
The SPARC Architecture Manual

Version 9

SPARC International, Inc.
Santa Clara, California

David L. Weaver and Tom Germond

Editors

SAV09R1459912

2

The SPARC Architecture Manual

Version 9

SPARC International, Inc.
Santa Clara, California

David L. Weaver / Tom Germond

Editors

SAV09R1459912

PT R Prentice Hall, Englewood Cliffs, New Jersey 07632

SPARC® is a registered trademark of SPARC International, Inc.

The SPARC logo is a registered trademark of SPARC International, Inc.

UNIX® is a registered trademark of UNIX System Laboratories, Inc.

Copyright © 1994-2000 SPARC International, Inc.

SPARC International, 3333 Bowers Ave, Suite 280, Santa Clara, CA, 95054-1913

Technical questions and modifications, should be send to the attention of:

Ghassan Abbas (abbas@sparc.com)

Published by PTR Prentice Hall

Prentice-Hall, Inc.

A Paramount Communications Company

Englewood Cliffs, New Jersey 07632

The publisher offers discounts on this book when ordered in bulk quantities. For
more information, contact:

Corporate Sales Department

PT R Prentice Hall

113 Sylvan Avenue

Englewood Cliffs, NJ 07632

Phone: (201) 592-2863

Fax: (201) 592-2249

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording or other-
wise, without the prior permission of the copyright owners.

Restricted rights legend: use, duplication, or disclosure by the U. S. Government is subject
to restrictions set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 52.227-7013 and in similar clauses in the FAR and
NASA FAR Supplement.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-825001-4
PRENTICE-HALL INTERNATIONAL (UK) LIMITED, London

PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney

PRENTICE-HALL CANADA INC., Toronto

PRENTICE-HALL HISPANOAMERICANA, S.A., Mexico

PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi

PRENTICE-HALL OF JAPAN, INC., Tokyo

SIMON & SCHUSTER ASIA PTE. LTD., Singapore

EDITORA PRENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro

iii

Contents

Introduction ... xiii

0.1 SPARC .. xiii

0.2 Processor Needs for the 90s and Beyond .. xiv

0.3 SPARC-V9: A Robust RISC for the Next Century xiv

0.3.1 64-bit Data and Addresses ... xiv

0.3.2 Improved System Performance .. xv

0.3.3 Advanced Optimizing Compilers .. xvi

0.3.4 Advanced Superscalar Processors .. xvii

0.3.5 Advanced Operating Systems .. xvii

0.3.6 Fault Tolerance .. xviii

0.3.7 Fast Traps and Context Switching ... xviii

0.3.8 Big- and Little-Endian Byte Orders ... xix

0.4 Summary ... xix

Editors’ Notes .. xxi

Acknowledgments ... xxi

Personal Notes .. xxi

1 Overview .. 1

1.1 Notes About this Book .. 1

1.1.1 Audience .. 1

1.1.2 Where to Start .. 1

1.1.3 Contents ... 1

1.1.4 Editorial Conventions .. 3

1.2 The SPARC-V9 Architecture ... 4

1.2.1 Features .. 4

1.2.2 Attributes .. 5

1.2.3 System Components .. 6

1.2.4 Binary Compatibility ... 6

1.2.5 Architectural Definition ... 7

1.2.6 SPARC-V9 Compliance .. 7

2 Definitions .. 9

3 Architectural Overview .. 15

3.1 SPARC-V9 Processor ... 15

3.1.1 Integer Unit (IU) .. 15

iv Contents

3.1.2 Floating-Point Unit (FPU) .. 16

3.2 Instructions .. 16

3.2.1 Memory Access ... 17

3.2.2 Arithmetic/Logical/Shift Instructions 19

3.2.3 Control Transfer ... 19

3.2.4 State Register Access ... 20

3.2.5 Floating-Point Operate ... 20

3.2.6 Conditional Move .. 20

3.2.7 Register Window Management .. 20

3.3 Traps ... 21

4 Data Formats ... 23

4.1 Signed Integer Byte ... 23

4.2 Signed Integer Halfword ... 24

4.3 Signed Integer Word ... 24

4.4 Signed Integer Double .. 24

4.5 Signed Extended Integer ... 24

4.6 Unsigned Integer Byte .. 24

4.7 Unsigned Integer Halfword ... 24

4.8 Unsigned Integer Word ... 25

4.9 Unsigned Integer Double .. 25

4.10 Unsigned Extended Integer ... 25

4.11 Tagged Word .. 25

4.12 Floating-Point Single Precision .. 25

4.13 Floating-Point Double Precision ... 26

4.14 Floating-Point Quad Precision .. 26

5 Registers ... 29

5.1 Nonprivileged Registers .. 30

5.1.1 General Purpose r Registers ... 30

5.1.2 Special r Registers ... 34

5.1.3 IU Control/Status Registers ... 35

5.1.4 Floating-Point Registers .. 36

5.1.5 Condition Codes Register (CCR) .. 40

5.1.6 Floating-Point Registers State (FPRS) Register 42

5.1.7 Floating-Point State Register (FSR) .. 43

5.1.8 Address Space Identifier Register (ASI) 50

5.1.9 TICK Register (TICK) ... 50

5.2 Privileged Registers .. 51

5.2.1 Processor State Register (PSTATE) .. 51

5.2.2 Trap Level Register (TL) ... 54

5.2.3 Processor Interrupt Level (PIL) ... 54

5.2.4 Trap Program Counter (TPC) .. 55

Contents v

5.2.5 Trap Next Program Counter (TNPC) 55

5.2.6 Trap State (TSTATE) .. 56

5.2.7 Trap Type Register (TT) .. 56

5.2.8 Trap Base Address (TBA) ... 57

5.2.9 Version Register (VER) ... 57

5.2.10 Register-Window State Registers .. 58

5.2.11 Ancillary State Registers (ASRs) ... 60

5.2.12 Floating-Point Deferred-Trap Queue (FQ) 61

5.2.13 IU Deferred-Trap Queue .. 61

6 Instructions .. 63

6.1 Instruction Execution .. 63

6.2 Instruction Formats ... 63

6.2.1 Instruction Fields ... 66

6.3 Instruction Categories ... 68

6.3.1 Memory Access Instructions .. 69

6.3.2 Memory Synchronization Instructions 76

6.3.3 Integer Arithmetic Instructions .. 76

6.3.4 Control-Transfer Instructions (CTIs) 77

6.3.5 Conditional Move Instructions .. 80

6.3.6 Register Window Management Instructions 82

6.3.7 State Register Access ... 84

6.3.8 Privileged Register Access .. 84

6.3.9 Floating-Point Operate (FPop) Instructions 84

6.3.10 Implementation-Dependent Instructions 85

6.3.11 Reserved Opcodes and Instruction Fields 85

6.4 Register Window Management ... 85

6.4.1 Register Window State Definition ... 85

6.4.2 Register Window Traps ... 86

7 Traps .. 89

7.1 Overview ... 89

7.2 Processor States, Normal and Special Traps ... 90

7.2.1 RED_state .. 90

7.2.2 Error_state .. 94

7.3 Trap Categories ... 94

7.3.1 Precise Traps .. 95

7.3.2 Deferred Traps ... 95

7.3.3 Disrupting Traps .. 96

7.3.4 Reset Traps ... 97

7.3.5 Uses of the Trap Categories ... 97

7.4 Trap Control .. 99

7.4.1 PIL Control .. 99

vi Contents

7.4.2 TEM Control .. 100

7.5 Trap-Table Entry Addresses ... 100

7.5.1 Trap Table Organization .. 101

7.5.2 Trap Type (TT) .. 101

7.5.3 Trap Priorities .. 104

7.6 Trap Processing ... 105

7.6.1 Normal Trap Processing ... 106

7.6.2 Special Trap Processing ... 108

7.7 Exception and Interrupt Descriptions ... 113

8 Memory Models .. 119

8.1 Introduction ... 119

8.2 Memory, Real Memory, and I/O Locations .. 120

8.3 Addressing and Alternate Address Spaces ... 121

8.4 The SPARC-V9 Memory Model .. 123

8.4.1 The SPARC-V9 Program Execution Model 123

8.4.2 The Processor/Memory Interface Model 125

8.4.3 The MEMBAR Instruction .. 126

8.4.4 Memory Models ... 128

8.4.5 Mode Control ... 129

8.4.6 Hardware Primitives for Mutual Exclusion 130

8.4.7 Synchronizing Instruction and Data Memory 131

A Instruction Definitions (Normative) .. 133

A.1 Overview ... 133

A.2 Add .. 137

A.3 Branch on Integer Register with Prediction (BPr) 138

A.4 Branch on Floating-Point Condition Codes (FBfcc) 140

A.5 Branch on Floating-Point Condition Codes with Prediction (FBPfcc) ... 143

A.6 Branch on Integer Condition Codes (Bicc) ... 146

A.7 Branch on Integer Condition Codes with Prediction (BPcc) 148

A.8 Call and Link ... 151

A.9 Compare and Swap ... 152

A.10 Divide (64-bit / 32-bit) .. 154

A.11 DONE and RETRY ... 157

A.12 Floating-Point Add and Subtract .. 158

A.13 Floating-Point Compare .. 159

A.14 Convert Floating-Point to Integer ... 161

A.15 Convert Between Floating-Point Formats .. 162

A.16 Convert Integer to Floating-Point ... 163

A.17 Floating-Point Move ... 164

A.18 Floating-Point Multiply and Divide .. 165

A.19 Floating-Point Square Root ... 166

Contents vii

A.20 Flush Instruction Memory .. 167

A.21 Flush Register Windows .. 169

A.22 Illegal Instruction Trap ... 170

A.23 Implementation-Dependent Instructions ... 171

A.24 Jump and Link ... 172

A.25 Load Floating-Point .. 173

A.26 Load Floating-Point from Alternate Space ... 176

A.27 Load Integer .. 178

A.28 Load Integer from Alternate Space ... 180

A.29 Load-Store Unsigned Byte .. 182

A.30 Load-Store Unsigned Byte to Alternate Space 183

A.31 Logical Operations .. 184

A.32 Memory Barrier .. 186

A.33 Move Floating-Point Register on Condition (FMOVcc) 188

A.34 Move F-P Register on Integer Register Condition (FMOVr) 192

A.35 Move Integer Register on Condition (MOVcc) 194

A.36 Move Integer Register on Register Condition (MOVR) 198

A.37 Multiply and Divide (64-bit) ... 199

A.38 Multiply (32-bit) ... 200

A.39 Multiply Step .. 202

A.40 No Operation ... 204

A.41 Population Count .. 205

A.42 Prefetch Data ... 206

A.42.1 Prefetch Variants .. 207

A.42.2 General Comments ... 209

A.43 Read Privileged Register ... 211

A.44 Read State Register ... 214

A.45 RETURN ... 216

A.46 SAVE and RESTORE ... 217

A.47 SAVED and RESTORED ... 219

A.48 SETHI ... 220

A.49 Shift ... 221

A.50 Software-Initiated Reset .. 223

A.51 Store Barrier .. 224

A.52 Store Floating-Point .. 225

A.53 Store Floating-Point into Alternate Space .. 227

A.54 Store Integer .. 229

A.55 Store Integer into Alternate Space .. 231

A.56 Subtract ... 233

A.57 Swap Register with Memory .. 234

A.58 Swap Register with Alternate Space Memory .. 235

A.59 Tagged Add .. 237

viii Contents

A.60 Tagged Subtract .. 238

A.61 Trap on Integer Condition Codes (Tcc) .. 240

A.62 Write Privileged Register .. 242

A.63 Write State Register .. 244

B IEEE Std 754-1985 Requirements for SPARC-V9 (Normative) 247

B.1 Traps Inhibit Results ... 247

B.2 NaN Operand and Result Definitions ... 248

B.2.1 Untrapped Result in Different Format from Operands 248

B.2.2 Untrapped Result in Same Format as Operands 248

B.3 Trapped Underflow Definition (UFM = 1) ... 249

B.4 Untrapped Underflow Definition (UFM = 0) ... 249

B.5 Integer Overflow Definition ... 250

B.6 Floating-Point Nonstandard Mode .. 250

C SPARC-V9 Implementation Dependencies (Normative) 251

C.1 Definition of an Implementation Dependency .. 251

C.2 Hardware Characteristics .. 251

C.3 Implementation Dependency Categories .. 252

C.4 List of Implementation Dependencies .. 252

D Formal Specification of the Memory Models (Normative) 261

D.1 Processors and Memory .. 261

D.2 An Overview of the Memory Model Specification 262

D.3 Memory Transactions ... 263

D.3.1 Memory Transactions .. 263

D.3.2 Program Order ... 263

D.3.3 Dependence Order ... 264

D.3.4 Memory Order ... 265

D.4 Specification of Relaxed Memory Order (RMO) 265

D.4.1 Value Atomicity ... 265

D.4.2 Store Atomicity .. 266

D.4.3 Atomic Memory Transactions ... 266

D.4.4 Memory Order Constraints .. 266

D.4.5 Value of Memory Transactions ... 266

D.4.6 Termination of Memory Transactions 267

D.4.7 Flush Memory Transaction .. 267

D.5 Specification of Partial Store Order (PSO) ... 267

D.6 Specification of Total Store Order (TSO) ... 267

D.7 Examples Of Program Executions .. 267

D.7.1 Observation of Store Atomicity ... 267

D.7.2 Dekker’s Algorithm ... 269

D.7.3 Indirection Through Processors ... 269

Contents ix

D.7.4 PSO Behavior ... 270

D.7.5 Application to Compilers ... 271

D.7.6 Verifying Memory Models .. 272

E Opcode Maps (Normative) ... 273

E.1 Overview ... 273

E.2 Tables .. 273

F SPARC-V9 MMU Requirements (Informative) ... 281

F.1 Introduction ... 281

F.1.1 Definitions .. 281

F.2 Overview ... 281

F.3 The Processor-MMU Interface ... 282

F.3.1 Information the MMU Expects from the Processor 283

F.3.2 Attributes the MMU Associates with Each Mapping 284

F.3.3 Information the MMU Sends to the Processor 284

F.4 Components of the SPARC-V9 MMU Architecture 285

F.4.1 Virtual-to-Physical Address Translation 285

F.4.2 Memory Protection .. 286

F.4.3 Prefetch and Non-Faulting Load Violation 286

F.4.4 Contexts ... 286

F.4.5 Fault Status and Fault Address .. 287

F.4.6 Referenced and Modified Statistics ... 288

F.5 RED_state Processing ... 288

F.6 Virtual Address Aliasing ... 288

F.7 MMU Demap Operation ... 288

F.8 SPARC-V9 Systems without an MMU .. 289

G Suggested Assembly Language Syntax (Informative) 291

G.1 Notation Used ... 291

G.1.1 Register Names .. 291

G.1.2 Special Symbol Names .. 292

G.1.3 Values .. 294

G.1.4 Labels ... 295

G.1.5 Other Operand Syntax .. 295

G.1.6 Comments .. 296

G.2 Syntax Design ... 296

G.3 Synthetic Instructions ... 297

H Software Considerations (Informative) ... 301

H.1 Nonprivileged Software .. 301

H.1.1 Registers ... 301

H.1.2 Leaf-Procedure Optimization .. 304

x Contents

H.1.3 Example Code for a Procedure Call ... 306

H.1.4 Register Allocation within a Window 307

H.1.5 Other Register-Window-Usage Models 308

H.1.6 Self-Modifying Code .. 308

H.1.7 Thread Management .. 309

H.1.8 Minimizing Branch Latency .. 309

H.1.9 Prefetch .. 310

H.1.10 Nonfaulting Load ... 313

H.2 Supervisor Software .. 315

H.2.1 Trap Handling .. 315

H.2.2 Example Code for Spill Handler .. 316

H.2.3 Client-Server Model ... 316

H.2.4 User Trap Handlers .. 317

I Extending the SPARC-V9 Architecture (Informative) 321

I.1 Addition of SPARC-V9 Extensions ... 321

I.1.1 Read/Write Ancillary State Registers (ASRs) 321

I.1.2 Implementation-Dependent and Reserved Opcodes 321

J Programming With the Memory Models (Informative) 323

J.1 Memory Operations .. 323

J.2 Memory Model Selection ... 324

J.3 Processors and Processes .. 324

J.4 Higher-Level Programming Languages and Memory Models 325

J.5 Portability And Recommended Programming Style 325

J.6 Spin Locks .. 327

J.7 Producer-Consumer Relationship ... 327

J.8 Process Switch Sequence .. 329

J.9 Dekker’s Algorithm .. 330

J.10 Code Patching ... 330

J.11 Fetch_and_Add ... 333

J.12 Barrier Synchronization .. 333

J.13 Linked List Insertion and Deletion ... 335

J.14 Communicating With I/O Devices .. 335

J.14.1 I/O Registers With Side Effects ... 337

J.14.2 The Control and Status Register (CSR) 337

J.14.3 The Descriptor ... 338

J.14.4 Lock-Controlled Access to a Device Register 338

K Changes From SPARC-V8 to SPARC-V9 (Informative) 339

K.1 Trap Model .. 339

K.2 Data Formats ... 340

K.3 Little-Endian Support .. 340

Contents xi

K.4 Registers .. 340

K.5 Alternate Space Access ... 341

K.6 Little-Endian Byte Order .. 341

K.7 Instruction Set ... 341

K.8 Memory Model ... 344

Bibliography .. 345

General References ... 345

Memory Model References ... 346

Prefetching .. 347

Index ... 349

xii Contents

xiii

Introduction

Welcome to SPARC-V9, the most significant change to the SPARC architecture since it

was announced in 1987. SPARC-V9 extends the addresses of SPARC to 64 bits and adds a

number of new instructions and other enhancements to the architecture.1

SPARC-V9, like its predecessor SPARC-V8, is a microprocessor specification created by

the SPARC Architecture Committee of SPARC International. SPARC-V9 is not a specific

chip; it is an architectural specification that can be implemented as a microprocessor by

anyone securing a license from SPARC International.

SPARC International is a consortium of computer makers, with membership open to any

company in the world. Executive member companies each designate one voting member

to participate on the SPARC Architecture Committee. Over the past several years, the

architecture committee has been hard at work designing the next generation of the SPARC

architecture.

Typically, microprocessors are designed and implemented in secret by a single company.

Then the company spends succeeding years defending its proprietary rights in court

against its competitors. With SPARC, it is our intention to make it easy for anyone to

design and implement to this architectural specification. Several SPARC-V9 implementa-

tions are already underway, and we expect many more companies to design systems

around this microprocessor standard in the coming years.

0.1 SPARC

SPARC stands for a Scalable Processor ARChitecture. SPARC has been implemented in

processors used in a range of computers from laptops to supercomputers. SPARC Interna-

tional member companies have implemented over a dozen different compatible micropro-

cessors since SPARC was first announced—more than any other microprocessor family

with this level of binary compatibility. As a result, SPARC today boasts over 8000 com-

patible software application programs. SPARC-V9 maintains upwards binary compatibil-

ity for application software, which is a very important feature.

Throughout the past six years, the SPARC architecture has served our needs well. But at

the same time, VLSI technology, compiler techniques and users’ needs have changed. The

time is right to upgrade SPARC for the coming decade.

1. For a complete list of changes between SPARC-V8 and SPARC-V9, see Appendix K.

xiv Introduction

0.2 Processor Needs for the 90s and Beyond

The design of Reduced Instruction Set Processors (RISC) began in earnest in the early
1980s. Early RISC processors typically were characterized by a load-store architecture,
single instruction-per-cycle execution, and 32-bit addressing. The instruction set architec-
ture of these early RISC chips was well matched to the level of computer optimization
available in the early 1980s, and provided a minimal interface for the UNIX™ operating
system.

The computer industry has grown significantly in the last decade. Computer users need
more for the 1990s than these early RISCs provided; they demand more powerful systems
today, and yet they continue to want their systems to have good performance growth and
compatibility into the future.The applications of the future—highly interactive and distrib-
uted across multiple platforms—will require larger address spaces and more sophisticated
operating system interfaces. Tomorrow’s architectures must provide better support for
multiprocessors, lightweight threads, and object oriented programming. Modern computer
systems must also perform more reliably than in the past.

It is interesting to observe the evolution of RISC architectures. Without sufficient instruc-
tion encoding, some microprocessors have been unable to provide for either larger address
spaces or new instruction functionality. Others have provided 64-bit addressing, but still
have not changed much from the RISCs of the 1980s. Fortunately, SPARC’s designers had
sufficient foresight to allow for all of the changes we felt were needed to keep SPARC a
viable architecture for the long term.

0.3 SPARC-V9: A Robust RISC for the Next Century

SPARC-V9 is a robust RISC architecture that will remain competitive well into the next
century. The SPARC-V9 architecture delivers on this promise by enhancing SPARC-V8 to
provide explicit support for:

— 64-bit virtual addresses and 64-bit integer data

— Improved system performance

— Advanced optimizing compilers

— Superscalar implementations

— Advanced operating systems

— Fault tolerance

— Extremely fast trap handling and context switching

— Big- and little-endian byte orders

0.3.1 64-bit Data and Addresses

SPARC-V9 directly supports 64-bit virtual addresses and integer data sizes up to 64 bits.
All SPARC-V8 integer registers have been extended from 32 to 64 bits. There are also sev-

0.3 SPARC-V9: A Robust RISC for the Next Century xv

eral new instructions that explicitly manipulate 64-bit values. For example, 64-bit integer
values can be loaded and stored directly with the LDX and STX instructions.

Despite these changes, 64-bit SPARC-V9 microprocessors will be able to execute pro-
grams compiled for 32-bit SPARC-V8 processors. The principles of two’s complement
arithmetic made upward compatibility straightforward to accomplish. Arithmetic opera-
tions, for example, specified arithmetic on registers, independent of the length of the regis-
ter. The low order 32-bits of arithmetic operations will continue to generate the same
values they did on SPARC-V8 processors. Since SPARC-V8 programs paid attention to
only the low order 32-bits, these programs will execute compatibly. Compatibility for
SPARC-V9 was accomplished by making sure that all previously existing instructions
continued to generate exactly the same result in the low order 32-bits of registers. In some
cases this meant adding new instructions to operate on 64-bit values. For example, shift
instructions now have an additional 64-bit form.

In order to take advantage of SPARC-V9’s extended addressing and advanced capabilities,
SPARC-V8 programs must be recompiled. SPARC-V9 compilers will take full advantage
of the new features of the architecture, extending the addressing range and providing
access to all of the added functionality.

0.3.2 Improved System Performance

Performance is one of the biggest concerns for both computer users and manufacturers.
We’ve changed some basic things in the architecture to allow SPARC-V9 systems to
achieve higher performance. The new architecture contains 16 additional double-precision
floating-point registers, bringing the total to 32. These additional registers reduce memory
traffic, allowing programs to run faster. The new floating-point registers are also address-
able as eight quad-precision registers. SPARC-V9’s support for a 128-bit quad floating-
point format is unique for microprocessors.

SPARC-V9 supports four floating-point condition code registers, where SPARC-V8 sup-
ported only one. SPARC-V9 processors can provide more parallelism for a Superscalar
machine by launching several instructions at a time. With only one condition code register,
instructions would have a serial dependence waiting for the single condition code register
to be updated. The new floating-point condition code registers allow SPARC-V9 proces-
sors to initiate up to four floating-point compares simultaneously.

We’ve also extended the instruction set to increase performance by adding:

— 64-bit integer multiply and divide instructions.

— Load and store floating-point quadword instructions.

— Software settable branch prediction, which gives the hardware a greater probability
of keeping the processor pipeline full.

— Branches on register value, which eliminate the need to execute a compare instruc-
tion. This provides the appearance of multiple integer condition codes, eliminating
a potential bottleneck and creating similar possibilities for parallelism in integer
calculations that we obtained from multiple floating-point condition codes.

xvi Introduction

— Conditional move instructions, which allow many branches to be eliminated.

0.3.3 Advanced Optimizing Compilers

We expect to see many new optimizing compilers in the coming decade, and we have
included features in SPARC-V9 that these compilers will be able to use to provide higher
performance. SPARC-V9 software can explicitly prefetch data and instructions, thus
reducing the memory latency, so a program need not wait as long for its code or data. If
compilers generate code to prefetch code and data far enough in advance, the data can be
available as soon as the program needs to use it, reducing cache miss penalties and pipe-
line stalls.

SPARC-V9 has support for loading data not aligned on “natural” boundaries. Because of
the way the FORTRAN language is specified, compilers often cannot determine whether
double-precision floating-point data is aligned on doubleword boundaries in memory. In
many RISC architectures, FORTRAN compilers generate two single-precision loads
instead of one double-precision load. This can be a severe performance bottleneck.
SPARC-V9 allows the compiler to always use the most efficient load and store instruc-
tions. On those rare occasions when the data is not aligned, the underlying architecture
provides for a fast trap to return the requested data, without the encumbrances of provid-
ing unaligned accesses directly in the memory system hardware. This net effect is higher
performance on many FORTRAN programs.

SPARC-V9 also supports non-faulting loads, which allow compilers to move load instruc-
tions ahead of conditional control structures that guard their use. The semantics of non-
faulting loads are the same as for other loads, except when a nonrecoverable fault such as
an address-out-of-range error occurs. These faults are ignored, and hardware and system
software cooperate to make the load appear to complete normally, returning a zero result.
This optimization is particularly useful when optimizing for superscalar processors. Con-
sider this C program fragment:

if (p != NULL) x = *p + y;

With non-faulting loads, the load of *p can be moved up by the compiler to before the
check for p != NULL, allowing overlapped execution. A normal load on many processors
would cause the program to be aborted if this optimization was performed and p was
NULL. The effect is equivalent to this transformation:

temp_register = *p;

if (p != NULL) x = temp_register + y;

Imagine a superscalar processor that could execute four instructions per cycle, but only
one of which could be a load or store. In a loop of eight instructions containing two loads,
it might turn out that without this transformation it would not be possible to schedule
either of the loads in the first group of four instructions. In this case a third or possibly
fourth clock cycle might be necessary for each loop iteration instead of the minimal two
cycles. Improving opportunities for better instruction scheduling could have made a factor
of two difference in performance for this example. Good instruction scheduling is critical.

0.3 SPARC-V9: A Robust RISC for the Next Century xvii

Alias detection is a particularly difficult problem for compilers. If a compiler cannot tell
whether two pointers might point to the same value in memory, then it is not at liberty to
move loads up past previous store instructions. This can create a difficult instruction
scheduling bottleneck. SPARC-V9 contains specific instructions to enable the hardware to
detect pointer aliases, and offers the compiler a simple solution to this difficult problem.
Two pointers can be compared and the results of this comparison stored in an integer reg-
ister. The FMOVRZ instruction, for example, will conditionally move a floating-point reg-
ister based on the result of this prior test. This instruction can be used to correct aliasing
problems and allow load instructions to be moved up past stores. As with the previous
example, this can make a significant difference in overall program performance.

Finally, we’ve added a TICK register, which is incremented once per machine cycle. This
register can be read by a user program to make simple and accurate measurements of pro-
gram performance.

0.3.4 Advanced Superscalar Processors

SPARC-V9 includes support for advanced Superscalar processor designs. CPU designers
are learning to execute more instructions per cycle every year with new pipelines. Two to
three instructions at a time is becoming commonplace. We eventually expect to be able to
execute eight to sixteen instructions at a time with the SPARC architecture. To accomplish
this, we’ve made enhancements to provide better support for Superscalar execution.

Many of these changes were driven by the experience gained from implementing Texas
Instruments’ SuperSPARC and Ross Technologies’ HyperSPARC, both Superscalar chips.
SPARC’s simple-to-decode, fixed-length instructions, and separate integer and floating-
point units lend themselves to Superscalar technology.

In addition, SPARC-V9 provides more floating-point registers, support for non-faulting
loads, multiple condition codes, branch prediction, and branches on integer register con-
tents. All of these features allow for more parallelism within the processor. For the mem-
ory system, we’ve added a sophisticated memory barrier instruction, which allows system
programmers to specify the minimum synchronization needed to ensure correct operation.

0.3.5 Advanced Operating Systems

The operating system interface has been completely redesigned in SPARC-V9 to better
support operating systems of the 1990s. There are new privileged registers and a new
structure to those registers, which makes it much simpler to access important control
information in the machine. Remember, the change in the operating system interface has
no effect on application software; user-level programs do not see these changes, and thus,
are binary compatible without recompilation.

Several changes were made to support the new microkernel style of operating system
design. Nested trap levels allow more modular structuring of code, and are more efficient
as well. SPARC-V9 provides improved support for lightweight threads and faster context
switching than was possible in previous SPARC architectures. We’ve accomplished this
by making register windows more flexible than they were in earlier SPARC processors,
allowing the kernel to provide a separate register bank to each running process. Thus, the

xviii Introduction

processor can perform a context switch with essentially no overhead. The new register
window implementation also provides better support for object-oriented operating systems
by speeding up interprocess communication across different domains. There is a mecha-
nism to provide efficient server access to client address spaces using user address space
identifiers. The definition of a nucleus address space allows the operating system to exist
in a different address space than that of the user program.

Earlier SPARC implementations supported multiprocessors; now we’ve added support for
very large-scale multiprocessors, including a memory barrier instruction and a new mem-
ory model we call relaxed memory order (RMO). These features allow SPARC-V9 CPUs
to schedule memory operations to achieve high performance, while still doing the syn-
chronization and locking operations needed for shared-memory multiprocessing.

Finally we’ve added architectural support that helps the operating system provide “clean”
register windows to its processes. A clean window is guaranteed to contain zeroes initially,
and only data or addresses generated by the process during its lifetime. This makes it eas-
ier to implement a secure operating system, which must provide absolute isolation
between its processes.

0.3.6 Fault Tolerance

Most existing microprocessor architectures do not provide explicit support for reliability
and fault-tolerance. You might build a reliable and fault-tolerant machine without explicit
support, but providing it saves a lot of work, and the machine will cost less in the long run.

We’ve incorporated a number of features in SPARC-V9 to address these shortcomings.
First, we’ve added a compare-and-swap instruction. This instruction has well-known fault-
tolerant features and is also an efficient way to do multiprocessor synchronization.

We’ve also added support for multiple levels of nested traps, which allow systems to
recover gracefully from various kinds of faults, and to contain more efficient trap handlers.
Nested traps are described in the next section.

Finally, we’ve added a special new processor state called RED_state, short for Reset,
Error and Debug state. It fully defines the expected behavior when the system is faced
with catastrophic errors, and during reset processing when it is returning to service. This
level of robustness is required to build fault-tolerant systems.

0.3.7 Fast Traps and Context Switching

We have also worked hard to provide very fast traps and context switching in SPARC-V9.
We have re-architected the trap entry mechanism to transfer control into the trap handlers
very quickly. We’ve also added eight new registers called “alternate globals,” so the trap
handler has a fresh register set to use immediately upon entry; the software need not store
registers before it can begin to do its work. This allows very fast instruction emulation and
very short interrupt response times.

We have also added support for multiple levels of nested traps. It is very useful for the
machine to allow a trap handler to generate a trap. SPARC-V8 trap handlers were not
allowed to cause another trap. With support for nested traps, we have seen some trap han-

0.4 Summary xix

dlers reduced from one hundred instructions to less than twenty. Obviously, this creates a
big performance improvement, but it also allows a much simpler operating system design.

We’ve also found a way to reduce the number of registers saved and restored between pro-
cess executions, which provides faster context switching. The architecture provides sepa-
rate dirty bits for the original (lower) and the new (upper) floating-point registers. If a
program has not modified any register in one of the sets, there is no need to save that set
during a context switch.

0.3.8 Big- and Little-Endian Byte Orders

Finally, we have provided support for data created on little-endian processors such as the
80x86 family. The architecture allows both user and supervisor code to explicitly access
data in little-endian byte order. It is also possible to change the default byte order to little-
endian in user mode only, in supervisor mode only, or in both. This allows SPARC-V9 to
support mixed byte order systems.

0.4 Summary

As you can see, SPARC-V9 is a significant advance over its predecessors. We have pro-
vided 64-bit data and addressing, support for fault tolerance, fast context switching, sup-
port for advanced compiler optimizations, efficient design for Superscalar processors, and
a clean structure for modern operating systems. And we’ve done it all with 100% upwards
binary compatibility for application programs. We believe that this is a significant achieve-
ment.

In the future, we envision superior SPARC-V9 implementations providing high perfor-
mance, stellar reliability, and excellent cost efficiency—just what computer users are ask-
ing for. SPARC has been the RISC leader for the last five years. With the changes we have
made in SPARC-V9, we expect it to remain the RISC leader well into the next century.

Speaking for the Committee members, we sincerely hope that you profit from our work.

— David R. Ditzel

Chairman, SPARC Architecture Committee

xx Introduction

xxi

Editors’ Notes

Acknowledgments

The members of SPARC International’s Architecture Committee devoted a great deal of
time over a period of three years designing the SPARC-V9 architecture. As of Summer
1993, the committee membership was: Dennis Allison, Hisashige Ando, Jack Benkual,
Joel Boney (vice-chair), David Ditzel (chair), Hisakazu Edamatsu, Kees Mage, Steve
Krueger, Craig Nelson, Chris Thomson, David Weaver, and Winfried Wilcke.

Joel Boney wrote the original “V9 Delta Documents” that supplied much of the new mate-
rial for this specification.

Others who have made significant contributions to SPARC-V9 include Greg Blanck, Jeff
Broughton (former vice-chair), David Chase, Steve Chessin, Bob Cmelik, David Dill,
Kourosh Gharachorloo, David Hough, Bill Joy, Ed Kelly, Steve Kleiman, Jaspal Kohli,
Les Kohn, Shing Kong, Paul Loewenstein, Guillermo “Matute” Maturana, Mike McCam-
mon, Bob Montoye, Chuck Narad, Andreas Nowatzyk, Seungjoon Park, David Patterson,
Mike Powell, John Platko, Steve Richardson, Robert Setzer, Pradeep Sindhu, George Tay-
lor, Marc Tremblay, Rudolf Usselmann, J. J. Whelan, Malcolm Wing, and Robert Yung.

Joel Boney, Dennis Allison, Steve Chessin, and Steve Muchnick deserve distinction as
“Ace” reviewers. They performed meticulous reviews, eliminating countless bugs in the
specification.

Our thanks to all of the above people for their support, critiques, and contributions to this
book over the last three years!

Personal Notes

Three years — that’s a long time to be in labor! It is with a great deal of pride (and frankly,
relief!) that I see this book go to print.

The SPARC Architecture Committee comprised roughly a dozen people, all top computer
architects in the industry, from diverse companies. Yet — and this was the most incredible
part of the whole process — this group was able to set aside personal egos and individual
company interests, and work not just as a committee, but as a real Team. This kind of
cooperation and synergy doesn’t happen every day. Years from now, I’ll look back at this
work and still be proud to have been a part of this group, and of what we created. . . . “Way
to go, gang — we done good!”

Special kudos are due Tom Germond, whose expertise and sharp eye for detail were
instrumental in preparing this book. He fearlessly performed a complex but accurate con-
version of this specification from one document-preparation system to a wildly different
one. Tom made countless improvements to the specification’s substance and style, and

xxii Editors’ Notes

tenaciously followed numerous open technical issues through to resolution. This book
would simply not have been the same without him. Thanks for being there, Tom.

— David Weaver, Editor

Well, it’s three o’clock in the morning and I’m in the middle of yet another SPARC-V9
all-nighter. I haven’t lost this much sleep since my firstborn was first born. But I must say,
it’s been great fun bringing this baby to life.

My deepest gratitude to every member of our team, and a tiny extra measure of thanks to a
special few. To Joel Boney for his generous and unwavering support. To Dennis Allison
for his constant striving for excellence and clarity. To Steve Muchnick for his astonishing
mastery of the details. To Steve Chessin for always going to the heart of the issues. And to
Jane Bonnell, our editor at Prentice-Hall, for helping us turn a technical specification into
a real book.

And finally,warm thanks to Dave Weaver, a good friend and an easy person to work for.
You created the opportunity for me to join the team, and you got me through the rough
times with all those great movie-and-hot-tub parties. Until next time....

— Tom Germond, Co-editor

1

1 Overview

This specification defines a 64-bit architecture called SPARC-V9, which is upward-com-
patible with the existing 32-bit SPARC-V8 microprocessor architecture. This specification
includes, but is not limited to, the definition of the instruction set, register model, data
types, instruction opcodes, trap model, and memory model.

1.1 Notes About this Book

1.1.1 Audience

Audiences for this specification include implementors of the architecture, students of com-
puter architecture, and developers of SPARC-V9 system software (simulators, compilers,
debuggers, and operating systems, for example). Software developers who need to write
SPARC-V9 software in assembly language will also find this information useful.

1.1.2 Where to Start

If you are new to the SPARC architecture, read Chapter 2 and Chapter 3 for an overview,
then look into the subsequent chapters and appendixes for more details in areas of interest
to you.

If you are already familiar with SPARC-V8, you will want to review the list of changes in
Appendix K, “Changes From SPARC-V8 to SPARC-V9.” For additional detail, review the
following chapters:

— Chapter 5, “Registers,” for a description of the register set.

— Chapter 6, “Instructions,” for a description of the new instructions.

— Chapter 7, “Traps,” for a description of the trap model.

— Chapter 8, “Memory Models,” for a description of the memory models.

— Appendix A, “Instruction Definitions,” for descriptions of new or changed instruc-
tions.

1.1.3 Contents

The manual contains these chapters:

— Chapter 1, “Overview,” describes the background, design philosophy, and high-
level features of the architecture.

— Chapter 2, “Definitions,” defines some of the terms used in the specification.

2 1 Overview

— Chapter 3, “Architectural Overview,” is an overview of the architecture: its organi-
zation, instruction set, and trap model.

— Chapter 4, “Data Formats,” describes the supported data types.

— Chapter 5, “Registers,” describes the register set.

— Chapter 6, “Instructions,” describes the instruction set.

— Chapter 7, “Traps,” describes the trap model.

— Chapter 8, “Memory Models,” describes the memory models.

These appendixes follow the chapters:

— Appendix A, “Instruction Definitions,” contains definitions of all SPARC-V9
instructions, including tables showing the recommended assembly language syn-
tax for each instruction.

— Appendix B, “IEEE Std 754-1985 Requirements for SPARC-V9,” contains infor-
mation about the SPARC-V9 implementation of the IEEE 754 floating-point stan-
dard.

— Appendix C, “SPARC-V9 Implementation Dependencies,” contains information
about features that may differ among conforming implementations.

— Appendix D, “Formal Specification of the Memory Models,” contains a formal
description of the memory models.

— Appendix E, “Opcode Maps,” contains tables detailing the encoding of all
opcodes.

— Appendix F, “SPARC-V9 MMU Requirements,” describes the requirements that
SPARC-V9 imposes on Memory Management Units.

— Appendix G, “Suggested Assembly Language Syntax,” defines the syntactic con-
ventions used in the appendixes for the suggested SPARC-V9 assembly language.
It also lists synthetic instructions that may be supported by SPARC-V9 assemblers
for the convenience of assembly language programmers.

— Appendix H, “Software Considerations,” contains general SPARC-V9 software
considerations.

— Appendix I, “Extending the SPARC-V9 Architecture,” contains information on
how an implementation can extend the instruction set or register set.

— Appendix J, “Programming With the Memory Models,” contains information on
programming with the SPARC-V9 memory models.

— Appendix K, “Changes From SPARC-V8 to SPARC-V9,” describes the differ-
ences between SPARC-V8 and SPARC-V9.

A bibliography and an index complete the book.

1.1 Notes About this Book 3

1.1.4 Editorial Conventions

1.1.4.1 Fonts and Notational Conventions

Fonts are used as follows:

— Italic font is used for register names, instruction fields, and read-only register
fields. For example: “The rs1 field contains....”

— Typewriter font is used for literals and for software examples.

— Bold font is used for emphasis and the first time a word is defined. For example:
“A precise trap is induced....”

— UPPER CASE items are acronyms, instruction names, or writable register fields.
Some common acronyms appear in the glossary in Chapter 2. Note that names of
some instructions contain both upper- and lower-case letters.

— Italic sans serif font is used for exception and trap names. For example, “The
privileged_action exception....”

— Underbar characters join words in register, register field, exception, and trap
names. Note that such words can be split across lines at the underbar without an
intervening hyphen. For example: “This is true whenever the integer_condition_
code field....”

— Reduced-size font is used in informational notes. See 1.1.4.4, “Informational Notes.”

The following notational conventions are used:

— Square brackets ‘[]’ indicate a numbered register in a register file. For example:
“r[0] contains....”

— Angle brackets ‘< >’ indicate a bit number or colon-separated range of bit num-
bers within a field. For example: “Bits FSR<29:28> and FSR<12> are....”

— Curly braces ‘{ }’ are used to indicate textual substitution. For example, the string
“ASI_PRIMARY{_LITTLE}” expands to “ASI_PRIMARY” and “ASI_
PRIMARY_LITTLE”.

— The symbol designates concatenation of bit vectors. A comma ‘,’ on the left side
of an assignment separates quantities that are concatenated for the purpose of
assignment. For example, if X, Y, and Z are 1-bit vectors, and the 2-bit vector T
equals 112, then

(X, Y, Z) ← 0 T

results in X = 0, Y = 1, and Z = 1.

1.1.4.2 Implementation Dependencies

Definitions of SPARC-V9 architecture implementation dependencies are indicated by the
notation “IMPL. DEP. #nn: Some descriptive text.” The number nn is used to enumerate the
dependencies in Appendix C, “SPARC-V9 Implementation Dependencies.” References to

4 1 Overview

SPARC-V9 implementation dependencies are indicated by the notation “(impl. dep. #nn).”
Appendix C lists the page number on which each definition and reference occurs.

1.1.4.3 Notation for Numbers

Numbers throughout this specification are decimal (base-10) unless otherwise indicated.
Numbers in other bases are followed by a numeric subscript indicating their base (for
example, 10012, FFFF 000016). Long binary and hex numbers within the text have spaces
inserted every four characters to improve readability. Within C or assembly language
examples, numbers may be preceded by “0x” to indicate base-16 (hexadecimal) notation
(for example, 0xffff0000).

1.1.4.4 Informational Notes

This manual provides several different types of information in notes; the information
appears in a reduced-size font. The following are illustrations of the various note types:

Programming Note:

These contain incidental information about programming using the SPARC-V9 architecture.

Implementation Note:

These contain information that may be specific to an implementation or may differ in different

implementations.

Compatibility Note:

These contain information about features of SPARC-V9 that may not be compatible with SPARC-

V8 implementations.

1.2 The SPARC-V9 Architecture

1.2.1 Features

SPARC-V9 includes the following principal features:

— A linear address space with 64-bit addressing.

— Few and simple instruction formats: All instructions are 32 bits wide, and are
aligned on 32-bit boundaries in memory. Only load and store instructions access
memory and perform I/O.

— Few addressing modes: A memory address is given as either “register + register”
or “register + immediate.”

— Triadic register addresses: Most computational instructions operate on two register
operands or one register and a constant, and place the result in a third register.

— A large windowed register file: At any one instant, a program sees 8 global integer
registers plus a 24-register window of a larger register file. The windowed registers
can be used as a cache of procedure arguments, local values, and return addresses.

1.2 The SPARC-V9 Architecture 5

— Floating-point: The architecture provides an IEEE 754-compatible floating-point
instruction set, operating on a separate register file that provides 32 single-preci-
sion (32-bit), 32 double-precision (64-bit), 16 quad-precision (128-bit) registers, or
a mixture thereof.

— Fast trap handlers: Traps are vectored through a table.

— Multiprocessor synchronization instructions: One instruction performs an atomic
read-then-set-memory operation; another performs an atomic exchange-register-
with-memory operation; another compares the contents of a register with a value in
memory and exchanges memory with the contents of another register if the com-
parison was equal; two others are used to synchronize the order of shared memory
operations as observed by processors.

— Predicted branches: The branch with prediction instructions allow the compiler or
assembly language programmer to give the hardware a hint about whether a branch
will be taken.

— Branch elimination instructions: Several instructions can be used to eliminate
branches altogether (e.g., move on condition). Eliminating branches increases per-
formance in superscalar and superpipelined implementations.

— Hardware trap stack: A hardware trap stack is provided to allow nested traps. It
contains all of the machine state necessary to return to the previous trap level. The
trap stack makes the handling of faults and error conditions simpler, faster, and
safer.

— Relaxed memory order (RMO) model: This weak memory model allows the hard-
ware to schedule memory accesses in almost any order, as long as the program
computes the correct result.

1.2.2 Attributes

SPARC-V9 is a CPU instruction set architecture (ISA) derived from SPARC-V8; both
architectures come from a reduced instruction set computer (RISC) lineage. As architec-
tures, SPARC-V9 and SPARC-V8 allow for a spectrum of chip and system implementa-

tions at a variety of price/performance points for a range of applications, including
scientific/engineering, programming, real-time, and commercial.

1.2.2.1 Design Goals

SPARC-V9 is designed to be a target for optimizing compilers and high-performance
hardware implementations. SPARC-V9 implementations provide exceptionally high exe-
cution rates and short time-to-market development schedules.

1.2.2.2 Register Windows

SPARC-V9 is derived from SPARC, which was formulated at Sun Microsystems in 1985.
SPARC is based on the RISC I and II designs engineered at the University of California at
Berkeley from 1980 through 1982. SPARC’s “register window” architecture, pioneered in

6 1 Overview

the UC Berkeley designs, allows for straightforward, high-performance compilers and a
significant reduction in memory load/store instructions over other RISCs, particularly for
large application programs. For languages such as C++, where object-oriented program-
ming is dominant, register windows result in an even greater reduction in instructions exe-
cuted.

Note that supervisor software, not user programs, manages the register windows. The
supervisor can save a minimum number of registers (approximately 24) during a context
switch, thereby optimizing context-switch latency.

One major difference between SPARC-V9 and the Berkeley RISC I and II is that SPARC-
V9 provides greater flexibility to a compiler in its assignment of registers to program vari-
ables. SPARC-V9 is more flexible because register window management is not tied to pro-
cedure call and return instructions, as it is on the Berkeley machines. Instead, separate
instructions (SAVE and RESTORE) provide register window management. The manage-
ment of register windows by privileged software is very different too, as discussed in
Appendix H, “Software Considerations.”

1.2.3 System Components

The architecture allows for a spectrum of input/output (I/O), memory-management unit
(MMU), and cache system subarchitectures. SPARC-V9 assumes that these elements are
best defined by the specific requirements of particular systems. Note that they are invisible
to nearly all user programs, and the interfaces to them can be limited to localized modules
in an associated operating system.

1.2.3.1 Reference MMU

The SPARC-V9 ISA does not mandate a single MMU design for all system implementa-
tions. Rather, designers are free to use the MMU that is most appropriate for their applica-
tion, or no MMU at all, if they wish. Appendix F, “SPARC-V9 MMU Requirements,”
discusses the boundary conditions that a SPARC-V9 MMU is expected to satisfy.

1.2.3.2 Privileged Software

SPARC-V9 does not assume that all implementations must execute identical privileged
software. Thus, certain traits of an implementation that are visible to privileged software
can be tailored to the requirements of the system. For example, SPARC-V9 allows for
implementations with different instruction concurrency and different trap hardware.

1.2.4 Binary Compatibility

The most important SPARC-V9 architectural mandate is binary compatibility of nonprivi-
leged programs across implementations. Binaries executed in nonprivileged mode should
behave identically on all SPARC-V9 systems when those systems are running an operat-
ing system known to provide a standard execution environment. One example of such a
standard environment is the SPARC-V9 Application Binary Interface (ABI).

1.2 The SPARC-V9 Architecture 7

Although different SPARC-V9 systems may execute nonprivileged programs at different
rates, they will generate the same results, as long as they are run under the same memory
model. See Chapter 8, “Memory Models,” for more information.

Additionally, SPARC-V9 is designed to be binary upward-compatible from SPARC-V8
for applications running in nonprivileged mode that conform to the SPARC-V8 ABI.

1.2.5 Architectural Definition

The SPARC Version 9 Architecture is defined by the chapters and normative appendixes
of this document. A correct implementation of the architecture interprets a program
strictly according to the rules and algorithms specified in the chapters and normative
appendixes. Only two classes of deviations are permitted:

(1) Certain elements of the architecture are defined to be implementation-dependent.
These elements include registers and operations that may vary from implementa-
tion to implementation, and are explicitly identified in this document using the
notation “IMPL. DEP. #NN: Some descriptive text.” Appendix C, “SPARC-V9 Imple-
mentation Dependencies,” describes each of these references.

(2) Functional extensions are permitted, insofar as they do not change the behavior of
any defined operation or register. Such extensions are discouraged, since they limit
the portability of applications from one implementation to another. Appendix I,
“Extending the SPARC-V9 Architecture,” provides guidelines for incorporating
enhancements in an implementation.

This document defines a nonprivileged subset, designated SPARC-V9-NP. This includes
only those elements that may be executed or accessed while the processor is executing in
nonprivileged mode.

The informative appendixes provide supplementary information such as programming
tips, expected usage, and assembly language syntax. These appendixes are not binding on
an implementation or user of a SPARC-V9 system.

The Architecture Committee of SPARC International has sole responsibility for clarifica-
tion of the definitions in this document.

1.2.6 SPARC-V9 Compliance

SPARC International is responsible for certifying that implementations comply with the
SPARC-V9 Architecture. Two levels of compliance are distinguished; an implementation
may be certified at either level.

Level 1:

The implementation correctly interprets all of the nonprivileged instructions by
any method, including direct execution, simulation, or emulation. This level sup-
ports user applications and is the architecture component of the SPARC-V9 ABI.

8 1 Overview

Level 2:
The implementation correctly interprets both nonprivileged and privileged instruc-
tions by any method, including direct execution, simulation, or emulation. A Level
2 implementation includes all hardware, supporting software, and firmware neces-
sary to provide a complete and correct implementation.

Note that a Level-2-compliant implementation is also Level-1-compliant.

IMPL. DEP. #1: Whether an instruction is implemented directly by hardware, simulated by soft-

ware, or emulated by firmware is implementation-dependent.

SPARC International publishes a document, Implementation Characteristics of Current

SPARC-V9-based Products, Revision 9.x, listing which instructions are simulated or emu-
lated in existing SPARC-V9 implementations.

Compliant implementations shall not add to or deviate from this standard except in aspects
described as implementation-dependent. See Appendix C, “SPARC-V9 Implementation
Dependencies.”

An implementation may be claimed to be compliant only if it has been

(1) Submitted to SPARC International for testing, and

(2) Issued a Certificate of Compliance by SPARC International.

A system incorporating a certified implementation may also claim compliance. A claim of
compliance must designate the level of compliance.

Prior to testing, a statement must be submitted for each implementation; this statement
must:

— Resolve the implementation dependencies listed in Appendix C

— Identify the presence (but not necessarily the function) of any extensions

— Designate any instructions that require emulation

These statements become the property of SPARC International, and may be released pub-
licly.

9

2 Definitions

The following subsections define some of the most important words and acronyms used in
this manual

2.1 address space identifier: An eight-bit value that identifies an address space. For
each instruction or data access, the integer unit appends an ASI to the address. See

also: implicit ASI.

2.2 ASI: Abbreviation for address space identifier.

2.3 application program: A program executed with the processor in nonprivileged

mode. Note that statements made in this document regarding application programs
may not be applicable to programs (for example, debuggers) that have access to
privileged processor state (for example, as stored in a memory-image dump).

2.4 big-endian: An addressing convention. Within a multiple-byte integer, the byte
with the smallest address is the most significant; a byte’s significance decreases as
its address increases.

2.5 byte: Eight consecutive bits of data.

2.6 clean window: A register window in which all of the registers contain either zero,
a valid address from the current address space, or valid data from the current
address space.

2.7 completed: A memory transaction is said to be completed when an idealized
memory has executed the transaction with respect to all processors. A load is con-
sidered completed when no subsequent memory transaction can affect the value
returned by the load. A store is considered completed when no subsequent load
can return the value that was overwritten by the store.

2.8 current window: The block of 24 r registers that is currently in use. The Current
Window Pointer (CWP) register points to the current window.

2.9 dispatch: Issue a fetched instruction to one or more functional units for execution.

2.10 doublet: Two bytes (16 bits) of data.

2.11 doubleword: An aligned octlet. Note that the definition of this term is architec-
ture-dependent and may differ from that used in other processor architectures.

2.12 exception: A condition that makes it impossible for the processor to continue exe-
cuting the current instruction stream without software intervention.

10 2 Definitions

2.13 extended word: An aligned octlet, nominally containing integer data. Note that
the definition of this term is architecture-dependent and may differ from that used
in other processor architectures.

2.14 f register: A floating-point register. SPARC-V9 includes single- double- and quad-
precision f registers.

2.15 fccn: One of the floating-point condition code fields: fcc0, fcc1, fcc2, or fcc3.

2.16 floating-point exception: An exception that occurs during the execution of a float-
ing-point operate (FPop) instruction. The exceptions are: unfinished_FPop,
unimplemented_FPop, sequence_error, hardware_error, invalid_fp_register, and IEEE_

754_exception.

2.17 floating-point IEEE-754 exception: A floating-point exception, as specified by
IEEE Std 754-1985. Listed within this manual as IEEE_754_exception.

2.18 floating-point trap type: The specific type of floating-point exception, encoded in
the FSR.ftt field.

2.19 floating-point operate (FPop) instructions: Instructions that perform floating-
point calculations, as defined by the FPop1 and FPop2 opcodes. FPop instructions
do not include FBfcc instructions, or loads and stores between memory and the
floating-point unit.

2.20 floating-point unit: A processing unit that contains the floating-point registers and
performs floating-point operations, as defined by this specification.

2.21 FPU: Abbreviation for floating-point unit.

2.22 halfword: An aligned doublet. Note that the definition of this term is architecture-
dependent and may differ from that used in other processor architectures.

2.23 hexlet: Sixteen bytes (128 bits) of data.

2.24 implementation: Hardware and/or software that conforms to all of the specifica-
tions of an ISA.

2.25 implementation-dependent: An aspect of the architecture that may legitimately
vary among implementations. In many cases, the permitted range of variation is
specified in the standard. When a range is specified, compliant implementations
shall not deviate from that range.

2.26 implicit ASI: The address space identifier that is supplied by the hardware on all
instruction accesses, and on data accesses that do not contain an explicit ASI or a
reference to the contents of the ASI register.

2.27 informative appendix: An appendix containing information that is useful but not
required to create an implementation that conforms to the SPARC-V9 specifica-
tion. See also: normative appendix.

2 Definitions 11

2.28 initiated. See issued.

2.29 instruction field: A bit field within an instruction word.

2.30 instruction set architecture (ISA): An ISA defines instructions, registers, instruc-
tion and data memory, the effect of executed instructions on the registers and mem-
ory, and an algorithm for controlling instruction execution. An ISA does not define
clock cycle times, cycles per instruction, data paths, etc. This specification defines
an ISA.

2.31 integer unit: A processing unit that performs integer and control-flow operations
and contains general-purpose integer registers and processor state registers, as
defined by this specification.

2.32 interrupt request: A request for service presented to the processor by an external
device.

2.33 IU: Abbreviation for integer unit.

2.34 ISA: Abbreviation for instruction set architecture.

2.35 issued: In reference to memory transaction, a load, store, or atomic load-store is
said to be issued when a processor has sent the transaction to the memory sub-
system and the completion of the request is out of the processor’s control. Syn-

onym: initiated.

2.36 leaf procedure: A procedure that is a leaf in the program’s call graph; that is, one
that does not call (using CALL or JMPL) any other procedures.

2.37 little-endian: An addressing convention. Within a multiple-byte integer, the byte
with the smallest address is the least significant; a byte’s significance increases as
its address increases.

2.38 may: A key word indicating flexibility of choice with no implied preference. Note:
“may” indicates that an action or operation is allowed, “can” indicates that it is
possible.

2.39 must: Synonym: shall.

2.40 next program counter (nPC): A register that contains the address of the instruc-
tion to be executed next, if a trap does not occur.

2.41 non-faulting load: A load operation that will either complete correctly (in the
absence of any faults) or will return a value (nominally zero) if a fault occurs. See

speculative load.

2.42 nonprivileged: An adjective that describes (1) the state of the processor when
PSTATE.PRIV = 0, that is, nonprivileged mode; (2) processor state information
that is accessible to software while the processor is in either privileged mode or
nonprivileged mode, for example, nonprivileged registers, nonprivileged ASRs, or,

12 2 Definitions

in general, nonprivileged state; (3) an instruction that can be executed when the
processor is in either privileged mode or nonprivileged mode.

2.43 nonprivileged mode: The processor mode when PSTATE.PRIV = 0. See also:
nonprivileged.

2.44 normative appendix: An appendix containing specifications that must be met by
an implementation conforming to the SPARC-V9 specification. See also: informa-

tive appendix.

2.45 NWINDOWS: The number of register windows present in an implementation.

2.46 octlet: Eight bytes (64 bits) of data. Not to be confused with an “octet,” which has
been commonly used to describe eight bits of data. In this document, the term
byte, rather than octet, is used to describe eight bits of data.

2.47 opcode: A bit pattern that identifies a particular instruction.

2.48 prefetchable: An attribute of a memory location which indicates to an MMU that
PREFETCH operations to that location may be applied. Normal memory is
prefetchable. Nonprefetchable locations include those that, when read, change
state or cause external events to occur. See also: side effect.

2.49 privileged: An adjective that describes (1) the state of the processor when
PSTATE.PRIV = 1, that is , privileged mode; (2) processor state information that
is accessible to software only while the processor is in privileged mode, for exam-
ple, privileged registers, privileged ASRs, or, in general, privileged state; (3) an
instruction that can be executed only when the processor is in privileged mode.

2.50 privileged mode: The processor mode when PSTATE.PRIV = 1. See also: non-

privileged.

2.51 processor: The combination of the integer unit and the floating-point unit.

2.52 program counter (PC): A register that contains the address of the instruction cur-
rently being executed by the IU.

2.53 quadlet: Four bytes (32 bits) of data.

2.54 quadword: An aligned hexlet. Note that the definition of this term is architecture-
dependent and may be different from that used in other processor architectures.

2.55 r register: An integer register. Also called a general purpose register or working
register.

2.56 RED_state: Reset, Error, and Debug state. The processor state when
PSTATE.RED = 1. A restricted execution environment used to process resets and
traps that occur when TL = MAXTL – 1.

2 Definitions 13

2.57 reserved: Used to describe an instruction field, certain bit combinations within an
instruction field, or a register field that is reserved for definition by future versions
of the architecture. Reserved instruction fields shall read as zero, unless the
implementation supports extended instructions within the field. The behavior of
SPARC-V9-compliant processors when they encounter non-zero values in
reserved instruction fields is undefined. Reserved bit combinations within

instruction fields are defined in Appendix A; in all cases, SPARC-V9-compliant
processors shall decode and trap on these reserved combinations. Reserved regis-

ter fields should always be written by software with values of those fields previ-
ously read from that register, or with zeroes; they should read as zero in hardware.
Software intended to run on future versions of SPARC-V9 should not assume that
these field will read as zero or any other particular value. Throughout this manual,
figures and tables illustrating registers and instruction encodings indicate reserved
fields and combinations with an em dash ‘—’.

2.58 reset trap: A vectored transfer of control to privileged software through a fixed-
address reset trap table. Reset traps cause entry into RED_state.

2.59 restricted: An adjective used to describe an address space identifier (ASI) that
may be accessed only while the processor is operating in privileged mode.

2.60 rs1, rs2, rd: The integer register operands of an instruction, where rs1 and rs2 are
the source registers and rd is the destination register.

2.61 shall: A key word indicating a mandatory requirement. Designers shall implement
all such mandatory requirements to ensure interoperability with other SPARC-V9-
conformant products. Synonym: must.

2.62 should: A key word indicating flexibility of choice with a strongly preferred
implementation. Synonym: it is recommended.

2.63 side effect: An operation has a side effect if it induces a secondary effect as well as
its primary effect. For example, access to an I/O location may cause a register
value in an I/O device to change state or initiate an I/O operation. A memory loca-
tion is deemed to have side effects if additional actions beyond the reading or writ-
ing of data may occur when a memory operation on that location is allowed to
succeed. See also: prefetchable.

2.64 speculative load: A load operation that is issued by the processor speculatively,
that is, before it is known whether the load will be executed in the flow of the pro-
gram. Speculative accesses are used by hardware to speed program execution and
are transparent to code. Contrast with non-faulting load, which is an explict load
that always completes, even in the presence of faults. Warning: some authors con-
fuse speculative loads with non-faulting loads.

2.65 supervisor software: Software that executes when the processor is in privileged

mode.

14 2 Definitions

2.66 trap: The action taken by the processor when it changes the instruction flow in
response to the presence of an exception, a Tcc instruction, or an interrupt. The
action is a vectored transfer of control to supervisor software through a table, the
address of which is specified by the privileged Trap Base Address (TBA) register.

2.67 unassigned: A value (for example, an address space identifier), the semantics of
which are not architecturally mandated and may be determined independently by
each implementation within any guidelines given.

2.68 undefined: An aspect of the architecture that has deliberately been left unspeci-
fied. Software should have no expectation of, nor make any assumptions about, an
undefined feature or behavior. Use of such a feature may deliver random results,
may or may not cause a trap, may vary among implementations, and may vary with
time on a given implementation. Notwithstanding any of the above, undefined
aspects of the architecture shall not cause security holes such as allowing user soft-
ware to access privileged state, put the processor into supervisor mode, or put the
processor into an unrecoverable state.

2.69 unrestricted: An adjective used to describe an address space identifier that may
be used regardless of the processor mode, that is, regardless of the value of
PSTATE.PRIV.

2.70 user application program: Synonym: application program.

2.71 word: An aligned quadlet. Note that the definition of this term is architecture-
dependent and may differ from that used in other processor architectures.

15

3 Architectural Overview

SPARC-V9 is an instruction set architecture (ISA) with 32- and 64-bit integer and 32-, 64-
and 128-bit floating-point as its principal data types. The 32- and 64- bit floating point
types conforms to IEEE Std 754-1985. The 128-bit floating-point type conforms to IEEE
Std 1596.5-1992. SPARC-V9 defines general-purpose integer, floating-point, and special
state/status register instructions, all encoded in 32-bit-wide instruction formats. The load/
store instructions address a linear, 264-byte address space.

3.1 SPARC-V9 Processor

A SPARC-V9 processor logically consists of an integer unit (IU) and a floating-point unit
(FPU), each with its own registers. This organization allows for implementations with
concurrency between integer and floating-point instruction execution. Integer registers are
64 bits wide; floating-point registers are 32, 64, or 128 bits wide. Instruction operands are
single registers, register pairs, register quadruples, or immediate constants.

The processor can be in either of two modes: privileged or nonprivileged. In privileged
mode, the processor can execute any instruction, including privileged instructions. In non-
privileged mode, an attempt to execute a privileged instruction causes a trap to privileged
software.

3.1.1 Integer Unit (IU)

The integer unit contains the general-purpose registers and controls the overall operation
of the processor. The IU executes the integer arithmetic instructions and computes mem-
ory addresses for loads and stores. It also maintains the program counters and controls
instruction execution for the FPU.

IMPL. DEP. #2: An implementation of the IU may contain from 64 to 528 general-purpose 64-bit r

registers. this corresponds to a grouping of the registers into 8 global r registers, 8 alternate global

r registers, plus a circular stack of from 3 to 32 sets of 16 registers each, known as register win-

dows. Since the number of register windows present (NWINDOWS) is implementation-dependent,

the total number of registers is implementation-dependent.

At a given time, an instruction can access the 8 globals (or the 8 alternate globals) and a
register window into the r registers. The 24-register window consists of a 16-register set
— divided into 8 in and 8 local registers — together with the 8 in registers of an adjacent
register set, addressable from the current window as its out registers. See figure 2 on page
32.

The current window is specified by the current window pointer (CWP) register. The pro-
cessor detects window spill and fill exceptions via the CANSAVE and CANRESTORE

16 3 Architectural Overview

registers, respectively, which are controlled by hardware and supervisor software. The
actual number of windows in a SPARC-V9 implementation is invisible to a user applica-
tion program.

Whenever the IU accesses an instruction or datum in memory, it appends an address

space identifier (ASI), to the address. All instruction accesses and most data accesses
append an implict ASI, but some instructions allow the inclusion of an explict ASI, either
as an immediate field within the instruction, or from the ASI register. The ASI determines
the byte order of the access. All instructions are accessed in big-endian byte order; data
can be referenced in either big- or little-endian order. See 5.2.1, “Processor State Register
(PSTATE),” for information about changing the default byte order.

3.1.2 Floating-Point Unit (FPU)

The FPU has 32 32-bit (single-precision) floating-point registers, 32 64-bit (double-preci-
sion) floating-point registers, and 16 128-bit (quad-precision) floating-point registers,
some of which overlap. Double-precision values occupy an even-odd pair of single-preci-
sion registers, and quad-precision values occupy a quad-aligned group of four single-pre-
cision registers. The 32 single-precision registers, the lower half of the double-precision
registers, and the lower half of the quad-precision registers overlay each other. The upper
half of the double-precision registers and the upper half of the quad-precision registers
overlay each other, but do not overlay any of the single-precision registers. Thus, the float-
ing-point registers can hold a maximum of 32 single-precision, 32 double-precision, or 16
quad-precision values. This is described in more detail in 5.1.4, “Floating-Point Regis-
ters.”

Floating-point load/store instructions are used to move data between the FPU and mem-
ory. The memory address is calculated by the IU. Floating-Point operate (FPop) instruc-
tions perform the floating-point arithmetic operations and comparisons.

The floating-point instruction set and 32- and 64-bit data formats conform to the IEEE
Standard for Binary Floating-Point Arithmetic, IEEE Std 754-1985. The 128-bit floating-
point data type conforms to the IEEE Standard for Shared Data Formats, IEEE Std
1596.5-1992.

If an FPU is not present or is not enabled, an attempt to execute a floating-point instruction
generates an fp_disabled trap. In either case, privileged-mode software must:

— Enable the FPU and reexecute the trapping instruction, or

— Emulate the trapping instruction.

3.2 Instructions

Instructions fall into the following basic categories:

— Memory access

— Integer operate

3.2 Instructions 17

— Control transfer

— State register access

— Floating-point operate

— Conditional move

— Register window management

These classes are discussed in the following subsections.

3.2.1 Memory Access

Load and store instructions and the atomic operations, CASX, SWAP, and LDSTUB, are
the only instructions that access memory. They use two r registers or an r register and a
signed 13-bit immediate value to calculate a 64-bit, byte-aligned memory address. The IU
appends an ASI to this address.

The destination field of the load/store instruction specifies either one or two r registers, or
one, two, or four f registers, that supply the data for a store or receive the data from a load.

Integer load and store instructions support byte, halfword (16-bit), word (32-bit), and dou-
bleword (64-bit) accesses. Some versions of integer load instructions perform sign exten-
sion on 8-, 16-, and 32-bit values as they are loaded into a 64-bit destination register.
Floating-point load and store instructions support word, doubleword, and quadword mem-
ory accesses.

CAS, SWAP, and LDSTUB are special atomic memory access instructions that are used
for synchonization and memory updates by concurrent processes.

3.2.1.1 Memory Alignment Restrictions

Halfword accesses shall be aligned on 2-byte boundaries; word accesses (which include
instruction fetches) shall be aligned on 4-byte boundaries; extended-word and doubleword
accesses shall be aligned on 8-byte boundaries; and quadword quantities shall be aligned
on 16-byte boundaries. An improperly aligned address in a load, store, or load-store
instruction causes a trap to occur, with the possible exception of cases described in 6.3.1.1,
“Memory Alignment Restrictions.”

3.2.1.2 Addressing Conventions

SPARC-V9 uses big-endian byte order by default: the address of a quadword, doubleword,
word, or halfword is the address of its most significant byte. Increasing the address means
decreasing the significance of the unit being accessed. All instruction accesses are per-
formed using big-endian byte order. SPARC-V9 also can support little-endian byte order
for data accesses only: the address of a quadword, doubleword, word, or halfword is the
address of its least significant byte. Increasing the address means increasing the signifi-
cance of the unit being accessed. See 5.2.1, Processor State Register (PSTATE), for infor-
mation about changing the implicit byte order to little-endian.

18 3 Architectural Overview

Addressing conventions are illustrated in figure 35 on page 71 and figure 36 on page 73.

