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About this Manual 1

The | A-64 architecture is a unique combination of innovative features such as explicit parallelism,
predication, speculation and more. The architecture is designed to be highly scalable to fill the ever
increasing performance requirements of various server and workstation market segments. The

| A-64 architecture features a revolutionary 64-bit instruction set architecture (ISA) which appliesa
new processor architecture technology called EPIC, or Explicitly Parallel Instruction Computing. A
key feature of the |A-64 architecture is 1A-32 instruction set compatibility.

The Intel® 1A-64 Architecture Software Devel oper’s Manual provides a comprehensive description
of the programming environment, resources, and instruction set visible to both the application and
system programmer. In addition, it also describes how programmers can take advantage of |1A-64
featuresto help them optimize code. This manual replaces the |A-64 Application Developer’s
Architecture Guide (Document Number 245188) which contains a subset of the information
presented in this four-volume set.

1.1 Overview of Volume 1: I1A-64 Application
Architecture

This volume defines the | A-64 application architecture, including application level resources,
programming environment, and the 1A-32 application interface. This volume al so describes
optimization techniques used to generate high performance software.

1.1.1 Part 1: IA-64 Application Architecture Guide

Chapter 1, “About thisManua” provides an overview of al volumesin the Intel® 1A-64
Architecture Software Devel oper’s Manual.

Chapter 2, “Introduction to the | A-64 Processor Architecture” provides an overview of the |A-64
architecture system environments.

Chapter 3, “IA-64 Execution Environment” describes the |A-64 register set used by applications
and the memory organization models.

Chapter 4, “1A-64 Application Programming Model” gives an overview of the behavior of |A-64
application instructions (grouped into related functions).

Chapter 5, “I A-64 Floating-point Programming Model” describes the | A-64 floating-point
architecture (including integer multiply).

Chapter 6, “IA-32 Application Execution Model in an |A-64 System Environment” describes the
operation of A-32 instructions within the |A-64 System Environment from the perspective of an
application programmer.
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Part 2: IA-64 Optimization Guide

Chapter 7, “About the | A-64 Optimization Guide’ gives an overview of the |A-64 optimization
guide.

Chapter 8, “Introduction to 1A-64 Programming” provides an overview of the IA-64 application
programming environment.

Chapter 9, “Memory Reference” discusses features and optimizations related to control and data
speculation.

Chapter 10, “Predication, Control Flow, and Instruction Stream” describes optimization features
related to predication, control flow, and branch hints.

Chapter 11, “ Software Pipelining and Loop Support” provides a detailed discussion on optimizing
loops through use of software pipelining.

Chapter 12, “Floating-point Applications’ discusses current performance limitationsin
floating-point applications and | A-64 features that address these limitations.

Overview of Volume 2: I1A-64 System Architecture

This volume defines the | A-64 system architecture, including system level resources and
programming state, interrupt model, and processor firmware interface. Thisvolume aso providesa
useful system programmer's guide for writing high performance system software.

Part 1: IA-64 System Architecture Guide

Chapter 1, “About thisManual” provides an overview of all volumesin the Intel® |1A-64
Architecture Software Developer’s Manual.

Chapter 2, “1A-64 System Environment” introduces the environment designed to support execution
of |A-64 operating systems running |A-32 or 1A-64 applications.

Chapter 3, “1A-64 System State and Programming Model” describes the | A-64 architectural state
which isvisible only to an operating system.

Chapter 4, “1A-64 Addressing and Protection” defines the resources available to the operating
system for virtual to physical addresstrandation, virtual aliasing, physical addressing, and memory
ordering.

Chapter 5, “1A-64 Interruptions” describes all interruptions that can be generated by an |A-64
processor.

Chapter 6, “1A-64 Register Stack Engine” describes the | A-64 architectural mechanism which
automatically saves and restores the stacked subset (GR32 — GR 127) of the general register file.

Chapter 7, “1A-64 Debugging and Performance Monitoring” is an overview of the performance
monitoring and debugging resources that are available in the |1A-64 architecture.
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Chapter 8, “1A-64 Interruption Vector Descriptions’ lists al 1A-64 interruption vectors.

Chapter 9, “1A-32 Interruption Vector Descriptions’ lists | A-32 exceptions, interrupts and
intercepts that can occur during 1A-32 instruction set execution in the 1A-64 System Environment.

Chapter 10, “1A-64 Operating System Interaction Model with 1A-32 Applications’ defines the
operation of |A-32 instructions within the |A-64 System Environment from the perspective of an
| A-64 operating system.

Chapter 11, “1A-64 Processor Abstraction Layer” describes the firmware layer which abstracts
| A-64 processor implementation-dependent features.

Part 2: IA-64 System Programmer’s Guide

Chapter 12, “About the |A-64 System Programmer’s Guide” gives an introduction to the second
section of the system architecture guide.

Chapter 13, “MP Coherence and Synchronization” describes | A-64 multi-processing
synchronization primitives and the | A-64 memory ordering model.

Chapter 14, “Interruptions and Serialization” describes how the processor serializes execution
around interruptions and what stateis preserved and made available to low-level system code when
interruptions are taken.

Chapter 15, “ Context Management” describes how operating systems need to preserve |1A-64
register contents and state. This chapter also describes | A-64 system architecture mechanisms that
allow an operating system to reduce the number of registers that need to be spilled/filled on
interruptions, system calls, and context switches.

Chapter 16, “Memory Management” introduces various | A-64 memory management strategies.

Chapter 17, “Runtime Support for Control and Data Speculation” describes the operating system
support that is required for control and data speculation.

Chapter 18, “Instruction Emulation and Other Fault Handlers’ describes a variety of instruction
emulation handlers that 1A-64 operating system are expected to support.

Chapter 19, “Floating-point System Software” discusses how | A-64 processors handle
floating-point numeric exceptions and how the 1A-64 software stack provides complete |IEEE-754
compliance.

Chapter 20, “1A-32 Application Support” describes the support an 1A-64 operating system needs to
provide to host 1A-32 applications.

Chapter 21, “External Interrupt Architecture” describes the IA-64 external interrupt architecture
with afocus on how external asynchronous interrupt handling can be controlled by software.

Chapter 22, “1/0 Architecture” describesthe |1A-64 1/0 architecture with afocus on platform issues
and support for the existing 1A-32 1/O port space platform infrastructure.

Chapter 23, “Performance Monitoring Support” describes the 1A-64 performance monitor
architecture with afocus on what kind of operating system support is needed from 1A-64 operating
systems.
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Chapter 24, “Firmware Overview” introduces the 1A-64 firmware model, and how various
firmware layers (PAL, SAL, EFI) work together to enable processor and system initialization, and
operating system boot.

Appendices

Appendix , “1A-64 Resource and Dependency Semantics’ summarizes the dependency rules that
are applicable when generating code for |A-64 processors.

Appendix , “ Code Examples’ provides OS boot flow sample code.

Overview of Volume 3: Instruction Set Reference

This volume is a comprehensive reference to the |A-64 and | A-32 instruction sets, including
instruction format/encoding.

Part 1: IA-64 Instruction Set Descriptions

Chapter 1, “About thisManual” provides an overview of all volumesin the Intel® 1A-64
Architecture Software Developer’s Manual.

Chapter 2, “1A-64 Instruction Reference” provides a detailed description of all 1A-64 instructions,
organized in alphabetical order by assembly language mnemonic.

Chapter 3, “1A-64 Pseudo-Code Functions’ provides a table of pseudo-code functions which are
used to define the behavior of the |A-64 instructions.

Chapter 4, “1A-64 Instruction Formats” describes the encoding and instruction format instructions.

Part 2: IA-32 Instruction Set Descriptions

Chapter 5, “Base |A-32 Instruction Reference” provides a detailed description of all base |1A-32
instructions, organized in alphabetical order by assembly language mnemonic.

Chapter 6, “1A-32 MMX™ Technology Instruction Reference” provides a detailed description of
al 1A-32 MMX™ technology instructions designed to increase performance of multimedia
intensive applications. Organized in alphabetical order by assembly language mnemonic.

Chapter 7, “1A-32 Streaming SIMD Extension Instruction Reference” provides a detailed
description of all A-32 Streaming SIMD Extension instructions designed to increase performance
of multimediaintensive applications, and is organized in alphabetical order by assembly language
mnemonic.
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Overview of Volume 4: Itanium™ Processor
Programmer’s Guide

This volume describes model-specific architectural features incorporated into the Intel® Itanium™
processor, the first 1A-64 processor.

Chapter 1, “About this Manual” provides an overview of four volumesin the Intel® |A-64
Architecture Software Devel oper’s Manual.

Chapter 2, “Register Stack Engine Support” summarizes Register Stack Engine (RSE) support
provided by the Itanium processor.

Chapter 3, “Virtua Memory Management Support” details size of physical and virtual address,
region register ID, and protection key register implemented on the Itanium processor.

Chapter 4, “Processor Specific Write Coalescing (WC) Behavior” describes the behavior of write
coal esce (also known as Write Combine) on the Itanium processor.

Chapter 5, “Model Specific Instruction Implementation” describes model specific behavior of
| A-64 instructions on the Itanium processor.

Chapter 6, “Processor Performance Monitoring” defines the performance monitoring features
which are specific to the Itanium processor. This chapter outlines the targeted performance monitor
usage models and describes the Itanium processor specific performance monitoring state.

Chapter 7, “Performance Monitor Events’ summarizes the Itanium processor events and describes
how to compute commonly used performance metrics for Itanium processor events.

Chapter 8, “Model Specific Behavior for I1A-32 Instruction Execution” describes some of the key
differences between an Itanium processor executing | A-32 instructions and the Pentium® 111
processor.

Terminology

The following definitions are for terms related to the 1A-64 architecture and will be used
throughout this document:

Instruction Set Architecture (I SA) — Defines application and system level resources. These
resources include instructions and registers.

I A-64 Architecture — The new ISA with 64-bit instruction capabilities, new performance-
enhancing features, and support for the I1A-32 instruction set.

IA-32 Architecture—The 32-bit and 16-bit Intel Architecture asdescribed in the Intel Architecture
Software Developer’s Manual.

| A-64 Processor —An Intel 64-bit processor that implements both the |A-64 and the 1A-32
instruction sets.
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| A-64 System Environment — The | A-64 operating system privileged environment that supports
the execution of both |A-64 and | A-32 code.

| A-32 System Environment — The operating system privileged environment and resources as
defined by the Intel Architecture Software Developer’s Manual. Resources include virtual paging,
control registers, debugging, performance monitoring, machine checks, and the set of privileged
instructions.

| A-64 Firmware — The Processor Abstraction Layer (PAL) and System Abstraction Layer (SAL).

Processor Abstraction Layer (PAL) —The lA-64 firmware layer which abstracts | A-64 processor
features that are implementation dependent.

System Abstraction Layer (SAL) —The lA-64 firmware layer which abstracts |A-64 system
features that are implementation dependent.

Related Documents

The following documents contain additional material related to the Intel® |A-64 Architecture
Software Developer’s Manual:

« Intel Architecture Software Developer’s Manual — This set of manuals describes the Intel
32-bit architecture. They are readily available from the Intel Literature Department by calling
1-800-548-4725 and requesting Order Numbers 243190, 243191and 243192, or can be
downloaded at http://devel oper.intel.com/design/litcentr.

| A-64 Software Conventions and Runtime Architecture Guide — This document (Document
Number 245358) defines general information necessary to compile, link, and execute a
program on an | A-64 operating system. It can be downloaded at
http://devel oper.intel .com/design/iab4.

* 1A-64 System Abstraction Layer Specification — This document (Document Number 245359)
specifies requirements to devel op platform firmware for | A-64 processor systems.

» Extensible Firmware Interface Specification — This document defines a new model for the
interface between operating systems and platform firmware. It can be downloaded at
http://devel oper.intel .com/technol ogy/efi.

Revision History

Date of Revision

Revision Number Description

July 2000 1.1 Volume 1:
Processor Serial Number feature removed (Chapter 3)
Clarification on exceptions to instruction dependency (Section 3.4.3)
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Date of
Revision

Revision
Number

Description

Volume 2:
Clarifications regarding “reserved” fields in ITIR (Chapter 3)

Instruction and Data translation must be enabled for executing 1A-32 instructions
(Chapters 3,4 and 10)

FCR/FDR mappings, and clarification to the value of PSR.ri after an RFI
(Chapters 3 and 4)

Clarification regarding ordering data dependency

Qut-of-order IPI delivery is now allowed (Chapters 4 and 5)

Content of EFLAG field changed in IIM (p. 9-24)

PAL_CHECK and PAL_INIT calls — exit state changes (Chapter 11)
PAL_CHECK processor state parameter changes (Chapter 11)
PAL_BUS_GET/SET_FEATURES calls — added two new bits (Chapter 11)

PAL_MC_ERROR_INFO call — Changes made to enhance and simplify the call
to provide more information regarding machine check (Chapter 11)

PAL_ENTER_IA_32_Env call changes — entry parameter represents the entry
order; SAL needs to initialize all the 1A-32 registers properly before making this
call (Chapter 11)

PAL_CACHE_FLUSH — added a new cache_type argument (Chapter 11)
PAL_SHUTDOWN - removed from list of PAL calls (Chapter 11)
Clarified memory ordering changes (Chapter 13)

Clarification in dependence violation table (Appendix A)

Volume 3:
fmix instruction page figures corrected (Chapter 2)
Clarification of “reserved” fields in ITIR (Chapters 2 and 3)

Modified conditions for alloc/loadrs/flushrs instruction placement in bundle/
instruction group (Chapters 2 and 4)

IA-32 JMPE instruction page typo fix (p. 5-238)
Processor Serial Number feature removed (Chapter 5)

Volume 4:

Reformatted the Performance Monitor Events chapter for readability and ease of
use (no changes to any of the events except for renaming of some); events are
listed in alphabetical order (Chapter 7)

January 2000

1.0

Initial release of document.

About this Manual

1-7




About this Manual



intel.

|A-64

Instruction Reference 2

2.1

This chapter describes the function of each | A-64 instruction. The pages of this chapter are sorted
alphabetically by assembly language mnemonic.

Instruction Page Conventions

Theinstruction pages are divided into multiple sections as listed in Table 2-1. The first three
sections are present on al instruction pages. The last three sections are present only when
necessary. Table 2-2 lists the font conventions which are used by the instruction pages.

Table 2-1. Instruction Page Description

Section Name Contents
Format Assembly language syntax, instruction type and encoding format
Description Instruction function in English
Operation Instruction function in C code
FP Exceptions |IEEE floating-point traps
Interruptions Prioritized list of interruptions that may be caused by the instruction
Serialization Serializing behavior or serialization requirements

Table 2-2. Instruction Page Font Conventions

Font Interpretation
regular (Format section) Required characters in an assembly language mnemonic
italic (Format section) Assembly language field name that must be filled with one of a range
of legal values listed in the Description section
code (Operation section) C code specifying instruction behavior
code italic (Operation section) Assembly language field name corresponding to a italic field listed

in the Format section

In the Format section, register addresses are specified using the assembly mnemonic field names
given in the third column of Table 2-3. For instructions that are predicated, the Description section
assumes that the qualifying predicate is true (except for instructions that modify architectural state
when their qualifying predicate isfalse). The test of the qualifying predicate isincluded in the
Operation section (when applicable).

In the Operation section, registers are addressed using the notation r eg[ addr] . fi el d. The
register file being accessed is specified by r eg, and has a value chosen from the second column of
Table 2-3. The addr field specifies aregister address as an assembly language field name or a
register mnemonic. For the general, floating-point, and predicate register files which undergo
register renaming, addr isthe register address prior to renaming and the renaming is not shown.
Thefi el d option specifies anamed bit field within the register. If fi el d is absent, then all fields
of the register are accessed. The only exception is when referencing the datafield of the general
registers (64-bits not including the NaT bit) where the notation GR addr] isused. The syntactical
differences between the code found in the Operation section and ANSI Cislisted in Table 2-4.
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Table 2-3.

Table 2-4.

intel.

Register File Notation
Register File C Notation Qiiﬁqﬁ;tr:li)é Qg(l:;escst

Application registers AR ar

Branch registers BR b

Control registers CR cr

CPU identification registers CPUID cpuid Y

Data breakpoint registers DBR dbr Y

Instruction breakpoint registers IBR ibr Y

Data TLB translation cache DTC n/a

Data TLB translation registers DTR dtr Y

Floating-point registers FR f

General registers GR r

Instruction TLB translation cache ITC n/a

Instruction TLB translation registers ITR itr Y

Protection key registers PKR pkr Y

Performance monitor configuration registers PMC pmc Y

Performance monitor data registers PMD pmd Y

Predicate registers PR p

Region registers RR rr Y

C Syntax Differences

Syntax Function

{msb:Isb}, {bit} Bit field specifier. When appended to a variable, denotes a bit field extending from the
most significant bit specified by “msb” to the least significant bit specified by “Isb”
including bits “msb” and “Isb”. If “msb” and “Isb” are equal then a single bit is
accessed. The second form denotes a single bit.

u>, U>=, U<, u<= Unsigned inequality relations. Variables on either side of the operator are treated as
unsigned.

u>>, u>>= Unsigned right shift. Zeroes are shifted into the most significant bit position.

u+ Unsigned addition. Operands are treated as unsigned, and zero-extended.

u* Unsigned multiplication. Operands are treated as unsigned.

2.2

2-2

Instruction Descriptions

The remainder of this chapter provides a description of each of the IA-64 instructions.
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Add

Format:

Description:

Operation:

Interruptions:

add
(gp) add ry=rp, 3 register_form Al
(gp) add ry=ry, 13,1 plusl_form, register_form Al
(gp) add rq =imm,rg pseudo-op
(gp) adds ry =immyg, r3 imm14_form A4
(qp) addl ry =immyy, r3 imm22_form A5

The two source operands (and an optional constant 1) are added and the result placed in GRry. In
the register form the first operand is GR r,; in the imm_14 form the first operand is taken from the
sign-extended immy 4 encoding field; in theimm22_form the first operand is taken from the
sign-extended immy, encoding field. In theimm22_form, GR r can specify only GRsO0, 1, 2 and 3.

The plusl_form isavailable only in the register_form (although the equivalent effect in the
immediate forms can be achieved by adjusting the immediate).

The immediate-form pseudo-op chooses the imm14_form or imm22_form based upon the size of
the immediate operand and the value of r.

if (PRgp]) {
check_target _register(rq);
if (register_form [/ register form
tnp_src = GRryl;
else if (inml4_form [/ 14-bit imrediate form
tnp_src = sign_ext(imy, 14);
el se /1 22-bit imediate form

tnp_src = sign_ext(im,, 22);
tnmp_nat = (register_form? GRr,].nat : 0);
if (plusl_form

GRrq] =tnp_src + GRirg] + 1;
el se

GRrqy] =tnp_src + GRrjl;
GR[rq].nat = tnp_nat || GRr3].nat;

Ilegal Operation fault
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Add Pointer
Format: (gp) addp4 ry=ry, 13 register_form Al
(gp) addp4 rq=immyy, r3 imm14_form A4

Description:  The two source operands are added. The upper 32 bits of the result are forced to zero, and then bits
{31:30} of GRr5 are copied to bits { 62:61} of the result. Thisresult isplaced in GRr4. In the
register_form the first operand is GR r,; in theimm14_form the first operand is taken from the
sign-extended imm; 4 encoding field.

Figure 2-1. Add Pointer

32 0 32 30 0

GRry: |0 0
63 61 32 0

Operation: if (PR agp]) {
check_target_register(rq);

tmp_src = (register_form? GRr,] : sign_ext(immy, 14));
tmp_nat = (register_form? GRry].nat : 0);

tmp_res = tnp_src + GRrg];
tnp_res = zero_ext(tnp_res{31:0}, 32);
tnp_res{62: 61} = G r3]{31:30};
GRrq] =tnp_res;
GRlrq].nat =tnp_nat || GRrg3].nat;
}

Interruptions: lllegal Operation fault
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alloc

Allocate Stack Frame

Format:

Description:

(gp) aloc rq =ar.pfs,i,l,0,r M34

A new stack frameis allocated on the general register stack, and the Previous Function State
register (PFS) is copied to GR r4. The change of frame size isimmediate. The write of GR r, and
subsequent instructions in the same instruction group use the new frame. Thisinstruction cannot be
predicated.

The four parameters, i (size of inputs), | (size of locals), o (size of outputs), and r (size of rotating)
specify the sizes of the regions of the stack frame.

Figure 2-2. Stack Frame

GR32
Local Output
<—>‘ sof -
sol

The size of the frame (sof) is determined by i + | + 0. Note that this instruction may grow or shrink
the size of the current register stack frame. The size of the local region (sol) isgivenby i + 1. There
isno real distinction between inputs and locals. They are given as separate operandsin the
instruction only as a hint to the assembler about how the local registers are to be used.

The rotating registers must fit within the stack frame and be a multiple of 8 in number. If this
instruction attempts to change the size of CFM.sor, and the register rename base registers
(CFM.rrb.gr, CFM.rrb.fr, CFM.rrb.pr) are not all zero, then the instruction will cause a Reserved
Register/Field fault.

Although the assembler does not allow illegal combinations of operandsfor al | oc, illegal
combinations can be encoded in the instruction. Attempting to allocate a stack frame larger than
96 registers, or with the rotating region larger than the stack frame, or with the size of locals larger
than the stack frame, or specifying a qualifying predicate other than PR 0, will cause an Illegal
Operation fault.

This instruction must be the first instruction in an instruction group and must either be in
instruction slot 0 or ininstruction slot 1 of atemplate having a stop after slot O; otherwise, the
results are undefined.

If insufficient registers are available to allocate the desired frame al | oc will stall the processor
until enough dirty registers are written to the backing store. Such mandatory RSE stores may cause
the data related faults listed below.
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Operation: /1 tnp_sof, tnp_sol, tnp_sor are the fields encoded in the instruction
tnp_sof =i +1 + o;
tnp_sol =i +1;

tnp_sor =r u>> 3;
check_target_register_sof (rq, tnp_sof);
if (tnmp_sof u> 96 || r u> tnp_sof || tnp_sol u> tnmp_sof || gp !'= 0)
illegal _operation_fault();
if (tnp_sor != CFM sor &&
(CFMrrb.gr '=0 || CFMrrb.fr '=0 || CFMrrb.pr '=0))
reserved_register_field fault();

al at _frane_update(0, tnp_sof - CFMsof);
rse_new frane(CFM sof, tnp_sof);// Make roomfor new regi sters; Mndatory
/! RSE stores can raise faults listed bel ow.

CFM sof = tnp_sof;
CFM sol = tnp_sol;
CFM sor = tnp_sor;
Rrq] = ARPFS];
GR(rq].nat = 0;

Interruptions: Illegal Operation fault Data NaT Page Consumption fault
Reserved Register/Field fault Data Key Missfault
Unimplemented Data Address fault Data Key Permission fault
VHPT Data fault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Data TLB fault Data Access Bit fault
Alternate Data TLB fault Data Debug fault

Data Page Not Present fault
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Logical And
Format: (gp) and rq=ry, 13 register_form Al
(gp) and ry =immg, r3 imm8_form A3

Description:  The two source operands are logically ANDed and the result placed in GR ry. In theregister_form

thefirst operand is GR r; in the imm8_form the first operand is taken from the immg encoding
field.

Operation: if (PRgp]) {
check_target _register(rq);

tnp_src = (register_form? GRr,] : sign_ext(img, 8));
tnmp_nat = (register_form? GRr,].nat : 0);

GRirqy] =tnp_src & GRr3l;
GR[rq].nat = tnp_nat || GRr3].nat;
}

Interruptions: Illegal Operation fault

IA-64 Instruction Reference 2-7



andcm inte|®

And Complement

Format: (gp) andem rq=rj,, 13 register_form Al
(gp) andem rq =immg, r3 imm8_form A3

Description:  Thefirst source operand islogically ANDed with the 1's complement of the second source operand
and the result placed in GR r4. In the register_form the first operand is GR r,; in theimm8_form
thefirst operand is taken from the immg encoding field.

Operation: if (PRgp]) {
check_target _register(rq);

tnp_src = (register_form? GRr,] : sign_ext(immg, 8));
tmp_nat = (register_form? GRry].nat : 0);

GRrqy] =tnp_src & ~GR{r3l;
GR(rq].nat = tnp_nat || GRr3].nat;
}

Interruptions: Illegal Operation fault
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Branch

Format:

Description:

br

(gp) br.btype.bwh.ph.dh target,g ip_relative form Bl

(gp) br.btype.bwh.ph.dh b, = targetys cal_form, ip_relative form B3

br.btype.bwh.ph.dh targetyg counted_form, ip_relative_form B2
br.ph.dh targetys pseudo-op

(gp) br.btype.bwh.ph.dh b, indirect_form B4

(gp) br.btype.bwh.ph.dh by, =b, call_form, indirect_form B5
brph.dh b, pseudo-op

A branch condition is evaluated, and either a branch is taken, or execution continues with the next
sequential instruction. The execution of abranch logically follows the execution of all previous
non-branch instructions in the same instruction group. On a taken branch, execution begins at

dot 0.

Branches can be either IP-relative, or indirect. For IP-relative branches, the target,s operand, in
assembly, specifies alabel to branch to. Thisis encoded in the branch instruction as a signed
immediate displacement (immy,,) between the target bundle and the bundle containing this
instruction (immy,, = target,s — [P >> 4). For indirect branches, the target addressis taken from
BR b,.

Table 2-5. Branch Types

btype Function Branch Condition Target Address
cond or none Conditional branch Qualifying predicate IP-rel or Indirect
call Conditional procedure call Qualifying predicate IP-rel or Indirect
ret Conditional procedure return Qualifying predicate Indirect
ia Invoke 1A-32 instruction set Unconditional Indirect
cloop Counted loop branch Loop count IP-rel
ctop, cexit Mod-scheduled counted loop Loop count and epilog IP-rel
count
wtop, wexit Mod-scheduled while loop Qualifying predicate and | IP-rel
epilog count

There are two pseudo-ops for unconditional branches. These are encoded like a conditional branch
(btype = cond), with the gp field specifying PR 0, and with the bwh hint of sptk.

The branch type determines how the branch condition is calculated and whether the branch has
other effects (such aswriting alink register). For the basic branch types, the branch condition is
simply the value of the specified predicate register. These basic branch types are:

cond: If the qualifying predicateis 1, the branch is taken. Otherwise it is not taken.

« call: If the qualifying predicate is 1, the branch is taken and several other actions occur:

¢ The current values of the Current Frame Marker (CFM), the EC application register and
the current privilege level are saved in the Previous Function State application register.

» Thecaller's stack frameis effectively saved and the callee is provided with aframe
containing only the caller’s output region.

 Therotation rename base registersin the CFM are reset to 0.
» Areturnlink valueis placed in BR by.
 return: If the qualifying predicateis 1, the branch is taken and the following occurs:

» CFM, EC, and the current privilege level are restored from PFS. (The privilege level is
restored only if this does not increase privilege.)
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* Thecaller's stack frame s restored.

« If the return lowers the privilege, and PSR.Ip is 1, then a L ower-Privilege Transfer trap is
taken.

« ia: The branch istaken unconditionaly, if it is not intercepted by the OS. The effect of the
branch is to invoke the |A-32 instruction set (by setting PSR.isto 1) and begin processing
IA-32 instructions at the virtual linear target address contained in BR b,{ 31:0}. If the
qualifying predicate isnot PR 0, an lllegal Operation fault israised. If instruction set
transitions are disabled (PSR.di is 1), then a Disabled Instruction Set Transition fault is raised.

The |A-32 target effective address is cal culated relative to the current code segment, i.e.
EIP{31:0} = BR by{31:0} — CSD.base. The |A-32 instruction set can be entered at any
privilege level, provided PSR.di is 0. If PSR.dfhis 1, a Disabled FP Register fault israised on
the target 1A-32 instruction. No register bank switch nor change in privilege level occurs
during the instruction set transition.

Software must ensure the code segment descriptor (CSD) and selector (CS) are loaded before
issuing the branch. If the target EIP value exceeds the code segment limit or has a code
segment privilege violation, an |A-32_Exception(GPFault) israised on the target |A-32
instruction. For entry into 16-bit 1A-32 code, if BR b, is not within 64K -bytes of CSD.base a
GPFault is raised on the target instruction. EFLAG.rf is unmodified until the successful
completion of the first IA-32 instruction. PSR.da, PSR.id, PSR.ia, PSR.dd, and PSR.ed are
cleared to zero after br . i a completes execution and before the first 1A-32 instruction begins
execution. EFLAG.rf is not cleared until the target A-32 instruction successfully completes.

Software must issue anf instruction before the branch if memory ordering isrequired between
I A-32 processor consistent and 1A-64 unordered memory references. The processor does not
ensure | A-64-instruction-set-generated writes into the instruction stream are seen by
subsequent 1A-32 instruction fetches. br . i a does not perform an instruction serialization
operation. The processor does ensure that prior writes (even in the same instruction group) to
GRs and FRs are observed by the first 1A-32 instruction. Writes to ARs within the same
instruction group asbr . i a are not allowed, since br . i a may implicitly reads all ARs. If an
illegal RAW dependency is present between an AR writeand br . i a, thefirst IA-32 instruction
fetch and execution may or may not see the updated AR value.

|A-32 instruction set execution leaves the contents of the ALAT undefined. Software can not
rely on ALAT values being preserved across an instruction set transition. All registersleft in
the current register stack frame are undefined across an instruction set transition. On entry to
IA-32 code, existing entriesin the ALAT areignored. If the register stack contains any dirty
registers, an Illegal Operation fault israised on the br . i a instruction. The current register
stack frame isforced to zero. To flush the register file of dirty registers, thef | ushrs
instruction must be issued in an instruction group preceding the br . i a instruction. To enhance
the performance of the instruction set transition, software can start the |A-64 register stack
flushin parallel with starting the 1A-32 instruction set by 1) ensuring f | ushr s is exactly one
instruction group beforethebr . i a, and 2) br. i aisinthefirst B-slot. br . i a should always be
executed in the first B-slot with a hint of “static-taken™ (default), otherwise processor
performance will be degraded.

If abr.ia causesany |A-64 traps (e.g. Single Step trap, Taken Branch trap, or Unimplemented
Instruction Address trap), I1P will contain the original 64-bit target |P. (The value will not have
been zero extended from 32 bits.)

Another branch typeis provided for simple counted loops. This branch type uses the Loop Count
application register (L C) to determine the branch condition, and does not use a qualifying
predicate:

« cloop: If the LC register is not equal to zero, it is decremented and the branch is taken.
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In addition to these simple branch types, there are four types which are used for accelerating
modul o-scheduled loops (and refer to Volume 1). Two of these are for counted loops (which use the
L C register), and two for while loops (which use the qualifying predicate). These loop types use
register rotation to provide register renaming, and they use predication to turn off instructions that
correspond to empty pipeline stages.

The Epilog Count application register (EC) is used to count epilog stages and, for some while
loops, a portion of the prolog stages. In the epilog phase, EC is decremented each time around and,
for most loops, when EC is one, the pipeline has been drained, and the loop is exited. For certain
types of optimized, unrolled software-pipelined loops, thetarget of abr . cexit or br. wexit isset
to the next sequential bundle. In this case, the pipeline may not be fully drained when EC is one,
and continues to drain while EC is zero.

For these modulo-scheduled |oop types, the cal culation of whether the branch is taken or not
depends on the kernel branch condition (L C for counted types, and the qualifying predicate for
while types) and on the epilog condition (whether EC is greater than one or not).

These branch types are of two categories: top and exit. The top types (ctop and wtop) are used
when the loop decision islocated at the bottom of the loop body and therefore a taken branch will
continue the loop while afall through branch will exit the loop. The exit types (cexit and wexit) are
used when the loop decision is|ocated somewhere other than the bottom of the loop and therefore a
fall though branch will continue the loop and ataken branch will exit the loop. The exit types are
also used at intermediate pointsin an unrolled pipelined loop. (For more details, refer to Volume 1).

The modulo-scheduled loop types are;

* ctop and cexit: These branch types behave identically, except in the determination of whether
to branch or not. For br . ct op, the branch istaken if either LC isnon-zero or EC is greater
than one. For br . cexi t, the oppositeistrue. It is not taken if either LC isnon-zero or EC is
greater than one and is taken otherwise.

These branch types also use LC and EC to control register rotation and predicate initialization.
During the prolog and kernel phase, when L C is non-zero, LC counts down. When br . ct op or
br. cexi t isexecuted with LC egual to zero, the epilog phase is entered, and EC counts down.
When br. ct op or br . cexi t isexecuted with LC equal to zero and EC equal to one, afinal
decrement of EC and afinal register rotation are done. If LC and EC are equal to zero, register
rotation stops. These other effects are the same for the two branch types, and are described in
Figure 2-3.

wtop and wexit: These branch types behaveidentically, except in the determination of whether
to branch or not. For br . wt op, the branch istaken if either the qualifying predicate is one or
EC is greater than one. For br . wexi t , the oppositeistrue. It is not taken if either the
qualifying predicate isone or EC is greater than one, and is taken otherwise.

These branch types also use the qualifying predicate and EC to control register rotation and
predicate initialization. During the prolog phase, the qualifying predicate is either zero or one,
depending upon the scheme used to program the loop. During the kernel phase, the qualifying
predicate is one. During the epilog phase, the qualifying predicate is zero, and EC counts
down. When br . wt op or br. wexi t isexecuted with the qualifying predicate equal to zero and
EC egual to one, afinal decrement of EC and afinal register rotation are done. If the qualifying
predicate and EC are zero, register rotation stops. These other effects are the same for the two
branch types, and are described in Figure 2-4.
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Figure 2-3. Operation of br.ctop and br.cexit

ctop, cexit

== 0 (epilog)

=0

(special unrolled loops)

| LC-- | | Lc=LC | | Lc=LC | | LcC=LC |
v v v v

| EC=EC | | EC-- | | EC- | | EC=EC |
v v v v

| PR[63] = 1 | | PR[63] = 0 | | PR[63] = 0 | | PR[63] = 0 |
v v v v

| RRB - - | | RRB - - | | RRB - - | |RRB=RRB|

|

ctop: branch
cexit: fall-thru

SN

ctop: fall-thru
cexit: branch

000915

The loop-type branches (br . ¢l oop, br. ct op, br. cexi t, br. wt op, and br . wexi t ) are only
allowed in instruction slot 2 within a bundle. Executing such an instruction in either slot 0 or 1 will
cause an lllegal Operation fault, whether the branch would have been taken or not.

Read after Write (RAW) and Write after Read (WAR) dependency requirements are slightly
different for branch instructions. Changesto BRs, PRs, and PFS by non-branch instructions are
visible to a subsequent branch instruction in the same instruction group (i.e. alimited RAW is
allowed for these resources). Thisallowsfor alow-latency compare-branch sequence, for example.
The normal RAW requirements apply to the LC and EC application registers, and the RRBs.

Within an instruction group, a WAR dependency on PR 63 is not alowed if both the reading and
writing instructions are branches. For example, abr . wt op or br. wexi t may not use PR[63] asits
qualifying predicate and PR[63] cannot be the qualifying predicate for any branch preceding a
br.wt op or br. wexi t inthe sameinstruction group.
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Figure 2-4. Operation of br.wtop and br.wexit

br

wtop, wexit

== 0 (prolog / epilog)

wexit: fall-thru

(prolog / | ==1 )
kernel) (special unrolled loops)
(prolog /
epilog) (epilog)
Y A
| EC=EC EC-- | EC-- EC=EC |
v
| PR[63] = 0 | | PR[63] = 0 | | PR[63] = 0 | | PR[63] = 0 |
v v v v
| RRB - - | | RRB - - | | RRB - - | |RRB:RRB|
wtop: branch wtop: fall-thru

wexit: branch

000916

For dependency purposes, the loop-type branches effectively always write their associated
resources, whether they are taken or not. The cloop type effectively alwayswritesLC. When LC is
0, acloop branch leaves it unchanged, but hardware may implement this as are-write of LC with
thesamevalue. Similarly, br. ct op and br . cexi t effectively alwayswrite LC, EC, the RRBs, and
PR[63]. br. wt op and br . wexi t effectively alwayswrite EC, the RRBs, and PR[63].

Values for various branch hint completers are shown in the following tables. Whether Prediction
Strategy hints are shown in Table 2-6. Sequential Prefetch hints are shown in Table 2-7. Branch
Cache Dedllocation hints are shown in Table 2-8. See “Branch Prediction Hints” in Volume 1.

Table 2-6. Branch Whether Hint

bwh Completer

Branch Whether Hint

spnt
sptk
dpnt
dptk

Static Not-Taken
Static Taken
Dynamic Not-Taken

Dynamic Taken

Table 2-7. Sequential Prefetch Hint

ph Completer

Sequential Prefetch Hint

Few lines

Many lines

Branch Cache Deallocation Hint

few or none
many
Table 2-8. Branch Cache Deallocation Hint
dh Completer
none
clr

Don't deallocate
Deallocate branch information
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Operation:

2-14

if (ip_relative _form

tmp_IP = IP + sign_ext ((inmm;
else // indirect form

tmp_I P = BR[ by];

if (btype I="‘ia’)
tnp_IP = tnp_IP & ~Oxf;

lower_priv_transition = 0;

switch (btype) {
case ‘cond’:

tnmp_taken = PR qp];
br eak;

case ‘call’:
tnp_taken = PR qp];
if (tnp_taken) {
BR[b;] = IP + 16;

AR[ PFS] . pf m = CFM
AR[ PFS] . pec = AR EC;
AR[ PFS] . ppl = PSR cpl;

// determ ne branch target
<< 4), 25);

/1l for | A-64 branches,
/1 ignore bottom4 bits of target

/1 sinple conditional branch

[/l call saves a return |ink

/! ... and saves the stack frane

al at _frane_updat e(CFM sol , 0);
rse_preserve_frame(CFM sol ) ;

CFM sof -= M sol ;
CFM sol = 0;
CFM sor = 0;
CFMrrb. gr
CFMrrb. fr
CFM rrb. pr

noonc-
e

ee

}

br eak;

case ‘ret’:

tnp_taken = PR qp];
if (tnp_taken) {

/!l new frame size is size of outs

/] return restores stack frane

/1 tnp_growth indicates the amount to nmove | ogical TOP *up*:
/1 tnp_growth = sizeof (previous out) - sizeof(current frane)
/1 a negative anount indicates a shrinking stack

tnp_growh = (AR PFS].pfmsof - AR[PFS].pfmsol) - CFM sof;
al at _frane_update(-AR PFS]. pfmsol, 0);

rse fatal = rse_restore_frane(AR PFS]. pfmsol, tnp_grow h,

CFM sof ) ;
if (rse_fatal) {

CFM sof ;

CFM sol

CFM sor

CFMrrb. gr

CFMrrb.fr

CFM rrb. pr

0
0;

0;
0;
0.

/! See Section 6.4 in Volune 2.

} else // normal branch return

OFM = AR PFS] . pf m

rse_enabl e_current _frame_| oad();

AR EC] = AR PFS]. pec;

if (PSRcpl u< ARPFS.ppl) { // ... and restores privilege
PSR cpl = AR PFS]. ppl;
lower_priv_transition = 1;
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/1l switch to | A node

di sabl ed_instruction_set_transition_fault();

br eak;
case ‘ia':

tnp_taken = 1;

if (gp !=0)
illegal _operation_fault();

if (AR BSPSTORE] != AR BSP])
illegal _operation_fault();

if (PSR di)

PSR is = 1;

CFM sof = 0;

CFM sol = 0;

CFM sor = O;

CFMrrb.gr = 0;

CFMrrb.fr = 0;

CFMrrb.pr = 0;

Il set

//to zero

rse_invalidate_non_current_regs();
[/ conpute effective instruction pointer
El P{31: 0} = tnp_IP{31:0} - AR[CSD . Base;

// Note the register stack is disabled during | A-32 instruction

/] set execution
br eak;

case ‘cloop’:
if (slot I'=2)
illegal _operation_fault();

tnp_taken = (AR[LC] != 0);
if (ARLCQ !=0)
ARLC --;
br eak;
case ‘ctop’:
case ‘cexit’:
if (slot = 2)
illegal _operation_fault();
if (btype == ‘ctop’) tnp_taken
if (btype == ‘cexit’)tnp_taken
if (ARLC = 0) {
ARL] --;
AREQ = ARTEC;
PR 63] = 1;
rotate_regs();
} elseif (AREQ !=0) {
ARLQ = AR(LC;
AR EC] - -;
PR 63] = 0;
rotate_regs();
} else {
ARLG = ARLC;
AREQ = AREC];
PR 63] = 0;
CFMrrb.gr = CFMrrb. gr;
CFMrrb.fr = CFMrrb.fr;
CFMrrb.pr = CFMrrb. pr;
}
br eak;
case ‘wop’ :
case ‘wexit’:
if (slot !'=2)

IA-64 Instruction Reference

[/ sinple counted | oop

/1 SWpipelined counted | oop

ARLQ 1= 0) ||
AR

((
H(ARLG 1= 0) []

/1 SWpipelined while |oop

br

| A-32 Instruction Set Mde
//force current stack frane

(AREQ u>1));
(ARLEQ u> 1));
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Interruptions:

2-16

illegal _operation_fault();
if (btype == ‘wtop’) tnp_taken = (PRgp] || (AREQ u>1));

if (btype == “wexit’)tnp_taken V'(PRIgp] || (AREC u> 1));
if (PRgp]) {

ARECQ = AREQ;

PR 63] = O;

rotate_regs();

} else if (AREQ !=0) {

AR EC] - -;
PR 63] = O;
rotate_regs();
} else {
AR EC] = ARLEC;
PR 63] = 0;
CFMrrb.gr = CFMrrb. gr;
CFMrrb.fr = CFMrrb.fr;
CFMrrb.pr = CFMrrb. pr;
}
br eak;

}
if (tnp_taken) {

taken_branch = 1;
IP=tmp_IP; // set the new value for IP
if ((PSRit &% uninplemented_virtual _address(tnp_IP))
|[] ("PSR it && uninpl ement ed_physical _address(tnp_IP)))
uni npl ement ed_i nstructi on_address_trap(l ower_priv_transition,

tnp_I P);
if (lower_priv_transition & PSR | p)
| ower_privilege_transfer_trap();
if (PSR tbh)
taken_branch_trap();
}
[llegal Operation fault Lower-Privilege Transfer trap
Disabled Instruction Set Transition fault Taken Branch trap

Unimplemented Instruction Address trap

Additional Faults on |A-32 target instructions:
|A-32_Exception(GPFault)
Disabled FP Reg Fault if PSR.dfhis 1
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Break

Format:

Description:

Operation:

Interruptions:

break
(gp) break immyq pseudo-op
(gp) break.i immy, i_unit_form 119
(gp) break.b immy, b _unit_form B9
(gp) break.m immy, m_unit form  M37
(gp) break.f immy, f_unit_form F15
(gp) break.x immg, X_unit_form X1

A Break Instruction fault is taken. For thei_unit_form, f_unit form and m_unit_form, the value
specified by immy,, is zero-extended and placed in the Interruption Immegiate control register
(11M).

For the b_unit_form, immy,, isignored and the value zero is placed in the Interruption Immediate
control register (11M).

For the x_unit_form, the lower 21 bits of the value specified by immg, is zero-extended and placed
in the Interruption Immediate control register (1IM). The L dlot of the bundle contains the upper
41 bits of immg.

A break. i instruction may be encoded in an MLI-template bundle, in which case the L slot of the
bundleisignored.

This instruction has five forms, each of which can be executed only on a particular execution unit
type. The pseudo-op can be used if the unit type to execute on is unimportant.

if (PREgp]) {
if (b_unit_form
i mredi ate = O;
else if (x_unit_form
i mredi ate = zero_ext (i mm,, 21);
else // i_unit_form|| munit_form|| f_unit_form
i medi ate = zero_ext (inmm,, 21);

break_i nstruction_faul t(i nmediate);

}
Break Instruction fault
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Branch Long

Format:

Description:

(gp) brl.btype.bwh.ph.dh targetg, X3
(gp) brl.btype.bwh.ph.dh b, = targetg, call_form X4
brl.ph.dh targetg, pseudo-op

A branch condition is evaluated, and either a branch istaken, or execution continues with the next
sequential instruction. The execution of abranch logically follows the execution of all previous
non-branch instructions in the same instruction group. On a taken branch, execution begins at

slot 0.

Long branches are always | P-rel ative. The targetg, operand, in assembly, specifies alabel to branch
to. Thisis encoded in the long branch instruction as an immediate displacement (immgg) between
thetarget bundle and the bundle containing this instruction (immgg = targetg, — 1P >>4). TheL slot
of the bundle contains 39 bits of immg.

Table 2-9. Long Branch Types

2-18

btype Function Branch Condition Target Address
cond or none Conditional branch Qualifying predicate IP-relative
call Conditional procedure call Qualifying predicate IP-relative

There is a pseudo-op for long unconditional branches, encoded like a conditional branch
(btype = cond), with the gp field specifying PR 0, and with the bwh hint of sptk.

