction word is shown as

YXI

13 14 17 18 35

where bit 13 is represented by I for \indirect bit;" i.e., the address type is either direct or indirect,

where the latter is indicated by a 1. For every instruction, the processor carries out an e�ective

address calculation that results in a quantity referred to as E . This is the e�ective address of the

instruction if indeed it is an address, whether for an operand or a jump. E may, however, represent

e�ective conditions, an e�ective shift, or something else, but the result of the calculation is always

referred to as E . In illustrations for the basic instructions, bits 9{35 are almost always represented

by

YXIA

9 13 14 17 18 35

where A is the accumulator address.



1.6. INSTRUCTION FORMAT 35

Note

Although the various parts of an instruction word are always labeled, in some instructions

the result of the e�ective address calculation is not actually used. Unless otherwise

speci�ed, in such cases the I , X , and Y parts of the word are reserved by XKL for

possible future use, and they must be zero for compatibility with such use. Similarly

when bits 9{12 are not used, they are also reserved and must be zero.

A similar stricture holds for all the formats de�ned throughout the manual for address

words, pointers, and miscellaneous special words associated with system features. In

words supplied by the program, unassigned bits are available for arbitrary use by the

user only if speci�cally so indicated. Bits labeled \reserved" or simply left blank are

reserved to Digital for future use by the hardware or use by the system software. In

any word read by the program, unlabeled bits are read as 0s unless there is a speci�c

indication otherwise.

The XKL

-

1, KL10, and KS10 have a feature that allows expansion of the instruction repertory by

an extension of the basic format to two words. In a two{word instruction, it is only the �rst word

that actually appears in the program sequence (i.e., that is referenced by PC), and the accumulator

used by the instruction is that speci�ed by the A �eld of the �rst word. However, the instruction

the processor actually executes is the second word; it is found at location E0 , which is the result of

the e�ective address calculation for the �rst word. Moreover, the way the processor interprets the

instruction code of the second word is entirely di�erent from the way it would if that same word

appeared in the program sequence as a one{word instruction. Thus, use of a single instruction code

in the �rst word e�ectively creates a whole new instruction set as large as the one the processor

already has. At present there is only one such extended instruction set, and only a small number

of the available extended codes are used. In extended instructions, the �rst instruction word is the

EXTEND instruction, which has code 123. The format illustrations for these instructions are like

this.

0 12 1314 1718 35

I X Y

8 9

A123

0 12 1314 1718 35

I X Y

8 9

00
Instruction CodeE0

Remember, however: although the two words are shown together, they never appear one after the

other in the program sequence. If they did, the processor might well perform the second word as a

standard instruction after executing it as an extended instruction. As with all instructions, before

executing the second word the processor calculates an e�ective address for it; this is referred to as

E1 , and its use depends on the instruction. Bits 9{12 of the second instruction word must be zero

for compatibility with possible future use. Unassigned extended instruction codes are executed as

MUUOs.



36 CHAPTER 1. INTRODUCTION

1.7 E�ective{Address Calculation

Note

The calculation of E , the E�ective{Address, is the �rst step in the execution of every

instruction. No other action taken by any instruction, no matter what it is, can possibly

precede that calculation. There is absolutely nothing whatsoever that any instruction can

do to any accumulator or memory location that can in any way a�ect its own e�ective{

address calculation.

An e�ective{address is calculated for every instruction regardless of whether or not the

instruction actually references memory.

E�ective{address calculation generally is performed in the virtual{address space of the program.

This is true even for fast memory, which every program regards as in its virtual space even though

fast{memory addresses are treated as unmapped addresses and are not sent to the pager for mapping.

The exceptional cases where e�ective{address calculations are not done in the virtual{address space

of the program occur either when an executive{mode program is performing a PXCT instruction

that speci�es that the target instruction's e�ective{address calculation is to be performed in the

previous context, or when an executive{mode program is executing with the pager turned o�, e.g.,

at system start up. In the latter case, all addresses used are physical addresses for memory and the

program must not give addresses that lie outside the range determined by available memory. When

the Monitor is setting up page maps, it must select appropriate physical translations.

1.7.1 Section Zero E�ective{Address Calculation

For our discussion of the e�ective{address calculation, we shall begin with the simpler case|a virtual

space limited to section zero (all quantities are eighteen bits). This is the calculation performed by

the KA10, KI10, unextended KL10, and KS10 processors. This description applies also to the

extended KL10 and the XKL

-

1, when operating in section zero. This calculation is depicted in

Figure 1.9.

As explained at the beginning of this chapter, the address space of an unextended processor is limited

to one section, which by de�nition is section zero. Such processors employ only in{section addresses,

because no section number is necessary when there is only one section.

Bits 13{35 have the same format in every instruction whether it addresses a memory location or

not. Bit 13 is the indirect bit; bits 14{17 are the index register address; and bits 18{35 are called

the address Y .

YXI

13 14 17 18 35

The e�ective{address E of the instruction depends on the values of I , X , and Y . If I and X are both

zero, Y is E , i.e., bits 18{35 contain the e�ective address. If X is non{zero, the contents of the right

half of index register X are added to Y to produce an 18{bit modi�ed address. If I is 0, addressing



1.7. EFFECTIVE{ADDRESS CALCULATION 37

Figure 1.9: Single{Section E�ective{Address Computation

HRMF-ZEACALC.TEX

Instruction Fetch

?

MB( C(PC)

IR( MB

<0:12>

?

-

Y( MB

<18:35>

X( MB

<14:17>

I( MB

<13>

?

X = 0 ?

�

�

�

Q

Q

Q

Q

Q

Q

�

�

�

?

No

?

Yes

E( Y+ C(X)

<18:35>

?

E( Y

�

I = 0 ?

�

�

�

Q

Q

Q

Q

Q

Q

�

�

�

-

Yes Done. Result is E.

?

No

MB( C(E)



38 CHAPTER 1. INTRODUCTION

is direct and the modi�ed address is the e�ective address used in the execution of the instruction;

if I is 1, addressing is indirect and the processor retrieves another address word (referred to as an

\indirect word") from the location speci�ed by the modi�ed address already determined. This new

word is processed in exactly the same manner: X and Y determine the e�ective address if I is 0,

otherwise, they are used for yet another level of address retrieval. This process continues until some

referenced location is found with a 0 in the indirect bit; the 18{bit number calculated from the X

and Y parts of this location is the e�ective address E .

We have taken Y to be a memory address, but the program can just as well have an address in the

index register, and have the Y part of any instruction or indirect word that references it be an o�set

or displacement. An instruction or indirect word is still an \address word", even though it may not

contain an address; the quantity in an index register is still called an \index", even when it is an

address instead of an o�set.

Note that, throughout the procedure, no computed quantity is ever larger than eighteen bits. In the

arithmetic operations, over
ows are discarded by disabling the carry from bit 18 to bit 17. Hence

adding a large o�set can be the same as subtracting a small one.

The calculation outlined above is carried out for every instruction, even if it need not address

a memory location. If the indirect bit in the instruction word is 0 and no memory reference is

necessary, then Y is not a memory address. It may be a mask in some kind of test instruction,

conditions to be sent to an in{out device, an o�set for bytes in a string, or part of it may be

the number of places to shift in a shift or rotate instruction or the scale factor in a 
oating scale

instruction. Even when modi�ed by an index register, bits 18{35 do not contain a memory address

when I is 0 and no memory reference is required. But when I is 1, the number determined from

bits 14{35 is an indirect address no matter what type of information the instruction requires, and

the word retrieved in any step of the calculation contains an indirect address so long as I remains

1. When a location is found in which I is 0, bits 18{35 (perhaps modi�ed by an index register)

contain the desired e�ective mask, e�ective conditions, e�ective o�set, e�ective shift number, or

e�ective scale factor. Many of the instructions that usually reference memory for an operand have

an \immediate" mode in which the result of the e�ective address calculation is itself used as a

half{word operand instead of a word taken from the memory location it addresses. The KS10 IO

instructions do not use the result of the e�ective address calculation; instead, they recompute an IO

address by a similar procedure (x2.17).

The important thing for the programmer to remember is that the same calculation is carried out

for every instruction regardless of the type of information that must be speci�ed for its execution,

or even if the result is ignored. In the discussion of any instruction, E refers to the actual quantity

derived from I , X , and Y and used in the execution of the instruction, be it the entire half{word,

as in the case of an address, immediate operand, mask, o�set, or conditions, or only part of it, as in

a shift number or scale factor.

1.7.2 Extended E�ective{Address Calculation

In an extended processor the much larger address space is divided into sections of 256K each, and an

individual location is identi�ed by an address containing both a section number and an in{section

part, as depicted in Figure 1.10. There are still many circumstances, however, in which in{section

addresses are used alone in an extended processor. The most obvious case is the address given

directly by an instruction: this is limited to eighteen bits and is con�ned to the section from which



1.7. EFFECTIVE{ADDRESS CALCULATION 39

Figure 1.10: Extended Address Space

Extended Address In{Section

Addresses Space Address

0000000 0

. .

. .

. Section 0 .

. .

. .

0777777 777777

1000000 0

. .

. .

. Section 1 .

. .

. .

1777777 777777

2000000 0

. .

. .

. Section 2 .

. .

. .

2777777 777777

3000000 0

. .

. .

. . . . .

the instruction is retrieved, being usually the section in which the program is currently running as

determined by PC.

Even in an extended processor, an e�ective{address calculation performed in section zero is done

exactly as outlined above, with all addresses and displacements taken as 18{bit quantities contained

in bits 18{35 of an instruction word, an index register, or an indirect word. In other words, when a

program is running in section zero, E can never reference a non{zero section for either an operand or

a jump (although it can reference an operand that supplies an extended address). Moreover, in terms

of addressing, section zero of an extended processor is entirely compatible with the single section of

an unextended processor. However, in non{zero sections, the e�ective{address calculation can use

extended addressing. To understand how extended addressing works, the reader must understand

the following terms.

� Every address can be represented by 31 bits: one bit to distinguish between a local address

and a global address and 30 bits to represent the address itself. The 30 bits of address are

thought of as a 12{bit section number and an 18{bit in{section address.



40 CHAPTER 1. INTRODUCTION

� An instruction word is a word addressed by PC (the program counter) and read and interpreted

by the processor as an instruction. An instruction word contains an operation code and �elds

that specify the e�ective address of an operand.

� An address word is any word that is used to supply an address during the e�ective{address

computation. The e�ective{address computation references a sequence of one or more address

words; the �rst of which is the instruction word. Indirect address words (discussed below) and

byte{pointer words are also examples of address words.

� For a local address, an explicit computation provides the 18{bit in{section address, but the

12{bit section number is supplied implicitly. The implicit section number is supplied by the

section from which the last of the address words was fetched. (When indirect addressing is

not used, the instruction word is the last address word, so the implicit section number is the

PC section.)

� A global address is provided by a computation that supplies all 30 bits explicitly.

Note that section number 7777 is reserved; a memory reference to section 7777 always traps

to the Monitor.

The extended KL10 implements only the right{most twenty{three bits (sections 0{37), al-

though larger section numbers could be used for software purposes.

� A local index is an 18{bit unsigned displacement or address in bits 18{35 of an index register.

� A global index is a 30{bit unsigned displacement or address in bits 6{35 of an index register.

� A local indirect word is one containing a local address or displacement in this format:

00

1

11

0

122

Reserved

1313

I

1714

X

3518

Y

Because of its similarity to the format of an instruction word, an address word of this sort is

also called an \instruction{format indirect word".

� A local address word is a word that contains a local address. A local address word is either a

local indirect word or an instruction word.

� A global indirect word , also called a global address word is one containing a global address or

displacement in this format:

00

0

11

I

52

X

356

Y

An address word of this type is also called an \extended{format indirect word"

We can now state that an extended e�ective{address calculation is carried out by essentially the

same procedure as described above, with index and indirect steps depending on the values of I and

X supplied by a sequence of address words. Now, however, there are di�erences in the meanings

of individual terms and in the way individual operations are performed. First, the indirect bit can

be either bit 13 or bit 1, depending on whether it is supplied by a local or global address word

(instruction or extended format). Second, there are several varieties of indexing: local and global,

with two versions of the latter depending on whether the quantity being indexed is local or global.



1.7. EFFECTIVE{ADDRESS CALCULATION 41

� Local indexing occurs when the address word is local and either the left half of the index

register is negative (i.e., bit 0 is one) or the section number part of it (bits 6{17) is zero.

(Index register bits 1{5 are available to software.) In this case the operation is carried out just

as in the unextended procedure, and the indexing produces a local address in the section from

which the address word is taken (the PC section in the case of an instruction word). Thus, the

program can use local indexing in a non{zero section. Furthermore, a program can use the left

half of the local index register for a control count that counts up through negative numbers to

end an iterative process at zero (as is done in, e.g., the AOBJN instruction).

� Global indexing means the interpretation of an index register as a 30{bit address; consequently

a 30{bit global address will result. Global indexing can occur in either of two circumstances

(with quite di�erent e�ects). First, global indexing occurs when the address word is global.

The 30{bit value in bits 6{35 of the index register is added to the 30{bitY value from bits 6{35

of the global address word. This is simply a global extension of local indexing: the address

word may contain an address and the index register an unsigned o�set, or vice versa; adding

a large o�set can be the same as subtracting a small one. (In this case, bits 0{5 of the index

register are available to software.)

Second, global indexing occurs when the address word is local and the left half of the index

register is positive (i.e., bit 0 is zero) and bits 6{17 contain a non{zero section number. This

case is quite unlike local indexing: the index (again, bits 6{35) is assumed to be a global

address, and the 18{bit Y is interpreted as a signed displacement (in the range from �2

17

to

2

17

� 1), which is added to it algebraically. The value Y is sign{extended by copying its bit

18 to bits 6{17 of the addend. (In this case, bits 1{5 of the index register are available to

software.)

As shown in Figure 1.11, the e�ective{address calculation begins in the section from which the �rst

address word is taken. This is the \local" section for the given address word|the PC section in

the case of an instruction word speci�ed by PC. The calculation remains in the local section until

the appearance of a global quantity (index or indirect word) changes the section number. So long

as only local events occur, all addresses are interpreted as being in the same section (local indexing

wraps around 256K). Note that either a local or global address can be used to fetch either a local

or global indirect word, but indexing can change only a local quantity to a global one|it cannot

modify a global address into a local one. No matter how long the procedure remains local, global

indexing or retrieval of a global indirect word can switch to a new section. However if the procedure

enters section zero it can never get out. This is because the calculation then interprets all further

quantities as local, no matter what their format; i.e., no matter what the program may have meant

by the information placed in the words containing them.

At the end, if E is an address, then either it is a global address or it is a local address in the last

section from which an address word was fetched. The distinction between a local address and the

numerically equivalent global address is sometimes important. For example, in an instruction that

uses a two{word operand in E and E + 1, if E is local then E + 1 will be in the same section as E;

however, if E is global and bits 18{35 of E are 777777, then E + 1 will be location 0 of the section

following E . Also, when bits 18{35 contain a value in the range 0{17 and the address is local, the

address speci�es one of the accumulators; however, if the address is global (and the section is greater

than 1), the address speci�es a memory location.

In an instruction in which E is not an address, the section number is ignored and E is whatever

number of bits is appropriate. In particular, an immediate{mode operand is always eighteen bits,

except in two instructions that speci�cally handle an extended address as an immediate operand.



42 CHAPTER 1. INTRODUCTION

Figure 1.11: Extended E�ective{Address Computation

HRMF-EACALC.TEX

E

<6:35>

( Y

<6:35>

E

<6:35>

( C(X)

<6:35>

+ Y

<6:35>

& & %

Y( MB

<6:35>

; X( MB

<2:5>

; I( MB

<1>

Indexed Address? Test X �eld.

'

?

X = 0

$

?

X 6= 0

Decode Indirect Word MB

<0:1>

10: Local Indirect 00: Global Indirect

11: Page Fail 01: Global Indirect

?

00 or 01: Global Indirect Word

�

11: Page Failure

&

10: Local

Indirect

Fetch the Indirect Word: MB(C(E)

Non{Zero Section? Test E

<6:17>

?

Section 6= 0

&

Section 0

Indirect Addressing? Test I bit

?

I = 1

-

I = 0. Done!

E is the E�ective

Address

If IR contains an XCT

instruction, continue

this process at

\XCT Continues",

above

?

$' $%

E

<18:35>

( C(X)

<18:35>

+ Y

<18:35>

&

Y

<6:17>

( 7777� Y

<18>

E

<6:35>

( C(X)

<6:35>

+ Y

<6:35>

%

Test C(X). Global Index when

(C(X)

<0>

= 0) ^ (C(X)

<6:17>

6= 0)

Local Index

'

?

$

?

Global Index

Test Section Number in E

<6:17>

'

Section 0

?

Section 6=0

E

<18:35>

( Y

<18:35>

Y

<18:35>

( MB

<18:35>

;

X( MB

<14:17>

; I( MB

<13>

Indexed Address? Test X �eld.

?

X �eld 6= 0

?

$

X �eld = 0

No Indexing

?

$''

A Local Address is in the same section as this Address Word

if PC

<18:31>

= 0, then MB( C(PC

<32:35>

)

else MB( C(PC

<6:35>

)

IR( MB

<0:12>

; E

<6:17>

( PC

<6:17>

?

Instruction Fetch

MB( C(E)

IR( MB

<0:12>

?

XCT Continues

%

Local{Format Address Word



1.8. PROGRAMMING CONVENTIONS 43

The accumulators are regarded as being in the local section of the instruction that addresses them.

Hence, unless otherwise speci�ed, a local pointer taken from an accumulator addresses a location in

the same section as the instruction.

Finally, there is the matter of fast{memory reference. An address references a fast{memory location

if its in{section part is in the range 0{17 and either the address is supplied by PC, the section

number is 0, the section number is 1, or the address is local. Note that if PC counts beyond the

last in{section address, the wraparound causes instructions to be taken from the ACs. There are

two means by which AC references can be made from any section: by using a local address or by

using what is speci�cally regarded as a global AC address: a section number of 1 combined with a

fast{memory in{section address.

1.8 Programming Conventions

Two elements of system software intimately associated with the presentation in this manual are the

assembler and the operating system. The manual explains the DECsystem{10 and DECSYSTEM{20

in terms of machine language programming. Such programmingmakes use of those basic characteris-

tics of the MACRO assembler described here. The assembler naturally has many other features, such

as use of prede�ned and user{de�ned pseudo{instructions. The overview of the system presented in

the �rst two sections and the more detailed presentation of system operations in later chapters are

in a sense a presentation of the sophisticated features of the operating system: its most impressive

features related to the processor are essentially its capabilities for taking advantage of these sophis-

ticated hardware characteristics. There are two operating systems: the TOPS{10 Monitor and the

TOPS{20 Monitor. The basic thrust of both is the timesharing of the system among a number of

independent users, all of whom can make extensive use of all system facilities, including front{end

processing and the advanced �le system.

MACRO recognizes a number of mnemonics and other initial symbols that facilitate constructing

complete instruction words and organizing them into a program. In particular there are mnemonics

for the instruction codes (Appendix A.3), which are nine or thirteen bits (six in pre{KS10 in{out

instructions). The assembler translates every statement into a 36{bit word, placing 0s in all bits

whose values are unspeci�ed. For example, the mnemonic

MOVNS

assembles as 213000 000000, and

MOVNS 2570

assembles as 213000 002570. This latter word, when executed as an instruction, produces the twos

complement negative of the word in memory location 2570.



44 CHAPTER 1. INTRODUCTION

Note

Throughout this manual all numbers representing instruction words, register contents,

codes, and addresses are always octal, and any numbers appearing in program examples

are octal unless otherwise indicated. On the other hand, the ordinary use of numbers in

the text to count steps in an operation or to specify word or byte lengths, bit positions,

exponents, etc. employs standard decimal notation.

In the rare instances where hexadecimal notation is appropriate, such numbers are in-

troduced with \0x".

The initial symbol @ preceding a memory address places a 1 in bit 13 to produce indirect addressing.

The example given above uses direct addressing, but

MOVNS @2570

assembles as 213020 002570 and produces indirect addressing. Placing the number of an index

register (1{17) in parentheses following the memory address causes modi�cation of the address by

the contents of the speci�ed register. Hence:

MOVNS @2570(12)

which assembles as 213032 002570, produces indexing using index register 12, and the processor

then uses the modi�ed address to continue the e�ective{address calculation.

An accumulator address (0{17) precedes the memory address part (if any) and is terminated by a

comma. Thus,

MOVNS 4,@2570(12)

assembles as 213232 002570, which negates the word in location E and stores the result in both E

and in accumulator 4. The same procedure may be used to place 1s in bits 9{12 when these are used

for something other than addressing an accumulator, but mnemonics are available for this purpose.

The device code in a pre{KS10 In{Out instruction is given in the same manner as an accumulator

address (terminated by a comma and preceding the address part), but the number given must be a

multiple of 4 and within the octal range 000{774. Mnemonics are customarily used, and they are

de�ned for all standard device codes. To control the priority interrupt system whose code is 004,

one may give

CONO 4,1302

which assembles as 700600 001302, or equivalently



1.8. PROGRAMMING CONVENTIONS 45

CONO PI,1302

The programming examples in this manual use the following notational conventions:

� A colon following a symbol indicates that it is a symbolic location name.

A: ADD 6,5704

indicates that the location that contains ADD 6,5704 may be addressed symbolically as A.

� The period represents the current address, e.g.,

ADD 5,.+2

is equivalent to

A: ADD 5,A+2

� Square brackets specify the contents of a location, leaving the address of the location implicit

but unspeci�ed. For example,

ADD 12,[7256004]

and

ADD 12,A

.

.

.

A: 7256004

are equivalent. The bracketed quantity, which is called a \literal", can be given as the left

and right halves separated by a double comma, not only eliminating the need to insert leading

zeros for the right half, but allowing use of a minus sign for a negative half word as well. In

other words

[-246,,135]

is equivalent to



46 CHAPTER 1. INTRODUCTION

[777532000135]

� A literal can encompass any number of lines of code, employing any of the programming

conventions de�ned above, and be assembled in consecutive locations. In fact a reasonable

way to assemble the extended instructions is to give the individual extended instruction code

and any necessary follow{up words as a literal in an EXTEND instruction. The assembly of

these two lines,

STRING: EXTEND AC,[MOVSO OFF

FILL]

produces, in location STRING, an EXTEND instruction whose Y part (E0 ) points to the

location containing the second instruction wordMOVSO OFF. The Y part (E1 ) of the MOVSO

contains the signed o�set OFF, and location E0+1 contains the �ll character FILL.

� Anything written at the right of a semicolon is commentary, not interpreted by the computer,

that explains the program.

1.9 KI10 and KA10 Characteristics

The KI10 and KA10 are similar, even identical, to the KL10 in many respects, but their implementa-

tion is quite di�erent: they have no microcontroller or microcode. They use the PDP{10 instruction

set but not in its full variety as available in the KL10: neither earlier processor can handle strings

or double{precision �xed{point numbers; the KA10 has no capability for handling double words

or performing double{precision 
oating{point arithmetic, although it does have instructions (re-

tained on all KL10 and KI10 TOPS{10 systems) for assisting the software in doing double-precision


oating{point arithmetic in a special software format.

Figure 1.12 shows the organization of a DECsystem{10 based on either of the earlier processors. The

processor handles its peripheral equipment directly over an in{out bus. There is no cache, there is

a real{time clock but no meters, and all memory is external. The extra four bits shown on address

registers are applicable only to the KI10. Both processors use an 18{bit internal address providing a

virtual memory of one section that is compatible with section zero of the KL10. However, whereas

the KA10 has a maximum physical memory equal in size to its virtual memory, which is organized

by protection and relocation hardware, the KI10 has a physical addressing capability equal to that

of the KL10 (22{bit address, 4096K) and has paging hardware. The KI10 virtual address space is

the same as that of a KL10 with the TOPS{10 Monitor, except that, in executive mode, the �rst

112K of memory is unpaged (and thus not available to the supervisor program), and the Monitor

can de�ne a so{called \small user" whose accessible space must lie within the virtual ranges 0{37777

and 400000{437777. The KI10 has four fast{memory blocks, of which hardware requires that the

Monitor use block 0; the KA10 has only one block.

Both processors have manual operator consoles with facilities that are directly relevant to the pro-

grammer, although they are used mostly for manually stepping through a program to debug it.

From the sense switches and the 36{bit data switch register DS, the program can read information



1.9. KI10 AND KA10 CHARACTERISTICS 47

supplied by the operator; and through the memory indicators MI, the program can display data for

the operator. By means of the address switch register AS, the operator can examine the contents of,

or deposit information into, any memory location; stop or interrupt the program whenever a partic-

ular location is referenced; and supply a starting address for the program. In these processors, IR

contains the entire left half of the current instruction word; i.e., eighteen bits rather than thirteen.

The memory address register MA supplies the address for every memory access. In the arithmetic

logic of the KA10, there are only single{length registers; but in the KI10, AR and AD have 28{bit

left extensions for double{precision 
oating{point. The KA10 has no trapping mechanism: arith-

metic and stack over
ow signal the program by way of interrupts. Individual processor di�erences

relevant to user programming are listed in Appendix C.

1.9.1 Memory

The following table gives the characteristics of the various memories available with the KI10 and

KA10. Modify completion is the time to �nish a read{modify{write cycle after the processor supplies

the new data. Times are in microseconds and include the delay introduced by ten feet (three meters)

of cable. Fast{memory times are for referencing as a memory location (18{bit address); when a fast{

memory location is addressed as an accumulator or index register, the access time is considerably

shorter.

Read Write Modify

Access Access Cycle Completion Size

MA10 Core Memory .61 .20 1.00 .57 16K

MB10 Core Memory .60

?

.20

?

1.65

?

.97 16K

MD10 Core Memory .83 .33 1.8 1.23 32{128K

ME10 Core Memory .61 .20 1.00 .65 16K

MF10 Core Memory .61 .20 1.00 .63 32K, 64K

MG10 Core Memory .67 .23 1.00 .63 32{128K

MH10 Core Memory .74 .23 1.18 .68 64{256K

KA10 Fast Memory .21 .21 16

KI10 Fast Memory .28 .0 16 [�4 sets]

?

Add .1 in a multiprocessor system.

KI10 access to accumulators and index registers e�ectively takes no time|it is done in parallel

with other required instruction operations. Retrieval of instructions or memory operands from fast

memory is generally not worthwhile because of the extensive overlapping that speeds up core access.

However, except in instructions that use two accumulators, storage of a memory operand in fast

memory not only takes no time but actually slightly decreases the non{memory time.

In a system with the greatest possible capacity, the largest KI10 address is octal 17777777, decimal

4,194,303; the largest KA10 address is octal 777777, decimal 262,143. All storage modules can be

interleaved in pairs, and some of them in sets of four (see Appendix G.3). The KA10 cannot overlap

memory access.

KI10 Memory Allocation. The KI10 hardware de�nes the use of certain memory locations, but

most are relative to pages whose physical location is speci�ed by the Monitor. The auto restart

uses location 70. The only other physical locations uniquely de�ned by the hardware are those



48 CHAPTER 1. INTRODUCTION

Figure 1.12: DECsystem{10 Based on KI10 or KA10

HRMF-KI10SYS10.TEX

Central

Processor

Console

Terminal

6

?

Paper Tape

Reader

6

?

Paper Tape

Punch

6

?

Disk

System

6

?

AS

6

184

PC

6

?

18

-

MA

184

�

- �

?

Arithmetic

Logic

(AD, AR, etc.)

Priority

Interrupt

DS

�

36

MI

-

36

IR

�

18

Fast

Memory

Core

Storage

Module

?

6

Core

Storage

Module

?

6

Core

Storage

Module

?

6

Memory Bus

?

?

66

-�

6

?

In{Out Bus



1.9. KI10 AND KA10 CHARACTERISTICS 49

in fast memory, whose addresses are the same for all programs: location 0 holds a pointer word

during a bootstrap read{in, 0{17 can be addressed as accumulators, and 1{17 can be addressed as

index registers. The only addresses uniquely speci�ed in the user virtual space are for user local

UUOs|locations 40 and 41. All other addresses de�ned by the hardware, for use in page mapping,

responding to priority interrupts, or other hardware{oriented situations, are to locations in the

process tables.

KA10 Memory Allocation. The use of certain memory locations is de�ned by the KA10 hard-

ware.

0 Holds a pointer word during a bootstrap read{in.

0{17 Can be addressed as accumulators.

1{17 Can be addressed as index registers.

40{41 Trap for unimplemented user operations (UUOs).

42{57 Priority interrupt locations.

60{61 Trap for remaining unimplemented operations: these include the unassigned instruction

codes that are reserved for future use, and also the byte manipulation and 
oating point

instructions when the hardware for them is not installed.

140{161 Allocated to second processor if connected (same use as 40{61 for �rst processor). All

information given in this manual about memory locations 40{61 for a KA10 applies

instead to locations 140{161 for programming a second KA10 connected to the same

memory.

In a user program, the trap for a local UUO is relocated to locations 40 and 41 of the user area; a

Monitor UUO uses unrelocated locations. All other addresses listed are for physical (unrelocated)

locations.



50 CHAPTER 1. INTRODUCTION



51

Chapter 2

User Operations

This chapter describes all PDP{10 instructions that are generally available to the user. It also

de�nes the types of In{Out instructions but does not discuss their e�ects when they address speci�c

internal system elements or peripheral devices. In the description of each instruction, the mnemonic

and name are at the top and the format is in a box below them. The mnemonic assembles to the

word in the box, where bits in those parts of the word represented by letters assemble as 0s. The

letters indicate portions that must be added to the mnemonic to produce a complete instruction

word. For extended instructions, the mnemonic given actually assembles to the word shown in the

second format box; the �rst box shows the con�guration of the EXTEND itself. The programmer

must write the EXTEND and arrange that its e�ective{address contains the listed mnemonic; most

often this is accomplished by writing the mnemonic in a literal.

For many of the non{IO instructions, a description applies not to a unique instruction with a single

code in bits 0{8, but rather to an instruction set de�ned as a basic instruction that can be executed

in a number of modes. These modes de�ne properties subsidiary to the basic operation; e.g., in data

transmission the mode speci�es which of the locations addressed by the instruction is the source

and which the destination of the data; in test instructions it speci�es the condition that must be

satis�ed for a jump or skip to take place. The mnemonic given at the top is for the basic mode;

mnemonics for the other forms of the instruction are produced by appending letters directly to the

basic mnemonic. Letters representing modes are su�xes which produce new mnemonics that are

recognized as distinct symbols by the assembler. Following the description is a table giving the

mnemonics and octal codes (bits 0{8) for the various modes.

Most of the non{IO instructions can address an accumulator, and in the box showing the format this

address is represented by A; in the description, \AC" refers to the accumulator addressed by A. \AC

left" and \AC right" refer to the two halves of AC; sometimes these are written as AC

L

and AC

R

,

respectively. If an instruction uses two or more accumulators, these have addresses A, A+1, A+2,

etc., which are interpreted modulo 20

8

; e.g., A+1 is 0 when A is 17. A pair of accumulators holding

a double word is referred to as AC,AC+1. In the text, the various accumulators are referred to as

AC, AC+1, and so forth. In some cases an instruction uses an accumulator only if A is non{zero:

in such cases a zero address in bits 9{12 speci�es no accumulator.

In a description, E refers to the e�ective{address, half{word operand, mask, o�set, conditions,

shift number, or scale factor calculated from the I , X , and Y parts of the instruction word. In



52 CHAPTER 2. USER OPERATIONS

an instruction that ordinarily references memory, a reference to E as the source of information

means that the instruction retrieves the word contained in location E ; as a destination it means the

instruction stores a word in location E . In the immediate mode of these instructions, the e�ective

half{word operand is usually treated as a full word that contains E in one half and 0 in the other,

and is represented either as 0; E or E; 0 depending upon whether E is in the right{ or left{half. In

extended instructions, E0 and E1 refer to the results of the e�ective{address calculations for the

�rst and second instruction words. E

R

refers to the right eighteen bits of the e�ective{address (i.e.,

the in{section part), but, in a machine lacking extended addressing, E

R

is equivalent to E .

A reference to \location E;E + 1" means the contents of the two locations are used together as

a double word, such as a double{length number. If the program is running in section zero or the

instruction gives a local address, the addresses wrap around so that, when E is 777777, E + 1 is 0;

if the program is running in a non{zero section and the instruction gives a global address in which

E

R

contains 777777, E + 1 advances to address 0 in the next section. This extends in analogous

fashion to instructions with three{ and four{word operands. (In contrast to addressing consecutive

accumulators with the A �eld of an instruction, when E is 17, E + 1 is 20.)

Please Read This

The calculation of E is the �rst step in the execution of every instruction. No other action

taken by any instruction, no matter what it is, can possibly precede that calculation.

There is absolutely nothing whatsoever that any instruction can do to any accumulator

or memory location that can in any way a�ect its own e�ective{address calculation.

The instructions are described in terms of their overt e�ects as seen by the user in a normal program

situation and on the assumption that nothing is amiss|the program is not attempting to reference

a memory that does not exist or to write in a protected area of memory. In general, all descriptions

apply equally well to operation in executive mode. For completeness, the e�ects of restrictions on

certain instructions are noted, as are the e�ects of executing instructions in special circumstances.

However, the reader must look elsewhere for the details of programming in such special situations.

In particular, x2.9.6 discusses trapping, x2.19 explains the restrictions on user programming, and

chapters 3 and 4 describe the special e�ects and restrictions associated with system operations in

the various processors.

Implicit in the execution of an instruction are side e�ects not overtly visible to the user. Side e�ects,

which vary with di�erent processors, include changes to the system's internal state that result from

the normal activities of reading and writing memory. For example, in some processors the cache

memory, the pager translation bu�er, and the page tables are part of the system's state (the processor

and the operating system), not visible to the user, which change with the user program's references

to memory. These side e�ects are generally in the province of programmers who write the operating

systems; chapters 3 and 4 describe the special e�ects of instructions in the various processors.

To minimize processor execution time, the programmer should minimize the number of memory

references and iterative operations. When there is a choice of actions to be taken on the basis of

some test, the conditions tested should be set up so that the action which results most often takes the

least time. There are also various subtleties that a�ect timing (such as the nature of the arithmetic

algorithms), but these are generally not worth considering except in very special circumstances (to

determine the e�ect often takes longer than the time saved).



2.1. FULL{WORD DATA TRANSMISSION 53

Execution times are not given with the instruction descriptions, because the time may vary greatly

depending upon circumstances. The time depends upon which processor performs the instruction,

on the con�guration of the operands, and on the number of iterative steps. The processor is designed

to save time wherever possible by inspecting the operands in order to skip unnecessary steps.

The text sometimes refers to an instruction as being \executed." To \execute" an instruction

means that the processor performs the instruction out of the normal sequence; i.e., the sequence

de�ned by the program counter (this sequence may not be consecutive, as when a skip or jump

or some special circumstance changes PC). The processor fetches an executed instruction from a

location whose address is supplied not by PC but rather by an extend or execute instruction (whose

operand is itself interpreted as an instruction) or by some feature of the hardware such as a priority

interrupt, trap, etc. It is assumed that control will shortly be returned to PC at the location it

originally speci�ed before the interruption, unless the executed instruction or the hardware feature

itself changes PC.

Instruction codes that are not implemented and instructions that are not legal in user mode are said

to \trap" as \unassigned codes" or as \Monitor UUOs" (MUUOs). Such an instruction causes a

transfer of control to executive mode, as described in x2.16.

Some simple examples are included with the instruction descriptions, but more complex examples

using a variety of instructions are given in x2.15

2.1 Full{Word Data Transmission

These are the instructions whose basic purpose is to move one or more full words of data from

one place to another, usually from an accumulator to a memory location or vice versa. In a few

cases instructions may perform minor arithmetic operations, such as forming the negative or the

magnitude of the word being processed.

2.1.1 Exchange Instruction

The presentation of the instruction set begins with a single instruction that simply interchanges the

contents of an accumulator and a memory location.

0 12 1314 1718 35

I X Y

8 9

A

EXCH Exchange

250

Move the contents of location E to AC, and move AC to location E .

2.1.2 Move Instruction Class

This class of instructions consists of a group for general manipulation of single words and a special

immediate mode instruction for handling an extended address. Each of the instructions in the



54 CHAPTER 2. USER OPERATIONS

standard move group handles one word, which may be changed in the process (e.g., its two halves

may be swapped). There are four instructions, each with four modes that determine the source and

destination of the word moved.

Mode Su�x Source Destination

Basic E AC

Immediate I The word 0; E AC

Memory M AC E

Self S E E, but also AC if A is non{zero

0 12 1314 1718 35

I X Y

8 9

A

MOVE Move

200
M

6 7

Move one word from the source to the destination speci�ed by M . The source is una�ected, the

original contents of the destination are lost.

MOVE Move 200

MOVEI Move Immediate 201

MOVEM Move to Memory 202

MOVES Move to Self 203

Notes: MOVEI loads the word 0,E into AC. If A is 0, MOVES is a no{op in the sense that it has no

overt e�ect on the contents of memory or the accumulators; however, MOVES both reads and writes

in memory, with all attendant side e�ects. If A is non{zero, MOVES has the same overt e�ect as

MOVE (it loads AC from memory), but it also writes in memory.

0 12 1314 1718 35

I X Y

8 9

A

MOVS Move Swapped

204
M

6 7

Interchange the left and right halves of the word from the source speci�ed by M and move it to the

speci�ed destination. The source is una�ected; the original contents of the destination are lost.

MOVS Move Swapped 204

MOVSI Move Swapped Immediate 205

MOVSM Move Swapped to Memory 206

MOVSS Move Swapped to Self 207

Note: Swapping halves in immediate mode loads the word E; 0 into AC.



2.1. FULL{WORD DATA TRANSMISSION 55

0 12 1314 1718 35

I X Y

8 9

A

MOVN Move Negative

210
M

6 7

Negate the word from the source speci�ed byM and move it to the speci�ed destination. If the source

word is �xed{point �2

35

(400000 000000) set the Trap 1, Over
ow, and Carry 1 
ags. (Negating the

equivalent 
oating{point number �1�2

127

also sets the 
ags, but this is not a normalized number.)

If the source word is zero, set Carry 0 and Carry 1. The source is una�ected; the original contents

of the destination are lost.

MOVN Move Negative 210

MOVNI Move Negative Immediate 211

MOVNM Move Negative to Memory 212

MOVNS Move Negative to Self 213

Note: MOVNI loads AC with the negative of the word 0; E and cannot over
ow.

0 12 1314 1718 35

I X Y

8 9

A

MOVM Move Magnitude

214
M

6 7

Take the magnitude of the word contained in the source speci�ed by M and move it to the speci�ed

destination. If the source word is �xed{point �2

35

(400000 000000) set the Trap 1, Over
ow, and

Carry 1 
ags. (Taking the magnitude of the equivalent 
oating{point number �1 � 2

127

also sets

the 
ags, but this is not a normalized number.) The source is una�ected; the original contents of

the destination are lost.

MOVM Move Magnitude 214

MOVMI Move Magnitude Immediate 215

MOVMM Move Magnitude to Memory 216

MOVMS Move Magnitude to Self 217

Notes: The word 0; E is equivalent to its magnitude, so MOVMI is equivalent to MOVEI.

It is often convenient to keep a control count in the left half of an accumulator and a local address

or displacement to be used for indexing in the right half. Suppose one wishes to load 200 into the

left half and 1400 into the right half of an accumulator that is addressed symbolically as XR. If the

number 200 001400 is stored in location M , one can do this by giving the instruction

MOVE XR,M

Of course, somewhere the source programmust de�ne the value of the symbol XR as an octal number

between 1 and 17. If the same word, or the negative of the same word, or the same word with its

halves swapped must be loaded on several occasions, each transfer still requires only a single move



56 CHAPTER 2. USER OPERATIONS

instruction that references M .

2.1.3 Extended Move Immediate

The following instruction makes the result of an e�ective{address calculation available for use as

a global address. If the address speci�es a fast{memory location, the instruction loads the global

address of that fast{memory location, so that it can be accessed from any section.

0 12 1314 1718 35

I X Y

8 9

A

XMOVEI Extended Move Immediate

415

If the program is running in a non{zero section, do one or the other of the following.

If E is not a local AC address, clear AC bits 0{5 and place the global e�ective{address

E in AC bits 6{35.

If E is a local AC address, put 1 in AC

L

and E

R

in AC

R

. (This result is the global form

of a fast{memory address.)

If the program is running in section zero, this instruction is called SETMI, a Boolean instruction

that performs an analogous function for section zero (x2.4).

Notes. This instruction changes a local AC address to a global AC address, which therefore still

refers to fast{memory no matter what section that address is used in. Giving XMOVEI with an

address 20 or greater without indexing or indirection places the current PC section number in AC

left; this result can be used to determine in what section the program is running.

2.1.4 Double Move Instructions

1

These four instructions are principally for manipulating the double{length operands used in double{

precision arithmetic, �xed or 
oating. But they may be used to move or negate any double word,

i.e., the contents of a pair of adjacent accumulators or memory locations. Two of the instructions

are simple extensions of MOVE and MOVEM to double words, and for them the con�guration of

the operands is irrelevant. The other two instructions are extensions of MOVN and MOVNM, with

the operand interpreted as a double{precision 
oating{point number. With a slight variation in

the format, they can also be used for �xed{point numbers: a negative result has a 0 in bit 0 of

the low{order word instead of a copy of the sign bit. For arithmetic operations, this di�erence is

inconsequential, because all arithmetic instructions ignore bit 0 of all low{order words. However,

this di�erence in format could cause a comparison of two double{precision �xed{point numbers to

fail.

All of these instructions address a pair of adjacent accumulators and a pair of adjacent memory

locations. The accumulators have addresses A and A+ 1 (mod 20

8

). The memory locations have

1

In the KA10 these instructions trap as unassigned codes (x2.16).



2.1. FULL{WORD DATA TRANSMISSION 57

addresses E and E + 1.

2

0 12 1314 1718 35

I X Y

8 9

A

DMOVE Double Move

120

Move a double word from location E;E + 1 to AC,AC+1. The memory locations are una�ected;

the original contents of the two a�ected accumulators are lost.

0 12 1314 1718 35

I X Y

8 9

A

DMOVEM Double Move to Memory

124

Move a double word from AC,AC+1 to location E;E + 1. The ACs are una�ected; the original

contents of the memory locations are lost.

Notes: Do not use the instruction DMOVEM AC,AC+1; its result is indeterminate. In the KI10, do

not have E and X address the same (fast) memory location, because a page{failure on the second

word would result in a di�erent e�ective{address calculation when the instruction is restarted.

0 12 1314 1718 35

I X Y

8 9

A

DMOVN Double Move Negative

121

Interpret the double word from location E;E + 1 as double{precision 
oating{point, and move its

negative to AC,AC+1. If the memory double{word is �xed{point �2

70

, set the Trap 1, Over
ow,

and Carry 1 
ags. (Negating the equivalent 
oating{point number, �1 � 2

127

, also sets the 
ags,

but this is not a normalized number.) If the memory double{word is zero, set Carry 0 and Carry 1.

The memory locations are una�ected; the original contents of the ACs are lost.

The negation is done using 
oating point conventions; hence, a negative �xed{point result has the

incorrect value in bit 0 of the low{order word.

In the KI10 there is no over
ow test because the KI10 lacks double{precision �xed{point instructions.

For 
oating{point the over
ow test is unnecessary, because negating a correctly formatted 
oating{

point number cannot cause over
ow.

0 12 1314 1718 35

I X Y

8 9

A

DMOVNM Double Move Negative to Memory

125

Interpret the double word from AC,AC+1 as double{precision 
oating{point and move its negative

to location E;E+1. If the AC double{word is �xed point �2

70

, set the Trap 1, Over
ow, and Carry

2

Refer to the description of E;E + 1 on page 52.



58 CHAPTER 2. USER OPERATIONS

1 
ags. (Negating the equivalent 
oating{point number, �1 � 2

127

, also sets the 
ags, but this is

not a normalized number.) If the AC double{word is zero, set Carry 0 and Carry 1. The ACs are

una�ected; the original contents of the memory locations are lost.

The negation is done using 
oating{point conventions; hence a negative �xed{point result has the

incorrect value in bit 0 of the low order word.

In the KI10 there is no over
ow test because the KI10 lacks double{precision �xed{point instructions.

For 
oating{point the over
ow test is unnecessary, because negating a correctly formatted 
oating{

point number cannot cause over
ow.

Notes. Do not use the instruction DMOVNM AC,AC+1; its result is indeterminate. In the KI10, do

not have E and X address the same (fast) memory location, because a page{failure on the second

word would then result in a di�erent e�ective{address calculation when the instruction is restarted.

2.1.5 Block Transfers

There are two instructions for moving blocks of data from one part of memory to another. One is

restricted to acting within the section speci�ed by the e�ective{address. The other can move data

arbitrarily anywhere in memory.

0 12 1314 1718 35

I X Y

8 9

A

BLT Block Transfer

251

Beginning at the location addressed by AC

L

(AC left) in the section speci�ed by E , move words to

another area in the same section beginning at the location addressed by AC

R

(AC right). Continue

until a word is moved to location E .

3

The total number of words in the block is thus E

R

� AC

R

+ 1. If AC

R

� E, the BLT moves only

one word to location AC

R

. If the source block is larger than 2

18

�AC

L

, it is wrapped around to the

beginning of the section.

4

In the XKL

-

1, KL10, and KS10, provided AC is not in the destination block, at the end of the

instruction AC

L

and AC

R

contain addresses 1 greater than those of the �nal source and destination

locations referenced, respectively.

5

In the KI10 and KA10, at the end of the instruction, AC is

indeterminate unless the interrupt system and the pager are both o�, in which case AC is una�ected.

In any event, for program compatibility among processors, use of the resulting quantity in AC is

strongly discouraged.

3

The source and destination addresses are either local addresses or global addresses, corresponding to whether E

is local or global. The distinction between E local or global matters only in the situation where the source and/or

destination address is in the accumulators: the accumulators can be addressed only by local addresses in the range

0{17 (or by global addresses 1000000{1000017).

4

Caution: In the extended KL10, wraparound is not implemented correctly: the instruction inadvertently reads

source words from the next higher section. However, if the instruction is interrupted after it has counted into the

next section, when it resumes, it will revert to reading data from the original section.

5

In the KL10, if the BLT is abbreviated because the initial value of AC

R

> E, at the end of the instruction AC

L

and AC

R

contain values that incorrectly indicate that the BLT moved additional words.



2.1. FULL{WORD DATA TRANSMISSION 59

Caution

Should an interrupt or page failure occur during its execution, the BLT stores the source

and destination addresses for the next word in AC, so when the processor restarts upon

the return to the interrupted program, it actually resumes at the correct point within

the BLT. Therefore, A and X must not address the same register because this would

produce a di�erent e�ective{address calculation upon resumption; and the instruction

must not attempt to load an accumulator addressed either by A or X unless it is the

�nal location being loaded.

Examples

A convenient way to clear a block of consecutive locations in memory is to clear the �rst location

and then use a BLT to transfer the zero successively from one location to the next. Suppose the

block starts at A and contains B words.

MOVE AC,[A,,A+1]

SETZM A

BLT AC,A+B-1

This technique can be used to spread any one{word pattern through consecutive locations.

6

An

n{word pattern can be spread through memory by initializing the right half of the accumulator to

be n larger than the left half.

The following instructions load the accumulators from memory locations 2000{2017 in the PC sec-

tion.

MOVSI 17,2000 ;Put two addresses, 2000,,0 in AC 17

BLT 17,17 ;load ACs from 2000-2017

As mentioned in the above caution, this example would not work reliably if, for example, AC 10 or

AC 16 were used to supply the source and destination addresses. The example is written safely: AC

17 is the last location loaded by the BLT.

To store the accumulators in memory requires that one accumulator �rst be made available to the

BLT:

MOVEM 17,2017 ;Move AC 17 to 2017 in memory

MOVEI 17,2000 ;Put two addresses, 0,,2000 in AC 17

BLT 17,2016 ;store ACs 0-16 into addresses 2000-2016

To give a more complex example, the following code fragment stores accumulators 0{16 on the stack

6

This function is used so frequently that the KL10 microcode detects it as a special case and reads only the �rst

source word.



60 CHAPTER 2. USER OPERATIONS

(see x2.10) described by accumulator 17, presuming that the stack has room for the new entries. This

code works properly in section zero. It also works in non{zero sections, provided that accumulator

17 contains a local{format stack pointer.

ADJSP 17,17 ;allocate stack space for 0-16

MOVEM 16,0(17) ;store 16, AC for the BLT

MOVEI 16,-16(17) ;load 0,,in-section address of stack

BLT 16,-1(17) ;copy ACs 0-15 to stack

The following restores accumulators that have been saved on the stack by the fragment shown above:

MOVSI 16,-16(17) ;in-section address of the stack,,0

BLT 16,16 ;restore accumulators from stack

ADJSP 17,-17 ;return stack space no longer needed

In the examples above, BLT has been used to store the accumulators in the local section (i.e.,

the PC section). To load or store the accumulators in a non{local section, the following subtle

adaptation can be used.

7

This code fragment depends on a characteristic of the XCT instruction: it

will perform the e�ective{address calculation of the target instruction in the section that contains

the target instruction (see x2.9.1). Thus, a local e�ective{address is computed in a section other

than the PC section.

ADJSP 17,17 ;allocate stack space for 0-16

DMOVEM 15,-1(17) ;store 15 and 16, BLT AC and Eff Addr

MOVEI 16,-16(17) ;load 0,,in-section address on stack

MOVEI 15,-2(17) ;0,,in-section final address for ACs on stack

PUSH 17,[BLT 16,(15)] ;instruction to XCT, in stack's section

XCT (17) ;XCT the BLT. BLT uses local addressing

ADJSP 17,-1 ;deallocate stack space for BLT instruction

The restore is accomplished with somewhat less fuss:

MOVSI 16,-16(17) ;in-section first source address,,0

PUSH 17,[BLT 16,16] ;instruction to XCT, in stack's section

XCT (17) ;XCT the BLT. BLT uses local addressing

ADJSP 17,-20 ;deallocate space for BLT and ACs

For a reverse BLT procedure (highest addresses �rst), refer to the POP instruction (x2.10) or to the

XBLT instruction below.

7

This code can be run in any section, regardless of whether the stack pointer is global or local. Note: However,

the region of the stack in which the accumulators are being stored must not cross a section boundary.



2.1. FULL{WORD DATA TRANSMISSION 61

0 12 1314 1718 35

I X Y

8 9

A

XBLT Block Transfer

123

0 12 1314 1718 35

I X Y

8 9

00020E0

E1 is not used.

8

Move a block of words from one area of memory to another. The block size and the locations of the

source and destination areas are de�ned by the contents of a block of three accumulators.

AC Number of Words in Block

AC+1 00 Location of Source Block

AC+2 00 Location of Destination Block

0 5 6 35

Perform a forward or backward block transfer

9

as follows.

If AC contains a positive number N , move a block of N words from a source area beginning

at the location speci�ed by AC+1 to a destination area beginning at the location speci�ed by

AC+2 and extending through increasing addresses. At the end, AC is clear, and AC+1 and

AC+2 respectively contain addresses 1 greater than those of the �nal source and destination

locations referenced.

If AC contains a negative number �N , move a block of N words from a source area beginning

at a location 1 less than that speci�ed by AC+1 to a destination area beginning at a location

1 less than that speci�ed by AC+2 and extending through decreasing addresses. At the end,

AC is clear, and AC+1 and AC+2 respectively contain the addresses of the �nal source and

destination locations referenced.

Notes: The contents of AC+1 and AC+2 are interpreted as 30{bit global addresses. This instruction

is legal in section zero, and it can reference addresses in non{zero sections when executed in section

zero.

Caution

This instruction uses three accumulators, and under no circumstances should any of these

three be part of either the source or destination block. Because of the possibility of an

interrupt or page failure, the contents of these accumulators, even as a source, cannot be

guaranteed. In any event, a BLT can store (or load) the accumulators to (or from) any

section.

8

I , X , and Y are reserved and should be zero.

9

As of KL10 microcode 2.1[442], there is a problem when XBLT is executed by PXCT: the optimization of reading

only the �rst source word when the destination address is precisely 1 larger than the source address in a forward

transfer is mistakenly applied when the source and destination addresses are in di�erent contexts.



62 CHAPTER 2. USER OPERATIONS

2.2 Fixed{Point Arithmetic

For �xed{point arithmetic the PDP{10 has instructions for performing addition, subtraction, mul-

tiplication, and division of numbers in single{ and double{precision �xed{point format (x1.5.1), al-

though double{precision is not available in the KI10 or KA10. The processor can also do arithmetic

shifting|which is essentially multiplication by a power of 2|but those instructions are discussed

with logical shifting and rotating (x2.5). For single{precision, the add and subtract instructions in-

volve only single{length numbers, whereas multiply supplies a double{length product and divide uses

a double{length dividend. There are also integer multiply and divide instructions that involve only

single{length numbers and are especially suited for handling smaller integers, particularly those of

eighteen bits or less such as addresses, bytes, and character codes. For double{precision, the add and

subtract instructions involve only double{length numbers, whereas multiply supplies a quadruple{

length product and divide uses a quadruple{length dividend. In all cases, the position of the binary

point is arbitrary; the programmer may adopt any point convention. Even the integer multiply

and divide instructions can be used for small fractions, provided the programmer keeps track of the

binary point. For convenience in the following discussion, all operands are assumed to be integers

(binary point at the right).

The processor has four 
ags, Over
ow, Carry 0, Carry 1, and No Divide, that indicate when the

magnitude of a number is or would be larger than can be accommodated. Carry 0 and Carry 1 detect

carries out of bits 0 and 1 in certain instructions that employ �xed{point arithmetic operations:

the add and subtract instructions treated here, the move instructions that produce the negative

or magnitude of the word moved (x2.1), and the arithmetic test instructions that increment or

decrement the test word (x2.6). In these instructions an incorrect result is indicated|and the

Over
ow 
ag set|if the carries are di�erent; i.e., if there is a carry into the sign but not out of it

or vice versa. Over
ow is determined directly from the carries, not from the carry 
ags, because

their states may re
ect events in previous instructions. The Over
ow 
ag is also set by No Divide

being set, which means the processor has failed to perform a division because the magnitude of the

dividend is greater than or equal to that of the divisor or, in integer divide, simply that the divisor

is zero. In other over
ow cases, only Over
ow itself is set: these include too large a product in

multiplication, too large a number to convert to �xed point (x2.3), and loss of signi�cant bits in left

arithmetic shifting. Any condition that sets Over
ow also sets the Trap 1 
ag (x2.9).

These 
ags can be read and controlled by certain program control instructions (x2.9, x2.16), but

over
ow is usually handled by trapping through the setting of Trap 1 (x2.9). The KA10 lacks the

trapping feature, so its program must make direct use of the Over
ow 
ag, which is available as

a processor condition (via an in{out instruction) that can request a priority interrupt if enabled

(x4.3.6). In any event, user over
ow is handled by the Monitor according to instructions from the

user, as described in Chapter 3 of the appropriate Monitor Calls manual. The conditions detected

can only set the arithmetic 
ags, and the hardware does not clear them; the program must clear

them before an instruction if they are to give meaningful informationabout the instruction afterward.

However, the program can check the 
ags following a series of instructions to determine whether the

entire series was free of the types of error detected. Besides indicating error types, the carry 
ags

facilitate performing multiple{precision arithmetic.



2.2. FIXED{POINT ARITHMETIC 63

2.2.1 Single{Precision Instructions

As noted above, the numbers manipulated by these instructions are single{length except for double{

length products and dividends. Such double{length �xed{point numbers are in AC,AC+1, where

the magnitude is the 70{bit string in bits 1{35 of the two words, the sign is in bit 0 of the high{order

word, and bit 0 of the low{order word contains a copy of the sign. All six instructions have four

modes that determine the source of the non{AC operand and the destination of the result.

Source of non{ Destination

Mode Su�x AC operand of result

Basic E AC

Immediate I The word 0,E AC

Memory M E E

Both B E AC and E

0 12 1314 1718 35

I X Y

8 9

A

ADD Add

270
M

6 7

Add the operand speci�ed by M to AC and place the result in the speci�ed destination. If the sum

is � 2

35

, set Trap 1, Over
ow, and Carry 1; the result stored has a minus sign but a magnitude in

positive form equal to the sum less 2

35

. If the sum is < �2

35

, set Trap 1, Over
ow, and Carry 0;

the result stored has a plus sign but a magnitude in negative form equal to the sum plus 2

35

. Set

both carry 
ags if both addends are negative, or if their signs di�er and their magnitudes are equal

or if the positive one is the greater in magnitude.

ADD Add 270

ADDI Add Immediate 271

ADDM Add to Memory 272

ADDB Add to Both 273

0 12 1314 1718 35

I X Y

8 9

A

SUB Subtract

274
M

6 7

Subtract the operand speci�ed by M from AC and place the result in the speci�ed destination. If

the di�erence is � 2

35

, set Trap 1, Over
ow, and Carry 1; the result stored has a minus sign but a

magnitude in positive form equal to the di�erence less 2

35

. If the di�erence is < �2

35

, set Trap 1,

Over
ow, and Carry 0; the result stored has a plus sign but a magnitude in negative form equal to

the di�erence plus 2

35

. Set both carry 
ags if the signs of the operands are the same and AC is the

greater or the two are equal, or if the signs of the operands di�er and AC is negative.



64 CHAPTER 2. USER OPERATIONS

SUB Subtract 274

SUBI Subtract Immediate 275

SUBM Subtract to Memory 276

SUBB Subtract to Both 277

0 12 1314 1718 35

I X Y

8 9

A

MUL Multiply

224 M

6 7

Multiply AC by the operand speci�ed by M and place the high{order word of the double{length

result in the speci�ed destination. If M speci�es AC as a destination, place the low{order word in

AC+1. If both operands are �2

35

, set Trap 1 and Over
ow; the double{length result stored is �2

70

.

MUL Multiply 224

MULI Multiply Immediate 225

MULM Multiply to Memory 226

MULB Multiply to Both 227

Caution

In the KA10, an AC operand of �2

35

is treated as though it were +2

35

, producing the

incorrect sign in the product.

0 12 1314 1718 35

I X Y

8 9

A

IMUL Integer Multiply

220
M

6 7

Multiply AC by the operand speci�ed by M and place the sign and the 35 low{order magnitude

bits of the product in the speci�ed destination. Set Trap 1 and Over
ow if the product is � 2

35

or

< �2

35

(i.e., if the high{order word of the double length product is not null); the high{order word

is lost.

IMUL Integer Multiply 220

IMULI Integer Multiply Immediate 221

IMULM Integer Multiply to Memory 222

IMULB Integer Multiply to Both 223



2.2. FIXED{POINT ARITHMETIC 65

0 12 1314 1718 35

I X Y

8 9

A

DIV Divide

234
M

6 7

If division is not possible, either because the operand speci�ed by M is zero or because the quotient

would not be representable (i.e., if the quotient is larger than 2

35

� 1 or smaller than �2

35

), set

Trap 1, Over
ow, and No Divide and go immediately to the next instruction without a�ecting the

original AC or memory operand in any way.

10

If division is possible, divide the double{length number contained in AC,AC+1 by the speci�ed

operand, calculating a quotient of 35 magnitude bits including leading zeros. Place the unrounded

quotient in the speci�ed destination. If M speci�es AC as a destination, place the remainder, with

the same sign as the dividend, in AC+1.

DIV Divide 234

DIVI Divide Immediate 235

DIVM Divide to Memory 236

DIVB Divide to Both 237

Note: The magnitude restriction is required because the quotient developed would exceed 36 bits.

0 12 1314 1718 35

I X Y

8 9

A

IDIV Integer Divide

230
M

6 7

If the operand speci�ed by M is zero, or AC contains �2

35

and the operand speci�ed by M is

�1 (except in the KS10), set Trap 1, Over
ow, and No Divide and go immediately to the next

instruction without a�ecting the original AC or memory operand in any way. Otherwise, divide AC

by the speci�ed operand, calculating a quotient of 35 magnitude bits including leading zeros. Place

the unrounded quotient in the speci�ed destination. If M speci�es AC as the destination, place the

remainder, with the same sign as the dividend, in AC+1.

IDIV Integer Divide 230

IDIVI Integer Divide Immediate 231

IDIVM Integer Divide to Memory 232

IDIVB Integer Divide to Both 233

10

Division is always possible when the magnitude of the operand in AC is smaller than the magnitude of the operand

speci�ed by M . Division is never possible when the magnitude of the operand in AC is greater than the magnitude of

the operand speci�ed by M . When the magnitudes are equal, the signs of the operands (and sometimes the contents

of AC+1) determine whether or not the division is possible. If the divisor is positive and the dividend is negative,

division is allowed; if both operands are positive, division is impossible. When the divisor is negative, the contents

of AC+1 determine whether division is possible: if the dividend is positive, the division is possible only when the

contents of AC+1 are less than the magnitude of the divisor; if the dividend is negative, division is possible only if

there are bits of signi�cance in AC+1.



66 CHAPTER 2. USER OPERATIONS

Caution

In the KS10, dividing �2

35

by �1 gives �2

35

with no error indication. In the KA10,

KI10, and a KL10 with microcode version before 271 (which includes all single{section

KL10s), the over
ow action is also triggered by attempting to divide �2

35

by +1.

2.2.2 Double{Precision Instructions

11

There are just four instructions for the four basic operations, and they have no modes. All use

AC and memory operands and place the result in the accumulators. Memory operands are double

length in location E;E + 1.

12

Most AC operands are double{length in AC,AC+1, but products

and dividends are quadruple{length in AC,AC+1,AC+2,AC+3, and the double{length remainder

in division is placed in AC+2,AC+3. Double{length numbers have the same format as the products

and dividends of single{precision instructions discussed above. In quadruple{length numbers, AC

contains the highest order word; the magnitude is the 140{bit string in bits 1{35 of the four words,

the sign is in bit 0 of the highest order word, and copies of the sign are kept in bit 0 of the other

three words.

0 12 1314 1718 35

I X Y

8 9

A

DADD Double Add

114

Add the operand in location E;E + 1 to AC,AC+1 and place the result in AC,AC+1. If the sum

is � 2

70

, set Trap 1, Over
ow, and Carry 1; the result stored has a minus sign but a magnitude in

positive form equal to the sum less 2

70

. If the sum is < �2

70

, set Trap 1, Over
ow, and Carry 0;

the result stored has a plus sign but a magnitude in negative form equal to the sum plus 2

70

. Set

both carry 
ags if both addends are negative, or if their signs di�er and their magnitudes are equal

or the positive one is the greater in magnitude.

0 12 1314 1718 35

I X Y

8 9

A

DSUB Double Subtract

115

Subtract the operand in location E;E + 1 from AC,AC+1 and place the result in AC,AC+1. If

the di�erence is � 2

70

, set Trap 1, Over
ow, and Carry 1; the result stored has a minus sign but a

magnitude in positive form equal to the di�erence less 2

70

. If the di�erence is < �2

70

, set Trap 1,

Over
ow, and Carry 0; the result stored has a plus sign but a magnitude in negative form equal to

the di�erence plus 2

70

. Set both carry 
ags if the signs of the operands are the same and AC,AC+1

is the greater or the two are equal, or if the signs of the operands di�er and AC,AC+1 is negative.

11

In the KI10 and KA10, these instructions trap as unassigned codes (x2.16).

12

Refer to the description of E;E + 1 on page 52.



2.3. FLOATING{POINT ARITHMETIC 67

0 12 1314 1718 35

I X Y

8 9

A

DMUL Double Multiply

116

Multiply AC,AC+1 by the operand in location E;E + 1 and place the quadruple{word result in

AC{AC+3. If both operands are �2

70

, set Trap 1 and Over
ow; the quadruple{length result stored

is �2

140

.

0 12 1314 1718 35

I X Y

8 9

A

DDIV Double Divide

117

If the magnitude of the high{order double word of the quadruple{length number in AC{AC+3 is

greater than or equal to the magnitude of the operand in location E;E+1, set Trap 1, Over
ow, and

No Divide, and go immediately to the next instruction without a�ecting the original AC or memory

operand in any way. Otherwise, divide the quadruple length number contained in the accumulators

by the operand in location E;E + 1, calculating a quotient of 70 magnitude bits including leading

zeros. Place the unrounded quotient in AC,AC+1and the double{length remainder, with the same

sign as the dividend, in AC+2,AC+3.

2.3 Floating{Point Arithmetic

13

For 
oating{point arithmetic the PDP{10 has instructions for scaling the exponent (which is multi-

plication of the entire number by a power of 2); performing addition, subtraction, multiplication, and

division of numbers in single{ and double{precision 
oating{point format; and converting single{

precision numbers from �xed{format to 
oating and vice versa. Except for conversion operations,

instructions treated here interpret all operands as 
oating{point numbers in the format given in

x1.5.2 and generate results in that format. The reader is strongly advised to reread x1.5.2 if he does

not remember the format in detail.

For the four standard arithmetic operations in single{precision, the program has a choice of modes,

determining mostly the destination of the result, and can select whether or not the result will be

rounded. Rounding produces the greatest consistent precision using only single{length operands.

Instructions without rounding save time in one{word operations where rounding is of no signi�cance.

Actually, the result is formed in a double{length register in addition, subtraction, and multiplication,

wherein any bits of signi�cance in the low{order part supply information for normalization, and then

for rounding if requested. Consider addition as an example. Before adding, the processor right shifts

the fractional part of the operand with the smaller exponent until its bits correctly match the bits of

the other operand in order of magnitude. Thus, the smaller operand could disappear entirely, having

no e�ect on the result (\result" will always be taken to mean the information (one word or two)

stored by the instruction, regardless of the number of signi�cant bits it contains or even whether it

is the correct answer). In any event, the signi�cance of the result depends on the relative values of

13

In a KA10 without 
oating point hardware, all of the instructions presented in this section trap as unassigned

codes (x2.16). However, no KA10 without 
oating point hardware was shipped to a customer, so this footnote has no

particular utility.



68 CHAPTER 2. USER OPERATIONS

the operands. For example, a subtraction involving two like{signed numbers whose exponents are

equal and whose fractions di�er only in the LSB (least signi�cant bit) gives a result containing only

one bit of signi�cance. In division the processor always calculates a one{word quotient that requires

no normalization if the original operands are normalized. An extra quotient bit is calculated for

rounding when requested.

The instruction that converts �xed{point to 
oating{point assumes the operand is an integer and

always normalizes and rounds the result. In the opposite direction, only the integral part of the

result is saved, and rounding is an option of the program.

14

The instructions for the four standard operations using double{precision have no modes. In division

the processor calculates a two{word rounded quotient that is already normalized if the original

operands are normalized. In addition, subtraction, and multiplication, the result is formed in a

triple{length register, wherein bits of signi�cance in the lowest{order part supply information for

normalization and then for rounding.

The processor has four 
ags, Over
ow, Floating Over
ow, Floating Under
ow, and No Divide, that

indicate when the exponent is too large or too small to be accommodated or a division cannot be

performed because of the relative values of dividend and divisor. Except where the result would be

in �xed{point form, any of these circumstances sets Over
ow and Floating Over
ow. If only these

two are set, the exponent of the answer is too large; if Floating Under
ow is also set, the exponent

is too small. No Divide being set means the processor failed to perform a division, an event that

can be produced only by a zero divisor if all non{zero operands are normalized. Any condition that

sets Over
ow also sets the Trap 1 
ag. These 
ags can be read and controlled by certain program

control instructions (x2.9, x2.16), but over
ow is usually handled by trapping through the setting of

Trap 1. The KA10 lacks the trapping feature, so its program must make direct use of Over
ow and

Floating Over
ow, which are available as processor conditions (via an in{out instruction) that can

request a priority interrupt if enabled (x4.3.6). The conditions detected can only set the arithmetic


ags and the hardware does not clear them, so the program must clear them before a 
oating{point

instruction if they are to give meaningful information about the instruction afterward. However, the

program can check the 
ags following a series of instructions to determine whether the entire series

was free of the types of error detected.

The 
oating{point hardware functions at its best if given operands that are either normalized or zero,

and it normalizes a non{zero result.

15

Unnormalized operands will generally cause loss of precision

in results. However, such malformed numbers must be created deliberately by the programmer|the

processor never produces them. An operand with a zero fraction and a non{zero exponent can give

wild answers in additive operations because of extreme loss of signi�cance; e.g., adding

1

2

� 2

2

and

0 � 2

69

gives a zero result, as the �rst operand (having a smaller exponent) looks smaller to the

processor and is shifted to oblivion. A number with a 1 in bit 0 and 0s in bits 9{35 is not simply

an incorrect representation of zero, but rather an unnormalized \fraction" with value �1. These

14

Rounding to an integer value is a di�erent procedure than the rounding of 
oating{point values described above.

15

The processor normalizes the result by shifting the fraction and adjusting the exponent to compensate for the

change in value. Each shift and accompanying exponent adjustment thus multiply the number both by 2 and by

1

2

simultaneously, leaving its value unchanged.

With normalized operands, the processor uses at most two bits of information from the lowest{order part to

normalize the result. In multiplication this is obvious, since squaring the minimum fractional magnitude

1

2

gives

a result of

1

4

. In an addition or subtraction of numbers that di�er greatly in order of magnitude, the result is

determined almost completely by the operand of greater order. Addition or subtraction involving two numbers with

equal exponents requires no shifting beforehand, so there is no information in the lowest{order part. Hence, an

addition or subtraction never requires shifting both before the operation and in the normalization; when there is no

prior shifting, the normalization brings in 0s.



2.3. FLOATING{POINT ARITHMETIC 69

unnormalized numbers can produce an incorrect answer in any operation. To normalize a number,

add (e.g., FAD, DFAD, or GFAD) zero to it.

2.3.1 Scaling

The following two instructions change the exponent of a number without changing the signi�cance

of the fraction. In other words they multiply the number by a power of 2 and are thus analogous

to arithmetic shifting of �xed{point numbers, except that no information is lost, although the

exponent can over
ow or under
ow. The amount added to the exponent is speci�ed by the result of

the e�ective address calculation taken as a signed number (in twos complement notation) modulo 2

8

or 2

11

in magnitude respectively for single precision or extended{range operations. In other words,

the e�ective scale factor E is the number composed of bit 18 (which is the sign) and bits 28{35

or 25{35 of the calculation result. Hence, the programmer may specify the factor directly in the

instruction (perhaps indexed) or give an indirect address to be used in calculating it. A positive E

increases the exponent, a negative E decreases it; E is thus the power of 2 by which the number is

multiplied. The scale factor lies in the range �256 to +255 or �1024 to +1023.

0 12 1314 1718 35

I X Y

8 9

A

FSC Floating Scale

132

If the fractional part of AC is zero, clear AC. Otherwise add the scale factor given by E to the

exponent part of AC (thus multiplying AC by 2

E

), normalize the resulting word bringing 0s into bit

positions vacated at the right, and place the result back in AC.

The amount added to the exponent is speci�ed by the result of the e�ective{address calculation

taken as a signed number (in twos{complement notation) modulo 2

8

in magnitude. In other words

the e�ective scale{factor E is the number composed of bit 18 (which is the sign) and bits 28{35

of the calculation result. Hence, the programmer may specify the factor directly in the instruction

(perhaps indexed) or give an indirect address to be used in calculating the factor. A positive E

increases the exponent; a negative E decreases it. Thus, E is the power of 2 by which the number

is multiplied. The scale factor lies in the range �256 to +255.

Note

A negative E is represented in standard twos{complement notation, but the hardware

compensates for this when scaling the exponent.

If the exponent after normalization is > 127, set Trap 1, Over
ow, and Floating Over
ow; the result

stored has a exponent 256 less than the correct value. If the exponent after normalization is < �128,

set Trap 1, Over
ow, Floating Over
ow, and Floating Under
ow; the result stored has an exponent

256 greater than the correct value.

16

FSC can be used to 
oat a �xed number with twenty{seven or fewer signi�cant bits. To 
oat an

16

Caution : In the KI10 and KA10 only, extreme over
ows are not detected properly in this instruction. An exponent

> 255 sets Floating Under
ow, and an exponent< �256 fails to set it.



70 CHAPTER 2. USER OPERATIONS

integer contained within AC bits 9{35,

FSC AC,233

inserts the correct exponent to move the binary point from the right end to the left of bit 9 and then

normalizes (233

8

= 155

10

= 128 + 27). This application of FSC is useful only in the KA10, which

lacks the number conversion instructions described in x2.3.2.

0 12 1314 1718 35

I X Y

8 9

A

GFSC Giant Floating Scale

17

123

0 12 1314 1718 35

I X Y

8 9

00031E0

If the fractional part (bits 12{35) of AC are zero, clear AC,AC+1. Otherwise, scale the G{Format

number in AC,AC+1 by adding the immediate operand E1 to the exponent found in bits 1{11 of

AC (thus multiplying the number by 2

E1

); normalize the double word operand bringing 0s into bit

positions vacated at the right; store the result in AC,AC+1.

E1 is interpreted as a twos{complement number composed of bit 18 (the sign) and bits 25{35. The

programmer may specify the scale factor directly in the instruction (perhaps indexed) or give an

indirect address to be used in calculating the scale factor. A positive E1 increases the exponent; a

negative E1 decreases it. Thus, E1 is the power of 2 by which the number is multiplied. The scale

factor lies in the range �2048 to +2047.

Set Over
ow, Floating Over
ow, and Trap 1 if the resulting exponent exceeds 3777

8

(+1023 decimal);

the result stored has an exponent 2048 less than the correct one. Floating Under
ow, Over
ow,

Floating Over
ow, and Trap 1 will be set if the resulting exponent is smaller than zero (�1024

decimal); the result stored has an exponent 2048 greater than the correct one.

18

2.3.2 Number Conversion

19

Although FSC can be used to 
oat a �xed{point number, there are three single{precision instructions

speci�cally for converting between integers and 
oating point numbers. In all cases the operand is

taken from location E and the converted result is placed in AC.

17

In the KI10 and KA10 this instruction traps as an unassigned code (x2.16).

18

As of KL10 microcode 2.1[442], extreme over
ow is signaled as under
ow and vice{versa. Moreover, if the double

word operand is unnormalized, over
ow may be reported when none actually occurs.

19

In the KA10 these instructions trap as unassigned codes (x2.16). FIX, FIXR, and FLTR are available in all other

processors, but the remaining eight are only available in a XKL

-

1 (or a KL10 with microcode version 271 or greater).

However, the four instructions that convert from giant format to �xed point are not implemented in microcode even

on the KL10. They are instead simulated by the Monitor.



2.3. FLOATING{POINT ARITHMETIC 71

0 12 1314 1718 35

I X Y

8 9

A

FIX Fix

122

If the exponent of the 
oating point number in location E is > 35, set Over
ow and Trap 1 and go

immediately to the next instruction without a�ecting AC or the contents of E in any way. Since the

largest �xed{point magnitude (without considering sign) is 2

35

� 1, a 
oating{point number with

exponent greater than decimal 35 (and assumed normalized) cannot be converted to �xed{point.

Otherwise, replace the exponent EXP in the word from location E with bits equal to the sign of the

fraction, and shift the (now �xed) extended fraction N = EXP � 27 places to the correct position

for its order of magnitude, placing the binary point at the right of bit 35. For positive N , shift left,

bringing 0s into bit 35 and dropping null bits out of bit 1. For negative N , shift right, bringing null

bits (0s for positive, 1s for negative) into bit 1, and then truncate to an integer. Place the result

in AC. Truncation produces the integer of largest magnitude less than or equal to the magnitude

of the original number. For example, a number > +1 but < +2 becomes +1; a number < �1 but

> �2 becomes �1.

Note: The over
ow test checks for a value � 2

35

, assuming the operand is normalized.

The truncation is that used in Fortran (\�xation"). For it, the processor drops the fractional part

in a positive number, but adds 1 to the integral part (as required by twos{complement format) if

any bits of signi�cance are shifted out in a negative number.

0 12 1314 1718 35

I X Y

8 9

A

GFIX Giant Floating to Integer

20

123

0 12 1314 1718 35

I X Y

8 9

00024
E0

Convert the giant{format 
oating{point number in E1 ,E1+1

21

to a single{precision integer in AC.

If the exponent �eld of the 
oating{point number in E1 ,E1+1 is greater than 2043

8

(meaning an

e�ective exponent greater than 35), set Over
ow and Trap 1 and do not a�ect the accumulator.

Otherwise, copy E1 ,E1+1 to an internal double word register, extending the sign bit to bits 1{11.

Then shift (as in ASHC, x2.5) by EXP �2030

8

, where EXP is the positive exponent from bits 1{11

of E1 . Store the high{order word of the result in AC.

Note: The over
ow test checks for a value � 2

35

, assuming the operand is normalized.

This instruction will always truncate towards zero; i.e., 1:9 is �xed to 1 and �1:9 is �xed to �1. This

truncation is that speci�ed in the Fortran language for conversion of real to integer. For positive

20

In the KI10 and KS10 this instruction traps as an unassigned code (x2.16). Because of lack of microcode space,

in the KL10 this instruction is handled as an unassigned code but operating system software simulates the e�ect of

this instruction.

21

Refer to the description of E;E + 1 on page 52.



72 CHAPTER 2. USER OPERATIONS

numbers, bits shifted o� the right end are ignored. For negative numbers, if any \1" bits are shifted

o� the right end, then 1 is added to bit 35 to make the result closer to zero.

0 12 1314 1718 35

I X Y

8 9

A

GDFIX Giant Floating to Double Precision Integer

20

123

0 12 1314 1718 35

I X Y

8 9

00023
E0

Convert the giant{format 
oating{point number in E1 ,E1+1

21

to a double precision integer and

place the result in AC,AC+1.

Set Over
ow and Trap 1 if the e�ective exponent is greater than 70 (2106

8

in the exponent �eld);

if an over
ow occurs, do not a�ect the accumulators. Otherwise, copy E1 ,E1+1 to AC,AC+1,

extending the sign bit to bits 1{11. Then shift (as in ASHC) by EXP � 2073

8

, where EXP is the

positive exponent from bits 1{11 of E1 . If the result is negative and any \1" bits were shifted o�

the right end of AC+1, then add 1 to bit 35 of AC+1 to bring the result closer to zero.

Notes: The over
ow test checks for a value � 2

70

assuming the operand is normalized.

0 12 1314 1718 35

I X Y

8 9

A

FIXR Fix and Round

126

If the exponent of the 
oating point number in location E is > 35, set Over
ow and Trap 1 and go

immediately to the next instruction without a�ecting AC or the contents of E in any way.

Otherwise, replace the exponent EXP in the word from location E with bits equal to the sign of the

fraction, and shift the (now �xed) extended fraction N = EXP � 27 places to the correct position

for its order of magnitude, placing the binary point at the right of bit 35. For positive N , shift left,

bringing 0s into bit 35 and dropping null bits out of bit 1. For negative N , shift right, bringing null

bits (0s for positive, 1s for negative) into bit 1, and then round the integral part. Place the result

in AC.

Rounding is in the positive direction: the magnitude of the integral part is increased by 1 if the

fractional part is �

1

2

in a positive number but >

1

2

in a negative number. For example, +1:4

(decimal) is rounded to +1, whereas +1:5 and +1:6 become +2; but with negative numbers, �1:4

and �1:5 become �1, whereas �1:6 becomes �2.

Notes: The rounding procedure in FIXR is the Algol standard for real{to{integer conversion. For

it, the processor adds 1 to the integral part if the fractional part is �

1

2

in a positive number or (as

required by twos{complement format) is �

1

2

in a negative number. This rounding procedure di�ers

from that used in FADR and the other single{precision 
oating{point arithmetic instructions that

round their results.



2.3. FLOATING{POINT ARITHMETIC 73

0 12 1314 1718 35

I X Y

8 9

A

GFIXR Giant Floating Fix and Round

20

123

0 12 1314 1718 35

I X Y

8 9

00026E0

Convert a giant{format 
oating{point number to a single{precision integer by rounding.

If the exponent �eld of the giant{format 
oating{point number in E1 ,E1+1

21

is greater than 2043

8

(meaning an e�ective exponent greater than 35), then this instruction will set Over
ow and Trap 1

and not a�ect the accumulator.

Otherwise, copy E1 ,E1+1 to an internal double word register. Extend the sign bit into bits 1{11

of the high{order word of that register. Then shift arithmetically (as in ASHC) the double word

register by EXP � 2030

8

bits (where EXP is the positive exponent from bits 1{11 of E1 ). The

rounding process will consider the data bit to the right of bit 35 in the high{order word. If that bit

is a 1, then 1 will be added to bit 35 of the result. If rounding produces the number 2

35

, set Over
ow

and Trap 1; the result stored is actually �2

35

. Rounding is always in the positive direction; see the

notes following FIXR.

Notes: The initial over
ow test checks for a value � 2

35

assuming the operand is normalized.

Rounding can over
ow only if the original operand has exponent 35 and fraction � 1 � 2

�36

(in

other words, the fraction is positive and begins with a string of thirty{six 1s).

0 12 1314 1718 35

I X Y

8 9

A

GDFIXR Giant Floating Fix to Double and Round

20

123

0 12 1314 1718 35

I X Y

8 9

00025
E0

Convert a giant{format 
oating{point number to a double precision integer by rounding.

If the exponent �eld of the giant{format 
oating{point number in E1 ,E1+1

21

is greater than 2106

8

(meaning an e�ective exponent greater than 70), then this instruction will set Over
ow and Trap 1

and not a�ect the accumulator.

Otherwise, E1 ,E1+1 is converted to �xed{point by the following procedure: copy E1 ,E1+1 to an

internal double word register. Extend the sign bit into bits 1{11 of the high{order word of that

register. Then shift arithmetically (as in ASHC) the double word register by EXP � 2073

8

bits

(where EXP is the positive exponent from bits 1{11 of E1 ). If EXP � 2073

8

is non{negative, then

no rounding will take place.

If EXP � 2073

8

is negative, then the double word register was shifted to the right. The rounding

process will consider the last data bit that was shifted o� the low{order word. If that bit is a 1, then

1 will be added to bit 35 of the low{order word. The double word register is stored in AC,AC+1.



74 CHAPTER 2. USER OPERATIONS

Rounding is always in the positive direction; see the notes following FIXR.

Notes: The over
ow test checks for a value � 2

70

assuming the operand is normalized.

0 12 1314 1718 35

I X Y

8 9

A

FLTR Float and Round

127

Shift the magnitude part of the �xed{point integer from location E right eight places, insert the

exponent decimal 35 (in proper form) into bits 1{8 to move the shifted binary point to the left of bit

9 (35 = 27+ 8), and normalize the fraction, bringing �rst the bits originally shifted out and then 0s

into bit positions vacated at the right. If fewer than eight bits (left shifts) are needed to normalize,

use the next bit to round the single{length fraction. Place the result in AC.

The rounding function is the same as that used by the 
oating{point arithmetic with rounding

instructions (e.g., FADR, see below); the rounding function di�ers from that used in FIXR.

Fixed{point numbers can always be converted to 
oating{point. However, precision can be lost

because 
oating{point format provides fewer signi�cant bits. An integer greater than 2

27

�1 cannot

be represented exactly in single{precision 
oating{point unless all its signi�cant bits are clustered

within a group of twenty{seven bits.

0 12 1314 1718 35

I X Y

8 9

A

GFLTR Giant Float and Round

22

123

0 12 1314 1718 35

I X Y

8 9

00030E0

Convert the integer in E1 to a giant{format 
oating{point number in AC,AC+1. Clear accumulator

AC+1 to zero. Copy the data from E1 to AC; shift it right, arithmetically (as in ASHC), 11 places.

The sign and exponent 2043

8

(or, if the number is negative, its ones complement, 5734

8

) are inserted

into bits 0{11. That result is normalized until bit 12 of the high{order word becomes signi�cant.

This instruction does not actually do any rounding, because every single{precision integer has an

exact representation in giant{format.

0 12 1314 1718 35

I X Y

8 9

A

DGFLTR Double Giant Float and Round

22

123

0 12 1314 1718 35

I X Y

8 9

00027E0

Convert the double precision integer in E1 ,E1+1

21

to a giant{format 
oating{point number and

22

In the KI10 and KS10 this instruction traps as an unassigned code (x2.16).



2.3. FLOATING{POINT ARITHMETIC 75

put the result in AC,AC+1. Copy the data from E1 ,E1+1 to AC,AC+1, where it is shifted right,

arithmetically (as in ASHC), 11 places, retaining the bits that are shifted out. The sign and exponent

2106

8

(or its ones complement) are inserted into bits 0{11. That result is normalized by left{shifting

until bit 12 of the high{order word becomes signi�cant. The left{shift may restore some or all of

the bits that were shifted right initially. If any of the bits shifted right remain outside the double

word result, then if the leftmost of those bits is 1, the result is modi�ed by adding 1 to bit 35 of the

low{order word of the fraction.

0 12 1314 1718 35

I X Y

8 9

A

GSNGL Giant Floating to Single Floating

22

123

0 12 1314 1718 35

I X Y

8 9

0021
E0

Convert a giant{format quantity (in E1 ,E1+1

21

) to a single{precision 
oating{point number in AC.

Let EXP signify the exponent in positive form from bits 1{11 of E1 . If EXP � 2000

8

� 128, set

Floating Over
ow, Over
ow, and Trap 1; do not a�ect the accumulator. If EXP � 2000

8

< �128,

set Floating Under
ow, Floating Over
ow, Over
ow, and Trap 1; do not a�ect the accumulator.

23

Otherwise, copy the giant{format quantity in E1 ,E1+1 to an internal double word register, set

bits 1{11 of the high order word to copies of the sign bit, shift the double word register three bits

to the left to move the most signi�cant fraction bit from bit 12 to bit 9, and place the quantity

EXP � 1600

8

(or its ones complement) in bits 1{8. If rounding produces an exponent > 127, set

Over
ow, Floating Over
ow, and Trap 1; the result stored has an exponent 256 greater than the

correct one. Store the high{order word in AC.

Notes: Rounding can over
ow only if the original operand has exponent 127 and fractional magnitude

� 1� 2

�28

.

0 12 1314 1718 35

I X Y

8 9

A

GDBLE Single Floating to Giant Floating

22

123

0 12 1314 1718 35

I X Y

8 9

0022
E0

Convert the single{precision 
oating{point quantity in E1 to a giant{format quantity in AC,AC+1.

This conversion is exact.

Copy E1 to AC; clear AC+1. Let EXP represent the exponent from bits 1{8 of it E1. Shift

AC,AC+1 arithmetically three bits to the right, to move the most signi�cant bit of the fraction from

bit 9 to bit 12. Place EXP + 1600

8

(or its ones complement) in bits 1{11. If the result is negative,

clear bit 0 in AC+1.

23

In KL10 microcode version 2.1[442], conversion of a giant{format number whose exponent is in the range 1570

8

to 1577

8

sets under
ow and, incorrectly, stores a result.



76 CHAPTER 2. USER OPERATIONS

2.3.3 Single{Precision with Rounding

There are four instructions that use only one{word operands and store a single{length, rounded

result. Rounding is away from 0: if the part of the normalized answer being dropped (the low{order

part of the fraction) is greater than or equal in magnitude to one half the LSB of the part being

retained, the magnitude of the latter part is increased by one LSB.

24

(This rounding is not the same

as the rounding used in FIXR.)

The rounding instructions have four modes that determine the source of the non{AC operand and

the destination of the result. These modes are like those of �xed{point arithmetic, including an

immediate mode that allows the instruction to carry an operand with it.

Source of non{ Destination

Mode Su�x AC operand of result

Basic E AC

Immediate I The word E; 0 AC

Memory M E E

Both B E AC and E

Note, however, that 
oating{point immediate uses E; 0 as an operand, not 0; E. In other words, the

half word E is interpreted as a sign, an 8{bit exponent, and a 9{bit fraction.

In each of these instructions, the exponent that results from normalization and rounding is tested

for over
ow or under
ow. If the exponent is > 127, set Trap 1, Over
ow, and Floating Over
ow;

the result stored has an exponent 256 less than the correct value. If the exponent is < �128, set

Trap 1, Over
ow, Floating Over
ow, and Floating Under
ow; the result stored has an exponent 256

greater than the correct value.

0 12 1314 1718 35

I X Y

8 9

A

FADR Floating Add and Round

144
M

6 7

Interpret the operands speci�ed by M and AC as single{precision 
oating{point numbers. Compute

their sum. If the double{length fraction in the sum is zero, clear the speci�ed destination. Otherwise,

normalize the double{length sum bringing 0s into bit positions vacated at the right; round the high{

order part; test for exponent over
ow or under
ow as described above; and place the result in the

speci�ed destination.

FADR Floating Add and Round 144

FADRI Floating Add and Round Immediate 145

FADRM Floating Add and Round to Memory 146

FADRB Floating Add and Round to Both 147

24

In the hardware, the rounding operation is actually somewhat more complex than stated here. If the result is

negative, the hardware combines rounding with placing the high{order word in twos{complement form by decreasing

its magnitude if the low{order part is <

1

2

LSB. Moreover, an extra single{step renormalization occurs if the rounded

word is no longer normalized.



2.3. FLOATING{POINT ARITHMETIC 77

0 12 1314 1718 35

I X Y

8 9

A

FSBR Floating Subtract and Round

154
M

6 7

Interpret the operands speci�ed by M and AC as single{precision 
oating{point numbers. Subtract

the memory operand from the AC operand. If the double{length fraction in the di�erence is zero,

clear the speci�ed destination. Otherwise, normalize the double{length di�erence bringing 0s into

bit positions vacated at the right; round the high{order part; test for exponent over
ow or under
ow

as described above; and place the result in the speci�ed destination.

FSBR Floating Subtract and Round 154

FSBRI Floating Subtract and Round Immediate 155

FSBRM Floating Subtract and Round to Memory 156

FSBRB Floating Subtract and Round to Both 157

0 12 1314 1718 35

I X Y

8 9

A

FMPR Floating Multiply and Round

164
M

6 7

Interpret the operands speci�ed byM and AC as single{precision 
oating{point numbers. Form the

product of the two operands. If the double{length fraction in the product is zero, clear the speci�ed

destination. Otherwise, normalize the double{length product bringing 0s into bit positions vacated

at the right; round the high{order part; test for exponent over
ow or under
ow as described above;

and place the result in the speci�ed destination.

FMPR Floating Multiply and Round 164

FMPRI Floating Multiply and Round Immediate 165

FMPRM Floating Multiply and Round to Memory 166

FMPRB Floating Multiply and Round to Both 167

0 12 1314 1718 35

I X Y

8 9

A

FDVR Floating Divide and Round

174
M

6 7

Interpret the operands speci�ed by M and AC as single{precision 
oating{point numbers. If the

magnitude of the fraction in AC is greater than or equal to twice that of the fraction in the operand

speci�ed by M , set Trap 1, Over
ow, Floating Over
ow, and No Divide and go immediately to the

next instruction without a�ecting the original AC or memory operand in any way.

Otherwise, compute the quotient of the AC operand divided by the operand speci�ed by M , cal-

culating a quotient fraction of 28 bits (this includes an extra bit for rounding). If the fraction is



78 CHAPTER 2. USER OPERATIONS

zero, clear the speci�ed destination. Otherwise, round the fraction, using the extra bit calculated.

If the original operands were normalized, the single{length quotient will already be normalized; if it

is not, normalize it, bringing 0s into bit positions vacated at the right. Test for exponent over
ow

or under
ow as described above. Place the result in the speci�ed destination.

FDVR Floating Divide and Round 174

FDVRI Floating Divide and Round Immediate 175

FDVRM Floating Divide and Round to Memory 176

FDVRB Floating Divide and Round to Both 177

Note: Division fails if the divisor is zero. However, the no{divide condition can also occur if the

divisor is unnormalized.

2.3.4 Single{Precision without Rounding

Instructions that do not round are faster for processing 
oating{point numbers with fractions con-

taining fewer than 27 signi�cant bits. They perform the four standard arithmetic operations with

normalization but without rounding. All use AC and the contents of location E as operands and

have three modes. They lack an immediate mode but are otherwise analogous to the single{precision

instructions with rounding.

Mode Su�x E�ect

Basic High{order word of result stored in AC

Memory M High{order word of result stored in E

Both B High{order word of result stored in AC and E

In each of these instructions, the exponent that results from normalization is tested for over
ow or

under
ow. If the exponent is > 127, set Trap 1, Over
ow, and Floating Over
ow; the result stored

has an exponent 256 less than the correct value. If the exponent is < �128, set Trap 1, Over
ow,

Floating Over
ow, and Floating Under
ow; the result stored has an exponent 256 greater than the

correct value.

0 12 1314 1718 35

I X Y

8 9

A

FAD Floating Add

140
M

6 7

Interpret the operands speci�ed by M and AC as single{precision 
oating{point numbers. Form

the 
oating{point sum of the operands. If the double{length fraction in the sum is zero, clear

the destination speci�ed by M . Otherwise, normalize the double{length sum bringing 0s into bit

positions vacated at the right; test for exponent over
ow or under
ow as described above; and place

the high{order word of the result in the speci�ed destination.

25

25

Caution : In single{precision 
oating{point addition, the term with the smaller exponent is right{shifted in a

double{length register; speci�cally, a register with 54 magnitude bits. If the di�erence in the exponents is < 54, there



2.3. FLOATING{POINT ARITHMETIC 79

FAD Floating Add 140

FADM Floating Add to Memory 142

FADB Floating Add to Both 143

0 12 1314 1718 35

I X Y

8 9

A

FSB Floating Subtract

150 M

6 7

Interpret the operands speci�ed by M and AC as single{precision 
oating{point numbers. Compute

the 
oating{point di�erence by subtracting the operand speci�ed by M from the AC operand. If

the double{length fraction in the di�erence is zero, clear the destination speci�ed by M Otherwise,

normalize the double length di�erence, bringing 0s into bit positions vacated at the right; test for

exponent over
ow or under
ow as described above; and place the high{order word of the result in

the speci�ed destination.

26

FSB Floating Subtract 150

FSBM Floating Subtract to Memory 152

FSBB Floating Subtract to Both 153

0 12 1314 1718 35

I X Y

8 9

A

FMP Floating Multiply

160
M

6 7

Interpret the operands speci�ed byM and AC as single{precision 
oating{point numbers. Form the


oating{point product of these two operands. If the double{length fraction in the product is zero,

clear the destination speci�ed by M . Otherwise, normalize the double{length product bringing 0s

into bit positions vacated at the right; test for exponent over
ow or under
ow as described above;

and place the high{order word of the result in the speci�ed destination.

FMP Floating Multiply 160

FMPM Floating Multiply to Memory 162

FMPB Floating Multiply to Both 163

is at least one signi�cant bit after the shift (assuming normalized operands). If the di�erence is > 72 (in the KA10,

or > 64 in the KI10), the hardware throws the term away by substituting zero. But when the exponent di�erence

lies in the range 54 to 72 (64), the procedure disposes of all signi�cant bits without actually substituting zero. This

means that if the shifted term is positive it appears in the addition as all 0s, but if negative it appears as all 1s. The

latter case gives an answer that is less by one LSB.

In the XKL

-

1and the KL10, no shift is large enough to turn a negative operand to zero. No matter how small the

negative operand, it will change the LSB of the result.

26

The caution given in footnote 25 for addition applies also to subtraction, which is done by adding with the

subtrahend negated. Here the lesser answer (as against a true zero substitution) occurs when the term with the

smaller exponent is negative after the subtrahend negation; i.e., when the term of smaller magnitude is a positive

subtrahend or a negative minuend.



80 CHAPTER 2. USER OPERATIONS

0 12 1314 1718 35

I X Y

8 9

A

FDV Floating Divide

170
M

6 7

Interpret the operands speci�ed by M and AC as single{precision 
oating{point numbers. If the

magnitude of the fraction in AC is greater than or equal to twice the magnitude of the fraction in

location E , set Trap 1, Over
ow, Floating Over
ow, and No Divide and go immediately to the next

instruction without a�ecting the original AC or memory operand in any way.

Otherwise, compute the 
oating{point quotient of AC divided by the contents of location E . Cal-

culate a quotient fraction of 27 bits. If the fraction is zero, clear the destination speci�ed by M . A

quotient with a non{zero fraction will already be normalized if the original operands were normalized;

if it is not, normalize it, bringing 0s into bit positions vacated at the right. Test for exponent over
ow

or under
ow as described above, and place the single{length quotient in the speci�ed destination.

NOTE

In the KL10, KS10, and XKL

-

1, a negative quotient is represented by a twos{complement

only when the remainder is zero. Otherwise it is a ones{complement. In the KI10 and

KA10, a twos complement is used for a negative quotient regardless of the value of the

remainder.

FDV Floating Divide 170

FDVM Floating Divide to Memory 172

FDVB Floating Divide to Both 173

Note: Division fails if the divisor is zero. However, the no{divide condition can also occur if the

divisor is unnormalized.

2.3.5 Double{Precision

27

There are four instructions for the four basic operations; they have no modes. All use AC and

memory operands and place the result in the accumulators. Memory operands are double length

in location E;E + 1;

28

AC operands and results are double length in AC,AC+1. All operands

are interpreted as double{precision 
oating{point numbers. All results are normalized regardless

of the status of the original operands; except that in KI10 multiplication and division, the result

is guaranteed to be normalized only when the original operands are normalized. Except in KI10

division, the result is rounded. The rounding function is the same as that used in single{precision:

if the part of the answer being dropped (the low{order part of the fraction) is greater than or equal

in magnitude to one half the LSB of the double{length part being retained, the magnitude of the

latter part is increased by one LSB (with appropriate adjustment for a twos{complement negative).

27

In the KA10 these instructions trap as unassigned codes (x2.16).

28

Refer to the description of E;E + 1 on page 52.



2.3. FLOATING{POINT ARITHMETIC 81

In each of these instructions, the exponent that results from normalization and rounding (if done)

is tested for over
ow or under
ow. If the exponent is > 127, set Trap 1, Over
ow, and Floating

Over
ow; the result stored has an exponent 256 less than the correct value. If the exponent is

< �128, set Trap 1, Over
ow, Floating Over
ow, and Floating Under
ow; the result stored has an

exponent 256 greater than the correct value.

0 12 1314 1718 35

I X Y

8 9

A

DFAD Double Floating Add

110

Add the double{precision 
oating{point operand in location E;E+1 to AC,AC+1. If the fraction in

the sum is zero, clear AC,AC+1. Otherwise, normalize the triple{length sum, bringing 0s in at the

right; round the high{order double{length part; test for exponent over
ow or under
ow as described

above; and place the result in AC,AC+1.

Note

The KI10 zero test inspects only the high{order 70 bits in the fraction.

0 12 1314 1718 35

I X Y

8 9

A

DFSB Double Floating Subtract

111

Subtract the double{precision 
oating{point operand in location E;E + 1 from AC,AC+1. If the

fraction in the di�erence is zero, clear AC,AC+1. Otherwise, normalize the triple{length di�erence,

bringing 0s into bit positions vacated at the right; round the high{order double{length part; test for

exponent over
ow or under
ow as described above; and place the result in AC,AC+1.

NOTE

The KI10 zero test inspects only the high{order 70 bits in the fraction.

0 12 1314 1718 35

I X Y

8 9

A

DFMP Double Floating Multiply

112

XKL

-

1 processor , KL10 , andKS10 : Multiply the double{precision 
oating{point operand in AC,AC+1

by the operand in location E;E + 1. If the product is zero, clear AC,AC+1. Otherwise, normalize

the product, round the high{order double{length part, test for exponent over
ow and under
ow as

described above; and place the result in AC,AC+1.

29

29

The KL10 considers only one bit to the right of the least signi�cant bit when rounding. If that bit is set, the



82 CHAPTER 2. USER OPERATIONS

KI10 : Multiply the double{precision 
oating{point operand in AC,AC+1 by the operand in location

E;E+1. If the high{order 70 bits of the fraction in the product are zero, clear AC,AC+1. Otherwise,

if there are any bits of signi�cance among the high{order 35 bits, do at most one normalization shift if

required; if the high{order 35 bits are zero, shift the fraction left 35 places (adjusting the exponent),

and then do at most one normalization shift if required. Round the high{order double{length part;

test for exponent over
ow and under
ow as described above; and place the result in AC,AC+1. The

35{bit shift is done only if the original operands are unnormalized. The single normalization shift

produces a normalized result for normalized operands.

0 12 1314 1718 35

I X Y

8 9

A

DFDV Double Floating Divide

113

If the magnitude of the fraction in the double{precision 
oating{point operand in AC,AC+1 is

greater than or equal to twice that of the fraction in the operand in location E;E + 1, set Trap 1,

Over
ow, Floating Over
ow, and No Divide and go immediately to the next instruction without

a�ecting the original AC or memory operand in any way.

Otherwise, divide the AC operand by the memory operand, calculating a quotient fraction of 63

bits including one for rounding (62 in the KI10). If the fraction is zero, clear AC,AC+1. Otherwise,

in the XKL

-

1 processor, KL10, and KS10, normalize the quotient and round it using the extra bit

calculated. Test for exponent over
ow or under
ow as described above, and place the quotient in

AC,AC+1. The remainder is lost. Division fails if the divisor is zero. However, the no{divide

condition can also occur if the divisor is unnormalized.

Note: In the KI10 the quotient is normalized if the original operands are normalized.

2.3.6 Giant{Format Extended{Range Double Precision

30

There are four instructions for the four basic operations; they have no modes. All use AC and

memory operands and place the result in the accumulators. Memory operands are double{length

in location E;E + 1;

31

AC operands and results are double{length in AC,AC+1. All operands are

interpreted as giant{format 
oating{point numbers. All results are normalized regardless of the

status of the original operands. All results are rounded. The rounding function is the same as

that used in single precision: if the part of the answer being dropped (the low{order part of the

fraction) is greater than or equal in magnitude to one half the LSB of the double{length part being

retained, the magnitude of the latter part is increased by one LSB (with appropriate adjustment for

a twos{complement negative).

In each of these instructions, the exponent that results from normalization and rounding (if done)

is tested for over
ow or under
ow. If the exponent is > 1023, set Trap 1, Over
ow, and Floating

Over
ow; the result stored has an exponent 2048 less than the correct value. If the exponent is

< �1024, set Trap 1, Over
ow, Floating Over
ow, and Floating Under
ow; the result stored has an

exponent 2048 greater than the correct value.

KL10 adds one to the least signi�cant bit. This di�ers from the rounding employed in other instructions.

30

In the KA10, KI10, and KS10 these instructions trap as unassigned codes (x2.16).

31

Refer to the description of E;E + 1 on page 52.



2.3. FLOATING{POINT ARITHMETIC 83

0 12 1314 1718 35

I X Y

8 9

A

GFAD Giant Floating Add

102

Add the giant{format operand in location E;E + 1

32

to the giant{format operand in AC,AC+1.

If the fraction in the sum is zero, clear AC,AC+1. Otherwise, normalize the triple{length sum,

bringing 0s in at the right; round the high order double length part; test for exponent over
ow or

under
ow; and place the result in AC,AC+1.

Exponent under
ow occurs when two numbers of similar small magnitude and di�ering signs are

added to produce a non{zero result which, when normalized, results in the exponent becoming

smaller than �1024. The result stored will have an exponent that is too large by 2048. If exponent

under
ow occurs, set Floating Under
ow, Floating Over
ow, Over
ow, and Trap 1.

Exponent over
ow occurs when two numbers of similar large magnitude and identical signs are added

to produce a result which requires a right shift to normalize and which results in an exponent of

+1024. The exponent stored will be �1024; i.e., too small by 2048. If exponent over
ow occurs, set

Over
ow, Floating Over
ow, and Trap 1.

0 12 1314 1718 35

I X Y

8 9

A

GFSB Giant Floating Subtract

103

Subtract the giant{format operand in locationE;E+1 from the operand in AC,AC+1. If the fraction

in the sum is zero, clear AC,AC+1. Otherwise, normalize the triple{length di�erence, bringing 0s

in at the right; round the high order double length part; test for exponent over
ow or under
ow;

and place the result in AC,AC+1.

Subtraction is e�ected by negating the subtrahend and adding. The conditions under which over
ow

or under
ow occur correspond to those described above for GFAD.

0 12 1314 1718 35

I X Y

8 9

A

GFMP Giant Floating Multiply

106

Multiply the giant{format operand in AC,AC+1 by the operand in location E;E+1. If the product

is zero, clear AC,AC+1. Otherwise, normalize the product; round the high order double length part;

test for exponent over
ow and under
ow; and place the result in AC,AC+1.

In multiplication, the exponent of the result is computed by adding the exponents of the operands,

with an adjustment for normalization of the result. Under
ow occurs when two negative exponents

are added to form a result smaller than �1024. Over
ow occurs when two positive exponents are

added to form a result larger than +1023.

32

Refer to the description of E;E + 1 on page 52.



84 CHAPTER 2. USER OPERATIONS

0 12 1314 1718 35

I X Y

8 9

A

GFDV Giant Floating Divide

107

If the magnitude of the fraction in the giant{format operand in AC,AC+1 is greater than or equal

to twice that of the fraction in the giant{format operand in location E;E+ 1, set Trap 1, Over
ow,

Floating Over
ow, and No Divide and go immediately to the next instruction without a�ecting the

original AC or memory operand in any way. Division fails when the divisor is zero. However, the

no{divide condition can also occur if the divisor is unnormalized.

Otherwise, divide the AC operand by the memory operand, calculating a quotient fraction of 60

bits including one for rounding. If the fraction is zero, clear AC,AC+1. Otherwise, normalize the

quotient and round it using the extra bit calculated. Test for exponent over
ow or under
ow, and

place the quotient in AC,AC+1. The remainder is lost.

2.3.7 KA10 Software Double{Precision

These instructions are regarded as obsolete|they are solely for assisting in the KA10 software

implementation of double{precision 
oating{point arithmetic. Hence, they exist only in the KA10,

the KI10, and those KL10 processors whose microcode implements them speci�cally for compatibility

with KA10 usage.

33

A programmer who employs these instructions must be aware that the double{

length format for KA10 software double{precision is not the same as the standard double{precision

format given in x1.5.2. A double{length number in KA10 software double{precision format contains

a 54{bit fraction, half of which is in bits 9{35 of each word. The sign and exponent are in bits 0 and

1{8 respectively of the word containing the more signi�cant half, and the standard twos{complement

is used to form the negative of the entire 63{bit string. In the remaining part of the less signi�cant

word, bit 0 is 0, and bits 1{8 contain a number 27 less than the exponent, but this is expressed in

positive form even though bits 9{35 may be part of a negative fraction. For example, the number

2

18

+ 2

�18

has this two{word representation in software double{precision format:

0 10 010 011 100 000 000 000 000 000 000 000 000

0 01 111 000 000 000 000 100 000 000 000 000 000

0 1 8 9 35

0 1 8 9 35

whereas its negative is

1 01 101 100 011 111 111 111 111 111 111 111 111

0 01 111 000 111 111 111 100 000 000 000 000 000

0 1 8 9 35

0 1 8 9 35

33

In KL10 processors that do not support these instructions in microcode, they trap as unassigned codes (x2.16)

and are simulated, faithfully and slowly, in software.



2.3. FLOATING{POINT ARITHMETIC 85

Routines for performing software double{precision arithmetic are made possible by the six instruc-

tions described here. Four of these do the basic operations with normalization; the double{length

number in software format is used as a dividend or it appears as the result in addition, subtraction,

or multiplication. The remaining two instructions do not normalize: one negates a software double{

length number, the other performs a special unnormalized addition for manipulating low{order parts

of numbers without shifting them from their proper positions. In the instructions for the basic op-

erations, the exponent that results from normalization is tested for over
ow or under
ow. If the

exponent is > 127, set Trap 1, Over
ow, and Floating Over
ow; the result stored has an exponent

256 less than the correct value. If the exponent is < �128, set Trap 1, Over
ow, Floating Over
ow,

and Floating Under
ow; the result stored has an exponent 256 greater than the correct value.

NOTE

The following instructions are solely for assisting in KA10 software double{precision


oating{point arithmetic. In any processor that does not implement them, their codes are

unassigned and they therefore execute as MUUOs rather than performing the operations

given in the following descriptions.

0 12 1314 1718 35

I X Y

8 9

A

DFN Double Floating Negate

131

Negate the software double{length 
oating{point number composed of the contents of AC and

location E with AC on the left. Do this by taking the twos complement of the number whose sign is

AC bit 0, whose exponent is in AC bits 1{8, and whose fraction is the 54{bit string in bits 9{35 of

AC and location E . Place the high{order word of the result in AC; place the low order part of the

fraction in bits 9{35 of location E without altering the original contents of bits 0{8 of that location.

Note: Usually the double{length number is in two adjacent accumulators, and E equals A + 1.

There is no over
ow test, because negating a correctly formatted 
oating{point number cannot

cause over
ow.

DFN AC,AC is unde�ned.

0 12 1314 1718 35

I X Y

8 9

A

UFA Unnormalized Floating Add

130

Add the 
oating{point contents of location E to AC.

34

If the double{length fraction in the sum is

zero, clear AC+1. Otherwise normalize the sum only if the magnitude of its fractional part is �

1, and place the high{order part of the result in AC+1. The original contents of AC and E are

una�ected.

If the exponent of the sum following the one{step normalization is > 127, set Trap 1, Over
ow and

34

The caution given in footnote 25 for FAD applies to this instruction as well.



86 CHAPTER 2. USER OPERATIONS

Floating Over
ow; the result stored has an exponent 256 less than the correct value.

Notes. The exponent of the sum is equal to that of the larger addend unless addition of the fractions

over
ows, in which case it is greater by 1. Exponent over
ow can occur only in the latter case.

0 12 1314 1718 35

I X Y

8 9

A

FADL Floating Add Long

141

Add the 
oating{point contents of location E to AC.

34

If the double{length fraction in the sum is

zero, clear AC,AC+1. Otherwise, normalize the double{length sum, bringing 0s into bit positions

vacated at the right; test for exponent over
ow or under
ow as described above; and place the high

order word of the result in AC. If the exponent of the sum is < �101 (�128+27) or the low{order

half of the fraction is zero, clear AC+1. Otherwise place a low{order word for a double{length result

in AC+1 by putting a 0 in bit 0, an exponent in positive form that is 27 less than the exponent of

the sum in bits 1{8, and the low{order part of the fraction in bits 9{35.

0 12 1314 1718 35

I X Y

8 9

A

FSBL Floating Subtract Long

151

Subtract the 
oating{point contents of location E from AC.

35

If the double{length fraction in the

di�erence is zero, clear AC,AC+1. Otherwise, normalize the double length di�erence, bringing 0s

into bit positions vacated at the right; test for exponent over
ow or under
ow as described above; and

place the high order word of the result in AC. If the exponent of the di�erence is< �101 (�128+27)

or the low{order half of the fraction is zero, clear AC+1. Otherwise, place a low{order word for a

double{length result in AC+1 by putting a 0 in bit 0, an exponent in positive form that is 27 less

than the exponent of the di�erence in bits 1{8, and the low{order part of the fraction in bits 9{35.

0 12 1314 1718 35

I X Y

8 9

A

FMPL Floating Multiply Long

161

Multiply the 
oating{point operand in AC by the contents of locationE . If the double{length fraction

in the product is zero, clear AC,AC+1. Otherwise, normalize the double{length product, bringing

0s into bit positions vacated at the right; test for exponent over
ow or under
ow as described above;

and place the high order word of the result in AC. If the exponent of the product is > 154(127+27)

or < �101(�128 + 27) or the low order half of the fraction is zero, clear AC+1. Otherwise place a

low{order word for a double{length result in AC+1 by putting a 0 in bit 0, an exponent in positive

form that is 27 less than the exponent of the product in bits 1{8, and the low{order part of the

fraction in bits 9{35.

35

The caution given in footnote 26 for FSB applies to this instruction as well.



2.4. BOOLEAN FUNCTIONS 87

0 12 1314 1718 35

I X Y

8 9

A

FDVL Floating Divide Long

171

If the magnitude of the software{format double{length fraction in AC,AC+1 is greater than or equal

to twice the magnitude of the fraction in location E , set Trap 1, Over
ow, Floating Over
ow, and

No Divide, and go immediately to the next instruction without a�ecting the original AC or memory

operand in any way.

Otherwise, divide the software{format double{length operand in AC,AC+1 by the contents of lo-

cation E . Calculate a quotient fraction of 27 bits. If the fraction is zero, clear AC. A quotient

with a non{zero fraction will already be normalized if the original operands were normalized; if it is

not, normalize it, bringing 0s into bit positions vacated at the right. Test for exponent over
ow or

under
ow as described above, and place the single{length quotient part of the result in AC.

Calculate the exponent for the fractional remainder from the division according to the relative

magnitudes of the fractions in dividend and divisor: if the dividend was greater than or equal to

the divisor, the exponent of the remainder is 26 less than that of the dividend, otherwise it is 27

less. If the remainder exponent is < �128 or the fraction is zero, clear AC+1. Otherwise, place the


oating{point remainder (exponent and fraction) with the sign of the dividend in AC+1.

Note

In the KL10 microcode implementation of FDVL, a negative quotient is represented by a

twos{complement only when the remainder is zero; otherwise, it is a ones{complement

(i.e., too small by one LSB). In the KI10 and KA10, a twos{complement is used for a

negative quotient regardless of the value of the remainder.

Notes: Division fails if the divisor is zero. However, the no{divide condition can also be satis�ed

when the divisor is unnormalized.

A non{zero unnormalized dividend whose entire high{order fraction is zero produces a zero quotient.

In this case, AC+1 is cleared in the KI10, but it may receive rubbish in other processors.

2.4 Boolean Functions

For logical operations, the PDP{10 has instructions for shifting and rotating (x2.5) as well as for

performing the complete set of sixteen Boolean functions of two variables (including those in which

the result depends on only one or neither variable). The Boolean functions operate bitwise on full

words, so each instruction actually performs thirty{six logical operations simultaneously. Thus, in

the AND function of two words, each bit of the result is the AND of the corresponding bits of the

operands. The table at the end of the section lists the bit con�gurations that result from the various

operand con�gurations for all instructions.

Each Boolean instruction has four modes that determine the source of the non{AC operand, if any,



88 CHAPTER 2. USER OPERATIONS

and the destination of the result. For an instruction without an operand (one that merely clears

a location or sets it to all 1s) the modes di�er only in the destination of the result, so basic and

immediate modes are equivalent. The same is true also of an instruction that uses only an AC

operand. When speci�ed by the mode, the result goes to the accumulator addressed by A, even

when there is no AC operand.

Source of non{ Destination

Mode Su�x AC operand of result

Basic E AC

Immediate I The word 0; E

?

AC

Memory M E E

Both B E AC and E

?

In section zero the immediate source is 0; E in all cases. However, in a non{zero section, setting

AC to immediate memory (i.e., SETMI) instead uses the entire extended e�ective{address E as the

source, including the section number (the left part of E).

0 12 1314 1718 35

I X Y

8 9

A

SETZ Set to Zeros

400
M

6 7

Change the contents of the destination speci�ed by M to all 0s.

SETZ Set to Zeros 400

SETZI Set to Zeros Immediate 401

SETZM Set to Zeros Memory 402

SETZB Set to Zeros Both 403

Note: SETZ and SETZI are equivalent (both clear AC). In them, I , X , and Y are reserved and

should be zero. (At present E is ignored.)

0 12 1314 1718 35

I X Y

8 9

A

AND And with AC

404
M

6 7

Change the contents of the destination speci�ed by M to the AND function of the speci�ed operand

and AC.



2.4. BOOLEAN FUNCTIONS 89

AND And 404

ANDI And Immediate 405

ANDM And to Memory 406

ANDB And to Both 407

0 12 1314 1718 35

I X Y

8 9

A

ANDCA And with Complement of AC

410 M

6 7

Change the contents of the destination speci�ed by M to the AND function of the speci�ed operand

and the complement of AC.

ANDCA And with Complement of AC 410

ANDCAI And with Complement of AC Immediate 411

ANDCAM And with Complement of AC to Memory 412

ANDCAB And with Complement of AC to Both 413

0 12 1314 1718 35

I X Y

8 9

A

SETM Set to Memory

414
M

6 7

Make the contents of the destination speci�ed by M equal to the speci�ed operand.

SETM Set to Memory 414

SETMI Set to Memory Immediate 415

SETMM Set to Memory Memory 416

SETMB Set to Memory Both 417

If the program is running in a non{zero section, the instruction SETMI is called XMOVEI (x2.1),

which performs an analogous function with an extended{immediate operand (e�ective{address).

Notes: SETM is equivalent to MOVE. In section zero, SETMI moves the word 0,E to AC and is

thus equivalent to MOVEI. SETMM is a no{op that writes in memory. With non{zero A, SETMB is

equivalent to MOVES. In all cases the move instruction is preferred.

0 12 1314 1718 35

I X Y

8 9

A

ANDCM And Complement of Memory with AC

420
M

6 7

Change the contents of the destination speci�ed by M to the AND function of the complement of



90 CHAPTER 2. USER OPERATIONS

the speci�ed operand and AC.

ANDCM And Complement of Memory 420

ANDCMI And Complement of Memory Immediate 421

ANDCMM And Complement of Memory to Memory 422

ANDCMB And Complement of Memory to Both 423

0 12 1314 1718 35

I X Y

8 9

A

SETA Set to AC

424
M

6 7

Make the contents of the destination speci�ed by M equal to AC.

SETA Set to AC 424

SETAI Set to AC Immediate 425

SETAM Set to AC Memory 426

SETAB Set to AC Both 427

Note: SETA and SETAI are no{ops. In them, I , X , and Y are reserved and should be zero. (At

present E is ignored.)

SETAM and SETAB are both equivalent to MOVEM, which is the preferred instruction (all move AC

to location E ).

0 12 1314 1718 35

I X Y

8 9

A

XOR Exclusive Or with AC

430 M

6 7

Change the contents of the destination speci�ed by M to the exclusive OR function of the speci�ed

operand and AC.

XOR Exclusive Or 430

XORI Exclusive Or Immediate 431

XORM Exclusive Or to Memory 432

XORB Exclusive Or to Both 433

The original contents of the destination can be recovered except in XORB, where both operands are

replaced by the result. In the other three modes, the replaced operand is restored by repeating the

instruction in the same mode; i.e., by taking the exclusive OR of the remaining operand and the

result.



2.4. BOOLEAN FUNCTIONS 91

0 12 1314 1718 35

I X Y

8 9

A

IOR Inclusive Or with AC

434
M

6 7

Change the contents of the destination speci�ed by M to the inclusive OR function of the speci�ed

operand and AC.

IOR Inclusive Or 434

IORI Inclusive Or Immediate 435

IORM Inclusive Or to Memory 436

IORB Inclusive Or to Both 437

Note: The Macro assembler also recognizes OR, ORI, ORM, and ORB as equivalent to the inclusive

OR mnemonics.

0 12 1314 1718 35

I X Y

8 9

A

ANDCB And Complements of Both

440
M

6 7

Change the contents of the destination speci�ed by M to the AND function of the complements of

both the speci�ed operand and AC. The result is the NOR function of the operands.

ANDCB And Complements of Both 440

ANDCBI And Complements of Both Immediate 441

ANDCBM And Complements of Both to Memory 442

ANDCBB And Complements of Both to Both 443

0 12 1314 1718 35

I X Y

8 9

A

EQV Equivalence with AC

444
M

6 7

Change the contents of the destination speci�ed by M to the complement of the exclusive OR

function of the speci�ed operand and AC (the result has 1s wherever the corresponding bits of the

operands are the same).

EQV Equivalence 444

EQVI Equivalence Immediate 445

EQVM Equivalence to Memory 446

EOVB Equivalence to Both 447

The original contents of the destination can be recovered except in EQVB, where both operands are



92 CHAPTER 2. USER OPERATIONS

replaced by the result. In the other three modes, the replaced operand is restored by repeating the

instruction in the same mode; i.e., by taking the equivalence function of the remaining operand and

the result.

0 12 1314 1718 35

I X Y

8 9

A

SETCA Set to Complement of AC

450
M

6 7

Change the contents of the destination speci�ed by M to the complement of AC.

SETCA Set to Complement of AC 450

SETCAI Set to Complement of AC Immediate 451

SETCAM Set to Complement of AC Memory 452

SETCAB Set to Complement of AC Both 453

Note: SETCA and SETCAI are equivalent (both complement AC). In them, I , X , and Y are reserved

and should be zero. (At present E is ignored.)

0 12 1314 1718 35

I X Y

8 9

A

ORCA Inclusive Or with Complement of AC

454
M

6 7

Change the contents of the destination speci�ed by M to the inclusive OR function of the speci�ed

operand and the complement of AC.

ORCA Or with Complement of AC 454

ORCAI Or with Complement of AC Immediate 455

ORCAM Or with Complement of AC to Memory 456

ORCAB Or with Complement of AC to Both 457

0 12 1314 1718 35

I X Y

8 9

A

SETCM Set to Complement of Memory

460
M

6 7

Change the contents of the destination speci�ed by M to the complement of the speci�ed operand.

SETCM Set to Complement of Memory 460

SETCMI Set to Complement of Memory Immediate 461

SETCMM Set to Complement of Memory Memory 462

SETCMB Set to Complement of Memory Both 463



2.4. BOOLEAN FUNCTIONS 93

Notes: SETCMI moves the complement of the word 0,E to AC. SETCMM complements location E .

0 12 1314 1718 35

I X Y

8 9

A

ORCM Inclusive Or Complement of Memory with AC

464
M

6 7

Change the contents of the destination speci�ed byM to the inclusive OR function of the complement

of the speci�ed operand and AC.

ORCM Or Complement of Memory 464

ORCMI Or Complement of Memory Immediate 465

ORCMM Or Complement of Memory to Memory 466

ORCMB Or Complement of Memory to Both 467

0 12 1314 1718 35

I X Y

8 9

A

ORCB Inclusive Or Complements of Both

470
M

6 7

Change the contents of the destination speci�ed by M to the inclusive OR function of the comple-

ments of both the speci�ed operand and AC. The result is the NAND function of the operands.

ORCB Or Complements of Both 470

ORCBI Or Complements of Both Immediate 471

ORCBM Or Complements of Both to Memory 472

ORCBB Or Complements of Both to Both 473

0 12 1314 1718 35

I X Y

8 9

A

SETO Set to Ones

474
M

6 7

Change the contents of the destination speci�ed by M to all 1s.

SETO Set to Ones 474

SETOI Set to Ones Immediate 475

SETOM Set to Ones Memory 476

SETOB Set to Ones Both 477

Note: SETO and SETOI are equivalent. In them, I , X , and Y are reserved and should be zero. (At

present E is ignored.)



94 CHAPTER 2. USER OPERATIONS

For the four possible bit con�gurations of the two operands, the above sixteen instructions produce

the following results. In each case the result as listed is equal to bits 3{6 of the instruction word.

AC Operand 0 1 0 1

Mode{Speci�ed Operand 0 0 1 1

SETZ 0 0 0 0

AND 0 0 0 1

ANDCA 0 0 1 0

SETM 0 0 1 1

ANDCM 0 1 0 0

SETA 0 1 0 1

XOR 0 1 1 0

IOR 0 1 1 1

ANDCB 1 0 0 0

EQV 1 0 0 1

SETCA 1 0 1 0

ORCA 1 0 1 1

SETCM 1 1 0 0

ORCM 1 1 0 1

ORCB 1 1 1 0

SETO 1 1 1 1

2.5 Shift and Rotate

These instructions shift or rotate right or left the contents of AC or the contents of AC,AC+1,

concatenated into a 72{bit register with AC on the left. Shifting is the movement of information

bit{to{bit in a register. A logical shift involves the entire word or double word with no distinction

among its bits, whereas an arithmetic shift involves only the magnitude, bypassing the sign. Figure

2.1 shows the movement of information these instructions produce in the accumulators. A logical

shift moves the bits, with 0s brought in at the end being vacated; information shifted out at the

other end is lost. Rotation is a cyclic logical shift where information shifted out at one end is put

back in at the other. An arithmetic shift does not a�ect the sign; but, in a double{length number,

where it operates on the 70{bit string made up of the magnitude parts of the two words, it makes

bit 0 of the low{order word equal to the sign. Null bits are brought in at the end being vacated: a

left shift brings in 0s at the right, whereas a right shift brings in the equivalent of the sign bit at the

left. In either case, information shifted out at the other end is lost. A single shift left is equivalent

to multiplying the number by 2 (provided no bit of signi�cance is shifted out); a shift right divides

the number by 2, with truncation (see footnote 36 on page page 97).

The number of places moved is speci�ed by the result of the e�ective{address calculation taken as a

signed number (in twos{complement notation) modulo 2

8

in magnitude. In other words, the e�ective

shift E is the number composed of bit 18 (which is the sign) and bits 28{35 of the calculation result.

Hence, the programmer may specify the shift directly in the instruction (perhaps indexed) or give



2.5. SHIFT AND ROTATE 95

Figure 2.1: Accumulator Bit Flow in Shift and Rotate Instructions

HRMF-SHIFTROT.TEX

LSH

LSHC

ROT

ROTC

ASH

ASHC

AC
0 0

0 35

AC

AC+1

0 35 0 35

0 0

AC

0 35

AC

AC+1

0 35 0 35

AC

1 35

AC
0

0

AC

AC+1

1 35 1 35

AC

0 0

AC+1

0

-

�

-

�

-

�

-

�

-

�

-

�

-

�

-

�

-

�

-

�



96 CHAPTER 2. USER OPERATIONS

an indirect address to be used in calculating the shift. A positive E produces motion to the left, a

negative E to the right. E is thus the power of 2 by which the number is multiplied.

0 12 1314 1718 35

I X Y

8 9

A

LSH Logical Shift

242

Shift AC the number of places speci�ed by E . If E is positive, shift left, bringing 0s into bit 35; data

shifted out of bit 0 is lost. If E is negative, shift right, bringing 0s into bit 0; data shifted out of bit

35 is lost.

0 12 1314 1718 35

I X Y

8 9

A

LSHC Logical Shift Combined

246

Shift AC,AC+1 the number of places speci�ed by E . If E is positive, shift left, bringing 0s into bit

71 (bit 35 of AC+1); bit 36 is shifted into bit 35; data shifted out of bit 0 is lost. If E is negative,

shift right, bringing 0s into bit 0; bit 35 is shifted into bit 36; data shifted out of bit 71 is lost.

0 12 1314 1718 35

I X Y

8 9

A

ROT Rotate

241

Rotate AC the number of places speci�ed by E . If E is positive, rotate left; bit 0 is rotated into bit

35. If E is negative, rotate right; bit 35 is rotated into bit 0.

0 12 1314 1718 35

I X Y

8 9

A

ROTC Rotate Combined

245

Rotate AC,AC+1 the number of places speci�ed by E . If E is positive, rotate left; bit 0 is rotated

into bit 71 (bit 35 of AC+1) and bit 36 into bit 35. If E is negative, rotate right; bit 35 is rotated

into bit 36 and bit 71 into bit 0.

0 12 1314 1718 35

I X Y

8 9

A

ASH Arithmetic Shift

240

Shift AC arithmetically the number of places speci�ed by E . Do not shift bit 0. If E is positive,

shift left, bringing 0s into bit 35; data shifted out of bit 1 is lost; set Trap 1 and Over
ow if any bit

of signi�cance is lost (a 1 in a positive number, a 0 in a negative number). If E is negative, shift



2.6. ARITHMETIC TESTING 97

right, bringing 0s into bit 1 if AC is positive, 1s if negative; data shifted out of bit 35 is lost.

36

0 12 1314 1718 35

I X Y

8 9

A

ASHC Arithmetic Shift Combined

244

Shift AC,AC+1 arithmetically the number of places speci�ed by E . Do not shift bit 0 of AC or

AC+1, but make bit 0 of AC+1 equal to AC bit 0 if at least one shift occurs (i.e., if E is non{zero).

If E is positive, shift left, bringing 0s into bit 71 (bit 35 of AC+1); bit 37 (bit 1 of AC+1) is shifted

into bit 35; data shifted out of bit 1 is lost; set Trap 1 and Over
ow if any bit of signi�cance is lost

(a 1 in a positive number, a 0 in a negative number). If E is negative, shift right, bringing 0s into

bit 1 if AC is positive, 1s if negative; bit 35 is shifted into bit 37; data shifted out of bit 71 is lost.

36

Note: The e�ect of a shift on bit 0 of the low{order word is consistent with the convention used for

double{length �xed{point numbers. When there is no shift, however, the result may be inconsistent

with that convention.

2.6 Arithmetic Testing

These instructions may jump or skip depending on the result of an arithmetic test and may �rst

perform an arithmetic operation on the test word.

2.6.1 Add One to Both Halves of AC and Jump

These two instructions have no modes:

0 12 1314 1718 35

I X Y

8 9

A

AOBJP Add One to Both Halves of AC and Jump if Positive

252

Add 1 to each half of AC

37

and place the result back in AC. If the result is greater than or equal

to zero (i.e., if bit 0 is 0, and hence a negative count in the left half has reached zero or a positive

count has not yet reached 2

17

), take the next instruction from location E and continue sequential

operation from there.

36

An arithmetic right shift truncates a negative result di�erently from IDIV if 1s are shifted out. The result of the

shift is more negative by 1 than the quotient of IDIV. Hence shifting �1 (all 1s) gives �1 as a result.

To obtain the same quotient that IDIV would give with a dividend in A divided by N = 2

K

, use

SKIPGE A

ADDI A,N-1

ASH A,-K

37

In the KA10, incrementing both halves of AC together is e�ected by adding 1000001

8

. A count of �2 in AC left

is therefore increased to zero if 2

18

� 1 is incremented in AC right.



98 CHAPTER 2. USER OPERATIONS

0 12 1314 1718 35

I X Y

8 9

A

AOBJN Add One to Both Halves of AC and Jump if Negative

253

Add 1 to each half of AC

37

and place the result back in AC. If the result is less than zero (i.e., if

bit 0 is 1, and hence a negative count in the left half has not yet reached zero or a positive count

has reached 2

17

), take the next instruction from location E and continue sequential operation from

there.

These two instructions allow the program to keep a control count in the left half of an index register

and require only one data transfer to initialize. Problem: Add 3 to each location in a table of N

entries starting at TAB. Only four instructions are required.

MOVSI XR,-N ;Put �N in XR left (clear XR right)

MOVEI AC,3 ;Put 3 in AC

ADDM AC,TAB(XR) ;Add 3 to entry

AOBJN XR,.-1 ;Update XR and go back unless all

;entries have been accounted for

Note that, even with extended addressing, AOBJN and AOBJP can be used for this sort of local

indexing, because the left half being negative or zero satis�es the criterion for a local index.

2.6.2 Comparisons, Skips, and Jumps

The eight remaining instructions jump or skip if the operand or operands satisfy a test condition

speci�ed by the mode.

Mode Su�x

Never

Less L

Equal E

Less or Equal LE

Always A

Greater or Equal GE

Not Equal N

Greater G

0 12 1314 1718 35

I X Y

8 9

A

CAI Compare AC Immediate and Skip if Condition Satis�ed

30
M

5 6

Compare AC with E (i.e., with the word 0,E ) and skip the next instruction in sequence if the

condition speci�ed by M is satis�ed.



2.6. ARITHMETIC TESTING 99

CAI Compare AC Immediate and Do Not Skip 300

CAIL Compare AC Immediate and Skip if AC less than E 301

CAIE Compare AC Immediate and Skip if Equal 302

CAILE Compare AC Immediate and Skip if AC less than or Equal to E 303

CAIA Compare AC Immediate and Always Skip 304

CAIGE Compare AC Immediate and Skip if AC Greater than or Equal to E 305

CAIN Compare AC Immediate and Skip if Not Equal 306

CAIG Compare AC Immediate and Skip if AC Greater than E 307

Note: CAI is a no{op in which I , X , and Y are available for software use.

0 12 1314 1718 35

I X Y

8 9

A

CAM Compare AC with Memory and Skip if Condition Satis�ed

31 M

5 6

Compare AC with the contents of location E and skip the next instruction in sequence if the condition

speci�ed by M is satis�ed. The pair of numbers compared may be either both �xed{point or both

normalized 
oating{point.

CAM Compare AC with Memory but Do Not Skip 310

CAML Compare AC with Memory and Skip if AC Less 311

CAME Compare AC with Memory and Skip if Equal 312

CAMLE Compare AC with Memory and Skip if AC Less or Equal 313

CAMA Compare AC with Memory but Always Skip 314

CAMGE Compare AC with Memory and Skip if AC Greater or Equal 315

CAMN Compare AC with Memory and Skip if Not Equal 316

CAMG Compare AC with Memory and Skip if AC Greater 317

Note: CAM is a no{op that references memory.

0 12 1314 1718 35

I X Y

8 9

A

JUMP Jump if AC Condition Satis�ed

32
M

5 6

Compare AC (�xed or 
oating) with zero and, if the condition speci�ed by M is satis�ed, take the

next instruction from location E and continue sequential operation from there.



100 CHAPTER 2. USER OPERATIONS

JUMP Do Not Jump 320

JUMPL Jump if AC Less than Zero 321

JUMPE Jump if AC Equal to Zero 322

JUMPLE Jump if AC Less than or Equal to Zero 323

JUMPA Jump Always 324

JUMPGE Jump if AC Greater than or Equal to Zero 325

JUMPN Jump if AC Not Equal to Zero 326

JUMPG Jump if AC Greater than Zero 327

Notes: JUMP is a no{op (instruction code 320 has this mnemonic for symmetry). In it, A, I , X ,

and Y are available for software use. User programs in TOPS{20 employ JUMP 16, (i.e., JUMP

with A set to 16, also known as ERJMP) and JUMP 17, (ERCAL) following system calls to e�ect

error handling.

For an unconditional transfer, JRST is preferred to JUMPA.

0 12 1314 1718 35

I X Y

8 9

A

SKIP Skip if Memory Condition Satis�ed

33
M

5 6

Compare the contents (�xed or 
oating) of location E with zero and skip the next instruction in

sequence if the condition speci�ed by M is satis�ed. If A is non{zero, also place the contents of

location E in AC.

SKIP Do Not Skip, but read Memory 330

SKIPL Skip if Memory Less than Zero 331

SKIPE Skip if Memory Equal to Zero 332

SKIPLE Skip if Memory Less than or Equal to Zero 333

SKIPA Skip Always 334

SKIPGE Skip if Memory Greater than or Equal to Zero 335

SKIPN Skip if Memory Not Equal to Zero 336

SKIPG Skip if Memory Greater than Zero 337

Notes: If A is zero, SKIP reads memory and discards the data: this resembles a no{op, because

it neither changes memory nor changes the accumulators. The fact that SKIP reads memory is

used by operating system code to reference a memory location to be sure that it exists and is

accessible. When A is not zero, SKIP has the same e�ect as MOVE; MOVE is preferred. SKIPA is a

convenient way to load an accumulator (other than accumulator zero) and skip over an instruction

upon entering a loop. For unconditional skips that do not load the accumulator, TRNA is faster

than SKIPA, because the former does not read memory (but a JRST is faster than any skip).

0 12 1314 1718 35

I X Y

8 9

A

AOJ Add One to AC and Jump if Condition Satis�ed

34 M

5 6



2.6. ARITHMETIC TESTING 101

Increment AC by 1 and place the result back in AC. Compare the result with zero and, if the con-

dition speci�ed by M is satis�ed, take the next instruction from location E and continue sequential

operation from there. If AC originally contained 2

35

� 1, set Trap 1, Over
ow, and Carry 1; if AC

originally contained �1, set Carry 0 and Carry 1.

AOJ Add One to AC but Do Not Jump 340

AOJL Add One to AC and Jump if Less than Zero 341

AOJE Add One to AC and Jump if Equal to Zero 342

AOJLE Add One to AC and Jump if Less than or Equal to Zero 343

AOJA Add One to AC and Jump Always 344

AOJGE Add One to AC and Jump if Greater than or Equal to Zero 345

AOJN Add One to AC and Jump if Not Equal to Zero 346

AOJG Add One to AC and Jump if Greater than Zero 347

0 12 1314 1718 35

I X Y

8 9

A

AOS Add One to Memory and Skip if Condition Satis�ed

35 M

5 6

Increment the contents of location E by 1 and place the result back in E . If A is non{zero, also

place the result in AC. Compare the result with zero and skip the next instruction in sequence if the

condition speci�ed byM is satis�ed. If location E originally contained 2

35

�1, set Trap 1, Over
ow,

and Carry 1; if location E originally contained �1, set Carry 0 and Carry 1.

AOS Add One to Memory but Do Not Skip 350

AOSL Add One to Memory and Skip if Less than Zero 351

AOSE Add One to Memory and Skip if Equal to Zero 352

AOSLE Add One to Memory and Skip if Less than or Equal to Zero 353

AOSA Add One to Memory and Skip Always 354

AOSGE Add One to Memory and Skip if Greater than or Equal to Zero 355

AOSN Add One to Memory and Skip if Not Equal to Zero 356

AOSG Add One to Memory and Skip if Greater than Zero 357

0 12 1314 1718 35

I X Y

8 9

A

SOJ Subtract One from AC and Jump if Condition Satis�ed

36
M

5 6

Decrement AC by 1 and place the result back in AC. Compare the result with zero and, if the con-

dition speci�ed by M is satis�ed, take the next instruction from location E and continue sequential

operation from there. If AC originally contained �2

35

, set Trap 1, Over
ow, and Carry 0; if AC

originally contained any other non{zero number, set Carry 0 and Carry 1.



102 CHAPTER 2. USER OPERATIONS

SOJ Subtract One from AC but Do Not Jump 360

SOJL Subtract One from AC and Jump if Less than Zero 361

SOJE Subtract One from AC and Jump if Equal to Zero 362

SOJLE Subtract One from AC and Jump if Less than or Equal to Zero 363

SOJA Subtract One from AC and Jump Always 364

SOJGE Subtract One from AC and Jump if Greater than or Equal to Zero 365

SOJN Subtract One from AC and Jump if Not Equal to Zero 366

SOJG Subtract One from AC and Jump if Greater than Zero 367

0 12 1314 1718 35

I X Y

8 9

A

SOS Subtract One from Memory and Skip if Condition Satis�ed

37
M

5 6

Decrement the contents of location E by 1 and place the result back in E . If A is non{zero, also

place the result in AC. Compare the result with zero and skip the next instruction in sequence if the

condition speci�ed by M is satis�ed. If location E originally contained �2

35

, set Trap 1, Over
ow,

and Carry 0; if location E originally contained any other non{zero number, set Carry 0 and Carry

1.

SOS Subtract One from Memory but Do Not Skip 370

SOSL Subtract One from Memory and Skip if Less than Zero 371

SOSE Subtract One from Memory and Skip if Equal to Zero 372

SOSLE Subtract One from Memory and Skip if Less than or Equal to Zero 373

SOSA Subtract One from Memory and Skip Always 374

SOSGE Subtract One from Memory and Skip if Greater than or Equal to Zero 375

SOSN Subtract One from Memory and Skip if Not Equal to Zero 376

SOSG Subtract One from Memory and Skip if Greater than Zero 377

Some of these instructions are useful for determining the relative values of �xed{ and 
oating{point

numbers; others are convenient for controlling iterative processes by counting. AOSE is especially

useful in an interlock procedure in a multiprogramming environment. Suppose memory contains a

routine that must be available to two processes but cannot be used by both at once. When one

process �nishes the routine, it sets location LOCK to �1. Either process can then test the interlock

and make it busy with no possibility of letting the other one in, as AOSE cannot be interrupted once

it starts to modify the addressed location.

AOSE LOCK ;Skip to interlocked code only if

JRST .-1 ;LOCK is zero after addition

. ;Interlocked code starts here

.

.

SETOM LOCK ;Unlock



2.7. LOGICAL TESTING AND MODIFICATION 103

Since it takes a long time to count to 2

36

, it is all right to keep testing the lock. (Note: this procedure

is not suitable where multiple processors may be sharing the lock.)

There are no comparison instructions for double word comparands. For testing the sign of a normal-

ized, double{precision 
oating point number, SKIPx or JUMPx can be applied to just the �rst word

of the operand. To make other comparisons, the CAMx instructions can be combined, as shown in

the example that follows. The ACs identi�ed as T1 and T2 are consecutive. This example is a bit

subtle; the reader is encouraged to follow the logic of the nested comparisons.

DMOVE T1,X ;Copy X (and X+1) to T1 and T2

CAMN T1,Y ;Compare the top parts of X and Y

CAMLE T2,Y+1 ;Tops are equal. Test low parts of X and Y

CAMGE T1,Y ;

JRST ... ;Here if X,X+1 is less than or equal to Y,Y+1

... ;Here if X,X+1 is greater than Y,Y+1

2.7 Logical Testing and Modi�cation

These sixteen instructions (each with four modes) use a mask (a word or half word of bits) to modify

and/or test selected bits in AC. The selected bits are the bits in AC that correspond to 1s in the

mask; these are called the \masked bits". The programmer chooses the mask, the way in which the

masked bits are to be modi�ed, and the condition that the masked bits must satisfy (prior to being

modi�ed) to produce a skip.

The basic mnemonics are three letters beginning with \T". The second letter selects the mask and

the manner in which it is used:

Mask Letter E�ect

Right R AC right is masked by E (AC is masked by the word 0; E)

Left L AC left is masked by E (AC is masked by the word E; 0)

Direct D AC is masked by the contents of location E

Swapped S AC is masked by the contents of location E with left and right halves

interchanged

The third letter determines the way in which those bits selected by the mask are modi�ed:

Modi�cation Letter E�ect on AC

No N None

Zeros Z Places 0s in all masked bit positions

Complement C Complements all masked bits

Ones O Places 1s in all masked bit positions



104 CHAPTER 2. USER OPERATIONS

An additional letter may be appended to indicate the mode, which speci�es the condition the masked

bits must satisfy (prior to being modi�ed) to produce a skip.

Mode Su�x E�ect

Never Never skip

Equal E Skip if all masked bits equal 0

Always A Always Skip

Not Equal N Skip if not all masked bits equal 0 (at least one bit is 1)

The mode names are consistent with those for arithmetic testing and derive from the test method,

which ANDs AC with the mask and tests whether the result is equal to zero or is not equal to zero.

The programmer may �nd it convenient to think of the modes as `Every' and `Not Every': every

masked bit is 0 or not every masked bit is 0. If the mnemonic has no su�x, there is never a skip;

the instruction is a no{op if there is also no modi�cation. An \A" su�x produces an unconditional

skip|the skip always occurs regardless of the state of the masked bits. The decision to skip (or not)

is based on the state of the masked bits prior to any modi�cation called for by the instruction.

0 12 1314 1718 35

I X Y

8 9

A

TRN Test Right, No Modi�cation, and Skip if Condition Satis�ed

60
M

0

5 6 7

If the bits in AC right corresponding to 1s in E satisfy the condition speci�ed by M , skip the next

instruction in sequence. AC is una�ected.

TRN Test Right, No Modi�cation, but Do Not Skip 600

TRNE Test Right, No Modi�cation, and Skip if All Masked Bits Equal 0 602

TRNA Test Right, No Modi�cation, but Always Skip 604

TRNN Test Right, No Modi�cation, and Skip if Not All Masked Bits Equal 0 606

Note: TRN is a no{op in which I , X , and Y are reserved and should be zero. (At present E is

ignored.)

0 12 1314 1718 35

I X Y

8 9

A

TRZ Test Right, Zeros, and Skip if Condition Satis�ed

62 M 0

5 6 7

If the bits in AC right corresponding to 1s in E satisfy the condition speci�ed by M , skip the next

instruction in sequence. Change the masked AC bits to 0s; the rest of AC is una�ected.



2.7. LOGICAL TESTING AND MODIFICATION 105

TRZ Test Right, Zeros, but Do Not Skip 620

TRZE Test Right, Zeros, and Skip if All Masked Bits Equaled 0 622

TRZA Test Right, Zeros, but Always Skip 624

TRZN Test Right, Zeros, and Skip if Not All Masked Bits Equaled 0 626

0 12 1314 1718 35

I X Y

8 9

A

TRC Test Right, Complement, and Skip if Condition Satis�ed

64 M 0

5 6 7

If the bits in AC right corresponding to 1s in E satisfy the condition speci�ed by M , skip the next

instruction in sequence. Complement the masked AC bits; the rest of AC is una�ected.

