SECTION 7
PROCESSING STATES

L MOTOROLA

PROCESSING STATES

SECTION CONTENTS

SECTION 7.1 PROCESSING STATES ... 3
SECTION 7.2 NORMAL PROCESSING STATE ...cooviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeiieee 3
7.2.1 InStruction PIpelingcooiiiiiieee e 3
7.2.2 Summary of Pipeline-Related Restrictionsovvviiiiiiiiiineeeennn. 8
SECTION 7.3 EXCEPTION PROCESSING STATEooviiiiiiiiieeeeeeeeeeeeeeeeiiie 10
7.3. 1 INTEITUPT TYPES ittt ettt e e e e e enans 12
7.3.2 Interrupt Priority StIUCTUIEouuueiiiiiiieee et 12
7.3.2.1 Interrupt Priority LEVEISoooveeiiiiiiiiiiiieeeeeeeee e 14
7.3.2.2 Exception Priorities Within an IPLccccooriiiiiciiciee e 15
7.3.3 INTEITUPL SOUICES ...ttt e et eeee e e e e eeananns 16
7.3.3.1 Hardware INterrupt SOUICEScoooviiiiiiiiiiiiiiiiieieeieeee e 16
7.3.3.2 Software INterrupt SOUICEScooivviriiiiiiieiiiie e e et eaeans 17
7.3.3.3 Other INterrupt SOUICEScooveviiiiiiiiiiiiie e 22
7.3.4 Interrupt Arbitrationooovviiiiiiii e 24
7.3.5 Interrupt Instruction FetCh ..o, 24
7.3.6 Instructions Preceding the Interrupt Instruction Fetch 25
7.3.7 Interrupt INStruction EXECULIONuuiiiieiiie e 26
SECTION 7.4 RESET PROCESSING STATEoooiiiiiiiiiiiiiiiieeeeeeee e 33
SECTION 7.5 WAIT PROCESSING STATEcooiiiiiiiiiiiiiiiieeeeeeee e 36
SECTION 7.6 STOP PROCESSING STATEcooiiiiiiiiiiiiiiiieeeeeeet e 37

7-2 PROCESSING STATES MOTOROLA

PROCESSING STATES

7.1 PROCESSING STATES
The DSP56K processor is always in one of five processing states: normal, exception,
reset, wait, or stop. This section describes each of the processing states.

7.2 NORMAL PROCESSING STATE

The normal processing state is associated with instruction execution. Details about nor-
mal processing of the individual instructions can be found in APPENDIX A - INSTRUC-
TION SET DETAILS. Instructions are executed using a three-stage pipeline, which is
described in the following paragraphs.

7.2.1 Instruction Pipeline

DSP56K instruction execution occurs in a three-stage pipeline, which allows most
instructions to execute at a rate of one instruction per instruction cycle. However, certain
instructions require additional time to execute: instructions longer than one word, instruc-
tions using an addressing mode that requires more than one cycle, and instructions that
cause a control-flow change. In the latter case, a cycle is needed to clear the pipeline.

Pipelining allows instruction executions to overlap so that the fetch-decode-execute
operations of a given instruction occur concurrently with the fetch-decode-execute oper-
ations of other instructions. Specifically, while the processor is executing one instruction,
it is decoding the next instruction, and fetching the next instruction from program mem-
ory. The processor fetches only one word per cycle, so if an instruction is two words in
length, it fetches the additional word before it fetches the next instruction.

Table 7-1 demonstrates pipelining. F1, D1, and E1 refer to the fetch, decode, and exe-
cute operations, respectively, of the first instruction. The third instruction, which contains
an instruction extension word, takes two instruction cycles to execute. The extension
word will be either an absolute address or immediate data. Although it takes three
instruction cycles for the pipeline to fill and the first instruction to execute, an instruction
usually executes on each instruction cycle thereafter.

Table 7-1 Instruction Pipelining

Instruction Cycle
Operation
1 2 3 4 5 6 7
Fetch F1 F2 F3 F3e | F4 F5 F6
Decode D1 D2 D3 D3e D4 D5
Execute El E2 E3 E3e | E4

t MOTOROLA PROCESSING STATES 7-3 J

(NORMAL PROCESSING STATE \]

Each instruction requires a minimum of three instruction cycles (12 clock phases) to be
fetched, decoded, and executed. This means that there is a delay of three instruction
cycles on powerup to fill the pipe. A new instruction may begin immediately following the
previous instruction. Two-word instructions require a minimum of four instruction cycles
to execute (three cycles for the first instruction word to move through the pipe and exe-
cute and one more cycle for the second word to execute). A new instruction may start
after two instruction cycles.

The pipeline is normally transparent to the user. However, there are certain instruction-
sequence dependent situations where the pipeline will affect the program execution.
Such situations are best described by case studies. Most of these restricted sequences
occur because 1) all addresses are formed during instruction decode, or 2) they are the
result of contention for an internal resource such as the status register (SR). If the execu-
tion of an instruction depends on the relative location of the instruction in a sequence of
instructions, there is a pipeline effect. To test for a suspected pipeline effect, compare
between the execution of the suspect instruction 1) when it directly follows the previous
instruction and 2) when four NOPs are inserted between the two. If there is a difference,
it is caused by a pipeline effect. The DSP56K assembler flags instruction sequences with
potential pipeline effects so that the user can determine if the operation will execute as
expected.

Case 1: The following two examples show similar code sequences.

1. No pipeline effect:

ORI #xx,CCR ;Changes CCR at the end of execution time slot
Jcec XXXX ‘Reads condition codes in SR in its execution time slot

The Jcc will test the bits modified by the ORI without any pipeline effect in the code seg-
ment above.

2. Instruction that started execution during decode:

ORI #04,0MR :Sets DE bit at execution time slot
MOVE x:$100,a :Reads external RAM instead of internal ROM

A pipeline effect occurs in example 2 because the address of the MOVE is formed at its
decode time before the ORI changes the DE bit (which changes the memory map) in the
ORI's execution time slot. The following code produces the expected results of reading
the internal ROM:

ORI #04,0MR ;Sets DE bit at execution time slot
NOP :Delays the MOVE so it will read the updated memory map
MOVE x:$100,a :Reads internal ROM

L 7-4 PROCESSING STATES MOTOROLA J

(NORMAL PROCESSING STATE \]

Case 2: One of the more common sequences where pipeline effects are apparent is as
follows:

. :Move a number into register Rn (n=0-7).
MOVE #xx,Rn
MOVE X:(Rn),A ;Use the new contents of Rn to address memory.

In this case, before the first MOVE instruction has written Rn during its execution cycle,
the second MOVE has accessed the old Rn, using the old contents of Rn. This is
because the address for indirect moves is formed during the decode cycle. This overlap-
ping instruction execution in the pipeline causes the pipeline effect. One instruction cycle
should be allowed after an address register has been written by a MOVE instruction
before the new contents are available for use as an address register by another MOVE
instruction. The proper instruction sequence is as follows:

. ;Move a number into register Rn.
MOVE X0,Rn

NOP :Execute any instruction or instruction
. ;sequence not using Rn.

MOVE X:(Rn),A Use the new contents of Rn.

Case 3: A situation related to Case 2 can be seen in the boot ROM code shown in AP-
PENDIX A of the DSP56001 Technical Data Sheet. At the end of the bootstrap operation,
the operation mode register (OMR) is changed to mode #2, and then the program that was
loaded is executed. This process is accomplished in the last three instructions:

_BOOTEND MOVEC #2,OMR ;Set the operating mode to 2
;(and trigger an exit from
:bootstrap mode).
ANDI #$0,CCR ;Clear SR as if RESET and
;introduce delay needed for
;Op. Mode change.
JMP <$0 ;Start fetching from PRAM, P:$0000

The JMP instruction generates its jump address during its decode cycle. If the JMP
instruction followed the MOVEC, the MOVEC instruction would not have changed the
OMR before the JMP instruction formed the fetch address. As a result, the jump would
fetch the instruction at P:$0000 of the bootstrap ROM (MOVE #$FFE9,R2). The OMR
would then change due to the MOVEC instruction, and the next instruction would be the

L MOTOROLA PROCESSING STATES 7-5 J

NORMAL PROCESSING STATE

second instruction of the downloaded code at P:$0001 of the internal RAM. However, the
ANDI instruction allows the OMR to be changed before the JMP instruction uses it, and
the JMP fetches P:$0000 of the internal RAM.

Case 4: An interrupt has two additional control cycles that are executed in the interrupt
controller concurrently with the fetch, decode, and execute cycles (see Section 7.3 and
Figure 7-4). During these two control cycles, the interrupt is arbitrated by comparing the
interrupt mask level with the interrupt priority level (IPL) of the interrupt and allowing or
disallowing the interrupt. Therefore, if the interrupt mask is changed after an interrupt is
arbitrated and accepted as pending but before the interrupt is executed, the interrupt will
be executed, regardless of what the mask was changed to. The following examples show
that the old interrupt mask is in effect for up to four additional instruction cycles after the
interrupt mask is changed. All instructions shown in the examples here are one-word in-
structions; however, one two-word instruction can replace two one-word instructions
except where noted.