The branch type determines how the branch condition is cal culated and whether the branch has
other effects (such as writing alink register). For al long branch types, the branch condition is
simply the value of the specified predicate register:
» cond: If the qualifying predicate is 1, the branch is taken. Otherwise it is not taken.
« call: If the qualifying predicate is 1, the branch is taken and several other actions occur:
 The current values of the Current Frame Marker (CFM), the EC application register and
the current privilege level are saved in the Previous Function State application register.
» Thecaller's stack frame s effectively saved and the callee is provided with aframe
containing only the caller’s output region.
» Therotation rename base registersin the CFM are reset to 0.
* Areturnlink valueisplaced in BR by.
Read after Write (RAW) and Write after Read (WAR) dependency requirements for long branch

instructions are dightly different than for other instructions but are the same as for branch
instructions. See page 2-13 for details.

Thisinstruction must be immediately followed by a stop; otherwise its behavior is undefined.

Values for various branch hint completers are the same as for branch instructions. Whether
Prediction Strategy hints are shown in Table 2-6, Sequential Prefetch hints are shown in Table 2-7,
and Branch Cache Deallocation hints are shown in Table 2-8. See “Branch Prediction Hints” in
Volume 1.

Warning: Thisinstruction is not implemented on the Intel Itanium processor, which takes an Ille-
gal Operation fault whenever along branch instruction is encountered, regardl ess of
whether the branch istaken or not. To support the Intel Itanium processor, the operating
system isrequired to provide an lllegal Operation fault handler which emulates taken
and not-taken long branches. Presence of thisinstruction isindicated by a1 inthelb bit
of CPUID register 4. See “Processor |dentification Registers’ on p. 3-11 in Volume 1.
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Operation: tnmp_IP = IP + (imyy << 4); /] determ ne branch target
if (!followed_by_stop())
undef i ned_behavi or () ;
if (!long_branch_i npl enented())
illegal _operation_fault();

switch (btype) {

case ‘cond’: [/ sinple conditional branch
tnp_taken = PR qp];
br eak;

case ‘call’: [/ call saves a return link

tnp_taken = PR qp];
if (tnp_taken) {
BR b;] = IP + 16;

AR[ PFS] . pf m = CFM [/ ... and saves the stack frane
AR[ PFS] . pec = AR EC];
AR[ PFS] . ppl = PSR cpl;

al at _frane_updat e(CFM sol , 0);

rse_preserve_frane(CFM sol ) ;

CFM sof -= CFM sol ; /!l new franme size is size of outs
CFM sol = 0;

CFM sor = 0;

CFM rrb. gr
CFMrrb.fr
CFM rrb. pr

0;

0
0;

}

br eak;

}
if (tnp_taken) {
taken_branch = 1;
IP=tnp_IP // set the new value for |IP
if ((PSRit && uninplemented_virtual _address(tnp_IP))
|| ("PSR it && uninpl ement ed_physical _address(tnp_IP)))
uni npl emrent ed_i nstruction_address_trap(0,tnp_I P);
if (PSR tbh)
taken_branch_trap();

}

Interruptions: Illegal Operation fault Taken Branch trap
Unimplemented I nstruction Address trap
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Branch Predict

Format:

Description:

ip_relative form B6
indirect_form B7
return_form, indirect_form B7

brp.ipwh.ih targetys, tag,3
brp.indwh.ih b, tag,3
brp.ret.indwh.ih b, tag;3

This instruction can be used to provide to hardware early information about a future branch. It has
no effect on architectural machine state, and operates as a nop instruction except for its
performance effects.

The tag,3 operand, in assembly, specifies the address of the branch instruction to which this
prediction information applies. Thisis encoded in the branch predict instruction as a signed
immediate displacement (timmg) between the bundle containing the presaged branch and the
bundle containing this instruction (timmg = tag,3 — |P >> 4).

The target,5 operand, in assembly, specifies the label that the presaged branch will have as its
target. Thisis encoded in the branch predict instruction exactly asin branch instructions, with a
signed immediate displacement (immy;) between the target bundle and the bundle containing this
instruction (immy, = target,s — P >> 4). Theindirect_form can be used to presage an indirect
branch. In theindirect_form, the target of the presaged branch is given by BR b..

Thereturn_form is used to indicate that the presaged branch will be areturn.

Other hints can be given about the presaged branch. Values for various hint completers are shown
in the following tables. For more details, refer to Volume 1.

Theipwh and indwh compl eters provide information about how best the branch condition should be
predicted, when the branch is reached.

Table 2-10. IP-relative Branch Predict Whether Hint

Table 2-11. Indirect Branch Predict Whether Hint

Table 2-12. Importance Hint

2-20

ipwh Completer IP-relative Branch Predict Whether Hint
sptk Presaged branch should be predicted Static Taken
loop Presaged branch will be br . cl oop, br. ct op, orbr. wt op
exit Presaged branch will be br . cexi t or br. wexi t
dptk Presaged branch should be predicted Dynamically

indwh Completer

Indirect Branch Predict Whether Hint

sptk
dptk

Presaged branch should be predicted Static Taken
Presaged branch should be predicted Dynamically

Theih completer can be used to mark a small number of very important branches (e.g. an inner
loop branch). This can signal to hardware to use faster, smaller prediction structures for this

information.

ih Completer

Branch Predict Importance Hint

none

imp

Less important

More important
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Operation: tnmp_tag = IP + sign_ext((timm << 4), 13);
if (ip_relative_form {
tnp_target = IP + sign_ext((immp; << 4), 25);
tnp_wh = i pwh;
} else { // indirect_form
tnp_target = BR by];
tmp_wh = i ndwh;

branch_predict(tnp_wh, ih, return_form tnp_target, tnp_tag);

Interruptions: None
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Bank Switch

Format:

Description:

Operation:

Interruptions:

Serialization:

2-22

bsw.0 zero_form B8
bsw.1 one form B8

This instruction switches to the specified register bank. The zero_form specifies Bank 0 for GR16
to GR31. The one_form specifies Bank 1 for GR16 to GR31. After the bank switch the previous
register bank is no longer accessible but does retain its current state. If the new and old register
banks are the same, bswis effectively anop, although there may be a performance degradation.

A bswinstruction must be the last instruction in an instruction group. Otherwise, an lllegal
Operation fault is taken. Instructions in the same instruction group that access GR16 to GR31
reference the previous register bank. Subsequent instruction groups reference the new register
bank.

Thisinstruction is privileged.
This instruction cannot be predicated.

if (!followed_by_stop())
illegal _operation_fault();

if (PSRcpl '=0)
privil eged_operation_fault(0);

if (zero_form
PSR bn = 0;
else // one_form
PSR bn = 1;
Illegal Operation fault Privileged Operation fault

Thisinstruction does not require any additional instruction or data serialization operation. The bank
switch occurs synchronously with its execution.
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Speculation Check

Format:

Description:

chk
(ap) chk.s r,, targetog pseudo-op
(gp) chk.si o, targetys control_form, i_unit_form, gr_form 120
(gp) chk.sm ry, target,s control_form, m_unit_form, gr foom  M20
(gp) chk.s f,, targetyg control_form, fr_form  M21
(gp) chk.aaclr rq, target,s data form, gr_form  M22
(gp) chk.aaclr fy, targetys data form, fr_form  M23

The result of acontrol- or data-speculative calculation is checked for success or failure. If the check
fails, a branch to target,s is taken.

In the control_form, success is determined by a NaT indication for the source register. If the
NaT bit corresponding to GR r, is 1 (in the gr_form), or FR f, contains a NaTVal (in the fr_form),
the check fails.

Inthe data form, successis determined by the ALAT. The ALAT is queried using the genera
register specifier rq (inthegr_form), or the floating-point register specifier f; (in thefr_form). If no
ALAT entry matches, the check fails. An implementation may optionally cause the check to fail
independent of whether an ALAT entry matches. A chk. a with general register specifier rO or
floating-point register specifiersf0 or f1 alwaysfails.

The target,5 operand, in assembly, specifies alabel to branch to. Thisis encoded in the instruction
as a signed immediate displacement (immy4) between the target bundle and the bundle containing
thisinstruction (immy, = target,s — 1P >> 4).

The branching behavior of this instruction can be optionally unimplemented. If the instruction
would have branched, and the branching behavior is not implemented, then a Speculative
Operation fault is taken and the value specified by immy, is zero-extended and placed in the
Interruption Immediate control register (11M). The fault handler emulates the branch by
sign-extending the IIM value, adding it to [1P and returning.

The control_form of thisinstruction for checking general registers can be encoded on either an
I-unit or an M-unit. The pseudo-op can be used if the unit type to execute on is unimportant.

For the data_form, if an ALAT entry matches, the matching ALAT entry can be optionally
invalidated, based on the value of the aclr completer (See Table 2-13).

Table 2-13. ALAT Clear Completer

aclr Completer Effect on ALAT

clr Invalidate matching ALAT entry

nc Don't invalidate

Notethat if the clr value of the aclr completer is used and the check succeeds, the matching ALAT
entry isinvalidated. However, if the check fails (which may happen even if there is a matching
ALAT entry), any matching ALAT entry may optionally be invalidated, but thisis not required.
Recovery code for data speculation, therefore, cannot rely on the absence of a matching ALAT
entry.
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Operation: if (PR ap]) {
if (control _forn) {
if (fr_form&& (tnp_isrcode = fp_reg_disabled(f,, 0, 0, 0)))
di sabl ed_fp_register_fault(tnp_isrcode, 0);
check_type = gr_form? CHKS GENERAL : CHKS_FLOAT;

fail = (gr_form&& GRryo].nat) || (fr_form&& FRfy] == NATVAL);
} else { /1 data_form
if (gr_form {
reg_type = CGENERAL;
check_type = CHKA CGENERAL;
al at _index = ryq;
always_fail = (alat_index == 0);
} else { /1 fr_form
reg_type = FLOAT;
check_type = CHKA FLQAT;
al at _index = fq;
always_fail = ((alat_index == 0) || (alat_index == 1));
}
fail = (always_fail || (!'alat_cnp(reg_type, alat_index)));
}
if (fail) {

i f (check_branch_i npl enent ed(check_type)) {
taken_branch = 1,
IP=1P + sign_ext((immp; << 4), 25);
if ((PSRit && uninplenented_virtual _address(IP))
|] ("PSR it && uninpl erment ed_physi cal _address(I1P)))
uni npl ement ed_i nstructi on_address_trap(0, |P);

if (PSR th)
taken_branch_trap();
} else
specul ati on_faul t (check_type, zero_ext(imm,, 21));
} else if (data_form&& (aclr == ‘clr’))
al at _inval _single_entry(reg_type, alat_index);
}
Interruptions: Disabled Floating-point Register fault Unimplemented Instruction Address trap
Specul ative Operation fault Taken Branch trap
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Clear RRB

Format: clrrrb al form B8
clrrrb.pr pred form B8

Description:  Inthe all_form, the register rename base registers (CFM.rrb.gr, CFM.rrb.fr, and CFM.rrb.pr) are
cleared. Inthe pred_form, the single register rename base register for the predicates (CFM.rrb.pr) is
cleared.

Thisinstruction must be the last instruction in an instruction group, or an Illegal Operation fault is
taken.

This instruction cannot be predicated.

Operation: if (!followed_by_stop())
illegal _operation_fault();

if (all_form {
CFMrrhb. gr
CFMrrb.fr
CFM rrb. pr ;

} else { /] pred_form
CFMrrb.pr = 0;

}

Interruptions: Illegal Operation fault

nnon
eee
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Compare

Format:

Description:

intel.

(gp) cmp.crel.ctype py, p,=rp, I3 register_form A6
(gp) cmp.crel.ctype pg, p, =immg, r3 imm8_form A8
(gp) cmp.crel.ctype py, p, =10, 13 parallel _inequality form A7
(gp) cmp.crel.ctype py, p, =r3, 10 pseudo-op

The two source operands are compared for one of ten relations specified by crel. This produces a
boolean result which is 1 if the comparison condition istrue, and O otherwise. Thisresult iswritten
to the two predicate register destinations, p; and p,. Theway the result iswritten to the destinations
is determined by the compare type specified by ctype.

The compare types describe how the predicate targets are updated based on the result of the
comparison. The normal type simply writesthe compare result to one target, and the complement to
the other. The parallel types update the targets only for a particular comparison result. This allows
multiple simultaneous OR-type or multiple simultaneous AND-type compares to target the same
predicate register.

The unc typeis special in that it first initializes both predicate targets to 0, independent of the
qualifying predicate. It then operates the same as the normal type. The behavior of the compare
typesis described in Table 2-14. A blank entry indicates the predicate target is left unchanged.

Table 2-14. Comparison Types

2-26

PRIQP]==1
ctype pseudo- PR[QP]==0 result==0, result==1, One or More
op of No Source NaTs | No Source NaTs Source NaTs
PRI[P1] | PRIP2l | PRIP1l | PR[P2] | PRIP1] | PRIP2] | PRIP1l | PRIP2I
none 0 1 1 0 0 0
unc 0 0 0 1 1 0 0 0
or 1 1
and 0 0 0 0
or.andcm 1 0
orcm or 1 1
andcm and 0 0 0 0
and.orcm or.andcm 0 1

Intheregister_form thefirst operand isGR r; in theimm8_form thefirst operand is taken from the
sign-extended immg encoding field; and in the parallel _inequality_form the first operand must be
GRO. Theparallel_inequality formisonly used when the compare typeisone of the parallel types,
and therelation is an inequality (>, >=, <, <=). See below.

If the two predicate register destinations are the same (p; and p, specify the same predicate
register), theinstruction will take an lllegal Operation fault, if the qualifying predicateis 1, or if the
compare type isunc.

Of the ten relations, not al are directly implemented in hardware. Some are actually pseudo-ops.
For these, the assembler simply switches the source operand specifiers and/or switches the
predicate target specifiers and uses an implemented relation. For some of the pseudo-op compares
in the imm8_form, the assembl er subtracts 1 from the immediate value, making the allowed
immediate range slightly different. Of the six parallel compare types, three of the types are actually
pseudo-ops. The assembler simply uses the negative relation with an implemented type. The
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implemented relations and how the pseudo-ops map onto them are shown in Table 2-15 (for normal
and unc type compares), and Table 2-16 (for parallel type compares).

Table 2-15. 64-bit Comparison Relations for Normal and unc Compares

crel Compare Relation Register Form is a Immediate Form is a Immediate Rande
(arel by Pseudo-op of Pseudo-op of g
eq a==b -128 .. 127
ne a=b eq P1 - P |eq Py - Py |-128..127
It a<b signed -128 .. 127
le a<=b It aob pPropy |t al -127 .. 128
gt a>b t aob It a1l Ppeopy |[-127..128
ge a>=b It P~ Py It Py~ Pp |-128..127
Itu a<b unsigned 0..127,
284128 .. 264.1
leu |a<=b tu aob Propy |ltu al 1..128,
264107 ., 284
gu |a>b tu aob ltu a1 Pgo Py |1. 128,
264.127 ., 254
geu |a>=hb ltu Py~ Py |l Py~ Py |0..127,
264128 .. 2641

Table 2-16. 64-bit Comparison Relations for Parallel Compares

crel Compare Relation Register Form is a Immediate Range
(arel b) Pseudo-op of
eq a== -128 .. 127
ne a=h -128 .. 127
It o<b signed no immediate forms
It a<o gt aob
le 0<=b
le a<=0 ge aob
gt o>b
gt a>0 It aob
ge 0>=b
ge a>=0 le aob

The parallel compare types can be used only with arestricted set of relations and operands. They
can be used with equal and not-equal comparisons between two registers or between aregister and
an immediate, or they can be used with inequality comparisons between aregister and GR 0.
Unsigned relations are not provided, since they are not of much use when one of the operands is
zero. For the parallédl inequality comparisons, hardware only directly implements the ones where
thefirst operand (GR ry) is GR 0. Comparisons where the second operand is GR 0 are pseudo-ops
for which the assembler switches the register specifiers and uses the opposite relation.
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it (PRIap]) {
if (pl == p2)
illegal _operation_fault();

Operation:

tnp_nat = (register_form? GRr,].
if (register_forn

tnp_src = GR{r,];
else if (im8_form

tnmp_src = sign_ext(imyg, 8);
else // parallel _inequality form

tnp_src = 0;
if (crel =="'eq) tnp_rel =
else if (crel =="'ne’) tnp_rel =
else if (crel =="*1t') tnp_rel =
else if (crel =="*le’) tnp_rel =
else if (crel =="‘gt’) tnp_rel =
else if (crel == *‘ge’) tnp_rel =
else if (crel =="*ltu) tnp_rel =
else if (crel == "‘leu) tnp_rel =
else if (crel =="‘gtu) tnp_rel =
el se tnp_rel =
switch (ctype) {
case ‘and’:
if (tnp_nat || !'trp_rel) {
PRI p;] = 0;
PRI py] = 0;
br eak;
case ‘or’:
if (!tnmp_nat && tnp_rel) {
PRIpy] = 1;
PRIp2] = 1;
br eak;

case ‘or.andcm:
if ('tp_nat & tnp_rel) {

PRI p;] = 1;
PR py] = 0;
br eak;
case ‘unc’:
defaul t:
if (tnp_nat) {
PR p;] = O;
PRI py] = 0;
} else {
PRI p;] = tnp_rel;
PRIpy] = !tnp_rel;
br eak
} else {
if (ctype == ‘unc’) {
if (pl == p2)
illegal _operation_fault();
PR p;] = O;
PRI py] = 0;

}

Interruptions: Illegal Operation fault

2-28

nat 0) || CRrg].nat;

tnp_src == Rrg];

tmp_src !'= GRrg];

| esser_signed(tnp_src, GR[r3]);

| esser _equal _signed(tnp_src, GR(r3]);
greater_signed(tnmp_src, GCRrg3]);
greater_equal _signed(tnp_src, GRr3]);
| esser(tmp_src, GRr3]);

| esser_equal (tnp_src, GRrg]);
greater(tmp_src, CR{r3]);
greater_equal (tnp_src, GRrg]);//‘geu

/1 and-type conpare
/Il or-type conpare
I

or.andcmtype conpare

Il
/1

unc-type conpare
nornmal conpare
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Compare Word

Format: (ap) cmp4.crel.ctype pq, po =1, I3 register_form A6
(gp) cmp4.crel.ctype py, p, =immg, r3 imm8_form A8
(ap) cmp4.crel.ctype py, p, =10, 13 paralel_inequality form A7
(gp) cmp4.crel.ctype py, p, =r3, 10 pseudo-op

Description:  Theleast significant 32 bits from each of two source operands are compared for one of ten relations

specified by crel. This produces aboolean result which is 1 if the comparison condition istrue, and
0 otherwise. This result iswritten to the two predicate register destinations, p; and p,. The way the
result is written to the destinations is determined by the compare type specified by ctype. See the
Compare instruction and Table 2-14 on page 2-26.

Intheregister_form thefirst operand isGR r,; intheimm8_form thefirst operand is taken from the
sign-extended immg encoding field; and in the parallel_inequality form the first operand must be
GR 0. The paralel_inequality_formisonly used when the compare typeisone of the parallel types,
and therelation is an inequality (>, >=, <, <=). See the Compare instruction and Table 2-16 on
page 2-27.

If the two predicate register destinations are the same (p; and p, specify the same predicate
register), theinstruction will take an lllegal Operation fault, if the qualifying predicateis 1, or if the
compare typeis unc.

Of the ten relations, not all are directly implemented in hardware. Some are actually pseudo-ops.
See the Compare instruction and Table 2-15 and Table 2-16 on page 2-27. The range for
immediates is given below.

Table 2-17. Imnmediate Range for 32-bit Compares

crel Comngrreele)latlon Immediate Range

eq a== -128 .. 127

ne a=b -128 .. 127

It a<b signed -128 .. 127

le a<=b -127 ..128

gt a>b -127 .. 128

ge a>=bh -128 .. 127

Itu a<b unsigned 0..127, 252128 ..2%21
leu a<=b 1. 128, 282.127 .. 2%2
gtu a>b 1..128, 282.127 .. 2%2
geu a>=b 0. 127, 232128 ..2%21
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Operation:

2-30

if (PRap]) {
if (pl == p2)
illegal _operation_fault();

tmp_nat = (register_form? GRry].nat : 0) || GRrg3].nat;

if (register_forn

tnp_src = GRry];
else if (im8_form

trp_src = sign_ext(imyg, 8);
else // parallel_inequality form

tnmp_src = 0;
if (crel =="'eq ) tnp_rel =
else if (crel =="'ne’) tnp_rel =
else if (crel == "*It")
tnp_rel = | esser_signed(sign_ext(tnp_src, 32),
sign_ext(CRr3], 32));
else if (crel == "‘le")
tnp_rel = |esser_equal _signed(sign_ext(tnp_src,
sign_ext(CRr3], 32));
else if (crel == "‘gt")

tnp_rel = greater_signed(sign_ext(tnp_src, 32),

sign_ext(CRra], 32));
else if (crel == *‘ge’)

trp_src{31: 0} == GR{r3] {31:0};
tnp_src{31:0} != GRr3] {31:0};

32),

tnp_rel = greater_equal _signed(sign_ext(tnmp_src, 32),

sign_ext(CRrg], 32));

else if (crel == "'1tu")
tnp_rel = lesser(zero_ext(tnp_src, 32),
zero_ext(CR{r3], 32));
else if (crel == "'leu’)
tnp_rel = lesser_equal (zero_ext(tnp_src, 32),
zero_ext(CR{r3], 32));
else if (crel == ‘gtu’)

tnp_rel = greater(zero_ext(tmp_src, 32),
zero_ext(CR{r3], 32));
el se /Il ‘geu

tnp_rel = greater_equal (zero_ext(tnp_src, 32),
zero_ext (QR[r3], 32));

switch (ctype) {

case ‘and’: /1
if (tnmp_nat || 'tnp_rel) {
PR p;] = 0;
PR py] = 0;
br eak;
case ‘or’: /1
if (!tnmp_nat && tnp_rel) {
PRIp;] = 1;
PRIpy] = 1;
br eak;
case ‘or.andcm: /1
if (!tmp_nat && tnp_rel) {
PRIp;] = 1;
PR py] = 0;
br eak;
case ‘unc’: /1
defaul t: /1
if (tnp_nat) {

and-type conpare

or-type conpare

or.andcmtype conpare

unc-type conpare
nornmal conpare
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PR p;] = 0;
PR py] = O;
} else {
PR p;] = tnp_rel;
PRI py] = !tmp_rel;
}
br eak;
} else {
if (ctype == ‘unc’) {
if (pl == p2)
illegal _operation_fault();
PR p;] = 0;
PR py] = O;
}
}

Interruptions: Illegal Operation fault
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cmpxchg

intel.

Compare And Exchange

Format:

Description:

(gp) cmpxchgsz.sem.dhint rq = [rg], ry, ar.ccv M16

A value consisting of sz bytesis read from memory starting at the address specified by the value in
GR 3. Thevalueis zero extended and compared with the contents of the cnpxchg Compare Value
application register (AR[CCV]). If the two are equal, then the least significant sz bytes of the value
in GRr,, are written to memory starting at the address specified by the valuein GR r3. The
zero-extended value read from memory is placed in GR r; and the NaT bit corresponding to GR rq
is cleared.

The values of the sz completer are given in Table 2-18. The sem compl eter specifies the type of
semaphore operation. These operations are described in Table 2-19. See Volume 1 and Volume 2
for details on memory ordering.

Table 2-18. Memory Compare and Exchange Size

Table 2-19. Compare and Exchange Semaphore Types

2-32

sz Completer Bytes Accessed
1 1
2 2
4 4
8 8

sem Orderin .
_g Semaphore Operation
Completer Semantics
acq Acquire The memory read/write is made visible prior to all subsequent data memory
accesses.
rel Release The memory read/write is made visible after all previous data memory
accesses.

If the address specified by the value in GR r3 is not naturally aligned to the size of the value being
accessed in memory, an Unaligned Data Reference fault is taken independent of the state of the
User Mask alignment checking bit, UM.ac (PSR.ac in the Processor Status Register).

The memory read and write are guaranteed to be atomic.

Both read and write access privileges for the referenced page are required. The write access
privilege check is performed whether or not the memory write is performed.

Thisinstruction is only supported to cacheable pages with write-back write policy. Accessesto
NaT Pages cause a Data NaT Page Consumption fault. Accesses to pages with other memory
attributes cause an Unsupported Data Reference faullt.

The value of the Idhint compl eter specifies the locality of the memory access. The values of the
Idhint completer are given in Table 2-32 on page 2-125. Locality hints do not affect program
functionality and may be ignored by the implementation.
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intel.

Operation:

Interruptions:

cmpxchg

if (PRgp]) {

check_target _register(ryq);

if (Rrg]l.nat || GRr,].nat)
regi ster_nat _consunpti on_f aul t ( SEMAPHORE) ;

paddr = tlb_translate(GRrg], sz, SEMAPHORE, PSR cpl, &mattr,
&t nmp_unused) ;

if (!ma_supports_semaphores(nattr))
unsupported_data_reference_faul t (SEMAPHORE, CRr3]);

if (sem=="acq')
val = mem xchg_cond(AR[CCV], GR[r,], paddr, sz, UMbe, mattr,
ACQU RE, |dhint);
else// ‘rel’
val = mem xchg_cond(AR[CCV], GR[r,], paddr, sz, UMbe, mattr,
RELEASE, | dhint);
val = zero_ext(val, sz * 8);

if (AROCV] == val)

alat _inval _multiple_entries(paddr, sz);

Rrq = val;
GR[rq].nat = 0;
}
Ilegal Operation fault Data Key Miss fault
Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault
Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault

Data NaT Page Consumption fault
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Cover Stack Frame
Format: cover B8

Description: A new stack frame of zero size is allocated which does not include any registers from the previous
frame (as though all output registers in the previous frame had been locals). The register rename
base registers are reset. If interruption collection is disabled (PSR.ic is zero), then the old value of
the Current Frame Marker (CFM) is copied to the Interruption Function State register (IFS), and
IFS.v is set to one.

A cover instruction must be the last instruction in an instruction group. Otherwise, an lllegal
Operation fault is taken.

This instruction cannot be predicated.

Operation: if (!followed_by_stop())
illegal _operation_fault();

al at _frane_updat e( CFM sof , 0);

rse_preserve_frame(CFM sof);

if (PSRic == 0) {
CRIIFS].ifm= CFM
CRIFS.v = 1;

}

CFM sof
CFM sol
CFM sor
CFMrrb. gr
CFMrrb.fr
CFM rrb. pr

O.
0.
0

eee

Interruptions: Illegal Operation fault
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Compute Zero Index

Format:

Description:

(ap) czx1.l ry=rz
(gp) czxlr ry=r3
(ap) czx2l ry=r3
(gp) czx2r ry=rj

one_byte form, left_form
one_byte form, right_form
two_byte form, left_form
two_byte form, right_form

CzX

129
129
129
129

GRr3isscanned for azero element. The element is either an 8-bit aligned byte (one_byte form) or
a 16-bit aligned pair of bytes (two_byte form). Theindex of the first zero element is placed in GR
r,. If there are no zero elementsin GR r3, adefault value is placed in GR r4. Table 2-20 gives the
possible result values. In the left_form, the source is scanned from most significant element to least
significant element, and in the right_form it is scanned from least significant element to most

significant element.

Table 2-20. Result Ranges for czx

Operation:

Size Element Width Range of Result if Zero Element | Default Result if No Zero Element
Found Found
8 bit 0-7 8
16 bit 0-3 4
it (PRgp]) {
check_target _register(rq);
if (one_byte_forn) {
if (left_form { /1 scan fromnost significant down
if ((&Rr3] & 0xff00000000000000) == 0) GR[rq] = O;
else if ((GRr3] & 0x00ff000000000000) == 0) GRr4] = 1;
else if ((GRrz] & 0x0000ff0000000000) == 0) CR(r4] = 2;
else if ((Grs] & 0x000000ff00000000) == 0) CRrq = 3;
else if ((GRr3] & 0x00000000ff000000) == 0) GRIr4] = 4;
else if ((GRrz] & 0x0000000000ff0000) == 0) CR[r4] = 5;
else if ((Grs] & 0x000000000000ff00) == 0) GRrq = 6;
else if ((GRr3] & 0x00000000000000ff) == 0) GRrq] = 7;
else Rrq] = 8;
} else { /] right_form scan fromleast significant up
if ((CGRr3] & 0x00000000000000ff) == 0) GRrq = 0;
else if ((GRrz] & 0x000000000000ff00) == 0) CRrq] = 1;
else if ((Grs] & 0x0000000000ff0000) == 0) GRrq = 2;
else if ((GRr3] & 0x00000000ff000000) == 0) GRrq] = 3;
else if ((GRrz] & 0x000000ff00000000) == 0) CR(r4] = 4;
else if ((GRrs] & 0x0000ff0000000000) == 0) GR[rq = 5;
else if ((GRr3] & 0x00ff000000000000) == 0) GR[r4] = 6;
else if ((GRr3] & Oxff00000000000000) == 0) CR(r4] = 7;
else R[r,] = 8
} else { /] two_byte form
if (left_form { /1 scan from nost significant down
if ((CGRr3] & Oxffffo00000000000) == 0) GR[rq] = 0;
else if ((GRrz] & 0x0000ffff00000000) == 0) CR[rq] = 1;
else if ((Grs] & 0x00000000ffff0000) == 0) GRrq = 2;
else if ((Grs] & 0x000000000000ffff) == 0) GRrq = 3;
else (Rr,] = 4
} else { // right_form scan fromleast significant up
if ((&Rr3] & 0x000000000000ffff) == 0) GRrq] = O;
else if ((GRrz] & 0x00000000ffff0000) == 0) CRrq] = 1;
else if ((Grs] & 0x0000ffff00000000) == 0) GRrq] = 2;
else if ((GRr3] & Oxffff000000000000) == 0) CRrq] = 3;
else (Rr,] = 4
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Interruptions:

2-36

}
}
GR[rq].nat = GRrg].nat;

Illegal Operation fault
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Deposit

Format:

Description:

dep
(gp) dep rq =ry, 3, posg, len, merge _form, register_form 115
(gp) dep rq =immy, ra, posg, leng merge_form, imm_form 114
(gp) dep.z rq =r,, posg, leng zero_form, register_form 112
(gp) dep.z rq =immg, posg, leng zero_form, imm_form 113

Inthemerge form, aright justified bit field taken from the first source operand is deposited into the
valuein GRr3 at an arbitrary bit position and theresult is placed in GR r4. In theregister_form the
first source operand is GR r,; and in theimm_form it is the sign-extended value specified by imm,
(either all onesor &l zeroes). The deposited bit field begins at the bit position specified by the posg
immediate and extends to the left (towards the most significant bit) a number of bits specified by
the len immediate. Note that len hasarange of 1-16 intheregister_form and 1-64 in theimm_form.
The posg immediate has arange of 0 to 63.

In the zero_form, aright justified bit field taken from either the value in GR r,, (in the
register_form) or the sign-extended value in immg (in the imm_form) is deposited into GRr, and
all other bitsin GRr4 are cleared to zero. The deposited bit field begins at the bit position specified
by the posg immediate and extends to the left (towards the most significant bit) a number of bits
specified by the len immediate. The len immediate has arange of 1-64 and the posg immediate has
arange of 0to 63.

In the event that the deposited bit field extends beyond bit 63 of the target, i.e. len + posg > 64, the
most significant len + posg — 64 bits of the deposited bit field are truncated. The len immediate is
encoded aslen minus 1 in the instruction.

Theoperationofdep t = s, r, 36, 16 isillustratedin Figure 2-5.

Figure 2-5. Deposit Example

52 36 0 16 0
GR: GR s:

GR t:

52 36 0
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Operation: if (PR ap]) {
check_target_register(rq);

if (immforn {

tmp_src = (merge_form? sign_ext(inmm,1) : sign_ext(img, 8));
tnmp_nat = nerge_form? CGR[rg].nat : O;
tmp_len = leng ;

} else { /Il register_form
tnp_src = GR{r,l;
tmp_nat = (merge_form? GRrz].nat : 0) || GRry].nat;
tmp_len = merge_form? leny : leng ;

if (posg + tnp_len u> 64)
tmp_len = 64 - posg;

if (merge_forn

Rry] = Rrgl;
else // zero form
Rry] =0;

CRrq]{(posg + tnp_len - 1):posg} = tnp_src{(tnp_len - 1):0};
GR(rq].nat = tnp_nat;
}

Interruptions: Illegal Operation fault
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epc

Enter Privileged Code

Format:

Description:

Operation:

Interruptions:

epc B8

Thisinstruction increases the privilege level. The new privilege level is given by the TLB entry for
the page containing this instruction. This instruction can be used to implement callsto
higher-privileged routines without the overhead of an interruption.

Before increasing the privilege level, acheck is performed. The PFS.ppl (previous privilege level)
is checked to ensure that it is not more privileged than the current privilege level. If this check fails,
the instruction takes an lllegal Operation fault.

If the check succeeds, then the privilegeisincreased as follows:

« If instruction address translation is enabled and the page containing the epc instruction has
execute-only page access rights and the privilege level assigned to the page is higher than
(numerically less than) the current privilege level, then the current privilege level is set to the
privilege level field in the trandlation for the page containing the epc instruction. This
instruction can promote but cannot demote, and the new privilege comes from the TLB entry.

If instruction address trandlation is disabled, then the current privilege level is set to O (most
privileged).
Instructions after the epc in the same instruction group may be executed at the old privilege

level or the new, higher privilege level. Instructions in subsequent instruction groups will be
executed at the new, higher privilege level.

« If the page containing the epc instruction has any other access rights besides execute-only, or
if the privilege level assigned to the pageislower or equal to (numerically greater than or equal
to) the current privilege level, then no action istaken (the current privilege level is unchanged).

Note that the ITLB is actually only read once, at instruction fetch. Information from the access
rights and privilege level fields from the trandation is then used in executing this instruction.

This instruction cannot be predicated.

if (ARQPFS].ppl u< PSR cpl)
illegal _operation_fault();

if (PSRit)

PSR cpl = tlb_enter_privil eged_code();
el se

PSR cpl = 0;

Ilegal Operation fault
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extr

Extract

Format:

Description:

intel.

(gp) extr rq =r3, posg, leng signed_form 111
(gp) extr.u rq =rg, posg, leng unsigned form 111

A field is extracted from GR r 3, either zero extended or sign extended, and placed right-justified in
GR 4. Thefield begins at the bit position given by the second operand and extends leng bitsto the
left. The bit position where the field begins is specified by the posg immediate. The extracted field
issign extended in the signed_form or zero extended in the unsigned_form. The sign is taken from
the most significant bit of the extracted field. If the specified field extends beyond the most
significant bit of GR r3, the sign is taken from the most significant bit of GR r3. The immediate
value leng can be any number in therange 1 to 64, and is encoded as leng-1 in the instruction. The
immediate value posg can be any value in the range 0 to 63.

The operationof extr t =r, 7, 50 isillustrated in Figure 2-6.

Figure 2-6. Extract Example

Operation:

Interruptions:

2-40

63 56 7 0
GR:
GRt: sign
63 49 0
if (PRIgp]) {

check_target_register(rq);
trmp_len = | eng;

if (posg + tnp_len u> 64)

trmp_len = 64 - posg;
if (unsigned_forn

GR(rq] = zero_ext(shift_right_unsigned(GRr3], pos6), tnp_len);
else // signed_form

GRrq] = sign_ext(shift_right_unsigned(GRr3], pos6), tnp_len);

GR(rq].nat = GRrj].nat;

[llegal Operation fault
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inte|® fabs

Floating-Point Absolute Value

Format: (gp) fabs f; ="f3 pseudo-op of: (gp) fmerge:s f; =10, f5

Description: ~ The absolute value of the value in FR f5 is computed and placed in FR f;.

If FRfyisaNaTVal, FR f; is set to NaTVal instead of the computed result.

Operation: See “Fl oating-Point Merge” on p. 2-63.
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fadd

Floating-Point Add

Format:

Description:

Table 2-21. Specified pc Mnemonic Values

(gp) fadd.pc.sf f; =13, fo

pseudo-op of: (gp) fmapc.sf f; =13, 1,1,

FR f3 and FR f, are added (computed to infinite precision), rounded to the precision indicated by pc
(and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and
placed in FR f;. If either FR f3 or FRf,isaNaTVal, FRf; is set to NaTVal instead of the computed

result.

The mnemonic values for the opcode’s pc are given in Table 2-21. The mnemonic values for f are
given in Table 2-22. For the encodings and interpretation of the status field’s pc, wre, and rc, refer

to Table 5-5 and Table 5-6 on page 5-6 in Volume 1.

pc Mnemonic

Precision Specified

.S
.d
none

single
double

dynamic
(i.e. use pc value in status field)

Table 2-22. sf Mnemonic Values

Operation:

2-42

sf Mnemonic

Status Field Accessed

.s0 or none
sl
.82

.s3

sfO
sfl
sf2
sf3

See “Floating-Point Miultiply Add” on p. 2-61.
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Intel o famax
Floating-Point Absolute Maximum
Format: (gp) famax.sf f; =f,, f3 F8
Description:  The operand with the larger absolute value is placed in FR f;. If the magnitude of FR f, equals the
magnitude of FR f3, FR f; gets FR f5.
If either FRf, or FR fzisaNaN, FR f; gets FR f5.
If either FRf, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.
This operation does not propagate NaNs the same way as other arithmetic floating-point
instructions. The Invalid Operation is signaled in the same manner asthef cnp. | t operation.
The mnemonic values for sf are given in Table 2-22 on page 2-42.
Operation: if (PRgp]) {

}

fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f;, fy, f3, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FRf3])) {
FR 1] = NATVAL;
} else {
fm nmax_exception_faul t _check(f,, f3, sf, &np_fp_env);
if (fp_raise_fault(tnmp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

tnp_right = fp_reg_read(FR f5]);

tnp_left = fp_reg_read(FR f3]);

tnp_right.sign = FP_SI GN_PCsSI Tl VE;

tnp_left.sign = FP_SIGN_PCSI Tl VE;

tnmp_bool _res = fp_less_than(tnp_left, tnp_right);
FRIf;] = tnp_bool _res ? FRIf,] : FRf3];

fp_update_fpsr(sf, tnp_fp_env);
}

fp_update_psr(fq);

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions:

Ilegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault
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Floating-Point Absolute Minimum
Format: (gp) famin.sf f; =15, f3 F8

Description:  The operand with the smaller absolute value is placed in FR f;. If the magnitude of FR f, equalsthe
magnitude of FR f3, FR f; gets FR f5.

If either FRf, or FR fzisaNaN, FR f; gets FR f5.
If either FRf, or FR fzisaNaTVal, FR f; isset to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic floating-point
instructions. The Invalid Operation is signaled in the same manner asthef crp. | t operation.

The mnemonic values for sf are given in Table 2-22 on page 2-42.

Operation: if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, f,, f3 0))
di sabl ed_fp_register_fault(tnp_i srcode, 0);

if (fp_is_natval (FRIf,]) || fp_is_natval (FR[fg])) {
FRIf1] = NATVAL;
} else {
fm nmax_exception_faul t _check(f,, f3, sf, & np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

tnp_left = fp_reg_read(FRf5]);

trp_right = fp_reg_read(FRf3]);

tnp_left.sign = FP_SI GN_PCsI Tl VE;

tnp_right.sign = FP_SI GN_PCSI Tl VE;

tnp_bool _res = fp_less_than(tnp_left, tnmp_right);
FRIf,] = tnp_bool _res ? FRIf,] : FRf3];

fp_update _fpsr(sf, tnp_fp_env);
}

fp_update_psr(fq);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault
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Floating-Point Logical And
Format: (gp) fand fy =15, f5 Fo

Description:  The bit-wise logical AND of the significand fields of FR f, and FR f5 is computed. The resulting
valueis stored in the significand field of FR f;. The exponent field of FR f; is set to the biased
exponent for 2.08 (Ox1003E) and the sign field of FR f; is set to positive (0).

If either FRf, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

Operation: if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, fy, f3, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FRf3])) {
FR 1] = NATVAL;
} else {
FRIf,].significand = FR{f,].significand & FR{f3].significand,
FR[ f 1] . exponent = FP_I NTEGER EXP;
FR f1].sign = FP_SI G\ _PCSI Tl VE;
}
fp_updat e_psr(fq);

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault
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intel.

Floating-Point And Complement

Format:

Description:

Operation:

(gp) fandem fy =fy, f3 F9

The bit-wiselogical AND of the significand field of FR f, with the bit-wise complemented
significand field of FR fzis computed. The resulting valueis stored in the significand field of FR f;.
The exponent field of FR f, is set to the biased exponent for 2.088 (0x1003E) and the sign field of
FR f; is set to positive (0).

If either FRf, or FRf,isaNaTVal, FRf; isset to NaTVal instead of the computed result.

if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, f,, f3 0))
di sabl ed_fp_register_fault(tnp_i srcode, 0);

if (fp_is_natval (FRIf,]) || fp_is_natval (FR[fg])) {
FRIf4] = NATVAL;
} else {
FRIf,].significand = FR[f,].significand & ~FR[f3]. si gnifi cand;
FR[ f 1] . exponent = FP_| NTECER EXP;
FR f4].sign = FP_SI GN _POSI Tl VE;

}
f p_updat e_psr (fq);

FP Exceptions: None

Interruptions:

2-46

Illegal Operation fault Disabled Floating-point Register fault
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Flush Cache

Format: (op) fc rs M28
Description: ~ The cache line associated with the address specified by the value of GR r isinvalidated from all

Operation:

Interruptions:

levels of the processor cache hierarchy. The invalidation is broadcast throughout the coherence
domain. If, at any level of the cache hierarchy, the line is inconsistent with memory it is written to
memory before invalidation.

Theline size affected is at |east 32-bytes (aligned on a 32-byte boundary). An implementation may
flush alarger region.

When executed at privilegelevel O, f ¢ performs no access rights or protection key checks. At other
privilege levels, f ¢ performs access rights checks as if it were a 1-byte read, but no protection key
checks (regardless of PSR.pk).

The memory attribute of the page containing the affected line has no effect on the behavior of this
instruction. This instruction can be used to remove a range of addresses from the cache by first
changing the memory attribute to non-cacheable and then flushing the range.

This instruction follows data dependency rules; it is ordered with respect to preceding and
following memory referencesto the same line. f ¢ has data dependenciesin the sense that any prior
stores by this processor will be included in the data written back to memory. f ¢ is an unordered
operation, and is not affected by a memory fence (nf ) instruction. It is ordered with respect to the
sync. i instruction.

if (PRagp]) {
i type = NON_ACCESS| FC READ;
if (GRr3].nat)

regi ster_nat_consunption_faul t(itype);
tnp_paddr = tlb_transl ate_nonaccess(GRr3], itype);
mem f | ush(t np_paddr);

}

Register NaT Consumption fault Data TLB fault

Unimplemented Data Address fault Data Page Not Present fault

Data Nested TLB fault Data NaT Page Consumption fault
Alternate Data TLB fault Data Access Rights fault

VHPT Data fault
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Floating-Point Check Flags

Format: (gp) fchkf.sf target,s

intel.

F14

Description:

Operation:

The flags in FPSR.<f.flags are compared with FPSR.<0.flags and FPSR.traps. If any flags set in
FPSR.sf.flags correspond to FPSR.traps which are enabled, or if any flags set in FPSR.sf.flags are
not set in FPSR.S0.flags, then a branch to target s is taken.

The target,5 operand, specifies alabel to branch to. Thisis encoded in the instruction as a signed
immediate displacement (immy,,) between the target bundle and the bundle containing this
instruction (immy, = target,s — 1P >> 4).

The branching behavior of this instruction can be optionally unimplemented. If the instruction
would have branched, and the branching behavior is not implemented, then a Speculative
Operation fault is taken and the value specified by immy, is zero-extended and placed in the
Interruption Immediate control register (1IM). The fault handler emulates the branch by
sign-extending the IIM value, adding it to I1P and returning.

The mnemonic values for sf are given in Table 2-22 on page 2-42.

if (PREap]) {

switch (sf) {

case ‘sO’:
tnp_fl ags

br eak;

case ‘sl’:
tnp_fl ags

br eak;

case ‘s2’:
tnp_fl ags

br eak;

case ‘s3':
tnp_fl ags

br eak;

= AR FPSR] . sf 0. fl ags;
= AR FPSR] . sf 1. fl ags;
= AR FPSR] . sf 2. fl ags;
= AR FPSR] . sf 3. fl ags;

}
if ((tmp_flags & ~AR[FPSR] .traps) || (tnp_flags & ~AR FPSR] . sf0.fl ags)) {
i f (check_branch_i npl ement ed( FCHKF)) {
taken_branch = 1;
IP=1P + sign_ext((imm,; << 4), 25);
if ((PSRit &&% uninplenented_virtual _address(IP))
|] ('PSR it && uninpl ement ed_physi cal _address(I1P)))

FP Exceptions: None

Interruptions:

2-48

uni npl ement ed_i nstructi on_address_trap(0, |P);
if (PSR tb)
taken_branch_trap();
} else
specul ation_faul t (FCHKF, zero_ext(imm,, 21));
}
}
Specul ative Operation fault Taken Branch trap

Unimplemented Instruction Address trap
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Floating-Point Class
Format: (gp) fclass.ferel.fetype pq, po = 1), felassy F5

Description:  The contents of FR f, are classified according to the fclassy completer as shown in Table 2-24. This
produces a boolean result based on whether the contents of FR f, agrees with the floating-point
number format specified by fclassy, as specified by the fcrel completer. This result iswritten to the
two predicate register destinations, p; and p,. The result written to the destinationsis determined by
the compare type specified by fctype.