TRC Test Right, Complement, but Do Not Skip 640

TRCE Test Right, Complement, and Skip if All Masked Bits Equaled 0 642

TRCA Test Right, Complement, but Always Skip 644

TRCN Test Right, Complement, and Skip if Not All Masked Bits Equaled 0 646

0 12 1314 1718 35

I X Y

8 9

A

TRO Test Right, Ones, and Skip if Condition Satis�ed

66
M

0

5 6 7

If the bits in AC right corresponding to 1s in E satisfy the condition speci�ed by M , skip the next

instruction in sequence. Change the masked AC bits to 1s; the rest of AC is una�ected.

TRO Test Right, Ones, but Do Not Skip 660

TROE Test Right, Ones, and Skip if All Masked Bits Equaled 0 662

TROA Test Right, Ones, but Always Skip 664

TRON Test Right, Ones, and Skip if Not All Masked Bits Equaled 0 662

0 12 1314 1718 35

I X Y

8 9

A

TLN Test Left, No Modi�cation, and Skip if Condition Satis�ed

60
M

1

5 6 7

If the bits in AC left corresponding to 1s in E satisfy the condition speci�ed by M , skip the next

instruction in sequence. AC is una�ected.



106 CHAPTER 2. USER OPERATIONS

TLN Test Left, No Modi�cation, but Do Not Skip 601

TLNE Test Left, No Modi�cation, and Skip if All Masked Bits Equal 0 603

TLNA Test Left, No Modi�cation, but Always Skip 605

TLNN Test Left, No Modi�cation, and Skip if Not All Masked Bits Equal 0 607

Note: TLN is a no{op in which I , X , and Y are reserved and should be zero. (At present E is

ignored.)

0 12 1314 1718 35

I X Y

8 9

A

TLZ Test Left, Zeros and Skip if Condition Satis�ed

62
M

1

5 6 7

If the bits in AC left corresponding to 1s in E satisfy the condition speci�ed by M , skip the next

instruction in sequence. Change the masked AC bits to 0s; the rest of AC is una�ected.

TLZ Test Left, Zeros, but Do Not Skip 621

TLZE Test Left, Zeros, and Skip if All Masked Bits Equaled 0 623

TLZA Test Left, Zeros, but Always Skip 625

TLZN Test Left, Zeros, and Skip if Not All Masked Bits Equaled 0 627

0 12 1314 1718 35

I X Y

8 9

A

TLC Test Left, Complement, and Skip if Condition Satis�ed

64
M

1

5 6 7

If the bits in AC left corresponding to 1s in E satisfy the condition speci�ed by M , skip the next

instruction in sequence. Complement the masked AC bits; the rest of AC is una�ected.

TLC Test Left, Complement, but Do Not Skip 641

TLCE Test Left, Complement, and Skip if All Masked Bits Equaled 0 643

TLCA Test Left, Complement, but Always Skip 645

TLCN Test Left, Complement, and Skip if Not All Masked Bits Equaled 0 647

0 12 1314 1718 35

I X Y

8 9

A

TLO Test Left, Ones, and Skip if Condition Satis�ed

66
M

1

5 6 7

If the bits in AC left corresponding to 1s in E satisfy the condition speci�ed by M , skip the next

instruction in sequence. Change the masked AC bits to 1s; the rest of AC is una�ected.



2.7. LOGICAL TESTING AND MODIFICATION 107

TLO Test Left, Ones, but Do Not Skip 661

TLOE Test Left, Ones, and Skip if All Masked Bits Equaled 0 663

TLOA Test Left, Ones, but Always Skip 665

TLON Test Left, Ones, and Skip if Not All Masked Bits Equaled 0 667

0 12 1314 1718 35

I X Y

8 9

A

TDN Test Direct, No Modi�cation, and Skip if Condition Satis�ed

61 M 0

5 6 7

If the bits in AC corresponding to 1s in the contents of location E satisfy the condition speci�ed by

M , skip the next instruction in sequence. AC is una�ected.

TDN Test Direct, No Modi�cation, but Do Not Skip 610

TDNE Test Direct, No Modi�cation, and Skip if All Masked Bits Equal 0 612

TDNA Test Direct, No Modi�cation, but Always Skip 614

TDNN Test Direct, No Modi�cation, and Skip if Not All Masked Bits Equal 0 616

Note: TDN has no overt e�ect on the contents of memory, the accumulators, or the 
ow of control;

thus, in the usual sense, it is a no{op. However, TDN does perform a memory read operation, with

all attendant, implementation{dependent, side e�ects.

0 12 1314 1718 35

I X Y

8 9

A

TDZ Test Direct, Zeros, and Skip if Condition Satis�ed

63 M 0

5 6 7

If the bits in AC corresponding to 1s in the contents of location E satisfy the condition speci�ed

by M , skip the next instruction in sequence. Change the masked AC bits to 0s; the rest of AC is

una�ected.

TDZ Test Direct, Zeros, but Do Not Skip 630

TDZE Test Direct, Zeros, and Skip if All Masked Bits Equaled 0 632

TDZA Test Direct, Zeros, but Always Skip 634

TDZN Test Direct, Zeros, and Skip if Not All Masked Bits Equaled 0 636

0 12 1314 1718 35

I X Y

8 9

A

TDC Test Direct, Complement, and skip if Condition satis�ed

65
M

0

5 6 7

If the bits in AC corresponding to 1s in the contents of location E satisfy the condition speci�ed

by M , skip the next instruction in sequence. Complement the masked AC bits; the rest of AC is



108 CHAPTER 2. USER OPERATIONS

una�ected.

TDC Test Direct, Complement, but Do Not Skip 650

TDCE Test Direct, Complement, and Skip if All Masked Bits Equaled 0 652

TDCA Test Direct, Complement, but Always Skip 654

TDCN Test Direct, Complement, and Skip if Not All Masked Bits Equaled 0 656

0 12 1314 1718 35

I X Y

8 9

A

TDO Test Direct, Ones, and skip if Condition satis�ed

67
M

0

5 6 7

If the bits in AC corresponding to 1s in the contents of location E satisfy the condition speci�ed

by M , skip the next instruction in sequence. Change the masked AC bits to 1s; the rest of AC is

una�ected.

TDO Test Direct, Ones, but Do Not Skip 670

TDOE Test Direct, Ones, and Skip if All Masked Bits Equaled 0 672

TDOA Test Direct, Ones, but Always Skip 674

TDON Test Direct, Ones, and Skip if Not All Masked Bits Equaled 0 676

0 12 1314 1718 35

I X Y

8 9

A

TSN Test Swapped, No Modi�cation, and Skip if Condition Satis�ed

61
M

1

5 6 7

If the bits in AC corresponding to 1s in the contents of location E with its left and right halves

swapped satisfy the condition speci�ed byM , skip the next instruction in sequence. AC is una�ected.

TSN Test Swapped, No Modi�cation, but Do Not Skip 611

TSNE Test Swapped, No Modi�cation, and Skip if All Masked Bits Equal 0 613

TSNA Test Swapped, No Modi�cation, but Always Skip 615

TSNN Test Swapped, No Modi�cation, and Skip if Not All Masked Bits Equal 0 617

Note: TSN is a no{op, in the sense that it has no overt e�ect. However, it reads memory, with any

attendant side e�ects.

0 12 1314 1718 35

I X Y

8 9

A

TSZ Test Swapped, Zeros, and Skip if Condition Satis�ed

63 M 1

5 6 7

If the bits in AC corresponding to 1s in the contents of location E with its left and right halves

swapped satisfy the condition speci�ed by M , skip the next instruction in sequence. Change the



2.7. LOGICAL TESTING AND MODIFICATION 109

masked AC bits to 0s; the rest of AC is una�ected.

TSZ Test Swapped, Zeros, but Do Not Skip 631

TSZE Test Swapped, Zeros, and Skip if All Masked Bits Equaled 0 633

TSZA Test Swapped, Zeros, but Always Skip 635

TSZN Test Swapped, Zeros, and Skip if Not All Masked Bits Equaled 0 637

0 12 1314 1718 35

I X Y

8 9

A

TSC Test Swapped, Complement, and Skip if Condition Satis�ed

65
M

1

5 6 7

If the bits in AC corresponding to 1s in the contents of location E with its left and right halves

swapped satisfy the condition speci�ed by M , skip the next instruction in sequence. Complement

the masked AC bits; the rest of AC is una�ected.

TSC Test Swapped, Complement, but Do Not Skip 651

TSCE Test Swapped, Complement, and Skip if All Masked Bits Equaled 0 653

TSCA Test Swapped, Complement, but Always Skip 655

TSCN Test Swapped, Complement, and Skip if Not All Masked Bits Equaled 0 657

0 12 1314 1718 35

I X Y

8 9

A

TSO Test Swapped, Ones, and Skip if Condition Satis�ed

67 M 1

5 6 7

If the bits in AC corresponding to 1s in the contents of location E with its left and right halves

swapped satisfy the condition speci�ed by M , skip the next instruction in sequence. Change the

masked AC bits to 1s; the rest of AC is una�ected.

TSO Test Swapped, Ones, but Do Not Skip 671

TSOE Test Swapped, Ones, and Skip if All Masked Bits Equaled 0 673

TSOA Test Swapped, Ones, but Always Skip 675

TSON Test Swapped, Ones, and Skip if Not All Masked Bits Equaled 0 677

With these instructions, any bit throughout all of memory can be used as a program 
ag, although

an ordinary memory location containing 
ags must be moved to an accumulator for testing or

modi�cation. The usual procedure, since locations 1{17 are addressable as index registers, is to use

AC 0 as a register of 
ags (often addressed symbolically as F).

Unless one frequently tests 
ags in both halves of F simultaneously, it is generally most convenient

to select bits by 1s in the address part of the instruction word. A given bit selected by a half{word



110 CHAPTER 2. USER OPERATIONS

mask M is then set by one of these:

TRO F,M TLO F,M

and tested and cleared by one of these:

TRZE F,M TRZN F,M TLZE F,M TLZN F,M

Suppose one wishes to skip if both bits 34 and 35 are 1 in location L. The following su�ces.

SETCM F,L

TRNE F,3

One can refer to a 
ag in a given bit position within a word as 
ag X , where X is a binary number

containing a single 1 in the same bit position as the 
ag. This sequence determines whether 
ags X

and Y in the right half of accumulator F are both on:

TRC F,X+Y ;Complement flags X and Y

TRCE F,X+Y ;Test both and restore states

... ;Do this if not both on

... ;Skip to here if both on

One occasionally sees a subroutine with two entry points to identify two versions of a similar function.

The versions are distinguished by setting or clearing a 
ag, as for example:

LABEL1: TDZA AC,AC ;Set the flag (all of AC) to 0 & skip

LABEL2: MOVEI AC,1 ;Set the entry flag to 1

...

2.8 Half{Word Data Transmission

These instructions move a half word and may modify the contents of the other half of the destination

location. There are sixteen instructions; however, in a non{zero section, the immediate mode of

one of them acts in a special way and is treated as a separate instruction. The sixteen forms are

distinguished by which half of the source word is moved to which half of the destination and by which

of four possible operations is performed on the other half of the destination. The basic mnemonics

are three letters that indicate the transfer,



2.8. HALF{WORD DATA TRANSMISSION 111

HLL Left half of source to left half of destination

HRL Right half of source to left half of destination

HRR Right half of source to right half of destination

HLR Left half of source to right half of destination

plus a fourth, if necessary, to indicate the operation:

Operation Su�x E�ect on Other Half of Destination

Do nothing None

Zeros Z Places 0s in all bits of the other half

Ones O Places 1s in all bits of the other half

Extend E Places the sign (the leftmost bit) of the half word moved in all bits of

the other half. This action extends a right half{word number into a

full{word number but is valid arithmetically only for positive left half{

word numbers: the right extension of a number requires 0s regardless

of sign. (Hence, the Zeros operation should be used to extend a left

half{word number.)

An additional letter may be appended to indicate the mode, which determines the source and

destination of the half word moved:

Mode Su�x Source Destination

Basic E AC

Immediate I The word 0; E

?

AC

Memory M AC E

Self S E E, but full word result also goes to AC if A is non{zero

?

In section zero, the immediate source is 0; E in all cases, and selecting the left half of the source

clears the selected half of the destination. However, in a non{zero section, the immediate left{to{

left transfer (XHLLI) instead uses the entire extended e�ective{address E as the source, and it thus

transfers the section number (E

L

).

0 12 1314 1718 35

I X Y

8 9

A

HLL Half Word Left to Left

500
M

6 7

Move the left half of the source word speci�ed by M to the left half of the speci�ed destination. The

source and the destination right half are una�ected; the original contents of the destination left half

are lost.



112 CHAPTER 2. USER OPERATIONS

HLL Half Left to Left 500

HLLI Half Left to Left Immediate 501

HLLM Half Left to Left Memory 502

HLLS Half Left to Left Self 503

If the program is running in a non{zero section, the instruction HLLI is called XHLLI (see below),

which performs an analogous function with an extended{immediate operand (e�ective{address).

Notes: In section zero, HLLI clears AC left. If A is zero, HLLS is a no{op; otherwise, it is equivalent

to MOVE.

0 12 1314 1718 35

I X Y

8 9

A

HLLZ Half Word Left to Left, Zeros

510
M

6 7

Move the left half of the source word speci�ed by M to the left half of the speci�ed destination and

clear the destination right half. The source is una�ected; the original contents of the destination are

lost.

HLLZ Half Left to Left, Zeros 510

HLLZI Half Left to Left, Zeros, Immediate 511

HLLZM Half Left to Left, Zeros, Memory 512

HLLZS Half Left to Left, Zeros, Self 513

Notes: HLLZI clears AC. If A is zero, HLLZS clears the right half of location E .

0 12 1314 1718 35

I X Y

8 9

A

HLLO Half Word Left to Left, Ones

520
M

6 7

Move the left half of the source word speci�ed by M to the left half of the speci�ed destination

and set the destination right half to all 1s. The source is una�ected; the original contents of the

destination are lost.

HLLO Half Left to Left, Ones 520

HLLOI Half Left to Left, Ones, Immediate 521

HLLOM Half Left to Left, Ones, Memory 522

HLLOS Half Left to Left, Ones, Self 523

Note: HLLOI sets AC to all 0s in the left half, all 1s in the right.



2.8. HALF{WORD DATA TRANSMISSION 113

0 12 1314 1718 35

I X Y

8 9

A

HLLE Half Word Left to Left, Extend

530
M

6 7

Move the left half of the source word speci�ed by M to the left half of the speci�ed destination and

make all bits in the destination right half equal to bit 0 of the source. The source is una�ected; the

original contents of the destination are lost.

HLLE Half Left to Left, Extend 530

HLLEI Half Left to Left, Extend, Immediate 531

HLLEM Half Left to Left, Extend, Memory 532

HLLES Half Left to Left, Extend, Self 533

Note: HLLEI is equivalent to HLLZI; it clears AC.

0 12 1314 1718 35

I X Y

8 9

A

HRL Half Word Right to Left

504
M

6 7

Move the right half of the source word speci�ed by M to the left half of the speci�ed destination.

The source and the destination right half are una�ected; the original contents of the destination left

half are lost.

HRL Half Right to Left 504

HRLI Half Right to Left Immediate 505

HRLM Half Right to Left Memory 506

HRLS Half Right to Left Self 507

0 12 1314 1718 35

I X Y

8 9

A

HRLZ Half Word Right to Left, Zeros

514
M

6 7

Move the right half of the source word speci�ed by M to the left half of the speci�ed destination and

clear the destination right half. The source is una�ected; the original contents of the destination are

lost.

HRLZ Half Right to Left, Zeros 514

HRLZI Half Right to Left, Zeros, Immediate 515

HRLZM Half Right to Left, Zeros, Memory 516

HRLZS Ha1f Right to Left, Zeros, Self 517



114 CHAPTER 2. USER OPERATIONS

Note: HRLZI loads the word E ,0 into AC and is thus equivalent to MOVSI.

0 12 1314 1718 35

I X Y

8 9

A

HRLO Half Word Right to Left, Ones

524
M

6 7

Move the right half of the source word speci�ed by M to the left half of the speci�ed destination

and set the destination right half to all 1s. The source is una�ected; the original contents of the

destination are lost.

HRLO Half Right to Left, Ones 524

HRLOI Half Right to Left, Ones, Immediate 525

HRLOM Half Right to Left, Ones, Memory 526

HRLOS Half Right to Left, Ones, Self 527

0 12 1314 1718 35

I X Y

8 9

A

HRLE Half Word Right to Left, Extend

534
M

6 7

Move the right half of the source word speci�ed by M to the left half of the speci�ed destination

and make all bits in the destination right half equal to bit 18 of the source. The source is una�ected;

the original contents of the destination are lost.

HRLE Half Right to Left, Extend 534

HRLEI Half Right to Left, Extend, Immediate 535

HRLEM Half Right to Left, Extend, Memory 536

HRLES Half Right to Left, Extend, Self 537

0 12 1314 1718 35

I X Y

8 9

A

HRR Half Word Right to Right

540
M

6 7

Move the right half of the source word speci�ed by M to the right half of the speci�ed destination.

The source and the destination left half are una�ected; the original contents of the destination right

half are lost.

HRR Half Right to Right 540

HRRI Half Right to Right Immediate 541

HRRM Half Right to Right Memory 542

HRRS Half Right to Right Self 543



2.8. HALF{WORD DATA TRANSMISSION 115

Note: If A is zero, HRRS is a no{op (that writes in memory); otherwise, it is equivalent to MOVE.

0 12 1314 1718 35

I X Y

8 9

A

HRRZ Half Word Right to Right, Zeros

550 M

6 7

Move the right half of the source word speci�ed by M to the right half of the speci�ed destination

and clear the destination left half. The source is una�ected; the original contents of the destination

are lost.

HRRZ Half Right to Right, Zeros 550

HRRZI Half Right to Right, Zeros, Immediate 551

HRRZM Half Right to Right, Zeros, Memory 552

HRRZS Half Right to Right, Zeros, Self 553

Notes: HRRZI loads the word 0; E into AC and is thus equivalent to MOVEI and to SETMI in section

zero. If A is zero, HRRZS clears the left half of location E .

0 12 1314 1718 35

I X Y

8 9

A

HRRO Half Word Right to Right, One

560
M

6 7

Move the right half of the source word speci�ed by M to the right half of the speci�ed destination

and set the destination left half to all 1s. The source is una�ected; the original contents of the

destination are lost.

HRRO Half Right to Right, Ones 560

HRROI Half Right to Right, Ones, Immediate 561

HRROM Half Right to Right, Ones, Memory 562

HRROS Half Right to Right, Ones, Self 563

0 12 1314 1718 35

I X Y

8 9

A

HRRE Half Word Right to Right, Extend

570
M

6 7

Move the right half of the source word speci�ed by M to the right half of the speci�ed destination

and make all bits in the destination left half equal to bit 18 of the source. The source is una�ected;

the original contents of the destination are lost.



116 CHAPTER 2. USER OPERATIONS

HRRE Half Right to Right, Extend 570

HRREI Half Right to Right, Extend, Immediate 571

HRREM Half Right to Right, Extend, Memory 572

HRRES Half Right to Right, Extend, Self 573

0 12 1314 1718 35

I X Y

8 9

A

HLR Half Word Left to Right

544 M

6 7

Move the left half of the source word speci�ed by M to the right half of the speci�ed destination.

The source and the destination left half are una�ected; the original contents of the destination right

half are lost.

HLR Half Left to Right 544

HLRl Half Left to Right Immediate 545

HLRM Half Left to Right Memory 546

HLRS Half Left to Right Self 547

Note: HLRI clears AC right.

0 12 1314 1718 35

I X Y

8 9

A

HLRZ Half Word Left to Right, Zeros

554
M

6 7

Move the left half of the source word speci�ed by M to the right half of the speci�ed destination

and clear the destination left half. The source is una�ected; the original contents of the destination

are lost.

HLRZ Half Left to Right, Zeros 554

HLRZI Half Left to Right, Zeros, Immediate 555

HLRZM Half Left to Right, Zeros, Memory 556

HLRZS Half Left to Right, Zeros, Self 557

Note: HLRZI clears AC and is thus equivalent to HLLZI.

0 12 1314 1718 35

I X Y

8 9

A

HLRO Half Word Left to Right, Ones

564
M

6 7

Move the left half of the source speci�ed by M to the right half of the speci�ed destination and set

the destination left half to all 1s. The source is una�ected; the original contents of the destination



2.8. HALF{WORD DATA TRANSMISSION 117

are lost.

HLRO Half Left to Right, Ones 564

HLROI Half Left to Right, Ones, Immediate 565

HLROM Half Left to Right, Ones, Memory 566

HLROS Half Left to Right, Ones, Self 567

Note: HLROI sets AC to all 1s in the left half, all 0s in the right.

0 12 1314 1718 35

I X Y

8 9

A

HLRE Half Word Left to Right, Extend

574
M

6 7

Move the left half of the source word speci�ed by M to the right half of the speci�ed destination

and make all bits in the destination left half equal to bit 0 of the source. The source is una�ected;

the original contents of the destination are lost.

HLRE Half Left to Right, Extend 574

HLREI Half Left to Right, Extend, Immediate 575

HLREM Half Left to Right, Extend, Memory 576

HLRES Half Left to Right, Extend, Self 577

Note: HRLEI is equivalent to HLRZI; it clears AC.

The half{word transmission instructions are very useful for handling addresses, and they provide a

convenient means of setting up an accumulator whose right half is to be used for indexing while a

control count is kept in the left half. For example, this pair of instructions loads the 18{bit numbers

M and N into the left and right halves, respectively, of accumulator XR.

HRLZI XR,M

HRRI XR,N

It is not necessary to clear the other half of XR when loading the �rst half word. However, any

memory instruction that modi�es the other half is faster than the corresponding instruction that

does not, because the latter must fetch the destination word in order to save half of it. (The di�erence

does not apply to self mode, for here the source and destination are the same.)

Suppose that at some point one wishes to use the two halves of XR independently as operands (taken

as 18{bit positive numbers) for computations. One can begin by moving the left half of XR to the

right half of another accumulator AC and isolating the right half of XR in XR.



118 CHAPTER 2. USER OPERATIONS

HLRZM XR,AC ;Copy XR (left half) to AC (right half)

HLLI XR, ;Clear XR (left half).

2.8.1 Extended Half{Word Left to Left Immediate

The following instruction uses a half{word transfer for inserting the section number that results from

an e�ective{address calculation into the left half of an accumulator.

0 12 1314 1718 35

I X Y

8 9

A

XHLLI Extended Half Word Left to Left Immediate

501

If the program is running in a non{zero section, clear AC bits 0{5 and place the section number (the

left part) of the e�ective{address E in AC bits 6{17. If E is a local AC address, the section number

is 1. AC right is una�ected; the original contents of AC left are lost.

If the program is running in section zero, this instruction is called HLLI, which performs an analogous

function for section zero (it moves a zero section number).

Notes: The section number given for a local AC address is that of a global AC address. Giving

XHLLI with an address 20 or greater without indexing or indirection places the current PC section

number in AC left. Thus, it can be used to determine in what section the program is executing.

2.9 Program Control

A program control instruction is one that in some way a�ects the sequence in which instructions in the

program are performed. Most such instructions are actually described in some other category, such

as the arithmetic and logical testing instructions above or the yet{to{be discussed stack instructions,

UUOs, string{compare instructions, and the condition IO instructions that test device 
ags. The

present section discusses the program 
ags, over
ow trapping, and all program control instructions

that do not belong to some other class. Most of these are speci�cally for handling subroutines.

All but one are jumps, although the exception causes the processor to execute an instruction at

an arbitrary location and may therefore be regarded as a jump with an immediate and automatic

return. All but two of the jumps are unconditional; one exception tests several program 
ags, the

other tests an accumulator.

When an instruction makes the processor leave the normal program sequence to jump to a subroutine

or call the Monitor, it must save information su�cient to allow a later return to the original program.

Such instructions generally save the states of the program 
ags and the location at which the

disruption in the normal sequence occurred. Saving the program position is referred to as \saving

PC," although the quantity actually saved may be the value currently contained in PC or an address

1 greater than that, depending on the circumstances. For example, the same instruction may be

used to call a subroutine in a program or to call a service routine in an interrupt. When a return is



2.9. PROGRAM CONTROL 119

later made using the saved address in the subroutine case, the instruction that saved PC should not

be repeated|the return should be made instead to the instruction following it in normal sequence;

i.e., the instruction at the address 1 greater than that originally in PC. In the interrupt case, on

the other hand, a subsequent return has nothing to do with the instruction that saved PC|the

return should be made to the interrupted instruction, the one PC pointed at when the interrupt

occurred. Both cases are covered in the instruction descriptions by the phrase \save PC," and it is

to be assumed that the address saved is the one appropriate to the situation in which the instruction

is given.

Sometimes regarded as program control, in a somewhat trivial sense, are those instructions that do

nothing. The most commonly used no{op is JFCL, which is described here. Other no{ops are among

the testing and Boolean instructions discussed previously: SETA, SETAI, SETMM, CAI, CAM, JUMP,

TRN, TLN, TDN, and TSN.

38

Of these, SETA, SETAI, CAI, JUMP, TRN, and TLN are preferred,

because they do not use the calculated e�ective{address to reference memory.

2.9.1 The Execute Instruction

This instruction allows the programmer to execute the contents of any memory location as an

instruction without altering the normal program counting sequence to do it.

0 12 1314 1718 35

I X Y

8 9

A

XCT Execute

256

If A is zero or the processor is in user mode or is a KA10, execute the contents of location E (the

\target instruction") as an instruction.

39

Any instruction may be executed, including another XCT.

If an XCT executes a skip instruction, the skip is relative to the location of the XCT (the �rst XCT if

there are several in a chain). If an XCT executes a jump, program 
ow is altered as speci�ed by the

e�ective{address of the jump instruction. If an XCT executes a jump that saves the PC, the saved

PC contains an address 1 greater than the location of the XCT (the �rst XCT if there are several in

a chain).

In an extended processor, if the e�ective{address of the XCT is in a di�erent section than the PC's

section, then the target instruction's e�ective{address computation begins as a local address in the

target instruction's section. For example, if the PC contains an address in section 7 and location

2001234 contains JRST 500 then, when the instruction XCT @[2001234] is performed, the processor

will continue with 2000500 in PC; i.e., the JRST instruction speci�es the local address 500 which is

interpreted as being in the section containing the target instruction.

40

In an extended processor, when an XCT executes a stack instruction that uses a local stack pointer,

38

KA10 instruction codes 247 and 257 are reserved for instructions installed specially for a particular system. They

execute as no{ops when run on a KA10 that contains no special hardware for them, but for program compatibility it

is advised that they not be used regularly as no{ops.

39

Caution : In a private program (concealed or kernel mode) on the KI10, never give an XCT that executes an

instruction in a public page. It does not work.

40

However, when the target instruction traps to the Monitor (because it is an MUUO or JSYS or because of

arithmetic over
ow or stack over
ow), then the fact that the instruction came from a section di�erent than the PC

section is discarded by the hardware. Thus, parameters to JSYS or MUUO functions, if local addresses, are interpreted

being in the PC section.



120 CHAPTER 2. USER OPERATIONS

the stack pointer is interpreted as being in the PC section (rather than being in the section from

which the target instruction was fetched).

In executive mode this instruction performs as stated only when A is zero.

41

Non{zero A results

in a so{called \previous{context XCT" or PXCT, whose rami�cations are far more widespread than

indicated here. PXCT is a very special instruction for the exclusive use of the Monitor, and it is

described in the section on memorymanagement in the system operations chapter for each processor.

2.9.2 Conditional Jumps

0 12 1314 1718 35

I X Y

8 9

A

JFFO Jump if Find First One

243

If AC contains zero, clear AC+1 and go on to the next instruction in sequence. If AC contains a

non{zero value, count the number of leading 0s in it (the number of 0s to the left of the leftmost 1),

and place the count in AC+1. Take the next instruction from location E and continue sequential

operation from there. In either case AC is una�ected; the original contents of AC+1 are lost.

Note: When AC is negative, the second accumulator is cleared, just as it would be if AC were zero.

(But the instruction jumps.)

To left{normalize a positive integer in AC use

JFFO AC,.+1

LSH AC,-1(AC+1)

0 12 1314 1718 35

I X Y

8 9

F

JFCL Jump on Flag and Clear

255

If any 
ag speci�ed by F is set, clear it and take the next instruction from location E , continuing

sequential operation from there. Bits 9{12 are programmed as follows.

Bit Flag Selected by a 1

9 Over
ow

10 Carry 0

11 Carry 1

12 Floating Over
ow

To select one or a combination of these 
ags, the programmer can specify the equivalent of an AC

address that places 1s in the appropriate bits. The Macro assembler recognizes mnemonics for

41

The KA10 lacks previous{context capability. On that processor and in user mode on any processor, A is ignored,

but it is reserved and should be zero.



2.9. PROGRAM CONTROL 121

some of the 13{bit instruction codes (bits 0{12).

JFCL JFCL 0, No{op 25500

JOV JFCL 10, Jump on Over
ow 25540

JCRY0 JFCL 4, Jump on Carry 0 25520

JCRY1 JFCL 2, Jump on Cary 1 25510

JCRY JFCL 6, Jump on Carry 0 or 1 25530

JFOV JFCL 1, Jump on Floating Over
ow 25504

The 
ags tested by JFCL are described in detail in the next section, \Program Flags". This instruc-

tion can be used to clear the selected 
ags by having the jump address point to the next consecutive

location, as in

JFCL 17,.+1

which clears all four 
ags without disrupting the normal program sequence. A JFCL that selects no


ag is often used as a no{op because it neither fetches nor stores an operand; in this case, bits 18{35

of the instruction word can be used to store information.

JFCL is the only jump that can test any of the 
ags. However, it can test only four of them, and

it saves no information for a subsequent return from a subroutine. Hence, it serves as a branch

point for entry into either one of two main paths, which may or may not have a later point in

common. For example, it may test the carry 
ags for the purpose of taking appropriate action in a

multiple{precision �xed{point routine.

2.9.3 Program Flags

When an instruction saves the program 
ags, it loads their states into bits 0{12 of a word as shown

here

Over
ow User

First In{Out Address Floating

Previous Carry Carry Floating Part User Previous Public Failure Trap Trap Under{ No

Context 0 1 Over
ow Done Context Inhibit 2 1 
ow Divide

Public User

0 1 2 3 4 5 6 7 8 9 10 11 12

where the upper part of a double box indicates the 
ag saved in user mode and the lower part

indicates that saved in KL10 and KI10 executive mode. The 
ag listed in the lower part for bit 6

also applies to KS10 and XKL

-

1 processor executive mode; however, because these processors have

no public mode, bit 0 always receives the state of the Over
ow 
ag and bit 7 is not used. The KS10

also lacks a 
ag for bit 8. (In KA10 executive mode, bits 0 and 6 receive the Over
ow state and the

(meaningless) User In{Out state, and bits 7{10 are not used because their 
ags do not exist.)

Where the 
ags are saved (in an accumulator or memory location) and what other information is

saved with them depends on the instruction and the circumstances of its execution. Whenever the


ags are saved, their states are always stored in bits 0{12 of a word in the con�guration shown.

Some instructions when executed in section zero save the 
ags and the in{section part of PC in a



122 CHAPTER 2. USER OPERATIONS

so{called \PC word" like this.

120

Flags

1713

00

3518

In{Section PC

Note that nothing is stored in bits 13{17; when the PC word is addressed indirectly, it can produce

neither indexing nor further indirect addressing. When such instructions are performed in a non{

zero section, they generally save only the extended PC without 
ags. Other instructions, executable

only in the XKL

-

1 processor, the KS10, and the extended KL10, combine the 
ags and the full PC

in what is called a \
ag{PC double word" with this format:

120

Flags

1713

0

3518

Processor{Dependent Information

50

00

356

PC

In a manner analogous to the PC word, nothing is stored in bits 13{17 of the �rst word or in bits

0{5 of the second. Hence, when the second word is addressed indirectly, it is interpreted as global

address{word which produces neither indexing nor further indirect addressing. Note that, if the

second word is used in an index register, it is taken as global or local depending on whether or not

bits 6{17 are zero. Nothing is saved in the right half of the 
ag word except in an extended processor.

In the KL10, if the instruction is in an executive program or an interrupt of an executive program,

bits 31{35 save the previous{context section for that program (see x4.1.5). In the XKL

-

1 processor,

if the instruction is in an executive program, an interrupt, or a trap, bits 18{35 save the context of

the interrupted program: the current and previous accumulator selection and the previous context

section.

Certain instructions can use bits 0{12 of a word to set up the program 
ags to restore them to their

original states following an interruption or to control speci�c situations. Restoration, of course,

assumes the 
ags are being restored from a word in which they were previously saved. When the


ags are saved, the 
ag bits re
ect the states and 
ags appropriate to the current situation. At a

transition from one mode to another, the 
ags saved are those of the mode the processor is leaving,

and the 
ags restored are those for the mode the processor is entering. For example, when the user

calls the Monitor, bit 5 of the 
ag word is set and the User 
ag must be cleared, either automatically

or by a 0 in bit 5 of a restoring 
ag word. Moreover, Over
ow and User In{Out are saved, but the


ag bits used for restoration are adjusted to produce the correct states for the previous{context


ags. No con
ict can result concerning bit 6, because User In{out exists only in user mode, and

Previous Context User exists only in executive mode. On the other hand, although only one 
ag is

ever saved in bit 0, at restoration, bit 0 conditions the states of both Over
ow and Previous Context

Public (if present). The latter is irrelevant in user mode, but the executive programmer must be

aware that, if he wishes to use Over
ow or give a JFCL to test it, its initial state is that assigned to

Previous Context Public rather than that resulting from an arithmetic operation. When a return is

made to an interrupted executive program via a 
ag{PC double word in an extended processor, the

previous{context is restored from the right half of the 
ag word. In the KL10 the previous{context

section is restored from bits 31{35 of the 
ag word. In the XKL

-

1 processor, the the accumulator

selection and previous{context section are restored from bits 18{35 of the 
ag word.

By manipulating the bits used to restore the 
ags, the programmer can set them up in any way

desired, except that the hardware contains interlocks so that a user program cannot clear User or



2.9. PROGRAM CONTROL 123

set User In{Out, and no public program can clear Public for itself. As an example, restoring 
ags

from a word in which a trap 
ag is set will result in an immediate trap.

The following lists the meaning of the information contained in bits 0{12 of a 
ag word at the time the


ags are saved. Bits 0 and 6 are given only for user mode, as the special executive 
ags are relevant

only to the previous{context XCT instruction and are left for the discussion of system operations.

Remember (x2.2) that over
ow is determined directly from the carries, not the carry 
ags, which give

useful information only if no more than one instruction that can set them occurs between clearing

and reading them. The explanations assume the 
ags re
ect normal circumstances|not arbitrary

manipulation. An x in a mnemonic indicates any letter (or none) that may appear in the given

position to specify the mode; e.g., ADDx comprises ADD, ADDI, ADDM, and ADDB.

Bit Meaning of a 1 in the Bit

0 Over
ow { any of the following has occurred and set Trap 1:

� A single instruction has set one of the carry 
ags (bits 1 and 2) without setting the other.

� An ASH or ASHC has left{shifted a 1 out of bit 1 in a positive number or a 0 out of bit

1 in a negative number.

� An MULx has multiplied �2

35

by itself (product 2

70

).

� A DMUL has multiplied �2

70

by itself (product 2

140

).

� An IMULx has multiplied two numbers with product � 2

35

or < �2

35

.

� An FIX, FIXR, GFIX, or GFIXR has fetched an operand with exponent > 35.

� A GDFIX or GDFIXR has fetched an operand with exponent > 70.

� A GFIXR has �xed a number with exponent 35 and fraction � 1� 2

�36

.

� Floating Over
ow has been set (bit 3).

� No Divide has been set (bit 12).

1 Carry 0 { if set without Carry 1 (bit 2) being set, causes Over
ow to be set and indicates that

one of the following has occurred:

� An ADDx has added two negative numbers with sum < �2

35

.

� A DADD has added two negative numbers with sum < �2

70

.

� An SUBx has subtracted a positive number from a negative number with di�erence <

�2

35

.

� A DSUB has subtracted a positive number from a negative number with di�erence < �2

70

.

� An SOJx or SOSx has decremented �2

35

.

If set with Carry 1, indicates that one of these non{over
ow events has occurred:

� In an ADDx or DADD, both addends were negative, or their signs di�ered and their

magnitudes were equal or the positive one was the greater in magnitude.

� In a SUBx or DSUB, the signs of the operands were the same and AC was the greater or

the two were equal, or the signs of the operands di�ered and AC was negative.

� An AOJx or AOSx has incremented �1.

� A SOJx or SOSx has decremented a non{zero number other than �2

35

.



124 CHAPTER 2. USER OPERATIONS

� A MOVNx has negated zero.

� A DMOVN or DMOVNM has negated zero (this condition does not a�ect the 
ags in the

KI10).

2 Carry 1 { if set without Carry 0 (bit 1) being set, causes Over
ow to be set and indicates that

one of the following has occurred:

� An ADDx has added two positive numbers with sum � 2

35

.

� A DADD has added two positive numbers with sum � 2

70

.

� An SUBx has subtracted a negative number from a positive number with di�erence � 2

35

.

� A DSUB has subtracted a negative number from a positive number with di�erence � 2

70

.

� An AOJx or AOSx has incremented 2

35

� 1.

� An MOVNx or MOVMx has negated �2

35

.

� A DMOVN or DMOVNM has negated �2

70

(this condition does not a�ect the 
ags in the

KI10).

If set with Carry 0, indicates that one of the non{over
ow events listed under Carry 0 has

occurred.

3 Floating Over
ow { any of the following has set Trap 1 and Over
ow:

� In a 
oating{point instruction (other than FLTR, DFN, or the giant{format instructions)

the exponent of the result was > 127.

� In GSNGL the exponent of the memory operand was > 127

� In a giant{range 
oating{point instruction, GFAD, GFSB, GFMP, GFDV, or GFSC, the

exponent of the result was > 1023.

� Floating Under
ow (bit 11) has been set.

� No Divide (bit 12) has been set in an FDVx , FDVRx , DFDV or GFDV.

4 First Part Done { the processor is responding to a priority interrupt between the parts of a two{

part instruction or to a page failure in the second part. A 1 in this bit indicates that the �rst

part has been completed, and this fact should be taken into account when the processor restarts

the instruction at the beginning upon the return to the interrupted program. For example, if

an ILDB or IDPB is interrupted after incrementing the pointer but before processing the byte,

the pointer now points not to the previous byte, but rather to the byte that should be handled

at the return. Thus when the processor restarts the instruction, it must retrieve the pointer

but not increment it. Note, however, that this 
ag is solely for use by the hardware: it is saved

and restored by the Monitor, and the user should never touch it.

42

The First Part Done 
ag is not an architectural characteristic; it is an artifact of a speci�c

processor implementation. Di�erent processors implement and use this 
ag in di�erent ways.

No programmer should depend on any particular behavior being repeatable on a di�erent

system or with di�erent microcode.

In the present implementation of the XKL

-

1 and its microcode, First Part Done a�ects the

following instructions: ILDB, IDPB,MOVSRJ, SWPxA, and CVTBDx. First Part Done is cleared

42

On the other hand, if a trap handler (which may be supplied by the user) does any byte operations, the state of

this 
ag must be taken into account; for details refer to the discussion of \special considerations" at the end of each

of the sections on the interrupt.



2.9. PROGRAM CONTROL 125

at the start of any instruction, except that the 
ag restoring instructions are crafted to bypass

the clear operation when starting the next instruction. First Part Done cannot be saved by a


ag saving instruction. Interrupts and traps are not performed as actual instructions so they

can save First Part Done.

5 User { the processor is in user mode.

6 User In{Out { even with the processor in user mode, the program is allowed to use In{Out

instructions.

7 Public

43

{ the last instruction performed was fetched from a public area of memory; i.e., the

processor is in user mode public or executive mode supervisor.

8 Address Failure Inhibit

44

{ if an address failure occurs during the execution of the very next

instruction, that failure will be ignored. This 
ag is cleared whenever an instruction (except

a 
ag{restoring JRST) is completed. The purpose of this 
ag is to let the processor complete

the execution of the instruction for which an address failure trap has just been processed.

9 Trap 2

45

{ if bit 10 is not also set, stack over
ow has occurred. Unless the pager is disabled, the

setting of this 
ag immediately causes a trap as explained in x2.9.6. At present, no hardware

condition sets both bits 9 and 10 at the same time.

10 Trap 1

45

|if bit 9 is not also set, arithmetic over
ow has occurred. Unless the pager is disabled,

the setting of this 
ag immediately causes a trap as explained in x2.9.6. At present, no hardware

condition sets both bits 9 and 10 at the same time.

11 Floating Under
ow|any of the following has set Trap 1, Over
ow, and Floating Over
ow:

� In a single{ or double{precision 
oating{point instruction, the exponent of the result was

< �128.

� In a GSNGL instruction, the exponent of the memory operand was < �128.

� In a GFAD, GFSB, GFMP, GFDV, or GFSC instruction, the exponent of the result was

< �1024.

12 No Divide|any of the following has set Over
ow and Trap 1:

� In a DIVx or DDIV, the high{order half of the dividend was greater than or equal to the

divisor.

� In an IDIVx the divisor was zero, or the dividend was �2

35

and the divisor was �1.

� In an FDVx , FDVRx , DFDV, or GFDV, the divisor was zero or the dividend fraction was

greater than or equal to twice the divisor fraction in magnitude; in either case Floating

Over
ow has been set. If normalized operands are used, only a zero divisor can cause


oating division to fail.

� In an ADJBP the number of bytes per word was zero.

43

Available only in the KI10 and KL10.

44

Not available in the KA10 or KS10.

45

Not available in the KA10



126 CHAPTER 2. USER OPERATIONS

2.9.4 The JRST Instruction

The basic use of this instruction is as a straightforward jump|it is the fastest jump and is the

preferred instruction for such use. However, it also allows the programmer to select individual

functions by means of bits 9{12 of the instruction word. All KI10 and KA10 functions are included

in the instruction set of the more modern processors, but the method of decoding the individual

functions is so di�erent that the instruction is described twice, �rst for the XKL

-

1/KL10/KS10,

then for the earlier processors. Most of the functions are illegal in some circumstances on at least

some processors; when a function is illegal, the instruction traps as an MUUO (x2.16) instead of

performing the given function. The instruction descriptions explain what each function does when

it is legal. Between the two descriptions is a table that indicates which of the functions are legal in

which processors and under what circumstances.

0 12 1314 1718 35

I X Y

8 9

F

JRST

Jump and Restore (XKL

-

1/KL10/KS10)

254

Perform the function speci�ed by F , if it is legal. At present thirteen functions are de�ned, and

for all but one of these the Macro assembler recognizes individual mnemonics for generating the

combined 13{bit instruction codes (including bits 9{12). The de�ned functions, with their function

codes, mnemonics, and combined instruction codes, are as follows.

F Mnemonic and

Instruction Code

Function

00 JRST

25400

Jump to Location E

01 PORTAL

25404

If the instruction has been taken from a nonpublic area, clear Public;

then jump to location E . A location containing a PORTAL is the only

valid entry to a nonpublic area. The instruction places the processor

in concealed or kernel mode. Note that this function is equivalent to

function 0 except when the instruction is taken from a private area

by a public program, an event that cannot occur in a KS10 or XKL

-

1

because they have no public mode.

02 JRSTF

25410

Restore the program 
ags from bits 0{12 of the �nal word used in

the e�ective{address calculation (indirect or index word), and jump to

location E .

Caution

Restoring the 
ags requires that the instruction use indexing

or indirect addressing. Without indexing or indirection the

result is indeterminate.

When executed in a non{zero section, this function traps as

an unassigned code (see x2.16).



2.9. PROGRAM CONTROL 127

All 
ags, excepting the User and Public 
ags, are restored according to

the contents of the corresponding bits in the 
ag word: a 
ag is set by

a 1 in the bit or cleared by a 0. A 1 in bit 5 sets User, but a 0 has no

e�ect: the Monitor can continue a user program by restoring 
ags but

the user cannot leave User mode by this method. A 0 in bit 6 clears

User In{Out, but a 1 sets it only if the JRSTF is being performed by

the Monitor; i.e., if User is clear. A 1 in bit 7 sets Public, but a 0 clears

it only if the JRSTF is being performed in executive mode with a 1 in

bit 5; i.e., User is being set. These conditions imply that the processor

is entering user mode: hence, the user cannot enter concealed mode

by clearing Public. Although the supervisor can place the processor

in User mode concealed, it cannot use this procedure to enter Kernel

mode.

Notes: The 
ag bits are assumed to be in a previously stored PC word.

If the PC word was stored in AC (as in a JSP), a common procedure

is to use AC to index a zero address; e.g., JRSTF (AC), so that its

right half becomes the e�ective{address (the jump address). If the PC

word was stored in memory (as in a JSR), one must address it indirectly

(remember, bits 13{17 of the PC word are clear, so, again, its right half

is the e�ective{address). A JRSTF (AC) is considerably faster than a

JRSTF @PCWORD.

04 HALT

25420

Load E into PC and halt the processor. While the KL10 is halted, the

microcode runs in the halt loop, in which it will handle interrupts on

level 0 and will respond to console and diagnostic functions from the

front end. The KS10 microcode performs the halt sequence discussed

in x4.2.7 and then runs in the halt loop, in which it responds only to

commands from the console. The XKL

-

1 runs its microcode halt loop;

the console terminal will respond to console commands as described in

x3.2.

Note: The halt occurs, of course, only when the function is legal. For

debugging purposes, this function is often used when illegal, in which

event it traps as an MUUO (see x2.16).

05 XJRSTF

25424

Restore the program 
ags and PC (and the previous context, if appro-

priate) from a 
ag{PC double word in location E;E+1,

46

and continue

performing instructions in normal sequence beginning at the location

then addressed by PC. User mode restrictions on the manipulation

of the 
ags by the 
ag bits are the same as those for JRSTF given

above. When performed in executive mode, this instruction restores

the processor context from the right half of the word in location E .

06 XJEN

25430

Restore the level on which the highest priority interrupt is currently

being held (i.e., dismiss the interrupt as described in x3.4, x4.1.1, and

x4.2.1), then perform an XJRSTF.

Note: This instruction can be used in any section. It is the only way

to dismiss an interrupt routine or restore an interrupted program in a

46

Refer to the description of E;E + 1 on page 52.



128 CHAPTER 2. USER OPERATIONS

non{zero section.

07 XPCW

25434

Save the program 
ags and PC (and the previous{context section, if

relevant) in a 
ag{PC double word in locationE;E + 1.

46

Then restore

the 
ags and PC from a 
ag{PC double word in location E + 2; E + 3

and continue performing instructions in normal sequence beginning at

the location then addressed by PC. Restrictions on the manipulation

of the 
ags by the 
ag bits are the same as those for JRSTF given

above.

Notes: In a KS10 or an extended KL10, this instruction can be used

only for calling an interrupt routine. In the extended KL10, this is

the recommended instruction for entering an interrupt routine. The

four{word block at location E must be in section zero, because that

is the default section for instructions executed in interrupt locations.

The return from the routine would typically be made by an XJEN that

addresses the same block (i.e., that uses the �rst double word in the

block).

In the XKL

-

1, XPCW is allowed in programs. In the XKL

-

1, the e�ect

of XPCW is simulated by the processor with respect to the appropri-

ate Interrupt Control Block; see x3.4.4. When executed in executive

mode or when simulated for interrupt acceptance, XPCW loads the new

processor context from the right half of E + 2.

10 (no mnemonic)

25440

Restore the level on which the highest priority interrupt is currently

being held; i.e., dismiss the interrupt as described in x3.4, x4.1.1, and

x4.2.1.

11 XJRSTP

25444

Restore the program 
ags, context, PC, and the state of the Priority

Interrupt system. Perform the XJRSTF function using the contents of

E and E+1 as data. Then performWRPI (x3.4.8) using the right{half

contents of E + 2 as data. This instruction restores processor state

as an indivisible operation. This operation is implemented only in the

XKL

-

1; it is legal only in executive mode.

12 JEN

25450

Restore the level on which the highest priority interrupt is currently

being held (i.e., dismiss the interrupt, as described in x3.4, x4.1.1, and

x4.2.1), then perform a JRSTF.

13 HALTRM

25454

Halt the processor and reload the microcode. This instruction is im-

plemented only in the XKL

-

1, where it is legal only in executive mode.

The I , X , and Y �elds are reserved.

14 SFM

25460

Save the program 
ags in bits 0{12 of memory location E (clear bits

13{17). If the instruction is given in executive mode in an extended

processor, save the previous context (in the KL10, the previous{context

section, in bits 31{35, clearing bits 18{30; in the XKL

-

1, the accumu-

lator selection and previous{context section in bits 18{35), otherwise

clear bits 18{35. (This instruction is also known to some software as

XSFM.)



2.9. PROGRAM CONTROL 129

15 XJRST

25464

Jump to the location given by bits 6{35 of the word addressed by E .

Bits 0{5 of the word addressed by E are ignored. This instruction is

not implemented in the KS10, where it is handled as an MUUO.

The remaining unde�ned functions execute as MUUOs, as does any de�ned function when it is

illegal.

One can program a function by giving JRST with the equivalent of an AC address that speci�es the

function code. For the sixteen forms of the instruction, Table 2.1 lists the individual mnemonic, if

any, and indicates where that form of the instruction is legal in each of the di�erent processors.

0 12 1314 1718 35

I X Y

8 9

F

JRST

Jump and Restore (KI10/KA10)

254

Perform the functions speci�ed by F if they are legal; then, if the function was performed and the

processor is not halted, take the next instruction from location E and continue sequential operation

from there. Bits 9{12 are programmed as follows.

Bit Function Produced by a 1 if Legal

9 Restore the level on which the highest priority interrupt is currently being held; i.e., dismiss

the interrupt (x4.3.2, x4.3.5).

10 Halt the processor. When it stops, the AR lights on the KI10 and the MA lights on the KA10

display an address 1 greater than that of the location containing the instruction that caused

the halt, and PC displays the jump address (the location from which the next instruction will

be taken if the operator causes the processor to resume operation without changing PC). AR

or MA actually displays the address of the location that would have been executed next had

the JRST been replaced by a no{op. Thus, except for a JRST in an interrupt, the lights point

to the location 1 beyond that containing the instruction that caused the halt. This instruction

is ordinarily the JRST; however, it could be an XCT or an MUUO.

11 Restore the program 
ags from bits 0{12 of the �nal word used in the e�ective{address calcu-

lation. Hence, to restore 
ags requires that the instruction use indexing or indirect addressing.

Restrictions on the manipulation of the 
ags by the 
ag bits are the same as those for the

KL10 JRSTF given above. (The notes on addressing given there also apply.)

12 KA10 : Enter user mode. The user program starts at relocated location E .

KI10 : This is the PORTAL instruction. It is simply a jump except when fetched from a

nonpublic area, in which case it clears Public. In other words, a location containing a PORTAL

is the only valid entry to a nonpublic area, and the instruction places the processor in concealed

or kernel mode.

While the KA10 is in user mode, if JRST is executed as an interrupt instruction or by an MUUO,

the processor leaves user mode.

Notes: To produce a combination of these functions, the programmer can specify the equivalent of

an AC address that places 1s in the appropriate bits; however, Macro recognizes mnemonics for



130 CHAPTER 2. USER OPERATIONS

Table 2.1: Domains in which JRST Functions are Legal

The meanings of the symbols used to de�ne the legal domains of the functions are as follows.

Yes Legal everywhere.

Z Legal only in section zero.

IO Legal wherever IO instructions are legal; i.e., in user IO mode (User and User In{Out both

set) and in kernel mode (executive mode in the XKL

-

1, KS10, and KA10).

K Legal only in kernel mode (in the XKL

-

1 and the KS10, executive mode is kernel mode).

No Legal nowhere (always executes as an MUUO).

{H Legal where indicated by �rst symbol but causes a halt.

{RM Legal where indicated by �rst symbol but causes the machine to halt and reload its microcode.

Single{

Extended section

XKL

-

1 KL10 KL10 KS10 KI10 KA10

JRST 0, JRST Yes Yes Yes Yes Yes Yes

JRST 1, PORTAL Yes Yes Yes Yes Yes Yes

JRST 2, JRSTF Z Z Yes Yes Yes Yes

JRST 3, No No No No Yes Yes

JRST 4, HALT K{H K{H K{H K{H K{H IO{H

JRST 5, XJRSTF Yes Yes No Yes K{H IO{H

JRST 6, XJEN IO IO No K K{H IO{H

JRST 7, XPCW IO IO No K K{H IO{H

JRST 10, IO IO IO IO K IO

JRST 11, XJRSTP K No No No K IO

JRST 12, JEN Z ^ IO

?

Z ^ IO

?

IO IO K IO

JRST 13, HALTRM K{RM No No No K IO

JRST 14, SFM Yes Yes No K K{H IO{H

JRST 15, XJRST Yes Yes Yes No K{H IO{H

JRST 16, No No No No K{H IO{H

JRST 17, No No No No K{H IO{H

?

JEN is legal only where IO is legal in section zero.

Any JRST function executed in a domain where the function is not legal is handled as an MUUO;

see x2.16.



2.9. PROGRAM CONTROL 131

the most important 13{bit instruction codes (bits 0{12).

JRST JRST 0, Jump 25400

JRST 10, Jump and Restore Interrupt Level 25440

HALT JRST 4, Halt 25420

JRSTF JRST 2, Jump and Restore Flags 25410

PORTAL JRST 1, Allow Nonpublic Entry (KI10) 25404

Jump to User Program (KA10)

JEN JRST 12, Jump and Enable 25450

JEN completes an interrupt by restoring the level and restoring the 
ags for the interrupted program.

It is a combination of JRST 10, and JRSTF.

Caution

Giving a JRSTF or JEN without indexing or indirect addressing restores the 
ags from

the instruction code itself.

2.9.5 Subroutine Calling

Currently the stack instructions PUSHJ and POPJ, described in x2.10, are employed almost univer-

sally for handling subroutines. Described here are four traditional subroutine{handling instructions,

the �rst two of which still enjoy some popularity.

0 12 1314 1718 35

I X Y

8 9

A

JSR Jump to Subroutine

264

A is not used.

47

In section zero, save the program 
ags and PC in a PC word in location E ; in a non{zero section,

save PC in bits 6{35 of location E (clear bits 0{5). In either case jump to location E + 1.

48

The


ags are una�ected except First Part Done, Address Failure Inhibit, and the trap 
ags, which are

cleared.

While the processor is in user mode, if this instruction is executed as an interrupt instruction (or

by a KA10 MUUO), the processor leaves user mode, clearing Public. (An interrupt that is not

dismissed automatically returns control to kernel mode.)

0 12 1314 1718 35

I X Y

8 9

A

JSP Jump and Save PC

265

47

The A portion of this instruction is reserved and should be zero.

48

Refer to the description of E;E + 1 on page 52.



132 CHAPTER 2. USER OPERATIONS

In section zero, save the program 
ags and PC in a PC word in AC; in a non{zero section, save PC

in AC bits 6{35 (clear bits 0{5). In either case jump to location E . The 
ags are una�ected except

First Part Done, Address Failure Inhibit, and the trap 
ags, which are cleared.

While the KI10 or KA10 is in user mode, if this instruction is executed as an interrupt instruction

(or by a KA10 MUUO), the processor leaves user mode, clearing Public. (An interrupt that is not

dismissed automatically returns control to kernel mode.)

When a subroutine is called in section zero by a JSR M, the typical method of returning from it is

to give a JRSTF @M, which not only returns to the original program but also restores the original

states of the program 
ags using the PC word saved by the JSR. In a non{zero section, there is an

analogous procedure using a 
ag{PC double word. The subroutine is called by

SFM M

JSR M+1

and the return is made by XJRSTF M. A similar analogy holds for JSP. The following discussion

of subroutine calling is geared to section zero. The application of these ideas to non{zero sections

requires such substitutions as a 
ag{PC double word for a PC word, XJRSTF for JRSTF, and so

forth.

JSR and JSP are unconditional, but the execution of such an instruction can be the result of a

decision made by any conditional skip or jump. In the case of the 
ags, a basic over
ow test and

subroutine call can be made as follows.

JOV .+2 ;jump over the next instruction if overflow is set

JRST .+2 ;Overflow is clear, jump over the next instruction

JSR OVRFLO ;execute this instruction if Overflow is set

.

.

Because the No Divide 
ag is not among the 
ags that are testable by JFCL, to test for the No

Divide condition, one must �rst read the 
ags into an accumulator. The following example shows

how to call the DIVERR subroutine when No Divide is set:

JSP T,.+1 ;Store flags but continue in sequence

TLNE T,40 ;40 in the left half selects bit 12

JSR DIVERR ;execute this if No Divide is set.

.

.

A subroutine called by a JSR must have its entry point reserved for the PC word. Hence, it is non{

reentrant: the JSR modi�es memory so the subroutine cannot be shared with other processes. The

JSP requires an accumulator, but it is faster and is convenient for argument passing. To return from

a JSR{called subroutine, one usually addresses the PC word indirectly, returning to the location

following the JSR. However, there are two ways to get back from a JSP. One can address the PC



2.9. PROGRAM CONTROL 133

word indirectly with a JRST @AC (or JRSTF @AC, if the 
ags must be restored). Alternatively,

one can return by addressing AC as an index register: JRST (AC). By using the second return

method, one can place N words of data for the subroutine immediately after the call and return to

the location following the data by giving a JRST N (AC).

Suppose one wishes to call a print subroutine and supply the words from which the characters are

to be taken. The main program would contain:

JSP T,PRINT ;Put PC word in accumulator T

. ;Text inserted here by ASCIZ pseudo-instruction,

. ;which automatically places a zero (null)

. ;character at the end

... ;Next instruction here

The subroutine can use T as a byte pointer (x2.11) that already addresses the �rst word of data.

For the print routine, characters are loaded into another accumulator CH:

PRINT: HRLI T,440700 ;Initialize left half of pointer for

;size 7, position 36

ILDB CH,T ;Increment pointer and load byte

JUMPE CH,1(T) ;Upon reaching zero character

;return to 1 beyond last data word

;Print routine

.

.

.

JRST PRINT+1 ;Get next character

The next two instructions use a format that is incompatible with extended addressing. Because they

are also considered an obsolete method for subroutine call/return (they have been supplanted by

the stack instructions), no attempt has been made to �nd an alternate format for these instructions

when executed in a non-zero section.

For compatibility with section{zero programs, these two instructions continue to work in non{zero

sections. However, their use is restricted to intra{section operation, and all inter{section use is

unde�ned.

0 12 1314 1718 35

I X Y

8 9

A

JSA Jump and Save AC

266

Save AC in location E , the in{section part of E in AC left, and the in{section part of PC in AC

right. Then jump to location E + 1.

49

The original contents of E are lost.

49

Refer to the description of E;E + 1 on page 52.



134 CHAPTER 2. USER OPERATIONS

While the KA10 is in user mode, if this instruction is executed as an interrupt instruction or by an

MUUO, the processor leaves user mode.

If E or E + 1 speci�es a section other than the PC section, the e�ect of this instruction is indeter-

minate.

0 12 1314 1718 35

I X Y

8 9

A

JRA Jump and Restore AC

267

This instruction e�ects the return from a subroutine called by a JSA instruction.

Place the contents of the location (in the PC section) addressed by AC left into AC and jump to

the location (in the PC section) speci�ed by E .

After the normal e�ective{address calculation is performed, the PC section is appended to the in{

section address in AC left to form the address of where the old contents of AC were stored. The PC

section replaces the section component of E , so the next instruction will be fetched from the same

section as the current PC. Thus, all references made by this instruction are in the PC section.

Notes: The normal usage of JRA is of the form

JRA AC,(AC) or JRA AC, k(AC)

The �rst of these returns to the instruction following the JSA that called this subroutine. The second

form skips k locations past the normal return point, thus avoiding argument words that may follow

the JSA.

(The following paean to the virtues of JSA and JRA notwithstanding, PUSHJ and POPJ are now

the most usual instructions for subroutine call and return.) A JSA combines advantages of the JSR

and JSP. JSA does modify memory, but it saves PC in an accumulator without losing its previous

contents (at the cost of not saving the 
ags). It is thus convenient for multiple{entry subroutines.

In a subroutine called by a JSR, the returning JRST must refer to the (single) entry point. Since

a JRA can retrieve the original PC by addressing AC as an index register, it is independent of any

entry point without tying up an accumulator to the extent a JSP would. The accumulator contents

saved by a JSA are restored by a JRA paired with it, despite intervening JSA|JRA pairs. Hence,

these instructions are especially useful for nesting subroutines.

2.9.6 Over
ow Trapping

50

In the performance of a program, there are many events that cannot be foreseen and whose occurrence

requires special action by the program. Among these events are arithmetic over
ow and stack

over
ow.

Although there are instructions that test for such events, in a long string of computations, it would

50

This feature is not available in the KA10. That processor is limited to the use of internal conditions that can act

through the interrupt system (x4.3.5).



2.9. PROGRAM CONTROL 135

be both cumbersome and time consuming to test for over
ow at every step. It is far better to allow

an event such as over
ow to cause a break from the normal program sequence. A \trap" is a break

from the normal program sequence, attributed to a speci�c action of the program and synchronized

with the execution of the program. (Contrast this to an \interrupt" which is an asynchronous break

from the normal program sequence.)

Although traps are also used to handle the restrictions that play a role in program and memory

management (as explained in later chapters), the present discussion is speci�cally concerned with

the action by the processor in response to over
ow.

2.9.6.1 Over
ow Trapping in the KL10, KS10, and KI10 Processors

An instruction in which an arithmetic over
ow condition occurs sets Over
ow and Trap 1, and an

instruction in which a stack over
ow occurs sets Trap 2. Note that it is the over
ow condition that

sets Trap 1|not the state of the Over
ow 
ag. Hence, an over
ow is trapped even if Over
ow is

already set. Note also that the trap 
ags have no e�ect at all when paging is disabled. Otherwise,

at the completion of an instruction in which either trap 
ag is set, rather than going on to the next

instruction as speci�ed by PC, the processor instead executes an instruction, the \trap instruction",

which is taken from a particular location in the process table for the program (user or executive).

The location, as a function of the trap 
ag settings, is as follows:

Trap Flags Set Trap Type Trap Number Location

Trap 1 only Arithmetic over
ow 1 421

Trap 2 only Stack over
ow 2 422

Trap 1 and 2 Not used by hardware

51

3 423

A trap instruction is executed in the same address space and section as the instruction that caused

it. When a trap condition occurs in a user instruction, the CPU refers to a location in the user

process table, and any addresses used in the instruction in that location are interpreted in the user

address space. Thus a user program can handle its own traps; e.g., by requesting that the Monitor

to place a PUSHJ to a user routine in the trap location. An MUUO must be used in the trap location

if the Monitor is to handle a user{caused trap.

The location of the instruction that caused the over
ow can be determined from PC unless the

instruction jumped, in which case its location is indeterminate. (However, the location of a PUSHJ

can be determined from the data stored on the stack.) The trap instruction (either the instruction in

the trap location or the �nal instruction in an XCT and/or LUUO string) clears the trap 
ags, so the

processor returns to the trapped{from program unless the trap instruction changes PC. Thus, the

trap instruction can be a no{op (which ignores the trap), a skip, a jump, or anything else. However,

should the trap instruction itself set a trap 
ag (not necessarily the same one), a second trap occurs.

An arithmetic instruction that over
ows on every iteration produces an in�nite loop if used as a

trap instruction for arithmetic over
ow. A stack instruction in a stack over
ow trap can over
ow

only once. (The memory allocated to a stack should have at least one extra location to handle this

case|two extra locations if the program and the trap both use the same stack pointer.)

An interrupt can occur between an instruction that over
ows and the trap instruction, but the latter

51

A trap can be produced arti�cially by simply setting up the trap 
ags from bits in a 
ag word. In this way the

program can also use trap number 3, which at present cannot result from any hardware{detected condition and is

reserved.



136 CHAPTER 2. USER OPERATIONS

will be performed correctly upon the return provided the interrupt is dismissed automatically or the

interrupt routine restores the 
ags properly. If a single instruction causes both over
ow and a page

failure, the latter has preference; the over
ow trap will be taken care of after the trapped{from

instruction has been restarted and completed successfully. A trap instruction that causes a page

failure does not clear the trap 
ags; hence, after the page failure is taken care of, the trap instruction

will correctly handle the trap when it is restarted.

2.9.6.2 Over
ow Trapping in the XKL

-

1 Processor

An instruction in which an arithmetic over
ow condition occurs sets Over
ow and Trap 1. Note that

it is the over
ow condition that sets Trap 1|not the state of the Over
ow 
ag. Hence an over
ow

is trapped even if Over
ow is already set. An instruction in which a stack over
ow occurs sets Trap

2.

Following an instruction that sets either trap 
ag, after handling any interrupts that are pending,

the processor selects a trap vector in which to store information pertaining to the trap. (Traps from

executive mode are disabled when the Executive Base Register is not valid; traps from user mode

are disabled when the User Base Register is not valid. See x3.7.2.) If the selected trap vector is not

enabled, the processor clears the trap 
ag(s) and continues with the next instruction as speci�ed by

PC. If the selected trap is enabled, the processor stores the PC and 
ags (with the trap 
ags clear)

in the trap vector and takes a new PC and 
ags from the trap vector. The trap 
ags determine the

location of the trap vector within the process table for the program (user or executive), as follows:

Trap Flags Set Trap Type Trap Number Location

Trap 1 only Arithmetic over
ow 1 450 (UP.TP1)

Trap 2 only Stack over
ow 2 460 (UP.TP2)

Trap 1 and 2 Not used by hardware

52

3 470 (UP.TP3)

The format of a trap vector is as depicted in Figure 2.2.

Following the instruction that sets the trap condition, the processor examines the state of the Trap

Enable 
ag, bit 0 of word 0 in the trap block (T in the diagram, UP%TEN==:1B0, o�set UP.BFL==:0).

If the Trap Enable 
ag is 0, the trap is disabled. The processor clears the Trap1 and Trap2 
ags;

processing continues as speci�ed by the present PC and 
ags.

If the Trap Enable 
ag is 1, the processor stores the present Flags and Context in word 4 of the trap

block (o�set UP.OFL) and the present PC in word 5 (o�set UP.OPC). The stored PC is generally the

address following the trapping instruction; but, in the case of an instruction that jumps or skips,

the stored PC re
ects the e�ect of the jump or skip. In the stored 
ags, the Trap1 and Trap2 
ags

will be clear (to facilitate return to the trapped{from process).

The processor continues to handle the trap by loading new 
ags, context, and PC from the double

word (at o�sets UP.NFL and UP.NPC). For a trap that occurs while the processor is in user mode,

the new 
ags may specify either an executive mode PC or a user mode PC. For a trap that occurs

while the processor is in executive mode, the new 
ags specify an executive mode PC; if User is

set in the new 
ags, it will be ignored. If the new 
ags specify an executive mode PC, then the

current{ and previous{context AC block selection will be set from bits 18{23 of the new 
ags word;

52

A trap can be produced arti�cially simply by setting up the trap 
ags from bits in a 
ag word. In this way the

program can also use trap number 3, which at present cannot result from any hardware{detected condition and is

reserved.



2.10. STACK OPERATIONS 137

Figure 2.2: XKL

-

1 Trap Vector

4x7

4x6

4x5

4x4

4x3

4x2

4x1

4x0
UP.BFL==:0

UP.OFL==:4

UP.OPC==:5

UP.NFL==:6

UP.NPC==:7

00

T

350

Reserved

351 350

Reserved

350

Reserved

350

Reserved

120

Old Flags

1713

0

2018

CAC

2321

PAC

3524

PCS

50

0

356

Old PC

120

New Flags

1713

0

2018

CAC

2321

PAC

3524

0

50

0

356

New PC

the previous{context section will be set according to the section of the stored PC. In all cases,

execution continues at the location speci�ed by the new PC and in the mode speci�ed by the new


ags.

Note: it is contemplated that the new PC will be in executive mode, because the user generally

has no way to get at the information stored in the trap vector except by an operating system

call (which would be more time{consuming than trapping through the executive to the user). The

ability to specify a user mode address in the new PC is provided for special situations; e.g., real{time

programming, for which arrangements could be made to make the user process table visible to the

user program.

The location of the instruction that caused the over
ow can be generally be determined from the

stored PC unless the instruction jumped or skipped. Only in the case of PUSHJ can a jump instruc-

tion that causes a trap be located (by looking at the data on the stack).

If a single instruction causes both a trap and a page failure (e.g., a PUSHJ that causes stack

over
ow and which references a stack location that is not presently in memory), the page failure has

precedence; the trap will be taken care of after the page failure has been resolved and the instruction

has been completed.

2.10 Stack Operations

A stack, or pushdown list, is simply a set of consecutive memory locations from which words are

read in the order opposite that in which they are written. In more general terms, it is any list in

which the only item that can be removed at any given time is the last item in the list. This is usually

referred to as \�rst in, last out" or \last in, �rst out." Suppose locations a, b, c, ... are set aside for

a stack. One can deposit data in a, b, c, d , then read d , then write in d and e, then read e, d , c,

etc. Adding an item to the stack is referred to as \pushing" or \pushing down"; removing an item

is \popping." The stack is used in two ways: for handling data, and for saving and restoring PC, as

in calling and returning from a subroutine.



138 CHAPTER 2. USER OPERATIONS

The mechanism for keeping track of the list is a stack pointer, which speci�es the position of the last

item stored in the stack. This pointer is always kept in an accumulator. In section zero, the pointer

has two parts: the right half contains the address of the last item, and the left half can contain a

control count. An instruction that pushes an item onto the list increments both parts of the pointer

by 1 and then places the item in the newly speci�ed location; an instruction that pops an item

takes it from the currently speci�ed last position and then decrements both parts of the pointer by

1 so it points to what has become the last item. To help prevent mismanagement of the stack, the

control count in the left half is monitored for over
ow. The over
ow condition, which sets the Trap

2 
ag, is a change in the count from negative to zero on a push or from zero to negative on a pop.

The KA10 lacks the trapping feature; in the KA10, stack over
ow sets the Pushdown Over
ow 
ag,

which requests an interrupt on the level assigned to the processor (x4.3.6).

By keeping a control count in AC left, the programmer can set a limit to the size of the list by

starting the count negative, or he can prevent the program from extracting more items than there

are in the list by starting the count at zero, but he cannot do both at once. The common practice is

to limit the size of the list. If only jump addresses are kept in the stack, the size limitation restricts

the depth of nesting. A technique to catch extra popping of jump addresses is to put the address of

an error routine at the bottom of the stack.

In a non{zero section there are two pointer formats: local and global. A local pointer is exactly

like the one used in section zero, with the same manipulation in pushing and popping, except that

the left half must be negative or zero (like a local index register). Restriction to a negative control

count means that the control count can be used only to limit the size of the list, because the only

meaningful over
ow condition is the change to zero on a push. AC right contains a local address

that is interpreted as being in the same section as the instruction. Note that a local stack wraps

around in the local section (including the accumulators).

A global stack pointer is one in which bit 0 is zero and bits 6{35 contain a global address in a non{

zero section; i.e., bits 6{17 are non{zero. Manipulation of a global pointer by pushing and popping

is simply incrementing and decrementing the 30{bit address by 1; a global stack can therefore cross

section boundaries. There is no control count, but the program can limit the stack size by making

the pages at either end of the stack area inaccessible. Note that pushing on a local stack whose stack

pointer has already over
owed (i.e., a stack pointer whose control count has become zero) changes

the pointer to the global format, and it then addresses a location in section 1. Similarly, adjusting a

global stack pointer into the \section" beyond 7777 changes it to the local format. (A pointer with

a 0 in bit 0 and any arbitrary con�guration in bits 1{5 is interpreted as local or global depending

on whether or not bits 6{17 are zero.)

The processor provides �ve stack instructions for programs to use: two pairs for pushing and popping

and one for making arbitrary adjustments of the pointer. One of the pairs handles data; the other

pair are jumps that use the stack for handling subroutines.

0 12 1314 1718 35

I X Y

8 9

A

PUSH Push

261

If the program is running in section zero, or AC left is negative (or AC bits 6{17 are zero), add 1 to

each half of AC, then move the contents of location E to the location now addressed by AC right.



2.10. STACK OPERATIONS 139

If the addition causes the count in AC left to reach zero, set Trap 2.

53

If the program is running

in a non{zero section with a 0 in AC bit 0 and AC bits 6{17 non{zero, add 1 to AC, then move

the contents of location E to the location now addressed by AC bits 6{35. The contents of E are

una�ected; the original contents of the location added to the stack are lost.

Note: Do not allow the pointer to address AC, as the result of the instruction is then indeterminate.

0 12 1314 1718 35

I X Y

8 9

A

POP Pop

262

If the program is running in section zero, or AC left is negative (or AC bits 6{17 are zero), move the

contents of the location addressed by AC right to location E , then subtract 1 from each half of AC.

If the subtraction causes the count in AC left to reach �1, set Trap 2.

53

If the program is running

in a non{zero section with a 0 in AC bit 0 and AC bits 6{17 non{zero, move the contents of the

location addressed by AC bits 6{35 to location E , then subtract 1 from AC. The original contents

of location E are lost.

Notes: Do not use the instruction POP AC,AC, because its result is indeterminate. To decrement

the pointer by 1 position (in other words to throw away the last item in the stack), use either

POP AC,(AC) or ADJSP AC,{1.

Example: In section zero, a POP can be used to implement a reverse BLT; i.e., to transfer a block

of words from one area of memory to another, starting at the largest addresses and proceeding to

the smallest. To move a block of N words from a source area to a destination area whose maximum

addresses are S and D respectively, the program must �rst set up a stack pointer in accumulator T,

where T left contains N � 1 + 400000 and T right contains S . The transfer is then e�ected by this

pair of instructions:

POP T,D-S(T)

JUMPL T,.-1

where the jump returns to the POP until T left is less than 400000; i.e., until it looks positive. The

400000 added into T left prevents stack over
ow but also limits the block to 2

17

words.

0 12 1314 1718 35

I X Y

8 9

A

PUSHJ Push and Jump

260

Take one of these three courses of action.

If the program is running in section zero, add 1 to each half of AC, then save the program

53

In the KA10, incrementing and decrementing both halves of AC together is e�ected by adding and subtracting

1000001

8

. Hence a count of �2 in AC left is increased to 0 if 2

18

� 1 is incremented in AC right; conversely, 1 in AC

left is decreased to �1 if 0 is decremented in AC right. In the KA10, there are no trap 
ags, so Pushdown Over
ow

(an APR interrupt condition) is set instead.



140 CHAPTER 2. USER OPERATIONS


ags and PC in a PC word in the location now addressed by AC right. If the addition

causes the count in AC left to reach zero, set Trap 2.

53

If the program is running in a non{zero section but AC left is negative (or AC bits 6{

17 are zero), add 1 to each half of AC, then save PC in bits 6{35 of the location now

addressed by AC right (clear bits 0{5). If the addition causes the count in AC left to

reach zero, set Trap 2.

If the program is running in a non{zero section with a 0 in AC bit 0 and AC bits 6{17

non{zero, add 1 to AC, then save PC in bits 6{35 of the location now addressed by AC

(clear bits 0{5).

Then jump to location E .

The 
ags are una�ected except First Part Done, Address Failure Inhibit, and the trap 
ags, which

are cleared. However, stack over
ow overrides the Trap 2 clear, so if the list over
ows, Trap 2 sets

and the processor traps instead of jumping. The original contents of the location added to the list

are lost.

While the KI10 or KA10 is in user mode, if this instruction is executed as an interrupt instruction

(or by a KA10 MUUO), the processor leaves user mode, clearing Public. (An interrupt that is not

dismissed automatically returns control to kernel mode.)

0 12 1314 1718 35

I X Y

8 9

A

POPJ Pop and Jump

263

E is not used.

54

Take one of these three courses of action.

If the program is running in section zero, subtract 1 from each half of AC. If the subtrac-

tion causes the count in AC left to reach �1, set Trap 2.

53

Then jump to the location

addressed by the right half of the location that was addressed by AC right prior to the

decrementing.

If the program is running in a non{zero section but AC left is negative (or AC bits 6{17

are zero), subtract 1 from each half of AC. If the subtraction causes the count in AC

left to reach �1, set Trap 2. Then jump to the location addressed by bits 6{35 of the

location that was addressed by AC right prior to the decrementing.

If the program is running in a non{zero section with a 0 in AC bit 0 and AC bits 6{17

non{zero, subtract 1 from AC, and jump to the location addressed by bits 6{35 of the

location that was addressed by AC bits 6{35 prior to the decrementing.

54

I , X and Y are reserved and should be zero.



2.10. STACK OPERATIONS 141

Caution

The jump is completed before the processor responds to stack over
ow. Hence, it is

impossible to determine the location of the POPJ that caused the over
ow.

0 12 1314 1718 35

I X Y

8 9

A

ADJSP Adjust Stack Pointer

55

105

If the program is running in section zero, or AC left is negative (or AC bits 6{17 are zero), add

E

R

(the in{section part of E , bit 18 is the sign) algebraically to each half of AC. If a negative E

R

changes the count in AC left from positive or zero to negative, or if a positive E

R

changes the count

from negative to positive or zero, set Trap 2. If the program is running in a non{zero section with a

0 in AC bit 0 and AC bits 6{17 non{zero, add E

R

(with bit 18 extended into bits 0{17) algebraically

to AC.

Notes: When an ADJSP changes the control count in a local pointer in a non{zero section from

negative to positive, the result will appear to be a global pointer. Similarly, an over
ow to negative

can occur only from zero, as otherwise the original would have been taken as global (excluding the

irrelevant case of AC left being greater than zero only because of bits 1{5 being non{zero).

A stack is very convenient for a program that can use data stored in this manner because the pointer

is initialized only once and only one accumulator is required for the most complex stack operations.

To initialize a local pointer P for a list to be kept in a block of memory beginning at BLIST and to

contain at most N items, the following su�ces.

MOVSI P,�N

HRRI P,BLIST-1

The programmer must de�ne BLIST and set aside locations BLIST to BLIST+N � 1. UsingMacro

to full advantage one could instead give

MOVE P,[IOWD N,BLIST]

where the pseudo{instruction

IOWD J;K

is replaced by a word containing �J in the left half and K � 1 in the right. Elsewhere there would

55

In the KI10 and KA10, this instruction traps as an unassigned code (x2.16).



142 CHAPTER 2. USER OPERATIONS

appear

BLIST: BLOCK N

which de�nes BLIST as the current contents of the location counter and sets aside the N locations

beginning at that point.

Since the stack is independent of the subroutine called, PUSHJ{POPJ can be used for multiple

entries. Moreover, ordering by level is inherent in the structure of a stack, so paired PUSHJ{POPJ

instructions are excellent for nesting subroutines: there can be any number of subroutines at any

level, each with more subroutines nested within it. Recursive subroutines are also easily programmed.

The stack instructions tie up an accumulator, but the usual procedure is to keep both data and jump

addresses in a single list so only one accumulator is required for most operations. The programmer

must keep track of whether a given entry in the list is data or a saved PC; in other words, generally

every item inserted by a PUSH should be removed by a POP or ADJSP and every PUSHJ should be

matched by a POPJ.

If 
ag restoration is desired in section zero, the returning

POPJ P,

can be replaced by

POP P,AC

JRSTF (AC)

which requires another accumulator.

In section zero only, if the 
ags are not important, data may be stored in the left halves of the PC

words in the stack, reducing the required pushdown depth.

The stack is kept in a random{access memory, so the restrictions on order of entry and removal of

items apply only to the standard addressing by the pointer in stack instructions|other addressing

methods can reference any item at any time. The most convenient way to do this is to use the

address part of the pointer as an index. To move the last entry to accumulator AC, one need simply

give

MOVE AC,(P)

This does not shorten the list|the word moved remains the last item in it.

One usually regards an index register as supplying an additive factor for a basic address contained

in an instruction word, but the index register can supply the basic address and the instruction can

supply the additive factor. Thus one can retrieve the next{to{last item by giving



2.11. BYTE MANIPULATION 143

MOVE AC,-1(P)

and so forth. Similarly

PUSH P,-3(P)

appends the third{to{last item to the end of the list (remember that E is calculated before the

contents of P are changed).

POP P,-2(P)

removes the last item and inserts it in place of the next{to{last item in the shortened list.

An ADJSP can delete an entire block from a stack; and, in combination with a BLT, it can be used

to add a whole block.

It is not very practical to use PUSHJ to call a subroutine in section zero from a non{zero section.

The PUSHJ, executed in a non{zero section, will store a 30{bit PC on the stack; a corresponding

POPJ, executed in section zero, interprets only the rightmost 18{bits of PC when returning from

the subroutine. Further, if the stack is local, it is impractical to make inter{section calls; if the stack

is global, it will be misinterpreted while the program executes in section zero. For these reasons,

programs that use extended addressing tend to avoid using section zero.

2.11 Byte Manipulation

56

This set of six instructions allows the programmer to pack or unpack bytes of any length anywhere

within a word. Movement of a byte is always between AC and a memory location: a deposit

instruction takes a byte from the right end of AC and inserts it at any desired position in the

memory location; a load instruction takes a byte from any position in the memory location and

places it right{justi�ed in AC.

The byte manipulation instructions have the standard memory reference format, but the e�ective{

address E is used to retrieve a pointer, which is used in turn to locate the byte or the place that

will receive it. There are three formats for byte pointers: one{word local, one{word global, and

two{word. Only the �rst of these applies in unextended processors. The �rst two apply in section

zero of an extended processor.

57

All three formats are valid in non{zero sections.

A one{word local pointer has the format

56

In a KA10 without byte manipulation hardware, all of the instructions presented in this section trap as unassigned

codes (x2.16). However, all KA10s were delivered with byte manipulation hardware.

57

In early versions of the extended KL10 microcode, one{word global byte pointers were legal only in non{zero

sections. Current KL10 microcode removes this restriction, except, the KL10 fails to honor one{word global byte

pointers when they appear in string instructions executed in section zero.



144 CHAPTER 2. USER OPERATIONS

P S 0 I X Y

0 5 6 11 12 13 14 17 18 35

where S is the size of the byte as a number of bits (with zero S specifying a null byte) and P is

its position as the number of bits remaining at the right of the byte in the word (e.g., if P is 3

the rightmost bit of the byte is bit 32 of the word). The rest of the pointer is interpreted in the

same way as in an instruction: I , X , and Y are used to calculate the address of the location that

is the source or destination of the byte; the address calculation begins in the section containing the

pointer.

Unextended processors support only the one{word local{format byte pointer. Unextended processors

ignore bit 12 of the byte pointer; for compatibility with extended processors, bit 12 should be set to

zero.

In an extended processor, the P �eld of a one{word local byte pointer must contain a value � 36

10

(� 44

8

). In an extended processor, bit 12 of a one{word local byte pointer must be zero when the

byte pointer is used in a non{zero section. Bit 12 is ignored by the processor when executing in

section zero; for compatibility with extended uses, bit 12 should be set to zero.

The one-word global byte pointer, valid only in extended processors, has this format:

PS Y

0 5 6 35

In this format, the Y �eld contains the 30{bit address of the word containing the byte (or into which

the byte will be placed); the PS �eld, which must contain a value > 36

10

(> 44

8

), encodes both the

position and the size of the byte. These encodings are displayed in the following table, which gives

the P and S values corresponding to each value of PS . The value of PS is expressed in octal. the

value of S , the size of the byte, and the value of P (the number of bits remaining at the right of the

byte in the word) are expressed in decimal.

PS P S PS P S PS P S

45 36 6 56 20 8 67 36 9

46 30 6 57 12 8 70 27 9

47 24 6 60 4 8 71 18 9

50 18 6 61 36 7 72 9 9

51 12 6 62 29 7 73 0 9

52 6 6 63 22 7 74 36 18

53 0 6 64 15 7 75 18 18

54 36 8 65 8 7 76 0 18

55 28 8 66 1 7 77 Illegal

The two{word byte pointer, valid only in non{zero sections, in locations E;E+1,

58

has this format:

58

Refer to the description of E;E + 1 on page 52.



2.11. BYTE MANIPULATION 145

P S 1 Reserved Available to User

Indirect Word (Global or Local)

0 5 6 11 12 13 17 18 35

This two{word arrangement allows for global pointing, because the second word can be local or

global as speci�ed by bit 0 (see the discussion of indirect words in x1.7.2). An extended processor

determines the number of words in a pointer by the state of bit 12 in the �rst word of byte pointers

read from non-zero sections. (The processor ignores bit 12 of byte pointers read from section zero;

however, bit 12 should be 0.)

Any of the three types of byte pointers aim at a word whose format is

S Bits P Bits

������������

������������

���� ����

0
36{P{S 35{P 36{P 35

where the shaded area is the byte.

Bytes are always contiguous within a word, and the forward order is left to right in words and from

low to high addresses. The position of the byte area in a word is called the \byte alignment." Let

P be the position of a speci�ed byte; 36� P is then the number of bits in the left part of the word

including the given byte and all byte positions at the left of it. Dividing 36 � P by S gives the

number of byte positions in this left part, and the remainder is those extra bits at the left end that

are not in any byte position. This number of extra bits, (36� P ) mod S, is the byte alignment.

A block of 8{bit bytes might look like this.

Y

Y+1

Y+2

.

.

.

19 bits

Byte 0 Byte 1

1 bit

E

E

Byte 2

Byte 6

Byte 3

Byte 7

Byte 4

Byte 8

Byte 5

Byte 9

4 bits

4 bits

In the �rst word, the �rst byte can occupy any position, and as many bytes as will �t are packed

into the rest of the word at the right. In the second and all succeeding words, the byte alignment is

zero no matter where the bytes may start in the �rst word, and as many as will �t are packed into

every word, although the last may run short. In this example the byte alignment in the �rst word

is 3, even though two byte positions are not used: the alignment is always less than S and is the

number mod S of bits at the left of the �rst byte. Bytes are assumed to be handled consecutively

in the forward direction only, and for this type of processing the pointer is \incremented." Since

bytes are contiguous and are processed from left to right, incrementing merely replaces the current

value of P by P � S, unless there is insu�cient space in the present location for another byte of

the speci�ed size (P � S < 0). In this case, Y is increased by 1 to point to the next consecutive



146 CHAPTER 2. USER OPERATIONS

location, and P is set to 36� S to point to the �rst byte at the left in the new location.

59

To facilitate processing a series of bytes, two of the byte handling instructions increment the pointer

before handling the byte. A typical procedure for using these instructions is to set up the pointer

initially to point at the byte position preceding the �rst byte.

The pointer is referred to as being \at location E ," which means that it is either a single word in

location E or a double word in location E;E + 1.

58

Local and global pointers and the operations

associated with them, as described above, are also utilized in handling byte strings, which are

discussed in the three sections following this one.

CAUTION

On an extended processor, a pointer with P greater than 36

10

signi�es a one{word global

byte pointer in any context; an instruction that uses a byte pointer in which P is equal

to 63 will trap as an MUUO. On an unextended processor, giving a byte pointer in which

P is greater than 36 produces an indeterminate result in any instruction that uses it.

Giving a byte pointer in which S is greater than 36 produces an indeterminate result in

any instruction that uses it. A P of 36 should be used only for initial incrementing by

an ILDB or IDPB (its e�ect on an LDB or DPB is indeterminate).

If both P and S are less than 36 but P + S > 36, a byte of size 36 � P is loaded from

position P , or the right 36� P bits of the byte are deposited in position P .

0 12 1314 1718 35

I X Y

8 9

A

LDB Load Byte

135

Retrieve a byte of S bits from the location and position speci�ed by the pointer at location E , load

it into the right end of AC, and clear the remaining AC bits. The location containing the byte is

una�ected; the original contents of AC are lost.

Note: If S is zero, LDB clears AC.

0 12 1314 1718 35

I X Y

8 9

A

DPB Deposit Byte

137

Deposit the right S bits of AC into the location and position speci�ed by the pointer at location

E . The original contents of the bits that receive the byte are lost; AC and the remaining bits of the

deposit location are una�ected.

59

Caution : In the KA10, do not allow Y to reach maximum value. The whole pointer is incremented, so, if Y is

2

18

� 1, it becomes zero and X is also incremented. The address calculation for the pointer uses the original X ; but,

if an interrupt should occur before the calculation is complete, the incremented X is used when the instruction is

repeated.



2.11. BYTE MANIPULATION 147

0 12 1314 1718 35

I X Y

8 9

00

IBP Increment Byte Pointer

133

Increment the byte pointer at location E , setting the byte alignment to zero if the incrementing

crosses a word boundary, as explained above.

Note: Giving this instruction code with bits 9{12 non{zero produces the ADJBP instruction de-

scribed at the end of this section. In the KI10 and KA10, only the IBP form is available and bits

9{12 are ignored (but should be zero).

0 12 1314 1718 35

I X Y

8 9

A

ILDB Increment Pointer and Load Byte

134

Increment the byte pointer at location E , setting the byte alignment to zero if the incrementing

crosses a word boundary, as explained above. Then retrieve a byte of S bits from the location and

position speci�ed by the newly incremented pointer, load it into the right end of AC, and clear the

remaining AC bits. The location containing the byte is una�ected; the original contents of AC are

lost.

0 12 1314 1718 35

I X Y

8 9

A

IDPB Increment Pointer and Deposit Byte

136

Increment the byte pointer at location E , setting the byte alignment to zero if the incrementing

crosses a word boundary, as explained above. Then deposit the right S bits of AC into the location

and position speci�ed by the newly incremented pointer. The original contents of the bits that

receive the byte are lost; AC and the remaining bits of the deposit location are una�ected.

Note that, in the pair of instructions that both increment the pointer and process a byte, it is the

modi�ed pointer that determines the byte location and position. Hence, to unpack bytes from a

block of memory, the program should set up the pointer to point to a byte just before the �rst

desired, and then load the bytes with a loop containing an ILDB. If the �rst byte is at the left end

of a word, this is most easily done by initializing the pointer with a P of 36 (44

8

). Incrementing

then replaces the 36 with 36� S to point to the �rst byte. For the convenience of the programmer,

Macro has a pseudoinstruction for setting up such a pointer: in assembly language,

POINT S; Y

is replaced by a pointer that points to a byte of size S at position 36 in location Y . At any time that

the program might inspect the pointer during execution of a series of ILDBs or IDPBs, it points to



148 CHAPTER 2. USER OPERATIONS

the last byte processed (this may not be true when the pointer is tested from an interrupt routine).

0 12 1314 1718 35

I X Y

8 9

A

ADJBP Adjust Byte Pointer

60

133

A 6= 0

Take one of these three courses of action depending on the value of S in the pointer at location E .

If S is 0, place an unmodi�ed copy of the pointer in AC or AC,AC+1.

61

If S is greater than 36 minus the byte alignment given by the pointer|so not even one

byte will �t in a word|set Trap 1, Over
ow, and No Divide and go on to the next

instruction without a�ecting the ACs or memory.

If S is greater than 0 but less than 36 minus the byte alignment, make a copy of the

pointer from location E or E;E + 1 and \adjust" the copy, forward or backward, by

the number of byte positions speci�ed by AC, preserving the byte alignment across word

boundaries. If AC contains a positive number N , adjust the copy by N bytes forward;

if AC contains a negative number {N , adjust the copy by N bytes backward. Place

the revised pointer copy in AC or AC,AC+1 as appropriate. The original pointer is

una�ected; the original contents of AC or AC,AC+1 are lost.

62

Notes: The adjustment always produces a pointer that speci�es an actual byte. For example,

adjusting a pointer with a P of 36 by zero bytes results in a pointer that speci�es the rightmost

byte (of appropriate alignment) in the preceding word. When the pointer speci�es a byte alignment

of zero, there is no di�erence between \adjusting" it by N and \incrementing" it N times (except

that the latter actually modi�es the pointer). Since the result goes to AC, it is not generally useful

to adjust a local pointer that is in a di�erent section from the instruction.

Giving this instruction code with a zero A �eld or in a KI10 or KA10 produces the IBP instruction

described above. Note that, if S = 0, this instruction is equivalent to MOVE.

The ADJBP instruction facilitates selection of individual bytes at arbitrary positions in an array

whose format di�ers from the linear format used by the incrementing instructions, in that the

adjustment preserves the byte alignment across word boundaries. As an example of this format, let

us again use 8{bit bytes where the pointer speci�es a byte in the same position as byte 0 in our

linear example at the beginning of this section. Such an array would look like this.

60

In the KA10 and KI10, this instruction is not implemented; it is performed as IBP.

61

As of KL10 microcode 2.1[442], this case results in the processor setting Trap 1, Over
ow, and No Divide and

going on to the next instruction without a�ecting the ACs or memory.

62

The KL10 does not provide a correct result when AC initially contains 400000000000.



2.12. STRING MANIPULATION 149

.

.

.

Y -2

Y -1

Y

Y+1

Y+2

.

.

.

Byte {10 Byte {9 Byte {8 Byte {7

Byte {6 Byte {6 Byte {4 Byte {3

Byte {2 Byte {1 Byte 0 Byte 1

Byte 2 Byte 3 Byte 4 Byte 5

Byte 6 Byte 7 Byte 8 Byte 9

1 bit

E

E

3 bits

�

�

Here the bytes are ordered in either direction from the zero position, and the byte alignment speci�ed

by the pointer is preserved throughout all words in the block. Within the restriction that the

alignment be preserved, as many bytes as will �t are packed in all words. (Except, the �rst and

last words of the block need not be �lled.) For example, with 10{bit bytes there are always three

per interior word in the linear format, but in the array format with an alignment of 8, there are

only two, occupying bits 8{17 and 18{27. Speci�cation of an arbitrary byte anywhere in the array

is accomplished by using an ADJBP. The microcode makes the adjustment by changing Y to the

location containing the byte and then setting up a new P for the speci�c byte.

Suppose bytes are packed �ve to a word, a pointer at location E now points to the third byte in a

given location, and one wishes to retrieve the thirty{�rst (the fourth byte from the sixth location)

beyond that. This routine loads the desired byte into AC.

MOVEI AC,37 ;Adjust by 31

10

ADJBP AC,E ;Form the adjusted pointer in AC

LDB AC,AC ;now, get the byte itself

2.12 String Manipulation

63

This section and two sections that follow treat the instructions that handle strings. All string

instructions are in the extended instruction set, and all therefore have a two{word format, the

�rst word being EXTEND. The second instruction word, whose own e�ective{address is E1 , is at

location E0 , which is the e�ective{address of the EXTEND. An instruction that \o�sets" uses E1

as a signed o�set, in which bit 18 is the sign. An instruction that \translates" or \edits" makes use

of a translation table that begins at E1 .

A string is a sequence of bytes as speci�ed by successive states of a standard byte pointer of the

type described in the preceding section, the �rst page or so of which the reader should reread if he

does not remember in detail the format of the pointer, the way it is incremented, and the way bytes

are organized in consecutive words (speci�cally with zero byte alignment). The program de�nes

a string by giving its length in number of bytes and an initial value for the pointer. Initially the

63

In the KI10 and KA10, these instructions trap as unassigned codes (x2.16).



150 CHAPTER 2. USER OPERATIONS

pointer must point to the byte position preceding the �rst byte in the string, because every string

instruction acts in a manner similar to a series of ILDBs or IDPBs, or in some cases both. Hence, all

string operations are from left to right because of the way byte pointers are incremented. A string

byte pointer and length may de�ne a string of bytes or de�ne a string space that will receive bytes.

In an instruction that moves a string, the actual string moved is referred to as the source string,

and the receiving space is referred to as the destination string, even though initially the latter is a

string of positions rather than bytes. Note that source and destination strings need not be the same

length. When the source string is longer, only part of it will �t in the destination space. Conversely,

when the source is shorter, it can be inserted into part of the destination space, either starting at the

left (left justi�ed) or placed so that its �nal byte is in the last destination position (right justi�ed).

Bytes may be of any size from zero bits to thirty{six. However, in a given string, all bytes are the

same size, as speci�ed by the pointer. The relationship between source and destination byte sizes is

a function of the way the programmer uses his data and the meaning he assigns to it. Depending

on circumstances, it may be desirable to spread out a source string into a destination space whose

positions are larger than the source bytes (data is always right justi�ed in a given byte position); or

source bytes may be truncated to �t into smaller destination positions (the truncation being always

from the left).

Most string operations make some use of bytes other than those in the strings themselves. Such

bytes may be special characters found in locations E0+1 and E0+2 or substitutions supplied by

a translation table. A byte from any location not in a string de�ned by the pointers and lengths

associated with the instruction is always from the right end of the word or half{word containing it

and has the same number of bits as the bytes in the string in which it will be used.

The \interior" of a string space is all of those bits in the words containing the string that lie between

the �rst byte in the �rst word and the last byte in the last word. Since byte alignment is zero, the

string is packed solid (with no unused interior bits) if 36 is an integral multiple of the byte size.

For sizes that do not pack solid, there will be unused interior bits except in the last word, and they

will lie at the right of the bytes in the words. In a destination string space of a string instruction,

if all unused interior bits are 0s initially, they are guaranteed to be 0s at the completion of the

instruction. If such bits are not all 0s initially, the subsequent states of unused interior destination

bits are indeterminate. In other words, the implementation is free to use a mechanism other than

repeated IDPB instructions to store into the destination string. (Source strings are una�ected by

the instructions.)

Bytes in a string may represent anything|digits, letters, or special characters. This section discusses

the basic operations: those that compare two strings or that move a string to a new position

with optional o�setting or translating of its bytes. The next section covers special operations for

converting between binary and decimal, where a decimal number is a string of bytes representing

decimal digits. x2.14 considers an instruction that is, e�ectively, a whole routine for complex editing

of a text string.

All string instructions skip the next instruction in the PC sequence if all operations are carried

out as expected or a compare condition is satis�ed, etc. Failure of a compare condition to be

satis�ed or something being amiss (such as loss of bytes because the source string will not �t in

the destination space) usually causes the processor to perform the next instruction. Note that the

\next instruction" is relative to the EXTEND (or an XCT that executes it)|in other words, relative

to the actual instruction to which PC points. The location of the second instruction word, which is

actually the operand of the EXTEND, does not a�ect the PC value.



2.12. STRING MANIPULATION 151

Every string instruction uses a block of accumulators which contain one or two byte pointers. A

pointer may be one word or two (local or global), as explained at the beginning of x2.11. In the

illustrations of the AC block format for the EXTEND instructions, pointers are always shown as a pair

of words in AC+N ,AC+N+1, where the actual byte pointer used may be in the �rst accumulator

or in both. The reader should note that, when a pointer is one word, the instruction does not in

any way a�ect the contents of the second accumulator in the pair.

64

CAUTION

For the instructions described in this and the next two sections, the format illustrations

show various parts of the accumulators and instruction words as being zero. These parts

are reserved and must be zero. Failure to comply with this requirement will cause an

EXTEND instruction to give an indeterminate result.

Moreover, there can be no overlapping of the various quantities used in any EXTEND

instruction. The source and destination spaces must never overlap; and under no cir-

cumstances should any string overlap anything else used by the instruction, such as the

AC block, a translation table, an edit pattern, special character locations following E0 ,

or even the instruction words themselves; and unused ACs in the speci�ed block (such

as that following a one-word byte pointer) cannot be used for any other purpose (such

as an index register). Any such overlapping will cause the result of the instruction to be

indeterminate.

This caution applies not only to the basic instructions discussed here but also to those

of the two sections that follow.

There are four string move instructions. One right{justi�es the source string in the destination space,

without otherwise modifying it. The others move the source string directly (i.e., left justi�ed), with

the bytes unmodi�ed, all o�set by a constant, or translated where every byte of a given value is

replaced by a corresponding substitution. The six string compare instructions do not a�ect the

speci�ed strings; instead, the strings are compared according to a collating sequence based on the

algebraic relationships of their bytes taken as unsigned binary numbers. All of these are two{word

instructions, where the �rst has the EXTEND code 123 and all use a block of six accumulators.

0 12 1314 1718 35

I X Y

8 9

A

MOVSLJ Move String Left Justi�ed

123

0 12 1314 1718 35

I X Y

8 9

00016E0

E0+1

Bits 9{12 = 0

E1 is not used.

65

Fill

64

However, in the KL10, when a one{word global byte pointer is used in a string instruction, the processor converts

it to an equivalent two{word byte pointer; the two{word byte pointer is returned in the AC block upon completion

of the instruction. For this reason, the KL10 fails to honor one{word global byte pointers when they appear in string

instructions executed in section zero.

Other processors may deal with the one{word global byte pointer without conversion.

65

I , X , and Y are reserved and should be zero.



152 CHAPTER 2. USER OPERATIONS

Move the source string left{justi�ed into the destination string space.

Source and destination are de�ned by the contents of a block of six accumulators.

AC

AC+1

AC+2

AC+3

AC+4

AC+5

000
Bits 0{8 = 0

Source String Length

000

Destination String Length

Bits 0{8 = 0

8 9 35

Source String Byte Pointer

Destination String Byte Pointer

0

Beginning at the left, copy as many bytes from the source string as will �t into the destination

string space. If any source bytes are left over (i.e., if the source string is longer than the destination

string), go to the next instruction. Otherwise, place the �ll character from E0+1 in the remaining

destination byte positions (if any) and skip the next instruction.

At the end, the byte pointers point to the last positions referenced in source and destination,

AC+3 contains zero, and AC bits 9{35 contain the number of source bytes not copied (if any). If

unused interior bits in both strings are clear initially, they are left clear; otherwise, unused interior

destination bits are indeterminate. The source string is una�ected.

0 12 1314 1718 35

I X Y

8 9

A

MOVSO Move String O�set

123

0 12 1314 1718 35

I X Y

8 9

00014
E0

E0+1

Bits 9{12 = 0

Fill

Move the source string, with each byte o�set by E1 , left justi�ed into the destination string space.

Source and destination are de�ned by the contents of a block of six accumulators.



2.12. STRING MANIPULATION 153

AC

AC+1

AC+2

AC+3

AC+4

AC+5

000
Bits 0{8 = 0

Source String Length

000

Destination String Length

Bits 0{8 = 0

8 9 35

Source String Byte Pointer

Destination String Byte Pointer

0

Beginning at the left, read each byte from the source string, add E1 to it algebraically (bit 18 is the

sign), and place the o�set byte in the corresponding position in the destination string space, provided

it is not larger than the speci�ed byte size (i.e., there are no 1s outside the area containing the o�set

byte in the register holding it). Continue in this fashion for each source byte until an oversize o�set

byte is encountered or until either the source string or the destination space is exhausted, whichever

occurs �rst. Then, if there are any source bytes not moved (because an o�set byte is oversize or the

source string is too long), go to the next instruction. Otherwise, place the �ll character from E0+1

in the remaining destination byte positions (if any) and skip the next instruction.

At the end, the byte pointers point to the last positions referenced in source and destination,

66

AC

bits 9{35 contain the number of source bytes not moved (if any), and AC+3 bits 9{35 contain the

number of destination byte positions not used (if any). If unused interior bits in both strings are

clear initially, they are left clear; otherwise, unused interior destination bits are indeterminate. The

source string is una�ected.

Note: MOVSO with a zero o�set is similar to MOVSLJ, but the latter is preferred in applicable

situations because it is faster.

O�set can be used to change a string of capitals to lower case by adding 40 octal to every byte.

0 12 1314 1718 35

I X Y

8 9

A

MOVST Move String Translated

123

0 12 1314 1718 35

I X Y

8 9

00015
E0

E0+1

Bits 9{12 = 0

Fill

Move the signi�cant part of the source string, with its bytes replaced by bytes from a translation

table at E1 , left justi�ed into the destination string space. Source and destination are de�ned by

the contents of a block of six accumulators. S is the signi�cance bit: setting it signals the start of

that part of the source string that has signi�cance, and bytes read while it is on are regarded as

signi�cant.

66

If the instruction terminates because of a condition relating to source data (e.g., an oversize o�set byte inMOVSO,

a termination byte in MOVST) then the source pointer addresses the source byte that caused the termination and the

destination pointer addresses the last byte actually stored in the destination �eld.



154 CHAPTER 2. USER OPERATIONS

AC

AC+1

AC+2

AC+3

AC+4

AC+5

00
Bits 3{8 = 0

Source String Length

000

Destination String Length

Bits 0{8 = 0

8 9 35

S NM

1 2 3

Source String Byte Pointer

Destination String Byte Pointer

0

Beginning at the left, read each byte from the source string and carry out the corresponding trans-

lation function given in the appropriate half|word at location E1 + bB=2c in the translation table,

where B is the value of the source byte.

67

Each word in the table has this format:

20

Op

Code

2018

Op

Code

0

176

Substitute for Byte

(Maximum 12 bits)

0

3524

Substitute for Byte

(Maximum 12 bits)

Translation Function for Even B Translation Function for Odd B

Location E1+bB=2c

Perform the function speci�ed by the op code in the half{word corresponding to the source byte, as

follows.

0 If S is 1, take the substitute in place of the source byte.

1 Terminate translation.

2 If S is 1, take the substitute in place of the source byte. (Also clear M .)

3 If S is 1, take the substitute in place of the source byte. (Also set M .)

4 Set S and take the substitute in place of the source byte. (Also set N .)

5 Terminate translation. (Also set N .)

6 Set S and take the substitute in place of the source byte. (Also set N and clear M .)

7 Set S and take the substitute in place of the source byte. (Also set N and M .)

Then take one of these three courses of action:

If the function makes no substitution and does not terminate, read the next byte from

the source string and continue as described above.

If the function makes a substitution, place the substituted byte in the next position in

the destination string space, read the next byte from the source string, and continue as

described above.

If the function terminates the translation, go on to the next instruction.

67

The notation bxc signi�es the largest integer contained within x.



2.12. STRING MANIPULATION 155

Unless the translation is terminated by a translation function, continue the above procedure until

either all source bytes are processed or the destination string is �lled, whichever occurs �rst. Then,

if any source bytes are left over, go to the next instruction. Otherwise, place the �ll character from

E0+1 in the remaining destination byte positions (if any) and skip the next instruction.

At the end, the byte pointers point to the last positions referenced in source and destination,

66

AC

bits 9{35 contain the number of unprocessed bytes in the source string (if any), and AC+3 bits

9{35 contain the number of destination byte positions not used (if any). If unused interior bits in

both strings are clear initially, they are left clear; otherwise, unused interior destination bits are

indeterminate. The source string is una�ected.

Notes: The translation table starts at location E1 and, since there are two functions per word, it

contains 2

n�1

locations, where n is the number of bits in a byte. The address is generated by adding

the left n� 1 bits of a byte to E1 .

Of the three 
ags in AC bits 0{2, only S is relevant to this instruction; the translation functions

also manipulate M and N , but their states have no e�ect on the result. S being set means the

translation has started. The programmer can make the translation start at the beginning of a string

by having S already set when the instruction is given or he can skip any number of initial bytes

in the source string and have the translation started by the �rst occurrence of some byte whose

associated function sets S . Hence, by use of S and terminating functions, the programmer can have

an MOVST translate any contiguous subset of the source string.

Text in upper case and lower case can be converted to all upper case by anMOVST with a translation

table that substitutes capitals for both.

0 12 1314 1718 35

I X Y

8 9

A

MOVSRJ Move String Right Justi�ed

123

0 12 1314 1718 35

I X Y

8 9

00017E0

E0+1

Bits 9{12 = 0

E1 is not used.

65

Fill

Move the source string right justi�ed into the destination string space. Source and destination are

de�ned by the contents of a block of six accumulators.

AC

AC+1

AC+2

AC+3

AC+4

AC+5

000
Bits 0{8 = 0

Source String Length

000

Destination String Length

Bits 0{8 = 0

8 9 35

Source String Byte Pointer

Destination String Byte Pointer

0



156 CHAPTER 2. USER OPERATIONS

Check the relation between the source and destination lengths to select one of the following three

courses of action:

If the source and destination strings are the same length, move the source string into the

destination space.

If the source string is shorter, place the �ll character from E0+1 in destination byte posi-

tions beginning at the left until there are just enough places remaining in the destination

space to accept the source string. Move the source string into the remaining destination

positions at the right.

If the source string is longer, skip over enough source bytes at the left so the remaining

source substring will �t in the destination space. Move the remaining source bytes into

the destination space.

After completing the selected course of action, skip the next instruction.

At the end, the byte pointers point to the last positions referenced in source and destination, AC+3

contains zero, and AC bits 9{35 contain the number of source bytes skipped over (if any).

68

If

unused interior bits in both strings are clear initially, they are left clear; otherwise, unused interior

destination bits are indeterminate. The source string is una�ected.

0 12 1314 1718 35

I X Y

8 9

A

CMPS{ Compare Strings

123

0 12 1314 1718 35

I X Y

8 9

0000
C

5 6

E0

E0+1

E0+2

C 6= 0; 4

Bits 9{12 = 0

E1 is not used.

69

Fill 1

Fill 2

Compare two strings and skip the next instruction if the condition speci�ed by C is satis�ed. The

two strings are de�ned by the contents of a block of six accumulators. The strings are compared

according to a collating sequence based on the algebraic relationships of their bytes taken as unsigned

binary integers.

68

However, as of microcode version 2.1[442], the KL10 will return 0 in AC bits 9{35 even if source bytes have been

skipped.



2.12. STRING MANIPULATION 157

AC

AC+1

AC+2

AC+3

AC+4

AC+5

000
Bits 0{8 = 0

String 1 Length

000

String 2 Length

Bits 0{8 = 0

8 9 35

String 1 Byte Pointer

String 2 Byte Pointer

0

Beginning at the left, compare string 1 with string 2, byte by byte, until a pair of bytes that are not

identical is encountered. If a string runs out before an inequality is found, continue the comparison

using a byte from E0+1 in lieu of bytes from string 1, or a byte from E0+2 in lieu of bytes from

string 2, whichever is shorter.

Upon either encountering an inequality between corresponding bytes of the two strings or reaching

the end of the longer string, stop the comparison and skip the next instruction if condition C is

satis�ed. The various values of C select di�erent conditions and, therefore, speci�c forms of this

instruction, as follows.

CMPSL Compare Strings and Skip if String 1 Less than String 2 001

CMPSE Compare Strings and Skip if String 1 Equal to String 2 002

CMPSLE Compare Strings and Skip if String 1 Less than or Equal to String 2 003

CMPSGE Compare Strings and Skip if String 1 Greater than or Equal to String 2 005

CMPSN Compare Strings and Skip if String 1 Not Equal to String 2 006

CMPSG Compare Strings and Skip if String 1 Greater than String 2 007

At the end, the byte pointers point to the last positions referenced in the strings and bits 9{35 of

AC and AC+3 contain the number of bytes left in the strings beyond the unequal pair. The strings

themselves are not a�ected. Note that, except in the case where the inequality occurs at the last

byte, the comparison continues to the end of the strings only if they are equal; in both of these cases,

the �nal states of the pointers and lengths are the same.

If an interrupt or page failure occurs during execution of a string move or compare, the accumulators

are adjusted for what has already been done. Afterwards, the instruction resumes as though starting

at the beginning but manipulates substrings that are simply those parts of the original strings left

from where the instruction was interrupted.

The string compare instructions are useful for such applications as alphabetizing strings that repre-

sent words.



158 CHAPTER 2. USER OPERATIONS

2.13 Decimal Conversion

63

Included among the string instructions are four for converting between binary and decimal. The

binary is always a twos complement, double{length binary integer in the format given in x1.5.1: the

magnitude is the 70{bit string in bits 1{35 of the two words, bit 0 of the high{order word is the

sign, and bit 0 of the low{order word is a copy of the sign but is never used in any operation. The

decimal is a string of bytes representing decimal digits (the reader should be familiar with the general

information and cautions about strings presented at the beginning of the previous section). To be

capable of conversion to double{length binary, a decimal string can have a maximum of twenty{two

signi�cant digits, although the string may be longer because of the presence of leading zeros or

nonnumeric characters. The decimal value corresponding to the binary maximumof 2

70

is 1 180 591

620 717 411 303 424.

The four instructions are for converting with o�set or translation in the two directions. All are two{

word instructions, where the �rst has the EXTEND code 123, and all use a block of accumulators.

Decimal{to{binary uses �ve accumulators, and binary to decimal requires a block of six, but one

within the block is not used.

0 12 1314 1718 35

I X Y

8 9

A

CVTBDO Convert Binary to Decimal O�set

123

0 12 1314 1718 35

I X Y

8 9

00012
E0

E0+1

Bits 9{12 = 0

Fill

0 12 1314 1718 35

I X Y

8 9

A

CVTBDT Convert Binary to Decimal Translated

123

0 12 1314 1718 35

I X Y

8 9

00013
E0

E0+1

Bits 9{12 = 0

Fill

Convert the magnitude of a double{length binary integer into a decimal digit string, o�set or trans-

lated. The integer is given, and the string space is de�ned by the contents of a block of six accumu-

lators.



2.13. DECIMAL CONVERSION 159

AC

AC+1

AC+2

AC+3

AC+4

AC+5

00
L NM Bits 3{8 = 0

1 2 3

Double Length Binary Integer

Not Used

String Length

String Byte Pointer

0 8 9 35

Determine the number of decimal digits required to convert the binary integer; if this number is

greater than the string length given by AC+3 bits 9{35, go on to the next instruction without

a�ecting the string space or the accumulators in any way.

70

Note that the string length must specify

a minimumof one digit byte, even if the binary number is zero, because representing zero in decimal

requires at least the digit \0" (a string with no bytes cannot represent anything|not even zero). If

the converted integer will �t in the de�ned string space, continue as follows.

If the binary integer in AC,AC+1 is not zero, set N ; if it is less than zero, set M (minus). If

the number of digits required is less than the given string length and L is 1, place the leading �ll

character from E0+1 in the excess positions at the left in the string space. This action causes the

result to be right justi�ed. Clear AC+3 bits 9{35.

Compute each decimal digit for a positive representation of the magnitude of the binary integer

(highest order �rst); and, for each, do one or the other of the following two operations, depending

on which instruction is being performed.

If the instruction is CVTBDO, add E1 to the computed digit algebraically (bit 18 is the

sign).

If the instruction is CVTBDT, for the digit substitute a byte from the right half of location

E1+D in the translation table, where D is the value of the digit, unless this is the last

digit in the conversion, in which case make the substitution from the right half of the

location if M is 0 or from the left half if M is 1.

Place each o�set or translated byte in the next position in the string space, compute the next digit,

and continue as described above. When the conversion is complete|all digits computed, o�set or

translated, and deposited|clear AC and AC+1 and skip the next instruction.

At the end, the byte pointer points to the last byte deposited in the string space and AC, AC+1,

and AC+3 bits 9{35 all contain zero. If unused interior bits in the string are clear initially, they

are left clear; otherwise, unused interior destination bits are indeterminate. The source string is

una�ected.

Notes: The translation table, which starts at E1 , contains ten locations for the decimal digits, each

with substitute bytes in both half{words, but the left half is used only for the �nal digit. This allows

70

Caution : In the KL10 the N and M 
ags are set up �rst and may therefore be a�ected even by an instruction

that is aborted because the binary integer is too large.



160 CHAPTER 2. USER OPERATIONS

the program to use a di�erent �nal byte for a decimal string converted from a negative number.

Setting N indicates that the number converted is not zero; the state of the 
ag has no e�ect on the

execution of the instruction.

0 12 1314 1718 35

I X Y

8 9

A

CVTDBO Convert Decimal to Binary O�set

123

0 12 1314 1718 35

I X Y

8 9

00010E0 Bits 9{12 = 0

0 12 1314 1718 35

I X Y

8 9

A

CVTDBT Convert Decimal to Binary Translated

123

0 12 1314 1718 35

I X Y

8 9

00011
E0 Bits 9{12 = 0

Convert a decimal string, o�set or translated, to a double{length binary integer. A block of �ve

accumulators is used for de�ning the decimal string and receiving the binary result.

AC

AC+1

AC+2

AC+3

AC+4

00
S NM Bits 3{8 = 0

1 2 3

String Length

String Byte Pointer

Double Length Binary Result

0 8 9 35

If S is 1 initially, there is already a binary number of signi�cance in AC+3,AC+4: use it as a base

for further accumulation of the digits derived from the decimal string. Otherwise, begin with a zero

base.

If the instruction is CVTDBO, set S to indicate the conversion has started.

Beginning at the left, read each byte from the string and, for each, do one or the other of the

following two operations, depending on which instruction is being performed.

If the instruction is CVTDBO, add E1 to the byte algebraically (bit 18 is the sign).

If the instruction is CVTDBT, carry out the corresponding translation function given in

the appropriate half{word at location E1 + bB=2c in the translation table, where B is

the value of the byte. Each word in the table has this format:



2.13. DECIMAL CONVERSION 161

20

Op

Code

2018

Op

Code

1714

Digit

3532

Digit

Translation Function for Even B Translation Function for Odd B

Location E1+bB=2c

Perform the function speci�ed by the op code in the half{word corresponding to the byte,

as follows (setting S signals the start of signi�cant digits in the the decimal string):

0 If S is 1, substitute the table digit for the byte. If S is 0, ignore this byte and go

on to the next.

1 Terminate the conversion.

2 Clear M and, if S is 1, substitute the table digit for the byte. If S is 0, ignore this

byte and go on to the next.

3 Set M and, if S is 1, substitute the table digit for the byte. If S is 0, ignore this

byte and go on to the next.

4 Set S and N and substitute the table digit for the byte.

5 Set N and terminate the conversion.

6 Set S and N , clear M , and substitute the table digit for the byte.

7 Set S , N , and M and substitute the table digit for the byte.

If the translation function terminates the conversion, or the o�set or translated digit is greater than

9, put the number of bytes remaining in the string in AC bits 9{35, put the partial binary result

accumulated so far in AC+3,AC+4, and go on to the next instruction. Otherwise multiply the

current binary value by 10

10

, add in the current digit, and read the next byte from the string to

continue as described above until the conversion is �nished.

CAUTION

It is up to the programmer to keep track of the size of the decimal number|the hardware

runs no test on the string. If there are too many signi�cant digits, the most signi�cant

part of the binary is lost, and the processor gives no indication of it.

The conversion is regarded as complete only when all bytes of the decimal string have been processed

without causing a termination or generating a digit outside the range 0{9. Upon completion, negate

the accumulated binary if M is 1, place the result (negated or not) in AC+3,AC+4, and skip the

next instruction.

At the end, the byte pointer points to the last byte read from the decimal string and AC bits 9{35

contain the number of unprocessed bytes left in the decimal string (if any). The string itself is

una�ected. The translation table starts at location E1 ; and, since there are two functions per word,

it contains 2

n�1

locations, where n is the number of bits in a byte. The address is generated by

adding the left n� 1 bits of a byte to E1 .

Notes: CVTDBO always sets S immediately, but in CVTDBT its setting is controlled by the transla-



162 CHAPTER 2. USER OPERATIONS

tion functions. Hence, an instruction can skip over leading �ll characters or nonnumeric characters

preceding the decimal part of a string. If an interrupt or page failure occurs during this instruction,

the number of bytes yet to be processed is put in AC bits 9{35 and the partial binary accumulated

so far is placed in AC+3,AC+4. Thus, when the instruction resumes after an interruption with S

set, it simply continues where the conversion left o�, adding the next digit to ten times the binary

previously saved. If the programmer wishes to preset S to add the decimal string to a signi�cant

binary base already in AC+3,AC+4, he must be aware that the base is multiplied by ten before the

�rst digit is added.

For a decimal string abcde, the evaluation procedure is

(((a � 10 + b)� 10 + c)� 10 + d)� 10 + e

which is equivalent to

e � 1

+ d� 10

+ c� 100

+ b� 1000

+ a� 10000

The operations are all done in binary arithmetic.

Translation functions manipulateM , but the program can set it prior to either instruction to indicate

that the decimal string represents a negative number. N can also be preset or manipulated through

the translation table, but its state has no e�ect on the execution of the instruction.

For decimal strings with 4{bit digits, conversion can be done by CVTBDO or CVTDBO with a zero

o�set. However, note that decimal bytes need not be four bits: they can be larger, using any decimal

code, provided only that, on conversion to binary, they are in the range 0{9 (0{1001 binary) after

o�set or translation.

In ASCII numeric strings, the bytes representing the digits are 60{71 octal. Conversion to ASCII

decimal would be by CVTBDO with o�set 60 (48 decimal), and CVTDBO with o�set �60 would

convert in the opposite direction. Consider an ASCII string containing decimal numbers of various

unknown lengths separated by semicolons (ASCII code 73). The program could convert all of these

numbers to binary by specifying a constant, suitably large string length, while giving a sequence

of CVTDBOs with o�set �60. Each conversion would terminate (nonskip) upon encountering a

semicolon, because its o�set value is 11 decimal. Between conversions, the program would have to

store away the result and clear S by a sequence like this:

EXTEND AC,[CVTDBO 0,-60] ;Convert

DMOVEM AC+3,VALUE1 ;Store result

TLZ AC,700000 ;Reset SNM

EXTEND AC,[CVTDBO 0,-60]

DMOVEM AC+3,VALUE2

TLZ AC,700000

...



2.14. STRING EDITING 163

If there were very many numbers, the program would naturally use only one of the above sets of three

instructions in a loop, along with some mechanism to change the storage address and test whether

to reiterate. The procedure cannot provide a negative result. If the same situation were handled by

translation, the table would not actually start at E1|it would run from E1+30 to E1+35.

2.14 String Editing

63

The EDIT instruction implements more complex operations on strings than merely moving or trans-

lating; before investigating EDIT, the reader should be familiar with the general characteristics of

strings (and cautions about them) as presented at the beginning of x2.12. EDIT provides the facilities

needed, particularly in COBOL and PL/I, to create formatted character strings for output. Typical

features are the ability to suppress leading zeros, insert special symbols such as decimal points or

currency symbols, and recognize di�erent types of numbers for operations like adding \CR" or \DB"

after them. When numbers appear in running text, leading zeros are usually deleted; when they are

lined up in columns (such as in a �nancial statement), the practice is to substitute spaces.

EDIT uses the usual source and destination byte pointers, but no string lengths are given. Instead the

source bytes are processed by commands in a pattern command string, whose structure is determined

by the expected length of the source. The pattern commands are 9{bit bytes packed four to a word.

They are executed according to a pattern pointer, which supplies the address of a memory location

71

and a 2{bit byte number, wherein the numbers 0{3 identify the bytes from left to right in the word.

The destination string space is assumed to be large enough for whatever string EDIT creates.

Available to the procedure are a translation table at E1 like that of MOVST and a message insertion

table following E0 . E0+1 contains the �ll character|typically a space|for suppression of leading

zeros; but, if the whole word containing the �ll character is zero, the �ll is not inserted in the des-

tination space, thus deleting leading zeros. E0+2 contains a 
oat character|typically a currency

symbol or plus sign|which, if the word containing it is non{zero, is inserted before the �rst signi�-

cant byte. The table can extend to E0+100, thus supplying an additional sixty{two characters for

insertion in the string being generated. Insert characters are typically decimal point, comma, \C"

and \R", and so forth.

For signaling signi�cance, AC has an S bit, which can be set from the translation table when

signi�cance starts. At this point the destination string position is marked by storing the current

value of the destination pointer at a location speci�ed by a mark address. This provides a record of

where signi�cance started, so the instruction can go back to make revisions if needed after receiving

more information from the source.

EDIT is a two{word instruction, where the �rst has the EXTEND code 123, and it uses a block of

six accumulators. The description is accompanied by a 
owchart in Figure 2.3.

71

When EDIT is executed in section zero, bits 6{17 of the pattern pointer should be zero. When EDIT is executed

in a non{zero section, the pattern pointer is a global address.



164 CHAPTER 2. USER OPERATIONS

Figure 2.3: EDIT Instruction Flowchart

HRMF-EDIT.TEX

?

Start

Retreive and

Decode (PP)

PP PP+1

� �

-

SELECT

001

SP SP+1

Retreive (SP)

Decode T

OP

-

SIGST

002

S

�

�

�

H

H

H

H

H

H

�

�

�

-

?

1

?

0

S 1; (MA) DP

?

(E0+2)

�

�

�

H

H

H

H

H

H

�

�

�

-

6= 0

DP DP+1

(DP) (E0+2)

D

-

= 0

-

-

S 0; M 0; N 0

FLDSEP

003

-

-

DP$(MA)

EXCHMD

004

-

-

NOP

005

-

MESSAG

1XX

S

�

�

�

H

H

H

H

H

H

�

�

�

-

1

DP DP+1

(DP) (E0+XX+1)

D

-

?

0

(E0+1)

�

�

�

H

H

H

H

H

H

�

�

�

-

6= 0

DP DP+1

(DP) (E0+1)

D

-

= 0

-

-

SKPM

5XX

M

�

�

�

H

H

H

H

H

H

�

�

�

-

0

?

1

-

SKPA

7XX

PP PP+XX+1

-

-

SKPN

6XX

N

�

�

�

H

H

H

H

H

H

�

�

�

6

1

-

0

6

-

STOP

000

PP PP+1

PC PC+1

-

��

��

END

-

0

S

�

�

�

H

H

H

H

H

H

�

�

�

-

1
DP DP+1

(DP) T

D

-

?

0

(E0+1)

�

�

�

H

H

H

H

H

H

�

�

�

-

= 0

6= 0

-

DP DP+1

(DP) (E0+1)

D

-

-

2

M 0

-

-

3

M 1

-

6

-

4

N 1

-

S

�

�

�

H

H

H

H

H

H

�

�

�

-

1
DP DP+1

(DP) T

D

-

?

0

S 1

(MA) DP

?

(E0+2)

�

�

�

H

H

H

H

H

H

�

�

�

-

= 0

?

6= 0

DP DP+1

(DP) (E0+2)

D

-

6

-

6

M 0

N 1

-

-

7

M 1

N 1

-

6

-

5

N 1

?
-

1

PP PP+1

-

��

��

END

PP Pattern Pointer in AC

SP Source Pointer in AC+1,AC+2

MA Mark Address in AC+3

DP Destination Pointer in AC+4,AC+5

D A subscript: number of bits at the right

equal to the size of a destination byte.

T Translation function:

(E1+(SP)/2)

L

if (SP) even

(E1+[(SP){1]/2)

R

if (SP) odd

T

OP

Opcode part of T (left 3 bits)

T

D

Data part of T (right D bits)

XX Right 6 bits of Pattern Byte



2.14. STRING EDITING 165

0 12 1314 1718 35

I X Y

8 9

A

EDIT Edit String

123

0 12 1314 1718 35

I X Y

8 9

00004
E0

E0+1

E0+2

Fill

Float

Bits 9{12 = 0

.

.

.

To edit a source string, execute the commands in the pattern string, employing byte substitutions

from a translation table at E1 and inserting characters from a message insertion table at E0+1;

place the result in the destination string space. Source, destination, and pattern are de�ned by the

contents of a block of six accumulators.

AC

AC+1

AC+2

AC+3

AC+4

AC+5

S NM

1 2 3

0

Pattern Byte Number

�

�

Pattern String Address

Bit 3 = 0

00
Mark Address Bits 0{5 = 0

4 5 6 35

Source String Byte Pointer

Destination String Byte Pointer

0

De�nitions: Initially the pattern pointer, which comprises the pattern string address and byte

number, points to the �rst pattern command. Pattern byte counting is e�ected by incrementing the

byte number unless it is 3, in which case it is changed to 0 and the address is incremented. The

address is limited to bits 18{35 if the program is running in section zero. The mark address is simply

the address of the �rst in a pair of locations for receiving the destination string byte pointer as a

mark. Of course, if the destination pointer is local, only one location is used to store it. Furthermore,

if the program is running in section zero, the mark address is limited to bits 18{35 and always points

to a single location. In the following, any reference to reading a source byte shall be taken to mean

that the source string byte pointer is incremented �rst, and any reference to placing a character in

the next position in the destination string space shall be taken to mean that the destination string

byte pointer is incremented �rst.

Execute the pattern command speci�ed by the pattern pointer. At the completion of any pattern

command, unless the edit has been ended by a STOP command or a terminating translation function,

increment the pattern pointer and execute the pattern command then speci�ed by it. There are ten

such commands, as follows (all other command bytes are reserved and must not be used).



166 CHAPTER 2. USER OPERATIONS

SELECT

001

0 8

Select Next Source Byte

Read the next byte from the source string and carry out the corresponding translation function

given in the appropriate half{word at location E1+bB=2c in the translation table, where B is the

value of the source byte. Each word in the table has this format.

20

Op

Code

2018

Op

Code

0

176

Substitute for Byte

(Maximum 12 bits)

0

3524

Substitute for Byte

(Maximum 12 bits)

Translation Function for Even B Translation Function for Odd B

Location E1+bB=2c

Perform the function speci�ed by the op code in the half{word corresponding to the source byte as

follows.

0 If S is 1, place the substitute in the next position in the destination string space. Otherwise,

if location E0+1 is non{zero, place the �ll character from it in the next destination position.

1 Increment the pattern pointer and go on to the next instruction.

2 Clear M and then perform function 0.

3 Set M and then perform function 0.

4 Set N . If S is 1, place the substitute in the next position in the destination string space.

Otherwise, do the following: set S ; put the current value of the destination byte pointer at the

location speci�ed by the mark address; if location E0+2 is non{zero, put the 
oat character

from it in the next destination position; then place the substitute in the next destination

position after that.

5 Set N , increment the pattern pointer, and go on to the next instruction.

6 Clear M and then perform function 4.

7 Set M and then perform function 4.

Notes: The translation table starts at location E1 , and, since there are two functions per word, it

contains 2

n�1

locations, where n is the number of bits in a byte. The address is generated by adding

the left n� 1 bits of a byte to E1 .

SIGST

002

0 8

Start Signi�cance

If S is 0, do the following: set S ; put the current value of the destination pointer at the location

speci�ed by the mark address; if location E0+2 is non{zero, put the 
oat character from it in the

next destination position.

Notes: A typical use of this command might be before a �nal character to guarantee that zero is

represented by one \0" or, if the number of cents is 00004, to put in a decimal point and generate a



2.14. STRING EDITING 167

result of .04.

MESSAG+n
1

n

0 2 3 8

Insert Message Character

If S is 1, place the character from E0+n+ 1 in the next destination position. Otherwise, if location

E0+1 is non{zero, place the �ll character from it in the next destination position.

FLDSEP

003

0 8

Separate Fields

Clear S , M , and N .

Notes: Essentially this instruction causes the procedure to start over on a new substring. A typical

use would be in handling a series of numbers (separated by some character) where one would want

to suppress leading zeros in all of them.

EXCHMD

004

0 8

Exchange Mark and Destination Pointers

Interchange the destination pointer presently held in AC+4,AC+5 with the mark pointer at the

location speci�ed by the mark address.

Notes: This makes it possible to go back to where signi�cance began in order to revise the destination

string in light of further processing of the source, but at the same time saving the present position.

A return forward can be made simply by repeating the instruction.

It is unlikely to be very useful for the programmer to set up an initial mark pointer. In any normal

procedure, a mark is created from the destination pointer and is simply a particular state of it. Hence,

the destination and mark pointers have the same number of words. The result is indeterminate if

the programmer deliberately sets up mark and destination pointers of di�erent types.

SKPM+n
5

n

0 2 3 8

Skip on M

If M is 1, skip over the next n + 1 pattern commands by incrementing the pattern pointer n + 1

times.

Notes: M is generally used as a minus sign (i.e., to indicate a string is negative), but the programmer

can use it for any purpose. A typical use would be to determine whether \CR" or \DB" should be

inserted after a number.



168 CHAPTER 2. USER OPERATIONS

SKPN+n
6

n

0 2 3 8

Skip on N

If N is 1, skip over the next n + 1 pattern commands by incrementing the pattern pointer n + 1

times.

Notes: N is generally set to mean the string is non{zero, but the programmer can use it for any

purpose. Suppose we wish to output a blank on zero, but use of SIGST to handle cents{only

quantities has produced \.00". We could use SKPN after the last source byte, so that, if the output

is non{zero, we would skip over commands that would otherwise go back and blank the output.

SKPA+n 7

n

0 2 3 8

Skip Always

Skip over the next n+ 1 pattern commands by incrementing the pattern pointer n+ 1 times.

Notes: This command is used mostly to reverse the meaning of the other skips. For example, the

sequence \SKPN,X " skips command X if N is 1, but the sequence \SKPN,SKPA,X " executes it if

N is 1. SKPA can also be used to extend a conditional skip beyond sixty{four commands, as in

SKPN+77,...63 bytes...,SKPA+0,SKPA+3,...4 bytes...,X

in which N being 1 causes a skip over sixty{seven signi�cant commands to get to X .

NOP

005

0 8

No{op

Do nothing.

STOP

000

0 8

Stop Edit

Increment the pattern pointer, end the edit, and skip the next instruction.

At the end, the byte pointers point to the last positions referenced in source and destination and the

pattern pointer points to the command byte following the last one executed. However, if the pattern

gives an EXCHMD after the �nal byte is placed in the destination string, the \destination pointer"

is actually at the mark location rather than in AC+4,AC+5. If unused interior bits in both strings

are clear initially, they are left clear; otherwise, unused interior destination bits are indeterminate.

The source string is una�ected.

Notes: If an interrupt or page failure occurs during EDIT, the accumulators are adjusted for restart-

ing at the beginning of the current pattern command.

Example: The following program uses binary{to{decimal conversion and editing to translate a bi-



2.14. STRING EDITING 169

nary number into a message of seventeen characters containing a decimal string with appropriate

nomenclature for commercial billing purposes. A positive result has the form

$12,345.46 DUE US

whereas a negative result has the form

$12,345.46 CREDIT

but, if the number is zero, the entire �eld is blank (all spaces). The maximum number the routine

can handle is $99,999.99.

This program employs seven accumulators, of which P is for the stack pointer and a block of six,

labeled AC1{AC6, is for the EXTEND instructions. In the block, however, AC3 and AC6 are never

actually used because the program is entirely local, employing only one{word byte pointers. Begin-

ning at TEMP and FIELD are blocks of eight locations set aside for the EDIT source and destination

strings. The routine is called by PUSHJ P,PNTFLD with the amount as a binary number of cents in

AC1,AC2. It returns the result beginning at the left in FIELD.

PNTFLD: MOVE AC4,[400000,,7] ;Convert up to 7 digits with leading fill

MOVE AC5,[POINT 7,TEMP] ;Store decimal in edit source area

EXTEND AC1,[CVTBDO 60 ;Convert to decimal with leading zeros 60

JRST ERROR] ;Here if need too many digits (binary too large)

MOVEI AC1,PATTRN ;Set pattern pointer to first command

TLNE AC4,100000; ;Copy M flag from AC4 (CVTBDO result)

TLO AC1,100000 ;to AC1

MOVE AC2,[POINT 7,TEMP] ;Pointer for source string (CVTBDO result)

MOVEI AC4,MARK ;Address of mark pointer

MOVE AC5,[POINT 7,FIELD] ;Pointer for destination string

EXTEND AC1,EDTINS ;Edit the item

HALT . ;Should never get here

POPJ P,0 ;Return

;Here is the edit instruction

EDTINS: EDIT TABLE-30 ;Need only digit part of translation table

" " ;Fill character is space

"$" ;Float character is dollar sign

"," ;Message 2 is comma

"." ;Message 3 is decimal point

"D"

"U"

"E"

"S"

"C"

"R"

"I"

"T"



170 CHAPTER 2. USER OPERATIONS

;Here is the translation table. Digits 1--9 set S and N flags

; 0 does not affect the flags

TABLE: 60,,400061

400062,,400063

400064,,400065

400066,,400067

400070,,400071

;Here is the pattern

PATTRN: 001001,,102001 ;SELECT SELECT MESSAG+2 SELECT

; 2 digits, comma, digit

001001,,002103 ;SELECT SELECT SIGST MESSAG+3

; 2 more digits, then start significance and insert

; a decimal point

001001,,100506 ;SELECT SELECT MESSAG+0 SKPM+6

; 2 more digits (cents) and a space, then skip

; next 7 commands if number was negative

104105,,106100 ;Append the message ``DUE US''

105107,,705110 ;Then skip 6 pattern commands

111106,,104112 ;Append the message ``CREDIT''

113613,,004100 ;If number is non-zero skip 12 commands

100100,,100100 ;Else exchange mark and destination pointers

100100,,100100 ;and blank out result

100100,,0 ;Then stop

MARK: BLOCK 1

TEMP: BLOCK 10

FIELD: BLOCK 10

2.15 Programming Examples

Before continuing to more system{related subjects, let us consider some simple programs that demon-

strate the use of a variety of the instructions described thus far.

2.15.1 Processor Identi�cation

The instruction repertoires of all PDP{10 processors and the 166 processor used in the PDP{6 are

very similar; most programs require no changes to run on any of them. Because of minor di�erences

and the fact that some instructions are not available on the earlier machines, a program that is to

be compatible with all should have some way of distinguishing which machine it is running on. The

following test routine su�ces.

72

72

It is beyond the scope of this manual to document the behavior of other vendors' versions of the PDP{10

architecture. PDP{10 architectures have also been built by Foonly and by Systems Concepts.



2.15. PROGRAMMING EXAMPLES 171

JFCL 17,.+1 ;Clear flags

JRST .+1 ;Change PC

JFCL 1,PDP6 ;PDP-6 has PC Change flag

MOVNI AC,1 ;Others do not. Make AC all 1s

AOBJN AC,.+1 ;Increment both halves

JUMPN AC,KA10 ;KA10 carries to left half

BLT AC,0 ;Try BLT. Source=0; Dest=0. AC must not be 0

JUMPE AC,KI10 ;KI10 if AC = 0

MOVSI AC,400000 ;Largest negative number

ADJBP AC,[430100,,0] ;Check what this does

CAMN AC,[430100,,0] ;The KL won't change this

JRST KL10 ;This must be a KL10

MOVSI AC,450000 ;A one-word global byte pointer

IBP AC ;What does this do?

CAME AC,[450000,,0] ;The KS doesn't change this

JRST XKL1 ;This must be an XKL-1

JRST KS10 ;Otherwise, it's a KS10

2.15.2 Parity

Parity procedures are used regularly to check the accuracy of stored information. Parity generation

and checking are generally handled automatically by memory and high{speed, block{oriented pe-

ripheral devices but must be handled by the program for character{oriented devices. Consider 8{bit

characters, for which the program carries out two procedures: for output it generates a parity bit

from seven data bits to produce an 8{bit character with parity; following input it checks the parity

of the eight bits received. In either case, however, the program can simply �nd the parity of an 8{bit

character by regarding the seven output data bits as eight, including an irrelevant extra bit. The

two procedures then di�er only in the �nal action. In the �rst case, the program uses the result to

adjust the eighth bit for correct parity, whereas, in the second, it checks the result for an indication

of error.

Assuming the character is right{justi�ed in accumulator A and the rest of A is clear, as it would be

were the character placed in A by a LDB instruction or a DATAI, the simplest and quickest procedure

would be to use A to index an XCT into a table, each of whose locations contains an instruction

that adjusts the parity for output or jumps to a routine for erroneous input. This procedure would

normally be unacceptable because of the very large memory requirements. However, the table

can be reduced to sixteen entries without excessive loss in speed, by exclusive{ORing the left and

right halves of the character and indexing on the result (parity is invariant under the exclusive{OR

function, which essentially disposes of pairs of 1s). This example, which uses a second accumulator

T for character manipulation, requires six memory references to generate odd parity. (Numbers of

memory references and locations given do not include those for the POPJ, which will be regarded

as subroutine overhead. Similarly every example also requires that the program give a PUSHJ to

get to the subroutine. This example is counted as �ve memory references for instruction fetches and

one memory reference for a data fetch, the instructions in PARTAB are considered to be data.)



172 CHAPTER 2. USER OPERATIONS

PARITY: MOVEI T,(A) ;Copy character in T

LSH T,-4 ;Line up halves

XORI T,(A) ;Reduce paritywise to 4 bits

ANDI T,17 ;Wipe out unwanted bits

XCT PARTAB(T) ;Execute indicated table item

POPJ P,

PARTAB: XORI A,200 ;0 --- change high bit

JFCL ;1 --- no--op

JFCL ;2

XORI A,200 ;3

JFCL ;4

XORI A,200 ;5

XORI A,200 ;6

JFCL ;7

JFCL ;10

XORI A,200 ;11

XORI A,200 ;12

JFCL ;13

XORI A,200 ;14

JFCL ;15

JFCL ;16

XORI A,200 ;17

To handle even parity, interchange the JFCLs and XORIs in the table or change the MOVEI T,(A) to

MOVEI T,200(A).

The next example does exactly the same thing, but it substitutes a little more computation for use

of a table. In other words, it takes a little more time (7.5 memory references average) but less than

half the memory space.

PARITY: MOVEI T,200(A) ;Copy character with high bit

LSH T,-4 ;complemented, then fold copy into 4

XORI T,(A) ;bits with opposite parity

TRCE T,14 ;Are left two both 0?

TRNN T,14 ;Or both 1?

XORI A,200 ;Yes, change high bit

TRCE T,3 ;Are right two both 0?

TRNN T,3 ;Or both 1?

XORI A,200 ;Yes, change for even, restore for odd

POPJ P,

Note that this example does not require the rest of A to be clear. For even parity, change the address

in the MOVEI from 200 to 0.

Finally, let us consider the extreme of substituting computation for memory. Starting with the



2.15. PROGRAMMING EXAMPLES 173

character abcdefgh right{justi�ed in A, �rst copy it to T and then duplicate it twice to the left,

producing

abc def gha bcd efg hab cde fgh

where the bits (in positions 12{35) are grouped corresponding to the octal digits in the word.

ANDing this with

001 001 001 001 001 001 001 001

retains only the least{signi�cant bit in each 3{bit set, the result can be represented by

cfadgbeh

where each letter represents an octal digit having the same value (0 or 1) as the bit originally repre-

sented by the same letter. Multiplying this by 11111111

8

generates the following partial products:

c f a d g b e h

c f a d g b e h

c f a d g b e h

c f a d g b e h

c f a d g b e h

c f a d g b e h

c f a d g b e h

c f a d g b e h

Since any digit is at most 1, there can be no carry{out from any column with fewer than eight digits

unless there is a carry{in to it. Hence, the octal digit produced by summing the center column

(the one containing all the bits of the character) is even or odd as the sum of the bits is even or

odd. Thus, its least signi�cant bit (bit 14 of the low{order word in the product) is the parity of the

character: 0 if even, 1 if odd.

The above may seem a very complicated procedure to do something trivial, but it is e�ected by this

quite simple sequence:

PARITY: MOVEI T,(A) ;Copy in T

IMULI T,200401 ;Duplicate twice

AND T,ONES ;Pick LSBs

IMUL T,ONES ;Generate product

TLNN T,10 ;Is bit 14 odd?

XORI A,200 ;No, change parity

POPJ P,

.

.

.

ONES: 11111111

This procedure uses a minimumof both memory references and memory space but takes considerably

more time, because the multiplications are relatively slow.



174 CHAPTER 2. USER OPERATIONS

The following table shows the trade{o� of memory references against memory space for the above

four procedures. The time is proportional to the number of references, except in case 4.

References Locations

1. Table Lookup 2 257

2. Folded Lookup 6 21

3. Folded Computation 7.5 9

4. Computation 7.5 7

2.15.3 Reversing the Order of Digits

Suppose one wishes to reverse the order of the digits in the 6{bit character abcdef , where the letters

represent the bits of the character. One can �rst duplicate it three times to the left and shift the

result left 1 place, producing

a bcd efa bcd efa bcd efa bcd ef0

where the bits are grouped corresponding to the octal digits in the word. ANDing this with

1 000 100 100 010 010 000 001 000

gives

a 000 e00 b00 0f0 0c0 000 00d 000

This number is con�gured such that the residues of the values of its bits modulo 2

8

�1 are in exactly

the opposite order from the bits of the original character and have the binary orders of magnitude

0{5. In other words, this number is equal to the sum of the numbers in the upper row below, and

dividing each of these addends by 255

10

gives the remainder listed in the lower row.

