TOAD-1 System

Architecture Reference Manual

(o] o] Jol] lelele] le/e/elelelele] Jo] I lele] lol] lele] lelele I }

special purpose computer design, manufacturing, and sales

XKL LLC
8420 154th Avenue NE

Redmond, Washington 98052
(425) 869-9050 FAX: (425) 861-7863

All material contained herein is proprietary to XKL LLC.

Printed copies of this manual often omit Chapter 4, the description of the older processors.

Part Number 50103—-00001

Revision 03

January 13, 1999

i

Copyright ©1995, 1996, 1997 XKL LLC.

This document contains information which is protected by copyright. All rights are reserved. Repro-
duction, adaptation, or translation without prior written permission is prohibited, except as allowed
under the copyright laws.

Restricted Rights Legend. Use, duplication, or disclosure by the United States Government
is subject to restrictions as set forth in subparagraph (¢)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013 for Department of Defense agencies, and
subparagraphs (¢)(1) and (¢)(2) of the Commercial Computer Software Restricted Rights clause at
FAR 52.227-19 for other agencies.

Warranty

The information in this publication is subject to change without notice. The
information contained herein should not be construed as a commitment by
XKL LLC.

XKL LLC makes no warranty of any kind with regard to this mate-
rial, including, but not limited to, the implied warranties of mer-
chantability and fitness for a particular purpose.

XKL LLC shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or
use of this material.

The information presented here is derived in part from DECsystem—10 DECSYSTEM-20 Processor
Reference Manual by Digital Equipment Corporation, Marlboro, Massachusetts, July 1980 (and
previous editions), with revisions provided by a Technical Newsletter dated June 1982. This material
is used here under license from Digital Equipment Corporation.

Notice:

The TOAD-1 System has been tested and found to comply with the limits for
a Class A digital device, pursuant to part 15 of the (U.S.) FCC Rules. These
limits are designed to provide reasonable protection against harmful interference
when the equipment is operated in a commercial environment. This equipment
generates, uses, and can radiate radio frequency energy and, if not installed and
used in accordance with the instruction manual, may cause harmful interference to
radio communications. Operation of this equipment in a residential area is likely
to cause harmful interference in which case the user will be required to correct the
interference at his own expense.

Instruction times, operating speeds, and the like are included here for reference only; they are not
to be taken as specifications.

This manuscript was prepared using character recognition software developed by Ibuki, Inc, Los Al-
tos, California, and editing and text formatting facilities of the DECSYSTEM-20. The final version

i
was prepared using the INTpX text formatting program and the PostScript document description
language.

PostScript is trademark of Adobe Systems, Inc.

The following are trademarks of Digital Equipment Corporation: CI, DEC, DECnet, DECUS,
DECsystem—10, DECSYSTEM-20, DDT, HSC, HSC-50, MASSBUS, PDP, PDP-10, TOPS-10,

TOPS-20, TOPS-20AN, UETP, and @mm@m

v

Preface

This manual explains the machine language programming and operation, for both instructional and
reference purposes, of the PDP-10 central processors used in the TOAD-1 System, the DECsystem—
10 and the DECSYSTEM-20. Basically, the manual defines in detail how each processor functions,
exactly what its instructions do, how it handles data, what its control and status information mean,
and what programming techniques and procedures must be employed to utilize it effectively. The
programming is given in machine language, in that it uses only the basic instruction and device
mnemonics and symbolic addressing defined by the assembler. The treatment relies on neither any
other software nor any of the more sophisticated features of the assembler; moreover the manual 1s
completely self-contained: no prior knowledge of the assembler is required.

The text of the manual is devoted entirely to functional description and programming. Chapter 1
discusses the general characteristics of the system, defines the formats of the words used for numbers
and instructions, and explains the conventions needed to program the system and understand the
examples given in the text.

Chapter 2 covers all operations regularly available to the user. It includes a general discussion of
user programming. Chapter 2 also defines the in—out instructions, even though they are available to
the user only in special circumstances; the discussion of the use of in—out instructions for handling
the peripheral equipment is not included. For completeness, individual instruction descriptions do
include special effects unrelated to user programming, but the detailed treatment of such effects is
left for the discussion of system operations.

Subsequent chapters describe the system operation features that provide the means by which a
system programmer can create software to manage a system that has many simultanous users. These
features, such as a priority interrupt system and a memory management system, are implemented
differently in the different processors. Chapter 3 discusses these features in the XKL-1 processor
and TOAD-1 System. Chapter 4 discusses these features in the earlier processors: the KL10, the
KS10, the KI10, and the KA10.

The first three appendices contain the basic reference tables for the programmer: word formats,
instruction and internal device mnemonics, ASCII code, bit assignments showing conditions and
status, and a shorthand presentation of instruction actions in symbolic form.

Although specific knowledge of Macro, the assembler, is not required to read this manual, this
information will usually be used in the context of assembly language programs. So, for the con-
venience of Macro users, and in an effort to standardize usage, symbolic definitions relating to
the TOAD-1 System hardware are made at various places in the text. These definitions appear in
typewriter font and they are collected in the Macro source file TDIDEF.MAC and in the universal

vi

file TDIDEF.UNV.

Caution

Every effort has been expended to ensure that this manual presents a complete descrip-
tion of the architecture of the TOAD-1 System, the XKL-1 processor, and the several
PDP-10 compatible processors. If there is anything you cannot find, please do not make
assumptions — write to:

TOAD-1 System Architecture Committee
XKL LLC
8420 154th Avenue NE
Redmond, Washington 98052

In some instances the result of an operation using particular operands or given in par-
ticular circumstances 1s indicated as being “indeterminate.” This means simply that no
guarantee is made of what that result will be. If you experiment and find a result to your
liking, you are hereby warned that, if you use the operation, your program may well not
be compatible with any other processor, with any other model of your processor, with the
same model of your processor at some other installation, or even with your own processor
running at some other time with a different version of the microcode or Monitor.

vil

Revision History

This revision history is provided for two purposes. First, a reader who has seen an earlier version of
this manual can quickly scan for the areas that have changed. Second, although this history includes
many items that are trivial, some items reflect engineering and architectural decisions which may
be of interest to readers.

31 August 1993 — 11 January 1994

e This revision list has been created and added to the manual.
e The Preface now explains TDIDEF . MAC.
e Each figure now displays the source file name from which it is derived.

e An accurate drawing of the CPU data paths, HRMF-TD1CPU, figure 1.2, has been provided.
Section 1.1.1 has changed accordingly but it is still preliminary.

e Minor correction to figure 1.10.

e The description of BLT and examples of its use have been changed to more clearly explain the
effects of BLT when extended addressing is used.

e Omitted the word “preferred” in describing “JFCL 0,” as a no—op.

e Corrected the description of the PC flags for the XKL-1 processor: no “Public” flag and no
“Previous Context Public” flag in Exec mode.

e Changed the specification of SFM, XJRSTF, and XPCW. In Exec mode, SFM and XPCW store
CAC, PAC, and PCS in the right half of the flag word. In Exec mode, XJRSTF and XPCW
set CAC, PAC, and PCS from the right half of the flag word.

e HALTRM added (to JRST) for the XKL-1 processor.

e Changed the specification of Arithmetic and Stack Overflow trapping. Provided an 8-word
trap data vector in the UPT and EPT for each kind of trap. Combined the User Trap/No—Trap
MUUO new PC words; combined the Executive Trap/No—Trap MUUO new PC words. “Trap
MUUOSs” no longer exist. Split 2.9.6 into 2.9.6.1 and 2.9.6.2.

e The description of byte pointers has been rewritten. One—word globals apply in all sections of
extended processors.

viil

The description of LDB now states explicity that when S is zero, LDB clears the AC.

Changed the specification of the LUUQO trap location in section 0 of the XKL-1 processor to
make it match the KL/KS.

Changed the specification of the MUUO block in the UPT: the first two words now look like
an exec—style double word saved PC (with CAC, PAC, and PCS stored in the right half of the
flag word). The next two words are the instruction image and . RDUBR data is no longer
stored in the MUUOQO block. Eliminated “Trap MUUOs”. Only Executive and User MUUOs
exist now. Added a subsection to 2.16 for LUUOs.

In Section 3.1.3, added description of Need DC and System Active.

In Section 3.1.4, the bus address word format changed. (This was announced on the disclaimer
page at the front of the 8/31/93 edition.) The 4-bit slot number, formerly adjacent to “D”,
has been moved right two bits. The two-bit gap between “D” and the slot number is reserved
for expansion of the slot number field. Corresponding changes to the immediate page pointer
format in 3.6.1.4 and in 3.6.1.2 have been made.

“Non-existent memory trap” has been replaced by “page trap with a page—fail word indicating
a bus timeout.”

No microcode implementation of the material described in 3.2.2.3, Console Micro—command
Mode, has yet been attempted. This material is highly susceptible to change. The Disable
command has been deleted: the function is accomplished via Enable with a null password.

An implementation of BOOT is partly complete. There are many more commands than those
mentioned in 3.2.4, but they will be described in a different document (or perhaps in an
appendix to this document).

In 3.2.5, the section in which the BOOT ROM is addressed is 10 (octal).
The old subsection 3.2.6 has been removed. There is no BOOT RAM.

In 3.2.6 (formerly 3.2.7), various locations in NVRAM have been assigned.
Subsection 3.3.7 describing the Interrupt register has been added.

In 3.3.8 (the former 3.3.7), SIMIRD instruction has been added.

In 3.4.3, the cache diagnostic instructions data formats have been changed to account for the
movement of the slot number field.

In 3.6.1, figure 3.2 has been changed to reflect the MUUO block in the UPT, the Executive
and User MUUO new PCs, and the User and Executive trap vector blocks. (These are in the
UPT except the Executive trap vector blocks are in the EPT.)

Table 3.2 (in 3.6.1.6) has been updated with additional (reordered and renamed) page—failure
codes.

The data formats for the Pager Diagnostic instructions have been changed to reflect the shifted
position of the slot number field in the bus address word.

The SYSID instruction has been added to 3.6.2. The data formats for WREBR, WRUBR, etc.
have been changed to reflect the shifted position of the slot number field in the bus address
word.

1X

e In 3.6.2., changed format of RDCTX/WRCTX to put the CAC and PAC fields in bits 18-23,
to conform with SFM.

e The description of pager—disabled mode and system initialization in 3.6.2.1 has been enhanced.
Even while the pager is disabled, traps are possible. Therefore, it is mandatory to set up a
vestigial EPT/UPT to catch them. (Generally, that is done by BOOT.) The starting address
of BOOT, 10003000 has been documented.

e Time Base locations in MemA have been assigned. The syncopated clock is documented in a
footnote.

e In 3.8.2, WCTRLF and RCTRLF have been added.

e In 3.11, many changes have been made to the description of the XRH-1 Mass—Storage Interface
Processor. The Communications Region has been developed. The format of the Mass—Storage
Control Block has been changed.

e In 3.12, Status Read from Address 1 has changed considerably. Packet snoop registers have
been introduced. The boundary between the control registers and the data register was moved.
Control register assignments were revised. The Message Control Block format has been up-

dated.

e Appendix A.2.1 has been updated to reflect the additional instructions SYSID, WCTRLF,
RCTRLF, and SIMIRD. The spelling of RDTIME was corrected.

e Appendix A.3 has been changed to reflect the addition of the instructions mentioned above

and HALTRM. The spelling of RDTIME was corrected.
e The index has been enhanced.

e The year has been changed in the copyright notice on page 1.

12 January 1994 — 8 October 1994

e XJRST has been documented. It is implemented in the KL.
e The EXTEND instruction has been added to the index.

e The names of the former MS%xxx symbols, defined for the XRH-1, have been changed to MX%xxx.
This eliminates a confict with some MONSYM names for the MSTR JSYS. Likewise .MSxxx and
MS.xxx have been changed to .MXxxx and MX.xxx, respectively.

e Additional symbolic names for MemA locations were defined.

e Request to Send has been added to the signals controled via WCTRLF. The Need DC and
System Active Light control bits have moved.

e The description of the virtual memory space created by Boot for programs that it loads has
been revised and expanded. Boot does not create a CST; programs loaded by Boot are un-
cached until they create a CST for themselves.

o In the description of the cache, explicit reference is made to the need for the CST to exist and
to specify that a page is cacheable in order for data to be cached

The description of the CST (in 3.6.1.3) has been corrected: the CST must be aligned on a
page boundary.

The location of the sense and status bytes in the MSCB have been exchanged. MX%SS and
MXY%SH have been changed accordingly.

The wording in the description of SFM has been changed. The semantics are not changed.

A new privileged instruction, LDLPN, has been defined. Bits 9-35 of C(E) are interpreted as a
PAW; the PAW is converted to an LPN, and the LPN is stored in AC. If the conversion fails,
a page—failure trap occurs with page—fail code PF.NLP.

Symbolic names have changed. EPT locations formerly EP%xxx have been renamed EP.xxx.
This is to follow a general monitor convention that field names and bit names include “%” but
location names within structures include “.”. Also affected: UP.SS0.

The Keep—Alive Trap Control Block has been added at EPT locations 50-53. Keep—Alive
monitoring is turned on and off via WCTRLF. The Keep-Alive “timer” is reset by WCTRLF.

Wrote specification for CMOVE and CMOVEM instructions, analogs of PMOVE and PMOVEM,
which look for the data in the cache before trying memory. [This specification was removed

on 10/19/94]

Changed WRCSB to allow bit 35 of the bus address word to specify the cachability of the
CST. The is required to remove circularity in defining the cachability of pages. (This is
not implemented in the prototype processor: CST, SPT, map pages, EPT and UPT are all
uncached in the prototype.) [However, see 9/14/94.]

In the description of the XRH-1, clarified that system error report, MX.CSX, returns an ex-
planatory byte in Status.

Assigned names to bits in the interval timer.

Added to the definition of trapping. A trap to executive mode loads the PC flags from the
New Flags halfword; it loads CAC and PAC in the machine context from bits 18-23 of the
same word; it loads PCS from the old PC. A trap to user mode loads PC flags from the New
Flags halfword; the right half of that word is ignored: machine context is unchanged.

Added to the definition of MUUOs. An MUUO will store the present machine context (CAC,
PAC, and PCS) in the right half of the flags word in the MUUO block in the UPT. The new
machine context will set PCU according to the state of User in the old PC flags. No other PC
flags are set. The new machine context will have PCS set to the section number specified in

the old PC.

Added to the definition of PXCT. Made explict mention of the three quantities that define the
previous context: PCU, PCS, and PAC.

Reserve MSCB fields for the XRH-1. Change Buffer Capacity field to Byte Count.

Defined formats 2-7 in the MSCB as permuations of 32 bit/36 bit mode and cache look and
cache load. [This scheme was abandoned in favor of an explicit command to turn on caching
for a particular target.]

x1

Figure 3.2 has been changed. In UPT, 0-420 and 600-777 are marked as “Available to Soft-
ware.” The MUUO handling has been revised to make the MUUO blocks (executive and user)
identical in format to the trap blocks. The MUUO writeup in chapter 2 and figure 2.3 have
also changed.

In Table 3.2, page—failure codes PF.OFF and PF.NLP have been changed to show H=1. With
this change, codes in the range 1-27 all have =1, and codes 0 (no failure) and 40-65 have
H=0.

4/4/94. Added a sentence to MAP explaining that the result when £ = 1,,0 is that of virtual
page 1000 (and not the meaningless mapping of AC 0).

4/16/94. Added a sentence to XJRSTF explaining that, in exec mode, this instruction restores
CAC, PAC, and PCS from the right half of the word addressed by .

4/22/94. Clarified warning text regarding byte pointers. Stated also that a byte pointer is
interpreted in the context of the section from which it is read.

4/25/94. In Table 3.2, page—failure code 0, no failure, is now marked as reserved for software
use. At XGCCHK, TOPS-20 simulates a page—failure with code 0 to force a garbage collection.

5/3/94. The SWPIA instruction does not clear the “modified” bit in the cache lines. To the
extent that this is necessary, do it via the DWRCSH instruction.

5/5/94. Additional values were defined for XRH-1 system error report.

5/8/94. A footnote has been added to report that the K10 fails to provide the correct result
in ADJBP when AC initially contains 400000,,0.

5/12/94. Defined unused fields in the data supplied by the program to DRDCSH as ignored by
hardware; defined fields returned by DRDCSH as zero. The corresponding changes have been
made in the descriptions of DRDPTB and DWRPTB.

5/19/94. The appendix “Processor Compatibility” has been moved to Appendix C and con-
tains some new material.

5/20/94. Added a definition, AM%CAP, the capacity of MemA in words, 8192.

5/24/94. Added a paragraph to XCT describing the effect of executing an instruction in a
different section. Also, added a footnote regarding XCT of a trap instruction, JSYS, or MUUO
in a section other than the PC section.

5/29/94. In 2.9, the numeric opcodes for JFFO and JFCL have been corrected.

6/7/94. In the description of the XRH-1 and MSCBs, the name of Command Block Status 0
when returned by the XRH-1 has been changed from “SCSI Command Complete” to “SCSI
Command was Performed.” This is to emphasize that the command has been attempted and
that the success or failure of the command is indicated by the contents of the status field. See
also changes to Command Block Status 3, “SCSI Error Status Report”, in which the XRH-1
reports that the SCSI Bus and/or protocol failed, as distinct from a report from a specific
device.

6/12/94. MSCBs to read and write the DRAM have been defined. These are intended to
diagnose the DRAM and the path between system memory and the XRH-1.

x11

6/20/94. Clarified that the SPT contains entries in the format of a Page Address Word.
6/27/94. Corrected the definition of WRSPB in TDIDEF.MAC.

6/27/94. The spelling of WCTRLF and RCTRLF in the table in Appendix A (A.2.1, AC field
decodes for APRO, APR1, APR2, and APR3) has been corrected.

6/27/94. Added RDCFG instruction to read per-slot device and memory configuration infor-
mation in a way that keeps the monitor independent of the implementation.

6/30/94. Added new codes to MSCB for the System Error Report. Added XRH-1 device
status register 2, the BAW of the most recent system bus error. Added four error flags to the
status word 0.

7/01/94. Declared that silly combinations of bits in WRPI are undefined.
7/03/94. Shuffled the location of the various flags in WCTRLF and RCTRLF to make them

easier to microcode.
7/05/94. Shuffled bits in the right half of the interrupt register.

7/05/94. Rewrote Section 3.4.9 “Special Considerations” regarding interrupts. Removed ref-
erences to “trap instructions” as not pertinent to the XKL-1 processor.

7/05/94. Added WRTIME to initialize the timebase in an implementation—independent man-
ner.

7/17/94. Symbolic names have been added for the offsets within the UPT that address the
LUUO, Executive MUUQO, and User MUUO blocks. Symbolic names have been added for the
offsets within the Trap 1, Trap 2, and Trap 3 trap vector blocks. Symbolic names have been
added for the offsets within the EMUUQO and UMUUOQO blocks; the same names apply to the
offsets within the trap vector blocks. Symbolic names have been added for the six UPT offsets
associated with page—failure traps.

7/17/94. Some controversy has arisen regarding MUUOs and traps.

On MUUOQ, will PCS be set to the PC section of the MUUO or will it be set to the section
from which the MUUOQO was fetched? The former is easier, the latter is more analogous with
how XCT performs. (The question arises only when a XCT in one section targets an MUUO
in another section.)

Can we microcode the machine so that all the information pertaining to a trapping instruction
can be saved in a trap block? That would mean preserving the opcode, AC, and F during the
execution of every instruction so they could be saved in the trap block before trapping. If that
is done, we would not need TRAP 1 and TRAP 2 flags anymore. Otherwise, we can not save
that info in the trap block, so we might as well go back to having trap instructions instead of
trap vector blocks.

As of 7/17/94 the manual calls for the more difficult implementation. [However, see 7/22/94
and 10/4/94.]

7/21/94. The locations of the LEDs controlled by WCTRLF have been described.

7/22/94. Redefined trap blocks, MUUO blocks, and page—failure block. In all cases, 8 words
have been reserved for the block, the last four of which are essentially an XPCW block, i.e., a
double word in which to store the old flags, context, and PC and a double word from which to

xiil

load new flags, partial new context, and the new PC. (The partial new context is composed of
CAC and PAC. PCS is set by the processor to a value that is still controversial.) [See 10/4/94]

The trap blocks no longer contain an image of the trap instruction.

The MUUO block image of the the MUUQO now puts the opcode and AC field in the left half
of the word.

An illustration of the page—failure block has been added.

Figure 3.2, TOPS-20 Process Table Configuration, now omits details that are recorded else-
where in the text. Added cross—references in the figure.

7/22/94. Described new XRH-1 functionality. Device Control word 0 now includes a Bus
Reset bit and a field in which to specify the number of the affected bus.

7/28/94. A value of zero in the Executive Base Register is invalid. A value of zero in the User
Base Register is invalid. On initialization, the EBR and UBR are zero.

When the Executive Base Register is invalid, executive traps (arithmetic, PDLOV, Trap 3)
are disabled; all other implicit references to the EBR (e.g., interrupts, Enable Paging, etc.)
will halt the processor.

When the User Base Register is invalid, user traps are disabled; all other implicit references
to the UBR (e.g., page—failure, MUUOs, etc.) will halt the processor.

The UBR should be set up via WRUBR before the EBR is set up.

7/28/94. The symbol formerly AMYCAP, the capacity of AMEM (number of words), has been
renamed AM.CAP.

8/3/94. The Keep—Alive timer has been assigned its own opcode, WRKPA, an immediate
operation to set the value of the time period. Keep—Alive facilities in WCTRLF have been
expunged (and the diagram was updated 5/2/95). The locations AM%KPV and AMYKPI have
been removed and AMY%KPA has been added.

8/31/94. Page—failure traps and codes have been changed.

A new bit, N, meaningful only when H=0, has been introduced. (It overlaps B, valid only
when H=1.) When N is 1, the second page—failure word is not determinate. This code is
used in codes 2, 5, and 6, which are now marked H=0, N=1. These were codes for hardware-
detected programming errors: illegal indirect, pager is off, and LDLPN failure). As these are
programming faults, they are now reported as “soft” failures.

Address Failure and Tllegal Address (codes 1 and 3, respectively) have been recategorized as
“soft” failures, H=0, N=0.

When H=1, the failure is hard; e.g., a parity error, bus timeout, bus busy, etc. These failures,
mostly unexpected by the software, are not generally a user-related fault. Hence, these trap
through the EPT instead of the UPT (same locations though). One further difference is that,
if the PI system was on at the time of the trap, it is turned off and bit 13 of the saved flags
and context word will be set to 1. XJRSTF in exec mode will restore PI on from this flag bit,
if set. [However, some of these changes were reversed on 9/27/94.]

The page—failure code field (PFAFLC) has been moved right four bits (to 12-17) for the sake of
being able to read it in octal.

9/9/94. An explanation of how E + 1 is calculated when the in—section component of E is
T77777 has been added to the explanation of DMOVE. Reference to that explanation has been
added to other instructions that have double word and multi-word operands.

x1v

9/13/94. Symbolic names have been added for bits and fields in the CST word. The bits are
CSTY%WB, CSTYCB, and CST%MB; the fields are CST%SC (state code) and CST%AG (age field of state
code).

9/13/94. Corrected the description of the XNI-1 Control Registers, addresses 0 and 1. The
description incorrectly referred to bits 1-4 as containing a slot number; in bus address word
format (since 8/31/93), the slot number is in bits 3-6.

9/14/94. A new scheme for setting the cacheability of references made by the page refill mi-
crocode has been developed. The microcode page refill procedure makes refrence to memory
in terms of bus addresses, not virtual addresses. In virtual references; the pager entry deter-
mines the cacheability of the reference from data in the CST. Because the refill is a physical
reference, the CST data is not immediately available. Logically, it is sufficient to have only a
special mechanism to define the cacheability of the CST. However, for performance reasons,
we also provide special mechanisms for accessing the SPT, EPT, and UPT:

— In WRCSB, bit 0
— In WRSPB, bit 0

In WREBR, bit 9
— In WRUBR, bit 9

~—~

CS%CSH) of the data word, if set, means the CST is cacheable.
SP%CSH) of the data word, if set, means the SPT is cacheable.
PGYCSH) of the data word, if set, means the EPT is cacheable.
UBYCSH) of the data word, if set, means the UPT is cacheable.

|
~~

—~ T

9/15/94. The XRH-1 format codes have been interchanged and augmented.

9/19/94. The contents of £ must be zero at the start of any cache Sweep All instruction; C(F)
may be changed by a sweep all instruction that is interrupted. [Withdrawn 3/13/95.]

9/26/94. In immediate pointers (also in Page Address Words), we have defined that zero
in bits 5—7 means “in-memory” and non-zero means not in—memory. We allow bit 8 to be
used by software. In not-in—memory pointers, mentions in this manual of “bits 4-35” being
available to software have been corrected: bits 8-35 are available subject to bits 57 not all
being zero.

9/27/94. In an MUUOQO, bit 35 of UP.UOP (previously undefined) will be set to 1 if the EA
Calculation for the MUUOQ resulted in a global address. Thus, the program that responds to
the MUUO can know whether or not the MUUO specified a global address.

9/27/94. Rescinded a portion of the change announced 8/31/94. In hard page—failures, the
condition of the PI system (on or off) will be reported in bit 0 of the UP.PFF word. The bits
called B, N, and Y in the page-failure word and in the MAP word have been removed.

9/28/94. Added page—failure code PF.ZPC, Zero PC. Marked the three Write Not Allowed
codes with V' = 1. Changed the Cache Line Scrambled definition to set B = 0 and to delete
mention of Y. Added new page—failure bit PF.RTP, recursive trap, a modifier to hard failure
codes.

10/3/94. Changed page—failure codes per new microcode specification. Added codes distin-
guishing cache data/tag parity errors physical/virtual. Deleted the code for MemA parity
error; the condition causes a microcode halt/reboot.

10/4/94. Defined that MUUOs shall set PCS to the PC section from which the MUUO is
executed. This is compatible with what the KL10 does. Nothwithstanding the failure to be
analogous with how XCT computes addresses local to a target instruction in a different section,
this method is simple, easy to remember, and implementable.

XV

e 10/6/94. In the description of the use of the A field in PXCT in the XKL-1 processor, the text
has been updated to mention the use that XBLT makes of bits 11 and 12.

e 10/8/94. Split instruction index from main index in preparation for reissue of the hardcopy
version.

18 October 1994 — 7 July 1995

e 10/18/94. Editorial corrections to the manual published 10/8/94: broken reference to figure
1.2; removed bits N, B, and Y from the description of the first MAP word and the first
page—failure word (this completes the change started 9/27/94).

e 10/18/94. Added a new instruction, XJRSTP, JRST 11,. E points to a three word block. The
first word contains the flags and context; the second the new PC; the right half of the third
word provides data for WRPI. This instruction provides atomic restoration of PI, PC, flags,
and previous context, for DDT.

e 10/19/94. Tnstructions CMOVE and CMOVEM have been deleted. The definitions of PMOVE
and PMOVEM have been changed to reflect that they use the cache when making references
to memory pages that are defined as cacheable in the CST.

e 10/19/94. Changes have been made to DRDCSH and DRDPTB. These instructions no longer
cause parity-error traps when parity errors occur. Instead, parity information is reported as
part of the returned data.

e 10/19/94. Changed the name of page—failure code PF.TTM to be PF.P2M: “Pager Two Tags
Matched”. Added new page—failure codes for “Write Not Allowed by CST” and “Two Cache
Tags Matched”.

e 11/2/94. The sense of the error bit in XNI-1 device status address 0 has been inverted: the
bit is 0 to denote an error.

e 11/3/94. Corrected the Global Index Register figure in Appendix A. Bits 1-5 need not be zero.
An index register used in a global indirect word is always global: bits 635 are used by the
hardware; bits 0-5 are ignored. In Chapter 1, added explanatory words to the description of
Global Indexing and Local Indexing.

e 11/7/94. Revised the description of the XRH-1 and the CPU’s communication with it. Defined
additional status bits in reading device status address 0. Defined techniques for reading SRAM
and DRAM. Defined Target Blocking, Target Blocking Control commands, and Target is
Blocked status. Defined a format bit as controlling the interpretation of .MXDBA as a Command
List Address or Data Buffer Address. Deleted use of Message In bytes. Added subsubsections
on Error Reporting, Error Handling, Long Transfers, and Unaligned Transfers.

e 11/8/94. Removed “I/O Instructions” from the list to which PXCT does not apply: there are
no I/0 instructions. Added UMOVE and UMOVEM to the list to which PXCT does not apply.

e 11/9/94. Added a warning in WRPI regarding setting the “write bad parity bits” while the PI
system is on. (See 11/23/94.)

e 11/9/94. More XRH-1 changes: the Byte Count field returns the residual count, i.e., the count
of bytes allocated for the command but not used for data. The description of the contents and
handling of Report Asynchronous or Error Status MSCBs has been changed and elaborated.

XVl

11/9/94. Network interface Device Status Address 0 format has been changed. When other
device subtype fields were expanded, this device was overlooked. The subtype has expanded
from 3 bits to 6 bits. The Hardware Revision and Microcode Version fields have been shifted
to the right by 3 bits, obliterating three formerly unused bits at 18-20.

11/11/94. Added bits in page—failure word. PF%VMA means the second word is a virtual
address; PFJPMA means the second word is a bus address word. PF)DIA, available for hard
failures only, means that additional, implementation—specific diagnostic information has been
stored (at an as—yet undefined location). “Implementation—specific” means that the format of
this information is not specified as part of the architecture. (A revision of the page—failure
codes, coalescing most hard failure codes, is in the works but not yet implemented.)

11/16/94. Data format changes have been made in RDAPR and WRAPR. Added two flags,
APY,SHT and AP%INT, by which the console requests system shutdown and kernel DDT (an
unsolicited breakpoint), respectively. Moved the NVRAM Battery Low flag to bit 28 of RDAPR.

11/16/94. Described XRH-1 changes. Renamed error status .MXMSC to .MXIES, internal error
status. Documented the ASC field corresponding to these codes.

11/17/94. Although MAP does not reference memory, it interprets its effective address as a
memory address. Therefore, PXCT henceforth shall treat MAP as a memory reference instruc-
tion.

11/23/94. Page—failure PF.ZPC now reports the BAW of the word from which the zero PC was
fetched.

11/23/94. Data for diagnostic read/write cache/pager have been rearranged. The “write bad
parity bits” have been removed from WRPI.

11/23/94. CLRPT may now be executed under PXCT for the purpose of clearing user entries
in the pager.

11/28/94. Provided new diagrams, bits, text for DRDCSH, DWRCSH, DRDPTB, DWRPTB.
Write bad parity tag/data was removed from the diagram for WRPI.

11/30/94. The descriptions of SKIP, TDN, and TSN have been rewritten to emphasize that,
although the instruction is overtly a no—op, the instruction reads memory and may cause side
effects from the read. Likewise, the side effects of MOVES have been emphasized. A paragraph
at the start of Chapter 2 has been added to explain that the instructions are described in terms
of their overt effects and that side effects not visible to the user (e.g., pager refils, CST updates,
changes to the cache contents) are to be expected.

12/2/94. Changed APRID and SYSID data formats. APRID data has expanded to 3 words.
Device Status Read directed to the XKIL-1 processor at addresses 0, 1, and 2 now return the
APRID data. Device Status Read directed to the XKL-1 at addresses 3—-7 now return the data
in MemA locations 323-327, respectively.