3.2.1.3 Load/Store Alternate

Versions of load/store instructions, the load/store alternate instructions, can specify an
arbitrary 8-bit address space identifier for the load/store data access. Access to alternate
spaces 0016 ..7F16 is restricted, and access to alternate spaces 8016 ..FF16 is unrestricted.
Some of the ASIs are available for implementation-dependent uses (impl. dep. #29).
Supervisor software can use the implementation-dependent ASIs to access special pro-
tected registers, such as MMU, cache control, and processor state registers, and other pro-
cessor- or system-dependent values. See 6.3.1.3, “Address Space Identifiers (ASIs),” for
more information.

Alternate space addressing is also provided for the atomic memory access instructions,
LDSTUB, SWAP, and CASX.

3.2.1.4 Separate I and D Memories

Most of the specifications in this manual ignore the issues of memory mapping and cach-
ing. The interpretation of addresses can be unified, in which case the same translations and
caching are applied to both instructions and data, or they can be split, in which case
instruction references use one translation mechanism and cache and data references
another, although the same main memory is shared. In such split-memory systems, the
coherency mechanism may be unified and include both instructions and data, or it may be
split. For this reason, programs that modify their own code (self-modifying code) must
issue FLUSH instructions, or a system call with a similar effect, to bring the instruction
and data memories into a consistent state.

3.2.1.5 Input/Output

SPARC-V9 assumes that input/output registers are accessed via load/store alternate
instructions, normal load/store instructions, or read/write Ancillary State Register instruc-
tions (RDASR, WRASR).

IMPL. DEP. #123: The semantic effect of accessing input/output (I/O) locations is implementation-

dependent.

IMPL. DEP. #6: Whether the I/O registers can be accessed by nonprovileged code is implementa-

tion-dependent.

IMPL. DEP. #7: The addresses and contents of I/O registers are implementation-dependent.

3.2.1.6 Memory Synchronization

Two instructions are used for synchronization of memory operations: FLUSH and MEM-
BAR. Their operation is explained in A.20, “Flush Instruction Memory,” and A.32,
“Memory Barrier,” respectively.

3.2 Instructions 19

3.2.2 Arithmetic/Logical/Shift Instructions

The arithmetic/logical/shift instructions perform arithmetic, tagged arithmetic, logical,
and shift operations. With one exception, these instructions compute a result that is a func-
tion of two source operands; the result is either written into a destination register or dis-
carded. The exception, SETHI, may be used in combination with another arithmentic or
logical instruction to create a 32-bit constant in an r register.

Shift instructions are used to shift the contents of an r register left or right by a given
count. The shift distance is specified by a constant in the instruction or by the contents of
an r register.

The integer multiply instruction performs a 64 × 64 → 64-bit operation. The integer divi-
sion instructions perform 64 ÷ 64 → 64-bit operations. In addition, for compatibility with
SPARC-V8, 32 × 32 → 64-bit multiply, 64 ÷ 32 → 32-bit divide, and multiply step
instructions are included. Division by zero causes a trap. Some versions of the 32-bit mul-
tiply and divide instructions set the condition codes.

The tagged arithmetic instructions assume that the least-significant two bits of each oper-
and are a data-type tag. The nontrapping versions of these instructions set the integer con-
dition code (icc) and extended integer condition code (xcc) overflow bits on 32-bit (icc) or
64-bit (xcc) arithmetic overflow. In addition, if any of the operands’ tag bits are nonzero,
icc is set. The xcc overflow bit is not affected by the tag bits.

3.2.3 Control Transfer

Control-transfer instructions (CTIs) include PC-relative branches and calls, register-indi-
rect jumps, and conditional traps. Most of the control-transfer instructions are delayed;
that is, the instruction immediately following a control-transfer instruction in logical
sequence is dispatched before the control transfer to the target address is completed. Note
that the next instruction in logical sequence may not be the instruction following the con-
trol-transfer instruction in memory.

The instruction following a delayed control-transfer instruction is called a delay instruc-
tion. A bit in a delayed control-transfer instruction (the annul bit) can cause the delay
instruction to be annulled (that is, to have no effect) if the branch is not taken (or in the
“branch always” case, if the branch is taken).

Compatibility Note:

SPARC-V8 specified that the delay instruction was always fetched, even if annulled, and that an

annulled instruction could not cause any traps. SPARC-V9 does not require the delay instruction to

be fetched if it is annulled.

Branch and CALL instructions use PC-relative displacements. The jump and link (JMPL)
and return (RETURN) instructions use a register-indirect target address. They compute
their target addresses as either the sum of two r registers, or the sum of an r register and a
13-bit signed immediate value. The branch on condition codes without prediction instruc-
tion provides a displacement of ±8 Mbytes; the branch on condition codes with prediction
instruction provides a displacement of ±1 Mbyte; the branch on register contents instruc-
tion provides a displacement of ±128 Kbytes, and the CALL instruction’s 30-bit word dis-

20 3 Architectural Overview

placement allows a control transfer to any address within ±2 gigabytes (±231 bytes). Note
that when 32-bit address masking is enabled (see 5.2.1.7, “PSTATE_address_mask
(AM)”), the CALL instruction may transfer control to an arbitrary 32-bit address. The
return from privileged trap instructions (DONE and RETRY) get their target address from
the appropriate TPC or TNPC register.

3.2.4 State Register Access

The read and write state register instructions read and write the contents of state registers
visible to nonprivileged software (Y, CCR, ASI, PC, TICK, and FPRS). The read and
write privileged register instructions read and write the contents of state registers visible
only to privileged software (TPC, TNPC, TSTATE, TT, TICK, TBA, PSTATE, TL, PIL,
CWP, CANSAVE, CANRESTORE, CLEANWIN, OTHERWIN, WSTATE, FPQ, and
VER).

IMPL. DEP. #8: Software can use read/write ancillary state register instructions to read/write

implementation-dependent processor registers (ASRs 16..31).

IMPL. DEP. #9: Which if any of the implementation-dependent read/write ancillary state register

instructions (for ASRS 16..31) is privileged is implementation-dependent.

3.2.5 Floating-Point Operate

Floating-point operate (FPop) instructions perform all floating-point calculations; they are
register-to-register instructions that operate on the floating-point registers. Like arithmetic/
logical/shift instructions, FPops compute a result that is a function of one or two source
operands. Specific floating-point operations are selected by a subfield of the FPop1/FPop2
instruction formats.

3.2.6 Conditional Move

Conditional move instructions conditionally copy a value from a source register to a desti-
nation register, depending on an integer or floating-point condition code or upon the con-
tents of an integer register. These instructions increase performance by reducing the
number of branches.

3.2.7 Register Window Management

These instructions are used to manage the register windows. SAVE and RESTORE are
nonprivileged and cause a register window to be pushed or popped. FLUSHW is nonprivi-
leged and causes all of the windows except the current one to be flushed to memory.
SAVED and RESTORED are used by privileged software to end a window spill or fill trap
handler.

3.3 Traps 21

3.3 Traps

A trap is a vectored transfer of control to privileged software through a trap table that may
contain the first eight instructions (thirty-two for fill/spill traps) of each trap handler. The
base address of the table is established by software in a state register (the Trap Base
Address register, TBA). The displacement within the table is encoded in the type number
of each trap and the level of the trap. One half of the table is reserved for hardware traps;
one quarter is reserved for software traps generated by trap (Tcc) instructions; the final
quarter is reserved for future expansion of the architecture.

A trap causes the current PC and nPC to be saved in the TPC and TNPC registers. It also
causes the CCR, ASI, PSTATE, and CWP registers to be saved in TSTATE. TPC, TNPC,
and TSTATE are entries in a hardware trap stack, where the number of entries in the trap
stack is equal to the number of trap levels supported (impl. dep. #101). A trap also sets bits
in the PSTATE register, one of which can enable an alternate set of global registers for use
by the trap handler. Normally, the CWP is not changed by a trap; on a window spill or fill
trap, however, the CWP is changed to point to the register window to be saved or restored.

A trap may be caused by a Tcc instruction, an asynchronous exception, an instruction-
induced exception, or an interrupt request not directly related to a particular instruction.
Before executing each instruction, the processor behaves as though it determines if there
are any pending exceptions or interrupt requests. If any are pending, the processor selects
the highest-priority exception or interrupt request and causes a trap.

See Chapter 7, “Traps,” for a complete description of traps.

22 3 Architectural Overview

23

4 Data Formats

The SPARC-V9 architecture recognizes these fundamental data types:

— Signed Integer: 8, 16, 32, and 64 bits

— Unsigned Integer: 8, 16, 32, and 64 bits

— Floating Point: 32, 64, and 128 bits

The widths of the data types are:

— Byte: 8 bits

— Halfword: 16 bits

— Word: 32 bits

— Extended Word: 64 bits

— Tagged Word: 32 bits (30-bit value plus 2-bit tag)

— Doubleword: 64 bits

— Quadword: 128 bits

The signed integer values are stored as two’s-complement numbers with a width commen-
surate with their range. Unsigned integer values, bit strings, boolean values, strings, and
other values representable in binary form are stored as unsigned integers with a width
commensurate with their range. The floating-point formats conform to the IEEE Standard
for Binary Floating-Point Arithmetic, IEEE Std 754-1985. In tagged words, the least sig-
nificant two bits are treated as a tag; the remaining 30 bits are treated as a signed integer.

Subsections 4.1 through 4.11 illustrate the signed integer, unsigned integer, and tagged
formats. Subsections 4.12 through 4.14 illustrate the floating-point formats. In 4.4, 4.9,
4.13, and 4.14, the individual subwords of the multiword data formats are assigned names.
The arrangement of the subformats in memory and processor registers based on these
names is shown in table 1. Tables 2 through 5 define the integer and floating-point formats.

4.1 Signed Integer Byte

7 6 0

S

24 4 Data Formats

4.2 Signed Integer Halfword

4.3 Signed Integer Word

4.4 Signed Integer Double

4.5 Signed Extended Integer

SX

4.6 Unsigned Integer Byte

4.7 Unsigned Integer Halfword

15 14 0

S

31 30 0

S

31 30 0

S signed_dbl_integer[62:32]

SD–0

SD–1

31 0

signed_dbl_integer[31:0]

63 62 0

S signed_ext_integer

7 0

15 0

4.8 Unsigned Integer Word 25

4.8 Unsigned Integer Word

4.9 Unsigned Integer Double

4.10 Unsigned Extended Integer

UX

4.11 Tagged Word

4.12 Floating-Point Single Precision

31 0

31 0

unsigned_dbl_integer[63:32]

UD–0

UD–1

31 0

unsigned_dbl_integer[31:0]

63 0

unsigned_ext_integer

31 0

tag

2 1

31 30 0

S exp[7:0] fraction[22:0]

2223

26 4 Data Formats

4.13 Floating-Point Double Precision

4.14 Floating-Point Quad Precision

31 30 0

S exp[10:0] fraction[51:32]

1920

FD–0

FD–1

31 0

fraction[31:0]

31 30 0

S exp[14:0] fraction[111:96]

1516

FQ–0

FQ–1

FQ–2

FQ–3

31 0

fraction[95:64]

31 0

fraction[63:32]

31 0

fraction[31:0]

4.14 Floating-Point Quad Precision 27

† Although a floating-point doubleword is only required to be word-aligned in memory, it is recom-

mended that it be doubleword-aligned (i.e., the address of its FD-0 word should be 0 mod 8).

‡ Although a floating-point quadword is only required to be word-aligned in memory, it is recom-

mended that it be quadword-aligned (i.e., the address of its FQ-0 word should be 0 mod 16).

Table 1—Double- and Quadwords in Memory & Registers

Subformat
Name

Subformat Field
Required
Address

Alignment

Memory
Address

Register
Number

Alignment

Register
Number

SD-0 signed_dbl_integer[63:32] 0 mod 8 n 0 mod 2 r

SD-1 signed_dbl_integer[31:0] 4 mod 8 n + 4 1 mod 2 r + 1

SX signed_ext_integer[63:0] 0 mod 8 n — r

UD-0 unsigned_dbl_integer[63:32] 0 mod 8 n 0 mod 2 r

UD-1 unsigned_dbl_integer[31:0] 4 mod 8 n + 4 1 mod 2 r + 1

UX unsigned_ext_integer[63:0] 0 mod 8 n — r

FD-0 s:exp[10:0]:fraction[51:32] 0 mod 4 † n 0 mod 2 f

FD-1 fraction[31:0] 0 mod 4 † n + 4 1 mod 2 f + 1

FQ-0 s:exp[14:0]:fraction[111:96] 0 mod 4 ‡ n 0 mod 4 f

FQ-1 fraction[95:64] 0 mod 4 ‡ n + 4 1 mod 4 f + 1

FQ-2 fraction[63:32] 0 mod 4 ‡ n + 8 2 mod 4 f + 2

FQ-3 fraction[31:0] 0 mod 4 ‡ n + 12 3 mod 4 f + 3

Table 2—Signed Integer, Unsigned Integer, and Tagged Format Ranges

Data type Width (bits) Range

Signed integer byte 8 −27 to 27 − 1

Signed integer halfword 16 −215 to 215 − 1

Signed integer word 32 −231 to 231 − 1

Signed integer tagged word 32 −229 to 229 − 1

Signed integer double 64 −263 to 263 − 1

Signed extended integer 64 −263 to 263 − 1

Unsigned integer byte 8 0 to 28 − 1

Unsigned integer halfword 16 0 to 216 − 1

Unsigned integer word 32 0 to 232 − 1

Unsigned integer tagged word 32 0 to 230 − 1

Unsigned integer double 64 0 to 264 − 1

Unsigned extended integer 64 0 to 264 − 1

28 4 Data Formats

Table 3—Floating-Point Single-Precision Format Definition

s = sign (1 bit)

e = biased exponent (8 bits)

f = fraction (23 bits)

u = undefined

Normalized value (0 < e < 255): (−1)s × 2e−127 × 1.f

Subnormal value (e = 0): (−1)s × 2−126 × 0.f

Zero (e = 0) (−1)s × 0

Signalling NaN s = u; e = 255 (max); f = .0uu--uu

(At least one bit of the fraction must be nonzero)

Quiet NaN s = u; e = 255 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 255 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 255 (max); f = .000--00

Table 4—Floating-Point Double-Precision Format Definition

s = sign (1 bit)

e = biased exponent (11 bits)

f = fraction (52 bits)

u = undefined

Normalized value (0 < e < 2047): (−1)s × 2e−1023 × 1.f

Subnormal value (e = 0): (−1)s × 2−1022 × 0.f

Zero (e = 0) (−1)s × 0

Signalling NaN s = u; e = 2047 (max); f = .0uu--uu

(At least one bit of the fraction must be nonzero)

Quiet NaN s = u; e = 2047 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 2047 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 2047 (max); f = .000--00

Table 5—Floating-Point Quad-Precision Format Definition

s = sign (1 bit)

e = biased exponent (15 bits)

f = fraction (112 bits)

u = undefined

Normalized value (0 < e < 32767): (-1)s × 2e−16383 × 1.f

Subnormal value (e = 0): (-1)s × 2−16382 × 0.f

Zero (e = 0) (-1)s × 0

Signalling NaN s = u; e = 32767 (max); f = .0uu--uu

(At least one bit of the fraction must be nonzero)

Quiet NaN s = u; e = 32767 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 32767 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 32767 (max); f = .000--00

29

5 Registers

A SPARC-V9 processor includes two types of registers: general-purpose, or working data
registers, and control/status registers.

Working registers include:

— Integer working registers (r registers)

— Floating-point working registers (f registers)

Control/status registers include:

— Program Counter register (PC)

— Next Program Counter register (nPC)

— Processor State register (PSTATE)

— Trap Base Address register (TBA)

— Y register (Y)

— Processor Interrupt Level register (PIL)

— Current Window Pointer register (CWP)

— Trap Type register (TT)

— Condition Codes Register (CCR)

— Address Space Identifier register (ASI)

— Trap Level register (TL)

— Trap Program Counter register (TPC)

— Trap Next Program Counter register (TNPC)

— Trap State register (TSTATE)

— Hardware clock-tick counter register (TICK)

— Savable windows register (CANSAVE)

— Restorable windows register (CANRESTORE)

— Other windows register (OTHERWIN)

— Clean windows register (CLEANWIN)

— Window State register (WSTATE)

30 5 Registers

— Version register (VER)

— Implementation-dependent Ancillary State Registers (ASRs) (impl. dep. #8)

— Implementation-dependent IU Deferred-Trap Queue (impl. dep. #16)

— Floating-Point State Register (FSR)

— Floating-Point Registers State register (FPRS)

— Implementation-dependent Floating-Point Deferred-Trap Queue (FQ) (impl. dep.
#24)

For convenience, some registers in this chapter are illustrated as fewer than 64 bits wide.
Any bits not shown are reserved for future extensions to the architecture. Such reserved
bits read as zeroes and, when written by software, should always be written with the val-
ues of those bits previously read from that register, or with zeroes.

5.1 Nonprivileged Registers

The registers described in this subsection are visible to nonprivileged (application, or
“user-mode”) software.

5.1.1 General Purpose r Registers

At any moment, general-purpose registers appear to nonprivileged software as shown in
figure 1.

An implementation of the IU may contain from 64 to 528 general-purpose 64-bit r regis-
ters. They are partitioned into 8 global registers, 8 alternate global registers, plus an
implementation-dependent number of 16-register sets (impl. dep. #2). A register window
consists of the current 8 in registers, 8 local registers, and 8 out registers. See table 6.

5.1.1.1 Global r Registers

Registers r[0]..r[7] refer to a set of eight registers called the global registers (g0..g7). At
any time, one of two sets of eight registers is enabled and can be accessed as the global
registers. Which set of globals is currently enabled is selected by the AG (alternate global)
field in the PSTATE register. See 5.2.1, “Processor State Register (PSTATE),” for a
description of the AG field.

Global register zero (g0) always reads as zero; writes to it have no program-visible effect.

Compatibility Note:

Since the PSTATE register is only writable by privileged software, existing nonprivileged SPARC-

V8 software will operate correctly on a SPARC-V9 implementation if supervisor software ensures

that nonprivileged software sees a consistent set of global registers.

5.1 Nonprivileged Registers 31

Figure 1—General-Purpose Registers (Nonprivileged View)

Programming Note:

The alternate global registers are present to give trap handlers a set of scratch registers that are inde-

pendent of nonprivileged software’s registers. The AG bit in PSTATE allows supervisor software to

access the normal global registers if required (for example, during instruction emulation).

5.1.1.2 Windowed r Registers

At any time, an instruction can access the 8 globals and a 24-register window into the r

registers. A register window comprises the 8 in and 8 local registers of a particular register
set, together with the 8 in registers of an adjacent register set, which are addressable from
the current window as out registers. See figure 2 and table 6.

i7 r[31]

i6 r[30]

i5 r[29]

i4 r[28]

i3 r[27]

i2 r[26]

i1 r[25]

i0 r[24]

r[23]

r[22]

r[21]

r[20]

r[19]

r[18]

r[17]

r[16]

r[15]

r[14]

r[13]

r[12]

r[11]

r[10]

r[9]

r[8]

r[7]

r[6]

r[5]

r[4]

r[3]

r[2]

r[1]

r[0]

l7

l6

l5

l4

l3

l2

l1

l0

o7

o6

o5

o4

o3

o2

o1

o0

g7

g6

g5

g4

g3

g2

g1

g0

32 5 Registers

Figure 2—Three Overlapping Windows and the Eight Global Registers

The number of windows or register sets, NWINDOWS, is implementation-dependent and
ranges from 3 to 32 (impl. dep. #2). The total number of r registers in a given implementa-
tion is 8 (for the globals), plus 8 (for the alternate globals), plus the number of sets times
16 registers/set. Thus, the minimum number of r registers is 64 (3 sets plus the 16 globals

Window (CWP – 1)

r[31]

r[24]

ins
.
.

r[23]

r[16]

locals
.
.

r[15]

r[8]

outs
.
.

Window (CWP)

r[31]

r[24]

ins
.
.

r[23]

r[16]

locals
.
.

r[15]

r[8]

outs
.
.

Window (CWP + 1)

r[31]

r[24]

ins
.
.

r[23]

r[16]

locals
.
.

r[15]

r[8]

outs
.
.

r[7]

r[1]

globals
.
.

r[0] 0

63 0

5.1 Nonprivileged Registers 33

and alternate globals) and the maximum number is 528 (32 sets plus the 16 globals and
alternate globals).

The current window into the r registers is given by the current window pointer (CWP) reg-
ister. The CWP is decremented by the RESTORE instruction and incremented by the
SAVE instruction. Window overflow is detected via the CANSAVE register and window
underflow is detected via the CANRESTORE register, both of which are controlled by
privileged software. A window overflow (underflow) condition causes a window spill (fill)
trap.

5.1.1.3 Overlapping Windows

Each window shares its ins with one adjacent window and its outs with another. The outs
of the CWP–1 (modulo NWINDOWS) window are addressable as the ins of the current
window, and the outs in the current window are the ins of the CWP+1 (modulo NWIN-
DOWS) window. The locals are unique to each window.

An r register with address o, where 8 ≤ o ≤ 15, refers to exactly the same register as
(o+16) does after the CWP is incremented by 1 (modulo NWINDOWS). Likewise, a reg-
ister with address i, where 24 ≤ i ≤ 31, refers to exactly the same register as address (i−16)
does after the CWP is decremented by 1 (modulo NWINDOWS). See figures 2 and 3.

Since CWP arithmetic is performed modulo NWINDOWS, the highest numbered imple-
mented window overlaps with window 0. The outs of window NWINDOWS−1 are the ins
of window 0. Implemented windows must be numbered contiguously from 0 through
NWINDOWS−1.

Programming Note:

Since the procedure call instructions (CALL and JMPL) do not change the CWP, a procedure can

be called without changing the window. See H.1.2, “Leaf-Procedure Optimization.”

Because the windows overlap, the number of windows available to software is one less than the

number of implemented windows, or NWINDOWS−1. When the register file is full, the outs of the

newest window are the ins of the oldest window, which still contains valid data.

The local and out registers of a register window are guaranteed to contain either zeroes or an old

value that belongs to the current context upon reentering the window through a SAVE instruction. If

a program executes a RESTORE followed by a SAVE, the resulting window’s locals and outs may

not be valid after the SAVE, since a trap may have occurred between the RESTORE and the SAVE.

However, if the clean_window protocol is being used, system software must guarantee that registers

in the current window after a SAVE will always contain only zeroes or valid data from that context.

See 5.2.10.6, “Clean Windows (CLEANWIN) Register.”

Subsection 6.4, “Register Window Management,” describes how the windowed integer
registers are managed.

Table 6—Window Addressing

Windowed Register Address r Register Address

in[0] – in[7] r[24] – r[31]

local[0] – local[7] r[16] – r[23]

out[0] – out[7] r[8] – r[15]

global[0] – global[7] r[0] – r[7]

34 5 Registers

Figure 3—The Windowed r Registers for NWINDOWS = 8

5.1.2 Special r Registers

The usage of two of the r registers is fixed, in whole or in part, by the architecture:

— The value of r[0] is always zero; writes to it have no program-visible effect.

— The CALL instruction writes its own address into register r[15] (out register 7).

CWP = 0

(current window pointer)

w1 outs

w2 outs

w3 outs

w4 outs

w5 outs

w6 outs

w7 outs

w0 outsw0 locals

w0 ins

w1 locals

w1 ins

w3 locals

w3 ins

w5 locals

w5 ins

w4 locals

w4 ins

w6 locals

w2 locals

w2 ins

w7 locals

w7 ins

RESTORESAVE

w6 ins

(Overlap)

OTHERWIN = 2

CANRESTORE = 1

CANSAVE = 3

CANSAVE + CANRESTORE + OTHERWIN = NWINDOWS – 2

The current window (window 0) and the overlap window (window 4) account for the two windows

in the right-hand side of the equation. The “overlap window” is the window that must remain

unused because its ins and outs overlap two other valid windows.

5.1 Nonprivileged Registers 35

5.1.2.1 Register-Pair Operands

LDD, LDDA, STD, and STDA instructions access a pair of words in adjacent r registers

and require even-odd register alignment. The least-significant bit of an r register number

in these instructions is reserved, and should be supplied as zero by software.

When the r[0] – r[1] register pair is used as a destination in LDD or LDDA, only r[1] is

modified. When the r[0] – r[1] register pair is used as a source in STD or STDA, a zero is

written to the 32-bit word at the lowest address and the least significant 32 bits of r[1] are

written to the 32-bit word at the highest address (in big-endian mode).

An attempt to execute an LDD, LDDA, STD, or STDA instruction that refers to a mis-

aligned (odd) destination register number causes an illegal_instruction trap.

5.1.2.2 Register Usage

See H.1.1, “Registers,” for information about the conventional usage of the r registers.

In figure 3, NWINDOWS = 8. The 8 globals are not illustrated. CWP = 0, CANSAVE = 3,

OTHERWIN = 2, and CANRESTORE = 1. If the procedure using window w0 executes a

RESTORE, window w7 becomes the current window. If the procedure using window w0

executes a SAVE, window w1 becomes the current window.

5.1.3 IU Control/Status Registers

The nonprivileged IU control/status registers include the program counters (PC and nPC),

the 32-bit multiply/divide (Y) register (and possibly optional) implementation-dependent

Ancillary State Registers (ASRs) (impl. dep. #8).

5.1.3.1 Program Counters (PC, nPC)

The PC contains the address of the instruction currently being executed by the IU. The

nPC holds the address of the next instruction to be executed, if a trap does not occur. The

low-order two bits of PC and nPC always contain zero.

For a delayed control transfer, the instruction that immediately follows the transfer

instruction is known as the delay instruction. This delay instruction is executed (unless the

control transfer instruction annuls it) before control is transferred to the target. During

execution of the delay instruction, the nPC points to the target of the control transfer

instruction, while the PC points to the delay instruction. See Chapter 6, “Instructions.”

The PC is used implicitly as a destination register by CALL, Bicc, BPcc, BPr, FBfcc,

FBPfcc, JMPL, and RETURN instructions. It can be read directly by an RDPC instruc-

tion.

36 5 Registers

5.1.3.2 32-Bit Multiply/Divide Register (Y)

Figure 4—Y Register

The low-order 32 bits of the Y register, illustrated in figure 4, contain the more significant
word of the 64-bit product of an integer multiplication, as a result of either a 32-bit integer
multiply (SMUL, SMULcc, UMUL, UMULcc) instruction or an integer multiply step
(MULScc) instruction. The Y register also holds the more significant word of the 64-bit
dividend for a 32-bit integer divide (SDIV, SDIVcc, UDIV, UDIVcc) instruction.

Although Y is a 64-bit register, its high-order 32 bits are reserved and always read as 0.

The Y register is read and written with the RDY and WRY instructions, respectively.

5.1.3.3 Ancillary State Registers (ASRs)

SPARC-V9 provides for optional ancillary state registers (ASRs). Access to a particular
ASR may be privileged or nonprivileged (impl. dep. #9); see 5.2.11, “Ancillary State Reg-
isters (ASRs),” for a more complete description of ASRs.

5.1.4 Floating-Point Registers

The FPU contains:

— 32 single-precision (32-bit) floating-point registers, numbered f[0], f[1], . . f[31].

— 32 double-precision (64-bit) floating-point registers, numbered f[0], f[2], . . f[62].

— 16 quad-precision (128-bit) floating-point registers, numbered f[0], f[4], . . f[60].

The floating-point registers are arranged so that some of them overlap, that is, are aliased.
The layout and numbering of the floating-point registers are shown in figures 5, 6, and 7.
Unlike the windowed r registers, all of the floating-point registers are accessible at any
time. The floating-point registers can be read and written by FPop (FPop1/FPop2 format)
instructions, and by load/store single/double/quad floating-point instructions.

The Y register is deprecated; it is provided only for compatibility with previous ver-

sions of the architecture. It should not be used in new SPARC-V9 software. It is

recommended that all instructions that reference the Y register (i.e., SMUL,

SMULcc, UMUL, UMULcc, MULScc, SDIV, SDIVcc, UDIV, UDIVcc, RDY, and

WRY) be avoided. See the appropriate pages in Appendix A, “Instruction Defini-

tions,” for suitable substitute instructions.

63 032 31

— product<63:32> or dividend<63:32>

5.1 Nonprivileged Registers 37

Figure 5—Single-Precision Floating-Point Registers, with Aliasing

Operand
 register ID

Operand
from

f31 f31<31:0>

f30 f30<31:0>

f29 f29<31:0>

f28 f28<31:0>

f27 f27<31:0>

f26 f26<31:0>

f25 f25<31:0>

f24 f24<31:0>

f23 f23<31:0>

f22 f22<31:0>

f21 f21<31:0>

f20 f20<31:0>

f19 f19<31:0>

f18 f18<31:0>

f17 f17<31:0>

f16 f16<31:0>

f15 f15<31:0>

f14 f14<31:0>

f13 f13<31:0>

f12 f12<31:0>

f11 f11<31:0>

f10 f10<31:0>

f9 f9<31:0>

f8 f8<31:0>

f7 f7<31:0>

f6 f6<31:0>

f5 f5<31:0>

f4 f4<31:0>

f3 f3<31:0>

f2 f2<31:0>

f1 f1<31:0>

f0 f0<31:0>

38 5 Registers

Figure 6—Double-Precision Floating-Point Registers, with Aliasing

Operand
 register ID

Operand
field

From
register

f62 <63:0> f62<63:0>

f60 <63:0> f60<63:0>

f58 <63:0> f58<63:0>

f56 <63:0> f56<63:0>

f54 <63:0> f54<63:0>

f52 <63:0> f52<63:0>

f50 <63:0> f50<63:0>

f48 <63:0> f48<63:0>

f46 <63:0> f46<63:0>

f44 <63:0> f44<63:0>

f42 <63:0> f42<63:0>

f40 <63:0> f40<63:0>

f38 <63:0> f38<63:0>

f36 <63:0> f36<63:0>

f34 <63:0> f34<63:0>

f32 <63:0> f32<63:0>

f30
<31:0> f31<31:0>

<63:32> f30<31:0>

f28
<31:0> f29<31:0>

<63:32> f28<31:0>

f26
<31:0> f27<31:0>

<63:32> f26<31:0>

f24
<31:0> f25<31:0>

<63:32> f24<31:0>

f22
<31:0> f23<31:0>

<63:32> f22<31:0>

f20
<31:0> f21<31:0>

<63:32> f20<31:0>

f18
<31:0> f19<31:0>

<63:32> f18<31:0>

f16
<31:0> f17<31:0>

<63:32> f16<31:0>

f14
<31:0> f15<31:0>

<63:32> f14<31:0>

f12
<31:0> f13<31:0>

<63:32> f12<31:0>

f10
<31:0> f11<31:0>

<63:32> f10<31:0>

f8
<31:0> f9<31:0>

<63:32> f8<31:0>

f6
<31:0> f7<31:0>

<63:32> f6<31:0>

f4
<31:0> f5<31:0>

<63:32> f4<31:0>

f2
<31:0> f3<31:0>

<63:32> f2<31:0>

f0
<31:0> f1<31:0>

<63:32> f0<31:0>

5.1 Nonprivileged Registers 39

Figure 7—Quad-Precision Floating-Point Registers, with Aliasing

Operand
 register ID

Operand
field

From
register

f60
<63:0> f62<63:0>

<127:64> f60<63:0>

f56
<63:0> f58<63:0>

<127:64> f56<63:0>

f52
<63:0> f54<63:0>

<127:64> f52<63:0>

f48
<63:0> f50<63:0>

<127:64> f48<63:0>

f44
<63:0> f46<63:0>

<127:64> f44<63:0>

f40
<63:0> f42<63:0>

<127:64> f40<63:0>

f36
<63:0> f38<63:0>

<127:64> f36<63:0>

f32
<63:0> f34<63:0>

<127:64> f32<63:0>

f28

<31:0> f31<31:0>

<63:32> f30<31:0>

<95:64> f29<31:0>

<127:96> f28<31:0>

f24

<31:0> f27<31:0>

<63:32> f26<31:0>

<95:64> f25<31:0>

<127:96> f24<31:0>

f20

<31:0> f23<31:0>

<63:32> f22<31:0>

<95:64> f21<31:0>

<127:96> f20<31:0>

f16

<31:0> f19<31:0>

<63:32> f18<31:0>

<95:64> f17<31:0>

<127:96> f16<31:0>

f12

<31:0> f15<31:0>

<63:32> f14<31:0>

<95:64> f13<31:0>

<127:96> f12<31:0>

f8

<31:0> f11<31:0>

<63:32> f10<31:0>

<95:64> f9<31:0>

<127:96> f8<31:0>

f4

<31:0> f7<31:0>

<63:32> f6<31:0>

<95:64> f5<31:0>

<127:96> f4<31:0>

f0

<31:0> f3<31:0>

<63:32> f2<31:0>

<95:64> f1<31:0>

<127:96> f0<31:0>

40 5 Registers

5.1.4.1 Floating-Point Register Number Encoding

Register numbers for single, double, and quad registers are encoded differently in the 5-bit
register number field in a floating-point instruction. If the bits in a register number field are
labeled: b<4>..b<0> (where b<4> is the most-significant bit of the register number), the
encoding of floating-point register numbers into 5-bit instruction fields is as given in
table 7.

Compatibility Note:

In SPARC-V8, bit 0 of double and quad register numbers encoded in instruction fields was required

to be zero. Therefore, all SPARC-V8 floating-point instructions can run unchanged on a SPARC-

V9 implementation using the encoding in table 7.

5.1.4.2 Double and Quad Floating-Point Operands

A single f register can hold one single-precision operand, a double-precision operand
requires an aligned pair of f registers, and a quad-precision operand requires an aligned
quadruple of f registers. At a given time, the floating-point registers can hold a maximum
of 32 single-precision, 16 double-precision, or 8 quad-precision values in the lower half of
the floating-point register file, plus an additional 16 double-precision or 8 quad-precision
values in the upper half, or mixtures of the three sizes.

Programming Note:

Data to be loaded into a floating-point double or quad register that is not doubleword-aligned in

memory must be loaded into the lower 16 double registers (8 quad registers) using single-precision

LDF instructions. If desired, it can then be copied into the upper 16 double registers (8 quad regis-

ters).

An attempt to execute an instruction that refers to a misaligned floating-point register
operand (that is, a quad-precision operand in a register whose 6-bit register number is not
0 mod 4) shall cause an fp_exception_other trap, with FSR.ftt = 6 (invalid_fp_register).

Programming Note:

Given the encoding in table 7, it is impossible to specify a misaligned double-precision register.

5.1.5 Condition Codes Register (CCR)

Figure 8—Condition Codes Register

Table 7—Floating-Point Register Number Encoding

Register
operand

type 6-bit register number

Encoding in a
5-bit register field
in an instruction

Single f.p. or

32-bit integer
0 b<4> b<3> b<2> b<1> b<0> b<4> b<3> b<2> b<1> b<0>

Double f.p. or

64-bit integer
b<5> b<4> b<3> b<2> b<1> 0 b<4> b<3> b<2> b<1> b<5>

Quad f.p. b<5> b<4> b<3> b<2> 0 0 b<4> b<3> b<2> 0 b<5>

7 4 03

xcc iccCCR

5.1 Nonprivileged Registers 41

The Condition Codes Register (CCR) holds the integer condition codes.

5.1.5.1 CCR Condition Code Fields (xcc and icc)

All instructions that set integer condition codes set both the xcc and icc fields. The xcc

condition codes indicate the result of an operation when viewed as a 64-bit operation. The
icc condition codes indicate the result of an operation when viewed as a 32-bit operation.
For example, if an operation results in the 64-bit value 0000 0000 FFFF FFFF16, the 32-bit
result is negative (icc.N is set to 1) but the 64-bit result is nonnegative (xcc.N is set to 0).

Each of the 4-bit condition-code fields is composed of four 1-bit subfields, as shown in
figure 9.

Figure 9—Integer Condition Codes (CCR_icc and CCR_xcc)

The n bits indicate whether the 2’s-complement ALU result was negative for the last
instruction that modified the integer condition codes. 1 = negative, 0 = not negative.

The z bits indicate whether the ALU result was zero for the last instruction that modified
the integer condition codes. 1 = zero, 0 = nonzero.

The v bits indicate whether the ALU result was within the range of (was representable in)
64-bit (xcc) or 32-bit (icc) 2’s complement notation for the last instruction that modified
the integer condition codes. 1 = overflow, 0 = no overflow.

The c bits indicate whether a 2’s complement carry (or borrow) occurred during the last
instruction that modified the integer condition codes. Carry is set on addition if there is a
carry out of bit 63 (xcc) or bit 31 (icc). Carry is set on subtraction if there is a borrow into
bit 63 (xcc) or bit 31 (icc). 1 = carry, 0 = no carry.

5.1.5.1.1 CCR_extended_integer_cond_codes (xcc)

Bits 7 through 4 are the IU condition codes that indicate the results of an integer operation
with both of the operands considered to be 64 bits long. These bits are modified by the
arithmetic and logical instructions the names of which end with the letters “cc” (e.g.,
ANDcc) and by the WRCCR instruction. They can be modified by a DONE or RETRY
instruction, which replaces these bits with the CCR field of the TSTATE register. The
BPcc and Tcc instructions may cause a transfer of control based on the values of these
bits. The MOVcc instruction can conditionally move the contents of an integer register
based on the state of these bits. The FMOVcc instruction can conditionally move the con-
tents of a floating-point register based on the state of these bits.

7 5 4

0

6

13 2

xcc:

icc:

cvn z

42 5 Registers

5.1.5.1.2 CCR_integer_cond_codes (icc)

Bits 3 through 0 are the IU condition codes, which indicate the results of an integer opera-
tion with both of the operands considered to be 32 bits. These bits are modified by the
arithmetic and logical instructions the names of which end with the letters “cc” (e.g.,
ANDcc) and by the WRCCR instruction. They can be modified by a DONE or RETRY
instruction, which replaces these bits with the CCR field of the TSTATE register. The
BPcc, Bicc, and Tcc instructions may cause a transfer of control based on the values of
these bits. The MOVcc instruction can conditionally move the contents of an integer regis-
ter based on the state of these bits. The FMOVcc instruction can conditionally move the
contents of a floating-point register based on the state of these bits.

5.1.6 Floating-Point Registers State (FPRS) Register

Figure 10—Floating-Point Registers State Register

The Floating-Point Registers State (FPRS) register holds control information for the float-
ing-point register file; this information is readable and writable by nonprivileged software.

5.1.6.1 FPRS_enable_fp (FEF)

Bit 2, FEF, determines whether the FPU is enabled. If it is disabled, executing a floating-
point instruction causes an fp_disabled trap. If this bit is set but the PSTATE.PEF bit is not
set, then executing a floating-point instruction causes an fp_disabled trap; that is, both
FPRS.FEF and PSTATE.PEF must be set to enable floating-point operations.

5.1.6.2 FPRS_dirty_upper (DU)

Bit 1 is the “dirty” bit for the upper half of the floating-point registers; that is, f32..f62. It
is set whenever any of the upper floating-point registers is modified. Its setting may be
pessimistic; that is, it may be set in some cases even though no register was actually mod-
ified. It is cleared only by software.

5.1.6.3 FPRS_dirty_lower (DL)

Bit 0 is the “dirty” bit for the lower 32 floating-point registers; that is, f0..f31. It is set
whenever any of the lower floating-point registers is modified. Its setting may be pessimis-
tic; that is, it may be set in some cases even though no register was actually modified. It is
cleared only by software.

Implementation Note:

The pessimistic setting of FPRS.DL and FPRS.DU allows hardware to set these bits even though

the modification of a floating-point register might be cancelled before data is written.

012

DLFEF DUFPRS

5.1 Nonprivileged Registers 43

5.1.7 Floating-Point State Register (FSR)

The FSR register fields, illustrated in figure 11, contain FPU mode and status information.

The lower 32 bits of the FSR are read and written by the STFSR and LDFSR instructions;

all 64 bits of the FSR are read and written by the STXFSR and LDXFSR instructions,

respectively. The ver, ftt, and reserved fields are not modified by LDFSR or LDXFSR.

Figure 11—FSR Fields

Bits 63..38, 29..28, 21..20, and 12 are reserved. When read by an STXFSR instruction,

these bits shall read as zero. Software should only issue LDXFSR instructions with zero

values in these bits, unless the values of these bits are exactly those derived from a previ-

ous STFSR.

Subsections 5.1.7.1 through 5.1.7.10.5 describe the remaining fields in the FSR.

5.1.7.1 FSR_fp_condition_codes (fcc0, fcc1, fcc2, fcc3)

There are four sets of floating-point condition code fields, labeled fcc0, fcc1, fcc2, and

fcc3.

Compatibility Note:

SPARC-V9’s fcc0 is the same as SPARC-V8’s fcc.

The fcc0 field consists of bits 11 and 10 of the FSR, fcc1 consists of bits 33 and 32, fcc2

consists of bits 35 and 34, and fcc3 consists of bits 37 and 36. Execution of a floating-point

compare instruction (FCMP or FCMPE) updates one of the fccn fields in the FSR, as

selected by the instruction. The fccn fields are read and written by STXFSR and LDXFSR

instructions, respectively. The fcc0 field may also be read and written by STFSR and

LDFSR, respectively. FBfcc and FBPfcc instructions base their control transfers on these

fields. The MOVcc and FMOVcc instructions can conditionally copy a register based on

the state of these fields.

In table 8, frs1 and frs2 correspond to the single, double, or quad values in the floating-point

registers specified by a floating-point compare instruction’s rs1 and rs2 fields. The ques-

tion mark (‘?’) indicates an unordered relation, which is true if either frs1 or frs2 is a signal-

ling NaN or quiet NaN. If FCMP or FCMPE generates an fp_exception_ieee_754 exception,

then fccn is unchanged.

63 3235 34 3338 37

31 141923 13 12 11 5 4 091017 162730 29 28 22 21 20

36

fcc3 fcc2 fcc1—

RD — TEM NS — ver ftt qne — fcc0 aexc cexc

44 5 Registers

5.1.7.2 FSR_rounding_direction (RD)

Bits 31 and 30 select the rounding direction for floating-point results according to IEEE

Std 754-1985. Table 9 shows the encodings.

5.1.7.3 FSR_trap_enable_mask (TEM)

Bits 27 through 23 are enable bits for each of the five IEEE-754 floating-point exceptions

that can be indicated in the current_exception field (cexc). See figure 12 on page 48. If a

floating-point operate instruction generates one or more exceptions and the TEM bit corre-

sponding to any of the exceptions is 1, an fp_exception_ieee_754 trap is caused. A TEM bit

value of 0 prevents the corresponding exception type from generating a trap.

5.1.7.4 FSR_nonstandard_fp (NS)

IMPL. DEP. #18: When set to 1, bit 22 causes the FPU to produce implementation-defined results

that may not correspond to IEEE Std 754-1985.

For instance, to obtain higher performance, implementations may convert a subnormal

floating-point operand or result to zero when FSR.NS is set. SPARC-V9 implementations

are permitted but not encouraged to deviate from IEEE 754 requirements when the non-

standard mode bit of the FSR is 1. For implementations in which no nonstandard floating-

point mode exists, the NS bit of the FSR should always read as 0, and writes to it should

be ignored.

See Implementation Characteristics of Current SPARC-V9-based Products, Revision 9.x, a

document available from SPARC International, for a description of how this field is used

in existing implementations.

Table 8—Floating-Point Condition Codes (fccn) Fields of FSR

Content of
fccn

Indicated relation

0 frs1 = frs2

1 frs1 < frs2

2 frs1 > frs2

3 frs1 ? frs2 (unordered)

Table 9—Rounding Direction (RD) Field of FSR

RD Round toward

0 Nearest (even if tie)

1 0

2 + ∞
3 − ∞

5.1 Nonprivileged Registers 45

5.1.7.5 FSR_version (ver)

IMPL. DEP. #19: Bits 19 through 17 identify one or more particular implementations of the FPU

architecture.

For each SPARC-V9 IU implementation (as identified by its VER.impl field), there may
be one or more FPU implementations, or none. This field identifies the particular FPU
implementation present. Version number 7 is reserved to indicate that no hardware float-
ing-point controller is present. See Implementation Characteristics of Current SPARC-V9-

based Products, Revision 9.x, a document available from SPARC International, for a
description of the values of this field in existing implementations.

The ver field is read-only; it cannot be modified by the LDFSR and LDXFSR instructions.

5.1.7.6 FSR_floating-point_trap_type (ftt)

Several conditions can cause a floating-point exception trap. When a floating-point excep-
tion trap occurs, ftt (bits 16 through 14 of the FSR) identifies the cause of the exception,
the “floating-point trap type.” After a floating-point exception occurs, the ftt field encodes
the type of the floating-point exception until an STFSR or an FPop is executed.

The ftt field can be read by the STFSR and STXFSR instructions. The LDFSR and
LDXFSR instructions do not affect ftt.

Privileged software that handles floating-point traps must execute an STFSR (or STXFSR)
to determine the floating-point trap type. STFSR and STXFSR shall zero ftt after the store
completes without error. If the store generates an error and does not complete, ftt shall
remain unchanged.

Programming Note:

Neither LDFSR nor LDXFSR can be used for this purpose, since both leave ftt unchanged. How-

ever, executing a nontrapping FPop such as “fmovs %f0,%f0” prior to returning to nonprivi-

leged mode will zero ftt. The ftt remains valid until the next FPop instruction completes execution.

The ftt field encodes the floating-point trap type according to table 10. Note that the value
“7” is reserved for future expansion.

The sequence_error and hardware_error trap types are unlikely to arise in the normal course
of computation. They are essentially unrecoverable from the point of view of user applica-

Table 10—Floating-Point Trap Type (ftt) Field of FSR

ftt Trap type

0 None

1 IEEE_754_exception

2 unfinished_FPop

3 unimplemented_FPop

4 sequence_error

5 hardware_error

6 invalid_fp_register

7 —

46 5 Registers

tions. In contrast, IEEE_754_exception, unfinished_FPop, and unimplemented_FPop will
likely arise occasionally in the normal course of computation and must be recoverable by
system software.

When a floating-point trap occurs, the following results are observed by user software:

(1) The value of aexc is unchanged.

(2) The value of cexc is unchanged, except that for an IEEE_754_exception a bit corre-
sponding to the trapping exception is set. The unfinished_FPop, unimplemented_

FPop, sequence_error, and invalid_fp_register floating-point trap types do not affect
cexc.

(3) The source registers are unchanged (usually implemented by leaving the destina-
tion registers unchanged).

(4) The value of fccn is unchanged.

The foregoing describes the result seen by a user trap handler if an IEEE exception is sig-
nalled, either immediately from an IEEE_754_exception or after recovery from an
unfinished_FPop or unimplemented_FPop. In either case, cexc as seen by the trap handler
reflects the exception causing the trap.

In the cases of unfinished_FPop and unimplemented_FPop exceptions that do not subse-
quently generate IEEE traps, the recovery software should define cexc, aexc, and the desti-
nation registers or fccs, as appropriate.

5.1.7.6.1 ftt = IEEE_754_exception

The IEEE_754_exception floating-point trap type indicates that a floating-point exception
conforming to IEEE Std 754-1985 has occurred. The exception type is encoded in the cexc

field. Note that aexc, the fccs, and the destination f register are not affected by an IEEE_

754_exception trap.

5.1.7.6.2 ftt = unfinished_FPop

The unfinished_FPop floating-point trap type indicates that an implementation’s FPU was
unable to generate correct results, or that exceptions as defined by IEEE Std 754-1985
have occurred. In the latter case, the cexc field is unchanged.

5.1.7.6.3 ftt = unimplemented_FPop

The unimplemented_FPop floating-point trap type indicates that an implementation’s FPU
decoded an FPop that it does not implement. In this case, the cexc field is unchanged.

Programming Note:

For the unfinished_FPop and unimplemented_FPop floating-point traps, software should emulate or

reexecute the exception-causing instruction and update the FSR, destination f register(s), and fccs.

5.1 Nonprivileged Registers 47

5.1.7.6.4 ftt = sequence_error

The sequence_error floating-point trap type indicates one of three abnormal error condi-
tions in the FPU, all caused by erroneous supervisor software:

— An attempt was made to read the floating-point deferred-trap queue (FQ) on an
implementation without an FQ.

Implementation Note:

IMPL. DEP #25: On implementations without a floating-point queue, an attempt to read

the fq with an RDPR instruction shall cause either an illegal_instruction exception or an

fp_exception_other exception with FSR.ftt set to 4 (sequence_error).

— An attempt was made to execute a floating-point instruction when the FPU was
unable to accept one. This type of sequence_error arises from a logic error in super-
visor software that has caused a previous floating-point trap to be incompletely ser-
viced (for example, the floating-point queue was not emptied after a previous
floating-point exception).

— An attempt was made to read the floating-point deferred-trap queue (FQ) with a
RDPR instruction when the FQ was empty; that is, when FSR.qne = 0. Note that
generation of sequence_error is recommended but not required in this case.

Programming Note:

If a sequence_error floating-point exception occurs while executing user code due to any of the

above conditions, it may not be possible to recover sufficient state to continue execution of the user

application.

5.1.7.6.5 ftt = hardware_error

The hardware_error floating-point trap type indicates that the FPU detected a catastrophic
internal error, such as an illegal state or a parity error on an f register access.

Programming Note:

If a hardware_error occurs while executing user code, it may not be possible to recover sufficient

state to continue execution of the user application.

5.1.7.6.6 ftt = invalid_fp_register

The invalid_fp_register trap indicates that one (or more) operands of an FPop are mis-
aligned; that is, a quad-precision register number is not 0 mod 4. An implementation shall
generate an fp_exception_other trap with FSR.ftt = invalid_fp_register in this case.

5.1.7.7 FSR_FQ_not_empty (qne)

Bit 13 indicates whether the optional floating-point deferred-trap queue (FQ) is empty
after a deferred floating-point exception trap or after a read privileged register (RDPR)
instruction that reads the queue has been executed. If qne = 0, the queue is empty; if
qne = 1, the queue is not empty.

48 5 Registers

The qne bit can be read by the STFSR and STXFSR instructions. The LDFSR and

LDXFSR instructions do not affect qne. However, executing successive “RDPR %fpq”

instructions will (eventually) cause the FQ to become empty (qne = 0). If an implementa-

tion does not provide an FQ, this bit shall read as zero. Supervisor software must arrange

for this bit to always read as zero to user-mode software.

5.1.7.8 FSR_accrued_exception (aexc)

Bits 9 through 5 accumulate IEEE_754 floating-point exceptions while floating-point

exception traps are disabled using the TEM field. See figure 13 on page 49. After an FPop

completes, the TEM and cexc fields are logically ANDed together. If the result is nonzero,

aexc is left unchanged and an fp_exception_ieee_754 trap is generated; otherwise, the new

cexc field is ORed into the aexc field and no trap is generated. Thus, while (and only

while) traps are masked, exceptions are accumulated in the aexc field.

5.1.7.9 FSR_current_exception (cexc)

Bits 4 through 0 indicate that one or more IEEE_754 floating-point exceptions were gen-

erated by the most recently executed FPop instruction. The absence of an exception causes

the corresponding bit to be cleared. See figure 14 on page 49.

The cexc bits are set as described in 5.1.7.10, “Floating-Point Exception Fields,” by the

execution of an FPop that either does not cause a trap or causes an fp_exception_ieee_754

trap with FSR.ftt = IEEE_754_exception. An IEEE_754_exception that traps shall cause

exactly one bit in FSR.cexc to be set, corresponding to the detected IEEE Std 754-1985

exception.

In the case of an overflow (underflow) IEEE_754_exception that does not trap (because nei-

ther OFM (UFM) nor NXM is set), more than one bit in cexc is set: such an overflow

(underflow) sets both ofc (ufc) and nxc. An overflow (underflow) IEEE_754_exception that

does trap (because OFM (UFM) or NXM or both are set) shall set ofc (ufc), but not nxc.

If the execution of an FPop causes a trap other than an fp_exception_ieee_754 due to an

IEEE Std 754-1985 exception, FSR.cexc is left unchanged.

5.1.7.10 Floating-Point Exception Fields

The current and accrued exception fields and the trap enable mask assume the following

definitions of the floating-point exception conditions (per IEEE Std 754-1985):

Figure 12—Trap Enable Mask (TEM) Fields of FSR

24 2327 26 25

NVM OFM UFM DZM NXM

5.1 Nonprivileged Registers 49

Figure 13—Accrued Exception Bits (aexc) Fields of FSR

Figure 14—Current Exception Bits (cexc) Fields of FSR

5.1.7.10.1 FSR_invalid (nvc, nva)

An operand is improper for the operation to be performed. For example, 0.0 ÷ 0.0 and ∞ –
∞ are invalid. 1 = invalid operand(s), 0 = valid operand(s).

5.1.7.10.2 FSR_overflow (ofc, ofa)

The result, rounded as if the exponent range were unbounded, would be larger in magni-
tude than the destination format’s largest finite number. 1 = overflow, 0 = no overflow.

5.1.7.10.3 FSR_underflow (ufc, ufa)

The rounded result is inexact and would be smaller in magnitude than the smallest normal-
ized number in the indicated format. 1 = underflow, 0 = no underflow.

Underflow is never indicated when the correct unrounded result is zero. Otherwise:

If UFM = 0: Underflow occurs if a nonzero result is tiny and a loss of accuracy
occurs. Tininess may be detected before or after rounding (impl. dep.
#55). Loss of accuracy may be either a denormalization loss or an inex-
act result.

If UFM = 1: Underflow occurs if a nonzero result is tiny. Tininess may be detected
before or after rounding (impl. dep. #55).

5.1.7.10.4 FSR_division-by-zero (dzc, dza)

X ÷ 0.0, where X is subnormal or normalized. Note that 0.0 ÷ 0.0 does not set the dzc or
dza bits. 1 = division by zero, 0 = no division by zero.

5.1.7.10.5 FSR_inexact (nxc, nxa)

The rounded result of an operation differs from the infinitely precise unrounded result.
1 = inexact result, 0 = exact result.

6 59 8 7

nva ofa ufa dza nxa

1 04 3 2

nvc ofc ufc dzc nxc

50 5 Registers

5.1.7.11 FSR Conformance

IMPL. DEP. #22: An implementation may choose to implement the TEM, cexc, and aexc fields in

hardware in either of two ways (both of which comply with IEEE Std 754-1985):

(1) Implement all three fields conformant to IEEE Std 754-1985.

(2) Implement the NXM, nxa, and nxc bits of these fields conformant to IEEE Std
754-1985. Implement each of the remaining bits in the three fields either

(a) Conformant to IEEE Std 754-1985, or

(b) As a state bit that may be set by software that calculates the IEEE Std 754-
1985 value of the bit. For any bit implemented as a state bit:

[1] The IEEE exception corresponding to the state bit must always cause an
exception (specifically, an unfinished_FPop exception). During exception
processing in the trap handler, the bit in the state field can be written to the
appropriate value by an LDFSR or LDXFSR instruction.

[2] The state bit must be implemented in such a way that if it is written to a
particular value by an LDFSR or LDXFSR instruction, it will be read back
as the same value by a subsequent STFSR or STXFSR.

Programming Note:

Software must be capable of simulating the operation of the FPU in order to handle the

unimplemented_FPop, unfinished_FPop, and IEEE_754_exception floating-point trap types prop-

erly. Thus, a user application program always sees an FSR that is fully compliant with IEEE Std

754-1985.

5.1.8 Address Space Identifier Register (ASI)

Figure 15—ASI Register

The ASI register specifies the address space identifier to be used for load and store alter-
nate instructions that use the “rs1 + simm13” addressing form. Nonprivileged (user-mode)
software may write any value into the ASI register; however, values with bit 7 = 0 indicate
restricted ASIs. When a nonprivileged instruction makes an access that uses an ASI with
bit 7 = 0, a privileged_action exception is generated. See 6.3.1.3, “Address Space Identifiers
(ASIs),” for details.

5.1.9 TICK Register (TICK)

Figure 16—TICK Register

7 0

ASI

063 62

TICK NPT counter

5.2 Privileged Registers 51

The counter field of the TICK register is a 63-bit counter that counts CPU clock cycles.
Bit 63 of the TICK register is the Nonprivileged Trap (NPT) bit, which controls access to
the TICK register by nonprivileged software. Privileged software can always read the
TICK register with either the RDPR or RDTICK instruction. Privileged software can
always write the TICK register with the WRPR instruction; there is no WRTICK instruc-
tion.

Nonprivileged software can read the TICK register using the RDTICK instruction;
TICK.NPT must be 0. When TICK.NPT = 1, an attempt by nonprivileged software to read
the TICK register causes a privileged_action exception. Nonprivileged software cannot
write the TICK register.

TICK.NPT is set to 1 by a power-on reset trap. The value of TICK.counter is undefined
after a power-on reset trap.

After the TICK register is written, reading the TICK register returns a value incremented
(by one or more) from the last value written, rather than from some previous value of the
counter. The number of counts between a write and a subsequent read need not accurately
reflect the number of processor cycles between the write and the read. Software may only
rely on read-to-read counts of the TICK register for accurate timing, not on write-to-read
counts.

IMPL. DEP. #105: The difference between the values read from the TICK register on two reads

should reflect the number of processor cycles executed between the reads. If an accurate count

cannot always be returned, any inaccuracy should be small, bounded, and documented. An imple-

mentation may implement fewer than 63 bits in TICK.counter; however, the counter as imple-

mented must be able to count for at least 10 years without overflowing. Any upper bits not

implemented must read as zero.

Programming Note:

TICK.NPT may be used by a secure operating system to control access by user software to high-

accuracy timing information. The operation of the timer might be emulated by the trap handler,

which could read TICK.counter and “fuzz” the value to lower accuracy.

5.2 Privileged Registers

The registers described in this subsection are visible only to software running in privileged
mode; that is, when PSTATE.PRIV = 1. Privileged registers are written using the WRPR
instruction and read using the RDPR instruction.

5.2.1 Processor State Register (PSTATE)

Figure 17—PSTATE Fields

The PSTATE register holds the current state of the processor. There is only one instance of
the PSTATE register. See Chapter 7, “Traps,” for more details.

4 0

PSTATE PEF AM PRIV IE AG

3 2 16 5

MM RED

7

TLECLE

9 8

PID0PID1

11 10

52 5 Registers

Writing PSTATE is nondelayed; that is, new machine state written to PSTATE is visible to
the next instruction executed. The privileged RDPR and WRPR instructions are used to
read and write PSTATE, respectively.

Implementation Note:

To ensure the nondelayed semantics, a write to PSTATE may take multiple cycles to complete on

some implementations.

5.2.1.2 through 5.2.1.10 describe the fields contained in the PSTATE register.

5.2.1.1 PSTATE_impldep (PID1, PID0)

IMPL. DEP. #127: The presence and semantics of PSTATE.PID1 and PSTATE.PID0 are imple-

mentation-dependent. Software intended to run on multiple implementations should only write

these bits to values previously read from PSTATE, or to zeroes.

See also TSTATE bits 19..18.

5.2.1.2 PSTATE_current_little_endian (CLE)

When PSTATE.CLE = 1, all data reads and writes using an implicit ASI are performed in
little-endian byte order with an ASI of ASI_PRIMARY_LITTLE. When
PSTATE.CLE = 0, all data reads and writes using an implicit ASI are performed in big-
endian byte order with an ASI of ASI_PRIMARY. Instruction accesses are always big-
endian.

5.2.1.3 PSTATE_trap_little_endian (TLE)

When a trap is taken, the current PSTATE register is pushed onto the trap stack and the
PSTATE.TLE bit is copied into PSTATE.CLE in the new PSTATE register. This allows
system software to have a different implicit byte ordering than the current process. Thus, if
PSTATE.TLE is set to 1, data accesses using an implicit ASI in the trap handler are little-
endian. The original state of PSTATE.CLE is restored when the original PSTATE register
is restored from the trap stack.

5.2.1.4 PSTATE_mem_model (MM)

This 2-bit field determines the memory model in use by the processor. Its values are:

An implementation must provide a memory model that allows programs conforming to the
TSO model to run correctly; that is, TSO or a stronger model. Whether the Partial Store
Order (PSO) model or the Relaxed Memory Ordering (RMO) model is supported is imple-
mentation-dependent (impl. dep. #113).

Value Memory model

00 Total Store Order (TSO)

01 Partial Store Order (PSO)

10 Relaxed Memory Order (RMO)

11 —

5.2 Privileged Registers 53

The current memory model is determined by the value of PSTATE.MM. The effect of set-
ting PSTATE.MM to an unsupported value is implementation-dependent (impl. dep.
#119).

5.2.1.5 PSTATE_RED_state (RED)

When PSTATE.RED is set to 1, the processor is operating in RED (Reset, Error, and
Debug) state. See 7.2.1, “RED_state.” The IU sets PSTATE.RED when any hardware reset
occurs. It also sets PSTATE.RED when a trap is taken while TL = (MAXTL – 1). Soft-
ware can exit RED_state by one of two methods:

(1) Execute a DONE or RETRY instruction, which restores the stacked copy of
PSTATE and clears PSTATE.RED if it was 0 in the stacked copy.

(2) Write a 0 to PSTATE.RED with a WRPR instruction.

Programming Note:

Changing PSTATE.RED may cause a change in address mapping on some systems. It is recom-

mended that writes of PSTATE.RED be placed in the delay slot of a JMPL; the target of this JMPL

should be in the new address mapping. The JMPL sets the nPC, which becomes the PC for the

instruction that folows the WPR in its delay slot. The effect of the WPR instruction is immediate.

5.2.1.6 PSTATE_enable_floating-point (PEF)

When set to 1, this bit enables the floating-point unit, which allows privileged software to
manage the FPU. For the floating-point unit to be usable, both PSTATE.PEF and
FPRS.FEF must be set. Otherwise, a floating-point instruction that tries to reference the
FPU will cause an fp_disabled trap.

5.2.1.7 PSTATE_address_mask (AM)

When PSTATE.AM = 1, both instruction and data addresses are interpreted as if the high-
order 32 bits were masked to zero before being presented to the MMU or memory system.
Thirty-two-bit application software must run with this bit set.

Branch target addresses (sent to the nPC) and addresses sent to registers by CALL, JMPL,
and RDPC instructions are always 64-bit values, but the value of the high-order 32-bits are
implementation-dependent. Similarly, the value of the high-order 32-bits of TPC and
TNPC after a trap taken while PSTATE.AM = 1 is implementation-dependent.

IMPL. DEP. #125: When PSTATE.AM = 1, the value of the high-order 32-bits of the PC transmitted

to the specified destination register(s) by CALL, JMLP, RDPC, and on a trap is implementation-

dependent.

5.2.1.8 PSTATE_privileged_mode (PRIV)

When PSTATE.PRIV = 1, the processor is in privileged mode.

54 5 Registers

5.2.1.9 PSTATE_interrupt_enable (IE)

When PSTATE.IE = 1, the processor can accept interrupts.

5.2.1.10 PSTATE_alternate_globals (AG)

When PSTATE.AG = 0, the processor interprets integer register numbers in the range 0..7
as referring to the normal global register set. When PSTATE.AG = 1, the processor inter-
prets integer register numbers in the range 0..7 as referring to the alternate global register
set.

5.2.2 Trap Level Register (TL)

Figure 18—Trap Level Register

The trap level register specifies the current trap level. TL = 0 is the normal (nontrap) level
of operation. TL > 0 implies that one or more traps are being processed. The maximum
valid value that the TL register may contain is “MAXTL.” This is always equal to the
number of supported trap levels beyond level 0. See Chapter 7, “Traps,” for more details
about the TL register. An implementation shall support at least four levels of traps beyond
level 0; that is, MAXTL shall be ≥ 4.

IMPL. DEP. #101: How many additional trap levels, if any, past level 4 are supported is implemen-

tation-dependent.

The remainder of this subsection assumes that there are four trap levels beyond level 0.

Programming Note:

Writing the TL register with a wrpr %tl instruction does not alter any other machine state; that

is, it is not equivalent to taking or returning from a trap.

5.2.3 Processor Interrupt Level (PIL)

Figure 19—Processor Interrupt Level Register

The processor interrupt level (PIL) is the interrupt level above which the processor will
accept an interrupt. Interrupt priorities are mapped such that interrupt level 2 has greater
priority than interrupt level 1, and so on. See table 15 on page 103 for a list of exception
and interrupt priorities.

Compatibility Note:

On SPARC-V8 processors, the level 15 interrupt is considered to be nonmaskable, so it has differ-

ent semantics from other interrupt levels. SPARC-V9 processors do not treat level 15 interrupts dif-

2 0

TL TL

3 0

PIL PIL

5.2 Privileged Registers 55

ferently from other interrupt levels. See 7.6.2.4, “Externally Initiated Reset (XIR) Traps,” for a

facility in SPARC-V9 that is similar to a nonmaskable interrupt.

5.2.4 Trap Program Counter (TPC)

Figure 20—Trap Program Counter Register

The TPC register contains the program counter (PC) from the previous trap level. There
are MAXTL instances of the TPC (impl. dep. #101), but only one is accessible at any
time. The current value in the TL register determines which instance of the TPC register is
accessible. An attempt to read or write the TPC register when TL = 0 shall cause an illegal_

instruction exception.

5.2.5 Trap Next Program Counter (TNPC)

Figure 21—Trap Next Program Counter Register

The TNPC register is the next program counter (nPC) from the previous trap level. There
are MAXTL instances of the TNPC (impl. dep. #101), but only one is accessible at any
time. The current value in the TL register determines which instance of the TNPC register
is accessible. An attempt to read or write the TNPC register when TL = 0 shall cause an
illegal_instruction exception.

TPC1 PC from trap while TL = 0

2

00

63 1 0

TPC2 PC from trap while TL = 1 00

TPC3 PC from trap while TL = 2 00

TPC4 PC from trap while TL = 3 00

TNPC1 nPC from trap while TL = 0

2

00

63 1 0

TNPC2 nPC from trap while TL = 1 00

TNPC3 nPC from trap while TL = 2 00

TNPC4 nPC from trap while TL = 3 00

56 5 Registers

5.2.6 Trap State (TSTATE)

Figure 22—Trap State Register

TSTATE contains the state from the previous trap level, comprising the contents of the
CCR, ASI, CWP, and PSTATE registers from the previous trap level. There are MAXTL
instances of the TSTATE register, but only one is accessible at a time. The current value in
the TL register determines which instance of TSTATE is accessible. An attempt to read or
write the TSTATE register when TL = 0 causes an illegal_instruction exception.

TSTATE bits 19 and 18 are implementation-dependent. IMPL.DEP. #127: If PSTATE bit 11

(10) is implemented, TSTATE bit 19 (18) shall be implemented and contain the state of PSTATE bit

11 (10) from the previous trap level. If PSTATE bit 11 (10) is not implemented, TSTATE bit 19 (18)

shall read as zero. Software intended to run on multiple implementations should only write these

bits to values previously read from PSTATE, or to zeroes.

5.2.7 Trap Type Register (TT)

Figure 23—Trap Type Register

The TT register normally contains the trap type of the trap that caused entry to the current
trap level. On a reset trap the TT field contains the trap type of the reset (see 7.2.1.1,
“RED_state Trap Table”), except when a watchdog (WDR) or externally initiated (XIR)
reset occurs while the processor is in error_state. When this occurs, the TT register will
contain the trap type of the exception that caused entry into error_state.

There are MAXTL instances of the TT register (impl. dep. #101), but only one is accessi-
ble at a time. The current value in the TL register determines which instance of the TT reg-
ister is accessible. An attempt to read or write the TT register when TL = 0 shall cause an
illegal_instruction exception.

39 0

TSTATE1 CCR from TL = 0 CWP from TL = 0ASI from TL = 0 PSTATE from TL = 0— —

432 31 24 23 20 8 7 519

TSTATE2 CCR from TL = 1 CWP from TL = 1ASI from TL = 1 PSTATE from TL = 1— —

TSTATE3 CCR from TL = 2 CWP from TL = 2ASI from TL = 2 PSTATE from TL = 2— —

TSTATE4 CCR from TL = 3 CWP from TL = 3ASI from TL = 3 PSTATE from TL = 3— —

TT1 Trap type from trap while TL = 0

8 0

TT2 Trap type from trap while TL = 1

TT3 Trap type from trap while TL = 2

TT4 Trap type from trap while TL = 3

5.2 Privileged Registers 57

5.2.8 Trap Base Address (TBA)

Figure 24—Trap Base Address Register

The TBA register provides the upper 49 bits of the address used to select the trap vector
for a trap. The lower 15 bits of the TBA always read as zero, and writes to them are
ignored.

The full address for a trap vector is specified by the TBA, TL, TT[TL], and five zeroes:

Figure 25—Trap Vector Address

Note that the “(TL>0)” bit is 0 if TL = 0 when the trap was taken, and 1 if TL > 0 when
the trap was taken. This implies that there are two trap tables: one for traps from TL = 0
and one for traps from TL > 0. See Chapter 7, “Traps,” for more details on trap vectors.