Dividend f � 2

13

e� 2

20

d� 2

3

c� 2

10

b� 2

17

a� 2

24

Remainder f � 2

5

e� 2

4

d� 2

3

c� 2

2

b� 2

1

a� 2

0

The remainder in a division is equal to the sum, modulo the divisor, of the remainders left by dividing

each of the dividend addends by the same divisor, and the sum of the terms in the lower row is

obviously fedcba. The above procedure is implemented by this sequence (attributed to Schroeppel

73

)

where the character is right{justi�ed in accumulator A (with the rest of A clear) and its reverse is

right{justi�ed in accumulator A+1.

IMUL A,[2020202] ;4 copies shifted left 1

AND A,[104422010] ;Pick bits for reverse

IDIVI A,377 ;Divide by 2

8

� 1

To reverse eight bits, one can use a similar procedure (also attributed to Schroeppel) where, again,

the original character is right{justi�ed in A and its reverse is right{justi�ed in A+1. However, this

73

HAKMEM, item 167, page 78 (Arti�cial Intelligence Memorandum, No. 239 , February 29, 1972, MIT Arti�cial

Intelligence Laboratory).



2.15. PROGRAMMING EXAMPLES 175

time the manipulation cannot be managed within a single{length word, so di�erent forms of multiply

and divide are used.

MUL A,[100200401002] ;5 copies in A and A+1

AND A+1,[20420420020] ;Pick bits for reverse via

ANDI A,41 ;residues mod 2

10

� 1

DIVI A,1777 ;Divide by 2

10

� 1

2.15.4 Counting Ones

Suppose one wishes to count the number of 1s in a word. One could. of course, check every bit

in the word. However, there is a quicker way if one remembers that, in any word and its twos

complement, the rightmost 1 is in the same position, both words are all 0s to the right of this 1, and

no corresponding bits are the same to the left (the parts of both words to the left of the rightmost 1

are complements). Hence, using the negative of a word as a mask for the word in a test instruction

selects only the rightmost 1 for modi�cation. The example uses three accumulators: the word being

tested (which is lost) is in T, the count is kept in CNT, and the mask created in each step is stored

in TEMP.

MOVEI CNT,0 ;Clear CNT

MOVN TEMP,T ;Make mask to select rightmost 1

TDZE T,TEMP ;Clear rightmost 1 in T

AOJA CNT,.-2 ;Increase count and jump back

... ;Skip to here if no 1s left in T

CNT is increased by 1 every time a 1 is deleted from T. After all 1s have been removed, the TDZE

skips.

The preceding example uses little memory but contains a loop, so the time it takes is proportional

to the number of 1s. The next example takes more memory but it takes constant time; hence, it is

slower than the above when there are few 1s (fewer than eight) but is much faster when there are

many. The word, which is lost, is in accumulator A, and the answer appears in accumulator A+1

(for convenience in nomenclature, let B = A+1). The routine (attributed to Gosper, Mann, and

Leonard

74

) has three distinct parts and is based on the fact that, in a binary word, counting 1s is

equivalent to calculating the sum of the digits. The �rst part, of seven instructions, manipulates the

octal digits of the word so as to replace each digit by the number of 1s in it. Taking D as an octal

digit and bxc to mean the largest integer contained in x, the algorithm used to make the substitution

is

D � bD=2c � bD=4c

Of course, the computer always acts in binary terms regardless of programmer interpretation. In

this case the procedure carried out on each 3{bit piece abc is

74

Ibid, item 169, page 79.



176 CHAPTER 2. USER OPERATIONS

abc� ab� a

The instructions e�ect this algorithm by shifting a copy of the word right 1 place, masking out the

LSB of each shifted octal digit to prevent it from interfering with the next digit at the right (i.e.,

to isolate the digits), and subtracting the shifted word from the original. The same process is then

repeated, this time masking out what was originally the middle bit in each digit. That this algorithm

gives the correct substitution is evident from the following table, in which it is seen that the bottom

number in a given column is the sum of the bits in the octal digit given at the top of the column.

Original digit 0 1 2 3 4 5 6 7

Subtract bD=2c {0 {0 {1 {1 {2 {2 {3 {3

0 1 1 2 2 3 3 4

Subtract bD=4c {0 {0 {0 {0 {1 {1 {1 {1

Number of 1s 0 1 1 2 1 2 2 3

The original word has been replaced with a set of twelve numbers whose sum is equal to the number

of 1s in the original. The next three instructions add pairs of adjacent numbers so as to replace the

original twelve by six numbers whose sum is still the same. These new numbers are isolated in 6{bit

pieces of the word, so they can be regarded as digits in a number in base 64. Any number is simply

the sum of the values of its digits; i.e., of its digits each multiplied by an appropriate power of the

base. Dividing each such addend by 1 less than the base gives the digit itself as remainder. Hence,

the third part of the routine simply divides the 6{digit number by 63, producing in B a remainder

that is the sum of the remainders from the individual digits; i.e., the sum of the digits.

75

MOVE B,A ;Copy in B

LSH B,-1 ;Right 1

AND B,[333333,,333333] ;Mask out LSBs

SUB A,B ;D � bD=2c

LSH B,-1 ;Right 1 again

AND B,[333333,,333333] ;Mask out middle bits

SUBB A,B ;D � bD=2c � bD=4c; two copies

LSH B,-3 ;Shift right 1 octal digit

ADD A,B ;Add numbers in digit pairs

AND A,[070707,,070707] ;Throw out extra pair sums

IDIVI A,77 ;Divide by 63, sum in B

If it is known that the 1s in the word are entirely contained within bits 22{35 (the rightmost fourteen

bits), the following somewhat shorter routine can be used. This is faster than the loop for more

than seven 1s. It �rst treats the number in quaternary, replacing each digit with the number of 1s

in it, and then converts from quaternary to hexadecimal.

75

In general terms, this is the statement that the sum S of the digits in any numberN in base b is N mod (b� 1)|

provided b is deliberately chosen such that S < b� 1. The condition holds here, of course, because the number of 1s

in a PDP{10 word is at most 36. It is, in fact, to make this condition hold that the routine converts from base 8 to

base 64.



2.15. PROGRAMMING EXAMPLES 177

MOVEI B,(A)

LSH B,-1

ANDI B,12525 ;Mask out LSBs

SUBB A,B ;D � bD=2c; two copies

LSH B,-2 ;Right 1 quaternary digit

ANDI A,31463 ;Mask out some of digits in A

ANDI B,31463 ;The rest in B

ADDI A,(B) ;Now combine digit pairs

IDIVI A,17 ;Divide by 15, sum in B

Note that the pair of ANDIs gets rid of one out of each set of two identical bit pairs before adding.

This is done because there can be digit over
ow; i.e., a resulting hexadecimal digit can have more

than two signi�cant bits.

2.15.5 Number Conversion

In the standard algorithm for converting a number N to its equivalent in base b, one performs the

series of divisions

N=b = q

1

+ r

1

=b; r

1

< b

q

1

=b = q

2

+ r

2

=b; r

2

< b

q

2

=b = q

3

+ r

3

=b; r

3

< b

.

.

.

q

n�1

=b = 0 + r

n

=b; r

n

< b

The number in base b is then r

n

: : : r

3

r

2

r

1

. For example, the octal equivalent of 61 decimal is 75:

61=8 = 7 + 5=8

7=8 = 0 + 7=8

The following decimal print routine converts a 36{bit positive integer in accumulator T to dec-

imal and types it out. The contents of T and T+1 are destroyed. The routine is called by a

PUSHJ P,DECPNT, where P is the stack pointer.



178 CHAPTER 2. USER OPERATIONS

DECPNT: IDIVI T,12 ;12

8

= 10

10

PUSH P,T+1 ;Save remainder

SKIPE T ;All digits formed?

PUSHJ P,DECPNT ;No, compute next one

DECPN1: POP P,T ;Yes, take out in opposite order

ADDI T,60 ;Convert to ASCII (60 is code for "0")

JRST TTYOUT ;Type out

This routine repeats the division until it produces a zero quotient. Hence, it suppresses leading

zeros; but, since it is executed at least once, it outputs one \0" if the number is zero. The TTYOUT

routine returns with a POPJ P, to DECPN1 until all digits are typed, then to the calling program.

In section zero only, space can be saved in the stack by storing the computed digits in the left halves

of the locations that contain the jump addresses. This is accomplished in the decimal print routine

by changing

PUSH P,T+1 to HRLM T+1,(P) ;section zero only

and

POP P,T to HLRZ T,(P) ;section zero only

The routine can handle a 36{bit unsigned integer if the IDIVI T,12 is replaced by

LSHC T,-^D35 ;Shift right 35 bits into T+1

LSH T+1,-1 ;Vacate the T+1 sign bit

DIVI T,12 ;Divide double length integer by 10

2.15.6 Table Searching

Many data processing situations involve searching for information in tables and lists of all kinds.

Suppose one wishes to �nd a particular item in a table beginning at location TAB and containing N

items.

76

Accumulator T contains the item. The right half of A is used to index through the table,

while the left half keeps a control count to signal when a search is unsuccessful.

MOVSI A,-N ;Put �N,,0 in A

CAMN T,TAB(A) ;Skip if current item not the one

JRST FOUND ;Item found

AOBJN A,.-2 ;Try next item until left count = 0

... ;Item not in list

76

N is restricted: it must be � 2

17

. Other search methods are advisable before N becomes this large. Because this

example uses local addresses, the table, TAB, must �t entirely in one section.



2.15. PROGRAMMING EXAMPLES 179

The location of the item (if found) is indicated by the number in the right half of A (its address is

that quantity plus TAB). A slightly di�erent procedure would be

MOVSI A,-N

CAME T,TAB(A) ;Skip if current item is the one

AOBJN A,.-1

JUMPL A,FOUND ;Jump if left count < 0

... ;Item not found

2.15.7 List Manipulation

Locations used for a list can be scattered throughout one section of memory if data is kept in the left

half of each location and if the right half addresses the next location in the list. The �nal location in

the list is indicated by a zero right half. The following routine �nds the last half{word item in the

list. It is entered at FIND with the �rst location in the list addressed by the right half of accumulator

T and zero in the left half of T. At the end, the �nal item is in the right half of T.

HRRZ U,T ;Copy the right half of T for local address

MOVE T,(U) ;Move next data item and address to T.

FIND: TRNE T,-1 ;Skip if T right = 0; -1 = 777777

JRST .-3 ;not 0, not end of list. Get next item

HLRZ T,T ;Move final item to right

The following counts the length of the list in accumulator CNT.

MOVEI CNT,0 ;Clear CNT

JUMPE T,OUT ;Jump out if T contains 0

HRRZ T,(T) ;Get next address

AOJA CNT,.-2 ;Count and go back

2.15.8 Extended Addressing

For simplicity the preceding examples have employed only local addressing, because this is mostly

what a typical program would use even when running in a non{zero section. The following are

straightforward examples to show the di�erences between local and extended addressing, with and

without indexing and indirection. For the following examples, the program is assumed to be running

in section 22.

Local reference without indexing or indirection:

MOVE T,1000



180 CHAPTER 2. USER OPERATIONS

loads accumulator T with the contents of location 1000 in section 22.

Local indexing :

MOVEI X,100

MOVE T,1000(X)

loads T with the contents of location 1100 in section 22. This would typically be used to access the

array element number 100

8

, where the array origin (element number 0) is located at 1000 in the

current section.

SETZ T,

MOVNI X,100

LOOP: ADD T,1000(X)

AOJL X,LOOP

adds the contents of locations 700{777 in section 22; the sum is in T.

SETZ T,

MOVSI X,-LENGTH

LOOP: ADD T,511000(X)

AOBJN X,LOOP

adds the contents of all locations in an array of length LENGTH starting at location 511000 in section

22. For AOBJN to work properly, LENGTH must not exceed 400001. Note that, since local indexing

is used, the references to the array cannot cross into section 23. If LENGTH is greater than 267000

(1000000�511000 = 267000) the array reference at LOOP wraps around, �rst into the accumulators,

and then continuing from location 20 in section 22.

Global indexing :

MOVE X,[30,,1000]

ADD T,100(X)

adds the contents of location 1100 in section 30 to T. Note that if the literal were \22,,1000" the

ADD would address location 1100 in the current section, even though the indexing is global.

MOVE X,[30,,1000]

ADD T,-100(X)

adds the contents of location 700 in section 30 to T. Were the address portion (Y ) of the ADD

instruction �1000, it would reference storage location 0 in section 30 (not a fast{memory location).



2.15. PROGRAMMING EXAMPLES 181

Furthermore, if the address portion were �2000, it would address location 777000 in section 27,

because global indexing can cross the section boundary.

Local indirection:

MOVEI T1,100

MOVEM T1,1000

ADD T,@1000

adds the contents of location 100 in section 22 to T.

Global indirection.

MOVE T,@[30,,1000]

loads T with the contents of location 1000 in section 30. If location 3000 in section 30 contained

MOVE T,2000

then, in the current section (22), performing the instruction

XCT @[30,,3000]

would load T with the contents of location 2000 in section 30, because the e�ective{address compu-

tation of the target of the XCT is performed in that instruction's section rather than in the section

where the XCT appears. If location 4000 in section 30 were to contain

JSR SUBR

then an

XCT @[30,,4000]

performed in location 100 in section 22 would transfer control to SUBR+1 in section 30, but the PC

saved in 30,,SUBR would be 22,,101, because the XCT itself is performed in the current PC section,

which is 22.

Global indirection with indexing :

MOVEI X,100

MOVE T,@[BYTE(1)0,0(4)X(12)30(18)1000]



182 CHAPTER 2. USER OPERATIONS

loads T with the contents of location 1100 in section 30. The BYTE operator has created a global

indirect word in which the number X has been placed in bits 2{5 of the word and in which 30,,1000

has been placed in bits 6{35.

MOVE X,[2000000-1] ;2 sections worth

LOOP: ADD T,@[BYTE(1)0,0(4)X(12)30(18)1000]

SOJGE X,LOOP

adds the 512K array from location 777 in section 32 down to 1000 in section 30. Note that, even if

the array contained fewer than 2

17

words and did not cross a section boundary, it would still not

be possible to use AOBJN for the loop, because global indexing uses the entire index register. The

following gets the same result with negative indexing.

MOVE X,[-2000000+1]

LOOP: ADD T,@[BYTE(1)0(4)X(12)32(18)777]

AOJLE X,LOOP

2.16 Unimplemented Operations

Codes not assigned as speci�c instructions act as unimplemented operations, wherein the word given

as an instruction is trapped, either because it should not be given or because it must be interpreted by

a routine included for this purpose by the programmer. Codes that are available for interpretive use

are unimplemented user operations, or UUOs (the several mnemonics mentioned in this discussion

are for convenience and mean nothing to the assembler). Codes in the range 001{037 are for the

local use (LUUOs) of the user or the executive. Various other codes are set aside speci�cally for

user communication with the Monitor or for communication between one level of the Monitor and

another; in either case these MUUOs are interpreted by the Monitor. Basic codes (except 000) that

are not used for instructions or UUOs and extended codes not used by EXTEND are regarded as the

unassigned codes; 000 is regarded as an illegal code. All unassigned or illegal codes are processed as

MUUOs.

2.16.1 LUUOs

Let us consider �rst how an LUUO works.

0 12 1314 1718 35

I X Y

8 9

A

Local Unimplemented User Operation

001{037

If the program is running in section zero, store the instruction code, A, and the e�ective{address E

in bits 0{8, 9{12, and 18{35, respectively, of location 40; clear bits 13{17 of location 40. Execute



2.16. UNIMPLEMENTED OPERATIONS 183

the instruction contained in location 41. The original contents of location 40 are lost. Every LUUO

in section zero uses some pair of locations numbered 40 and 41, but which pair depends upon the

circumstances. An LUUO in a user program uses virtual locations 40 and 41 and is thus entirely a

part of and under control of the user program. The locations used in executive mode depend on the

processor:

XKL

-

1, KL10, KS10 40 and 41 in executive virtual space

KI10 40 and 41 in the executive process table

KA10 Unrelocated 40 and 41

77

If the program is running in a non{zero section, perform the operations described below, using a

block of four consecutive locations beginning at the address speci�ed by bits 6{35 of location 420

in the executive or user process table (UP.ULO==:420). The UPT, which is used when the LUUO is

executed from user mode, speci�es a user address; the EPT, used for executive LUUOs, speci�es an

executive address.

In the �rst two locations, save the program 
ags and PC in a 
ag{PC double word; clear bits 13{17

and 31{35 of the 
ag word; store the instruction opcode and A in bits 18{26 and 27{30 of the 
ag

word, respectively. In the third location, store E in bits 6{35 (clear bits 0{5).

3

2

1

0

120

Flags

1713

0

2618

LUUO Op Code

3027

A

3531

0

50

0

356

PC

50

0

356

E

50

0

356

New PC

Then load bits 6{35 of the fourth location into PC and continue performing instructions in normal

sequence beginning at the location then addressed by PC. If the LUUO is from user mode, the new

PC is a user PC; if the LUUO is from exec mode, the new PC is an exec PC. If E is a local AC

address, store it in global form (i.e., with a section number of 1).

2.16.2 MUUOs

The actions of MUUOs depend to a considerable degree on the processor and also on which Monitor

is in use. These are the MUUO codes.

TOPS{20 104, 040{051, 055{077 in section zero

TOPS{10 except KA10 040{051, 055{077

KA10 040{051, 055{100

MUUOs have considerable 
exibility in the way they can alter the operating characteristics of the

77

If a single memory serves as memory number 0 for two KA10 processors, the second processor (with the trap

o�set) uses unrelocated 140{141 and 160{161 respectively for each instance in which 40{41 and 60{61 are given here.

The o�set does not apply to user LUUOs because it is assumed that the Monitor would relocate these to di�erent

physical blocks.



184 CHAPTER 2. USER OPERATIONS

machine (mode, section). However, the information that governs the alterations is contained in the

user process table and is therefore assumed to be under sole control of the kernel program.

The unassigned codes, which are listed in Appendix C, are not MUUOs, but the processor reacts to

them in the same way in order to turn control over to the Monitor. (In the KA10 there are minor

di�erences, explained below.) The processor also takes the same action if the program gives a JRST

with an unde�ned function, an instruction that is illegal because of the context in which it is given,

an extended instruction with incorrectly formatted accumulators, or code 000. The last is so that

control returns to the Monitor should a user program wipe itself out or inadvertently attempt to

execute a location that has been cleared.

The rest of this section is devoted to the di�erent ways in which MUUOs are performed. Except in

the KA10, all types use locations in the user process table to store similar information. Figure 2.4

shows what information is stored in which locations for each processor type.

2.16.2.1 XKL

-

1 MUUOs

If the processor is in executive mode, use the executive MUUO block in locations 430{437 of the

user process table (UP.EMO==:430); otherwise, use the user MUUO block in locations 440{447 of

the UPT (UP.UMO==:440). Store an image of the MUUO (the Op Code and A) in the left half

of location 2 of the MUUO block (o�set UP.UOP); set bit 35 in this word if the e�ective{address

speci�ed in the operation is global. Store E in location 3 of the block (UP.UEA). Store the PC 
ags,

previous context (CAC, PAC, and PCS), and PC in locations 4 and 5 of the MUUO block (o�sets

UP.OFL and UP.OPC, respectively). Complete the speci�cation of the MUUO context by setting up

the new PCS (previous context section) with the PC section from which the MUUO was executed.

Set the processor 
ags and the Current and Previous AC blocks from the left and right halves of

location 6 (UP.NFL) of the MUUO block; take the new PC from location 7 (UP.NPC of the MUUO

block. Processing continues in normal sequence beginning at the location now addressed by PC.

The MUUO can change PC from any section to any other.

2.16.2.2 Extended KL10 MUUOs

In locations 424{426 of the user process table, store the same information (as speci�ed above) that is

stored in the �rst three locations of an LUUO block by an LUUO given in a non{zero section, except

that, when the MUUO is given in executive mode, also save the previous{context section in bits

31{35 of location 424. Store the process{context word in location 427; this word saves information

that partially de�nes the context in which the MUUO is given and is exactly the information read

by a DATAI PAG, (x4.1.5). Complete the speci�cation of the MUUO context by setting up the

previous{context 
ags and clear the rest of the 
ags to place the processor in kernel mode. Then

load PC from bits 6{35 of the appropriate location in a PC list and continue performing instructions

in normal sequence beginning at the location then addressed by PC. (Note that the MUUO can

change PC from any section to any other.) The new PC is taken from one of the eight locations

in the user process table listed here depending upon the mode at the time the MUUO is given and

whether or not it is executed as the result of an over
ow trap.



2.16. UNIMPLEMENTED OPERATIONS 185

Figure 2.4: User Process Table MUUO Con�guration

4x0

4x1

4x2
UP.UOP==:2

4x3
UP.UEA==:3

4x4
UP.OFL==:4

4x5 UP.OPC==:5

4x6
UP.NFL==:6

4x7
UP.NPC==:7

80

MUUO Op Code

129

A

3413

0

3535

G

50

0

356

E

120

Old Flags

1713

0

2018

CAC

2321

PAC

3524

Previous Context Section

50

0

356

PC of MUUO

120

New Flags

1713

0

2018

CAC

2321

PAC

3524

0

50

0

356

New PC

XKL

-

1 | Executive MUUO Block at 430 (UP.EMO); User MUUO block at 440 (UP.UMO)

424

425

426

427

00
PC

00
E

Process Context Word (from DATAI PAG,)

Flags

00

MUUO Op Code

A

00/PCS

0 5 6 12 13 17 18 26 27 30 31 35

Extended KL10 or TOPS{20 KS10

B+0

B+1

B+2

MUUO Op Code

A
00

E

Flags

00
PC

Process Context Word

0 8 9 12 13 17 18 35

Single Section KL10 with TOPS{20 Release 3. B = 425

KS10 with TOPS{10 or KL10 with TOPS{20 Release 1 or 2. B = 424

424

425

MUUO Op Code

A
00

E

Flags

00
PC

0 8 9 12 13 17 18 35

KI10

HRMF-UPTMUUO.TEX



186 CHAPTER 2. USER OPERATIONS

Mode Execution Location

Kernel No trap 430

Kernel Trap 431

Supervisor No trap 432

Supervisor Trap 433

Concealed No trap 434

Concealed Trap 435

Public No trap 436

Public Trap 437

2.16.2.3 Single{section KL10 MUUOs

With either the TOPS{20 or TOPS{10 Monitor, MUUOs store the same information and take the

same action, but they use a di�erent set of three locations in the user process table. In the �rst

location store the instruction code, A, and the e�ective{address E in bits 0{8, 9{12, and 18{35,

respectively, and clear bits 13{17 (this is the same information as that stored by an LUUO given

in section zero); save the 
ags and PC in a PC word in the second location; and save the process{

context word in the third location. Then set up the 
ags and PC according to the contents of the

appropriate location in a PC word list and continue performing instructions in normal sequence

beginning at the location then addressed by PC. The PC word list occupies the same area as the

PC list for an extended KL10, and it is organized and used (with respect to mode and trap) in the

same way.

There are no restrictions on the manner in which the new PC word of an MUUO can set up the


ags. It can switch the processor from any mode to any other.

2.16.2.4 KS10 MUUOs

The PC or PC{word list contains only four entries for executive and user modes, in the 1ocations

corresponding to the kernel and concealed modes as given above|the supervisor and public locations

are not used. The process{context word for the KS10 is that read by an RDUBR (x4.2.5). Otherwise,

with TOPS{20 an MUUO is performed in the same way as in an extended KL10, and with TOPS{10

it is performed in the same way as in a single{section KL10 running under TOPS{10.

2.16.2.5 KI10 MUUOs

An MUUO is performed in exactly the same way as on a single{section KL10 with the TOPS{10

Monitor, except that it does not store a process{context word (only two words of information are

stored, in locations 424 and 425). Note that the trap locations in the PC{word table are used for

either over
ow or a page failure.



2.17. KS10 INPUT{OUTPUT INSTRUCTIONS 187

2.16.2.6 KA10 MUUOs

MUUOs and unassigned codes,

78

regardless of mode, perform exactly the operations given above

for an LUUO, with the exception that MUUOs use unrelocated 40{41 and unassigned codes use

unrelocated 60{61 (140{141 and 160{161 for a second processor). Note that, in executive mode,

LUUOs and MUUOs act identically.

The important point is that an MUUO or unassigned code results in executing an instruction in an

unrelocated location; i.e., an instruction under the control of the Monitor. This would most likely

be a jump that leaves user mode, saves the PC word, and enters a routine to interpret the MUUO

con�guration. In the instruction descriptions, any reference to events resulting from execution by

an MUUO should be taken to also include the unassigned and illegal codes.

2.17 KS10 Input{Output Instructions

Unlike earlier processors, the KS10 has no special format for IO instructions. Instead, instructions

are simply those that handle the peripheral equipment, the console, and memory status|although,

for consistency with earlier processors, they have 1s in the left three bits. KS10 IO instructions are

oriented toward Unibus{type devices, because all peripheral equipment in a DECSYSTEM{2020 is

handled through Unibus adapters. There are twelve of these instructions, six each for manipulating

full words and bytes, described here in terms of their general behavior in handling external devices.

Information about external devices|individual instruction descriptions, IO addresses, etc.|is given

in the device documentation (however, memory status is de�ned in x4.2.8).

NOTE

Ordinarily, the user has no use whatever for the instructions described in this section.

In almost all cases, input and output are handled by the Monitor in response to user

requests employing MUUOs and various software formats. For information on user pro-

cedures to invoke Monitor handling of user IO requirements, the reader should refer to

the appropriate Monitor Calls manual.

Programmers who do handle their own input{output should note that, unless otherwise

speci�ed, all instructions described in the remainder of this manual are In{Out instruc-

tions, which are a�ected by the timeshare instruction restrictions. Namely, an instruction

of this type cannot be performed by a user program unless User In{Out is set. Any In{

Out instruction that violates this restriction does not perform the functions given for it

in the instruction description. Instead it executes as an MUUO.

The system instructions discussed in chapters 3 and 4 for the various processors are

subject to the same restriction as In{Out instructions. This restriction will not be

mentioned in the instruction descriptions, because it applies to all instructions in this

section.

78

Codes 247 and 257, although not assigned as speci�c instructions, are nonetheless not regarded as \unassigned

codes". They execute as no{ops unless implemented by special hardware.



188 CHAPTER 2. USER OPERATIONS

As in all instructions, the processor does an e�ective{address calculation; but, for the In{Out in-

structions, it ignores the result and recomputes an e�ective IO{address beginning with the I , X ,

and Y parts of the instruction word. The IO{address speci�es an IO register in some Unibus device

or in the console or memory controller. For notational convenience, this manual will refer to this

e�ective IO{address also as E . An IO{address is analogous to an extended virtual address in that it

has a fundamental length of thirty bits, but not all of its bits are implemented in a given processor.

In a KS10 IO{address, the right eighteen bits are the register address and the left twelve are the

controller number, of which only four bits are implemented. An IO{address, thus, has this format:

0
C

Register Address

0 13 14 17 18 35

where C is the controller number and bits 0{13 must be zero. Of the sixteen possible controller

numbers, only three are used at present: 0 addresses the console and the memory controller, 1

addresses Unibus adapter 1, and 3 addresses Unibus adapter 3. These are the presently allowed IO

addresses; no others can be used.

Controller Register Address Speci�es

0 100000 Memory status

0 200000 Console (microcode only)

1 400000{777777 Adapter 1 Unibus registers

3 400000{777777 Adapter 3 Unibus registers

The IO address calculation is like an e�ective{address calculation in which the result can be global;

i.e., can have more than eighteen bits. When the result is an 18{bit local register address, it

is automatically interpreted as specifying controller 0. The calculation is limited to one level of

indirection or indexing or both, and any intermediate result that is used as a memory address must

be local (since the KS10 is con�ned to section zero).

If there is no indexing or indirection, the IO address is simply Y .

If there is indexing only and the left half of XR is negative, the IO address is the local

sum of Y and XR right.

If there is indexing only and XR is positive, the IO address is the global sum of Y and

XR (but remember that bits 0{13 must be zero).

If there is indirection only, the IO address is the contents of location Y .

If there is both indexing and indirection, the IO address is the contents of the location

speci�ed by the sum of Y and XR right.

Note that an index register can supply the entire IO address, but it can also be used to supply only

the controller number when Y is the register address. This latter technique is useful for employing

common code for both adapters.



2.17. KS10 INPUT{OUTPUT INSTRUCTIONS 189

0 12 1314 1718 35

I X Y

8 9

A

BSIO Bit Set IO

714

In the word read from IO register E , set bits corresponding to 1s in AC and write the result back

in register E .

0 12 1314 1718 35

I X Y

8 9

A

BCIO Bit Clear IO

715

In the word read from IO register E , clear bits corresponding to 1s in AC and write the result back

in register E .

0 12 1314 1718 35

I X Y

8 9

A

RDIO Read IO

712

Read the contents of IO register E into AC.

0 12 1314 1718 35

I X Y

8 9

A

WRIO Write IO

713

Write the contents of AC into IO register E .

0 12 1314 1718 35

I X Y

8 9

A

TIOE Test IO Equal

710

If all bits of IO register E corresponding to 1s in AC are zero, skip the next instruction in sequence.

0 12 1314 1718 35

I X Y

8 9

A

TION Test IO Not Equal

711

If not all bits of IO register E corresponding to 1s in AC are zero, skip the next instruction in

sequence.



190 CHAPTER 2. USER OPERATIONS

0 12 1314 1718 35

I X Y

8 9

A

BSIOB Bit Set IO Byte

724

In the byte read from IO register E , clear bits corresponding to 1s in AC bits 28{35 and write the

result back in register E .

0 12 1314 1718 35

I X Y

8 9

A

BCIOB Bit Clear IO Byte

725

In the byte read from IO register E , clear bits corresponding to 1s in AC bits 28{35 and write the

result back in register E .

0 12 1314 1718 35

I X Y

8 9

A

RDIOB Read IO Byte

722

Read the contents of IO register E into AC bits 28{35. Clear AC bits 0{27.

0 12 1314 1718 35

I X Y

8 9

A

WRIOB Write IO Byte

723

Write the contents of AC bits 28{35 into IO register E .

0 12 1314 1718 35

I X Y

8 9

A

TIOEB Test IO Equal, Byte

720

If all bits of IO register E corresponding to 1s in AC bits 28{35 are zero, skip the next instruction

in sequence.

0 12 1314 1718 35

I X Y

8 9

A

TIONB Test IO Not Equal, Byte

721

If not all bits of IO register E corresponding to 1s in AC bits 28{35 are zero, skip the next instruction

in sequence.



2.18. PRE{KS10 INPUT{OUTPUT INSTRUCTIONS 191

Unibus devices generally have data registers and control/status registers. Frequently, a single IO

address speci�es two registers, one for reading and one for writing. A control register and a status

register in a device usually have the same address and also have bits in common; i.e., information

loaded into some of the control bits can be read as status. Ordinarily a device is set up by loading or

adjusting individual bits of its control register. Data can then be read or written, and the state of the

device can be determined by reading status or testing individual status bits. Complete information

about the characteristics of each device is given in the device documentation.

Giving an IO address for a register that does not exist produces a page{fail trap (x4.2.3, x4.2.4).

2.18 Pre{KS10 Input{Output Instructions

In the KL10 and earlier processors, the input{output instructions control the movement of infor-

mation to and from the peripheral equipment and perform many system{oriented operations within

the processor; i.e., management of the internal devices, which in the KL10 are connected to the E

bus.

An instruction in the In{Out class is designated by 111 in bits 0{2; i.e., its leftmost octal digit is 7.

In this section these instructions are shown like this:

0 12 1314 1718 35

I X Y

2 3

7

9 10

D OP

The OP �eld, bits 10{12, selects one of eight IO instructions, which are described here in terms of

their general behavior in handling external devices. In the descriptions that follow, the OP �eld is

expressed as a two{digit octal number, even though there are only three bits. The octal values are

all multiples of 4 in the range 00 to 34. This notation is used so that the value expressed in OP can

be related to the octal representation of the entire instruction. For example, the CONSO instruction

is described as having \34" in the OP �eld; the octal for CONSO is 700340,,0.

The D �eld addresses the device that is to respond to the instruction. The format allows for 128

device codes. The D �eld is expressed in three octal digits, but always as a multiple of 4. Thus, the

octal for the device code can be read from the octal digits. For example, the octal for BLKI 124,400

would be encoded as 712400,,400; the OP �eld for BLKI is 0.

The KL10 uses the �rst six device codes (000{024) for internal devices (the KI10 uses the �rst

three, the KA10 the �rst two). In instruction descriptions for individual devices, the instruction and

device codes are combined into a single, 5{digit code for bits 0{12. Codes for the internal devices are

included in the tables in Appendix A.1, but all information about external devices|device codes,

individual instruction descriptions, etc.|is given in the device documentation.

79

Bits 13{35 are the

same as in all other instructions: they are the I , X , and Y parts, which are used to calculate an

e�ective{address, set of conditions, or mask to be used in the execution of the instruction.

79

Electrical and logical speci�cations of the IO bus are given in the interface manual.



192 CHAPTER 2. USER OPERATIONS

NOTE

Ordinarily, the user has no use whatever for the instructions described in this section.

In almost all cases, input and output are handled by the Monitor in response to user

requests employing MUUOs and various software formats. For information on user pro-

cedures to invoke Monitor handling of user IO requirements, the reader should refer to

the appropriate Monitor Calls manual.

Programmers who do handle their own input{output should note that, unless otherwise

speci�ed, the instructions described in this section are a�ected by the timeshare instruc-

tion restrictions. Namely, an instruction of this type cannot be performed by a user

program unless User In{Out is set. Any In{Out instruction that violates this restriction

does not perform the functions given for it in the instruction description. Instead it

executes as an MUUO.

In the KI10 and KL10, In{Out instructions using device codes 740 and above can be

performed by user{mode programs without restriction. Also, In{Out instructions are

restricted in supervisor mode, because In{Out is normally handled in kernel mode.

The system instructions discussed in chapters 3 and 4 are subject to the same restrictions

as IO instructions. This restriction will not be mentioned in the instruction descriptions,

because it applies to all instructions in this section.

0 12 1314 1718 35

I X Y

CONO Conditions Out

2 3

7

9 10

D 20

Set up device D with the e�ective initial{conditions E .

80

The number of condition bits in E that

are actually used depends on the device.

0 12 1314 1718 35

I X Y

CONI Conditions In

2 3

7

9 10

D 24

Read the input conditions from device D and store them in location E . The number of condition

bits stored depends on the device; the remaining bits in location E are cleared.

0 12 1314 1718 35

I X Y

DATAO Data Out

2 3

7

9 10

D
14

Send the contents of location E to the data bu�er in device D and perform whatever control

80

E will always be regarded as being bits 18{35, even though it is actually placed on both halves of the bus and

many devices receive the information from the left half.



2.18. PRE{KS10 INPUT{OUTPUT INSTRUCTIONS 193

operations are appropriate to the device.

The amount of data actually accepted by the device depends on the size of its bu�er, its mode of

operation, etc. The original contents of location E are una�ected.

0 12 1314 1718 35

I X Y

DATAI Data In

2 3

7

9 10

D
04

Move the contents of the data bu�er in device D to location E and perform whatever control

operations are appropriate to the device.

The number of data bits stored depends on the size of the device bu�er, its mode of operation, etc.

Bits in location E that do not receive data are cleared.

0 12 1314 1718 35

I X Y

CONSZ Conditions In and Skip if Zero

2 3

7

9 10

D
30

Test the input conditions from device D against the e�ective{mask E . If all condition bits selected

by 1s in E are 0s, skip the next instruction in sequence.

If the device supplies more than 18 condition bits, only bits 18{35 are tested.

81

0 12 1314 1718 35

I X Y

CONSO Conditions In and Skip if One

2 3

7

9 10

D
34

Test the input conditions from device D against the e�ective{mask E . If any condition bit selected

by a 1 in E is 1, skip the next instruction in sequence.

If the device supplies more than 18 condition bits, only bits 18{35 are tested.

81

0 12 1314 1718 35

I X Y

BLKO Block Out

2 3

7

9 10

D
10

0 12 1314 1718 35

I X Y

BLKI Block In

2 3

7

9 10

D
00

81

Conditions reported in bits 0{17 can be tested by reading them with a CONI and then using a test instruction

(x2.7).



194 CHAPTER 2. USER OPERATIONS

Add 1 to each half of a pointer

82

in location E , and place the result back in E . Then perform a

data IO instruction in the same direction as the block IO instruction, using the right half of the

incremented pointer as the e�ective{address. If the given instruction is a BLKO, perform a DATAO;

if it is a BLKI, perform a DATAI.

The remaining actions taken by this instruction depend on whether it is executed as a priority

interrupt instruction.

Not as an Interrupt Instruction: If the addition has caused the count in the left half of

the pointer to reach zero, go on to the next instruction in sequence. Otherwise skip the

next instruction.

As an Interrupt Instruction: If the addition has caused the count in the left half of the

pointer to reach zero, execute the instruction in the second interrupt location for the

level. Otherwise dismiss the interrupt and return to the interrupted program.

It is not expected that block instructions will be of any use in a DECSYSTEM{20. For compatibility,

however, the address supplied by the pointer is taken to be in the local section.

Notes: A block IO instruction is e�ectively a whole In{Out data handling subroutine. It keeps track

of the block location, transfers each data word, and determines when the block is �nished.

Initially the left half of the pointer contains the negative of the number of words in the block and

the right half contains an address 1 less than that of the �rst word in the block.

The above eight instructions di�er from one another in their total e�ect, but they are not all di�erent

with respect to any given device. A BLKO acts on a device in exactly the same way as a DATAO|

the two di�er only in counting and other operations carried out within the processor and memory.

Similarly, no device can distinguish between a BLKI and a DATAI; and a device always supplies the

same input conditions during a CONI, CONSZ, or CONSO whether the program tests them or simply

stores them.

Hence, the eight instructions may be categorized as being of four types, represented by the �rst four

instructions described above. Moreover, a complete treatment of the programming of any external

device can be given in terms of these four instructions, two of which are for input and two for

output.

83

Every device requires initial conditions; these are sent by a CONO, which can supply up to eighteen

bits of control information to the device control register. The program can determine the status

of the device from up to thirty{six bits of input conditions that can be read by a CONI (but only

the rightmost eighteen bits can be tested by a CONSZ or CONSO). Some input bits simply re
ect

initial conditions sent by a previous CONO, others are set up by output conditions but are subject

to subsequent adjustment by the device, and still others may have no direct connection with output

conditions.

82

In the KA10 incrementing both halves of the pointer is e�ected by adding 1000001

8

to the entire register (and a

carry can therefore go from the right half into the left).

83

The word \input" used without quali�cation always refers to the transfer of data from the peripheral equipment

into the processor; \output" refers to the transfer in the opposite direction.



2.19. USER PROGRAMMING 195

Data is moved in and out in bytes of various sizes or in full 36{bit words. Each program transfer

between memory and a device data bu�er requires a single DATAI or DATAO. Every device has a

CONO and CONI, but it has only one data instruction unless it is capable of both input and output.

A DATAI that addresses an output{only device simply clears location E . On the other hand, a

DATAO that addresses an input{only device is a no{op. When the device code is unde�ned or the

addressed device is not in the system, a DATAO, CONO, or CONSO is a no{op; a CONSZ is an

unconditional skip; and a DATAI or CONI clears location E .

The general e�ects of the IO instructions are as given above, but a single instruction varies in its

individual e�ects from one external device to another. For KI10 and KA10 internal devices, the

instructions still have the same general e�ects and have the same relation to one another; but,

again, they vary in individual e�ects that are documented in the descriptions in Chapter 4.

The situation is quite di�erent, however, with respect to KL10 internal devices. For example,

a DATAI PAG, is really a DATAI|it reads information from the pager; but a DATAI CCA, is not a

DATAI|it sweeps through the cache invalidating all pages, and it has its own mnemonic, SWPIA. The

instruction BLKI PI, has no connection whatever with DATAI PI, because it is not a block instruction

at all|it is actually the instruction RDERA, which reads the error address register. In other words,

although some of the IO instructions for KL10 internal devices are equivalent in general terms to

the same instructions for external peripherals, many of them are uniquely de�ned operations that

bear none of the standard relationships to the typical case or to other instructions using the same

device code (in some cases even when for the same device). When a unique mnemonic is assigned

for an instruction, the form using a device mnemonic is given at the right end of the top line in the

description.

2.19 User Programming

The preceding sections de�ne the machine{language characteristics of the system from a user point

of view. However, e�cient and e�ective use of the system is a�ected greatly by the software; the

user should therefore consult the appropriate Monitor manual, especially for the employment of the

Monitor for input{output. For convenience, those rules that the user must observe and that are the

result of XKL

-

1, KL10, and KS10 hardware characteristics are listed here.

� If an area of memory is write{protected (e.g., for a reentrant program shared by several users),

do not attempt to store anything in it. In particular, do not execute a JSR or JSA into a

write{protected page.

� Use the MUUO codes only in the manner prescribed in the Monitor manual. Unless they are

prescribed for special circumstances, the unassigned codes should not be used. Code 000 is

illegal in any any circumstance.

� Do not use HALT (JRST 4,) unless you want your program stopped.

� Always be aware of the context in which the program is running, and make sure to use only

operations appropriate to that context. In particular, be familiar with which forms of the

JRST instruction are legal in which circumstances, as explained in x2.9.4. JRST functions for

handling interrupts are legal when IO is legal.



196 CHAPTER 2. USER OPERATIONS

� Unless User In{Out is set, do not give any IO instruction with device code less than 740 (any

at all in the XKL

-

1, KS10 or KA10). The program can determine if User In{Out is set by

examining bit 6 of the saved 
ags.

� If your public program has the use of concealed programs, do not reference a location in a

concealed page for any purpose except to fetch an instruction from a valid entry point; i.e., a

location containing a PORTAL (JRST 1,).

� In an extended processor, do not use JEN in a non{zero section. Also be aware of the di�erences

between running in section zero and in other sections. Di�erences appear both in the execution

of instructions, such as JSR and JSP, and in the format and handling of such quantities as

index registers, indirect address words, and stack and byte pointers.

� Make sure to format the accumulators correctly in string instructions (x2.12)

The user can give a JRSTF or XJRSTF, but a 0 in bit 5 of the PC word or 
ag word does not clear

User (a program cannot leave user mode this way); and a 1 in bit 6 does not set User In{Out, so the

user cannot void any of the instruction restrictions himself. Note that a 0 in bit 6 will clear User

In{Out, so a user can discard his own special privileges. Similarly a 1 in bit 7 sets Public, but a 0

does not clear it, so a public program cannot enter concealed mode this way.

Many hardware characteristics, however, are actually transparent to the user; in particular, the

whole paging setup is invisible. Although the hardware allows for user virtual address spaces that

are scattered or very large (even larger than available physical memory), the actual constraints will

be dictated by the particular Monitor and the system manager. Most TOPS{10 Monitors enforce

a two{segment virtual address space that mimics the one imposed by the KA10 hardware. In any

case, the user must write a sensible program which can be handled easily and cheaply by the system;

if he uses addresses a few to a page all over memory, his program can be run but will require a much

larger amount of space than necessary or cause excessive page swapping.

The basic idea is to localize everything as much as possible. Do not spread parts of the program

out through the address space, leaving gaps. Put together whatever will be used together: divide

a large program into smaller segments and with each group of instructions put whatever pointers,

data locations, and the like that will be used with it. Group together subroutines that are called

by the same programs. If a package is to be used at all frequently, take advantage of the various

features (e.g., a core map) provided by the Digital software to determine just how the package was

assembled and, if necessary, revise it to reduce the working set of pages.

The rules given above apply generally to all systems, but there are minor di�erences from one to

another; a user who wishes to write programs to run on more than one type of processor must be

aware of whatever incompatibilities exist. For example, the interrupt{handling JRST functions are

legal in user IO mode except on the KI10, where they are restricted to kernel mode. Because of the

more restricting JRST decoding in the earlier processors, the XKL

-

1, KL10, and KS10 have more

functions, and they produce quite di�erent e�ects when given in a KI10 or KA10 program. The

matter of unassigned codes works both ways with respect to di�erent processor models: instructions

added in a later machine use codes unassigned in earlier machines, but the codes for the software

double{precision 
oating{point instructions are unassigned in later machines. Unassigned codes

that correspond to implemented instructions in other machines should be used only if the software

includes interpretive routines for them, but wherever possible they should be avoided because of the

severe time penalty.



197

Chapter 3

TOAD

-

1 System and XKL

-

1

Processor Operations

Note

Most of the material in this chapter has settled down. The areas still changing are those

concerning multi{processor con�gurations, clustered systems, and, to a lesser degree,

TDBoot.

Ralph Gorin controls the content; he would appreciate your comments and suggestions.

The information presented in this chapter is primarily for XKL's own hardware designers and systems

programmers. This information documents an important component of the TOAD

-

1 System design

and provides the information necessary to the authors of the operating system, diagnostics, and

other software. This information is also germane to anyone who wishes to write his own operating

system; it may be needed by users who wish to handle their own I/O or by programmers in a

situation where all the facilities of a system are dedicated to a single large task.



198 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

Warning!

XKL

-

1 processor functions are implemented in microcode (which can be revised much

more easily than hardware). Although the user operations described in Chapter 2 are

deliberately kept as compatible as practicable with other PDP{10 processors, XKL LLC

will change XKL

-

1 processor microcode whenever such a change will result in greater

speed, e�ciency, or e�ectiveness. Therefore, anyone writing system software should be

sure to obtain the most recent version of this documentation. Before embarking on any

project as enormous and critical as an operating system, be sure to check with XKL LLC

for any changes not yet documented and for such system development tools as might be

provided to customers undertaking such a project.

This warning applies also to the various subsystems connected to the TOAD

-

1 System's

backplane bus. They too are heavily dependent on microcode, which code may change

for any of the reasons stated above.

Locations in MemA and in NVRAM identi�ed in this manual are not part of the ar-

chitectural speci�cation of the TOAD

-

1 System. They are subject to change without

notice.

Programming for the system as a whole is programming in executive mode. Only the executive

program is without instruction restrictions. All other programs labor under instruction restrictions.

The amount of useful work done by the system depends on how e�ciently and e�ectively the exec-

utive manages the physical resources of the system. These resources include the processor, memory,

input{output devices, the �le system, and the bandwidth of the paths between various components.

The executive selects which process to run next. It manages the working sets of the various processes,

responding to their changing needs. The executive reacts to error situations and even to unaccept-

able behavior on the part of a user. The executive accomplishes these objectives by handling all

in{out for the system and setting up user page maps, trap locations, interrupt locations, etc. for

itself and for the users. The executive handles user accounts, passwords, and level of privileges. It

controls access to all system resources.

The activities of an operating system, particularly as they are implemented in the XKL

-

1 processor,

are the topics of this chapter. Of course the system programmer must be fully familiar with the

material presented in the earlier chapters. The programmer must understand the TOAD

-

1 System

architecture as presented in Chapter 1 and must be totally conversant with the instruction set,

including the various modes of JRST, MUUOs, and I/O instructions. Executive{mode extensions of

the instruction set (e.g., PXCT and others) are discussed here.

3.1 TOAD

-

1 System Backplane Bus

The high{speed backplane bus carries information between the various components of the system.

A bus transaction involves, �rst, a device that requests the bus; second, a grant, in which the

requesting device is allowed control of the bus for a time; and, third, one or more bus cycles directed

by the requestor (also known as the source) to another device|the target (or destination)|after

which the requestor removes its request for the bus. A bus transaction is strictly one{way: infor-



3.1. TOAD

-

1 SYSTEM BACKPLANE BUS 199

mation moves from the requestor to the target. The bus cycles from which bus transactions are

composed are of several di�erent types, identi�ed by name.

A semantic transaction, that is, a meaningful exchange of information, is completed in either one

or two bus transactions. For example, a write (to e.g., a memory) takes only one bus transaction,

because the requestor supplies the address and the data. However, a read (from e.g., a memory)

requires two bus transactions: the original requestor supplies the read command and address to the

target device in the �rst bus transaction; subsequently, the former target device now acts as the

requestor and supplies data to its target (the original requestor).

Of course, any semantic transaction that can be completed in one bus transaction is performed that

way. To maximize system throughput, semantic transactions that involve a variable delay (e.g., the

time while a memory �nds the data that was requested) are performed as two bus transactions: a

request and a return. This organization of semantic transactions into one or two bus transactions

helps to speed bus throughput by eliminating the delays inherent in turning the bus around: in the

TOAD

-

1 System backplane bus the initiator is always the source of commands, addresses, and data;

the target receives them. The source and target of the request portion of a two{part transaction

interchange roles for the return bus transaction.

A semantic transaction that involves two bus transactions allows any number of unrelated bus

transactions to occur after the request and before the corresponding return. A device may initiate

a transaction (i.e., make a request) even while it has incomplete transactions pending. Requests

directed by one source to di�erent targets are answered independently, so the responses may come in

some order other than that of the requests. Multiple requests by one source to the same target will

(if accepted) produce responses by the target in the same order as the requests were received. As the

target of a transaction, each device is required to honor at least one (appropriate) request at a time,

though some may honor more. When unable to handle an appropriate request, a target will respond

\busy". When presented with a request of an inappropriate type (e.g., an Interrupt Request directed

to a memory module), the target device may ignore the request. To avoid deadlock, designers

of devices are strongly urged to accept immediately (without being busy) the Word Return and

Line Return responses whenever they appear, because these are responses to requests initiated by

the target device. During normal operation, the XKL

-

1 processor is never busy to a request.

A source that receives a busy response is expected to retry the request some number of times before

abandoning the request.

Any device that initiates two{part transactions will time{out a transaction that is not completed

by an appropriate return within a speci�ed time period. Such time{outs signify errors.

The backplane bus is quite short; the likelihood of a �eld becoming corrupted is quite low.

1

There-

fore, no error checking is included with the bus transactions. Individual modules, notably memory,

will do their own error checking before placing data on the bus; the bus provides a method by which

error conditions may be signalled.

Bus arbitration is centralized. To gain access to the bus, a module must assert BUS RQ[n] (where

n is the physical slot number occupied by the module) and keep it asserted until it begins the

last cycle of its transaction. Central bus arbitration will grant service by raising BUS AK[n] to a

module late in the cycle preceding the one at which the module may begin its transaction.

2

Central

1

Many people would like some assurance regarding this point.

2

In the implementation of the backplane the n in BUS RQ[n] and BUS AK[n] is implicit. BUS RQ and BUS AK

are dedicated pins on each bus connector; the slot number is determined by the backplane connection from each slot



200 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

bus arbitration will present the number of the selected module on the SRC[0:3] lines visible to all

modules. In this way, the target device knows which module initiated a request and thus knows to

whom to address the return, if needed.

3.1.1 Request Transactions

These are the semantic transactions from which no response is expected; thus, they are accomplished

in one bus transaction. However, a device may respond busy at the end of the �rst bus cycle that

selects it as the target, in which case the requestor must be prepared to try again.

Notes: When a request transaction is directed to an empty slot, there will be no indication that an

error has occurred.

Word Write

Write a word to a target device (e.g., a memory). The source device will place the target

device slot number and the in{module address on the bus and perform a cycle of type

Word Write. On the following cycle, the source will provide the contents of the word, in

a cycle of type DataW1 (write one data word). If the memory is unable to receive the

data, it responds Busy at the end of the cycle that sends Word Write; the Word Write

must be repeated later. Otherwise, no response is required: the memory is assumed to

have accepted the address and data.

Line Write

Write a line (eight consecutive 36{bit words on an 8{word boundary) to a target device.

(N.b, not all devices support Line Write; speci�cally, a memory device will support this

cycle type.) The source device will place the target device slot number and the in{

module address on the bus and perform a cycle of type Line Write. On the following

four cycles, the source will provide a pair of words on each cycle, along with the cycle

type DataW2 (write two data words). If the target device (memory) is unable to receive

the data, it responds Busy at the end of the Line Write cycle; in this case, the source

will have to retry the Line Write. Otherwise, no response is expected. The address sent

in the Line Write cycle must be a multiple of 8. Data words with low{order addresses

0 and 1 are sent on the �rst DataW2 cycle; these are followed by addresses 2 and 3, 4

and 5, and 6 and 7 in the next three DataW2 cycles.

LongWord Write

Write one longword (a pair of words at an even address). The source device will place

the target device slot number and an even in{module address on the bus and perform

a cycle of type LongWord Write. On the following cycle, the source device will provide

the contents of a double word, in a cycle of type DataW2 (write two data words). If the

target is unable to receive the data, it responds Busy at the end of the cycle that sends

LongWord Write; in this case, the LongWord Write must be repeated later. Otherwise,

no response is required: the target is assumed to have accepted the address and data.

Device Control

Send control information to a device. The source device places the target device slot

number and a control register address (i.e., the target's in{module address) on the bus

to the central arbiter.



3.1. TOAD

-

1 SYSTEM BACKPLANE BUS 201

and performs a cycle of type Device Control. If the target device is unable to accept

a control command at this time, it responds Busy, in which case the source device will

have to repeat the Device Control function. Otherwise, the source performs a second

cycle of type DataW1, in which the desired control information is placed on the bus.

Interrupt

Make or withdraw a request for an interrupt. The source device places the target device

address, the desired priority level, and an indicator for \Make" or \Withdraw" on the

bus and performs a cycle of type Interrupt. If the target device responds Busy at the end

of the Interrupt cycle, the source device must repeat the Interrupt cycle. Otherwise, if

this is a \Make" request, the target device is obliged to attend to the interrupting device

(at some future time); if this is a \Withdraw" request, the target device will understand

that a previously requested interrupt has now been satis�ed.

3.1.2 Request{and{Return Transactions

These are the semantic transactions that require two bus transactions. They begin when one device

makes a request to another; they end when the second device responds (i.e., returns information)

to the �rst. After a request transaction and before the corresponding return transaction, the bus is

available for other transactions. In the explanation that follows, the request{and{return transactions

are presented in pairs. That is, Word Read Request is matched by Word Read Return, etc. The

return transaction is accomplished by a cycle of type DataR1 or by cycles of the DataR2 type. The

name of the bus cycle speci�es particular signals on the backplane bus; the name of the semantic

transaction denotes the meaning of the particular bus cycle or cycles.

Word Read Request

Request that a word be read from the target device. The source device will put the

target device and its in{module address on the bus and perform a Word Read Request

cycle. If the target device responds Busy at the end of the Word Read Request cycle, the

source must repeat the Word Read Request. Otherwise, the source device may expect,

in due course, to be the target of a Word Read Return transaction.

Word Read Return

Transmit a word from a device (memory) in response to a previous Word Read Request.

The device will target the original source device, place the data word on the bus and

perform a cycle of type DataR1 (read one data word). If the requested word has a

parity error, the error will be signalled by putting a 1 on the MISC[7] line. Although it

is generally bad form for the target to respond Busy at the end of the DataR1 cycle, it

may do so, in which case the source must repeat the DataR1 cycle.

Line Read Request

Request that a line (eight consecutive 36{bit words on an 8{word boundary) be read

from the target device. The source device will put the target device slot number and

its in{module address on the bus and perform a Line Read Request cycle. If the target

device responds Busy at the end of the Line Read Request cycle, the source must repeat

the cylce. Otherwise, the source device may expect a Line Read Return transaction.

Bits 33{34 of the given address specify which pair of words to return �rst.



202 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

Line Read Return

Transmit a line (eight consecutive 36{bit words on an 8{word boundary) from a device

(memory) in response to a previous Line Read Request. The device will target the

original source device, place the �rst two data words on the bus, place the line index

(corresponding to bits 33{34 of the address) on the bus in MISC[1{2], and perform a

cycle of type DataR2 (read two data words). If either word has a parity error, that will

be signalled by putting a 1 on the MISC[7] line.

3

Although it is generally bad form for

the target to respond Busy, it may do so at the end of the �rst DataR2 cycle, in which

case the source must repeat the DataR2 cycle. Otherwise, the source device will use the

next three cycles (also of type \DataR2") to complete the transmission of the line of

data. The line index is incremented (modulo 4) in each of the cycles to e�ectively count

through the four double word addresses in the line.

LongWord Read Request

Initiate the read of a longword (two words). The initiating device (the source device for

this cycle) will place the target device slot number and the (even) in{module address on

the bus and perform a cycle of type LongWord Read Request. After a variable delay to

retreive the requested data, the target device, now acting as a source, will respond with

a cycle of type DataR2 (return doubleword), as explained in LongWord Read Return.

LongWord Read Return

Transmit a longword in one bus cycle from a device (memory) in response to a previous

LongWord Read Request. The transmitting device will target the original source device,

place the data longword on the bus and perform a cycle of type DataR2 (return two data

words). If either of the requested words has a parity error, the error will be signalled

by putting a 1 on the MISC[7] line. Although it is generally bad form for the target to

respond Busy at the end of the DataR2 cycle, it may do so, in which case the source

must repeat the LongWord Read Return transaction.

Device Status Request

Request that a word of status be read from a device. The source device places the target

device and the address of its status register (i.e., in{module address) on the bus and

performs a cycle of type Device Status Request. If the target responds Busy at the end of

the Device Status Request cycle, the source must repeat the cycle. Otherwise, the target

device is expected to respond (eventually) with a Device Status Return transaction.

Device Status Return

The previously requested status is returned. The source device (the target of a previ-

ous Device Status Request command) names the original requestor (the source of the

previous Device Status Request) as the target of this cycle. The requested data is put

on the bus and a cycle of type DataR1 is performed. The MISC[7] line (parity error) is

driven to logic 0 by the source device (no error). Although it is generally bad form for

the target to respond Busy at the end of the DataR1 cycle, it may do so, in which case

the Device Status Return transaction must be repeated.

3

Further information about parity errors can be obtained by a Device Status Request to the memory (x3.11).



3.1. TOAD

-

1 SYSTEM BACKPLANE BUS 203

Figure 3.1: Bus Address Word

00

D

21 63

Slot

Number

357

In{Module Address

3.1.3 Special Bus Functions

The bus carries the \Reset" signal to all modules. The assertion of Reset will stop or prevent all

manner of activity on every module. The removal of Reset will force every module to its power{up

state. The TOAD

-

1 System power system is arranged to assert Reset for several seconds following

power turn{on so that the power supplies can reach stable levels before any module commences its

power{up sequencing.

The bus carries the \PFail" signal to all modules. This signal is asserted when the AC power to the

system is insu�cient for continued operation. The PFail signal is also asserted if the temperature

in the card cage exceeds the Thermal Warning limit. (At the slightly higher Thermal Shutdown

temperature, the DC power is removed.) Software/Firmware in all modules will begin their power

fail sequences in response to PFail.

The \Need DC" signal on the bus may be asserted by any device on the backplane. The presence

of \Need DC" informs the power controller that one or more devices still needs power to complete

its power fail sequence. When no device is asserting \Need DC", the power controller will turn o�

all system DC power, thus conserving the battery life. \Need DC" can be asserted by the CPU by

using the WCTRLF instruction.

The \System Active" signal on the bus may be asserted by any device on the backplane, though it is

customary for the CPU to control it. When asserted brie
y, the \System Active" signal sets a one{

shot, which resets itself after a 15 ms delay. While set, the one{shot turns on the yellow \System

Active" light on the front panel. The WCTRLF instruction is provided to trigger the one{shot.

During normal system operation, the operating system will attempt to keep the System Activity

light on by periodically executing this instruction.

3.1.4 XKL

-

1 Bus Operation Instructions

The XKL

-

1 processor does not use traditional input{output instructions. To a�ect devices on the

backplane bus, the processor has two instructions that are described below. These instructions all

begin by computing E in the usual way and then reading the bus address word (BAW) contained in

E . A bus address word has the format depicted in Figure 3.1.

The signi�cance of the �elds in the bus address word is as follows:

D BA%DEV==:1B0 The \device" bit. When set to 1, this bit signi�es that the \Device Sta-

tus Request" and \Device Control" bus cycles will be used by PMOVE and PMOVEM,

respectively; in other words, the device will be treated as an IO device. When D is 0,

the bus cycle types \Word Read Request" and \Word Write" will be used by PMOVE

and PMOVEM, respectively; that is, the device will be treated as memory.



204 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

Slot

Number

BA%SLT==:17B6 The physical slot number of the device being addressed. Slot num-

bers in the range 1{17 (octal) are allowed. Slot 0 does not exist. (When the CPU

references slot 0, it gets the CPU's private ROM.) The initial con�guration of the

TOAD

-

1 System provides just seven backplane slots, 1{7.

In{Module

Address

BA%IMA==:3777777777 The 29{bit in{slot physical address of the location to be

a�ected.

In addition to the two instructions presented here, ordinary instructions may be used to a�ect devices

by creating an appropriate pager mapping.

The instructions to a�ect devices are these two:

0 12 1314 1718 35

I X Y

8 9

A

PMOVE Physical Move from Memory or Device

704

Read the contents of a memory location or its cached representation, or read a device register, to

AC, bypassing the pager.

Using the cache and pager as usual, compute E and read a bus address word at location E .

The given bus address is cacheable if all of the following are true:

� D is zero in the bus address word, and

� the pager is on, and

� the CST base address is not zero, and

� the slot number in the bus address word corresponds to a memory, and

� the CST entry for the page containing this address speci�es that the page is cacheable.

Perform one of the actions described below, depending on whether or not the given bus address

corresponds to a cacheable memory page:

� If the given bus address is cacheable, read the cached representation of the given address from

the cache and store the data in AC. If the cache does not already contain a representation

of this address, load the cache with the memory line that includes this address and copy the

selected word to AC.

� If the given bus address is not cacheable, transmit the bus address word on the backplane.

If D is zero, use a Word Read Request cycle; if D is one, use a Device Status Request cycle.

A normal response is a backplane transaction of the \DataR1" type; the data transmitted

with the return will be copied to AC. If the given bus address does not match any device or a

device's in{module address, there will be no response. After a timeout, the CPU will perform

a page trap in which the page{failure word will indicate a bus timeout.



3.1. TOAD

-

1 SYSTEM BACKPLANE BUS 205

This data movement portion of this instruction bypasses the pager. No update to the CST will be

performed; if the Monitor requires a CST update, it must update the CST itself.

This operation guarantees that the data retrieved is current. If the target page is not cacheable, this

instruction will not cause data to appear in the cache.

0 12 1314 1718 35

I X Y

8 9

A

PMOVEM Physical Move to Memory or Device

705

Write the contents of AC to memory, to the cached representation of memory, or to a device register,

bypassing the pager.

Using the cache and pager in the usual way, compute E and read a bus address word from location

E .

The given bus address is cacheable if all of the following are true:

� D is zero in the bus address word, and

� the pager is on, and

� the CST base address is not zero, and

� the slot number in the bus address word corresponds to a memory, and

� the CST entry for the page containing this address speci�es that the page is cacheable.

Perform one of the actions described below, depending on whether or not the given bus address

corresponds to a cacheable memory page:

� If the given bus address word speci�es a cacheable memory page, copy the data in AC to the

cached representation of the speci�ed memory address, marking the corresponding cache line

as \modi�ed". If the cache does not already contain a representation of this address, read the

memory line that includes this address into the cache and then copy the AC data into the

cached representation of the speci�ed address.

� If the given bus address does not specify a cacheable memory page, transmit the bus address

word on the backplane. If D is zero, use a Word Write cycle; if D is one, use a Device Control.

In the following cycle, transmit a copy of the data in AC on the bus with cycle type DataW1.

No response is expected from the bus. If the given bus address does not match any device or

a device's in{module address, there will be no indication of error.

The data movement component of this instruction bypasses the pager. No update to the CST will

be performed; if the Monitor requires a CST update, it must perform the CST update itself.

This operation guarantees that the cache will contain a current representation of the intended

contents of memory. If the target page is not cacheable, this instruction will not cause data to

appear in the cache.



206 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

3.1.5 Communication Between the Processor and Devices

Communication between the XKL

-

1 central processor and a generic peripheral device is e�ected by

two one{way \connections". Each connection is represented by one word in (uncached) storage. The

connection word is similar to the 
ag on a rural mailbox: set by the sender to indicate that the box

contains a message, cleared by the receiver to indicate that the message has been removed. As the

mailbox, the message may be in many parts (i.e., a list of messages). In contrast to the mailbox

analogy, once the sender has set the 
ag, the sender is prohibited from adding more messages to the

box until the �rst batch has been taken.

More speci�cally, the CPU and device share a word called \ToDev". When the CPU has work for

the device, it creates a list of messages for the device and stores the bus address of the list in ToDev,

but only if the present contents of ToDev are zero. After storing in ToDev, the CPU \rings the

doorbell" by sending an appropriate device control signal to the device. The device acknowledges

the doorbell by reading the contents of ToDev and storing a zero in ToDev. (Then, if the CPU has

so requested, the device can acknowledge receipt of the message by sending an interrupt back to the

CPU.) At this point, the messages formerly in ToDev are now the responsibility of the device. If

the CPU has work for the device and ToDev is non-zero, the CPU appends additional messages in

its queue of messages intended for the device, and continues appending such messages until ToDev

becomes zero.

In the other direction, the behavior is similar. The device and CPU share a word called FromDev.

When the device has information to report to the CPU, it creates a list of messages and stores the

bus address of the list in FromDev, but only if FromDev is already zero. After storing in FromDev,

the device interrupts the CPU to alert it to the new messages. The CPU responds to the interrupt

by reading FromDev and setting it to zero. (If the device so requests, the CPU can send a device

control message back to the device indicating that FromDev is now zero.) At this point, the messages

formerly in FromDev are now the responsibility of the CPU. If the device has messages for the CPU

but FromDev is not zero, the device will append these messages to its queue of pending messages

for the CPU, where they will be held until FromDev is zero.

The locations of communication cells are assigned by the CPU; the CPU informs the device of the

assigned locations by means of device control messages. If shared communication regions are needed,

they are assigned by the CPU, which will inform the device. The authors of monitor device drivers

must be aware of the general needs of the device and arrange communication regions appropriately.

To support multi{processor systems, a device must be able to accommodate multiple \ToDev" and

\FromDev" communication locations.

A device with specialized queues may have independent \ToDev" and \FromDev" locations associ-

ated with each queue.

3.1.6 Identi�cation of Backplane Devices

Every processor, memory, or I/O interface intended for use on the TOAD

-

1 System backplane bus

must adhere to the electrical conventions of the bus, the signalling conventions of the bus, and the

module identi�cation convention described here.

Every device shall respond to a Device Status Request function at address 0 by returning a main

status word. The main status word is intended to identify the general nature of the addressed



3.2. CONSOLE 207

unit and to report its major status (i.e., ready or not). The identi�cation is by means of bits 0{7

(DS%TST==:377B7), the Device Type and Subtype �elds, of the main status word. This �eld is

divided into bits 0{2 (DS%TYP==:7B2), the Device Type �eld, and bits 3{7 (DS%STY==:37B7), Device

Subtype �eld. Each device description will describe the assigned values for these �elds.

3.2 Console

This section describes the XKL

-

1 processor console operation, the interface between the micro{

console and the macro{console, the console command set, and macro{instructions for programming

input and output to the console terminal.

Notice

This description is highly speci�c to the present implementation of the XKL

-

1

processor and is not part of the architectural description of the TOAD

-

1

System.

The XKL

-

1 processor has two RS{232 serial communication ports, labeled \Console" and \Auxil-

iary". These are used to connect a console terminal and an optional diagnostic terminal or modem

to the system. As explained in more detail below, the XKL

-

1 processor attempts to treat both

communications ports and their connected terminals identically, so the term \console port" refers

to either or both communications ports and \console terminal" to whatever device is connected to

either or both ports.

The console terminal and diagnostic terminal are handled at all times by the XKL

-

1 processor's

microcode. The interpretation of characters typed on the console terminal varies according to the

state in which the processor microcode has placed the console ports. The major division of states

is between \Console" and \Program" states. The transitions of the state of the console port are

described in more detail below; they are depicted in Figure 3.2.

Figure 3.2 depicts the transitions between various states.

In \Program" state, the console port is generally under control of the macro{program executing in

the XKL

-

1.

In \Console" state, one{line commands are received by the micro{console program, which is imple-

mented in the XKL

-

1 microcode. The micro{console either performs the command itself or it passes

the command to the macro{console where it is performed. (The macro{console is implemented

by macro{code instructions in the Boot ROM.) The Console state has substates depending on the

condition of the macro{program being run by the XKL

-

1.

The micro{console is activated either by receipt of a \CTRL/\" (control backslash) character on the

console terminal port or by execution of a HALT instruction by the running program. When acti-

vated, the micro{console will collect a command line from characters typed on the console terminal

port.



208 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

Figure 3.2: Console State Transitions

?

Process Command.

Set new Processor and Console State.

?

Halt/Con

?

?

Run/Pgm

�

HALT

-

CTRL/\

?

Run/Con

?

Init/Con

?

? ?

Power{on

Reset

Commands that begin with a \." (period) are parsed and processed by the micro{console, without

resorting to macro{code. The micro{console provides a small set of commands for XKL

-

1 initializa-

tion and control. These commands are available even in the unfortunate circumstance of not being

able to execute macro instructions. In micro{console commands, lowercase letters are interpreted

as uppercase.

To handle all other commands, the micro{console activates the macro{console (unless it is disabled).

Since the XKL

-

1 may be \running a program" (i.e., executing PDP{10 macro{code instructions)

when the micro{console receives a command, the micro{console is responsible for preserving the

state of the running program before activating the macro{console. State is preserved by simulating

an interrupt of the current program. The current PC, 
ags, relevant machine state, and a pointer to

the command string are saved in a predetermined area of MemA; part of the stored state indicates

whether a program was running when the macro{console was activated. Then the pager is turned

o� and the processor priority interrupt level is raised to 0 (which is higher than any normal program

interrupt). Finally, the PC is set to a predetermined location in the Boot ROM.

The macro{console code then parses the command stored in MemA and takes the appropriate action.

Generally, the macro{console does not perform commands that alter any machine state unless it can

restore the state at the end of the command. If no program was running when the macro{console

was started, commands that intentionally alter the machine state are permitted.

Upon completion of a command, the macro{console executes a HALT instruction to return control to

the micro{console. The micro{console restores the machine state and PC from where it was saved

in MemA. (The macro{console command may have altered the saved state.) If appropriate, the

micro{console resumes the execution of the interrupted program.

In detail, the micro{console will enter the macro{console by performing the following steps:

1. Save the state of the current macro{code in MemA:



3.2. CONSOLE 209

AM%MFG Flags and context

AM%MPC PC

AM%MEB EBR

AM%MUB UBR

AM%MCS CSB

AM%MPI Highest PI level in progress

2. Set or clear the following 
ags in AM%MBT in MemA:

MS%RUN A program was running if set. (Otherwise, there was no program, the program had

never run, or it was halted.)

MS%VAL Program PC is valid if set.

MS%MCA Macro{console was active if set. (This 
ag is used for debugging when running the

macro{console as a program.)

MS%MCE Macro{console is enabled, if set. (This 
ag is always cleared to zero at entry to the

macro{console, thus disabling reentry of the macro{console unless the macro{console

is able to progress far enough to set this bit again.)

3. Make the machine enter PI priority level 0. This disables any interrupts at all lower priority

levels (all normal levels).

4. Set the EBR and UBR to 10,,0. This is the address of TDBoot's vestigial EBR and UBR.

Then turn paging o�.

5. Set the PC to a predetermined o�set in the entry vector and continue the macro{code, thus

starting the macro{console. The following o�sets are currently de�ned:

+3 Initialize the macro{console.

+4 Respond to a program halt. The address at which the HALT occurs will be in AM%OPC.

The macro{console will examine the state of the Dump, Diagnose, and Boot 
ags to

determine its next actions.

+5 Process the command to which AM%MCM points.

If the macro{console executes a PI reset, PI level 0 is cleared (as are all other PI levels). Thereafter,

the macro{console is no longer bound to preserve the machine state and update the MemA variables

described above. A subsequent HALT will enter the micro{console as if the XKL

-

1 were running an

ordinary program.

Upon a program's execution of a HALT instruction, the XKL

-

1's microcode will perform one of the

following:

� If MS%NCA is clear, clear MS%RUN in AM%MBT. If the macro{console is enabled, start it as described

above, using o�set +4. If the macro{console is disabled, enter the micro{console to collect CTY

input as a micro{console command.



210 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

� If MS%NCA is set, this is the macro{console returning control to the micro{console. If MS%MCE

is clear, disable the macro{console. (MS%MCE being clear indicates that the macro{console has

declared itself to be sick; the macro{console remains disabled until a .M command is issued.)

Otherwise, restore the machine state from the locations in MemA at which it was saved.

3.2.1 Console State Transitions

The console state is de�ned by two things: �rst, whether input is going to the console (\Con",

indicated by CT%CON set in AM%CTS) or to the macro{code (\Pgm", indicated by CT%CON clear in

AM%CTS) and, second, by the condition of the PDP{10 program: either running (MS%RUN set), halted

(MS%RUN clear, MS%VAL set), or initialized (MS%VAL clear).

3.2.2 Micro{Console Messages

The following are messages from the micro{console.

System Processor (XKL-1, 1995) Ver - 000000000123 This denotes XKL

-

1 processor micro-

code version \123".

XKL-1% This micro{console prompt signi�es either the \Halt/Con" state or the \Init/Con" state:

the macro{code is not running.

XKL-1> This micro{console prompt signi�es \Run/Con" state: the macro{code is running.

?CMD An invalid command letter was entered or a required command letter was missing.

?ARG An incorrect number of numeric arguments or a non{numeric argument was entered.

?PC No valid macro{code PC exists. (The PC is invalid after a hardware reset, after either a .I

or .M command, or after a variety of macro{console commands.)

?RUN The given command is not legal while macro{code is running. (The macro{code can be

stopped by the .H command.)

?MCON A command was entered which would normally be passed to the macro{console, but the

macro{console is not enabled. (The .M command will enable the macro{console.)

HALT at nnn The macro{code (the running program) has halted at the indicated PC, nnn. The

console terminal port is now in \Halt/Con" mode. The micro{console prints this message only if

the macro{console is not enabled; otherwise, the macro{console prints its own message.

?MCON HALT at nnn The macro{console has halted at the location indicated by nnn because of

an error. (The error condition is signi�ed by MS%MCA set and MS%MCE clear.) Possible causes include

a failure in the basic instruction test. The macro{console is now disabled (until a .M command).

?MCHK nnn at mmm Micro{code or hardware failure nnn at the PC mmm. The interpretation

of the code nnn can be found in the corresponding micro{code FIELDS.MIC de�nitions.

?IOPF I/O page fail which was not handled by the normal macro{code or TDBoot. The latest

page{fail information is stored in MemA at AM%PFN (locations 500{517). The previous page fail



3.2. CONSOLE 211

information is stored in MemA at AM%PFC (locations 560{577). (The console terminal port will enter

\Halt/Con" mode.)

?XBR0 An operation was attempted that accessed the EBR or UBR, and the corresponding address

was zero. (The console terminal port enters \Halt/Con" mode.)

?INITERR nnn An error was detected during initialization tests. The micro{code will attempt to

continue, but proper operation is doubtful. The number printed, nnn, is a bit mask indicating the

failed tests. The following values indicate particular failures:

1 The data did not compare during the FIFO test.

2 When the FIFO test ended the FIFO was not empty.

4 The FIFO became empty before the test was complete.

10 The XIlinx test failed.

?PF jjj kkk lll A page fail occurred as a result of a micro{console command. (The console terminal

port will enter \Halt/Con" mode.) The values typed are suggestive of the faulting address and the

nature of the fault.

jjj The value of AM%PFB (EPT+500)

kkk The value of AM%PF0 (EPT+502)

lll The value of AM%PF1 (EPT+503)

See \Hard Page Failure" Section 3.7.1.8, page 257 for a description of these data words.

3.2.3 Console Terminal Programming

When the console port is in \Program" state, the console terminal is at the disposal of the running

program. In Program state, each character that arrives at the console port is available by using

the RDCTY instruction. If the program has enabled the console port to interrupt, the arrival of a

character is signalled with an interrupt. Similarly, when the console port is ready, a character can

be sent by the WRCTY instruction; if the program has enabled the console to interrupt, the Output

Ready condition is signalled by an interrupt.

While running PDP{10 instructions, the processor microcode examines the condition of the console

port (Input Ready, Output Ready) at every point where the XKL

-

1 processor can accept an interrupt.

If the console requires service, it is served (at the microcode level) without regard for the status of

Priority Interrupt system; of course, further processing of input or output characters depends on

the responsiveness of the running program. When the console is in Program state, the UART Input

Ready causes the microcode to read the character into its memory (where it is held for a RDCTY

operation); set the Input Ready device status; and, if Console Input Enable is true, request an

interrupt at the assigned level. UART Output Ready causes the microcode to set the Output Ready

device status and, if Console Output Enable is true, request an interrupt at the assigned level.

The following instructions are available for the program to use in communicating with the console

terminal:



212 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

0 12 1314 1718 35

I X Y

8 9

1

RDCTY

Read Console (APR3 1,)

703

If a console port input character is available (Input Ready true), deposit it, right justi�ed, in the

location addressed by E ; clear Input Ready (and clear the input interrupt request, if any). If no

character is available, store zero in the location addressed by E .

0 12 1314 1718 35

I X Y

8 9

3

WRCTY

Write Console (APR3 3,)

703

If the console port output UART is available (Output Ready true), send the 8{bit character found

right justi�ed in the location addressed by E ; clear Output Ready (and clear the output interrupt

request, if any). If the console port output UART is busy (Output Ready false), this operation does

nothing.

0 12 1314 1718 35

I X Y

8 9

4

WRCTYS

Write Console Status (APR3 4,)

703

This is an immediate mode instruction. The status sent to the device in E consists of the priority

interrupt level assignment in bits 33{35 and individual interrupt enables for output and input in

bits 29 and 30, as shown below in the description of RDCTYS. When the priority level is non{zero,

the console will generate an interrupt when Console Output Ready and Output Interrupt Enable

are true or when Console Input Ready and Input Interrupt Enable are true.

0 12 1314 1718 35

I X Y

8 9

5

RDCTYS

Read Console Status (APR3 5,)

703

Read the console status and store it in the location addressed by E . The console status consists of:

26

C

O

N

27

C

O

I

28

C

I

I

29

O

I

E

30

I

I

E

31

C

O

R

32

C

I

R

33

Priority

Level

35

The bits and �elds returned are

CON CT%CON==:1B26 Console Mode. This 
ag, when set, indicates that the console port

is communicating with the microcode console; i.e., \Console" state. When clear, the

terminal is under control of the macro program: \Program" state.



3.2. CONSOLE 213

COI CT%COI==:1B27 Console Output Interrupt. This 
ag is the logical AND of OIE (output

interrupt enable) and COR (console output ready) and a non{zero priority level. This


ag is read{only.

CII CT%CII==:1B28 Console Input Interrupt. This 
ag is the logical AND of IIE (input

interrupt enable) and CIR (console input ready) and a non{zero priority level. This 
ag

is read{only.

OIE CT%OIE==:1B29 Output Interrupt Enable. If set when the assigned priority level is not

zero and when Console Output Ready is true, an interrupt will be requested. This 
ag

is set by WRCTYS.

IIE CT%IIE==:1B30 Input Interrupt Enable. If set when the assigned priority level is not

zero and when Console Input Ready is true, an interrupt will be requested. This 
ag is

set by WRCTYS.

COR CT%COR==:1B31 Console Output Ready. When set, this 
ag indicates that the console

port UART is free; another output character can be accepted. This 
ag requests an

interrupt when set, if a non{zero priority level is assigned and OIE is set. This 
ag is

read{only.

CIR CT%CIR==:1B32 Console Input Ready. When set, this 
ag indicates that the console

port UART has a character available to be read. This 
ag requests an interrupt when

set, if a non{zero priority level is assigned and IIE is set. This 
ag is read{only.

Priority

Level

CT%PIA==:7 Console Interrupt Assigned Priority Level. If zero, console activity will not

interrupt the program. Otherwise, this is the level on which interrupts will be requested

for input or output. This �eld is set by WRCTYS.

0 12 1314 1718 35

I X Y

8 9

6

SZCTYS

Skip if Zero, Console Status (APR3 6,)

703

This instruction tests bits 18{35 of the console status (as indicated by RDCTYS) against the im-

mediate mask supplied by bits 18{35 of E . If all status bits selected by 1s in E are zero, the next

instruction in sequence is skipped.

0 12 1314 1718 35

I X Y

8 9

7

SNCTYS

Skip if Non{zero, Console Status (APR3 7,)

703

This instruction tests bits 18{35 of the console status (as indicated by RDCTYS) against the imme-

diate mask supplied by bits 18{35 of E . If not all status bits selected by 1s in E are zero, the next

instruction in sequence is skipped.



214 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

3.2.4 Auxiliary Port

As mentioned above, the XKL

-

1 processor has an auxiliary console port to which a modem may be

connected to allow a person at a remote location to watch and interact with the system as though

using the local console terminal. The second port may be used to provide a facility for remote

diagnosis.

The auxiliary port is equipped for RS232 modem control. When the port is disabled, the microcode

will not answer incoming calls. When enabled, the microcode will assert DTR (Data Terminal

Ready) on the port so that it can answer an incoming call. The microcode will \connect" the

diagnostic terminal \in parallel" with the local console terminal port: all information sent to the

console port will be copied to the diagnostic port; keystrokes from either port will be accepted as if

they came from the local console port, and they will be echoed to both.

Both serial communication ports are responsive to <CTRL/S> for stopping type{out and to <CTRL/Q>

for resuming it. If the line speeds of the two ports are di�erent, throughput will be limited by the

rate of the slower port.

3.2.5 Console Commands

Both the micro{console and macro{console commands are documented in Appendix E.

3.2.6 Console Communication Characteristics

Both console ports appear as Data Terminal Equipment (DTE) on standard, 25{pin D-series plugs.

The main console port is wired for Signal Ground, Transmit Data, and Receive Data. The auxiliary

port is wired for those three signal and for Data Terminal Ready, Ring Indicate, Request to Send,

and Carrier Detect. The modem control signals are controlled and monitored by means of the

WCTRLF and RCTRLF instructions, respectively.

Both ports operate at 9600 baud, with 8 data bits, 1 stop bit, and no parity.

3.3 Processor Initialization

This section is speci�c to the XKL

-

1 processor implementation. Future models may di�er in detail.

The XKL

-

1 processor contains read{only memory from which it loads its operating microcode when

power is applied.

Each XKL

-

1 in a system will perform the following initialization steps:

� Micro{code initialization:

{ Set the error light (red LED showing through the module cover panel) so that any failures

during self{test will leave the light on.



3.3. PROCESSOR INITIALIZATION 215

{ Perform microcode level self{test. This tests the internal CPU datapaths, registers, and

control logic. If any failures are detected during these tests, the microcode loops leaving

the error light illuminated but without printing anything on the console. (The console is

not used because it has not been tested yet.)

{ Perform secondary testing of remaining internal CPU hardware which is not vital to the

micro{console operation.

{ Check NVRAM for power failure. Set bit AP%NVB in RDAPR if a power failure is detected.

{ When these tests are complete, extinguish the error light and the four green lights below

it. Print one line identifying the processor type and microcode version. If any errors were

encountered during secondary testing, the microcode will print the following message:

?INITERR nnn

The micro{code will attempt to continue, but proper operation of the system is doubtful.

The number printed, nnn, is a bit mask indicating the failed tests. The following values

indicate particular failures:

1 The data did not compare during the FIFO test.

2 When the FIFO test ended the FIFO was not empty.

4 The FIFO became empty before the test was complete.

10 The XIlinx test failed.

{ Test for the presence of the option jumper J2{0. (With the processor board held in its

usual orientation, J2{0 is at the top position of the four jumpers.) This jumper appears

as bit 0 in the APRID data at o�set +1. If the jumper is present, do not run any macro

code; just prompt for a command with the macro{console disabled (the micro{console

.M command can be used to enable the macro{console manually). If the jumper is not

present (this is the usual case), initialize the macro{console by starting it at o�set +3,

with the pager disabled. The macro{console fetches instructions from the CPU's Boot

ROM.

� Macro{console initialization:

{ Perform some basic instruction tests to further verify proper operation of the hardware

and microcode. If there are any failures during this process, the macro{console will halt

and the microcode will print:

?MCON HALT at xxx

The PC of the HALT instruction can be used to identify the problem with the XKL

-

1

processor's instruction set.

{ Print macro{console version, system ID, options, and microcode version. (See the SHOW

VERSION command in Appendix E.)

{ Checksum the contents of the Boot ROM and report any error.

{ Validate the contents of non{volatile RAM (NVRAM). If the contents of NVRAM are not

valid, then the entire contents are set to zero, except that all system start{up parameters

are set to disabled. (See DISABLE ALL in Appendix E.)

{ Set the state of the auxiliary console from data saved in NVRAM. (The auxiliary console

is disabled if the NVRAM was not valid in the previous step.)



216 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

{ If AP%NVB is set in RDAPR data, issue a message warning of an NVRAM low battery

condition

{ If AP%PWR is set in RDAPR data, issue a mesage warning of a system power problem.

{ Report any system start{up parameters that are disabled.

{ If Cache{Test is enabled (see ENABLE/DISABLE in Appendix E), test the XKL

-

1 cache.

{ If Pager{Test is enabled, test the XKL

-

1 pager (the translation bu�er).

{ If Bus{Poll is enabled, poll each slot (1{15) to determine which controllers are installed

(including this CPU's slot number). If a previous con�guration is stored in NVRAM,

print any discrepancies between that and the current con�guration.

{ If there are multiple CPUs in the system, synchronize with each and choose a master

processor. If this CPU is not the master, wait for instructions from the master CPU. If

this CPU is the master, proceed.

{ If Con�gure{Memory is enabled, con�gure all memory controllers. During con�guration,

test and/or clear according to the following settings:

1. If Test{Memory is enabled, perform all memory tests, clear memory, and con�gure

memory.

2. If Test{Memory is disabled but Clear{Memory is enabled, clear and con�gure mem-

ory.

3. If neither is enabled, con�gure memory.

{ If Device{Con�guration is enabled, poll for direct{access devices (disks) on each bus of

each XRH

-

1 Mass{Storage Interface Processor and issue a start command if necessary.

{ If Auto{Boot is enabled, attempt to boot the operating system using defaults (see BOOT

command in Appendix E).

{ If an Auto{Boot is successfully performed, the macro{console enters \Pgm" mode with

the macro{code running. Otherwise, the macro{console enters \Con" mode with the

macro{code halted.

3.3.1 Boot ROM

The Boot ROM consists of �ve 2M{bit EPROMs which are organized as one 256K{word memory

(BR%SIZ==:1000000). The Boot ROM responds to addresses in Slot 0, section 10 (BTSECT==:10).

The Boot ROM contains the TDBoot program; a copy of Ddt;diagnostics for the cache, pager,

and main memory; and a CPU veri�cation test.

The Boot ROM is accessed when the pager is o� by CPU references to addresses in section 10

(unpaged accesses imply slot 0). The Boot ROM may also be accessed while the pager is on by

using an immediate page pointer

4

that speci�es slot 0 and page numbers in the range 10000{10777;

such references should be uncached. (References through the pager are uncached when there is no

CST.)

The program that implements the macro{console is in the Boot ROM.

4

See x3.7.1.



3.4. PRIORITY INTERRUPT 217

3.3.2 Initial Program Environment

For the macro{console commands that load programs (i.e., BOOT (RUN), LOAD (GET), and MERGE), the

TDBoot program will create a virtual{memory environment for the program it loads, as described

here. If the .EXE �le speci�es that anything is to be loaded into section zero, TDBoot creates a

complete section zero in linear pages numbered 0 through 777. For programs that specify virtual

addresses above section zero, TDBoot allocates memory starting at linear page number 1000 and

consecutive linear pages as directed by the .EXE �le being loaded. Pages explicitly described by the

.EXE �le as containing zero will be created with zeros in them. Pages outside of section zero that

are not explicitly mentioned by the .EXE �le are not created.

TDBoot creates an Executive Process Table, a User Process Table, and supersection tables and

page tables as needed; these are allocated in memory starting at the highest linear page number and

working downward. The page tables will use immediate, writable page pointers to describe where

the loaded pages reside in memory. The page tables do not reference themselves; i.e., they are not

part of the virtual{address space that they describe. TDBoot will not create a CST; therefore, no

references are cacheable. No SPT is created. See also x3.7. TDBoot will map its ROM code into

section 36. In the initial UPT and EPT, TDBoot will set up page trap and pushdown trap entries

that point to its own trap handlers in section 36.

3.4 Priority Interrupt

The TOAD

-

1 System contains various processors that share the backplane bus. The various sub-

systems are subsidiary to the XKL

-

1 processor, but they maintain a degree of autonomy from it.

Each subsystem processor generally operates from its own in{memory command queue and signals

the completion of a task by moving an item from the command queue to the completed list. A

subsystem processor interrupts the XKL

-

1 when errors occur or when it completes a task and causes

the completed list to transition from empty to non{empty.

The priority{interrupt (PI) system allows the various subsystem processors to interrupt the XKL

-

1

at assigned levels of priority so that all can operate simultaneously. The hardware also allows

conditions internal to the central processor, e.g., interval expiration, to request interrupts.

3.4.1 Sources of Interrupts

Any subsystem processor on the TOAD

-

1 System backplane bus may signal an interrupt, provided

the program has enabled it to do so. Such interrupts are identi�ed below by the physical slot number

from which they originate.

Additionally, the XKL

-

1 processor has several appurtenances that may interrupt, when enabled by

the program to do so; these are called \internal devices". The internal devices include the console

terminal port, the interval timer, the error logic, and the program request facility.



218 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

3.4.2 Priority Levels

Interrupts are handled on eight \levels" arranged in priority sequence, with level 0 being the highest

priority and level 7 being the lowest.

Level 0 is totally unlike the other levels, in that the interruption of the normal 
ow of program

execution is totally invisible at the level of the PDP{10 instruction set processor: activity on interrupt

level 0 occurs between macro instructions. Level 0 is not under the control of the program: theWRPI

instruction (x3.4.8) does not a�ect level 0. Level 0 is enabled whether the PI system is on or o�.

Level 0 is used by the processor's operating microcode for the following purposes:

� Handling the internal devices.

� Responding to \Device Status" requests from other devices.

� Managing the pending{interrupts list: adding new interrupt requests, deleting requests that

have been withdrawn, and determining whether to accept an interrupt request.

Note a semantic inconsistency: making an assignment of priority level 0 to an internal device or

subsystem e�ectively disables that device from making interrupts.

Assignment of priority levels 1{7 to peripheral subsystems and internal devices is entirely at the

discretion of the programmer. To direct a subsystem to use a particular level, the program sends

the level to the subsystem in a device control message (or in a command list). Special instructions,

unique to each internal device, direct an internal device to use a particular level. A subsystem or

internal device that has been assigned a non{zero priority level is said to be \enabled" to interrupt

at that level. Directing a subsystem or an internal device to use level zero tells that subsystem or

device to avoid using interrupts altogether.

Any number of subsystems and devices may use the same priority level.

3.4.3 Interrupt Requests

When a peripheral subsystem that has a non{zero priority level requires the attention of the central

processor, it sends an interrupt request message to the processor. In the message, the subsystem

speci�es the priority level that was assigned to it by the program. The bus interface portion of the

processor receives the message (asynchronously relative to instruction execution) and places it in the

hardware Request FIFO (�rst{in, �rst{out) queue, where it remains until the processor microcode

reaches a point where it is receptive to interrupts. An interrupt is said to be \pending" at this point:

the processor has the request, but it has not yet committed to \accept" the interrupt request by

starting to process it.

On the backplane bus, the interrupt request is encoded as follows: Priority on bits 69{71 in binary

format; bit 68 is Request/Withdraw interrupt (1 = Request).

At places where the operating microcode is receptive to interrupts, a non{empty Request FIFO

queue or any of a variety of internal conditions will cause the microcode to depart from its usual

path so that it might decide whether or not to accept an interrupt. Internal conditions are serviced.



3.4. PRIORITY INTERRUPT 219

For example, a newly available character on the console UART will be placed in microcode memory

(MemA) and, if the console internal device is enabled to produce input interrupts, a console input

interrupt request will be placed in the pending{interrupts list (a data structure which is maintained

by the processor microcode). The contents of the Request FIFO are emptied into the pending{

interrupts list.

5

In the following circumstances, the processor will examine the pending{interrupts list to determine

whether any pending request should be accepted:

� After the processor has made a change to the pending{interrupts list. The pending{interrupts

list may change as the Request FIFO is emptied or when an instruction is executed that

changes the interrupt status of an internal device.

� After the program has dismissed an interrupt.

� After a WRPI instruction that may have changed the status of the PI system.

3.4.4 Interrupt Acceptance

A pending request will be accepted as soon as the necessary conditions are satis�ed: it must be at

a priority level that is currently enabled and higher in priority than the level held by the processor;

there must not be any request of higher priority corresponding to an enabled level; and, of all

requests of equal priority, the accepted request is the oldest.

6

The processor accepts a request by \holding

7

" the priority level of the request and performing the

equivalent of an XPCW instruction directed at the subsystem's or device's \Interrupt Control Block".

The Interrupt Control Block is four consecutive words in the Executive Process Table (EPT). The

location of the Interrupt Control Block is selected according to which subsystem or internal device

is the source of the interrupt.

For a device external to the processor, the EPT locations are determined by the physical slot number

of the device. The device in slot number S uses four consecutive words in the EPT starting at location

100+4�S. Each of the processor internal devices is handled by the processor's operating microcode

and has an assigned set of locations. The EPT locations of subsystem and internal device Interrupt

Control Blocks are given in Table 3.1.

The processor accepts an interrupt by performing the equivalent of XPCW directed at the Interrupt

Control Block corresponding to the interrupting subsystem or internal device. Thus, the 
ags and

PC of the interrupted program are stored in the �rst pair of locations and new 
ags and PC are

loaded from the second pair of locations. The new PC is usually the address of the Monitor service

routine for the interrupting device; the new 
ags must clear User mode.

The most important point of which the programmer should be aware is that, even while User is set,

the \equivalent of XPCW" executed to accept the interrupt is not part of the user program. It is

executed in executive mode and is subject to executive mode restrictions only. The \equivalent of

5

The Request FIFO is also used to hold \Device Status" and \Device Control" requests to which the processor will

respond as it empties the FIFO. Further, the FIFO may contain requests to withdraw a previous interrupt request;

to these the processor responds by removing the previous request from the pending{interrupts list.

6

Although the XKL

-

1 processor will accept requests at a given priority level in the order that they are presented,

no program should depend on this ordering.

7

The word \hold" is used here in the sense of \possess", not \delay".



220 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

Table 3.1: EPT Locations for Interrupt Control Blocks

Device EPT Location Symbol

APR Error Conditions (x3.9.1) 000{003 EP.APR

Program Request (x3.4.8) on Level L, 000 + 4� L EP.LV1

where 1 � L � 7 {003 + 4� L {EP.LV7

Console Input (x3.2.3) 040{043 EP.CTI

Console Output (x3.2.3) 044{047 EP.CTO

Keep{Alive Interrupt (x3.8.3) 050{053 EP.KPA

Interval Timer (x3.8.1) 100{103 EP.ITM

Subsystem in Slot S, 100 + 4� S EP.D01

where 1 � S � 15 {103 + 4� S {EP.D15

XPCW" is implemented by processor microcode performing the same sequence of micro instructions

as it does for an actual XPCW instruction, even though no actual XPCW instruction is fetched from

memory.

3.4.5 Interrupt Processing

Upon accepting an interrupt request, the processor holds the priority level corresponding to the

request. While holding that level, the processor will accept no request of equal or lower priority.

The processor holds an interrupt level until the program dismisses it, even if the interrupt routine is

itself interrupted by a higher priority level. Thus, the processor can hold a number of di�erent levels

simultaneously. The condition of holding a priority level is sometimes called \interrupt in progress"

on the level held.

In accepting an interrupt request, the processor executes the equivalent of an XPCW instruction.

The program run subsequent to the XPCW is called an \interrupt service routine." This program

is expected to attend to whatever the interrupting subsystem or device requires, thus satisfying the

request. The requesting subsystem (or device) is expected to send a message (or change its status)

withdrawing its interrupt request.

3.4.6 Interrupt Dismissal

Upon completion of the interrupt service routine, the program dismisses the interrupt by using

the XJEN (JRST 7,) instruction. This instruction directs the processor to restore the priority level

currently held to a state in which it|and lower priority levels|is receptive to further interrupts.

XJEN also restores the PC of the process that was interrupted.

The XJEN should restore the interrupted program's 
ags and PC from the double word stored at

the subsystem's or device's interrupt location in the Executive Process Table.

8

8

Note the e�ective{address of the XJEN is normally the virtual address of the EPT in executive space, plus the

o�set corresponding to Interrupt Control Block of the source of the interrupt.



3.4. PRIORITY INTERRUPT 221

Caution

An interrupt routine must dismiss the interrupt when it returns to the interrupted pro-

gram. Otherwise, its level and all levels of lower priority will be disabled and the processor

will treat the interrupted program as a continuation of the interrupt service routine.

A single interrupt level will shut out all levels of lower priority if, every time its service

routine dismisses the interrupt, a subsystem or device at this priority level is already

waiting with another interrupt request. In particular, if a subsystem or device fails to

withdraw its interrupt request, the unwithdrawn request will shut out all levels of lower

priority and all other requests at this level.

3.4.7 Interrupt Register

Interrupts and other unusual conditions are gathered in the interrupt register. The logical OR of the

various conditions reported in the interrupt register is visible to the microcode, which can dispatch

to an alternate address when the OR of these conditions is true. Reading the interrupt register

resets the register, so the microprogram must store the result for perusal. The action of reading the

register also advances the FIFO to the next data item, if any.

The microcode stores the latest data read from the interrupt register in MemA; it can be examined

by using the console command .EI.

The format of the interrupt register is depicted below.

Interrupt Register

00

F

N

E

11

F

F

u

l

22

B

P

E

0

33

C

L

S

44

B

P

E

1

55

C

D

P

66

C

T

P

77

P

D

P

88

P

T

P

99

B

B

C

1010

T

B

O

1111

I

T

I

1212

U

I

1313

U

I

P

1414

P

F

I

1515

P

F

P

3518

FIFO Data

1918

FC

3120

Software and PIA

3532

Slot

The contents of the interrupt register are interpreted as shown below. The items marked with \*"

are included in the logical OR of terms that cause the alternate microcode dispatch.

FNE Interrupt FIFO is Not Empty. When this bit is set, the contents of bits 18{35 are

valid.

FFul FIFO Full. The interrupt FIFO is full: all 64 locations of the FIFO have been �lled,

and an interrupt request has been discarded.

BPE0* Bus Parity Error 0. A word read from memory has bad parity. The bad data has

been provided to the CPU. (This condition gives rise to a Memory Parity Error 0 page

failure.)

CLS* Cache Line Order Scrambled. During a \Line Read" operation, the memory presented

data in an order other than what the CPU requested. The CPU has been given the

wrong data; incorrect data is also present in the cache.



222 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

BPE1* Bus Parity Error 1. In a \Line Read" operation, the memory has provided a data

word that has bad parity. The erroneous data has not yet been seen by the CPU;

however, the bad data has been written, with good parity, in the cache. For further

diagnosis, the CPU should 
ush the cache. (This condition gives rise to a Memory

Parity Error 1 page failure.)

CDP* Cache Data Parity Error.

CTP* Cache Tag Parity Error.

PDP* Pager Data Parity Error.

PTP* Pager Tag Parity Error.

BBC* Bad Bus Cycle. An unexpected response has been received from some device on the

backplane. For example, a cycle that timed out has completed, or a \Line Read"

request was met by a \Word Read Return". Due to scarcity of time and data path in

the processor, no further information is available.

TBO* Time-base Over
ow. A carry out of the time{base counter has occurred. The mi-

crocode should increment the in{memory copy of the time{base accordingly.

ITI * Interval Timer Interrupt. The interrupt counter has reached its assigned value.

UI * UART Interrupt. A rising edge of the \UART Interrupt Pending" lead (see below)

has been detected.

UIP UART Interrupt Pending. This bit monitors the condition of the UART status out-

put. The UART status output lead is programmable (by the microcode) on which

conditions to report as interrupts.

PFI * Power Fail Interrupt. The PFAIL{ backplane signal is being asserted while the in-

terrupt is enabled. The PFAIL{ signal denotes either the failure of AC power or the

presence of the thermal warning condition. (The data returned by RCTRLF allows the

program to determine which environmental conditions prevail.)

PFP Power Fail Pending. This 
ag re
ects the state of the PFAIL{ backplane signal.

FIFO Data Data is valid if bit 0 contains one. Bits 18{19 encode FC|function type, which is

one of \Control Write", \Status Read", or \Interrupt Request". The interpretation

of the other FIFO bits depends on the function selected by bits 18{19, as follows:

FIFO Bus Control Status Interrupt

Bit Bit Write Read Request

18 Type 1 0 0

19 Type 0 1 0

20{28 A60{A68 Reserved Reserved Reserved

29 A69 Reserved Reg<0> PI<0>

30 A70 Reserved Reg<1> PI<1>

31 A71 Reserved Reg<2> PI<2>

32{35 SRC0{SRC3 Source Slot Number of Request



3.4. PRIORITY INTERRUPT 223

3.4.8 Program Control of the Priority Interrupt System

The program can control the PI system by means of the following instructions:

0 12 1314 1718 35

I X Y

8 9

14

WRPI

Write Priority Interrupt (APR0 14,)

700

Perform the function(s) speci�ed by the e�ective{conditions E (an immediate quantity) as shown;

a 1 in a bit produces the indicated function, a 0 has no e�ect.

Drop

Prgm

Req

On

Lvls

Clear

PI

Sys{

tem

Selected Levels

Make

Prgm

Req

On

Turn

On

Turn

O�

PI

System

Turn

O�

Turn

On

Select Levels for

Bits 22,24,25,26

1 2 3

4

5 6

7

18 22 23 24 25 26 27 28 29 30 31 32 33 34 35

22 PICPIR==:1B22 On levels selected by 1s in bits 29{35, turn o� any \program requests" (see

bit 24, below) made previously. This is the proper way to clear program requests. If this bit

is set when bit 24 is also set, the e�ect of the instruction is not de�ned.

23 PICLPI==:1B23 Clear the PI system: turn o� the PI system, turn o� all levels, drop all

program requests, restore all levels that are currently being held, and clear the processor's

pending{interrupts list. If this bit is set with any other bit, the e�ect of this instruction is not

de�ned.

24 PISPIR==:1B24 Make a \program request" for interrupts on levels selected by 1s in bits

29{35. If this bit is set when bit 22 is also set, the e�ect of this instruction is unde�ned.

A program request persists inde�nitely. Therefore, as soon as an interrupt is completed on a

given level, another is started until the request is turned o� by a WRPI that selects the same

level and has a 1 in bit 22.

The processor may allow the program to continue while it decides whether to accept a request.

Thus, when this bit creates a pending request, some additional program instructions may be

performed before the interrupt. If the program forces an interrupt on the lowest{priority level

when all levels are active, there can be a very long time interval between the WRPI and its

interrupt.

25 PICHON==:1B25 Turn on (enable) the levels selected by 1s in bits 29{35 so that interrupt

requests can be accepted on them. If this bit is set when bit 26 is also set, the e�ect of this

instruction is not de�ned.

26 PICHOF==:1B26 Turn o� (disable) the levels selected by 1s in bits 29{35 so that interrupt

requests cannot be accepted on them. Pending requests for this level accumulate while the

level is disabled. If this bit is set when bit 25 is also set, the e�ect of this instruction is not

de�ned.



224 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

27 PIPIOF==:1B27 Turn o� the interrupt system so that no requests can be accepted. Pending

requests accumulate while the interrupt system is o�. If this bit is set when bit 28 is also set,

the e�ect of this instruction is not de�ned.

28 PIPION==:1B28 Turn on (enable) the interrupt system so that the hardware can accept

requests. Pending requests (and any subsequent new requests) are accepted in order of their

priority. If this bit is set when bit 27 is also set, the e�ect of this instruction is not de�ned.

29{35 PICHNM==:177B35 Individual bits to select levels for bits 22, 23, 24, and 25.

0 12 1314 1718 35

I X Y

8 9

15

RDPI

Read Priority Interrupt (APR0 15,)

700

Read the status of the PI system into location E as shown:

Program Requests

on Levels

1 2 3 4 5 6 7

Interrupt Holding

on Levels

1 2 3 4 5 6 7

PI

On

Levels On

1 2 3 4 5 6 7

0 11 12 13 14 15 16 17 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Levels that are on (enabled) are indicated by 1s in bits 29{35; 1s in bits 21{27 (PIPIIP==:177B27)

indicate levels on which interrupts are currently held (i.e., levels on which interrupts have been

accepted and not yet dismissed); and 1s in bits 11{17 (PIPIRM==:177B17) indicate levels on which

program{initiated requests have been made by usingWRPI with a 1 in bit 24. A 1 in bit 28 indicates

that the PI system is turned on.

0 12 1314 1718 35

I X Y

8 9

16

SZPI

Skip if Zero, Priority Interrupt (APR0 16,)

700

This instruction tests bits 18{35 of the PI system status (as indicated by RDPI) against the immediate

mask supplied by bits 18{35 of E . If all status bits selected by 1s in E are zero, the next instruction

in sequence is skipped.

0 12 1314 1718 35

I X Y

8 9

17

SNPI

Skip if Non{zero, Priority Interrupt (APR0 17,)

700

This instruction tests bits 18{35 of the PI system status (as indicated by RDPI) against the immediate

mask supplied by bits 18{35 of E . If not all status bits selected by 1s in E are zero, the next

instruction in sequence is skipped.



3.4. PRIORITY INTERRUPT 225

0 12 1314 1718 35

I X Y

8 9

12

SIMIRD

Simulate Interrupt Register Data (APR0 12,)

700

This instruction reads the word at location E and uses the data found there as though it had come

from the interrupt register and FIFO.

Software uses this instruction to force the processor hardware to simulate the e�ect of certain types

of interrupts and bus cycles. For example, to drop an interrupt from a particular slot, the program

may issue this instruction with the data portion set to \FIFO Not Empty", FIFO Function Code

set to 00, and bits 29{31 set to the priority level and 32{35 set to the slot number.

3.4.9 Special Considerations

Generally, interrupts are processed between instructions; in such cases PC points to the next instruc-

tion to execute. After taking care of the interrupt, the processor simply returns to the interrupted

process by restoring the PC, 
ags, and PI system status by using an XJEN instruction. Some instruc-

tions have been designed to be interruptible at particular points within their execution; for these,

the instruction (i.e., the microcode) has been arranged to save the state of its partial computation

so that the instruction can be resumed if interrupted: the PC will point to the instruction that was

interrupted. Either:

� the interrupt was between the �rst and second parts of a two{part instruction, where First

Part Done being set prevents the processor from repeating any unwanted operations in the

�rst part or

� the interrupt occurred at some point in a multipart instruction where the microcode rigged

the various pointers and other quantities so the processor actually restarts the instruction at

the point where it stopped, rather than at the beginning.

Note that, in multipart instructions such as BLT, the byte manipulation instructions, or the string

instructions, the very mechanism that facilitates the resumption of an interrupted instruction results

in special properties of which the programmer must be aware.

An interrupt can start following any transfer in a BLT. When one does, the BLT puts the pointer

(which has counted o� the number of transfers already made) back in AC. Then, when the instruction

is restarted following the interrupt, it actually starts with the next transfer. This means that, if

interrupts are in use, the programmer cannot use the accumulator that holds the pointer as an index

register in the same BLT; the programmer cannot have the BLT load AC, except by the �nal transfer;

moreover, AC will not be the same after the instruction as it was before.

An interrupt can also start in the second e�ective{address calculation in a two{part byte instruction.

When this happens, First Part Done is set. This 
ag is saved as bit 4 of a 
ag word; if it is restored

by the interrupt routine when the interrupt is dismissed, this 
ag prevents a restarted ILDB or IDPB

from incrementing the pointer a second time. This means that the interrupt routine must check the


ag before using the same byte pointer, because it now points to the next byte. Giving ILDB or



226 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

IDPB would skip a byte, and if the routine restored the 
ag, the interrupted ILDB or IDPB would

process the same byte as did the routine.

9

3.4.10 Programming Suggestions

The Monitor handles all interrupts for user programs. Even if the User In{Out 
ag is set, a user

generally cannot reference the interrupt locations to set them up. Procedures for informing the

Monitor of the interrupt requirements of a user program are discussed in the Monitor manual.

For those who do program PI routines, there are several rules to remember:

� To prevent a device from hanging up a level, the programmer must be aware of|and satisfy|

whatever requirements the device has for dropping its request.

� The principal function of an interrupt routine is to respond to the situation that caused the

interrupt. Computations and any other time{consuming activities that could be performed

elsewhere should be excluded from the interrupt service routine.

� Never turn o� the interrupt system in a routine unless it is absolutely necessary to do so, and

then always turn it on again as soon as possible. If one or more priority levels can be turned

o� instead, that is preferable to turning o� the whole PI system.

� If the interrupt service routine uses a UUO, it must �rst save the contents of the locations that

will be changed by it in case the interrupted program was in the process of handling a UUO

of the same type (x2.16).

� The routine must dismiss the interrupt with an XJEN when returning to the interrupted

program. Flags and UUO locations must be restored.

3.5 Cache Operations

For the user, the cache is transparent: any program simply gets information from memory and

stores information in memory. However, the use of a cache as part of the memory subsystem reduces

program time, because the cache is faster than the storage modules. The cache also reduces the

program's need to access storage, making a larger fraction of the storage bandwidth available to other

parts of the system. As explained in x1.1.2, transfers between cache and storage are in eight{word

lines; storage references are to eight locations at a time.

The cache contains representations of a selection of such memory lines. One may view the cache as

131,072 registers organized in lines of eight, which temporarily substitute for the most frequently

referenced storage locations. The cache serves this function not only for the program but for all

applicable microcode references, including those for handling interrupts, traps, page re�lls, and other

automatic operations.

The cache is organized as 8,192 pairs of eight{word lines. Address bits 33{35 select a word within a

line. Address bits 20{32 select a pair of lines. A cache directory speci�es the backplane bus address

10

9

Generally speaking, it would be better to use di�erent byte pointers at di�erent priority levels.

10

The 4{bit slot number and bits 7{19 of the in{module address; for cache references to memory, the device bit, D,

is implicitly zero.



3.5. CACHE OPERATIONS 227

associated with each of the lines in the pair, the \valid" and \modi�ed" 
ags for each of the lines,

and one bit to indicate which one of the pair of lines was least recently used.

Initially, the cache contains nothing: both valid bits in every pair of lines are clear. The way the

hardware handles the cache depends on whether the processor's initial reference to a location in a

line is a read or a write.

When the processor's �rst reference to a line is to read the contents of one of its locations, memory

control retrieves from storage the entire eight{word line that contains the referenced location. The

single word requested is supplied to the processor (which had been waiting) and all eight words

are loaded into the cache line, which is marked as valid and unmodi�ed; i.e., representing the true

contents of memory. The actual backplane bus transactions that read a line are arranged so that the

requested word in the line is returned in the �rst bus cycle of the memory's response. Subsequent

references, read or write, to the same line are made to the cache, not to storage. A write reference

to any word in the line changes the contents of the cache, not storage, and causes the entire line to

be marked as \modi�ed". A line that is valid and modi�ed represents what the contents of storage

should be; a modi�ed line eventually must be written back to storage.

When the processor's �rst reference to a line is for writing, the memory control accepts the new

contents of the word and holds it while the processor continues. Memory control will cause the entire

eight{word line to be read from storage and loaded into the cache. The newly written data item is

placed in the cache, obliterating the information read from the corresponding storage location, and

the cache line is marked as \valid" and \modi�ed".

As the program executes, the cache �lls with valid data. Eventually, a reference is made to a location

not already in the cache and for which both lines in the appropriate set are valid. To make room in

the cache for this latest reference, the least recently used line of the selected set is removed. If the

line being removed is both valid and modi�ed, the line will be written to memory before the line

is reassigned for the latest reference. If the line was not both valid and modi�ed, it is reassigned

immediately. In either case, the memory control and cache then proceed with the processor's read

or write reference, as described in the two paragraphs above.

A memory reference is cacheable (i.e., subject to being put in the cache and/or found in the cache)

only when the following are true: the memory reference occurs while the pager is on, the reference

uses the pager, the CST Base Register is non{zero, and the CST entry for the page on which the

reference occurs permits caching; see also x3.7.

3.5.1 Cache Programming

The cache is interposed between storage and the XKL

-

1 processor, not between storage and the

peripheral subsystems. Therefore, any operation of the peripheral subsystems to write storage may

render the cache's representation of storage incorrect. For example, in an input operation, data

from a peripheral device is written in memory; this action changes memory without automatically

marking as invalid the cache's representation of what is in that memory. Therefore, in the absence

of measures taken to prevent this problem, the cache would supply the old, incorrect data to the

processor. Similarly, a peripheral's attempt to read storage in an output operation will obtain stale

(incorrect) data when the cache contains valid and modi�ed data.

The Monitor is responsible for managing the relationship between storage modules, peripheral de-

vices, and the cache. To prevent problems of cache/storage inconsistency, the XKL

-

1 provides



228 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

operations that the program can perform on the cache. Any one of these operations may be applied

to all entries in the cache or to all entries on a single page. These operations are

� Invalidate cache. To invalidate a cache line is simply to clear its valid and modi�ed 
ags so it

no longer represents anything.

� Validate storage (writeback). To validate storage is to write to memory a cached line whose

modi�ed 
ag is set and then clear the modi�ed 
ag; validation of an unmodi�ed cache line is

a no{op.

� Validate storage and invalidate the cache (unload). To unload a cache line is to validate

storage, if needed, and then to clear the valid 
ag.

Following power turn{on, the cache directory contains indeterminate data. The cache is properly

initialized by invalidating all entries.

11

Consider the situation in which a program is �nished with the data in a particular (modi�ed) page

which is now to be swapped via a peripheral subsystem with new data to be brought into the same

physical page for later use. Any cached data for this page must be unloaded into storage: �rst,

so that storage will contain validated data prior to outputting that data to disk; second, so that

the newly input data from disk will be read from storage rather than from the cache. In contrast,

consider a page of data that has just been loaded into memory by LINK. To create an executable

�le from this memory image, the memory pages must be copied to disk; however, the data remains

in memory, ready for execution. Any cached data for the page must be validated in storage prior to

the output operation; however, so that the program can execute from the cache, there is compelling

reason to leave any valid data for the page in the cache.

3.5.2 Cache Sweeping Instructions

There are six instructions to perform the three sweep operations (i.e., invalidate cache, validate

storage, and unload cache), either for one physical page or for the entire cache. When sweeping for

one page, only the 64 sets of lines that may contain information for the selected page are examined.

The validate{all and unload{all operations require an examination of all 16,384 lines; however, in

the XKL

-

1, the invalidate{all operation is very fast.

11

The cache contents will have indeterminateparity following power turn{on, but this should not create any problem

in the normal use of the cache. Invalidating all entries ensures that the cache directory has good parity.



3.5. CACHE OPERATIONS 229

Caution

When interrupted, a sweep{all instruction stores its intermediate state in locations of

MemA speci�c to the particular form of sweep{all that is in progress. If a sweep{all in-

struction is interrupted and the interrupt process attempts another sweep{all instruction

of the same type (i.e., SWPUA is interrupted and another SWPUA is started), the state

of the interrupted instruction will be lost. The instruction in the interrupt routine will

perform the entire indicated operation (unless it is interrupted); when the interrupted

program resumes, the interrupted sweep{all instruction will terminate immediately.

The same caution applies to processes that run in response to page traps, because a

sweep instruction could be interrupted by a Cache Tag Parity Error or a Cache Data

Parity Error page trap. Recovery from a Cache Data Parity Error or a Cache Tag Parity

Error should avoid the use of the sweep instructions and, instead, pinpoint the error via

the cache diagnostic instructions.

0 12 1314 1718 35

I X Y

8 9

11

SWPIA

Sweep Cache, Invalidate All (APR1 11,)

701

Clear the valid bit from all cache lines. This operation is appropriate after power{up.

The cautionary message that precedes this instruction description should generally be heeded.

In fact, however, the actual implementation of SWPIA in the XKL

-

1 does not require storage of

intermediate{state information and it cannot generate page traps.

0 12 1314 1718 35

I X Y

8 9

15

SWPIO

Sweep Cache, Invalidate One Page (APR1 15,)

701

Clear the valid bit from the lines holding information for one page. Location E contains a bus

address word (x3.1.4) that speci�es the page being swept. Bits 27{35 of the bus address word are

ignored. Bit 0 of the bus address word must be zero.

This instruction might be given for a page after an operation that inputs data to it and before that

data is examined. Equivalently, it may be given after a page is discarded; e.g., when a read{only

page is swapped out.

0 12 1314 1718 35

I X Y

8 9

12

SWPVA

Sweep Cache, Validate All (APR1 12,)

701

All 16,384 cache lines are examined. Copy to storage any line in which the \modi�ed" bit is set and

clear the \modi�ed" bit.



230 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

The caution on page 229 applies to SWPVA.

0 12 1314 1718 35

I X Y

8 9

16

SWPVO

Sweep Cache, Validate One Page (APR1 16,)

701

Copy to storage any modi�ed lines belonging to the speci�ed page. Location E contains a bus address

word (x3.1.4) that speci�es the page to be swept. Clear the \modi�ed" bit for any line copied to

storage. Bits 27{35 of the bus address word are ignored; bit 0 must be zero. This instruction is

appropriate when a page must be written to a peripheral and retained in memory.

0 12 1314 1718 35

I X Y

8 9

13

SWPUA

Sweep Cache, Unload All (APR1 13,)

701

All 16,384 cache lines are examined. Copy to storage any line in which the \modi�ed" bit is set.

Clear the \modi�ed" and \valid" bits in every line.

This instruction is appropriate before turning o� the cache.

12

It may be appropriate in situations

where a large{scale output operation is contemplated.

The caution on page 229 applies to SWPUA.

0 12 1314 1718 35

I X Y

8 9

17

SWPUO

Sweep Cache, Unload One Page (APR1 17,)

701

Copy to storage any modi�ed lines belonging to the speci�ed page; invalidate all lines belonging to

the speci�ed page. Location E contains a bus address word (x3.1.4) that speci�es the page being

swept. Bits 27{35 of the bus address word are ignored; bit 0 must be zero.

This instruction is appropriate when a page is to be written to a peripheral and then discarded.

3.5.3 Cache Diagnostic Instructions

There are two instructions by which the program can verify the cache data and tag memories. These

instructions are not considered part of the normal operating repertoire; they may, however, be part

of system initialization, diagnosis, or error recovery.

12

The cache cannot be turned o� directly. The CST must be changed to mark pages as uncacheable; then the cache

can be unloaded.



3.5. CACHE OPERATIONS 231

0 12 1314 1718 35

I X Y

8 9

10

DRDCSH

Diagnostic Read Cache Tag and Data (APR1 10,)

701

Read selected data and directory information from the cache. The e�ective{address E points to a

block of three consecutive words. The word at E contains �elds that select which cache word to

read. Data is returned in E+1 and E+2, as shown below.

If a Cache Tag Parity Error or a Cache Data Parity Error is detected by this instruction, the error

condition is reported in the returned data; these errors do not cause page traps. (Of course, a page

trap can occur if the address speci�ed by E is not in memory, etc.)

Cache Tag and Data Tripleword | DRDCSH

E+2

E+1

E

Supplied

by Program

Returned

to Program

Returned

to Program

00

*

11

s

e

l

192

*

3520

Cache Tag Address

3220

Line Number

3533

Word

20

0

63

Slot

Number

197

In{Module Address

PMA 7{19

2120

0

2222

t

p

e

2323

d

p

e

3224

0

3333

V

3434

0

3535

M

350

Data

The �elds have meanings as follows:

* Fields marked with an asterisk are ignored by hardware.

sel CH%SEL==:1B1 The select bit: a zero selects the left{hand line of a pair of

cache lines and one selects the right{hand line.

Cache Tag Address CH%ADR==:177777 Bits 20{32 select the line number (CH%LIN==:177770)

and bits 33{35 select the word within the line (CH%WRD==:7).

Slot Number CH%SLT==:17B6 The 4{bit physical slot number of the memorymodule being

represented by this cache line.

In{Module Address CH%IMA==:17777B19 This �eld contains bits 7{19 of the in{module address

of the memory line represented by this cache line. (Bits 20{32 of the in{module

address of the memory line are given by the cache line number.)

tpe CH%TPE==:1B22 This bit is set to denote a Cache Tag Parity Error in one

or both sets for the indicated cache line.

dpe CH%DPE==:1B23 This bit is set to denote a Cache Data Parity Error in the

speci�c word.

V CH%VLD==:1B33 This is the Valid bit. If set, the other information that is

returned in this instruction is a representation of the contents of memory. If

V is zero, the data returned by this instruction is not meaningful (except,



232 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

perhaps, for diagnostic purposes). The select bit and bits 20{32 of the Cache

Tag Address (the cache line number) uniquely identify one line in the cache.

Each line has just one Valid bit, one Modi�ed bit, one Slot Number �eld, and

one In{Module Address �eld; these bits and �elds serve all eight permutations

of bits 33{35 of the Cache Tag Address (the word number within the cache

line).

M CH%MOD==:1B35 This is the Modi�ed bit. If set, some word on the selected

line (not necessarily the word addressed by bits 33{35 of the Cache Tag Ad-

dress) di�ers from memory. To validate memory, this line must be rewritten

to memory.

Data This is the in{cache data corresponding to the memory location addressed by

the Slot Number and a 29{bit in{module address composed of bits 7{19 of the

In{Module Address and bits 20{35 of the Cache Tag Address. If the modi�ed

bit is set, this word may di�er from actual memory contents; if the modi�ed

bit is zero, this word should be identical to actual memory contents.

0 12 1314 1718 35

I X Y

8 9

14

DWRCSH

Diagnostic Write Cache Tag and Data (APR1 14,)

701

The address of a three-word block of memory is speci�ed by E . The cache address into which to

write is speci�ed in the word addressed by E . The data to write into the cache is given in E+1 and

E+2, as shown below.

This instruction can be used to correct cache tag parity and/or cache data parity.

Cache Tag and Data Tripleword | DWRCSH

E+2

E+1

E

Supplied

by Program

Supplied

by Program

Supplied

by Program

00

*

11

s

e

l

192

*

3220

Cache Line

3533

Word

Num

00

*

21

0

63

Slot

Number

197

In{Module Address

PMA 7{19

2120

*

2222

w

b

t

2323

w

b

d

3224

*

3333

V

3434

*

3535

M

350

Data

The �elds are as described in DRDCSH, with the following additional notes:

wbt CH%WBT==:1B22) Write Bad Parity Tag: set this bit to make this operation

write bad parity with the cache tag. A subsequent read of this tag is expected

to report the bad parity, which normally would cause a page failure. (However,

DRDCSH would report the parity error without causing a page failure.)

wbd (CH%WBD==:1B23) Write Bad Parity Data: set this bit to make this operation

write bad parity with the data.



3.6. XKL

-

1 PROCESSOR INTERNAL MEMORY 233

V CH%VLD The value supplied by the program will be written into the cache

tag selected by the sel bit and the cache line number.

If the cache is to be kept consistent with memory (a requirement of operating systems program-

ming, but not necessarily a requirement of a diagnostic routine), this instruction must be used with

particular care.

3.5.4 Cache Management

Management of the cache is relatively straightforward. The Monitor must simply be sure always to

update storage pages before an output operation and to invalidate the cache representation of pages

after an input operation so that processor references to the new data will go to storage.

The same procedures are used for a multiprocessor system, but here a problem arises when di�erent

processors are allowed to reference the same page at the same time, if either processor is allowed to

modify the page. With read{only pages, the cache copies in both processors will be remain valid.

However, if a processor modi�es a shared page, the other processor cannot expect to get up{to{date

data from its cache. To handle this situation, the pager includes mechanisms for bypassing the

cache. A cache bit, associated with each individual memory page (see x3.7), is used by the paging

hardware to determine whether or not cache use is allowed for a page.

To the extent that input{output operations are speci�ed via in{storage command lists and completed

lists, these lists appropriately belong in pages that are uncached.

To cause a page to be cacheable, the Monitor must set the CST cacheable bit for the page to indicate

that it is cacheable, and the Monitor should issue a CLRPT to cause a pager re�ll for the a�ected

page, so the pager can \see" the new status of the page.

To cause a page to be uncached, the Monitor must clear the CST cacheable bit for the page, issue a

CLRPT to prevent any new entries from coming into the cache, and sweep the cache to unload the

a�ected page. To cause all pages to be uncached, the Monitor must validate the pages containing

the EPT and UPT; disable caching of the EPT, UPT, and SPT; disable caching throughout the

system (perhaps by setting the CST to zero); and unload the entire cache.

3.6 XKL

-

1 Processor Internal Memory

The XKL

-

1 processor board includes two kinds of internal memory, called MemA and NVRAM.

3.6.1 MemA

The XKL

-

1 processor includes an on{board internal memory called MemA. This memory stores 36{

bit data words and has 8,192 locations (AM.CAP==:20000). MemA is used for a variety of internal

purposes. The �rst 128 locations are the eight AC blocks.



234 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

3.6.1.1 Operations on MemA

The following operations are supported.

0 12 1314 1718 35

I X Y

8 9

A

AMOVE Move from MemA

714

Read the contents of MemA location speci�ed by E and store the data in AC. The in{section value

of E must be in the range 0{17777 (octal).

0 12 1314 1718 35

I X Y

8 9

A

AMOVEM Move to MemA

715

Store the contents of AC in the MemA location speci�ed by E . The in{section value of E must be

in the range 0{17777 (octal).

3.6.1.2 MemA Speci�c Locations

Notice

Speci�c locations in MemA identi�ed in this manual are not part of the

architectural speci�cation of the TOAD

-

1 System. They are mentioned here

for the convenience of the authors of the processor microcode, TDBoot,

and diagnostics. They are subject to change.

The present allocation of MemA locations is described in Appendix F.1.

3.6.2 Non{Volatile RAM

The XKL

-

1 processor includes an internal non{volatile memory, called NVRAM. The NVRAM

is organized as an 8K�8{bit memory (NV%SIZ==:20000). NVRAM holds processor con�guration

parameters that are needed by the system before it accesses the disks.

3.6.2.1 Operations on NVRAM

The NVRAM is accessed by the following instructions:



3.7. PAGING AND MEMORY MANAGEMENT 235

0 12 1314 1718 35

I X Y

8 9

A

NMOVE Move from NVRAM

706

Read the contents of NVRAM location speci�ed by E and store the data in AC bits 28{35; clear

AC bits 0{27. The in{section value of E must be in the range 0{17777 (octal)

0 12 1314 1718 35

I X Y

8 9

A

NMOVEM Move to NVRAM

707

Store the contents of AC bits 28{35 in the NVRAM location speci�ed by E . The in{section value

of E must be in the range 0{17777 (octal). The contents of AC are not a�ected.

The NVRAM is a low{power RAM that contains a lithium battery to maintain the memory contents

while external power is o�. When the battery discharges (the estimated life is 10 years) the NVRAM

must be replaced. Each time that external power is applied to the NVRAM (after having been

absent), if the battery is low, the second access to the device will fail. Therefore, in its initialization

sequence, the processor microcode reads NVRAM location 17777 (the �rst access); complements the

data; writes it back (the second access); and then reads the data again. If the second read (the

third access) produces the same value as the �rst, the processor knows that the NVRAM battery is

low: it signals that fact via the AP%NVB 
ag in RDAPR. If the data changes, the battery is working

properly and the processor restores the original data to location 17777. When the battery charge is

low, the NVRAM contents may be unreliable.

3.6.2.2 NVRAM Speci�c Locations

Notice

Speci�c locations in NVRAM identi�ed in this manual are not part of the

architectural speci�cation of the TOAD

-

1 System. They are mentioned here

for the convenience of the authors of the processor microcode, TDBoot,

and diagnostics. They are subject to change.

The allocation of NVRAM locations is described in Appendix F.2.

3.7 Paging and Memory Management

General information about machine modes and paging procedures is given in x1.4. This section

treats in detail the structure of the process tables and certain hardware procedures|paging, page

re�lls, and page failures|a knowledge of which is necessary for an understanding of operating system



236 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

programming.

The mapping described here is the XKL

-

1's extension of what was informally called \TOPS{20

paging" on the KL10 processor. \TOPS{20 paging", which is now, formally, called \Extended KL

Paging", was originally developed to support the TOPS{20 operating system. However, with the

advent of extended addressing, DEC's other monitor, TOPS{10, was converted to use the newly

renamed \Extended KL Paging".

Although the remainder of this section describes the hardware support for the TOPS{20 operating

system, the reader should keep in mind that the TOPS{10 operating system makes use of a subset

of the same facilities.

13

At the physical level, the TOAD

-

1 System deals in bus addresses. As described in x3.1.4, a bus

address has three components: a 4{bit physical slot number, which selects a particular memory or

peripheral subsystem; a 29{bit in{module address, which speci�es a particular location within the

selected module; and one bit, called D , that speci�es the bus cycle type (either memory or con-

trol/status) to be used in dealing with the device addressed by the slot number. Because D , the bus

address, and the in{module address, together, are wider than the 30{bit addresses produced by the

e�ective{address calculation, all program references to memory are regarded as being references to

virtual addresses; i.e., all addresses are translated by the pager.

14

Special instructions (x3.1.4), in-

tended for input{output operations and for diagnostics, bypass the pager by providing bus addresses

directly.

In executive mode, the program considers all of its dealings with memory to be in its virtual{

address space; instructions reference executive virtual space except for the special instructions that

speci�cally call for bus{space references. A virtual address is any address given in virtual space

except those for fast memory, which are treated as physical. The pager maps only virtual addresses,

but it is involved in all references to the extent that it responds to error situations. Bus{space

references are made by the pager microcode to carry out the mapping procedure; also, microcode

references to peripheral subsystems are performed in bus{space.

Note

Paging operations are inextricably intertwined with the activities of the TOPS{20 oper-

ating system. The reader must become familiar with both in order to understand either

fully.

3.7.1 Paging

All of memory is divided into pages of 512 words each. Architecturally, the TOAD

-

1 System back-

plane bus speci�es addresses by a four{bit physical slot number and a 29{bit in{module address;

slot numbers 1{15 are legal, slot 0 does not exist. The pager translates virtual addresses (either user

or executive) to bus addresses.

13

XKL LLC has no plans to support TOPS{10 on the XKL

-

1.

14

When TDBoot is started, paging is turned o�: virtual addresses are passed unchanged through the pager.

These addresses invariably select slot 0, a non{existent slot, but the processor's on{board ROM will respond to these

addresses.



3.7. PAGING AND MEMORY MANAGEMENT 237

The virtual{memory space of a program is 2,097,152 pages, expressed in 30{bit addresses. Of the

address bits, the left twenty{one bits (6{26) are the extended page number. The virtual{address

space is usually regarded as 4,096 sections, each of 512 pages. With this view, the extended page

number has two parts: the left{most twelve bits (6{17) specify the section and the right{most nine

(18{26) specify the page.

15

By paging, the hardware maps each page of the virtual{address space into a part of the backplane

bus{address space.

16

In this transformation, the right{most nine bits (27{35) of the virtual address

are not altered; in other words, a given o�set into a virtual page is the same o�set into the corre-

sponding bus{address page. The paging translation maps a 30{bit virtual address to the bus{address

space by transforming the 21{bit extended page number to a four-bit bus{slot number and a 20{bit

in{module page number. These, together with the nine unchanged in{page address bits, are the bus

address. The procedure is carried out automatically by the pager, but the maps that supply the

necessary substitutions are constructed by the executive program.

The pager makes use of the Executive Base Register (EBR), by which the executive identi�es the

bus{page address of the Executive Process Table (EPT). Among other things, the EPT contains,

at locations 540{547 (EP.SS0==:540), the eight{entry executive supersection table. The EPT also

contains information by which the Monitor handles \hard" page traps (x3.7.1.8).

The pager also contains the User Base Register (UBR), by which the executive identi�es the bus{

page address of the User Process Table (UPT). The UPT is the user{space analog of the EPT; it

contains the eight{entry user supersection table (at UP.SS0==:540). The User Process Table also

contains information by which the Monitor handles \soft" page traps (x3.7.1.8) and MUUOs (x2.16).

The translation of a 30{bit virtual address is performed in the following conceptual steps. To select

one supersection, the supersection number, bits 6{8 of the virtual address, is added (right justi�ed)

to 540 plus the value found in the EBR (or UBR, if mapping a user address). The result is the

bus address of the needed supersection pointer. The supersection pointer provides the bus address

of a section table; the section table contains 512 section pointers. To select one section pointer,

the section number, bits 9{17 of the virtual address, is added (right justi�ed) to the bus address

found in the supersection pointer. The result is the bus address of the needed section pointer. The

section pointer provides the bus address of a page map; the page map contains 512 map pointers. To

select a map pointer, the in{section page number, bits 18{26 of the virtual address, is added (right

justi�ed) to the address contained in the section pointer. The word thus selected is a map pointer

that contains the bus address of the desired page.

Every pointer and mapping requires one word. Thus, a page map for one section requires one page;

a page map for one supersection table requires one page. The �gures on the following pages show

the organization of the virtual{address spaces, the process tables, the supersection tables, and the

section tables for both user and executive. Figure 3.3 gives the general layout of the process tables

and shows the relation between virtual{address spaces and the supersection and section tables.

Figure 3.4 shows the process table con�guration used in XKL's monitors. Any table locations whose

15

The reasons to hold this view are two. First, although large data structures can arbitrarily cross section boundaries,

the program cannot. For the program to get from one section to another requires an explicit transfer of program

control. The Program Counter has thirty bits, but it counts only the right{most eighteen: when going beyond the

end of a section, PC simply wraps around to the beginning of the same section (from location 777777 to location

0). Second, although the page mapping procedures are actually set up in terms of eight supersections of 512 sections

each, this distinction is not visible to user programs.

16

AC references, which can be made by any program, even when virtual page 0 is inaccessible, are made directly to

fast memory and require no mapping. All other references to storage addresses are mapped, whether cached or not,

whether to storage modules or to mapped device registers.



238 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

use is not de�ned are reserved for future use of the hardware or Monitor software.

Although the virtual{address space is always eight supersections, each containing 512 sections that

each contain 512 pages by virtue of the address capability of the instruction and indirect{word

formats, the Monitor usually limits the actual address space for a given program by de�ning only

certain supersections, sections, and pages as being accessible. There is no requirement that the

virtual{address space be continuous|it can be scattered pages. The monitor also speci�es whether

each page is writable or not and cacheable or not. To determine the mapping for a given virtual

page, the microcode carries out a pointer evaluation procedure that starts at the appropriate entry

in the supersection table. If nothing is amiss, the procedure is carried out entirely in microcode|

without resorting to monitor software|and it generates the mapping for the speci�ed virtual page.

However, if it is discovered during this process that the supersection, section, or page is inaccessible;

if the page or any of the map pages required to translate the virtual address is not in memory; or if

the program is attempting to write in a write{protected page, the microcode traps to the monitor

which must handle the situation; a trap to the Monitor for any of these reasons is is called a \soft

page failure". The mapping procedure requires access to the EPT or the UPT, to one supersection

table, to one section table, to one page table, and then to the actual data page. Further, the software

provides a memory status table in which the microcode keeps track of the use made of these map

pages; there may be access to other data as well.

If this complete procedure were carried out for every memory reference, the system would be very

slow. To speed up memory references, a cache of recently used address translations is kept in the

Pager Translation Bu�er (PTB), which the pager consults �rst in its process of translating a virtual

address to a bus address. Hence, it is necessary to go through the whole evaluation process only to

translate addresses that do not yet have translations in the PTB. This entire process, called \page

re�ll", is undertaken only when the translation is not present.

3.7.1.1 Pager Translation Bu�er

The Pager Translation Bu�er (PTB) is a cache of recently used translations. It is organized as 8,192

lines of two{way associative mapping entries. A particular PTB line is selected by 13 virtual{address

bits (14{26). Each line contains a pair of mapping entries; each is in this format:

U V

Page ID

VMA bits 6{13

W

A C D

Slot

Number

In{Module Page Address

Bits 7{26

Page Tag

� -

Page Mapping Data

� -

The meaning of the �elds in the PTB entry is as follows

U User. A 1 in this bit signi�es that this entry is a mapping for a user virtual address;

a 0 in this bit means the entry maps an executive virtual address.

V Valid. A 1 in this bit means this entry is valid. A zero here means that the entry is

not valid.

Page ID This �eld contains bits 6{13 of the virtual address that is mapped by this entry.

The three �elds, V , U , and Page ID together form the Page Tag. The Page Tag



3.7. PAGING AND MEMORY MANAGEMENT 239

Figure 3.3: Virtual{Address Space and Process Table Layout

HRMF-VAS.TEX

7776777777

Total of

8 Super{

Sections of

512 Sections

of 512 Pages

of 512 words

each.

(1024 MW)

0

1000000

User

Virtual{

Address

Space

Section 0

Section 1

Section 777

Section 1000

Section 6000

Section 7000

Section 7776

Super{

Section 0

Super{

Section 1

Super{

Section 6

Super{

Section 7

User

Process

Table

Trap & MUUO

Page{Fail Trap

User Super{

Section Table

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

DD

Section 7777

is Reserved

7776777777

Total of

8 Super{

Sections of

512 Sections

of 512 Pages

of 512 words

each.

(1024 MW)

0

1000000

Executive

Virtual{

Address

Space

Section 0

Section 1

Section 777

Section 1000

Section 6000

Section 7000

Section 7776

Super{

Section 0

Super{

Section 1

Super{

Section 6

Super{

Section 7

Executive

Process

Table

Trap

Executive Super{

Section Table

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

DD



240 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

Figure 3.4: Process Table Con�guration

HRMF-PTC.TEX

User Process Table Executive Process Table

777 777

0 0

Priority Interrupt XPCW Blocks

Four Locations per Block x3.4.4

177

540

User Supersection 0

547

User Supersection 7

540

Executive Supersection 0

547

Executive Supersection 7

Available to Software

420

Address of User's LUUO Block x2.16

420

Address of Executive's LUUO Block x2.16

421

423

Reserved for Software

430

437

Executive MUUO Block x2.16

440

447

User MUUO Block

450

457

User Arithmetic Over
ow Trap Vector x2.9.6

460

467

User Pushdown Over
ow Trap Vector

470

477

User Trap{3 Trap Vector

450

457

Exec Arithmetic Over
ow Trap Vector x2.9.6

460

467

Exec Pushdown Over
ow Trap Vector

470

477

Exec Trap{3 Trap Vector

500

Soft Page Fail Trap Block x3.7.1.8

507

500

Hard Page Fail Trap Block x3.7.1.8

507

510

Hard Page Fail Diagnostic Block

517

600

Available to Software



3.7. PAGING AND MEMORY MANAGEMENT 241

identi�es which, if either, side of the two{way associative cache contains the correct,

valid mapping. The pager uses bits 14{26 of a virtual address to select one line (two

entries) of the Pager Translation Bu�er. The Page ID (address bits 6{13), and the

user/executive bit are sent to the Tag RAM: if it contains a valid match, then data

in the Pager Translation Bu�er is used to supply the mapping; otherwise, a page

re�ll (see below) is performed.

W Writable. A 1 in this bit means the page has been written on, so additional writes

are allowed without further ado. If a write is attempted when this bit is 0, a page

re�ll will be performed to see if the status of the PTB entry can be changed to

permit the write.

A Address Break. This bit is 1 to signal that the address{break system is active

and that references to an address on this page are sought. See x3.7.5. The pager

re�ll microcode will set this bit for a mapping whose mode (executive or user)

and virtual{address bits 6{26 match the corresponding bits in the address{break

register.

C Cacheable. This bit is 1 to allow the data on this page to be loaded into the cache.

The cacheable bit is loaded by the page re�ll microcode based on data found in the

CST entry for the page.

D Device. This bit is a 1 to signify that the page mapping represents a device con-

trol/status address; 0 for a memory. The di�erence determines the type of backplane

bus cycle to use when reading or writing. Device control/status information may

be accessed this way or via the instructions described in x3.1.4. There is no CST

entry corresponding to a page in which D is 1. An entry in which D is 1 should not

be cacheable; the pager re�ll procedure makes no provision to set the C bit when

D is set.

Slot Number This is the four{bit physical slot number on the backplane to which storage requests

will be directed for this mapped address.

In-Module

Page Address

This �eld supplies twenty bits of the in{module address; the remaining in{module

address bits (27{35) are supplied directly by the corresponding virtual{address bits.

3.7.1.2 Pager Translation Bu�er Diagnostic Instructions

Two instructions are provided to allow testing of the PTB data storage and retrieval facilities. These

instructions are diagnostics; they are not expected to be used by the timesharing Monitor.

0 12 1314 1718 35

I X Y

8 9

16

DWRPTB

Diagnostic Write Pager Tag and Data (APR2 16,)

702

The pager tag and data tripleword at location E , E+1, and E+2 are sent to the pager. The data

format is shown below.



242 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

Page Translation Bu�er Tag and Data Tripleword | DWRPTB

E

Supplied

by Program

00

*

11

s

e

l

132

*

2614

PTB Line Number

3527

*

E+1

Supplied

by Program

00

U

11

V

22

w

b

t

33

w

b

d

54

*

136

Pager Tag Data

VMA 6{13

3514

*

E+2

Supplied

by Program

10

*

22

W

33

A

44

C

85

*

99

D

1110

0

1512

Slot

Number

3516

In{Module Page Address

Fields marked with asterisk are ignored by the hardware. At the location addressed by E , the �elds

sel and PTB Line Number specify the \address" in the PTB into which the data is written. All

other �elds are the data to be stored in the PTB: the word at E+1 supplies data to be written into

the PTB's page tag �eld; the word at E+2 supplies data to be written into the PTB's page mapping

data �eld. The meaning of the �elds is as described here:

sel Set selection (PF%SEL==:1B1): 0 or 1 to select the left{hand or right{hand side of

the PTB into which to write.

PTB Line

Number

This �eld (PF%LIN==:17777B26) selects one of the 8,192 PTB line pairs into which

to write. (In normal use of the PTB, this �eld is composed of bits 14{26 of the

virtual memory address.)

U User (PF%USR): this mapping is for a user{mode virtual{address ifU is set; otherwise,

this maps an executive{mode address.

V Valid (PF%VLD): this bit is 1 to indicate that a mapping is valid. Otherwise, in the

normal use of the PTB, the data in the mapping is ignored.

wbt Write Bad{Parity Tag (PF%WBT==:1B2): set this bit to cause this operation to write

bad{parity data in the page tag �eld. A subsequent read of this tag is expected

to reveal the bad parity, which normally would cause a page failure. (However, a

DRDPTB instruction would report the parity error without causing a page failure.)

wbd Write Bad{Parity Data (PF%WBD==:1B3): set this bit to cause this operation to

write bad{parity data in the page mapping data �eld. The integrity of the page

mapping data is guarded by four parity bits. Each parity bit, when taken with

its corresponding data bits, normally provides even parity. When this instruction

writes bad parity page mapping data, each parity bit is written as the complement

of its normal form. A subsequent read of this data is expected to reveal the bad

parity, which normally would cause a page failure. A DRDPTB instruction can read

the bad parity data without causing a page failure; it has a �eld in which it would

report the parity error.

Pager Tag

Data

This �eld (PF%TAG==:377B13) is the associative key on which PTB cache hits are

based. In the normal operation of the PTB cache, this �eld contains bits 6{13 of

the virtual{address which this PTB entry represents.

W If set, the Writable bit (PF%WRB) means that this mapping represents a page that



3.7. PAGING AND MEMORY MANAGEMENT 243

has been written on.

A Address Break Active (PF%ABA) is set if this page has address{break trap on it

somewhere.

C Cacheable (PF%CHB) is set if the cache is used for references to this page. (In normal

operation of the system, this bit must be zero if D is set to 1.)

D Device (PA%DEV) is set if the address is to be presented to the bus as a device

control/status address; it is 0 if the address is to be presented as a memory address.

Slot

Number

This �eld (PA%SLT) contains the physical slot number of the memory or device to

respond at this virtual{address.