12/3/94. The text has been changed to emphasize that the response by the XKL-1 to Device
Status Request is handled by microcode, not by hardware. The CPU does not respond with
alacrity to Device Status Request.

12/7/94. Added comments to some TDIDEF.MAC entries.

xVil

12/7/94. Cleaned up definitions to synchronize with new TDBOOT and Microcode. Moved
some NVRAM locations: magic numbers, password, default boot path name, and default
dump path name. Sixty—four locations at the high end of NVRAM have been reserved for
microcode. Allocated some MemA locations for page—failure diagnosis; moved others to be
consistent with new allocation; aligned MemA locations to UPT/EPT offsets. Decomitted
some MemA locations. Collapsed the hard page—failure codes to four basic codes, with details
of “other hard failure(s)” to be decoded from other information.

12/19/94. In the appendix, corrected the spelling of the mnemonics for the compare string
(CMPS—) instructions.

12/28/94. Added E=0 to the description of RDCFG.
1/13/95. Changed the date of copyright notice.

1/13/95. Updated the description of the memory’s response to device status requests. Docu-
mented how the ID ROM is read. The board serial number is held in the first three bytes of
the ID ROM.

1/13/95. PXCT documentation change: Immediate instructions are now documented as re-
quiring the A field of PXCT to be either 4 or 14. This is the same as is documented for
“general” instructions.

1/30/95. Local Address Word, a term used in Chapter 1 but not defined, has been defined.

Some wording changes were made to the extended effective address calculation.

1/30/95. Added a footnote concerning KL.10’s handling of S=0 in ADJBP: it gives a No Divide,

etc. 1In this case.

1/31/95. Revised the description of the XRH-1’s MX%XINV bit in Device Status at address 0.
When set, it now means that the in—-memory status is stale.

2/1/95. In RDCFG, the contents of AC+1 have been defined for the case when the slot contains
an XRH-1. For an XRH-1, documented that the 200 bit in a SCSI ID byte means to take the
corresponding channel offline.

2/3/95. In the XRH-1, documented Device Control Request to address 3: the program pro-
vides a BAW and the XRH-1 returns its main status word at the specified address. Further
emphasized the potential bus timeout and/or busy problems of Device Status Request to the
XRH-1. Added two more miscellaneous error codes: “emulex gross error” and “emulex rejects
an 1llegal command”.

2/20/95. Added TDIDEF definitions for memory and XNI-1 registers.
2/22/95. Redefined SWPIO, SWPUO, and SWPVO. All now require that bits 27-35 of the

contents of £ (a BAW) must be zero when the instruction is started. Contents of £ may be
changed by the execution of this instruction.

2/25/95. Redefined NA%CSN as 77, address of XNI-1 serial number register.
2/25/95. Corrected a typo in the description of MOVSRJ.

XVl

3/2/95. Added to documentation of the string instructions. In MOVSO and MOVST, empha-
sized that if the instruction terminates because of a source data condition, the source byte
pointer addresses the byte that caused the termination and the destination byte pointer ad-
dresses the last byte that was stored successfully. In CMPS—, repeated the notice that the
comparision is on unsigned bytes. (This affects only comparisions of 36-bit bytes.) Revised
footnotes whose numbers were skewed.

3/2/95. Corrected the description of the interval timer to refer to locations 100-103 of the
EPT.

3/2/95. Corrected the description of the flags in WCTRLF and RCTRLF for the third prototype
board.

3/10/95. Cleaned up diagrams, etc. to reduce the number of complaints from TEX.

3/13/95. Revised the descriptions of the Sweep All instructions. The instructions are inter-
ruptable, but they save their state internally, not externally. Caveats have been added warning
about executing any Sweep All instruction at interrupt level or in a page—failure trap handler.

(See also 4/3/95.)
Added Machine Check page—failure trap code.

Added material describing the XRH-1’s processing of Report Asynchronous or Error Status
MSCBs. Added material regarding the XRH-1’s cache. Described the Bus Bad bits in Device
Status Read at address 0.

4/3/95. Revised definiton of SWPUA and SWPVA.If a SWPUA is interrupted and the interrupt
program performs another SWPUA, then the interrupt program’s SWPUA will start at the
beginning and perform the entire sweep; after the interrupt program dismisses, the interruped
SWPUA will terminate immediately. The CPU handles an interrupted SWPVA similarly.

The rationale for this is that the interrupt program has requested a complete sweep, which
might as well be started from the beginning; after that sweep is complete, it may be presumed
that the interrupted sweep is logically complete as well.

4/5/95. Added bits to WCTRLF for dump, diagnose, and reboot functions in TDBOOT.
4/6/95. Clarified that XBLT is legal in section 0 and that PXCT of XBLT ignores PCS.
4/7/95. Clarified that the XRH-1 will not alter the slot number in the BAW that describes a

transfer; hence, all words specified by a BAW (or by one command of a command list) are in
the same slot.

4/9/95. Added AP%IOR, I/O Reset, to WRAPR. The effect is to clear all APR flags, to clear

the Interval Timer, and to clear selected bits in the Console Terminal Status.

4/14/95. The name “MSIP” has been changed to XRH-1, corresponding to the name on the
board edge. A new returned CBS field in the MSCB has been added: Bus is Being Reset, to
ald in restarting MSCBs that were not finished due to a SCSI bus hang.

4/28/95. Revised the description of WRITM.

4/30/95. Added an explicit description of the main status word of general backplane devices to
the explanation of the backplane. Expanded DS%TYP to be three bits; shortened DS%STY to five
bits. Added DS%TST, the symbolic name of the device and subtype fields together. Removed
MXY%STP, the subtype field for the XRH-1, in favor of DS%STY.

X1X

e 5/1/95. Added an appendix containing program—generated documentation for TDBOOT.

e 5/2/95. Added an NVRAM location for auxiliary terminal port parameters. Added a flag in
WCTRLF and RCTRLF to enable the auxiliary terminal port.

e 5/17/95. Defined names for XRH-1 cache control functions.

e 5/17/95. Renamed and repositioned the flag in WCTRLF that enables the auxiliary terminal
port. Enabling the port lights the corresponding “Port OK” LED.

e 5/18/95. Added a note to WRAPR: it does not sequence through selected options.
e 5/18/95. Added CF%KPA to WCTRLF and RCTRLF: Keep Alive counting enable.

e 5/30/95. Reorganized the discussion of page—failure. Described the implementation—specific
information stored by the XKL-1 for a hard page—failure.

e 6/1/95. Renamed “TD-1" to be “TOAD-1 System” or “XKL-1 processor”, as appropriate.
e 6/12/95. Updated the discussion of XNI-1 to reflect the changed status word.

e 6/12/95. Renamed “keep—alive trap” as “keep—alive interrupt.” The keep—alive interrupt is
effective regardless of the state of the PI system; it does not change the state of the PI system.
We expect to revisit keep—alive.

e 6/13/95. Removed XNI-1 commands for port, serial number; and microcode version number.
These will be replaced with fixed locations in XNI-1 memory from which these values can be
read. The command reservation scheme will be revised also. RWF will write new descriptions
of the Message Control Blocks, since they differ from the description.

e 7/6/95. Replaced section 3.2, Initialization and Console, with sections 3.2, Console, and 3.3,
Initialization.

e 7/7/95. Added a warning about bus writes to empty slots. Made minor edits to figures.
e 7/7/95. Prepared the 7/7 printing.

9 July 1995 — 12 October 1995

e 7/19/95. Figures for the KI10 and KA10 section of Chapter 4 have been created.

e 7/21/95. The description of the Word Read Response bus transaction mentions that MISC[7] is
the parity error signal. The description of the Status Read Response bus transaction mentions
that MISC[7] should be driven to 0 by the responding device.

e 7/26/95. Documented the purpose of the option jumpers; added “jumper” to the index.

e 8/15/95. Documented XRH-1 restrictions in long transfers: the first word of a long transfer
command list must be aligned to the first word of a memory line; the address in a “jump”
command must likewise be aligned.

e 8/19/95. Corrected an inconsistency in the definition of a global stack pointer. In a global
stack pointer, bit 0 is 0, bits 1-5 are unspecified, and bits 6-17 are non—zero. Changed a figure
in the appendix.

XX

8/21/95. Corrected a note regarding MOVNI. MOVNI AC,0 sets both Carry 0 and Carry 1.

8/27/95. After having to re—derive the algorithm twice, the footnote on DIV has been ex-
panded.

9/1/95. Defined “Release Cache Data” command in XRH-1. Tt pertains to recovery of cached
operations that could not be completed without error.

9/5/95. Updated the table to decode the status of MSCBs returned because of a bus reset.
9/6/95. Defined MSCB for negotiating synchronous transfers.

9/12/95. Defined Environmental Sense bits in RCTRLF (read—only). The AC Fail signal on
the backplane is actually (AC Fail) OR (Thermal Warning).

9/13/95. Added a new XRH-1 error message: CBS field invalid.
9/13/95. Documented console parameters.
9/21/95. Documented restrictions on XRH-1 unaligned transfers.

9/28/95. An explanation of how to do transfers of less than integral disk sectors has been
added to the XRH-1 documentation.

9/28/95. Added further clarification of the interval timer.
10/4/95. Changed XRH-1 definitions of soft reset; added quietus reset.

10/6/95. Added definition of .MDERR memory error register.

17 October 1995 — June 1996 (Revision 01)

10/17/95. Updated a figure in the XRH-1 description to show the quietus reset bit.

10/24/95. In the description of the GFLTR and DGFLTR instructions,; supplied correct values
for the inserted exponents.

10/31/95. Added further explanation of the behavior of PXCT when the EA calculation is in

current context and data reference is in previous context.
11/29/95. Added material on the behavior of the XRH-1 as a target.
1/2/96. Editorial revisions to prepare Revision 01. Changed the date of the copyright notice.

1/17/96. The format of data stored in hard page—failures has been revised. EPT word 501
now contains page—failure data, (offset UP.PFD), specifically, the contents of the “D to D” latch
at the time of the failure. The state of the PI system (PION) prior to to the failure is stored
in EPT word 502, bit 11.

Temporarily, 1B1 in microcode options (“exotic microcode”) will be set to 1 to indicate the new
microcode. When we upgrade all systems, we will decomission the bit. (Meanwhile TOPS-20
needs to know where the PI state was stored.)

xx1

4/3/96. XRH-1 documentation changes: When a target is blocked, all MSCBs are returned
marked “Target is Blocked”; the former exception for a Request Sense command is removed.
When a “Clear Target is Blocked” command is received, the XRH-1 will force any pending
MSCBs back to the CPU before returning the “Clear Target is Blocked” MSCB.

4/24/96. In an extended KL10, an LUUO from a non-zero section in exec mode uses the
contents of EPT location 420 as the exec address of a 4-word LUUO block, by analogy of the
behavior in user mode. Formerly, the manual said that an LUUO trapped as an MUUO. The
behavior of the XKL-1 has been changed to correspond to the actual behavior of the KL10 in
this case.

4/29/96. The section on the XNI-1 has been replaced.
5/2/96. Added two more flags to WCTRLF and RCTRLF: CF%ATO (automatic), and CF%DBG

(debug). These to increase the amount of information that TDBooOT can pass to a newly—
loaded monitor.
5/3/96. Miscellaneous cleanup. Tied up some loose ends.

Moved the definitions of MemA and NVRAM locations to an appendix: these are not part of
the architectural specification.

Zero PC is a “hard” page-failure.

The initialization error codes have been documented.

The interrupt FIFO bits 18-25 have been documented more accurately.

The CST bits used by the microcode are described.

The description of “permanent” executive PTB entries has been omitted. Nothing has been

implemented as yet.

5/8/96 The password for the auxiliary console has not been implemented. The battery life
estimation has not been implemented. References to these have been deleted.

5/10/96 The description of RDPI now omits mention of write bad parity; this should have been
changed 11/28/94.

5/16/96 Examples of processor differences have been cleaned up. An example in which the
XKL-1 was said to produce a different result than the KL.10 for FAD has been omitted.

5/23/96 Added NVRAM location for auto-boot delay.

5/28/96 The Processor Identification code fragment was rewritten to more accurately select
between processors.

5/30/96 Additional material clarifying BLT.

6/1/96 Added footnote in DFMP: the KL10 does not round negative numbers according to
the usual rules of floating—point rounding. When the result is negative and the fraction being
dropped is precisely 1/2 LSB, the KL.10 adds 1 LSB. In twos complement, 1 should be added
to the LSB of a negative result only if the fraction is strictly greater than 1/2 LSB.

xx11

6 June 1996 — 30 April 1997 (Revision 02)

6/6/96. Corrected the description of MemA location AMY%PFD. It contains a copy of the data
found in the DtoD latch when a hard page failure occurs. (This was part of the change made
1/17/96.)

6/6/96. Corrected the depiction of a local stack pointer in Appendix A. The right half is
now labeled “Local Address of the Latest Element”. Formerly it was “In—Section Address ...”,
the distinction being that local 0 is an accumulator, whereas, above section 1, in—section 0 is

memory.
6/6/96 Additional material clarifying BLT behavior in the KL10.

6/7/96. Additional clarification regarding extended addressing, in chapter 1, in BLT, and in
EDIT.

6/17/96. New page failure code, PF.HMC, for hard failures delivered subsequent to processing
by the macro—console.

6/18/96. Added symbols to support TDBooT and its new facility for inspecting/correcting
the cache and Pager Translation Buffer.

6/24/96. To support TDBooT, added symbolic names for the hard page—failure bits in EPT
500. Added APYHPM.

6/29/96. Corrected definition of APY%DPC.

7/17/96. New bit in hard page—failure or MAP word, PF/HMF, hard map failure. Added
explanation to the description of MAP.

7/21/96. Definitions for the AC block addresses in MemA, AM%ABO ... AM%AB7, have been
added.

8/9/96. Definitions for fields in the data for WRADB have been added.

8/31/96. Locations 421-423 in the UPT are reserved for software. (For compatibility with the
KL10 and TOPS-10, the Monitor is allowed to store images of the user’s “trap instructions” in
these locations. TOAD-1 System does not support trap instructions, but this is a convenient
place for the software to store the instructions to emulate for the user.) Revised figure 3.3.
(Added a second version of the UPT/EPT configuration for KI10 Paging Mode. We have not
yet commited to support KI paging.) [Subsequently, we have decided not to support KI paging
and this second version has been omitted from the document.]

10/27/96. Slightly revised the description of the XNI-1’s response to a Device Control bus
cycle.

12/24/96. Added an example of comparison of two double-length floating numbers.

1/3/97. Incorporated corrections suggested by customer review. Updated copyright year.
Changed company name to “XKL LLC”.

1/3/97. The instructions that perform G-format floating—point operations are not imple-
mented in the XKL-1. Instead, they trap as unassigned codes and are simulated by the
operating system.

xx111

e 3/31/97. Added a description of new backplane bus cycle types, “DoubleWord Write_Multi-
ple” and “DoubleWord_Read_Multiple_Request”. These have not yet been implemented in any
component of the present TOAD-1 System.

e 4/16/97. Changed telephone area code on the title page. (Our local provider says that the
new 425 area code will be usable by the beginning of May, 1997 and mandatory before the end
of the year. If 425 fails, try area 206.)

e 4/24/97. Corrected typographical errors. Updated certain portions to reflect changes made
by the June 1982 updates to the Digital version of this manual.

30 April 1997 — present (Revision 03)

e 6/4/97. Reformatted Table 3.2 to fit properly on one page. Fixed title page to show the new
revision number.

e 10/6/97. Corrected the spelling of the instruction mnemonics for GDFIX and GDFIXR in Ap-
pendix A.2. Corrected a sorting problem in Appendix A.3.

e 9/26/98. Added a preliminary description of XMG-3. Corrected the names and descriptions
of backplane cycle types that support longword transfers (that were added 3/31/97). The
XMG-3implements these.

e 9/26/98. Added a description of TDBooT’s “define slot n off-line” and “... on—line” com-
mands. Added definitions of NVRAM and AMEM locations needed to support this command.

XX1V

CONTENTS XXV

Contents

Preface v
Revision History vil
List of Figures xxx1
List of Tables XXX1v
1 Introduction 1
1.1 TOAD-1 System Organization o 4
1.1.1 The XKL-1 Central Processor 6

1.1.2 TOAD-1 System Memory 9

1.2 KL10-based System Organization 11
1.2.1 The KL10 Processor i 11

1.2.2 KL10 Memory e 17

1.2.3 Memory Characteristics 18

1.3 KS10-based System Organization 0. 20
1.3.1 KS10 Memory 24

1.4 Timesharing e 25
1.5 Number System 29
1.5.1 Fixed—Point Numbers 29

1.5.2 Floating Point Numbers L o 31

1.5.3 G—format Floating—Point Numbers 32

1.6 Imstruction Format 33
1.7 Effective—Address Calculation 36
1.7.1 Section Zero Effective—Address Calculation 36

1.7.2 Extended Effective—Address Calculation 38

1.8 Programming Conventions L o 43

1.9 KI10 and KA10 Characteristics e 46
1.9.1 Memory e e 47

2 User Operations 51
2.1 Full-Word Data Transmission v v v v i it e e e 53
2.1.1 Exchange Instruction Lo oL oo 53

2.1.2 Move Instruction Class 53

2.1.3 Extended Move Immediate 56

XXV1

2.2

2.3

2.4
2.5
2.6

2.7
2.8

2.9

2.10
2.11
2.12
2.13
2.14
2.15

2.16

CONTENTS

2.1.4 Double Move Instructions 56
2.1.5 Block Transfers 58
Fixed-Point Arithmetic 62
2.2.1 Single-Precision Instructions 0oL 00000 63
2.2.2 Double-Precision Instructions 66
Floating—Point Arithmetic Lo 67
2.3.1 Scalingo 69
2.3.2 Number Conversion 70
2.3.3 Single-Precision with Rounding 0oL 76
2.3.4 Single-Precision without Rounding 0oL 78
2.3.5 Double-Precision 80
2.3.6 Giant-Format Extended—Range Double Precision 82
2.3.7 KAI10 Software Double-Precision 84
Boolean Functions L 87
Shift and Rotate 94
Arithmetic Testing o 97
2.6.1 Add One to Both Halves of ACand Jump 97
2.6.2 Comparisons, Skips, and Jumps 98
Logical Testing and Modification o 0000 103
Half-Word Data Transmission 110
2.8.1 FExtended Half-Word Left to Left Immediate 118
Program Control Lo 118
2.9.1 The Execute Instruction 119
2.9.2 Conditional Jumps 120
2.93 Program Flags L 121
2.9.4 The JRST Instruction 126
2.9.5 Subroutine Calling L 131
2.9.6 Overflow Trapping 134
2.9.6.1 Overflow Trapping in the KL.10, KS10, and KI10 Processors 135
2.9.6.2 Overflow Trapping in the XKL-1 Processor 136

Stack Operations 137
Byte Manipulation 143
String Manipulation L oL 149
Decimal Conversion L 158
String Editing Lo 163
Programming Examples oL oL 170
2.15.1 Processor Identification 170
2.15.2 Parity 171
2.15.3 Reversing the Order of Digits 174
2.154 Counting Ones L 175
2.15.5 Number Conversion 177
2.15.6 Table Searching L 178
2.15.7 List Manipulation L 179
2.15.8 Extended Addressing Lo 179
Unimplemented Operations 182

2.16.1 LUUOs o0 oo 182

CONTENTS XXVl

2.16.2 MUUOs 183
2.16.2.1 XKL-1 MUUOs 184

2.16.2.2 Extended KL10 MUUOs 184

2.16.2.3 Single-section KL10 MUUOs 186

2.16.2.4 KSI0 MUUOs 186

2.16.2.5 KIIO MUUOs 186

2.16.2.6 KAI0 MUUOs 187

2.17 KS10 Input—-Output Instructions 187
2.18 Pre-KS10 Input—Output Instructions 191
2.19 User Programming e 195
3 TOAD-1 System and XKL-1 Processor Operations 197
3.1 TOAD-1 System Backplane Bus 198
3.1.1 Request Transactions 200
3.1.2 Request-and-Return Transactions 201
3.1.3 Special Bus Functions0 203
3.1.4 XKL-1 Bus Operation Instructions 203
3.1.5 Communication Between the Processor and Devices 206
3.1.6 Identification of Backplane Devices 206

3.2 Console 207
3.2.1 Console State Transitions 210
3.2.2 Micro—Console Messages oo 210
3.2.3 Console Terminal Programming 211
3.24 Auxiliary Port oL 214
3.25 Console Commands 214
3.2.6 Console Communication Characteristics 214

3.3 Processor Initialization 214
3.3.1 Boot ROM 216
3.3.2 Initial Program Environment oo o000 217

3.4 Priority Interrupt 217
3.4.1 Sources of Interrupts 217
3.4.2 Priority Levels 218
3.4.3 Imterrupt Requests Lo 218
3.4.4 Interrupt Acceptance L L 219
3.4.5 Interrupt Processing L 220
3.4.6 Imterrupt Dismissal 220
3.4.7 Interrupt Register L 221
3.4.8 Program Control of the Priority Interrupt System 223
3.4.9 Special Considerations L 225
3.4.10 Programming Suggestions Lo oL oo 226

3.5 Cache Operations 226
3.5.1 Cache Programming o 227
3.5.2 Cache Sweeping Instructions oo oo oo 228
3.5.3 Cache Diagnostic Instructions oL o000 230
3.5.4 Cache Management o o 233

3.6 XKL-1 Processor Internal Memory 233

XXV111

3.7

3.9

3.10

3.11

CONTENTS

3.6.1 MemA 233
3.6.1.1 Operations on MemA L. 234

3.6.1.2 MemA Specific Locations 234

3.6.2 Non-Volatile RAM 234
3.6.2.1 Operationson NVRAM 234

3.6.2.2 NVRAM Specific Locations 235
Paging and Memory Managemento Lo 0oL 235
371 Paging 236
3.7.1.1 Pager Translation Buffer 238

3.7.1.2 Pager Translation Buffer Diagnostic Instructions 241

3.713 Useofthe PTB 244
3.714 PageRefill 245

3.7.1.5 Special Tables 246

3.7.1.6 Paging Pointerso 248

3.7.1.7 Refill Procedure 252

3.7.1.8 Page Failureo 254

3.7.2 Memory Management0 0L Lo 263
3.7.2.1 Pager Programming Lo o 269

3.7.2.2 Use of Paging to Support TOPS-20 270

3.7.3 MAP Instruction 270
3.7.4 Previous—Context Reference L. 272
3.74.1 Previous—Context Execute 273
3.7.4.2 Other References to the Previous Context 276

3.7.5 Address Debugging 276
Timing L e 278
3.8.1 Interval Timer Programming 278
3.82 Time-Base 280
3.8.3 Keep—-Alive Timer 281
Other CPU Controls and Status 282
3.9.1 Error Monitoring L 282
3.92 Control Flags 285
3.9.3 Processor and System Identification 287
Response by the XKL-1 Processor as a Device 290
3.10.1 Processor Response to Device_Status_Request 290
3.10.2 Processor Response to Device_Control 290
XMG-1 Memory Systermn 291
3.11.1 The XMG-1 Memory Board 291
3.11.1.1 XMG-1 Device_Status_Request Functions 291
3.11.1.2 XMG-1 Device_Control Functions 293
3.11.1.3 XMG-1 Response to Memory Cycles 294
3.11.1.4 XMG-1 Initialization L. 294

3.11.2 The XMG-3 Memory Board 294
3.11.2.1 XMG-3 Device_Status_Request Functions 294
3.11.2.2 XMG-3 Device_Control Functions 297
3.11.2.3 XMG-3 Response to Memory Cycles 298

3.11.2.4 XMG-3 Initialization 298

CONTENTS XX1X

3.11.2.5 XMG-3 Flash Card o o 298

3.12 XRH-1 Mass—Storage Interface Processor 299
3.12.1 XRH-1 Mass—Storage Interface Processor I/O Registers 299
3.12.1.1 Device Status 300

3.12.1.2 Device Control 302

3.12.2 Communication Between the CPU and the XRH-1 304
3.12.2.1 Communications Region 304

3.12.2.2 Communications Protocol 307

3.12.2.3 Mass—Storage Control Block 307

3.12.2.4 Error Reporting 321

3.12.2.5 Error Handling Lo 322

3.12.2.6 Long Transfers L 323

3.12.2.7 Unaligned Transfers 0oL 324

3.12.3 Operation of the XRH-1 as a SCSI Target 326
3.12.3.1 Commands recognized as a Target 327

3.12.3.2 Response to Request Sense Command 327

3.12.3.3 Response to Inquiry Command 327

3.12.3.4 Response to Send Command 327

3.12.3.5 Response to Send Diagnostic Command 327

3.12.3.6 Response to Test Unit Ready 328

3.12.3.7 Initialization for Operation as a Target 328

3.13 XNI-1 Network Adapter 329
3.13.1 XNI-1 Network Adapter I/O Registers 329
3.13.1.1 Device Status 329

3.13.1.2 Device Control 332

3.13.2 XNI-1 Network Adapter Memory Registers 332
3.13.2.1 XNI-1 Control Register Addresses 333

3.13.2.2 XNI-1 Data Register Addresses 334

3.13.2.3 XNI-1 Packet Snoop Register Addresses 335

3.13.3 Communication Between the CPU and the XNI-1 335
3.13.3.1 Message Control Block 0. 336

3.13.4 Commands and Result Blocks 339

4 Earlier Processors 343
4.1 KL10 System Operations 343
4.1.1 Priority Interrupt 344
4.1.2 Cache Management L L 352
4.1.3 TOPS-10 Paging and Process Tables 358
4.1.4 TOPS-20 Paging and Process Tables 366
415 Memory Managemento 381
4.1.6 Timing and Accounting L 391
4.1.7 Front End Functions 399
4.1.8 Error and Diagnostic Instructions L0000 400

4.2 KS10 System Operations 406
4.2.1 Priority Interrupto 407

4.2.2 Cache e 411

XXX

4.3

CONTENTS

4.2.3
424
4.2.5
4.2.6

TOPS-10 Paging and Process Tables
TOPS-20 Paging and Process Tables
Memory Management

System Timing
4.2.7 Halt Status
4.2.8 System Conditions
KI10 and KA10 System Operations
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8

Console
KI10 Priority Interrupt
KI10 Processor Conditions
KI10 Program and Memory Management
KA10 Priority Interrupt
KA10 Processor Conditions
KA10 Program and Memory Management
Real Time Clock DK10

Appendices

A Instructions and Mnemonics

Al

A2

A3
A4
Ab

Formats o e
A.1.1 Instruction Words
A.1.2 Address and Program Control Words
A.1.3 Stack, Byte Pointers
A.1.4 Arithmetic Operands
Instruction Mnemonics — Numeric Listing
A.2.1 APRO, APRI, APR2, and APR3 Instructions (XKL-1 only)

Instruction Mnemonics — Alphabetic Listing

Algebraic Representation

Powers of Two

B Character Codes

C Processor Compatibility

D Internal Device Bit Assignments

D.1
D.2

XKL-1 processor Internal Device Bit Assignments
KL10 Internal Device Bit Assignments
D.2.1 TOPS-10 (KT or non—extended KL) Paging
D.2.2 Extended KL Paging (TOPS-20 or TOPS-10 7.02 and later)

E TDBOOT Command Summary

E.1
E.2

Macro—console commands

Micro—console commands

F XKL-1 Processor Arcana

F.1
F.2
F.3

MemA Specific Locations
NVRAM Specific Locations
XKL-1 Board Option Jumpers

499

501

503
503
510
515
515

519
519
955

CONTENTS Xxx1

G Non—existent Appendices 571
G.1 Timing 0L e 571
G.2 Processor Operation 571
G.3 Handling Memory e 571

H Glossary 573

Index of Instructions 577

Index 583

Xxx11 CONTENTS

LIST OF FIGURES Xxxlil

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

TOAD-1 System Configuration 5
XKL-1 Central Processor Data Paths 7
KL10-based DECSYSTEM-20, 12
KL10-based DECsystem—10 13
KL10 Processor Simplified 14
DECSYSTEM=-2020 e 21
KS10 Processor Simplified 22
Possible TOPS-10 Virtual Address Space Configuration 27
Single—Section Effective-Address Computation 37
Extended Address Space 39
Extended Effective-Address Computation 42
DECsystem—10 Based on KI10 or KA10 48
Accumulator Bit Flow in Shift and Rotate Instructions 95
XKL-1 Trap Vector L oo e 137
EDIT Instruction Flowchart 164
User Process Table MUUO Configuration 185
Bus Address Word L 203
Console State Transitions 208
Virtual-Address Space and Process Table Layout 239
Process Table Configuration 0L o 240
Page Pointer Evaluationo Lo 253
XRH-1 Communications Region Format 305
Mass—Storage Control Block Format 308
Transmit Message Control Block Format 336
Receive Message Control Block Format 338
KL10 TOPS-10 Virtual Address Space and Process Tables 360
TOPS-10 Process Table Configuration (KL10) 361
TOPS-20 Virtual Address Space and Process Table Layout 368
Extended TOPS-20 Process Table Configuration 369
Single—Section TOPS-20 Process Table Configuration 370
TOPS-20 Paging Pointer Evaluation (Extended KL10) 377
KS10 TOPS-10 Virtual Address Space and Process Tables. 414
KS10 TOPS—-10 Process Table Configuration 415

XXXIV LIST OF FIGURES

4.9 KS10 TOPS-20 Process Table Configuration 421
4.10 TOPS-20 Paging Pointer Evaluation (IKS10) 427
4.11 Virtual Address Space and Page Map Layout (KI10) 463
4.12 Process Table Configuration (KI10) 464

4.13 Relocation of User Addresses in the KA10 482

LIST OF TABLES XXXV

List of Tables

1.1

2.1

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2

KL10 Memory Characteristics 19
Domains in which JRST Functions are Legal 130
EPT Locations for Interrupt Control Blocks 220
Page-Failure Codes L 255
Page—Failure Block at EPT 500 o o 258
XKL-1 Permissible PXCT Addressing Modes 275
XRH-1 Status Read Request Addresses 302
Byte Count Adjustment and Divisors 326
KL10 Permissible PXCT Addressing Modes 389
KS10 Permissible PXCT Addressing Modes 438

XXXV1 LIST OF TABLES

Chapter 1

Introduction

A TOAD-1 System, DECsystem—10, or DECSYSTEM-20 is a general-purpose, stored—program
computing system that includes at least one PDP-10 compatible central processor, a memory with
error—checking capability, and a variety of peripheral equipment. KEach central processor is the
control unit for an entire large—scale subsystem, in which it is connected by buses to random-—
access storage modules and peripheral equipment, some of which may be shared with other central
processors. Within a given system the central processor governs all peripheral equipment, either
directly or indirectly; sequences the program; and performs all arithmetic, logical, and data—handling
operations.

A given system may also contain other kinds of processors.

e A TOAD-1 System is based on an XKIL-1 central processor; all in—out and memory operations
are performed over a high-speed backplane bus. The console functions are supported by
microcode in the CPU (with a terminal). Communications equipment (other than the console
terminal) and unit-record peripherals are supported indirectly via a network.

e A system based on the KL10 central processor contains a small PDP-11 front—end processor;
this acts as the system console and it may also handle communications equipment and the
unit—record peripheral equipment via a Unibus.

e The DECSYSTEM-2020, the only system based on the KS10 processor, contains a micro-
processor for handling console functions (with a terminal). All of its peripheral equipment is
handled over two or more Unibuses.

e Farlier central processors (the KI10 and the KA10) have manual consoles and handle unit—
record equipment directly via an in—out bus.

