
28 February 2002 05-ABI-10001 v1.0 SuperH, Inc. 1/46

Language Independent Application Binary Interface

The Language Independent ABI is intended to define the minimal conventions that must be used by
all languages on the SH-5 architecture.

The SH-5 ISA comprises instructions in 2 modes:

� SHmedia - 32-bit instructions

� SHcompact - 16-bit instructions

defined in the SH-5 Core Architecture manuals.

Adherence to this standard facilitates inter language calls, and the operation of language tools such
as debuggers and operating systems.

Reference

Please refer to the SH-5 CPU Core Architecture manuals (05-CC-1000n) for further information.

SH-5 Generic and C Specific ABI

 SH-5 Generic and C Specific ABI

2/46 SuperH, Inc. 05-ABI-10001 v1.0

Table of Contents

Language Independent Application Binary Interface .1

Chapter 1 Introduction .4

Chapter 2 Language independent ABI .4

2.1 Scope and Aims . 4

2.2 Definition of terms . 5

2.3 Byte ordering . 5

2.4 Stack layout . 6

2.5 Frame layout . 8

2.6 Global data . 9

2.6.1 Variable data . 9

2.6.2 Constant data . 9

2.7 Function linkage and parameter passing . 9

2.7.1 Function linkage . 9

2.7.2 Parameter passing . 10

2.7.3 Register usage conventions . 10

2.8 Function prolog and epilog . 13

Chapter 3 ANSI C ABI .14

3.1 Built-in type mapping . 14

3.2 Type mapping and alignment . 15

3.2.1 Scalar types . 15

3.2.2 Aggregate types . 15

3.3 Function results and argument passing . 18

3.3.1 Function results . 18

3.3.2 Argument passing . 18

3.4 Symbol names . 23

3.5 Intrinsic functions . 23

3.5.1 Multimedia instructions . 24

3.5.2 Floating-point instructions . 25

3.5.3 Control and configuration instructions . 26

3.5.4 Misaligned access support instructions . 26

3.5.5 Miscellaneous instructions . 27

3.5.6 Synchronization instructions . 27

 05-ABI-10001 v1.0 SuperH, Inc. 3/46

SH-5 Generic and C Specific ABI

3.5.7 Cache instructions . 27

3.5.8 Event handling instructions . 27

3.5.9 Unaligned load and store functions . 28

3.5.10 Floating-point Functions . 28

3.6 Compiler support routines . 31

Appendix A Appendix .33

A.1 Passing 64 bit parameters . 33

A.1.1 General principles . 33

A.1.2 Receiving 64 bit parameters. 33

A.1.3 Returning 64 bit results . 36

A.1.4 Passing 64 bit arguments . 37

A.2 Parameter passing - further examples . 38

A.3 Implementation of stdarg.h .43

A.4 Usage of R25 . 44

1 Introduction SH-5 Generic and C Specific ABI

4/46 SuperH, Inc. 05-ABI-10001 v1.0

1 Introduction

The purpose of this document is to describe the language independent application binary interface
and the ANSI C language specific application binary interface for use on the SH-5 architecture.

2 Language independent ABI

2.1 Scope and Aims

The language independent ABI is the minimal set of conventions to be observed by all languages. A
particular language is free to enhance the basic ABI for its own purposes and the particular ABI’s for
other languages should be consulted for further details. This chapter covers the following:

� Memory organization, stack and global space,

� Function frame layout,

� Register usage conventions and call sequences.

An ABI is a set of trade-offs between many different possibilities, time or space, data size or code
size, size limitations or no size limitations etc. This particular ABI is designed with the following
guidelines in mind:

� The ABI should efficiently exploit the two modes, SHmedia and SHcompact, of the SH-5
architecture.

� Functions which are compiled in SHcompact should be able to call functions which are
compiled in SHmedia and vice versa without the usage of wrappers.

� The code and data conventions in this ABI should not prevent the support of position
independent code.

� The common cases should be treated most efficiently even if this causes inefficiency in less
common cases.

� The ABI should not over specify the conventions.

� There should be no size limitations imposed other than those of the underlying hardware.

� The languages taken into account are C, C++, C9x, Java and SH-5 Assembler.

The ABI defines two addressing models known as the 32-bit ABI and the 64-bit ABI.

� In the 32-bit ABI (supporting ILP32), all addresses and offsets in addressing calculations are
32-bit width unsigned calculations.

� In the 64-bit ABI (supporting LP64), all addressing calculations are unsigned 64-bit operations.
The 64-bit ABI is only supported in SHmedia since SHcompact does not support 64-bit
addresses.

These two ABI’s cause different code sequences and table sizes to be used for code addresses.
The 32-bit ABI is designed to provide efficient support for programs designed to work in a 32-bit
address space and to target limited address space implementations of SH-5. Compilers using these
ABIs should be aware of which ABI is being used.

 05-ABI-10001 v1.0 SuperH, Inc. 5/46

SH-5 Generic and C Specific ABI 2 Language independent ABI

2.2 Definition of terms

In this section, we define the following terms used in this document.

A function is intended to be a language neutral term for that part of a program that can be invoked
from other parts of the program as often as needed. It is meant to cover C functions, C++ functions.

A leaf function is a function that statically makes no further calls to other functions.

A frame is the stack space pushed for a function invocation.

A Compilation Unit is the individual unit of a program which is presented to a compiler at a single
time. In C, a unit is loosely the collection of functions in a single file.

An external reference is a reference from one compilation unit to an object defined outside the
compilation unit.

Extended ASCII denotes the 8 bit ASCII character set which includes non English characters. The
set is also known as Latin_8.

A local reference is a reference to an object within the same unit.

The top of stack is the lowest used address on the stack and usually corresponds to the most
recent or current frame.

The bottom of stack is the highest used address in the stack and usually corresponds to the
oldest frame on the stack.

Stack Unwind is the process of decoding a function’s stack frame to recreate the machine state at
the point of call of the function. This process is required to support certain language features in
particular exception handling as found in C++.

Position Independent Code(PIC) is code that can be loaded and will successfully execute
anywhere in a program’s virtual address space, i.e. the code contains no absolute code or data
addresses.

2.3 Byte ordering

Byte ordering defines how the bytes that make up an object are ordered in memory. Most significant
byte (MSB) ordering or big endian as it is often called, means that the most significant byte is
located in the lowest addressed byte position in a storage unit. Least significant byte (LSB) ordering
or little endian as it is often called, means that the least significant byte is located in the lowest
addressed byte position in a storage unit. SH-5 architecture supports both big-endian and little-
endian byte ordering. The SH-5 ABI specification also supports both byte orderings.

2 Language independent ABI SH-5 Generic and C Specific ABI

6/46 SuperH, Inc. 05-ABI-10001 v1.0

2.4 Stack layout

The stack of a single thread is a contiguous region of memory. Compilers allocate space on the
stack to represent the local data of a function, usually referred to as a frame. Each called function
creates and deletes its own frame. The stack grows as extra frames are allocated and in
accordance with the SH-5 convention, the stack grows from high address to low address. The top of
the stack (i.e. the smallest address) is always referenced by a register known as SP, the Stack
Pointer. It is a requirement that this stack pointer be aligned on a 8 byte boundary on entry to a
function due to the alignment requirement of the 64-bit register loads and stores. Within a function,
the stack pointer is not necessarily 8 byte aligned at all times: for instance, during an SHcompact
entry sequence, 4 byte register values may be pushed onto the stack one at a time. This means that
an event handler cannot necessarily assume that SP is 8 byte aligned on entry to the handler.

A compiler implementation must not use the stack pointer register for any other purposes and at all
times it must address the top of stack. The Stack Pointer contains the address of the last used byte
on the stack. For instance, SP+0 is a valid address.

The topmost frame is the frame of the currently executing function. When a function is called, it
allocates its own frame by decreasing SP; on exit, it deletes the frame by restoring SP to the value
upon entry. Each function is responsible for creating and deleting its own frame. Not all functions will
require a stack frame and a stack frame is allocated only if required. The stack growth is seen in
Figure 1: Overview of stack on page 6.

Figure 1: Overview of stack

SP

. . .

Current Frame

Frame 1

Frame 0
D

ir e
ct

io
n

of
 S

ta
c k

 G
r o

w
th

 05-ABI-10001 v1.0 SuperH, Inc. 7/46

SH-5 Generic and C Specific ABI 2 Language independent ABI

As well as the stack pointer (SP), a frame may also have a frame pointer (FP), a register used to
address parts of the frame. Only a subset of frames need frame pointers. Unlike the SP, FP is not a
dedicated register.

If a stack frame uses a frame pointer, the implementation may choose any suitable register for use
as a frame pointer. A register chosen to act as a frame pointer for a frame cannot be used for any
other purpose, and must always be valid for the lifetime of the frame.

The ABI does not make any statements and does not assume anything about the state of the stack
beyond SP (that is, any addresses < SP). The ABI is so written as to avoid any accesses beyond the
current value of SP.

Figure 2: Frame layout

E

(8 byte aligned)

Not all frames will have all the above areas

Direction of stack growth

Parameter register save area

Register save area

Local variable area

Dynamic variable area

Argument area (for calls)

B

A

C

D

8 byte aligned

Previous SP (8 byte aligned)

FP (frame pointer)

or
SP (stack pointer)

8 byte aligned

SP (stack pointer)

8 byte aligned

2 Language independent ABI SH-5 Generic and C Specific ABI

8/46 SuperH, Inc. 05-ABI-10001 v1.0

2.5 Frame layout

The frame layout on SH-5 is described in Figure 2: Frame layout on page 7.

The stack frame is partitioned into five distinct areas to facilitate stack unwinding and for function
calling.

We define the uses of the partitions of a frame as follows:

� Parameter register save area (A) is an area needed only when the called routine needs a
memory copy of its parameters which are otherwise passed in registers. This spill area is
located at the very start of the stack frame to make it contiguous with the remaining parameters
(if any) which will reside in the caller’s frame (in area E). This arrangement supports languages
with variable length arguments such as C. Use of the dedicated parameter register save area is
only necessary when an ordering relationship is required between memory copies of
parameters such as is required in C.

� Register save area (B) is an area used to save and restore the callee save registers for this
function. i.e, the subset of local registers used by this function which are in the callee save set.

� Local variable and temporary area (C) is an area for local variables which need memory
locations and for any compiler temporaries, for example, register spills. Its size is known at
compile time. The objects in this area are accessed by offsets from either SP or FP.