5.2.9 Version Register (VER)

Figure 26—Version Register

The version register specifies the fixed parameters pertaining to a particular CPU imple-
mentation and mask set. The VER register is read-only.

IMPL. DEP. #104: VER.manuf contains a 16-bit manufacturer code. This field is optional and, if not

present, shall read as 0. VER.manuf may indicate the original supplier of a second-sourced chip. It

is intended that the contents of VER.manuf track the JEDEC semiconductor manufacturer code as

closely as possible. If the manufacturer does not have a JEDEC semiconductor manufacturer

code, SPARC International will assign a value for VER.manuf.

IMPL. DEP. #13: VER.impl uniquely identifies an implementation or class of software-compatible

implementations of the architecture. Values FFF016..FFFF16 are reserved and are not available for

assignment.

The value of VER.impl is assigned as described in C.3, “Implementation Dependency Cat-
egories.”

VER.mask specifies the current mask set revision, and is chosen by the implementor. It
generally increases numerically with successive releases of the processor, but does not
necessarily increase by one for consecutive releases.

VER.maxtl contains the maximum number of trap levels supported by an implementation
(impl. dep. #101), that is, MAXTL, the maximum value of the contents of the TL register.

63 15 14 0

000000000000000Trap Base Address

63 15 14 0

TBA<63:15>

13 45

TL>0 TTTL 00000

63 48 47 24 23 16 15 8 7 05 432 31

maxwin—maxtl—maskimplmanuf

58 5 Registers

VER.maxwin contains the maximum index number available for use as a valid CWP value
in an implementation; that is, VER.maxwin contains the value “NWINDOWS – 1” (impl.
dep. #2).

5.2.10 Register-Window State Registers

The state of the register windows is determined by a set of privileged registers. They can
be read/written by privileged software using the RDPR/WRPR instructions. In addition,
these registers are modified by instructions related to register windows and are used to
generate traps that allow supervisor software to spill, fill, and clean register windows.

IMPL. DEP. #126: Privileged registers CWP, CANSAVE, CANRESTORE, OTHERWIN, and

CLEANWIN contain values in the range 0..NWINDOWS-1. The effect of writing a value greater

than NWINDOWS-1 to any of these registers is undefined. Although the width of each of these

five registers is nominally 5 bits, the width is implementation-dependent and shall be between

log2(NWINDOWS) and 5 bits, inclusive. If fewer than 5 bits are implemented, the unimple-

mented upper bits shall read as 0, and writes to them shall have no effect. All five registers should

have the same width.

The details of how the window-management registers are used by hardware are presented
in 6.3.6, “Register Window Management Instructions.”

5.2.10.1 Current Window Pointer (CWP)

Figure 27—Current Window Pointer Register

The CWP register is a counter that identifies the current window into the set of integer reg-
isters. See 6.3.6, “Register Window Management Instructions,” and Chapter 7, “Traps,”
for information on how hardware manipulates the CWP register.

The effect of writing a value greater than NWINDOWS-1 to this register is undefined
(impl. dep. #126).

Compatibility Note:

The following differences between SPARC-V8 and SPARC-V9 are visible only to privileged soft-

ware; they are invisible to nonprivileged software:

1) In SPARC-V9, SAVE increments CWP and RESTORE decrements CWP. In SPARC-V8, the

opposite is true: SAVE decrements PSR.CWP and RESTORE increments PSR.CWP.

2) PSR.CWP in SPARC-V8 is changed on each trap. In SPARC-V9, CWP is affected only by a

trap caused by a window fill or spill exception.

3) In SPARC-V8, writing a value into PSR.CWP that is greater than or equal to the number of

implemented windows causes an illegal_instruction exception. In SPARC-V9, the effect of

writing an out-of-range value to CWP is undefined.

4 0

CWP Current Window #

5.2 Privileged Registers 59

5.2.10.2 Savable Windows (CANSAVE) Register

Figure 28—CANSAVE Register

The CANSAVE register contains the number of register windows following CWP that are

not in use and are, hence, available to be allocated by a SAVE instruction without generat-

ing a window spill exception

The effect of writing a value greater than NWINDOWS-1 to this register is undefined

(impl. dep. #126).

5.2.10.3 Restorable Windows (CANRESTORE) Register

Figure 29—CANRESTORE Register

The CANRESTORE register contains the number of register windows preceding CWP

that are in use by the current program and can be restored (via the RESTORE instruction)

without generating a window fill exception.

The effect of writing a value greater than NWINDOWS-1 to this register is undefined

(impl. dep. #126).

5.2.10.4 Other Windows (OTHERWIN) Register

Figure 30—OTHERWIN Register

The OTHERWIN register contains the count of register windows that will be spilled/filled

using a separate set of trap vectors based on the contents of WSTATE_OTHER. If OTH-

ERWIN is zero, register windows are spilled/filled using trap vectors based on the con-

tents of WSTATE_NORMAL.

The OTHERWIN register can be used to split the register windows among different

address spaces and handle spill/fill traps efficiently by using separate spill/fill vectors.

The effect of writing a value greater than NWINDOWS-1 to this register is undefined

(impl. dep. #126).

4 0

CANSAVE

4 0

CANRESTORE

4 0

OTHERWIN

60 5 Registers

5.2.10.5 Window State (WSTATE) Register

Figure 31—WSTATE Register

The WSTATE register specifies bits that are inserted into TTTL<4:2> on traps caused by
window spill and fill exceptions. These bits are used to select one of eight different win-
dow spill and fill handlers. If OTHERWIN = 0 at the time a trap is taken due to a window
spill or window fill exception, then the WSTATE.NORMAL bits are inserted into TT[TL].
Otherwise, the WSTATE.OTHER bits are inserted into TT[TL]. See 6.4, “Register Win-
dow Management,” for details of the semantics of OTHERWIN.

5.2.10.6 Clean Windows (CLEANWIN) Register

Figure 32—CLEANWIN Register

The CLEANWIN register contains the number of windows that can be used by the SAVE
instruction without causing a clean_window exception.

The CLEANWIN register counts the number of register windows that are “clean” with
respect to the current program; that is, register windows that contain only zeros, valid
addresses, or valid data from that program. Registers in these windows need not be
cleaned before they can be used. The count includes the register windows that can be
restored (the value in the CANRESTORE register) and the register windows following
CWP that can be used without cleaning. When a clean window is requested (via a dSAVE
instruction) and none is available, a clean_window exception occurs to cause the next win-
dow to be cleaned.

The effect of writing a value greater than NWINDOWS-1 to this register is undefined
(impl. dep. #126).

5.2.11 Ancillary State Registers (ASRs)

SPARC-V9 provides for up to 25 ancillary state registers (ASRs), numbered from 7
through 31.

ASRs numbered 7..15 are reserved for future use by the architecture and should not be
referenced by software.

ASRs numbered 16..31 are available for implementation-dependent uses (impl. dep. #8),
such as timers, counters, diagnostic registers, self-test registers, and trap-control registers.
An IU may choose to implement from zero to sixteen of these ASRs. The semantics of
accessing any of these ASRs is implementation-dependent. Whether access to a particular
ancillary state register is privileged is implementation-dependent (impl. dep. #9).

WSTATE

05 3 2

OTHER NORMAL

4 0

CLEANWIN

5.2 Privileged Registers 61

An ASR is read and written with the RDASR and WRASR instructions, respectively. An

RDASR or WRASR instruction is privileged if the accessed register is privileged.

5.2.12 Floating-Point Deferred-Trap Queue (FQ)

If present in an implementation, the FQ contains sufficient state information to implement

resumable, deferred floating-point traps.

IMPL. DEP. #23: Floating-point traps may be precise or deferred. If deferred, a floating-point

deferred-trap queue (FQ) shall be present.

The FQ can be read with the read privileged register (RDPR) floating-point queue instruc-

tion. In a given implementation, it may also be readable or writable via privileged load/

store double alternate instructions (LDDA, STDA), or by read/write ancillary state register

instructions (RDASR, WRASR).

IMPL. DEP. #24: The presence, contents of, and operations upon the FQ are implementation-

dependent.

If an FQ is present, however, supervisor software must be able to deduce the exception-

causing instruction’s opcode (opf), operands, and address from its FQ entry. This also

must be true of any other pending floating-point operations in the queue. See Implementa-

tion Characteristics of Current SPARC-V9-based Products, Revision 9.x, a document

available from SPARC International, for a discussion of the formats and operation of

implemented floating-point queues in existing SPARC-V9 implementations.

In implementations with a floating-point queue, an attempt to read the FQ with a RDPR

instruction when the FQ is empty (FSR.qne = 0) shall cause an fp_exception_other trap with

FSR.ftt set to 4 (sequence_error).In implementations without an FQ, the qne bit in the FSR

is always 0.

IMPL. DEP. #25: In implementations without a floating-point queue, an attempt to read the FQ with

an RDPR instruction shall cause either an illegal_instruction trap or an fp_exception_other trap

with FSR.ftt SET TO 4 (sequence_error).

5.2.13 IU Deferred-Trap Queue

An implementation may contain zero or more IU deferred-trap queues. Such a queue con-

tains sufficient state to implement resumable deferred traps caused by the IU. See 7.3.2,

“Deferred Traps,” for more information. Note that deferred floating-point traps are han-

dled by the floating-point deferred-trap queue. See Implementation Characteristics of

Current SPARC-V9-based Products, Revision 9.x, a document available from SPARC

International, for a discussion of such queues in existing implementations.

IMPL. DEP. #16: The existence, contents, and operation of an IU deferred-trap queue are imple-

mentation-dependent; it is not visible to user application programs under normal conditions.

62 5 Registers

63

6 Instructions

Instructions are accessed by the processor from memory and are executed, annulled, or
trapped. Instructions are encoded in four major formats and partitioned into eleven general
categories.

6.1 Instruction Execution

The instruction at the memory location specified by the program counter is fetched and
then executed. Instruction execution may change program-visible processor and/or mem-
ory state. As a side-effect of its execution, new values are assigned to the program counter
(PC) and the next program counter (nPC).

An instruction may generate an exception if it encounters some condition that makes it
impossible to complete normal execution. Such an exception may in turn generate a pre-
cise trap. Other events may also cause traps: an exception caused by a previous instruction
(a deferred trap), an interrupt or asynchronous error (a disrupting trap), or a reset request
(a reset trap). If a trap occurs, control is vectored into a trap table. See Chapter 7, “Traps,”
for a detailed description of exception and trap processing.

If a trap does not occur and the instruction is not a control transfer, the next program
counter (nPC) is copied into the PC and the nPC is incremented by 4 (ignoring overflow, if
any). If the instruction is a control-transfer instruction, the next program counter (nPC) is
copied into the PC and the target address is written to nPC. Thus, the two program
counters provide for a delayed-branch execution model.

For each instruction access and each normal data access, the IU appends an 8-bit address
space identifier, or ASI, to the 64-bit memory address. Load/store alternate instructions
(see 6.3.1.3, “Address Space Identifiers (ASIs),”) can provide an arbitrary ASI with their
data addresses, or use the ASI value currently contained in the ASI register.

Implementation Note:

The time required to execute an instruction is implementation-dependent, as is the degree of execu-

tion concurrency. In the absence of traps, an implementation should cause the same program-visi-

ble register and memory state changes as if a program had executed according to the sequential

model implied in this document. See Chapter 7, “Traps,” for a definition of architectural compli-

ance in the presence of traps.

6.2 Instruction Formats

Instructions are encoded in four major 32-bit formats and several minor formats, as shown
in figures 33 and 34.

64 6 Instructions

Figure 33—Summary of Instruction Formats: Formats 1, 2, and 3

op3rdop rs1 i=1 mmask

31 030 29

disp30op

Format 1 (op = 1): CALL

Format 2 (op = 0): SETHI & Branches (Bicc, BPcc, BPr, FBfcc, FBPfcc)

Format 3 (op = 2 or 3): Arithmetic, Logical, MOVr, MEMBAR, Load, and Store

31 141924 18 13 12 5 4 02530 29

31 2224 21 02530 29

disp22op2condop a

op3rdop —rs1 i=0 rs2

op3rdop rs1 i=1 simm13

disp19op2condop a

d16loop2rcondop a

20 19 1828

0

cc1cc0 p

pd16hi

14 13

rs1

op3rdop rcondrs1 i=0 rs2

op3rdop rs1 i=1 simm10

10 9

rcond

—

—

op3rdop rs1 i=0 rs2—

op3—op —rs1 i=0 rs2

op3—op rs1 i=1 simm13

2627

imm22op2rdop

67

cmask

3

op rd op3 rs1 i=0 imm_asi rs2

op3impl-depop impl-dep

6.2 Instruction Formats 65

op3rdop rs1 i=0 rs2

op3rdop rs1 i=1 sw_trap#

cc1cc0 —

cc1cc0

Format 4 (op = 2): MOVcc, FMOVr, FMOVcc, and Tcc

op3rdop rs1 i=1 simm11

31 141924 18 13 12 5 4 02530 29 11 10 9

cc1cc0

7 6

—

op rd op3 cond opf_cc opf_low rs2

op rd op3 0 rcond opf_low rs2rs1

0

17

Format 3 (op = 2 or 3): Continued

31 24 02530 29 19 18

rdop op3 —

14 13 12 5 4

rs1 rs2i=0 x

rdop op3 —rs1 shcnt32i=1 x=0

rdop op3 —rs1 shcnt64i=1 x=1

6

op fcn op3 —

11

op3rdop rs1 —

rdop op3 —cond rs2i=0

rdop op3 cond simm11i=1

cc2

cc2

cc1

cc1

cc0

cc0

op3rdop —

op3rdop rs2opf—

op3rdop rs1 rs2opf

op op3 rs2000 rs1 opfcc1 cc0

66 6 Instructions

Figure 34—Summary of Instruction Formats: Formats 3 and 4

6.2.1 Instruction Fields

The instruction fields are interpreted as follows:

a:

The a bit annuls the execution of the following instruction if the branch is condi-
tional and untaken, or if it is unconditional and taken.

cc0, cc1, and cc2:

cc2:cc1:cc0 specify the condition codes (icc, xcc, fcc0, fcc1, fcc2, fcc3) to be used
in the instruction. Individual bits of the same logical field are present in several
other instructions: Branch on Floating-Point Condition Codes with Prediction
Instructions (FBPfcc), Branch on Integer Condition Codes with Prediction (BPcc),
Floating-Point Compare Instructions, Move Integer Register if Condition is Satis-
fied (MOVcc), Move Floating-Point Register if Condition is Satisfied (FMOVcc),
and Trap on Integer Condition Codes (Tcc). In instructions such as Tcc that do not
contain the cc2 bit, the missing cc2 bit takes on a default value. See table 38 on
page 279 for a description of these fields’ values.

cmask:

This 3-bit field specifies sequencing constraints on the order of memory references
and the processing of instructions before and after a MEMBAR instruction.

cond:

This 4-bit field selects the condition tested by a branch instruction. See Appendix
E, “Opcode Maps,” for descriptions of its values.

d16hi and d16lo:

These 2-bit and 14-bit fields together comprise a word-aligned, sign-extended, PC-
relative displacement for a branch-on-register-contents with prediction (BPr)
instruction.

disp19:

This 19-bit field is a word-aligned, sign-extended, PC-relative displacement for an
integer branch-with-prediction (BPcc) instruction or a floating-point branch-with-
prediction (FBPfcc) instruction.

disp22 and disp30:

These 22-bit and 30-bit fields are word-aligned, sign-extended, PC-relative dis-
placements for a branch or call, respectively.

fcn:

This 5-bit field provides additional opcode bits to encode the DONE and RETRY
instructions.

i:

The i bit selects the second operand for integer arithmetic and load/store instruc-
tions. If i = 0, the operand is r[rs2]. If i = 1, the operand is simm10, simm11, or
simm13, depending on the instruction, sign-extended to 64 bits.

6.2 Instruction Formats 67

imm22:

This 22-bit field is a constant that SETHI places in bits 31..10 of a destination reg-
ister.

imm_asi:

This 8-bit field is the address space identifier in instructions that access alternate
space.

impl-dep:

The meaning of these fields is completely implementation-dependent for
IMPDEP1 and IMPDEP2 instructions.

mmask:

This 4-bit field imposes order constraints on memory references appearing before
and after a MEMBAR instruction.

op and op2:

These 2- and 3-bit fields encode the three major formats and the Format 2 instruc-
tions. See Appendix E, “Opcode Maps,” for descriptions of their values.

op3:

This 6-bit field (together with one bit from op) encodes the Format 3 instructions.
See Appendix E, “Opcode Maps,” for descriptions of its values.

opf:

This 9-bit field encodes the operation for a floating-point operate (FPop) instruc-
tion. See Appendix E, “Opcode Maps,” for possible values and their meanings.

opf_cc:

Specifies the condition codes to be used in FMOVcc instructions. See cc0, cc1,

and cc2 above for details.

opf_low:

This 6-bit field encodes the specific operation for a Move Floating-Point Register
if Condition is satisfied (FMOVcc) or Move Floating-Point register if contents of
integer register match condition (FMOVr) instruction.

p:

This 1-bit field encodes static prediction for BPcc and FBPfcc instructions, as fol-
lows:

rcond:

This 3-bit field selects the register-contents condition to test for a move based on
register contents (MOVr or FMOVr) instruction or a branch on register contents
with prediction (BPr) instruction. See Appendix E, “Opcode Maps,” for descrip-
tions of its values.

p Branch prediction

0 Predict branch will not be taken

1 Predict branch will be taken

68 6 Instructions

rd:

This 5-bit field is the address of the destination (or source) r or f register(s) for a
load, arithmetic, or store instruction.

rs1:

This 5-bit field is the address of the first r or f register(s) source operand.

rs2:

This 5-bit field is the address of the second r or f register(s) source operand with
i = 0.

shcnt32:

This 5-bit field provides the shift count for 32-bit shift instructions.

shcnt64:

This 6-bit field provides the shift count for 64-bit shift instructions.

simm10:

This 10-bit field is an immediate value that is sign-extended to 64 bits and used as
the second ALU operand for a MOVr instruction when i = 1.

simm11:

This 11-bit field is an immediate value that is sign-extended to 64 bits and used as
the second ALU operand for a MOVcc instruction when i = 1.

simm13:

This 13-bit field is an immediate value that is sign-extended to 64 bits and used as
the second ALU operand for an integer arithmetic instruction or for a load/store
instruction when i = 1.

sw_trap#:

This 7-bit field is an immediate value that is used as the second ALU operand for a
Trap on Condition Code instruction.

x:

The x bit selects whether a 32- or 64-bit shift will be performed..

6.3 Instruction Categories

SPARC-V9 instructions can be grouped into the following categories:

— Memory access

— Memory synchronization

— Integer arithmetic

— Control transfer (CTI)

— Conditional moves

— Register window management

— State register access

6.3 Instruction Categories 69

— Privileged register access

— Floating-point operate

— Implementation-dependent

— Reserved

Each of these categories is further described in the following subsections.

6.3.1 Memory Access Instructions

Load, Store, Prefetch, Load Store Unsigned Byte, Swap, and Compare and Swap are the
only instructions that access memory. All of the instructions except Compare and Swap
use either two r registers or an r register and simm13 to calculate a 64-bit byte memory
address. Compare and Swap uses a single r register to specify a 64-bit byte memory
address. To this 64-bit address, the IU appends an ASI that encodes address space infor-
mation.

The destination field of a memory reference instruction specifies the r or f register(s) that
supply the data for a store or receive the data from a load or LDSTUB. For SWAP, the des-
tination register identifies the r register to be exchanged atomically with the calculated
memory location. For Compare and Swap, an r register is specified whose value is com-
pared with the value in memory at the computed address. If the values are equal, the desti-
nation field specifies the r register that is to be exchanged atomically with the addressed
memory location. If the values are unequal, the destination field specifies the r register that
is to receive the value at the addressed memory location; in this case, the addressed mem-
ory location remains unchanged.

The destination field of a PREFETCH instruction is used to encode the type of the
prefetch.

Integer load and store instructions support byte (8-bit), halfword (16-bit), word (32-bit),
and doubleword (64-bit) accesses. Floating-point load and store instructions support word,
doubleword, and quadword memory accesses. LDSTUB accesses bytes, SWAP accesses
words, and CAS accesses words or doublewords. PREFETCH accesses at least 64 bytes.

Programming Note:

By setting i = 1 and rs1 = 0, any location in the lowest or highest 4K bytes of an address space can

be accessed without using a register to hold part of the address.

6.3.1.1 Memory Alignment Restrictions

Halfword accesses shall be aligned on 2-byte boundaries, word accesses (which include
instruction fetches) shall be aligned on 4-byte boundaries, extended word and doubleword
accesses shall be aligned on 8-byte boundaries, and quadword accesses shall be aligned on
16-byte boundaries, with the following exceptions.

An improperly aligned address in a load, store, or load-store instruction causes a mem_

address_not_aligned exception to occur, except:

70 6 Instructions

— An LDDF or LDDFA instruction accessing an address that is word-aligned but not
doubleword-aligned may cause an LDDF_mem_address_not_aligned exception, or
may complete the operation in hardware (impl. dep. #109).

— An STDF or STDFA instruction accessing an address that is word-aligned but not
doubleword-aligned may cause an STDF_mem_address_not_aligned exception or
may complete the operation in hardware (impl. dep. #110).

— An LDQF or LDQFA instruction accessing an address that is word-aligned but not
quadword-aligned may cause an LDQF_mem_address_not_aligned exception or may
complete the operation in hardware (impl. dep. #111).

— An STQF or STQFA instruction accessing an address that is word-aligned but not
quadword aligned may cause an STQF_mem_address_not_aligned exception or may
complete the operation in hardware (impl. dep. #112).

6.3.1.2 Addressing Conventions

SPARC-V9 uses big-endian byte order for all instruction accesses and, by default, for data
accesses. It is possible to access data in little-endian format by using selected ASIs. It is
also possible to change the default byte order for implicit data accesses. See 5.2.1, “Pro-
cessor State Register (PSTATE),” for more information.1

6.3.1.2.1 Big-Endian Addressing Convention

Within a multiple-byte integer, the byte with the smallest address is the most significant; a
byte’s significance decreases as its address increases. The big-endian addressing conven-
tions are illustrated in figure 35 and defined as follows:

byte:

A load/store byte instruction accesses the addressed byte in both big- and little-
endian modes.

halfword:

For a load/store halfword instruction, two bytes are accessed. The most significant
byte (bits 15..8) is accessed at the address specified in the instruction; the least sig-
nificant byte (bits 7..0) is accessed at the address + 1.

word:

For a load/store word instruction, four bytes are accessed. The most significant
byte (bits 31..24) is accessed at the address specified in the instruction; the least
significant byte (bits 7..0) is accessed at the address + 3.

doubleword or extended word:

For a load/store extended or floating-point load/store double instruction, eight
bytes are accessed. The most significant byte (bits 63..56) is accessed at the
address specified in the instruction; the least significant byte (bits 7..0) is accessed
at the address + 7.

1. See Cohen, D., “On Holy Wars and a Plea for Peace,” Computer 14:10 (October 1981), pp. 48-54.

6.3 Instruction Categories 71

For the deprecated integer load/store double instructions (LDD/STD), two big-
endian words are accessed. The word at the address specified in the instruction cor-
responds to the even register specified in the instruction; the word at address + 4
corresponds to the following odd-numbered register.

quadword:

For a load/store quadword instruction, sixteen bytes are accessed. The most signif-
icant byte (bits 127..120) is accessed at the address specified in the instruction; the
least significant byte (bits 7..0) is accessed at the address + 15.

Figure 35—Big-Endian Addressing Conventions

6.3.1.2.2 Little-Endian Addressing Convention

Within a multiple-byte integer, the byte with the smallest address is the least significant; a
byte’s significance increases as its address increases. The little-endian addressing conven-
tions are illustrated in figure 36 and defined as follows:

byte:

A load/store byte instruction accesses the addressed byte in both big- and little-
endian modes.

Byte

7 0

Halfword

15 0

Word

31 0

Doubleword /

63 32

31 0

78

15 78162324

47 3940485556

15 78162324

0 1

00 01 10 11

Address

Address<0> =

Address<1:0> =

Address<2:0> =

Address<2:0> =

000 001 010 011

100 101 110 111

Quadword

127 96

95 64

111 103104112119120

79 7172808788

Address<3:0> =

Address<3:0> =

0000 0001 0010 0011

0100 0101 0110 0111

63 32

31 0

47 3940485556

15 78162324

Address<3:0> =

Address<3:0> =

1000 1001 1010 1011

1100 1101 1110 1111

Extended word

72 6 Instructions

halfword:
For a load/store halfword instruction, two bytes are accessed. The least significant
byte (bits 7..0) is accessed at the address specified in the instruction; the most sig-
nificant byte (bits 15..8) is accessed at the address + 1.

word:
For a load/store word instruction, four bytes are accessed. The least significant
byte (bits 7..0) is accessed at the address specified in the instruction; the most sig-
nificant byte (bits 31..24) is accessed at the address + 3.

doubleword or extended word:
For a load/store extended or floating-point load/store double instruction, eight
bytes are accessed. The least significant byte (bits 7..0) is accessed at the address
specified in the instruction; the most significant byte (bits 63..56) is accessed at the
address + 7.
For the deprecated integer load/store double instructions (LDD/STD), two little-
endian words are accessed. The word at the address specified in the instruction + 4
corresponds to the even register specified in the instruction; the word at the address
specified in the instruction corresponds to the following odd-numbered register.

6.3 Instruction Categories 73

quadword:
For a load/store quadword instruction, sixteen bytes are accessed. The least signif-
icant byte (bits 7..0) is accessed at the address specified in the instruction; the most
significant byte (bits 127..120) is accessed at the address + 15

Figure 36—Little-Endian Addressing Conventions

6.3.1.3 Address Space Identifiers (ASIs)

Load and store instructions provide an implicit ASI value of ASI_PRIMARY or ASI_
PRIMARY_LITTLE. Load and store alternate instructions provide an explicit ASI, speci-
fied by the imm_asi instruction field when i = 0, or the contents of the ASI register when
i = 1.

ASIs 0016 through 7F16 are restricted; only privileged software is allowed to access them.
An attempt to access a restricted ASI by nonprivileged software results in a privileged_

action exception. ASIs 8016 through FF16 are unrestricted; software is allowed to access

Byte

7 0

Halfword

7 8

Word

7 24

Doubleword /

150

23 31168150

0 1

00 01 10 11

Address

Address<0> =

Address<1:0> =

Address<2:0> =

Address<2:0> =

000 001 010 011

100 101 110 111

Quadword Address<3:0> =

Address<3:0> =

0000 0001 0010 0011

0100 0101 0110 0111

Address<3:0> =

Address<3:0> =

1000 1001 1010 1011

1100 1101 1110 1111

39 5655 6348404732

7 2423 31168150

39 5655 6348404732

7 2423 31168150

103 120119 12711210411196

71 8887 9580727964

Extended word

74 6 Instructions

them whether the processor is operating in privileged or nonprivileged mode. This is illus-
trated in table 11.

The required ASI assignments are shown in table 12. In the table, “R” indicates a
restricted ASI, and “U” indicates an unrestricted ASI.

IMPL. DEP. #29: These ASI assignments are implementation-dependent: restricted ASIs

0016 ..0316, 0516..0B16, 0D16 ..0F16, 1216 ..1716, AND 1A16..7F16; and unrestricted ASIs

C016 .. FF16.

IMPL. DEP. #30: An implementation may choose to decode only a subset of the 8-bit ASI speci-

fier; however, it shall decode at least enough of the ASI to distinguish ASI_PRIMARY, ASI_

PRIMARY_LITTLE, ASI_AS_IF_USER_PRIMARY, ASI_AS_IF_USER_PRIMARY_LITTLE, ASI_

PRIMARY_NOFAULT, ASI_PRIMARY_NOFAULT_LITTLE, ASI_SECONDARY, ASI_

SECONDARY_LITTLE, ASI_AS_IF_USER_SECONDARY, ASI_AS_IF_USER_SECONDARY_

LITTLE, ASI_SECONDARY_NOFAULT, and ASI_SECONDARY_NOFAULT_LITTLE. If the nucleus

context is supported, then ASI_NUCLEUS and ASI_NUCLEUS_LITTLE must also be decoded

(impl. dep. #124). Finally, an implementation must always decode ASI bit<7> while

PSTATE.PRIV = 0, so that an attempt by nonprivileged software to access a restricted ASI will

always cause a privileged_action exception.

Table 11—Allowed Accesses to ASIs

Value Access Type
Processor state

(PSTATE.PRIV)
Result of ASI access

0016..7F16 Restricted
Nonprivileged (0) privileged_action exception

Privileged (1) Valid access

8016..FF16 Unrestricted
Nonprivileged (0) Valid access

Privileged (1) Valid access

6.3 Instruction Categories 75

1 These ASI assignments are implementation-dependent (impl. dep. #29) and available for use by

implementors. Code that references any of these ASIs may not be portable.

2 ASI_NUCLEUS{_LITTLE} are implementation-dependent (impl. dep. #124); they may not be sup-

ported in all implementations. See F.4.4, “Contexts,” for more information.

3 Use of these ASIs causes access checks to be performed as if the memory access instruction were

issued while PSTATE.PRIV = 0 (that is, in nonprivileged mode) and directed towards the corre-

sponding address space.

4 ASI_PRIMARY_NOFAULT{_LITTLE} and ASI_SECONDARY_NOFAULT{_LITTLE} refer to the

same address spaces as ASI_PRIMARY{_LITTLE} and ASI_SECONDARY{_LITTLE}, respectively,

with additional semantics as described in 8.3, “Addressing and Alternate Address Spaces.”

6.3.1.4 Separate Instruction Memory

A SPARC-V9 implementation may choose to place instruction and data in the same shared

address space and use hardware to keep the data and instruction memory consistent at all

times. It may also choose to overload independent address spaces for data and instructions

and allow them to become inconsistent when data writes are made to addresses shared

with the instruction space. A program containing such self-modifying code must issue a

FLUSH instruction or appropriate calls to system software to bring the address spaces to a

consistent state. See H.1.6, “Self-Modifying Code,” for more information.

Table 12—Address Space Identifiers (ASIs)

Value Name Access Address space

0016 ..0316 — R Implementation-dependent1

0416 ASI_NUCLEUS R Implementation-dependent2

0516 ..0B16 — R Implementation-dependent1

0C16 ASI_NUCLEUS_LITTLE R Implementation-dependent2

0D16 ..0F16 — R Implementation-dependent1

1016 ASI_AS_IF_USER_PRIMARY R Primary address space, user privilege3

1116 ASI_AS_IF_USER_SECONDARY R Secondary address space, user privilege3

1216 ..1716 — R Implementation-dependent1

1816 ASI_AS_IF_USER_PRIMARY_LITTLE R Primary address space, user privilege, little-endian3

1916 ASI_AS_IF_USER_SECONDARY_LITTLE R Secondary address space, user priv., little-endian3

1A16 ..7F16 — R Implementation-dependent1

8016 ASI_PRIMARY U Primary address space

8116 ASI_SECONDARY U Secondary address space

8216 ASI_PRIMARY_NOFAULT U Primary address space, no fault4

8316 ASI_SECONDARY_NOFAULT U Secondary address space, no fault4

8416 ..8716 — U Reserved

8816 ASI_PRIMARY_LITTLE U Primary address space, little-endian

8916 ASI_SECONDARY_LITTLE U Secondary address space, little-endian

8A16 ASI_PRIMARY_NOFAULT_LITTLE U Primary address space, no fault, little-endian4

8B16 ASI_SECONDARY_NOFAULT_LITTLE U Secondary address space, no fault, little-endian4

8C16 ..BF16 — U Reserved

C016 ..FF16 — U Implementation-dependent1

76 6 Instructions

6.3.2 Memory Synchronization Instructions

Two forms of memory barrier (MEMBAR) instructions allow programs to manage the
order and completion of memory references. Ordering MEMBARs induce a partial order-
ing between sets of loads and stores and future loads and stores. Sequencing MEMBARs
exert explicit control over completion of loads and stores. Both barrier forms are encoded
in a single instruction, with sub-functions bit-encoded in an immediate field.

Compatibility Note:

The deprecated STBAR instruction is a subcase of the MEMBAR instruction; it is identical in oper-

ation to the STBAR instruction of SPARC-V8, and is included only for compatibility.

6.3.3 Integer Arithmetic Instructions

The integer arithmetic instructions are generally triadic-register-address instructions that
compute a result which is a function of two source operands. They either write the result
into the destination register r[rd] or discard it. One of the source operands is always r[rs1].
The other source operand depends on the i bit in the instruction; if i = 0, the operand is
r[rs2]; if i = 1, the operand is the constant simm10, simm11, or simm13 sign-extended to
64 bits.

Note that the value of r[0] always reads as zero, and writes to it are ignored.

6.3.3.1 Setting Condition Codes

Most integer arithmetic instructions have two versions; one sets the integer condition
codes (icc and xcc) as a side effect; the other does not affect the condition codes. A special
comparison instruction for integer values is not needed, since it is easily synthesized using
the “subtract and set condition codes” (SUBcc) instruction. See G.3, “Synthetic Instruc-
tions,” for details.

6.3.3.2 Shift Instructions

Shift instructions shift an r register left or right by a constant or variable amount. None of
the shift instructions changes the condition codes.

6.3.3.3 Set High 22 Bits of Low Word

The “set high 22 bits of low word of an r register” instruction (SETHI) writes a 22-bit con-
stant from the instruction into bits 31 through 10 of the destination register. It clears the
low-order 10 bits and high-order 32 bits, and does not affect the condition codes. Its pri-
mary use is to construct constants in registers.

6.3.3.4 Integer Multiply/Divide

The integer multiply instruction performs a 64 × 64 → 64-bit operation; the integer divide
instructions perform 64 ÷ 64 → 64-bit operations. For compatibility with SPARC-V8,

6.3 Instruction Categories 77

32 × 32 → 64-bit multiply instructions, 64 ÷ 32 → 32-bit divide instructions, and the mul-
tiply step instruction are provided. Division by zero causes a division_by_zero exception.

6.3.3.5 Tagged Add/Subtract

The tagged add/subtract instructions assume tagged-format data, in which the tag is the
two low-order bits of each operand. If either of the two operands has a nonzero tag, or if
32-bit arithmetic overflow occurs, tag overflow is detected. TADDcc and TSUBcc set the
CCR.icc.V bit if tag overflow occurs; they set the CCR.xcc.V bit if 64-bit arithmetic over-
flow occurs. The trapping versions (TADDccTV, TSUBccTV) of these instructions cause
a tag_overflow trap if tag overflow occurs. If 64-bit arithmetic overflow occurs but tag over-
flow does not, TADDccTV and TSUBccTV set the CCR.xcc.V bit but do not trap.

6.3.4 Control-Transfer Instructions (CTIs)

These are the basic control-transfer instruction types:

— Conditional branch (Bicc, BPcc, BPr, FBfcc, FBPfcc)

— Unconditional Branch

— Call and Link (CALL)

— Jump and Link (JMPL, RETURN)

— Return from trap (DONE, RETRY)

— Trap (Tcc)

A control-transfer instruction functions by changing the value of the next program counter
(nPC) or by changing the value of both the program counter (PC) and the next program
counter (nPC). When only the next program counter, nPC, is changed, the effect of the
transfer of control is delayed by one instruction. Most control transfers in SPARC-V9 are
of the delayed variety. The instruction following a delayed control transfer instruction is
said to be in the delay slot of the control transfer instruction. Some control transfer
instructions (branches) can optionally annul, that is, not execute, the instruction in the
delay slot, depending upon whether the transfer is taken or not-taken. Annulled instruc-
tions have no effect upon the program-visible state nor can they cause a trap.

Programming Note:

The annul bit increases the likelihood that a compiler can find a useful instruction to fill the delay

slot after a branch, thereby reducing the number of instructions executed by a program. For exam-

ple, the annul bit can be used to move an instruction from within a loop to fill the delay slot of the

branch that closes the loop. Likewise, the annul bit can be used to move an instruction from either

the “else” or “then” branch of an “if-then-else” program block to the delay slot of the branch that

selects between them. Since a full set of conditions are provided, a compiler can arrange the code

(possibly reversing the sense of the condition) so that an instruction from either the “else” branch or

the “then” branch can be moved to the delay slot.

Table 13 below defines the value of the program counter and the value of the next program
counter after execution of each instruction. Conditional branches have two forms:
branches that test a condition, represented in the table by “Bcc,” and branches that are

78 6 Instructions

unconditional, that is, always or never taken, represented in the table by “B.” The effect of
an annulled branch is shown in the table through explicit transfers of control, rather than
by fetching and annulling the instruction.

The effective address, EA in table 13, specifies the target of the control transfer instruc-
tion. The effective address is computed in different ways, depending on the particular
instruction:

PC-relative Effective Address:
A PC-relative effective address is computed by sign extending the instruction’s
immediate field to 64-bits, left-shifting the word displacement by two bits to create
a byte displacement, and adding the result to the contents of the PC.

Register-Indirect Effective Address:
A register-indirect effective address computes its target address as either
r[rs1]+r[rs2] if i = 0, or r[rs1]+sign_ext(simm13) if i = 1.

Trap Vector Effective Address:
A trap vector effective address first computes the software trap number as the least
significant seven bits of r[rs1]+r[rs2] if i = 0, or as the least significant seven bits
of r[rs1]+sw_trap# if i = 1. The trap level, TL, is incremented. The hardware trap
type is computed as 256 + sw_trap# and stored in TT[TL]. The effective address is
generated by concatenating the contents of the TBA register, the “TL>0” bit, and
the contents of TT[TL]. See 5.2.8, “Trap Base Address (TBA),” for details.

Trap State Effective Address:
A trap state effective address is not computed, but is taken directly from either
TPC[TL] or TNPC[TL].

Compatibility Note:

SPARC-V8 specified that the delay instruction was always fetched, even if annulled, and that an

annulled instruction could not cause any traps. SPARC-V9 does not require the delay instruction to

be fetched if it is annulled.

Compatibility Note:

SPARC-V8 left as undefined the result of executing a delayed conditional branch that had a delayed

control transfer in its delay slot. For this reason, programmers should avoid such constructs when

backwards compatibility is an issue.

6.3 Instruction Categories 79

6.3.4.1 Conditional Branches

A conditional branch transfers control if the specified condition is true. If the annul bit is
0, the instruction in the delay slot is always executed. If the annul bit is 1, the instruction in
the delay slot is not executed unless the conditional branch is taken. Note that the annul
behavior of a taken conditional branch is different from that of an unconditional branch.

6.3.4.2 Unconditional Branches

An unconditional branch transfers control unconditionally if its specified condition is
“always”; it never transfers control if its specified condition is “never.” If the annul bit is 0,
the instruction in the delay slot is always executed. If the annul bit is 1, the instruction in
the delay slot is never executed. Note that the annul behavior of an unconditional branch
is different from that of a taken conditional branch.

6.3.4.3 CALL and JMPL instructions

The CALL instruction writes the contents of the PC, which points to the CALL instruction
itself, into r[15] (out register 7) and then causes a delayed transfer of control to a PC-rela-
tive effective address. The value written into r[15] is visible to the instruction in the delay
slot.

The JMPL instruction writes the contents of the PC, which points to the JMPL instruction
itself, into r[rd] and then causes a delayed transfer of control to a PC-relative effective
address. The value written into r[rd] is visible to the instruction in the delay slot.

Table 13—Control Transfer Characteristics

Instruction group
Address

form
Delayed Taken

Annul
bit

New PC New nPC

Non-CTIs — — — — nPC nPC + 4

Bcc PC-relative Yes Yes 0 nPC EA

Bcc PC-relative Yes No 0 nPC nPC + 4

Bcc PC-relative Yes Yes 1 nPC EA

Bcc PC-relative Yes No 1 nPC + 4 nPC + 8

B PC-relative Yes Yes 0 nPC EA

B PC-relative Yes No 0 nPC nPC + 4

B PC-relative Yes Yes 1 EA EA + 4

B PC-relative Yes No 1 nPC + 4 nPC + 8

CALL PC-relative Yes — — nPC EA

JMPL, RETURN Register-ind. Yes — — nPC EA

DONE Trap state No — — TNPC[TL] TNPC[TL] + 4

RETRY Trap state No — — TPC[TL] TNPC[TL]

Tcc Trap vector No Yes — EA EA + 4

Tcc Trap vector No No — nPC nPC + 4

80 6 Instructions

When PSTATE.AM = 1, the value of the high order 32-bits transmitted to r[15] by the
CALL instruction or to r[rd] by the JMPL instruction is implementation-dependent. (impl.
dep #125).

6.3.4.4 RETURN Instruction

The RETURN instruction is used to return from a trap handler executing in nonpriviliged
mode. RETURN combines the control-transfer characteristics of a JMPL instruction with
r[0] specified as the destination register and the register-window semantics of a
RESTORE instruction.

6.3.4.5 DONE and RETRY Instructions

The DONE and RETRY instructions are used by privileged software to return from a trap.
These instructions restore the machine state to values saved in the TSTATE register.

RETRY returns to the instruction that caused the trap in order to reexecute it. DONE
returns to the instruction pointed to by the value of nPC associated with the instruction
that caused the trap, that is, the next logical instruction in the program. DONE presumes
that the trap handler did whatever was requested by the program and that execution should
continue.

6.3.4.6 Trap Instruction (Tcc)

The Tcc instruction initiates a trap if the condition specified by its cond field matches the
current state of the condition code register specified by its cc field, otherwise it executes as
a NOP. If the trap is taken, it increments the TL register, computes a trap type which is
stored in TT[TL], and transfers to a computed address in the trap table pointed to by TBA.
See 5.2.8, “Trap Base Address (TBA).”

A Tcc instruction can specify one of 128 software trap types. When a Tcc is taken, 256
plus the seven least significant bits of the sum of the Tcc’s source operands is written to
TT[TL]. The only visible difference between a software trap generated by a Tcc instruc-
tion and a hardware trap is the trap number in the TT register. See Chapter 7, “Traps,” for
more information.

Programming Note:

Tcc can be used to implement breakpointing, tracing, and calls to supervisor software. Tcc can also

be used for run-time checks, such as out-of-range array index checks or integer overflow checks.

6.3.5 Conditional Move Instructions

6.3.5.1 MOVcc and FMOVcc Instructions

The MOVcc and FMOVcc instructions copy the contents of any integer or floating-point
register to a destination integer or floating-point register if a condition is satisfied. The
condition to test is specified in the instruction and may be any of the conditions allowed in
conditional delayed control-transfer instructions. This condition is tested against one of

6.3 Instruction Categories 81

the six condition codes (icc, xcc, fcc0, fcc1, fcc2, and fcc3) as specified by the instruction.
For example:

fmovdg %fcc2, %f20, %f22

moves the contents of the double-precision floating-point register %f20 to register %f22
if floating-point condition code number 2 (fcc2) indicates a greater-than relation
(FSR.fcc2 = 2). If fcc2 does not indicate a greater-than relation (FSR.fcc2 ≠ 2), then the
move is not performed.

The MOVcc and FMOVcc instructions can be used to eliminate some branches in pro-
grams. In most implementations, branches will be more expensive than the MOVcc or
FMOVcc instructions. For example, the following C statement:

if (A > B) X = 1; else X = 0;

can be coded as:

cmp %i0, %i2 ! (A > B)

or %g0, 0, %i3 ! set X = 0

movg %xcc, %g0,1, %i3 ! overwrite X with 1 if A > B

which eliminates the need for a branch.

6.3.5.2 MOVr and FMOVr Instructions

The MOVr and FMOVr instructions allow the contents of any integer or floating-point
register to be moved to a destination integer or floating-point register if a condition speci-
fied by the instruction is satisfied. The condition to test may be any of the following:

Any of the integer registers may be tested for one of the conditions, and the result used to
control the move. For example,

movrnz %i2, %l4, %l6

moves integer register %l4 to integer register %l6 if integer register %i2 contains a non-
zero value.

MOVr and FMOVr can be used to eliminate some branches in programs, or to emulate
multiple unsigned condition codes by using an integer register to hold the result of a com-
parison.

Condition Description

NZ Nonzero

Z Zero

GEZ Greater than or equal to zero

LZ Less than zero

LEZ Less than or equal to zero

GZ Greater than zero

82 6 Instructions

6.3.6 Register Window Management Instructions

This subsection describes the instructions used to manage register windows in SPARC-
V9. The privileged registers affected by these instructions are described in 5.2.10, “Regis-
ter-Window State Registers.”

6.3.6.1 SAVE Instruction

The SAVE instruction allocates a new register window and saves the caller’s register win-
dow by incrementing the CWP register.

If CANSAVE = 0, execution of a SAVE instruction causes a window_spill exception.

If CANSAVE ≠ 0, but the number of clean windows is zero, that is:

(CLEANWIN – CANRESTORE) = 0

then SAVE causes a clean_window exception.

If SAVE does not cause an exception, it performs an ADD operation, decrements CAN-
SAVE, and increments CANRESTORE. The source registers for the ADD are from the
old window (the one to which CWP pointed before the SAVE), while the result is written
into a register in the new window (the one to which the incremented CWP points).

6.3.6.2 RESTORE Instruction

The RESTORE instruction restores the previous register window by decrementing the
CWP register.

If CANRESTORE = 0, execution of a RESTORE instruction causes a window_fill excep-
tion.

If RESTORE does not cause an exception, it performs an ADD operation, decrements
CANRESTORE, and increments CANSAVE. The source registers for the ADD are from
the “old” window (the one to which CWP pointed before the RESTORE), while the result
is written into a register in the “new” window (the one to which the decremented CWP
points).

Programming Note:

The following describes a common convention for use of register windows, SAVE, RESTORE,

CALL, and JMPL instructions.

A procedure is invoked by executing a CALL (or a JMPL) instruction. If the procedure requires a

register window, it executes a SAVE instruction. A routine that does not allocate a register window

of its own (possibly a leaf procedure) should not modify any windowed registers except out regis-

ters 0 through 6. See H.1.2, “Leaf-Procedure Optimization.”

A procedure that uses a register window returns by executing both a RESTORE and a JMPL

instruction. A procedure that has not allocated a register window returns by executing a JMPL only.

The target address for the JMPL instruction is normally eight plus the address saved by the calling

instruction, that is, to the instruction after the instruction in the delay slot of the calling instruction.

6.3 Instruction Categories 83

The SAVE and RESTORE instructions can be used to atomically establish a new memory stack

pointer in an r register and switch to a new or previous register window. See H.1.4, “Register Allo-

cation within a Window.”

6.3.6.3 SAVED Instruction

The SAVED instruction should be used by a spill trap handler to indicate that a window
spill has completed successfully. It increments CANSAVE:

CANSAVE ← (CANSAVE + 1)

If the saved window belongs to a different address space (OTHERWIN ≠ 0), it decrements
OTHERWIN:

OTHERWIN ← (OTHERWIN – 1)

Otherwise, the saved window belongs to the current address space (OTHERWIN = 0), so
SAVED decrements CANRESTORE:

CANRESTORE ← (CANRESTORE – 1)

6.3.6.4 RESTORED Instruction

The RESTORED instruction should be used by a fill trap handler to indicate that a window
has been filled successfully. It increments CANRESTORE:

CANRESTORE ← (CANRESTORE + 1)

If the restored window replaces a window that belongs to a different address space
(OTHERWIN ≠ 0), it decrements OTHERWIN:

OTHERWIN ← (OTHERWIN – 1)

Otherwise, the restored window belongs to the current address space (OTHERWIN = 0),
so RESTORED decrements CANSAVE:

CANSAVE ← (CANSAVE – 1)

If CLEANWIN is less than NWINDOWS-1, the RESTORED instruction increments
CLEANWIN:

if (CLEANWIN < (NWINDOWS-1)) then CLEANWIN ← (CLEANWIN + 1)

6.3.6.5 Flush Windows Instruction

The FLUSHW instruction flushes all of the register windows except the current window,
by performing repetitive spill traps. The FLUSHW instruction is implemented by causing
a spill trap if any register window (other than the current window) has valid contents. The
number of windows with valid contents is computed as

NWINDOWS – 2 – CANSAVE

84 6 Instructions

If this number is nonzero, the FLUSHW instruction causes a spill trap. Otherwise,
FLUSHW has no effect. If the spill trap handler exits with a RETRY instruction, the
FLUSHW instruction will continue causing spill traps until all the register windows
except the current window have been flushed.

6.3.7 State Register Access

The read/write state register instructions access program-visible state and status registers.
These instructions read/write the state registers into/from r registers. A read/write Ancil-
lary State Register instruction is privileged only if the accessed register is privileged.

6.3.8 Privileged Register Access

The read/write privileged register instructions access state and status registers that are vis-
ible only to privileged software. These instructions read/write privileged registers into/
from r registers. The read/write privileged register instructions are privileged.

6.3.9 Floating-Point Operate (FPop) Instructions

Floating-point operate instructions (FPops) are generally triadic-register-address instruc-
tions. They compute a result that is a function of one or two source operands and place the
result in one or more destination f registers. The exceptions are:

— Floating-point convert operations, which use one source and one destination oper-
and

— Floating-point compare operations, which do not write to an f register, but update
one of the fccn fields of the FSR instead

The term “FPop” refers to those instructions encoded by the FPop1 and FPop2 opcodes
and does not include branches based on the floating-point condition codes (FBfcc and
FBPfcc) or the load/store floating-point instructions.

The FMOVcc instructions function for the floating-point registers as the MOVcc instruc-
tions do for the integer registers. See 6.3.5.1, “MOVcc and FMOVcc Instructions.”

The FMOVr instructions function for the floating-point registers as the MOVr instructions
do for the integer registers. See 6.3.5.2, “MOVr and FMOVr Instructions.”

If there is no floating-point unit present or if PSTATE.PEF = 0 or FPRS.FEF = 0, any
instruction that attempts to access an FPU register, including an FPop instruction, gener-
ates an fp_disabled exception.

All FPop instructions clear the ftt field and set the cexc field, unless they generate an
exception. Floating-point compare instructions also write one of the fccn fields. All FPop
instructions that can generate IEEE exceptions set the cexc and aexc fields, unless they
generate an exception. FABS(s,d,q), FMOV(s,d,q), FMOVcc(s,d,q), FMOVr(s,d,q), and
FNEG(s,d,q) cannot generate IEEE exceptions, so they clear cexc and leave aexc

unchanged. FMOVcc and FMOVr instructions clear these FSR fields regardless of the
value of the conditional predicate.

6.4 Register Window Management 85

IMPL. DEP. #3: An implementation may indicate that a floating-point instruction did not produce a

correct IEEE STD 754-1985 result by generating a special unfinished_FPop or unimplemented_

FPop exception. Privileged-mode software must emulate any functionality not present in the hard-

ware.

6.3.10 Implementation-Dependent Instructions

SPARC-V9 provides two instructions that are entirely implementation-dependent,
IMPDEP1 and IMPDEP2 (impl. dep. #106).

Compatibility Note:

The IMPDEPn instructions replace the CPopn instructions in SPARC-V8.

See A.23, “Implementation-Dependent Instructions,” for more information.

6.3.11 Reserved Opcodes and Instruction Fields

An attempt to execute an opcode to which no instruction is assigned shall cause a trap.
Specifically, attempting to execute a reserved FPop causes an fp_exception_other trap (with
FSR.ftt = unimplemented_FPop); attempting to execute any other reserved opcode shall
cause an illegal_instruction trap. See Appendix E, “Opcode Maps,” for a complete enumera-
tion of the reserved opcodes.

6.4 Register Window Management

The state of the register windows is determined by the contents of the set of privileged reg-
isters described in 5.2.10, “Register-Window State Registers.” Those registers are affected
by the instructions described in 6.3.6, “Register Window Management Instructions.” Priv-
ileged software can read/write these state registers directly by using RDPR/WRPR
instructions.

6.4.1 Register Window State Definition

In order for the state of the register windows to be consistent, the following must always
be true:

CANSAVE + CANRESTORE + OTHERWIN = NWINDOWS – 2

Figure 3 on page 34 shows how the register windows are partitioned to obtain the above
equation. In figure 3, the partitions are as follows:

— The current window and the window that overlaps two other valid windows and so
must not be used (in the figure, windows 0 and 4, respectively) are always present
and account for the 2 subtracted from NWINDOWS in the right-hand side of the
equation.

— Windows that do not have valid contents and can be used (via a SAVE instruction)
without causing a spill trap. These windows (windows 1, 2 and 3 in the figure) are
counted in CANSAVE.

86 6 Instructions

— Windows that have valid contents for the current address space and can be used
(via the RESTORE instruction) without causing a fill trap. These windows (win-
dow 7 in the figure) are counted in CANRESTORE.

— Windows that have valid contents for an address space other than the current
address space. An attempt to use these windows via a SAVE (RESTORE) instruc-
tion results in a spill (fill) trap to a separate set of trap vectors, as discussed in the
following subsection. These windows (windows 5 and 6 in the figure) are counted
in OTHERWIN.

In addition,

CLEANWIN ≥ CANRESTORE

since CLEANWIN is the sum of CANRESTORE and the number of clean windows fol-
lowing CWP.

In order to use the window-management features of the architecture as described here, the
state of the register windows must be kept consistent at all times, except in trap handlers
for window spilling, filling, and cleaning. While handling window traps the state may be
inconsistent. Window spill/fill strap handlers should be written such that a nested trap can
be taken without destroying state.

6.4.2 Register Window Traps

Window traps are used to manage overflow and underflow conditions in the register win-
dows, to support clean windows, and to implement the FLUSHW instruction.

6.4.2.1 Window Spill and Fill Traps

A window overflow occurs when a SAVE instruction is executed and the next register win-
dow is occupied (CANSAVE = 0). An overflow causes a spill trap that allows privileged
software to save the occupied register window in memory, thereby making it available for
use.

A window underflow occurs when a RESTORE instruction is executed and the previous
register window is not valid (CANRESTORE = 0). An underflow causes a fill trap that
allows privileged software to load the registers from memory.

6.4.2.2 Clean-Window Trap

SPARC-V9 provides the clean_window trap so that software can create a secure environ-
ment in which it is guaranteed that register windows contain only data from the same
address space.

A clean register window is one in which all of the registers, including uninitialized regis-
ters, contain either zero or data assigned by software executing in the address space to
which the window belongs. A clean window cannot contain register values from another
process, that is, software operating in a different address space.

6.4 Register Window Management 87

Supervisor software specifies the number of windows that are clean with respect to the
current address space in the CLEANWIN register. This includes register windows that can
be restored (the value in the CANRESTORE register) and the register windows following
CWP that can be used without cleaning. Therefore, the number of clean windows that are
available to be used by the SAVE instruction is

CLEANWIN – CANRESTORE

The SAVE instruction causes a clean_window trap if this value is zero. This allows supervi-
sor software to clean a register window before it is accessed by a user.

6.4.2.3 Vectoring of Fill/Spill Traps

In order to make handling of fill and spill traps efficient, SPARC-V9 provides multiple
trap vectors for the fill and spill traps. These trap vectors are determined as follows:

— Supervisor software can mark a set of contiguous register windows as belonging to
an address space different from the current one. The count of these register win-
dows is kept in the OTHERWIN register. A separate set of trap vectors (fill_n_other

and spill_n_other) is provided for spill and fill traps for these register windows (as
opposed to register windows that belong to the current address space).

— Supervisor software can specify the trap vectors for fill and spill traps by presetting
the fields in the WSTATE register. This register contains two subfields, each three
bits wide. The WSTATE.NORMAL field is used to determine one of eight spill
(fill) vectors to be used when the register window to be spilled (filled) belongs to
the current address space (OTHERWIN = 0). If the OTHERWIN register is non-
zero, the WSTATE.OTHER field selects one of eight fill_n_other (spill_n_other) trap
vectors.

See Chapter 7, “Traps,” for more details on how the trap address is determined.

6.4.2.4 CWP on Window Traps

On a window trap the CWP is set to point to the window that must be accessed by the trap
handler, as follows (note that all arithmetic on CWP is done modulo NWINDOWS):

— If the spill trap occurs due to a SAVE instruction (when CANSAVE = 0), there is
an overlap window between the CWP and the next register window to be spilled

CWP ← (CWP + 2) mod NWINDOWS

If the spill trap occurs due to a FLUSHW instruction, there can be unused windows
(CANSAVE) in addition to the overlap window, between the CWP and the window
to be spilled

CWP ← (CWP + CANSAVE + 2) mod NWINDOWS

Implementation Note:

All spill traps can use:

CWP ← (CWP + CANSAVE + 2) mod NWINDOWS

88 6 Instructions

since CANSAVE is zero whenever a trap occurs due to a SAVE instruction.

— On a fill trap, the window preceding CWP must be filled

CWP ← (CWP – 1) mod NWINDOWS

— On a clean_window trap, the window following CWP must be cleaned. Then

CWP ← (CWP + 1) mod NWINDOWS

6.4.2.5 Window Trap Handlers

The trap handlers for fill, spill and clean_window traps must handle the trap appropriately
and return using the RETRY instruction, to reexecute the trapped instruction. The state of
the register windows must be updated by the trap handler, and the relationship among
CLEANWIN, CANSAVE, CANRESTORE, and OTHERWIN must remain consistent.
The following recommendations should be followed:

— A spill trap handler should execute the SAVED instruction for each window that it
spills.

— A fill trap handler should execute the RESTORED instruction for each window
that it fills.

— A clean_window trap handler should increment CLEANWIN for each window that
it cleans:

CLEANWIN ← (CLEANWIN + 1)

Window trap handlers in SPARC-V9 can be very efficient. See H.2.2, “Example Code for
Spill Handler,” for details and sample code.

89

7 Traps

7.1 Overview

A trap is a vectored transfer of control to supervisor software through a trap table that con-

tains the first eight (thirty-two for fill/spill traps) instructions of each trap handler. The

base address of the table is established by supervisor software, by writing the Trap Base

Address (TBA) register. The displacement within the table is determined by the trap type

and the current trap level (TL). One-half of the table is reserved for hardware traps; one-

quarter is reserved for software traps generated by Tcc instructions; the remaining quarter

is reserved for future use.

A trap behaves like an unexpected procedure call. It causes the hardware to

(1) Save certain processor state (program counters, CWP, ASI, CCR, PSTATE, and

the trap type) on a hardware register stack

(2) Enter privileged execution mode with a predefined PSTATE

(3) Begin executing trap handler code in the trap vector

When the trap handler has finished, it uses either a DONE or RETRY instruction to return.

A trap may be caused by a Tcc instruction, an SIR instruction, an instruction-induced

exception, a reset, an asynchronous exception, or an interrupt request not directly related

to a particular instruction. The processor must appear to behave as though, before execut-

ing each instruction, it determines if there are any pending exceptions or interrupt

requests. If there are pending exceptions or interrupt requests, the processor selects the

highest-priority exception or interrupt request and causes a trap.

Thus, an exception is a condition that makes it impossible for the processor to continue

executing the current instruction stream without software intervention. A trap is the action

taken by the processor when it changes the instruction flow in response to the presence of

an exception, interrupt, or Tcc instruction.

A catastrophic error exception is due to the detection of a hardware malfunction from

which, due to the nature of the error, the state of the machine at the time of the exception

cannot be restored. Since the machine state cannot be restored, execution after such an

exception may not be resumable. An example of such an error is an uncorrectable bus par-

ity error.

90 7 Traps

IMPL. DEP. #31: The causes and effects of catastrophic errors are implementation-dependent.

They may cause precise, deferred, or disrupting traps.

7.2 Processor States, Normal and Special Traps

The processor is always in one of three discrete states:

— execute_state, which is the normal execution state of the processor

— RED_state (Reset, Error, and Debug state), which is a restricted execution state
reserved for processing traps that occur when TL = MAXTL – 1, and for process-
ing hardware- and software-initiated resets

— error_state, which is a halted state that is entered as a result of a trap when
TL = MAXTL, or due to an unrecoverable error

Traps processed in execute_state are called normal traps. Traps processed in RED_state
are called special traps. Exceptions that cause the processor to enter error_state are
recorded by the hardware and are made available in the TT field after the processor is
reset.

Figure 37 shows the processor state diagram.

Figure 37—Processor State Diagram

7.2.1 RED_state

RED_state is an acronym for Reset, Error, and Debug state. The processor enters RED_
state under any one of the following conditions:

— A trap is taken when TL = MAXTL–1.

RED_stateexecute_state error_state

POR,

Including Power Off

Trap or SIR @

Trap @

TL = MAXTL

Trap @

TL = MAXTL–1,

DONE,

TL = MAXTL

RED = 1

RED = 0
RETRY,

WDR,

Any State

Trap or SIR @

TL < MAXTL

Trap @

TL < MAXTL–1
XIR

Trap or SIR @

TL< MAXTL,

7.2 Processor States, Normal and Special Traps 91

— Any of the four reset requests occurs (POR, WDR, XIR, SIR).

— An implementation-dependent trap, internal_processor_error exception, or
catastrophic_error exception occurs.

— System software sets PSTATE.RED = 1.

RED_state serves two mutually exclusive purposes:

— During trap processing, it indicates that there are no more available trap levels; that
is, if another nested trap is taken, the processor will enter error_state and halt.
RED_state provides system software with a restricted execution environment.

— It provides the execution environment for all reset processing.

RED_state is indicated by PSTATE.RED. When this bit is set, the processor is in RED_
state; when this bit is clear, the processor is not in RED_state, independent of the value of
TL. Executing a DONE or RETRY instruction in RED_state restores the stacked copy of
the PSTATE register, which clears the PSTATE.RED flag if the stacked copy had it
cleared. System software can also set or clear the PSTATE.RED flag with a WRPR
instruction, which also forces the processor to enter or exit RED_state, respectively. In this
case, the WRPR instruction should be placed in the delay slot of a jump, so that the PC can
be changed in concert with the state change.

Programming Note:

Setting TL = MAXTL with a WRPR instruction does not also set PSTATE.RED = 1; nor does it

alter any other machine state. The values of PSTATE.RED and TL are independent.

7.2.1.1 RED_state Trap Table

Traps occurring in RED_state or traps that cause the processor to enter RED_state use an
abbreviated trap vector. The RED_state trap vector is constructed so that it can overlay the
normal trap vector if necessary. Figure 38 illustrates the RED_state trap vector.

†TT = 2 if a watchdog reset occurs while the processor is not in error_state; TT = trap type of the

exception that caused entry into error_state if a watchdog reset (WDR) occurs in error_state.

‡TT = 3 if an externally initiated reset (XIR) occurs while the processor is not in error_state;

TT = trap type of the exception that caused entry into error_state if the externally initiated reset

occurs in error_state.

*TT = trap type of the exception. See table 14 on page 102.

Figure 38—RED_state Trap Vector Layout

Offset TT Reason

0016 0 Reserved (SPARC-V8 reset)

2016 1 Power-on reset (POR)

4016 2† Watchdog reset (WDR)

6016 3‡ Externally initiated reset (XIR)

8016 4 Software-initiated reset (SIR)

A016 * All other exceptions in RED_state

92 7 Traps

IMPL. DEP. #114: The RED_state trap vector is located at an implementation-dependent address

referred to as RSTVaddr.

Implementation Note:

The RED_state trap handlers should be located in trusted memory, for example, in ROM. The value

of RSTVaddr may be hard-wired in an implementation, but it is suggested that it be externally setta-

ble, for instance by scan, or read from pins at power-on reset.

7.2.1.2 RED_state Execution Environment

In RED_state the processor is forced to execute in a restricted environment by overriding
the values of some processor controls and state registers.

Programming Note:

The values are overridden, not set. This is to allow them to be switched atomically.

IMPL. DEP. #115: A processor’s behavior in RED_state is implementation-dependent.

The following are recommended:

(1) Instruction address translation is a straight-through physical map; that is, the
MMU is always suppressed for instruction access in RED_state.

(2) Data address translation is handled normally; that is, the MMU is used if it is
enabled. However, any event that causes the processor to enter RED_state also dis-
ables the MMU. The handler executing in RED_state can reenable the MMU.

(3) All references are uncached.

(4) Cache coherence in RED_state is the problem of the system designer and system
programmer. Normally, cache enables are left unchanged by RED_state; thus, if a
cache is enabled, it will continue to participate in cache coherence until explicitly
disabled by recovery code. A cache may be disabled automatically if an error is
detected in the cache.

(5) Unessential functional units (for example, the floating-point unit) and capabilities
(for example, superscalar execution) should be disabled.

(6) If a store buffer is present, it should be emptied, if possible, before entering RED_
state.

(7) PSTATE.MM is set to TSO.

Programming Note:

When RED_state is entered due to component failures, the handler should attempt to recover from

potentially catastrophic error conditions or to disable the failing components. When RED_state is

entered after a reset, the software should create the environment necessary to restore the system to a

running state.

7.2 Processor States, Normal and Special Traps 93

7.2.1.3 RED_state Entry Traps

The following traps are processed in RED_state in all cases

— POR (Power-on reset)

— WDR (Watchdog reset)

— XIR (Externally initiated reset)

In addition, the following trap is processed in RED_state if TL < MAXTL when the trap is
taken. Otherwise it is processed in error_state.

— SIR (Software-initiated Reset)

An implementation also may elect to set PSTATE.RED = 1 after an internal_processor_

error trap (impl. dep. #31), or any of the implementation-dependent traps (impl. dep. #35).

Implementation-dependent traps may force additional state changes, such as disabling
failing components.

Traps that occur when TL = MAXTL – 1 also set PSTATE.RED = 1; that is, any trap han-
dler entered with TL = MAXTL runs in RED_state.

Any nonreset trap that sets PSTATE.RED = 1 or that occurs when PSTATE.RED = 1,
branches to a special entry in the RED_state trap vector at RSTVaddr + A016.

In systems in which it is desired that traps not enter RED_state, the RED_state handler
may transfer to the normal trap vector by executing the following code:

! Assumptions:

! -- In RED_state handler, therefore we know that

! PSTATE.RED = 1, so a WRPR can directly toggle it to 0

! and, we don’t have to worry about intervening traps.

! -- Registers %g1 and %g2 are available as scratch registers.

...

#define PSTATE_RED 0x0020 ! PSTATE.RED is bit 5

...

rdpr %tt,%g1 ! Get the normal trap vector

rdpr %tba,%g2 ! address in %g2.

add %g1,%g2,%g2

rdpr %pstate,%g1 ! Read PSTATE into %g1.

jmpl %g2 ! Jump to normal trap vector,

wrpr %g1,PSTATE_RED,%pstate ! toggling PSTATE.RED to 0.

7.2.1.4 RED_state Software Considerations

In effect, RED_state reserves one level of the trap stack for recovery and reset processing.
Software should be designed to require only MAXTL – 1 trap levels for normal process-

94 7 Traps

ing. That is, any trap that causes TL = MAXTL is an exceptional condition that should
cause entry to RED_state.

Since the minimum value for MAXTL is 4, typical usage of the trap levels is as follows:

Programming Note:

In order to log the state of the processor, RED_state-handler software needs either a spare register

or a preloaded pointer to a save area. To support recovery, the operating system might reserve one

of the alternate global registers, (for example, %a7) for use in RED_state.

7.2.2 Error_state

The processor enters error_state when a trap occurs while the processor is already at its
maximum supported trap level, that is, when TL = MAXTL.

IMPL. DEP. #39: The processor may enter error_state when an implementation-dependent error

condition occurs.

IMPL. DEP. #40: Effects when error_state is entered are implementation-dependent, but it is rec-

ommended that as much processor state as possible be preserved upon entry to error_state.

In particular:

(1) The processor should present an external indication that it has entered error_state.

(2) The processor should halt, that is, make no further changes to system state.

(3) The processor should be restarted by a watchdog reset (WDR). Alternatively, it
may be restarted by an externally initiated reset (XIR) or a power-on reset (POR).

After a reset that brings the processor out of error_state, the processor enters RED_state
with TL set as defined in table 18 on page 106; the trap state describes the state at the time
of entry into error_state. In particular, for WDR and XIR, TT is set to the value of the orig-
inal trap that caused entry to error_state, not the normal TT value for the WDR or XIR.

7.3 Trap Categories

An exception or interrupt request can cause any of the following trap types:

— A precise trap

TL Usage

0 Normal execution

1 System calls; interrupt handlers; instruction emulation

2 Window spill / fill

3 Page-fault handler

4 RED_state handler

7.3 Trap Categories 95

— A deferred trap

— A disrupting trap

— A reset trap

7.3.1 Precise Traps

A precise trap is induced by a particular instruction and occurs before any program-visi-
ble state has been changed by the trap-inducing instruction. When a precise trap occurs,
several conditions must be true.