A system may also include direct—access processors, which have much more limited program capa-
bility and serve to connect large, fast peripheral devices to memory, bypassing the central processor.
Every direct—access processor is connected, for control purposes, to some central processor, to which
it appears as a peripheral device. The direct—access processor is also connected to its peripheral
equipment by a device bus, and to memory either directly by its own memory bus or via a channel
bus through the memory control part of the central processor. Although a DECSYSTEM-2020 can-
not include direct—access processors, the Unibus adapters themselves have much of the capability

2 CHAPTER 1. INTRODUCTION

of such processors: in particular, an adapter can gain direct access to memory via the same KS10
system bus used by the processor.

A system may also contain peripheral subsystems, such as for data communications, which are
themselves based on small computers; from the point of view of the PDP-10, such a subsystem
in toto is regarded as a peripheral device. Unless otherwise specified, the words “processor” and
“central processor” refer to the large—scale PDP—-10 central processor.

Five types of PDP-10 central processors are discussed in this publication: the XKL-1, the KL.10, the
KS10, the KI10, and the KA10. The XKL-1 processor in the TOAD-1 System implements full 30-bit
extended addressing and the largest instruction set (that of the KL10) including string manipulation
and double precision in fixed point, floating point, and extended-range floating point.

The KL10, which exists in two versions, with and without extended addressing, is the fastest and
most powerful processor in the K—series; the KL10 implements the largest instruction set.

The KS10 executes a subset of the KL.10 instructions: the extended-range floating point instructions
are omitted. The KS10 lacks extended addressing and 1s slower than the KL.10; on the other hand,
it 1s also considerably less expensive.

All systems handle words of thirty—six bits. Earlier memories store these with a parity bit for
detecting single-bit errors. In the MOS memories on the KL10 and KS10, each word is accompanied
by a 7-bit code for correction of single errors and detection of double errors. The TOAD-1 System
memory, also MOS, implements a single parity bit for detecting single—bit errors. Maximum memory
capacity depends upon the physical addressing capability of the processor. However, the physical
capacity of the memory is not particularly relevant to a typical user programmer, as all recent
processors are structured to operate in a sophisticated virtual memory environment.

The fundamental virtual address is thirty bits, although only the TOAD-1 System is capable of
using all of them. The virtual memory space is divided into sections of 256K each, whose locations
are specified by the right eighteen address bits (the “in—section” address). Paging hardware further
divides each section into 512 pages of 512 locations each. The actual size of the virtual address space
for a given processor depends on how many out of the twelve possible section bits it implements.
The addressing characteristics of the various processors are these:

Single—
FEztended section

XKL-1 KLI10 KL10 KS10 KI10 KA10

Physical address 4429 22 22 20+ 22 18
(number of address bits)

Physical memory capacity 128MT am 4M 512K 4M 256K
(number of locations)

Section bits implemented 12 5 0 0 0 0
Number of sections 4096 32 1 1 1 1
Virtual address 30 23 18 18 18 18
(number of bits)

Virtual address space 1024M 8M 256K 256K 256K 256K

(number of locations)

K = 1024 (decimal); M = 1,048,576 (decimal).

* 4-bit physical slot number and 29-bit in—-module address

t Four 32M memory boards.

i The maximum physical memory capacity of the KS10 is 512K.

In an Extended KL10 whose operating system supports extended addressing only in executive ad-
dress space, user space is the same as that in a single—section KL10.

The XKL-1 processor, by using all twelve section bits, has a virtual memory larger than its physical
memory capacity. The extended KL10, by using five section bits, has a virtual memory twice the
size of the maximum physical memory. All other processor configurations use only the 18-bit in—
section address, so all access is defined as being in section zero. This means that the KS10 has a
physical memory that can be twice as large as the virtual space available to a single program; and
the single-section KL.10 and the KI10 can have a physical memory sixteen times as large. However,
a virtual address limitation of 256K may be problematic in some applications, thus the KS10 and
other single—section processors may be unsuited for large applications. All processors except the
KA10 have features that allow for dynamic paging and working—set management so that the system
may obtain the best utilization of physical resources. KA10 memory management is limited to a
basic one— or two—part protection and relocation scheme.

The bits of a word are numbered 0-35, left to right (most significant to least significant), as are the
bits in the registers that hold the words. All processors handle half words and bytes. The XKL-1,
KL10, and KS10 can also handle double words and strings.

In this manual bit numbers are given in decimal notation. However, most other numbers are in
octal, i.e., radix 8, notation. Specifically, memory addresses are in octal unless otherwise specified.

Half words are simply the two halves of a word, wherein the left half is bits 0-17 and the
right half is bits 18-35. In operations on half words, the two halves of a given word are
handled independently; e.g., when both are incremented, no carry from right to left can
occur. (However, this is not true on the KA10, where incrementing both halves is done

4 CHAPTER 1. INTRODUCTION

by adding 1000001 to the entire word.)
A byte is any contiguous set of bits within a word. It is identified by a byte pointer.

A double word is two adjacent words treated as a single 72-bit entity, where the word
with the lower address is on the left. In some operations, such as the product in double—
precision multiplication, this concept i1s extended to multiple-length operands involving
more than two consecutive words. The direction from more to less significance i1s always
from lower to higher addresses. (The KA10 cannot handle double words, except to the
limited extent of double-length products and dividends; the KI10 handles double words
to the extent of operands in double—precision floating—point operations.)

A string is a sequence of bytes packed into and encompassing an arbitrary number of
words. It is defined by its length in number of bytes and an initial value for a pointer
that is incremented automatically for handling the bytes. (Neither the KI10 nor the
KA10 have string hardware.) (Hardware strings do not necessarily correspond to the
implementation of the “string” data type in high-level languages.)

Processor internal registers specifically for holding addresses have a number of bits appropriate to the
type of processor and whether the address is physical or virtual. Address bits are numbered according
to the right—justified position of an address in a word. Thus the bits of an in—section address are
numbered 18-35, and those of a TOAD-1 System 29-bit in—module address are numbered 7-35.
Words are used either as instructions in the program, as addresses, or as operands (data for the
program).

Most of this introductory chapter, §1.5 through §1.8, is applicable to any PDP-10 compatible pro-
cessor, although the discussion tends to be oriented towards the TOAD-1 System’s XKIL-1 processor
or systems based on the KL10; these sections are germane to anyone who wants to program these
systems in assembly language. Section 1.4 may be of interest only to system programmers. Section
1.1 applies only to the TOAD-1 System; §1.2 applies only to the KL.10; and §1.3 applies only to the
KS10. Much of the information for the KL.10 applies also to systems based on the KI10 and KA10;
§1.9 explains the ways in which those earlier processors differ from the architecture defined in the
preceding sections.

At various points, this manual contains symbolic definitions for individual bits and fields. These
definitions are signalled in the text by typewriter font; they are suitable for use with Macro, the
assembler. The collected definitions are available through a universal file called TDIDEF.UNV.

1.1 TOAD-1 System Organization

Figure 1.1 shows the organization of the TOAD-1 System, which is effectively a collection of proces-
sors and memory organized around a backplane bus. At least one XKL-1 central processor must be
present in the system. The other processors (e.g., device controllers) generally act at the direction
of the XKL-1 processor but perform their actions asynchronously.

The TOAD-1 System backplane bus may have as many as fourteen devices attached. (The initial
TOAD-1 System has capacity for just seven devices.) A minimum system consists of the XKL-1
processor (including console terminal ports, cache, and pager), memory, a SCSI subsystem, and
a network control subsystem. No direct provision is made for unit-record equipment (e.g., line

1.1. TOAD-1 SYSTEM ORGANIZATION 5

Figure 1.1: TOAD-1 System Configuration

Console
Terminal

A

\

< | XKL-1 Processor,
> "| Cache, and Pager

Auxiliary
Console

A

Memory
N Subsystem
16 or 32 M words

A
\

< —» SCSI B >

> Interface < ‘ ‘ > ‘ ‘ @ @
< —> Ethernet B >

> Interface < >

4 - .

>

HRMF-TD1SYS.TEX

6 CHAPTER 1. INTRODUCTION

printers) or for terminal connections (excepting the console terminal); these can be handled swiftly
and efficiently via the network.

The SCSI and network subsystems are designed to read in—-memory command lists and transfer data
directly to and from memory without interrupting the XKL-1 processor. These devices can request
priority interrupts to alert the XKL-1 processor to a change in status (a message queue going from
empty to non—empty, a semaphore state change, etc.) or an event (e.g., error conditions) that is
beyond the ability of the subsystem to handle.

1.1.1 The XKL-1 Central Processor

Figure 1.2 shows the internal data paths and main processing elements of the XKL-1 processor.

Omitted from the figure is the microcontroller, which, through its programmed instructions (the
microcode), controls the operation of the processor by providing step-by—step directions to the
various data—path components. The illustration also omits most of the control lines emanating from
the microcontroller and extending throughout the machine. Some of the control lines are illustrated:
“GP” signifies the general-purpose field of the microcode; thus, some of the microcontroller program
is used as data in controlling the data—path elements.

Of the registers shown, only PC (the program counter, labeled “Macro PC & Section”), the Program
Flags (in the “D to D Latch/Gate”), and one set of accumulators (within “Mem A”) are directly
relevant to a typical user. The processor performs a program by executing instructions retrieved
from the memory locations addressed by PC. For the normal program sequence, PC is regularly
incremented by one so that instructions are taken from consecutive locations. Sequential program
flow is altered by changing the contents of PC, either by incrementing it an extra time in a skip
instruction, or by replacing its contents with the value specified by a jump instruction. Throughout
the text, the phrase “jump to location n” means to load the value n into PC and to continue
performing instructions in the normal counting sequence, beginning at the location then specified
by PC. When counting the PC, no carry is allowed into the section part. Hence, although large data
structures can arbitrarily cross section boundaries, the program cannot. The program count wraps
around in the current PC section, which is specified by PC bits 6-17. For the program to go from
one section to another requires an explicit transfer of control by jumping to another section.

Each instruction retrieved from memory contains information identifying the operands and an in-
struction code specifying the operation to be performed using those operands. The instruction is
decoded by the microcontroller, which in turn performs the instruction by manipulating all of the
other processor elements and making the necessary requests to the memory. The microcontroller also
executes the more fundamental operations of sequencing the program, handling TOPS-20 paging
operations beyond the basic address translation made by the pager, processing interrupts, and so

forth.

The microcontroller operates from microcode contained in a control store. This microcode bears
the same relation to the microcontroller as the program does to the processor. Microprocessing is
invisible to the programmer, who need not be concerned with the microcode. The reader should,
however, note an important implication of this type of processor implementation: a single XKL-1
could potentially process a different instruction—set by loading a different microcode.

The major working area of the processor is the arithmetic logic unit (ALU). This unit performs
36-bit integer arithmetic, half~word arithmetic, and logic functions. Double—precision integer and

Figure 1.2: XKL-1 Central Processor Data Paths

e L 1

T

D Bus)

< DPM Aodgrggs Latch %Ea’\g \IS\/i;ZeLEta;?
’ 3
\ >6 EfFecti\1/5|/;\:dress Latch35 — iL

1 DPM Address Bus H
T || I [LI At
A A D

g D t0 A Gt and Swap——
\ |D to A Gate and Swap p}gjp/:idr Paer Pager Aélir:is
) —
(: | ALU low (right) K‘ Gate DaDta Tag Comparator
| S S ——— |
/ | ALU high (left) KI1 ﬁ
igh (le
\| ;\q (1 < ’\
1 N \ S Y
Mo A Datap, / 27-35 iLn,s—éJ—ze
em SN2
N S1o2x36 N DtoD Physical
l/Address GP — Latch/Gate C:(> Address
Flags Latch
ﬂ [0,3-6,7-35
\ | Mem A Address Translator K: . PA (Physical Address) Bus P \
To Cond Mux (:: D § > l
> Lookup , <:
- ROM
Macro PC & Section D A A A D
Boot ROM Cache (?Che
L84 N 256K X 36 Data ag
ap— _ :> ———| ROM/RAM D D
—| Floating/ Address IE
Long N | GP ::) Latch Read CD Bus Write |4
— ALU Data N\ i Data (‘
Y Serial Gate II Gate
D Number A iL
N PROM
GF —)\ Shifter/ Backpl Backpl i
DPM Read plane ackplane Device
Masker/ Data Latch Data Address Status
—\ Timer N Non Latch Gate 0
D Volatile Af
Y RAM
Cache Backplane Bus ,\Interrupt
P —N UART W—NWp—NR—D <} > Mode < / Register (::
V A Interface > Control & FIFO
Auxiliary R Bus
Console Console >

Terminal Terminal

IA Bus

NOILLVZINVOHO WALSAS I-AVO.L

HRMF-XKLL.TEX

8 CHAPTER 1. INTRODUCTION

floating—point arithmetic are handled in the Floating/Long ALU. The shift matrix is employed in
shift and rotate instructions and in operations that imply shifting, such as floating—point arithmetic
and the byte and string operations. Combinations of these registers play a role in all arithmetic,
logical, and data handling operations and in program control operations. Although almost all of
the operations necessary for the execution of a program are performed in the ALU, the details of
its operation are not important to the programmer because the ALU does not retain information
from one instruction to the next. Computations either affect control elements such as PC and the
program flags, or produce results that are stored and must be retrieved if they are to be used as
operands in other instructions. The program flags report conditions of interest to the programmer,
such as arithmetic and stack overflow, which can cause program traps.

Although all computations on both operands and addresses are performed in the arithmetic logic,
the computer actually has sixteen accumulators, fifteen of which can double as index registers. The
first sixteen memory addresses correspond to the accumulators instead of locations in the storage
modules. The factor that determines whether one of the first sixteen locations in memory 1s used
as an accumulator or as an index register is not the information it contains nor how its contents are
used, but rather how the location is addressed. The accumulators can be addressed in three ways.
First, any instruction can access an accumulator by specifying one of the first sixteen addresses; i.e.,
addresses 0 through 17. Second, most instructions (including all that combine two operands) can
access an accumulator as one of the operands by putting the accumulator number in the accumulator
field of the instruction. Third, fifteen of the accumulators can be accessed as index registers by
specifying a non—zero accumulator number in the index-register address field of an instruction. (A
zero in the index-register address field specifies no indexing, hence, accumulator zero can not be
used as an index register.)

These first sixteen locations are not actually in the storage modules—they are in MemA, the fast
memory contained in the processor. This allows much quicker access to these locations, whether they
are addressed as accumulators; index registers, or ordinary memory locations. They can even be
addressed by the program counter so that short instruction sequences can be run in them. Provision
is made for referencing these locations from non-zero sections. Moreover, there are actually eight of
these fast memory blocks (also referred to as “AC blocks”), but generally only one is available to a
program at any given time. The Monitor usually reserves block 0 for itself and assigns the others to
user programs.

As mentioned above, the accumulator blocks occupy a portion of the processor’s private random—
access memory called MemA. In addition to the accumulators, MemA also holds various parameters
that control the pager, the timebase, etc.

An instruction word has one 18-bit address field for addressing any location in the current PC
section. Every instruction has a 4-bit index—register address field, which can address fifteen of the
accumulator locations for use as index registers in modifying a memory address. Any instruction
that requires a second operand has a 4-bit accumulator address field which can address one of the
sixteen accumulators. In other words, any accumulator can be addressed as though it were a result
held over in the processor from some previous instruction. (The programmer usually has a choice of
whether the result of the instruction will go to the location addressed as an accumulator or to that

addressed by the 18-bit address field, or to both.)

Addresses, whether from the PC or from the effective address calculation for an instruction, are
held in the DPM Address Latch as they are presented to the pager. The DPM Address Latch holds
either a 30-bit virtual address or a 34-bit backplane bus address. A virtual address is translated by
the pager to a 34-bit backplane bus address that is supplied to the backplane bus via the Backplane

1.1. TOAD-1 SYSTEM ORGANIZATION 9

Address Gate and the bus control logic. The bus address is composed of the D (device) bit, a 4-bit
physical slot number, and a 29-bit in—module address.

The cache speeds up average memory access and increases the efficiency of the storage module. This
facility has 131,072 locations that temporarily substitute for a selection of the most—frequently used
storage locations. Hence, the cache may be regarded in some respects as a set of general purpose
registers. A program loop, once read from storage and then resident in the cache, may be executed
hundreds of times without further instruction fetches from storage. Data produced by the program
is written in the cache. Thus, if the program sets up a location to be a counter, that location may
be read and written thousands of times with only the initial storage access. When the cache does
not contain the word the program wants, memory control gets a line of eight adjacent words from
storage, including the requested one, and places them in the cache, on the assumption the program
will probably want the other seven and can thus get them more quickly. This is a reasonable
assumption, since the program generally executes from consecutive locations and many forms of
data manipulation are sequential as well. Cache control has a mechanism for determining frequency
of use, and it writes the least—recently used line back into storage (or discards it if unchanged) when
the cache space is needed for new references. There are 8,192 two—way associative 8—word lines in
the cache. Physical address bits 20-32 select a cache line, and bits 33-35 select the word within the
line. Only two lines with the same address in bits 20-32 can fit in the cache at a time; but, since user
programs have no control over the physical addresses allocated to their programs, there is nothing
to do and nothing to avoid in trying to improve a user program’s utilization of the cache. There
may be complete pages in the cache, but 1t is more likely to have a selection of lines from a selection
of pages depending on frequency of use. Generally the cache contains words for the current user and
for the Monitor, as well as for handling interrupts for many users. The reader should be aware that
the cache contains representations of memory word lines, not necessarily the actual storage contents.
For example, when the program writes a word, the contents of that cache location then differ from
the contents of the corresponding storage location. This caution is of interest, however, only to the
operating system. A typical program simply makes memory references; the more of these in which
the cache substitutes invisibly for storage, the better.

Also included within the processor are a number of internal devices that are similar to external
controllers in that they operate asynchronously but are controlled by the program. Some of these
have already been mentioned: the program sets up the pager, instructs cache control to update
storage, sets up the memory system, and gets diagnostic information from the memory controllers
and storage modules. Other such “devices” are the console terminal, the interval timer, the timebase,
the error logic, and the priority interrupt system. The priority interrupt system facilitates processor
control of the entire system by means of a number of priority—ordered levels through which external
signals may interrupt the normal program flow. The processor acknowledges an interrupt request by
transferring control (by means of XPCW) to a memory location selected by the backplane location
(slot number) of the requesting device. Assignment of levels to devices is entirely under program
control. Among the devices to which the program can assign levels are the error logic, the console
port, and the interval counter.

1.1.2 TOAD-1 System Memory

The TOAD-1 System main memory is organized as modules of 16— or 32-million (2?%) 36-bit words,
with single-bit error detection. More than one module may be present in a system. The physical
constraint on memory capacity is complicated to state. The initial TOAD-1 System has seven device
slots, with a mandatory processor, memory, SCSI subsystem, and network subsystem occupying four

10 CHAPTER 1. INTRODUCTION

slots. Up to three memory boards could be added to a minimum system, bringing the maximum
memory capacity to 128 megawords, but that may not be a well-balanced system. The architectural
constraint on memory capacity is more liberal, allowing for larger capacities in the future: the
backplane bus provides four address bits for slot selection (slots 1-15 are allowable; slot 0 has
special meaning) and a 29-bit in-module address.

The memory is organized to read and write single words or to read and write 8-word “lines” of
memory corresponding to the cache structure of the TOAD-1 System.

With the cache enabled for a given page, memory access 1s handled using the cache wherever possible;
when storage access is required, transfers are in 8—word lines. For a read request, the processor reads
from the cache if the word is there; otherwise, it initiates a storage—to—cache transfer, which may
require a prior cache-to—storage transfer to make room for the new data. For a write request, the
processor always writes in the cache, and this too may require a cache-to—storage transfer to make
room. When a write operation is directed to a storage location not already represented in the cache,
a storage—to—cache transfer is performed to initialize the cache line to which the write is directed.
Other than the cache-to—storage transfers, the processor writes in storage only when the cache is
not being used or when the Monitor specifically updates storage from the contents of the cache.

A cache-to-storage transfer occurs when the Monitor needs to be sure that memory is validated
(i.e., updated according to the written—in portions of the cache); for example, just prior to a device
output operation. Cache-to—storage transfers are also performed when a cache line is needed and the
least—recently used line is “modified” (i.e., has data that needs to be written). A cache-to—storage
transfer will send all eight words in the line in one bus transaction of five bus cycles.

A storage—to—cache transfer occurs when a word that is not in the cache is read or written. The
storage—to—cache transfer may initiate a cache-to—storage transfer in order to make a cache line
available, as described above. When space in the cache is available, the cache control will ask the
memory to fill the line; the request will also specify which pair of words to send first. The memory
will respond with the designated pair of words. In the case of a read, one of these is the data for
which the processor was waiting, so the processor continues. In the case of a write, the processor
was not waiting, and a word is available to replace one of the words read from memory; when the
first pair of words is read, one will go to the cache, the other is discarded and the newly written data
is put in the cache instead. Then, in sequence, in the next three bus cycles, the memory supplies
data to fill in the other six words of the line.

Memory is addressed on the backplane bus by means of a physical slot number and an in—module
address. The pager (§3.7) translates virtual addresses to bus addresses for memory references.
The TOAD-1 System hardware interprets virtual addresses 0-17 as accumulators (in the currently—
selected AC block) in MemA; these addresses are not interpreted by the pager.

Although backplane physical slot number 0 does not exist, the XKL-1 processor makes its boot
program and a collection of diagnostic software in read—only memory (the boot ROM) addressable
via slot number 0; thus, in a multiprocessor system, each processor accesses its unique boot ROM.
Processor microcode also makes use of the fast, on—board, random—access memory known as MemA.
MemA cannot be accessed by regular instructions, but two privileged instructions provide system and
diagnostic access to MemA. Particular locations within MemA that may be of interest to operating
system programmers are discussed in §3.6.1. All other hardware—defined addresses are relative to
pages, such as the process tables, whose physical location are specified by the Monitor. Physical
memory in a system 1s a constant, unless a storage module is actually added or removed. The
virtual address space accessible to a particular program is entirely a function of the way in which

1.2. KL10-BASED SYSTEM ORGANIZATION 11

the Monitor sets up user operating conditions, except that any space and any restrictions must
encompass an integral number of pages.

1.2 KL10-based System Organization

The illustrations that follow show the organization of the two types of computer systems based on
the KL10 central processor and the internal organization of that processor. A KL10-based system
is effectively a group of processors organized around an E or execution bus. The other processors
(controllers, interfaces) generally act at the direction of the central processor but carry out those
actions independently of 1t.

On the E bus of a DECSYSTEM-20, there may be up to four DTE20 interfaces, each of which
connects to a PDP-11 front—end processor, and up to eight RH20 Massbus controllers (Figure 1.3).
An RH20 handles disks or tapes via a Massbus; although fundamentally under control of the KL10,
the RH20 operates from its own command list in memory and uses a separate C or channel bus for
data transfers to and from internal memory via the M box, bypassing the E box. All DECSYSTEM-
20 memory 1is internal: the memory controllers with their storage modules are connected directly
to the S or storage bus, and access to them is possible only through the M box.! Unit record
equipment, such as line printers and card readers, and communication subsystems are handled by
PDP-11 front—end processors. The data path to memory for these is via the E bus, but it uses
automatic features of the priority interrupt, thus interfering minimally with the KL10 program.
Among the front—end processors, one is master: it acts as the system console and bootstraps the
system by loading the KL10 microcode from disk; it is also the system diagnostic facility (for which
it has a direct connection to one of the disks on the RH20).

Figure 1.4 shows a typical DECsystem—10 based on a KL10. In terms of memory and peripherals,
such a system is much like a KI10-based DECsystem—10, but it has the faster and more powerful
central processor. Here external memory is on a KI10 memory bus interfaced to the S bus by a
DMAZ20, and the peripherals are on a KI10 in—out bus interfaced to the E bus by a DIA20. Massbus
devices are handled by an RH10, which maintains a direct path to external memory by way of a
data channel. Such a system generally has only one front—end processor, which acts as the console
and diagnostic facility and bootstraps the microcode from disk or DECtape. One version of the
DECsystem—10 is more of a hybrid 10-20: a machine in the 1090 series has KI10 memory and
in—out buses but uses the RH20 Massbus controller, which 1s located on the E bus and maintains a
path to external memory by way of the C bus through the M box.

There are also two versions of the operating system for use with the KL10: the TOPS-20 Monitor
and the TOPS-10 Monitor. The Extended KL10 with both user and executive space extended is
available only in TOPS-20 systems. In a TOPS-10 system, an Extended KL10 can have extended
addressing only in executive space, and for this it must run microcode version 271 or greater (in
which case, the TOPS-10 Monitor actually uses so—called “TOPS-20 paging”). In other words and
Extended KL10, regardless of Monitor, has TOPS-20 paging; in a single—section KL10 the paging
always matches the Monitor.

1.2.1 The KL10 Processor

1MOS and core memory cannot be mixed on the same bus. If the system includes both, there must be two S buses.

12 CHAPTER 1. INTRODUCTION

Figure 1.3: KL10-based DECSYSTEM-20

MA20, MB20, MF20 or MG20 MA20, MB20, MF20 or MG20

Internal Controller Internal Controller
and Storage Modules and Storage Modules
A A
S Bus
A\ 4 A\ 4 _ _ _
C Bus
i -
A\ 4
M Box RH20 Massbus Massbus _
Controller
E Bus 1
E Box Y T~ -~ @
KL10
Processor 1
PDP 11 PDP 11 DTE20 RH11 Massbus
Processor Memory Interface Controller
y A A y
UNIBUS v L 2 \ 4 Y
k i i i 7 S
A\ 4 Y A\ 4 Y A\ 4
Console Floppy Line Card Communications
Terminal Disk Printer Reader Subsystem

HRMF-KL10SYS20.TEX

1.2. KL10-BASED SYSTEM ORGANIZATION

Figure 1.4: KL10-based DECsystem—10

13

External External
Core Storage Core Storage
Modules Modules
y A A y
DMA20
Memory Bus Y Y - -
Controller | KI10 Memory Bus
A Y Y _
1 Channel Memory Bus
| (o) (o)
DF10 RH10 Massbus
S Bus Data Channel g Massbus
Controller
A
K110 In-Out Bus !
k k ¥ U
Y A Y Y Y
DIA20 - —
In—Out Bus Line Card Communication
M Box Controller Printer Reader Subsystem
A
E Bus
E Box T - - -
KL10
Processor Y
DTE20 PDP 11 PDP 11
Interface Processor Memory
A y A
UNIBUS
Y Y Y
A A
Y Y
Console
Terminal DECtape

HRMF-KL10SYS10.TEX

14 CHAPTER 1. INTRODUCTION
Figure 1.5: KL10 Processor Simplified
C Bus S Bus
M BOX
Channel - > Memory | 2K Cache
Contro| > Control " (4K If MCA25)
A A A
> PMA Y Y
14 23
Pager < >
E BOX
Fast Memory |« |
8% 16 x 37 -~
] > IR
13
VMA
Section | 23
13 1718 & [35 Y Y E Bus
———
> Y
Arithmetic Micro
Y Logic - | Controller | g
(AD, AR, etc.)
PC > i
Section | 23
13 17 18 35)
Y
M Error Program Priority
sters Logic Flags Interrupt
A A y
Y Y

HRMF-KL10CPU.TEX

1.2. KL10-BASED SYSTEM ORGANIZATION 15

Figure 1.5 shows the internal configuration of the KL10 processor. Of the registers shown, only
PC (the program counter), Program Flags, and one set of sixteen Fast Memory accumulators are
directly relevant to a typical user. The processor performs a program by executing instructions
retrieved from the memory locations addressed by PC. For the normal program sequence, PC is
regularly incremented by one so that instructions are taken from consecutive locations. Sequential
program flow is altered by changing the contents of PC, either by incrementing it an extra time
in a skip instruction or by replacing its contents with the value specified by a jump instruction.
Throughout the text the phrase “jump to location n” means to load the value n into PC and continue
performing instructions in the normal counting sequence beginning at the location then specified
by PC. Physically PC is not a counter at all—it just holds the program count; the actual counting
is done in the virtual memory address register VMA. The entire VMA functions as a counter, but
no carry is allowed into the section part in program counting. Hence, large data structures can
arbitrarily cross section boundaries, but the program cannot. The program count wraps around in
the current PC section, which is specified by PC bits 13-17. For the program to go from one section
to another requires an explicit transfer of control by jumping to another section. In a single—section
KL10, all section bits are held at zero, so VMA and PC function as 18-bit registers. The virtual
address from VMA, whether eighteen bits or twenty-three, is translated by the pager to a 22-bit
physical address that is supplied to memory via PMA.

Each instruction retrieved from memory contains information identifying the operands and an in-
struction code specifying the operation to be performed using those operands. The code goes to the
instruction register IR, from which it is decoded by the microcontroller, which in turn performs the
instruction by manipulating all of the other E box elements and making the necessary requests to
the M box. The microcontroller also executes the more fundamental operations of sequencing the
program, handling TOPS-20 paging operations beyond the basic address translation made by the
pager (TOPS-10 operations are built into the M box pager), processing interrupts, and so forth.
(Not shown in the illustration is a multitude of control lines emanating from the microcontroller and
extending throughout the machine.) The microcontroller operates from a microcode contained in a
control store. This microcode bears the same relation to the microcontroller as the program does
to the processor. Microprocessing is invisible to the programmer, and he need not be concerned
with the microcode except to the extent of loading it at system initialization. The reader should,
however, note an important implication of this type of processor implementation: a single KL10
processor can actually be any one of a number of different processors merely by loading different
microcodes.

The major working area of the processor i1s the arithmetic logic. This contains three full-word
registers: the arithmetic register (AR), the buffer register (BR), and the multiplier—quotient register
(MQ). For handling double-length operands, AR and BR have 36-bit right extensions, called ARX
and BRX, respectively, Various combinations of these registers play a role in all arithmetic, logical,
and data handling operations and in program control operations as well. Also included in the
arithmetic logic are an extremely fast, double-length adder, AD-ADX, and smaller registers that
handle floating—point exponents and control shift operations and byte manipulation. However, from
the point of view of the programmer, the arithmetic logic can be disregarded. Almost all of the
operations necessary for the execution of a program are performed in it, but it never retains any
information from one instruction to the next. Computations either affect control elements, such as
PC and the program flags, or produce results that are stored and must be retrieved if they are to
be used as operands in other instructions. The program flags report conditions of interest to the
programmer, such as arithmetic and stack overflow; some of these conditions also are reported via
program traps.

16 CHAPTER 1. INTRODUCTION

An instruction word has only one 18-bit address field for addressing any location in the current PC
section. Most instructions have two 4-bit fields for addressing the first sixteen memory locations.
Any instruction that requires a second operand has an accumulator address field which can address
one of these sixteen locations as an accumulator; in other words as though it were a result held over
in the processor from some previous instruction. (The programmer usually has a choice of whether
the result of the instruction will go to the location addressed as an accumulator, to that addressed
by the 18-bit address field, or to both.) Every instruction has a 4-bit index—register address field
which can address fifteen of these locations for use as index registers in modifying a memory address
(a zero index-register address specifies no indexing). Although all computations on both operands
and addresses are performed in the arithmetic logic, the computer actually has sixteen accumulators,
fifteen of which can double as index registers. The factor that determines whether one of the first
sixteen locations in memory is an accumulator or an index register is not the information it contains
nor how its contents are used, but rather how the location is addressed. These first sixteen locations
are not actually in the storage modules—they are in a fast memory contained in the processor. This
allows much quicker access to these locations, whether they are addressed as accumulators, index
registers, or ordinary memory locations. They can even be addressed from the program counter, and
provision is made for referencing them from non-zero sections. Moreover, there are actually eight of
these fast memory blocks (also referred to as “AC blocks”), but generally only one is available to a
program at any given time. Blocks 6 and 7 are reserved specifically for the microcode; the Monitor
usually reserves block 0 for itself and assigns the others to user programs.