� Dynamic variable area (D) is an area used for any objects which are allocated by extending
the stack frame of the current procedure. For example, the alloca function in C. The size of this
area is not known until run time but the existence of such an area is known at compile time.
Most frames encountered in practice will not have any dynamic area. The objects in this area
are addressed via pointers which reside in the local variable area. The existence of such an
area implies the use of a Frame Pointer. Space in this area is created by decreasing SP which
must be kept 8 byte aligned.

� Argument area (E) is an area needed to pass an argument list to functions called by this
current function where the argument list is such that it cannot be accommodated in the
parameter registers. The argument area will contain the remaining elements of the argument
list after all the parameter registers have been used. Rather than allocating the exact area
needed on each function call (by decreasing and increasing SP), the maximum area needed
for calls from this function may be allocated on function entry. This reduces function call
overhead by avoiding any further manipulations of SP, at the expense of allocating a larger
stack frame throughout the lifetime of a function. The size of this area must be a multiple of 8
bytes in order to maintain the alignment of both the start and end of the area. If a function has
both a dynamic variable area (D) and an argument area (E), the size of the dynamic variable
area may not be altered while the argument area is in use. The argument area is only in use
during the building of argument lists hence this means that dynamic memory allocations (and
deallocations) must not happen during argument list building if the argument area (E) is also in
use. In C for example, any alloca calls may have to be hoisted out of the argument list
generation.

An additional frame pointer register (FP) may be allocated for a frame which addresses the local
variable area of the stack frame. An FP is only required when a frame has a dynamic variable area
which is dynamically allocated since SP can no longer be used to address the local variable area.

Leaf functions which do not make calls to other functions do not need to create a frame if no local
data needs to be saved on the stack. Such leaf functions need not allocate any space on the stack
if all their local variables and intermediate expressions can be allocated to scratch registers. In
practice this means that all local variables can be allocated to the available scratch registers.

 05-ABI-10001 v1.0 SuperH, Inc. 9/46

SH-5 Generic and C Specific ABI 2 Language independent ABI

2.6 Global data

2.6.1 Variable data

The global data model is to have a single global data area in which all the global data from the
compilation units is located. This global data area is addressed as follows:

� In SHmedia mode, the general purpose register R26 is used to point to the global data area.
Where exactly in the global data area R26 will point is implementation dependent.

All implementations should define a symbol named ___DATA that labels the address pointed to
by R26. (Note that there are exactly three leading underscore characters in the name
___DATA.)

Global data located near the address in R26 may be accessed efficiently by using R26 as a base
register in an indirect memory access. However, an implementation is not required to access global
data relative to R26; for instance, absolute addressing schemes could be used.

� In SHcompact mode, global variable data access is implementation dependent. For instance,
absolute addressing schemes could be used.

2.6.2 Constant data

Constant data is located in a single read-only section addressed as follows:

� In SHmedia mode, the general purpose register R27 is used to point to the constant data area.
Where exactly in the constant data area R27 will point is implementation dependent.

All implementations should define a symbol named ___RODATA that labels the address pointed
to by R27. (There are exactly three leading underscore characters in the name ___RODATA.)

Constant data located near the address in R27 may be accessed efficiently by using R27 as a
base register in an indirect memory access. However, an implementation is not required to
access all constant data relative to R27; for instance, absolute addressing schemes could be
used.

� In SHcompact mode, global constant access is implementation dependent. For instance,
absolute addressing schemes could be used.

2.7 Function linkage and parameter passing

2.7.1 Function linkage

The linkage register is used in function calling to record the return address for any function call.

� In SHmedia mode the general purpose register R18 is used.

� In SHcompact mode the PR register is used.

If the environment fabricates the value in the linkage register, for example to mark the outermost
function of a thread, then it must ensure that the fabricated value does not generate an IADDERR
exception when used as the target address in a PTABS instruction. This allows a compiler to move
a function exit PTABS instruction forward in the instruction stream to a position where a
corresponding branch instruction (the function exit) may not necessarily be executed.

2 Language independent ABI SH-5 Generic and C Specific ABI

10/46 SuperH, Inc. 05-ABI-10001 v1.0

2.7.2 Parameter passing

The term ‘parameter passing convention’ refers to how the actual machine resources (registers,
memory for example) are used to pass the parameters from the caller to the callee. The abstraction
of an argument list makes it easier to specify the parameter passing convention. The parameter
passing is described in terms of two mappings, the first from the function call to an argument list and
the second from the argument list to the machine resources.

The notion of an argument list is independent of the language semantics. An argument list is an
ordered list of argument elements, each element is a 64-bit quantity and is 64-bit aligned. The
actual mapping from arguments in the program to the argument list is dependent on the language
semantics. Argument elements may be scalar values, floating point values, pointers, aggregate
types etc. and a given language may map a given type to one or more argument list elements.

The mapping from an argument list to machine resources is dependent on the type associated with
the elements of the list and hence is language dependent. Section 3: ANSI C ABI on page 14
describes the details of these two mappings for ANSI C.

2.7.3 Register usage conventions

We define the following terms used in the specification of the register usage conventions:

� A register is CALLER SAVE if its value is not guaranteed to be preserved across function calls.
Such a register is also termed SCRATCH since the caller will have to save and restore the
register around function calls.

� A register is CALLEE SAVE if its value is guaranteed to be preserved across calls. The
implication is that the callee will either not modify the register or else save it to memory.

� A register is RESERVED if it has some special use required either by a software convention or by
the hardware.

The SH-5 architecture provides

� 64 general purpose registers (GPR), R0-R63, each 64-bit wide in SHmedia mode. Only
registers R0-R15 are visible in SHcompact mode.

� 64 floating point registers, FR0-FR63, each 32-bit wide in SHmedia mode. Only registers FR0-
FR31 are visible in SHcompact mode and these are presented as two banks of 16 registers
each.

� 8 target registers, TR0-TR7, used for branching only visible in SHmedia mode.

See the architecture manual for details of the register set. The SH-5 register classification is
designed to exploit the hardware context switching optimization. The register usage for SHmedia is
given in Table 1 on page 11. A subset of the callee-save registers, R10-R14, is visible in SHcompact
as well as SHmedia. However, in SHcompact only the lower 32 bits are visible and therefore only
the lower 32 bits of the registers R10-R14 are guaranteed to be saved and restored by the callee.

The SHcompact registers correspond to a subset of SHmedia registers and the register convention
for SHcompact is given by SHcompact to SHmedia mapping shown in Table 2 on page 12 and
SHmedia register convention shown in Table 1 on page 11.

In SHcompact the SZ, FR, and PR bits in the status register in the default case should be initialized
to zero and must be zero upon entry to prolog and exit from epilog of any function. However
command line options could determine the initial values of the above fields and the initial values
should be maintained upon entry to prolog and exit from epilog of any function.

In SHcompact, the S, M and Q bits in the status register have undefined values on entry to a
function, and their values are not guaranteed to be preserved across calls.

 05-ABI-10001 v1.0 SuperH, Inc. 11/46

SH-5 Generic and C Specific ABI 2 Language independent ABI

R16 (GBR in SHcompact) is specified as a reserved register: it is neither caller nor callee save. This
ABI does not place any further rules upon the use of this register. This is intended to allow the
various usage models for GBR on SH-1 through SH-4 to continue to work for SHcompact code.

R25 is reserved for use by the linker to fix up relocations. It should not be used by user programs
except when this is absolutely necessary, for example when saving and restoring context in event
handlers. The compiler and assembler should ensure that R25 is not live across a relocation field,
so that the linker is able to use it as a temporary register when fixing up relocation (unless the
compiler/assembler can deduce that R25 will not be needed to fix up the relocation).

See Section A.4: Usage of R25 on page 44 for an example illustrating the usage of R25.

Register name Usage

R0-R1 Caller save

R2 Return value, caller save

R2-R9 Parameter passing, caller save

R10-R14 Callee save, the lower 32 bits of the registers R10-R14 are guaranteed to be saved and
restored by the callee. The upper 32 bits are guaranteed to be preserved if and only if
they are a correct sign extension of bit 31.

R15 Stack pointer, SP, callee save

R16 Reserved

R17 Caller save

R18 Linkage register, caller save

R19-R23 Caller save

R24 Reserved for use by the operating system

R25 Reserved for assembler/linker

R26 Global variable data pointer, reserved

R27 Global constant data pointer, reserved

R28-R35 Callee save

R36-R43 Caller save

R44-R59 Callee save

R60-R62 Caller save

R63 Value 0 always

FR0-FR1 Return value, caller save

FR0-FR11 Parameter passing, caller save

FR12-FR15 Callee save

FR16-FR35 Caller save

FR36-FR63 Callee save

SR Status register - SZ, FR, and PR bits must be zero upon entry to prolog and exit from
epilog

TR0-TR4 Caller save

TR5-TR7 Callee save

Table 1: SHmedia registers

2 Language independent ABI SH-5 Generic and C Specific ABI

12/46 SuperH, Inc. 05-ABI-10001 v1.0

In SHcompact mode the T-bit is mapped to R19, but a read of the T-bit is only defined if R19
contains the value 0 or 1. On entry to an SHcompact function, there is no guarantee that R19
contains either 0 or 1, so care must be taken not to read the T-bit until there has been a write to the
T-bit.

The following SHcompact instructions read the T-bit: an SHcompact function should not execute any
of these instructions until the T-bit has been initialized:

SHcompact register SHmedia register

R0 - R15 R0 - R15

GBR R16

MACL R17 (lower 32 bits)

MACH R17 (upper 32 bits)

PR R18

T-bit Bit 0 of R19

FR0-FR15 if FPSCR.FR=0 then FR0-FR15

else FR16-FR31

XF0-XF15 if FPSCR.FR = 0 then FR16-FR31

else FR0-FR15

FPUL FR32

Table 2: Mapping of SHcompact registers to SHmedia registers

ADDC Rm,Rn

BF label

BF/S label

BT label

BT/S label

DIV1 Rm,Rn

MOVT Rn

NEGC Rm,Rn

ROTCL Rn

ROTCR Rn

SUBC Rm,Rn

 05-ABI-10001 v1.0 SuperH, Inc. 13/46

SH-5 Generic and C Specific ABI 2 Language independent ABI

2.8 Function prolog and epilog

The entry-point to a function must be 4 byte aligned (this holds even for an entry-point in
SHcompact code, as the SHmedia PTB instruction can only reach 4 byte aligned instructions).

The generic ABI does not specify an exact code sequence that must be performed on entry (the
prolog) or on exit (the epilog) of a function. Such a specification would be unnecessary and would
be difficult given the instruction level scheduling that a language processor may apply. Instead,
function prologs and epilogs are characterized by a set of tasks which are carried out.

On entry to a function, the following tasks are performed:

� (Optional) Create a stack frame. This is performed by decreasing SP. No accesses beyond SP
are permitted.