The allowed types are Normal (or none) and unc. See Table 2-25 on page 2-52. The assembly
syntax allows the specification of membership or non-membership and the assembler swaps the
target predicates to achieve the desired effect.

Table 2-23. Floating-point Class Relations

fcrel Test Relation
m FR f, agrees with the pattern specified by fclasSq (is a member)
nm FR f5 does not agree with the pattern specified by fclassg (is not a member)

A number agrees with the pattern specified by fclassy if:

* The number isNaTVal and fclassg {8} is1, or
* The number isaquiet NaN and fclassq {7} is 1, or
* The number isasignaling NaN and fclassg {6} is 1, or

¢ The sign of the number agrees with the sign specified by one of the two low-order bits of
fclassy, and the type of the number (disregarding the sign) agrees with the number-type
specified by the next 4 bits of fclassg, as shown in Table 2-24.

Note:  Anfclassy of Ox1FF isequivalent to testing for any supported operand. The class names
used in Table 2-24 are defined in Table 5-2 on page 5-3 in Volume 1.

Table 2-24. Floating-point Classes

fclassy Class Mnemonic
Either these cases can be tested for
0x0100 NaTVal @nat
0x080 Quiet NaN @qnan
0x040 Signaling NaN @snan
or the OR of the following two cases
0x001 Positive @pos
0x002 Negative @neg
AND’ed with OR of the following 4 cases
0x004 Zero @zero
0x008 Unnormalized @unorm
0x010 Normalized @norm
0x020 Infinity @inf
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Operation: if (PR ap]) {
if (p1 == po)
illegal _operation_fault();

if (tnp_isrcode = fp_reg_disabled(f,, 0, 0, 0))
di sabl ed_fp_register_fault(tnp_i srcode, 0);

tmp_rel = ((fclassg{0} && !'FR{f,].sign || fclassg{1l} &% FR[f,].sign)
&% ((fclassg{2} && fp_is_zero(FRf,]))||

I
(fclassg{3} && fp_is_unorn(FRf5])) ||
(fclassg{4} &% fp_is_normal (FRIf,])) ||
(fclassg{5} && fp_is_inf(FRfj5]))
) )
|| (fclasso{6} && fp_is_snan(FRf5,]))
|| (fclassg{7} & fp_is_qgnan(FR{f5]))
|| (fclassg{8} &% fp_is_natval (FR[f,]));
tmp_nat = fp_is_natval (FRIf,]) &% (!fclassg{8});
if (tnp_nat) {
PRI p;] = O;
PRI py] = 0;
} else {
PRI py] = tnp_rel;
PRIpy] = !tnp_rel;
} else {
if (fctype == ‘unc’) {
it (pl == p2)
illegal _operation_fault();
PR p;] = 0;
PRI p2] = 0;
}
FP Exceptions: None
Interruptions: Illegal Operation fault Disabled Floating-point Register fault
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Floating-Point Clear Flags
Format: (qp) fclrf.sf F13

Description: ~ The status field's 6-bit flags field is reset to zero.
The mnemonic values for sf are given in Table 2-22 on page 2-42.

Operation: if (PRgp]) {
fp_set_sf_flags(sf, 0);
}

FP Exceptions: None

Interruptions: None
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Floating-Point Compare
Format: (gp) femp.frel.fctypest py, p, =15, f3 F4

Description: ~ The two source operands are compared for one of twelve relations specified by frel. This produces
aboolean result which is 1 if the comparison condition is true, and O otherwise. Thisresult is
written to the two predicate register destinations, p; and p,. The way the result is written to the
destinations is determined by the compare type specified by fctype. The allowed types are Normal
(or none) and unc.

Table 2-25. Floating-point Comparison Types

PR[QP]==1
fetvoe PR[(P]==0 result==0, result==1, One or More
yp No Source NaTVals No Source NaTVals Source NaTVals
PRIP4] PR[P2] PR[P4] PRIP2I PR[P4] PR[2] PRIP;] PR[P2]
none
unc 0 0 0 1 1 0 0 0

The mnemonic values for sf are given in Table 2-22 on page 2-42.

The relations are defined for each of the comparison typesin Table 2-26. Of the twelve relations,
not all are directly implemented in hardware. Some are actually pseudo-ops. For these, the
assembler simply switches the source operand specifiers and/or switches the predicate target
specifiers and uses an implemented relation.

Table 2-26. Floating-point Comparison Relations

frel Completer . Quiet NaN
frel Unabbreviated Relation Pseudo-op of as Operand‘
Signals Invalid
eq equal fo==13 No
It less than f,<f3 Yes
le less than or equal fy<=13 Yes
gt greater than fy>fa It fy o fa Yes
ge greater than or equal fy>=13 le fy o fa Yes
unord | unordered fy 213 No
neq not equal i(fy ==13) eq Py~ P2 |No
nit not less than I(fy < f3) It Py~ Py |Yes
nle not less than or equal I(fy <=13) le Py~ Py |Yes
ngt not greater than i(f > fa) It foufa PpPpopr |Yes
nge | not greater than or equal i(fo>=Ty) |le foufa PpPpopr |Yes
ord ordered I(fy 2 f3) unord Py~ P2 |No
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Operation: if (PREap]) {

i f

(Py == p2)

illegal _operation_fault();

if (tnp_isrcode = fp_reg_disabled(f,, f3 0, 0))

di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f5]) || fp_is_natval (FRf3])) {

PRI p;] =0
PR py] = 0;

fcnp_exception_faul t_check(f,, fg, frel, sf, & nmp_fp_env);
if (fp_raise_fault(tnmp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

tnp_fr2 = fp_reg_read(FR f5]);
tnmp_fr3 = fp_reg_read(FR f3]);

i f (frel ==‘eq’) tnp_rel = fp_equal (tnp_fr2,
tmp_fr3);

else if (frel =="'1t’) tnp_rel = fp_less_than(tnmp_fr2,
tmp_fr3);

else if (frel == "‘le') tnp_rel = fp_lesser_or_equal (tnp_fr2,
tmp_fr3);

else if (frel == "‘gt’) tnp_rel =fp_less_than(tnp_fr3,
tmp_fr2);

else if (frel == ‘ge’) tnp_rel = fp_lesser_or_equal (tnp_fr3,
tmp_fr2);

else if (frel == ‘unord )tnp_rel = fp_unordered(tnp_fr2,
tmp_fr3);

else if (frel == "'neq ) tnp_rel = !fp_equal (tnmp_fr2,
tmp_fr3);

else if (frel =="'nlt’) tnp_rel = !fp_less_than(tnp_fr2,
tmp_fr3);

else if (frel == ‘nle’) tnp_rel = !fp_lesser_or_equal (tnp_fr2,
tmp_fr3);

else if (frel == ‘ngt’) tnp_rel = !fp_less_than(tnp_fr3,
tmp_fr2);

else if (frel == ‘nge’) tnp_rel = !fp_lesser_or_equal (tnp_fr3,
tmp_fr2);

el se tnp_rel = !fp_unordered(tnp_fr2,

tmp_fr3); //'ord

PRI p;] = tnp_rel;

PRI p,] = !tmp_rel;

fp_update_fpsr(sf, tnp_fp_env);
} else {

if (fctype == ‘unc’) {
if (pl == p2)
illegal _operation_fault();

PR py] = 0;

PRI py] = 0;
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault
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Convert Floating-Point to Integer

Format:

Description:

Operation:

2-54

(gp) fevt.fx.sf f; =1, signed_form
(gp) fevt.fx.trunc.sf f; =1, signed_form, trunc_form
(gp) fevt.fxusf f; =1, unsigned form
(gp) fevt.fxu.trunc.sf f; =1, unsigned_form, trunc_form

tel

F10
F10
F10
F10

FRf, istreated as aregister format floating-point value and converted to asigned (signed_form) or
unsigned integer (unsigned_form) using either the rounding mode specified in the FPSR.sf.rc, or
using Round-to-Zero if the trunc_form of the instruction is used. Theresult is placed in the 64-bit

significand field of FR f,. The exponent field of FR f; is set to the biased exponent for 2.0%3

(Ox1003E) and the sign field of FR f; is set to positive (0). If the result of the conversion cannot be
represented as a 64-bit integer, the 64-bit integer indefinite value 0x8000000000000000 is used as

the result, if the IEEE Invalid Operation Floating-point Exception fault is disabled.
If FRf,isaNaTVal, FRf; is set to NaT Val instead of the computed result.

The mnemonic values for sf are given in Table 2-22 on page 2-42.

if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, fy, 0, 0))
di sabl ed_fp_register_fault(tnp_i srcode, 0);

if (fp_is_natval (FRf5])) {
FR 1] = NATVAL;
fp_update_psr(fq);

} else {

tnp_default _result = fcvt_exception_fault_check(f,, signed_form
trunc_form sf, & np_fp_env);

if (fp_raise_fault(tnp_fp_env))
fp_exception_faul t(fp_decode fault(tnp_fp_env));

if (fp_is_nan(tnp_default_result)) {
FR[f 1] .significand = | NTEGER | NDEFI NI TE;
FR{ f 4] . exponent = FP_| NTEGER EXP,
FR(f4].sign = FP_SI GN_PCSI Tl VE;

} else {

tnp_res = fp_ieee_rnd_to_int(fp_reg_read(FR[f5]), & np_fp_env);

if (tnp_res. exponent)
tnp_res.significand = fp_U64_rsh(

tnp_res.significand, (FP_INTEGER EXP - tnp_res. exponent));

if (signed_form & tnp_res. sign)
tnp_res.significand = (~tnp_res.significand) + 1;

FRIf,].significand = tnp_res. significand;
FR[ f 1] . exponent = FP_| NTEGER EXP;
FR f4].sign = FP_SI GN _POSI Tl VE;

}

fp_update _fpsr(sf, tnp_fp_env);

fp_update_psr(fq);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode_trap(tnp_fp_env));
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FP Exceptions: Invalid Operation (V) Inexact (1)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: 1llegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap
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Convert Signed Integer to Floating-point
Format: (gp) fevtxf f =1, F11

Description:  The 64-bit significand of FR f, is treated as a signed integer and its register file precision
floating-point representation is placed in FR f;.

If FRf,isaNaTVal, FRf; is set to NaT Val instead of the computed result.

This operation is always exact and is unaffected by the rounding mode.

Operation: if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, fy,, 0, 0))
di sabl ed_fp_register_fault(tnp_i srcode, 0);

if (fp_is_natval (FRf5])) {
FR 1] = NATVAL;
} else {
tmp_res = FR{f,];
if (tnp_res.significand{63}) {
tnp_res.significand = (~tnp_res.significand) + 1;
tnp_res.sign = 1;
} else
tnp_res.sign = 0;

tnp_res. exponent = FP_|I NTEGER EXP;
tnp_res = fp_nornalize(tnp_res);

FR(f4].significand = tnp_res.significand;
FR{f 4] . exponent = tnp_res. exponent;
FR f,].sign = tnp_res. sign;

}
fp_update_psr(fq);
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault
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Convert Unsigned Integer to Floating-point

Format: (gp) fevt.xuf.pc.sf f; =13 pseudo-op of: (gp) fmapc.sf f; =fs, f1, fO

Description:  FR fzismultiplied with FR 1, rounded to the precision indicated by pc (and possibly FPSR.sf.pc
and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and placed in FR f;.

Note:  Multiplying FR f3 with FR 1 (a 1.0) normalizes the canonical representation of an integer
in the floating-point register file producing anormal floating-point value. If FRfyisa
NaTVal, FR f; is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-21 on page 2-42. The mnemonic

valuesfor sf aregiven in Table 2-22 on page 2-42. For the encodings and interpretation of the status

field's pc, wre, and rc, refer to Table 5-5 and Table 5-6 on page 5-6 in Volume 1.

Operation: See “Floating-Point Miltiply Add” on page 2-61
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Fetch And Add Immediate

Format: (gp) fetchadd4.sem.ldhint rq = [r3], inc3 four_byte form  M17
(gp) fetchadd8.sem.Idhint rq = [r3], inc3 eight_byte foom  M17

Description: A value consisting of four or eight bytes is read from memory starting at the address specified by
thevaluein GR r3. The valueis zero extended and added to the sign-extended immediate value
specified by incs. The valuesthat may be specified by inc; are: -16, -8, -4, -1, 1, 4, 8, 16. The least
significant four or eight bytes of the sum are then written to memory starting at the address
specified by the value in GRr3. The zero-extended value read from memory is placed in GRr4 and
the NaT bit corresponding to GR r4 is cleared.

The sem completer specifies the type of semaphore operation. These operations are described in
Table 2-27. See Volume 1 and Volume 2 for details on memory ordering.

Table 2-27. Fetch and Add Semaphore Types

sem Ordering

Completer Semantics Semaphore Operation

acq Acquire The memory read/write is made visible prior to all subsequent data memory
accesses.

rel Release The memory read/write is made visible after all previous data memory
accesses.

The memory read and write are guaranteed to be atomic for accesses to pages with cacheable,
writeback memory attribute. For accesses to other memory types, atomicity is platform-dependent.

If the address specified by the value in GR r3 is not naturally aligned to the size of the value being
accessed in memory, an Unaligned Data Reference fault is taken independent of the state of the
User Mask alignment checking bit, UM.ac (PSR.ac in the Processor Status Register).

Both read and write access privileges for the referenced page are required. The write access
privilege check is performed whether or not the memory write is performed.

Only accesses to UCE pages or cacheable pages with write-back write policy are permitted.
Accesses to NaT Pages result in a Data NaT Page Consumption fault. Accesses to pages with other
memory attributes cause an Unsupported Data Reference fault.

On a processor model that supports exported f et chadd, af et chadd to a UCE page causes the
fetch-and-add operation to be exported outside of the processor; if the platform does not support
exported f et chadd, the operation is undefined. On a processor model that does not support
exported f et chadd, af et chadd to a UCE page causes an Unsupported Data Reference fault. See
“Effects of Memory Attributes on Memory Reference Instructions’ on p. 4-36 in VVolume 2.

The value of the Idhint completer specifies the locality of the memory access. The values of the
[dhint completer are given in Table 2-32 on page 2-125. Locality hints do not affect program
functionality and may be ignored by the implementation.
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Operation:

Interruptions:

fetchadd

if (PRgp]) {

check_target _register(ryq);

if (&Rrj].nat)
regi ster_nat _consunpti on_f aul t ( SEMAPHORE) ;

size = four_byte form? 4 : 8§;

paddr = tlb_translate(GRr3], size, SEMAPHORE, PSR cpl, &mattr,
& np_unused) ;
if (!ma_supports_fetchadd(mattr))
unsupport ed_dat a_r ef erence_f aul t (SEMAPHORE, CR{r3]);

if (sem=="acq’)

val = nmem xchg_add(incs, paddr, size, UMbe, nmattr, ACQU RE, |dhint);
else /]l ‘rel’

val = mem xchg_add(i nc3, paddr, size, UMbe, mattr, RELEASE, |dhint);
alat_inval _nultiple_entries(paddr, size);

CGR[r4] = zero_ext(val, size * 8);

GRr,].nat = 0;
}
Ilegal Operation fault Data Key Miss fault
Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault
Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault

Data NaT Page Consumption fault
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Flush Register Stack

Format:

Description:

Operation:

Interruptions:

2-60

flushrs M25

All stacked general registersin the dirty partition of the register stack are written to the backing
store before execution continues. The dirty partition contains registers from previous procedure
frames that have not yet been saved to the backing store. For a description of the register stack
partitions, refer to Volume 2. A pending external interrupt can interrupt the RSE store loop when
enabled.

After thisinstruction completes execution BSPSTORE is equal to BSP.

Thisinstruction must be the first instruction in an instruction group and must either bein
instruction slot 0 or in instruction slot 1 of atemplate having a stop after slot O; otherwise, the
results are undefined. This instruction cannot be predicated.

while (AR[BSPSTORE] != AR[BSP]) {
rse_st or e( MANDATCRY) ; /1 increments AR BSPSTORE]
del i ver _unmasked_pendi ng_external _i nterrupt ();

}

Unimplemented Data Address fault Data Key Missfault
VHPT Data fault Data Key Permission fault
Data Nested TLB fault Data Access Rights fault
Data TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
Data Page Not Present fault Data Debug fault

Data NaT Page Consumption fault
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Floating-Point Multiply Add
Format: (gp) fmape.sf f; =13, T4, T F1
Description: ~ The product of FR fz and FR f, is computed to infinite precision and then FR f, is added to this
product, again in infinite precision. The resulting value is then rounded to the precision indicated
by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc.
The rounded result is placed in FR f;.
If any of FR f3, FR Ty, or FR f, isaNaTVal, FR f; is set to NaTVal instead of the computed result.
If f,isf0, an IEEE multiply operation is performed instead of a multiply and add. See
“Foating-Point Multiply” on p. 2-68.
The mnemonic values for the opcode’s pc are given in Table 2-21 on page 2-42. The mnemonic
valuesfor sf are given in Table 2-22 on page 2-42. For the encodings and interpretation of the status
field's pc, wre, and rc, refer to Table 5-5 and Table 5-6 on page 5-6 in Volume 1.
Operation: if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(fq,, fp, f3, fyg))
di sabl ed_fp_register_fault(tnp_isrcode, 0);
if (fp_is_natval (FR[f,]) || fp_is_natval (FRf3]) ||
fp_is_natval (FRIf4])) {
FR 1] = NATVAL;
fp_update_psr(fq);
} else {
tnp_defaul t _result = fnma_exception_fault_check(f,, fa, fyg,
pc, sf, & nmp_fp_env);
if (fp_raise_fault(tnmp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));
if (fp_is_nan_or_inf(tnp_default_result)) {
FR{f;] = tnp_default_result;
} else {
tnp_res = fp_mul (fp_reg_read(FR f3]), fp_reg_read(FR f4]));
if (f, 1=0)
tnp_res = fp_add(tnp_res, fp_reg_read(FR f,]), tmp_fp_env);
FR[f.] = fp_ieee_round(tnp_res, & nmp_fp_env);
fp_update_fpsr(sf, tnp_fp_env);
fp_updat e_psr(fq);
if (fp_raise_traps(tnmp_fp_env))
fp_exception_trap(fp_decode_trap(tnp_fp_env));
}
}
FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) fault Inexact (1)
Software Assist (SWA) trap
Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap
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Floating-Point Maximum

Format:

Description:

Operation:

FP Exceptions:

Interruptions:

2-62

(gp) fmax.sf f; =1, f5

The operand with the larger valueis placed in FR f;. If FR f, equals FR 3, FR f; gets FR f3.
If either FRf, or FRfzisaNaN, FR f; gets FR f5.
If either FRf, or FR fzisaNaTVal, FR f; isset to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic floating-point

F8

instructions. The Invalid Operation is signaled in the same manner asthef crp. | t operation.

The mnemonic values for sf are given in Table 2-22 on page 2-42.

if (PREap]) {

}

fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, f,, f3 0))
di sabl ed_fp_register_fault(tnp_i srcode, 0);

if (fp_is_natval (FRIf,]) || fp_is_natval (FR[fg])) {
FRIf1] = NATVAL;
} else {
fm nmax_exception_faul t _check(f,, f3, sf, & np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

tnp_bool _res = fp_less_than(fp_reg_read(FR f3]),

fp_reg_read(FR f5]));
FRIf,] = (tnp_bool _res ? FRf,] : FRf3]);
fp_update fpsr(sf, tnp_fp_env);

}
f p_updat e_psr (fq);

Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Illegal Operation fault

Disabled Floating-point Register fault

Floating-point Exception fault
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Floating-Point Merge

Format:

Description:

fmerge
(gp) fmerge.ns f; =15, f3 neg_sign form Fo
(gp) fmergess f; =15, f3 sign_form Fo
(gp) fmerge.se f; =1, f3 sign_exp_form Fo

Sign, exponent and significand fields are extracted from FR f, and FR f3, combined, and the result
isplaced in FR f;.

For the neg_sign_form, the sign of FR f, is negated and concatenated with the exponent and the
significand of FR f5. This form can be used to negate a floating-point number by using the same
register for FR f, and FR f5.

For the sign_form, the sign of FR f, is concatenated with the exponent and the significand of FR fa.

For the sign_exp_form, the sign and exponent of FR f, is concatenated with the significand of FR
fa.

For all forms, if either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed
result.

Figure 2-7. Floating-point Merge Negative Sign Operation

Figure 2-8. Floating-point Merge Sign Operation

Figure 2-9. Floating-point Merge Sign and Exponent Operation

8180 6463 0 8180 6463 0
FRf, FRf3

negated 8180 6463
sign bit  FRf;

i

8180 6463 0 8180 6463 0
FR f, FRf3

8180 6463 0
FRf;

8180 6463 0 8180 6463 0
FR f, FRf3

180 6463 0
FRf;
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Operation: if (PR ap]) {
fp_check_target_register(f,);
if (tnp_isrcode = fp_reg_di sabled(fq, fo, f3, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);
if (fp_is_natval (FRf,]) || fp_is_natval (FRfg])) {
FR 1] = NATVAL;
} else {
FR f4].significand = FRfg3].significand;
if (neg_sign_fornm {
FR{ f,] . exponent = FR f3].exponent;
FR f4].sign TFR{f ] . sign;

} else if
FRIfq].
FRIf4].

} else {
FRIfq].
FRIf4].

}

(sign_form {
exponent = FR[f3].exponent;
sign = FR f,] . sign;
/1 sign_exp_form
exponent = FR[f,].exponent;
sign = FR f,].sign;

fp_update_psr(fq);

}

FP Exceptions: None

Interruptions:

2-64

Illegal Operation fault

Disabled Floating-point Register fault
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fmin

Floating-Point Minimum

Format:

Description:

Operation:

FP Exceptions:

Interruptions:

(ap) fmin.sf f; =1y, f3 F8

The operand with the smaller valueis placed in FR ;. If FR f, equals FR f3, FR f; gets FR f5.
If either FRf, or FR fzisaNaN, FR f; gets FR f5.
If either FRf, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic floating-point
instructions. The Invalid Operation is signaled in the same manner asthef cnp. | t operation.

The mnemonic values for sf are given in Table 2-22 on page 2-42.

if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f;, fy, f3, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FRf3])) {
FR 1] = NATVAL;
} else {
fm nmax_exception_faul t _check(f,, fj3 sf, &np_fp_env);
if (fp_raise_fault(tnmp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

tnp_bool _res = fp_less_than(fp_reg_read(FR f,]),
fp_reg_read(FRf3]));
FRIf;] = tnp_bool _res ? FRIf,] : FRf3];

fp_update_fpsr(sf, tnp_fp_env);

}
fp_updat e_psr(fq);
}

Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault
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Floating-Point Mix

intel.

mix_|_form F9
mix_r_form F9
mix_Ir_form F9

Format: (gp) fmix.I f; =15, f3
(gp) fmix.r f; =1, f3
(gp) fmix.Ir fy =15, 3
Description:  For the mix_I_form (mix_r_form), the left (right) single precision valuein FR f, is concatenated

with the left (right) single precision value in FR f5. For the mix_Ir_form, the left single precision
value in FR f, is concatenated with the right single precision valuein FR f3.

For all forms, the exponent field of FR f; is set to the biased exponent for 2.0%8 (0x1003E) and the

sign field of FR f; is set to positive (0).

For all forms, if either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed

result.

Figure 2-10. Floating-point Mix Left

8180 6463 32 31 0 8180 6463 32 31 0
FR f, FRf3
8180 3231 0
FRf; [9 1003E
Figure 2-11. Floating-point Mix Right
8180 6463 32 31 0 8180 6463 32 31 0
FR f, FRf3
8180 %\; 3231
FRf; |9 1003E
Figure 2-12. Floating-point Mix Left-Right
8180 6463 32 31 0 8180 6463 32 31 0
FR f, FRf3
8180 32 31
FR f; [9 1003E
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Operation:

fmix

if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, fy, f3, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf,]) || fp_is_natval (FRf3])) {
FR 1] = NATVAL;
} else {
if (mx_l_form {
tmp_res_hi = FR{f,].significand{63:32};

tnp_res_lo FR{ f 3] . significand{63: 32};
} elseif (mx_r_forn {

tmp_res_hi = FR{f,].significand{31:0};

tnmp_res_lo = FRf3].significand{31:0};

} else { /1 mx_lr_form
tmp_res_hi = FR{f,].significand{63:32};
tnp_res_lo = FRf3].significand{31:0};

FR{f,].significand = fp_concatenate(tnp_res_hi, tnp_res_|o0);
FR{f,] . exponent = FP_| NTEGER EXP;
FR f1].sign = FP_SI G\ _POSI Tl VE;

}

fp_updat e_psr(fq);

FP Exceptions: None

Interruptions:

Illegal Operation fault Disabled Floating-point Register fault
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Floating-Point Multiply
Format: (gp) fmpy.pc.sf f; =13, fy pseudo-op of: (gp) fmapc.sf f; =1z, f,, O

Description:  The product FR f3 and FR f4 is computed to infinite precision. The resulting value is then rounded
to the precision indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding
mode specified by FPSR.sf.rc. The rounded result is placed in FR f;.

If either FR f3 or FRf,isaNaTVal, FR f; isset to NaTVal instead of the computed resuilt.

The mnemonic values for the opcode’s pc are given in Table 2-21 on page 2-42. The mnemonic
valuesfor sf are given in Table 2-22 on page 2-42. For the encodings and interpretation of the status
field's pc, wre, and rc, refer to Table 5-5 and Table 5-6 on page 5-6 in Volume 1.

Operation: See “Floating-Point Miltiply Add” on p. 2-61.
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Floating-Point Multiply Subtract
Format: (gp) fms.pc.sf f; =13, Ty, o F1

Description:  The product of FR f3 and FR f4 is computed to infinite precision and then FR f, is subtracted from
this product, again in infinite precision. The resulting value is then rounded to the precision
indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by
FPSR.sf.rc. The rounded result is placed in FR f;.

If any of FR f3, FR Ty, or FR f, isaNaTVal, aNaTVal is placed in FR f; instead of the computed
result.

If f,isf0, an IEEE multiply operation is performed instead of a multiply and subtract. See
“Foating-Point Multiply” on p. 2-68.

The mnemonic values for the opcode’s pc are given in Table 2-21 on page 2-42. The mnemonic
valuesfor sf are given in Table 2-22 on page 2-42. For the encodings and interpretation of the status
field's pc, wre, and rc, refer to Table 5-5 and Table 5-6 on page 5-6 in Volume 1.

Operation: if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(fq,, fp, f3, fyg))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FRf3]) ||
fp_is_natval (FRIf4])) {
FR 1] = NATVAL;
fp_update_psr(fq);
} else {
tnmp_default _result = fns_fnna_exception_fault_check(f,, f3, fyu,
pc, sf, & np_fp_env);
if (fp_raise_fault(tnmp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan_or_inf(tnp_default_result)) {
FR{f;] = tnp_default_result;
} else {
tnp_res = fp_mul (fp_reg_read(FR f3]), fp_reg_read(FR f4]));
tmp_fr2 = fp_reg_read(FR f5]);
tnp_fr2.sign = 'tnp_fr2.sign;
if (fo !1=0)
tnp_res = fp_add(tnp_res, tnp_fr2, tnp_fp_env);
FRIf,] = fp_ieee_round(tnp_res, & np_fp_env);
}

fp_update_fpsr(sf, tnp_fp_env);

fp_updat e_psr(fq);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode_trap(tnp_fp_env));

}

}
FP Exceptions: Invalid Operation (V) Underflow (U)

Denormal/Unnormal Operand (D) Overflow (O)

Software Assist (SWA) fault Inexact (1)

Software Assist (SWA) trap

Interruptions: Illegal Operation fault Floating-point Exception fault

Disabled Floating-point Register fault Floating-point Exception trap
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Floating-Point Negate

Format:

Description:

Operation:

2-70

(gp) fneg f; =13 pseudo-op of: (gp) fmerge.ns f; =fg, f3

Thevaluein FR f5 is negated and placed in FR f;.
If FRfyisaNaTVal, FRf; is set to NaT Val instead of the computed result.

See “Fl oating-Point Merge” on p. 2-63.
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Floating-Point Negate Absolute Value

Format: (gp) fnegabs f; =13 pseudo-op of: (gp) fmerge.ns f; =10, f5

Description:  The absolute value of the value in FR f3 is computed, negated, and placed in FR f;.
If FRfyisaNaTVal, FR f; is set to NaTVal instead of the computed result.

Operation: See “Fl oating-Point Merge” on p. 2-63.
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Floating-Point Negative Multiply Add

Format:

Description:

Operation:

(gp) fnmapc.sf f; =13, T4, T F1

The product of FR f3 and FR f, is computed to infinite precision, negated, and then FR f, is added
to this product, again in infinite precision. The resulting value is then rounded to the precision
indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by
FPSR.sf.rc. The rounded result is placed in FR f;.

If any of FR f3, FR f,, or FRf, isaNaTVal, FR f; is set to NaTVal instead of the computed result.

If f, isf0, an IEEE multiply operation is performed, followed by negation of the product. See
“Hoating-Point Negative Multiply” on p. 2-73.

The mnemonic values for the opcode’s pc are given in Table 2-21 on page 2-42. The mnemonic
valuesfor sf are given in Table 2-22 on page 2-42. For the encodings and interpretation of the status
field's pc, wre, and rc, refer to Table 5-5 and Table 5-6 on page 5-6 in Volume 1.

if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f;, fo, f3, fyg))
di sabl ed_fp_register_fault(tnp_i srcode, 0);

if (fp_is_natval (FRIf,5]) || fp_is_natval (FR[f3]) ||
fp_is_natval (FRIf4])) {
FRf1] = NATVAL;
fp_update_psr(fq);
} else {
trp_defaul t _result = fns_fnma_exception_fault_check(f,, fa, fyg,
pc, sf, & np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan_or_inf(tnp_default_result)) {
FRIf,] = tnp_default_result;
} else {
tnp_res = fp_nul (fp_reg_read(FR f3]), fp_reg_read(FR f4]));
tnp_res.sign = ltnp_res.sign;
if (f, 1=0)
tnp_res = fp_add(tnmp_res, fp_reg_read(FRfj,]), tnp_fp_env);
FR{f,] = fp_ieee_round(tnp_res, & np_fp_env);

fp_update _fpsr(sf, tnp_fp_env);

fp_update_psr(fq);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode_trap(tnp_fp_env));

}

FP Exceptions: Invalid Operation (V) Underflow (U)

Interruptions:
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Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) fault Inexact (1)
Software Assist (SWA) trap

Disabled Floating-point Register fault Floating-point Exception trap
Floating-point Exception fault
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Floating-Point Negative Multiply
Format: (gp) fnmpy.pc.sf f; =13, Ty pseudo-op of: (gp) fnmapc.sf f; = fs, f,,fO

Description:  The product FR f3 and FR f, is computed to infinite precision and then negated. The resulting value
is then rounded to the precision indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using
the rounding mode specified by FPSR.sf.rc. The rounded result is placed in FR f;.

If either FR f5 or FR fyisaNaTVal, FR f; is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-21 on page 2-42. The mnemonic
valuesfor sf are given in Table 2-22 on page 2-42. For the encodings and interpretation of the status
field's pc, wre, and rc, refer to Table 5-5 and Table 5-6 on page 5-6 in Volume 1.

Operation: See “Fl oating-Point Negative Miultiply Add” on p. 2-72.
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Floating-Point Normalize
Format: (gp) fnorm.pc.sf f; =f3 pseudo-op of: (qp) fmapc.sf f; =fs, f1, fO

Description:  FR fzisnormalized and rounded to the precision indicated by pc (and possibly FPSR.sf.pc and
FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and placed in FR f;.

If FRfyisaNaTVal, FRf; is set to NaT Val instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-21 on page 2-42. The mnemonic
valuesfor sf are given in Table 2-22 on page 2-42. For the encodings and interpretation of the status
field's pc, wre, and rc, refer to Table 5-5 and Table 5-6 on page 5-6 in Volume 1.

Operation: See “Floating-Point Miltiply Add” on p. 2-61.
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Floating-Point Logical Or
Format: (gp) for f; =15, f3 Fo

Description: ~ The bit-wise logical OR of the significand fields of FR f, and FR f5 is computed. The resulting
valueis stored in the significand field of FR f;. The exponent field of FR f; is set to the biased
exponent for 2.08 (Ox1003E) and the sign field of FR f; is set to positive (0).

If either FRf, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

Operation: if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f;, fy, f3, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FRf3])) {
FR 1] = NATVAL;
} else {
FRIf,].significand = FR[f,].significand | FRf3].significand,
FR[ f 1] . exponent = FP_I NTEGER EXP;
FR f1].sign = FP_SI G\ _PCSI Tl VE;
}

fp_updat e_psr(fq);

FP Exceptions: None

Interruptions: 1llegal Operation fault Disabled Floating-point Register fault
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Floating-Point Parallel Absolute Value

Format:

Description:

Operation:
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(gp) fpabs f; =13 pseudo-op of: (qp) fpmerge.s f; =10, f5

The absolute values of the pair of single precision valuesin the significand field of FR f3 are
computed and stored in the significand field of FR f;. The exponent field of FR f; is set to the
biased exponent for 2.0%8 (Ox1003E) and the sign field of FR f; is set to positive (0).

If FRfyisaNaTVal, FRf; is set to NaT Val instead of the computed result.

See “Fl oating-Point Parallel Merge” on p. 2-90.
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Floating-Point Pack

Format: (ap) fpack f; =15, f3

pack_form

fpack

Fo

Description:  Theregister format numbersin FR f, and FR f3 are converted to single precision memory format.
These two single precision numbers are concatenated and stored in the significand field of FR f;.
The exponent field of FR f; is set to the biased exponent for 2.08 (Ox1003E) and the sign field of

FR f; is set to positive (0).

If either FRf, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

Figure 2-13. Floating-point Pack

8180 6463 0 8180 6463 0
FRf, FRf3
\Szégiigg\tfingle Mem Format Conversions
8180 32 31
FR fl o 1003E
Operation: if (PRgp]) {

fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, fy, f3, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf,]) || fp_is_natval (FRf3])) {

FRIT,] = NATVAL

} else {
tnp_res_hi =
tnp_res_lo =

fp_single(FR f5]);
fp_single(FRf3]);

FR[f 4] .significand = fp_concatenate(tnp_res_hi, tnp_res_|o0);

FR{ f 1] . exponent

= FP_| NTEGER EXP;

FR f].sign = FP_SI GN_PCSI Tl VE;

}
fp_updat e_psr(fq);

}

FP Exceptions: None

Interruptions: 1llegal Operation fault

IA-64 Instruction Reference
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Floating-Point Parallel Absolute Maximum
Format: (gp) fpamax.sf f; =15, f5 F8

Description:  The paired single precision values in the significands of FR f, and FR f3 are compared. The
operands with the larger absolute value are returned in the significand field of FR f;.

If the magnitude of high (low) FR f5 isless than the magnitude of high (low) FR f,, high (low)
FR f; gets high (low) FR f,. Otherwise high (low) FR f; gets high (low) FR f5.

If high (low) FR f, or high (low) FR fyisaNaN, and neither FR f, or FR f3 isaNaTVal, high (low)
FR f; gets high (low) FR f3.

The exponent field of FR f, is set to the biased exponent for 2.088 (0x1003E) and the sign field of
FR f; is set to positive (0).

If either FRf, or FR fzisaNaTVal, FR f; isset to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic floating-point
instructions. The Invalid Operation is signaled in the same manner as for thef pcnp. | t operation.

The mnemonic values for sf are given in Table 2-22 on page 2-42.

Operation: if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, f,, f3 0))
di sabl ed_fp_register_fault(tnp_i srcode, 0);

if (fp_is_natval (FRIf,]) || fp_is_natval (FR[fg])) {
FRIf1] = NATVAL;
} else {
f pm nmax_exception_faul t _check(f,, f3, sf, &np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

tnmp_fr2 = tnp_right = fp_reg_read_hi (f5);

tmp_fr3 = tnp_left = fp_reg_read_hi(fj3);

tnp_right.sign = FP_SI GN_PCSI Tl VE;

tnp_left.sign = FP_SI GN_PCsI Tl VE;

tnp_bool _res = fp_less_than(tnp_left, tnp_right);
tnp_res_hi = fp_single(tnp_bool _res ? tnp_fr2: tnp_fr3);

tmp_fr2 = tnp_right = fp_reg_read_|l o(fy);

tmp_fr3 = tnp_left = fp_reg_read_| o(f3);

tnp_right.sign = FP_SI GN_PCSI Tl VE;

tnp_left.sign = FP_SI GN_PGCsI Tl VE;

tnp_bool _res = fp_less_than(tnp_left, tnp_right);
tnp_res_lo = fp_single(tnp_bool _res ? tnp_fr2: tnp_fr3);

FR f,].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo0);
FR[ f 1] . exponent = FP_| NTECER EXP;

FR f4].sign = FP_SI GN _POSI Tl VE;

fp_update_fpsr(sf, tnp_fp_env);

}
fp_update_psr(fq);
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FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: 1llegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault
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Floating-Point Parallel Absolute Minimum
Format: (gp) fpamin.sf f; =1, f3 F8

Description:  The paired single precision values in the significands of FR f, or FR f; are compared. The operands
with the smaller absolute value is returned in the significand of FR f;.

If the magnitude of high (low) FR f, is less than the magnitude of high (low) FR f3, high (low) FR
f1 gets high (low) FR f,. Otherwise high (low) FR f; getshigh (low) FR f3.

If high (low) FR f, or high (low) FR fyisaNaN, and neither FR f, or FR f3 isaNaTVal, high (low)
FR f; gets high (low) FR f3.

The exponent field of FR f, is set to the biased exponent for 2.088 (0x1003E) and the sign field of
FR f; is set to positive (0).

If either FR f, or FR fzisNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic floating-point
instructions. The Invalid Operation is signaled in the same manner as for thef pcnp. | t operation.

The mnemonic values for sf are given in Table 2-22 on page 2-42.

Operation: if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, f,, f3 0))
di sabl ed_fp_register_fault(tnp_i srcode, 0);

if (fp_is_natval (FRIf,]) || fp_is_natval (FR[fg])) {
FRIf1] = NATVAL;
} else {
f pm nmax_exception_faul t _check(f,, f3, sf, &np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

tmp_fr2 = tnp_left = fp_reg_read_hi (f5,);

tmp_fr3 = tnp_right = fp_reg_read_hi(fj3);

tnp_left.sign = FP_SI GN_PGCsI Tl VE;

tnp_right.sign = FP_SI GN_PCSI Tl VE;

tnp_bool _res = fp_less_than(tnp_left, tnmp_right);
tnp_res_hi = fp_single(tnp_bool _res ? tnp_fr2: tnp_fr3);

tmp_fr2 = tnp_left = fp_reg_read_| o(f,);

tmp_fr3 = tnp_right = fp_reg_read_|l o(fg);

tnp_left.sign = FP_SI GN_PGCsI Tl VE;

tnp_right.sign = FP_SI GN_PCsSI Tl VE;

tnp_bool _res = fp_less_than(tnp_left, tnp_right);
tnp_res_lo = fp_single(tnp_bool _res ? tnp_fr2: tnp_fr3);

FR f,].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo0);
FR[ f 1] . exponent = FP_| NTECER EXP;

FR f4].sign = FP_SI GN _POSI Tl VE;

fp_update_fpsr(sf, tnp_fp_env);

}
fp_update_psr(fq);
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FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: 1llegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault
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Floating-Point Parallel Compare

Format:

Description:

(gp) fpcmp.frel.sf f1=1,, f5 F8

The two pairs of single precision source operands in the significand fields of FR f, and FR f5 are
compared for one of twelve relations specified by frel. This produces a boolean result whichisa
mask of 32 1'sif the comparison condition is true, and a mask of 32 0’'s otherwise. Thisresult is
written to apair of 32-bit integersin the significand field of FR f;. The exponent field of FR f; isset
to the biased exponent for 2.0% (Ox1003E) and the sign field of FR f; is set to positive (0).

Table 2-28. Floating-point Parallel Comparison Results

PR[QP]==1
PR[OP]==0 result==false, result==true, One or More
No Source NaTVals No Source NaTVals Source NaTVals
unchanged 0...0 1.1 NaTVal

The mnemonic values for sf are given in Table 2-22 on page 2-42.

The relations are defined for each of the comparison typesin Table 2-28. Of the twelve relations,
not all are directly implemented in hardware. Some are actually pseudo-ops. For these, the
assembler simply switches the source operand specifiers and/or switches the predicate type
specifiers and uses an implemented relation.

If either FRf, or FR fzisaNaTVal, FR f; isset to NaTVal instead of the computed result.

Table 2-29. Floating-point Parallel Comparison Relations

2-82

Quiet NaN
frel frel Completer Relation Pseudo-op of as Operand
unabbreviated Signals Invalid
eq equal fy==1a No
It less than fy<fa Yes
le less than or equal fr<=1a Yes
gt greater than fo> 13 It fo o f3 | Yes
ge greater than or equal fy>=13 le fo o f3 | Yes
unord unordered f, 213 No
neq not equal I(fo ==1fy) No
nit not less than 1(fy < fa) Yes
nle not less than or equal I(fy <=1y Yes
ngt not greater than I(fy > f3) nit fo o f3 | Yes
nge not greater than or equal I(fy >=13) nle fo o f3 | Yes
ord ordered I(fy 2 f3) No
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Operation: if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, fy, f3, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf,]) || fp_is_natval (FRf3])) {
FR 1] = NATVAL;
} else {
fpcrp_excepti on_faul t _check(f,, f3, frel, sf, & np_fp_env);

if (fp_raise_fault(tnmp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

tnmp_fr2 = fp_reg_read_hi (f5,);
tnmp_fr3 = fp_reg_read_hi(f3);

i f (frel =='eq') tnp_rel = fp_equal (tnmp_fr2, tnp_fr3);

else if (frel =="'1t’) tnp_rel =fp_less_than(tnmp_fr2, tnp_fr3);

else if (frel == "‘le') tnp_rel = fp_lesser_or_equal (tnp_fr2,
tmp_fr3);

else if (frel =="'gt’) tnp_rel =fp_less_than(tnmp_fr3, tnp_fr2);

else if (frel == ‘ge’) tnp_rel = fp_lesser_or_equal (tnp_fr3,
tmp_fr2);

else if (frel == ‘unord )tnp_rel = fp_unordered(tnp_fr2, tnp_fr3);

else if (frel == ‘neq ) tnp_rel = !fp_equal (tnmp_fr2, tnp_fr3);

else if (frel == "'nlt’) tnp_rel = !fp_less_than(tnp_fr2, tnp_fr3);

else if (frel =="'nle’) tnp_rel = !fp_lesser_or_equal (tnp_fr2,
tmp_fr3);

else if (frel == "'ngt’) tnp_rel = !fp_less_than(tnp_fr3, tnp_fr2);

else if (frel == 'nge’) tnp_rel = !fp_lesser_or_equal (tnp_fr3,
tmp_fr2);

el se tnp_rel = !fp_unordered(tnp_fr2,
tmp_fr3); //'ord

tnp_res_hi = (tnmp_rel ? OxFFFFFFFF : 0x00000000);

tmp_fr2 = fp_reg_read_|l o(f5,);

tnmp_fr3 = fp_reg_read_| o(f3);

i f (frel == 'eq') tnp_rel =fp_equal (tnmp_fr2, tnp_fr3);

else if (frel =="'1t’) tnp_rel =fp_less_than(tnmp_fr2, tnp_fr3);

else if (frel =="'le’) tnp_rel = fp_lesser_or_equal (tnp_fr2,
tmp_fr3);

else if (frel =="'gt’) tnp_rel =fp_less_than(tnmp_fr3, tnp_fr2);

else if (frel == "'ge’) tnp_rel = fp_lesser_or_equal (tnp_fr3,
tmp_fr2);

else if (frel == ‘unord )tnp_rel = fp_unordered(tnp_fr2, tnp_fr3);

else if (frel == "'neq ) tnp_rel = !fp_equal (tnmp_fr2, tnp_fr3);

else if (frel == "‘nlt’) tnp_rel = !fp_less_than(tnp_fr2, tnp_fr3);

else if (frel =="'nle’) tnp_rel = !fp_lesser_or_equal (tnp_fr2,
tmp_fr3);

else if (frel == ‘ngt’) tnp_rel = !fp_less_than(tnmp_fr3, tnp_fr2);

else if (frel == 'nge’) tnp_rel = !fp_lesser_or_equal (tnp_fr3,
tmp_fr2);

el se tnp_rel = !fp_unordered(tnp_fr2,

tmp_fr3); //'ord
tnp_res_lo = (tnmp_rel ? OxFFFFFFFF : 0x00000000);
FRIf,].significand = fp_concatenate(tnp_res_hi, tnmp_res_|o0);

FR{ f 1] . exponent = FP_| NTEGER EXP;
FR f,].sign = FP_SI GN_PCSI Tl VE;
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fp_update_fpsr(sf, tnp_fp_env);

}
fp_update_psr(fq);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault
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Convert Parallel Floating-Point to Integer

Format: (op) fpevt.fx.sf f; =1, signed _form F10
(gp) fpevt.fx.trunc.sf f; =1, signed_form, trunc_form F10
(gp) fpevt.fxusf f; =1, unsigned _form F10
(gp) fpevt.fxu.trunc.sf f; =", unsigned_form, trunc_form F10

Description: ~ The pair of single precision values in the significand field of FR f, is converted to a pair of 32-bit
signed integers (signed_form) or unsigned integers (unsigned_form) using either the rounding
mode specified in the FPSR.sf.rc, or using Round-to-Zero if the trunc_form of the instruction is
used. Theresult iswritten as a pair of 32-bit integersinto the significand field of FR f;. The
exponent field of FR f, is set to the biased exponent for 2.083 (Ox1003E) and the sign field of FR f;
is set to positive (0). If the result of the conversion cannot be represented as a 32-bit integer, the
32-hit integer indefinite value 0x80000000 is used as the result, if the IEEE Invalid Operation
Floating-point Exception fault is disabled.
If FRf,isaNaTVal, FRf; is set to NaTVal instead of the computed result.
The mnemonic values for sf are given in Table 2-22 on page 2-42.