An optional feature that speeds up memory access and increases the efficiency of storage module
use 18 a cache. This facility has 2048 locations that temporarily substitute for a selection of the
most-frequently used storage locations. Hence, the cache may be regarded in some respects as a set
of general-purpose registers. A program loop once read from storage and then resident in the cache
may be executed hundreds of times without further instruction fetches from storage. Data produced
by the program is written in the cache. Thus, if the program sets up a location to be a counter, that
location may be read and written thousands of times with no storage access, even initially. When
the cache is present but does not contain the word the program wants, memory control gets a group
of four adjacent words from storage, including the requested one, and places them in the cache, on
the assumption the program will probably want the other three and can thus get them more quickly.
This 1s a reasonable assumption, since the program counts sequentially and data manipulation is
frequently sequential as well. Cache control has a mechanism for determining frequency of use, and
it writes the least-recently used word groups back into storage (or discards them if unchanged) when
the cache space 1s needed for new references. The only address restriction on the 512 4-word groups
is that the cache can have the same groups from, at most, four pages. There may be complete pages
in the cache, but it is more likely to have a selection of groups from a selection of pages depending
on frequency of use. Generally the cache contains words for the current user and for the Monitor, as
well as for handling interrupts for many users. The reader should be aware that the cache contains
representations of memory word groups, not necessarily the actual storage contents. For example,
when the program writes a word, the contents of that cache location then differ from the contents of
the corresponding storage location, and the other words in the group may not even be in the cache.
This caution is of interest, however, only to the operating system. A typical program simply makes
memory references; the more of these in which the cache substitutes invisibly for storage, the better.

The MCAZ25 cache and pager upgrade (part of the extended KL10) expands the size of the cache
to 4096 words, organized as 1024 four—word groups; this cache can hold the same groups from, at
most, eight pages.

Also included within the processor are a number of internal devices that are similar to external

1.2. KL10-BASED SYSTEM ORGANIZATION 17

controllers in that they operate independently of the program but are controlled by it over the E
bus. Some of these have already been mentioned: the program sets up the pager, instructs cache
control to update storage, sets up the memory system, and gets diagnostic information from the
memory controllers and storage modules. Other such “devices” are the error logic, the meters,
and the priority interrupt. By means of the error logic, the program can monitor conditions in
the processor. The meters provide a time base, an interval counter, and facilities for keeping track
of program use of the system and for analyzing system performance. The interrupt facilitates
processor control of the entire system by means of a number of priority—ordered levels over which
external signals may interrupt the normal program flow. The processor acknowledges an interrupt
request by executing the instruction contained in a particular location for the level or by doing some
special operation specified by the device (such as incrementing the contents of a memory location).
Assignment of levels to devices is entirely under program control. Two of the devices to which the
program can assign levels are the error logic and the interval counter.

1.2.2 KL10 Memory

When dealing with storage modules, the processor need not wait the entire memory cycle time. To
read, the processor waits only until the information is available and then continues its operations,
regardless of whatever else the memory must do to complete the read cycle. To write, the processor
waits only until the data is accepted; the memory then performs an entire cycle to write that
data. To save time in an instruction that fetches an operand and then writes new data into the
same location, the processor can request a read—modify—write cycle from the memory, in which
the memory performs only the read part initially and then completes the cycle when the processor
supplies the new data. This procedure is not used however in a lengthy instruction (such as multiply
or divide), which would tie up a storage module that may be needed by some other processor. Such
instructions instead request separate read and write access. However, the above considerations apply
only when the cache is not in use or is not present, thus requiring that the processor always deal
with the storage modules and that it request one word at a time.

With the cache in use for a given page, memory access is handled using the cache wherever possible,
and when storage access is required, transfers are in 4-word groups. For a read request, the M
box reads from the cache if the word is there; otherwise, it initiates a storage—to—cache transfer,
which may require a prior cache-to—storage transfer to make room for the new data. For a write
request, the M box always writes in the cache, and this too may require a cache-to—storage transfer
to make room; otherwise, the M box writes in storage only when the cache is not in use, the Monitor
specifically updates memory, or the data is supplied by an internal channel.

For handling storage transfers for a channel or with a cache, the M box interprets physical addresses
in this format:

Wo/rd

Page Group ‘ ! ‘

14 26 27 33 34 35

When the E box requests a word that is not in the cache, the M box gets the four words in the
group specified by bits 27-33 or, more specifically, gets whichever of them are not already in the

18 CHAPTER 1. INTRODUCTION

cache. For the quickest possible service, the M box first gets the particular word requested; e.g., if
the program requests word 2 in a group, the M box retrieves word 2 first, followed by words 3, 0,
and 1. Even without a cache, channel transfers are always in groups of four, except perhaps for the
first or last group in a block. Except with an MF20 memory, the processor further increases the
speed of memory operation by overlapping memory cycles: it can start one module to read a word
before receiving a word previously requested from a different one. Such speedup is unnecessary with
an MF20 memory because it is four words wide. Of course fast memory and the cache have no basic
cycle; with them the processor reads or writes a word directly.

From the simple hardware addressing point of view, the entire physical memory is a set of locations
whose addresses range from zero to a maximum dependent upon the capacity of the particular
installation. In a system with the greatest possible capacity, the largest address is 17777777 (decimal
4,194,303). The whole memory would usually be made up of a number of storage modules of different
capacities. Hence, a given address actually selects a particular module and a specific location within
it. For a 64K module with 22-bit addressing, the high—order six address bits select the module, and
the remaining sixteen bits address a single location in it; selecting a 32K memory takes seven bits,
leaving fifteen for the location. The times given below assume the addressed memory is idle when
access 1s requested. The processor can avoid waiting for its own previously requested memory cycles
to end by making consecutive requests to different storage modules. With an MF20 or an MG20
memory, almost all transfers are of four words at a time, so there is seldom any conflict among
requests. With other memories, and provided a cache 1s in use, ordering requests among modules
can be guaranteed by interleaving them in sets of four in such a way that requests for the words in
a group are cycled through the four modules in the set. Interleaving is effected by assigning four
modules, each of n locations, to the same 4n—location area of the address space, and setting each
module to respond only to one request out of the four in a group. Hence, within the given area,
all addresses ending in 0 or 4 are locations in one module, those ending in 1 or 5 are locations in a
second, and so forth. Some of the earlier modules can be interleaved only in pairs, which is not as
effective but 1s worthwhile. Without a cache, interleaving is not as effective, but it is still advisable
since the program is sequential. Without interleaving or a cache, some alternation between modules
is produced by keeping instructions in one and operands in another. Interleaving, assigning module
numbers, and so forth, are done by the program for internal memories but by manual switch settings
for external memories. Complete information is given in Appendix G.3.

The only physical locations uniquely defined by the hardware are those in fast memory, locations
0-17. All other hardware—defined addresses are relative to pages, such as the process tables, whose
physical locations are specified by the Monitor. Physical memory in a system is a constant unless a
storage module is actually added or removed. The virtual address space accessible to a particular
program is entirely a function of the way in which the Monitor sets up user operating conditions,
except that any space and any restrictions must encompass an integral number of pages.

1.2.3 Memory Characteristics

Table 1.1 gives the characteristics of the various memories for the two types of KL10 processor.
Times are in microseconds, and for external memories they include the delay introduced by 10 feet
(3 meters) of cable. Read access for a single word or the first word in a group is the time from the
request until the word is in AR. For an entire 4-word group, read access 1s the time from the request
until the last word is in the cache. Write access is the time from the request until the processor
receives the memory acknowledgment, for either the first word or the fourth. Except for the MF20,
these figures define the system access rates for storage modules with 4-way interleaving, since all

1.2. KL10-BASED SYSTEM ORGANIZATION

Table 1.1: KL10 Memory Characteristics

Physical Characteristics

Number of Modules Size
MF10 Core Memory 1 32K, 64K
MG10 Core Memory 2 64K, 128K
MH10 Core Memory 2 128K, 256K
MA20 Core Memory 4, 8 64K, 128K
MB20 Core Memory 4, 8 128K, 256K
MF20 MOS Memory 1 256K
MG20 MOS Memory 1 1024K
KL10 Fast Memory 16 [x8 sets]
KIL10 Cache 0 or 2K (MCA20) or 4K (MCAZ25)

Extended Processor Timing

First or Single-Word Access Four-Word Access

Read Write Read Write
MF10 Core Memory 1.493 1.084 2.227 1484
MG10 Core Memory 1.553 1.134 2.287 1534
MH10 Core Memory 1.633 1.134 2.367 1.534
MA20 Core Memory .883 40 1.467 1.60
MB20 Core Memory 1.017 40 1.60 1.60
MF20 MOS Memory .800 .267 1.40 667
MG20 MOS Memory .550 .160 1.10 .550
KL10 Fast Memory 067 .067
KL10 Cache 133 133

Single—section Processor Timing

First or Single-Word Access Four-Word Access

Read Write Read Write
MF10 Core Memory 1.627 1.217 2.507 1.697
MG10 Core Memory 1.687 1.267 2.567 1.747
MH10 Core Memory 1.767 1.267 2.647 1.747
MA20 Core Memory 1.06 A48 1.76 1.92
MB20 Core Memory 1.22 A48 1.92 1.92
KL10 Fast Memory .080 .080

KL10 Cache .160 .160

19

20 CHAPTER 1. INTRODUCTION

memory operations are absorbed within them: by the time the processor receives the data or the
acknowledgment, it can make a new request, for which the memory will be ready. Sizes given are
those in which the units are available. Note that interleaving depends on the number of modules,
not the number of units, most of which contain more than one module. Hence, 4-way interleaving
can be done with a single MA20 or MB20 memory, whereas it requires two MH10s or MG10s and
four MF10s.

With MF20 memories, there is only one module per unit and interleaving is not used. (Fach
controller can handle three units or “groups”.) The times given in the table are the actual times
the processor must wait to get data or an acknowledgement, except that hitting a refresh cycle can
cause a delay of up to 533 ns (refreshing requires about 3.5% of total memory time). Following a
read, the processor can make another request immediately. Following a write, it must wait from 467
to 867 ns before another request can be handled by the same controller. However, since a single
MF20 handles four words at once, one request following another within that time i1s unlikely.

Fast memory times are for referencing a memory location for an operand; a fast memory instruction
fetch takes slightly more time than a cache access. When a fast memory location is addressed as an
accumulator or index register, the access time is considerably shorter and usually takes no time at
all, as 1t 1s done in parallel with instruction operations that are required anyway.

The MF20 and MG20 have a 7-bit error correction code; all other units have only a single parity
bit. The MF20 and MG20 also have a spare bit that can be substituted for a known bad bit.

1.3 KS10-based System Organization

Figure 1.6 and Figure 1.7 show the organization of the DECSYSTEM—-2020 and the KS10 processor
used in it. The overall system (Figure 1.6) comprises a number of major units or subsystems that
communicate with one another over a bus built into the backplane. The minimal system has five
subsystems: processor, MOS storage, console, and two in—out subsystems, each based on a Unibus.
One Unibus adapter handles the disk system, the second handles all other peripheral equipment.
Depending on the device, these adapters can make direct access to storage or request that the
processor handle the transfer via the program. The console, which is based on a microprocessor,
boots the system from disk and handles interaction of the operator or a remote diagnostic link with
the other subsystems. The backplane bus and most other full-word data paths are actually thirty—
eight bits, having a parity bit for each half word. The system can run under either the TOPS-20 or
TOPS-10 Monitor.

Of the elements shown in the processor illustration (Figure 1.7), only fast memory, the program
flags, and the program counter PC are directly relevant to a typical user. The processor performs
a program by executing instructions retrieved from the memory locations addressed by PC. For the
normal program sequence, PC is regularly incremented by one so that instructions are taken from
consecutive locations. Sequential program flow is altered by changing the contents of PC, either
by incrementing it an extra time in a skip instruction or by replacing its contents with the value
specified by a jump instruction. Throughout the text the phrase “jump to location »n” means to
load the value n into PC and continue performing instructions in the normal counting sequence
beginning at the location then specified by PC. Physically PC is not a counter at all—it is a register
in the register file (described below). This register just holds the program address, and the actual
counting i1s done by the arithmetic logic, which wraps the count around in eighteen bits because the
virtual space is limited to section zero. Addresses from PC, or calculated by the arithmetic logic, go

1.3. KS10-BASED SYSTEM ORGANIZATION

Figure 1.6: DECSYSTEM-2020

KS10

Backplane Bus

Y

Y

A

Y

First Second c Storage
UNIBUS UNIBUS onsole Controller
Adapter Adapter (8080) Processor with 2-8

18-bit 8— or 16-bit 64K Modules

y A A A
Y Y Y
Remote
Operator ' 3
UNIBUS Terminal Dlag.nostlc

Disk Link

System
Y
UNIBUS

Y

Y

Y

Tape

Line
Printer

Communications
Subsystem

HRMF-KS10SYS20.TEX

22 CHAPTER 1. INTRODUCTION

Figure 1.7: KS10 Processor Simplified

KS10 Backplane Bus

A

Y

> Bus <
> Transceivers
RAM File
1777
Cache
Pager 1000 512
- 7 Workspace P
— -
384
200
177 Fast Memory
VMA 0 128
| 22 1K x 38
14 1718 ¢ 35 i
Y Y
- - IR
Arithmetic Unit —
Arithmetic Logic
and Register File
(PC, AR, etc.)
Program B X P -~ Micro
Flags) -) "] Controller
h A A
Y Y Y
T System R Priority
1mer Flags - Interrupt

HRMF-KS10CPU.TEX

1.3. KS10-BASED SYSTEM ORGANIZATION 23

to the virtual memory address register VMA. Each virtual storage address from VMA is translated
by the pager to a 20-bit physical address that is supplied to the storage subsystem via the bus.
VMA actually has twenty—two bits, for handling both physical storage addresses and addresses for
other types of bus transactions, such as those to the console, to in—out equipment, and to memory
status.

Each instruction retrieved from memory contains information identifying the operands and an in-
struction code specifying the operation to be performed using those operands. The code goes to the
instruction register IR, from which it is decoded by the microcontroller, which in turn performs the
instruction by manipulating all of the other processor elements and making the necessary requests for
bus transactions. The microcontroller also executes the more fundamental operations of sequencing
the program, handling paging operations beyond the basic address translation made by the pager,
processing interrupts, and so forth. (Not shown in the illustration is a multitude of control lines
emanating from the microcontroller and extending throughout the machine.) The microcontroller
operates from a microcode contained in a control store. This microcode bears the same relation
to the microcontroller as the program does to the processor. Microprocessing is invisible to the
programmer, and he need not be concerned with the microcode except to the extent of loading it
at system initialization. The reader should, however, note an important implication of this type of
processor implementation: a single KS10 processor can actually be any one of a number of different
processors merely by loading different microcodes.

The major working area of the processor i1s the arithmetic unit. Central to this unit is a set of
ten 4-bit microprocessor slices, which together contain the full-word arithmetic logic and a file of
ten registers. The register file includes, besides PC, the arithmetic register (AR); other associated
registers used in manipulating data and performing arithmetic and logical operations; and registers
that contain system addresses, status information, and constants. The arithmetic logic includes a
full-word adder, shifter, and mixers. It also contains complete 10-bit logic for direct manipulation of
floating—point exponents, standard 7-bit bytes, and for controlling shifting and operations on bytes
of other sizes. Multiple-length operands are handled by separately manipulating their higher— and
lower—order words using the registers in the file. Like the microcontroller, the arithmetic unit (except
for PC) can be disregarded by the user. Almost all of the operations necessary for the execution
of a program are performed in it, but it never retains any information from one instruction to the
next. Computations either affect control elements such as PC and the program flags, or produce
results that are stored and must be retrieved if they are to be used as operands in other instructions.
The program flags report conditions of interest to the programmer, such as arithmetic and stack
overflow; some of these conditions may also be reported via program traps. (Several registers in the
file do retain information of interest to the system programmer, however.)

An instruction word has only one 18-bit address field for addressing any location in the virtual
space. Most instructions have two 4-bit fields for addressing the first sixteen memory locations.
Any instruction that requires a second operand has an accumulator address field which can address
one of these sixteen locations as an accumulator; in other words, as though it were a result held over
in the processor from some previous instruction. (The programmer usually has a choice of whether
the result of the instruction will go to the location addressed as an accumulator, to that addressed
by the 18-bit address field, or to both). Every instruction has a 4-bit index—register address field
which can address fifteen of these locations for use as index registers in modifying a memory address.
(A zero index-register address specifies no indexing.) Although all computations on both operands
and addresses are performed in the arithmetic unit, the computer actually has sixteen accumulators,
fifteen of which can double as index registers. The factor that determines whether one of the first
sixteen locations in memory is an accumulator or an index register is not the information it contains

24 CHAPTER 1. INTRODUCTION

nor how its contents are used, but rather how the location is addressed. These first sixteen locations
are not actually in the storage modules—they are in a fast memory contained in the processor. This
allows much quicker access to these locations, whether they are addressed as accumulators, index
registers, or ordinary memory locations. They can even be addressed from the program counter.
Moreover there are actually eight of these fast memory blocks (also referred to as “AC blocks”), but
generally only one is available to a program at any given time. Block 7 1s reserved specifically for the
microcode; the Monitor usually reserves block 0 for itself and assigns the others to user programs.

A feature that speeds up memory access and increases the efficiency of storage module use 1s a virtual
cache. This facility has 512 locations that duplicate the contents of storage locations in current use
in the virtual address space of the program. Every time a word is read from storage or written
in storage, it is also written in the cache location selected by the right—-most nine virtual address
bits, which represent position within the virtual page. Provided there is no intervening reference
to the same position in some other page, a subsequent read reference to the same virtual location
can be made to the cache (referred to as a “cache hit”) instead of going over the bus to storage. A
program loop, once read from storage and then resident in the cache, may be executed hundreds of
times without further instruction fetches from storage; and data produced by the program can be
retrieved without requiring bus transactions. To a great extent the cache 1s also invisible. A typical
program simply makes memory references; the more of these in which a word is read from the cache
instead of storage, the better. However, a program that tends to settle in one virtual page at a time,
instead of alternating references among a number of pages, will maintain a much higher cache hit
rate, saving considerable time.

Fast memory and the cache are contained respectively in the bottom 128 and top 512 locations in
a RAM file in the processor. The remaining 384 locations are a workspace used by the microcode
as a scratch pad and for handy storage of various system quantities and constants that expedite
the execution of the more complicated instructions. Also included within the processor are several
elements, such as the pager already mentioned, that are similar to external controllers in that they
operate independently of the program but are controlled by it. The timer provides a time base
and an interval counter. By means of the system flags, the program can monitor various conditions
throughout the system and can interrupt the console or be interrupted by it. The interrupt facilitates
processor control of the entire system by means of a number of priority—ordered levels over which
external signals may interrupt the normal program flow. The processor acknowledges an interrupt
request by executing the instruction contained in a particular location for the level or the source of
the request. Assignment of levels is entirely under program control. Two levels can be assigned to
each Unibus adapter, and one can be assigned to the system flags.

1.3.1 KS10 Memory

Any subsystem can request use of the bus to write a word into storage or read a word from it. To
save time in byte input operations, a Unibus adapter can also get the bus for a read-modify—write
cycle. In this transaction a word goes from memory to the adapter, which inserts the byte and
immediately sends the modified word back. A requesting subsystem may have to wait until the bus
is free and it has priority, and even then there may occasionally be a further wait of up to 750 ns
for memory refresh (which requires about 5% of total memory time). Reading from storage takes
900 ns. Writing to storage takes 600 ns, although the memory remains busy for an additional 300
ns. Whenever the processor writes or reads a word in storage, that word is automatically written
in the cache. Thus, if the processor wishes to read the same word at a later time, retrieval requires
only 300 ns. The cache hit rate is generally about 80%.

1.4. TIMESHARING 25

The following table gives the characteristics of KS10 memory with times in nanoseconds.

Read Write Size Error Facility
MOS Memory 900 600 128K-512K 7-bit correction code
Fast Memory 300 300 16 2 parity bits
Cache 300 512 2 parity bits

There 1s no cache write time, because writing is automatic and is absorbed in storage access time.
Fast memory times are for addressing accumulators as memory locations. Access to an accumulator
as an accumulator or as an index register is made in a single microinstruction period of 150 ns;
frequently this represents no extra time, because the same microinstruction often performs other
functions.

The memory array comprises from two to eight storage modules of 64K each. From the hardware
addressing point of view, the entire physical memory is simply a set of locations whose addresses
range from zero to a maximum dependent upon the capacity of the particular installation. In a
system with the greatest possible capacity, the largest address is 1777777 (decimal 524,287).

At a halt, the microcode places a halt code and PC in storage locations 0 and 1. The only other
physical locations uniquely defined by the hardware are those in fast memory, locations 0-17. All
other hardware—defined addresses, such as the process tables or the halt—status block, are relative
to physical locations specified by the Monitor. Physical memory in a system is a constant unless a
storage module is actually added or removed. The virtual address space accessible to a particular
program is entirely a function of the way in which the Monitor sets up user operating conditions,
except that any space and any restrictions must encompass an integral number of pages.

1.4 Timesharing

Inherent in the machine hardware are restrictions that apply universally: only certain instructions
can be used to respond to a priority interrupt, and certain memory locations have predefined uses.
Above this fundamental level, the timeshare hardware provides for different modes of processor
operation and establishes certain instruction and memory restrictions so that the processor can
handle a number of user programs (programs run in user mode) without their interfering with
one another. The memory restrictions are dependent to a great extent on the type of processor;
however, the instruction restrictions are not, and these are relatively obvious: a program that is
sharing the system with others cannot usually be allowed to halt the processor or to operate the
in-out equipment arbitrarily. (Some processors permit unrestricted access to a limited set of in—out
devices for the use of special real-time applications.) A program that runs in executive mode—the
Monitor—is responsible for scheduling user programs, servicing interrupts, handling input—output
needs, and taking action when control is returned to it from a user program. Any violation of an
instruction or memory restriction by a user transfers control back to the Monitor. Dedication of
the entire facility to a single purpose, i.e., operation for only one user, 1s equivalent to operation in
executive mode.

The paging hardware maps pages from the virtual address space into pages anywhere in physical
memory. A page map for each program specifies not only the correspondence from virtual address
to physical address, but also whether or not an individual virtual page i1s accessible and alterable,

26 CHAPTER 1. INTRODUCTION

and whether or not the cache can be used for references to it. In the KL.10 and KI10, both user and
executive modes are subdivided according to whether the program is running in a public area or a
concealed area; these areas are distinguished by whether or not their pages are labeled public. Within
user mode these submodes are public and concealed; within executive mode they are supervisor and
kernel. A program in concealed mode can reference all accessible user memory, but the public
program cannot reference the concealed area except to transfer control into it at certain legitimate
entry points. The concealed area would ordinarily be used for proprietary programs that the user
can call but cannot read or alter.

In the XKL-1 and KS10, all pages may be regarded as concealed, because none are labeled public;
but in reality the concept of public vs concealed simply does not apply. In the XKIL-1 and KS10,
executive mode is identical to kernel mode in that supervisor restrictions do not exist. In this
treatment of timesharing, any mention of public in contrast to private is irrelevant to the XKL-1
and KS10, and functions indicated as being performed by the kernel or supervisor program are all
handled by the executive in these processors.

In kernel mode the Monitor handles the in—out for the system, handles priority interrupts, con-
structs page maps, and performs those functions that affect all users. This mode has no instruction
restrictions, the program can even turn off the pager to address memory directly, using physical ad-
dresses; the address space is then said to be unpaged. In paged address space, individual pages may
be restricted as inaccessible or write-protected, but it is the kernel program that establishes these
restrictions. In supervisor mode the Monitor handles the general management of the system and
those functions that affect only one user at a time. This mode has essentially the same instruction
and memory restrictions as user mode, although the supervisor program can read, but not alter, the
concealed areas; in this way the kernel mode Monitor supplies the supervisor program with infor-
mation the latter cannot affect, even though the locations are not write-protected in kernel mode.
The kernel program generally assigns fast memory block 0 for use by the Monitor in either mode
(especially in a TOPS-10 system—to be compatible with the KI10 where the hardware requires it).
Typically, the Monitor assigns block 1 to all users and uses blocks 2 and 3 for handling interrupts
(e. g. block 2 just for the highest priority level and block 3 for the others).

The most extensive hardware features for timesharing exist in the KL10 and KI10. The reason for
this is that the newest software is much more sophisticated and thus requires less hardware to do
the job— the XKL-1 and KS10 take advantage this fact to cut cost.

Figure 1.8 shows an example of the use of the most extensive timeshare hardware. This diagram
shows the layout of a single—section KL10 address space that is configured to make full use of the
various modes; be used with a TOPS-10 Monitor, and be compatible with earlier machines. The
space i1s 256K, made up of 512 pages numbered 0-777 octal. Any program can address locations 0—
17, because these are in fast memory and are completely unrestricted (although the same addresses
may be in different blocks for different programs). The public user program operates in the public
area, part of which may be write—protected. The public program cannot access any locations in
the concealed areas except to fetch instructions from prescribed entry points. The concealed user
program has access to both public and concealed areas, but it cannot alter any write—protected
location, whether public or concealed, and fetching an instruction from the public area automatically
returns the processor to public mode.

In a TOPS-20 system, an area labeled “write—protected” might better be called “copy—on—write.”
Write protection is generally for “pure” code (i.e., those portions of the program that are not
expected to be changed by the execution of the program) shared by a number of users. If one user
attempts to alter a copy—on—write page, the TOPS—20 Monitor will ordinarily make a separate copy

1.4. TIMESHARING

400

T

Figure 1.8: Possible TOPS—-10 Virtual Address Space Configuration
User Mode

Public

Concealed

Fast Memory

Fast Memory

Public Public
Writeable Writeable
Concealed
Writeable
400
Public Public

Write—Protected

Write—Protected

Concealed
Entry Points

T

Concealed
Write—Protected

HRMF-T10VASC. TEX

340

T

Executive Mode

Supervisor

Kernel

Fast Memory

Fast Memory

Ingccessible Concealed
in KI10 Write—Protected
Unpaged
in KI10
340
Public Public
Concealed Concealed
400
Public Public
Writeable Writeable
Public Public
Write—Protected Write—Protected
Concealed
Writeable
Concealed
Concealed

Write—Protected

T

Shaded Areas are Inaccessible

27

28 CHAPTER 1. INTRODUCTION

for that user in his alterable space and keep the original write—protected page for the remaining
users to continue sharing.

In our example, write—protected user pages are in the high address half of the space for compatibility
with the two—part protection and relocation scheme of the KA10. We define the supervisor program
as confined to pages 340 and above, even though there is actually nothing to prevent it from reading
that part of the kernel program shown in the lower numbered pages. The reason for specifying it
this way 1s for compatibility with the KI10, where the bottom 112K of executive space is unpaged
and accessible only in kernel mode. Part of the executive public area may be write—protected; and,
even though the supervisor can read concealed information, it cannot change a concealed location
whether write—protected or not. For executive concealed areas, the distinction between writable
and write—protected applies only to kernel mode. As in the case of concealed user mode, when the
kernel program fetches an instruction from a public area, the processor returns to supervisor mode.
With TOPS-10 paging, pages 340-377 constitute the per—process area, which contains information
specific to individual users and whose mapping accompanies the user page map. In other words, the
physical memory corresponding to these virtual pages can be changed simply by switching from one
user to another, rather than the Monitor changing its own page map.

In the executive space of an XKL-1 there is no requirement to use section zero; the TOPS-20 monitor
avoids all use of section zero.

In executive space of an extended KL10, the interrupt code must be in section zero. The rest of
the KL.10’s executive program is usually in section one; but the two sections are mapped identically,
so a given in—section address in either section refers to the same physical location. In terms of
instructions implemented and procedures used, the KS10 acts like an extended processor that is
confined to section zero.

A single—section user program would ordinarily be run in section zero for compatibility with an
unextended processor. For the multisection case, the program might be in section 1, special tables
in section 3, and a large data structure, such as an immense matrix, might occupy sections 10-12.

To manage the system effectively, the Monitor keeps a special table for each process in each processor.
These process tables are defined in physical memory; each requires a single page whose whereabouts
must be specified by the Monitor, which keeps an executive table for itself and a user table for each
user. In a TOPS-10 processor, the first half of the table holds the page map for the process;? in
a TOPS-20 processor, the process table contains a table of (super—) section pointers to page maps
for whatever (super—) sections are in use. The hardware defines the use of many other locations
in the process tables, especially in the KL10: these include locations that hold trap and interrupt
instructions, control blocks for channels and front—end processors, and various quantities associated
with paging and the meters. In the KS10 there are no control blocks since there are no channels or
front—end processors; moreover timing information and many of the words associated with paging
are kept in the workspace instead of the process tables. In the XKL-1, many of the parameters that
control the paging environment are kept in MemA. Parts of a process table not used by or set aside
for the hardware are available to the software. In each user process table the Monitor generally
keeps a stack for use with the process, job tables, and various user statistics such as memory space
and billing information. In the text the phrase “user process table” refers to the table currently
specified by the Monitor as the one for the user, even if that user is not currently running.

2This distinction is no longer strictly true: advanced versions of TOPS-10 use TOPS—20 paging.

1.5. NUMBER SYSTEM 29

1.5 Number System

Fundamentally, the computer memory stores 36 bits (i.e., binary digits) in each word. The in-
terpretation of the contents of a memory word, whether as a fixed—point number, as text, as a
floating—point number, as an instruction, or whatever else, rests entirely with the programmer’s
selection of which instruction(s) interpret the data. This section discusses two broad classes of data:
fixed—point and floating—point numbers.

1.5.1 Fixed—Point Numbers

One of the usual interpretations of a data word is as a signed integer with 35 magnitude bits.
However, a program can interpret a data word as a 36-bit, unsigned binary number, or the left and
right halves of a word can be taken as separate 18-bit numbers. The PDP-10 repertory includes
instructions that add or subtract one from both halves of a word, so the right half can be used for
address modification when the word is addressed as an index register, while the left half is used to
keep a control count.

The fixed—point arithmetic instructions use twos—complement representations to do binary arith-
metic. In a word used as a number, bit 0 (the leftmost bit) represents the sign: 0 for positive, 1 for
negative. In a positive number the remaining thirty—five bits are the magnitude in ordinary binary
notation. In a negative number the sign bit is 1 and the remaining bits are the twos complement of
the magnitude.

Arithmetically, if # is an n—bit binary number, its twos complement is 27 — z. The twos comple-
ment is actually formed by computing the equivalent, (2" — 1) — z + 1. Although the latter seems
more complicated, it is quite easy to do in hardware. The expression (2" — 1) — x represents the
ones complement (also called the logical complement, or simply the complement) of . The ones
complement is easy to compute because (27 — 1) is a word containing n consecutive ls. When x
is subtracted from a word containing all ones, the result is a word in which every bit that was 1
in z is now 0, and every bit that was 0 in « is now 1. Thus each bit of & has been changed to its
complement. To form the twos complement of #, 1 is added to the ones complement of z. (The
adder is directed to use the ones complement of 1ts input as one operand, zero as the other operand,
and a carry is injected at the right end of the adder; the result is the twos—complement of the orginal
operand.)