In{Module

Page Address

This �eld (PA%MPA), when shifted left nine bits, contains the base in{module address

for this mapping.

All indicated �elds are writable. Note that setting C and D simultaneously is permitted only for

diagnostic purpose.

0 12 1314 1718 35

I X Y

8 9

6

DRDPTB

Diagnostic Read Pager Tag and Data (APR2 6,)

702

Select the Pager Translation Bu�er address using the contents of E . Return the indicated data in

E+1 and E+2.

Page Translation Bu�er Tag and Data Tripleword | DRDPTB

E

Supplied

by Program

00

*

11

s

e

l

132

*

2614

PTB Line Number

3527

*

E+1

Returned

to Program

00

U

11

V

22

t

p

e

33

d

p

e

54

0

136

Pager Tag Data

VMA 6{13

3514

0

E+2

Returned

to Program

10

0

22

W

33

A

44

C

55

p

b

0

66

p

b

1

77

p

b

2

88

p

b

3

99

D

1110

0

1512

Slot

Number

3516

In{Module Page Address

Fields marked with an asterisk are ignored by the hardware. The various �elds that correspond

to those in DWRPTB have the same signi�cance as explained above. The additional �elds are

interpreted as follows:

tpe A 1 in this bit (PF%TPE==:1B2) signi�es a parity error in PTB's page tag �eld.

dpe A 1 in this bit (PF%DPE==:1B3) signi�es a parity error in the PTB's page mapping data �eld.

One or more of the byte parity bits, pb0|pb3 , when taken with its corresponding data, will

show odd parity.

pb0 (PF%PB0==:1B5) This is the parity bit for page mapping data bits 12{18. Good parity is



244 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

even.

pb1 (PF%PB1==:1B6) This is the parity bit for page mapping data bits 19{25.

pb2 (PF%PB2==:1B7) This is the parity bit for page mapping data bits 26{32.

pb3 (PF%PB3==:1B8) This is the parity bit for page mapping data bits 2{4, 9, and 33{35.

3.7.1.3 Use of the PTB

Provided all necessary conditions are satis�ed, a virtual{address is translated to a BAW by the

paging hardware, using the data in the PTB. Bits 14{26 of the virtual{address are presented to the

PTB as a \line number"; bits 6{13 and a bit denoting either executive{mode or user{mode mapping

are presented to the PTB as the desired \tag". The portion of the PTB called the Tag RAM will

check to see if it has a valid match for the desired tag at the given line number. If it has one valid

match, the Tag RAM will report the set selection (one bit, to select either the left{hand side or

the right{hand side of the PTB). The data from selected side of the PTB provides the four{bit slot

number and twenty{bit in{module page address, which are used together with the nine{bit in{page

address (bits 27{35 of the virtual{address) as the backplane bus address for the reference. If the C

bit is set, this address will be presented to the cache to see if it contains a representation of the data

being addressed. The D bit, the C bit, and the type of reference (read or write) determine the type

of backplane cycle to use:

D = 0 D = 1

Type of Reference C = 0 C = 1 C = 0 C = 1

Read Word Read Request Cache

?

Status Request Illegal

Write Word Write Request Cache

?

Device Control Illegal

?

Cache use may involve a Line Write and/or a Line Read Request

When the pager tag indicates that the appropriate line contains no valid mapping for the requested

virtual page and address space, the pager forces a microcode page re�ll to replace one of the mappings

with an appropriate entry. If there is already an appropriate entry but a write access is requested

and W is zero, the microcode does a page re�ll to check whether the PTB entry can be revised to

permit the write reference.

17

The entire Pager Translation Bu�er is invalidated when the Monitor selects a new process to run.

Speci�cally, the instructions that load new values for the EBR or UBR invalidate all entries in the

Pager Translation Bu�er, see x3.7.2.

In addition to setting a new value in the UBR, the context switch to run a di�erent user may involve

setting a new AC block context and setting the address break system on behalf of the new process.

See x3.7.4, x3.7.2, and x3.7.5.

17

When a read reference causes a page re�ll, the pager will be loaded with W cleared to zero (unless the page is

writable and the CST indicates that the page has already been modi�ed). WithW clear, a subsequentwrite reference

will force another page re�ll. Then, if writes to the page are permitted,W will be set and the memory status (CST

entry) of the a�ected page will be set to \modi�ed". Thus, the Monitor can know which of all the writable pages are

actually di�erent than their representation on the backup medium.



3.7. PAGING AND MEMORY MANAGEMENT 245

3.7.1.4 Page Re�ll

The re�ll of a mapping into the Pager Translation Bu�er is performed by evaluating various types

of pointers found in several kinds of tables. At some point in the procedure, the microcode must

encounter

� a \page address" that identi�es the section map for the supersection,

� a second page address that identi�es the page map for the section, and

� a page address that identi�es the on{bus location of the page corresponding to the referenced

virtual page.

To identify locations, a Page{Address Word (PAW) is used. Although this data item is called a

\word", it actually consists of only bits 5{35. A PAW may be contained in a pointer, in which case

bits 0{4 have de�ned uses. However, a PAW may exist in contexts other than page pointers; in such

a case, the software has free use of bits 0{4. A PAW has either of the following two formats:

75

0

88

X

99

D

1110

0

1512

Slot

Number

3516

In{Module Address of Page

for Mapping (Bits 7{26)

75

Non{

Zero

358

Available to Software (Backup Address)

Bits 5{7 (PA%NIM==:7B7) If this �eld contains all zero bits, the storage medium is \memory":

Bit 8 This bit (marked X in the diagram) is not interpreted by the hardware; it

is reserved for software use.

Bit 9 (PA%DEV==:1B9) If D is zero, the page is in memory: the CPU will

access this page by bus cycles of the type \Word Write" and \Word -

Read Request", or \Line Write" and \Line Read Request". If D is one,

the given page is in the registers of a peripheral device: the device will

be accessed by means of the bus cycle types \Device Control" and \De-

vice Status Request".

Bits 10{11 These bits are reserved and must be zero.

Bits 12{15 (PA%SLT==:17B15) This �eld is the bus slot number of the device in which

the memory (or registers) reside.

Bits 16{35 (PA%MPA==:3777777) This �eld is the in{module page address, i.e., the

page number, within the selected device, that this PAW refers to.



246 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

If PA%NIM contains a value other than zero, this PAW refers to a page that exists elsewhere

than in memory. The microcode will create a not{in{memory page failure and trap to

the Monitor. Bits 8{35 are reserved for use by software. In TOPS{20, this �eld identi�es

the backup medium and location where the page is stored.

18

3.7.1.5 Special Tables

In addition to the supersection table (contained in the process table), the section table, and the page

map, the page re�ll makes use of two prede�ned tables: the Special Page{Address Table (SPT) and

the memory status table (known as CST, for \core status table"). These are software{determined

tables in memory, but their base addresses are held in registers, the SPB and CSB respectively,

known to the page re�ll microcode.

19

The Special Page{Address Table contains page addresses that specify shared pages or special pages

(for example, those used as page maps or other software{de�ned tables). The microcode accesses

speci�c entries in the SPT by indexing on a base address (a bus address: 4{bit slot number and

29{bit in{module address) contained in the SPT Base register (SPB). The pointer format provides

for an index of twenty{two bits, so the SPT can actually be as large as sixteen sections. The SPT

must occupy consecutive physical addresses; it need not be page{aligned. Entries in the SPT are

the format of a Page Address Word, as described above. Bits 0{4 of the SPT entry are reserved for

software.

Information about the use made by programs of the various memory pages is kept in the memory

status table. In every re�ll, the microcode updates CST entries for the section table, the page map,

and the actual page referenced by the program. The CST entry for a page is a word; it is referenced

by adding the \linear page number" (LPN) of the page being referenced to a base address (which

is a BAW) contained in the CST Base register (CSB). Each page of physical memory requires one

word of CST. Note that the microcode does not manipulate CST entries for the process tables, the

SPT, or the CST itself unless they are actually referenced by the program; that is, unless the re�ll

is being performed for a program reference to one of the tables. The CST must occupy consecutive

physical addresses in one physical memory module (slot); it must be page{aligned.

The calculation of the linear page number, the index to the CST, is performed by the microcode

based on the con�guration of physical memory. When memory is con�gured at system initialization,

a base linear page number (and validity 
ag) is associated with each slot that contains memory.

The LPN for a given address is calculated by adding the base linear page number of the slot to the

in{module page number (bits 7{26 of the in{module address).

CST references are omitted in several instances:

� When the CST Base Register contains zero, as during system initialization.

� When a page address in which D is 1 is encountered. This is a reference to the I/O registers

of a peripheral device, not to main memory.

18

Application note: In TOPS{20, the backup medium and location may be either in swapping space, the \drum",

or it may be the disk address of shareable �le page. Hence, the format of a backup address is similar to the data

found in index and superindex pages of disk �les.

19

All memory tables de�ned by the pager are in the bus address space; i.e., they have base addresses that include

a slot number and a 29{bit in{module address. Of course, to load or access such a table, the Monitor customarily

uses paged virtual{addresses. When the base address is limited to a page number (in{module address bits 7{26), the

table must be aligned on a page boundary.



3.7. PAGING AND MEMORY MANAGEMENT 247

� When a page address gives a slot number that does not correspond to a main memory module.

This is a reference to memory space within a peripheral device. The CST update is omitted

because the base linear page number of the peripheral's slot will be marked as invalid.

When a CST reference is omitted, the memory reference will not be cacheable.

The status of a page in physical memory is indicated by a CST entry in this format:

80

State Code

339

Available to Software

3333

C

3434

W

3535

M

State

Code

The Monitor keeps a state code in bits 0{8 (CST%SC==:777B9) of the entry. Within

the state code �eld, bits 0{5 (CST%AG==:77B5) represent the page age, which must be

non{zero for the page to be usable, whether it is a program{referenced page, the page

map, or the section map.

If bits 0{5 are zero, the microcode re�ll procedure will make an age trap to the Monitor.

20

Available

to

Software

The Monitor can use this part of a CST entry for any purpose. In TOPS{20, the Monitor

records which processes use the page.

C CST%CB==:1B33 A 1 in the C bit indicates that the page is cacheable. When a pager

re�ll occurs, the microcode copies this bit into the C cacheable bit of the page mapping

data held in the PTB.

W CST%WB==:1B34 A 1 in the W bit indicates write permission; if all other write permis-

sions relating to this page are 1, then the page is writable.

21

M CST%MB==:1B35 A 1 in the M bit indicates that the page has been modi�ed since

being brought into memory.

22

The microcode sets this bit in the entry for the referenced

page|not that for the page map, section table, or supersection table|if the reference

is a write and the page is writable. When the microcode sets this bit, it also sets the W

(writable) bit in the page mapping data held in the PTB.

The microcode updates the CST entry by ANDing the CST mask{word into it and ORing the CST

process{use register word into that result. These two words are held respectively in the CST Mask{

Word Register (CSTM) and the CST Process{Use Register (PUR). Bits 33{35 in them must be all

1s or all 0s as illustrated, in order to preserve the information that the microcode records in the

CST (the C , W , and M bits). Typically, bits 0{5 of the CST mask word are zero so that the data

in the PUR will supply a new page age �eld for the CST entry.

320

CST Mask Word

3533

1 1 1

20

The TOPS{20 Monitor uses zero age to denote a page that is idle. Other values encoded in bits 6{8 (while bits

0{5 are zero) denote other transient states in which the page is not yet available for reference.

21

The write permission for a page is determined by the pager re�ll procedure, Section 3.7.1.7.

22

At various times, the Monitor checks the CST to determine which pages have been modi�ed, so that they can be

rewritten on the disk. After writing the page to the disk, the Monitor will clear this bit.



248 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

320

CST Process{Use Register

3533

0 0 0

Indirect pointers make use of tables whose locations are de�ned entirely by the Monitor. In a single

re�ll, these may include one or more secondary supersection tables, section tables, or page maps.

Each such table or map is determined by a bus{page address and a 9{bit index and is therefore a

single page. Memory status is kept for the section tables and page maps referenced in the evaluation

of indirect pointers. However, memory status is not kept for any secondary supersection tables

(process tables) encountered in the evaluation of indirect pointers.

3.7.1.6 Paging Pointers

The microcode evaluates three kinds of pointers: supersection pointers, section pointers, and map

pointers. Members of these three classes are identical in form but di�er enough in function so that

they must be treated separately.

There are four types of each of the three kinds of pointers. Each type of pointer is distinguished

by a type code in bits 0{1. Three types are access pointers; i.e., they allow access to the given

supersection, section, or page; the other type speci�es that there is no access to the given object.

An access pointer has this format in its leftmost �ve bits:

Type

W

Soft{

ware

0 1 2 3 4

Type PPW%TY==:3B1 This �eld determines which type of pointer this is, either no access, im-

mediate, shared, or indirect. (In a no{access pointer, bits 2{35 are available to sofware.)

W PPW%WB==:1B2 This is the write bit. It indicates whether or not any of the pages in

the supersection or section, or the page itself, is writable. Throughout the evaluation

procedure, the microcode e�ectively ANDs this bit from one pointer to the next; if the

page is to be writable, then this bit must be must be set to 1 at every step. In other

words, if W is 1 in the �nal pointer for the mapping, the page is writable provided that

the entire section was also speci�ed as writable by the original section pointer, as well as

by the supersection pointer and by every other pointer encountered during the evaluation

procedure. (This allows the same page to appear writable to one process and unwritable

to another: not all users of the same page need have the same access to the page.)

Sofware Bits 3{4 of the access pointers are reserved for software use.

Every access pointer must also contain either a bus{page address or a pointer to an SPT location

that contains a bus{page address. A pointer that contains information other than bus{page address

(e.g., a no{access pointer or an immediate pointer that speci�es a backup address) will stop the

page re�ll and cause a page{fail trap. Such traps do not necessarily result from errors, but they do

represent conditions that are beyond the ability of the microcode to handle and so are handed to

the Monitor.



3.7. PAGING AND MEMORY MANAGEMENT 249

Supersection Pointers. Entries in a supersection table are of these types:

10

0

352

Available to Software

No Access

This supersection is inaccessible. PPW.NO==:0

Immediate

In{Memory

10

1

22

W

43

Swr

75

0

88

X

99

0

1110

0

1512

Slot

Number

3516

In{Module Address of Section Table

Bits 7{26

An immediate supersection pointer (PPW.IM==:1) contains the page address of the section table. If

bits 5{7 (PA%NIM) are zero, the section table is in the page speci�ed by bits 12{15 and 16{35 (a

bus{page address). Bit 8 (X) is not interpreted by the hardware; it is available for software use.

Immediate

Not

In{Memory

10

1

22

W

43

Swr

75

Non{

Zero

358

Available to Software (Backup Address)

If bits 5{7 (PA%NIM) contain a non{zero value, the section table is not in memory and bits 8{35 are

available to software.

10

2

22

W

43

Swr

135

Reserved

3514

Index to SPT Location Containing

Page Address of Section Table

Shared

The bus{page address of the section table is in the SPT at the o�set speci�ed by bits 14{35

(PPW%SI==:17777777). This pointer is used for a section table shared by a number of processes.

Switching to another map requires changing only the common SPT entry. PPW.SH==:2

10

3

22

W

43

Swr

135

Supersection

Table Index

3514

Index to SPT Location Containing Page

Address of Another Supersection Table

Indirect

In the SPT location speci�ed by bits 14{35 (PPW%SI) is the page address of a secondary supersection

table. The next supersection pointer to be evaluated is in that table at the location speci�ed by



250 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

bits 5{13 (PPW%PI==:777B13). A nine{bit �eld for the Supersection Table Index is provided for

compatibility with the section pointer indirect and map pointer indirect types; however, the legal

values for the Supersection Table Index are con�ned to the range 540{547, corresponding to the

location of the supersection pointers in a process table. PPW.IN==:3

Indirect pointers are used for Monitor reference to per{job and per{process areas. The pointers

remain while the secondary supersection table is swapped with the job or process, or the SPT entry

is changed.

Section Pointers. Entries in a section table are of these types:

10

0

352

Available to Software

No Access

This section is inaccessible.

Immediate

In{Memory

10

1

22

W

43

Swr

75

0

88

X

99

0

1110

0

1512

Slot

Number

3516

In{Module Address of Page Table

Bits 7{26

An immediate section pointer contains the page address of the page map. If bits 5{7 (PA%NIM)

contain zero, the page map is in the page speci�ed by bits 12{15 and 16{35. Bit 8 (X) is not

interpreted by the hardware; it is available to software.

Immediate

Not

In{Memory

10

1

22

W

43

Swr

75

Non{

Zero

358

Available to Software (Backup Address)

If bits 5{7 (PA%NIM) contain a non{zero value, the page table is not in memory and bits 8{35 are

available to software.

10

2

22

W

43

Swr

135

Reserved

3514

Index to SPT Location Containing

Page Address of Page Map

Shared

The page address of the page map is in the SPT at the o�set speci�ed by bits 14{35 (PPW%SI). This

pointer is used for a page map shared by a number of processes. Switching to another map requires

changing only the common SPT entry.



3.7. PAGING AND MEMORY MANAGEMENT 251

10

3

22

W

43

Swr

135

Section Table

Index

3514

Index to SPT Location Containing Page

Address of Another Section Table

Indirect

In the SPT location speci�ed by bits 14{35 (PPW%SI) is the page address of a secondary section

table. The next section pointer to be evaluated is in that table at the location speci�ed by bits 5{13

(PPW%pI).

Indirect pointers are used for Monitor reference to per{job and per{process areas. The pointers

remain while the secondary section table is swapped with the job or process, or the SPT entry is

changed.

Map Pointers. Entries in a page table are of these types:

10

0

352

Available to Software

No Access

The page is inaccessible.

Immediate

In{Memory

10

1

22

W

43

Swr

75

0

88

X

99

D

1110

0

1512

Slot

Number

3516

In{Module Address of Page

for Mapping (Bits 7{26)

An immediate map pointer contains the page address for the mapping. If bits 5{7 (PA%NIM) contain

zero, the page address for the mapping is speci�ed by bits 9, 12{15, and 16{35. If D is 1, the data

is accessed via Device Status Request and Device Control bus cycles that are suitable for accessing

device registers; otherwise the data is accessed via Word Read Request and Word Write (or, if

cacheable, via Line Read Request and Line Write) bus cycles that are appropriate for accessing

main memory. In this format, bit 8 (X) is not used by hardware and is available for software

purposes.

Immediate

Not

In{Memory

10

1

22

W

43

Swr

75

Non{

Zero

358

Available to Software (Backup Address)

If bits 5{7 (PA%NIM) contain a non{zero value, the page is not in memory and bits 8{35 are available

to software.



252 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

10

2

22

W

43

Swr

135

Reserved

3514

Index to SPT Location Containing

Page Address for Mapping

Shared

The page address for the mapping of the referenced virtual{address is in the SPT at the o�set

speci�ed by bits 14{35 (PPW%SI). This pointer is used for a page referenced as di�erent virtual pages

by di�erent processes. The monitor can move the page for all processes simply by changing the SPT

entry.

10

3

22

W

43

Swr

135

Page Map

Index

3514

Index to SPT Location Containing

Page Address of Another Page Map

Indirect

In the SPT location speci�ed by bits 14{35 (PPW%SI) is the page address of a secondary page map.

The next page pointer to be evaluated is in that map at the location speci�ed by bits 5{13 (PPW%PI).

Indirect pointers are used for Monitor reference to per{job and per{process areas. The pointers

remain while the second page map is changed when the job or process changes, or the SPT entry is

changed.

3.7.1.7 Re�ll Procedure

When the Pager Translation Bu�er lacks a valid mapping for a reference, the microcode that sup-

ports the pager must evaluate supersection, section, and map pointers to get the desired mapping.

The procedure begins with the pointer for the supersection from the process table, and the pager

microcode follows the trail laid by the various pointers, as illustrated in Figure 3.5. At any step, the

microcode traps to the Monitor if it encounters a no{access pointer, a page address that indicates

the page is not in memory, an age trap, or a write reference to a page that is not writable.

The �rst part of the procedure, which may go to the SPT or indirectly through it to other super-

section tables, begins at location 540 in the process table, indexed by the supersection number (bits

6{8 of the virtual{address, right justi�ed), and evaluates supersection pointers to arrive at the page

address of the section table; access to the section table is checked in the CST. Using the page address

of the section table indexed by the section number (bits 9{17 of the virtual{address, right justi�ed),

the second part of the procedure, which may go to the SPT or indirectly through it to other section

tables, evaluates section pointers to arrive at the page address of the page map; access to the page

map is checked in the CST. Now, using the page address of the page map, and the number of the

referenced virtual page (bits 18{27 of the virtual{address, right justi�ed) as the index, the third

part of this procedure retrieves a map pointer and evaluates it. This part may also go to the SPT

or indirectly through it to other page maps to arrive at a page address for the mapping; access to

this page is checked in the CST. Unless an age trap intervenes, memory status is updated along the

way for any section tables and page maps used. If the reference can be made and there is no age

trap for the referenced page, its status is updated, including setting the M bit in the memory status

table if the program is writing. The microcode then constructs the desired mapping, places it in the



3.7. PAGING AND MEMORY MANAGEMENT 253

Figure 3.5: Page Pointer Evaluation

HRMF-PPE.TEX

SPT

SPT Base

-

SPB

Slot Number

and

In{Module

Address

Process Table

Executive

or User

Super{

section

Table

Shared

Super{

section

Pointers

Super{

sections

2{7 unused

2
Index

540

2 Index541

-

1

Not{in{

Memory

Trap

-

0

Page

Address

Page

-

6

?

CST

��

��

Section

Table

for Super{

section 1

0000

No{

Access

Trap

10

Page

173

Immediate

Section Pointer

2
Index

401

Shared

Section

Pointers

-

1

Not{in{

Memory

Trap

2
Index

400

-

0

Page

Address

Page

-

6

?

CST

��

��

Page Map

for

Section 1400

2
Index

342

-

1

Not{in{

Memory

Trap

Shared

Map

Pointers

2
Index

436

-

0

Page

Address

Page

-

6

?

CST

��

��

Data

for Page

1400436

162

LSHC 1,{3

3 007 Index700

-

Indirect

Section

Pointers

1

Not{in{

Memory

Trap

3 204
Index

701

3 417 Index702

-

0

Page

Address

Page

-

6

?

CST

��

��

Secondary

Section Table

10

Page

417

Immediate

Section Pointer

-

6

?

CST

��

��

11204

Not{in{

Memory

Trap

��

CW

Section Table

Indexes from

Indirect Pointers

Page Map

for

Section 1173

-

6

?

CST

��

��

0177

No{

Access

Trap

11677

Not{in{

Memory

Trap

10

Page

413

Immediate

Map Pointer

-

6

?

CST

��

��

Data

for Page

1173413

561

ILDB 1,13

Page Map

for

Section 1702

Note:

this is also

Section 417,

Relative to

the

Secondary

Section

Table

3 450
Index

554

3 771 Index555

Indirect

Map

Pointers

-

0

Page

Address

Page

-

6

?

CST

��

��

Secondary

Page Map

10

Page

771

Immediate

Map Pointer

-

6

?

CST

��

��

11450

Not{in{

Memory

Trap

�

��

C

CW

Page Map

Indexes from

Indirect Pointers

Data for

Page

1702555

Note: this

is also Page

771, Rela-

tive to the

Secondary

Page Table

667

MUL 2,1064

6

?

CST

��

��

The symbol denotes a

test of the CST entry for

the page. If the page

is too \young", an age

trap intervenes. Other-

wise the CST entry is up-

dated and the page refer-

ence is made.

In Supersection 1, pages

1173413, 1400436, and

1720555 are in memory.

Supersection 0; sections

1000, 1401, 1700, and

1701; and pages 1173177,

1173677, 1400342, and

1702554 are not: any ref-

erence to them causes a

page{fail trap.

Virtual

Address Contents

1173413561

ILDB 1,13

1400436162

LSHC 1,{3

1702555667

MUL 2,1064



254 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

PTB, and returns to the pending reference.

The mapping data (i.e., the PTB entry) is constructed from the result of the pointer evaluation.

The W bit is the AND of all the W bits seen in the pointer evaluation, AND either the program

is making a write reference OR the page has already been modi�ed. The D bit, slot number, and

in{module address come directly from the corresponding �elds of the page address for the mapping.

The C bit comes from the CST entry for the page being mapped. The A bit is set by the page{re�ll

microcode when the address{break system (x3.7.5) is active and the internal address{break register

matches the given virtual{address in bits 6{26.

3.7.1.8 Page Failure

When, for any reason, the pager (and its supporting microcode) is unable to make a desired memory

reference or when an extended e�ective{address calculation encounters an incorrectly formatted in-

direct word, an event known as a \page failure" occurs. For a page failure, the microcode stops the

instruction immediately, without disturbing PC or storing any results in memory or the accumula-

tors, and executes a page{failure trap.

23

The trap operation makes use of certain locations in either

the User Process Table or the Executive Process Table. As further explained below, the locations

in the User Process Table are used for \soft" page failures and the corresponding locations in the

Executive Process Table are used for \hard" page failures.

Any page{failure trap identi�es the failed state of the processor by placing a page{failure double

word in UPT (or EPT) locations 502 and 503 (UP.PF0==:502, UP.PF1==:503) and by storing the


ag{PC double word in locations 504 and 505 (UP.POF==:504, UP.POP==:505). The trap completes

its operation by setting up new context from the 
ag{PC double word found in locations 506 and 507

(UP.PNF==:506, UP.PNP==:507). (The new Previous{Context Section will be set from the section

of the trapped{from PC.)

The page{failure double word, stored in locations 502 and 503, will appear in one of several forms,

depending on the circumstances of the page failure. Some of the forms of the page{failure double

word closely resemble the MAP double word (x3.7.3). All causes of page failure and all formats of

page{failure double words report a failure code in bits 12{17 (PF%FLC==:77B17) of the �rst word.

The page{failure code speci�es the interpretation of the second page{failure word (as a virtual{

address, a bus address, or indeterminate). Table 3.2 contains details of each type of failure and

speci�es how the second page{failure word should be interpreted.

Soft Page Failure

\Soft" page{failures (marked by the trap through the UPT locations) result from conditions gener-

ated by the activity of the software. Some are detected during pager re�ll (e.g., page not in memory,

age trap); these the Monitor may be able to correct. Some represent programming errors which, if

occurring in a user process, will cause the Monitor to stop a user process and which, if occurring in

the Monitor, will cause the Monitor to halt itself.

The contents of the Page{Failure Data Block for soft page{failures, found in the UPT, are shown

below:

23

In the case of various multipart instructions (e.g., BLT, IDPB, EDIT), the microcode will update accumulators,

memory, and/or machine status appropriately so the instruction can be restarted with correct e�ect.



3.7. PAGING AND MEMORY MANAGEMENT 255

Table 3.2: Page{Failure Codes

Soft failures trap through the UPT. Hard failures trap through the EPT, in which they may store

additional information.

PF.AOK==:0 Soft. No failure (MAP double word): the MAP is successful. In page{failure words,

this code is reserved for software.

PF.AFT==:1 Soft. Address failure trap: a reference has satis�ed the address{break condition

(x3.7.5).

PF.IIN==:2 Soft. Illegal indirect: an extended e�ective{address calculation has found an indirect

word in which both bits 0 and 1 are one.

PF.IAD==:3 Soft. Illegal address: a memory reference has been made to the reserved section

7777.

PF.MCK==:4 Hard. Microcode has detected an error condition.

?

PF.OFF==:5 Soft. Pager is o� (MAP double word): MAP occurred while the pager is disabled.

PF.NLP==:6 Soft. No logical page: the data in C(E) for a LDLPN instruction does not correspond

to a legal page{address word.

PF.ZPC==:7 Hard. Zero PC: the data in a trap or an interrupt new{PC word is zero. The second

word is the bus address from which the zero was fetched.

PF.MBT==:10 Hard. Memory (Device) busy.

?

PF.MTO==:11 Hard. Memory (Device) timeout.

?

PF.SRF==:12 Hard. Memory (Device) self{reference.

?

PF.BPE==:13 Hard. Although this is called a \bus parity error," it actually means that a source

device (e.g., a memory) has sent data to the CPU with an indication that the data

was bad at the source.

?

PF.HRD==:14 Hard. Other failure(s).

?

PF.HMC==:15 Hard. Hard failure delivered subsequent to processing by the macro{console.

?

PF.NA0==:40 Soft. No access. Supersection.

PF.NM0==:41 Soft. Not in memory. Supersection.

PF.NM1==:42 Soft. Not in memory. Supersection, share pointer.

PF.NM2==:43 Soft. Not in memory. Supersection, indirect pointer.

PF.NW0==:44 Soft. Write not allowed. Supersection.

PF.AT0==:45 Soft. Age trap. Section Table.

PF.NA1==:50 Soft. No access. Section.

PF.NM3==:51 Soft. Not in memory. Section.

PF.NM4==:52 Soft. Not in memory. Section, share pointer.

PF.NM5==:53 Soft. Not in memory. Section, indirect pointer.

PF.NW1==:54 Soft. Write not allowed. Section.

PF.AT1==:55 Soft. Age trap. Page table.

PF.NA2==:60 Soft. No access, Page.

PF.NM6==:61 Soft. Not in memory. Page.

PF.NM7==:62 Soft. Not in memory. Page, share pointer.

PF.NM8==:63 Soft. Not in memory. Page, indirect pointer.

PF.NW2==:64 Soft. Write not allowed. Page.

PF.AT2==:65 Soft. Age trap. Page.

PF.NW3==:66 Soft. Write not allowed (per CST). Page.

?

Details are found in the implementation{speci�c word UP.PFB in the Executive Process Table.



256 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

UP.PFB==:500

UP.PFD==:501

UP.PF0==:502

UP.PF1==:503

UP.POF==:504

UP.POP==:505

UP.PNF==:506

UP.PNP==:507

Page{Failure Block at UPT 500

500

501

502

503

504

505

506

507

350

Reserved

350

Reserved

350

Page{Failure Word 0 (MAP Word 0)

350

Failed Address (MAP Word 1)

120

Old Flags

1713

0

2018

CAC

2321

PAC

3524

Previous Context Section

50

0

356

PC of Failed Reference

120

New Flags

1713

0

2018

CAC

2321

PAC

3524

0

50

0

356

New PC

The page{failure double word will appear as shown here:

Page{Failure Double Word in UPT (Soft Failure)

502

503

350

Virtual Address (bits 0{5 zero), if M=1, or

350

Bus Address Word, if P=1, or Zero

00

U

41

Reserved

77

T

99

M

1010

P

1712

Failure

Code

3518

Reserved

55

0

66

0

88

0

This format is similar to MAP double word (x3.7.3). In the �rst word, the microcode provides a

speci�c failure indication in the failure code �eld (PF%FLC), and other useful information is provided

in the 
ag bits. The individual 
ag bits are decoded as described below. Among the 
ag bits are

PF%VRT and PF%PHY; these tell how the second word should be interpreted: as a virtual{address, a

physical address, or not relevant to the failure.

U User (PF%USR): if set, this failure occurred during a reference to user virtual space; oth-

erwise, it occurred during a reference to executive virtual space. Note that, by means of

PXCT, the executive can make references to user virtual space; hence, the U bit does not

indicate that the processor was in User mode at the time of the reference. (The saved PC


ags re
ect the processor mode.)

T Operation Type (PF%TYP==:1B7): T is 0 for a read operation and 1 for any operation

involving a write. (This 
ag is not valid for page{failure codes PF.AOK, PF.IIN, PF.MCK,

PF.OFF, PF.NLP, and PF.ZPC.)

M Virtual Memory (PF%VRT==:1B9): This bit is 1 when the second word contains a virtual{

address. If this bit and PF%PHY are both zero, the second word is zero: no address is

associated with this page failure. No page failures set both this bit and PF%PHY to one.

P Physical Memory (PF%PHY==:1B10): This bit is 1 when the second word contains a physical

address (i.e., a bus address word). If this bit and PF%VRT are both zero, the second word



3.7. PAGING AND MEMORY MANAGEMENT 257

is zero: no address is associated with this page failure. No page failures set both this bit

and PF%VRT to 1. This bit will be set in a Zero PC trap, in a MAP double word that found

a valid mapping, and in some hard failures.

Failure

Code

The failure{code �eld (PF%FLC) contains a unique code that describes the nature of the

particular failure. The codes are unique: in all cases the code alone can provide all the

information needed to describe the nature of the page failure. The complete set of page

failure codes is depicted in Table 3.2.

Hard Page Failure

\Hard" page{failures trap through the page{failure data block in the EPT. A hard failure indicates

that one of a collection of miscellaneous hardware{related conditions has occurred. Some of these

may be software{induced failures that are expected (e.g., bus timeouts or self{reference while con-

�guring the system), some might be corrected by repeating the operation that failed (e.g., busy

timeout), and others represent failures of components or unreliable data transmission that make

further operation of the system doubtful (e.g., any of the parity{error indications).

There are seven classes of \hard" failures: bus timeout, bus busy, self{reference, bus parity error,

machine check, zero PC, and \other".

� A bus timeout indicates that an expected response (for example, the response to a read request)

has not arrived. Unless there is a hardware fault, this usually means that the program has

addressed a memory location (or device control location) that does not exist. The bus timeout

interval for the XKL

-

1 processor is approximately 7.5 microseconds.

� The busy condition results from a device returning \busy" in 64 consecutive attempts by the

processor to access it. Possibly, the condition will clear up after waiting (devices are \busy"

during their power{on initialization sequence), or possibly the device somehow has become

\jammed" and it may need to be reset.

� A self{reference error occurs when the CPU makes a reference to a slot and detects that it has

addressed itself.

� The backplane bus does not have parity, hence \bus parity error" does not denote an error in

the operation of the backplane bus. Instead, \bus parity error" signi�es that a device, such

as a memory (which keeps track of data parity internally), has sent data on the bus with an

indication that the data is suspect, having failed the device's internal parity check.

� Machine check indicates that the microcode has detected a hardware error.

� Zero PC indicates that the data in a trap or an interrupt new PC word is zero.

� The \other" errors include bad bus cycles, scrambled data order (during a cache re�ll), other

bus failures, and other hardware conditions.

The contents of the Page{Failure Data Block for hard page failures, found in the EPT, are shown

in Table 3.3. The words at locations 504{507 are the same as those described for a soft page failure.

The page{failure double word in locations 502{503 and the other words in locations 500{517 are

detailed below.



258 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

Table 3.3: Page{Failure Block at EPT 500

510

511

512

513

514

515

516

517

Pager Set 0

Pager Set 1

Cache Set 0

Cache Set 1

500

501

502

503

504

505

506

507

20

0

33

B

P

44

B

C

55

P

E

66

W

W

77

U

C

88

C

T

99

C

D

1010

C

W

1111

B

R

1712

0

1818

R

T

1919

T

O

2220

TT

2323

W

2424

U

2525

V

2626

S

3527

0

350

Processor Data

00

U

11

V

22

T

P

33

D

P

54

0

136

Tag

3514

0

10

0

22

W

33

A

44

C

85

PB

99

D

1110

0

1512

Slot

3516

Page Number

00

U

11

V

22

T

P

33

D

P

54

0

136

Tag

3514

0

10

0

22

W

33

A

44

C

85

PB

99

D

1110

0

1512

Slot

3516

Page Number

20

0

63

Slot

197

Tag

2120

0

2222

T

P

2323

D

P

3224

0

3333

V

3434

0

3535

M

350

Cache Data

20

0

63

Slot

197

Tag

2120

0

2222

T

P

2323

D

P

3224

0

3333

V

3434

0

3535

M

350

Cache Data

350

Page{Failure Word 0 (MAP Word 0)

350

Failed Address (MAP Word 1)

120

Old Flags

1713

0

2018

CAC

2321

PAC

3524

Previous Context Section

50

0

356

PC of Failed Reference

120

New Flags

1713

0

2018

CAC

2321

PAC

3524

0

50

0

356

New PC



3.7. PAGING AND MEMORY MANAGEMENT 259

Implementation{speci�c 
ags are stored in EPT locations 500{501 and 510{517. (The implementa-

tion{speci�c information is apt to change with revisions to the processor or its microcode.) For the

XKL

-

1, the implementation{speci�c information is as described here.

For page{failure code PF.MCK EPT location 500 (UP.PFB==:500) contains data pertaining to the

machine check; this data is speci�c to the XKL

-

1 microcode.

For page{failure codes PF.MBT, PF.MTO, PF.SRF, PF.BPE, and PF.HRD, EPT location 500 (UP.PFB)

contains data speci�c to the page{failure:

BP

?

(HPF%BP==:1B3) Both pager sets matched. This error results when the pager tag RAM

contains the same, valid data in both halves.

BC

?

(HPF%BC==:1B4) Both cache sets matched. This error results when the cache tag RAM

contains the same, valid data in both halves.

PE

?

(HPF%PE==:1B5) Memory parity error.

WW

?

(HPF%WW==:1B6) Wrong word order. The memory returned data in a sequence other

than what was requested.

UC

?

(HPF%UC==:1B7) Unexpected cycle. A device on the backplane bus has addressed the

CPU in a cycle that was not expected (e.g., \Read Return" when no read was outstand-

ing).

CT

?

(HPF%CT==:1B8) Cache tag parity error.

CD

?

(HPF%CD==:1B9) Cache data parity error. Cached data was discovered to have bad

parity as it was being supplied to the CPU.

CW

?

(HPF%CW==:1B10) Cache writeback parity error. Cached data was found to have bad

parity as the line containing the data was being written to memory.

?

BR (HPF%BR==:1B11) The event occurred during a Bus Request. This 
ag is a modi�er

to the starred conditions listed above. It signi�es that the error was detected during a

processor{initiated bus request.

PT (HPF%PT==:1B15) The microcode decodes bits 20{22 to set this bit.

PD (HPF%PD==:1B16) The microcode decodes bits 20{22 to set this bit.

RT (HPF%RT==:1B18) Bus retry exhausted. A cycle was attempted in which the target

device responded \busy." The cycle was thereupon repeated, but the busy condition

persisted.

TO (HPF%TO==:1B19) Bus timeout. A bus cycle was attempted to a speci�c device (i.e., to

a slot), but there was no response from the device.

TT (HPF%TT==:7B22) Trap type. This �eld is decoded to determine the details of the

trap:

1 (HPF.NW==:1) Write Not Allowed. (The data in the left half of this word is not

meaningful.)

2 (HPF.AB==:2) Address Break. (The data in the left half of this word is not mean-



260 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

ingful.)

3 (HPF.AW==:3) Write Not Allowed and Address Break. (The data in the left half

of this word is not meaningful.)

4 (HPF.HD==:4) Hard Page Failure. Use the bits in the left half to decode this error.

5 (HPF.PT==:5) Pager tag parity error. The bits in the left half are valid.

6 (HPF.PD==:6) Pager data parity error. The bits in the left half are valid.

7 (HPF.PB==:7) Both pager tag and pager data parity errors. The bits in the left

half are valid.

W (HPF%W==:1B23) Write reference.

U (HPF%U==:1B24) User mode reference.

V (HPF%V==:1B25) Virtual{address reference.

S (HPF%S==:1B26) Pager set 1 (or both) matched. If zero, either set 0 matched or neither

set matched.

Location 501, (UP.PFD==:501) will contain data copied out of the processor's \D to D" latch. This

information may be of use to engineers in tracking down the precise nature of the page{failure.

Locations 510{511 and 512{513 contain data describing the state of pager sets 0 and 1, respectively,

for the pager entries addressed by bits 14{26 of UP.PF1. This data is valid only when PF%VRT is set.

The data is in the same format as is used by DRDPTB instruction:

U User.

V Valid.

TP Tag parity error.

DP Data parity error.

Tag Tag data. (Virtual{address bits 6{13.)

W Writable.

A Address break is active on this page.

C Cacheable.

PB Data parity bits.

D Device bit for this map entry.

Slot The backplane slot number for this map entry.

Page

Number

The in{module page number for this map entry.

Locations 514{515 and 516{517 contain data describing the state of cache sets 0 and 1, respectively,



3.7. PAGING AND MEMORY MANAGEMENT 261

for cache entries addressed by UP.PF1. If PF%PHY is set, bits 20{32 of UP.PF1 provide the cache line

number. If PF%VRT is set, the most signi�cant 7 bits of the cache line number come from bits 29{35

of the page number �eld of the matching set of pager data, and the least{signi�cant six bits come

from bits 27{32 of UP.PF1. The data is in the same format as provided by DRDCSH.

Slot The slot number of the memory module represented by this cache entry.

Tag The cache tag for this entry. (Physical address bits 3{19.)

TP Tag parity error.

DP Data parity error.

V Valid.

M Modi�ed.

The format of the page{failure double word associated with a hard page failure is

Page{Failure Double Word in EPT (Hard Failure)

502

503

350

Virtual Address (bits 0{5 zero), if M=1, or

350

Bus Address Word, if P=1, or Zero

00

U

41

Reserved

77

T

99

M

1010

P

1712

Failure

Code

3518

Pointer to the

Previous Fault

55

F

66

1

88

R

1111

I

The H bit (PF%HRD==:1B6) will be set to 1 in the �rst page{failure word. The I bit (PF%PI==:1B11)

will be set to 1 if the PI system was on (PIPION) at the time of the hard page{failure. The processor

turns o� the PI system as it traps the hard page{failure, so the program must examine this 
ag in

order to restore the state of the PI system correctly when returning to the trapped{from process.

If a speci�c address is associated with the failure, that address will be reported in the second page{

failure word. The �rst page{failure word speci�es how the second word is to be interpreted: either

as a physical address (i.e., a bus address word), as a virtual{address, or as irrelevant. When the

failure is associated with a particular address (virtual or physical), then T (PF%TYP, bit 7) will be

set if the access was for any kind of write.

Failures in virtual{address mode may result from any mapped reference to memory (in which a map

entry was found and used to make the reference). When a virtual{address is speci�ed, M will be

set and U and T will be as described in the soft failure cases.

Failures in physical{address mode result from instructions such PMOVE and PMOVEM and from the

pager re�ll microcode in physical mode references to the SPT, CST, process tables, section tables,

and page tables. When a failure occurs in physical{address mode, P will be set to 1 and T will

re
ect the type of access. The BAW of the failing reference will be stored in the second page{failure

word. (Note: in the XKL

-

1 processor, bits 3{5 of the BAW are stored as zero.) U is not meaningful.

If R (PF%RTP==:1B8) is set to one, this is a \recursive" trap: a reference by the re�ll microcode

to a process table, a section table, a page table, the SPT, or the CST failed, or a reference, by

trap{processing microcode, to the UPT or the EPT failed. In this case, the �eld PF%PFP==:777777



262 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

will contain the address in MemA where the previous fault data has been logged.

F is set in a failure condition (one of busy, timeout, or self{reference) which, had it occured in a

MAP instruction, would have been reported to that instruction instead of trapping.

The remaining hard failures are those that are detected by the central processor in a way that

prevents an address from being associated with the failure. In this situation, M and P are both

zero, as is the second word of the page{failure double word.

No hard page failure sets both M and P to one.

If the BR bit in location 500 is zero, the rest of this block is of doubtful validity.

Hard Page{Failure Fallback

In some circumstances, the processor may determine that a problem beyond the normal scope

and complexity of page{failure handling has occurred. In such cases, the processor implements a

\fallback" strategy to locate some process capable of reporting the error.

If the processor encounters a page failure while it is attempting a pager re�ll or a trap, it sets the

RPT 
ag. The informal name for RPT is \recursive page trap", although this is a misnomer. RPT is

set when the processor is handling a trap or an interrupt and it encounters a page failure. Fallback

strategies will be attempted in this order:

� \I/O Page{Failure" when a page fail occurs during the reference to a page table. This will

trap through the current EPT.

� \ROM{Fallback Page{Failure" occurs when a page{failure occurs during an I/O Page{Failure.

The processor will attempt to use the ROM copy of the EPT.

� \Console Fallback" Page{Failure occurs when a page{failure occurs during ROM{fallback pro-

cessing.

General

For a page{failure trap, the Monitor should set up the new 
ag{PC double word in the trap locations

so that the trap switches the processor to executive mode. If able to rectify the situation, the Monitor

eventually returns to the interrupted instruction, which starts over again from the beginning or from

the save point in a multipart instruction. Provided the Monitor restores the First Part Done 
ag,

even a two{part instruction that has been stopped by a failure in the second part is redone properly.

The mechanism for making a correct return and the e�ects it produces on a BLT or XBLT are

the same as for an interrupt; this is described at the end of x3.4. Before returning to the failed

instruction, the Monitor must invalidate the Pager Translation Bu�er entry for the page and revise

the pointers for the new situation. Then, when the instruction is restarted, the pager will do a re�ll

to get the new, correct mapping.

A no{access pointer implies that the section or page does not exist. Otherwise, a soft failure does not

necessarily imply that the executing program has done anything \wrong". Consider a typical case

where the Monitor has, for example, ten or twenty pages of a user program in memory. When the



3.7. PAGING AND MEMORY MANAGEMENT 263

user attempts to gain access to a page that is not there (i.e., a page for which the re�ll encounters a

not{in{memory page address), the Monitor would respond to the failure by bringing in the needed

page from the disk, either adding it to the user space or swapping out a page the user no longer needs

or has not used recently. Similarly, a process using several sections might not have all of its section

tables in memory at the same time; in such a case a legitimate reference to a page might result in

a trap because the section table is not in memory. While swapping is in progress, the Monitor runs

some other user, returning to the interrupted process when the requested page is available.

A similar situation exists for writability. Keeping track of modi�ed pages is handled by the re�ll

procedure using the memory status table. However, a page may be write protected because it is

shared by a number of processes, wherein a change made by one might not be wanted by the others.

Thus, in response to a write failure, the Monitor may make a separate writable copy of the page for

the sole user of the process that wishes to modify it.

3.7.2 Memory Management

In order to manage memory properly, the executive program must set up process tables and page

maps for itself and the various users, oversee the operation of the pager, and select the fast{memory

block to be used by each program (usually block 0 for itself). At any given time, accumulator, index

register, and fast{memory references are made to that AC block that is assigned as \current". Given

a particular processor mode (user or executive) and an appropriate process table and page map, the

Monitor e�ectively de�nes the address space for a process by specifying the base address for the

process table and selecting which AC block is to be \current".

Often, when a user program calls the Monitor, it is to request an activity which requires the executive

to gain access to the user address space. To facilitate the crossover from one address space to another,

the same instruction through which the Monitor assigns its own current AC block also allows the

assignment of an AC block and section for the \previous context," i.e., the context of the process

that made the call. These quantities, together with 
ags that indicate the mode of the caller, allow

execution of instructions in the previous context, as will be described more fully in x3.7.4. At any

point in time, the previous context is essentially the environment in which the previous program was

running. Note that the previous context need not be the user; the same techniques can be exploited

following a call from one level of the Monitor to another.

0 12 1314 1718 35

I X Y

8 9

4

WREBR

Write Executive Base Register (APR1 4,)

701

Set up the Executive Base Register (EBR) in the pager according to the contents of E .

24

The

memory operand, whose format was chosen to be similar to a page address, is of the form:

24

Unlike the former CONO PAG, instruction, which treated E as an immediate quantity, this instruction uses a

full{word memory operand.



264 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

00

E

P

11

L

E

82

0

99

C

S

H

1110

0

1512

Slot

Number

3516

In{Module Address of Page

for EPT (Bits 7{26)

LE PG%LEB==:1B1 When 1, this 
ag enables the loading of the EBR from the data in bits

12{35. Loading the EBR invalidates the entire contents of the PTB. Loading the value

zero (in bits 12{35) is recognized as marking the EBR as \invalid". If this 
ag is one,

this operation is performed before the (optional) enabling of the pager, as described in

the next paragraph.

EP PG%ENP==:1B0 When 1, this 
ag enables the pager for TOPS{20 paging. When the

pager is enabled, it operates as described throughout this section. Operation of the

XKL

-

1 processor with the pager disabled is intended only for bootstrapping and some

diagnostic purposes; this mode is described in x3.7.2.1. If this 
ag is set and the EBR

is not valid, the processor halts.

CSH PG%CSH==:1B9 When 1, this 
ag enables the PTB re�ll microcode to look in the

cache for EPT data; otherwise, the re�ll microcode will avoid using the cache for EPT

references.

Slot

Number

This �eld provides the slot number, in PAW{format, of the memory that contains the

EPT.

In{

Module

Address

This �eld provides the in{module page number, in PAW{format, of the page that

contains the EPT.

0 12 1314 1718 35

I X Y

8 9

5

RDEBR

Read Executive Base Register (APR1 5,)

701

Read the contents of the EBR and store the result in the word addressed by E . Bit 0 will be returned

as 1 if the pager is on. Bit 1 will be returned as 1. Bit 9 will re
ect the cacheability of the EPT.

0 12 1314 1718 35

I X Y

8 9

3

WRUBR

Write User Base Register (APR1 3,)

701

Set up the User Base Register in the pager according to the contents of E . The format of the data

is as shown below:



3.7. PAGING AND MEMORY MANAGEMENT 265

80

0

99

C

S

H

1110

0

1512

Slot

Number

3516

In{Module Address of Page

for UPT (Bits 7{26)

Writing the User Base Register invalidate the entire contents of the PTB. The value zero (in bits

12{35) is recognized as \invalid".

The CSH 
ag (UB%CSH==:1B9) when set, enables the pager re�ll microcode to look in the cache for

UPT data; otherwise, the re�ll microcode will avoid using the cache for UPT references.

0 12 1314 1718 35

I X Y

8 9

1

RDUBR

Read User Base Register (APR1 1,)

701

Read the contents of the User Base Register in the pager and store the result in the word addressed

by E . Bit 9 will re
ect the cacheability of the UPT.

0 12 1314 1718 35

I X Y

8 9

6

WRCTX

Write Context (APR1 6,)

701

Set new values for the current AC block, the previous{context AC block, and the previous{context

section number. The data word is shown below:

00

S

A

11

S

S

172

0

Current

AC

Block

18 20

Previous

Context

AC

Block

21 23

Previous Context

Section

24 35

SA PGLACB==:1B0 When this bit is 1, set the current{ and previous{context AC blocks

from the �elds in bits 18{20, and 21{23, respectively.

SS PGLPCS==:1B1 When this bit is 1, set the previous{context section from bits 24{35.

Current AC Block

PGCACB==:7B20 When PGLACB is set to 1, this �eld provides the data to select the

current AC block.

Previous{Context AC Block

PGPACB==:7B23 When PGLACB is set to 1, this �eld provides the data to select the

previous{context AC block.

Previous{Context Section



266 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

PGPCSF==:7777 When PGLPCS is set to 1, this �eld provides the data to select the

previous{context section number (PCS).

0 12 1314 1718 35

I X Y

8 9

7

RDCTX

Read Context (APR1 7,)

701

Read the settings of the current{ and previous{context AC blocks and the previous{context section

into the word addressed by E . The data format is as shown in WRCTX; both SA and SS will be set

to 1 in the result.

0 12 1314 1718 35

I X Y

8 9

2

CLRPT

Clear Page Translation Bu�er Entry (APR1 2,)

701

Invalidate the PTB mapping entry for the page addressed by E . E is interpreted as a virtual{

address. Usually, E is interpreted as an executive{mode address. However, when instruction is

executed by PXCT, E represents a user virtual{address.

0 12 1314 1718 35

I X Y

8 9

10

WRSPB

Write SPT Base Address (APR2 10,)

702

Load the contents of location E into the SPT Base register (SPB). The data in bits 1{35 of location

E are the same as in a BAW (x3.1.4); however, bit 0 (SP%CSH==:1B0), if set, signi�es that the SPT

is cacheable. If this bit is set, the pager re�ll microcode will make cached references to the SPT;

otherwise, such references will be uncached.

The Special Page Address Table (SPT) is used by TOPS{20 paging when processing indirect and

shared page pointers. See x3.7.1.5.

0 12 1314 1718 35

I X Y

8 9

0

RDSPB

Read SPT Base Address (APR2 0,)

702

Read the SPB and store the result in location E .

0 12 1314 1718 35

I X Y

8 9

11

WRCSB

Write CST Base Address (APR2 11,)

702

Load the contents of location E into the CST base register (CSB). The data in bits 1{35 of location



3.7. PAGING AND MEMORY MANAGEMENT 267

E are the same as in a BAW (x3.1.4); however, bit 0 (CS%CSH==:1B0), if set, signi�es that the CST

is cacheable. If this bit is set, the pager re�ll microcode will make cached references to the CST;

otherwise, the references will be uncached.

25

When the CSB contains zero, references to the CST are omitted during PTB re�lls.

The Memory Status Table (formerly known as the Core Status Table, from which comes the acronym

\CST") is used in TOPS{20 paging to determine whether or not a page is cacheable, whether or

not it has been modi�ed, and for various other purposes. See x3.7.1.5.

The CST must occupy consecutive physical addresses in one physical memory module (slot); it must

be page{aligned.

0 12 1314 1718 35

I X Y

8 9

1

RDCSB

Read CST Base Address (APR2 1,)

702

Read the CST base register and store the result in location E .

0 12 1314 1718 35

I X Y

8 9

13

WRCSTM

Write CST Mask (APR2 13,)

702

Load the contents of location E into the CST Mask register.

After each successful test of a CST entry during a pager re�ll, the re�ll microcode updates the CST

entry by ANDing it with the contents of the CST Mask register and ORing that result with contents

of the Process Use Register. See x3.7.1.5 and Figure 3.5.

0 12 1314 1718 35

I X Y

8 9

3

RDCSTM

Read CST Mask (APR2 3,)

702

Read the CST Mask register into location E .

0 12 1314 1718 35

I X Y

8 9

12

WRPUR

Write CST Process Use Register (APR2 12,)

702

Load the contents of location E into the CST Process Use Register.

After each successful test of a CST entry during a pager re�ll, the re�ll microcode updates the CST

entry by ANDing it with the contents of the CST Mask register and ORing that result with contents

25

In a shared{memory multi{processor system, it may be advisable to keep the CST uncached.



268 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

of the Process Use Register. See x3.7.1.5 and Figure 3.5.

0 12 1314 1718 35

I X Y

8 9

2

RDPUR

Read CST Process Use Register (APR2 2,)

702

Read the CST Process Use Register into location E .

0 12 1314 1718 35

I X Y

8 9

A

LDLPN Load Logical Page Number

710

Read the contents of the memory location addressed by E . Interpret bits 9{35 as a page{address

word (PAW). Convert the PAW to a linear page number (LPN) and store it in AC.

If the conversion is not successful (i.e., D=1, the given slot does not address a memory, or the

translation table is not yet established in MemA at AM%LPN), the failure will be signalled by a

page{failure trap, with page{failure code PF.NLP.

0 12 1314 1718 35

I X Y

8 9

A

RDCFG Read Con�guration

711

Read two words of con�guration information into AC,AC+1. The con�guration information is

organized on a per{slot basis; E , an immediate quantity, speci�es the slot for which to supply

information.

The word returned in AC corresponds to the device status word for the device at the given slot,

as of the latest time that TDBoot recorded that information. That is, this information is not the

current device status but, rather, the status as of the time that TDBoot was run. By convention,

a zero word signi�es that no device is present in the speci�ed slot.

If the slot contains a memory device that is online, the word returned in AC+1 provides a valid bit

(bit 0) and the �rst linear page number contained in this memory. This is similar to the information

that the processor uses to implement the LDLPN instruction.

If the slot contains an XRH

-

1 device, the word returned in AC+1 contains four 8{bit bytes, right{

justi�ed in the word, corresponding to the SCSI Bus ID for each of the four buses implemented in

the XRH

-

1. The Bus ID (and 
ags) for bus 0 are returned in bits 4{11.

If the slot contains some other device, AC+1 contains device{speci�c information.

Although slot number 0 does not exist, this instruction is de�ned when E is zero: AC will contain

the slot number of this CPU; AC+1 will contain the total system memory capacity, in pages.

The e�ect of this instruction is unde�ned (and reserved) when E is larger than a legal slot number.



3.7. PAGING AND MEMORY MANAGEMENT 269

The intention of this instruction is to provide an implementation{independent way to access con�g-

uration information.

3.7.2.1 Pager Programming

Operation of the XKL

-

1 processor with the pager disabled is intended only for bootstrapping and

some diagnostic purposes. The Boot ROM is the only memory directly addressable while the pager

is disabled. When the pager is disabled, the 30{bit addresses generated by the e�ective{address

calculation are passed to the Boot ROM. (The Boot ROM appears as if it were in slot 0.) Although

the pager is disabled, it is possible for arithmetic over
ow traps, pushdown over
ow traps, page{

failure traps, and MUUOs to occur. Therefore, the program must set up a vestigial User Process

Table to contain addresses of appropriate handlers. A vestigial Executive Process Table is also

required for unpaged operation; the vestigial EPT and vestigial UPT may share the same ROM

page.

Page{fail traps (re
ecting some hardware conditions; e.g., bus timeout, illegal reference to section

7777, parity errors) cannot write the 
ags and trap PC in ROM, but copies of those quantities are

stored in MemA. Other traps do not store information in MemA.

At power turn{on, the microcode invalidates the cache and disables the pager and PI system. The

processor is started in executive mode, with AC block 7 (BTACB==:7) current, at location 3000

(BSTART==:3000) in section BTSECT in the Boot ROM. The Boot ROM contains vestigial data

structures for an initial Executive Process Table and User Process Table, which TDBoot tells the

pager to use (with the pager otherwise disabled) for the sake of establishing the trap vectors for

MUUOs and page failures. The unpaged program locates the physical memory and builds the tables

needed for the linear page number calculation. Using the PMOVEM instruction, TDBoot sets up

process tables and page tables for itself in memory. Thereafter, it writes the User Base Register,

then it writes the Executive Base Register, enabling paging. The next instruction is fetched from

paged memory. At this point, TDBoot is able to load the selected program into memory. For every

section required by the memory image �le containing the program, TDBoot creates the section in

the linear address space and creates corresponding page tables and a primitive CST.

26

Immediately

before running the loaded program, TDBoot sets the CSB, Process Use Register, CST Mask, User

Base Register, and Executive Base Register to values that describe the loaded program.

The executive program always runs paged. It may create page tables, CST, SPT, and process tables

more to its liking, understanding that doing so is like pulling on the rug that it stands upon. It must

set up the �rst user or users, loading the User Process Table and page maps, bringing in whatever

portions of user data and program as are consistent with good working{set management, and setting

up the interval timer.

Finally, the Monitor performs a WRCTX to set up an initial AC block for the �rst user, a WRUBR

to set up the �rst user's address space, and an XJRSTF to start the �rst user program.

For a call from the user via MUUO, the executive will arrange the MUUO new 
ags word to set

Previous Context User and select appropriate AC blocks for current{ and previous{context (usually,

the user process is run with AC block 1, and the monitor with AC block 0). For a call from the

executive via MUUO, the executive program will make other provisions that cause the caller's ACs

to be set up as the previous{context ACs. When an MUUO occurs, the processor automatically

26

The creation of the CST by TDBoot is optional; if no CST is created, TDBoot will set the CSB to zero.



270 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

sets the previous{context section from the PC of the MUUO. In handling a MUUO, the executive

will leave the User Base Register set as it was for the previous{context, so that the correct address

space is accessible for such references.

On transfer of control from the Monitor to a user, no previous{context values need be setup because

the user cannot perform PXCT. To switch from one user's program to another, the executive will

� use WRCTX to set the old program's AC block as current,

� save the old program's accumulators,

� switch context to the new program by WRUBR,

� load the new program's accumulators,

� load other user{context variables such as the address{break, and

� resume the new program via an XJRSTF.

The usual procedure for administration of the AC blocks is to assign one block permanently for the

use of the current user and to have one block for the use of the Monitor on behalf of users. Other

AC blocks may be assigned to di�erent interrupt levels or to special users. When switching from one

ordinary user process to another, the �rst user process's ACs are generally stored in the per{process

area and the second process's ACs are restored from its per{process area.

On a change from one process to another, the entire page table is invalidated; this is done automat-

ically by WRUBR. If the system uses shared or indirect pointers, or if several virtual page numbers

point to the same physical page, then the table must be invalidated whenever a page is removed

from memory or a pointer is removed from a user supersection table, section table, or page map. On

the other hand, deletion of a page with a unique mapping requires only a that a CLRPT be given

to invalidate the single mapping. In multiprocessor operation, all page tables that may contain

duplicate copies of the information that is being changed must be cleared whenever one such page

table is changed. CST entries can be used to communicate paging information from one processor

to another.

3.7.2.2 Use of Paging to Support TOPS{20

This section, to be added, describes how TOPS{20 uses the hardware facilities to e�ect such things

as �le mapping, shared pages, copy{on{write, read{only or full access by one process to another

process's memory image, etc.

Although designed for TOPS{20, the processor is expected to be able to run TOPS{10 and other

operating systems for the PDP{10 architecture.

3.7.3 MAP Instruction

It is often helpful for the Monitor or a debugging package to be able to determine how the pager

would respond to a particular reference without actually chancing a page failure. It is also necessary

to determine where a particular virtual page is in the bus address space, for example, to set up

command lists for input{output devices. For such purposes the processor has this instruction which,



3.7. PAGING AND MEMORY MANAGEMENT 271

unlike all the other instructions described in this chapter, is not an input{output instruction, even

though it is subject to the same restrictions.

0 12 1314 1718 35

I X Y

8 9

A

MAP Map an Address

257

If the processor is in executive mode or in user input{output mode and the pager is turned on, map

the extended page number of the virtual e�ective{address E and place the resulting physical address

and other map data in AC,AC+1. The double word loaded into AC,AC+1 is of the form:

MAP Double Word

00

D

63

Slot

Number

357

In{Module Address

00

U

11

V

22

W

P

33

A

44

C

55

F

66

0

1712

Failure

Code

When V (Valid, PF%VLD==:1B1) is 1, the mapping returned in AC,AC+1 is valid and the failure

code will be zero. The remaining 
ags in AC have the following signi�cance:

U User (PF%USR==:1B0): if set, this mapping corresponds to a user virtual{address. Otherwise,

the mapping is for an executive virtual{address.

WP Write Permitted (PF%WRB==:1B2): if set, this page may be written on.

27

A Address Break Active (PF%ABA==:1B3): if set, this bit signi�es that the address debugging

system is active and set to �nd an address on this page.

C Cacheable (PF%CHB==:1B4): if set, data from (or for) this page is allowed to be in the cache.

F Hard Map Failure (PF%HMF==:1B5): will be 0 in a successful mapping.

Bit 6 will be 0 to be consistent with page{failure double words.

In a valid mapping, AC+1 will contain the bus address word corresponding to the location that was

mapped.

If the MAP instruction cannot generate a valid mapping, the result in AC,AC+1 will be in the form

of either a \soft" or a \hard" page{failure double word: see x3.7.1.8. U will be set to denote a user

virtual{address. The page{failure code will contain the reason why the given address could not be

mapped: see Table 3.2. The given virtual{address is returned in AC+1.

The MAP instruction cannot be performed in User mode (except when User In{Out is set); instead,

it executes as an MUUO.

27

This bit is not the same as the W bit in a pager diagnostic read, which signi�es that the page has been written

on; WP is computed by the page re�ll microcode by means of pointer evaluation.



272 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

Notes: In normal operation, the instruction itself will not result in a \soft" page{failure trap because

the page re�ll microcode will return to the instruction instead of trapping. (However, \soft" failures

could occur during the e�ective{address computation.) \Hard" page{failures (busy, timeout, and

self{reference) that may have been caused by incorrectly constructed page pointers result in a \hard"

page{failure double word being returned in AC,AC+1; such failures will be marked with PF%HMF

set to 1. \Hard" failures associated with improperly{functioning hardware (e.g., pager tag or data

parity error, or memory parity error during the execution of the pager re�ll microcode, etc.) will

result in a hard page{failure trap. Further, a valid mapping could describe an invalid address; such

a result can be returned by MAP.

The accumulators have no mapping. When the e�ective{address E speci�es an accumulator, the

result will re
ect the mapping of the virtual page (either page 0 or page 1000) on which the accu-

mulator's e�ective{address appears.

3.7.4 Previous{Context Reference

Ordinarily an instruction in a user program is performed entirely in user address space, and an

instruction in the executive is performed entirely in executive address space. However, to facilitate

communication between the Monitor and users, the executive can execute instructions in which

selected references cross over the boundary between user and executive address spaces. This feature

is implemented by means of the previous{context execute, or PXCT, instruction. The mnemonic

PXCT is for convenience only and has no meaning to the assembler; it used merely to indicate an

XCT with non{zero A bits. A PXCT is an XCT. Although the PXCT is given by a program in the

current context, some of the references made by the executed instruction can be in the previous

context. A PXCT can be given only in executive mode, but the previous context may be the user,

such as when following a call to the Monitor by the user. However, the previous context can be the

executive, to allow communication between one level of the executive and another, such as when the

Monitor gives an MUUO to itself. (Note, it is not intended that PXCT be used by the Monitor for

unsolicited references to a user program.)

It is very important to understand exactly which operations are a�ected by PXCT and which are

not. The only di�erence between an instruction executed by PXCT and an instruction performed in

normal circumstances is in the way certain of its memory and index register references are made. To

work as a PXCT, an XCTmust be given in executive mode, and the bits in its A �eld (9{12) must not

all be zero. (In user mode, A is ignored.) Otherwise, there is no di�erence in the way the XCT itself

is performed: everything in the PXCT is done in the current (executive) context, and the instruction

to be executed by the XCT is fetched in the current context. That is, the e�ective{address of the

PXCT is computed in the current context and the target instruction identi�ed by E of PXCT is

fetched from the current context. Moreover, in the executed instruction, all accumulator references

(speci�ed by bits 9{12 of the instruction word) are in the current context. (The executive can access

a previous{context accumulator in PXCT merely by addressing it as a fast{memory location: E of

the target instruction can address a previous{context accumulator.) If the instruction makes no

memory operand references, as in a shift or immediate{mode instruction, and it has no indexing or

indirection (i.e., the instruction word gives E directly), then its execution di�ers in no way from

the normal case. The only di�erence is in memory and index register references. In general, the

A �eld of PXCT speci�es whether or not to use the previous context in the computation of the

e�ective{address of the target instruction, and then whether or not to read and/or write memory

operands in the previous context.



3.7. PAGING AND MEMORY MANAGEMENT 273

The previous context is speci�ed by three quantities: PCU (previous{context user), PCS (previous{

context section), and PAC (previous{context AC block). The �rst of these is a PC 
ag; the other

two are components of the processor context (accessible via RDCTX and WRCTX). Following a

call by an MUUO, the section in which the calling program was running (its PC section) and the

fast{memory block assigned to it appear as the PCS and current{context AC block (CAC) �elds

in the word read by RDCTX. For the called program, these two quantities can then be assigned as

the previous context by WRCTX. The current AC block of the calling program also appears in the

process{context word supplied by the MUUO. Various levels of the Monitor may all use fast memory

block zero; or a separate block may be assigned to that part of the Monitor that uses PXCTs in

handling MUUO calls from other parts of the Monitor.

Just as the current mode is indicated by the User 
ag, the mode in which the calling program was

running is indicated by PCU. At an MUUO call, this 
ag is set up automatically; alternatively, it

may be manipulated via a 
ag{PC double word. Note that the restrictions on references made in the

previous context are those of the previous context|not those of the context in which the PXCT is

given|with the single exception that, if the current program is running in section zero, the previous

context is also limited to section zero. For example, if the executive executes an instruction that

attempts to write in write{protected memory, that reference would fail.

3.7.4.1 Previous{Context Execute

0 12 1314 1718 35

I X Y

8 9

A 6= 0

PXCT Previous{Context Execute

256

Execute the instruction found in the word addressed by E , making some references in the previ-

ous context. Which references in the executed instruction are made in the previous context are

determined by 1s in the A portion of the PXCT instruction word as follows:

Bit Reference Made in Previous Context if Bit is 1

9 E�ective{address calculation of instruction, including both instruction words in EXTEND (in-

dex registers, address words by indirection); also EXTEND e�ective{address calculation of

source pointer if bit 11 is 1 and of destination pointer if bit 12 is 1.

10 Memory operands speci�ed by E , whether fetch or store (for example, PUSH source, POP or

BLT destination); byte pointer; second instruction word in EXTEND.

11 E�ective{address calculation of byte pointer; source in EXTEND; e�ective{address calculation

of EXTEND source pointer if bit 9 is 1.

12 Byte data; stack in PUSH or POP; source in BLT; destination in EXTEND; e�ective{address

calculation of EXTEND destination pointer if bit 9 is 1.

Previous{context referencing is useful and reasonable in some instructions but inapplicable to others.

There is no trap of any kind, and the e�ect of using the feature with an instruction to which it does

not apply is unde�ned.



274 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

Applicable Inapplicable

MOVE class, XMOVEI LUUO, MUUO

EXCH, BLT, XBLT JUMP, AOJ, SOJ

Half word, XHLLI AOBJN, AOBJP

Arithmetic JSR, JSA, JRA, JSP, JRST

Boolean PUSHJ, POPJ

DMOVE class XCT, PXCT

CAM, CAI classes Shift and Rotate

SKIP, SOS, AOS classes String, except MOVSLJ

Logical Test UMOVE, UMOVEM

PUSH, POP, ADJSP

Byte

MOVSLJ

MAP, CLRPT

Only the combinations shown in Table 3.4 are permitted.

No jumps can use previous{context referencing. Even among the instructions to which such refer-

encing is applicable, only a limited number of the sixteen possible bit combinations are useful or

meaningful. Doing an e�ective{address computation in the previous context (selected by bit 9 or

11) usually makes sense only when the corresponding data access is also in the previous context (as

selected by bit 10 or 12, except 11 or 12 in EXTEND).

When bit 9 is zero, the e�ective{address computation occurs in the current context. Despite the

previous{context section being zero, the e�ective{address computation can \escape" to a non{zero

section when this bit is zero.

28

(This may be a programming error.) If this behavior is not desired,

it can be avoided either by setting bit 9, which forces the e�ective{address computation to behave

according to the rules of section zero, or the components of the e�ective{address computation (usu-

ally an index register) can be adjusted to compute a section zero address. This caution applies also

to the UMOVE and UMOVEM instructions.

Execution of a BLT by a PXCT is limited to these three cases:

� Where all operands, regardless of context, are in section zero.

� Where the previous{context fast{memory block is being saved in or restored from the current

context, which may be any section. (However, remember that, regardless of context, a BLT{

given in{section address in the range 0{17 always refers to fast{memory. Hence, an AC block

can never be saved in or restored from the �rst sixteen storage locations in any section.)

� Where all operations are con�ned to a single section in the previous context, as would be the

case when clearing a user page.

In all other circumstances, XBLT must be used instead. When XBLT is performed by PXCT, PCS is

ignored because AC+1 and AC+2 are interpreted as global addresses.

28

The KL10 has special hardware to force a section zero reference in this case when PCS is zero; the TOAD

-

1

System does not.



3.7. PAGING AND MEMORY MANAGEMENT 275

Table 3.4: XKL

-

1 Permissible PXCT Addressing Modes

Instructions 9 10 11 12 References in Previous Context

General, Immediate,

MAP

y

, CLRPT

y

0 1 0 0 Data

1 1 0 0 E , Data

BLT 0 0 0 1 Source

0 1 0 0 Destination

0 1 0 1 Source, Destination

1 1 0 0 E , Destination

1 1 0 1 E , Source, Destination

XBLT 0 0 0 1 Destination

0 0 1 0 Source

0 0 1 1 Source, Destination

Stack 0 0 0 1 Stack

0 1 0 0 Memory Data

0 1 0 1 Memory Data, Stack

1 1 0 0 E , Memory Data

1 1 0 1 E , Memory Data, Stack

Byte 0 0 0 1 Data

0 0 1 1 Pointer E , Data

0 1 1 1 Pointer, Pointer E , Data

1 1 1 1 E , Pointer, Pointer E , Data

MOVSLJ 0 0 0 1 Destination

1 0 0 1 E (=Y ), Destination Pointer, Destination

0 0 1 0 Source

1 0 1 0 E (=Y ), Source Pointer, Source

0 0 1 1 Source, Destination

1 0 1 1 E (=Y ), Pointers, Source, Destination

y

MAP and CLRPT are considered to be memory reference instructions (even though data is neither

read nor written in memory), because E is interpreted by hardware as a memory address.



276 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

3.7.4.2 Other References to the Previous Context

In addition to PXCT, the XKL

-

1 provides the UMOVE and UMOVEM instructions that move

data between the current and previous contexts. These instructions are equivalent in e�ect to

PXCT 4,[MOVE AC,E] and PXCT 4,[MOVEM AC,E], respectively, but they are somewhat faster to

execute. Note that the e�ective{address computation is performed in the current context (which is

problematical is some situations); only the memory operand is in the previous context.

Where appropriate, these operations are preferred because they promote instruction stream locality

and reduce memory references in comparison to their PXCT counterparts.

0 12 1314 1718 35

I X Y

8 9

A

UMOVE Move From User Context

716

Perform the e�ective{address computation to determine E in the current context. Using E as an

address in the previous context, copy the location addressed by E to AC.

0 12 1314 1718 35

I X Y

8 9

A

UMOVEM Move To User Context

717

Perform the e�ective{address computation to determine E in the current context. Using E as an

address in the previous context, copy AC to the location addressed by E .

3.7.5 Address Debugging

The address{failure, or address{break, feature of the pager implements the traditional program

debugging technique of trapping a selected type of memory reference to a particula storage location.

(The address{failure mechanism does not trap fast{memory references of any kind.) It may be used

to determine whether a given program is modifying a particular location, is executing a particular

piece of code, or is simply using a particular piece of data.

0 12 1314 1718 35

I X Y

8 9

3

WRADB

Write Address{Break Data (APR0 3,)

700

Select the break address and the break conditions according to the contents of E , as shown below.

00

U

11

I

22

R

33

W

54 356

Break Virtual Address



3.7. PAGING AND MEMORY MANAGEMENT 277

The break conditions are selected by 1s in bits 0{3, as follows:

U User (ADB%US==:1B0). If 1, this break is set for a user virtual{address; otherwise, it is for

an executive virtual{address.

I Instruction fetch (ADB%EX==:1B1). If 1, this break is set for an instruction fetch. The trap

will occur when data is fetched from the selected address under control of the PC. (This

does not trap if the location is being executed by XCT.)

R Read (ADB%RD==:1B2). If 1, this break is set for a data read. The trap will occur when

data is fetched from the selected address in any circumstance other than under the control

of the PC. (Traps if this location is executed by XCT; traps if this location is read during

an e�ective{address calculation, etc.)

W Write (ADB%WR==:1B3). If 1, trap when an attempt is made to write data in the selected

address.

Break Virtual Address

Address (ADB%AD==:7777777777). This is the virtual address being watched by the address{

break system.

Note: the address{break system depends on the pager; the break address is a virtual{address,

and the pager must be on for address{break to function. The address{break system cannot trap

references by peripheral devices, references which bypass the pager (e.g., PMOVEM), or references

through another map in which the target location appears at a di�erent virtual{address. A CLRPT

instruction should be given to 
ush any mapping the PTB may already have for the page on which

the break is being set. (If the UBR has recently been changed, or if it is about to be changed, the

CLRPT may not be necessary.)

XKL

-

1 implementation note: this description notwithstanding, the XKL

-

1 hardware recognizes only

two conditions: any reference, and write. The selections I and R are implemented as break on any

reference. Monitor software, activated to handle the address{failure trap, will examine the trap data

to determine if the address{break is to passed onward to the user program.

The address{break system is disabled by selecting no break conditions.

Whenever the processor attempts one of the selected types of reference to the virtual{address spec-

i�ed by the break address in the speci�ed address space, a page failure results unless the Address

Failure Inhibit (AFI) 
ag is set. This 
ag, bit 8 of the program 
ags, can be set only by an instruc-

tion that restores 
ags. When set, it prevents an address failure during the next instruction|the

completion of the next instruction automatically clears it. (If an interrupt or trap intervenes, the

e�ect of the 
ag is deferred: it is saved and cleared when the 
ags and PC are saved; it is restored

when the interrupt or trap returns to the interrupted program.) The AFI 
ag a�ects the instruction

following a JRST in which it is restored with PC. Using the inhibit 
ag, the Monitor (or user{mode

address{break handler) can return to the instruction that caused an address failure and execute it

once without getting another address{break.

Since the address{break facility is entirely under the control of the privileged WRADB instruction,

it can be used quite 
exibly for the the executive to debug its own routines or to debug a single user

program without bothering the executive or other users. The break conditions presently in e�ect

can be ascertained by giving the following instruction:



278 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

0 12 1314 1718 35

I X Y

8 9

1

RDADB

Read Address Break Data (APR0 1,)

700

Read the current break conditions and address into the location addressed by E . The data is in the

same format as used in WRADB.

3.8 Timing

The XKL

-

1 includes a subsystem for keeping track of the passage of time and providing periodic

interrupts.

3.8.1 Interval Timer Programming

The interval timer is an 8{bit hardware counter that is incremented every 128 microseconds. The

interval timer loads itself with the 1's complement of the interval period (a number in the range 1

to 127) and counts up by 1 at each \tick" of the 128{microsecond clock. When the counter contains

the value 127, the next tick produces an interrupt on the selected priority level and the interval

timer reloads itself with the 1's complement of the interval period.

A WRITM instruction that clears the interval timer and loads the interval period is asynchronous

with the ticking of the 128{microsecond clock. This means that the next tick of the 128{microsecond

clock may occur at any time from 0 to 128 microseconds following a WRITM instruction. Thus, the

�rst interrupt (after the WRITM) may occur from 0 to 128 microseconds earlier than the speci�ed

period. The second and subsequent intervals will be of the correct duration, until the interval timer

is reinitialized by another WRITM.

An interval period of 1 speci�es interrupts every 256 microseconds; the maximum period, 127,

speci�es interrupts every 32.768 milliseconds.

A WRITM instruction that speci�es a new interval period should also request that the interval timer

be cleared, because, if the interval period is set without clearing the interval timer, the counter

continues counting until the currently loaded interval period is exhausted.

The interval timer can be used for any purpose by the software, but it is employed principally to

signal the Monitor when a user process ties up the system for too long a time without blocking.

There is just one 
ag, \Interval Done", which is set when the counter reaches the value the program

speci�es as its period. When the counter reaches that value, it resets itself (to the 1's complement

of the speci�ed interval period) and continues to count toward 127 again. Setting Interval Done

requests an interrupt on the priority level assigned to the timer; the processor accepts the interrupt

from the interval timer by performing the equivalent of XPCW with location 100 (through 103) of

the Executive Process Table as the e�ective{address.

On power{on reset, the interval period is set to zero, disabling the interval timer.



3.8. TIMING 279

0 12 1314 1718 35

I X Y

8 9

14

WRITM

Write Interval Timer (APR2 14,)

702

This instruction decodes E and performs selected functions, such as setting the interval period,

setting the priority level, and otherwise controlling the interval timer, as described below.

Decode E and perform the functions speci�ed by bits 18{21, as shown:

1818

C

I

C

1919

C

I

F

2020

S

I

P

2121

S

P

I

2922

Interval Period

3533

Pri{

ority

Level

CIC Clear Interval Counter (TIMCIC==:1B18). Initialize the interval counter to the 1's com-

plement of the interval period (use either the previously set interval period or, if SIP (bit

20) is 1, use the value in the Interval Period �eld).

CIF Clear Interval Done (TIMCIF==:1B19). After receipt of an interval{done interrupt, the

program must clear the interval{done 
ag in order to receive an interrupt on the comple-

tion of the next interval period.

SIP Set Interval Period (TIMSIP==:1B20). If this bit is 1, set the interval period from bits 22{

29. The interval counter should be cleared in the same instruction that sets the interval

period.

SPI Set interval timer Priority Interrupt level (TIMSPI==:1B21). If this bit is one, set the

priority interrupt level from bits 33-35.

Interval

Period

If SIP (bit 20) is one, set the period between interrupts from the value contained in this

�eld (TIMPER==:377B29).

When the counter has incremented the indicated number of times, it will set Interval

Done and request an interrupt; the counter will reset itself to count another interval of

the same length.

The period between interrupts is 128� (interval period+1) microseconds. Note that the

�rst interrupt may occur as much as 128 microseconds earlier than this formula would

indicate.

An interval period of zero disables the interval counter; the priority level should also be

set to zero in this case.

Priority

Level

If SPI (bit 21) is 1, set the priority level assignment as speci�ed by bits 33{35

(TIMPIA==:7).

Some cleverness is needed when programming the interval timer, as the interval periods do not map

readily to more traditional units. For example, to interrupt (on the average) sixty times per second,

the calculation 1000000=(60� 128) = 130:208333 suggests that a period of 130� 128 �s is just a bit

too short for long{term accuracy. Use a period of 130 (decimal) twenty{three times and then use a



280 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

single period of 135:

24=60 = :4 sec = 400000 �s = 128 �s � (23� 130 + 135)

Thus, the long{termaverage is 60 interrupts per second. If the long interval is especially unappealing,

a sequence of values 130 or 131 can be fashioned where in 24 consecutive values some particular �ve

are 131 and the others are 130.

0 12 1314 1718 35

I X Y

8 9

4

RDITM

Read Interval Timer (APR2 4,)

702

Read the condition of the interval timer into the word addressed by E . The data is returned in this

format:

350 3232

d

o

n

e

3533

Pri{

ority

Level

Bit 32 being set indicates \Interval Done" (TIMDON==:1B32). This can be cleared by WRITM with

CIF (bit 19, TIMCIF) set.

3.8.2 Time{Base

The time{base keeps a 60{bit count, in which only the low{order sixteen bits are implemented in

hardware. The actual counting is done in a 16{bit hardware counter, while the overall count is

kept in a double word in MemA. Microcode increments the double word time{base count (at bit 43)

when the hardware counter over
ows. When the software requests that the time{base be read, the

processor combines the double word in MemA with the value of the hardware counter.

A double word count is a 60{bit unsigned quantity. The entire �rst word comprises the high{order

thirty{six bits; the low{order twenty{four bits are in bits 1{24 of the second word.

29

Eleven bits

are reserved for expansion at the low{order end so that future systems with higher{resolution clocks

may use the same format. The format of the time{base count and its relationship to the hardware

counter is as shown here:

29

Remember, it is a property of twos complement arithmetic that the sign can be used as an additional magnitude

bit in an unsigned number. However, as the hardware is set up for signed arithmetic, bit 0 of any low{order word

must be skipped.



3.8. TIMING 281

High{Order Part of Count

0 35

0

0

Low{Order Part of Count

1 8 9 24

Reserved

25 35

36 43 44 59

Counter

The time{base is a double word count, kept in locations 310{311 (AM%TIM) of MemA. The hardware

counter counts elapsed time in intervals of 500ns (a rate of 2 MHz).

30

The time{base is implemented

as a 16{bit counter; when that count over
ows (about 31 times per second), the microcode increments

the time{base in MemA by adding 1 at bit 8 of the low{order part of the count.

The XKL

-

1 provides the following instruction to read the hardware time{base:

0 12 1314 1718 35

I X Y

8 9

5

RDTIME

Read Hardware Time{Base (APR2 5,)

702

Read the hardware time{base count and the double word time{base count (in MemA). Combine

these by placing the value of the hardware time{base count in bits 9{24 of the low{order word of

the double word result which is stored in E ,E+1.

31

The time{base guarantees a monotonic increasing function during the operation of the system. The

time{base is not necessarily related to the time of day or the calendar.

The time{base (as an unsigned integer) over
ows after about 18 thousand years.

0 12 1314 1718 35

I X Y

8 9

7

WRTIME

Write Hardware Time{Base (APR2 7,)

702

The Monitor may initialize the double word time{base count to a value of its choice to relate the

time{base to to the calendar. The double word contained in E ,E+1 is copied to the time{base count

(in MemA). Bits 9{35 of the data supplied in E+1 are not signi�cant and their e�ect is not de�ned.

3.8.3 Keep{Alive Timer

The processor and microcode provide a \watchdog timer" known to the operating system as the

\Keep{Alive" timer. The purpose of this timer is to detect the circumstance of software or hardware

malfunction that prevents the normal operation of the system. This is accomplished by the software

30

The clock actually counts one interval of 480ns followed by two intervals of 510ns each, thus averaging one count

each 500ns.

31

The processor microcode that implements this instruction is careful to be sure that the hardware value does not

include an unprocessed over
ow.



282 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

setting the timer and then periodically resetting the timer before it expires; if the software fails

to reset the timer within the allotted period, a Keep{Alive interrupt (see Table 3.1, page 220) is

performed to jolt the software from a presumably malfunctioning state.

The Keep{Alive timer is not counted while the processor is halted, nor is it counted while CF%KPA

(accessed via WCTRLF) is disabled.

The action of the processor when the Keep{Alive interval expires is called an \interrupt"; however,

this action is unlike other interrupts: it has no priority level; it takes e�ect regardless of the state

of the PI system; and it does not change the state of the PI system. This action is also similar to a

trap; however, unlike other traps, it is not synchronous with the execution of the running program.

0 12 1314 1718 35

I X Y

8 9

13

WRKPA

Write Keep{Alive Timer (APR0 13,)

700

This instruction stores the immediate value E as the initial value of the microcode \watchdog timer";

this value is stored in the MemA location AM%KPA.

While the processor is running a program (MS%RUN set, Section 3.2), at approximately 32.8millisecond

intervals, the processor microcode examines the contents of AM%KPA. If the location contains zero,

no other action is taken. Otherwise, the contents are decremented and the new value is stored

in AM%KPA. If the value becomes zero after decrementing, the processor performs the Keep{Alive

interrupt.

This facility is not suitable for �ne timing: since setting a new value into AM%KPA by this instruction

may occur at any point within the interval between decrements, the initial decrement may occur at

any time between 0 and 32.8 milliseconds.

The maximum count, 777777, provides an interval of approximately 140 minutes.

3.9 Other CPU Controls and Status

3.9.1 Error Monitoring

0 12 1314 1718 35

I X Y

8 9

4

WRAPR

Write Processor Conditions (APR0 4,)

700

This instruction decodes E to control the processor. \APR" in the instruction mnemonic stands for

\Arithmetic Processor," the traditional name for the CPU. The e�ective{address bits are used as

follows:



3.9. OTHER CPU CONTROLS AND STATUS 283

1818

S

P

I

1919

I

O

R

2020

E

P

C

2121

D

P

C

2222

C

P

C

2323

S

P

C

2824

Reserved

2929

I

n

t

3030

S

h

t

3131

P

w

F

3533

Pri{

ority

Level

SPI AP%SPI==:1B18 If 1, set the PI level assignment for the CPU from bits 33{35.

IOR AP%IOR==:1B19 Reset CPU internal devices: clear processor 
ags; clear interval timer;

clear PI level assignment in the console terminal status.

EPC AP%EPC==:1B20 Enable the Processor Conditions selected by bits 24{31 to cause inter-

rupts. (The result of this instruction is unde�ned if both bits 20 and 21 are on.)

DPC AP%DPC==:1B21 Disable the Processor Conditions selected by bits 24{31. The selected

conditions will not cause interrupts. (The result of this instruction is unde�ned if both

bits 20 and 21 are on.)

CPC AP%CPC==:1B22 Clear the Processor Condition 
ags selected by bits 24{31. (The result

of this instruction is unde�ned if both bits 22 and 23 are on.)

SPC AP%SPC==:1B23 Set the Processor Condition 
ags selected by bits 24{31. (The result

of this instruction is unde�ned if both bits 22 and 23 are on.)


ags AP%FLG==:377B31 Flags that may be selected by the EPC , DPC , CPC , and SPC func-

tions, described above. These bits represent individual processor 
ags that can be set,

cleared, enabled, or disabled with the appropriate combination of bits 20{23.

Reserved Bits 24{28 are reserved for use as future processor 
ags. Bit 32 is also reserved.

Int AP%INT==:1B29 Console Interrupt (Flag or Enable).

Sht AP%SHT==:1B30 System Shutdown (Flag or Enable).

PwF AP%PWF==:1B31 Power Failure or Thermal Warning (Flag or Enable).

Priority

Level

AP%PIA==:7 If bit 18 is set, set the PI level assignment for the CPU.

Note: WRAPR does not apply the selected operations in any particular sequence. Only operations

that are not order{dependent should be performed in one instruction.

0 12 1314 1718 35

I X Y

8 9

5

RDAPR

Read Processor Conditions (APR0 5,)

700

This instruction reads the processor 
ags into the memory location addressed by E . The resulting

status word is depicted below:



284 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

106

Reserved

1111

I

t

E

1212

S

t

E

1313

P

w

E

2724

Rsvd

2828

N

V

B

2929

I

n

t

3030

S

h

t

3131

P

w

F

3232

I

R

q

3533

Pri{

ority

Level

Bits 6{13 report which APR conditions are enabled to cause interrupts; of these, bits 6{10 are

reserved for future use.

Bits 24{31 are the Condition 
ags. These 
ags indicate which APR conditions prevail when this

instruction is executed; of these, bits 24{27 are reserved for future use. If a 
ag and its corresponding

enable are both set, an interrupt will be requested.

The de�ned bits in the status word are decoded as follows:

ItE If 1, the processor is enabled to accept an interrupt command from the console terminal.

ShE If 1, the processor is enabled to accept a shutdown command from the console terminal.

PwE If 1, the processor is enabled to accept an interrupt to signal that an AC Power Failure

(or Thermal Warning) has occurred.

NVB AP%NVB==:1B28 NVRAM Battery is low 
ag. This 
ag is set by the processor microcode

when its initialization sequence detects that the battery supplying the NVRAM is low.

The data in the NVRAM is suspect.

Int This is the Console Interrupt Request 
ag. It is set by the console command processor

when it wants to inform the CPU of a change in the status of the console. Generally, this

means the system operator has issued a command to enter kernel mode DDT.

Sht This is the Shutdown Request Flag. It is set by the console command processor in

response to the system operator's Shutdown command.

PwF This is the Power Failure Flag. It is set from the assertion of the PFAIL{ backplane

signal. This signal signi�es that either the AC power is low or that a Thermal Warning

is present. When this 
ag is set, the CPU has a short period of time

32

during which it

can bring the system to quiescence before DC power is shut down. See RCTRLF.

IRq AP%IRQ==:1B32 Interrupt Request. This bit is the inclusive{OR of the AND of bits

24{31 (condition 
ags) with bits 6{13 (interrupt enables). That is, this bit is set if any

condition 
ag and its corresponding interrupt enable are both set.

Priority

Level

Priority interrupt assignment (level) for CPU.

0 12 1314 1718 35

I X Y

8 9

6

SZAPR

Skip if Zero, Processor Conditions (APR0 6,)

700

32

The time available varies with the state of the battery charge.



3.9. OTHER CPU CONTROLS AND STATUS 285

This instruction tests bits 18{35 of the processor conditions (as would be read by RDAPR) against

bits 18{35 of E . If all the status bits selected by 1s in E are zero, the next instruction in sequence

is skipped.

0 12 1314 1718 35

I X Y

8 9

7

SNAPR

Skip if Non{zero, Processor Conditions (APR0 7,)

700

This instruction tests bits 18{35 of the processor conditions (as would be read by RDAPR) against

bits 18{35 of E . If any status bit selected by a 1 in E is not zero, the next instruction in sequence

is skipped.

3.9.2 Control Flags

Additional processor, system, and console 
ags and functions are controlled and/or monitored by

the XKL

-

1 by means of the following two instructions.

0 12 1314 1718 35

I X Y

8 9

10

WCTRLF

Write Control Flags (APR0 10,)

700

The word at location E contains a pair of command bits and several 
ag or function bits as depicted

below. Those bits that correspond to read{only indicators cannot be changed by this instruction;

they are read by RCTRLF.

Control Flags for WCTRLF and RCTRLF

00

S

e

t

11

C

l

r

22

D

M

P

33

D

I

A

44

B

O

O

55

A

T

O

66

D

B

G

177

Reserved

1818

A

C

F

1919

T

H

W

2020

B

T

F

2121

B

T

L

2222

N

P

W

2323

K

P

A

2424

N

D

C

2525

S

A

L

2626

R

I

2727

C

D

2828

D

T

R

2929

L

E

D

3

3030

L

E

D

2

3131

C

O

K

3232

A

P

E

3333

L

E

D

1

3434

R

T

S

3535

L

E

D

0

Set CF%SET==:1B0 When this bit is 1 the 
ags selected by 1s in bits 2{6, 23{24, and 26{35

will be set to 1, and if bit 25 is 1, the function selected by that bit will be performed. If

this bit and Clr are both 0, this instruction has no e�ect. If this bit and Clr are both 1,

this instruction is reserved.

Clr CF%CLR==:1B1 (Clear) When this bit is 1, the 
ags selected by ones in bits 2{6, 23{24,

and 26{35 will be cleared to zero. If this bit and Set are both 0, this instruction has no

e�ect. If this bit and Set are both 1, this instruction is reserved.

DMP CF%DMP==:1B2 (Dump Request) This 
ag informs TDBoot that a memory dump to a

�le is wanted. TDBoot reads this 
ag after the program executes a HALT instruction.

DIA CF%DIA==:1B3 (Diagnose Request) This 
ag informs TDBoot that diagnostics are want-



286 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

ed. TDBoot reads this 
ag after the program executes a HALT instruction. Diagnostics

are performed subsequent to the dump, if requested.

BOO CF%BOO==:1B4 (Boot Request) This 
ag informs TDBoot that the system should be

rebooted, using the existing default boot parameters. TDBoot reads this 
ag after the

program executes a HALT instruction. Boot is performed subsequent to diagnostics, if

requested.

ATO CF%ATO==:1B5 (Automatic) This 
ag is used by TDBoot to inform the timesharing mon-

itor that the reboot occurred without manual intervention.

DBG CF%DBG==:1B6 (Debugging) This 
ag is used by by TDBoot to inform the timesharing

monitor that the operator has requested the monitor to boot for stand{alone operation.

ACF CF%ACF==:1B18 (AC Fail) This read{only indicator is set when the system power control

has detected an AC Low condition.

THW CF%THW==:1B19 (Thermal Warning) This read{only indicator is set when the temperature

in the system card cage is excessive. (Generally, there is no corrective action that the

software can undertake. However, as Thermal Warning is often followed by a thermal

shutdown, the software may treat this condition as a power failure.)

BTF CF%BTF==:1B20 (Battery Fault) This read{only indicator is set when the system power

control is unable to charge the battery. Generally, this means either that the battery is

disconnected or that the battery has exceeded its useful life.

BTL CF%BTL==:1B21 (Battery Low) This read{only indicator is set when the battery is unable

to sustain system operation much longer.

NPW CF%NPW==:1B22 (Need Power) This read{only indicator is set when any device in the

system is asserting the Need DC Power backplane signal. (This processor can assert Need

DC Power by setting the CF%NDC 
ag, below.)

KPA CF%KPA==:1B23 (Keep{Alive Counter) This 
ag enables the microcode's \Keep{Alive"

counter (see x3.8.3). When set, the microcode will decrement the Keep{Alive counter

periodically; when clear, the Keep{Alive counter is disabled. (The Keep{Alive counter is

normally enabled while the operating system is running; however, programs such as KDDT,

EDDT, or TDBoot will disable the Keep{Alive mechanism while they are active.)

NDC CF%NDC==:1B24 (Need DC Power) This 
ag controls the processor's contribution to a

wire-ORed signal on the backplane. Any device on the backplane may assert this signal

to signify that it has not yet completed its power{failure shutdown routine. The power

control will attempt to maintain DC power by using the battery while any device asserts

this signal.

SAL CF%SAL==:1B25 (System Active Light) This function causes the processor to light the

yellow System Active light, on system front panel, for 15 milliseconds. (There is no corre-

sponding 
ag.)

RI CF%RI==:1B26 (Ring Indicate) This read{only 
ag signi�es the state of the Ring Indicate

lead on the auxiliary console port's modem.

CD CF%CD==:1B27 (Carrier Detect) This read{only 
ag signi�es the state of the Carrier Detect



3.9. OTHER CPU CONTROLS AND STATUS 287

signal on the auxiliary console port's modem.

DTR CF%DTR==:1B28 (Data Terminal Ready) This 
ag controls the state of the Data Terminal

Ready lead at the auxiliary console port's modem.

LED3 CF%LD3==:1B29 This 
ag controls the state of the green LED labeled \3", visible through

the module cover panel of the processor board.

LED2 CF%LD2==:1B30 This 
ag controls the state of the green LED labeled \2", visible through

the module cover panel of the processor board.

COK CF%COK==:1B31 (Console OK) This 
ag controls the state of the green LED labeled \Port

OK", visible through the module cover panel of the processor board, above the console port

connector.

APE CF%APE==:1B32 (Auxiliary Terminal Port Enable) When set, this 
ag permits the use of

the auxiliary terminal port. When enabled, the auxiliary port is connected \in parallel"

to the console terminal port: characters typed on either terminal are seen by the program

as if they came from the console terminal; characters sent to the console terminal are also

sent to the auxiliary port. While the auxiliary terminal port is enabled, the green LED

labeled \Port OK", visible through the module cover panel of the processor board, above

the auxiliary port connector, will be lit.

When the auxiliary terminal is disabled, input characters from the port are ignored and

console port output is not copied to the auxiliary port.

LED1 CF%LD1==:1B33 This 
ag controls the state of the green LED labeled \1", visible through

the module cover panel of the processor board.

RTS CF%RTS==:1B34 (Request to Send) This 
ag controls the state of the Request to Send

signal at the auxiliary console port's modem.

LED0 CF%LD0==:1B35 This 
ag controls the state of the green LED labeled \0", visible through

the module cover panel of the processor board.

0 12 1314 1718 35

I X Y

8 9

11

RCTRLF

Read Control Flags (APR0 11,)

700

This instruction reads the condition of the control 
ags and stores the result in the word at E. The

format is the same as that used in WCTRLF, except Set , Clr , and SAL all are read as zero.

3.9.3 Processor and System Identi�cation

For initial setup, the executive must be cognizant of certain fundamental characteristics that can

vary from one system to another. For this purpose, the following instructions are the means by

which the program can identify unique processor characteristics.



288 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

0 12 1314 1718 35

I X Y

8 9

00

APRID

Arithmetic Processor Identi�cation (APR0 0,)

700

Read the microcode version number, the processor serial number, and a listing of the fundamental

characteristics of the system into locations E, E + 1, and E + 2 as shown:

Processor Identi�cation Tripleword

E

E+1

E+2

20

Type

00

1

11

1

22

0

73

Subtype

33

0

44

0

55

0

66

0

77

1

318

Serial Number

3432

Rsvd

3535

R

d

y

00

J

0

11

J

1

22

J

2

33

J

3

174

Hardware Options

3518

Hardware

Revision

170

Microcode

Options

3518

Microcode

Version

These words are also the processor's response to a \Device Status Request" bus cycle directed to it

at in{module addresses 0, 1, and 2.

In the locatation addressed by E, the �elds have the following meaning:

Type This �eld (DS%TYP) contains the value 6 (AP%TCP), signifying that this is a processor.

(Remember, this word is also the processor's response to a \Device Status Request"

sent to it at address 0.)

Subtype This �eld (DS%STY) is reserved for major changes to the processor, including processors

of architecture substantially di�erent from the XKL

-

1.

Serial

Number

(AP%SNM==:77777777B31) This �eld uniquely identi�es the processor board. In contrast

to the System Serial Number, this number is used primarily for tracking the history of

this particular board.

Rdy Ready (AP%RDY). This bit will always be read as 1 by APRID. (The processor is not ready

while it is halted, but of course, APRID will never see this condition. However, the not

ready condition can be reported to another device that directs a Device Status Request

to the halted processor.)

In the location addressed by E + 1, the �elds have the following meaning:

J0 { J3 The status of four option jumpers on the CPU board, numbered J2{0, J2{1, J2{2, and

J2{3, is reported in bits 0{3, respectively. An installed jumper is read as a \1" in the

corresponding bit.

The J2 jumpers are located on the XKL

-

1 board near the connector to the auxiliary

console port. With the board in its normal orientation, J2{0 is at the top.

If jumper J2{0 is installed, the microcode will disable the macro{console and not at-

tempt to run macro code. (See also the .M command in Appendix E.) This jumper is



3.9. OTHER CPU CONTROLS AND STATUS 289

installed only for diagnostic purposes.

The signi�cance of the other jumpers is reserved.

Hardware

Options

At present, there are no de�ned hardware options.

Hardware

Revision

The hardware revision number is reported in this �eld.

In the location addressed by E + 2, the �elds have the following meaning:

Microcode

Options

At present, the de�ned microcode options are

Bit 0 Debugging microcode

Bit 1 Exotic microcode: the microcode di�ers in some way from the standard ver-

sion.

All other microcode option bits are reserved.

Microcode

Version

This is the microcode version number.

0 12 1314 1718 35

I X Y

8 9

02

SYSID

System Identi�cation (APR0 2,)

700

Read the system serial number and the backplane serial number into locations E and E+1 as shown:

Data Format for SYSID

230

System Identi�cation Number

3524

Reserved

230

Backplane Serial Number

3524

Reserved

The system identi�cation number is in bits 0{23 of the word stored at E (SY%SID==:77777777B23).

The system identi�cation number is unique to each TOAD

-

1 System. It is held in a socketed ROM

on the backplane. The system identi�cation number is shared by all processors attached to the

backplane. The system identi�cation number, rather than a processor serial number, can be used

identify a particular system of multiprocessors.

In the event that a backplane is replaced, it is intended that the system identi�cation number ROM

stay with the system.

Bits 24{35 of the word stored at E (SY%SOP==:7777) is reserved for reporting system options.



290 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

The backplane serial number is in bits 0{23 of the word stored at E + 1 (SY%BSN==:77777777B23).

The backplane serial number, unique to the backplane, is held in ROM permanently a�xed to the

backplane; it is used for tracking the history of the backplane.

Bits 24{35 of the word stored at E+1 (SY%BOP==:7777) is reserved for reporting backplane options.

3.10 Response by the XKL

-

1 Processor as a Device

In multi{processor systems, a XKL

-

1 processor may be addressed as a device by another processor.

The responses of the XKL

-

1 are described here.

3.10.1 Processor Response to Device Status Request

The processor responds to a Device Status Request backplane cycle directed to its in{module ad-

dresses 0, 1, and 2 by returning the �rst, second, and third words of the APRID data, respectively:

Processor Response to Device Status Request

Status Request

0 Response

Status Request

1 Response

Status Request

2 Response

20

Type

00

1

11

1

22

0

73

Subtype

33

0

44

0

55

0

66

0

77

1

318

Serial Number

3432

Rsvd

3535

R

d

y

00

J

0

11

J

1

22

J

2

33

J

3

174

Hardware Options

3518

Hardware

Revision

170

Microcode

Options

3518

Microcode

Version

The type code pattern 110 (AP%TCP==:6) in bits 0{2 (DS%TYP) of the Device Status Request 0 re-

sponse word identi�es this as a processor.

A 1 in the Rdy (Ready) 
ag (AP%RDY==:1B35) tells other devices on the bus that the processor is

ready. (The processor is not ready while its microcode is being loaded; it is not ready while it is

halted.)

At addresses 3{7, the processor responds by supplying the contents of MemA locations 323{327,

respectively (AM%SY0==:320, etc.). These cells are used in multiprocessor systems to provide inter{

processor synchronization before the memory and operating system are fully functional.

3.10.2 Processor Response to Device Control

The processor's response to Device Control bus cycles is reserved, pending the design of multipro-

cessor systems.



3.11. XMG

-

1 MEMORY SYSTEM 291

3.11 XMG

-

1 Memory System

There are two memory systems available for the TOAD

-

1 System: the XMG

-

1 and the XMG

-

3.

Either or both types might be present.

3.11.1 The XMG

-

1 Memory Board

The XMG

-

1 memory board is available in either 16{ or 32{million word con�gurations.

The XMG

-

1 responds to Line Read Request, Line Write, Word Read Request, and Word Write bus

cycles; these cycles are used for the usual storage transfers. The XMG

-

1 also responds to Sta-

tus Read Request and Device Control bus cycles (as generated by PMOVE and PMOVEM, respectively,

when the D bit is 1); these cycles are used to obtain status information and to e�ect some control

operations.

3.11.1.1 XMG

-

1 Device Status Request Functions

The memory responds to Device Status Request at even{numbered in{module addresses 0 through

(octal) 76, and at in{module address 1.

Even{numbered in{module addresses 0 through 76 respond as follows:

00

0

11

1

22

0

73

Subtype

33

0

44

0

55

0

66

0

77

1

158

0

2316

ID ROM

Data

2424

B

r

d

y

2525

A

r

d

y

2626

B

T

O

2727

P

E

D

2928

0

3030

3

2

M

3131

D

C

4

3232

O

f

L

3333

O

n

L

3434

W

B

P

3535

R

d

y

The memory type code pattern 010 (MD%TCP==:2) in the device type �eld (bits 0{2, DS%TYP) together

with the subtype code 00001 (MD%MG1==:1) in the device subtype �eld (bits 3{7, DS%STY) identify

the board as the XMG

-

1 memory type.

The other status bits are described below.

ID ROM

Data

One 8{bit byte of data from the 32{byte on{board ID ROM is returned in this �eld

(MD%ROM==377B23). ID ROM addresses 0 through (octal) 37 are selected by even{

numbered in{module addresses 0 through (octal) 76, respectively.

ID ROM addresses 0, 1, and 2 (accessed by in{module addresses 0, 2, and 4, respectively)

hold the three bytes of the board's serial number, where address 0 reports the least{

signi�cant byte. ID ROM address 3 through 37 are reserved.

Brdy Memory bank B is ready. (MD%BRY==:1B24)

Ardy Memory bank A is ready. (MD%ARY==:1B25)

BTO Busy Timeout: the busy counter has timed out while the memory was attempting a

data return. (MD%BTO==:1B26)



292 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

PED Parity Error Detected. (MD%PED==:1B27)

32M Memory capacity is 32 M words; if this bit is zero, the memory capacity is 16 M words.

(MD%32==:1B30)

DC4 Device Control Bit 4. Unassigned.

OfL O�ine. This 
ag is set to 1 by the system con�guration software after a processor has

tested this memory and found that the memory failed. (MD%OFL==:1B32)

OnL Online. This 
ag is set to 1 by the system con�guration software after it has successfully

run test patterns in this memory. When the 
ag is set, a green LED (visible through

the module cover panel) will be on to signify that the board is online. (MD%ONL==:1B33)

WBP Write Bad Parity. When set to 1, the memory will compute bad parity bits for the data

words that it stores. While set to 1, words read from memory that have good parity

cause parity errors; words read from memory that have bad parity are accepted without

complaint. This 
ag is intended for memory diagnostics only. (MD%WBP==:1B34)

Rdy Ready. When set to 1, this 
ag signi�es that Power{on reset has been completed and

the memory is ready. (MD%RDY==:1B35)

The XMG

-

1 reports parity error information in the Error Register, at in{module address 1 (.MDERR==:1).

Performing a status read from address 1 clears the PED (parity error detected) and the BTO (bus

timeout) 
ags (which are reported at address 0).

30

Slot

Number

84

Cycle

Type

359

Address of

Bad Parity Data

Slot Number (MD%ESN==:17B3) Backplane slot number of the device to which bad parity

data was sent.

Cycle Type (MD%ECT==:37B8) Type of backplane bus cycle in which the bad parity data

was delivered.

Address of

Bad Parity Data

MD%EMA==:777777777 This �eld reports the in{module address of the reference

that found a word that has bad parity.

The �rst parity error that is discovered causes the memory to latch the information reported here

and to set the PED 
ag (reported in status word 0). Subsequent parity errors are not latched until

PED has been cleared (which is done by reading the error register). While PED is set, parity errors

are still reported to recipients of data (as explained in x3.1).

The least signi�cant bit of the MD%EMA �eld is misleading: the memory actually stores and retrieves

72{bit LongWords. If a parity error exists in a LongWord, reading from either of the two addresses

that refer to this LongWord will set the error latch. So, the least signi�cant address bit re
ects

the address of the �rst reference to the LongWord, it does not indicate which of the two words

contains the error. The bus parity error indication occurs only when transferring the actual word



3.11. XMG

-

1 MEMORY SYSTEM 293

that contains the parity error.

3.11.1.2 XMG

-

1 Device Control Functions

The XMG

-

1 responds to the Device Control function at address 0 (.MDSTS==:0).

The data sent to the memory should be in the following form:

120

0

1313

E

n

4

1414

E

F

L

1515

E

O

L

1616

E

B

P

1717

E

n

R

3018

0

3131

D

C

4

3232

O

f

L

3333

O

n

L

3434

W

B

P

3535

R

R

Bits 13{17 are enables for bits 31{35, respectively. The signi�cance of bits 31{35 is as follows:

DC4 Device Control 
ag 4 will be set if both DC4 (MD%DC4==:1B31) and En4 (Enable 4,

MD%EN4==:1B13) are set to 1 in a Device Control cycle addressed to location 0. The 
ag

will be cleared to zero if DC4 is zero when En4 is 1 in a Device Control cycle addressed to

location 0.

DC4 is setable, clearable, and readable. It has no assigned function in the device or in

software.

OfL O�ine will be set if both OfL (MD%OFL) and EFL (Enable O�ine, MD%EFL==:1B14) are set

to 1 in a Device Control cycle addressed to location 0. The 
ag will be cleared to zero if

OfL is zero when EFL is 1 in a Device Control cycle addressed to location 0.

The o�ine bit is setable, clearable, and readable. Although it has no e�ect on the operation

of the memory itself, it is used by the TDBoot program to signal that the memory has

failed one of its tests.

OnL Online. This 
ag will be set if bothOnL (MD%ONL) and EOL (Enable Online, MD%EOL==:1B15)

are set to 1 in a Device Control cycle addressed to location 0. The 
ag will be cleared to

zero if OnL is zero when EOL is 1 in a Device Control cycle addressed to location 0. When

the 
ag is set, a green LED (visible through the module cover panel) will be on to signify

that the board is online.

The TDBoot program sets this 
ag in the memory after it has successfully run test pat-

terns. Other software may clear the 
ag if the memory is found to be failing.

WBP The Write Bad Parity 
ag will be set to one if both WBP (MD%WBP) and EBP (Enable Bad

Parity, MD%EBP==:1B16) are set to 1 in a Device Control cycle addressed to location 0. The


ag will be cleared to zero ifWBP is zero and EBP is 1 in a Device Control cycle addressed

to location 0.

When this 
ag is set, the parity bit is inverted on write operations, and the meaning of the

parity bit is inverted on read operations. Thus, when the Write Bad Parity 
ag is set in the

memory control, all data written will be stored with bad parity. When good parity data is

read, those data items will be reported as parity errors, but data with bad parity will not

be reported. This control 
ag is for memory diagnostic purposes only.



294 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

RR When the Reset Request 
ag (MD%RR==:1B35) and EnR (Enable Reset, MD%ENR==:1B17)

are both set to 1 in a Device Control cycle addressed to location 0, the memory control will

reset itself to its power{on condition. While the memory is resetting, the Rdy 
ag (MD%RDY,

as reported by a Device Status Request to location 0) will be 0 and the memory will not

respond normally; when the memory has �nished its reset process, Rdy will be 1.

3.11.1.3 XMG

-

1 Response to Memory Cycles

The XMG

-

1 memory system responds as a memory to bus cycles of the types Word Read Request,

Word Write, Line Read Request, and Line Write.

The word{mode cycles are generated by the central processor's PMOVE and PMOVEM instructions and

by it references to uncached pages. Also, other devices (e.g., the network interface) may generate

these cycle types.

The line{mode cycles are generated by the processor (or other devices) to read or write a cache line.

In the case of reading a cache line, the requesting device will want one particular word �rst, so the

low{order address bits 33{34 of the desired word are presented to the memory along with the rest

of the address in a Line Read Request, and the memory's response will send the requested double

word �rst and then cycle through the other three double words.

3.11.1.4 XMG

-

1 Initialization

The XMG

-

1 contains a very limited state{machine; it does not do much initialization.

The contents of the memory at power{up are unde�ned; it is completely plausible that memory

contains bad parity data. On power{up, TDBoot usually tests and clears memory.

3.11.2 The XMG

-

3 Memory Board

The XMG

-

3 memory board is available in varying capacities from 64 million 36{bit words to 512

million words, dependending on how many 64 Mw memory banks are installed on the board.

The XMG

-

3 responds to Line Read Request, Line Write, Word Read Request, Word Write, Long-

Word Read Request, and LongWord Write bus cycles; these cycles are used for the usual storage

transfers. The XMG

-

3 also responds to Status Read Request and Device Control bus cycles (as

generated by PMOVE and PMOVEM, respectively, when the D bit is 1); these cycles are used to obtain

status information and to e�ect control operations.

3.11.2.1 XMG

-

3 Device Status Request Functions

The memory responds to Device Status Request at even{numbered in{module addresses 0 through

(octal) 76, and at in{module address 1.

Even{numbered in{module addresses 0 through 76 respond as follows:



3.11. XMG

-

1 MEMORY SYSTEM 295

00

0

11

1

22

0

73

Subtype

33

0

44

0

55

0

66

1

77

1

88

1

99

1

1010

1

1111

1

1212

1

1313

1

1414

1

1515

B

n

k

P

2316

ID ROM

Data

2424

F

B

s

y

2525

D

R

d

y

2626

B

T

O

2727

P

E

D

2828

D

C

7

2929

O

f

L

3030

O

n

L

3131

D

C

4

3232

W

B

P

2

3333

W

B

P

1

3434

W

B

P

0

3535

R

d

y

The memory type code pattern 010 (MD%TCP) in the device type �eld (bits 0{2, DS%TYP) together

with the subtype code 00011 (MD%MG3==:3) in the device subtype �eld (bits 3{7, DS%STY) identify

the board as the XMG

-

3 memory type.

The other status bits are described below.

Bits 8{14 These bits report a pattern unique to the DRAM part that is installed in the bank (at

position 0{1). The expected value is all 1s.

BnkP Bank Present (M3%BKP==:1B15): if this bit is zero it signi�es that the memory bank is

present. Bank numbers 0 through 7 are selected by even{numbered in{module addresses

0 through (octal) 16, respectively. If this bit is one, the bank is absent. (Address 20

repeats the bank data for address 0, etc.)

Although it is possible to populate the board with DRAMs arranged in non{consecutive

banks, software constraints mandate the presence of bank 0 and do not allow the uti-

lization of non{consecutive banks.

A bank requires two DRAMs, designated 0{1 and 2{3 (corresponding to the least signif-

icant two address bits of the words that they store). BnkP actually reports the status

of the 0{1 DRAM. If that DRAM is present, the memory reports the entire bank as

present. (If the DRAM 2{3 for that bank is absent, words at addresses ending in binary

10 and 11 will not work.)

ID ROM

Data

One 8{bit byte of data from the 32{byte on{board ID ROM is returned in this �eld

(MD%ROM). ID ROM addresses 0 through (octal) 37 are selected by even{numbered in{

module addresses 0 through (octal) 76, respectively.

ID ROM addresses 0, 1, and 2 (accessed by in{module addresses 0, 2, and 4, respectively)

hold the three bytes of the board's serial number, where address 0 reports the least{

signi�cant byte. ID ROM address 3 through 37 are reserved.

FBsy Flash card is busy (or absent). (M3%FBY==:1B24)

DRdy DRAM Ready after power up. (M3%DRY==:1B25)

BTO Busy Timeout: the busy counter has timed out while the memory was attempting a

data return. (MD%BTO)

PED Parity Error Detected. Set if the memory has detected a parity error. (MD%PED)

DC7 Device Control Bit 7. Unassigned.

OfL O�ine. This 
ag is set to 1 by the system con�guration software after a processor has

tested this memory and found that the memory failed. (M3%OFL==:1B29)

OnL Online. This 
ag is set to 1 by the system con�guration software after it has successfully



296 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

run test patterns in this memory. When the 
ag is set, a green LED (visible through

the module cover panel) will be on to signify that the board is online. (M3%ONL==:1B30)

DC4 Device Control Bit 4. Unassigned.

WBPn Write Bad Parity (bytes 0, 1, and 2). For the purpose of parity computation, each word

in memory is divided into three 12{bit bytes, each byte having its own parity bit. Each

of these 
ags controls the sense of the parity bit for one byte of each word in memory.

When one of these 
ags is set to 1, the memory will compute and store a \bad" parity

bit corresponding to the data byte that it stores. While one of these 
ags is set to

1, a byte read from memory that has \good" parity will cause a parity error to be

reported, and a byte read from memory that has \bad" parity is accepted without

complaint. These 
ags are intended for memory diagnostics only. (M3%WB0==:1B34;

M3%WB1==:1B33; M3%WB2==:1B32)

WBP0 controls the parity for bits 0{11 of a memory word. WBP1 is for bits 12{23;

WBP2 is for bits 24{35.

Rdy Ready. When set to 1, this 
ag signi�es that Power{on reset has been completed and

the memory is ready. If 0, reset is stuck. (MD%RDY)

The XMG

-

3 reports parity error information at in{module address 1 (.MDERR). Performing a status

read from address 1 clears the PED (parity error detected) and the BTO (bus timeout) 
ags (which

are reported at address 0).

30

Slot

Number

44

T

y

0

55

T

y

3

66

T

y

4

357

Address of

Bad Parity Data

Slot Number (MD%ESN) Backplane slot number of the device to which bad parity data was

sent.

Cycle Type (M3%ECT==:7B6) The type of backplane bus cycle in which the bad parity data

was delivered. Bit 4 records type bit 0; bits 5 and 6 record type bits 3 and 4,

respectively.

Address of

Bad Parity Data

M3%EMA==:3777777777 This �eld reports the in{module address of the refer-

ence that found a word that has bad parity.

The �rst parity error that is discovered causes the memory to latch the information reported here

and to set the PED 
ag (reported in status word 0). Subsequent parity errors are not latched until

PED has been cleared (which is done by reading the error register); while PED is set, parity errors

are still reported to recipients of data (as explained in x3.1).

The least signi�cant bit of the M3%EMA �eld is misleading: the memory actually stores and retrieves

72{bit LongWords. If a parity error exists in a LongWord, reading from either of the two addresses

that refer to this LongWord will set the error latch. So, the least signi�cant address bit re
ects

the address of the �rst reference to the LongWord, it does not indicate which of the two words



3.11. XMG

-

1 MEMORY SYSTEM 297

contains the error. The bus parity error indication occurs only when transferring the actual word

that contains the parity error.

3.11.2.2 XMG

-

3 Device Control Functions

The XMG

-

3 responds to the Device Control function at address 0 (.MDSTS==:0).

The data sent to the memory should be in the following form:

90

0

1010

E

n

7

1111

E

F

L

1212

E

O

L

1313

E

n

4

1414

E

B

P

2

1515

E

B

P

1

1616

E

B

P

0

1717

E

n

R

2718

0

2828

D

C

7

2929

O

f

L

3030

O

n

L

3131

D

C

4

3232

W

B

P

2

3333

W

B

P

1

3434

W

B

P

0

3535

R

R

Bits 10{17 are enables for bits 28{35, respectively. The signi�cance of bits 28{35 is as follows:

DC7 Device Control 
ag 7 will be set if both DC7 (M3%DC7==:1B28) and En7 (Enable 7,

M3%EN7==:1B10) are set to 1 in a Device Control cycle addressed to location 0. The 
ag

will be cleared to zero if DC7 is zero when En7 is 1 in a Device Control cycle addressed

to location 0.

DC7 is setable, clearable, and readable. It has no assigned function in the device or in

software.

OfL O�ine will be set if both OfL (M3%OFL) and EFL (Enable O�ine, M3%EFL==:1B11) are set

to 1 in a Device Control cycle addressed to location 0. The 
ag will be cleared to zero if

OfL is zero when EFL is 1 in a Device Control cycle addressed to location 0.

The o�ine bit has no function in the memory itself. Instead, the TDBoot program uses

this 
ag to signal that the memory has failed one of its tests.

OnL Online. This 
ag will be set if bothOnL (M3%ONL) and EOL (Enable Online, M3%EOL==:1B12)

are set to 1 in a Device Control cycle addressed to location 0. The 
ag will be cleared

to zero if OnL is zero when EOL is 1 in a Device Control cycle addressed to location 0.

When the 
ag is set, a green LED (visible through the module cover panel) will be on to

signify that the board is online.

The TDBoot program sets this 
ag in the memory after it has successfully run test

patterns. Other software may clear the 
ag if the memory is found to be failing.

DC4 Device Control 
ag 4 will be set if both DC4 (M3%DC4==:1B31) and En4 (Enable 4,

M3%EN4==:1B13) are set to 1 in a Device Control cycle addressed to location 0. The 
ag

will be cleared to zero if DC7 is zero when En7 is 1 in a Device Control cycle addressed

to location 0.

DC4 is setable, clearable, and readable. It has no assigned function in the device or in

software.

WBPn A Write Bad Parity 
ag (M3%WBn, n = 0, 1, or 2) will be set to one if both WBPn and

EBPn (Enable Bad Parity n, M3%EB2==:1B14; M3%EB1==:1B15; M3%EB0==:1B16) are set

to 1 in a Device Control cycle addressed to location 0. A 
ag will be cleared to zero if

WBPn is zero and EBPn is 1 in a Device Control cycle addressed to location 0.



298 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

When one of these 
ag is set to 1, the parity bit for the corresponding byte is inverted on

write operations, and the meaning of the parity bit is inverted on read operations. Thus,

when a Write Bad Parity 
ag is set in the memory control, all data bytes (corresponding

to that 
ag) that are written will be stored with bad parity. When good parity data is

read, those data items will be reported as parity errors, however, data with bad parity will

not be reported. This control 
ag is for memory diagnostic purposes only.

RR When the Reset Request 
ag (MD%RR) and EnR (Enable Reset, MD%ENR) are both set to 1

in a Device Control cycle addressed to location 0, the memory control will reset itself to its

power{on condition. While the memory is resetting, the Rdy 
ag (bit 35, as reported by

Device Status Request to location 0) will be 0 and the memory will not respond normally;

when the memory has �nished its reset process, Rdy will be 1.

3.11.2.3 XMG

-

3 Response to Memory Cycles

The XMG

-

1 memory system responds as a memory to bus cycles of the types Word Read Request,

Word Write, LongWord Read Request, LongWord Write, Line Read Request, and Line Write.

The word{mode cycles are generated by the central processor's PMOVE and PMOVEM instructions and

by its references to uncached pages. Also, other devices (e.g., the network interface) may generate

these cycle types.

The longword{mode cycles are generated by devices other than the central processor. In the case

of reading a longword, the requesting device will provide an even{numbered in{module address and

a bus cycle type LongWord Read Request. The memory will supply the 72{bit data item in a bus

cycle of type DataR2 that will be directed to the requestor. In writing a longword, the requesting

device will provide an even in{module address in a cycle of type LongWord Write; it will then supply

the 72{bit data item in a cycle of type DataW2.

The line{mode cycles are generated by the processor (and other devices) to read or write a cache

line. In the case of reading a cache line, the processor will want one particular word �rst, so the

low{order address bits 33{34 of the desired word are presented to the memory along with the rest

of the address in a Line Read Request, and the memory's response will send the requested double

word �rst and then cycle through the other three double words.

3.11.2.4 XMG

-

3 Initialization

The XMG

-

3 contains a very limited state{machine; it does not do much initialization.

The contents of the memory at power{up are unde�ned; it is completely plausible that memory

contains bad parity data. On power{up, TDBoot usually tests and clears memory.

3.11.2.5 XMG

-

3 Flash Card

To be added.



3.12. XRH

-

1 MASS{STORAGE INTERFACE PROCESSOR 299

3.12 XRH

-

1 Mass{Storage Interface Processor

The XRH

-

1 Mass{Storage Interface Processor provides a highly e�cient, bu�ered connection be-

tween the TOAD

-

1 System backplane bus and four independent, wide, fast SCSI{2 buses.

The XRH

-

1 responds to backplane bus cycles of the types Device Status Request and Device Control.

It generates bus cycles of types Device Status Return, Interrupt, Line Read Request, and Line -

Write Request.

33

The description that follows is organized as an explanation of the I/O registers

(those that respond to the Device Control and Device Status Request bus cycles) and a description

of the protocol of communication between the CPU (operating system) and the XRH

-

1.

The XRH

-

1 Mass{Storage Interface Processor contains an 18 MB cache of recently read and written

data. (The cache is equivalent to 4 Mw or 16 sections of main memory.) The XRH

-

1 and the SCSI

devices internal to the TOAD

-

1 System chassis operate from a power source that contains a battery

to operate the devices through short power failures and su�cient to unload the cache to the disks

in the event of a longer power outage. The cache is used to supply copies of data recently read or

written, thereby increasing the e�ective disk bandwidth.

The XRH

-

1 includes a microprocessor that controls its general activity, including the management

of the cache and the scheduling of individual transfers.

The usual form of communication between the operating system and the XRH

-

1 involves two in{

memory data structures. The �rst of these is an eight{word communications region, through which

lists of messages are passed; the XRH

-

1 utilizes just one such region at a time. The second data

structure, many instances of which may exist at any time, is called a Mass{Storage Control Block

(MSCB). The MSCBs are found in main memory, either individually or in lists. As explained below,

some of the locations in the communications region and some of the I/O registers contain the address

of an MSCB (which may be the head of a list of MSCBs) or the address of the communications

region; such addresses are in the form of bus address words (BAWs, see x3.1.4).

3.12.1 XRH

-

1 Mass{Storage Interface Processor I/O Registers

I/O registers are implemented by the action of the microprocessor's microcode, with a small assist

from hardware. Due to this choice of implementation, access to the I/O registers may be very

slow; an access attempt may even result in a bus timeout or bus busy, even when the XRH

-

1 is

operating normally. Thus, software to control the XRH

-

1 must minimize access to these registers;

fortunately, the design of the XRH

-

1 provides for e�cient communication to it via memory cells in

the communications region.

Following the CPU's access to any of the XRH

-

1 I/O registers, the XRH

-

1's backplane bus interface

is designed to respond \busy" to any subsequent access. The bus interface remains busy until

the microprocessor has accepted the �rst backplane bus event and enabled the bus interface to be

receptive again. Moreover, a Device Status request, which requires a response from the microcode,

may result in a bus timeout if the microcode fails to respond swiftly. Therefore, the use of the

XRH

-

1 I/O registers is held to a minimum during system operations.

33

The XRH

-

1 hardware also can generate Word Read Request and Word Write; however, these capabilities are not

be used by the XRH

-

1's operating microcode.



300 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

3.12.1.1 Device Status

The XRH

-

1 does not have dedicated hardware that responds to Device Status Requests; the re-

sponses are made by the action of the �rmware. When the �rmware is busy (for example, while

resetting after power is applied), responses may be so slow as to create a bus timeout or a persistent

\busy" condition. Therefore, the program must be aware of the possibility of such exceptions and

take appropriate action to recover if any exceptions occur.

A Device Status Request directed to the XRH

-

1 at address 0 will elicit the main status of the device,

as described below. However, the preferred means by which to obtain this status word is from word

0 of the communications region. When there is no communications region or when the status of

communications is not known, this status word can be accessed via the XRH

-

1's response to a

Device Control cycle to address 3.

Mass{Storage Interface | Response to Device Status Request to Address 0

20

Type

00

0

11

0

22

0

73

Subtype

33

0

44

0

55

0

66

0

77

1

88

C

R

R

99

B

C

R

1010

C

R

E

1111

I

B

T

1212

F

U

L

1313

C

T

O

1414

C

P

E

1515

M

T

O

1616

M

P

E

1616

M

P

E

1717

B

B

0

1818

B

B

1

1919

B

B

2

2020

B

B

3

2121

D

P

E

3131

I

N

V

3232

E

r

r

3333

M

s

g

3434

A

t

n

3535

R

d

y

This response word is decoded as follows:

Type Bits 0{2 (DS%TYP) will contain the type{code pattern 000 (MX%TCP==:0) to identify this

backplane slot as containing a mass{storage interface subsystem.

Subtype Bits 3{7 (DS%STY) identify the subtype (i.e., particular model) of mass{storage controller.

The initial model XRH

-

1 is of subtype 1.

CRR Communications region rejected (MX%CRR==:1B8). The XRH

-

1 has been told to use a new

communications region at a time when a communications region was already established

for which there were MSCBs still outstanding. (This 
ag bit is never actually seen when

accessing the status via a Device Status request to address 0; instead, it is written in the

in{memory status word in the rejected communications region. There is no interrupt.)

BCR Bad communications region (MX%BCR==:1B9). The XRH

-

1 cannot use the communications

region that was assigned. The CPU may have provided a bad bus address word. In any

event, it is useless to look in the communications region for more information, because

there is no such region. (This condition does not cause an interrupt, because no priority

level assignment can be made without a valid communications region. Of course, this

condition will not be written to the status word in the communications region.)

CRE Communications region established (MX%CRE==:1B10). The XRH

-

1 has accepted and is

using the communications region assigned to it.

IBT Invalid bus transaction detected (MX%IBT==:1B11).

FUL Bu�er space is full. (MX%FUL==:1B12). The XRH

-

1 has no room in its bu�er space for

additional MSCBs. Either the operating system has overrun the XRH

-

1 with too many

outstanding requests, or there is an error internal to the XRH

-

1 or its microcode.

CTO Memory timeout in access to communications region (MX%CTO==:1B13). This error 
ag and



3.12. XRH

-

1 MASS{STORAGE INTERFACE PROCESSOR 301

the next three that follow cannot reliably be transmitted via the normal communications

mechanism, so they are reported in this status. When any of these four 
ags is set, a

Device Status Request to address 2 will elicit the bus{address word corresponding to the

most recent error of this kind. The Device Status Request to address 0 that reports these

bits will clear them.

CPE Memory parity error in access to communications region (MX%CPE==:1B14).

MTO Memory timeout in access to an MSCB (MX%MTO==:1B15).

MPE Memory parity error in access to an MSCB (MX%MPE==:1B16).

BB0 Bus Bad 0 (MX%BB0==:1B17). The XRH

-

1 has discovered a problem in SCSI bus 0; the

bus is not usable.

BB1 Bus Bad 1 (MX%BB1==:1B18). The XRH

-

1 has discovered a problem in SCSI bus 1; the

bus is not usable.

BB2 Bus Bad 2 (MX%BB2==:1B19). The XRH

-

1 has discovered a problem in SCSI bus 2; the

bus is not usable.

BB3 Bus Bad 3 (MX%BB3==:1B20). The XRH

-

1 has discovered a problem in SCSI bus 3; the

bus is not usable.

DPE DRAM parity error detected (MX%DPE==:1B21). During a transfer involving the XRH

-

1's

internal DRAM, a parity error has been found.

INV Status Stale (MX%INV==:1B31). The status word in the communications region needs to

be updated.

Err Error (MX%ERS==:1B32). The XRH

-

1 has an error condition to report. If the XRH

-

1 is

enabled to interrupt, this condition causes an interrupt. Many error conditions are treated

in the same way as asynchronous status is treated: if an MSCB is available in which to

report error conditions, the MSCB will be used instead of causing an interrupt. If an

interrupt occurs, the CPU must respond by providing an MSCB in which to report the

error.

Msg Message (MX%MSG==:1B33). Unused.

Atn Attention (MX%ATN==:1B34). The XRH

-

1 has asynchronous (or unsolicited) status to

report. If the XRH

-

1 is enabled to interrupt, this condition causes an interrupt. (Typically,

during system operation, asynchronous status is reported via MSCBs reserved for that

purpose.)

Rdy Ready (MX%RDY==:1B35). The XRH

-

1 is at (or near) normal operating conditions. It is

ready to receive a communications region assignment if none has yet been made. This


ag will be o� during such circumstances as the XRH

-

1 resetting itself and during such

times when the XRH

-

1 is busy for an extended period processing existing requests.

34

A Device Status Request directed to the XRH

-

1 at address 1 will elicit the bus{address word of the

assigned communications region, or zero if no assignment has been made.

34

As presently implemented, the XRH

-

1 may provide no response (i.e., bus busy or bus timeout) while it is per-

forming a hard reset.



302 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

Table 3.5: XRH

-

1 Status Read Request Addresses

Address bits Function

32{35

(MX%REG)

.MXSTS==:0 Return XRH

-

1 Status Word.

.MXCOM==:1 Return XRH

-

1 Communications Region Address.

.MXERA==:2 Return the latest bus error address.

.MXSRM==:3 Return SRAM data from the SRAM address speci�ed in address

bits 16{31 (MX%SRA==:177777B31). The SRAM data is returned in

bits 20{35 (MX%SRD==:177777).

.MXDRM==:4 Return DRAM data from the DRAM address speci�ed in address

bits 10{31 (MX%DRA==:17777777B31). Although the DRAM is 72

bits wide, this command returns only 36 bits. Address bit 31 selects

which half of the DRAM double word is returned.

.MXUCV==:5 Return the XRH

-

1 microcode version number. Bits 20{27 report

the major version number and bits 28{35 report the minor version

number.

.MXALU==:6 Return data from the ALU register addressed by bits 26{31

(MX%ARA==:77B31). The ALU registers are 16 bits wide; the data

is returned in bits 20{35 (MX%ALD==:177777).

.MXDSN==:7 Return the XRH

-

1 serial number. The serial number is 24 bits; it

is reported in bits 12{35 (MX%SND==:77777777).

10|17 Reserved

A Device Status Request directed to the XRH

-

1 at address 2 will elicit the bus address word cor-

responding to the most recent system bus error (timeout or parity error) as speci�ed in the XRH

-

1

status register 0.

Device Status Requests to other addresses are de�ned in Table 3.5. Address bits 32{35 select which

group of registers to access (MX%REG==:17); other address bits select a particular register from the

group.

3.12.1.2 Device Control

A Device Control data word (i.e., the data word associated with a Device Control backplane bus

cycle) directed to the XRH

-

1 at address 0, the control word that is sent can e�ect the following

functions:



3.12. XRH

-

1 MASS{STORAGE INTERFACE PROCESSOR 303

XRH

-

1 Mass{Storage Interface Processor | Device Control to Address 0

1717

E

n

b

1918

Bus

3232

Q

R

s

t

3333

B

R

s

t

3434

H

R

s

t

3535

S

R

s

t

Enb Enable (MX%ENB==:1B17). When set, this bit enables the reset functions described below.

Bus Bus selection �eld (MX%BN==:3B19). This �eld is used to select a particular SCSI bus for

the BRst function.

QRst Quietus Reset (MX%QR==:1B32). When set while MX%ENB is also set, this 
ag causes the

XRH

-

1 to �nish all work currently assigned to it and then to go to a state of inactiv-

ity. Upon receipt of this command, the XRH

-

1 will cease to use any previously assigned

communications region, and it will clear its priority interrupt assignment. If the XRH

-

1

currently has pending MSCBs in its memory, the work described by those MSCBs will be

completed (if possible); the completed MSCBs are discarded (i.e., they are not returned to

the CPU). If the contents of the XRH

-

1's cache memory are valid and not yet written to

disk, that information will be copied to the disk. After completing these tasks, the XRH

-

1

reports itself ready when inquiries are made to Device Status address 0. It is an error for

this bit to be set when any of SRst, BRst , or HRst is also set.

Subsequent to requesting a Quietus Reset, the program should monitor the status of the

ready 
ag MX%RDY and not send commands to the XRH

-

1 until it reports itself ready.

Because the communications region assignment is invalidated by this reset, the preferred

way to access the XRH

-

1 status word is via the XRH

-

1's response to a Device Control

request to address 3.

BRst SCSI Bus Reset (MX%BR==:1B33). When set while MX%ENB is also set, this 
ag causes the

XRH

-

1 to reset the SCSI bus identi�ed in the Bus �eld. Bus reset is appropriate after a

SCSI error has occurred on a particular bus. It is an error for this bit to be set when any

of QRst , HRst , or SRst is also set. See also \SCSI Bus Reset" on page 311.

HRst Hard Reset (MX%HR==:1B34). When set while MX%ENB is also set, this 
ag causes the

XRH

-

1 to reset itself to its power{on condition.

35

The contents of the XRH

-

1 bu�er

memory are ignored. Pending commands are discarded. The priority interrupt assignment,

communications region address, and SCSI bus identi�cation assignments are discarded.

The XRH

-

1 will reload its microcode, run diagnostics, and reset the SCSI buses. It is an

error for this bit to be set when any of QRst, BRst , or SRst is also set.

SRst Soft Reset (MX%SR==:1B35). When set while MX%ENB is also set, this 
ag causes the XRH

-

1

to stop its current activities, reset the DMAs and the SCSI buses, and reinitialize its data

structures. Work in progress, cache contents, and any previous communications region

assignment are lost. When the reinitialization is complete, the XRH

-

1 will report itself

ready in its status word. It is an error for this bit to be set when any of QRst, BRst , or

HRst is also set.

35

Note, however, as presently implemented, when the XRH

-

1 is \hung" (e.g., in a microcode loop in which it does

not pay attention to the backplane bus), this command may be ignored.



304 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

A Device Control data word directed to the XRH

-

1 at address 1 (.MXCRA) identi�es (as a bus{address

word) the location of the communications region. Changing the communications region address is

an error unless communications between the CPU and the XRH

-

1 have been brought to quiescence.

A Device Control data word directed to the XRH

-

1 at address 2 (.MXTO) identi�es (as a bus address

word) the location of the next \To XRH

-

1" MSCB. That MSCB may be the head of a list of \To

XRH

-

1" MSCBs. From the point of view of the CPU, this location is write{only. It is an error to

write to this cell unless a communications region has been established.

A Device Control data word directed to the XRH

-

1 at address 3 (.MXSTR==:3) contains a bus{

address word. The XRH

-

1 will respond by storing its current status at the location speci�ed by the

BAW. Although it is preferred that the status be read from the communications region, there are

some circumstances (for instance, when there is no communications region assigned) when this is

the best way to read the status. (In contrast to a Device Status Request cycle to address 0, this

method cannot result in a bus timeout.)

A Device Control data word directed to the XRH

-

1 at address 4 (.MXCRR==:4) contains a bus{

address word. The XRH

-

1 will respond by storing its current communications region assignment at

the location speci�ed by the BAW. When the program does not know what communications region

is assigned (for example, when TDBoot gains control after a program terminates), this is the best

way to obtain the location of the communications region. (In contrast to a Device Status Request

cycle to address 1, this method cannot result in a bus timeout.)

Device Control cycles directed to other addresses are reserved.

3.12.2 Communication Between the CPU and the XRH

-

1

Communication between the CPU (operating system) and the XRH

-

1 involves a communications

region and instances of a data structure called a Mass{Storage Control Block (MSCB). The com-

munications region and every MSCB is contained within the main memory space of the system.

36

An MSCB must occupy precisely one memory (cache) line; thus, the address of an MSCB must be

a multiple of 8 (octal 10) and the length of the MSCB is 8. This restriction is due to the XRH

-

1's

preference for using the more e�cient Line Read Request and Line Write backplane bus cycles to

reference memory. The communications region is also eight words long and aligned on an eight{word

boundary. The memory pages containing the communications region and the MSCBs should not be

cached; otherwise, the operating system would have to 
ush the cache to validate the in{memory

versions of these data structures.

3.12.2.1 Communications Region

The communications region is an eight{word (.MXCRL==:10) area of main memory identi�ed by the

bus{address word that speci�es the �rst word of the region. The communications region must be

allocated at an address that is a multiple of eight. The format of the communications region is

shown in Figure 3.6.

The communications region is allocated by the CPU. The CPU informs the XRH

-

1 of the loca-

36

Copies of these data structures exist also in the XRH

-

1; however, this explanation is directed towards explaining

the action of the XRH

-

1 from the point of view of the CPU or Monitor.



3.12. XRH

-

1 MASS{STORAGE INTERFACE PROCESSOR 305

Figure 3.6: XRH

-

1 Communications Region Format

7
Reserved

6

Reserved

5
.MXBID

4
.MXPIA

3
.MXFRM

2 .MXTO

1
.MXCRA

0
.MXCRS

350

XRH

-

1 Status

350

XRH

-

1 Communications Region (a Bus Address Word)

350

To XRH

-

1 (a Bus{Address Word)

350

From XRH

-

1 (a Bus{Address Word)

350

Priority{Interrupt Level Assignment

30

0

114

Bus 0 ID

1912

Bus 1 ID

2720

Bus 2 ID

3528

Bus 3 ID

350 350

tion of the communications region by sending the bus{address word as data in a Device Control

cycle directed to the XRH

-

1 at address 1. If the XRH

-

1 does not already have a communications

region assigned, the XRH

-

1 accepts this assignment and acknowledges it by writing the XRH

-

1

status (including Communications Region Established) in word 0 of the communications region.

In normal operations, this status word will thereafter be the same as the one reported by a De-

vice Status Request to address 0; abnormal situations are described in the next paragraph. Upon

successful assignment of a communications region, the XRH

-

1 will read the new priority{interrupt

level assignment and the SCSI bus addresses from words 4 and 5 of the new region. These are read

just once: subsequent changes to these memory locations are ignored by the XRH

-

1.

If the XRH

-

1's status write is unsuccessful or if the communications region address is not a mul-

tiple of 8, the Bad Communications Region bit will be set in the status word available via Device

Status address 0. If a previous communications region had been assigned, and if there are MSCBs

outstanding for that region, then the XRH

-

1 rejects the new communications region assignment: it

writes the address of the established region in word 1 of the new, rejected communications region,

and it sets Communications Region Rejected (and all other approriate status bits, including bits

0{7) in word 0 of the rejected region.

Note: The correct way to change communications regions is to bring all activity between the CPU

and the XRH

-

1 to quiescence by means of a \Release Communications Region" command in an

MSCB sent to the XRH

-

1. A CPU insistent on changing communications regions immediately can

do so by sending the XRH

-

1 a Soft Reset via a Device Control function to address 0.

The contents of the communications region are as described here:

0 XRH

-

1 Status (.MXCRS). This is the preferred location from which to read the status of the

XRH

-

1. The data found here is in the same format as described above for the XRH

-

1's



306 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

response to Device Status Request cycle to address 0. The CPU initializes this word to zero

in memory before telling the XRH

-

1 the address of the communications region. The CPU

can verify that the XRH

-

1 has accepted this region by this word reporting \Communications

Region Established" along with the XRH

-

1 device type, subtype, and possible other status.

1 Communications Region Address (.MXCRA).

In normal operations, this location contains the same bus{address word as was written into

the XRH

-

1's Device Control Address 1 to assign a communications region. However, if the

newly assigned communications region is rejected by the XRH

-

1 because of a pre{existing

assignment, the XRH

-

1 will write the backplane bus address word corresponding to the es-

tablished communications region in this location; apart from this and the error status (CRR,

etc.) that will be written into location 0, the XRH

-

1 will otherwise ignore this region.

2 To XRH

-

1 (.MXTO). This word contains the bus{address word that speci�es the location of

an MSCB or zero. When the CPU wants to send an MSCB to the XRH

-

1, it checks this

location. If this location contains zero, the XRH

-

1 is available to accept another MSCB: the

CPU writes the address of the MSCB (which might be the head of an MSCB list); the CPU

writes the same address to the XRH

-

1 as data in a Device Control bus cycle to address 2.

If this location is non{zero, the CPU must wait until it becomes zero before writing into it;

when the XRH

-

1 writes zero into this location, it will provide an interrupt to the CPU.

The XRH

-

1 responds to the Device Control cycle to address 2 by adding the speci�ed MSCB

to its list of MSCBs to process. At some point, the XRH

-

1 will write zero into word 2 of the

communications region (and, if enabled to do so, it interrupts the CPU) to signal its readiness

to accept further MSCBs.

3 From XRH

-

1 (.MXFRM). When this location contains a non{zero value, the value is a bus{

address word that de�nes the location of an MSCB (or the head of a list of MSCBs) being

returned to the CPU by the XRH

-

1. When the CPU sees a non{zero value in this location, it

copies that value as an MSCB list to be processed and then sets this location to zero.

When the XRH

-

1 has MSCBs to return to the CPU, it checks the value of this location. If

the location is zero, the XRH

-

1 stores the address of the returned MSCB (list) in this location

and, if enabled, it requests an interrupt. If the location is non{zero, the XRH

-

1 accumulates

a list of MSCBs to be returned, and it checks periodically to see if the location has become

zero.

