z/Architecture

Principles of Operation

SA22-7832-01

z/Architecture

Principles of Operation

SA22-7832-01

Note:

Before using this information and the product it supports, be sure to read the general information under FNotices” on page xvi

— Softcopy Note:

The reader should be aware of the fact that this publication contains many symbols, such as superscripts, that may not display
correctly with any given hardware or software. The definitive version of this publication is the hardcopy version.

Second Edition (October 2001)

This edition obsoletes and replaces z/Architecture Principles of Operation, SA22-7832-00.

This publication is provided for use in conjunction with other relevant IBM publications, and IBM makes no warranty, express or
implied, about its completeness or accuracy. The information in this publication is current as of its publication date but is subject to
change without notice.

Publications are not stocked at the address given below. Requests for IBM publications should be made to your IBM representative
or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been removed, address your comments to:

International Business Machines Corporation
Department 55JA Mail Station P384

2455 South Road

Poughkeepsie, N.Y., 12601-5400

United States of America

FAX (United States & Canada): 845+432-9405

FAX (Other Countries): Your International Access Code+1+845+432-9405
IBMLink (United States customers only): IBMUSM10(MHVRCFS)

Internet e-mail: mhvrcfs @us.ibm.com

World Wide Web: http://www.ibm.com/s390/0s390/webgs.html

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1990-2001. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

Notices
Trademarks

Preface
Size and Number Notation
Bytes, Characters, and Codes
Other Publications

Summary of Changes in Second Edition

Chapter 1. Introduction
Highlights of z/Architecture
General Instructions for 64-Bit Integers
Other New General Instructions
Floating-Point Instructions

Control Instructions
Trimodal Addressing
Modal Instructions
Effects on Bits 0-31 of a General
Register
Extended-Translation Facility 2
Input/Output
The ESA/390 Base
The ESA/370 and 370-XA Base
System Program
Compatibility
Compatibility among z/Architecture
Systems
Compatibility between z/Architecture and
ESA/390
Control-Program Compatibility
Problem-State Compatibility
Availability

Chapter 2. Organization
Main Storage
Expanded Storage
CPU
PSW
General Registers
Floating-Point Registers
Floating-Point-Control Register
Control Registers
Access Reqgisters
Cryptographic Facility
External Time Reference
I/O
Channel Subsystem
Channel Paths
I/O Devices and Control Units
Operator Facilities

© Copyright IBM Corp. 1990-2001

Chapter 3. Storage
Storage Addressing
Information Formats
Integral Boundaries
Address Types and Formats
Address Types
Absolute Address
Real Address
Virtual Address
Primary Virtual Address
Secondary Virtual Address
AR-Specified Virtual Address
Home Virtual Address
Logical Address
Instruction Address
Effective Address
Address Size and Wraparound
Address Wraparound
Storage Key
Protection
Key-Controlled Protection
Storage-Protection-Override Control
Fetch-Protection-Override Control
Access-List-Controlled Protection
Page Protection
Low-Address Protection
Suppression on Protection
Reference Recording
Change Recording
Prefixing
Address Spaces
Changing to Different Address Spaces .
Address-Space Number
ASN Translation
ASN-Translation Controls
Control Register 14
ASN-Translation Tables
ASN-First-Table Entries
ASN-Second-Table Entries
ASN-Translation Process
ASN-First-Table Lookup
ASN-Second-Table Lookup
Recognition of Exceptions during ASN
Translation
ASN Authorization
ASN-Authorization Controls
Control Register 4
ASN-Second-Table Entry
Authority-Table Entries

ASN-Authorization Process 3-24

Authority-Table Lookup 3-25
Recognition of Exceptions during ASN
Authorization 3-26
Dynamic Address Translation 3-26
Translation Control 3-28
Translation Modes 3-28
Control Register0 3-29
Control Register 1 3-29
Control Register 7 3-30
Control Register13 3-31
Translation Tables 3-31
Region-Table Entries 3-32
Segment-Table Entries 3-33
Page-Table Entries 3-33
Translation Process 3-34
Inspection of Real-Space Control 3-39

Inspection of Designation-Type Control 3-39
Lookup in a Table Designated by an

Address-Space-Control Element . . 3-39
Lookup in a Table Designated by a
Region-Table Entry 3-40
Page-Table Lookup 3-42
Formation of the Real Address 3-42
Recognition of Exceptions during
Translation 3-42
Translation-Lookaside Buffer 3-42
TLB Structure 3-43
Formation of TLB Entries 3-43
Use of TLB Entries 3-44
Modification of Translation Tables . . . 3-45
Address Summary L 3-47
Addresses Translated 3-47
Handling of Addresses 3-48
Assigned Storage Locations 3-51
Chapter 4. Control 4-1
Stopped, Operating, Load, and Check-Stop
States 4-1
Stopped State 4-2
Operating State 4-2
Load State 4-2
Check-Stop State 4-3
Program-Status Word 4-3
Program-Status-Word Format 4-5
Control Registers 4-7
Tracing 4-10
Control-Register Allocation 4-13
Trace Entries 4-13
Operation 4-23
Program-Event Recording 4-24
Control-Register Allocation and
Address-Space-Control Element 4-24
Operation 4-25

iV z/Architecture Principles of Operation

Identification of Cause 4-26
Priority of Indication 4-28
Storage-Area Designation 4-29
PEREvents 4-30
Successful Branching 4-30
Instruction Fetching 4-31
Storage Alteration 4-31
Store Using Real Address 4-32
Indication of PER Events Concurrently
with Other Interruption Conditions . . . 4-32
Timing 4-34
Time-of-Day Clock 4-35
Format 4-35
States L. 4-35
Changes in Clock State 4-36
Setting and Inspecting the Clock 4-36
TOD Programmable Register 4-37
TOD-Clock Synchronization 4-39
Clock Comparator 4-39
CPUTimer 4-40
Externally Initiated Functions 4-41
Resets 4-41
CPUReset 4-45
Initial CPU Reset 4-46
Subsystem Reset 4-46
ClearReset 4-46
Power-On Reset 4-47
Initial Program Loading 4-47
Store Status L 4-48
Multiprocessing 4-49
Shared Main Storage 4-49
CPU-Address Identification 4-49
CPU Signaling and Response 4-49
Signal-Processor Orders 4-49
Conditions Determining Response 4-53
Conditions Precluding Interpretation of
the Order Code 4-53
Status Bits 4-54
Chapter 5. Program Execution 5-1
Instructions 5-2
Operands 5-2
Instruction Formats 5-3
Register Operands 5-6
Immediate Operands 5-6
Storage Operands 5-6
Address Generation 5-7
Trimodal Addressing 5-7
Sequential Instruction-Address Generation .5-7
Operand-Address Generation 5-8
Formation of the Intermediate Value . . 5-8
Formation of the Operand Address . . . 5-8
Branch-Address Generation 5-9
Formation of the Intermediate Value . . 5-9

Formation of the Branch Address
Instruction Execution and Sequencing
Decision Making
Loop Control
Subroutine Linkage without the Linkage
Stack
Simple Branch Instructions
Other Linkage Instructions
Interruptions L
Types of Instruction Ending
Completion
Suppression
Nullification
Termination
Interruptible Instructions
Point of Interruption
Unit of Operation
Execution of Interruptible Instructions
Condition-Code Alternative to
Interruptibility
Exceptions to Nullification and
Suppression
Storage Change and Restoration for
DAT-Associated Access Exceptions
Modification of DAT-Table Entries
Trial Execution for Editing Instructions
and Translate Instruction
Authorization Mechanisms
Mode Requirements
Extraction-Authority Control
PSW-Key Mask
Secondary-Space Control
Subsystem-Linkage Control
ASN-Translation Control
Authorization Index
PC-Number Translation
PC-Number Translation Control
Control Register5
PC-Number Translation Tables
Linkage-Table Entries
Entry-Table Entries
PC-Number-Translation Process
Obtaining the Linkage-Table
Designation
Linkage-Table Lookup
Entry-Table Lookup
Recognition of Exceptions during
PC-Number Translation
Home Address Space
Access-Reqgister Introduction
Summary
Access-Register Functions
Access-Register-Specified Address
Spaces

5-9

. 5-10

5-10
5-10

5-10
5-10
5-14
5-19
5-19
5-19
5-19
5-20
5-20
5-20
5-20
5-20

. 5-20

5-21

5-22

5-22

. 5-23

5-23
5-23
5-24
5-24
5-24
5-25
5-25
5-25
5-25
5-29
5-29
5-29
5-29
5-29
5-30
5-31

5-32
5-33
5-33

5-33
5-34
5-34
5-35
5-35

Access-Register Instructions 5-42
Access-Register Translation 5-43
Access-Register-Translation Control 5-43
Control Register2 5-43
Control Register5 5-43
Control Register 8 5-43
Access Registers 5-44
Access-Register-Translation Tables 5-44
Dispatchable-Unit Control Table and
Access-List Designations 5-45
Access-List Entries 5-46
ASN-Second-Table Entries 5-47
Access-Register-Translation Process 5-48
Selecting the Access-List-Entry Token . 5-51
Obtaining the Primary or Secondary
Address-Space-Control Element 5-51
Checking the First Byte of the ALET . . 5-51
Obtaining the Effective Access-List
Designation 5-51
Access-List Lookup 5-51
Locating the ASN-Second-Table Entry . 5-52
Authorizing the Use of the Access-List
Entry 5-52
Checking for Access-List-Controlled
Protection 5-53
Obtaining the Address-Space-Control
Element from the ASN-Second-Table
Entry 5-53
Recognition of Exceptions during
Access-Register Translation 5-53
ART-Lookaside Buffer 5-53
ALB Structure 5-53
Formation of ALB Entries 5-54
Use of ALB Entries 5-54
Modification of ART Tables 5-55
Subspace Groups 5-55
Subspace-Group Tables 5-55
Subspace-Group Dispatchable-Unit
Control Table 5-55
Subspace-Group ASN-Second-Table
Entries 5-57
Subspace-Replacement Operations 5-59
Linkage-Stack Introduction 5-60
Summary 5-60
Linkage-Stack Functions 5-60
Transferring Program Control 5-60
Branching Using the Linkage Stack 5-62
Adding and Retrieving Information 5-63
Testing Authorization 5-63

Program-Problem Analysis 5-64

Linkage-Stack Entry-Table Entries 5-64
Linkage-Stack Operations 5-65
Linkage-Stack-Operations Control 5-67
Control Register15 5-67

Contents V

Linkage Stack 5-67

Entry Descriptors 5-67
Header Entries 5-69
Trailer Entries 5-69
State Entries 5-70
Stacking Process 5-72
Locating Space for a New Entry 5-72
Forming the New Entry 5-73
Updating the Current Entry 5-74
Updating Control Register 15 5-74
Recognition of Exceptions during the
Stacking Process 5-74
Unstacking Process 5-75

Locating the Current Entry and

Processing a Header Entry 5-75
Checking for a State Entry 5-76
Restoring Information 5-76
Updating the Preceding Entry 5-77
Updating Control Register 15 5-77
Recognition of Exceptions during the

Unstacking Process 5-77

Sequence of Storage References 5-77
Conceptual Sequence 5-77
Overlapped Operation of Instruction

Execution 5-78

Divisible Instruction Execution 5-78
Interlocks for Virtual-Storage References . 5-79
Interlocks between Instructions 5-79

Interlocks within a Single Instruction . . 5-80
Instruction Fetching
ART-Table and DAT-Table Fetches 5-83
Storage-Key Accesses
Storage-Operand References

Storage-Operand Fetch References . . 5-84

Storage-Operand Store References . . 5-84
Storage-Operand Update References . 5-85
Storage-Operand Consistency 5-86
Single-Access References 5-86
Multiple-Access References 5-86
Block-Concurrent References 5-87
Consistency Specification 5-87
Relation between Operand Accesses . . . 5-89
Other Storage References 5-89
Serialization 5-89
CPU Serialization 5-90
Channel-Program Serialization 5-91
Chapter 6. Interruptions 6-1
Interruption Action 6-2
Interruption Code 6-5
Enabling and Disabling 6-6
Handling of Floating Interruption Conditions 6-7
Instruction-Length Code 6-7
ZeroILC 6-7

Vi z/Architecture Principles of Operation

ILC on Instruction-Fetching Exceptions . 6-8

Exceptions Associated with the PSW . . . 6-9
Early Exception Recognition 6-9

Late Exception Recognition 6-10
External Interruption 6-10
Clock Comparator 6-11
CPU Timer 6-11
Emergency Signal 6-11
ETR 6-12
ExternalCall 6-12
InterruptKey 6-12
Malfunction Alert 6-12
Service Signal 6-13
I/O Interruption 6-13
Machine-Check Interruption 6-13
Program Interruption 6-14
Data-Exception Code (DXC) 6-14

Priority of Program Interruptions for

Data Exceptions 6-14
Program-Interruption Conditions 6-15
Addressing Exception 6-15
AFX-Translation Exception 6-18
ALEN-Translation Exception 6-18
ALE-Sequence Exception 6-18
ALET-Specification Exception 6-18
ASCE-Type Exception 6-18
ASTE-Sequence Exception 6-19
ASTE-Validity Exception 6-19
ASX-Translation Exception 6-20
Crypto-Operation Exception 6-20
Data Exception 6-20
Decimal-Divide Exception 6-21
Decimal-Overflow Exception 6-21
Execute Exception 6-21
EX-Translation Exception 6-21
Extended-Authority Exception 6-21
Fixed-Point-Divide Exception 6-22
Fixed-Point-Overflow Exception 6-22
HFP-Divide Exception 6-22
HFP-Exponent-Overflow Exception . . . 6-22
HFP-Exponent-Underflow Exception . . 6-22
HFP-Significance Exception 6-23
HFP-Square-Root Exception 6-23
LX-Translation Exception 6-23
Monitor Event 6-23
Operand Exception 6-24
Operation Exception 6-24
Page-Translation Exception 6-25
PC-Translation-Specification Exception 6-25
PEREvent 6-25
Primary-Authority Exception 6-26
Privileged-Operation Exception 6-26
Protection Exception 6-26
Region-First-Translation Exception . . . 6-27

Chapter 7. General Instructions
Data Format
Binary-Integer Representation
Binary Arithmetic

Region-Second-Translation Exception
Region-Third-Translation Exception

Secondary-Authority Exception
Segment-Translation Exception

Space-Switch Event
Special-Operation Exception

Specification Exception
Stack-Empty Exception

Stack-Full Exception

Stack-Operation Exception
Stack-Specification Exception

Stack-Type Exception

Trace-Table Exception
Translation-Specification Exception . . .
Collective Program-Interruption Names . .
Recognition of Access Exceptions

Multiple Program-Interruption Conditions

Access Exceptions
ASN-Translation Exceptions

Subspace-Replacement Exceptions

Trace Exceptions
Restart Interruption
Supervisor-Call Interruption
Priority of Interruptions

Signed Binary Arithmetic

Addition and Subtraction

Fixed-Point Overflow
Unsigned Binary Arithmetic
Signed and Logical Comparison
Instructions
ADD
ADD HALFWORD

ADD HALFWORD IMMEDIATE

ADD LOGICAL
ADD LOGICAL WITH CARRY
AND

AND IMMEDIATE

BRANCH AND LINK
BRANCH AND SAVE

BRANCH AND SAVE AND SET MODE

BRANCH AND SET MODE

BRANCH ON CONDITION
BRANCH ON COUNT
BRANCH ON INDEX HIGH
BRANCH ON INDEX LOW OR EQUAL . .

BRANCH RELATIVE AND SAVE
BRANCH RELATIVE AND SAVE LONG
BRANCH RELATIVE ON CONDITION

. 6-28

BRANCH RELATIVE ON CONDITION
LONG
BRANCH RELATIVE ON COUNT 7-27
BRANCH RELATIVE ON INDEX HIGH . . 7-28
BRANCH RELATIVE ON INDEX LOW

OREQUAL 7-28
CHECKSUM 7-29
COMPARE 7-32
COMPARE AND FORM CODEWORD . . 7-33
COMPARE AND SWAP 7-40
COMPARE DOUBLE AND SWAP 7-40

COMPARE HALFWORD
COMPARE HALFWORD IMMEDIATE . . 7-42

COMPARE LOGICAL 7-42
COMPARE LOGICAL CHARACTERS

UNDER MASK 7-43
COMPARE LOGICALLONG 7-44

COMPARE LOGICAL LONG EXTENDED 7-46
COMPARE LOGICAL LONG UNICODE . 7-50
COMPARE LOGICAL STRING 7-53
COMPARE UNTIL SUBSTRING EQUAL . 7-54

COMPRESSION CALL 7-58
CONVERT TO BINARY 7-69
CONVERT TODECIMAL 7-70
CONVERT UNICODE TO UTF-8 7-71
CONVERT UTF-8 TO UNICODE 7-74
COPY ACCESS 7-77
DIVIDE 7-77
DIVIDE LOGICAL 7-78
DIVIDE SINGLE 7-78
EXCLUSIVEOR 7-79
EXECUTE 7-80
EXTRACT ACCESS 7-81
EXTRACTPSW 7-81
INSERT CHARACTER 7-81

INSERT CHARACTERS UNDER MASK . 7-82

INSERT IMMEDIATE 7-82
INSERT PROGRAM MASK 7-83
LOAD 7-83
LOAD ACCESS MULTIPLE 7-84
LOAD ADDRESS 7-84
LOAD ADDRESS EXTENDED 7-84
LOAD ADDRESS RELATIVE LONG . . .7-85
LOAD AND TEST 7-86
LOAD COMPLEMENT 7-86
LOAD HALFWORD 7-87
LOAD HALFWORD IMMEDIATE 7-87
LOAD LOGICAL 7-87
LOAD LOGICAL CHARACTER 7-87
LOAD LOGICAL HALFWORD 7-88
LOAD LOGICAL IMMEDIATE 7-88
LOAD LOGICAL THIRTY ONE BITS . . .7-88
LOAD MULTIPLE 7-89
LOAD MULTIPLE DISJOINT 7-89

Contents Vii

LOAD MULTIPLEHIGH 7-90 SUPERVISOR CALL 7-147

LOAD NEGATIVE 7-90 TEST ADDRESSING MODE 7-147
LOAD PAIR FROM QUADWORD 7-90 TESTANDSET 7-147
LOAD POSITIVE 7-91 TEST UNDER MASK (TEST UNDER
LOADREVERSED 7-91 MASK HIGH, TEST UNDER MASK

MONITOR CALL 7-92 LOW) 7-148
MOVE 7-93 TRANSLATE 7-149
MOVE INVERSE 7-93 TRANSLATE AND TEST 7-150
MOVELONG 7-94 TRANSLATE EXTENDED 7-151
MOVE LONG EXTENDED 7-98 TRANSLATEONE TOONE 7-153
MOVE LONG UNICODE 7-101 TRANSLATE ONE TOTWO 7-153
MOVE NUMERICS 7-105 TRANSLATE TWO TOONE 7-153
MOVE STRING 7-105 TRANSLATE TWO TOTWO 7-153
MOVE WITH OFFSET 7-107 UNPACK 7-158
MOVE ZONES 7-107 UNPACK ASCII 7-159
MULTIPLY 7-108 UNPACK UNICODE 7-160
MULTIPLY HALFWORD 7-108 UPDATETREE 7-160
MULTIPLY HALFWORD IMMEDIATE . . 7-109

MULTIPLY LOGICAL 7-109 Chapter 8. Decimal Instructions 8-1
MULTIPLY SINGLE 7-110 Decimal-Number Formats 8-1
OR 7-111 Zoned Format 8-1
OR IMMEDIATE 7-112 Packed Format 8-1
PACK 7-112 DecimalCodes 8-2
PACKASCIl 7-113 Decimal Operations 8-2
PACKUNICODE 7-114 Decimal-Arithmetic Instructions 8-2
PERFORM LOCKED OPERATION . .. 7-115 Editing Instructions 8-3
ROTATE LEFT SINGLE LOGICAL . .. 7-130 Execution of Decimal Instructions 8-3
SEARCH STRING 7-131 Other Instructions for Decimal Operands . 8-3
SETACCESS 7-132 Decimal-Operand Data Exception 8-4
SET ADDRESSING MODE 7-132 Instructions L 8-4
SET PROGRAM MASK 7-133 ADD DECIMAL 8-5
SHIFT LEFT DOUBLE 7-133 COMPARE DECIMAL 8-6
SHIFT LEFT DOUBLE LOGICAL 7-134 DIVIDE DECIMAL 8-6
SHIFT LEFT SINGLE 7-135 EDIT 8-7
SHIFT LEFT SINGLE LOGICAL 7-135 EDIT AND MARK 8-9
SHIFT RIGHT DOUBLE 7-136 MULTIPLY DECIMAL 8-11
SHIFT RIGHT DOUBLE LOGICAL . .. 7-136 SHIFT AND ROUND DECIMAL 8-11
SHIFT RIGHT SINGLE 7-137 SUBTRACT DECIMAL 8-12
SHIFT RIGHT SINGLE LOGICAL 7-137 TESTDECIMAL 8-13
STORE 7-138 ZEROANDADD 8-13
STORE ACCESS MULTIPLE 7-138

STORE CHARACTER 7-138 Chapter 9. Floating-Point Overview and
STORE CHARACTERS UNDER MASK 7-139 Support Instructions 9-1
STORE CLOCK 7-139 Registers And Controls 9-2
STORE CLOCK EXTENDED 7-140 Floating-Point Registers 9-2
STORE HALFWORD 7-142 Additional Floating-Point (AFP)

STORE MULTIPLE 7-142 Registers 9-2
STORE MULTIPLEHIGH 7-143 Valid Floating-Point-Register

STORE PAIR TO QUADWORD 7-143 Designations 9-2
STORE REVERSED 7-143 Floating-Point-Control (FPC) Register . . . 9-2
SUBTRACT 7-144 AFP-Register-Control Bit 9-2
SUBTRACT HALFWORD 7-145 Explicit Rounding Methods 9-3
SUBTRACT LOGICAL 7-145 Summary of Rounding Action 9-3

SUBTRACT LOGICAL WITH BORROW 7-146

Viii z/Architecture Principles of Operation

Comparison of BFP and HFP Number
Representations
BFP and HFP Number Ranges
Equivalent BFP and HFP Number
Representations
Instructions
CONVERT BFP TO HFP
CONVERT HFP TO BFP
LOAD
LOAD ZERO
STORE
Summary of All Floating-Point Instructions . .

Chapter 10. Control Instructions
BRANCH AND SET AUTHORITY
BRANCH AND STACK
BRANCH IN SUBSPACE GROUP
COMPARE AND SWAP AND PURGE
DIAGNOSE
EXTRACT AND SET EXTENDED

AUTHORITY
EXTRACT PRIMARY ASN
EXTRACT SECONDARY ASN
EXTRACT STACKED REGISTERS
EXTRACT STACKED STATE
INSERT ADDRESS SPACE CONTROL
INSERT PSW KEY
INSERT STORAGE KEY EXTENDED
INSERT VIRTUAL STORAGE KEY .
INVALIDATE PAGE TABLE ENTRY . . .
LOAD ADDRESS SPACE

PARAMETERS
LOAD CONTROL
LOAD PSW
LOAD PSW EXTENDED
LOAD REAL ADDRESS
LOAD USING REAL ADDRESS
MODIFY STACKED STATE
MOVE PAGE
MOVE TO PRIMARY
MOVE TO SECONDARY
MOVE WITH DESTINATION KEY
MOVE WITH KEY
MOVE WITH SOURCE KEY
PAGE IN
PAGE OUT
PROGRAM CALL
PROGRAM RETURN
PROGRAM TRANSFER
PURGE ALB
PURGE TLB
RESET REFERENCE BIT EXTENDED .
RESUME PROGRAM

SET ADDRESS SPACE CONTROL
FAST
SET CLOCK
SET CLOCK COMPARATOR
SET CLOCK PROGRAMMABLE FIELD
SET CPU TIMER
SET PREFIX
SET PSW KEY FROM ADDRESS
SET SECONDARY ASN
SET STORAGE KEY EXTENDED
SET SYSTEM MASK
SIGNAL PROCESSOR
STORE CLOCK COMPARATOR
STORE CONTROL
STORE CPU ADDRESS
STORE CPU ID
STORE CPU TIMER
STORE FACILITY LIST
STORE PREFIX
STORE REAL ADDRESS
STORE SYSTEM INFORMATION
STORE THEN AND SYSTEM MASK .
STORE THEN OR SYSTEM MASK . .
STORE USING REAL ADDRESS
TEST ACCESS
TEST BLOCK
TEST PROTECTION
TRACE

Chapter 11. Machine-Check Handling . . .

Machine-Check Detection
Correction of Machine Malfunctions
Error Checking and Correction
CPU Retry
Effects of CPU Retry
Checkpoint Synchronization
Handling of Machine Checks during
Checkpoint Synchronization

10-97
10-107
10-107
10-107
10-108
10-110
10-113
10-115
10-116

11-3

Checkpoint-Synchronization Operations 11-3

Checkpoint-Synchronization Action . .
Channel-Subsystem Recovery
Unit Deletion

Handling of Machine Checks
Validation
Invalid CBC in Storage

Programmed Validation of Storage . . .

Invalid CBC in Storage Keys
Invalid CBC in Registers
Check-Stop State
System Check Stop
Machine-Check Interruption
Exigent Conditions
Repressible Conditions

11-4
114

Contents iX

Interruption Action
Point of Interruption
Machine-Check-Interruption Code
Subclass
System Damage
Instruction-Processing Damage
System Recovery
Timing-Facility Damage
External Damage
Degradation
Warning
Channel Report Pending
Service-Processor Damage
Channel-Subsystem Damage
Subclass Modifiers
Backed Up
Delayed Access Exception
Ancillary Report
Synchronous
Machine-Check-Interruption Conditions
Processing Backup
Processing Damage
Storage Errors
Storage Error Uncorrected
Storage Error Corrected
Storage-Key Error Uncorrected
Storage Degradation
Indirect Storage Error
Machine-Check Interruption-Code
Validity Bits
PSW-MWP Validity
PSW Mask and Key Validity
PSW Program-Mask and
Condition-Code Validity
PSW-Instruction-Address Validity . . .
Failing-Storage-Address Validity
External-Damage-Code Validity
Floating-Point-Register Validity
General-Register Validity
Control-Register Validity
Storage Logical Validity
Access-Reqgister Validity
TOD-Programmable-Register Validity
Floating-Point-Control-Register
Validity
CPU-Timer Validity
Clock-Comparator Validity
Machine-Check Extended Interruption
Information
Register-Save Areas
External-Damage Code
Failing-Storage Address
Handling of Machine-Check Conditions
Floating Interruption Conditions

X z/Architecture Principles of Operation

Floating Machine-Check-Interruption
Conditions
Floating 1/O Interruptions
Machine-Check Masking
Channel-Report-Pending Subclass
Mask
Recovery Subclass Mask
Degradation Subclass Mask
External-Damage Subclass Mask . . .
Warning Subclass Mask
Machine-Check Logout
Summary of Machine-Check Masking

Chapter 12. Operator Facilities
Manual Operation
Basic Operator Facilities
Address-Compare Controls
Alter-and-Display Controls
Architectural-Mode Indicator
Architectural-Mode-Selection Controls . . .
Check-Stop Indicator
IML Controls
Interrupt Key
Load Indicator
Load-Clear Key
Load-Normal Key
Load-Unit-Address Controls
Manual Indicator
Power Controls
Rate Control
Restart Key
Start Key
Stop Key
Store-Status Key
System-Reset-Clear Key
System-Reset-Normal Key
Test Indicator
TOD-Clock Control
Wait Indicator
Multiprocessing Configurations

Chapter 13. 1/0 Overview
Input/Output (1/0)
The Channel Subsystem
Subchannels
Attachment of Input/Output Devices
Channel Paths
Control Units
I/0O Devices
I/O Addressing
Channel-Path Identifier
Subchannel Number
Device Number
Device Identifier

Performance of I1/O Operations
Start-Function Initiation
Path Management
Channel-Program Execution
Conclusion of 1/0O Operations
I/O Interruptions

Chapter 14. 1/O Instructions
I/O-Instruction Formats
I/O-Instruction Execution
Serialization
Operand Access
Condition Code
Program Exceptions
Instructions
CANCEL SUBCHANNEL
CLEAR SUBCHANNEL
HALT SUBCHANNEL
MODIFY SUBCHANNEL
RESET CHANNEL PATH
RESUME SUBCHANNEL
SET ADDRESS LIMIT
SET CHANNEL MONITOR
START SUBCHANNEL
STORE CHANNEL PATH STATUS
STORE CHANNEL REPORT WORD
STORE SUBCHANNEL
TEST PENDING INTERRUPTION
TEST SUBCHANNEL

Chapter 15. Basic I/O Functions
Control of Basic I/0 Functions
Subchannel-Information Block
Path-Management-Control Word
Subchannel-Status Word
Model-Dependent Area
Summary of Modifiable Fields
Channel-Path Allegiance
Working Allegiance
Active Allegiance
Dedicated Allegiance
Channel-Path Availability
Control-Unit Type
Clear Function
Clear-Function Path Management
Clear-Function Subchannel Modification
Clear-Function Signaling and
Completion
Halt Function
Halt-Function Path Management
Halt-Function Signaling and Completion
Start Function and Resume Function
Start-Function and Resume-Function
Path Management

Performance of I/O Operations 15-20
Blockingof Data 15-21
Operation-Request Block 15-21
Channel-Command Word 15-26
Command Code 15-27
Designation of Storage Area 15-28
Chaining 15-30

Data Chaining 15-32
Command Chaining 15-33
Skipping 15-34
Program-Controlled Interruption 15-34
CCW Indirect Data Addressing 15-35
Suspension of Channel-Program
Execution 15-37
Commands and Flags 15-39
Branching in Channel Programs 15-40
Transfer in Channel 15-40
Command Retry 15-41

Concluding I/O Operations before Initiation 15-41

Concluding I/O Operations during Initiation 15-41

Immediate Conclusion of 1/0 Operations . . 15-42

Concluding I/O Operations during Data

Transfer 15-42

Channel-Path-Reset Function 15-44
Channel-Path-Reset-Function Signaling . 15-44
Channel-Path-Reset-Function-

Completion Signaling 15-44
Chapter 16. 1/O Interruptions 16-1
Interruption Conditions 16-2

Intermediate Interruption Condition 16-4
Primary Interruption Condition 16-4
Secondary Interruption Condition 16-4
Alert Interruption Condition 16-4

Priority of Interruptions 16-4

Interruption Action 16-5

Interruption-Response Block 16-6

Subchannel-Status Word 16-6

SubchannelKey 16-8
Suspend Control (S) 16-8
Extended-Status-Word Format (L) 16-8
Deferred Condition Code (CC) 16-8
Format(F) 16-10
Prefetch(P) 16-10
Initial-Status-Interruption Control (1) . . 16-11
Address-Limit-Checking Control (A) 16-11
Suppress-Suspended Interruption (U) 16-11
Subchannel-Control Field 16-11
Zero Condition Code (2) 16-11
Extended Control (E) 16-11
Path Not Operational (N) 16-12
Function Control (FC) 16-12
Activity Control (AC) 16-13
Status Control (SC) 16-16

Contents XI

CCW-Address Field
Device-Status Field
Subchannel-Status Field
Program-Controlled Interruption
Incorrect Length
Program Check
Protection Check
Channel-Data Check
Channel-Control Check
Interface-Control Check
Chaining Check
Count Field
Extended-Status Word
Extended-Status Format O
Subchannel Logout
Extended-Report Word
Failing-Storage Address
Secondary-CCW Address
Extended-Status Format 1
Extended-Status Format 2
Extended-Status Format 3
Extended-Control Word

Chapter 17. 1/0 Support Functions
Channel-Subsystem Monitoring
Channel-Subsystem Timing
Channel-Subsystem Timer
Measurement-Block Update
Measurement Block
Measurement-Block Origin
Measurement-Block Key
Measurement-Block Index
Measurement-Block-Update Mode
Measurement-Block-Update Enable
Control-Unit-Queuing Measurement
Control-Unit-Defer Time
Device-Active-Only Measurement
Time-Interval-Measurement Accuracy .
Device-Connect-Time Measurement
Device-Connect-Time-Measurement
Mode
Device-Connect-Time-Measurement
Enable
Signals and Resets
Signals
Halt Signal
Clear Signal
Reset Signal
Resets
Channel-Path Reset
I/O-System Reset
Externally Initiated Functions
Initial Program Loading
Reconfiguration of the 1/0O System

Xii z/Architecture Principles of Operation

Status Verification 17-17
Address-Limit Checking 17-17
Configuration Alert 17-18
Incorrect-Length-Indication Suppression . . 17-18
ConcurrentSense 17-18
Channel-Subsystem Recovery 17-18
Channel Report 17-19
Channel-Report Word 17-20
Channel-Subsystem-I/O-Priority Facility . . 17-22
Number of
Channel-Subsystem-Priority Levels 17-23
Chapter 18. Hexadecimal-Floating-Point
Instructions 18-1
HFP Arithmetic 18-1
HFP Number Representation 18-1
Normalization 18-3
HFP Data Format 18-3
Instructions 18-4
ADD NORMALIZED 18-8
ADD UNNORMALIZED 18-9
COMPARE 18-10
CONVERT FROM FIXED 18-11
CONVERTTOFIXED 18-11
DIVIDE 18-12
HALVE 18-13
LOAD AND TEST 18-14
LOAD COMPLEMENT 18-14
LOAD FP INTEGER 18-15
LOAD LENGTHENED 18-15
LOAD NEGATIVE 18-16
LOAD POSITIVE 18-16
LOADROUNDED 18-17
MULTIPLY 18-18
SQUARE ROOT 18-19
SUBTRACT NORMALIZED 18-21
SUBTRACT UNNORMALIZED 18-21
Chapter 19. Binary-Floating-Point
Instructions 19-1
Binary-Floating-Point Facility 19-1
Floating-Point-Control (FPC) Register . . . 19-2
IEEE Masks and Flags 19-3
FPCDXCByte 19-3
Operations on the FPC Register 19-3
BFP Arithmetic 19-4
BFP Data Formats 19-4
BFP Short Format 19-4
BFP Long Format 19-4
BFP Extended Format 19-4
Biased Exponent 19-4
Significando 19-4
Values of Nonzero Numbers 19-4
Classes of BFP Data 19-5

Zeros 19-6

Denormalized Numbers 19-6
Normalized Numbers 19-6
Infinites 19-6
Signaling and Quiet NaNs 19-6
BFP-Format Conversion 19-7
BFP Rounding 19-7
RoundingMode 19-7
Normalization and Denormalization 19-8
BFP Comparison 19-8
Condition Codes for BFP Instructions . . . 19-9
Remainder 19-9
IEEE Exception Conditions 19-10
IEEE Invalid Operation 19-10
IEEE Division-By-Zero 19-11
IEEE Overflow 19-11
IEEE Underflow 19-12
IEEE Inexact 19-12
Result Figures 19-13
Data-Exception Codes (DXC) and
Abbreviations 19-14
Instructions 19-14
ADD 19-18
COMPARE 19-23
COMPARE AND SIGNAL 19-24
CONVERT FROM FIXED 19-26
CONVERTTOFIXED 19-26
DIVIDE 19-28
DIVIDE TO INTEGER 19-29
EXTRACTFPC 19-33
LOAD ANDTEST 19-34
LOAD COMPLEMENT 19-34
LOAD FP INTEGER 19-35
LOADFPC 19-36
LOAD LENGTHENED 19-37
LOAD NEGATIVE 19-37
LOADPOSITIVE 19-38
LOADROUNDED 19-38
MULTIPLY 19-39
MULTIPLY AND ADD 19-41
MULTIPLY AND SUBTRACT 19-41
SETFPC 19-43
SET ROUNDING MODE 19-43
SQUARE ROOT 19-44
STOREFPC 19-44
SUBTRACT 19-45
TEST DATACLASS 19-45

Appendix A. Number Representation and

Instruction-Use Examples A-1
Number Representation A-2
Binary Integers A-2
Signed Binary Integers A-2
Unsigned Binary Integers A-3

Decimal Integers A-4
Hexadecimal-Floating-Point Numbers . . . A-5
Conversion Example A-6
Instruction-Use Examples A-6
Machine Format A-7
Assembler-Language Format A-7
Addressing Mode in Examples A-7
General Instructions A-7
ADD HALFWORD (AH) A-7
AND (N, NC,NI,NR) A-8
NI Example A-8
Linkage Instructions (BAL, BALR, BAS,

BASR, BASSM,BSM) A-8

Other BALR and BASR Examples . .. A-9
BRANCH AND STACK (BAKR) A-10
BAKR Example 1 A-10
BAKR Example2 A-11
BAKR Example 3 A-11
BRANCH ON CONDITION (BC, BCR) . A-11
BRANCH ON COUNT (BCT, BCTR) .. A-12
BRANCH ON INDEX HIGH (BXH) A-12
BXH Example 1 A-12
BXH Example2 A-13
BRANCH ON INDEX LOW OR EQUAL

(BXLE) A-13
BXLE Example 1 A-13
BXLE Example2 A-14

COMPARE AND FORM CODEWORD

(CFC) A-14
COMPARE HALFWORD (CH) A-14
COMPARE LOGICAL (CL, CLC, CLI,

CLR) A-14
CLC Example A-14
CLI Example A-15
CLR Example A-15

COMPARE LOGICAL CHARACTERS
UNDER MASK (CLM) A-15
COMPARE LOGICAL LONG (CLCL) .. A-16
COMPARE LOGICAL STRING (CLST) . A-17
CONVERT TO BINARY (CVB) A-18
CONVERT TO DECIMAL (CVD) A-18
DIVIDE (D,DR) A-19
EXCLUSIVE OR (X, XC, XI, XR) A-19
XC Example A-19
Xl Example A-20
EXECUTE (EX) A-21
INSERT CHARACTERS UNDER MASK
(ICM) A-21
LOAD (L,LR) A-22
LOAD ADDRESS (LA) A-22
LOAD HALFWORD (LH) A-23
MOVE (MVC, MVI) A-23
MVC Example A-23
MVI Example A-24

Contents Xiii

MOVE INVERSE (MVCIN) A-24
MOVE LONG (MVCL) A-25
MOVE NUMERICS (MVN) A-25
MOVE STRING (MVST) A-26
MOVE WITH OFFSET (MVO) A-26
MOVE ZONES (MVZ) A-27
MULTIPLY (M, MR) A-27
MULTIPLY HALFWORD (MH) A-27
OR(O,0C,0OILOR) A-28
Ol Example A-28
PACK (PACK) A-28
SEARCH STRING (SRST) A-29
SRST Example 1 A-29
SRST Example2 A-29
SHIFT LEFT DOUBLE (SLDA) A-29
SHIFT LEFT SINGLE (SLA) A-30
STORE CHARACTERS UNDER MASK
(STCM) A-30
STORE MULTIPLE (STM) A-30
TEST UNDER MASK (TM) A-31
TRANSLATE (TR) A-31
TRANSLATE AND TEST (TRT) A-32
UNPACK (UNPK) A-33
UPDATE TREE (UPT) A-34
Decimal Instructions A-34
ADD DECIMAL (AP) A-34
COMPARE DECIMAL (CP) A-34
DIVIDE DECIMAL (DP) A-34
EDIT(ED) A-35
EDIT AND MARK (EDMK) A-36
MULTIPLY DECIMAL (MP) A-36
SHIFT AND ROUND DECIMAL (SRP) A-37
Decimal Left Shift A-37
Decimal Right Shift A-37
Decimal Right Shift and Round A-38
Multiplying by a Variable Power of 10 . A-38
ZERO AND ADD (ZAP) A-38
Hexadecimal-Floating-Point Instructions A-39
ADD NORMALIZED (AD, ADR, AE, AER,
AXR) A-39
ADD UNNORMALIZED (AU, AUR, AW,
AWR) A-39
COMPARE (CD, CDR, CE, CER) A-40

XiV z/Architecture Principles of Operation

DIVIDE (DD, DDR, DE, DER)
HALVE (HDR, HER)
MULTIPLY (MD, MDR, MDE, MDER,
MXD, MXDR, MXR)
Hexadecimal-Floating-Point-Number
Conversion
Fixed Point to Hexadecimal Floating
Point
Hexadecimal Floating Point to Fixed
Point
Multiprogramming and Multiprocessing
Examples
Example of a Program Failure Using OR
Immediate
Conditional Swapping Instructions (CS,
CDS)
Setting a Single Bit
Updating Counters
Bypassing Post and Wait
Bypass Post Routine
Bypass Wait Routine
Lock/Unlock
Lock/Unlock with LIFO Queuing for
Contentions
Lock/Unlock with FIFO Queuing for
Contentions
Free-Pool Manipulation
PERFORM LOCKED OPERATION (PLO)
Sorting Instructions
Tree Format
Example of Use of Sort Instructions . . .

Appendix B. Lists of Instructions
Appendix C. Condition-Code Settings
Appendix G. Table of Powers of 2

Appendix H. Hexadecimal Tables

Appendix I. EBCDIC and Other Codes

A-50

Notices

References in this publication to IBM* products,
programs or services do not imply that IBM
intends to make these available in all countries in
which IBM operates. Any reference to an IBM
product, program, or service is not intended to
state or imply that only IBM's product, program, or
service may be used. Any functionally equivalent
product, program, or service that does not infringe
any of IBM's intellectual property rights may be
used instead of the IBM product, program, or
service. Evaluation and verification of operation in
conjunction with other products, except those
expressly designated by IBM, is the user's respon-
sibility.

IBM may have patents or pending patent applica-
tions covering subject matter in this document.
The furnishing of this document does not give you
any license to these patents. You can send
license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive,
Armonk, NY, 10504-1785 USA.

© Copyright IBM Corp. 1990-2001

Trademarks

The following terms, denoted by an asterisk (*) at
the first or most prominent occurrence in this pub-
lication, are trademarks of the International Busi-
ness Machines Corporation in the United States or
other countries:

AIX/ESA

BookMaster

CICs

DB2

Enterprise Systems Architecture/370
Enterprise Systems Architecture/390
Enterprise Systems Connection Architecture
ESA/370

ESA/390

ESCON

FICON

IBM

IBMLink

MVS/ESA

0S/390

Processor Resource/Systems Manager
PR/SM

Sysplex Timer

System/370

VM/ESA

z/Architecture

z/OS

XV

XVi z/Architecture Principles of Operation

Preface

This publication provides, for reference purposes,
a detailed z/Architecture* description.

The publication applies only to systems operating
as defined by z/Architecture. For systems oper-
ating in accordance with the Enterprise Systems
Architecture/390* (ESA/390%) definition, the IBM
ESA/390 Principles of QOperation, SA22-7201,
should be consulted.

The publication describes each function at the
level of detail needed to prepare an assembler-
language program that relies on that function. It
does not, however, describe the notation and con-
ventions that must be employed in preparing such
a program, for which the user must instead refer
to the appropriate assembler-language publication.

The information in this publication is provided prin-
cipally for use by assembler-language program-
mers, although anyone concerned with the
functional details of z/Architecture will find it
useful.

This publication is written as a reference and
should not be considered an introduction or a text-
book. It assumes the user has a basic knowledge
of data-processing systems.

All facilities discussed in this publication are not
necessarily available on every model. Further-
more, in some instances the definitions have been
structured to allow for some degree of
extendibility, and therefore certain capabilities may
be described or implied that are not offered on
any model. Examples of such capabilities are the
use of a 16-bit field in the subsystem-identification
word to identify the subchannel number, the size
of the CPU address, and the number of CPUs
sharing main storage. The allowance for this type
of extendibility should not be construed as
implying any intention by IBM to provide such
capabilities. For information about the character-
istics and availability of faciliies on a specific
model, see the functional characteristics publica-
tion for that model.