Operation: if (PRLap]) {

fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, fy, 0, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f5])) {
FR 1] = NATVAL;
fp_updat e_psr(fq);
} else {
tnp_defaul t _result_pair = fpcvt_exception_fault_check(f,,
signed_form trunc_form sf, & np_fp_env);
if (fp_raise_fault(tnmp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan(tnp_default_result_pair.hi)) {

tnp_res_hi = I NTEGER | NDEFI NI TE_32_BIT;
} else {
tnp_res = fp_ieee_rnd_to_int_sp(fp_reg_read_hi(f,), HGH
& nmp_fp_env);

if (tnp_res.exponent)
tnp_res.significand = fp_Ub4_rsh(
tnp_res.significand, (FP_INTEGER EXP - tnp_res.exponent));
if (signed_form&& tnp_res. sign)
tnp_res.significand = (~tnp_res.significand) + 1;

tnp_res_hi = tnp_res.significand{31:0};
}

if (fp_is_nan(tnp_default_result_pair.lo)) {
tnp_res_| o = I NTEGER | NDEFI NI TE_32_BI T;
} else {
tnmp_res = fp_ieee_rnd_to_int_sp(fp_reg_read_l o(f,), LOW
& nmp_fp_env);
if (tnp_res.exponent)
tnp_res.significand = fp_Ubs4_rsh(
tnp_res.significand, (FP_INTEGER EXP - tnp_res.exponent));
if (signed_form&& tnp_res.sign)
tnp_res.significand = (~tnp_res.significand) + 1;
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tnp_res_|o = tnp_res.significand{31: 0};
}

FR(f.].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo);
FR{ f,] . exponent = FP_| NTEGER EXP;
FR f4].sign = FP_SI GN_PCSI Tl VE

fp_update_fpsr(sf, tnp_fp_env);

f p_updat e_psr (fq);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode_trap(tnp_fp_env));

}

FP Exceptions: Invalid Operation (V) Inexact (1)

Interruptions:

2-86

Denormal/Unnormal Operand (D)
Software Assist (SWA) Fault

Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap
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Floating-Point Parallel Multiply Add

Format:

Description:

Operation:

Note:

(ap) fpmasf fy =13, f4, f>

If f,isfOin thef pna instruction, just the IEEE multiply operation is performed. (See

fpma

F1

The pair of products of the pairs of single precision values in the significand fields of FR f3 and
FR f, are computed to infinite precision and then the pair of single precision valuesin the
significand field of FR f, is added to these products, again in infinite precision. The resulting values
are then rounded to single precision using the rounding mode specified by FPSR.sf.rc. The pair of

rounded results are stored in the significand field of FR f;. The exponent field of FR f; is set to the
biased exponent for 2.0%% (0x1003E) and the sign field of FR f; is set to positive (0).

If any of FR f3, FR Ty, or FRf, isaNaTVal, FR f; is set to NaTVal instead of the computed results.

“Foating-Point Parallel Multiply” on p. 2-93.) FR f1, as an operand, is not a packed pair

of 1.0 values, itisjust the register file format’'s 1.0 value.

The mnemonic values for sf are given in Table 2-22 on page 2-42.

The encodings and interpretation for the status field's rc are given in Table 5-6 on page 5-6 in
Volume 1.

if (PREgp]) {

fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(fq, fy, f3, fyg))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f5]) || fp_is_natval (FRf3]) ||
fp_is_natval (FRIf4])) {
FRIf1] = NATVAL;
fp_updat e_psr(fq);
} else {
tnp_defaul t _result_pair = fpma_exception_faul t_check(f,,
fa, fgq, sf, &np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan_or_inf(tnp_default _result_pair.hi)) {
tnp_res_hi = fp_single(tnp_default_result_pair.hi);

} else {
tmp_res = fp_nul (fp_reg_read_hi(fg3), fp_reg_read_hi(fg));
if (f, 1=0)

tnp_res = fp_add(tnp_res, fp_reg_read_hi(f,), tnp_fp_env);

tnp_res_hi = fp_ieee_round_sp(tnp_res, HGH, & nmp _fp_env);
}

if (fp_is_nan_or_inf(tnp_default _result_pair.lo)) {
tnp_res_lo = fp_single(tnp_default_result_pair.l0);

} else {
tmp_res = fp_nul (fp_reg_read_lo(fg), fp_reg_read_lo(fyg));
if (f, 1=0)

tnp_res = fp_add(tnp_res, fp_reg_read_lo(f,), tnp_fp_env);

tnp_res_lo = fp_ieee_round_sp(tnp_res, LON & np_fp_env);
}

FR{f,].significand = fp_concatenate(tnp_res_hi, tnp_res_|o0);
FR{f,] . exponent = FP_| NTEGER EXP;
FR f1].sign = FP_SI G\ _PCSI Tl VE;

fp_update_fpsr(sf, tnp_fp_env);
fp_updat e_psr(fq);
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if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode_trap(tnp_fp_env));

}

}
FP Exceptions: Invalid Operation (V) Underflow (U)

Denormal/Unnormal Operand (D) Overflow (O)

Software Assist (SWA) Fault Inexact (1)

Software Assist (SWA) trap

Interruptions: Illegal Operation fault Floating-point Exception fault

Disabled Floating-point Register fault Floating-point Exception trap
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Floating-Point Parallel Maximum
Format: (gp) fpmax.sf f; =15, f3 F8
Description: ~ The paired single precision values in the significands of FR f, or FR f5 are compared. The operands
with the larger value is returned in the significand of FR f;.
If thevalue of high (low) FR f3 islessthan the value of high (low) FR f,, high (low) FR f; getshigh
(low) FR f,. Otherwise high (low) FR f; gets high (low) FR f5.
If high (low) FR f, or high (low) FR fzisaNaN, high (low) FR f; gets high (low) FR fa.
The exponent field of FR f; is set to the biased exponent for 2.08 (Ox1003E) and the sign field of
FR f; is set to positive (0).
If either FR f, or FR fzisNaTVal, FR f; is set to NaTVal instead of the computed result.
This operation does not propagate NaNs the same way as other arithmetic floating-point
instructions. The Invalid Operation is signaled in the same manner as for thef pcnp. | t operation.
The mnemonic values for sf are given in Table 2-22 on page 2-42.
Operation: if (PRgp]) {

fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f;, fy, f3, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FRf3])) {
FR 1] = NATVAL;
} else {
f pm nmax_exception_faul t_check(f,, f3, sf, & np_fp_env);
if (fp_raise_fault(tnmp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

tnmp_fr2 = tnp_right = fp_reg_read_hi (fy);

tmp_fr3 = tnp_left = fp_reg_read_hi(fj3);

tnp_bool _res = fp_less_than(tnp_left, tnp_right);
tnp_res_hi = fp_single(tnp_bool _res ? tnp_fr2 : tnp_fr3);

tnmp_fr2 = tnp_right = fp_reg_read_|l o(fy);

tnmp_fr3 = tnp_left = fp_reg_read_| o(f3);

tnp_bool _res = fp_less_than(tnp_left, tnp_right);
tnp_res_lo = fp_single(tnp_bool _res ? tnp_fr2 : tnp_fr3);

FR f,].significand = fp_concatenate(tnp_res_hi, tnp_res_|o0);
FR{f,] . exponent = FP_| NTEGER EXP;

FR f1].sign = FP_SI G\ _POSI Tl VE;

fp_update_fpsr(sf, tnp_fp_env);

}
fp_update_psr(fq);
}

FP Exceptions: Invalid Operation (V)

Interruptions:

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Ilegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault
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Floating-Point Parallel Merge

Format:

Description:

(gp) fpmerge.ns f; =1, f3 neg_sign form F9
(gp) fpmerge.s f; =15, f3 sign_form F9
(gp) fpmerge.se f; =15, 5 sign_exp_form F9

For the neg_sign_form, the signs of the pair of single precision valuesin the significand field of FR
f, are negated and concatenated with the exponents and the significands of the pair of single
precision values in the significand field of FR f5 and stored in the significand field of FR f;. This
form can be used to negate a pair of single precision floating-point numbers by using the same
register for f, and f5.

For the sign_form, the signs of the pair of single precision values in the significand field of FR f,
are concatenated with the exponents and the significands of the pair of single precision valuesin
the significand field of FR f3 and stored in FR f;.

For the sign_exp_form, the signs and exponents of the pair of single precision valuesin the
significand field of FR f, are concatenated with the pair of single precision significandsin the
significand field of FR f3 and stored in the significand field of FR f;.

For all forms, the exponent field of FR f; is set to the biased exponent for 2.0%8 (0x1003E) and the
sign field of FR f; is set to positive (0).

For all forms, if either FR f, or FR fzisaNaTVal, FR f; isset to NaTVal instead of the computed
result.

Figure 2-14. Floating-point Parallel Merge Negative Sign Operation

8180 646362 323130 0 8180 646362 323130 0
FR f, FRf3
ated sig
8 3

FRf; [9 1003E

Figure 2-15. Floating-point Parallel Merge Sign Operation

Figure 2-16. Floating-point Parallel Merge Sign and Exponent Operation

2-90

8180 646362 323130 0 8180 646362 323130 0
FRT, FRf3

8 3
FRf, [o 1003E

81 80 64 63 55 54 3231 2322 0 81 80 64 63 55 54 32312322 0
FR f, FRf3

IA-64 Instruction Reference



intel.

Operation:

FP Exceptions: None

Interruptions:

fpmerge
if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, fy, f3, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);
if (fp_is_natval (FRIf,]) || fp_is_natval (FRf3])) {
FR 1] = NATVAL;
} else {
if (neg_sign_forn {
tmp_res_hi = (I FR{f,].significand{63} << 31)
| (FRf3].significand{62:32});
tmp_res_lo = (! FR[f,].significand{31} << 31)
| (FRf3].significand{30:0});
} elseif (sign_form {
tnp_res_hi = (FR[f,].significand{63} << 31)
| (FR{f3].significand{62:32});
tmp_res_lo = (FR{f,].significand{31} << 31)
| (FR{f3].significand{30:0});
} else { /1 sign_exp_form
tmp_res_hi = (FR{f,].significand{63:55} << 23)
| (FR{f3].significand{54:32});
tmp_res_lo = (FR{f,].significand{31:23} << 23)
| (FRf3].significand{22:0});
}
FRIf,].significand = fp_concatenate(tnp_res_hi, tnmp_res_|o0);
FR[ f 1] . exponent = FP_I NTEGER EXP;
FR f1].sign = FP_SI G\ _PCSI Tl VE;
}
fp_updat e_psr(fq);
}
Ilegal Operation fault Disabled Floating-point Register fault

IA-64 Instruction Reference 2-91



fpmin

intel.

Floating-Point Parallel Minimum

Format:

Description:

Operation:

(gp) fpmin.sf f; =f,, f5 F8

The paired single precision values in the significands of FR f, or FR f;3 are compared. The operands
with the smaller valueisreturned in significand of FR f;.

If the value of high (low) FR f, isless than the value of high (low) FR f3, high (low) FR f; getshigh
(low) FR f,. Otherwise high (low) FR f; gets high (low) FR f5.

If high (low) FR f, or high (low) FR fzisaNaN, high (low) FR f; gets high (low) FR fs.

The exponent field of FR f, is set to the biased exponent for 2.088 (0x1003E) and the sign field of
FR f; is set to positive (0).

If either FRf, or FR fzisaNaTVal, FR f; isset to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic floating-point
instructions. The Invalid Operation is signaled in the same manner as for thef pcnp. | t operation.

The mnemonic values for sf are given in Table 2-22 on page 2-42.

if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, f,, f3 0))
di sabl ed_fp_register_fault(tnp_i srcode, 0);

if (fp_is_natval (FRIf,]) || fp_is_natval (FR[fg])) {
FRIf1] = NATVAL;
} else {
f pm nmax_exception_faul t _check(f,, f3, sf, &np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

tmp_fr2 = tnp_left = fp_reg_read_hi (f5,);

tmp_fr3 = tnp_right = fp_reg_read_hi(fj3);

tnp_bool res = fp_less_than(tnmp_left, tnp_right);
tnp_res_hi = fp_single(tnp_bool _res ? tnp_fr2: tnp_fr3);

tmp_fr2 = tnp_left = fp_reg_read_| o(f,);

tnmp_fr3 = tnp_right = fp_reg_read_| o(f3);

tnp_bool _res = fp_less_than(tnp_left, tnp_right);
tnp_res_lo = fp_single(tnp_bool _res ? tnp_fr2: tnp_fr3);

FR(f.].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo0);
FR{ f,] . exponent = FP_| NTEGER EXP;

FR f4].sign = FP_SI GN_PCSI Tl VE

fp_update_fpsr(sf, tnp_fp_env);

}
fp_update_psr(fq);
}

FP Exceptions: Invalid Operation (V)

Interruptions:
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Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

[llegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault
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fompy

Floating-Point Parallel Multiply

Format:

Description:

Operation:

(ap) fpmpy.sf 1 =13, 4 pseudo-op of: (gp) fpmasf f; =13, f,, O

The pair of products of the pairs of single precision valuesin the significand fields of FR f; and FR
f, are computed to infinite precision. The resulting values are then rounded to single precision
using the rounding mode specified by FPSR.sf.rc. The pair of rounded results are stored in the
significand field of FR f;. The exponent field of FR f; is set to the biased exponent for 2.0%3
(Ox1003E) and the sign field of FR f; is set to positive (0).

If either FR f5, or FR f4isaNaTVal, FR f; is set to NaTVal instead of the computed results.
The mnemonic values for sf are given in Table 2-22 on page 2-42.

The encodings and interpretation for the status field's rc are given in Table 5-6 on page 5-6 in
Volume 1.

See “Floating-Point Parallel Miltiply Add” on p. 2-87.
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Floating-Point Parallel Multiply Subtract

Format: (gp) fpms.sf f; =13, Ty, o F1

Description:  The pair of products of the pairs of single precision valuesin the significand fields of FR f3 and
FR f, are computed to infinite precision and then the pair of single precision valuesin the
significand field of FR f, is subtracted from these products, again in infinite precision. The
resulting values are then rounded to single precision using the rounding mode specified by
FPSR.sf.rc. The pair of rounded results are stored in the significand field of FR f;. The exponent
field of FR f; is set to the biased exponent for 2.0%% (0x1003E) and the sign field of FR f, is set to

positive (0).
Note: If any of FR f3, FRf,, or FRf,isaNaTVal, FRf; isset to NaT Val instead of the computed
results.

Mapping: If f, isf0 in the fpms instruction, just the |EEE multiply operation is performed.
The mnemonic values for sf are given in Table 2-22 on page 2-42.

The encodings and interpretation for the status field’s rc are given in Table 5-6 on page 5-6 in
Volume 1.

Operation: if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(fq, fo, f3, fg))
di sabl ed_fp_register_fault(tnp_i srcode, 0);

if (fp_is_natval (FRf5]) || fp_is_natval (FR[fg3]) ||
fp_is_natval (FRIf4])) {
FRf1] = NATVAL;
fp_update_psr(fq);
} else {
tnp_default _result_pair = fpns_f pnma_exception_faul t _check(f,, fg,
fq, sf, & np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_faul t(fp_decode fault(tnp_fp_env));

if (fp_is_nan_or _inf(tnp_default_result_pair.hi)) {
tnp_res_hi = fp_single(tnp_default_result_pair.hi);

} else {
tmp_res = fp_nul (fp_reg_read_hi (f3), fp_reg_read_hi(fg));
if (fo1=0) {

trp_sub = fp_reg_read_hi(f,);
tnp_sub. sign = l'tnp_sub. sign;
tnp_res = fp_add(tnp_res, tnp_sub, tnp_fp_env);
}
tnp_res_hi = fp_ieee_round_sp(tnmp_res, HGH &np_fp_env);

}

if (fp_is_nan_or _inf(tnp_default_result_pair.lo)) {
tnp_res_lo = fp_single(tnmp_default_result_pair.lo);

} else {
tmp_res = fp_nul (fp_reg_read_lo(fs3), fp_reg_read_lo(fy));
if (fo1=0) {

trp_sub = fp_reg_read_| o(f,);
tnp_sub. sign = I'tnp_sub. sign;
tnp_res = fp_add(tnp_res, tnp_sub, tnp_fp_env);

}
tnp_res_lo = fp_ieee_round_sp(tnp_res, LON & np_fp_env);
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FRIf,].significand = fp_concatenate(tnp_res_hi, trmp_res_|0);

FR[ f 1] . exponent = FP_I NTEGER EXP;

FR f1].sign = FP_SI G\ _PCSI Tl VE;
fp_update_fpsr(sf, tnp_fp_env);
fp_update_psr(fq);

if (fp_raise_traps(tnmp_fp_env))

fp_exception_trap(fp_decode_trap(tnp_fp_env));

}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Ilegal Operation fault
Disabled Floating-point Register fault

Interruptions:

IA-64 Instruction Reference

Underflow (U)

Overflow (O)

Inexact (1)

Software Assist (SWA) trap

Floating-point Exception fault
Floating-point Exception trap
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Floating-Point Parallel Negate

Format:

Description:

Operation:

2-96

(gp) fpneg f; =13 pseudo-op of: (gp) fpmerge.ns fq =fg, f3

The pair of single precision valuesin the significand field of FR f3 are negated and stored in the
significand field of FR f,. The exponent field of FR f, is set to the biased exponent for 2.0%3
(Ox1003E) and the sign field of FR f; is set to positive (0).

If FRfyisaNaTVal, FRf; is set to NaT Val instead of the computed result.

See “Fl oating-Point Parallel Merge” on p. 2-90.
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Floating-Point Parallel Negate Absolute Value
Format: (gp) fpnegabs f; =fs pseudo-op of: (qp) fpmerge.ns f; =10, f3

Description: ~ The absolute values of the pair of single precision valuesin the significand field of FR f; are
computed, negated and stored in the significand field of FR f;. The exponent field of FR f; isset to
the biased exponent for 2.0%8 (Ox1003E) and the sign field of FR f; is set to positive (0).

If FRfyisaNaTVal, FRf; is set to NaTVal instead of the computed result.

Operation: See “Fl oating-Point Parallel Merge” on p. 2-90.
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intel.

Floating-Point Parallel Negative Multiply Add

Format:

Description:

Operation:

2-98

(gp) fpnmasf fy =13, fy, f> F1

The pair of products of the pairs of single precision valuesin the significand fields of FR f3 and
FR f, are computed to infinite precision, negated, and then the pair of single precision valuesin the
significand field of FR f, are added to these (negated) products, again in infinite precision. The
resulting values are then rounded to single precision using the rounding mode specified by
FPSR.sf.rc. The pair of rounded results are stored in the significand field of FR f;. The exponent
field of FR f; is set to the biased exponent for 2.0%% (0x1003E) and the sign field of FR f, is set to
positive (0).

If any of FR f3, FR f,, or FRf, isaNaTVal, FR f; is set to NaTVal instead of the computed result.

Note: If f,isfOinthef pnma instruction, just the |EEE multiply operation (with the product
being negated before rounding) is performed.
The mnemonic values for sf are given in Table 2-22 on page 2-42.

The encodings and interpretation for the status field’s rc are given in Table 5-6 on page 5-6 in
Volume 1.

if (PRgp]) {
fp_check_target_register(f,);
if (tnp_isrcode = fp_reg_disabled(fq, fo, f3, f4))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf,]) || fp_is_natval (FRfg]) ||
fp_is_natval (FRIf4])) {
FRIf1] = NATVAL;
f p_updat e_psr(fq);
} else {
tnp_defaul t _result_pair = fpns_fpnma_exception_fault_check(f,, fg3,
fq, sf, &np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_faul t(fp_decode fault(tnp_fp_env));

if (fp_is_nan_or _inf(tnp_default_result_pair.hi)) {
tnp_res_hi = fp_single(tnp_default_result_pair.hi);
} else {
trp_res = fp_nul (fp_reg_read_hi(f3), fp_reg_read_hi(fy));
tnp_res.sign = ltnp_res.sign;
if (f, 1=0)
tmp_res = fp_add(tnp_res, fp_reg_read_hi(f,), tnp_fp_env);
tnp_res_hi = fp_ieee_round_sp(tnmp_res, HGH &np_fp_env);

if (fp_is_nan_or _inf(tnp_default_result_pair.lo)) {
tnp_res_lo = fp_single(tnp_default_result_pair.lo);
} else {
tmp_res = fp_nul (fp_reg_read_lo(fs3), fp_reg_read_lo(fy));
tnp_res.sign = ltnp_res.sign;
if (f, 1=0)
tmp_res = fp_add(tnp_res, fp_reg_read_lo(f,), trmp_fp_env);
tnp_res_lo = fp_ieee_round_sp(tnp_res, LON & np_fp_env);
}

FR f,].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo0);
FR{ f 4] . exponent = FP_| NTEGER EXP;
FR(f4].sign = FP_SI GN_POSI Tl VE;
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fp_update _fpsr(sf, tnp_fp_env);

fp_update_psr(f);

if (fp_raise_traps(tnmp_fp_env))
fp_exception_trap(fp_decode_trap(tnp_fp_env));

}

}
FP Exceptions: Invalid Operation (V) Underflow (U)

Denormal/Unnormal Operand (D) Overflow (O)

Software Assist (SWA) fault Inexact (1)

Software Assist (SWA) trap

Interruptions: Illegal Operation fault Floating-point Exception fault

Disabled Floating-point Register fault Floating-point Exception trap
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Floating-Point Parallel Negative Multiply

Format:

Description:

Operation:

2-100

(gp) fpnmpy.sf f; =13, f4 pseudo-op of: (gp) fpnmasf f; =f3, f4,f0

The pair of products of the pairs of single precision valuesin the significand fields of FR f3 and
FR f, are computed to infinite precision and then negated. The resulting values are then rounded to
single precision using the rounding mode specified by FPSR.sf.rc. The pair of rounded results are
stored in the significand field of FR f;. The exponent field of FR f; is set to the biased exponent for
2.0%3 (0x1003E) and the sign field of FR f, is set to positive (0).

If either FR f3 or FRf,isaNaTVal, FR f; is set to NaTVal instead of the computed results.
The mnemonic values for sf are given in Table 2-22 on page 2-42.

The encodings and interpretation for the status field’s rc are given in Table 5-6 on page 5-6 in
Volume 1.

See “Fl oating-Point Parallel Negative Miultiply Add” on p. 2-98.
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Floating-Point Parallel Reciprocal Approximation
Format: (ap) fprepast fq, po=1y, f3 F6

Description:  If PR gpisO, PR p,iscleared and FR f; remains unchanged.
If PR gpis1, thefollowing will occur:

+ Each half of the significand of FR f; is either set to an approximation (with arelative error
<2‘8'886) of the reciprocal of the corresponding half of FR f, or set to the | EEE-754 mandated
response for the quotient FR f,/FR f3 of the corresponding half — if that half of FR f, or of
FR f3 isin the set {-Infinity, -0, +0, +Infinity, NaN}.

« |If either half of FR f; is set to the |EEE-754 mandated quotient, or is set to an approximation of
the reciprocal which may cause the Newton-Raphson iterations to fail to produce the correct
| EEE-754 divide result, then PR p, is set to O, otherwise it is set to 1.

For correct |EEE divide results, when PR p, is cleared, user software is expected to compute
the quotient (FR fo/FR f3) for each half (using the non-parallel f r cpa instruction), and merge
theresultsinto FR f;, keeping PR p, cleared.

« The exponent field of FRf; is set to the biased exponent for 2.06% (0x1003E) and the sign field
of FR f; is set to positive (0).
* If either FRf, or FR fyisaNaTVal, FR f; is set to NaTVal instead of the computed result, and
PR p, is cleared.
The mnemonic values for sf are given in Table 2-22 on page 2-42.
Operation: if (PRgp]) {
fp_check_target_register(fq);

if (tnp_isrcode = fp_reg_disabled(fq, fy, f3, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f5]) || fp_is_natval (FRf3])) {
AL;

FR f1] = NATV,
PR py] = 0;
} else {

tnp_defaul t _result_pair = fprcpa_exception_fault_check(f,, fg3, sf,
& mp_fp_env, & imts_check);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan_or_inf(tnp_default _result_pair.hi) ||
limts_check. hi_fr3) {
tnp_res_hi = fp_single(tnp_default_result_pair.hi);
tnp_pred_hi = 0;
} else {
num = fp_normalize(fp_reg_read_hi(fj,));
den = fp_normalize(fp_reg_read_hi(fj3));
if (fp_is_inf(nun) && fp_is_finite(den)) {
tnp_res = FP_INFINTY,;
tnp_res.sign = numsign " den.sign;
tnp_pred_hi = 0;
} elseif (fp_is_finite(num && fp_is_inf(den)) {
tnp_res = FP_ZERQ
tnp_res.sign = numsign ” den.sign;
tnp_pred_hi = 0;
} else if (fp_is_zero(nun) && fp_is_finite(den)) {
tnp_res = FP_ZERQ
tnp_res.sign = numsign ” den. sign;
tnp_pred_hi = 0;
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} else {

tnp_res = fp_ieee_reci p(den);
if (limts_check.hi_fr2_or_quot)

tnp_pred_hi
el se
tnp_pred_hi
}

tnp_res_hi = fp_single(tnp_res);

if (fp_is_nan_or _inf(tnp_default_result_pair.lo) ||

limts_check.lo_fr3) {

tnp_res_lo = fp_single(tnmp_default_result_pair.lo);

tnp_pred_lo = 0;
} else {

num = fp_normalize(fp_reg_read_|l o(fy));
den = fp_nornalize(fp_reg_read_lo(f3));
if (fp_is_inf(nun && fp_is_finite(den)) {

tnp_res = FP_INFINTY,

tnp_res.sign = numsign »~ den. sign;

tnp_pred_lo = 0;

} else if (fp_is_finite(num && fp_is_inf(den)) {
tnp_res = FP_ZERQ
tnp_res.sign = numsign ~ den. sign;
tnp_pred_lo = 0;

} else if (fp_is_zero(num && fp_is_finite(den)) {
tnp_res = FP

tnp_res.sign
tnp_pred_lo = 0;
} else {

ZERQ
= num sign ” den. sign;

tnp_res = fp_ieee_reci p(den);
if (limts_check.lo_fr2_or_quot)

tmp_pred_lo = O;

el se
tnp_pred_lo
}

tnp_res_lo = fp_single(tnmp_res);

}

FR f4].significand = fp_concatenate(tnp_res_hi, tnp_res_|o);

FR{f 4] . exponent = FP_| NTEGER EXP;
FRf,].sign = FP_SIGN_POSI Tl VE

PR po] = tnp_pred_hi && tnp_pred_| o;

fp_update_fpsr(sf, tnp_fp_env);

fp_update_psr(fq);
} else {
PRI p2] = 0;

FP Exceptions: Invalid Operation (V)
Zero Divide (2)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault
Disabled Floating-point Register fault
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Floating-point Exception fault
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Floating-Point Parallel Reciprocal Square Root Approximation
Format: (ap) fprsgrtast fq, p, =f3 F7

Description:  If PR gpisO, PR p,iscleared and FR f; remains unchanged.
If PR gpis1, thefollowing will occur:

+ Each half of the significand of FR f; is either set to an approximation (with arelative error
<2‘8'831) of thereciprocal square root of the corresponding half of FR f5, or set to the IEEE-754
compliant response for the reciprocal square root of the corresponding half of FR f; — if that
half of FR fz isin the set {-Infinity, -Finite, -0, +0, +Infinity, NaN}.

« If either half of FR f is set to the | EEE-754 mandated reciprocal square root, or is set to an
approximation of the reciprocal sguare root which may cause the Newton-Raphson iterations
to fail to produce the correct |EEE-754 square root result, then PR p, isset to O, otherwiseitis
setto 1.

For correct |EEE square root results, when PR p, is cleared, user software is expected to
compute the square root for each half (using the non-paralel f r sgrt a instruction), and merge
theresultsin FR f;, keeping PR p, cleared.

« The exponent field of FRf; is set to the biased exponent for 2.06% (0x1003E) and the sign field
of FR f; is set to positive (0).

* If FRfzisaNaTVal, FR f; isset to NaTVal instead of the computed result, and PR p, is
cleared.

The mnemonic values for sf are given in Table 2-22 on page 2-42.

Operation: if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, fz, 0, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f3])) {
FR f1] = NATVAL;
PR py] = 0;
} else {
tnmp_default _result_pair = fprsqrta_exception_fault_check(fs, sf,
& mp_fp_env, & imts_check);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan(tnp_default_result_pair.hi)) {
tnp_res_hi = fp_single(tnp_default_result_pair.hi);
tnp_pred_hi = 0;
} else {
tmp_fr3 = fp_normalize(fp_reg_read_hi(fg));
if (fp_is_zero(tnmp_fr3)) {
tnp_res = FP_INFINITY;
tnp_res.sign = tnp_fr3.sign;
tnp_pred_hi = 0;
} elseif (fp_is_pos_inf(tnmp_fr3)) {
tnp_res = FP_ZERQ
tnp_pred_hi = 0;
} else {
tnp_res = fp_ieee_recip_sqrt(tnmp_fr3);
if (limts_check.hi)
tnp_pred_hi = 0;
el se
tnp_pred_hi = 1;
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}
tnp_res_hi = fp_single(tnp_res);
}

if (fp_is_nan(tnp_default_result_pair.lo)) {
tnp_res_lo = fp_single(tnp_default_result_pair.lo);

tnp_pred_lo = 0;

} else {

tmp_fr3 = fp_normalize(fp_reg_read_lo(fg));

if (fp_is_zero(tnmp_fr3)) {
tnp_res = FP_INFINTY,
tnp_res.sign = tnp_fr3.sign;
tnp_pred_lo = 0;

} else if (fp_is_pos_inf(tnmp_fr3)) {
tnp_res = FP_ZE
tnp_pred_lo = 0;

} else {
tnp_res = fp_ieee_recip_sqgrt(tnp_fr3);
if (limts_check.lo)

tnp_pred_lo = O;
el se
tnp_pred_lo = 1;
}
tnp_res_lo = fp_single(tnmp_res);
}

FR f4].significand = fp_concatenate(tnp_res_hi, tnp_res_|o);
FR{f 4] . exponent = FP_| NTEGER EXP;

FR(f4].sign = FP_SI GN_PCSI Tl VE;

PR po] = tnp_pred_hi && tnp_pred_| o;

fp_update_fpsr(sf, tnp_fp_env);
}
fp_update_psr(fq);

} else {
PR p2] = 0;

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

2-104 IA-64 Instruction Reference



inte|® frcpa

Floating-Point Reciprocal Approximation
Format: (ap) frepasf fq, pp =1, f3 F6

Description:  If PR gpis0, PR p,iscleared and FR f; remains unchanged.
If PR gpis1, thefollowing will occur:

» FRf; iseither set to an approximation (with arelative error <2‘8'886) of thereciprocal of FR fs,
or to the IEEE-754 mandated quotient of FR f,/FR f; — if either FR f, or FR fzisin the set
{-Infinity, -0, Pseudo-zero, +0, +Infinity, NaN, Unsupported} .

* If FRf; isset to the approximation of the reciprocal of FR f3, then PR p, is set to 1; otherwise,
itissettoO.

* If FR f, and FR f3 are such that the approximation of FR f5's reciprocal may cause the
Newton-Raphson iterations to fail to produce the correct |EEE-754 result of FR fo/FR f3, then a
Floating-point Exception fault for Software Assist occurs.

System software is expected to compute the |EEE-754 quotient (FR f,/FR f3), return the result
in FR f, and set PR p, to O.

* If either FRf, or FR fyisaNaTVal, FR f; is set to NaTVal instead of the computed result, and
PR p, is cleared.

The mnemonic values for sf are given in Table 2-22 on page 2-42.

Operation: if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(fq, fy, f3, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f5]) || fp_is_natval (FRf3])) {
FR 1] = NATVAL;
PRI py] = 0;
} else {
tnmp_defaul t _result = frcpa_exception_fault_check(f,, fj3, sf,
& nmp_fp_env);

if (fp_raise_fault(tnmp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan_or_inf(tnp_default _result)) {
default _result;

num = fp_normalize(fp_reg_read(FRf5]));
den = fp_normalize(fp_reg_read(FR f3]));
if (fp_is_inf(nun) && fp_is_finite(den)) {

FRIfq1] = FP_INFINTY;
FR[f,].sign = numsign * den.sign;
PRpg] =0 o
} elseif (fp_is_finite(nun) && fp_is_inf(den)) {
FR f{] = FP_ZERQ
FR[f1].sign = numsign * den.sign;
PRIpy] = 07 L
} else if (fp_is_zero(nun) && fp_is_finite(den)) {
FR f,] = FP_ZERQ
FR[f41].sign = numsign ” den.sign;
PRI py] = 0;
} else {
FR f,] = fp_i eee_recip(den);
PRI py] = 1;
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fp_update fpsr(sf, tnp_fp_env);

fp_update_psr(fq);
} else {
PRI p2] = 0;

/1 fp_ieee_recip()
f p_i eee_reci p(den)

RECI P_TABLE[ 256] = {
0x3fc, Ox3f4, 0x3ec, 0x3e4, 0x3dd, 0x3d5, 0x3cd, 0x3c6,
0Ox3be, 0x3b7, Ox3af, 0x3a8, 0x3al, 0x399, 0x392, 0x38b
0x384, 0x37d, 0x376, O0x36f, 0x368, 0x361, 0x35b, 0x354,
0x34d, 0x346, 0x340, 0x339, 0x333, 0x32c, 0x326, 0x320,
0x319, 0x313, 0x30d, 0x307, 0x300, Ox2fa, 0x2f4, Ox2ee,
0x2e8, 0x2e2, 0x2dc, 0x2d7, 0x2dl1l, 0Ox2ch, 0x2c5, O0Ox2bf,
Ox2ba, 0x2b4, O0x2af, 0x2a9, 0x2a3, 0x29e, 0x299, 0x293,
0x28e, 0x288, 0x283, 0x27e, 0x279, 0x273, 0x26e, 0x269,
0x264, O0x25f, 0x25a, 0x255, 0x250, O0x24b, 0x246, 0x241
0x23c, 0x237, 0x232, 0x22e, 0x229, 0x224, 0x21f, 0x21b
0x216, 0x211, 0x20d, 0x208, 0x204, Ox1ff, Ox1fb, Ox1f6
0Ox1f 2, Oxled, O0x1le9, Oxle5, 0x1leO, Oxldc, 0x1d8, 0x1d4,
Ox1lcf, Oxlcb, Oxl1lc7, 0x1c3, Ox1bf, Oxlbb, 0x1b6, 0x1b2
Oxlae, Oxlaa, Oxla6, Oxla2, O0x19e, 0x19a, 0x197, 0x193,
Ox18f, 0x18b, 0x187, 0x183, 0x17f, Ox17c, 0x178, 0x174,
0x171, 0x16d, 0x169, 0x166, 0x162, Ox15e, 0x15b, 0x157,
0x154, 0x150, 0x14d, 0x149, 0x146, 0x142, 0x13f, 0x13b,
0x138, 0x134, 0x131, Ox1l2e, 0x12a, 0x127, 0x124, 0x120,
Ox11d, Ox1la, 0x117, 0x113, 0x110, 0x10d, 0x10a, 0x107,
0x103, 0x100, 0xOfd, OxOfa, OxOf7, OxO0f4, 0xOf1, OxOee,
0x0eb, 0x0e8, 0x0e5, 0x0e2, 0x0df, 0xOdc, 0x0d9, 0x0d6
0x0d3, 0x0dO, 0xOcd, 0Ox0Oca, 0x0c8, 0x0c5, 0x0c2, O0xObf,
0x0bc, 0x0b9, 0x0b7, 0x0b4, 0xObl, OxOae, O0x0Oac, 0x0a9,
0x0a6, 0x0a4, Ox0al, 0x09e, 0x09c, 0x099, 0x096, 0x094,
0x091, 0x08e, 0x08c, 0x089, 0x087, 0x084, 0x082, 0Ox07f,
0x07c, 0x07a, 0x077, 0x075, 0x073, 0x070, 0x06e, 0x06b,
0x069, 0x066, 0x064, 0x061, 0xO05f, 0x05d, 0x05a, 0x058,
0x056, 0x053, 0x051, 0x04f, 0Ox04c, 0x04a, 0x048, 0x045,
0x043, 0x041, 0x03f, 0x03c, 0x03a, 0x038, 0x036, 0x033,
0x031, 0x02f, 0x02d, 0x02b, 0x029, 0x026, 0x024, 0x022
0x020, 0x0le, 0x0lc, Ox01a, 0x018, 0x015, 0x013, 0x011,
0x00f, 0x00d, 0x00b, 0x009, 0x007, 0x005, 0x003, 0x001

h

tnp_i ndex = den. si gni fi cand{62: 55};

tnp_res.significand = (1 << 63) | (RECI P_TABLE tnp_i ndex] << 53);
tnp_res. exponent = FP_REG EXP_ONES - 2 - den. exponent;
tnp_res.sign = den.sign

return (tnp_res);

}

FP Exceptions: Invalid Operation (V)
Zero Divide (2)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Olllegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault
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Floating-Point Reciprocal Square Root Approximation
Format: (ap) frsgrtasf fq, p, =f3 F7

Description:  If PR gpis0, PR p,iscleared and FR f; remains unchanged.
If PR gpis1, thefollowing will occur:

» FRf, iseither set to an approximation (with arelative error <2'8'831) of the reciprocal square
root of FR f3, or set to the |[EEE-754 mandated square root of FR f; — if FR f3isin the set
{-Infinity, -Finite, -0, Pseudo-zero, +0, +Infinity, NaN, Unsupported} .

* If FRf; isset to an approximation of the reciprocal square root of FR f3, then PR p,issetto 1;
otherwise, it isset to 0.

* If FR f5is such the approximation of itsreciprocal square root may cause the Newton-Raphson
iterations to fail to produce the correct | EEE-754 square root result, then a Floating-point
Exception fault for Software Assist occurs.

System software is expected to compute the IEEE-754 square root, return the result in FR fy,
and set PR p, to O.

* If FRfzisaNaTVal, FR f; is set to NaTVal instead of the computed result, and PR p, is
cleared.

The mnemonic values for sf are given in Table 2-22 on page 2-42.

Operation: if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, fz, 0, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f3])) {
FR f1] = NATVAL;
PRI p] = 0;
} else {
tnmp_default _result = frsqgrta_exception_faul t_check(fs, sf,
& nmp_fp_env);
if (fp_raise_fault(tnmp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan(tnp_default_result)) {
FR{f;] = tnp_default_result;
PR py] = 0;
} else {
tmp_fr3 = fp_normalize(fp_reg_read(FR f3]));
if (fp_is_zero(tnmp_fr3)) {

FRIfq] = tnp_fr3;
PRI py] = 0;

} elseif (fp_is_pos_inf(tnmp_fr3)) {
FRIfq] = tnp_fr3;
PR py] = 0;

} else {
FR{f,] = fp_ieee_recip_sqrt(tnp_fr3);
PRI po] = 1,

}

fp_update_fpsr(sf, tnp_fp_env);
}
fp_updat e_psr(fq);

} else {
PR py] = 0;
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}

/1 fp_ieee recip_sqrt()

fp_ieee_recip_sqrt(root)

RECI P_SQRT_TABLE[ 256] = {

0Oxlab, 0x1l1a0
0x17a, 0x175
0x153, Ox14e
0x12f, Ox12a,
0x10d, 0x109,
Ox0ee, O0xOea
0x0d1l, OxOce,
0x0b6, 0x0b3
0x09d, 0x09a,
0x085, 0x082
0x06f, 0x06¢c,
0x05a, 0x057
0x045, 0x043
0x033, 0x030
0x020, O0xOle
0x00f, 0x00d,
0x3fc, Ox3f4,
0x3bf, 0x3b8,
0x388, 0x381
0x354, 0x34e
0x325, 0x31f,
0x2f 9, O0x2f4,
0x2d0, 0x2cb
Ox2aa, 0x2ab
0x286, 0x282
0x264, 0x260
0x245, 0x241
0x227, 0x223
0x20a, 0x207
Ox1f 0, Oxlec,
0x1d6, 0x1d3,
Oxlbe, Ox1bb

}s

0x19a, 0x195, 0x18f, 0x18a, 0x185, 0x180,
0x170, 0x16b, 0x166, 0x161, 0x15d, 0x158,
Ox14a, 0x145, 0x140, Ox13c, 0x138, 0x133,
0x126, 0x122, Oxlle, Ox1la, 0x115, Ox111,
0x105, 0x101, OxOfd, OxOfa, 0xOf6, OxOf 2,
0x0e7, 0x0e3, 0x0df, Ox0dc, 0x0d8, 0x0d5
0x0ca, 0x0c7, 0x0c3, 0x0cO, 0OxObd, 0x0b9
0x0b0, Ox0Oad, 0x0a9, 0x0a6, 0x0a3, 0x0a0,
0x097, 0x094, 0x091, 0x08e, 0x08b, 0x088,
0x07f, 0x07d, 0x07a, 0x077, 0x074, 0x071
0x069, 0x067, 0x064, 0x061, 0x05f, 0xO05c,
0x054, 0x052, 0x04f, 0x04d, 0x04a, 0x048,
0x041, 0x03e, 0x03c, 0x03a, 0x037, 0x035
0x02e, 0x02c, 0x029, 0x027, 0x025, 0x023,
0Ox01lc, Ox0Ola, 0x018, 0x016, 0x014, 0x011,
0x00b, 0x009, 0x007, 0x005, 0x003, 0x001
0Ox3ec, 0x3eb5, 0x3dd, 0x3d5, 0x3ce, 0x3c7,
0x3b1l, O0x3aa, 0x3a3, 0x39c, 0x395, 0x38e,
0x37a, 0x374, 0x36d, 0x367, 0x361, 0x35a,
0x348, 0x342, 0x33c, 0x336, 0x330, 0x32b,
0x31la, 0x314, 0x30f, 0x309, 0x304, Ox2fe,
Ox2ee, 0x2e9, 0x2e4, 0x2df, 0x2da, 0x2d5
0x2c6, 0x2cl, 0x2bd, 0x2b8, 0x2b3, O0x2ae,
Ox2al, 0x29c, 0x298, 0x293, 0x28f, 0x28a,
0x27d, 0x279, 0x275, 0x271, 0x26d, 0x268,
0x25c, 0x258, 0x254, 0x250, 0x24c, 0x249
0x23d, 0x239, 0x235, 0x232, 0x22e, 0x22a,
0x220, 0x21c, 0x218, 0x215, 0x211, 0x20e,
0x204, 0x200, Ox1fd, O0x1f9, 0x1f6, Oxif3,
Ox1le9, 0xle6, Oxle3, Ox1ldf, Oxldc, 0x1d9
0x1d0, Oxlcd, Oxlca, Oxlc7, Oxl1lc4, Oxlcl
0x1b8, Ox1b5, 0x1b2, Oxlaf, Oxlac, Oxlaa,

tp_i ndex = (root.exponent{0} << 7) | root.significand{62:56};
tnp_res.significand = (1 << 63) | (RECI P_SQRT_TABLE[tnp_i ndex] << 53)

t np_r es. exponent

= FP_REG EXP_HALF -
((root.exponent - FP_REG BIAS) >> 1);

tnp_res.sign = FP_SI GN_PCsI Tl VE

return (tnp_res);

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions:
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Illegal Operation fault

Floating-point Exception fault

Disabled Floating-point Register fault
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Floating-Point Select
Format: (gp) fselect f; =fa, T4, fo F3

Description: ~ The significand field of FR f3 islogically AND-ed with the significand field of FR f, and the
significand field of FR f, islogically AND-ed with the one’s complement of the significand field of
FR f,. The two results are logically OR-ed together. The result is placed in the significand field of
FRf;.