+15310 = 4231 = |000 000 000 000 000 000 000 000 000 010 011 001 |
0 35
—1531, = —-231z = |111 111 111 111 111 111 111 111 111 101 100 111|
0 35

A twos—complement addition actually acts as though the words represented 36—bit unsigned numbers;
i.e., the sign bits are treated just the same as the magnitude bits. In the absence of a carry into
the sign stage, adding two numbers with the same sign produces a plus sign in the result. The
presence of a carry gives a positive answer when the addends have different signs. The result has
a minus sign when there is a carry into the sign bit and the addends have the same sign, or when
the addends have different signs and there is no carry. Thus the program can interpret the numbers
processed in fixed—point addition and subtraction as signed numbers with thirty—five magnitude bits

30 CHAPTER 1. INTRODUCTION

or as unsigned 36—bit numbers.

A computation on signed numbers produces a result that is correct as an unsigned 36-bit number
even if overflow occurs. The hardware interprets the result as a signed number for the purpose of
detecting and indicating overflow. Adding two positive numbers whose sum is greater than or equal
to 23° gives a negative result, indicating overflow; but that result, which has a 1 in the sign bit, is
the correct answer interpreted as a 36-bit unsigned number in positive form. Similarly, adding two
negatives gives a result which is always correct as an unsigned number in negative form.

Zero is represented by a word containing all 0s. Complementing this number produces a word
containing all 1s, and adding 1 to that produces all Os again. Hence, there is only one representation
for the number zero and its sign is positive. Since the numbers are symmetrical in magnitude about
a single zero representation, all even numbers, both positive and negative, end in 0. All odd numbers
end in 1. (A number containing all 1s represents —1.) However, since there are the same number
of numbers with each sign and zero has a plus sign, there is one more negative number than there
are strictly positive numbers (non-zero numbers with a plus sign). This is the largest negative
number and i1t cannot be produced by negating any positive number. Its octal representation is
400000000000, meaning —23°, i.e., decimal —34,359,738,386. The magnitude of this number is one

greater than the largest positive number.

If ones complement were used for negatives a person could read a negative number by attaching
significance to the 0s instead of the 1s. In twos complement notation each negative number is one
greater than the complement of the positive number of the same magnitude, so a negative number
can be read by attaching significance to the rightmost 1 and to the Os to the left of it. (The negative
number of largest magnitude has a 1 in only the sign position.) In a negative integer, 1s may be
discarded at the left, just as leading Os may be dropped in a positive integer. In a negative fraction,
0s may be discarded at the right. So long as only 0s are discarded, the number remains in twos—
complement form because it still has a 1 that possesses significance; but if a portion including the
rightmost 1 1s discarded, the remaining part of the fraction is now a ones—complement number. For
example, single—precision multiplication (the MUL instruction) produces a double-length product;
the programmer must remember that discarding the low—order part of a double-length negative
leaves the high—order part in correct twos—complement form only if the low—order part is zero.

The computer does not keep track of a binary point—the programmer must adopt a point convention
and shift the magnitude of the result to conform to the convention used. Two common conventions
are to regard a number as an integer (binary point at the right) or as a proper fraction (binary point
at the left); in these two cases the range of numbers represented by a single word is —23% to 235 — 1,
or —1 to 1 — 2735, Since multiplication and division make use of double-length numbers, there are
special instructions for performing these operations with integral operands.

The format for double-length fixed—point numbers is just an extension of the single-length format.
The magnitude (or its twos—complement) is the 70-bit string in bits 1-35 of the high— and low-order
words. Bit 0 of the high—order word is the sign, and bit 0 of the low—order word is made equal to the
sign in any result. The range for double-length integers and proper fractions is thus —27° to 279 — 1
and —1 to 1 —277%. The double-precision instructions actually use quadruple-length numbers for
products and dividends. Numbers of any length are just a further extension of the basic format:
thirty—five additional bits of the number in each lower—order word, with bit 0 made equal to the
sign in results. Remember that truncating a multiple-length negative requires an adjustment for
the twos—complement unless the part discarded 1s zero. The convention for bit 0 of lower—order
words is inconsistent with that used for floating—point format (see below). This does not affect
the arithmetic instructions themselves, as they ignore bit 0 in all lower—order words. However,

1.5. NUMBER SYSTEM 31

the instructions that negate a double-word (e.g., DMOVN) follow the floating—point convention.
This means that, if such instructions are used for fixed—point numbers, a problem could arise when
comparing one double-precision integer with another.

1.5.2 Floating Point Numbers

The floating—point instructions provide for conversion between fixed and floating forms and handle
both single- and double—precision floating—point numbers. The same format is used for a single—
precision number and the high—order word of a double—precision number. A floating—point instruc-
tion interprets bit 0 as the sign but interprets the rest of the word as an 8-bit exponent and a
27-bit fraction. For a positive number, the sign is 0, as before. However, the contents of bits 9-35
are now interpreted as a binary fraction and the contents of bits 1-8 are interpreted as an integral
exponent in excess—128 (decimal, i.e., excess—200g) code. Exponents from (decimal) —128 to +127
are therefore represented by the binary equivalents of 0 to 255 (i.e., 0005 — 3775s). Floating—point
zero is represented by a word containing all Os. Negative floating—point numbers is represented by
the twos—complement of its positive counterpart. A negative number has a 1 for its sign and the
twos—complement of the fraction; since every fraction must ordinarily contain a 1 unless the entire
number is zero (see below), it has the ones—complement of the exponent code in bits 1-8. Since the
exponent is in excess—128 code, an actual exponent z is represented in a positive number by x + 128,
in a negative number by 127 — z. The programmer, however, need not be overly concerned with the
details of these representations because the hardware compensates automatically. For example, for
the instruction that scales the exponent, the hardware interprets the integral scale factor in standard
twos—complement form but produces the correct ones complement result for the exponent.

1531, = 42315y = +0.462 x 28
= [0]10 001 000[100 110 010 000 000 000 000 000 000
01 8 9 35

—153;0 = —2315 = —0.4625x 2

[1]01 110 111011 001 110 000 000 000 000 000 000
01 8 9 35

The floating—point instructions assume that all non—zero operands are normalized. The floating—
point instructions normalize a non—zero result. A floating—point number is considered normalized if
the magnitude of the fraction is greater than or equal to % and less than 1. The hardware may give
incorrect or imprecise results if the program supplies an operand that is not normalized or that has
a zero fraction with a non—zero exponent.

Single—precision floating—point numbers have a fractional range in magnitude of % to 1 — 2727,
about eight significant decimal digits. Increasing the length of a number to two words does not
significantly change the range but rather increases the precision; in any format the magnitude range
of the fraction is % to 1 decreased by the value of the least—significant bit. In these formats the
exponent range is —128 to +127, giving a decimal range of approximately 1.5 x 1073 to 1.7 x 103%.
The G-format floating—point numbers (described below) extend the range of the exponent.

The precaution about truncation given for fixed—point multiplication applies to single—precision
floating—point operations because they are done in extra length; but the programmer may request

32 CHAPTER 1. INTRODUCTION

rounding, which automatically restores the high—order part (the result) to twos—complement form
if 1t is negative. In double-precision floating—point instructions, all operands and results are double
length, and all instructions calculate an extra length—answer, which is rounded to double length
with the appropriate adjustment for a twos—complement negative. In double-precision format the
high—order word is the same as a single—precision number, and bits 1-35 of the low—order word are
simply an extension of the fraction, which is now sixty—two bits, or over eighteen decimal digits.
Bit 0 of the low—order word i1s made 0 in a result but it is ignored in all operands; e.g., the number
218 4 2718 has this two—word representation in double—precision format,

[0]10 010 011100 000 000 000 000 000 000 000 000]
01 8 9 35

[0]00 000 000 010 000 000 000 000 000 000 000 000 |
01 35

and its negative is

[1]01 101 100]011 111 111 111 111 111 111 111 111]
01 8 9 35

[O]11 111 111 110 000 000 000 000 000 000 000 000]
01 35

1.5.3 G-format Floating—Point Numbers

A collection of instructions to handle extended-range (or “giant”) floating—point numbers has been
included in the KL10, and XKL-1.3 These instructions include the usual arithmetic operations as
well as conversions between G—format floating—point numbers and integers, double word integers,
single—precision floating—point, and double—precision floating point. The G-format operands are
similar to double—precision floating—point numbers; however, in G—format numbers, the exponent
field has been expanded by three bits at the expense of losing bits in the fraction. For this small
loss 1n precision, one decimal digit of significance, the range has been greatly extended.

In G—format, bit 0 of the first word is interpreted as the sign; the next eleven bits are the exponent;
twenty—four bits of binary fraction follow in the first word with thirty—five additional fraction bits
in the second word, for a total of fifty—nine fraction bits. For positive numbers, the sign is 0; the
contents of bits 1-11 are interpreted as an integral exponent in excess—1024 (decimal, i.e., excess—
2000s) code. Exponents from decimal —1024 to +1023 are represented by the binary equivalents
of 0 to 2047 (00005 — 3777s). Floating—point zero is represented by a double word containing all 0
bits. Negative numbers have the sign bit set to 1, the ones complement of the exponent in bits 1-11,
and the twos—complement of the fraction in bits 12-35 of the first word and bits 1-35 of the second
word. Bit 0 of the second word is zero in results and ignored in operands.

For example, the number 2'® + 2718 has this two—word representation in G-format,

3In XKL-1, these instructions trap to a macro—code simulator.

1.6. INSTRUCTION FORMAT 33

[0[10 000 010 011100 000 000 000 000 000 000 000]
01 11 12 35

|0|00 000 000 000 010 000 000 000 000 000 000 000|
01 35

and its negative is

[1[01 111 101 100J011 111 111 111 111 111 111 111]
01 1112 35

[O[11 111 111 111 110 000 000 000 000 000 000 000]
01 35

These numbers give a decimal range of approximately 2.8 x 107309 to 9 x 10307,

1.6 Instruction Format

Address Type

Accumulator Index Register
Address / Address
. [/
Instruction Code Memory Address
0 89 121314 17 18 35

Basic Instruction Format

In the basic instruction format, the nine high—order bits (0-8) specify the operation, and bits 9-12
address an accumulator. The rest of the instruction word supplies information for calculating the
effective address, which is the actual address used to fetch the operand or alter program flow. Bit 13
specifies the type of addressing, bits 14-17 specify an index register for use in address modification,
and the remaining eighteen bits (18-35) address a memory location. In variations on this basic
format, bits 9-12 may be used for addressing flags, or all thirteen high order bits (0-12) may be
used for an expanded instruction code. The instruction codes that are not assigned as specific
instructions are performed by the processor as so—called “unimplemented operations.” Among the
unimplemented operations are some that are specified as “unimplemented user operations” or UUOs
(a mnemonic that means nothing to the assembler). Some of these are for the local use of a program
(LUUOs) and some are for communication with the Monitor (MUUOs). In general, unassigned

codes act like MUUOs.

In the KL10 and earlier processors, three 1s in bits 0-2 indicate an input—output instruction; these
instructions have a different format, as indicated below. In the IO instruction format used in the
KL10 and earlier processors, bits 3—9 address the in—out device to be used in executing the instruction
and bits 10-12 specify the operation. The rest of the word is the same as in other instructions.

34 CHAPTER 1. INTRODUCTION

Address Type

Instruction Index Register
Code / Address
7 Device Code | / Memory Address
0 23 910 121314 17 18 35

Pre-KS10 In—Out Instruction Format

In all processors from the KS10 on, in—out instructions use the basic instruction format, but for
consistency they always do have 1s in the leftmost three bits. (Note there are also non-TO instruction
codes beginning with 7.) Post-KL10 IO instruction codes are opportunely chosen so equivalent
instructions generally have the same configuration in all processors.

Note that bits 13-35 have the same format in both types of instructions; in fact these bits are the
same in every instruction, whether it addresses a memory location or not. In the format illustrations
throughout the manual, this part of an instruction word is shown as

I X Y
1314 17 18 35

where bit 13 1s represented by I for “indirect bit;” 1.e., the address type is either direct or indirect,
where the latter is indicated by a 1. For every instruction, the processor carries out an effective
address calculation that results in a quantity referred to as F. This is the effective address of the
instruction if indeed it is an address, whether for an operand or a jump. £ may, however, represent
effective conditions, an effective shift, or something else, but the result of the calculation is always
referred to as E. In illustrations for the basic instructions, bits 9-35 are almost always represented

by

A 1 X Y
9 1314 17 18 35

where A 1s the accumulator address.

1.6. INSTRUCTION FORMAT 35

Note

Although the various parts of an instruction word are always labeled, in some instructions
the result of the effective address calculation i1s not actually used. Unless otherwise
specified, in such cases the I, X, and Y parts of the word are reserved by XKL for
possible future use, and they must be zero for compatibility with such use. Similarly
when bits 9-12 are not used, they are also reserved and must be zero.

A similar stricture holds for all the formats defined throughout the manual for address
words, pointers, and miscellaneous special words associated with system features. In
words supplied by the program, unassigned bits are available for arbitrary use by the
user only if specifically so indicated. Bits labeled “reserved” or simply left blank are
reserved to Digital for future use by the hardware or use by the system software. In
any word read by the program, unlabeled bits are read as Os unless there i1s a specific
indication otherwise.

The XKL-1, KL10, and KS10 have a feature that allows expansion of the instruction repertory by
an extension of the basic format to two words. In a two—word instruction, it 1s only the first word
that actually appears in the program sequence (i.e., that is referenced by PC), and the accumulator
used by the instruction is that specified by the A field of the first word. However, the instruction
the processor actually executes is the second word; it is found at location E0, which is the result of
the effective address calculation for the first word. Moreover, the way the processor interprets the
instruction code of the second word is entirely different from the way it would if that same word
appeared in the program sequence as a one—word instruction. Thus, use of a single instruction code
in the first word effectively creates a whole new instruction set as large as the one the processor
already has. At present there is only one such extended instruction set, and only a small number
of the available extended codes are used. In extended instructions, the first instruction word is the
EXTEND instruction, which has code 123. The format illustrations for these instructions are like
this.

123 A I X Y
0 8 9 121314 1718 35
E0 Instruction Code 00 I X Y
0 8 9 121314 1718 35

Remember, however: although the two words are shown together, they never appear one after the
other in the program sequence. If they did, the processor might well perform the second word as a
standard instruction after executing it as an extended instruction. As with all instructions, before
executing the second word the processor calculates an effective address for it; this is referred to as
FE1, and its use depends on the instruction. Bits 9-12 of the second instruction word must be zero
for compatibility with possible future use. Unassigned extended instruction codes are executed as

MUUOs.

36 CHAPTER 1. INTRODUCTION

1.7 Effective—Address Calculation

Note

The calculation of F, the Effective—Address, is the first step in the execution of every
instruction. No other action taken by any instruction, no matter what it is, can possibly
precede that calculation. There is absolutely nothing whatsoever that any instruction can
do to any accumulator or memory location that can in any way affect its own effective—
address calculation.

An effective—address is calculated for every instruction regardless of whether or not the
instruction actually references memory.

Effective-address calculation generally i1s performed in the virtual-address space of the program.
This is true even for fast memory, which every program regards as in its virtual space even though
fast-memory addresses are treated as unmapped addresses and are not sent to the pager for mapping.

The exceptional cases where effective—address calculations are not done in the virtual-address space
of the program occur either when an executive-mode program is performing a PXCT instruction
that specifies that the target instruction’s effective-address calculation is to be performed in the
previous context, or when an executive—mode program is executing with the pager turned off| e.g.,
at system start up. In the latter case, all addresses used are physical addresses for memory and the
program must not give addresses that lie outside the range determined by available memory. When
the Monitor is setting up page maps, it must select appropriate physical translations.

1.7.1 Section Zero Effective—Address Calculation

For our discussion of the effective-address calculation, we shall begin with the simpler case—a virtual
space limited to section zero (all quantities are eighteen bits). This is the calculation performed by
the KA10, KI10, unextended KL10, and KS10 processors. This description applies also to the
extended KL10 and the XKL-1, when operating in section zero. This calculation is depicted in
Figure 1.9.

As explained at the beginning of this chapter, the address space of an unextended processor is limited
to one section, which by definition is section zero. Such processors employ only in—section addresses,
because no section number 1s necessary when there is only one section.

Bits 13-35 have the same format in every instruction whether it addresses a memory location or
not. Bit 13 is the indirect bit; bits 14-17 are the index register address; and bits 18-35 are called
the address Y.

I X Y
1314 17 18 35

The effective—address F of the instruction depends on the values of I, X', and Y. If [and X are both
zero, Y is | i1.e., bits 18-35 contain the effective address. If X is non—zero, the contents of the right
half of index register X are added to Y to produce an 18-bit modified address. If I is 0, addressing

1.7. EFFECTIVE-ADDRESS CALCULATION

Figure 1.9: Single—Section Effective-Address Computation

HRMF-ZEACALC.TEX

Instruction Fetch

|

MB < C(PC)

IR < MB<0;12>

Y

Y < MBcis:35>
X <= MBcigar>

I« MB<13>

E< Y+ C(X) 5355

<
<

Done. Result 1s E. -

\ Yes
07

-

37

38 CHAPTER 1. INTRODUCTION

is direct and the modified address is the effective address used in the execution of the instruction;
if I is 1, addressing is indirect and the processor retrieves another address word (referred to as an
“indirect word”) from the location specified by the modified address already determined. This new
word is processed in exactly the same manner: X and Y determine the effective address if 7 is 0,
otherwise, they are used for yet another level of address retrieval. This process continues until some
referenced location is found with a 0 in the indirect bit; the 18-bit number calculated from the X
and Y parts of this location is the effective address F.

We have taken Y to be a memory address, but the program can just as well have an address in the
index register, and have the Y part of any instruction or indirect word that references it be an offset
or displacement. An instruction or indirect word is still an “address word”, even though it may not
contain an address; the quantity in an index register is still called an “index”, even when it is an
address instead of an offset.

Note that, throughout the procedure, no computed quantity is ever larger than eighteen bits. In the
arithmetic operations, overflows are discarded by disabling the carry from bit 18 to bit 17. Hence
adding a large offset can be the same as subtracting a small one.

The calculation outlined above is carried out for ewvery instruction, even if it need not address
a memory location. If the indirect bit in the instruction word is 0 and no memory reference is
necessary, then Y 1s not a memory address. It may be a mask in some kind of test instruction,
conditions to be sent to an in—out device, an offset for bytes in a string, or part of it may be
the number of places to shift in a shift or rotate instruction or the scale factor in a floating scale
instruction. Even when modified by an index register, bits 18-35 do not contain a memory address
when 7 is 0 and no memory reference is required. But when [is 1, the number determined from
bits 14-35 is an indirect address no matter what type of information the instruction requires, and
the word retrieved in any step of the calculation contains an indirect address so long as I remains
1. When a location is found in which T is 0, bits 18-35 (perhaps modified by an index register)
contain the desired effective mask, effective conditions, effective offset, effective shift number, or
effective scale factor. Many of the instructions that usually reference memory for an operand have
an “immediate” mode in which the result of the effective address calculation is itself used as a
half-word operand instead of a word taken from the memory location it addresses. The KS10 10O
instructions do not use the result of the effective address calculation; instead, they recompute an 10
address by a similar procedure (§2.17).

The important thing for the programmer to remember is that the same calculation is carried out
for every instruction regardless of the type of information that must be specified for its execution,
or even if the result is ignored. In the discussion of any instruction, E refers to the actual quantity
derived from I, X, and Y and used in the execution of the instruction, be it the entire half—word,
as in the case of an address, immediate operand, mask, offset, or conditions, or only part of it, as in
a shift number or scale factor.

1.7.2 Extended Effective—Address Calculation

In an extended processor the much larger address space is divided into sections of 256K each, and an
individual location 1s identified by an address containing both a section number and an in—section
part, as depicted in Figure 1.10. There are still many circumstances, however, in which in—section
addresses are used alone in an extended processor. The most obvious case i1s the address given
directly by an instruction: this is limited to eighteen bits and is confined to the section from which

1.7. EFFECTIVE-ADDRESS CALCULATION

39

Figure 1.10: Extended Address Space

Extended
Addresses
0000000

07T
1000000

17777
2000000

207777
3000000

the instruction is retrieved, being usually the section in

determined by PC.

Address
Space

Section 0

Section 1

Section 2

In—Section
Address
0

T
0

T
0

T
0

which the program is currently running as

Even in an extended processor, an effective—address calculation performed in section zero is done
exactly as outlined above, with all addresses and displacements taken as 18-bit quantities contained

in bits 18-35 of an instruction word, an index register, or an indirect word. In other words, when a

program is running in section zero, £ can never reference a non-zero section for either an operand or

a jump (although it can reference an operand that supplies an extended address). Moreover, in terms

of addressing, section zero of an extended processor is entirely compatible with the single section of

an unextended processor. However, in non—zero sections, the effective—address calculation can use
extended addressing. To understand how extended addressing works, the reader must understand

the following terms.

e Every address can be represented by 31 bits: one bit to distinguish between a local address
and a global address and 30 bits to represent the address itself. The 30 bits of address are
thought of as a 12-bit section number and an 18-bit in—section address.

40

CHAPTER 1. INTRODUCTION

An instruction word is a word addressed by PC (the program counter) and read and interpreted
by the processor as an instruction. An instruction word contains an operation code and fields
that specify the effective address of an operand.

An address word is any word that is used to supply an address during the effective—address
computation. The effective—address computation references a sequence of one or more address
words; the first of which is the instruction word. Indirect address words (discussed below) and
byte—pointer words are also examples of address words.

For a local address, an explicit computation provides the 18-bit in—section address, but the
12-bit section number is supplied implicitly. The implicit section number is supplied by the
section from which the last of the address words was fetched. (When indirect addressing is
not used, the instruction word is the last address word, so the implicit section number 1s the
PC section.)

A global address 1s provided by a computation that supplies all 30 bits explicitly.

Note that section number 7777 is reserved; a memory reference to section 7777 always traps
to the Monitor.

The extended KL10 implements only the right-most twenty—three bits (sections 0-37), al-
though larger section numbers could be used for software purposes.

A local indez is an 18-bit unsigned displacement or address in bits 18-35 of an index register.
A global index is a 30-bit unsigned displacement or address in bits 6-35 of an index register.

A local indirect word is one containing a local address or displacement in this format:

110 Reserved I X Y

0 1 2 T T T

121314 17118 35

Because of its similarity to the format of an instruction word, an address word of this sort 1s
also called an “instruction—format indirect word”.

A local address word 1s a word that contains a local address. A local address word 1s either a
local indirect word or an instruction word.

A global indirect word, also called a global address word is one containing a global address or
displacement in this format:

017 X Y

01 27 56 35

An address word of this type is also called an “extended—format indirect word”

We can now state that an extended effective-address calculation is carried out by essentially the
same procedure as described above, with index and indirect steps depending on the values of I and
X supplied by a sequence of address words. Now, however, there are differences in the meanings

of individual terms and in the way individual operations are performed. First, the indirect bit can
be either bit 13 or bit 1, depending on whether it is supplied by a local or global address word
(instruction or extended format). Second, there are several varieties of indexing: local and global,
with two versions of the latter depending on whether the quantity being indexed is local or global.

1.7. EFFECTIVE-ADDRESS CALCULATION 41

e Local indexing occurs when the address word 1s local and either the left half of the index
register is negative (i.e., bit 0 is one) or the section number part of it (bits 6-17) is zero.
(Index register bits 1-5 are available to software.) In this case the operation is carried out just
as in the unextended procedure, and the indexing produces a local address in the section from
which the address word is taken (the PC section in the case of an instruction word). Thus, the
program can use local indexing in a non—zero section. Furthermore, a program can use the left
half of the local index register for a control count that counts up through negative numbers to
end an iterative process at zero (as is done in, e.g., the AOBJN instruction).

o (lobal indexing means the interpretation of an index register as a 30-bit address; consequently
a 30-bit global address will result. Global indexing can occur in either of two circumstances
(with quite different effects). First, global indexing occurs when the address word is global.
The 30-bit value in bits 6-35 of the index register is added to the 30-bit ¥ value from bits 6-35
of the global address word. This is simply a global extension of local indexing: the address
word may contain an address and the index register an unsigned offset, or vice versa; adding
a large offset can be the same as subtracting a small one. (In this case, bits 0-5 of the index
register are available to software.)

Second, global indexing occurs when the address word is local and the left half of the index
register is positive (i.e., bit 0 is zero) and bits 6-17 contain a non-zero section number. This
case is quite unlike local indexing: the index (again, bits 6-35) is assumed to be a global
address, and the 18-bit V is interpreted as a signed displacement (in the range from —2'7 to
217 — 1), which is added to it algebraically. The value Y is sign—extended by copying its bit
18 to bits 6-17 of the addend. (In this case, bits 1-5 of the index register are available to
software.)

As shown in Figure 1.11, the effective-address calculation begins in the section from which the first
address word is taken. This is the “local” section for the given address word—the PC section in
the case of an instruction word specified by PC. The calculation remains in the local section until
the appearance of a global quantity (index or indirect word) changes the section number. So long
as only local events occur, all addresses are interpreted as being in the same section (local indexing
wraps around 256K). Note that either a local or global address can be used to fetch either a local
or global indirect word, but indexing can change only a local quantity to a global one—it cannot
modify a global address into a local one. No matter how long the procedure remains local, global
indexing or retrieval of a global indirect word can switch to a new section. However if the procedure
enters section zero it can never get out. This is because the calculation then interprets all further
quantities as local, no matter what their format; i.e., no matter what the program may have meant
by the information placed in the words containing them.

At the end, if F is an address, then either it is a global address or it is a local address in the last
section from which an address word was fetched. The distinction between a local address and the
numerically equivalent global address is sometimes important. For example, in an instruction that
uses a two—word operand in £ and £ + 1, if F 1s local then £ + 1 will be in the same section as E;
however, if £ is global and bits 18-35 of F are 777777, then F + 1 will be location 0 of the section
following F. Also, when bits 18-3b contain a value in the range 0-17 and the address is local, the
address specifies one of the accumulators; however, if the address is global (and the section is greater
than 1), the address specifies a memory location.

In an instruction in which ¥ is not an address, the section number is ignored and £ is whatever
number of bits is appropriate. In particular, an immediate-mode operand is always eighteen bits,
except in two instructions that specifically handle an extended address as an immediate operand.

42 CHAPTER 1. INTRODUCTION

Figure 1.11: Extended Effective—Address Computation

Instruction Fetch

XCT Continues

if PCc18:31-= 0, then MB<«= C(PC<32:35>)
else HB<= C(PC_ 5.) MB<= C(E)
IR<= MBco:i2>; Eceiary <= PCiour> IR<= MBco:12>
Local-Format|Address Word /

/ A Local Address is in the sz@@tion as this Address Word

Y

Yeis35> <= MBoisiass;

X <= MBciaa7s; I <=MBoyss X field = 0
Indexed Address? Test X field. -
No Indexing
| X field # 0
Section 0 . .
Test Section Number in Ecs.17> Eci1s:35> < Ycis:35>
| Section #0

Test C(X). Global Index when
(C(X)co> = 0) A (C(X)coa7> £ 0)

Local { Index Global | Index

Y<6;17> <: 7777 X Y<18>
Eco35> < C(X) g.a55 + Y<6:35>

N / /
Y >

= 1
| Indirect Addressing? Test I bit I I = 0. Donel!

Eci18:35> < C(X) 15355 + Y<18:35>

-

E is the Effective
I =1 Address
- If IR contains an XCT
K Section 0 Fetch the Indlre(.:t \Z?Vord: MB<=C(E) instruction, continue
Non-Zero Section? Test Ecg.17> this process at
Section # 0 XCT Continues”,
K) | 4 above
10: Loca Decode Indirect Word MB.g.15
Indirect 10: Local Indirect 00: Global Indirect
< 11: Page Fail 01: Global Indirect

11: Page Failure

| 00 or 01: Global Indirect Word

X = o Y = MBcosss>; X <=MBeoss; I <=MBeis |y £ 0
Indexed Address? Test X field.

| Ec6:35> < Yco:35> | |E<6:35> < C(X) 6355 T Y<6:35>|

N

HRMF-EACALC.TEX

1.8. PROGRAMMING CONVENTIONS 43

The accumulators are regarded as being in the local section of the instruction that addresses them.
Hence, unless otherwise specified, a local pointer taken from an accumulator addresses a location in
the same section as the instruction.

Finally, there is the matter of fast—memory reference. An address references a fast—memory location
if its in—section part is in the range 0-17 and either the address is supplied by PC, the section
number is 0, the section number is 1, or the address is local. Note that if PC counts beyond the
last in—section address, the wraparound causes instructions to be taken from the ACs. There are
two means by which AC references can be made from any section: by using a local address or by
using what is specifically regarded as a global AC address: a section number of 1 combined with a
fast—memory in—section address.

1.8 Programming Conventions

Two elements of system software intimately associated with the presentation in this manual are the
assembler and the operating system. The manual explains the DECsystem—10 and DECSYSTEM-20
in terms of machine language programming. Such programming makes use of those basic characteris-
tics of the MACRO assembler described here. The assembler naturally has many other features, such
as use of predefined and user—defined pseudo—instructions. The overview of the system presented in
the first two sections and the more detailed presentation of system operations in later chapters are
in a sense a presentation of the sophisticated features of the operating system: its most impressive
features related to the processor are essentially its capabilities for taking advantage of these sophis-
ticated hardware characteristics. There are two operating systems: the TOPS-10 Monitor and the
TOPS-20 Monitor. The basic thrust of both is the timesharing of the system among a number of
independent users, all of whom can make extensive use of all system facilities; including front—end
processing and the advanced file system.

MACRO recognizes a number of mnemonics and other initial symbols that facilitate constructing
complete instruction words and organizing them into a program. In particular there are mnemonics
for the instruction codes (Appendix A.3), which are nine or thirteen bits (six in pre-KS10 in—out
instructions). The assembler translates every statement into a 36-bit word, placing Os in all bits
whose values are unspecified. For example, the mnemonic

MOVNS

assembles as 213000 000000, and

MOVNS 2570

assembles as 213000 002570. This latter word, when executed as an instruction, produces the twos
complement negative of the word in memory location 2570.

44 CHAPTER 1. INTRODUCTION

Note

Throughout this manual all numbers representing instruction words, register contents,
codes, and addresses are always octal, and any numbers appearing in program examples
are octal unless otherwise indicated. On the other hand, the ordinary use of numbers in
the text to count steps in an operation or to specify word or byte lengths, bit positions,
exponents, etc. employs standard decimal notation.

In the rare instances where hexadecimal notation is appropriate, such numbers are in-
troduced with “0x”.

The 1nitial symbol @ preceding a memory address places a 1 in bit 13 to produce indirect addressing.
The example given above uses direct addressing, but

MOVNS ©@2570

assembles as 213020 002570 and produces indirect addressing. Placing the number of an index
register (1-17) in parentheses following the memory address causes modification of the address by
the contents of the specified register. Hence:

MOVNS ©2570(12)

which assembles as 213032 002570, produces indexing using index register 12, and the processor
then uses the modified address to continue the effective—address calculation.