— The PC saved in TPC[TL] points to the instruction that induced the trap, and the
nPC saved in NTPC[TL] points to the instruction that was to be executed next.

— All instructions issued before the one that induced the trap have completed execu-
tion.

— Any instructions issued after the one that induced the trap remain unexecuted.

Programming Note:

Among the actions the trap handler software might take after a precise trap are:

— Return to the instruction that caused the trap and reexecute it, by executing a RETRY instruc-

tion (PC ← old PC, nPC ← old nPC)

— Emulate the instruction that caused the trap and return to the succeeding instruction by execut-

ing a DONE instruction (PC ← old nPC, nPC ← old nPC + 4)

— Terminate the program or process associated with the trap

7.3.2 Deferred Traps

A deferred trap is also induced by a particular instruction, but unlike a precise trap, a
deferred trap may occur after program-visible state has been changed. Such state may
have been changed by the execution of either the trap-inducing instruction itself or by one
or more other instructions.

If an instruction induces a deferred trap and a precise trap occurs simultaneously, the
deferred trap may not be deferred past the precise trap, except that a floating-point excep-
tion may be deferred past a precise trap.

Associated with a particular deferred-trap implementation, there must exist:

— An instruction that causes a potentially outstanding deferred-trap exception to be
taken as a trap.

— Privileged instructions that access the deferred-trap queues. This queue contains
the state information needed by supervisor software to emulate the deferred-trap-

96 7 Traps

inducing instruction, and to resume execution of the trapped instruction stream.
See 5.2.13, “IU Deferred-Trap Queue.”)

Note that resuming execution may require the emulation of instructions that had not com-
pleted execution at the time of the deferred trap, that is, those instructions in the deferred-
trap queue.

IMPL. DEP. #32: Whether any deferred traps (and associated deferred-trap queues) are present is

implementation-dependent.

Note that to avoid deferred traps entirely, an implementation would need to execute all
implemented floating-point instructions synchronously with the execution of integer
instructions, causing all generated exceptions to be precise. A deferred-trap queue (e.g.,
FQ) would be superfluous in such an implementation.

Programming Note:

Among the actions software can take after a deferred trap are:

— Emulate the instruction that caused the exception, emulate or cause to execute any other execu-

tion-deferred instructions that were in an associated deferred-trap state queue, and use RETRY

to return control to the instruction at which the deferred trap was invoked, or

— Terminate the program or process associated with the trap.

7.3.3 Disrupting Traps

A disrupting trap is neither a precise trap nor a deferred trap. A disrupting trap is caused
by a condition (e.g., an interrupt), rather than directly by a particular instruction; this dis-
tinguishes it from precise and deferred traps. When a disrupting trap has been serviced,
program execution resumes where it left off. This differentiates disrupting traps from reset
traps, which resume execution at the unique reset address.

Disrupting traps are controlled by a combination of the Processor Interrupt Level (PIL)
register and the Interrupt Enable (IE) field of PSTATE. A disrupting trap condition is
ignored when interrupts are disabled (PSTATE.IE = 0) or when the condition’s interrupt
level is lower than that specified in PIL.

A disrupting trap may be due to either an interrupt request not directly related to a previ-
ously executed instruction, or to an exception related to a previously executed instruction.
Interrupt requests may be either internal or external. An interrupt request can be induced
by the assertion of a signal not directly related to any particular processor or memory state.
Examples of this are the assertion of an “I/O done” signal or setting external interrupt
request lines.

A disrupting trap related to an earlier instruction causing an exception is similar to a
deferred trap in that it occurs after instructions following the trap-inducing instruction
have modified the processor or memory state. The difference is that the condition which
caused the instruction to induce the trap may lead to unrecoverable errors, since the imple-

7.3 Trap Categories 97

mentation may not preserve the necessary state. An example of this is an ECC data-access
error reported after the corresponding load instruction has completed.

Disrupting trap conditions should persist until the corresponding trap is taken.

Programming Note:

Among the actions that trap-handler software might take after a disrupting trap are:

— Use RETRY to return to the instruction at which the trap was invoked

(PC ← old PC, nPC ← old nPC), or

— Terminate the program or process associated with the trap.

7.3.4 Reset Traps

A reset trap occurs when supervisor software or the implementation’s hardware deter-
mines that the machine must be reset to a known state. Reset traps differ from disrupting
traps, since they do not resume execution of the program that was running when the reset
trap occurred.

IMPL. DEP. #37: Some of a processor’s behavior during a reset trap is implementation-dependent.

See 7.6.2, “Special Trap Processing,” for details.

The following reset traps are defined for SPARC-V9:

Software-initiated reset (SIR):

Initiated by software by executing the SIR instruction.

Power-on reset (POR):

Initiated when power is applied (or reapplied) to the processor.

Watchdog reset (WDR):

Initiated in response to error_state or expiration of a watchdog timer.

Externally initiated reset (XIR):

Initiated in response to an external signal. This reset trap is normally used for criti-
cal system events, such as power failure.

7.3.5 Uses of the Trap Categories

The SPARC-V9 trap model stipulates that:

(1) Reset traps, except software_initiated_reset traps, occur asynchronously to program
execution.

(2) When recovery from an exception can affect the interpretation of subsequent
instructions, such exceptions shall be precise. These exceptions are:

— software_initiated_reset

— instruction_access_exception

— privileged_action

— privileged_opcode

98 7 Traps

— trap_instruction

— instruction_access_error

— clean_window

— fp_disabled

— LDDF_mem_address_not_aligned

— STDF_mem_address_not_aligned

— tag_overflow

— unimplemented_LDD

— unimplemented_STD

— spill_n_normal

— spill_n_other

— fill_n_normal

— fill_n_other

(3) IMPL. DEP. #33: Exceptions that occur as the result of program execution may be precise

or deferred, although it is recommended that such exceptions be precise. Examples:
mem_address_not_aligned, division_by_zero.

(4) An exception caused after the initial access of a multiple-access load or store
instruction (load-store doubleword, LDSTUB, CASA, CASXA, or SWAP) that
causes a catastrophic exception may be precise, deferred, or disrupting. Thus, a
trap due to the second memory access can occur after the processor or memory
state has been modified by the first access.

(5) Implementation-dependent catastrophic exceptions may cause precise, deferred, or
disrupting traps (impl. dep. #31).

(6) Exceptions caused by external events unrelated to the instruction stream, such as
interrupts, are disrupting.

For the purposes of this subsection, we must distinguish between the dispatch of an
instruction and its execution by some functional unit. An instruction is deemed to have
been dispatched when the software-visible PC advances beyond that instruction in the
instruction stream. An instruction is deemed to have been executed when the results of
that instruction are available to subsequent instructions.

For most instructions, dispatch and execution appear to occur simultaneously; when the
PC has advanced beyond the instruction, its results are immediately available to subse-
quent instructions. For floating-point instructions, however, the PC may advance beyond
the instruction as soon as the IU places the instruction into a floating-point queue; the
instruction itself may not have completed (or even begun) execution, and results may not
be available to subsequent instructions for some time. In particular, the fact that a floating-
point instruction will generate an exception may not be noticed by the hardware until addi-

7.4 Trap Control 99

tional floating-point instructions have been placed into the queue by the IU. This creates
the condition for a deferred trap.

A deferred trap may occur one or more instructions after the trap-inducing instruction is
dispatched. However, a deferred trap must occur before the execution (but not necessarily
the dispatch) of any instruction that depends on the trap-inducing instruction. That is, a
deferred trap may not be deferred past the execution of an instruction that specifies source
registers, destination registers, condition codes, or any software-visible machine state that
could be modified by the trap-inducing instruction.

In the case of floating-point instructions, if a floating-point exception is currently deferred,
an attempt to dispatch a floating-point instruction (FPop, FBfcc, FBPfcc, or floating-point
load/store) invokes or causes the outstanding fp_exception_ieee_754 trap.

Implementation Note:

To provide the capability to terminate a user process on the occurrence of a catastrophic exception

that can cause a deferred or disrupting trap, an implementation should provide one or more instruc-

tions that provoke an outstanding exception to be taken as a trap. For example, an outstanding float-

ing-point exception might cause an fp_exception_ieee_754 trap when any of an FPop, load or store

floating-point register (including the FSR), FBfcc, or FBPfcc instruction is executed.

7.4 Trap Control

Several registers control how any given trap is processed:

— The interrupt enable (IE) field in PSTATE and the processor interrupt level (PIL)
register control interrupt processing.

— The enable floating-point unit (FEF) field in FPRS, the floating-point unit enable
(PEF) field in PSTATE, and the trap enable mask (TEM) in the FSR control float-
ing-point traps.

— The TL register, which contains the current level of trap nesting, controls whether
a trap causes entry to execute_state, RED_state, or error_state.

— PSTATE.TLE determines whether implicit data accesses in the trap routine will be
performed using the big- or little-endian byte order.

7.4.1 PIL Control

Between the execution of instructions, the IU prioritizes the outstanding exceptions and
interrupt requests according to table 15. At any given time, only the highest priority excep-
tion or interrupt request is taken as a trap.1 When there are multiple outstanding excep-
tions or interrupt requests, SPARC-V9 assumes that lower-priority interrupt requests will

1. The highest priority exception or interrupt is the one with the lowest priority value in table 15. For

example, a priority 2 exception is processed before a priority 3 exception.

100 7 Traps

persist and lower-priority exceptions will recur if an exception-causing instruction is reex-
ecuted.

For interrupt requests, the IU compares the interrupt request level against the processor
interrupt level (PIL) register. If the interrupt request level is greater than PIL, the processor
takes the interrupt request trap, assuming there are no higher-priority exceptions outstand-
ing

IMPL. DEP. #34: How quickly a processor responds to an interrupt request and the method by

which an interrupt request is removed are implementation-dependent.

7.4.2 TEM Control

The occurrence of floating-point traps of type IEEE_754_exception can be controlled with
the user-accessible trap enable mask (TEM) field of the FSR. If a particular bit of TEM is
1, the associated IEEE_754_exception can cause an fp_exception_ieee_754 trap.

If a particular bit of TEM is 0, the associated IEEE_754_exception does not cause an fp_

exception_ieee_754 trap. Instead, the occurrence of the exception is recorded in the FSR’s
accrued exception field (aexc).

If an IEEE_754_exception results in an fp_exception_ieee_754 trap, then the destination f

register, fccn, and aexc fields remain unchanged. However, if an IEEE_754_exception does
not result in a trap, then the f register, fccn, and aexc fields are updated to their new values.

7.5 Trap-Table Entry Addresses

Privileged software initializes the trap base address (TBA) register to the upper 49 bits of
the trap-table base address. Bit 14 of the vector address (the “TL>0” field) is set based on
the value of TL at the time the trap is taken; that is, to 0 if TL = 0 and to 1 if TL > 0. Bits
13..5 of the trap vector address are the contents of the TT register. The lowest five bits of
the trap address, bits 4..0, are always 0 (hence each trap-table entry is at least 25 or 32
bytes long). Figure 39 illustrates this.

Figure 39—Trap Vector Address

63 15 14 0

TBA<63:15>

13 45

TL>0 TTTL 00000

7.5 Trap-Table Entry Addresses 101

7.5.1 Trap Table Organization

The trap table layout is as illustrated in figure 40.

Figure 40—Trap Table Layout

The trap table for TL = 0 comprises 512 32-byte entries; the trap table for TL > 0 com-
prises 512 more 32-byte entries. Therefore, the total size of a full trap table is
512 × 32 × 2, or 32K bytes. However, if privileged software does not use software traps
(Tcc instructions) at TL > 0, the table can be made 24K bytes long.

7.5.2 Trap Type (TT)

When a normal trap occurs, a value that uniquely identifies the trap is written into the cur-
rent 9-bit TT register (TT[TL]) by hardware. Control is then transferred into the trap table
to an address formed by the TBA register (“TL>0”) and TT[TL] (see 5.2.8, “Trap Base
Address (TBA)”). Since the lowest five bits of the address are always zero, each entry in
the trap table may contain the first eight instructions of the corresponding trap handler.

Programming Note:

The spill/fill and clean_window trap types are spaced such that their trap table entries are 128 bytes

(32 instructions) long. This allows the complete code for one spill/fill or clean_window routine to

reside in one trap table entry.

When a special trap occurs, the TT register is set as described in 7.2.1, “RED_state.” Con-
trol is then transferred into the RED_state trap table to an address formed by the RST-
Vaddr and an offset depending on the condition.

TT values 00016 ..0FF16 are reserved for hardware traps. TT values 10016 ..17F16 are
reserved for software traps (traps caused by execution of a Tcc instruction). TT values
18016 ..1FF16 are reserved for future uses. The assignment of TT values to traps is shown in
table 14; table 15 lists the traps in priority order. Traps marked with an open bullet ‘❍’ are
optional and possibly implementation-dependent. Traps marked with a closed bullet ‘●’
are mandatory; that is, hardware must detect and trap these exceptions and interrupts and
must set the defined TT values.

The trap type for the clean_window exception is 02416. Three subsequent trap vectors
(02516 ..02716) are reserved to allow for an inline (branchless) trap handler. Window spill/
fill traps are described in 7.5.2.1. Three subsequent trap vectors are reserved for each spill/
fill vector, to allow for an inline (branchless) trap handler.

Value of TL

Before the Trap

Trap Table Contents Trap Type

TL = 0

Hardware traps

Spill/fill traps

Software traps

Reserved

00016..07F16

08016..0FF16

10016..17F16

18016..1FF16

TL > 0

Hardware traps

Spill/fill traps

Software traps

Reserved

20016..27F16

28016..2FF16

30016..37F16

38016..3FF16

102 7 Traps

Table 14—Exception and Interrupt Requests, Sorted by TT Value

M / O Exception or interrupt request TT Priority

● Reserved 00016 n/a

● power_on_reset 00116 0

❍ watchdog_reset 00216 1

❍ externally_initiated_reset 00316 1

● software_initiated_reset 00416 1

● RED_state_exception 00516 1

● Reserved 00616 ..00716 n/a

● instruction_access_exception 00816 5

❍ instruction_access_MMU_miss 00916 2

❍ instruction_access_error 00A16 3

● Reserved 00B16 ..00F16 n/a

● illegal_instruction 01016 7

● privileged_opcode 01116 6

❍ unimplemented_LDD 01216 6

❍ unimplemented_STD 01316 6

● Reserved 01416 ..01F16 n/a

● fp_disabled 02016 8

❍ fp_exception_ieee_754 02116 11

❍ fp_exception_other 02216 11

● tag_overflow 02316 14

❍ clean_window 02416 ..02716 10

● division_by_zero 02816 15

❍ internal_processor_error 02916 4

● Reserved 02A16 ..02F16 n/a

● data_access_exception 03016 12

❍ data_access_MMU_miss 03116 12

❍ data_access_error 03216 12

❍ data_access_protection 03316 12

● mem_address_not_aligned 03416 10

❍ LDDF_mem_address_not_aligned (impl. dep. #109) 03516 10

❍ STDF_mem_address_not_aligned (impl. dep. #110) 03616 10

● privileged_action 03716 11

❍ LDQF_mem_address_not_aligned (impl. dep. #111) 03816 10

❍ STQF_mem_address_not_aligned (impl. dep. #112) 03916 10

● Reserved 03A16 ..03F16 n/a

❍ async_data_error 04016 2

● interrupt_level_n (n = 1..15) 04116 ..04F16 32–n

● Reserved 05016 ..05F16 n/a

❍ implementation_dependent_exception_n (impl. dep. #35) 06016 ..07F16 impl.-dep.

● spill_n_normal (n = 0..7) 08016 ..09F16 9

● spill_n_other (n = 0..7) 0A016 ..0BF16 9

● fill_n_normal (n = 0..7) 0C016 ..0DF16 9

● fill_n_other (n = 0..7) 0E016 ..0FF16 9

● trap_instruction 10016 ..17F16 16

● Reserved 18016 ..1FF16 n/a

7.5 Trap-Table Entry Addresses 103

Table 15—Exception and Interrupt Requests, Sorted by Priority (0 = Highest; 31 = Lowest)

M / O Exception or Interrupt Request TT Priority

● power_on_reset 00116 0

❍ watchdog_reset 00216 1

❍ externally_initiated_reset 00316 1

● software_initiated_reset 00416 1

● RED_state_exception 00516 1

❍ instruction_access_MMU_miss 00916 2

❍ async_data_error 04016 2

❍ instruction_access_error 00A16 3

❍ internal_processor_error 02916 4

● instruction_access_exception 00816 5

● privileged_opcode 01116 6

❍ unimplemented_LDD 01216 6

❍ unimplemented_STD 01316 6

● illegal_instruction 01016 7

● fp_disabled 02016 8

● spill_n_normal (n = 0..7) 08016 ..09F16 9

● spill_n_other (n = 0..7) 0A016 ..0BF16 9

● fill_n_normal (n = 0..7) 0C016 ..0DF16 9

● fill_n_other (n = 0..7) 0E016 ..0FF16 9

❍ clean_window 02416 ..02716 10

● mem_address_not_aligned 03416 10

❍ LDDF_mem_address_not_aligned (impl. dep. #109) 03516 10

❍ STDF_mem_address_not_aligned (impl. dep. #110) 03616 10

❍ LDQF_mem_address_not_aligned (impl. dep. #111) 03816 10

❍ STQF_mem_address_not_aligned (impl. dep. #112) 03916 10

❍ fp_exception_ieee_754 02116 11

❍ fp_exception_other 02216 11

● privileged_action 03716 11

● data_access_exception 03016 12

❍ data_access_MMU_miss 03116 12

❍ data_access_error 03216 12

❍ data_access_protection 03316 12

● tag_overflow 02316 14

● division_by_zero 02816 15

● trap_instruction 10016 ..17F16 16

● interrupt_level_n (n = 1..15) 04116 ..04F16 32–n

❍ implementation_dependent_exception_n (impl. dep. #35) 06016 ..07F16 impl.-dep.

104 7 Traps

Compatibility Note:

Support for some trap types is optional because they are associated with specific instruction(s),

which, in a given implementation, might be implemented purely in software. In such a case, hard-

ware would never generate that type of trap; therefore, support for it would be superfluous. Exam-

ples of trap types to which this applies are fp_exception_ieee_754 and fp_exception_other.

Since the assignment of exceptions and interrupt requests to particular trap vector
addresses and the priority levels are not visible to a user program, an implementation is
allowed to define additional hardware traps.

IMPL. DEP. #35: TT values 06016 TO 07F16 are reserved for implementation-dependent excep-

tions. The existence of implementation_dependent_n traps and whether any that do exist are pre-

cise, deferred, or disrupting is implementation-dependent. See Appendix C, “SPARC-V9
Implementation Dependencies.”

Trap Type values marked “Reserved” in table 14 are reserved for future versions of the
architecture.

7.5.2.1 Trap Type for Spill/Fill Traps

The trap type for window spill/fill traps is determined based on the contents of the OTH-
ERWIN and WSTATE registers as follows:

The fields have the following values:

SPILL_OR_FILL:

0102 for spill traps; 0112 for fill traps

OTHER:

(OTHERWIN≠0)

WTYPE:

If (OTHER) then WSTATE.OTHER else WSTATE.NORMAL

7.5.3 Trap Priorities

Table 14 shows the assignment of traps to TT values and the relative priority of traps and
interrupt requests. Priority 0 is highest, priority 31 is lowest; that is, if X < Y, a pending
exception or interrupt request with priority X is taken instead of a pending exception or
interrupt request with priority Y.

IMPL. DEP. #36: The priorities of particular traps are relative and are implementation-dependent,

because a future version of the architecture may define new traps, and an implementation may

define implementation-dependent traps that establish new relative priorities.

Trap Type

05 2

0SPILL_OR_FILL

1468

0WTYPEOTHER

7.6 Trap Processing 105

However, the TT values for the exceptions and interrupt requests shown in table 14 must

remain the same for every implementation.

7.6 Trap Processing

The processor’s action during trap processing depends on the trap type, the current level of

trap nesting (given in the TL register), and the processor state. All traps use normal trap

processing, except those due to reset requests, catastrophic errors, traps taken when

TL = MAXTL – 1, and traps taken when the processor is in RED_state. These traps use

special RED_state trap processing.

During normal operation, the processor is in execute_state. It processes traps in execute_

state and continues.

When a normal trap or software-initiated reset (SIR) occurs with TL = MAXTL, there are

no more levels on the trap stack, so the processor enters error_state and halts. In order to

avoid this catastrophic failure, SPARC-V9 provides the RED_state processor state. Traps

processed in RED_state use a special trap vector and a special trap-vectoring algorithm.

RED_state vectoring and the setting of the TT value for RED_state traps are described in

7.2.1, “RED_state.”

Traps that occur with TL = MAXTL – 1 are processed in RED_state. In addition, reset

traps are also processed in RED_state. Reset trap processing is described in 7.6.2, “Special

Trap Processing.” Finally, supervisor software can force the processor into RED_state by

setting the PSTATE.RED flag to one.

Once the processor has entered RED_state, no matter how it got there, all subsequent traps

are processed in RED_state until software returns the processor to execute_state or a nor-

mal or SIR trap is taken when TL = MAXTL, which puts the processor in error_state.

Tables 16, 17, and 18 describe the processor mode and trap level transitions involved in

handling traps:

†This state occurs when software changes TL to MAXTL and does not set PSTATE.RED, or if it

clears PSTATE.RED while at MAXTL.

Table 16—Trap Received While in execute_state

New State, after receiving trap type

Original state
Normal trap
or interrupt

POR
WDR, XIR,
Impl. Dep.

SIR

execute_state

TL < MAXTL – 1

execute_state

TL + 1

RED_state

MAXTL

RED_state

TL + 1

RED_state

TL + 1

execute_state

TL = MAXTL – 1

RED_state

MAXTL

RED_state

MAXTL

RED_state

MAXTL

RED_state

MAXTL

execute_state†

TL = MAXTL

error_state

MAXTL

RED_state

MAXTL

RED_state

MAXTL

error_state

MAXTL

106 7 Traps

Implementation Note:

The processor shall not recognize interrupts while it is in error_state.

7.6.1 Normal Trap Processing

A normal trap causes the following state changes to occur:

— If the processor is already in RED_state, the new trap is processed in RED_state
unless TL = MAXTL. See 7.6.2.6, “Normal Traps When the Processor is in RED_
state.”

— If the processor is in execute_state and the trap level is one less than its maximum
value, that is, TL = MAXTL–1, the processor enters RED_state. See 7.2.1, “RED_
state,” and 7.6.2.1, “Normal Traps with TL = MAXTL – 1.”

— If the processor is in either execute_state or RED_state, and the trap level is
already at its maximum value, that is, TL = MAXTL, the processor enters error_
state. See 7.2.2, “Error_state.”

Otherwise, the trap uses normal trap processing, and the following state changes occur:

— The trap level is set. This provides access to a fresh set of privileged trap-state reg-
isters used to save the current state, in effect, pushing a frame on the trap stack.

TL ← TL + 1

Table 17—Trap Received While in RED_state

New State, after receiving trap type

Original state
Normal trap
or interrupt POR

WDR, XIR,
Impl. Dep. SIR

RED_state

TL < MAXTL – 1

RED_state

TL + 1

RED_state

MAXTL

RED_state

TL + 1

RED_state

TL + 1

RED_state

TL = MAXTL – 1

RED_state

MAXTL

RED_state

MAXTL

RED_state

MAXTL

RED_state

MAXTL

RED_state

TL = MAXTL

error_state

MAXTL

RED_state

MAXTL

RED_state

MAXTL

error_state

MAXTL

Table 18—Reset Received While in error_state

New State, after receiving trap type

Original state
Normal trap
or interrupt POR

WDR, XIR,
Impl. Dep. SIR

error_state

TL < MAXTL – 1
—

RED_state

MAXTL

RED_state

TL + 1
—

error_state

TL = MAXTL – 1
—

RED_state

MAXTL

RED_state

MAXTL
—

error_state

TL = MAXTL
—

RED_state

MAXTL

RED_state

MAXTL
—

7.6 Trap Processing 107

— Existing state is preserved

TSTATE[TL].CCR ← CCR

TSTATE[TL].ASI ← ASI

TSTATE[TL].PSTATE ← PSTATE

TSTATE[TL].CWP ← CWP

TPC[TL] ← PC

TNPC[TL] ← nPC

— The trap type is preserved.

TT[TL] ← the trap type

— The PSTATE register is updated to a predefined state

PSTATE.MM is unchanged

PSTATE.RED ← 0

PSTATE.PEF ← 1 if FPU is present, 0 otherwise

PSTATE.AM ← 0 (address masking is turned off)

PSTATE.PRIV ← 1 (the processor enters privileged mode)

PSTATE.IE ← 0 (interrupts are disabled)

PSTATE.AG ← 1 (global regs are replaced with alternate globals)

PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)

— For a register-window trap only, CWP is set to point to the register window that
must be accessed by the trap-handler software, that is:

• If TT[TL] = 02416 (a clean_window trap), then CWP ← CWP + 1.

• If (08016 ≤ TT[TL] ≤ 0BF16) (window spill trap), then CWP ←
CWP + CANSAVE + 2.

• If (0C016 ≤ TT[TL] ≤ 0FF16) (window fill trap), then CWP ← CWP–1.

For non-register-window traps, CWP is not changed.

— Control is transferred into the trap table:

PC ← TBA<63:15> (TL>0) TT[TL] 0 0000

nPC ← TBA<63:15> (TL>0) TT[TL] 0 0100

where “(TL>0)” is 0 if TL = 0, and 1 if TL > 0.

Interrupts are ignored as long as PSTATE.IE = 0.

Programming Note:

State in TPC[n], TNPC[n], TSTATE[n], and TT[n] is only changed autonomously by the processor

when a trap is taken while TL = n–1, however, software can change any of these values with a

WRPR instruction when TL = n.

108 7 Traps

7.6.2 Special Trap Processing

The following conditions invoke special trap processing:

— Traps taken with TL = MAXTL – 1

— Power-on reset traps

— Watchdog reset traps

— Externally initiated reset traps

— Software-initiated reset traps

— Traps taken when the processor is already in RED_state

— Implementation-dependent traps

IMPL. DEP. #38: Implementation-dependent registers may or may not be affected by the various

reset traps.

7.6.2.1 Normal Traps with TL = MAXTL – 1

Normal traps that occur when TL = MAXTL – 1 are processed in RED_state. The follow-
ing state changes occur:

— The trap level is advanced.

TL ← MAXTL

— Existing state is preserved

TSTATE[TL].CCR ← CCR

TSTATE[TL].ASI ← ASI

TSTATE[TL].PSTATE ← PSTATE

TSTATE[TL].CWP ← CWP

TPC[TL] ← PC

TNPC[TL] ← nPC

— The trap type is preserved.

TT[TL] ← the trap type

— The PSTATE register is set as follows:

PSTATE.MΜ ← 002 (TSO)

PSTATE.RED ← 1 (enter RED_state)

PSTATE.PEF ← 1 if FPU is present, 0 otherwise

PSTATE.AM ← 0 (address masking is turned off)

PSTATE.PRIV ← 1 (the processor enters privileged mode)

PSTATE.IE ← 0 (interrupts are disabled)

PSTATE.AG ← 1 (global regs are replaced with alternate globals)

PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)

— For a register-window trap only, CWP is set to point to the register window that
must be accessed by the trap-handler software, that is:

• If TT[TL] = 02416 (a clean_window trap), then CWP ← CWP + 1.

7.6 Trap Processing 109

• If (08016 ≤ TT[TL] ≤ 0BF16) (window spill trap), then CWP ←
CWP + CANSAVE + 2.

• If (0C016 ≤ TT[TL] ≤ 0FF16)(window fill trap), then CWP ← CWP–1.
For non-register-window traps, CWP is not changed.

— Implementation-specific state changes; for example, disabling an MMU

— Control is transferred into the RED_state trap table

PC ← RSTVaddr<63:8> 1010 00002

nPC ← RSTVaddr<63:8> 1010 01002

7.6.2.2 Power-On Reset (POR) Traps

Initiated when power is applied to the processor. If the processor is in error_state, a power-
on reset (POR) brings the processor out of error_state and places it in RED_state. Proces-
sor state is undefined after POR, except for the following:

— The trap level is set.
TL ← MAXTL

— The trap type is set.
TT[TL] ← 00116

— The PSTATE register is set as follows:
PSTATE.MM ← 002 (TSO)
PSTATE.RED ← 1 (enter RED_state)
PSTATE.PEF ← 1 if FPU is present, 0 otherwise
PSTATE.AM ← 0 (address masking is turned off)
PSTATE.PRIV ← 1 (the processor enters privileged mode)
PSTATE.IE ← 0 (interrupts are disabled)
PSTATE.AG ← 1 (global regs are replaced with alternate globals)
PSTATE.TLE ← 0 (big-endian mode for traps)
PSTATE.CLE ← 0 (big-endian mode for non-traps)

— The TICK register is protected.
TICK.NPT ← 1 (TICK unreadable by nonprivileged software)

— Implementation-specific state changes; for example, disabling an MMU

— Control is transferred into the RED_state trap table

PC ← RSTVaddr<63:8> 0010 00002

nPC ← RSTVaddr<63:8> 0010 01002

For any reset when TL = MAXTL, for all n<MAXTL, the values in TPC[n], TNPC[n],
and TSTATE[n] are undefined.

7.6.2.3 Watchdog Reset (WDR) Traps

WDR traps are initiated by an external signal. Typically, this is generated in response to
error_state or expiration of a watchdog timer. WDR clears error_state and hung states, and

110 7 Traps

performs a system reset; pending and in-progress hardware operations (for example, loads
and stores) may be cancelled or aborted. Architecturally defined registers (e. g., floating-
point registers, integer registers, etc.) and state are unchanged from before the WDR, but
they may be in an inconsistent state if operations are aborted. If the processor is in error_
state, a watchdog reset (WDR) brings the processor out of error_state and places it in
RED_state.

The following state changes occur:

— The trap level is set.

TL ← MIN(TL + 1, MAXTL)

— Existing state is preserved.

TSTATE[TL].CCR ← CCR

TSTATE[TL].ASI ← ASI

TSTATE[TL].PSTATE ← PSTATE

TSTATE[TL].CWP ← CWP

TPC[TL] ← PC

TNPC[TL] ← nPC

— TT[TL] is set as described below.

— The PSTATE register is set as follows:

PSTATE.MM ← 002 (TSO)

PSTATE.RED ← 1 (enter RED_state)

PSTATE.PEF ← 1 if FPU is present, 0 otherwise

PSTATE.AM ← 0 (address masking is turned off)

PSTATE.PRIV ← 1 (the processor enters privileged mode)
PSTATE.IE ← 0 (interrupts are disabled)

PSTATE.AG ← 1 (global regs are replaced with alternate globals)

PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)

— Implementation-specific state changes; for example, disabling an MMU.

— Control is transferred into the RED_state trap table.

PC ← RSTVaddr<63:8> 0100 00002

nPC ← RSTVaddr<63:8> 0100 01002

If a watchdog reset occurs when the processor is in error_state, the TT field gives the type
of the trap that caused entry into error_state. If a watchdog reset occurs with the processor
in execute_state, TT is set to 2 (WDR).

For any reset when TL = MAXTL, for all n<MAXTL, the values in TPC[n], TNPC[n],
and TSTATE[n] are undefined.

7.6.2.4 Externally Initiated Reset (XIR) Traps

XIR traps are initiated by an external signal. They behave like an interrupt that cannot be
masked by IE = 0 or PIL. Typically, XIR is used for critical system events such as power
failure, reset button pressed, failure of external components that does not require a WDR
(which aborts operations), or system-wide reset in a multiprocessor. If the processor is in

7.6 Trap Processing 111

error_state, an externally initiated reset (XIR) brings the processor out of error_state and
places it in RED_state.

The following state changes occur:

— The trap level is set.

TL ← MIN(TL + 1, MAXTL)

— Existing state is preserved.

TSTATE[TL].CCR ← CCR

TSTATE[TL].ASI ← ASI

TSTATE[TL].PSTATE ← PSTATE

TSTATE[TL].CWP ← CWP

TPC[TL] ← PC

TNPC[TL] ← nPC

— TT[TL] is set as described below.

— The PSTATE register is set as follows:

PSTATE.MM ← 002 (TSO)

PSTATE.RED ← 1 (enter RED_state)

PSTATE.PEF ← 1 if FPU is present, 0 otherwise

PSTATE.AM ← 0 (address masking is turned off)

PSTATE.PRIV ← 1 (the processor enters privileged mode)

PSTATE.IE ← 0 (interrupts are disabled)

PSTATE.AG ← 1 (global regs are replaced with alternate globals)

PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)

— Implementation-specific state changes; for example, disabling an MMU.

— Control is transferred into the RED_state trap table.

PC ← RSTVaddr<63:8> 0110 00002

nPC ← RSTVaddr<63:8> 0110 01002

TT is set in the same manner as for watchdog reset. If the processor is in execute_state
when the externally initiated reset (XIR) occurs, TT = 3. If the processor is in error_state
when the XIR occurs, TT identifies the exception that caused entry into error_state.

For any reset when TL = MAXTL, for all n<MAXTL, the values in TPC[n], TNPC[n],
and TSTATE[n] are undefined.

7.6.2.5 Software-Initiated Reset (SIR) Traps

SIR traps are initiated by executing an SIR instruction. This is used by supervisor software
as a panic operation, or a meta-supervisor trap.

The following state changes occur:

— If TL = MAXTL, then enter error_state. Otherwise, do the following:

— The trap level is set.

TL ← TL + 1

112 7 Traps

— Existing state is preserved

TSTATE[TL].CCR ← CCR

TSTATE[TL].ASI ← ASI

TSTATE[TL].PSTATE ← PSTATE

TSTATE[TL].CWP ← CWP

TPC[TL] ← PC

TNPC[TL] ← nPC

— The trap type is set.

TT[TL] ← 0416

— The PSTATE register is set as follows:

PSTATE.MM ← 002 (TSO)

PSTATE.RED ← 1 (enter RED_state)

PSTATE.PEF ← 1 if FPU is present, 0 otherwise

PSTATE.AM ← 0 (address masking is turned off)

PSTATE.PRIV ← 1 (the processor enters privileged mode)

PSTATE.IE ← 0 (interrupts are disabled)

PSTATE.AG ← 1 (global regs are replaced with alternate globals)

PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)

— Implementation-specific state changes; for example, disabling an MMU.

— Control is transferred into the RED_state trap table

PC ← RSTVaddr<63:8> 1000 00002

nPC ← RSTVaddr<63:8> 1000 01002

For any reset when TL = MAXTL, for all n < MAXTL, the values in TPC[n], TNPC[n],
and TSTATE[n] are undefined.

7.6.2.6 Normal Traps When the Processor is in RED_state

Normal traps taken when the processor is already in RED_state are also processed in
RED_state, unless TL = MAXTL, in which case the processor enters error_state.

The processor state shall be set as follows:

— The trap level is set.

TL ← TL + 1

— Existing state is preserved.

TSTATE[TL].CCR ← CCR

TSTATE[TL].ASI ← ASI

TSTATE[TL].PSTATE ← PSTATE

TSTATE[TL].CWP ← CWP

TPC[TL] ← PC

TNPC[TL] ← nPC

— The trap type is preserved.

TT[TL] ← trap type

7.7 Exception and Interrupt Descriptions 113

— The PSTATE register is set as follows:

PSTATE.MM ← 002 (TSO)

PSTATE.RED ← 1 (enter RED_state)

PSTATE.PEF ← 1 if FPU is present, 0 otherwise

PSTATE.AM ← 0 (address masking is turned off)

PSTATE.PRIV ← 1 (the processor enters privileged mode)

PSTATE.IE ← 0 (interrupts are disabled)

PSTATE.AG ← 1 (global regs are replaced with alternate globals)

PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)

— For a register-window trap only, CWP is set to point to the register window that
must be accessed by the trap-handler software, that is:

• If TT[TL] = 02416 (a clean_window trap), then CWP ← CWP + 1.

• If (08016 ≤ TT[TL] ≤ 0BF16) (window spill trap), then
CWP ← CWP + CANSAVE + 2.

• If (0C016 ≤ TT[TL] ≤ 0FF16) (window fill trap), then CWP ← CWP – 1.

For non-register-window traps, CWP is not changed.

— Implementation-specific state changes; for example, disabling an MMU

— Control is transferred into the RED_state trap table

PC ← RSTVaddr<63:8> 1010 00002

nPC ← RSTVaddr<63:8> 1010 01002

7.6.2.7 Implementation-Dependent Traps

The operation of the processor for implementation_dependent_exception_n traps is imple-
mentation-dependent (impl. dep. #35).

7.7 Exception and Interrupt Descriptions

The following paragraphs describe the various exceptions and interrupt requests and the
conditions that cause them. Each exception and interrupt request describes the correspond-
ing trap type as defined by the trap model. An open bullet ‘❍’ identifies optional and pos-
sibly implementation-dependent traps; traps marked with a closed bullet ‘●’ are
mandatory. Each trap is marked as precise, deferred, disrupting, or reset. Example excep-
tion conditions are included for each exception type. Appendix A, “Instruction Defini-
tions,” enumerates which traps can be generated by each instruction.

❍ async_data_error [tt = 04016] (Disrupting)

An asynchronous data error occurred on a data access. Examples: an ECC error
occurred while writing data from a cache store buffer to memory, or an ECC error
occurred on an MMU hardware table walk. When an async_data_error occurs, the
TPC and TNPC stacked by the trap are not necessarily related to the instruction or
data access that caused the error; that is, async_data_error causes a disrupting trap.

114 7 Traps

Compatibility Note:

The SPARC-V9 async_data_error exception supersedes the less general SPARC-V8 data_store_

error exception.

❍ clean_window [tt = 02416 ..02716] (Precise)

A SAVE instruction discovered that the window about to be used contains data
from another address space; the window must be cleaned before it can be used.

IMPL. DEP. #102: An implementation may choose either to implement automatic cleaning

of register windows in hardware, or to generate a clean_window trap, when needed, so

that window(s) can be cleaned by software. If an implementation chooses the latter
option, then support for this trap type is mandatory.

❍ data_access_error [tt = 03216] (Precise, Deferred, or Disrupting)

A catastrophic error exception occurred on a data access from/to memory (for
example, a parity error on a data cache access, or an uncorrectable ECC memory
error) (impl. dep. #31).

● data_access_exception [tt = 03016] (Precise or Deferred)

An exception occurred on a data access. For example, an MMU indicated that a
page was invalid or protected (impl. dep. #33).

❍ data_access_MMU_miss [tt = 03116] (Precise or Deferred)

A miss in an MMU occurred on a data access from/to memory. For example, a
page descriptor cache or translation lookaside buffer did not contain a translation
for the virtual address. (impl. dep. #33)

❍ data_access_protection [tt = 03316] (Precise or Deferred)

A protection fault occurred on a data access; for example, an MMU indicated that
the page was write-protected (impl. dep. #33).

● division_by_zero [tt = 02816] (Precise or Deferred)

An integer divide instruction attempted to divide by zero (impl. dep. #33).

❍ externally_initiated_reset [tt = 00316] (Reset)

An external signal was asserted. This trap is used for catastrophic events such as
power failure, reset button pressed, and system-wide reset in multiprocessor sys-
tems.

● fill_n_normal [tt = 0C016 ..0DF16] (Precise)

● fill_n_other [tt = 0E016 ..0FF16] (Precise)

A RESTORE or RETURN instruction has determined that the contents of a regis-
ter window must be restored from memory.

Compatibility Note:

The SPARC-V9 fill_n_* exceptions supersede the SPARC-V8 window_underflow exception.

● fp_disabled [tt = 02016] (Precise)

An attempt was made to execute an FPop, a floating-point branch, or a floating-
point load/store instruction while an FPU was not present, PSTATE.PEF = 0, or
FPRS.FEF = 0.

7.7 Exception and Interrupt Descriptions 115

❍ fp_exception_ieee_754 [tt = 02116] (Precise or Deferred (impl. dep. #23))

An FPop instruction generated an IEEE_754_exception and its corresponding trap
enable mask (TEM) bit was 1. The floating-point exception type, IEEE_754_excep-

tion, is encoded in the FSR.ftt, and specific IEEE_754_exception information is
encoded in FSR.cexc.

❍ fp_exception_other [tt = 02216] (Precise or Deferred (impl. dep. #23))

An FPop instruction generated an exception other than an IEEE_754_exception. For
example, the FPop is unimplemented, or the FPop did not complete, or there was a
sequence or hardware error in the FPU. The floating-point exception type is
encoded in the FSR’s ftt field.

● illegal_instruction [tt = 01016] (Precise or Deferred)

An attempt was made to execute an instruction with an unimplemented opcode, an
ILLTRAP instruction, an instruction with invalid field usage, or an instruction that
would result in illegal processor state. Note that unimplemented FPop instructions
generate fp_exception_other traps.

❍ implementation_dependent_exception_n [tt = 06016 ..07F16] (Pre, Def, or Dis)

These exceptions are implementation-dependent (impl. dep. #35).

❍ instruction_access_error [tt = 00A16] (Precise, Deferred, or Disrupting)

A catastrophic error exception occurred on an instruction access. For example, a
parity error on an instruction cache access (impl. dep. #31).

● instruction_access_exception [tt = 00816] (Precise)

An exception occurred on an instruction access. For example, an MMU indicated
that the page was invalid or not executable.

❍ instruction_access_MMU_miss [tt = 00916] (Precise, Deferred, or Disrupting)

A miss in an MMU occurred on an instruction access from memory. For example,
a PDC or TLB did not contain a translation for the virtual address. (impl. dep. #33)

❍ internal_processor_error [tt = 02916] (Precise, Deferred, or Disrupting)

A catastrophic error exception occurred in the main processor. For example, a par-
ity or uncorrectable ECC error on an internal register or bus (impl. dep. #31).

Compatibility Note:

The SPARC-V9 internal_processor_error exception supersedes the less general SPARC-V8 r_

register_access_error exception.

● interrupt_level_n [tt = 04116 ..04F16] (Disrupting)

An interrupt request level of n was presented to the IU, while PSTATE.IE = 1 and
(interrupt request level > PIL).

❍ LDDF_mem_address_not_aligned [tt = 03516] (Precise)

An attempt was made to execute an LDDF instruction and the effective address
was word-aligned but not doubleword-aligned. Use of this exception is implemen-
tation-dependent (impl. dep. #109). A separate trap entry for this exception sup-
ports fast software emulation of the LDDF instruction when the effective address is
word-aligned but not doubleword-aligned. See A.25, “Load Floating-Point.”

116 7 Traps

❍ LDQF_mem_address_not_aligned [tt = 03816] (Precise)

An attempt was made to execute an LDQF instruction and the effective address
was word-aligned but not quadword-aligned. Use of this exception is implementa-
tion-dependent (impl. dep. #111). A separate trap entry for this exception supports
fast software emulation of the LDQF instruction when the effective address is
word-aligned but not quadword-aligned. See A.25, “Load Floating-Point.”

● mem_address_not_aligned [tt = 03416] (Precise or Deferred)

A load/store instruction generated a memory address that was not properly aligned
according to the instruction, or a JMPL or RETURN instruction generated a non-
word-aligned address (impl. dep. #33).

● power_on_reset [tt = 00116] (Reset)

An external signal was asserted. This trap isused to bring a system reliably from
the power-off to the power-on state.

● privileged_action [tt = 03716] (Precise)

An action defined to be privileged has been attempted while PSTATE.PRIV = 0.
Examples: a data access by nonprivileged software using an ASI value with its
most significant bit = 0 (a restricted ASI), or an attempt to read the TICK register
by nonprivileged software when TICK.NPT = 1.

● privileged_opcode [tt = 01116] (Precise)

An attempt was made to execute a privileged instruction while PSTATE.PRIV = 0.

Compatibility Note:

This trap type is identical to the SPARC-V8 privileged_instruction trap. The name was changed to

distinguish it from the new privileged_action trap type.

● software_initiated_reset [tt = 00416] (Reset)

Caused by the execution of the SIR, Software-Initiated Reset, instruction. It allows
system software to reset the processor.

● spill_n_normal [tt = 08016 ..09F16] (Precise)

● spill_n_other [tt = 0A016 ..0BF16] (Precise)

A SAVE or FLUSHW instruction has determined that the contents of a register
window must be saved to memory.

Compatibility Note:

The SPARC-V9 spill_n_* exceptions supersede the SPARC-V8 window_overflow exception.

❍ STDF_mem_address_not_aligned [tt = 03616] (Precise)

An attempt was made to execute an STDF instruction and the effective address was
word-aligned but not doubleword-aligned. Use of this exception is implementa-
tion-dependent (impl. dep. #110). A separate trap entry for this exception supports
fast software emulation of the STDF instruction when the effective address is
word-aligned but not doubleword-aligned. See A.52, “Store Floating-Point.”

❍ STQF_mem_address_not_aligned [tt = 03916] (Precise)

An attempt was made to execute an STQF instruction and the effective address was
word-aligned but not quadword-aligned. Use of this exception is implementation-

7.7 Exception and Interrupt Descriptions 117

dependent (impl. dep. #112). A separate trap entry for this exception supports fast
software emulation of the STQF instruction when the effective address is word-
aligned but not quadword-aligned. See A.52, “Store Floating-Point.”

● tag_overflow [tt = 02316] (Precise)

A TADDccTV or TSUBccTV instruction was executed, and either 32-bit arith-
metic overflow occurred or at least one of the tag bits of the operands was nonzero.

● trap_instruction [tt = 10016 ..17F16] (Precise)

A Tcc instruction was executed and the trap condition evaluated to TRUE.

❍ unimplemented_LDD [tt = 01216] (Precise)

An attempt was made to execute an LDD instruction, which is not implemented in
hardware on this implementation (impl. dep. #107).

❍ unimplemented_STD [tt = 01316] (Precise)

An attempt was made to execute an STD instruction which is not implemented in
hardware on this implementation (impl. dep. #108).

● watchdog_reset [tt = 00216] (Precise)

An external signal was asserted. This trap exists to break a system deadlock cre-
ated when an expected external event does not happen within the expected time. In
simple systems it is also used to bring a system out of error_state, through RED_
state, and ultimately back to execute_state.

All other trap types are reserved.

118 7 Traps

119

8 Memory Models

8.1 Introduction

The SPARC-V9 memory models define the semantics of memory operations. The
instruction set semantics require that loads and stores seem to be performed in the order in
which they appear in the dynamic control flow of the program. The actual order in which
they are processed by the memory may be different. The purpose of the memory models is
to specify what constraints, if any, are placed on the order of memory operations.

The memory models apply both to uniprocessor and to shared-memory multiprocessors.
Formal memory models are necessary in order to precisely define the interactions between
multiple processors and input/output devices in a shared-memory configuration. Program-
ming shared-memory multiprocessors requires a detailed understanding of the operative
memory model and the ability to specify memory operations at a low level in order to
build programs that can safely and reliably coordinate their activities. See Appendix J,
“Programming With the Memory Models,” for additional information on the use of the
models in programming real systems.

The SPARC-V9 architecture is a model that specifies the behavior observable by software
on SPARC-V9 systems. Therefore, access to memory can be implemented in any manner,
as long as the behavior observed by software conforms to that of the models described
here and formally defined in Appendix D, “Formal Specification of the Memory Models.”

The SPARC-V9 architecture defines three different memory models: Total Store Order

(TSO), Partial Store Order (PSO), and Relaxed Memory Order (RMO). All SPARC-
V9 processors must provide Total Store Order (or a more strongly ordered model, for
example, Sequential Consistency) to ensure SPARC-V8 compatibility.

IMPL. DEP. 113: Whether the PSO or RMO models are supported is implementation-dependent.

Figure 41 shows the relationship of the various SPARC-V9 memory models, from the
least restrictive to the most restrictive. Programs written assuming one model will function
correctly on any included model.

Figure 41—Memory Models from Least Restrictive (RMO) to Most Restrictive (TSO)

RMO PSO TSO

120 8 Memory Models

SPARC-V9 provides multiple memory models so that:

— Implementations can schedule memory operations for high performance.

— Programmers can create synchronization primitives using shared memory.

These models are described informally in this subsection and formally in Appendix D,
“Formal Specification of the Memory Models.” If there is a conflict in interpretation
between the informal description provided here and the formal models, the formal models
supersede the informal description.

There is no preferred memory model for SPARC-V9. Programs written for Relaxed Mem-
ory Order will work in Partial Store Order and Total Store Order as well. Programs written
for Partial Store Order will work in Total Store Order. Programs written for a weak model,
such as RMO, may execute more quickly, since the model exposes more scheduling
opportunities, but may also require extra instructions to ensure synchronization. Multipro-
cessor programs written for a stronger model will behave unpredictably if run in a weaker
model.

Machines that implement sequential consistency (also called strong ordering or strong
consistency) automatically support programs written for TSO, PSO, and RMO. Sequential
consistency is not a SPARC-V9 memory model. In sequential consistency, the loads,
stores, and atomic load-stores of all processors are performed by memory in a serial order
that conforms to the order in which these instructions are issued by individual processors.
A machine that implements sequential consistency may deliver lower performance than an
equivalent machine that implements a weaker model. Although particular SPARC-V9
implementations may support sequential consistency, portable software must not rely on
having this model available.

8.2 Memory, Real Memory, and I/O Locations

Memory is the collection of locations accessed by the load and store instructions
(described in Appendix A, “Instruction Definitions”). Each location is identified by an
address consisting of two elements: an address space identifier (ASI), which identifies an
address space, and a 64-bit address, which is a byte offset into that address space. Mem-
ory addresses may be interpreted by the memory subsystem to be either physical addresses
or virtual addresses; addresses may be remapped and values cached, provided that mem-
ory properties are preserved transparently and coherency is maintained.

When two or more data addresses refer to the same datum, the address is said to be
aliased. In this case, the processor and memory system must cooperate to maintain consis-
tency; that is, a store to an aliased address must change all values aliased to that address.

Memory addresses identify either real memory or I/O locations.

Real memory stores information without side effects. A load operation returns the value
most recently stored. Operations are side-effect-free in the sense that a load, store, or
atomic load-store to a location in real memory has no program-observable effect, except
upon that location.

I/O locations may not behave like memory and may have side effects. Load, store, and
atomic load-store operations performed on I/O locations may have observable side effects

8.3 Addressing and Alternate Address Spaces 121

and loads may not return the value most recently stored. The value semantics of operations
on I/O locations are not defined by the memory models, but the constraints on the order in
which operations are performed is the same as it would be if the I/O locations were real
memory. The storage properties, contents, semantics, ASI assignments, and addresses of
I/O registers are implementation-dependent (impl. dep. #6) (impl. dep. #7) (impl. dep.
#123).

IMPL. DEP. #118: The manner in which I/O locations are identified is implementation-dependent.

See F.3.2, “Attributes the MMU Associates with Each Mapping,” for example.

IMPL. DEP #120: The coherence and atomicity of memory operations between processors and

I/O DMA memory accesses are implementation-dependent.

Compatibility Note:

Operations to I/O locations are not guaranteed to be sequentially consistent between themselves, as

they are in SPARC-V8.

SPARC-V9 does not distinguish real memory from I/O locations in terms of ordering. All refer-

ences, both to I/O locations and real memory, conform to the memory model’s order constraints.

References to I/O locations may need to be interspersed with MEMBAR instructions to guarantee

the desired ordering. Loads following stores to locations with side effects may return unexpected

results due to lookaside into the processor’s store buffer, which may subsume the memory transac-

tion. This can be avoided by using a MEMBAR #LookAside.

Systems supporting SPARC-V8 applications that use memory mapped I/O locations must ensure

that SPARC-V8 sequential consistency of I/O locations can be maintained when those locations are

referenced by a SPARC-V8 application. The MMU either must enforce such consistency or cooper-

ate with system software and/or the processor to provide it.

IMPL. DEP #121: An implementation may choose to identify certain addresses and use an imple-

mentation-dependent memory model for references to them.

For example, an implementation might choose to process addresses tagged with a flag bit
in the memory management unit (see Appendix F, “SPARC-V9 MMU Requirements”), or
to treat those that utilize a particular ASI (see 8.3, “Addressing and Alternate Address
Spaces,” below) as using a sequentially consistent model.

8.3 Addressing and Alternate Address Spaces

An address in SPARC-V9 is a tuple consisting of an 8-bit address space identifier (ASI)
and a 64-bit byte-address offset in the specified address space. Memory is byte-addressed,
with halfword accesses aligned on 2-byte boundaries, word accesses (which include
instruction fetches) aligned on 4-byte boundaries, extended-word and doubleword
accesses aligned on 8-byte boundaries, and quadword quantities aligned on 16-byte
boundaries. With the possible exception of the cases described in 6.3.1.1, “Memory Align-
ment Restrictions,” an improperly aligned address in a load, store, or load-store instruction
always causes a trap to occur. The largest datum that is guaranteed to be atomically read or
written is an aligned doubleword. Also, memory references to different bytes, halfwords,
and words in a given doubleword are treated for ordering purposes as references to the
same location. Thus, the unit of ordering for memory is a doubleword.

122 8 Memory Models

Programming Note:

While the doubleword is the coherency unit for update, programmers should not assume that dou-

bleword floating-point values are updated as a unit unless they are doubleword-aligned and always

updated using double-precision loads and stores. Some programs use pairs of single-precision oper-

ations to load and store double-precision floating-point values when the compiler cannot determine

that they are doubleword-aligned. Also, while quad-precision operations are defined in the SPARC-

V9 architecture, the granularity of loads and stores for quad-precision floating-point values may be

word or doubleword.

The processor provides an address space identifier with every address. This ASI may serve
several purposes:

— To identify which of several distinguished address spaces the 64-bit address offset
is to be interpreted as addressing

— To provide additional access control and attribute information, for example, the
processing which is to be taken if an access fault occurs or to specify the endian-
ness of the reference

— To specify the address of an internal control register in the processor, cache, or
memory management hardware

The memory management hardware can associate an independent 264-byte memory
address space with each ASI. If this is done, it becomes possible to allow system software
easy access to the address space of the faulting program when processing exceptions, or to
implement access to a client program’s memory space by a server program.

The architecturally specified ASIs are listed in table 12 on page 75. ASIs need not be fully
decoded by the hardware (impl. dep. #30). In particular, specifying an architecturally
undefined ASI value in a memory reference instruction or in the ASI register may produce
unexpected implementation-dependent results.

When TL = 0, normal accesses by the processor to memory when fetching instructions
and performing loads and stores implicitly specify ASI_PRIMARY or ASI_PRIMARY_
LITTLE, depending on the setting of the PSTATE.CLE bit.

IMPL. DEP. #124: When TL > 0, the implicit ASI for instruction fetches, loads, and stores is imple-

mentation-dependent.

Implementation Note:

Implementations that support the nucleus context should use ASI_NUCLEUS{_LITTLE}; those

that do not should use ASI_PRIMARY{_LITTLE}. See F.4.4, “Contexts,” for more information

about the nucleus context.

Accesses to other address spaces use the load/store alternate instructions. For these
accesses, the ASI is either contained in the instruction (for the register-register addressing
mode) or taken from the ASI register (for register-immediate addressing).

ASIs are either unrestricted or restricted. An unrestricted ASI is one that may be used
independent of the privilege level (PSTATE.PRIV) at which the processor is running.
Restricted ASIs require that the processor be in privileged mode for a legal access to
occur. Restricted ASIs have their high-order bit equal to zero. The relationship between
processor state and ASI restriction is shown in table 11 on page 74.

8.4 The SPARC-V9 Memory Model 123

Several restricted ASIs must be provided: ASI_AS_IF_USER_PRIMARY{_LITTLE}
and ASI_AS_IF_USER_SECONDARY{_LITTLE}. The intent of these ASIs is to give
system software efficient access to the memory space of a program.

The normal address space is primary address space, which is accessed by the unrestricted
ASI_PRIMARY{_LITTLE}. The secondary address space, which is accessed by the unre-
stricted ASI_SECONDARY{_LITTLE}, is provided to allow a server program to access a
client program’s address space.

ASI_PRIMARY_NOFAULT{_LITTLE} and ASI_SECONDARY_NOFAULT{_LIT-
TLE} support nonfaulting loads. These ASIs are aliased to ASI_PRIMARY{_LITTLE}
and ASI_SECONDARY{_LITTLE}, respectively, and have exactly the same action. They
may be used to color (that is, distinguish into classes) loads in the instruction stream so
that, in combination with a judicious mapping of low memory and a specialized trap han-
dler, an optimizing compiler can move loads outside of conditional control structures.

Programming Note:

Nonfaulting loads allow optimizations that move loads ahead of conditional control structures

which guard their use; thus, they can minimize the effects of load latency by improving instruction

scheduling. The semantics of nonfaulting load are the same as for any other load, except when non-

recoverable catastrophic faults occur (for example, address-out-of-range errors). When such a fault

occurs, it is ignored and the hardware and system software cooperate to make the load appear to

complete normally, returning a zero result. The compiler’s optimizer generates load-alternate

instructions with the ASI field or register set to ASI_PRIMARY_NOFAULT{_LITTLE} or ASI_

SECONDARY_NOFAULT{_LITTLE} for those loads it determines should be nonfaulting. To

minimize unnecessary processing if a fault does occur, it is desirable to map low addresses (espe-

cially address zero) to a page of all zeros, so that references through a NULL pointer do not cause

unnecessary traps.

Implementation Note:

An implementation, through a combination of hardware and system software, must prevent non-

faulting loads on memory locations that have side effects; otherwise, such accesses produce unde-

fined results.

8.4 The SPARC-V9 Memory Model

The SPARC-V9 processor architecture specifies the organization and structure of a
SPARC-V9 central processing unit, but does not specify a memory system architecture.
Appendix F, “SPARC-V9 MMU Requirements,” summarizes the MMU support required
by a SPARC-V9 central processing unit.

The memory models specify the possible order relationships between memory-reference
instructions issued by a processor and the order and visibility of those instructions as seen
by other processors. The memory model is intimately intertwined with the program execu-
tion model for instructions.

8.4.1 The SPARC-V9 Program Execution Model

The SPARC-V9 processor model consists of three units: an issue unit, a reorder unit, and
an execute unit, as shown in figure 42.

124 8 Memory Models

The issue unit reads instructions over the instruction path from memory and issues them in
program order. Program order is precisely the order determined by the control flow of
the program and the instruction semantics, under the assumption that each instruction is
performed independently and sequentially.

Issued instructions are collected, reordered, and then dispatched to the execute unit.
Instruction reordering allows an implementation to perform some operations in parallel
and to better allocate resources. The reordering of instructions is constrained to ensure that
the results of program execution are the same as they would be if the instructions were
performed in program order. This property is called processor self-consistency.

Figure 42—Processor Model: Uniprocessor System

Processor self-consistency requires that the result of execution, in the absence of any
shared memory interaction with another processor, be identical to the result that would be
observed if the instructions were performed in program order. In the model in figure 42,
instructions are issued in program order and placed in the reorder buffer. The processor is
allowed to reorder instructions, provided it does not violate any of the data-flow con-
straints for registers or for memory.

The data-flow order constraints for register reference instructions are:

— An instruction cannot be performed until all earlier instructions that set a register it
uses have been performed (read-after-write hazard; write-after-write hazard).

— An instruction cannot be performed until all earlier instructions that use a register
it sets have been performed (write-after-read hazard).

An implementation can avoid blocking instruction execution in the second case by using a
renaming mechanism which provides the old value of the register to earlier instructions
and the new value to later uses.

The data-flow order constraints for memory-reference instructions are those for register
reference instructions, plus the following additional constraints:

(1) A memory-reference instruction that sets (stores to) a location cannot be per-
formed until all previous instructions that use (load from) the location have been
performed (write-after-read hazard).

(2) A memory-reference instruction that uses (loads) the value at a location cannot be
performed until all earlier memory-reference instructions that set (store to) the
location have been performed (read-after-write hazard).

Processor

Memory

Data Path

Instruction PathIssue Reorder Execute

8.4 The SPARC-V9 Memory Model 125

As with the case for registers, implementations can avoid blocking instructions in case (2)
by providing an additional mechanism, in this case, a write buffer which guarantees that
the value returned by a load is that which would be returned by the most recent store, even
though the store has not completed. As a result, the value associated with an address may
appear to be different when observed from a processor that has written the location and is
holding the value in its write buffer than it would be when observed from a processor that
references memory (or its own write buffer). Moreover, the load that was satisfied by the
write buffer never appears at the memory.

Memory-barrier instructions (MEMBAR and STBAR) and the active memory model
specified by PSTATE.MM also constrain the issue of memory-reference instructions. See
8.4.3, “The MEMBAR Instruction,” and 8.4.4, “Memory Models,” for a detailed descrip-
tion.

The constraints on instruction execution assert a partial ordering on the instructions in the
reorder buffer. Every one of the several possible orderings is a legal execution ordering for
the program. See Appendix D, “Formal Specification of the Memory Models,” for more
information.

8.4.2 The Processor/Memory Interface Model

Each processor in a multiprocessor system is modelled as shown in figure 43; that is, hav-
ing two independent paths to memory: one for instructions and one for data. Caches and
mappings are considered to be part of the memory. Data caches are maintained by hard-
ware to be consistent (coherent). Instruction caches need not be kept consistent with data
caches and, therefore, require explicit program action to ensure consistency when a pro-
gram modifies an executing instruction stream. Memory is shared in terms of address
space, but may be inhomogeneous and distributed in an implementation. Mapping and
caches are ignored in the model, since their functions are transparent to the memory
model.1

In real systems addresses may have attributes that the processor must respect. The proces-
sor executes loads, stores, and atomic load-stores in whatever order it chooses, as con-
strained by program order and the current memory model. The ASI address-couples it
generates are translated by a memory management unit (MMU), which associates
attributes with the address and may, in some instances, abort the memory transaction and
signal an exception to the CPU. For example, a region of memory may be marked as non-
prefetchable, non-cacheable, read-only, or restricted. It is the MMU’s responsibility, work-
ing in conjunction with system software, to ensure that memory attribute constraints are
not violated. See Appendix F, “SPARC-V9 MMU Requirements,” for more information.

Instructions are performed in an order constrained by local dependencies. Using this
dependency ordering, an execution unit submits one or more pending memory transac-
tions to the memory. The memory performs transactions in memory order. The memory

1. The model described here is only a model. Implementations of SPARC-V9 systems are unsonstrained

so long as their observable behaviors match those of the model.

126 8 Memory Models

unit may perform transactions submitted to it out of order; hence, the execution unit must

not submit two or more transactions concurrently that are required to be ordered.

Figure 43—Data Memory Paths: Multiprocessor System

The memory accepts transactions, performs them, and then acknowledges their comple-

tion. Multiple memory operations may be in progress at any time and may be initiated in a

nondeterministic fashion in any order, provided that all transactions to a location preserve

the per-processor partial orders. Memory transactions may complete in any order. Once

initiated, all memory operations are performed atomically: loads from one location all see

the same value, and the result of stores are visible to all potential requestors at the same

instant.

The order of memory operations observed at a single location is a total order that pre-

serves the partial orderings of each processor’s transactions to this address. There may be

many legal total orders for a given program’s execution.

8.4.3 The MEMBAR Instruction

MEMBAR serves two distinct functions in SPARC-V9. One variant of the MEMBAR, the

ordering MEMBAR, provides a way for the programmer to control the order of loads and

stores issued by a processor. The other variant of MEMBAR, the sequencing MEMBAR,

allows the programmer to explicitly control order and completion for memory operations.

Sequencing MEMBARs are needed only when a program requires that the effect of an

operation become globally visible, rather than simply being scheduled.2 As both forms are

bit-encoded into the instruction, a single MEMBAR can function both as an ordering

MEMBAR and as a sequencing MEMBAR.

2. Sequencing MEMBARs are needed for some input/output operations, forcing stores into specialized

stable storage, context switching, and occasional other systems functions. Using a Sequencing MEM-

BAR when one is not needed may cause a degradation of performance. See Appendix J, “Program-

ming With the Memory Models,” for examples of their use.

Processors

Memory Transactions
In Memory Order

Memory

Instructions

Data

8.4 The SPARC-V9 Memory Model 127

8.4.3.1 Ordering MEMBAR Instructions

Ordering MEMBAR instructions induce an ordering in the instruction stream of a single
processor. Sets of loads and stores that appear before the MEMBAR in program order are
ordered with respect to sets of loads and stores that follow the MEMBAR in program
order. Atomic operations (LDSTUB(A), SWAP(A), CASA, and CASXA) are ordered by
MEMBAR as if they were both a load and a store, since they share the semantics of both.
An STBAR instruction, with semantics that are a subset of MEMBAR, is provided for
SPARC-V8 compatibility. MEMBAR and STBAR operate on all pending memory opera-
tions in the reorder buffer, independent of their address or ASI, ordering them with respect
to all future memory operations. This ordering applies only to memory-reference instruc-
tions issued by the processor issuing the MEMBAR. Memory-reference instructions
issued by other processors are unaffected.

The ordering relationships are bit-encoded as shown in table 19. For example, MEMBAR
0116, written as “membar #LoadLoad” in assembly language, requires that all load
operations appearing before the MEMBAR in program order complete before any of the
load operations following the MEMBAR in program order complete. Store operations are
unconstrained in this case. MEMBAR 0816 (#StoreStore) is equivalent to the STBAR
instruction; it requires that the values stored by store instructions appearing in program
order prior to the STBAR instruction be visible to other processors prior to issuing any
store operations that appear in program order following the STBAR.

In table 19 these ordering relationships are specified by the ‘<m’ symbol, which signifies
memory order. See Appendix D, “Formal Specification of the Memory Models,” for a for-
mal description of the <m relationship.

Selections may be combined to form more powerful barriers. For example, a MEMBAR
instruction with a mask of 0916 (#LoadLoad | #StoreStore) orders loads with
respect to loads and stores with respect to stores, but does not order loads with respect to
stores or vice versa.

An ordering MEMBAR instruction does not guarantee any completion property; it only
introduces an ordering constraint. For example, a program should not assume that a store
preceding a MEMBAR instruction has completed following execution of the MEMBAR.

8.4.3.2 Sequencing MEMBAR Instructions

A sequencing MEMBAR exerts explicit control over the completion of operations. There
are three sequencing MEMBAR options, each with a different degree of control and a dif-
ferent application.

Table 19—Ordering Relationships Selected by Mask

Ordering relation,
earlier < later

Suggested
assembler tag

Mask
value

nmask
bit #

Load <m Load #LoadLoad 0116 0

Store <m Load #StoreLoad 0216 1

Load <m Store #LoadStore 0416 2

Store <m Store #StoreStore 0816 3

128 8 Memory Models

Lookaside Barrier:

Ensures that loads following this MEMBAR are from memory and not from a
lookaside into a write buffer. Lookaside Barrier requires that pending stores
issued prior to the MEMBAR be completed before any load from that address fol-
lowing the MEMBAR may be issued. A Lookaside Barrier MEMBAR may be
needed to provide lock fairness and to support some plausible I/O location seman-
tics. See the example in J.14.1, “I/O Registers With Side Effects.”

Memory Issue Barrier:

Ensures that all memory operations appearing in program order before the
sequencing MEMBAR complete before any any new memory operation may be
initiated. See the example in J.14.2, “The Control and Status Register (CSR).”

Synchronization Barrier:

Ensures that all instructions (memory reference and others) preceding the MEM-
BAR complete and the effects of any fault or error have become visible before any
instruction following the MEMBAR in program order is initiated. A Synchroniza-

tion Barrier MEMBAR fully synchronizes the processor that issues it.

Table 20 shows the encoding of these functions in the MEMBAR instruction.

8.4.4 Memory Models

The SPARC-V9 memory models are defined below in terms of order constraints placed
upon memory-reference instruction execution, in addition to the minimal set required for
self-consistency. These order constraints take the form of MEMBAR operations implicitly
performed following some memory-reference instructions.

8.4.4.1 Relaxed Memory Order (RMO)

Relaxed Memory Order places no ordering constraints on memory references beyond
those required for processor self-consistency. When ordering is required, it must be pro-
vided explicitly in the programs using MEMBAR instructions.

8.4.4.2 Partial Store Order (PSO)

Partial Store Order may be provided for compatibility with existing SPARC-V8 pro-
grams. Programs that execute correctly in the RMO memory model will execute correctly
in the PSO model.

Table 20—Sequencing Barrier Selected by Mask

Sequencing
function

Assembler tag Mask
value

cmask bit
#

Lookaside Barrier #Lookaside 1016 0

Memory Issue Barrier #MemIssue 2016 1

Synchronization Barrier #Sync 4016 2

8.4 The SPARC-V9 Memory Model 129

The rules for PSO are:

— Loads are blocking and ordered with respect to earlier loads.