The exponent field of FR f; is set to the biased exponent for 2.03 (0x1003E). The sign bit field of
FR f; is set to positive (0).

If any of FR f3, FR Ty, or FRf, isaNaTVal, FR f; is set to NaTVal instead of the computed result.

Operation: if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(fq,, fp, f3, fyg))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FRf3]) ||
fp_is_natval (FRIf4])) {
FR 1] = NATVAL;

} else {
FR[f4.].significand = (FRf3].significand & FR{f,].significand)

| (FRf4].significand & ~FR[f,]. significand);
FR{ f ;] . exponent = FP_| NTEGER EXP;
FR f1].sign = FP_SI G\ _POSI Tl VE;

fp_updat e_psr(fq);

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault
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Floating-Point Set Controls
Format: (gp) fsetc.sf amasky, omasky; F12

Description:  The status field’s control bits are initialized to the value obtained by logically AND-ing the
sfO.controls and amask; immediate field and logically OR-ing the omask; immediate field.

The mnemonic values for sf are given in Table 2-22 on page 2-42.

Operation: if (PRgp]) {
trmp_controls = (AR FPSR .sf0.controls & amask;) | onmasky;
if (is_reserved_fiel d(FSETC, sf, tnp_controls))
reserved_register_field fault();
fp_set_sf_control s(sf, tnp_controls);

}

FP Exceptions: None

Interruptions: Reserved Register/Field fault
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Floating-Point Subtract
Format: (gp) fsub.pc.sf f; =13, 1, pseudo-op of: (qp) fms.pc.sf f; =13, 1, f,

Description:  FRf, is subtracted from FR f3 (computed to infinite precision), rounded to the precision indicated

by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc,
and placed in FR f;.

If either FRfy or FR f, isaNaTVal, FR f; is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-21 on page 2-42. The mnemonic
valuesfor sf are given in Table 2-22 on page 2-42. For the encodings and interpretation of the status
field's pc, wre, and rc, refer to Table 5-5 and Table 5-6 on page 5-6 in Volume 1.

Operation: See “Floating-Point Miultiply Subtract” on p. 2-69.

IA-64 Instruction Reference 2-111



fswap

intel.

Floating-Point Swap

Format:

Description:

(gp) fswap fi =1, f3 swap_form F9
(gp) fswap.nl f; =1y, f3 swap_nl_form F9
(gp) fswap.nr f; =1, f3 swap_nr_form F9

For the swap_form, the left single precision value in FR f, is concatenated with the right single
precision value in FR f5. The concatenated pair is then swapped.

For the swap_nl_form, theleft single precision value in FR f, is concatenated with the right single
precision value in FR f3. The concatenated pair is then swapped, and the |eft single precision value
is negated.

For the swap_nr_form, the left single precision value in FR f, is concatenated with the right single
precision valuein FR f3. The concatenated pair isthen swapped, and the right single precision value
is negated.

For all forms, the exponent field of FR f; is set to the biased exponent for 2.0%8 (0x1003E) and the
sign field of FR f; is set to positive (0).

For all forms, if either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed
result.

Figure 2-17. Floating-point Swap

Figure 2-18. Floating-point Swap Negate Left

8180 6463 32 31 0 8180 6463 32 31 0
FR f, FRf3

FRf; [9 1003E

8180 6463 32 31 0 8180 6463 323130 0
FRT, FRf3

negated si

Figure 2-19. Floating-point Swap Negate Right
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8180 646362 32 31 0 8180 6463 3231 0
FR f, FRf3

negated si

8180 0
FR f; [9 1003E
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Operation:

fswap

if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, fy, f3, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf,]) || fp_is_natval (FRf3])) {
FR 1] = NATVAL;
} else {
if (swap_form ({
tnmp_res_hi = FR{f3].significand{31:0};
tnmp_res_lo = FR{f,].significand{63: 32};
} elseif (swap_nl_form {
tmp_res_hi = (I FR{fg3].significand{31} << 31)
| (FRf3].significand{30:0});
tmp_res_lo = FR{f,].significand{63:32};
} else { /] swap_nr_form
tnp_res_hi = FR{f3].significand{31:0};
tmp_res_lo = (! FR{f,].significand{63} << 31)
| (FRf,].significand{62:32});
}

FR f,].significand = fp_concatenate(tnp_res_hi, tnp_res_|o0);
FR{f,] . exponent = FP_| NTEGER EXP;
FR f1].sign = FP_SI G\ _POSI Tl VE;

}

fp_updat e_psr(fq);

FP Exceptions: None

Interruptions:

Illegal Operation fault Disabled Floating-point Register fault
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Floating-Point Sign Extend

Format:

Description:

(gp) fsxt.l fq =1y, f3 sxt_|_form F9
(gp) fsxtr fy =1, f3 sxt_r_form F9

For the sxt_|_form (sxt_r_form), the sign of the left (right) single precision valuein FR f, is
extended to 32-bits and is concatenated with the left (right) single precision valuein FR fa.

For all forms, the exponent field of FR f; is set to the biased exponent for 2.0%8 (0x1003E) and the
sign field of FR f; is set to positive (0).

For all forms, if either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed
result.

Figure 2-20. Floating-point Sign Extend Left

8180 646362 32 31 0 8180 6463 32 31 0
FR f, FRf3
extended 513 3231 0
FRf; |9 1003E
Figure 2-21. Floating-point Sign Extend Right
8180 6463 323130 0 8180 6463 32 31 0
FR f, FRf3
extende
8180 64 32 31
FRf; |9 1003E

Operation:

if (PREap]) {

fp_check_target_register(f,);
if (tnp_isrcode = fp_reg_disabled(f,, fy, f3 0))
di sabl ed_fp_register_fault(tnp_i srcode, 0);

if (fp_is_natval (FRfo]) || fp_is_natval (FRfg])) {
FR 1] = NATVAL;

} else {
if (sxt_|_form {
trmp_res_hi = (FR{f,].significand{63} ? OxFFFFFFFF : 0x00000000);
tmp_res_lo = FRf3].significand{63:32};

} else { [l sxt_r_form
tnp_res_hi (FR{f5].significand{31} ? OxFFFFFFFF : 0x00000000);
tmp_res_lo = FR f3]. significand{31:0};

}

FR(f.].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo0);
FR{ f 1] . exponent = FP_| NTEGER EXP;
FR f4].sign = FP_SI GN_PCSI Tl VE;

}

fp_update_psr(fq);

FP Exceptions: None

Interruptions:
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[llegal Operation fault Disabled Floating-point Register fault
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Flush Write Buffers
Format: (gp) fwb M24

Description: ~ The processor is instructed to expedite flushing of any pending stores held in write or coalescing
buffers. Since this operation is a hint, the processor may or may not take any action and actually
flush any outstanding stores. The processor gives no indication when flushing of any prior storesis
completed. An f wb instruction does not ensure ordering of stores, since later stores may be flushed
before prior stores.

To ensure prior coalesced stores are made visible before later stores, software must issue a release
operation between stores (see Table 4-14 on page 4-33 for alist of release operations).

Thisinstruction can be used to help ensure stores held in write or coalescing buffers are not delayed
for long periods or to expedite high priority stores out of the processors.

Operation: if (PRgp]) {

nmem f | ush_pendi ng_stores();
}

Interruptions: None

IA-64 Instruction Reference 2-115



fxor inte|®

Floating-Point Exclusive Or
Format: (gp) fxor fy =15, f3 F9

Description:  The bit-wiselogical exclusive-OR of the significand fields of FR f, and FR f5 is computed. The
resulting valueis stored in the significand field of FR f;. The exponent field of FR f, is set to the
biased exponent for 2.0%8 (Ox1003E) and the sign field of FR f; is set to positive (0).

If either of FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

Operation: if (PRgp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, f,, f3 0))
di sabl ed_fp_register_fault(tnp_i srcode, 0);

if (fp_is_natval (FRIf,]) || fp_is_natval (FR[fg])) {
FRf1] = NATVAL;
} else {
FRIf,].significand = FR{f,].significand ~ FR f3].significand,
FR[ f 1] . exponent = FP_| NTEGER EXP;
FR f4].sign = FP_SI GN _POSI Tl VE;
}

fp_update_psr(fq);

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault
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Get Floating-Point Value or Exponent or Significand

Format:

Description:

(ap) getf.s ry =1 single form
(qp) getf.d ry=f, double form
(ap) getf.exp ry=f, exponent_form
(ap) getf.sig ry="1 significand_form

getf

M19
M19
M19
M19

In the single and double forms, the value in FR f, is converted into asingle precision (single_form)
or double precision (double_form) memory representation and placed in GRr4. Inthe single_form,

the most-significant 32 bits of GRr; are set to 0.

In the exponent_form, the exponent field of FR f, is copied to bits 16:0 of GR r4 and the sign bit of
thevaluein FR f, is copied to bit 17 of GR r4. The most-significant 46-bits of GRr, are set to zero.

Figure 2-22. Function of getf.exp

FRf, [s|exponent significand
|
63 18*16 i 0
GR r 0
46 1 17

In the significand_form, the significand field of the valuein FR f, is copied to GRr.

Figure 2-23. Function of getf.sig

Operation:

FRf, |s|exponent significand
63 ; 0

64

GR r

For all forms, if FR f, contains aNaT Val, then the NaT bit corresponding to GRr4 isset to 1.

if (PRgp]) {
check_target _register(rq);
if (tnp_isrcode = fp_reg_disabled(f,, 0, 0, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (single_form ({
CRrq]{31:0} = fp_fr_to_memfornmat(FRf,], 4, 0);
GR[rq]{63:32} = 0;
} else if (double_forn ({
Rrq] =fp_fr_to_memformat(FRf,], 8, 0);
} else if (exponent_forn) {
GR[r,]{63:18} = 0;
CRr4] {16: 0} = FR[f,].exponent;
GRr ] {17} = FRIT].sign;
} else // significand_form
R[rq] = FRf,].significand,
if (fp_is_natval (FR[f5]))
GR[rq].nat = 1,
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Interruptions:
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el se

GR(rq].nat = 0;

[llegal Operation fault

Disabled Floating-point Register fault
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Invalidate ALAT

Format: (gp) invala complete form  M24
(gp) invalae rq or_form, entry form  M26
(gp) invalae f; fr_form, entry foom  M27

Description: ~ The selected entry or entriesin the ALAT are invalidated.

In the complete form, all ALAT entries are invalidated. In the entry_form, the ALAT is queried
using the general register specifier rq (gr_form), or the floating-point register specifier f; (fr_form),
and if any ALAT entry matches, it isinvalidated.

Operation: if (PRgp]) {
if (conplete_forn
al at _inval ();
else { // entry_form
if (gr_form
al at _i nval _si ngl e_entry(GENERAL, r4);
else // fr_form
al at _i nval _si ngl e_entry(FLQOAT, fq);

}

Interruptions: None
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Insert Translation Cache

Format:

Description:

Operation:

2-120

(gp) itci ry instruction_form  M41
(gp) itcd ry data foorm  M41

Anentry isinserted into the instruction or data translation cache. GR r, specifies the physical
address portion of the translation. ITIR specifies the protection key, page size and additional
information. The virtual addressis specified by the IFA register and the region register is selected
by IFA{63:61} . The processor determines which entry to replace based on an
implementation-specific replacement algorithm.

The visibility of thei t ¢ instruction to externally generated purges (pt c. g, pt c. ga) must occur
before subsequent memory operations. From a software perspective, thisis similar to acquire
semantics. Serialization is still required to observe the side-effects of atranslation being present.

i t c must be the last instruction in an instruction group; otherwise, its behavior (including its
ordering semantics) is undefined.

The TLB isfirst purged of any overlapping entries as specified by Table 4-1 on page 4-6 in
Volume 2.

Thisinstruction can only be executed at the most privileged level, and when PSR.ic is zero.

To ensure forward progress, software must ensure that PSR.ic remains O until r f i -ing to the
instruction that requires the translation.

if (PRap]) {
if (!'followed_by_stop())
undef i ned_behavi or () ;

if (PSRic)
illegal _operation_fault();
if (PSRcpl '=0)

privil eged_operation_fault(0);

if (&Rr,].nat)

regi ster_nat _consunpti on_faul t (0);

tnp_size = CRITIR]. ps;

tnp_va = CR[ | FA] {60: 0};

tnp_rid = RECR I FA] {63:61}].rid;

tnp_va = align_to_size_boundary(tnp_va, tnp_size);

if (is_reserved_field(TLB_TYPE, CRr,], CRIITIR]))
reserved_register_field fault();

if (uninplenented_virtual _address(CR | FA]))
uni npl ement ed_dat a_addr ess_faul t (0);

if (instruction_form {
tlb_must_purge_itc_entries(tnp_rid, tnp_va, tnp_size);
tlb_may_purge_dtc_entries(tnp_rid, tnp_va, tnp_size);
slot = tlb_replacenment_al gorithm(l TC TYPE);
tlb_insert_inst(slot, GRro], CRITIR, CRIFA, tnp_rid, TO);
} else { /] data_form
tlb_must_purge dtc_entries(tnp_rid, tnp_va, tnp_size);
tlb_may_purge_itc_entries(tnp_rid, tnp_va, tnp_size);
slot = tlb_replacenent _al gorithnmDTC _TYPE);
tlb_insert_data(slot, GRr,], CRITIR, CRIFA], tnp_rid, TO;
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Interruptions: Machine Check abort Reserved Register/Field fault
Privileged Operation fault Unimplemented Data Address fault
Register NaT Consumption fault

Serialization:  For the instruction_form, software must issue an instruction serialization operation before a
dependent instruction fetch access. For the data_form, software must issue a data serialization
operation before issuing a data access or non-access reference dependent on the new trandation.
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Insert Translation Register

Format:

Description:

Operation:

Interruptions:

Serialization:

2-122

(gp) itr.i itrfrg] =r, instruction_form  M42
(gp) itrd dtr[rg] =15 data form  M42

A trandation is inserted into the instruction or data translation register specified by the contents of
GR r3. GRr,, specifies the physical address portion of the translation. I TIR specifies the protection
key, page size and additional information. The virtual addressis specified by the IFA register and
the region register is selected by IFA{63:61}.

Asdescribed in Table 4-1 on page 4-6 in Volume 2, the TLB isfirst purged of any entries that
overlap with the newly inserted translation. The translation previously contained in the TR slot
specified by GR r3 isnot purged from the processor’s TLBs. To remove previous TR trandlations,
software must use explicit pt r instructions.

Thisinstruction can only be executed at the most privileged level, and when PSR.ic is zero.

it (PRLap]) {
if (PSRic)
illegal _operation_fault();
if (PSRcpl '=0)

privil eged_operation_fault(0);

if (&Rrg].nat || GRr,].nat)

regi ster_nat _consunption_faul t (0);

slot = GRr3]{7:0};

tnp_size = CRITIR . ps;

tnp_va = CR | FA] {60: 0};

tnp_rid = RECR I FA] {63:61}].rid;

tnp_va = align_to_size_boundary(tnp_va, tnp_size);

tnp_tr_type = instruction_form? |ITR TYPE : DIR TYPE;

if (is_reserved_reg(tnp_tr_type, slot))
reserved_register_field fault();

if (is_reserved_field(TLB_TYPE, CRr,], CRIITIR]))
reserved_register_field fault();

if (uninplenented_virtual _address(CR | FA]))
uni npl ement ed_dat a_addr ess_faul t (0);

if (instruction_form {
tlb_must_purge_itc_entries(tnp_rid, tnp_va, tnp_size);
tlb_may_purge_dtc_entries(tnp_rid, tnp_va, tnp_size);
tlb_insert_inst(slot, GRr,], CRITIR, CRIFA], tnp_rid, TR);

} else { /] data_form
tlb_nmust_purge_dtc_entries(tnp_rid, tnp_va, tnp_size);
tlb_may_purge_itc_entries(tnp_rid, tnp_va, tnp_size);
tlb_insert_data(slot, GRro], CRITIR, CRIFA, tnp_rid, TR);

}
}
Machine Check abort Reserved Register/Field fault
Privileged Operation fault Unimplemented Data Address fault

Register NaT Consumption fault

For the instruction_form, software must issue an instruction serialization operation before a
dependent instruction fetch access. For the data_form, software must issue a data serialization
operation before issuing a data access or non-access reference dependent on the new trandation.
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Notes: The processor may use invalid trand ation registers for translation cache entries. Performance can
be improved on some processor model s by ensuring translation registers are allocated beginning at
translation register zero and continuing contiguously upwards.
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Format:

Description:

intel.

(gp) Idsz.ldtypeldhint rq =[rg] no_base update form M1
(gp) Idsz.ldtypeldhint rq =[r3], 1o reg_base update form M2
(gp) Idsz.ldtype.ldhint rq =[r3], immg imm_base _update form M3
(gp) Id8.fill.ldhint rq =[r3] fill_form, no_base update form M1
(gp) Id8.fill.ldhint rq =[r3], ry fill_form, reg_base update form M2
(gp) Id8.fill.Idhint rq = [r3], immg fill_form, imm_base update form M3

A value consisting of sz bytesis read from memory starting at the address specified by the value in
GR 3. Thevalueis then zero extended and placed in GR r4. The values of the sz completer are
given in Table 2-30. The NaT bit corresponding to GR r4 is cleared, except as described below for
speculative loads. The Idtype completer specifies special load operations, which are described in
Table 2-31.

For the fill_form, an 8-byte value isloaded, and a bit in the UNAT application register is copied
into the target register NaT bit. Thisinstruction is used for reloading a spilled register/NaT pair. See
Volume 1 for details.

In the base update forms, the value in GR r5 is added to either a signed immediate value (immg) or
avalue from GR r,, and the result is placed back in GR r3. This base register update is done after
the load, and does not affect the load address. In thereg_base update form, if the NaT bit
corresponding to GRr, is set, then the NaT bit corresponding to GR r3 is set and no fault is raised.

For more details on ordered, biased, speculative, advanced and check |oads see Volume 1.

Table 2-30. sz Completers

Table 2-31. Load Types
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sz Completer Bytes Accessed
1 1 byte
2 2 bytes
4 4 bytes
8 8 bytes

Idtype ) ) .
Completer Interpretation Special Load Operation
none Normal load

s Speculative load | Certain exceptions may be deferred rather than generating a fault.
Deferral causes the target register's NaT bit to be set. The NaT bit is
later used to detect deferral.

a Advanced load An entry is added to the ALAT. This allows later instructions to check for
colliding stores. If the referenced data page has a non-speculative
attribute, the target register and NaT bit is cleared, and the processor
ensures that no ALAT entry exists for the target register. The absence of
an ALAT entry is later used to detect deferral or collision.

sa Speculative An entry is added to the ALAT, and certain exceptions may be deferred.

Advanced load Deferral causes the target register’s NaT bit to be set, and the
processor ensures that no ALAT entry exists for the target register. The
absence of an ALAT entry is later used to detect deferral or collision.
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Table 2-31. Load Types (Continued)
ldtype Interpretation Special Load Operation
Completer P P P
c.nc Check load The ALAT is searched for a matching entry. If found, no load is done
- no clear and the target register is unchanged. Regardless of ALAT hit or miss,
base register updates are performed, if specified. An implementation
may optionally cause the ALAT lookup to fail independent of whether an
ALAT entry matches. If not found, a load is performed, and an entry is
added to the ALAT (unless the referenced data page has a
non-speculative attribute, in which case no ALAT entry is allocated).
c.clr Check load The ALAT is searched for a matching entry. If found, the entry is
- clear removed, no load is done and the target register is unchanged.
Regardless of ALAT hit or miss, base register updates are performed, if
specified. An implementation may optionally cause the ALAT lookup to
fail independent of whether an ALAT entry matches. If not found, a clear
check load behaves like a normal load.
c.clracq Ordered check load | This type behaves the same as the unordered clear form, except that
— clear the ALAT lookup (and resulting load, if no ALAT entry is found) is
performed with acquire semantics.
acq Ordered load An ordered load is performed with acquire semantics.
bias Biased load A hint is provided to the implementation to acquire exclusive ownership
of the accessed cache line.

For the non-speculative load types, if NaT bit associated with GR r3is 1, a Register NaT
Consumption fault is taken. For speculative and speculative advanced loads, no fault is raised, and
the exception is deferred. For the base-update calculation, if the NaT bit associated with GRr,is 1,
the NaT bit associated with GR r3 is set to 1 and no fault is raised.

The value of the Idhint completer specifies the locality of the memory access. The values of the
Idhint completer are given in Table 2-32. A prefetch hint isimplied in the base update forms. The
address specified by the value in GR r3 after the base update acts as a hint to prefetch the indicated
cache line. This prefetch uses the locality hints specified by Idhint. Prefetch and locality hints do
not affect program functionality and may be ignored by the implementation.

Table 2-32. Load Hints

Idhint Completer

Interpretation

none
ntl
nta

Temporal locality, level 1
No temporal locality, level 1
No temporal locality, all levels

In the no_base update form, the valuein GR r3 is not modified and no prefetch hint isimplied.

For the base update forms, specifying the same register addressin rq and r3 will cause an Illega

Operation fault.
Operation: if (PRgp]) {
size = fill form? 8 : sz
specul ative = (ldtype == ‘s’ || ldtype == ‘sa’);
advanced = (ldtype == *a || ldtype == ‘sa’);
check_clear = (ldtype == ‘c.clr’ || ldtype == ‘c.clr.acq’);
check_no_clear = (ldtype == ‘c.nc’);

check = check_clear ||
acquire =

check_no_cl ear;
(Idtype == "acq’ ||

ldtype == ‘c.clr.acq’);

bias = (I dtype == ‘bias’) ? BIAS: 0 ;
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itype = READ,
if (speculative) itype |= SPEC ;
if (advanced)itype |= ADVANCE ;

if ((reg_base_update_form || inmbase update_form && (rq == rg3))
illegal _operation_fault();

check_target_register(rq);

if (reg_base_update form || immbase_update_form
check_target_register(rgy);

if (reg_base_update form {
tnp_r2 = GRryl;
tmp_r2nat = GR{r,].nat;
}

if (!speculative & GRr3].nat) // fault on NaT address
regi ster_nat _consunption_fault(itype);
defer = speculative & (GRr3].nat || PSR ed);// defer exception if spec

if (check &% al at_cnp(GENERAL, rq)) { /1 no load on ld.c & ALAT hit
if (check_clear) /!l renmove entry on Id.c.clr or Id.c.clr.acq
al at _inval _singl e_entry( GENERAL, r4);
} else {
if (!defer) {
paddr = tlb_translate(GRrg], size, itype, PSRcpl, &mttr,
&defer);
if (!defer) {
otype = acquire ? ACQU RE : UNCRDERED;
val = memread(paddr, size, UMbe, nattr, otype,
bias | ldhint);
}
if (check_clear || advanced) /'l renmove any old ALAT entry
al at _inval _singl e_entry( GENERAL, r4);
if (defer) {

if (speculative) {
GR(r,] = natd_gr_read(paddr, size, UMbe, mattr, otype,
bias | |dhint);

GRrq].nat = 1,

} else {
Rrq = 0; // 1d.a to sequential menory
GR(rq].nat = 0;

} else { /'l execute |oad nornally

if (fill_form { [l fill NaT on 1d8.fill
bit_pos = CGR r3]{8:3};
Rrq = val;
GR(rq].nat = AR[ UNAT]{bi t _pos};

} else { /1 clear NaT on other types
CR[rq] = zero_ext(val, size * 8);
GR(rq].nat = 0;

if ((check_no_clear || advanced) &% ma_is_specul ative(mattr))

/1 add entry to ALAT
al at _write(CGENERAL, r,, paddr, size);

}

if (immbase_update form { /1 update base register
@Rrg] = GRrg] + sign_ext(imm, 9);
GRlrz].nat = GR[rg].nat;
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} else if (reg_base_update form {
GRlr3] = GRra] + tnp_r2;
CGRr3].nat = GRrg].nat || tnp_r2nat;

if ((reg_base_update _form || immbase_update forn &% !GRr3].nat)
meminplicit_prefetch(GRrg], Idhint | bias, itype);
}
Interruptions: 1llegal Operation fault Data NaT Page Consumption fault
Register NaT Consumption fault Data Key Miss fault
Unimplemented Data Address fault Data Key Permission fault
Data Nested TLB fault Data Access Rights fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault
Data TLB fault Unaligned Data Reference fault

Data Page Not Present fault
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Floating-Point Load

Format:

Description:

(gp) Idffsz.fldtype.ldhint f; =[r3] no_base update form M6
(gp) Idffsz.fldtype.ldhint f; =[r3], o reg_base update form M7
(gp) Idffsz.fldtype.ldhint f; =[r3], immg imm_base _update form M8
(gp) Idf8.fldtype.ldhint f; = [r3] integer_form, no_base update form M6
(gp) Idf8.fldtype.ldhint f; =[r3], o integer_form, reg_base update form M7
(gp) Idf8.fldtype.ldhint f; = [r3], immg integer_form, imm_base update form M8
(gp) Idf.fill.ldhint f; =[rg] fill_form, no_base update form M6
(gp) Idf fill.ldhint f; =[rg], ry fill_form, reg_base update form M7
(gp) Idf.fill.ldhint f; = [r3], immg fill_form, imm_base update form M8

A value consisting of fsz bytesis read from memory starting at the address specified by thevaluein
GRr3. Thevalueis then converted into the floating-point register format and placed in FR f;. See
Volume 1 for details on conversion to floating-point register format. The values of the fsz compl eter
aregiven in Table 2-33. The fldtype completer specifies special 1oad operations, which are
described in Table 2-34.

For the integer_form, an 8-byte value is loaded and placed in the significand field of FR f; without
conversion. The exponent field of FR f; is set to the biased exponent for 2.088 (0x1003E) and the
sign field of FR f; is set to positive (0).

For thefill_form, a 16-byte value is loaded, and the appropriate fields are placed in FR f; without
conversion. Thisinstruction is used for reloading a spilled register. See Volume 1 for details.

In the base update forms, the value in GR r5 is added to either a signed immediate value (immg) or
avalue from GR r,, and the result is placed back in GR r3. This base register update is done after
the load, and does not affect the load address. In thereg_base update form, if the NaT bit
corresponding to GR r, is set, then the NaT bit corresponding to GR r5 is set and no fault is raised.

For more details on speculative, advanced and check loads see Volume 1.

For the non-speculative load types, if NaT bit associated with GR r3 is 1, a Register NaT
Consumption fault is taken. For speculative and speculative advanced loads, no fault is raised, and
the exception is deferred. For the base-update calculation, if the NaT bit associated with GRr,is 1,
the NaT bit associated with GR r3 is set to 1 and no fault is raised.

Table 2-33. fsz Completers

fsz Completer Bytes Accessed Memory Format
S 4 bytes Single precision
d 8 bytes Double precision
e 10 bytes Extended precision

Table 2-34. FP Load Types
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C(fjlr(rjglifer Interpretation Special Load Operation
none Normal load
s Speculative load | Certain exceptions may be deferred rather than generating a fault.
Deferral causes NaTVal to be placed in the target register. The NaTVal
value is later used to detect deferral.
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Table 2-34. FP Load Types (Continued)

fldtype

Completer Interpretation Special Load Operation

a Advanced load An entry is added to the ALAT. This allows later instructions to check for
colliding stores. If the referenced data page has a non-speculative
attribute, no ALAT entry is added to the ALAT and the target register is
set as follows: for the integer_form, the exponent is set to 0Ox1003E and
the sign and significand are set to zero; for all other forms, the sign,
exponent and significand are set to zero. The absence of an ALAT entry
is later used to detect deferral or collision.

sa Speculative An entry is added to the ALAT, and certain exceptions may be deferred.
Advanced load Deferral causes NaTVal to be placed in the target register, and the
processor ensures that no ALAT entry exists for the target register. The
absence of an ALAT entry is later used to detect deferral or collision.

c.nc Check load - The ALAT is searched for a matching entry. If found, no load is done
no clear and the target register is unchanged. Regardless of ALAT hit or miss,
base register updates are performed, if specified. An implementation
may optionally cause the ALAT lookup to fail independent of whether an
ALAT entry matches. If not found, a load is performed, and an entry is
added to the ALAT (unless the referenced data page has a
non-speculative attribute, in which case no ALAT entry is allocated).

c.clr Check load — clear | The ALAT is searched for a matching entry. If found, the entry is
removed, no load is done and the target register is unchanged.
Regardless of ALAT hit or miss, base register updates are performed, if
specified. An implementation may optionally cause the ALAT lookup to
fail independent of whether an ALAT entry matches. If not found, a clear
check load behaves like a normal load.

The value of the Idhint modifier specifiesthe locality of the memory access. The mnemonic values
of Idhint are given in Table 2-32 on page 2-125. A prefetch hint isimplied in the base update forms.
The address specified by the value in GR r5 after the base update acts as a hint to prefetch the
indicated cache line. This prefetch uses the locality hints specified by Idhint. Prefetch and locality
hints do not affect program functionality and may be ignored by the implementation. In the
no_base update form, the valuein GR r5 is not modified and no prefetch hint isimplied.

The PSR.mfl and PSR.mfh bits are updated to reflect the modification of FR f;.

Hardware support for | df e (10-byte) instructions that reference a page that is neither a cacheable
page with write-back policy nor aNaTPage is optional. On processor models that do not support
such | df e accesses, an Unsupported Data Reference fault is raised when an unsupported reference
is attempted. The fault is delivered only on the normal, advanced, and check load flavors.
Control-speculative flavors of | df e always defer the Unsupported Data Reference fault.
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Operation:
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if (PRgp]) {
size = (fill _form? 16 : (integer_form? 8 : fsz));
specul ative = (fldtype == ‘s’ || fldtype == ‘sa’);
advanced = (fldtype == ‘a’ || fldtype == ‘sa’);
check_clear = (fldtype == ‘c.clr’ );
check_no_clear = (fldtype == ‘c.nc’);
check = check_clear || check_no_clear;
itype = READ,

if (speculative) itype |= SPEC ;
if (advanced) itype | = ADVANCE ;

if (reg_base_update form || immbase_update_forn)
check_target_register(rg);
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f,, 0, 0, 0))
di sabl ed_fp_register_fault(tnp_i srcode, itype);

if (!speculative & GRr3].nat) // fault on NaT address
regi ster_nat _consunption_fault(itype);

defer = speculative & (GRr3].nat || PSR ed);// defer exception if spec

if (check &% al at_cnp(FLOAT, fq)) { /1 no load on |df.c & ALAT hit
if (check_clear) /1 renove entry on |ldf.c.clr
al at _i nval _si ngl e_entry(FLQOAT, fq);
} else {
if (!defer) {
paddr = tlb_translate(GRrg], size, itype, PSRcpl, &mttr,
&defer);
if (!defer)

val = memread(paddr, size, UMbe, nmattr, UNORDERED, | dhint);

if (check_clear || advanced) /1 renove any ol d ALAT entry
al at _i nval _si ngl e_entry(FLQOAT, fq);

if (speculative & defer) {
FR 1] = NATVAL;

} else if (advanced &% !specul ative &% defer) {
FR(f1 = (integer_form? FP_INT_ZERO : FP_ZERO;

} else { /'l execute |load nornally
FRIf,] = fp_memto_fr_format(val, size, integer_form;

if ((check_no_clear || advanced) && na_is_specul ative(mattr))
/1 add entry to ALAT
al at_write(FLOAT, f,, paddr, size);

}

if (immbase_update form { /'l update base register
GRra] = GRrg] + sign_ext(immy, 9);
CR[rz].nat = GRrg].nat;

} else if (reg_base_update form {

Rrg] = RHrg] + Hryl;
CR[rz].nat = GR[rg].nat || CRry].nat;

if ((reg_base_update_form || inmbase_update_forn) &% !GR[rgz].nat)
mem.inplicit_prefetch(GRr3], ldhint, itype);

fp_update_psr(fq);
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Interruptions: 1llegal Operation fault
Disabled Floating-point Register fault
Register NaT Consumption fault
Unimplemented Data Address fault
Data Nested TLB fault
Alternate Data TLB fault
VHPT Data fault
Data TLB fault
Data Page Not Present fault

IA-64 Instruction Reference
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Data NaT Page Consumption fault
Data Key Miss fault

Data Key Permission fault

Data Access Rights fault

Data Access Bit fault

Data Debug fault

Unaligned Data Reference fault
Unsupported Data Reference fault
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Floating-Point Load Pair

Format: (gp) Idfps.fldtype.ldhint fq, f, =[r3] single form, no_base update foom  M11
(gp) Idfps.fldtype.ldhint f;, f, =[r3], 8 single form, base update form  M12
(gp) Idfpd.fldtype.ldhint fq, f, = [r3] double form, no_base update form  M11
(gp) Idfpd.fldtype.ldhint f;, f, = [r3], 16 double form, base update form  M12
(gp) Idfp8.fldtype.ldhint fq, f, = [r3] integer_form, no_base update form  M11
(gp) Idfp8.fldtype.ldhint fq, f, = [r3], 16 integer_form, base_update form  M12

Description:  Eight (single_form) or sixteen (double_form/integer_form) bytes are read from memory starting at
the address specified by the valuein GR r3. The value read is treated as a contiguous pair of
floating-point numbers for the single_form/double_form and as integer/Parallel FP data for the
integer_form. Each number is converted into the floating-point register format. The value at the
lowest address is placed in FR f;, and the value at the highest addressis placed in FR f,. See
Volume 1 for details on conversion to floating-point register format. The fldtype completer
specifies special load operations, which are described in Table 2-34 on page 2-128.

For more details on speculative, advanced and check loads see Volume 1.

For the non-speculative load types, if NaT bit associated with GR r3 is 1, a Register NaT
Consumption fault is taken. For speculative and speculative advanced loads, no fault is raised, and
the exception is deferred.

In the base_update_form, the valuein GR r5 is added to an implied immediate value (equal to
double the data size) and the result is placed back in GR r3. This base register update is done after
the load, and does not affect the |oad address.

The value of the Idhint modifier specifiesthe locality of the memory access. The mnemonic values
of Idhint are given in Table 2-32 on page 2-125. A prefetch hint isimplied in the base update form.
The address specified by the value in GR r5 after the base update acts as a hint to prefetch the
indicated cache line. This prefetch uses the locality hints specified by Idhint. Prefetch and locality
hints do not affect program functionality and may be ignored by the implementation. In the
no_base update form, the valuein GR r5 is not modified and no prefetch hint isimplied.

The PSR.mfl and PSR.mfh bits are updated to reflect the modification of FR f; and FR .

Thereis arestriction on the choice of target registers. Register specifiersf; and f, must specify one
odd-numbered physical FR and one even-numbered physical FR. Specifying two odd or two even
registers will cause an Illegal Operation fault to be raised. The restriction is on physical register
numbers after register rotation. This means that if f; and f, both specify static registers or both
specify rotating registers, then f; and f, must be odd/even or even/odd. If f; and f, specify one static
and one rotating register, the restriction depends on CFM.rrb.fr. If CFM.rrb.fr is even, the
restriction is the same; f; and f, must be odd/even or even/odd. If CFM.rrb.fr is odd, then f; and f,
must be even/even or odd/odd. Specifying one static and one rotating register should only be done
when CFM.rrb.fr will have a predictable value (such as 0).
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Operation: if (PRgp]) {
size = single_form? 8 : 16;
specul ative = (fldtype == ‘s’ || fldtype == ‘sa’);
advanced = (fldtype == *a’ || fldtype == ‘sa’);
check_clear = (fldtype == ‘c.clr’);
check_no_clear = (fldtype == ‘c.nc’);
check = check_clear || check_no_clear;

itype = READ,
if (speculative) itype | = SPEC
i f (advanced) itype | = ADVANCE;

if (fp_reg_bank_conflict(f1, f2))
illegal _operation_fault();

if (base_update_form
check_target_register(rg);

fp_check_target_register(fq);
fp_check_target_register(fy);
if (tnp_isrcode = fp_reg_disabled(f,, fy, 0, 0))

di sabl ed_fp_register_fault(tnp_isrcode, itype);

if (!speculative & GRrj3].nat) /1 fault on NaT address
regi ster_nat_consunption_faul t(itype);

defer = speculative & (GR[r3].nat || PSR ed);// defer exception if spec

if (check && al at_cnp(FLOAT, fq)) { /1 no load on ldfp.c & ALAT hit
i f (check_clear) /1 renmove entry on Idfp.c.clr
al at _i nval _si ngl e_entry(FLQAT, f;);
} else {
if (!'defer) {
paddr = tlb_translate(GRr3], size, itype, PSRcpl, &mttr,
&def er);
if (!defer)

val = nemread(paddr, size, UMbe, nattr, UNORDERED, I|dhint);

if (check_clear || advanced) /1 renove any ol d ALAT entry
al at _i nval _si ngl e_entry(FLQAT, f;);

if (specul ative &% defer) {
FR 1] = NATVAL;
FR[ f 5] NATVAL;

} else if (advanced && !specul ative && defer) {

FRIf;] = (integer_form? FP_INT_ZERO : FP_ZERO;
FRIf,] = (integer_form? FP_INI_ZERO : FP_ZERO;

} else { I/ execute |oad normally
if (UMbe) {

FRIf,] = fp_memto_fr_format(val u>> (size/2*8), sizel?2,
integer_form;
FRf,] = fp_memto_fr_format(val, size/2, integer_form;

} else {
FR[f.] = fp_nmemto_fr_fornat(val, size/2, integer_form;
FRf,] = fp_memto_fr_format(val u>> (size/2*8), sizel?2,
integer_forn;
}
if ((check_no_clear || advanced) &% ma_is_specul ative(mattr))

[/ add entry to ALAT
al at_write(FLOAT, f,, paddr, size);
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}
if (base_update_form { /1 update base register
GRr3] = GRr3] + size;
GRirz].nat = GR[rg].nat;
if ('CGRrg].nat)
meminplicit_prefetch(GRrg], l|dhint, itype);
}

fp_update_psr(fq);
fp_update_psr(fy);

}

Interruptions: Illegal Operation fault Data Page Not Present fault
Disabled Floating-point Register fault Data NaT Page Consumption fault
Register NaT Consumption fault Data Key Missfault
Unimplemented Data Address fault Data Key Permission fault
Data Nested TLB fault Data Access Rights fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault
Data TLB fault Unaligned Data Reference fault
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Line Prefetch

Format:

Description:

Ifetch
(gp) Ifetch.Iftypelfhint [rg] no_base update form  M13
(gp) Ifetch.Iftypelfhint [rg], ro reg_base update form  M14
(gp) Ifetch.Iftypelfhint [rs], immg imm_base update form  M15
(ogp) Ifetch.Iftype.excl.Ifhint [rs] no_base update form, exclusive foom  M13
(gp) Ifetch.Iftype.excl.Ithint [rg], ro reg_base update form, exclusive foom  M14
(gp) Ifetch.Iftype.excl.Ithint [r3], immg imm_base update form, exclusive form  M15

The line containing the address specified by the valuein GR r5 ismoved to the highest level of the
datamemory hierarchy. The value of the Ifhint modifier specifiesthelocality of the memory access;
see Section 4.4 in Volume 1 for details. The mnemonic values of Ifhint are given in Table 2-36.

The behavior of the memory read is also determined by the memory attribute associated with the
accessed page. For details, refer to Volume 2. Line size isimplementation dependent but must be a
power of two greater than or equal to 32 bytes. In the exclusive form, the cachelineisallowed to be
marked in an exclusive state. This qualifier is used when the program expects soon to modify a
location in that line. If the memory attribute for the page containing the line is not cacheable, then
no reference is made.

The completer, Iftype, specifieswhether or not the instruction rai ses faults normally associated with
aregular load. Table 2-35 defines these two options.

Table 2-35. Iftype Mnemonic Values

Iftype Mnemonic Interpretation
none Ignore faults
fault Raise faults

In the base update forms, after being used to address memory, the valuein GR r3 isincremented by
either the sign-extended value in immg (in theimm_base_update_form) or thevaluein GRr, (in
thereg_base update form). Inthereg_base update form, if the NaT bit corresponding to GRr, is
set, then the NaT bit corresponding to GR r3 is set — no fault is raised.

Inthereg_base update form and theimm_base update form, if the NaT bit corresponding to GR
ryisclear, then the address specified by the valuein GR r 3 after the post-increment acts as a hint to
implicitly prefetch the indicated cache line. Thisimplicit prefetch uses the locality hints specified
by Ifhint. Theimplicit prefetch does not affect program functionality, does not raise any faults, and
may beignored by the implementation.

In the no_base update form, the valuein GR r3 is not modified and no implicit prefetch hint is
implied.

If the NaT bit corresponding to GR r3 is set then the state of memory is not affected. In the
reg_base update form and imm_base_update_form, the post increment of GR r3 is performed and
prefetch is hinted as described above.

| f et ch instructions, like hardware prefetches, are not orderable operations, i.e. they have no order
with respect to prior or subsequent memory operations.
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Table 2-36. Ifhint Mnemonic Values

Operation:

Interruptions:

2-136

Ifhint Mnemonic Interpretation
none Temporal locality, level 1
ntl No temporal locality, level 1
nt2 No temporal locality, level 2
nta No temporal locality, all levels

A faulting | f et ch to an unimplemented address results in an Unimplemented Data Address fault.
A non-faulting | f et ch to an unimplemented address does not take the fault and will not issue a
prefetch request, but, if specified, will perform aregister post-increment.

it (PREap]) {
i type = READ| NON_ACCESS;
itype |= (I ftype == ‘fault’) ? LFETCH FAULT : LFETCH
if (reg_base_update form || immbase_update_forn)
check_target_register(rg);
if (Iftype == ‘fault’) { // faulting form
if (Rrg].nat && ! PSR ed) // fault on NaT address

regi ster_nat _consunption_fault(itype);

}
excl _hint = (exclusive_forn) ? EXCLUSIVE : O;

if (!GRrg].nat & !'PSR ed) {// faulting formalready faulted if r3 is nat
paddr = tlb_translate(GRr3], 1, itype, PSR cpl, &mattr, &defer);
if (!defer)
mem pronot e(paddr, mattr, |fhint | excl_hint);

}

if (immbase_update form {
GRrg] = GRirg] + sign_ext(immy, 9);
GR(rz].nat = GRrj].nat;
} else if (reg_base_update form {
Rra] = Rrg] + Hryl;
GRirz].nat = GR(ry].nat || GRrg3].nat;
}

if ((reg_base_update_form || inmbase update_forn) &% !GRrjz].nat)
mem.inplicit_prefetch(GRr3], Ifhint | excl_hint, itype);

}

[llegal Operation fault Data Page Not Present fault
Register NaT Consumption fault Data NaT Page Consumption fault
Unimplemented Data Address fault Data Key Miss fault

Data Nested TLB fault Data Key Permission fault
Alternate Data TLB fault Data Access Rights fault

VHPT Datafault Data Access Bit fault

Data TLB fault Data Debug fault
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loadrs

Load Register Stack

Format:

Description:

Operation:

Interruptions:

loadrs M25

This instruction ensures that a specified number of bytes (registers values and/or NaT collections)
below the current BSP have been loaded from the backing store into the stacked general registers.
The loaded registers are placed into the dirty partition of the register stack. All other stacked
general registers are marked asinvalid, without being saved to the backing store.

The number of bytes to be loaded is specified in a sub-field of the RSC application register
(RSC.loadrs). Backing store addresses are always 8-byte aligned, and therefore the low order 3 bits
of thel oadr s field (RSC.loadrs{ 2:0}) are ignored. This instruction can be used to invalidate all
stacked registers outside the current frame, by setting RSC.loadrs to zero.

Thisinstruction will fault with an Illegal Operation fault under any of the following conditions:

» The RSE isnot in enforced lazy mode (RSC.mode is non-zero).
» CFM.sof and RSC.|oadrs are both non-zero.

» An attempt is made to load up more registers than are available in the physical stacked register
file.

This instruction must be the first instruction in an instruction group and must either be in
instruction slot 0 or ininstruction slot 1 of atemplate having a stop after slot O; otherwise, the
results are undefined. Thisinstruction cannot be predicated.

if (ARRSC .node != 0)
illegal _operation_fault();

if ((CFMsof !'=0) & (ARFRSC].loadrs !'= 0))
illegal _operation_fault();

rse_ensure_regs_|l oaded(ARf RSC].loadrs); // can raise faults |isted bel ow
AR[ RNAT] = undefined();

Ilegal Operation fault Data NaT Page Consumption fault
Unimplemented Data Address fault Data Key Miss fault

Data Nested TLB fault Data Key Permission fault
Alternate Data TLB fault Data Access Rights fault

VHPT Data fault Data Access Bit fault

Data TLB fault Data Debug fault

Data Page Not Present fault
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intel.