Largely because this publication is arranged for
reference, certain words and phrases appear, of
necessity, earlier in the publication than the prin-
cipal discussions explaining them. The reader
who encounters a problem because of this
arrangement should refer to the index, which indi-
cates the location of the key description.

The information presented in this publication is
grouped in 19 chapters and several appendixes:

Chapter 1, Introduction, highlights the major facili-
ties of z/Architecture.

Chapter 2, Organization, describes the major
groupings within the system—main storage,
expanded storage, the central processing unit
(CPU), the external time reference (ETR), and
input/output—with some attention given to the
composition and characteristics of those
groupings.

Chapter 3, Storage, explains the information
formats, the addressing of storage, and the facili-
ties for storage protection. It also deals with
dynamic address translation (DAT), which,
coupled with special programming support, makes
the use of a virtual storage possible.

Chapter 4, Control, describes the facilities for the
switching of system status, for special externally
initiated operations, for debugging, and for timing.
It deals specifically with CPU states, control
modes, the program-status word (PSW), control
registers, tracing, program-event recording, timing
facilities, resets, store status, and initial program
loading.

Chapter 5, Program Execution, explains the role of
instructions in program execution, looks in detail at
instruction formats, and describes briefly the use
of the program-status word (PSW), of branching,
and of interruptions. It contains the principal
description of the advanced address-space facili-
ties that were introduced in ESA/370*. It also
details the aspects of program execution on one

z/Architecture, Enterprise Systems Architecture/390, ESA/390, and ESA/370 are trademarks of the International Business

Machines Corporation.

© Copyright IBM Corp. 1990-2001

Xvii

CPU as observed by other CPUs and by channel
programs.

Chapter 6, Interruptions, details the mechanism
that permits the CPU to change its state as a
result of conditions external to the system, within
the system, or within the CPU itself. Six classes
of interruptions are identified and described:
machine-check interruptions, program inter-
ruptions, supervisor-call interruptions, external
interruptions, input/output interruptions, and restart
interruptions.

Chapter 7, General Instructions, contains detailed
descriptions of logical and binary-integer data
formats and of all unprivileged instructions except
the decimal and floating-point instructions.

Chapter 8, Decimal Instructions, describes in
detail decimal data formats and the decimal
instructions.

Chapter 9, Floating-Point Overview and Support
Instructions, includes an introduction to the
floating-point operations, detailed descriptions of
those instructions common to both hexadecimal-
floating-point and binary-floating-point operations,
and summaries of all floating-point instructions.

Chapter 10, Control Instructions, contains detailed
descriptions of all of the semiprivileged and privi-
leged instructions except for the I/O instructions.

Chapter 11, Machine-Check Handling, describes
the mechanisms for detecting, correcting, and
reporting machine malfunctions.

Chapter 12, QOperator Facilities, describes the
basic manual functions and controls available for
operating and controlling the system.

Chapters 13-17 of this publication provide a
detailed definition of the functions performed by
the channel subsystem and the logical interface
between the CPU and the channel subsystem.

Chapter 13, I/O Overview, provides a brief

description of the basic components and operation
of the channel subsystem.

XViii z/Architecture Principles of Operation

Chapter 14, /O Instructions, contains the

description of the I/O instructions.

Chapter 15, Basic I/O Functions, describes the
basic 1/0O functions performed by the channel sub-
system, including the initiation, control, and con-
clusion of I/0O operations.

Chapter 16, I/O Interruptions, covers /O inter-
ruptions and interruption conditions.

Chapter 17, I/0O Support Functions, describes such
functions as channel-subsystem usage monitoring,
resets, initial-program loading, reconfiguration, and
channel-subsystem recovery.

Chapter 18, Hexadecimal-Floating-Point
Instructions, contains detailed descriptions of the
hexadecimal-floating-point (HFP) data formats and
the HFP instructions.

Chapter 19, Binary-Floating-Point Instructions,
contains detailed descriptions of the binary-
floating-point (BFP) data formats and the BFP
instructions.

The Appendixes include:

¢ Information about number representation

¢ [nstruction-use examples

e Lists of the instructions arranged in several
sequences

¢ A summary of the condition-code settings

¢ A table of the powers of 2

e Tabular information helpful in dealing with
hexadecimal numbers

¢ A table of EBCDIC and other codes.

Size and Number Notation

In this publication, the letters K, M, G, T, P, and E
denote the multipliers 219, 220 230 240 250 and
260, respectively. Although the letters are bor-
rowed from the decimal system and stand for kilo
(103), mega (108), giga (109), tera (1012), peta
(1015), and exa (1018), they do not have the
decimal meaning but instead represent the power
of 2 closest to the corresponding power of 10.
Their meaning in this publication is as follows:

Symbol Value

K (kilo) 1,024 = 210
M (mega) 1,048,576 = 220
G (giga) 1,073,741,824 = 230
T (tera) 1,099,511,627,776 = 24°
P (peta) 1,125,899,906,842,624 = 25°
E (exa) 1,152,921,504,606,846,976 = 260

The following are some examples of the use of K,
M, G, T, and E:

2,048 is expressed as 2K.

4,096 is expressed as 4K.

65,536 is expressed as 64K (not 65K).
224 js expressed as 16M.

231 js expressed as 2G.

242 is expressed as 4T.

264 is expressed as 16E.

When the words “thousand” and “million” are
used, no special power-of-2 meaning is assigned
to them.

All numbers in this publication are in decimal
unless they are explicitly noted as being in binary
or hexadecimal (hex).

Bytes, Characters, and Codes

Although the System/360 architecture was ori-
ginally designed to support the Extended Binary-
Coded-Decimal Interchange Code (EBCDIC), the
instructions and data formats of the architecture
are for the most part independent of the external
code which is to be processed by the machine.
For most instructions, all 256 possible combina-
tions of bit patterns for a particular byte can be
processed, independent of the character which the
bit pattern is intended to represent. For
instructions which use the zoned format, and for
those few instructions which are dependent on a
particular external code, the instruction TRANS-
LATE may be used to convert data from one code
to another code. Thus, a machine operating in
accordance with z/Architecture can process

EBCDIC, ASCII, or any other code which can be
represented in eight or fewer bits per character.

In this publication, unless otherwise specified, the
value given for a byte is the value obtained by
considering the bits of the byte to represent a
binary code. Thus, when a byte is said to contain
a zero, the value 00000000 binary, or 00 hex, is
meant, and not the value for an EBCDIC character
“0,” which would be FO hex.

Other Publications

The parallel-I/O interface is described in the publi-
cation IBM System/360 and System/370 I/O Inter-
face Channel to Control Unit Original Equipment
Manufacturers' Information, GA22-6974.

The parallel-l/O channel-to-channel adapter is
described in the publication IBM Enterprise
Systems Architecture/390 Channel-to-Channel
Adapter for the System/360 and System/370 I/O
Interface, SA22-7091.

The Enterprise Systems Connection Architecture®
(ESCON*) 1/O interface, referred to in this publi-
cation along with the FICON I/O interface as the
serial-I/O interface, is described in the publication
IBM Enterprise Systems Architecture/390 ESCON
I/O Interface, SA22-7202.

The FICON 1/O interface is described in the ANSI
standards document Fibre Channel - Single-Byte
Command Code Sets-2 (FC-SB-2).

The channel-to-channel adapter for the serial-I/O
interface is described in the publication IBM Enter-
prise Systems Architecture/390 ESCON Channel-
to-Channel-Adapter, SA22-7203.

The commands, status, and sense data that are
common to all I/O devices that comply with
z/Architecture are described in the publication IBM
Enterprise Systems Architecture/390 Common
I/O-Device Commands and Self Description,
SA22-7204.

The compression facility is described in the publi-
cation IBM Enterprise Systems Architecture/390
Data Compression, SA22-7208. The

Enterprise Systems Connection Architecture and ESCON are trademarks of the International Business Machines Corporation.

Preface XIX

z/Architecture form of the COMPRESSION CALL
instruction is described in this publication.

The interpretive-execution facility is described in
the publication IBM 370-XA Interpretive Execution,
SA22-7095.

Summary of Changes in Second
Edition

The current, second edition of this publication
differs from the previous edition mainly by con-

taining clarifications and corrections. The signif-
icant changes are as follows:

¢ |n Chapter 1, “Introduction”:

Summaries of DIVIDE LOGICAL and
MULTIPLY LOGICAL, TEST
ADDRESSING MODE, the set-architecture
order of SIGNAL PROCESSOR, and
STORE FACILITY LIST are added or
improved.

An extensive summary of the input/output
enhancements placed in z/Architecture is
added.

¢ In Chapter 3, “Storage”:

Definitions of absolute locations 0-23 are
deleted since they pertain only to an
ESA/390 initial program load.

The definition of real locations 200-203,
stored in by STORE FACILITY LIST, is
corrected to state that bit 16 indicates the
extended-translation facility 2.

A description of unassigned fields in the
PSW is corrected to state that bit 4 is
unassigned and bit 31 is assigned.

The RSL format and an RIL format with
an Mz field are added.

¢ In Chapter 7, “General Instructions”:

The definition of BRANCH AND SET
MODE is corrected to state that bit 63 of
the Ri general register remains
unchanged in the 24-bit or 31-bit
addressing mode; the bit is not set to
zero.

The definitions of PACK ASCIlI, PACK
UNICODE, UNPACK ASCII, and UNPACK
UNICODE are clarified.

XX z/Architecture Principles of Operation

— It is clarified that the following instructions
perform multiple-access references to their
storage operands:

- CHECKSUM

- COMPARE AND FORM CODEWORD
- CONVERT UNICODE TO UTF-8

- CONVERT UTF-8 TO UNICODE

— It is clarified that the following instructions
do not necessarily process their storage
operands left to right as observed by other
CPUs: MOVE LONG, MOVE LONG
EXTENDED, and MOVE LONG
UNICODE. Special padding characters of
MOVE LONG and MOVE LONG
EXTENDED specify whether left-to-right
processing should be performed, as
observed by other CPUs, and whether the
data being moved should or should not be
placed in the cache for availability for sub-
sequent processing.

¢ In Chapter 10, “Control Instructions,” it is clari-
fied that the following instructions perform
multiple-access references to their storage
operands:

— LOAD ADDRESS SPACE PARAMETERS
— RESUME PROGRAM
— STORE SYSTEM INFORMATION

Chapters 13-17 contain many clarifying changes,
all indicated by a vertical line in the margin, in
addition to the significant changes listed below.

e In Chapter 13, “l/O Overview,” statements
about the suspend flag in a CCW are clarified
to describe the flag being specified as a one
and being valid because of a one value of the
suspend control in the associated ORB.

¢ In Chapter 14, “I/O Instructions,” the results of
MODIFY SUBCHANNEL when the device-
number-valid bit at the designated subchannel
is zero are corrected.

¢ In Chapter 15, “Basic I/O Functions”:

— It is clarified that unlimited prefetching of
data and IDAWs associated with the
current and prefetched CCWs is allowed
independent of the value of the prefetch
control in the associated ORB.

— A specified control-unit-priority number is
ignored if the channel-subsystem-I/O-
priority facility is not operational due to an
operator action.

— It is clarified that address-limit checking
applies to data locations and not to
locations containing a CCW or IDAW.

¢ In Chapter 16, “I/O Interruptions,” the form of
the address stored in the failing-storage-
address field is described in terms of the
format-2-IDAW control instead of an
addressing mode.

¢ In Chapter 17, “I/O Support Functions”:

— The introduction to the channel-subsystem
monitoring facilities is clarified.

— References to the measurement block by
the measurement-block-update facility are

single-access references and appear to be
word concurrent as observed by CPUs.
They do not appear to be block concur-
rent.

— The description of the channel-
subsystem-I/O-priority facility is corrected
by including mention of control-unit priority
for fibre-channel-attached control units.

The above changes may affect other chapters
besides the ones listed. All technical changes to
the text or to an illustration are indicated by a ver-
tical line to the left of the change.

Preface XXi

XXii z/Architecture Principles of Operation

Chapter 1. Introduction

Highlights of z/Architecture 1-1
General Instructions for 64-Bit Integers . . 1-2
Other New General Instructions 1-2
Floating-Point Instructions 1-4
Control Instructions 1-4
Trimodal Addressing 1-4

Modal Instructions 1-5
Effects on Bits 0-31 of a General
Register 1-5
Extended-Translation Facility 2 1-5
Input/Output 1-6

The ESA/390Base 1-7
The ESA/370 and 370-XA Base 1-12
System Program 1-14
Compatibility 1-14
Compeatibility among z/Architecture
Systems 1-14
Compatibility between z/Architecture and
ESA/390 1-15
Control-Program Compatibility 1-15
Problem-State Compatibility 1-15
Availability 0 oo 1-15

This publication provides, for reference purposes,
a detailed description of z/Architecture.

The architecture of a system defines its attributes
as seen by the programmer, that is, the concep-
tual structure and functional behavior of the
machine, as distinct from the organization of the
data flow, the logical design, the physical design,
and the performance of any particular implementa-
tion. Several dissimilar machine implementations
may conform to a single architecture. When the
execution of a set of programs on different
machine implementations produces the results
that are defined by a single architecture, the
implementations are considered to be compatible
for those programs.

Highlights of z/Architecture

z/Architecture is the next step in the evolution
from the System/360 to the System/370,
System/370 extended architecture (370-XA),
Enterprise Systems Architecture/370* (ESA/370),
and Enterprise ~ Systems Architecture/390
(ESA/390). z/Architecture includes all of the facili-
ties of ESA/390 except for the asynchronous-
pageout, asynchronous-data-mover,
program-call-fast, and vector facilities.
z/Architecture also provides significant extensions,
as follows:

¢ Sixty-four-bit general registers and control reg-
isters.

¢ A 64-bit addressing mode, in addition to the

24-bit and 31-bit addressing modes of
ESA/390, which are -carried forward to
z/Architecture.

Both operand addresses and instruction
addresses can be 64-bit addresses. The
program-status word (PSW) is expanded to 16
bytes to contain the larger instruction address.
The PSW also contains a newly assigned bit
that specifies the 64-bit addressing mode.

e Up to three additional levels of dynamic-
address-translation (DAT) tables, called region
tables, for translating 64-bit virtual addresses.

A virtual address space may be specified
either by a segment-table designation as in
ESA/390 or by a region-table designation, and
either of these types of designation is called
an address-space-control element (ASCE).
An ASCE may alternatively be a real-space
designation that causes virtual addresses to
be treated simply as real addresses without
the use of DAT tables.

¢ An 8K-byte prefix area for containing larger
old and new PSWs and register save areas.

¢ A SIGNAL PROCESSOR order for switching
between the ESA/390 and z/Architecture
architectural modes.

Initial program loading sets the ESA/390 archi-
tectural mode. The new SIGNAL
PROCESSOR order then can be used to set
the z/Architecture mode or to return from

Enterprise Systems Architecture/370 is a trademark of the International Business Machines Corporation.

© Copyright IBM Corp. 1990-2001

1-1

z/Architecture to ESA/390. This order causes
all CPUs in the configuration always to be in
the same architectural mode.

¢ Many new instructions, many of which operate
on 64-bit binary integers

Some of the new instructions that do not operate
on 64-bit binary integers have also been added to
ESA/390.

All of the ESA/390 instructions, except for those of
the four facilities named above, are included in
z/Architecture.

The bit positions of the general registers and
control registers of z/Architecture are numbered
0-63. An ESA/390 instruction that operates on bit
positions 0-31 of a 32-bit register in ESA/390
operates instead on bit positions 32-63 of a 64-bit
register in z/Architecture.

General Instructions for 64-Bit
Integers

The 32-bit-binary-integer instructions of ESA/390
have new analogs in z/Architecture that operate
on 64-bit binary integers. There are two types of
analogs:

¢ Analogs that use two 64-bit binary integers to
produce a 64-bit binary integer. For example,
the ESA/390 ADD instruction (A for a storage-
to-reqgister operation or AR for a register-to-
register operation) has the analogs AG (adds
64 bits from storage to the contents of a 64-bit
general register) and AGR (adds the contents
of a 64-bit general register to the contents of
another 64-bit general register). These
analogs are distinguished by having “G” in
their mnemonics.

¢ Analogs that use a 64-bit binary integer and a
32-bit binary integer to produce a 64-bit binary
integer. The 32-bit integer is either sign-
extended or extended on the left with zeros,
depending on whether the operation is signed
or unsigned, respectively. For example, the
ESA/390 ADD (A or AR) instruction has the
analogs AGF (adds 32 bits from storage to the
contents of a 64-bit general register) and
AGFR (adds the contents of bit positions
32-63 of a 64-bit general register to the con-
tents of another 64-bit general register).
These analogs are distinguished by having
“GF” in their mnemonics.

1-2 z/Architecture Principles of Operation

Other New General Instructions

The other additional or significantly enhanced
general instructions of z/Architecture are high-
lighted as follows:

e ADD LOGICAL WITH CARRY and SUB-
TRACT LOGICAL WITH BORROW operate
on either 32-bit or 64-bit unsigned binary inte-
gers and include a carry or borrow, as repres-
ented by the leftmost bit of the two-bit
condition code in the PSW, in the computa-
tion. This can improve the performance of
operating on extended-precision integers (inte-
gers longer than 64 bits).

¢ AND IMMEDIATE and OR IMMEDIATE
combine a two-byte immediate operand with
any of the two bytes on two-byte boundaries
in a 64-bit general register.

¢ BRANCH AND SAVE AND SET MODE and
BRANCH AND SET MODE are enhanced so
that they set bit 63 of the R1 general register
to one if the current addressing mode is the
64-bit mode, and they set the 64-bit
addressing mode if bit 63 of the Rz general
register is one. This allows “pointer-directed”
linkages between programs in different
addressing modes, including any of the 24-bit,
31-bit, and 64-bit modes.

¢ BRANCH RELATIVE AND SAVE LONG and
BRANCH RELATIVE ON CONDITION LONG
are like the BRANCH RELATIVE AND SAVE
and BRANCH RELATIVE ON CONDITION
instructions of ESA/390 except that the new
instructions use a 32-bit immediate field. This
increases the target range available through
relative branching.

¢ COMPARE AND FORM CODEWORD is
enhanced so that, in the 64-bit addressing
mode, the comparison unit is six bytes instead
of two and the resulting codeword is eight
bytes instead of four. UPDATE TREE is
enhanced so that, in the 64-bit addressing
mode, a node is 16 bytes instead of eight and
the codeword in a node is eight bytes instead
of four. This improves the performance of
sorting records having long keys.

e DIVIDE LOGICAL and MULTIPLY LOGICAL
provide operations on unsigned binary inte-
gers and produce either 32-bit or 64-bit quo-
tients and remainders or products.

DIVIDE LOGICAL uses a 64-bit or 128-bit
unsigned binary dividend and a 32-bit or 64-bit
unsigned binary divisor, respectively, to
produce a 32-bit or 64-bit quotient and
remainder, respectively. MULTIPLY LOGICAL
uses a 32-bit or 64-bit unsigned binary multi-
plicand and multiplier to produce a 64-bit or
128-bit product, respectively.

DIVIDE SINGLE divides a 64-bit dividend by a
32-bit or 64-bit divisor and produces a 64-bit
quotient and remainder. MULTIPLY SINGLE
is enhanced so it can multiply a 64-bit multipli-
cand by a 32-bit or 64-bit multiplier and
produce a 64-bit product.

EXTRACT PSW, extracts the entire current
PSW to allow determination of the current
machine state, for example, determination of
whether the CPU is in the problem state or
the supervisor state.

INSERT IMMEDIATE inserts a two-byte imme-
diate operand into a 64-bit general register on
any of the two-byte boundaries in the register.
LOAD LOGICAL IMMEDIATE does the same
and also clears the remainder of the register.

LOAD ADDRESS RELATIVE LONG forms an
address relative to the current (unupdated)
instruction address by means of a signed
32-bit immediate field.

LOAD LOGICAL THIRTY ONE BITS places
the rightmost 31 bits of either a general reg-
ister or a word in storage, with 33 zeros
appended on the left, in a general register.

LOAD MULTIPLE DISJOINT loads the left-
most 32 bits of each register in a range of
general registers from one area in storage and
the rightmost 32 bits of each of those registers
from another area in storage. This is for use
in place of a LOAD MULTIPLE HIGH instruc-
tion and a 32-bit LOAD MULTIPLE instruction
when one of the storage areas is addressed
by one of the registers loaded.

LOAD MULTIPLE HIGH and STORE MUL-
TIPLE HIGH load or store the leftmost 32 bits
of each register in a range of general regis-
ters, allowing augmentation of existing pro-
grams that load or store the rightmost 32 bits
by means of LOAD MULTIPLE and STORE
MULTIPLE. (Sixty-four-bit forms of LOAD
MULTIPLE and STORE MULTIPLE also are
provided.)

LOAD PAIR FROM QUADWORD and STORE
PAIR TO QUADWORD operate between an
even-odd pair of 64-bit general registers and a
quadword in storage (16 bytes aligned on a
16-byte boundary). These instructions provide
quadword consistency (all bytes appear to be
loaded or stored concurrently in a
multiple-CPU system). (Only the 64-bit form
of COMPARE DOUBLE AND SWAP also pro-
vides quadword consistency.)

LOAD REVERSED and STORE REVERSED
load or store a two-byte, four-byte, or eight-
byte unit in storage with the left-to-right
sequence of the bytes reversed. LOAD
REVERSED also can move a four-byte or
eight-byte unit between two general registers.
These operations allow conversion between
“little-endian” and “big-endian” formats.

PERFORM LOCKED OPERATION is
enhanced with two more sets of function
codes, with each set providing six different
operations. One of the additional sets pro-
vides operations on 64-bit operands in 64-bit
general registers, and the other provides oper-
ations on 128-bit operands in a parameter list.

ROTATE LEFT SINGLE LOGICAL obtains 32
bits or 64 bits from a general register, rotates
them (the leftmost bit replaces the rightmost
bit), and places the result in another general
register (a nondestructive rotate).

SET ADDRESSING MODE can set any of the
24-bit, 31-bit, and 64-bit addressing modes.

SHIFT LEFT SINGLE, SHIFT LEFT SINGLE
LOGICAL, SHIFT RIGHT SINGLE, and SHIFT
RIGHT SINGLE LOGICAL are enhanced with
64-bit forms that obtain the source operand
from one general register and place the result
operand in another general register (a nonde-
structive shift).

TEST ADDRESSING MODE sets the condi-
tion code to indicate whether bits 31 and 32 of
the current PSW specify the 24-bit, 31-bit, or
64-bit addressing mode.

TEST UNDER MASK HIGH and TEST
UNDER MASK LOW, which are ESA/390
instructions, are given the alternative name
TEST UNDER MASK, and two additional
forms are added so that a two-byte immediate
operand can be used to test the bits of two
bytes located on any of the two-byte bounda-

Chapter 1. Introduction 1-3

ries in a 64-bit general register. (The
ESA/390 instruction TEST UNDER MASK,
which uses a one-byte immediate operand to
test a byte in storage, continues to be pro-
vided.)

Floating-Point Instructions

The z/Architecture floating-point instructions are
the same as in ESA/390 except that instructions
are added for converting between 64-bit signed
binary integers and either hexadecimal or binary
floating-point data. These new instructions have
“G” in their mnemonics.

Control Instructions

The new or enhanced control instructions of
z/Architecture are highlighted as follows:

¢ EXTRACT AND SET EXTENDED
AUTHORITY is a privileged instruction for
changing the extended authorization index in
a control register. This enables real-space
designations to be used more efficiently by
means of access lists.

¢ EXTRACT STACKED REGISTERS s
enhanced to extract optionally all 64 bits of
the contents of one or more saved general
registers.

¢ EXTRACT STACKED STATE is enchanced to
extract optionally the entire contents of the
saved PSW, including a 64-bit instruction
address.

¢ LOAD CONTROL and STORE CONTROL are
enhanced for operating optionally on 64-bit
control registers.

e LOAD PSW uses an eight-byte storage
operand as in ESA/390 and expands this
operand to a 16-byte z/Architecture PSW.

+ LOAD PSW EXTENDED directly
16-byte PSW.

* LOAD REAL ADDRESS in its ESA/390 form
and in the 24-bit or 31-bit addressing mode
operates as in ESA/390 if the translation is
successful and the obtained real address has
a value less than 2G bytes. LOAD REAL
ADDRESS in its ESA/390 form and in the
64-bit addressing mode, or in its enhanced
z/Architecture form in any addressing mode,
loads a 64-bit real address.

loads a

1-4

z/Architecture Principles of Operation

¢ SIGNAL PROCESSER has a new order that
can be used to switch all CPUs in the config-
uration either from the ESA/390 architectural
mode to the z/Architecture architectural mode
or from z/Architecture to ESA/390. (A system
that is to operate using z/Architecture must
first be IPLed in the ESA/390 mode.)

e LOAD USING REAL ADDRESS and STORE
USING REAL ADDRESS are enhanced to
have optionally 64-bit operands.

e STORE FACILITY LIST is a privileged instruc-
tion that stores at real location 200 an indi-
cation of whether z/Architecture is installed
and of whether it is active. This instruction is
added also to ESA/390 and also stores an
indication of whether the new z/Architecture
instructions that have been added to ESA/390
are available. Real location 200 has previ-
ously contained all zeros in most systems and
normally can be examined by a problem-state
program whether or not STORE FACILITY
LIST is installed. The information stored at
real location 200 also indicates whether the
extended-translation facility 2 is installed.

¢ STORE REAL ADDRESS is like LOAD REAL
ADDRESS except that STORE REAL
ADDRESS stores the resulting address
instead of placing it in a register.

e TRACE is enhanced to record optionally the
contents of 64-bit general registers.

Trimodal Addressing

“Trimodal addressing” refers to the ability to switch
between the 24-bit, 31-bit, and 64-bit addressing
modes. This switching can be done by means of:

e The old instructions BRANCH AND SAVE
AND SET MODE and BRANCH AND SET
MODE. Both of these instructions set the
64-bit addressing mode if bit 63 of the R
general register is one. If bit 63 is zero, the
instructions set the 24-bit or 31-bit addressing
mode if bit 32 of the register is zero or one,
respectively.

e The new instruction SET ADDRESSING
MODE (SAM24, SAM31, and SAM64). The
instruction sets the 24-bit, 31-bit, or 64-bit
addressing mode as determined by the opera-
tion code.

Modal Instructions

Trimodal addressing affects the general
instructions only in the manner in which logical
storage addresses are handled, except as follows.

e The instructions BRANCH AND LINK,
BRANCH AND SAVE, BRANCH AND SAVE
AND SET MODE, BRANCH AND SET MODE,
and BRANCH RELATIVE AND SAVE place
information in bit positions 32-39 of general
register R1 as in ESA/390 in the 24-bit or
31-bit addressing mode or place address bits
in those bit positions in the 64-bit addressing
mode. The new instruction BRANCH RELA-
TIVE AND SAVE LONG does the same.

¢ The instructions BRANCH AND SAVE AND
SET MODE and BRANCH AND SET MODE
place a one in bit position 63 of general reg-
ister R1 in the 64-bit addressing mode. In the
24-bit or 31-bit mode, BRANCH AND SAVE
AND SET MODE sets bit 63 to zero, and

BRANCH AND SET MODE |leaves it
unchanged.
e Certain instructions leave bits 0-31 of a

general register unchanged in the 24-bit or
31-bit addressing mode but place or update
address or length information in them in the
64-bit addressing mode. These are listed in a
programming note on page [7-6 and are some-
times called modal instructions.

Effects on Bits 0-31 of a General
Register

Bits 0-31 of general registers are changed by two
types of instructions. The first type is a modal
instruction (see the preceding section) when the
instruction is executed in the 64-bit addressing
mode. The second type is an instruction having,
independent of the addressing mode, either a
64-bit result operand in a single general register or
a 128-bit result operand in an even-odd general-
register pair.

Most of the instructions of the second type are
indicated by a “G,” either alone or in “GF,” in their
mnemonics. The other instructions that change or
may change bits 0-31 of a general register regard-
less of the current addressing mode are listed in a
programming note on page All of the

instructions of the second type are sometimes
referred to as “G-type” instructions.

If a program is not executed in the 64-bit
addressing mode and does not contain a G-type
instruction, it cannot change bits 0-31 of any
general register.

Extended-Translation Facility 2

The extended-translation facility 2 may be avail-
able on a model implementing z/Architecture. The
facility performs operations on double-byte, ASCII,
and decimal data. The double-byte data may be
Unicode data -- data that uses the binary codes of
the Unicode Worldwide Character Standard and
enables the use of characters of most of the
world's written languages. The facility provides
the following instructions:

COMPARE LOGICAL LONG UNICODE
MOVE LONG UNICODE
PACK ASCII

PACK UNICODE

TEST DECIMAL
TRANSLATE ONE TO ONE
TRANSLATE ONE TO TWO
TRANSLATE TWO TO ONE
TRANSLATE TWO TO TWO
UNPACK ASCII

UNPACK UNICODE

The extended-translation facility 2 is called facility
2 since an extended-translation facility, now called
facility 1, was introduced in ESA/390. Facility 1 is
standard in z/Architecture. Facility 1 provides the
instructions:

CONVERT UNICODE TO UTF-8
CONVERT UTF-8 TO UNICODE
TRANSLATE EXTENDED

For when either or both of facility 1 and facility 2
are not installed on the machine, both facilities are
simulated by the MVS CSRUNIC macro instruc-
tion, which is provided in OS/390* Release 10 and
z/OS*.

0S5/390 MVS Assembler Services Reference,
GC28-1910-10, contains programming require-

0S/390 and z/OS are trademarks of the International Business Machines Corporation.

Chapter 1. Introduction 1-5

ments, register information, syntax, return codes,
and examples for the CSRUNIC macro instruction.

When CSRUNIC is used, the program exceptions
listed in this publication do not cause program
interruptions; instead, the exception conditions are
indicated by CSRUNIC by means of return codes,
as described in GC28-1910-10.

Input/Output

Additional I/O functions and facilities are provided
when Zz/Architecture is installed. They are pro-
vided in both the ESA/390 and the z/Architecture
architectural mode and are as follows:

¢ Indirect data addressing is enhanced by the
provision of a doubleword format-2 IDAW that
is intended to allow operations on data above
the 2G-byte absolute-address boundary in
z/Architecture. The previously existing IDAW,
a word containing a 31-bit address, is now
called a format-1 IDAW. The format-2 IDAW
contains a 64-bit address. A bit in the
operation-request block (ORB) associated with
a channel program specifies whether the
program uses format-1 or format-2 IDAWs. A
further enhancement is the ability of all
format-2 IDAWs of a channel program to
specify either 2K-byte or 4K-byte data blocks,
as determined by another bit in the ORB. The
use of 4K-byte blocks improves the efficiency
of data transfers.

e The FICON-channel facility provides the capa-
bilities of attaching FICON-I/O-interface and
FICON-converted-1/O-interface channel paths
and of fully utilizing these channel-path types.
FICON channel paths can significantly
enhance overall data throughput by providing
increased data-transfer rates in comparison to
ESCON channel paths and by allowing mul-
tiple commands and associated data to be
“streamed” to control units, thus further
improving performance. The facility supports
the following additional control mechanisms:

— The modification-control bit in the ORB
allows the program to optimize the per-
formance of FICON channel paths when
dynamically modifying channel programs.

— The synchronization-control bit in the ORB
ensures data integrity along with
maximum channel-path performance by
delaying the execution of a write

1-6 z/Architecture Principles of Operation

command until the completion of an imme-
diately preceding read command when
performing unlimited prefetching of CCWs
and when the data to be written may be
the data read.

— The streaming-mode-control bit in the
ORB allows the program to prevent
command streaming in cases that require
such prevention.

— The secondary-CCW-address field in the
extended-status word assists in the
recovery of channel programs that termi-
nate abnormally when command
streaming to a control unit is being
perfomed. The field identifies a CCW that
failed at the control unit.

e The ORB-extension facility expands the size

of the ORB from three words to eight words.
This makes fields available for use by the
channel-subsystem-I/O-priority facility.

The channel-subsystem-I/O-priority facility
allows the program to establish a priority
relationship among subchannels that have
pending 1/O operations. The priority relation-
ship specifies the order in which I/O oper-
ations are initiated by the channel subsystem.
Additionally, for fibre-channel-attached control
units, the facility allows the program to specify
the priority in which 1/O operations pending at
the control unit are performed.

The input/output enhancements are further high-
lighted below by describing how they affect the 1/0
chapters.

¢ In Chapter 13, “I/O Overview,” FICON and

FICON-converted 1/0O interfaces and the
frame-multiplex mode are introduced.

¢ In Chapter 14, “I/O Instructions”:

— The CANCEL SUBCHANNEL instruction
is described.

— TEST PENDING INTERRUPTION, when
the second-operand address is zero,
stores a three-word |/O-interruption code
at real locations 184-195. The new third
word contains an interruption-identification
word that further identifies the source of
the 1/O interruption.

¢ |n Chapter 15, “Basic I/O Functions”:

— The ORB is extended to eight words and
newly contains a streaming-mode control,

modification control, synchronization
control, format-2-IDAW control, 2K-IDAW
control, ORB-extension control, channel-
subsystem priority, and control-unit pri-
ority.

— A doubleword format-2 IDAW and 4K-byte
data blocks optionally designated by
format-2 IDAWSs are added.

¢ In Chapter 16, “I/O Interruptions”:

— A secondary-CCW-address-validity bit and
failing-storage-address-format ~ bit are
added to the extended-report word.

— A two-word failing-storage address and a
secondary-CCW address are added to the
format-0 extended-status word.

¢ In Chapter 17, “I/O Support Functions”:

— Control-unit-defer time is added. This has
an effect on the device-connect time and
device-disconnect time in the measure-
ment block.

— References to the measurement block by
the measurement-block-update facility are
single-access references and appear to be
word concurrent as observed by CPUs.

— Device-active-only time is added to the
measurement block.

— The channel-subsystem-I/O-priority facility,
providing channel-subsystem priority and
control-unit priority, is added.

The ESA/390 Base

z/Architecture includes all of the facilities of
ESA/390 except for the asynchronous-pageout,
asynchronous-data-mover, program-call-fast, and
vector facilities. This section briefly outlines most
of the remaining facilities that were additions in
ESA/390 as compared to ESA/370.

ESA/390 is described in Enterprise Systems
Architecture/390 Principles of Operation,
SA22-7201.

The CPU-related facilities that were new in
ESA/390 are summarized below. ESA/390 was
announced in September, 1990. Any extension
added subsequently has the date of its announce-
ment in parentheses at the end of its summary.

The following extensions are described in detail in
SA22-7201 and in this publication:

e Access-list-controlled protection allows store-
type storage references to an address space
to be prohibited by means of a bit in the
access-list entry used to access the space.
Thus, different users having different access
lists can have different capabilities to store in
the same address space.

e The program-event-recording facility 2 (PER
2) is an alternative to the original PER facility,
which is now named PER 1. (Neither of the
names PER 1 and PER 2 is used in
z/Architecture; only “PER” is used.) PER 2
provides the option of having a successful-
branching event occur only when the branch
target is within the designated storage area,
and it provides the option of having a storage-
alteration event occur only when the storage
area is within designated address spaces.
The use of these options improves perform-
ance by allowing only PER events of interest
to occur. PER 2 deletes the ability to monitor
for general-register-alteration events.

PER 2 includes extensions that provide addi-
tional information about PER events. The
extensions were described in detail beginning
in the fourth edition of SA22-7201.

e Concurrent sense improves performance by
allowing sense information to be presented at
the time of an interruption due to a unit-check
condition, thus avoiding the need for a sepa-
rate I/O operation to obtain the sense informa-
tion.

e Broadcasted purging provides the COMPARE
AND SWAP AND PURGE instruction for con-
ditionally updating tables associated with
dynamic address translation and access-
register translation and clearing associated
buffers in multiple CPUs. This is described in
detail beginning in the eighth edition of
SA22-7201.

e Storage-protection override provides a new
form of subsystem storage protection that
improves the reliability of a subsystem exe-
cuted in an address space along with possibly
erroneous application programs. When
storage-protection override is made active by
a control-register bit, fetches and stores by the
CPU are permitted to storage locations having
a storage key of 9 regardless of the access

Chapter 1. Introduction 1-7

key used by the CPU. If the subsystem is in
key-8 storage and is executed with a PSW
key of 8, for example, and the application pro-
grams are in key-9 storage and are executed
with a PSW key of 9, accesses by the sub-
system to the application-program areas are
permitted while accesses by the application
programs to the subsystem area are denied.
(September, 1991)

Move-page facility 2 extends the MOVE PAGE
instruction introduced in ESA/370 by allowing
use of a specified access key for either the
source or the destination operand, by allowing
improved performance when the destination
operand will soon be referenced, and by
allowing improved performance when an
operand is invalid in both main and expanded
storage. The ESA/370 version of MOVE
PAGE is now called move-page facility 1 and
is in Chapter 7, “General Instructions.” MOVE
PAGE of move-page facility 2 is in Chapter
10, “Control Instructions.” Some details about
the means for control-program support of
MOVE PAGE are not provided. (September,
1991) (The Zz/Architecture MOVE PAGE
instruction is described only in Chapter 10 of
this publication. MOVE PAGE no longer can
move data to or from expanded storage, and
all details about MOVE PAGE are provided.)

The square-root facility consists of the
SQUARE ROOT instruction and the square-
root exception. The instruction extracts the
square root of a floating-point operand in
either the long or short format. The instruction
is the same as that provided on some models
of the IBM 4341, 4361, and 4381 Processors.
(September, 1991)

The cancel-I/O facility allows the program to
withdraw a pending start function from a des-
ignated subchannel without signaling the
device, which is useful in certain error-
recovery situations. (September, 1991)

The cancel-1/O facility provides the CANCEL
SUBCHANNEL instruction and is described in
detail beginning in the eighth edition of
SA22-7201.

The string-instruction facility (or logical string
assist) provides instructions for (1) moving a

string of bytes until a specified ending byte is
found, (2) logically comparing two strings until
an inequality or a specified ending byte is
found, and (3) searching a string of a speci-
fied length for a specified byte. The first two
instructions are particularly useful in a C
program in which strings are normally delim-
ited by an ending byte of all zeros. (June,
1992)

The suppression-on-protection facility causes
a protection exception due to page protection
to result in suppression of instruction exe-
cution instead of termination of instruction
execution, and it causes the address and an
address-space identifier of the protected page
to be stored in low storage. This is useful in
performing the AIX/ESA* copy-on-write func-
tion, in which AIX/ESA causes the same page
of different address spaces to map to a single
page frame of real storage so long as a store
in the page is not attempted and then, when a
store is attempted in a particular address
space, assigns a unique page frame to the
page in that address space and copies the
contents of the page to the new page frame.
(February, 1993)

The set-address-space-control-fast facility con-
sists of the SET ADDRESS SPACE
CONTROL FAST (SACF) instruction, which
possibly can be used instead of the previously
existing SET ADDRESS SPACE CONTROL
(SAC) instruction, depending on whether all of
the SAC functions are required. SACF, unlike
SAC, does not perform the serialization and
checkpoint-synchronization functions, nor does
it cause copies of prefetched instructions to be
discarded. SACF provides improved perform-
ance on some models. (February, 1993)

The subspace-group facility includes the
BRANCH IN SUBSPACE GROUP instruction,
which can be used to give or return control
from one address space to another in a group
of address spaces called a subspace group,
with this giving and returning of control being
done with better performance than can be
obtained by means of the PROGRAM CALL
and PROGRAM RETURN or PROGRAM
TRANSFER instructions. One address space
in the subspace group is called the base

AIX/ESA, CICS, and MVS/ESA are trademarks of the International Business Machines Corporation.

1-8

z/Architecture Principles of Operation

space, and the other address spaces in the
group are called subspaces. It is intended
that each subspace contain a different subset
of the storage in the base space, that the
base space and each subspace contain a
subsystem control program, such as CICS*,
and application programs, and that each sub-
space contain the data for a single transaction
being processed under the subsystem control
program. The placement of the data for each
transaction in a different subspace prevents
the processing of a transaction from erro-
neously damaging the data of other trans-
actions. The data of the control program can
be protected from the transaction processing
by means of the storage-protection-override
facility. (April, 1994)

The virtual-address enhancement of sup-
pression on protection provides that if dynamic
address translation (DAT) was on when a pro-
tection exception was recognized, the
suppression-on-protection result is indicated,
and the address of the protected location is
stored, only if the address is one that was to
be translated by DAT; the suppression-on-
protection result is not indicated if the address
that would be stored is a real address. This
enhancement allows the stored address to be
translated reliably by the control program to
determine if the exception was due to page
protection as opposed to key-controlled pro-
tection. The enhancement extends the useful-
ness of suppression on protection to operating
systems like MVS/ESA* that use key-
controlled protection. (September, 1994)

The immediate-and-relative-instruction facility
includes 13 new instructions, most of which
use a halfword-immediate value for either
signed-binary arithmetic operations or relative
branching. The facility reduces the need for
general registers, and, in particular, it elimi-
nates the need to use general registers to
address branch targets. As a result, the
general registers and access registers can be
allocated more efficiently in programs that
require many registers. (September, 1996)

The compare-and-move-extended facility pro-
vides new versions of the COMPARE
LOGICAL LONG and MOVE LONG
instructions. The new versions increase the
size of the operand-length specifications from
24 bits to 32 bits, which can be useful when

objects larger than 16M bytes are processed
through the use of 31-bit addressing. The
new versions also periodically complete to
allow software polling in a multiprocessing
system. (September, 1996)

The checksum facility consists of the
CHECKSUM instruction, which can be used to
compute a 16-bit or 32-bit checksum in order
to improve TCP/IP (transmission-control
protocol/internet protocol) performance. (Sep-
tember, 1996)

The called-space-identification facility
improves serviceability by further identifying
the called address space in a linkage-stack
state entry formed by the PROGRAM CALL
instruction. (September, 1996)

The branch-and-set-authority facility consists
of the BRANCH AND SET AUTHORITY
instruction, which can be used to improve the
performance of linkages within an address
space by replacing PROGRAM CALL,
PROGRAM TRANSFER, and SET PSW KEY
FROM ADDRESS instructions. (June, 1997)

The perform-locked-operation facility consists
of the unprivileged PERFORM LOCKED
OPERATION instruction, which appears to
provide concurrent interlocked-update refer-
ences to multiple storage operands. A func-
tion code of the instruction can specify any of
six operations: compare and load, compare
and swap, double compare and swap,
compare and swap and store, compare and
swap and double store, and compare and
swap and triple store. The function code
further specifies either word or doubleword
operands. The instruction can be used to
avoid the use of programmed locks in a multi-
processing system. (June, 1997)

Four additional floating-point facilities improve
the hexadecimal-floating-point (HFP) capability
of the machine and add a binary-floating-point
(BFP) capability. The facilities are:

— Basic floating-point extensions, which pro-
vides 12 additional floating-point registers
to make a total of 16 floating-point regis-
ters. This facility also includes a floating-
point-control register and means for
saving the contents of the new registers
during a store-status operation or a
machine-check interruption.

Chapter 1. Introduction 1-9

— Floating-point-support (FPS) extensions,
which provides eight new instructions,
including four to convert data between the
HFP and BFP formats.

— Hexadecimal-floating-point (HFP) exten-
sions, which provides 26 new instructions
to operate on data in the HFP format. All
of these are counterparts to new
instructions provided by the BFP facility,
including conversion between floating-
point and fixed-point formats, and a more
complete set of operations on the
extended format.

— Binary floating-point (BFP), which defines
short, long, and extended binary-floating-
point (BFP) data formats and provides 87
new instructions to operate on data in
these formats. The BFP formats and
operations provide everything necessary
to conform to the IEEE standard
(ANSI/IEEE Std 754-1985, IEEE Standard
for Binary Floating-Point Arithmetic, dated
August 12, 1985) except for conversion
between binary-floating-point numbers and
decimal strings, which must be provided in
software.