� (Optional) Create a working register set. A function always has access to a set of scratch
registers. If it needs further registers, it must save and use registers in the general purpose
register set.

� (Optional) Save the return address.

On exit from a function, the following tasks are performed:

� Restore the callee save registers that were saved in the prolog code.

� Restore the return address in the register save area.

� Delete the stack frame by restoring SP. Again, the increment of SP may be performed by a
number of instructions but after these increments, SP must be correctly aligned.

� Perform a return to the caller using the return address in the linkage register.

3 ANSI C ABI SH-5 Generic and C Specific ABI

14/46 SuperH, Inc. 05-ABI-10001 v1.0

3 ANSI C ABI

This section covers the run-time model for the implementation of ANSI C on SH-5 based on the
language independent ABI.

3.1 Built-in type mapping

The ABI specifies 2 predefined type mappings for C.

� sizeof(int) = sizeof(long) = sizeof(char *) = 4,
sizeof(long long) = 8

� sizeof(int) = 4,
sizeof(long) = sizeof(char*) = 8

The first mapping is known as the 32-bit ABI and models a 32-bit environment on the 64-bit SH-5.
Pointers are 32-bit unsigned quantities employing modulo 32-bit unsigned arithmetic. A major
purpose of the 32-bit ABI is to provide an easy portability path for software developed on 32-bit
processors.

The second mapping is known as the 64-bit ABI and is suitable for a SH-5 with a full 64-bit address
range. This is also the model used by some other 64-bit processors. 64-bit ABI is not applicable to
SHcompact since SHcompact does not support 64-bit addresses.

The 32-bit ABI and the 64-bit ABI are incompatible. Code built using either the 32-bit or the 64-bit
ABI cannot be mixed.

The definition of the 32-bit ABI is the following.

ANSI C types Byte alignment 32-bit SH-5 types

char

signed char

unsigned char

1 1-byte signed integer

1-byte signed integer

1-byte unsigned integer

short int (signed)

unsigned short int

2 2-byte signed integer

2-byte unsigned integer

int (signed)

unsigned int

enum

4 4-byte signed integer

4-byte unsigned integer

4-byte signed integer

long int (signed)

unsigned long int

4 4-byte signed integer

4-byte unsigned integer

long long int (signed)

unsigned long long int

8 8-byte signed integer

8-byte unsigned integer

float 4 4-byte single-precision floating point

double

long double

8 8-byte double-precision floating point

8-byte double-precision floating point

pointer 4 4-byte unsigned integer

Table 3: Mapping of ANSI C data types to 32-bit ABI

 05-ABI-10001 v1.0 SuperH, Inc. 15/46

SH-5 Generic and C Specific ABI 3 ANSI C ABI

The definition of the 64-bit ABI is the following:

3.2 Type mapping and alignment

3.2.1 Scalar types

SH-5 has what is usually termed natural alignment where the alignment constraint is the same as
the size of the type. The compiler can rearrange objects in a function frame to minimize the padding
needed to preserve the alignments.

3.2.1.1 Function pointers

Bit 0 of a function pointer encodes the ISA in which the function should be entered: if bit 0 is one,
then the function should be entered in SHmedia mode; if bit 0 is zero, then the function should be
entered in SHcompact mode. The remaining (more significant) bits of the function contain an
address to call to enter the function.

3.2.2 Aggregate types

Arrays of types inherit the alignment of the components of the array and each element will be
correctly aligned, that is an array will have the alignment of the components. The size of an array is
always a multiple of the element alignment and an array does not cause any extra (internal or tail)
padding to be added.

Structures and unions have the alignment of their most strictly aligned component. The compiler
inserts padding to maintain the alignment of internal components. The contents of any padding is
undefined. The sizeof a structure is always a multiple of its alignment and this may require tail
padding.

ANSI C TYPES BYTE ALIGNMENT 64-BIT SH-5 TYPES

char

signed char

unsigned char

1 1-byte signed integer

1-byte signed integer

1-byte unsigned integer

short int (signed)

unsigned short int

2 2-byte signed integer

2-byte unsigned integer

int (signed)

unsigned int

enum

4 4-byte signed integer

4-byte unsigned integer

4-byte signed integer

long int (signed)

unsigned long int

long long int

unsigned long long int

8 8-byte signed integer

8-byte unsigned integer

8-byte signed integer

8-byte unsigned integer

float

double

4

8

4-byte single-precision floating point

8-byte double-precision floating point

long double 8 8-byte double-precision floating point

pointer 8 8-byte unsigned integer

Table 4: Mapping of ANSI C data types in the 64-bit ABI

3 ANSI C ABI SH-5 Generic and C Specific ABI

16/46 SuperH, Inc. 05-ABI-10001 v1.0

This padding allows the following familiar C idiom to be used to allocate arrays of structures:

struct T {...} *ptr;
ptr = (struct T *)malloc (n * sizeof(struct T));

The address of a structure or union is its lowest (smallest) address and the structure fields are
allocated in declarative order from lowest address to highest address. Fields of the structure or
union are addressed with positive offsets from the base of the structure. The qualifier volatile
applied to an aggregate type has no effect on its layout. The volatile qualifier applied to a
structure or union component will also not affect the layout of the record.

Except when they are parameters, array variables and structure variables of size greater than 4
bytes are aligned on a 8 byte boundary and this enables the compiler (and library) to generate
efficient code for array copying and structure copying. Array and structure parameters are laid out
using the rules in Section 3.3.2: Argument passing on page 18. A distinction is being made between
a structure variable and a structure element of an array. Consider struct foo {int a,b,c;} x
and struct foo y[10]. The variable x as well as the array y are aligned on a 8 byte boundary
where as an element y[1] or y[3] is only aligned on a 4 byte boundary.

3.2.2.1 Bit-fields

Bit-fields are associated with an underlying integral type (char, short, int, long or long long).
The associated type is the type used in the bit-field definition. We follow the MS Visual C++
convention for allocation of bit-fields within a structure.

Bit-fields may be of any integral type (char, short, int, long long) and can be of any size from 0 to the
maximum width of the underlying type. For example, a char bit-field can be up to 8 bits wide
whereas a long long bit-field has a maximum of 64 bits.

Bit-fields obey the same size and alignment rules as other structure members, with the following
additions:

� A bit-field never crosses a storage boundary whose alignment is same as the alignment of the
underlying type of the bit field. In other words, a bit-field never straddles across the natural
boundary of the underlying type.

� A bit-field shares a storage unit with the previous structure member if and only if

➢ the previous member is also a bit-field,

➢ the size of the type of the previous member is same as the size of the type of the current
bit-field, and

➢ there is sufficient space within the storage unit.

� Within a storage unit, bit-fields are allocated from right to left (least to most significant) on little-
endian implementations and from left to right (most to least significant) on big-endian
implementations.

� Plain bit-fields are treated as signed.

� A zero-length bit-field has effect only when it follows a bit-field of non-zero-length.

� The effect of a zero-length bit-field is to:

1 pad up to the alignment of the underlying type of the zero-length bit-field,

2 force the next (non-zero-length) field to be allocated in a new storage unit, and

3 force the overall alignment of the structure to be at least the alignment of the underlying type of
the zero-length bit-field.

� Unnamed bit-fields do affect the overall alignment of a struct.

 05-ABI-10001 v1.0 SuperH, Inc. 17/46

SH-5 Generic and C Specific ABI 3 ANSI C ABI

Example:

struct {
int a:9;
unsigned long b:4;
int :0;
int c:7;
int :25;
int d:9;
char e;
int f:5;

}

Figures 3 and 4 show the layout of this bit-field in big-endian and little-endian byte ordering. Big-
endian byte numbers are shown in the upper left corners, little-endian byte numbers in the upper
right corners, and bit numbers in the lower corners. The size of the structure is 20 bytes in either
case. .

Figure 3: Big-endian layout

Figure 4: Little-endian layout

a b pad c pad
0242532 315051545563

d pad e pad
023243132545563

f
5963 54 32

pad

0 4

8 12

16

pad c pad b a

pad e pad d

fpad

08912133132383963

0893132394063

04531

04

812

16

3 ANSI C ABI SH-5 Generic and C Specific ABI

18/46 SuperH, Inc. 05-ABI-10001 v1.0

3.3 Function results and argument passing

3.3.1 Function results

The following rules specify how function values are returned, based on the type of the return value:

� Integer scalar types and aggregate types which are not bigger than 8 bytes are returned in
general purpose register R2. Integer scalar types returned in R2 are extended to 8 bytes based
on the type, according to the convention of data representation in registers described in the
architecture manual. Aggregate types returned in R2 that are smaller than 8 bytes are padded
at the most significant end: the value of the padding is undefined.

� Function results of structure types which are bigger than 8 bytes are returned by address. The
caller function passes the address of the result destination as an implicit extra parameter in
register R2. The called function stores the result in this area and returns the address of the
area as its result in register R2. As the extra implicit parameter is passed in register R2, this
value can act as the function result without modification.

� Single precision floating-point values are returned in FR0.

� Double precision floating-point values are returned in FR0,FR1 pair (DR0).

3.3.2 Argument passing

Following the argument-list parameter passing abstraction of the generic ABI, we define parameter
passing in two steps:

� Mapping of actual parameters to the argument list

� Mapping of the argument list to the processor registers and memory.

Scalar and aggregate types only are mentioned since array type parameters are treated as pointer
(scalar) types following the rule in 6.7.1:7 of the ISO C standard (9899:1990).

3.3.2.1 Actual parameter to argument list mapping

Actual parameters are processed in lexical order and are mapped to contiguous elements of the
argument list. The lexical order is either the order the parameters appear in the function prototype or
the order of the actual arguments in the absence of a prototype.

� Each scalar actual parameter is mapped to a single element of the argument list. The type
associated with the element is same as the type associated with the parameter, after type
conversion if necessary. The code generator shall generate the following type conversions as
dictated by the ISO C standard:

➢ When a prototype is specified, the actual arguments are converted to the corresponding
formal parameter type. In the ellipsis part of a function that takes a variable number of
arguments, char, short, unsigned char, unsigned short are converted to type
int and float is converted to type double.

➢ When a prototype is not specified, char, short, unsigned char, unsigned short
are converted to type int and float is converted to type double.

� The mapping of an aggregate parameter is determined by the memory layout of that
parameter. Successive 8 bytes of an aggregate parameter are mapped to successive elements
of the argument list. The argument list elements are typed as non-scalar elements.