1. Program flow with no interrupts after interrupts are disabled:

ORI #03,MR ;Disable interrupts
INST 1
INST 2
INST 3
INST 4

2. The four possible variations in program flow that may occur after interrupts are

disabled:
ORI #03,MR ORI #03,MR ORI #03,MR ORI #03,MR
Il (See Note 2) INST 1 INST 1 INST 1
I+1 1l INST 2 INST 2
INST 1 +1 I INST 3 (See Note 1)
INST 2 INST 2 I+1 Il
INST 3 INST 3 INST 3 +1
INST 4 INST 4 INST 4 INST 4

L 7-6 PROCESSING STATES MOTOROLA J

(NORMAL PROCESSING STATE \]

Note 1: INST 3 may be executed at that point only if the preceding instruction (INST 2)
was a single-word instruction.

Note 2: lI=Interrupt instruction from maskable interrupt.

The following program flow will not occur because the new interrupt mask level becomes
effective after a pipeline latency of four instruction cycles:

ORI #03,MR ;Disable interrupts.
INST 1

INST 2

INST 3

INST 4

Il ;Interrupts disabled.
+1 ;Interrupts disabled.

1. Program flow without interrupts after interrupts are re-enabled:

ANDI #00,MR ;Enable interrupts
INST 1
INST 2
INST 3
INST 4

2. Program flow with interrupts after interrupts are re-enabled:

ANDI #00,MR ;Enable interrupts
INST 1 ;Uninterruptable
INST 2 ;Uninterruptable
INST 3 ;I fetched

INST 4 ;11+1 fetched

Il

+1

t MOTOROLA PROCESSING STATES 7-7 J

(NORMAL PROCESSING STATE \]

The DO instruction is another instruction that begins execution during the decode cycle
of the pipeline. As a result, there are a number of restrictions concerning access conten-
tion with the program controller registers accessed by the DO instruction. The ENDDO
instruction has similar restrictions. APPENDIX A - INSTRUCTION SET DETAILS con-
tains additional information on the DO and ENDDO instruction restrictions.

Case 5: A resource contention problem can occur when one instruction is using a register
during its decode while the instruction executing is accessing the same resource. One ex-
ample of this is as follows:

MOVEC X:$100,SSH
DO #$10,END

The problem occurs because the MOVEC instruction loads the contents of X:$100 into
the system stack high (SSH) during its execution cycle. The DO instruction that follows
pushes the stack (LA - SSH, LC - SSL) during its decode cycle. Therefore, the two
instructions try writing to the SSH simultaneously and conflict.

7.2.2 Summary of Pipeline-Related Restrictions

The following paragraphs give a summary of the instruction sequences that cause pipe-
line effects. Additional information about the individual instructions can be found in
APPENDIX A - INSTRUCTION SET DETAILS.

DO instruction restrictions:

The DO instruction must not be immediately preceded by any of the following instruc-
tions:

BCHG/BCLR/BSET LA, LC, SSH, SSL, or SP
MOVEC/MOVEM to LA, LC, SSH, SSL, or SP
MOVEC/MOVEM from SSH

The DO instruction cannot specify SSH as a source register, as in the following example:
DO SSH,xxxx
Restrictions near the end of DO loops:

Proper DO loop operation is guaranteed if no instruction starting at address LA-2, LA-1,
or LA specifies the program controller registers SR, SP, SSL, LA, LC, or (implicitly) PC
as a destination register, or specifies SSH as a source or a destination register.

L 7-8 PROCESSING STATES MOTOROLA J

(NORMAL PROCESSING STATE \]

The restricted instructions at LA-2, LA-1, and LA are as follows:

DO

BCHG/BCLR/BSET LA, LC, SR, SP, SSH, or SSL

BTST SSH

JCLR/JSET/JSCLR/JSSET SSH
MOVEC/MOVEM/MOVEP from SSH
MOVEC/MOVEM/MOVEP to LA, LC, SR, SP, SSH, or SSL
ANDI/ORI MR

The restricted instructions at LA include the following:

Any two-word instruction
Jcc, JMP, JScc, JSR,
REP, RESET, RTI, RTS, STOP, WAIT

Another restriction is shown below:
JSR/JScc/ISCLR/ISSET to LA, if loop flag is set

ENDDO instruction restrictions:

The ENDDO instruction must not be immediately preceded by any of the following
instructions:

BCHG/BCLR/BSET LA, LC, SR, SSH, SSL, or SP
MOVEC/MOVEM to LA, LC, SR, SSH, SSL, or SP
MOVEC/MOVEM from SSH

ANDI/ORI MR

RTI and RTS instruction restrictions:

The RTI instruction must not be immediately preceded by any of the following instruc-
tions:

BCHG/BCLR/BSET SR, SSH, SSL, or SP
MOVEC/MOVEM to SR, SSH, SSL, or SP
MOVEC/MOVEM from SSH

ANDI MR, ANDI CCR

ORI MR, ORI CCR

The RTS instruction must not be immediately preceded by any of the following instruc-
tions:

BCHG/BCLR/BSET SSH, SSL, or SP
MOVEC/MOVEM to SSH, SSL, or SP
MOVEC/MOVEM from SSH

L MOTOROLA PROCESSING STATES 7-9 J

(EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING) \]

SP and SSH/SSL register manipulation restrictions:

In addition to all the above restrictions concerning SP, SSH, and SSL, the following
instruction sequences are illegal:

1. BCHG/BCLR/BSET SP

2. MOVEC/MOVEM/MOVEP from SSH or SSL
and

MOVEC/MOVEM to SP

2. MOVEC/MOVEM/MOVEP from SSH or SSL
and

MOVEC/MOVEM to SP

2. JCLR/JSET/JSCLR/JSSET SSH or SSL

and
1. BCHG/BCLR/BSET SP
2. JCLR/JSET/JSCLR/JSSET SSH or SSL

=

=

Also, the instruction MOVEC SSH,SSH is illegal.
Rn, Nn, and Mn register restrictions:

Due to pipelining, if an address register Rn is the destination of a MOVE-type instruction
except MOVEP (MOVE, MOVEC, MOVEM, LUA, Tcc), the new contents will not be
available for use as an address pointer until the second following instruction cycle.

Likewise, if an offset register Nn or a modifier register Mn is the destination of a MOVE-
type instruction except MOVEP, the new contents will not be available for use in address
calculations until the second following instruction cycle.

However, if the processor is in the No Update addressing mode (where Mn and Nn are
ignored) and register Mn or Nn is the destination of a MOVE instruction, the next instruc-
tion may use the corresponding Rn register as an address pointer. Also, if the processor
is in the Postincrement by 1, Postdecrement by 1, or Predecrement by 1 addressing
mode (where Nn is ignored), a MOVE to Nn may be immediately followed by an instruc-
tion that uses Rn as an address pointer.

Fast interrupt routines:
SWI, STOP, and WAIT may not be used in a fast interrupt routine. (Fast interrupts are
described in Section 7.3.1.)

7.3 EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)
The exception processing state is associated with interrupts that can be generated by
conditions inside the DSP or from external sources. In digital signal processing, one of

L 7-10 PROCESSING STATES MOTOROLA J

(EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING) \]

the main uses of interrupts is to transfer data between DSP memory or registers and a
peripheral device. When such an interrupt occurs, a limited context switch with minimal
overhead is ideal. A fast interrupt accomplishes a limited context switch. The processor
relies on a long interrupt when it must accomplish a more complex task to service the
interrupt. Fast interrupts and long interrupts are described in more detail in Section 7.3.1.

There are many sources for interrupts on the DSP56K family of chips, and some of these
sources can generate more than one interrupt. The DSP56K family of processors fea-
tures a prioritized interrupt vector scheme with 32 vectors to provide fast interrupt ser-
vice. The interrupt priority structure is discussed in Section 7.3.2. The following list
outlines how the DSP56K processes interrupts:

1. A hardware interrupt is synchronized with the DSP clock, and the interrupt
pending flag for that particular hardware interrupt is set. An interrupt source
can have only one interrupt pending at any given time.

2. All pending interrupts (external and internal) are arbitrated to select which
interrupt will be processed. The arbiter automatically ignores any interrupts
with an IPL lower than the interrupt mask level in the SR and selects the
remaining interrupt with the highest IPL.

3. The interrupt controller then freezes the program counter (PC) and fetches two
instructions at the two interrupt vector addresses associated with the selected
interrupt.

4. The interrupt controller jams the two instructions into the instruction stream
and releases the PC, which is used for the next instruction fetch. The next
interrupt arbitration then begins.

If neither instruction is a change of program-flow instruction (i.e., a JSR), the state of the
machine is not saved on the stack, and a fast interrupt is executed. A long interrupt
occurs if one of the interrupt instructions fetched is a JSR instruction. The PC is immedi-
ately released, the SR and the PC are saved in the stack, and the jump instruction con-
trols where the next instruction shall be fetched. While either an unconditional jump or a
conditional jump can be used to form a long interrupt, they do not store the PC on the
stack. Therefore, there is no return path.

Activities 2 and 3 listed above require two additional control cycles, which effectively

make the interrupt pipeline five levels deep.