An accumulator address (0-17) precedes the memory address part (if any) and is terminated by a
comma. Thus,

MOVNS 4,02570(12)

assembles as 213232 002570, which negates the word in location £ and stores the result in both F
and in accumulator 4. The same procedure may be used to place 1s in bits 9-12 when these are used
for something other than addressing an accumulator, but mnemonics are available for this purpose.

The device code in a pre-KS10 In—-Out instruction is given in the same manner as an accumulator
address (terminated by a comma and preceding the address part), but the number given must be a
multiple of 4 and within the octal range 000-774. Mnemonics are customarily used, and they are
defined for all standard device codes. To control the priority interrupt system whose code is 004,
one may give

CONO 4,1302

which assembles as 700600 001302, or equivalently

1.8. PROGRAMMING CONVENTIONS 45

CONO PI,1302

The programming examples in this manual use the following notational conventions:
e A colon following a symbol indicates that it is a symbolic location name.

A: ADD 6,5704

indicates that the location that contains ADD 6,5704 may be addressed symbolically as A.

e The period represents the current address, e.g.,

ADD 5, .+2

1s equivalent to

A: ADD 5,A+2

e Square brackets specify the contents of a location, leaving the address of the location implicit
but unspecified. For example,

ADD 12, [7256004]

and

ADD 12,4

A: 7256004

are equivalent. The bracketed quantity, which is called a “literal”, can be given as the left
and right halves separated by a double comma, not only eliminating the need to insert leading
zeros for the right half, but allowing use of a minus sign for a negative half word as well. In
other words

[-246,,135]

1s equivalent to

46 CHAPTER 1. INTRODUCTION

[777532000135]

e A literal can encompass any number of lines of code, employing any of the programming
conventions defined above, and be assembled in consecutive locations. In fact a reasonable
way to assemble the extended instructions is to give the individual extended instruction code
and any necessary follow—up words as a literal in an EXTEND instruction. The assembly of
these two lines,

STRING: EXTEND AC,[MOVSO OFF
FILL]

produces, in location STRING, an EXTEND instruction whose Y part (E0) points to the
location containing the second instruction word MOVSO OFF. The Y part (E1) of the MOVSO
contains the signed offset OFF, and location F0+1 contains the fill character FILL.

e Anything written at the right of a semicolon is commentary, not interpreted by the computer,
that explains the program.

1.9 KI10 and KA10 Characteristics

The KI10 and KA10 are similar, even identical, to the KL.10 in many respects, but their implementa-
tion 1s quite different: they have no microcontroller or microcode. They use the PDP-10 instruction
set but not in its full variety as available in the KL.10: neither earlier processor can handle strings
or double—precision fixed—point numbers; the KA10 has no capability for handling double words
or performing double—precision floating—point arithmetic, although it does have instructions (re-
tained on all KL10 and KI10 TOPS-10 systems) for assisting the software in doing double-precision
floating—point arithmetic in a special software format.

Figure 1.12 shows the organization of a DECsystem—10 based on either of the earlier processors. The
processor handles its peripheral equipment directly over an in—out bus. There is no cache, there 1s
a real-time clock but no meters, and all memory is external. The extra four bits shown on address
registers are applicable only to the KI10. Both processors use an 18-bit internal address providing a
virtual memory of one section that is compatible with section zero of the KL.10. However, whereas
the KA10 has a maximum physical memory equal in size to its virtual memory, which is organized
by protection and relocation hardware, the KI10 has a physical addressing capability equal to that
of the KL10 (22-bit address, 4096K) and has paging hardware. The KI10 virtual address space is
the same as that of a KL10 with the TOPS—-10 Monitor, except that, in executive mode, the first
112K of memory is unpaged (and thus not available to the supervisor program), and the Monitor
can define a so—called “small user” whose accessible space must lie within the virtual ranges 0-37777
and 400000-437777. The KI10 has four fast-memory blocks, of which hardware requires that the
Monitor use block 0; the KA10 has only one block.

Both processors have manual operator consoles with facilities that are directly relevant to the pro-
grammer, although they are used mostly for manually stepping through a program to debug it.
From the sense switches and the 36-bit data switch register DS, the program can read information

1.9. KI10 AND KA10 CHARACTERISTICS 47

supplied by the operator; and through the memory indicators MI, the program can display data for
the operator. By means of the address switch register AS, the operator can examine the contents of,
or deposit information into, any memory location; stop or interrupt the program whenever a partic-
ular location is referenced; and supply a starting address for the program. In these processors, IR
contains the entire left half of the current instruction word; i.e., eighteen bits rather than thirteen.
The memory address register MA supplies the address for every memory access. In the arithmetic
logic of the KA10, there are only single-length registers; but in the KI10, AR and AD have 28-bit
left extensions for double—precision floating—point. The KA10 has no trapping mechanism: arith-
metic and stack overflow signal the program by way of interrupts. Individual processor differences
relevant to user programming are listed in Appendix C.

1.9.1 Memory

The following table gives the characteristics of the various memories available with the KI10 and
KA10. Modify completion is the time to finish a read—modify—write cycle after the processor supplies
the new data. Times are in microseconds and include the delay introduced by ten feet (three meters)
of cable. Fast-memory times are for referencing as a memory location (18-bit address); when a fast—
memory location is addressed as an accumulator or index register, the access time is considerably
shorter.

Read Write Modify

Access Access Cycle Completion Size
MA10 Core Memory .61 .20 1.00 b7 16K
MB10 Core Memory .60* 20% 1.65% 97 16K
MD10 Core Memory .83 .33 1.8 1.23 32-128K
ME10 Core Memory .61 .20 1.00 .65 16K
MF10 Core Memory .61 .20 1.00 .63 32K, 64K
MG10 Core Memory .67 .23 1.00 .63 32-128K
MH10 Core Memory .74 .23 1.18 .68 64-256K
KA10 Fast Memory 21 21 16
K110 Fast Memory .28 .0 16 [x4 sets]

* Add .1 in a multiprocessor system.

KI10 access to accumulators and index registers effectively takes no time—it is done in parallel
with other required instruction operations. Retrieval of instructions or memory operands from fast
memory is generally not worthwhile because of the extensive overlapping that speeds up core access.
However, except in instructions that use two accumulators, storage of a memory operand in fast
memory not only takes no time but actually slightly decreases the non-memory time.

In a system with the greatest possible capacity, the largest KI10 address is octal 17777777, decimal
4.194,303; the largest KA10 address is octal 777777, decimal 262,143. All storage modules can be
interleaved in pairs, and some of them in sets of four (see Appendix G.3). The KA10 cannot overlap
MEMmory access.

KI10 Memory Allocation. The KI10 hardware defines the use of certain memory locations, but
most are relative to pages whose physical location is specified by the Monitor. The auto restart
uses location 70. The only other physical locations uniquely defined by the hardware are those

48 CHAPTER 1. INTRODUCTION

Figure 1.12: DECsystem—10 Based on KI10 or KA10

Core Core Core
Storage Storage Storage
Module Module Module
y A y
Y \ 4 Y —_—
Memory Bus Central
T T Processor
Fast
Memory
Y A\ 4
' < N IR
g0 MA R 13
y y [Arithmetic
Logic > M
(AD, AR, etc.) =
4
i
> N DS
4l AS 13 PC 18 36
A
In-Out Bus v B X Priority
h - Interrupt
i i i i - T
A\ 4 Y Y A\ 4
Console Paper Tape Paper Tape Disk
Terminal Reader Punch System

HRMF-KI10SYS10.TEX

1.9. KI10 AND KA10 CHARACTERISTICS 49

in fast memory, whose addresses are the same for all programs: location 0 holds a pointer word
during a bootstrap read—in, 0-17 can be addressed as accumulators, and 1-17 can be addressed as
index registers. The only addresses uniquely specified in the user virtual space are for user local
UUOs—Ilocations 40 and 41. All other addresses defined by the hardware, for use in page mapping,
responding to priority interrupts, or other hardware—oriented situations, are to locations in the
process tables.

KA10 Memory Allocation. The use of certain memory locations is defined by the KA10 hard-
ware.

0 Holds a pointer word during a bootstrap read—in.
0-17 Can be addressed as accumulators.
1-17 Can be addressed as index registers.

40-41 Trap for unimplemented user operations (UUOs).
42-57 Priority interrupt locations.

60-61 Trap for remaining unimplemented operations: these include the unassigned instruction
codes that are reserved for future use, and also the byte manipulation and floating point
instructions when the hardware for them is not installed.

140-161 Allocated to second processor if connected (same use as 40-61 for first processor). All
information given in this manual about memory locations 40-61 for a KA10 applies
instead to locations 140-161 for programming a second KA10 connected to the same
memory.

In a user program, the trap for a local UUQ is relocated to locations 40 and 41 of the user area; a
Monitor UUO uses unrelocated locations. All other addresses listed are for physical (unrelocated)
locations.

50

CHAPTER 1.

INTRODUCTION

51

Chapter 2

User Operations

This chapter describes all PDP-10 instructions that are generally available to the user. It also
defines the types of In-Out instructions but does not discuss their effects when they address specific
internal system elements or peripheral devices. In the description of each instruction, the mnemonic
and name are at the top and the format i1s in a box below them. The mnemonic assembles to the
word in the box, where bits in those parts of the word represented by letters assemble as 0s. The
letters indicate portions that must be added to the mnemonic to produce a complete instruction
word. For extended instructions, the mnemonic given actually assembles to the word shown in the
second format box; the first box shows the configuration of the EXTEND itself. The programmer
must write the EXTEND and arrange that its effective-address contains the listed mnemonic; most
often this is accomplished by writing the mnemonic in a literal.

For many of the non—-10 instructions, a description applies not to a unique instruction with a single
code in bits 0-8, but rather to an instruction set defined as a basic instruction that can be executed
in a number of modes. These modes define properties subsidiary to the basic operation; e.g., in data
transmission the mode specifies which of the locations addressed by the instruction is the source
and which the destination of the data; in test instructions it specifies the condition that must be
satisfied for a jump or skip to take place. The mnemonic given at the top is for the basic mode;
mnemonics for the other forms of the instruction are produced by appending letters directly to the
basic mnemonic. Letters representing modes are suffixes which produce new mnemonics that are
recognized as distinct symbols by the assembler. Following the description is a table giving the
mnemonics and octal codes (bits 0-8) for the various modes.

Most of the non—1O instructions can address an accumulator, and in the box showing the format this
address 1s represented by A;in the description, “AC” refers to the accumulator addressed by A. “AC
left” and “AC right” refer to the two halves of AC; sometimes these are written as ACt, and ACg,
respectively. If an instruction uses two or more accumulators, these have addresses A, A+1, A+2,
etc., which are interpreted modulo 20s; e.g., A+11is 0 when A is 17. A pair of accumulators holding
a double word is referred to as AC,AC+1. In the text, the various accumulators are referred to as
AC, AC+1, and so forth. In some cases an instruction uses an accumulator only if A is non—zero:
in such cases a zero address in bits 9-12 specifies no accumulator.

In a description, F refers to the effective—address, half-word operand, mask, offset, conditions,
shift number, or scale factor calculated from the I, X, and Y parts of the instruction word. In

52 CHAPTER 2. USER OPERATIONS

an instruction that ordinarily references memory, a reference to E as the source of information
means that the instruction retrieves the word contained in location F; as a destination it means the
instruction stores a word in location £. In the immediate mode of these instructions, the effective
half-word operand is usually treated as a full word that contains £ in one half and 0 in the other,
and is represented either as 0, £ or £, 0 depending upon whether £ is in the right— or left-half. In
extended instructions, B0 and E7 refer to the results of the effective-address calculations for the
first and second instruction words. Eg refers to the right eighteen bits of the effective-address (i.e.,
the in—section part), but, in a machine lacking extended addressing, Fr is equivalent to F.

A reference to “location E, E' + 1” means the contents of the two locations are used together as
a double word, such as a double-length number. If the program is running in section zero or the
instruction gives a local address, the addresses wrap around so that, when E is 777777, £ + 1 is 0;
if the program is running in a non-zero section and the instruction gives a global address in which
ERr contains 777777, E' 4+ 1 advances to address 0 in the next section. This extends in analogous
fashion to instructions with three— and four-word operands. (In contrast to addressing consecutive
accumulators with the A field of an instruction, when Eis 17, E+ 1 is 20.)

Please Read This

The calculation of F is the first step in the execution of every instruction. No other action
taken by any instruction, no matter what 1t 1s, can possibly precede that calculation.
There is absolutely nothing whatsoever that any instruction can do to any accumulator
or memory location that can in any way affect its own effective—address calculation.

The instructions are described in terms of their overt effects as seen by the user in a normal program
situation and on the assumption that nothing is amiss—the program is not attempting to reference
a memory that does not exist or to write in a protected area of memory. In general, all descriptions
apply equally well to operation in executive mode. For completeness, the effects of restrictions on
certain instructions are noted, as are the effects of executing instructions in special circumstances.
However, the reader must look elsewhere for the details of programming in such special situations.
In particular, §2.9.6 discusses trapping, §2.19 explains the restrictions on user programming, and
chapters 3 and 4 describe the special effects and restrictions associated with system operations in
the various processors.

Implicit in the execution of an instruction are side effects not overtly visible to the user. Side effects,
which vary with different processors, include changes to the system’s internal state that result from
the normal activities of reading and writing memory. For example, in some processors the cache
memory, the pager translation buffer, and the page tables are part of the system’s state (the processor
and the operating system), not visible to the user, which change with the user program’s references
to memory. These side effects are generally in the province of programmers who write the operating
systems; chapters 3 and 4 describe the special effects of instructions in the various processors.

To minimize processor execution time, the programmer should minimize the number of memory
references and iterative operations. When there is a choice of actions to be taken on the basis of
some test, the conditions tested should be set up so that the action which results most often takes the
least time. There are also various subtleties that affect timing (such as the nature of the arithmetic
algorithms), but these are generally not worth considering except in very special circumstances (to
determine the effect often takes longer than the time saved).

2.1. FULL-WORD DATA TRANSMISSION 53

Execution times are not given with the instruction descriptions, because the time may vary greatly
depending upon circumstances. The time depends upon which processor performs the instruction,
on the configuration of the operands, and on the number of iterative steps. The processor is designed
to save time wherever possible by inspecting the operands in order to skip unnecessary steps.

The text sometimes refers to an instruction as being “executed.” To “execute” an instruction
means that the processor performs the instruction out of the normal sequence; 1.e., the sequence
defined by the program counter (this sequence may not be consecutive, as when a skip or jump
or some special circumstance changes PC). The processor fetches an executed instruction from a
location whose address is supplied not by PC but rather by an extend or execute instruction (whose
operand is itself interpreted as an instruction) or by some feature of the hardware such as a priority
interrupt, trap, etc. It is assumed that control will shortly be returned to PC at the location it
originally specified before the interruption, unless the executed instruction or the hardware feature
itself changes PC.

Instruction codes that are not implemented and instructions that are not legal in user mode are said
to “trap” as “unassigned codes” or as “Monitor UUOs” (MUUQs). Such an instruction causes a
transfer of control to executive mode, as described in §2.16.

Some simple examples are included with the instruction descriptions, but more complex examples
using a variety of instructions are given in §2.15

2.1 Full-Word Data Transmission

These are the instructions whose basic purpose is to move one or more full words of data from
one place to another, usually from an accumulator to a memory location or vice versa. In a few
cases instructions may perform minor arithmetic operations, such as forming the negative or the
magnitude of the word being processed.

2.1.1 Exchange Instruction

The presentation of the instruction set begins with a single instruction that simply interchanges the
contents of an accumulator and a memory location.

EXCH Exchange

250 A Il X Y
0 89 121314 1718 35

Move the contents of location £ to AC, and move AC to location F.

2.1.2 Move Instruction Class

This class of instructions consists of a group for general manipulation of single words and a special
immediate mode instruction for handling an extended address. Fach of the instructions in the

54 CHAPTER 2. USER OPERATIONS

standard move group handles one word, which may be changed in the process (e.g., its two halves
may be swapped). There are four instructions, each with four modes that determine the source and
destination of the word moved.

Mode Suffiz Source Destination
Basic E AC
Immediate I The word 0, F AC
Memory M AC E
Self S E E, but also AC if A is non—zero
MOVE Move
200 M A Il X Y
0 6 789 121314 1718 35

Move one word from the source to the destination specified by M. The source i1s unaffected, the
original contents of the destination are lost.

MOVE Move 200
MOVEI Move Immediate 201
MOVEM Move to Memory 202
MOVES Move to Self 203

Notes: MOVEI loads the word 0,F into AC. If A is 0, MOVES is a no—op in the sense that it has no
overt effect on the contents of memory or the accumulators; however, MOVES both reads and writes
in memory, with all attendant side effects. If A is non—zero, MOVES has the same overt effect as
MOVE (it loads AC from memory), but it also writes in memory.

MOVS Move Swapped
204 M A Il X Y
0 6 789 121314 1718 35

Interchange the left and right halves of the word from the source specified by M and move it to the
specified destination. The source is unaffected; the original contents of the destination are lost.

MOovsS Move Swapped 204
MOVSI Move Swapped Immediate 205
MOVSHM Move Swapped to Memory 206
MOVSS Move Swapped to Self 207

Note: Swapping halves in immediate mode loads the word £, 0 into AC.

2.1. FULL-WORD DATA TRANSMISSION 99

MOVN Move Negative
210 M A Il X Y
0 6 78 9 121314 1718 35

Negate the word from the source specified by M and move it to the specified destination. If the source
word is fixed—point —23% (400000 000000) set the Trap 1, Overflow, and Carry 1 flags. (Negating the
equivalent floating—point number —1 x 217 also sets the flags, but this is not a normalized number.)
If the source word is zero, set Carry 0 and Carry 1. The source is unaffected; the original contents
of the destination are lost.

MOVN Move Negative 210
MOVNI Move Negative Immediate 211
MOVNHM Move Negative to Memory 212
MOVNS Move Negative to Self 213

Note: MOVNI loads AC with the negative of the word 0, £ and cannot overflow.

MOVM Move Magnitude
214 M A 1 X Y
0 6 78 9 121314 1718 35

Take the magnitude of the word contained in the source specified by M and move it to the specified
destination. If the source word is fixed—point —235 (400000 000000) set the Trap 1, Overflow, and
Carry 1 flags. (Taking the magnitude of the equivalent floating—point number —1 x 227 also sets
the flags, but this is not a normalized number.) The source is unaffected; the original contents of
the destination are lost.

MovHM Move Magnitude 214
MOVMI Move Magnitude Immediate 215
MOVMM Move Magnitude to Memory 216
MOVMS Move Magnitude to Self 217

Notes: The word 0, E is equivalent to its magnitude, so MOVMI is equivalent to MOVEI.

It is often convenient to keep a control count in the left half of an accumulator and a local address
or displacement to be used for indexing in the right half. Suppose one wishes to load 200 into the
left half and 1400 into the right half of an accumulator that is addressed symbolically as XR. If the
number 200 001400 is stored in location M, one can do this by giving the instruction

MOVE XR,M

Of course, somewhere the source program must define the value of the symbol XR as an octal number
between 1 and 17. If the same word, or the negative of the same word, or the same word with its
halves swapped must be loaded on several occasions, each transfer still requires only a single move

56 CHAPTER 2. USER OPERATIONS

instruction that references M.

2.1.3 Extended Move Immediate

The following instruction makes the result of an effective—address calculation available for use as
a global address. If the address specifies a fast—memory location, the instruction loads the global
address of that fast—-memory location, so that 1t can be accessed from any section.

XMOVEI Extended Move Immediate

415 A Il X Y
0 8 9 121314 1718 35

If the program is running in a non-zero section, do one or the other of the following.

If £ is not a local AC address, clear AC bits 0-5 and place the global effective—address
FE in AC bits 6-35.

If 7 is a local AC address, put 1 in ACy, and Eg in ACg. (This result is the global form
of a fast-memory address.)

If the program is running in section zero, this instruction is called SETMI, a Boolean instruction
that performs an analogous function for section zero (§2.4).

Notes. This instruction changes a local AC address to a global AC address, which therefore still
refers to fast-memory no matter what section that address is used in. Giving XMOVEI with an
address 20 or greater without indexing or indirection places the current PC section number in AC
left; this result can be used to determine in what section the program is running.

2.1.4 Double Move Instructions’

These four instructions are principally for manipulating the double-length operands used in double—
precision arithmetic, fixed or floating. But they may be used to move or negate any double word,
1.e., the contents of a pair of adjacent accumulators or memory locations. Two of the instructions
are simple extensions of MOVE and MOVEM to double words, and for them the configuration of
the operands is irrelevant. The other two instructions are extensions of MOVN and MOVNM, with
the operand interpreted as a double—precision floating—point number. With a slight variation in
the format, they can also be used for fixed—point numbers: a negative result has a 0 in bit 0 of
the low—order word instead of a copy of the sign bit. For arithmetic operations, this difference is
inconsequential, because all arithmetic instructions ignore bit 0 of all low—order words. However,
this difference in format could cause a comparison of two double—precision fixed—point numbers to

fail.

All of these instructions address a pair of adjacent accumulators and a pair of adjacent memory
locations. The accumulators have addresses A and A + 1 (mod 20s). The memory locations have

1In the KA10 these instructions trap as unassigned codes (§2.16).

2.1. FULL-WORD DATA TRANSMISSION 57

addresses F and F + 1.2

DMOVE Double Move
120 A I X Y
0 8 9 121314 1718 35

Move a double word from location £, £ 4+ 1 to AC,AC+1. The memory locations are unaffected;
the original contents of the two affected accumulators are lost.

DMOVEM Double Move to Memory

124 A Il X Y
0 8 9 121314 1718 35

Move a double word from AC,AC+1 to location F, E 4+ 1. The ACs are unaffected; the original
contents of the memory locations are lost.

Notes: Do not use the instruction DMOVEM AC,AC+1; its result is indeterminate. In the KI10, do
not have F and X address the same (fast) memory location, because a page—failure on the second
word would result in a different effective—address calculation when the instruction is restarted.

DMOVN Double Move Negative

121 A Il X Y
0 8 9 121314 1718 35

Interpret the double word from location £, E 4+ 1 as double—precision floating—point, and move its
negative to AC, AC+1. If the memory double-word is fixed-point —27°, set the Trap 1, Overflow,
and Carry 1 flags. (Negating the equivalent floating—point number, —1 x 2!27 also sets the flags,
but this is not a normalized number.) If the memory double—word is zero, set Carry 0 and Carry 1.
The memory locations are unaffected; the original contents of the ACs are lost.

The negation is done using floating point conventions; hence, a negative fixed—point result has the
incorrect value in bit 0 of the low—order word.

In the KI10 there is no overflow test because the K110 lacks double—precision fixed—point instructions.
For floating—point the overflow test is unnecessary, because negating a correctly formatted floating—
point number cannot cause overflow.

DMOVNM Double Move Negative to Memory

125 A Il X Y
0 8 9 121314 1718 35

Interpret the double word from AC,AC+1 as double—precision floating—point and move its negative
to location £, '+ 1. If the AC double-word is fixed point —27°, set the Trap 1, Overflow, and Carry

?Refer to the description of E,E + 1 on page 52.

58 CHAPTER 2. USER OPERATIONS

1 flags. (Negating the equivalent floating—point number, —1 x 2!27 also sets the flags, but this is

not a normalized number.) If the AC double-word is zero, set Carry 0 and Carry 1. The ACs are
unaffected; the original contents of the memory locations are lost.

The negation is done using floating—point conventions; hence a negative fixed—point result has the
incorrect value in bit 0 of the low order word.

In the KI10 there is no overflow test because the K110 lacks double—precision fixed—point instructions.
For floating—point the overflow test is unnecessary, because negating a correctly formatted floating—
point number cannot cause overflow.

Notes. Do not use the instruction DMOVNM AC,AC+1; its result is indeterminate. In the KI10, do
not have F and X address the same (fast) memory location, because a page—failure on the second
word would then result in a different effective—address calculation when the instruction is restarted.

2.1.5 Block Transfers

There are two instructions for moving blocks of data from one part of memory to another. One is
restricted to acting within the section specified by the effective-address. The other can move data
arbitrarily anywhere in memory.

BLT Block Transfer
251 A I X Y
0 8 9 121314 1718 35

Beginning at the location addressed by ACp (AC left) in the section specified by E, move words to
another area in the same section beginning at the location addressed by ACgr (AC right). Continue
until a word is moved to location E.3

The total number of words in the block i1s thus Fg — ACg + 1. If ACg > FE, the BLT moves only
one word to location ACg. If the source block is larger than 2'® — ACy,, it is wrapped around to the
beginning of the section.*

In the XKL-1, KL10, and KS10, provided AC is not in the destination block, at the end of the
instruction ACt, and ACg contain addresses 1 greater than those of the final source and destination
locations referenced, respectively.® In the KI10 and KA10, at the end of the instruction, AC is
indeterminate unless the interrupt system and the pager are both off, in which case AC is unaffected.
In any event, for program compatibility among processors, use of the resulting quantity in AC is
strongly discouraged.

3The source and destination addresses are either local addresses or global addresses, corresponding to whether £
is local or global. The distinction between E local or global matters only in the situation where the source and/or
destination address is in the accumulators: the accumulators can be addressed only by local addresses in the range
0-17 (or by global addresses 1000000—1000017).

4 Caution: In the extended KL10, wraparound is not implemented correctly: the instruction inadvertently reads
source words from the next higher section. However, if the instruction is interrupted after it has counted into the
next section, when it resumes, it will revert to reading data from the original section.

5In the KL10, if the BLT is abbreviated because the initial value of ACy, > E, at the end of the instruction ACy,
and ACpg contain values that incorrectly indicate that the BLT moved additional words.

2.1. FULL-WORD DATA TRANSMISSION 59

Caution

Should an interrupt or page failure occur during its execution, the BLT stores the source
and destination addresses for the next word in AC, so when the processor restarts upon
the return to the interrupted program, it actually resumes at the correct point within
the BLT. Therefore, A and X must not address the same register because this would
produce a different effective—address calculation upon resumption; and the instruction
must not attempt to load an accumulator addressed either by A or X unless it is the
final location being loaded.

Eramples

A convenient way to clear a block of consecutive locations in memory is to clear the first location
and then use a BLT to transfer the zero successively from one location to the next. Suppose the
block starts at A and contains B words.

MOVE AC,[4,,A+1]
SETZM A
BLT AC,A+B-1

This technique can be used to spread any one—word pattern through consecutive locations.® An
n—word pattern can be spread through memory by initializing the right half of the accumulator to
be n larger than the left half.

The following instructions load the accumulators from memory locations 2000-2017 in the PC sec-
tion.

MOVSI 17,2000 ;Put two addresses, 2000,,0 in AC 17
BLT 17,17 ;load ACs from 2000-2017

As mentioned in the above caution, this example would not work reliably if, for example, AC 10 or
AC 16 were used to supply the source and destination addresses. The example is written safely: AC
17 1s the last location loaded by the BLT.

To store the accumulators in memory requires that one accumulator first be made available to the

BLT:

MOVEM 17,2017 ;Move AC 17 to 2017 in memory
MOVEIL 17,2000 ;Put two addresses, 0,,2000 in AC 17
BLT 17,2016 ;store ACs 0-16 into addresses 2000-2016

To give a more complex example, the following code fragment stores accumulators 0-16 on the stack

6 This function is used so frequently that the KL10 microcode detects it as a special case and reads only the first
source word.

60 CHAPTER 2. USER OPERATIONS

(see §2.10) described by accumulator 17, presuming that the stack has room for the new entries. This
code works properly in section zero. It also works in non—zero sections, provided that accumulator
17 contains a local-format stack pointer.

ADJSP 17,17 ;allocate stack space for 0-16
MOVEM 16,0(17) ;store 16, AC for the BLT

MOVEIL 16,-16(17) ;load 0,,in-section address of stack
BLT 16,-1(17) ;copy ACs 0-15 to stack

The following restores accumulators that have been saved on the stack by the fragment shown above:

MOVSI 16,-16(17) ;in-section address of the stack,,0
BLT 16,16 ;restore accumulators from stack
ADJSP 17,-17 ;return stack space no longer needed

In the examples above, BLT has been used to store the accumulators in the local section (i.e.,
the PC section). To load or store the accumulators in a non—local section, the following subtle
adaptation can be used.” This code fragment depends on a characteristic of the XCT instruction: it
will perform the effective-address calculation of the target instruction in the section that contains
the target instruction (see §2.9.1). Thus, a local effective-address is computed in a section other
than the PC section.

ADJSP 17,17 ;allocate stack space for 0-16

DMOVEM 15,-1(17) ;store 15 and 16, BLT AC and Eff Addr

MOVEIL 16,-16(17) ;load 0,,in-section address on stack

MOVEIL 15,-2(17) ;0,,in-section final address for ACs on stack
PUSH 17,[BLT 16,(15)] ;instruction to XCT, in stack’s section

XCT an ;XCT the BLT. BLT uses local addressing
ADJSP 17,-1 ;deallocate stack space for BLT instruction

The restore is accomplished with somewhat less fuss:

MOVSI 16,-16(17) ;in-section first source address,,0

PUSH 17, [BLT 16,16] ;instruction to XCT, in stack’s section
XCT an ;XCT the BLT. BLT uses local addressing
ADJSP 17,-20 ;deallocate space for BLT and ACs

For a reverse BLT procedure (highest addresses first), refer to the POP instruction (§2.10) or to the
XBLT instruction below.

7This code can be run in any section, regardless of whether the stack pointer is global or local. Note: However,
the region of the stack in which the accumulators are being stored must not cross a section boundary.

2.1.

FULL-WGORD DATA TRANSMISSION

XBLT Block Transfer
123 A I X Y
0 8 9 121314 1718 35
E0 020 00 I X Y
0 9 121314 1718

61

F1 is not used.®

Move a block of words from one area of memory to another. The block size and the locations of the

source and destination areas are defined by the contents of a block of three accumulators.

Number of Words in Block

Location of Source Block

AC
AC+1 00
AC+2 00

Location of Destination Block

0

5

6

Perform a forward or backward block transfer® as follows.

35

If AC contains a positive number N, move a block of N words from a source area beginning
at the location specified by AC+1 to a destination area beginning at the location specified by
AC+2 and extending through increasing addresses. At the end, AC is clear, and AC+1 and
AC+H2 respectively contain addresses 1 greater than those of the final source and destination

locations referenced.

If AC contains a negative number —N, move a block of N words from a source area beginning
at a location 1 less than that specified by AC+1 to a destination area beginning at a location
1 less than that specified by AC+42 and extending through decreasing addresses. At the end,
AC is clear, and AC+1 and AC+2 respectively contain the addresses of the final source and
destination locations referenced.

Notes: The contents of AC+1 and ACH2 are interpreted as 30-bit global addresses. This instruction
is legal in section zero, and it can reference addresses in non-zero sections when executed in section
7€ero.

Caution

This instruction uses three accumulators, and under no circumstances should any of these
three be part of either the source or destination block. Because of the possibility of an
interrupt or page failure, the contents of these accumulators, even as a source, cannot be
guaranteed. In any event, a BLT can store (or load) the accumulators to (or from) any

sectlon.

8], X, and Y are reserved and should be zero.
9 As of KL10 microcode 2.1[442], there is a problem when XBLT is executed by PXCT: the optimization of reading
only the first source word when the destination address is precisely 1 larger than the source address in a forward

transfer is mistakenly applied when the source and destination addresses are in different contexts.