� When the size of an aggregate parameter is not a multiple of 8 bytes, the last element is
padded. The value of the padding is undefined. If the size of the parameter is less than 8 bytes,
that is, it is contained in a single element, then it is always padded at the most significant end.
If the size of the parameter is greater than 8 bytes, then the padding depends on target
endianness: for little-endian targets the element is padded at the most significant end, for big-
endian targets the element is padded at the least significant end.

 05-ABI-10001 v1.0 SuperH, Inc. 19/46

SH-5 Generic and C Specific ABI 3 ANSI C ABI

3.3.2.2 Argument list to processor mapping

The mapping from argument list to machine resources can be described in terms of three possible
cases, namely

� callee known to be a non-variable-arguments function,

� callee known to be a variable-arguments function, and

� callee prototype not known.

If a scalar parameter with a size which is less than or equal to 4 bytes is passed in a register, then
the parameter is extended to 8 bytes based on the type of the parameter (after conversion if
necessary), according to the convention of data representation in registers described in the
architecture manual. If the parameter is passed in a stack location then it is extended to 4 bytes
only: the upper 4 bytes of the 8 bytes allocated on the stack are undefined.

Callee known to be a non-variable-arguments function

� Process argument list elements in order.

� Use R2-R9 for integer and integer-equivalent (char, pointer) and non-scalar (struct, union)
elements.

� Use FR0-FR11 for single precision (float) floating-point elements.

� Use DR0-DR10 for double precision (double) floating-point elements.

� Each floating-point element will be mapped to the lowest numbered register available of the
type of the element. Single precision element maps to the next available FR register. Double
precision element maps to the next available DR register. For each floating-point element i
which will be mapped on a FR or DR register then either the corresponding GPR(R2+i) will be
unoccupied if 0<= i < 8, or the next available quad-word (64-bit) stack location will be
unoccupied if i >=8. If there are no floating-point registers available then the next available
GPR or stack location is used. Leaving the GPR or stack location unused makes it possible to
have a simple consistent scheme that will work when a function is being called from two
different contexts, in one context the function is known to be a non-variable-arguments function
and in the other context there is no prototype given.

� Argument list elements not passed in registers are passed on stack in the argument area (E) at
the next available quad-word (64-bit), starting from the lowest address in the argument area.

Example:

typedef struct s_point {
 float x, y, z;
} point;
int foo(point p1,float f1,double d1,float f2,point p2,point p3,float f3,double
d2);
foo(p1,f1,d1,f2,p2,p3,f3,d2);

Argument Machine Resource

p1.x, p1.y R2

p1.z R3

f1 FR0

d1 DR2

f2 FR1

p2.x, p2.y R7

Table 5: Arguments to machine resources - callee non-variable-arguments function

3 ANSI C ABI SH-5 Generic and C Specific ABI

20/46 SuperH, Inc. 05-ABI-10001 v1.0

Note: R4,R5,R6 and FR5 are unused.

A feature of this parameter passing model is that aggregate values may be passed in registers if
mapped to the first 8 argument list elements. Also, aggregate values may be passed partially in
registers with the remaining fields passed on the stack.

Compilers may discover and exploit the properties of individual function calls (for example, through
the use of prototypes), and thereby modify the above mapping of aggregate values to registers and
stack; however the program behavior must appear as if the above mapping was applied uniformly.

Callee known to be a variable-arguments function

� The calling conventions of Callee known to be a non-variable-arguments function on page 19
apply up until the first argument corresponding to where the ellipsis occurs in the parameter list
of the callee.

� For the rest of the elements in the argument list, no element is passed in FR or DR registers.
Floating-point arguments are passed in R2-R9 and the argument area in the stack, just like the
other arguments. Note that arguments of type char, short, unsigned char and unsigned
short are converted to int, and arguments of type float are converted to double.

Example:

typedef struct s_point {
 float x, y, z;
} point;
int foo(point p1, float f1, ...);
foo(p1,f1,d1,f2,p2,p3,f3,d2);

p2.z R8

p3.x, p3.y R9

p3.z (0,SP)

f3 FR4

d2 DR6

Argument Machine Resource

p1.x, p1.y R2

p1.z R3

f1 FR0

d1 R5

f2 R6

p2.x, p2.y R7

p2.z R8

p3.x, p3.y R9

p3.z (0,SP)

f3 (8,SP)

Table 6: Arguments to machine resources - callee variable-arguments function

Argument Machine Resource

Table 5: Arguments to machine resources - callee non-variable-arguments function

 05-ABI-10001 v1.0 SuperH, Inc. 21/46

SH-5 Generic and C Specific ABI 3 ANSI C ABI

Callee prototype not known

� Process argument list elements in order.

� Use R2-R9 for integer and integer-equivalent (char, pointer) and non-scalar (struct, union)
elements.

� There will be no single-precision (float) floating-point elements, because when the prototype
is not known, all arguments of type float are converted to type double.

� Use DR0-DR10 for double precision (double) floating-point elements.

� Each floating-point element will be mapped to the lowest numbered DR (double-precision)
register available. For each floating-point element i which will be mapped on a DR register then
either the floating-point element i is passed also in the corresponding GPR(R2+i) if 0<= i < 8, or
the floating-point element i is passed also in the next available quad-word (64-bit) stack
location if i >=8.

➢ If the callee is a non-variable-arguments function, it will use the floating-point register
copy.

➢ If the callee is a variable-arguments function, it will use the GPR copy or from stack as
the case may be.

These rules will work only if the callee does not expect float type parameters, or if the callee
is a K&R function. Even if the callee is a function that takes variable arguments, a float
parameter preceding the ellipsis will be received as a float by the callee, and hence the
argument converted to double by the caller would not be received by the callee correctly.

� Argument list elements not passed in registers are passed on stack in the argument area (E) at
the next available quad-word (64-bit), starting from the lowest address in the argument area.

Example:

typedef struct s_point {
 float x, y, z;
} point;
/* prototype of foo unknown, but type of p1,f1, etc. as before*/
foo(p1,f1,d1,f2,p2,p3,f3,d2);

d2 (16,SP)

Argument Machine Resource

p1.x, p1.y R2

p1.z R3

f1 DR0 and R4

d1 DR2 and R5

f2 DR4 and R6

p2.x, p2.y R7

p2.z R8

p3.x, p3.y R9

p3.z (0,SP)

Table 7: Arguments to machine resources - unknown prototype

Argument Machine Resource

Table 6: Arguments to machine resources - callee variable-arguments function

3 ANSI C ABI SH-5 Generic and C Specific ABI

22/46 SuperH, Inc. 05-ABI-10001 v1.0

Note: For this call to work correctly, the definition of foo must not receive floating-point parameters as
type float. The following definitions of foo would work:

int foo (p1, f1, d1, f2, p2, p3, f3, d2)
point p1,p2,p3;
float f1,f2, f3;
double d1,d2;
{...}

or

int foo (point p1, double f1, double d1, double f2, point p2, point p3, double
f3, double d2)
{...}

but the prototype for foo given in Callee known to be a non-variable-arguments function would not
work correctly as it receives f1, f2 and f3 as float, and the prototype for foo given in Callee
known to be a variable-arguments function would not work correctly as it receives f1 as float.

Further parameter passing examples appear in Section A.2: Parameter passing - further examples
on page 38.

Implementation of argument list to processor mapping

The SHmedia instruction set of the SH-5 architecture provides support for mapping argument list
elements which are 8 bytes long to machine resources.

However, the SHcompact instruction set of the SH-5 architecture does not provide support for this
mapping.

� In SHcompact mode, only the lower 32 bits of a register can be read. Furthermore, some
SHcompact instructions require the upper 32 bits of a source operand to be a sign extension of
bit 31.

� In SHcompact mode, the lower 32 bits of a register can be written. However, some SHcompact
instructions will also overwrite the upper 32 bits of the destination register as a sign extension
of bit 31. Care must be taken when using these instructions that the upper 32 bits do not
contain meaningful values.

Note: In particular that aggregate, double precision, and long long parameters that are passed in general
purpose registers may use all 64 bits of the register: i.e. the upper 32 bits contain meaningful
values, and they are not a sign extension of bit 31. Therefore care must be taken when accessing
these parameters in SHcompact mode. Where necessary, the mapping of 8 byte long argument list
elements to machine resources may be achieved by switching to SHmedia, performing the mapping
and then switching back to SHcompact. Section A.1: Passing 64-bit parameters on page 33 gives
an example implementation of this mapping.

f3 DR6 and (8,SP)

d2 DR8 and (16, SP)

Argument Machine Resource

Table 7: Arguments to machine resources - unknown prototype

 05-ABI-10001 v1.0 SuperH, Inc. 23/46

SH-5 Generic and C Specific ABI 3 ANSI C ABI

3.3.2.3 Handling of variable-arguments function by the callee.

When the call is to a function with a variable number of arguments, the caller will pass the
arguments in accordance with the rules outlined above. The called routine will allocate space and
copy the registers R2-R9 to its own stack space (A). Because the function cannot tell in advance
how many of the machine registers may be in use, it must save all the potential parameter registers
to the stack. The implementation of the variable argument manipulation macros will use the memory
copies of the parameters. The va_arg macro will address the parameters as an array indexed by
the implicit counter to va_arg. The va_start macro is implemented by initializing the variable
argument pointer with the address of the argument in the argument list which is the first variant
argument. This is the address of the first parameter available through va_arg. Consequently,
va_arg is implemented as returning the value at this pointer followed by an increase to address the
next parameter in the variable argument list. va_arg must take into account padding inserted when
the parameter is not an exact multiple of 8 bytes in length. All arguments smaller than 8 bytes are
padded at the most significant end; arguments larger than 8 bytes are padded in the last argument
element.

va_end serves no purpose except to make the variable argument unusable as a legal pointer.

Section A.3: Implementation of STDARG.H on page 43 gives an example implementation of the
va_start, va_arg and va_end macros.

3.4 Symbol names

C identifiers which are used as global symbol names in the resulting object file must be prepended
with an underscore. For example, the entry point of the function foo() will be represented by the
symbol _foo in the object file.

3.5 Intrinsic functions

Compilers that provide intrinsic C functions to support specific SHmedia machine instructions
should name these functions sh_media_ followed by the instruction name in upper case. Dots in
the instruction name should be replaced with underscores in the intrinsic name. For example, the
intrinsic to support MCNVS.LW should be named

sh_media_MCNVS_LW

The intrinsic functions should be declared in the following header files:

ushmedia.h Intrinsics corresponding to SHmedia instructions that may be executed in both
user and privileged mode (i.e. all the intrinsics described below except those in
Section 3.5.3)

sshmedia.h Intrinsics corresponding to SHmedia instructions that may only be executed in
privileged mode (i.e. the intrinsics described in Section 3.5.3)

shmedia.h All SHmedia instriniscs (may simply include both ushmedia.h and
sshmedia.h).