(May, 1998)

The resume-program facility consists of the
RESUME PROGRAM instruction, which
restores, from a specified save area, the
instruction address and certain other fields in
the current PSW and also the contents of an
access-and-general-register pair. RESUME
PROGRAM allows a problem-state
interruption-handling program to restore the
state of an interrupted program and return to
that program despite that a register is required
for addressing the save area from which the
state is restored. (May, 1998)

The trap facility provides the TRAP
instructions (a two-byte TRAP2 instruction and
a four-byte TRAP4 instruction) that can
overlay instructions in an application program
to give control to a program that can perform

would otherwise be needed to give control to
and from the fix-up program. (May, 1998)

The extended-TOD-clock facility includes
(1) an extension of the TOD clock from 64
bits to 104 bits, allowing greater resolution;
(2) a TOD programmable register, which con-
tains a TOD programmable field that can be
used to identify the configuration providing a
TOD-clock value in a sysplex; (3) the SET
CLOCK PROGRAMMABLE FIELD instruction,
for setting the TOD programmable field in the
TOD programmable register; and (4) the
STORE CLOCK EXTENDED instruction,
which stores both the longer TOD-clock value
and the TOD programmable field. STORE
CLOCK EXTENDED can be used in the future
when the TOD clock is further extended to
contain time values that exceed the current
year-2042 limit (when there is a carry out of
the current bit 0 of the TOD clock). (August,
1998)

The TOD-clock-control-override facility pro-
vides a control-register bit that allows setting
the TOD clock under program control, without
use of the manual TOD-clock control of any
CPU. (August, 1998)

The store-system-information facility provides
the privileged STORE SYSTEM INFORMA-
TION instruction, which can be used to obtain
information about a component or components
of a virtual machine, a logical partition, or the
basic machine. (January, 1999)

The extended-translation facility, now called
the extended-translation facility 1, includes the
CONVERT UNICODE TO UTF-8, CONVERT
UTF-8 TO UNICODE, and TRANSLATE
EXTENDED instructions, all of which can
improve performance. TRANSLATE
EXTENDED can be used in place of a
TRANSLATE AND TEST instruction that
locates an escape character, followed by a
TRANSLATE instruction that translates the
bytes preceding the escape character. (April,
1999)

fix-up operations on data being processed,
such as dates that may be a “Year-2000”
problem. RESUME PROGRAM can be used
to return from the fix-up program. TRAP and
RESUME PROGRAM can improve perform-
ance by avoiding program interruptions that

The following extensions are described in detail in
other publications:

e The Enterprise Systems Connection Architec-
ture (ESCON) introduces a new type of
channel that uses an optical-fiber communi-
cation link between channels and control
units. Information is transferred serially by bit,

1-10 z/Architecture Principles of Operation

at 200 million bits per second, up to a
maximum distance of 60 kilometers. The
optical-fiber technology and serial trans-
mission simplify cabling and improve reliability.
See the publication IBM Enterprise Systems
Architecture/390 ESCON /O Interface,
SA22-7202.

The ESCON channel-to-channel adapter
(ESCON CTCA) provides the same type of
function for serial channel paths as is avail-
able for the parallel-l/O-interface channel
paths. See the publication IBM Enterprise
Systems Architecture/390 ESCON Channel-to-
Channel Adapter, SA22-7203.

I/O-device self-description allows a device to
describe itself and its position in the 1/0 con-
figuration. See the publication IBM Enterprise
Systems Architecture/390 Common I/O-Device
Commands and Self Description, SA22-7204.

The compression facility performs a Ziv-
Lempel type of compression and expansion by
means of static (nonadaptive) dictionaries that
are to be prepared by a program before the
compression and expansion operations.
Because the dictionaries are static, the com-
pression facility can provide good com-
pression not only for long sequential data
streams (for example, archival or network
data) but also for randomly accessed short
records (for example, 80 bytes). See the pub-

lication IBM Enterprise Systems
Architecture/390 Data Compression,
SA22-7208. (February, 1993) (The

z/Architecture COMPRESSION CALL instruc-
tion is described in this publication. However,
introductory information and information about
dictionary formats still is provided only in
SA22-7208.)

The remaining extensions of ESA/390, for which
detailed descriptions are not provided, are as
follows:

e The integrated cryptographic facility provides a

number of instructions to protect data privacy,
to support message authentication and per-
sonal identification, and to facilitate key man-
agement. The high-performance cipher
capability of the facility is designed for
financial-transaction and bulk-encryption envi-

ronments, and it complies with the Data
Encryption Standard (DES).

— Usability of the cryptographic facility is
extended to virtual-machine environments,
which allows the facility to be used by
MVS/ESA being executed under
VM/ESA*, which in turn may be executed
either under another VM/ESA or in a
logical partition. (September, 1991)

e The external-time-reference facility provides a

means to initiate and maintain the synchroni-
zation of TOD clocks to an external time refer-
ence (ETR). Synchronization tolerance of a
few microseconds can be achieved, and the
effect of leap seconds is taken into account.
The facility consists of an ETR sending unit
(Sysplex Timer*), which may be duplexed, two
or more ETR receiving units, and optical-fiber
cables. The cables are used to connect the
ETR sending unit, which is an external device,
to ETR receiving units of the configuration.
CPU instructions are provided for setting the
TOD clock to the value supplied by the ETR
sending unit.

— The ETR automatic-propagation-delay-
adjustment function adjusts the time
signals from the ETR to the attached
processors to compensate for the propa-
gation delay on the cables to the
processors, thus allowing the cables to be
of different lengths. (September, 1991)

— The ETR external-time-source function
synchronizes the ETR to a time signal
received from a remote location by means
of a telephone or radio. (September,
1991)

Extended sorting provides instructions that
improve the performance of the DB2* sorting
function.

Other PER extensions, besides those
described beginning in the fourth edition of
this publication, are an augmentation of PER
2 that provide additional PER function in the
interpretive-execution mode.

Channel-subsystem call provides various func-
tions for use in the management of the 1/O
configuration. Some of the functions acquire

MVS/ESA, VM/ESA, Sysplex Timer, and DB2 are trademarks of the International Business Machines Corporation.

Chapter 1. Introduction 1-11

information about the configuration from the
accessible elements of the configuration, while
others dynamically change the configuration.

The operational extensions are a number of
other improvements that result in increased
availability and ease of use of the system, as
follows:

— Automatic-reconfiguration permits an oper-
ating system in an LPAR partition to
declare itself willing to be terminated sud-
denly, usually to permit its storage and
CPU resources to be acquired by an adja-
cent partition that is dynamically absorbing
the work load of another system that has
failed. Other functions deactivate and
reset designated participating partitions.

— A new storage-reconfiguration command
decreases the time needed to reconfigure
storage by allowing multiple requests for
reconfiguration to be made by means of a
single communication with the service
processor.

— SCP-initiated reset allows a system
control program (SCP) to reset its I/O con-
figuration prior to entering the disabled
wait state following certain check condi-
tions.

— Console integration simplifies configuration
requirements by reducing by one the
number of consoles required by MVS.

— The processor-availability facility enables
a CPU experiencing an unrecoverable
error that will cause a check stop to save
its state and alert the other CPUs in the
configuration. This allows, in many cases,
another CPU to continue execution of the
program that was in execution on the
failing CPU. The facility is applicable in
both the ESA/390 mode and the LPAR
mode. (April, 1991)

e Extensions for virtual machines are a number

of improvements to the interpretive-execution
facility, as follows:

— The VM-data-space facility provides for
making the ESA/390 access-register archi-
tecture more useful in virtual-machine
applications. The facility improves the
ability to address a larger amount of data
and to share data. For information on
how VM/ESA uses the VM-data-space

1-12 z/Architecture Principles of Operation

facility, see the publication VM/ESA CP
Programming Services, SC24-5520.

— A new storage-key function improves per-
formance by removing the need for the
previously used RCP area.

— Interpreted SIE (available with region relo-
cation) is improved to permit preferred
guests under VM when VM itself is oper-
ating as a high-performance guest.

— Other improvements include an optional
special-purpose lookaside for some of the
guest-state information and greater
freedom in certain implementation
choices.

e The ESCON-multiple-image facility (EMIF)
allows multiple logical partitions to share
ESCON channels (and FICON channels) and
optionally to share any of the control units and
associated /O devices configured to these
shared channels. This can reduce channel
requirements, improve channel utilization, and
improve 1/0O connectivity. (June, 1992)

e PR/SM LPAR mode is enhanced to allow up
to 10 logical partitions in a single-image con-
figuration and 20 in a physically-partitioned
configuration. The previous limits were seven
and 14, respectively. (June, 1992)

Coincident with z/Architecture, PR/SM LPAR
mode allows 15 logical partitions, and physical
partitioning is not supported.

¢ The coupling facility enables high-performance
data sharing among MVS/ESA systems that
are connected by means of the facility. The
coupling facility provides storage that can be
dynamically partitioned for caching data in
shared buffers, maintaining work queues and
status information in shared lists, and locking
data by means of shared lock controls.
MVS/ESA services provide access to and
manipulation of the coupling-facility contents.
(April, 1994)

The ESA/370 and 370-XA Base

ESA/390 includes the complete set of facilities of
ESA/370 as its base. This section briefly outlines
most of the facilities that were additions in 370-XA
as compared to System/370 and that were addi-
tions in ESA/370 as compared to 370-XA.

The CPU-related facilities that were new in
370-XA are as follows:

Bimodal addressing provides two modes of
operation: a 24-bit addressing mode for the
execution of old programs and a 31-bit
addressing mode.

31-bit logical addressing extends the virtual
address space from the 16M bytes address-
able with 24-bit addresses to 2G bytes
(2,147,483,648 bytes).

31-bit real and absolute addressing provides
addressability for up to 2G bytes of main
storage.

The 370-XA protection facilities include key-
controlled protection on only 4K-byte blocks,
page protection, and, as in System/370, low-
address protection for addresses below 512.
Fetch-protection override eliminates fetch pro-
tection for locations 0-2047.

The tracing facility assists in the determination
of system problems by providing an ongoing
record in storage of significant events.

The COMPARE AND FORM CODEWORD
and UPDATE TREE instructions facilitate
sorting applications.

The interpretive-execution facility allows cre-
ation of virtual machines that may operate
according to several architectures and whose
performance is enhanced because many
virtual-machine functions are directly inter-
preted by the machine rather than simulated
by the program. This facility is described in
the publication IBM 370-XA Interpretive Exe-
cution, SA22-7095.

The service-call-logical-processor (SCLP)
facility provides a means of communicating
between the control program and the service
processor for the purpose of describing and
changing the configuration. This facility is not
described.

The 1/O-related differences between 370-XA and
System/370 result from the 370-XA channel sub-
system, which includes:

Path-independent addressing of 1/O devices,
which permits the initiation of I/O operations
without regard to which CPU is executing the
I/O instruction or how the I/O device is
attached to the channel subsystem. Any 1/O

interruption can be handled by any CPU
enabled for it.

Path management, whereby the channel sub-
system determines which paths are available
for selection, chooses a path, and manages
any busy conditions encountered while
attempting to initiate I/O processing with the
associated devices.

Dynamic reconnection, which permits any 1/O
device using this capability to reconnect to
any available channel path to which it has
access in order to continue execution of a
chain of commands.

Programmable interruption subclasses, which
permit the programmed assignment of
I/O-interruption requests from individual 1/O
devices to any one of eight maskable inter-
ruption queues.

An additional CCW format for the direct use of
31-bit addresses in channel programs. The
new CCW format, called format 1, is provided
in addition to the System/370 CCW format,
now called format 0.

Address-limit checking, which provides an
additional storage-protection facility to prevent
data access to storage locations above or
below a specified absolute address.

Monitoring facilities, which can be invoked by
the program to cause the channel subsystem
to measure and accumulate key I/O-resource
usage parameters.

Status-verification facility, which reports inap-
propriate combinations of device-status bits
presented by a device.

A set of 13 /O instructions, with associated
control blocks, which are provided for the
control of the channel subsystem.

The facilities that were new in ESA/370 are as
follows:

e Sixteen access registers permit the program

to have immediate access to storage oper-
ands in up to 16 2G-byte address spaces,
including the address space in which the
program resides. In a dynamic-address-
translation mode named access-register
mode, the instruction B field, or for certain
instructions the R field, designates both a
general register and an access register, and
the contents of the access register, along with

Chapter 1. Introduction 1-13

the contents of protected tables, specify the
operand address space to be accessed. By
changing the contents of the access registers,
the program, under the control of an authori-
zation mechanism, can have fast access to
hundreds of different operand address spaces.

e A linkage stack is used in a functionally
expanded mechanism for passing control
between programs in either the same or dif-
ferent address spaces. This mechanism
makes use also of the previously existing
PROGRAM CALL instruction, an extended
entry-table entry, and a new PROGRAM
RETURN instruction. The mechanism saves
various elements of status, including access-
register and general-register contents, during
a calling linkage, provides for changing the
current status during the calling linkage, and
restores the original status during the
returning linkage. The linkage stack can also
be used to save and restore access-register
and general-register contents during a branch-
type linkage performed by the new instruction
BRANCH AND STACK.

¢ A translation mode named home-space mode
provides an efficient means for the control
program to obtain control in the address
space, called the home address space, in
which the principal control blocks for a
dispatchable unit (a task or process) are kept.

e The semiprivleged MOVE WITH SOURCE
KEY and MOVE WITH DESTINATION KEY
instructions allow bidirectional movement of
data between storage areas having different
storage keys, without the need to change the
PSW key.

e The privieged LOAD USING REAL
ADDRESS and STORE USING REAL
ADDRESS instructions allow the control

program to access data in real storage more
efficiently.

e The private-space facility allows an address
space not to contain any common segments
and causes low-address protection and fetch-
protection override not to apply to the address
space.

e The unprivieged MOVE PAGE instruction
allows the program to move a page of data

between main and expanded storage, pro-
vided that the source and destination pages
are both valid. Some details about the means
for control-program support of MOVE PAGE
are not provided. The ESA/370 version of
MOVE PAGE is now called move-page facility
1.

e The Processor Resource/Systems Manager*
(PR/SM*) feature provides support for multiple
preferred guests under VM/XA and provides
the logically partitioned (LPAR) mode, with the
latter providing flexible partitioning of
processor resources among multiple logical
partitions. Certain aspects of the LPAR use of
PR/SM are described in the publication IBM
ES/3090 Processor Complex Processor
Resource/Systems Manager Planning Guide,
GA22-7123.

¢ The COMPARE UNTIL SUBSTRING EQUAL
instruction provides improved performance of
the compression of IMS log data sets and can
be useful in other programs also.

System Program

z/Architecture is designed to be used with a
control program that coordinates the use of
system resources and executes all /O
instructions, handles exceptional conditions, and
supervises scheduling and execution of multiple
programs.

Compatibility

Compatibility among
z/Architecture Systems

Although systems operating as defined by
z/Architecture may differ in implementation and
physical capabilities, logically they are upward and
downward compatible. Compatibility provides for
simplicity in education, availability of system
backup, and ease in system growth. Specifically,
any program written for z/Architecture gives iden-
tical results on any z/Architecture implementation,
provided that the program:

1. Is not time-dependent.

Processor Resource/Systems Manager and PR/SM are trademarks of the International Business Machines Corporation.

1-14 z/Architecture Principles of Operation

2. Does not depend on system facilities (such as
storage capacity, 1/0 equipment, or optional
facilities) being present when the facilities are
not included in the configuration.

3. Does not depend on system facilities being
absent when the facilities are included in the
configuration. For example, the program must
not depend on interruptions caused by the use
of operation codes or command codes that
are not installed in some models. Also, it
must not use or depend on fields associated
with uninstalled facilities. For example, data
should not be placed in an area used by
another model for fixed-logout information.
Similarly, the program must not use or depend
on unassigned fields in machine formats
(control registers, instruction formats, etc.) that
are not explicitly made available for program
use.

4. Does not depend on results or functions that
are defined to be unpredictable or model-
dependent or are identified as undefined.
This includes the requirement that the
program should not depend on the assign-
ment of device numbers and CPU addresses.

5. Does not depend on results or functions that
are defined in the functional-characteristics
publication for a particular model to be devi-
ations from the architecture.

6. Takes into account any changes made to the
architecture that are identified as affecting
compatibility.

Compatibility between
z/Architecture and ESA/390

Control-Program Compatibility

Control programs written for ESA/390 cannot be
directly transferred to systems operating as
defined by z/Architecture. This is because the
general-register and control-register sizes, PSW
size, assigned storage locations, and dynamic
address translation are changed.

Problem-State Compatibility

A high degree of compatibility exists at the
problem-state level in going forward from ESA/390
to z/Architecture. Because the majority of a user's
applications are written for the problem state, this
problem-state compatibility is useful in many
installations.

A problem-state program written for ESA/390
operates with z/Architecture, provided that the
program:

1. Complies with the limitations described in
“Compatibility among z/Architecture Systems”

on §a§e 1-14[

2. Is not dependent on control-program facilities
which are unavailable on the system.

Programming Note: This publication assigns
meanings to various operation codes, to bit posi-
tions in instructions, channel-command words,
registers, and table entries, and to fixed locations
in the low 512 bytes and bytes 4096-8191 of
storage. Unless specifically noted, the remaining
operation codes, bit positions, and low-storage
locations are reserved for future assignment to
new facilities and other extensions of the architec-
ture.

To ensure that existing programs operate if and
when such new facilities are installed, programs
should not depend on an indication of an excep-
tion as a result of invalid values that are currently
defined as being checked. If a value must be
placed in unassigned positions that are not
checked, the program should enter zeros. When
the machine provides a code or field, the program
should take into account that new codes and bits
may be assigned in the future. The program
should not use unassigned low-storage locations
for keeping information since these locations may
be assigned in the future in such a way that the
machine causes the contents of the locations to
be changed.

Availability

Availability is the capability of a system to accept
and successfully process an individual job.
Systems operating in accordance with
z/Architecture permit substantial availability by
(1) allowing a large number and broad range of
jobs to be processed concurrently, thus making
the system readily accessible to any particular job,
and (2) limiting the effect of an error and identi-
fying more precisely its cause, with the result that
the number of jobs affected by errors is minimized
and the correction of the errors facilitated.

Several design aspects make this possible.

Chapter 1. Introduction 1-15

e A program is checked for the correctness of

instructions and data as the program is exe-
cuted, and program errors are indicated sepa-
rate from equipment errors. Such checking
and reporting assists in locating failures and
isolating effects.

The protection facilities, in conjunction with
dynamic address translation and the sepa-
ration of programs and data in different
address spaces, permit the protection of the
contents of storage from destruction or misuse
caused by erroneous or unauthorized storing
or fetching by a program. This provides
increased security for the user, thus permitting
applications with different security require-
ments to be processed concurrently with other
applications.

Dynamic address translation allows isolation
of one application from another, still permitting
them to share common resources. Also, it
permits the implementation of virtual
machines, which may be used in the design
and testing of new versions of operating
systems along with the concurrent processing
of application programs. Additionally, it pro-
vides for the concurrent operation of incom-
patible operating systems.

The use of access registers allows programs,
data, and different collections of data to reside
in different address spaces, and this further
reduces the likelihood that a store using an
incorrect address will produce either erro-
neous results or a system-wide failure.

Multiprocessing and the channel subsystem
permit better use of storage and processing
capabilities, more direct communication
between CPUs, and duplication of resources,
thus aiding in the continuation of system oper-
ation in the event of machine failures.

1-16 z/Architecture Principles of Operation

¢ MONITOR CALL, program-event recording,

and the timing facilities permit the testing and
debugging of programs without manual inter-
vention and with little effect on the concurrent
processing of other programs.

On most models, error checking and cor-
rection (ECC) in main storage, CPU retry, and
command retry provide for circumventing inter-
mittent equipment malfunctions, thus reducing
the number of equipment failures.

An enhanced machine-check-handling mech-
anism provides model-independent fault iso-
lation, which reduces the number of programs
impacted by uncorrected errors. Additionally,
it provides model-independent recording of
machine-status information. This leads to
greater machine-check-handling compatibility
between models and improves the capability
for loading and operating a program on a dif-
ferent model when a system failure occurs.

A small number of manual controls are
required for basic system operation, permitting
most operator-system interaction to take place
via a unit operating as an I/O device and thus
reducing the possibility of operator errors.

The logical partitions made available by the
PR/SM feature allow continued reliable pro-
duction operations in one or more partitions
while new programming systems are tested in
other partitions. This is an advancement in
particular for non-VM installations.

The operational extensions and channel-
subsystem-call facilty of ESA/390 and
z/Architecture improve the ability to continue
execution of application programs in the pres-
ence of system incidents and the ability to
make configuration changes with less dis-
ruption to operations.

Chapter 2. Organization

Main Storage L 2-2 Access Registers L. 2-4

Expanded Storage 2-2 Cryptographic Facility 2-6

CPU 2-2 External Time Reference 2-6
PSW 2-3 VO . . . 2-6
General Registers 2-3 Channel Subsystem 2-6
Floating-Point Registers 2-3 Channel Paths 2-6
Floating-Point-Control Register 2-4 I/O Devices and Control Units 2-7
Control Registers 2-4 Operator Facilites 2-7

Logically, a system consists of main storage, one / [etrl y

or more central processing units (CPUs), operator

facilities, a channel subsystem, and I/O devices. Ll—‘

I/O devices are attached to the channel sub-

system through control units. The connection o —

between the channel subsystem and a control unit
is called a channel path.

A channel path employs either a parallel-
transmission protocol or a serial-transmission pro-
tocol and, accordingly, is called either a parallel or
a serial channel path. A serial channel path may
connect to a control unit through a dynamic switch
that is capable of providing different internal con-
nections between the ports of the switch.

Expanded storage may also be available in the
system, a cryptographic unit may be included in a
CPU, and an external time reference (ETR) may
be connected to the system.

The physical identity of the above functions may
vary among implementations, called “models.”
Figure 2-1 depicts the logical structure of a
two-CPU multiprocessing system that includes
expanded storage and a cryptographic unit and
that is connected to an ETR.

Specific processors may differ in their internal
characteristics, the installed facilities, the number
of subchannels, channel paths, and control units
which can be attached to the channel subsystem,
the size of main and expanded storage, and the
representation of the operator facilities.

© Copyright IBM Corp. 1990-2001

Expanded Storage Main Storage

CPU —

Crypto

Channel
Subsystem

Serial Channel Paths Paralle Thanne] Paths
/

|
/

Dynamic Dynamic
Switch Switch

T T T

000 000
Figure 2-1. Logical Structure of a z/Architecture
System with Two CPUs

A system viewed without regard to its I/O devices
is referred to as a configuration. All of the phys-

ical equipment, whether in the configuration or not,
is referred to as the installation.

Model-dependent reconfiguration controls may be
provided to change the amount of main and
expanded storage and the number of CPUs and
channel paths in the configuration. In some
instances, the reconfiguration controls may be
used to partition a single configuration into mul-
tiple configurations. Each of the configurations so
reconfigured has the same structure, that is, main
and expanded storage, one or more CPUs, and
one or more subchannels and channel paths in
the channel subsystem.

Each configuration is isolated in that the main and
expanded storage in one configuration is not
directly addressable by the CPUs and the channel
subsystem of another configuration. It is,
however, possible for one configuration to commu-
nicate with another by means of shared I/O
devices or a channel-to-channel adapter. At any
one time, the storage, CPUs, subchannels, and
channel paths connected together in a system are
referred to as being in the configuration. Each
CPU, subchannel, channel path, main-storage
location, and expanded-storage location can be in
only one configuration at a time.

Main Storage

Main storage, which is directly addressable, pro-
vides for high-speed processing of data by the
CPUs and the channel subsystem. Both data and
programs must be loaded into main storage from
input devices before they can be processed. The
amount of main storage available in the system
depends on the model, and, depending on the
model, the amount in the configuration may be
under control of model-dependent configuration
controls. The storage is available in multiples of
4K-byte blocks. At any instant, the channel sub-
system and all CPUs in the configuration have
access to the same blocks of storage and refer to
a particular block of main-storage locations by
using the same absolute address.

Main storage may include a faster-access buffer
storage, sometimes called a cache. Each CPU
may have an associated cache. The effects,
except on performance, of the physical con-
struction and the use of distinct storage media are
not observable by the program.

2-2 z/Architecture Principles of Operation

Expanded Storage

Expanded storage may be available on some
models. Expanded storage, when available, can
be accessed by all CPUs in the configuration by
means of instructions that transfer 4K-byte blocks
of data from expanded storage to main storage or
from main storage to expanded storage. These
instructions are the PAGE IN and PAGE OUT
instructions, described in [Chapter 10, “Control|

Each 4K-byte block of expanded storage is
addressed by means of a 32-bit unsigned binary
integer called an expanded-storage block number.

CPU

The central processing unit (CPU) is the control-
ling center of the system. It contains the
sequencing and processing facilities for instruction
execution, interruption action, timing functions,
initial program loading, and other machine-related
functions.

The physical implementation of the CPU may
differ among models, but the logical function
remains the same. The result of executing an
instruction is the same for each model, providing
that the program complies with the compatibility
rules.

The CPU, in executing instructions, can process
binary integers and floating-point numbers (binary
and hexadecimal) of fixed length, decimal integers
of variable length, and logical information of either
fixed or variable length. Processing may be in
parallel or in series; the width of the processing
elements, the multiplicity of the shifting paths, and
the degree of simultaneity in performing the dif-
ferent types of arithmetic differ from one model of
CPU to another without affecting the logical
results.

Instructions which the CPU executes fall into
seven classes: general, decimal, floating-point-
support (FPS), binary-floating-point (BFP),
hexadecimal-floating-point (HFP), control, and 1/O
instructions. The general instructions are used in
performing binary-integer-arithmetic operations
and logical, branching, and other nonarithmetic
operations. The decimal instructions operate on

data in the decimal format. The BFP and HFP
instructions operate on data in the BFP and HFP
formats, respectively, while the FPS instructions
operate on floating-point data independent of the
format or convert it from one format to the other.
The privileged control instructions and the 1/O
instructions can be executed only when the CPU
is in the supervisor state; the semiprivileged
control instructions can be executed in the
problem state, subject to the appropriate authori-
zation mechanisms.

The CPU provides registers which are available to
programs but do not have addressable represen-
tations in main storage. They include the current
program-status word (PSW), the general registers,
the floating-point registers and floating-point-
control register, the control registers, the access
registers, the prefix register, and the registers for
the clock comparator and the CPU timer. Each
CPU in an installation provides access to a time-
of-day (TOD) clock, which is shared by all CPUs
in the installation. The instruction operation code
determines which type of register is to be used in
an operation. See [Figure 2-2 on page 2-5 ffor
the format of the control, access, general, and
floating-point registers.

PSW

The program-status word (PSW) includes the
instruction address, condition code, and other
information used to control instruction sequencing
and to determine the state of the CPU. The active
or controlling PSW is called the current PSW. It
governs the program currently being executed.

The CPU has an interruption capability, which
permits the CPU to switch rapidly to another
program in response to exceptional conditions and
external stimuli. When an interruption occurs, the
CPU places the current PSW in an assigned
storage location, called the old-PSW location, for
the particular class of interruption. The CPU
fetches a new PSW from a second assigned
storage location. This new PSW determines the
next program to be executed. When it has fin-
ished processing the interruption, the program
handling the interruption may reload the old PSW,
making it again the current PSW, so that the inter-
rupted program can continue.

There are six classes of interruption: external,
I/O, machine check, program, restart, and super-

visor call. Each class has a distinct pair of
old-PSW and new-PSW locations permanently
assigned in real storage.

General Registers

Instructions may designate information in one or
more of 16 general registers. The general regis-
ters may be used as base-address registers and
index registers in address arithmetic and as accu-
mulators in general arithmetic and logical oper-
ations. Each register contains 64 bit positions.
The general registers are identified by the
numbers 0-15 and are designated by a four-bit R
field in an instruction. Some instructions provide
for addressing multiple general registers by having
several R fields. For some instructions, the use of
a specific general register is implied rather than
explicitly designated by an R field of the instruc-
tion.

For some operations, either bits 32-63 or bits 0-63
of two adjacent general registers are coupled, pro-
viding a 64-bit or 128-bit format, respectively. In
these operations, the program must designate an
even-numbered register, which contains the left-
most (high-order) 32 or 64 bits. The next higher-
numbered register contains the rightmost
(low-order) 32 or 64 bits.

In addition to their use as accumulators in general
arithmetic and logical operations, 15 of the 16
general registers are also used as base-address
and index registers in address generation. In
these cases, the registers are designated by a
four-bit B field or X field in an instruction. A value
of zero in the B or X field specifies that no base or
index is to be applied, and, thus, general register
0 cannot be designated as containing a base
address or index.

Floating-Point Registers

All floating-point instructions (FPS, BFP, and HFP)
use the same floating-point registers. The CPU
has 16 floating-point registers. The floating-point
registers are identified by the numbers 0-15 and
are designated by a four-bit R field in floating-point
instructions. Each floating-point register is 64 bits
long and can contain either a short (32-bit) or a
long (64-bit) floating-point operand. As shown in
[Figure 2-2 on page 2-5| pairs of floating-point
registers can be used for extended (128-bit) oper-

Chapter 2. Organization 2-3

ands. Each of the eight pairs is referred to by the
number of the lower-numbered register of the pair.

Floating-Point-Control Register

The floating-point-control (FPC) register is a 32-bit
register that contains mask bits, flag bits, a data-
exception code, and rounding-mode bits. The
FPC register is described in the section
[Point-Control (FPC) Register” on page 19-2

Control Registers

The CPU has 16 control registers, each having 64
bit positions. The bit positions in the registers are
assigned to particular facilities in the system, such
as program-event recording, and are used either
to specify that an operation can take place or to
furnish special information required by the facility.

The control registers are identified by the numbers
0-15 and are designated by four-bit R fields in the
instructions LOAD CONTROL and STORE
CONTROL. Multiple control registers can be
addressed by these instructions.

Access Registers

The CPU has 16 access registers numbered 0-15.
An access register consists of 32 bit positions
containing an indirect specification (not described
here in detaill of an address-space-control
element. An address-space-control element is a
parameter used by the dynamic-address-

2-4 z/Architecture Principles of Operation

translation (DAT) mechanism to translate refer-
ences to a corresponding address space. When
the CPU is in a mode called the access-register
mode (controlled by bits in the PSW), an instruc-
tion B field, used to specify a logical address for a
storage-operand reference, designates an access
register, and the address-space-control element
specified by the access register is used by DAT
for the reference being made. For some
instructions, an R field is used instead of a B field.
Instructions are provided for loading and storing
the contents of the access registers and for
moving the contents of one access register to
another.

Each of access registers 1-15 can designate any
address space, including the current instruction
space (the primary address space). Access reg-
ister 0 always designates the current instruction
space. When one of access registers 1-15 is
used to designate an address space, the CPU
determines which address space is designated by
translating the contents of the access register.
When access register 0 is used to designate an
address space, the CPU treats the access register
as designating the current instruction space, and it
does not examine the actual contents of the
access register. Therefore, the 16 access regis-
ters can designate, at any one time, the current
instruction space and a maximum of 15 other
spaces.

B 1 aveel ool It st
o o | [|l |
oo 1 | . || \
o 2 | N | |
o 3 | R | |
ow 4 | N |l \
oo s | R l |
o ¢ | [| |
o 7 | . | \
s | N |l |
w9 | R || |
o | N | \
o | R | |
w2 | [|l |
o3 | . || \
o 1 | N | |
s | R | |

Note: The arrows indicate that the two registers may be coupled as a double-register pair,

designated by specifying the lower-numbered register in the R field. For example, the floating-point

register pair 13 and 15 is designated by 1101 binary in the R field.

Figure 2-2. Control, Access, General, and Floating-Point Registers

Chapter 2. Organization

2-5

Cryptographic Facility

Depending on the model, an integrated
cryptographic facility may be provided as an
extension of the CPU. When the cryptographic
facility is provided on a CPU, it functions as an
integral part of that CPU. A summary of the bene-
fits of the cryptographic facility is given on page
the facility is otherwise not described.

External Time Reference

Depending on the model, an external time refer-
ence (ETR) may be connected to the configura-
tion. A summary of the benefits of the ETR is
given on page [1-11} the facility is otherwise not
described.

I/0

Input/output (I/O) operations involve the transfer of
information between main storage and an I/O
device. /O devices and their control units attach
to the channel subsystem, which controls this data
transfer.

Channel Subsystem

The channel subsystem directs the flow of infor-
mation between 1/O devices and main storage. It
relieves CPUs of the task of communicating
directly with I/O devices and permits data proc-
essing to proceed concurrently with 1/O proc-
essing. The channel subsystem uses one or more
channel paths as the communication link in man-
aging the flow of information to or from I/O
devices. As part of I/O processing, the channel
subsystem also performs the path-management
function of testing for channel-path availability,
selecting an available channel path, and initiating
execution of the operation with the 1/0O device.
Within the channel subsystem are subchannels.

One subchannel is provided for and dedicated to
each 1/0O device accessible to the channel sub-
system. Each subchannel contains storage for
information concerning the associated 1/0O device
and its attachment to the channel subsystem. The
subchannel also provides storage for information
concerning /O operations and other functions
involving the associated 1/0O device. Information
contained in the subchannel can be accessed by

2-6 z/Architecture Principles of Operation

CPUs using 1/O instructions as well as by the
channel subsystem and serves as the means of
communication between any CPU and the channel
subsystem concerning the associated 1/0O device.
The actual number of subchannels provided
depends on the model and the configuration; the
maximum number of subchannels is 65,536.

Channel Paths

I/O devices are attached through control units to
the channel subsystem via channel paths. Control
units may be attached to the channel subsystem
via more than one channel path, and an 1/O
device may be attached to more than one control
unit. In all, an individual 1/0 device may be acces-
sible to a channel subsystem by as many as eight
different channel paths, depending on the model
and the configuration. The total number of
channel paths provided by a channel subsystem
depends on the model and the configuration; the
maximum number of channel paths is 256.

A channel path can use one of three types of
communication links:

e System/360 and System/370 I/O interface,
called the parallel-1/O interface; the channel
path is called a parallel channel path

e ESCON /O interface, called a serial-1/O inter-
face; the channel path is called a serial
channel path

* FICON I/O interface, also called a serial-lI/O
interface; the channel path again is called a
serial channel path

Each parallel-I/O interface consists of a number of
electrical signal lines between the channel sub-
system and one or more control units. Eight
control units can share a single parallel-I/O inter-
face. Up to 256 I/O devices can be addressed on
a single parallel-I/O interface. The parallel-1/O
interface is described in the publication /BM
System/360 and System/370 I/O Interface
Channel to Control Unit Original Equipment Man-
ufacturers' Information, GA22-6974.

Each serial-l/O interface consists of two optical-
fiber conductors between any two of a channel
subsystem, a dynamic switch, and a control unit.
A dynamic switch can be connected by means of
multiple serial-1/O interfaces to either the same or
different channel subsystems and to multiple
control units. The number of control units which

can be connected on one channel path depends
on the channel-subsystem and dynamic-switch
capabilities. Up to 256 devices can be attached to
each control unit that uses the serial-I/O interface,
depending on the control unit. The ESCON 1/0O
interface is described in the publication ESA/390
ESCON /O Interface, SA22-7202. The FICON
I/O interface is described in the ANSI standards
document Fibre Channel - Single-Byte Command
Code Sets-2 (FC-SB-2).

/O Devices and Control Units

I/O devices include such equipment as printers,
magnetic-tape units, direct-access-storage
devices, displays, keyboards, communications
controllers, teleprocessing devices, and sensor-
based equipment. Many I/O devices function with
an external medium, such as paper or magnetic
tape. Other I/O devices handle only electrical
signals, such as those found in displays and com-
munications networks. In all cases, 1/O-device

operation is regulated by a control unit that pro-
vides the logical and buffering capabilities neces-
sary to operate the associated I/O device. From
the programming point of view, most control-unit
functions merge with I/O-device functions. The
control-unit function may be housed with the I/O
device or in the CPU, or a separate control unit
may be used.

Operator Facilities

The operator facilities provide the functions neces-
sary for operator control of the machine. Associ-
ated with the operator facilities may be an
operator-console device, which may also be used
as an /O device for communicating with the
program.

The main functions provided by the operator facili-

ties include resetting, clearing, initial program
loading, start, stop, alter, and display.

Chapter 2. Organization 2-7

2-8 z/Architecture Principles of Operation

Chapter 3. Storage

Storage Addressing 3-2
Information Formats 3-2
Integral Boundaries 3-3

Address Types and Formats 3-3
Address Types 3-3

Absolute Address 3-3
Real Address 3-4
Virtual Address 3-4
Primary Virtual Address 3-4
Secondary Virtual Address 3-4
AR-Specified Virtual Address 3-5
Home Virtual Address 3-5
Logical Address 3-5
Instruction Address 3-5
Effective Address 3-5
Address Size and Wraparound 3-5
Address Wraparound 3-6

StorageKey 3-8

Protection 3-9
Key-Controlled Protection 3-9

Storage-Protection-Override Control . . 3-10
Fetch-Protection-Override Control . . . 3-11
Access-List-Controlled Protection 3-11
Page Protection 3-11
Low-Address Protection 3-12
Suppression on Protection 3-12

Reference Recording 3-14

Change Recording 3-14

Prefixing 3-15

Address Spaces 3-16

Changing to Different Address Spaces . 3-17
Address-Space Number 3-17

ASN Translation 3-18

ASN-Translation Controls 3-18
Control Register 14 3-18
ASN-Translation Tables 3-19
ASN-First-Table Entries 3-19
ASN-Second-Table Entries 3-19
ASN-Translation Process 3-21
ASN-First-Table Lookup 3-22
ASN-Second-Table Lookup 3-23

Recognition of Exceptions during ASN

Translation 3-23
ASN Authorization 3-23
ASN-Authorization Controls 3-23
Control Register4 3-23
ASN-Second-Table Entry 3-24
Authority-Table Entries 3-24
ASN-Authorization Process 3-24
Authority-Table Lookup 3-25
Recognition of Exceptions during ASN
Authorization 3-26
Dynamic Address Translation 3-26
Translation Control 3-28
Translation Modes 3-28
Control Register0 3-29
Control Register1 3-29
Control Register 7 3-30
Control Register 13 3-31
Translation Tables 3-31
Region-Table Entries 3-32
Segment-Table Entries 3-33
Page-Table Entries 3-33
Translation Process 3-34
Inspection of Real-Space Control 3-39

Inspection of Designation-Type Control 3-39
Lookup in a Table Designated by an

Address-Space-Control Element . . 3-39
Lookup in a Table Designated by a
Region-Table Entry 3-40
Page-Table Lookup 3-42
Formation of the Real Address 3-42
Recognition of Exceptions during
Translation 3-42
Translation-Lookaside Buffer 3-42
TLB Structure 3-43
Formation of TLB Entries 3-43
Use of TLB Entries 3-44
Modification of Translation Tables . . . 3-45
Address Summary L 3-47
Addresses Translated 3-47
Handling of Addresses 3-48
Assigned Storage Locations 3-51

This chapter discusses the representation of infor-
mation in main storage, as well as addressing,
protection, and reference and change recording.
The aspects of addressing which are covered
include the format of addresses, the concept of

© Copyright IBM Corp. 1990-2001

address spaces, the various types of addresses,
and the manner in which one type of address is
translated to another type of address. A list of
permanently assigned storage locations appears
at the end of the chapter.

3-1

Main storage provides the system with directly
addressable fast-access storage of data. Both
data and programs must be loaded into main
storage (from input devices) before they can be
processed.

Main storage may include one or more smaller
faster-access buffer storages, sometimes called
caches. A cache is usually physically associated
with a CPU or an 1/O processor. The effects,
except on performance, of the physical con-
struction and use of distinct storage media are not
observable by the program.

Fetching and storing of data by a CPU are not
affected by any concurrent channel-subsystem
activity or by a concurrent reference to the same
storage location by another CPU. When concur-
rent requests to a main-storage location occur,
access normally is granted in a sequence deter-
mined by the system. If a reference changes the
contents of the location, any subsequent storage
fetches obtain the new contents.

Main storage may be volatile or nonvolatile. If it is
volatile, the contents of main storage are not pre-
served when power is turned off. If it is nonvola-
tile, turning power off and then back on does not
affect the contents of main storage, provided all
CPUs are in the stopped state and no references
are made to main storage when power is being
turned off. In both types of main storage, the con-
tents of the storage key are not necessarily pre-
served when the power for main storage is turned
off.

Note: Because most references in this publica-
tion apply to virtual storage, the abbreviated term
“storage” is often used in place of “virtual storage.”
The term “storage” may also be used in place of
“‘main storage,” “absolute storage,” or “real
storage” when the meaning is clear. The terms
“main storage” and “absolute storage” are used to
describe storage which is addressable by means
of an absolute address. The terms describe fast-
access storage, as opposed to auxiliary storage,
such as provided by direct-access storage
devices. “Real storage” is synonymous with
“absolute storage” except for the effects of pre-
fixing.

3-2 z/Architecture Principles of Operation

Storage Addressing

Storage is viewed as a long horizontal string of
bits. For most operations, accesses to storage
proceed in a left-to-right sequence. The string of
bits is subdivided into units of eight bits. An
eight-bit unit is called a byte, which is the basic
building block of all information formats.

Each byte location in storage is identified by a
unigue nonnegative integer, which is the address
of that byte location or, simply, the byte address.
Adjacent byte locations have consecutive
addresses, starting with 0 on the left and pro-
ceeding in a left-to-right sequence. Addresses are
unsigned binary integers and are 24, 31, or 64
bits. Addresses are described in
[and Wraparound” on page 3-5|

Information Formats

Information is transmitted between storage and a
CPU or the channel subsystem one byte, or a
group of bytes, at a time. Unless otherwise speci-
fied, a group of bytes in storage is addressed by
the leftmost byte of the group. The number of
bytes in the group is either implied or explicitly
specified by the operation to be performed. When
used in a CPU operation, a group of bytes is
called a field.

Within each group of bytes, bits are numbered in
a left-to-right sequence. The leftmost bits are
sometimes referred to as the “high-order” bits and
the rightmost bits as the “low-order” bits. Bit
numbers are not storage addresses, however.
Only bytes can be addressed. To operate on indi-
vidual bits of a byte in storage, it is necessary to
access the entire byte.

The bits in a byte are numbered 0 through 7, from
left to right.

The bits in an address may be numbered 8-31 or
40-63 for 24-bit addresses or 1-31 or 33-63 for
31-bit addresses; they are numbered 0-63 for
64-bit addresses. Within any other fixed-length
format of multiple bytes, the bits making up the
format are consecutively numbered starting from
0.

For purposes of error detection, and in some
models for correction, one or more check bits may
be transmitted with each byte or with a group of

bytes. Such check bits are generated automat-
ically by the machine and cannot be directly con-
trolled by the program. References in this
publication to the length of data fields and regis-
ters exclude mention of the associated check bits.
All storage capacities are expressed in nhumber of
bytes.

When the length of a storage-operand field is
implied by the operation code of an instruction, the
field is said to have a fixed length, which can be
one, two, four, or eight bytes. Larger fields may
be implied for some instructions.

When the length of a storage-operand field is not
implied but is stated explicitly, the field is said to
have a variable length. Variable-length operands
can vary in length by increments of one byte.

When information is placed in storage, the con-
tents of only those byte locations are replaced that
are included in the designated field, even though
the width of the physical path to storage may be
greater than the length of the field being stored.