7.3.1 Interrupt Types
The DSP56K relies on two types of interrupt routines: fast and long. The fast interrupt

L MOTOROLA PROCESSING STATES 7-11 J

(EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING) \]

fetches only two words and then automatically resumes execution of the main program;
whereas, the long interrupt must be told to return to the main program by executing an
RTI instruction. The fast routine consists of two automatically inserted interrupt instruc-
tion words. These words can contain any unrestricted, single two-word instruction or any
two one-word instructions (see Section A.9 in APPENDIX A - INSTRUCTION SET
DETAILS for a list of restrictions). Fast interrupt routines are never interruptible.

CAUTION

Status is not preserved during a fast interrupt routine; therefore, instructions
that modify status should not be used at the interrupt starting address and
interrupt starting address +1.

If one of the instructions in the fast routine is a JSR, then a long interrupt routine is
formed. The following actions occur during execution of the JSR instruction when it
occurs in the interrupt starting address or in the interrupt starting address +1:

1. The PC (containing the return address) and the SR are stacked.
2. The loop flag is reset.

3. The scaling mode bits are reset.

4

. The IPL is raised to disallow further interrupts at the same or lower levels
(except that hardware RESET, NMI, stack error, trace, and SWI can always
interrupt).

5. The trace bit in the SR is cleared (in the DSP56000/56001 only).

The long interrupt routine should be terminated by an RTI. Long interrupt routines are
interruptible by higher priority interrupts. Figure 7-1 shows examples of fast and long
interrupts.

7.3.2 Interrupt Priority Structure

Interrupts are organized in a flexible priority structure. Each interrupt has an associated
interrupt priority level (IPL) that can range from zero to three. Levels O (lowest level), 1,
and 2 are maskable. Level 3 is the highest IPL and is not maskable. The only IPL 3 inter-
rupts are RESET, illegal instruction interrupt (lll), nonmaskable interrupt (NMI), stack
error, trace, and software interrupt (SWI). The interrupt mask bits (11, 10) in the SR reflect
the current priority level and indicate the IPL needed for an interrupt source to interrupt
the processor (see Table 7-2). Interrupts are inhibited for all priority levels below the cur-
rent processor priority level. However, level 3 interrupts are not maskable and therefore
can always interrupt the processor. DSP56K Family central processor interrupt sources

L 7-12 PROCESSING STATES MOTOROLA J

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

FAST INTERRUPT SERVICE ROUTINE

MAIN
PROGRAM SSI RECEIVE DATA
$0100 —
$0101 MACR INTERRUPT
-« RECOGNIZED
$0102 MOVE
$0103 MAC $000C MOVEP
$0104 REP $000D XXXXXX
$0105 MAC IMPLICIT RETURN
FROM INTERRUPT
$0106 —
(a) DSP56K Fast Interrupt
LONG INTERRUPT SERVICE ROUTINE
MAIN
PROGRAM SSI RECEIVE DATA
WITH EXCEPTION STATUS
$0100 —
$0101 MACR INTERRUPT
- RECOGNIZED
$0102 MOVE $000E JSR JSR INSTRUCTION
FORMS LONG
$0103 MAC $000F $0300 INTERRUPT SERVICE
$0104 REP ¢
$0105 MAC $0300 _
EXPLICIT RETURN
FROM INTERRUPT $0303 MOVE
RECOGNIZED $0304 RTI

(b) DSP56K Long Interrupt

Figure 7-1 Fast and Long Interrupt Examples

and their IPLs are listed in Table 7-6. For information on on-chip peripheral interrupt pri-

t MOTOROLA

PROCESSING STATES

7-13 J

(EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING) \]

Table 7-2 Status Register Interrupt Mask Bits

I1 | 10 | Exceptions Permitted Exceptions Masked
0 0 IPLO, 1, 2,3 None

0 1 IPL1,2,3 IPLO

1 0 IPL 2,3 IPLO, 1

1 1 IPL 3 IPLO, 1,2

ority levels, see the individual DSP56K family member’s User’'s Manual.

7.3.2.1 Interrupt Priority Levels

The IPL for each on-chip peripheral device (HI, SSI, SCI) and for each external interrupt
source (IRQA, IRQB) can be programmed to one of the three maskable priority levels
(IPL 0, 1, or 2) under software control. IPLs are set by writing to the interrupt priority reg-
ister shown in Figure 7-2. This read/write register is located in program memory at
address $FFFF. It specifies the IPL for each of the interrupting devices including IRQA,
IRQB and each peripheral device. (For specific peripheral information, see the specific
DSP56K family member’s User’'s Manual.) In addition, it specifies the trigger mode of the
external interrupt sources and is used to enable or disable the individual external inter-
rupts. The interrupt priority register is cleared on RESET or by the reset instruction.
Table 7-3 defines the IPL bits. Table 7-4 defines the external interrupt trigger mode bits.

7.3.2.2 Exception Priorities Within an IPL
If more than one interrupt is pending when an instruction is executed, the processor will

service the interrupt with the highest priority level first. When multiple interrupt requests

23 10 9 8 7 6 5 4 3 2 1 0

*k *% * IBL2 | IBL1 | IBLO | IAL2 | IAL1 | IALO |

TROA MODE
TROB MODE
RESERVED FOR EXPANSION
RESERVED FOR PERIPHERAL IPL LEVELS

Bits 6 to 9 are reserved, read as zero and should be written with zero for future compatibility.

Figure 7-2 Interrupt Priority Register (Addr X:$FFFF)

t 7-14 PROCESSING STATES MOTOROLA J

(EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

Table 7-3 Interrupt Priority Level Bits Table 7-4 External Interrupt
XXL1 | xxLO Enabled IPL
0 0 No —

with the same IPL are pending, a second fixed-priority structure within that IPL deter-
mines which interrupt the processor will service. The fixed priority of interrupts within an
IPL and the interrupt enable bits for all interrupts are shown in Table 7-5.

7.3.3 Interrupt Sources

Interrupts can originate from any of the vector addresses listed in Table 7-6, which
shows the corresponding interrupt starting address for each interrupt source. These
addresses are located in the first 64 locations of program memory.

Table 7-5 Central Processor Interrupt Priorities Within an IPL

o . . X Data
Priority Exception Enabled By Bit No. | Memory

Address

Level 3 (Nonmaskable)

Highest Hardware RESET — — —

NMI — — —

Stack Error — — —

Trace — — —

Lowest SWiI — — —

Levels 0, 1, 2 (Maskable)

Higher IRQA (External Interrupt) IRQA Mode Bits| Oand1 | $FFFF
IRQB

Lower (External Interrupt) IRQB Mode Bits| 3and4 | $FFFF

L MOTOROLA PROCESSING STATES 7-15 J

(EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

Table 7-6 Interrupt Sources

Star:inrfgr,ré\ud%tress IPL Interrupt Source
$0000 3 Hardware RESET
$0002 3 Stack Error
$0004 3 Trace
$0006 3 Swi
$0008 0-2 | IRQA
$000A 0-2 | IRQB
Vectors available for peripherals
$001E 3 NMI
Vectors available for peripherals
$003E 3 lllegal Instruction

When an interrupt occurs, the instruction at the interrupt starting address is tetched first.
Because the program flow is directed to a different starting address for each interrupt,
the interrupt structure of the DSP56K can be described as “vectored”. A vectored inter-
rupt structure has low execution overhead. If it is known beforehand that certain inter-
rupts will not be used, those interrupt vector locations can be used for program or data
storage.

7.3.3.1 Hardware Interrupt Sources

There are two types of hardware interrupts in the DSP56K: internal and external. The
internal interrupt sources include all of the on-chip peripheral devices. For further infor-
mation on a device’s internal interrupt sources, see the device’s individual User's Man-
ual.

The external hardware interrupt sources are the RESET, NMI, IRQA, and IRQB pins on
the program interrupt controller in the Program Control Unit.

The level sensitive RESET interrupt is the highest priority interrupt with an IPL of 3. IRQA
and IRQB can be programmed to one of three priority levels: 0, 1, or 2 - all of which are
maskable. IRQA and IRQB have independent enable control and can be programmed to
be level sensitive or edge sensitive. Since level-sensitive interrupts will not be cleared
automatically when they are serviced, they must be cleared by other means to prevent
multiple interrupts. Edge-sensitive interrupts are latched as pending on the high-to-low
transition of the interrupt input and are automatically cleared when the interrupt is ser-
viced.

t 7-16 PROCESSING STATES MOTOROLA

(EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING) \]

When either the IRQA or IRQB pin is disabled in the interrupt priority register, the inter-
rupt request coming in on the pin will be ignored, regardless of whether the input was
defined as level sensitive or edge sensitive. If the interrupt input is defined as edge sen-
sitive, its edge-detection latch will remain in the reset state for as long as the interrupt pin
is disabled. If the interrupt is defined as level-sensitive, its edge-detection latch will stay
in the reset state. If the level-sensitive interrupt is disabled while it is pending it will be
cancelled. However, if the interrupt has been fetched, it normally will not be cancelled.

The processor begins interrupt service by fetching the instruction word in the first vector
location. The interrupt is considered finished when the processor fetches the instruction
word in the second vector location.