4 XRH

-

1 Priority{Interrupt Level Assignment (.MXPIA). This location contains the slot number

of the CPU to be interrupted by the XRH

-

1 and the priority level to which the XRH

-

1 is

assigned. The CPU slot number is present in bits 3{6, in the same format as a bus{address

word. The priority level is in bits 33{35. This location must be initialized by the CPU prior

to assigning the communications region to the XRH

-

1, because the XRH

-

1 reads this location

only once, following the assignment of the communications region. Changing the priority of

the XRH

-

1 requires the assignment of a new communications region. A zero in the location

directs the XRH

-

1 to avoid the use of interrupts.

5 XRH

-

1 SCSI Bus Identi�cation Numbers (.MXBID). This location is set by the CPU (usually

from data in its non{volatile memory) prior to the assignment of the communications region

to the XRH

-

1. The location contains four SCSI ID numbers to be used by the XRH

-

1 on

its four SCSI buses (MSKSTR (MX%ID,.MXBID,377B11)). The most signi�cant bit of each ID

number �eld (MX%OFL==:200), if set, signi�es that the channel is to be kept o�ine.



3.12. XRH

-

1 MASS{STORAGE INTERFACE PROCESSOR 307

3.12.2.2 Communications Protocol

Requests for service are synchronous with the activity of the CPU. That is, the CPU generates all

requests for service. These requests are fashioned into MSCBs, the MSCBs are linked together as a

list. A list of MSCBs is handed to the XRH

-

1 via its \To XRH

-

1" location in the communications

region and by a Device Control function to address 2.

Acknowlegements, that is, a list of completed requests, are handed back to the CPU via the \From

XRH

-

1" location in the communications region and an interrupt (if enabled).

Asynchronous events (e.g., a disk drive coming on{line) are announced by the XRH

-

1 via Attention

status and an interrupt (if enabled). The CPU responds to an Attention interrupt by sending the

XRH

-

1 an MSCB of status \Report Asynchronous or Error Status". The XRH

-

1 �lls the MSCB with

a Request Sense command and information to identify the clamoring unit, performs the Request

Sense, and returns the MSCB in due course. The XRH

-

1 holds any MSCBs that the CPU supplies

that have status \Report Asynchronous or Error Status" until it is necessary to report such an

event. If the XRH

-

1 is holding such a command block at the time an asynchronous or error event

occurs, the XRH

-

1 will report the event in that block and return it in due course (without explicitly

requesting an interrupt to service the Attention condition).

To ensure that each interrupting condition is processed properly, on processing an interrupt the

CPU will perform the following steps in sequence:

� clear the XRH

-

1 interrupt request for the backplane slot in question,

� examine each possible condition that could have caused the interrupt and handle each, and

� then dismiss the interrupt.

Similarly, the XRH

-

1 will treat each condition that can interrupt as follows: make appropriate

changes to the communications region (To XRH

-

1, From XRH

-

1, and/or XRH

-

1 Status) before

requesting the interrupt. In this way, system programmers can ensure that no source of interrupts

may be lost.

A message of type \Release Communications Region" from the CPU to the XRH

-

1 directs the latter

to bring all outstanding requests to completion. As the XRH

-

1 does so, the CPU will drain messages

from the \From XRH

-

1" location and refrain from sending additional messages. When the process

is complete, the XRH

-

1 will acknowledge the \Release Communications Region" message, write a

status word in which \Ready" is zero in location 0 of the communications region, and release the

communications region. Thereafter, the XRH

-

1 will be idle until a new communications region is

assigned.

3.12.2.3 Mass{Storage Control Block

A Mass{Storage Control Block is an eight{word (.MXBLN==:10) region of memory that must be

aligned on an address that is a multiple of eight. The format of an MSCB is depicted in Figure 3.7.

Note that the 4{bit �elds in words 4{6 are reserved for the XRH

-

1: the XRH

-

1 ignores the initial

contents of those �elds in an MSCB, and the XRH

-

1 may change the contents of those �elds.

The meaning of the �elds in the Mass{Storage Control Block is as follows:



308 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

Figure 3.7: Mass{Storage Control Block Format

7

�

.MXSTA

�

6

5

4
.MXCMD

3
.MXTAR

2 .MXDBA

1 .MXBYC

0
.MXLNK

350

Link to next MSCB (a Bus{Address Word)

30

CBS

114

CPU

1912

Format

3520

Byte Count

350

Data Bu�er Address or Command List Address (a Bus{Address Word)

30

Bus

114

Target

1912

LUN

2720

AEC

3528

MAL

114

Command 0

1912

Command 1

2720

Command 2

3528

Command 3

114

Command 4

1912

Command 5

2720

Command 6

3528

Command 7

114

Command 8

1912

Command 9

2720

Command 10

3528

Command 11

30

ErrC

114

Sense Code

1912

Status

2720

ASC

3528

ASCQ

350

Request Sense Bu�er Address (a Bus{Address Word)

MSKSTR (MX%ST,.MXBYC,17B3) ;Command Block Status

MSKSTR (MX%CP,.MXBYC,377B11) ;CPU

MSKSTR (MX%FT,.MXBYC,377B19) ;Format

MSKSTR (MX%BC,.MXBYC,177777) ;Byte Count

MSKSTR (MX%BS,.MXTAR,17B3) ;Bus number

MSKSTR (MX%TR,.MXTAR,377B11) ;SCSI Target ID number

MSKSTR (MX%LN,.MXTAR,377B19) ;SCSI Logical Unit Number

MSKSTR (MX%AE,.MXTAR,377B27) ;Additional Error Code

MSKSTR (MX%MA,.MXTAR,377B35) ;MSCB Allocation

MSKSTR (MX%C0,.MXCMD,377B11) ;Command Byte 0

MSKSTR (MX%EC,.MXSTA,17B3) ;Error Code

MSKSTR (MX%SN,.MXSTA,377B11) ;Sense Byte

MSKSTR (MX%SK,.MXSTA,17B11) ;SCSI Sense Key

MSKSTR (MX%SS,.MXSTA,377B19) ;SCSI Status Byte

MSKSTR (MX%AS,.MXSTA,377B27) ;Additional Sense Code byte

MSKSTR (MX%CQ,.MXSTA,377B35) ;Additional Sense Code Qualifier

MSKSTR (MX%AQ,.MXSTA,177777) ;Both ASC and ASCQ



3.12. XRH

-

1 MASS{STORAGE INTERFACE PROCESSOR 309

Link This is a link to the next MSCB on the list. Zero means that there are no further

items on the list. Otherwise, the value is a bus{address word that speci�es a main

memory location at which an additional MSCB can be found.

CBS This is the Command Block Status �eld. When this MSCB is passed from the CPU

to the XRH

-

1, the CBS (Command Block Status) �eld will indicate the action to be

taken by the XRH

-

1. When this MSCB is passed back to the CPU, the CBS �eld will

indicate the disposition of the command.

From the CPU to the XRH

-

1, this �eld is used as follows:

0 (MX.CSS==:0) SCSI command for immediate execution. This is the usual case.

The particular command is encoded in six to twelve command bytes in the

MSCB. The Bus, Target, and LUN �elds specify the SCSI device that is the

target for this command.

1 (MX.CSA==:1) Report asynchronous or error status. If the XRH

-

1 has asyn-

chronous status from a SCSI device, it will report that status in this block.

Otherwise, the XRH

-

1 will hold this command block until needed. This pro-

vides a means by which the XRH

-

1 can report asynchronous status or errors to

the CPU.

The CPU is responsible for supplying correct data in the following words and

�elds of this MSCB: CBS , CPU , Format , Byte Count , Data Bu�er Address,

and the error reporting mode in the .MXSTA word.

The XRH

-

1 will return this MSCB to the CPU in any of the following circum-

stances:

� A SCSI target generates an Asynchronous Event.

The returned MSCB will contain MX.CSA (Asynchronous Status) in CBS;

the Bus, Target, and LUN �elds will be �lled in by the XRH

-

1 to identify

the unit presenting asynchronous status.

� A SCSI bus has hung.

The returned MSCB will contain MX.CSX (System Error) in CBS; the Bus

�eld will be set. Asynchronous Return (.MXASR==:200) and Target Un-

known (.MXTUK==:100) bits will be set in the MX%AE byte of the MSCB.

If Target Blocking mode is enabled, the XRH

-

1 will set every target on

the a�ected bus to the Target{is{Blocked state. The XRH

-

1 will �nd all

MSCBs pending for targets on the a�ected bus and return them marked

MX.TIB (Target is Blocked) in CBS. With respect to each target, the MSCBs

will be returned in the same sequence as they were sent to the XRH

-

1. (If

the XRH

-

1 has any cache writes pending for targets on this bus, it will hold

them until the bus is reset and then restart them.)

If Target Blocking mode is disabled, the XRH

-

1 will destroy all MSCBs

pending for targets on the a�ected bus. (Cache writes pending for targets

on this bus are held until the bus is reset and then they are performed.)

The system will send a command to reset the a�ected bus. (Resetting the

bus clears the Target{is{Blocked state for all targets on the bus.) The sys-

tem will issue any commands needed to recon�gure devices after they have

been reset. Then, the system will reissue any MSCBs that were returned

marked as Target is Blocked.



310 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

� An asynchronous transfer (e.g., from the XRH

-

1's cache to disk) failed due

to a SCSI error or a system error.

If a SCSI command completed with status other than \good", the returned

MSCB will be marked MX.CSS (SCSI Command was Performed) in the

CBS �eld. If this (Report Asynchronous or Error Status) MSCB contains a

Request Sense Bu�er Address, return the Request Sense data there. Return

appropriate values in all �elds of the .MXSTA word.

If the SCSI command was not performed because of a system error, the

MSCB will be returned with MX.CSX (System Error) in CBS, and appropri-

ate data will be returned in the .MXSTA word.

The a�ected bus, target and LUN �elds will be set. The Command bytes

will be set to the write command (including the logical record number)

that failed. The Asynchronous Return (MXASR) bit will be set in the MX%AE

byte. The data bu�er address returned in the MSCB represents the XRH

-

1

DRAM address of the data bu�er for which this write failed.

If Target Blocking mode is enabled, the XRH

-

1 will put the unit into the

Target{is{Blocked state and return any MSCBs relating to this target,

marking them Target is Blocked in CBS. (If the XRH

-

1 has any other cache

writes pending for this unit, it will hold them until the Target{is{Blocked

state is cleared.)

2 (MX.CSM==:2) XRH

-

1 Command.

This form of MSCB is used by the CPU to pass information directly to the

XRH

-

1 instead of to one of the SCSI target devices connected to it. When the

CBS �eld contains MX.CSM, only the Link and CBS �elds have their normal

meaning, although some of these XRH

-

1 commands will interpret �elds such as

Bus, Target , LUN , etc. as having their usual meanings (i.e., as specifying a

SCSI bus and target). The interpretation of the Command bytes is particular

to each XRH

-

1 command, as explained here.

The byte Command 0 will contain the command code for the XRH

-

1. Addi-

tional bytes following Command 0 may contain parameters for the command.

Among the XRH

-

1 commands are the following:

0 Release Communications Region (MX.RCR==:0). This command directs the

XRH

-

1 to bring all outstanding requests to completion. MSCBs presently

held in the XRH

-

1 are to be completed. Data in the XRH

-

1's cache mem-

ory intended for output to the disk must now be written to disk. The

XRH

-

1 may presume that this Release Communications Region command

is the last MSCB in the \To XRH

-

1" queue. The CPU is responsible for

draining any MSCBs returned via \FromXRH

-

1" (including Asynchronous

and Error Status blocks that are returned unused). Moreover, the CPU

refrains from sending additional commands. The XRH

-

1 will acknowledge

the completion of this command by returning the command block with

\Good" Status. The XRH

-

1 will clear the status word in the communi-

cations region and refrain from using it again. The XRH

-

1 will remove

\Communications Region Assigned" from its status word. (Thereafter,

the status word is readable via Device Status Request to address 0, or by

a Device Control cycle directed to address 3.)

1 SCSI Bus Reset (MX.SBR==:1). The Bus �eld speci�es which SCSI bus

to reset. Bus reset is appropriate in circumstances such as \Emulex gross



3.12. XRH

-

1 MASS{STORAGE INTERFACE PROCESSOR 311

error" or when the software believes that the bus or a device on the bus is

hung.

SCSI Bus Reset causes all targets on the a�ected bus to return to their

power{on condition. The Target{is{Blocked state is cleared. If the Monitor

normally sends initializing commands to a target, those initializing com-

mands must be repeated subsequent to a bus reset. If a target had been

marked as cacheable prior to the bus reset, data that is already cached for

that target will be retained as valid. However, as the target will be marked

as uncacheable by the bus reset, the retained data is inaccessible (and it

will not be written to the target, nor supplied in lieu of actual target data)

until the Monitor completes any other initializing commands and sets the

target to be cacheable again.

When this command is received by the XRH

-

1, it will locate all MSCBs

relating to the a�ected bus and return each of them marked \Bus is Being

Reset"; all such MSCBs will be returned on one list (which may contain

other MSCBs as well). After all those MSCBs are queued to the operating

system, the XRH

-

1 will return this reset command MSCB to signify that

the reset operation has been completed.

2 Set Cache Use Parameters (MX.CUP==:2). The Command 1 byte speci�es

the subfunction as follows.

0 Invalidate cache (all) (MX.CIA==:0). Set all units uncacheable. Mark

all cached data as invalid.

1 Invalidate cache (unit) (MX.CIU==:1). Invalidate any cached data

pertaining to the unit speci�ed by the Bus, Target, and LUN �elds.

Set the speci�ed unit as uncacheable.

2 Unload cache (all) (MX.CUA==:2). Write all cached data to their

respective disk units. Set all units uncacheable. Mark all cached

data as invalid.

3 Unload cache (unit) (MX.CUU==:3). Write any cached data pertain-

ing to the unit speci�ed by the Bus, Target, and LUN �elds to that

unit. Mark cached data for this unit as invalid. Set the speci�ed

unit as uncacheable.

4 Validate cache (all) (MX.CVA==:4). Write all cached data to their

respective disk units.

5 Validate cache (unit) (MX.CVU==:5). Write any cached data pertain-

ing to the unit speci�ed by the Bus, Target, and LUN �elds to that

unit.

6 Enable caching for unit (MX.ECU==:6). Mark the unit speci�ed by

the Bus, Target, and LUN �elds as cacheable.

7 Release cached data (MX.RCD==:7). Release the block of cache mem-

ory speci�ed by the bytes Command 2 and Command 3 .

When a cached write to disk encounters an error subsequent to the



312 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

XRH

-

1's report of \good" status, the XRH

-

1 sends an asynchronous

error report MSCB. That error report contains the identi�cation of

the bus, target disk, disk address, etc. The data associated with

the transfer is preserved in the XRH

-

1's memory and identi�ed as

a particular cache block from which the CPU can read the data.

Following error recovery steps, this command is issued by the CPU

to tell the XRH

-

1 that it can reuse the indicated cache block.

3 Negotiate wide transfer. (Not presently used.) The XRH

-

1 automatically

enters negotiation with targets to determine whether or not they support

16{bit wide transfers. If a target supports 16{bit transfers, the XRH

-

1

does them.

4 Negotatiate synchronous data transfer (MX.SYN==:4). (Not presently used.)

This command directs the XRH

-

1 to negotiate synchronous (or asynchro-

nous) transfer mode with all units or with a selected unit. The Command

1 byte selects a particular function, as follows:

0 Negotiate Asynchronous Transfer Mode, all units (MX.ATM==:0).

1 Negotiate Synchronous Transfer Mode, all units. (MX.STM==:1). Syn-

chronous transfers will be made to all units that support synchronous

transfer mode.

2 Negotatiate Asynchronous Transfer Mode on the unit speci�ed by the

Bus and Target �elds; all LUNs are a�ected (MX.ATU==:2).

3 Negotatiate Synchronous Transfer Mode on the unit speci�ed by the

Bus and Target �elds; all LUNs are a�ected. (MX.STU==:3).

5 Set target timeout. (Reserved for future use.)

6 Set target disconnect privilege. (Reserved for future use.)

7 Set SCSI target priorities. (Reserved for future use.)

10 Write DRAM (MX.WDB==:10). This command directs the XRH

-

1 to trans-

fer information from system memory to its internal bu�er (cache). This

command, together with the Read DRAM command (below), provide a

means of testing the data path between system memory and the XRH

-

1;

further, these commands provide a means of extensively testing the XRH

-

1

internal memory.

Additional parameters are as follows:

� Byte Count : the count of 8{word memory lines to transfer.

� Data Bu�er Address: the bus{address word corresponding to the sys-

tem memory from which data will be read.

� Command 1|Command 3 : the DRAM address into which to write

the data. The DRAM address is a 19{bit �eld whose 5 most{signi�cant

bits are right{justi�ed in the byte Command 1 , whose next 8 bits are

in Command 2 , and whose least signi�cant 6 bits are left-justi�ed in



3.12. XRH

-

1 MASS{STORAGE INTERFACE PROCESSOR 313

Command 3 ; all otherwise unde�ned bits in Command 1 and Com-

mand 3 must be zero.

� Bus: Speci�es which one of the XRH

-

1's �ve \DMA machines" is used

for this transfer. Values 0{3 address the DMA machine of the cor-

responding SCSI Bus; value 4 signi�es the DMA machine associated

with transfers between main memory and the XRH

-

1's DRAM (data

cache).

Upon completion of this command, the MSCB will be returned with the

Status �eld set either to zero, indicating a successful operation, or to a

bitwise encoding of the reason for failure:

1 DRAM/Main Memory transfer failure

2 DMA and DDMA counts don't match

4 System bus busy timeout

10 System bus timeout

20 System memory reported a parity error

40 Final DMA count is greater than 1

100 DMA count is zero

200 Invalid parameter in the MSCB

11 Read DRAM (MX.RDB==:11). Parameters are as described in the Write

DRAM command, above.

12 Target Blocking Control (MX.TBC==:12). This command controls the be-

havior of the XRH

-

1 when SCSI bus errors occur; see also \Error Re-

porting" and \Error Handling", pages 321 and 322, respectively. Target

Blocking mode is a global state of the XRH

-

1, either enabled or disabled,

which a�ects all targets. The speci�c command function is selected by the

Command 1 byte, as follows:

0 Disable Target Blocking mode (MX.DTB==:0). The XRH

-

1 makes no

special e�orts to help e�ect error recovery. This is the mode estab-

lished by default following a successful assignment of the communica-

tions region.

1 Enable Target Blocking mode (MX.ETB==:1). The XRH

-

1 will set the

Target{is{Blocked state for a target device when the device returns a

command status other than \good". While a target is in the Target{

is{Blocked state, the XRH

-

1 will refuse to perform any MSCB that

addresses the blocked target and it will return the MSCB marked

\Target is Blocked" in the CBS �eld. All LUNs of a blocked target are

blocked. The target remains blocked until a Clear Target{is{Blocked

command is received by the XRH

-

1.

2 Clear Target{is{Blocked (MX.RTB==:2). The XRH

-

1 will clear the Tar-



314 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

get{is{Blocked state for the target speci�ed by the Bus and Target

�elds. All LUNs of the a�ected target are unblocked. Any MSCBs

in the XRH

-

1, pending for this target, are returned marked \Target{

is{Blocked" before the MSCB containing this command is returned.

Thus, this command forces all pending MSCBs to be returned to the

CPU before unblocking the target.

3 Set Target{is{Blocked (MX.STB==:3). The XRH

-

1 will set the Target{

is{Blocked state for the target speci�ed by the Bus and Target �elds.

All LUNs of the a�ected target are blocked.

13 Heartbeat (MX.HBT==:13). This function tells the XRH

-

1 that a unit of

time has elapsed. The XRH

-

1 uses the heartbeat to age the data in the

write cache and other purposes. Generally, the Monitor will attempt to

send this message approximately once per second. The byte Command

1 will describe the operating system's power condition: 0{\green"; 1{

\yellow"; 377{\red".

14 Set Inquiry Response (MX.SIR==:14). This function tells the XRH

-

1 to

change its response as a target to an Inquiry command by supplying in

its response bytes 21{31 a copy of the data found in the bytes Command

1{Command 11 , respectively.

15 Set Serial Number (MX.SSN==:15). This function tells the XRH

-

1 to change

its response as a target to an Inquiry/EVPD command with page code

0x80 by supplying in its response 0x0b in byte 3 (page length) and in

bytes 4{14 a copy of the data found in the bytes Command 1{Command

11 , respectively.

3{15 Reserved

From the XRH

-

1 to the CPU, this �eld is used to communicate the status of the

completed operation:

0 SCSI Command was Performed (MX.CSS==:0). The SCSI operation requested

by this MSCB was performed. The Status byte contains the ending status.

\Good" status indicates that the command was completed successfully; in this

case the .MXSTA word will be set to zero. Other values of status indicate er-

ror and abnormal situations; in the automatic error reporting modes (x3.12.2.4),

further information will be found in the ErrC (Error Code), Sense, ASC (Addi-

tional Sense Code), and ASCQ (Additional Sense Code Quali�er) �elds. Errors

reported in this way are those that the target devices report; in contrast see

\SCSI Error Status Report" below.

1 Asynchronous Status Report (MX.CSA==:1). This MSCB reports that the de-

vice speci�ed by the Bus, Target , and LUN �elds has provided asynchronous

(unsolicited) status to the XRH

-

1 Mass{Storage Interface Processor.

2 XRH

-

1 Command Complete (MX.CSM==:2). The command bytes are returned

as the CPU had set them. The .MXSTA word will be returned as zero.

3 SCSI Error Status Report (MX.CSE==:3). The XRH

-

1 reports errors that it has

detected while attempting to communicate with a particular SCSI target device.

Errors detected by the XRH

-

1 are disjoint from errors that the target reports to



3.12. XRH

-

1 MASS{STORAGE INTERFACE PROCESSOR 315

the XRH

-

1. The Status byte (which, in this case, will not contain SCSI status)

will contain details of the particular error.

1 SCSI Selection Timeout (.MXSTO==:1). The indicated target does not exist

or it lacks power.

2 Bus Protocol Error.

4 (MX.CSX==:4) System Error Report. The XRH

-

1 reports errors pertaining to its

attempts to use system resources; e.g., bus timeout, parity errors, etc. Messages

relating to errors found in command blocks are reported this way too. The

Status byte (which, in this case, will not contain SCSI status) will contain

details of the particular error:

1 Byte count insu�cient (.MXBCI==:1). This MSCB speci�es a command

in which the transfer length (or allocation length or parameter list length)

exceeds the given byte count.

2 Not Implemented.

3 Memory timeout (.MXMTO==:3). The XRH

-

1 attempted to use the given

Data Bu�er Address or Command List Address, but the memory did not

respond.

4 Byte count excessive (.MXBCE==:4). The Byte Count �eld of this MSCB

contains a value that exceeds the count speci�ed or implied by the com-

mand bytes.

5 Format wrong (.MXFTW==:5). This MSCB speci�es a Format that is in-

consistent with the data format implied by the command bytes.

6 Memory parity error (.MXMPE==:6). The XRH

-

1 attempted to read from

the data bu�er in system memory, but the memory reported a parity error.

The failing address (the address of the memory line on which the failure

occurred) will be stored so that it is accessible via the .MXERA device status

register (until a subsequent error address is stored). If a Request Sense

bu�er was associated with this request, the XRH

-

1 will return the failing

address there also. If Target Blocking mode is enabled, the a�ected target

device will be blocked.

7 Non{recoverable SCSI parity error (.MXSPE==:7). After several attempts,

this command has been abandoned because of parity errors reported on

the SCSI bus.

10 Final DMA/DDMA byte count error (.MXDBC==:10).

11 Not implemented.

12 DRAM parity error (.MXDRP==:12). The XRH

-

1 detected a parity error

in its internal memory, which is used as a cache for the peripheral devices.

If the error is associated with a read operation from a peripheral device,

the meaning of this error is that the data in the DRAM was a modi�ed

copy of the data on the device (which was supposed to be written to the

device) and the DRAM data is now corrupted with bad parity. If this



316 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

error is presented asynchronously, it means that a device write (which had

previously been acknowledged as complete) was in fact cached and cannot

now be completed because the cached data is corrupted.

13 (.MXIES==:13) Internal Error Status. Further information is reported in

the ASC byte:

01 Obsolete.

02 Obsolete.

03 DMA �nished during a device write odd{byte transfer.

04 Obsolete

05 Obsolete

06 DMA count not zero after DMA interrupt.

07 Premature phase change during selection|target or hardware error.

10 Obsolete.

11 Internal Check Condition failed.

12 Data structure error in target block during reselection.

13 Reselection error; microcode error.

14 Unexpected status during command phase.

15 Expecting an Identify message and did not get one.

16 Illegal SCSI phase (4); hardware error.

17 Illegal SCSI phase (5); hardware error.

20 Obsolete.

21 Obsolete.

22 Hardware error. The error condition vector was taken, but no problem

was found. (A transient power 
uctuation may cause this.)

23 Obsolete.

24 Emulex reports a \gross error" during a data transfer.

25 Emulex reports that it was given an illegal command.

14 Final Emulex transfer count non-zero (.MXENZ==:14).

15 Byte Count �eld too large (.MXBTL==:15). A single transfer or a single

component of a long transfer exceeds 255 cache lines. (The precise byte

count at which this occurs depends on the alignment and transfer mode.)

16 CBS Field Invalid (.MXCBX==:16). The value found the CBS �eld is not

one of the legal values. The original value found in the CBS �eld is returned

in the Sense �eld.

5 (MX.TIB==:5) Target is Blocked. The XRH

-

1 is presently blocking commands

to the target device identi�ed by the Bus and Target �elds. Access to the

target's LUNs is also blocked. Commands returned with this status have not

been attempted. They should be repeated after error{handling routines have

issued a Clear Target{is{Blocked command (see page 313).



3.12. XRH

-

1 MASS{STORAGE INTERFACE PROCESSOR 317

6 (MX.REB==:6) Returned Error Block. After the XRH

-

1 has been given a \Re-

lease Communications Region" command, unused MSCBs of the type Asyn-

chronous or Error Status Report are returned with this value.

7 (MX.BBR==:7) Bus is Being Reset. The XRH

-

1 has returned this MSCB because

the selected SCSI bus is in the process of being reset. When a bus is reset, all

the MSCBs pertaining to the bus are returned to the operating system so that

they can be retried later; see page 311. The SCSI Status byte will be returned

with a code that indicates the state of this MSCB when the bus was reset: a

0 indicates the command was not yet started; a 1 indicates that the command

had been started, in which case the ASC byte indicates the progress of the

command, as follows:

0 Data Out phase (Write operation).

1 Data In phase (Read operation).

2 Command phase.

3 Status In phase.

4 Disconnect state.

5 End of SCSI command.

6 Message Out phase.

7 Message In phase.

10 Selection with ATN and Stop started.

11 Selection with ATN started.

20 Long transfer and Data Out phase (write operation).

21 Long transfer and Data Out phase continuation.

22 Long transfer, Data Out, Emulex complete, but DMA is still busy (some-

times OK for tape transfers).

23 Long transfer, Data Out, error restarting the last transfer.

25 Long transfer, Data Out complete.

40 Long transfer, Data In phase (read operation).

41 Long transfer, Data In phase, continuation.

42 Long transfer, Data In phase, Emulex complete, but DMA is still busy

(sometimes OK for tape transfers).

43 Long transfer, Data In, error restarting the last transfer.

45 Long transfer, Data In complete, waiting for Emulex to �nish.

CPU The CPU records its own slot number in this �eld so the XRH

-

1 will know to whom

to respond.

Format This �eld speci�es the format used to pack data into or unpack data from 36{bit

words. Further, the most signi�cant bit of the Format �eld (.MXFCL==:200) controls

the interpretation of the contents of the word at .MXDBA as either a Data Bu�er

Address or as a Command List Address.

The data formats supported by the XRH

-

1 are listed below. The format names,

.MXF36, .MXF32, and .MXF40, have the follow mnemonic signi�cance: the number



318 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

represents either the number of bits on the recording medium per 36{bit word or,

equivalently, the number of 8{bit bytes on the medium per TOAD

-

1 System memory

line.

0 36{bit mode (.MXF36==:0). Nine 8{bit bytes from two consecutive 36{bit words,

are written to (or read from) the selected target in the order indicated; the �elds

labeled \5h" and \5l" are the high{ and low{order portions of byte 5, respectively.

This format is used for data transfers between the CPU and SCSI disks. It may

be used also in transfers to high{density tapes. In this format, the transfer{length

�eld within the Command n bytes and the Byte Count �eld in the MSCB indicate

the number of 8{bit bytes transferred. The transfer length (and byte count) must

be a multiple of 9; that is, an even number of words must be transferred.

70

1

158

2

2316

3

3124

4

3532

5h

30

5l

114

6

1912

7

2720

8

3528

9

1 32{bit mode (.MXF32==:1). Four 8{bit bytes, left{justi�ed in a 36{bit word,

are written to (or read from) the selected SCSI target in the order indicated.

Bits marked \x" are ignored during writes and are set to zero on reads. In this

format, the transfer{length �eld

37

is the number of 8{bit bytes transferred by this

command. This format is used in commands that transfer operating information

from the target device to the CPU and in commands that send parameters from

the CPU to the target. This format may be used for transfers to 9{track tape

or to support devices that are not formatted for the TOAD

-

1 System (e.g., CD-

ROMs).

70

1

158

2

2316

3

3124

4

3532

x x x x

2 \Dump" mode (.MXF40==:2). Each 36{bit word is written to (or read from) �ve

consecutive bytes on the target device. The �gure below depicts the relationship

between �ve consecutive bytes on the recording medium and a computer word in

memory.

70

1

158

2

2316

3

3124

4

x x x x

5

32 35

The �rst four bytes on the recording medium correspond to bits 0{7, 8{15, 16{23,

and 24{31 in the data word, respectively; the least{signi�cant 4 bits of the �fth

recorded byte correspond to bits 32{35 in the data word. The most{signi�cant

4 bits of the �fth recorded byte are written to the device as zero, and they are

37

The transfer{length �eld is contained within the Command n bytes; it may be called either \transfer length",

\allocation length", or \parameter list length", depending on the particular command. The CPU (operating system)

is responsible for making this �eld consistent with the Byte Count �eld of the MSCB.



3.12. XRH

-

1 MASS{STORAGE INTERFACE PROCESSOR 319

discarded on input; these bits are marked \x" in the �gure above.

In this format, the transfer{length �eld within the Command n bytes and the

Byte Count �eld should both contain the number of 8{bit bytes transferred by

this command; i.e., �ve times the number of words transferred. This format may

be used for transfers to or from tape. This mode is compatible with a popular

format used to record 9{track tape on the DECsystem{10 and DECSYSTEM-20;

it is intended for reading tapes made on such systems.

Byte

Count

From the CPU to the XRH

-

1, this �eld contains the length of the data bu�er area

measured in 8{bit bytes. Note that, in a Read command, the byte count is a multiple

of 32 in 32-bit mode, or in 36{bit mode a multiple of 36, because the XRH

-

1 writes

in memory only on the basis of memory lines (8 words). The byte count and transfer

format are combined to form the transfer length, allocation length, or parameter

length �eld within the command bytes. In no event shall the XRH

-

1 overstep the

region de�ned by the Data Bu�er Address and Byte Count �elds.

From the XRH

-

1 to the CPU, the Byte Count �eld will be set by the XRH

-

1 to the

residual byte count; i.e., the number of bytes allocated (in this �eld, from the CPU)

but not used by the actual data transfer.

The residual Byte Count should be zero in all disk data operations and in all tape

data writes. A non{zero residual is acceptable in commands that do not transfer data

from the medium (e.g., Inquiry, Request Sense, Mode Sense); the program may not

know in advance how many bytes the device will transfer. In such cases the residual

can be ignored, or it can be compared to counts contained within the data. In read

operations from a tape, a non-zero residual indicates that a short record has been read;

this should be coupled with Check Condition status and sense data that corroborates

the short length of the data record.

Commands in which the device has more data than the given allocation length will

end with a zero residual byte count. Commands that do not transfer data from

the medium (e.g., Inquiry) will end with \good" status, but the excess of data over

allocation can be determined by examination of counts contained within the data. In

transfers of data to or from the medium, when the data bu�er is too short for the

medium, the command will end with Check Condition status and sense ILI (illegal

length indicator, for tape and other sequential{access devices) and sense information

containing a negative residual (excess of data over allocation).

Data

Bu�er

Address

This is a bus{address word in which D , the device bit, must be zero. If the most{

signi�cant bit (.MXFCL) of the Format �eld is 0, this word speci�es the main memory

address of the data source (write) or destination (read). If the most{signi�cant bit of

the Format �eld is 1, this word speci�es the main memory address of a command list:

see \Long Transfers", below.

When this �eld is the address of the data bu�er, then if the bus{address word is a

multiple of 8, the address is said to be aligned. Many cautions must be observed for

transfers that are not aligned; see \Unaligned Transfers", below. Data will be fetched

from (or stored in) consecutive physical locations

38

to the extent de�ned by the Byte

Count �eld or the actual amount of data transferred, whichever is smaller. In a device

read operation, if the actual number of data bytes transferred does not precisely �ll

an 8{word memory line, an entire memory line will be written to memory containing

38

The locations are all in the same backplane slot: the XRH

-

1 will not alter the slot{number �eld of the BAW.



320 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

the �nal data bytes and su�cient zero bytes to �ll the remainder of the line. The byte

count and transfer alignment must specify the transfer of 256 or fewer memory lines

(2 Kw or 4 pages in memory; this is 8, 9, or 10 K bytes on the medium, depending on

the data mode). Longer transfers must be split into multiple transfer commands: see

\Long Transfers", below. A single transfer must not cross the boundary from physical

address ...3777 to ...4000 (or from ...7777 to ...0000).

Bus This is the number of the particular SCSI{2 bus being addressed. The legal values

are in the range 0{3.

Target This �eld stores the SCSI identi�cation number of the targeted device interface. The

legal values are in the range 0{15.

39

LUN This is the logical unit number of the targeted device. The legal values are in the range

0{7. For targets that support only one logical unit, this �eld should be set to zero.

The XRH

-

1 uses this value to generate the Identify message to the target interface.

AEC Additional Error Code. When a Report Asynchronous or Error Status MSCB is

returned with error status, this �eld will be set to alert the CPU software to the

unusual nature of the report. Bus errors are marked as asynchronous returns and

target unknown. An error from an asynchronous (cache) write will be marked as an

asynchronous return and will provide the status of the a�ected target.

MAL MSCB Allocation. In order to control the 
ow of requests from the processor to the

XRH

-

1, the XRH

-

1 returns a count of available resources in this �eld. The resources

reported correspond approximately to MSCBs. However, an MSCB that calls for a

long transfer will consume more of the XRH

-

1's resources. Further, an MSCB that

transfers into the data cache will occupy XRH

-

1 resources until the data cache is

transferred to disk. The normal value of this �eld is 255; lower values indicate that

the operating system should limit the rate at which requests are made, until the value

increases.

Command This �eld contains a six{, ten{, or twelve{byte SCSI command directed to the target

device speci�ed by the Bus, Target , and LUN �elds. The values and the command

length are as de�ned in the SCSI{2 speci�cation. Some of the SCSI commands are

listed below.

000 Test Unit Ready. This command provides a means to check whether a logical

unit is ready.

010 Read (tape) The operating system will specify a transfer length in bytes,

embedded in the SCSI command. Elsewhere in the MSCB, the system speci�es

Format , Byte Count , and Data Bu�er Address.

The number of words read from the tape depends on the byte count and the

format.

012 Write (tape).

022 Inquiry. The CPU asks for information from the target device so that it can

determine system con�guration.

39

Targets numbered 8 and above can be accessed only via the \P" cable, as de�ned in the SCSI{3 speci�cation.



3.12. XRH

-

1 MASS{STORAGE INTERFACE PROCESSOR 321

050 Read (disk). The operating system will specify an in{unit address (Logical

Block Number) and the transfer length (Block Count) embedded in this com-

mand. Elsewhere in the MSCB, the operating system will specify the Format ,

the Data Bu�er Address, and a Byte Count . For disk read and write, the

format is usually 36{bit.

052 Write (disk).

If XRH

-

1 disk caching is enabled for the speci�ed unit, the XRH

-

1 will copy

the data to its cache and report the operation as being complete before the

actual cache{to{disk transfer is performed. (If the target device's write cache

is enabled, it will report the operation as being complete as soon as it recieves

the data, before the actual transfer to the medium is performed.

.MXSTA

word

This word speci�es the method by which the XRH

-

1 will report errors associated with

this command. When this word is sent from the CPU to the XRH

-

1, it should contain

one of the following:

� All Zero, to select \Automatic Short" error reporting.

� A Bus{Address Word, selecting \Automatic Long" error reporting.

� Bit 0 set to 1, selecting \Manual" error reporting.

In the automatic modes, the XRH

-

1 will report some error information in this word.

Additional information about error reporting and error handling is presented below.

3.12.2.4 Error Reporting

SCSI devices hold \sense" information relating to the error conditions encountered by the most

recent command. This information can be read by means of the Request Sense command. However,

a successful Request Sense command clears the error conditions, so only the Request Sense command

that immediately follows an error can obtain the relevant sense data.

The XRH

-

1 implements three modes of sense reporting: Automatic Short, Automatic Long, and

Manual. The mode is selected by the value in the .MXSTA word of the MSCB that the CPU provides

to the XRH

-

1.

Automatic Short mode is selected by an all{zero value in the .MXSTA word of an MSCB. In automatic

short mode, if no error occurs, the .MXSTA word will be returned as zero. However, if an error occurs,

the various �elds of the .MXSTA word will be �lled as follows:

ErrC This �eld is set from the Error Code byte of the data returned by Request Sense. If

the Error Code byte contains 0xF0 or 0x70, this �eld will be set to 0, signifying a

current error. If the Error Code �eld contains 0xF1 or 0x71, this �eld will be set to

1, signifying a deferred error. Any other values of Error Code cause the XRH

-

1 to set

this �eld to 2, unde�ned.

Sense

Code

This �eld is a copy of the Sense Code byte found in the Request Sense data.

Status The ending status of the SCSI transaction engendered by this command. Status 2,

Check Condition, usually means that an error has occurred and corrective action may

be necessary.



322 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

ASC This is a copy of the Additional Sense Code byte from the Request Sense data.

ASCQ This is a copy of the Additional Sense Code Quali�er byte from the Request Sense

data.

Automatic Long mode is selected when the CPU supplies a bus{address word in the .MXSTA word

of an MSCB. In Automatic Long mode, if no error occurs, the .MXSTA word will be returned as

zero. However, if an error occurs, the various �elds of the .MXSTA word will be �lled as described

above for Automatic Short mode; further, up to 256 bytes of Request Sense data will stored in

memory at the address speci�ed by the original .MXSTA word. Automatic Long mode provides

more comprehensive sense monitoring than that provided by Automatic Short mode.

Manual mode is selected by setting bit 0 of the .MXSTA word to 1. In manual mode, the XRH

-

1

does not perform a Request Sense command. If the command ends with \Good" status, the XRH

-

1

will set the .MXSTA word to zero. Otherwise, when a command returns a status other than \Good",

that status will be reported in the Status �eld of the .MXSTA word; the rest of the word will be set

to zero. After an error, it is the program's responsibility to issue a Request Sense command to elicit

the sense data.

3.12.2.5 Error Handling

For an application such as TDBoot which makes a single request and waits for it to complete,

errors create no special di�culty in synchronizing the program, the XRH

-

1, and the SCSI device.

For this use, the XRH

-

1 is not required to perform any special synchronization operations.

However, for the Monitor, which may have multiple requests queued to a single target device,

resynchronization when errors occur requires a special e�ort from the XRH

-

1 and the Monitor.

When a SCSI transfer ends with Check Condition status (or any status other than \Good"), further

use of the a�ected target device is prevented by the XRH

-

1 until the program �nishes its error

recovery and logging function. Upon detection of an error on a target device, the XRH

-

1 sets the

a�ected unit to the Target{is{Blocked state. While the XRH

-

1 has a unit marked Target{is{Blocked,

MSCBs that attempt to reference that device are returned to the program with \Target{is{Blocked"

status (CBS is returned with the value 5, MX.TIB). Target{is{Blocked state will persist on the device

until the program sends a \Clear Target{is{Blocked" command (see page 313).

This e�ects \pipeline clear" and resynchronization that allows the operating system software to

perform error recovery and error logging appropriate to the speci�c MSCB associated with the error

and to �nish the error{recovery process for that MSCB before deciding how (or whether) to continue

processing other MSCBs that were pending for the a�ected device.

If Target Blocking mode is enabled, a target will be blocked if a system error occurs during a transfer

involving the target. It is the responsibility of the operating system to clear any SCSI check condition

that might be associated with the system error.

To accomodate the simple, synchronous access mode of TDBoot and similar programs, the XRH

-

1

will not do target blocking until it receives an Enable Target Blocking Mode command from the

CPU. Target blocking mode is disabled initially and following any assignment of a communications

region.



3.12. XRH

-

1 MASS{STORAGE INTERFACE PROCESSOR 323

3.12.2.6 Long Transfers

A 1 in the most signi�cant bit in the Format �eld (.MXFCL) signi�es a long transfer; i.e., a transfer

that is composed of one SCSI command and more than one contiguous region of physical memory.

The memory regions of a long transfer are described by a command list. The command list is a

collection of command entries; each command entry is a pair of words. The �rst command list entry

is at the address speci�ed in word .MXDBA of the MSCB; this address must be aligned at the �rst

word of a memory line. The XRH

-

1 will interpret each command list entry either as a transfer

command, a jump command, or a halt command:

Transfer

Command

The �rst word contains 0 in bit 0 and a non{zero byte count in bits 20{35; the second

word is the bus{address word describing the start of the data bu�er for the indicated

number of bytes; the data bu�er must be contained entirely in the one physical module

identi�ed by the slot number �eld of the BAW. After performing the indicated part of

the transfer, the XRH

-

1 will fetch another command list entry (a pair of words) from

the next consecutive memory locations. The byte count and transfer alignment (see

Unaligned Transfers, below) must specify the transfer of fewer than 256 memory lines.

Moreover, a single transfer must not cross the boundary from physical address ...3777

to ...4000. Longer transfers (and those that cross the address boundary) must be split

into multiple Transfer Commands.

00

0

191

Reserved

3520

Byte Count

350

Data Bu�er Address (a Bus{Address Word)

Jump

Command

The �rst word contains 1 in bit 0; the second word is a bus{address word speci�ying

the address from which the XRH

-

1 will continue to fetch the next command list entry.

The speci�ed address must be aligned to the �rst word of a memory line.

A jump command is permitted only in words 6 and 7 of a memory line containing

command list entries.

No data is transferred by this command.

00

1

351

Reserved

350

Command List Continuation Address (a BAW)

Halt

Command

The �rst word contains 0 in bit 0 and zeros in bits 20{35. Command list processing

terminates.



324 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

00

0

191

Reserved

3520

0

350

Reserved

The sum of the byte counts in the transfer commands must exactly match the byte count �eld given

in the MSCB.

If the transfer is not aligned (to an address and length in words that are both multiples of 8), the

information that follows in \Unaligned Transfers", below, applies also.

3.12.2.7 Unaligned Transfers

The XRH

-

1 Mass{Storage Interface Processor will handle transfers that are not aligned, subject to

the following restrictions and limitations. Regardless of how a transfer is described, the XRH

-

1 will

perform data transfers only by moving (reading or writing) entire memory lines (which are 8 words

long and aligned to addresses that are multiples of 8).

On device write (memory read) operations, the XRH

-

1 will read words unrelated to the transfer

before and/or after the actual region being transferred. For disk writes in which the data transfer �lls

an integral number of sectors and for writes to tape (where the output record length is determined

by the number of words transferred), no problem arises from reading and discarding a few extra

words at either end of the speci�ed data bu�er.

However, when writing a partial record to disk, the transfer must be padded (usually with zero

words) to �ll a whole record. To accomplish this padding, generally two bu�ers are required: the

�rst, called an \edge bu�er" is a single memory line, the second is an aligned bu�er, the size of a

disk sector, containing zeros. If the last word of the data portion of the transfer is not at the end

of a memory line, then the partial last line of the transfer is copied to the edge bu�er and padded

with zeros. Then a long transfer command list must be created that speci�es the orginal source of

the data, the edge bu�er containing the last line of data with padding, and the zero bu�er. For

example, assuming 200{word (decimal 128) disk sectors and a transfer in 36{bit format (9 bytes per

double word), a transfer of 101{words (65 decimal) starting at bus address 024000123455 (ending

at bus address 024000123555) can be accomplished by the following steps:

� Copy words from addresses 024000123550{024000123555 to the edge bu�er (at addresses

024072001000{024072001005). Zero the words at addresses 024072001006{024072001007 (zero

pad to the end of the edge bu�er).

� Assuming the bu�er of zeros is 200 words long, at address 024072002000 construct the com-

mand list shown below:



3.12. XRH

-

1 MASS{STORAGE INTERFACE PROCESSOR 325

Byte(1)0(19)0(16)411 ;73 words (123455-123557) * 9 bytes/2 wd, round down

024000123455 ;from the specified data area

Byte(1)0(19)0(16)44 ;6 data + 2 pad words * 9 bytes/2 words

024072001000 ;address of the edge buffer

Byte(1)0(19)0(16)423 ;75 words * 9 bytes/2 words, rounded up

024072002000 ;from the zero buffer

0 ;halt command

0 ;total byte count 411+44+423 = 1100 = 9/2 * 200

On device read (memory write) operations, other delicate maneuvering is needed to prevent the

destruction of important information. The XRH

-

1 will obliterate any data in the �rst memory line of

the transfer prior to the transfer starting address and any data remaining in the memory line following

the last word transferred. For example, a 128-word transfer starting at bus address 024000123455will

a�ect the words at addresses 024000123450{024000123454 and the words at addresses 024000123655{

024000123657.

Operating system software is responsible for preserving the words that the XRH

-

1 would otherwise

destroy. Among the strategies for doing this is to treat an unaligned transfer as a long transfer.

The �rst partial memory line is read into an aligned in{system memory line bu�er. The largest part

of the transfer is aligned and goes directly to the intended addresses. The last partial line of the

transfer is read into a second, aligned, in{system line bu�er. At the conclusion of the transfer, the

system must copy the data from the in{system line bu�ers to the intended addresses. The words

in the in{system line bu�ers that were not transferred are obliterated, but they did not contain

information that had to be retained. For example, conversion of the example above would result in

the following command list (assuming 36{bit format):

Byte(1)0(19)0(16)15 ;3 words * 9/2 bytes words, rounded down

024072001005 ;in--system buffer, aligned for first part of transfer

Byte(1)0(19)0(16)1034 ;120 words * 9/2 bytes words

024000123460 ;intended buffer, Alignment Zero

Byte(1)0(19)0(16)27 ;5 words * 9/2 bytes, rounded up

024072001110 ;second in--system buffer. Alignment Zero

0 ;halt command

0

This example shows 36-bit mode, in which two words are transferred as 9 bytes. In the command

list, each transfer commandmust have a byte count from which the XRH

-

1 will determine the precise

number of 8{word lines to transfer; in a transfer with a non{zero alignment, the program should

truncate any fractional byte count to the next{lowest integer. The sum of the transfer byte counts

must exactly match the MSCB Byte Count �eld.

When a disk read operation speci�es a transfer that is not an integral number of sectors, following

the transfer of the last memory line into the edge bu�er, the remainder of the disk sector must be

transferred to the \bit bucket", a bu�er capable of holding a sector.

The XRH

-

1 determines the number of memory lines in a transfer from three quantities: the byte



326 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

Table 3.6: Byte Count Adjustment and Divisors

Alignment Transfer Format

.MXF32 .MXF36 .MXF40

0 0 0 0

1 4 5 5

2 8 9 10

3 12 14 15

4 16 18 20

5 20 23 25

6 24 27 30

7 28 32 35

Divisor 32 36 40

count, the alignment of the transfer address, and the format. In a long transfer, the byte count and

transfer address are as speci�ed in a transfer command; otherwise they are the byte count and data

bu�er address as speci�ed in the MSCB. The alignment is a number in the range 0{7 taken from bits

33{35 of the transfer (or data bu�er) address. The XRH

-

1 determines the number of memory lines

in a transfer by adding to the given byte count the adjustment from Table 3.6 and dividing the sum

by the format{speci�c divisor, as shown in the table. (The divisor, which depends on the selected

format, is the number of 8{bit bytes on the medium per 8{word memory line.) If the division results

in a remainder, the quotient (the number of memory lines) is increased by one.

In an unaligned transfer, the �rst transfer command may specify an unaligned address and the byte

count need not specify an integral number of cache lines. If the �rst transfer command does not

specify the entire unaligned transfer, then the last transfer command is expected to have an address

that is aligned; but, again, the byte count need not specify an integral number of cache lines. The

transfer commands that come between the �rst and last commands must specify aligned addresses

and entire cache lines.

3.12.3 Operation of the XRH

-

1 as a SCSI Target

[This section is incomplete, as is the implementation of target microcode in the XRH

-

1. There are

not presently any plans to advance this implementation.]

To this point the operation of the XRH

-

1 as a SCSI initiator has been described. This section

describes the operation of the XRH

-

1 as a SCSI target.

When two or more TOAD

-

1 System systems are arranged as a \loosely coupled" multiprocessor (a

\cluster"), their XRH

-

1s are connected to the same, shared SCSI bus. In this situation, one XRH

-

1

may act as a SCSI target with respect to another acting as a SCSI initiator.



3.12. XRH

-

1 MASS{STORAGE INTERFACE PROCESSOR 327

3.12.3.1 Commands recognized as a Target

When operating as a target, the XRH

-

1 recognizes and supports only the mandatory commands

required by the SCSI speci�cation. These commands are

� Inquiry

� Request Sense

� Send

� Send Diagnostic

� Test Unit Ready

3.12.3.2 Response to Request Sense Command

(To be written.)

3.12.3.3 Response to Inquiry Command

The XRH

-

1 will respond to the SCSI Inquiry command by supplying 0x03 in byte 0 (processor),

0x1F in byte 4 (additional length), the eight{bit ASCII text \XKL" left justi�ed and padded with

blanks in bytes 8{15 (vendor identi�cation), the text \XRH-1" left justi�ed and padded with blanks

in bytes 16{31 (product identi�cation) and a product revision level text string, representing the

version of target microcode, in bytes 32{35.

This response can be modi�ed by the XRH

-

1's host CPU. An MSCB with CBS = 2 and the Command

0 byte = 14 will set response bytes 21{31 from the MSCB's bytes Command 1{Command 11 ,

respectively.

When initialized, the XRH

-

1 will respond to the SCSI Inquiry command with EVPD and page code

0x80 by returning byte 3 = 0, no serial number present. This response can be changed by the

XRH

-

1's host CPU. An MSCB with CBS = 2 and Command 0 byte = 15 will set response bytes

4{14 from the MSCB's bytes Command 1{Command 11 , respectively. Also response byte 3 will be

set to 0x0B, indicating 11 bytes of serial number string are present.

3.12.3.4 Response to Send Command

(To be written.)

3.12.3.5 Response to Send Diagnostic Command

(To be written.)



328 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

3.12.3.6 Response to Test Unit Ready

The XRH

-

1 will respond to a Test Unit Ready command with one of the following responses:

� Good. (Status 0.) This XRH

-

1 is ready to function as a target.

� Not Ready. (Status 2, check condition; Sense 2, not ready; ASC/Q = 0x0401, Unit is in process

of becoming ready.) This XRH

-

1 has received initializing commands from its host CPU and

is expected to be ready soon.

� Not Ready. (Status 2, check condition; Sense 2, not ready; ASC/Q = 0x0403, Manual inter-

vention required.) This XRH

-

1 has not yet received appropriate initializing commands from

its host CPU.

� Illegal Request. (Status 2, check condition; Sense 5, Illegal Request, ASC/Q = 0x0500, LUN

not supported.) Logical units other than zero are not supported.

3.12.3.7 Initialization for Operation as a Target

(To be written.)



3.13. XNI

-

1 NETWORK ADAPTER 329

3.13 XNI

-

1 Network Adapter

The XNI

-

1 Network Adapter (XNI

-

1) provides a highly e�cient connection to four independent

networks.

The XNI

-

1 generates bus cycles of the types \Word Read", \Word Write", and \Interrupt"; that is,

it is capable of reading and writing in main memory and interrupting the CPU.

The XNI

-

1 responds to bus cycles of the following types: \Device Status", \Device Control", \Word

Read", and \Word Write". That is, the XNI

-

1 is controlled in part as a peripheral device and in

part by reading and writing as if it is a memory. The description that follows is organized as an

explanation of the I/O registers (those that respond to the \Device Control" and \Device Status" bus

cycles), an explanation of the memory registers, and a description of the protocol of communication

between the CPU (operating system) and the device.

In addition to the memory addressable from the CPU, the XNI

-

1 also contains a local on{board

memory, called Memd, which consists of 262,144 16{bit words. This memory normally contains

received datagrams, etc.

3.13.1 XNI

-

1 Network Adapter I/O Registers

3.13.1.1 Device Status

A Status Read Request directed to the XNI

-

1 at address 0 (.NASTS==:0) will elicit the response

described below:

XNI

-

1 Network Adapter | Status Read from Address 0

(x denotes a �eld not presently used.)

00

1

11

0

22

0

73

Subtype

33

0

44

0

55

0

66

0

77

1

128

x

1713

Hardware

Revision

3318

Microcode

Address

3434

N

E

r

3535

R

d

y

Bits 0{2 (DS%TYP) will contain the type code pattern 100 (NA%TCP==:4) to identify this as a Com-

munications I/O device. The rest of the response is decoded as follows:

Subtype Bits 3{7 (DS%STY) identify the subtype of network controller. Subtype 1 denotes the

quadruple interface to the 10 MHz Ethernet. All other values of the subtype �eld are

reserved for future interfaces.

Hardware

Revision

(NA%HRV==:37B17) This �eld contains the hardware revision number of this device.

Microcode

Address

(NA%UAD==:177777B33) The current value of the microcode program counter. This may

be useful for diagnostic purposes.

NEr (NA%NER==:1B34) No Error. When 0, this bit signi�es that the device hardware has

detected a microcode parity error.



330 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

Rdy (NA%RDY==:1B35) Ready. When set, the device is in its normal operating condition: it

is ready to allow access to its control registers (as described below). After the software

has seen \Ready", unless the software has requested that the XNI

-

1 reset itself, a

subsequent negation of \Ready" signi�es that the XNI

-

1 microprocess is busy doing

other work and that an attempt to access a XNI

-

1 control register is likely to result in

a bus timeout.

A Status Read Request directed to the XNI

-

1 at address 1 (.NABUS==:1) will elicit the response

described below:

XNI

-

1 Network Adapter | Status Read from Address 1

30

Q

Slot

64

Q

Type

77

Q

A

118

B

Slot

1412

B

Type

1515

B

A

1616

R

A

c

1717

R

F

l

1818

R

F

r

1919

B

T

O

2320

DST 0

Slot

2624

DST 0

Type

2727

R

T

O

0

3128

DST 1

Slot

3432

DST 1

Type

3535

R

T

O

1

This status word re
ects the state of the XNI

-

1's activities regarding the backplane bus. The status

word is decoded as follows:

Q Slot (NA%QSL==:17B3) Queued slot number. This �eld contains the device slot number to which

the current head of the queued requests is directed. The XNI

-

1 keeps a queue of memory

requests that haven't yet been made. Valid only when QA is 1, this �eld and the Q Type

�eld re
ect the state of the queue. When the XNI

-

1's bus operation unit (described below,

starting with B Slot) becomes available, the head of the queued requests becomes the next

active transfer.

Q Type (NA%QTY==:7B6) Queued operation type. This three{bit �eld, valid only when QA is 1,

de�nes the type of operation presently at the head of the queue. The �eld is decoded as

follows:

000 None, or status return.

001 Read return.

010 DMA read.

011 DMA write.

100 ALU read.

101 ALU write.

110 Interrupt.

111 ALU read return.

QA (NA%QAC==:1B7) Queue Active. If 1, the queue is non{empty and the Q Slot and Q Type

�elds listed above are valid. If 0, the queue is empty; the �elds listed above are stale.

B Slot (NA%BSL==:17B11) Bus transfer slot number. The device slot number to which the current



3.13. XNI

-

1 NETWORK ADAPTER 331

operation is directed. Valid only when BA is 1, this �eld and the B Type �eld describe the

state of the XNI

-

1's current bus operation.

B Type (NA%BTY==:7B14) Bus transfer operation type. This three{bit �eld, valid only when BA

is 1, de�nes the type of operation presently at the head of the queue. The �eld is decoded

as shown above under Q Type

BA (NA%BAC==:1B15) Bus transfer active. If 1, the bus transfer bu�er is active: the B Slot and

B Type �elds are valid. If 0, the transfer bu�er is empty and the �elds listed above are

stale.

RAc (NA%RAC==:1B16) Read{active. This 
ag is 1 to signify that the XNI

-

1 is waiting for one or

two read responses. Up to two read requests may be outstanding at any instant. This 
ag

being set indicates that the XNI

-

1 is waiting for the response to at least one outstanding

read request. If this 
ag is 0, the device has no read requests outstanding.

The following �elds and 
ags are meaningful only when read{active is 1: RFl (Read{full),

RFr (Read{�rst), DST 0 slot , DST 0 type, DST 1 slot , and DST 1 type; these relate to

the bus interface logic within the XNI

-

1.

RFl (NA%RFL==:1B17) Read{full. The XNI

-

1 has two read requests outstanding. A read re-

sponse must be received before the XNI

-

1 can issue another read request.

RFr (NA%RFR==:1B18) Read{�rst. If 0, the XNI

-

1 internal unit that issued the DST 0 request

gets the �rst response from the device whose slot number matches the DST 0 slot. If 1,

the unit that issued the DST 1 request gets the �rst response from the device whose slot

number matches the DST 1 slot. The read{�rst 
ag resolves the ambiguity of which read

unit gets the next response when both are waiting for the same device.

When read{full is 0 and read{active is 1, only one read request is outstanding. In this case,

read{�rst identi�es which of DST 0 type or DST 1 type speci�es the requesting unit.

When read{full is 1 and the values of DST 0 slot and DST 1 slot are di�erent, the memory

data will be sent to the read unit whose DST n slot value matches the slot number of the

responding memory.

BTO (NA%BTO==:1B19) Busy time{out. The target was busy on 256 consecutive attempts.

DST 0

Slot

(NA%D0S==:17B23) This �eld speci�es the backplane slot number of the memory unit to

which a read request was directed by the XNI

-

1 internal unit identi�ed by DST 0 Type.

This data is valid if read{full is 1 or if read{active is 1 and read{�rst is 0.

DST 0

Type

(NA%D0T==:7B26) The type �eld decodes as Q Type, above, but the only valid values are 2

and 4. This data is valid in the same circumstances as when the DST 0 slot is valid.

RTO0 (NA%RT0==:1B27) Read time{out 0: No data was returned during the 256 bus cycles that

followed the target's acceptance of a request.

DST 1

Slot

(NA%D1S==:17B31) This �eld speci�es the backplane slot number of the memory unit to

which a read request was directed by the XNI

-

1 internal unit identi�ed by DST 1 type.

This data is valid if read{full is 1 or if read{active is 1 and read{�rst is 1.

DST 1

Type

(NA%D1T==:7B34) The type �eld decodes as Q Type, above, but the only valid values are 2

and 4. This data is valid in the same circumstances as when the DST 1 slot is valid.



332 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

RTO1 (NA%RT1==:1B35) Read time{out 1: No data was returned during the 256 bus cycles that

followed the target's acceptance of a request.

3.13.1.2 Device Control

A device control bus cycle to the XNI

-

1 at any address reloads the microcode and, optionally,

performs the reset function described below.

XNI

-

1 Network Adapter | Device Control to Address 0

1717

R

E

n

3434

R

B

I

3535

R

R

The �elds have the following signi�cance:

REn (NA%REN==:1B17) Reset Enable. If this bit is 1, the XNI

-

1 is enabled to look at the other

bits and to perform the requested action(s).

RBI (NA%RBI==:1B34) Reset Bus Interface. If this bit and NA%REN are both 1, the XNI

-

1 will reset

its bus interface. The bus interface might possibly become hung if an incorrectly formatted

Message Control Block (MCB) is presented to the XNI

-

1. (The MCB is a data structure used

to pass information between the XNI

-

1 and the CPU; it is explained further in x3.13.3.) For

example, if the MCB speci�es a bus address word with an incorrect slot number, the XNI

-

1

may get a bus timeout every time it attempts to transfer data at that address; because the

failing transfer will be retried, the bus interface may remain stuck for a while. This command

clears it.

RR (NA%RR==:1B35) Reset Request. If this bit and NA%REN are both 1, the XNI

-

1 Network

Adapter will reset itself to its power{on condition. This operation causes the XNI

-

1 to be

\busy" and unresponsive for approximately 0.1 seconds. The reset operation destroys all

MCBs held in the data registers. (Unless the operating system has an independent method

by which it remembers where the MCB bu�ers have been placed, the system will lose the

use of all memory allocated for input messages and current output messages.)

Since all device control cycles reload the microcode, it is recommended that only the combination

NA%REN!NNA%RR be used to insure that the microcode gets a consistent hardware state after it is

reloaded.

3.13.2 XNI

-

1 Network Adapter Memory Registers

The XNI

-

1 contains 8,192 36{bit words of addressable memory registers. These are divided into

three categories: control registers, data registers, and packet snoop registers. The XNI

-

1's operating

microcode allocates addresses 0{37 to the control registers, 40{7777 to the data registers, and 10000{

17777 to the packet snoop registers. Access to any register is permitted whenever the register set is



3.13. XNI

-

1 NETWORK ADAPTER 333

not \busy." The distinction among these register types is that access to any control register or to

any packet snoop register causes the entire register set to become busy for a period of time during

which no access to any register is permitted; access to a data register does not cause the register

set to become busy. (Attempts to access a register while the register set is busy will result in a

\busy" response and a possible bus timeout. The register set is typically busy for a period of 1{2

microseconds following access to a control register.) The control and data registers may be read or

written; the packet snoop registers are read{only.

3.13.2.1 XNI

-

1 Control Register Addresses

The following control register addresses are of particular importance in programming the XNI

-

1:

00 Slot number of the XNI

-

1 (NA%SLT==:0): This register is written to by the CPU to tell the

XNI

-

1 its own backplane address. The XNI

-

1 slot number will be written in bus address

word format (x3.1.4); i.e., in bits 3{6 of the control register. The unused portions of the

word will be written as zero. (The contents of this register are used by the XNI

-

1 hardware

to determine whether a bus transaction is directed at it)

01 Priority Interrupt Assignment Register (NA%PIR==:1): This register holds the priority inter-

rupt assignment level for the XNI

-

1 and the slot number of the processor to which the XNI

-

1

shall direct interrupts. This register may be written in to set the priority interrupt level

and assign a processor to �eld the interrupts (typically, the processor writing this register

will send its own slot number). The processor slot number will be written in bus address

word format in bits 3{6 of this register; the priority level will be written in bits 33{35. This

register may be read to discover what priority level has been assigned. The default priority

level for the XNI

-

1 is 5.

02 Command Register (NA%CMR==:2). This register may be written to by the CPU to cause

the XNI

-

1 to perform one of the commands that do not involve the memory transfers

characteristic of most data transfers. Results of a command, if any, are available through

the results register. Commands are speci�ed in bits 28{35 of this register; the other bits

may be used as parameters. Commands and results are described in x3.13.4.

03 Unused (NA%CRR==:3).

04 Result Register (NA%RSR==:4). If a command produces results, they are recorded in the

Result Register. The meaning of the value in the the Result Register is dependant on the

command that was issued. Commands and results are described in x3.13.4.

05 FromXR (NA%FXR==:5) or Transmit Done register: when the XNI

-

1 has one or more MCBs

of messages that have been transmitted, it stores the address of the MCB (or the head

of the list of MCBs) in this register, and it requests an interrupt at the assigned priority

level. If the register already contains a non{zero value, the XNI

-

1 accumulates completed

transmission MCBs until the register becomes available. When the CPU reads this register,

the XNI

-

1 withdraws its interrupt request, but the register remains busy until the CPU

writes the value zero into it. (There is no need for the CPU to send the XNI

-

1 a message

to say that the register has become free.)

06 FromRCV (NA%RCV==:6) or Receive Data register: when the XNI

-

1 has one or more MCBs

representing messages received, it will store the address of the MCB (or the head of the list

of MCBs) in this register and it will request an interrupt at the assigned priority level. If



334 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

the register already contains a non{zero value, the XNI

-

1 accumulates completed transmis-

sion MCBs until the register becomes free. When the CPU reads this register, the XNI

-

1

withdraws its interrupt request, but the register remains busy until the CPU writes the

value zero into it. (There is no need for the CPU to send the XNI

-

1 a message to say that

the register has become free.)

07 Unused.

10 ToPr0 (NA%TP0==:10) or Transmit Port 0 register: when the CPU wants to transmit a

datagram on the XNI

-

1's output port 0, it stores the address of a list of MCBs (all for port

0) in this register, provided the register already contains the value zero. (If the register

contains a non{zero value, the CPU will accumulate a list of MCBs addressed to port 0 and

waiting to be sent to the XNI

-

1.) There is no need for the CPU to send a message to the

XNI

-

1 to tell it to look at the new value.

11 ToPr1 (NA%TP1==:11) or Transmit Port 1 register. This register is the port 1 analog of

NA%TP0 register.

12 ToPr2 (NA%TP2==:12) or Transmit Port 2 register. This register is the port 2 analog of

NA%TP0 register.

13 ToPr3 (NA%TP3==:13) or Transmit Port 3 register. This register is the port 3 analog of

NA%TP0 register.

14 ToRet (NA%TRT==:14): when the CPU has a receive MCB for the XNI

-

1, it stores the

address of that MCB in this register, provided the register contents are already zero.

15 ToRef (NA%TRD==:15): when the CPU has an MCB describing a received message that must

be reformatted by the the XNI

-

1, it places the address of the MCB in this register, provided

the register contents are already zero.

16 ToMcm (NA%MCM==:16): this register is written by the CPU (assuming the register is

nonzero). The address of a MCB is written into this register. Currently there is no de-

�ned processing by the XNI

-

1 microcode. This register and FrRmc are reserved for future

out{of{band communication between the XNI

-

1 microcode and the CPU.

17 FrRmc (NA%RMC==:17): this register is written by the XNI

-

1 microcode, to return the MCB

that was processed in response to the CPU writing into ToMcm. Currently this register is

not used.

20{37 Unused.

3.13.2.2 XNI

-

1 Data Register Addresses

The data registers are in addresses 40{7777. The region 40{177 is reserved by XNI

-

1 microcode for

Result Blocks and for identi�cation data.

The identi�cation data occupies �xed locations starting at .NABSB==:102. The addresses in the

identi�cation region are given symbolic names that are o�sets from .NABSB, as follows:

.NAUVR==:0 This location contains the microcode version number.



3.13. XNI

-

1 NETWORK ADAPTER 335

.NASN==:1 Bits 12{35 of this location contain the serial number of this XNI

-

1 interface board.

.NAPN0==:2 This location and .NAPN1==:3 contain the 48{bit IEEE MAC (media access control)

address for the port 0 interface. The MAC address for ports 1, 2, and 3 are precisely

1, 2, and 3 higher, respectively. Bits 20{35 of .NAPN0 contain the high{order 16 bits

of the MAC address, and bits 4{35 of .NAPN1 contain the low{order 32 bits of the

MAC address.

The remaining data registers are divided into Message Control Blocks, as described below.

3.13.2.3 XNI

-

1 Packet Snoop Register Addresses

The packet snoop registers are virtual registers: the XNI

-

1 internal microcode responds to read

requests addressed in the range 10000{17777 by supplying information from its internal packet

bu�er memory. This area is currently not used.

3.13.3 Communication Between the CPU and the XNI

-

1

The usual form of communication between the operating system and device involves a data structure

called a Message Control Block (MCB). MCBs are contained within the Data Register memory of

the XNI

-

1.

The XNI

-

1 microcode creates MCBs in response to a command from the CPU. This list of avail-

able/free MCBs is kept on{board (in the XNI

-

1 microcode) and the CPU can request free MCBs by

issuing a command to XNI

-

1 microcode.

During system startup, the CPU system code requests 10 free MCBs for each interface that has been

con�gured. The 10 MCBs are associated with system memory; the system software then returns the

list of initialized input MCBs to the XNI

-

1 via the \ToRet" control register.

40

The XNI

-

1 retains

the input MCBs until messages arrive.

When a message is received from the network, the XNI

-

1 removes an input MCB from its list of

idle input MCBs and, using the data within the MCB, which describes a region in main memory,

stores the input message in main memory. The XNI

-

1 then gives the MCB to the CPU by storing

the MCB's address in the \FromRCV" control register and requesting an interrupt. Eventually,

the operating system will process the incoming message; then it returns the MCB to the XNI

-

1 by

storing the address of the MCB in the \ToRet" control register.

For messages to be output, the operating system uses an output MCB taken from its list (the typical

list of output MCBs is one). It �lls in the in{memory address, the size of the output message bu�er,

and format control. The operating system then passes the address of the MCB in the \ToPrn"

control register, where n corresponds to the port number that is to be used for transmitting the

message. After the XNI

-

1 Network Adapter has copied the transmitted data into its local memory,

it returns the MCB in the \FromXR" control register, and requests an interrupt.

As described earlier in this document, if a \Toxxx" register is non{zero when the operating system

software wants to write to it, the system builds a list of pending messages until the register becomes

40

The action of reading or writing a control register is noticed by the XNI

-

1 microprocessor, so no other action is

needed to alert the XNI

-

1 to incoming messages.



336 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

zero.

41

Similarly, when the XNI

-

1 wants to store an MCB address in a \Fromxxx" register, it must

wait until that register is zero; while waiting, it collects pending messages (MCBs) in a list and

stores the list head in \Fromxxx" when it is able to do so.

3.13.3.1 Message Control Block

The format of a Message Control Block is dependent on its use. The format of a transmit Message

Control Block is depicted below in Figure 3.8:

Figure 3.8: Transmit Message Control Block Format

350

Link to next MCB

10

x

172

Format0

1918

x

3520

Length0

350

Bus Address Word 0

10

x

172

Format1

1918

x

3520

Length1

350

Bus Address Word 1

10

x

172

Format2

1918

x

3520

Length2

350

Bus Address Word 2

350

CPU Cell (Reserved)

(x denotes �elds not presently used.

)

The meaning of the �elds in the transmit Message Control Block is as follows:

Link This is a link to the next MCB on the list. Zero means no further items on the list.

Format0 The format �eld describes the mode of transfer that is to be performed on the data.

The format �eld is broken down into

3b17 Two bits of information to describe the byte o�set to start data transfer from

bu�er 0 memory location i.e. 0 would start on byte 1; 1 would start on byte 2 etc.

1b15 One bit of information to the describe the byte o�set into the XNI

-

1 memory to

start storing the bu�er 0 data. This bit is always set to 0.

7b14 Three bits of information to describe how the data is stored in bu�er 0 memory.

This �eld can have the following values:

0 16 bit mode.

41

The XNI

-

1 may be fast enough so that a CPU will not ever �nd a \Toxxx" register busy.



3.13. XNI

-

1 NETWORK ADAPTER 337

1 32 bit mode.

2 36 bit mode.

3 35 bit mode.

4 16 bit byte swappped.

5 9 bit mode.

1b11 The start bit. This bit must be set for the transfer to begin.

1b3 The LOOPBACK bit, set to indicate loopback mode. If this bit is set the XNI

-

1

microcode will not transfer the data onto the wire. The transmit data will be be

looped back within the XNI

-

1 and the CPU will see the datagram as a receive

datagram.

1b2 The MORE bit. When set this indicates that at least one more bu�er is present

in this transmit MCB. If this bit is 0; the entire transmit datagram is described

by Format0 and Length0 and is contained in the bu�er 0 location.

Length0 The Length0 �eld (177777b35) contains the number of 8{bit bytes to be transferred

from the bu�er 0 location into the XNI

-

1's on{board memory under the control of

Format0.

Bus

Address

Word 0

This is a bus address word that de�nes the location of the bu�er0 area assigned to this

MCB. The XNI

-

1 accepts only bus address words in which D , the device bit, is zero.

This �eld is set by the operating system.

Format1 This �eld is used by the XNI

-

1 only if the MORE bit is set in the Format0 �eld. The

�eld de�nition is identical to the description of Format0 except that they relate to the

Bus Address Word 1 and Length1 �elds.

Length1 This �eld contains the number of 8{bit bytes to be transferred from the bu�er 1 location

into the XNI

-

1's on{board memory under the control of Format1.

Bus

Address

Word 1

This is a bus address word that de�nes the location of the bu�er 1 area assigned to this

MCB. The XNI

-

1 accepts only bus address words in which D , the device bit, is zero.

This �eld is set by the operating system.

Format2 This �eld is used by the XNI

-

1 only if the MORE bit is set in the Format1 �eld. The

�eld de�nition is identical to the description of Format1 except that they relate to the

Bus Address Word 2 and Length2 �elds.

Length2 This �eld contains the number of 8{bit bytes to be transferred from the bu�er 2 location

into the XNI

-

1's on{board memory under the control of Format2.

Bus

Address

Word 2

This is a bus address word that de�nes the location of the bu�er 2 area assigned to this

MCB. The XNI

-

1 accepts only bus address words in which D , the device bit, is zero.

This �eld is set by the operating system.

CPU Cell

reserved

This cell is used by the system software to correlate a transmit MCBs with its associated

system resources (caller, virtual addresses of the transmitted datagram etc); it is not

used by the XNI

-

1 microcode.



338 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

Figure 3.9: Receive Message Control Block Format

350

Link to next MCB

30

Port

194

Address Filter Output

3520

Length

350

Bu�er Address (a Bus Address Word)

10

x

172

36-bit Word Count

1918

x

3520

Bytes Waiting

10

x

172

Memd O�set

1918

x

3520

Bytes to Transfer

190

x

3520

Format Control

350

CPU Cell (Reserved)

350

Microcode Cell (Reserved)

(x denotes �elds not presently used.)

The format of a receive Message Control Block is depicted in Figure 3.9. The data �elds are as

follows:

Link This is a link to the next MCB on the list. Zero means no further items on the list.

Port The port number of the particular ethernet interface that this message was received

on. For the XNI

-

1 the legal port numbers are in the range 0{3. This �eld is set by the

CPU when it contructs the receive MCB.

Address

Filter

Output

To assist in the classi�cation of received datagrams, the XNI

-

1 microcode delivers the

status of the address �lter for this datagram. The system software controls the setting

of the address �lter and the possible values that can be delivered by the XNI microcode.

Data

Length

The length of the received datagram, in 8{bit bytes. The XNI

-

1 stores this count into

the MCB before delivering the receive MCB to the system software (see description of

\FromRCV").

Bu�er

Address

A bus address word, specifying the location where to store the receive datagram. This

value is set up by the system software before it writes the MCB address into the

\ToRed".

36{bit

Word

Count

Set by the system software. This �eld contains the number of system memory locations

that can be written into by the XNI

-

1 microcode. The XNI

-

1 microcode uses this value

to determine how many locations can be written into, starting at the Bu�er Address

location. If this value is zero (0), the entire received datagram can be written into

system memory by the XNI

-

1 starting at the address speci�ed by the Bu�er Address.



3.13. XNI

-

1 NETWORK ADAPTER 339

Bytes

Waiting

This value is set by the XNI

-

1 microcode when a datagram has only been partially

transferred into system memory. This occurs when the 36{bit Word Count is not suf-

�cient to allow the XNI

-

1 hardware/microcode to transfer the entire receive datagram

into system memory. This count tells the system software how many 8{bit bytes are

still waiting to be transferred into system memory.

Memd

O�set

This value is valid only if the Bytes Waiting count is non{zero. On a partially received

datagram, the entire receive datagram still resides in the XNI

-

1's Memd. The Memd

O�set counts how many 16{bit items from Memd were transferred to system memory;

that is, it describes the o�set to �nd the next bytes of the received datagram. It is

used by the XNI

-

1 microcode to remember where to pickup re{formatting the receive

datagram. A zero o�set indicates the beginning of the datagram. This value could be

changed by the system software, but it is not changed by the current system software.

Bytes to

Transfer

This value is set to CPU software after it has received a partial receive datagram,

i.e. Bytes Waiting is non{zero. When the receive MCB is given back to the XNI

-

1,

this value tells the microcode how many bytes to transfer into the new Receive Bu�er

Address.

Format

Control

This value is set by the CPU software after it has received a partial receive datagram.

It controls the mode of transfer that the XNI

-

1 hardware will perform on the remainder

of this datagram. The format of this �eld is identical to the Format �eld described in

the transmit MCB section.

CPU Cell This cell is not used by the XNI

-

1. It is reserved for use by system software to associate

data structures with this MCB.

Microcode

Cell

This cell is reserved for the XNI

-

1 microcode, which uses it to associate an MCB with

a microcode data structure (Memd address).

3.13.4 Commands and Result Blocks

A command and response mechanism is implemented for transactions, such as status inquiries, which

do not require large amounts of data transfer. This mechanism has been partially described in the

discussion of the control registers, above

42

.

Command codes are placed in bits 28{35 of the command register; bits 0{27 of the command register

are reserved for arguments, if any. The following commands are de�ned:

001 Not Used

002 Create MCBs.

The system software controls the carving up of XNI

-

1 memory for use of MCBs. This command

contains one argument: the size of each MCB. The maximum size is of limited by the width

of the argument �eld. In this command, the argument �eld is 377b27. If the CPU software

attempts to re{issue this command, the XNI

-

1 will return the current number of available

MCBs, i.e. it remembers that it has already created MCBs and will not process the command.

42

This explanation will have to be expanded adapted for multi{processor systems.



340 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

The response register will contain the number of MCBs that the XNI

-

1 microcode has created

or has presently available.

003 Request free MCBs.

This command is issued by the system software to the XNI

-

1 microcode to obtain some free

MCBs. This command contains one argument (377b27 i.e. limited to 255): the number of

free MCBs requested. If the CPU software requests more MCBs than the XNI

-

1 microcode

has available, then 1b2 will be set in the command register and the number available will be

returned in 77777b17 of the command register. If the XNI

-

1 microcode has su�cent MCBs

to satisfy the request, the linked list of MCBs will be returned in the response register.

004 Select Interface.

This command is issued by the system software to select a speci�c port on the XNI

-

1, because

some commands require that an interface be selected. This command contains one argument

(7b27): the port to be selected. The XNI

-

1 will return the following values in the response

register; �1 (177777) if the interface is not present; zero (0) if the interface was successfully

selected.

005 Disable Interface.

This command causes the XNI

-

1 microcode to disable the speci�ed port on the XNI

-

1. This

command contains one argument (7b27): the port to be disabled. The response register

will contain �1 (177777) if the interface does not exist; one (1) if the interface is currently

disabled and zero (0) if the XNI

-

1 microcode has successfully disabled the interface. Disabling

an interface turns o� the reception hardware in the XNI

-

1, as a result no further datagrams

can be received until the interface is enabled.

006 Enable Interface.

This command causes the XNI

-

1 microcode to enable reception on a speci�c port on the

XNI

-

1. This command contains one argument (3b27): the port to be enabled. Before an

interface can be enabled, it must have receive MCBs assigned to it (see NA%TRT). The response

register will contain �1 (177777) if the interface does not exist; 0x8001 if the interface has no

receive MCBs and zero (0) if the interface has successfully been enabled.

007 Address Filter Size.

This command requests the XNI

-

1 microcode to return the size of the address �lter for the

speci�ed port. This command contains one argument (3b27): the port number. The response

register will contain the number of octets in the address �lter. The current XNI

-

1 hardware

has an address �lter size of 32 bytes. This size allows for address and protocol recognition on

the �rst 32 bytes of the received datagram.

008 Set protocol mask.

This command sets the protocol mask for the output of the address �lter. The system software

sets up the address �lter (allows the reception of speci�c MAC address and protocol type).

This mask is used by the XNI

-

1 microcode to determine the portion of the address �lter output

that is protocol speci�c. This command contains one argument (377b27): the protocol mask.

The Select Interface command must have be issued prior to the issuance of this command.

The default protocol mask is 37.

009 Set Protocol Assembly Mode.



3.13. XNI

-

1 NETWORK ADAPTER 341

This command sets the default assembly (input) mode for a speci�c protocol on a speci�c

port. The assembly mode refers to the data translation for data being transferred to system

memory. The protocol assembly mode bits controls the format under which data is transferred

into system memory. The default protocol assembly mode is 0x004a (byte o�set into system

memory, two; byte o�set into XNI

-

1 Memd, zero; 32{bit data mode; start bit on. (See the

description of Format0 in the transmit MCB). The assembly mode is 16{bits wide; if the

0x8000 bit is on, the XNI

-

1 microcode will verify the IP checksum in the received datagram.

If the 0x7f80 bits are non{zero, then the XNI

-

1 microcode treats that �eld as a byte count

and transfers the number of bytes into system memory.

010 Return Free MCBs.

This command returns an MCB, or a list of MCBs, to the free pool in the XNI

-

1 microcode.

The command contains one argument (177777b17): the address of the �rst MCB (possibly

linked to additional MCBs).

011 Write Address Filter.

This command is issued to the XNI

-

1 microcode to write values into the address �lter. This

command takes one argument: the address of a XNI

-

1 memory block

43

that contains the

following information:

o�set 0 177777b35 the port number, one of 0{3.

o�set 1 177777b35 byte o�set into the address �lter (an even number).

o�set 2 377b17 the value to write (even byte).

o�set 2 377b35 the value to write (odd byte).

There are four address �lters, one for each port.

Each address �lter is logically a 32 by 256 byte array, where the �rst index corresponds to

a byte number (0 to 31) in a message header, and the second index corresponds to the data

value of that header byte. The address �lter accepts and categorizes incoming messages by

computing the logical AND of the data bytes fetched from this array. If, while processing the

message header, the AND becomes zero, the message is discarded because it is not addressed

to this system. If the header is processed with the AND being non{zero, the resulting value is

passed to the operating software to assist it in categorizing the type of message and protocol.

An address �lter is implemented as an array of 4096 16{bit words. Each word contains two

consecutive data bytes of the address �lter array (one byte for an even{valued header byte,

and one for the next higher value). The �rst 128 words (256 bytes) are addressed for header

byte 0; the next 128 words are addressed for header byte 1, etc.

It is the reponsibility of the operating system to �ll the address �lter with appropriate values.

012 Read Interface Errors.

This command will cause the XNI

-

1 microcode to return the current error counts for the

selected port. Reading the interface error counts causes the microcode to zero out its running

count, so the system software should maintain a running total. This command takes one

argument (7b27): the interface or port number 0..3. The XNI

-

1 returns the address of a result

block which contains the error counts.

The following error counts are accumulated for the interface by the XNI

-

1 microcode.

43

The memory block is usually obtained as an MCB, and then diverted to this use.



342 CHAPTER 3. TOAD

-

1 SYSTEM AND XKL

-

1 PROCESSOR OPERATIONS

o�set 0 Jabber Error Count. This count indicates the number of times that the hardware

attempted to transmit for an excessive time period (20{150ms).

o�set 1 Babble Error Count. This counts the transmitter time{out errors. It indicates

the number of times the transmitter has been on the channel longer than the time

required to send the maximum packet. It is set after 1519 bytes (or greater) have

been transmitted.

o�set 2 Collision Error Count. Each count indicates the absence of the Signal Quality Error

Test (SQE Test) message after a packet transmission.

o�set 3 Receive collision count. Receive collisions are de�ned as receive frames which suf-

fered a collision.

o�set 4 Runt Packet Count. This is the count of runt packets addressed to our station. Runt

packets are those in which the address �lter indicates that we should receive this

datagram, but the datagram is less than minimum allowed on ethernet (64 bytes).

o�set 5 Missed Packet Count. Each count indicates an instance when the receive FIFO in

the hardware over
owed. This is caused by the XNI

-

1 microcode being unable to

service the Ethernet receive interrupt in a timely manner.

o�set 6 Over
ow Flag Count. This counts the number of times that the Receive FIFO

over
owed due to the inability of the XNI

-

1 microcode to read data fast enough to

keep pace with the receive serial bit stream and the latency provided by the Receive

FIFO itself.

o�set 7 Framing Error Count: Each count indicates an instance when the received frame

contained a non{integer multiple of bytes and an FCS error.

o�set 8 FCS Error Count; indicates that there is an FCS error in the frame.

013 Read Address Filter

This command will read the contents of the address �lter for a speci�c port number. This

command takes one argument: the address of a block of XNI

-

1 memory which the operating

initializes to contains the port number and the byte o�set to the address �lter. Address �lter

reads always return two bytes: the data at the byte o�set requested, and the subsequent byte.

The XNI

-

1 microcode will read the address �lter and return data at o�set 2:

o�set 0 177777b35 the port number 0..3 for which we want to read the address �lter.

o�set 1 177777b35 byte o�set into the address �lter (the address to read, an even number).

o�set 2 The two bytes will be returned at 377b17 and 377b35.



343

Chapter 4

Earlier Processors (Omitted)

Printed versions of this manual omit Chapter 4, Earlier Processors.



344 CHAPTER 4. EARLIER PROCESSORS



343

Chapter 4

Earlier Processors (Omitted)

Printed versions of this manual omit Chapter 4, Earlier Processors.



344 CHAPTER 4. EARLIER PROCESSORS



343

Chapter 4

Earlier Processors

Editors note: The information in this chapter is from the July 1980 edition of DECsystem{10

DECSYSTEM{20 Processor Reference Manual , published by Digital Equipment Corporation. The

reader is cautioned that subsequent developments by Digital Equipment Corporation have rendered

portions of this material obsolete or incomplete. For example, the material on TOPS{10 paging is

largely obsolete, as TOPS{10 was enhanced to use TOPS{20 paging.

4.1 KL10 System Operations

The information presented in this section is primarily for Digital's own system programmers, for

their use in writing the Monitor and other software. However, it is also needed by anyone who

wishes to write his own operating system, to some extent by users who handle their own I/O, and

by programmers in a situation where all the facilities of a system are dedicated to a single large task.

WARNING

KL10 functions are implemented in microcode, which can be revised much more easily

than hardware. Although the user operations described in Chapter 2 are deliberately kept

as compatible as possible from one machine to the next, Digital will change KL10 system

microcode whenever such change will result in greater speed, e�ciency, or e�ectiveness.

Therefore, anyone writing system software should make sure to use the most recently

updated version of this documentation, and before embarking on any project as enormous

and critical as an operating system be sure to check with Large Systems Engineering for

any changes not yet documented.

Programming for the system as a whole is programming in executive mode. Only the kernal program

is without instruction restrictions, and only it can, if needed, access physical memory unpaged. The

supervisor program labors under the same instruction restrictions as the user and has no way of

bypassing them, although it can read but not alter concealed pages (the kernal program can supply

data tables to the supervisor program, and latter cannot a�ect them).



344 CHAPTER 4. EARLIER PROCESSORS

The amount of useful work done by the system depends upon how e�ciently and e�ectively the

executive manages the system. This means selecting which processes will run when, managing their

working sets, responding to their needs, and even reacting to error situations or perhaps downright

unacceptable behavior on the part of a user. The kernal program accomplishes these objectives by

handling all in{out for the system, setting up user page maps, trap locations, interrupt locations,

and the like for both itself and the users, handling user accounts, communicating with the front

end, and so forth. In other words, except for handling in{out, the activities of an operating system

are the topics covered in this section. The amount of useful work done by the system depends on

how e�ciently and e�ectively the executive manages the physical resources of the system. These

resources include the processor, memory, input{output devices, the �le system, and the bandwidth of

the paths between various components. The executive selects which process to run next. It manages

the working sets of the various processes, responding to their changing needs. The executive reacts to

error situations and even to unacceptable behavior on the part of a user. The executive accomplishes

these objectives by handling all in{out for the system, setting up user page maps, trap locations,

interrupt locations, etc. for itself and for the users. The executive handles user accounts, passwords,

and level of privileges. It controls access to all system resources.

The activities of an operating system, particularly as they are implemented in the TOAD

-

1 System,

are the topics of this chapter. Of course the system programmer must also be quite familiar with

all of the material presented in chapters 1 and 2. In particular, the programmer must understand

the architecture of the system as discussed in Chapter 1, and must be especially well versed in the

use of the JRST, MUUOs, and I/O instructions (x2.9.4, x2.16, x2.18).

System information for other processors is given in latter sections of this chapter, x4.2 and x4.3.

The present section is devoted solely to the KL10, but contains two subsections on paging, only

one of which is applicable to a given system. x4.1.3 describes the paging used with the TOPS{10

Monitor; this paging is similar to that of the KI10. x4.1.4 treats the paging associated with the

TOPS{20 Monitor. Both kinds of paging employ essentially the same hardware | the di�erence

lies principally in the microcode.

Much of the material presented here is related to the DTE20s, the channels, and the DIA20. Al-

though the section does describe all activities of the microcode undertaken for these devices (e.g.,

the front end functions in x4.1.7), the descriptions of the devices themselves are not included.

CAUTION

All IO instructions in this chapter are for internal devices (E bus functions). An address

given by such an instruction for storing a result is always interpreted as global in the

section containing the instruction. Hence, data or conditions cannot be stored in an AC

unless the instruction is in section 0 or 1.

4.1.1 Priority Interrupt

The DECSYSTEM{20 is essentially a system of processors clustered around the E bus. The various

controllers and interfaces are subsidary to the PDP{10, but maintain a considerable degree of inde-

pendence from it. Each RH20 Massbus controller operates from its own command list in memory

and handles all data transfers via the channels; but it must reach the Ten program to start a new list

of if something should go wrong. Each PDP{11 is a whole computer with its own internal program;



4.1. KL10 SYSTEM OPERATIONS 345

but for handling I/O equipment or acting as the system console, it must communicate with Ten

memory via the E bus (to which it is interfaced by a DTE20), and the peripheral computer must

reach the Ten program for setting up mutual operations. Basically, the priority interrupt system

allows the other processors to interrupt the central processor at various levels of priority, so that all

can operate simultaneously. The hardware also allows conditions internal to the PDP{10 to signal

its own program by requesting an interrupt.

In a DECsystem{10, the PDP{11 is limited to use as a system console and diagnostic facility, and

the unit{record peripheral equipment is organized around a KI10{type I/O bus connected to the E

bus via a DIA20 I/O bus interface. If the system lacks internal channels, Massbus controllers must

be of the RH10 type, which the program controls via the I/O bus. For data purposes an RH10

is connected to external memory by a separate memory bus. It is recommended that those who

program a DECsystem{10 read both this section and the �rst few pages of the discussion of the

KI10 interrupt

1

(x4.3.2).

Interrupt Requests

Interrupt requests are handled on eight levels arranged in priority sequence. Levels are numbered 0{7,

with 0 having highest priority. Level 0 is quite unlike the others, however, in that it is available only

to the front end processors for simulating console functions and handling byte transfers. Moreover,

level 0 is always active | it cannot be turned o� even by inactivating the interrupt system. The

program does control the enabling of level 0 in the DTE20s, but the master front end can even

override that. Assignment of devices

2

to the remaining levels is entirely at the discretion of the

programmer. To assign a device to a level, the program sends the number of the level to the device

control register as part of the conditions given by a CONO (usually bits 33{35); a zero assignment

disconnects the device from the interrupt levels altogether. Any number of devices can be placed on

the same level.

When a device requires service, it sends an interrupt request signal on its assigned level over the

bus to the processor. A request is recognized by the processor if the level is active | meaning that

both the interrupt system and the individual level

3

have been turned on. But the processor can

accept no requests while it is processing a request or starting an interrupt at any level, or holding

an interrupt on the same level or on a level with higher priority than those on which requests have

been recognized (in other words, if the current program is a higher priority interrupt routine). The

request signal remains on the bus however until turned o� by an appropriate response from the

processor: either given by the program (CONO, DATAO, or DATAI, depending on the device), or

generated automatically by the hardware. Thus, if a request is not recognized or accepted when

made, it will be when the necessary conditions are satis�ed. A single level will even shut out all

others of lower priority if every time its service routine dismisses the interrupt, a device assigned to

it is already waiting with another request.

The request signal is generally derived from a 
ag that is set by various conditions in the device.

Often associated with these 
ags are enabling 
ags, where the setting of some device condition 
ag

1

On the Ten side of the DIA20, the interrupt works as described here. But on the other side it acts more like the

KI10 interrupt, with seven programmable levels, second{order priority determined by proximity to the DIA20, etc.

Of course the processor activities and interrupt functions available are those of the KL10.

2

As explained in x2.18, the program treats all E bus controllers, internal subsystems, and I/O bus peripherals as

I/O devices. In other words, it monitors and controls them by means of I/O instructions using appropriate device

codes. For a PDP{11, the device is the DTE20.

3

Remember that level 0 is always active, even when the interrupt system is o�. In other respects this discussion

applies to all levels.



346 CHAPTER 4. EARLIER PROCESSORS

can request an interrupt on the assigned level only if the associated enabling 
ag is also set. The

enabling 
ags are in turn controlled by the conditions supplied to the device by CONO. For example,

a device may have half a dozen 
ags to indicate various internal conditions that may require service

by an interrupt; by setting up the associated enabling 
ags, the program can determine which

conditions shall actually request interrupts in any given circumstances.

Processing a Request. The processor handles only one request at a time. When it is ready, it

accepts the highest priority request currently recognized, provided that request is on a level higher

than the current program (all levels are higher than a noninterrupt program). To process a request

the hardware sends an interrupt service demand to the devices on the E bus to determine which ones

are currently requesting an interrupt on the accepted level. Note that at this point the processor

is accepting not an individual request, but rather a class of requests: namely all those being made

on the same level. Should the bus be busy, the demand is sent as soon as it becomes available,

taking precedence over any I/O instructions that may also be waiting (note that in this situation

the program actually stops). From among the devices that respond to the demand on the accepted

level, the processor selects the one of highest priority

4

according to this schedule:

Physical

Devices in Order of Decreasing Priority Device Numbers

5

Interval Counter

Other internal requests | processor error


ags, program initiated requests

Channels 0{7 0{7

DTE20s 0{3 10{13

DIA20 | i.e., any device on the I/O bus 17

If the device selected is internal, no further processing of the request is required. Otherwise the

hardware sends a function demand to the selected device (by specifying its physical number along

with the interrupt level), and the device responds by returning an interrupt function word. In either

case, once all necessary information about the request has been gathered, the interrupt system

waits for the interrupt to start. The microcode checks frequently for a waiting request, and upon

discovering one departs from its normal routine to start an interrupt. At such time PC points to

the interrupted instruction, so a correct return can later be made to the interrupted program.

Interrupt Functions and Instructions

The action taken by the microcode to start an interrupt depends upon the function speci�ed by

the function word returned to the processor. Two �xed locations in the executive process table are

associated with each level, locations 40 + 2N and 41 + 2N , where N is the level number. Level 1

uses locations 42 and 43, level 2 uses 44 and 45, and so on to level 7 which uses 56 and 5. The

processor starts a \standard" interrupt for level N by executing the instruction in the �rst interrupt

location for the level, i.e., location 40 + 2N . This type of interrupt is performed for a processor

error or program{initiated request, for an external device whose function word speci�es a standard

interrupt, and also for an I/O bus device that returns no function word. The �xed locations however

4

There are therefore two orders of priority associated with an interrupt: �rst the level, and then for all devices

requesting interrupts simultaneously on the same level, physical device number. These physical numbers are not the

device codes used in the I/O instructions; they are just for interrupt priority purposes and depend on position on the

backplane (the RH20s are ordered opposite from the slot numbers).

5

Physical numbers 14{16 are not used.



4.1. KL10 SYSTEM OPERATIONS 347

need not be used. The interrupt function word sent by the device may specify an equivalent interrupt

using a pair of locations selected by the function word, or some other interrupt function entirely.

The function word (which is stored in AC 3, block 7) has this format.

KL10 Interrupt Function Word

20

Addr

Space

53

Funct

66

Q

107

Device

1211

0

3513

Interrupt Address

The microcode acts from a function word whether there is one or not; its absence is taken as a zero

function. The DIA20 returns the word supplied over the I/O bus or simulates a zero word. Bits

7{10 identify the device by its physical number, but this is supplied by the interrupt hardware, not

the device. The meanings of the other bits in the word are as follows.

0{2 Address space. In unrestricted examine and deposit functions, codes given in these bits

select the space in which the address supplied in bits 13{35 is interpreted.

0 Executive process table

1 Executive virtual address space

4 Physical address space

Remaining codes are reserved.

3{6 Interrupt function (bits 3{5), sometimes quali�ed by Q (bit 6). When unspeci�ed, Q is

irrelevant. The microcode handles functions 4{6 even when it is in the halt loop.

0 Internal device or zero word: for the interval counter perform a vector interrupt (see

function 2); otherwise perform a standard interrupt (see function 1).

1 Standard interrupt | execute the instruction in location 40 + 2N of the executive

process table.

2 Vector interrupt | action depends on device type as follows:

Interval counter | execute the instruction in location 514 of the executive process

table.

DTE20 | execute the instruction in location 2 of the corresponding DTE20 control

block.

6

Channel | execute the instruction in the executive process table location speci�ed

by bits 27{35.

DIA20 | dispatch interrupt: execute the instruction in the executive virtual loca-

tion speci�ed by bits 13{35.

3 Increment | depending on whether Q is 0 or 1, add 1 to or subtract 1 from the contents

of the executive virtual location speci�ed by bits 13{35.

4 Examine | send the contents of the speci�ed location to the selected DTE20. If Q

is 0, select the location according to bits 0{2 and 13{35. If Q is 1, use bits 14{35 as

a physical address and restrict the function to the communication area de�ned in the

6

For further information on front end interrupt functions, refer to x4.1.7.



348 CHAPTER 4. EARLIER PROCESSORS

DTE20 control block.

6

The examine is e�ected by performing a DATAO to the DTE20.

5 Deposit | load the word supplied by the selected DTE20 into the speci�ed location. If

Q is 0, select the location according to bits 0{2 and 13{35. If Q is 1, use bits 14{35 as

a physical address and restrict the function to the communication area de�ned in the

DTE20 control block.

6

The deposit is e�ected by performing a DATAI to the DTE20.

6 Byte transfer | increment the byte pointer for the direction speci�ed by Q (0 out, 1

in) from the control block for the selected DTE20, and then move a byte between Ten

memory and the DTE20 according to the altered pointer.

6

7 Reserved (result indeterminate).

CAUTION

Because of the special cycle in which it is executed, an interrupt function that

uses virtual addressing cannot employ indirect pointers in its paging procedure

(x4.1.4).

13{35 The bits among these that supply the address when the function requires one depend on

the address space

Executive process table 27{35

Executive extended virtual address space 13{35

Executive unextended virtual address space 18{35

Physical address space 14{35

Regardless of what mode the processor is in when an interrupt occurs, the interrupt operations are

performed in kernel mode, and are therefore in executive virtual address space unless the particular

function selects some other form of addressing. A page failure that occurs in an interrupt operation

is never trapped; instead it sets the In{Out Page Failure 
ag, which requests an interrupt on the

level assigned to the processor (x4.1.8). These considerations of course do not apply to a service

routine called by an interrupt instruction.

Interrupt Instructions. An instruction executed in response to an interrupt request and not under

control of PC is referred to elsewhere in this manual as being \executed as an interrupt instruction."

Some instructions, when so executed, have di�erent e�ects than they do when performed in other

circumstances. And the di�erence is not due merely to being performed in an interrupt location or

in response (by the program) to an interrupt. To be an interrupt instruction, an instruction must

be executed in the �rst or second interrupt location for a level, in direct response by the hardware

(rather than by the program) to a request on that level. These locations may be the �xed ones for

a standard interrupt or those given by the function word for a vector interrupt. x2.18 describes the

two ways a BLKO is performed. If a BLKO is contained in an interrupt routine called by a JSR, it

is not \executed as an interrupt instruction" even in the unlikely event the routine is stored within

the interrupt locations and the BLKO is executed by an XCT. There are two types of interrupt

instructions executed in a standard or dispatch interrupt; the e�ects of all other instructions are

unde�ned.

BLKI, BLKO. If the pointer count is not zero, the processor dismisses the interrupt and

returns immediately to the interrupted program (i.e. it returns control to the unchanged



4.1. KL10 SYSTEM OPERATIONS 349

PC). If the count is zero, the processor executes the instruction contained in the second

interrupt location.

XPCW, JSR. The processor holds an interrupt on the level, takes the next instruction from

the location speci�ed by the jump (as indicated by the newly changed PC), and enters

either kernel mode or the mode speci�ed by the new 
ag word of the XPCW. Hence the

instruction is usually a jump to a service routine handled by the Monitor. XPCW is the

preferred instruction on the extended KL10.

The most important point of which the programmer must be aware is that even while User is set,

the interrupt instructions are not part of the user program. They are executed in kernel mode and

are therefore subject only to kernel mode restrictions. Regardless of the current PC section, the

address part of an interrupt instruction is interpreted as referencing section 0, except in a dispatch

interrupt, where it references the section speci�ed by the interrupt function word. As an interrupt

instruction, JSR automatically clears both User and Public to jump to a kernel mode service routine.

An XPCW should be set up to produce the same result. The XPCW control block must be in section

0 unless the interrupt is a dispatch.

CAUTION

Because of the special cycle in which an interrupt instruction is executed, the paging

procedure for it cannot employ indirect pointers (x4.1.4).

Interrupt Programming

The program can control the priority interrupt system by means of condition I/O instructions. The

device code is 004, mnemonic PI.

7

0 12 1314 1718 35

I X Y

CONO PI, Conditions Out, Priority Interrupt

70060

Perform the functions speci�ed by the e�ective conditions E as shown.

8

(A 1 in a bit produces the

indicated function, a 0 has no e�ect.)

Write Even

Parity

Addr Data Dir

Drop

Prgm

Req

On

Lvls

Clear

PI

Sys{

tem

Selected Levels

Make

Prgm

Req

On

Turn

On

Turn

O�

PI

System

Turn

O�

Turn

On

Select Levels for

Bits 22,24,25,26

1 2 3 4 5 6 7

18 19 20 22 23 24 25 26 27 28 29 30 31 32 33 34 35

22 On levels selected by 1s in bits 29{35, turn o� any interrupt requests made previously by the

7

Data instructions with device code PI are unassigned and execute as MUUOs. The block instructions are used

for error and diagnostic purposes (x4.1.8).

8

Bits 18{20 are for test purposes only. They are used to force errors and are discussed in x4.1.8.



350 CHAPTER 4. EARLIER PROCESSORS

program (via bit 24).

23 Turn o� the priority interrupt system, turn o� all levels, drop all program{set requests, and

dismiss all interrupts that are currently being held.

24 Request interrupts on levels selected by 1s in bits 29{35, and force the processor to recognize

them even on levels that are o�. The request remains inde�nitely, so as soon as an interrupt

is completed on a given level another is started, until the request is turned o� by a CONO PI,

that selects the same channel and has a 1 in bit 22.

Remember that the processor allows the program to continue while it processes a request.

Thus when this bit forces recognition of a request, many additional program instructions may

be performed before the interrupt, even on the highest priority level. Moreover if the request

is allowed to remain, additional instructions may be performed between successive interrupts.

For other than the highest priority level, the greater the number of higher levels active, the

greater the amount of program time available both initially and between successive interrupts.

If the program forces an interrupt on the lowest level when all are active, there can be a very

long time between CONO PI, and its interrupt.

25 Turn on the levels selected by 1s in bits 29{35 so interrupt requests can be recognized on them.

26 Turn o� the levels by 1s in bits 29{35, so interrupt requests cannot be recognized on them

unless made by a CONO PI, with a 1 in bit 24.

27 Turn o� the interrupt system so no requests can be recognized.

28 Turn on the interrupt system so the hardware can process requests.

0 12 1314 1718 35

I X Y

CONI PI, Conditions In, Priority Interrupt

70064

Read the status of the priority interrupt (and several diagnostic bits) into location E as shown.

Program Requests

on Levels

1 2 3 4 5 6 7

W

E

P

A

W

E

P

D

W

E

P

R

Interrupt Holding

on Levels

1 2 3 4 5 6 7

PI

On

Levels On

1 2 3 4 5 6 7

0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Levels that are on are indicated by 1s in bits 29{35; 1s in bits 21{27 indicate levels on which

interrupts are currently being held; and 1s in bits 11{17 indicate levels that are receiving interrupt

requests generated by a CONO PI, with a 1 in bit 24. A 1 in bit 28 means the interrupt system is

on, and 1s in bits 29{35 therefore indicate active levels.

The remaining conditions read by this instruction have nothing to do with the interrupt. Bits 18{20

re
ect several diagnostic functions discussed in x4.1.8.

Dismissing an Interrupt. Unless the interrupt operation dismisses the interrupt automatically,

the processor holds an interrupt until the program dismisses it, even if the interrupt routine is

itself interrupted by a higher priority level. Thus interrupts can be held on a number of levels



4.1. KL10 SYSTEM OPERATIONS 351

simultaneously, but from the time an interrupt is started until it is dismissed, no interrupt request

can be accepted on that level or any of lower priority

A routine dismisses the interrupt by using an instruction that restores the level on which the interrupt

is being held at the same time it returns to the interrupted program. The proper instruction is XJEN

(JRST 7,) in an extended KL10, otherwise JEN (JRST 12,). Once the level is restored, the hardware

can again accept requests and start interrupts on it and lower priority levels. These instructions also

restore the 
ags: XJEN from the 
ag{PC doubleword if the routine was called by an XPCW; JEN

from the left half of the PC word if the routine was called by a JSR in section 0. XJEN also restores

the previous{context section if the return is being made to an executive program.

CAUTION

An interrupt routine must dismiss the interrupt when it returns to the interrupted pro-

gram, or its level and all levels of lower priority will be disabled, and the processor will

treat the new program as a continuation of the interrupt routine.

Timing. The maximum time a device may wait for an interrupt to start depends on how many

active devices are of higher priority and how long their service routines are. When a given request

is of highest priority, its device need never wait longer than 10 �s.

Special Considerations. When an interrupt occurs, PC points to the interrupted instruction

(or to an XCT that executed it), unless the interrupt occurred in an over
ow trap instruction, in

which case PC points to the instruction that over
owed. After taking care of the interrupt, the

processor can always return to the interrupted instruction. Either a) the instruction did not change

anything; b) the interrupt was in the second part of a two{part instruction, where First Part Done

being set prevents the processor from repeating any unwanted operations in the �rst part; or c) the

interrupt occurred at some point in a multipart instruction where the microcode rigged the various

pointers and other quantities so the processor actually restarts the instruction where it stopped,

rather than from the beginning. However, in a BLT and in byte manipulation, the very mechanism

that facilitates the return results in special properties of which the programmer must be aware.

An interrupt can start following any transfer in a BLT. When one does, the BLT puts the pointer

(which has counted o� the number of transfers already made) back in AC. Then when the instruction

is restarted following the interrupt, it actually starts with the next transfer. This means that if

interrupts are in use, the programmer cannot use the accumulator that holds the pointer as an

index register in the same BLT, he cannot have the BLT load AC except by the �nal transfer, and

he cannot expect AC to be the same after the instruction as it was before.

An interrupt can also start in the second e�ective address calculation in a two{part byte instruction.

When this happens, First Part Done is set. This 
ag is saved as bit 4 of a 
ag word, and if it is

restored by the interrupt routine when the interrupt is dismissed, it prevents a restarted ILDB or

IDPB from incrementing the pointer a second time. This means that the interrupt routine must

check the 
ag before using the same pointer, as it now points to the next byte. Giving an ILDB or

IDPB would skip a byte. And if the routine restored the 
ag, the interrupted ILDB or IDPB would

process the same byte the routine did.

Programming Suggestions. The Monitor handles all interrupts for user programs. Even if the

User In{out 
ag is set, a user generally cannot reference the interrupt locations to set them up.



352 CHAPTER 4. EARLIER PROCESSORS

Procedures for informing the Monitor of the interrupt requirements of a user program are discussed

in the Monitor manual.

For those who do program priority interrupt routines, there are several rules to remember.

� Use interrupt instructions in a manner consistent with the special e�ects and conditions ap-

plicable to such instructions as described above.

� No request can be accepted, not even on higher priority levels, while a request is being processed

or an interrupt is starting. Therefore do not use lengthy e�ective address calculations in

interrupt instructions.

� To prevent a device from hanging up a level, the programmer must be aware of | and satisfy

| whatever requirements the device has for dropping the request.

� The interrupt instruction that calls the routine should be an XPCW on an extended KL10,

otherwise a JSR. In either case the paging for the instruction must not use indirect page

pointers.

� The principal function of an interrupt routine is to respond to the situation that caused

the interrupt. Computations and any other time{consuming activities that can possibly be

performed outside the routine should not be included within it.

� Never turn o� the interrupt system in a routine unless it is absolutely necessary, and then

always turn it back on again as soon as possible. If one or more levels can be turned o� in

place of the entire system, always do that instead.

� If the routine uses a UUO it must �rst save the contents of the locations that will be changed

by it in case the interrupted program was in the process of handling a UUO of the same type

(x2.16).

� The routine must dismiss the interrupt (with an XJEN or JEN) when returning to the inter-

rupted program. Flags and UUO locations should be restored.

4.1.2 Cache Management

For the user, the cache is transparent: any program simply gets information frommemory and stores

information in memory. But use of a cache as part of the memory subsystem reduces program time,

since the cache is faster than the storage modules, and also reduces storage use by the program,

making a larger percentage of total storage cycles available to other parts of the system. As explained

in x1.2.2, transfers between processor and memory are in four{word groups: storage references are to

four locations at a time.

9

The cache contains representations of a selection of such location groups.

One may view the cache as 2048 general purpose registers, organized in sets of four, which substitute

temporarily for the most frequently referenced physical storage location groups. The cache serves

this function not only for the program, but for all microcode references, including those for handling

interrupts, traps, page re�lls, and other automatic operations. The way the hardware handles the

cache depends upon whether the initial processor reference to a location in a particular group is

read or write.

9

Of course memory control does not blindly request four storage cycles for every group even when it is known that

some are unnecessary. Fewer references are made when some locations in a group already have valid representations

in the cache, or the �rst or last transfer in a channel block is for part of a group.



4.1. KL10 SYSTEM OPERATIONS 353

When the �rst processor reference to a group is to read the contents of one of its locations, memory

control retrieves the entire four{word group containing the referenced location. The single word

requested is supplied to the program, but all four are placed in the cache and are validated, i.e. they

are tagged as words that do represent the true contents of memory. Subsequent references, read

or write, to the same group are made to the cache, not to storage. If the processor modi�es the

contents of a location in the group, the new word supplied is substituted for the one in the cache

location, which is tagged as written. Thus the cache word is di�erent from storage but still valid |

i.e., it represents what the storage location should contain.

When the �rst reference to a group is for writing, there is no call to storage at all. Instead the

hardware sets aside a location group in the cache, with the one word in it tagged as both valid

and written. Further reads or writes of the same location are handled solely with the cache, and

subsequent writes to other locations in the same group are handled just like the �rst. But a read

to a location that has not been written produces a storage reference. The requested word is given

to the processor, and all words in the group that do not already have written representations in the

cache are inserted into the group entry.

When storage is being updated or a group entry that is not in use is replaced by another, words just

valid can be thrown away. But written words must eventually be sent to a storage module.

Cache Structure. The 2048 locations in the cache are contained in 128 lines of sixteen each.

The lines are identi�ed by the possible group numbers in a single page, 0{177. Each line contains

four group entries for the given number. Each group entry in turn comprises the number of the

physical page

10

containing the storage group corresponding to the entry and representations of the

four locations in the group, each with valid, written and parity bits.

The hardware also includes a mechanism for keeping track of the use of the various group entries.

Whenever the processor references a group whose corresponding line in the cache already contains

valid entries from four other pages, the hardware puts the new group representation in place of the

least recently used entry in the line. But in doing so it also updates from any representations tagged

as written in the displaced group entry.

Internal Channels. The channels are expected in general to deal with the storage modules, but

if the cache contains any valid words for a page being handled through the channels, the hardware

acts as follows:

In an output operation, any valid representations at locations addressed by a channel are taken

from the cache instead of storage.

In an input operation, all data is sent to storage. However any entries that are in the cache

for locations addressed by the channel are invalidated.

The reasons for this behavior are apparent. For output any valid words left in the cache might as

well be taken since that is faster than going to storage. Furthermore some valid entries may have

been written, and it is assumed that storage will certainly not be more up to date than the cache.

Anything brought in via a channel is assumed to be the correct copy, and it should therefore go to

storage as the page cannot be in use at the same time it is being loaded. Any valid entries left over

in the cache must be from some previous operation, and they should therefore be invalidated, so any

10

The list of all page numbers makes up the cache \directory." For many hardware functions the cache is organized

in four quadrants. A quadrant contains 128 group entries, one from each line.



354 CHAPTER 4. EARLIER PROCESSORS

future references to those locations will go to storage for the correct copy. Should any of the valid

leftovers be tagged as written, it is assumed the Monitor would have swapped out the modi�ed page

before bringing in the new. Of course a page used as temporary storage, or to hold counters and

control words, albeit modi�ed, can just be thrown away.

Cache Programming

The operations the program can perform on or for the cache are three: to invalidate, to validate,

and to unload. Any of these operations may be carried out for all entries in the cache or for all

entries of a single page. To invalidate a location is simply to clear its valid and written bits so it no

longer represents anything. To validate or unload means to update storage, i.e. to write a cached

word into storage if it is tagged as written, and to clear the written bit. Otherwise validating storage

leaves the validity of the cache entries unchanged, whereas unloading invalidates all entries, written

or not, in the groups being processed (all those in a single page or the entire cache).

Following power turnon in any system, the cache use tables must be initialized and the cache

invalidated, as its initial state is indeterminate. Beyond this, a system with a single central processor

and internal channels requires no cache programming, as everything is handled adequately by the

hardware. However if a system contains facilities that bypass the processor to deal directly with

external memory, whether such facility be an external channel or another central processor, then

the Monitor must actually manage the relationship between storage modules and cache.

As an example of such management and to illustrate the di�erence in use between validation and

unloading, consider the situation in which a program is through with the data in a particular

(modi�ed) page and it is to be swapped via an external channel with new data brought into the

same physical page for later use. The page must be unloaded into storage so that subsequently the

program will go there for the new data. On the other hand suppose a program has created some

code in a page, and the system is both to go ahead and execute it immediately and place it in a

library. Now validation is the proper procedure: while the storage copy is being �led, the program

can continue execution from the cache.

For initialization and management, there is one instruction that initializes the use tables and six

that sweep the cache to perform the above three operations for a single page or all pages. Note that

a sweep of the entire cache is always necessary, even for handling a single page, as there is no prior

way of knowing whether any given line contains a group from any given page. Sweeping for a single

page does however take less time than sweeping for all pages. In the latter case the sweeper must

check all 512 group entries, whereas the former requires checking only every line to see if it contains

an entry for the speci�ed page, and there can be at most one such entry. Moreover sweeping for all

pages can usually be expected to require more storage references than sweeping for a single page. In

this light it should be noted that the sweep instructions simply initiate operations which are then

carried forward by the cache sweeper. The program can continue while the sweep is going on, but

this can be expected to slow down the sweep as the cache and program would then compete for

storage references. That a sweep is in progress is indicated by the Sweep Busy 
ag being on, and at

completion the sweeper clears Busy and sets Sweep Done. The program can check both of these 
ags

among what are otherwise the processor error conditions, and it can enable the latter to request an

interrupt on the level assigned to the processor (x4.1.8).

These are I/O instructions wherein the cache sweeper has device code 014, mnemonic CCA. But the

instructions have their own mnemonics since they bear no relation to the standard I/O operations.

Six of the eight are used: the BLKI and CONO also sweep, doing nothing but wasting cache cycle



4.1. KL10 SYSTEM OPERATIONS 355

time. The single instruction that initializes the use tables is discussed at the end of the section.

0 12 1314 1718 35

I X Y

SWPIA Sweep Cache, Invalidate All Pages (DATAI CCA,)

70144

E is not used.

11

Set Sweep Busy, and clear the valid and written bits in all cache entries. At the completion of the

sweep, clear Sweep Busy and set Sweep Done, requesting an interrupt on the level assigned to the

processor.

0 12 1314 1718 35

I X Y

SWPIO Sweep Cache, Invalidate One Page (CONI CCA,)

70164

Set Sweep Busy, and clear the valid and written bits in all cache entries for the physical page

speci�ed by bits 23{35 of E. At the completion of the sweep, clear Sweep Busy and set Sweep Done,

requesting an interrupt on the level assigned to the processor.

0 12 1314 1718 35

I X Y

SWPVA Sweep Cache, Validate All Pages (BLKO CCA,)

70150

E is not used.

11

Set Sweep Busy, and write into storage all cached words whose written bits are set. Clear all written

bits but do not change the validity of any entries. At the completion of the sweep, clear Sweep Busy

and set Sweep Done, requesting an interrupt on the level assigned to the processor.

0 12 1314 1718 35

I X Y

SWPVO Sweep Cache, Validate One Page (CONSZ CCA,)

70170

Set Sweep Busy, and write into storage all cached words whose written bits are set and which are

found in entries for the physical page speci�ed by bits 23{35 of E. Clear the written bits associated

with those words sent to storage, but do not change the validity of any entries. At the completion

of the sweep, clear Sweep Busy and set Sweep Done, requesting an interrupt on the level assigned

to the processor.

0 12 1314 1718 35

I X Y

SWPUA Sweep Cache, Unload All Pages (DATAO CCA,)

70154

E is not used.

11

11

I, X and Y are reserved and should be zero.



356 CHAPTER 4. EARLIER PROCESSORS

Set Sweep Busy, and write into storage all cached words whose written bits are set. Invalidate the

entire cache, i.e., clear all valid and written bits. At the completion of the sweep, clear Sweep Busy

and set Sweep Done, requesting an interrupt on the level assigned to the processor.

0 12 1314 1718 35

I X Y

SWPUO Sweep Cache, Unload One Page (CONSO CCA,)

70174

Set Sweep Busy, and write into storage all cached words whose written bits are set and which are

found in entries for the physical page speci�ed by bits 23{35 of E. Invalidate all entries for the

speci�ed page, i.e., clear both their valid and written bits. At the completion of the sweep, clear

Sweep Busy and set Sweep Done, requesting an interrupt on the level assigned to the processor

Timing. Simple invalidation takes little time, and it interferes minimally with the program since it

requires no storage references. Otherwise an average sweep requires on the order of several hundred

microseconds, but varies widely depending on the number of references required. Allowing the

program to run simultaneously slows down the sweep because of competition for storage cycles, but

program time is saved nonetheless.

Management of the cache is relatively straightforward. With external channels the program must

simply be sure always to update storage pages before having them sent out, and to invalidate the

cache entries for pages being brought in so processor references will go to storage for the new data.

The same procedures are used for a multiprocessor system, but here a problem arises when di�erent

processors are allowed to reference the same page at the same time, if either is allowed also to

modify the page. Without modi�cation the cache copies in both processors will remain valid; but if

a processor modi�es the page, the other cannot expect to get up{to{date data from cached words. To

handle this situation, the pager includes mechanisms for bypassing the cache. Each page mapping

12

contains a cache bit for determining whether cache use is allowed for the given page. This cache bit

applies only to an individual page, and has no e�ect at all unless cache use is enabled by the cache

look bit. Analogous to the mapping cache bit is a load bit that applies to all unpaged references

(such as pager references to the process tables). The look and load bits are among the conditions

the Monitor provides to the pager. The way these \cache strategy" conditions govern cache use is

as follows.

Look

0 The cache is disabled | go to storage for all references.

1 Look in the cache for all references. This means always use the

cache (reading or writing) for any locations that already have valid

representations. Furthermore, when there is no valid representation

for a reference, load the cache (reading or writing) if either the

reference is unpaged and the Load bit is 1, or the reference is paged

and the cache bit in the mapping for the page is 1.

12

For information on page mapping refer to x4.1.3 or x4.1.4 depending on whether the system uses respectively the

TOPS{10 or TOPS{20 Monitor. Instructions for handling the pager are discussed in x4.1.5.



4.1. KL10 SYSTEM OPERATIONS 357

Initializing the Cache. The cache use logic contains two tables each with 128 entries. Each entry

in the use table identi�es the use history | from most to least recently used | of the group entries

in the corresponding cache line. With each reference, the use entry for the line must be updated.

But instead of containing complex computational logic, the hardware has a re�ll table that supplies

new use entries as a function of the previous use history of a given line and the group entry currently

being accessed in the line. Following power up the program must initialize the cache use logic by

giving this instruction 128 times to load every 3{bit location in the re�ll table.

0 12 1314 1718 35

I X Y

WRFIL Write Re�ll Table (BLKO APR,)

70010

Load the re�ll data given by bits 18{20 of E into the re�ll table location speci�ed by bits 27{33.

13

2018

Re�ll Table

Data

3327

Re�ll Table

Address

35

After �lling the re�ll table by stepping through locations 0{177 (values of E that are multiples of 4

from 0 to 774), the program should give an SWPIA to invalidate the indeterminate initial contents

of the cache. During the sweep the normal monitoring of cache access by the use logic initializes the

use table from the re�ll table. The way the use table gets set up depends on the data pattern | the

\re�ll algorithm"| loaded into the re�ll table, and the pattern selected depends on the use strategy

desired for the cache. To limit cache use to a single quadrant, simply load the quadrant number

(0{3) into the entire re�ll table. The usual use strategy is to allow equal use of all quadrants and

to start with a presumed use history of most to least recently used corresponding to the numerical

order of the quadrants. To implement this strategy

14

load the following data pattern.

13

The re�ll locations are selected by bits 27-33 to make use of the same lines that supply group numbers to address

entries in the use table.

14

For information on re�ll algorithms for other use strategies, refer to the writeup of MAINDEC 10{DDQDA{L{

D(SUBRTN).



358 CHAPTER 4. EARLIER PROCESSORS

0 1 2 3 4 5 6 7

000 0 1 2 3 4 5 6 7

010 3 1 2 3 2 1 2 3

020 7 1 2 7 1 1 2 7

030 6 5 6 7 5 5 6 7

040 0 3 2 3 0 2 2 3

050 0 1 2 3 4 5 6 7

060 0 7 7 7 0 0 0 7

070 4 6 6 6 4 4 6 4

100 3 1 3 3 1 1 1 3

110 0 7 7 7 0 0 0 7

120 0 1 2 3 4 5 6 7

130 4 5 5 7 4 5 4 7

140 0 1 2 2 0 1 2 1

150 0 5 6 6 0 5 6 0

160 4 5 6 5 4 5 6 4

170 0 1 2 3 4 5 6 7

4.1.3 TOPS{10 Paging and Process Tables

General information about the machine modes and paging procedures is given in x1.4. Here we treat

in detail the structure of the process tables and certain hardware procedures | paging and page

failures | a knowledge of which is necessary for an understanding of executive programming. This

section covers these topics relative to a machine that uses TOPS{10 paging, i. e. a Single{section

KL10 running a TOPS{10 Monitor (microcode version earlier than 271). The next section presents

equivalent information for the TOPS{20 paging. Instructions through which the Monitor controls

the pager and otherwise exercises overall management of the program environment are the same

whether the system uses TOPS{10 or TOPS{20, and are described in x4.1.5.

With paging turned on, the program considers all of its dealings with memory to be in its virtual

address space, and interrupt functions and instructions reference executive virtual address space

except in special cases where a function speci�cally calls for physical references. A virtual address is

any address given in virtual space except those for fast memory, which are treated as physical. The

pager maps only virtual addresses, but it is involved in all references to the extent that it responds

to error situations. Physical references include those made by the pager{microcode to carry out the

mapping procedure, and also microcode references to retrieve interrupt instructions, handle traps

and UUOs, and service the meters and front end.

Paging

All of memory both virtual and physical is divided into pages of 512 words each. In TOPS{10,

the extended addressing capabilities of the KL{10 are not used. Hence, the virtual memory space

addressable by a program is 512 pages; the locations in virtual memory are speci�ed by 18{bit

addresses, where the left nine bits (18{26) specify the page number and the right nine (27{35) the

location within the page. Physical memory can contain 8192 pages and requires 22{bit addresses,

where the left thirteen bits (14{26) specify the page number. The hardware maps the virtual

address space into a part of the physical address space by transforming the 18{bit addresses into



4.1. KL10 SYSTEM OPERATIONS 359

22{bit addresses.

15

In this mapping the right nine bits of the virtual address are not altered; in other

words, a given location in a virtual page is the same location in the corresponding physical page.

The transformation maps a virtual page into a physical page by substituting a 13{bit physical page

number for the 9{bit virtual page number. The mapping procedure is carried out automatically by

the hardware, but the page map that supplies the necessary substitutions is set up by the kernel

mode program. Each word in the map provides information for mapping two consecutive pages with

the substitution for the even numbered page in the left half, the odd numbered page in the right

half.

The pager contains two 13{bit registers that the Monitor loads to specify the physical page numbers

of the user and executive process tables (UPT and EPT). To retrieve a map word from a process

table, the pager uses the appropriate base page number as the left thirteen bits of the physical

address and some function of the virtual page number as the right nine bits. For example, the entire

user space of 512 virtual pages at two mappings per word requires a page map of just half a page,

and this is the �rst half page in the user process table. Thus locations 0{377 in the table hold the

mappings for pages 0 and 1 to 776 and 777. To �nd the desired substitution from the 9{bit virtual

page number, the hardware uses the left eight bits to address the location and the right bit to select

the half word (0 for left, 1 for right)

The executive virtual address space is also 256K, but the page map for it is in three parts. The map

for the �rst 112K (pages 0{337) is in executive process table locations 600{757. The map for the

second half of the virtual address space uses the same locations in the executive process table as are

used in the user process table for the user map (locations 200{377 for pages 400{777). The map for

the remaining 16K in the �rst half of the executive virtual address space is in the user process table,

the mappings for pages 340-377 being in locations 400{417. This means the Monitor can assign a

di�erent set of thirty{two physical pages (the per{process area) for its own use relative to each user.

Hence when switching from one user to another, the Monitor need change only the user process

table, this single substitution making whatever change is necessary in the executive address space

for a particular user.

Two �gures are provided to show the organization of the virtual address spaces, the process tables

and the maps for both user and executive. Figure 4.1 gives the correspondence between the various

parts of the address spaces and the corresponding parts of the page maps. Figure 4.2 lists the

detailed con�guration of the process tables as determined by the hardware. Any table locations not

used are reserved for future use by the hardware or for use by the Monitor for software functions.

Note that the numbers in the half locations in the page map are the virtual pages for which the

half words give the physical substitutions. Hence location 217 in the user page map contains the

physical page numbers for virtual pages 436 and 437

Although the virtual space is always 256K by virtue of the addressing capability of the instruction

format, the Monitor usually limits the actual address space for a given program by de�ning only

certain pages as accessible.

16

The Monitor also speci�es whether each page is public or not, writable

or not, and cacheable or not. The cache bit has an e�ect only if cache use is enabled as the current

cache strategy (x4.1.2); in this case a 1 in the cache bit allows loading the cache for the physical

15

For paging purposes page 0 has only 496 locations using addresses 20{777, as addresses 0{17 reference fast memory,

which is unrestricted and available to all programs. (In general a user cannot reference the �rst sixteen storage module

locations in his virtual page 0.) Throughout this discussion it is assumed that all references are to storage.

16

There is no requirement that the accessible space be continuous | it can be scattered pages. The convention

however is for the accessible space to be in two continuous virtual areas, low and high, beginning respectively at

locations 0 and 400000. The low part is generally unique to a given user and can be used in any way he wishes. The

(perhaps null) high part is a reentrant area, which is shared by several users and is therefore write-protected.



360 CHAPTER 4. EARLIER PROCESSORS

Figure 4.1: KL10 TOPS{10 Virtual Address Space and Process Tables

HRMF-T10VAS.TEX

777777

256K

0

User

Virtual

Address

Space

User

Process

Table

User

Page Map

000 { 777

256

Executive Map

340 { 377

16

Trap & MUUO
16

32

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

Page Fail
4

Meter Block

4

184

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

@

@

@

@

@

�

�

�

�

�

�

�

�

�

�

Section References

Trap x2.9.6

MUUO x2.16

Interrupt x4.1.1

Meters x4.1.6

DTE20 x4.1.7

777777

0

Executive

Virtual

Address

Space

Executive

Process

Table

Channel Logout

32

Interrupt
16

Block Fill Words

4

44

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

DTE20

Control Blocks

32

400 | 777

128

























�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�� 17

��

�

�

�

�

�

�

�

�

�

�

�

Trap

3

52

��

�

�

�

�

�

�

�

�

�

�

�

Meter Block
5

31

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

000 | 337

112

16

�������

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

EE

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

112K

16K

128K

Shaded Areas

Are Reserved



4.1. KL10 SYSTEM OPERATIONS 361

Figure 4.2: TOPS{10 Process Table Con�guration (KL10)

HRMF-T10PTC.TEX

User Process Table Executive Process Table

777 777

0 0
User Page 0 User Page 1

User Page 776 User Page 777

377

400
Executive Page 340 Executive Page 341

417

Executive Page 376 Executive Page 377

420

Reserved

421 User Arithmetic Over
ow Trap Instruction

422 User Pushdown Over
ow Trap Instruction

423 User Trap 3 Trap Instruction

424

MUUO Stored Here

425

MUUO Old PC Word

426

MUUO Process Context Word

427

Reserved

430 Kernel No Trap MUUO New PC Word

431
Kernel Trap MUUO New PC Word

432 Supervisor No Trap MUUO New PC Word

433
Supervisor Trap MUUO New PC Word

434 Concealed No Trap MUUO New PC Word

435
Concealed Trap MUUO New PC Word

436 Public No Trap MUUO New PC Word

437
Public Trap MUUO New PC Word

440

477

Reserved

500 Page Fail Word

501
Page Fail Old PC Word

502 Page Fail New PC Word

503

Reserved

504

505

User Process Execution Time

506

507

User Memory Reference Count

510

Reserved

Eight Channel Logout Areas

Each: 0 Initial Channel Command

1 Gets Channel Status Word

2 Gets Last Updated Command

3 Reserved

37

40

Reserved

41

42

Standard Priority Interrupt Instructions

57

60

Four Channel Block Fill Words

63

64

Reserved

137

140

Four DTE20 Control Blocks

177

200
Executive Page 400 Executive Page 401

Executive Page 776 Executive Page 777

377

400

420

Reserved

421 Executive Arithmetic Over
ow Trap Instruction

422
Executive Pushdown Over
ow Trap Instruction

423 Executive Trap 3 Trap Instruction

424

507

Reserved

510

511

Time Base

512

513

Performance Analysis Count

514
Interval Counter Interrupt Instruction

515

577

Reserved

600 Executive Page 0 Executive Page 1

757

Executive Page 336 Executive Page 337

760

Reserved



362 CHAPTER 4. EARLIER PROCESSORS

page when referenced as this particular virtual page, whereas a 0 limits cache use to look but do

not load. Each word in the page map has this format to supply the necessary information for two

virtual pages.

00

A

11

P

22

W

33

S

44

C

175

Physical Page

Address Bits 14{26

1818

A

1919

P

2020

W

2121

S

2222

C

3523

Physical Page

Address Bits 14{26

Data for Even Virtual Page Data for Odd Virtual Page

Bits 5{17 and 23{35 contain the physical page numbers for the even and odd numbered virtual pages

corresponding to the map location that holds the word. The properties represented by 1s in the

remaining \page use" bits are as follows.

Bit Meaning of a 1 in the Bit

A Access allowed

P Public

W Writable (not write{protected)

S Software (not interpreted by the hardware)

C Cacheable

Page Table. If the complete mapping procedure described above were actually carried out in every

instance, the processor would require two memory references for every reference by the program.

To avoid this, the pager contains a page table, in which it keeps a large assortment of mappings for

both the executive and the current user. In a manner analogous to the way the cache is organized

to handle word groups of four, the pager handles mappings in sets of eight. A page set is eight

consecutively numbered pages beginning with one whose number is a multiple of 10

8

. Each page

set consists of those pages whose mappings are contained in a single word group in the page map.

The 512 locations in the page table are contained in sixty{four lines, each of eight locations holding

the mappings for the eight pages of a set. The lines are identi�ed by the possible page{set numbers

in an address space, 0{77, and the individual locations are accessed by means of the virtual page

numbers, 0{777. Each location has a parity bit and the complete mapping (i.e. map half word) for

the virtual page that identi�es it, including the physical page number and the �ve page use bits.

Associated with each line are a bit that indicates whether the speci�ed page set is in the user or

executive address space, and a bit that indicates whether the set of mappings is valid or not (it is

not suitable to clear a line as zero is a perfectly valid mapping, albeit for an inaccessible page). The

user and validity bits for all lines collectively constitute the page table directory

When the program references a page contained in a page set whose mapping entry is tagged as

valid and in the program address space, the 13{bit physical number from the mapping location for

the virtual page is used as the left thirteen bits in the physical address for the memory reference

(provided of course that the reference is allowable according to the A, P , and W bits). If however

the mapping set is invalid or is not for the correct address space, the pager makes a memory reference

(referred to as a \page re�ll cycle") to get the word group containing the mapping for the speci�ed

virtual page from the page map. Even when there is no cache, all eight mappings from the word

group are entered into the page table, �lling and validating the line for the page set. This means

the mappings will also be in the table for subsequent references to pages in the same set, although



4.1. KL10 SYSTEM OPERATIONS 363

some may require a trap to the Monitor to make them accessible.

Note that all the mappings in an entire line of the page table are for a single space, user or executive.

Since most programs are written beginning at page 0 (and often page 400 for a pure part), a mecha-

nism is built into the table to avoid excessive re�lls due to switching between user and executive.. In

the numbers actually used to select lines in the table, the value of address bit 19 is inverted in user

address space. For a given page number, this causes a di�erence of 200 in the line selection number

for user space as against executive space. Suppose the executive uses pages 0{37 and 400437, and

also uses the per{process area, pages 340-377. Then if the user is limited to pages 0{137, 240{577

and 640{777, no con
ict will ever occur between them in the page table.

Page Failure

When for any reason the pager is unable to make a desired memory reference, an event known as a

\page failure" occurs. For this the pager terminates the instruction immediately, without disturbing

PC or storing any results in memory or the accumulators, and executes a page fail trap.

17

The trap

operation makes use of three locations in the user process table: it places a page fail word in location

500, identi�es the failed state of the processor by placing the current PC word in location 501, and

sets up the 
ags and PC according to a new PC word in location 502. The processor then resumes

operation in the new state at the location now addressed by PC. The page fail word supplies this

information.

00

U

51

Failure

Type

5111

1

7611

0

22

A

33

W

44

S

55

T

66

P

77

C

88

V

3518

Virtual Address

Whether the violation occurred in user or executive address space is indicated respectively by a 1 or

0 in bit 0; and a 1 or 0 in bit 8 indicates whether or not a virtual address was given for the reference.

If bit 1 is 1, bits 6 and 7 are indeterminate, and the number in bits 1{5 (� 20) indicates the type of

\hard" failure as follows.

21 Proprietary violation | an instruction in a public page has attempted to reference a con-

cealed page, or a public program has attempted to fetch an instruction from a concealed

page at an illegal entry point (one not containing a PORTAL). The failure for an illegal entry

(which forces bit 8 to 0) occurs at the next reference, after the instruction is decoded, so the

fail address is meaningless.

22 Page re�ll failure | this is a hardware malfunction. The pager found no mapping for the

virtual page in the page table, so it re�lled the line from the page map but still could not

�nd it.

23 Address failure | this is caused by the satisfaction of an address condition selected by the

17

A page failure that occurs during an interrupt instruction does not act this way. Instead it places a page fail

word in AC 2, block 7, and sets the In{Out Page Failure 
ag (CONI APR, bit 26), requesting an interrupt on the level

assigned to the processor.



364 CHAPTER 4. EARLIER PROCESSORS

program. It is used for debugging purposes, such as to �nd an instruction that is maliciously

wiping out a memory location, and is explained in x4.1.5 with the description of the DATAO

APR, instruction that sets it up. Bit 8 is forced to 0 by this failure.

25 Page table parity error | the pager has encountered a page table mapping with incorrect

parity.

36 AR parity error | the processor has detected incorrect parity in a word read into AR

(arithmetic register) from a storage module, the cache, or the E bus, and has saved the word

(with correct parity) in AC 0, block 7. When the source is a storage module, the MB Parity

Error 
ag is also set (CONI APR, bit 27).

37 ARX parity error | the processor has detected incorrect parity in a word read into ARX

(arithmetic register extension) from a storage module or the cache, and has saved the word

(with correct parity) in AC 1, block 7. When the source is a storage module, the MB Parity

Error 
ag is also set (CONI APR, bit 27).

If the failure is not one of these, then bits 1{7 have the format shown above, where A,W , S , P , and

C are simply the corresponding bits taken from the mapping for the page speci�ed by bits 18{26,

and T indicates the type of reference in which the failure occurred | 0 for a read{only reference, 1

for any reference involving writing. The type of reference per se implies nothing about the cause of

failure | it indicates only the reason the failed reference was being made. Of course T being 1 in

conjunction with W being 0 certainly implies the cause of failure.

For a page fail trap, the new PC word is set up by the Monitor to transfer control to kernel mode.

After rectifying the situation, the Monitor returns to the interrupted instruction, which starts over

again from the beginning or from the stopping position in a multipart instruction. Even a two{part

instruction that has been stopped by a failure in the second part is redone properly, provided the

Monitor restores First Part Done. The mechanism for making a correct return and the e�ects it

produces on a BLT are the same as for an interrupt, and are described under the special considerations

given at the end of x4.1.1.

Note that a soft failure

18

seldom implies that anything is \wrong"| unless a program has attempted

to write in a truly write{protected area. Consider a typical case where the Monitor has, for example,

ten or twenty pages of a user program in core; these would be the virtual pages indicated as accessible.

When the user attempts to gain access to a page that is not there (a virtual page indicated in its

mapping as inaccessible), the Monitor would respond to the page failure by bringing in the needed

page from the disk, either adding to the user space or swapping out a page the user no longer needs.

The same situation exists for writability. When bringing in a user program, the Monitor would

ordinarily indicate as writable only the bu�er area and other pages that will de�nitely be altered,

distinguishing those that must be revised on the disk at the end from those that can be thrown

away by setting the software bit. Then in response to a write failure, the Monitor makes the page

writable and sets the software bit to indicate to itself that that page has in fact been altered and

must be saved. When the user is done, the Monitor need write back onto the disk only those pages

for which both W and S are set.

18

In a soft page failure or page table parity error, the line containing the mapping for the page is invalidated on the

assumption the Monitor will change it. When the instruction is restarted, the pager must go to the page map to get

new information for the table.



4.1. KL10 SYSTEM OPERATIONS 365

The Map Instruction

It is often helpful for the Monitor or a debugging package to be able to determine how the pager

would respond to a particular reference without actually chancing a page failure. It may also

be useful to determine where a particular virtual page is in physical memory, e.g. to set up a

channel command list. For such purposes the processor has this instruction, which unlike all other

instructions described in this chapter, is not an I/O instruction even though it is subject to the same

restrictions.

0 12 1314 1718 35

I X Y

8 9

A

MAP Map an Address

257

If the pager is on and the processor is in kernel or user I/O mode, map the page number of the

virtual e�ective address E and place the resulting physical address and other map data in AC. The

information loaded into AC for a true mapping is of the form

00

U

11

0

22

A

33

W

44

S

55

0

66

P

77

C

88

1

139

00

3514

Physical Address

where bits 14{26 are the physical page number the pager supplies for E , bit 0 is 1 or 0 depending

on whether the paging is done in user or executive address space, and A, W , S , P , and C are the

page use bits from the mapping as explained above. If however there is a parity error in the page

table entry, or the paging is done in user mode public but the page, while accessible, is private, AC

receives

00

U

51

Failure

Type

11

1

66

P

77

C

88

1

139

00

3514

Physical Address

The failure code can be only 21 or 25 for a proprietary or parity error, where in the latter case those

bits supplied by the mapping, 6, 7 and 14{35, are meaningless.

This instruction cannot be performed in a user program unless User In{Out is set, nor in a supervisor

program. Instead of mapping the address, it executes as an MUUO. If the pager is o�, the result is

unde�ned.

Notes. The instruction itself cannot fail because it does not actually reference memory: it just

translates the address and gets other mapping data. However the e�ective address calculation could

fail, and getting the mapping may require a re�ll, in which a hard failure could occur.



366 CHAPTER 4. EARLIER PROCESSORS

4.1.4 TOPS{20 Paging and Process Tables

General information about the machine modes and paging procedures is given in x1.4. Here we

treat in detail the structure of the process tables and certain hardware procedures | paging and

page failures | a knowledge of which is necessary for an understanding of executive programming.

This section covers these topics relative to a machine that uses TOPS{20 paging,

19

i. e. any KL10

running the TOPS{20 Monitor, or an Extended KL10 running the TOPS{10 Monitor (microcode

version 271 or greater). The previous section presents equivalent information for the TOPS{10

Monitor. Instructions through which the Monitor controls the pager and otherwise exercises overall

management of the program environment are the same whether the system uses TOPS{20 or TOPS{

10, and are described in x4.1.5.

With paging turned on, the program considers all of its dealings with memory to be in its virtual

address space, and interrupt functions and instructions reference executive virtual address space

except in special cases where a function speci�cally calls for physical references. A virtual address is

any address given in virtual space except those for fast memory, which are treated as physical. The

pager maps only virtual addresses, but it is involved in all references to the extent that it responds

to error situations. Physical references include those made by the pager{microcode to carry out the

mapping procedure, and also microcode references to retrieve interrupt instructions, handle traps

and UUOs, and service the meters and front end.

NOTE

Hardware paging operations are inextricably intertwined with the activities of the Mon-

itor. The reader must be familiar with both to be able to understand either fully.

Paging

All of memory both physical and virtual is divided into pages of 512 words each. Physical memory

can contain 8192 pages; its locations are speci�ed by 22{bit addresses, where the left thirteen

bits (14{26) specify the page and the right nine (27{35) the location within the page. The virtual

memory space addressable by a program is 16,384 pages and requires 23{bit addresses, where the left

fourteen bits (13{26) are the extended page number. However the virtual space is usually regarded

as composed of thirty{two sections, each of 512 pages. With this view, the extended page number

has two parts: the left �ve bits (13{17) specify the section, and the right nine (18{26) specify the

page.

20

Thus within each virtual section, locations are speci�ed by 18{bit addresses, where the

left nine bits (18{26) are the page number. The hardware maps each section of the virtual address

space into a part of the physical address space by transforming the 18{bit addresses into 22{bit

addresses.

21

In this transformation the right nine bits of the virtual address are not altered; in other

19

For additional information on the kind of paging employed in a TOPS{2O system, refer to \Storage organization

and management in TENEX", by Daniel L. Murphy, AFIPS | Conference Proceedings, Vol. 41, page 23, AFIPS

Press, Montvale, NJ.

20

The reasons for holding to the section{page view are two. First, the page mapping procedures are actually set up

that way. Second, although large data structures can arbitrarily cross section boundaries, the program cannot. For

the program to get from one section to another requires an explicit transfer of program control. PC has twenty{three

bits, but it counts in only the right eighteen: when going beyond the end of a section, it simply wraps around to the

beginning of the same section (from location 777777 to 0).

21

The mapping procedure is of course applied only to storage module references, whether cached or not. AC

references, which can be made by any program, even when virtual page 0 is accessible, are made directly to fast



4.1. KL10 SYSTEM OPERATIONS 367

words a given location in a virtual page is the same location in the corresponding physical page. The

translation maps a virtual page into a physical page by substituting a 13{bit physical page number

for the 9{bit virtual page number. The mappings are di�erent for each section by virtue of each

section having a separate page map. The procedure is carried out automatically by the pager, but

the maps that supply the necessary substitutions are set up by the kernel program.