62 CHAPTER 2. USER OPERATIONS

2.2 Fixed—Point Arithmetic

For fixed—point arithmetic the PDP-10 has instructions for performing addition, subtraction, mul-
tiplication, and division of numbers in single— and double-precision fixed—point format (§1.5.1), al-
though double—precision is not available in the KI10 or KA10. The processor can also do arithmetic
shifting—which is essentially multiplication by a power of 2—but those instructions are discussed
with logical shifting and rotating (§2.5). For single—precision, the add and subtract instructions in-
volve only single-length numbers, whereas multiply supplies a double-length product and divide uses
a double-length dividend. There are also integer multiply and divide instructions that involve only
single-length numbers and are especially suited for handling smaller integers, particularly those of
eighteen bits or less such as addresses; bytes, and character codes. For double-precision, the add and
subtract instructions involve only double-length numbers, whereas multiply supplies a quadruple—
length product and divide uses a quadruple-length dividend. In all cases, the position of the binary
point is arbitrary; the programmer may adopt any point convention. Even the integer multiply
and divide instructions can be used for small fractions, provided the programmer keeps track of the
binary point. For convenience in the following discussion, all operands are assumed to be integers
(binary point at the right).

The processor has four flags, Overflow, Carry 0, Carry 1, and No Divide, that indicate when the
magnitude of a number is or would be larger than can be accommodated. Carry 0 and Carry 1 detect
carries out of bits 0 and 1 in certain instructions that employ fixed—point arithmetic operations:
the add and subtract instructions treated here, the move instructions that produce the negative
or magnitude of the word moved (§2.1), and the arithmetic test instructions that increment or
decrement the test word (§2.6). In these instructions an incorrect result is indicated—and the
Overflow flag set—if the carries are different; 1.e., if there is a carry into the sign but not out of it
or vice versa. Overflow is determined directly from the carries, not from the carry flags, because
their states may reflect events in previous instructions. The Overflow flag is also set by No Divide
being set, which means the processor has failed to perform a division because the magnitude of the
dividend is greater than or equal to that of the divisor or, in integer divide, simply that the divisor
is zero. In other overflow cases, only Overflow itself is set: these include too large a product in
multiplication, too large a number to convert to fixed point (§2.3), and loss of significant bits in left
arithmetic shifting. Any condition that sets Overflow also sets the Trap 1 flag (§2.9).

These flags can be read and controlled by certain program control instructions (§2.9, §2.16), but
overflow is usually handled by trapping through the setting of Trap 1 (§2.9). The KA10 lacks the
trapping feature, so its program must make direct use of the Overflow flag, which is available as
a processor condition (via an in-out instruction) that can request a priority interrupt if enabled
(§4.3.6). In any event, user overflow is handled by the Monitor according to instructions from the
user, as described in Chapter 3 of the appropriate Monitor Calls manual. The conditions detected
can only set the arithmetic flags, and the hardware does not clear them; the program must clear
them before an instruction if they are to give meaningful information about the instruction afterward.
However, the program can check the flags following a series of instructions to determine whether the
entire series was free of the types of error detected. Besides indicating error types, the carry flags
facilitate performing multiple-precision arithmetic.

2.2. FIXED-POINT ARITHMETIC 63

2.2.1 Single—Precision Instructions

As noted above, the numbers manipulated by these instructions are single-length except for double—
length products and dividends. Such double-length fixed—point numbers are in AC,AC+1, where
the magnitude is the 70-bit string in bits 1-35 of the two words, the sign is in bit 0 of the high—order
word, and bit 0 of the low—order word contains a copy of the sign. All six instructions have four
modes that determine the source of the non—AC operand and the destination of the result.

Source of non— Destination

Mode Suffix AC operand of result
Basic I AC
Immediate I The word 0,F AC
Memory M F F
Both B I AC and F

ADD Add

270 M A Il X Y
0 6789 121314 1718 35

Add the operand specified by M to AC and place the result in the specified destination. If the sum
is > 23% set Trap 1, Overflow, and Carry 1; the result stored has a minus sign but a magnitude in
positive form equal to the sum less 23°. If the sum is < —23%, set Trap 1, Overflow, and Carry 0;
the result stored has a plus sign but a magnitude in negative form equal to the sum plus 23°. Set
both carry flags if both addends are negative, or if their signs differ and their magnitudes are equal
or if the positive one is the greater in magnitude.

ADD Add 270
ADDI Add Immediate 271
ADDHM Add to Memory 272
ADDB Add to Both 273
SUB Subtract
274 M A I X Y
0 6 78 9 121314 1718 35

Subtract the operand specified by M from AC and place the result in the specified destination. If
the difference is > 23 set Trap 1, Overflow, and Carry 1; the result stored has a minus sign but a
magnitude in positive form equal to the difference less 23°. If the difference is < —23%, set Trap 1,
Overflow, and Carry 0; the result stored has a plus sign but a magnitude in negative form equal to
the difference plus 23°. Set both carry flags if the signs of the operands are the same and AC is the
greater or the two are equal, or if the signs of the operands differ and AC is negative.

64 CHAPTER 2. USER OPERATIONS

SUB Subtract 274
SUBI Subtract Immediate 275
SUBM Subtract to Memory 276
SUBB Subtract to Both 277
MUL Multiply
224 M A I X Y
0 6 78 9 121314 1718 35

Multiply AC by the operand specified by M and place the high—order word of the double-length
result in the specified destination. If M specifies AC as a destination, place the low—order word in
ACH+1. If both operands are —23%, set Trap 1 and Overflow; the double-length result stored is —27°.

MUL Multiply 224

MULI Multiply Immediate 225

MULHM Multiply to Memory 226

MULB Multiply to Both 227
Caution

In the KA10, an AC operand of —23% is treated as though it were +23° producing the
incorrect sign in the product.

IMUL Integer Multiply
220 M A Il X Y
0 6 789 121314 1718 35

Multiply AC by the operand specified by M and place the sign and the 35 low—order magnitude
bits of the product in the specified destination. Set Trap 1 and Overflow if the product is > 23° or
< =23 (i.e., if the high-order word of the double length product is not null); the high-order word
1s lost.

IMUL Integer Multiply 220
IMULI Integer Multiply Immediate 221
IMULM Integer Multiply to Memory 222

IMULB Integer Multiply to Both 223

2.2. FIXED-POINT ARITHMETIC 65

DIV Divide
234 M A I X Y
0 6 78 9 121314 1718 35

If division is not possible, either because the operand specified by M 1s zero or because the quotient
would not be representable (i.e., if the quotient is larger than 235 — 1 or smaller than —23%), set
Trap 1, Overflow, and No Divide and go immediately to the next instruction without affecting the
original AC or memory operand in any way.'"

If division is possible, divide the double-length number contained in AC AC+1 by the specified
operand, calculating a quotient of 35 magnitude bits including leading zeros. Place the unrounded
quotient in the specified destination. If M specifies AC as a destination, place the remainder, with
the same sign as the dividend, in AC+1.

DIV Divide 234
DIVI Divide Immediate 235
DIVM Divide to Memory 236
DIVB Divide to Both 237

Note: The magnitude restriction is required because the quotient developed would exceed 36 bits.

IDIV Integer Divide
230 M A Il X Y
0 6 78 9 121314 1718 35

If the operand specified by M is zero, or AC contains —23° and the operand specified by M is
—1 (except in the KS10), set Trap 1, Overflow, and No Divide and go immediately to the next
instruction without affecting the original AC or memory operand in any way. Otherwise, divide AC
by the specified operand, calculating a quotient of 35 magnitude bits including leading zeros. Place
the unrounded quotient in the specified destination. If M specifies AC as the destination, place the
remainder, with the same sign as the dividend, in AC+1.

IDIV Integer Divide 230
IDIVI Integer Divide Immediate 231
IDIVM Integer Divide to Memory 232
IDIVB Integer Divide to Both 233

10Division is always possible when the magnitude of the operand in AC is smaller than the magnitude of the operand
specified by M. Division is never possible when the magnitude of the operand in AC is greater than the magnitude of
the operand specified by M. When the magnitudes are equal, the signs of the operands (and sometimes the contents
of AC+1) determine whether or not the division is possible. If the divisor is positive and the dividend is negative,
division is allowed; if both operands are positive, division is impossible. When the divisor is negative, the contents
of AC+1 determine whether division is possible: if the dividend is positive, the division is possible only when the
contents of AC+1 are less than the magnitude of the divisor; if the dividend is negative, division is possible only if
there are bits of significance in AC+1.

66 CHAPTER 2. USER OPERATIONS

Caution

In the KS10, dividing —23° by —1 gives —23° with no error indication. In the KA10,
KT10, and a KL10 with microcode version before 271 (which includes all single—section
KL10s), the overflow action is also triggered by attempting to divide —23% by +1.

2.2.2 Double—Precision Instructions'’

There are just four instructions for the four basic operations, and they have no modes. All use
AC and memory operands and place the result in the accumulators. Memory operands are double
length in location B, E 4+ 1.1 Most AC operands are double-length in AC,AC+1, but products
and dividends are quadruple-length in AC,AC+1,AC+2,AC+3, and the double-length remainder
in division is placed in AC4+2,AC+3. Double-length numbers have the same format as the products
and dividends of single—precision instructions discussed above. In quadruple-length numbers, AC
contains the highest order word; the magnitude is the 140-bit string in bits 1-35 of the four words,
the sign is in bit 0 of the highest order word, and copies of the sign are kept in bit 0 of the other
three words.

DADD Double Add
114 A 1 X Y
0 8 9 121314 1718 35

Add the operand in location E, £+ 1 to AC,AC+1 and place the result in AC, AC+1. If the sum
is > 270 set Trap 1, Overflow, and Carry 1; the result stored has a minus sign but a magnitude in
positive form equal to the sum less 279, If the sum is < —27°, set Trap 1, Overflow, and Carry 0;
the result stored has a plus sign but a magnitude in negative form equal to the sum plus 27°. Set
both carry flags if both addends are negative, or if their signs differ and their magnitudes are equal
or the positive one is the greater in magnitude.

DSUB Double Subtract
115 A I X Y
0 8 9 121314 1718 35

Subtract the operand in location E, £ + 1 from AC,AC+1 and place the result in AC,AC+1. If
the difference is > 27°, set Trap 1, Overflow, and Carry 1; the result stored has a minus sign but a
magnitude in positive form equal to the difference less 27°. If the difference is < —279, set Trap 1,
Overflow, and Carry 0; the result stored has a plus sign but a magnitude in negative form equal to
the difference plus 27°. Set both carry flags if the signs of the operands are the same and AC,AC+1
is the greater or the two are equal, or if the signs of the operands differ and AC,AC+1 is negative.

11In the KI10 and KA10, these instructions trap as unassigned codes (§2.16).
12Refer to the description of F,E 4 1 on page 52.

2.3. FLOATING-POINT ARITHMETIC 67

DMUL Double Multiply
116 A 1 X Y
0 8 9 121314 1718 35

Multiply AC,AC+1 by the operand in location £, E + 1 and place the quadruple-word result in
AC-AC+3. If both operands are —27°, set Trap 1 and Overflow; the quadruple-length result stored

is —2140,
DDIV Double Divide
117 A I X Y
0 8 9 121314 1718 35

If the magnitude of the high—order double word of the quadruple-length number in AC-AC+3 is
greater than or equal to the magnitude of the operand in location E, E41, set Trap 1, Overflow, and
No Divide, and go immediately to the next instruction without affecting the original AC or memory
operand in any way. Otherwise, divide the quadruple length number contained in the accumulators
by the operand in location £, F + 1, calculating a quotient of 70 magnitude bits including leading
zeros. Place the unrounded quotient in AC AC+1and the double-length remainder, with the same
sign as the dividend, in AC+2 AC+3.

2.3 Floating—Point Arithmetic”

For floating—point arithmetic the PDP-10 has instructions for scaling the exponent (which is multi-
plication of the entire number by a power of 2); performing addition, subtraction, multiplication, and
division of numbers in single— and double—precision floating—point format; and converting single—
precision numbers from fixed—format to floating and vice versa. Except for conversion operations,
instructions treated here interpret all operands as floating—point numbers in the format given in
§1.5.2 and generate results in that format. The reader is strongly advised to reread §1.5.2 if he does
not remember the format in detail.

For the four standard arithmetic operations in single—precision, the program has a choice of modes,
determining mostly the destination of the result, and can select whether or not the result will be
rounded. Rounding produces the greatest consistent precision using only single-length operands.
Instructions without rounding save time in one-word operations where rounding is of no significance.
Actually, the result is formed in a double-length register in addition, subtraction, and multiplication,
wherein any bits of significance in the low—order part supply information for normalization, and then
for rounding if requested. Consider addition as an example. Before adding, the processor right shifts
the fractional part of the operand with the smaller exponent until its bits correctly match the bits of
the other operand in order of magnitude. Thus, the smaller operand could disappear entirely, having
no effect on the result (“result” will always be taken to mean the information (one word or two)
stored by the instruction, regardless of the number of significant bits it contains or even whether it
is the correct answer). In any event, the significance of the result depends on the relative values of

13In a KA10 without floating point hardware, all of the instructions presented in this section trap as unassigned
codes (§2.16). However, no KA10 without floating point hardware was shipped to a customer, so this footnote has no
particular utility.

68 CHAPTER 2. USER OPERATIONS

the operands. For example, a subtraction involving two like—signed numbers whose exponents are
equal and whose fractions differ only in the LSB (least significant bit) gives a result containing only
one bit of significance. In division the processor always calculates a one-word quotient that requires
no normalization if the original operands are normalized. An extra quotient bit is calculated for
rounding when requested.

The instruction that converts fixed—point to floating—point assumes the operand is an integer and
always normalizes and rounds the result. In the opposite direction, only the integral part of the
result is saved, and rounding is an option of the program.'*

The instructions for the four standard operations using double—precision have no modes. In division
the processor calculates a two—word rounded quotient that is already normalized if the original
operands are normalized. In addition, subtraction, and multiplication, the result is formed in a
triple-length register, wherein bits of significance in the lowest—order part supply information for
normalization and then for rounding.

The processor has four flags, Overflow, Floating Overflow, Floating Underflow, and No Divide, that
indicate when the exponent is too large or too small to be accommodated or a division cannot be
performed because of the relative values of dividend and divisor. Except where the result would be
in fixed—point form, any of these circumstances sets Overflow and Floating Overflow. If only these
two are set, the exponent of the answer is too large; if Floating Underflow is also set, the exponent
is too small. No Divide being set means the processor failed to perform a division, an event that
can be produced only by a zero divisor if all non—zero operands are normalized. Any condition that
sets Overflow also sets the Trap 1 flag. These flags can be read and controlled by certain program
control instructions (§2.9, §2.16), but overflow is usually handled by trapping through the setting of
Trap 1. The KA10 lacks the trapping feature, so its program must make direct use of Overflow and
Floating Overflow, which are available as processor conditions (via an in—out instruction) that can
request a priority interrupt if enabled (§4.3.6). The conditions detected can only set the arithmetic
flags and the hardware does not clear them, so the program must clear them before a floating—point
instruction if they are to give meaningful information about the instruction afterward. However, the
program can check the flags following a series of instructions to determine whether the entire series
was free of the types of error detected.

The floating—point hardware functions at its best if given operands that are either normalized or zero,
and it normalizes a non—zero result.'® Unnormalized operands will generally cause loss of precision
in results. However, such malformed numbers must be created deliberately by the programmer—the
processor never produces them. An operand with a zero fraction and a non—zero exponent can give
wild answers in additive operations because of extreme loss of significance; e.g., adding % x 22 and
0 x 259 gives a zero result, as the first operand (having a smaller exponent) looks smaller to the
processor and is shifted to oblivion. A number with a 1 in bit 0 and Os in bits 9-35 is not simply
an incorrect representation of zero, but rather an unnormalized “fraction” with value —1. These

14 Rounding to an integer value is a different procedure than the rounding of floating—point values described above.

15The processor normalizes the result by shifting the fraction and adjusting the exponent to compensate for the
change in value. Each shift and accompanying exponent adjustment thus multiply the number both by 2 and by %
simultaneously, leaving its value unchanged.

With normalized operands, the processor uses at most two bits of information from the lowest—order part to
normalize the result. In multiplication this is obvious, since squaring the minimum fractional magnitude % gives

a result of %. In an addition or subtraction of numbers that differ greatly in order of magnitude, the result is
determined almost completely by the operand of greater order. Addition or subtraction involving two numbers with
equal exponents requires no shifting beforehand, so there is no information in the lowest—order part. Hence, an
addition or subtraction never requires shifting both before the operation and in the normalization; when there is no

prior shifting, the normalization brings in Os.

2.3. FLOATING-POINT ARITHMETIC 69

unnormalized numbers can produce an incorrect answer in any operation. To normalize a number,

add (e.g., FAD, DFAD, or GFAD) zero to it.

2.3.1 Scaling

The following two instructions change the exponent of a number without changing the significance
of the fraction. In other words they multiply the number by a power of 2 and are thus analogous
to arithmetic shifting of fixed—point numbers, except that no information is lost, although the
exponent can overflow or underflow. The amount added to the exponent is specified by the result of
the effective address calculation taken as a signed number (in twos complement notation) modulo 23
or 2! in magnitude respectively for single precision or extended-range operations. In other words,
the effective scale factor F is the number composed of bit 18 (which is the sign) and bits 28-35
or 25-35 of the calculation result. Hence, the programmer may specify the factor directly in the
instruction (perhaps indexed) or give an indirect address to be used in calculating it. A positive F
increases the exponent, a negative E decreases it; £ is thus the power of 2 by which the number is
multiplied. The scale factor lies in the range —256 to +255 or —1024 to 4+1023.

FSC Floating Scale
132 A 1 X Y
0 8 9 121314 1718 35

If the fractional part of AC is zero, clear AC. Otherwise add the scale factor given by E to the
exponent part of AC (thus multiplying AC by 2), normalize the resulting word bringing Os into bit
positions vacated at the right, and place the result back in AC.

The amount added to the exponent is specified by the result of the effective—address calculation
taken as a signed number (in twos—complement notation) modulo 2% in magnitude. In other words
the effective scale—factor F is the number composed of bit 18 (which is the sign) and bits 28-35
of the calculation result. Hence, the programmer may specify the factor directly in the instruction
(perhaps indexed) or give an indirect address to be used in calculating the factor. A positive F
increases the exponent; a negative F decreases it. Thus, & is the power of 2 by which the number
is multiplied. The scale factor lies in the range —256 to +255.

Note

A negative F 1s represented in standard twos—complement notation, but the hardware
compensates for this when scaling the exponent.

If the exponent after normalization is > 127, set Trap 1, Overflow, and Floating Overflow; the result
stored has a exponent 256 less than the correct value. If the exponent after normalization is < —128,
set Trap 1, Overflow, Floating Overflow, and Floating Underflow; the result stored has an exponent
256 greater than the correct value.l®

FSC can be used to float a fixed number with twenty—seven or fewer significant bits. To float an

16 Caution: In the KI10 and KA10 only, extreme overflows are not detected properly in this instruction. An exponent
> 255 sets Floating Underflow, and an exponent < —256 fails to set it.

70 CHAPTER 2. USER OPERATIONS

integer contained within AC bits 9-35,

FSC AC,233

inserts the correct exponent to move the binary point from the right end to the left of bit 9 and then
normalizes (2335 = 15515 = 128 + 27). This application of FSC is useful only in the KA10, which
lacks the number conversion instructions described in §2.3.2.

GFSC Giant Floating Scale!”
123 A 1 X Y
0 8 9 121314 1718 35
E0 031 00 |1l X Y
0 8 9 121314 1718 35

If the fractional part (bits 12-35) of AC are zero, clear AC,AC+1. Otherwise, scale the G-Format
number in AC,AC+1 by adding the immediate operand FI to the exponent found in bits 1-11 of
AC (thus multiplying the number by 221); normalize the double word operand bringing 0s into bit
positions vacated at the right; store the result in AC, AC+1.

FE1 is interpreted as a twos—complement number composed of bit 18 (the sign) and bits 25-35. The
programmer may specify the scale factor directly in the instruction (perhaps indexed) or give an
indirect address to be used in calculating the scale factor. A positive E7 increases the exponent; a
negative E1 decreases it. Thus, F1 is the power of 2 by which the number is multiplied. The scale
factor lies in the range —2048 to +2047.

Set Overflow, Floating Overflow, and Trap 1 if the resulting exponent exceeds 37775 (+1023 decimal);
the result stored has an exponent 2048 less than the correct one. Floating Underflow, Overflow,
Floating Overflow, and Trap 1 will be set if the resulting exponent is smaller than zero (—1024
decimal); the result stored has an exponent 2048 greater than the correct one.'®

2.3.2 Number Conversion*’

Although FSC can be used to float a fixed—point number, there are three single—precision instructions
specifically for converting between integers and floating point numbers. In all cases the operand is
taken from location £ and the converted result i1s placed in AC.

17In the KI10 and KA10 this instruction traps as an unassigned code (§2.16).

18 As of KI.10 microcode 2.1[442], extreme overflow is signaled as underflow and vice-versa. Moreover, if the double
word operand is unnormalized, overflow may be reported when none actually occurs.

19In the KA10 these instructions trap as unassigned codes (§2.16). FIX, FIXR, and FLTR are available in all other
processors, but the remaining eight are only available in a XKL-1 (or a KL10 with microcode version 271 or greater).
However, the four instructions that convert from giant format to fixed point are not implemented in microcode even
on the KLL10. They are instead simulated by the Monitor.

2.3. FLOATING-POINT ARITHMETIC 71

FIX Fix

122 A Il X Y
0 8 9 121314 1718 35

If the exponent of the floating point number in location £ is > 35, set Overflow and Trap 1 and go
immediately to the next instruction without affecting AC or the contents of £ in any way. Since the
largest fixed—point magnitude (without considering sign) is 2%° — 1, a floating—point number with
exponent greater than decimal 35 (and assumed normalized) cannot be converted to fixed—point.

Otherwise, replace the exponent EXP in the word from location £ with bits equal to the sign of the
fraction, and shift the (now fixed) extended fraction N = FX P — 27 places to the correct position
for its order of magnitude, placing the binary point at the right of bit 35. For positive N, shift left,
bringing Os into bit 35 and dropping null bits out of bit 1. For negative N, shift right, bringing null
bits (0s for positive, 1s for negative) into bit 1, and then truncate to an integer. Place the result
in AC. Truncation produces the integer of largest magnitude less than or equal to the magnitude
of the original number. For example, a number > +1 but < +2 becomes +1; a number < —1 but
> —2 becomes —1.

Note: The overflow test checks for a value > 23 assuming the operand is normalized.

The truncation is that used in Fortran (“fixation”). For it, the processor drops the fractional part
in a positive number, but adds 1 to the integral part (as required by twos—complement format) if
any bits of significance are shifted out in a negative number.

GFIX Giant Floating to Integer?
123 A 1 X Y
0 8 9 121314 1718 35
E0 024 00 |7l X Y
0 8 9 121314 1718 35

Convert the giant—format floating—point number in E1,E1+1%! to a single—precision integer in AC.

If the exponent field of the floating—point number in E1,E1+1 is greater than 2043g (meaning an
effective exponent greater than 35), set Overflow and Trap 1 and do not affect the accumulator.

Otherwise, copy EI1,E1+1 to an internal double word register, extending the sign bit to bits 1-11.
Then shift (as in ASHC, §2.5) by EX P —2030s, where EX P is the positive exponent from bits 1-11
of E1. Store the high—order word of the result in AC.

Note: The overflow test checks for a value > 23 assuming the operand is normalized.

This instruction will always truncate towards zero; i.e., 1.9 1s fixed to 1 and —1.9 is fixed to —1. This
truncation is that specified in the Fortran language for conversion of real to integer. For positive

20Tn the KI10 and KS10 this instruction traps as an unassigned code (§2.16). Because of lack of microcode space,
in the KL10 this instruction is handled as an unassigned code but operating system software simulates the effect of
this instruction.

21Refer to the description of F,F + 1 on page 52.

72 CHAPTER 2. USER OPERATIONS

numbers, bits shifted off the right end are ignored. For negative numbers, if any “1” bits are shifted
off the right end, then 1 is added to bit 35 to make the result closer to zero.

GDFIX Giant Floating to Double Precision Integer?®
123 A 1 X Y
0 8 9 121314 1718 35
E0 023 00 |7l X Y
0 8 9 121314 1718 35

Convert the giant—format floating—point number in EI,E1+1%! to a double precision integer and

place the result in AC,AC+1.

Set Overflow and Trap 1 if the effective exponent is greater than 70 (21065 in the exponent field);
if an overflow occurs, do not affect the accumulators. Otherwise, copy FI ,F1+1 to AC,AC+1,
extending the sign bit to bits 1-11. Then shift (as in ASHC) by EX P — 20735, where EXP is the
positive exponent from bits 1-11 of E7. If the result is negative and any “1” bits were shifted off
the right end of AC+1, then add 1 to bit 35 of AC+1 to bring the result closer to zero.

Notes: The overflow test checks for a value > 270 assuming the operand is normalized.

FIXR Fix and Round
126 A I X Y
0 8 9 121314 1718 35

If the exponent of the floating point number in location £ is > 35, set Overflow and Trap 1 and go
immediately to the next instruction without affecting AC or the contents of £ in any way.

Otherwise, replace the exponent EXP in the word from location £ with bits equal to the sign of the
fraction, and shift the (now fixed) extended fraction N = FX P — 27 places to the correct position
for its order of magnitude, placing the binary point at the right of bit 35. For positive N, shift left,
bringing Os into bit 35 and dropping null bits out of bit 1. For negative N, shift right, bringing null
bits (0s for positive, 1s for negative) into bit 1, and then round the integral part. Place the result
in AC.

Rounding is in the positive direction: the magnitude of the integral part is increased by 1 if the
fractional part is > % in a positive number but > % in a negative number. For example, +1.4
(decimal) is rounded to 41, whereas +1.5 and 4+1.6 become 42; but with negative numbers, —1.4

and —1.5 become —1, whereas —1.6 becomes —2.

Notes: The rounding procedure in FIXR is the Algol standard for real-to—integer conversion. For
it, the processor adds 1 to the integral part if the fractional part is > % in a positive number or (as
required by twos—complement format) is < % in a negative number. This rounding procedure differs
from that used in FADR and the other single—precision floating—point arithmetic instructions that
round their results.

2.3. FLOATING-POINT ARITHMETIC 73

GFIXR Giant Floating Fix and Round?
123 A 1 X Y
0 8 9 121314 1718 35
E0 026 00 |1l X Y
0 8 9 121314 1718 35

Convert a giant—format floating—point number to a single—precision integer by rounding.

If the exponent field of the giant—format floating—point number in E1,E1+12! is greater than 20435
(meaning an effective exponent greater than 35), then this instruction will set Overflow and Trap 1
and not affect the accumulator.

Otherwise, copy FI,E1+1 to an internal double word register. Extend the sign bit into bits 1-11
of the high—order word of that register. Then shift arithmetically (as in ASHC) the double word
register by EXP — 2030z bits (where EX P is the positive exponent from bits 1-11 of F1). The
rounding process will consider the data bit to the right of bit 35 in the high—order word. If that bit
is a 1, then 1 will be added to bit 35 of the result. If rounding produces the number 23° set Overflow
and Trap 1; the result stored is actually —23°. Rounding is always in the positive direction; see the
notes following FIXR.

Notes: The initial overflow test checks for a value > 23° assuming the operand is normalized.

Rounding can overflow only if the original operand has exponent 35 and fraction > 1 — 2736 (in
other words, the fraction is positive and begins with a string of thirty—six 1s).

GDFIXR Giant Floating Fix to Double and Round®
123 A 1 X Y
0 8 9 121314 1718 35
E0 025 00 |7l X Y
0 8 9 121314 1718 35

Convert a giant—format floating—point number to a double precision integer by rounding.

If the exponent field of the giant—format floating—point number in E1,E1+12%! is greater than 21065
(meaning an effective exponent greater than 70), then this instruction will set Overflow and Trap 1
and not affect the accumulator.

Otherwise, FI1 ,E1+41 is converted to fixed—point by the following procedure: copy E1,E141 to an
internal double word register. Extend the sign bit into bits 1-11 of the high—order word of that
register. Then shift arithmetically (as in ASHC) the double word register by EX P — 20735 bits
(where EX P is the positive exponent from bits 1-11 of E1). If EX P — 20735 is non—negative, then
no rounding will take place.

If EXP — 20733 is negative, then the double word register was shifted to the right. The rounding
process will consider the last data bit that was shifted off the low—order word. If that bit is a 1, then
1 will be added to bit 35 of the low—order word. The double word register is stored in AC,AC+1.

74 CHAPTER 2. USER OPERATIONS

Rounding is always in the positive direction; see the notes following FIXR.

270

Notes: The overflow test checks for a value > assuming the operand is normalized.

FLTR Float and Round

127 A Il X Y
0 8 9 121314 1718 35

Shift the magnitude part of the fixed—point integer from location E right eight places, insert the
exponent decimal 35 (in proper form) into bits 1-8 to move the shifted binary point to the left of bit
9 (35 = 27+ 8), and normalize the fraction, bringing first the bits originally shifted out and then Os
into bit positions vacated at the right. If fewer than eight bits (left shifts) are needed to normalize,
use the next bit to round the single-length fraction. Place the result in AC.

The rounding function is the same as that used by the floating—point arithmetic with rounding
instructions (e.g., FADR, see below); the rounding function differs from that used in FIXR.

Fixed—point numbers can always be converted to floating—point. However, precision can be lost
because floating—point format provides fewer significant bits. An integer greater than 227 — 1 cannot
be represented exactly in single—precision floating—point unless all its significant bits are clustered
within a group of twenty—seven bits.

GFLTR Giant Float and Round?*?
123 A I X Y
0 8 9 121314 1718 35
E0 030 00 I X Y
0 8 9 121314 1718 35

Convert the integer in 1 to a giant—format floating—point number in AC/AC+1. Clear accumulator
AC+1 to zero. Copy the data from EI to AC; shift it right, arithmetically (as in ASHC), 11 places.
The sign and exponent 20435 (or, if the number is negative, its ones complement, 57345) are inserted
into bits 0—-11. That result is normalized until bit 12 of the high—order word becomes significant.
This instruction does not actually do any rounding, because every single—precision integer has an
exact representation in giant—format.

DGFLTR Double Giant Float and Round?*2

123 A Il X Y
0 89 121314 1718 35
EQ 027 00 Il X Y
0 8 9 121314 1718 35

Convert the double precision integer in E1,F1+12! to a giant—format floating—point number and

221n the KI10 and KS10 this instruction traps as an unassigned code (§2.16).

2.3. FLOATING-POINT ARITHMETIC 75

put the result in AC,AC+1. Copy the data from E1,F141 to AC AC+1, where 1t is shifted right,
arithmetically (as in ASHC), 11 places, retaining the bits that are shifted out. The sign and exponent
21065 (or its ones complement) are inserted into bits 0-11. That result is normalized by left—shifting
until bit 12 of the high—order word becomes significant. The left—shift may restore some or all of
the bits that were shifted right initially. If any of the bits shifted right remain outside the double
word result, then if the leftmost of those bits is 1, the result is modified by adding 1 to bit 35 of the
low—order word of the fraction.