The following sections list the recommended set of intrinsic functions.

Note: Some SHmedia instructions read and write their third operand, for example, FMAC.S reads and
then writes its third operand. The intrinsics that correspond to these instructions do not overwrite
the third operand, as the result is returned as the function value.

3 ANSI C ABI SH-5 Generic and C Specific ABI

24/46 SuperH, Inc. 05-ABI-10001 v1.0

For example, the behavior of the FMAC.S intrinsic,

sh_media_FMAC_S(float fg, float fh, float fq)

is
return fq + fg * fh;

that is, fq is not overwritten by the intrinsic function.

The behavior of the SHmedia instruction can be obtained by assigning the result returned by the
intrinsic to the same variable that is passed to the third parameter, for example,

v = sh_media_FMAC_S(fg, fh, v);

The instructions that have operands that behave in this way are: CMVEQ, CMVNE, FMAC.S,
MCMV, MMACFX.WL, MMACNFX.WL, MMULSUM.WQ, MSAD.UBQ.

3.5.1 Multimedia instructions

__inline__ unsigned long long sh_media_MABS_L(unsigned long long mm)
__inline__ unsigned long long sh_media_MABS_W(unsigned long long mm)
__inline__ unsigned long long sh_media_MADD_L(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MADD_W(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MADDS_L(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MADDS_UB(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MADDS_W(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MCMPEQ_B(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MCMPEQ_L(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MCMPEQ_W(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MCMPGT_L(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MCMPGT_UB(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MCMPGT_W(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MCMV(unsigned long long mm, unsigned long
long mn, unsigned long long mw)
__inline__ unsigned long long sh_media_MCNVS_LW(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MCNVS_WB(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MCNVS_WUB(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MEXTR1(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MEXTR2(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MEXTR3(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MEXTR4(unsigned long long mm, unsigned
long long mn
)__inline__ unsigned long long sh_media_MEXTR5(unsigned long long mm, unsigned
long long mn)

 05-ABI-10001 v1.0 SuperH, Inc. 25/46

SH-5 Generic and C Specific ABI 3 ANSI C ABI

__inline__ unsigned long long sh_media_MEXTR6(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MEXTR7(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MMACFX_WL(unsigned long long mm, unsigned
long long mn, unsigned long long mw)
__inline__ unsigned long long sh_media_MMACNFX_WL(unsigned long long mm,
unsigned long long mn, unsigned long long mw)
__inline__ unsigned long long sh_media_MMUL_L(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MMUL_W(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MMULFX_L(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MMULFX_W(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MMULFXRP_W(unsigned long long mm,
unsigned long long mn)
__inline__ unsigned long long sh_media_MMULHI_WL(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MMULLO_WL(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MMULSUM_WQ(unsigned long long mm,
unsigned long long mn, unsigned long long mw)
__inline__ unsigned long long sh_media_MPERM_W(unsigned long long mm, unsigned
int mn)
__inline__ unsigned long long sh_media_MSAD_UBQ(unsigned long long mm, unsigned
long long mn, unsigned long long mw)
__inline__ unsigned long long sh_media_MSHALDS_L(unsigned long long mm, unsigned
int mn)
__inline__ unsigned long long sh_media_MSHALDS_W(unsigned long long mm, unsigned
int mn)
__inline__ unsigned long long sh_media_MSHARD_L(unsigned long long mm, unsigned
int mn)
__inline__ unsigned long long sh_media_MSHARD_W(unsigned long long mm, unsigned
int mn)
__inline__ short sh_media_MSHARDS_Q(long long mm, unsigned int mn)
__inline__ unsigned long long sh_media_MSHFHI_B(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MSHFHI_L(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MSHFHI_W(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MSHFLO_B(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MSHFLO_L(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MSHFLO_W(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MSHLLD_L(unsigned long long mm, unsigned
int mn)
__inline__ unsigned long long sh_media_MSHLLD_W(unsigned long long mm, unsigned
int mn)
__inline__ unsigned long long sh_media_MSHLRD_L(unsigned long long mm, unsigned
int mn)
__inline__ unsigned long long sh_media_MSHLRD_W(unsigned long long mm, unsigned
int mn)
__inline__ unsigned long long sh_media_MSUB_L(unsigned long long mm, unsigned
long long mn)

3 ANSI C ABI SH-5 Generic and C Specific ABI

26/46 SuperH, Inc. 05-ABI-10001 v1.0

__inline__ unsigned long long sh_media_MSUB_W(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MSUBS_L(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MSUBS_UB(unsigned long long mm, unsigned
long long mn)
__inline__ unsigned long long sh_media_MSUBS_W(unsigned long long mm, unsigned
long long mn)

3.5.2 Floating-point instructions

__inline__ double sh_media_FABS_D(double dg)
__inline__ float sh_media_FABS_S(float fg)
__inline__ int sh_media_FCMPUN_D(double dg, double dh)
__inline__ int sh_media_FCMPUN_S(float fg, float fh)
__inline__ float sh_media_FCOSA_S(float fg)
__inline__ float sh_media_FGETSCR(void)
__inline__ float sh_media_FIPR_S(const void *fvg, const void *fvh)

Notionally: const float fvg[4], const float fvh[4].

fvg and fvh point to 8-byte aligned data.

__inline__ float sh_media_FMAC_S(float fg, float fh, float fq)
__inline__ long long sh_media_FMOV_DQ(double dg)
__inline__ float sh_media_FMOV_LS(int mm)
__inline__ double sh_media_FMOV_QD(long long mm)
__inline__ int sh_media_FMOV_SL(float fg)
__inline__ void sh_media_FPUTSCR(float fg)
__inline__ float sh_media_FSINA_S(float fg)
__inline__ double sh_media_FSQRT_D(double dg)
__inline__ float sh_media_FSQRT_S(float fg)
__inline__ float sh_media_FSRRA_S(float fg)
__inline__ void sh_media_FTRV_S(const void *mtrxg, const void *fvh, void *fvf)

Notionally: const float mtrxg[4][4], const float fvh[4], float fvf[4].

mtrxg, fvh, fvf point to 8-byte aligned data.

f g0 g1 g2 g3

h0

h1

h2

h3

=

h0 h1 h2 h3

g0 0, g0 1, g0 2, g0 3,

g1 0, g1 1, g1 2, g1 3,

g2 0, g2 1, g2 2, g2 3,

g3 0, g3 1, g3 2, g3 3,

f0 f1 f2 f3
=

 05-ABI-10001 v1.0 SuperH, Inc. 27/46

SH-5 Generic and C Specific ABI 3 ANSI C ABI

3.5.3 Control and configuration instructions

__inline__ unsigned long long sh_media_GETCON(unsigned int k)
__inline__ void sh_media_PUTCON(unsigned long long mm, unsigned int k)
__inline__ unsigned long long sh_media_GETCFG(unsigned long long mm, int s)
s is the displacement operand, expressed in bytes.
__inline__ void sh_media_PUTCFG(unsigned long long mm, int s, unsigned long
long mw)
s is the displacement operand, expressed in bytes.
__inline__ void sh_media_SLEEP(void)

3.5.4 Misaligned access support instructions

__inline__ unsigned long long sh_media_LDHI_L(void *p, int s)
s is the displacement operand, expressed in bytes.
__inline__ unsigned long long sh_media_LDHI_Q(void *p, int s)
s is the displacement operand, expressed in bytes.
__inline__ unsigned long long sh_media_LDLO_L(void *p, int s)
s is the displacement operand, expressed in bytes.
__inline__ unsigned long long sh_media_LDLO_Q(void *p, int s)
s is the displacement operand, expressed in bytes.
__inline__ void sh_media_STHI_L(void *p, int s, unsigned int mw)
s is the displacement operand, expressed in bytes.
__inline__ void sh_media_STHI_Q(void *p, int s, unsigned long long mw)
s is the displacement operand, expressed in bytes.
__inline__ void sh_media_STLO_L(void *p, int s, unsigned int mw)
s is the displacement operand, expressed in bytes.
__inline__ void sh_media_STLO_Q(void *p, int s, unsigned long long mw)
s is the displacement operand, expressed in bytes.

3.5.5 Miscellaneous instructions

__inline__ unsigned char sh_media_NSB(long long mm)
__inline__ unsigned long long sh_media_BYTEREV(unsigned long long mm)
__inline__ unsigned long long sh_media_CMVEQ(unsigned long long mm, unsigned
long long mn, unsigned long long mw)
__inline__ unsigned long long sh_media_CMVNE(unsigned long long mm, unsigned
long long mn, unsigned long long mw)
__inline__ unsigned long long sh_media_ADDZ_L(unsigned int mm, unsigned int mn)
__inline__ void sh_media_NOP(void)

3.5.6 Synchronization instructions

__inline__ unsigned long long sh_media_SWAP_Q(void *mm, long long mn, unsigned
long long mw)
__inline__ void sh_media_SYNCI(void)
__inline__ void sh_media_SYNCO(void)

3.5.7 Cache instructions

__inline__ void sh_media_ALLOCO(void *mm, int s)
s is the displacement operand, expressed in bytes.
__inline__ void sh_media_ICBI(void *mm, int s)
s is the displacement operand, expressed in bytes.
__inline__ void sh_media_OCBI(void *mm, int s)
s is the displacement operand, expressed in bytes.
__inline__ void sh_media_OCBP(void *mm, int s)
s is the displacement operand, expressed in bytes.
__inline__ void sh_media_OCBWB(void *mm, int s)
s is the displacement operand, expressed in bytes.

3 ANSI C ABI SH-5 Generic and C Specific ABI

28/46 SuperH, Inc. 05-ABI-10001 v1.0

__inline__ void sh_media_PREFI(void *mm, int s)
s is the displacement operand, expressed in bytes.
__inline__ void sh_media_PREFO(void *mm, int s)
s is the displacement operand, expressed in bytes.
This intrinsic should be implemented using
LD.B Rm,s,R63

3.5.8 Event handling instructions

__inline__ void sh_media_BRK(void)
__inline__ void sh_media_TRAPA(unsigned long long mm)

3.5.9 Unaligned load and store functions

__inline__ short sh_media_unaligned_LD_W(void *p)
__inline__ unsigned short sh_media_unaligned_LD_UW(void *p)
__inline__ int sh_media_unaligned_LD_L(void *p)
__inline__ long long sh_media_unaligned_LD_Q(void *p)
__inline__ void sh_media_unaligned_ST_W(void *p, unsigned int k)
__inline__ void sh_media_unaligned_ST_L(void *p, unsigned int k)
__inline__ void sh_media_unaligned_ST_Q(void *p, unsigned long long k)

3.5.10 Floating-point Functions

__inline__ void sh_media_FTRVADD_S(const void *mtrxg, const void *fvh, const
void *fvi, void *fvf)

Notionally: const float mtrxg[4][4], const float fvh[4], const float fvi[4],
float fvf[4].

mtrxg, fvh, fvi, fvf point to 8-byte aligned data.