Integral Boundaries

Certain units of information must be on an integral
boundary in storage. A boundary is called integral
for a unit of information when its storage address
is a multiple of the length of the unit in bytes.
Special names are given to fields of 2, 4, 8, and
16 bytes on an integral boundary. A halfword is a
group of two consecutive bytes on a two-byte
boundary and is the basic building block of
instructions. A word is a group of four consec-
utive bytes on a four-byte boundary. A
doubleword is a group of eight consecutive bytes
on an eight-byte boundary. A quadword is a
group of 16 consecutive bytes on a 16-byte
boundary. (See [Figure 3-1 on page 3-4])

When storage addresses designate halfwords,
words, doublewords, and quadwords, the binary
representation of the address contains one, two,
three, or four rightmost zero bits, respectively.

Instructions must be on two-byte integral bounda-
ries, and CCWs, IDAWSs, and the storage oper-
ands of certain instructions must be on other
integral boundaries. The storage operands of
most instructions do not have boundary-alignment
requirements.

Programming Note: For fixed-field-length oper-
ations with field lengths that are a power of 2, sig-
nificant performance degradation is possible when
storage operands are not positioned at addresses
that are integral multiples of the operand length.
To improve performance, frequently used storage
operands should be aligned on integral bounda-
ries.

Address Types and Formats

Address Types

For purposes of addressing main storage, three
basic types of addresses are recognized: abso-
lute, real, and virtual. The addresses are distin-
guished on the basis of the transformations that
are applied to the address during a storage
access. Address translation converts virtual to
real, and prefixing converts real to absolute. In
addition to the three basic address types, addi-
tional types are defined which are treated as one
or another of the three basic types, depending on
the instruction and the current mode.

Absolute Address

An absolute address is the address assigned to a
main-storage location. An absolute address is
used for a storage access without any transforma-
tions performed on it.

The channel subsystem and all CPUs in the con-
figuration refer to a shared main-storage location
by using the same absolute address. Available
main storage is usually assigned contiguous abso-
lute addresses starting at 0, and the addresses
are always assigned in complete 4K-byte blocks
on integral boundaries. An exception is recog-
nized when an attempt is made to use an absolute
address in a block which has not been assigned
to physical locations. On some models, storage-
reconfiguration controls may be provided which
permit the operator to change the correspondence
between absolute addresses and physical
locations. However, at any one time, a physical
location is not associated with more than one
absolute address.

Storage consisting of byte locations sequenced

according to their absolute addresses is referred
to as absolute storage.

Chapter 3. Storage 3-3

- — Storage Addresses

Bytes o123 |4|5|6]|7]|8

Quadwords 0

T T | T | T T |
Halfwords 0 | 2 | 4 | 6 | 8 10 | 12 | 14 | 16 |
T | T | T T T | T | T |

Words 0 4 8 12 16
| | I | I | | | | | I |
T | T T | T T T | T T | T |

DoubTewords | 0 8 16
| | I | | I | | | I | | I |
T | T T | T T | T | T T | T |

16
| | I | | I | | | | I | | I |

Figure 3-1. Integral Boundaries with Storage Addresses

Real Address

A real address identifies a location in real storage.
When a real address is used for an access to
main storage, it is converted, by means of pre-
fixing, to an absolute address.

At any instant there is one real-address to
absolute-address mapping for each CPU in the
configuration. When a real address is used by a
CPU to access main storage, it is converted to an
absolute address by prefixing. The particular
transformation is defined by the value in the prefix
register for the CPU.

Storage consisting of byte locations sequenced
according to their real addresses is referred to as
real storage.

Virtual Address

A virtual address identifies a location in virtual
storage. When a virtual address is used for an
access to main storage, it is translated by means
of dynamic address translation to a real address,
which is then further converted by prefixing to an
absolute address.

3-4 z/Architecture Principles of Operation

Primary Virtual Address

A primary virtual address is a virtual address
which is to be translated by means of the primary
address-space-control element. Logical
addresses are treated as primary virtual
addresses when in the primary-space mode.
Instruction addresses are treated as primary
virtual addresses when in the primary-space
mode, secondary-space mode, or access-register
mode. The first-operand address of MOVE TO
PRIMARY and the second-operand address of
MOVE TO SECONDARY are always treated as
primary virtual addresses.

Secondary Virtual Address

A secondary virtual address is a virtual address
which is to be translated by means of the sec-
ondary address-space-control element. Logical
addresses are treated as secondary virtual
addresses when in the secondary-space mode.
The second-operand address of MOVE TO
PRIMARY and the first-operand address of MOVE
TO SECONDARY are always treated as sec-
ondary virtual addresses.

AR-Specified Virtual Address

An AR-specified virtual address is a virtual
address which is to be translated by means of an
access-register-specified address-space-control
element. Logical addresses are treated as
AR-specified addresses when in the access-
register mode.

Home Virtual Address

A home virtual address is a virtual address which
is to be translated by means of the home address-
space-control element. Logical addresses and
instruction addresses are treated as home virtual
addresses when in the home-space mode.

Logical Address

Except where otherwise specified, the storage-
operand addresses for most instructions are
logical addresses. Logical addresses are treated
as real addresses in the real mode, as primary
virtual addresses in the primary-space mode, as
secondary virtual addresses in the secondary-
space mode, as AR-specified virtual addresses in
the access-register mode, and as home virtual
addresses in the home-space mode. Some
instructions have storage-operand addresses or
storage accesses associated with the instruction
which do not follow the rules for logical addresses.
In all such cases, the instruction definition con-
tains a definition of the type of address.

Instruction Address

Addresses used to fetch instructions from storage
are called instruction addresses. Instruction
addresses are treated as real addresses in the
real mode, as primary virtual addresses in the
primary-space mode, secondary-space mode, or
access-register mode, and as home virtual
addresses in the home-space mode. The instruc-
tion address in the current PSW and the target
address of EXECUTE are instruction addresses.

Effective Address

In some situations, it is convenient to use the term
“effective address.” An effective address is the
address which exists before any transformation by
dynamic address translation or prefixing is per-
formed. An effective address may be specified
directly in a register or may result from address
arithmetic. Address arithmetic is the addition of
the base and displacement or of the base, index,
and displacement.

Address Size and Wraparound

An address size refers to the maximum number of
significant bits that can represent an address.
Three sizes of addresses are provided: 24-bit,
31-bit, and 64-bit. A 24-bit address can accom-
modate a maximum of 16,777,216 (16M) bytes;
with a 31-bit address, 2,147,483,648 (2G) bytes
can be addressed; and, with a 64-bit address,
18,446,744,073,709,551,616 (16E) bytes can be
addressed.

The bits of a 24-bit, 31-bit, or 64-bit address
produced by address arithmetic under the control
of the current addressing mode are numbered
40-63, 33-63, and 0-63, respectively, corre-
sponding to the numbering of base-address and
index bits in a general register:

—/
24-Bit Address
—/
0 40 63
—/
31-Bit Address

—/
0 33 63

/
[: 64-Bit Address

/
0 63

The bits of an address that is 31 bits regardless of
the addressing mode are numbered 1-31, and,
when a 24-bit or 31-bit address is contained in a
four-byte field in storage, the bits are numbered
8-31 or 1-31, respectively:

24-Bit Address

31-Bit Address

0 1 31

A 24-bit or 31-bit virtual address is expanded to
64 bits by appending 40 or 33 zeros, respectively,
on the left before it is translated by means of the
DAT process, and a 24-bit or 31-bit real address
is similarly expanded to 64 bits before it is trans-
formed by prefixing. A 24-bit or 31-bit absolute
address is expanded to 64 bits before main
storage is accessed. Thus, the 24-bit address
always designates a location in the first 16M-byte

Chapter 3. Storage 3-5

block of the 16E-byte storage addressable by a
64-bit address, and the 31-bit address always des-
ignates a location in the first 2G-byte block.

Unless specifically stated to the contrary, the fol-
lowing definition applies in this publication: when-
ever the machine generates and provides to the
program a 24-bit or 31-bit address, the address is
made available (placed in storage or loaded into a
general register) by being imbedded in a 32-bit
field, with the leftmost eight bits or one bit in the
field, respectively, set to zeros. When the address
is loaded into a general register, bits 0-31 of the
register remain unchanged.

The size of effective addresses is controlled by
bits 31 and 32 of the PSW, the extended-
addressing-mode bit and the basic-addressing-
mode bit, respectively. When bits 31 and 32 are
both zero, the CPU is in the 24-bit addressing
mode, and 24-bit operand and instruction effective
addresses are specified. When bit 31 is zero and
bit 32 is one, the CPU is in the 31-bit addressing
mode, and 31-bit operand and instruction effective
addresses are specified. When bits 31 and 32 are
both one, the CPU is in the 64-bit addressing
mode, and 64-bit operand and instruction effective
addresses are specified (see
[Generation” on page 5-7).

The sizes of the real or absolute addresses used
or yielded by the ASN-translation,
ASN-authorization, PC-number-translation, and
access-register-translation processes are always
31 bits regardless of the current addressing mode.
Similarly, the sizes of the real or absolute
addresses used or yielded by the DAT, stacking,
unstacking, and tracing processes are always 64
bits.

The size of the data address in a CCW is under
control of the CCW-format-control bit in the
operation-request block (ORB) designated by a
START SUBCHANNEL instruction. The CCWs
with 24-bit and 31-bit addresses are called
format-0 and format-1 CCWs, respectively.
Format-0 and format-1 CCWs are described in
[Chapter 15, “Basic_1/O_Functions.’] Similarly, the
size of the data address in an IDAW is under
control of the IDAW-format-control bit in the ORB.
The IDAWs with 31-bit and 64-bit addresses are
called format-1 and format-2 IDAWSs, respectively.

3-6 z/Architecture Principles of Operation

Format-1 and format-2 IDAWs are described in
Chapter 15, “Basic 1/0 Functions.”

Address Wraparound

The CPU performs address generation when it
forms an operand or instruction address or when it
generates the address of a table entry from the
appropriate table origin and index. It also per-
forms address generation when it increments an
address to access successive bytes of a field.
Similarly, the channel subsystem performs
address generation when it increments an address
(1) to fetch a CCW, (2) to fetch an IDAW, (3) to
transfer data, or (4) to compute the address of an
I/O measurement block.

When, during the generation of the address, an
address is obtained that exceeds the value
allowed for the address size (224 - 1, 231 - 1, or
264 - 1), one of the following two actions is taken:

1. The carry out of the high-order bit position of
the address is ignored. This handling of an
address of excessive size is called
wraparound.

2. An interruption condition is recognized.

The effect of wraparound is to make an address
space appear circular; that is, address O appears
to follow the maximum allowable address.
Address arithmetic and wraparound occur before
transformation, if any, of the address by DAT or
prefixing.

Addresses generated by the CPU that may be
virtual addresses always wrap. Wraparound also
occurs when the linkage-stack-entry address in
control register 15 is decremented below 0 by
PROGRAM RETURN. For CPU table entries that
are addressed by real or absolute addresses, it is
unpredictable whether the address wraps or an
addressing exception is recognized.

For channel-program execution, when the gener-
ated address exceeds the value for the address
size (or, for the read-backward command is decre-
mented below 0), an 1/O program-check condition
is recognized.

[Figure 3-2 on page 3-7]identifies what limit values
apply to the generation of different addresses and
how addresses are handled when they exceed the
allowed value.

Handling when
Address| Address Would
Address Generation for Type Wrap

Instructions and operands when EAM and BAM are zero L,I,R,V W24

Successive bytes of instructions and operands when EAM and I,L,v? W24
BAM are zero

Instructions and operands when EAM is zero and BAM is one L,I,R,V W31

Successive bytes of instructions and operands when EAM is I,L,V? W31
zero and BAM is one

Instructions and operands when EAM and BAM are one L,I,R,V W64

Successive bytes of instructions and operands when EAM and I,L,V? W64
BAM are one

DAT-table entries when used for implicit translation or LRA [A or R2 X64
or STRAG

ASN-second-table, authority-table (during ASN authorization), R X31
linkage-table, and entry-table entries

Authority-table (during access-register translation) and A or R2 X31
access-1ist entries

Linkage-stack entry v W64

I/0 measurement block A P31

For a channel program with format-0 CCWs:
Successive CCWs A P24
Successive IDAWs A P24
Successive bytes of I/0 data (without IDAWs) A P24
Successive bytes of I/0 data (with format-1 IDAWs) A P31
Successive bytes of I/0 data (with format-2 IDAWSs) A P64

For a channel program with format-1 CCWs:
Successive CCWs A P31
Successive IDAWs A P31
Successive bytes of I/0 data (without IDAWs) A P31
Successive bytes of I/0 data (with format-1 IDAWSs) A P31
Successive bytes of I/0 data (with format-2 IDAWs) A P64

Figure 3-2 (Part 1 of 2). Address Wraparound

Chapter 3. Storage

3-7

Explanation:

boundary 224, 231, or 264,

A Absolute address.

BAM Basic-addressing-mode bit in the PSW.
EAM Extended-addressing-mode bit in the PSW.
I Instruction address.

L Logical address.

or is decremented below zero.
or is decremented below zero.

or is decremented below zero.

R Real address.

v Virtual address.

W24 Wrap to location O after location 224 -

W31 Wrap to location 0 after location 231! -

W64 Wrap to location 0 after Tocation 264 -

X31 When the address exceeds 23! - 1, it is
to location 0 after location 23! - 1 or
recognized.

X64 When the address exceeds 264 - 1, it is
to location 0 after location 264 - 1 or
recognized.

1 Real addresses do not apply in this case since the instructions which designate
operands by means of real addresses cannot designate operands that cross

2 It is unpredictable whether the address is absolute or real.

P24 An I/0 program-check condition is recognized when the address exceeds 224 - 1
P31 An I/0 program-check condition is recognized when the address exceeds 23! - 1

P64 An I/0 program-check condition is recognized when the address exceeds 264 - 1

1 and vice versa.

1 and vice versa.

1 and vice versa.

unpredictable whether the address wraps
whether an addressing exception is

unpredictable whether the address wraps
whether an addressing exception is

Figure 3-2 (Part 2 of 2). Address Wraparound

Storage Key

A storage key is associated with each 4K-byte
block of storage that is available in the configura-
tion. The storage key has the following format:

ACC |F(R]|C

0 4 6

The bit positions in the storage key are allocated
as follows:

Access-Control Bits (ACC): If a reference is
subject to key-controlled protection, the four
access-control bits, bits 0-3, are matched with the
four-bit access key when information is stored, or
when information is fetched from a location that is
protected against fetching.

Fetch-Protection Bit (F): If a reference is
subject to key-controlled protection, the fetch-
protection bit, bit 4, controls whether key-
controlled protection applies to fetch-type
references: a zero indicates that only store-type
references are monitored and that fetching with

3-8 z/Architecture Principles of Operation

any access key is permitted; a one indicates that
key-controlled protection applies to both fetching
and storing. No distinction is made between the
fetching of instructions and of operands.

Reference Bit (R): The reference bit, bit 5,
normally is set to one each time a location in the
corresponding storage block is referred to either
for storing or for fetching of information.

Change Bit (C): The change bit, bit 6, is set to
one each time information is stored at a location in
the corresponding storage block.

Storage keys are not part of addressable storage.
The entire storage key is set by SET STORAGE
KEY EXTENDED and inspected by INSERT
STORAGE KEY EXTENDED. Additionally, the
instruction RESET REFERENCE BIT EXTENDED
provides a means of inspecting the reference and
change bits and of setting the reference bit to
zero. Bits 0-4 of the storage key are inspected by
the INSERT VIRTUAL STORAGE KEY instruction.
The contents of the storage key are unpredictable
during and after the execution of the usability test
of the TEST BLOCK instruction.

Protection

Four protection facilities are provided to protect
the contents of main storage from destruction or
misuse by programs that contain errors or are
unauthorized: key-controlled protection, access-
list-controlled protection, page protection, and low-
address protection. The protection facilities are
applied independently; access to main storage is
only permitted when none of the facilities prohibit
the access.

Key-controlled protection affords protection against
improper storing or against both improper storing
and fetching, but not against improper fetching
alone.

Key-Controlled Protection

When key-controlled protection applies to a
storage access, a store is permitted only when the
storage key matches the access key associated
with the request for storage access; a fetch is per-
mitted when the keys match or when the fetch-
protection bit of the storage key is zero.

The keys are said to match when the four access-
control bits of the storage key are equal to the
access key, or when the access key is zero.

The protection action is summarized in Figure 3-3.

When the access to storage is initiated by the
CPU and key-controlled protection applies, the
PSW key is the access key, except that the
access key is specified in a general register for
the first operand of MOVE TO SECONDARY and
MOVE WITH DESTINATION KEY and for the
second operand of MOVE TO PRIMARY, MOVE
WITH KEY, and MOVE WITH SOURCE KEY.
The PSW key occupies bit positions 8-11 of the
current PSW.

When the access to storage is for the purpose of
channel-program execution, the subchannel key
associated with that channel program is the
access key. The subchannel key for a channel
program is specified in the operation-request block
(ORB). When, for purposes of channel-subsystem
monitoring, an access to the measurement block
is made, the measurement-block key is the access
key. The measurement-block key is specified by
the SET CHANNEL MONITOR instruction.

Conditions Is Access to
Storage Permitted?
Fetch-Protection
Bit of
Storage Key Key Relation| Fetch Store
0 Match Yes Yes
0 Mismatch Yes No
1 Match Yes Yes
1 Mismatch No No
Explanation:

Match The four access-control bits of the
storage key are equal to the access
key, or the access key is zero.

Yes Access is permitted.

No Access is not permitted. On fetching,

the information is not made available
to the program; on storing, the con-
tents of the storage Tocation are not
changed.

Figure 3-3. Summary of Protection Action

When a CPU access is prohibited because of key-
controlled protection, the execution of the instruc-
tion is terminated, and a program interruption for a
protection exception takes place. However, the
unit of operation or the execution of the instruction
may be suppressed, as described in the section

“Suppression on Protection” on page 3-12| When

a channel-program access is prohibited, the start
function is ended, and the protection-check condi-
tion is indicated in the associated interruption-
response block (IRB). When a
measurement-block access is prohibited, the 1/O
measurement-block protection-check condition is
indicated.

When a store access is prohibited because of key-
controlled protection, the contents of the protected
location remain unchanged. When a fetch access
is prohibited, the protected information is not
loaded into a register, moved to another storage
location, or provided to an I/O device. For a pro-
hibited instruction fetch, the instruction is sup-
pressed, and an arbitrary instruction-length code is
indicated.

Key-controlled protection is independent of
whether the CPU is in the problem or the super-
visor state and, except as described below, does
not depend on the type of CPU instruction or
channel-command word being executed.

Chapter 3. Storage 3-9

Except where otherwise specified, all accesses to
storage locations that are explicitly designated by
the program and that are used by the CPU to
store or fetch information are subject to key-
controlled protection.

Key-controlled protection does not apply when the
storage-protection-override control is one and the
value of the four access-control bits of the storage
key is 9. Key-controlled protection for fetches
may or may not apply when the fetch-protection-
override control is one, depending on the effective
address and the private-space control.

Accesses to the second operand of TEST BLOCK
are not subject to key-controlled protection.

All storage accesses by the channel subsystem to
access the I/O measurement block, or by a
channel program to fetch a CCW or IDAW or to
access a data area designated during the exe-
cution of a CCW, are subject to key-controlled
protection. However, if a CCW, an IDAW, or
output data is prefetched, a protection check is not
indicated until the CCW or IDAW is due to take
control or until the data is due to be written.

Key-controlled protection is not applied to
accesses that are implicitly made for any of such
sequences as:

¢ An interruption

¢ CPU logout

¢ Fetching of table entries for access-register
translation, dynamic-address translation,
PC-number translation, ASN translation, or
ASN authorization

e Tracing

¢ A store-status function

e Storing in real locations 184-191 when TEST
PENDING INTERRUPTION has an operand
address of zero

e |nitial program loading

Similarly, protection does not apply to accesses
initiated via the operator facilities for altering or
displaying information. However, when the
program explicitly designates these locations, they
are subject to protection.

3-10 z/Architecture Principles of Operation

Storage-Protection-Override Control

Bit 39 of control register 0 is the storage-
protection-override control. When this bit is one,
storage-protection override is active. When this
bit is zero, storage-protection override is inactive.
When storage-protection override is active, key-
controlled storage protection is ignored for storage
locations having an associated storage-key value
of 9. When storage-protection override is inactive,
no special action is taken for a storage-key value
of 9.

Storage-protection override applies to instruction
fetch and to the fetch and store accesses of
instructions whose operand addresses are logical,
virtual, or real. It does not apply to accesses
made for the purpose of channel-program exe-
cution or for the purpose of channel-subsystem
monitoring.

Storage-protection override has no effect on
accesses which are not subject to key-controlled
protection.

Programming Notes:

1. Storage-protection override can be used to
improve reliability in the case when a possibly
erroneous application program is executed in
conjunction with a reliable subsystem, pro-
vided that the application program needs to
access only a portion of the storage accessed
by the subsystem. The technique for doing
this is as follows. The storage accessed by
the application program is given storage key
9. The storage accessed by only the sub-
system is given some other nonzero storage
key, for example, key 8. The application is
executed with PSW key 9. The subsystem is
executed with PSW key 8 (in this example).
As a result, the subsystem can access both
the key-8 and the key-9 storage, while the
application program can access only the key-9
storage.

2. Storage-protection override affects the
accesses to storage made by the CPU and
also affects the result set by TEST PRO-
TECTION. However, those instructions which,
in the problem state, test the PSW-key mask
to determine if a particular key value may be
used are not affected by whether storage-
protection override is active. These
instructions include, among others, MOVE
WITH KEY and SET PSW KEY FROM

ADDRESS. To permit these instructions to
use an access key of 9 in the problem state,
bit 9 of the PSW-key mask must be one.

Fetch-Protection-Override Control

Bit 38 of control register 0 is the fetch-protection-
override control. When the bit is one, fetch pro-
tection is ignored for locations at effective
addresses 0-2047. An effective address is the
address which exists before any transformation by
dynamic address translation or prefixing.
However, fetch protection is not ignored if the
effective address is subject to dynamic address
translation and the private-space control, bit 55 is
one in the address-space-control element used in
the translation.

Fetch-protection override applies to instruction
fetch and to the fetch accesses of instructions
whose operand addresses are logical, virtual, or
real. It does not apply to fetch accesses made for
the purpose of channel-program execution or for
the purpose of channel-subsystem monitoring.
When this bit is set to zero, fetch protection of
locations at effective addresses 0-2047 is deter-
mined by the state of the fetch-protection bit of the
storage key associated with those locations.

Fetch-protection override has no effect on
accesses which are not subject to key-controlled
protection.

Programming Note: The fetch-protection-
override control allows fetch protection of locations
at addresses 2048-4095 along with no fetch pro-
tection of locations at addresses 0-2047.

Access-List-Controlled Protection

In the access-register mode, bit 6 of the access-
list entry, the fetch-only bit, controls which types of
operand references are permitted to the address
space specified by the access-list entry. When
the entry is used in the access-register-translation
part of a reference and bit 6 is zero, both fetch-
type and store-type references are permitted;
when bit 6 is one, only fetch-type references are
permitted, and an attempt to store causes a pro-
tection exception to be recognized and the exe-
cution of the instruction to be suppressed.

The fetch-only bit is included in the ALB access-
list entry. A change to the fetch-only bit in an
access-list entry in main storage does not neces-
sarily have an immediate, if any, effect on whether
a protection exception is recognized. However,
this change to the bit will have an effect imme-
diately after PURGE ALB or a COMPARE AND
SWAP AND PURGE instruction that purges the
ALB is executed.

TEST PROTECTION takes into consideration
access-list-controlled protection when the CPU is
in the access-register mode. A violation of
access-list-controlled protection causes condition
code 1 to be set, except that it does not prevent
condition code 2 or 3 from being set when the
conditions for those codes are satisfied.

Programming Note: A violation of access-list-
controlled protection always causes suppression.
A violation of any of the other protection types
may cause termination.

Page Protection

The page-protection facility controls access to
virtual storage by using the page-protection bit in
each page-table entry and segment-table entry. It
provides protection against improper storing.

The page-protection bit, bit 54, of the page-table
entry controls whether storing is allowed into the
corresponding 4K-byte page. When the bit is
zero, both fetching and storing are permitted;
when the bit is one, only fetching is permitted.
When an attempt is made to store into a protected
page, the contents of the page remain unchanged,
the unit of operation or the execution of the
instruction is suppressed, and a program inter-
ruption for protection takes place.

The page-protection bit, bit 54, of the segment-
table entry is treated as being ORed into the
page-protection-bit position of each entry in the
page table designated by the segment-table entry.
Thus, when the segment-table-entry page-
protection bit is one, the effect is as if the page-
protection bit is one in each entry in the
designated page table.

Page protection applies to all store-type refer-
ences that use a virtual address.

Chapter 3. Storage 3-11

Low-Address Protection

The low-address-protection facility provides pro-
tection against the destruction of main-storage
information used by the CPU during interruption
processing. This is accomplished by prohibiting
instructions from storing with effective addresses
in the ranges 0 through 511 and 4096 through
4607 (the first 512 bytes of each of the first and
second 4K-byte effective-address blocks). The
range criterion is applied before address transfor-
mation, if any, of the address by dynamic address
translation or prefixing. However, the range crite-
rion is not applied, with the result that low-address
protection does not apply, if the effective address
is subject to dynamic address translation and the
private-space control, bit 55, is one in the
address-space-control element used in the trans-
lation. Low-address protection does not apply if
the address-space-control element to be used is
not available due to another type of exception.

Low-address protection is under control of bit 35
of control register 0, the low-address-protection-
control bit. When the bit is zero, low-address pro-
tection is off; when the bit is one, low-address
protection is on.

If an access is prohibited because of low-address
protection, the contents of the protected location
remain unchanged, the execution of the instruction
is terminated, and a program interruption for a
protection exception takes place. However, the
unit of operation or the execution of the instruction
may be suppressed, as described in the section
[FSuppression on Protection.’]

Any attempt by the program to store by using
effective addresses in the range 0 through 511 or
4096 through 4607 is subject to low-address pro-
tection. Low-address protection is applied to the
store accesses of instructions whose operand
addresses are logical, virtual, or real. Low-
address protection is also applied to the trace
table.

Low-address protection is not applied to accesses
made by the CPU or the channel subsystem for
such sequences as interruptions, CPU logout, the

storing of the 1/O-interruption code in real locations
184-191 by TEST PENDING INTERRUPTION,
and the initial-program-loading and store-status
functions, nor is it applied to data stores during 1/0
data transfer. However, explicit stores by a
program at any of these locations are subject to
low-address protection.

Programming Notes:

1. Low-address protection and key-controlled
protection apply to the same store accesses,
except that:

a. Low-address protection does not apply to
storing performed by the channel sub-
system, whereas key-controlled protection
does.

b. Key-controlled protection does not apply
to tracing, the second operand of TEST
BLOCK, or instructions that operate spe-
cifically on the linkage stack, whereas low-
address protection does.

2. Because fetch-protection override and low-
address protection do not apply to an address
space for which the private-space control is
one in the address-space-control element,
locations 0-2047 and 4096-4607 in the
address space are usable the same as the
other locations in the space.

Suppression on Protection

Some instruction definitions specify that the opera-
tion is always suppressed if a protection exception
due to any type of protection is recognized. When
that specification is absent, the execution of an
instruction is always suppressed if a protection
exception due to access-list-controlled protection
or page protection is recognized, and it may be
either suppressed or terminated if a protection
exception due to low-address protection or key-
controlled protection is recognized.

The suppression-on-protection function allows the
control program to locate the segment-table entry
and page-table entry used in the translation of a
virtual address that caused a protection exception,
in order to determine if the exception was due to
page protection.’ This is necessary for the imple-

1 The suppression-on-protection function originated as the ESA/390 suppression-on-protection facility. Suppression for page pro-

tection was new as part of that facility.

3-12 z/Architecture Principles of Operation

mentation of the Posix fork function (discussed in
a programming note). The function also allows
the control program to avoid locating the segment-
table and page-table entries if the address was
not virtual or the exception was due to access-list-
controlled protection.

During a program interruption due to a protection
exception, either a one or a zero is stored in bit
position 61 of real locations 168-175. The storing
of a one in bit position 61 indicates that:

e The unit of operation or instruction execution
during which the exception was recognized
was suppressed.

¢ |f dynamic address translation (DAT) was on,
as indicated by the DAT-mode bit in the
program old PSW, the effective address that
caused the exception is one that was to be
translated by DAT. (The effective address is
the address which exists before any transfor-
mation by DAT or prefixing.) Bit 61 is set to
zero if DAT was on but the effective address
was not to be translated by DAT because it is
a real address. If DAT was off, the protection
exception cannot have been due to page pro-
tection.

e Bit positions 0-51 of real locations 168-175
contain bits 0-51 of the effective address that
caused the exception. If DAT was on, indi-
cating that the effective address was to be
translated by DAT, bit positions 62 and 63 of
real locations 168-175, and real location 160,
contain the same information as is stored
during a program interruption due to a page-
translation exception—this information identi-
fies the address space containing the
protected address. Also, bit 60 of real
locations 168-175 is zero if the protection
exception was not due to access-list-controlled
protection or is one if the exception was due
to access-list-controlled protection. A one in
bit position 60 indicates that the exception
was not due to page protection. If DAT was
off, the contents of bit positions 60, 62, and 63
of real locations 168-175, and the contents of
real location 160, are unpredictable. The con-
tents of bit positions 52-59 of real locations
168-175 are always unpredictable.

Bit 61 being zero indicates that the operation was
either suppressed or terminated and that the con-

tents of the remainder of real locations 168-175,
and of real location 160 are unpredictable.

Bit 61 is set to one if the protection exception was
due to access-list-controlled protection or page
protection. Bit 61 may be set to one if the pro-
tection exception was due to low-address pro-
tection or key-controlled protection.

If a protection-exception condition exists due to
either access-list-controlled protection or page pro-
tection but also exists due to either low-address
protection or key-controlled protection, it is unpre-
dictable for which reason the protection exception
is recognized, and it is unpredictable whether bit
61 is set to zero or one.

Programming Notes:

1. The suppression-on-protection function is
useful in performing the Posix fork function,
which causes a duplicate address space to be
created. When forking occurs, the control
program causes the same page of different
address spaces to map to a single page frame
of real storage so long as a store in the page
is not attempted. Then, when a store is
attempted in a particular address space, the
control program assigns a unique page frame
to the page in that address space and copies
the contents of the page to the new page
frame. This last action is sometimes called
the copy-on-write function. The control
program sets the page-protection bit to one in
the page-table entry for a page in order to
detect an attempt to store in the page. The
control program may initially set the page-
protection bit to one in a segment-table entry
to detect an attempt to store anywhere in the
the specified segment.

2. Bit 61 being one in real locations 168-175
when DAT was on indicates that the address
that caused a protection exception is virtual.
This indication allows programmed forms of
access-register translation and dynamic
address translation to be performed to deter-
mine whether the exception was due to page
protection as opposed to low-address or key-
controlled protection.

3. The results of suppression on protection are
summarized in [Figure 3-4 on page 3-14|

Chapter 3. Storage 3-13

If Bit 61 One

LA or ALC

Key- or Bits 62,
Cont. Page |Eff. |Bit|63 and |Bit
Prot. |DAT|Prot.|Addr. |61 |Loc. 160| 60
No (On | Yes |Log. 1 P 1A
Yes |On | Yes |Log. U1 P 1A

Yes [Off| No |Log. | U2 VK] VK]
Yes [Off| No |Real U2 U3 VK]
Yes [On | No |Log. | U2 P 0
Yes [On | No |Real | OR - -

Explanation:

- Immaterial or not applicable.

OR Zero because effective address
is real.

1A One if bit 61 is set to one
because of access-list-
controlled protection; zero
otherwise.

ALC Access-Tist-controlled.

LA Low-address.

Log. Logical.

P Predictable.

Ul Unpredictable because low-
address or key-controlled
protection may be recognized
instead of access-list-
controlled or page protection.

U2 Unpredictable because bit 61 is
only required to be set to one
for access-1ist-controlled or
page protection.

U3 Unpredictable because DAT is
off.

Figure 3-4. Suppression-on-Protection Results

Reference Recording

Reference recording provides information for use
in selecting pages for replacement. Reference
recording uses the reference bit, bit 5 of the
storage key. The reference bit is set to one each
time a location in the corresponding storage block
is referred to either for fetching or storing informa-
tion, regardless of whether DAT is on or off.

Reference recording is always active and takes
place for all storage accesses, including those
made by any CPU, any operator facility, or the
channel subsystem. It takes place for implicit
accesses made by the machine, such as those
which are part of interruptions and 1/O-instruction
execution.

3-14 z/Architecture Principles of Operation

Reference recording does not occur for operand
accesses of the following instructions since they
directly refer to a storage key without accessing a
storage location:

¢ INSERT STORAGE KEY EXTENDED

e RESET REFERENCE BIT EXTENDED (refer-
ence bit is set to zero)

e SET STORAGE KEY EXTENDED (reference
bit is set to a specified value)

The record provided by the reference bit is sub-
stantially accurate. The reference bit may be set
to one by fetching data or instructions that are
neither designated nor used by the program, and,
under certain conditions, a reference may be
made without the reference bit being set to one.
Under certain unusual circumstances, a reference
bit may be set to zero by other than explicit
program action.

Change Recording

Change recording provides information as to
which pages have to be saved in auxiliary storage
when they are replaced in main storage. Change
recording uses the change bit, bit 6 of the storage
key.

The change bit is set to one each time a store
access causes the contents in the corresponding
storage block to be changed. A store access that
does not change the contents of storage may or
may not set the change bit to one.

The change bit is not set to one for an attempt to
store if the access is prohibited. In particular:

1. For the CPU, a store access is prohibited
whenever an access exception exists for that
access, or whenever an exception exists
which is of higher priority than the priority of
an access exception for that access.

2. For the channel subsystem, a store access is
prohibited = whenever a key-controlled-
protection violation exists for that access.

Change recording is always active and takes
place for all store accesses to storage, including
those made by any CPU, any operator facility, or
the channel subsystem. It takes place for implicit
references made by the machine, such as those
which are part of interruptions.

Change recording does not take place for the
operands of the following instructions since they
directly modify a storage key without modifying a
storage location:

« RESET REFERENCE BIT EXTENDED
e SET STORAGE KEY EXTENDED (change bit
is set to a specified value)

Change bits which have been changed from zeros
to ones are not necessarily restored to zeros on
CPU retry (see [‘CPU Retry” on page 11-2). See
[Exceptions to Nullification and Suppression” on|
[bage 5-22 Jor a description of the handling of the

change bit in certain unusual situations.

Prefixing

Prefixing provides the ability to assign the range of
real addresses 0-8191 to a different block in abso-
lute storage for each CPU, thus permitting more
than one CPU sharing main storage to operate
concurrently with a minimum of interference, espe-
cially in the processing of interruptions.

Prefixing causes real addresses in the range
0-8191 to correspond one-for-one to the block of
8K-byte absolute addresses (the prefix area) iden-
tified by the value in bit positions 0-50 of the prefix
register for the CPU, and the block of real
addresses identified by that value in the prefix reg-
ister to correspond one-for-one to absolute
addresses 0-8191. The remaining real addresses
are the same as the corresponding absolute
addresses. This transformation allows each CPU
to access all of main storage, including the first 8K
bytes and the locations designated by the prefix
registers of other CPUs.

The relationship between real and absolute

addresses is graphically depicted in

pag 0

The prefix is a 51-bit quantity contained in bit posi-
tions 0-50 of the prefix register. The register has
the following format:

/

Eeoo Prefix Bits 33-50 |///////1/111/
/

0 33 51 63

Bits 0-32 of the register are always all zeros. Bits
33-50 of the register can be set and inspected by
the privileged instructions SET PREFIX and
STORE PREFIX, respectively.

SET PREFIX sets bits 33-50 of the prefix register
with the value in bit positions 1-18 of a word in
storage, and it ignores the contents of bit positions
0 and 19-31 of the word. STORE PREFIX stores
the value in bit positions 33-50 of the prefix reg-
ister in bit positions 1-18 of a word in storage, and
it stores zeros in bit positions 0 and 19-31 of the
word.

When the contents of the prefix register are
changed, the change is effective for the next
sequential instruction.

When prefixing is applied, the real address is
transformed into an absolute address by using
one of the following rules, depending on bits 0-50
of the real address:

1. Bits 0-50 of the address, if all zeros, are
replaced with bits 0-50 of the prefix.

2. Bits 0-50 of the address, if equal to bits 0-50
of the prefix, are replaced with zeros.

3. Bits 0-50 of the address, if not all zeros and
not equal to bits 0-50 of the prefix, remain
unchanged.

Only the address presented to storage is trans-
lated by prefixing. The contents of the source of
the address remain unchanged.

The distinction between real and absolute
addresses is made even when the prefix register
contains all zeros, in which case a real address
and its corresponding absolute address are iden-
tical.

Chapter 3. Storage 3-15

Prefixing Prefixing

T 7] r-——----—--=- = 1 T 71 r-——----—--=- = 1 T

+ |——+No Change | 1+ | | }

/ / /

T = | Apply | — 1 | | No Change———— +

1 | Zeros | > |2 | |
/ / /
t | | b4 aely | -1
2|« Zeros—|1

I | | = L Fe

} | | } | | }

/ / /

1 |——+No Change | + | | 1

T | | 1+ | I No Change———| +

t | | t | | t
8192 + — | Apply | 8192 | + — | Apply | — + 8192

Prefix > < Prefix
o+t—-+ Lt ————————] 0 -+ - b - — - — 10

Real Addresses Absolute Real Addresses
for CPU A Addresses for CPU B

(1) Real addresses in which bits 0-50 are equal to bits 0-50 of the prefix for this CPU (A or B).

(2) Absolute addresses of the block that contains for this CPU (A or B) the real locations 0-8191.

Figure 3-5. Relationship between Real and Absolute Addresses

Address Spaces

An address space is a consecutive sequence of
integer numbers (virtual addresses), together with
the specific transformation parameters which allow
each number to be associated with a byte location
in storage. The sequence starts at zero and pro-
ceeds left to right.

When a virtual address is used by a CPU to
access main storage, it is first converted, by
means of dynamic address translation (DAT), to a
real address, and then, by means of prefixing, to
an absolute address. DAT may use from five to
two levels of tables (region first table, region
second table, region third table, segment table,
and page table) as transformation parameters.
The designation (origin and length) of the highest-
level table for a specific address space is called
an address-space-control element, and it is found
for use by DAT in a control register or as specified
by an access register. Alternatively, the address-
space-control element for an address space may
be a real-space designation, which indicates that
DAT is to translate the virtual address simply by

3-16

z/Architecture Principles of Operation

treating it as a real address and without using any
tables.

DAT uses, at different times, the address-space-
control elements in different control registers or
specified by the access registers. The choice is
determined by the translation mode specified in
the current PSW. Four translation modes are
available: primary-space mode, secondary-space
mode, access-register mode, and home-space
mode. Different address spaces are addressable
depending on the translation mode.

At any instant when the CPU is in the primary-
space mode or secondary-space mode, the CPU
can translate virtual addresses belonging to two
address spaces—the primary address space and
the secondary address space. At any instant
when the CPU is in the access-register mode, it
can translate virtual addresses of up to 16
address spaces—the primary address space and
up to 15 AR-specified address spaces. At any
instant when the CPU is in the home-space mode,
it can translate virtual addresses of the home
address space.

The primary address space is identified as such
because it consists of primary virtual addresses,
which are translated by means of the primary
address-space-control element (ASCE). Similarly,
the secondary address space consists of sec-
ondary virtual addresses translated by means of
the secondary ASCE, the AR-specified address
spaces consist of AR-specified virtual addresses
translated by means of AR-specified ASCEs, and
the home address space consists of home virtual
addresses translated by means of the home
ASCE. The primary and secondary ASCEs are in
control registers 1 and 7, respectively. The
AR-specified ASCEs are in control registers 1 and
7 and in table entries called ASN-second-table
entries. The home ASCE is in control register 13.

Changing to Different Address Spaces

A program can cause different address spaces to
be addressable by using the semiprivileged SET
ADDRESS SPACE CONTROL or SET ADDRESS
SPACE CONTROL FAST instruction to change
the translation mode to the primary-space mode,
secondary-space mode, access-register mode, or
home-space mode. However, SET ADDRESS
SPACE CONTROL and SET ADDRESS SPACE
CONTROL FAST can set the home-space mode
only in the supervisor state. The program can
cause still other address spaces to be address-
able by using other semiprivileged instructions to
change the address-space-control elements in
control registers 1 and 7 and by using unprivileged
instructions to change the contents of the access
registers. Only the privileged LOAD CONTROL
instruction is available for changing the home
address-space-control element in control register
13.

Address-Space Number

An address space may be assigned an address-
space number (ASN) by the control program. The
ASN designates, within a two-level table structure
in main storage, an ASN-second-table entry con-
taining information about the address space. If
the ASN-second-table entry is marked as valid, it
contains the address-space-control element that
defines the address space.

Under certain circumstances, the semiprivileged
instructions which place a new address-space-
control element in control register 1 or 7 fetch this
element from an ASN-second-table entry. Some
of these instructions use an ASN-translation

mechanism which, given an ASN, can locate the
designated ASN-second-table entry.

The 16-bit unsigned binary format of the ASN
permits 64K unique ASNSs.

The ASNs for the primary and secondary address
spaces are assigned positions in control registers.
The ASN for the primary address space, called
the primary ASN, is assigned bits 48-63 in control
register 4, and that for the secondary address
space, called the secondary ASN, is assigned bits
48-63 in control register 3. The registers have the
following formats:

Control Register 4

PASN

48 63

Control Register 3

SASN

48 63

A semiprivileged instruction that loads the primary
or secondary address-space-control element into
the appropriate control register also loads the cor-
responding ASN into the appropriate control reg-
ister.

The ASN for the home address space is not
assigned a position in a control register.

An access register containing the value 0 or 1
specifies the primary or secondary address space,
respectively; and the address-space-control
element specified by the access register is in
control register 1 or 7, respectively. An access
register containing any other value designates an
entry in a table called an access list. The desig-
nated access-list entry contains the real address
of an ASN-second-table entry for the address
space specified by the access register. The
address-space-control element specified by the
access register is in the ASN-second-table entry.
Translating the contents of an access register to
obtain an address-space-control element for use
by DAT does not involve the use of an ASN.

Note: Virtual storage consisting of byte locations
ordered according to their virtual addresses in an
address space is usually referred to as “storage.”

Chapter 3. Storage 3-17

Programming Note: Because an
ASN-second-table entry is located from an
access-list entry by means of its address instead
of by means of its ASN, the ASN-second-table
entries designated by access-list entries can be
“pseudo” ASN-second-table entries, that is, entries
which are not in the two-level structure able to be
indexed by means of the ASN-translation process.
The number of unique pseudo ASN-second-table
entries can be greater than the number of unique
ASNs and is limited only by the amount of storage
available to be occupied by the ASN-second-table
entries. Thus, in a sense, there is no limit on the
number of possible address spaces.

ASN Translation

ASN translation is the process of translating a
16-bit ASN to locate the ASN-second-table entry
designated by the ASN. ASN translation is per-
formed as part of PROGRAM TRANSFER with
space switching (PT-ss) and SET SECONDARY
ASN with space switching (SSAR-ss), and it may
be performed as part of LOAD ADDRESS SPACE
PARAMETERS. For PT-ss, the ASN which is
translated replaces the primary ASN in control
register 4. For SSAR-ss, the ASN which is trans-
lated replaces the secondary ASN in control reg-
ister 3. These two translation processes are
called primary ASN translation and secondary
ASN translation, respectively, and both can occur
for LOAD ADDRESS SPACE PARAMETERS.
The ASN-translation process is the same for both
primary and secondary ASN translation; only the
uses of the results of the process are different.