GSNGL Giant Floating to Single Floating?’
123 A 1 X Y
0 8 9 121314 1718 35
E0 21 00 1 X Y
0 8 9 121314 1718 35

Convert a giant—format quantity (in £1,E1+1?!) to a single-—precision floating—point number in AC.
Let EX P signify the exponent in positive form from bits 1-11 of E7. If EXP — 20005 > 128, set
Floating Overflow, Overflow, and Trap 1; do not affect the accumulator. If EX P — 20005 < —128,
set Floating Underflow, Floating Overflow, Overflow, and Trap 1; do not affect the accumulator.?3

Otherwise, copy the giant—format quantity in E7 EI+1 to an internal double word register, set
bits 1-11 of the high order word to copies of the sign bit, shift the double word register three bits
to the left to move the most significant fraction bit from bit 12 to bit 9, and place the quantity
EXP — 16005 (or its ones complement) in bits 1-8. If rounding produces an exponent > 127, set
Overflow, Floating Overflow, and Trap 1; the result stored has an exponent 256 greater than the
correct one. Store the high—order word in AC.

Notes: Rounding can overflow only if the original operand has exponent 127 and fractional magnitude
>1-—2728,

GDBLE Single Floating to Giant Floating?®’
123 A I X Y
0 8 9 121314 1718 35
E0 22 00 I X Y
0 8 9 121314 1718 35

Convert the single—precision floating—point quantity in E7 to a giant—format quantity in AC,AC+1.
This conversion 1is exact.

Copy F1 to AC; clear AC+1. Let EXP represent the exponent from bits 1-8 of it E1. Shift
AC,AC+1 arithmetically three bits to the right, to move the most significant bit of the fraction from
bit 9 to bit 12. Place EX P + 1600s (or its ones complement) in bits 1-11. If the result is negative,
clear bit 0 in AC+1.

23Tn KL10 microcode version 2.1[442], conversion of a giant—format number whose exponent is in the range 15705
to 1577 sets underflow and, incorrectly, stores a result.

76 CHAPTER 2. USER OPERATIONS

2.3.3 Single—Precision with Rounding

There are four instructions that use only one-word operands and store a single-length, rounded
result. Rounding is away from 0: if the part of the normalized answer being dropped (the low-order
part of the fraction) is greater than or equal in magnitude to one half the LSB of the part being
retained, the magnitude of the latter part is increased by one LSB.?* (This rounding is not the same
as the rounding used in FIXR.)

The rounding instructions have four modes that determine the source of the non-AC operand and
the destination of the result. These modes are like those of fixed—point arithmetic, including an
immediate mode that allows the instruction to carry an operand with it.

Source of non— Destination
Mode Suffiz AC operand of result
Basic I AC
Immediate I The word £, 0 AC
Memory M F F
Both B I ACand F

Note, however, that floating—point immediate uses £, 0 as an operand, not 0, F. In other words, the
half word F is interpreted as a sign, an 8-bit exponent, and a 9-bit fraction.

In each of these instructions, the exponent that results from normalization and rounding is tested
for overflow or underflow. If the exponent is > 127, set Trap 1, Overflow, and Floating Overflow;
the result stored has an exponent 256 less than the correct value. If the exponent is < —128, set
Trap 1, Overflow, Floating Overflow, and Floating Underflow; the result stored has an exponent 256
greater than the correct value.

FADR Floating Add and Round
144 M A 1 X Y
0 6 78 9 121314 1718 35

Interpret the operands specified by M and AC as single—precision floating—point numbers. Compute
their sum. If the double-length fraction in the sum is zero, clear the specified destination. Otherwise,
normalize the double-length sum bringing Os into bit positions vacated at the right; round the high—
order part; test for exponent overflow or underflow as described above; and place the result in the
specified destination.

FADR Floating Add and Round 144
FADRI Floating Add and Round Immediate 145
FADRM Floating Add and Round to Memory 146
FADRB Floating Add and Round to Both 147

241n the hardware, the rounding operation is actually somewhat more complex than stated here. If the result is
negative, the hardware combines rounding with placing the high—order word in twos—complement form by decreasing
its magnitude if the low—order part is < % LSB. Moreover, an extra single—step renormalization occurs if the rounded

word is no longer normalized.

2.3. FLOATING-POINT ARITHMETIC 77

FSBR Floating Subtract and Round
154 M A Il X Y
0 6 78 9 121314 1718 35

Interpret the operands specified by M and AC as single—precision floating—point numbers. Subtract
the memory operand from the AC operand. If the double-length fraction in the difference is zero,
clear the specified destination. Otherwise, normalize the double-length difference bringing 0s into
bit positions vacated at the right; round the high—order part; test for exponent overflow or underflow
as described above; and place the result in the specified destination.

FSBR Floating Subtract and Round 154
FSBRI Floating Subtract and Round Immediate 155
FSBRU Floating Subtract and Round to Memory 156
FSBRB Floating Subtract and Round to Both 157
FMPR Floating Multiply and Round
164 M A Il X Y
0 6 78 9 121314 1718 35

Interpret the operands specified by M and AC as single—precision floating—point numbers. Form the
product of the two operands. If the double-length fraction in the product is zero, clear the specified
destination. Otherwise, normalize the double-length product bringing Os into bit positions vacated
at the right; round the high—order part; test for exponent overflow or underflow as described above;
and place the result in the specified destination.

FMPR Floating Multiply and Round 164
FMPRI Floating Multiply and Round Immediate 165
FMPRM Floating Multiply and Round to Memory 166
FUPRB Floating Multiply and Round to Both 167
FDVR Floating Divide and Round
174 M A Il X Y
0 6 789 121314 1718 35

Interpret the operands specified by M and AC as single—precision floating—point numbers. If the
magnitude of the fraction in AC is greater than or equal to twice that of the fraction in the operand
specified by M, set Trap 1, Overflow, Floating Overflow, and No Divide and go immediately to the
next instruction without affecting the original AC or memory operand in any way.

Otherwise, compute the quotient of the AC operand divided by the operand specified by M, cal-
culating a quotient fraction of 28 bits (this includes an extra bit for rounding). If the fraction is

78 CHAPTER 2. USER OPERATIONS

zero, clear the specified destination. Otherwise, round the fraction, using the extra bit calculated.
If the original operands were normalized, the single-length quotient will already be normalized; if it
is not, normalize it, bringing 0s into bit positions vacated at the right. Test for exponent overflow
or underflow as described above. Place the result in the specified destination.

FDVR Floating Divide and Round 174
FDVRI Floating Divide and Round Immediate 175
FDVRM Floating Divide and Round to Memory 176
FDVRB Floating Divide and Round to Both 177

Note: Division fails if the divisor is zero. However, the no—divide condition can also occur if the
divisor is unnormalized.

2.3.4 Single—Precision without Rounding

Instructions that do not round are faster for processing floating—point numbers with fractions con-
taining fewer than 27 significant bits. They perform the four standard arithmetic operations with
normalization but without rounding. All use AC and the contents of location E as operands and
have three modes. They lack an immediate mode but are otherwise analogous to the single—precision
instructions with rounding.

Mode Suffiz Effect

Basic High—order word of result stored in AC
Memory M High—order word of result stored in £

Both B High—order word of result stored in AC and F

In each of these instructions, the exponent that results from normalization is tested for overflow or
underflow. If the exponent is > 127, set Trap 1, Overflow, and Floating Overflow; the result stored
has an exponent 256 less than the correct value. If the exponent 1s < —128, set Trap 1, Overflow,
Floating Overflow, and Floating Underflow; the result stored has an exponent 256 greater than the
correct value.

FAD Floating Add
140 M A Il X Y
0 6 78 9 121314 1718 35

Interpret the operands specified by M and AC as single—precision floating—point numbers. Form
the floating—point sum of the operands. If the double-length fraction in the sum is zero, clear
the destination specified by M. Otherwise, normalize the double-length sum bringing Os into bit
positions vacated at the right; test for exponent overflow or underflow as described above; and place
the high—order word of the result in the specified destination.?®

25 Cqution: In single-precision floating—point addition, the term with the smaller exponent is right—shifted in a
double-length register; specifically, a register with 54 magnitude bits. If the difference in the exponents is < 54, there

2.3. FLOATING-POINT ARITHMETIC 79

FAD Floating Add 140
FADM Floating Add to Memory 142
FADB Floating Add to Both 143
FSB Floating Subtract
150 M A Il X Y
0 6 78 9 121314 1718 35

Interpret the operands specified by M and AC as single—precision floating—point numbers. Compute
the floating—point difference by subtracting the operand specified by M from the AC operand. If
the double—length fraction in the difference is zero, clear the destination specified by M Otherwise,
normalize the double length difference, bringing Os into bit positions vacated at the right; test for
exponent overflow or underflow as described above; and place the high—order word of the result in
the specified destination.?®

FSB Floating Subtract 150
FSBHM Floating Subtract to Memory 152
FSBB Floating Subtract to Both 153
FMP Floating Multiply
160 M A Il X Y
0 6 78 9 121314 1718 35

Interpret the operands specified by M and AC as single—precision floating—point numbers. Form the
floating—point product of these two operands. If the double-length fraction in the product is zero,
clear the destination specified by M. Otherwise, normalize the double-length product bringing Os
into bit positions vacated at the right; test for exponent overflow or underflow as described above;
and place the high—order word of the result in the specified destination.

FUP Floating Multiply 160
FUPH Floating Multiply to Memory 162
FMPB Floating Multiply to Both 163

is at least one significant bit after the shift (assuming normalized operands). If the difference is > 72 (in the KA10,
or > 64 in the KI10), the hardware throws the term away by substituting zero. But when the exponent difference
lies in the range 54 to 72 (64), the procedure disposes of all significant bits without actually substituting zero. This
means that if the shifted term is positive it appears in the addition as all Os, but if negative it appears as all 1s. The
latter case gives an answer that is less by one LSB.

In the XKL-1and the KL10, no shift is large enough to turn a negative operand to zero. No matter how small the
negative operand, it will change the LSB of the result.

26 The caution given in footnote 25 for addition applies also to subtraction, which is done by adding with the
subtrahend negated. Here the lesser answer (as against a true zero substitution) occurs when the term with the
smaller exponent is negative after the subtrahend negation; i.e., when the term of smaller magnitude is a positive
subtrahend or a negative minuend.

80 CHAPTER 2. USER OPERATIONS

FDV Floating Divide
170 M A Il X Y
0 6 78 9 121314 1718 35

Interpret the operands specified by M and AC as single—precision floating—point numbers. If the
magnitude of the fraction in AC is greater than or equal to twice the magnitude of the fraction in
location E| set Trap 1, Overflow, Floating Overflow, and No Divide and go immediately to the next
instruction without affecting the original AC or memory operand in any way.

Otherwise, compute the floating—point quotient of AC divided by the contents of location E. Cal-
culate a quotient fraction of 27 bits. If the fraction is zero, clear the destination specified by M. A
quotient with a non—zero fraction will already be normalized if the original operands were normalized;
if it 1s not, normalize it, bringing Os into bit positions vacated at the right. Test for exponent overflow
or underflow as described above, and place the single-length quotient in the specified destination.

NOTE

In the KL.10, KS10, and XKL-1, a negative quotient is represented by a twos—complement
only when the remainder is zero. Otherwise it is a ones—complement. In the KI10 and
KA10, a twos complement is used for a negative quotient regardless of the value of the

remainder.
FDV Floating Divide 170
FDVHM Floating Divide to Memory 172
FDVB Floating Divide to Both 173

Note: Division fails if the divisor is zero. However, the no—divide condition can also occur if the
divisor is unnormalized.

2.3.5 Double—Precision®’

There are four instructions for the four basic operations; they have no modes. All use AC and
memory operands and place the result in the accumulators. Memory operands are double length
in location E, E + 1;2® AC operands and results are double length in AC,AC+1. All operands
are interpreted as double—precision floating—point numbers. All results are normalized regardless
of the status of the original operands; except that in KI10 multiplication and division, the result
is guaranteed to be normalized only when the original operands are normalized. Except in KI10
division, the result is rounded. The rounding function is the same as that used in single—precision:
if the part of the answer being dropped (the low—order part of the fraction) is greater than or equal
in magnitude to one half the LSB of the double-length part being retained, the magnitude of the
latter part is increased by one LSB (with appropriate adjustment for a twos—complement negative).

27In the KA10 these instructions trap as unassigned codes (§2.16).
28Refer to the description of F,F + 1 on page 52.

2.3. FLOATING-POINT ARITHMETIC 81

In each of these instructions, the exponent that results from normalization and rounding (if done)
is tested for overflow or underflow. If the exponent is > 127, set Trap 1, Overflow, and Floating
Overflow; the result stored has an exponent 256 less than the correct value. If the exponent is
< —128, set Trap 1, Overflow, Floating Overflow, and Floating Underflow; the result stored has an
exponent 256 greater than the correct value.

DFAD Double Floating Add
110 A 1 X Y
0 8 9 121314 1718 35

Add the double—precision floating—point operand in location £, E+1 to AC,AC+1. If the fraction in
the sum is zero, clear AC,AC+1. Otherwise, normalize the triple-length sum, bringing Os in at the
right; round the high—order double-length part; test for exponent overflow or underflow as described
above; and place the result in AC AC+1.

Note

The KI10 zero test inspects only the high—order 70 bits in the fraction.

DFSB Double Floating Subtract
111 A 1 X Y
0 8 9 121314 1718 35

Subtract the double—precision floating—point operand in location £, E + 1 from AC,AC+1. If the
fraction in the difference is zero, clear AC,AC+1. Otherwise, normalize the triple-length difference,
bringing Os into bit positions vacated at the right; round the high—order double-length part; test for
exponent overflow or underflow as described above; and place the result in AC AC+1.

NOTE

The KI10 zero test inspects only the high—order 70 bits in the fraction.

DFMP Double Floating Multiply
112 A 1 X Y
0 8 9 121314 1718 35

XKL-1 processor, KL10, and KS10: Multiply the double—precision floating—point operand in AC,AC+1
by the operand in location F, E' 4 1. If the product is zero, clear AC,AC+1. Otherwise, normalize
the product, round the high—order double-length part, test for exponent overflow and underflow as
described above; and place the result in AC,AC+1.2°

29The KL10 considers only one bit to the right of the least significant bit when rounding. If that bit is set, the

82 CHAPTER 2. USER OPERATIONS

KI110: Multiply the double—precision floating—point operand in AC,AC+1 by the operand in location
E, E+1. If the high—order 70 bits of the fraction in the product are zero, clear AC,AC+1. Otherwise,
if there are any bits of significance among the high—order 35 bits, do at most one normalization shift if
required; if the high—order 35 bits are zero, shift the fraction left 35 places (adjusting the exponent),
and then do at most one normalization shift if required. Round the high—order double-length part;
test for exponent overflow and underflow as described above; and place the result in AC,AC+1. The
35-bit shift is done only if the original operands are unnormalized. The single normalization shift
produces a normalized result for normalized operands.

DFDV Double Floating Divide
113 A 1 X Y
0 8 9 121314 1718 35

If the magnitude of the fraction in the double-precision floating—point operand in AC AC+1 is
greater than or equal to twice that of the fraction in the operand in location £, F + 1, set Trap 1,
Overflow, Floating Overflow, and No Divide and go immediately to the next instruction without
affecting the original AC or memory operand in any way.

Otherwise, divide the AC operand by the memory operand, calculating a quotient fraction of 63
bits including one for rounding (62 in the KI10). If the fraction is zero, clear AC,AC+1. Otherwise,
in the XKL-1 processor, KL10, and KS10, normalize the quotient and round it using the extra bit
calculated. Test for exponent overflow or underflow as described above, and place the quotient in
AC/AC+1. The remainder is lost. Division fails if the divisor is zero. However, the no—divide
condition can also occur if the divisor is unnormalized.

Note: In the KI10 the quotient is normalized if the original operands are normalized.

2.3.6 Giant-Format Extended—Range Double Precision®

There are four instructions for the four basic operations; they have no modes. All use AC and
memory operands and place the result in the accumulators. Memory operands are double-length
in location E, E + 1;3' AC operands and results are double-length in AC,AC+1. All operands are
interpreted as giant—format floating—point numbers. All results are normalized regardless of the
status of the original operands. All results are rounded. The rounding function is the same as
that used in single precision: if the part of the answer being dropped (the low—order part of the
fraction) is greater than or equal in magnitude to one half the LSB of the double-length part being
retained, the magnitude of the latter part is increased by one LSB (with appropriate adjustment for
a twos—complement negative).

In each of these instructions, the exponent that results from normalization and rounding (if done)
is tested for overflow or underflow. If the exponent is > 1023, set Trap 1, Overflow, and Floating
Overflow; the result stored has an exponent 2048 less than the correct value. If the exponent is
< —1024, set Trap 1, Overflow, Floating Overflow, and Floating Underflow; the result stored has an
exponent 2048 greater than the correct value.

KL10 adds one to the least significant bit. This differs from the rounding employed in other instructions.
30Tn the KA10, KI10, and KS10 these instructions trap as unassigned codes (§2.16).
31Refer to the description of F,F + 1 on page 52.

2.3. FLOATING-POINT ARITHMETIC 83

GFAD Giant Floating Add
102 A 1 X Y
0 8 9 121314 1718 35

Add the giant-format operand in location E, E + 13? to the giant—format operand in AC,AC+1.
If the fraction in the sum is zero, clear AC,AC+1. Otherwise, normalize the triple-length sum,
bringing Os in at the right; round the high order double length part; test for exponent overflow or
underflow; and place the result in AC AC+1.

Exponent underflow occurs when two numbers of similar small magnitude and differing signs are
added to produce a non-zero result which, when normalized, results in the exponent becoming
smaller than —1024. The result stored will have an exponent that is too large by 2048. If exponent
underflow occurs, set Floating Underflow, Floating Overflow, Overflow, and Trap 1.

Exponent overflow occurs when two numbers of similar large magnitude and identical signs are added
to produce a result which requires a right shift to normalize and which results in an exponent of
41024. The exponent stored will be —1024; i.e., too small by 2048. If exponent overflow occurs, set
Overflow, Floating Overflow, and Trap 1.

GFSB Giant Floating Subtract
103 A Il X Y
0 8 9 121314 1718 35

Subtract the giant—format operand in location £, E+1 from the operand in AC AC+1. If the fraction
in the sum 1s zero, clear AC,AC+1. Otherwise, normalize the triple-length difference, bringing 0s
in at the right; round the high order double length part; test for exponent overflow or underflow;

and place the result in AC AC+1.

Subtraction is effected by negating the subtrahend and adding. The conditions under which overflow
or underflow occur correspond to those described above for GFAD.

GFMP Giant Floating Multiply
106 A If X Y
0 8 9 121314 1718 35

Multiply the giant—format operand in AC,AC+1 by the operand in location £, E4 1. If the product
is zero, clear AC AC+1. Otherwise, normalize the product; round the high order double length part;
test for exponent overflow and underflow; and place the result in AC,AC+1.

In multiplication, the exponent of the result is computed by adding the exponents of the operands,
with an adjustment for normalization of the result. Underflow occurs when two negative exponents
are added to form a result smaller than —1024. Overflow occurs when two positive exponents are
added to form a result larger than +1023.

32Refer to the description of F,F + 1 on page 52.

84 CHAPTER 2. USER OPERATIONS

GFDV Giant Floating Divide
107 A Il X Y
0 8 9 121314 1718 35

If the magnitude of the fraction in the giant—format operand in AC,AC+1 is greater than or equal
to twice that of the fraction in the giant—format operand in location £, £+ 1, set Trap 1, Overflow,
Floating Overflow, and No Divide and go immediately to the next instruction without affecting the
original AC or memory operand in any way. Division fails when the divisor i1s zero. However, the
no—divide condition can also occur if the divisor is unnormalized.

Otherwise, divide the AC operand by the memory operand, calculating a quotient fraction of 60
bits including one for rounding. If the fraction is zero, clear AC,AC+1. Otherwise, normalize the
quotient and round it using the extra bit calculated. Test for exponent overflow or underflow, and
place the quotient in AC, AC+1. The remainder is lost.

2.3.7 KA10 Software Double—Precision

These instructions are regarded as obsolete—they are solely for assisting in the KA10 software
implementation of double—precision floating—point arithmetic. Hence, they exist only in the KA10,
the KI10, and those KL.10 processors whose microcode implements them specifically for compatibility
with KA10 usage.?® A programmer who employs these instructions must be aware that the double—
length format for KA10 software double—precision is not the same as the standard double—precision
format given in §1.5.2. A double-length number in KA10 software double—precision format contains
a b4-bit fraction, half of which is in bits 9-35 of each word. The sign and exponent are in bits 0 and
1-8 respectively of the word containing the more significant half, and the standard twos—complement
is used to form the negative of the entire 63-bit string. In the remaining part of the less significant
word, bit 0 is 0, and bits 1-8 contain a number 27 less than the exponent, but this is expressed in
positive form even though bits 9-35 may be part of a negative fraction. For example, the number
218 4 2718 has this two—word representation in software double—precision format:

[0]10 010 011100 000 000 000 000 000 000 000 000]
01 39 35

[0]o1 111 0001000 000 000 100 000 000 000 000 000]
01 89 35

whereas its negative is

[1J01 101 100[011 111 L1 111 111 111 111 111 111]
01 89 35

[0[01 111 000[111 111 111 100 000 000 000 000 000 |
01 89 35

33In KL10 processors that do not support these instructions in microcode, they trap as unassigned codes (§2.16)
and are simulated, faithfully and slowly, in software.

2.3. FLOATING-POINT ARITHMETIC 85

Routines for performing software double—precision arithmetic are made possible by the six instruc-
tions described here. Four of these do the basic operations with normalization; the double-length
number in software format is used as a dividend or it appears as the result in addition, subtraction,
or multiplication. The remaining two instructions do not normalize: one negates a software double—
length number, the other performs a special unnormalized addition for manipulating low—order parts
of numbers without shifting them from their proper positions. In the instructions for the basic op-
erations, the exponent that results from normalization is tested for overflow or underflow. If the
exponent 1s > 127, set Trap 1, Overflow, and Floating Overflow; the result stored has an exponent
256 less than the correct value. If the exponent 1s < —128, set Trap 1, Overflow, Floating Overflow,
and Floating Underflow; the result stored has an exponent 256 greater than the correct value.

NOTE

The following instructions are solely for assisting in KA10 software double—precision
floating—point arithmetic. In any processor that does not implement them, their codes are
unassigned and they therefore execute as MUUOs rather than performing the operations
given in the following descriptions.

DFN Double Floating Negate
131 A 1 X Y
0 8 9 121314 1718 35

Negate the software double-length floating—point number composed of the contents of AC and
location E with AC on the left. Do this by taking the twos complement of the number whose sign is
AC bit 0, whose exponent is in AC bits 1-8, and whose fraction is the 54-bit string in bits 9-35 of
AC and location E. Place the high—order word of the result in AC; place the low order part of the
fraction in bits 9-35 of location £ without altering the original contents of bits 08 of that location.

Note: Usually the double-length number is in two adjacent accumulators, and £ equals A + 1.
There 18 no overflow test, because negating a correctly formatted floating—point number cannot
cause overflow.

DFN AC,AC is undefined.

UFA Unnormalized Floating Add
130 A Il X Y
0 8 9 121314 1718 35

Add the floating—point contents of location E to AC.3* If the double-length fraction in the sum is
zero, clear AC+1. Otherwise normalize the sum only if the magnitude of its fractional part is >
1, and place the high—order part of the result in AC+4+1. The original contents of AC and E are
unaffected.

If the exponent of the sum following the one-step normalization is > 127, set Trap 1, Overflow and

34The caution given in footnote 25 for FAD applies to this instruction as well.

86 CHAPTER 2. USER OPERATIONS

Floating Overflow; the result stored has an exponent 256 less than the correct value.

Notes. The exponent of the sum is equal to that of the larger addend unless addition of the fractions
overflows, in which case it is greater by 1. Exponent overflow can occur only in the latter case.

FADL Floating Add Long
141 A 1 X Y
0 8 9 121314 1718 35

Add the floating—point contents of location E to AC.3* If the double-length fraction in the sum is
zero, clear AC,AC+1. Otherwise, normalize the double-length sum, bringing Os into bit positions
vacated at the right; test for exponent overflow or underflow as described above; and place the high
order word of the result in AC. If the exponent of the sumis < —101 (—128427) or the low-order
half of the fraction is zero, clear AC+1. Otherwise place a low—order word for a double-length result
in AC+1 by putting a 0 in bit 0, an exponent in positive form that is 27 less than the exponent of
the sum in bits 1-8, and the low—order part of the fraction in bits 9-35.

FSBL Floating Subtract Long
151 A 1 X Y
0 8 9 121314 1718 35

Subtract the floating—point contents of location E from AC.% If the double-length fraction in the
difference is zero, clear AC,AC+1. Otherwise, normalize the double length difference, bringing 0s
into bit positions vacated at the right; test for exponent overflow or underflow as described above; and
place the high order word of the result in AC. If the exponent of the difference is < =101 (—1284-27)
or the low—order half of the fraction is zero, clear AC+1. Otherwise, place a low—order word for a
double-length result in AC+1 by putting a 0 in bit 0, an exponent in positive form that is 27 less
than the exponent of the difference in bits 1-8, and the low—order part of the fraction in bits 9-35.

FMPL Floating Multiply Long
161 A 1 X Y
0 8 9 121314 1718 35

Multiply the floating—point operand in AC by the contents of location E. If the double-length fraction
in the product is zero, clear AC,AC+1. Otherwise, normalize the double-length product, bringing
0Os into bit positions vacated at the right; test for exponent overflow or underflow as described above;
and place the high order word of the result in AC. If the exponent of the product is > 154(127 + 27)
or < —101(—128 + 27) or the low order half of the fraction is zero, clear AC+1. Otherwise place a
low—order word for a double-length result in AC+1 by putting a 0 in bit 0, an exponent in positive
form that is 27 less than the exponent of the product in bits 1-8, and the low—order part of the
fraction in bits 9-35.

35The caution given in footnote 26 for FSB applies to this instruction as well.

2.4. BOOLEAN FUNCTIONS 87

FDVL Floating Divide Long
171 A 1 X Y
0 8 9 121314 1718 35

If the magnitude of the software—format double-length fraction in AC,AC+1 is greater than or equal
to twice the magnitude of the fraction in location F, set Trap 1, Overflow, Floating Overflow, and
No Divide, and go immediately to the next instruction without affecting the original AC or memory
operand in any way.

Otherwise, divide the software—format double-length operand in AC,AC+1 by the contents of lo-
cation F. Calculate a quotient fraction of 27 bits. If the fraction is zero, clear AC. A quotient
with a non—zero fraction will already be normalized if the original operands were normalized; if it is
not, normalize it, bringing Os into bit positions vacated at the right. Test for exponent overflow or
underflow as described above, and place the single-length quotient part of the result in AC.

Calculate the exponent for the fractional remainder from the division according to the relative
magnitudes of the fractions in dividend and divisor: if the dividend was greater than or equal to
the divisor, the exponent of the remainder is 26 less than that of the dividend, otherwise it is 27
less. If the remainder exponent is < —128 or the fraction is zero, clear AC+1. Otherwise, place the
floating—point remainder (exponent and fraction) with the sign of the dividend in AC+1.

Note

In the KL.10 microcode implementation of FDVL, a negative quotient is represented by a
twos—complement only when the remainder is zero; otherwise, it 18 a ones—complement
(i.e., too small by one LSB). In the KI10 and KA10, a twos—complement is used for a
negative quotient regardless of the value of the remainder.

Notes: Division fails if the divisor is zero. However, the no—divide condition can also be satisfied
when the divisor is unnormalized.

A non-zero unnormalized dividend whose entire high—order fraction is zero produces a zero quotient.
In this case, AC+1 is cleared in the KI10, but it may receive rubbish in other processors.

2.4 Boolean Functions

For logical operations, the PDP-10 has instructions for shifting and rotating (§2.5) as well as for
performing the complete set of sixteen Boolean functions of two variables (including those in which
the result depends on only one or neither variable). The Boolean functions operate bitwise on full
words, so each instruction actually performs thirty—six logical operations simultaneously. Thus, in
the AND function of two words, each bit of the result is the AND of the corresponding bits of the
operands. The table at the end of the section lists the bit configurations that result from the various
operand configurations for all instructions.

Each Boolean instruction has four modes that determine the source of the non—-AC operand, if any,

88 CHAPTER 2. USER OPERATIONS

and the destination of the result. For an instruction without an operand (one that merely clears
a location or sets it to all 1s) the modes differ only in the destination of the result, so basic and
immediate modes are equivalent. The same is true also of an instruction that uses only an AC
operand. When specified by the mode, the result goes to the accumulator addressed by A, even
when there is no AC operand.

Source of non— Destination
Mode Suffiz AC operand of result
Basic E AC
Immediate 1 The word 0, E* AC
Memory M E E
Both B E ACand F

* In section zero the immediate source is 0, I/ in all cases. However, in a non—zero section, setting
AC to immediate memory (i.e., SETMI) instead uses the entire extended effective-address F as the
source, including the section number (the left part of E).

SETZ Set to Zeros
400 M A I X Y
0 6 78 9 121314 1718 35

Change the contents of the destination specified by M to all Os.

SETZ Set to Zeros 400
SETZI Set to Zeros Immediate 401
SETZHM Set to Zeros Memory 402
SETZB Set to Zeros Both 403

Note: SETZ and SETZI are equivalent (both clear AC). In them, I, X, and Y are reserved and
should be zero. (At present E is ignored.)

AND And with AC
404 M A Il X Y
0 67809 121314 1718 35

Change the contents of the destination specified by M to the AND function of the specified operand
and AC.

2.4. BOOLEAN FUNCTIONS 89

AND And 404
ANDI And Immediate 405
ANDHM And to Memory 406
ANDB And to Both 407
ANDCA And with Complement of AC
410 M A Il X Y
0 6 789 121314 1718 35

Change the contents of the destination specified by M to the AND function of the specified operand
and the complement of AC.

ANDCA And with Complement of AC 410
ANDCATI And with Complement of AC Immediate 411
ANDCAM And with Complement of AC to Memory 412
ANDCAB And with Complement of AC to Both 413
SETM Set to Memory
414 M A Il X Y
0 6 789 121314 1718 35

Make the contents of the destination specified by M equal to the specified operand.

SETHM Set to Memory 414
SETMI Set to Memory Immediate 415
SETMHM Set to Memory Memory 416
SETMB Set to Memory Both 417

If the program is running in a non—zero section, the instruction SETMI is called XMOVEI (§2.1),
which performs an analogous function with an extended—immediate operand (effective-address).

Notes: SETM is equivalent to MOVE. In section zero, SETMI moves the word 0,F to AC and is
thus equivalent to MOVEIL. SETMM is a no—op that writes in memory. With non—zero A, SETMB is
equivalent to MOVES. In all cases the move instruction is preferred.

ANDCM And Complement of Memory with AC

420 M A Il X Y
0 6 789 121314 1718 35

Change the contents of the destination specified by M to the AND function of the complement of

90 CHAPTER 2. USER OPERATIONS

the specified operand and AC.

ANDCHM And Complement of Memory 420
ANDCMI And Complement of Memory Immediate 421
ANDCMM And Complement of Memory to Memory 422
ANDCMB And Complement of Memory to Both 423
SETA Set to AC
424 M A Il X Y
0 6 789 121314 1718 35

Make the contents of the destination specified by M equal to AC.

SETA Set to AC 424
SETAI Set to AC Immediate 425
SETAM Set to AC Memory 426
SETAB Set to AC Both 427

Note: SETA and SETAI are no-ops. In them, 7, X, and YV are reserved and should be zero. (At
present I is ignored.)

SETAM and SETAB are both equivalent to MOVEM, which is the preferred instruction (all move AC

to location F).

XOR Exclusive Or with AC
430 M A I X Y