__inline__ void sh_media_FTRVSUB_S(const void *mtrxg, const void *fvh, const
void *fvi, void *fvf)

Notionally:const float mtrxg[4][4], const float fvh[4], const float fvi[4],
float fvf[4].

mtrxg, fvh, fvi, fvf point to 8-byte aligned data.

h0 h1 h2 h3

g0 0, g0 1, g0 2, g0 3,

g1 0, g1 1, g1 2, g1 3,

g2 0, g2 1, g2 2, g2 3,

g3 0, g3 1, g3 2, g3 3,

i0 i1 i2 i3
+ f0 f1 f2 f3

=

h0 h1 h2 h3

g0 0, g0 1, g0 2, g0 3,

g1 0, g1 1, g1 2, g1 3,

g2 0, g2 1, g2 2, g2 3,

g3 0, g3 1, g3 2, g3 3,

i0 i1 i2 i3
– f0 f1 f2 f3

=

 05-ABI-10001 v1.0 SuperH, Inc. 29/46

SH-5 Generic and C Specific ABI 3 ANSI C ABI

_inline__ void sh_media_FVADD_S(const void *fvg, const void *fvh, void *fvf)

 Notionally: const float fvg[4], const float fvh[4], float fvf[4].

 fvg, fvh, and fvf point to 8-byte aligned data.

__inline__ void sh_media_FVSUB_S(const void *fvg, const void *fvh, void *fvf)

Notionally: const float fvg[4], const float fvh[4], float fvf[4].

fvg, fvh, and fvf point to 8-byte aligned data.

__inline__ void sh_media_FMTRXMUL_S(const void *mtrxg, const void *mtrxh, void
*mtrxf)

Notionally: const float mtrxg[4][4], const float mtrxh[4][4], float mtrxf[4][4].

mtrxg, mtrxh, mtrxf point to 8-byte aligned data.

__inline__ void sh_media_FMTRXMULADD_S(const void *mtrxg, const void *mtrxh,
const void *mtrxi, void *mtrxf)

Notionally: const float mtrxg[4][4], const float mtrxh[4][4], const float
mtrxi[4][4], float mtrxf[4][4].

mtrxg, mtrxh, mtrxi, mtrxf point to 8-byte aligned data.

g0 g1 g2 g3 h0 h1 h2 h3
+ f0 f1 f2 f3

=

g0 g1 g2 g3 h0 h1 h2 h3
– f0 f1 f2 f3

=

g0 0, g0 1, g0 2, g0 3,

g1 0, g1 1, g1 2, g1 3,

g2 0, g2 1, g2 2, g2 3,

g3 0, g3 1, g3 2, g3 3,

h0 0, h0 1, h0 2, h0 3,

h1 0, h1 1, h1 2, h1 3,

h2 0, h2 1, h2 2, h2 3,

h3 0, h3 1, h3 2, h3 3,

f0 0, f0 1, f0 2, f0 3,

f1 0, f1 1, f1 2, f1 3,

f2 0, f2 1, f2 2, f2 3,

f3 0, f3 1, f3 2, f3 3,

=

g0 0, g0 1, g0 2, g0 3,

g1 0, g1 1, g1 2, g1 3,

g2 0, g2 1, g2 2, g2 3,

g3 0, g3 1, g3 2, g3 3,

h0 0, h0 1, h0 2, h0 3,

h1 0, h1 1, h1 2, h1 3,

h2 0, h2 1, h2 2, h2 3,

h3 0, h3 1, h3 2, h3 3,

i0 0, i0 1, i0 2, i0 3,

i1 0, i1 1, i1 2, i1 3,

i2 0, i2 1, i2 2, i2 3,

i3 0, i3 1, i3 2, i3 3,

+

f0 0, f0 1, f0 2, f0 3,

f1 0, f1 1, f1 2, f1 3,

f2 0, f2 1, f2 2, f2 3,

f3 0, f3 1, f3 2, f3 3,

=

3 ANSI C ABI SH-5 Generic and C Specific ABI

30/46 SuperH, Inc. 05-ABI-10001 v1.0

__inline__ void sh_media_FMTRXMULSUB_S(const void *mtrxg, const void *mtrxh,
const void *mtrxi, void *mtrxf)

Notionally: const float mtrxg[4][4], const float mtrxh[4][4], const float
mtrxi[4][4], float mtrxf[4][4].

mtrxg, mtrxh, mtrxi, mtrxf point to 8-byte aligned data.

__inline__ void sh_media_FVCOPY_S(const void *fvg, void *fvf)

Notionally: const float fvg[4], float fvf[4].

fvg, fvf point to 8-byte aligned data.

__inline__ void sh_media_FMTRXCOPY_S(const void *mtrxg, void *mtrxf)

Notionally: const float mtrxg[4][4], float mtrxf[4][4].

mtrxg, mtrxf point to 8-byte aligned data.

__inline__ void sh_media_FMTRXADD_S(const void *mtrxg, const void *mtrxh, void
*mtrxf)

Notionally: const float mtrxg[4][4], const float mtrxh[4][4], float
mtrxf[4][4].

mtrxg, mtrxh, mtrxf point to 8-byte aligned data.

g0 0, g0 1, g0 2, g0 3,

g1 0, g1 1, g1 2, g1 3,

g2 0, g2 1, g2 2, g2 3,

g3 0, g3 1, g3 2, g3 3,

h0 0, h0 1, h0 2, h0 3,

h1 0, h1 1, h1 2, h1 3,

h2 0, h2 1, h2 2, h2 3,

h3 0, h3 1, h3 2, h3 3,

i0 0, i0 1, i0 2, i0 3,

i1 0, i1 1, i1 2, i1 3,

i2 0, i2 1, i2 2, i2 3,

i3 0, i3 1, i3 2, i3 3,

–

f0 0, f0 1, f0 2, f0 3,

f1 0, f1 1, f1 2, f1 3,

f2 0, f2 1, f2 2, f2 3,

f3 0, f3 1, f3 2, f3 3,

=

g0 g1 g2 g3 f0 f1 f2 f3
→

g0 0, g0 1, g0 2, g0 3,

g1 0, g1 1, g1 2, g1 3,

g2 0, g2 1, g2 2, g2 3,

g3 0, g3 1, g3 2, g3 3,

f0 0, f0 1, f0 2, f0 3,

f1 0, f1 1, f1 2, f1 3,

f2 0, f2 1, f2 2, f2 3,

f3 0, f3 1, f3 2, f3 3,

→

g0 0, g0 1, g0 2, g0 3,

g1 0, g1 1, g1 2, g1 3,

g2 0, g2 1, g2 2, g2 3,

g3 0, g3 1, g3 2, g3 3,

h0 0, h0 1, h0 2, h0 3,

h1 0, h1 1, h1 2, h1 3,

h2 0, h2 1, h2 2, h2 3,

h3 0, h3 1, h3 2, h3 3,

+

f0 0, f0 1, f0 2, f0 3,

f1 0, f1 1, f1 2, f1 3,

f2 0, f2 1, f2 2, f2 3,

f3 0, f3 1, f3 2, f3 3,

=

 05-ABI-10001 v1.0 SuperH, Inc. 31/46

SH-5 Generic and C Specific ABI 3 ANSI C ABI

__inline__ void sh_media_FMTRXSUB_S(const void *mtrxg, const void *mtrxh, void
*mtrxf)

Notionally: const float mtrxg[4][4], const float mtrxh[4][4], float
mtrxf[4][4].

mtrxg, mtrxh, mtrxf point to 8-byte aligned data.

3.6 Compiler support routines

To avoid name clashes, compiler support routines should be prefixed by:

___<Compiler’s unique id>_

where

1 The first underscore is the underscore prepended to all C identifiers

2 The next two underscores shows that this identifier is reserved for the compiler (C language
convention)

3 <Compiler’s unique ID> specifies the compiler developer, or names derived from it. The
following unique ids have been allocated:

For example, Hitachi’s divide routine is called ___H_div, and ST’s divide routine is called
___ST_div.

H Hitachi

ST STMicroelectronics

g0 0, g0 1, g0 2, g0 3,

g1 0, g1 1, g1 2, g1 3,

g2 0, g2 1, g2 2, g2 3,

g3 0, g3 1, g3 2, g3 3,

h0 0, h0 1, h0 2, h0 3,

h1 0, h1 1, h1 2, h1 3,

h2 0, h2 1, h2 2, h2 3,

h3 0, h3 1, h3 2, h3 3,

–

f0 0, f0 1, f0 2, f0 3,

f1 0, f1 1, f1 2, f1 3,

f2 0, f2 1, f2 2, f2 3,

f3 0, f3 1, f3 2, f3 3,

=

3 ANSI C ABI SH-5 Generic and C Specific ABI

32/46 SuperH, Inc. 05-ABI-10001 v1.0

 05-ABI-10001 v1.0 SuperH, Inc. 33/46

SH-5 Generic and C Specific ABI A Appendix

A Appendix

The appendix contains examples of various aspects of the ABI. It does not form part of the ABI
itself.

Note: Certain aspects of the assembly syntax used in this section may differ depending upon the
assembler used.

A.1 Passing 64-bit parameters

The SHcompact instruction set does not have visibility of the upper 32 bits of the general purpose
registers, yet this ABI requires that some function arguments and results are passed in these upper
bits.

This section discusses a scheme for handling such arguments and results in SHcompact.

The scheme described in this section is an example intended to guide implementors of this ABI, it is
not mandated by the ABI.

A.1.1 General principles

When an SHcompact program needs to read or write the upper 32 bits of an integer register, it must
switch to SHmedia in order to do so. The switch may either be performed in line, or by a call to a
SHmedia service routine. Inline code is potentially faster, as it can be tuned to the particular
requirements of the program, but it is considerably more bulky: it requires on average 9 bytes of
code (four instructions plus a longword alignment) to switch from SHcompact to SHmedia, and 8
bytes of code (two instructions) to switch back from SHmedia to SHcompact.

In a mixed mode program, the main benefit of SHcompact is compact code size, so the scheme
outlined here makes exclusive use of service routines to handle 64-bit parameters and results.