ASN translation may also be performed as part of
PROGRAM RETURN. Primary ASN translation is
performed as part of PROGRAM RETURN with
space switching (PR-ss). Secondary ASN trans-
lation is performed if the secondary ASN restored
by PROGRAM RETURN (PR-ss or PROGRAM
RETURN to current primary) does not equal the
primary ASN restored by PROGRAM RETURN.

PROGRAM CALL with space switching (PC-ss)
performs the equivalent of primary ASN translation
by obtaining a primary ASN and the address of
the corresponding ASN-second-table entry from
an entry-table entry.

The ASN-translation process uses two tables, the
ASN first table and the ASN second table. They

3-18 z/Architecture Principles of Operation

are used to locate the ASN-second-table entry
and a third table, the authority table, which is used
when ASN authorization is performed.

For the purposes of this translation, the 16-bit
ASN is considered to consist of two parts: the
ASN-first-table index (AFX) is the leftmost 10 bits
of the ASN, and the ASN-second-table index
(ASX) is the six rightmost bits. The ASN has the
following format:

ASN

AFX ASX

0 10 15

The AFX is used to select an entry from the ASN
first table. The origin of the ASN first table is des-
ignated by the ASN-first-table origin in control reg-
ister 14. The ASN-first-table entry contains the
origin of the ASN second table. The ASX is used
to select an entry from the ASN second table.

As a result of primary ASN translation and during
the operation of PROGRAM CALL with space
switching, the address of the located
ASN-second-table entry (ASTE) is placed in
control register 5 as the new primary-ASTE origin
(PASTEO).

ASN-Translation Controls

ASN translation is controlled by the
ASN-translation-control bit and the ASN-first-table
origin, both of which reside in control register 14.

Control Register 14

T AFTO

44 63

ASN-Translation Control (T): Bit 44 of control
register 14 is the ASN-translation-control bit. This
bit provides a mechanism whereby the control
program can indicate whether ASN translation can
occur while a particular program is being exe-
cuted, and also whether the execution of
PROGRAM CALL with space switching is allowed.
Bit 44 must be one to allow completion of these
instructions:

e LOAD ADDRESS SPACE PARAMETERS
¢ PROGRAM CALL with space switching

¢ PROGRAM RETURN with space switching or
when the restored SASN does not equal the
restored PASN

¢ PROGRAM TRANSFER with space switching

e SET SECONDARY ASN

Otherwise, a special-operation exception is recog-
nized. The ASN-translation-control bit is exam-
ined in both the problem and the supervisor
states.

ASN-First-Table Origin (AFTO): Bits 45-63 of
control register 14, with 12 zeros appended on the
right, form a 31-bit real address that designates
the beginning of the ASN first table.

ASN-Translation Tables

The ASN-translation process consists in a two-
level lookup using two tables: an ASN first table
and an ASN second table. These tables reside in
real storage.

ASN-First-Table Entries
An entry in the ASN first table has the following
format:

I ASTO

0 1 26 31
The fields in the entry are allocated as follows:

AFX-Invalid Bit (I): Bit 0 controls whether the
ASN second table associated with the
ASN-first-table entry is available. When bit 0 is
zero, ASN translation proceeds by using the des-
ignated ASN second table. When the bit is one,
the ASN translation cannot continue.

ASN-Second-Table Origin (ASTO): Bits 1-25,
with six zeros appended on the right, are used to
form a 31-bit real address that designates the
beginning of the ASN second table.

ASN-Second-Table Entries

The ASN-second-table entry has a length of 64
bytes, with only the first 32 bytes currently in use.
Bytes 0-31 of the entry have the following format:

I ATO B

01 30 31

AX ATL

32 48 60 63

—ASCE (RTD, STD, or RSD) Part 1—

RTO, STO, or RSTKO

64 95

——RTD or STD Part 2——
RTO/STO (Cont.)| |GPSX|R| |DT|TL| R=0

96 115 118 122 124 127

————RSD Part 2—————

RSTKO (Cont.) GPSX|R R=1
96 115 118 122 127
| ALD]
ALO ALL
128 153 159
ASTESN
160 191
| LTD
v LTO LTL
192 217 223

Tl
224 255

The fields in bytes 0-31 of the ASN-second-table
entry are allocated as follows. Only the fields that
are used in or as a result of ASN translation or
PROGRAM CALL with space switching are
described in detail.

ASX-Invalid Bit (I): Bit 0 controls whether the
address space associated with the
ASN-second-table entry is available. When bit 0
is zero, ASN translation proceeds. When the bit is
one, the ASN translation cannot continue.

Chapter 3. Storage 3-19

Authority-Table Origin (ATO): Bits 1-29, with
two zeros appended on the right, are used to form
a 31-bit real address that designates the begin-
ning of the authority table.

Base-Space Bit (B): Bit 31 specifies, when one,
that the address space associated with the
ASN-second-table entry is the base space of a
subspace group. Bit 31 is further described in
[“Subspace-Group ASN-Second-Table Entries” on|

Authorization Index (AX): Bits 32-47 are used
in ASN authorization as an index to locate the
authority bits in the authority table. The AX field is
used as a result of primary ASN translation by
PROGRAM RETURN and PROGRAM
TRANSFER and, possibly, LOAD ADDRESS
SPACE PARAMETERS. It is also used by
PROGRAM CALL with space switching. The AX
field is ignored after secondary ASN translation.

Authority-Table Length (ATL): Bits 48-59
specify the length of the authority table in units of
four bytes, thus making the authority table variable
in multiples of 16 entries. The length of the
authority table, in units of four bytes, is one more
than the ATL value. The contents of the ATL field
are used to establish whether the entry designated
by a particular AX falls within the authority table.

Address-Space-Control Element (ASCE): Bits
64-127 are an eight-byte address-space-control
element (ASCE) that may be a region-table desig-
nation (RTD), a segment-table designation (STD),
or a real-space designation (RSD). (The term
“region-table designation” is used to mean a
region-first-table designation, region-second-table
designation, or region-third-table designation.)
The ASCE field is used as a result of ASN trans-
lation or in PROGRAM CALL with space switching
to replace the primary ASCE (PASCE) or the sec-
ondary ASCE (SASCE). For PROGRAM CALL
with space switching, the ASCE field replaces the
PASCE, bits 0-63 of control register 1. For SET
SECONDARY ASN, the ASCE field replaces the
SASCE, bits 0-63 of control register 7. Each of
these actions may occur independently for LOAD
ADDRESS SPACE PARAMETERS. For
PROGRAM TRANSFER, the ASCE field replaces
both the PASCE and the SASCE. For PROGRAM
RETURN, as a result of primary ASN translation,
the ASCE field replaces the PASCE, and, as a
result of secondary ASN translation, the ASCE

3-20 z/Architecture Principles of Operation

field replaces the SASCE. The contents of the
entire ASCE field are placed in the appropriate
control registers without being inspected for
validity.

The subspace-group-control bit (G), bit 118 of the
ASCE field, indicates, when one, that the ASCE
specifies an address space that is the base space
or a subspace of a subspace group. The bit is
further described in [‘Subspace-Group|
[ASN-Second-Table Entries” on page 5-57]

Bit 121 (X) of the ASCE field is the space-switch-
event-control bit. When, in the space-switching
operations of PROGRAM CALL, PROGRAM
RETURN, and PROGRAM TRANSFER, this bit is
one in control register 1 either before or after the
execution of the instruction, a program interruption
for a space-switch event occurs after the exe-
cution of the instruction is completed. A space-
switch-event program interruption also occurs after
the completion of a SET ADDRESS SPACE
CONTROL, SET ADDRESS SPACE CONTROL
FAST, or RESUME PROGRAM instruction that
changes the translation mode either to or from the
home-space mode when this bit is one in either
control register 1 or control register 13. When, in
LOAD ADDRESS SPACE PARAMETERS, this bit
is one during primary ASN translation, this fact is
indicated by the condition code.

The real-space-control bit (R), bit 122 of the ASCE
field, indicates, when zero, that the ASCE is a
region-table or segment-table designation or,
when one, that the ASCE is a real-space desig-
nation.

When bit 122 is zero, the designation-type-control
bits (DT), bits 124 and 125 of the ASCE field, indi-
cate the designation type of the ASCE. A value
11, 10, 01, or 00 binary of bits 124 and 125 indi-
cates a region-first-table designation, region-
second-table designation, region-third-table
designation, or segment-table designation, respec-
tively.

The other fields in the ASCE (RTO, STO, P, S,

TL, and RSTKO) are described in
lister 1” on page 3-29|

The linkage-table-designation (LTD) field in the
ASN-second-table entry is described in
[‘PC-Number Translation Control” on page 5-29
The access-list-designation (ALD) field and the

ASTE-sequence-number (ASTESN) field are
described in [‘ASN-Second-Table Entries” on|
Bits 224-255 in the ASN-second-table

entry are available for use by programming.

Programming Note: All unused fields in the
ASN-second-table entry, including the unused
fields in bytes 0-31 and all of bytes 32-63, should
be set to zeros. These fields are reserved for
future extensions, and programs which place
nonzero values in these fields may not operate
compatibly on future machines.

ASN-Translation Process

This section describes the ASN-translation
process as it is performed during the execution of
the space-switching forms of PROGRAM
RETURN, PROGRAM TRANSFER, and SET
SECONDARY ASN, and also in PROGRAM
RETURN when the restored secondary ASN does
not equal the restored primary ASN. ASN trans-
lation for LOAD ADDRESS SPACE PARAME-
TERS is the same, except that AFX-translation
and ASX-translation exceptions do not occur; such
conditions are instead indicated by the condition

code. Translation of an ASN is performed by
means of two tables, an ASN first table and an
ASN second table, both of which reside in main
storage.

The ASN first index is used to select an entry from
the ASN first table. This entry designates the
ASN second table to be used.

The ASN second index is used to select an entry
from the ASN second table.

If the | bit is one in either the ASN-first-table entry
or ASN-second-table entry, the entry is invalid,
and the ASN-translation process cannot be com-
pleted. An AFX-translation exception or
ASX-translation exception is recognized.

Whenever access to main storage is made during
the ASN-translation process for the purpose of
fetching an entry from an ASN first table or ASN
second table, key-controlled protection does not

apply.

The ASN-translation process is shown in

[Figure 3-6 on page 3-22

Chapter 3. Storage 3-21

ASN

CR14 T AFTO AFX |ASX
(x4096) (x4) (x64)
ASN First Table
_,
R I ASTO
(x64)
ASN Second Table
_,
R I ATO B AX ATL ASCE *

R: Address is real
*: Last 48 bytes of ASTE are not shown

Figure 3-6. ASN Translation

ASN-First-Table Lookup
The AFX portion of the ASN, in conjunction with
the ASN-first-table origin, is used to select an
entry from the ASN first table.

The 31-bit real address of the ASN-first-table entry
is obtained by appending 12 zeros on the right to
the AFT origin contained in bit positions 45-63 of
control register 14 and adding the AFX portion
with two rightmost and 19 leftmost zeros
appended. This addition cannot cause a carry
into bit position 0. The 31-bit address is formed
and used regardless of whether the current PSW
specifies the 24-bit, 31-bit, or 64-bit addressing
mode.

3-22 z/Architecture Principles of Operation

All four bytes of the ASN-first-table entry appear to
be fetched concurrently as observed by other
CPUs. The fetch access is not subject to pro-
tection. When the storage address which is gen-
erated for fetching the ASN-first-table entry
designates a location which is not available in the
configuration, an addressing exception is recog-
nized, and the operation is suppressed.

Bit O of the four-byte AFT entry specifies whether
the corresponding AST is available. If this bit is
one, an AFX-translation exception is recognized.
The entry fetched from the AFT is used to access
the AST.

ASN-Second-Table Lookup

The ASX portion of the ASN, in conjunction with
the ASN-second-table origin contained in the
ASN-first-table entry, is used to select an entry
from the ASN second table.

The 31-bit real address of the ASN-second-table
entry is obtained by appending six zeros on the
right to bits 1-25 of the ASN-first-table entry and
adding the ASX with six rightmost and 19 leftmost
zeros appended. When a carry into bit position O
occurs during the addition, an addressing excep-
tion may be recognized, or the carry may be
ignored, causing the table to wrap from 231 - 1 to
zero. The 31-bit address is formed and used
regardless of whether the current PSW specifies
the 24-bit, 31-bit, or 64-bit addressing mode.

The fetch of the 64 bytes of the ASN-second-table
entry appears to be word concurrent as observed
by other CPUs, with the leftmost word fetched
first. The order in which the remaining 15 words
are fetched is unpredictable. The fetch access is
not subject to protection. When the storage
address which is generated for fetching the
ASN-second-table entry designates a location
which is not available in the configuration, an
addressing exception is recognized, and the oper-
ation is suppressed.

Bit 0 of the ASN-second-table entry specifies
whether the address space is accessible. If this
bit is one, an ASX-translation exception is recog-
nized.

Recognition of Exceptions during ASN
Translation

The exceptions which can be encountered during
the ASN-translation process are collectively
referred to as ASN-translation exceptions. A list
of these exceptions and their priorities is given in
[Chapter 6, “Interruptions.’|

ASN Authorization

ASN authorization is the process of testing
whether the program associated with the current
authorization index is permitted to establish a par-
ticular address space. The ASN authorization is
performed as part of PROGRAM TRANSFER with
space switching (PT-ss) and SET SECONDARY

ASN with space switching (SSAR-ss) and may be
performed as part of LOAD ADDRESS SPACE
PARAMETERS. ASN authorization is performed
after the ASN-translation process for these
instructions.

ASN authorization is also performed as part of
PROGRAM RETURN when the restored sec-
ondary ASN does not equal the restored primary
ASN. ASN authorization of the restored sec-
ondary ASN is performed after ASN translation of
the restored secondary ASN.

When performed as part of PT-ss, the ASN
authorization tests whether the ASN can be estab-
lished as the primary ASN and is called
primary-ASN authorization. When performed as
part of LOAD ADDRESS SPACE PARAMETERS,
PROGRAM RETURN, or SSAR-ss, the ASN
authorization tests whether the ASN can be estab-
lished as the secondary ASN and is called
secondary-ASN authorization.

The ASN authorization is performed by means of
an authority table in real storage which is desig-
nated by the authority-table-origin and authority-
table-length fields in the ASN-second-table entry.

ASN-Authorization Controls

ASN authorization uses the authority-table origin
and the authority-table length from the
ASN-second-table entry, together with an authori-
zation index.

Control Register 4

For PT-ss and SSAR-ss, the current contents of
control register 4 include the authorization index.
For LOAD ADDRESS SPACE PARAMETERS and
PROGRAM RETURN, the value which will
become the new contents of control register 4 is
used. The register has the following format:

AX

32 48
Authorization Index (AX): Bits 32-47 of control

register 4 are used as an index to locate the
authority bits in the authority table.

Chapter 3. Storage 3-23

ASN-Second-Table Entry

The ASN-second-table entry which is fetched as
part of the ASN translation process contains infor-
mation which is used to designate the authority
table. An entry in the ASN second table has the
following format:

ATO B

ATL

32 48 60 64

Authority-Table Origin (ATO): Bits 1-29, with
two zeros appended on the right, are used to form
a 31-bit real address that designates the begin-
ning of the authority table.

Authority-Table Length (ATL): Bits 48-59
specify the length of the authority table in units of
four bytes, thus making the authority table variable
in multiples of 16 entries. The length of the
authority table, in units of four bytes, is equal to
one more than the ATL value. The contents of
the length field are used to establish whether the
entry designated by the authorization index falls
within the authority table.

Authority-Table Entries

The authority table consists of entries of two bits
each; accordingly, each byte of the authority table
contains four entries in the following format:

PS|PS|PS|PS

0 7

The fields are allocated as follows:

Primary Authority (P): The left bit of an
authority-table entry controls whether the program
with the authorization index corresponding to the
entry is permitted to establish the address space
as a primary address space. |If the P bit is one,

3-24 z/Architecture Principles of Operation

the establishment is permitted. If the P bit is zero,
the establishment is not permitted.

Secondary Authority (S): The right bit of an
authority-table entry controls whether the program
with the corresponding authorization index is per-
mitted to establish the address space as a sec-
ondary address space. If the S bit is one, the
establishment is permitted. If the S bit is zero, the
establishment is not permitted.

The authority table is also used in the extended-
authorization process, as part of access-register
translation. Extended authorization is described in
FAuthorizing the Use of the Access-List Entry” on]

page 5-52

ASN-Authorization Process

This section describes the ASN-authorization
process as it is performed during the execution of
PROGRAM TRANSFER with space switching and
SET SECONDARY ASN with space switching.
For these two instructions, the ASN-authorization
process is performed by using the authorization
index currently in control register 4. Secondary
authorization for PROGRAM RETURN, when the
restored secondary ASN does not equal the
restored primary ASN, and for LOAD ADDRESS
SPACE PARAMETERS is the same, except that
the value which will become the new contents of
control register 4 is used for the authorization
index. Also, for LOAD ADDRESS SPACE
PARAMETERS, a secondary-authority exception
does not occur. Instead, such a condition is indi-
cated by the condition code.

The ASN-authorization process is performed by
using the authorization index, in conjunction with
the authority-table origin and length from the AST
entry, to select an authority-table entry. The entry
is fetched, and either the primary- or secondary-
authority bit is examined, depending on whether
the primary- or secondary-ASN-authorization
process is being performed. The
ASN-authorization process is shown in
on page 3-25

CR4 AX

(x1/4)
ASN Second Table
ASN-Second-Table Entry
I ATO B AX ATL ASCE *

(x4)

Authority Table
—>H

R |P|S For secondary ASN authorization
Secondary-authority exception

For secondary ASN authorization
Set condition code 2 if S bit
table Tength exceeded.

R: Address is real
*: Last 48 bytes of ASTE are not shown

Figure 3-7. ASN Authorization

Authority-Table Lookup

The authorization index, in conjunction with the
authority-table origin contained in the
ASN-second-table entry, is used to select an entry
from the authority table.

The authorization index is contained in bit posi-
tions 32-47 of control register 4.

Bit positions 1-29 of the AST entry contain the left-
most 29 bits of the 31-bit real address of the
authority table (ATO), and bit positions 48-59
contain the length of the authority table (ATL).

The 31-bit real address of a byte in the authority
table is obtained by appending two zeros on the
right to the authority-table origin and adding the 14
leftmost bits of the authorization index with 17

zero or table length exceeded.

For primary ASN authorization (PT-ss only):
Primary-authority exception if P bit
zero or table length exceeded.

(PR and SSAR-ss only):
if S bit

(LASP only):
zero or

zeros appended on the left. When a carry into bit
position 0 occurs during the addition, an
addressing exception may be recognized, or the
carry may be ignored, causing the table to wrap
from 231 - 1 to zero. The 31-bit address is
formed and used regardless of whether the
current PSW specifies the 24-bit, 31-bit, or 64-bit
addressing mode.

As part of the authority-table-entry-lookup process,
bits 0-11 of the authorization index are compared
against the authority-table length. If the compared
portion is greater than the authority-table length, a
primary-authority exception or secondary-authority
exception is recognized for PT-ss or SSAR-ss,
respectively. For LOAD ADDRESS SPACE
PARAMETERS, when the authority-table length is
exceeded, condition code 2 is set.

Chapter 3. Storage 3-25

The fetch access to the byte in the authority table
is not subject to protection. When the storage
address which is generated for fetching the byte
designates a location which is not available in the
configuration, an addressing exception is recog-
nized, and the operation is suppressed.

The byte contains four authority-table entries of
two bits each. The rightmost two bits of the
authorization index, bits 46 and 47 of control reg-
ister 4, are used to select one of the four entries.
The left or right bit of the entry is then tested,
depending on whether the authorization test is for
a primary ASN or a secondary ASN. The fol-
lowing table shows the bit which is selected from
the byte as a function of bits 46 and 47 of the
authorization index and the instruction PT-ss,
SSAR-ss, PROGRAM RETURN, or LOAD
ADDRESS SPACE PARAMETERS.

Bit Selected from
Authority-Table Byte
for Test
Authorization-
Index Bits S Bit
P Bit (SSAR-ss,
46 47 (PT-ss) PR, or LASP)
0 0 0 1
0 1 2 3
1 0 4 5
1 1 6 7

If the selected bit is one, the ASN is authorized,
and the appropriate fields in the AST entry are
loaded into the appropriate control registers. If the
selected bit is zero, the ASN is not authorized,
and a primary-authority exception is recognized for
PT-ss or a secondary-authority exception is recog-
nized for SSAR-ss or PROGRAM RETURN. For
LOAD ADDRESS SPACE PARAMETERS, when
the ASN is not authorized, condition code 2 is set.

Recognition of Exceptions during ASN
Authorization

The exceptions which can be encountered during
the primary- and secondary-ASN-authorization
processes and their priorities are described in the
definitions of the instructions in which ASN author-
ization is performed.

Programming Note: The primary- and
secondary-authority exceptions cause nullification

3-26 z/Architecture Principles of Operation

in order to permit dynamic modification of the
authority table. Thus, when an address space is
created or “swapped in,” the authority table can
first be set to all zeros and the appropriate
authority bits set to one only when required.

Dynamic Address Translation

Dynamic address translation (DAT) provides the
ability to interrupt the execution of a program at an
arbitrary moment, record it and its data in auxiliary
storage, such as a direct-access storage device,
and at a later time return the program and the
data to different main-storage locations for
resumption of execution. The transfer of the
program and its data between main and auxiliary
storage may be performed piecemeal, and the
return of the information to main storage may take
place in response to an attempt by the CPU to
access it at the time it is needed for execution.
These functions may be performed without change
or inspection of the program and its data, do not
require any explicit programming convention for
the relocated program, and do not disturb the exe-
cution of the program except for the time delay
involved.

With appropriate support by an operating system,
the dynamic-address-translation facility may be
used to provide to a user a system wherein
storage appears to be larger than the main
storage which is available in the configuration.
This apparent main storage is referred to as virtual
storage, and the addresses used to designate
locations in the virtual storage are referred to as
virtual addresses. The virtual storage of a user
may far exceed the size of the main storage which
is available in the configuration and normally is
maintained in auxiliary storage. The virtual
storage is considered to be composed of blocks of
addresses, called pages. Only the most recently
referred-to pages of the virtual storage are
assigned to occupy blocks of physical main
storage. As the user refers to pages of virtual
storage that do not appear in main storage, they
are brought in to replace pages in main storage
that are less likely to be needed. The swapping of
pages of storage may be performed by the oper-
ating system without the user's knowledge.

The sequence of virtual addresses associated with
a virtual storage is called an address space. With
appropriate support by an operating system, the

dynamic-address-translation facility may be used
to provide a number of address spaces. These
address spaces may be used to provide degrees
of isolation between users. Such support can
consist of a completely different address space for
each user, thus providing complete isolation, or a
shared area may be provided by mapping a
portion of each address space to a single common
storage area. Also, instructions are provided
which permit a semiprivileged program to access
more than one such address space. Dynamic
address translation provides for the translation of
virtual addresses from multiple different address
spaces without requiring that the translation
parameters in the control registers be changed.
These address spaces are called the primary
address space, secondary address space, and
AR-specified address spaces. A privileged
program can also cause the home address space
to be accessed.

In the process of replacing blocks of main storage
by new information from an external medium, it
must be determined which block to replace and
whether the block being replaced should be
recorded and preserved in auxiliary storage. To
aid in this decision process, a reference bit and a
change bit are associated with the storage key.

Dynamic address translation may be specified for
instruction and data addresses generated by the
CPU but is not available for the addressing of data
and of CCWs and IDAWSs in I/O operations. The
CCW-indirect-data-addressing facility is provided
to aid 1/0O operations in a virtual-storage environ-
ment.

Address computation can be carried out in the
24-bit, 31-bit, or 64-bit addressing mode. When
address computation is performed in the 24-bit or
31-bit addressing mode, 40 or 33 zeros, respec-
tively, are appended on the left to form a 64-bit
address. Therefore, the resultant logical address
is always 64 bits in length. The real address that
is formed by dynamic address translation, and the
absolute address that is then formed by prefixing,
are always 64 bits in length.

Dynamic address translation is the process of
translating a virtual address during a storage refer-
ence into the corresponding real address. The
virtual address may be a primary virtual address,
secondary virtual address, AR-specified virtual
address, or home virtual address. These

addresses are translated by means of the primary,
the secondary, an AR-specified, or the home
address-space-control element, respectively. After
selection of the appropriate address-space-control
element, the translation process is the same for all
of the four types of virtual address. An address-
space-control element may be a segment-table
designation specifying a 2G-byte address space, a
region-table designation specifying a 4T-byte,
8P-byte, or 16E-byte space, or a real-space desig-
nation specifying a 16E-byte space. (The letters
K, M, G, T, P, and E represent kilo, 21, mega,
220 giga, 239, tera, 249, peta, 259, and exa, 269,
respectively.) A segment-table designation or
region-table designation causes translation to be
performed by means of tables established by the
operating system in real or absolute storage. A
real-space designation causes the virtual address
simply to be treated as a real address, without the
use of tables in storage.

In the process of translation when using a
segment-table designation or a region-table desig-
nation, three types of units of information are
recognized—regions, segments, and pages. A
region is a block of sequential virtual addresses
spanning 2G bytes and beginning at a 2G-byte
boundary. A segment is a block of sequential
virtual addresses spanning 1M bytes and begin-
ning at a 1M-byte boundary. A page is a block of
sequential virtual addresses spanning 4K bytes
and beginning at a 4K-byte boundary.

The virtual address, accordingly, is divided into
four principal fields. Bits 0-32 are called the
region index (RX), bits 33-43 are called the
segment index (SX), bits 44-51 are called the
page index (PX), and bits 52-63 are called the
byte index (BX). The virtual address has the fol-
lowing format:

/
|:RX SX PX BX

/
0 33 44 52 63

As determined by its address-space-control
element, a virtual address space may be a
2G-byte space consisting of one region, or it may
be up to a 16E-byte space consisting of up to 8G
regions. The RX part of a virtual address applying
to a 2G-byte address space must be all zeros;
otherwise, an exception is recognized.

The RX part of a virtual address is itself divided
into three fields. Bits 0-10 are called the region

Chapter 3. Storage 3-27

first index (RFX), bits 11-21 are called the region
second index (RSX), and bits 22-32 are called the
region third index (RTX). Bits 0-32 of the virtual
address have the following format:

RFX RSX RTX

0 11 22 33

A virtual address in which the RTX is the leftmost
significant part (a 42-bit address) is capable of
addressing 4T bytes (2K regions), one in which
the RSX is the leftmost significant part (a 53-bit
address) is capable of addressing 8P bytes (4M
regions), and one in which the RFX is the leftmost
significant part (a 64-bit address) is capable of
addressing 16E bytes (8G regions).

A virtual address in which the RX is always zero
can be translated into real addresses by means of
two translation tables: a segment table and a
page table. If the RX may be nonzero, from one
to three additional translation tables are required,
as follows. If the RFX may be nonzero, a region
first table, region second table, and region third
table are required. If the RFX is always zero but
the RSX may be nonzero, a region second table
and region third table are required. If the RFX
and RSX are always zero but the RTX may be
nonzero, a region third table is required. An
exception is recognized if the address-space-
control element for an address space does not
designate the highest level of table (beginning with
the region first table and continuing downward to
the segment table) needed to translate a refer-
ence to the address space.

A region first table, region second table, or region
third table is sometimes referred to simply as a
region table. Similarly, a region-first-table desig-
nation, region-second-table designation, or region-
third-table designation is sometimes referred to as
a region-table designation.

The region, segment, and page tables reflect the
current assignment of real storage. The assign-
ment of real storage occurs in units of pages, the
real locations being assigned contiguously within a
page. The pages need not be adjacent in real
storage even though assigned to a set of sequen-
tial virtual addresses.

3-28 z/Architecture Principles of Operation

To improve performance, translation normally is
performed by means of table copies maintained in
a special buffer called the translation-lookaside
buffer (TLB). The TLB may also contain entries
that provide the virtual-equals-real translation
specified by a real-space designation.

Translation Control

Address translation is controlled by three bits in
the PSW and by a set of bits referred to as the
translation parameters. The translation parame-
ters are in control registers 0, 1, 7, and 13. Addi-
tional controls are located in the translation tables.

Additional controls are provided as described in
[Chapter 5. “Program_Execution.’| These controls
determine whether the contents of each access
register can be used to obtain an address-space-
control element for use by DAT.

Translation Modes

The three bits in the PSW that control dynamic
address translation are bit 5, the DAT-mode bit,
and bits 16 and 17, the address-space-control
bits. When the DAT-mode bit is zero, then DAT is
off, and the CPU is in the real mode. When the
DAT-mode bit is one, then DAT is on, and the
CPU is in the translation mode designated by the
address-space-control bits: 00 designates the
primary-space mode, 01 designates the access-
register mode, 10 designates the secondary-space
mode, and 11 designates the home-space mode.
The various modes are shown in Figure 3-8,
along with the handling of addresses in each
mode.

Handling of Addresses
PSW Bit
Instruction| Logical
5(16|17|DAT Mode Addresses |Addresses
0| 0| 0|0ff|Real mode Real Real
0| 0 1|0ff|Real mode Real Real
0| 1| 0|0ff|Real mode Real Real
0| 1| 1|0ff|Real mode Real Real
1| 0| 0|0On |Primary-space mode Primary Primary
virtual virtual
1| 0 1|0On [Access-register mode | Primary AR-speci-
virtual fied
virtual
1| 1| 0[0On |Secondary-space mode | Primary Secondary
virtual virtual
1| 1| 1{On |Home-space mode Home Home
virtual virtual

Figure 3-8. Translation Modes

Control Register 0

One bit is provided in control register 0 for use in
controlling dynamic address translation. The bit is
assigned as follows:

S
S

37

Secondary-Space Control (SS): Bit 37 of
control register 0 is the secondary-space-control
bit. When this bit is zero and execution of MOVE
TO PRIMARY, MOVE TO SECONDARY, or SET
ADDRESS SPACE CONTROL is attempted, a
special-operation exception is recognized. When
this bit is one, it indicates that the region table or
segment table designated by the secondary
address-space-control element is attached when
the CPU is in the primary-space mode.

Control Register 1

Control register 1 contains the primary address-
space-control element (PASCE). The register has
one of the following two formats, depending on the
real-space-control bit (R) in the register:

Primary Region-Table or Segment-Table
Designation (R=0)
/

Primary Region-Table
or Segment-Table Origin G|P|S|X[R| [DT|TL
/

0 52 54 58 60 63
Primary Real-Space Designation (R=1)

Primary Real-Space
Token Origin GIP|S|X|[R

/

0 52 54 58 63

The fields in the primary address-space-control
element are allocated as follows:

Primary Region-Table or Segment-Table
Origin: Bits 0-51 of the primary region-table or
segment-table designation in control register 1,
with 12 zeros appended on the right, form a 64-bit
address that designates the beginning of the
primary region table or segment table. It is unpre-
dictable whether the address is real or absolute.
This table is called the primary region table or
segment table since it is used to translate virtual
addresses in the primary address space.

Primary Subspace-Group Control (G): Bit 54
of control register 1, when one, indicates that the
address space specified by the PASCE is the
base space or a subspace of a subspace group.
When bit 54 is zero, the address space is not in a
subspace group.

Primary Private-Space Control (P): If bit 55 of
control register 1 is one, then (1) a one value of
the common-segment bit in a translation-
lookaside-buffer (TLB) representation of a
segment-table entry prevents the entry and the
TLB page-table copy it designates from being
used when translating references to the primary
address space, even with a match between the
table or token origin in control register 1 and the
table origin in the TLB entry, (2) low-address pro-
tection and fetch-protection override do not apply
to the primary address space; and (3) a
translation-specification exception is recognized if
a reference to the primary address space is trans-
lated by means of a segment-table entry in
storage and the common-segment bit is one in the
entry. Item 2 in the above list applies even when
the contents of control register 1 are a real-space
designation.

Programming Note: With respect to item 1 in
the above list when the contents of control register
1 are a real-space designation, a one value of the
common-segment bit in a TLB representation of a
segment-table entry prevents the entry and the
TLB page-table copy it designates from being
used regardless of the value of the private-space
control in the real-space designation.

Primary Storage-Alteration-Event Control (S):
When the storage-alteration-space control in
control register 9 is one, bit 56 of control register 1
specifies, when one, that the primary address
space is one for which storage-alteration events
can occur. Bit 56 is examined when the PASCE
is used to perform dynamic-address translation for
a storage-operand store reference. Bit 56 is
ignored when the storage-alteration-space control
is zero.

Primary Space-Switch-Event Control (X):
When bit 57 of control register 1 is one:

e A space-switch-event program interruption
occurs when execution of the space-switching
form of PROGRAM CALL (PC-ss),
PROGRAM RETURN (PR-ss), or PROGRAM
TRANSFER (PT-ss) is completed. The inter-

Chapter 3. Storage 3-29

ruption occurs if bit 57 is one either before or
after the operation.

e A space-switch-event program interruption
occurs upon completion of a RESUME
PROGRAM, SET ADDRESS SPACE
CONTROL, or SET ADDRESS SPACE
CONTROL FAST instruction that changes the
address space from which instructions are
fetched either to or from the home address
space; that is, when instructions are fetched
from the home address space either before or
after the operation but not both before and
after the operation.

¢ Condition code 3 is set by LOAD ADDRESS
SPACE PARAMETERS.

Primary Real-Space Control (R): If bit 58 of
control register 1 is zero, the register contains a
region-table or segment-table designation. If bit
58 is one, the register contains a real-space des-
ignation. When bit 58 is one, a one value of the
common-segment bit in a translation-lookaside-
buffer (TLB) representation of a segment-table
entry prevents the entry and the TLB page-table
copy it designates from being used when trans-
lating references to the primary address space,
even with a match between the token origin in
control register 1 and the table origin in the TLB
entry.

Primary Designation-Type Control (DT): When
R is zero, the type of table designation in control
register 1 is specified by bits 60 and 61 in the reg-
ister, as follows:

Bits 60

and 61 Designation Type
11 Region-first-table
10 Region-second-table

01 Region-third-table
00 Segment-table

When R is zero, bits 60 and 61 must be 11 binary
when an attempt is made to use the PASCE to
translate a virtual address in which the leftmost
one bit is in bit positions 0-10 of the address.
Similarly, bits 60 and 61 must be 11 or 10 binary
when the leftmost one bit is in bit positions 11-21
of the address, and they must be 11, 10, or 01
binary when the leftmost one bit is in bit positions
22-32 of the address. Otherwise, an ASCE-type
exception is recognized.

3-30 z/Architecture Principles of Operation

Primary Region-Table or Segment-Table
Length (TL): Bits 62 and 63 of the primary
region-table designation or segment-table desig-
nation in control register 1 specify the length of
the primary region table or segment table in units
of 4096 bytes, thus making the length of the
region table or segment table variable in multiples
of 512 entries. The length of the primary region
table or segment table, in units of 4096 bytes, is
one more than the TL value. The contents of the
length field are used to establish whether the
portion of the virtual address (RFX, RSX, RTX, or
SX) to be translated by means of the table desig-
nates an entry that falls within the table.

Primary Real-Space Token Origin: Bits 0-51 of
the primary real-space designation in control reg-
ister 1, with 12 zeros appended on the right, form
a 64-bit address that may be used in forming and
using TLB entries that provide a virtual-equals-real
translation for references to the primary address
space. Although this address is used only as a
token and is not used to perform a storage refer-
ence, it still must be a valid address; otherwise, an
incorrect TLB entry may be used when the con-
tents of control register 1 are used.

The following bits of control register 1 are not
assigned and are ignored: bits 52, 53, and 59 if
the register contains a region-table designation or
segment-table designation, and bits 52, 53 and
59-63 if the register contains a real-space desig-
nation.

Control Register 7
Control register 7 contains the secondary address-
space-control element (SASCE). The register has
one of the following two formats, depending on the
real-space-control bit (R) in the register:

Secondary Region-Table or Segment-Table
Designation 5R=0)

Secondary Region-Table
or Segment-Table Origin G|P|S| [R| [DT|TL
/

0 52 54 58 60 63
Secondary Real-Space Designation (R=1)

Secondary Real-Space
Token Origin G|P|S| [R

/

0 52 54 58 63

The secondary region-table origin, secondary
segment-table origin, secondary subspace-group

control (G), secondary private-space control (P),
secondary storage-alteration-event control (S),
secondary real-space control (R), secondary
designation-type control (DT), secondary region-
table or segment-table length (TL), and secondary
real-space token origin in control register 7 are
defined the same as the fields in the same bit
positions in control register 1, except that control
register 7 applies to the secondary address space.

The following bits of control register 7 are not
assigned and are ignored: bits 52, 53, 57, and 59
if the register contains a region-table designation
or segment-table designation, and bits 52, 53, 57,
and 59-63 if the register contains a real-space
designation.

Control Register 13

Control register 13 contains the home address-
space-control element (HASCE). The register has
one of the following two formats, depending on the
real-space-control bit (R) in the register:

Home Region-Table or Segment-Table
Designation (R=0)
/

Home Region-Table or
Segment-Table Origin P[S|X|R| |DT|TL
/

0 52 54
Home Real-Space Designation (R=1)

58 60 63

Home Real-Space
Token Origin P[S[X|R

/
0 52 54 58 63

Home Space-Switch-Event Control (X): When
bit 57 of control register 13 is one, a space-switch-
event program interruption occurs upon com-
pleton of a RESUME PROGRAM, SET
ADDRESS SPACE CONTROL, or SET ADDRESS
SPACE CONTROL FAST instruction that changes
the address space from which instructions are
fetched either to or from the home address space;
that is, when instructions are fetched from the
home address space either before or after the
operation but not both before and after the opera-
tion.

The home region-table origin, home segment-table
origin, home private-space control (P), home
storage-alteration-event control (S), home real-

space control (R), home designation-type control
(DT), home region-table or segment-table length
(TL), and home real-space token origin in control
register 13 are defined the same as the fields in
the same bit positions in control register 1, except
that control register 13 applies to the home
address space.

The following bits of control register 13 are not
assigned and are ignored: bits 52-54 and 59 if
the register contains a region-table designation or
segment-table designation, and bits 52-54 and
59-63 if the register contains a real-space desig-
nation.

Programming Notes:

1. The validity of the information loaded into a
control register, including that pertaining to
dynamic address translation, is not checked at
the time the register is loaded. This informa-
tion is checked and the program exception, if
any, is indicated at the time the information is
used.

2. The information pertaining to dynamic address
translation is considered to be used when an
instruction is executed with DAT on or when
INVALIDATE PAGE TABLE ENTRY, LOAD
REAL ADDRESS, or STORE REAL
ADDRESS is executed. The information is
not considered to be used when the PSW
specifies translation but an 1/0, external,
restart, or machine-check interruption occurs
before an instruction is executed, or when the
PSW specifies the wait state.

Translation Tables

When the address-space-control element (ASCE)
used in a translation is a region-first-table desig-
nation, the translation process consists in a five-
level lookup using five tables: a region first table,
a region second table, a region third table a
segment table, and a page table. These tables
reside in real or absolute storage. When the
ASCE is a region-second-table designation,
region-third-table designation, or segment-table
designation, the lookups in the levels of tables
above the designated level are omitted, and the
higher-level tables themselves are omitted.

Chapter 3. Storage 3-31

Region-Table Entries

The term “region-table entry” means a region-first-
table entry, region-second-table entry, or region-
third-table entry.

The entries fetched from the region first table,
region second table, and region third table have
the following formats. The level (first, second, or
third) of the table containing an entry is identified
by the table-type (TT) bits in the entry.

Region-First-Table Entry (TT=11)

Region-Second-
Table Origin TF{I| |TT|TL

/
0 52 56 58 60 63

Region-Second-Table Entry (TT=10)
/

Region-Third-
Table Origin TF|I| |TT|TL

/
0 52 56 58 60 63

Region-Third-Table Entry (TT=01)
/

Segment-Table
Origin TFII| [TT|TL

/

0 52

56 58 60 63

The fields in the three levels of region-table
entries are allocated as follows:

Region-Second-Table Origin, Region-Third-
Table Origin, and Segment-Table Origin: A
region-first-table entry contains a region-second-
table origin. A region-second-table entry contains
a region-third-table origin. A region-third-table
entry contains a segment-table origin. The fol-
lowing description applies to each of the three
origins. Bits 0-51 of the entry, with 12 zeros
appended on the right, form a 64-bit address that
designates the beginning of the next-lower-level
table. It is unpredictable whether the address is
real or absolute.

Region-Second-Table Offset, Region-Third-
Table Offset, and Segment-Table Offset (TF):
A region-first-table entry contains a region-second-
table offset. A region-second-table entry contains
a region-third-table offset. A region-third-table
entry contains a segment-table offset. The fol-
lowing description applies to each of the three
offsets. Bits 56 and 57 of the entry specify the
length of a portion of the next-lower-level table
that is missing at the beginning of the table, that
is, the bits specify the location of the first entry

3-32 z/Architecture Principles of Operation

actually existing in the next-lower-level table. The
bits specify the length of the missing portion in
units of 4096 bytes, thus making the length of the
missing portion variable in multiples of 512 entries.
The length of the missing portion, in units of 4096
bytes, is equal to the TF value. The contents of
the offset field, in conjunction with the length field,
bits 62 and 63, are used to establish whether the
portion of the virtual address (RSX, RTX, or SX)
to be translated by means of the next-lower-level
table designates an entry that actually exists in the
table.

Region-invalid Bit (I): Bit 58 in a region-first-
table entry or region-second-table entry controls
whether the set of regions associated with the
entry is available. Bit 58 in a region-third-table
entry controls whether the single region associ-
ated with the entry is available. When bit 58 is
zero, address translation proceeds by using the
region-table entry. When the bit is one, the entry
cannot be used for translation.

Table-Type Bits (TT): Bits 60 and 61 of the
region-first-table entry, region-second-table entry,
and region-third-table entry identify the level of the
table containing the entry, as follows:

Bits 60

and 61 Region-Table Level
11 First
10 Second
01 Third

Bits 60 and 61 must identify the correct table
level, considering the type of table designation
that is the address-space-control element being
used in the translation and the number of table
levels that have so far been used; otherwise, a
translation-specification exception is recognized.

Region-Second-Table Length, Region-Third-
Table Length, and Segment-Table Length
(TL): A region-first-table entry contains a region-
second-table length. A region-second-table entry
contains a region-third-table length. A region-
third-table entry contains a segment-table length.
The following description applies to each of the
three lengths. Bits 62 and 63 of the entry specify
the length of the next-lower-level table in units of
4096 bytes, thus making the length of the table
variable in multiples of 512 entries. The length of
the next-lower-level table, in units of 4096 bytes,
is one more than the TL value. The contents of

the length field, in conjunction with the offset field,
bits 56 and 57, are used to establish whether the
portion of the virtual address (RSX, RTX, or SX)
to be translated by means of the next-lower-level
table designates an entry that actually exists in the
table.

Segment-Table Entries
The entry fetched from the segment table has the
following format:

Segment-Table Entry (TT=00)
/

Page-Table
Origin P I|IC[TT
/
0 53 55 58 60 63

The fields in the segment-table entry are allocated
as follows:

Page-Table Origin: Bits 0-52, with 11 zeros
appended on the right, form a 64-bit address that
designates the beginning of a page table. It is
unpredictable whether the address is real or abso-
lute.

Page-Protection Bit (P): Bit 54 is treated as
being ORed with the page-protection bit in each
entry in the page table designated by this
segment-table entry. Thus, when the bit is one,
page protection applies to the entire segment
specified by the segment-table entry.

Segment-Invalid Bit (I): Bit 58 controls whether
the segment associated with the segment-table
entry is available. When the bit is zero, address
translation proceeds by using the segment-table
entry. When the bit is one, the segment-table
entry cannot be used for translation.