In an edge-triggered interrupt, the internal latch is automatically cleared when the sec-
ond vector location is fetched. The fetch of the first vector location does not guarantee
that the second location will be fetched. Figure 7-3 illustrates the one case where the
second vector location is not fetched. The SWI instruction in the figure discards the fetch
of the first interrupt vector to ensure that the SWI vectors will be fetched. Instruction n4 is
decoded as an SWI while iil is being fetched. Execution of the SWI requires that iil be
discarded and the two SWI vectors (ii3 and ii4) be fetched instead.

INTERRUPT CONTROL CYCLE 1 i i*

INTERRUPT CONTROL CYCLE 2 i i*

FETCH n3 n4 n5 i1 i3 ii4 | swl | sw2 | sw3 | sw4
DECODE n2 n3 | SWI| — — — | JSR | — | swl | sw2 | sw3
EXECUTE nl n2 n3 | SWI | NOP | NOP | NOP | JSR| — | swl | sw2
INSTRUCTION BEING DECODED 1

i =INTERRUPT REQUEST

i* = INTERRUPT REQUEST GENERATED BY SWiI

iil = FIRST VECTOR OF INTERRUPT i

ii3 = FIRST SWI VECTOR (ONE-WORD JSR)

ii4 = SECOND SWIVECTOR

n =NORMAL INSTRUCTION WORD

n4 = SWI

sw = INSTRUCTIONS PERTAINING TO THE SWI LONG INTERRUPT ROUTINE

Figure 7-3 Interrupting an SWI

t MOTOROLA PROCESSING STATES 7-17 J

(EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING) \]

CAUTION

On all level-sensitive interrupts, the interrupt must be externally released be-
fore interrupts are internally re-enabled. Otherwise, the processor will be in-
terrupted repeatedly until the release of the level-sensitive interrupt occurs.

The edge sensitive NMI is a priority 3 interrupt and cannot be masked. Only RESET and
illegal instruction have higher priority than NMI.

7.3.3.2 Software Interrupt Sources
There are two software interrupt sources — software interrupt (SWI) and illegal instruc-
tion interrupt (l11).

SWI is a nonmaskable interrupt (IPL 3), which is serviced immediately following the SWI
instruction execution, usually using a long interrupt service routine. The difference
between an SWI and a JSR instruction is that the SWI sets the interrupt mask to prevent
interrupts below IPL 3 from being serviced. The SWI's ability to mask out lower level
interrupts makes it very useful for setting breakpoints in monitor programs. The JSR
instruction does not affect the interrupt mask.

The 1l is also a nonmaskable interrupt (IPL 3). It is serviced immediately following the
execution or the attempted execution of an illegal instruction (any undefined operation
code). llIs are fatal errors. Only a long interrupt routine should be used for the Il routine.
RTI or RTS should not be used at the end of the interrupt routine because, during the 11|
service, the JSR located in the 1l vector will normally stack the address of the illegal
instruction (see Figure 7-4). Returning from the interrupt routine would cause the proces-
sor to attempt to execute the illegal interrupt again and cause an infinite loop which can
only be broken by cycling power. This long interrupt (see Figure 7-4) can be used as a
diagnostic tool to allow the programmer to examine the stack (MOVE SSH, dest) and
locate the illegal instruction, or the application program can be restarted with the hope
that the failure was a soft error. The illegal instruction is useful for triggering the illegal
interrupt service routine to see if the Ill routine can recover from illegal instructions.

L 7-18 PROCESSING STATES MOTOROLA J

(EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING) \]

MAIN FAST INTERRUPT
PROGRAM SERVICE ROUTINE
FETCHES FETCHES
Il (NOP)
INFINITE né \
LooP NO FETCH 11
NO FETCH 12

(a) Instruction Fetches from Memory

ILLEGAL INSTRUCTION INTERRUPT
RECOGNIZED AS PENDING

ILLEGAL INSTRUCTION INTERRUPT
RECOGNIZED AS PENDING

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2 i

FETCH ni| n2| n3 | nd n5 n6 — | — | i1 |ii2 | n5
DECODE nl | n2 n3 n4 Il — | — | —| 0 [|ii2 Il
EXECUTE nl n2 n3 M | NOP| — | — | — | il | ii2 | NOP

INSTRUCTION CYCLE COUNT | 1 2 3 4 5 6 7 8 9 (10 (11|12 |13 | 14

i =INTERRUPT

ii = INTERRUPT INSTRUCTION WORD
II' = ILLEGAL INSTRUCTION

n =NORMAL INSTRUCTION WORD

(b) Program Controller Pipeline

Figure 7-4 lllegal Instruction Interrupt Serviced by a Fast Interrupt

L MOTOROLA PROCESSING STATES 7-19 J

(EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING) \]

MAIN LONG INTERRUPT
PROGRAM SERVICE ROUTINE
FETCHES FETCHES

Il (NOP)
né
NO FETCH 11
NO FETCH 12
13
14
5
/\/

(a) Instruction Fetches from Memory

ILLEGAL INSTRUCTION INTERRUPT
RECOGNIZED AS PENDING

ILLEGAL INSTRUCTION INTERRUPT
RECOGNIZED AS PENDING

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2 i

FETCH ni| n2| n3 | nd n5 n6 — | — i1 | ii2 | i3 | ii4 | ii5
DECODE nl | n2 n3 n4 Il — | — | — | il | ii2 | i3 ii4
EXECUTE nl n2 n3 nd |INOP| — | — | — [iil | ii2 i3

INSTRUCTION CYCLE COUNT | 1 2 3 4 5 6 7 8 9 (10 (11|12 |13 | 14

i =INTERRUPT

ii = INTERRUPT INSTRUCTION WORD
II' = ILLEGAL INSTRUCTION

n =NORMAL INSTRUCTION WORD

(b) Program Controller Pipeline

Figure 7-5 lllegal Instruction Interrupt Serviced by a Long Interrupt

L 7-20 PROCESSING STATES MOTOROLA J

(EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

ILLEGAL INSTRUCTION INTERRUPT
RECOGNIZED AS PENDING

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2 i

FETCH nl{n2|n3|n4d|n5| n6 | n7 — — | — | il |ii2 | n8
DECODE nl|{n2|n3|nd|REP I — — | —| — |l]ii2 | n8
EXECUTE nt{n2|n3|nd |REP|RBP|NOP| — | — | — [iil]ii2 | n8

INSTRUCTION CYCLECOUNT | 1 | 2 3141|5 6 7 8 9 10 |11 |12 | 13| 14| 15| 16

i =INTERRUPT

ii = INTERRUPT INSTRUCTION WORD
II' =ILLEGAL INSTRUCTION

n =NORMAL INSTRUCTION WORD

Figure 7-6 Repeated lllegal Instruction

There are two cases in which the stacked address will not point to the illegal instruction:

1. If the illegal instruction is one of the two instructions at an interrupt vector loca-
tion and is fetched during a regular interrupt service, the processor will stack
the address of the next sequential instruction in the normal instruction flow (the
regular return address of the interrupt routine that had the illegal opcode in its
vector).

2. If the illegal instruction follows an REP instruction (see Figure 7-6), the proces-
sor will effectively execute the illegal instruction as a repeated NOP and the
interrupt vector will then be inserted in the pipeline. The next instruction will be
fetched but will not be decoded or executed. The processor will stack the
address of the next sequential instruction, which is two instructions after the
illegal instruction.

In DO loops, if the illegal instruction is in the loop address (LA) location and the instruc-
tion preceding it (i.e., at LA-1) is being interrupted, the loop counter (LC) will be decre-
mented as if the loop had reached the LA instruction. When the interrupt service ends
and the instruction flow returns to the loop, the illegal instruction will be refetched (since
it is the next sequential instruction in the flow). The loop state machine will again decre-
ment LC because the LA instruction is being executed. At this point, the illegal instruction
will trigger the Ill. The result is that the loop state machine decrements LC twice in one
loop due to the presence of the illegal opcode at the LA location.

t MOTOROLA PROCESSING STATES 7-21

(EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

7.3.3.3 Other Interrupt Sources
Other interrupt sources include the stack error interrupt and trace interrupt (DSP56000/
56001) which are IPL3 interrupts.

An overflow or underflow of the system stack (SS) causes a stack error interrupt which is
vectored to P:$0002 (see SECTION 5 - PROGRAM CONTROL UNIT for additional infor-
mation on the stack error flag). Since the stack error is nonrecoverable, a long interrupt
should be used to service it. The service routine should not end in an RTI because exe-
cuting an RTI instruction “pops” the stack, which has been corrupted.

The DSP56000/56001 includes a facility for instruction-by-instruction tracing as a pro-
gram development aid. This trace mode generates a trace exception after each instruc-
tion executed (see Figure 7-7), which can be used by a debugger program to monitor the
execution of a program. (With members of the DSP56K family other than DSP56000/
56001, use the OnCE trace mode described in 10.5.)

The trace bit in the SR defines the trace mode. In the trace mode, the processor will gen-
erate a trace exception after it executes each instruction. When the processor is servic-
ing the trace exception, it expects to encounter a JSR in the trace vector locations,
thereby forming a long interrupt routine. The JSR stacks the SR and clears the trace bit
to prevent tracing while executing the trace exception service routine. This service rou-
tine should end with an RTI instruction, which restores the SR (with the trace bit set) from
the SS, and causes the next instruction to be traced. The pipeline must be flushed to
allow each sequential instruction to be traced. The tracing facility appends three instruc-
tion cycles to the end of each instruction traced (see the three NOP instructions shown in
Figure 7-7) to flush the pipeline and allow the next trace interrupt to follow the next
sequential interrupt.