There are three areas to consider:

1 Receiving 64-bit parameters

2 Returning 64-bit results

3 Passing 64-bit arguments

Each of these is considered in turn.

A.1.2 Receiving 64-bit parameters

Long long and aggregate parameters occupy the upper as well as the lower, 32 bits of an integer
parameter register. The simplest thing to do here is to store the register on the stack and then
access the values from memory. This is necessary for variadic functions anyway, so it is a useful
first base for handling wide parameters. Consider

void fn(int c, ...)
{

...
}

A Appendix SH-5 Generic and C Specific ABI

34/46 SuperH, Inc. 05-ABI-10001 v1.0

The following is a possible entry sequence for this function:

_fn:
ADD #-68,R15
STS.L PR,@-R15
MOV.L @(.L11,PC),R0
JSR @R0
NOP

...

.L11:
.long ___push_int_args

where __push_int_args is a service routine written in SHmedia code:

___push_int_args:
PTABS R18, T0
ST.Q R15, 8, R2
ST.Q R15, 16, R3
ST.Q R15, 24, R4
ST.Q R15, 32, R5
ST.Q R15, 40, R6
ST.Q R15, 48, R7
ST.Q R15, 56, R8
ST.Q R15, 64, R9
BLINK T0, R63

There are a couple of points to note here:

� PR must be saved before calling the service routine, but it is saved at a lower address than the
integer parameter registers, so that the saved integer parameter registers are contiguous with
the stack parameters (this enables easier implementation of the va_arg() macro). PR only
requires 4 stack bytes, but the service routine must store the argument registers at offsets a
multiple of 8 bytes from R15, so R15 has to be pulled down an extra 4 bytes (68 rather than 64).
In this example, these 4 bytes are wasted, though they could be used to hold local variables.

� The service routine has saved all the integer parameter registers, even though it is not
necessary to save the first register, because the first register does not contain a variadic
parameter. It is possible to write variants of __push_int_args that only push the required
number of parameter registers, for example, __push_7_int_args could push R3 through R9
only. The compiler knows how many registers need to be saved, and can call the appropriate
service routine.

� In this and following examples, an SHcompact function call is represented as a MOV.L; JSR
sequence. However, if the target function is close enough, this can be replaced by a BSR, and
the literal pool entry containing the target function address can be removed. The BSR range is
4096 bytes.

The above service routine is also adequate for handling entry to functions that have 64-bit
parameters, though it is inefficient when there are only a small number of 64-bit parameters.
Consider

void fn(int a, int b, long long c, int d)
{

 ...
}

 05-ABI-10001 v1.0 SuperH, Inc. 35/46

SH-5 Generic and C Specific ABI A Appendix

On entry, a is in R2, b in R3, c in R4, and d in R5. Only c is a 64-bit parameter. The upper 32 bits of
c could be extracted by the code:

_fn:
... entry preamble
MOV.L @(.L11,PC),R0
JSR @R0
NOP
... now c is in R4 (l.s. part) and R1 (m.s. part)
...

.L11:
.long ___unpack_reg_R4

where __unpack_reg_R4 is a service routine written in SHmedia. It extracts the upper 32 bits of
R4 to the lower 32 bits of R1 (a scratch register), and sign extends the lower 32 bits of R4.

___unpack_reg_R4:
PTABS R18,T0
SHARI R4,32,R1
ADDI.L R4,0,R4
BLINK T0, R63

If there are a large number of 64-bit parameters, then it may be more efficient to store them to
memory. Extracting them all to register pairs will greatly increase the register pressure and force
stores anyway.

A single 64-bit parameter can be stored to memory as follows:

_fn:
... entry preamble
MOV.L @(.L11,PC),R0
MOV R15,R1
ADD #c_offset,R1
JSR @R0
NOP
... now c is in the stack frame at R15+c_offset
...

.L11:
.long ___store64_reg_R4

where ___store64_reg_R4 is a service routine written in SHmedia. It stores the 64-bit value in
R4 to memory at the address in R1.

___store64_reg_R4:
PTABS R18,T0
ST.Q R1,0,R4
BLINK T0,R63

A Appendix SH-5 Generic and C Specific ABI

36/46 SuperH, Inc. 05-ABI-10001 v1.0

It would be slightly more efficient to tailor a version of ___store64_reg_R4 to store the 64-bit
register at an offset from the stack pointer. This saves one instruction at the call site, for example:

_fn:
... entry preamble
MOV.L @(.L11,PC),R0
MOV #c_offset,R1
JSR @R0
NOP
... now c is in the stack frame at R15+c_offset
...

.L11:
.long ___store64_R15_reg_R4
...

___store64_R15_reg_R4:
PTABS R18,T0
STX.Q R15,R1,R4
BLINK T0,R63

A.1.3 Returning 64-bit results

Long long and aggregate results 8 bytes or less in length are returned in a 64-bit register. This can
be achieved in SHcompact by loading the lower 32 bits of the result into the result register, the upper
32 bits of the result into a scratch register (for example, R1), and tail-calling a service routine that
packs the upper 32 bits of the result into the result register.

Consider

struct s { int a; int b; };

struct s fn(void)
{

struct s res;
... body of fn
res.a = 1;
res.b = 2;
return res;

}

This can be coded as:

_fn:
... body of fn
MOV.L @(.L13,PC),R0
MOV #1,R2 ; lower 32 bits of result
JMP @R0 ; tail-call result packing function
MOV #2,R1 ; upper 32 bits of result

.L13:
.long ___pack_reg_R2

where __pack_reg_r2 is a service routine written in SHmedia that copies the bottom 32 bits of R1
(a scratch register) into the top 32 bits of R2:

___pack_reg_R2:
PTABS R18, T0
MSHFLO.L R2, R1, R2
BLINK T0, R63

 05-ABI-10001 v1.0 SuperH, Inc. 37/46

SH-5 Generic and C Specific ABI A Appendix

If the returned value is in memory at the time it needs to be returned, then it can be more efficient to
tail-call a service routine to load it from memory instead, for example, for

struct s { int a; int b; } static_struct;

struct s fn(void)
{

... body of fn
return static_struct;

}

can be coded as:

_fn:
... body of fn
MOV.L @(.L12,PC),R2
MOV.L @(.L13,PC),R0
JMP @R0
NOP

L12:
.long _static_struct

L13:
.long ___load64_reg_R2
...

___load64_reg_R4:
PTABS R18,T0
LD.Q R2,0,R2
BLINK T0,R63

A.1.4 Passing 64-bit arguments

Long long arguments are passed in a 64-bit register, and aggregate parameters are passed in one
or more 64-bit registers. They can be loaded by putting the lower 32 bits directly into the argument
register, and the upper 32 bits into a scratch register, then calling a SHmedia service routine to copy
the upper 32 bits into the argument register.

Consider

struct s { int a; int b; };

void fn(struct s);
...
void fn2(void)
{

...
struct s arg;
arg.a = 1;
arg.b = 2;
fn(arg);
...

}

A Appendix SH-5 Generic and C Specific ABI

38/46 SuperH, Inc. 05-ABI-10001 v1.0

This can be coded as:

_fn2:
...

MOV.L @(.L14,PC),R0
MOV #1,R2
JSR @R0
MOV #2,R1
MOV.L @(.L15,PC),R0
JSR @R0
NOP
...

.L14:
.long ___pack_reg_R2

.L15:
.long _fn

where ___pack_reg_r2 is the same service routine as described earlier. Again, it may be more
efficient in some circumstances to call ___load64_reg_r2 to load a 64-bit value from memory,
rather than calling ___pack_reg_r2.

Care should be taken to pack arguments into argument registers only after all function calls
contained in the arguments and function designator have been performed (except for calls to
service routines), as it is not possible in SHcompact to save 64-bit registers around function calls,
except by storing them to memory, which will involve a switch to SHmedia both to store and to
reload. Although the SHcompact register-register MOV instruction copies 64 bits from source to
destination, there is no register that can be used to hold a 64-bit value across a function call (the
upper 32 bits of all registers visible in SHcompact are not preserved across function calls).

Note: This also means that some optimizations are not possible.

Consider

void fn(long long);
...
long long ll;
fn(ll);
fn(ll);

Here it is not possible to perform common subexpression elimination on the packed value of ll and
keep it in a register, as the register value is not preserved across the first call to fn.

A.2 Parameter passing - further examples

Example: Passing floating-point values in both floating-point and integer registers.

If a floating-point argument occurs within the first 8 argument elements, then it is passed both in a
floating-point register and in an integer register. However, if the prototype is in scope and the
floating-point argument does not correspond to a variadic parameter, then it need not be passed in
an integer register, though an integer register is still allocated, but left unused.

Consider a call to:

void fn(int i1, double d1, int i2);

 05-ABI-10001 v1.0 SuperH, Inc. 39/46

SH-5 Generic and C Specific ABI A Appendix

Table 8 illustrates how the arguments are passed.

If the prototype is in scope and the floating-point argument does correspond to a variadic
parameter, then it need not be passed in a floating-point register, and no floating-point register need
be allocated.

Consider the call:

int i1, i2;
double d1;
fn(i1, d1, i2);

where fn has the prototype:

void fn(int i, ...);

Table 9 illustrates how the arguments are passed.

Example: Leaving ‘holes’ on the stack.

If a floating-point argument occurs after the first 8 argument elements are filled, then it is passed
both in a floating-point register and on the stack. However, if the prototype is in scope and the
floating-point argument does not correspond to a variadic parameter, then it need not be passed on
the stack, though 8 bytes of stack are still allocated, but left unused.

Consider a call to

void fn(int i1, int i2, int i3, int i4, int i5, int i6,
int i7, int i8, double d1, int i9);

Argument
Machine resource

Prototype in scope No prototype in scope

i1 R2 R2

d1 DR0a

a. A ‘hole’ is left in R3, which is unused

DR0 and R3

i2 R4 R4

Table 8:

Argument
Machine resource

Prototype in scope No prototype in scope

i1 R2 R2

d1 R3 DR0 and R3

i2 R4 R4

Table 9:

A Appendix SH-5 Generic and C Specific ABI

40/46 SuperH, Inc. 05-ABI-10001 v1.0

Table 10 illustrates how the arguments are passed.

Example: Passing floating-point values in integer registers when floating-point registers are
exhausted.

If a floating-point argument occurs after all floating-point argument registers have been filled, but
there are still integer argument registers available, then the argument is passed in the next available
integer register.

Consider a call to:

void fn(double d1, double d2, double d3, double d4, double d5,
 double d6, double d7, double d8, double d9);

Table 11 illustrates how the arguments are passed.