Memory Fence

Format:

Description:

Operation:

Interruptions:

2-138

(gp) mf ordering_form  M24
(gqp) mf.a acceptance form ~ M24

Thisinstruction forces ordering between prior and subsequent memory accesses. The
ordering_form ensures all prior data memory accesses are made visible prior to any subsequent
data memory accesses being made visible. It does not ensure prior data memory references have
been accepted by the external platform, nor that prior data memory references are visible.

The acceptance_form prevents any subsequent data memory accesses by the processor from
initiating transactions to the external platform until:

 All prior loads to sequential pages have returned data, and
« All prior storesto sequential pages have been accepted by the external platform.

The definition of “acceptance” is platform dependent. The acceptance form istypically used to
ensure the processor has “waited” until a memory-mapped I/O transaction has been “accepted”,
beforeinitiating additional external transactions. The acceptance_form does not ensure ordering, or
acceptance to memory areas other than sequential pages.

it (PRap]){
if (acceptance_forn
accept ance_fence();
else // ordering_form
ordering_fence();

}

None
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Mix

Format:

Description:

Operation:

Interruptions:

IA-64 Instruction Reference

(ap) mixLl ry=ryr3 one_byte form, left_form
(gp) mix2.l ry=ryr3 two_byte form, left_form
(ap) mix4.l ry=ry 3 four_byte form, left_form
(gp) mixLr ry=ry,r3 one_byte form, right_form
(gp) MiX2.r ry=ry,r3 two_byte form, right_form
(ap) mix4.r ry=rp, 13 four_byte form, right_form

12
12
12
12
12
12

The data elements of GR r, and r5 are mixed as shown in Figure 2-24, and the result placed in GR
r,. The data elements in the source registers are grouped in pairs, and one element from each pair is
selected for theresult. Intheleft_form, the result isformed from the leftmost el ements from each of
the pairs. Intheright_form, theresult is formed from the rightmost el ements. Elements are selected

alternately from the two source registers.

if (PREgp]) { _

check_target _register(rq);

if (one_byte_forn) { /1 one-byte el enents
x[0] = GRr,]{7:0}; y[0] = GRr3]{7:0};
x[1] = GRry]{15:8};  y[1] = GRrq){15:8};
x[2] = GRry]{23:16});  y[2] = GRra]{23:16};
x[3] = GRry]{31:24};  y[3] = GRra]{31:24};
x[4] = GRr;]{39:32};  y[4] = GRrg){39:32};
X[5] = GRro]{47:40};  y[5] = GRra]{47:40};
x[6] = GRr,]{55:48};  y[6] = GRra]{55: 48};
x[7] = GRr,]{63:56}; y[7] = GRr3]{63:56};

if (left_form
GR[rq] = concatenate8(x[7], y[7], x[5]., y[5],
_ x[3], y[3], x[1], y[1]);
else // right_form

GR[r,] = concatenate8(x[6], y[6], x[4]., y[4],
x(2], y[2], x[0], y[O]);

} elseif (two_byte forn) { /1 two-byte el enents

X[0] = GRro]{15:0}; y[0] = GRr3]{15:0};
x[1] = GRr,]{31:16}; y[1] = GRr3]{31:16};
X[2] = GRr,]{47:32}; y[2] = GRr3]{47:32};

X[3] = GRrgl{63:48};  y[3] = GRrgl{63:48};

if (left_form

CGR[r4] = concatenated4(x[3], y[3], x[1], y[1]);
else // right_form

GR[rq] = concatenate4(x[2], y[2], x[O], y[0]);

} else { /1 four-byte elenents
X[0] = GRr,]{31:0}; y[0] = GRr3]{31:0};
x[1] = GRr l{63:32});  y[1] = GRra]{63:32};
if (left_form
GR[rq] = concatenate2(x[1], y[1]);

else // right_form
GRr,] = concatenate2(x[0], y[0]);

}
GR[rq].nat = GRry].nat || GRrj].nat;

Illegal Operation fault
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mix

Figure 2-24. Mix Example
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GRry:

GR Iyl

GR Iyl

GR o

GR o

GRry:
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Move Application Register

Format: (gp) mov ry=arg pseudo-op
(gp) mov arz=r, pseudo-op
(gp) mov arz=immg pseudo-op
(gp) mov.i ry=arg i_form, from_form 128
(gp) mov.i arz=r, i_form, register_form, to_form 126
(gp) mov.i arz=immg i_form, immediate form, to_form 127
(gp) mov.m ry=ars m_form, from_form  M31
(gp) mov.m arz=r, m_form, register form,to_ foom  M29
(gp) mov.m arz =immg m_form, immediate form,to foom  M30

Description: ~ The source operand is copied to the destination register.

In the from_form, the application register specified by ar5 is copied into GR r, and the
corresponding NaT bit is cleared.

Intheto_form, thevaluein GRr, (in theregister_form), or the sign-extended value in immg (in the
immediate_form), isplacedin AR ar3. Intheregister_formif the NaT bit correspondingto GR 5 is
set, then a Register NaT Consumption fault is raised.

Only asubset of the application registers can be accessed by each execution unit (M or I). Table 3-3
on page 3-6 in Volume 1 indicates which application registers may be accessed from which
execution unit type. An access to an application register from the wrong unit type causes an I1legal
Operation fault.

This instruction has multiple forms with the pseudo operation eliminating the need for specifying
the execution unit. Accesses of the ARs are always implicitly serialized. While implicitly
serialized, read-after-write and write-after-write dependency violations must be avoided (e.g.
setting CCV, followed by cnpxchg in the same instruction group, or simultaneous writes to the
UNAT register by | d. fi | | and mov to UNAT).

Operation: if (PRgp]) {
tnp_type = (i _form? AR | _TYPE : AR M TYPE);
if (is_reserved_reg(tnmp_type, arj))
illegal _operation_fault();

if (fromform ({
check_target_register(rq);
if (((arz == BSPSTORE) || (ar3z == RNAT)) && (AR RSC].node != 0))
illegal _operation_fault();

if (ar3g==1TC & PSR si && PSR cpl != 0)
privileged_register_fault();

GR[rq] = (is_ignored_reg(arz)) ? 0 : AR arj];
GR[rq].nat = 0;

} else { /1 to_form
tnmp_val = (register_form ? GRrp] : sign_ext(imyg, 8);
if (is_read_only_register (AR TYPE, arj3) ||
(((arz == BSPSTORE) || (arz == RNAT)) && (ARIRSC].node != 0)))
illegal _operation_fault();

if (register_formé&& GRr,].nat)
regi ster_nat_consunption_faul t (0);

if (is_reserved_fiel d(AR TYPE, ars tnp_val))
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Interruptions:

2-142

reserved_register_field fault();

if ((is_kernel _reg(arg) || arg == 1TC) && (PSR cpl != 0))
privileged_register_fault();

if (lis_ignored_reg(arg)) {

trmp_val = ignored_field_mask(AR TYPE, ars, tnp_val);
/1 check for illegal pronmotion
if (arg3 == RSC && tnp_val {3:2} u< PSR cpl)
tnp_val {3:2} = PSR cpl;
AR[arg] = tnp_val;

if (arz == BSPSTORE) {

AR[BSP] = rse_update_internal _stack_pointers(tmp_val);
AR[ RNAT] = undefined();

}

Illegal Operation fault

Reserved Register/Field fault
Register NaT Consumption fault

Privileged Register fault
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Move Branch Register

Format:

Description:

mov br
(gp) mov ry=b, from_form 122
(gp) mov by =r, pseudo-op
(gp) mov.mwh.ih by =r,, tag;3 to_form 121
(gp) mov.ret.mwh.ih by =r,, tag;3 return_form, to_form 121

The source operand is copied to the destination register.

In the from_form, the branch register specified by b, is copied into GR r;. The NaT bit
corresponding to GR ry is cleared.

Intheto_form, thevaluein GRr, iscopied into BR b;. If the NaT bit correspondingto GRr,is 1,
then a Register NaT Consumption fault is taken.

A set of hints can also be provided when moving to a branch register. These hints are very similar
to those provided on the br p instruction, and provide prediction information about a future branch
which may use the value being moved into BR b;. Thereturn_formis used to provide the hint that
this value will be used in a return-type branch.

The values for the mwh whether hint completer are given in Table 2-37. For a description of theih
hint completer see the Branch Prediction instruction and Table 2-12 on page 2-20.

Table 2-37. Move to BR Whether Hints

Operation:

Interruptions:

mwh Completer Move to BR Whether Hint
none Ignore all hints
sptk Static Taken
dptk Dynamic

A pseudo-op is provided for copying a general register into a branch register when there is no hint
information to be specified. Thisis encoded with avalue of O for tag;3 and values corresponding to
none for the hint completers.

if (PREgp]) {
if (fromform {
check_target _register(rq);
@Rr4] = BRbyl;
GR[rq].nat = 0;
} else { /] to_form
tnp_tag = IP + sign_ext((timm << 4), 13);

if (&Rr,].nat)
regi ster_nat _consunption_faul t(0);
BRIbj = GRrol;
branch_predict(mh, ih, return_form GRr,], tnp_tag);
}
}
Ilegal Operation fault Register NaT Consumption fault
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intel.

Move Control Register

Format:

Description:

Operation:

Interruptions:
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(gp) mov rq=crg from form  M33
(gp) mov crz=ry to fom  M32

The source operand is copied to the destination register.
For the from_form, the control register specified by cr3 is read and the value copied into GR r;.
For theto_form, GRr, is read and the value copied into CR cr.

Control registers can only be accessed at the most privileged level. Reading or writing an
interruption control register (CR16-CR25), when the PSR.ic bit is one, will result in an Illegal
Operation fault.

if (PRgp]) {
if (is_reserved_reg(CR TYPE, cry)
|| to_form& is_read_only reg(CR TYPE, crj3)
|| PSRic & is_interruption_cr(crg))

illegal _operation_fault();

}

if (fromform
check_target_register(rq);

if (PSRcpl '=0)
privil eged_operation_fault(0);

if (fromform {
if (cr3 ==1VR
check_i nterrupt _request();

if (crg ==1ITR
CRrq] =inpl_itir_cw _mask(CRITIR]);
el se
Rrq] = Rergl;
GR(rq].nat = 0;
} else { // to_form

if (GRry].nat)

regi ster_nat _consunption_faul t(0);

if (is_reserved_fiel d(CR.TYPE, crz, GRry]))
reserved_register_field fault();

if (cry3 == EQ)
end_of _interrupt();

tmp_val = ignored_field_mask(CR TYPE, cr3, GRry]);

CRlcrg] = tnp_val;

if (crz3 ==11PA

last_IP = tnp_val;
}

}
Illegal Operation fault Register NaT Consumption fault
Privileged Operation fault Reserved Register/Field fault
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Serialization: Reads of control registers reflect the results of all prior instruction groups and interruptions.

In general, writes to control registers do not immediately affect subsequent instructions. Software
must issue a serialize operation before a dependent instruction uses a modified resource.

Control register writes are not implicitly synchronized with a corresponding control register read
and requires data serialization.
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Move Floating-Point Register
Format: (gp) mov f; =13 pseudo-op of: (gp) fmerge:s f; =13, f3
Description:  Thevalue of FR f3is copied to FR f;.

Operation: See “Fl oating-Point Merge” on p. 2-63.
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Move General Register

Format: (gp) mov ry=r3 pseudo-op of: (qp) adds r; =0, r3
Description:  Thevalue of GRr3iscopied to GR ;.

Operation: See “Add” on p. 2-3.
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Move Immediate
Format: (gp) mov rq =immy, pseudo-op of: (gp) addl rq =immyy, r0
Description: ~ Theimmediate value, immy,, is sign extended to 64 bits and placed in GR ;.

Operation: See “Add” on p. 2-3.
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mov indirect

Move Indirect Register

Format:

Description:

(gp) mov ry =ireg[ry] from_form M43
(ap) mov iregrs] =ry to form  M42

The source operand is copied to the destination register.

For move from indirect register, GR r3 isread and the value used as an index into the register file
specified by ireg (see Table 2-38 below). The indexed register isread and itsvalue is copied into
GRr;.

For move to indirect register, GR r3 is read and the value used as an index into the register file
specified by ireg. GRr, is read and its value copied into the indexed register.

Table 2-38. Indirect Register File Mnemonics

ireg Register File
cpuid Processor Identification Register
dbr Data Breakpoint Register
ibr Instruction Breakpoint Register
pkr Protection Key Register
pmc Performance Monitor Configuration Register
pmd Performance Monitor Data Register
rr Region Register

For all register files other than the region registers, bits{ 7:0} of GR r5 are used as the index. For
region registers, bits { 63:61} are used. The remainder of the bits are ignored.

Instruction and data breakpoint, performance monitor configuration, protection key, and region
registers can only be accessed at the most privileged level. Performance monitor data registers can
only be written at the most privileged level.

The CPU identification registers can only be read. Thereisnoto_form of thisinstruction.

For move to protection key register, the processor ensures uniqueness of protection keys by
checking new valid protection keys against all protection key registers. If any matching keys are
found, duplicate protection keys are invalidated.

Apart from the PMC and PMD register files, access of a non-existent register resultsin a Reserved
Register/Field fault. All accesses to the implementation-dependent portion of PMC and PMD
register files result in implementation dependent behavior but do not fault.

Modifying aregion register or a protection key register which is being used to trandate:

» The executing instruction stream when PSR.it == 1, or
» The data space for an eager RSE reference when PSR.rt ==
is an undefined operation.
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Operation: if (PRIgp]) {
if (ireg == RR_TYPE)

trp_index = CGR{r3] {63: 61};
else // all other register types

trmp_index = GRr3] {7:0};

if (fromform {
check_target_register(rq);

if (PSRcpl '=0 &% !(ireg == PVMD_TYPE || ireg == CPU D_TYPE))
privil eged_operation_fault(0);

if (&Rrj].nat)

regi ster_nat _consunption_faul t (0);

if (is_reserved_reg(ireg, tnp_index))
reserved_register_field fault();

if (ireg == PMD_TYPE) {
if ((PSRcpl '=0) & ((PSRsp ==1) ||
(trmp_index > 3 &&
tnp_i ndex <= | MPL_MAXGENERI C_PMCPMD &&
PMJ t np_i ndex] . pm == 1)))

Rrq] =0;
el se
GR(r,] = pnd_read(tnp_index);
} else

switch (ireg) {
case CPU D TYPE &R r1]
case DBR TYPE: &R r1]
case | BR TYPE: &R r1]
case PKR TYPE &R r1]
case PMC TYPE: R r1]

CPU O t np_i ndex] ; break;
DBR t np_i ndex] ; break;

| BR[ t np_i ndex]; break;

PKR t mp_i ndex] ; break;
pnc_read(tnp_i ndex); break;

case RR TYPE R r1] RR[ t np_i ndex] ; break;
}
CR[r4].nat = 0;
} else { /l to_form
if (PSRcpl !'=0)

privil eged_operation_fault(0);

if (&Rry.nat || GRrg].nat)

regi ster_nat _consunption_faul t (0);

if (is_reserved_reg(ireg, tnp_index)
|| is_reserved_field(ireg, tnp_index, GRrjy]))
reserved_register_field_fault();
if (ireg == PKR.TYPE && GR{r,]{0} == 1) {// witing valid prot key
if ((tnp_slot = tlb_search_pkr(CGRr,]{31:8})) != NOT_FOUND)
PKR tnmp_slot].v = 0; // clear valid bit of matching key reg
}
trp_val = ignored_field_nask(ireg, tnp_index, GRry]);
switch (ireg) {
case DBR TYPE DBR t np_i ndex] = tnp_val; break;
case | BR TYPE IBR tnp_i ndex] = tnp_val; break;
case PKR TYPE: PKR t np_i ndex] = tnp_val; break;
case PMC TYPE prc_wite(tnp_index, tnp_val); break;
case PVD _TYPE pmd_write(tnp_index, tnp_val); break;
case RR TYPE RR{t mp_i ndex] = tnp_val ; break;
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Interruptions: 1llegal Operation fault Register NaT Consumption fault
Privileged Operation fault Reserved Register/Field fault

Serialization:  For move to data breakpoint registers, software must issue a data serialize operation before issuing
amemory reference dependent on the modified register.

For move to instruction breakpoint registers, software must issue an instruction serialize operation
before fetching an instruction dependent on the modified register.

For move to protection key, region, performance monitor configuration, and performance monitor
data registers, software must issue an instruction or data serialize operation to ensure the changes
are observed before issuing any dependent instruction.

To obtain improved accuracy, software can issue an instruction or data serialize operation before
reading the performance monitors.

IA-64 Instruction Reference 2-151



mov ip

Move Instruction Pointer

Format:
Description:

Operation:

Interruptions:

2-152

(gp) mov ry=ip 125

The Instruction Pointer (1P) for the bundle containing thisinstruction is copied into GRr.

it (PRagp]) { _
check_target _register(rq);
Rrq =1PR
GR(rq].nat = 0;

Illegal Operation fault
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Move Predicates

Format:

Description:

Operation:

Interruptions:

mov pr
(qp) mov ry = pr from_form 125
(ap) mov pr =ry, masky; to_form 123
(qp) mov pr.rot = immy, to_rotate_form 124

The source operand is copied to the destination register.
For moving the predicates to a GR, PR i is copied to bit positioni within GRr.

For moving to the predicates, the source can either be a general register, or an immediate value. In
the to_form, the source operand is GR r, and only those predicates specified by the immediate
value mask, 7 are written. The value mask, is encoded in the instruction in an immyg field such
that: immyg = mask,7 >> 1. Predicate register O is always one. The mask;; value is sign extended.
The most significant bit of mask;;, therefore, isthe mask bit for all of the rotating predicates. If
there is a deferred exception for GR r, (the NaT bit is 1), a Register NaT Consumption fault is
taken.

Intheto_rotate form, only the 48 rotating predicates can be written. The source operand is taken
from the immy, operand (which is encoded in the instruction in an immyg field, such that:

i Mg = i mmy, >> 16). Thelow 16-bits correspond to the static predicates. Theimmediateissign
extended to set the top 21 predicates. Bit position i in the source operand is copied to PR i.

Thisinstruction operates asif the predicate rotation base in the Current Frame Marker (CFM..rrb.pr)
were zero.

if (PRagp]) {
if (fromform {
check_target _register(rq);
Rrq = 1; [/ PRIO] is always 1
for (i =1; i <=63; i++) {
Rrq]{i} = PREpr_phys_to_virt(i)];

GR[rq].nat = 0;
} elseif (to_form {
if (GRry.nat)
regi ster_nat _consunption_faul t(0);
tnp_src = sign_ext(masky7, 17);
for (i =1, i <=63; i++) {
if (tnmp_src{i})
PR pr_phys_to_virt(i)] = GRry]{i};
} else { /] to_rotate form
tnp_src = sign_ext(imy,, 44);
for (i = 16; i <= 63; i++) {
PR pr_phys_to_virt(i)] = tmp_src{i};

}
Ilegal Operation fault Register NaT Consumption fault
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intel.

Move Processor Status Register

Format:

Description:

Operation:

Interruptions:

Serialization:

2-154

(gp) mov rq = psr from form  M36
(gp) mov psr.l=ry to fom M35

The source operand is copied to the destination register.

For move from processor status register, PSR bits{36:35} and {31:0} areread, and copied into
GRr4. All other bits of the PSR read as zero.

For move to processor status register, GR r, isread, bits{31:0} copied into PSR{31:0} and bits
{45:32} areignored. All bits of GR r, corresponding to reserved fields of the PSR must be 0 or a
Reserved Register/Field fault will result.

Moves to and from the PSR can only be performed at the most privileged level.

The contents of the interruption resources (that are overwritten when the PSR.ic bit is 1) are
undefined if an interruption occurs between the enabling of the PSR.ic bit and a subsequent
instruction serialize operation.

it (PRagp]) {
if (fromform
check_target_register(rq);
if (PSRcpl '=0)
privil eged_operation_fault(0);

if (fromfornm ({

tnp_val = zero_ext(PSR{31:0}, 32); I/l read | ower 32 bits
tnp_val |= PSR{36: 35} << 35; // read nc and it bits
CRrq] = tnp_val; // other bits read as zero
GR(rq].nat = 0;

} else { // to_form

if (GRry].nat)

regi ster_nat _consunption_faul t(0);

if (is_reserved_fiel d(PSR_TYPE, PSR MOVPART, CR[r]))
reserved_register_field fault();

PSR(31: 0} = GRr,]{31:0};
}

Illegal Operation fault Register NaT Consumption fault
Privileged Operation fault Reserved Register/Field fault

Software must issue an instruction or data serialize operation before issuing instructions dependent

upon the altered PSR bits. Unlike with the r sminstruction, the PSR.i bit is not treated specially
when cleared.
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Move User Mask

Format:

Description:

Operation:

Interruptions:

Serialization:

mov um
(gp) mov rq = psr.um from form  M36
(gp) mov psr.um=r, to foom M35

The source operand is copied to the destination register.
For move from user mask, PSR{5:0} isread, zero-extend, and copied into GR r.

For moveto user mask, PSR{5:0} iswritten by bits{5:0} of GRr,. PSR.up can only be modified if
the secure performance monitor bit (PSR.sp) is zero. Otherwise PSR.up is not modified.

Writing a non-zero value into any other parts of the PSR resultsin a Reserved Register/Field fault.

if (PRagp]) {
if (fromform {
check_target _register(rq);
GR[rq] = zero_ext(PSR{5: 0}, 6);
GR[rq].nat = 0;
} else { /1 to_form
if (&Rr,].nat)

regi ster_nat_consunption_faul t (0);

if (is_reserved_field(PSR.TYPE, PSR UM CRr,]))
reserved_register_field fault();

PSR{1: 0} = GR[r,]{1:0};

if (PSR sp == 0) /1 unsecured perf nonitor
PSR(2} = Rr,]{2};

PSR{5:3} = GR{r,]{5: 3};
}

Illegal Operation fault Reserved Register/Field fault
Register NaT Consumption fault

All user mask modifications are observed by the next instruction group.
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Move Long Immediate
Format: (gp) movl rq =immg, X2
Description:  Theimmediate value immg, is copied to GR r4. The L slot of the bundle contains 41 bits of immg,.

Operation: if (PRgp]) {
check_target _register(rq);

QRrq] = imgy
GRrq].nat = 0;

Interruptions: Illegal Operation fault
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Mux

Format: (gp) muxl rq =r,, mbtype, one_byte form I3
(gp) mux2 rq =r,, mhtypeg two_byte form 14

Description: A permutation is performed on the packed elementsin a single source register, GR r,, and the result
isplaced in GR r4. For 8-bit elements, only some of all possible permutations can be specified. The
five possible permutations are given in Table 2-39 and shown in Figure 2-25.

Table 2-39. Mux Permutations for 8-bit Elements

mbtype, Function
@rev Reverse the order of the bytes
@mix Perform a Mix operation on the two halves of GR '
@shuf Perform a Shuffle operation on the two halves of GR I'p
@alt Perform an Alternate operation on the two halves of GR I'»
@brest Perform a Broadcast operation on the least significand byte of GR I'y

Figure 2-25. Mux1 Operation (8-bit elements)

GRry: GRry:
GRrq: GRrq:
muxl1 rl =r2, @rev mux1 rl =r2, @mix
GRry: GRry:
GRrq: GRrq:
mux1 rl = r2, @shuf muxl1 rl =r2, @alt
GRry:
GRrq:

muxl1 rl =r2, @brcst
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Operation:

2-158

intel.

For 16-bit elements, all possible permutations, with and without repetitions can be specified. They
are expressed with an 8-bit mhtypeg field, which encodes the indices of the four 16-bit data
elements. Theindexed 16-bit elements of GR r,, are copied to corresponding 16-bit positionsin the
target register GR r4. Theindices are encoded in little-endian order. (The 8 bits of mhtypeg[7:0] are
grouped in pairs of bits and named mhtypeg[ 3], mhtypeg[2], mhtypeg[ 1], mhtypeg[Q] in the
Operation section).

Figure 2-26. Mux2 Examples (16-bit elements)

GRry:

GRry:
GRrq: GRrq:
mux2 rl =r2, 0x8d (shuffle 10 00 11 01) mux2 rl =r2, Ox1b (reverse 00 01 10 11)
GRry: GRry:
GRrq: GRrq:

mux2 rl =r2, 0xd8 (alternate 11 01 10 00) mux2 rl =r2, Oxaa (broadcast 10 10 10 10)

if (PREap]) {

check_target_register(rq);

if (one_byte_form {

X[0] = GRLr o] {7:0};

X[1] = GR{ro]{15:8};
x[2] = GR{ro]{23:16};
x[3] = GR{rg]{3L:24};
x[4] = GR{rg] {39:32};
X[5] = GR{ro] {47: 40};
X[ 6] = GR{ro]{55: 48};
x[7] = GR{ro]{63:56};

switch (nbtype) {
case ‘@ev’:
GR[r,] = concatenate8(x[0], x[1], x[2], x[3],
x[4], x[5], x[6], x[7]);
br eak;

case ‘©@n x’:
GR[r,] = concatenate8(x[7], x[3], x[5], x[1],
x[ 6], x[2], x[4], x[0O]);
br eak;

case ‘ @huf’:
GR(rq] = concatenate8(x[7], x[3], x[6], x[2],
x[5], x[1], x[4], x[0]);
br eak;
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case ‘@l t’:

CGR[r4] = concatenate8(x[7], x[5], x[3], x[1],
x[ 6], x[4], x[2], x[0]);

br eak;

case ‘ @rcst’:

GR[r,] = concatenate8(x[0], x[0], x[0], x[O],
x[0], x[O], x[O], x[O]);

br eak;
} else { /1 two_byte form
X[0] = GRr,]{15:0};
x[1] = GR{r,] {31: 16};
x[2] = GR[r,]{47:32};

x[3] = CGRr,]{63:48};

res[0] = x[nhtype8{1:0}];
res[1] = x[nhtype8{3: 2}];
res(2] = x[nhtype8{5:4}];
res(3] = x[nhtype8{7:6}];

GR[r,] = concatenate4(res[3], res[2], res[1], res[0]);

}
GR[rq].nat = GRr,].nat;

Interruptions: Illegal Operation fault
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No Operation

Format: (gp) nop immy,
(gp) nop.i immyy
(gp) nop.b immy;
(gp) nop.m immy,
(gp) nop.f immy,
(gp) nop.x immg

Description:  No operation is done.

pseudo-op
i_unit form 119
b_unit_form B9
m_unit foom  M37
f _unit_form F15
X_unit_form X1

Theimmediate, immy,4 or immg,, can be used by software as amarker in program code. It isignored

by hardware.

For the x_unit_form, the L slot of the bundle contains the upper 41 bits of immg.

A nop. i instruction may be encoded in an MLI-template bundle, in which case the L dot of the

bundleisignored.

Thisinstruction has five forms, each of which can be executed only on a particular execution unit
type. The pseudo-op can be used if the unit type to execute on is unimportant.

Operation: if (PRgp]) {
; I/ no operation
}

Interruptions: None
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Logical Or

Format: (gp) or ry=ryr3 register_form Al
(gp) or ry=immg, r3 imm8_form A3

Description:  Thetwo source operands are logically ORed and the result placed in GR r4. In the register form the
first operand is GR r; in the immediate form the first operand is taken from the immg encoding
field.

Operation: if (PRgp]) {
check_target _register(rq);

tnp_src = (register_form? GRr,] : sign_ext(img, 8));
tnmp_nat = (register_form? GRr,].nat : 0);

Rrq] =tnmp_src | CRr3];
GR[rq].nat = tnp_nat || GRr3].nat;
}

Interruptions: Illegal Operation fault
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Pack

Format:

Description:

intel.

(gp) pack2.sss rq=r,, 13 two_byte form, signed_saturation _form 12
(gp) pack2.uss rq=ry,r3 two_byte form, unsigned_saturation_form 12
(gp) pack4.sss rq=r,, 13 four_byte form, signed_saturation_form 12

32-hit or 16-bit elements from GR r, and GR r3 are converted into 16-bit or 8-bit elements
respectively, and the results are placed GR r . The source elements are treated as signed values. If a
source element cannot be represented in the result element, then saturation clipping is performed.
The saturation can either be signed or unsigned. If an element is larger than the upper limit value,
the result is the upper limit value. If it is smaller than the lower limit value, the result is the lower
limit value. The saturation limits are given in Table 2-40.

Table 2-40. Pack Saturation Limits

Figure 2-27. Pack Operation
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Size Sourc\:/sicliztlﬁment Resu\l/\tliIZItt:]ment Saturation li?np]ir Lower Limit
16 bit 8 bit signed ox7f 0x80
16 bit 8 bit unsigned Oxff 0x00
32 bit 16 bit signed Ox7fff 0x8000

GRr3:

pack4

GRrg:

pack2
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Operation:

Interruptions:

if (PREgp]) {

check_target _register(ryq);

if (two_byte_forn {

} else {
max = Oxff;
mn = 0x00;
}
tenmp[0] = sign_ext(GRr,]{15:0}, 16);
tenp[1] = sign_ext(GRr,] {31:16}, 16);
tenp[2] = sign_ext(GRro]{47:32}, 16);
tenmp[3] = sign_ext(GRr,]{63:48}, 16);
tenp[4] = sign_ext(GRrg]{15:0}, 16);
tenp[5] = sign_ext(GRrg]{31:16}, 16);
tenp[6] = sign_ext(GRr3]{47:32}, 16);
tenp[ 7] = sign_ext(GRrg] {63:48}, 16);
for (i =0; i <8; i++) {
if (temp[i] > nmax)
tenp[i] = max;
if (temp[i] < nin)
tenmp[i] = nin;
}
GR[r,] = concatenate8(tenp[7], tenp[6],
tenp[ 3], tenp[2],
} else {
max = sign_ext (0Ox7fff, 16);
mn = sign_ext (0x8000, 16);
tenp[0] = sign_ext(GRrp]{31:0}, 32);
tenmp[1l] = sign_ext(GRr,]{63:32}, 32);
tenp[2] = sign_ext(GRrg]{31:0}, 32);
tenp[3] = sign_ext(GRrg]{63:32}, 32);
for (i =0; i <4 i++) {
if (tenmp[i] > nmax)
tenp[i] = max;
if (tenmp[i] < nin)
tenp[i] = mn;
CRr4] = concatenate4(tenp[3], tenp[2],

}

GRiry.nat = GRiryl.nat ||

if (signed_saturation_form {
max = sign_ext (0x7f, 8);
mn = sign_ext(0x80, 8);

GRr3]. nat;

Ilegal Operation fault

IA-64 Instruction Reference

tenp[ 5],
tenp[1],

tenp[1],

pack

/1 unsigned_saturation_form

tenp[4],
tenp[0]);

[/ four_byte form
[/ signed_saturation_form

tenp[0]);
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Parallel Add

Format:

Description:

Table 2-41. Parallel Add Saturation Completers

Completer Result 1 Treated As Source I'p Treated As Source I'3 Treated As
SSs signed signed signed
uus unsigned unsigned signed
uuu unsigned unsigned unsigned
Table 2-42. Parallel Add Saturation Limits
) _ Result ' Signed Result 'y Unsigned
Size Element Width
Upper Limit Lower Limit Upper Limit Lower Limit
8 bit Ox7f 0x80 Oxff 0x00
16 bit Ox7fff 0x8000 Oxffff 0x0000

Figure 2-28. Parallel Add Examples

2-164

(gp) paddl ry=rp, 13

(gp) paddl.sss ry=ry 3
(gp) paddl.uus rq=ry, r3
(gp) paddl.uuu rq=ry, 13
(ap) padd2 ry=rp, 13

(gp) padd2.sss ry=ry,r3
(gp) padd2.uus rq =ry, 13
(gp) padd2.uuu rq=ry, 13

(gp) padd4 ry=rp, 13

one_byte form, modulo_form A9
one_byte form, sss saturation form A9
one_byte form, uus_saturation _form A9
one_byte form, uuu_saturation_form A9
two_byte form, modulo_form A9
two_byte form, sss_saturation_form A9
two_byte form, uus_saturation form A9
two_byte form, uuu_saturation_form A9
four_byte form, modulo_form A9

The sets of elements from the two source operands are added, and the results placed in GRr.

If a sum of two elements cannot be represented in the result element and a saturation completer is

specified, then saturation clipping is performed. The saturation can either be signed or unsigned, as
givenin Table 2-41. If the sum of two elementsis larger than the upper limit value, the result isthe
upper limit value. If it issmaller than the lower limit value, the result is the lower limit value. The
saturation limits are given in Table 2-42.

GRr3:

GRry:

GRrq:

ETE:

padd2
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Operation:

if (PRgp]) { _
check_target _register(ryq);
if (one_byte_forn { /1 one-byte el enents
x[0] = GRr,]{7:0}; y[0] = CRr3]{7:0};
x[1] = GRrp){15:8};  y[1] = GRr3]{15:8};
x[2] = GRry]{23:16};  y[2] = GRra]{23:16};
X[3] = GRr,]{31:24}; y[3] = GRr3]{31: 24};
x[4] = GRry]{39:32}; y[4] = GRra]{39:32};
x[5] = GRrp]{47:40};  y[5] = GRra]{47:40};
x[6] = GRr,]{55:48};  y[6] = GRrg]{55:48};
x[7] = GRr l{63:56}; y[7] = GRra]{63:56};
if (sss_saturation_form {
max = sign_ext (0x7f, 8);
mn = sign_ext(0x80, 8);
for (i =0; i <8; i++) {
tenp[i] = sign_ext(x[i], 8) + sign_ext(y[i], 8);
} else if (uus_saturation_form {
max = Oxff;
mn = 0x00;
for (i =0; i <8; i++) {
tenp[i] = zero_ext(x[i], 8) + sign_ext(y[i], 8);
} else if (uuu_saturation_form {
max = Oxff;
mn = 0xO00;
for (i =0; i <8 i++) {
tenp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8);
} else { /1 modul o_form
for (i =0; i <8; i++) {
tenp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8);
}
if (sss_saturation_form|| uus_saturation_form]||
uuu_saturation_form {
for (i =0; i <8; i++) {
if (tenmp[i] > nax)
tenp[i] = max;
if (tenmp[i] < nin)
tenp[i] = mn;
}
CGR[r4] = concatenate8(tenp[7], tenp[6], tenp[5], tenp[4],
tenp[3], tenp[2], tenp[1], tenp[O]);
} elseif (two_byte forn) { /1 2-byte el enents
x[0] = GRrp]{15:0};  y[0] = GRira]{15:0};
x[1] = GRr,]{31:16};  y[1] = GRr3){31:16};
x[2] = GRr,]{47:32};  y[2] = GRrq){47:32};
x[3] = GRryl{63:48}); y[3] = GRr4]{63:48};
if (sss_saturation_form {
max = sign_ext (0Ox7fff, 16);
mn = sign_ext (0x8000, 16);
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for (i =0; i <4 i++) {
tenp[i] = sign_ext(x[i], 16) + sign_ext(y[i], 16);

} else if (uus_saturation_form ({
max = Oxffff;
mn = 0x0000;

for (i =0; i <4; i++) {
tenp[i] = zero_ext(x[i], 16) + sign_ext(y[i], 16);
} else if (uuu_saturation_fornm ({
max = Oxffff;
mn = 0x0000;

for (i =0; i <4 i++) {

tenp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16);
} else { /1 modul o_form
for (i =0; i <4 i++) {
tenp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16);

}

if (sss_saturation_form|| uus_saturation_form]||
uuu_saturation_form {
for (i =0; i <4; i++) {
if (tenmp[i] > nax)
tenp[i] = max;

if (tenp[i] < min)

tenp[i] = mn;
}
GR[r,] = concatenate4(tenp[3], tenp[2], tenp[l], tenp[O]);
} else { /1 four-byte elenents
x[0] = GRr,]{31:0};  y[0] = GRrg]{31:0};

= ] =
X[1] = GRrpl{63:32); y[1] = GRirs]{63:32);

for (i =0; i <2; i++) { /1 nmodul o_form
tenp[i] = zero_ext(x[i], 32) + zero_ext(y[i], 32);

CR[r4] = concatenate2(tenp[1], tenp[O0]);
}
CR[rq].nat = GR[ro].nat || CRrg].nat;

Interruptions: Illegal Operation fault
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Parallel Average

Format: (ap) pavgl ry=ry, 13 normal_form, one_byte form A9
(op) pavglraz rq=ry, 13 raz_form, one_byte form A9
(op) pavg2 ry=ry, 13 normal_form, two_byte form A9
(gp) pavg2.raz rq=ro,r3 raz_form, two_byte form A9

Description:  The unsigned data elements of GR r, are added to the unsigned data elements of GR r5. Theresults

of the add are then each independently shifted to the right by one bit position. The high-order bits
of each element are filled with the carry bits of the sums. To prevent cumulative round-off errors,

an averaging is performed. The unsigned results are placed in GR r.

The averaging operation works as follows. In the normal_form, the low-order bit of each result is
setto 1if at least one of the two least significant bits of the corresponding sumis 1. Intheraz_form,

the average rounds away from zero by adding 1 to each of the sums.

Figure 2-29. Parallel Average Example

shift right 1 bit

with average in
16-bit sum low-order bit
plus

carry

shift right
1 bit

GRrq:
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Figure 2-30. Parallel Average with Round Away from Zero Example

shift right 1 bit

shift right
1 bit

GRrq:

pavg2.raz

Operation: if (PR agp]) {
check_target_register(rq);

if (one_byte fornm {

X[0] = GRr,]{7:0}; y[0] = GRIra]{7:0};

x[1] = GRry]{15:8);  y[1] = GRr4]{15:8};
x[2] = GRiry]{23:16};  y[2] = GRrg]{23: 16}
X[3] = GRry]{3L:24}; y[3] = GRrg){3L: 24}
x[4] = GRIry]{39:32};  y[4] = GRr,]{39: 32}
X[5] = GRIry]{47:40};  Y[5] = GRr4]{47: 40}
X[6] = GRIr,]{55:48}; y[6] = GRrg]{55:48};
x[7] = GRIry]{63:56}; y[7] = GRr4]{63:56);

if (raz_fornm {
for (i =0; i <8; i++) {
temp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8) + 1;
res[i] = shift_right_unsigned(temp[i], 1);

} else { /1 normal form
for (i =0; i <8; i++) {
tenp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8);
res[i] = shift_right_unsigned(temp[i], 1) | (tenp[i]{0});
}

CR[r4] = concatenate8(res[7], res[6], res[5], res[4],
res[3], res[2], res[1], res[0]);

} else { /1 two_byte_form
x[0] = GRIr ]{15:0};  y[0] = GRrg]{15:0};
x[1] = GRr,]{31:16};  y[1] = GRr3]{31: 16};
x[2] = GRIr l{47:32};  y[2] = GRrj]{47:32};
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x[3] = GRIr ]{63:48});  y[3] = GRrj]{63:48};
if (raz_form {
for (i =0; i <4 i++) {
tenp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16) + 1;
res[i] = shift_right_unsigned(tenp[i], 1);
} else { /1 normal form
for (i =0; i <4 i++) {
tenp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16);
res[i] = shift_right_unsigned(tenp[i], 1) | (tenp[i]{0});

}
}
GR[r,] = concatenate4(res[3], res[2], res[1], res[0]);
}
GR[rq].nat = GRry].nat || GRrj].nat;

Interruptions: Illegal Operation fault
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Parallel Average Subtract

Format: (gp) pavgsubl rq=r,,r3 one_byte form A9
(gp) pavgsub2 rq=ry, 13 two_byte form A9

Description:  The unsigned data elements of GR r3 are subtracted from the unsigned data elements of GRr,. The
results of the subtraction are then each independently shifted to the right by one bit position. The
high-order bits of each element are filled with the borrow bits of the subtraction (the complements
of the ALU carries). To prevent cumulative round-off errors, an averaging is performed. The
low-order hit of each result is set to 1 if at least one of the two least significant bits of the
corresponding differenceis 1. The signed results are placed in GR r.

Figure 2-31. Parallel Average Subtract Example

shift right 1 bit
with average in
16-bit difference low-order bit

plus

carry I

shift right
1 bit

GRrq:

pavgsub2

Operation: if (PRgp]) {
check_target_register(ryq);
if (one_byte_form {
x[0] = GR{r,]{7:0}; y[0] = GRr3]{7:0};
x[1] = GRr,]{15:8});  y[1] = GRrq{15:8};
x[2] = GRry]{23:16};  y[2] = GRrq){23: 16}
x[3] = GRrp]{31:24};  y[3] = GRra]{31:24}
x[4] = GRry]{39:32}; y[4] = GRra]{39:32}
x[5] = GRr,]{47:40};  y[5] = GRr3]{47: 40}
x[6] = GRr,|{55:48};  y[6] = GRra]{55: 48}
x[7] = GRr l{63:56}; y[7] = GRr4]{63:56}
for (i =0; i <8; i++) {
tenp[i] = zero_ext(x[i], 8) - zero_ext(y[i], 8);
res[i] = (tenp[i]{8:0} u>>1) | (tenp[i]{0});

GR[rq] = concatenate8(res[7], res[6], res[5], res[4],
res[(3], res[2], res[1], res[0]);
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} else { [/ two_byte form
X[0] = &Rr,]{15:0}; ylo] = &Rrg]{15:0};
x[1] = GRry]{31:16};  y[1] = GRra]{31:16};
X[2] = Rrp]{47:32};  y[2] = GRr3]{47:32};
x[3] = GRr,]{63:48}; y[3] = GRrj]{63:48};
for (i =0; i <4 i++) {
tenp[i] = zero_ext(x[i], 16) - zero_ext(y[i], 16);
res[i] = (tenp[i]{16:0} u>> 1) | (tenp[i]{0});
CGR[r4] = concatenate4(res[3], res[2], res[1], res[0]);
}
GR[rq].nat = GRry].nat || GRrg].nat;
Interruptions: Illegal Operation fault
IA-64 Instruction Reference
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Parallel Compare

Format:

Description:

(gp) pcmpl.prel ry=ry 13 one_byte form A9
(gp) pcmp2.prel ry=r5,13 two_byte form A9
(gp) pcmpd.prel ri=r5,13 four_byte form A9

The two source operands are compared for one of the two relations shown in Table 2-43. If the
comparison condition is true for corresponding data elements of GR r, and GR r3, then the
corresponding data element in GR rq isset to all ones. If the comparison condition isfalse, then the
corresponding data element in GR r4 is set to all zeros. For the ‘>’ relation, both operands are
interpreted as signed.

Table 2-43. Pcmp Relations

Operation:

prel Compare Relation (I'p prel rs)
€q Io==r3
gt o> I3 (signed)
Figure 2-32. Parallel Compare Example
GR 3
GR 5]
GRry: Oxffff | OxO000| Oxffff | Oxffff
pcmpl.gt pcmp2.eq
GRr3:
GRry:
GRry: Oxffffffff 0x00000000
pcmp4.eq
if (PRgp]) {
check_target_register(rq);
if (one_byte form { /1 one-byte el enents
X[0] = &Rrp]{7:0}; y[0] = Rr3]{7:0};
x[1] = GRrp]{15:8};  y[1] = GRr3]{15:8};
x[2] = GRr,]{23:16};  y[2] = GRr3]{23:16};
X[3] = GRrp]{31:24};  y[3] = GRrz]{31:24};
x[4] = GRrp]{39:32};  y[4] = GRr3]{39:32};
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x[5] = GR{r,] {47:40};
x[6] = GR{r,] {55:48};
x[7] = GR[r,]{63:56};

pcmp

y[5] = QRrg]{47:40};
y[ 6] = GRrg]{55:48};
y[7] = GRrg]{63:56};

for (i =0; i <8; i++) {
if (prel == ‘eq’)
tnp_rel = x[i] == y[i];
else /] ‘gt’
tnp_rel = greater_signed(sign_ext(x[i], 8),
sign_ext(y[i], 8));
if (trmp_rel)
res[i] = Oxff;
el se
res[i] = 0x00;
GR[rq] = concatenate8(res[7], res[6], res[5], res[4],
res[3], res[2], res[1], res[0]);
} elseif (two_byte forn) { /1 two-byte el enents
x[0] = GRrp]{15:0};  y[0] = GRIra]{15:0};
x[1] = GRr,]{31:16};  y[1] = GRr3){31:16};
x[2] = GRry]{47:32});  y[2] = GRra]{47:32};
X[ 3] = GR[rZ]_{63:48}_; y[3] = CGRr3] {63:48};
for (i =0; i <4; i++) {
if (prel == ‘eq’)
tnp_rel = x[i] == y[i];
else /] ‘gt’

tnp_rel = greater_signed(sign_ext(x[i], 16),
sign_ext(y[i], 16));
if (trmp_rel)
res[i] = Oxffff;
el se
res[i] = 0x0000;
GR[r,] = concatenate4(res[3], res[2], res[1], res[0]);

} else {
X[0] = GRr,]{31:0};
x[1] = GR{r,] {63:32};

/1 four-byte el enents
y[0] = &Rr3]{31:0};
yl1] = GRir;l{63:32};

for (i =0; i <2; i++) {
if (prel == ‘eq')
tnp_rel = x[i] == y[i];
else /] ‘gt’
tnp_rel = greater_signed(sign_ext(x[i], 32),
sign_ext(y[i], 32));

if (tnp_rel)

res[i] = Oxffffffff;

el se

res[i] = 0x00000000;

}

CGR[r4] = concatenate2(res[1],

res[0]);

}
GR[rq].nat = GRry].nat || GRrg].nat;

Interruptions: Illegal Operation fault
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intel.