During tracing, the processor considers the REP instruction and the instruction being
repeated as a single two-word instruction. That is, only after executing the REP instruc-
tion and all of the repeats of the next instruction will the trace exception be generated.

Fast interrupts can not be traced because they are uninterruptable. Long interrupts will
not be traced unless the processor enters the trace mode in the subroutine because the
SR is pushed on the stack and the trace bit is cleared. Tracing is resumed upon returning
from a long interrupt because the trace bit is restored when the SR is restored. Interrupts
are not likely to occur during tracing because only an interrupt with a higher IPL can
interrupt during a trace operation. While executing the program being traced, the trace
interrupt will always be pending and will win the interrupt arbitration. During the trace
interrupt, the interrupt mask is set to reject interrupts below IPL3.

L 7-22 PROCESSING STATES MOTOROLA

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

MAIN
PROGRAM TRACE INSTRUCTION n1
FETCHES
NOoP THREE NOP
NOP INSTRUCTIONS INSERTED
BY TRACE MODE
NOP
TRACE BIT nl |
SETIN SR -
n2 l
FAST INTERRUPT
JSR CAUSED BY TRACE
NOT USED INTERRUPT
\
| DEBUGGER____
R p— PROGRAM
NEXT TRACE
OPERATION RTI SET TRACE BIT IN SSL
(@) Instruction Fetches from Memory
INTERRUPT SYNCHRONIZED AND — INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING RECOGNIZED AS PENDING
\

INTERRUPT CONTROL CYCLE 1 i i
INTERRUPT CONTROL CYCLE 2 i i
FETCH nl | NOP| NOP| NOP | JSR — TRACE PROGRAM RTI| — n2 | NOP| NOP| NOP
DECODE nl NOP| NOP | NOP | JSR | NOP | TRACE PROGRAM RTI| NOP| n2 [NOP| NOP| NOP
EXECUTE nl NOP | NOP [NOP | JSR | NOP | TRACE PROGRAM | RTI| NOP| n2 | NOP| NOP | NOP
INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 | 11 | 12 13 14 15 16 17 18
i =INTERRUPT

ii = INTERRUPT INSTRUCTION WORD
II' =ILLEGAL INSTRUCTION
n = NORMAL INSTRUCTION WORD

(b) Program Controller Pipeline

Figure 7-7 Trace Exception

t MOTOROLA

PROCESSING STATES

(EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING) \]

7.3.4 Interrupt Arbitration

Interrupt arbitration and control, which occurs concurrently with the fetch-decode-exe-
cute cycle, takes two instruction cycles. External interrupts are internally synchronized
with the processor clock before their interrupt-pending flags are set. Each external and
internal interrupt has its own flag. After each instruction is executed, the DSP arbitrates
all interrupts. During arbitration, each interrupt’s IPL is compared with the interrupt mask
in the SR, and the interrupt is either allowed or disallowed. The remaining interrupts are
prioritized according to the IPLs shown in Table 7-5, and the highest priority interrupt is
chosen. The interrupt vector is then calculated so that the program interrupt controller
can fetch the first interrupt instruction.

Interrupts from a given source are not buffered. The processor won't arbitrate a new
interrupt from the same source until after it fetches the second interrupt vector of the cur-
rent interrupt.

The internal interrupt acknowledge signal clears the edge-triggered interrupt flags and
the internal latches of the NMI, SWI, and trace interrupts. The stack error bit in the stack
pointer register is “sticky” and requires a “MOVE” or a bit clear operation directly on the
stack pointer register. Some peripheral interrupts may also be cleared by the internal
interrupt acknowledge signal, as defined in their specifications. Peripheral interrupt
requests that need a read/write action to some register do not receive the internal inter-
rupt acknowledge signal, and they will remain pending until their registers are read/writ-
ten. Further, level-triggered interrupts will not be cleared. The acknowledge signal will be
generated after the interrupt vectors have been generated, not before.

7.3.5 Interrupt Instruction Fetch

The interrupt controller generates an interrupt instruction fetch address, which points to
the first instruction word of a two-word interrupt routine. This address is used for the next
instruction fetch, instead of the contents of the PC, and the interrupt instruction fetch
address +1 is used for the subsequent instruction fetch. While the interrupt instructions
are being fetched, the PC cannot be updated. After the two interrupt words have been
fetched, the PC is used for any subsequent instruction fetches.

After both interrupt vectors have been fetched, they are guaranteed to be executed. This
is true even if the instruction that is currently being executed is a change-of-flow instruc-
tion (i.e., IMP, JSR, etc.) that would normally ignore the instructions in the pipe. After the
interrupt instruction fetch, the PC will point to the instruction that would have been
fetched if the interrupt instructions had not been inserted.

L 7-24 PROCESSING STATES MOTOROLA J

(EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

7.3.6 Instructions Preceding the Interrupt Instruction Fetch

The following one-word instructions are aborted when they are fetched in the cycle pre-
ceding the fetch of the first interrupt instruction word — REP, STOP, WAIT, RESET, RTI,
RTS, Jcc, JMP, JScc, and JSR.

Two-word instructions are aborted when the first interrupt instruction word fetched will
replace the fetch of the second word of the two-word instruction. Aborted instructions are
refetched when program control returns from the interrupt routine. The PC is adjusted
appropriately before the end of the decode cycle of the aborted instruction.

If the first interrupt word fetch occurs in the cycle following the fetch of a one-word
instruction not previously listed or the second word of a two-word instruction, that instruc-
tion will complete normally before the start of the interrupt routine.

The following cases have been identified where service of an interrupt might encounter
an extra delay:

1. If along interrupt routine is used to service an SWI, then the processor priority
level is set to 3. Thus, all interrupts except other level-3 interrupts are disabled
until the SWI service routine terminates with an RTI (unless the SWI service
routine software lowers the processor priority level).

2. While servicing an interrupt, the next interrupt service will be delayed accord-
ing to the following rule: after the first interrupt instruction word reaches the
instruction decoder, at least three more instructions will be decoded before
decoding the next first interrupt instruction word. If any one pair of instructions
being counted is the REP instruction followed by an instruction to be repeated,
then the combination is counted as two instructions independent of the num-
ber of repeats done. Sequential REP combinations will cause pending inter-
rupts to be rejected and can not be interrupted until the sequence of REP
combinations ends.

3. The following instructions are not interruptible: SWI, STOP, WAIT, and
RESET.

4. The REP instruction and the instruction being repeated are not interruptible.

5. If the trace bit in the SR (DSP56000/56001 only) is set, the only interrupts that
will be processed are the hardware RESET, IlI,NMI, stack error, and trace.
Peripheral and external interrupt requests will be ignored. The interrupt gener-
ated by the SWI instruction will be ignored.

L MOTOROLA PROCESSING STATES 7-25

(EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING) \]

7.3.7 Interrupt Instruction Execution

Interrupt instruction execution is considered “fast” if neither of the instructions of the
interrupt service routine causes a change of flow. A JSR within a fast interrupt routine
forms a long interrupt, which is terminated with an RTI instruction to restore the PC and
SR from the stack and return to normal program execution. Reset is a special exception,
which will normally contain only a JMP instruction at the exception start address. At the
programmer’s option, almost any instruction can be used in the fast interrupt routine. The
restricted instructions include SWI, STOP, and WAIT. Figure 7-8 and Figure 7-10 show
the fast and the long interrupt service routines. The fast interrupt executes only two
instructions and then automatically resumes execution of the main program; whereas,
the long interrupt must be told to return to the main program by executing an RTI instruc-
tion.

Figure 7-8 illustrates the effect of a fast interrupt routine in the stream of instruction
fetches.

Figure 7-9 shows the sequence of instruction decodes between two fast interrupts. Four
decodes occur between the two interrupt decodes (two after the first interrupt and two
preceding the second interrupt). The requirement for these four decodes establishes the
maximum rate at which the DSP56K will respond to interrupts — namely, one interrupt
every six instructions (six instruction cycles if all six instructions are one instruction cycle
each). Since some instructions take more than one instruction cycle, the minimum num-
ber of instructions between two interrupts may be more than six instruction cycles.

The execution of a fast interrupt routine always conforms to the following rules:

1. A JSR to the starting address of the interrupt service routine is not located at
one of the two interrupt vector addresses.

2. The processor status is not saved.

3. The fast interrupt routine may (but should not) modify the status of the normal
instruction stream.

4. The fast interrupt routine may contain any single two-word instruction or any
two one-word instructions except SWI, STOP, and WAIT.

5. The PC, which contains the address of the next instruction to be executed in
normal processing remains unchanged during a fast interrupt routine.