Pointers to the page maps for the various user and executive virtual sections are contained in section

tables that begin at location 540 in the user and executive process tables (UPT and EPT). The pager

contains two 13{bit registers that the Monitor loads to specify the physical page numbers of these

tables. To retrieve a section pointer from a process table, the pager uses the appropriate base page

number as the left thirteen bits of the physical address and 540 plus the virtual section number as

the right nine bits.

22

The section pointer must identify | either directly or indirectly | a physical

page that contains the page map for the section. Every pointer and mapping takes one word, and

since there are 512 pages in a section and 512 words in a page, a page map for a section requires

exactly one page.

Figures are provided to show the organization of the virtual address spaces, the process tables and

the section tables for both user and executive. Figure 4.3 gives the general layout of the process

tables and shows the relation between the virtual address spaces and section tables. Figure 4.4 lists

the detailed con�guration of the process tables for the extended version of the processor and Figure

4.5 repeats this information for the single{section version of the processor.

23

Any table locations

not used are reserved for future use by the hardware or use by the Monitor for software functions.

Although the virtual space is always thirty{two sections of 256K by virtue of the addressing capability

of the instruction and indirect word formats, the Monitor usually limits the actual address space for

a given program by de�ning only certain sections or pages as accessible. There is no requirement

that the accessible space be continuous | it can be scattered pages. The Monitor also speci�es

whether each section or page is public or not, writable or not, and cacheable or not. To determine

the mapping for a given virtual page, the microcode carries out a pointer evaluation procedure that

starts at the appropriate entry in the section table. If it is discovered during this procedure that the

section or page is inaccessible, the page map or the referenced page is not in memory, or the program

is attempting to write in a write{protected page, the microcode traps to the Monitor, which must

handle the situation. A trap to the Monitor for a reason of this sort is produced by generating a

\soft page failure." But if nothing is amiss, the procedure is carried out entirely by the microcode

| with no need to call the software | and it generates the mapping for the speci�ed virtual page.

The procedure requires access to both the section table and page map, to a memory status table

in which the microcode keeps track of the use made of the page map and the program{referenced

page, and perhaps to other prede�ned or software{de�ned tables as well. If the complete procedure

were carried out in every instance, the processor would require at least �ve memory references for

every one by the program. To avoid this, each mapping generated by the procedure is placed in a

page table, and the pager makes its virtual{to{physical translations from the mappings held in the

table. Hence it is necessary to go through the evaluation procedure only when the mapping is not

memory and require no mapping.

22

In a single{section KL10 paging procedures are still as given here, but all addresses have zero section numbers.

23

For release 1 or 2 of the TOPS{20 Monitor, the information given in Figure 4.5 is incorrect for User Process Table

locations 424{427 and 500{503, which should read as follows:

424 MUUO Stored Here 500 Page Fail Word

425 MUUO Old PC Word 501 Page Fail Old PC Word

426 MUUO Process Context Word 502 Page Fail New PC Word

427 Reserved 503 Reserved

Moreover, the section tables are at User and Executive Process Table locations 440{477, rather than 540{577.



368 CHAPTER 4. EARLIER PROCESSORS

Figure 4.3: TOPS{20 Virtual Address Space and Process Table Layout

HRMF-KLTWENVAS.TEX

37777777

32 Sections

of 512 Pages

of 512 words

each.

(8192 KW)

0

1000000

User

Virtual

Address

Space

Section 0

Section 1

Section 37

User

Process

Table

272

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

Trap & MUUO

16

32

��

�

�

�

�

�

�

�

�

�

�

��

Page Fail 4

Meter Block

4

24

��

�

�

�

�

�

�

�

�

�

�

��

User

Section Table

32

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

128

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

DD

37777777

32 Sections

of 512 Pages

of 512 words

each.

(8192 KW)

0

1000000

Executive

Virtual

Address

Space

Section 0

Section 1

Section 7777

Executive

Process

Table

Channel

Logout Areas

32

Interrupt
16

Block Fill Words

4

��

�

�

�

�

�

�

�

�

�

�

��

44

DTE20

Control Blocks

32

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

145

Trap
3

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

52

Meter Blocks

5

�������

19

Executive

Section Table

32

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

128

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

DD

Shaded Areas

Are Reserved



4.1. KL10 SYSTEM OPERATIONS 369

Figure 4.4: Extended TOPS{20 Process Table Con�guration

HRMF-KLTWENPTCX.TEX

User Process Table Executive Process Table

777 777

0 0

Reserved

Note:

Asterisks indicate

locations whose use

di�ers froms those

in the single{section

process table, listed

in the next �gure.

420

Address of LUUO Block
*

421
User Arithmetic Over
ow Trap Instruction

422 User Pushdown Over
ow Trap Instruction

423
User Trap 3 Trap Instruction

424 MUUO Flags MUUO Op Code, A

*

425

MUUO Old PC
*

426

E of MUUO
*

427

MUUO Process Context Word

430 Kernel No Trap MUUO New PC

*

431
Kernel Trap MUUO New PC

*

432 Supervisor No Trap MUUO New PC

*

433
Supervisor Trap MUUO New PC

*

434 Concealed No Trap MUUO New PC

*

435
Concealed Trap MUUO New PC

*

436 Public No Trap MUUO New PC

*

437 Public Trap MUUO New PC

*

440

477

Reserved

500

*

Page Fail Word

501 Page Fail Flags

*

502 Page Fail Old PC

*

503 Page Fail New PC

*

504

505

User Process Execution Time

506

507

User Memory Reference Count

510

537

Reserved

540

577

User Section 0

User Section 37

600

777

Reserved

Eight Channel Logout Areas

Each: 0 Initial Channel Command

1 Gets Channel Status Word

2 Gets Last Updated Command

3 Reserved

37

40

Reserved

41

42

Standard Priority Interrupt Instructions

57

60

Four Channel Block Fill Words

63

64

Reserved

137

140

Four DTE20 Control Blocks

177

200

420

Reserved

421 Executive Arithmetic Over
ow Trap Instruction

422 Executive Pushdown Over
ow Trap Instruction

423 Executive Trap 3 Trap Instruction

424

507

Reserved

510

511

Time Base

512

513

Performance Analysis Count

514 Interval Counter Interrupt Instruction

515

537

Reserved

540

Executive Section 0

577

Executive Section 37

600

Reserved



370 CHAPTER 4. EARLIER PROCESSORS

Figure 4.5: Single{Section TOPS{20 Process Table Con�guration

HRMF-KLTWENPTCS.TEX

User Process Table Executive Process Table

777 777

0 0

Reserved

Note:

Asterisks indicate

locations whose use

di�ers froms those

in the extended process

table, listed in the

preceding �gure.

420

Reserved
*

421
User Arithmetic Over
ow Trap Instruction

422 User Pushdown Over
ow Trap Instruction

423
User Trap 3 Trap Instruction

424

Reserved
*

425

MUUO Stored Here
*

426

MUUO Old PC Word
*

427

MUUO Process Context Word

430 Kernel No Trap MUUO New PC Word

*

431
Kernel Trap MUUO New PC Word

*

432 Supervisor No Trap MUUO New PC Word

*

433
Supervisor Trap MUUO New PC Word

*

434 Concealed No Trap MUUO New PC Word

*

435
Concealed Trap MUUO New PC Word

*

436 Public No Trap MUUO New PC Word

*

437 Public Trap MUUO New PC Word

*

440

477

Reserved

500

*
Reserved

501 Page Fail Word

*

502 Page Fail Old PC Word

*

503 Page Fail New PC Word

*

504

505

User Process Execution Time

506

507

User Memory Reference Count

510

537

Reserved

540

577

User Section 0

User Section 37

600

777

Reserved

Eight Channel Logout Areas

Each: 0 Initial Channel Command

1 Gets Channel Status Word

2 Gets Last Updated Command

3 Reserved

37

40

Reserved

41

42

Standard Priority Interrupt Instructions

57

60

Four Channel Block Fill Words

63

64

Reserved

137

140

Four DTE20 Control Blocks

177

200

420

Reserved

421 Executive Arithmetic Over
ow Trap Instruction

422 Executive Pushdown Over
ow Trap Instruction

423 Executive Trap 3 Trap Instruction

424

507

Reserved

510

511

Time Base

512

513

Performance Analysis Count

514 Interval Counter Interrupt Instruction

515

537

Reserved

540

Executive Section 0

577

Executive Section 37

600

Reserved



4.1. KL10 SYSTEM OPERATIONS 371

available in the page table. Since the objective of the procedure is to place a mapping in the table,

it is referred to as a \page re�ll."

Page Table. A location in the page table contains a mapping entry in this format.

24

A PMWC

Physical Page

Address Bits 14{26

Each entry is identi�ed as providing the physical page number for the translation for a particular

virtual page in a particular section and address space (user or executive). A 1 in the A bit means

the location contains a valid mapping, and the page is therefore immediately accessible without

requiring further action by the pager. Otherwise the rest of the entry is meaningless,

25

as A being

0 does not necessarily mean the page is inaccessible | only that a re�ll is required to determine its

accessibility. The properties represented by 1s in the remaining \page use" bits are as follows.

Bit Meaning of a 1 in the Bit

P Public. A 0 means the page is private.

M Modi�ed | and therefore writable without further ado. A re�ll produces

a 1 in this bit if the page has already been modi�ed or the reference that

caused the re�ll is for write and the page is writable. A 0 does not imply

that the page is write-protected, but simply that if a write reference occurs,

the pager must �nd out if it can be written. Throughout this discussion,

\write reference" means any reference involving writing; \read reference"

means read only.

W Writable. A re�ll sets this bit if the page is writable (i.e. not write-

protected).

C Cacheable. This bit has an e�ect only if cache use is enabled as the current

cache strategy (x4.1.2). In this case a 1 in the cache bit allows loading of

the cache for the physical page when referenced as this particular virtual

page, whereas a 0 limits cache use to look but do not load.

The page table is organized for page groups in a manner somewhat analogous to the way the cache

handles word groups. A page group is four consecutively numbered pages beginning with one whose

number is a multiple of 4. Each page group consists of those pages whose mappings are contained in

a single word group in the page map. The 512 locations in the page table are contained in 128 lines,

each of four locations for holding the mappings for the four pages of a group. The lines are identi�ed

by the possible page group numbers in a section, 0{177, and the individual locations are accessed by

means of the virtual page numbers, 0{177. Each location has a parity bit and the complete mapping

resulting from a re�ll, including the physical page number and the �ve page use bits. Associated

with each line is a bit that indicates whether or not the line is valid, a bit that indicates whether

the speci�ed page group is in user or executive address space, and �ve bits that identify the section

24

In the engineering drawings and even in some Monitor documents, the M bit is labeled \writeable" and the W

bit is labeled \software". which names are consistent with their use with the TOPS{10 Monitor.

25

The microcode invalidates a mapping entry by clearing it, but clearing would not be su�cient were there no access

bit, as zero is a legitimate mapping.



372 CHAPTER 4. EARLIER PROCESSORS

containing the page group.

26

When the program references a page, the 13{bit physical number from the mapping for that page is

used as the left thirteen bits in the physical address for the reference provided all necessary conditions

are satis�ed. When the directory indicates the appropriate line is invalid or contains mappings for

a di�erent section or address space, the pager changes and validates the directory entry to match

the desired reference but invalidates the four locations in the line by clearing their access bits. It

then executes a re�ll to get the needed mapping into the table and tries the reference again. If there

is already an appropriate directory entry, but the individual mapping is invalid or the reference is

for writing and M is 0, the pager does a re�ll to get a valid mapping or checks whether it can be

revised to allow the desired reference.

Note that all the mappings in a line of the page table are for a single space, user or executive, and for

a single section. Since most programs are written beginning at page 0, a mechanism is built into the

table to avoid excessive re�lls due to switching between user and executive and among sections. In

the numbers actually used to select lines in the table, the value of address bit 19 is inverted in user

address space, and the value of address bit 20 is inverted in an odd numbered section. For a given

page number this causes a di�erence of 200 in the line selection number for user space as against

executive space, and a di�erence of 100 for an odd section as against an even one. Suppose the

executive uses pages 0{77 and 400{744 in section 1. Then if the user is limited to pages 0{277 and

400{677 in any even section, no con
ict will ever occur between them in the page table. In general a

program should be organized so that it runs in a single section or in noncon
icting parts of di�erent

sections for some signi�cant amount of time. Considerable yet unavoidable switching among sections

can occur however in handling large data structures, as when it is necessary to handle the elements

of a very large array in a number of di�erent orders.

Page Re�ll

The re�ll of a mapping into the page table is accomplished by evaluating various types of pointers

found in several kinds of tables. At some point in the procedure the microcode must encounter a

\page address" that identi�es the page map for the section, and it must end with a page address

that identi�es the physical page corresponding to the referenced virtual page. A page address has

this format.

1712

Storage

Medium

2218

Reserved

3523

Page Number

If bits 12{17 are zero, the storage medium is memory: i.e. bits 23{35 supply the number of a page

that is in memory. If bits 12{17 are nonzero, the page exists but is stored on some other medium

| perhaps the disk | and the microcode traps to the Monitor. A page address may be contained

in a pointer, in which case some of the bits at its left have de�ned uses. But when the page address

stands alone, bits 0{11 of the word containing it can be used arbitrarily by the software.

Special Tables. Besides the section tables in the process tables, a re�ll makes use of two prede�ned

26

The user bits, validity bits, and section numbers for all lines collectively constitute the page table directory. The

Monitor invalidates the contents of the entire table by setting all the validity bits in the directory.



4.1. KL10 SYSTEM OPERATIONS 373

tables: the special page{address table (SPT) and the (core) memory status table (CST). These are

software{determined tables in memory, but their base addresses are held in reserved fast memory

locations, rather than in hardware registers like those of the process tables.

27

The special page{address table contains page addresses that specify shared pages or special pages

(e.g. those used as page maps or other software{de�ned tables). The microcode accesses speci�c

entries in the SPT by indexing on a physical base address (bits 14{35) contained in AC 3, block 6.

The pointer format provides for an index of eighteen bits, so the SPT can actually be as large as

256K (and it need not start on a page boundary).

Information about the use made by programs of the various physical pages is kept in the memory

status table. In every re�ll, unless the base address is zero the microcode updates CST entries for

both the page containing the page map and the page referenced by the program. The entry for a

page is a full word, and is accessed by adding the page number to a nonzero base address contained in

AC 2, block 6. If memory is fully implemented at 8192 pages, the CST occupies sixteen of them, but

need not begin on a page boundary. Note that the microcode does not manipulate CST entries for

the process tables, the SPT, nor the CST itself, unless they are actually referenced by the program

| in other words, unless the re�ll is being performed for a program reference to one of the tables.

The status of a physical page in memory is indicated by a CST entry in this format.

80

State Code

349

Reserved

3535

M

The Monitor keeps a state code in bits 0{8 of the entry; within the code, bits 0{5 represent the page

age, which must be nonzero for the page to be usable, whether it is the program{referenced page or

the page map. Bits 0{5 being zero causes an age trap to the Monitor.

28

The microcode updates the

entry by anding a CST mask word into it and oring a CST data word into that result. These two

words are held respectively in AC 0 and AC 1, block 6. Bits 32{35 in them must be all is or all 0s

as illustrated in order to preserve hardware information.

310

Mask

3532

1 1 1 1

CST Mask Word

310

Data

3532

0 0 0 0

CST Data Word

A 1 in the M bit indicates the page has been modi�ed since being brought into memory.

29

The

27

Remember that all memory tables de�ned by the pager are in physical address space, i.e. they have physical base

addresses. Of course, to load or access a table, the Monitor must use paged virtual addresses. Note that if the base

address is limited to a page number (bits 14{26), the table must begin at a page boundary.

28

Zero age usually means the page is being swapped in and is not yet available for reference. The Monitor can use

part of a CST entry to record which processes use the page.

29

At the completion of a process, the Monitor checks the CST to determine which pages have been modi�ed and



374 CHAPTER 4. EARLIER PROCESSORS

microcode sets this bit in the entry for the referenced page | not that for the page map | if the

reference is write and the page is writable.

Indirect pointers make use of tables whose locations are de�ned entirely by the Monitor. In a single

re�ll, these may include one or more secondary section tables or page maps. Each such table or map

is determined by a page address and a 9{bit index, and is therefore a single page. Memory status is

kept only for the page maps.

Pointers. The microcode evaluates two kinds of pointers: section pointers and map pointers. The

former are used in section tables and the latter in page maps. Members of these two classes are

identical in form but di�er enough in function so they must be treated separately. There are four

types of section and map pointers distinguished by a type code in bits 0{2; of these, three are access

pointers, i.e. they allow access to the given section or page. An access pointer has this format in its

left seven bits.

20

Type

33

P

44

W

66

C

Every access pointer must have use bits for the section or page it represents. These bits, P , W and

C, indicate whether the section or page is public, writable or cacheable. Throughout the evaluation

procedure the microcode e�ectively ands these bits from one pointer to the next, so the �nal result

requires that the given characteristics be speci�ed at every step. In other words if P is 1 in the

�nal pointer for the mapping, the page is public provided the entire section was also speci�ed as

public by the original section pointer, and \publicness" has been speci�ed by every other pointer

encountered along the way. Every access pointer must also either contain a page address or point

to an SPT location that contains a page address.

Section Pointers. Entries in a section table are of these four types.

30

20

0

353

Available to Software

No Access

The section is inaccessible.

Immediate

20

1

33

P

44

W

66

C

117

Reserved

1712

Storage

Medium

2218

Reserved

3523

Page Number

Of Page Map

If bits 12{17 are zero, the page map is in the page speci�ed by bits 23{35. Otherwise the page map

is not in memory

must be rewritten on the disk.

30

Codes 4{7 are unde�ned.



4.1. KL10 SYSTEM OPERATIONS 375

An immediate pointer contains the page address of the page map.

20

2

33

P

44

W

66

C

177

Reserved

3518

Index to SPT location containing

Page Address of Page Map

Shared

The page address of the page map is in the SPT at the location speci�ed by bits 18-35.

This pointer is used for a page map shared by a number of processes. Switching to another map

requires changing only the common SPT entry.

20

3

33

P

44

W

66

C

179

Section Table

Index

3518

Index to SPT location containing page

Address of another Section Table

Indirect

In the SPT location speci�ed by bits 18{35 is the page address of a secondary section table. The

next section pointer to be evaluated is in that table at the location speci�ed by bits 9{17

Indirect pointers are used for Monitor reference to per{job and per{process areas. The pointers

remain while the second section table is swapped with the job or process, or the SPT entry is

changed.

Map Pointers. Entries in a page map are of these four types.

30

20

0

353

Available to Software

No Access

The page is inaccessible.

Immediate

20

1

33

P

44

W

66

C

117

Reserved

1712

Storage

Medium

2218

Reserved

3523

Page Number

For Mapping

If bits 12{17 are zero, the physical page speci�ed by bits 23{35 corresponds to the referenced virtual

page. Otherwise the referenced page is not in memory.

An immediate pointer contains the page address for the mapping.



376 CHAPTER 4. EARLIER PROCESSORS

20

2

33

P

44

W

66

C

177

Reserved

3518

Index to SPT location containing

Page Address for Mapping

Shared

The page address for the mapping for the referenced virtual page is in the SPT at the location

speci�ed by bits 18{35.

This pointer is used for a physical page referenced as di�erent virtual pages by di�erent programs.

The Monitor can move the page simply by changing the SPT entry.

20

3

33

P

44

W

66

C

179

Page Map

Index

3518

Index to SPT location containing page

Address of another Page Map

Indirect

In the SPT location speci�ed by bits 18{35 is the page address of a secondary page map. The next

map pointer to be evaluated is in that map at the location speci�ed by bits 9{17.

CAUTION

Indirect page pointers cannot be used for references made by interrupt instructions.

Re�ll Procedure. If the page table lacks a valid mapping for a reference, the pager must evaluate

section and map pointers to get the desired mapping. The procedure begins with the pointer for

the section from the process table, and the pager follows the trail laid by the various pointers, as

illustrated in Figure 4.6. At any step the microcode traps to the Monitor if it encounters a no{access

pointer or a page address that indicates the page is not in memory. The �rst part of the procedure,

which may go to the SPT or indirectly through it to other section tables, evaluates section pointers

to arrive at the page address of the page map. Using this physical page number as the left thirteen

bits of an address and the number of the referenced virtual page as the right nine bits, the second

part of the procedure retrieves a map pointer and evaluates it. This part may also go to the SPT

or indirectly through it to other page maps to arrive at a page address for the mapping. Unless an

age trap intervenes, or the CST base register is zero, memory status is updated along the way for

any page maps used. If the reference can be made and there is no age trap for the referenced page,

its status is updated including setting the M bit if the program is writing. The microcode then

constructs the desired mapping, places it in the page table, and returns to the waiting reference.

The mapping data is constructed from the result of the pointer evaluation, including the running

evaluation of the use bits, and has the format illustrated in the discussion of the page table. The

microcode always places a 1 in the A bit to indicate that the virtual page is accessible and this is

a valid mapping for it. P and C are simply the result of anding the P and C bits of the various

pointers. M however is not. A re�ll sets up M and W according to the type of reference and the

characteristics of the referenced page.



4.1. KL10 SYSTEM OPERATIONS 377

Figure 4.6: TOPS{20 Paging Pointer Evaluation (Extended KL10)

HRMF-KLTWENPPE.TEX

SPT

Base

-

AC 3 Block 6

Process Table

Executive

or User

Section

Table

Shared

Section

Pointers

Sections

2{37 unused

2 Index540

2
Index

541

542

577

-

1

Not in

Memory

Trap

-

0

Page

Address

Page

-

6

?

CST

��

��

Page Map

for

Section 1

0000

No

Access

Trap

10

Page

173

Immediate

Map Pointer

2
Index

401

Shared

Map

Pointers

-

1

Not in

Memory

Trap

2
Index

400

-

0

Page

Address

Page

-

6

?

CST

��

��

Data

for

Page 1400

162

LSHC 1,{3

3 007
Index

700

-

Indirect

Map

Pointers

1

Not in

Memory

Trap

3 204 Index701

3 417
Index

702

-

0

Page

Address

Page

-

6

?

CST

��

��

Secondary

Page Map

10

Page

417

Immediate

Map Pointer

-

6

?

CST

��

��

11204

Not in

Memory

Trap

��

CW

Page Map

Indexes

from

Indirect

Pointers

Data

for

Page 1173

-

6

?

CST

��

��

561

ILDB 1,13

Page Map

for

Page 1702

Note: this

is also Page

417, Rela-

tive to the

Secondary

Page Map

667

MUL 2,1064

6

?

CST

��

��

The symbol denotes a

test of the CST entry for

the page. If the page

is too \young" an age

trap intervenes. Other-

wise the CST entry is up-

dated and the page refer-

ence is made.

In Section 1, pages 1173,

1400, and 1720 are in

memory. Section 0, pages

1000, 1401, 1700, and

1701 are not; any ref-

erence to them causes a

page fail trap.

Virtual

Address Contents

1173561

ILDB 1,13

1400162

LSHC 1,{3

1702667

MUL 2,1064



378 CHAPTER 4. EARLIER PROCESSORS

Circumstances

31

MW E�ect

Read reference, page not writ-

able.

00 An attempt to write will fail.

Read reference, page writable but

not yet modi�ed (according to

CST).

01 An attempt to write will succeed,

after the mapping is revised.

Page writable, write reference or

page already modi�ed.

11 SetsM in CST entry; an attempt

to write will succeed.

Page Failure

When for any reason the pager is unable to make a desired memory reference, or an extended e�ective

address calculation encounters an incorrectly formatted indirect word, an event known as a \page

failure" occurs. For this the microcode terminates the instruction immediately, without disturbing

PC or storing any results in memory or the accumulators, and executes a page fail trap.

32

The trap

operation makes use of certain locations in the user process table depending on whether the KL10

is extended.

Extended KL10 Single{section KL10

33

The trap places a page fail word in location

500, identi�es the failed state of the processor

by placing the current 
ag{PC doubleword in

locations 501 and 502 (this includes the pre-

vious context section if the failure is in an ex-

ecutive program), sets up PC according to a

new value in location 503, and clears the 
ags

(placing the processor in kernel mode)

The trap places a page fail word in location

501, identi�es the failed state of the processor

by placing the current PC word in location

502, and sets up the 
ags and PC according

to a new PC word in location 503.

The processor then resumes operation in the new state at the location now addressed by PC.

The page fail word supplies this information.

00

U

51

Failure

Type

5111

1

7611

0

22

A

33

W

44

S

55

T

66

P

77

C

88

V

3513

Virtual Address

Whether the violation occurred in user or executive virtual address space is indicated, respectively,

by a 1 or 0 in bit 0; and a 1 or 0 in bit 8 indicates whether or not a virtual address was given for the

31

The missing circumstance produces a page failure.

32

A page failure that occurs during an interrupt instruction does not act this way. Instead it places a page fail

word in AC 2, block 7, and sets the In{out Page Failure 
ag (CONI APR, bit 26), requesting an interrupt on the level

assigned to the processor.

33

The process table locations given are as of Release 3 of the TOPS{20 Monitor. With Release 1 or 2 the trap uses

locations 500{502 instead.



4.1. KL10 SYSTEM OPERATIONS 379

reference. If bit 1 is 1, bits 6 and 7 are indeterminate, and the number in bits 1{5 (� 20) indicates

the type of \hard" failure as follows.

21 Proprietary violation | an instruction in a public page has attempted to reference a con-

cealed page, or a public program has attempted to fetch an instruction from a concealed

page at an illegal entry point (one not containing a PORTAL). The failure for an illegal entry

(which forces bit 8 to 0) occurs at the next reference, after the instruction is decoded, so the

fail address is meaningless.

23 Address failure | this is caused by the satisfaction of an address condition selected by the

program. It is used for debugging purposes, such as to �nd an instruction that is maliciously

wiping out a memory location, and is explained in x4.1.5 with the description of the DATAO

APR, instruction that sets it up. Bit 8 is forced to 0 by this failure.

24 Illegal indirect | an extended e�ective address calculation has encountered an indirect word

with 11 in bits 0 and 1.

25 Page table parity error | the pager has encountered a page table mapping with incorrect

parity

27 Illegal address | a memory reference has supplied an address whose section number is

greater than 37. Bit 8 is forced to 0 by this failure.

36 AR parity error | the processor has detected incorrect parity in a word read into AR from

a storage module, the cache, or the E bus, and has saved the word with correct parity in

AC 0, block 7. When the source is a storage module, the MB Parity Error 
ag is also set

(CONI APR, bit 27).

37 ARX parity error | the processor has detected incorrect parity in a word read into ARX

from a storage module or the cache, and has saved the word with correct parity in AC 0,

block 7. When the source is a storage module, the MB Parity Error 
ag is also set (CONI

APR, bit 27).

If the failure is not one of these, then bits 1{7 (if meaningful) have the format shown above, where A,

M ,W , P , and C are simply the corresponding bits taken from the mapping for the page speci�ed by

bits 13{26, and T indicates the type of reference in which the failure occurred | 0 for a read{only

reference, 1 for any reference involving writing. The type of reference per se implies nothing about

the cause of failure | it indicates only the reason the failed reference was being made. Moreover

the possible con�gurations for these bits are quite limited. A soft page failure can result only from

actions taken in a re�ll or writability check. A valid page table mapping can require action by the

pager only if M is 0 in a write reference. Hence in a soft failure resulting from a valid mapping, bits

0{8 of the page fail word are of the form

00

U

11

0

22

1

33

0

44

0

55

1

66

P

77

C

88

1

for a write failure. When no valid mapping is found, the page fail bits have the form



380 CHAPTER 4. EARLIER PROCESSORS

00

U

11

0

22

0

33

0

44

0

55

T

66

0

77

0

88

1

where for a write failure, T must be 1.

For a page fail trap, the extended KL10 automatically switches to kernel mode, and in the unextended

version the Monitor should set up the new PC word for that action. After rectifying the situation,

the Monitor eventually returns to the interrupted instruction, which starts over again from the

beginning or from the stopping position in a multipart instruction. Even a two{part instruction

that has been stopped by a failure in the second part is redone properly, provided the Monitor

restores First Part Done. The mechanism for making a correct return and the e�ects it produces

on a BLT are the same as for an interrupt, and are described under the special considerations given

at the end of x4.1.1. Before returning to the failed instruction, the Monitor must invalidate the

mapping for the page and revise the pointers for the new situation. Then when the instruction is

restarted, the pager will do a re�ll to get the new, correct mapping.

A no{access pointer may well imply that the section or page simply does not exist. Otherwise a

soft failure seldom implies that anything is \wrong." Consider a typical case where the Monitor

has, for example, ten or twenty pages of a user program in memory. When the user attempts to

gain access to a page that is not there (i.e. for which the re�ll encounters a not{in{memory page

address), the Monitor would respond to the failure by bringing in the needed page from the disk,

either adding to the user space, or swapping out a page the user no longer needs or has not used

recently. Similarly a process using several sections may have only one in core at a time. While

swapping is in progress, the Monitor runs some other user, returning to the interrupted job when

the requested page is available.

The same situation exists for writability. Keeping track of modi�ed pages is handled by the re�ll

procedure using the memory status table. But a page may be write{protected because is it shared

by a number of processes, wherein a change made by one might not be wanted by the others. Thus

in response to a write failure, the Monitor might make a separate writable copy of the page for the

sole use of the process that wishes to modify it.

The Map Instruction

It is often helpful for the Monitor or a debugging package to be able to determine how the pager

would respond to a particular reference without actually chancing a page failure. It may also

be useful to determine where a particular virtual page is in physical memory, e.g. to set up a

channel command list. For such purposes the processor has this instruction, which unlike all other

instructions described in this chapter, is not an I/O instruction even though it is subject to the same

restrictions.

0 12 1314 1718 35

I X Y

8 9

A

MAP Map an Address

257

If the pager is on and the processor is in kernel or user I/O mode, map the (extended) page number



4.1. KL10 SYSTEM OPERATIONS 381

of the virtual e�ective address E and place the resulting physical address and other map data in

AC. The information loaded into AC for a true mapping is of the form

00

U

11

0

22

1

33

M

44

W

55

0

66

P

77

C

88

1

139

00

3514

Physical Address

where bits 14{26 are the physical page number the pager supplies for E , bit 0 is 1 or 0 depending on

whether the paging is done in user or executive address space, and M , W , P , and C are page use

bits from the mapping as explained above. Failure of the instruction to generate a valid mapping is

indicated by AC receiving

00

U

51

Failure

Type

86 139

00

3514

Unde�ned

where bits 6{8 are unde�ned, and the failure code can be 21, 25, 27, 36 or 00 (refer to the preceding

discussion of page failures). Of these, 25 and 36 represent what are e�ectively real failures: a parity

error in the page table entry or in a word retrieved from memory in a re�ll. The others represent

failures that would occur were the instruction actually to reference memory rather than simply

requesting a mapping: 21, an attempt by a public program to reference a private page; 27, an illegal

address; and 00, an age, no{access or not{in{memory trap in a re�ll.

This instruction cannot be performed in a user program unless User In{out is set, nor in a supervisor

program. Instead of mapping the address, it executes as an MUUO. If the pager is o�, the result is

unde�ned.

Notes. The instruction cannot actually fail, because regardless of what happens, the re�ll or page

fail microcode returns to it instead of trapping to the Monitor. The e�ective address calculation

done for it could fail however.

4.1.5 Memory Management

In order properly to manage memory, the kernel program must select the kind of paging and the

cache strategy, set up process tables and page maps for itself and the various users, oversee the

operation of the page table, and select the fast memory block to be used by each program (usually

block 0 for itself). At any given time, accumulator, index register and fast memory references are

made to that AC block that is assigned as \current." Given a particular processor mode (user or

executive, public or private) and an appropriate process table and page map, the Monitor e�ectively

de�nes the address space for a process (which may be itself) by specifying the base address for the

process table and selecting the current AC block.

When a user program calls the Monitor it is usually to request some activity, which may often require

the executive to gain access to the user address space. To facilitate the crossover from one address

space to another, the same instruction through which the Monitor assigns its own current AC block



382 CHAPTER 4. EARLIER PROCESSORS

also allows assignment of an AC block and section for the \previous{context" | i.e. the context

of the process that made the call. These quantities, together with 
ags that indicate the mode of

the caller, allow execution of instructions in the previous context (more about this subject later).

At any point in time, the previous{context is essentially the circumstances in which the previous

process was running. Note that the previous{context need not be the user; the same techniques can

be exploited following a call from one level of the Monitor to another.

For initial setup, the kernel program must be cognizant of certain fundamental characteristics that

can vary from one system to another. For this purpose the instructions for basic management include

not only those that address the pager, but also one that addresses the processor to discover what

those characteristics are.

The device code for the pager is 010, mnemonic PAG.

34

0 12 1314 1718 35

I X Y

APRID Arithmetic Processor Identi�cation

70000

Read the microcode version number, the processor serial number, and a listing of the fundamental

characteristics of the system into location E as shown.

80

Microcode Options

8000

T

2

0

11

X

A

22

X

M

179

Microcode Version

179 2318

Hardware

Options

23181818

5

0

H

1919

C

c

h

2020

C

h

n

2121

X

A

H

2222

M

O

S

3524

Processor Serial Number

3524

0 (T20 ) The microcode implements paging for the TOPS{20 Monitor; 0 indicates TOPS{10

paging.

1 (XA) The microcode handles extended addresses.

2 (XM , exotic microcode) The microcode di�ers in some way from the standard version.

18 (50H ) Line power frequency is 50 Hz; 0 indicates the standard 60 Hz.

19 (Cch) Cache is present in this processor if this bit is 1; 0 indicates that the cache is absent,

e.g., 2040 systems.

20 (Chn) RH20 internal channels are present in the system if this bit is 1; 0 indicates that

external RH10 are used. External channels are used in 1080 con�gurations.

21 (XAH ) The processor is an extended KL10; 0 indicates a single{section KL10. The mi-

crocode options must of course be consistent with the processor type.

22 (MOS ) The system has a master oscillator, which is available as an external clock source. In

34

BLKI PAG, is unassigned and executes as an MUUO.



4.1. KL10 SYSTEM OPERATIONS 383

a system containing MOS memory, the software must select this source (CPU clock source

2) from the PDP{11.

0 12 1314 1718 35

I X Y

CONO PAG, Conditions Out, Pager

70120

Set up the system{oriented characteristics of the pager according to the e�ective conditions E as

shown.

1918

Cache

Strategy

1818

Look

1919

Load

2020 2121

T{20

Pag

2222

Enb

Pag

3523

Executive Base Address (page number)

2424 2525 2626 2727 2828 2929 3030 3131 3232 3333 3434

Load bits 23{35 into the executive base register to select the executive process table. If bit 22 is

1 enable over
ow trapping and enable the pager for the type of paging selected by bit 21: 1 for

TOPS{20, or 0 for TOPS{10. The paging selected must be the same as that implemented by the

microcode as indicated by APRID bit 0. A 0 in bit 22 prevents traps and disables paging so all

memory references are to physical locations unpaged.

35

CAUTION

Paging can be disabled only for executive mode. A user mode program will not run

correctly unless the pager is turned on.

Select the cache strategy according to bits 0 and 1 as follows:

0x Disable the cache.

10 Look for all references, but do not load physical references; for virtual references act as

directed by the cache bit in the mapping for the page.

11 Make complete use of the cache for physical references; for virtual references act as directed

by the cache bit in the mapping for the page.

Invalidate the entire page table by setting the invalid bits in all lines.

0 12 1314 1718 35

I X Y

CONI PAG, Conditions In, Pager

70124

35

Note that disabling the pager does not mean there can be no page failures, as these can be caused by conditions

having nothing to do with paging, i.e. with translating virtual to physical addresses.



384 CHAPTER 4. EARLIER PROCESSORS

Read the system status of the pager into the right half of location E . The information read is the

same as that supplied by a CONO.

0 12 1314 1718 35

I X Y

DATAO PAG, Data Out, Pager

70114

Set up the process{oriented elements of the pager according to the contents of location E as shown.

1818

No

up{

date

accts

1919 2020 2121 2222 3523

User Base Address (page number)

2424 2525 2626 2727 2828 2929 3030 3131 3232 3333 3434

00

Sel

AC

blks

11

Sel

Prev

Ctx

Sect

22

Load

User

Base

Addr

33 44 55 66 86

Current

AC Block

77 88 99 119

Previous

Context

AC Block

1010 1111 1212 1313 1414 1515 1616 17171713

Previous Context

Section

Bits 0{2 are change indicators for parts of the data word: when a bit is 0, the corresponding part

of the word is ignored, and the equivalent value supplied by a previous DATAO remains in e�ect.

If bit 0 is 1, select as the current and previous{context AC blocks those speci�ed by bits 6{8 and

9{11, respectively. If bit 1 is 1, select as the previous{context section that speci�ed by bits 13{17

(which must be zero in a single section processor). If bit 2 is 1, perform these functions:

If bit 18 is 0, update the user accounts as explained in x4.1.6.

Load bits 23{35 into the user base register to select the user process table.

Invalidate the entire page table by setting the invalid bits in all lines.

0 12 1314 1718 35

I X Y

DATAI PAG, Data In, Pager

70104

Read the process status of the pager into location E . The information read is in the same format as

that supplied by a DATAO (bits 0{2 are 1s and bit 18 is 0). Note however that only the AC block

designations and user base address are necessarily the same information supplied by a previous

DATAO. When an MUUO stores its own context as given by the DATAO that set up the process

containing it, it changes the designation of the previous{context section to that in which the program

is currently running. Hence following a call by an MUUO, a DATAI PAG, in the called program will

see as the previous{context section that speci�ed by PC at the time the MUUO was performed.



4.1. KL10 SYSTEM OPERATIONS 385

0 12 1314 1718 35

I X Y

CLRPT Clear Page Table Entry

70110

TOPS{20 TOPS{10

Invalidate the page table mapping entry

for the page referenced by E .

Invalidate the page table line (eight en-

tries) containing the mapping for the page

referenced by E .

At power turn{on the contents of the cache and page table are indeterminate, the processor is in

kernel mode, paging is disabled, the cache is o�, and the current AC block is 0 by default. After

the front end loads the microcode, it then loads the initializing kernel program. This program,

running unpaged in physical memory, should give an APRID to determine system characteristics and

an SWPIA to invalidate the cache. The unpaged program ends with a CONO PAG, that selects the

cache strategy, selects and enables paging, speci�es the executive base address, and invalidates the

page table. From this point the kernel program runs paged and must set up the �rst user or users,

loading the user process tables and page maps, bringing in whatever parts of user programs and data

that are consistent with good working-set management, and setting up the timing and accounting

meters. Finally the Monitor gives a DATAO PAG, to assign the base address and current AC block

for the �rst user, and then transfers control to the user program via an XJRSTF or JRSTF. The

initial DATAO PAG, should have a 1 in bit 18 to inhibit updating accounts before any user has run.

On a call from the user via an MUUO, give a DATAI PAG, to determine the context of the user,

i.e. his AC block and section. Then give a DATAO PAG, that assigns block 0 as current for the

Monitor, assigns the user AC block and section as previous{context for accessing user space, but

leaves the base address alone so the right paging is still available for such access. To return to the

same user, reassign the AC block without changing the base address. Leaving the base address alone

also avoids unnecessary updating of user accounts. Note that on the transfer to a user program no

previous context values need be given as the user cannot employ PXCTs. For switching from one

user to another, give a DATAO PAG, that updates the �rst user's accounts in his process table, as

speci�ed by the old base address, and then loads a base address for the new user. The transfer to

a user is done with a JRSTF or XJRSTF; the latter also restores the previous{context section when

used to return from a higher to a lower level within the executive.

The usual procedure for administering AC blocks is to assign block 1 to all users and assign two

or three blocks for the sole use of interrupt routines. Suppose the assignments are: block 0 for the

Monitor, block 1 for all users, block 2 for the highest priority interrupt level, block 3 for the second

highest level, and block 4 for all other levels. Then in no circumstances is it necessary to determine

which block to save, and interrupt routines on the highest, second highest and lowest levels need

not save any. Moreover, the Monitor need not even store block 1 when it takes control from a user

temporarily. When switching from one ordinary user to another, the Monitor usually stores the �rst

user's accumulators in his process table or shadow area | this is locations 0{17 in user virtual page

0, an area not generally accessible to the user at all | and loads the new user's accumulators from

his process table or shadow area, where they were stored after the last time the new user ran.

On a change from one process to another the entire page table must be invalidated, but this is done

automatically by the instruction that assigns the new user base address. If the system uses shared

or indirect pointers, or several virtual page numbers point to the same physical page, then the table



386 CHAPTER 4. EARLIER PROCESSORS

must be invalidated whenever a page is removed from memory or a pointer is removed from a user

section table or page map. On the other hand deletion of a page with a unique mapping requires

only that a CLRPT be given to invalidate the line containing it. In multiprocessor operation all page

tables must be cleared whenever one is. CST entries can be used to communicate paging information

from one processor to another.

Previous{Context Execute

Ordinarily an instruction in a user program is performed entirely in user address space, and an

instruction in the executive program is performed entirely in executive address space. But to fa-

cilitate communication between Monitor and users, the executive can execute instructions in which

selected references cross over the boundary between user and executive address spaces. This feature

is implemented by the previous{context execute, or PXCT, instruction. The mnemonic PXCT is

for convenience only and has no meaning to the assembler; it is used simply to indicate an XCT

with nonzero A bits. A PXCT is an XCT. Although the PXCT is given by a program in the current

context, some of the references made by the executed instruction can be in the previous{context. A

PXCT can be given only in executive mode, but the previous{context may be the user, as following

a call to the Monitor by the user. The previous{context can however be the executive, to allow

communication between one level of the executive program and another, as when the Monitor gives

an MUUO to itself. (Note: it is not intended that PXCT be used by the Monitor for unsolicited

references to a user program.)

It is very important to understand just which operations are a�ected by a PXCT and which are not.

The only di�erence between an instruction executed by a PXCT and an instruction performed in

normal circumstances is in the way certain of its memory and index register references are made.

To work as a PXCT, an XCT must be given in executive mode, and the bits in its A �eld (9{12)

must not all be 0 (in user mode A is ignored). But there is otherwise no di�erence in the way the

XCT itself is performed: everything in the PXCT is done in the current (executive) context, and the

instruction to be executed by the XCT is fetched in the current context. Moreover in the executed

instruction, all accumulator references (speci�ed by bits 9-12 of the instruction word) are in the

current context. (Remember that the executive can always access a user accumulator simply by

addressing it as a memory location.) If the instruction makes no memory operand references, as in a

shift or immediate mode instruction, and it has no indexing or indirection (i.e. the instruction word

gives E directly), then its execution di�ers in no way from the normal case. The only di�erence is

in memory and index register references.

The previous{context is speci�ed by four quantities. Following a call by an MUUO, the section in

which the calling program was running (its PC section) and the fast memory block assigned to it

appear as the previous{context section and current context AC block in the word read by a DATAI

PAG,. For the called program, these two quantities can then be assigned as the previous{context by

a DATAO PAG,. The current AC block of the calling program also appears in the process context

word supplied by the MUUO. Various levels of the Monitor may all use fast memory block 0; or a

separate block may be assigned to that part of the Monitor that uses PXCTs in handling MUUO

calls from other parts of the Monitor.

Just as the current mode is indicated by the User and Public 
ags, the mode in which the calling

program was running is indicated by Previous Context User and Previous Context Public.

36

At a

36

Previous Context User and Previous Context Public are in the same 
ag bits that are used for User In-out and

Over
ow in user mode. The former has no meaning in executive mode, and the latter is not really necessary as the

executive program is not ordinarily interested in performing extensive mathematical procedures.



4.1. KL10 SYSTEM OPERATIONS 387

call these 
ags may be set up automatically or they may be set up by a 
ag{PC doubleword or a

PC word. Note that the restrictions on references made in the previous{context are those of the

previous{context | not those of the context in which the PXCT is given | with the single exception

that if the current program is running in section 0, the previous{context is also limited to section

0. Suppose the executive executes an instruction that references the concealed user area. Such a

reference would fail if Previous Context Public were set.

Which references in the executed instruction are made in the previous{context is determined by 1s

in the A portion of the PXCT instruction word as follows.

Bit References Made in Previous{Context if Bit is 1

9 E�ective address calculation of instruction, including both instruction

words in EXTEND (index registers, address words by indirection); also EX-

TEND e�ective address calculation of source pointer if bit 11 is 1 and of

destination pointer if bit 12 is 1.

10 Memory operands speci�ed by E , whether fetch or store (e.g. PUSH

source, POP or BLT destination); byte pointer; second instruction word

in EXTEND.

37

11 E�ective address calculation of byte pointer; source in EXTEND; e�ective

address calculation of EXTEND source pointer if bit 9 is 1.

12 Byte data; stack in PUSH or POP; source in BLT; destination in EXTEND;

e�ective address calculation of EXTEND destination pointer if bit 9 is 1

Previous{context referencing is useful and reasonable in some instructions but inapplicable to others.

There is no trap of any kind, and the e�ect of using the feature with an instruction to which it does

not apply is simply unde�ned.

37

Caution: if the current program is running in a non{zero section and the previous{context section is zero, and bits

9 and 10 of the PXCT are 0 and 1 respectively, the KL10 avoids global indexing in an attempt to apply section zero

semantics to the e�ective address calculation of the instruction executed by PXCT. This works properly, unless the

instruction uses indirect addressing. The instructions executed by PXCTmust be carefully matched to the capabilities

of the implementation.



388 CHAPTER 4. EARLIER PROCESSORS

Applicable Inapplicable

Move, XMOVEI LUUO, MUUO

EXCH, BLT, XBLT

38

AOBJN, AOBJP

Half word, XHLLI JUMP, AOJ, SOJ

Arithmetic JSR, JSP, JSA,JSP,JRST

Boolean PUSHJ, POPJ

Double move XCT, PXCT

CAM, CAI Shift{Rotate

SKIP, SOS, AOS String, except MOVSLJ

Logical Test I/O

PUSH, POP, ADJSP

Byte

MOVSLJ (extended KL10 only)

MAP

Note that no jumps can use previous{context referencing. Even among the instructions to which

such referencing is applicable, only a limited number of the sixteen possible bit combinations is

useful or meaningful. Doing an e�ective address calculation in the previous context (selected by

bit 9 or 11) makes sense only if the corresponding data access is also in the previous{context (as

selected by bit 10 or 12, except 11 or 12 in EXTEND). Only the combinations listed in Table 4.1 are

permitted.

Execution of a BLT by a PXCT is limited to these three cases:

Where all operations, regardless of context, are in section 0.

Where the previous{context fast memory block is being saved in or restored from the current

context, provided all addresses are local and thus in the same section. (Remember that regard-

less of context a BLT{given in{section address in the range 0{17 always refers to fast memory.

Hence an AC block can never be saved in or restored from the �rst sixteen storage locations

in any section.)

Where all operations are con�ned to a single section in the previous context, as would be the

case when clearing a user page.

In all other circumstances XBLT must be used instead.

Address Debugging

The address failure, or address break, feature of the pager implements the traditional program

debugging technique of catching a particular type of memory reference to a selected location (it

does not catch fast memory references). It may be used to determine whether a given program is

modifying a particular location, is executing a particular piece of code, or is simply using a particular

block of data. This instruction uses the processor device code to specify the circumstances in which

a break shall occur.

38

As of KL10 microcode 2.1[442], there are problems with the implementation of XBLT under PXCT.



4.1. KL10 SYSTEM OPERATIONS 389

Table 4.1: KL10 Permissible PXCT Addressing Modes

Instructions 9 10 11 12 References in Previous{Context

General 0 1 0 0 Data

1 1 0 0 E , Data

Immediate

?

1 { 0 0 E

BLT 0 0 0 1 Source

0 1 0 0 Destination

0 1 0 1 Source, Destination

1 1 0 0 E , Destination

1 1 0 1 E , Source, Destination

XBLT 0 0 1 0 Source

0 0 0 1 Destination

0 0 1 1 Source, Destination

Stack 0 0 0 1 Stack

0 1 0 0 Memory Data

0 1 0 1 Memory Data, Stack

1 1 0 0 E , Memory Data

1 1 0 1 E , Memory Data, Stack

Byte 0 0 0 1 Data

0 0 1 1 Pointer E , Data

0 1 1 1 Pointer, Pointer E , Data

1 1 1 1 E , Pointer, Pointer E , Data

MOVSLJ 0 0 0 1 Destination

(Extended KL10 only) 1 0 0 1 E (=Y ), Destination Pointer, Destination

0 0 1 0 Source

1 0 1 0 E (=Y ), Source Pointer, Source

0 0 1 1 Source, Destination

1 0 1 1 E (=Y ), Pointers, Source, Destination

NOTE

?

An A of 1000 is the \correct" con�guration for a PXCT of an immediate mode instruction, but

the KL10 inadvertently uses the current context section rather than the previous{context as would

be desired in say the PXCT of an XHLLI. To get the previous{context section in the extended KL10,

use 1100 instead.



390 CHAPTER 4. EARLIER PROCESSORS

0 12 1314 1718 35

I X Y

DATAO APR, Data Out, Arithmetic Processor

70014

Select the break address and the break conditions according to bits 9{35 of location E as shown (a

1 in a condition bit selects the condition indicated, a 0 makes no reference selection or selects the

opposite address space).

80

Reserved

129

Reference

Type

99

F

1010

R

1111

W

1212

U

3513

Break Addresss

The break conditions selected by 1s in bits 9{12 are as follows.

9 F : fetch. A normal fetch of an instruction in the program under control of PC.

10 R: read. Any reference that reads except the normal fetch of an instruction. This includes

retrieval of operands, address words in an e�ective address calculation, or an instruction to

be executed by an XCT or user LUUO.

11 W : write. Any reference that writes.

12 U : user. A reference made in user virtual address space (0 selects executive virtual address

space).

The break mechanism operates only for virtual address space. It does not catch microcode physical

references, such as to the process tables.

Whenever the processor attempts one of the selected types of reference to the location speci�ed by

the break address in the selected virtual address space, a page failure results

39

unless the Address

Failure Inhibit 
ag is set. This 
ag, which is bit 8 of the program 
ags and can be set only by

an instruction that restores them, prevents an address failure during the next instruction | the

completion of the next instruction automatically clears it. If an interrupt or trap intervenes, the 
ag

has no e�ect and is saved and cleared if the 
ags are saved with PC. If it is not saved, it a�ects the

instruction following the interrupt or trap. Otherwise it a�ects the instruction following a return in

which it is restored with PC. Using the inhibit 
ag, the Monitor can return to a user instruction

that caused an address failure and \get by it."

Since this feature is entirely under the control of the above I/O instruction, it can be used quite


exibly for the executive to debug its own routines, or to debug a single user program without

bothering either the executive or other users. The break conditions in e�ect at any time can be

ascertained by giving this instruction.

39

Executive conditions also catch virtual references in interrupt functions, but the page failure sets the In-out Page

Failure 
ag instead of resulting in a trap for an address failure.



4.1. KL10 SYSTEM OPERATIONS 391

0 12 1314 1718 35

I X Y

DATAI APR, Data In, Arithmetic Processor

70004

Read the current break conditions into bits 9{12 of location E . The information read is the same as

that supplied by the last DATAO. (Note that the break address cannot be read.)

4.1.6 Timing and Accounting

The processor includes a subsystem with elements for keeping track of time, use of system facilities,

and use of individual system features. One element is a standard 12{bit interval counter that is

set up by the program to interrupt when the count reaches a preset value. The others are meters

for keeping a 59{bit count, wherein only the low order sixteen bits are implemented in hardware.

In each case the actual counting is done in a 16{bit hardware counter, while the overall count is

kept in a doubleword in a process table. A count is updated from its counter by a procedure that

is performed periodically by the microcode and whenever appropriate to an operation requested by

the software. In the update procedure the contents of a counter are added into the corresponding

count and the counter is cleared. Whenever the microcode checks for interrupt requests it updates

any count whose counter is more than half full, i.e. whose MSB is 1. The current user accounts are

generally updated when the Monitor switches to a new user.

A doubleword count is a 59{bit unsigned quantity whose format and relationship to the hardware

counter are as shown here:

Even Numbered Word Odd Numbered Word

High Order Part of Count

0 35

0

0

Low Order Part of Count

1 7

36 42

8 23

43 58

24 35

Reserved

Counter

The entire �rst word comprises the high order thirty{six bits, and the low order twenty{three are in

bits 1{23 of the second word.

40

Reserving bits for expansion at the low order end guarantees format

compatibility with future machines that may be much faster (and therefore require bits for counting

smaller time units). Altogether there are four meters that use this counter{doubleword format. One

is a straightforward time base that counts at 1 MHz. Two keep track of process execution time and

number of memory references for purposes for user accounting. Last is a mechanism for analyzing

system performance by investigating the use of individual system features, either by counting the

number of times particular events occur or measuring the duration of time particular procedures are

in progress.

40

Remember, it is a property of twos complement arithmetic that the sign can be used as an extra magnitude bit

in an unsigned number. But since the hardware is set up for signed arithmetic, bit 0 of any lower order word must

be skipped.



392 CHAPTER 4. EARLIER PROCESSORS

The program controls the various subsystem elements through two sets of I/O instructions using

device codes 20 and 24, mnemonics TIM and MTR.

41

In general the meter code is for handling the

accounting meters and the timer code is for the other elements, but the MTR conditions are for both.

Data instructions read updated doubleword counts, but a�ect neither the counts nor the counters.

Condition bits (in a CONO) directly a�ect only the 16{bit hardware counters. Of course a counter

being enabled does mean updating of the doubleword count will probably occur. But to reset a

count, the program must not only clear the hardware counter but separately clear the corresponding

pair of locations in the process table.

System Timing

For regular system use, the processor provides a time base and an interval counter. The time base

is a doubleword count (of the type described above) kept in locations 510 and 511 of the executive

process table. It counts elapsed time in microseconds (a rate of 1 MHz). Drift is guaranteed to be

less than 5 seconds per day for at least the �rst six years of use. To maintain day{to{day accuracy,

the Monitor can reset the time base once each day from the line frequency clock in the front end

processor (although a line frequency clock has quite low resolution, it has very high long{term

accuracy.)

The interval counter is a 12{bit hardware counter that counts in 10�s increments (100 kHz). It can

therefore count, and signal completion of, any interval from 10�s to 40.95 ms; and it can also be

read at any time to determine how long some particular operation or procedure has taken. The

counter can be used for any purpose by the software, but it is employed principally to signal the

Monitor should a user tie up the system too long. Associated with the counter are two 
ags, Interval

Done and Interval Over
ow. Done sets when the counter reaches the value the program speci�es as

its period or reaches its maximum (all 1s); Over
ow sets only if the counter reaches its maximum

without ever matching its period.

42

Setting Done requests an interrupt on the level assigned to the

counter, and the processor responds by executing the instruction in location 514 of the executive

process table.

0 12 1314 1718 35

I X Y

WRTIME

Conditions Out, Meters (CONO MTR,)

70260

Assign the interrupt level speci�ed by bits 33{35 of the e�ective conditions E and perform the

functions speci�ed by bits 18{26 as shown.

1818

Set

up

Accts

1919 2020 2321

Accounting

2121

Exec

PI

2222

Exec

Non{

PI

2323

Turn

On

2624

Time Base

2424

Turn

O�

2525

Turn

On

2626

Clr

2727 2828 2929 3030 3131 3232 3533

Priority

Interrupt

Assignment

3434

41

Unassigned instructions using these codes are DATAO TIM,, BLKO MTR,, and DATAI MTR,. They execute as

MUUOs.

42

Over
ow can occur only if at some time during the count, the program changes the period to a value less than

the current counter value.



4.1. KL10 SYSTEM OPERATIONS 393

Only bits 24{26 and 33{35 are for the system timing features under discussion (time base, interval

counter); bits 18{23 are for the accounting meters discussed in a later part of this section.

The interrupt level assignment is solely for the interval counter. Bits 24{26 control the hardware

counter for the time base, wherein is clear it and turn it on or o� (Os have no e�ect). The result of

putting is in both bits 24 and 25 is indeterminate.

Bit 18 is a change bit for the accounting setup. If it is 0, bits 21{23 are ignored. But if it is 1,

the way in which the meters are enabled is adjusted according to the con�guration of those bits,

where a 1 produces the indicated function and a 0 has the opposite e�ect. A 1 in bit 23 turns on

the meters, and while on they automatically keep an account of user activity In addition the meters

are enabled during interrupt routines, during noninterrupt executive time, or both (i.e. all executive

time) as selected by bits 21 and 22.

Notes. The accounting bits a�ect only the circumstances in which the accounts are kept. Whenever

the accounting meters are enabled, they automatically count both execution time and memory

references.

0 12 1314 1718 35

I X Y

CONI MTR, Conditions In, Meters

70264

Read the status of the accounting meters and time base, and the interrupt level assigned to the

interval counter into the right half of location E as shown.

1818 1919 2020 2321

Accounting

2121

Exec

PI

2222

Exec

Non{

PI

2323

On

2424 2525

Time

Base

On

2626 2727 2828 2929 3030 3131 3232 3533

Priority

Interrupt

Assignment

3434

0 12 1314 1718 35

I X Y

RDTIME

Read Time Base (DATAI TIM,)

70204

Read the time base doubleword count from locations 510 and 511 in the executive process table,

add the current contents of the time base hardware counter to the doubleword read, and place the

result in location E, E + 1.

0 12 1314 1718 35

I X Y

CONO TIM, Conditions Out, Interval Counter

70220

Set up the interval counter according to the e�ective conditions E as shown.



394 CHAPTER 4. EARLIER PROCESSORS

1818

Clr

Intvl

Cnt

1919 2020 2121

Turn

Intvl

Cnt

On

2222

Clr

Intvl

Flag

2323 3524

Interval Period

2525 2626 2727 2828 2929 3030 3131 3232 3333 3434

A 1 in bit 18 clears the counter, and can be given simultaneously with a 1 or 0 in bit 21 to turn the

counter on or o�. A 1 in bit 22 clears both Interval Done and Interval Over
ow. If the counter is

on, Interval Done will set when the count reaches the value speci�ed by bits 24{35.

0 12 1314 1718 35

I X Y

CONI TIM, Conditions In, Interval Counter

70224

Read the status of the interval counter into location E as shown. The single bit that can cause an

interrupt is bit 22, Interval Done.

1818 1919 2020 2321

Interval

Counter

23212121

On

2222

Done

2323

Ov


*

2323 3524

Interval Period

2525 2626 2727 2828 2929 3030 3131 3232 3333 3434

00 11 22 33 44 55 176

Interval Count

77 88 99 1010 1111 1212 1313 1414 1515 1616

Bits 22 and 23 are the counter 
ags; note that Done can be set alone, but a 1 in bit 23 implies a 1

in bit 22 as well. Bits 24{35 are the period supplied by the CONO, and bits 6{17 are the current

contents of the counter.

User Accounts

Two doubleword counts are kept for every user process. These are under the control of the accounting

bits in a CONO MTR, as described above, and they always work together | i.e. the bits that select

the circumstances for accounting do so for both of them. When the accounting meters are enabled,

the execution meter counts at half the system clock rate while the processor is actually executing

instruction operations, in other words except while waiting for memory (note that fast memory

references are handled during execution | there is no wait). The memory meter counts memory

references by or for instructions, not including fast memory references. Each individual instruction

reference is regarded as a single reference even if it requires a page re�ll, and even if in one case



4.1. KL10 SYSTEM OPERATIONS 395

memory control might handle four words whereas in the next three cases the references might be to

the cache.

While the accounting meters are on, they are always enabled in user mode, except in certain special

procedures discussed at the end of this paragraph. Additional enabling circumstances are selected

by bits 21 and 22 of a CONO MTR,. Bit 21 enables while interrupts are actually being held, in

other words during the execution of interrupt routines. Bit 22 enables in executive mode except

while interrupts are being held. Programming 1s in both bits causes selection throughout executive

mode. Note that interrupt routines executed in user mode are always included regardless of the

selected circumstances by virtue of their being in user mode. Lastly there are two circumstances that

automatically disable the meters regardless of any selection made and whatever mode the processor is

in. These are the execution of interrupt functions (PI cycles) (x4.1.1) and special exempt microcode

procedures: updating the meters, handling a page failure, and handling a TOPS{20 page re�ll.

43

When a DATAO PAG, assigns a new user base address (x4.1.5), the accounts for the preceding user

are updated in this process table unless such action is inhibited by a 1 in bit 18. The program can

read the current user accounts by these two instructions.

0 12 1314 1718 35

I X Y

RDEACT

Read Execution Account (DATAI MTR,)

70244

Read the process execution time doubleword count from locations 504 and 505 in the user process

table, add the current contents of the execution time hardware counter to the doubleword read, and

place the result in location E, E + 1.

0 12 1314 1718 35

I X Y

RDMACT

Read Memory Account (BLKI MTR,)

70240

Read the memory reference doubleword count from locations 506 and 507 in the user process table,

add the current contents of the memory reference hardware counter to the doubleword read, and

place the result on location E, E + 1.

The accounting meters provide an accurate and reproducible measure of the resources used by a

given process. Even though one model processor may di�er in speed from another, the execution

time count should be the same for a given program run on either of them (the unit of time counted

will of course be di�erent). Billing of charges to a user can be based on the execution time and

the memory reference count taken separately, or a time equivalent can be assigned to a memory

reference and the two accounts combined in a single quantity.

Performance Analysis

The performance analysis meter is a tool for studying the performance of the hardware and software

43

A TOPS{10 page re�ll is excluded from accounting by virtue of being done by memory control while the execution

meter is waiting.



396 CHAPTER 4. EARLIER PROCESSORS

of the system. With it, the analysis software can �nd bottlenecks, such as overuse of a particular

system facility. Information of this sort should help the system administrator decide what new

equipment to add or how to expand the system, and should help Digital decide how to modify

existing software or what new hardware or software to design.

The result of an analysis is a doubleword count kept in locations 512 and 513 of the executive process

table. Available to the analyzer is a large set of logic signals representing various conditions in the

system. Incrementing of the hardware counter is controlled by a subset of these conditions selected

by the program. The conditions are treated as a Boolean expression, and are divided into six groups,

each corresponding to a term in the expression. Counting is enabled when the expression is true,

which requires that all six terms be true. Within each term the conditions are ored, so a given term

is true when any chosen condition in it is true. In each term the program must select some condition,

or the term will be false by default. Selection of conditions is by means of the bit con�guration of a

word supplied to the analyzer. The following table lists the categories of conditions for the terms,

the bits in the word that make the selection, and the individual conditions available in each category.

Terms Bits Conditions

Mode 27{28 User, executive, ignore.

Memory 12{16 Processor waiting (E box wait), cache miss, writeback for

reference (cache writeback), writeback for sweep (sweep

write), ignore

Interrupt 18{26 Interrupt on any level 0{7, no interrupt in progress

Channels 0{8 Any channel busy (0{7), ignore

Microcode 9 Microcode enable, ignore

Probe 10{11 Probe high or low, ignore

By setting bits 18{26 to select all available interrupt conditions | interrupts on all levels and no

interrupt | the program e�ectively deletes the interrupt term from the expression. In other words

it forces the term true so the state of the interrupt system has no e�ect on whether analysis counting

is enabled. All other categories include a speci�c provision by which the program can force the term

true and thus cause the selected conditions in it to be ignored in evaluating the expression. For

example the mode choice is made by bit 27: 1 selects user mode, 0 selects executive. But a 1 in

bit 28 causes the selection made by bit 27 to be ignored; thus enabling of the analyzer no longer

depends on the mode and is purely a function of the conditions selected in other categories.

Besides selecting conditions for analysis, the program also chooses the counting method used by

the analyzer. In the duration method the analyzer counts at half the system clock rate while the

expression is true. In the event method the counter advances one step each time the expression

changes from false to true. Selection of multiple conditions for the duration method produces a

composite picture of performance. Suppose we select interrupts on levels 4 and 6 as our interrupt

conditions. The analyzer will then give a count of the total time spent handling interrupts on those

levels, and the nesting of an interrupt on level 4 within one on level 6 will not a�ect the result.

Event counting however can vary considerably depending upon the order in which events occur. If

we choose only interrupts on level 6, each return to an interrupt routine at level 6 from some higher

level that interrupted it will be counted as separate event; hence a single interrupt on the level of

interest may be counted several times. On the other hand selecting interrupts on say levels 2 and 6

may mean that a level 6 interrupt plus half a dozen level 2 interrupts will be seen as only one event.

This would happen if all of the level 2 interrupts occurred during the level 6 interrupt routine.



4.1. KL10 SYSTEM OPERATIONS 397

There are two instructions for the performance analyzer: one to set it up and one to read it.

0 12 1314 1718 35

I X Y

WRPAE

Write Performance Analysis Enables (BLKO TIM,)

70210

Select the counting method and conditions for performance analysis according to the contents of

location E as shown. (A dagger indicates a bit in which a 0 makes the selection indicated; otherwise

1 makes the selection indicated).

2618

Select Interrupt Levels

26181818

0

1919

1

2020

2

2121

3

2222

4

2323

5

2424

6

2525

7

2626

None

2827

Select

Mode

28272727

Usr

2828

Ignr

2929

Evnt

Dur

2929 3030

Clr

Cnt

3030 3131 3232 3333 3434 3535

80

Select Channels

8000

0

11

1

22

2

33

3

44

4

55

5

66

6

77

7

88

None

99

Ignr

�c

99 1110

Select

Probe

11101010

Low

1111

Ignr

1612

Select Memory Conditions

1212

EBox

Wait

y

1313

Miss

y

1414

Wrt

Back

y

1515

Swp

Wrt

y

1616

Ign

1717

Bit groups corresponding to the terms in the enabling expression and the individual conditions that

constitute the groups are as follows.

0{8 Channel conditions. Bits 0{7 select channels 0{7 busy. A channel is busy when it is waiting

for a device to respond or a transfer is in progress. A 1 in bit 8 deletes the term from the

expression.

9 Microcode condition. A 1 in this bit deletes the term from the expression. If the bit is 0,

the counter can run only when speci�cally enabled by the microcode, which is the standard

case.

10{11 Probe conditions. The probe is simply an available input at pin CA1 on the meter board,

so the program must generally give a 1 in bit 11 to delete this term from the expression.

Should a signal under investigation be connected to the pin, then a 0 in bit 11 enables bit

10 to select the input level that satis�es the condition: 0 high, 1 low.

CAUTION

Connecting a signal line to the probe input may produce ringing in that line,

which depending on its length, may seriously degrade signal quality and cause

machine malfunction.

12{16 Memory conditions.

44

A 1 in bit 16 deletes this term from the expression. Otherwise 0s

44

Note: M box references initiated by the E box include those for instructions, operands, interrupts, and special



398 CHAPTER 4. EARLIER PROCESSORS

(not 1s) in bits 12{15 select enabling conditions as follows.

12 The E box is waiting for the M box in a memory reference This is only for a reference

made by the E box. Its duration may however encompass a writeback to free a cache

group entry or a TOPS{10 page re�ll.

13 Because of an E box reference, the M box is fetching data from storage or �lling the

cache (a cache miss). This includes only a fetch and load stemming from an E box

reference made because the cache does not contain the desired word or is not in use.

14 The M box is writing in storage because of an E box reference. This would usually be

a writeback to free a cache entry

15 The M box is performing a writeback for a cache sweep.

18{26 Interrupt conditions. Bits 18{35 select interrupts on levels 0{7. An interrupt condition

includes both the execution of an interrupt function and the subsequent interrupt routine,

if any; in other words it includes both PI cycles and an interrupt held for the level. A 1

in bit 26 selects the condition that no interrupt is currently in progress. If bits 18{26 all

contain 1s, the interrupt term is always true and thus ignored. Similarly all 0s holds it false.

27{28 Mode conditions. A 1 or 0 in bit 27 enables the counter during user or executive mode

respectively: a 1 in bit 28 deletes this term from the expression.

29 This bit selects the method of counting when the expression corresponding to the set of

conditions selected by bits 0{28 is true. A 1 selects the event method wherein there is

one count for each time the expression becomes true; and a 0 selects the duration method

wherein the counter increments at half the system clock rate while the expression is true.

Notes. There is no speci�c provision for turning the counter on and o�. It functions automatically

whenever the selected expression is satis�ed, but it can easily be stalled by selecting an impossible

combination. In particular, giving a WRPAE [40] clears the counter and disables it.

0 12 1314 1718 35

I X Y

RDPERF

Read Performance Analysis Count (BLKI TIM,)

70200

Read the performance analysis count doubleword count from locations 512 and 513 in the exec

process table, add the current contents of the performance analysis counter to the doubleword read,

and place the result in location E;E + 1.

Applications. The event method allows software to collect counts of the number of times speci�c

events occur over a period. Examples are calls to the executive, interrupts on a particular level

or disjoint interrupts to all levels, cache misses, cache misses in user mode, tra�c on the channels.

There are also more esoteric analyses, such as counting the number of times a particular instruction

or set of instructions is used (this would require modifying the microcode to enable) or how often

a particular piece of software is called (this would require a patch in the Monitor). But the event

method is subject to the limitations discussed above. A low priority interrupt routine could easily

microcode procedures (meter update, page failure, TOPS{20 page re�ll). References for writebacks, cache sweeping,

TOPS{10 page re�lls, and the channels are initiated by the M box.



4.1. KL10 SYSTEM OPERATIONS 399

be recognized several times, and with the selection of multiple conditions, events can be lost due to

overlap. The memory conditions especially overlap one another, and channel events are very likely

to be lost if combined with memory or interrupt conditions.

These limitations do not a�ect the duration method. Suppose we wish to determine the total time

spent doing interrupts and waiting for memory references. Overlap here is of no signi�cance: the fact

that sometimes the system is doing both does not matter. Typical uses are measuring the duration

spent in user mode, or in executive mode, handling interrupts, handling interrupts at a particular

level, doing DTE20 console functions or byte transfers (interrupt level 0), doing writebacks, and so

forth. With an enable inserted in the microcode, one could measure the time spent manipulating

strings.

4.1.7 Front End Functions

Every system contains one or more PDP{11 front end processors. But from the point of view of

the KL10, a front end is a DTE20 interface | it is only the DTE20 that the KL10 hardware,

microcode and program see on the E bus, and it is only the relationship between KL10 and DTE20

that concerns us here (there is nothing in this section about the PDP{11 per se). A DTE20 handles

communication between the central processor and a front end processor by way of the KL10 interrupt

system. The program can assign a level for standard or vector interrupts, but the interface can also

perform special interrupt functions | examine, deposit, byte transfer | on level 0. In general all

but one of the DTE20s are restricted: this means that a unit can request special interrupt functions

only if interrupt level 0 is enabled in it, and examine and deposit are restricted to communication

areas de�ned by the Monitor.

Among the DTE20s, one is master and is thus unrestricted. It gains this privileged status by means

of a switch setting on the unit. The master can perform diagnostic operations

45

(included among

these are the console functions start, stop, execute, and continue), can perform the special interrupt

functions even when level 0 is disabled, and can override the restrictions on examine and deposit

so as to gain access to all PDP{10 memory in either physical or executive virtual address space or

the executive process table. Removal of the restrictions by placing a 0 in the Q bit of the interrupt

function word must be done individually for each transfer.

For each DTE20 the executive process table contains an 8{word control block. These blocks contain

the following information for byte transfer, vector, examine and deposit interrupt functions.

Locations in Executive Process Table

Unit 0 Unit 1 Unit 2 Unit 3 Contents

140 150 160 170 Output byte pointer (to 11)

141 151 161 171 Input byte pointer (to 10)

142 152 162 172 Vector interrupt instruction

143 153 163 173 Reserved

144 154 164 174 Size of communication area for examine

145 155 165 175 Relocation address for examine area

146 156 166 176 Size of communication area for deposit

147 157 167 177 Relocation address for deposit area

45

Except for stopping, diagnostic operations should be performed only when the processor is halted or when some-

thing has actually gone wrong. Otherwise, they would interfere with normal tra�c on the E bus.



400 CHAPTER 4. EARLIER PROCESSORS

A byte pointer is limited to a single word; it must therefore have a 0 in bit 12, and its address is

interpreted in executive virtual address space, section 0. The programmer must also refrain from

using any indexing or indirection (bits 13{17 must be zero). After the microcode increments the

byte pointer selected by Q (0 out, 1 in) and calculates its e�ective address, an input byte is inserted

at the appropriate position in a memory location, or an output byte from memory is sent to the

DTE20 right{justi�ed with the rest of the output word �lled with 0s. An output byte transfer is

essentially an ILDB{DATAO combination; input is a DATAI{IDPB. Output bytes larger than sixteen

bits can produce spurious E bus parity errors in the DTE20.

In a DTE20 vector interrupt, the address part of the function word is ignored, and the microcode

executes the instruction supplied by the control block. This should be a call to an interrupt routine.

Communication areas are de�ned separately for examine and deposit. Thus the Monitor might

divide the overall communication area into separate parts for deposits by several units, but allow

all of them to examine the entire area. The size of an area is given as a number of locations, and

the relocation address is the physical address of the �rst location in the area. Suppose we wish

to assign a deposit area of sixteen words beginning at location 22660 for DTE20 number 2. In

locations 166 and 167 of the executive process table we would put respectively 20 and 22660. In its

deposit function words the DTE20 would then use addresses 0{17, and these would be relocated to

22660{22677.

4.1.8 Error and Diagnostic Instructions

The �rst part of this section explains the instructions through which the software handles the error


ags and identi�es the source of a hardware error. The second part discusses a special instruction

the Monitor uses to set up the memory system and to get diagnostic and con�guration information

directly from individual memory controllers. The objective of this treatment is to complete the

de�nition of all KL10 instructions and to give the programmer what he needs to identify sources of

hardware error for purposes of software recovery. For information on diagnosing equipment ills, the

reader must turn to maintenance documents. Note that this section does not touch on diagnostic

functions the front end can execute in the KL10 without the KL10 microcode running; that subject

is treated in the maintenance documentation.

Error Monitoring and Investigation

A few hardware errors | speci�cally a parity error in the page table or in a word brought into AR or

ARX from memory | are detected by the pager and produce a page failure. Other hardware errors

detected in the processor or on the S bus are indicated by 
ags that can request an interrupt on a

level assigned to the processor. Several of these 
ags also lock information about the bad reference

into the error address register ERA. The program can read this register, and it continues to hold

the same information, even should subsequent errors occur, until the 
ag that locked it is cleared.

The error conditions are generally regarded as important enough to be assigned to the highest

priority level. However for conditions that may be associated with user instructions (a parity error

or unanswered memory reference), the common practice is for the error interrupt to switch over to

the lowest priority level by means of a program{set request. Then the time taken to handle the

situation, which may well be considerable, cannot interfere with high priority events.

Error 
ags are handled by two condition I/O instructions that address the processor, which has



4.1. KL10 SYSTEM OPERATIONS 401

device code 000, mnemonic APR.

46

These instructions also handle the sweep 
ags for the cache

(x4.1.2). The instruction that reads ERA uses the interrupt device code.

0 12 1314 1718 35

I X Y

CONO APR, Conditions Out, Processor Flags

70020

Assign the interrupt level speci�ed by bits 33{35 of the e�ective conditions E and perform the

functions speci�ed by bits 19{31 as shown (a 1 in a bit produces the indicated function, a 0 has no

e�ect).

1818 1919

Clr

All

I/O

Dev

Selected Flags

2020

Enb

2020 2121

Dis

2121 2222

Clr

2222 2323

Set

2323 3124

Select Flags for Bits 20{23

2424

SBus

Err

2525

No

Mem

2626

I/O

Page

Fail

2727

MB

Par

2828

Cch

Dir

2929

Addr

Par

3030

Pwr

Fail

3131

Swp

Done

3232 3533

Priority

Interrupt

Assignment

3434

A 1 in bit 19 generates the I/O reset signal, which clears the control logic in all of the peripheral

equipment (but a�ects none of the internal devices, such as the pager or the processor 
ags).

Bits 20{23 select 
ag functions: is in these bits produce the indicated e�ects on the processor


ags selected by is in bits 24{31. A 1 in bit 20 enables the setting of any selected 
ag to request

an interrupt on the level assigned to the processor; a 1 in bit 21 disables the selected 
ags from

requesting interrupts. Similarly a 1 in bit 22 or 23 clears or sets the selected 
ags. The result of

putting is in both bits 20 and 21 or 22 and 23 is indeterminate.

Notes. Setting 
ags has of course no relation to what the 
ags represent; the function is used only

to check out the 
ag logic.

0 12 1314 1718 35

I X Y

CONI APR, Conditions In, Processor Flags

70024

Read the status of the processor error and sweep 
ags into location E as shown (asterisks indicate

bits that can cause interrupts).

46

The processor device code is also used in several instructions for the pager and the cache.



402 CHAPTER 4. EARLIER PROCESSORS

1818 1919

Swp

Busy

2020 2121 2222 2323 2424

SBus

Err

*

2525

No

Mem

*

2626

I/O

Page

Fail

*

2727

MB

Par

*

2828

Cch

Dir

*

2929

Addr

Par

*

3030

Pwr

Fail

*

3131

Swp

Done

*

3232

Int

Req

3533

Priority

Interrupt

Assignment

3434

00 11 22 33 44 55 136

Flags Enabled to Interrupt

66

SBus

Err

77

No

Mem

88

I/O

Page

Fail

99

MB

Par

1010

Cch

Dir

1111

Addr

Par

1212

Pwr

Fail

1313

Swp

Done

1414 1515 1616 1717

6{13 A 1 in any of these bits indicates that setting the listed 
ag will request an interrupt on the

level assigned to the processor by bits 33{35 of the CONO.

19 The cache is currently undergoing a sweep.

24 A storage controller has signaled the processor that it has detected an error in its own

operation or in information it has received over the S bus or from one of its storage modules.

If the type of error is not identi�ed by there also being a 1 in bit 25, 27 or 29, then the

condition is either an incomplete cycle or a parity error in data sent to the memory (all data

received by memory is written, even if bad). Controller 
ags for some of these conditions

can be read by the diagnostic instruction discussed in the second part of this section.

25 The processor attempted to access a memory that did not respond within a preset time.

This time is 68�s on an extended KL10, 82�s on a single{section KL10. The setting of

this 
ag locks information about the attempted reference into ERA. Since a nonexistent

memory supplies zero data, on read this error should be accompanied by a 1 in bit 27.

26 A page failure has occurred in an interrupt instruction, or a word with even parity has

been received at AR from the E bus (the latter can be recognized only if the transmitting

device generates a parity bit). An interrupt failure caused by an address break sets this 
ag

instead of producing an address failure (x4.1.5).

NOTE

A page failure in an interrupt instruction is regarded as a fatal error, and causes

an interrupt instead of a page failure trap. The kernel program is expected to set

up the interrupt instructions so that a software page failure simply cannot occur.

27 The bu�er (MB) in memory control has received a word with even parity. The setting of

this 
ag locks information about the reference into ERA.

28 A physical page number with even parity has been encountered in the cache directory. The

setting of this bit turns o� the cache, and it remains o� until the 
ag is cleared by giving a

CONO APR, with 1s in bits 22 and 28.

29 A storage controller has signaled that it has received an address with even parity from

the processor. The parity check actually encompasses both the address and the control



4.1. KL10 SYSTEM OPERATIONS 403

signals that accompany it on the S bus. The setting of this bit locks information about the

attempted reference into ERA.

30 Ac power has failed. The program should save PC, the 
ags, mode information and fast

memory in storage, update the accounting meters, validate the entire cache, and halt the

processor. Note that PC may point to an interrupt routine rather than the main pro-

gram. After power is restored the front end must reboot the system, and the Monitor must

reestablish the operating environment (x4.1.5).

31 A cache sweep has been completed.

32 Some processor 
ag is currently requesting an interrupt, i.e., some 
ag in bits 24{31 is set

and has been enabled to interrupt as indicated by a 1 in the corresponding position in bits

6{13.

0 12 1314 1718 35

I X Y

RDERA

Read Error Address Register (BLKI PI,)

70040

Read the contents of the error address register into location E. If No Memory, MB Parity Error

or Address Parity Error is set, ERA contains information about the reference corresponding to the

�rst of those 
ags to be set as shown.

3518

Physical Address of First Word of Transfer

1919 2020 2121 2222 2323 2424 2525 2626 2727 2828 2929 3030 3131 3232 3333 3434

10

Word

Number

11 62

Reference Identi�cation

6222

Swp

33

Chn

44

Data

55

Src

66

Wrt

87

Inde{

termi{

nate

88 139

0

1010 1111 1212 1714

High Order

Address Bits

1414 1515 1616

Bits 0{1 and 14{35 identify the physical location of the reference in which the error occurred. Bits

14{35 are the address of the speci�c memory reference made by the program or whatever. If the

reference required only a single transfer, that address is the error address. But if the reference

triggered a group transfer, bits 14{35 are the address of the �rst reference chronologically in the

group, and bits 0 and 1 give the number of the word on which the error actually occurred. Note

that word numbers are in physical, not chronological, order.

Information given in bits 2{6 identi�es the reference. A 1 in bit 2 or 3 respectively means the

reference was made for a cache sweep or a channel transfer. Bit 6 indicates the memory function being

performed for the reference, where the read and write parts of a read{pause{write are separately

indicated by 0 and 1. Bits 4, 5 and 6 together identify the source of the data for the transfer or

attempted transfer (on write the word is always going to storage).



404 CHAPTER 4. EARLIER PROCESSORS

Bits 4{5 Source with 0 in bit 6 Source with 1 in bit 6

00 Storage for any read or read{pause{write Channel status

01 Channel data

10 AR

11 Cache for channel read or TOPS{10 page re�ll Cache writeback

ERA retains the same information until the program clears the locking 
ags by giving a CONO

APR,22600+P . Of course only 
ags that are set actually need be cleared, and the routine that

responds to errors should consider and clear all set 
ags. To facilitate diagnosis from the front end,

the master reset does not clear ERA. Hence if need be, the front end can give diagnostic functions

that reset the KL10 and then read ERA.

The processor includes provision for forcing bad parity to check the error detection logic. Bits 18{20

of a CONO PI, (x4.1.1) respectively cause even parity to be generated for an address sent to memory,

a data word available from AR, and a page number entered into the cache directory. Where the

data error shows up depends on where the word is sent from AR. Which errors are being forced can

be seen by checking the 
ags in the same bits of a CONI PI,.

Programming Cautions. When handling parity error or nonexistent memory interrupts, the

programmer should beware of the following.

� An incorrect word from memory to AR or ARX can result in both a page failure and an

interrupt. In general the page fail trap to the Monitor can be expected to occur slightly ahead

of the interrupt.

� Should an error 
ag be set while another interrupt request is being processed, the system would

handle the lower priority interrupt before getting to the processor interrupt. This means PC

may be pointing to a lower level interrupt routine rather than the program level at which the

error occurred. Remember that during request processing, the interrupt system is otherwise

static and the program continues.

� Even without inadvertent interference from another level, it is quite likely the processor will

perform one or perhaps two more instructions between the time the error 
ag sets and its

interrupt starts. Hence even though PC is at the correct program level, it may well be pointing

to the �rst or second instruction following the one in which the error occurred.

� A processor error interrupt that switches over to a lower priority level should not return to the

interrupted program, as the error may simply recur, producing a second processor interrupt

before the error{handling interrupt for the �rst. This could happen because PC is actually

pointing to the o�ending instruction, but beyond that, one error often begets another |

consider the case of PC counting into a nonexistent memory. In any event, it is generally not

worthwhile to return to any program without �rst �nding out what went wrong.

S Bus Diagnostic Cycle

Ordinarily the S bus is used for the processor to reference memory. But the S bus also has a

diagnostic cycle that allows the processor to communicate with the memory controllers rather than

to access a particular location. The diagnostic cycle is initiated by the processor giving a special

instruction that sends a function word to a controller and receives a word of error and diagnostic

information back from it.



4.1. KL10 SYSTEM OPERATIONS 405

0 12 1314 1718 35

I X Y

SBDIAG

S Bus Diagnostic Function (BLKO PI,)

70050

Send the contents of location E as a function word over the S bus to the controller speci�ed by

bits 0{4, and read the return word for the function from that controller into location E + 1. Which

function a word represents is indicated by its code in bits 31{35.



406 CHAPTER 4. EARLIER PROCESSORS

4.2 KS10 System Operations

The information presented in this section is primarily for Digital's own system programmers, for

their use in writing the Monitor and other software. However it is also needed by anyone who wishes

to write his own operating system, to some extent by users who handle their own I/O, and by

programmers in a situation where all the facilities of a system are dedicated to a single large task.

WARNING

KS10 functions are implemented in microcode, which can be changed much more easily

than hardware. Although user operations, described in Chapter 2, are deliberately kept

as compatible as possible from one machine to the next, Digital will change the KS10

system microcode whenever such change will result in greater speed, e�ciency or e�ec-

tiveness. Therefore anyone writing system software should make sure to use the most

recently updated version of this documentation, and before embarking on any project as

enormous and critical as an operating system, to check with Large Systems Engineering

for any changes not yet documented.

Programming for the system as a whole is programming in executive mode. Only the executive

program is without instruction restrictions, and only it can, if needed, access physical memory

unpaged. The amount of useful work done by the system depends upon how e�ciently and e�ectively

the executive manages the system. This means selecting which processes will run when, managing

their working sets, responding to their needs, and even reacting to error situations or perhaps

downright unacceptable behavior on the part of a user. The executive program accomplishes these

objectives by handling all in{out for the system, setting up page maps, trap locations, interrupt

locations and the like for both itself and the users, handling user accounts, and so forth. In other

words, except for handling in{out, the activities of an operating system are the topics covered in

this chapter. Of course the system programmer must also be quite familiar with all of the material

presented in Chapters 1 and 2. In particular he must fully understand the architecture of the system

as discussed in Chapter 1, and must be especially well versed in the use of the JRST instruction and

MUUOs (x2.9.4, x2.16).

System information for other Digital Equipment Corporation processors is given in the other sections

of this chapter. The present section is devoted solely to the KS10; it contains two sections on paging,

only one of which is applicable to a given system. x4.2.3 describes the paging used with the TOPS{

10 Monitor; this paging is similar to that of the KI10. x4.2.4 treats the paging associated with the

TOPS{20 Monitor. Both kinds of paging employ the same hardware | the di�erence lies in the

microcode. All instructions discussed in this chapter are for system operations and are thus subject

to the same restrictions as I/O instructions: namely, they can be performed only when the processor

is in executive mode or is in user mode with User In{out set.

Some of the material presented here is related to the Unibus adapters. The chapter describes only the

activities of the microcode undertaken for the adapters; it does not describe the adapters themselves

or their programming.



4.2. KS10 SYSTEM OPERATIONS 407

4.2.1 Priority Interrupt

Most in{out devices must be serviced infrequently relative to the processor speed and only a small

amount of processor time is required to service them, but they must be serviced within a short

time after they request it. Failure to service within the speci�ed time (which varies among devices)

can often result in loss of information and certainly results in operating the device below its max-

imum speed. The priority interrupt is designed with these considerations in mind, i.e., the use of

interruptions in the current program sequence facilitates concurrent operation of the main program

and a number of peripheral devices through the Unibus adapters. The hardware also allows system


ags (representing the console and conditions internal to the processor) to signal the program by

requesting an interrupt. To avoid confusion with Unibus peripheral devices, let us regard the entities

with which the interrupt system deals as \units". The system 
ags together constitute a unit.

Interrupt requests are handled through seven levels arranged in a priority chain, with assignment of

units to levels entirely at the discretion of the programmer. To assign a unit to a level, the program

sends the number of the level to the unit control register as part of its operating conditions. Levels

are numbered 1{7, with 1 having the highest priority; a zero assignment disconnects the unit from

the interrupt levels altogether. Any number of units can be connected to a single level, and an

adapter can be connected to two levels.

When a unit requires service it sends an interrupt request signal over the request line corresponding

to its assigned level in the processor. The processor recognizes the request if the level is active (on).

The request signal remains on the line until turned o� by an appropriate response from the processor,

either given by the program or generated automatically by the hardware. Thus if a request is not

recognized or accepted when made, it will be when the appropriate conditions are satis�ed. A single

level will shut out all others of lower priority if every time its service routine dismisses the interrupt,

a device assigned to it is already waiting with another request.

In a Unibus system the I/O devices receive and send information via the adapter, and they signal

the adapter to indicate their needs. To transfer data for high speed devices, the adapter can make

direct access to memory over the KS10 bus. But to transfer data for slower devices and to handle

control situations for all devices, the adapter uses the KS10 interrupt. For individual devices to

signal the adapter, the Unibus has its own interrupt system of four levels, BR4{BR7, with the last

having highest priority. Requests for interrupts on BR6 and BR7 are translated into requests on the

KS10 interrupt level speci�ed by the so{called \high" assignment, and those on BR4 and BR5 are

translated into KS10 requests on the \low" level. Of course complete control over the adapter and

the Unibus devices, including assignment of levels for KS10 and Unibus interrupts, is entirely in the

hands of the KS10 program.

The request signal is generally derived from a 
ag that is set by various conditions in the device.

Often associated with these 
ags are enabling 
ags, where the setting of some device condition 
ag

can request an interrupt on the assigned level only if the associated enabling 
ag is also set. The

enabling 
ags are in turn controlled by the conditions supplied to the device. For example, a device

may have half a dozen 
ags to indicate various internal conditions that may require service by an

interrupt; by setting up the associated enabling 
ags, the program can determine which conditions

shall actually request interrupts in any given circumstances.

Having recognized a request, the processor will do nothing further with it unless the priority interrupt

system is on. But even with the system o�, the processor will continue to recognize requests on

other levels; and when the system is �nally turned on, it will respond as though all requests had

just been recognized, handling the highest priority one �rst.



408 CHAPTER 4. EARLIER PROCESSORS

Processing an Interrupt

The processor handles only one request at a time. When it is ready, it accepts the highest priority

request currently recognized, provided that request is on a level higher than the current program

(all levels are higher than a noninterrupt program). To process a request the microcode stops the

program, turns o� the interrupt system to prevent interference from other requests, and executes

a \who are you?" cycle on the KS10 bus to determine which adapters are currently requesting

interrupts on the accepted level. Note that at this point the processor is accepting not an individual

request, but rather a class of requests: namely all those being made on the same level. In this cycle

the microcode sends out the number of the level, and the individual adapters 0{3 indicate whether

they are requesting interrupts on that level by placing 1s on bus lines 18{21 respectively. (Hence

only lines 19 and 21 are used, for adapters 1 and 3.)

If no adapter responds, the request is assumed to be internal, originating either from the system 
ags

or the program itself. In this case the microcode starts the interrupt by executing the instruction at

location 40 + 2N in the executive process table, where N is the level number. Level 1 uses location

42, level 2 uses 44, and so on to level 7 which uses 56.

If the response on lines 18{21 is nonzero, the processor gives priority to the lowest{numbered adapter

that has a request on the accepted level

47

by sending out the number of that adapter

48

in a vector

request cycle on the bus. The vector address returned from a device is divided by 4, and the result

49

is used as an index into a table of interrupt instructions for that adapter. The table address is taken

from executive process table location 100 + N , where N is the adapter number (i.e., locations 101

and 103 are used). The processor then starts the interrupt by executing the instruction contained in

the location speci�ed by the table address plus the vector address divided by 4. The table pointer

must be nonzero | otherwise an illegal interrupt halt occurs (x4.2.7).

Interrupt Instructions. An interrupt instruction is one executed in the interrupt location for a

level, in direct response by the hardware (rather than by the program) to a request on that level.

An interrupt location is either executive process table location 40 + 2N speci�cally for level N ; or

the adapter table location derived from the interrupt vector and the table pointer corresponding to

the adapter having priority among those on the accepted level. Only two instructions can be used

as interrupt instructions: JSR and XPCW. For either, the processor holds an interrupt on the level,

turns the interrupt system back on, and takes the next instruction from the location speci�ed by

the jump (as indicated by the newly changed PC). For a JSR the processor automatically enters

executive mode. For an XPCW it enters the mode speci�ed by the new 
ag word. Either instruction

is a jump to a service routine handled by the Monitor. Use of any other instruction results in an

illegal interrupt instruction halt (x4.2.7).

The most important point of which the programmer must be aware is that even while User is set, the

interrupt instructions are not part of the user program. They are executed in executive mode and

are therefore subject only to executive restrictions. As an interrupt instruction, JSR automatically

clears User to jump to an executive service routine. An XPCW should be set up to produce the same

result.

47

There are therefore two orders of priority associated with an interrupt: �rst the level, and then for all adapters

requesting interrupts simultaneously on the same level, adapter number.

48

Note that these are the adapter numbers (1 and 3), not the controller numbers used in I/O addresses (0 and 1).

49

A vector address is a multiple of 4 because it speci�es a pair of word locations in the byte-oriented Unibus

addressing scheme.



4.2. KS10 SYSTEM OPERATIONS 409

Interrupt Programming

The program can control the priority interrupt system by means of these two instructions.

0 12 1314 1718 35

I X Y

WRPI Write Priority Interrupt Conditions

70060

Perform the functions speci�ed by the e�ective conditions E as shown (a 1 in a bit produces the

indicated function, a 0 has no e�ect).

Drop

Prgm

Req

On

Lvls

Clear

PI

Sys{

tem

Selected Levels

Make

Prgm

Req

On

Turn

On

Turn

O�

PI

System

Turn

O�

Turn

On

Select Levels for

Bits 22,24,25,26

1 2 3 4 5 6 7

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

22 On levels selected by 1s in bits 29{35, turn o� any interrupt requests made previously by the

program (via bit 24).

23 Turn o� the priority interrupt system, turn o� all levels, drop all program{set requests, and

dismiss all interrupts that are currently being held.

24 Request interrupts on levels selected by 1s in bits 29{35, and force the processor to recognize

them even on levels that are o�. The request remains inde�nitely, so as soon as an interrupt

is completed on a given level another is started, until the request is turned o� by a WRPI that

selects the same channel and has a 1 in bit 22.

When this bit forces recognition of a request on the highest priority level, at most one addi-

tional program instruction may be performed before the interrupt.

25 Turn on the levels selected by 1s in bits 29{35 so interrupt requests can be recognized on

them.

26 Turn o� the levels by 1s in bits 29{35, so interrupt requests cannot be recognized on them

unless made by a WRPI with a 1 in bit 24.

27 Turn o� the interrupt system so no requests can be accepted.

28 Turn on the interrupt system so the hardware can process requests.

0 12 1314 1718 35

I X Y

RDPI Read Priority Interrupt Status

70064

Read the status of the priority interrupt into location E as shown.



410 CHAPTER 4. EARLIER PROCESSORS

Program Requests

on Levels

1 2 3 4 5 6 7

Interrupt Holding

on Levels

1 2 3 4 5 6 7

PI

On

Levels On

1 2 3 4 5 6 7

0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Levels that are on are indicated by 1s in bits 29{35; 1s in bits 21{27 indicate levels on which

interrupts are currently being held; and 1s in bits 11{17 indicate levels that are receiving interrupt

requests generated by a WRPI with a 1 in bit 24. A 1 in bit 28 means the interrupt system is on,

and 1s in bits 29{35 therefore indicate active levels.

Dismissing an Interrupt. The processor holds an interrupt until the program dismisses it, even

if the interrupt routine is itself interrupted by a higher priority level. Thus interrupts can be held

on a number of levels simultaneously, but from the time an interrupt is started until it is dismissed,

no interrupt request can be accepted on that level or any of lower priority.

A routine dismisses the interrupt by using an instruction that restores the level on which the interrupt

is being held at the same time it returns to the interrupted program. The proper instruction is XJEN

(JRST 7,) or JEN (JRST 12,). Once the level is restored, the hardware can again accept requests

and start interrupts on it and lower priority levels. These instructions also restore the 
ags: XJEN

from the 
ag{PC doubleword if the routine was called by an XPCW; JEN from the left half of the

PC word if the routine was called by a JSR.

CAUTION

An interrupt routine must dismiss the interrupt when it returns to the interrupted pro-

gram, or its level and all levels of lower priority will be disabled, and the processor will

treat the new program as a continuation of the interrupt routine.

Timing. The maximum time a device may wait for an interrupt to start depends on how many

active devices are of higher priority and how long their service routines are. When a given request

is of highest priority, its device need never wait longer than 40�s.

Special Considerations. When an interrupt occurs, PC points to the interrupted instruction

(or to an XCT that executed it), unless the interrupt occurred in an over
ow trap instruction, in

which case PC points to the instruction that over
owed. After taking care of the interrupt, the

processor can always return to the interrupted instruction. Either a) the instruction did not change

anything; b) the interrupt was in the second part of a two{part instruction, where First Part Done

being set prevents the processor from repeating any unwanted operations in the �rst part; or c) the

interrupt occurred at some point in a multipart instruction where the microcode rigged the various

pointers and other quantities so the processor actually restarts the instruction where it stopped,

rather than from the beginning. However, in a BLT and in byte manipulation, the very mechanism

that facilitates the return results in special properties of which the programmer must be aware.

An interrupt can start following any transfer in a BLT. When one does, the BLT puts the pointer

(which has counted o� the number of transfers already made) back in AC. Then when the instruction

is restarted following the interrupt, it actually starts with the next transfer. This means that if

interrupts are in use, the programmer cannot use the accumulator that holds the pointer as an

index register in the same BLT, he cannot have the BLT load AC except by the �nal transfer, and



4.2. KS10 SYSTEM OPERATIONS 411

he cannot expect AC to be the same after the instruction as it was before.

An interrupt can also start in the second e�ective address calculation in a two{part byte instruction.

When this happens, First Part Done is set. This 
ag is saved as bit 4 of a 
ag word, and if it is

restored by the interrupt routine when the interrupt is dismissed, it prevents a restarted ILDB or

IDPB from incrementing the pointer a second time. This means that the interrupt routine must

check the 
ag before using the same pointer, as it now points to the next byte. Giving an ILDB or

IDPB would skip a byte. And if the routine restored the 
ag, the interrupted ILDB or IDPB would

process the same byte the routine did.

Programming Suggestions. The Monitor handles all interrupts for user programs. Even if the

User In{out 
ag is set, a user generally cannot reference the interrupt locations to set them up.

Procedures for informing the Monitor of the interrupt requirements of a user program are discussed

in the Monitor manual.

For those who do program priority interrupt routines, there are several rules to remember.

� No request can be accepted, not even on higher priority levels, while a request is being processed

or an interrupt is starting. Therefore do not use lengthy e�ective address calculations in

interrupt instructions.

� To prevent a device from hanging up a level, the programmer must be aware of | and satisfy

| whatever requirements the device has for dropping the request.

� The interrupt instruction that calls the routine must be an XPCW or a JSR.

� The principal function of an interrupt routine is to respond to the situation that caused

the interrupt. Computations and any other time{consuming activities that can possibly be

performed outside the routine should not be included within it.

� Never turn o� the interrupt system in a routine unless it is absolutely necessary, and then

always turn it back on again as soon as possible. If one or more levels can be turned o� in

place of the entire system, always do that instead.

� If the routine uses a UUO it must �rst save the contents of the locations that will be changed

by it in case the interrupted program was in the process of handling a UUO of the same type

(x2.16).

� The routine must dismiss the interrupt (with an XJEN or JEN) when returning to the inter-

rupted program. Flags and UUO locations should be restored.

4.2.2 Cache

For the user, the cache is transparent: any program simply gets information frommemory and stores

information in memory. But use of a cache as part of the memory subsystem reduces program time,

since the cache is faster than the storage modules, and also reduces storage use by the program,

making a larger percentage of total storage cycles available to other parts of the system. The cache

is essentially 512 registers that duplicate the contents of frequently referenced storage locations in



412 CHAPTER 4. EARLIER PROCESSORS

the virtual address space. its only use is for reading information from it instead of taking the time

to go to storage, but this can result in a considerable saving for the program.

Each register in the cache corresponds to a unique position within a page. Associated with the

cache is a directory that labels each register by the virtual page containing the word that the

register duplicates. A directory entry also has a parity bit and other bits that identify certain

characteristics of the reference that caused the word to be written in the cache. A cache hit can

occur only when the circumstances of a read reference for a particular location match those of the

last time the location was written. These requirements are a virtual reference

50

to the same page

in the same address space (user or executive). Given a match, it is also required that paging be

enabled by the Monitor, that the page map indicate the individual page is cacheable, and that the

directory entry have correct parity. Moreover the cache can be disabled altogether from the console,

and the microcode can inhibit its use in individual references.

There is no real programming for the cache except that the Monitor must decide, and so indicate

in the page map, which pages are cacheable and which are not. Obviously the contents of the cache

must be invalidated whenever there is any signi�cant change in the virtual address environment, but

the microcode handles this automatically. A sweep of the entire cache takes about 80�s.

4.2.3 TOPS{10 Paging and Process Tables

General information about the machine modes and paging procedures is given in x1.4. Here we

treat in detail the structure of the process tables and certain hardware procedures | paging and

page failures | a knowledge of which is necessary for an understanding of executive programming.

This subsection covers these topics relative to a machine that uses the TOPS{10 Monitor. The

next subsection presents equivalent information for the TOPS{20 Monitor. Instructions through

which the Monitor controls the pager and otherwise exercises overall management of the program

environment are the same whether the system uses TOPS{10 or TOPS{20, and are described in

x4.2.5.

With paging turned on, the program considers all of its dealings with memory to be in its virtual

address space, and interrupt instructions reference executive virtual address space. A virtual address

is any address given in virtual space except those for fast memory, which are treated as physical.

The pager maps only virtual addresses, but it is involved in all references to the extent that it

responds to error situations. Physical references include those made by the microcode to carry out

the mapping procedure, retrieve interrupt instructions, and handle traps, halts and UUOs.

Paging

All of memory both virtual and physical is divided into pages of 512 words each. The virtual memory

space addressable by a program is 512 pages; the locations in virtual memory are speci�ed by 18{bit

addresses, where the left nine bits (18{26) specify the page number and the right nine (27{35) the

location within the page. Physical memory can contain 1024 pages and requires 19{bit addresses,

where the left ten bits (17{26) specify the page number. The hardware maps the virtual address

space into a part of the physical address space by transforming the 18{bit addresses into 19{bit

addresses.

51

In this mapping the right nine bits of the virtual address are not altered; in other

50

The cache is also written on a physical reference, but the word cannot later be used as the directory entry is

invalid (i.e., not virtual).

51

For paging purposes page 0 has only 496 locations using addresses 20{777, as addresses 0{17 reference fast memory,



4.2. KS10 SYSTEM OPERATIONS 413

words, a given location in a virtual page is the same location in the corresponding physical page.

The transformation maps a virtual page into a physical page by substituting a 10{bit physical page

number for the 9{bit virtual page number. The mapping procedure is carried out automatically by

the pager, but the page map that supplies the necessary substitutions is set up by the executive

program. Each word in the map provides information for mapping two consecutive pages with the

substitution for the even numbered page in the left half, the odd numbered page in the right half.

Two locations in the register �le are used by the Monitor to specify the physical page numbers of

the user and executive process tables. To retrieve a map word from a process table, the pager uses

the appropriate base page number as the left ten bits of the physical address and some function of

the virtual page number as the right nine bits. For example, the entire user space of 512 virtual

pages at two mappings per word requires a page map of just half a page, and this is the �rst half

page in the user process table. Thus locations 0{377 in the table hold the mappings for pages 0 and

1 to 776 and 777. To �nd the desired substitution from the 9{bit virtual page number, the hardware

uses the left eight bits to address the location and the right bit to select the half word (0 for left, 1

for right).

The executive virtual address space is also 256K, but the page map for it is in three parts. The

map for the �rst 112K (pages 0{337) is in executive process table locations 600{757. The map for

the second half of the virtual address space uses the same locations in the executive process table as

are used in the user process table for the user map (locations 200{377 for pages 400{777). The map

for the remaining 16K in the �rst half of the executive virtual address space is in the user process

table, the mappings for pages 340{377 being in locations 400{417. This means the Monitor can

assign a di�erent set of thirty{two physical pages (the per{process area) for its own use relative to

each user. Hence when switching from one user to another, the Monitor need change only the user

process table, this single substitution making whatever change is necessary in the executive address

space for a particular user.

Figure 4.7 and Figure 4.8 show the organization of the virtual address spaces, the process tables

and the maps for both user and executive. The �rst illustration gives the correspondence between

the various parts of the address spaces and the corresponding parts of the page maps. The second

illustration lists the detailed con�guration of the process tables as determined by the hardware. Any

table locations not used are reserved for future use by the hardware or for use by the Monitor for

software functions. Note that the numbers in the half locations in the page map are the virtual

pages for which the half words give the physical substitutions. Hence location 217 in the user page

map contains the physical page numbers for virtual pages 436 and 437

Although the virtual space is always 256K by virtue of the addressing capability of the instruction

format, the Monitor usually limits the actual address space for a given program by de�ning only

certain pages as accessible.

52

The Monitor also speci�es whether each page is writable or not and

cacheable or not. Each word in the page map has this format to supply the necessary information

for two virtual pages.

which is unrestricted and available to all programs. (In general a user cannot reference the �rst sixteen storage module

locations in his virtual page 0.) Throughout this discussion it is assumed that all references are to storage.

52

There is no requirement that the accessible space be continuous | it can be scattered pages. The convention

however is for the accessible space to be in two continuous virtual areas, low and high, beginning respectively at

locations 0 and 400000. The low part is generally unique to a given user and can be used in any way he wishes. The

(perhaps null) high part is a reentrant area, which is shared by several users and is therefore write{protected.



414 CHAPTER 4. EARLIER PROCESSORS

Figure 4.7: KS10 TOPS{10 Virtual Address Space and Process Tables

HRMF-KST10VAS.TEX

777777

256K

0

User

Virtual

Address

Space

User

Process

Table

User

Page Map

000 { 777

256

Executive Map

340 { 377

16

Trap & MUUO
14

34

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

Page Fail
3

189

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

@

@

@

@

@

�

�

�

�

�

�

�

�

�

�

Section References

Trap x2.9.6

MUUO x2.16

Interrupt x4.2.1

777777

0

Executive

Virtual

Address

Space

Executive

Process

Table

34

��

�

�

�

�

�

�

�

�

�

�

��

Interrupt
14

17

�������

Interrupt
3

60

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

400 | 777

128

























�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�� 17

��

�

�

�

�

�

�

�

�

�

�

�

Trap

3

108

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

000 | 337

112

16

�������

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

EE

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

112K

16K

128K

Shaded Areas

Are Reserved



4.2. KS10 SYSTEM OPERATIONS 415

Figure 4.8: KS10 TOPS{10 Process Table Con�guration

HRMF-KST10PTC.TEX

User Process Table Executive Process Table

777 777

0 0User Page 0 User Page 1

User Page 776 User Page 777

377

400 Executive Page 340 Executive Page 341

417

Executive Page 376 Executive Page 377

420

Reserved

421 User Arithmetic Over
ow Trap Instruction

422 User Pushdown Over
ow Trap Instruction

423
User Trap 3 Trap Instruction

424

MUUO Stored Here

425

MUUO Old PC Word

426

MUUO Process Context Word

427

Reserved

430 Executive No Trap MUUO New PC Word

431 Executive Trap MUUO New PC Word

432

Reserved

433

Reserved

434 User No Trap MUUO New PC Word

435 User Trap MUUO New PC Word

436

477

Reserved

500
Page Fail Word

501 Page Fail Old PC Word

502
Page Fail New PC Word

503

Reserved

Reserved

41

42

Priority Interrupt Instructions

57

60

Reserved

100

101 Adapter 1 Interrupt Table Pointer

102

Reserved

103 Adapter 3 Interrupt Table Pointer

104

177

Reserved

200
Executive Page 400 Executive Page 401

Executive Page 776 Executive Page 777

377

400

420

Reserved

421 Executive Arithmetic Over
ow Trap Instruction

422 Executive Pushdown Over
ow Trap Instruction

423
Executive Trap 3 Trap Instruction

424

577

Reserved

600
Executive Page 0 Executive Page 1

757

Executive Page 336 Executive Page 337

760

Reserved



416 CHAPTER 4. EARLIER PROCESSORS

00

A

11

P

22

W

33

S

44

C

178

Physical Page

Address Bits 17{26

1818

A

1919

P

2020

W

2121

S

2222

C

3526

Physical Page

Address Bits 17{26

Data for Even Virtual Page Data for Odd Virtual Page

Bits 8{17 and 26{35 contain the physical page numbers for the even and odd numbered virtual pages

corresponding to the map location that holds the word. The properties represented by 1s in the

remaining \page use" bits are as follows.

Bit Meaning of a 1 in the Bit

A Access allowed

P Not used (public in other processors)

W Writable (not write{protected)

S Software (not interpreted by the hardware)

C Cacheable

Page Table. If the complete mapping procedure described above were actually carried out in every

instance, the processor would require two memory references for every reference by the program. To

avoid this, the pager contains a page table, in which it keeps a large assortment of mappings for both

the executive and the current user. The table has 512 locations, one for each virtual page number.

Each location contains a mapping (from a map half word) for the virtual page that identi�es it,

including the physical page number and the W and C bits. Each location also has a parity bit, a bit

that indicates whether the mapping is for user or executive address space, and a bit that indicates

whether the entry is valid. A zero mapping is perfectly valid, but a location is labeled as containing

no valid mapping by clearing it, thus clearing the valid bit. It is not necessary to keep the access

bit, as mappings for inaccessible pages are not entered into the table.

When the program references a page whose mapping entry is tagged as valid and in the program

address space, the 10{bit physical number

53

from the mapping for the virtual page is used as the

left ten bits in the physical address for the memory reference (provided of course that the reference

is allowable according to the W bit). If however the entry is invalid or is not for the correct address

space, or the reference is for writing and W is 0, the pager makes a separate memory reference

(referred to as a \page re�ll") to get the mapping for the speci�ed virtual page from the page map.

The mapping is placed in the table unless the reference fails because the page is inaccessible or the

program is attempting to write in a protected page.

Page Failure

When for any reason the pager is unable to make a desired memory reference, an event known as a

\page failure" occurs. For this the page terminates the instruction immediately, without disturbing

PC or storing any results in memory or the accumulators, and executes a page fail trap. The trap

operation

54

makes use of three locations in the user process table: it places a page fail word in

location 500, identi�es the failed state of the processor by placing the current PC word in location

53

Actually table locations have eleven bits for physical numbers, but the most signi�cant is not used.

54

A page failure that occurs during an interrupt instruction does not act this way. Instead the processor halts

(x4.2.7).



4.2. KS10 SYSTEM OPERATIONS 417

501, and sets up the 
ags and PC according to a new PC word in location 502. The processor

then resumes operation in the new state at the location now addressed by PC. The same sequence

of events occurs if the processor performs an I/O instruction and the adapter fails to indicate the

transfer was accomplished.

There are two kinds of page failures, hard and soft. A hard failure means that something really is

amiss, whereas a soft failure generally means only that the program requires some kind of service

from the Monitor. A hard failure is indicated by a 1 in bit 1 of the page fail word, and the particular

failure is speci�ed by a code (which is therefore � 20) in bits 1{5. There are three such failures of

which two are true page failures, i.e., failures involving memory reference, and for these the page

fail word has this format.

00

U

51

36 or 37

76

0

88

P

169

0

3517

Address

Whether the violation occurred in user or executive address space is indicated respectively by a 1

or 0 in bit 0; and a 1 or 0 in bit 8 indicates whether or not a physical address was given for the

reference. The code names the particular failure as follows.

36 Uncorrectable memory error | in a processor reference the memory controller has read an

incorrect word from storage and was unable to correct it. The processor has saved the word in

AC 0 and AC 1, block 7, and has set the Bad Memory 
ag (RDAPR bit 28).

37 Nonexistent memory | the processor has called for a storage reference over the bus but the

memory controller did not respond. This error also sets the No Memory 
ag (RDAPR bit 27).

If the failure code is 20, the fail word instead has this format

00

U

51

20

76

0

88

1

99

0

1010

1

1211

0

1313

B

3514

I/O Address

and indicates a nonexistent I/O register, i.e., an I/O instruction gave an I/O address to which there

was no response. A 1 in bit 13 indicates a byte operation. (The 1s in bits 8 and 10 mean a physical

reference and an I/O function on the bus.) Note that this is not an I/O page failure, which is a true

(memory) page failure and causes a halt.

A soft failure | of which there are two, an inaccessible page and an attempt to write in a write-

protected page | is indicated by a 0 in bit 1. The fail word still contains the U bit and the virtual

address, but now bits 1{8 have one of these formats,

Inaccessible

00

U

11

0

22

0

33

0

44

0

55

T

66

0

77

0

88

1

Write Violation

00

U

11

0

22

1

33

0

44

S

55

T

66

0

77

0

88

1

where S is simply the software bit taken from the mapping for the page speci�ed by bits 18{26, bit

8 is the inverse of bit 8 in the hard case (1 means virtual), and T indicates the type of reference in

which the failure occurred: 0 for a read{only reference, 1 for any reference involving writing. It is



418 CHAPTER 4. EARLIER PROCESSORS

evident from inspection of the two con�gurations that bit 2 is actually the A bit from the mapping;

and when the page is accessible, the 0 in bit 3 comes from the W bit. The type of reference per

se implies nothing about the cause of failure | it indicates only the reason the failed reference was

being made. Of course T and A both being 1 implies a write failure.

For a page fail trap, the new PC word is set up by the Monitor to transfer control to executive

mode. After rectifying the situation, the Monitor returns to the interrupted instruction, which

starts over again from the beginning or from the stopping position in a multipart instruction. Even

a two{part instruction that has been stopped by a failure in the second part is redone properly,

provided the Monitor restores First Part Done. The mechanism for making a correct return and the

e�ects it produces on a BLT are the same as for an interrupt, and are described under the special

considerations given at the end of x4.2.1.

Note that a soft failure seldom implies that anything is \wrong" | unless a program has attempted

to write in a truly write{protected area. Consider a typical case where the Monitor has, for example,

ten or twenty pages of a user program in core; these would be the virtual pages indicated as accessible.

When the user attempts to gain access to a page that is not there (a virtual page indicated in its

mapping as inaccessible), the Monitor would respond to the page failure by bringing in the needed

page from the disk, either adding to the user space or swapping out a page the user no longer needs.

The same situation exists for writability. When bringing in a user program, the Monitor would

ordinarily indicate as writable only the bu�er area and other pages that will de�nitely be altered,

distinguishing those that must be revised on the disk at the end from those that can be thrown

away by setting the software bit. Then in response to a write failure, the Monitor makes the page

writable and sets the software bit to indicate to itself that that page has in fact been altered and

must be saved. When the user is done, the Monitor need write back onto the disk only those pages

for which both W and S are set.

The Map Instruction

It is often helpful for the Monitor or a debugging package to be able to determine how the pager

would respond to a particular reference without actually chancing a page failure. It may also be

useful to determine where a particular virtual page is in physical memory. For such purposes the

processor has this instruction.

0 12 1314 1718 35

I X Y

8 9

A

MAP Map an Address

257

If the pager is on, map the page number of the virtual e�ective address E and place the resulting

physical address and other map data in AC. If the page is accessible, the information loaded into

AC is of the form

00

U

11

0

22

1

33

W

44

S

55

0

66

0

77

C

88

1

169

0

3517

Physical Address

where bits 17{26 are the physical page number the pager supplies for E, bit 0 is 1 or 0 depending



4.2. KS10 SYSTEM OPERATIONS 419

on whether the paging is done in user or executive address space, and W , S and C are the page use

bits from the mapping as explained above (the 1 in bit 2 represents A). If the page is inaccessible,

AC receives the given virtual address in place of a physical address; the word also includes U and a

1 in bit 8, but the remaining bits are all zero.

However, should a memory error occur during access to the page map, AC receives a hard page fail

word. If the pager is o�, the result is unde�ned.

Notes. The instruction cannot actually fail, because regardless of what happens, the page fail

microcode returns to it instead of trapping to the Monitor. The e�ective address calculation done

for it could fail however.

4.2.4 TOPS{20 Paging and Process Tables

General information about the machine modes and paging procedures is given in x1.4. Here we treat

in detail the structure of the process tables and certain hardware procedures | paging and page

failures | a knowledge of which is necessary for an understanding of executive programming. This

section covers these topics relative to a machine that uses the TOPS{20 Monitor.

55

The previous

section presents equivalent information for the TOPS{10 Monitor. Instructions through which the

Monitor controls the pager and otherwise exercises overall management of the program environment

are the same whether the system uses TOPS{20 or TOPS{10, and are described in x4.2.5.

With paging turned on, the program considers all of its dealings with memory to be in its virtual

address space, and interrupt instructions reference executive virtual address space. A virtual address

is any address given in virtual space except those for fast memory, which are treated as physical.

The pager maps only virtual addresses, but it is involved in all references to the extent that it

responds to error situations. Physical references include those made by the microcode to carry out

the mapping procedure, retrieve interrupt instructions, and handle traps, halts and UU0s.

NOTE

Hardware paging operations are inextricably intertwined with the activities of the Mon-

itor. The reader must be familiar with both to be able to understand either fully.

Paging

All of memory both physical and virtual is divided into pages of 512 words each. Physical memory

can contain 1024 pages; its locations are speci�ed by 19{bit addresses, where the left ten bits (17{26)

specify the page and the right nine (27{35) the location within the page. The virtual memory space

addressable by a program is 512 pages and uses 18{bit addresses, where the left nine bits (18{26)

are the page number. However for compatibility with extended processors, the TOPS{20 paging

system regards the virtual page as composed of sections, each of 512 pages, even though the KS10

has only one such section, and its virtual addresses have no section number. The hardware maps the

one{section virtual address space into a part of the physical address space by transforming the 18{bit

55

For additional information on the kind of paging employed in a TOPS{20 system, refer to \Storage organization

and management in TENEX", by Daniel L. Murphy, AFIPS | Conference Proceedings, Vol. 41, page 23, AFIPS

Press, Montvale, NJ.



420 CHAPTER 4. EARLIER PROCESSORS

addresses into 19{bit addresses.

56

In this transformation the right nine bits of the virtual address are

not altered; in other words a given location in a virtual page is the same location in the corresponding

physical page. The translation maps a virtual page into a physical page by substituting a 10{bit

physical page number for the 9{bit virtual page number. The mapping procedure is carried out

automatically by the pager, but the page map that supplies the necessary substitutions is set up by

the executive program.

Pointers to the page maps for the user and executive virtual address spaces are contained in section

tables that begin at location 540 in the user and executive process tables. But in the KS10 each

section table has only one entry (for section 0) at location 540. Two locations in the register �le

are used by the Monitor to specify the physical page numbers of the process tables. To retrieve the

section pointer from a process table, the pager uses the appropriate base page number as the left

ten bits of the physical address and 540 as the right nine bits. The section pointer must identify

| either directly or indirectly | a physical page that contains the page map. Every pointer and

mapping takes one word, and since there are 512 pages and 512 words in a page, a page map requires

exactly one page.

Figure 4.9 shows the detailed organization of the process tables for both user and executive, as

determined by the hardware. Any table locations not used are reserved for future use by the

hardware or use by the Monitor for software functions.

Although the virtual space is always 256K by virtue of the addressing capability of the instruction

and indirect word formats, the Monitor usually limits the actual address space for a given program

by de�ning only certain pages as accessible. There is no requirement that the accessible space be

continuous | it can be scattered pages. The Monitor also speci�es whether each page is writable

or not and cacheable or not.

57

To determine the mapping for a given virtual page, the microcode

carries out a pointer evaluation procedure that starts with the section pointer. If it is discovered

during this procedure that the page is inaccessible, the page map or the referenced page is not in

memory, or the program is attempting to write in a write{protected page, the microcode traps to

the Monitor, which must handle the situation. A trap to the Monitor for a reason of this sort is

produced by generating a \soft page failure." But if nothing is amiss, the procedure is carried out

entirely by the microcode | with no need to call the software | and it generates the mapping for

the speci�ed virtual page. The procedure requires access to the page map, to a memory status table

in which the microcode keeps track of the use made of the page map and the program{referenced

page, and perhaps to other prede�ned or software{de�ned tables as well. If the complete procedure

were carried out in every instance, the processor would require at least two memory references for

every one by the program. To avoid this, each mapping generated by the procedure is placed in

a page table, and the pager makes its virtual{to{physical translations from the mappings held in

the table.

58

Hence it is necessary to go through the evaluation procedure only when the reference

cannot be made from the page table. Since the objective of the procedure is to place a mapping in

the table, it is referred to as a \page re�ll."

Page Table A location in the page table contains a mapping entry in this format.

59

56

The mapping procedure is of course applied only to storage module references, whether cached or not. AC

references, which can be made by any program, even when virtual page 0 is accessible, are made directly to fast

memory and require no mapping.

57

Again for consistency with extended processors, the Monitor can make the section (i.e., the whole virtual space)

inaccessible, unwritable or uncacheable, but is rather unlikely to do so.

58

In the evaluations the microcode does carry out, it generally does not need to access a process table for a section

pointer, as it keeps copies of the current pointers in the workspace.

59

In the engineering drawings and even in some Monitor documents, the M bit is labeled \writeable", which name

is consistent with its use with the TOPS{10 Monitor.



4.2. KS10 SYSTEM OPERATIONS 421

Figure 4.9: KS10 TOPS{20 Process Table Con�guration

HRMF-KSTWENPTC.TEX

User Process Table Executive Process Table

777 777

0 0

Reserved

420

421
User Arithmetic Over
ow Trap Instruction

422 User Pushdown Over
ow Trap Instruction

423
User Trap 3 Trap Instruction

424 MUUO Flags MUUO Op Code, A

425

MUUO Old PC

426

E of MUUO

427

MUUO Process Context Word

430 Executive No Trap MUUO New PC

431
Executive Trap MUUO New PC

432

Reserved

433

Reserved

434 User No Trap MUUO New PC

435
User Trap MUUO New PC

436

477

Reserved

500 Page Fail Word

501 Page Fail Flags

502 Page Fail Old PC

503 Page Fail New PC

504

537

Reserved

540

User Section 0 Pointer

541

Reserved

Reserved

41

42

Priority Interrupt Instructions

57

60

Reserved

100

101
Adapter 1 Interrupt Table Pointer

102

Reserved

103
Adapter 3 Interrupt Table Pointer

104

420

Reserved

421
Executive Arithmetic Over
ow Trap Instruction

422 Executive Pushdown Over
ow Trap Instruction

423
Executive Trap 3 Trap Instruction

424

537

Reserved

540

Executive Section 0 Pointer

541

Reserved



422 CHAPTER 4. EARLIER PROCESSORS

MC

Physical Page

Address Bits 17{26

Each entry is identi�ed as providing the physical page number for the translation for a particular

virtual page. The properties represented by 1s in the two \page use" bits are as follows.

Bit Meaning of a 1 in the Bit

M Modi�ed | and therefore writable without further ado. A re�ll produces

a 1 in this bit if the page has already been modi�ed or the reference that

caused the re�ll is for write and the page is writable. A 0 does not imply

that the page is write{protected, but simply that if a write reference occurs,

the pager must �nd out if it can be written. Throughout this discussion,

\write reference" means any reference involving writing; \read reference"

means read only.

C Cacheable.

The page table has 512 locations, one for each virtual page number. Besides a mapping for the virtual

page that identi�es it, each location has a parity bit, a bit that indicates whether the mapping is

for user or executive address space, and a bit that indicates whether the entry is valid. A zero

mapping is perfectly valid, but a location is labeled as containing no valid mapping by clearing it,

thus clearing the valid bit.

When the program references a page whose mapping entry is tagged as valid and in the program

address space, the 10{bit physical number

60

from the mapping for the virtual page is used as the

left ten bits in the physical address for the memory reference (provided of course that the reference

is allowable according to the M bit). If however the entry is invalid or is not in the correct address

space, or the reference is for writing andM is 0, the pager does a re�ll to get or revise the mapping

for the speci�ed virtual page from the page map. The result of the re�ll is placed in the table

unless the reference fails because the page is inaccessible or the program is attempting to write in a

protected page.

Page Re�ll

The re�ll of a mapping into the page table is accomplished by evaluating various types of pointers

found in several kinds of tables. At some point in the procedure the microcode must encounter a

\age address" that identi�es the page map for the section, and it must end with a page address that

identi�es the physical page corresponding to the referenced virtual page. A page address has this

format.

1712

Storage

Medium

2218

Reserved

3523

Page Number

If bits 12{17 are zero, the storage medium is memory: i.e., bits 23{35 supply the number of a page

61

60

Actually table locations have eleven bits for physical numbers, but the most signi�cant is not used.

61

All pointers have provision for 13-bit physical page numbers (as in the KL10), but the microcode uses only the



4.2. KS10 SYSTEM OPERATIONS 423

that is in memory. If bits 12{17 are nonzero, the page exists but is stored on some other medium

| perhaps the disk | and the microcode traps to the Monitor. A page address may be contained

in a pointer, in which case some of the bits at its left have de�ned uses. But when the page address

stands alone, bits 0{11 of the word containing it can be used arbitrarily by the software.

Special Tables. Besides the section tables in the process tables, a re�ll makes use of two prede�ned

tables: the special page{address table (SPT) and the (core) memory status table (CST). These are

software{determined tables in memory, but their base addresses are held in the workspace, rather

than in the register �le like those of the process tables.

62

The special page{address table contains page addresses that specify shared pages or special pages

(e.g. those used as page maps or other software{de�ned tables). The microcode accesses speci�c

entries in the SPT by indexing on the physical base address (bits 17{35). The pointer format

provides for an index of eighteen bits, so the SPT can actually be as large as 256K (and it need not

start on a page boundary).

Information about the use made by programs of the various physical pages is kept in the memory

status table. In every re�ll, the microcode updates CST entries for both the page containing the page

map and the page referenced by the program. The entry for a page is a full word, and is accessed

by adding the page number to the base address. If memory is fully implemented at 1024 pages,

the CST occupies two of them, but need not begin on a page boundary. Note that the microcode

does not manipulate CST entries for the process tables, the SPT, nor the CST itself, unless they

are actually referenced by the program | in other words, unless the re�ll is being performed for a

program reference to one of the tables.

The status of a physical page in memory is indicated by a CST entry in this format.

80

State Code

349

Reserved

3535

M

The Monitor keeps a state code in bits 0{8 of the entry. State codes smaller than 10 (i.e., bits 0{5

being zero) cause an age trap to the Monitor. Other codes represent the page age, which must be

greater than 7 for the page to be usable, whether it is the program{referenced page or the page

map.

63

The microcode updates the entry by anding a CST mask word into it and oring a process

use word into that result. These two words are also held in the workspace. Bits 32{35 in them must

be all 1s or all 0s as illustrated in order to preserve hardware information.

310

Mask

CST Mask Word

3532

1 1 1 1

right ten bits.

62

Remember that all memory tables de�ned by the pager are in physical address space. i.e., they have physical

base addresses. Of course, to load or access a table, the Monitor must use paged virtual addresses. Note that if the

base address is limited to a page number (bits 17{26), the table must begin at a page boundary.

63

Zero age usually means the page is being swapped in and is not yet available for reference. The Monitor can use

part of a CST entry to record which processes use the page.



424 CHAPTER 4. EARLIER PROCESSORS

310

Age Data & Other Information

Process Use Word

3532

0 0 0 0

A 1 in the M bit indicates the page has been modi�ed since being brought into memory.

64

The

microcode sets this bit in the entry for the referenced page | not that for the page map | if the

reference is write and the page is writable.

Indirect pointers make use of tables whose locations are de�ned entirely by the Monitor. In a single

re�ll, these may include one or more secondary section tables or page maps. Each such table or map

is determined by a page address and a 9{bit index, and is therefore a single page. Memory status is

kept only for the page maps.

Pointers. The microcode evaluates two kinds of pointers: section pointers and map pointers. The

former are used in section tables and the latter in page maps. Members of these two classes are

identical in form but di�er enough in function so they must be treated separately. There are four

types of section and map pointers distinguished by a type code in bits 0{2; of these, three are access

pointers, i.e., they allow access to the given section or page. An access pointer has this format in its

left seven bits.

20

Type

44

W

66

C

Every access pointer must have use bits for the section or page it represents. These bits, W and C ,

indicate whether the section or page is writable or cacheable. Throughout the evaluation procedure

the microcode e�ectively ands these bits from one pointer to the next, so the �nal result requires

that the given characteristics be speci�ed at every step. In other words if W is 1 in the �nal pointer

for the mapping, the page is writable provided the entire section was also speci�ed as writable by

the original section pointer, and \writability" has been speci�ed by every other pointer encountered

along the way. Every access pointer must also either contain a page address or point to an SPT

location that contains a page address.

Section Pointers. Entries in a section table are of these four types.

65

20

0

353

Available to Software

No Access

The section is inaccessible.

64

At the completion of a process, the Monitor checks the CST to determine which pages have been modi�ed and

must be rewritten on the disk.

65

Type codes 4{7 are unde�ned and result in a page failure.



4.2. KS10 SYSTEM OPERATIONS 425

Immediate

20

1

44

W

66

C

117

Reserved

1712

Storage

Medium

2218

Reserved

3523

Page Number

Of Page Map

If bits 12{17 are zero, the page map is in the page speci�ed by bits 26{35. Otherwise the page map

is not in memory.

An immediate pointer contains the page address of the page map.

20

2

44

W

66

C

177

Reserved

3518

Index to SPT location containing

Page Address of Page Map

Shared

The page address of the page map is in the SPT at the location speci�ed by bits 18{35.

This pointer is used for a page map shared by a number of processes. Switching to another map

requires changing only the common SPT entry.

20

3

44

W

66

C

179

Section Table

Index

3518

Index to SPT location containing page

Address of Another Section Table

Indirect

In the SPT location speci�ed by bits 18{35 is the page address of a secondary section table. The

next section pointer to be evaluated is in that table at the location speci�ed by bits 9{17.

Indirect pointers are used for Monitor reference to per{job and preprocess areas. The pointers remain

while the second section table is swapped with the job or process, or the SPT entry is changed.

Map Pointers. Entries in a page map are of these four types.

65

20

0

353

Available to Software

No Access

The page is inaccessible.



426 CHAPTER 4. EARLIER PROCESSORS

Immediate

20

1

44

W

66

C

117

Reserved

1712

Storage

Medium

2218

Reserved

3523

Page Number

for Mapping

If bits 12{17 are zero, the physical page speci�ed by bits 26{35 corresponds to the referenced virtual

page. Otherwise the referenced page is not in memory.

An immediate pointer contains the page address for the mapping.

20

2

44

W

66

C

177

Reserved

3518

Index to SPT location containing

Page Address for Mapping

Shared

The page address for the mapping for the referenced virtual page is in the SPT at the location

speci�ed by bits 18{35.

This pointer is used for a physical page referenced as di�erent virtual pages by di�erent programs.

The Monitor can move the page simply by changing the SPT entry.

20

3

44

W

66

C

179

Page Map

Index

3518

Index to SPT location containing page

Address of Another Page Map

Indirect

In the SPT location speci�ed by bits 18{35 is the page address of a secondary page map. The next

map pointer to be evaluated is in that map at the location speci�ed by bits 9{17.

Re�ll Procedure. If the page table lacks a valid mapping for a reference, the pager must evaluate

section and map pointers to get the desired mapping. The procedure begins with the pointer for

the section from the process table, and the pager follows the trail laid by the various pointers, as

illustrated in Figure 4.10. At any step the microcode traps to the Monitor if it encounters a no{access

pointer or a page address that indicates the page is not in memory. The �rst part of the procedure,

which may go to the SPT or indirectly through it to other section tables, evaluates section pointers

to arrive at the page address of the page map. Using this physical page number as the left ten bits

of an address and the number of the referenced virtual page as the right nine bits, the second part

of the procedure retrieves a map pointer and evaluates it. This part may also go to the SPT or

indirectly through it to other page maps to arrive at a page address for the mapping. Unless an age

trap intervenes, memory status is updated along the way for any page maps used. If the reference

can be made and there is no age trap for the referenced page, its status is updated including setting

the M bit if the program is writing. The microcode then constructs the desired mapping, places it

in the page table, and returns to the waiting reference.

The mapping data is constructed from the result of the pointer evaluation, including the running

evaluation of the use bits, and has the format illustrated in the discussion of the page table. The



4.2. KS10 SYSTEM OPERATIONS 427

Figure 4.10: TOPS{20 Paging Pointer Evaluation (KS10)

HRMF-KSTWENPPE.TEX

SPT

Base

-

Workspace

Location SBR

Process Table

Executive

or User

Section

Pointer

Shared

Section

Pointer

2
Index

540

-

0

Page

Address

Page

-

6

?

CST

��

��

Page Map

0000

No

Access

Trap

10

Page

173

Immediate

Map Pointer

2
Index

401

Shared

Map

Pointers

-

1

Not in

Memory

Trap

2
Index

400

-

0

Page

Address

Page

-

6

?

CST

��

��

Data

for

Page 400

162

LSHC 1,{3

3 007
Index

700

-

Indirect

Map

Pointers

1

Not in

Memory

Trap

3 204 Index701

3 417
Index

702

-

0

Page

Address

Page

-

6

?

CST

��

��

Secondary

Page Map

10

Page

417

Immediate

Map Pointer

-

6

?

CST

��

��

11204

Not in

Memory

Trap

��

CW

Page Map

Indexes

from

Indirect

Pointers

Data

for

Page 173

-

6

?

CST

��

��

561

ILDB 1,13

Page Map

for

Page 702

Note: this

is also Page

417, Rela-

tive to the

Secondary

Page Map

667

MUL 2,1064

6

?

CST

��

��

The symbol denotes a

test of the CST entry for

the page. If the page

is too \young" an age

trap intervenes. Other-

wise the CST entry is up-

dated and the page refer-

ence is made.

Pages 173, 400, and 720

are in memory. Pages

000, 401, 700, and 701 are

not; any reference to them

causes a page fail trap.

Virtual

Address Contents

173561

ILDB 1,13

400162

LSHC 1,{3

702667

MUL 2,1064



428 CHAPTER 4. EARLIER PROCESSORS

microcode always places a 1 in the valid bit to indicate that the virtual page is accessible and this

is a valid mapping for it. C is simply the result of anding the C bits of the various pointers. M

however is not. A re�ll sets up M according to the type of reference and the characteristics of the

referenced page.

Circumstances

66

M E�ect

Read reference, page not writable. 0 An attempt to write will fail.

Read reference, page writable but not

yet modi�ed (according to CST).

0 An attempt to write will succeed, af-

ter the mapping is revised.

Page writable, write reference or page

already modi�ed.

1 Sets M in CST entry: an attempt to

write will succeed.

Page Failure

When for any reason the pager is unable to make a desired memory reference, an event known

as a \page failure" occurs. For this the microcode terminates the instruction immediately, without

disturbing PC or storing any results in memory or the accumulators, and executes a page fail trap.

67

The trap operation makes use of three locations in the user process table: it places a page fail word

in location 500, identi�es the failed state of the processor by placing the current 
ag{PC doubleword

in locations 501 and 502, sets up PC according to a new value in location 503, and clears the 
ags

(placing the processor in executive mode). The processor then resumes operation in the new state

at the location now addressed by PC. The same sequence of events occurs if the processor performs

an I/O instruction and the adapter fails to indicate the transfer was accomplished.

There are two kinds of page failures, hard and soft. A hard failure means that something really is

amiss, whereas a soft failure generally means only that the program requires some kind of service

from the Monitor. A hard failure is indicated by a 1 in bit 1 of the page fail word, and the particular

failure is speci�ed by a code (which is therefore � 20) in bits 1{5 There are three such failures of

which two are true page failures, i.e., failures involving memory reference, and for these the page

fail word has this format.

00

U

51

36 or 37

76

0

88

P

169

0

3517

Address

Whether the violation occurred in user or executive address space is indicated respectively by a 1

or 0 in bit 0; and a 1 or 0 in bit 8 indicates whether or not a physical address was given for the

reference. The code names the particular failure as follows.

36 Uncorrectable memory error | in a processor reference the memory controller has read an

incorrect word from storage and was unable to correct it. The processor has saved the word

in AC 0 and AC 1, block 7, and has set the Bad Memory 
ag (RDAPR bit 28).

37 Nonexistent memory | the processor has called for a storage reference over the bus but the

memory controller did not respond. This error also sets the No Memory 
ag (RDAPR bit 27).

66

The missing circumstance produces a page failure.

67

A page failure that occurs during an interrupt instruction does not act this way. Instead the processor halts

(x4.2.7).



4.2. KS10 SYSTEM OPERATIONS 429

If the failure code is 20, the fail word instead has this format

00

U

51

20

76

0

88

1

99

0

1010

1

1211

0

1313

B

3514

I/O Address

and indicates a nonexistent I/O register, i.e., an I/O instruction gave an I/O address to which there

was no response. A 1 in bit 13 indicates a byte operation. (The 1s in bits 8 and 10 mean a physical

reference and an I/O function on the bus.) Note that this is not an I/O page failure, which is a true

(memory) page failure and causes a halt.

A soft failure can result only from actions taken in a re�ll or writability check and is indicated by

a 0 in bit 1. This means either an attempt to write in a write{protected page, or the evaluation

procedure encountered some condition beyond which it could not go | a no-access pointer, an illegal

pointer code, some page (not necessarily the program{referenced one) not in memory, or an age trap.

The fail word still contains the U bit and the virtual address, but now bits 1{8 have one of these

formats,

Write Violation

00

U

11

0

22

1

33

0

44

0

55

1

66

0

77

0

88

1
Other Failure

00

U

11

0

22

0

33

0

44

0

55

T

66

0

77

0

88

1

where bit 8 is the inverse of bit 8 in the hard case (1 means virtual), and T indicates the type of

reference in which the failure occurred: 0 for a read{only reference, 1 for any reference involving

writing. A 0 in bit 2 means the evaluation procedure was incomplete. In the write violation

con�guration, the 1 in bit 2 means the procedure was completed, and the 0 in bit 4 comes from

anding the W bits in the string of pointers. The type of reference per se implies nothing about the

cause of failure | it indicates only the reason the failed reference was being made. Of course T and

bit 2 both being 1 implies a write failure.

For a page fail trap, the processor automatically switches to executive mode. After rectifying the

situation, the Monitor eventually returns to the interrupted instruction, which starts over again from

the beginning or from the stopping position in a multi part instruction. Even a two{part instruction

that has been stopped by a failure in the second part is redone properly, provided the Monitor

restores First Part Done. The mechanism for making a correct return and the e�ects it produces

on a BLT are the same as for an interrupt, and are described under the special considerations given

at the end of x4.2.1. Before returning to the failed instruction, the Monitor must invalidate the

mapping for the page and revise the pointers for the new situation. Then when the instruction is

restarted, the pager will do a re�ll to get the new, correct mapping.

A no{access pointer may imply that the page simply does not exist. Otherwise a soft failure seldom

implies that anything is \wrong." Consider a typical case where the Monitor has, for example, ten

or twenty pages of a user program in memory. When the user attempts to gain access to a page that

is not there (i.e., for which the re�ll encounters a not{in{memory page address), the Monitor would

respond to the failure by bringing in the needed page from the disk, either adding to the user space,

or swapping out a page the user no longer needs or has not used recently. Similarly a process using

several sections may have only one in core at a time. While swapping is in progress, the Monitor

runs some other user. returning to the interrupted job when the requested page is available.



430 CHAPTER 4. EARLIER PROCESSORS

The same situation exists for writability. Keeping track of modi�ed pages is handled by the re�ll

procedure using the memory status table. But a page may be write{protected because is it shared

by a number of processes, wherein a change made by one might not be wanted by the others. Thus

in response to a write failure, the Monitor might make a separate writable copy of the page for the

sole use of the process that wishes to modify it.

The Map Instruction

It is often helpful for the Monitor or a debugging package to be able to determine how the pager

would respond to a particular reference without actually chancing a page failure. It may also be

useful to determine where a particular virtual page is in physical memory. For such purposes the

processor has this instruction.

0 12 1314 1718 35

I X Y

8 9

A

MAP Map an Address

257

If the pager is on, map the page number of the virtual e�ective address E and place the resulting

physical address and other map data in AC. If the page is accessible, the information loaded into

AC is of the form

00

U

11

0

22

1

33

M

44

W

55

0

66

0

77

C

88

1

169

0

3517

Physical Address

where bits 17{26 are the physical page number the pager supplies for E, bit 0 is 1 or 0 depending

on whether the paging is done in user or executive address space, and M , W and C are page use

bits resulting from the pointer evaluation procedure as explained above. If the page is inaccessible,

AC receives the given virtual address in place of a physical address; the word also includes U and a

1 in bit 8, but the remaining bits are all zero.

However, should a memory error occur during the re�ll, AC receives a hard page fail word. If the

pager is o�, the result is unde�ned.

Notes. The instruction cannot actually fail, because regardless of what happens, the page fail

microcode returns to it instead of trapping to the Monitor. The e�ective address calculation done

for it could fail however.

4.2.5 Memory Management

In order properly to manage memory, the executive program must select the kind of paging, set

up process tables and page maps for itself and the various users, oversee the operation of the page

table, and select the fast memory block to be used by each program (usually block 0 for itself). At

any given time, accumulator, index register and fast memory references are made to that AC block

that is assigned as \current." Given a particular processor mode and an appropriate process table

and page map, the Monitor e�ectively de�nes the address space for a process (which may be itself)



4.2. KS10 SYSTEM OPERATIONS 431

by specifying the base address for the process table and selecting the current AC block.

When a user program calls the Monitor it is usually to request some activity, which may often require

the executive to gain access to the user address space. To facilitate the crossover from one address

space to another, the same instruction through which the Monitor assigns its own current AC block

also allows assignment of an AC block for the \previous{context" | i.e., the context of the process

that made the call. This, together with a 
ag that indicates the mode of the caller, allows execution

of instructions in the previous{context (more about this subject later). At any point in time, the

previous{context is essentially the circumstances in which the previous process was running. Note

that the previous{context need not be the user; the same techniques can be exploited following a

call from one level of the Monitor to another.

For initial setup, the executive programmust be cognizant of certain fundamental characteristics that

can vary from one system to another. For this purpose the instructions for basic management include

not only those that control the pager, but also one that addresses the processor to discover what

those characteristics are. The �rst �ve of the following instructions are for either kind of paging; the

remaining eight are solely for handling the special registers used in the TOPS{20 pointer evaluation.

0 12 1314 1718 35

I X Y

APRID Arithmetic Processor Identi�cation

70000

Read the microcode version number, the processor serial number, and a listing of the fundamental

characteristics of the system into locationE as shown. At present there are no microcode or hardware

options.

80

Microcode Options

179

Microcode Version

2018

Hardwr

Opts

3521

Processor Serial Number

0 12 1314 1718 35

I X Y

WREBR Write Executive Base Register

70120

Set up the system{oriented characteristics of the pager according to the e�ective conditions E as

shown.

2018 2121

T20

Pag

2222

Enb

Pag

2423 3525

Executive Base Address

(Page Number)

Load bits 25{35 into bits 16{26 in the executive base register (EBR in the register �le) to select the

executive process table. If bit 22 is 1 enable over
ow trapping and enable the pager for the type of

paging selected by bit 21: 1 TOPS{20, 0 TOPS{10. A 0 in bit 22 prevents traps and disables paging



432 CHAPTER 4. EARLIER PROCESSORS

so all memory references are to physical locations unpaged.

68

CAUTION

Paging can be disabled only for executive mode. A user mode program will not run

correctly unless the pager is turned on.

Invalidate the entire cache and page table by clearing the valid bits in all entries.

0 12 1314 1718 35

I X Y

RDEBR Read Executive Base Register

70124

Read the system status of the pager into the right half of location E. The information read is the

same as that supplied by WREBR.

0 12 1314 1718 35

I X Y

WRUBR Write User Base Register

70114

Set up the process{oriented elements of the pager according to the contents of location E as shown.

2418 3525

User Base Address

(Page Number)

1919 2020 2121 2222 2323 2626 2727 2828 2929 3030 3131 3232 3333 3434

00

Sel

AC

Blk

11 22

Load

User

Base

Addr

33 44 55 86

Current

AC Block

77 119

Previous

AC Block

1010 1212 1313 1414 1515 1616

Bits 0 and 2 are change indicators for parts of the data word: when a bit is 0, the corresponding part

of the word is ignored, and the equivalent value supplied by a previous WRUBR remains in e�ect.