— Atomic load-stores are ordered with respect to loads.

Thus, PSO ensures that:

— Each load and atomic load-store instruction behaves as if it were followed by a
MEMBAR with a mask value of 0516.

— Explicit MEMBAR instructions are required to order store and atomic load-store
instructions with respect to each other.

8.4.4.3 Total Store Order (TSO)

Total Store Order must be provided for compatibility with existing SPARC-V8 pro-
grams. Programs that execute correctly in either RMO or PSO will execute correctly in the
TSO model.

The rules for TSO are:

— Loads are blocking and ordered with respect to earlier loads.

— Stores are ordered with respect to stores.

— Atomic load-stores are ordered with respect to loads and stores.

Thus, TSO ensures that:

— Each load instruction behaves as if it were followed by a MEMBAR with a mask
value of 0516.

— Each store instruction behaves as if it were followed by a MEMBAR with a mask
of 0816.

— Each atomic load-store behaves as if it were followed by a MEMBAR with a mask
of 0D16.

8.4.5 Mode Control

The memory model is specified by the two-bit state in PSTATE.MM, described in 5.2.1.4,
“PSTATE_mem_model (MM).”

Writing a new value into PSTATE.MM causes subsequent memory reference instructions
to be performed with the order constraints of the specified memory model.

SPARC-V9 processors need not provide all three memory models; undefined values of
PSTATE.MM have implementation-dependent effects.

IMPL. DEP. #119: The effect of writing an unimplemented memory mode designation into

PSTATE.MM is implementation-dependent.

130 8 Memory Models

Implementation Note:

All SPARC-V9 implementations must provide TSO or a stronger model to maintain SPARC-V8

compatibility. An implementation may provide PSO, RMO, or neither.

Except when a trap enters RED_state, PSTATE.MM is left unchanged when a trap is
entered and the old value is stacked. When entering RED_state, the value of PSTATE.MM
is set to TSO.

8.4.6 Hardware Primitives for Mutual Exclusion

In addition to providing memory-ordering primitives that allow programmers to construct
mutual-exclusion mechanisms in software, SPARC-V9 provides three hardware primitives
for mutual exclusion:

— Compare and Swap (CASA, CASXA)

— Load Store Unsigned Byte (LDSTUB, LDSTUBA)

— Swap (SWAP, SWAPA)

Each of these instructions has the semantics of both a load and a store in all three memory
models. They are all atomic, in the sense that no other store can be performed between the
load and store elements of the instruction. All of the hardware mutual exclusion operations
conform to the memory models and may require barrier instructions to ensure proper data
visibility.

When the hardware mutual-exclusion primitives address I/O locations, the results are
implementation-dependent (impl. dep. #123). In addition, the atomicity of hardware
mutual-exclusion primitives is guaranteed only for processor memory references and not
when the memory location is simultaneously being addressed by an I/O device such as a
channel or DMA (impl. dep. #120).

8.4.6.1 Compare and Swap (CASA, CASXA)

Compare-and-swap is an atomic operation which compares a value in a processor register
to a value in memory, and, if and only if they are equal, swaps the value in memory with
the value in a second processor register. Both 32-bit (CASA) and 64-bit (CASXA) opera-
tions are provided. The compare-and-swap operation is atomic in the sense that once
begun, no other processor can access the memory location specified until the compare has
completed and the swap (if any) has also completed and is potentially visible to all other
processors in the system.

Compare-and-swap is substantially more powerful than the other hardware synchroniza-
tion primitives. It has an infinite consensus number; that is, it can resolve, in a wait-free
fashion, an infinite number of contending processes. Because of this property, compare-
and-swap can be used to construct wait-free algorithms that do not require the use of
locks. See Appendix J, “Programming With the Memory Models,” for examples.

8.4 The SPARC-V9 Memory Model 131

8.4.6.2 Swap (SWAP)

SWAP atomically exchanges the lower 32 bits in a processor register with a word in mem-
ory. Swap has a consensus number of two; that is, it cannot resolve more than two con-
tending processes in a wait-free fashion.

8.4.6.3 Load Store Unsigned Byte (LDSTUB)

LDSTUB loads a byte value from memory to a register and writes the value FF16 into the
addressed byte atomically. LDSTUB is the classic test-and-set instruction. Like SWAP, it
has a consensus number of two and so cannot resolve more than two contending processes
in a wait-free fashion.

8.4.7 Synchronizing Instruction and Data Memory

The SPARC-V9 memory models do not require that instruction and data memory images
be consistent at all times. The instruction and data memory images may become inconsis-
tent if a program writes into the instruction stream. As a result, whenever instructions are
modified by a program in a context where the data (that is, the instructions) in the memory
and the data cache hierarchy may be inconsistent with instructions in the instruction cache
hierarchy, some special programmatic action must be taken.

The FLUSH instruction will ensure consistency between the instruction stream and the
data references across any local caches for a particular doubleword value in the processor
executing the FLUSH. It will ensure eventual consistency across all caches in a multipro-
cessor system. The programmer must be careful to ensure that the modification sequence
is robust under multiple updates and concurrent execution. Since, in the general case,
loads and stores may be performed out of order, appropriate MEMBAR and FLUSH
instructions must be interspersed as needed to control the order in which the instruction
data is mutated.

The FLUSH instruction ensures that subsequent instruction fetches from the doubleword
target of the FLUSH by the processor executing the FLUSH appear to execute after any
loads, stores, and atomic load-stores issued by the processor to that address prior to the
FLUSH. FLUSH acts as a barrier for instruction fetches in the processor that executes it
and has the properties of a store with respect to MEMBAR operations.

FLUSH has no latency on the issuing processor; the modified instruction stream is imme-
diately available.3

IMPL. DEP. #122: The latency between the execution of FLUSH on one processor and the point at

which the modified instructions have replaced outdated instructions in a multiprocessor is imple-

mentation-dependent.

If all caches in a system (uniprocessor or multiprocessor) have a unified cache consistency
protocol, FLUSH does nothing.

3. SPARC-V8 specified a five-instruction latency. Invalidation of instructions in execution in the instruc-

tion cache is likely to force an instruction-cache fault.

132 8 Memory Models

Use of FLUSH in a multiprocessor environment may cause unexpected performance deg-
radation in some systems, because every processor that may have a copy of the modified
data in its instruction cache must invalidate that data. In the worst case naive system, all

processors must invalidate the data. The performance problem is compounded by the dou-
bleword granularity of the FLUSH, which must be observed even when the actual invali-
dation unit is larger, for example, a cache line.

Programming Note:

Because FLUSH is designed to act on a doubleword, and because, on some implementations,

FLUSH may trap to system software, it is recommended that system software provide a user-call-

able service routine for flushing arbitrarily sized regions of memory. On some implementations,

this routine would issue a series of FLUSH instructions; on others, it might issue a single trap to

system software that would then flush the entire region.

133

A Instruction Definitions

A.1 Overview

This appendix describes each SPARC-V9 instruction. Related instructions are grouped
into subsections. Each subsection consists of these parts:

(1) A table of the opcodes defined in the subsection with the values of the field(s) that
uniquely identify the instruction(s).

(2) An illustration of the applicable instruction format(s). In these illustrations, a dash
‘—’ indicates that the field is reserved for future versions of the architecture and
shall be zero in any instance of the instruction. If a conforming SPARC-V9 imple-
mentation encounters nonzero values in these fields, its behavior is undefined. See
Appendix I, “Extending the SPARC-V9 Architecture,” for information about
extending the SPARC-V9 instruction set.

(3) A list of the suggested assembly language syntax; the syntax notation is described
in Appendix G, “Suggested Assembly Language Syntax.”

(4) A description of the features, restrictions, and exception-causing conditions.

(5) A list of the exceptions that can occur as a consequence of attempting to execute
the instruction(s). Exceptions due to an instruction_access_error, instruction_access_

exception, instruction_access_MMU_miss, async_data_error, or internal_processor_

error, and interrupt requests are not listed, since they can occur on any instruction.
Also, any instruction that is not implemented in hardware shall generate an illegal_

instruction exception (or fp_exception_other exception with ftt = unimplemented_FPop

for floating-point instructions) when it is executed.

This appendix does not include any timing information (in either cycles or clock time),
since timing is implementation-dependent.

Table 22 summarizes the instruction set; the instruction definitions follow the table.
Within table 22, throughout this appendix, and in Appendix E, “Opcode Maps,” certain
opcodes are marked with mnemonic superscripts. The superscripts and their meanings are
defined in table 21:

Table 21—Opcode Superscripts

Superscrip
t Meaning

D Deprecated instruction

P Privileged opcode

PASI Privileged action if bit 7 of the referenced ASI is zero

PASR Privileged opcode if the referenced ASR register is privileged

PNPT Privileged action if PSTATE.PRIV = 0 and TICK.NPT = 1

134 A Instruction Definitions

Table 22—Instruction Set

Opcode Name Page

ADD (ADDcc) Add (and modify condition codes) 137

ADDC (ADDCcc) Add with carry (and modify condition codes) 137

AND (ANDcc) And (and modify condition codes) 184

ANDN (ANDNcc) And not (and modify condition codes) 184

BPcc Branch on integer condition codes with prediction 148

BiccD Branch on integer condition codes 146

BPr Branch on contents of integer register with prediction 138

CALL Call and link 151

CASAPASI Compare and swap word in alternate space 152

CASXAPAS I Compare and swap doubleword in alternate space 152

DONEP Return from trap 157

FABS(s,d,q) Floating-point absolute value 164

FADD(s,d,q) Floating-point add 158

FBfccD Branch on floating-point condition codes 140

FBPfcc Branch on floating-point condition codes with prediction 143

FCMP(s,d,q) Floating-point compare 159

FCMPE(s,d,q) Floating-point compare (exception if unordered) 159

FDIV(s,d,q) Floating-point divide 165

FdMULq Floating-point multiply double to quad 165

FiTO(s,d,q) Convert integer to floating-point 163

FLUSH Flush instruction memory 167

FLUSHW Flush register windows 169

FMOV(s,d,q) Floating-point move 164

FMOV(s,d,q)cc Move floating-point register if condition is satisfied 188

FMOV(s,d,q)r Move f-p reg. if integer reg. contents satisfy condition 192

FMUL(s,d,q) Floating-point multiply 165

FNEG(s,d,q) Floating-point negate 164

FsMULd Floating-point multiply single to double 165

FSQRT(s,d,q) Floating-point square root 166

F(s,d,q)TOi Convert floating point to integer 161

F(s,d,q)TO(s,d,q) Convert between floating-point formats 162

F(s,d,q)TOx Convert floating point to 64-bit integer 161

FSUB(s,d,q) Floating-point subtract 158

FxTO(s,d,q) Convert 64-bit integer to floating-point 163

ILLTRAP Illegal instruction 170

IMPDEP1 Implementation-dependent instruction 171

IMPDEP2 Implementation-dependent instruction 171

JMPL Jump and link 172

LDDD Load doubleword 178

LDDAD, PASI Load doubleword from alternate space 180

LDDF Load double floating-point 173

LDDFAPASI Load double floating-point from alternate space 176

LDF Load floating-point 173

LDFAPASI Load floating-point from alternate space 176

LDFSRD Load floating-point state register lower 173

A.1 Overview 135

LDQF Load quad floating-point 173

LDQFAPASI Load quad floating-point from alternate space 176

LDSB Load signed byte 178

LDSBAPASI Load signed byte from alternate space 180

LDSH Load signed halfword 178

LDSHAPASI Load signed halfword from alternate space 180

LDSTUB Load-store unsigned byte 182

LDSTUBAPASI Load-store unsigned byte in alternate space 183

LDSW Load signed word 178

LDSWAPASI Load signed word from alternate space 180

LDUB Load unsigned byte 178

LDUBAPASI Load unsigned byte from alternate space 180

LDUH Load unsigned halfword 178

LDUHAPASI Load unsigned halfword from alternate space 180

LDUW Load unsigned word 178

LDUWAPASI Load unsigned word from alternate space 180

LDX Load extended 178

LDXAPASI Load extended from alternate space 180

LDXFSR Load floating-point state register 173

MEMBAR Memory barrier 186

MOVcc Move integer register if condition is satisfied 194

MOVr Move integer register on contents of integer register 198

MULSccD Multiply step (and modify condition codes) 202

MULX Multiply 64-bit integers 199

NOP No operation 204

OR (ORcc) Inclusive-or (and modify condition codes) 184

ORN (ORNcc) Inclusive-or not (and modify condition codes) 184

POPC Population count 205

PREFETCH Prefetch data 206

PREFETCHAPASI Prefetch data from alternate space 206

RDASI Read ASI register 214

RDASRPASR Read ancillary state register 214

RDCCR Read condition codes register 214

RDFPRS Read floating-point registers state register 214

RDPC Read program counter 214

RDPRP Read privileged register 211

RDTICKPNPT Read TICK register 214

RDYD Read Y register 214

RESTORE Restore caller’s window 217

RESTOREDP Window has been restored 219

RETRYP Return from trap and retry 157

RETURN Return 216

SAVE Save caller’s window 217

SAVEDP Window has been saved 219

SDIVD (SDIVccD) 32-bit signed integer divide (and modify condition codes) 154

SDIVX 64-bit signed integer divide 199

Table 22—Instruction Set (Continued)

Opcode Name Page

136 A Instruction Definitions

SETHI Set high 22 bits of low word of integer register 220

SIR Software-initiated reset 223

SLL Shift left logical 221

SLLX Shift left logical, extended 221

SMULD (SMULccD) Signed integer multiply (and modify condition codes) 200

SRA Shift right arithmetic 221

SRAX Shift right arithmetic, extended 221

SRL Shift right logical 221

SRLX Shift right logical, extended 221

STB Store byte 229

STBAPASI Store byte into alternate space 231

STBARD Store barrier 224

STDD Store doubleword 229

STDAD, PASI Store doubleword into alternate space 229

STDF Store double floating-point 225

STDFAPASI Store double floating-point into alternate space 227

STF Store floating-point 225

STFAPASI Store floating-point into alternate space 227

STFSRD Store floating-point state register 225

STH Store halfword 229

STHAPASI Store halfword into alternate space 231

STQF Store quad floating-point 225

STQFAPASI Store quad floating-point into alternate space 227

STW Store word 229

STWAPASI Store word into alternate space 231

STX Store extended 229

STXAPASI Store extended into alternate space 231

STXFSR Store extended floating-point state register 225

SUB (SUBcc) Subtract (and modify condition codes) 233

SUBC (SUBCcc) Subtract with carry (and modify condition codes) 233

SWAPD Swap integer register with memory 234

SWAPAD, PASI Swap integer register with memory in alternate space 235

TADDcc (TADDccTVD) Tagged add and modify condition codes (trap on overflow) 237

Tcc Trap on integer condition codes 240

TSUBcc (TSUBccTVD) Tagged subtract and modify condition codes (trap on overflow) 238

UDIVD (UDIVccD) Unsigned integer divide (and modify condition codes) 154

UDIVX 64-bit unsigned integer divide 199

UMULD (UMULccD) Unsigned integer multiply (and modify condition codes) 200

WRASI Write ASI register 244

WRASRPASR Write ancillary state register 244

WRCCR Write condition codes register 244

WRFPRS Write floating-point registers state register 244

WRPRP Write privileged register 242

WRYD Write Y register 244

XNOR (XNORcc) Exclusive-nor (and modify condition codes) 184

XOR (XORcc) Exclusive-or (and modify condition codes) 184

Table 22—Instruction Set (Continued)

Opcode Name Page

A.2 Add 137

A.2 Add

Format (3):

Description:

ADD and ADDcc compute “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)” if
i = 1, and write the sum into r[rd].

ADDC and ADDCcc (“ADD with carry”) also add the CCR register’s 32-bit carry (icc.c)
bit; that is, they compute “r[rs1] + r[rs2] + icc.c” or “r[rs1] + sign_ext(simm13) + icc.c”
and write the sum into r[rd].

ADDcc and ADDCcc modify the integer condition codes (CCR.icc and CCR.xcc). Over-
flow occurs on addition if both operands have the same sign and the sign of the sum is dif-
ferent.

Programming Note:

ADDC and ADDCcc read the 32-bit condition codes’ carry bit (CCR.icc.c), not the 64-bit condi-

tion codes’ carry bit (CCR.xcc.c).

Compatibility Note:

ADDC and ADDCcc were named ADDX and ADDXcc, respectively, in SPARC-V8.

Exceptions:

(none)5

Opcode Op3 Operation

ADD 00 0000 Add

ADDcc 01 0000 Add and modify cc’s

ADDC 00 1000 Add with Carry

ADDCcc 01 1000 Add with Carry and modify cc’s

Suggested Assembly Language Syntax

add regrs1, reg_or_imm, regrd

addcc regrs1, reg_or_imm, regrd

addc regrs1, reg_or_imm, regrd

addccc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

138 A Instruction Definitions

A.3 Branch on Integer Register with Prediction (BPr)

Format (2):

Programming Note:

To set the annul bit for BPr instructions, append “,a” to the opcode mnemonic. For example, use

“brz,a %i3,label.” The preceding table indicates that the “,a” is optional by enclosing it in

braces. To set the branch prediction bit “p,” append either “,pt” for predict taken or “,pn” for

predict not taken to the opcode mnemonic. If neither “,pt” nor “,pn” is specified, the assembler

shall default to “,pt”.

Description:

These instructions branch based on the contents of r[rs1]. They treat the register contents
as a signed integer value.

A BPr instruction examines all 64 bits of r[rs1] according to the rcond field of the instruc-
tion, producing either a TRUE or FALSE result. If TRUE, the branch is taken; that is, the
instruction causes a PC-relative, delayed control transfer to the address “PC + (4 * sign_
ext(d16hi d16lo)).” If FALSE, the branch is not taken.

If the branch is taken, the delay instruction is always executed, regardless of the value of
the annul bit. If the branch is not taken and the annul bit (a) is 1, the delay instruction is
annulled (not executed).

Opcode rcond Operation
Register

contents test

— 000 Reserved —

BRZ 001 Branch on Register Zero r[rs1] = 0

BRLEZ 010 Branch on Register Less Than or Equal to Zero r[rs1] ≤ 0

BRLZ 011 Branch on Register Less Than Zero r[rs1] < 0

— 100 Reserved —

BRNZ 101 Branch on Register Not Zero r[rs1] ≠ 0

BRGZ 110 Branch on Register Greater Than Zero r[rs1] > 0

BRGEZ 111 Branch on Register Greater Than or Equal to Zero r[rs1] ≥ 0

Suggested Assembly Language Syntax

brz{,a}{,pt|,pn} regrs1, label

brlez{,a}{,pt|,pn} regrs1, label

brlz{,a}{,pt|,pn} regrs1, label

brnz{,a}{,pt|,pn} regrs1, label

brgz{,a}{,pt|,pn} regrs1, label

brgez{,a}{,pt|,pn} regrs1, label

31 141924 18 13 027 2530 29 28 22 21 20

00 a 0 rcond 011 d16hi p rs1 d16lo

A.3 Branch on Integer Register with Prediction (BPr) 139

The predict bit (p) is used to give the hardware a hint about whether the branch is expected
to be taken. A 1 in the p bit indicates that the branch is expected to be taken; a 0 indicates
that the branch is expected not to be taken.

Annulment, delay instructions, prediction, and delayed control transfers are described fur-
ther in Chapter 6, “Instructions.”

Implementation Note:

If this instruction is implemented by tagging each register value with an N (negative) bit and Z

(zero) bit, the following table can be used to determine if rcond is TRUE:

Exceptions:

illegal_instruction (if rcond = 0002 or 1002)

Branch Test

BRNZ not Z

BRZ Z

BRGEZ not N

BRLZ N

BRLEZ N or Z

BRGZ not (N or Z)

140 A Instruction Definitions

A.4 Branch on Floating-Point Condition Codes (FBfcc)

Format (2):

Opcode cond Operation fcc test

FBAD 1000 Branch Always 1

FBND 0000 Branch Never 0

FBUD 0111 Branch on Unordered U

FBGD 0110 Branch on Greater G

FBUGD 0101 Branch on Unordered or Greater G or U

FBLD 0100 Branch on Less L

FBULD 0011 Branch on Unordered or Less L or U

FBLGD 0010 Branch on Less or Greater L or G

FBNED 0001 Branch on Not Equal L or G or U

FBED 1001 Branch on Equal E

FBUED 1010 Branch on Unordered or Equal E or U

FBGED 1011 Branch on Greater or Equal E or G

FBUGED 1100 Branch on Unordered or Greater or Equal E or G or U

FBLED 1101 Branch on Less or Equal E or L

FBULED 1110 Branch on Unordered or Less or Equal E or L or U

FBOD 1111 Branch on Ordered E or L or G

The FBfcc instructions are deprecated; they are provided only for compatibility

with previous versions of the architecture. They should not be used in new SPARC-

V9 software. It is recommended that the FBPfcc instructions be used in their place.

31 24 02530 29 28 22 21

cond00 a 110 disp22

A.4 Branch on Floating-Point Condition Codes (FBfcc) 141

Programming Note:

To set the annul bit for FBfcc instructions, append “,a” to the opcode mnemonic. For example, use

“fbl,a label.” The preceding table indicates that the “,a” is optional by enclosing it in braces .

Description:

Unconditional Branches (FBA, FBN):
If its annul field is 0, an FBN (Branch Never) instruction acts like a NOP. If its
annul field is 1, the following (delay) instruction is annulled (not executed) when
the FBN is executed. In neither case does a transfer of control take place.

FBA (Branch Always) causes a PC-relative, delayed control transfer to the address
“PC + (4 × sign_ext(disp22)),” regardless of the value of the floating-point condi-
tion code bits. If the annul field of the branch instruction is 1, the delay instruction
is annulled (not executed). If the annul field is 0, the delay instruction is executed.

Fcc-Conditional Branches:
Conditional FBfcc instructions (except FBA and FBN) evaluate floating-point con-
dition code zero (fcc0) according to the cond field of the instruction. Such evalua-
tion produces either a TRUE or FALSE result. If TRUE, the branch is taken, that
is, the instruction causes a PC-relative, delayed control transfer to the address
“PC + (4 × sign_ext(disp22)).” If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed, regard-
less of the value of the annul field. If a conditional branch is not taken and the a

(annul) field is 1, the delay instruction is annulled (not executed). Note that the
annul bit has a different effect on conditional branches than it does on uncondi-
tional branches.

Suggested Assembly Language Syntax

fba{,a} label

fbn{,a} label

fbu{,a} label

fbg{,a} label

fbug{,a} label

fbl{,a} label

fbul{,a} label

fblg{,a} label

fbne{,a} label (synonym: fbnz)

fbe{,a} label (synonym: fbz)

fbue{,a} label

fbge{,a} label

fbuge{,a} label

fble{,a} label

fbule{,a} label

fbo{,a} label

142 A Instruction Definitions

Annulment, delay instructions, and delayed control transfers are described further
in Chapter 6, “Instructions.”

Compatibility Note:

Unlike SPARC-V8, SPARC-V9 does not require an instruction between a floating-point compare

operation and a floating-point branch (FBfcc, FBPfcc).

If FPRS.FEF = 0 or PSTATE.PEF = 0, or if an FPU is not present, the FBfcc instruction is
not executed and instead, generates an fp_disabled exception.

Exceptions:

fp_disabled

A.5 Branch on Floating-Point Condition Codes with Prediction (FBPfcc) 143

A.5 Branch on Floating-Point Condition Codes with Prediction
(FBPfcc)

Format (2):

Opcode cond Operation fcc test

FBPA 1000 Branch Always 1

FBPN 0000 Branch Never 0

FBPU 0111 Branch on Unordered U

FBPG 0110 Branch on Greater G

FBPUG 0101 Branch on Unordered or Greater G or U

FBPL 0100 Branch on Less L

FBPUL 0011 Branch on Unordered or Less L or U

FBPLG 0010 Branch on Less or Greater L or G

FBPNE 0001 Branch on Not Equal L or G or U

FBPE 1001 Branch on Equal E

FBPUE 1010 Branch on Unordered or Equal E or U

FBPGE 1011 Branch on Greater or Equal E or G

FBPUGE 1100 Branch on Unordered or Greater or Equal E or G or U

FBPLE 1101 Branch on Less or Equal E or L

FBPULE 1110 Branch on Unordered or Less or Equal E or L or U

FBPO 1111 Branch on Ordered E or L or G

cc1 cc0
Condition

code

00 fcc0

01 fcc1

10 fcc2

11 fcc3

31 1924 18 02530 29 28 22 21 20

00 a cond 101 cc1 p disp19cc0

144 A Instruction Definitions

Programming Note:

To set the annul bit for FBPfcc instructions, append “,a” to the opcode mnemonic. For example,

use “fbl,a %fcc3,label.” The preceding table indicates that the “,a” is optional by enclos-

ing it in braces. To set the branch prediction bit, append either “,pt” (for predict taken) or “pn”

(for predict not taken) to the opcode mnemonic. If neither “,pt” nor “,pn” is specified, the

assembler shall default to “,pt”. To select the appropriate floating-point condition code, include

"%fcc0", "%fcc1", "%fcc2", or "%fcc3" before the label.

Description:

Unconditional Branches (FBPA, FBPN):
If its annul field is 0, an FBPN (Floating-Point Branch Never with Prediction)
instruction acts like a NOP. If the Branch Never’s annul field is 0, the following
(delay) instruction is executed; if the annul field is 1, the following instruction is
annulled (not executed). In no case does an FBPN cause a transfer of control to
take place.

FBPA (Floating-Point Branch Always with Prediction) causes an unconditional
PC-relative, delayed control transfer to the address “PC + (4 × sign_ext(disp19)).”
If the annul field of the branch instruction is 1, the delay instruction is annulled
(not executed). If the annul field is 0, the delay instruction is executed.

Fcc-Conditional Branches:
Conditional FBPfcc instructions (except FBPA and FBPN) evaluate one of the four
floating-point condition codes (fcc0, fcc1, fcc2, fcc3) as selected by cc0 and cc1,
according to the cond field of the instruction, producing either a TRUE or FALSE
result. If TRUE, the branch is taken, that is, the instruction causes a PC-relative,
delayed control transfer to the address “PC + (4 × sign_ext(disp19)).” If FALSE,
the branch is not taken.

Suggested Assembly Language Syntax

fba{,a}{,pt|,pn} %fccn, label

fbn{,a}{,pt|,pn} %fccn, label

fbu{,a}{,pt|,pn} %fccn, label

fbg{,a}{,pt|,pn} %fccn, label

fbug{,a}{,pt|,pn} %fccn, label

fbl{,a}{,pt|,pn} %fccn, label

fbul{,a}{,pt|,pn} %fccn, label

fblg{,a}{,pt|,pn} %fccn, label

fbne{,a}{,pt|,pn} %fccn, label (synonym: fbnz)

fbe{,a}{,pt|,pn} %fccn, label (synonym: fbz)

fbue{,a}{,pt|,pn} %fccn, label

fbge{,a}{,pt|,pn} %fccn, label

fbuge{,a}{,pt|,pn} %fccn, label

fble{,a}{,pt|,pn} %fccn, label

fbule{,a}{,pt|,pn} %fccn, label

fbo{,a}{,pt|,pn} %fccn, label

A.5 Branch on Floating-Point Condition Codes with Prediction (FBPfcc) 145

If a conditional branch is taken, the delay instruction is always executed, regard-
less of the value of the annul field. If a conditional branch is not taken and the a

(annul) field is 1, the delay instruction is annulled (not executed). Note that the
annul bit has a different effect on conditional branches than it does on uncondi-
tional branches.

The predict bit (p) is used to give the hardware a hint about whether the branch is
expected to be taken. A 1 in the p bit indicates that the branch is expected to be
taken. A 0 indicates that the branch is expected not to be taken.

Annulment, delay instructions, and delayed control transfers are described further
in Chapter 6, “Instructions.”

If FPRS.FEF = 0 or PSTATE.PEF = 0, or if an FPU is not present, an FBPfcc instruction is
not executed and instead, generates an fp_disabled exception.

Compatibility Note:

Unlike SPARC-V8, SPARC-V9 does not require an instruction between a floating-point compare

operation and a floating-point branch (FBfcc, FBPfcc).

Exceptions:

fp_disabled

146 A Instruction Definitions

A.6 Branch on Integer Condition Codes (Bicc)

Format (2):

Opcode cond Operation icc test

BAD 1000 Branch Always 1

BND 0000 Branch Never 0

BNED 1001 Branch on Not Equal not Z

BED 0001 Branch on Equal Z

BGD 1010 Branch on Greater not (Z or (N xor V))

BLED 0010 Branch on Less or Equal Z or (N xor V)

BGED 1011 Branch on Greater or Equal not (N xor V)

BLD 0011 Branch on Less N xor V

BGUD 1100 Branch on Greater Unsigned not (C or Z)

BLEUD 0100 Branch on Less or Equal Unsigned C or Z

BCCD 1101 Branch on Carry Clear (Greater than or Equal, Unsigned) not C

BCSD 0101 Branch on Carry Set (Less than, Unsigned) C

BPOSD 1110 Branch on Positive not N

BNEGD 0110 Branch on Negative N

BVCD 1111 Branch on Overflow Clear not V

BVSD 0111 Branch on Overflow Set V

Suggested Assembly Language Syntax

ba{,a} label

bn{,a} label

bne{,a} label (synonym: bnz)

be{,a} label (synonym: bz)

bg{,a} label

ble{,a} label

bge{,a} label

bl{,a} label

bgu{,a} label

bleu{,a} label

bcc{,a} label (synonym: bgeu)

bcs{,a} label (synonym: blu)

bpos{,a} label

bneg{,a} label

bvc{,a} label

bvs{,a} label

The Bicc instructions are deprecated; they are provided only for compatibility with

previous versions of the architecture. They should not be used in new SPARC-V9

software. It is recommended that the BPcc instructions be used in their place.

31 24 02530 29 28 22 21

00 a cond 010 disp22

A.6 Branch on Integer Condition Codes (Bicc) 147

Programming Note:

To set the annul bit for Bicc instructions, append “,a” to the opcode mnemonic. For example, use

“bgu,a label.” The preceding table indicates that the “,a” is optional by enclosing it in braces.

Description:

Unconditional Branches (BA, BN):
If its annul field is 0, a BN (Branch Never) instruction acts like a NOP. If its annul
field is 1, the following (delay) instruction is annulled (not executed). In neither
case does a transfer of control take place.

BA (Branch Always) causes an unconditional PC-relative, delayed control transfer
to the address “PC + (4 × sign_ext(disp22)).” If the annul field of the branch
instruction is 1, the delay instruction is annulled (not executed). If the annul field is
0, the delay instruction is executed.

Icc-Conditional Branches:
Conditional Bicc instructions (all except BA and BN) evaluate the 32-bit integer
condition codes (icc), according to the cond field of the instruction, producing
either a TRUE or FALSE result. If TRUE, the branch is taken, that is, the instruc-
tion causes a PC-relative, delayed control transfer to the address “PC + (4 × sign_
ext(disp22)).” If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed regardless
of the value of the annul field. If a conditional branch is not taken and the a (annul)
field is 1, the delay instruction is annulled (not executed). Note that the annul bit
has a different effect on conditional branches than it does on unconditional
branches.

Annulment, delay instructions, and delayed control transfers are described further
in Chapter 6, “Instructions.”

Exceptions:

(none)

148 A Instruction Definitions

A.7 Branch on Integer Condition Codes with Prediction (BPcc)

Format (2):

Opcode cond Operation icc test

BPA 1000 Branch Always 1

BPN 0000 Branch Never 0

BPNE 1001 Branch on Not Equal not Z

BPE 0001 Branch on Equal Z

BPG 1010 Branch on Greater not (Z or (N xor V))

BPLE 0010 Branch on Less or Equal Z or (N xor V)

BPGE 1011 Branch on Greater or Equal not (N xor V)

BPL 0011 Branch on Less N xor V

BPGU 1100 Branch on Greater Unsigned not (C or Z)

BPLEU 0100 Branch on Less or Equal Unsigned C or Z

BPCC 1101 Branch on Carry Clear (Greater Than or Equal, Unsigned) not C

BPCS 0101 Branch on Carry Set (Less than, Unsigned) C

BPPOS 1110 Branch on Positive not N

BPNEG 0110 Branch on Negative N

BPVC 1111 Branch on Overflow Clear not V

BPVS 0111 Branch on Overflow Set V

cc1 cc0
Condition

code

00 icc

01 —

10 xcc

11 —

31 1924 18 02530 29 28 22 21 20

00 a cond 001 cc1 p disp19cc0

A.7 Branch on Integer Condition Codes with Prediction (BPcc) 149

Programming Note:

To set the annul bit for BPcc instructions, append “,a” to the opcode mnemonic. For example, use

“bgu,a %icc,label.” The preceding table indicates that the “,a” is optional by enclosing it in

braces. To set the branch prediction bit, append to an opcode mnemonic either “,pt” for predict

taken or “,pn” for predict not taken. If neither “,pt” nor “,pn” is specified, the assembler shall

default to “,pt”. To select the appropriate integer condition code, include “%icc” or “%xcc”

before the label.

Description:

Unconditional Branches (BPA, BPN):
A BPN (Branch Never with Prediction) instruction for this branch type (op2 = 1) is
used in SPARC-V9 as an instruction prefetch; that is, the effective address
(PC + (4 × sign_ext(disp19))) specifies an address of an instruction that is expected
to be executed soon. The processor may use this information to begin prefetching
instructions from that address. Like the PREFETCH instruction, this instruction
may be treated as a NOP by an implementation. If the Branch Never’s annul field
is 1, the following (delay) instruction is annulled (not executed). If the annul field
is 0, the following instruction is executed. In no case does a Branch Never cause a
transfer of control to take place.

BPA (Branch Always with Prediction) causes an unconditional PC-relative,
delayed control transfer to the address “PC + (4 × sign_ext(disp19)).” If the annul
field of the branch instruction is 1, the delay instruction is annulled (not executed).
If the annul field is 0, the delay instruction is executed.

Conditional Branches:
Conditional BPcc instructions (except BPA and BPN) evaluate one of the two inte-
ger condition codes (icc or xcc), as selected by cc0 and cc1, according to the cond

field of the instruction, producing either a TRUE or FALSE result. If TRUE, the

Suggested Assembly Language Syntax

ba{,a}{,pt|,pn} i_or_x_cc, label

bn{,a}{,pt|,pn} i_or_x_cc, label (or: iprefetch label)

bne{,a}{,pt|,pn} i_or_x_cc, label (synonym: bnz)

be{,a}{,pt|,pn} i_or_x_cc, label (synonym: bz)

bg{,a}{,pt|,pn} i_or_x_cc, label

ble{,a}{,pt|,pn} i_or_x_cc, label

bge{,a}{,pt|,pn} i_or_x_cc, label

bl{,a}{,pt|,pn} i_or_x_cc, label

bgu{,a}{,pt|,pn} i_or_x_cc, label

bleu{,a}{,pt|,pn} i_or_x_cc, label

bcc{,a}{,pt|,pn} i_or_x_cc, label (synonym: bgeu)

bcs{,a}{,pt|,pn} i_or_x_cc, label (synonym: blu)

bpos{,a}{,pt|,pn} i_or_x_cc, label

bneg{,a}{,pt|,pn} i_or_x_cc, label

bvc{,a}{,pt|,pn} i_or_x_cc, label

bvs{,a}{,pt|,pn} i_or_x_cc, label

150 A Instruction Definitions

branch is taken; that is, the instruction causes a PC-relative, delayed control trans-
fer to the address “PC + (4 × sign_ext(disp19)).” If FALSE, the branch is not
taken.

If a conditional branch is taken, the delay instruction is always executed regardless
of the value of the annul field. If a conditional branch is not taken and the a (annul)
field is 1, the delay instruction is annulled (not executed). Note that the annul bit
has a different effect for conditional branches than it does for unconditional
branches.

The predict bit (p) is used to give the hardware a hint about whether the branch is
expected to be taken. A 1 in the p bit indicates that the branch is expected to be
taken; a 0 indicates that the branch is expected not to be taken.

Annulment, delay instructions, prediction, and delayed control transfers are
described further in Chapter 6, “Instructions.”

Exceptions:

illegal_instruction (cc1 cc0 = 012 or 112)

A.8 Call and Link 151

A.8 Call and Link

Format (1):

Description:

The CALL instruction causes an unconditional, delayed, PC-relative control transfer to
address PC + (4 × sign_ext(disp30)). Since the word displacement (disp30) field is 30 bits
wide, the target address lies within a range of –231 to +231 – 4 bytes. The PC-relative dis-
placement is formed by sign-extending the 30-bit word displacement field to 62 bits and
appending two low-order zeros to obtain a 64-bit byte displacement.

The CALL instruction also writes the value of PC, which contains the address of the
CALL, into r[15] (out register 7). The high-order 32-bits of the PC value stored in r[15]
are implementation-dependent when PSTATE.AM = 1 (impl. dep. #125). The value writ-
ten into r[15] is visible to the instruction in the delay slot.

Exceptions:

(none)

Opcode op Operation

CALL 01 Call and Link

Suggested Assembly Language Syntax

call label

31 030 29

01 disp30

152 A Instruction Definitions

A.9 Compare and Swap

Format (3):

Description:

These instructions are used for synchronization and memory updates by concurrent pro-
cesses. Uses of compare-and-swap include spin-lock operations, updates of shared
counters, and updates of linked-list pointers. The latter two can use wait-free (nonlocking)
protocols.

The CASXA instruction compares the value in register r[rs2] with the doubleword in
memory pointed to by the doubleword address in r[rs1]. If the values are equal, the value
in r[rd] is swapped with the doubleword pointed to by the doubleword address in r[rs1]. If
the values are not equal, the contents of the doubleword pointed to by r[rs1] replaces the
value in r[rd], but the memory location remains unchanged.

The CASA instruction compares the low-order 32 bits of register r[rs2] with a word in
memory pointed to by the word address in r[rs1]. If the values are equal, the low-order 32
bits of register r[rd] are swapped with the contents of the memory word pointed to by the
address in r[rs1] and the high-order 32 bits of register r[rd] are set to zero. If the values are
not equal, the memory location remains unchanged, but the zero-extended contents of the
memory word pointed to by r[rs1] replace the low-order 32 bits of r[rd] and the high-order
32 bits of register r[rd] are set to zero.

A compare-and-swap instruction comprises three operations: a load, a compare, and a
swap. The overall instruction is atomic; that is, no intervening interrupts or deferred traps
are recognized by the processor, and no intervening update resulting from a compare-and-
swap, swap, load, load-store unsigned byte, or store instruction to the doubleword contain-
ing the addressed location, or any portion of it, is performed by the memory system.

A compare-and-swap operation does not imply any memory barrier semantics. When
compare-and-swap is used for synchronization, the same consideration should be given to
memory barriers as if a load, store, or swap instruction were used.

Opcode op3 Operation

CASAPASI 11 1100 Compare and Swap Word from Alternate space

CASXAPASI 11 1110 Compare and Swap Extended from Alternate space

Suggested Assembly Language Syntax

casa [regrs1] imm_asi, regrs2, regrd

casa [regrs1] %asi, regrs2, regrd

casxa [regrs1] imm_asi, regrs2, regrd

casxa [regrs1] %asi, regrs2, regrd

31 141924 18 13 12 5 4 02530 29

11 rd op3 rs1 i=0 imm_asi rs2

11 rd op3 rs1 i=1 — rs2

A.9 Compare and Swap 153

A compare-and-swap operation behaves as if it performs a store, either of a new value
from r[rd] or of the previous value in memory. The addressed location must be writable,
even if the values in memory and r[rs2] are not equal.

If i = 0, the address space of the memory location is specified in the imm_asi field; if i = 1,
the address space is specified in the ASI register.

A mem_address_not_aligned exception is generated if the address in r[rs1] is not properly
aligned. CASXA and CASA cause a privileged_action exception if PSTATE.PRIV = 0 and
bit 7 of the ASI is zero.

The coherence and atomicity of memory operations between processors and I/O DMA
memory accesses are implementation-dependent (impl. dep #120).

Implementation Note:

An implementation might cause an exception due to an error during the store memory access, even

though there was no error during the load memory access.

Programming Note:

Compare and Swap (CAS) and Compare and Swap Extended (CASX) synthetic instructions are

available for “big endian” memory accesses. Compare and Swap Little (CASL) and Compare and

Swap Extended Little (CASXL) synthetic instructions are available for “little endian” memory

accesses. See G.3, “Synthetic Instructions,” for these synthetic instructions’ syntax.

The compare-and-swap instructions do not affect the condition codes.

Exceptions:

privileged_action

mem_address_not_aligned

data_access_exception

data_access_MMU_miss

data_access_protection

data_access_error

async_data_error

154 A Instruction Definitions

A.10 Divide (64-bit / 32-bit)

Format (3):

Description:

The divide instructions perform 64-bit by 32-bit division, producing a 32-bit result. If
i = 0, they compute “(Y lower 32 bits of r[rs1]) ÷ lower 32 bits of r[rs2].” Otherwise
(i.e., if i = 1), the divide instructions compute “(Y lower 32 bits of r[rs1]) ÷ lower 32

bits of sign_ext(simm13).” In either case, if overflow does not occur, the less significant 32
bits of the integer quotient are sign-or zero-extended to 64 bits and are written into r[rd].

The contents of the Y register are undefined after any 64-bit by 32-bit integer divide oper-
ation.

Unsigned Divide:

Unsigned divide (UDIV, UDIVcc) assumes an unsigned integer doubleword dividend
(Y lower 32 bits of r[rs1]) and an unsigned integer word divisor (lower 32 bits of r[rs2]
or lower 32 bits of sign_ext(simm13)) and computes an unsigned integer word quotient
(r[rd]). Immediate values in simm13 are in the ranges 0..212 – 1 and 232 – 212 ..232 – 1 for
unsigned divide instructions.

Unsigned division rounds an inexact rational quotient toward zero .

Opcode op3 Operation

UDIVD 00 1110 Unsigned Integer Divide

SDIVD 00 1111 Signed Integer Divide

UDIVccD 01 1110 Unsigned Integer Divide and modify cc’s

SDIVccD 01 1111 Signed Integer Divide and modify cc’s

Suggested Assembly Language Syntax

udiv regrs1, reg_or_imm, regrd

sdiv regrs1, reg_or_imm, regrd

udivcc regrs1, reg_or_imm, regrd

sdivcc regrs1, reg_or_imm, regrd

The UDIV, UDIVcc, SDIV, and SDIVcc instructions are deprecated; they are pro-

vided only for compatibility with previous versions of the architecture. They should

not be used in new SPARC-V9 software. It is recommended that the UDIVX and

SDIVX instructions be used in their place.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

A.10 Divide (64-bit / 32-bit) 155

Programming Note:

The rational quotient is the infinitely precise result quotient. It includes both the integer part and

the fractional part of the result. For example, the rational quotient of 11/4 = 2.75 (Integer part = 2,

fractional part = .75).

The result of an unsigned divide instruction can overflow the low-order 32 bits of the des-
tination register r[rd] under certain conditions. When overflow occurs the largest appropri-
ate unsigned integer is returned as the quotient in r[rd]. The condition under which
overflow occurs and the value returned in r[rd] under this condition is specified in the fol-
lowing table.

When no overflow occurs, the 32-bit result is zero-extended to 64 bits and written into reg-
ister r[rd].

UDIV does not affect the condition code bits. UDIVcc writes the integer condition code
bits as shown in the following table. Note that negative (N) and zero (Z) are set according
to the value of r[rd] after it has been set to reflect overflow, if any.

Signed Divide:

Signed divide (SDIV, SDIVcc) assumes a signed integer doubleword dividend (Y lower

32 bits of r[rs1]) and a signed integer word divisor (lower 32 bits of r[rs2] or lower 32 bits

of sign_ext(simm13)) and computes a signed integer word quotient (r[rd]).

Signed division rounds an inexact quotient toward zero. For example, –7 ÷ 4 equals the
rational quotient of –1.75, which rounds to –1 (not –2) when rounding toward zero.

The result of a signed divide can overflow the low-order 32 bits of the destination register
r[rd] under certain conditions. When overflow occurs the largest appropriate signed inte-
ger is returned as the quotient in r[rd]. The conditions under which overflow occurs and
the value returned in r[rd] under those conditions are specified in the following table.

Table 23—UDIV / UDIVcc Overflow Detection and Value Returned

Condition under which overflow occurs Value returned in r[rd]

Rational quotient ≥ 232 232−1

(0000 0000 FFFF FFFF16)

Bit UDIVcc

icc.N Set if r[rd]<31> = 1

icc.Z Set if r[rd]<31:0> = 0

icc.V Set if overflow (per table 23)

icc.C Zero

xcc.N Set if r[rd]<63> = 1

xcc.Z Set if r[rd]<63:0> = 0

xcc.V Zero

xcc.C Zero

156 A Instruction Definitions

When no overflow occurs, the 32-bit result is sign-extended to 64 bits and written into reg-
ister r[rd].

SDIV does not affect the condition code bits. SDIVcc writes the integer condition code
bits as shown in the following table. Note that negative (N) and zero (Z) are set according
to the value of r[rd] after it has been set to reflect overflow, if any.

Exceptions:
division_by_zero

Table 24—SDIV / SDIVcc Overflow Detection and Value Returned

Condition under which overflow occurs Value returned in r[rd]

Rational quotient ≥ 231 231−1

(0000 0000 7FFF FFFF16)

Rational quotient ≤ -231−1
−231

(FFFF FFFF 8000 000016)

Bit SDIVcc

icc.N Set if r[rd]<31> = 1

icc.Z Set if r[rd]<31:0> = 0

icc.V Set if overflow (per table 24)

icc.C Zero

xcc.N Set if r[rd]<63]> = 1

xcc.Z Set if r[rd]<63:0> = 0

xcc.V Zero

xcc.C Zero

A.11 DONE and RETRY 157

A.11 DONE and RETRY

Format (3):

Description:

The DONE and RETRY instructions restore the saved state from TSTATE (CWP, ASI,
CCR, and PSTATE), set PC and nPC, and decrement TL.

The RETRY instruction resumes execution with the trapped instruction by setting
PC←TPC[TL] (the saved value of PC on trap) and nPC←TNPC[TL] (the saved value of
nPC on trap).

The DONE instruction skips the trapped instruction by setting PC←TNPC[TL] and
nPC←TNPC[TL]+4.

Execution of a DONE or RETRY instruction in the delay slot of a control-transfer instruc-
tion produces undefined results.

Programming Note:

The DONE and RETRY instructions should be used to return from privileged trap handlers.

Exceptions:

privileged_opcode

illegal_instruction (if TL = 0 or fcn = 2..31)

Opcode op3 fcn Operation

DONEP 11 1110 0 Return from Trap (skip trapped instruction)

RETRYP 11 1110 1 Return from Trap (retry trapped instruction)

— 11 1110 2..31 Reserved

Suggested Assembly Language Syntax

done

retry

10 op3fcn —

31 1924 18 02530 29

158 A Instruction Definitions

A.12 Floating-Point Add and Subtract

Format (3):

Description:

The floating-point add instructions add the floating-point register(s) specified by the rs1

field and the floating-point register(s) specified by the rs2 field, and write the sum into the
floating-point register(s) specified by the rd field.

The floating-point subtract instructions subtract the floating-point register(s) specified by
the rs2 field from the floating-point register(s) specified by the rs1 field, and write the dif-
ference into the floating-point register(s) specified by the rd field.

Rounding is performed as specified by the FSR.RD field.

Exceptions:

fp_disabled

fp_exception_ieee_754 (OF, UF, NX, NV)
fp_exception_other (invalid_fp_register (only FADDQ and FSUBQ))

Opcode op3 opf Operation

FADDs 11 0100 0 0100 0001 Add Single

FADDd 11 0100 0 0100 0010 Add Double

FADDq 11 0100 0 0100 0011 Add Quad

FSUBs 11 0100 0 0100 0101 Subtract Single

FSUBd 11 0100 0 0100 0110 Subtract Double

FSUBq 11 0100 0 0100 0111 Subtract Quad

Suggested Assembly Language Syntax

fadds fregrs1, fregrs2, fregrd

faddd fregrs1, fregrs2, fregrd

faddq fregrs1, fregrs2, fregrd

fsubs fregrs1, fregrs2, fregrd

fsubd fregrs1, fregrs2, fregrd

fsubq fregrs1, fregrs2, fregrd

10 op3 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

A.13 Floating-Point Compare 159

A.13 Floating-Point Compare

Format (3):

Description:

These instructions compare the floating-point register(s) specified by the rs1 field with the
floating-point register(s) specified by the rs2 field, and set the selected floating-point con-
dition code (fccn) according to the following table:

The “?” in the above table indicates that the comparison is unordered. The unordered con-
dition occurs when one or both of the operands to the compare is a signaling or quiet NaN.

Opcode op3 opf Operation

FCMPs 11 0101 0 0101 0001 Compare Single

FCMPd 11 0101 0 0101 0010 Compare Double

FCMPq 11 0101 0 0101 0011 Compare Quad

FCMPEs 11 0101 0 0101 0101 Compare Single and Exception if Unordered

FCMPEd 11 0101 0 0101 0110 Compare Double and Exception if Unordered

FCMPEq 11 0101 0 0101 0111 Compare Quad and Exception if Unordered

Suggested Assembly Language Syntax

fcmps %fccn, fregrs1, fregrs2

fcmpd %fccn, fregrs1, fregrs2

fcmpq %fccn, fregrs1, fregrs2

fcmpes %fccn, fregrs1, fregrs2

fcmped %fccn, fregrs1, fregrs2

fcmpeq %fccn, fregrs1, fregrs2

cc1 cc0
Condition

code

00 fcc0

01 fcc1

10 fcc2

11 fcc3

fcc value Relation

0 fregrs1 = fregrs2

1 fregrs1 < fregrs2

2 fregrs1 > fregrs2

3 fregrs1 ? fregrs2 (unordered)

10 op3 rs2000 rs1

31 141924 18 13 02530 29 4

opf

52627

cc1 cc0

160 A Instruction Definitions

The “compare and cause exception if unordered” (FCMPEs, FCMPEd, and FCMPEq)
instructions cause an invalid (NV) exception if either operand is a NaN.

FCMP causes an invalid (NV) exception if either operand is a signaling NaN.

Compatibility Note:

Unlike SPARC-V8, SPARC-V9 does not require an instruction between a floating-point compare

operation and a floating-point branch (FBfcc, FBPfcc).

Compatibility Note:

SPARC-V8 floating-point compare instructions are required to have a zero in the r[rd] field. In

SPARC-V9, bits 26 and 25 of the r[rd] field are used to specify the floating-point condition code to

be set. Legal SPARC-V8 code will work on SPARC-V9 because the zeroes in the r[rd] field are

interpreted as fcc0, and the FBfcc instruction branches based on fcc0.

Exceptions:

fp_disabled

fp_exception_ieee_754 (NV)
fp_exception_other (invalid_fp_register (FCMPq, FCMPEq only))

A.14 Convert Floating-Point to Integer 161

A.14 Convert Floating-Point to Integer

Format (3):

Description:

FsTOx, FdTOx, and FqTOx convert the floating-point operand in the floating-point regis-
ter(s) specified by rs2 to a 64-bit integer in the floating-point register(s) specified by rd.

FsTOi, FdTOi, and FqTOi convert the floating-point operand in the floating-point regis-
ter(s) specified by rs2 to a 32-bit integer in the floating-point register specified by rd.

The result is always rounded toward zero; that is, the rounding direction (RD) field of the
FSR register is ignored.

If the floating-point operand’s value is too large to be converted to an integer of the speci-
fied size, or is a NaN or infinity, an invalid (NV) exception occurs. The value written into
the floating-point register(s) specified by rd in these cases is defined in B.5, “Integer Over-
flow Definition.”

Exceptions:

fp_disabled

fp_exception_ieee_754 (NV, NX)
fp_exception_other (invalid_fp_register (FqTOi, FqTOx only))

Opcode op3 opf Operation

FsTOx 11 0100 0 1000 0001 Convert Single to 64-bit Integer

FdTOx 11 0100 0 1000 0010 Convert Double to 64-bit Integer

FqTOx 11 0100 0 1000 0011 Convert Quad to 64-bit Integer

FsTOi 11 0100 0 1101 0001 Convert Single to 32-bit Integer

FdTOi 11 0100 0 1101 0010 Convert Double to 32-bit Integer

FqTOi 11 0100 0 1101 0011 Convert Quad to 32-bit Integer

Suggested Assembly Language Syntax

fstox fregrs2, fregrd

fdtox fregrs2, fregrd

fqtox fregrs2, fregrd

fstoi fregrs2, fregrd

fdtoi fregrs2, fregrd

fqtoi fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

162 A Instruction Definitions

A.15 Convert Between Floating-Point Formats

Format (3):

Description:

These instructions convert the floating-point operand in the floating-point register(s) spec-
ified by rs2 to a floating-point number in the destination format. They write the result into
the floating-point register(s) specified by rd.

Rounding is performed as specified by the FSR.RD field.

FqTOd, FqTOs, and FdTOs (the “narrowing” conversion instructions) can raise OF, UF,
and NX exceptions. FdTOq, FsTOq, and FsTOd (the “widening” conversion instructions)
cannot.

Any of these six instructions can trigger an NV exception if the source operand is a signal-
ing NaN.

B.2.1, “Untrapped Result in Different Format from Operands,” defines the rules for con-
verting NaNs from one floating-point format to another.

Exceptions:

fp_disabled

fp_exception_ieee_754 (OF, UF, NV, NX)
fp_exception_other (invalid_fp_register) (FsTOq, FdTOq, FqTOs, FqTOd)

Opcode op3 opf Operation

FsTOd 11 0100 0 1100 1001 Convert Single to Double

FsTOq 11 0100 0 1100 1101 Convert Single to Quad

FdTOs 11 0100 0 1100 0110 Convert Double to Single

FdTOq 11 0100 0 1100 1110 Convert Double to Quad

FqTOs 11 0100 0 1100 0111 Convert Quad to Single

FqTOd 11 0100 0 1100 1011 Convert Quad to Double

Suggested Assembly Language Syntax

fstod fregrs2, fregrd

fstoq fregrs2, fregrd

fdtos fregrs2, fregrd

fdtoq fregrs2, fregrd

fqtos fregrs2, fregrd

fqtod fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

A.16 Convert Integer to Floating-Point 163

A.16 Convert Integer to Floating-Point

Format (3):

Description:

FxTOs, FxTOd, and FxTOq convert the 64-bit signed integer operand in the floating-point
register(s) specified by rs2 into a floating-point number in the destination format. The
source register, floating-point register(s) specified by rs2, must be an even-numbered (that
is, double-precision) floating-point register.

FiTOs, FiTOd, and FiTOq convert the 32-bit signed integer operand in floating-point reg-
ister(s) specified by rs2 into a floating-point number in the destination format. All write
their result into the floating-point register(s) specified by rd.

FiTOs, FxTOs, and FxTOd round as specified by the FSR.RD field.

Exceptions:

fp_disabled

fp_exception_ieee_754 (NX (FiTOs, FxTOs, FxTOd only))
fp_exception_other (invalid_fp_register (FiTOq, FxTOq only))

Opcode op3 opf Operation

FxTOs 11 0100 0 1000 0100 Convert 64-bit Integer to Single

FxTOd 11 0100 0 1000 1000 Convert 64-bit Integer to Double

FxTOq 11 0100 0 1000 1100 Convert 64-bit Integer to Quad

FiTOs 11 0100 0 1100 0100 Convert 32-bit Integer to Single

FiTOd 11 0100 0 1100 1000 Convert 32-bit Integer to Double

FiTOq 11 0100 0 1100 1100 Convert 32-bit Integer to Quad

Suggested Assembly Language Syntax

fxtos fregrs2, fregrd

fxtod fregrs2, fregrd

fxtoq fregrs2, fregrd

fitos fregrs2, fregrd

fitod fregrs2, fregrd

fitoq fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

164 A Instruction Definitions

A.17 Floating-Point Move

Format (3):

Description:

The single-precision versions of these instructions copy the contents of a single-precision
floating-point register to the destination. The double-precision forms copy the contents of
a double-precision floating-point register to the destination. The quad-precision versions
copy a quad-precision value in floating-point registers to the destination.

FMOV copies the source to the destination unaltered.

FNEG copies the source to the destination with the sign bit complemented.

FABS copies the source to the destination with the sign bit cleared.

These instructions do not round.

Exceptions:

fp_disabled

fp_exception_other (invalid_fp_register(FMOVq, FNEGq, FABSq only))

Opcode op3 opf Operation

FMOVs 11 0100 0 0000 0001 Move Single

FMOVd 11 0100 0 0000 0010 Move Double

FMOVq 11 0100 0 0000 0011 Move Quad

FNEGs 11 0100 0 0000 0101 Negate Single

FNEGd 11 0100 0 0000 0110 Negate Double

FNEGq 11 0100 0 0000 0111 Negate Quad

FABSs 11 0100 0 0000 1001 Absolute Value Single

FABSd 11 0100 0 0000 1010 Absolute Value Double

FABSq 11 0100 0 0000 1011 Absolute Value Quad

Suggested Assembly Language Syntax

fmovs fregrs2, fregrd

fmovd fregrs2, fregrd

fmovq fregrs2, fregrd

fnegs fregrs2, fregrd

fnegd fregrs2, fregrd

fnegq fregrs2, fregrd

fabss fregrs2, fregrd

fabsd fregrs2, fregrd

fabsq fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

A.18 Floating-Point Multiply and Divide 165

A.18 Floating-Point Multiply and Divide

Format (3):

Description:

The floating-point multiply instructions multiply the contents of the floating-point regis-
ter(s) specified by the rs1 field by the contents of the floating-point register(s) specified by
the rs2 field, and write the product into the floating-point register(s) specified by the rd

field.

The FsMULd instruction provides the exact double-precision product of two single-preci-
sion operands, without underflow, overflow, or rounding error. Similarly, FdMULq pro-
vides the exact quad-precision product of two double-precision operands.

The floating-point divide instructions divide the contents of the floating-point register(s)
specified by the rs1 field by the contents of the floating-point register(s) specified by the
rs2 field, and write the quotient into the floating-point register(s) specified by the rd field.

Rounding is performed as specified by the FSR.RD field.

Exceptions:

fp_disabled

fp_exception_ieee_754 (OF, UF, DZ (FDIV only), NV, NX)
fp_exception_other (invalid_fp_register (FMULq, FdMULq, and FDIVq only))

Opcode op3 opf Operation

FMULs 11 0100 0 0100 1001 Multiply Single

FMULd 11 0100 0 0100 1010 Multiply Double

FMULq 11 0100 0 0100 1011 Multiply Quad

FsMULd 11 0100 0 0110 1001 Multiply Single to Double

FdMULq 11 0100 0 0110 1110 Multiply Double to Quad

FDIVs 11 0100 0 0100 1101 Divide Single

FDIVd 11 0100 0 0100 1110 Divide Double

FDIVq 11 0100 0 0100 1111 Divide Quad

Suggested Assembly Language Syntax

fmuls fregrs1, fregrs2, fregrd

fmuld fregrs1, fregrs2, fregrd

fmulq fregrs1, fregrs2, fregrd

fsmuld fregrs1, fregrs2, fregrd

fdmulq fregrs1, fregrs2, fregrd

fdivs fregrs1, fregrs2, fregrd

fdivd fregrs1, fregrs2, fregrd

fdivq fregrs1, fregrs2, fregrd

10 op3 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

166 A Instruction Definitions

A.19 Floating-Point Square Root

Format (3):

Description:

These instructions generate the square root of the floating-point operand in the floating-
point register(s) specified by the rs2 field, and place the result in the destination floating-
point register(s) specified by the rd field.

Rounding is performed as specified by the FSR.RD field.

Implementation Note:

See Implementation Characteristics of Current SPARC-V9-based Products, Revision 9.x, a docu-

ment available from SPARC International, for information on whether the FSQRT instructions are

implemented in hardware or software in the various SPARC-V9 implementations.

Exceptions:

fp_disabled

fp_exception_ieee_754 (IEEE_754_exception (NV, NX))
fp_exception_other (invalid_fp_register (FSQRTq))

Opcode op3 opf Operation

FSQRTs 11 0100 0 0010 1001 Square Root Single

FSQRTd 11 0100 0 0010 1010 Square Root Double

FSQRTq 11 0100 0 0010 1011 Square Root Quad

Suggested Assembly Language Syntax

fsqrts fregrs2, fregrd

fsqrtd fregrs2, fregrd

fsqrtq fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

A.20 Flush Instruction Memory 167

A.20 Flush Instruction Memory

Format (3):

Description:

FLUSH ensures that the doubleword specified as the effective address is consistent across
any local caches and, in a multiprocessor system, will eventually become consistent every-
where.

In the following discussion PFLUSH refers to the processor that executed the FLUSH
instruction. FLUSH ensures that instruction fetches from the specified effective address by
PFLUSH appear to execute after any loads, stores, and atomic load-stores to that address
issued by PFLUSH prior to the FLUSH. In a multiprocessor system, FLUSH also ensures
that these values will eventually become visible to the instruction fetches of all other pro-
cessors. FLUSH behaves as if it were a store with respect to MEMBAR-induced order-
ings. See A.32, “Memory Barrier.”

FLUSH operates on at least the doubleword containing the addressed location.

The effective address operand for the FLUSH instruction is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1. The least significant two address bits of the effective
address are unused and should be supplied as zeros by software. Bit 2 of the address is
ignored, because FLUSH operates on at least a doubleword.

Programming Notes:

(1) Typically, FLUSH is used in self-modifying code. See H.1.6, “Self-Modifying Code,” for informa-

tion about use of the FLUSH instruction in portable self-modifying code. The use of self-modifying

code is discouraged.

(2) The order in which memory is modified can be controlled by using FLUSH and MEMBAR instruc-

tions interspersed appropriately between stores and atomic load-stores. FLUSH is needed only

between a store and a subsequent instruction fetch from the modified location. When multiple pro-

cesses may concurrently modify live (that is, potentially executing) code, care must be taken to

ensure that the order of update maintains the program in a semantically correct form at all times.

(3) The memory model guarantees in a uniprocessor that data loads observe the results of the most

recent store, even if there is no intervening FLUSH.

Opcode op3 Operation

FLUSH 11 1011 Flush Instruction Memory

Suggested Assembly Language Syntax

flush address

31 24 02530 29 19 18

—10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1—

168 A Instruction Definitions

(4) FLUSH may be time-consuming. Some implementations may trap rather than implement FLUSH

in hardware. In a multiprocessor configuration, FLUSH requires all processors that may be refer-

encing the addressed doubleword to flush their instruction caches, a potentially disruptive activity.

(5) In a multiprocessor system, the time it takes for a FLUSH to take effect is implementation-depen-

dent (impl. dep. #122). No mechanism is provided to ensure or test completion.

(6) Because FLUSH is designed to act on a doubleword, and because, on some implementations,

FLUSH may trap to system software, it is recommended that system software provide a user-call-

able service routine for flushing arbitrarily sized regions of memory. On some implementations,

this routine would issue a series of FLUSH instructions; on others, it might issue a single trap to

system software that would then flush the entire region.

Implementation Notes:

(1) IMPL. DEP. #42: If FLUSH is not implemented in hardware, it causes an illegal_instruction

exception and the function of FLUSH is performed by system software. Whether FLUSH

traps is implementation-dependent.

(2) The effect of a FLUSH instruction as observed from PFLUSH is immediate. Other processors in a

multiprocessor system eventually will see the effect of the FLUSH, but the latency is implementa-

tion-dependent (impl. dep. #122).

Exceptions:

(none)

A.21 Flush Register Windows 169

A.21 Flush Register Windows

Format (3):

Description:

FLUSHW causes all active register windows except the current window to be flushed to
memory at locations determined by privileged software. FLUSHW behaves as a NOP if
there are no active windows other than the current window. At the completion of the
FLUSHW instruction, the only active register window is the current one.

Programming Note:

The FLUSHW instruction can be used by application software to switch memory stacks or examine

register contents for previous stack frames.

FLUSHW acts as a NOP if CANSAVE = NWINDOWS – 2. Otherwise, there is more than
one active window, so FLUSHW causes a spill exception. The trap vector for the spill
exception is based on the contents of OTHERWIN and WSTATE. The spill trap handler is
invoked with the CWP set to the window to be spilled (that is, (CWP + CANSAVE + 2)
mod NWINDOWS). See 6.3.6, “Register Window Management Instructions.”

Programming Note:

Typically, the spill handler will save a window on a memory stack and return to reexecute the

FLUSHW instruction. Thus, FLUSHW will trap and reexecute until all active windows other than

the current window have been spilled.

Exceptions:
spill_n_normal

spill_n_other

Opcode op3 Operation

FLUSHW 10 1011 Flush Register Windows

Suggested Assembly Language Syntax

flushw

31 24 02530 29 19 18

—10 op3 —

14 13 12

— i=0

170 A Instruction Definitions

A.22 Illegal Instruction Trap

Format (2):

Description:

The ILLTRAP instruction causes an illegal_instruction exception. The const22 value is
ignored by the hardware; specifically, this field is not reserved by the architecture for any
future use.

Compatibility Note:

Except for its name, this instruction is identical to the SPARC-V8 UNIMP instruction.

Exceptions:
illegal_instruction

Opcode op op2 Operation

ILLTRAP 00 000 illegal_instruction trap

Suggested Assembly Language Syntax

illtrap const22

00 000 const22—

31 2124 02530 29 22

A.23 Implementation-Dependent Instructions 171

A.23 Implementation-Dependent Instructions

Format (3):

Description:

IMPL. DEP. #106: The IMPDEP1 and IMPDEP2 instructions are completely implementation-

dependent. Implementation-dependent aspects include their operation, the interpretation of bits

29..25 and 18..0 in their encodings, and which (if any) exceptions they may cause.

See I.1.2, “Implementation-Dependent and Reserved Opcodes,” for information about
extending the SPARC-V9 instruction set using the implementation-dependent instructions.

Compatibility Note:

These instructions replace the CPopn instructions in SPARC-V8.

Exceptions:

illegal_instruction (if the implementation does not define the instructions)
implementation-dependent (if the implementation defines the instructions)

Opcode op3 Operation

IMPDEP1 11 0110 Implementation-Dependent Instruction 1

IMPDEP2 11 0111 Implementation-Dependent Instruction 2

10 op3 impl-depimpl-dep

31 1824 02530 29 19

172 A Instruction Definitions

A.24 Jump and Link

Format (3):

Description:

The JMPL instruction causes a register-indirect delayed control transfer to the address
given by “r[rs1] + r[rs2]” if i field = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

The JMPL instruction copies the PC, which contains the address of the JMPL instruction,
into register r[rd]. The high-order 32-bits of the PC value stored in r[rd] are implementa-
tion-dependent when PSTATE.AM = 1 (impl. dep. #125). The value written into r[rd] is
visible to the instruction in the delay slot.

If either of the low-order two bits of the jump address is nonzero, a mem_address_not_

aligned exception occurs.

Programming Note:

A JMPL instruction with rd = 15 functions as a register-indirect call using the standard link regis-

ter.

JMPL with rd = 0 can be used to return from a subroutine. The typical return address is

“r[31] + 8,” if a nonleaf routine (one that uses the SAVE instruction) is entered by a CALL instruc-

tion, or “r[15] + 8” if a leaf routine (one that does not use the SAVE instruction) is entered by a

CALL instruction or by a JMPL instruction with rd = 15.

Exceptions:

mem_address_not_aligned

Opcode op3 Operation

JMPL 11 1000 Jump and Link

Suggested Assembly Language Syntax

jmpl address, reg rd

31 24 02530 29 19 18

rd10 op3

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

—

A.25 Load Floating-Point 173

A.25 Load Floating-Point

† Encoded floating-point register value, as described in 5.1.4.1

Format (3):

Description:

The load single floating-point instruction (LDF) copies a word from memory into f[rd].

The load doubleword floating-point instruction (LDDF) copies a word-aligned double-
word from memory into a double-precision floating-point register.

The load quad floating-point instruction (LDQF) copies a word-aligned quadword from
memory into a quad-precision floating-point register.