Common-Segment Bit (C): Bit 59 controls the
use of the translation-lookaside-buffer (TLB)
copies of the segment-table entry and of the page
table which it designates. A zero identifies a
private segment; in this case, the segment-table
entry and the page table it designates may be
used only in association with the segment-table
origin that designates the segment table in which
the segment-table entry resides. A one identifies
a common segment; in this case, the segment-
table entry and the page table it designates may
continue to be used for translating addresses cor-
responding to the segment index, even though a

different segment table is specified. However,
TLB copies of the segment-table entry and page
table for a common segment are not usable if the
private-space control, bit 55, is one in the
address-space-control element used in the trans-
lation or if that address-space-control element is a
real-space designation. The common-segment bit
must be zero if the segment-table entry is fetched
from storage during a translation when the private-
space control is one in the address-space-control
element being used; otherwise, a translation-
specification exception is recognized.

Table-Type Bits (TT): Bits 60 and 61 of the
segment-table entry are 00 binary to identify the
level of the table containing the entry. The
meanings of all possible values of bits 60 and 61
in a region-table entry or segment-table entry are
as follows:

Bits 60

and 61 Table Level

11 Region-First

10 Region-Second
01 Region-Third
00 Segment

Bits 60 and 61 must identify the correct table
level, considering the type of table designation
that is the address-space-control element being
used in the translation and the number of table
levels that have so far been used; otherwise, a
translation-specification exception is recognized.

Bits 53, 55-57, 62, and 63 of the segment-table
entry are reserved for possible future extensions.

Page-Table Entries
The entry fetched from the page table entry has
the following format:

/
Page-Frame Real Address |O|I|P|0O
/
0 52 56 63

The fields in the page-table entry are allocated as
follows:

Page-Frame Real Address (PFRA): Bits 0-51
provide the leftmost bits of a real storage address.
When these bits are concatenated with the 12-bit
byte-index field of the virtual address on the right,
a 64-bit real address is obtained.

Chapter 3. Storage 3-33

Page-invalid Bit (I): Bit 53 controls whether the
page associated with the page-table entry is avail-
able. When the bit is zero, address translation
proceeds by using the page-table entry. When
the bit is one, the page-table entry cannot be used
for translation.

Page-Protection Bit (P): Bit 54 controls
whether store accesses can be made in the page.
This protection mechanism is in addition to the
key-controlled-protection and low-address-
protection mechanisms. The bit has no effect on
fetch accesses. If the bit is zero, stores are per-
mitted to the page, subject to the page-protection
bit in the segment-table entry used in the trans-
lation and to the other protection mechanisms. If
the bit is one, stores are disallowed. An attempt
to store when the page-protection bit is one
causes a protection exception to be recognized.
The page-protection bit in the segment-table entry
is treated as being ORed with bit 54 when deter-
mining whether page protection applies to the

page.

Bit positions 52 and 55 of the entry must contain
zeros; otherwise, a translation-specification excep-
tion is recognized as part of the execution of an
instruction using that entry for address translation.
Bit positions 56-63 are not assigned and are
ignored.

Translation Process

This section describes the translation process as it
is performed implicitly before a virtual address is
used to access main storage. Explicit translation,
which is the process of translating the operand
address of LOAD REAL ADDRESS, STORE
REAL ADDRESS, and TEST PROTECTION, is
the same, except that, for LOAD REAL ADDRESS
and TEST PROTECTION, region-first-translation,
region-second-translation, region-third-translation,
segment-translation, and page-translation
exceptions are not recognized; such conditions
are instead indicated by the condition code.
Translation of the operand address of LOAD
REAL ADDRESS and STORE REAL ADDRESS
also differs in that the CPU may be in the real
mode.

Translation of a virtual address is controlled by the

DAT-mode bit and address-space-control bits in
the PSW and by the address-space-control ele-

3-34 z/Architecture Principles of Operation

ments (ASCEs) in control registers 1, 7, and 13
and as specified by the access registers. When
the ASCE used in a translation is a region-first-
table designation, the translation is performed by
means of a region first table, region second table,
region third table, segment table, and page table,
all of which reside in real or absolute storage.
When the ASCE is a lower-level type of table des-
ignation (region-second-table designation, region-
third-table designation, or segment-table
designation) the translation is performed by means
of only the table levels beginning with the desig-
nated level, and the virtual-address bits that
would, if nonzero, require use of a higher level or
levels of table must be all zeros; otherwise, an
ASCE-type exception is recognized. When the
ASCE is a real-space designation, the virtual
address is treated as a real address, and table
entries in real or absolute storage are not used.

The address-space-control element (ASCE) used
for a particular address translation is called the
effective ASCE. Accordingly, when a primary
virtual address is translated, the contents of
control register 1 are used as the effective ASCE.
Similarly, for a secondary virtual address, the con-
tents of control register 7 are used; for an
AR-specified virtual address, the ASCE specified
by the access register is used; and for a home
virtual address, the contents of control register 13
are used.

When the real-space control in the effective ASCE
is zero, the designation-type control in the ASCE
specifies the table-designation type of the ASCE:
region-first-table designation, region-second-table
designation, region-third-table designation, or
segment-table designation. The corresponding
portion of the virtual address (region first index,
region second index, region third index, or
segment index) is checked against the table-
length field in the designation, and it is added to
the origin in the designation to select an entry in
the designated table. If the selected entry is
outside its table, as determined by the table-length
field in the designation, or if the | bit is one in the
selected entry, a region-first-translation, region-
second-translation, region-third-translation, or
segment-translation exception is recognized,
depending on the table level specified by the des-
ignation. If the table-type bits in the selected entry
do not indicate the expected table level, a
translation-specification exception is recognized.

The table entry selected by means of the effective
ASCE designates the next-lower-level table to be
used. If the current table is a region first table,
region second table, or region third table, the next
portion of the virtual address (region second
index, region third index, or segment index,
respectively) is checked against the table-offset
and table-length fields in the current table entry,
and it is added to the origin in the entry to select
an entry in the next-lower-level table. If the
selected entry in the next table is outside its table,
as determined by the table-offset and table-length
fields in the current table entry, or if the | bit is one
in the selected entry, a region-second-translation,
region-third-translation, or segment-translation
exception is recognized, depending on the level of
the next table. If the table-type bits in the
selected entry do not indicate the expected table
level, a translation-specification exception is
recognized.

Processing of portions of the virtual address by
means of successive table levels continues until a
segment-table entry has been selected. This
entry designates the page table to be used. The
segment-table entry contains a page-protection bit
that applies to all pages in the specified segment.

The page-index portion of the virtual address is
added to the page-table origin in the segment-
table entry to select an entry in the page table. If
the | bit is one in the page-table entry, a page-

translation exception is recognized. The page-
table entry contains the leftmost bits of the real
address that represents the translation of the
virtual address, and it contains a page-protection
bit that applies only to the page specified by the
page-table entry.

The byte-index field of the virtual address is used
unchanged as the rightmost bit positions of the
real address.

In order to eliminate the delay associated with ref-
erences to translation tables in real or absolute
storage, the information fetched from the tables
normally is also placed in a special buffer, the
translation-lookaside buffer (TLB), and subsequent
translations involving the same table entries may
be performed by using the information recorded in
the TLB. The TLB may also record virtual-equals-
real translations related to a real-space desig-
nation. The operation of the TLB is described in

“Translation-Lookaside Buffer” on page 3-42|

Whenever access to real or absolute storage is
made during the address-translation process for
the purpose of fetching an entry from a region
table, segment table, or page table, key-controlled
protection does not apply.

The translation process, including the effect of the
TLB, is shown graphically in

pag 0

Chapter 3. Storage 3-35

| Control Reg. 1, 7, or 13 ASN-Second Table Entry Virtual Address

PASCE, SASCE, or HASCE AR-Specified ASCE RFX | RSX | RTX | SX PX
(x8)| (x8)| (x8)| (x8)
> |]|«
Effective
ASCE
T0 R[DT|TL| TO and
virtual address —>
(x4096)
v
Yes ASCE is RSD
R=1 ? =
lNo
If
DT=11
— + <
Region First Table
>
R/A RSTO [TF|I|TT|TLF—> A in
Part 2
If
DT=10
> + |«
Region Second Table
—
R/A RTTO |TF|I|TT|TL—> B in
Part 2
If
DT=01
> + <
Region Third Table
—
R/A STO TF{I|TT|TLF— C in
Part 2
If
DT=00
—| + <
Segment Table
—
R/A PTO P{|I|C|TT|—> D in
Part 3

R/A: Address is real or absolute.

Figure 3-9 (Part 1 of 3). Translation Process

3-36 z/Architecture Principles of Operation

Region-First-Table Entry Virtual Address

RSTO |TF|I|TT|TL RFX | RSX | RTX | SX PX BX

(x4096) L (x8)| (x8)| (x8)

Region Second Table

3
R/A RTTO [TF|I|TT|TL—> B

Region-Second-Table Entry

RTTO |TF|I|TT|TL
(x4096) L
Region Third Table

I R/A STO TF|I|TT|TL— C

A

Region-Third-Table Entry

STO
(x4096) L
Segment Table

3
R/A PTO PI[I|C|TT|— D in
Part 3

TF|T|{TT|TL

R/A: Address is real or absolute.

Figure 3-9 (Part 2 of 3). Translation Process

Chapter 3. Storage 3-37

)

(

R/A:

[=]

[«

[

Segment-Table Entry Virtual Address

PTO PI|I|C|TT RFX | RSX | RTX | SX PX BX
x2048) (x8)
Page Table
TransTation
[} v Lookaside
R/A PFRA 0|I|P|O Buffer (TLB)
PFRA

v
A\
v P
(=2}

—

Address is real or absolute.

Real Address

Control register 1 provides the primary address-space-control element (ASCE) for
translation of a primary virtual address, control register 7 provides the secondary ASCE
for translation of a secondary virtual address, and control register 13 provides the home
ASCE for translation of a home virtual address. An ASN-second-table entry provides an
AR-specified (access-register-specified) ASCE for translation of an AR-specified virtual
address.

The portion of the virtual address to the left of the index selected by DT must be zero;
otherwise, an ASCE-type exception is recognized. Bits 0 and 1 of the index must be less
than or equal to TL in the ASCE, and I in the selected table entry must be zero;
otherwise, a region-first-translation, region-second-translation, region-third-translation
or segment-translation exception is recognized, depending on the table Tevel selected by
DT. TT in the selected table entry must equal DT; otherwise, a translation-specification
exception is recognized.

Bits 0 and 1 of the next index must be equal to or greater than TF, and Tess than or equal
to TL, in the current table entry, and I in the next selected table entry must be zero;
otherwise, a region-second-translation, region-third-translation, or segment-translation
exception is recognized, depending on the table Tevel of the next selected entry. TT in
the next selected entry must be one less than TT in the current entry; otherwise, a
translation-specification exception is recognized.

I in the page-table entry must be zero; otherwise, a page-translation exception is
recognized. Bits 52 and 55 in the page-table entry must be zero; otherwise, a
translation-specification exception is recognized.

Information, which may include portions of the virtual address and the table origin or
real-space token origin in the effective ASCE, is used to search the TLB.

If a match exists, the page-frame real address from the TLB is used in forming the real
address. If no match exists and the effective ASCE is a table designation, table entries
in real or absolute storage are fetched. The resulting fetched entries are used to
translate the address and, in conjunction with the search information, may be used to form
entries in the TLB. If the effective ASCE is a real-space designation, a TLB entry that
translates the virtual address to the equal real address may be formed.

Figure 3-9 (Part 3 of 3). Translation Process

3-38

z/Architecture Principles of Operation

Inspection of Real-Space Control

When the effective address-space-control element
(ASCE) contains a real-space control, bit 58,
having the value zero, the ASCE is a region-table
or segment-table designation. When the real-
space control is one, the ASCE is a real-space
designation.

Inspection of Designation-Type Control
When the real-space control is zero, the
designation-type control, bits 60 and 61 of the
effective address-space-control element (ASCE),
specifies the table-designation type of the ASCE.
Depending on the type, some number of leftmost
bits of the virtual address being translated must be
zeros; otherwise, an ASCE-type exception is
recognized. For each possible value of bits 60
and 61, the table-designation type and the virtual-
address bits required to be zeros are as follows:

Bits
60 Virtual-Address Bits
and Required to Be
61 Designation Type Zeros
11 Region-first-table None
10 Region-second- 0-10
table
01 Region-third-table 0-21
00 Segment-table 0-32

Lookup in a Table Designated by an
Address-Space-Control Element

The designation-type control, bits 60 and 61 of the
effective address-space-control element (ASCE),
specifies both the table-designation type of the
ASCE and the portion of the virtual address that is
to be translated by means of the designated table,
as follows:

Bits
60 Virtual-Address
and Portion Translated

61 Designation Type by the Table

11 Region-first-table Region first index

(bits 0-10)
10 Region-second- Region second index
table (bits 11-21)
01 Region-third-table Region third index
(bits 22-32)
00 Segment-table Segment index (bits
33-43)

When bits 60 and 61 have the value 11 binary,
the region-first-index portion of the virtual address,
in conjunction with the region-first-table origin con-
tained in the ASCE, is used to select an entry
from the region first table.

The 64-bit address of the region-first-table entry in
real or absolute storage is obtained by appending
12 zeros to the right of bits 0-51 of the region-first-
table designation and adding the region first index
with three rightmost and 50 leftmost zeros
appended. When a carry out of bit position O
occurs during the addition, an addressing excep-
tion may be recognized, or the carry may be
ignored, causing the table to wrap from 264 - 1 to
zero. All 64 bits of the address are used, regard-
less of whether the current PSW specifies the
24-bit, 31-bit, or 64-bit addressing mode.

As part of the region-first-table-lookup process,
bits 0 and 1 of the virtual address (which are bits
0 and 1 of the region first index) are compared
against the table length, bits 62 and 63 of the
region-first-table designation, to establish whether
the addressed entry is within the region first table.
If the value in the table-length field is less than the
value in the corresponding bit positions of the
virtual address, a region-first-translation exception
is recognized. The comparison against the table
length may be omitted if the equivalent of a
region-first-table entry in the translation-lookaside
buffer is used in the translation.

All eight bytes of the region-first-table entry appear
to be fetched concurrently as observed by other
CPUs. The fetch access is not subject to pro-
tection. When the storage address generated for
fetching the region-first-table entry designates a
location which is not available in the configuration,

Chapter 3. Storage 3-39

an addressing exception is recognized, and the
unit of operation is suppressed.

Bit 58 of the entry fetched from the region first
table specifies whether the corresponding set of
regions is available. This bit is inspected, and, if it
is one, a region-first-translation exception is recog-
nized.

A translation-specification exception is recognized
if the table-type bits, bits 60 and 61, in the region-
first-table entry do not have the same value as
bits 60 and 61 of the ASCE.

When no exceptions are recognized in the
process of region-first-table lookup, the entry
fetched from the region first table designates the
beginning and specifies the offset and length of
the corresponding region second table.

When bits 60 and 61 of the ASCE have the value
10 binary, the region-second-index portion of the
virtual address, in conjunction with the region-
second-table origin contained in the ASCE, is
used to select an entry from the region second
table. Bits 11 and 12 of the virtual address (which
are bits 0 and 1 of the region second index) are
compared against the table length in the ASCE. If
the value in the table-length field is less than the
value in the corresponding bit positions of the
virtual address, a region-second-translation excep-
tion is recognized. The comparison against the
table length may be omitted if the equivalent of a
region-second-table entry in the translation-
lookaside buffer is used in the translation. The
region-second-table-lookup process is otherwise
the same as the region-first-table-lookup process,
except that a region-second-translation exception
is recognized if bit 58 is one in the region-second-
table entry. When no exceptions are recognized,
the entry fetched from the region second table
designates the beginning and specifies the offset
and length of the corresponding region third table.

When bits 60 and 61 of the ASCE have the value
01 binary, the region-third-index portion of the
virtual address, in conjunction with the region-
third-table origin contained in the ASCE, is used to
select an entry from the region third table. Bits 22
and 23 of the virtual address (which are bits 0 and
1 of the region third index) are compared against
the table length in the ASCE. If the value in the
table-length field is less than the value in the cor-
responding bit positions of the virtual address, a

3-40 z/Architecture Principles of Operation

region-third-translation exception is recognized.
The comparison against the table length may be
omitted if the equivalent of a region-third-table
entry in the translation-lookaside buffer is used in
the translation. The region-third-table-lookup
process is otherwise the same as the region-first-
table-lookup process, including the checking of the
table-type bits in the region-third-table entry,
except that a region-third-translation exception is
recognized if bit 58 is one in the region-third-table
entry. When no exceptions are recognized, the
entry fetched from the region third table desig-
nates the beginning and specifies the offset and
length of the corresponding segment table.

When bits 60 and 61 of the ASCE have the value
00 binary, the segment-index portion of the virtual
address, in conjunction with the segment-table
origin contained in the ASCE, is used to select an
entry from the segment table. Bits 33 and 34 of
the virtual address (which are bits 0 and 1 of the
segment index) are compared against the table
length in the ASCE. If the value in the table-
length field is less than the value in the corre-
sponding bit positions of the virtual address, a
segment-translation exception is recognized. The
comparison against the table length may be
omitted if the equivalent of a segment-table entry
in the translation-lookaside buffer is used in the
translation. A segment-translation exception is
recognized if bit 58 is one in the segment-table
entry. A translation-specification exception is
recognized if (1) the private-space control, bit 55,
in the ASCE is one and (2) the common-segment
bit, bit 59, in the entry fetched from the segment
table is one. The segment-table-lookup process is
otherwise the same as the region-first-table-lookup
process, including the checking of the table-type
bits in the segment-table entry. When no
exceptions are recognized, the entry fetched from
the segment table designates the beginning of the
corresponding page table.

Lookup in a Table Designated by a
Region-Table Entry

When the effective address-space-control element
(ASCE) is a region-table designation, a region-
table entry is selected as described in the pre-
ceding section. Then the contents of the selected
entry and the next index portion of the virtual
address are used to select an entry in the next-
lower-level table, which may be another region
table or a segment table.

When the table entry selected by means of the
ASCE is a region-first-table entry, the region-
second-index portion of the virtual address, in con-
junction with the region-second-table origin
contained in the region-first-table entry, is used to
select an entry from the region second table.

The 64-bit address of the region-second-table
entry in real or absolute storage is obtained by
appending 12 zeros to the right of bits 0-51 of the
region-first-table entry and adding the region
second index with three rightmost and 50 leftmost
zeros appended. When a carry out of bit position
0 occurs during the addition, an addressing excep-
tion may be recognized, or the carry may be
ignored, causing the table to wrap from 264 - 1 to
zero. All 64 bits of the address are used, regard-
less of whether the current PSW specifies the
24-bit, 31-bit, or 64-bit addressing mode.

As part of the region-second-table-lookup process,
bits 11 and 12 of the virtual address (which are
bits 0 and 1 of the region second index) are com-
pared against the table offset, bits 56 and 57 of
the region-first-table entry, and against the table
length, bits 62 and 63 of the region-first-table
entry, to establish whether the addressed entry is
within the region second table. If the value in the
table-offset field is greater than the value in the
corresponding bit positions of the virtual address,
or if the value in the table-length field is less than
the value in the corresponding bit positions of the
virtual address, a region-second-translation excep-
tion is recognized.

All eight bytes of the region-second-table entry
appear to be fetched concurrently as observed by
other CPUs. The fetch access is not subject to
protection. When the storage address generated
for fetching the region-second-table entry desig-
nates a location which is not available in the con-
figuration, an addressing exception is recognized,
and the unit of operation is suppressed.

Bit 58 of the entry fetched from the region second
table specifies whether the corresponding set of
regions is available. This bit is inspected, and, if it
is one, a region-second-translation exception is
recognized.

A translation-specification exception is recognized
if the table-type bits, bits 60 and 61, in the region-
second-table entry do not have a value that is one

less than the value of those bits in the next-
higher-level table.

When no exceptions are recognized in the
process of region-second-table lookup, the entry
fetched from the region second table designates
the beginning and specifies the offset and length
of the corresponding region third table.

When the table entry selected by means of the
ASCE is a region-second-table entry, or if a
region-second-table entry has been selected by
means of the contents of a region-first-table entry,
the region-third-index portion of the virtual
address, in conjunction with the region-third-table
origin contained in the region-second-table entry,
is used to select an entry from the region third
table. Bits 22 and 23 of the virtual address (which
are bits 0 and 1 of the region third index) are com-
pared against the table offset and table length in
the region-second-table entry. A region-third-
translation exception is recognized if the table
offset is greater than bits 22 and 23, if the table
length is less than bits 22 and 23, or if bit 58 is
one in the region-third-table entry. The region-
third-table-lookup process is otherwise the same
as the region-second-table-lookup process,
including the checking of the table-type bits in the
region-third-table entry. When no exceptions are
recognized, the entry fetched from the region third
table designates the beginning and specifies the
offset and length of the corresponding segment
table.

When the table entry selected by means of the
ASCE is a region-third-table entry, or if a region-
third-table entry has been selected by means of
the contents of a region-second-table entry, the
segment-index portion of the virtual address, in
conjunction with the segment-table origin con-
tained in the region-third-table entry, is used to
select an entry from the segment table. Bits 33
and 34 of the virtual address (which are bits 0 and
1 of the segment index) are compared against the
table offset and table length in the region-third-
table entry. A segment-translation exception is
recognized if the table offset is greater than bits
33 and 34, if the table length is less than bits 33
and 34, or if bit 58 is one in the segment-table
entry. A translation-specification exception is
recognized if (1) the private-space control, bit 55,
in the ASCE is one and (2) the common-segment
bit, bit 59, in the entry fetched from the segment
table is one. The segment-table-lookup process is

Chapter 3. Storage 3-41

otherwise the same as the region-second-table-
lookup process, including the checking of the
table-type bits in the segment-table entry. When
no exceptions are recognized, the entry fetched
from the segment table designates the beginning
of the corresponding page table.

Page-Table Lookup

The page-index portion of the virtual address, in
conjunction with the page-table origin contained in
the segment-table entry, is used to select an entry
from the page table.

The 64-bit address of the page-table entry in real
or absolute storage is obtained by appending 11
zeros to the right of the page-table origin and
adding the page index, with three rightmost and
53 leftmost zeros appended. A carry out of bit
position 0 cannot occur. All 64 bits of the address
are used, regardless of whether the current PSW
specifies the 24-bit, 31-bit, or 64-bit addressing
mode.

All eight bytes of the page-table entry appear to
be fetched concurrently as observed by other
CPUs. The fetch access is not subject to pro-
tection. When the storage address generated for
fetching the page-table entry designates a location
which is not available in the configuration, an
addressing exception is recognized, and the unit
of operation is suppressed.

The entry fetched from the page table indicates
the availability of the page and contains the left-
most bits of the page-frame real address. The
page-invalid bit, bit 53, is inspected to establish
whether the corresponding page is available. If
this bit is one, a page-translation exception is
recognized. If bit position 52 or 55 contains a
one, a translation-specification exception is recog-
nized. If the page-protection bit, bit 54, is one
either in the segment-table entry used in the trans-
lation or in the page-table entry, and the storage
reference for which the translation is being per-
formed is a store, a protection exception is recog-
nized.

Formation of the Real Address

When the effective address-space-control element
(ASCE) is a region-table designation or a
segment-table designation and no exceptions in
the translation process are encountered, the page-
frame real address is obtained from the page-table
entry. When the ASCE is a real-space desig-

3-42 z/Architecture Principles of Operation

nation, bits 0-51 of the virtual address are used as
a page-frame real address. In either case, the
page-frame real address and the byte-index
portion of the virtual address are concatenated,
with the page-frame real address forming the left-
most part. The result is the real storage address
which corresponds to the virtual address. All 64
bits of the address are used, regardless of
whether the current PSW specifies the 24-bit,
31-bit, or 64-bit addressing mode.

Recognition of Exceptions during
Translation

Invalid addresses and invalid formats can cause
exceptions to be recognized during the translation
process. Exceptions are recognized when infor-
mation contained in table entries is used for trans-
lation and is found to be incorrect.

The information pertaining to DAT is considered to
be used when an instruction is executed with DAT
on or when INVALIDATE PAGE TABLE ENTRY,
LOAD REAL ADDRESS, or STORE REAL
ADDRESS is executed. The information is not
considered to be used when the PSW specifies
DAT on but an I/O, external, restart, or machine-
check interruption occurs before an instruction is
executed, or when the PSW specifies the wait
state. Only that information required in order to
translate a virtual address is considered to be in
use during the translation of that address, and, in
particular, addressing exceptions that would be
caused by the use of an address-space-control
element are not recognized when that address-
space-control element is not the one actually used
in the translation.

A list of translation exceptions, with the action
taken for each exception and the priority in which
the exceptions are recognized when more than
one is applicable, is provided in [‘Recognition of]
[Access Exceptions” on page 6-34]

Translation-Lookaside Buffer

To enhance performance, the dynamic-address-
translation mechanism normally is implemented
such that some of the information specified in the
region tables, segment tables, and page tables is
maintained in a special buffer, referred to as the
translation-lookaside buffer (TLB). The CPU nec-
essarily refers to a DAT-table entry in real or
absolute storage only for the initial access to that

entry. This information may be placed in the TLB,
and subsequent translations may be performed by
using the information in the TLB. For consistency
of operation, the virtual-equals-real translation
specified by a real-space designation also may be
performed by using information in the TLB. The
presence of the TLB affects the translation
process to the extent that (1) a modification of the
contents of a table entry in real or absolute
storage does not necessarily have an immediate
effect, if any, on the translation, (2) a region-first-
table origin, region-second-table origin, region-
third-table origin, segment-table origin, or
real-space token origin in an address-space-
control element (ASCE) may select a TLB entry
that was formed by means of an ASCE containing
an origin of the same value even when the two
origins are of different types, and (3) the compar-
ison against the table length in an address-space-
control element may be omitted if a TLB
equivalent of the designated table entry is used.
In a multiple-CPU configuration, each CPU has its
own TLB.

Entries within the TLB are not explicitly address-
able by the program.

Information is not necessarily retained in the TLB
under all conditions for which such retention is
permissible. Furthermore, information in the TLB
may be cleared under conditions additional to
those for which clearing is mandatory.

TLB Structure

The description of the logical structure of the TLB
covers the implementation by all systems oper-
ating as defined by z/Architecture. The TLB
entries are considered as being of three types:
TLB combined region-and-segment-table entries,
TLB page-table entries, and TLB real-space
entries. A TLB combined region-and-segment-
table entry or TLB page-table entry is considered
as containing within it both the information
obtained from the table entry or entries in real or
absolute storage and the attributes used to fetch
this information from storage. A TLB real-space
entry is considered as containing a page-frame
real address and the real-space token origin and
region, segment, and page indexes used to form
the entry. The token origin in a TLB real-space
entry is indistinguishable from the table origin in a
TLB combined region-and-segment-table entry.

Note: The following sections describe the condi-
tions under which information may be placed in
the TLB, the conditions under which information
from the TLB may be used for address translation,
and how changes to the translation tables affect
the translation process.

Formation of TLB Entries

The formation of TLB combined region-and-
segment-table entries and TLB page-table entries
from table entries in real or absolute storage, and
the effect of any manipulation of the contents of
table entries in storage by the program, depend
on whether the entries in storage are attached to
a particular CPU and on whether the entries are
valid.

The attached state of a table entry denotes that
the CPU to which it is attached can attempt to use
the table entry for implicit address translation.
The table entry may be attached to more than one
CPU at a time.

The valid state of a table entry denotes that the
region set, region, segment, or page associated
with the table entry is available. An entry is valid
when the region-invalid, segment-invalid, or page-
invalid bit in the entry is zero.

The region-table entries, if any, and the segment-
table entry used to form a TLB combined region-
and-segment-table entry are called a translation
path. A translation path may be placed in the TLB
as a combined region-and-segment-table entry
whenever all entries in the path are attached and
valid and would not cause a translation-
specification exception if used for translation.
Similarly, a page-table entry may be placed in the
TLB whenever the entry is attached and valid and
would not cause a translation-specification excep-
tion if used for translation.

The highest-level table entry in a translation path
is attached when it is within a table designated by
an attaching address-space-control element
(ASCE). “Within a table” means as determined by
the origin and length fields in the ASCE. An
ASCE is an attaching ASCE when all of the fol-
lowing conditions are met:

1. The current PSW specifies DAT on.

2. The current PSW contains no errors that
would cause an early specification exception
to be recognized.

Chapter 3. Storage 3-43

3. The ASCE meets the requirements in a, b, c,
or d below.

a. The ASCE is the primary ASCE in control
register 1, and the CPU is not in the
home-space mode.

b. The ASCE is the secondary ASCE in
control register 7, and either of the fol-
lowing requirements is met:

e The CPU is in the secondary-space
mode or access-register mode.

e The CPU is in the primary-space
mode, and the secondary-space
control, bit 37 of control register 0, is
one.

c. The ASCE is in either an attached and
valid ASN-second-table entry (ASTE) or a
usable ALB ASTE, and the CPU is in the
access-register mode. See
[“ART-Lookaside Buffer’” on page 5-53 for
the meaning of the terminology used here.

d. The ASCE is the home ASCE in control
register 13, and the CPU is not in the
secondary-space mode.

Each of the remaining table entries in a translation
path is attached when the next-higher-level entry
is attached and valid and would not cause a
translation-specification exception if used for trans-
lation and the subject entry is within the table des-
ignated by the next-higher-level entry. “Within the
table” means as determined by the origin, offset,
and length fields in the next-higher-level entry.

A page-table entry is attached when it is within the
page table designated by either an attached and
valid segment-table entry that would not cause a
translation-specification exception if used for trans-
lation or a usable TLB combined region-and-
segment-table entry. A usable TLB combined
region-and-segment-table entry is explained in the
next section.

A region-table entry or segment-table entry causes
a translation-specification exception if the table-
type bits, bits 60 and 61, in the entry are incon-
sistent with the level at which the entry would be
encountered when using the translation path in the
translation process. A segment-table entry also
causes a translation-specification exception if the
private-space-control bit is one in the address-
space-control element used to select it and the

3-44 z/Architecture Principles of Operation

common-segment bit is one in the entry. A page-
table entry causes a translation-specification
exception if bit 52 or 55 in the entry is one.

A TLB real-space entry may be formed whenever
an attaching real-space designation exists. The
entry is formed using the real-space token origin
in the designation and any value of bits 0-51 of a
virtual address.

Use of TLB Entries

The usable state of a TLB entry denotes that the
CPU can attempt to use the TLB entry for implicit
address translation. A usable TLB entry attaches
the next-lower-level table, if any, and may be
usable for a particular instance of implicit address
translation.

A TLB combined region-and-segment-table entry
is in the usable state when all of the following con-
ditions are met:

1. The current PSW specifies DAT on.

2. The current PSW contains no errors that
would cause an early specification exception
to be recognized.

3. The TLB combined region-and-segment-table
entry meets either one of the following
requirements:

a. The common-segment bit is one in the
TLB entry.

b. The table-origin (TO) field in the TLB entry
matches the table- or token-origin field in
an attaching address-space-control
element.

A TLB combined region-and-segment-table entry
may be used for a particular instance of implicit
address translation only when the entry is in the
usable state, either the common-segment bit is
one in the TLB entry or the table-origin (TO) field
in the TLB entry matches the table- or token-origin
field in the address-space-control element being
used in the translation, and the region-index and
segment-index fields in the TLB entry match those
of the virtual address being translated. However,
the TLB combined region-and-segment-table entry
is not used if the common-segment bit is one in
the entry and either the private-space-control bit is
one in the address-space-control element being
used in the translation or that address-space-
control element is a real-space designation. In
both these cases, the TLB entry is not used even

if the table-origin field in the entry and the table-
or token-origin field in the address-space-control
element match.

A TLB page-table entry may be used for a partic-
ular instance of implicit address translation only
when the page-table-origin field in the entry
matches the page-table-origin field in the
segment-table entry or TLB combined region-and-
segment-table entry being used in the translation
and the page-index field in the TLB page-table
entry matches the page index of the virtual
address being translated.

A TLB real-space entry may be used for implicit
address translation only when the token-origin
field in the TLB entry matches the table- or token-
origin field in the address-space-control element
being used in the translation and the region-index,
segment-index, and page-index fields in the TLB
entry match those of the virtual address being
translated

The operand address of LOAD REAL ADDRESS
may be translated with the use of the TLB con-
tents whether DAT is on or off, but TLB entries
still are formed only if DAT is on.

Programming Notes:

1. Although contents of a table entry may be
copied into the TLB only when the table entry
is both attached and valid, the copy may
remain in the TLB even when the table entry
itself is no longer attached or valid.

2. No contents can be copied into the TLB when
DAT is off because the table entries at this
time are not attached. In particular, trans-
lation of the operand address of LOAD REAL
ADDRESS with DAT off does not cause
entries to be placed in the TLB.

Conversely, when DAT is on, information may
be copied into the TLB from all translation-
table entries that could be used for address
translation, given the current translation
parameters, the setting of the address-space-
control bits, and the contents of the access
registers. The loading of the TLB does not
depend on whether the entry is used for trans-
lation as part of the execution of the current
instruction, and such loading can occur when
the CPU is in the wait state.

3. More than one copy of contents of a table
entry may exist in the TLB. For example,
some implementations may cause a copy of
contents of a valid table entry to be placed in
the TLB for the table origin in each address-
space-control element by which the entry
becomes attached.

Modification of Translation Tables

When an attached and invalid table entry is made
valid and no entry usable for translation of the
associated virtual address is in the TLB, the
change takes effect no later than the end of the
current unit of operation. Similarly, when an unat-
tached and valid table entry is made attached and
no usable entry for the associated virtual address
is in the TLB, the change takes effect no later
than the end of the current unit of operation.

When a valid and attached table entry is changed,
and when, before the TLB is cleared of entries
that qualify for substitution for that entry, an
attempt is made to refer to storage by using a
virtual address requiring that entry for translation,
unpredictable results may occur, to the following
extent. The use of the new value may begin
between instructions or during the execution of an
instruction, including the instruction that caused
the change. Moreover, until the TLB is cleared of
entries that qualify for substitution for that entry,
the TLB may contain both the old and the new
values, and it is unpredictable whether the old or
new value is selected for a particular access. If
both old and new values of a translation path are
present in the TLB, a page-table entry may be
fetched by using one value and placed in the TLB
associated with the other value. If the new value
of the path is a value that would cause an excep-
tion, the exception may or may not cause an inter-
ruption to occur. If an interruption does occur, the
result fields of the instruction may be changed
even though the exception would normally cause
suppression or nullification.

Entries are cleared from the TLB in accordance
with the following rules:

1. All entries are cleared from the TLB by the
execution of PURGE TLB or SET PREFIX and
by CPU reset.

2. All entries may be cleared from all TLBs in the
configuration by the execution of COMPARE
AND SWAP AND PURGE by any of the CPUs

Chapter 3. Storage 3-45

in the configuration, depending on a bit in a
general register used by the instruction.

. Selected entries are cleared from all TLBs in
the configuration by the execution of INVALI-
DATE PAGE TABLE ENTRY by any of the
CPUs in the configuration.

. Some or all TLB entries may be cleared at
times other than those required by the pre-
ceding rules.

Programming Notes:

1. Entries in the TLB may continue to be used

for translation after the table entries from
which they have been formed have become
unattached or invalid. These TLB entries are
not necessarily removed unless explicitly
cleared from the TLB.

A change made to an attached and valid entry
or a change made to a table entry that causes
the entry to become attached and valid is
reflected in the translation process for the next
instruction, or earlier than the next instruction,
unless a TLB entry qualifies for substitution for
that table entry. However, a change made to
a table entry that causes the entry to become
unattached or invalid is not necessarily
reflected in the translation process until the
TLB is cleared of entries that qualify for sub-
stitution for that table entry.

. Exceptions associated with dynamic address
translation may be established by a pretest for
operand accessibility that is performed as part
of the initiation of instruction execution. Con-
sequently, a region-first-translation, region-
second-translation, region-third-translation,
segment-translation, or page-translation
exception may be indicated when a table entry
is invalid at the start of execution even if the
instruction would have validated the table
entry it uses and the table entry would have
appeared valid if the instruction was consid-
ered to process the operands one byte at a
time.

. A change made to an attached table entry,
except to set the | bit to zero or to alter the
rightmost byte of a page-table entry, may
produce unpredictable results if that entry is
used for translation before the TLB is cleared
of all copies of contents of that entry. The
use of the new value may begin between
instructions or during the execution of an

3-46 z/Architecture Principles of Operation

instruction, including the instruction that
caused the change. When an instruction,
such as MOVE (MVC), makes a change to an
attached table entry, including a change that
makes the entry invalid, and subsequently
uses the entry for translation, a changed entry
is being used without a prior clearing of the
entry from the TLB, and the associated unpre-
dictability of result values and of exception
recognition applies.

Manipulation of attached table entries may
cause spurious table-entry values to be
recorded in a TLB. For example, if changes
are made piecemeal, modification of a valid
attached entry may cause a partially updated
entry to be recorded, or, if an intermediate
value is introduced in the process of the
change, a supposedly invalid entry may tem-
porarily appear valid and may be recorded in
the TLB. Such an intermediate value may be
introduced if the change is made by an 1/O
operation that is retried, or if an intermediate
value is introduced during the execution of a
single instruction.

As another example, if a segment-table entry
is changed to designate a different page table
and used without clearing the TLB, the new
page-table entries may be fetched and associ-
ated with the old page-table origin. In such a
case, execution of INVALIDATE PAGE TABLE
ENTRY designating the new page-table origin
will not necessarily clear the page-table
entries fetched from the new page table.

. To facilitate the manipulation of page tables,

the INVALIDATE PAGE TABLE ENTRY
instruction is provided. This instruction sets
the | bit in a page-table entry to one and
clears all TLBs in the configuration of entries
formed from that table entry.

INVALIDATE PAGE TABLE ENTRY is useful
for setting the | bit to one in a page-table entry
and causing TLB copies of the entry to be
cleared from the TLB of each CPU in the con-
figuration. The following aspects of the TLB
operation should be considered when using
INVALIDATE PAGE TABLE ENTRY. (See
also the programming notes following INVALI-
DATE PAGE TABLE ENTRY.)

a. INVALIDATE PAGE TABLE ENTRY
should be executed before making any
change to a page-table entry other than

changing the rightmost byte; otherwise,
the selective-clearing portion of INVALI-
DATE PAGE TABLE ENTRY may not
clear the TLB copies of the entry.

b. Invalidation of all the page-table entries
within a page table by means of INVALI-
DATE PAGE TABLE ENTRY does not
necessarily clear the TLB of any combined
region-and-segment-table entry desig-
nating the page table. When it is desired
to invalidate and clear the TLB of a com-
bined region-and-segment-table entry, the
rules in note 5 below must be followed.

c. When a large number of page-table
entries are to be invalidated at a single
time, the overhead involved in using
COMPARE AND SWAP AND PURGE
(one that purges the TLB) or PURGE TLB
and in following the rules in note 5 below
may be less than in issuing INVALIDATE
PAGE TABLE ENTRY for each page-table
entry.

5. Manipulation of table entries should be in

accordance with the following rules. If these
rules are complied with, translation is per-
formed as if the table entries from real or
absolute storage were always used in the
translation process.

a. A valid table entry must not be changed
while it is attached to any CPU and may
be used for translation by that CPU except
to (1) invalidate the entry, by using
INVALIDATE PAGE TABLE ENTRY,
(2) alter bits 56-63 of a page-table entry,
or (3) make a change by means of a
COMPARE AND SWAP AND PURGE
instruction that purges the TLB.

b. When any change is made to an attached
and valid or unattached or invalid table
entry other than a change to bits 56-63 of
a page-table entry, each CPU which may
have a TLB entry formed from that entry
must be caused to purge its TLB after the
change occurs and prior to the use of that
entry for implicit translation by that CPU.
(Note that a separate purge is unneces-
sary if the change was made by using
INVALIDATE PAGE TABLE ENTRY or a
COMPARE AND SWAP AND PURGE
instruction that purges the TLB.) In the
case when the table entry is attached and

valid, this rule applies when it is known
that a program is not being executed that
may require the entry for translation.

c. When any change is made to an invalid
table entry in such a way as to allow inter-
mediate valid values to appear in the
entry, each CPU to which the entry is
attached must be caused to purge its TLB
after the change occurs and prior to the
use of the entry for implicit address trans-
lation by that CPU.

d. When any change is made to an offset or
length specified for a table, each CPU
which may have a TLB entry formed from
a table entry that no longer lies within its
table must be caused to purge its TLB
after the change occurs and prior to the
use of the table for implicit translation by
that CPU.

Note that when an invalid page-table entry is
made valid without introducing intermediate
valid values, the TLB need not be cleared in a
CPU which does not have any TLB entries
formed from that entry. Similarly, when an
invalid region-table or segment-table entry is
made valid without introducing intermediate
valid values, the TLB need not be cleared in a
CPU which does not have any TLB entries
formed from that validated entry and which
does not have any TLB entries formed from
entries in a page table attached by means of
that validated entry.

The execution of PURGE TLB, COMPARE
AND SWAP AND PURGE, or SET PREFIX
may have an adverse effect on the perform-
ance of some models. Use of these
instructions should, therefore, be minimized in
conformance with the above rules.

Address Summary

Addresses Translated

Most addresses that are explicitly specified by the
program and are used by the CPU to refer to
storage are instruction or logical addresses and
are subject to implicit translation when DAT is on.
Analogously, the corresponding addresses indi-
cated to the program on an interruption or as the
result of executing an instruction are instruction or

Chapter 3. Storage 3-47

logical addresses. The operand address of LOAD
REAL ADDRESS and STORE REAL ADDRESS is
explicitly translated, regardless of whether the
PSW specifies DAT on or off.

Translation is not applied to quantities that are
formed from the values specified in the B and D
fields of an instruction but that are not used to
address storage. This includes operand
addresses in LOAD ADDRESS, LOAD ADDRESS
EXTENDED, MONITOR CALL, and the shifting
instructions. This also includes the addresses in
control registers 10 and 11 designating the
starting and ending locations for PER.

With the exception of INSERT VIRTUAL
STORAGE KEY and TEST PROTECTION, the
addresses explicitly designating storage keys
(operand addresses in SET STORAGE KEY
EXTENDED, INSERT STORAGE KEY
EXTENDED, and RESET REFERENCE BIT
EXTENDED) are real addresses. Similarly, the

3-48 z/Architecture Principles of Operation

addresses implicitly used by the CPU for such
sequences as interruptions are real addresses.

The addresses used by channel programs to
transfer data and to refer to CCWs or IDAWs are
absolute addresses.

The handling of storage addresses associated
with DIAGNOSE is model-dependent.

The processing of addresses, including dynamic
address translation and prefixing, is discussed in
[‘Address Types” on page 3-3] Prefixing, when
provided, is applied after the address has been
translated by means of the dynamic-address-
translation facility. For a description of prefixing,
see |‘Prefixing” on page 3-15|

Handling of Addresses

The handling of addresses is summarized in

[Figure 3-10 on page 3-491 This figure lists all

addresses that are encountered by the program
and specifies the address type.