If bit 0 is 1, select as the current and previous{context AC blocks those speci�ed by bits 6{8 and

9{11, respectively. If bit 2 is 1, load bits 25{35 into bits 16{26 in the user base register (UBR in

the register �le) to select the user process table, and invalidate the entire cache and page table by

clearing the valid bits in all entries.

68

Note that disabling the pager does not mean there can be no page failures, as these can be caused by conditions

having nothing to do with paging, i.e., with translating virtual to physical addresses.



4.2. KS10 SYSTEM OPERATIONS 433

0 12 1314 1718 35

I X Y

RDUBR Read User Base Register

70104

Read the process status of the pager into location E. The information read is the same as that

supplied by a WRUBR (bits 0 and 2 are 1s).

0 12 1314 1718 35

I X Y

CLRPT Clear Page Table Entry

70110

Invalidate the page table mapping entry for the page referenced by E, and invalidate the entire

cache.

0 12 1314 1718 35

I X Y

WRSPB Write SPT Base Address

70240

Load the contents of location E into the SPT base register in the workspace.

0 12 1314 1718 35

I X Y

RDSPB Read SPT Base Address

70200

Read the contents of the SPT base register into location E.

0 12 1314 1718 35

I X Y

WRCSB Write CST Base Address

70244

Load the contents of location E into the CST base register in the workspace.

0 12 1314 1718 35

I X Y

RDCSB Read CST Base Address

70204

Read the contents of the CST base register into location E.



434 CHAPTER 4. EARLIER PROCESSORS

0 12 1314 1718 35

I X Y

WRCSTM Write CST Mask

70254

Load the contents of location E into the CST mask register in the workspace for use as the mask in

CST updating.

0 12 1314 1718 35

I X Y

RDCSTM Read CST Mask

70214

Read the contents of the CST mask register into location E.

0 12 1314 1718 35

I X Y

WRPUR Write Process Use Register

70250

Load the contents of location E into the process use register in the workspace for use as the process

use word in CST updating.

0 12 1314 1718 35

I X Y

RDPUR Read Process Use Register

70210

Read the contents of the process use register into location E.

At power turn on the contents of the cache and page table are indeterminate, the processor is in

executive mode, paging is disabled, and the current AC block is 0. After the console loads the

microcode, it then loads the initializing executive program. This program, running unpaged in

physical memory, should give an APRID to determine system characteristics. The unpaged program

ends with a WREBR that selects and enables paging, speci�es the executive base address, and

invalidates the cache and page table. From this point the executive program runs paged and must

set up the �rst user or users, loading the user process tables and page maps, and bringing in whatever

parts of user programs and data that are consistent with good working{set management. Finally

the Monitor gives a WRUBR to assign the base address and current AC block for the �rst user, and

then transfers control to the user program via an XJRSTF or JRSTF.

On a call from the user via an MUUO, give an RDUBR to determine the context of the user, i.e.,

his AC block. Then give a WRUBR that assigns block 0 as current for the Monitor, assigns the user

AC block as previous{context for accessing user space, but leaves the base address alone so the right

paging is still available for such access. To return to the same user, reassign the AC block without



4.2. KS10 SYSTEM OPERATIONS 435

changing the base address. Note that on the transfer to a user program no previous{context AC

block need be given as the user cannot employ PXCTs.

The usual procedure for administering AC blocks is to assing block 1 to all users and assign two

or three blocks for the sole use of interrupt routines. Suppose the assignments are: block 0 for the

Monitor, block 1 for all users, block 2 for the highest priority interrupt level, block 3 for the second

highest level, and block 4 for all other levels. Then in no circumstances is it necessary to determine

which block to save, and interrupt routines on the highest, second highest and lowest levels need

not save any. Moreover, the Monitor need not even store block 1 when it takes control from a user

temporarily. When switching from one ordinary user to another, the Monitor usually stores the �rst

user's accumulators in his process table or shadow area | this is locations 0{17 in user virtual page

0, an area not generally accessible to the user at all | and loads the new user's accumulators from

his process table or shadow area, where they were stored after the last time the new user ran

On a change from one process to another the entire page table must be invalidated, but this is done

automatically by the instruction that assigns the new user base address. If the system uses shared

or indirect pointers, or several virtual page numbers point to the same physical page, then the table

must be invalidated whenever a page is removed from memory or a pointer is removed from a user

page map. On the other hand deletion of a page with a unique mapping requires only that a CLRPT

be given to invalidate the entry containing it.

Previous{Context Execute

Ordinarily an instruction in a user program is performed entirely in user address space, and an

instruction in the executive program is performed entirely in executive address space. But to fa-

cilitate communication between Monitor and users, the executive can execute instructions in which

selected references cross over the boundary between user and executive address spaces. This feature

is implemented by the previous{context execute, or PXCT, instruction. The mnemonic PXCT is

for convenience only and has no meaning to the assembler; it is used simply to indicate an XCT

with nonzero A bits. A PXCT is an XCT. Although the PXCT is given by a program in the current

context, some of the references made by the executed instruction can be in the previous{context. A

PXCT can be given only in executive mode, but the previous{context may be the user, as following

a call to the Monitor by the user. The previous context can however be the executive, to allow

communication between one level of the executive program and another, as when the Monitor gives

an MUUO to itself. (Note: it is not intended that PXCT be used by the Monitor for unsolicited

references to a user program.)

It is very important to understand just which operations are a�ected by a PXCT and which are not.

The only di�erence between an instruction executed by a PXCT and an instruction performed in

normal circumstances is in the way certain of its memory and index register references are made.

To work as a PXCT, an XCTa must be given in executive mode, and the bits in its A �eld (9{12)

must not all be 0 (in user mode A is ignored). But there is otherwise no di�erence in the way the

XCT itself is performed: everything in the PXCT is done in the current (executive) context, and the

instruction to be executed by the XCT is fetched in the current context. Moreover in the executed

instruction, all accumulator references (speci�ed by bits 9{12 of the instruction word) are in the

current context. (Remember that the executive can always access a user accumulator simply by

addressing it as a fast memory location.) If the instruction makes no memory operand references, as

in a shift or immediate mode instruction, and it has no indexing or indirection (i.e., the instruction

word gives E directly), then its execution di�ers in no way from the normal case. The only di�erence

is in memory and index register references.



436 CHAPTER 4. EARLIER PROCESSORS

The previous{context is speci�ed by two quantities. Following a call by an MUUO, the fast memory

block assigned to the calling program appears as the current context AC block in the word read

by an RDUBR. For the called program, this value can then be assigned as the previous{context by

a WRUBR. The current AC block of the calling program also appears in the process context word

supplied by the MUUO. Various levels of the Monitor may all use fast memory block 0; or a separate

block may be assigned to that part of the Monitor that uses PXCTs in handling MUUO calls from

other parts of the Monitor.

Just as the current mode is indicated by the User 
ag, the mode in which the calling program was

running is indicated by Previous Context User.

69

At a call this 
ag may be set up automatically or

it may be set up by a 
ag{PC doubleword or a PC word. Note that the restrictions on references

made in the previous{context are those of the previous context | not those of the context in which

the PXCT is given. Suppose the executive executes an instruction that references an inaccessible

user area. Such a reference would fail.

Which references in the executed instruction are made in the previous{context is determined by 1s

in the A portion of the PXCT instruction word as follows.

Bit References Made in Previous{Context if Bit is 1

9 E�ective address calculation of instruction, including both instruction

words in EXTEND (index registers, address words by indirection); also EX-

TEND e�ective address calculation of source pointer if bit 11 is 1 and of

destination pointer if bit 12 is 1.

10 Memory operands speci�ed by E , whether fetch or store (e.g., PUSH

source, POP or BLT destination); byte pointer: second instruction word

in EXTEND.

11 E�ective address calculation of byte pointer; source in EXTEND; e�ective

address calculation of EXTEND source pointer if bit 9 is 1.

12 Byte data; stack in PUSH or POP; source in BLT; destination in EXTEND;

e�ective address calculation of EXTEND destination pointer if bit 9 is 1.

Previous{context referencing is useful and reasonable in some instructions but inapplicable to others.

There is no trap of any kind, and the e�ect of using the feature with an instruction to which it does

not apply is simply unde�ned.

69

Previous Context User is in the same 
ag bit that is used for User In{out, which has no meaning in executive

mode.



4.2. KS10 SYSTEM OPERATIONS 437

Applicable Inapplicable

Move, XMOVEI LUUO, MUUO

EXCH, BLT, XBLT AOBJN, AOBJP

Half word, XHLLI JUMP, AOJ, SOJ

Arithmetic JSR, JSP, JSA, JRA, JRST

Boolean PUSHJ, POPJ

Double move XCT, PXCT

CAI, CAM Shift{rotate

SKIP, AOS, SOS String (except MOVSLJ)

Logical test I/O

PUSH, POP, ADJSP System (except MAP)

Byte

MOVSLJ

MAP

Note that no jumps can use previous{context referencing. Even among the instructions to which

such referencing is applicable, only a limited number of the sixteen possible bit combinations is

useful or meaningful. Doing an e�ective address calculation in the previous{context (selected by

bit 9 or 11) makes sense only if the corresponding data access is also in the previous{context (as

selected by bit 10 or 12 except 11 or 12 in EXTEND). Only the combinations listed in Table 4.2 are

permitted.

The most frequent use of previous{context referencing is simply for the transfer of words between

user and executive. For this reason the processor has these two convenient instructions.

0 12 1314 1718 35

I X Y

8 9

A

UMOVE User Move

704

Perform the same function as PXCT 4,[MOVE A,E]. However, whereas a PXCT can be performed

only in executive mode, UMOVE can also be done in user in{out mode.

0 12 1314 1718 35

I X Y

8 9

A

UMOVEM User Move to Memory

705

Perform the same function as PXCT 4,[MOVEM A,E]. However, whereas a PXCT can be performed

only in executive mode, UMOVEM can also be done in user in{out mode.

4.2.6 System Timing

The timer includes a 12{bit hardware millisecond counter, a doubleword time base kept from it, and

an interval register for timed interrupts. The millisecond counter runs continuously at 4.1 MHz and

represents an elapsed time of just under 1 ms at each over
ow. Whenever the counter is read, its

two least signi�cant bits are ignored, so its contents e�ectively represent a count in microseconds



438 CHAPTER 4. EARLIER PROCESSORS

Table 4.2: KS10 Permissible PXCT Addressing Modes

Instructions 9 10 11 12 References in Previous{Context

General 0 1 0 0 Data

1 1 0 0 E, Data

Immediate 1 0 0 0 E

BLT 0 0 0 1 Source

0 1 0 0 Destination

0 1 0 1 Source, destination

1 1 0 0 E, destination

1 1 0 1 E, source, destination

XBLT 0 0 1 0 Source

0 1 0 0 Destination

0 0 1 1 Source, destination

Stack 0 0 0 1 Stack

0 1 0 0 Memory data

0 1 0 1 Memory data, stack

1 1 0 0 E, memory data

1 1 0 1 E, memory data, stack

Byte 0 0 0 1 Data

0 0 1 1 Pointer E, data

0 1 1 1 Pointer, pointer E, data

1 1 1 1 E, pointer, pointer E, data

MOVSLJ 0 0 0 1 Destination

1 0 0 1 E(= Y ), destination pointer, destination

0 0 1 0 Source

1 0 1 0 E(= Y ), source pointer, source

0 0 1 1 Source, destination

1 0 1 1 E(= Y ), pointers, source, destination



4.2. KS10 SYSTEM OPERATIONS 439

(1/1025th ms).

The time base is a double length number kept in a pair of registers in the workspace. It is a 71{bit

unsigned quantity in which the entire �rst word comprises the high order thirty{six bits, and the low

order thirty{�ve are in bits 1{35 of the second word.

70

In this doubleword, the hardware counter

corresponds to the right twelve bits of the low order word. The program can initialize the time

base as a number of milliseconds (the low order twelve bits are ignored), and every time the counter

over
ows the microcode adds 2

12

to the base.

The interval register (in the workspace) holds a period that is speci�ed by the program and cor-

responds in magnitude to the low order word of the time base. This allows a maximum interval

of 2

23

ms, which is almost 140 minutes. At the end of each interval, the microcode sets Interval

Done (RDAPR bit 30), requesting an interrupt on the level assigned to the system 
ags (x4.2.8).

In a separate workspace register, the microcode starts with the given period, decrements it by 2

12

every time the millisecond counter over
ows, and sets the 
ag when the contents of this \time to

go" register reach zero or less. Hence the countdown is by milliseconds, and any nonzero quantity

in the low order twelve bits of the given period adds a whole millisecond to the count. (However,

following speci�cation of an interval by the program, the �rst downcount occurs at the �rst counter

over
ow regardless of when the register was loaded.)

The processor has these instructions for the program to handle the time base and the interrupt

interval.

0 12 1314 1718 35

I X Y

WRTIM Write Time Base

70260

Read the contents of location E;E+1, clear the right twelve bits of the low order word read (the part

corresponding to the hardware millisecond counter), and place the result in the time base registers

in the workspace.

0 12 1314 1718 35

I X Y

RDTIM Read Time Base

70220

Read the contents of the time base registers, add the current contents of the millisecond counter to

the doubleword read, and place the result in location E;E + 1.

0 12 1314 1718 35

I X Y

WRINT Write Interval

70264

Load the contents of location E into the interval register in the workspace.

70

Remember, it is a property of twos complement arithmetic that the sign can be used as an extra magnitude bit

in an unsigned number. But since the hardware is set up for signed arithmetic, bit 0 of any lower order word must

be skipped.



440 CHAPTER 4. EARLIER PROCESSORS

0 12 1314 1718 35

I X Y

RDINT Read Interval

70224

Read the contents of the interval register into location E. The period read is the same as that

supplied by WRINT.

4.2.7 Halt Status

Whenever the processor halts, the microcode places a halt code, giving the reason for the halt, in

physical (i.e., storage) location 0, and places PC in physical location 1. Except at error{free powerup,

it then saves the register �le and VMA in a halt status block beginning at a physical location speci�ed

by the program, although the program can inhibit storing of halt status altogether. The registers

saved in the status block are as follows.

Location Register

0 MAG

1 PC

2 HR

3 AR

4 ARX

5 BR

6 BRX

7 ONE (1)

10 EBR

11 UBR

12 MASK

13 FLG (
ags, page fail code)

14 PI

15 XWD1 (1,,1)

16 TO

17 TI

20 VMA (with 
ags)

Halt codes in the range 0{77 are used for \normal" halts. Codes in the ranges 100{777 and 1000 or

greater respectively indicate software and microcode/hardware failures. Codes currently assigned

are these.



4.2. KS10 SYSTEM OPERATIONS 441

Code Halt Condition

0 Microcode just started; on this halt no status block is stored

1 Program gave a HALT (AR and PC contain E)

2 Console halted the processor

100 page failure

101 Illegal interrupt instruction

If halt occurs on a vector interrupt, status block contains these quantities:

TO Vector as read from bus

ARX EPT address + 100 + adapter number

BR Address of illegal instruction

BRX Vector masked and shifted

102 Zero table pointer for vector interrupt (for contents of TO and ARX, see

code 101)

1000 Error in BWRITE dispatch on dispatch ROM

1005 In powerup sequence, processor got wrong result when computing table of

powers of 10 for use by string microcode (BR and ARX contain high and

low words of incorrect 10

21

)

At powerup the microcode assigns an address of 376000 for storing halt status. The program can

change the assignment at any time using these instructions.

0 12 1314 1718 35

I X Y

WRHSB Write Halt Status Block Base Address

70270

Load the contents of location E into the halt status block base register in the workspace. If bit 0 of

the word in E is 0, bits 17{35 will be used as the physical address for storing halt status. But if bit

0 is 1, no status will be stored.

0 12 1314 1718 35

I X Y

RDHSB Read Halt Status Block Base Address

70230

Read the contents of the halt status block base register into location E.

4.2.8 System Conditions

This section discusses special logic through which the program controls and receives information

about other parts of the system, speci�cally memory and the console. Any program also has con-

siderable dealings with the peripheral equipment, but that is another subject.

System Flags

Four of these eight 
ags are set by memory hardware error conditions. Two others are used for



442 CHAPTER 4. EARLIER PROCESSORS

communicationbetween processor and console, and one is used by the microcode to signal completion

of an interval count. The program can enable any 
ag to request an interrupt on a level assigned to

them all. There are of course other error indications besides the 
ags. A parity error in the internal

data paths of the processor causes the console to shut down the system by turning o� the processor

clock. Software errors in the handling of interrupts and some processor hardware failures cause the

microcode to halt the processor as discussed in x4.2.7. And yet other conditions cause page failures.

The system 
ags are generally regarded as important enough to be assigned to the highest priority

level. However for most conditions the common practice is for the interrupt to switch over to the

lowest priority level by means of a program{set request. Then the time taken to handle the situation,

which may well be considerable, cannot interfere with high priority events.

The 
ags are handled by these two instructions.

0 12 1314 1718 35

I X Y

WRAPR Write System Flags

70020

Assign the interrupt level speci�ed by bits 33{35 of the e�ective conditions E and perform the

functions speci�ed by bits 20{31 as shown (a 1 in a bit produces the indicated function, a 0 has no

e�ect).

1818 1919 2320

Selected Flags

23202020

Enb

2020 2121

Dis

2121 2222

Clr

2222 2323

Set

2323 3124

Select Flags for Bits 20{23

2424

Flag

24

2525

Int

Cons

2626

Pwr

Fail

2727

No

Mem

2828

Bad

Mem

Data

2929

Corr

Mem

Data

3030

Intv

Done

3131

Cons

Int

3232 3533

Priority

Interrupt

Assignment

3434

Then after 300 ns clear the Interrupt Console 
ag.

Bits 20{23 select 
ag functions: 1s in these bits produce the indicated e�ects on the system 
ags

selected by 1s in bits 24{31. A 1 in bit 20 enables the setting of any selected 
ag to request an

interrupt on the level assigned to the 
ags; a 1 in bit 21 disables the selected 
ags from requesting

interrupts. Similarly a 1 in bit 22 or 23 clears or sets the selected 
ags. The result of putting 1s in

both bits 20 and 21 or 22 and 23 is indeterminate.

The reason for clearing Interrupt Console is to provide a pulse on the signal line to the console in

case the instruction has set the Interrupt Console 
ag. Pulsing the line triggers an interrupt in the

console microprogram.

Notes. Except for Flag 24 (which has no de�ned meaning) and Interrupt Console, the program

setting a 
ag has no relation to what the 
ag represents | the function is used only to check out

the 
ag logic.



4.2. KS10 SYSTEM OPERATIONS 443

0 12 1314 1718 35

I X Y

RDAPR Read System Flags

70024

Read the status of the system 
ags into location E as shown (asterisks indicate bits that can cause

interrupts)

1818 1919 2020 2121 2222 2323 2424

Flag

24

*

2525

0

*

2626

Pwr

Fail

*

2727

No

Mem

*

2828

Bad

Mem

Data

*

2929

Corr

Mem

Data

*

3030

Intv

Done

*

3131

Cons

Int

*

3232

Int

Req

3533

Priority

Interrupt

Assignment

3434

00 11 22 33 44 55 136

Flags Enabled to Interrupt

66

Flag

24

77

Int

Cons

88

Pwr

Fail

99

No

Mem

1010

Bad

Mem

Data

1111

Corr

Mem

Data

1212

Intv

Done

1313

Cons

Int

1414 1515 1616 1717

6{13 A 1 in any of these bits indicates that setting the listed 
ag will request an interrupt on the

level assigned to the 
ags by bits 33{35 of the WRAPR.

24 Spare | available to the program for any purpose.

25 (Interrupt Console.) When read, this 
ag should always be 0, as any WRAPR that sets the

Interrupt Console 
ag also clears it to provide a pulse on the interrupt line to the console.

26 (Power Fail.) AC power has failed. The program should execute an appropriate shut{down

procedure and halt the processor. Note that PC may point to an interrupt routine rather

than the main program. After power is restored the console must reboot the system, and

the Monitor must reestablish the operating environment (x4.2.5).

27 (No Memory.) The processor was granted the bus for access to memory, but the memory

controller did not respond within two bus cycles. This is most likely because the memory

subsystem contained no array board corresponding to the address given, or there has been

a refresh error. Note that this condition also produces a page failure. Since an nonexistent

supplies zero data, on read this error may be accompanied by a 1 in bit 28.

28 (Bad Memory Data.) In a read reference by the processor, the word retrieved (and sent)

was wrong and the memory circuits were unable to correct it. Note that this condition also

causes a page failure.

29 (Corrected Memory Data.) In a read reference by the processor, the word retrieved was

wrong but the memory circuits were able to correct it.

30 (Interval Done.) The microcode has completed a count of the interval speci�ed by the

program.



444 CHAPTER 4. EARLIER PROCESSORS

31 (Console Interrupt.) The console is requesting a processor interrupt.

32 (Interrupt Request.) Some system 
ag is currently requesting an interrupt, i.e., some 
ag in

bits 24{31 is set and has been enabled to interrupt as indicated by a 1 in the corresponding

position in bits 6{13.

33{35 The priority interrupt level assigned to the processor by WRAPR.

Programming Cautions. When handling bad data or nonexistent memory interrupts, the pro-

grammer should beware of the following.

NOTE

In general it is better not to use the interrupt for these conditions, as the page failure

provides more information. Moreover, if the interrupt is used, the processor interrupts

out of the page failure, which occurs �rst.

� Should an error 
ag be set while another interrupt request is being processed, the system

would handle the lower priority interrupt before getting to the 
ag interrupt. This means PC

may be pointing to a lower level interrupt routine rather than the program level at which the

error occurred.

� Even without inadvertent interference from another level, the processor may perform another

instruction between the time the error 
ag sets and its interrupt starts. Hence even though

PC is at the correct program level, it may be pointing to the instruction following the one in

which the error occurred.

� An error interrupt that switches over to a lower priority level should not return to the inter-

rupted program, as the error may simply recur, producing a second 
ag interrupt before the

error{handling interrupt for the �rst. This could happen because PC is actually pointing to

the o�ending instruction, but beyond that, one error often begets another | consider the case

of PC counting into a nonexistent memory. In any event, it is generally not worthwhile to

return to any program without �rst �nding out what has gone wrong.

Memory Status

The memory controller reports information on error conditions by means of status that the pro-

gram (or operator) can read or test using I/O instructions that address the controller (I/O address

0100000). Note that the errors reported may have nothing whatever to do with the program or pro-

cessor: they may be the result of access by an adapter of the console. On every access the controller

regularly loads the address and, if read, the error correction code into the status register. But if a

read error (incorrect data read from the storage array) or refresh error occurs, the address and code

are held | even through subsequent errors | until the processor or console writes a status word

that clears the holding 
ag.

The remainder of this section identi�es the information read as status and the functions that can

be performed by writing status. For advice on how to use the information for diagnosing memory

problems, the reader should turn to the maintenance documentation.



4.2. KS10 SYSTEM OPERATIONS 445

Read Status

3518

Last Address or First Error Address

1919 2020 2121 2222 2323 2424 2525 2626 2727 2828 2929 3030 3131 3232 3333 3434

00

Err

Hld

11

Unc

Err

Hld

22

Rfr

Err

33

Par

Err

44

ECC

On

115

Error Correction Code

11555

CP

66

C40

77

C20

88

C10

99

C4

1010

C2

1111

C1

1212

Bat

Low

1313 1714

High Order

Address Bits

1515 1616

0 The memory controller has detected a read error or a refresh error (bit 3) and has held the

error correction code in bits 5{11 and the address supplied over the bus in bits 14{35.

1 The code and address are being held for a read error in which the data read was uncor-

rectable.

2 A refresh cycle was still not �nished 10:3�s after the refresh logic requested it. The most

likely cause is that the memory cycle logic was waiting for write data that failed to arrive.

Setting this 
ag both clears and shuts down the cycle logic, so refreshing can continue but

the memory is unavailable to the rest of the system until a write status clears the 
ag.

3 A parity error has been detected in information (command/address, data, status) received

by the memory controller over the bus. This error indication is sent to the console, which

may respond by turning o� the processor clock.

4 The error correcting circuits are active.

5{11 This is the error correction code for the last read data access, unless bit 0 is 1, in which

case it is the code for the cycle on which a read error occurred or for the last read access

before a refresh error.

12 Battery backup power (if present) is low, and will not be able to sustain memory refresh in

the event of an AC power failure.

14{35 This is the address supplied in the last bus transaction with memory, unless bit 0 is 1,

in which case it is the address used in the data access that caused the error hold (a read

address on a read error, a write address on a refresh error).



446 CHAPTER 4. EARLIER PROCESSORS

Write Status

1818 1919 2020 2121 2222 2323 2424 2525 2626 2727 3428 3428

Force Check Bits

2828

CP

2929

C40

3030

C20

3131

C10

3232

C4

3333

C2

3434

C1

3535

ECC

O�

00

Clr

Err

Hld

(1)

11 22

Clr

Rfr

Err

(1)

33

Par

Err

44 55 66 77 88 99 1010 1111 1212

Clr

Pwr

Fail

(0)

1713 1414 1515 1616

0 A 1 in this bit clears Error Hold, which in turn clears Uncorrectable Error Hold and drops

the hold on the error code and address

2 A 1 clears Refresh Error.

3 A 0 clears Parity Error, but a 1 sets it allowing checkout of the associated logic.

12 A 0 clears Power Failed.

28{34 A nonzero code forces the indication of errors where none exist, allowing checkout of the

error detection and correction circuits.

35 A 1 disables the error correcting circuits. A 0 restores them to their normal, active state.



4.3. KI10 AND KA10 SYSTEM OPERATIONS 447

4.3 KI10 and KA10 System Operations

The information presented in this chapter is primarily for Digital's own system programmers, for

their use in writing the Monitor and other software. However it is also needed by anyone who wishes

to write his own operating system, to some extent by users who handle their own I/O, and by

programmers in a situation where all the facilities of a system are dedicated to a single large task.

Programming for the system as a whole is programming in executive mode. In the KI10 executive

mode is divided into kernel and supervisor modes. Only the kernel program is without instruction

restrictions, and only it can access physical core unpaged. The supervisor program labors under the

same instruction restrictions as the user and has no way of bypassing them, although it can read

but not alter concealed pages (the kernel program can supply data tables to the supervisor program,

and the latter cannot a�ect them). In the KA10 the executive program has no restrictions, and it

manages protection and relocation hardware that is applicable only to the user.

The amount of useful work done by the system depends upon how e�ciently and e�ectively the

executive manages the system. This means selecting which processes will run when, managing

their working areas, responding to their needs, and even reacting to error situations or perhaps

downright unacceptable behavior on the part of the user. The KI10 kernel program accomplishes

these objectives by handling all in{out for the system setting up page maps, trap locations, interrupt

locations and the like for both itself and the users, keeping job accounts, and so forth. The KA10

executive program also handles in{out, job accounts and interrupts, but it manages the user working

space by setting up protection and relocation registers, and it takes care of arithmetic and stack

over
ow via the interrupt.

Except for handling in{out, the activities of an operating system are the topics covered in this

chapter. The �rst section, on the console, is applicable to both processors. The basic system

information is covered in three sections separately for each: sections x4.3.2{x4.3.4 for the KI10,

sections x4.3.5{x4.3.7 for the KA10. The last section discusses the DK10 real time clock, which is

used in both. Of course the system programmer must also be quite familiar with all of the material

presented in Chapters 1 and 2. In particular he must fully understand the architecture of the system

as discussed in Chapter 1, and must be especially well versed in the use of the JRST instruction,

MUUOs, and I/O instructions (x2.9.4, x2.16, x2.18).

In several of the CONI bit assignment drawings in this section, bits that can cause interrupts are

indicated by asterisks.

4.3.1 Console

Most console operations are entirely manual, and these are described in Appendix G.2. However the

program can communicate with the console in a limited way, and the programmer must be familiar

with the format and execution of the readin function.

Readin Mode

This mode of processor operation provides a means of placing information in memory without relying

on a program already in memory or loading one word at a time manually. Its principal use is to read

in a short loader program which is then used for loading other information. A loader program should



448 CHAPTER 4. EARLIER PROCESSORS

ordinarily be used rather than readin mode, as a loader can check the validity of the information

read.

Pressing the readin key on the console activates readin mode by starting the processor in a special

hardware sequence that simulates a DATAI followed by a series of BLKI instructions, all of which

address the device whose code is selected by the readin device switches at the left just above the

console operator panel. Various devices can be used, and for each there are special rules that must be

followed. But the readin mode characteristics of any particular device are treated in the discussion

of the device (paper tape, DECtape, and standard magnetic tape). Here we are concerned only with

the general characteristics.

The information read is a block of data (such as a loader program) preceded by a pointer for the

BLKI instructions. The left half of the pointer contains the negative of the number of words in the

block, the right half contains an address one less than that of the location that is to receive the �rst

word.

To read in, the operator must set up the device he is using, set its code into the readin device

switches, and press the readin key. This key function �rst duplicates the action of the console reset

key, which clears both the processor and the in{out equipment; in particular it places the processor

in executive mode, and in the KI10 selects kernel mode with executive paging disabled, so all access

will be to the �rst 256K of physical memory unpaged. Following this the processor places the device

in operation, brings the �rst word (the pointer) into location 0, and then reads the data block,

placing the words in the locations speci�ed by the pointer. Data can be placed anywhere in the

�rst 256K of memory (including fast memory) except in location 0. The operation a�ects none of

memory except location 0 and the block area.

Upon completing the block, the processor leaves readin mode and begins normal operation. This is

done in the KI10 by jumping to the location containing the last word in the block, in the KA10 by

executing the last word as an instruction. In the KA10 the processor stops after executing the �rst

instruction if the single instruction switch is on.

Console{Program Communication

Neither the processor nor the priority interrupt system require all four types of I/O instructions,

so the program can make use of their device codes for communicating with the console. Both

processors have two instructions that transfer data between the console and program. But in the

KI10, the program can actually operate some of the switches on the console. For this purpose it

uses a data{out instruction with the device code for the paper tape reader (an input{only device).

The KI10 program can also inspect the states of a number of operating and sense switches, but the

bits for these are included in the left half words of the standard input conditions for the interrupt

and processor (x4.3.2, x4.3.3).

0 12 1314 1718 35

I X Y

DATAI APR, Data In, Console

70004

Read the contents of the console data switches into location E.

Notes. MACRO also recognizes the mnemonic RSW (Read Switches) as equivalent to DATAI APR,.



4.3. KI10 AND KA10 SYSTEM OPERATIONS 449

0 12 1314 1718 35

I X Y

DATAO PI, Data Out, Console

70054

Unless the console MI program disable switch is on, display the contents of location E in the console

memory indicators and turn on the triangular light beside the words PROGRAM DATA just above

the indicators (turn o� the light beside MEMORY DATA).

Once the indicators have been loaded by the program, no address condition selected from the console

(Appendix G.2) can load them until the operator turns on the MI program disable switch, executes

a key function that references memory, or presses the reset key.

0 12 1314 1718 35

I X Y

DATAO PTR, Operating Data Out, Console

71054

Unless the MI program disable switch is on, set up the console address and address{condition

switches according to the contents of location E as shown (a 1 in a bit turns on the switch, a 0 turns

it o�).

Instruction

Fetch

0

Data

Fetch

1

Write

2 3

Address

Break

4

Exec

Paging

5

User

Paging

6

60 3514

Address Switches

For complete information on the use of these switches, see Appendix G.2.

Notes. On the KI10 console, all switches are pushbutton 
ip{
op combinations; the instruction of

course controls the 
ip{
ops, not the buttons.

4.3.2 KI10 Priority Interrupt

Most in{out devices must be serviced infrequently relative to the processor speed and only a small

amount of processor time is required to service them, but they must be serviced within a short time

after they request it. Failure to service within the speci�ed time (which varies among devices) can

often result in loss of information and certainly results in operating the device below its maximum

speed. The priority interrupt is designed with these considerations in mind, i.e., the use of inter-

ruptions in the current program sequence facilitates concurrent operation of the main program and

a number of peripheral devices. The hardware also allows conditions internal to the processor to

signal the program by requesting an interrupt.



450 CHAPTER 4. EARLIER PROCESSORS

Interrupt requests are handled through seven levels arranged in a priority chain, with assignment

of devices to levels entirely at the discretion of the programmer. To assign a device to a level, the

program sends the number of the level to the device control register as part of the conditions given

by a CONO (usually bits 33{35). Levels are numbered 1{7, with 1 having the highest priority; a zero

assignment disconnects the device from the interrupt levels altogether. Any number of devices can

be connected to a single level, and some can be connected to two levels (e.g., a device may signal

that data is ready on one level, and that an error has occurred on another).

When a device requires service it sends an interrupt request signal over the in{out bus to its assigned

level in the processor. The processor accepts the request depending upon certain conditions, such

as that the level must be active (on). The request signal remains on the bus until turned o� by an

appropriate response from the processor: either given by the program (CONO, DATAO or DATAI,

depending on the device), or generated automatically by the hardware. Thus if a request is not

recognized or accepted when made, it will be when conditions are satis�ed. A single level will shut

out all others of lower priority if every time its service routine dismisses the interrupt, a device

assigned to it is already waiting with another request. The program can usually trigger a request

from a device but delay its acceptance by turning on the level later.

The request signal is generally derived from a 
ag that is set by various conditions in the device.

Often associated with these 
ags are enabling 
ags, where the setting of some device condition


ag can request an interrupt on the assigned level only if the associated enabling 
ag is also set.

The enabling 
ags are in turn controlled by the conditions supplied to the device by a CONO. For

example, a device may have half a dozen 
ags to indicate various internal conditions that may require

service by an interrupt; by setting up the associated enabling 
ags, the program can determine which

conditions shall actually request interrupts in any given circumstances.

Having accepted a request, the processor will do nothing further with it unless the priority interrupt

system is on. But even with the system o�, the processor will continue to accept requests on other

levels; and when the system is �nally turned on, it will respond as though all requests had just been

accepted, handling the highest priority one �rst.

Starting an Interrupt

A request made to an active level is accepted immediately unless some level is already waiting for

an interrupt to start or an interrupt is starting for some level. Once a request is accepted with

the system on, the level must wait for the interrupt to start. The processor however will delay any

action on the request if it is already holding an interrupt for the same level or for a level with priority

higher than those on which requests have been accepted (in other words if the current program is

a higher priority interrupt routine). When a waiting level has priority higher than the current

program, the processor sends an interrupt{granted signal for the waiting level that has highest

priority. This action makes use of the I/O bus. Should the bus be busy, the grant is sent as soon

as the bus becomes available, taking precedence over any I/O instruction that may also be waiting

(note that in this situation the program actually stops). The grant signal goes out on the bus and

is transmitted serially from one device to the next. Upon receiving the grant, a device that is not

requesting an interrupt on the speci�ed level sends the signal on to the next device. A device that

is requesting an interrupt on the speci�ed level terminates the signal path and sends an interrupt

function word back to the processor. Note that there are therefore two orders of priority associated

with an interrupt: �rst the level, and then for all devices requesting interrupts simultaneously on

the same level, proximity to the processor on the bus. For priority purposes, all devices on the left

bus are closer than those on the right bus.



4.3. KI10 AND KA10 SYSTEM OPERATIONS 451

Upon receipt of the function word, the processor stops the current program at the �rst allowable

point to start an interrupt for the waiting level for which the grant was made. Allowable stopping

points are at the completion of an instruction, following the retrieval of an address word in an e�ective

address calculation (including the second calculation using the pointer in a byte instruction), between

transfers in a BLT, between steps in the calculation of the �rst part of the quotient in double 
oating

division, and while an I/O instruction is waiting for the bus. When an interrupt starts, PC points to

the interrupted instruction, so that a correct return can later be made to the interrupted program.

The action taken by the processor in starting an interrupt depends upon the function speci�ed by

the function word returned to the processor. Two �xed locations in the executive process table are

associated with each level: locations 40+2N and 41+2N , where N is the level number. Level 1 uses

locations 42 and 43, level 2 uses 44 and 45, and so on to level 7 which uses 56 and 57. The processor

starts a \standard" interrupt for level N by executing the instruction in the �rst interrupt location

for the level, i.e., location 40 + 2N . The �xed locations however need not be used. The interrupt

function word sent by the device may specify a standard interrupt using the �xed locations, or an

equivalent interrupt using a pair of locations speci�ed by the function word, or some other interrupt

function entirely. The format of the function word and the operations the processor performs in

response to the function selected by bits 3{5 of the word are as follows.

KI10 Interrupt Function Word

20 53

Funct

176

Increment

3518

Interrupt Address



452 CHAPTER 4. EARLIER PROCESSORS

Bits 3{5 Interrupt Function

0 Processor waiting. If no response, perform a standard interrupt (see func-

tion 1).

A device designed originally for use with the KA10 will work when con-

nected to the KI10 bus, where it always requests a standard interrupt by

providing no response to the grant. Note that for simultaneous requests

on a given level, all KI10 devices that return a function word have priority

over all KA10 devices and over any KI10 devices that do not return a func-

tion word. The last group includes the reader, punch and console terminal,

which are contained in the processor, as well as the processor itself acting

as a device (see processor conditions, x4.3.3).

1 Standard interrupt | execute the instruction in location 40 + 2N of the

executive process table.

2 Dispatch | execute the instruction in the location speci�ed by bits 18{35.

3 Increment | add the contents of bits 617 to the contents of the location

speci�ed by bits 18{35. The increment is a �xed point number in twos

complement notation, bit 6 being the sign, and bit 17 corresponding to bit

35 of the memory word.

4 DATAO | do a DATAO for this device using the contents of bit 18{35 as

the e�ective address.

5 DATAI| do a DATAI for this device using the contents of bit 18{35 as the

e�ective address.

6 Reserved (produces a standard interrupt).

7 Reserved (produces a standard interrupt).

Regardless of what mode the processor is in when an interrupt occurs, the interrupt operations are

performed in kernel mode. No interrupt operation can set Over
ow or either of the trap 
ags; hence

an over
ow trap can never occur as a direct result of an interrupt. A page failure that occurs in an

interrupt operation is never trapped; instead it sets the In{Out Page Failure 
ag, which requests

an interrupt on the level assigned to the processor (x4.3.3). These considerations of course do not

apply to a service routine called by an interrupt instruction.

Interrupt Instructions. An instruction executed in response to an interrupt request and not under

control of PC is referred to elsewhere in this manual as being \executed as an interrupt instruction."

Some instructions, when so executed, have di�erent e�ects than they do when performed in other

circumstances. And the di�erence is not due merely to being performed in an interrupt location or

in response (by the program) to an interrupt. To be an interrupt instruction, an instruction must

be executed in the �rst or second interrupt location for a level, in direct response by the hardware

(rather than by the program) to a request on that level. These locations may be the �xed ones for a

standard interrupt or those given by the function word for a dispatch interrupt. x2.18 describes the

two ways a BLKO is performed. If a BLKO is contained in an interrupt routine called by a JSR, it

is not \executed as an interrupt instruction" even in the unlikely event the routine is stored within

the interrupt locations and the BLKO is executed by an XCT. The interrupt instructions executed

in a standard or dispatch interrupt fall into three categories.

� AOSx, SKIPx, SOSx, CONSx, BLKx. If the skip condition speci�ed by the instruction is satis�ed,



4.3. KI10 AND KA10 SYSTEM OPERATIONS 453

the processor dismisses the interrupt and returns immediately to the interrupted program (i.e.,

it returns control to the unchanged PC). If the skip condition is not satis�ed, the processor

executes the instruction contained in the second interrupt location.

Satisfaction of the condition does not change PC, as this would skip the next instruction in

the interrupted program. In e�ect the instruction skips back to the interrupted program by

skipping the second interrupt location.

Note that the interpretation of a BLKI or BLKO as a skip instruction is consistent with the

description given in x2.18 the condition being that the count is not zero.

CAUTION

In the second interrupt location, a skip instruction whose condition is not satis�ed

hangs up the processor, which will keep repeating the instruction until the condition

is satis�ed.

� JSR, JSP, PUSHJ, MUUO. The processor holds an interrupt on the level, takes the next

instruction from the location speci�ed by the jump (as indicated by the newly changed PC),

and enters either kernel mode or the mode speci�ed by the new PC word of the MUUO. Hence

the instruction is usually a jump to a service routine handled by the Monitor.

� All Other Instructions. In general the processor simply executes the instruction, dismisses the

interrupt, and then returns to the interrupted program. If the instruction is a jump (other than

those mentioned above), the processor jumps to the newly speci�ed location; but it dismisses

the interrupt and returns to the mode it was already in when the interrupt occurred. Hence it

e�ectively returns to the interrupted program but in a di�erent place, and the original contents

of PC are lost.

Since the interrupt operations are performed in kernel mode regardless of the actual mode of the

processor, an XCT is performed as a PXCT (x4.3.4). The ultimate e�ect of the XCT depends of

course on the instruction executed | and its e�ect is as described here for the various categories.

CAUTION

Neither an LUUO, a BLT, a DMOVEM, nor a DMOVNM will function in a reasonable

manner as an interrupt instruction. Therefore do not use them.

Interrupt Programming

The program can control the priority interrupt system by means of condition I/O instructions. The

device code is 004, mnemonic PI.

0 12 1314 1718 35

I X Y

CONO PI, Conditions Out, Priority Interrupt

70060



454 CHAPTER 4. EARLIER PROCESSORS

Perform the functions speci�ed by the e�ective conditions E as shown (a 1 in a bit produces the

indicated function, a 0 has no e�ect).

Clr

Pwr

Fail

Flag

Clr

Par

Err

Flag

Dis{

able

En{

able

Parity Err

Interrupt

Drop

Prgm

Req

On

Lvls

Clear

PI

Sys{

tem

Selected Levels

Make

Prgm

Req

On

Turn

On

Turn

O�

PI

System

Turn

O�

Turn

On

Select Levels for

Bits 22,24,25,26

1 2 3 4 5 6 7

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Bits 18{21 are actually for processor conditions (x4.3.3).

20 Prevent the setting of the Parity Error 
ag from requesting an interrupt on the level assigned

to the processor.

21 Enable the setting of the Parity Error 
ag to request an interrupt on the level assigned to the

processor.

22 On levels selected by is in bits 29{35, turn o� any interrupt requests made previously by the

program (via bit 24).

23 Deactivate the priority interrupt system, turn o� all levels, eliminate all interrupt requests that

have already been accepted but are still waiting, and dismiss all interrupts that are currently

being held.

24 Request interrupts on levels selected by is in bits 29{35, and force the processor to accept

them even on levels that are o�. The request remains inde�nitely, so as soon as an interrupt

is completed on a given level another is started, until the request is turned o� by a CONO

that selects the same level and has a 1 in bit 22.

Remember that the processor allows the program to continue while it grants an interrupt.

Thus when this bit forces acceptance of a request, another program instruction or two may

be performed before the interrupt, even on the highest priority level. Moreover if the request

is allowed to remain, additional instructions may be performed between successive interrupts.

For other than the highest priority level, the greater the number of higher priority levels

active, the greater the amount of program time available both initially and between successive

interrupts. If the program forces an interrupt on the lowest priority level when all are active,

there can be as much as 40�s of program time between the CONO PI, and its interrupt.

25 Turn on the levels selected by is in bits 29{35 so interrupt requests can be accepted on them.

26 Turn o� the levels selected by is in bits 29{35, so interrupt requests cannot be accepted on

them unless made by a CONO PI, with a 1 in bit 24.

27 Deactivate the priority interrupt system. The processor can then still accept requests, but it

can neither start nor dismiss an interrupt.

28 Activate the priority interrupt system so the processor can accept requests and can start, hold

and dismiss interrupts.



4.3. KI10 AND KA10 SYSTEM OPERATIONS 455

0 12 1314 1718 35

I X Y

CONI PI, Conditions In, Priority Interrupt

70064

Read the status of the priority interrupt (and nine console operating switches) into location E as

shown.

1818 1919 2020 2721

Interrupt in Progress

on Levels

2121

1

2222

2

2323

3

2424

4

2525

5

2626

6

2727

7

2828

PI

Sys{

tem

On

3528

Levels On (Active)

2929

1

3030

2

3131

3

3232

4

3333

5

3434

6

3535

7

00

Inst

Fetch

11

Data

Fetch

22

Write

33

Addr

Stop

44

Addr

Brk

55

Exec

Pag

66

User

Pag

77

Par

Stop

88

NXM

Stop

99 1010 1711

Program Requests

on Levels

1111

1

1212

2

1313

3

1414

4

1515

5

1616

6

1717

7

Levels that are active are indicated by 1s in bits 29{35; 1s in bits 21{27 indicate levels on which

interrupts are currently being held; 1s in bits 11{17 indicate levels that are receiving interrupt

requests generated by a CONO PI, with a 1 in bit 24. A 1 in bit 28 means the interrupt system is

on.

The remaining conditions read by this instruction have nothing to do with the interrupt. Bits 0{8

re
ect the settings of various console operating switches; for information on these switches refer to

Appendix G.2.

Dismissing an Interrupt. Unless the interrupt operation dismisses the interrupt automatically,

the processor holds an interrupt until the program dismisses it, even if the interrupt routine is

itself interrupted by a higher priority level. Thus interrupts can be held on a number of levels

simultaneously, but from the time an interrupt is started until it is dismissed, no interrupt can be

started on that level or any level of lower priority (requests, however, can be accepted on lower

priority levels.).

A routine dismisses the interrupt by using a JEN (JRST 12,) to return to the interrupted program

(the interrupt system must be on when the JEN is given). This instruction restores the level on

which the interrupt is being held, so it can again accept requests, and interrupts can be started on

it and lower priority levels. JEN also restores the 
ags, whose states were saved in the left half of

the PC word if the routine was called by a JSR, JSP, PUSHJ, or MUUO. In the unlikely event that


ag restoration is not desired, a JRST 10, can be used instead.



456 CHAPTER 4. EARLIER PROCESSORS

CAUTION

An interrupt routine must dismiss the interrupt when it returns to the interrupted pro-

gram, or its level and all levels of lower priority will be disabled, and the processor will

treat the new program as a continuation of the interrupt routine.

Timing. The time a device must wait for an interrupt to start depends on the number of levels in

use, and how long the service routines are for devices on higher priority levels. If only one device is

using interrupts, it need never wait longer than 10�s.

Special Considerations. On a return to an interrupted program, the processor always starts the

interrupted instruction over from the beginning. This causes special problems in a BLT and in byte

manipulation.

An interrupt can start following any transfer in a BLT. When one does, the BLT puts the pointer

(which has counted o� the number of transfers already made) back in AC. Then when the instruction

is restarted following the interrupt, it actually starts with the next transfer. This means that if

interrupts are in use, the programmer cannot use the accumulator that holds the pointer as an

index register in the same BLT, he cannot have the BLT load AC except by the �nal transfer, and

he cannot expect AC to be the same after the instruction as it was before.

An interrupt can also start in the second e�ective address calculation in a two{part byte instruction.

When this happens, First Part Done is set. This 
ag is saved as bit 4 of a PC word, and if it is

restored by the interrupt routine when the interrupt is dismissed, it prevents a restarted ILDB or

IDPB from incrementing the pointer a second time. This means that the interrupt routine must

check the 
ag before using the same pointer, as it now points to the next byte. Giving an ILDB or

IDPB would skip a byte. And if the routine restores the 
ag, the interrupted ILDB or IDPB would

process the same byte the routine did.

Programming Suggestions. The Monitor handles all interrupts for user programs. Even if the

User In{Out 
ag is set, a user program generally cannot reference the interrupt locations to set

them up. Procedures for informing the Monitor of the interrupt requirements of a user program are

discussed in the Monitor manual.

For those who do program priority interrupt routines, there are several rules to remember.

� No requests can be accepted, not even on higher priority levels, while an interrupt is starting.

Therefore do not use lengthy e�ective address calculations in interrupt instructions.

� Most in{out devices are designed to drop an interrupt request when the program responds,

usually with a DATAI or DATAO. If an interrupt is handled neither by a BLKI or BLKO interrupt

instruction nor by a service routine, the programmer must make sure the device is con�gured

to drop the request on receipt of whatever response the program does give.

� The interrupt instruction that calls the routine must save PC if there is to be a return to the

interrupted program. Generally a JSR is used as it saves both PC and the 
ags, and it uses

no accumulator

� The principal function of an interrupt routine is to respond to the situation that caused the

interrupt. For example, computations that can be performed outside the routine should not

be included within it.



4.3. KI10 AND KA10 SYSTEM OPERATIONS 457

� If the routine uses a UUO it must �rst save the contents of the pair of locations that will be

changed by it in case the interrupted program was in the process of handling a UUO of the

same type. For an MUUO, the routine must save locations 424 and 425 of the user process

table. For an LUUO the routine must save location 40 in the executive process table and the

location used by the UUO handler instruction to store the PC word.

� The routine must dismiss the interrupt (with a JEN) when returning to the interrupted pro-

gram. The 
ags and UUO locations should be restored.

4.3.3 KI10 Processor Conditions

Page failures and over
ow are handled by trapping, but there are a number of internal conditions

that can signal the program by requesting an interrupt on a level assigned to the processor. The

program can actually assign two levels | one for error conditions and one speci�cally for the clock.

Control over the Power Failure and Parity Error 
ags is exercised by a CONO that addresses the

priority interrupt system (x4.3.2). Control over other conditions and inspection of all are handled by

condition I/O instructions that address the processor: the CONI also reads some console switches and

maintenance functions. The processor also has a data{out instruction through which the program

can perform margin checking of the system in both speed and voltage.

The error conditions are generally regarded as important enough to be assigned to the highest

priority level. However for conditions that may be associated with user instructions (a parity error

or unanswered memory reference), the common practice is for the error interrupt to switch over to

the lowest priority level by means of a program{set request. Then the time to handle the situation,

which may well be considerable, cannot interfere with high priority events.

One of the features controlled by the CONO for the processor is the automatic restart after power

failure. This restart applies only when the levels on the power mains go below speci�cation while

the processor is running, and the power switch is on when power is restored | the machine never

begins operation by itself when the operator turns the power switch on or o�. Inadequate power,

over temperature, etc. are indicated by the Power Failure 
ag. In order for the processor to restart

itself, the program must respond in a particular way to the setting of Power Failure. If the program

fails to respond properly, there is no restart.

The processor device code is 000, mnemonic APR.

0 12 1314 1718 35

I X Y

CONO APR, Conditions Out, Arithmetic Processor

70020

Assign the interrupt levels speci�ed by bits 30{35 of the e�ective conditions E and perform the

functions speci�ed by bits 18{29 as shown (a 1 in a bit produces the indicated function, a 0 has no

e�ect).



458 CHAPTER 4. EARLIER PROCESSORS

1818

Reset

Timer

1919

Clear

In{

Out

De{

vices

2020

Dis{

able

2121

En{

able

2120

Timer

2121 2222

Dis{

able

2323

En{

able

2322

Auto{

Restart

2323 2424

Dis{

able

2525

En{

able

2524

Clock

Interrupt

2525 2626

Clear

Clock

2727 2828

Clear

In{

Out

Page

Fail

2929

Clear

NXM

3230

Priority

Interrupt

Assignment

for Error

3533

Priority

Interrupt

Assignment

for Clock

A 1 in bit 19 produces the I/O reset signal, which clears the control logic in all of the peripheral

equipment (but a�ects neither the priority interrupt system nor the processor conditions).

0 12 1314 1718 35

I X Y

CONI APR, Conditions In, Arithmetic Processor

70024

Read the status of the processor (as well as various console switches and maintenance functions)

into location E as shown (asterisks indicate bits that can cause interrupts).

1818

Time

Out

1919

Par

Error

*

2020

Par

Error

Int

En{

abled

2121

Timer

En{

abled

2222

Power

Fail

*

2323

Auto{

Re{

start

Dis{

abled

2424 2525

Clock

Int

En{

abled

2626

Clock

*

2727 2828

In{

Out

Page

Fail

*

2929

NXM

*

3230

Priority

Interrupt

Assignment

for Error

3533

Priority

Interrupt

Assignment

for Clock

00 11

Mem

Over{

lap

Dis{

able

22

FM

Man{

ual

33

MI

Prog

Dis{

able

44

Con{

sole

Data

Lock

55

Con{

sole

Lock

66

50

Hz

77

Mar{

gin

En{

able

88

Maint

Mode

99

Power

Alarm

1010

Vol{

tage

Mon{

itor

Low

1111 1712

Sense Switches

1212

1

1313

2

1414

3

1515

4

1616

5

1717

5

Interrupts are requested on the error level (assigned by bits 30{32 of the CONO) by the setting of

Power Failure, In{Out Page Failure, Nonexistent Memory, and if enabled, Parity Error. The setting

of Clock Flag, if enabled, requests an interrupt on the clock level (assigned by bits 33{35 of the

CONO).

Bits 12{17 re
ect the states of the console sense switches, which are speci�cally for operator com-

munication with the program. Bits 1{5 re
ect the settings of various console operating switches;

for information on these switches refer to Appendix G.2. Bits 7{10 are maintenance functions

71

for

which the reader should refer to Chapter 10 of the KI10 Maintenance Manual .

6 The system is operating on 50 Hz line power. This is important to the program, not only

because some I/O devices run slower on 50 Hz, but because the program must compensate for

the time di�erence when using the line frequency clock (bit 26).

71

The processor does not actually have a maintenance mode | the bit is simply the OR function of a number of

console switches, any one of which being on implies that the processor is being operated for maintenance purposes.



4.3. KI10 AND KA10 SYSTEM OPERATIONS 459

18 Bit 21 is 1 and the program has not reset the timer (CONO APR, bit 18) during the last 1.2

seconds (the period of the timer may vary from 1.2 to 1.5 seconds). The setting of this 
ag

clears the processor and the peripheral equipment, and restarts the processor in kernel mode

at location 70.

72

19 A word with even parity has been read from core memory. If bit 20 is 1, the setting of Parity

Error requests an interrupt on the error level (see cautions below).

22 AC power has failed. The program should save PC, the 
ags, mode information and fast

memory in core, and halt the processor. Note that PC may point to an interrupt service

routine rather than the main program.

The setting of this 
ag requests an interrupt on the error level. After 4 ms the processor is

cleared. But at that time, if the power switch is on and the program has cleared Power Failure

(CONO PI,400000) and enabled the auto restart (CONO APR,010000), then when adequate

power levels are restored, the processor will resume normal operation by executing the instruc-

tion in location 70 in kernel mode. The restart instruction should set up PC, which would

otherwise be clear.

26 This 
ag is set at the ac power line frequency and can thus be used for low resolution timing

(the clock has high long term accuracy). If bit 25 is 1, the setting of the Clock 
ag requests an

interrupt on the clock level.

28 A page failure has occurred in an interrupt instruction. The setting of this 
ag requests an

interrupt on the error level. An interrupt page failure caused by the console address break

switch also sets this 
ag instead of producing an address failure (x4.3.4).

Note: A page failure in an interrupt instruction is regarded as a fatal error, and it causes an

interrupt instead of a page failure trap. The kernel program is expected to set up the interrupt

instructions so that a failure simply cannot occur.

29 The processor attempted to access a memory that did not respond within 100�s. The setting

of this 
ag requests an interrupt on the error level (see cautions below).

Note: PC bears no relation to the unanswered reference if the attempted access originated from

a console key function.

Programming Cautions. When handling parity error or nonexistent memory interrupts, the pro-

grammer should beware of the following. Should an error 
ag be set during an interrupt grant, the

processor would handle a lower priority interrupt before getting to the processor interrupt. This

means PC may be pointing to a lower level interrupt service routine rather than the program level

at which the error occurred. (Remember that during the grant procedure, the interrupt system is

otherwise static and the program continues. Moreover the processor is e�ectively at the far end of

the bus.)

� Even without inadvertent interference from another level, it is quite likely the processor will

perform one or perhaps two more instructions between the time the error 
ag sets and its

interrupt starts. Hence even though PC is at the correct program level, it may well be pointing

to the �rst or second instruction following the one in which the error occurred.

72

The timer provides a restart similar to that following power failure. Running the machine under margins may

result in signi�cant logical errors. If the timer is enabled, failure of the program to reset it about every second allows

it to time out. The restart instruction should set up PC, which would otherwise be clear.



460 CHAPTER 4. EARLIER PROCESSORS

� A processor error interrupt that switches over to a lower priority level should not return to the

interrupted program, as the error may simply recur, producing a second processor interrupt

before the error{handling interrupt for the �rst. This could happen because PC is actually

pointing to the o�ending instruction, but beyond that, one error often begets another |

consider the case of PC counting into a nonexistent memory. In any event, it is generally not

worthwhile to return to any program without �rst �nding out what went wrong.

� The error may have originated from a console key function, and thus be hidden from any

investigation by the program.

0 12 1314 1718 35

I X Y

DATAO APR, Maintenance Data Out, Arithmetic Processor

70014

Supply diagnostic information and perform diagnostic functions according to the contents of location

E as shown.

1818 1919 2020 2121 2222

Write

Even

Parity

2323

Turn

Off

2424

Turn

On

2423

Speed

Margins

2424 2525 2626 2727 2828 2929 3030 3130 3230 3330 3430 3530 3530

Margin Value

00 11 22 33 44 55 66 77

Turn

Off

88

Turn

On

87

Voltage

Margins

88 99 1010 1111 1212 1313 1414 1515 1616 17171713

Margin Address

The margin value speci�ed by bits 30{35 of the output word is translated to a voltage in the range

0{10 volts by a D{A converter, whose output is available at pin 2S02V2. Running margins requires a

slowdown capacitor in the converter. But turning o� the margin enable switch cuts out the capacitor,

making the converter output suitable for external use, such as for operating audio equipment to play

Bach or rock or Bacharach.

Notes. This instruction is primarily for maintenance, for which further information is given in

Chapter 10 of the KI10 Maintenance Manual .

4.3.4 KI10 Program and Memory Management

General information about the machine modes and paging procedures is given in Chapter 1, in

particular in x1.4. Here we are concerned principally with the special instructions the Monitor

uses to operate the system, the special e�ects that ordinary instructions have in executive mode,

and certain hardware procedures, in particular paging and page failures, that are necessary for an

understanding of executive programming.



4.3. KI10 AND KA10 SYSTEM OPERATIONS 461

Paging

All of memory both virtual and physical is divided into pages of 512 words

73

each. The virtual

memory space addressable by a program is 512 pages; the locations in virtual memory are speci�ed

by 18{bit addresses, where the left nine bits specify the page number and the right nine the location

within the page. Physical memory can contain 8192 pages and requires 22{bit addresses, where the

left thirteen bits specify the page number. The hardware maps the virtual address space into a part

of the physical address space by transforming the 18{bit addresses into 22{bit addresses. In this

mapping the right nine bits of the virtual address are not altered; in other words a given location in

a virtual page is the same location in the corresponding physical page. The transformation maps a

virtual page into a physical page by substituting a 13{bit physical page number for the 9{bit virtual

page number. The mapping procedure is carried out automatically by the hardware, but the page

map that supplies the necessary substitutions is set up by the kernel mode program. Each word in

the map provides information for mapping two consecutive pages with the substitution for the even

numbered page in the left half, the odd numbered page in the right half.

The pager contains two 13{bit registers that the Monitor loads to specify the physical page numbers

of the user and executive process tables. To retrieve a map word from a process table, the hardware

uses the appropriate base page number as the left thirteen bits of the physical address and some

function of the virtual page number as the right nine bits. For example the entire user space of 512

virtual pages at two mappings per word requires a page map of just half a page, and this is the �rst

half page in the user process table. Thus locations 0{377 in the table hold the mappings for pages

0 and 1 to 776 and 777. To �nd the desired substitution from the 9{bit virtual page number, the

hardware uses the left eight bits to address the location and the right bit to select the half word (0

for left, 1 for right). If the Monitor speci�es a program as being a small user, that program is limited

to two 16K blocks with addresses 0{37777 and 400000{37777. This is pages 0{37 and 400{37, and

the mappings are in locations 0{17 and 200{217 in the page map.

The executive virtual address space is also 256K but the �rst 112K are not paged | in other words

any address under 340000 given in kernel mode addresses one of the �rst 112K locations in physical

memory directly. The other 144K is paged for supervisor or kernel mode anywhere into physical

memory. For this there are two maps. The map for the second half of the virtual address space

uses the same locations in the executive process table as are used in the user process table for the

user map (locations 200{377 for pages 400{777). The map for the remaining 16K in the �rst half

of the executive virtual address space is in the user process table, the mappings for pages 340{377

being in locations 400{17. Thus the Monitor can assign a di�erent set of thirty{two physical pages

(the per{process area) for its own use relative to each user. Then when switching from one user to

another, the Monitor need change only the user process table. This single substitution can make

whatever change is necessary in the executive address space for a particular user.

Figure 4.11 and Figure 4.12 show the organization of the virtual address spaces, the process tables

and the mappings for both user and executive. The �rst illustration gives the correspondence

between the various parts of each address space and the corresponding parts of the page map for it.

The second illustration lists the detailed con�guration of the process tables. Any table locations not

used by the hardware can be used by the Monitor for software functions. Note that the numbers in

the half locations in the page map are the virtual pages for which the half words give the physical

substitutions. Hence location 217 in the user page map contains the physical page numbers for

73

Actually page 0 has only 496 locations using a addresses 20{777, as addresses 0{17 reference fast memory, which

is unrestricted and available to all programs. (In general a user cannot reference the �rst sixteen core locations in

his virtual page 0.) Throughout this discussion it is assumed that all references are to core and are not made by an

instruction executed by a PXCT (see below).



462 CHAPTER 4. EARLIER PROCESSORS

virtual pages 436 and 437.

Although the virtual space is always 256K by virtue of the addressing capability of the instruction

format, the Monitor usually limits the actual space for a given program by de�ning only certain

pages as accessible.

74

The Monitor also speci�es whether each page is public or not and writable or

not. Each word in the page map has this format to supply the necessary information for two virtual

pages.

00

A

11

P

22

W

33

S

44

X

175

Physical Page

Address Bits 14{26

1818

A

1919

P

2020

W

2121

S

2222

X

3523

Physical Page

Address Bits 14{26

Data for Even Virtual Page Data for Odd Virtual Page

Bits 5{17 and 23{35 contain the physical page numbers for the even and odd numbered virtual pages

corresponding to the map location that holds the word. The properties represented by 1s in the

remaining bits are as follows.

Bit Meaning of a 1 in the Bit

A Access allowed

P Public

W Writable (not write{protected)

S Software (not interpreted by the hardware)

X Reserved for future use by DEC (do not use)

Associative Memory. If the complete mapping procedure described above were actually carried

out in every instance, the processor would require two memory references for every reference by the

program. To avoid this the pager contains a 32{word associative memory, in which it keeps the

more recently used mappings for both the executive and the current user Each word is divided into

two parts with one part containing a virtual page number speci�ed by the program and the other

containing the corresponding physical page number as determined from the page map. Hence the

associative memory is a page table made up of a list of virtual pages and a list of physical pages,

each with thirty{two corresponding locations. In the virtual list, each entry contains a 9{bit virtual

page number, a single bit that indicates whether the speci�ed page is in the user or executive address

space, and a bit that indicates whether the entry is valid or not (it is not suitable to clear a location

as 0 is a perfectly valid page number). Each corresponding entry in the physical list contains a

13{bit physical page number and the P, W and S bits from the map half word for that page. The

A bit is not needed in the table as the mapping is not entered into the table at all if the page is not

accessible. The program can inspect the contents of the page table by using the MAP instruction

and I/O instructions that address the paging hardware (see below).

At each reference the hardware compares the page number supplied by the program with those in the

virtual part of the page table. If there is a match for the appropriate address space, the corresponding

entry in the physical list is used as the left thirteen bits in the physical address (provided of course

74

There is no requirement that the accessible space be continuous | it can be scattered pages. The convention

however is for the accessible space to be in two continuous virtual areas, low and high, beginning respectively at

locations 0 and 400000. The low part is generally unique to a given user and can be used in any way he wishes. The

(perhaps null) high part is a reentrant area, which is shared by several users and is therefore write{protected. The

small user con�guration is consistent with this arrangement.



4.3. KI10 AND KA10 SYSTEM OPERATIONS 463

Figure 4.11: Virtual Address Space and Page Map Layout (KI10)

HRMF-KIVAS.TEX

777777

16K

112K

16K

112K

0

40000

400000

440000

�

�

�

�

�

�

�

�

�

�

�

�

�

�

User

Virtual

Address

Space

User

Process

Table

Executive Map

340 | 377

16

Trap & MUUO
16

224

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

Small User

0 | 37

16

112
40 | 377

Small User

400 | 437

16

440 | 777

112

!

!

!

!

!

!

!

!

!

!

Section References

Trap x2.9.6

MUUO x2.16

Interrupt x4.2.1

777777

0

400000

340000

Executive

Virtual

Address

Space

Executive

Process

Table

32

��

�

�

�

�

�

�

�

�

�

�

��

Interrupt
16

80

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

400 | 777 128

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

16

��

�

�

�

�

�

�

�

�

�

�

��

Trap

4

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

236

112K

Not Paged

(Kernel Mode

Only)

16K

128K

Shaded Areas

Are Reserved



464 CHAPTER 4. EARLIER PROCESSORS

Figure 4.12: Process Table Con�guration (KI10)

HRMF-KIPTC.TEX

User Process Table Executive Process Table

777 777

0 0
User Page 0 User Page 1

User Page 36 User Page 37

User Page 40 User Page 41

17

20

Available to Software if Small User

User Page 376 User Page 377

User Page 400 User Page 401

177

200

User Page 436 User Page 437

User Page 440 User Page 441

217

220

Available to Software if Small User

User Page 776 User Page 777

377

400
Executive Page 340 Executive Page 341

417

Executive Page 376 Executive Page 377

420 User Page Failure Trap Instruction

421 User Arithmetic Over
ow Trap Instruction

422
User Pushdown Over
ow Trap Instruction

423 User Trap 3 Trap Instruction

424

MUUO Stored Here

425

MUUO Old PC Word

426
Executive Page Failure Word

427 User Page Failure Word

430
Kernel No Trap MUUO New PC Word

431 Kernel Trap MUUO New PC Word

432
Supervisor No Trap MUUO New PC Word

433 Supervisor Trap MUUO New PC Word

434
Concealed No Trap MUUO New PC Word

435 Concealed Trap MUUO New PC Word

436
Public No Trap MUUO New PC Word

437 Public Trap MUUO New PC Word

440

Reserved

Available to Software

37

40

Executive LUUO Stored Here

41

LUUO Handler Instruction

42

Standard Priority Interrupt Instructions

57

60

177

Reserved

200 Executive Page 400 Executive Page 401

Executive Page 776 Executive Page 777

377

400

417

Reserved

420 Executive Page Failure Trap Instruction

421 Executive Arithmetic Over
ow Trap Instruction

422
Executive Pushdown Over
ow Trap Instruction

423 Executive Trap 3 Trap Instruction

424

Reserved



4.3. KI10 AND KA10 SYSTEM OPERATIONS 465

that the reference is allowable according to the P and W bits). If there is no match, the hardware

makes a memory reference (referred to as a \page re�ll cycle") to get the necessary information

from the page map and enters it into the page table at the location speci�ed by a reload counter.

This counter is incremented whenever it is used to reload the table, and also whenever the location

to which it points is used for a mapping. Hence the counter tends to stay away from locations

containing the page numbers most frequently referenced.

Page Failure

A page failure that occurs during an interrupt instruction terminates the instruction and sets the

In{Out Page Failure 
ag, requesting an interrupt on the error level assigned to the processor. In all

other circumstances, if the paging hardware cannot make the desired memory reference, it terminates

the instruction immediately without disturbing memory, the accumulators or PC, places a page fail

word in the user process table, and causes a page failure trap. If the attempted reference is in user

virtual address space, the page fail word is placed in location 427 of the user process table, and

the processor executes the trap instruction in location 420 of the same table.

75

If the attempted

reference is in executive virtual address space, the page fail word is placed in location 426 of the user

process table, and the processor executes the trap instruction in location 420 of the executive process

table. The trap instruction is executed in the same address space in which the failure occurred. The

page fail word supplies this information.

88

U

179

Virtual Page

3531

Failure

Type

3131

0

3232

A

3333

W

3434

S

3535

T

have this format

If bit 31 is 0, bits 31{35

Whether the violation occurred in user or executive virtual address space is indicated by a 1 or a

0 in bit 8. If bit 31 is 1, the number in bits 31{35 (� 20) indicates the type of \hard" failure as

follows.

23 Address failure |- this is a simulated page failure caused by the satisfaction of an address

condition selected from the console. It indicates that while the console address break switch

was on and the Address Failure Inhibit 
ag was clear (bit 8 of the PC word), the processor

initiated a page check for access to the memory location that was speci�ed by the paging and

address switches and for which a comparison was enabled (whether or not a comparison can be

made is a function of the setting of the paging switches (Appendix G.2) and the state of the

User Address Compare Enable 
ag (see below)), and the intended memory reference was for

the purpose selected by the address condition switches as follows:

The instruction fetch switch was on and the requested access was for retrieval of an

75

When a page failure trap instruction is performed, PC points to the instruction that failed (or to an XCT that

executed it), unless the failure occurred in an over
ow trap instruction in which case PC points to the instruction that

over
owed. After taking care of the failure, the processor can always return to the interrupted instruction. Either the

instruction did not change anything, or the failure was in the second part of a two{part instruction, where First Part

Done being set prevents the processor from repeating any unwanted operations in the �rst part.



466 CHAPTER 4. EARLIER PROCESSORS

ordinary instruction, including an instruction executed by an XCT or an LUUO (address

41).

The data fetch switch was on and the requested access was for retrieval of an address

word in an e�ective address calculation or read{only retrieval of an operand (other than

in an XCT). This switch can also cause a failure inadvertently

76

on the retrieval of a trap

instruction or a PC word in an MUUO.

The write switch was on and the requested access was for writing,

77

either write{only or

read{modify{write, including writing by an LUUO (address 40). This switch also causes a

failure on the �rst write in an MUUO if the address switches contain the e�ective address

of the MUUO (even though that address is not used for the access), and can cause a failure

inadvertently

76

on the second write.

The Address Failure Inhibit 
ag, which can be set only by a JRSTF or MUUO, prevents an ad-

dress failure during the next instruction | the completion of the next instruction automatically

clears it. If an interrupt or trap intervenes, the 
ag has no e�ect and it is saved and cleared

if the PC word is saved. If it is not saved, it a�ects the instruction following the interrupt or

trap. Otherwise it a�ects the instruction following a return in which it is restored with the

PC word. Using this 
ag, the Monitor can return to a user instruction that caused an address

failure and \get by it."

22 Page re�ll failure | this is a hardware malfunction. The paging hardware did not �nd the

virtual page listed in the page table, so it loaded paging information from the page map into

the table but still could not �nd it.

20 Small user violation | a small user has attempted to reference a location outside of the limited

small user address space.

21 Proprietary violation | an instruction in a public page has attempted to reference a concealed

page or transfer control into a concealed page at an invalid entry point (one not containing a

JRST 1,).

If the violation is not one of these, then bits 31{35 have the format shown above where A, W , and

S are simply the corresponding bits taken from the map half word for the page, and T indicates the

type of reference in which the failure occurred | 0 for a read reference, 1 for a write or read{modify{

write reference. The type of reference implies nothing about the cause of failure | it indicates only

the reason the failed reference was being made.

The page fail trap instruction is set by the Monitor to transfer control to kernel mode. After

rectifying the situation, the Monitor returns to the interrupted instruction, which starts over again

from the beginning.

78

Even a two{part instruction that has been stopped by a failure in the second

part is redone properly, provided the Monitor restores the First Part Done 
ag.

76

Virtual addresses are supplied to the paging hardware via the address bus. An inadvertent failure occurs when

the bus is not used for an access but it accidentally contains the number set into the address switches. The data

fetch switch also catches the attempt to retrieve a dispatch interrupt instruction or inadvertently a standard interrupt

instruction, but the page failure sets the In-out Page Failure 
ag instead of resulting in a trap for an address failure.

77

The write switch causes a failure on an instruction fetch if a read-modify-write precedes it immediately (e.g. if

there is no intervening interrupt, the program is not being single stepped, etc).The write switch causes a failure on an

instruction fetch if a read-modify-write precedes it immediately (e.g. if there is no intervening interrupt, the program

is not being single stepped, etc).

78

In a soft page failure, the mapping entry for the page is removed from the page table on the assumption that the

Monitor will change it. When the instruction is restarted, the hardware must go to the page map to get a new entry

for the page table.



4.3. KI10 AND KA10 SYSTEM OPERATIONS 467

Note that a failure does not necessarily imply that anything is \wrong." The virtual address space

of even a small user is 32K words, which may well be more than is needed in a given run. Hence

the Monitor may have only ten or twenty pages of the user program in core at any given time, and

these would be the virtual pages indicated as accessible. When the user attempts to gain access to a

page that is not there (a virtual page indicated in the page map as inaccessible), the Monitor would

respond to the page failure by bringing in the needed page from the drum or disk, either adding to

the user space or swapping out a page the user no longer needs.

The same situation exists for writability. When bringing in a user program, the Monitor would

ordinarily indicate as writable only the bu�er area and other pages that will de�nitely be altered.

Then in response to a write failure, the Monitor makes the page writable and indicates to itself

(perhaps by means of the software bit in the page map) that that page has in fact been altered.

When the user is done, the Monitor need write only the altered pages back onto the drum.

Monitor Programming

The kernel mode program is responsible for the overall control of the system. It is the only program

that has access to any of physical core unpaged and that has no instruction restrictions. The kernel

program handles all in{out for the system and must set up the page maps, trap locations, interrupt

locations and the like. The supervisor program labors under the same instruction restrictions as

the user but has no way of bypassing them | they always apply. Supervisor mode is limited to

the 144K paged part of the executive address space, although within that space it can read but

not alter concealed pages. The supervisor can give a JRSTF that clears Public provided it is also

setting User; in other words the supervisor can return control to a concealed program but cannot

enter kernel mode by manipulating the 
ags. The PC words supplied by MUUOs can manipulate

the 
ags in any way, switching arbitrarily from one mode to another, but these are in the process

table and assumed to be under control solely of kernel mode.

For accumulator, index register and fast memory references, the Monitor automatically uses fast

memory block 0. For each user, the kernel mode programmust assign a block. The usual procedure is

to assign blocks 2 and 3 to individual user programs on a semipermanent basis for special applications

and to assign block 1 to all other users. In this way the Monitor need not store blocks 2 and 3 when

the special users are not running, and it need not store block 1 when it takes over control from an

ordinary user temporarily. If the Monitor shared block 0 with any users, it would have to store

the user accumulators even when taking control only temporarily. When switching from one user

to another, the Monitor usually stores the �rst user's accumulators in his shadow area | this is

locations 0{17 in user virtual page 0, an area not generally accessible to the user at all | and loads

the new user S accumulators from his shadow area, where they were stored after the last time the

new user ran.

Even while User is set, the interrupt instructions are not part of the user program and are thus

subject only to executive restrictions. (The page failure and over
ow trap instructions are executed

in the user address space if caused by the user.) As interrupt instructions, JSR, JSP, and PUSHJ

automatically take the processor out of user mode to jump to an executive service routine. An

MUUO can also be used.

The pager has one non{I/O instruction and two I/O instructions primarily for diagnostic purposes.

Otherwise control over the system is exercised by data I/O instructions. The device code for the

pager is 010, mnemonic PAG.



468 CHAPTER 4. EARLIER PROCESSORS

0 12 1314 1718 35

I X Y

DATAO PAG, Data Out, Paging

70114

Invalidate all data in the associative memory, and set up the paging hardware according to the

contents of location E as shown. Invalidating all data in the associative memory means setting the

Word Empty bit in each location to indicate that the rest of the word is meaningless and should not

be used.

1818

Load

Right

1919 2020 2121 2222

Page

En{

able

2424 2525 2626 2727 2828 2929 3030 3131 3232 3333 3434 3523

Executive Base Address

00

Load

Left

21

User Fast

Memory

Block

22 33

Small

User

44

User

Ad{

dress

Com{

pare

En{

able

66 77 8887 88 99 1010 1111 1212 1313 1414 1515 1616 175

User Base Address

Bits 0 and 18 are change bits. If bit 0 is 0, ignore the rest of the left half word. But if bit 0 is 1, load

bits 5{17 into the user base register to select the user process table, select the fast memory block

speci�ed by bits 1 and 2 for the user, limit the address space to that of a small user if bit 3 is 1, and

enable address comparison if bit 4 is 1. The Address Compare Enable bit functions in conjunction

with the console paging switches, as explained in Appendix G.2

Similarly if bit 18 is 0, ignore the rest of the right half word. Otherwise load bits 23{35 into the

executive base register to select the executive process table, and enable executive paging if bit 22

is 1. For normal operation of the system, bit 22 must be 1. A 0 in this bit disables over
ow traps,

and disables executive paging so there is no supervisor mode and no executive virtual addressing |

in other words an executive program automatically runs in kernel mode with all access in the �rst

256K of physical memory unpaged.

79

NOTE

Neither turning on power nor pressing the reset switch invalidates the data in the asso-

ciative memory. Therefore, after power has been o�, the starting kernel programmust do

a DATAO PAG, to clear the associative memory of random data before entering executive

or user paged address space.

79

An executive mode program that does not set bit 22 and avoids other special KI10 features will run on a KA10

as well. This is useful for hardware diagnostics and bootstrap loaders (see readin mode,x4.3.1).



4.3. KI10 AND KA10 SYSTEM OPERATIONS 469

0 12 1314 1718 35

I X Y

DATAI PAG, Data In, Paging

70104

Read the status of the paging hardware into location E. The information read is the same as that

supplied by a DATAO (bits 0 and 18 are 0).

0 12 1314 1718 35

I X Y

CONO PAG, Conditions Out, Paging

70120

Load the executive stack pointer from bits 18{22 and the page table reload counter from bits 31{35

of the e�ective conditions E as shown.

2218

Executive AC

Stack Pointer

1919 2020 2121 2323 2424 2525 2626 2727 2828 2929 3030 3531

Page Table

Reload Counter

3232 3333 3434

The executive stack pointer speci�es a block of sixteen locations in the user process table by supplying

the left �ve bits for a 9{bit address that references a location in the table; this function is used only

for accessing stacked fast memory blocks in an instruction executed by a PXCT (see below). Loading

the reload counter causes it to point to the speci�ed location in the page table.

0 12 1314 1718 35

I X Y

CONI PAG, Conditions In, Paging

70124

Read the processor serial number, the page table reload counter, and the contents of the location in

the virtual page table speci�ed by the counter into location E as shown.



470 CHAPTER 4. EARLIER PROCESSORS

2618

Complement of

Virtual Page Number

1919 2020 2121 2222 2323 2424 2525 2727

Exec{

utive

Ad{

dress

Space

2828 2929 3030

Word

Empty

3531

Page Table

Reload Counter

3232 3333 3434

90

Processor Serial Number

11 22 33 44 55 66 77 88 1010 1111 1212 1313 1414 1515 1616 1717

Note that bits 18{26 contain the complement of the virtual page number in the selected location. A

1 in bit 27 indicates the page is in the executive address space; a 1 in bit 30 means the information

in bits 18{27 is invalid. It is possible for the reload counter to change between the CONI and the

CONO, so the CONI might read a di�erent location than was selected by the CONO.

0 12 1314 1718 35

I X Y

8 9

A

MAP Map an Address

257

Map the virtual e�ective address E and place the resulting map data in AC right in the same format

as it is in the page map, i.e., bits P , W and S in bits 19{21 and the physical page number in bits

23{35. Clear AC left.

1818

Page

Fail{

ure

1919

P

2020

W

2121

S

2222

No

Match

3523

Physical Page

Address Bits 14{26

2424 2525 2626 2727 2828 2929 3030 3131 3232 3333 3434

This instruction cannot produce a page failure, but if a page failure would have resulted had an

ordinary instruction in the same mode attempted to write in location E, place a 1 in AC bit 18. If

no match can be made by the paging hardware, place a 1 in bit 22. This results in four possible

situations as a function of the states of bits 18 and 22.



4.3. KI10 AND KA10 SYSTEM OPERATIONS 471

Bit 18 Bit 22 Meaning

0 0 AC right contains valid map data.

0 1 There is no page failure but also no match, so the instruction must

have made an unmapped reference | perhaps to fast memory or to the

unpaged area in kernel mode.

1 0 There is a page failure but the map data is correct as a match exists.

1 1 There is a page failure, and since there is no match, the failure must

have resulted from the instruction referencing an inaccessible page or

from some prior failure (such as a page re�ll malfunction). Hence AC

right contains invalid information.

The last three instructions above can be used to inspect the contents of the associative memory.

The CONO selects a location, the CONI reads the contents of the virtual{page part of that location,

and a MAP that addresses the speci�ed virtual page reads the contents of the physical{page part of

that location.

Previous{Context Execute

Ordinarily an instruction in a user program is performed entirely in user address space, and an

instruction in the executive program is performed entirely in executive address space. But to fa-

cilitate communication between Monitor and users, the executive can execute instructions in which

selected references cross over the boundary between user and executive address spaces. This feature

is implemented by the previous{context execute, or PXCT, instruction. The mnemonic PXCT is

for convenience only and has no meaning to the assembler; it is used simply to indicate an XCT

with nonzero A bits. A PXCT is an XCT. Although the PXCT is given by a program in the current

context, some of the references made by the executed instruction can be in the previous context.

At any point in time, the previous{context is essentially the circumstances in which the previous

process was running. A PXCT can be given only in executive mode, but the previous{context may

be the user, as following a call to the Monitor by the user. The previous context can however be

the executive, to allow communication between one level of the executive program and another, as

when the Monitor gives an MUUO to itself. But note that it is not intended that PXCT be used by

the Monitor for unsolicited references to a user program.

It is very important to understand just which operations are a�ected by a PXCT and which are not.

The only di�erence between an instruction executed by a PXCT and an instruction performed in

normal circumstances is in the way certain of its memory operand references are made. To work as

a PXCT, an XCT must be given in executive mode, and bits 11 and 12 in its A �eld (9{12) must

not both be 0 (in user mode A is ignored). But there is otherwise no di�erence in the way the

XCT itself is performed: everything in the PXCT is done in the current (executive) context, and the

instruction to be executed by the XCT is fetched in the current context. Moreover in the executed

instruction all e�ective address calculation and accumulator references (speci�ed by bits 9{12 of the

instruction word) are in the current context. (Remember that the executive can always access a

user accumulator simply by addressing it as a fast memory location.) If the instruction makes no

memory operand references, as in a jump, shift or immediate mode instruction, its execution di�ers

in no way from the normal case. The only di�erence is in memory operand references.

The previous{context is speci�ed by two 
ags. Just as the current mode is indicated by the User and



472 CHAPTER 4. EARLIER PROCESSORS

Public 
ags, the mode in which the calling program was running is indicated by Previous Context

User and Previous Context Public.

80

At a call these 
ags are set up by an MUUO PC word. Note

that the restrictions on references made in the previous{context are those of the previous{context |

not those in which the PXCT is given. Suppose the executive executes an instruction that references

the concealed user area. Such a reference would fail if Previous Context Public were set; in other

words the concealed area can be accessed by a PXCT only when such access is requested by the

concealed program.

Which references in the executed instruction are made in the previous context is determined by is in

bit 11 and 12 of the PXCT instruction word as follows: a 1 in bit 12 selects read and read{modify{

write memory operand references; a 1 in bit 11 selects memory operand write references; and is in

both bits selects all memory operand references. The meaning of previous{context address space is

obvious for core memory references, namely user or executive virtual address space. But this is not

so for fast memory. When Previous Context User is set, the user space for fast memory references

depends on which fast memory block is currently selected for the user. if block 0 is selected, fast

memory operand references of the types speci�ed are made to the user shadow area. If some other

block is selected, the speci�ed fast memory references are made to the selected block.

If Previous Context User is clear, fast memory references of the types speci�ed are made to the user

process table, in particular to that set of sixteen locations speci�ed by the executive stack pointer.

The pointer is given by a CONO PAG,.

Previous{Context Fast Memory References

Previous Fast Memory Block Selected

Context User Zero Nonzero

1 User shadow area Selected user block

0 AC stack AC stack

Individual Instruction E�ects. The e�ects of execution by a PXCT on di�erent types of instruc-

tions are as follows.

� Instructions without memory operand references are not a�ected. This includes shifts, jumps,

immediate mode instructions, CONSO, CONO, and even an XCT. In fact not only is a PXCT

not a�ected when executed by a PXCT, but the �rst destroys any e�ect the second would

otherwise have on a third instruction (in other words, a pair of PXCTs is equivalent to a pair

of ordinary XCTs).

� Instructions that refer to one memory location for reading only or reading and writing are

controlled by the read bit (MOVE, MOVES, ADDM, AOS). The read bit controls writing when

the write is done to the same location as the read, whether the memory references are done as

a single cycle including both read and write or as separate read and write cycles.

� Instructions that refer to one memory location for writing only are controlled by the write bit

(MOVEM, MAP, HRLZM).

� Instructions that refer to two di�erent memory locations are controlled by the read bit in the

read part of the instruction and by the write bit in the write part (BLT, PUSH)

80

Previous Context User and Previous Context Public are in the same 
ag bits that are used for User In{Out and

Over
ow in user mode. The former has no meaning in executive mode, and the latter is not really necessary as the

executive program is not ordinarily interested in performing extensive mathematical procedures.



4.3. KI10 AND KA10 SYSTEM OPERATIONS 473

� BLKI and BLKO are controlled by the write bit and the read bit respectively. The pointer

reference is done in the same address space as the data transfer.

� In byte instructions all pointer calculations are done in executive address space. The read and

write bits a�ect only the second part, i.e., the load or deposit.

Philosophy. The purpose of the PXCT is to facilitate the handling of user requirements by the

Monitor, but the selection made by Previous Context User of the references a�ected by the read

and write bits is to allow the Monitor to make recursive calls to itself, i.e., to perform MUUOs in

the process of carrying out an MUUO given by the user. Speci�cally the state of Previous Context

User di�erentiates between the Monitor response directly to the user MUUO and its response to its

own MUUOs.

The new PC word of an MUUO from the user would set Previous Context User so that core memory

references can be made across the user{executive boundary, and fast memory references can be made

to the user AC block. The point in choosing between the shadow area and the selected block if not

block 0 is to reference the information that was held in the user AC block before the Monitor took

over. If the user shared block 0 with other users and the Monitor, the Monitor will have saved his

ACs in the shadow area of his address space. The other AC blocks are not disturbed when the

Monitor takes over temporarily, so the Monitor need not save them and they will still hold the user

information.

If in the course of carrying out a user MUUO, the Monitor should itself give an MUUO, the new

PC word would clear Previous Context User. Thus at this level all core memory references are in

the executive address space and fast memory references are to an AC block in the user process table

as speci�ed by the executive stack pointer. MUUO calls by the Monitor to itself can be nested to a

number of levels, but in all cases Previous Context User is left clear. The particular AC block used

at any level is speci�ed by the stack pointer, which makes a di�erent set of sixteen words available

at each level using the same adddresses. Hence the AC stack in the user process table is e�ectively

a pushdown stack kept by the stack pointer; at each level the program must change the pointer to

specify the appropriate block. Each user process table would contain the blocks needed for carrying

out MUUOs for that user.

Example. Suppose that the Monitor has been called by an MUUO from the user (hence Previous

Context User is set) and wishes to save the user's ACs in the shadow area. Assume that every user

runs with AC block 1, 2 or 3, and that the Monitor always sets up executive virtual page 342 to

point to the same physical page as user page 0. Using accumulator T in block 0, the Monitor saves

the user ACs by giving these two instructions,

MOVEI T,342000 ;Initalize pointer: from 0 to 342000

XCT 1,[BLT T,342017]

and restores them with these two.

MOVSI T,342000 ;From 342000 to 0

XCT 2,[BLT T,17]



474 CHAPTER 4. EARLIER PROCESSORS

4.3.5 KA10 Priority Interrupt

Most in{out devices must be serviced infrequently relative to the processor speed and only a small

amount of processor time is required to service them, but they must be serviced within a short time

after they request it. Failure to service within the speci�ed time (which varies among devices) can

often result in loss of information and certainly results in operating the device below its maximum

speed. The priority interrupt is designed with these considerations in mind, i.e., the use of inter-

ruptions in the current program sequence facilitates concurrent operation of the main program and

a number of peripheral devices. The hardware also allows conditions internal to the processor to

signal the program by requesting an interrupt.

Interrupt requests are handled through seven levels arranged in a priority chain, with assignment

of devices to levels entirely at the discretion of the programmer. To assign a device to a level, the

program sends the number of the level to the device control register as part of the conditions given

by a CONO (usually bits 33{35). Levels are numbered 1{7, with 1 having the highest priority; a zero

assignment disconnects the device from the interrupt levels altogether. Any number of devices can

be connected to a single level, and some can be connected to two levels (e.g., a device may signal

that data is ready on one level and use another level to signal that an error has occurred).

When a device requires service it sends an interrupt request signal over the in{out bus to its assigned

level in the processor. The processor accepts the request depending upon certain conditions, such

as that the level must be active (on). The request signal remains on the bus until turned o� by the

program (CONO, DATAO, or DATAI, depending on the device). Thus if a request is not accepted

when made, it will be accepted when the conditions are satis�ed. A single level will shut out all

others of lower priority if every time its service routine dismisses the interrupt, a device assigned to

it is already waiting with another request. The program can usually trigger a request from a device

but delay its acceptance by turning on the level later

The request signal is generally derived from a 
ag that is set by various conditions in the device.

Often associated with these 
ags are enabling 
ags, where the setting of some device condition


ag can request an interrupt on the assigned level only if the associated enabling 
ag is also set.

The enabling 
ags are in turn controlled by the conditions supplied to the device by a CONO. For

example, a device may have half a dozen 
ags to indicate various internal conditions that may require

service by an interrupt; by setting up the associated enabling 
ags, the program can determine which

conditions shall actually request interrupts in any given circumstances.

Having accepted a request, the processor will do nothing further with it unless the priority interrupt

system is on. But even with the system o�, the processor will continue to accept requests on other

levels; and when the system is �nally turned on, it will respond as though all requests had just been

accepted, handling the highest priority one �rst.

Starting an Interrupt. A request made to an active level is accepted at the next memory access

unless the processor is starting an interrupt for any level or holding an interrupt for the same level.

Once a request is accepted with the system on, the level must wait for the interrupt to start. The

processor however cannot start an interrupt if it is already holding an interrupt for a level with

priority higher than those on which requests have been accepted (in other words if the current

program is a higher priority interrupt routine). When there is a higher priority level waiting, the

processor stops the current rogram at the �rst allowable point to start an interrupt for the waiting

level that has highest priority. Allowable stopping points are following the retrieval of an instruction,

following the retrieval of an address word in an e�ective address calculation (including the second

calculation using the pointer in a byte instruction), and between transfers in a BLT. When an



4.3. KI10 AND KA10 SYSTEM OPERATIONS 475

interrupt starts, PC points to the interrupted instruction, so that a correct return can later be made

to the interrupted program.

Two memory locations are associated with each level: unrelocated locations 40 + 2N and 41+ 2N ,

where N is the level number. Level 1 uses locations 42 and 43, level 2 uses 44 and 45, and so on

to level 7 which uses 56 and 57. The processor starts an interrupt for level N by executing the

instruction in location 40+ 2N . Interrupt locations for a second processor on the same memory are

140+2N and 141+2N . Even though the processor may be in user mode when an interrupt occurs,

interrupt instructions are performed in executive mode.

Interrupt Instructions. An instruction executed in response to an interrupt request and not under

control of PC is referred to elsewhere in this manual as being \executed as an interrupt instruction."

Some instructions, when so executed, have di�erent e�ects than they do when performed in other

circumstances. And the di�erence is not due merely to being performed in an interrupt location

or in response (by the program) to an interrupt. To be an interrupt instruction, an instruction

must be executed in location 40 + 2N or 41 + 2N , in direct response by the hardware (rather than

by the program) to a request on level N. x2.18 describes the two ways a BLKO is performed. If

a BLKO is contained in an interrupt routine called by a JSR, it is not \executed as an interrupt

instruction" even in the unlikely event the routine is stored within the interrupt locations and the

BLKO is executed by an XCT. There are two categories of interrupt instructions.

� Non{I/O Instructions. After executing a non-I/O interrupt instruction, the processor holds

an interrupt on the level and returns control to PC. Hence the instruction is usually a jump to

a service routine. If the processor is in user mode and the interrupt instruction is a JSR, JSP,

PUSHJ, JSA, or JRST, the processor leaves user mode (the Monitor thus handles all interrupt

routines).

If the interrupt instruction is not a jump, the processor continues the interrupted programwhile

holding an interrupt | in other words it now treats the interrupted program as an interrupt

routine. For example, the instruction might just move a word to a particular location. Such

procedures are usually reserved for maintenance routines or very sophisticated programs.

� Block or Data I/O Instructions. One or the other of two actions can result from executing one

of these as an interrupt instruction.

If the instruction in 40 + 2N is a BLKI or BLKO and the block is not �nished (i.e., the

count does not cause the left half of the pointer to reach zero), the processor dismisses

the interrupt and returns to the interrupted program. The same action results if the

instruction is a DATAI or DATAO.

If the instruction in 40 + 2N is a BLKI or BLKO and the count does reach zero, the

processor executes the instruction in location 41+2N . This cannot be an I/O instruction

and the actions that result from its execution as an interrupt instruction are those given

above for non{I/O instructions.

CAUTION

The execution, as an interrupt instruction, of a CONO, CONI, CONSO, or CONSZ in

location 40+2N or any I/O instruction in location 41+2N hangs up the processor



476 CHAPTER 4. EARLIER PROCESSORS

Interrupt Programming. The program can control the interrupt system by means of condition

I/O instructions. The device code is 004, mnemonic PI.

0 12 1314 1718 35

I X Y

CONO PI, Conditions Out, Priority Interrupt

70060

Perform the functions speci�ed by the e�ective conditions E as shown (a 1 in a bit produces the

indicated function, a 0 has no e�ect).

Clr

Pwr

Fail

Flag

Clr

Par

Err

Flag

Dis{

able

En{

able

Parity Err

Interrupt

Clear

PI

Sys{

tem

Selected Levels

Make

Prgm

Req

On

Turn

On

Turn

O�

PI

System

Turn

O�

Turn

On

Select Levels for

Bits 24,25,26

1 2 3 4 5 6 7

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Bits 18{21 are actually for processor conditions (x4.3.6)

20 Prevent the setting of the Parity Error 
ag from requesting an interrupt on the level assigned

to the processor.

21 Enable the setting of the Parity Error 
ag to request an interrupt on the level assigned to the

processor.

23 Deactivate the priority interrupt system, turn o� all levels, eliminate all interrupt requests that

have already been accepted but are still waiting, and dismiss all interrupts that are currently

being held.

24 Request interrupts on levels selected by is in bits 29{35, and force the processor to accept them

even on levels that are o�. There is at most one interrupt on a given level, and a request is lost

if it is made by this means to a level on which an interrupt is already being held.

25 Turn on the levels selected by is in bits 29{35 so interrupt requests can be accepted on them.

26 Turn o� the levels selected by is in bits 29{35, so interrupt requests cannot be accepted on

them unless made by a CONO PI, with a 1 in bit 24.

27 Deactivate the priority interrupt system. The processor can then still accept requests, but it

can neither start nor dismiss an interrupt.

28 Activate the priority interrupt system so the processor can accept requests and can start, hold

and dismiss interrupts.

0 12 1314 1718 35

I X Y

CONI PI, Conditions In, Priority Interrupt

70064



4.3. KI10 AND KA10 SYSTEM OPERATIONS 477

Read the status of the priority interrupt (and several bits of processor conditions) into location E

as shown.

1818

Power

Fail

1919

Parity

Error

2020

Parity

Error

Int

En{

abled

2721

Interrupt in Progress

on Levels

2121

1

2222

2

2323

3

2424

4

2525

5

2626

6

2727

7

2828

PI

Sys{

tem

On

3528

Levels On (Active)

2929

1

3030

2

3131

3

3232

4

3333

5

3434

6

3535

7

Levels that are on are indicated by 1s in bits 29{35; 1s in bits 21{27 indicate levels on which

interrupts are currently being held. A 1 in bit 28 means the interrupt system is on.

The remaining conditions read by this instruction have nothing to do with the interrupt. Bits 18{20

actually read processor status conditions (x4.3.6) as follows.

18 AC power has failed. The program should save PC, the 
ags and fast memory in core, and halt

the processor. Note that PC may point to an interrupt service routine rather than the main

program.

The setting of this 
ag requests an interrupt on the level assigned to the processor. If the 
ag

remains set for 5 ms, the processor is cleared.

19 A word with even parity has been read from core memory. If bit 20 is set, the setting of the

Parity Error 
ag requests an interrupt on the level assigned to the processor, at which time PC

points to the instruction being performed or to the one following it.

Dismissing an Interrupt. Automatic dismissal of an interrupt occurs only in a DATAI or DATAO,

or in a BLKI or BLKO with an incomplete block. Following any non{I/O interrupt instruction,

the processor holds an interrupt until the program dismisses it, even if the interrupt routine is

itself interrupted by a higher priority level. Thus interrupts can be held on a number of levels

simultaneously, but from the time an interrupt is started until it is dismissed, no interrupt can be

started on that level or any level of lower priority (requests, however, can be accepted on lower

priority levels).

A routine dismisses the interrupt by using a JEN (JRST 12,) to return to the interrupted program

(the interrupt system must be on when the JEN is given). This instruction restores the level on

which the interrupt is being held, so it can again accept requests, and interrupts can be started

on it and lower priority levels. JEN also restores the 
ags, whose states were saved in the left half

of the PC word if the routine was called by a JSR, JSP, or PUSHJ. In the unlikely event that 
ag

restoration is not desired, a JRST 10, can be used instead.

CAUTION

An interrupt routine must dismiss the interrupt when it returns to the interrupted pro-

gram, or its level and all levels of lower priority will be disabled, and the processor will

treat the new program as a continuation of the interrupt routine.

Timing. The time a device must wait for an interrupt to start depends on the number of levels in



478 CHAPTER 4. EARLIER PROCESSORS

use, and how long the service routines are for devices on higher priority levels. If only one device

is using interrupts, it need never wait longer than the time required for the processor to �nish the

instruction that is being performed when the request is made. The maximum time can be considered

to be about 15 �s for FDVL, but a ridiculously long shift could take over 35 �s.

Special Considerations and Programming Suggestions. If the interrupt routine uses a UUO

it must �rst save the contents of the pair of locations that will be changed by it in case the interrupted

program was in the process of handling a UUO. Hence the routine must save unrelocated location 40

and the location used by the UUO handler instruction to store the PC word. In all other respects,

the special considerations and programming suggestions given at the end of the section on the KI10

interrupt hold for the KA10 (x4.3.2).

4.3.6 KA10 Processor Conditions

There are a number of internal conditions that can signal the program by requesting an interrupt

on a level assigned to the processor. Most of these conditions are generally regarded as important

enough to be assigned to the highest priority level. Except in the case of a power failure however,

the common practice is for the processor interrupt to switch over to the lowest priority level by

means of a program{set request. Then the time taken to handle the situation, which may well be

considerable, cannot interfere with high priority events.

Flags for power failure and parity error are handled by the condition I/O instructions that address

the priority interrupt system (x4.3.5). The remaining 
ags are handled by condition instructions

that address the processor. Its device code is 000, mnemonic APR.

0 12 1314 1718 35

I X Y

CONO APR, Conditions Out, Arithmetic Processor

70020

Assign the interrupt level speci�ed by bits 33{35 of the e�ective conditions E and perform the

functions speci�ed by bits 18{32 as shown (a 1 in a bit produces the indicated function, a 0 has no

e�ect).

1818

Clear

Push{

down

Over{

flow

1919

Clear

All

In{

Out

De{

vices

2020 2121

Clear

Ad{

dress

Break

Flag

2222

Clear

Mem{

ory

Pro{

tect

Flag

2323

Clear

NXM

Flag

2424

Dis{

able

2525

En{

able

2524

Clock

Interrupt

2525 2626

Clear

Clock

Flag

2727

Dis{

able

2828

En{

able

2827

Floating

Overflow

Interrupt

2828 2929

Clear

Float{

ing

Over{

flow

3030

Dis{

able

3131

En{

able

3130

Overflow

Interrupt

3131 3232

Clear

Over{

flow

3533

Priority

Interrupt

Assignment

3434

Enabling a particular 
ag to interrupt means that henceforth the setting of the 
ag will request an

interrupt on the level assigned (by bits 33{35) to the processor. Disabling prevents the 
ag from

triggering a request.

A 1 in bit 19 produces the I/O reset signal, which clears the control logic in all of the peripheral

equipment (but a�ects neither the priority interrupt system, nor the processor 
ags cleared by this



4.3. KI10 AND KA10 SYSTEM OPERATIONS 479

instruction or CONO PI,).

0 12 1314 1718 35

I X Y

CONI APR, Conditions In, Arithmetic Processor

70024

Read the status of the processor into the right half of location E as shown (all interrupt requests

are made on the level assigned to the processor).

1818 1919

Push{

down

Over{

flow

2020

User

In{

Out

2121

Ad{

dress

Break

2222

Mem{

ory

Pro{

tect{

ion

2323

NXM

2424 2525

Clock

Inter{

rupt

En{

abled

2626

Clock

2727 2828

Float{

ing

Over{

flow

Int

Enb

2929

Float{

ing

Over{

flow

3030

Trap

Off{

set

3131

Over{

flow

Inter{

rupt

En{

abled

3232

Over{

flow

3533

Priority

Interrupt

Assignment

3434

* * * * * * *

Bits that can cause interrupts on the level assigned to the processor are those indicated by asterisks,

and also Power Failure and Parity Error, bits 18 and 19 read by a CONI PI,.

With the possible exception of an illegal memory reference on an instruction fetch, if the highest

priority active level is assigned to the processor, then the occurrence of any processor interrupt

condition is guaranteed to produce a processor interrupt with no lower priority interrupt intervening

between it and the program level at which the processor condition occurred. The actual relationship

between PC and the instruction associated with a given condition is as stated in its description.

19 Pushdown Over
ow | in a PUSH or PUSHJ the count in AC left reached zero; or in a POP

or POPJ the count reached �1. The setting of this 
ag requests an interrupt, at which time

PC points to the instruction following that in which the over
ow occurred. The location of the

o�ending instruction is implied by PC for PUSH or POP, is indicated by the last item in the

stack for PUSHJ, but is indeterminate for POPJ.

20 User In{Out | even if the processor is in user mode, there are no instruction restrictions (but

memory restrictions still apply) (x4.3.7).

21 Address Break | while the console address break switch was on, the processor requested access

to the memory location speci�ed by the address switches and the memory reference was for the

purpose selected by the address condition switches as follows:

The instruction switch was on and access was for retrieval of an instruction (including

an instruction executed by an XCT or contained in an interrupt location or a trap for an

unimplemented operation) or an address word in an e�ective address calculation.

The data fetch switch was on and access was for retrieval of an operand (other than in an

XCT).

The write switch was on and access was for writing a word in memory, other than in a

read{modify{write.

The setting of this 
ag requests an interrupt, at which time PC points to the instruction that

was being executed or to the one following it. However PC bears no relation to the break if



480 CHAPTER 4. EARLIER PROCESSORS

the access was requested for a console key function.

22 Memory Protection | a user program attempted to access a memory location outside of its

area or to write in a write{protected part of its area, and the user instruction was terminated at

that time. The setting of this 
ag requests an interrupt, at which time PC points either to the

instruction that caused the violation or to the one following it, unless the illegal reference was

for fetching an instruction. In this exceptional case it is possible for a lower level interrupt to

occur between the violation and its interrupt, even with the processor assigned to the highest

priority active level.

This 
ag can also be set by an instruction executed from the console while the USER MODE

light is on, in which case PC bears no relation to the violation.

23 Nonexistent Memory | the processor attempted to access a memory that did not respond

within 100 �s. The setting 
ag requests an interrupt, at which time PC points either to the

instruction containing the unanswered reference or to the one following it. However PC bears

no relation to the unanswered reference if the attempted access originated from a console key

function.

26 Clock | this 
ag is set at the AC power line frequency and can thus be used for low resolution

timing (the clock has high long term accuracy). If bit 25 is set, the setting of the Clock 
ag

requests an interrupt.

29 Floating Over
ow | this is one of the 
ags saved in a PC word, and the conditions that set it

are given in x2.9.3. If bit 28 is set, the setting of Floating Over
ow requests an interrupt, at

which time PC points to the instruction following that in which the over
ow occurred.

30 Trap O�set | the processor is using locations 140{161 for unimplemented operation traps and

interrupt locations.

32 Over
ow | this is one of the 
ags saved in a PC word, and the conditions that set it are given

in x2.9.3. If bit 31 is set, the setting of Over
ow requests an interrupt, at which time PC points

to the instruction following that in which the over
ow occurred.

CAUTION

For an address break, a memory protection violation, a parity error, or a nonexistent

memory, a processor error interrupt that switches over to a lower priority level should

not return to the interrupted program, as the processor will fetch the next user

instruction before it accepts the program{set interrupt request. This makes it very

likely that the same error will recur, producing a loop between the processor interrupt

and the interrupted program.

4.3.7 KA10 Program and Memory Management

Every user is assigned a core area and the rest of core is protected from him| he cannot gain access

to the protected area for either storage or retrieval of information. The assigned area is divided into

two parts. The low part is unique to a given user and can be used for any purpose. The high part

may be for a single user, or it may be shared by several users. The Monitor can write{protect the

high part so that the user cannot alter its contents, i.e., he cannot write anything in it. The Monitor



4.3. KI10 AND KA10 SYSTEM OPERATIONS 481

would do this when the high part is to be a pure procedure to be used reentrantly by several users.

One high pure segment may be used with any number of low impure segments. The user can request

that the Monitor write{protect the high part of a single program, e.g., in order to debug a reentrant

program. All users write programs beginning at address 0 for the low part, and beginning usually

at 400000 for the high part. The programmed addresses are retained in the object program but are

relocated by the hardware to the physical area assigned to the user as each access is made while the

program is running.

The size and position of the user area are de�ned by specifying protection and relocation addresses for

the low and high blocks, as shown in Figure 4.13. The protection address determines the maximum

address the user can give; any address larger than the maximum is illegal. The relocation address

is the address, as seen by the Monitor and the hardware, of the �rst location in the block. The

Monitor de�nes these addresses by loading four 8{bit registers, each of which corresponds to the left

eight bits (15{25) of an address whose right ten bits are all 0.

To determine whether an address is legal its left eight bits are compared with the appropriate

protection register, so the maximum user address consists of the register contents in its left eight

bits, 1777 in its right ten bits (i.e., it is equal to the protection address plus 1777). Since the set

of all addresses begins at zero, a block is always an integral multiple of 1024

10

(2000

8

) locations.

Relocation is accomplished simply by adding the contents of the appropriate relocation register to

the user address, so the �rst address in a block is a multiple of 2000. The relative user and relocated

address con�gurations are therefore as illustrated here, where P

l

, R

l

, P

h

, and R

h

are respectively the

protection and relocation addresses for the low and high parts as derived from the 8{bit registers

loaded by the Monitor. If the low part is larger than 128K locations, i.e., more than half the

maximum memory capacity (P

l

� 400000), the high part starts at the �rst location after the low

part (at location P

l

+ 2000). The high part is limited to 128K. If the Monitor de�nes two parts but

does not write{protect the high part, the user has a two{part nonreentrant program.

If the user attempts to access a location outside of his assigned area, or if the high part is write{

protected and he attempts to alter its contents, the current instruction terminates immediately, the

Memory Protection 
ag is set (status bit 22 read by CONI APR,), and an interrupt is requested on

the level assigned to the processor (x4.3.6).

Addressing Summary. Let A

u

be the address supplied by the user, and let A

p

be the physical core

address generated from it by the relocation hardware.

If A

u

� 17, then A

p

= A

u

(fast memory, no relocation).

If 20 � A

u

� P

l

+ 1777, then A

p

= (A

u

+ R

l

) mod 2

18

.

If the greater of f

400000

P

l

+2000

g � A

u

� P

h

+ 1777, then A

p

= (A

u

+R

h

) mod 2

18

.

Any other value of A

u

is illegal. These are A

u

> P

l

+1777 if either A

u

< 400000 or A

u

> P

h

+1777.

Note: If a relocated address is in the range 0{17, the reference is to core rather than fast memory.

(E.g., R

h

= 0, P

h

= 400000, and P

l

< 400000 then relocated references to addresses in the range

400000{400017 actually reference core addresses 0{17.)

Monitor Programming

The Monitor must assign the core area for each user program, set up trap and interrupt locations,



482 CHAPTER 4. EARLIER PROCESSORS

Figure 4.13: Relocation of User Addresses in the KA10

Note that the relocated low part

is actually in two sections with

the larger beginning at R

l

+ 20.

This is because addresses 0{17

are not relocated, all users hav-

ing access to the accumulators.

The Monitor uses the �rst six-

teen locations in the low user

block to store the user's accumu-

lators when his program is not

running.

Some systems have only the low

pair of protection and relocation

registers. In this case the user

program is always nonreentrant

and the assigned area comprises

only the low part.

0

Low

P

l

+ 1777

Illegal

400000

High

P

h

+ 1777

Illegal

777777

User Addresses

Before Relocation

Non{

Existent

Memory

0

20

Typical Physical

Address Con�guration

After Relocation

R

l

R

l

+ 20

Low

R

l

+ P

l

+ 1777

R

h

High

R

h

+ P

h

+ 1777

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A





























































specify whether the user can give I/O instructions, transfer control to the user program, and respond

appropriately when an interrupt occurs or an instruction is executed in unrelocated 41 or 61. Core

assignment is made by this instruction.

0 12 1314 1718 35

I X Y

DATAO APR, Data Out, Arithmetic Processor

70014

Load the protection and relocation registers from the contents of location E as shown, where P

l

, P

h

,

R

l

and R

h

are the protection and relocation addresses de�ned above. If write{protect bit P (bit 17)

is 1, do not allow the user to write in the high part of his area.

70

P

l

18�25

88 169

P

h

18�25

1717

P

1717 2518

R

l

18�25

2626 3427

R

h

18�25

3535

Notes. For a two part nonreentrant program, set P = 0. For a one{part nonreentrant program,

make P

h

� P

l

. If the hardware has only one set of protection and relocation registers, the user area



4.3. KI10 AND KA10 SYSTEM OPERATIONS 483

is de�ned by P

l

and R

l

, the rest of the word is ignored.

Giving a JRSTF with a 1 in bit 6 of the PC word allows the user to handle his own input{output.

The Monitor can also transfer control to the user with this instruction by programming a 1 in bit 5

of the PC word, or it may jump to the user program with a JRST 1, which automatically sets User.

The set state of this 
ag implements the user restrictions.

While User is set, certain instructions are not part of the user program and are therefore completely

unrestricted, namely those executed in the interrupt locations (which are not relocated) and in

unrelocated trap locations 41 and 61. Illegal instructions and UUO codes 000 and 040{077 are

trapped in unrelocated 40; codes 100{127 are trapped in unrelocated 60. (The trap locations are

140{141 and 160{161 in a second KA10 processor.) BLKI and BLKO can be used in the even interrupt

locations, and if there is no over
ow, the processor returns to the interrupted user program. JSR

should ordinarily be used in the remaining even interrupt locations, in odd interrupt locations

following block I/O instructions, and in 41 and 61. The JSR clears User and should jump to the

Monitor. JSP, PUSHJ, JSA and JRST are acceptable in that they clear User, but the �rst two require

an accumulator (all accumulators should be available to the user) and the latter two do not save the


ags.

After taking appropriate action, the Monitor can return to the user program with a JRSTF or JEN

that restores the 
ags including User and User In{Out.

4.3.8 Real Time Clock DK10

This processor option can be used to signal the end of a speci�ed real time interval or to measure

the real time taken by an event. With appropriate software the DK10 can easily be used to keep

the time of day. The basic element in the clock

81

is an 18{bit binary counter that is incremented

repeatedly by a clock source; a 100 kHz � :01% crystal{controlled source is available internally, or

a source of any frequency up to 400 kHz can be provided externally. Operation is synchronized so

that the program can read the counter at any time without missing a count. Associated with the

counter is an 18{bit interval register, which can be loaded by the program. Each time the count

reaches the number held in the register, the clock requests an interrupt while the counter clears and

begins a new count. With the internal clock source, whose period is 10 �s, the total count is about

2.6 seconds.

The program turns the clock on and o� by enabling and disabling the counter. The clock has two

modes of operation: with the User Time 
ag clear, the counter operates continuously; with User

Time set, the counter stops while the processor is handling interrupts. Hence in the latter mode the

clock discounts interrupt time and can be used to time user programs. In a system that contains

two clocks, one can be used by the Monitor to time user programs while the other is used to keep

the time of day.

Instructions. The clock device code is 070, mnemonic CLK. A second clock would have device

code 074.

81

The clock referred to throughout this section is the DK10 real time clock and should not be confused with the

line frequency clock whose 
ag is one of the processor conditions (x4.3.3 or x4.3.6).



484 CHAPTER 4. EARLIER PROCESSORS

0 12 1314 1718 35

I X Y

CONO CLK, Conditions Out, Clock

70720

Assign the interrupt level speci�ed by bits 33{35 of the e�ective conditions E and perform the

functions speci�ed by bits 23{32 as shown (a 1 in a bit produces the indicated function, a 0 has no

e�ect).

1818 1919 2020 2121 2222 2323

Set

Count

Over{

flow

2424

Set

Count

Done

2525

Count

2626

Clear

Clock

2727

Clear

User

Time

2828

Set

User

Time

2929

Turn

Clock

Off

3030

Turn

Clock

On

3131

Clear

Count

Over{

flow

3232

Clear

Count

Done

3533

Priority

Interrupt

Assignment

3434

A 1 in bit 26 clears the clock counter and the Count Done, Count Over
ow and User Time 
ags,

turns o� the clock, and drops the PI assignment (assigns zero). The e�ect of giving con
icting

conditions is indeterminate.

A 1 in bit 25 increments the counter provided the clock is o� (this is for maintenance only).

0 12 1314 1718 35

I X Y

CONI CLK, Conditions In, Clock

70724

Read the contents of the interval register into the left half of location E and read the status of the

clock into bits 26{35 as shown (asterisks indicate bits that can cause interrupts).

1818 1919 2020 2121 2222 2323 2424 2525 2626

Ex{

ternal

Source

2727 2828

User

Time

2929 3030

Clock

On

3131

Count

Over{

flow

3232

Count

Done

* *

3533

Priority

Interrupt

Assignment

3434

Interrupts are requested on the assigned level by the setting of Count Over
ow and Count Done.

26 The counter is connected to an external source (0 indicates the internal source is connected).

28 The counter cannot be incremented while an interrupt is being held or a request has been

accepted and the level is waiting for an interrupt to start. Note that to time a user properly,

the Monitor must also compensate for any noninterrupt time taken from the user.



4.3. KI10 AND KA10 SYSTEM OPERATIONS 485

0 12 1314 1718 35

I X Y

DATAO CLK, Data Out, Clock

70714

Load the contents of the right half of location E into the interval register.

Notes. The comparison of the counter against the interval register that follows every count is

inhibited while this instruction is loading the register.

0 12 1314 1718 35

I X Y

DATAI CLK, Data In, Clock

70704

Read the current contents of the clock counter into the right half of location E.

Notes. The counter is always stable while being read, and any count held back is picked up imme-

diately afterward.

Initially the program should give a CONO CLK,1000 to clear the clock, and then give a DATAO to

select the interval and a CONO to turn on the clock, select the mode, and assign the interrupt level.

Following turn on the �rst count may occur at any time up to the full period of the source. When the

count reaches the speci�ed interval, Count Done sets, requesting an interrupt on the assigned level.

At the same time, the counter clears and a new count begins with the next pulse. The program

should respond with a CONO to clear Count Done. Remember that although a CONO need not

a�ect the mode or the clock state, every CONO must renew the PI assignment.

The interval can be changed at any time simply by giving a DATAOHowever, if the program does not

clear the counter at the same time, then it should make sure that the count has not yet reached the

value of the new interval. If the count is already beyond that point, the counter will continue until

it over
ows. When the counter over
ows, either because the count started too high, the program

speci�ed the maximum count (2

18

is selected by loading zero), or there is a malfunction of some

sort, Count Over
ow sets, requesting an interrupt, and a new count begins.

To use the clock to time some operation, turn it on with the counter at zero. For a counter reading

of C, the elapsed time is

T (C + nI)

where T is the period of the source, n is the number of clock interrupts since the clock was started,

and I is the interval selected by the program. To cause the clock to request an interrupt after

T �n �s, where n � 2

18

and T is the period of the source in microseconds, load the interval register

with n expressed in binary. There is an average indeterminacy of half a count every time the counter

starts and stops. Therefore, when the clock is keeping user time, there is an average indeterminacy

of one count for every group of overlapping interrupts any requests (not for every interrupt, as the

counter is inhibited while there is any request or interrupt being held).

For keeping the time of day, the program can use a memory location to maintain a count of the clock

interrupts. The location should be cleared at midnight| note that an error of .01% amounts to 8.64

seconds in 24 hours | and the time can be determined by combining its contents with the current

contents of the clock counter. If the location itself is to be used as a low resolution clock kept in



486 CHAPTER 4. EARLIER PROCESSORS

hours, minutes and seconds, it is better to use a more convenient interval than the full count. Using

the internal source, an interval of 2.5 seconds, which is octal 750220, is the most straightforward

interval with the fewest interrupts. To interrupt every second the interval would be 303240.



487

Appendix A

Instructions and Mnemonics

A.1 Formats

The diagrams below show the formats of the various types of instructions, pointers, arithmetic

operands, and other special words employed by the user in the KL10 processor. All of these apply

to the XKL

-

1 processor, with the sole exception of the In{Out instruction format. Most of these

formats apply to the KS10 processor, except extended addressing, In{Out instructions, and giant{

range 
oating{point operands.

A.1.1 Instruction Words

0 12 1314 1718 35

I X Y

8 9

A, F

Basic Instructions

Instruction Code

0 12 1314 1718 35

I X Y

In{Out Instructions

2 3

7

9 10

Device Code
Funct

0 12 1314 1718 35

I X Y

8 9

0

Instructions Executed Under EXTEND

Instruction Code



488 APPENDIX A. INSTRUCTIONS AND MNEMONICS

A.1.2 Address and Program Control Words

Local Indirect Word

00

1

11

0

122

Reserved

1313

I

1714

X

3518

Y

Global Indirect Word

00

0

11

I

52

X

356

Y

Local Index Register

170

In Non{zero Section must be

� 0 or Bits 6{17 = 0

3518

Local Index

Global Index Register

00

0

51

Available

to Software

0

356

Global Index

176

Non{Zero Section Number

An index register used in a global indirect word always uses bits 6{35.

Saved Flags

Over
ow User

First In{Out Address Floating

Previous Carry Carry Floating Part User Previous Public Failure Trap Trap Under{ No

Context 0 1 Over
ow Done Context Inhibit 2 1 
ow Divide

Public User

0 1 2 3 4 5 6 7 8 9 10 11 12

PC Word

120

Flags

1713

00

3518

In{Section PC

Flag{PC Double Word

120

Flags

1713

0

3518

Processor{Dependent Information

50

00

356

PC



A.1. FORMATS 489

A.1.3 Stack, Byte Pointers

Local Stack Pointer

170

Control Count

(In Non{zero Section � 0 or Bits 6{17 = 0)

3518

Local Address of Latest Item

Global Stack Pointer

00

0

356

Global Address of Latest Item

176

Non{zero Section

Byte Storage

350

Byte Next Byte

-�

P BitsS Bits

� -

36{P{S 35{P 36{P

Local Byte Pointer

50

Position P

P � 36

116

Size S

1212

0

1313

I

1714

X

3518

Y

Two{Word Global or Local Byte Pointer

50

Position P

P � 36

116

Size S

1212

1

1713

Reserved

3518

Available to User

350

Global or Local Indirect Word

One{Word Global Byte Pointer

50

PSy

PS > 36

356

Y

y To decode PS into P and S , use the following table, in which the values of P and S are given in

decimal and PS is given in octal.

PS P S PS P S PS P S

45 36 6 56 20 8 67 36 9

46 30 6 57 12 8 70 27 9

47 24 6 60 4 8 71 18 9

50 18 6 61 36 7 72 9 9

51 12 6 62 29 7 73 0 9

52 6 6 63 22 7 74 36 18

53 0 6 64 15 7 75 18 18

54 36 8 65 8 7 76 0 18

55 28 8 66 1 7 77 Illegal



490 APPENDIX A. INSTRUCTIONS AND MNEMONICS

A.1.4 Arithmetic Operands

Fixed Point Operands (Single Precision)

Sign

0+

1{

Binary Number (Twos Complement)

0 1 35

Fixed Point Operands (Double Precision)

Sign

0+

1{

High Order Part of Binary Number (Twos Complement)

0 1 35

Sign

Copy

Low Order Part of Binary Number (Twos Complement)

Single Precision Floating Point Operands

Sign

0+

1{

Excess 128 Exponent

(Ones Complement)

Fraction (Twos Complement)

0 1 8 9 35

Double Precision Floating Point Operands

Sign

0+

1{

Excess 128 Exponent

(Ones Complement)

High Order Fraction (Twos Complement)

0

Low Order Extension of Fraction (Twos Complement)

0 1 8 9 35

Giant{Range Floating Point Operands

Sign

0+

1{

Excess 1024 Exponent

(Ones Complement)

High Order Fraction (Twos Complement)

0

Low Order Extension of Fraction (Twos Complement)

0 1 1112 35



A.2. INSTRUCTION MNEMONICS { NUMERIC LISTING 491

A.2 Instruction Mnemonics { Numeric Listing

PDP{10 Instruction Set

0 1 2 3 4 5 6 7

000 MUUO

LUUO

CMPSL

y

LUUO

CMPSE

y

LUUO

CMPSLE

y

LUUO

EDIT

y

LUUO

CMPSGE

y

LUUO

CMPSN

y

LUUO

CMPSG

y

010

LUUO

CVTDBO

y

LUUO

CVTDBT

y

LUUO

CVTBDO

y

LUUO

CVTBDT

y

LUUO

MOVSO

y

LUUO

MOVST

y

LUUO

MOVSLJ

y

LUUO

MOVSRJ

y

020

LUUO

XBLT

y

LUUO

GSNGL

y

LUUO

GDBLE

y

LUUO

GDFIX

y

LUUO

GFIX

y

LUUO

GDFIXR

y

LUUO

GFIXR

y

LUUO

DGFLTR

y

030

LUUO

GFLTR

y

LUUO

GFSC

y

LUUO LUUO LUUO LUUO LUUO LUUO

040 MUUO MUUO MUUO MUUO MUUO MUUO MUUO MUUO

050 MUUO MUUO MUUO MUUO MUUO MUUO MUUO MUUO

060 MUUO MUUO MUUO MUUO MUUO MUUO MUUO MUUO

070 MUUO MUUO MUUO MUUO MUUO MUUO MUUO MUUO

100 MUUO MUUO GFAD GFSB JSYS ADJSP GFMP GFDV

110 DFAD DFSB DFMP DFDV DADD DSUB DMUL DDIV

120 DMOVE DMOVN FIX EXTEND DMOVEM DMOVNM FIXR FLTR

130 UFAx DFNx FSC IBP ILDB LDB IDPB DPB

140 FAD FADLx FADM FADB FADR FADRI FADRM FADRB

150 FSB FSBLx FSBM FSBB FSBR FSBRI FSBRM FSBRB

160 FMP FMPLx FMPM FMPB FMPR FMPRI FMPRM FMPRB

170 FDV FDVLx FDVM FDVB FDVR FDVRI FDVRM FDVRB

200 MOVE MOVEI MOVEM MOVES MOVS MOVSI MOVSM MOVSS

210 MOVN MOVNI MOVNM MOVNS MOVM MOVMI MOVMM MOVMS

220 IMUL IMULI IMULM IMULB MUL MULI MULM MULB

230 IDIV IDIVI IDIVM IDIVB DIV DIVI DIVM DIVB

240 ASH ROT LSH JFFO ASHC ROTC LSHC MUUO

250 EXCH BLT AOBJP AOBJN JRST JFCL XCT MAP

260 PUSHJ PUSH POP POPJ JSR JSP JSAx JRAx

270 ADD ADDI ADDM ADDB SUB SUBI SUBM SUBB

y

This instruction is available only under EXTEND. x This instruction is obsolete.



492 APPENDIX A. INSTRUCTIONS AND MNEMONICS

PDP{10 Instruction Set

0 1 2 3 4 5 6 7

300 CAI CAIL CAIE CAILE CAIA CAIGE CAIN CAIG

310 CAM CAML CAME CAMLE CAMA CAMGE CAMN CAMG

320 JUMP JUMPL JUMPE JUMPLE JUMPA JUMPGE JUMPN JUMPG

330 SKIP SKIPL SKIPE SKIPLE SKIPA SKIPGE SKIPN SKIPG

340 AOJ AOJL AOJE AOJLE AOJA AOJGE AOJN AOJG

350 AOS AOSL AOSE AOSLE AOSA AOSGE AOSN AOSG

360 SOJ SOJL SOJE SOJLE SOJA SOJGE SOJN SOJG

370 SOS SOSL SOSE SOSLE SOSA SOSGE SOSN SOSG

400 SETZ SETZI SETZM SETZB AND ANDI ANDM ANDB

410 ANDCA ANDCAI ANDCAM ANDCAB SETM

SETMI

XMOVEI

z

SETMM SETMB

420 ANDCM ANDCMI ANDCMM ANDCMB SETA SETAI SETAM SETAB

430 XOR XORI XORM XORB IOR IORI IORM IORB

440 ANDCB ANDCBI ANDCBM ANDCBB EQV EQVI EQVM EQVB

450 SETCA SETCAI SETCAM SETCAB ORCA ORCAI ORCAM ORCAB

460 SETCM SETCMI SETCMM SETCMB ORCM ORCMI ORCMM ORCMB

470 ORCB ORCBI ORCBM ORCBB SETO SETOI SETOM SETOB

500 HLL

HLLI

XHLLI

z

HLLM HLLS HRL HRLI HRLM HRLS

510 HLLZ HLLZI HLLZM HLLZS HRLZ HRLZI HRLZM HRLZS

520 HLLO HLLOI HLLOM HLLOS HRLO HRLOI HRLOM HRLOS

530 HLLE HLLEI HLLEM HLLES HRLE HRLEI HRLEM HRLES

540 HRR HRRI HRRM HRRS HLR HLRI HLRM HLRS

550 HRRZ HRRZI HRRZM HRRZS HLRZ HLRZI HLRZM HLRZS

560 HRRO HRROI HRROM HRROS HLRO HLROI HLROM HLROS

570 HRRE HRREI HRREM HRRES HLRE HLREI HLREM HLRES

z

This operation is available only in non-zero sections.



A.2. INSTRUCTION MNEMONICS { NUMERIC LISTING 493

PDP{10 Instruction Set

0 1 2 3 4 5 6 7

600 TRN TLN TRNE TLNE TRNA TLNA TRNN TLNN

610 TDN TSN TDNE TSNE TDNA TSNA TDNN TSNN

620 TRZ TLZ TRZE TLZE TRZA TLZA TRZN TLZN

630 TDZ TSZ TDZE TSZE TDZA TSZA TDZN TSZN

640 TRC TLC TRCE TLCE TRCA TLCA TRCN TLCN

650 TDC TSC TDCE TSCE TDCA TSCA TDCN TSCN

660 TRO TLO TROE TLOE TROA TLOA TRON TLON

670 TDO TSO TDOE TSOE TDOA TSOA TDON TSON

700 APR0 APR1 APR2 APR3 PMOVE PMOVEM NMOVE NMOVEM

710 LDLPN RDCFG MUUO MUUO AMOVE AMOVEM UMOVE UMOVEM

720 MUUO MUUO MUUO MUUO MUUO MUUO MUUO MUUO

730 MUUO MUUO MUUO MUUO MUUO MUUO MUUO MUUO

740 MUUO MUUO MUUO MUUO MUUO MUUO MUUO MUUO

750 MUUO MUUO MUUO MUUO MUUO MUUO MUUO MUUO

760 MUUO MUUO MUUO MUUO MUUO MUUO MUUO MUUO

770 MUUO MUUO MUUO MUUO MUUO MUUO MUUO MUUO

A.2.1 APR0, APR1, APR2, and APR3 Instructions (XKL

-

1 only)

AC APR0 APR1 APR2 APR3

00 APRID RDSPB

01 RDADB RDUBR RDCSB RDCTY

02 SYSID CLRPT RDPUR

03 WRADB WRUBR RDCSTM WRCTY

04 WRAPR WREBR RDITM WRCTYS

05 RDAPR RDEBR RDTIME RDCTYS

06 SZAPR WRCTX DRDPTB SZCTYS

07 SNAPR RDCTX WRTIME SNCTYS

10 WCTRLF DRDCSH WRSPB

11 RCTRLF SWPIA WRCSB

12 SIMIRD SWPVA WRPUR

13 WRKPA SWPUA WRCSTM

14 WRPI DWRCSH WRITM

15 RDPI SWPIO

16 SZPI SWPVO DWRPTB

17 SNPI SWPUO



494 APPENDIX A. INSTRUCTIONS AND MNEMONICS

A.3 Instruction Mnemonics { Alphabetic Listing

? Accumulator �eld must be non{zero. y Operation exists only under EXTEND.

z Operation is not available in section zero. x Operation is obsolete.

ADD 270000,,0

ADDB 273000,,0

ADDI 271000,,0

ADDM 272000,,0

ADJBP ? 133000,,0

ADJSP 105000,,0

AMOVE 714000,,0

AMOVEM 715000,,0

AND 404000,,0

ANDB 407000,,0

ANDCA 410000,,0

ANDCAB 413000,,0

ANDCAI 411000,,0

ANDCAM 412000,,0

ANDCB 440000,,0

ANDCBB 443000,,0

ANDCBI 441000,,0

ANDCBM 442000,,0

ANDCM 420000,,0

ANDCMB 423000,,0

ANDCMI 421000,,0

ANDCMM 422000,,0

ANDI 405000,,0

ANDM 406000,,0

AOBJN 253000,,0

AOBJP 252000,,0

AOJ 340000,,0

AOJA 344000,,0

AOJE 342000,,0

AOJG 347000,,0

AOJGE 345000,,0

AOJL 341000,,0

AOJLE 343000,,0

AOJN 346000,,0

AOS 350000,,0

AOSA 354000,,0

AOSE 352000,,0

AOSG 357000,,0

AOSGE 355000,,0

AOSL 351000,,0

AOSLE 353000,,0

AOSN 356000,,0

APR0 700000,,0

APR1 701000,,0

APR2 702000,,0

APR3 703000,,0

APRID 700000,,0

ASH 240000,,0

ASHC 244000,,0

BLKI x 7xx000,,0

BLKO x 7xx100,,0

BLT 251000,,0

CAI 300000,,0

CAIA 304000,,0

CAIE 302000,,0

CAIG 307000,,0

CAIGE 305000,,0

CAIL 301000,,0

CAILE 303000,,0

CAIN 306000,,0

CAM 310000,,0

CAMA 314000,,0

CAME 312000,,0

CAMG 317000,,0

CAMGE 315000,,0

CAML 311000,,0

CAMLE 313000,,0

CAMN 316000,,0

CLRPT 701100,,0

CMPSE y 002000,,0

CMPSG y 007000,,0

CMPSGE y 005000,,0

CMPSL y 001000,,0

CMPSLE y 003000,,0

CMPSN y 006000,,0

CONI x 7xx240,,0

CONO x 7xx200,,0

CONSO x 7xx340,,0

CONSZ x 7xx300,,0

CVTBDO y 012000,,0

CVTBDT y 013000,,0

CVTDBO y 010000,,0

CVTDBT y 011000,,0

DADD 114000,,0

DATAI x 7xx040,,0

DATAO x 7xx140,,0

DDIV 117000,,0

DFAD 110000,,0

DFDV 113000,,0

DFMP 112000,,0

DFN x 131000,,0

DFSB 111000,,0

DGFLTR y 027000,,0

DIV 234000,,0

DIVB 237000,,0

DIVI 235000,,0

DIVM 236000,,0

DMOVE 120000,,0

DMOVEM 124000,,0

DMOVN 121000,,0

DMOVNM 125000,,0

DMUL 116000,,0

DPB 137000,,0

DRDCSH 701400,,0

DRDPTB 702300,,0

DSUB 115000,,0

DWRCSH 701600,,0

DWRPTB 702700,,0

EDIT y 004000,,0

EQV 444000,,0

EQVB 447000,,0

EQVI 445000,,0

EQVM 446000,,0

EXCH 250000,,0

EXTEND 123000,,0

FAD 140000,,0

FADB 143000,,0

FADL x 141000,,0

FADM 142000,,0

FADR 144000,,0

FADRB 147000,,0

FADRI 145000,,0

FADRM 146000,,0

FDV 170000,,0

FDVB 173000,,0

FDVL x 171000,,0

FDVM 172000,,0

FDVR 174000,,0

FDVRB 177000,,0

FDVRI 175000,,0

FDVRM 176000,,0

FIX 122000,,0



A.3. INSTRUCTION MNEMONICS { ALPHABETIC LISTING 495

Instruction Mnemonics | Alphabetic Listing (Continued)

? Accumulator �eld must be non{zero. y Operation exists only under EXTEND.

z Operation is not available in section zero. x Operation is obsolete.

FIXR 126000,,0

FLTR 127000,,0

FMP 160000,,0

FMPB 163000,,0

FMPL x 161000,,0

FMPM 162000,,0

FMPR 164000,,0

FMPRB 167000,,0

FMPRI 165000,,0

FMPRM 166000,,0

FSB 150000,,0

FSBB 153000,,0

FSBL x 151000,,0

FSBM 152000,,0

FSBR 154000,,0

FSBRB 157000,,0

FSBRI 155000,,0

FSBRM 156000,,0

FSC 132000,,0

GDBLE y 022000,,0

GDFIX y 023000,,0

GDFIXR y 025000,,0

GFAD 102000,,0

GFDV 107000,,0

GFIX y 024000,,0

GFIXR y 026000,,0

GFLTR y 030000,,0

GFMP 106000,,0

GFSB 103000,,0

GFSC y 021000,,0

GSNGL y 021000,,0

HALT 254200,,0

HALTRM 254540,,0

HLL 500000,,0

HLLE 530000,,0

HLLEI 531000,,0

HLLEM 532000,,0

HLLES 533000,,0

HLLI 501000,,0

HLLM 502000,,0

HLLO 520000,,0

HLLOI 521000,,0

HLLOM 522000,,0

HLLOS 523000,,0

HLLS 503000,,0

HLLZ 510000,,0

HLLZI 511000,,0

HLLZM 512000,,0

HLLZS 513000,,0

HLR 544000,,0

HLRE 574000,,0

HLREI 575000,,0

HLREM 576000,,0

HLRES 577000,,0

HLRI 545000,,0

HLRM 546000,,0

HLRO 564000,,0

HLROI 565000,,0

HLROM 566000,,0

HLROS 567000,,0

HLRS 547000,,0

HLRZ 554000,,0

HLRZI 555000,,0

HLRZM 556000,,0

HLRZS 557000,,0

HRL 504000,,0

HRLE 534000,,0

HRLEI 535000,,0

HRLEM 536000,,0

HRLES 537000,,0

HRLI 505000,,0

HRLM 506000,,0

HRLO 524000,,0

HRLOI 525000,,0

HRLOM 526000,,0

HRLOS 527000,,0

HRLS 507000,,0

HRLZ 514000,,0

HRLZI 515000,,0

HRLZM 516000,,0

HRLZS 517000,,0

HRR 540000,,0

HRRE 570000,,0

HRREI 571000,,0

HRREM 572000,,0

HRRES 573000,,0

HRRI 541000,,0

HRRM 542000,,0

HRRO 560000,,0

HRROI 561000,,0

HRROM 562000,,0

HRROS 563000,,0

HRRS 543000,,0

HRRZ 550000,,0

HRRZI 551000,,0

HRRZM 552000,,0

HRRZS 553000,,0

IBP 133000,,0

IDIV 230000,,0

IDIVB 233000,,0

IDIVI 231000,,0

IDIVM 232000,,0

IDPB 136000,,0

ILDB 134000,,0

IMUL 220000,,0

IMULB 223000,,0

IMULI 221000,,0

IMULM 222000,,0

IOR 434000,,0

IORB 437000,,0

IORI 435000,,0

IORM 436000,,0

JCRY 255300,,0

JCRY0 255200,,0

JCRY1 255100,,0

JEN 254500,,0

JFCL 255000,,0

JFFO 243000,,0

JFOV 255040,,0

JOV 255400,,0

JRA x 267000,,0

JRST 254000,,0

JRSTF 254100,,0

JSA x 266000,,0

JSP 265000,,0

JSR 264000,,0

JSYS 104000,,0

JUMP 320000,,0

JUMPA 324000,,0

JUMPE 322000,,0

JUMPG 327000,,0

JUMPGE 325000,,0

JUMPL 321000,,0

JUMPLE 323000,,0

JUMPN 326000,,0



496 APPENDIX A. INSTRUCTIONS AND MNEMONICS

Instruction Mnemonics | Alphabetic Listing (Continued)

? Accumulator �eld must be non{zero. y Operation exists only under EXTEND.

z Operation is not available in section zero. x Operation is obsolete.

LDB 135000,,0

LDLPN 710000,,0

LSH 242000,,0

LSHC 246000,,0

MAP 257000,,0

MOVE 200000,,0

MOVEI 201000,,0

MOVEM 202000,,0

MOVES 203000,,0

MOVM 214000,,0

MOVMI 215000,,0

MOVMM 216000,,0

MOVMS 217000,,0

MOVN 210000,,0

MOVNI 211000,,0

MOVNM 212000,,0

MOVNS 213000,,0

MOVS 204000,,0

MOVSI 205000,,0

MOVSLJ y 016000,,0

MOVSM 206000,,0

MOVSO y 014000,,0

MOVSRJ y 017000,,0

MOVSS 207000,,0

MOVST y 015000,,0

MUL 224000,,0

MULB 227000,,0

MULI 225000,,0

MULM 226000,,0

NMOVE 706000,,0

NMOVEM 707000,,0

ORCA 454000,,0

ORCAB 457000,,0

ORCAI 455000,,0

ORCAM 456000,,0

ORCB 470000,,0

ORCBB 473000,,0

ORCBI 471000,,0

ORCBM 472000,,0

ORCM 464000,,0

ORCMB 467000,,0

ORCMI 465000,,0

ORCMM 466000,,0

PMOVE 704000,,0

PMOVEM 705000,,0

POP 262000,,0

POPJ 263000,,0

PORTAL 254040,,0

PUSH 261000,,0

PUSHJ 260000,,0

PXCT ? 256000,,0

RCTRLF 700440,,0

RDADB 700040,,0

RDAPR 700240,,0

RDCFG 711000,,0

RDCSB 702040,,0

RDCSTM 702140,,0

RDCTX 701340,,0

RDCTY 703040,,0

RDCTYS 703240,,0

RDEBR 701240,,0

RDITM 702200,,0

RDPI 700640,,0

RDPUR 702100,,0

RDSPB 702000,,0

RDTIME 702240,,0

RDUBR 701040,,0

ROT 241000,,0

ROTC 245000,,0

SETA 424000,,0

SETAB 427000,,0

SETAI 425000,,0

SETAM 426000,,0

SETCA 450000,,0

SETCAB 453000,,0

SETCAI 451000,,0

SETCAM 452000,,0

SETCM 460000,,0

SETCMB 463000,,0

SETCMI 461000,,0

SETCMM 462000,,0

SETM 414000,,0

SETMB 417000,,0

SETMI 415000,,0

SETMM 416000,,0

SETO 474000,,0

SETOB 477000,,0

SETOI 475000,,0

SETOM 476000,,0

SETZ 400000,,0

SETZB 403000,,0

SETZI 401000,,0

SETZM 402000,,0

SFM 254600,,0

SIMIRD 700500,,0

SKIP 330000,,0

SKIPA 334000,,0

SKIPE 332000,,0

SKIPG 337000,,0

SKIPGE 335000,,0

SKIPL 331000,,0

SKIPLE 333000,,0

SKIPN 336000,,0

SNAPR 700340,,0

SNCTYS 703340,,0

SNPI 700740,,0

SOJ 360000,,0

SOJA 364000,,0

SOJE 362000,,0

SOJG 367000,,0

SOJGE 365000,,0

SOJL 361000,,0

SOJLE 363000,,0

SOJN 366000,,0

SOS 370000,,0

SOSA 374000,,0

SOSE 372000,,0

SOSG 377000,,0

SOSGE 375000,,0

SOSL 371000,,0

SOSLE 373000,,0

SOSN 376000,,0

SUB 274000,,0

SUBB 277000,,0

SUBI 275000,,0

SUBM 276000,,0

SWPIA 701440,,0

SWPIO 701640,,0

SWPUA 701540,,0

SWPUO 701740,,0

SWPVA 701500,,0

SWPVO 701700,,0

SYSID 700100,,0

SZAPR 700300,,0

SZCTYS 703300,,0



A.4. ALGEBRAIC REPRESENTATION 497

Instruction Mnemonics | Alphabetic Listing (Continued)

? Accumulator �eld must be non{zero. y Operation exists only under EXTEND.

z Operation is not available in section zero. x Operation is obsolete.

SZPI 700700,,0

TDC 650000,,0

TDCA 654000,,0

TDCE 652000,,0

TDCN 656000,,0

TDN 610000,,0

TDNA 614000,,0

TDNE 612000,,0

TDNN 616000,,0

TDO 670000,,0

TDOA 674000,,0

TDOE 672000,,0

TDON 676000,,0

TDZ 630000,,0

TDZA 634000,,0

TDZE 632000,,0

TDZN 636000,,0

TLC 641000,,0

TLCA 645000,,0

TLCE 643000,,0

TLCN 647000,,0

TLN 601000,,0

TLNA 605000,,0

TLNE 603000,,0

TLNN 607000,,0

TLO 661000,,0

TLOA 665000,,0

TLOE 663000,,0

TLON 667000,,0

TLZ 621000,,0

TLZA 625000,,0

TLZE 623000,,0

TLZN 627000,,0

TRC 640000,,0

TRCA 644000,,0

TRCE 642000,,0

TRCN 646000,,0

TRN 600000,,0

TRNA 604000,,0

TRNE 602000,,0

TRNN 606000,,0

TRO 660000,,0

TROA 664000,,0

TROE 662000,,0

TRON 666000,,0

TRZ 620000,,0

TRZA 624000,,0

TRZE 622000,,0

TRZN 626000,,0

TSC 651000,,0

TSCA 655000,,0

TSCE 653000,,0

TSCN 657000,,0

TSN 611000,,0

TSNA 615000,,0

TSNE 613000,,0

TSNN 617000,,0

TSO 671000,,0

TSOA 675000,,0

TSOE 673000,,0

TSON 677000,,0

TSZ 631000,,0

TSZA 635000,,0

TSZE 633000,,0

TSZN 637000,,0

UFA x 130000,,0

UMOVE 716000,,0

UMOVEM 717000,,0

WCTRLF 700400,,0

WRADB 700140,,0

WRAPR 700200,,0

WRCSB 702440,,0

WRCSTM 702540,,0

WRCTX 701300,,0

WRCTY 703140,,0

WRCTYS 703200,,0

WREBR 701200,,0

WRITM 702600,,0

WRKPA 700540,,0

WRPI 700600,,0

WRPUR 702500,,0

WRSPB 702400,,0

WRTIME 702340,,0

WRUBR 701140,,0

XBLT y 020000,,0

XCT 256000,,0

XHLLI z 501000,,0

XJEN 254300,,0

XJRST 254640,,0

XJRSTF 254240,,0

XJRSTP 254440,,0

XMOVEI z 415000,,0

XOR 430000,,0

XORB 433000,,0

XORI 431000,,0

XORM 432000,,0

XPCW 254340,,0

A.4 Algebraic Representation

[To be supplied]



498 APPENDIX A. INSTRUCTIONS AND MNEMONICS

A.5 Powers of Two

2

N

N 2

�N

1 0 1.