Argument
Machine resource

Prototype in scope No prototype in scope

i1 R2 R2

i2 R3 R3

i3 R4 R4

i4 R5 R5

i5 R6 R6

i6 R7 R7

i7 R8 R8

i8 R9 R9

d1 DR0 [SP+0,SP+7] and DR0

i9 [SP+8,SP+15]a

a. An 8 byte ‘hole’ is left on the stack, at (0,SP) through (7,SP).

[SP+8,SP+15]

Table 10:

Argument
Machine resource(s)

Prototype in scope No prototype in scope

d1 DR0 DR0 and R2

d2 DR2 DR2 and R3

d3 DR4 DR4 and R4

d4 DR6 DR6 and R5

d5 DR8 DR8 and R6

d6 DR10 DR10 and R7

d7 R8 R8

d8 R9 R9

Table 11:

 05-ABI-10001 v1.0 SuperH, Inc. 41/46

SH-5 Generic and C Specific ABI A Appendix

Example: Passing small aggregates

Aggregates of size less than 8 bytes are padded at the most significant end of the argument
element.

Consider

struct s { short x, y;} num;
fn(num);

NUM is passed in R2 as illustrated in Figure 5:

Example: Passing large aggregates

Aggregates that are larger than 8 bytes are padded in the last argument element. If byte ordering is
big endian, then the last argument element is padded at the least significant end; if byte ordering is
little endian, then the last argument element is padded at the most significant end. Note that this
means that for big endian byte ordering, aggregate padding occurs at different ends of an argument
element for small (< 8 bytes) and large (> 8 byte) aggregates.

Consider

struct s{ int x, y, z; } coord;
fn(coord);

COORD is passed in R2 and R3, as illustrated in Figure 6.

d9 [SP+0,SP+7] [SP+0,SP+7]

Figure 5:

Argument
Machine resource(s)

Prototype in scope No prototype in scope

Table 11:

. pad

pad

num.x num.y

num.y num.x

Big endian

Little endian R2

R2

0163263

0163263

A Appendix SH-5 Generic and C Specific ABI

42/46 SuperH, Inc. 05-ABI-10001 v1.0

Example: Argument straddling integer registers and stack

Aggregates are passed in integer registers when available, otherwise on the stack. If there are not
enough integer registers available to hold the whole aggregate, then part of the aggregate will be
passed in integer registers, and the remainder will be passed on the stack.

Consider

struct s { long long x, y, z; } coord64;
int i1, i2, i3, i4, i5, i6;
fn(i1,i2,i3,i4,i5,i6,coord64);

Table 12 illustrates how the arguments are passed.

Figure 6:

Argument Machine resource

i1 R2

i2 R3

i3 R4

i4 R5

i5 R6

i6 R7

coord.x R8

coord.y R9

coord.z [SP+0,SP+7]

Table 12:

Big endian R2

R3

coord.x coord.y

coord.z pad

Little endian R2

R3

coord.xcoord.y

coord.zpad

03263

63 32 0

 05-ABI-10001 v1.0 SuperH, Inc. 43/46

SH-5 Generic and C Specific ABI A Appendix

Example: Returning large aggregates

Aggregates that are larger than 8 bytes are not returned in registers. Instead the caller places in R2
the address of the returned value as an implicit extra argument. The callee writes the returned value
to that address and ensures that the address is in R2 on return.

Consider

struct s { int x, y, z; } coord;
int val1, val2, val3;
coord = fn(val1, val2, val3);

Table 13 illustrates how the caller passes the arguments.

Upon return, the callee will ensure that R2 contains &coord.

A.3 Implementation of STDARG.H

This is an example implementation of the STDARG.H macros, va_start, va_arg, and va_end.

Big-endian byte ordering

typedef char *va_list;
#define _VA_SIZE 8
#define _VA_DELTA (_VA_SIZE - 1)
#define _VA_MASK (~_VA_DELTA)
#define __va_pad(x) (((x) + _VA_DELTA) & _VA_MASK)
#define __va_promote(type) (__va_pad((int)sizeof(type)))

#define va_start(ap,last) (ap =
(char*)__va_pad((int)((char*)&(last)+sizeof(last))))
#define va_arg(ap,type) (*(type*)((sizeof(type)<8)\

?((ap+=__va_promote(type))-sizeof(type))\
:((ap+=__va_promote(type))-__va_promote(type))))

#define va_end(ap) (void)0

Little-endian byte ordering

typedef char *va_list;
#define va_end(ap) (void)0
#define _VA_SIZE 8
#define _VA_DELTA (_VA_SIZE - 1)
#define _VA_MASK (~_VA_DELTA)
#define __va_pad(x) (((x) + _VA_DELTA) & _VA_MASK)
#define __va_promote(type) (__va_pad((int)sizeof(type)))

#define va_start(ap,last) (ap = ((char*)&(last) + __va_promote(last)))
#define va_arg(ap,type) (*(type*)((ap+=__va_promote(type))-__va_promote(type)))
#define va_end(ap) (void)0

Argument Machine resource

&coord R2

val1 R3

val2 R4

val3 R5

Table 13:

A Appendix SH-5 Generic and C Specific ABI

44/46 SuperH, Inc. 05-ABI-10001 v1.0

A.4 Usage of R25

This section contains some examples of the permitted usage of register R25.

Consider the C code:

static_var = 1;

For this, the compiler can generate:

MOVI 1,R2
ST.L R26, _static_var-.data, R2

At link-time, a linker that performed code relaxation could determine whether the expression

_static_var - .data

fits in the immediate field of the ST.L instruction. If it does not,then at link time the ST.L instruction
would be expanded to:

MOVI (_static_var - .data)>>16, R25
SHORI (_static_var - .data)&0xffff, R25
STX.L R26, R25, R2

Here the linker has used R25 in the expansion of the relocation of the ST.L instruction. This value
of R25 is created just for this one expansion: it is not used again, so it is dead after the STX.L
instruction.

As the expansion of a relocation can overwrite the value in R25, the assembler must assume that
the value of R25 is changed by an instruction that is subject to relocation, and so it cannot place a
value in R25 before a relocated instruction, and later use that value after the relocated instruction.
So for example, the following is not permitted:

MOVI 23,R25
LD.L R26,_static_var-.data,R2 ; this instruction will be relocated
ADD R2,R25,R2

because the relocation of the LD.L may overwrite the value in R25.

However, the assembler can still use R25 in places where the value does not need to be preserved
across a relocation. For example, if the assembler allows a large immediate value in the ADDI
instruction, then the code for

static_var += 100000;

could be

LD.L R26, _static_var-.data,R2 ; this instruction will be relocated
ADDI R2,100000,R2
ST.L R26, _static_var-.data,R2 ; this instruction will be relocated

Here it is permissible for the assembler to expand the ADDI to:

MOVI (100000)>>16,R25
SHORI (100000)&0xffff, R25
ADD R2,R25,R2

because the lifetime of this usage of R25 is from the MOVI to the ADD instruction only: it does not
matter that the LD.L or the ST.L instructions overwrite R25.

 05-ABI-10001 v1.0 SuperH, Inc. 45/46

SH-5 Generic and C Specific ABI A Appendix

So in the worst case the fully expanded sequence could be:

MOVI (_static_var - .data)>>16, R25 ; Start of R25 life 1
SHORI (_static_var - .data)&0xffff, R25
LDX.L R26, R25, R2 ; End of R25 life 1
MOVI (100000)>>16,R25 ; Start of R25 life 2
SHORI (100000)&0xffff,R25
ADD R2,R25,R2 ; End of R25 life 2
MOVI (_static_var - .data)>>16, R25 ; Start of R25 life 3
SHORI (_static_var - .data)&0xffff, R25
STX.L R26, R25, R2 ; End of R25 life 3

that is, there are three distinct lifetimes for R25. Life 1 and life 3 are created at link time, and life 2
is created at assembly time. It is safe for the assembler to create life 2, as it does not overlap life 1
or life 3.

SH-5 Generic and C Specific ABI

46/46 SuperH, Inc. Confidential 05-ABI-10001 v1.0

SuperH, Inc.

This publication contains proprietary information of SuperH, Inc., and is not to be copied in whole or part.

Issued by the SuperH Documentation Group on behalf of SuperH, Inc.

Information furnished is believed to be accurate and reliable. However, SuperH, Inc. assumes no responsibility for the consequences of use
of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of SuperH, Inc. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all information previously supplied. SuperH, Inc. products are not authorized for

use as critical components in life support devices or systems without the express written approval of SuperH, Inc.

 is a registered trademark of SuperH, Inc.

SuperH is a registered trademark for products originally developed by Hitachi, Ltd. and is owned by Hitachi Ltd.

© 2002 SuperH, Inc. All Rights Reserved.

SuperH, Inc.
San Jose, U.S.A. - Bristol, United Kingdom - Tokyo, Japan

www.superh.com

http://www.superh.com/

	Language Independent Application Binary Interface
	Reference

	1 Introduction
	2 Language independent ABI
	2.1 Scope and Aims
	2.2 Definition of terms
	2.3 Byte ordering
	2.4 Stack layout
	2.5 Frame layout
	2.6 Global data
	2.6.1 Variable data
	2.6.2 Constant data

	2.7 Function linkage and parameter passing
	2.7.1 Function linkage
	2.7.2 Parameter passing
	2.7.3 Register usage conventions

	2.8 Function prolog and epilog

	3 ANSI C ABI
	3.1 Built-in type mapping
	3.2 Type mapping and alignment
	3.2.1 Scalar types
	3.2.1.1 Function pointers

	3.2.2 Aggregate types
	3.2.2.1 Bit-fields

	3.3 Function results and argument passing
	3.3.1 Function results
	3.3.2 Argument passing
	3.3.2.1 Actual parameter to argument list mapping
	3.3.2.2 Argument list to processor mapping
	3.3.2.3 Handling of variable-arguments function by the callee.

	3.4 Symbol names
	3.5 Intrinsic functions
	3.5.1 Multimedia instructions
	3.5.2 Floating-point instructions
	3.5.3 Control and configuration instructions
	3.5.4 Misaligned access support instructions
	3.5.5 Miscellaneous instructions
	3.5.6 Synchronization instructions
	3.5.7 Cache instructions
	3.5.8 Event handling instructions
	3.5.9 Unaligned load and store functions
	3.5.10 Floating-point Functions

	3.6 Compiler support routines

	A Appendix
	A.1 Passing 64-bit parameters
	A.1.1 General principles
	A.1.2 Receiving 64-bit parameters
	A.1.3 Returning 64-bit results
	A.1.4 Passing 64-bit arguments

	A.2 Parameter passing - further examples
	A.3 Implementation of stdarg.h
	A.4 Usage of R25