Virtual Addresses

- Address of storage operand for INSERT VIRTUAL STORAGE KEY

- Operand address in LOAD REAL ADDRESS and STORE REAL ADDRESS

- Addresses of storage operands for MOVE TO PRIMARY and MOVE TO
SECONDARY

- Address stored in the doubleword at real Tocation 168 on a program
interruption for ASCE-type, region-first-translation, region-second-
translation, region-third-translation, segment-translation, or page-
translation exception

- Linkage-stack-entry address in control register 15

- Backward stack-entry address in linkage-stack header entry

- Forward-section-header address in linkage-stack trailer entry

- Trap-control-block address in dispatchable-unit-control table

- Trap-save-area address and trap-program address in trap control
block

Instruction Addresses

- Instruction address in PSW

- Branch address

- Target of EXECUTE

- Address stored in the doubleword at real Tocation 152 on a program
interruption for PER

- Address placed in general register by BRANCH AND LINK, BRANCH AND
SAVE, BRANCH AND SAVE AND SET MODE, BRANCH AND STACK, BRANCH IN
SUBSPACE GROUP, BRANCH RELATIVE AND SAVE, BRANCH RELATIVE AND SAVE
LONG, and PROGRAM CALL

- Address used in general register by BRANCH AND STACK.

- Address placed in general register by BRANCH AND SET AUTHORITY
executed in reduced-authority state

Logical Addresses

- Addresses of storage operands for instructions not otherwise
specified

- Address placed in general register 1 by EDIT AND MARK and TRANSLATE
AND TEST

- Addresses in general registers updated by MOVE LONG, MOVE LONG
EXTENDED, COMPARE LOGICAL LONG, and COMPARE LOGICAL LONG EXTENDED

- Addresses in general registers updated by CHECKSUM, COMPARE AND FORM
CODEWORD, and UPDATE TREE

- Address for TEST PENDING INTERRUPTION when the second-operand ad-
dress is nonzero

- Address of parameter list of RESUME PROGRAM

Figure 3-10 (Part 1 of 3). Handling of Addresses

Chapter 3. Storage

3-49

Real Addresses

- Address of storage key for INSERT STORAGE KEY EXTENDED, RESET
REFERENCE BIT EXTENDED, and SET STORAGE KEY EXTENDED

- Address of storage operand for LOAD USING REAL ADDRESS, STORE USING
REAL ADDRESS, and TEST BLOCK

- The translated address generated by LOAD REAL ADDRESS and STORE REAL
ADDRESS

- Page-frame real address in page-table entry

- Trace-entry address in control register 12

- ASN-first-table origin in control register 14

- ASN-second-table origin in ASN-first-table entry

- Authority-table origin in ASN-second-table entry, except when used
by access-register translation

- Linkage-table origin in primary ASN-second-table entry

- Entry-table origin in linkage-table entry

- Dispatchable-unit-control-table origin in control register 2

- Primary-ASN-second-table-entry origin in control register 5

- Base-ASN-second-table-entry origin and subspace-ASN-second-table-
entry origin in dispatchable-unit control table

- ASN-second-table-entry address in entry-table entry and access-list
entry

Permanently Assigned Real Addresses

- Address of the doubleword into which TEST PENDING INTERRUPTION
stores when the second-operand address is zero

- Addresses of PSWs, interruption codes, and the associated informa-
tion used during interruption

- Addresses used for machine-check Togout and save areas

- Address of STORE FACILITY LIST operand

Addresses Which Are Unpredictably Real or Absolute

- Region-first-table origin, region-second-table origin, region-third-
table origin, or segment-table origin in control registers 1, 7, and
13, in access-register-specified address-space-control element, and
in region-first-table entry, region-second-table entry, or region-
third-table entry

- Page-table origin in segment-table entry and in INVALIDATE PAGE
TABLE ENTRY

- Address of segment-table entry or page-table entry provided by LOAD
REAL ADDRESS

- The dispatchable-unit or primary-space access-list origin and the
authority-table origin (in the ASTE designated by the ALE used) used
by access-register translation

Figure 3-10 (Part 2 of 3). Handling of Addresses

3-50 z/Architecture Principles of Operation

Absolute Addresses

- Prefix value

- Channel-program address in ORB

- Data address in CCW

- Data address in IDAW

- Address 1imit specified in SET ADDRESS LIMIT
248

- CCW address in SCSW

Permanently Assigned Absolute Addresses

- Addresses used for the store-status function

Addresses Not Used to Reference Storage

- PER starting address in control register 10
- PER ending address in control register 11

event

to use the address to reference storage

- IDAW address in a CCW specifying indirect data addressing
- CCW address in a CCW specifying transfer in channel

- Measurement-block origin specified in SET CHANNEL MONITOR

- Addresses used by the store-status-at-address SIGNAL PROCESSOR order
- Failing-storage address stored in the doubleword at real location

- Addresses of PSW and first two CCWs used for initial program loading

- Address stored in the doubleword at real location 176 for a monitor
- Address in shift instructions and other instructions specified not

- Real-space token origin in real-space designation

Figure 3-10 (Part 3 of 3). Handling of Addresses

Assigned Storage Locations

[Figure 3-11 on page 3-57 lshows the format and
extent of the assigned locations in storage. The
locations are used as follows.

128-131 (Real Address)

External-Interruption Parameter. During
an external interruption due to service
signal or the external time reference
(ETR), the parameter associated with the
interruption is stored at locations
128-131.

132-133 (Real Address)

CPU Address: During an external inter-
ruption due to malfunction alert, emer-
gency signal, or external call, the CPU
address associated with the source of
the interruption is stored at locations
132-138. For all other external-
interruption conditions, zeros are stored
at locations 132-133.

134-135

136-139

140-143

(Real Address)

External-Interruption Code: During an
external interruption, the interruption
code is stored at locations 134-135.

(Real Address)

Supervisor-Call-Interruption Identification:
During a supervisor-call interruption, the
instruction-length code is stored in bit
positions 5 and 6 of location 137, and
the interruption code is stored at
locations 138-139. Zeros are stored at
location 136 and in the remaining bit
positions of location 137.

(Real Address)

Program-Interruption Identification:
During a program interruption, the
instruction-length code is stored in bit
positions 5 and 6 of location 141, and
the interruption code is stored at
locations 142-143. Zeros are stored at
location 140 and in the remaining bit
positions of location 141.

Chapter 3. Storage 3-51

144-147

148-149

150-151

152-159

160

3-52

(Real Address)

Data-Exception Code (DXC): During a
program interruption due to a data
exception, the data-exception code is
stored at location 147, and zeros are
stored at locations 144-146. The DXC is

described in [|‘Data-Exception Code|
[DXC)" on page 6-14]

(Real Address)

Monitor-Class Number. During a
program interruption due to a monitor
event, the monitor-class number is
stored at location 149, and zeros are
stored at location 148.

(Real Address)

PER Code: During a program inter-
ruption due to a PER event the PER
code is stored in bit positions 0-2 and 4
of locations 150-151, and other informa-
tion is or may be stored as described in
Fldentification of Cause” on page 4-26

(Real Address)

PER Address: During a program inter-
ruption due to a PER event, the PER
address is stored at locations 152-159.

(Real Address)

Exception Access Identification: During
a program interruption due to an
ASCE-type, region-first-translation,

region-second-translation, region-third-
translation, segment-translation, or page-
translation exception, an indication of the
address space to which the exception
applies may be stored at location 160. |If
the CPU was in the access-register
mode and the access was an instruction
fetch, including a fetch of the target of an
EXECUTE instruction, zeros are stored
at location 160. If the CPU was in the
access-register mode and the access
was a storage-operand reference that
used an AR-specified address-space-
control element, the number of the
access register used is stored in bit posi-
tions 4-7 of location 160, and zeros are
stored in bit positions 0-3. (In either of
the two cases described so far, storing
at location 160 occurs regardless of the
value stored in bit positions 62 and 63 of
real locations 168-175.) If the CPU was

z/Architecture Principles of Operation

161

162

in the access-register mode but the
access was an implicit reference to the
linkage stack, or if the CPU was not in
the access-register mode, the contents
of location 160 are unpredictable.

During a program interruption due to an
ALEN-translation, ALE-sequence,
ASTE-validity, ASTE-sequence, or
extended-authority exception recognized
during access-register translation, the
number of the access register used is
stored in bit positions 4-7 of location
160, and zeros are stored in bit positions
0-3. During a program interruption due
to an ASTE-validity or ASTE-sequence
exception recognized during a subspace-
replacement operation, all zeros are
stored at location 160.

During a program interruption due to a
protection exception, information is
stored at location 160 as described in

‘Suppression on Protection” on|

page 3-12}

(Real Address)

PER Access Identification: During a
program interruption due to a PER
storage-alteration event, an indication of
the address space to which the event
applies may be stored at location 161. If
the access used an AR-specified
address-space-control element, the
number of the access register used is
stored in bit positions 4-7 of location
161, and zeros are stored in bit positions
0-3. The contents of location 161 are
unpredictable if (1) the CPU was in the
access-register mode but the access
was an implicit reference to the linkage
stack or (2) the CPU was not in the
access-register mode.

(Real Address)

Operand Access Identification: During a
program interruption due to a page-
translation exception recognized by the
MOVE PAGE instruction, the contents of
the R: field of the instruction are stored
in bit positions 0-3 of location 162, and
the contents of the Rz field are stored in
bit positions 4-7. If the page-translation
exception was recognized during the

163

163

168-175

execution of an instruction other than
MOVE PAGE, or if an ASCE-type,
region-first-translation, region-second-
translation, region-third-translation, or
segment-translation exception was
recognized, the contents of location 162
are unpredictable.

(Absolute Address)

Store-Status Architectural-Mode Identifi-
cation. During the execution of the
store-status operation, zeros are stored
in bit positions 0-6 of location 163, and a
one is stored in bit position 7.

(Real Address)

Machine-Check Architectural-Mode Iden-
tification: During a machine-check inter-
ruption, zeros are stored in bit positions
0-6 of location 163, and a one is stored
in bit position 7.

(Real Address)

Translation-Exception Identification:
During a program interruption due to an
ASCE-type, region-first-translation,
region-second-translation, region-third-
translation, segment-translation, or page-
translation exception, bits 0-51 of the
virtual address causing the exception are
stored in bit positions 0-51 of locations
168-175. This address is sometimes
referred to as the translation-exception
address. Bits 52-60 of locations 168-175
are unpredictable. If the exception was
a page-translation exception that was
recognized during the execution of
MOVE PAGE, bit 61 of locations
168-175 is set to one. If the exception
was a page-translation exception recog-
nized during the execution of an instruc-
tion other than MOVE PAGE, bit 61 is
set to zero. If the exception was an
ASCE-type, region-first-translation,
region-second-translation, region-third-
translation, or segment-translation
exception, bit 61 of locations 168-175 is
unpredictable. See the definition of real
location 162 for related information.

Bits 62 and 63 of locations 168-175 are
set to identify the address-space-control
element (ASCE) used in the translation,
as follows:

Bit Bit
62 63 Meaning

0 0 Primary ASCE was used.

0 1 CPU was in the access-
register mode, and either the
access was an instruction fetch
or it was a storage-operand
reference that used an
AR-specified ASCE (the
access was not an implicit ref-
erence to the linkage stack).
The exception access id, real
location 160, can be examined
to determine the ASCE used.
However, if the primary, sec-
ondary, or home ASCE was
used, bits 62 and 63 may be
set to 00, 10, or 11, respec-
tively, instead of to 01.

1 0 Secondary ASCE was used.

1 1 Home ASCE was used
(includes the case of an
implicit reference to the linkage
stack).

The CPU may avoid setting bits 62 and
63 to 01 by recognizing that the access
was an instruction fetch, that access-list-
entry token 00000000 or 00000001 hex
was used, or that the access-list-entry
token designated, through an access-list
entry, an ASN-second-table entry con-
taining an ASCE equal to the primary
ASCE, secondary ASCE, or home
ASCE.

During a program interruption due to an
AFX-translation, ASX-translation,
primary-authority, or secondary-authority
exception, the ASN being translated is
stored at locations 174 and 175, zeros
are stored at locations 172 and 173, and
the contents of locations 168-171 remain
unchanged.

During a program interruption due to a
space-switch event, an identification of
the old instruction space is stored at
locations 174 and 175, the old
instruction-space space-switch-event-
control bit is placed in bit position 0 and
zeros are placed in bit positions 1-15 of
locations 172 and 173, and the contents
of locations 168-171 remain unchanged.

Chapter 3. Storage 3-53

176-183

184-187

188-191

3-54

The identification and bit stored are as
follows:

e If the CPU was in the primary-space,
secondary-space, or access-register
mode before the operation, the old
PASN, bits 48-63 of control register
4 before the operation, is stored at
locations 174 and 175, and the old
primary space-switch-event-control
bit, bit 57 of control register 1 before
the operation, is placed in bit posi-
tion 0 of locations 172 and 173.

e If the CPU was in the home-space
mode before the operation, zeros are
stored at locations 174 and 175, and
the home space-switch-event-control
bit, bit 57 of control register 13, is
placed in bit position 0 of locations
172 and 173.

During a program interruption due to an
LX-translation or EX-translation excep-
tion recognized by PROGRAM CALL,
the PC number is stored in bit positions
12-31 of locations 172-175, zeros are
stored in bit positions 0-11, and the con-
tents of locations 168-171 remain
unchanged.

During a program interruption due to a
protection exception, information is
stored at locations 168-175 as described
in |“Suppression _on _ Protection” on|

page 3-12|
(Real Address)

Monitor Code: During a program inter-
ruption due to a monitor event, the
monitor code is stored at locations
176-188.

(Real Address)

Subsystem-Identification Word: During
an 1/O interruption, the subsystem-
identification word is stored at locations
184-187.

(Real Address)

I/O-Interruption Parameter. During an
I/O interruption, the interruption param-
eter from the associated subchannel is
stored at locations 188-191.

z/Architecture Principles of Operation

192-195

200-203

232-239

244-247

248-255

288-303

304-319

(Real Address)
I/O-Interruption-Identification Word:
During an /O interruption, the

I/O-interruption-identification word, which
further identifies the source of the I/O

interruption, is stored at locations
192-195.

(Real Address)

STFL Facility List. The STORE

FACILITY LIST instruction stores infor-
mation at real locations 200-203. Bit O
indicates, when one, that the instructions
marked with “N3” in the instruction-
summary figure at the beginning of
Chapter 7, “General Instructions,” and
Chapter 10, “Control Instructions,” are
available in the ESA/390 mode. Bit 1
indicates, when one, that z/Architecture
is installed. Bit 2 indicates, when one,
that z/Architecture is active. Bit 16 indi-
cates, when one, that the extended-

translation facility 2 is installed. Bits
3-15 and 17-31 are stored as zeros.
(Real Address)
Machine-Check-Interruption Code:

During a machine-check interruption, the

machine-check-interruption code is
stored at locations 232-239.

(Real Address)

External-Damage Code: During a
machine-check interruption due to
certain external-damage conditions,

depending on the model, an external-
damage code may be stored at locations
244-247.

(Real Address)
Failing-Storage Address: During a
machine-check interruption, a 64-bit

failing-storage address may be stored at
locations 248-255.

(Real Address)

Restart Old PSW: The current PSW is
stored as the old PSW at locations
288-303 during a restart interruption.

(Real Address)

External Old PSW: The current PSW is
stored as the old PSW at locations
304-319 during an external interruption.

320-335

336-351

352-367

368-383

416-431

432-447

448-463

464-479

480-495

496-511

(Real Address)

Supervisor-Call Old PSW: The current
PSW is stored as the old PSW at
locations 320-335 during a supetvisor-
call interruption.

(Real Address)

Program OIld PSW: The current PSW is
stored as the old PSW at locations
336-351 during a program interruption.

(Real Address)

Machine-Check Old PSW: The current
PSW is stored as the old PSW at
locations 352-367 during a machine-
check interruption.

(Real Address)

Input/Output Old PSW: The current
PSW is stored as the old PSW at
locations 368-383 during an /O inter-
ruption.

(Real Address)

Restart New PSW: The new PSW is
fetched from locations 416-431 during a
restart interruption.

(Real Address)

External New PSW: The new PSW is
fetched from locations 432-447 during an
external interruption.

(Real Address)

Supervisor-Call New PSW: The new
PSW is fetched from locations 448-463
during a supervisor-call interruption.

(Real Address)

Program New PSW: The new PSW is
fetched from locations 464-479 during a
program interruption.

(Real Address)

Machine-Check New PSW: The new
PSW is fetched from locations 480-495
during a machine-check interruption.

(Real Address)

Input/Output New PSW: The new PSW
is fetched from locations 496-511 during
an /O interruption.

4544-4607 (Real Address)

Available for Programming. Locations
4544-4607 are available for use by pro-
gramming.

4608-4735 (Absolute Address)

Store-Status Floating-Point-Register
Save Area: During the execution of the
store-status operation, the contents of
the floating-point registers are stored at
locations 4608-4735.

4608-4735 (Real Address)

Machine-Check Floating-Point-Register
Save Area: During a machine-check
interruption, the contents of the floating-
point registers are stored at locations
4608-4735.

4736-4863 (Absolute Address)

Store-Status General-Register ~ Save
Area: During the execution of the store-
status operation, the contents of the
general registers are stored at locations
4736-4863.

4736-4863 (Real Address)

Machine-Check General-Register Save
Area: During a machine-check inter-
ruption, the contents of the general reg-
isters are stored at locations 4736-4863.

4864-4879 (Absolute Address)

Store-Status PSW Save Area: During
the execution of the store-status opera-
tion, the contents of the current PSW are
stored at locations 4864-4879.

4864-4879 (Real Address)

Fixed-Logout Area: Depending on the
model, logout information may be stored
at locations 4864-4879 during a
machine-check interruption.

4888-4891 (Absolute Address)

Store-Status Prefix Save Area: During
the execution of the store-status opera-
tion, the contents of the prefix register
are stored at locations 4888-4891.

4892-4895 (Absolute Address)

Store-Status Floating-Point-Control-
Register Save Area: During the exe-
cution of the store-status operation, the

Chapter 3. Storage 3-55

contents of the floating-point control reg-
ister are stored at locations 4892-4895.

4892-4895 (Real Address)

Machine-Check Floating-Point-Control-
Register Save Area: During a machine-
check interruption, the contents of the
floating-point control register are stored
at locations 4892-4895.

4900-4903 (Absolute Address)

Store-Status
TOD-Programmable-Register Save Area:
During the execution of the store-status
operation, the contents of the TOD pro-
grammable register are stored at
locations 4900-4903.

4900-4903 (Real Address)

Machine-Check
TOD-Programmable-Register Save Area:
During a machine-check interruption, the
contents of the TOD programmable reg-
ister are stored at locations 4900-4903.

4904-4911 (Absolute Address)

Store-Status CPU-Timer Save Area:
During the execution of the store-status
operation, the contents of the CPU timer
are stored at locations 4904-4911.

4904-4911 (Real Address)

Machine-Check CPU-Timer Save Area:
During a machine-check interruption, the
contents of the CPU timer are stored at
locations 4904-4911.

4913-4919 (Absolute Address)

Store-Status Clock-Comparator Save
Area: During the execution of the store-
status operation, the contents of bit posi-
tions 0-55 of the clock comparator are
stored at locations 4913-4919. When
this store occurs, zeros are stored at
location 4912.

4913-4919 (Real Address)

Machine-Check Clock-Comparator Save
Area: During a machine-check inter-
ruption, the contents of bit positions 0-55
of the clock comparator are stored at
locations 4913-4919. When this store

3-56 z/Architecture Principles of Operation

occurs, zeros are stored at location
4912,

4928-4991 (Absolute Address)

Store-Status Access-Register Save Area:
During the execution of the store-status
operation, the contents of the access
registers are stored at locations
4928-4991.

4928-4991 (Real Address)

Machine-Check Access-Register Save
Area: During a machine-check inter-
ruption, the contents of the access regis-
ters are stored at locations 4928-4991.

4992-5119 (Absolute Address)

Store-Status Control-Register Save Area:
During the execution of the store-status
operation, the contents of the control
registers are stored at locations
4992-5119.

4992-5119 (Real Address)

Machine-Check Control-Register Save
Area: During a machine-check inter-
ruption, the contents of the control regis-
ters are stored at locations 4992-5119.

Programming Notes:

1. When the CPU is in the access-register mode,
some instructions, such as MVCL, which
address operands in more than one address
space, may cause a storage-alteration PER
event in one address space concurrently with
a region-translation, segment-translation, or
page-translation exception in another address
space. The access registers used to cause
these conditions in such a case are different.
In order to identify both access registers, two
access identifications, namely the exception
access identification and the PER access
identification, are provided.

2. The store-status and machine-check
architectural-mode identifications at absolute
and real locations 163, respectively, indicate
that the CPU is in the z/Architecture architec-
tural mode. When z/Architecture is installed
on the CPU but the CPU is in the ESA/390
mode, the store-status and machine-check-
interruption operations store zero at location
163.

Hex Dec | Fields
0 0
4 4
8 8
c 12

10 16
14 20
18 24
1c 28
20 32
24 36
28 40
2C 44
30 48
34 52
38 56
3C 60
40 64
44 68
48 72
4C 76
50 80
54 84
58 88
5C 92
60 96
64 100
68 104
6C 108
70 112
74 116
78 120
7C 124

Figure 3-11 (Part 1 of 6). Assigned Storage Locations

Chapter 3. Storage

3-57

Hex Dec | Fields

80 128 | External-Interruption Parameter

84 132 | CPU Address External-Interruption Code
88 136 (000000000000 O|IILC|O| SVC-Interruption Code
8C 140 (00O OOO0OOOO0OOO|[ILC|O| Program-Interruption Code
90 144 | Data-Exception Code

94 148 | Monitor-Class Number ‘PER Cde'ATMID'AI'

98 152 | PER Address

9C 156

A0 160 |Exc. Access ID | PER Access ID ‘ Op. Access Id ISS/MC Ar-Md Id
A4 164

A8 168 | Translation-Exception Identification

AC 172

BO 176 | Monitor Code

B4 180

B8 184 | Subsystem-Identification Word

BC 188 | I/0-Interruption Parameter

CO0 192 | I/0-Interruption-Identification Word

C4 196

C8 200 | STFL Facility List

CC 204

DO 208

D4 212

D8 216

DC 220

EQ 224

E4 228

E8 232 | Machine-Check Interruption Code

EC 236

FO 240

F4 244 | External-Damage Code

F8 248 | Failing-Storage Address

FC 252

Figure 3-11 (Part 2 of 6). Assigned Storage Locations

3-58

z/Architecture Principles of Operation

Hex

Dec

Fields

100
104
108
10C
110
114
118
11C

256
260
264
268
272
276
280
284

120
124
128
12C

288
292
296
300

Restart 01d PSW

130
134
138
13C

304
308
312
316

External 01d PSW

140
144
148
14C

320
324
328
332

Supervisor-Call 01d PSW

150
154
158
15C

336
340
344

348

Program 01d PSW

160
164
168
16C

352
356
360
364

Machine-Check 01d PSW

170
174
178
17C

368
372
376
380

Input/Output 01d PSW

Figure 3-11 (Part 3 of 6). Assigned Storage Locations

Chapter 3. Storage

3-59

Hex

Dec

Fields

180
184
188
18C
190
194
198
19C

384
388
392
396
400
404
408

412

1A0
1A4
1A8
1AC

416
420
424

428

Restart New PSW

1BO

1B4

1B8

1BC

432
436
440
444

External New PSW

1CO
1C4
1C8
1CC

448
452
456
460

Supervisor-Call New PSW

1D0
1D4
1D8
1DC

464
468
472

476

Program New PSW

1E0

1E4

1E8

1EC

480
484
488
492

Machine-Check New PSW

1FO
1F4
1F8
1FC

496
500
504
508

Input/Output New PSW

Figure 3-11 (Part 4 of 6). Assigned Storage Locations

3-60

z/Architecture Principles of Operation

Hex Dec

Fields

1000 4096
1004 4100
1008 4104
100C 4108
1010 4112
1014 4116

11A8 4520
11AC 4524
11BO 4528
11B4 4532
11B8 4536
11BC 4540

(448 bytes)

11CO 4544

11C4 4548

11F8 4600
11FC 4604

Available for Use by Programming

(64 bytes)

Figure 3-11 (Part 5 of 6). Assigned Storage Locations

Chapter 3. Storage

3-61

Hex Dec | Fields

1200 4608 | Store-Status Floating-Point-Register Save Area; or Machine-
Check Floating-Point-Register Save Area

1204 4612
/ / (128 bytes)
1278 4728

127C 4732

1280 4736 | Store-Status General-Register Save Area; or Machine-Check
General-Register Save Area

1284 4740
/ / (128 bytes)
12F8 4856

12FC 4860

1300 4864 | Store-Status PSW Save Area; or Fixed-Logout Area
1304 4868
1308 4872
130C 4876

1310 4880
1314 4884

1318 4888 | Store-Status Prefix Save Area

131C 4892 | Store-Status FP-Ct1-Reg Save Area; or MC FP-Ct1-Reg Save Area

1320 4896

1324 4900 | Store-Status TOD Prog Reg Save Area; or MC TOD Prog Reg S A

1328 4904 | Store-Status CPU-Timer Save Area; or Machine-Check CPU-Timer

Save Area
132C 4908
1330 4912 Store-Status Clock-Comparator Bits 0-55 Save Area; or
Machine-Check Clock-Comparator Bits 0-55 Save Area
1334 4916
1338 4920
133C 4924

1340 4928 | Store-Status Access-Register Save Area; or Machine-Check
Access-Register Save Area
/ / (64 bytes)

137C 4988

1380 4992 | Store-Status Control-Register Save Area; or Machine-Check
Control-Register Save Area

1384 4996
/ / (128 bytes)
13F8 5112

13FC 5116

Figure 3-11 (Part 6 of 6). Assigned Storage Locations

3-62 z/Architecture Principles of Operation

Chapter 4. Control

Stopped, Operating, Load, and Check-Stop

States 4-1
Stopped State 4-2
Operating State 4-2
Load State 4-2
Check-Stop State 4-3

Program-Status Word 4-3
Program-Status-Word Format 4-5
Control Registers 4-7
Tracing 4-10
Control-Register Allocation 4-13
Trace Entries 4-13
Operation 4-23
Program-Event Recording 4-24
Control-Register Allocation and
Address-Space-Control Element 4-24
Operation 4-25
Identification of Cause 4-26
Priority of Indication 4-28
Storage-Area Designation 4-29
PEREvents 4-30
Successful Branching 4-30
Instruction Fetching 4-31
Storage Alteration 4-31
Store Using Real Address 4-32
Indication of PER Events Concurrently
with Other Interruption Conditions . . . 4-32
Timing 4-34

Time-of-Day Clock 4-35
Format 4-35
States 4-35
Changes in Clock State 4-36
Setting and Inspecting the Clock 4-36
TOD Programmable Register 4-37

TOD-Clock Synchronization 4-39

Clock Comparator 4-39

CPU Timer 4-40

Externally Initiated Functions 4-41

Resets 4-41
CPUReset 4-45
Initial CPU Reset 4-46
Subsystem Reset 4-46
ClearReset 4-46
Power-On Reset 4-47

Initial Program Loading 4-47

Store Status 4-48

Multiprocessing 4-49
Shared Main Storage 4-49
CPU-Address ldentification 4-49

CPU Signaling and Response 4-49
Signal-Processor Orders 4-49
Conditions Determining Response 4-53

Conditions Precluding Interpretation of
the Order Code
StatusBits L 4-54

This chapter describes in detail the facilities for
controlling, measuring, and recording the opera-
tion of one or more CPUs.

Stopped, Operating, Load, and
Check-Stop States

The stopped, operating, load, and check-stop
states are four mutually exclusive states of the
CPU. When the CPU is in the stopped state,
instructions and interruptions, other than the
restart interruption, are not executed. In the oper-
ating state, the CPU executes instructions and
takes interruptions, subject to the control of the
program-status word (PSW) and control registers,
and in the manner specified by the setting of the
operator-facility rate control. The CPU is in the

© Copyright IBM Corp. 1990-2001

load state during the initial-program-loading opera-
tion of ESA/390. The CPU enters the check-stop
state only as the result of machine malfunctions.

A change between these four CPU states can be
effected by use of the operator facilities or by
acceptance of certain SIGNAL PROCESSOR
orders addressed to that CPU. The states are not
controlled or identified by bits in the PSW. The
stopped, load, and check-stop states are indicated
to the operator by means of the manual indicator,
load indicator, and check-stop indicator, respec-
tively. These three indicators are off when the
CPU is in the operating state.

The CPU timer is updated when the CPU is in the
operating state or the load state. The TOD clock
is not affected by the state of any CPU.

4-1

Stopped State

The CPU changes from the operating state to the
stopped state by means of the stop function. The
stop function is performed when:

¢ The stop key is activated while the CPU is in
the operating state.

e The CPU accepts a stop or stop-and-store-
status order specified by a SIGNAL
PROCESSOR instruction addressed to this
CPU while it is in the operating state.

e The CPU has finished the execution of a unit
of operation initiated by performing the start
function with the rate control set to the
instruction-step position.

When the stop function is performed, the transition
from the operating to the stopped state occurs at
the end of the current unit of operation. When the
wait-state bit of the PSW is one, the transition
takes place immediately, provided no interruptions
are pending for which the CPU is enabled. In the
case of interruptible instructions, the amount of
data processed in a unit of operation depends on
the particular instruction and may depend on the
model.

Before entering the stopped state by means of the
stop function, all pending allowed interruptions
occur while the CPU is still in the operating state.
They cause the old PSW to be stored and the
new PSW to be fetched before the stopped state
is entered. While the CPU is in the stopped state,
interruption conditions remain pending.

The CPU is also placed in the stopped state
when:

e The CPU reset is completed. However, when
the reset operation is performed as part of
initial program loading for this CPU, then the
CPU is placed in the load state and does not
necessarily enter the stopped state.

¢ An address comparison indicates equality and
stopping on the match is specified.

The execution of resets is described in
lon page 4-41] and address comparison is
described in [Address-Compare _Controls”__on|

If the CPU is in the stopped state when an INVAL-
IDATE PAGE TABLE ENTRY instruction is exe-

4-2 z/Architecture Principles of Operation

cuted on another CPU in the configuration, the
clearing of TLB entries is completed before the
CPU leaves the stopped state.

Operating State

The CPU changes from the stopped state to the
operating state by means of the start function or
when a restart interruption (see
oceurs.

The start function is performed if the CPU is in the
stopped state and (1) the start key associated
with that CPU is activated or (2) that CPU accepts
the start order specified by a SIGNAL
PROCESSOR instruction addressed to that CPU.
The effect of performing the start function is
unpredictable when the stopped state has been
entered by means of a reset.

When the rate control is set to the process posi-
tion and the start function is performed, the CPU
starts operating at normal speed. When the rate
control is set to the instruction-step position and
the wait-state bit is zero, one instruction or, for
interruptible instructions, one unit of operation is
executed, and all pending allowed interruptions
occur before the CPU returns to the stopped state.
When the rate control is set to the instruction-step
position and the wait-state bit is one, the start
function does not cause an instruction to be exe-
cuted, but all pending allowed interruptions occur
before the CPU returns to the stopped state.

Load State

The CPU enters the load state when the load-
normal or load-clear key is activated. (See [Initial
[Program Loading” on page 4-47| See also [Initial
[Program Loading” on page 17-14]) This sets the
architectural mode to the ESA/390 mode. For
ease of reference, the additional elements of the
description of the ESA/390 load state are given
below.

If the initial-program-loading operation is com-
pleted successfully, the CPU changes from the
load state to the operating state, provided the rate
control is set to the process position; if the rate
control is set to the instruction-step position, the
CPU changes from the load state to the stopped
state.

Check-Stop State

The check-stop state, which the CPU enters on
certain types of machine malfunction, is described
in [Chapter 11, “Machine-Check_Handling.] The
CPU leaves the check-stop state when CPU reset
is performed.

Programming Notes:

1. Except for the relationship between execution
time and real time, the execution of a program
is not affected by stopping the CPU.

2. When, because of a machine malfunction, the
CPU is unable to end the execution of an
instruction, the stop function is ineffective, and
a reset function has to be invoked instead. A
similar situation occurs when an unending
string of interruptions results from a PSW with
a PSW-format error of the type that is recog-
nized early, or from a persistent interruption
condition, such as one due to the CPU timer.

3. Pending I/0O operations may be initiated, and
active /O operations continue to suspension
or completion, after the CPU enters the
stopped state. The interruption conditions due
to suspension or completion of I/O operations
remain pending when the CPU is in the
stopped state.

Program-Status Word

The current program-status word (PSW) in the
CPU contains information required for the exe-
cution of the currently active program. The PSW
is 128 bits in length and includes the instruction
address, condition code, and other control fields.
In general, the PSW is used to control instruction

sequencing and to hold and indicate much of the
status of the CPU in relation to the program cur-
rently being executed. Additional control and
status information is contained in control registers
and permanently assigned storage locations.

The status of the CPU can be changed by loading
a new PSW or part of a PSW.

Control is switched during an interruption of the
CPU by storing the current PSW, so as to pre-
serve the status of the CPU, and then loading a
new PSW.

Execution of LOAD PSW or LOAD PSW
EXTENDED, or the successful conclusion of the
initial-program-loading sequence, introduces a
new PSW. The instruction address is updated by
sequential instruction execution and replaced by
successful branches. Other instructions are pro-
vided which operate on a portion of the PSW.
[Figure 4-1 on page 4-4 bummarizes these
instructions.

A new or modified PSW becomes active (that is,
the information introduced into the current PSW
assumes control over the CPU) when the inter-
ruption or the execution of an instruction that
changes the PSW is completed. The interruption
for PER associated with an instruction that
changes the PSW occurs under control of the
PER mask that is effective at the beginning of the
operation.

Bits 0-7 of the PSW are collectively referred to as
the system mask.

Chapter 4. Control 4-3

Condition
Address- | Code and Basic Extended
System Problem Space Program |Addressing|Addressing
Mask PSW Key State Control Mask Mode Mode
(PSW Bits |(PSW Bits (PSW (PSW Bits |(PSW Bits (PSW (PSW
0-7) 8-11) Bit 15) 16-17) 18-23) Bit 32) Bit 31)
Instruction Saved|Set |Saved|Set |Saved|Set |Saved|Set |Saved|Set |Saved|Set |Saved|Set
BRANCH AND LINK - - - - - - - - |24AM | - |31AM | - - -
BRANCH AND SAVE - - - - - - - - - - BAM | - - -
BRANCH AND SAVE AND SET - - - - - - - - - - BAM [Yesl| Yes |Yes?
MODE
BRANCH AND SET AUTHORITY - - Yes |Yes | Yes |Yes - - - - BAM2 | BAM - -
BRANCH AND SET MODE - - - - - - - - - - BAM! [Yes1| Yes!|Yes!
BRANCH AND STACK Yes | - Yes | - Yes | - Yes | - Yes | - BAM3 | - Yes | -
BRANCH IN SUBSPACE GROUP - - - - - - - - - - BAM? [BAM - -
BRANCH RELATIVE AND SAVE - - - - - - - - - - BAM | - - -
BRANCH RELATIVE AND SAVE - - - - - - - - - - BAM | - - -
LONG
EXTRACT PSW Yes | - Yes | - Yes | - Yes | - Yes | - Yes | - Yes | -
INSERT PROGRAM MASK - - - - - - - - Yes | - - - - -
INSERT PSW KEY - - Yes | - - - - - - - - - - -
INSERT ADDRESS SPACE - - - - - - Yes | - - - - - - -
CONTROL
Basic PROGRAM CALL - - - - Yes |[Yes - - - - BAM [BAM - -
Stacking PROGRAM CALL Yes | - Yes |PKC | Yes |Yes | Yes |Yes | Yes | - Yes |Yes | Yes |Yes
PROGRAM RETURN - |Yes4| - |Yes - |Yes - |Yes - |Yes - |Yes - |Yes
PROGRAM TRANSFER - - - - - |Yes5| - - - - - |BAM - -
RESUME PROGRAM - - - - - - - |Yes - |Yes - |Yes - |Yes
SET ADDRESS SPACE CONTROL - - - - - - - |Yes - - - - - -
SET ADDRESSING MODE - - - - - - - - - - - |Yes - |Yes
SET PROGRAM MASK - - - - - - - - - |Yes - - - -
SET PSW KEY FROM ADDRESS - - - |Yes - - - - - - - - - -
SET SYSTEM MASK - |Yes - - - - - - - - - - - -
STORE THEN AND SYSTEM MASK| Yes |ANDs| - - - - - - - - - - - -
STORE THEN OR SYSTEM MASK | Yes |ORs - - - - - - - - - - - -
TRAP - - - - Yes - Yes |Yes | Yes - Yes |Yes | Yes -
Explanation:
- No.
1 The action takes place only if the associated R field in the instruction is nonzero.
2 In the reduced-authority state, the action takes place only if the Ri field in the instruction
is nonzero.
3 The action also takes place in the 64-bit addressing mode if the Ri field in the instruction is
zero.
4 PROGRAM RETURN does not change the PER mask.
5 PROGRAM TRANSFER does not change the problem-state bit from one to zero.

Figure 4-1 (Part 1 of 2). Operations on PSW Fields

4-4

z/Architecture Principles of Operation

replaces the current system mask.

replaces the current system mask.

136-139 of the entry-table entry.

BAM The basic-addressing-mode bit is saved or set in the 24-bit or 31-bit addressing mode.

ANDs The logical AND of the immediate field in the instruction and the current system mask

ORs The Togical OR of the immediate field in the instruction and the current system mask

PKC When the PSW-key-control bit, bit 131 of the entry-table entry, is zero, the PSW key remains
unchanged. When the PSW-key-control bit is one, the PSW key is set with the entry key, bits

24AM The condition code and program mask are saved in the 24-bit addressing mode.

31AM The basic-addressing-mode bit is saved in the 31-bit addressing mode.

Figure 4-1 (Part 2 of 2). Operations on PSW Fields

Programming Note: A summary of the oper-
ations which save or set the problem state,
addressing mode, and instruction address is con-
tained in FSubroutine Linkage without the Linkage]

[Stack” on page 5-10.

Program-Status-Word Format

I|E Prog E
O[R[O[O[O[T|[O[X| Key [O[M[W[P|A S|CC| Mask (000000 OfA

0 5 8 12 16 18 20 24 31

>

0000000000000000000000000000000

32 63

Instruction Address

64 95

Instruction Address (Continued)

96 127
Figure 4-2. PSW Format

The following is a summary of the functions of the
PSW fields. (See Figure 4-2.)

PER Mask (R): Bit 1 controls whether the CPU is
enabled for interruptions associated with program-
event recording (PER). When the bit is zero, no
PER event can cause an interruption. When the
bit is one, interruptions are permitted, subject to
the PER-event-mask bits in control register 9.

DAT Mode (T): Bit 5 controls whether implicit
dynamic address translation of logical and instruc-
tion addresses used to access storage takes
place. When the bit is zero, DAT is off, and

logical and instruction addresses are treated as
real addresses. When the bit is one, DAT is on,
and the dynamic-address-translation mechanism is
invoked.

I/O Mask (10): Bit 6 controls whether the CPU is
enabled for I/O interruptions. When the bit is
zero, an /O interruption cannot occur. When the
bit is one, I/O interruptions are subject to the
I/O-interruption subclass-mask bits in control reg-
ister 6. When an I/O-interruption subclass-mask
bit is zero, an 1/O interruption for that
I/O-interruption subclass cannot occur; when the
I/O-interruption subclass-mask bit is one, an I/O
interruption for that 1/O-interruption subclass can
occur.

External Mask (EX): Bit 7 controls whether the
CPU is enabled for interruption by conditions
included in the external class. When the bit is
zero, an external interruption cannot occur. When
the bit is one, an external interruption is subject to
the corresponding external subclass-mask bits in
control register 0; when the subclass-mask bit is
zero, conditions associated with the subclass
cannot cause an interruption; when the subclass-
mask bit is one, an interruption in that subclass
can occur.

PSW Key: Bits 8-11 form the access key for
storage references by the CPU. If the reference is
subject to key-controlled protection, the PSW key
is matched with a storage key when information is
stored or when information is fetched from a
location that is protected against fetching.
However, for one of the operands of each of
MOVE TO PRIMARY, MOVE TO SECONDARY,
MOVE WITH KEY, MOVE WITH SOURCE KEY,
and MOVE WITH DESTINATION KEY, an access

Chapter 4. Control 4-5

key specified as an operand is used instead of the
PSW key.

Machine-Check Mask (M): Bit 13 controls
whether the CPU is enabled for interruption by
machine-check conditions. When the bit is zero, a
machine-check interruption cannot occur. When
the bit is one, machine-check interruptions due to
system damage and instruction-processing
damage are permitted, but interruptions due to
other machine-check-subclass conditions are
subject to the subclass-mask bits in control reg-
ister 14.

Wait State (W): When bit 14 is one, the CPU is
waiting; that is, no instructions are processed by
the CPU, but interruptions may take place. When
bit 14 is zero, instruction fetching and execution
occur in the normal manner. The wait indicator is
on when the bit is one.

Problem State (P): When bit 15 is one, the CPU
is in the problem state. When bit 15 is zero, the
CPU is in the supervisor state. In the supervisor
state, all instructions are valid. In the problem
state, only those instructions are valid that provide
meaningful information to the problem program
and that cannot affect system integrity; such
instructions are called unprivileged instructions.
The instructions that are never valid in the
problem state are called privileged instructions.
When a CPU in the problem state attempts to
execute a privileged instruction, a privileged-
operation exception is recognized. Another group
of instructions, called semiprivileged instructions,
are executed by a CPU in the problem state only
if specific authority tests are met; otherwise, a
privileged-operation exception or a special-
operation exception is recognized.

Address-Space Control (AS): Bits 16 and 17, in
conjunction with PSW bit 5, control the translation
mode. See [Translation Modes” on page 3-28|

Condition Code (CC): Bits 18 and 19 are the
two bits of the condition code. The condition code
is set to 0, 1, 2, or 3, depending on the result
obtained in executing certain instructions. Most
arithmetic and logical operations, as well as some
other operations, set the condition code. The
instruction BRANCH ON CONDITION can specify

4-6 z/Architecture Principles of Operation

any selection of the condition-code values as a
criterion for branching. A table in Appendix C
summarizes the condition-code values that may
be set for all instructions which set the condition
code of the PSW.

Program Mask: Bits 20-23 are the four program-
mask bits. Each bit is associated with a program
exception, as follows:

Program-

Mask Bit Program Exception
20 Fixed-point overflow
21 Decimal overflow
22 HFP exponent underflow
23 HFP significance

When the mask bit is one, the exception results in
an interruption. When the mask bit is zero, no
interruption occurs. The setting of the
HFP-exponent-underflow-mask bit or the
HFP-significance-mask bit also determines the
manner in which the operation is completed when
the corresponding exception occurs.

Extended Addressing Mode (EA): Bit 31 con-
trols the size of effective addresses and effective-
address generation in conjunction with bit 32, the
basic-addressing-mode bit. When bit 31 is zero,
the addressing mode is controlled by bit 32. When
bits 31 and 32 are both one, 64-bit addressing is
specified.

Basic Addressing Mode (BA): Bits 31 and 32
control the size of effective addresses and
effective-address generation. When bits 31 and
32 are both zero, 24-bit addressing is specified.
When bit 31 is zero and bit 32 is one, 31-bit
addressing is specified. When bits 31 and 32 are
both one, 64-bit addressing is specified. Bit 31
one and bit 32 zero is an invalid combination that
causes a specification exception to be recognized.
The addressing mode does not control the size of
PER addresses or of addresses used to access
DAT, ASN, dispatchable-unit-control, linkage,
entry, and trace tables or access lists or the
linkage stack. See [‘Address Generation” on
l[page 5-7| and [‘Address Size and Wraparound” on
The control of the addressing mode by
bits 31 and 32 of the PSW is summarized as
follows:

PSW.31 | PSW.32 | Addressing Mode
0 0 24-bit
0 1 31-bit
1 1 64-bit

Instruction Address: Bits 64-127 of the PSW
are the instruction address. This address desig-
nates the location of the leftmost byte of the next
instruction to be executed, unless the CPU is in
the wait state (bit 14 of the PSW is one).