L 7-26 PROCESSING STATES MOTOROLA J

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

MAIN
PROGRAM
MEMORY

INTERRUPT SYNCHRONIZED

AND RECOGNIZED

AS PENDING——

nl

ADDITIONAL INTERRUPTS

n2

DISABLED DURING
FAST INTERRUPT

n3

n4

INTERRUPTS—>
RE-ENABLED

ii = INTERRUPT INSTRUCTION
n = NORMAL INSTRUCTION

(a) Instruction Fetches from Memory

— INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

INTERRUPTS RE-ENABLED

INTERRUPT CONTROL CYCLE 1

INTERRUPT CONTROL CYCLE 2

FETCH nl n2 i1 ii2 n3 n4

DECODE nl n2 i1 ii2 n3 n4
EXECUTE nl n2 i1 ii2 n3 n4
INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8

i = INTERRUPT
i = INTERRUPT INSTRUCTION WORD
n =NORMAL INSTRUCTION WORD

(b) Program Controller Pipeline

Figure 7-8 Fast Interrupt Service Routine

t MOTOROLA

PROCESSING STATES

7-27 J

(EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING) \]

MAIN
PROGRAM
MEMORY
INTERRUPT SYNCHRONIZED
AND RECOGNIZED
AS PENDING—» -
n
ADDITIONAL INTERRUPTS 2 il
DISABLED DURING ii2
FAST INTERRUPT n3
n4 FOUR INSTRUCTION
INTERRUPTS—>
RE-ENABLED ns PECODES i
ADDITIONAL INTERRUPTS no ii2
DISABLED DURING n7
FAST INTERRUPT s
INTERRUPTS—> "
RE-ENABLED

i = INTERRUPT INSTRUCTION
n = NORMAL INSTRUCTION

(@) Instruction Fetches from Memory

—___ INTERRUPT SYNCHRONIZED AND —— INTERRUPTS RE-ENABLED
RECOGNIZED AS PENDING
< 6 leyc -
/

INTERRUPT CONTROL CYCLE 1 i i
INTERRUPT CONTROL CYCLE 2 i i
FETCH nl n2 il ii2 n3 n4 n5 n6 il ii2
DECODE nl n2 il ii2 n3 n4 n5 né i1 ii2
EXECUTE nl n2 il ii2 n3 n4 n5 n6 il ii2
INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 11 12

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
n =NORMAL INSTRUCTION WORD

(b) Program Controller Pipeline

Figure 7-9 Two Consecutive Fast Interrupts

L 7-28 PROCESSING STATES MOTOROLA J

(EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING) \]

6. The fast interrupt returns without an RTI.

7. Normal instruction fetching resumes using the PC following the completion of
the fast interrupt routine.

8. A fast interrupt is not interruptible.

9. A JSR instruction within the fast interrupt routine forms a long interrupt routine.

10.The primary application is to move data between memory and I/O devices.
The execution of a long interrupt routine always conforms to the following rules:

1. A JSR to the starting address of the interrupt service routine is located at one
of the two interrupt vector addresses.

2. During execution of the JSR instruction, the PC and SR are stacked. The inter-
rupt mask bits of the SR are updated to mask interrupts of the same or lower
priority. The loop flag, trace bit, double precision multiply mode bit, and scaling
mode bits are reset.

3. The first instruction word of the next interrupt service (of higher IPL) will reach
the decoder only after the decoding of at least four instructions following the
decoding of the first instruction of the previous interrupt.

4. The interrupt service routine can be interrupted — i.e., nested interrupts are
supported.

5. The long interrupt routine, which can be any length, should be terminated by
an RTI, which restores the PC and SR from the stack.

Figure 7-10 illustrates the effect of a long interrupt routine on the instruction pipeline. A
short JSR (a JSR with 12-bit absolute address) is used to form the long interrupt routine.
For this example, word 6 of the long interrupt routine is an RTI. The point at which inter-
rupts are re-enabled and subsequent interrupts are allowed is shown to illustrate the
non-interruptible nature of the early instructions in the long interrupt service routine.

Either one of the two instructions of the fast interrupt can be the JSR instruction that
forms the long interrupt. Figure 7-11 and Figure 7-12 show the two possible cases. If the
first fast interrupt vector instruction is the JSR, the second instruction is never used.

A REP instruction and the instruction that follows it are treated as a single two-word
instruction, regardless of how many times it repeats the second instruction of the pair.
Instruction fetches are suspended and will be reactivated only after the LC is decre-

L MOTOROLA PROCESSING STATES 7-29 J

(EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING) \]

LONG INTERRUPT
SERVICE ROUTINE FETCHES
(STARTS WITH A FAST INTERRUPT)

MAIN
PROGRAM
FETCHES
¥
i JSR CAN BE IN EITHER LOCATION
INTERRUPT > TO FORM A LONG INTERRUPT
SYNCHRONIZED
AND RECOGNIZED™ > ni
AS PENDING

n2 \

n3 - <—PROGRAM COUNTER
. RESUMES OPERATION

n4 ii4

<«— INTERRUPTS
INTERRUPT RE-ENABLED
ROUTINE
i7
RTI
EXPLICIT
RETURN FROM
INTERRUPT

(SHOULD BE RTI)

(a) Instruction Fetches from Memory

—— INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

INTERRUPTS RE-ENABLED

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2 i

FETCH nl | n2 | iil | ii2 | i3 | ii4 ii5 ii6 ii7 RN — n3 n4

DECODE nl | n2 | il | ii2 | i3 ii4 ii5 ii6 ii7 R | NOP | n3 | nd4

EXECUTE nl | n2 | iil | ii2 i3 ii4 ii5 ii6 ii7 RN | NOP | n3 | n4

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | 15
i INTERRUPT

i = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD

(b) Program Controller Pipeline

Figure 7-10 Long Interrupt Service Routine

L 7-30 PROCESSING STATES MOTOROLA J

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

MAIN
PROGRAM

nl
n2

FAST INTERRUPT

VECTOR

A 4

JSR

NOT USED

INTERRUPT SYNCHRONIZED AND

RECOGNIZED AS PENDING

(a) Instruction Fetches from Memory

LONG INTERRUPT

SUBROUTINE

ii2

ii3

ii4

iin

RTI

INTERRUPTS RE-ENABLED

INTERRUPT CONTROL CYCLE 1| i

INTERRUPT CONTROL CYCLE 2

FETCH nl | SR | — ii2 i3 ii4 iin RN | — n2

DECODE nl | JSR | NOP | ii2 ii3 ii4 iin | RN | NOP | n2
EXECUTE nl | JSR | NOP | ii2 i3 ii4 | iin RN | NOP | n2
INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 11 12 13

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD

(b) Program Controller Pipeline

Figure 7-11 JSR First Instruction of a Fast Interrupt

t MOTOROLA

PROCESSING STATES

7-31 J

(EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING) \]

FAST INTERRUPT LONG INTERRUPT
VECTOR SUBROUTINE
MAIN
PROGRAM
\
nl il i3
n2

(@) Instruction Fetches from Memory

—— INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

— INTERRUPTS RE-ENABLED

\

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2 i

FETCH nl |iil |JSR| — i3 ii4 ii5 iin RN | — n2

DECODE nl il | JSR | NOP | ii3 ii4 ii5 ii6 in [RM | NOP | n2
EXECUTE nl il | JSR | NOP | ii3 ii4 ii5 ii6 iin RN | NOP| n2
INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | 15
i = INTERRUPT

i = INTERRUPT INSTRUCTION WORD
n =NORMAL INSTRUCTION WORD

(b) Program Controller Pipeline

Figure 7-12 JSR Second Instruction of a Fast Interrupt

L 7-32 PROCESSING STATES MOTOROLA J

(RESET PROCESSING STATE \]

mented to one (see Figure 7-13). During the execution of n2 in Figure 7-13, no interrupts
will be serviced. When LC finally decrements to one, the fetches are reinitiated, and
pending interrupts can be serviced.

Sequential REP packages will cause pending interrupts to be rejected until the sequence
of REP packages ends. REP packages are not interruptible because the instruction
being repeated is not refetched. While that instruction is repeating, no instructions are
fetched or decoded, and an interrupt can not be inserted. For example, in Figure 7-14, if
nl, n3, and n5 are all REP instructions, no interrupts will be serviced until the last REP
instruction (n5 and its repeated instruction, n6) completes execution.

7.4 RESET PROCESSING STATE
The processor enters the reset processing state when a hardware reset occurs and the
external RESET pin is asserted. The reset state:

1. resets internal peripheral devices;
2. sets the modifier registers to $FFFF;
3. clears the interrupt priority register;

4. sets the BCR to $FFFF, thereby inserting 15 wait states in all external memory
accesses;

5. clears the stack pointer;

6. clears the scaling mode, trace mode, loop flag, double precision multiply
mode, and condition code bits of the SR, and sets the interrupt mask bits of
the SR;

7. clears the data ROM enable bit, the stop delay bit, and the internal Y memory
disable bit, and

8. the DSP remains in the reset state until the RESET pin is deasserted.
When the processor deasserts the reset state:

9. it loads the chip operating mode bits of the OMR from the external mode select
pins (MODA, MODB, MODC), and

10.begins program execution at program memory address defined by the state of
bits MODA, MODB, and MODC in the OMR. The first instruction must be
fetched and then decoded before executing. Therefore, the first instruction
execution is two instruction cycles after the first instruction fetch.