Parallel Maximum

Format:

Description:

(gp) pmaxl.u ry=ry 3 one_byte form 12
(Op) pmax2 ry=rp, I3 two_byte form 12

The maximum of the two source operands is placed in the result register. In the one_byte form,
each unsigned 8-bit element of GR r,, is compared with the corresponding unsigned 8-bit element
of GR r3 and the greater of the two is placed in the corresponding 8-bit element of GRr4. In the
two_byte form, each signed 16-bit element of GR r, is compared with the corresponding signed
16-bit element of GR r5 and the greater of the two is placed in the corresponding 16-bit element of
GRr;.

Figure 2-33. Parallel Maximum Example

Operation:

Interruptions:

2-174

GR r3: GRrg:

GR Iy GR ra:

GRrq:

it (PREagp]) { _

check_target_register(rq);

if (one_byte form { /1 one-byte el enents
X[0] = GRrp]{7:0}; y[0] = GRrg]{7:0};
x[1] = GRry]{15:8};  y[1] = GRr3]{15: 8};
x[2] = GRr,]{23:16};  y[2] = GRrq]{23:16};
X[3] = GRrp]{31:24};  y[3] = GRry]{31:24};
x[4] = GRrp]{39:32};  y[4] = Rry]{39:32};
X[5] = GRr,]{47:40};  y[5] = GRrq]{47:40};
X[6] = GRr,]{55:48};  y[6] = GRr3]{55:48};
x[7] = GR{r,]{63:56): Y[7] = GR{r3]{63:56};
for (i =0; i <8; i++) {

res[i] = (zero_ext(x[i],8) < zero_ext(y[i],8)) ? y[i] : x[i];

GR[rq] = concatenate8(res[7], res[6], res[5], res[4],
res[(3], res[2], res[1], res[0]);
} else { /1 two-byte el enents
x[0] = GRIr ]{15:0};  y[0] = GRrg]{15:0};
x[1] = GRr,]{31:16};  y[1] = GR{r3]{31:16};
x[2] = GRro]{47:32};  y[2] = GRrq]{47:32};
X[ 3] = G2[r21{63:48}; y[3] = GR{r3] {63:48};
for (i =0; i <4; i++) {
res[i] = (sign_ext(x[i],16) < sign_ext(y[i],16)) ? y[i] : Xx[i];

GR[r,] = concatenate4(res[3], res[2], res[1], res[0]);

}
GRrq].nat = GR[ry].nat || GRr3].nat;

Illegal Operation fault
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Parallel Minimum

Format:

Description:

pmin
(gp) pminl.u rq=ryr3 one_byte form 12
(gp) pmin2 ry=ry, 13 two_byte form 12

The minimum of the two source operandsis placed in the result register. In the one_byte form,
each unsigned 8-bit element of GR r, is compared with the corresponding unsigned 8-bit element
of GRr3 and the smaller of the two is placed in the corresponding 8-bit element of GR r4. Inthe
two_byte form, each signed 16-bit element of GR r, is compared with the corresponding signed
16-bit element of GR r5 and the smaller of the two is placed in the corresponding 16-bit element of
GRr;.

Figure 2-34. Parallel Minimum Example

Operation:

Interruptions:

GR rg: GRr3:

GR o GR fa:

pminl.u pmin2
if (PREgp]) { _
check_target _register(rq);
if (one_byte_forn { /1 one-byte el enents
X[0] = GRrp]{7:0}; y[0] = GRr3]{7:0};
x[1] = GRrp]{15:8};  y[1] = GRr3]{15:8};
x[2] = GRry]{23:16};  y[2] = GRrj]{23:16};
x[3] = GRrp]{31:24};  y[3] = GRry]{31:24};
x[4] = GRrp]{39:32};  y[4] = GRry]{39:32};
X[5] = GRrp]{47: 40} y[5] = &Rr3]{47:40};
X[ 6] = GRr]{55: 48} yL6] = &Rrg]{55:48};
x[7] = GR{r] {63: 56} yl[7] = Rrg]{63:56};

for (i =01 <8 i+ {
res[i] = (zero_ext(x[i],8) < zero_ext(y[i],8)) ? x[i] : y[i];

GR[rq] = concatenate8(res[7], res[6], res[5], res[4],
res[3], res[2], res[1], res[0]);
} else { /1 two-byte el enents
x[0] = GRry]{15:0};  y[0] = GRr3]{15:0};
x[1] = GRr,]{31:16};  y[1] = GRr3){31:16};
x[2] = GRro]{47:32});  y[2] = GRra]{47:32};
X[ 3] = GR[rZ]_{63:48}_; y[3] = CGRr3] {63:48};
for (i =0; i <4; i++) {
res[i] = (sign_ext(x[i],16) < sign_ext(y[i],16)) ? x[i] : y[i];

GR[r,] = concatenate4(res[3], res[2], res[1], res[0O]);

}
GR[rq].nat = GRry].nat || GRrj].nat;

Illegal Operation fault
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Parallel Multiply

Format: (gp) pmpy2.r ry=ryr3 right_form 12
(ap) pmpy2.l ry=ryr3 left_form 12

Description:  Two signed 16-bit data elements of GR r, are multiplied by the corresponding two signed 16-bit
data elements of GR r3 as shown in Figure 2-35. The two 32-bit results are placed in GR .

Figure 2-35. Parallel Multiply Operation

GRr3: GRr3:
GRry: GRry:
GRrq: GRrq:
pmpy2.| pmpy2.r
Operation: if (PRIgp]) {

check_target_register(rq);

if (right_form {
GRrq]{31:0} = sign_ext(CGRr,]{15:0}, 16) *
sign_ext (G r3] {15: 0}, 16);
GR(rq]{63:32} = sign_ext(CRr,]{47:32}, 16) *
sign_ext (GR{rg] {47:32}, 16);
} else { Il left_form
GRrq]{31:0} = sign_ext(CRr,]{31:16}, 16) *
sign_ext (GR[rg] {31: 16}, 16);
CRr.]{63:32} = sign_ext(GRr,]{63:48}, 16) *
sign_ext (GRr3] {63: 48}, 16);
}

GRrq].nat = GR(ry].nat || GRr3].nat;

Interruptions: Illegal Operation fault

2-176 IA-64 Instruction Reference



Intel o pmpyshr

Parallel Multiply and Shift Right

Format: (ap) pmpyshr2 rq =r5, r3, count, signed_form 11
(gp) pmpyshr2.u rq =r5, 3, count, unsigned_form 11

Description: ~ Thefour 16-bit data elements of GR r, are multiplied by the corresponding four 16-bit data

elements of GR r3 as shown in Figure 2-36. This multiplication can either be signed (prpyshr 2),
or unsigned (pnpyshr 2. u). Each product is then shifted to the right count, bits, and the least-
significant 16-bits of each shifted product form 4 16-bit results, which are placed in GR rq. A
count, of 0 gives the 16 low bits of the results, a count, of 16 gives the 16 high bits of the results.
The allowed values for count, are given in Table 2-44.

Table 2-44. PMPYSHR Shift Options

Figure 2-36. Parallel Multiply and Shift Right Operation

IA-64 Instruction Reference

count2 Selected Bit Field from Each 32-bit Product
0 15:0
7 227
15 30:15
16 31:16

GRr3:
16-bit
source
GRry: elements
32-bit
products
Shift right
count 5, bits 16-bit
-bi
GRry: result
elements

pmpyshr2
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Operation:

Interruptions:

2-178

if (PREap]) {

}

check_target_register(rq);
x[0] = GRrpJ{15:0};  y[0] = GR{rj]{15:0};
x[1] = GRro]{31:16};  y[1] = GRr4]{31:16};
x[2] = GRr,]{47:32};  y[2] = GRrq]{47:32};
x[ 3] = GR[rz]_{63:48}_; y[3] = GRr3]{63:48};
for (i =0; i <4; i++) {

if (unsigned_forn /1 unsigned multiplication
tenp[i] = zero_ext(x[i], 16) * zero_ext(y[i], 16);
el se I/ signed nmultiplication

tenp[i] = sign_ext(x[i], 16) * sign_ext(y[i], 16);

res[i] = tenp[i]{(count, + 15):count,};
}

GR[rq] = concatenate4(res[3], res[2], res[1], res[0]);
GRlrq].nat = GR[ry].nat || GRrg3].nat;

[llegal Operation fault
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Population Count
Format: (gp) popent rq =r3 19
Description:  The number of bitsin GR r3 having thevalue 1 is counted, and the resulting sumis placedin GR ;.

Operation: if (PRgp]) {
check_target _register(rq);

res = 0;

[/ Count up all the one bhits

for (i =0; i <64; i++) {
res += GRra]{i};

}

GRrq] = res;
GR[rq].nat = GRrj].nat;
}

Interruptions: Illegal Operation fault
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Probe Access

Format:

Description:

2-180

(gp) prober ry=rz,rp read form, register form  M38
(gp) probew ry=r3, write_form, register form  M38
(gp) prober rq=rgz, immy, read form, immediate form M39
(gp) probew rq=rgz, immy, write form, immediate form M39
(gp) prober.fault ra, immy fault_form, read_form, immediate form M40
(gp) probe.w.fault rz, immy fault_form, write_form, immediate form M40
(gp) probe.rw.fault ra, immy fault_form, read write form, immediate form M40

Thisinstruction determines whether read or write access, with a specified privilege level, to agiven
virtual addressis permitted. GRr, isset to 1if the specified accessis alowed and to O otherwise. In
the fault_form, if the specified accessis allowed this instruction does nothing; if the specified
accessis not allowed, afault is taken.

When PSR.dt is 1, the DTLB and the VHPT are queried for present trandations to determine if
access to the virtual address specified by GR r3 bits {60:0} and the region register indexed by

GR 3 bits {63:61}, is permitted at the privilege level given by either GR r, bits{1:0} or immy. If
PSR.pk is 1, protection key checks are also performed. The read or write form specifies whether the
instruction checks for read or write access, or both.

When PSR.dt is 0, a non-faulting probe uses its address operand as a virtual address to query the
DTLB only, because the VHPT walker is disabled. If the probed addressisfound in the DTLB, the
non-faulting probe returns the appropriate value, if not an Alternate Data TLB fault is raised.

When PSR.dt is 0, afaulting probe treats its address operand as a physical address, and takes no
TLB related faults.

A non-faulting probe to an unimplemented virtual address returns 0. A faulting probe to an
unimplemented virtual address (when PSR.dt is 1) or unimplemented physical address (when
PSR.dt is 0) takes an Unimplemented Data Address fault.

If thisinstruction faults, then it will set the non-access bit in the ISR and set the ISR read or write
bits depending on the compl eter. The following faults are taken by the faulting form of the probe
instruction only (the non-faulting form of the instruction does not take them): Unimplemented Data
Address fault, Data Key Permissions fault, Data A ccess Rights fault, Data Dirty Bit fault, Data
Access Bit fault, and Data Debug fault.

Thisinstruction can only probe with equal or lower privilege levels. If the specified privilege level
is higher (lower number), then the probe is performed with the current privilege level.
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Operation: if (PRgp]) {
itype = NON_ACCESS;
itype | = (read_wite form ? READWRTE : ((wite_form) ? WRITE : READ);
itype | = (fault_form) ? PROBE_FAULT : PROBE;

if (!fault_form
check_target _register(rq);

if (GRrg]l.nat || (register_form? GRro].nat : 0))
regi ster_nat_consunption_faul t(itype);

tmp_pl = (register_form ? GRr,]{1:0} : immy;
if (tnmp_pl < PSR cpl)
tmp_pl = PSR cpl;

if (fault form {
tlb_translate(GRlrg], 1, itype, tnp_pl, &mattr, &defer);

} else {
GR[rq] = tlb_grant_permssion(GRr3], itype, tnp_pl);
GR[rq].nat = 0;
}

Interruptions: Illegal Operation fault Data NaT Page Consumption fault
Register NaT Consumption fault Data Key Missfault
Unimplemented Data Address fault Data Key Permission fault
Data Nested TLB fault Data Access Rights fault
Alternate Data TLB fault Data Dirty Bit fault
VHPT Data fault Data Access Bit fault
Data TLB fault Data Debug fault

Data Page Not Present fault
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Parallel Sum of Absolute Difference

Format: (gp) psadl rq=ry, 13

intel.

12

Description:  The unsigned 8-bit elements of GR r,, are subtracted from the unsigned 8-bit elements of GR r.
The absolute value of each difference is accumulated across the elements and placed in GR r.

Figure 2-37. Parallel Sum of Absolute Difference Example

Operation: if (PR ap]) {
check_target_register(rq);
X[0] = &Rrp]{7:0}; y[0] =
x[1] = &Rr,]{15:8}; y[1] =
x[2] = Rrp]{23:16};  y[2] =
X[3] = &Rrp]{31:24};  y[3] =
x[4] = Rrp]{39:32};  y[4] =
X[5] = GRrp]{47:40};  y[5] =
X[ 6] = GRrp]{55:48};  y[6] =
x[7] = Rrp]{63:56};  y[7] =
&Rry] =0;

for (i =0; i <8 i++) {

tenp[i] = zero_ext(x[i], 8) -

if (temp[i] < 0)
tenp[i] = -tenp[i];
GRrq] +=tenp[i];

Rrs]{7:0};

QR(r3]{15: 8}
R{r3]{23: 16}
R{r 3] {31 24}
{1 5] {39: 32}
R 1 3] {47: 40}
GR{r 3] {55: 48}
R 1 5]{ 63: 56}

zero_ext(y[i],

GRrq].nat = GRry].nat || GRr3].nat;

}
Interruptions: lllegal Operation fault
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Parallel Shift Left

Format: (gp) pshl2 ry=ry, 13 two_byte form, variable_form 17
(gp) pshl2 rq =r,, countg two_byte form, fixed_form 18
(ap) pshld ry=ry, 13 four_byte form, variable form 17
(gp) pshl4 rq=r,, countg four_byte form, fixed form 18

Description:  The dataelements of GR r,, are each independently shifted to theleft by the scalar shift count in GR

rs, or in theimmediate field counts. The low-order bits of each element are filled with zeros. The
shift count isinterpreted as unsigned. Shift counts greater than 15 (for 16-bit quantities) or 31 (for
32-bit quantities) yield all zero results. The results are placed in GRr.

Figure 2-38. Parallel Shift Left Example

GRry: GRry:
Shift left
GRr: a a a a GRry: a a
pshi2 pshl4
Operation: if (PREgp]) {

check_target _register(rq);

shift_count = (variable_form? GRrj3]
tnmp_nat = (variable form? GRr3].nat :

if (two_byte_forn {
if (shift_count u> 16)
shift_count = 16;
GRIr1]{15:0} = GR{r,]{15: 0}
GR[r4] {31: 16} R r,] {31: 16}
GR{rq]{47: 32} R r,] {47: 32} <<
GR[r4] {63: 48} GRr,] {63:48} <<
} else {
if (shift_count u> 32)
shift_count = 32;
GRIrq]{31:0} = GRr,]{31:0}
GR[rq]{63:32} = GRr,]{63:32}

GR[rq].nat = GRry].nat || tnp_nat;

Interruptions: Illegal Operation fault
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: countg);

0);

/1 two_byte form

shift_count;
shift_count;
shift_count;
shift_count;
/1 four_byte_form

shift_count;
shift_count;
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Parallel Shift Left and Add

Format: (gp) pshladd2 rq =r,, county, r3 A10

Description:  Thefour signed 16-bit data elements of GR r, are each independently shifted to the left by count,
bits (shifting zeros into the low-order bits), and added to the four signed 16-bit data elements of
GR r3. Both the left shift and the add operations are saturating: if the result of either the shift or the
add is not representabl e as a signed 16-bit value, the final result is saturated. The four signed 16-bit
results are placed in GR r. The first operand can be shifted by 1, 2 or 3 hits.

Operation: if (PRgp]) {
check_target _register(rq);

x[0] = GRIr ]{15:0};  y[0] = GRrg]{15:0};
x[1] = GRro]{31:16};  y[1] = GRra]{31:16};
x[2] = GRr,]{47:32};  y[2] = GRrq]{47:32};
x[3] = GRr,|{63:48};  y[3] = GRrj]{63:48};
max = sign_ext (0x7fff, 16);
si gn_ext (0x8000, 16);

for (i =0; i <4 i++) {
tenmp[i] = sign_ext(x[i], 16) << county;

if (tenp[i] > max)
res[i] = nax;
else if (temp[i] < mn)
res[i] = nmin;
el se {
res[i] = tenp[i] + sign_ext(y[i], 16);
if (res[i] > max)
res[i] = nax;
if (res[i] < mn)
res[i] = nin;
}
}

CR[r4] = concatenate4(res[3], res[2], res[1], res[0]);
GRrq].nat = GR(ry].nat || GRrz].nat;

Interruptions: Illegal Operation fault

2-184 IA-64 Instruction Reference



inte|® pshr

Parallel Shift Right

Format: (op) pshr2 ry=rz, 1y signed_form, two_byte form, variable form 15
(gp) pshr2 rq =r3, countg signed_form, two_byte form, fixed form 16
(gp) pshr2.u ry=rgz, 1y unsigned_form, two_byte form, variable_form 15
(gp) pshr2.u rq =r3, counts unsigned_form, two_byte form, fixed form 16
(op) pshrd ry=rz, 1y signed_form, four_byte form, variable form 15
(gp) pshrd rq =r3, countg signed_form, four_byte form, fixed form 16
(gp) pshrd.u ry=rgz, Iy unsigned_form, four_byte form, variable form 15
(gp) pshrd.u rq =r3, counts unsigned_form, four_byte form, fixed form 16

Description: ~ The data elements of GR r3 are each independently shifted to the right by the scalar shift count in
GRry, or in theimmediate field counts. The high-order bits of each element are filled with either
theinitial value of the sign bits of the data elementsin GR r5 (arithmetic shift) or zeros (logical
shift). The shift count is interpreted as unsigned. Shift counts greater than 15 (for 16-bit quantities)
or 31 (for 32-bit quantities) yield all zero or all one results depending on theinitial values of the
sign bits of the data elementsin GR r5 and whether a signed or unsigned shift is done. The results
areplaced in GRry.

Operation: if (PRgp]) {
check_target _register(rq);

shift_count = (variable_form? GRrpy] : countg);
tmp_nat = (variable_form? GRrj,].nat : 0);

if (two_byte_forn { /1 two_byte form
if (shift_count u> 16)
shift_count = 16;
if (unsigned_forn { [/ unsigned shift
GRrq]{15:0} = shift_right_unsigned(zero_ext(Grg]{15:0}, 16),
shift_count);
CGRr4] {31:16} = shift_right_unsigned(zero_ext(Gr3]{31:16}, 16),
shift_count);
CR[rq]{47:32} = shift_right_unsigned(zero_ext(GRrg]{47:32}, 16),
shift_count);
GR[rq]{63:48} = shift_right_unsigned(zero_ext(Grg3]{63:48}, 16),
shift_count);
} else { [/ signed shift
GR[rq]{15:0} = shift_right_signed(sign_ext(Gr3]{15:0}, 16),
shift_count);
CRr4] {31:16} = shift_right_signed(sign_ext(Gr3]{31:16}, 16),
shift_count);
GR[rq]{47:32} = shift_right_signed(sign_ext(CGr3]{47:32}, 16),
shift_count);
GR[rq]{63:48} = shift_right_signed(sign_ext(GRr3]{63:48}, 16),
shift_count);

} else { /1 four_byte form
if (shift_count > 32)
shift_count = 32;
if (unsigned_forn { [/ unsigned shift
GRrq]{31:0} = shift_right_unsigned(zero_ext(GRrg]{31:0}, 32),

shift_count);
GR[r4] {63: 32} shift_right_unsigned(zero_ext (GR r3] {63:32}, 32),
} else { [/ signed shift

shift_count);
GR{rq] {31: 0} shift_right_signed(sign_ext(Gr3]{31:0}, 32),
shift_count);
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GR(rq]{63:32} = shift_right_signed(sign_ext(CGRrj3]{63:32}, 32),
shift_count);

}
CGR[rq].nat = GR[rg].nat || tnp_nat;

Interruptions: Illegal Operation fault
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Parallel Shift Right and Add
Format: (gp) pshradd2 rq =r,, count,, r3 A10

Description:  Thefour signed 16-bit data elements of GR r, are each independently shifted to the right by
count, bits, and added to the four signed 16-bit data elements of GR r5. The right shift operation
fills the high-order bits of each element with theinitial value of the sign bits of the dataelementsin
GRr,. The add operation is performed with signed saturation. The four signed 16-bit results of the
add are placed in GR r4. Thefirst operand can be shifted by 1, 2 or 3 bits.

Operation: if (PRgp]) {
check_target _register(rq);

x[0] = GR{r,]{15:0}; y[0] = GRr3]{15:0};
x[1] = GRr,]{31:16};  y[1] = GRrg]{31: 16};
x[2] = GRr,]{47:32};  y[2] = GRrj]{47:32};
x[3] = GRr,]{63:48};  y[3] = GRr3]{63:48};
max = sign_ext(Ox7fff, 16);
= si gn_ext (0x8000, 16);
for (i =0; i <4; i++) {

tenp[i] = shift_right_signed(sign_ext(x[i], 16), county);

res[i] = tenp[i] + sign_ext(y[i], 16);
if (res[i] > nmax)

res[i] = nax;
if (res[i] < mn)

res[i] = nin;

CGR[r4] = concatenate4(res[3], res[2], res[1], res[0]);
GR[rq].nat = GRry].nat || GRrj].nat;
}

Interruptions: Illegal Operation fault
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Parallel Subtract

Format:

Description:

one_byte form, modulo_form A9
one_byte form, sss saturation form A9
one_byte form, uus_saturation _form A9
one_byte form, uuu_saturation_form A9
two_byte form, modulo_form A9
two_byte form, sss_saturation_form A9
two_byte form, uus_saturation form A9
two_byte form, uuu_saturation_form A9
four_byte form, modulo_form A9

(ap) psubl ry=rp, r3

(gp) psubl.sss rq=ry,r3
(gp) psubl.uus rq=ry,r3
(gp) psubl.uuu rq=ry,r3
(ap) psub2 ry=ry, r3

(gp) psub2.sss rq=r,, 13
(gp) psub2.uus rq=ry,r3
(gp) psub2.uuu rq=ry,r3

(p) psub4 ry =1y, 13
The sets of elements from the two source operands are subtracted, and the results placed in GR r;.

If the difference between two el ements cannot be represented in the result element and a saturation
completer is specified, then saturation clipping is performed. The saturation can either be signed or
unsigned, as given in Table 2-45. If the difference of two elementsis larger than the upper limit
value, theresult isthe upper limit value. If it is smaller than the lower limit value, the result is the
lower limit value. The saturation limits are given in Table 2-46.

Table 2-45. Parallel Subtract Saturation Completers

Completer Result 1 Treated As Source I'p Treated As Source I'z Treated As
Sss signed signed signed
uus unsigned unsigned signed
uuu unsigned unsigned unsigned

Table 2-46. Parallel Subtract Saturation Limits

Result rq Signed

Result I'; Unsigned

Size Element Width — — — —
Upper Limit Lower Limit Upper Limit Lower Limit
8 bit ox7f 0x80 Oxff 0x00
16 bit Oox7fff 0x8000 Oxffff 0x0000

Figure 2-39. Parallel Subtract Example

2-188

ETE:

IA-64 Instruction Reference



intel.

Operation:

psub
if (PREgp]) { _
check_target _register(ryq);
if (one_byte_forn { /1 one-byte el enents
X[ 0] = GRr,]{7:0}; y[0] = GRrg]{7:0};
x[1] = GRrp){15:8};  y[1] = GRr3]{15:8};
x[2] = GRry]{23:16};  y[2] = GRra]{23:16};
x[3] = GRry]{31:24};  y[3] = GRrg){31:24};
x[4] = GRry]{39:32}; y[4] = GRra]{39:32};
x[5] = GRrp]{47:40};  y[5] = GRra]{47:40};
x[6] = GRr,]{55:48};  y[6] = GRrg]{55:48};
x[7] = GRr l{63:56}; y[7] = GRra]{63:56};

if (sss_saturation_form { [/l sss_saturation form
max = sign_ext (0x7f, 8);
mn = sign_ext(0x80, 8);
for (i =0; i <8; i++) {
tenp[i] = sign_ext(x[i], 8) - sign_ext(y[i], 8);

} else if (uus_saturation_form { [/ uus_saturation_form
max = Oxff;
mn = 0x00;

for (i =0; i <8 i++ {
tenp[i] = zero_ext(x[i], 8) - sign_ext(y[i], 8);

} else if (uuu_saturation_form { [/ uuu_saturation_form
max = Oxff;
mn = 0x00;

for (i =0; i <8 i++) {
tenp[i] = zero_ext(x[i], 8) - zero_ext(y[i], 8);

} else { /1 nodul o_form
for (i =0; i <8 i++) {
tenp[i] zero_ext(x[i], 8) - zero_ext(y[i], 8);

}

if (sss_saturation_form|| uus_saturation_form]||
uuu_saturation_form {
for (i =0; i <8; i++) {
if (tenmp[i] > nmax)
tenp[i] = max;
if (temp[i] < nin)
tenp[i] = mn;

}
CGR[r4] = concatenate8(tenp[7], tenp[6], tenp[5], tenp[4],

tenp[3], tenp[2], tenp[1l], tenp[O]);
} elseif (two_byte forn) { /1 two-byte el enents

x[0] = GRr,]{15:0}; y[0] = GRr3]{15:0};
x[1] = GRr,]{31:16}; y[1] = GRrg]{31:16};
x[2] = Q] {47:32}; y[2] = GRr3]{47:32};

X[3] = GRrp]{63:48};  y[3] = GRr3]{63:48};

if (sss_saturation_form { [/l sss_saturation form
max = sign_ext (0x7fff, 16);
mn = sign_ext (0x8000, 16);
for (i =0; i <4; i++) {
tenp[i] = sign_ext(x[i], 16) - sign_ext(y[i], 16);

} else if (uus_saturation_form { [/ uus_saturation_form
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max = Oxffff;

mn = 0x0000;

for (i =0; i <4; i++) {

tenp[i] = zero_ext(x[i], 16) - sign_ext(y[i], 16);
}
} else if (uuu_saturation_fornm ({ /1 uuu_saturation_form

max = Oxffff;

mn = 0x0000;

for (i =0; i <4 i++) {
tenp[i] = zero_ext(x[i], 16) - zero_ext(y[i], 16);

} else { /1 nodul o_form
for (i =0; i <4 i++) {
tenp[i] = zero_ext(x[i], 16) - zero_ext(y[i], 16);
}

}

if (sss_saturation_form|| uus_saturation_form||
uuu_saturation_form {
for (i =0; i <4; i++) {
if (tenp[i] > max)
tenp[i] = nmax;
if (tenp[i] < min)

tenp[i] = mn;
}
GR[rq] = concatenate4(tenp[3], tenp[2], tenp[1l], tenp[O]);
} else { [l four-byte el ements
x[0] = GRr]{31:0};  y[0] = GRrj]{3L: 0};
x[1] = GRrp]{63:32};  y[1] = GRrj]{63:32};

for (i =0; i <2; i++) { /1 nmodul o_form
tenp[i] = zero_ext(x[i], 32) - zero_ext(y[i], 32);

GR(rq] = concatenate2(tenp[1], tenp[O0]);

GRrq].nat = GR(ry].nat || GRrz].nat;

Interruptions: Illegal Operation fault
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Purge Translation Cache Entry
Format: (op) ptc.e ra M28
Description: ~ One or more translation entries are purged from the local processor’sinstruction and data
translation cache. Trandation Registers and the VHPT are not modified.
The number of translation cache entries purged is implementation specific. Some implementations
may purge all levels of the trand ation cache hierarchy with one iteration of pt c. e, while other
implementations may require severa iterations to flush all levels, sets and associativities of both
instruction and data translation caches. GR r3 specifies an implementation specific parameter
associated with each iteration.
The following loop is defined to flush the entire translation cache for all processor models.
Software can acquire parameters through a processor dependent layer that is accessed through a
procedural interface. The selected region registers must remain unchanged during the loop.
di sabl e_interrupts();
addr = base;
for (i =0; i <countl; i++) {
for (j =0; j <count2; j++) {
ptc. e(addr);
addr += stride2;
addr += stridel;
}
enabl e_interrupts();
Operation: if (PRgp]) {
if (PSR cpl !'=0)
privileged_operation_fault(0);
if (GRrj].nat)

Interruptions:

Serialization:

regi ster_nat_consunption_faul t (0);
t1b_purge_translation_cache(GRr3]);
}

Privileged Operation fault Register NaT Consumption fault

Software must issue a data serialization operation to ensure the purge is complete before issuing a
data access or non-access reference dependent upon the purge. Software must issue instruction
serialize operation before fetching an instruction dependent upon the purge.

IA-64 Instruction Reference 2-191



ptc.g, ptc.ga
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Purge Global Translation Cache

Format:

Description:
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(ap) ptcg ra, 1y global_form  M45
(gp) ptc.ga rs,ry global_alat form  M45

Theinstruction and data translation cache for each processor in the local TLB coherence domain
are searched for all entries whose virtual address and page size partially or completely overlap the
specified purge virtual address and purge address range. These entries are removed.

The purge virtual addressis specified by GR r3 bits{ 60:0} and the purge region identifier is
selected by GR r3 bits { 63:61}. GR r,, specifies the address range of the purge as 1<<GR[r,]{ 7:2}
bytesin size.

Based on the processor model, the trandation cache may be also purged of more translations than
specified by the purge parameters up to and including removal of al entries within the translation
cache.

pt c. g has release semantics and is guaranteed to be made visible after all previous data memory
accesses are made visible. The memory fence instruction forces all processors to complete the
purge prior to any subseguent memory operations. Serialization is till required to observe the
side-effects of atrandation being removed.

pt c. g must be the last instruction in an instruction group; otherwise, its behavior (including its
ordering semantics) is undefined.

The behavior of thept c. ga instructionissimilar to pt c. g. In addition to the behavior specified for
pt c. g thept c. ga instruction encodes an extra bit of information in the broadcast transaction. This
information specifies the purge is due to a page remapping as opposed to a protection change or
page tear down. The remote processors within the coherency domain will then take what ever
additional action is necessary to make their ALAT consistent. The local ALAT is not purged.

Thisinstruction can only be executed at the most privileged level.

Only one global purge transaction may beissued at atime by all processors, the operation is
undefined otherwise. Software is responsible for enforcing this restriction.

Propagation of pt c. g between multiple local TLB coherence domainsis platform dependent, and
must be handled by software. It is expected that the local TLB coherence domain covers at least the
processors on the same local bus.
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Operation: if (PRgp]) {
if (!followed_by_stop())
undef i ned_behavi or () ;
if (PSRcpl !'=0)
privileged_operation_fault(0);
if (GRrg]l.nat || GRry].nat)
regi ster_nat _consunption_faul t(0);
if (uninplenmented_virtual _address(GR{r3]))
uni npl errent ed_dat a_addr ess_faul t (0);
tnmp_rid = RREGRr3] {63:61}].rid;
tnmp_va = GR{r3] {60: 0};
tnp_size = GR{r,]{7:2};
tnp_va = align_to_size_boundary(tnp_va, tnp_size);
tl b_nust_purge_dtc_entries(tnp_rid, tnp_va, tnp_size);
tlb_nust_purge_itc_entries(tnp_rid, tnp_va, tnp_size);
if (global _alat_form tnp_ptc_type = GLCBAL_ALAT_FORM
el se tnp_ptc_type = GLOBAL_FORM
tl b_broadcast_purge(tnp_rid, tnp_va, tnp_size, tnp_ptc_type);
}
Interruptions: Machine Check abort Register NaT Consumption fault
Privileged Operation fault Unimplemented Data Address fault

Serialization:  The broadcast purge TC is not synchronized with the instruction stream on aremote processor.
Software cannot depend on any such synchronization with the instruction stream. Hardware on the
remote machine cannot reload an instruction from memory or cache after acknowledging a
broadcast purge TC without first retrandlating the |-side access in the TLB. Hardware may continue
to use avalid private copy of the instruction stream data (possibly in an I-buffer) obtained prior to
acknowledging abroadcast purge TC to a page containing the i-stream data. Hardware must
retrandlate access to an instruction page upon an interruption or any explicit or implicit instruction

serialization event (e.g. srl z.i,rfi).

Software must issue the appropriate data and/or instruction serialization operation to ensure the
purgeis completed before alocal data access, non-access reference, or local instruction fetch access

dependent upon the purge.
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Purge Local Translation Cache
Format: (gp) ptc.l ra, 1y M45

Description:  Theinstruction and data translation cache of the local processor is searched for al entries whose
virtual address and page size partially or completely overlap the specified purge virtual address and
purge address range. All these entries are removed.

The purge virtual addressis specified by GR r3 bits{ 60:0} and the purge region identifier is
selected by GR r3 bits { 63:61}. GR r,, specifies the address range of the purge as 1<<GR[r,]{ 7:2}
bytesin size.

The processor ensures that all entries matching the purging parameters are removed. However,
based on the processor model, the tranglation cache may be also purged of more translations than
specified by the purge parameters up to and including removal of al entries within the translation
cache.

Thisinstruction can only be executed at the most privileged level.

Thisisalocal operation, no purge broadcast to other processors occurs in a multiprocessor system.

Operation: if (PRgp]) {
if (PSRcpl '=0)
privil eged_operation_fault(0);
if (Rrg].nat || GRr,].nat)
regi ster_nat _consunption_faul t (0);
if (uninplenented_virtual _address(GR{r3]))
uni npl ement ed_dat a_addr ess_faul t (0);

tmp_rid = RRECGRr3]{63:61}].rid,;

tnmp_va = GR[r3] {60: 0};

trp_size = GR[r,] {7:2};

tnp_va = align_to_size_boundary(tnp_va, tnp_size);
tlb_must_purge dtc_entries(tnp_rid, tnp_va, tnp_size);
tlb_nmust _purge_itc_entries(tnp_rid, tnp_va, tnp_size);

}
Interruptions: Machine Check abort Register NaT Consumption fault
Privileged Operation fault Unimplemented Data Address fault

Serialization: ~ Software must issue the appropriate data and/or instruction serialization operation to ensure the
purgeis completed before a data access, non-accessreference, or instruction fetch access dependent
upon the purge.
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ptr

Purge Translation Register

Format:

Description:

Operation:

Interruptions:

(gp) ptr.d r3,rp data form  M45
(ap) ptri r3, 1y instruction_form ~ M45

In the data form of thisinstruction, the data trandlation registers and caches are searched for all
entries whose virtual address and page size partially or completely overlap the specified purge
virtual address and purge address range. All these entries are removed. Entries in the instruction
translation registers are unaffected by the data form of the purge.

In the instruction form, the instruction trandlation registers and caches are searched for all entries
whose virtual address and page size partially or completely overlap the specified purge virtual
address and purge address range. All these entries are removed. Entriesin the data trandation
registers are unaffected by the instruction form of the purge.

In addition, in both forms, the instruction and data translation cache may be purged of more
transl ations than specified by the purge parameters up to and including removal of all entries within
the trandation cache.

The purge virtual addressis specified by GR r3 bits{ 60:0} and the purge region identifier is
selected by GR r3 bits {63:61} . GR r,, specifies the address range of the purge as 1<<GR][r,]{ 7:2}
bytesin size.

Thisinstruction can only be executed at the most privileged level.
Thisisalocal operation, no purge broadcast to other processors occurs in a multiprocessor system.

Asdescribed in “Trandation Cache (TC)” on page 4-4 in Volume 2, the processor may use the
translation caches to cache virtual address mappings held by trandation registers. Theptr.i and
pt r . d instructions purge the processor’s tranglation registers as well as cached translation register
copies that may be contained in the respective trandlation caches.

if (PRagp]) {
if (PSRcpl !'=0)
privileged_operation_fault(0);
if (GRrg]l.nat || GRry].nat)
regi ster_nat _consunption_faul t(0);
if (uninplenmented_virtual _address(GRr3]))
uni npl errent ed_dat a_addr ess_faul t (0);

tmp_rid = RREGRr3] {63:61}].rid;

tnmp_va = GR{r3] {60: 0};

tnp_size = GR{r,]{7:2};

tnp_va = align_to_size_boundary(tnp_va, tnp_size);

if (data_form {
tl b_nust_purge_dtr_entries(tnp_rid, tnp_va, tnp_size);
tl b_nust_purge_dtc_entries(tnp_rid, tnp_va, tnp_size);
tlb_nmay_purge_itc_entries(tnp_rid, tnp_va, tnp_size);

} else { /1 instruction_form
tlb_nust_purge_itr_entries(tnp_rid, tnp_va, tnp_size);
tlb_nust_purge_itc_entries(tnp_rid, tnp_va, tnp_size);
tlb_may_purge dtc_entries(tnp_rid, tnp_va, tnp_size);

}

Privileged Operation fault Unimplemented Data Address fault
Register NaT Consumption fault
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For the data form, software must issue a data serialization operation to ensure the purge is
completed before issuing an instruction dependent upon the purge. For the instruction form,
software must issue an instruction serialization operation to ensure the purge is completed before

fetching an instruction dependent on that purge.

Serialization:
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rfi

Return From Interruption

Format:

Description:

rfi B8

The machine context prior to an interruption isrestored. PSR isrestored from IPSR, IPSR is
unmodified, and IP isrestored from || P. Execution continues at the bundle address |oaded into the
IP, and the instruction slot loaded into PSR.ri.

This instruction must be immediately followed by a stop. Otherwise, an Illegal Operation fault is
taken. Thisinstruction switches to the register bank specified by IPSR.bn. Instructions in the same
instruction group that access GR16 to GR31 reference the previous register bank. Subsequent
instruction groups reference the new register bank.

This instruction performs instruction serialization, which ensures:

* Prior modificationsto processor register resources that affect fetching of subsequent
instruction groups are observed.

* Prior modifications to processor register resources that affect subsegquent execution or data
memory accesses are observed.

 Prior memory synchronization (sync. i ) operations have taken effect on the local processor
instruction cache.

 Subsequent instruction group fetches (including the target instruction group) are re-initiated
after rfi completes.

Therfi instruction must be in an instruction group after the instruction group containing the
operation that is to be serialized.

Thisinstruction can only be executed at the most privileged level. Thisinstruction can not be
predicated.

Execution of thisinstruction isundefined if PSR.ic or PSR.i are 1. Software must ensure that an
interruption cannot occur that could modify 1P, IPSR, or IFS between when they are written and
the subsequent r fi .

This instruction does not take Lower Privilege Transfer, Taken Branch or Single Step traps.

If the target isabundle containing anovl instruction and if thisinstruction sets PSR.ri to 2, then an
Ilegal Operation fault will be taken on the target bundle.

If IPSR.isis 1, control isresumed in the | A-32 instruction set at the virtual linear address specified
by 11P{31:0}. PSR.di does not inhibit instruction set transitions for thisinstruction. If PSR.dfhis 1
after rfi completes execution, a Disabled FP Register fault israised on the target 1A-32
instruction.

If IPSR.isis 1 and an Unimplemented Instruction Addresstrap istaken, 1P will contain the original
64-hit target IP. (The value will not have been zero extended from 32 hits.)

When entering the | A-32 instruction set, the size of the current stack frameis set to zero, and all
stacked general registers are left in an undefined state. Software can not rely on the value of these
registers across an instruction set transition. Software must ensure that
AR[BSPSTORE]==AR[BSP] on entry to the | A-32 instruction set, otherwise undefined behavior
may result.

Software must issue anf instruction before thisinstruction if memory ordering is required between
I A-32 processor-consistent and 1A-64 unordered memory references. The processor does not
ensure | A-64-instruction-set-generated writes into the instruction stream are seen by subsequent
IA-32 instructions.
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Operation:
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Software must ensure the code segment descriptor and selector are loaded before issuing this
instruction. If the target EIP value exceeds the code segment limit or has a code segment privilege
violation, an A-32_Exception(GPFault) exception is raised on the target 1A-32 instruction. For
entry into 16-bit 1A-32 code, if 1P is not within 64K -bytes of CSD.base a GPFault israised on the
target instruction.

EFLAG.rf and PSR.id are unmodified until the successful completion of the target 1A-32
instruction. PSR.da, PSR.dd, PSR.ia and PSR.ed are cleared to zero before the target 1A-32
instruction begins execution.

| A-32 instruction set execution leaves the contents of the ALAT undefined. Software can not rely
on ALAT state across an instruction set transition. On entry to |A-32 code, existing entriesin the
ALAT areignored.

if (!followed_by_stop())
illegal _operation_fault();

uni npl erent ed_addr ess = 0;
if (PSRcpl !'=0)
privil eged_operation_fault(0);

taken rfi = 1;

PSR = CR I PSR ;
if (CRIPSR.is == 1) { //resume | A-32 instruction set
tmp_IP = CR I I P];
if ((CRIPSR.it && uninplenented_virtual _address(tnp_IP))
|] ("CRIIPSR.it &&% uninpl enent ed_physi cal _address(tnp_IP)))
uni npl erent ed_address = 1;
//conpute effective instruction pointer
El P{31: 0}= CR[ 11 P {31: 0} - AR CSD) .Base;
/I force zero-sized restored frame
rse_restore_frame(0, 0, CFM sof);

CFM sof = 0;
CFM sol = 0;
CFM sor = 0;
CFMrrb.gr = 0;
CFMrrb.fr = 0;
CFMrrb.pr = 0;

rse_invalidate_non_current_regs();
/1 The register stack engine is disabled during | A 32
/linstruction set execution.
} else { //return to | A-64 instruction set
tnp_IP = CRIIP] & ~Oxf;
slot = CRIPSR].ri;
if ((CRIPSR.it &% uninplenented_virtual _address(tnp_IP))
|] ("CRIPSR.it &&% uninpl enented_physi cal _address(tnp_IP)))
uni npl erent ed_address = 1;
if (RIFS.v) {
tnp_growth = - CFM sof;
al at _frane_update(-CR IFS].ifmsof, 0);
rse_restore_frame(CRIFS].ifmsof, tnmp_growth, CFM sof);
CFM = CRIFS].ifm
}
rse_enabl e_current _frame_| oad();
}
IP = tmp_IP;
instruction_serialize();
i f (uninpl enent ed_address)
uni npl ement ed_i nstructi on_address_trap(0, tnp_IP);
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Interruptions: 1llegal Operation fault Privileged Operation fault
Unimplemented I nstruction Address trap

Additional Faults on IA-32 target instructions
|A-32_Exception(GPFault)
Disabled FP Reg Fault if PSR.dfhis 1

Serialization: Animplicit instruction and data serialization operation is performed.
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Reset System Mask

Format:

Description:

Operation:
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(gp) rsm immy, M44

The complement of theimm,, operand is ANDed with the system mask (PSR{ 23:0} ) and the result
is placed in the system mask.

The PSR system mask can only be written at the most privileged level.

When the current privilege level is zero (PSR.cpl is 0), an r sminstruction whose mask includes
PSR.i may cause external interrupts to be disabled for an implementati on-dependent number of

instructions, even if the qualifying predicate for the r sminstruction isfalse. Architecturally, the
extents of this external interrupt disabling “window” are defined as follows:

 External interrupts may be disabled for any instructions in the same instruction group as the
r sm including those that precede ther sm in sequential program order, regardless of the value
of the qualifying predicate of the r sminstruction.

« If the qualifying predicate of the r smistrue, then external interrupts are disabled immediately
following the r sminstruction.

« If the qualifying predicate of the r smisfalse, then external interrupts may be disabled until the
next data serialization operation that follows the r sminstruction.

The external interrupt disable window is guaranteed to be no larger than defined by the above
criteria, but it may be smaller, depending on the processor implementation.

When the current privilege level is hon-zero (PSR.cpl is not 0), an r sminstruction whose mask
includes PSR.i may briefly disable external interrupts, regardless of the value of the qualifying
predicate of the r sminstruction. However, processor implementations guarantee that
non-privileged code cannot lock out external interrupts indefinitely (e.g. viaan arbitrarily long
sequence of r sminstructions with zero-valued qualifying predicates).

it (PRIagp]) {
if (PSRcpl '=0)
privil eged_operation_fault(0);

if (is_reserved_fiel d(PSR. TYPE, PSR SM inmy,))
reserved_register_field fault();

if (immg{1})  PSR(1} = O;
if (imm{2}))  PSR(2} = O;
t (inmg{3})  PSR(3} = O;
f(imm{4}) PSR4} = O;
t (inmg{5))  PSR(5} = O;
f (imm,{13})  PSR(13} = 0;
if (immy{14})  PSR{14} = 0;
if (immg{15})  PSR(15} = O;
if (imme{17})  PSR(17} = O;
f (immy,{18})  PSR(18} = 0;
f (imm,{19}))  PSR(19} = 0;
f (imma{20})  PSR(20} = O;
f (immy{21})  PSR{21} = 0;
f (imm,{22})  PSR(22} = 0
f (imma{23})  PSR(23} = 0;
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Interruptions: Privileged Operation fault Reserved Register/Field fault

Serialization:  Software must use a data serialize or instruction serialize operation before issuing instructions
dependent upon the altered PSR bits — except the PSR.i bit. The PSR.i bit isimplicitly serialized
and the processor ensures that external interrupts are masked by the time the next instruction
executes.
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Reset User Mask
Format: (gp) rum immy, M44

Description: ~ The complement of the immy,, operand is ANDed with the user mask (PSR{5:0}) and theresult is
placed in the user mask.