Bit positions 0, 2-4, 24-30, and 33-63 are unas-
signed and must contain zeros. A specification
exception is recognized when these bit positions
do not contain zeros.

When bits 31 and 32 of the PSW specify the
24-bit addressing mode, bits 64-103 of the instruc-
tion address must be zeros, or, when bits 31 and
32 specify the 31-bit mode, bits 64-96 must be
zeros. Otherwise, a specification exception is
recognized. A specification exception is also
recognized when bit 31 is one and bit 32 is zero
or when bit position 12 does not contain a zero.

LOAD PSW EXTENDED has a 16-byte second
operand. The instruction loads the operand
unchanged and without examination as the current
PSW.

LOAD PSW has an eight-byte second operand.
The operand is treated as an ESA/390 PSW,
except that bit 31 (the z/Architecture extended-
addressing-mode bit) may be one.

I|E Prog
O[R[O[O[O|T|O[X| Key |[L{M[W[P[A S|CC| Mask [0 000000

= m

0 5 8 12 16 18 20 24 31

B
A Instruction Address

32 63

Figure 4-3. ESA/390 PSW Format, Except Bit 31
Shown as EA

Depending on the model, either LOAD PSW
recognizes a specification exception if bit 12 of its
second operand is not one or this error is indi-
cated by an early specification exception after the
completion of the execution of LOAD PSW.
LOAD PSW loads bits 0-32 of its second operand,
except with bit 12 inverted, and bits 33-63 of the
operand as bits 0-32 and 97-127, respectively, of

the current PSW, and it sets bits 33-96 of the
current PSW to zeros.

Control Registers

The control registers provide for maintaining and
manipulating control information outside the PSW.
There are sixteen 64-bit control registers.

The LOAD CONTROL (LCTLG) instruction causes
all control-register bit positions within those regis-
ters designated by the instruction to be loaded
from storage. The LOAD CONTROL (LCTL)
instruction loads only bit positions 32-63 of the
control registers, and bits 0-31 of the registers
remain unchanged. The instructions BRANCH
AND SET AUTHORITY, BRANCH IN SUBSPACE
GROUP, LOAD ADDRESS SPACE PARAME-
TERS, SET SECONDARY ASN, BRANCH AND
STACK, PROGRAM CALL, PROGRAM RETURN,
and PROGRAM TRANSFER provide specialized
functions to place information into certain control-
register bit positions.

Information loaded into the control registers
becomes active (that is, assumes control over the
system) at the completion of the instruction that
causes the information to be loaded.

At the time the registers are loaded, the informa-
tion is not checked for exceptions, such as an
address designating an unavailable or protected
location. The validity of the information is checked
and the exceptions, if any, are indicated at the
time the information is used.

The STORE CONTROL (STCTG) instruction
causes the contents of all control-register bit posi-
tions, within those registers designated by the
instruction, to be placed in storage. The STORE
CONTROL (STCTL) instruction places the con-
tents of bit positions 32-63 of the control registers
in storage, and bits 0-31 of the registers are
ignored. The instructions EXTRACT PRIMARY
ASN, EXTRACT SECONDARY ASN, and
PROGRAM CALL provide specialized functions to
obtain information from certain control-register bit
positions.

Only the general structure of the control registers
is described here; the definition of a particular
control-register bit position appears in the
description of the facility with which the position is
associated. [Figure 4-4 on page 4-8 khows the

Chapter 4. Control 4-7

control-register bit positions which are assigned
and the initial values of the positions upon exe-

cution of initial CPU reset.

All control-register bit

positions not listed in the figure are initialized to

Programming Notes:

1. The detailed definition of a particular control-

register bit position can be located by referring
to the entry “control-register assignment” in

Zero. the Index.

. To ensure that existing programs operate cor-
rectly if and when new facilities using addi-
tional control-register bit positions are
installed, the program should load zeros in
unassigned positions.

Ctrl Initial
Reg |Bits Name of Field Associated with Value
0 | 33 |SSM-suppression control SET SYSTEM MASK 0
0 | 34 |TOD-clock-sync control TOD clock 0
0 | 35 |Low-address-protection control Low-address protection 0
0 | 36 |Extraction-authority control Instruction authorization 0
0 | 37 |Secondary-space control Instruction authorization 0
0 | 38 |Fetch-protection-override control Key-controlled protection 0
© | 39 |Storage-protection-override control|Key-controlled protection 0
0 | 45 |AFP-register control Floating point 0
0 | 48 |Malfunction-alert subclass mask External interruptions 0
0 | 49 |Emergency-signal subclass mask External interruptions 0
0 | 50 |External-call subclass mask External interruptions 0
0 | 52 |Clock-comparator subclass mask External interruptions 0
0 | 53 |CPU-timer subclass mask External interruptions 0
0 | 54 |Service-signal subclass mask External interruptions 0
0 | 56 |Unused? 1
© | 57 |Interrupt-key subclass mask External interruptions 1
0 | 58 |Unused!? 1
0 | 59 |ETR subclass mask External interruptions 0
© | 61 |Crypto control Cryptography 0
1 |0-51 |Primary region-table origin2 Dynamic address translation 0
1 |0-51 |Primary segment-table origin2 Dynamic address translation 0
1 |0-51 |Primary real-space token origin2 Dynamic address translation 0
1 | 54 |Primary subspace-group control Subspace groups 0
1 | 55 |Primary private-space control Dynamic address translation 0
1 | 56 |Primary storage-alteration-event Program-event recording 0

control
1 | 57 |Primary space-switch-event control |Program interruptions 0
1 | 58 |Primary real-space control Dynamic address translation 0
1 |60-61|Primary designation-type control3 |Dynamic address translation 0
1 |62-63|Primary table Tength3 Dynamic address translation 0
2 |33-57|Dispatchable-unit-control-table Access-register translation 0
origin
3 |32-47|PSW-key mask Instruction authorization 0
3 |48-63|Secondary ASN Address spaces 0
4 |32-47|Authorization index Instruction authorization 0
4 148-63|Primary ASN Address spaces 0

Figure 4-4 (Part 1 of 3). Assignment of Control-Register Fields

4-8

z/Architecture Principles of Operation

Ctrl Initial
Reg |[Bits Name of Field Associated with Value
5 133-57|Primary-ASN-second-table-entry Access-register translation 0

origin 0
6 [32-39|I/0-interruption subclass mask I/0 interruptions 0
7 |0-51 |Secondary segment-table origin2 Dynamic address translation 0
7 |0-51 |Secondary region-table origin2 Dynamic address translation 0
7 |0-51 |Secondary real-space token origin2 |Dynamic address translation 0
7 | 54 |Secondary subspace-group control Subspace groups 0
7 | 55 |Secondary private-space control Dynamic address translation 0
7 | 56 |Secondary storage-alteration-event [Program-event recording 0

control
7 | 58 |Secondary real-space control Dynamic address translation 0
7 |60-61|Secondary designation-type control3|Dynamic address translation 0
7 |62-63|Secondary table length3 Dynamic address translation 0
8 |32-47|Extended authorization index Access-register translation 0
8 [48-63|Monitor masks MONITOR CALL 0
9 | 32 |Successful-branching-event mask Program-event recording 0
9 | 33 |Instruction-fetching-event mask Program-event recording 0
9 | 34 |Storage-alteration-event mask Program-event recording 0
9 | 36 |Store-using-real-address-event mask|Program-event recording 0
9 | 40 |Branch-address control Program-event recording 0
9 | 42 |Storage-alteration-space control Program-event recording 0
10 | 0-63|PER starting address Program-event recording 0
11 | 0-63|PER ending address Program-event recording 0
12 0 |Branch-trace control Tracing 0
12 1 |Mode-trace control Tracing 0
12 | 2-61|Trace-entry address Tracing 0
12 | 62 |ASN-trace control Tracing 0
12 | 63 |Explicit-trace control Tracing 0
13 |0-51 [Home segment-table origin2 Dynamic address translation 0
13 |0-51 [Home region-table origin2 Dynamic address translation 0
13 |0-51 [Home real-space token origin2 Dynamic address translation 0
13 | 55 |[Home private-space control Dynamic address translation 0
13 | 56 |[Home storage-alteration-event Program-event recording 0

control
13 | 57 |Home space-switch-event control Program interruptions 0
13 | 58 |Home real-space control Dynamic address translation 0
13 |60-61|Home designation-type control3 Dynamic address translation 0
13 |62-63|Home table length3 Dynamic address translation 0

Figure 4-4 (Part 2 of 3). Assignment of Control-Register Fields

Chapter 4. Control

4-9

Ctrl Initial
Reg |[Bits Name of Field Associated with Value
14 | 32 |Unused!? 1
14 | 33 |Unused!? 1
14 | 35 |Channel-report-pending subclass I/0 machine-check handling 0

mask
14 | 36 |Recovery subclass mask Machine-check handling 0
14 | 37 |Degradation subclass mask Machine-check handling 0
14 | 38 |[External-damage subclass mask Machine-check handling 1
14 | 39 [Warning subclass mask Machine-check handling 0
14 | 42 |TOD-clock-control-override control |TOD clock 0
14 | 44 |[ASN-translation control Instruction authorization 0
14 |45-63|ASN-first-table origin ASN translation 0
15 | 0-60|Linkage-stack-entry address Linkage-stack operations 0
Explanation:

The fields not listed are unassigned.
control-register bit positions is zero.

1

The initial value for all unlisted

This bit is not used but is initialized to one for consistency with the
System/370 definition.

The address-space-control element (ASCE) in the control register has one of
three formats, depending on bit 58 of the register, the real-space control,
and bits 60 and 61 of the register, the designation-type control. When bit
58 is zero, the ASCE is a region-table designation if bits 60 and 61 are 11,
10, or 01 binary, or it is a segment-table designation if bits 60 and 61 are
00 binary. When bit 58 is one, the ASCE is a real-space designation. Bits
0-51 are the region-table origin, the segment-table origin or the real-space
token origin, depending on whether the ASCE is a region-table designation, a

segment-table designation, or a real-space designation, respectively.

3 Bits 60-63 are assigned when the ASCE in the control register is a region-
table designation or a segment-table designation.

Figure 4-4 (Part 3 of 3). Assignment of Control-Register Fields

Tracing

Tracing assists in the determination of system
problems by providing an ongoing record in
storage of significant events. Tracing consists of
four separately controllable functions which cause
entries to be made in a trace table: branch
tracing, ASN tracing, mode tracing, and explicit
tracing. Branch tracing, ASN tracing, and mode
tracing together are referred to as implicit tracing.

When branch tracing is on, a branch trace entry is
made in the trace table for each execution of
certain branch instructions when they cause
branching. The branch address is placed in the
trace entry. The trace entry also indicates the fol-
lowing about the addressing mode in effect after
branching and the branch address: (1) the CPU

4-10

z/Architecture Principles of Operation

is in the 24-bit addressing mode, (2) the CPU
either is in the 31-bit addressing mode or is in the
64-bit addressing mode and bits 0-32 of the
branch address are all zeros, or (3) the CPU is in
the 64-bit addressing mode and bits 0-32 of the
branch address are not all zeros. The branch
instructions that are traced are:

e BRANCH AND LINK (BALR only) when the
R2 field is not zero

¢ BRANCH AND SAVE (BASR only) when the
Rz field is not zero

« BRANCH AND SAVE AND SET MODE when
the Rz field is not zero

* BRANCH AND SET AUTHORITY

* BRANCH AND STACK when the R: field is
not zero

« BRANCH IN SUBSPACE GROUP

* RESUME PROGRAM

e TRAP

However, a branch trace entry is made for
BRANCH IN SUBSPACE GROUP only if ASN
tracing is not on.

If both branch tracing and mode tracing are on
and BRANCH AND SAVE AND SET MODE or
RESUME PROGRAM changes the extended-
addressing-mode bit, PSW bit 31, a mode-
switching-branch trace entry is made instead of a
branch trace entry.

When ASN tracing is on, an entry named the
same as the instruction is made in the trace table
for each execution of the following instructions:

 BRANCH IN SUBSPACE GROUP
¢ PROGRAM CALL

¢ PROGRAM RETURN

* PROGRAM TRANSFER

e SET SECONDARY ASN

However, the entry for PROGRAM RETURN is
made only when PROGRAM RETURN unstacks a
linkage-stack state entry that was formed by
PROGRAM CALL, not when PROGRAM RETURN
unstacks an entry formed by BRANCH AND
STACK.

If both ASN tracing and mode tracing are on and
PROGRAM CALL changes PSW bit 31, first a
PROGRAM CALL trace entry is made, and then a
mode-switch trace entry is made.

Mode tracing records a switch from a basic (24-bit
or 31-bit) addressing mode to the extended
(64-bit) addressing mode or from the extended
mode to a basic mode.

When mode tracing is on, a mode-switch trace
entry is made in the trace table for each execution
of the following instructions if the execution
changes PSW bit 31:

» BRANCH AND SAVE AND SET MODE
BRANCH AND SET MODE
PROGRAM CALL

PROGRAM RETURN

RESUME PROGRAM

e SET ADDRESSING MODE

However, a mode-switch trace entry is not made
for PROGRAM RETURN if ASN tracing is on and
PROGRAM RETURN unstacks a state entry
formed by PROGRAM CALL; a PROGRAM
RETURN trace entry is made instead, and it con-
tains information about PSW bit 31.

BRANCH AND SAVE AND SET MODE and
RESUME PROGRAM cause trace entries to be
made as follows: a branch trace entry if only
branch ftracing is on, a mode-switching-branch
trace entry if both branch tracing and mode tracing
are on, or a mode-switch trace entry if only mode
tracing is on.

The trace entries produced by implicit tracing are
summarized in [Figure 4-5 on page 4-12|

When explicit tracing is on, execution of TRACE
(TRACE or TRACG) causes an entry to be made
in the trace table. The entry for TRACE (TRACE)
includes bits 16-63 from the TOD clock, the
second operand of the TRACE instruction, and
bits 32-63 of a range of general registers. The
entry for TRACE (TRACG) is the same except that
it includes bits 0-79 from the TOD clock and bits
0-63 of a range of general registers.

Chapter 4. Control 4-11

Implicit Tracing Enabled
Branch (Branch ASN
and and and
Branch ASN Mode ASN Mode Mode ATl
Instruc-
tion Trace Entries Made
BAKR B - - B B - B
BALR B - - B B - B
BASR B - - B B - B
BASSM B - MS B |B| MSB| MS |B | MSB
BSA B - - B B - B
BSG B BSG - BSG B BSG BSG
BSM - - MS - MS - MS
PC - PC MS PC MS PC & MS|PC & MS
PR-b - - MS - MS MS MS
PR-pc - PR MS PR MS PR PR
PT - PT - PT - PT PT
RP B - MS B |B| MSB| MS [B | MSB
SASN - SASN - SASN - SASN SASN
SAM24/ - - MS - MS MS MS
31/64
TRAP2/4 B - - B B - B
Explanation:
- None.
-b The case when PROGRAM RETURN unstacks a branch state
entry.
-pc The case when PROGRAM RETURN unstacks a program-call state
entry.
| OR.
& AND.
Figure 4-5 (Part 1 of 2). Summary of Implicit Tracing
4-12 z/Architecture Principles of Operation

Explanation (Continued):
B Branch trace entry.
MS Mode-switch trace entry.

changed.
MSB Mode-switching-branch trace entry.

taken).

Made only if the branch is taken and
a mode-switching-branch trace entry is not made.

Made only if PSW bit 31 is

Made only if PSW bit
31 is changed (which can occur only if the branch is

Figure 4-5 (Part 2 of 2). Summary of Implicit Tracing

Control-Register Allocation

The information to control tracing is contained in
control register 12 and has the following format:

B|M Trace-Entry Address AlE

0 12 62 63

Branch-Trace-Control Bit (B): Bit 0 of control
register 12 controls whether branch tracing is
turned on or off. If the bit is zero, branch tracing
is off; if the bit is one, branch tracing is on.

Mode-Trace-Control Bit (M): Bit 1 of control
register 12 controls whether mode tracing is
turned on or off. If the bit is zero, mode tracing is
off; if the bit is one, mode tracing is on.

Trace-Entry Address: Bits 2-61 of control reg-
ister 12, with two zero bits appended on the left
and two on the right, form the real address of the
next trace entry to be made.

ASN-Trace-Control Bit (A): Bit 62 of control
register 12 controls whether ASN tracing is turned
on or off. If the bit is zero, ASN tracing is off; if
the bit is one, ASN tracing is on.

Explicit-Trace-Control Bit (E): Bit 63 of control
register 12 controls whether explicit tracing is
turned on or off. If the bit is zero, explicit tracing
is off, which causes the TRACE instruction to be
executed as a no-operation; if the bit is one, the
execution of the TRACE instruction creates an

entry in the trace table, except that no entry is
made when bit 0 of the second operand of the
TRACE instruction is one.

Trace Entries

Trace entries are of nine types, with most types
having more than one detailed format. The types
and numbers of formats are as follows:

¢ Branch (three formats)

¢« BRANCH IN SUBSPACE GROUP (two
formats)

¢ Mode switch (three formats)

¢ Mode-switching branch (three formats)
¢ PROGRAM CALL (two formats)

¢ PROGRAM RETURN (nine formats)

¢ PROGRAM TRANSFER (three formats)
e SET SECONDARY ASN (one format)

¢ TRACE (two formats)

The entries are shown in [Figure 4-6 on|
page 4-14 In that figure, each entry is labeled
with “Fn,” indicating a format number, to allow ref-
erences to each format within a trace-entry type.
Also, “Branch,” referring to the mnemonic of an
instruction that causes a branch trace entry, refers
to BAKR, BALR, BASR, BASSM, BSA, or BSG.

[Figure 4-7 on page 4-20| lists the trace entries in
ascending order of values in bit fields that identify
the entries.

Chapter 4. Control 4-13

F1 Branch (Branch, RP, or TRAP2/4 when Resulting Mode Is 24-Bit)

00000000|Bits 40-63 of Branch Adr.

0 8 31

F2 Branch (Branch, RP, or TRAP2/4 when Resulting Mode Is 31-Bit, or when
Resulting PSW Bit 31 Is One (See Note) and Bits 0-32 of Branch Address
Are A11 Zeros)

—_

Bits 33-63 of Branch Address

01 31

F3 Branch (Branch, RP, or TRAP2/4 when Resulting PSW Bit 31 Is One (See
Note) and Bits 0-32 of Branch Address Are Not A1l Zeros)

010100101100 ATl Zeros Bits 0-31 of Branch Address

0 8 12 32 63

Bits 32-63 of Branch Address

64 95

F1 BRANCH IN SUBSPACE GROUP (if ASN Tracing on, in 24-Bit or 31-Bit Mode)

01000001 |P Bits 9-31 of ALET A| Bits 33-63 of Branch Address

0 8 32 63

F2 BRANCH IN SUBSPACE GROUP (if ASN Tracing on, in 64-Bit Mode)

01000010|P Bits 9-31 of ALET Bits 0-31 of Branch Address

0 8 32 63

Bits 32-63 of Branch Address

64 95

F1 Mode Switch (BASSM, BSM, PC, PR, RP, or SAM64 from 24-Bit or 31-Bit
Mode when Resulting PSW Bit 31 Is One (See Note))

01010001|0011 A1l Zeros A| Updated Instruction Address

0 8 12 32 63
Figure 4-6 (Part 1 of 7). Trace Entries

4-14 z/Architecture Principles of Operation

F2 Mode Switch (BASSM, BSM, PC, PR, RP, SAM24, or SAM31 from 64-Bit Mode
to 24-Bit or 31-Bit Mode when Bits 0-31 of Updated Instruction Address
Are A1l Zeros)

01010001|0010 A1l Zeros Bits 32-63 of Updated Inst. Adr.

0 8 12 32 63

F3 Mode Switch (BASSM, BSM, PC, PR, RP, SAM24, or SAM31 from 64-Bit Mode
to 24-Bit or 31-Bit Mode when Bits 0-31 of Updated Instruction Address
Are Not A1l Zeros)

01010010|0110 A1l Zeros Bits 0-31 of Updated Inst. Adr.

0 8 12 32 63

Bits 32-63 of Updated Inst. Adr.

64 95

F1 Mode-Switching Branch (BASSM or RP from 64-Bit Mode to 24-Bit or
31-Bit Mode)

010100011010 ATl Zeros A Branch Address

0 8 12 32 63

F2 Mode-Switching Branch (BASSM or RP from 24-Bit or 31-Bit Mode when
Resulting PSW Bit 31 Is One (See Note) and Bits 0-31 of Branch Address
Are A1l Zeros)

01010001|1011 A1l Zeros Bits 32-63 of Branch Address

0 8 12 32 63

F3 Mode-Switching Branch (BASSM or RP from 24-Bit or 31-Bit Mode when
Resulting PSW Bit 31 Is One (See Note) and Bits 0-31 of Branch Address
Are Not A1l Zeros

010100101111 ATl Zeros Bits 0-31 of Branch Address

0 8 12 32 63

Bits 32-63 of Branch Address

64 95
Figure 4-6 (Part 2 of 7). Trace Entries

Chapter 4. Control

4-15

F1 PROGRAM CALL (in 24-Bit or 31-Bit Mode, Regardless of Resulting Mode)

PSW
00100001 | Key PC Number A|Bits 33-62 of Return Address|P
0 8 12 32 63

F2 PROGRAM CALL (in 64-Bit Mode, Regardless of Resulting Mode)

PSW
00100010 |Key PC Number Bits 0-31 of Return Address

0 8 12 32 63

Bits 32-62 of Return Address [P

64 95

F1 PROGRAM RETURN (in 24-Bit or 31-Bit Mode when Resulting Mode Is
24-Bit or 31-Bit)

PSW
00110010|Key |0000 New PASN A[Bits 33-62 of Return Address|P

0 8 12 16 32 63

A|Bits 33-63 of Updated Inst. Adr.

64 95

F2 PROGRAM RETURN (in 64-Bit Mode when Bits 0-31 of Updated Instruction
Address Are A1l Zeros and Resulting Mode Is 24-Bit or 31-Bit)

PSW
00110010|Key (0010 New PASN A|Bits 33-62 of Return Address|P

0 8 12 16 32 63

Bits 32-63 of Updated Inst. Adr.

64 95
Figure 4-6 (Part 3 of 7). Trace Entries

4-16 z/Architecture Principles of Operation

F3 PROGRAM RETURN (in 64-Bit Mode when Bits 0-31 of Updated Instruction
Address Are Not A1l Zeros and Resulting Mode Is 24-Bit or 31-Bit)

PSW
00110011|Key (0011 New PASN A|Bits 33-62 of Return Address|P

0 8 12 16 32 63

Updated Instruction Address

64 127

F4 PROGRAM RETURN (in 24-Bit or 31-Bit Mode when Resulting PSW Bit 31
Is One (See Note) and Bits 0-31 of Return Address Are A1l Zeros)

PSW
00110010|Key |1000 New PASN Bits 32-62 of Return Address |P
0 8 12 16 32 63

A|Bits 33-63 of Updated Inst. Adr.

64 95

F5 PROGRAM RETURN (in 64-Bit Mode when Bits 0-31 of Updated Instruction
Address Are A1l Zeros, Resulting PSW Bit 31 Is One (See Note), and Bits
0-31 of Return Address Are A1l Zeros)

PSW
00110010|Key (1010 New PASN Bits 32-62 of Return Address |P
0 8 12 16 32 63

Bits 32-63 of Updated Inst. Adr.

64 95

F6 PROGRAM RETURN (in 64-Bit Mode when Bits 0-31 of Updated Instruction
Address Are Not A1l Zeros, Resulting PSW Bit 31 Is One (See Note), and
Bits 0-31 of Return Address Are A1l Zeros)

PSW
00110011 |Key |1011 New PASN Bits 32-62 of Return Address |P
0 8 12 16 32 63
Updated Instruction Address
64 127

Figure 4-6 (Part 4 of 7). Trace Entries

Chapter 4. Contro

417

F7 PROGRAM RETURN (in 24-Bit or 31-Bit Mode when Resulting PSW Bit 31
Is One (See Note) and Bits 0-31 of Return Address Are Not All Zeros)

PSW
00110011 |Key [1100 New PASN Bits 0-31 of Return Address

0 8 12 16 32 63

Bits 32-62 of Return Address |P|A| Updated Instruction Address

64 96 127

F8 PROGRAM RETURN (in 64-Bit Mode when Bits 0-31 of Updated Instruction
Address Are A1l Zeros, Resulting PSW Bit 31 Is One (See Note), and Bits
0-31 of Return Address Are Not A1l Zeros)

PSW
00110011 |Key [1110 New PASN Bits 0-31 of Return Address

0 8 12 16 32 63

Bits 32-62 of Return Address |P|Bits 32-63 of Updated Inst. Adr.

64 96 127

F9 PROGRAM RETURN (in 64-Bit Mode when Bits 0-31 of Updated Instruction
Address Are Not A1l Zeros, Resulting PSW Bit 31 Is One (See Note), and
Bits 0-31 of Return Address Are Not A1l Zeros)

PSW
00110100|Key |1111 New PASN Bits 0-31 of Return Address

0 8 12 16 32 63

Bits 32-62 of Return Address |P|Bits 0-31 of Updated Inst. Adr.

64 96 127

Bits 32-63 of Updated Inst. Adr.

128 159

F1 PROGRAM TRANSFER (in 24-Bit or 31-Bit Mode)

PSW
00110001 |Key |0000 New PASN Bits 32-63 of Rz Before

0 8 12 16 32 63
Figure 4-6 (Part 5 of 7). Trace Entries

4-18 z/Architecture Principles of Operation

F2 PROGRAM TRANSFER (in 64-Bit Mode when Bits 0-31 of Rz Are A1l Zeros)

00110001

PSW
Key |1000

New PASN Bits 32-63 of Rz Before

0

8 12

16

32 63

F3 PROGRAM TRANSFER (in 64-Bit Mode when Bits 0-31 of Rz Are Not All

Zeros)
PSW
00110010|Key [1100 New PASN Bits 0-31 of Rz Before
0 8 12 16 32 63

Bits 32-63 of Rz Before

64 95
F1 SET SECONDARY ASN
00010000|00000000 New SASN
0 8 16 31
F1 TRACE (TRACE)
0111 N |00000000 TOD-Clock Bits 16-63
0 4 8 16 63
/
TRACE Operand (R1) - (R3)
64 96 ! 95 + 32(N+1)
F2 TRACE (TRACG)
0111 N |10000000 TOD-Clock Bits 0-47
0 4 8 16 63
TOD-Clock Bits 48-79 TRACE Operand
64 96 127
/
(R1) - (Rs3)
/
128 127 + 64(N+1)

Figure 4-6 (Part 6 of 7). Trace Entries

Chapter 4. Contro

4-19

Note: The terminology “when Resulting PSW Bit 31 Is One” is used
instead of “when Resulting Mode Is 64-Bit” because, if the
resulting PSW bit 32 is zero, an early specification exception will be

recognized.

Figure 4-6 (Part 7 of 7). Trace Entries

PROGRAM RETURN can set PSW bit 31 to one and bit 32 to zero.

Trace Entry
Trace-Entry Bits
For-
0-7 8-11|12-15 Type mat

00000000 Branch 1
00010000 SET SECONDARY ASN 1
00100001 PROGRAM CALL 1
00100010 PROGRAM CALL 2
00110001 0000 |PROGRAM TRANSFER 1
00110001 1000 |[PROGRAM TRANSFER 2
00110010 0000 |PROGRAM RETURN 1
00110010 0010 |PROGRAM RETURN 2
00110010 1000 |PROGRAM RETURN 4
00110010 1010 |PROGRAM RETURN 5
00110010 1100 |[PROGRAM TRANSFER 3
00110011 0011 |PROGRAM RETURN 3
00110011 1011 |[PROGRAM RETURN 6
00110011 1100 |PROGRAM RETURN 7
00110011 1110 |PROGRAM RETURN 8
00110100 1111 |PROGRAM RETURN 9
01000001 BRANCH IN SUBSPACE GROUP| 1
01000010 BRANCH IN SUBSPACE GROUP| 2
01010001|0010 Mode Switch 2
01010001|0011 Mode Switch 1
01010001|1010 Mode-Switching Branch 1
01010001|1011 Mode-Switching Branch 2
01010010|0110 Mode Switch 3
01010010|1100 Branch 3
01010010|1111 Mode-Switching Branch 3
0111 0 TRACE 1
0111 1 TRACE 2
1 Branch 2

Figure 4-7. Trace Entries Arranged by Identifying Bits

The fields in the trace entries are defined as

follows. The fields are described in the order in
which they first appear in |Figure 4-6 on|
page 4-14

Branch Address: The branch address is the
address of the next instruction to be executed
when the branch is taken. In a branch trace entry
made when the 24-bit addressing mode is in effect
after branching (a format-1 entry), bit positions

4-20

z/Architecture Principles of Operation

8-31 contain bits 40-63 of the branch address.
When the 31-bit addressing mode is in effect after
branching or PSW bit 31 is one after branching
and bits 0-32 of the branch address are all zeros,
bit positions 1-31 of the trace entry (format 2)
contain bits 33-63 of the branch address. When
PSW bit 31 is one after branching and bits 0-32 of
the branch address are not all zeros, bit positions
32-95 of the trace entry (format 3), contain bits
0-63 of the branch address.

In a BRANCH IN SUBSPACE GROUP trace entry
made on execution in the 24-bit or 31-bit
addressing mode, bit positions 33-63 of the trace
entry (format 1) contain bits 33-63 of the branch
address, or, in the 64-bit addressing mode, bit
positions 32-95 of the trace entry (format 2)
contain bits 0-63 of the branch address.

In a mode-switching-branch trace entry made on a
switch from the 64-bit addressing mode to the
24-bit or 31-bit addressing mode, bit positions
33-63 of the entry (format 1) contain bits 33-63 of
the branch address; or, on a switch from PSW bit
31 being off to the bit being on, bit positions 32-63
of the entry (format 2) contain bits 32-63 of the
branch address if bits 0-31 of the branch address
are zeros, or bits 32-95 of the entry (format 3)
contain bits 0-63 of the branch address if bits 0-31
of the branch address are not all zeros.

Primary-List Bit (P) and Bits 9-31 of ALET: Bit
position 8 of a BRANCH IN SUBSPACE GROUP
trace entry contains bit 7 of the access-list-entry
token (ALET) in the access register designated by
the Rz field of the instruction. Bit positions 9-31 of
the trace entry contain bits 9-31 of the ALET.

Basic-Addressing-Mode Bit (A): Bit position 32
of a BRANCH IN SUBSPACE GROUP trace entry
made on execution in the 24-bit or 31-bit
addressing mode (a format-1 entry) contains the
basic-addressing-mode bit that replaces bit 32 of
the PSW.

Bit position 32 of a mode-switch trace entry that
indicates a switch from PSW bit 31 being off to
the bit being on (a format-1 entry) contains the
value of PSW bit 32 that existed before the mode-
switch operation.

Bit position 32 of a mode-switching-branch trace
entry that indicates a switch from the 64-bit
addressing mode to the 24-bit or 31-bit addressing
mode (a format-1 entry) contains the value that
replaces PSW bit 32.

Bit position 32 of a PROGRAM CALL trace entry
made on execution in the 24-bit or 31-bit
addressing mode (regardless of the resulting
addressing mode) (a format-1 entry) contains the
basic-addressing-mode bit, bit 32, from the current
PSW.

Bit position 32 of a PROGRAM RETURN trace
entry made when the resulting addressing mode is
the 24-bit or 31-bit mode (a format-1, format-2, or
format-3 entry) contains the basic-addressing-
mode bit that replaces bit 32 of the PSW.

Bit position 64 of a PROGRAM RETURN trace
entry made in the 24-bit or 31-bit addressing
mode when the return address occupies only one
word in the entry, (a format-1 or format-4 entry),
contains the value of PSW bit 32 that existed
before the PROGRAM RETURN operation. When
the return address occupies two words (a format-7
entry), bit position 96 contains that value of PSW
bit 32.

Updated Instruction Address: Bit positions
33-63 of a mode-switch trace entry that indicates
a switch from PSW bit 31 being off to the bit being
on (a format-1 entry) contains bits 33-63 of the
updated instruction address in the PSW (bits
97-127 of the PSW) before that address is
replaced, if it is replaced, by the mode-switch
operation. Bit positions 32-63 of a mode-switch
trace entry (format 2) that indicates a switch from
the 64-bit addressing mode to the 24-bit or 31-bit
addressing mode contains bits 32-63 of the
updated instruction address in the PSW (bits
96-127 of the PSW) before that address is
replaced, if it is replaced, by the mode-switch
operation, if bits 0-31 of the updated instruction
address are zeros; or bit positions 32-95 of the
trace entry (format 3) contain bits 0-63 of that
updated instruction address (bits 64-127 of the
PSW) if bits 0-31 of the address are not all zeros.

The following description of a PROGRAM
RETURN trace entry applies when the return
address in the entry occupies only one word in the
entry. Bit positions 65-95 of the trace entry made
on execution in the 24-bit or 31-bit addressing
mode (a format-1 or format-4 entry) contain bits
33-63 of the updated instruction address in the
PSW (bits 97-127 of the PSW) before that
address is replaced from the linkage-stack state
entry; or, when the execution is in the 64-bit
addressing mode, bit positions 64-95 of the trace
entry (format 2 or 5) contain bits 32-63 of that
updated instruction address (bits 96-127 of the
PSW) if bits 0-31 of the address are zeros, or bit
positions 64-127 of the trace entry (format 3 or 6)
contain bits 0-63 of that updated instruction
address (bits 64-127 of the PSW) if bits 0-31 of
the address are not all zeros. If the return

Chapter 4. Control 4-21

address in the PROGRAM RETURN trace entry
occupies two words, the updated instruction
address in the entry is moved one word to the
right in the entry (formats 7-9).

PSW Key: Bit positions 8-11 of a PROGRAM
CALL, PROGRAM TRANSFER, or PROGRAM
RETURN trace entry contain the PSW key from
the current PSW.

PC Number: Bit positions 12-31 of a
PROGRAM CALL trace entry contain the value of
the rightmost 20 bits of the second-operand
address.

Return Address: Bit positions 33-62 of a
PROGRAM CALL trace entry made on execution
in the 24-bit or 31-bit addressing mode (a format-1
entry) contain bits 33-62 of the updated instruction
address in the PSW (bits 97-126 of the PSW)
before that address is replaced from the entry-
table entry; or, when the execution is in the 64-bit
addressing mode, bit positions 32-94 of the trace
entry (format 2) contain bits 0-62 of that updated
instruction address (bits 64-126 of the PSW).

Bit positions 33-62 of a PROGRAM RETURN
trace entry made when the resulting addressing
mode is the 24-bit or 31-bit mode (a format-1,
format-2, or format-3 entry) contain bits 33-62 of
the instruction address that replaces bits 64-127 of
the PSW; or, when the resulting PSW bit 31 is
one (which causes the addressing mode be the
64-bit mode unless the resulting PSW bit 32 is
zero), bit positions 32-62 of the trace entry
(formats 4-6) contain bits 32-62 of that instruction
address if bits 0-31 of the address are zeros, or
bit positions 32-94 of the trace entry (formats 7-9)
contain bits 0-62 of that instruction address if bits
0-31 of the address are not all zeros.

Problem-State Bit (P): Bit position 63 of a
PROGRAM CALL trace entry made on execution
in the 24-bit or 31-bit addressing mode (regardless
of the resulting mode) (a format-1 entry), or bit 95
of the entry (format 2) made on execution in the
64-bit addressing mode, contains the problem-
state bit from the current PSW.

Bit position 63 of a PROGRAM RETURN trace
entry made when the resulting addressing mode is
the 24-bit or 31-bit mode (a format-1, format-2, or
format-3 entry) or when the resulting PSW bit 31
is one and bits 0-31 of the return address are

4-22 z/Architecture Principles of Operation

zeros (formats 4-6) contains the problem-state bit
that replaces bit 15 of the PSW. Bit position 95 of
a PROGRAM RETURN trace entry made when
the resulting PSW bit 31 is one and bits 0-31 of
the return address are not all zeros (formats 7-9)
contains that problem-state bit.

New PASN: Bit positions 16-31 a PROGRAM
TRANSFER trace entry contain the new PASN
(which may be zero) specified in bit positions
48-63 of general register Ri.

Bit positions 16-31 of a PROGRAM RETURN
trace entry contain the new PASN that is restored
from the linkage-stack state entry.

Bits 32-63 of R> Before: Bit positions 32-63 of a
PROGRAM TRANSFER trace entry made on exe-
cution in the 24-bit or 31-bit addressing mode (a
format-1 entry) contain bits 32-63 of the general
register designated by the Rz field of the instruc-
tion. (Bits 32 and 33-62 of that register replace
bits 32 and 97-126, respectively, of the PSW. Bit
63 of the register replaces the problem-state bit in
the PSW.) When PROGRAM TRANSFER is exe-
cuted in the 64-bit addressing mode, bit positions
32-63 of the trace entry (format 2) contain bits
32-63 of the Rz general register if bits 0-31 of the
register are zeros, or bit positions 32-95 of the
trace entry (format 3) contain bits 0-63 of the reg-
ister if bits 0-31 of the register are not all zeros.

New SASN: Bit positions 16-31 of a SET SEC-
ONDARY ASN trace entry contain the ASN value
loaded into control register 3 by the instruction.

Number of Registers (N): Bits 4-7 of the trace
entry for TRACE contain a value which is one less
than the number of general registers which have
been provided in the trace entry. The value of N
ranges from zero, meaning the contents of one
general register are provided in the trace entry, to
15, meaning the contents of all 16 general regis-
ters are provided.

TOD-Clock Bits 16-63 or 0-79: Bits 16-63 of the
trace entry for TRACE (TRACE) are obtained from
bit positions 16-63 of the TOD clock, as would be
provided by a STORE CLOCK instruction exe-
cuted at the time the TRACE instruction was exe-
cuted. Bits 16-95 of the trace entry for TRACE
(TRACG) are obtained from bit positions 0-79 of
the TOD clock, as would be provided by a STORE
CLOCK EXTENDED instruction executed at the

time the TRACE instruction was executed. See
programming note [2 on page 4-23 for information
about a carry from bit position 0 of the TOD clock.

TRACE Operand: Bit positions 64-95 of the
trace entry for TRACE (TRACE) contain a copy of
the 32 bits of the second operand of the TRACE
instruction for which the entry is made. Bit posi-
tions 96-127 of the trace entry for TRACE
(TRACG) contain a copy of those bits.

(R:1)-(R3): The four-byte fields starting with bit 96
of the trace entry for TRACE (TRACE) contain the
contents of bit positions 32-63 of the general reg-
isters whose range is specified by the R1 and Rs
fields of the TRACE instruction. The general reg-
isters are stored in ascending order of register
numbers, starting with general register R:1 and
continuing up to and including general register Rs,
with general register 0 following general register
15. The eight-byte fields starting with bit 128 of
the trace entry for TRACE (TRACG) similarly
contain the contents of bit positions 0-63 of those
registers.

Programming Notes:

1. The size of the trace entry for TRACE
(TRACE) in units of words is 3 + (N + 1).
The maximum size of an entry is 19 words, or
76 bytes. For TRACE (TRACG), the size in
units of words is 4 + 2(N + 1), and the
maximum size is 36 words, or 144 bytes.

2. At some time in the future, the TOD clock on
new models will have a leftmost extension so
that there can be a carry from bit position O of
the clock into the extension; see programming
note |13 on page 4-39] On these models, the
rightmost bit of the extension will be stored in
bit position 15 of the TRACE (TRACG) trace
entry. It may be desired to have programs
that process TRACE (TRACG) trace entries
take this future development into account.

Operation

When an instruction which is subject to tracing is
executed and the corresponding tracing function is
turned on, a trace entry of the appropriate type
and format is made. The real address of the trace
entry is formed by appending two zero bits on the
left and two on the right to the value in bit posi-
tions 2-61 of control register 12. The address in

control register 12 is subsequently increased by
the size of the entry created.

No trace entry is stored if the incrementing of the
address in control register 12 would cause a carry
to be propagated into bit position 51 (that is, if the
trace-entry address would be in the next 4K-byte
block). If this would be the case for the entry to
be made, a trace-table exception is recognized.
When PROGRAM CALL is to form both a
PROGRAM CALL trace entry and a mode-switch
trace entry, neither entry is stored, and a trace-
table exception is recognized, if either entry would
cause a carry into bit position 51. For the purpose
of recognizing the trace-table exception in the
case of a TRACE instruction, the maximum length
of 76 (TRACE) or 144 (TRACG) bytes is used
instead of the actual length.

The storing of a trace entry is not subject to key-
controlled protection (nor, since the trace-entry
address is real, is it subject to page protection),
but it is subject to low-address protection; that is,
if the address of the trace entry due to be created
is in the range 0-511 or 4096-4607 and bit 35 of
control register 0 is one, a protection exception is
recognized, and instruction execution is sup-
pressed. If the address of a trace entry is invalid,
an addressing exception is recognized, and
instruction execution is suppressed.

The three exceptions associated with storing a
trace entry (addressing, protection, and trace
table) are collectively referred to as trace
exceptions.

If a program interruption takes place for a condi-
tion which is not a trace-exception condition and
for which execution of an instruction is not com-
pleted, it is unpredictable whether part or all of
any trace entry due to be made for such an inter-
rupted instruction is stored in the trace table.
Thus, for a condition which would ordinarily cause
nullification or suppression of instruction exe-
cution, storage locations may have been altered
beginning at the location designated by control
register 12 and extending up to the length of the
entry that would have been created.

When PROGRAM RETURN unstacks a linkage-
stack state entry that was formed by BRANCH
AND STACK and ASN tracing is on, trace
exceptions may be recognized, even though a

Chapter 4. Control 4-23

trace entry is not made and no part of a trace
entry is stored.

The order in which information is placed in a trace
entry is unpredictable. Furthermore, as observed
by other CPUs and by channel programs, the con-
tents of a byte of a trace entry may appear to
change more than once before completion of the
instruction for which the entry is made.

The trace-entry address in control register 12 is
updated only on completion of execution of an
instruction for which a trace entry is made.

A serialization and checkpoint-synchronization
function is performed before the operation begins
and again after the operation is completed.

Program-Event Recording

The purpose of PER is to assist in debugging
programs. It permits the program to be alerted to
the following types of events:

e Execution of a successful branch instruction.
The option is provided of having an event
occur only when the branch-target location is
within the designated storage area.

¢ Fetching of an instruction from the designated
storage area.

e Alteration of the contents of the designated
storage area. The option is provided of
having an event occur only when the storage
area is within designated address spaces.

e Execution of the STORE USING REAL
ADDRESS instruction.

The program can selectively specify that one or
more of the above types of events be recognized,
except that the event for STORE USING REAL
ADDRESS can be specified only along with the
storage-alteration event. The information con-
cerning a PER event is provided to the program
by means of a program interruption, with the
cause of the interruption being identified in the
interruption code.

Control-Register Allocation and
Address-Space-Control Element

The information for controlling PER resides in
control registers 9, 10, and 11 and the address-
space-control element. The information in the
control registers has the following format:

4-24 z/Architecture Principles of Operation

Control Register 9
/

EM Bl |S

0 32 37 40 42 63

Control Register 10
/

Starting Address

Control Register 11
/

Ending Address

0 63

PER-Event Masks (EM): Bits 32-34 and 36
specify which types of events are recognized.
The bits are assigned as follows:

Bit 32: Successful-branching event

Bit 33: Instruction-fetching event

Bit 34: Storage-alteration event

Bit 36: Store-using-real-address event (bit 34

must be one also)

Bits 32-34 and bit 36, when ones, specify that the
corresponding types of events be recognized.
However, bit 36 is effective for this purpose only
when bit 34 is also one. When bit 34 is one, the
storag