Opcode op3 rd Operation

LDF 10 000

0

0..31 Load Floating-Point Register

LDDF 10 001

1

† Load Double Floating-Point Register

LDQF 10 001

0

† Load Quad Floating-Point Register

LDFSRD 10 000

1

0 Load Floating-Point State Register Lower

LDXFSR 10 000

1

1 Load Floating-Point State Register

— 10 000

1

2..31 Reserved

Suggested Assembly Language Syntax

ld [address], fregrd

ldd [address], fregrd

ldq [address], fregrd

ld [address], %fsr

ldx [address], %fsr

The LDFSR instruction is deprecated; it is provided only for compatibility with

previous versions of the architecture. It should not be used in new SPARC-V9 soft-

ware. It is recommended that the LDXFSR instruction be used in its place.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2

174 A Instruction Definitions

The load floating-point state register lower instruction (LDFSR) waits for all FPop instruc-
tions that have not finished execution to complete, and then loads a word from memory
into the lower 32 bits of the FSR. The upper 32 bits of FSR are unaffected by LDFSR.

The load floating-point state register instruction (LDXFSR) waits for all FPop instructions
that have not finished execution to complete, and then loads a doubleword from memory
into the FSR.

Compatibility Note:

SPARC-V9 supports two different instructions to load the FSR; the SPARC-V8 LDFSR instruction

is defined to load only the lower 32 bits into the FSR, whereas LDXFSR allows SPARC-V9 pro-

grams to load all 64 bits of the FSR.

Load floating-point instructions access the primary address space (ASI = 8016). The effec-
tive address for these instructions is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_
ext(simm13)” if i = 1.

LDF, LDFSR, LDDF, and LDQF cause a mem_address_not_aligned exception if the effec-
tive memory address is not word-aligned; LDXFSR causes a mem_address_not_aligned

exception if the address is not doubleword-aligned. If the floating-point unit is not enabled
(per FPRS.FEF and PSTATE.PEF), or if no FPU is present, a load floating-point instruc-
tion causes an fp_disabled exception.

IMPL. DEP. #109(1): LDDF requires only word alignment. However, if the effective address is

word-aligned but not doubleword-aligned, LDDF may cause an LDDF_mem_address_not_aligned

exception. In this case the trap handler software shall emulate the LDDF instruction and return.

IMPL. DEP. #111(1): LDQF requires only word alignment. However, if the effective address is

word-aligned but not quadword-aligned, LDQF may cause an LDQF_mem_address_not_aligned

exception. In this case the trap handler software shall emulate the LDQF instruction and return.

Programming Note:

In SPARC-V8, some compilers issued sequences of single-precision loads when they could not

determine that double- or quadword operands were properly aligned. For SPARC-V9, since emula-

tion of misaligned loads is expected to be fast, it is recommended that compilers issue sets of sin-

gle-precision loads only when they can determine that double- or quadword operands are not

properly aligned.

Implementation Note:

IMPL. DEP. #44: If a load floating-point instruction traps with any type of access error, the

contents of the destination floating-point register(s) remain unchanged or are undefined.

Exceptions:

async_data_error

illegal_instruction (op3=2116 and rd = 2..31)
fp_disabled

LDDF_mem_address_not_aligned (LDDF only) (impl. dep. #109)
LDQF_mem_address_not_aligned (LDQF only) (impl. dep. #111)
fp_exception_other (invalid_fp_register (LDQF only))
mem_address_not_aligned

data_access_MMU_miss

data_access_exception

data_access_error

A.25 Load Floating-Point 175

data_access_protection

176 A Instruction Definitions

A.26 Load Floating-Point from Alternate Space

† Encoded floating-point register value, as described in 5.1.4.1

Format (3):

Description:

The load single floating-point from alternate space instruction (LDFA) copies a word from
memory into f[rd].

The load doubleword floating-point from alternate space instruction (LDDFA) copies a
word-aligned doubleword from memory into a double-precision floating-point register.

The load quad floating-point from alternate space instruction (LDQFA) copies a word-
aligned quadword from memory into a quad-precision floating-point register.

Load floating-point from alternate space instructions contain the address space identifier
(ASI) to be used for the load in the imm_asi field if i = 0, or in the ASI register if i = 1. The
access is privileged if bit seven of the ASI is zero; otherwise, it is not privileged. The
effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_
ext(simm13)” if i = 1.

LDFA, LDDFA, and LDQFA cause a mem_address_not_aligned exception if the effective
memory address is not word-aligned; If the floating-point unit is not enabled (per
FPRS.FEF and PSTATE.PEF), or if no FPU is present, load floating-point from alternate
space instructions cause an fp_disabled exception. LDFA, LDDFA and LDQFA cause a
privileged_action exception if PSTATE.PRIV = 0 and bit 7 of the ASI is zero.

Opcode op3 rd Operation

LDFAPASI 11 000

0

0..31 Load Floating-Point Register from Alternate space

LDDFAPASI 11 001

1

† Load Double Floating-Point Register from Alternate space

LDQFAPASI 11 001

0

† Load QuadFloating-Point Register from Alternate space

Suggested Assembly Language Syntax

lda [regaddr] imm_asi, fregrd

lda [reg_plus_imm] %asi, fregrd

ldda [regaddr] imm_asi, fregrd

ldda [reg_plus_imm] %asi, fregrd

ldqa [regaddr] imm_asi, fregrd

ldqa [reg_plus_imm] %asi, fregrd

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13

A.26 Load Floating-Point from Alternate Space 177

IMPL. DEP. #109(2): LDDFA requires only word alignment. However, if the effective address is

word-aligned but not doubleword-aligned, LDDFA may cause an LDDF_mem_address_not_

aligned exception. In this case the trap handler software shall emulate the LDDF instruction and

return.

IMPL. DEP. #111(2): LDQFA requires only word alignment. however, if the effective address is

word-aligned but not quadword-aligned, LDQFA may cause an ldqf_mem_address_not_aligned

exception. In this case the trap handler software shall emulate the LDQF instruction and return.

Programming Note:

In SPARC-V8, some compilers issued sequences of single-precision loads when they could not

determine that double- or quadword operands were properly aligned. For SPARC-V9, since emula-

tion of mis-aligned loads is expected to be fast, it is recommended that compilers issue sets of sin-

gle-precision loads only when they can determine that double- or quadword operands are not

properly aligned.

Implementation Note:

If a load floating-point instruction traps with any type of access error, the destination floating-point

register(s) either remain unchanged or are undefined. (impl. dep. #44)

Exceptions:

async_data_error

fp_disabled

LDDF_mem_address_not_aligned (LDDFA only) (impl. dep. #109)
LDQF_mem_address_not_aligned (LDQFA only) (impl. dep. #111)
fp_exception_other (invalid_fp_register (LDQFA only))
mem_address_not_aligned

privileged_action

data_access_MMU_miss

data_access_exception

data_access_error

data_access_protection

178 A Instruction Definitions

A.27 Load Integer

Format (3):

Description:

The load integer instructions copy a byte, a halfword, a word, an extended word, or a dou-
bleword from memory. All except LDD copy the fetched value into r[rd]. A fetched byte,
halfword, or word is right-justified in the destination register r[rd]; it is either sign-
extended or zero-filled on the left, depending on whether the opcode specifies a signed or
unsigned operation, respectively.

The load doubleword integer instructions (LDD) copy a doubleword from memory into an
r-register pair. The word at the effective memory address is copied into the even r register.
The word at the effective memory address + 4 is copied into the following odd-numbered r

Opcode op3 Operation

LDSB 00 1001 Load Signed Byte

LDSH 00 1010 Load Signed Halfword

LDSW 00 1000 Load Signed Word

LDUB 00 0001 Load Unsigned Byte

LDUH 00 0010 Load Unsigned Halfword

LDUW 00 0000 Load Unsigned Word

LDX 00 1011 Load Extended Word

LDDD 00 0011 Load Doubleword

Suggested Assembly Language Syntax

ldsb [address], regrd

ldsh [address], regrd

ldsw [address], regrd

ldub [address], regrd

lduh [address], regrd

lduw [address], regrd (synonym: ld)

ldx [address], regrd

ldd [address], regrd

The LDD instruction is deprecated; it is provided only for compatibility with previ-

ous versions of the architecture. It should not be used in new SPARC-V9 software.

It is recommended that the LDX instruction be used in its place.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2

A.27 Load Integer 179

register. The upper 32 bits of both the even-numbered and odd-numbered r registers are
zero-filled. Note that a load doubleword with rd = 0 modifies only r[1]. The least signifi-
cant bit of the rd field in an LDD instruction is unused and should be set to zero by soft-
ware. An attempt to execute a load doubleword instruction that refers to a misaligned
(odd-numbered) destination register causes an illegal_instruction exception.

IMPL. DEP. #107(1): It is implementation-dependent whether LDD is implemented in hardware. If

not, an attempt to execute it will cause an unimplemented_ldd exception.

Load integer instructions access the primary address space (ASI = 8016). The effective
address is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

A successful load (notably, load extended and load doubleword) instruction operates
atomically.

LDUH and LDSH cause a mem_address_not_aligned exception if the address is not half-
word-aligned. LDUW and LDSW cause a mem_address_not_aligned exception if the effec-
tive address is not word-aligned. LDX and LDD cause a mem_address_not_aligned

exception if the address is not doubleword-aligned.

Programming Note:

LDD is provided for compatibility with SPARC-V8. It may execute slowly on SPARC-V9

machines because of data path and register-access difficulties. In some systems it may trap to emu-

lation code. It is suggested that programmers and compilers avoid using these instructions.

If LDD is emulated in software, an LDX instruction should be used for the memory access in order

to preserve atomicity.

Compatibility Note:

The SPARC-V8 LD instruction has been renamed LDUW in SPARC-V9. The LDSW instruction is

new in SPARC-V9.

Exceptions:

async_data_error

unimplemented_LDD (LDD only (impl. dep. #107))
illegal_instruction (LDD with odd rd)
mem_address_not_aligned (all except LDSB, LDUB)
data_access_exception

data_access_protection

data_access_MMU_miss

data_access_error

180 A Instruction Definitions

A.28 Load Integer from Alternate Space

Format (3):

Description:

The load integer from alternate space instructions copy a byte, a halfword, a word, an
extended word, or a doubleword from memory. All except LDDA copy the fetched value
into r[rd]. A fetched byte, halfword, or word is right-justified in the destination register

Opcode op3 Operation

LDSBAPASI 01 1001 Load Signed Byte from Alternate space

LDSHAPASI 01 1010 Load Signed Halfword from Alternate space

LDSWAPASI 01 1000 Load Signed Word from Alternate space

LDUBAPASI 01 0001 Load Unsigned Byte from Alternate space

LDUHAPASI 01 0010 Load Unsigned Halfword from Alternate space

LDUWAPASI 01 0000 Load Unsigned Word from Alternate space

LDXAPASI 01 1011 Load Extended Word from Alternate space

LDDAD, PASI 01 0011 Load Doubleword from Alternate space

Suggested Assembly Language Syntax

ldsba [regaddr] imm_asi, reg rd

ldsha [regaddr] imm_asi, reg rd

ldswa [regaddr] imm_asi, reg rd

lduba [regaddr] imm_asi, reg rd

lduha [regaddr] imm_asi, reg rd

lduwa [regaddr] imm_asi, reg rd (synonym: lda)

ldxa [regaddr] imm_asi, reg rd

ldda [regaddr] imm_asi, reg rd

ldsba [reg_plus_imm] %asi, reg rd

ldsha [reg_plus_imm] %asi, reg rd

ldswa [reg_plus_imm] %asi, reg rd

lduba [reg_plus_imm] %asi, reg rd

lduha [reg_plus_imm] %asi, reg rd

lduwa [reg_plus_imm] %asi, reg rd (synonym: lda)

ldxa [reg_plus_imm] %asi, reg rd

ldda [reg_plus_imm] %asi, reg rd

The LDDA instruction is deprecated; it is provided only for compatibility with pre-

vious versions of the architecture. It should not be used in new SPARC-V9 soft-

ware. It is recommended that the LDXA instruction be used in its place.

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13

A.28 Load Integer from Alternate Space 181

r[rd]; it is either sign-extended or zero-filled on the left, depending on whether the opcode
specifies a signed or unsigned operation, respectively.

The load doubleword integer from alternate space instruction (LDDA) copies a double-
word from memory into an r-register pair. The word at the effective memory address is
copied into the even r register. The word at the effective memory address + 4 is copied into
the following odd-numbered r register. The upper 32 bits of both the even-numbered and
odd-numbered r registers are zero-filled. Note that a load doubleword with rd = 0 modifies
only r[1]. The least significant bit of the rd field in an LDDA instruction is unused and
should be set to zero by software. An attempt to execute a load doubleword instruction that
refers to a misaligned (odd-numbered) destination register causes an illegal_instruction

exception.

IMPL. DEP. #107(2): It is implementation-dependent whether LDDA is implemented in hardware. If

not, an attempt to execute it will cause an unimplemented_ldd exception.

The load integer from alternate space instructions contain the address space identifier
(ASI) to be used for the load in the imm_asi field if i = 0, or in the ASI register if i = 1. The
access is privileged if bit seven of the ASI is zero; otherwise, it is not privileged. The
effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_
ext(simm13)” if i = 1.

A successful load (notably, load extended and load doubleword) instruction operates
atomically.

LDUHA, and LDSHA cause a mem_address_not_aligned exception if the address is not
halfword-aligned. LDUWA and LDSWA cause a mem_address_not_aligned exception if
the effective address is not word-aligned; LDXA and LDDA cause a mem_address_not_

aligned exception if the address is not doubleword-aligned.

These instructions cause a privileged_action exception if PSTATE.PRIV = 0 and bit 7 of the
ASI is zero.

Programming Note:

LDDA is provided for compatibility with SPARC-V8. It may execute slowly on SPARC-V9

machines because of data path and register-access difficulties. In some systems it may trap to emu-

lation code. It is suggested that programmers and compilers avoid using this instruction.

If LDDA is emulated in software, an LDXA instruction should be used for the memory access in

order to preserve atomicity.

Compatibility Note:

The SPARC-V8 instruction LDA has been renamed LDUWA in SPARC-V9. The LDSWA instruc-

tion is new in SPARC-V9.

Exceptions:

async_data_error

privileged_action

unimplemented_LDD (LDDA only (impl. dep. #107))
illegal_instruction (LDDA with odd rd)
mem_address_not_aligned (all except LDSBA and LDUBA)
data_access_exception

data_access_protection

data_access_MMU_miss

data_access_error

182 A Instruction Definitions

A.29 Load-Store Unsigned Byte

Format (3):

Description:

The load-store unsigned byte instruction copies a byte from memory into r[rd], and then
rewrites the addressed byte in memory to all ones. The fetched byte is right-justified in the
destination register r[rd] and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening interrupts or
deferred traps. In a multiprocessor system, two or more processors executing LDSTUB,
LDSTUBA, CASA, CASXA, SWAP, or SWAPA instructions addressing all or parts of the
same doubleword simultaneously are guaranteed to execute them in an undefined but
serial order.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_
ext(simm13)” if i = 1.

The coherence and atomicity of memory operations between processors and I/O DMA
memory accesses are implementation-dependent (impl. dep #120).

Exceptions:

async_data_error

data_access_exception

data_access_error

data_access_protection

data_access_MMU_miss

Opcode op3 Operation

LDSTUB 00 1101 Load-Store Unsigned Byte

Suggested Assembly Language Syntax

ldstub [address], regrd

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2

A.30 Load-Store Unsigned Byte to Alternate Space 183

A.30 Load-Store Unsigned Byte to Alternate Space

Format (3):

Description:

The load-store unsigned byte into alternate space instruction copies a byte from memory
into r[rd], then rewrites the addressed byte in memory to all ones. The fetched byte is
right-justified in the destination register r[rd] and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening interrupts or
deferred traps. In a multiprocessor system, two or more processors executing LDSTUB,
LDSTUBA, CASA, CASXA, SWAP, or SWAPA instructions addressing all or parts of the
same doubleword simultaneously are guaranteed to execute them in an undefined, but
serial order.

LDSTUBA contains the address space identifier (ASI) to be used for the load in the imm_

asi field if i = 0, or in the ASI register if i = 1. The access is privileged if bit seven of the
ASI is zero; otherwise, it is not privileged. The effective address is “r[rs1] + r[rs2]” if
i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

LDSTUBA causes a privileged_action exception if PSTATE.PRIV = 0 and bit 7 of the ASI
is zero.

The coherence and atomicity of memory operations between processors and I/O DMA
memory accesses are implementation-dependent (impl. dep #120).

Exceptions:

async_data_error

privileged_action

data_access_exception

data_access_error

data_access_protection

data_access_MMU_miss

Opcode op3 Operation

LDSTUBAPASI 01 1101 Load-Store Unsigned Byte into Alternate space

Suggested Assembly Language Syntax

ldstuba [regaddr] imm_asi, regrd

ldstuba [reg_plus_imm] %asi, regrd

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13

184 A Instruction Definitions

A.31 Logical Operations

Format (3):

Description:

These instructions implement bitwise logical operations. They compute “r[rs1] op r[rs2]”
if i = 0, or “r[rs1] op sign_ext(simm13)” if i = 1, and write the result into r[rd].

ANDcc, ANDNcc, ORcc, ORNcc, XORcc, and XNORcc modify the integer condition
codes (icc and xcc). They set icc.v, icc.c, xcc.v, and xcc.c to zero, icc.n to bit 31 of the
result, xcc.n to bit 63 of the result, icc.z to 1 if bits 31:0 of the result are zero (otherwise to
0), and xcc.z to 1 if all 64 bits of the result are zero (otherwise to 0).

Opcode op3 Operation

AND 00 0001 And

ANDcc 01 0001 And and modify cc’s

ANDN 00 0101 And Not

ANDNcc 01 0101 And Not and modify cc’s

OR 00 0010 Inclusive Or

ORcc 01 0010 Inclusive Or and modify cc’s

ORN 00 0110 Inclusive Or Not

ORNcc 01 0110 Inclusive Or Not and modify cc’s

XOR 00 0011 Exclusive Or

XORcc 01 0011 Exclusive Or and modify cc’s

XNOR 00 0111 Exclusive Nor

XNORcc 01 0111 Exclusive Nor and modify cc’s

Suggested Assembly Language Syntax

and regrs1, reg_or_imm, regrd

andcc regrs1, reg_or_imm, regrd

andn regrs1, reg_or_imm, regrd

andncc regrs1, reg_or_imm, regrd

or regrs1, reg_or_imm, regrd

orcc regrs1, reg_or_imm, regrd

orn regrs1, reg_or_imm, regrd

orncc regrs1, reg_or_imm, regrd

xor regrs1, reg_or_imm, regrd

xorcc regrs1, reg_or_imm, regrd

xnor regrs1, reg_or_imm, regrd

xnorcc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

A.31 Logical Operations 185

ANDN, ANDNcc, ORN, and ORNcc logically negate their second operand before apply-
ing the main (AND or OR) operation.

Programming Note:

XNOR and XNORcc are identical to the XOR-Not and XOR-Not-cc logical operations, respec-

tively.

Exceptions:

(none)

186 A Instruction Definitions

A.32 Memory Barrier

Format (3):

Description:

The memory barrier instruction, MEMBAR, has two complementary functions: to express
order constraints between memory references and to provide explicit control of memory-
reference completion. The membar_mask field in the suggested assembly language is the
bitwise OR of the cmask and mmask instruction fields.

MEMBAR introduces an order constraint between classes of memory references appear-
ing before the MEMBAR and memory references following it in a program. The particular
classes of memory references are specified by the mmask field. Memory references are
classified as loads (including load instructions, LDSTUB(A), SWAP(A), CASA, and
CASXA) and stores (including store instructions, LDSTUB(A), SWAP(A), CASA,
CASXA, and FLUSH). The mmask field specifies the classes of memory references sub-
ject to ordering, as described below. MEMBAR applies to all memory operations in all
address spaces referenced by the issuing processor, but has no effect on memory refer-
ences by other processors. When the cmask field is nonzero, completion as well as order
constraints are imposed, and the order imposed can be more stringent than that specifiable
by the mmask field alone.

A load has been performed when the value loaded has been transmitted from memory and
cannot be modified by another processor. A store has been performed when the value
stored has become visible, that is, when the previous value can no longer be read by any
processor. In specifying the effect of MEMBAR, instructions are considered to be exe-
cuted as if they were processed in a strictly sequential fashion, with each instruction com-
pleted before the next has begun.

The mmask field is encoded in bits 3 through 0 of the instruction. Table 25 specifies the
order constraint that each bit of mmask (selected when set to 1) imposes on memory refer-
ences appearing before and after the MEMBAR. From zero to four mask bits may be
selected in the mmask field.

Opcode op3 Operation

MEMBAR 10 1000 Memory Barrier

Suggested Assembly Language Syntax

membar membar_mask

31 141924 18 13 12 02530 29

10 0 op3 0 1111 i=1 —

4 3

mmask

6

4

7

cmask

A.32 Memory Barrier 187

The cmask field is encoded in bits 6 through 4 of the instruction. Bits in the cmask field,
illustrated in table 26, specify additional constraints on the order of memory references
and the processing of instructions. If cmask is zero, then MEMBAR enforces the partial
ordering specified by the mmask field; if cmask is nonzero, then completion as well as par-
tial order constraints are applied.

For information on the use of MEMBAR, see 8.4.3, “The MEMBAR Instruction,” and
Appendix J, “Programming With the Memory Models.” Chapter 8, “Memory Models,”
and Appendix F, “SPARC-V9 MMU Requirements,” contain additional information about
the memory models themselves.

The encoding of MEMBAR is identical to that of the RDASR instruction, except that
rs1 = 15, rd = 0, and i = 1.

The coherence and atomicity of memory operations between processors and I/O DMA
memory accesses are implementation-dependent (impl. dep #120).

Compatibility Note:

MEMBAR with mmask = 816 and cmask = 016 (“membar #StoreStore”) is identical in func-

tion to the SPARC-V8 STBAR instruction, which is deprecated.

Exceptions:

(none)

Table 25—MEMBAR mmask Encodings

Mask bit Name Description

mmask<3> #StoreStore The effects of all stores appearing prior to the MEMBAR instruction

must be visible to all processors before the effect of any stores following

the MEMBAR. Equivalent to the deprecated STBAR instruction

mmask<2> #LoadStore All loads appearing prior to the MEMBAR instruction must have been

performed before the effect of any stores following the MEMBAR is vis-

ible to any other processor.

mmask<1> #StoreLoad The effects of all stores appearing prior to the MEMBAR instruction

must be visible to all processors before loads following the MEMBAR

may be performed.

mmask<0> #LoadLoad All loads appearing prior to the MEMBAR instruction must have been

performed before any loads following the MEMBAR may be performed.

Table 26—MEMBAR cmask Encodings

Mask bit Function Name Description

cmask<2> Synchronization

barrier

#Sync All operations (including nonmemory reference operations)

appearing prior to the MEMBAR must have been performed

and the effects of any exceptions become visible before any

instruction after the MEMBAR may be initiated.

cmask<1> Memory issue

barrier

#MemIssue All memory reference operations appearing prior to the

MEMBAR must have been performed before any memory

operation after the MEMBAR may be initiated.

cmask<0> Lookaside

barrier

#Lookaside A store appearing prior to the MEMBAR must complete

before any load following the MEMBAR referencing the

same address can be initiated.

188 A Instruction Definitions

A.33 Move Floating-Point Register on Condition (FMOVcc)

For Integer Condition Codes:

For Floating-Point Condition Codes:

Opcode op3 cond Operation icc/xcc test

FMOVA 11 0101 1000 Move Always 1

FMOVN 11 0101 0000 Move Never 0

FMOVNE 11 0101 1001 Move if Not Equal not Z

FMOVE 11 0101 0001 Move if Equal Z

FMOVG 11 0101 1010 Move if Greater not (Z or (N xor V))

FMOVLE 11 0101 0010 Move if Less or Equal Z or (N xor V)

FMOVGE 11 0101 1011 Move if Greater or Equal not (N xor V)

FMOVL 11 0101 0011 Move if Less N xor V

FMOVGU 11 0101 1100 Move if Greater Unsigned not (C or Z)

FMOVLEU 11 0101 0100 Move if Less or Equal Unsigned (C or Z)

FMOVCC 11 0101 1101 Move if Carry Clear (Greater or Equal, Unsigned) not C

FMOVCS 11 0101 0101 Move if Carry Set (Less than, Unsigned) C

FMOVPOS 11 0101 1110 Move if Positive not N

FMOVNEG 11 0101 0110 Move if Negative N

FMOVVC 11 0101 1111 Move if Overflow Clear not V

FMOVVS 11 0101 0111 Move if Overflow Set V

Opcode op3 cond Operation fcc test

FMOVFA 11 0101 1000 Move Always 1

FMOVFN 11 0101 0000 Move Never 0

FMOVFU 11 0101 0111 Move if Unordered U

FMOVFG 11 0101 0110 Move if Greater G

FMOVFUG 11 0101 0101 Move if Unordered or Greater G or U

FMOVFL 11 0101 0100 Move if Less L

FMOVFUL 11 0101 0011 Move if Unordered or Less L or U

FMOVFLG 11 0101 0010 Move if Less or Greater L or G

FMOVFNE 11 0101 0001 Move if Not Equal L or G or U

FMOVFE 11 0101 1001 Move if Equal E

FMOVFUE 11 0101 1010 Move if Unordered or Equal E or U

FMOVFGE 11 0101 1011 Move if Greater or Equal E or G

FMOVFUGE 11 0101 1100 Move if Unordered or Greater or Equal E or G or U

FMOVFLE 11 0101 1101 Move if Less or Equal E or L

FMOVFULE 11 0101 1110 Move if Unordered or Less or Equal E or L or U

FMOVFO 11 0101 1111 Move if Ordered E or L or G

A.33 Move Floating-Point Register on Condition (FMOVcc) 189

Format (4):

Encoding of the opf_cc field (also see table 38 on page 273):

Encoding of opf field (opf_cc opf_low):

opf_cc Condition code

000 fcc0

001 fcc1

010 fcc2

011 fcc3

100 icc

101 —

110 xcc

111 —

Instruction variation opf_cc opf_low opf

FMOVScc %fccn,rs2,rd 0nn 00 0001 0 nn00 0001

FMOVDcc %fccn,rs2,rd 0nn 00 0010 0 nn00 0010

FMOVQcc %fccn,rs2,rd 0nn 00 0011 0 nn00 0011

FMOVScc %icc, rs2,rd 100 00 0001 1 0000 0001

FMOVDcc %icc, rs2,rd 100 00 0010 1 0000 0010

FMOVQcc %icc, rs2,rd 100 00 0011 1 0000 0011

FMOVScc %xcc, rs2,rd 110 00 0001 1 1000 0001

FMOVDcc %xcc, rs2,rd 110 00 0010 1 1000 0010

FMOVQcc %xcc, rs2,rd 110 00 0011 1 1000 0011

31 1924 18 1314 11 5 4 010172530 29

10 rd op3 cond opf_cc opf_low rs20

190 A Instruction Definitions

For Integer Condition Codes:

Programming Note:

To select the appropriate condition code, include “%icc” or “%xcc” before the registers.

For Floating-Point Condition Codes:

Suggested Assembly Language Syntax

fmov{s,d,q}a i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}n i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}ne i_or_x_cc, fregrs2, fregrd (synonyms: fmov{s,d,q}nz)

fmov{s,d,q}e i_or_x_cc, fregrs2, fregrd (synonyms: fmov{s,d,q}z)

fmov{s,d,q}g i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}le i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}ge i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}l i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}gu i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}leu i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}cc i_or_x_cc, fregrs2, fregrd (synonyms: fmov{s,d,q}geu)

fmov{s,d,q}cs i_or_x_cc, fregrs2, fregrd (synonyms: fmov{s,d,q}lu)

fmov{s,d,q}pos i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}neg i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}vc i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}vs i_or_x_cc, fregrs2, fregrd

Suggested Assembly Language Syntax

fmov{s,d,q}a %fccn, fregrs2, fregrd

fmov{s,d,q}n %fccn, fregrs2, fregrd

fmov{s,d,q}u %fccn, fregrs2, fregrd

fmov{s,d,q}g %fccn, fregrs2, fregrd

fmov{s,d,q}ug %fccn, fregrs2, fregrd

fmov{s,d,q}l %fccn, fregrs2, fregrd

fmov{s,d,q}ul %fccn, fregrs2, fregrd

fmov{s,d,q}lg %fccn, fregrs2, fregrd

fmov{s,d,q}ne %fccn, fregrs2, fregrd (synonyms: fmov{s,d,q}nz)

fmov{s,d,q}e %fccn, fregrs2, fregrd (synonyms: fmov{s,d,q}z)

fmov{s,d,q}ue %fccn, fregrs2, fregrd

fmov{s,d,q}ge %fccn, fregrs2, fregrd

fmov{s,d,q}uge %fccn, fregrs2, fregrd

fmov{s,d,q}le %fccn, fregrs2, fregrd

fmov{s,d,q}ule %fccn, fregrs2, fregrd

fmov{s,d,q}o %fccn, fregrs2, fregrd

A.33 Move Floating-Point Register on Condition (FMOVcc) 191

Description:

These instructions copy the floating-point register(s) specified by rs2 to the floating-point
register(s) specified by rd if the condition indicated by the cond field is satisfied by the
selected condition code. The condition code used is specified by the opf_cc field of the
instruction. If the condition is FALSE, then the destination register(s) are not changed.

These instructions do not modify any condition codes.

Programming Note:

Branches cause most implementations’ performance to degrade significantly. Frrequently, the

MOVcc and FMOVcc instructions can be used to avoid branches. For example, the following C

language segment:

double A, B, X;

if (A > B) then X = 1.03; else X = 0.0;

can be coded as

! assume A is in %f0; B is in %f2; %xx points to constant area

ldd [%xx+C_1.03],%f4 ! X = 1.03

fcmpd %fcc3,%f0,%f2 ! A > B

fble ,a %fcc3,label

! following only executed if the branch is taken

fsubd %f4,%f4,%f4 ! X = 0.0

label:...

This takes four instructions including a branch.

Using FMOVcc, this could be coded as

ldd [%xx+C_1.03],%f4 ! X = 1.03

fsubd %f4,%f4,%f6 ! X’ = 0.0

fcmpd %fcc3,%f0,%f2 ! A > B

fmovdle %fcc3,%f6,%f4 ! X = 0.0

This also takes four instructions, but requires no branches and may boost performance significantly.

It is suggested that MOVcc and FMOVcc be used instead of branches wherever they would

improve performance.

Exceptions:
fp_disabled

fp_exception_other (invalid_fp_register (quad forms only))
fp_exception_other (ftt = unimplemented_FPop (opf_cc = 1012 or 1112)

192 A Instruction Definitions

A.34 Move F-P Register on Integer Register Condition (FMOVr)

Format (4):

Encoding of opf_low field:

Description:

If the contents of integer register r[rs1] satisfy the condition specified in the rcond field,
these instructions copy the contents of the floating-point register(s) specified by the rs2

field to the floating-point register(s) specified by the rd field. If the contents of r[rs1] do
not satisfy the condition, the floating-point register(s) specified by the rd field are not
modified.

These instructions treat the integer register contents as a signed integer value; they do not
modify any condition codes.

Opcode op3 rcond Operation Test

— 11 0101 000 Reserved —

FMOVRZ 11 0101 001 Move if Register Zero r[rs1] = 0

FMOVRLEZ 11 0101 010 Move if Register Less Than or Equal to Zero r[rs1] ≤ 0

FMOVRLZ 11 0101 011 Move if Register Less Than Zero r[rs1] < 0

— 11 0101 100 Reserved —

FMOVRNZ 11 0101 101 Move if Register Not Zero r[rs1] ≠ 0

FMOVRGZ 11 0101 110 Move if Register Greater Than Zero r[rs1] > 0

FMOVRGEZ 11 0101 111 Move if Register Greater Than or Equal to Zero r[rs1] ≥ 0

Instruction variation opf_low

FMOVSrcond rs1, rs2, rd 0 0101

FMOVDrcond rs1, rs2, rd 0 0110

FMOVQrcond rs1, rs2, rd 0 0111

Suggested Assembly Language Syntax

fmovr{s,d,q}e regrs1, fregrs2, fregrd (synonym: fmovr{s,d,q}z)

fmovr{s,d,q}lez regrs1, fregrs2, fregrd

fmovr{s,d,q}lz regrs1, fregrs2, fregrd

fmovr{s,d,q}ne regrs1, fregrs2, fregrd (synonym: fmovr{s,d,q}nz)

fmovr{s,d,q}gz regrs1, fregrs2, fregrd

fmovr{s,d,q}gez regrs1, fregrs2, fregrd

31 141924 18 13 12 9 5 4 0102530 29

10 rd op3 0 rcond opf_low rs2rs1

A.34 Move F-P Register on Integer Register Condition (FMOVr) 193

Implementation Note:

If this instruction is implemented by tagging each register value with an N (negative) and a Z (zero)

bit, use the following table to determine whether rcond is TRUE:

Exceptions:
fp_disabled

fp_exception_other (invalid_fp_register (quad forms only))
fp_exception_other (unimplemented_FPop (rcond = 0002 or 1002))

Branch Test

FMOVRNZ not Z

FMOVRZ Z

FMOVGEZ not N

FMOVRLZ N

FMOVRLEZ N or Z

FMOVRGZ N nor Z

194 A Instruction Definitions

A.35 Move Integer Register on Condition (MOVcc)

For Integer Condition Codes:

For Floating-Point Condition Codes:

Opcode op3 cond Operation icc/xcc test

MOVA 10 1100 1000 Move Always 1

MOVN 10 1100 0000 Move Never 0

MOVNE 10 1100 1001 Move if Not Equal not Z

MOVE 10 1100 0001 Move if Equal Z

MOVG 10 1100 1010 Move if Greater not (Z or (N xorV))

MOVLE 10 1100 0010 Move if Less or Equal Z or (N xorV)

MOVGE 10 1100 1011 Move if Greater or Equal not (N xorV)

MOVL 10 1100 0011 Move if Less N xorV

MOVGU 10 1100 1100 Move if Greater Unsigned not (C orZ)

MOVLEU 10 1100 0100 Move if Less or Equal Unsigned (C orZ)

MOVCC 10 1100 1101 Move if Carry Clear (Greater or Equal, Unsigned) not C

MOVCS 10 1100 0101 Move if Carry Set (Less than, Unsigned) C

MOVPOS 10 1100 1110 Move if Positive not N

MOVNEG 10 1100 0110 Move if Negative N

MOVVC 10 1100 1111 Move if Overflow Clear not V

MOVVS 10 1100 0111 Move if Overflow Set V

Opcode op3 cond Operation fcc test

MOVFA 10 1100 1000 Move Always 1

MOVFN 10 1100 0000 Move Never 0

MOVFU 10 1100 0111 Move if Unordered U

MOVFG 10 1100 0110 Move if Greater G

MOVFUG 10 1100 0101 Move if Unordered or Greater G or U

MOVFL 10 1100 0100 Move if Less L

MOVFUL 10 1100 0011 Move if Unordered or Less L or U

MOVFLG 10 1100 0010 Move if Less or Greater L or G

MOVFNE 10 1100 0001 Move if Not Equal L or G or U

MOVFE 10 1100 1001 Move if Equal E

MOVFUE 10 1100 1010 Move if Unordered or Equal E or U

MOVFGE 10 1100 1011 Move if Greater or Equal E or G

MOVFUGE 10 1100 1100 Move if Unordered or Greater or Equal E or G or U

MOVFLE 10 1100 1101 Move if Less or Equal E or L

MOVFULE 10 1100 1110 Move if Unordered or Less or Equal E or L or U

MOVFO 10 1100 1111 Move if Ordered E or L or G

A.35 Move Integer Register on Condition (MOVcc) 195

Format (4):

For Integer Condition Codes:

Programming Note:

To select the appropriate condition code, include “%icc” or “%xcc” before the register or immedi-

ate field.

cc2 cc1 cc0 Condition code

000 fcc0

001 fcc1

010 fcc2

011 fcc3

100 icc

101 Reserved

110 xcc

111 Reserved

Suggested Assembly Language Syntax

mova i_or_x_cc, reg_or_imm11, regrd

movn i_or_x_cc, reg_or_imm11, regrd

movne i_or_x_cc, reg_or_imm11, regrd (synonym: movnz)

move i_or_x_cc, reg_or_imm11, regrd (synonym: movz)

movg i_or_x_cc, reg_or_imm11, regrd

movle i_or_x_cc, reg_or_imm11, regrd

movge i_or_x_cc, reg_or_imm11, regrd

movl i_or_x_cc, reg_or_imm11, regrd

movgu i_or_x_cc, reg_or_imm11, regrd

movleu i_or_x_cc, reg_or_imm11, regrd

movcc i_or_x_cc, reg_or_imm11, regrd (synonym: movgeu)

movcs i_or_x_cc, reg_or_imm11, regrd (synonym: movlu)

movpos i_or_x_cc, reg_or_imm11, regrd

movneg i_or_x_cc, reg_or_imm11, regrd

movvc i_or_x_cc, reg_or_imm11, regrd

movvs i_or_x_cc, reg_or_imm11, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

cond rs2i=0

rd10 op3 cond simm11i=1

17

cc2

cc2

11

cc1

cc1

10

cc0

cc0

196 A Instruction Definitions

For Floating-Point Condition Codes:

Programming Note:

To select the appropriate condition code, include “%fcc0,” “%fcc1,” “%fcc2,” or “%fcc3”

before the register or immediate field.

Description:

These instructions test to see if cond is TRUE for the selected condition codes. If so, they
copy the value in r[rs2] if i field = 0, or “sign_ext(simm11)” if i = 1 into r[rd]. The condi-
tion code used is specified by the cc2, cc1, and cc0 fields of the instruction. If the condi-
tion is FALSE, then r[rd] is not changed.

These instructions copy an integer register to another integer register if the condition is
TRUE. The condition code that is used to determine whether the move will occur can be
either integer condition code (icc or xcc) or any floating-point condition code (fcc0, fcc1,

fcc2, or fcc3).

These instructions do not modify any condition codes.

Programming Note:

Branches cause many implementations’ performance to degrade significantly. Frequently, the

MOVcc and FMOVcc instructions can be used to avoid branches. For example, the C language if-

then-else statement

if (A > B) then X = 1; else X = 0;

can be coded as

cmp %i0,%i2

bg,a %xcc,label

or %g0,1,%i3 ! X = 1

or %g0,0,%i3 ! X = 0

label:...

Suggested Assembly Language Syntax

mova %fccn, reg_or_imm11, regrd

movn %fccn, reg_or_imm11, regrd

movu %fccn, reg_or_imm11, regrd

movg %fccn, reg_or_imm11, regrd

movug %fccn, reg_or_imm11, regrd

movl %fccn, reg_or_imm11, regrd

movul %fccn, reg_or_imm11, regrd

movlg %fccn, reg_or_imm11, regrd

movne %fccn, reg_or_imm11, regrd (synonym: movnz)

move %fccn, reg_or_imm11, regrd (synonym: movz)

movue %fccn, reg_or_imm11, regrd

movge %fccn, reg_or_imm11, regrd

movuge %fccn, reg_or_imm11, regrd

movle %fccn, reg_or_imm11, regrd

movule %fccn, reg_or_imm11, regrd

movo %fccn, reg_or_imm11, regrd

A.35 Move Integer Register on Condition (MOVcc) 197

This takes four instructions including a branch. Using MOVcc this could be coded as

cmp %i0,%i2

or %g0,1,%i3 ! assume X = 1

movle %xcc,0,%i3 ! overwrite with X = 0

This takes only three instructions and no branches and may boost performance significantly. It is

suggested that MOVcc and FMOVcc be used instead of branches wherever they would increase

performance.

Exceptions:

illegal_instruction (cc2 cc1 cc0 = 1012 or 1112)
fp_disabled (cc2 cc1 cc0 = 0002 , 0012 , 0102 , or 0112 and the FPU is dis-

abled)

198 A Instruction Definitions

A.36 Move Integer Register on Register Condition (MOVR)

Format (3):

Description:

If the contents of integer register r[rs1] satisfies the condition specified in the rcond field,
these instructions copy r[rs2] (if i = 0) or sign_ext(simm10) (if i = 1) into r[rd]. If the con-
tents of r[rs1] does not satisfy the condition then r[rd] is not modified. These instructions
treat the register contents as a signed integer value; they do not modify any condition
codes.

Implementation Note:

If this instruction is implemented by tagging each register value with an N (negative) and a Z (zero)

bit, use the following table to determine if rcond is TRUE:

Exceptions:

illegal_instruction (rcond = 0002 or 1002)

Opcode op3 rcond Operation Test

— 10 1111 000 Reserved —

MOVRZ 10 1111 001 Move if Register Zero r[rs1] = 0

MOVRLEZ 10 1111 010 Move if Register Less Than or Equal to Zero r[rs1] ≤ 0

MOVRLZ 10 1111 011 Move if Register Less Than Zero r[rs1] < 0

— 10 1111 100 Reserved —

MOVRNZ 10 1111 101 Move if Register Not Zero r[rs1] ≠ 0

MOVRGZ 10 1111 110 Move if Register Greater Than Zero r[rs1] > 0

MOVRGEZ 10 1111 111 Move if Register Greater Than or Equal to Zero r[rs1] ≥ 0

Suggested Assembly Language Syntax

movrz regrs1, reg_or_imm10, regrd (synonym: movre)

movrlez regrs1, reg_or_imm10, regrd

movrlz regrs1, reg_or_imm10, regrd

movrnz regrs1, reg_or_imm10, regrd (synonym: movrne)

movrgz regrs1, reg_or_imm10, regrd

movrgez regrs1, reg_or_imm10, regrd

Branch Test

MOVRNZ not Z

MOVRZ Z

MOVRGEZ not N

MOVRLZ N

MOVRLEZ N or Z

MOVRGZ N nor Z

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm10i=1

rcond

rcond

10 9

A.37 Multiply and Divide (64-bit) 199

A.37 Multiply and Divide (64-bit)

Format (3):

Description:

MULX computes “r[rs1] × r[rs2]” if i = 0 or “r[rs1] × sign_ext(simm13)” if i = 1, and
writes the 64-bit product into r[rd]. MULX can be used to calculate the 64-bit product for
signed or unsigned operands (the product is the same).

SDIVX and UDIVX compute “r[rs1] ÷ r[rs2]” if i = 0 or “r[rs1] ÷ sign_ext(simm13)” if
i = 1, and write the 64-bit result into r[rd]. SDIVX operates on the operands as signed
integers and produces a corresponding signed result. UDIVX operates on the operands as
unsigned integers and produces a corresponding unsigned result.

For SDIVX, if the largest negative number is divided by –1, the result should be the largest
negative number. That is:

8000 0000 0000 000016 ÷ FFFF FFFF FFFF FFFF16 = 8000 0000 0000 000016.

These instructions do not modify any condition codes.

Exceptions:
division_by_zero

Opcode op3 Operation

MULX 00 1001 Multiply (signed or unsigned)

SDIVX 10 1101 Signed Divide

UDIVX 00 1101 Unsigned Divide

Suggested Assembly Language Syntax

mulx regrs1, reg_or_imm, regrd

sdivx regrs1, reg_or_imm, regrd

udivx regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

200 A Instruction Definitions

A.38 Multiply (32-bit)

Format (3):

Description:

The multiply instructions perform 32-bit by 32-bit multiplications, producing 64-bit
results. They compute “r[rs1]<31:0> × r[rs2]<31:0>” if i = 0, or “r[rs1]<31:0> × sign_
ext(simm13)<31:0>” if i = 1. They write the 32 most significant bits of the product into the
Y register and all 64 bits of the product into r[rd].

Unsigned multiply (UMUL, UMULcc) operates on unsigned integer word operands and
computes an unsigned integer doubleword product. Signed multiply (SMUL, SMULcc)
operates on signed integer word operands and computes a signed integer doubleword
product.

UMUL and SMUL do not affect the condition code bits. UMULcc and SMULcc write the
integer condition code bits, icc and xcc, as follows. Note that 32-bit negative (icc.N) and
zero (icc.Z) condition codes are set according to the less significant word of the product,
and not according to the full 64-bit result.

Opcode op3 Operation

UMULD 00 1010 Unsigned Integer Multiply

SMULD 00 1011 Signed Integer Multiply

UMULccD 01 1010 Unsigned Integer Multiply and modify cc’s

SMULccD 01 1011 Signed Integer Multiply and modify cc’s

Suggested Assembly Language Syntax

umul regrs1, reg_or_imm, regrd

smul regrs1, reg_or_imm, regrd

umulcc regrs1, reg_or_imm, regrd

smulcc regrs1, reg_or_imm, regrd

The UMUL, UMULcc, SMUL, and SMULcc instructions are deprecated; they are

provided only for compatibility with previous versions of the architecture. They

should not be used in new SPARC-V9 software. It is recommended that the MULX

instruction be used in their place.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

A.38 Multiply (32-bit) 201

Programming Note:

32-bit overflow after UMUL / UMULcc is indicated by Y ≠ 0.

32-bit overflow after SMUL / SMULcc is indicated by Y ≠ (r[rd] >> 31), where “>>” indicates 32-

bit arithmetic right shift.

Implementation Note:

An implementation may assume that the smaller operand typically will be r[rs2] or simm13.

Implementation Note:

See Implementation Characteristics of Current SPARC-V9-based Products, Revision 9.x, a docu-

ment available from SPARC International, for information on whether these instructions are imple-

mented by hardware or software in the various SPARC-V9 implementations.

Exceptions:

(none)

Bit UMULcc / SMULcc

icc.N Set if product[31] = 1

icc.Z Set if product[31:0] = 0

icc.V Zero

icc.C Zero

xcc.N Set if product[63] = 1

xcc.Z Set if product[63:0] = 0

xcc.V Zero

xcc.C Zero

202 A Instruction Definitions

A.39 Multiply Step

Format (3):

Description:

MULScc treats the lower 32 bits of both r[rs1] and the Y register as a single 64-bit, right-
shiftable doubleword register. The least significant bit of r[rs1] is treated as if it were adja-
cent to bit 31 of the Y register. The MULScc instruction adds, based on the least signifi-
cant bit of Y.

Multiplication assumes that the Y register initially contains the multiplier, r[rs1] contains
the most significant bits of the product, and r[rs2] contains the multiplicand. Upon com-
pletion of the multiplication, the Y register contains the least significant bits of the prod-
uct.

Note that a standard MULScc instruction has rs1 = rd.

MULScc operates as follows:

(1) The multiplicand is r[rs2] if i = 0, or sign_ext(simm13) if i = 1.

(2) A 32-bit value is computed by shifting r[rs1] right by one bit with
“CCR.icc.n xor CCR.icc.v” replacing bit 31 of r[rs1]. (This is the proper sign for
the previous partial product.)

(3) If the least significant bit of Y = 1, the shifted value from step (2) and the multipli-
cand are added. If the least significant bit of the Y = 0, then 0 is added to the
shifted value from step (2).

Opcode op3 Operation

MULSccD 10 0100 Multiply Step and modify cc’s

Suggested Assembly Language Syntax

mulscc regrs1, reg_or_imm, regrd

The MULScc instruction is deprecated; it is provided only for compatibility with

previous versions of the architecture. It should not be used in new SPARC-V9 soft-

ware. It is recommended that the MULX instruction be used in its place.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

A.39 Multiply Step 203

(4) The sum from step (3) is written into r[rd]. The upper 32-bits of r[rd] are unde-
fined. The integer condition codes are updated according to the addition performed
in step (3). The values of the extended condition codes are undefined.

(5) The Y register is shifted right by one bit, with the least significant bit of the
unshifted r[rs1] replacing bit 31of Y.

Exceptions:

(none)

204 A Instruction Definitions

A.40 No Operation

Format (2):

Description:

The NOP instruction changes no program-visible state (except the PC and nPC).

Note that NOP is a special case of the SETHI instruction, with imm22 = 0 and rd = 0.

Exceptions:

(none)

Opcode op op2 Operation

NOP 00 100 No Operation

Suggested Assembly Language Syntax

nop

31 24 02530 29 22 21

00 op op2 0

A.41 Population Count 205

A.41 Population Count

Format (3):

Description:

POPC counts the number of one bits in r[rs2] if i = 0, or the number of one bits in sign_
ext(simm13) if i = 1, and stores the count in r[rd]. This instruction does not modify the
condition codes.

Implementation Note:

Instruction bits 18 through 14 must be zero for POPC. Other encodings of this field (rs1) may be

used in future versions of the SPARC architecture for other instructions.

Programming Note:

POPC can be used to “find first bit set” in a register. A C program illustrating how POPC can be

used for this purpose follows:

int ffs(zz) /* finds first 1 bit, counting from the LSB */

unsigned zz;

{

return popc (zz ^ (∼ (–zz))); /* for nonzero zz */

}

Inline assembly language code for ffs() is

neg %IN, %M_IN ! –zz(2’s complement)

xnor %IN, %M_IN, %TEMP ! ^ ∼ –zz (exclusive nor)
popc %TEMP,%RESULT ! result = popc(zz ^ ∼ –zz)
movrz %IN,%g0,%RESULT ! %RESULT should be 0 for %IN=0

where IN, M_IN, TEMP, and RESULT are integer registers.

Example:
IN = ...00101000! 1st 1 bit from rt is 4th bit

–IN = ...11011000

∼ –IN = ...00100111

IN ^ ∼ –IN = ...00001111

popc(IN ^ ∼ –IN) = 4

Exceptions:

illegal_instruction (instruction<18:14> ≠ 0)

Opcode op3 Operation

POPC 10 1110 Population Count

Suggested Assembly Language Syntax

popc reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

0 0000 rs2i=0

rd10 op3 0 0000 simm13i=1

206 A Instruction Definitions

A.42 Prefetch Data

Format (3) PREFETCH:

Format (3) PREFETCHA:

Description:

In nonprivileged code, a prefetch instruction has the same observable effect as a NOP; its
execution is nonblocking and cannot cause an observable trap. In particular, a prefetch
instruction shall not trap if it is applied to an illegal or nonexistent memory address.

IMPL. DEP. #103(1): Whether the execution of a PREFETCH instruction has observable effects in

privileged code is implementation-dependent.

IMPL. DEP. #103(2): Whether the execution of a PREFETCH instruction can cause a data_

access_mmu_miss exception is implementation-dependent.

Opcode op3 Operation

PREFETCH 10 1101 Prefetch Data

PREFETCHAPASI 11 1101 Prefetch Data from Alternate Space

fcn Prefetch function

0 Prefetch for several reads

1 Prefetch for one read

2 Prefetch for several writes

3 Prefetch for one write

4 Prefetch page

5–15 Reserved

16–31 Implementation-dependent

Suggested Assembly Language Syntax

prefetch [address], prefetch_fcn

prefetcha [regaddr] imm_asi, prefetch_fcn

prefetcha [reg_plus_imm] %asi, prefetch_fcn

31 24 02530 29 19 18 14 13 12 5 4

fcn11 op3 rs1 simm13i=1

fcn11 op3 rs1 i=0 — rs2

31 24 02530 29 19 18

fcn11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

fcn11 op3 rs1 simm13i=1

A.42 Prefetch Data 207

Whether prefetch always succeeds when the MMU is disabled is implementation-depen-
dent (impl. dep. # 117).

Implementation Note:

Any effects of prefetch in privileged code should be reasonable (e.g., handling ECC errors, no page

prefetching allowed within code that handles page faults). The benefits of prefetching should be

available to most privileged code.

Execution of a prefetch instruction initiates data movement (or preparation for future data
movement or address mapping) to reduce the latency of subsequent loads and stores to the
specified address range.

A successful prefetch initiates movement of a block of data containing the addressed byte
from memory toward the processor.

IMPL. DEP. #103(3): The size and alignment in memory of the data block is implementation-

dependent; the minimum size is 64 bytes and the minimum alignment is a 64-byte boundary.

Programming Note:

Software may prefetch 64 bytes beginning at an arbitrary address address by issuing the instruc-

tions

prefetch [address], prefetch_fcn

prefetch [address + 63], prefetch_fcn

Implementation Note:

Prefetching may be used to help manage memory cache(s). A prefetch from a nonprefetchable

location has no effect. It is up to memory management hardware to determine how locations are

identified as not prefetchable.

Prefetch instructions that do not load from an alternate address space access the primary
address space (ASI_PRIMARY{_LITTLE}). Prefetch instructions that do load from an
alternate address space contain the address space identifier (ASI) to be used for the load in
the imm_asi field if i = 0, or in the ASI register if i = 1. The access is privileged if bit seven
of the ASI is zero; otherwise, it is not privileged. The effective address for these instruc-
tions is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

Variants of the prefetch instruction can be used to prepare the memory system for different
types of accesses.

IMPL. DEP. #103(4): An implementation may implement none, some, or all of these variants. A

variant not implemented shall execute as a nop. An implemented variant may support its full

semantics, or may support just the simple common-case prefetching semantics.

A.42.1 Prefetch Variants

The prefetch variant is selected by the fcn field of the instruction. fcn values 5..15 are
reserved for future extensions of the architecture.

IMPL. DEP. #103(5): PREFETCH fcn values of 16..31 are implementation-dependent.

Each prefetch variant reflects an intent on the part of the compiler or programmer. This is
different from other instructions in SPARC-V9 (except BPN), all of which specify specific

208 A Instruction Definitions

actions. An implementation may implement a prefetch variant by any technique, as long as
the intent of the variant is achieved.

The prefetch instruction is designed to treat the common cases well. The variants are
intended to provide scalability for future improvements in both hardware and compilers. If
a variant is implemented, then it should have the effects described below. In case some of
the variants listed below are implemented and some are not, there is a recommended over-
loading of the unimplemented variants (see the Implementation Note labeled “Recom-
mended Overloadings” in A.42.2).

A.42.1.1 Prefetch for Several Reads (fcn = 0)

The intent of this variant is to cause movement of data into the data cache nearest the pro-
cessor, with “reasonable” efforts made to obtain the data.

Implementation Note:

If, for example, some TLB misses are handled in hardware, then they should be handled. On the

other hand, a multiple ECC error is reasonable cause for cancellation of a prefetch.

This is the most important case of prefetching.

If the addressed data is already present (and owned, if necessary) in the cache, then this
variant has no effect.

A.42.1.2 Prefetch for One Read (fcn = 1)

This variant indicates that, if possible, the data cache should be minimally disturbed by the
data read from the given address, because that data is expected to be read once and not
reused (read or written) soon after that.

If the data is already present in the cache, then this variant has no effect.

Programming Note:

The intended use of this variant is in streaming large amounts of data into the processor without

overwriting data in cache memory.

A.42.1.3 Prefetch for Several Writes (and Possibly Reads) (fcn = 2)

The intent of this variant is to cause movement of data in preparation for writing.

If the addressed data is already present in the data cache, then this variant has no effect.

Programming Note:

An example use of this variant is to write a dirty cache line back to memory, or to initialize a cache

line in preparation for a partial write.

Implementation Note:

On a multiprocessor, this variant indicates that exclusive ownership of the addressed data is needed,

so it may have the additional effect of obtaining exclusive ownership of the addressed cache line.

Implementation Note:

On a uniprocessor, there is no distinction between Prefetch for Several Reads and this variant.

A.42 Prefetch Data 209

A.42.1.4 Prefetch for One Write (fcn = 3)

This variant indicates that, if possible, the data cache should be minimally disturbed by the
data written to this address, because that data is not expected to be reused (read or written)
soon after it has been written once.

If the data is already present in the cache, then this variant has no effect.

A.42.1.5 Prefetch Page (fcn = 4)

In a virtual-memory system, the intended action of this variant is for the supervisor soft-
ware or hardware to initiate asynchronous mapping of the referenced virtual address,
assuming that it is legal to do so.

Programming Note:

The desire is to avoid a later page fault for the given address, or at least to shorten the latency of a

page fault.

In a nonvirtual-memory system, or if the addressed page is already mapped, this variant
has no effect.

The referenced page need not be mapped when the instruction completes. Loads and
stores issued before the page is mapped should block just as they would if the prefetch had
never been issued. When the activity associated with the mapping has completed, the
loads and stores may proceed.

Implementation Note:

An example of mapping activity is DMA from secondary storage.

Implementation Note:

Use of this variant may be disabled or restricted in privileged code that is not permitted to cause

page faults.

A.42.1.6 Implementation-Dependent Prefetch (fcn = 16..31)

These values are available for implementations to use. An implementation shall treat any
unimplemented prefetch fcn values as NOPs (impl. dep. #103).

A.42.2 General Comments

There is no variant of PREFETCH for instruction prefetching. Instruction prefetching
should be encoded using the Branch Never (BPN) form of the BPcc instruction (see A.7,
“Branch on Integer Condition Codes with Prediction (BPcc)”).

One error to avoid in thinking about prefetch instructions is that they should have “no cost
to execute.” As long as the cost of executing a prefetch instruction is well less than one-
third the cost of a cache miss, use of prefetching is a net win. It does not appear that
prefetching causes a significant number of useless fetches from memory, though it may
increase the rate of useful fetches (and hence the bandwidth), because it more efficiently
overlaps computing with fetching.

210 A Instruction Definitions

Implementation Note:

Recommended Overloadings. There are four recommended sets of overloadings for the prefetch

variants, based on a simplistic classification of SPARC-V9 systems into cost (low-cost vs. high-

cost) and processor multiplicity (uniprocessor vs. multiprocessor) categories. These overloadings

are chosen to help ensure efficient portability of software across a range of implementations.

In a uniprocessor, there is no need to support multiprocessor cache protocols; hence, Prefetch for

Several Reads and Prefetch for Several Writes may behave identically. In a low-cost implementa-

tion, Prefetch for One Read and Prefetch for One Write may be identical to Prefetch for Several

Reads and Prefetch for Several Writes, respectively.

Programming Note:

A SPARC-V9 compiler that generates PREFETCH instructions should generate each of the four

variants where it is most appropriate. The overloadings suggested in the previous Implementation

Note ensure that such code will be portable and reasonably efficient across a range of hardware

configurations.

Implementation Note:

The Prefetch for One Read and Prefetch for One Write variants assume the existence of a “bypass

cache,” so that the bulk of the “real cache” remains undisturbed. If such a bypass cache is used, it

should be large enough to properly shield the processor from memory latency. Such a cache should

probably be small, highly associative, and use a FIFO replacement policy.

Exceptions:

data_access_MMU_miss (implementation-dependent (impl. dep. #103))
illegal_instruction (fcn=5..15)

Multiplicity Cost Prefetch for ..

Could be overloaded
to mean the same as

 Prefetch for ..

Uniprocessor Low

One read Several writes

Several reads Several writes

One write Several writes

Several writes —

Uniprocessor High

One read —

Several reads Several writes

One write —

Several writes —

Multiprocessor Low

One read Several reads

Several reads —

One write Several writes

Several writes —

Multiprocessor High

One read —

Several reads —

One write —

Several writes —

A.43 Read Privileged Register 211

A.43 Read Privileged Register

Format (3):

Opcode op3 Operation

RDPRP 10 1010 Read Privileged Register

rs1 Privileged register

0 TPC

1 TNPC

2 TSTATE

3 TT

4 TICK

5 TBA

6 PSTATE

7 TL

8 PIL

9 CWP

10 CANSAVE

11 CANRESTORE

12 CLEANWIN

13 OTHERWIN

14 WSTATE

15 FQ

16..30 —

31 VER

31 141924 18 13 02530 29

10 rd op3 rs1 —

212 A Instruction Definitions

Description:

The rs1 field in the instruction determines the privileged register that is read. There are
MAXTL copies of the TPC, TNPC, TT, and TSTATE registers. A read from one of these
registers returns the value in the register indexed by the current value in the trap level reg-
ister (TL). A read of TPC, TNPC, TT, or TSTATE when the trap level is zero (TL = 0)
causes an illegal_instruction exception.

RDPR instructions with rs1 in the range 16..30 are reserved; executing a RDPR instruc-
tion with rs1 in that range causes an illegal_instruction exception.

A read from the FQ (Floating-Point Deferred-Trap Queue) register copies the front dou-
bleword of the queue into r[rd]. The semantics of reading the FQ and the data returned are
implementation-dependent (impl. dep. #24). However, the address of a trapping floating-
point instruction must be available to the privileged trap handler. On an implementation
with a floating-point queue, an attempt to execute RDPR of FQ when the queue is empty
(FSR.qne = 0) shall cause an fp_exception exception with FSR.ftt set to 4 (sequence_error).
In an implementation without a floating-point queue, an attempt to execute RDPR of FQ
shall cause either an illegal_instruction exception or an fp_exception_other exception with
FSR.ftt set to 3 (unimplemented_FPop) (impl. dep. #25).

Programming Note:

On an implementation with precise floating-point traps, the address of a trapping instruction will be

in the TPC[TL] register when the trap code begins execution. On an implementation with deferred

floating-point traps, the address of the trapping instruction might be a value obtained from the FQ.

Exceptions:
privileged_opcode

illegal_instruction ((rs1 = 16..30) or ((rs1≤3) and (TL = 0)))

Suggested Assembly Language Syntax

rdpr %tpc, regrd

rdpr %tnpc, regrd

rdpr %tstate, regrd

rdpr %tt, regrd

rdpr %tick, regrd

rdpr %tba, regrd

rdpr %pstate, regrd

rdpr %tl, regrd

rdpr %pil, regrd

rdpr %cwp, regrd

rdpr %cansave, regrd

rdpr %canrestore, regrd

rdpr %cleanwin, regrd

rdpr %otherwin, regrd

rdpr %wstate, regrd

rdpr %fq, regrd

rdpr %ver, regrd

A.43 Read Privileged Register 213

fp_exception_other (sequence_error) (RDPR of FQ when FSR.qne = 0 in a system
with an FQ; (impl. dep. #25)

illegal_instruction (RDPR of FQ in a system without an FQ; (impl. dep. #25)

214 A Instruction Definitions

A.44 Read State Register

Format (3):

Description:

These instructions read the specified state register into r[rd].

Note that RDY, RDCCR, RDASI, RDPC, RDTICK, RDFPRS, and RDASR are distin-
guished only by the value in the rs1 field.

If rs1 ≥ 7, an ancillary state register is read. Values of rs1 in the range 7..14 are reserved
for future versions of the architecture; values in the range 16..31 are available for imple-
mentations to use (impl. dep. #8). A RDASR instruction with rs1 = 15, rd = 0, and i = 0 is
defined to be an STBAR instruction (see A.51). An RDASR instruction with rs1 = 15,
rd = 0, and i = 1 is defined to be a MEMBAR instruction (see A.32). RDASR with

Opcode op3 rs1 Operation

RDYD 10 1000 0 Read Y Register

— 10 1000 1 reserved

RDCCR 10 1000 2 Read Condition Codes Register

RDASI 10 1000 3 Read ASI Register

RDTICKPNPT 10 1000 4 Read Tick Register

RDPC 10 1000 5 Read Program Counter

RDFPRS 10 1000 6 Read Floating-Point Registers Status Register

RDASRPASR 10 1000 7−14 Read Ancillary State Register (reserved)

See text 10 1000 15 See text

RDASRPASR 10 1000 16−31 Implementation-dependent (impl. dep. #47)

Suggested Assembly Language Syntax

rd %y, regrd

rd %ccr, regrd

rd %asi, regrd

rd %tick, regrd

rd %pc, regrd

rd %fprs, regrd

rd asr_regrs1, regrd

The RDY instruction is deprecated; it is provided only for compatibility with previ-

ous versions of the architecture. It should not be used in new SPARC-V9 software.

It is recommended that all instructions which reference the Y register be avoided.

31 141924 18 13 02530 29

10 rd op3 rs1 —

12

i=0

A.44 Read State Register 215

rs1 = 15 and rd≠0 is reserved for future versions of the architecture; it causes an illegal_

instruction exception.

RDTICK causes a privileged_action exception if PSTATE.PRIV = 0 and TICK.NPT = 1.

For RDPC, the high-order 32-bits of the PC value stored in r[rd] are implementation-
dependent when PSTATE.AM = 1 (impl. dep. #125).

RDFPRS waits for all pending FPops and loads of floating-point registers to complete
before reading the FPRS register.

IMPL. DEP. #47: RDASR instructions with rd in the range 16..31 are available for implementation-

dependent uses (impl. dep. #8). For a RDASR instruction with rs1 in the range 16 .. 31, the follow-

ing are implementation-dependent: the interpretation of bits 13:0 and 29:25 in the instruction,

whether the instruction is privileged (impl. dep. #9), and whether the instruction causes an illegal_

instruction exception.

See I.1.1, “Read/Write Ancillary State Registers (ASRs),” for a discussion of extending
the SPARC-V9 instruction set using read/write ASR instructions.

Implementation Note:

Ancillary state registers may include (for example) timer, counter, diagnostic, self-test, and trap-

control registers. See Implementation Characteristics of Current SPARC-V9-based Products, Revi-

sion 9.x, a document available from SPARC International, for information on implemented ancil-

lary state registers.

Compatibility Note:

The SPARC-V8 RDPSR, RDWIM, and RDTBR instructions do not exist in SPARC-V9 since the

PSR, WIM, and TBR registers do not exist in SPARC-V9.

Exceptions:

privileged_opcode (RDASR only; implementation-dependent (impl. dep. #47))
illegal_instruction (RDASR with rs1 = 1 or 7..14; RDASR with rs1 = 15 and rd≠0;

RDASR with rs1 = 16..31 and the implementation does not define the instruc-
tion as an extension; implementation-dependent (impl. dep. #47))

privileged_action (RDTICK only)

216 A Instruction Definitions

A.45 RETURN

Format (3):

Description:

The RETURN instruction causes a delayed transfer of control to the target address and has
the window semantics of a RESTORE instruction; that is, it restores the register window
prior to the last SAVE instruction. The target address is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1. Registers r[rs1] and r[rs2] come from the old win-
dow.

The RETURN instruction may cause an exception. It may cause a window_fill exception as
part of its RESTORE semantics or it may cause a mem_address_not_aligned exception if
either of the two low-order bits of the target address are nonzero.

Programming Note:

To reexecute the trapped instruction when returning from a user trap handler, use the RETURN

instruction in the delay slot of a JMPL instruction, for example:

jmpl %l6,%g0 ! Trapped PC supplied to user trap handler

return %l7 ! Trapped nPC supplied to user trap handler

Programming Note:

A routine that uses a register window may be structured either as

save %sp,-framesize, %sp

. . .

ret ! Same as jmpl %i7 + 8, %g0

restore ! Something useful like “restore %o2,%l2,%o0”

or as

save %sp,-framesize, %sp

. . .

return %i7 + 8

nop ! Could do some useful work in the caller’s

! window e.g. “or %o1, %o2,%o0”

Exceptions:
mem_address_not_aligned

fill_n_normal (n = 0..7)
fill_n_other (n = 0..7)

Opcode op3 Operation

RETURN 11 1001 RETURN

Suggested Assembly Language Syntax

return address

31 24 02530 29 19 18

—10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1—

A.46 SAVE and RESTORE 217

A.46 SAVE and RESTORE

Format (3):

Description (Effect on Nonprivileged State):

The SAVE instruction provides the routine executing it with a new register window. The
out registers from the old window become the in registers of the new window. The con-
tents of the out and the local registers in the new window are zero or contain values from
the executing process; that is, the process sees a clean window.

The RESTORE instruction restores the register window saved by the last SAVE instruc-
tion executed by the current process. The in registers of the old window become the out

registers of the new window. The in and local registers in the new window contain the pre-
vious values.

Furthermore, if and only if a spill or fill trap is not generated, SAVE and RESTORE
behave like normal ADD instructions, except that the source operands r[rs1] and/or r[rs2]
are read from the old window (that is, the window addressed by the original CWP) and the
sum is written into r[rd] of the new window (that is, the window addressed by the new
CWP).

Note that CWP arithmetic is performed modulo the number of implemented windows,
NWINDOWS.

Programming Note:

Typically, if a SAVE (RESTORE) instruction traps, the spill (fill) trap handler returns to the trapped

instruction to reexecute it. So, although the ADD operation is not performed the first time (when

the instruction traps), it is performed the second time the instruction executes. The same applies to

changing the CWP.

Programming Note:

The SAVE instruction can be used to atomically allocate a new window in the register file and a

new software stack frame in memory. See H.1.2, “Leaf-Procedure Optimization,” for details.

Programming Note:

There is a performance tradeoff to consider between using SAVE/RESTORE and saving and restor-

ing selected registers explicitly.

Opcode op3 Operation

SAVE 11 1100 Save caller’s window

RESTORE 11 1101 Restore caller’s window

Suggested Assembly Language Syntax

save regrs1, reg_or_imm, regrd

restore regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1rd

218 A Instruction Definitions

Description (effect on privileged state):

If the SAVE instruction does not trap, it increments the CWP (mod NWINDOWS) to pro-
vide a new register window and updates the state of the register windows by decrementing
CANSAVE and incrementing CANRESTORE.