2 1 0.5

4 2 0.25

8 3 0.125

16 4 0.062 5

32 5 0.031 25

64 6 0.015 625

128 7 0.007 812 5

256 8 0.003 906 25

512 9 0.001 953 125

1 024 10 0.000 976 562 5

2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625

8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25

32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789 062 5

131 072 17 0.000 007 629 394 531 25

262 144 18 0.000 003 814 697 265 625

524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 0.000 000 953 674 316 406 25

2 097 152 21 0.000 000 476 837 158 203 125

4 194 304 22 0.000 000 238 418 579 101 562 5

8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625

33 554 432 25 0.000 000 029 802 322 387 695 312 5

67 108 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5

536 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625

2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25

8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5

34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625

137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5

274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25

549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5

2 199 023 255 552 41 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25

4 398 046 511 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625

8 796 093 022 208 43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5

17 592 186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25

35 184 372 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125

70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5

140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25

281 474 976 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625

562 949 953 421 312 49 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5

1 125 899 906 842 624 50 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25

2 251 799 813 685 248 51 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125

4 503 599 627 370 496 52 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5

9 007 199 254 740 992 53 0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25

18 014 398 509 481 984 54 0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625

36 028 797 018 963 968 55 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5

72 057 594 037 927 936 56 0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25

144 115 188 075 855 872 57 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125

288 230 376 151 711 744 58 0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5

576 460 752 303 423 488 59 0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25

1 152 921 504 606 846 976 60 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625

2 305 843 009 213 693 952 61 0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5

4 611 686 018 427 387 904 62 0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25

9 223 372 036 854 775 808 63 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125

18 446 744 073 709 551 616 64 0.000 000 000 000 000 000 054 210 108 624 275 221 700 372 640 043 497 085 571 289 062 5

36 893 488 147 419 103 232 65 0.000 000 000 000 000 000 027 105 054 312 137 610 850 186 320 021 748 542 785 644 531 25

73 786 976 294 838 206 464 66 0.000 000 000 000 000 000 013 552 527 156 068 805 425 093 160 010 874 271 392 822 265 625

147 573 952 589 676 412 928 67 0.000 000 000 000 000 000 006 776 263 578 034 402 712 546 580 005 437 135 696 411 132 812 5

295 147 905 179 352 825 856 68 0.000 000 000 000 000 000 003 388 131 789 017 201 356 273 290 002 718 567 848 205 566 406 25

590 295 810 358 705 651 712 69 0.000 000 000 000 000 000 001 694 065 894 508 600 678 136 645 001 359 283 924 102 783 203 125

1 180 591 620 717 411 303 424 70 0.000 000 000 000 000 000 000 847 032 947 254 300 339 068 322 500 679 641 962 051 391 601 562 5

2 361 183 241 434 822 606 848 71 0.000 000 000 000 000 000 000 423 516 473 627 150 169 534 161 250 339 820 981 025 695 800 781 25

4 722 366 482 869 645 213 696 72 0.000 000 000 000 000 000 000 211 758 236 813 575 084 767 080 625 169 910 490 512 847 900 390 625



499

Appendix B

Character Codes

The following chart presents the 7{bit ASCII code now used in these systems. Various versions of

this code dating back to 1965 were used at various points in the evolution of the DECsystem{10,

and the confusion that has caused continues to this day.

The ASCII Character Set

0 1 2 3 4 5 6 7 Special Characters

000 NUL BEL NUL Null Character

010 BS HT LF VT FF CR BEL Bell

020 BS Backspace

030 ESC HT Horizontal Tab

040 SP ! " # $ % & ' LF Line Feed

050 ( ) * + , - . / VT Vertical Tab

060 0 1 2 3 4 5 6 7 FF Form Feed

070 8 9 : ; < = > ? CR Carriage Return

100 @ A B C D E F G ESC Escape

110 H I J K L M N O SP Space

120 P Q R S T U V W DEL Delete

130 X Y Z [ \ ] ^

140 ` a b c d e f g

150 h i j k l m n o

160 p q r s t u v w

170 x y z f | g ~ DEL



500 APPENDIX B. CHARACTER CODES



501

Appendix C

Processor Compatibility

This appendix details some di�erences between the KL10 processor and the XKL

-

1 processor. These

di�erences can be discerned in user mode. The executive mode di�erences are too numerous to

include here. The chapter devoted to XKL

-

1 processor System Operations should be compared to

the section on KL10 System Operations.

� In the BLT instruction, the KL10 computes the ending value for the BLT AC and stores it

in AC before moving any data. The XKL

-

1 processor stores the BLT AC at the end of the

instruction (unless AC and E are equal).

MOVSI 0,400 ;put 400,,0 in 0

BLT 0,1 ;copy contents of 400 to 0 and contents of 401 to 1

In the KL10, the result is indeterminate: usually, a copy of 400 will be found in AC 0,

however, an interrupt may intervene, which would result in AC 0 containing 402000002 after the

instruction. In the XKL

-

1 processor, AC 0 will always contain 402000002 after the instruction.

As mentioned in the description of BLT, this construct is de�ned as being indeterminate. It

should be avoided.

This di�erence between the KL10 and the XKL

-

1 processor is shown most distinctly in the

following:

SETZ 0,

BLT 0,0

In the KL10, the result in 0 is 1,,1; in the XKL

-

1 processor it is zero. The KL10 computes the

ending value of the BLT AC and stores it in 0 before copying 0 to 0. The XKL

-

1 processor

does not store the ending value, because it recognizes that the last address stored in is the

BLT AC.



502 APPENDIX C. PROCESSOR COMPATIBILITY

� The GFSC instruction may signal extreme under
ow as over
ow and extreme over
ow as

under
ow in the KL10. In the XKL

-

1 processor, extreme under
ow is reported as under
ow,

and extreme over
ow is reported as over
ow.

� The GSNGL instruction in the KL10 stores a result in AC when the G{format operand has an

exponent in the range 1570

8

to 1577

8

. The XKL

-

1 processor does not a�ect AC in this case.

� A LDB using a one{word global byte pointer that speci�es the non{existent byte to the left of

the real bytes in a word produces di�erent results on the KL10 and the XKL

-

1 processor. In

the KL10, the e�ect is to copy the byte pointer to AC. In the XKL

-

1 processor, the result is

zero in AC.

LDB AC,[610000,,0]

In the KL10, AC will contain a copy of AC 0 (the address speci�ed in bits 6{35 of the byte

pointer). In the XKL

-

1 processor, AC will contain 0.

� In the following sequence, in which AC is not 0,

MOVSI AC,400000 ;the negative number of largest magitude

ADJBP AC,[430100,,0] ;POINT 1,0,0

the KL10 copies the byte pointer to AC. The XKL

-

1 processor performs the indicated adjust-

ment and stores the result in AC.

� In the KL10, DFMP does rounding in a manner other than that described in this manual. After

normalization, if the 1/2 LSB is one, one is added to the LSB. For results that are negative,

this varies from the described behavior in the case where 1/2 LSB is one and there are no

other bits that are 1 to the right of the 1/2 LSB.



503

Appendix D

Internal Device Bit Assignments

D.1 XKL

-

1 processor Internal Device Bit Assignments

Bus Address Word:

00

D

21 63

Slot

Number

357

In{Module Address

Page map pointer word formats (supersection pointers and section pointers are similar):

10

0

352

Available to Software

No Access

Immediate

In{Memory

10

1

22

W

43

Swr

75

0

88

X

99

D

1110

0

1512

Slot

Number

3516

In{Module Address of Page

for Mapping (Bits 7{26)

Immediate

Not

In{Memory

10

1

22

W

43

Swr

75

Non{

Zero

358

Available to Software (Backup Address)



504 APPENDIX D. INTERNAL DEVICE BIT ASSIGNMENTS

10

2

22

W

43

Swr

135

Reserved

3514

Index to SPT Location Containing

Page Address for Mapping

Shared

10

3

22

W

43

Swr

135

Page Map

Index

3514

Index to SPT Location Containing

Page Address of Another Page Map

Indirect

Data for WREBR:

00

E

P

11

L

E

82

0

99

C

S

H

1110

0

1512

Slot

Number

3516

In{Module Address of Page

for EPT (Bits 7{26)

Data for WRUBR:

80

0

99

C

S

H

1110

0

1512

Slot

Number

3516

In{Module Address of Page

for UPT (Bits 7{26)

CST entry format. State codes in the range 0{7 cause \age" traps.

80

State Code

339

Available to Software

3333

C

3434

W

3535

M

Data for WRCSTM

320

CST Mask Word

3533

1 1 1

Data for WRPUR

320

CST Process{Use Register

3533

0 0 0



D.1. XKL

-

1 PROCESSOR INTERNAL DEVICE BIT ASSIGNMENTS 505

Page{Failure or MAP double word:

00

D

63

Slot

Number

357

In{Module Address

00

U

11

V

22

W

P

33

A

44

C

55

F

66

0

1712

Failure

Code

Pager Translation Bu�er (PTB) tag and data format:

U V

Page ID

VMA bits 6{13

W

A C D

Slot

Number

In{Module Page Address

Bits 7{26

Page Tag

� -

Page Mapping Data

� -

Data for WRCTX

00

S

A

11

S

S

172

0

Current

AC

Block

18 20

Previous

Context

AC

Block

21 23

Previous Context

Section

24 35

Data for APRID

Processor Identi�cation Tripleword

E

E+1

E+2

20

Type

00

1

11

1

22

0

73

Subtype

33

0

44

0

55

0

66

0

77

1

318

Serial Number

3432

Rsvd

3535

R

d

y

00

J

0

11

J

1

22

J

2

33

J

3

174

Hardware Options

3518

Hardware

Revision

170

Microcode

Options

3518

Microcode

Version

Data for WRITM

1818

C

I

C

1919

C

I

F

2020

S

I

P

2121

S

P

I

2922

Interval Period

3533

Pri{

ority

Level



506 APPENDIX D. INTERNAL DEVICE BIT ASSIGNMENTS

Data for RDITM

350 3232

d

o

n

e

3533

Pri{

ority

Level

Data for RDTIME

High{Order Part of Count

0 35

0

0

Low{Order Part of Count

1 8 9 24

Reserved

25 35

36 43 44 59

Counter

Data for WRAPR

1818

S

P

I

1919

I

O

R

2020

E

P

C

2121

D

P

C

2222

C

P

C

2323

S

P

C

2824

Reserved

2929

I

n

t

3030

S

h

t

3131

P

w

F

3533

Pri{

ority

Level

Data for RDAPR

106

Reserved

1111

I

t

E

1212

S

t

E

1313

P

w

E

2724

Rsvd

2828

N

V

B

2929

I

n

t

3030

S

h

t

3131

P

w

F

3232

I

R

q

3533

Pri{

ority

Level

Data for RDCTYS, WRCTYS, SZCTYS, and SNCTYS

26

C

O

N

27

C

O

I

28

C

I

I

29

O

I

E

30

I

I

E

31

C

O

R

32

C

I

R

33

Priority

Level

35

Data for RDCTY or WRCTY

28

Character Received, or

Character to Transmit

35



D.1. XKL

-

1 PROCESSOR INTERNAL DEVICE BIT ASSIGNMENTS 507

Data for WRPI

Drop

Prgm

Req

On

Lvls

Clear

PI

Sys{

tem

Selected Levels

Make

Prgm

Req

On

Turn

On

Turn

O�

PI

System

Turn

O�

Turn

On

Select Levels for

Bits 22,24,25,26

1 2 3

4

5 6

7

18 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Data for RDPI

Program Requests

on Levels

1 2 3 4 5 6 7

Interrupt Holding

on Levels

1 2 3 4 5 6 7

PI

On

Levels On

1 2 3 4 5 6 7

0 11 12 13 14 15 16 17 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Data for DWRPTB

Page Translation Bu�er Tag and Data Tripleword | DWRPTB

E

Supplied

by Program

00

*

11

s

e

l

132

*

2614

PTB Line Number

3527

*

E+1

Supplied

by Program

00

U

11

V

22

w

b

t

33

w

b

d

54

*

136

Pager Tag Data

VMA 6{13

3514

*

E+2

Supplied

by Program

10

*

22

W

33

A

44

C

85

*

99

D

1110

0

1512

Slot

Number

3516

In{Module Page Address

Data for DRDPTB

Page Translation Bu�er Tag and Data Tripleword | DRDPTB

E

Supplied

by Program

00

*

11

s

e

l

132

*

2614

PTB Line Number

3527

*

E+1

Returned

to Program

00

U

11

V

22

t

p

e

33

d

p

e

54

0

136

Pager Tag Data

VMA 6{13

3514

0

E+2

Returned

to Program

10

0

22

W

33

A

44

C

55

p

b

0

66

p

b

1

77

p

b

2

88

p

b

3

99

D

1110

0

1512

Slot

Number

3516

In{Module Page Address



508 APPENDIX D. INTERNAL DEVICE BIT ASSIGNMENTS

Data for DWRCSH

Cache Tag and Data Tripleword | DWRCSH

E+2

E+1

E

Supplied

by Program

Supplied

by Program

Supplied

by Program

00

*

11

s

e

l

192

*

3220

Cache Line

3533

Word

Num

00

*

21

0

63

Slot

Number

197

In{Module Address

PMA 7{19

2120

*

2222

w

b

t

2323

w

b

d

3224

*

3333

V

3434

*

3535

M

350

Data

Data for DRDCSH

Cache Tag and Data Tripleword | DRDCSH

E+2

E+1

E

Supplied

by Program

Returned

to Program

Returned

to Program

00

*

11

s

e

l

192

*

3520

Cache Tag Address

3220

Line Number

3533

Word

20

0

63

Slot

Number

197

In{Module Address

PMA 7{19

2120

0

2222

t

p

e

2323

d

p

e

3224

0

3333

V

3434

0

3535

M

350

Data

Data for WRADB

00

U

11

I

22

R

33

W

54 356

Break Virtual Address

Data for WCTRLF

Control Flags for WCTRLF and RCTRLF

00

S

e

t

11

C

l

r

22

D

M

P

33

D

I

A

44

B

O

O

55

A

T

O

66

D

B

G

177

Reserved

1818

A

C

F

1919

T

H

W

2020

B

T

F

2121

B

T

L

2222

N

P

W

2323

K

P

A

2424

N

D

C

2525

S

A

L

2626

R

I

2727

C

D

2828

D

T

R

2929

L

E

D

3

3030

L

E

D

2

3131

C

O

K

3232

A

P

E

3333

L

E

D

1

3434

R

T

S

3535

L

E

D

0



D.1. XKL

-

1 PROCESSOR INTERNAL DEVICE BIT ASSIGNMENTS 509

Data for SYSID

Data Format for SYSID

230

System Identi�cation Number

3524

Reserved

230

Backplane Serial Number

3524

Reserved

Trap vector in UPT or EPT:

4x7

4x6

4x5

4x4

4x3

4x2

4x1

4x0 UP.BFL==:0

UP.OFL==:4

UP.OPC==:5

UP.NFL==:6

UP.NPC==:7

00

T

350

Reserved

351 350

Reserved

350

Reserved

350

Reserved

120

Old Flags

1713

0

2018

CAC

2321

PAC

3524

PCS

50

0

356

Old PC

120

New Flags

1713

0

2018

CAC

2321

PAC

3524

0

50

0

356

New PC

Page{Failure data block in UPT (soft failures):

UP.PFB==:500

UP.PFD==:501

UP.PF0==:502

UP.PF1==:503

UP.POF==:504

UP.POP==:505

UP.PNF==:506

UP.PNP==:507

Page{Failure Block at UPT 500

500

501

502

503

504

505

506

507

350

Reserved

350

Reserved

350

Page{Failure Word 0 (MAP Word 0)

350

Failed Address (MAP Word 1)

120

Old Flags

1713

0

2018

CAC

2321

PAC

3524

Previous Context Section

50

0

356

PC of Failed Reference

120

New Flags

1713

0

2018

CAC

2321

PAC

3524

0

50

0

356

New PC



510 APPENDIX D. INTERNAL DEVICE BIT ASSIGNMENTS

Page{Failure data block in EPT (hard failures):

Page{Failure Block at EPT 500

510

511

512

513

514

515

516

517

Pager Set 0

Pager Set 1

Cache Set 0

Cache Set 1

500

501

502

503

504

505

506

507

20

0

33

B

P

44

B

C

55

P

E

66

W

W

77

U

C

88

C

T

99

C

D

1010

C

W

1111

B

R

1712

0

1818

R

T

1919

T

O

2220

TT

2323

W

2424

U

2525

V

2626

S

3527

0

350

Processor Data

00

U

11

V

22

T

P

33

D

P

54

0

136

Tag

3514

0

10

0

22

W

33

A

44

C

85

PB

99

D

1110

0

1512

Slot

3516

Page Number

00

U

11

V

22

T

P

33

D

P

54

0

136

Tag

3514

0

10

0

22

W

33

A

44

C

85

PB

99

D

1110

0

1512

Slot

3516

Page Number

20

0

63

Slot

197

Tag

2120

0

2222

T

P

2323

D

P

3224

0

3333

V

3434

0

3535

M

350

Cache Data

20

0

63

Slot

197

Tag

2120

0

2222

T

P

2323

D

P

3224

0

3333

V

3434

0

3535

M

350

Cache Data

350

Page{Failure Word 0 (MAP Word 0)

350

Failed Address (MAP Word 1)

120

Old Flags

1713

0

2018

CAC

2321

PAC

3524

Previous Context Section

50

0

356

PC of Failed Reference

120

New Flags

1713

0

2018

CAC

2321

PAC

3524

0

50

0

356

New PC

D.2 KL10 Internal Device Bit Assignments

Interrupt function word:

KL10 Interrupt Function Word

20

Addr

Space

53

Funct

66

Q

107

Device

1211

0

3513

Interrupt Address



D.2. KL10 INTERNAL DEVICE BIT ASSIGNMENTS 511

Data for CONO PI, (PI=4)

Write Even

Parity

Addr Data Dir

Drop

Prgm

Req

On

Lvls

Clear

PI

Sys{

tem

Selected Levels

Make

Prgm

Req

On

Turn

On

Turn

O�

PI

System

Turn

O�

Turn

On

Select Levels for

Bits 22,24,25,26

1 2 3 4 5 6 7

18 19 20 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Data for CONI PI,

Program Requests

on Levels

1 2 3 4 5 6 7

W

E

P

A

W

E

P

D

W

E

P

R

Interrupt Holding

on Levels

1 2 3 4 5 6 7

PI

On

Levels On

1 2 3 4 5 6 7

0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Format for WRFIL data, cache strategy table:

2018

Re�ll Table

Data

3327

Re�ll Table

Address

35

Format for APRID data:

80

Microcode Options

8000

T

2

0

11

X

A

22

X

M

179

Microcode Version

179 2318

Hardware

Options

23181818

5

0

H

1919

C

c

h

2020

C

h

n

2121

X

A

H

2222

M

O

S

3524

Processor Serial Number

3524

Format for CONO PAG, (PAG=10) data:

1918

Cache

Strategy

1818

Look

1919

Load

2020 2121

T{20

Pag

2222

Enb

Pag

3523

Executive Base Address (page number)

2424 2525 2626 2727 2828 2929 3030 3131 3232 3333 3434



512 APPENDIX D. INTERNAL DEVICE BIT ASSIGNMENTS

Format for DATAO PAG, data:

1818

No

up{

date

accts

1919 2020 2121 2222 3523

User Base Address (page number)

2424 2525 2626 2727 2828 2929 3030 3131 3232 3333 3434

00

Sel

AC

blks

11

Sel

Prev

Ctx

Sect

22

Load

User

Base

Addr

33 44 55 66 86

Current

AC Block

77 88 99 119

Previous

Context

AC Block

1010 1111 1212 1313 1414 1515 1616 17171713

Previous Context

Section

Format for DATAO APR, (APR=0) data, set address break:

80

Reserved

129

Reference

Type

99

F

1010

R

1111

W

1212

U

3513

Break Addresss

Double Word count format:

Even Numbered Word Odd Numbered Word

High Order Part of Count

0 35

0

0

Low Order Part of Count

1 7

36 42

8 23

43 58

24 35

Reserved

Counter

Format for CONO MTR, (MTR=24) data:

1818

Set

up

Accts

1919 2020 2321

Accounting

2121

Exec

PI

2222

Exec

Non{

PI

2323

Turn

On

2624

Time Base

2424

Turn

O�

2525

Turn

On

2626

Clr

2727 2828 2929 3030 3131 3232 3533

Priority

Interrupt

Assignment

3434



D.2. KL10 INTERNAL DEVICE BIT ASSIGNMENTS 513

Format for CONI MTR, data:

1818 1919 2020 2321

Accounting

2121

Exec

PI

2222

Exec

Non{

PI

2323

On

2424 2525

Time

Base

On

2626 2727 2828 2929 3030 3131 3232 3533

Priority

Interrupt

Assignment

3434

Format for CONO TIM, (TIM=20) data:

1818

Clr

Intvl

Cnt

1919 2020 2121

Turn

Intvl

Cnt

On

2222

Clr

Intvl

Flag

2323 3524

Interval Period

2525 2626 2727 2828 2929 3030 3131 3232 3333 3434

Format for CONI TIM, data:

1818 1919 2020 2321

Interval

Counter

23212121

On

2222

Done

2323

Ov


*

2323 3524

Interval Period

2525 2626 2727 2828 2929 3030 3131 3232 3333 3434

00 11 22 33 44 55 176

Interval Count

77 88 99 1010 1111 1212 1313 1414 1515 1616

Format for WRPAE data:

2618

Select Interrupt Levels

26181818

0

1919

1

2020

2

2121

3

2222

4

2323

5

2424

6

2525

7

2626

None

2827

Select

Mode

28272727

Usr

2828

Ignr

2929

Evnt

Dur

2929 3030

Clr

Cnt

3030 3131 3232 3333 3434 3535

80

Select Channels

8000

0

11

1

22

2

33

3

44

4

55

5

66

6

77

7

88

None

99

Ignr

�c

99 1110

Select

Probe

11101010

Low

1111

Ignr

1612

Select Memory Conditions

1212

EBox

Wait

y

1313

Miss

y

1414

Wrt

Back

y

1515

Swp

Wrt

y

1616

Ign

1717



514 APPENDIX D. INTERNAL DEVICE BIT ASSIGNMENTS

Format for CONO APR, data:

1818 1919

Clr

All

I/O

Dev

Selected Flags

2020

Enb

2020 2121

Dis

2121 2222

Clr

2222 2323

Set

2323 3124

Select Flags for Bits 20{23

2424

SBus

Err

2525

No

Mem

2626

I/O

Page

Fail

2727

MB

Par

2828

Cch

Dir

2929

Addr

Par

3030

Pwr

Fail

3131

Swp

Done

3232 3533

Priority

Interrupt

Assignment

3434

Format for CONI APR, data:

1818 1919

Swp

Busy

2020 2121 2222 2323 2424

SBus

Err

*

2525

No

Mem

*

2626

I/O

Page

Fail

*

2727

MB

Par

*

2828

Cch

Dir

*

2929

Addr

Par

*

3030

Pwr

Fail

*

3131

Swp

Done

*

3232

Int

Req

3533

Priority

Interrupt

Assignment

3434

00 11 22 33 44 55 136

Flags Enabled to Interrupt

66

SBus

Err

77

No

Mem

88

I/O

Page

Fail

99

MB

Par

1010

Cch

Dir

1111

Addr

Par

1212

Pwr

Fail

1313

Swp

Done

1414 1515 1616 1717

Format for RDERA data:

3518

Physical Address of First Word of Transfer

1919 2020 2121 2222 2323 2424 2525 2626 2727 2828 2929 3030 3131 3232 3333 3434

10

Word

Number

11 62

Reference Identi�cation

6222

Swp

33

Chn

44

Data

55

Src

66

Wrt

87

Inde{

termi{

nate

88 139

0

1010 1111 1212 1714

High Order

Address Bits

1414 1515 1616



D.2. KL10 INTERNAL DEVICE BIT ASSIGNMENTS 515

D.2.1 TOPS{10 (KI or non{extended KL) Paging

EPT or UPT page map entry:

00

A

11

P

22

W

33

S

44

C

175

Physical Page

Address Bits 14{26

1818

A

1919

P

2020

W

2121

S

2222

C

3523

Physical Page

Address Bits 14{26

Data for Even Virtual Page Data for Odd Virtual Page

Page{failure word:

00

U

51

Failure

Type

5111

1

7611

0

22

A

33

W

44

S

55

T

66

P

77

C

88

V

3518

Virtual Address

Valid MAP data:

00

U

11

0

22

A

33

W

44

S

55

0

66

P

77

C

88

1

139

00

3514

Physical Address

Data for invalid mapping:

00

U

51

Failure

Type

11

1

66

P

77

C

88

1

139

00

3514

Physical Address

D.2.2 Extended KL Paging (TOPS{20 or TOPS{10 7.02 and later)

Page map entry:

A PMWC

Physical Page

Address Bits 14{26



516 APPENDIX D. INTERNAL DEVICE BIT ASSIGNMENTS

Page{failure word:

00

U

51

Failure

Type

5111

1

7611

0

22

A

33

W

44

S

55

T

66

P

77

C

88

V

3513

Virtual Address

Page address:

1712

Storage

Medium

2218

Reserved

3523

Page Number

CST entry:

80

State Code

349

Reserved

3535

M

In AC 0, block 6:

310

Mask

3532

1 1 1 1

CST Mask Word

In AC 1, block 6:

310

Data

3532

0 0 0 0

CST Data Word

Access pointer, leftmost 7 bits:

20

Type

33

P

44

W

66

C

Page access pointers (section access pointers are similar):



D.2. KL10 INTERNAL DEVICE BIT ASSIGNMENTS 517

20

0

353

Available to Software

No Access

Immediate

20

1

33

P

44

W

66

C

117

Reserved

1712

Storage

Medium

2218

Reserved

3523

Page Number

For Mapping

20

2

33

P

44

W

66

C

177

Reserved

3518

Index to SPT location containing

Page Address for Mapping

Shared

20

3

33

P

44

W

66

C

179

Page Map

Index

3518

Index to SPT location containing page

Address of another Page Map

Indirect

MAP instruction, true mapping:

00

U

11

0

22

1

33

M

44

W

55

0

66

P

77

C

88

1

139

00

3514

Physical Address

MAP instruction, no valid mapping:

00

U

51

Failure

Type

86 139

00

3514

Unde�ned

Page{failure trap, illegal write:

00

U

11

0

22

1

33

0

44

0

55

1

66

P

77

C

88

1



518 APPENDIX D. INTERNAL DEVICE BIT ASSIGNMENTS

Page{failure trap, no valid mapping:

00

U

11

0

22

0

33

0

44

0

55

T

66

0

77

0

88

1



519

Appendix E

TDBOOT Command Summary

The contents of this appendix have been created mechanically from the online help texts contained

within the TDBoot program. Hopefully, this approach encourages the accuracy and completeness

of both this printed form and the online help texts. Because this is automatically generated, the

typographical conventions used in this appendix vary slightly from those found elsewhere in this

manual. This appendix re
ects TDBoot Version 3.3(119)-1.

E.1 Macro{console commands

The commands that are processed by the macro{console are listed below. (Micro{console commands,

all of which start with the period (\.") character, are listed in the next section.)

The syntax \C[ONTINUE]" in a command or other keyword means that \C" is an explicit shorthand

for \CONTINUE", even though it might otherwise be ambiguous.

BOOT Load an executable �le into memory and start it. The optional argument can specify a

path to a �le on a TOPS{20 or TOPS{10 structure, a network node, a speci�c SCSI tape

device nexus, an operating system tape speci�er, or a sequential SCSI tape name.

BOOT path

The path argument can have one of the following formats:

str:<dir.sub>name.typ.gen To specify a TOPS{20 disk �le

str:name.ext[p,pn,sub] To specify a TOPS{10 disk �le

node::'remote-file' To specify a network �le (not imple-

mented yet)

# slot bus target [unit] To specify an explicit SCSI nexus

MTAnnn: To specify a SCSI tape by its sequential

nexus position

channel, controller, unit Operating system tape speci�er



520 APPENDIX E. TDBOOT COMMAND SUMMARY

If no argument is speci�ed, the default boot string is used (see the \DEFINE

BOOT" command). If no structure, node, \#", \MTAnnn:", or operating system

tape speci�er is speci�ed, a TOPS{20 structure is located whose AUTOMATIC{

STARTUP parameter has been set to this system's ID number. If none is found,

the TOPS{10 structure with the name beginning with \DSK" and the lowest letter

\x" (starting at \A") is used. If a TOPS{20 structure is used, the remaining �le

�elds are defaulted from the following �le speci�cation:

<SYSTEM>MONITR.EXE.0

or if a TOPS{10 structure is used, the remaining �le �elds are defaulted from the

following �le speci�cation:

SYSTEM.EXE[1,4]

For a network �le, specify a node name terminated by two colons. Following the

node name should be a remote �le speci�cation enclosed in either single or double

quotes (either ' or "). The interpretation of the speci�cation is left to the remote

system.

*** Network �les are not yet implemented.

For an explicit SCSI nexus, enter a pound sign (\#"), followed by the slot number

of a mass{storage controller, a SCSI bus number, a SCSI device ID, and �nally,

an optional SCSI logical unit number. This method cannot be used to boot from

a structure, since a structure could include more than one SCSI disk.

For a sequential SCSI tape, specify \MTAnnn:" where \nnn" is the sequential

number of the desired tape. The tapes are numbered starting at zero as they

are encountered while scanning the mass{storage controllers, SCSI buses, SCSI

devices, and SCSI logical units, in that order. Thus MTA2: speci�es the third

SCSI tape encountered during the scan.

For an operating system tape speci�er, specify three decimal numbers: channel,

controller, and unit separated by commas. The decimal channel number is con-

structed by counting buses. Buses 0 thru 3 on the mass{storage controller in the

lowest numbered slot number are channels 0 thru 3; buses 0 thru 3 on the mass{

storage controller in the next lowest slot number are channels 4 thru 7; the next

would be 8 thru 11, and so on. For SCSI devices with LUN zero, the controller

number can be {1 and the unit number is the decimal target number. Otherwise,

the controller number is the decimal target number, and the unit number is the

LUN. For example, if there are two mass{storage controllers in the system, the

tape with target number 8 and LUN 0 on bus 1 in slot 7 (the higher numbered

mass{storage controller slot) would be accessed by:

5,{1,8

BOOT switches

Switches should be entered after all other arguments.

/CACHE



E.1. MACRO{CONSOLE COMMANDS 521

Enable caching of loaded pages. This switch implies /CST. The cachable bit

is set in all CST entries. Do not use this option if the loaded program uses

direct I/O between system memory and the XRH or XNI unless the program

clears the appropriate cachable bits in the CST �rst. This switch must be

speci�ed with the �rst program loaded into memory.

/CST

When loading the program into memory, create a CST. This CST will be used

when the program is run (by /START now, or START later). This switch

must be speci�ed with the �rst program loaded into memory.

/CORE-DUMP

Set the data mode to Core Dump format. In this mode, each 36{bit word

corresponds to �ve 8{bit bytes. The �rst four 8{bit bytes contain bits 0{7,

8{15, 16{23, and 24{31, respectively. The last byte contains bits 32{35 right

justi�ed. This switch applies only to sequential{access devices (tapes).

/DEBUG

Set CF%DBG in control 
ags (WCTRLF/RCTRLF) when starting program.

This can be used to tell a program (such as the monitor) that it should run

in debug mode.

/DDT

Load TDBoot and its copy of DDT into memory and start DDT with symbols

set up for the loaded program. This switch must be speci�ed with the �rst

program loaded into memory.

/HIGH-DENSITY

Set the data mode to High{Density format. In this mode, two 36{bit words

correspond to nine 8{bit bytes. The �rst four 8{bit bytes contain bits 0{7,

8{15, 16{23, and 24{31 of the �rst word, respectively. The �fth byte contains

bits 32{35 of the �rst word in the high{order 4 bits and bits 0{3 of the second

word in the low{order 4 bits. The last four 8{bit bytes contain bits 4{11,

12{19, 20{27, and 28{35 of the second word, respectively. This switch applies

only to sequential{access devices (tapes).

/MERGE

Merge the speci�ed program with any programs already in memory.

/NOLONG-TRANSFERS

Do not use multi{page transfers. This switch applies only to direct{access

devices (disks). By default, TDBoot will attempt to combine transfers in-

volving sequetial pages on disk into large groups called \long transfers". This

switch forces each page to be processed as a separate transfer.

/PROTECT

Load this program into protected locations in high physical memory along

with the paging data. This is useful for keeping a program out of the way of

a program loaded into low memory.



522 APPENDIX E. TDBOOT COMMAND SUMMARY

/REWIND

Rewind the SCSI device before performing the requested operation.

/START:address

After loading the speci�ed program, start it at the address supplied. If the

address begins with a \+" is is interpreted as an entry{vector o�set.

/W

\/W" is a synonym for \/REWIND", provided for backwards compatibility.

CLEAR Clear various system variables.

CLEAR ADDRESS-BREAK

Clear any address break set for the current program.

CLEAR CACHE

Clear CPU cache. Any modi�ed CPU cache entries are written back to memory,

and all cache entries are invalidated. If the /INVALIDATE switch is present, the

CPU cache is merely invalidated without writing modi�ed entries back to memory.

CLEAR CONFIGURATION slot

Clear the con�guration for the speci�ed slot. Until it is con�gured again the slot

will be treated as if no device is present.

CLEAR MEMORY

Clear all or selected system memory modules so that they contain zeros and good

parity. The STATIC and COMBINED memory tests are performed �rst to insure

proper operation (see the TEST MEMORY command for more details on these

tests).

CLEAR MEMORY arguments

The optional decimal slot number argument (0{15) indicates a speci�c mem-

ory to clear. No argument will clear all memories in the system. Switches

may follow the slot number.

CLEAR MEMORY switches

Switches should be entered after all other arguments.

/NOCACHING

Disable use of the cache to accelerate the operation. This will force direct

memory accesses even though they are slower. Use this if you think there

are problems with the cache. Caching will automatically be disabled if

the CACHE{TEST startup parameter is disabled, or if there were initial-

ization errors. Since using the cache requires using the pager, caching is

implicitly disabled if paging is disabled (PAGER{TEST is disabled, or

/NOPAGING was speci�ed).

/NOPAGING

Disable use of paging to accelerate the operation. This will force the use



E.1. MACRO{CONSOLE COMMANDS 523

of PMOVEM even though it is slower. Use this if you think there are

problems with the pager. Paging will automatically be disabled if the

PAGER{TEST startup parameter is disabled, or if there were initializa-

tion errors. Since using the cache requires using the pager, caching is

implicitly disabled if paging is disabled.

CLEAR NVRAM

Clear entire saved system con�guration and reinitialize. Preserve the TDBoot

parameters (those accessed via Enable and Disable).

C[ONTINUE] [address]

Resume running an interrupted program. The optional argument speci�es the new PC

at which to continue. With or without the argument, the 
ags remain unchanged.

DAYTIME Print the current date and time as stored in the hardware timebase. If the hardware

timebase does not appear to be set properly, a message to that e�ect is printed instead

of the date and time.

DDT Load TDBoot into memory, mapped in the same section it normally runs at, and enter

DDT via an unsolicited breakpoint. You may type $P (escape, then \P") to proceed

TDBoot running in system memory.

DEFINE Change certain static information which is saved in nonvolatile RAM. (The LIST com-

mand displays these values.)

DEFINE AUTO-BOOT-DELAY

De�ne the auto{boot delay for this processor. The argument is the decimal delay

time in seconds (range 0{255). This is how long this processor waits prior to

initiating an automatic boot after power{on. This value is saved in nonvolatile

RAM.

DEFINE AUXILIARY-PORT

De�ne the state of the auxiliary terminal port. The state is saved in nonvolatile

RAM and is used to set up the auxiliary port during initialization.

DEFINE AUXILIARY-PORT OFF

Turn o� the auxiliary port.

DEFINE AUXILIARY-PORT ON

Turn on the auxiliary port.

DEFINE BOOT-DEFAULTS arguments

De�ne the default BOOT command arguments to be the remainder of the com-

mand line. See the BOOT command for the usage of this string. This value is

saved in nonvolatile RAM.

DEFINE CONFIGURATION fslot | *g

Clear the saved system con�guration for the speci�ed slot, poll that slot, and

save the new con�guration. With \*" as the argument, clear, poll, and save

the con�guration for all system slots. Unlike other commands, the \*" is not



524 APPENDIX E. TDBOOT COMMAND SUMMARY

the default and must be explicit. The new con�guration information is saved in

nonvolatile RAM.

DEFINE DAYLIGHT-SAVINGS

De�ne the default daylight savings handling. When the processor is intialized, this

value is copied into dynamic storage (same as the \SET DAYLIGHT{SAVINGS"

command). This value is saved in nonvolatile RAM.

DEFINE DAYLIGHT-SAVINGS ALWAYS

Always process date and time with daylight savings time in e�ect. This may

be useful if the AUTOMATIC setting is not appropriate for your site.

DEFINE DAYLIGHT-SAVINGS AUTOMATIC

Automatically determine when to process date and time with daylight savings

time in e�ect. The determination is based on the rules in e�ect in most of

the USA at the time of this writing. If this does not seem to be appropriate,

consider using the ALWAYS or NEVER settings.

DEFINE DAYLIGHT-SAVINGS NEVER

Never process date and time with daylight savings time in e�ect. This may

be useful if the AUTOMATIC setting is not appropriate for your site.

DEFINE DUMP-DEFAULTS arguments

De�ne the default DUMP command arguments to be the remainder of the com-

mand line. See the DUMP command for the usage of this string. This value is

saved in nonvolatile RAM.

DEFINE IP-ADDRESS a.b.c.d

De�ne the Internet Protocol Address for a network port. The �rst argument is

the decimal slot number (1{15) of a network controller. The second argument is

the port number (0{3) of a network connection. The optional third argument is

an IP address in dot format (a.b.c.d), where each letter is replaced by a decimal

number (0{255). If the third argument is no supplied, the IP address is cleared.

These settings are not currently used, but are reserved for diagnostics.

DEFINE SCSI-ID slot bus fid | OFFLINEg

De�ne the SCSI target number for the mass{storage controller connected to a SCSI

bus. The arguments specify the mass{storage controller, SCSI bus, and what ID

to use (or to set the bus o� line). These values are saved in nonvolatile RAM.

The \slot" is the decimal slot number (1{15) of a mass{storage controller. The

\bus" is the SCSI bus number (0{3). The \id" is the decimal SCSI target num-

ber (0{15) which the mass{storage controller should use to identify itself on the

speci�ed bus. If you expect to communicate with any 8{bit SCSI devices, do not

use SCSI target numbers above 7, as these devices which don't implement target

numbers greater than 7. The OFFLINE keyword will set the speci�ed bus o� line.

That is, it will not be used for any purpose until a valid SCSI target number has

again been set up for it.

DEFINE SLOT slot fOFF-LINE | ON-LINEg



E.1. MACRO{CONSOLE COMMANDS 525

De�ne the speci�ed slot as being either On{line or O�{line.

A slot that has been set o�{line will not be scanned when looking for devices. The

device in the slot (if any) will not be tested and it will not be used.

Setting a slot on{line allows it to be scanned. If a device is in the slot the device

is testable and usable.

DEFINE SYNC-DELAY seconds

De�ne the syncrhonization delay for this processor. The argument is the deci-

mal delay time in seconds (range 0{255). This value is used for multi{processor

synchronization. This value is saved in nonvolatile RAM.

DEFINE TIMEZONE hh:mm

De�ne the local timezone as the speci�ed number of decimal hours and minutes

di�erent from Greenwich. The value may be between {12:00 and 12:00 inclusive.

Timezones west of Greenwich are negative, while timezones east of Greenwich are

positive. The values {12:00 and 12:00 are the same time, but on opposite sides

of the international date line, and thus di�er by 1 day. For example, the United

States eastern timezone would be {5:00 (standard time is 5 hours and 0 minutes

earlier than Greenwich). When the processor is intialized, this value is copied into

dynamic storage (same as the \SET TIMEZONE" command). Users should note

that the sign of this value di�ers from the equivalent one used in TOPS{20 (in

the 7{SETSPD program when read from the 7{CONFIG.CMD �le). This value is

saved in nonvolatile RAM.

D[EPOSIT]

Deposit into various system entities.

D[EPOSIT] A-MEMORY address

Store data in the microcode private memory (MemA). Supply an address (0{17777)

followed by a 36{bit data word.

D[EPOSIT] CACHE a1 a2 a3

Store data in the CPU cache. See the description of the DWRCSH instruction for

the format of the three arguments.

D[EPOSIT] DEVICE-REGISTER slot address data

Perform a device{control cycle (also known as a \write to I/O space") to write

data into a device register. The �rst argument is the slot number of the desired

device. The second argument is the in{module address of the register. The third

argument is the data to be written.

D[EPOSIT] FLAGS-AND-CONTEXT data

Store new values for the processor 
ags, and current{context and previous{context

context AC blocks, and previous{context section. The only argument contains

the processor 
ags in bits 0{17, the current AC block number in bits 18{20, the

previous{context AC block number in bits 21{23, and the previous{context section

in bits 24{35. Care should be used when manipulating the processor 
ags and

context, because this may adversely a�ect program operation.



526 APPENDIX E. TDBOOT COMMAND SUMMARY

D[EPOSIT] MEMORY slot address data

Using a physical memory address, write data into system memory. The �rst ar-

gument is the slot number of the desired device. The second argument is the

in{module memory address. The third argument is the data to be written.

D[EPOSIT] NVRAM address data

Store data in the nonvolatile RAM. Supply an address (0{17777) followed by an

8{bit data byte.

D[EPOSIT] PC address

Set the current program counter. The argument is the address at which to continue

program execution. Care should be used when manipulating the program counter,

because this may adversely a�ect program operation.

D[EPOSIT] REGISTER n data

Write data into the current{context registers. The �rst argument is an octal

register number (0{17). The second argument is the data to be written to the

register. Following the second argument, you may type /BLOCK:n to specify the

AC block number to examine. The default is the current AC block as speci�ed in

the 
ags and context word.

/BLOCK:n

Specify the AC block (0{7) to deposit in. The default is the current AC block

as speci�ed in the 
ags and context word.

D[EPOSIT] SYSTEM-VIRTUAL address data

Using a system virtual address, write data into system memory. The �rst argument

is the system virtual address. The second argument is the data to be written. The

/DETAIL switch prints the details of the virtual address resolution.

/DETAIL

Include a detailed printout of the virtual address resolution process while

preforming the requested operation. This is useful for determining the source

of a page fault or other error when referencing the speci�ed virtual address.

D[EPOSIT] TRANSLATION-BUFFER a1 a2 a3

Store data in the CPU page{translation bu�er (also known as the pager). See the

description of the DWRPTB instruction for the format of the three arguments.

Since the microcode clears the pager upon exit from the macro{console, this com-

mand is of limited utility. It can be used more e�ectively from a copy of TDBoot

running in system memory.

D[EPOSIT] USER-VIRTUAL address data

Using a user virtual address, write data into system memory. The �rst argument

is the user virtual address. The second argument is the data to be written. The

/DETAIL switch prints the details of the virtual address resolution.

/DETAIL

Include a detailed printout of the virtual address resolution process while



E.1. MACRO{CONSOLE COMMANDS 527

preforming the requested operation. This is useful for determining the source

of a page fault or other error when referencing the speci�ed virtual address.

DIRECTORY [path]

List all selected �les in a TOPS{20 or TOPS{10 directory. The optional argument can

specify a path to the directory, as well as which �les to list. There are also switches

available to select what information will be printed for each �le. This command is valid

only for disk devices. The path for a TOPS{20 disk has the following format:

str:<dir.sub>name.typ.gen

Any unspeci�ed �le �elds are default from the following �le speci�cation:

<SYSTEM>MONITR.EXE.*

The path for a TOPS{10 structure has the following format:

str:name.ext[p,pn,sub]

Any unspeci�ed �le �elds are default from the following �le speci�cation:

SYSTEM.EXE[1,4]

/CREATION

Print date and time of creation for each �le.

/LENGTH

Print length for each �le. For TOPS{20, this is the number of bytes and the byte

size; for TOPS{10, this is the number of words.

/L[ONG]

This is a shorthand for /SIZE, /LENGTH, and /WRITE.

/READ

Print date and time of last read for each �le.

/SIZE

Print size for each �le. For TOPS{20, the size is in pages; for TOPS{10, the size

is in blocks.

/WRITE

Print date and time of last write for each �le.

DISABLE parameter-list

Disable various system startup parameters. Provide a list of parameter names separated

by commas.

The parameter names and their meanings are listed with the ENABLE command.



528 APPENDIX E. TDBOOT COMMAND SUMMARY

DUMP Copy the entire physical system memory image (and some of the processor state) to the

�le speci�ed by the optional path argument. The optional argument can specify a path

to a �le on a TOPS{20 or TOPS{10 structure, a network node, a speci�c SCSI tape

device nexus, a sequential SCSI tape name, or an operating system tape speci�er. The

default \path" is speci�ed by the \DEFINE DUMP" command. If the target device is a

disk structure, the given �le must exist and it must be be capacious enough to hold all

of system memory.

DUMP path

The syntax of the path argument to the DUMP command is the same as for the

BOOT command. The default DUMP string is speci�ed via the DEFINE DUMP

command.

If a structure is used, the remaining �le �elds are defaulted from the following �le

speci�cation for TOPS{20:

<SYSTEM>DUMP.EXE.0

or the following �le speci�cation for TOPS{10:

CRASH.EXE[1,4]

DUMP switches

Switches should be entered after all other arguments.

/ALL-MEMORY

Dump or save all of physical memory, if possible.

/CORE-DUMP

Set the data mode to Core Dump format. In this mode, each 36{bit word

corresponds to �ve 8{bit bytes. The �rst four 8{bit bytes contain bits 0{7,

8{15, 16{23, and 24{31, respectively. The last byte contains bits 32{35 right

justi�ed. This switch applies only to sequential{access devices (tapes).

/HIGH-DENSITY

Set the data mode to High{Density format. In this mode, two 36{bit words

correspond to nine 8{bit bytes. The �rst four 8{bit bytes contain bits 0{7,

8{15, 16{23, and 24{31 of the �rst word, respectively. The �fth byte contains

bits 32{35 of the �rst word in the high{order 4 bits and bits 0{3 of the second

word in the low{order 4 bits. The last four 8{bit bytes contain bits 4{11,

12{19, 20{27, and 28{35 of the second word, respectively. This switch applies

only to sequential{access devices (tapes).

/MAPPED-MEMORY

Dump or save only exec mapped memory.

/NOLONG-TRANSFERS

Do not use multi{page transfers. This switch applies only to direct{access

devices (disks). By default, TDBoot will attempt to combine transfers in-



E.1. MACRO{CONSOLE COMMANDS 529

volving sequetial pages on disk into large groups called \long transfers". This

switch forces each page to be processed as a separate transfer.

/REWIND

Rewind the SCSI device before performing the requested operation.

/W

\/W" is a synonym for \/REWIND", provided for backwards compatibility.

ENABLE Enable various system startup parameters. Provide a list of parameter names separated

by commas.

ENABLE AUTO-BOOT

The AUTO{BOOT startup parameter. If this paramenter is enabled at startup,

after a short delay (see DEFINE AUTO{BOOT{DELAY), the system will attempt

to boot automatically using the defaults set up via the DEFINE BOOT command.

ENABLE BUS-POLL

The BUS{POLL startup parameter. If this parameter is enabled at startup, the

system will poll the bus to determine the hardware con�guration.

ENABLE CACHE-TEST

The CACHE{TEST startup parameter. If this parameter is enabled at startup,

the system will perform a diagnostic check of the cache. This parameter must be

enabled to automatically utilize the cache during some memory tests (see TEST

MEMORY).

ENABLE CLEAR-MEMORY

The CLEAR{MEMORY startup parameter. If this parameter is enabled at startup,

the system will test memory, which leaves all of memory with good parity. If

TEST{MEMORY is disabled and CLEAR{MEMORY is enabled, all memory

is cleared at startup. This prevents any latent parity errors from a�ecting sys-

tem behavior. Prior to clearing memory, the static memory tests are performed

(see TEST MEMORY/STATIC). If the PAGER{TEST and CACHE{TEST pa-

rameters are enabled, then the combined tests are performed (see TEST MEM-

ORY/COMBINED).

ENABLE CONFIGURE-MEMORY

The CONFIGURE{MEMORY startup parameter. If this paremter is enabled

at startup, the system will con�gure all available memory. Prior to con�guring

memory, each memory may also be tested (see TEST{MEMORY) or cleared (see

CLEAR{MEMORY).

ENABLE MASS-STORAGE-CONFIGURATION

The MASS{STORAGE{CONFIGURATION startup parameter. If this parameter

is enabled at startup, the system will report the mass{storage controller device

con�guration and start the disks.

ENABLE PAGER-TEST



530 APPENDIX E. TDBOOT COMMAND SUMMARY

The PAGER{TEST startup parameter. If this parameter is enabled at startup,

the system will perform a diagnostic check of the pager. This parameter must be

enabled to automatically utilize the pager during some memory tests (see TEST

MEMORY), and when clearing memory (see CLEAR MEMORY). Since the pager

is needed to use the cache during the TEST MEMORY and CLEAR MEMORY

commands, the use of the cache is implicitly disabled when this parameter is

disabled.

ENABLE TEST-MEMORY

The TEST{MEMORY startup parameter. If this parameter is enabled at startup,

the system will perform a diagnostic check of the system memory. Prior to other

testing, the static memory tests are performed (see TEST MEMORY/STATIC).

If the PAGER{TEST and CACHE{TEST parameters are enabled, then the com-

bined tests are performed (see TEST MEMORY/COMBINED).

ENABLE *

This is a simple abbreviation used to ENABLE or DISABLE all startup parame-

ters.

E[XAMINE]

Examine various system entities.

E[XAMINE] A-MEMORY address

Print the contents of the speci�ed location in the microcode private memory

(MemA). The argument is the octal address (0{17777).

E[XAMINE] CACHE set-and-line-index

Print the contents of the speci�ed CPU cache line. See the description of the

DRDCSH instruction for the format of the argument.

E[XAMINE] DEVICE-REGISTER slot address

Perform a device status request cycle (also known as a \read from I/O space") to

read data from a device register. The next argument is the in{module address of

the register.

E[XAMINE] FLAGS-AND-CONTEXT

Print current program 
ags and context information.

E[XAMINE] INTERRUPT

Print current interrupt system status.

E[XAMINE] MASS-STORAGE slot

Print the contents of a location in one of the memory spaces in the speci�ed mass{

storage controller. The �rst argument is the slot number of the desired device.

The second argument is a register number (0{17), or a keyword describing the

name of the space to be examined.

E[XAMINE] MASS-STORAGE slot register

Print the result of reading the speci�ed mass{storage controller register. This



E.1. MACRO{CONSOLE COMMANDS 531

argument is the octal number of the desired register. The optional next

argument speci�es an octal address to be supplied in the register address bits

as appropriate for the register.

E[XAMINE] MASS-STORAGE slot ALU

Print the contents of a location in the ALU of a mass{storage controller. The

next argument is the location to read in the mass{storage controller ALU.

E[XAMINE] MASS-STORAGE slot COMMUNICATIONS-REGION

Print the contents of the mass{storage controller communications region reg-

ister. The optional argument speci�es an o�set (0{7) in the communications

region whose contents is printed as well.

E[XAMINE] MASS-STORAGE slot DRAM

Print the contents of the speci�ed DRAM address of the speci�ed mass{

storage controller. The next argument is the address of the entry to read in

the mass{storage controller DRAM.

E[XAMINE] MASS-STORAGE slot ERROR-ADDRESS

Print the contents of the error{address register of the speci�ed mass{storage

controller.

E[XAMINE] MASS-STORAGE slot HASH-TABLE

Print the contents of the speci�ed hash{table entry (two words) in the DRAM

of the speci�ed mass{storage controller. The next argument is the hash{table

entry to read in the speci�ed mass{storage controller DRAM. The actual

words read from DRAM are the address times two and the address times two

plus one.

E[XAMINE] MASS-STORAGE slot MICROCODE-VERSION

Print the contents of the microcode version register of the speci�ed mass{

storage controller.

E[XAMINE] MASS-STORAGE slot SERIAL-NUMBER

Print the contents of the serial number register of the speci�ed mass{storage

controller.

E[XAMINE] MASS-STORAGE slot SRAM

Print the contents of a location in the SRAM of the speci�ed mass{storage

controller. The next argument is the location to read in the SRAM.

E[XAMINE] MASS-STORAGE slot STATUS

Print the contents of the status register of the speci�ed mass{storage con-

troller.

E[XAMINE] M[EMORY] slot address

Print the contents of the speci�ed physical memory location. The next argument

is the in{module memory address.



532 APPENDIX E. TDBOOT COMMAND SUMMARY

E[XAMINE] NETWORK slot

Print the interpreted contents of a register in the speci�ed Network Contoller. The

�rst argument is the slot number of the desired network controller. The second

argument is the name of the register to be examined.

E[XAMINE] NETWORK slot BUS-STATUS

Prints the contents of the bus status register of the speci�ed network con-

troller.

E[XAMINE] NETWORK slot STATUS

Print the contents of the status register of the speci�ed network controller.

E[XAMINE] NEXT [n]

Print the logically next value of the preceding EXAMINE or DEPOSIT command,

whichever was most recent. The optional argument is a decimal repeat count. This

is the default if no arguments are speci�ed after the EXAMINE command.

E[XAMINE] NVRAM address

Print the contents of the speci�ed byte in the nonvolatile RAM. The argument is

an octal address (0{17777).

E[XAMINE] PC

Print current program PC.

E[XAMINE] PREVIOUS [n]

Print the logically previous value from the most recent EXAMINE or DEPOSIT

command. The optional argument is a decimal repeat count.

E[XAMINE] REGISTER fn | *g

Examine the speci�ed register (octal argument) or all registers (\*" argument).

Following the argument, you may type /BLOCK:n to specify the AC block number

to examine. The default is the current AC block as speci�ed in the 
ags and 
ags

and context word.

/BLOCK:n

Specify the AC block (0{7) to examine. The default is the current AC block

as speci�ed in the 
ags and context word.

E[XAMINE] SYSTEM-VIRTUAL address

Print the contents of the speci�ed location in system memory. The argument is

a system virtual address. The /DETAIL switch prints the details of the virtual

address resolution.

/DETAIL

Include a detailed printout of the virtual address resolution process while

preforming the requested operation. This is useful for determining the source

of a page fault or other error when referencing the speci�ed virtual address.

E[XAMINE] TRANSLATION-BUFFER set-and-line-index



E.1. MACRO{CONSOLE COMMANDS 533

Print the contents of the speci�ed CPU page{translation bu�er entry. See the

description of the DRDPTB instruction for the format of the argument. Since the

microcode clears the pager upon exit from the macro{console, this command will

�nd only valid data in the pager on the �rst macro{console command following

the placing of that data in the pager. It can be used more e�ectively from a copy

of TDBoot running in system memory.

E[XAMINE] USER-VIRTUAL address

Print the contents of the speci�ed location in system memory. The argument is a

user virtual address. The /DETAIL switch prints the details of the virtual address

resolution.

/DETAIL

Include a detailed printout of the virtual address resolution process while

preforming the requested operation. This is useful for determining the source

of a page fault or other error when referencing the speci�ed virtual address.

E[XAMINE] *

Examine the macro PC, 
ags, context, PI, and current register block.

EXIT Resume running an interrupted program. If debugging TDBoot, this commandwill HALT

the program.

FORMAT Format a disk for the operating system.

This command performs the SCSI Mode Select and Format Unit operations needed to set

the disk for 512{word (2304 byte, long) physical records or 128{word (576 byte, short)

physical records. After \hard" formatting the disk, this command goes on to perform

other bookkeeping operations (\soft formatting") that are needed to make the disk ready

for use by the operating system.

Restrictions: this command takes a long time. Disk types known to the program can be

formatted; unknown disks may be formatted if they comply with any version of \standard

behavior".

FORMAT arguments

The arguments specify which disk to format as:

slot bus target{id [unit]

Where \slot" is the decimal slot number (1{15) of the mass{storage controller,

\bus" is the SCSI bus number (0{3), \id" is the decimal SCSI target number (0{

15) of the desired disk drive, and \unit" is the optional SCSI logical unit number

(0{7) within the target.

FORMAT switches

Switches should be entered after all other arguments.

/FORCE-SIMPLE

Soft format using only a simple 1 or 2 entry zone table. Normally, TDBoot

will determine the proper number and sizes or zones for the disk. If you are

told that there are too many zones, you might consider performing the soft



534 APPENDIX E. TDBOOT COMMAND SUMMARY

format again using this switch.

Note: The zone table generated using this switch will most likely not match

the actual geometry of the disk. This may cause operating systems or other

software to incorrectly optimize transfers to this device. However, the errors

should be relatively small.

/HARD

Perform a hard format followed by a soft format.

/LONG

Format using only long (2304 byte/512 word) blocks.

/SHORT

Format using only short (576 byte/128 word) blocks.

/SOFT

Perform only a soft format. The unit must already have an acceptable hard

format.

/TYPE:keyword

Select a speci�c format algorithm. The following algorithms are available:

GENERIC Default format algorithm

HP Algorithm applied to Hewlett{Packard drives

SEAGATE Algorithm applied to Seagate drives

GET [path]

GET is an alternate name for the LOAD command.

H[ALT] Stop the currently running program. Certain commands are allowed only when the

program is halted. The program may be resumed using the CONTINUE command.

HELP The HELP command with no argument can be used to get a list of commands and

brief descriptions. To get a more detailed description of a particular command, give the

command name as the argument to the HELP command (e.g., \HELP HALT"). This

may be extended for commands with multiple keywords (e.g., \HELP EXAMINE PC").

Commands with switches will provide help information by typing the command name

followed by \switches" and one of the switches (e.g., \HELP BOOT switches /START:").

INTERRUPT

Set the interrupt request 
ag (AP%INT) in the processor 
ags accessible by RDAPR and

continue the program. A program can use this to receive interrupt requests by enabling

an interrupt when this bit is set or by sampling the bit periodically.

LIST Display various static system parameters stored in nonvolatile RAM. (These are the

parameters that are changed by the DEFINE, ENABLE, and DISABLE commands.)

LIST AUTO-BOOT-DELAY

Print the auto{boot delay in seconds for this processor stored in nonvolatile RAM.



E.1. MACRO{CONSOLE COMMANDS 535

LIST AUXILIARY-PORT

Print the state of the auxiliary terminal port stored in nonvolatile RAM.

LIST BOOT-DEFAULTS

Print the default BOOT command argument stored in nonvolatile RAM.

LIST CONFIGURATION

Print the static bus con�guration stored in nonvolatile RAM.

LIST DAYLIGHT-SAVINGS

Print the static DAYLIGHT{SAVINGS setting stored in nonvolatile RAM.

LIST DUMP-DEFAULTS

Print the default DUMP command argument stored in nonvolatile RAM.

LIST IP-ADDRESSES

Print the Internet Protocol Address for each network connection in the system

stored in nonvolatile RAM.

LIST PARAMETERS

Print the saved parameter settings stored in nonvolatile RAM.

LIST SCSI-IDS

Print the static SCSI target ID number for each SCSI bus on each mass{storage

controller in the system stored in nonvolatile RAM.

LIST SYNC-DELAY

Print the synchronization delay in seconds for this processor stored in nonvolatile

RAM.

LIST TIMEZONE

Print the static local TIMEZONE value stored in nonvolatile RAM.

LIST *

Print the state of all information stored in nonvolatile RAM. This is the default if

no arguments are speci�ed after the LIST command.

L[OAD] Load an executable �le into memory, but do not start it. The optional argument can

specify a path to a �le on a TOPS{20 or TOPS{10 structure, a network node, a speci�c

SCSI tape device nexus, a sequential SCSI tape name, or an operating system tape

speci�er. GET is an alternate name for LOAD.

L[OAD] path

The path argument for LOAD has the same format as described for the path

argument to the BOOT command.

L[OAD] switches

The switches for LOAD are the same as those described in the BOOT command.

However, the /DEBUG and /START switches do not apply to the LOAD com-



536 APPENDIX E. TDBOOT COMMAND SUMMARY

mand.

REINITIALIZE

Clear the dynamic con�guration data and rescan the system con�guration (if enabled).

This will also cause the cache and pager tests to be run, as well as testing or clearing

memory, if enabled.

RESET Place the speci�ed components and/or devices in their initial state. A slot number or a

keyword may be entered.

RESET slot

The \slot" argument is a decimal slot number (0{15) indicating the single slot to

reset. Slot 0 refers to this CPU.

/HARD

Reset the speci�ed device(s) in a hard manner. A hard reset may not wait

for data transfers to be completed, and thus could discard data destined for

the disk or network.

/SHUTDOWN

Shut down the speci�ed mass{storage controllers. The mass{storage con-

trollers will attempt to complete all outstanding requests and 
ush their

caches back to disk.

RESET BUS

Reset all bus devices except this CPU.

/HARD

Reset the speci�ed device(s) in a hard manner. A hard reset may not wait

for data transfers to be completed, and thus could discard data destined for

the disk or network.

/SHUTDOWN

Shut down the speci�ed mass{storage controllers. The mass{storage con-

trollers will attempt to complete all outstanding requests and 
ush their

caches back to disk.

RESET CPU

Reset only CPUs.

RESET CPU arguments

The optional decimal slot number argument (0{15) indicates a speci�c CPU

to be reset (0 is a synonym for this CPU). A missing argument or \*" will

reset all CPUs in the system.

RESET CPU switches

Switches should be entered after all other arguments.

/HARD

Reset the speci�ed device(s) in a hard manner. A hard reset may not wait

for data transfers to be completed, and thus could discard data destined



E.1. MACRO{CONSOLE COMMANDS 537

for the disk or network.

RESET MASS-STORAGE

Reset only mass{storage controllers.

RESET MASS-STORAGE arguments

The following arguments may be used to reset a subset of the mass{storage

devices:

slot bus target{id

The \slot" argument speci�es a mass{storage controller, the \bus" argument

speci�es a SCSI bus, and the \id" argument speci�es a SCSI target id number.

A missing argument or \*" will select all slots, buses, or ids corresponding to

the argument.

RESET MASS-STORAGE switches

Switches should be entered after all other arguments.

/HARD

Reset the speci�ed device(s) in a hard manner. A hard reset may not wait

for data transfers to be completed, and thus could discard data destined

for the disk or network.

/SHUTDOWN

Shut down the speci�ed mass{storage controllers. The mass{storage con-

trollers will attempt to complete all outstanding requests and 
ush their

caches back to disk.

RESET MEMORY

Reset only memories.

RESET MEMORY arguments

The optional decimal slot number argument (0{15) indicates a speci�c mem-

ory to be reset. A missing argument or \*" will reset all memories in the

system.

RESET MEMORY switches

Switches should be entered after all other arguments.

/HARD

Reset the speci�ed device(s) in a hard manner. A hard reset may not wait

for data transfers to be completed, and thus could discard data destined

for the disk or network.

RESET NETWORK

Reset only network controllers.

RESET NETWORK arguments



538 APPENDIX E. TDBOOT COMMAND SUMMARY

The following arguments may be used to reset a subset of the network ports:

slot port

The \slot" argument speci�es a network controller, and the \port" argument

speci�es a network port. A missing argument or \*" will select all slots or

ports corresponding to the argument.

RESET NETWORK switches

Switches should be entered after all other arguments.

/HARD

Reset the speci�ed device(s) in a hard manner. A hard reset may not wait

for data transfers to be completed, and thus could discard data destined

for the disk or network.

RESET *

Reset all system devices, including this CPU. This is the default if no arguments

are speci�ed after the RESET command.

/HARD

Reset the speci�ed device(s) in a hard manner. A hard reset may not wait

for data transfers to be completed, and thus could discard data destined for

the disk or network.

/SHUTDOWN

Shut down the speci�ed mass{storage controllers. The mass{storage con-

trollers will attempt to complete all outstanding requests and 
ush their

caches back to disk.

REWIND scsi-device-specifier

Rewind the speci�ed SCSI device (usually a tape). The device is speci�ed using one of

the following formats:

# slot bus target [unit] To specify an explicit SCSI nexus

MTAnnn: To specify a SCSI tape by its sequential

nexus position

channel, controller, unit Operating system tape speci�er

R[UN] [path]

RUN is an alternate name for the BOOT command.

SAVE Save the current program as an executable image to the �le speci�ed by the optional

path argument. The optional argument can specify a path to a �le on a TOPS{20 or

TOPS{10 structure, a network node, a speci�c SCSI tape device nexus, a sequential SCSI

tape name, or an operating system tape speci�er. There is no default path. If the target

device is a disk structure, the given �le must exist and it must be be capacious enough

to hold the program. *** Not implemented yet ***



E.1. MACRO{CONSOLE COMMANDS 539

SAVE path

The syntax of the path argument to the SAVE command is the same as for the

BOOT command. There is no default path string for the SAVE command; a path

must be supplied.

If a structure is used, the remaining �le �elds are defaulted (note: no default �le-

name). For TOPS{20 and TOPS{10, the default �le type (extension) is \.EXE".

For TOPS{20, the default generation is 0.

SAVE switches

The switches for the SAVE command are the same as those described for the

DUMP command.

SCAN Check various memory elements for data patterns and/or errors.

SCAN CACHE

Check the CPU cache for data patterns and/or errors.

SCAN CACHE DATA value [mask]

Check the CPU cache for data patterns. The �rst argument is the search data

to be matched against any cache data entry. The optional second argument

is the mask to be anded with the cache data entry before comparing it to the

search data. If the second argument is not speci�ed, it defaults to all ones.

SCAN CACHE ERRORS

Check the CPU cache memory for errors. Each cache line, set, and word is

examined and any cache data or tag parity, or both cache sets match errors

are printed. This is the default if no arguments are speci�ed after the SCAN

CACHE command.

/REPAIR

When an error is encountered during the scan, an attempt is made to

repair it. In the case or a parity error, this means rewriting the tag or

data with good parity. In the case of both sets matched, one of the sets

will be cleared if it has not been modi�ed.

SCAN CACHE TAG value [mask]

Check the CPU cache memory for tag patterns. The �rst argument is the

search tag to be matched against any cache tag entry. The optional second

argument is the mask to be anded with the cache tag entry before comparing

it to the search tag. See the description of the DRDCSH instruction E+1

word for the format of the tag. If the second argument is not speci�ed, it

defaults to all ones.

SCAN MEMORY

Check system memory for data patterns and/or errors.

SCAN MEMORY DATA value [mask]

Check system memory for data patterns. The �rst argument is the search data

to be matched against any pager data entry. The optional second argument

is the mask to be anded with the pager data entry before comparing it to the



540 APPENDIX E. TDBOOT COMMAND SUMMARY

search data. If the second argument is not speci�ed, it defaults to all ones.

Only con�gured memories are scanned.

SCAN MEMORY ERRORS

Check system memory for parity errors. All memory modules which are

con�gured are read and any parity errors are printed. This is the default if

no arguments are speci�ed after the SCAN MEMORY command.

/REPAIR

When an error is encountered during the scan, an attempt is made to

repair it. In the case or a parity error, this means rewriting the data with

good parity.

SCAN PAGER

Check the CPU pager for data patterns and/or errors.

SCAN PAGER DATA value [mask]

Check the CPU pager for data patterns. The �rst argument is the search data

to be matched against any pager data entry. The optional second argument

is the mask to be anded with the pager data entry before comparing it to the

search data. If the second argument is not speci�ed, it defaults to all ones.

SCAN PAGER ERRORS

Check the CPU pager for errors. Each pager line and set is examined and

any pager data or tag parity, or both pager sets match errors are printed.

This is the default if not arguments are speci�ed after the SCAN PAGER

command.

/REPAIR

When an error is encountered during the scan, an attempt is made to

repair it. In the case or a parity error, this means rewriting the tag or

data with good parity. In the case of both sets matched, one of the sets

will be cleared.

SCAN PAGER TAG value [mask]

Check the CPU pager for tag patterns. The �rst argument is the search tag

to be matched against any pager tag entry. The optinal second argument is

the mask to be anded with the pager tag entry before comparing it to the

search tag. If the second argument is not speci�ed, it defaults to all ones. See

the description of the DRDPTB instruction E+1 word for the format of the

tag.

SET Change certain dynamic information saved in MemA (in a manner less permanent than

the DEFINE command). (See also the SHOW command.)

SET AUXILIARY-PORT fON | OFFg

Set the state of the auxiliary terminal port. The new state is applied immedi-

ately to the auxiliary port. The keywords and their meanings are listed with the

DEFINE AUXILIARY{PORT command.



E.1. MACRO{CONSOLE COMMANDS 541

SET ADDRESS-BREAK

Set an address break after loading a program into memory. If you set an address

break and then load the �rst program, the implicit program reset that is done will

clear the break.

SET ADDRESS-BREAK arguments

The single argument is a 30{bit virtual address on which to break.

SET ADDRESS-BREAK switches

Switches should be entered after all other arguments.

/EXECUTE

Select an address break when an instruction is fetched from the speci�ed

address.

/READ

Select an address break when data is read from the speci�ed address.

/USER

Select an address break when the speci�ed address is accessed in user

mode.

/WRITE

Select an address break when data is written to the speci�ed address.

SET CONFIGURATION

Explicitly con�gure various parts of the machine.

SET CONFIGURATION slot

The \slot" argument is a decimal slot number (0{15) indicating the single slot

to con�gure. That slot will be polled and the results saved in the dynamic

con�guration database for that slot. Any discrepancies between the saved

con�guration and the current con�guration for that slot will be printed.

SET CONFIGURATION BUS

Explicitly poll each slot in the machine and initialize the dynamic con�gura-

tion. It will also print any discrepancies between the saved con�guration and

the current con�guration for each slot.

SET CONFIGURATION MASS-STORAGE

Set up the dynamic con�guration of all mass{storage controllers in the system.

Start all disks and report device con�guration.

SET CONFIGURATION MEMORY

Con�gure memory. Each memory is tested for proper operation and con�g-

ured for use.

/CLEAR

Enable clearing memory after con�guration and testing. The default set-



542 APPENDIX E. TDBOOT COMMAND SUMMARY

ting for this switch is the same as the previous \CONFIGUREMEMORY"

command. At powerup, it is initialized to the same setting as that of the

CLEAR{MEMORY startup parameter.

/FORCE

Reconsider any memory units that have been put o� line. Such a unit will

have to pass some tests before it is accepted. This setting is remembered

as part of the dynamic con�guration and will be used until the processor

is reset or TDBoot is REINITIALIZEd or the /NOFORCE switch is used.

/FORWARD

Con�gure the memory in the forward direction; that is, with the lowest

physical slot numbers having the lowest addresses. This setting is remem-

bered as part of the dynamic con�guration and will be used until the

processor is reset or TDBoot is REINITIALIZEd.

/NOCACHING

Disable use of the cache to accelerate the operation. This will force direct

memory accesses even though they are slower. Use this if you think there

are problems with the cache. Caching will automatically be disabled if

the CACHE{TEST startup parameter is disabled, or if there were initial-

ization errors. Since using the cache requires using the pager, caching is

implicitly disabled if paging is disabled (PAGER{TEST is disabled, or

/NOPAGING was speci�ed).

/NOCLEAR

Disable clearing memory after con�guration and testing. The default set-

ting for this switch is the same as the previous \CONFIGUREMEMORY"

command. At powerup, it is initialized to the same setting as that of the

CLEAR{MEMORY startup parameter.

/NOFORCE

Do not reconsider any memory units that have been taken o� line. This

setting is remembered as part of the dynamic con�guration and will be

used until the processor is reset or TDBoot is REINITIALIZEd.

/NOPAGING

Disable use of paging to accelerate the operation. This will force the use

of PMOVEM even though it is slower. Use this if you think there are

problems with the pager. Paging will automatically be disabled if the

PAGER{TEST startup parameter is disabled, or if there were initializa-

tion errors. Since using the cache requires using the pager, caching is

implicitly disabled if paging is disabled.

/NOTEST

Disable memory testing after con�guration. The default setting for this

switch is the same as the previous \CONFIGURE MEMORY" command.

At powerup, it is initialized to the same setting as that of the TEST{

MEMORY startup parameter.



E.1. MACRO{CONSOLE COMMANDS 543

/REVERSE

Con�gure the memory in the highest physical slot number to have the

lowest addresses. This setting is remembered as part of the dynamic

con�guration and will be used until the processor is reset or TDBoot is

REINITIALIZEd.

/TEST

Enable memory testing after con�guration. The default setting for this

switch is the same as the previous \CONFIGURE MEMORY" command.

At powerup, it is initialized to the same setting as that of the TEST{

MEMORY startup parameter.

SET CONFIGURATION NETWORK

Set up the dynamic con�guration of all network connections in the system.

There is currently no dynamic conguration to setup for the network con-

trollers. This command is reserved for future expansion.

SET CONFIGURATION *

Perform the default system con�guration which includes the BUS, MEMORY,

and MASS{STORAGE. This is the default if no arguments are speci�ed after

the SET CONFIGURATION command.

SET DAYLIGHT-SAVINGS

Set default daylight savings handling.

SET DAYLIGHT-SAVINGS ALWAYS

Always process date and time with daylight savings time in e�ect. This may

be useful if the AUTOMATIC setting is not appropriate for your site.

SET DAYLIGHT-SAVINGS AUTOMATIC

Automatically determine when to process date and time with daylight savings

time in e�ect. The determination is based on the rules in e�ect in most of

the USA at the time of this writing. If this does not seem to be appropriate,

consider using the ALWAYS or NEVER settings.

SET DAYLIGHT-SAVINGS NEVER

Never process date and time with daylight savings time in e�ect. This may

be useful if the AUTOMATIC setting is not appropriate for your site.

SET SCSI-ID slot bus fid | OFFLINEg

Set the initiator target ID for a connected SCSI bus. The arguments specify the

mass{storage controller, SCSI Bus, and what ID to use (or to set the bus o� line).

This command changes only the dynamic con�guration of the SCSI interface. The

\SET CONFIGURATION BUS" and \SET CONFIGURATION *" commands

will set the SCSI bus states from their static values saved via DEFINE SCSI{

ID.The \slot" is the decimal slot number (1{15) of a mass{storage controller. The

\bus" is the SCSI bus number (0{3). The \id" is the decimal SCSI target number

(0{15) which the SCSI controller should use to identify itself on the speci�ed bus.



544 APPENDIX E. TDBOOT COMMAND SUMMARY

If you expect to communicate with any 8{bit SCSI devices, do not use SCSI target

numbers above 7, as these devices which don't implement target numbers greater

than 7. The OFFLINE keyword will set the speci�ed bus o� line. That is it will

not be used for any purpose until a valid SCSI target number has again been set

up for it.

SET TIMEZONE hh:mm

Set the current local timezone as the speci�ed number of decimal hours and min-

utes di�erent from Greenwich. The value may be between {12:00 and 12:00 inclu-

sive. Timezones west of Greenwich are negative, while timezones east of Greenwich

are positive. The values {12:00 and 12:00 are the same time, but on opposite sides

of the international date line, and thus di�er by 1 day. For example, the United

States eastern timezone would be {5:00 (standard time is 5 hours and 0 minutes

earlier than Greenwich). Users should note that the sign of this value di�ers from

the equivalent one used in TOPS{20 (in the 7{SETSPD program when read from

the 7{CONFIG.CMD �le).

SHOW Show various system settings.

SHOW ADDRESS-BREAK

Print the contents of the program address break register.

SHOW AUXILIARY-PORT

Print the current state of the auxiliary terminal port.

SHOW CAPACITY

This command prints the capacity of all or selected direct{access devices. This is

similar to the \SHOW CONFIGURATION MASS{STORAGE ... /CAPACITY"

command, except that it includes only direct{access devices.

SHOW CAPACITY arguments

The following arguments may be used to include a subset of the mass{storage

devices:

slot bus target{id

The \slot" argument speci�es a mass{storage controller, the \bus" argument

speci�es a SCSI bus, and the \id" argument speci�es a SCSI target id number.

All arguments are in decimal. A missing argument or \*" will select all slots,

buses, or ids corresponding to the argument.

SHOW CONFIGURATION

Print the dynamic system con�guration. A slot number or a keyword may be

entered.

SHOW CONFIGURATION slot

The \slot" argument is a decimal slot number (0{15) indicating the single

slot for which to show the con�guration. Slot 0 refers to this CPU. The slot

number may be followed by switches appropriate to the type of device in that

slot.



E.1. MACRO{CONSOLE COMMANDS 545

SHOW CONFIGURATION CPU

Show only the con�guration of CPUs.

SHOW CONFIGURATION CPU arguments

The optional decimal slot number argument (0{15) indicates a speci�c

CPU to include (0 is a synonym for this CPU). A missing argument or

\*" will include all CPUs in the system.

SHOW CONFIGURATION CPU switches

Switches should be entered after all other arguments.

/LONG

Print a detailed con�guration.

/SHORT

Print a minimum con�guration.

SHOW CONFIGURATION MASS-STORAGE

Show only the con�guration of mass{storage controllers.

SHOW CONFIGURATION MASS-STORAGE arguments

The following arguments may be used to include a subset of the mass{

storage devices:

slot bus target{id

The \slot" argument speci�es a mass{storage controller, the \bus" argu-

ment speci�es a SCSI bus, and the \id" argument speci�es a SCSI target

id number. All arguments are in decimal. A missing argument or \*" will

select all slots, buses, or ids corresponding to the argument.

SHOW CONFIGURATION MASS-STORAGE switches

Switches should be entered after all other arguments.

/CAPACITY

Print the capacity of direct{access devices. The /LONG switch is set

implicitly by this switch.

/HOME-BLOCKS

Print the home block information used by TDBoot for direct{access

devices. The /LONG switch is set implicitly by this switch.

/LONG

Print a detailed con�guration.

/SHORT

Print a minimum con�guration.

SHOW CONFIGURATION MEMORY



546 APPENDIX E. TDBOOT COMMAND SUMMARY

Show only the con�guration of memory modules.

SHOW CONFIGURATION MEMORY arguments

The optional decimal slot number argument (0{15) indicates a speci�c

MEMORY to include. A missing argument or \*" will include all memo-

ries in the system.

SHOW CONFIGURATION MEMORY switches

Switches should be entered after all other arguments.

/LONG

Print a detailed con�guration.

/SHORT

Print a minimum con�guration.

SHOW CONFIGURATION NETWORK

Show only the con�guration of network controllers.

SHOW CONFIGURATION NETWORK arguments

The following arguments may be used to include a subset of the network

ports:

slot port

The \slot" argument speci�es a network controller, and the \port" argu-

ment speci�es a network port. A missing argument or \*" will select all

slots or ports corresponding to the argument.

SHOW CONFIGURATION NETWORK switches

Switches should be entered after all other arguments.

/LONG

Print a detailed con�guration.

/SHORT

Print a minimum con�guration.

SHOW CONFIGURATION SYSTEM

Show only the system ID and options, and the backplane serial number and

options.

SHOW CONFIGURATION *

Show the con�guration of all devices in the system. This is the default if no

arguments are speci�ed after the SHOW CONFURATION command.

/LONG

Print a detailed con�guration.

/SHORT



E.1. MACRO{CONSOLE COMMANDS 547

Print a minimum con�guration.

SHOW DAYLIGHT-SAVINGS

Print the current DAYLIGHT{SAVINGS setting.

SHOW HOME-BLOCKS

This command prints the home blocks of all or selected direct{access devices. This

is similar to the \SHOW CONFIGURATION MASS{STORAGE ... /HOME{

BLOCKS" command, except that it includes only direct{access devices.

SHOW HOME-BLOCKS arguments

The following arguments may be used to include a subset of the mass{storage

devices:

slot bus target{id

The \slot" argument speci�es a mass{storage controller, the \bus" argument

speci�es a SCSI bus, and the \id" argument speci�es a SCSI target id number.

All arguments are in decimal. A missing argument or \*" will select all slots,

buses, or ids corresponding to the argument.

SHOW MEMORY-STATUS [slot]

Print all or selected memory status. The optional decimal slot number argument

(0{15) indicates a speci�c memory controller whose status should be printed. No

argument indicates that status for all memory controllers should be printed. The

printout includes both the status and error{summary registers. Note: reading

the error{summary register clears the \Parity Error Detected" bit in the status

register and releases the error{summary register to capture another error.

SHOW PAGE-FAIL

Print the data saved by the most recent page fail(s) in a user readable form. If

this was the result of a recursive page fail, the preceding page fail information is

also printed. Be careful that there are no intervening page fails or you will not get

the results you expect.

SHOW PAGE-FAIL CONSOLE

Show page fail data which preceded the most recent recursive page failure

which attempted to trap via the console.

SHOW PAGE-FAIL IO

Show page fail data which preceded the most recent recursive page failure

which attempted to trap via the EPT.

SHOW PAGE-FAIL LAST

Show page fail data from the most recent page fail.

SHOW PAGE-FAIL ROM

Show page fail data which preceded the most recent recursive page failure

which attempted to trap via the ROM.



548 APPENDIX E. TDBOOT COMMAND SUMMARY

SHOW POWER-STATUS

Print the current power status.

SHOW PROGRAM

Print information associated with the current program in memory.

SHOW PROGRAM ENTRY-VECTOR

Print the current program's entry{vector location and length.

SHOW PROGRAM MEMORY-MAP

Print all or some of the contents of the current program's memory map. By

default, all executive pages (those mapped via the EPT) will be printed.

/EXEC

Limit information printout to executive pages (those mapped via the

EPT).

/NOPAGE-INFO

Suppress printout of information on pages in each section. With this

switch, only information about sections is printed.

/SECTION:n

Limit printout to the speci�ed section. The argument is an octal section

number (0{7776).

/USER

Limit information printout to user pages (those mapped via the UPT).

SHOW PROGRAM PDVAS

Print the current program's program data vector addresses (PDVAs).

SHOW SCSI-IDS

Print the dynamic initiator target ID number for each SCSI bus on each mass{

storage controller in the system.

SHOW STRUCTURE str:

Print information about the units in the speci�ed structure. The argument is a

1{6 character structure name followed by a colon (\:").

SHOW TIMEZONE

Print the current local TIMEZONE o�set.

SHOW VERSION

Print the version numbers of the BOOT ROM program and the current CPU

microcode.

SHOW ZONE-TABLE slot bus target [lun]

Print the zone table for the speci�ed disk drive. The �rst argument is the decimal

slot number (1{15). The second argument is the bus number (0{3). The third



E.1. MACRO{CONSOLE COMMANDS 549

arugment is the decimal target ID (0{15). The optional fourth argument is the

logical unit number (LUN, 0{7, default 0).

SHUTDOWN

Set the shutdown request 
ag (AP%SHT) in the processor 
ags accessible by RDAPR

and continue the program. A program can use this to receive shutdown requests by

enabling an interrupt when this bit is set or by sampling the bit periodically.

S[TART] Set the program counter and continue the program. The optional argument can specify

the absolute virtual address to load into the PC or a \+" followed by an entry{vector

o�set. If no argument is present, entry{vector o�set 0 is used. The program 
ags and

context are zeroed before starting, which starts in EXEC mode. If you do not wish

the 
ags and context to be zeroed, consider using the \DEPOSIT FLAGS <n>" and

\CONTINUE <pc>" commands. The optional switch /DEBUG will set CF%DBG in

the control 
ags (WCTRLF/RCTRLF), and can be used to tell a program (such as the

monitor) to run in debug mode.

TEST Perform testing of speci�c processor components and/or devices. A slot number or a

keyword may be entered.

TEST slot

The \slot" argument is a decimal slot number (0{15) indicating the single slot

to test. Slot 0 refers to this CPU. The slot number may be followed by switches

appropriate to the type of device in that slot.

TEST BUS

Perform device speci�c tests on each slot except this CPU.

/REPEAT:n

Repeat the speci�ed tests. The argument is the number of times to repeat.

TEST CACHE

Perform the cache tests on this CPU.

/REPEAT:n

Repeat the speci�ed tests. The argument is the number of times to repeat.

TEST CPU

Perform only CPU tests. This currently includes the cache and pager tests.

TEST CPU arguments

The optional decimal slot number argument (0{15) indicates a speci�c CPU

to test (0 is a synonym for this CPU). A missing argument or \*" will test

all CPUs in the system.

TEST CPU switches

Switches should be entered after all other arguments.

/REPEAT:n

Repeat the speci�ed tests. The argument is the number of times to repeat.



550 APPENDIX E. TDBOOT COMMAND SUMMARY

TEST INTERVAL-TIMER

Run the interval timer at various interval values and compute the actual interval

using RDTIME. Prints the interval being tested followed by the mean and variance

for that interval.

/INTERVAL:n

Select a speci�c interval to test. The argument speci�es the interval from 256

to 32768 microseconds. It will be rounded to the nearest multiple of 128.

/LOOP-ON-ERROR

Continue testing after printing an error.

/QUIET

Suppress informational output during testing. You will still get output if an

error occurs.

/SAMPLES:n

The argument speci�es the number of samples to take before computing av-

erage and variance. The default value is 100.

TEST MASS-STORAGE

Perform the mass{storage controller tests on all or selected mass{storage con-

trollers and SCSI devices.

TEST MASS-STORAGE arguments

The following arguments may be used to select a subset of the mass{storage

devices:

slot bus target{id unit

The \slot" argument speci�es a mass{storage controller, the \bus" argument

speci�es a SCSI bus, the \id" argument speci�es a SCSI target id number,

and the \unit" argument speci�es a SCSI logical unit number. A missing

argument or \*" will select all slots, buses, ids, or units corresponding to the

argument.

TEST MASS-STORAGE switches

Switches should be entered after all other arguments.

/BYTE-OFFSET:n

Specify the byte o�set to use for data transfers. This can be used to test

transfers which end in the middle of a word. (Byte{o�set is e�ective only

during tests of the industry{compatible data format.)

/COMPARE

During data tests, do write, read, and compare.

/CORE-DUMP

Test core dump (40{bit) data format.



E.1. MACRO{CONSOLE COMMANDS 551

/DEVICE-BUFFERS

Test the SCSI BUS. This consists of a WRITE BUFFER followed by a

READ BUFFER and verify to each selected SCSI device which supports

these commands.

/DRAM

Test mass{storage controller DRAM (internal bu�er memory). Data is

written from system memory into the DRAM and then read back and

compared. If none of /DEVICE{BUFFERS, /DRAM, /MEDIA{TEST,

/TIMING, or /VERIFY are speci�ed, then /DEVICE{BUFFERS and

/DRAM are the default.

/ENDING-OFFSET:n

Specify the ending word o�set to use for data transfers. The argument

is the o�set backward from the end of the cache line of the last word to

transfer (e.g., /ENDING{OFFSET:7 would transfer only the �rst word

of the cache line at the end of the transfer). This can be used to test

transfers which end in the middle of a cache line.

/FLOATING-ZEROS

Test using a 
oating{zeros data pattern.

/FLOATING-ONES

Test using a 
oating{ones data pattern.

/FONES

Test using a 
oating{ones data pattern.

/FZEROS

Test using a 
oating{zeros data pattern.

/HIGH-DENSITY

Test high{density (36{bit) data format.

/INDUSTRY-COMPATIBLE

Test industry{compatible (32{bit) data format.

/JOHNSON-COUNTER

Test using a Johnson counter data pattern.

/MEDIA-TEST

Test the medium on the SCSI device by reading each block into system

memory. For direct{access devices (disks), the entire medium is read.

/NOCOMPARE

During data tests, do write and read, but no compare.

/NOLONG-TRANSFERS



552 APPENDIX E. TDBOOT COMMAND SUMMARY

Do not use long transfers during media test. This switch is meaningful

only in conjunction with the /MEDIA{TEST switch.

/ONES

Test using a data pattern of all ones.

/REPEAT:n

Repeat the speci�ed tests. The argument is the number of times to repeat.

/RETRIES:n

Retry after errors when establishing the communications region. The

argument is the number of times to retry before giving up.

/RONLY

During data tests, do read, but no write or compare.

/STARTING-OFFSET:n

Specify the starting word o�set to use for data transfers. The argument is

the o�set forward from the beginning of the cache line of the �rst word to

transfer (e.g., /BEGINNING{OFFSET:7 would begin the transfer with

the last word of the cache line). This can be used to test transfers which

start in the middle of a cache line.

/TIMING

Test various timing parameters of selected SCSI devices.

/VERIFY

Test the medium on the SCSI device by issuing the SCSI VERIFY com-

mand. Since not all devices support this command, it may fail. If so, use

the /MEDIA{TEST option, which will read each block into memory. For

direct{access devices (disks), the entire medium is read.

/WONLY

During data tests, do write, but no read or compare.

/ZEROS

Test using a data pattern of all zeros.

TEST MEMORY

Test system memories.

TEST MEMORY arguments

The optional decimal slot number argument (0{15) indicates a speci�c mem-

ory to test. A missing argument or \*" will test all memories in the system.

TEST MEMORY switches

Switches should be entered after all other arguments.

/ADDRESS



E.1. MACRO{CONSOLE COMMANDS 553

Select the memory address test. If no memory tests are selected, all are

performed. An \A" is printed to indicate that the address test is being

initialized. During initialization, each word is written with its bus address

word (BAW). An \a" is printed to indicate that the address{test compare

has started. Each word of memory is checked to verify that it still contains

the correct data.

/COMBINED

Select the combined memory tests. If no memory tests are selected, all are

performed. A \C" is printed to indicate combined testing is in progress.

A sequence of data patterns and addresses is used which will exercise the

cache re�ll, writeback, and 
ush operations.

/DATA

Select the memory data test. If no memory tests are selected, all are

performed. A \D" is printed to indicate that the data test is being ini-

tialized. During initialization, each word is written with the negative of

its bus address word (BAW) minus two. A \d" is printed to indicate that

the data{test compare has started. Each word of memory is checked to

verify that it still contains the correct data.

/NOCACHING

Disable use of the cache to accelerate the operation. This will force direct

memory accesses even though they are slower. Use this if you think there

are problems with the cache. Caching will automatically be disabled if

the CACHE{TEST startup parameter is disabled, or if there were initial-

ization errors. Since using the cache requires using the pager, caching is

implicitly disabled if paging is disabled (PAGER{TEST is disabled, or

/NOPAGING was speci�ed).

/NOPAGING

Disable use of paging to accelerate the operation. This will force the use

of PMOVEM even though it is slower. Use this if you think there are

problems with the pager. Paging will automatically be disabled if the

PAGER{TEST startup parameter is disabled, or if there were initializa-

tion errors. Since using the cache requires using the pager, caching is

implicitly disabled if paging is disabled.

/PROCEED-ON-ERROR

Causes the memory test to proceed despite errors. Errors will continue to

be printed, and a failing memory will not be taken o� line.

/REPEAT:n

Repeat the speci�ed tests. The argument is the number of times to repeat.

/R[EADONLY]

Perform a READONLY memory test. This test is performed before any

others to avoid changing the contents of memory. A \R" is printed to

indicate readonly testing is in progress. Each word of memory is read



554 APPENDIX E. TDBOOT COMMAND SUMMARY

to determine if it has good parity. This test makes use of the pager and

cache to accelerate operation. See the /NOPAGING and /NOCACHING

switches for more information.

/STATIC

Select the static memory tests. If no memory tests are selected, all are

performed. An \S" is printed to indicate static testing is in progress. Each

static test is performed on a cache line in memory. Data patters of all ones,

all zeros, a 
oating{one, and a 
oating{zero are written and compared in

each word of the line. Cache line addresses of all zeros and all ones are

performed �rst. This is followed by writing and detecting bad parity in

cache line zero. Finally, cache line addresses �rst of a 
oating{one and

then of a 
oating{zero are tested.

TEST NETWORK

Perform diagnostic tests on the speci�ed network controllers.

TEST NETWORK arguments

The following arguments may be used to test a subset of the network ports:

slot port

The \slot" argument speci�es a network controller, and the \port" argument

speci�es a network port. A missing argument or \*" will select all slots or

ports corresponding to the argument.

TEST NETWORK switches

Switches should be entered after all other arguments.

/REPEAT:n

Repeat the speci�ed tests. The argument is the number of times to repeat.

/TIMING

Measure the amount of time it takes to reset the network controller.

TEST PAGER

Test this CPU's pager.

/REPEAT:n

Repeat the speci�ed tests. The argument is the number of times to repeat.

TEST POWER-FAIL

Loop checking power status and reporting changes. Type ^C to terminate.

TEST TIME-BASE

Check RDTIME timebase for monotonicity and no large changes. Prints elapsed

time approximately every 3 seconds.

/LOOP-ON-ERROR



E.2. MICRO{CONSOLE COMMANDS 555

Continue testing after printing an error.

/QUIET

Suppress informational output during testing. You will still get output if an

error occurs.

TEST *

Test this CPU and each other system slot. This is the default if no arguments are

speci�ed after the TEST command.

/REPEAT:n

Repeat the speci�ed tests. The argument is the number of times to repeat.

UNLOAD scsi-device-specifier

Unload the speci�ed SCSI device (usually a tape or other removable medium). The device

is speci�ed using one of the following formats:

# slot bus target [unit] To specify an explicit SCSI nexus

MTAnnn: To specify a SCSI tape by its sequential

nexus position

channel, controller, unit Operating system tape speci�er

VDIRECTORY [path]

This is a shorthand for the \DIRECTORY args /LONG" command. See the \DIREC-

TORY" command for a full description of the arguments.

E.2 Micro{console commands

A command beginning with a \." is actually processed by the micro{console. Help for the micro{

console commands is provided here as a convenience to the user. Micro{console commands consist

of the initial \." followed by one or more letters and a variable number of numeric arguments. All



556 APPENDIX E. TDBOOT COMMAND SUMMARY

numeric arguments are in octal. The following is a summary of the available commands:

Command Description

.B offset Start TDBoot

.C Continue program

.D l [adr] data Deposit things

.E [l [adr]] Examine things

.H Halt program

.I Initialize microcode

.M Enable macro{console

.R cnt cmd Repeat command

.S adr Start program

.T l [args] Test things

.U Disable macro{console

.V Type version

.W data Write control 
ags

.B Start TDBoot as a normal program. The TDBoot code runs out of ROM and parses its

own commands. When running in this mode, micro{console commands are not available.

To get to the micro{console, type control{backslash (^n). Terminate this mode of TDBoot

by typing \EXIT" or control{Z (^Z).

.C Continue the current program if the PC is valid. After this command, the program will

run until it executes a HALT instruction or is halted by a console command.

.D Deposit things in various parts of the machine. The next letter speci�es where to deposit.

The last letter used is remembered and is used as the default thing to examine in the

next \.E" command. The following is a summary of the deposit commands:

Command Description

.D A adr data Deposit MemA

.D D baw data Deposit device{control

.D F data Deposit 
ags and context

.D I data Deposit PIR

.D M baw data Deposit physical memory

.D N adr data Deposit NVram

.D O om adr data Diag write, om {> cache mode; adr {> E; data {> IABUS

.D P data Deposit PC

.D R reg data Deposit current{context register

.D S adr data Deposit system virtual memory

.D U adr data Deposit user virtual memory

.D A address data

Deposit into MemA. The �rst argument is the 13{bit address (0{17777). The

second argument is the 36{bit data to deposit.

.D D baw data



E.2. MICRO{CONSOLE COMMANDS 557

Perform a device{control cycle on the system bus (this is also known as a write to

I/O space). The �rst argument is the bus address word (BAW). The second word

is the data to write. Bit 0 of the address controls cache access. It should never be

set when accessing I/O space.

.D F data

Store into the internal processor 
ags and context word. The argument is a 36{bit

number specifying the processor 
ags in bits 0{12, the current AC block in bits

18{20, the previous AC block in bits 21{23, and the previous section in bits 24{35.

.D I data

Store into the internal priority{interrupt register (as read by RDPI). Changing

these values may cause certain inconsistencies in the internal machine state; use

with great care.

.D M baw data

Perform a word write on the system bus (this is also know as a write to memory

space). The �rst argument is the bus address word (BAW). The second word is

the data to write. Bit 0 of the address controls cache access. If bit 0 is clear, the

cache will be bypassed. If bit 0 is set, the cache will be 
ushed and/or loaded

as needed and the data written into the proper cache line. Care should be taken

to use the same cache access as is currently being used for the speci�ed address;

otherwise cache inconsistencies may occur.

.D N address data

Write one byte into the nonvolatile RAM (NVRAM). The �rst argument is a

13{bit address (0{17777). The second argument is the 8{bit data (0{377) to be

written. Use care when changing NVRAM, because it controls various pieces of

system con�guration.

.D O mode address data

Perform a diagnostic write cycle. The �rst argument is loaded into the cache mode.

The second argument is loaded into the internal DPM address register. The third

argument is loaded into the IABUS latches. A DPM write cycle is performed.

.D P address

Store into the macro PC. This is similar to the .S command, but the macro program

is not continued.

.D R n data

Store into the registers selected by the current AC block context setting. The �rst

argument is the 4{bit register number. The second argument is the 36{bit data

to write.

.D S address data

Write to a system virtual address. The �rst argument is the 30{bit address. The

second argument is the 36{bit data to write. A system virtual address is one which

is mapped starting at EPT o�set 540 plus the super{section number.



558 APPENDIX E. TDBOOT COMMAND SUMMARY

.D U address data

Write to a user virtual address. The �rst argument is the 30{bit address. The

second argument is the 36{bit data to write. A user virtual address is one which

is mapped starting at UPT o�set 540 plus the super{section number.

.E Examine things in various parts of the machine. The next letter speci�es what to examine.

The following is a summary of the examine commands:

Command Description

.E Repeats previous examine with next address or examines

the same address as the previous deposit, whichever oc-

cured most recently.

.E A adr Examine MemA

.E D baw Examine device{control

.E F Examine 
ags and context

.E I Examine PIR and HW interrupt register

.E L adr Examine lookup ROM (<0:12>, <31:35>, or <18:35>)

.E M baw Examine physical memory

.E N adr Examine NVram

.E O A om adr Diag read, om {> cache mode; adr {> E; print IABUS

.E O D om adr Diag read, om {> cache mode; adr {> E; print DPM

.E O N om adr Diag read, om {> cache mode; adr {> E; no print

.E P Examine PC

.E R reg Examine current{context register

.E S adr Examine system virtual memory

.E U adr Examine user virtual memory

.E A address

Examine locations in MemA. The argument is the 13{bit address (0{17777).

.E D baw

Perform a status request cycle on the system bus (also know as an I/O space read).

The argument is the bus address word (BAW) to read. Bit 0 controls cache access.

Bit 0 should not be set with this command.

.E F

Examine the internal processor 
ags and context. The processor 
ags are in bits

0{12, the current AC block is in bits 18{20, the previous AC block is in bits 21{23,

and the previous section number is in bits 24{35.

.E I

Examine the priority{interrupt register and the hardware interrupt register. The

priority{interrupt register contains the same data as read with RDPI. The hard-

ware interrupt register has hardware bits available to the microcode.

.E L address

Examine the internal lookup ROM used for byte instructions. The argument



E.2. MICRO{CONSOLE COMMANDS 559

speci�es the address in the ROM to examine. First, if bits 0{17 are zero, copy bits

18{30 to bits 0{12. The address is then formed from bits 0{12 and bits 31{35.

.E M baw

Perform a word{read cycle on the system bus (also know as a memory{space read).

The argument is the bus address word (BAW) to read. Bit 0 controls cache access.

If bit 0 is clear, the cache is bypassed. If bit 0 is set, the cache will be examined

to see if the speci�ed address is cached there. If not, the corresponding cache line

will be loaded from system memory into the cache and the desired will be word

returned.

.E N address

Examine a byte of nonvolatile RAM (NVRAM). The argument is the 13{bit ad-

dress of the desired byte.

.E O

Perform a diagnostic{read. The �rst argument is a letter specifying what to type

out upon completion. The second argument is loaded into the cache mode. The

third argument is loaded into the internal DPM address register. The following is

a summary of the diagnostic{read commands:

Command Description

.E O A om adr Diag read, om {> cache mode, adr {> E, print IABUS

.E O D om adr Diag read, om {> cache mode, adr {> E, print DPM

.E O N om adr Diag read, om {> cache mode, adr {> E, no print

.E O A mode address

Perform a diagnostic{read cycle and print the resulting contents of IABUS.

The �rst argument is loaded into the cache mode; the second argument is

loaded into the internal DPM address register.

.E O D mode address

Perform a diagnostic{read cycle and print the resulting contents of DPM. The

�rst argument is loaded into the cache mode; the second argument is loaded

into the internal DPM address register.

.E O N mode address

Perform a diagnostic{read with no output. The �rst argument is loaded into

the cache mode; the second argument is loaded into the internal DPM address

register. diagnostic{read with no output is sometimes useful for scoping a

processor problem.

.E P

Print the current macro PC.

.E R n

Examine the registers selected by the current AC block context setting. The



560 APPENDIX E. TDBOOT COMMAND SUMMARY

argument is the 4{bit register number (0{17).

.E S address

Read a system virtual address. The �rst argument is the 30{bit address. A system

virtual address is one which is mapped starting at EPT o�set 540 plus the super{

section number.

.E U address

Read a user virtual address. The �rst argument is the 30{bit address. A user

virtual address is one which is mapped starting at UPT o�set 540 plus the super{

section number.

.H Halt the currently running program. The PC remains valid, and the program can be

continued where it left o� using the .C command.

.I Restart the CPU microcode at the beginning. The CPU cannot tell the di�erence between

this and starting from power{on.

.M Initialize the macro{console by starting it at its entry{vector o�set 3. Whenever the

micro{console passes a command to the macro{console, it clears the macro{console enable

bits stored in MemA. If the macro{console terminates without setting this bit again, it

is e�ectively disabled (i.e., the micro{console will not pass commands to it). The .M

command gives the macro{console a chance to re{enable itself. (The macro{console is

also disabled by the .U command or by installing option jumper J0.)

.R n command

Repeat any other micro{console command a speci�ed number of times. The argument

following .R is an number specifying the number of times to repeat the command. A value

of zero will cause command to repeat inde�nitely. Following the repeat count, you should

give the command you wish repeated, but without the initial dot (\."). For example, the

following commands examine all 16 (decimal) current{context registers:

.E R 0

.R 17 E

The �rst command examines register 0, while the second command examines the next 17

(octal) registers in sequence.

.S address

Start the processor executing instructions. The argument is a 30{bit address specifying

the intial PC.

.T Perform various low{level tests which are di�cult or impossible to perform using macro{

code, or when macro{code execution is not operational. The following test commands



E.2. MICRO{CONSOLE COMMANDS 561

are available:

Command Description

.T A d W/R alternate MemA locs with \d" and \d" with its low

order bit complemented, respectively.

.T B Read BP power status and ROMs

.T C b Test cache interaction with memory at BAW \b"

.T M b s p c Test system memory: start at BAW \b", for \s" words,

with pattern \p". \c" has control bits.

.T S d s m Rotate \d" by \s", AND with \m"

.T U b Test cache invalidate/
ush functions

.T X h1 l1 h2 l2 Do 72{bit add of h1,l1 and h2,l2

.T A data

Test MemA. The argument is a data pattern. Two locations in MemA are used.

The data is written to the �rst location. Then the data written to the second

location with the low{order bit complemented. This changes the parity bit. Both

locations are then read to verify parity. This process repeats until a character is

entered on the console.

.T B

Read the backplane power status, serial number and system ID ROMs. Then read

the CPU serial number ROM into prede�ned locations in MemA. Print the power

status (it appears in the hi{order 8 bits of value printed). The bits are interpreted

as follows:

Bit Mask Description

0 400000000000 AC fault

1 200000000000 Thermal fault

2 100000000000 Battery bad

3 040000000000 Battery low

4 020000000000 Need power asserted on backplane

5 010000000000 Not used, should be zero

6 004000000000 Backplane wedged

7 002000000000 Always set

.T C baw

Perform a variety of cache/memory interaction tests. The argument is the base

bus address word (BAW) of the memory locations to use. The addresses used

are BAW through BAW+37777777. Since the page o�sets are �xed for mapped

addresses, the BAW should have bits <27:35> set to zero. If a test fails, the

address, actual, and expected data are printed and the test is terminated. The

test can also be terminated by typing on the console.

.T M baw count pattern control

Perform a variety of system memory tests. The �rst argument is the base bus

address word (BAW) of the locations to be tested. The second argument is the



562 APPENDIX E. TDBOOT COMMAND SUMMARY

count of locations to test (0 will count for a long time). The third argument is a

data pattern. The fourth argument is the function, encoded as follows:

Bits Mask Function

33:35 0 Use the data pattern unchanged

1 Complement the pattern on each pass

2 Increment the pattern on each pass

3 Rotate the pattern left one bit on each pass

18 400000 Continue on error

15:17 0000000 Init pass only (places pattern in memory)

1000000 Init only, pattern XOR'd with BAW

2000000 Write/read/compare using pattern

3000000 Write/read/compare, pattern XOR'd with BAW

4000000 Write only (no read or compare)

5000000 Read only (no write or compare)

6000000 Read/write (no compare)

7000000 XOR/read/write (no compare)

When comparing and stopping on errors (bit 18 clear), an error will terminate

testing with a printout of the address, actual data, and expected data. The test

can also be terminated at the end of a pass by typing on the console.

.T S data rotate mask

Test the internal shifter/masker hardware. The �rst argument is the data. The

second argument is the shift amount. The third argument is the mask.

.T U baw

Perform the invalidate and 
ush tests on the CPU cache. The argument is the

base bus address word (BAW) of the memory locations to use. The addresses used

are BAW through BAW+377777. Since this test uses the right half of the BAW

as a counter, it should have bits <18:35> set to zero. If a test fails, the address,

actual, and expected data are printed and the test is terminated. The test can

also be terminated by typing on the console.

.T X h1 l1 h2 l2

Test the internal 72{bit adder. The �rst argument is the high{order word loaded

into the B register. The second argument is the low{order word loaded into the

B register. The third argument is the high{order word loaded into the A register.

The fourth argument is the low{order word loaded into the A register. The two

registers are added and the two word result is printed, high{order word �rst.

.U Disable the macro{console. This may be useful to prevent inadvertent running of macro{

code by entering a command without an initial dot (\."). Use the .M command to

re{enable the macro{console. (The macro{console is also disabled by installing option

jumper J0.)

.V Print the processor description string and microcode version number.

.W data Perform a WCTRLF instruction using the argument. This is provided to allow manip-



E.2. MICRO{CONSOLE COMMANDS 563

ulation of the auxiliary port when the macro{console may not be running. The \data"

argument contains the WCTRLF bits. The bits which control the auxiliary port are:

Name Value Function

CF%SET 1B0 Set selected bits

CF%CLR 1B1 Clear selected bits

CF%DTR 200 Auxiliary Data Terminal Ready

CF%APE 10 Auxiliary Port Enable

CF%RTS 2 Auxiliary Request To Send

To enable the auxiliary port, type \.W400000000212"; to disable the auxiliary port, type

\.W200000000212".



564 APPENDIX E. TDBOOT COMMAND SUMMARY



565

Appendix F

XKL

-

1 Processor Arcana

This appendix describes details of the XKL

-

1 processor that are so implementation{speci�c as to be

excluded from the architectural speci�cation of the TOAD

-

1 System.

Speci�c locations in MemA and NVRAM identi�ed in the manual are included for convenience of

the authors of the processor microcode, TDBoot, and diagnostics. This material is subject to

change.

F.1 MemA Speci�c Locations

Note that special instructions have been provided to change particular locations in MemA. When

such an instruction has been provided, it may cause side{e�ects that are necessary for the proper

operation of the system. For example, although the user base register and the executive base

register are implemented as locations in MemA, those locations should not be addressed via the

AMOVEM instruction, because changing these elements requires that the Pager Translation Bu�er

be invalidated; such is the e�ect of the WREBR and WRUBR instructions.

1

0{177 Fast{memory (AC) blocks 0{7. Fast{memory block number n starts at address 20�n.

AM%AB0==:0 ... AM%AB7==:160

200{217 AM%LPN==:200 16 words, indexed by physical slot number, containing the �rst

linear page number of the memory in the given slot. For memory devices, bit 0 will

be set. If the pager re�ll code encounters an entry in which bit 0 is clear, the CST

update will be skipped. For (the non{existent) slot 0, the data is the system total

memory capacity, in pages. (This table is used by the LDLPN instruction, as well as

by the pager re�ll microcode.)

220{237 AM%DVT==:220 16 words, indexed by physical slot number, containing the corre-

sponding device's response to a \Device Status" request directed to its address zero.

This data can be interpreted to show the system hardware con�guration.

1

The RDEBR and RDUBR instructions should be used in preference to the corresponding AMOVE instructions, for

compatibility with future systems.



566 APPENDIX F. XKL

-

1 PROCESSOR ARCANA

240{257 AM%MCP==:240 16 words, indexed by physical slot number, containing the capacity

of this slot's memory device, in pages, or zero if the device is not a memory.

264 AM%CNF==:264 Memory con�guration 
ags. Bit 0 (VALCN%==:1B0) set means the

con�guration is valid. Bit 1 (REVCN%==:1B1) set means that memory is con�gured

in reverse: the memory at the highest slot number is mapped to the lowest linear

address. Bit 2 (FORCN%==:1B2) means that the con�guration was forced.

266-267 AM%OFL==:266, AM%OPC==:267 Flags and Context, and PC at latest trap, MUUO,

or interrupt.

300 AM%EBR==:00300 Executive base register. Use WREBR to change this value.

301 AM%UBR==:00301 User base register. Use WRUBR to change this value.

302 AM%CTX==:00302 Process context word: current AC block, previous AC block, and

previous{context PC section. Change this by means of WRCTX.

303 AM%SPB==:00303 SPT base address. Change this via WRSPB.

304 AM%CSB==:00304 CST base address. Change this via WRCSB.

305 AM%PUR==:00305 CST process use register (Data Word). Use WRPUR to change

this value.

306 AM%CSM==:00306 CST mask word. Use WRCSTM to change this value.

307 AM%ADB==:00307 Address{break register. Use WRADB to set this value.

310{311 AM%TIM==:00310 Time{base double word.

312 AM%CTI==:00312 Most recent CTY input character.

313 AM%CTS==:00313 Console status. (Kept by microcode). This is read by RDCTYS.

314 AM%HPM==:00314 Hard page-failure mask. When a hard page{failure occurs, if

EPT 500 AND this mask is nonzero, the hard page{failure will trap to the macro{

console by entering it at o�set 6 from its starting address.

320{322 AM%SY0==:320 These locations hold data equivalent to that reported by APRID.

These locations are readable by other devices via device status requests to addresses

0{2, respectively.

323{327 These locations (AM%SY3==:323|AM%SY7==:327) are readable by other processors

via device status requests addressed to locations 3{7, respectively. These are used

for inter{processor synchronization before the memory and operating system are fully

functional (x3.10).

334{343 These locations are reserved for the Macro console.

AM%MBT==:334 Macro console state, shared by TDBoot and the microcode:

� MS%VAL==:1 Macro PC is valid.

� MS%RUN==:2 Macro code is running (MS%VAL will be set).



F.1. MEMA SPECIFIC LOCATIONS 567

� MS%UCA==:100000 Micro{console is active. This can be cleared by the macro

console.

� MS%MCA==:200000 Macro{console is active. This is cleared by PI reset.

� MS%MCE==:400000 Macro{console is enabled. (This 
ag is cleared when the

macro console is entered and it is set when the macro console completes a

command; if the macro console halts without setting this 
ag, the macro console

is disabled.)

AM%MFG==:335 Saved macro 
ags.

AM%MPC==:336 Saved macro PC.

AM%MEB==:337 Saved macro EBR.

AM%MUB==:340 Saved macro UBR.

AM%MPI==:341 Saved macro highest priority level being held.

AM%MCM==:342 Pointer to the macro console's command string in MemA.

AM%MCS==:343 Saved macro CSB.

500{507 This region, which starts at AM%PFN==:500 is used to record hard page{fail data.

This is the same information as is stored in Executive Process Table location 500

(UP.PFB). Because some hard page{fail situations result from failure to access main

memory, the data is recorded here also.

500 AM%PFB==:500 Implementation-speci�c hardware page{fail bits.

501 AM%PFD==:501 This location contains data copied out of the processor's \D to D"

latch. This information may be of use to engineers in tracking down the precise

nature of the page{failure. This is the same information as is stored in Executive

Process Table location 501 (UP.PFD).

502{503 AM%PF0==:502, AM%PF1==:503 Most recent page{fail double word. This is the same

information as is stored in User Process Table locations 502{503 (UP.PF0, UP.PF1),

respectively. However, while TDBoot is using the ROM{based vestigial UPT, this

information can not be written in memory, but it can be found here.

504{505 AM%POF==:504, AM%POP==:505 Flags and Context, and PC of the most recent page{

fail trap. This is the same information as is stored in User Process Table or Executive

Process Table locations 505{506 (UP.POF, UP.POP), respectively. These locations are

used by TDBoot while using the ROM{based vestigial EPT/UPT. (These location

are used regardless of whether the trap is \hard" or \soft".)

506{507 Reserved. These locations correspond to User Process Table or Executive Pro-

cess Table locations 506{507, the new Flags and Context, and PC words (UP.PNF,

UP.PNP), respectively.

510-517 AM%PD0==:510 This block of 8 locations contains implementation{speci�c pager

and cache diagnostic data.

520-537 AM%PFI==:520 Copy of 500{517 at I/O Page Fail.

540-557 AM%PFR==:540 Copy of 500{517 at ROM{fallback Page Fail.



568 APPENDIX F. XKL

-

1 PROCESSOR ARCANA

560-577 AM%PFC==:560 Copy of 500{517 at Console{fallback Page Fail.

1000{1777 AM%PFL==:1000 This is the page fail logging region, which contains 1000 (PFL.SZ==:1000)

locations. The �rst word contains a count of words in use. This is followed by logging

blocks. The �rst word of a logging block contains a block type in the left{half word

and the block size in the right{half word. The de�ned block types are

� PFL.CB==:1 A cache block. Each entry is three words, as supplied by DRD-

CSH.

� PFL.PB==:2 A pager block. Each entry is three words, as supplied byDRDPTB.

� PFL.MB==:3 A memory block. Each entry is two words, a BAW and data.

2033 Keep{Alive counter. Set from the value speci�ed in the WRKPA instruction. If

this cell is not zero when the 16{bit time{base over
ows (approximately every 32.8

milliseconds, while the machine is running), the processor will decrement the value

stored here. When the processor decrements this cell to zero, the processor performs

a Keep{Alive interrupt. (See x3.8.3.)

2053{2055 These three consecutive locations contain the User map cache. This data is used to

shorten the pager re�ll process. Speci�cally, this data is the section numbers of last

two User Virtual sections for which sucessful re�lls have been done, and pointers to

the page maps for those sections. On each User mode page re�ll, if virtual address

bits 6{17 match the either of the values recorded here, the re�ll process takes a

shortcut to the given page map and permissions. This data is cleared by WREBR

and CLRPT.

2056-2060 Three consecutive locations, the Executive map cache.

F.2 NVRAM Speci�c Locations

The following are some of the parameters stored in NVRAM:

� Device{speci�c initial parameters. A block of thirty{two (40 octal, NV%DVS==:40) consecutive

locations is provided for each device on the backplane bus. For each slot, the block starts at

address Slot � 40. Locations 40{777 are allocated in this way.

Among other things, these locations store the system's internet (IP) address on each of the

networks to which it is connected, and the SCSI device identi�cation numbers of the XRH

-

1

initiators.

Because there is no slot numbered 0, locations 0{37 are used for other purposes:

� NV%DVT==:0 The bus con�guration region, sixteen locations indexed by slot number. One

byte of device{type information is stored per slot. Location 0 stores the slot number of this

CPU board.

� NV%DLY==:21 The number of seconds to delay in TDBoot before attempting to become the

master processor (in a multiprocessor system). This allows the system manager to bias the

selection in favor of a particular processor.



F.3. XKL

-

1 BOARD OPTION JUMPERS 569

� NV%BPM==:22 Parameters for TDBoot.

� NV%ATP==:23 Parameters for the auxiliary terminal port.

� NV%ABD==:24 The length of time, in seconds, to delay in TDBoot prior to performing the

automatic boot function.

� NV%TZH==:25 The local time zone, expressed as the number of hours east of GMT. (Locations

west of GMT are represented as negative numbers.) This item, along with the next two items,

a�ect howTDBoot converts \universal time" when converting it to a human{readable format.

� NV%TZM==:26 The minutes component of the local time zone, if needed to express a fractional

hour.

� NV%DST==:27 This value governs TDBoot's understanding of Daylight Savings Time and

how to apply it to the conversion of dates and times. The value 0 (.DSTAU) directs TDBoot to

apply daylight savings time automatically to applicable dates in April through October. The

value 1 (.DSTNV) means to apply daylight savings time never, and the value 2 (.DSTAL) means

to apply daylight savings time always. The latter two values allow for the manual control of

daylight savings time when the automatic algorithm does not correspond to local custom.

� NV%SOL==:30; and 31 The value held in these two locations de�ne which slots have been

declared o�{line. TDBoot will not attempt to test or use a device in any slot that has been

set o�{line.

Some addresses at the high end of NVRAM also have assigned meanings:

� NV%MA0==:17376, NV%MA1==:17377 Two locations containing \magic numbers" to signify

that the NVRAM has been initialized by TDBoot.

� NV%BPA==:17500 Default path names for the Boot command. Sixty{four locations are al-

located for the default path name for the Boot command, and the default path name for the

Dump command (NV%NML==:100).

� NV%DPA==:17600 Default path name for the Dump command.

� NV%UCR==:17700 Sixty{four locations reserved for the microcode. The processor microcode

uses location NV%FLG==:17777 to determine whether the NVRAM battery is functional or not.

F.3 XKL

-

1 Board Option Jumpers

There are three sets of jumpers. The locations of the jumpers are described assuming a normal

orientation of the CPU board: top edge up, component side facing you.

Set J1: Boot ROM size. These jumpers are located below the leftmost Boot ROM. There are three

pins, numbered 3, 2, and 1, with number 1 being at the right. Connect 2{1 for 256K ROMs; connect

3{2 for 512K ROMs. This is manufactured with a soldered wire, because the change is not to be

done casually.

Set J2: Options. These are readable by the processor in the APRID instruction. J2 is located near

the auxiliary console connector. J2{0 is at the top.



570 APPENDIX F. XKL

-

1 PROCESSOR ARCANA

J2{0, if installed, is interpreted by the microcode to disable the macro{console.

� J2{1, reserved.

� J2{2, reserved.

� J2{3, reserved.

Jumper J3: Enable automatic restart on microcode parity error, when installed. This jumper is

located below the R{Bus connector (the diagnostic connector), near the left edge of the board.



571

Appendix G

Non{existent Appendices

Further appendices pertaining to the processors built by Digital Equipment Corporation have not

yet been incorporated in this manual.

These vestigal sections are present to satisfy textual cross{references.

This manual continues at the Glossary.

G.1 Timing

G.2 Processor Operation

G.3 Handling Memory



572 APPENDIX G. NON{EXISTENT APPENDICES



573

Appendix H

Glossary

A: the accumulator �eld of a instruction word.

AC: an accumulator number in the range 0 to 17

8

.

Address Break: a trap that occurs when the processor references the address speci�ed in the address

break register.

Address Failure: see Address Break.

AFI: Address Failure Inhibit. A processor 
ag, which when set, allows the next instruction to be

executed without an an address break (address failure) trap. Customarily, this 
ag is set by a JRSTF

or XJRSTF to allow an instruction that previously caused an address break to be continued past.

This 
ag is cleared when an instruction (other than a JRSTF) completes.

Alignment: in a byte, the number of bits at the left{end of the word to the left of as many bytes

of this size and alignment that can be �t into a word. Mathematically, (36� P ) mod S, where P is

the position of the byte (measured in bits to the right of the right{most bit in the byte) and S is

the byte size.

APR: the Arithmetic Processor. In the KL10 and earlier systems, the device address of the

BAW: Bus Address Word. A 36{bit quantity that speci�es a slot number, an in{module address,

and whether to address the slot as a device or as a memory.

CAC: Current context AC block. The AC block in use by the program that is currently executing.

CD: Carrier Detect. A signal from a DCE to a DTE signifying that a connection between two

modems has been establised.

CSB: CST Base Register. This register contains the physical address (PAW) of the CST and a 
ag

to determine whether or not the CST is cacheable.

CST: Core (memory) Status Table. An array, consisting of one word for each page of physical mem-

ory, indexed by the LPN. The CST contains such data as the page age, page state, the cacheability

of the page, and whether the page has been modi�ed since last read from disk into memory.



574 APPENDIX H. GLOSSARY

CSTM: CST Mask Word.

CTY: Console Teletype. Now the console terminal, or the auxiliary console terminal, or the com-

munication port through which either is connected.

DCE: Data Communications Equipment. A modem, or a device wired as a modem. Contrast to

DTE, to which a DCE connects.

DTE: Data Terminal Equipment. A terminal, computer, or other device wired as a terminal. Con-

trast to DCE, to which a DTE connects. To connect two DTEs together, e.g., a computer and a

terminal, a cable wired as a \null modem" is required.

DTR: Data Terminal Ready. A signal from a DTE to a DCE signifying that the DTE is ready to

communicate.

E : E�ective Address.

EA: E�ective Address.

EBR: Executive Base Register. This contains the address (a PAW) of the EPT.

E�ective Address: The numeric result of a computation performed for every instruction; the result

may be used as a number (in an immediate instruction), as a shift factor, or as a memory address.

EPT: Executive Process Table. A data structure that describes the Executive address{space, trap

words for the Executive, etc.

Flags: individual bits that represent the state and previous condition of the program.

Interrupt: an asynchronous break in the usual 
ow of a program's execution. Peripheral devices

cause interrupts when they need attention from the Monitor. The interval timer causes interrupts

so the Monitor can obtain control, periodically, from compute{bound programs.

Linear Page Number: A numeric index by which each page of memory can be identi�ed.

LPN: Linear Page Number.

LSB: Least Signi�cant Bit. The rightmost bit in an arithmetic operand.

LUUOs: Local unimplemented user operation. An operation code, not implemented by the pro-

cessor, but reserved for user{controlled program traps. An LUUO is, in e�ect, another kind of

subroutine call.

Mass{Storage Control Block: A data structure by which the system software communicates to the

XRH

-

1 and vice{versa.

MCB: Message Control Block. A data structure by which the system software communicates to the

XNI

-

1 and vice{versa.

MemA: processor private memory. These locations include the accumulator blocks.

MSB: Most Signi�cant Bit. The leftmost bit in an arithmetic operand that di�ers from the sign bit.

MSCB: Mass{Storage Control Block.



575

MUUO: Monitor unimplemented user operation: an instruction code that causes a trap to the

Monitor, because either a Monitor call was intended or the program has blundered.

XNI

-

1: The network interface.

No{op: No operation. An instruction that has no overt e�ect. Note that some such instructions

have side e�ects that may be signi�cant. For example, SKIP reads memory and MOVES both reads

and writes memory.

NVRAM: Non{Volatile Random Access Memory. A RAM that remembers data even when the

power is turned o�.

PAC: Previous context AC block. The AC block number used by the previous context program.

This is where the target of a PXCT instruction will look for data when an AC is addressed as a

memory operand.

Page{Failure: an exception condition during the execution of an instruction. Most often a page{

failure represents an inability to translate a virtual address to a physical address. Page{failure is

also used to signal other problems and conditions.

PAW: Page Address Word. A Bus Address Word shifted right by 9 bits. It speci�es a slot number

and an in{module page number.

PC: Program Counter. The location (an address) of the next instruction to execute.

PCS: Previous Context Section. The section in which the previous context program was operating.

This is value is supplied for the section when the target of a PXCT instruction speci�es a local

address.

PCU: Previous Context User. This 
ag bit, set in an exec mode PC, signi�es that the previous

context was user mode. The setting of this bit a�ects the operation of PXCT.

PI: Priority Interrupt.

PTB: Page Translation Bu�er. A two{way associative memory by which the pager translates virtual

addresses to physical addresses.

PUR: Process Use Register.

RAM: Random Access Memory.

RI: Ring Indicate. A signal from a DCE to a DTE signifying that the telephone is ringing.

RTS: Request to Send.

SCSI: Small Computer System Interface a standard that speci�es the electrical and command format

interfaces for peripheral devices.

Section: A 256 Kw (512 page) region of memory identi�ed by a constant value in address bits 6{17.

A section may be physical, in which case the address bits referred to are physical address bits. A

section may be virtual, with the addresses being virtual. In the unextended processors, the virtual

address space of any process is limited to one section, section zero, in which the address bits 6{17

are all zero.



576 APPENDIX H. GLOSSARY

Supersection: A XKL

-

1{speci�c division of the virtual address space, into regions of 512 sections,

in which address bits 6{8 are held constant. At the present time, operating system software on the

XKL

-

1 supports only supersection zero, in which address bits 6{8 are zero.

SPB: SPT Base Register. This contains the physical address (a BAW) for the SPT.

SPT: Special Page{Address Table. Each entry in this table contains a PAW that speci�es the address

of a page table. SPT entries are used in the evaluation of shared and indirect page pointers.

Trap: A synchronous break in the usual 
ow of a a program's execution. Traps are used to detect

arithmetic over
ow and stack over
ow conditions. Unimplemented instructions are also said to

\trap", which means they are executed as MUUOs.

UART: Universal Asynchronous Receiver and Transmitter. A device that translates characters to

serial data for transmission and that assembles serial data into characters for reception. The interface

to a serial line.

UBR: User Base Register. This contains the address (a PAW) of the UPT.

UPT: User Process Table. A data structure that describes the user address{space, trap locations,

page{fail handlers, etc.

XRH

-

1: The SCSI IO interface.



Index of Instructions 577

Index of Instructions

ADD, 63

ADDB, 63

ADDI, 63

ADDM, 63

ADJBP, 148

ADJSP, 141

AMOVE, 234

AMOVEM, 234

AND, 88

ANDB, 88

ANDCA, 89

ANDCAB, 89

ANDCAI, 89

ANDCAM, 89

ANDCB, 91

ANDCBB, 91

ANDCBI, 91

ANDCBM, 91

ANDCM, 89

ANDCMB, 89

ANDCMI, 89

ANDCMM, 89

ANDI, 88

ANDM, 88

AOBJN, 98

AOBJP, 97

AOJ, 100

AOJA, 100

AOJE, 100

AOJG, 100

AOJGE, 100

AOJL, 100

AOJLE, 100

AOJN, 100

AOS, 101

AOSA, 101

AOSE, 101

AOSG, 101

AOSGE, 101

AOSL, 101

AOSLE, 101

AOSN, 101

APRID, 288, 382, 431

ASH, 96

ASHC, 97

BCIO, 189

BCIOB, 190

BLKI, 193

BLKO, 193

BLT, 58

BSIO, 189

BSIOB, 190

CAI, 98

CAIA, 98

CAIE, 98

CAIG, 98

CAIGE, 98

CAIL, 98

CAILE, 98

CAIN, 98

CAM, 99

CAMA, 99

CAME, 99

CAMG, 99

CAMGE, 99

CAML, 99

CAMLE, 99

CAMN, 99

CLRPT, 266, 385, 433

CMPSE, 156

CMPSG, 156

CMPSGE, 156

CMPSL, 156

CMPSLE, 156

CMPSN, 156

CONI, 192

CONI APR,, 401, 458, 479

CONI CLK,, 484

CONI MTR,, 393



578 Index of Instructions

CONI PAG,, 383, 469

CONI PI,, 350, 455, 476

CONI TIM,, 394

CONO, 192

CONO APR,, 401, 457, 478

CONO CLK,, 484

CONO PAG,, 383, 469

CONO PI,, 349, 453, 476

CONO TIM,, 393

CONSO, 193

CONSZ, 193

CVTBDO, 158

CVTBDT, 158

CVTDBO, 160

CVTDBT, 160

DADD, 66

DATAI, 193

DATAI APR,, 391, 448

DATAI CLK,, 485

DATAI PAG,, 384, 469

DATAO, 192

DATAO APR,, 390, 460, 482

DATAO CLK,, 485

DATAO PAG,, 384, 468

DATAO PI,, 449

DATAO PTR,, 449

DDIV, 67

DFAD, 81

DFDV, 82

DFMP, 81

DFN, 85

DFSB, 81

DGFLTR, 74

DIV, 65

DIVB, 65

DIVI, 65

DIVM, 65

DMOVE, 57

DMOVEM, 57

DMOVN, 57

DMOVNM, 57

DMUL, 67

DPB, 146

DRDCSH, 231

DRDPTB, 243

DSUB, 66

DWRCSH, 232

DWRPTB, 241

EDIT, 165

EQV, 91

EQVB, 91

EQVI, 91

EQVM, 91

EXCH, 53

EXTEND, 35, 51

FAD, 78

FADB, 78

FADL, 86

FADM, 78

FADR, 76

FADRB, 76

FADRI, 76

FADRM, 76

FDV, 80

FDVB, 80

FDVL, 87

FDVM, 80

FDVR, 77

FDVRB, 77

FDVRI, 77

FDVRM, 77

FIX, 71

FIXR, 72

FLTR, 74

FMP, 79

FMPB, 79

FMPL, 86

FMPM, 79

FMPR, 77

FMPRB, 77

FMPRI, 77

FMPRM, 77

FSB, 79

FSBB, 79

FSBL, 86

FSBM, 79

FSBR, 77

FSBRB, 77

FSBRI, 77

FSBRM, 77

FSC, 69

GDBLE, 75

GDFIX, 72

GDFIXR, 73

GFAD, 83

GFDV, 84



Index of Instructions 579

GFIX, 71

GFIXR, 73

GFLTR, 74

GFMP, 83

GFSB, 83

GFSC, 70

GSNGL, 75

HALT, 127, 131

HALTRM, 128

HLL, 111

HLLE, 113

HLLEI, 113

HLLEM, 113

HLLES, 113

HLLI, 111

HLLM, 111

HLLO, 112

HLLOI, 112

HLLOM, 112

HLLOS, 112

HLLS, 111

HLLZ, 112

HLLZI, 112

HLLZM, 112

HLLZS, 112

HLR, 116

HLRE, 117

HLREI, 117

HLREM, 117

HLRES, 117

HLRI, 116

HLRM, 116

HLRO, 116

HLROI, 116

HLROM, 116

HLROS, 116

HLRS, 116

HLRZ, 116

HLRZI, 116

HLRZM, 116

HLRZS, 116

HRL, 113

HRLE, 114

HRLEI, 114

HRLEM, 114

HRLES, 114

HRLI, 113

HRLM, 113

HRLO, 114

HRLOI, 114

HRLOM, 114

HRLOS, 114

HRLS, 113

HRLZ, 113

HRLZI, 113

HRLZM, 113

HRLZS, 113

HRR, 114

HRRE, 115

HRREI, 115

HRREM, 115

HRRES, 115

HRRI, 114

HRRM, 114

HRRO, 115

HRROI, 115

HRROM, 115

HRROS, 115

HRRS, 114

HRRZ, 115

HRRZI, 115

HRRZM, 115

HRRZS, 115

IBP, 147

IDIV, 65

IDIVB, 65

IDIVI, 65

IDIVM, 65

IDPB, 147

ILDB, 147

IMUL, 64

IMULB, 64

IMULI, 64

IMULM, 64

IOR, 91

IORB, 91

IORI, 91

IORM, 91

JCRY, 121

JCRY0, 121

JCRY1, 121

JEN, 128, 131

JFCL, 120

JFFO, 120

JFOV, 121

JOV, 121

JRA, 134



580 Index of Instructions

JRST, 126, 129

JRSTF, 126, 131

JSA, 133

JSP, 131

JSR, 131

JUMP, 99

JUMPA, 99

JUMPE, 99

JUMPG, 99

JUMPGE, 99

JUMPL, 99

JUMPLE, 99

JUMPN, 99

LDB, 146

LDLPN, 268

LSH, 96

LSHC, 96

LUUO, 182

MAP, 271, 365, 380, 418, 430, 470

MOVE, 54

MOVEI, 54

MOVEM, 54

MOVES, 54

MOVM, 55

MOVMI, 55

MOVMM, 55

MOVMS, 55

MOVN, 55

MOVNI, 55

MOVNM, 55

MOVNS, 55

MOVS, 54

MOVSI, 54

MOVSLJ, 151

MOVSM, 54

MOVSO, 152

MOVSRJ, 155

MOVSS, 54

MOVST, 153

MUL, 64

MULB, 64

MULI, 64

MULM, 64

MUUO, 182

NMOVE, 235

NMOVEM, 235

OR, 91

ORBB, 91

ORCA, 92

ORCAB, 92

ORCAI, 92

ORCAM, 92

ORCB, 93

ORCBB, 93

ORCBI, 93

ORCBM, 93

ORCM, 93

ORCMB, 93

ORCMI, 93

ORCMM, 93

ORI, 91

ORM, 91

PMOVE, 204

PMOVEM, 205

POP, 139

POPJ, 140

PORTAL, 126, 131

PUSH, 138

PUSHJ, 139

PXCT, 272, 273, 386, 435, 471

RCTRLF, 287

RDADB, 278

RDAPR, 283, 443

RDCFG, 268

RDCSB, 267, 433

RDCSTM, 267, 434

RDCTX, 266

RDCTY, 212

RDCTYS, 212

RDEACT, 395

RDEBR, 264, 432

RDERA, 403

RDHSB, 441

RDINT, 440

RDIO, 189

RDIOB, 190

RDITM, 280

RDMACT, 395

RDPERF, 398

RDPI, 224, 409

RDPUR, 268, 434

RDSPB, 266, 433

RDTIM, 439

RDTIME, 281, 393

RDUBR, 265, 433



Index of Instructions 581

ROT, 96

ROTC, 96

RSW, 448

SBDIAG, 405

SETA, 90

SETAB, 90

SETAI, 90

SETAM, 90

SETCA, 92

SETCAB, 92

SETCAI, 92

SETCAM, 92

SETCM, 92

SETCMB, 92

SETCMI, 92

SETCMM, 92

SETM, 89

SETMB, 89

SETMI, 89

SETMM, 89

SETO, 93

SETOB, 93

SETOI, 93

SETOM, 93

SETZ, 88

SETZB, 88

SETZI, 88

SETZM, 88

SFM, 128

SIMIRD, 225

SKIP, 100

SKIPA, 100

SKIPE, 100

SKIPG, 100

SKIPGE, 100

SKIPL, 100

SKIPLE, 100

SKIPN, 100

SNAPR, 285

SNCTYS, 213

SNPI, 224

SOJ, 101

SOJA, 101

SOJE, 101

SOJG, 101

SOJGE, 101

SOJL, 101

SOJLE, 101

SOJN, 101

SOS, 102

SOSA, 102

SOSE, 102

SOSG, 102

SOSGE, 102

SOSL, 102

SOSLE, 102

SOSN, 102

SUB, 63

SUBB, 63

SUBI, 63

SUBM, 63

SWPIA, 229, 355

SWPIO, 229, 355

SWPUA, 230, 355

SWPUO, 230, 356

SWPVA, 229, 355

SWPVO, 230, 355

SYSID, 289

SZAPR, 284

SZCTYS, 213

SZPI, 224

TDC, 107

TDCA, 107

TDCE, 107

TDCN, 107

TDN, 107

TDNA, 107

TDNE, 107

TDNN, 107

TDO, 108

TDOA, 108

TDOE, 108

TDON, 108

TDZ, 107

TDZA, 107

TDZE, 107

TDZN, 107

TIOE, 189

TIOEB, 190

TION, 189

TIONB, 190

TLC, 106

TLCA, 106

TLCE, 106

TLCN, 106

TLN, 105

TLNA, 105

TLNE, 105



582 Index of Instructions

TLNN, 105

TLO, 106

TLOA, 106

TLOE, 106

TLON, 106

TLZ, 106

TLZA, 106

TLZE, 106

TLZN, 106

TRC, 105

TRCA, 105

TRCE, 105

TRCN, 105

TRN, 104

TRNA, 104

TRNE, 104

TRNN, 104

TRO, 105

TROA, 105

TROE, 105

TRON, 105

TRZ, 104

TRZA, 104

TRZE, 104

TRZN, 104

TSC, 109

TSCA, 109

TSCE, 109

TSCN, 109

TSN, 108

TSNA, 108

TSNE, 108

TSNN, 108

TSO, 109

TSOA, 109

TSOE, 109

TSON, 109

TSZ, 108

TSZA, 108

TSZE, 108

TSZN, 108

UFA, 85

UMOVE, 276, 437

UMOVEM, 276, 437

WCTRLF, 285

WRADB, 276

WRAPR, 282, 442

WRCSB, 266, 433

WRCSTM, 267, 434

WRCTX, 265

WRCTY, 212

WRCTYS, 212

WREBR, 263, 431

WRFIL, 357

WRHSB, 441

WRINT, 439

WRIO, 189

WRIOB, 190

WRITM, 279

WRKPA, 282

WRPAE, 397

WRPI, 223, 409

WRPUR, 267, 434

WRSPB, 266, 433

WRTIM, 439

WRTIME, 281, 392

WRUBR, 264, 432

XBLT, 61

XCT, 119

XHLLI, 118

XJEN, 127

XJRST, 129

XJRSTF, 127

XJRSTP, 128

XMOVEI, 56, 89

XOR, 90

XORB, 90

XORI, 90

XORM, 90

XPCW, 128

XSFM, 128



Index 583

Index

Accept an Interrupt, 219

Address Break, 276

Address Failure Inhibit, 277

Address Word, 40

Address, E�ective, 36

AFI, 277

Alignment

Byte, 145

APR, 282, 401, 457, 478

APR Error Conditions, Interrupt Control Block,

220

Arithmetic Processor (APR), 282

Arithmetic Shift, 94

Arithmetic Testing, 97

ASCII Characters, 499

Backplane Bus, 198

Bad Bus Cycle, 222

BAW, 203, 230, 266

Binary to Decimal Conversion, 158

Boolean Functions, 87

Boot ROM, 269

Bus Address Word, see BAW

Bus Busy, 257

Bus Cycle Types, 200

Bus Parity Error 0, 221

Bus Parity Error 1, 222

Bus PFail, 203

Bus Reset, 203

Bus Timeout, 204, 257

Bus Transaction, 198

Byte Alignment, 145

Byte Manipulation, 143

Byte Pointer

One{word global, 144

One{word local, 143

Two{word, 144

CAC, 272

Cache, 226

Data Parity Error, 222, 231

Modi�ed Bit, 231

Select Bit, 231

Tag Address, 231

Tag Parity Error, 222, 231

Valid Bit, 231

Cache Line Order Scrambled, 221

Cache Sweep, 228

Carry 0 
ag, 62

Carry 1 
ag, 62

CCA, 354

Character Representation, ASCII Code, 499

CLK, 483

Comparison Instructions, 98

Console, 207

Console Port, Auxiliary, 214

Console Terminal, 211

Console Terminal, Interrupt Control Blocks,

220

Console{fallback Page Fail, 262

Context Switch, 244

Core Status Table, see CST

CSB, 246, 266

CST, 246, 266, 373

Data Representation, ASCII Characters, 499

Decimal to Binary Conversion, 158

Device (subsystem), Interrupt Control Block,

220

Device, Internal, 217

Dismiss Interrupt, 220

EBR

XKL

-

1, 237, 244, 263, 264

KL10, 383

XKL

-

1, 240

E�ective{Address, 36

EPT

XKL

-

1, 219, 237, 254, 269, 278

KL10, 359, 361, 366, 369, 370, 376, 383

KS10, 415, 421

Executive Base Register, see EBR



584 Index

Executive Process Table, see EPT

EXTEND instruction, 35, 46, 51

Extended Instructions, 35, 51

Extended Range (G) Floating{Point, 32

FIFO, 222

FIFO full, 221

FIFO not empty, 221

Fixed{Point Arithmetic, 62

Fixed{Point Numbers, 29

Flag{PC Double Word, 121

Floating{Point

Extended Range, 32

Numbers, 31

Operations, 67

Full{Word Instructions, 53

G{Format (Extended Range) Floating{Point,

32

Global AC Address, 43

Global Indexing, 41

Half{Word Instructions, 110

Holding a Priority Level, 220

I/O Page Fail, 262

Index

Global, 41

Local, 41

Integer Arithmetic, 62

Interior of a String, 150

Internal Device, 217

Interrupt Acceptance, 219

Interrupt Control Block, 219

Interrupt in Progress, 220

Interrupt Request, 218

Interrupt Service Routine, 220

Interrupt Source, 217

Interrupt, Pending, 218

Interval Timer, 222

Interval Timer, Interrupt Control Block, 220

Jump Instructions, 97, 98, 126

Jumpers, Option, 215, 288, 569

Keep{Alive Timer, 281, 286, 568

Keep{Alive, Interrupt Control Block, 220

Level, Priority, 218

Linear Page Number, see LPN

Local Indexing, 41

Logical Shift, 94

Logical Testing and Modi�cation, 103

LPN, 246, 268

LUUOs, 182

MAC address, 335

Mark Address, 165

Mass{Storage Command Block, see MSCB

MCB, 335, 336, 338

Media Access Control Address, 335

MemA, 8, 28, 233

Memory Management, 263

Memory Parity Error 0, 221

Memory Parity Error 1, 222

Memory Status Table, see CST

Message Control Block, see MCB

Modi�ed Bit (cache), 231

MSCB, 299, 304

MTR, 392

MUUOs, 182

Need DC, 203

No Divide 
ag, 62

Non{Volatile RAM, 234

NVRAM, 234, 284

Over
ow 
ag, 62

Over
ow Trapping, 134

PAC, 272

PAG, 382, 467

Page Failure, 254, 378

Page Re�ll, 245

Page{Address Word, see PAW

Page{Failure double word, 254

Pager

Data Parity Error, 222

Disabled, 269

Tag Parity Error, 222

Translation Bu�er, see PTB

Paging, 235

Pattern Byte Number, 165

Pattern String, 165

Pattern String Address, 165

PAW, 245, 268

PC Double Word, 121

PC Section, 6

PC Word, 121

PCS, 272

PCU, 272



Index 585

Pending Interrupts List, 218, 219, 223

PFAIL{ backplane signal, 203, 222, 284

PI, 349, 453, 476

PI System, 217

Power Failure, 203, 222, 283

Previous{Context Execute, see PXCT

Priority Interrupt Control Block, 219

Priority Interrupt System, 217

Priority Level, 218

Program Control, 118

Program Counter and Flags, 121

Program Flags, 121

Program Request, 220, 223

ProgramRequest, Interrupt Control Block, 220

PTB, 238

Pushdown List, 137

PXCT, 272, 386, 435, 471

Representation of Characters (ASCII), 499

Request FIFO, 218

Request, Interrupt, 218

ROM{fallback Page Fail, 262

Rotate Instructions, 94

Scaling, 
oating point, 69

Semantic Transaction, 199

Shift Instructions, 94

Side e�ects, 52

Skip Instructions, 98

SPB, 246, 266

Special Page{Address Table, see SPT

SPT, 246, 266, 373

Stack Operations, 137

String, 149

String Editing, 163

String Instructions, 149

Subroutine Calling Instructions, 131

Subsystem (device), Interrupt Control Block,

220

System Active, 203

Target Instruction (of XCT), 119

Test Instructions, 103

Thermal Warning, 203, 222, 283

TIM, 392

Time{base, 222

Transaction

Bus, 198

Semantic, 199

Trap, 53, 134

Trap Instruction, 135

Trap Locations

Executive LUUOs, 183

Interrupts, 220

MUUOs, 185

Page Failures, 254

Traps 1, 2, and 3, 135, 136

Trap Vector, 136

Trapping, 134

UART, 222

UBR

XKL

-

1, 237, 244, 264, 265

KL10, 384

XKL

-

1, 240

Unassigned Codes, 53

Unimplemented Operations, 182

Unpaged Operation, 269

UPT

XKL

-

1, 237, 254, 269

KL10, 359, 361, 363, 366, 369, 370, 376,

378, 384

KS10, 415, 421

User Base Register, see UBR

User Process Table, see UPT

UUOs|Unimplemented Operations, 182

Valid Bit (cache), 231

XNI

-

1 Address Filter, 341