L MOTOROLA PROCESSING STATES 7-33 J

(RESET PROCESSING STATE \]

MAIN
PROGRAM
FETCHES
INTERRUPT SYNCHRO- 2 "2
NIZEDAND RESCSEGI\IJ\:ljﬁg REPEAT n2
nlREP m m TIMES n2
ADDITIONAL INTERRUPTS o [INSTRUCTION n2
DISABLED DURING -
EDDURNG 5 REPLACED PER
FAS n THE REP INSTRUCTION
n4
INTERRUPTS —
RE-ENABLED n5 Y
né i1
i2
FAST INTERRUPT
SERVICE ROUTINE FETCHES
(FROM BETWEEN P:$0000
AND P:$003F)

i = INTERRUPT INSTRUCTION
n = NORMAL INSTRUCTION

(a) Instruction Fetches from Memory

—— INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

— INTERRUPTS RE-ENABLED
A\ /

INTERRUPT CONTROL CYCLE 1 i i

INTERRUPT CONTROL CYCLE 2 % i

FETCH REP n2 n3 n4 il ii2 n5 né
DECODE REP | NOP n2 n2 n2 n2 n3 n4 il ii2 n5
EXECUTE REP | NOP n2 n2 n2 n2 n3 n4 il ii2
INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 11 12

i =INTERRUPT

ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD
i% = INTERRUPT REJECTED

(b) Program Controller Pipeline

Figure 7-13 Interrupting an REP Instruction

L 7-34 PROCESSING STATES MOTOROLA J

(RESET PROCESSING STATE \]

MAIN
PROGRAM RERegTm
FETCHES (
[n2
INTERRUPT [°
INTERRUPT REJECTED | P
PENDING % ni | n2
INTERRUPT
REPEAT m
INTERRUPT REJECTED n2 | TIMES
PENDING =~
(]Eb n3
INTERRUPT - , [nd
INTERRUPT REJECTED n -< [o
PENDING n5 [n4
INTERRUPT né | n4
PENDING o n7 D |
n8
no REPEAT m TIMES
Y
[né
..' [«*
il né
ii2 | né

(a) Instruction Fetches from Memory

INTERRUPT SYNCHRONIZED AND

INTERRUPTS RE-ENABLED
RECOGNIZED AS PENDING
i

INTERRUPT CONTROL CYCLE 1 | i

INTERRUPT CONTROL CYCLE 2 % i

FETCH REP| n2 | REP n4 | REP n6 | n7 ng | il | ii2 | n9
DECODE REP[NOP| n2 | n2 [n2 |REP|NOP| n4 nd | nd |REP|NOP| n6 [n6 | n6 | n7 | n8 | iil | ii2 | n9
EXECUTE REP|NOP | n2 | n2 | n2 |REP[NOP| n4 | n4 | n4 |[REP|NOP| n6 | n6 | n6 | n7 | n8 | il | i2 | n9
INSTRUCTION CYCLE COUNT 1|23 | 4[5]|6|7]|38 9 10 | 11 [12 (13|14 | 15|16 |17 | 18 |19 | 20 [21 | 22
i = INTERRUPT

ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD
i% = INTERRUPT REJECTED

(b) Program Controller Pipeline

Figure 7-14 Interrupting Sequential REP Instructions

t MOTOROLA PROCESSING STATES 7-35 J

(WAIT PROCESSING STATE \]

7.5 WAIT PROCESSING STATE

The WAIT instruction brings the processor into the wait processing state which is one of
two low power-consumption states. Asserting the OnCE’s debug request pin releases
the DSP from the wait state. In the wait state, the internal clock is disabled from all inter-
nal circuitry except the internal peripherals. All internal processing is halted until an
unmasked interrupt occurs, the Debug Request pin of the OnCE is asserted, or the DSP
IS reset.

Figure 7-15 shows a WAIT instruction being fetched, decoded, and executed. It is
fetched as n3 in this example and, during decode, is recognized as a WAIT instruction.
The following instruction (n4) is aborted, and the internal clock is disabled from all inter-
nal circuitry except the internal peripherals. The processor stays in this state until an
interrupt or reset is recognized. The response time is variable due to the timing of the
interrupt with respect to the internal clock. Figure 7-15 shows the result of a fast interrupt
bringing the processor out of the wait state. The two appropriate interrupt vectors are
fetched and put in the instruction pipe. The next instruction fetched is n4, which had been
aborted earlier. Instruction execution proceeds normally from this point.

INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

INTERRUPT CONTROL CYCLE 1 ' i
INTERRUPT CONTROL CYCLE 2 i
FETCH n3 n4 — il i2 n4 n5
DECODE n2 WAIT | — il ii2 n4
EXECUTE nl n2 WAIT il ii2
INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10
i =INTERRUPT L
ii = INTERRUPT INSTRUCTION WORD ONLY INTERNAL PERIPHERALS
n = NORMAL INSTRUCTION WORD RECEIVE CLOCK

Figure 7-15 Wait Instruction Timing

Figure 7-16 shows an example of the WAIT instruction being executed at the same time
that an interrupt is pending. Instruction n4 is aborted as before. The WAIT instruction
causes a five-instruction-cycle delay from the time it is decoded, after which the interrupt
is processed normally. The internal clocks are not turned off, and the net effect is that of
executing eight NOP instructions between the execution of n2 and iil.

t 7-36 PROCESSING STATES MOTOROLA J

STOP PROCESSING STATE

INTERRUPT SYNCHRONIZED AND

|'/ RECOGNIZED AS PENDING

INTERRUPT CONTROL CYCLE 1

INTERRUPT CONTROL CYCLE 2

FETCH n3 n4 — — — — — i1 ii2 n4
DECODE n2 | WAT | — — — — — — i1 ii2
EXECUTE nl n2 | WAIT | — — — — — — i1
INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 9 10 11

i = INTERRUPT

ii = INTERRUPT INSTRUCTION WORD

n = NORMAL INSTRUCTION WORD

Figure 7-16 Simultaneous Wait Instruction and Interrupt

EQUIVALENT TO EIGHT NOPs

7.6 STOP PROCESSING STATE
The STOP instruction brings the processor into the stop processing state, which is the

lowest power consumption state. In the stop state, the clock oscillator is gated off;
whereas, in the wait state, the clock oscillator remains active. The chip clears all periph-
eral interrupts and external interrupts (IRQA, IRQB, and NMI) when it enters the stop
state. Trace or stack errors that were pending, remain pending. The priority levels of the
peripherals remain as they were before the STOP instruction was executed. The on-chip
peripherals are held in their respective individual reset states while in the stop state.

t MOTOROLA

PROCESSING STATES

7-37 J

(STOP PROCESSING STATE \]

The stop processing state halts all activity in the processor until one of the following
actions occurs:

1. Alow level is applied to the IRQA pin.
2. Alow level is applied to the RESET pin.
3. Alow level is applied to the DR pin

Either of these actions will activate the oscillator, and, after a clock stabilization delay,
clocks to the processor and peripherals will be re-enabled. The clock stabilization delay
period is determined by the stop delay (SD) bit in the OMR.

The stop sequence is composed of eight instruction cycles called stop cycles. They are
differentiated from normal instruction cycles because the fourth cycle is stretched for an
indeterminate period of time while the four-phase clock is turned off.

The STOP instruction is fetched in stop cycle 1 of Figure 7-17, decoded in stop cycle 2
(which is where it is first recognized as a stop command), and executed in stop cycle 3.
The next instruction (n4) is fetched during stop cycle 2 but is not decoded in stop cycle 3
because, by that time, the STOP instruction prevents the decode. The processor stops
the clock and enters the stop mode. The processor will stay in the stop mode until it is

restarted.
IRQA
Q L
FETCH n3 nd | — | — '\' n4
DECODE n2 |STOP| — | — ,\'
EXECUTE nl | n2 |STOP| — L\'
STOP CYCLE COUNT 1 2 3 |4 C, 5 6 7 8 9)

CLOCK STOPPEDJ

IRQA = INTERRUPT REQUEST A SIGNAL
n =NORMAL INSTRUCTION WORD
STOP = INTERRUPT INSTRUCTION WORD

RESUME STOP CYCLE COUNT 4,
INTERRUPTS ENABLED

—— 131,072 T OR 16 T CYCLE COUNT STARTED

Figure 7-17 STOP Instruction Sequence

t 7-38 PROCESSING STATES MOTOROLA J

(STOP PROCESSING STATE \]

RQA
FETCH B | na | — | — il
DECODE n2 |stor| — | —
EXECUTE nl | n2 |stoP| —
STOP CYCLE COUNT 1 2 3 |4 5 6 7 8 ()

RESUME STOP CYCLE COUNT 4,
CLOCK STOPPED

INTERRUPTS ENABLED

-—— 131,072 T OR 16 T CYCLE COUNT STARTED
IRQA = INTERRUPT REQUEST A SIGNAL

n =NORMAL INSTRUCTION WORD
STOP = INTERRUPT INSTRUCTION WORD

Figure 7-18 STOP Instruction Sequence Followed by IRQA

Figure 7-18 shows the system being restarted by asserting the IRQA signal. If the exit
from stop state was caused by a low level on the IRQA pin, then the processor will ser-
vice the highest priority pending interrupt. If no interrupt is pending, then the processor
resumes at the instruction following the STOP instruction that brought the processor into
the stop state.