PSR.up isonly cleared if the secure performance monitor bit (PSR.sp) is zero. Otherwise PSR.up is
not modified.

Operation: if (PRgp]) {
if (is_reserved_field(PSR.TYPE, PSR UM inmy,))
reserved_register_field fault();

if (imm{l})  PSR(1} = O;

if (immu{2} & PSR sp == 0) /I non-secure perf nonitor
PSR{(2} = O;

i (imm,{3}) PSR(3} = O;

if (imme{4}) PSR4} = 0;

if (i mpa{5}) PSR(5} = 0;

}
Interruptions: Reserved Register/Field fault

Serialization:  All user mask modifications are observed by the next instruction group.
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Set Floating-Point Value, Exponent, or Significand

Format: (op) setf.s fi=r, single foom  M18
(gp) setf.d fi=r, double form  M18
(ap) setf.exp fy=r; exponent_form  M18
(gp) setf.sig f;=r; significand_form ~ M18

Description:  Inthesingle and double forms, GR r, istreated as asingle precision (in the single_form) or double
precision (in the double_form) memory representation, converted into floating-point register
format, and placed in FR f;.

In the exponent_form, bits 16:0 of GRr, are copied to the exponent field of FR f; and bit 17 of GR
r,iscopied to the sign bit of FR f;. The significand field of FR f; is set to one (0x800...000).

Figure 2-40. Function of setf.exp

63 1817 0
GRrq
FRf, [s|exponent| 1000 st 000

In the significand_form, the valuein GRr, is copied to the significand field of FR f;.

The exponent field of FR f; is set to the biased exponent for 2.088 (Ox1003E) and the sign field of
FR f; is set to positive (0).

Figure 2-41. Function of setf.sig

63 0

GR r

—

FRf; |0| 0x1003E significand

For all forms, if the NaT bit corresponding to r, isequal to 1, FR f; is set to NaT Val instead of the
computed result.
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Operation: if (PR ap]) {
fp_check_target_register(f,);
if (tnp_isrcode = fp_reg_disabled(f,, 0, 0, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (!CGRry.nat) {
if (single_form
FRIf,] = fp_memto_fr_format(CRr,], 4, 0);
else if (double form
FRIfq = fp_memto_fr_format(GRr,], 8, 0);
else if (significand_forn {
FR(f4].significand = GRrj];
FR{f 4] . exponent = FP_| NTEGER EXP;
FRf,].sign = 0;
} else {
FR{f1].significand = 0x8000000000000000;
FRIf1].exp = GRr2]{16:0};
FRIf1].sign = GR[r2]{17};

/1 exponent _form

} else
FRIf1] = NATVAL;

fp_update_psr(fq);
}

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

2-204 IA-64 Instruction Reference



inte|® shi

Shift Left

Format: (ap) shl ry=ry, 13 |7
(gp) shl rq =r,, countg pseudo-op of: (gp) dep.z rq = r,, countg, 64—countg

Description: ~ Thevaluein GR r, is shifted to the | eft, with the vacated bit positions filled with zeroes, and placed
in GRr4. The number of bit positionsto shift is specified by the valuein GR r5 or by animmediate
value countg. The shift count isinterpreted as an unsigned number. If the valuein GR r5 is greater
than 63, then the result isall zeroes.

See “Deposit” on p. 2-37 for the immediate form.

Operation: if (PRgp]) {
check_target _register(rq);

count = CRrg3];
GR[rq] = (count > 63) ? 0: GRry] << count;

CGRrq].nat = GRry].nat || GRrg].nat;
}

Interruptions: Illegal Operation fault
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Shift Left and Add
Format: (gp) shladd rq =r5,, county, r3 A2

Description:  Thefirst source operand is shifted to the left by count, bits and then added to the second source
operand and the result placed in GR ry. The first operand can be shifted by 1, 2, 3, or 4 bits.

Operation: if (PRgp]) {
check_target _register(rq);

&Rrq] = (Hry] << county) + Rrg];

GRrq].nat = GR(ry].nat || GRrz].nat;
}

Interruptions: Illegal Operation fault
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Shift Left and Add Pointer

Format: (gp) shladdp4 rq =r5,, county, r3 A2

Description:  Thefirst source operand is shifted to the left by count, bits and then is added to the second source

operand. The upper 32 bits of the result are forced to zero, and then bits { 31:30} of GR r3 are

copied to bits {62:61} of the result. Thisresult is placed in GR r4. Thefirst operand can be shifted
by 1, 2, 3, or 4 hits.

Figure 2-42. Shift Left and Add Pointer

C O

Operation: if (PRLgp]) {
check_target _register(ryq);

tnp_res = (GRry] << count,) + GRrj];
tnp_res = zero_ext(tnp_res{31:0}, 32);
tnp_res{62: 61} = GRr3]{31:30};

GR[rq] =tnp_res;

GR[rq].nat = GRry].nat || GRrj].nat;
}

Interruptions: Illegal Operation fault
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Shift Right
Format: (gp) shr ry=rgry signed_form 15
(gp) shru ry=rg,ry unsigned form 15
(gp) shr rq =r3, countg pseudo-op of: (gp) extr rq = rs, countg, 64—countg
(gp) shr.u rq =r3, countg pseudo-op of: (qp) extr.u rq = r, countg, 64—countg

Description:  Thevaluein GR r3 is shifted to the right and placed in GR r4. In the signed_form the vacated bit
positions are filled with bit 63 of GR r3; in the unsigned_form the vacated bit positions arefilled
with zeroes. The number of bit positions to shift is specified by the valuein GR r, or by an
immediate value countg. The shift count is interpreted as an unsigned number. If thevaluein GRr,
is greater than 63, then theresult isall zeroes (for the unsigned_form, or if bit 63 of GR rz was0) or
all ones (for the signed_form if bit 63 of GR r3 was 1).

If the .u completer is specified, the shift isunsigned (logical), otherwiseit is signed (arithmetic).
See “Extract” on p. 2-40 for theimmediate forms.

Operation: if (PRgp]) {
check_target_register(rq);

if (signed_forn) {

count = (GR[rp] > 63) ? 63 : GR[r,];

GR(rq] = shift_right_signed(GRr3], count);
} else {

count = GRr];
GRrq] = (count > 63) ? 0 : shift_right_unsigned(GRr3], count);

GRlrq].nat = GR[ry].nat || GRrg3].nat;

Interruptions: Illegal Operation fault
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Shift Right Pair
Format: (gp) shrp rq =ry, r3, countg 110

Description:  The two source operands, GR r, and GR r 3, are concatenated to form a 128-bit value and shifted to
the right countg bits. The least-significant 64 bits of the result are placed in GR 1.
The immediate val ue countg can be any number in the range O to 63.

Figure 2-43. Shift Right Pair

GRry:

GRr3:

GRrq:

Operation: if (PRLgp]) {
check_target _register(ryq);

tenpl = shift_right_unsigned(GRrj], countg);
tenp2 = CGR{r,] << (64 - countg);
GR[rq] = zero_ext(tenpl, 64 - countg) | tenpz;
GR[rq].nat = GRry].nat || GRrg].nat;

}

Interruptions: Illegal Operation fault
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Serialize

Format:

Description:

Operation:

Interruptions:

2-210

intel.

(ap) srlzi instruction form  M24
(ap) srlzd data foom  M24

Instruction serialization (srl z. i ) ensures:

« Prior modificationsto processor register resources that affect fetching of subsequent
instruction groups are observed,

« Prior modifications to processor register resources that affect subsequent execution or data
memory accesses are observed,

 Prior memory synchronization (sync. i ) operations have taken effect on the local processor
instruction cache,

* Subsequent instruction group fetches are re-initiated after srl z. i completes.

Thesrl z.i instruction must bein an instruction group after the instruction group containing the
operation that isto be serialized. Operations dependent on the serialization must bein an instruction
group after the instruction group containing thesrl z. i .

Data serialization (sr | z. d) ensures:

« Prior modifications to processor register resources that affect subsequent execution or data
memory accesses are observed.

Thesrl z. d instruction must be in an instruction group after the instruction group containing the
operation that is to be serialized. Operations dependent on the serialization must follow the
srl z. d, but they can be in the sameinstruction group asthesr| z. d.

A srl z cannot be used to stall processor data memory references until prior data memory
references, or memory fences are visible or “accepted” by the external platform.

The following processor resources require a serialize to ensure side-effects are observed; CRs,
PSR, DBRs, IBRs, PMDs, PMCs, RRs, PKRs, TRs and TCs (refer to Volume 2 for details).

it (PRIgp]) {
if (instruction_form
instruction_serialize();
el se // data_form
data_serialize();

}

None
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ssm

Set System Mask

Format:

Description:

Operation:

Interruptions:

Serialization:

(gp) ssm immp, M44

The immy, operand is ORed with the system mask (PSR{ 23:0}) and the result is placed in the
system mask.

The PSR system mask can only be written at the most privileged level.

The contents of the interruption resources (that are overwritten when the PSR.ic bit is 1), are
undefined if an interruption occurs between the enabling of the PSR.ic bit and a subsequent
instruction serialize operation.

if (PRagp]) {
if (PSRcpl !'=0)
privileged_operation_fault(0);

if (is_reserved_field(PSR. TYPE, PSR SM immy,))
reserved_register_field fault();

if o (immpu{1}) PSR{1} = 1,
if (immpy,{2}) PSR{ 2} = 1;
if (i mmp{3}) PSR{ 3} = 1;
if (i mmpu{4}) PSR{4} = 1,
it (i mmy,{5}) PSR{5} = 1;
if (i mmy,{13}) PSR{ 13} = 1;
if (i mmy,{14}) PSR{ 14} = 1;
if (i mmy,{15}) PSR{ 15} = 1;
if (imm,{17}) PSR{17} = 1;
if (i mmy,{18}) PSR( 18} = 1
if (i mmy,{19}) PSR{ 19} = 1;
if (i mmy,{20}) PSR{ 20} = 1;
if (i mmy{21}) PSR( 21} = 1;
if (i mmy,{22}) PSR{ 22} = 1;
if (i mmy,{23}) PSR{ 23} = 1;

}

Privileged Operation fault Reserved Register/Field fault

Software must issue a data serialize or instruction serialize operation before issuing instructions
dependent upon the altered PSR bits from the ssminstruction. Unlike with the r sminstruction,
setting the PSR.i bit is not treated specially. Refer to Volume 2 for a description of serialization.

IA-64 Instruction Reference 2-211



st

Store

Format:

Description:

intel.

(gp) stsz.sttype.sthint [r3] =T, normal_form, no_base update form M4
(gp) stsz.sttype.sthint [r3] = r,, immg normal_form, imm_base update form M5
(gp) st8.spill.sthint [rg] =T, spill_form, no_base update form M4
(gp) st8.spill.sthint [ra] =r,, immy spill_form, imm_base update form M5

A value consisting of the least significant sz bytes of the value in GR r, iswritten to memory
starting at the address specified by the value in GR r3. The values of the sz completer are givenin
Table 2-30 on page 2-124. The sttype completer specifies special store operations, which are
described in Table 2-47. If the NaT bit corresponding to GR r3is 1 (or in the normal_form, if the
NaT bit corresponding to GR 1, is 1), a Register NaT Consumption fault is taken.

In the spill_form, an 8-byte valueis stored, and the NaT bit corresponding to GR r, is copied to a
bit in the UNAT application register. Thisinstruction is used for spilling aregister/NaT pair.0 See
Volume 1 for details.

Intheimm_base update form, the valuein GR r is added to a signed immediate value (immg) and
theresult is placed back in GR r3. This base register update is done after the store, and does not
affect the store address, nor the value stored (for the case where r, and r5 specify the same register).

Table 2-47. Store Types

sttype . . .
yp Interpretation Special Store Operation
Completer
none Normal store
rel Ordered store An ordered store is performed with release semantics.

For more details on ordered stores see Volume 1.

The ALAT is queried using the physical memory address and the access size, and all overlapping
entries are invalidated.

The value of the sthint completer specifies the locality of the memory access. The values of the
sthint completer are given in Table 2-48. A prefetch hint isimplied in the base update forms. The
address specified by the value in GR r after the base update acts as a hint to prefetch the indicated
cacheline. This prefetch uses the locality hints specified by sthint. For more details, refer to
Volume 1.

Table 2-48. Store Hints

2-212

sthint Completer Interpretation
none Temporal locality, level 1
nta Non-temporal locality, all levels
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Operation: if (PRgp]) {
size = spill _form? 8 : sz;
otype = (sttype == ‘rel’) ? RELEASE : UNORDERED;

if (immbase_update form
check_target_register(rg);

if (Rrg]l.nat || (normal_formé&& GRry].nat))
regi ster_nat _consunption_faul t (WRI TE) ;

paddr = tlb_translate(GRr3], size, WRITE, PSR cpl, &mattr,
&t np_unused) ;
if (spill_formé&& GR{r,].nat)
natd_gr_wite(GRr,], paddr, size, UMbe, mattr, otype, sthint);
el se

memwite(GRro], paddr, size, UMbe, nattr, otype, sthint);

if (spill_fornm {
bit_pos = GRr3]{8:3};
AR[ UNAT] {bi t _pos} = GR[r,].nat;

alat _inval _nultiple_entries(paddr, size);

if (immbase_update form {
Rr3] = GRr3] + sign_ext(imm, 9);
GR[r3].nat = 0;
meminplicit_prefetch(GRr3], sthint, WRITE);

}
}

Interruptions: Illegal Operation fault Data NaT Page Consumption fault
Register NaT Consumption fault Data Key Miss fault
Unimplemented Data Address fault Data Key Permission fault
Data Nested TLB fault Data Access Rights fault
Alternate Data TLB fault Data Dirty Bit fault
VHPT Data fault Data Access Bit fault
Data TLB fault Data Debug fault
Data Page Not Present fault Unaligned Data Reference fault
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Floating-Point Store

Format:

Description:

2-214

(gp) stffsz.sthint [rg] =1, normal_form, no_base update form M9
(gp) stffsz.sthint [rg] =15, immg normal_form, imm_base update foom  M10
(gp) stf8.sthint [rg] =T, integer_form, no_base update form M9
(gp) stf8.sthint [ra] = f,, immyg integer_form, imm_base update form  M10
(gp) stf.spill.sthint [rg] =1, spill_form, no_base update form M9
(gp) stf.spill.sthint [r3] = f5, immg spill_form, imm_base update form  M10

A value, consisting of fsz bytes, is generated from the value in FR f, and written to memory starting
at the address specified by the valuein GR r3. In the normal_form, the value in FR f, is converted
to the memory format and then stored. In the integer_form, the significand of FR f, is stored. The
values of the fsz completer are given in Table 2-33 on page 2-128. In the normal_form or the
integer_form, if the NaT bit corresponding to GR rzis 1 or if FR f, contains NaTVal, a Register
NaT Consumption fault is taken. See VVolume 1 for details on conversion from floating-point
register format.

In the spill_form, a 16-byte value from FR f, is stored without conversion. This instruction is used
for spilling aregister. See Volume 1 for details.

Intheimm_base update form, the valuein GR r is added to a signed immediate value (immg) and
theresult is placed back in GR r3. This base register update is done after the store, and does not
affect the store address.

The ALAT isqueried using the physical memory address and the access size, and all overlapping
entries are invalidated.

The value of the sthint completer specifies the locality of the memory access. The values of the
sthint completer are given in Table 2-48 on page 2-212. A prefetch hint isimplied in the base
update forms. The address specified by the value in GR r after the base update acts as a hint to
prefetch the indicated cache line. This prefetch uses the locality hints specified by sthint. For more
details, refer to Volume 1.

Hardware support for st f e (10-byte) instructions that reference a page that is neither a cacheable
page with write-back policy nor a NaTPage is optional. On processor models that do not support
such st f e accesses, an Unsupported Data Reference fault is raised when an unsupported reference
is attempted.
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Operation: if (PRgp]) {
if (immbase_update form
check_target_register(rg);
if (tnp_isrcode = fp_reg_disabled(f,, 0, 0, 0))
di sabl ed_fp_register_fault(tnp_i srcode, WRI TE);

if (Rrg]l.nat || (!spill_form&& (FRf,] == NATVAL)))
regi ster_nat _consunption_faul t (WRI TE) ;

size = spill _form? 16 : (integer_form? 8 : fsz);

paddr = tlb_translate(GRr3], size, WRITE, PSR cpl, &mttr, & np_unused);
val = fp_fr_to_memformat (FR f,], size, integer_fornj;
memwite(val, paddr, size, UMbe, mattr, UNORDERED, sthint);

alat_inval _nultiple_entries(paddr, size);

if (immbase_update form {
Rr3] = GRr3] + sign_ext(imm, 9);
GR[r3].nat = 0;
meminplicit_prefetch(GRr3], sthint, WRITE);

}
}
Interruptions: Illegal Operation fault Data NaT Page Consumption fault
Disabled Floating-point Register fault Data Key Miss fault
Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault
Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault
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Subtract

Format:

Description:

Operation:

Interruptions:

2-216

intel.

(gp) sub ry=rpr3 register_form Al
(gp) sub ry=ryr3,1 minusl_form, register_form Al
(gp) sub ry=immg, r3 imm8_form A3

The second source operand (and an optional constant 1) are subtracted from the first operand and
theresult placed in GRr4. In theregister form thefirst operand is GR r,; in the immediate form the
first operand is taken from the sign-extended immg encoding field.

The minusl_form is available only in the register_form (although the equivalent effect can be
achieved by adjusting the immediate).

if (PREap]) {

check_target _register(rq);

tnmp_src = (register_form? GRr, : sign_ext(immg, 8));
trmp_nat = (register_form? GRry].nat : 0);

if (mnusl_form
GRrq] =tnp_src - GRr3] - 1
el se

GRrqy] =tnp_src - GRrjl;
GR(rq].nat = tnp_nat || GRr3].nat;

[llegal Operation fault
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sum

Set User Mask

Format:

Description:

Operation:

Interruptions:

Serialization:

(qp) sum immpy M44

The immy, operand is ORed with the user mask (PSR{5:0}) and the result is placed in the user
mask.

PSR.up can only be set if the secure performance monitor bit (PSR.sp) iszero. Otherwise PSR.upis
not modified.

it (PRgp]) { _ _
if (is_reserved_field(PSR. TYPE, PSR UM inmmy,))
reserved_register_field fault();

if (imm{l})  PSR(1} = 1,

if (immy{2} & PSR sp == 0) // non-secure perf nonitor
PSR{2} = 1;
i (imm,{3}) PSR(3} = I;
if (imme{4}) PSR4} = 1;
if (i mpa{5}) PSR(5} = 1;
}
Reserved Register/Field fault

All user mask modifications are observed by the next instruction group.
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Sign Extend
Format: (gp) sxtxsz ry=rsz 129

Description: ~ Thevaluein GRr3issign extended from the bit position specified by xsz and the result is placed in
GR r4. The mnemonic values for xsz are given in Table 2-49.

Table 2-49. xsz Mnemonic Values

Xsz Mnemonic Bit Position
1 7
2 15
4 31

Operation: if (PR agp]) {
check_target_register(rq);

GRrq] = sign_ext(GRr3],xsz * 8);
GR(rq].nat = GR[rg].nat;

Interruptions: Illegal Operation fault
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Memory Synchronization
Format: (gp) sync.i M24

Description:  sync. i ensuresthat when previously initiated Flush Cache (f c) operations issued by the local
processor become visible to local data memory references, prior Flush Cache operations are also
observed by the local processor instruction fetch stream. sync. i also ensuresthat at the time
previously initiated Flush Cache (f ¢) operations are observed on a remote processor by data
memory references they are also observed by instruction memory references on the remote
processor. sync. i isordered with respect to all cache flush operations as observed by another
processor. A sync. i and apreviousf c must be in separate instruction groups. If semantically
reguired, the programmer must explicitly insert ordered data references (acquire, release or fence
type) to appropriately constrain sync. i (and hencef ¢) visibility to the data stream on other
processors.

sync. i isused to maintain an ordering relationship between instruction and data caches on local
and remote processors. An instruction serialize operation must be used to ensure synchronization
initiated by sync. i onthelocal processor has been observed by a given point in program
execution.

An example of self-modifying code (local processor):

st [L1] = data //store into local instruction stream

fc L1 /1 flush stale datumfrominstruction/data cache
s [/require instruction boundary between fc and sync.i
sync. i //ensure local and renote data/inst caches

//are synchroni zed
srlz.i // ensure sync has been observed by the |ocal processor,
i // ensure subsequent instructions observe

[/ nmodi fied menory
L1: target //instruction nodified

Operation: if (PRap]) {

i nstruction_synchronize();
}

Interruptions: None
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Translation Access Key
Format: (gp) tak ry=rjz M46

Description:  The protection key for a given virtual addressis obtained and placed in GRr;.

When PSR.dt is 1, the DTLB and the VHPT are searched for the virtual address specified by GRr
and the region register indexed by GR r3 bits{ 63:61} . If amatching present translation isfound the
protection key of the trandation is placed in GR r. If amatching present translation is not found or
if an unimplemented virtual addressis specified by GR r3, the value 1 is returned.

When PSR.dt is 0, tak searchesthe DTLB only, because the VHPT walker is disabled. If no
matching present tranglation is found in the DTLB, the value 1 is returned.

A trandlation with the NaTPage attribute is not treated differently and returnsits key field.
Thisinstruction can only be executed at the most privileged level.

Operation: if (PRgp]) {
itype = NON_ACCESS| TAK;
check_target_register(rq);

if (PSRcpl '=0)
privil eged_operation_fault(itype);

if (&Rrj].nat)

regi ster_nat _consunption_fault(itype);

GRrl] = tlb_access_key(GRr3], itype);
GR(rq].nat = 0;
}

Interruptions: Illegal Operation fault Register NaT Consumption fault
Privileged Operation fault
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Test Bit

Format: (gp) thit.trel.ctype pq, po = r3, POSg 116

Description: ~ The bit specified by the posg immediate is selected from GR r5. The selected bit forms asingle bit
result either complemented or not depending on the trel completer. This result is written to the two
predicate register destinations p, and p,. The way the result is written to the destinations is
determined by the compare type specified by ctype. See the Compare instruction and Table 2-14 on
page 2-26.

The trel completer values .nz and .z indicate non-zero and zero sense of the test. For normal and
unc types, only the .z valueis directly implemented in hardware; the .nz valueis actually a
pseudo-op. For it, the assembler simply switches the predicate target specifiers and uses the
implemented relation. For the parallel types, both relations are implemented in hardware.

Table 2-50. Test Bit Relations for Normal and unc tbits

trel Test Relation Pseudo-op of
nz selected bit==1 z Py~ P2
z selected bit ==

Table 2-51. Test Bit Relations for Parallel tbits

trel Test Relation
nz selected bit==1
z selected bit ==

If the two predicate register destinations are the same (p; and p, specify the same predicate
register), the instruction will take an Illegal Operation fault, if the qualifying predicateis set, or if
the compare type is unc.

Operation: if (PRgp]) {
if (pl == p2)
illegal _operation_fault();

if (trel == ‘nz") /1 ‘nz’ - test for 1
tnp_rel = GRr3]{pose};
el se /1l "z - test for O
tnp_rel = | GR{r 3] {pose};
switch (ctype) {
case ‘and’: /1 and-type conpare
if (Rrg]l.nat [| !'trp_rel) {
PRI py] = 0;
PRI p2] = 0;
br eak;
case ‘or’: /1 or-type comnpare
if ('!CRrgl.nat & tnp_rel) {
PRIpy] = 1
PRI p2] = 1;
br eak;
case ‘or.andcm: /1 or.andcmtype conpare
if ('!CRrg]l.nat & tnp_rel) {
PRIpy] = 1
PRI po] = 0;
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br eak;
case ‘unc’: [l unc-type conpare
defaul t: /1 normal conpare
if (Rra].nat) {
PR p4] ;
PR p2]
} else {
PRI p1]
PRI p2]

br eak;

0;

tnp_rel;
'tnp_rel;

} else {
if (ctype == ‘unc’) {
if (pl == p2)
illegal _operation_fault();
PR p;] = 0;
PRI p2] = 0;

}

Interruptions: Illegal Operation fault
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Translation Hashed Entry Address
Format: (gp) thash ry=rj3 M46
Description: A Virtual Hashed Page Table (VHPT) entry addressis generated based upon the specified virtual
address and the result is placed in GR r4. The virtual address is specified by GR r3 and the region
register selected by GR r3 bits {63:61} .
If t hash isgiven aNaT input argument or an unimplemented virtual address as an input, the
resulting target register value is undefined, and its NaT bit is set to one.
When the processor is configured to use the region-based short format VHPT (PTA .vf=0), the value
returned by t hash is defined by the architected short format hash function. See “Region-based
VHPT Short Format” on p. 4-15 in Volume 2.
When the processor is configured to use the long format VHPT (PTA.vf=1), t hash performs an
implementation-specific long format hash function on the virtual address to generate a hash index
into the long format VHPT.
In the long format, atranslation in the VHPT must be uniquely identified by its hash index
generated by thisinstruction and the hash tag produced from thet t ag instruction.
The hash function must use all implemented region bits and only virtual address bits { 60:0} to
determine the offset into the VHPT. Virtual address bits{63:61} are used only by the short format
hash to determine the region of the VHPT.
This instruction must be implemented on all processor models, even processor models that do not
implement a VHPT walker.
Operation: if (PRgp]) {

Interruptions:

check_target _register(rq);

if (GRrg].nat || uninplenented_virtual _address(GRr3])) {
GR[r4] = undefined();
GR[rq].nat = 1,

_vr = GRr3]{63:61};
tnmp_va = GRr3] {60: 0};
= tlb_vhpt _hash(tnp_vr, tnp_va, RR{tnp_vr].rid,
RR tnp_vr].ps);
GR[rq].nat = 0;

}
Illegal Operation fault

IA-64 Instruction Reference 2-223



intel.

Test NaT

Format: (gp) tnat.trel.ctype pq, po=r3 117

Description: ~ The NaT bit from GR r53 forms asingle bit result, either complemented or not depending on the trel
completer. Thisresult iswritten to the two predicate register destinations, p; and p,. The way the
result is written to the destinations is determined by the compare type specified by ctype. See the
Compare instruction and Table 2-14 on page 2-26.

Thetrel completer values .nz and .z indicate non-zero and zero sense of the test. For normal and
unc types, only the .z valueis directly implemented in hardware; the .nz value is actualy a
pseudo-op. For it, the assembler simply switches the predicate target specifiers and uses the
implemented relation. For the parallel types, both relations are implemented in hardware.

Table 2-52. Test NaT Relations for Normal and unc tnats

trel Test Relation Pseudo-op of
nz selected bit ==1 z Py~ P2
z selected bit ==

Table 2-53. Test NaT Relations for Parallel tnats

trel Test Relation
nz selected bit==1
z selected bit ==

If the two predicate register destinations are the same (p; and p, specify the same predicate
register), the instruction will take an Illegal Operation fault, if the qualifying predicate is set, or if
the compare typeis unc.

Operation: if (PRgp]) {
if (pl == p2)
illegal _operation_fault();

‘

if (trel == 'nz") /[l ‘nz’ - test for 1
tmp_rel = GRrg].nat;
el se I

tnmp_rel = 1CGRrg].nat;

‘

z' - test for O

switch (ctype) {
case ‘and’: /1 and-type conpare

br eak;

case ‘or’: /Il or-type conpare
if (trmp_rel) {

PRI p1]

PRI p2]

br eak;

case ‘or.andcm: [/ or.andcmtype conpare
if (trmp_rel) {

PRI p1]

PRI p2]

br eak;

= 1;
= 1;

1
0;
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case ‘unc’:

defaul t:
PR[pi] = tnp_rel;
PR p,] = !tnp_rel;
br eak;

} else {
if (ctype == ‘unc’) {

if (pl == p2)
illegal _operation_fault();

PRI py] = 0;

PRI p2] = 0;

}

Interruptions: Illegal Operation fault

IA-64 Instruction Reference

/1 unc-type conpare
/1 normal conpare

tnat
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Translate to Physical Address
Format: (gp) tpary=rsz M46

Description:  The physical address for the virtual address specified by GR r5 is obtained and placed in GR r.

When PSR.dt is 1, the DTLB and the VHPT are searched for the virtual address specified by GRr3
and the region register indexed by GR r3 bits{ 63:61} . If amatching present translation isfound the
physical address of the trandation is placed in GR r4. If amatching present translation is not found
the appropriate TLB fault is taken.

When PSR.dt is 0, tak searchesthe DTLB only, because the VHPT walker is disabled. If no
matching present tranglation is found in the DTLB, an Alternate Data TLB fault is raised.

If thisinstruction faults, then it will set the non-access bit in the ISR. The ISR read and write bits
are not set.

Thisinstruction can only be executed at the most privileged level.

Operation: if (PRgp]) {
itype = NON_ACCESS| TPA;
check_target_register(rq);

if (PSRcpl '=0)
privil eged_operation_fault(itype);

if (&Rrj].nat)

regi ster_nat _consunption_fault(itype);

GR(rq] = tlb_translate_nonaccess(GRr3], itype);

GR(rq].nat = 0;
}
Interruptions: Illegal Operation fault Alternate Data TLB fault
Privileged Operation fault VHPT Data fault
Register NaT Consumption fault Data TLB fault
Unimplemented Data Address fault Data Page Not Present fault
Data Nested TLB fault Data NaT Page Consumption fault
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ttag

Translation Hashed Entry Tag

Format:

Description:

Operation:

Interruptions:

(gp) ttag ry=r3 M46

A tag used for matching during searches of the long format Virtual Hashed Page Table (VHPT) is
generated and placed in GRr4. The virtual addressis specified by GR r3 and the region register
selected by GR r3 bits { 63:61} .

If tt ag isgiven aNaT input argument or an unimplemented virtual address as an input, the
resulting target register value is undefined, and its NaT bit is set to one.

The tag generation function generates an implementation-specific long format VHPT tag. The tag
generation function must use all implemented region bits and only virtual address bits { 60:0} .
PTA.vf isignored by thisinstruction.

A trangdlation in the long format VHPT must be uniquely identified by its hash index generated by
thet hash instruction and the tag produced from this instruction.

This instruction must be implemented on all processor models, even processor models that do not
implement a VHPT walker.

if (PREgp]) {

check_target _register(rq);

if (GRrg].nat || uninplenented_virtual _address(GRr3])) {
GR[r4] = undefined();

GR[rq].nat = 1,

} else {
tmp_vr = GR{r3] {63:61};
tnmp_va = GRr3] {60: 0};
CGRrq] = tlb_vhpt_tag(tnmp_va, RRtnp_vr].rid, RRtnp_vr].ps);

GR[rq].nat = 0;

}
Ilegal Operation fault
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unpack

Unpack

Format:

Description:

Operation:

Interruptions:

2-228

(gp) unpackl.h ry=r,,r3
(gp) unpack2.h ry=r,,r3
(gp) unpack4.h ry=r,,13
(gp) unpackl.l rq=ry,r3
(gp) unpack2.l rq=ry,r3
(gp) unpack4.l rq=ry,r3

one_byte form, high_form
two_byte form, high_form

four_byte form, high_form

one_byte form, low_form
two_byte form, low_form
four_byte form, low_form

tel

12
12
12
12
12
12

The data elements of GR r,, and r5 are unpacked, and the result placed in GR r. In the high_form,
the most significant elements of each source register are selected, whilein the low_form the least
significant elements of each source register are selected. Elements are selected alternately from the

source registers.

if (PREap]) {

check_target _register(rq);

if (one_byte_form {

X[0] = GRr ] {7:0};
x[1] = GR{r;]{15:8};

x[2] = GR{ro]{23:16};
x[3] = GR{rg] {31 24};
x[4] = GRirg] {39:32};
X[5] = GR{r] {47: 40}
X[ 6] = GR{r o] {55: 48} ;
x[7] = GR{r]{63:56);
if (high form

GR[r,] = concatenate8( x[7], y[7], x[6],
x[5], y[S]. x[4],

else // low form

ylo] = GRrg]{7:0};

yl1] = Rrg]{15:8}

yl2] = &Rrg]{23: 16}
y[3] = GRrg]{31: 24}
y[4] = &Rrg]{39:32}
yI5] = GRrg]{47: 40}
y[ 6] = GRlrg3]{55: 48};
yl71 = Rrg]{63:56};

GR[r,] = concatenate8( x[3], y[3], x[2]

} else if (two_byte forn) {

x[0] = GRr,]{15:0};
x[1] = GR{r5]{31: 16}
x[2] = GRr;]{47:32};
x[3] = GR{r;]{63: 48}

if (high_form

GR[r,] = concatenated4(x[3], y[3],

else // low form

GR[rq] = concatenate4(x[1], y[1],
} else {

X[0] = GRr,]{3L: 0};
x[1] = GRirg]{63:32);

if (high_ form

x[1], y[1], x[q]
yl0] = GRrg]{15:0};

y[1] = GRir3]{31:16};
y[2] = GRirg]{47:32);
y[3] = GRIr3]{63:48};

x[ 2],
X[ 0],
y[0] = GRIr3]{31:0};

y[1] = GRrgl{63:32};

&R(rq] = concatenate2(x[1], y[1]);

else // low form

CR[r4] = concatenate2(x[0],

[llegal Operation fault

y[0]);

}
GRlrq].nat = GR[ry].nat || GRrg3].nat;

/1 one-byte el enents

y[ 6],
y[4]);

» y[2],

y[0l);
/1 two-byte el enents

y[2]);
y[0]);

[l four-byte el ements
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Figure 2-44. Unpack Operation

unpack

GRry:

unpackl.

GRry:

unpackl. |

GRry:

unpack?2.

GRry:

unpack?2. |

GRry:

unpack4.

GRry:

unpack4. |
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xchg

Exchange
Format:

Description:

intel.

(gp) xchgszldhint rq ={rs],r, M16

A value consisting of sz bytesis read from memory starting at the address specified by the value in
GR 3. Theleast significant sz bytes of the value in GR r, are written to memory starting at the
address specified by the value in GR r5. The value read from memory is then zero extended and
placed in GR r; and the NaT bit corresponding to GR r, is cleared. The values of the sz completer
aregiven in Table 2-54.

If the address specified by the value in GR r3 is not naturally aligned to the size of the value being
accessed in memory, an Unaligned Data Reference fault is taken independent of the state of the
User Mask alignment checking bit, UM.ac (PSR.ac in the Processor Status Register).

Both read and write access privileges for the referenced page are required.

Table 2-54. Memory Exchange Size

Operation:

2-230

sz Completer Bytes Accessed
1 1 byte
2 2 bytes
4 4 bytes
8 8 bytes

The exchangeis performed with acquire semantics, i.e. the memory read/write is made visible prior
to all subsequent data memory accesses. See Volume 1 and Volume 2 for details on memory
ordering.

The memory read and write are guaranteed to be atomic.

Thisinstruction is only supported to cacheable pages with write-back write policy. Accessesto
NaT Pages cause a Data NaT Page Consumption fault. Accesses to pages with other memory
attributes cause an Unsupported Data Reference faullt.

The value of the Idhint compl eter specifies the locality of the memory access. The values of the
Idhint completer are given in Table 2-32 on page 2-125. Locality hints do not affect program
functionality and may be ignored by the implementation.

if (PREap]) {

check_target_register(rq);

if (Rrg].nat || GRr,].nat)
regi ster_nat _consunpti on_f aul t ( SEMAPHORE) ;

paddr = tlb_translate(GRrg], sz, SEMAPHCRE, PSR cpl, &mattr,
&t nmp_unused) ;

if (!ma_supports_semaphores(nmattr))
unsupport ed_dat a_r ef erence_f aul t (SEMAPHORE, CR(r3]);

val = memxchg(GR[r,], paddr, sz, UMbe, mattr, ACQURE, |dhint);
al at _inval _multiple_entries(paddr, sz);

GRrq] = zero_ext(val, sz * 8);
GR(rq].nat = 0;
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inte|® xchg

Interruptions: Illegal Operation fault Data Key Miss fault
Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault
Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault

Data NaT Page Consumption fault
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Fixed-Point Multiply Add

Format: (gp) xmal f;=f3,f, fp low_form F2
(gp) xmalu f; =f3,f, f, pseudo-op of: (qp) xmall f; =13, 4, 5
(gp) xmah f; =fs,f, fp high_form F2
(gp) xmahu f; =13, f4 f, high_unsigned form F2

Description: ~ Two source operands (FR f3 and FR f,) are treated as either signed or unsigned integers and
multiplied. The third source operand (FR f,) is zero extended and added to the product. The upper
or lower 64 bits of the resultant sum are selected and placed in FR f;.

In the high_unsigned_form, the significand fields of FR f3 and FR f, are treated as unsigned
integers and multiplied to produce a full 128-bit unsigned result. The significand field of FRf, is
zero extended and added to the product. The most significant 64-bits of the resultant sum are placed
in the significand field of FR f;.

In the high_form, the significand fields of FR f5 and FR f, are treated as signed integers and
multiplied to produce afull 128-bit signed result. The significand field of FR f, is zero extended
and added to the product. The most significant 64-bits of the resultant sum are placed in the
significand field of FR f;.

In the other forms, the significand fields of FR f; and FR f, are treated as signed integers and
multiplied to produce afull 128-bit signed result. The significand field of FR f, is zero extended
and added to the product. The least significant 64-bits of the resultant sum are placed in the
significand field of FR f;.

Inall forms, the exponent field of FR f; is set to the biased exponent for 2.088 (0x1003E) and the
sign field of FR f; is set to positive (0).

Note: flasanoperandisnot aninteger 1; it isjust the register file format’s 1.0 value.
Inal forms, if any of FRf3, FRf,, or FRf,isaNaTVal, FR f; isset to NaTVal instead of the
computed result.

Operation: if (PR agp]) {
fp_check_target_register(fq);
if (tnp_isrcode = fp_reg_disabled(f;, fo, f3, fy))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FR[f3]) ||
fp_is_natval (FRIf4])) {
FR 1] = NATVAL;
} else {
if (lowform]|| high_form
tnp_res_128 =
fp_164 x_164_to | 128(FR[f3].significand, FR f,].significand);
el se // high_unsigned_form
tnp_res_128 =
fp_U64 x_U64_to UL28(FR[f3].significand, FR f,].significand);

tnp_res_128 =
fp_UL28_add(tnp_res_128, fp_U64_to_UL28(FR[f,]. significand));

if (high_form]|| high_unsigned_form
FRIf,].significand = tnp_res_128. hi;
else // low form
FR{f.].significand = tnp_res_128.1 o;

FR{f 4] . exponent = FP_| NTEGER EXP;
FR f4].sign = FP_SI GN_PCSI Tl VE;
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}
fp_updat e_psr(fq);

Interruptions: Disabled Floating-point Register fault
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xmpy inte|®

Fixed-Point Multiply

Format: (gp) xmpy.l f; =131, pseudo-op of: (gp) xmall f; =f3, T4, fO
(gp) xmpy.lu f; =13, 14 pseudo-op of: (gp) xmall f; =f3, T4, fO
(gp) xmpy.h f; =13, 1,4 pseudo-op of: (qp) xmah f; =f3, f, fO
(gp) xmpy.hu f; =13, T4 pseudo-op of: (gp) xmahu f; =13, f,, fO

Description: ~ Two source operands (FR f3 and FR f,) are treated as either signed or unsigned integers and
multiplied. The upper or lower 64 bits of the resultant product are selected and placed in FR f;.

In the high_unsigned_form, the significand fields of FR f3 and FR f, are treated as unsigned
integers and multiplied to produce afull 128-bit unsigned result. The most significant 64-bits of the
resultant product are placed in the significand field of FR f;.

In the high_form, the significand fields of FR f5 and FR f, are treated as signed integers and
multiplied to produce afull 128-bit signed result. The most significant 64-bits of the resultant
product are placed in the significand field of FR f;.

In the other forms, the significand fields of FR f; and FR f, are treated as signed integers and
multiplied to produce afull 128-bit signed result. The least significant 64-bits of the resultant
product are placed in the significand field of FR f;.

Inall forms, the exponent field of FR f; is set to the biased exponent for 2.088 (0x1003E) and the
sign field of FR f; is set to positive (0).

Note: flasanoperandisnot aninteger 1; it isjust the register file format’s 1.0 value.

Operation: See “Fixed-Point Multiply Add” on p. 2-232.
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Exclusive Or

Format: (gp) xor ry=ry 13 register_form Al
(gp) xor ry =immg, r3 imm8_form A3

Description:  The two source operands are logically XORed and the result placed in GR r4. In the register_form

thefirst operand is GR r; in the imm8_form the first operand is taken from the immg encoding
field.

Operation: if (PRgp]) {
check_target _register(rq);

tnp_src = (register_form? GRr,] : sign_ext(img, 8));
tnmp_nat = (register_form? GRr,].nat : 0);

GRirqy] =tnp_src ~ GRrjl;
GR[rq].nat = tnp_nat || GRr3].nat;
}

Interruptions: Illegal Operation fault
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Zero Extend
Format: (gp) zxtxsz ry=r3 129

Description:  Thevaluein GR r3 is zero extended above the bit position specified by xsz and the result is placed
in GRr4. The mnemonic values for xsz are given in Table 2-49 on page 2-218.

Operation: if (PRgp]) {
check_target _register(rq);

CRrq] = zero_ext(CRr3],xsz * 8);

GRrq].nat = GRrj].nat;
}

Interruptions: Illegal Operation fault
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|IA-64 Pseudo-Code Functions

This chapter contains a table of all pseudo-code functions used on the | A-64 instruction pages.

Table 3-1. Pseudo-Code Functions (Sheet 1 of 8)

Function

Operation

xxx_fault(parameters ...)

There are several fault functions. Each fault function accepts parameters specific to
the fault, e.g. exception code values, virtual addresses, etc. If the fault is deferred for
speculative load exceptions the fault function will return with a deferral indication.
Otherwise, fault routines do not return and terminate the instruction sequence.

Xxx_trap(parameters ...)

There are several trap functions. Each trap function accepts parameters specific to
the trap, e.g. trap code values, virtual addresses, etc. Trap routines do not return.

acceptance_fence()

Ensures prior data memory references to uncached ordered-sequential memory
pages are “accepted”, before subsequent data memory references are performed by
the processor.

alat_cmp(rtype, raddr)

Returns a one if the implementation finds an ALAT entry which matches the register
type specified by r t ype and the register address specified by r addr , else returns
zero. This function is implementation specific. Note that an implementation may
optionally choose to return zero (indicating no match) even if a matching entry exists
in the ALAT. This provides implementation flexibility in designing fast ALAT lookup
circuits.

alat_frame_update( delta_bof, delta_sof)

Notifies the ALAT of a change in the bottom of frame and/or size of frame. This allows
management of the ALAT's tag bits or other management functions it might need.

alat_inval()

Invalidate all entries in the ALAT.

alat_inval_multiple_entries(paddr, size)

The ALAT is queried using the physical memory address specified by paddr and the
access size specified by Si ze. All matching ALAT entries are invalidated. No value is
returned.

alat_inval_single_entry(rtype, rega)

The ALAT is queried using the register type specified by r t ype and the register
address specified by r ega. At most one matching ALAT entry is invalidated. No
value is returned.

alat_write(rtype, raddr, paddr, size)

Allocates a new ALAT entry using the register type specified by r t ype, the register
address specified by r addr, the physical memory address specified by paddr, and
the access size specified by Si ze. No value is returned. This function guarantees
that only one ALAT entry exists for agivenraddr. Ifal d. c. nc,l df.c. nc,or

| df p. c. nc instruction’s r addr matches an existing ALAT entry’s register tag, but
the instruction’s Si ze and/or paddr are different than that of the existing entry’s;
then this function may either preserve the existing entry, or invalidate it and write a
new entry with the instruction’s specified Si ze and paddr .

align_to_size_boundary(vaddr, size)

Returns vaddr aligned to the boundary specified by Si ze.

branch_predict(wh, ih, ret, target, tag)

Implementation-dependent routine which updates the processor’s branch prediction
structures.

check_branch_implemented(check_type)

Implementation-dependent routine which returns TRUE or FALSE, depending on
whether a failing check instruction causes a branch (TRUE), or a Speculative
Operation fault (FALSE). The result may be different for different types of check