If the new register window is occupied (that is, CANSAVE = 0), a spill trap is generated.
The trap vector for the spill trap is based on the value of OTHERWIN and WSTATE. The
spill trap handler is invoked with the CWP set to point to the window to be spilled (that is,
old CWP + 2).

If CANSAVE ≠ 0, the SAVE instruction checks whether the new window needs to be
cleaned. It causes a clean_window trap if the number of unused clean windows is zero, that
is, (CLEANWIN – CANRESTORE) = 0. The clean_window trap handler is invoked with
the CWP set to point to the window to be cleaned (that is, old CWP + 1).

If the RESTORE instruction does not trap, it decrements the CWP (mod NWINDOWS) to
restore the register window that was in use prior to the last SAVE instruction executed by
the current process. It also updates the state of the register windows by decrementing
CANRESTORE and incrementing CANSAVE.

If the register window to be restored has been spilled (CANRESTORE = 0), a fill trap is
generated. The trap vector for the fill trap is based on the values of OTHERWIN and
WSTATE, as described in 7.5.2.1, “Trap Type for Spill/Fill Traps.” The fill trap handler is
invoked with CWP set to point to the window to be filled, that is, old CWP – 1.

Programming Note:

The vectoring of spill and fill traps can be controlled by setting the value of the OTHERWIN and

WSTATE registers appropriately. For details, see the unnumbered subsection titled “Splitting the

Register Windows” in H.2.3, “Client-Server Model.”

Programming Note:

The spill (fill) handler normally will end with a SAVED (RESTORED) instruction followed by a

RETRY instruction.

Exceptions:

clean_window (SAVE only)
fill_n_normal (RESTORE only, n =0..7)
fill_n_other (RESTORE only, n = 0..7)
spill_n_normal (SAVE only, n = 0..7)
spill_n_other (SAVE only, n = 0..7)

A.47 SAVED and RESTORED 219

A.47 SAVED and RESTORED

Format (3):

Description:

SAVED and RESTORED adjust the state of the register-windows control registers.

SAVED increments CANSAVE. If OTHERWIN = 0, it decrements CANRESTORE.
If OTHERWIN≠0, it decrements OTHERWIN.

RESTORED increments CANRESTORE. If CLEANWIN < (NWINDOWS-1),
RESTORED increments CLEANWIN. If OTHERWIN = 0, it decrements CANSAVE.
If OTHERWIN ≠ 0, it decrements OTHERWIN.

Programming Note:

The spill (fill) handlers use the SAVED (RESTORED) instruction to indicate that a window has

been spilled (filled) successfully. See H.2.2, “Example Code for Spill Handler,” for details.

Programming Note:

Normal privileged software would probably not do a SAVED or RESTORED from trap level zero

(TL = 0). However, it is not illegal to do so, and does not cause a trap.

Programming Note:

Executing a SAVED (RESTORED) instruction outside of a window spill (fill) trap handler is likely

to create an inconsistent window state. Hardware will not signal an exception, however, since main-

taining a consistent window state is the responsibility of privileged software.

Exceptions:
privileged_opcode

illegal_instruction (fcn=2..31)

Opcode op3 fcn Operation

SAVEDP 11 0001 0 Window has been Saved

RESTOREDP 11 0001 1 Window has been Restored

— 11 0001 2..31 Reserved

Suggested Assembly Language Syntax

saved

restored

31 1924 18 02530 29

10 fcn op3 —

220 A Instruction Definitions

A.48 SETHI

Format (2):

Description:

SETHI zeroes the least significant 10 bits and the most significant 32 bits of r[rd], and
replaces bits 31 through 10 of r[rd] with the value from its imm22 field.

SETHI does not affect the condition codes.

A SETHI instruction with rd = 0 and imm22 = 0 is defined to be a NOP instruction, which
is defined in A.40.

Programming Note:

The most common form of 64-bit constant generation is creating stack offsets whose magnitude is

less than 232. The code below can be used to create the constant 0000 0000 ABCD 123416:

sethi %hi(0xabcd1234),%o0

or %o0, 0x234, %o0

The following code shows how to create a negative constant. Note that the immediate field of the

xor instruction is sign extended and can be used to get 1s in all of the upper 32 bits. For example,

to set the negative constant FFFF FFFF ABCD 123416:

sethi %hi(0x5432edcb),%o0! note 0x5432EDCB, not 0xABCD1234

xor %o0, 0x1e34, %o0 ! part of imm. overlaps upper bits

Exceptions:

(none)

Opcode op op2 Operation

SETHI 00 100 Set High 22 Bits of Low Word

Suggested Assembly Language Syntax

sethi const22, regrd

sethi %hi (value), regrd

31 2224 21 02530 29

00 rd 100 imm22

A.49 Shift 221

A.49 Shift

Format (3):

Description:

When i = 0 and x = 0, the shift count is the least significant five bits of r[rs2]. When i = 0
and x = 1, the shift count is the least significant six bits of r[rs2]. When i = 1 and x = 0, the
shift count is the immediate value specified in bits 0 through 4 of the instruction. When
i = 1 and x = 1, the shift count is the immediate value specified in bits 0 through 5 of the
instruction.

SLL and SLLX shift all 64 bits of the value in r[rs1] left by the number of bits specified by
the shift count, replacing the vacated positions with zeroes, and write the shifted result to
r[rd].

Opcode op3 x Operation

SLL 10 0101 0 Shift Left Logical - 32 Bits

SRL 10 0110 0 Shift Right Logical - 32 Bits

SRA 10 0111 0 Shift Right Arithmetic - 32 Bits

SLLX 10 0101 1 Shift Left Logical - 64 Bits

SRLX 10 0110 1 Shift Right Logical - 64 Bits

SRAX 10 0111 1 Shift Right Arithmetic - 64 Bits

Suggested Assembly Language Syntax

sll regrs1, reg_or_shcnt, regrd

srl regrs1, reg_or_shcnt, regrd

sra regrs1, reg_or_shcnt, regrd

sllx regrs1, reg_or_shcnt, regrd

srlx regrs1, reg_or_shcnt, regrd

srax regrs1, reg_or_shcnt, regrd

i x Shift count

0 0 bits 4 .. 0 of r[rs2]

0 1 bits 5 .. 0 of r[rs2]

1 0 bits 4..0 of instruction

1 1 bits 5..0 of instruction

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0 x

rd10 op3 —rs1 shcnt32i=1 x=0

rd10 op3 —rs1 shcnt64i=1 x=1

6

222 A Instruction Definitions

SRL shifts the low 32 bits of the value in r[rs1] right by the number of bits specified by the
shift count. Zeroes are shifted into bit 31. The upper 32 bits are set to zero, and the result is
written to r[rd].

SRLX shifts all 64 bits of the value in r[rs1] right by the number of bits specified by the
shift count. Zeroes are shifted into the vacated high-order bit positions, and the shifted
result is written to r[rd].

SRA shifts the low 32 bits of the value in r[rs1] right by the number of bits specified by
the shift count, and replaces the vacated positions with bit 31 of r[rs1]. The high order 32
bits of the result are all set with bit 31 of r[rs1], and the result is written to r[rd].

SRAX shifts all 64 bits of the value in r[rs1] right by the number of bits specified by the
shift count, and replaces the vacated positions with bit 63 of r[rs1]. The shifted result is
written to r[rd].

No shift occurs when the shift count is zero, but the high-order bits are affected by the 32-
bit shifts as noted above.

These instructions do not modify the condition codes.

Programming Note:

“Arithmetic left shift by 1 (and calculate overflow)” can be effected with the ADDcc instruction.

Programming Note:

The instruction “sra rs1,0,rd” can be used to convert a 32-bit value to 64 bits, with sign exten-

sion into the upper word. “srl rs1,0,rd” can be used to clear the upper 32 bits of r[rd].

Exceptions:

(none)

A.50 Software-Initiated Reset 223

A.50 Software-Initiated Reset

Format (3):

Description:

SIR is used to generate a software-initiated reset (SIR). It may be executed in either privi-
leged or nonprivileged mode, with slightly different effect. As with other traps, a software-
initiated reset performs different actions when TL = MAXTL than it does when
TL < MAXTL.

When executed in user mode, the action of SIR is conditional on the SIR_enable control
flag.

IMPL. DEP. #116: The location of the SIR_enable control flag and the means of accessing the

SIR_enable control flag are implementation-dependent. In some implementations it may be per-

manently zero.

When SIR_enable is 0, SIR executes without effect (as a NOP) in user mode. When SIR is
executed in privileged mode or in user mode with SIR_enable = 1, the processor performs
a software-initiated reset. See 7.6.2.5, “Software-Initiated Reset (SIR) Traps,” for more
information about software-initiated resets.

Programming Note:

This instruction is never illegal. It is not a privileged instruction, even though its action in privileged

mode is different than in user mode.

Exceptions:

software_initiated_reset

Opcode op3 rd Operation

SIR 11 0000 15 Software-initiated reset

Suggested Assembly Language Syntax

sir simm13

31 1924 18 02530 29

10 0 1111 op3

14 13

0 0000 simm13

12

i=1

224 A Instruction Definitions

A.51 Store Barrier

Format (3):

Description:

The store barrier instruction (STBAR) forces all store and atomic load-store operations
issued by a processor prior to the STBAR to complete their effects on memory before any

store or atomic load-store operations issued by that processor subsequent to the STBAR
are executed by memory.

Note that the encoding of STBAR is identical to that of the RDASR instruction except that
rs1 = 15 and rd = 0, and is identical to that of the MEMBAR instruction except that bit 13
(i) = 0.

The coherence and atomicity of memory operations between processors and I/O DMA
memory accesses are implementation-dependent (impl. dep #120).

Compatibility Note:

STBAR is identical in function to a MEMBAR instruction with mmask = 816. STBAR is retained

for compatibility with SPARC-V8.

Implementation Note:

For correctness, it is sufficient for a processor to stop issuing new store and atomic load-store oper-

ations when an STBAR is encountered and resume after all stores have completed and are observed

in memory by all processors. More efficient implementations may take advantage of the fact that

the processor is allowed to issue store and load-store operations after the STBAR, as long as those

operations are guaranteed not to become visible before all the earlier stores and atomic load-stores

have become visible to all processors.

Exceptions:

(none)

Opcode op3 Operation

STBARD 10 1000 Store Barrier

Suggested Assembly Language Syntax

stbar

The STBAR instruction is deprecated; it is provided only for compatibility with

previous versions of the architecture. It should not be used in new SPARC-V9 soft-

ware. It is recommended that the MEMBAR instruction be used in its place.

31 141924 18 13 02530 29

10 0 op3 0 1111 —

12

0

A.52 Store Floating-Point 225

A.52 Store Floating-Point

† Encoded floating-point register value, as described in 5.1.4.1

Format (3):

Description:

The store single floating-point instruction (STF) copies f [rd] into memory.

The store double floating-point instruction (STDF) copies a doubleword from a double
floating-point register into a word-aligned doubleword in memory.

The store quad floating-point instruction (STQF) copies the contents of a quad floating-
point register into a word-aligned quadword in memory.

The store floating-point state register lower instruction (STFSR) waits for any currently
executing FPop instructions to complete, and then writes the lower 32 bits of the FSR into
memory.

The store floating-point state register instruction (STXFSR) waits for any currently exe-
cuting FPop instructions to complete, and then writes all 64 bits of the FSR into memory.

Opcode op3 rd Operation

STF 10 0100 0..31 Store Floating-Point Register

STDF 10 0111 † Store Double Floating-Point Register

STQF 10 0110 † Store Quad Floating-Point Register

STFSRD 10 0101 0 Store Floating-Point State Register Lower

STXFSR 10 0101 1 Store Floating-Point State Register

— 10 0101 2..31 Reserved

Suggested Assembly Language Syntax

st fregrd, [address]

std fregrd, [address]

stq fregrd, [address]

st %fsr, [address]

stx %fsr, [address]

The STFSR instruction is deprecated; it is provided only for compatibility with pre-

vious versions of the architecture. It should not be used in new SPARC-V9 soft-

ware. It is recommended that the STXFSR instruction be used in its place.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2

226 A Instruction Definitions

Compatibility Note:

SPARC-V9 needs two store-FSR instructions, since the SPARC-V8 STFSR instruction is defined to

store only 32 bits of the FSR into memory. STXFSR allows SPARC-V9 programs to store all 64

bits of the FSR.

STFSR and STXFSR zero FSR.ftt after writing the FSR to memory.

Implementation Note:

FSR.ftt should not be zeroed until it is known that the store will not cause a precise trap.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_
ext(simm13)” if i = 1.

STF, STFSR, STDF, and STQF cause a mem_address_not_aligned exception if the effective
memory address is not word-aligned; STXFSR causes a mem_address_not_aligned excep-
tion if the address is not doubleword-aligned. If the floating-point unit is not enabled for
the source register rd (per FPRS.FEF and PSTATE.PEF), or if the FPU is not present, a
store floating-point instruction causes an fp_disabled exception.

IMPL. DEP. #110(1): STDF requires only word alignment in memory. If the effective address is

word-aligned but not doubleword-aligned, it may cause an STDF_mem_address_not_aligned

exception. In this case the trap handler software shall emulate the STDF instruction and return.

IMPL. DEP. #112(1): STQF requires only word alignment in memory. If the effective address is

word-aligned but not quadword-aligned, it may cause an STQF_mem_address_not_aligned

exception. In this case the trap handler software shall emulate the STQF instruction and return.

Programming Note:

In SPARC-V8, some compilers issued sets of single-precision stores when they could not deter-

mine that double- or quadword operands were properly aligned. For SPARC-V9, since emulation of

misaligned stores is expected to be fast, it is recommended that compilers issue sets of single-preci-

sion stores only when they can determine that double- or quadword operands are not properly

aligned.

Exceptions:

async_data_error

fp_disabled

mem_address_not_aligned

STDF_mem_address_not_aligned (STDF only) (impl. dep. #110)
STQF_mem_address_not_aligned (STQF only) (impl. dep. #112)
data_access_exception

data_access_protection

data_access_MMU_miss

data_access_error

illegal_instruction (op3 = 2516 and rd = 2..31)
fp_exception_other (invalid_fp_register (STQF only))

A.53 Store Floating-Point into Alternate Space 227

A.53 Store Floating-Point into Alternate Space

† Encoded floating-point register value, as described in 5.1.4.1

Format (3):

Description:

The store single floating-point into alternate space instruction (STFA) copies f[rd] into
memory.

The store double floating-point into alternate space instruction (STDFA) copies a double-
word from a double floating-point register into a word-aligned doubleword in memory.

The store quad floating-point into alternate space instruction (STQFA) copies the contents
of a quad floating-point register into a word-aligned quadword in memory.

Store floating-point into alternate space instructions contain the address space identifier
(ASI) to be used for the load in the imm_asi field if i = 0, or in the ASI register if i = 1. The
access is privileged if bit seven of the ASI is zero; otherwise, it is not privileged. The
effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_
ext(simm13)” if i = 1.

STFA, STDFA, and STQFA cause a mem_address_not_aligned exception if the effective
memory address is not word-aligned. If the floating-point unit is not enabled for the source
register rd (per FPRS.FEF and PSTATE.PEF), or if the FPU is not present, store floating-
point into alternate space instructions cause an fp_disabled exception.

STFA, STDFA, and STQFA cause a privileged_action exception if PSTATE.PRIV = 0 and
bit 7 of the ASI is zero.

Opcode op3 rd Operation

STFAPASI 11 0100 0..31 Store Floating-Point Register to Alternate Space

STDFAPASI 11 0111 † Store Double Floating-Point Register to Alternate Space

STQFAPASI 11 0110 † Store Quad Floating-Point Register to Alternate Space

Suggested Assembly Language Syntax

sta fregrd, [regaddr] imm_asi

sta fregrd, [reg_plus_imm] %asi

stda fregrd, [regaddr] imm_asi

stda fregrd, [reg_plus_imm] %asi

stqa fregrd, [regaddr] imm_asi

stqa fregrd, [reg_plus_imm] %asi

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1

228 A Instruction Definitions

IMPL. DEP. #110(2): STDFA requires only word alignment in memory. If the effective address is

word-aligned but not doubleword-aligned, it may cause an STDF_mem_address_not_aligned

exception. In this case the trap handler software shall emulate the STDFA instruction and return.

IMPL. DEP. #112(2): STQFA requires only word alignment in memory. If the effective address is

word-aligned but not quadword-aligned, it may cause an STQF_mem_address_not_aligned

exception. In this case the trap handler software shall emulate the STQFA instruction and return.

Programming Note:

In SPARC-V8, some compilers issued sets of single-precision stores when they could not deter-

mine that double- or quadword operands were properly aligned. For SPARC-V9, since emulation of

misaligned stores is expected to be fast, it is recommended that compilers issue sets of single-preci-

sion stores only when they can determine that double- or quadword operands are not properly

aligned.

Exceptions:

async_data_error

fp_disabled

mem_address_not_aligned

STDF_mem_address_not_aligned (STDFA only) (impl. dep. #110)
STQF_mem_address_not_aligned (STQFA only) (impl. dep. #112)
privileged_action

data_access_exception

data_access_protection

data_access_MMU_miss

data_access_error

fp_exception_other (invalid_fp_register (STQFA only))

A.54 Store Integer 229

A.54 Store Integer

Format (3):

Description:

The store integer instructions (except store doubleword) copy the whole extended (64-bit)
integer, the less-significant word, the least significant halfword, or the least significant
byte of r[rd] into memory.

The store doubleword integer instruction (STD) copies two words from an r register pair
into memory. The least significant 32 bits of the even-numbered r register are written into
memory at the effective address, and the least significant 32 bits of the following odd-
numbered r register are written into memory at the “effective address + 4.” The least sig-
nificant bit of the rd field of a store doubleword instruction is unused and should always be
set to zero by software. An attempt to execute a store doubleword instruction that refers to
a misaligned (odd-numbered) rd causes an illegal_instruction exception.

IMPL. DEP. #108(1): IT is implementation-dependent whether STD is implemented in hardware. if

not, an attempt to execute it will cause an unimplemented_STD exception.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_
ext(simm13)” if i = 1.

Opcode op3 Operation

STB 00 0101 Store Byte

STH 00 0110 Store Halfword

STW 00 0100 Store Word

STX 00 1110 Store Extended Word

STDD 00 0111 Store Doubleword

Suggested Assembly Language Syntax

stb regrd, [address] (synonyms: stub, stsb)

sth regrd, [address] (synonyms: stuh, stsh)

stw regrd, [address] (synonyms: st, stuw, stsw)

stx regrd, [address]

std regrd, [address]

The STD instruction isdeprecated; it is provided only for compatibility with previ-

ous versions of the architecture. It should not be used in new SPARC-V9 software.

It is recommended that the STX instruction be used in its place.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2

230 A Instruction Definitions

A successful store (notably, store extended and store doubleword) instruction operates
atomically.

STH causes a mem_address_not_aligned exception if the effective address is not halfword-
aligned. STW causes a mem_address_not_aligned exception if the effective address is not
word-aligned. STX and STD causes a mem_address_not_aligned exception if the effective
address is not doubleword-aligned.

Programming Note:

STD is provided for compatibility with SPARC-V8. It may execute slowly on SPARC-V9 machines

because of data path and register-access difficulties. In some SPARC-V9 systems it may cause a

trap to emulation code; therefore, STD should be avoided.

If STD is emulated in software, STX should be used in order to preserve atomicity.

Compatibility Note:

The SPARC-V8 ST instruction has been renamed STW in SPARC-V9.

Exceptions:

async_data_error

unimplemented_STD (STD only) (impl. dep. #108)
illegal_instruction (STD with odd rd)
mem_address_not_aligned (all except STB)
data_access_exception

data_access_error

data_access_protection

data_access_MMU_miss

A.55 Store Integer into Alternate Space 231

A.55 Store Integer into Alternate Space

Format (3):

Description:

The store integer into alternate space instructions (except store doubleword) copy the
whole extended (64-bit) integer, the less-significant word, the least-significant halfword,
or the least-significant byte of r[rd] into memory.

The store doubleword integer instruction (STDA) copies two words from an r register pair
into memory. The least-significant 32 bits of the even-numbered r register are written into
memory at the effective address, and the least-significant 32 bits of the following odd-
numbered r register are written into memory at the “effective address + 4.” The least sig-
nificant bit of the rd field of a store doubleword instruction is unused and should always be
set to zero by software. An attempt to execute a store doubleword instruction that refers to
a misaligned (odd-numbered) rd causes an illegal_instruction exception.

Opcode op3 Operation

STBAPASI 01 0101 Store Byte into Alternate space

STHAPASI 01 0110 Store Halfword into Alternate space

STWAPASI 01 0100 Store Word into Alternate space

STXAPASI 01 1110 Store Extended Word into Alternate space

STDAD, PASI 01 0111 Store Doubleword into Alternate space

Suggested Assembly Language Syntax

stba regrd, [regaddr] imm_asi (synonyms: stuba, stsba)

stha regrd, [regaddr] imm_asi (synonyms: stuha, stsha)

stwa regrd, [regaddr] imm_asi (synonyms: sta, stuwa, stswa)

stxa regrd, [regaddr] imm_asi

stda regrd, [regaddr] imm_asi

stba regrd, [reg_plus_imm] %asi (synonyms: stuba, stsba)

stha regrd, [reg_plus_imm] %asi (synonyms: stuha, stsha)

stwa regrd, [reg_plus_imm] %asi (synonyms: sta, stuwa, stswa)

stxa regrd, [reg_plus_imm] %asi

stda regrd, [reg_plus_imm] %asi

The STDA instruction is deprecated; it is provided only for compatibility with pre-

vious versions of the architecture. It should not be used in new SPARC-V9 soft-

ware. It is recommended that the STXA instruction be used in its place.

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1

232 A Instruction Definitions

IMPL. DEP. #108(2): It is implementation-dependent whether STDA is implemented in hardware. If

not, an attempt to execute it will cause an unimplemented_STD exception.

Store integer to alternate space instructions contain the address space identifier (ASI) to be
used for the store in the imm_asi field if i = 0, or in the ASI register if i = 1. The access is
privileged if bit seven of the ASI is zero; otherwise, it is not privileged. The effective
address for these instructions is “r[rs1] + r[rs2]” if i = 0, or “r[rs1]+sign_ext(simm13)” if
i = 1.

A successful store (notably, store extended and store doubleword) instruction operates
atomically.

STHA causes a mem_address_not_aligned exception if the effective address is not half-
word-aligned. STWA causes a mem_address_not_aligned exception if the effective address
is not word-aligned. STXA and STDA cause a mem_address_not_aligned exception if the
effective address is not doubleword-aligned.

A store integer into alternate space instruction causes a privileged_action exception if
PSTATE.PRIV = 0 and bit 7 of the ASI is zero.

Programming Note:

STDA is provided for compatibility with SPARC-V8. It may execute slowly on SPARC-V9

machines because of data path and register-access difficulties. In some SPARC-V9 systems it may

cause a trap to emulation code; therefore, STDA should be avoided.

If STDA is emulated in software, STXA should be used in order to preserve atomicity.

Compatibility Note:

The SPARC-V8 STA instruction is renamed STWA in SPARC-V9.

Exceptions:

async_data_error

unimplemented_STD (STDA only) (impl. dep. #108)
illegal_instruction (STDA with odd rd)
privileged_action

mem_address_not_aligned (all except STBA)
data_access_exception

data_access_error

data_access_protection

data_access_MMU_miss

A.56 Subtract 233

A.56 Subtract

Format (3):

Description:

These instructions compute “r[rs1] – r[rs2]” if i = 0, or “r[rs1] – sign_ext(simm13)” if
i = 1, and write the difference into r[rd].

SUBC and SUBCcc (“SUBtract with carry”) also subtract the CCR register’s 32-bit carry
(icc.c) bit; that is, they compute “r[rs1] – r[rs2] – icc.c” or “r[rs1] – sign_ext(simm13) –
icc.c,” and write the difference into r[rd].

SUBcc and SUBCcc modify the integer condition codes (CCR.icc and CCR.xcc). 32-bit
overflow (CCR.icc.v) occurs on subtraction if bit 31 (the sign) of the operands differ and
bit 31 (the sign) of the difference differs from r[rs1]<31>. 64-bit overflow (CCR.xcc.v)
occurs on subtraction if bit 63 (the sign) of the operands differ and bit 63 (the sign) of the
difference differs from r[rs1]<63>.

Programming Note:

A SUBcc with rd = 0 can be used to effect a signed or unsigned integer comparison. See the CMP

synthetic instruction in Appendix G.

Programming Note:

SUBC and SUBCcc read the 32-bit condition codes’ carry bit (CCR.icc.c), not the 64-bit condition

codes’ carry bit (CCR.xcc.c).

Compatibility Note:

SUBC and SUBCcc were named SUBX and SUBXcc, respectively, in SPARC-V8.

Exceptions:

(none)

Opcode op3 Operation

SUB 00 0100 Subtract

SUBcc 01 0100 Subtract and modify cc’s

SUBC 00 1100 Subtract with Carry

SUBCcc 01 1100 Subtract with Carry and modify cc’s

Suggested Assembly Language Syntax

sub regrs1, reg_or_imm, regrd

subcc regrs1, reg_or_imm, regrd

subc regrs1, reg_or_imm, regrd

subccc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

234 A Instruction Definitions

A.57 Swap Register with Memory

Format (3):

Description:

SWAP exchanges the lower 32 bits of r[rd] with the contents of the word at the addressed
memory location. The upper 32 bits of r[rd] are set to zero. The operation is performed
atomically, that is, without allowing intervening interrupts or deferred traps. In a multipro-
cessor system, two or more processors executing CASA, CASXA, SWAP, SWAPA,
LDSTUB, or LDSTUBA instructions addressing any or all of the same doubleword simul-
taneously are guaranteed to execute them in an undefined but serial order.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_
ext(simm13)” if i = 1. This instruction causes a mem_address_not_aligned exception if the
effective address is not word-aligned.

The coherence and atomicity of memory operations between processors and I/O DMA
memory accesses are implementation-dependent (impl. dep #120).

Implementation Note:

See Implementation Characteristics of Current SPARC-V9-based Products, Revision 9.x, a docu-

ment available from SPARC International, for information on the presence of hardware support for

these instructions in the various SPARC-V9 implementations.

Exceptions:

mem_address_not_aligned

data_access_exception

data_access_error

data_access_protection

data_access_MMU_miss

async_data_error

Opcode op3 Operation

SWAPD 00 1111 SWAP register with memory

Suggested Assembly Language Syntax

swap [address], regrd

The SWAP instruction is deprecated; it is provided only for compatibility with pre-

vious versions of the architecture. It should not be used in new SPARC-V9 soft-

ware. It is recommended that the CASA (or CASXA) instruction be used in its

place.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2

A.58 Swap Register with Alternate Space Memory 235

A.58 Swap Register with Alternate Space Memory

Format (3):

Description:

SWAPA exchanges the lower 32 bits of r[rd] with the contents of the word at the
addressed memory location. The upper 32 bits of r[rd] are set to zero. The operation is
performed atomically, that is, without allowing intervening interrupts or deferred traps. In
a multiprocessor system, two or more processors executing CASA, CASXA, SWAP,
SWAPA, LDSTUB, or LDSTUBA instructions addressing any or all of the same double-
word simultaneously are guaranteed to execute them in an undefined, but serial order.

The SWAPA instruction contains the address space identifier (ASI) to be used for the load
in the imm_asi field if i = 0, or in the ASI register if i = 1. The access is privileged if bit
seven of the ASI is zero; otherwise, it is not privileged. The effective address for this
instruction is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

This instruction causes a mem_address_not_aligned exception if the effective address is not
word-aligned. It causes a privileged_action exception if PSTATE.PRIV = 0 and bit 7 of the
ASI is zero.

The coherence and atomicity of memory operations between processors and I/O DMA
memory accesses are implementation-dependent (impl. dep #120).

Implementation Note:

See Implementation Characteristics of Current SPARC-V9-based Products, Revision 9.x, a docu-

ment available from SPARC International, for information on the presence of hardware support for

this instruction in the various SPARC-V9 implementations.

Opcode op3 Operation

SWAPAD, PASI 01 1111 SWAP register with Alternate space memory

Suggested Assembly Language Syntax

swapa [regaddr] imm_asi, regrd

swapa [reg_plus_imm] %asi, regrd

The SWAPA instruction is deprecated; it is provided only for compatibility with

previous versions of the architecture. It should not be used in new SPARC-V9 soft-

ware. It is recommended that the CASXA instruction be used in its place.

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1

236 A Instruction Definitions

Exceptions:
mem_address_not_aligned

privileged_action

data_access_exception

data_access_error

data_access_protection

data_access_MMU_miss

async_data_error

A.59 Tagged Add 237

A.59 Tagged Add

Format (3):

Description:

These instructions compute a sum that is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_
ext(simm13)” if i = 1.

TADDcc modifies the integer condition codes (icc and xcc), and TADDccTV does so also,
if it does not trap.

A tag_overflow exception occurs if bit 1 or bit 0 of either operand is nonzero, or if the addi-
tion generates 32-bit arithmetic overflow (i.e., both operands have the same value in bit 31,
and bit 31 of the sum is different).

If TADDccTV causes a tag overflow, a tag_overflow exception is generated, and r[rd] and
the integer condition codes remain unchanged. If a TADDccTV does not cause a tag over-
flow, the sum is written into r[rd], and the integer condition codes are updated. CCR.icc.v

is set to 0 to indicate no 32-bit overflow. If a TADDcc causes a tag overflow, the 32-bit
overflow bit (CCR.icc.v) is set to 1; if it does not cause a tag overflow, CCR.icc.v is
cleared.

In either case, the remaining integer condition codes (both the other CCR.icc bits and all
the CCR.xcc bits) are also updated as they would be for a normal ADD instruction. In par-
ticular, the setting of the CCR.xcc.v bit is not determined by the tag overflow condition
(tag overflow is used only to set the 32-bit overflow bit). CCR.xcc.v is set only based on
the normal 64-bit arithemetic overflow condition, like a normal 64-bit add.

Compatibility Note:

TADDccTV traps based on the 32-bit overflow condition, just as in SPARC-V8. Although the

tagged-add instructions set the 64-bit condition codes CCR.xcc, there is no form of the instruction

that traps the 64-bit overflow condition.

Exceptions:

tag_overflow (TADDccTV only)

Opcode op3 Operation

TADDcc 10 0000 Tagged Add and modify cc’s

TADDccTVD 10 0010 Tagged Add and modify cc’s, or Trap on Overflow

Suggested Assembly Language Syntax

taddcc regrs1, reg_or_imm, regrd

taddcctv regrs1, reg_or_imm, regrd

The TADDccTV instruction is deprecated; it is provided only for compatibility

with previous versions of the architecture. It should not be used in new SPARC-V9

software. It is recommended that TADDcc followed by BPVS be used in its place

(with instructions to save the pre-TADDcc integer condition codes, if necessary).

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

238 A Instruction Definitions

A.60 Tagged Subtract

Format (3):

Description:

These instructions compute “r[rs1] – r[rs2]” if i = 0, or “r[rs1] – sign_ext(simm13)” if
i = 1.

TSUBcc modifies the integer condition codes (icc and xcc); TSUBccTV also modifies the
integer condition codes, if it does not trap.

A tag overflow occurs if bit 1 or bit 0 of either operand is nonzero, or if the subtraction
generates 32-bit arithmetic overflow; that is, the operands have different values in bit 31
(the 32-bit sign bit) and the sign of the 32-bit difference in bit 31 differs from bit 31 of
r[rs1].

If TSUBccTV causes a tag overflow, a tag_overflow exception is generated and r[rd] and
the integer condition codes remain unchanged. If a TSUBccTV does not cause a tag over-
flow condition, the difference is written into r[rd], and the integer condition codes are
updated. CCR.icc.v is set to 0 to indicate no 32-bit overflow. If a TSUBcc causes a tag
overflow, the 32-bit overflow bit (CCR.icc.v) is set to 1; if it does not cause a tag overflow,
CCR.icc.v is cleared.

In either case, the remaining integer condition codes (both the other CCR.icc bits and all
the CCR.xcc bits) are also updated as they would be for a normal subtract instruction. In
particular, the setting of the CCR.xcc.v bit is not determined by the tag overflow condition
(tag overflow is used only to set the 32-bit overflow bit). CCR.xcc.v is set only based on
the normal 64-bit arithemetic overflow condition, like a normal 64-bit subtract.

Opcode op3 Operation

TSUBcc 10 0001 Tagged Subtract and modify cc’s

TSUBccTVD 10 0011 Tagged Subtract and modify cc’s, or Trap on Overflow

Suggested Assembly Language Syntax

tsubcc regrs1, reg_or_imm, regrd

tsubcctv regrs1, reg_or_imm, regrd

The TSUBccTV instruction is deprecated; it is provided only for compatibility with

previous versions of the architecture. It should not be used in new SPARC-V9 soft-

ware. It is recommended that TSUBcc followed by BPVS be used in its place (with

instructions to save the pre-TSUBcc integer condition codes, if necessary).

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

A.60 Tagged Subtract 239

Compatibility Note:

TSUBccTV traps are based on the 32-bit overflow condition, just as in SPARC-V8. Although the

tagged-subtract instructions set the 64-bit condition codes CCR.xcc, there is no form of the instruc-

tion that traps on 64-bit overflow.

Exceptions:

tag_overflow (TSUBccTV only)

240 A Instruction Definitions

A.61 Trap on Integer Condition Codes (Tcc)

Format (4):

Opcode op3 cond Operation icc test

TA 11 1010 1000 Trap Always 1

TN 11 1010 0000 Trap Never 0

TNE 11 1010 1001 Trap on Not Equal not Z

TE 11 1010 0001 Trap on Equal Z

TG 11 1010 1010 Trap on Greater not (Z or (N xor V))

TLE 11 1010 0010 Trap on Less or Equal Z (N xor V)

TGE 11 1010 1011 Trap on Greater or Equal not (N xor V)

TL 11 1010 0011 Trap on Less N xor V

TGU 11 1010 1100 Trap on Greater Unsigned not (C or Z)

TLEU 11 1010 0100 Trap on Less or Equal Unsigned (C or Z)

TCC 11 1010 1101 Trap on Carry Clear (Greater than or Equal, Unsigned) not C

TCS 11 1010 0101 Trap on Carry Set (Less Than, Unsigned) C

TPOS 11 1010 1110 Trap on Positive or zero not N

TNEG 11 1010 0110 Trap on Negative N

TVC 11 1010 1111 Trap on Overflow Clear not V

TVS 11 1010 0111 Trap on Overflow Set V

cc1 cc0 Condition codes

00 icc

01 —

10 xcc

11 —

5 4

10 cond op3 rs1 i=0 — rs2

31 141924 18 13 12 02530 29

—

28 7 6

cc1cc0

11 10

10 cond op3 rs1 i=1 —— cc1cc0 sw_trap_#

A.61 Trap on Integer Condition Codes (Tcc) 241

Description:

The Tcc instruction evaluates the selected integer condition codes (icc or xcc) according to
the cond field of the instruction, producing either a TRUE or FALSE result. If TRUE and
no higher-priority exceptions or interrupt requests are pending, then a trap_instruction

exception is generated. If FALSE, a trap_instruction exception does not occur and the
instruction behaves like a NOP.

The software trap number is specified by the least significant seven bits of
“r[rs1] + r[rs2]” if i = 0, or the least significant seven bits of “r[rs1] + sw_trap_#” if i = 1.

When i = 1, bits 7 through 10 are reserved and should be supplied as zeros by software.
When i = 0, bits 5 through 10 are reserved, and the most significant 57 bits of
“r[rs1] + r[rs2]” are unused, and both should be supplied as zeros by software.

Description (Effect on Privileged State):

If a trap_instruction traps, 256 plus the software trap number is written into TT[TL]. Then
the trap is taken, and the processor performs the normal trap entry procedure, as described
in Chapter 7, “Traps.”

Programming Note:

Tcc can be used to implement breakpointing, tracing, and calls to supervisor software. It can also

be used for run-time checks, such as out-of-range array indexes, integer overflow, etc.

Compatibility Note:

Tcc is upward compatible with the SPARC-V8 Ticc instruction, with one qualification: a Ticc with

i = 1 and simm13 < 0 may execute differently on a SPARC-V9 processor. Use of the i = 1 form of

Ticc is believed to be rare in SPARC-V8 software, and simm13 < 0 is probably not used at all, so it

is believed that, in practice, full software compatibillity will be achieved.

Exceptions:
trap_instruction

illegal_instruction (cc1 cc0 = 012 or 112)

Suggested Assembly Language Syntax

ta i_or_x_cc, software_trap_number

tn i_or_x_cc, software_trap_number

tne i_or_x_cc, software_trap_number (synonym: tnz)

te i_or_x_cc, software_trap_number (synonym: tz)

tg i_or_x_cc, software_trap_number

tle i_or_x_cc, software_trap_number

tge i_or_x_cc, software_trap_number

tl i_or_x_cc, software_trap_number

tgu i_or_x_cc, software_trap_number

tleu i_or_x_cc, software_trap_number

tcc i_or_x_cc, software_trap_number (synonym: tgeu)

tcs i_or_x_cc, software_trap_number (synonym: tlu)

tpos i_or_x_cc, software_trap_number

tneg i_or_x_cc, software_trap_number

tvc i_or_x_cc, software_trap_number

tvs i_or_x_cc, software_trap_number

242 A Instruction Definitions

A.62 Write Privileged Register

Format (3):

Opcode op3 Operation

WRPRP 11 0010 Write Privileged Register

rd Privileged register

0 TPC

1 TNPC

2 TSTATE

3 TT

4 TICK

5 TBA

6 PSTATE

7 TL

8 PIL

9 CWP

10 CANSAVE

11 CANRESTORE

12 CLEANWIN

13 OTHERWIN

14 WSTATE

15..31 Reserved

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

A.62 Write Privileged Register 243

Description:

This instruction stores the value “r[rs1] xor r[rs2]” if i = 0, or “r[rs1] xor sign_
ext(simm13)” if i = 1 to the writable fields of the specified privileged state register. Note
the exclusive-or operation.

The rd field in the instruction determines the privileged register that is written. There are at
least four copies of the TPC, TNPC, TT, and TSTATE registers, one for each trap level. A
write to one of these registers sets the register indexed by the current value in the trap level
register (TL). A write to TPC, TNPC, TT, or TSTATE when the trap level is zero (TL = 0)
causes an illegal_instruction exception.

A WRPR of TL does not cause a trap or return from trap; it does not alter any other
machine state.

Programming Note:

A WRPR of TL can be used to read the values of TPC, TNPC, and TSTATE for any trap level,

however, care must be taken that traps do not occur while the TL register is modified.

The WRPR instruction is a nondelayed-write instruction. The instruction immediately fol-
lowing the WRPR observes any changes made to processor state made by the WRPR.

WRPR instructions with rd in the range 15..31 are reserved for future versions of the
architecture; executing a WRPR instruction with rd in that range causes an illegal_instruc-

tion exception.

Programming Note:

On an implementation that provides a floating-point queue, supervisor software should be aware of

the state of the FQ before disabling the floating-point unit (changing PSTATE.PEF from 1 to 0 with

a WRPR instruction) (impl. dep. #24). Typically, supervisor software ensures that the FQ is empty

(FSR.qne = 0) before disabling the floating-point unit.

Exceptions:
privileged_opcode

illegal_instruction ((rd = 15..31) or ((rd ≤ 3) and (TL = 0)))

Suggested Assembly Language Syntax

wrpr regrs1, reg_or_imm, %tpc

wrpr regrs1, reg_or_imm, %tnpc

wrpr regrs1, reg_or_imm, %tstate

wrpr regrs1, reg_or_imm, %tt

wrpr regrs1, reg_or_imm, %tick

wrpr regrs1, reg_or_imm, %tba

wrpr regrs1, reg_or_imm, %pstate

wrpr regrs1, reg_or_imm, %tl

wrpr regrs1, reg_or_imm, %pil

wrpr regrs1, reg_or_imm, %cwp

wrpr regrs1, reg_or_imm, %cansave

wrpr regrs1, reg_or_imm, %canrestore

wrpr regrs1, reg_or_imm, %cleanwin

wrpr regrs1, reg_or_imm, %otherwin

wrpr regrs1, reg_or_imm, %wstate

244 A Instruction Definitions

A.63 Write State Register

Format (3):

† Syntax for WRASR with rd=16..31 may vary (impl. dep. #48)

Description:

WRY, WRCCR, WRFPRS, and WRASI stores the value “r[rs1] xor r[rs2]” if i = 0, or
“r[rs1] xor sign_ext(simm13)” if i = 1, to the writable fields of the specified state register.
Note the exclusive-or operation.

Note that WRY, WRCCR, WRASI, WRFPRS, and WRASR are distinguished only by the
rd field.

WRASR writes a value to the ancillary state register (ASR) indicated by rd. The operation
performed to generate the value written may be rd-dependent or implementation-depen-

Opcode op3 rd Operation

WRYD 11 0000 0 Write Y register

— 11 0000 1 Reserved

WRCCR 11 0000 2 Write Condition Codes Register

WRASI 11 0000 3 Write ASI register

WRASRPASR 11 0000 4, 5 Write Ancillary State Register (reserved)

WRFPRS 11 0000 6 Write Floating-Point Registers Status register

WRASRPASR 11 0000 7..14 Write Ancillary State Register (reserved)

See text 11 0000 15 See text

WRASRPASR 11 0000 16 .. 31 Implementation-dependent (impl. dep. #48)

Suggested Assembly Language Syntax

wr regrs1, reg_or_imm, %y

wr regrs1, reg_or_imm, %ccr

wr regrs1, reg_or_imm, %asi

wr regrs1, reg_or_imm, %fprs

wr regrs1, reg_or_imm, asr_regrd †

The WRY instruction is deprecated; it is provided only for compatibility with previ-

ous versions of the architecture. It should not be used in new SPARC-V9 software.

It is recommended that all instructions which reference the Y register be avoided.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

A.63 Write State Register 245

dent (see below). A WRASR instruction is indicated by op = 216, rd = 4, 5, or ≥ 7 and
op3 = 3016.

An instruction with op = 216, op3 = 3016, rd = 15, rs1 = 0, and i = 1 is defined as a SIR
instruction. See A.50, “Software-Initiated Reset.” When op = 216, op3 = 3016, and rd = 15,
if either rs1≠0 or i≠1, then an illegal_instruction exception shall be generated.

IMPL. DEP. #48: WRASR instructions with rd in the range 16..31 are available for implementation-

dependent uses (impl. dep. #8). For a WRASR instruction with rd in the range 16..31, the follow-

ing are implementation-dependent: the interpretation of bits 18:0 in the instruction, the opera-

tion(s) performed (for example, XOR) to generate the value written to the ASR, whether the

instruction is privileged (impl. dep. #9), and whether the instruction causes an illegal_instruction

exception.

See I.1.1, “Read/Write Ancillary State Registers (ASRs),” for a discussion of extending
the SPARC-V9 instruction set using read/write ASR instructions.

The WRY, WRCCR, WRFPRS, and WRASI instructions are not delayed-write instruc-
tions. The instruction immediately following a WRY, WRCCR, WRFPRS, or WRASI
observes the new value of the Y, CCR, FPRS, or ASI register.

WRFPRS waits for any pending floating-point operations to complete before writing the
FPRS register.

Implementation Note:

Ancillary state registers may include (for example) timer, counter, diagnostic, self-test, and trap-

control registers. See Implementation Characteristics of Current SPARC-V9-based Products, Revi-

sion 9.x, a document available from SPARC International, for information on ancillary state regis-

ters provided by specific implementations.

Compatibility Note:

The SPARC-V8 WRIER, WRPSR, WRWIM, and WRTBR instructions do not exist in SPARC-V9,

since the IER, PSR, TBR, and WIM registers do not exist in SPARC-V9.

Exceptions:

privileged_opcode (WRASR only; implementation-dependent (impl. dep. #48))
illegal_instruction (WRASR with rd = 16..31 and the implementation does not

define the instruction as an extension; implementation-dependent (impl. dep.
#48), or WRASR with rd equal to 1, 4, 5, or in the range 7..14), WRASR with
rd equal to 15 and rs1≠0 or i≠1

246 A Instruction Definitions

247

B IEEE Std 754-1985 Requirements for SPARC-V9

The IEEE Std 754-1985 floating-point standard contains a number of implementa-
tion-dependencies. This appendix specifies choices for these implementation-dependen-
cies, to ensure that SPARC-V9 implementations are as consistent as possible.

B.1 Traps Inhibit Results

As described in 5.1.7, “Floating-Point State Register (FSR),” and elsewhere, when a float-
ing-point trap occurs:

— The destination floating-point register(s) (the f registers) are unchanged.

— The floating-point condition codes (fcc0, fcc1, fcc2, and fcc3) are unchanged.

— The FSR.aexc (accrued exceptions) field is unchanged.

— The FSR.cexc (current exceptions) field is unchanged except for
IEEE_754_exceptions; in that case, cexc contains a bit set to “1” corresponding to
the exception that caused the trap. Only one bit shall be set in cexc.

Instructions causing an fp_exception_other trap due to unfinished or unimplemented FPops
execute as if by hardware; that is, a trap is undetectable by user software, except that tim-
ing may be affected. A user-mode trap handler invoked for an IEEE_754_exception,
whether as a direct result of a hardware fp_exception_ieee_754 trap or as an indirect result
of supervisor handling of an unfinished_FPop or unimplemented_FPop, can rely on the fol-
lowing:

— The address of the instruction that caused the exception will be available to it.

— The destination floating-point register(s) are unchanged from their state prior to
that instruction’s execution.

— The floating-point condition codes (fcc0, fcc1, fcc2, and fcc3) are unchanged.

— The FSR aexc field is unchanged.

— The FSR cexc field contains exactly one bit set to 1, corresponding to the exception
that caused the trap.

— The FSR ftt, qne, and reserved fields are zero.

Supervisor software is responsible for enforcing these requirements if the hardware trap
mechanism does not.

248 B IEEE Std 754-1985 Requirements for SPARC-V9

B.2 NaN Operand and Result Definitions

An untrapped floating-point result can be in a format that is either the same as, or different
from, the format of the source operands. These two cases are described separately below.

B.2.1 Untrapped Result in Different Format from Operands

F[sdq]TO[sdq] with a quiet NaN operand:
No exception caused; result is a quiet NaN. The operand is transformed as follows:

NaN transformation: The most significant bits of the operand fraction are copied
to the most significant bits of the result fraction. When converting to a narrower
format, excess low-order bits of the operand fraction are discarded. When convert-
ing to a wider format, excess low-order bits of the result fraction are set to 0. The
quiet bit (the most significant bit of the result fraction) is always set to 1, so the
NaN transformation always produces a quiet NaN. The sign bit is copied from the
operand to the result without modification.

F[sdq]TO[sdq] with a signaling NaN operand:
Invalid exception; result is the signaling NaN operand processed by the NaN

transformation above to produce a quiet NaN.

FCMPE[sdq] with any NaN operand:
Invalid exception; the selected floating-point condition code is set to unordered.

FCMP[sdq] with any signaling NaN operand:
Invalid exception; the selected floating-point condition code is set to unordered.

FCMP[sdq] with any quiet NaN operand but no signaling NaN operand:
No exception; the selected floating-point condition code is set to unordered.

B.2.2 Untrapped Result in Same Format as Operands

No NaN operand:
For an invalid operation such as sqrt(–1.0) or 0.0 ÷ 0.0, the result is the quiet NaN
with sign = zero, exponent = all ones, and fraction = all ones. The sign is zero to
distinguish such results from storage initialized to all ones.

One operand, a quiet NaN:
No exception; result is the quiet NaN operand.

One operand, a signaling NaN:
Invalid exception; result is the signaling NaN with its quiet bit (most significant bit
of fraction field) set to 1.

Two operands, both quiet NaNs:
No exception; result is the rs2 (second source) operand.

Two operands, both signaling NaNs:
Invalid exception; result is the rs2 operand with the quiet bit set to 1.

B.3 Trapped Underflow Definition (UFM = 1) 249

Two operands, only one a signaling NaN:
Invalid exception; result is the signaling NaN operand with the quiet bit set to 1.

Two operands, neither a signaling NaN, only one a quiet NaN:
No exception; result is the quiet NaN operand.

In table 27 NaNn means that the NaN is in rsn, Q means quiet, S signaling.

QSNaNn means a quiet NaN produced by the NaN transformation on a signaling NaN
from rsn; the invalid exception is always indicated. The QNaNn results in the table never
generate an exception, but IEEE 754 specifies several cases of invalid exceptions, and
QNaN results from operands that are both numbers.

B.3 Trapped Underflow Definition (UFM = 1)

Underflow occurs if the exact unrounded result has magnitude between zero and the small-
est normalized number in the destination format.

IMPL. DEP. #55: Whether tininess (in IEEE 754 terms) is detected before or after rounding is

implementation-dependent. It is recommended that tininess be detected before rounding.

Note that the wrapped exponent results intended to be delivered on trapped underflows
and overflows in IEEE 754 are irrelevant to SPARC-V9 at the hardware and supervisor
software levels; if they are created at all, it would be by user software in a user-mode trap
handler.

B.4 Untrapped Underflow Definition (UFM = 0)

Underflow occurs if the exact unrounded result has magnitude between zero and the small-
est normalized number in the destination format, and the correctly rounded result in the
destination format is inexact.

Table 28 summarizes what happens when an exact unrounded value u satisfying

0 ≤ |u| ≤ smallest normalized number

would round, if no trap intervened, to a rounded value r which might be zero, subnormal,
or the smallest normalized value. “UF” means underflow trap (with ufc set in cexc), “NX”
means inexact trap (with nxc set in cexc), “uf” means untrapped underflow exception (with
ufc set in cexc and ufa in aexc), and “nx” means untrapped inexact exception (with nxc set
in cexc and nxa in aexc).

Table 27—Untrapped Floating-Point Results

rs2 operand

Number QNaN2 SNaN2

rs1

operand

None IEEE 754 QNaN2 QSNaN2

Number IEEE 754 QNaN2 QSNaN2

QNaN1 QNaN1 QNaN2 QSNaN2

SNaN1 QSNaN1 QSNaN1 QSNaN2

250 B IEEE Std 754-1985 Requirements for SPARC-V9

† If tininess is detected after rounding and NXM = 1, then NX, otherwise “None”

(impl. dep. #55).

B.5 Integer Overflow Definition

F[sdq]TOi:
When a NaN, infinity, large positive argument ≥ 2147483648.0, or large negative
argument ≤ –2147483649.0 is converted to an integer, the invalid_current (nvc) bit
of FSR.cexc should be set and fp_exception_IEEE_754 should be raised. If the float-
ing-point invalid trap is disabled (FSR.TEM.NVM = 0), no trap occurs and a
numerical result is generated: if the sign bit of the operand is 0, the result is
2147483647; if the sign bit of the operand is 1, the result is –2147483648.

F[sdq]TOx:
When a NaN, infinity, large positive argument ≥ 263, or large negative argument ≤
–(263 + 1), is converted to an extended integer, the invalid_current (nvc) bit of
FSR.cexc should be set and fp_exception_IEEE_754 should be raised. If the float-
ing-point invalid trap is disabled (FSR.TEM.NVM = 0), no trap occurs and a
numerical result is generated: if the sign bit of the operand is 0, the result is 263 – 1;
if the sign bit of the operand is 1, the result is –263.

B.6 Floating-Point Nonstandard Mode

SPARC-V9 implementations are permitted but not encouraged to deviate from IEEE Std
754-1985 requirements when the nonstandard mode (NS) bit of the FSR is set (impl. dep.
#18).

Table 28—Untrapped Floating-Point Underflow

Underflow trap:
Inexact trap:

UFM = 1
NXM = ?

UFM = 0
NXM = 1

UFM = 0
NXM = 0

u = r

r is minimum normal None None None

r is subnormal UF None None

r is zero None None None

u ≠ r

r is minimum normal UF † NX uf nx

r is subnormal UF NX uf nx

r is zero UF NX uf nx

251

C SPARC-V9 Implementation Dependencies

This appendix provides a summary of all implementation dependencies in the SPARC-V9
standard. The notation “IMPL. DEP. #nn:” is used to identify the definition of an implemen-
tation dependency; the notation “(impl. dep. #nn)” is used to identify a reference to an
implementation dependency. The number nn provides an index into table 29 on page 253.

SPARC International maintains a document, Implementation Characteristics of Current

SPARC-V9-based Products, Revision 9.x, which describes the implementation-dependent
design features of SPARC-V9-compliant implementations. Contact SPARC International
for this document at

SPARC International
535 Middlefield Rd, Suite 210

Menlo Park, CA 94025
(415) 321-8692

C.1 Definition of an Implementation Dependency

The SPARC-V9 architecture is a model that specifies unambiguously the behavior
observed by software on SPARC-V9 systems. Therefore, it does not necessarily describe
the operation of the hardware of any actual implementation.

An implementation is not required to execute every instruction in hardware. An attempt to
execute a SPARC-V9 instruction that is not implemented in hardware generates a trap.
Whether an instruction is implemented directly by hardware, simulated by software, or
emulated by firmware is implementation-dependent (impl. dep. #1).

The two levels of SPARC-V9 compliance are described in 1.2.6, “SPARC-V9 Compli-
ance.”

Some elements of the architecture are defined to be implementation-dependent. These ele-
ments include certain registers and operations that may vary from implementation to
implementation, and are explicitly identified as such in this appendix.

Implementation elements (such as instructions or registers) that appear in an implementa-
tion but are not defined in this document (or its updates) are not considered to be SPARC-
V9 elements of that implementation.

C.2 Hardware Characteristics

Hardware characteristics that do not affect the behavior observed by software on SPARC-
V9 systems are not considered architectural implementation dependencies. A hardware
characteristic may be relevant to the user system design (for example, the speed of execu-
tion of an instruction) or may be transparent to the user (for example, the method used for

252 C SPARC-V9 Implementation Dependencies

achieving cache consistency). The SPARC International document, Implementation Char-

acteristics of Current SPARC-V9-based Products, Revision 9.x, provides a useful list of
these hardware characteristics, along with the list of implementation-dependent design
features of SPARC-V9-compliant implementations.

In general, hardware characteristics deal with

— Instruction execution speed

— Whether instructions are implemented in hardware

— The nature and degree of concurrency of the various hardware units comprising a
SPARC-V9 implementation.

C.3 Implementation Dependency Categories

Many of the implementation dependencies can be grouped into four categories, abbrevi-
ated by their first letters throughout this appendix:

Value (v):
The semantics of an architectural feature are well-defined, except that a value asso-
ciated with it may differ across implementations. A typical example is the number
of implemented register windows (Implementation dependency #2).

Assigned Value (a):
The semantics of an architectural feature are well-defined, except that a value asso-
ciated with it may differ across implementations and the actual value is assigned
by SPARC International. Typical examples are the impl field of Version register
(VER) (Implemententation dependency #13) and the FSR.ver field (Implementa-
tion dependency #19).

Functional Choice (f):
The SPARC-V9 architecture allows implementors to choose among several possi-
ble semantics related to an architectural function. A typical example is the treat-
ment of a catastrophic error exception, which may cause either a deferred or a
disrupting trap (Implementation dependency #31).

Total Unit (t):
The existence of the architectural unit or function is recognized, but details are left
to each implementation. Examples include the handling of I/O registers (Imple-
mentation dependency #7) and some alternate address spaces (Implementation
dependency #29).

C.4 List of Implementation Dependencies

Table 29 provides a complete list of the implementation dependencies in the architecture,
the definition of each, and references to the page numbers in the standard where each is
defined or referenced. Most implementation dependencies occur because of the address
spaces, I/O registers, registers (including ASRs), the type of trapping used for an excep-

C.4 List of Implementation Dependencies 253

tion, the handling of errors, or miscellaneous non-SPARC-V9-architectural units such as
the MMU or caches (which affect the FLUSH instruction).

Table 29—Implementation Dependencies

Number Category
Def / Ref
page #

Description

1 f 8, 251 Software emulation of instructions

Whether an instruction is implemented directly by hardware, sim-

ulated by software, or emulated by firmware is implementation-

dependent.

2 v 15, 30, 32, 58 Number of IU registers

An implementation of the IU may contain from 64 to 528 general-

purpose 64-bit r registers. This corresponds to a grouping of the

registers into two sets of eight global r registers, plus a circular

stack of from three to 32 sets of 16 registers each, known as regis-

ter windows. Since the number of register windows present

(NWINDOWS) is implementation-dependent, the total number of

registers is also implementation-dependent.

3 f 85 Incorrect IEEE Std 754-1985 results

An implementation may indicate that a floating-point instruction

did not produce a correct IEEE Std 754-1985 result by generating

a special floating-point unfinished or unimplemented exception. In

this case, privileged mode software shall emulate any functionality

not present in the hardware.

4-5 — — Reserved

6 f 18, 121 I/O registers privileged status

Whether I/O registers can be accessed by nonprivileged code is

implementation-dependent.

7 t 18, 121 I/O register definitions

The contents and addresses of I/O registers are implementation-

dependent.

8 t 20, 30, 35, 60,

214, 215, 245,

256, 256

RDASR/WRASR target registers

Software can use read/write ancillary state register instructions to

read/write implementation-dependent processor registers (ASRs

16-31).

9 f 20, 36, 60, 245,

256, 256

RDASR/WRASR privileged status

Whether each of the implementation-dependent read/write ancil-

lary state register instructions (for ASRs 16-31) is privileged is

implementation-dependent.

10-12 — — Reserved

13 a 57 VER.impl

VER.impl uniquely identifies an implementation or class of soft-

ware-compatible implementations of the architecture. Values

FFF016 ..FFFF16 are reserved and are not available for assignment.

14-15 — — Reserved

16 t 30 IU deferred-trap queue

The existence, contents, and operation of an IU deferred-trap

queue are implementation-dependent; it is not visible to user appli-

cation programs under normal operating conditions.

17 — — Reserved

254 C SPARC-V9 Implementation Dependencies

18 f 44, 250 Nonstandard IEEE 754-1985 results

Bit 22 of the FSR, FSR_nonstandard_fp (NS), when set to 1,

causes the FPU to produce implementation-defined results that

may not correspond to IEEE Standard 754-1985.

19 a 45 FPU version, FSR.ver

Bits 19:17 of the FSR, FSR.ver, identify one or more implementa-

tions of the FPU architecture.

20-21 — — Reserved

22 f 50 FPU TEM, cexc, and aexc

An implementation may choose to implement the TEM, cexc, and

aexc fields in hardware in either of two ways (see 5.1.7.11 for

details).

23 f 61, 115, 115 Floating-point traps

Floating-point traps may be precise or deferred. If deferred, a

floating-point deferred-trap queue (FQ) must be present.

24 t 30, 212 FPU deferred-trap queue (FQ)

The presence, contents of, and operations on the floating-point

deferred-trap queue (FQ) are implementation-dependent.

25 f 47, 212, 213,

213

RDPR of FQ with nonexistent FQ

On implementations without a floating-point queue, an attempt to

read the FQ with an RDPR instruction shall cause either an illegal_

instruction exception or an fp_exception_other exception with

FSR.ftt set to 4 (sequence_error).

26-28 — — Reserved

29 t 18, 74, 75 Address space identifier (ASI) definitions

The following ASI assignments are implementation-dependent:

restricted ASIs 0016 ..0316, 0516 ..0B16, 0D16 ..0F16, 1216 ..1716,

and 1A16 ..7F16; and unrestricted ASIs C016 .. FF16.

30 f 74 ASI address decoding

An implementation may choose to decode only a subset of the 8-

bit ASI specifier; however, it shall decode at least enough of the

ASI to distinguish ASI_PRIMARY, ASI_PRIMARY_LITTLE, ASI_

AS_IF_USER_PRIMARY, ASI_AS_IF_USER_PRIMARY_LITTLE,

ASI_PRIMARY_NOFAULT, ASI_PRIMARY_NOFAULT_LITTLE,

ASI_SECONDARY, ASI_SECONDARY_LITTLE, ASI_AS_IF_USER_

SECONDARY, ASI_AS_IF_USER_SECONDARY_LITTLE, ASI_

SECONDARY_NOFAULT, and ASI_SECONDARY_NOFAULT_LIT-

TLE. If ASI_NUCLEUS and ASI_NUCLEUS_LITTLE are supported

(impl. dep. #124), they must be decoded also. Finally, an imple-

mentation must always decode ASI bit<7> while

PSTATE.PRIV = 0, so that an attempt by nonprivileged software

to access a restricted ASI will always cause a privileged_action

exception.

31 f 90, 93, 114, 115,

115

Catastrophic error exceptions

The causes and effects of catastrophic error exceptions are imple-

mentation-dependent. They may cause precise, deferred, or dis-

rupting traps.

Table 29—Implementation Dependencies (Continued)

Number Category
Def / Ref
page #

Description

C.4 List of Implementation Dependencies 255

32 t 96 Deferred traps

Whether any deferred traps (and associated deferred-trap queues)

are present is implementation-dependent.

33 f 98, 114, 114,

114, 114, 115,

116

Trap precision

Exceptions that occur as the result of program execution may be

precise or deferred, although it is recommended that such excep-

tions be precise. Examples include mem_address_not_aligned and

division_by_zero.

34 f 100 Interrupt clearing

How quickly a processor responds to an interrupt request and the

method by which an interrupt request is removed are implementa-

tion-dependent.

35 t 93, 102, 103,

104, 113, 115

Implementation-dependent traps

Trap type (TT) values 06016 ..07F16 are reserved for implementa-

tion-dependent exceptions. The existence of implementation_

dependent_n traps and whether any that do exist are precise,

deferred, or disrupting is implementation-dependent.

36 f 104 Trap priorities

The priorities of particular traps are relative and are implementa-

tion-dependent, because a future version of the architecture may

define new traps, and implementations may define implementa-

tion-dependent traps that establish new relative priorities.

37 f 97 Reset trap

Some of a processor’s behavior during a reset trap is implementa-

tion-dependent.

38 f 108 Effect of reset trap on implementation-dependent registers

Implementation-dependent registers may or may not be affected

by the various reset traps.

39 f 94 Entering error_state on implementation-dependent errors

The processor may enter error_state when an implementation-

dependent error condition occurs.

40 f 94 Error_state processor state

What occurs after error_state is entered is implementation-depen-

dent, but it is recommended that as much processor state as possi-

ble be preserved upon entry to error_state.

41 — — Reserved

42 t,f,v 168 FLUSH instruction

If FLUSH is not implemented in hardware, it causes an illegal_

instruction exception and its function is performed by system soft-

ware. Whether FLUSH traps is implementation-dependent.

43 — — Reserved

44 f 174, 177 Data access FPU trap

If a load floating-point instruction traps with any type of access

error exception, the contents of the destination floating-point regis-

ter(s) either remain unchanged or are undefined.

45 - 46 — — Reserved

Table 29—Implementation Dependencies (Continued)

Number Category
Def / Ref
page #

Description

256 C SPARC-V9 Implementation Dependencies

47 t 214, 215, 215,

215

RDASR

RDASR instructions with rd in the range 16..31 are available for

implementation-dependent uses (impl. dep. #8). For an RDASR

instruction with rs1 in the range 16..31, the following are imple-

mentation-dependent: the interpretation of bits 13:0 and 29:25 in

the instruction, whether the instruction is privileged (impl. dep.

#9), and whether it causes an illegal_instruction trap.

48 t 244, 244, 245,

245, 245

WRASR

WRASR instructions with rd in the range 16..31 are available for

implementation-dependent uses (impl. dep. #8). For a WRASR

instruction with rd in the range 16..31, the following are imple-

mentation-dependent: the interpretation of bits 18:0 in the instruc-

tion, the operation(s) performed (for example, xor) to generate the

value written to the ASR, whether the instruction is privileged

(impl. dep. #9), and whether it causes an illegal_instruction trap.

49-54 — — Reserved

55 f 49, 49, 249, 250 Floating-point underflow detection

Whether "tininess" (in IEEE 754 terms) is detected before or after

rounding is implementation-dependent. It is recommended that

tininess be detected before rounding.

56-100 — — Reserved

101 v 21, 54, 55, 55,

56, 57

Maximum trap level

It is implementation-dependent how many additional levels, if any,

past level 4 are supported.

102 f 114 Clean windows trap

An implementation may choose either to implement automatic

“cleaning” of register windows in hardware, or generate a clean_

window trap, when needed, for window(s) to be cleaned by soft-

ware.

103 f 206, 206, 207,

207, 207, 209,

210

Prefetch instructions

The following aspects of the PREFETCH and PREFETCHA

instructions are implementation-dependent: (1) whether they have

an observable effect in privileged code; (2) whether they can cause

a data_access_MMU_miss exception; (3) the attributes of the

block of memory prefetched: its size (minimum = 64 bytes) and its

alignment (minimum = 64-byte alignment); (4) whether each vari-

ant is implemented as a NOP, with its full semantics, or with com-

mon-case prefetching semantics; (5) whether and how variants

16..31 are implemented.

104 a 57 VER.manuf

VER.manuf contains a 16-bit semiconductor manufacturer code.

This field is optional, and if not present reads as zero. VER.manuf

may indicate the original supplier of a second-sourced chip in

cases involving mask-level second-sourcing. It is intended that the

contents of VER.manuf track the JEDEC semiconductor manufac-

turer code as closely as possible. If the manufacturer does not have

a JEDEC semiconductor manufacturer code, SPARC International

will assign a VER.manuf value.

Table 29—Implementation Dependencies (Continued)

Number Category
Def / Ref
page #

Description

C.4 List of Implementation Dependencies 257

105 f 51 TICK register

The difference between the values read from the TICK register on

two reads should reflect the number of processor cycles executed

between the reads. If an accurate count cannot always be returned,

any inaccuracy should be small, bounded, and documented. An

implementation may implement fewer than 63 bits in

TICK.counter; however, the counter as implemented must be able

to count for at least 10 years without overflowing. Any upper bits

not implemented must read as zero.

106 f 85, 171 IMPDEPn instructions

The IMPDEP1 and IMPDEP2 instructions are completely imple-

mentation-dependent. Implementation-dependent aspects include

their operation, the interpretation of bits 29:25 and 18:0 in their

encodings, and which (if any) exceptions they may cause.

107 f 179, 179, 181,

181

Unimplemented LDD trap

It is implementation-dependent whether LDD and LDDA are

implemented in hardware. If not, an attempt to execute either will

cause an unimplemented_LDD trap.

108 f 117, 229, 230,

232, 232

Unimplemented STD trap

It is implementation-dependent whether STD and STDA are

implemented in hardware. If not, an attempt to execute either will

cause an unimplemented_STD trap.

109 f 115, 174, 174,

177

LDDF_mem_address_not_aligned

LDDF and LDDFA require only word alignment. However, if the

effective address is word-aligned but not doubleword-aligned,

either may cause an LDDF_mem_address_not_aligned trap, in

which case the trap handler software shall emulate the LDDF (or

LDDFA) instruction and return.

110 f 116, 226, 226,

228, 228

STDF_mem_address_not_aligned

STDF and STDFA require only word alignment in memory. How-

ever, if the effective address is word-aligned but not doubleword-

aligned, either may cause an STDF_mem_address_not_aligned

trap, in which case the trap handler software shall emulate the

STDF or STDFA instruction and return.

111 f 116, 174, 174,

177

LDQF_mem_address_not_aligned

LDQF and LDQFA require only word alignment. However, if the

effective address is word-aligned but not quadword-aligned, either

may cause an LDQF_mem_address_not_aligned trap, in which

case the trap handler software shall emulate the LDQF (or

LDQFA) instruction and return.

112 f 117, 226, 226,

228, 228

STQF_mem_address_not_aligned

STQF and STQFA require only word alignment in memory. How-

ever, if the effective address is word-aligned but not quadword-

aligned, either may cause an STQF_mem_address_not_aligned

trap, in which case the trap handler software shall emulate the

STQF or STQFA instruction and return.

113 f 52, 119 Implemented memory models

Whether the Partial Store Order (PSO) or Relaxed Memory Order

(RMO) models are supported is implementation-dependent.

Table 29—Implementation Dependencies (Continued)

Number Category
Def / Ref
page #

Description

258 C SPARC-V9 Implementation Dependencies

114 f 92 RED_state trap vector address (RSTVaddr)

The RED_state trap vector is located at an implementation-depen-

dent address referred to as RSTVaddr.

115 f 92 RED_state processor state

What occurs after the processor enters RED_state is implementa-

tion-dependent.

116 f 223 SIR_enable control flag

The location of the SIR_enable control flag and the means of

accessing the SIR_enable control flag are implementation-depen-

dent. In some implementations, it may be permanently zero.