An IRQA deasserted before the end of the stop cycle count will not be recognized as
pending. If IRQA is asserted when the stop cycle count completes, then an IRQA inter-
rupt will be recognized as pending and will be arbitrated with any other interrupts.

Specifically, when IRQA is asserted, the internal clock generator is started and begins a
delay determined by the SD bit of the OMR. When the chip uses the internal clock oscil-
lator, the SD bit should be set to zero, to allow a longer delay time of 128K T cycles
(131,072 T cycles) so that the clock oscillator may stabilize. When the chip uses a stable
external clock, the SD bit may be set to one to allow a shorter (16 T cycle) delay time and
a faster start up of the chip.

For example, assume that SD=0 so that the 128K T counter is used. During the 128K T
count, the processor ignores interrupts until the last few counts and, at that time, begins
to synchronize them. At the end of the 128K T cycle delay period, the chip restarts
instruction processing, completes stop cycle 4 (interrupt arbitration occurs at this time),
and executes stop cycles 5, 6, 7, and 8 (it takes 17T from the end of the 128K T delay to

t MOTOROLA PROCESSING STATES 7-39 J

(STOP PROCESSING STATE \]

the first instruction fetch). If the IRQA signal is released (pulled high) after a minimum of
4T but less than 128K T cycles, no IRQA interrupt will occur, and the instruction fetched
after stop cycle 8 will be the next sequential instruction (n4 in Figure 7-18). An IRQA
interrupt will be serviced as shown in Figure 7-18 if 1) the IRQA signal had previously
been initialized as level sensitive, 2) IRQA is held low from the end of the 128K T cycle
delay counter to the end of stop cycle count 8, and 3) no interrupt with a higher interrupt
level is pending. If IRQA is not asserted during the last part of the STOP instruction
sequence (6, 7, and 8) and if no interrupts are pending, the processor will refetch the
next sequential instruction (n4). Since the IRQA signal is asserted (see Figure 7-18), the
processor will recognize the interrupt and fetch and execute the instructions at P:$0008
and P:$0009 (the IRQA interrupt vector locations).

To ensure servicing IRQA immediately after leaving the stop state, the following steps
must be taken before the execution of the STOP instruction:

1. Define IRQA as level sensitive — an edge-triggered interrupt will not be ser-
viced.

2. Define IRQA priority as higher than the other sources and higher than the pro-
gram priority.

3. Ensure that no stack error or trace interrupts are pending.
4. Execute the STOP instruction and enter the stop state.

5. Recover from the stop state by asserting the IRQA pin and holding it asserted
for the whole clock recovery time. If it is low, the IRQA vector will be fetched.
Also, the user must ensure that NMI will not be asserted during these last
three cycles; otherwise, NMI will be serviced before IRQA because NMI prior-
ity is higher.

6. The exact elapsed time for clock recovery is unpredictable. The external
device that asserts IRQA must wait for some positive feedback, such as spe-
cific memory access or a change in some predetermined 1/O pin, before deas-
serting IRQA.

The STOP sequence totals 131,104 T cycles (if SD=0) or 48 T cycles (if SD=1) in addi-
tion to the period with no clocks from the stop fetch to the IRQA vector fetch (or next
instruction). However, there is an additional delay if the internal oscillator is used. An
indeterminate period of time is needed for the oscillator to begin oscillating and then sta-
bilize its amplitude. The processor will still count 131,072 T cycles (or 16 T cycles), but

L 7-40 PROCESSING STATES MOTOROLA J

(STOP PROCESSING STATE \]

the period of the first oscillator cycles will be irregular; thus, an additional period of
19,000 T cycles should be allowed for oscillator irregularity (the specification recom-
mends a total minimum period of 150,000 T cycles for oscillator stabilization). If an exter-
nal oscillator is used that is already stabilized, no additional time is needed.

The PLL may be disabled or not when the chip enters the STOP state. If it is disabled
and will not be re-enabled when the chip leaves the STOP state, the number of T cycles
will be much greater because the PLL must regain lock.

If the STOP instruction is executed when the IRQA signal is asserted, the clock genera-
tor will not be stopped, but the four-phase clock will be disabled for the duration of the
128K T cycle (or 16 T cycle) delay count. In this case, the STOP looks like a 131,072 T +
35 T cycle (or 51 T cycle) NOP, since the STOP instruction itself is eight instruction
cycles long (32 T) and synchronization of IRQA is 3T, which equals 35T.

A trace or stack error interrupt pending before entering the stop state is not cleared and
will remain pending. During the clock stabilization delay, all peripheral and external inter-
rupts are cleared and ignored (includes all SCI, SSI, HI, IRQA, IRQB, and NMI interrupts,
but not trace or stack error). If the SCI, SSI, or HI have interrupts enabled in 1) their
respective control registers and 2) in the interrupt priority register, then interrupts like SCI
transmitter empty will be immediately pending after the clock recovery delay and will be
serviced before continuing with the next instruction. If peripheral interrupts must be dis-
abled, the user should disable them with either the control registers or the interrupt prior-
ity register before the STOP instruction is executed.

If RESET is used to restart the processor (see Figure 7-19), the 128K T cycle delay
counter would not be used, all pending interrupts would be discarded, and the processor
would immediately enter the reset processing state as described in Section 7.4. For
example, the stabilization time recommended in theDSP56001 Technical Data Sheet for
the clock (RESET should be asserted for this time) is only 50 T for a stabilized external
clock but is the same 150,000 T for the internal oscillator. These stabilization times are
recommended and are not imposed by internal timers or time delays. The DSP fetches
instructions immediately after exiting reset. If the user wishes to use the 128K T (or 16 T)
delay counter, it can be started by asserting IRQA for a short time (about two clock
cycles).

L MOTOROLA PROCESSING STATES 7-41 J

(STOP PROCESSING STATE \]

b/
m
»
m
=

PROCESSOR ENTERS
RESET STATE —l r PROCESSOR LEAVES RESET STATE

INTERRUPT CONTROL CYCLE 1

INTERRUPT CONTROL CYCLE 2

FETCH n3 n4 — — nop nA nB nC nD nE
DECODE n2 |STOP| — — nop | nop nA nB nC nD
EXECUTE nl n2 | STOP| — nop | nop | nop nA nB nC
STOP CYCLE COUNT 1 2 3 4

e

CLOCK STOPPEDJ

IRESET = INTERRUPT

n = NORMAL INSTRUCTION WORD
nA, nB, nC = INSTRUCTIONS IN RESET ROUTINE
STOP = INTERRUPT INSTRUCTION WORD

Figure 7-19 STOP Instruction Sequence Recovering with RESET

L 7-42 PROCESSING STATES MOTOROLA J

STOP PROCESSING STATE

t MOTOROLA

PROCESSING STATES

(STOP PROCESSING STATE \]

t 7-44 PROCESSING STATES MOTOROLA J

	7.1 PROCESSING STATES
	7.2 NORMAL PROCESSING STATE
	7.2.1 Instruction Pipeline
	Table 7-1 Instruction Pipelining
	7.2.2 Summary of Pipeline-Related Restrictions

	7.3 EXCEPTION PROCESSING STATE (INTERRUPT PROCESSI...
	7.3.1 Interrupt Types
	Figure 7-1 Fast and Long Interrupt Examples

	7.3.2 Interrupt Priority Structure
	Table 7-2 Status Register Interrupt Mask Bits
	7.3.2.1 Interrupt Priority Levels
	Figure 7-2 Interrupt Priority Register (Addr X:$FF...

	Table 7-3 Interrupt Priority Level Bits
	7.3.2.2 Exception Priorities Within an IPL
	Table 7-5 Central Processor Interrupt Priorities W...
	7.3.3 Interrupt Sources
	Table 7-6 Interrupt Sources
	7.3.3.1 Hardware Interrupt Sources
	Figure 7-3 Interrupting an SWI

	7.3.3.2 Software Interrupt Sources
	Figure 7-4 Illegal Instruction Interrupt Serviced ...
	Figure 7-5 Illegal Instruction Interrupt Serviced ...
	Figure 7-6 Repeated Illegal Instruction

	7.3.3.3 Other Interrupt Sources
	Figure 7-7 Trace Exception

	7.3.4 Interrupt Arbitration
	7.3.5 Interrupt Instruction Fetch
	7.3.6 Instructions Preceding the Interrupt Instruc...
	7.3.7 Interrupt Instruction Execution
	Figure 7-8 Fast Interrupt Service Routine
	Figure 7-9 Two Consecutive Fast Interrupts
	Figure 7-10 Long Interrupt Service Routine
	Figure 7-11 JSR First Instruction of a Fast Interr...
	Figure 7-12 JSR Second Instruction of a Fast Inter...
	Figure 7-13 Interrupting an REP Instruction
	Figure 7-14 Interrupting Sequential REP Instructio...

	7.4 RESET PROCESSING STATE
	7.5 WAIT PROCESSING STATE
	Figure 7-15 Wait Instruction Timing
	Figure 7-16 Simultaneous Wait Instruction and Inte...

	7.6 STOP PROCESSING STATE
	Figure 7-17 STOP Instruction Sequence
	Figure 7-18 STOP Instruction Sequence Followed by ...
	Figure 7-19 STOP Instruction Sequence Recovering w...

	SECTION 7 SECTION 7 PROCESSING STATES