117 f 207, 282 MMU disabled prefetch behavior

Whether Prefetch and Non-faulting Load always succeed when the

MMU is disabled is implementation-dependent.

118 f 121 Identifying I/O locations

The manner in which I/O locations are identified is implementa-

tion-dependent.

119 f 53,129 Unimplemented values for PSTATE.MM

The effect of writing an unimplemented memory-mode designa-

tion into PSTATE.MM is implementation-dependent.

120 f 121, 130, 153,

182, 187, 224,

234, 235

Coherence and atomicity of memory operations

The coherence and atomicity of memory operations between pro-

cessors and I/O DMA memory accesses are implementation-

dependent.

121 f 121 Implementation-dependent memory model

An implementation may choose to identify certain addresses and

use an implementation-dependent memory model for references to

them.

122 f 131, 168, 168 FLUSH latency

The latency between the execution of FLUSH on one processor

and the point at which the modified instructions have replaced out-

dated instructions in a multiprocessor is implementation-depen-

dent.

123 f 18, 121, 130 Input/output (I/O) semantics

The semantic effect of accessing input/output (I/O) registers is

implementation-dependent.

124 v 75, 74, 122, 254 Implicit ASI when TL > 0

When TL > 0, the implicit ASI for instruction fetches, loads, and

stores is implementation-dependent. See F.4.4, “Contexts,” for

more information.

125 f 53, 80, 151, 172,

215

Address masking

When PSTATE.AM = 1, the value of the high-order 32-bits of the

PC transmitted to the specified destination register(s) by CALL,

JMPL, RDPC, and on a trap is implementation-dependent.

Table 29—Implementation Dependencies (Continued)

Number Category
Def / Ref
page #

Description

C.4 List of Implementation Dependencies 259

126 v 58, 58, 59, 59,

59, 60

Register Windows State Registers Width

Privileged registers CWP, CANSAVE, CANRESTORE, OTHER-

WIN, and CLEANWIN contain values in the range

0..NWINDOWS-1. The effect of writing a value greater than

NWINDOWS-1 to any of these registers is undefined.Although the

width of each of these five registers is nominally 5 bits, the width

is implementation-dependent and shall be between

log2(NWINDOWS) and 5 bits, inclusive. If fewer than 5 bits are

implemented, the unimplemented upper bits shall read as 0 and

writes to them shall have no effect. All five registers should have

the same width.

127 f 52, 56 PSTATE PID bits

The presence and semantics of PSTATE.PID1 and PSTATE.PID0

are implementation-dependent. The presence of TSTATE bits 19

and 18 is implementation-dependent. If PSTATE bit 11 (10) is

implemented, TSTATE bit 19 (18) shall be implemented and con-

tain the state of PSTATE bit 11 (10) from the previous trap level..

If PSTATE bit 11 (10) is not implemented, TSTATE bit 19 (18)

shall read as zero. Software intended to run on multiple implemen-

tations should only write these bits to values previously read from

PSTATE, or to zeroes.

Table 29—Implementation Dependencies (Continued)

Number Category
Def / Ref
page #

Description

260 C SPARC-V9 Implementation Dependencies

261

D Formal Specification of the Memory Models

This appendix provides a formal description of the SPARC-V9 processor’s interaction
with memory. The formal description is more complete and more precise than the descrip-
tion of Chapter 8, “Memory Models,” and therefore represents the definitive specification.
Implementations must conform to this model, and programmers must use this description
to resolve any ambiguity.

This formal specification is not intended to be a description of an actual implementation,
only to describe in a precise and rigorous fashion the behavior that any conforming imple-
mentation must provide.

D.1 Processors and Memory

The system model consists of a collection of processors, P0, P1, ..Pn-1. Each processor exe-
cutes its own instruction stream.1 Processors may share address space and access to real
memory and I/O locations.

To improve performance, processors may interpose a cache or caches in the path between
the processor and memory. For data and I/O references, caches are required to be transpar-
ent. The memory model specifies the functional behavior of the entire memory subsystem,
which includes any form of caching. Implementations must use appropriate cache coher-
ency mechanisms to achieve this transparency.2

The SPARC-V9 memory model requires that all data references be consistent but does not
require that instruction references or input/output references be maintained consistent.
The FLUSH instruction or an appropriate operating system call may be used to ensure that
instruction and data spaces are consistent. Likewise, system software is needed to manage
the consistency of I/O operations.

The memory model is a local property of a processor that determines the order properties
of memory references. The ordering properties have global implications when memory is
shared, since the memory model determines what data is visible to observing processors
and in what order. Moreover, the operative memory model of the observing processor
affects the apparent order of shared data reads and writes that it observes.

1. Processors are equivalent to their software abstraction, processes, provided that context switching is

properly performed. See Appendix J, “Programming With the Memory Models,” for an example of con-

text switch code.

2. Philip Bitar and Alvin M. Despain, “Multiprocessor Cache Synchronization: Issues, Innovations, Evolu-

tion,” Proc. 13th Annual International Symposium on Computer Architecture, Computer Architecture

News 14:2, June 1986, pp.424-433.

262 D Formal Specification of the Memory Models

D.2 An Overview of the Memory Model Specification

The underlying goal of the memory model is to place the weakest possible constraints on
the processor implementations and to provide a precise specification of the possible order-
ings of memory operations so that shared-memory multiprocessors can be constructed.

An execution trace is a sequence of instructions with a specified initial instruction. An
execution trace constitutes one possible execution of a program and may involve arbitrary
reorderings and parallel execution of instructions. A self-consistent execution trace is one
that generates precisely the same results as those produced by a program order execution
trace.

A program order execution trace is an execution trace that begins with a specified initial
instruction and executes one instruction at a time in such a fashion that all the semantic
effects of each instruction take effect before the next instruction is begun. The execution
trace this process generates is defined to be program order.

A program is defined by the collection of all possible program order execution traces.

Dependence order is a partial order on the instructions in an execution trace that is ade-
quate to ensure that the execution trace is self-consistent. Dependence order can be con-
structed using conventional data dependence analysis techniques. Dependence order holds
only between instructions in the instruction trace of a single processor; instructions that
are part of execution traces on different processors are never dependence-ordered.

Memory order is a total order on the memory reference instructions (loads, stores, and
atomic load/stores) which satisfies the dependence order and, possibly, other order con-
straints such as those introduced implicitly by the choice of memory model or explicitly
by the appearance of memory barrier (MEMBAR) instructions in the execution trace. The
existence of a global memory order on the performance of all stores implies that memory
access is write-atomic.3

A memory model is a set of rules that constrain the order of memory references. The
SPARC-V9 architecture supports three memory models: total store order (TSO), partial
store order (PSO), and relaxed memory order (RMO). The memory models are defined
only for memory and not for I/O locations. See 8.2, “Memory, Real Memory, and I/O
Locations,” for more information.

The formal definition used in the SPARC-V8 specification4 remains valid for the defini-
tion of PSO and TSO, except for the FLUSH instruction, which has been modified
slightly.5 The SPARC-V9 architecture introduces a new memory model, RMO, which dif-
fers from TSO and PSO in that it allows load operations to be reordered as long as single
thread programs remain self-consistent.

3. W.W. Collier, “Reasoning About Parallel Architectures”, Prentice-Hall, 1992 includes an excellent dis-

cussion of write-atomicity and related memory model topics.

4. Pradeep Sindhu, Jean-Marc Frailong, and Michel Ceklov. “Formal Specification of Memory Models,”

Xerox Palo Alto Research Center Report CSL-91-11, December 1991.

5. In SPARC-V8, a FLUSH instruction needs at least five instruction execution cycles before it is guaran-

teed to have local effects; in SPARC-V9 this five-cycle requirement has been removed.

D.3 Memory Transactions 263

D.3 Memory Transactions

D.3.1 Memory Transactions

A memory transaction is one of the following:

Store:
A request by a processor to replace the value of a specified memory location. The
address and new value are bound to the store transaction when the processor ini-
tiates the store transaction. A store is complete when the new value is visible to all
processors in the system.

Load:

A request by a processor to retrieve the value of the specified memory location.
The address is bound to the load transaction when the processor initiates the load
transaction. A load is complete when the value being returned cannot be modified
by a store made by another processor.

Atomic:

A load/store pair with the guarantee that no other memory transaction will alter the
state of the memory between the load and the store. The SPARC-V9 instruction set
includes three atomic instructions: LDSTUB, SWAP and CAS.6 An atomic trans-
action is considered to be both a load and a store.7

Flush:

A request by a processor to force changes in the data space aliased to the instruc-
tion space to become consistent. Flush transactions are considered to be store oper-
ations for memory model purposes.

Memory transactions are referred to by capital letters: Xna, which denotes a specific mem-
ory transaction X by processor n to memory address a. The processor index and the
address are specified only if needed. The predicate S(X) is true if and only if X has store
semantics. The predicate L(X) is true if and only if X has load semantics.

MEMBAR instructions are not memory transactions; rather they convey order information
above and beyond the implicit ordering implied by the memory model in use. MEMBAR
instructions are applied in program order.

D.3.2 Program Order

The program order is a per-processor total order that denotes the sequence in which pro-
cessor n logically executes instructions. The program order relation is denoted by <p such

6. There are three generic forms. CASA and CASXA reference 32-bit and 64-bit objects respectively. Both

normal and alternate ASI forms exist for LDSTUB and SWAP. CASA and CASXA only have alternate

forms, however, a CASA (CASXA) with ASI = ASI_PRIMARY{_LITTLE} is equivalent to CAS

(CASX). Synthetic instructions for CAS and CASX are suggested in G.3, “Synthetic Instructions.”

7. Even though the store part of a CASA is conditional, it is assumed that the store will always take place

whether it does or not in a particular implementation. Since the value stored when the condition fails is

the value already present, and since the CASA operation is atomic, no observing processor can deter-

mine whether the store occurred or not.

264 D Formal Specification of the Memory Models

that Xn <p Yn is true if and only if the memory transaction Xn is caused by an instruction
that is executed before the instruction that caused memory transaction Yn.

Program order specifies a unique total order for all memory transactions initiated by one
processor.

Memory barrier (MEMBAR) instructions executed by the processor are ordered with
respect to <p. The predicate M(X,Y) is true if and only if X <p Y and there exists a MEM-
BAR instruction that orders X and Y (that is, it appears in program order between X and Y).

MEMBAR instructions can be either ordering or sequencing and may be combined into a
single instruction using a bit-encoded mask.8

Ordering MEMBAR instructions impose constraints on the order in which memory trans-
actions are performed.

Sequencing MEMBARs introduce additional constraints that are required in cases where
the memory transaction has side-effects beyond storing data. Such side-effects are beyond
the scope of the memory model, which is limited to order and value semantics for mem-
ory.9

This definition of program order is equivalent to the definition given in the SPARC-V8
memory model specification.

D.3.3 Dependence Order

Dependence order is a partial order that captures the constraints that hold between instruc-
tions that access the same processor register or memory location. In order to allow maxi-
mum concurrency in processor implementations, dependence order assumes that registers
are dynamically renamed to avoid false dependences arising from register reuse.

Two memory transaction X and Y are dependence ordered, denoted by X <d Y, if and only
if they are program ordered, X <p Y , and at least one of the following conditions is true:

(1) The execution of Y is conditional on X, and S(Y) is true.

(2) Y reads a register that is written by X.

(3) X and Y access the same memory location and S(X) and L(Y) are both true.

The dependence order also holds between the memory transactions associated with the
instructions. It is important to remember that partial ordering is transitive.

Rule (1) includes all control dependences that arise from the dynamic execution of pro-
grams. In particular, a store or atomic memory transaction that is executed after a condi-

8. The Ordering MEMBAR instruction uses 4 bits of its argument to specify the existence of an order rela-

tion depending on whether X and Y have load or store semantics. The Sequencing MEMBAR uses three

bits to specify completion conditions. The MEMBAR encoding is specified in A.32.

9. Sequencing constraints have other effects, such as controlling when a memory error is recognized or

when an I/O access reaches global visibility. The need for sequencing constraints is always associated

with I/O and kernel level programming and not usually with normal, user-level application program-

ming.

D.4 Specification of Relaxed Memory Order (RMO) 265

tional branch will depend on the outcome of that branch instruction, which in turn will
depend on one or more memory transactions that precede the branch instruction. Loads
after an unresolved conditional branch may proceed, that is, a conditional branch does not
dependence order subsequent loads. Control dependences always order the initiation of
subsequent instructions to the performance of the preceding instructions.10

Rule (2) captures dependences arising from register use. It is not necessary to include an
ordering when X reads a register that is later written by Y, because register renaming will
allow out-of-order execution in this case. Register renaming is equivalent to having an
infinite pool of registers and requiring all registers to be write-once. Observe that the con-
dition code register is set by some arithmetic and logical instructions and used by condi-
tional branch instructions thus introducing a dependence order.

Rule (3) captures ordering constraints resulting from memory accesses to the same loca-
tion and require that the dependence order reflect the program order for store-load pairs,
but not for load-store or store-store pairs. A load may be executed speculatively, since
loads are side-effect free, provided that Rule (3) is eventually satisfied.

An actual processor implementation will maintain dependence order by score-boarding,
hardware interlocks, data flow techniques, compiler directed code scheduling, and so
forth, or, simply, by sequential program execution. The means by which the dependence
order is derived from a program is irrelevant to the memory model, which has to specify
which possible memory transaction sequences are legal for a given set of data depen-
dences. Practical implementations will not necessarily use the minimal set of constraints:
adding unnecessary order relations from the program order to the dependence order only
reduces the available concurrency, but does not impair correctness.

D.3.4 Memory Order

The sequence in which memory transactions are performed by the memory is called mem-

ory order, which is a total order on all memory transactions.

In general, the memory order cannot be known a priori. Instead, the memory order is
specified as a set of constraints that are imposed on the memory transactions. The require-
ment that memory transaction X must be performed before memory transaction Y is
denoted by X <m Y. Any memory order that satisfies these constraints is legal. The mem-
ory subsystem may choose arbitrarily among legal memory orders, hence multiple execu-
tions of the same programs may result in different memory orders.

D.4 Specification of Relaxed Memory Order (RMO)

D.4.1 Value Atomicity

Memory transactions will atomically set or retrieve the value of a memory location as long
as the size of the value is less than or equal to eight bytes, the unit of coherency.

10. Self modifying code (use of FLUSH instructions) also causes control dependences.

266 D Formal Specification of the Memory Models

D.4.2 Store Atomicity

All possible execution traces are consistent with the existence of a memory order that
totally orders all transactions including all store operations.

This does not imply that the memory order is observable. Nor does it imply that RMO
requires any central serialization mechanism.

D.4.3 Atomic Memory Transactions

The atomic memory transactions SWAP, LDSTUB, and CAS are performed as one mem-
ory transaction that is both a load and a store with respect to memory order constraints. No
other memory transaction can separate the load and store actions of an atomic memory
transaction. The semantics of atomic instructions are defined in Appendix A, “Instruction
Definitions.”

D.4.4 Memory Order Constraints

A memory order is legal in RMO if and only if:

(1) X <d Y & L(X) ⇒ X <m Y

(2) M(X,Y) ⇒ X <m Y

(3) Xa <p Ya & S(Y) ⇒ X <m Y

Rule (1) states that the RMO model will maintain dependence when the preceding transac-
tion is a load. Preceding stores may be delayed in the implementation, so their order may
not be preserved globally.

Rule (2) states that MEMBAR instructions order the performance of memory transactions.

Rule (3) states that stores to the same address are performed in program order. This is nec-
essary for processor self-consistency

D.4.5 Value of Memory Transactions

The value of a load Ya is the value of the most recent store that was performed with respect
to memory order or the value of the most recently initiated store by the same processor.
Assuming Y is a load to memory location a:

Value(La) = Value(Max<m { S | Sa <m La or Sa <p La })

where Max<m{..} selects the most recent element with respect to the memory order and
where Value() yields the value of a particular memory transaction. This states that the
value returned by a load is either the result of the most recent store to that address which
has been performed by any processor or which has been initiated by the processor issuing
the load. The distinction between local and remote stores permits use of store-buffers,
which are explicitly supported in all SPARC-V9 memory models.

D.5 Specification of Partial Store Order (PSO) 267

D.4.6 Termination of Memory Transactions

Any memory transaction will eventually be performed. This is formalized by the require-
ment that only a finite number of memory ordered loads can be performed before a pend-
ing store is completed.

D.4.7 Flush Memory Transaction

Flush instructions are treated as store memory transactions as far as the memory order is
concerned. Their semantics are defined in A.20, “Flush Instruction Memory.” Flush
instructions introduce a control dependence to any subsequent (in program order) execu-
tion of the instruction that was addressed by the flush.

D.5 Specification of Partial Store Order (PSO)

The specification of Partial Store Order (PSO) is that of Relaxed Memory Order (RMO)
with the additional requirement that all memory transactions with load semantics are fol-
lowed by an implied MEMBAR #LoadLoad | #LoadStore.

D.6 Specification of Total Store Order (TSO)

The specification of Total Store Order (TSO) is that of Partial Store Order (PSO) with the
additional requirement that all memory transactions with store semantics are followed by
an implied MEMBAR #StoreStore.

D.7 Examples Of Program Executions

This subsection lists several code sequences and an exhaustive list of all possible execu-
tion sequences under RMO, PSO and TSO. For each example, the code is followed by the
list of order relations between the corresponding memory transactions. The memory trans-
actions are referred to by numbers. In each case, the program is executed once for each
memory model.

D.7.1 Observation of Store Atomicity

The code example below demonstrates how store atomicity prevents multiple processors
from observing inconsistent sequences of events. In this case, processors 2 and 3 observe
changes to the shared variables A and B, which are being modified by processor 1. Initially
both variables are 0. The stores by processor 1 do not use any form of synchronization,
and they may in fact be issued by two independent processors.

Should processor 2 find A to have the new value (1) and B to have the old value (0), it can
infer that A was updated before B. Likewise, processor 3 may find B = 1 and A = 0, which
implies that B was changed before A. It is impossible for both to occur in all SPARC-V9
memory models since there cannot exist a total order on all stores. This property of the
memory models has been encoded in the assertion A1.

268 D Formal Specification of the Memory Models

However, in RMO, the observing processor must separate the load operations with mem-
bar instructions. Otherwise, the loads may be reordered and no inference on the update
order can be made.

Figure 44 is taken from the output of the SPARC-V9 memory model simulator, which
enumerates all possible outcomes of short code sequences and which can be used to prove
assertions about such programs.

ST #1, A

ST #1, B

LD A, %r1

LD B, %r2

LD B, %r1

LD A, %r2

T T,P T,P

T : TSO P : PSO R : RMO <d<m

Processor 1 Processor 2 Processor 3

/*

 * Store atomicity

 * Note: will fail in RMO due to lack of membars between loads

 */

Processor 1:

 (0) st #1,[A]

 (1) st #1,[B]

Processor 2:

 (2) ld [A],%r1

 (3) ld [B],%r2

Processor 3:

 (4) ld [B],%r1

 (5) ld [A],%r2

Assertions:

A1: !(P2:%r1 = = 1 && P2:%r2 = = 0) || !(P3:%r1 = = 1 && P3:%r2 = = 0)

Possible values under all memory models:

2:r1 2:r2 3:r1 3:r2 A B example sequence of performance in <m

 0 0 0 0 1 1 4 5 2 0 3 1

 0 0 0 1 1 1 4 2 0 5 3 1

 0 0 1 1 1 1 2 3 0 1 4 5

 0 1 0 0 1 1 4 5 2 0 1 3

 0 1 0 1 1 1 4 2 0 5 1 3

 0 1 1 1 1 1 2 0 1 3 4 5

 1 0 0 0 1 1 4 5 0 2 3 1

 1 0 0 1 1 1 4 0 5 2 3 1

 1 0 1 1 1 1 0 2 3 1 4 5

 1 1 0 0 1 1 4 5 0 2 1 3

 1 1 0 1 1 1 4 0 5 1 2 3

 1 1 1 1 1 1 0 1 4 2 5 3

Possible values under PSO & RMO, but not under TSO:

2:r1 2:r2 3:r1 3:r2 A B example sequence of performance in <m

 0 0 1 0 1 1 2 3 1 4 5 0

 0 1 1 0 1 1 2 1 4 3 5 0

 1 1 1 0 1 1 1 4 5 0 2 3

Possible values under RMO, but not under PSO & TSO:

2:r1 2:r2 3:r1 3:r2 A B example sequence of performance in <m

 1 0 1 0 1 1 5 3 0 2 1 4

Figure 44—Store Atomicity Example

D.7 Examples Of Program Executions 269

D.7.2 Dekker’s Algorithm

The essence of Dekker’s algorithm is shown in figure 45 on page 269.11 To assure mutual
exclusion, each processor signals its intent to enter a critical region by asserting a dedi-
cated variable (A for processor 1 and B for processor 2). It then checks that the other pro-
cessor does not want to enter and, if it finds the other signal variable is deasserted, it enters
the critical region. This code does not guarantee that any processor can enter (that requires
a retry mechanism which is omitted here), but it does guarantee mutual exclusion, which
means that it is impossible that each processor finds the other’s lock idle (= 0) when it
enters cthe ritical section.

D.7.3 Indirection Through Processors

Another property of the SPARC-V9 memory models is that causal update relations are
preserved, which is a side-effect of the existence of a total memory order. In the example

11. See also DEC Litmus Test 8 described in the Alpha Architecture Handbook, Digital Equipment Corpora-

tion, 1992, p. 5-14.

ST #1, A

LD B, %r1

ST #1, B

LD A, %r1

T,P,R T,P,R

Processor 1 Processor 2

/*

 * Dekker's Algorithm

 */

Processor 1:

 (0) st #1,[A]

 membar #StoreLoad

 (1) ld [B],%r1

Processor 2:

 (2) st #1,[B]

 membar #StoreLoad

 (3) ld [A],%r1

Assertions:

A1: P1:%r1 = = 1 || P2:%r1 = = 1

Possible values under all memory models:

1:r1 2:r1 A B example sequence of performance in <m

 0 1 1 1 0 1 2 3

 1 0 1 1 2 3 0 1

 1 1 1 1 2 0 3 1

Possible values under PSO & RMO, but not under TSO:

 --- none ---

Possible values under RMO, but not under PSO & TSO:

 --- none ---

T : TSO P : PSO R : RMO <d<m

Figure 45—Dekker’s Algorithm

270 D Formal Specification of the Memory Models

below, processor 3 observes updates made by processor 1. Processor 2 simply copies B to
C, which does not impact the causal chain of events.

Again, this example intentionally exposes two potential error sources. In PSO (and RMO),
the stores by processor 1 are not ordered automatically and may be performed out of pro-
gram order. The correct code would need to insert a MEMBAR #StoreStore between
these stores. In RMO (but not in PSO), the observation process 3 needs to separate the two
load instructions by a MEMBAR #LoadLoad.

D.7.4 PSO Behavior

The code in figure 47 on page 271 shows how different results can be obtained by allow-
ing out of order performance of two stores in PSO and RMO models. A store to B is

ST #1, A

ST #1, B

LD B, %r1

ST %r1, C

LD C, %r1

LD A, %r2

T T,PT,P,R

Processor 1 Processor 2 Processor 3

T : TSO P : PSO R : RMO <d<m

/*

 * Indirection through processors

 * Note: Assertion will fail for PSO and RMO due to lack of

 * membar #StoreStore after P1's first store

 */

Processor 1:

 (0) st #1,[A]

 (1) st #1,[B]

Processor 2:

 (2) ld [B],%r1

 (3) st %r1,[C]

Processor 3:

 (4) ld [C],%r1

 (5) ld [A],%r2

Assertions:

A1: !(P3:%r1 = = 1 && P3:%r2 = = 0)

Possible values under all memory models:

2:r1 3:r1 3:r2 A B C example sequence of performance in <m

 0 0 0 1 1 0 4 5 0 2 1 3

 0 0 1 1 1 0 4 2 0 5 1 3

 1 0 0 1 1 1 4 5 0 1 2 3

 1 0 1 1 1 1 4 0 5 1 2 3

 1 1 1 1 1 1 0 1 2 3 4 5

Possible values under PSO & RMO, but not under TSO:

2:r1 3:r1 3:r2 A B C example sequence of performance in <m

 1 1 0 1 1 1 1 2 3 4 5 0

Possible values under RMO, but not under PSO & TSO:

 --- none ---

Figure 46—Indirection Through Processors

D.7 Examples Of Program Executions 271

allowed to be performed before a store to A. If two loads of processor 2 are performed
between the two stores, then the assertion below is satisfied for the PSO and RMO models.

D.7.5 Application to Compilers

A significant problem in a multiprocessor environment arises from the fact that normal
compiler optimizations which reorder code can subvert programmer intent. The SPARC-
V9 memory model can be applied to the program, rather than an execution, in order to
identify transformations that can be applied, provided that the program has a proper set of
MEMBARs in place. In this case, the dependence order is a program dependence order,
rather than a trace dependence order, and must include the dependences from all possible
executions.

ST #1, A

LD A, %r

LD B, %r1

LD A, %r2

T,P

ST %r, B

T

T,P,R

Processor 1 Processor 2

T : TSO P : PSO R : RMO <d<m

/*

 * PSO behavior

 */

Processor 1:

 (0) st #1, [A]

 (1) ld [A], %r

 (2) st %r, [B]

Processor 2:

 (3) ld [B], %r1

 (4) ld [A], %r2

Assertions:

E: P2:%r1 = = 1 && P2:%r2 = = 0;

Possible values under all memory models:

 1:r 2:r1 2:r2 A B example sequence of performance in <m

 1 0 0 1 1 3 4 0 1 2

 1 0 1 1 1 0 3 4 1 2

 1 1 1 1 1 0 1 2 3 4

Possible values under PSO & RMO, but not under TSO:

 1:r 2:r1 2:r2 A B example sequence of performance in <m

 1 1 0 1 1 1 2 3 4 0

Possible values under RMO, but not under PSO & TSO:

 --- none ---

Figure 47—PSO Behavior

272 D Formal Specification of the Memory Models

D.7.6 Verifying Memory Models

While defining the SPARC-V9 memory models, software tools were developed that auto-
matically analyze and formally verify assembly-code sequences running in the models.
The core of this collection of tools is the Murphi finite-state verifier developed by David
Dill and his students at Stanford University.

For example, these tools can be used to confirm that synchronization routines operate
properly in various memory models and to generate counter example traces when they fail.
The tools work by exhaustively enumerating system states in a version of the memory
model, so they can only be applied to fairly small assembly code examples. We found the
tools to be helpful in understanding the memory models and checking our examples.12

Contact SPARC International to obtain the verification tools and a set of examples.

12. For a discussion of an earlier application of similar tools to TSO and PSO, see David Dill, Seungjoon

Park, and Andreas G. Nowatzyk, “Formal Specification of Abstract Memory Models” in Research on

Integrated Systems: Proceedings of the 1993 Symposium, Ed. Gaetano Borriello and Carl Ebeling, MIT

Press, 1993.

273

E Opcode Maps

E.1 Overview

This appendix contains the SPARC-V9 instruction opcode maps.

Opcodes marked with a dash ‘—’ are reserved; an attempt to execute a reserved opcode
shall cause a trap, unless it is an implementation-specific extension to the instruction set.
See 6.3.11, “Reserved Opcodes and Instruction Fields,” for more information.

In this appendix and in Appendix A, “Instruction Definitions,” certain opcodes are marked
with mnemonic superscripts. These superscripts and their meanings are defined in table 21
on page 133. For deprecated opcodes, see the appropriate instruction pages in Appendix
A, “Instruction Definitions,” for preferred substitute instructions.

E.2 Tables

†rd = 0, imm22 = 0

Table 30—op[1:0]

op [1:0]

0 1 2 3

Branches & SETHI

See table 31

CALL Arithmetic & Misc.

See table 32

Loads/Stores

See table 33

Table 31—op2[2:0] (op = 0)

op2 [2:0]

0 1 2 3 4 5 6 7

ILLTRAP
BPcc

See table 36

BiccD

See table 36

BPr

See table 37

SETHI

NOP†
FBPfcc

See table 36

FBfccD

See table 36
—

274 E Opcode Maps

Table 32—op3[5:0] (op = 2)

op3 [5:4]

0 1 2 3

op3

[3:0]

0 ADD ADDcc TADDcc

WRYD (rd = 0)

— (rd= 1)

WRCCR (rd=2)

WRASI (rd=3)

WRASRPASR (see A.63)

WRFPRS (rd=6)

SIR (rd=15, rs1=0, i=1)

1 AND ANDcc TSUBcc
SAVEDP (fcn = 0),

RESTOREDP (fcn = 1)

2 OR ORcc TADDccTVD WRPRP

3 XOR XORcc TSUBccTVD —

4 SUB SUBcc MULSccD FPop1

See table 34

5 ANDN ANDNcc SLL (x = 0), SLLX (x = 1)
FPop2

See table 35

6 ORN ORNcc SRL (x = 0), SRLX (x = 1) IMPDEP1

7 XNOR XNORcc SRA (x = 0), SRAX (x = 1) IMPDEP2

8 ADDC ADDCcc

RDYD (rs1 = 0)

— (rs1= 1)

RDCCR (rs1= 2)

RDASI (rs1= 3)

RDTICKPNPT (rs1= 4)

RDPC (rs1= 5)

RDFPRS (rs1=6)

RDASRPASR (see A.44)

MEMBAR (rs1 = 15,rd=0,i = 1)

STBARD (rs1 = 15,rd=0,i = 0)

JMPL

9 MULX — — RETURN

A UMULD UMULccD RDPRP Tcc

See table 36

B SMULD SMULccD FLUSHW FLUSH

C SUBC SUBCcc MOVcc SAVE

D UDIVX — SDIVX RESTORE

E UDIVD UDIVccD POPC (rs1 = 0)

— (rs1>0)

DONEP (fcn = 0)

RETRYP (fcn = 1)

F SDIVD SDIVccD MOVr

See table 37
—

E.2 Tables 275

Table 33—op3[5:0] (op = 3)

op3 [5:4]

0 1 2 3

op3

[3:0]

0 LDUW LDUWAPASI LDF LDFAPASI

1 LDUB LDUBAPASI LDFSRD, LDXFSR —

2 LDUH LDUHAPASI LDQF LDQFAPASI

3 LDDD LDDAD, PASI LDDF LDDFAPASI

4 STW STWAPASI STF STFAPASI

5 STB STBAPASI STFSRD, STXFSR —

6 STH STHAPASI STQF STQFAPASI

7 STDD STDAPASI STDF STDFAPASI

8 LDSW LDSWAPASI — —

9 LDSB LDSBAPASI — —

A LDSH LDSHAPASI — —

B LDX LDXAPASI — —

C — — — CASAPASI

D LDSTUB LDSTUBAPASI PREFETCH PREFETCHAPASI

E STX STXAPASI — CASXAPASI

F SWAPD SWAPAD, PASI — —

2
7
6

E
O

p
c
o

d
e
 M

a
p

s

Table 34—opf[8:0] (op = 2,op3 = 3416 = FPop1)

opf[3:0]

opf

[8:4]
0 1 2 3 4 5 6 7 8 9 A B C D E F

00 — FMOVs FMOVd FMOVq — FNEGs FNEGd FNEGq — FABSs FABSd FABSq — — — —

01 — — — — — — — — — — — — — — — —

02 — — — — — — — — — FSQRTs FSQRTd FSQRTq — — — —

03 — — — — — — — — — — — — — — — —

04 — FADDs FADDd FADDq — FSUBs FSUBd FSUBq — FMULs FMULd FMULq — FDIVs FDIVd FDIVq

05 — — — — — — — — — — — — — — — —

06 — — — — — — — — — FsMULd — — — — FdMULq —

07 — — — — — — — — — — — — — — — —

08 — FsTOx FdTOx FqTOx FxTOs — — — FxTOd — — — FxTOq — — —

09 — — — — — — — — — — — — — — — —

0A — — — — — — — — — — — — — — — —

0B — — — — — — — — — — — — — — — —

0C — — — — FiTOs — FdTOs FqTOs FiTOd FsTOd — FqTOd FiTOq FsTOq FdTOq —

0D — FsTOi FdTOi FqTOi — — — — — — — — — — — —

0E..1F — — — — — — — — — — — — — — — —

E
.2

T
a
b

le
s

2
7
7† Undefined variation of FMOVR

Table 35—opf[8:0] (op = 2, op3 = 3516 = FPop2)

opf[3:0]

opf

[8:4]
0 1 2 3 4 5 6 7 8..F

00 — FMOVs (fcc0) FMOVd (fcc0) FMOVq (fcc0) — † † † —

01 — — — — — — — — —

02 — — — — — FMOVRsZ FMOVRdZ FMOVRqZ —

03 — — — — — — — — —

04 — FMOVs (fcc1) FMOVd (fcc1) FMOVq (fcc1) — FMOVRsLEZ FMOVRdLEZ FMOVRqLEZ —

05 — FCMPs FCMPd FCMPq — FCMPEs FCMPEd FCMPEq —

06 — — — — — FMOVRsLZ FMOVRdLZ FMOVRqLZ —

07 — — — — — — — — —

08 — FMOVs (fcc2) FMOVd (fcc2) FMOVq (fcc2) — † † † —

09 — — — — — — — — —

0A — — — — — FMOVRsNZ FMOVRdNZ FMOVRqNZ —

0B — — — — — — — — —

0C — FMOVs (fcc3) FMOVd (fcc3) FMOVq (fcc3) — FMOVRsGZ FMOVRdGZ FMOVRqGZ —

0D — — — — — — — — —

0E — — — — — FMOVRsGEZ FMOVRdGEZ FMOVRqGEZ —

0F — — — — — — — — —

10 — FMOVs (icc) FMOVd (icc) FMOVq (icc) — — — — —

11..17 — — — — — — — — —

18 — FMOVs (xcc) FMOVd (xcc) FMOVq (xcc) — — — — —

19..1F — — — — — — — — —

278 E Opcode Maps

Table 36—cond[3:0]

BPcc BiccD FBPfcc FBfccD Tcc

op = 0

op2 = 1

op = 0

op2 = 2

op = 0

op2 = 5

op = 0

op2 = 6

op = 2

op3 = 3A16

cond

[3:0]

0 BPN BND FBPN FBND TN

1 BPE BED FBPNE FBNED TE

2 BPLE BLED FBPLG FBLGD TLE

3 BPL BLD FBPUL FBULD TL

4 BPLEU BLEUD FBPL FBLD TLEU

5 BPCS BCSD FBPUG FBUGD TCS

6 BPNEG BNEGD FBPG FBGD TNEG

7 BPVS BVSD FBPU FBUD TVS

8 BPA BAD FBPA FBAD TA

9 BPNE BNED FBPE FBED TNE

A BPG BGD FBPUE FBUED TG

B BPGE BGED FBPGE FBGED TGE

C BPGU BGUD FBPUGE FBUGED TGU

D BPCC BCCD FBPLE FBLED TCC

E BPPOS BPOSD FBPULE FBULED TPOS

F BPVC BVCD FBPO FBOD TVC

Table 37—Encoding of rcond[2:0] Instruction Field

BPr MOVr FMOVr

op = 0

op2 = 3

op = 2

op3 = 2F16

op = 2

op3 = 3516

rcond

[2:0]

0 — — —

1 BRZ MOVRZ FMOVZ

2 BRLEZ MOVRLEZ FMOVLEZ

3 BRLZ MOVRLZ FMOVLZ

4 — — —

5 BRNZ MOVRNZ FMOVNZ

6 BRGZ MOVRGZ FMOVGZ

7 BRGEZ MOVRGEZ FMOVGEZ

E.2 Tables 279

Table 38—cc/opf_cc Fields (MOVcc and FMOVcc)

opf_cc Condition
code selectedcc2 cc1 cc0

0 0 0 fcc0

0 0 1 fcc1

0 1 0 fcc2

0 1 1 fcc3

1 0 0 icc

1 0 1 —

1 1 0 xcc

1 1 1 —

Table 39—cc Fields (FBPfcc, FCMP and FCMPE)

cc1 cc0
Condition

code selected

0 0 fcc0

0 1 fcc1

1 0 fcc2

1 1 fcc3

Table 40—cc Fields (BPcc and Tcc)

cc1 cc0
Condition

code selected

0 0 icc

0 1 —

1 0 xcc

1 1 —

280 E Opcode Maps

281

F SPARC-V9 MMU Requirements

F.1 Introduction

This appendix describes the boundary conditions that all SPARC-V9 MMUs must satisfy.
The appendix does not define the architecture of any specific memory management unit. It
is possible to build a SPARC-V9-compliant system without an MMU.

F.1.1 Definitions

address space:
A range of locations accessible with a 64-bit virtual address. Different address
spaces may use the same virtual address to refer to different physical locations.

aliases:
Two virtual addresses are aliases of each other if they refer to the same physical
address.

context:
A set of translations used to support a particular address space.

page:

The range of virtual addresses translated by a single translation element. The size
of a page is the size of the range translated by a single translation element. Differ-
ent pages may have different sizes. Associated with a page or with a translation
element are attributes (e.g., restricted, permission, etc.) and statistics (e.g., refer-
enced, modified, etc.)

translation element:
Used to translate a range of virtual addresses to a range of physical addresses.

F.2 Overview

All SPARC-V9 MMUs must provide the following basic functions:

— Translate 64-bit virtual addresses to physical addresses. This translation may be
implemented with one or more page sizes.

This appendix is informative only.

It is not part of the SPARC-V9 specification.

282 F SPARC-V9 MMU Requirements

— Provide the RED_state operation, as defined in 7.2.1, “RED_state.”

— Provide a method for disabling the MMU. When the MMU is disabled, no transla-
tion occurs: Physical Address<N:0> = Virtual Address<N:0>, where N is imple-
mentation-dependent. Furthermore, the disabled MMU will not perform any
memory protection (see F.4.2, “Memory Protection”) or prefetch and non-faulting
load violation (see F.4.3, “Prefetch and Non-Faulting Load Violation”) checks.

IMPL. DEP. #117: Whether PREFETCH and non-faulting load always succeed when the

MMU is disabled is implementation-dependent.

— Provide page-level protections. Conventional protections (Read, Write, Execute)
for both privileged and nonprivileged accesses may be provided.

— Provide page-level enabling and disabling of prefetch and non-faulting load opera-
tion. The MMU, however, need not provide separate protection mechanisms for
prefetch and non-faulting load.

— Support multiple address spaces (ASIs). The MMU must support the address
spaces as defined in F.3.1, “Information the MMU Expects from the Processor.”

— Provide page-level statistics such as referenced and modified.

The above requirements apply only to those systems that include SPARC-V9 MMUs. See
F.8, “SPARC-V9 Systems without an MMU.”

F.3 The Processor-MMU Interface

A SPARC-V9 MMU must support at least two types of addresses:

(1) Virtual Addresses, which map all system-wide, program-visible memory. A
SPARC-V9 MMU may choose not to support translation for the entire 64-bit vir-
tual address space, as long as addresses outside the supported virtual address range
are treated either as No_translation or Translation_not_valid (see F.3.3, “Informa-
tion the MMU Sends to the Processor”).

(2) Physical Addresses, which map real physical memory and I/O device space.
There is no minimum requirement for how many physical address bits a SPARC-
V9 MMU must support.

F.3 The Processor-MMU Interface 283

A SPARC-V9 MMU translates virtual addresses from the processor into physical
addresses, as illustrated in figure 48.

Figure 48—Logical Diagram of a SPARC-V9 System with an MMU

Figure 48 shows only the address and data paths between the processor and the MMU.
The control interface between the processor and the MMU is discussed in F.3.1, “Informa-
tion the MMU Expects from the Processor,” and F.3.3, “Information the MMU Sends to
the Processor.”

F.3.1 Information the MMU Expects from the Processor

A SPARC-V9 MMU expects the following information to accompany each virtual address
from the processor:

RED_state:
Indicates whether the MMU should operate in RED_state, as defined in 7.2.1,
“RED_state.”

Data / Instruction:
Indicates whether the access is an instruction fetch or data access (load or store).

Prefetch:
Indicates whether the data (Data / Instruction = Data) access was initiated by one
of the SPARC-V9 prefetch instructions.

Privileged:
Indicates whether this access is privileged.

Read / Write:
Indicates whether this access is a read (instruction fetch or data load) or a write
(data store) operation.

Atomic:
Indicates whether this is an atomic load-store operation. Whenever atomic is
asserted, the value of “Read/Write” is treated by the MMU as “don’t care.”

ASI:
An 8-bit address space identifier. See 6.3.1.3, “Address Space Identifiers (ASIs),”
for the list of ASIs that the MMU must support.

I/O

Locations

Processor

Physical

MMU

Address

Virtual

Address

Physical

Address

Data

Space

Real

Memory

284 F SPARC-V9 MMU Requirements

F.3.2 Attributes the MMU Associates with Each Mapping

In addition to translating virtual addresses to physical addresses, a SPARC-V9 MMU also
stores associated attributes, either with each mapping or with each page, depending upon
the implementation. Some of these attributes may be associated implicitly, as opposed to
explicitly, with the mapping. This information includes

Restricted:
Only privileged accesses are allowed (see F.3.1, “Information the MMU Expects
from the Processor”); nonprivileged accesses are disallowed.

Read, Write, and Execute Permissions:
An MMU may allow zero or more of read, write, and execute permissions, on a
per-mapping basis. Read permission is necessary for data read accesses and atomic
accesses. Write permission is necessary for data write accesses and atomic
accesses. Execute permission is necessary for instruction accesses. At a minimum,
an MMU must allow for “all permissions,” “no permissions,” and “no write per-
mission”; optionally, it can provide “execute only” and “write only,” or any combi-
nation of “read/write/execute” permissions.

Prefetchable:
The presence of this attribute indicates that accesses made with the prefetch indi-
cation from the processor are allowed; otherwise, they are disallowed. See F.3.1,
“Information the MMU Expects from the Processor.”

Non-faultable:
The presence of this attribute indicates that accesses made with
ASI_PRIMARY_NOFAULT{_LITTLE} and ASI_SECONDARY_NOFAULT{_LITTLE} are
allowed; otherwise, they are disallowed. An implementation may choose to com-
bine the prefetchable and non-faultable attributes into a single “No Side Effects”
attribute; that is, “reads from this address do not cause side effects, such as clear on
read.”

F.3.3 Information the MMU Sends to the Processor

The processor can expect one and only one of the following signals coming from any
SPARC-V9 MMU for each translation requested:

Translation_error:
The MMU has detected an error (for example, parity error) in the translation pro-
cess. Can cause a data_access_error or instruction_access_error exception.

No_translation:
The MMU is unable to translate the virtual address, since no translation exists for
it. Some implementations may not provide this information and provide only
Translation_not_valid. Can cause either a data_access_exception or an
instruction_access_exception exception.

Translation_not_valid:
The MMU is unable to translate the virtual address, since it cannot find a valid
translation. Some implementations may not provide this information and provide

F.4 Components of the SPARC-V9 MMU Architecture 285

only No_translation. Can cause either a data_access_MMU_miss or an
instruction_access_MMU_miss exception.

Privilege_violation:
The MMU has detected a privilege violation, i.e., an access to a restricted page
when the access does not have the required privilege (see F.3.1, “Information the
MMU Expects from the Processor”). Can cause either a data_access_protection or
an instruction_access_protection exception.

Protection_violation:
The MMU has detected a protection violation, which is defined to be a read, write,
or instruction fetch attempt to a page that does not have read, write, or execute per-
mission, respectively. Can cause either a data_access_protection or an
instruction_access_protection exception.

Prefetch_violation:
The MMU has detected an attempt to prefetch from a page for which prefetching is
disabled.

NF-Load_violation:
The MMU has detected an attempt to perform a non-faulting load from a page for
which non-faulting loads are disabled.

Translation_successful:
The MMU has successfully translated the virtual address to a physical address;
none of the conditions described above has been detected.

F.4 Components of the SPARC-V9 MMU Architecture

A SPARC-V9 MMU should contain the following:

— Logic that implements virtual-to-physical address translation

— Logic that provides memory protection

— Logic that supports prefetching as noted in A.42, “Prefetch Data”

— Logic that supports non-faulting loading, as noted in 8.3, “Addressing and Alter-
nate Address Spaces”

— A method for specifying the primary, secondary and, optionally, nucleus address
spaces

— A method for supplying information related to failed translations

— A method for collecting “referenced” and “modified” statistics

F.4.1 Virtual-to-Physical Address Translation

A SPARC-V9 MMU tries to translate every virtual address it receives into a physical
address as long as:

— The MMU is enabled.

286 F SPARC-V9 MMU Requirements

— The processor indicates that this is a non-RED_state instruction fetch (see the
Data/Instruction description in F.3.1, “Information the MMU Expects from the
Processor”) or a data access with an ASI that indicates a translatable address space.

Although the MMU will attempt to translate every virtual address that meets the above
two conditions, it need not guarantee that it can provide a translation every time. When the
MMU encounters a virtual address that it cannot translate, it asserts either
Translation_error, No_translation, or Translation_not_valid, as discussed in F.3.3, “Infor-
mation the MMU Sends to the Processor.”

F.4.2 Memory Protection

For each virtual address for which a SPARC-V9 MMU can provide a translation, the
MMU checks whether memory protection would be violated. More specifically, the MMU

— Indicates Privilege_violation (see F.3.3) if the translation information indicates a
restricted page but the access was not privileged (see F.3.1)

— Indicates Protection_violation (see F.3.3) if a read, write, or instruction fetch uses
a translation that does not grant read, write, or execute permission, respectively

— Indicates Protection_violation (see F.3.3) if an atomic load-store uses a translation
that does not grant both read and write permission

F.4.3 Prefetch and Non-Faulting Load Violation

For each virtual address, the MMU checks for prefetch or non-faulting load violation as
long as

— The MMU can provide a translation, and

— The MMU does not detect any memory protection violation, as discussed in F.4.2,
“Memory Protection.”

More specifically, the MMU performs the following before sending the physical address
to the rest of the memory system:

— Asserts Prefetch_violation (see F.3.3) if an access with the prefetch indication (see
F.3.1) uses a translation that lacks the prefetchable attribute (see F.3.2)

— Asserts NF-Load_violation (see F.3.3) if the ASI (see F.3.1) indicates this access is
a non-faulting load, but the translation it uses lacks the non-faultable attribute (see
F.3.2)

F.4.4 Contexts

The MMU must support two contexts:

(1) Primary Context

(2) Secondary Context

F.4 Components of the SPARC-V9 MMU Architecture 287

In addition, it is also recommended that the MMU support a third context:

(3) Nucleus Context

On data accesss, the MMU decides which of these three contexts to use based on the ASI
field, as illustrated in table 41. Because the SPARC-V9 MMU cannot determine the
instruction opcode, it treats all data accesses with ASI_PRIMARY{_LITTLE} as normal
loads or stores, even though the processor may issue them with load/store alternate
instructions.

† Support for the nucleus context is only a recommendation; if an implementation does not sup-

port the nucleus context it may ignore this row.

On instruction fetch, the MMU decides which context to use based on the ASI field, as
illustrated in table 42. Note that the secondary context is never used for instruction fetch.

† Support for the Nucleus Context is only a recommendation; if an implementation does not

support the Nucleus Context it may ignore this row.

‡ It is implementation-dependent whether instruction fetch using ASI_NUCLEUS in nonprivi-

leged mode is allowed.

F.4.5 Fault Status and Fault Address

A SPARC-V9 MMU must provide the following:

Table 41—Context Used for Data Access

MMU Inputs Output
ContextASI Mode

ASI_PRIMARY Either Primary

ASI_PRIMARY_LITTLE Either Primary

ASI_PRIMARY_NOFAULT Either Primary

ASI_PRIMARY_NOFAULT_LITTLE Either Primary

ASI_AS_IF_USER_PRIMARY Privileged Primary

ASI_AS_IF_USER_PRIMARY_LITTLE Privileged Primary

ASI_SECONDARY Either Secondary

ASI_SECONDARY_LITTLE Either Secondary

ASI_SECONDARY_NOFAULT Either Secondary

ASI_SECONDARY_NOFAULT_LITTLE Either Secondary

ASI_AS_IF_USER_SECONDARY Privileged Secondary

ASI_AS_IF_USER_SECONDARY_LITTLE Privileged Secondary

ASI_NUCLEUS † Privileged Nucleus

ASI_NUCLEUS_LITTLE † Privileged Nucleus

Table 42—Context Used for Instruction Access

ASI Mode Context

ASI_PRIMARY Either Primary

ASI_NUCLEUS † Privileged ‡ Nucleus

288 F SPARC-V9 MMU Requirements

— Fault status information that specifies which condition listed in F.3.3, “Information
the MMU Sends to the Processor,” has resulted in a translation-related processor
trap, and any other information necessary for privileged software to determine the
cause of the trap; for example, ASI, Read/Write, Data/Instruction, etc.

— The Fault address associated with the failed translation. Since the address from an
instruction translation failure is available in the processor as the trap PC, the MMU
is not required to save the address of an instruction translation failure.

F.4.6 Referenced and Modified Statistics

A SPARC-V9 MMU shall allow, either through hardware, software, or some combination
thereof, for the collection of “referenced” and “modified” statistics associated with trans-
lations and/or physical pages. That is, there must be a method to determine if a page has
been referenced, a method to determine if a page has been modified, and a method for
clearing the indications that a page has been referenced and/or modified. These statistics
may be kept on either a per-translation basis or a per-physical-page basis.

It is implementation-dependent whether the referenced and/or modified statistics are
updated when an access is performed or when the translation for that access is performed.

F.5 RED_state Processing

It is recommended that the MMU perform as follows when the processor is in RED_state:

— Instruction address translation is a straight-through physical map; that is, the
MMU is always suppressed for instruction access in RED_state.

— Data address translation is handled normally; that is, the MMU is used if it is
enabled. Note that any event which causes the processor to enter RED_state also
disables the MMU, however, the handler executing in RED_state may reenable the
MMU.

F.6 Virtual Address Aliasing

Hardware and privileged software must cooperate so that multiple virtual addresses
aliased to the same physical address appear to be consistent as defined by the memory
models described in Chapter 8, “Memory Models.” Depending upon the implementation,
this may require allowing multiple translations to coexist only if they meet some imple-
mentation-dependent alignment constraint, or it may require that software ensure that only
one translation is in effect at any given time.

F.7 MMU Demap Operation

The SPARC-V9 MMU must provide a mechanism for privileged software to invalidate
some or all of the virtual-to-physical address translations.

F.8 SPARC-V9 Systems without an MMU 289

F.8 SPARC-V9 Systems without an MMU

It is possible to build a SPARC-V9 system that does not have an MMU. Such a system
should behave as if contains an MMU that is disabled.

290 F SPARC-V9 MMU Requirements

291

G Suggested Assembly Language Syntax

This appendix supports Appendix A, “Instruction Definitions.” Each instruction descrip-
tion in Appendix A includes a table that describes the suggested assembly language for-
mat for that instruction. This appendix describes the notation used in those assembly
language syntax descriptions and lists some synthetic instructions that may be provided by
a SPARC-V9 assembler for the convenience of assembly language programmers.

G.1 Notation Used

The notations defined here are also used in the syntax descriptions in Appendix A.

Items in typewriter font are literals to be written exactly as they appear. Items in
italic font are metasymbols that are to be replaced by numeric or symbolic values in actual
SPARC-V9 assembly language code. For example, “imm_asi” would be replaced by a
number in the range 0 to 255 (the value of the imm_asi bits in the binary instruction), or by
a symbol bound to such a number.

Subscripts on metasymbols further identify the placement of the operand in the generated
binary instruction. For example, regrs2 is a reg (register name) whose binary value will be
placed in the rs2 field of the resulting instruction.

G.1.1 Register Names

reg:
A reg is an integer register name. It may have any of the following values:1

%r0 ..%r31

%g0 ..%g7 (global registers; same as %r0 ..%r7)

%o0 ..%o7 (out registers; same as %r8 ..%r15)

%l0 ..%l7 (local registers; same as %r16 ..%r23)

%i0 ..%i7 (in registers; same as %r24 ..%r31)

%fp (frame pointer; conventionally same as %i6)

1. In actual usage, the %sp, %fp, %gn, %on, %ln, and %in forms are preferred over %rn.

This appendix is informative only.

It is not part of the SPARC-V9 specification.

292 G Suggested Assembly Language Syntax

%sp (stack pointer; conventionally same as %o6)

Subscripts identify the placement of the operand in the binary instruction as one of
the following:

regrs1 (rs1 field)

regrs2 (rs2 field)

regrd (rd field)

freg:
An freg is a floating-point register name. It may have the following values:

%f0, %f1, %f2 .. %f63 See 5.1.4, “Floating-Point Registers”

Subscripts further identify the placement of the operand in the binary instruction as
one of the following:

fregrs1 (rs1 field)

fregrs2 (rs2 field)

fregrd (rd field)

asr_reg:
An asr_reg is an Ancillary State Register name. It may have one of the following
values:

%asr16 ..%asr31

Subscripts further identify the placement of the operand in the binary instruction as
one of the following:

asr_regrs1 (rs1 field)

asr_regrd (rd field)

i_or_x_cc:
An i_or_x_cc specifies a set of integer condition codes, those based on either the
32-bit result of an operation (icc) or on the full 64-bit result (xcc). It may have
either of the following values:

%icc

%xcc

fccn:
An fccn specifies a set of floating-point condition codes. It may have any of the fol-
lowing values:

%fcc0

%fcc1

%fcc2

%fcc3

G.1.2 Special Symbol Names

Certain special symbols appear in the syntax table in typewriter font. They must be
written exactly as they are shown, including the leading percent sign (%).

The symbol names and the registers or operators to which they refer are as follows:

G.1 Notation Used 293

%asi Address Space Identifier register

%canrestore Restorable Windows register

%cansave Savable Windows register

%cleanwin Clean Windows register

%cwp Current Window Pointer register

%fq Floating-Point Queue

%fsr Floating-Point State Register

%otherwin Other Windows register

%pc Program Counter register

%pil Processor Interrupt Level register

%pstate Processor State register

%tba Trap Base Address register

%tick Tick (cycle count) register

%tl Trap Level register

%tnpc Trap Next Program Counter register

%tpc Trap Program Counter register

%tstate Trap State register

%tt Trap Type register

%ccr Condition Codes Register

%fprs Floating-Point Registers State register

%ver Version register

%wstate Window State register

%y Y register

The following special symbol names are unary operators that perform the functions
described:

%uhi Extracts bits 63..42 (high 22 bits of upper word) of its operand

%ulo Extracts bits 41..32 (low-order 10 bits of upper word) of its
operand

%hi Extracts bits 31..10 (high-order 22 bits of low-order word) of
its operand

%lo Extracts bits 9..0 (low-order 10 bits) of its operand

Certain predefined value names appear in the syntax table in typewriter font. They
must be written exactly as they are shown, including the leading sharp sign (#).

The value names and the values to which they refer are as follows:

#n_reads 0 (for PREFETCH instruction)

#one_read 1 (for PREFETCH instruction)

#n_writes 2 (for PREFETCH instruction)

#one_write 3 (for PREFETCH instruction)

#page 4 (for PREFETCH instruction)

#Sync 4016 (for MEMBAR instruction cmask field)

#MemIssue 2016 (for MEMBAR instruction cmask field)

294 G Suggested Assembly Language Syntax

#Lookaside 1016 (for MEMBAR instruction cmask field)

#StoreStore 0816 (for MEMBAR instruction mmask field)

#LoadStore 0416 (for MEMBAR instruction mmask field)

#StoreLoad 0216 (for MEMBAR instruction mmask field)

#LoadLoad 0116 (for MEMBAR instruction mmask field)

#ASI_AIUP 1016 ASI_AS_IF_USER_PRIMARY

#ASI_AIUS 1116 ASI_AS_IF_USER_SECONDARY

#ASI_AIUP_L 1816 ASI_AS_IF_USER_PRIMARY_LITTLE

#ASI_AIUS_L 1916 ASI_AS_IF_USER_SECONDARY_LITTLE

#ASI_P 8016 ASI_PRIMARY

#ASI_S 8116 ASI_SECONDARY

#ASI_PNF 8216 ASI_PRIMARY_NOFAULT

#ASI_SNF 8316 ASI_SECONDARY_NOFAULT

#ASI_P_L 8816 ASI_PRIMARY_LITTLE

#ASI_S_L 8916 ASI_SECONDARY_LITTLE

#ASI_PNF_L 8A16 ASI_PRIMARY_NOFAULT_LITTLE

#ASI_SNF_L 8B16 ASI_SECONDARY_NOFAULT_LITTLE

The full names of the ASIs may also be defined:

#ASI_AS_IF_USER_PRIMARY 1016

#ASI_AS_IF_USER_SECONDARY 1116

#ASI_AS_IF_USER_PRIMARY_LITTLE 1816

#ASI_AS_IF_USER_SECONDARY_LITTLE 1916

#ASI_PRIMARY 8016

#ASI_SECONDARY 8116

#ASI_PRIMARY_NOFAULT 8216

#ASI_SECONDARY_NOFAULT 8316

#ASI_PRIMARY_LITTLE 8816

#ASI_SECONDARY_LITTLE 8916

#ASI_PRIMARY_NOFAULT_LITTLE 8A16

#ASI_SECONDARY_NOFAULT_LITTLE 8B16

G.1.3 Values

Some instructions use operand values as follows:

const4 A constant that can be represented in 4 bits

const22 A constant that can be represented in 22 bits

imm_asi An alternate address space identifier (0..255)

simm7 A signed immediate constant that can be represented in 7 bits

simm10 A signed immediate constant that can be represented in 10 bits

simm11 A signed immediate constant that can be represented in 11 bits

simm13 A signed immediate constant that can be represented in 13 bits

value Any 64-bit value

shcnt32 A shift count from 0..31

G.1 Notation Used 295

shcnt64 A shift count from 0..63

G.1.4 Labels

A label is a sequence of characters that comprises alphabetic letters (a–z, A–Z [with upper
and lower case distinct]), underscores (_), dollar signs ($), periods (.), and decimal digits
(0-9). A label may contain decimal digits, but may not begin with one. A local label con-
tains digits only.

G.1.5 Other Operand Syntax

Some instructions allow several operand syntaxes, as follows:

reg_plus_imm may be any of the following:

regrs1 (equivalent to regrs1 + %g0)

regrs1 + simm13

regrs1 – simm13

simm13 (equivalent to %g0 + simm13)

simm13 + regrs1 (equivalent to regrs1 + simm13)

address may be any of the following:

regrs1 (equivalent to regrs1 + %g0)

regrs1 + simm13

regrs1 – simm13

simm13 (equivalent to %g0 + simm13)

simm13 + regrs1 (equivalent to regrs1 + simm13)

regrs1 + regrs2

membar_mask is the following:

const7 A constant that can be represented in 7 bits. Typically, this is an
expression involving the logical or of some combination of
#Lookaside, #MemIssue, #Sync, #StoreStore,
#LoadStore, #StoreLoad, and #LoadLoad.

prefetch_fcn (prefetch function) may be any of the following:

#n_reads

#one_read

#n_writes

#one_write

#page

0..31

regaddr (register-only address) may be any of the following:

regrs1 (equivalent to regrs1 + %g0)

regrs1 + regrs2

296 G Suggested Assembly Language Syntax

reg_or_imm (register or immediate value) may be either of:

regrs2

simm13

reg_or_imm10 (register or immediate value) may be either of:

regrs2

simm10

reg_or_imm11 (register or immediate value) may be either of:

regrs2

simm11

reg_or_shcnt (register or shift count value) may be any of:

regrs2

shcnt32

shcnt64

software_trap_number may be any of the following:

regrs1 (equivalent to regrs1 + %g0)

regrs1 + simm7

regrs1 – simm7

simm7 (equivalent to %g0 + simm7)

simm7 + regrs1 (equivalent to regrs1 + simm7)

regrs1 + regrs2

The resulting operand value (software trap number) must be in the range 0..127,
inclusive.

G.1.6 Comments

It is suggested that two types of comments be accepted by SPARC-V9 assemblers: C-style
“/*...*/” comments, which may span multiple lines, and “!...” comments, which
extend from the “!” to the end of the line.

G.2 Syntax Design

The suggested SPARC-V9 assembly language syntax is designed so that

— The destination operand (if any) is consistently specified as the last (rightmost)
operand in an assembly language instruction.

— A reference to the contents of a memory location (in a Load, Store, CASA,
CASXA, LDSTUB(A), or SWAP(A) instruction) is always indicated by square
brackets ([]); a reference to the address of a memory location (such as in a JMPL,
CALL, or SETHI) is specified directly, without square brackets.

G.3 Synthetic Instructions 297

G.3 Synthetic Instructions

Table 43 describes the mapping of a set of synthetic (or “pseudo”) instructions to actual
instructions. These and other synthetic instructions may be provided in a SPARC-V9
assembler for the convenience of assembly language programmers.

Note that synthetic instructions should not be confused with “pseudo-ops,” which typi-
cally provide information to the assembler but do not generate instructions. Synthetic
instructions always generate instructions; they provide more mnemonic syntax for stan-
dard SPARC-V9 instructions.

Table 43—Mapping Synthetic to SPARC-V9 Instructions

Synthetic instruction SPARC-V9 instruction(s) Comment

cmp regrs1, reg_or_imm subcc regrs1, reg_or_imm, %g0 compare

jmp address jmpl address, %g0

call address jmpl address, %o7

iprefetch label bn,a,pt %xcc,label instruction prefetch

tst regrs1 orcc %g0, regrs1, %g0 test

ret jmpl %i7+8, %g0 return from subroutine

retl jmpl %o7+8, %g0 return from leaf subroutine

restore restore %g0, %g0, %g0 trivial restore

save save %g0, %g0, %g0 trivial save

(Warning: trivial save

should only be used in kernel

code!)

setuw value,regrd sethi %hi(value), regrd (when ((value&3FF16) = = 0))

— or —

or %g0, value, regrd (when 0 ≤value≤4095)
— or —

sethi %hi(value), regrd; (otherwise)

or regrd, %lo(value), regrd Warning: do not use setuw in

the delay slot of a DCTI.

set value,regrd synonym for setuw

setsw value,regrd sethi %hi(value), regrd (when (value> = 0) and

((value & 3FF16) = = 0))

— or —

or %g0, value, regrd (when -4096≤value≤4095)
— or —

sethi %hi(value), regrd (otherwise, if (value < 0) and

((value & 3FF16) = = 0))

sra regrd, %g0, regrd

— or —

sethi %hi(value), regrd; (otherwise, if value> = 0)

or regrd, %lo(value), regrd

— or —

sethi %hi(value), regrd; (otherwise, if value<0)

or regrd, %lo(value), regrd

sra regrd, %g0, regrd Warning: do not use setsw in

the delay slot of a CTI.

setx value, reg, regrd sethi %uhi(value), reg create 64-bit constant

or reg, %ulo(value), reg (“reg” is used as a temporary

register)sllx reg,32,reg

298 G Suggested Assembly Language Syntax

sethi %hi(value), regrd Note: setx optimizations are

possible, but not enumer-

ated here. The worst-case is

shown.Warning: do not use

setx in the delay slot of a

CTI.

or regrd, reg, regrd

or regrd, %lo(value), regrd

Table 43—Mapping Synthetic to SPARC-V9 Instructions (Continued)

Synthetic instruction SPARC-V9 instruction(s) Comment

G.3 Synthetic Instructions 299

signx regrs1, regrd sra regrs1, %g0, regrd sign-extend 32-bit value to

64 bitssignx regrd sra regrd, %g0, regrd

not regrs1, regrd xnor regrs1, %g0, regrd one’s complement

not regrd xnor regrd, %g0, regrd one’s complement

neg regrs2, regrd sub %g0, regrs2, regrd two’s complement

neg regrd sub %g0, regrd, regrd two’s complement

cas [regrs1], regrs2, regrd casa [regrs1]#ASI_P, regrs2, regrd compare and swap

casl [regrs1], regrs2, regrd casa [regrs1]#ASI_P_L, regrs2, regrd compare and swap, little-endian

casx [regrs1], regrs2, regrd casxa [regrs1]#ASI_P, regrs2, regrd compare and swap extended

casxl [regrs1], regrs2, regrd casxa [regrs1]#ASI_P_L, regrs2, regrd compare and swap extended,

little-endian

inc regrd add regrd, 1, regrd increment by 1

inc const13,regrd add regrd, const13, regrd increment by const13

inccc regrd addcc regrd, 1, regrd incr by 1; set icc & xcc

inccc const13,regrd addcc regrd, const13, regrd incr by const13; set icc & xcc

dec regrd sub regrd, 1, regrd decrement by 1

dec const13, regrd sub regrd, const13, regrd decrement by const13

deccc regrd subcc regrd, 1, regrd decr by 1; set icc & xcc

deccc const13, regrd subcc regrd, const13, regrd decr by const13; set icc & xcc

btst reg_or_imm, regrs1 andcc regrs1, reg_or_imm, %g0 bit test

bset reg_or_imm, regrd or regrd, reg_or_imm, regrd bit set

bclr reg_or_imm, regrd andn regrd, reg_or_imm, regrd bit clear

btog reg_or_imm, regrd xor regrd, reg_or_imm, regrd bit toggle

clr regrd or %g0, %g0, regrd clear (zero) register

clrb [address] stb %g0, [address] clear byte

clrh [address] sth %g0, [address] clear halfword

clr [address] stw %g0, [address] clear word

clrx [address] stx %g0, [address] clear extended word

clruw regrs1, regrd srl regrs1, %g0, regrd copy and clear upper word

clruw regrd srl regrd, %g0, regrd clear upper word

mov reg_or_imm, regrd or %g0, reg_or_imm, regrd

mov %y, regrd rd %y, regrd

mov %asrn, regrd rd %asrn, regrd

mov reg_or_imm, %y wr %g0, reg_or_imm, %y

mov reg_or_imm, %asrn wr %g0, reg_or_imm, %asrn

Table 43—Mapping Synthetic to SPARC-V9 Instructions (Continued)

Synthetic instruction SPARC-V9 instruction(s) Comment

300 G Suggested Assembly Language Syntax

301

H Software Considerations

This appendix describes how software can use the SPARC-V9 architecture effectively.
Examples do not necessarily conform to any specific Application Binary Interface (ABI).

H.1 Nonprivileged Software

This subsection describes software conventions that have proven or may prove useful,
assumptions that compilers may make about the resources available, and how compilers
can use those resources. It does not discuss how supervisor software (an operating system)
may use the architecture. Although a set of software conventions is described, software is
free to use other conventions more appropriate for specific applications.

The following are the primary goals for many of the software conventions described in this
subsection:

— Minimizing average procedure-call overhead

— Minimizing latency due to branches

— Minimizing latency due to memory access

H.1.1 Registers

Register usage is a critical resource allocation issue for compilers. The SPARC-V9 archi-
tecture provides windowed integer registers (in, out, local), global integer registers, and
floating-point registers.

H.1.1.1 In and Out Registers

The in and out registers are used primarily for passing parameters to and receiving results
from subroutines, and for keeping track of the memory stack. When a procedure is called
and executes a SAVE instruction, the caller’s outs become the callee’s ins.

One of a procedure’s out registers (%o6) is used as its stack pointer, %sp. It points to an
area in which the system can store %r16 ..%r31 (%l0 ..%l7 and %i0 ..%i7) when the
register file overflows (spill trap), and is used to address most values located on the stack.

This appendix is informative only.

It is not part of the SPARC-V9 specification.

302 H Software Considerations

A trap can occur at any time1, which may precipitate a subsequent spill trap. During this
spill trap, the contents of the user’s register window at the time of the original trap are
spilled to the memory to which its %sp points.

A procedure may store temporary values in its out registers (except %sp) with the under-
standing that those values are volatile across procedure calls. %sp cannot be used for tem-
porary values for the reasons described in H.1.1.3, “Register Windows and %sp.”

Up to six parameters2 may be passed by placing them in out registers %o0 ..%o5; addi-
tional parameters are passed in the memory stack. The stack pointer is implicitly passed in
%o6, and a CALL instruction places its own address in %o7.3 Floating-point parameters
may also be passed in floating-point registers.

After a callee is entered and its SAVE instruction has been executed, the caller’s out regis-
ters are accessible as the callee’s in registers.

The caller’s stack pointer %sp (%o6) automatically becomes the current procedure’s
frame pointer %fp (%i6) when the SAVE instruction is executed.

The callee finds its first six integer parameters in %i0 ..%i5, and the remainder (if any) on
the stack.

A function returns a scalar integer value by writing it into its ins (which are the caller’s
outs), starting with %i0. A scalar floating-point value is returned in the floating-point reg-
isters, starting with %f0.

A procedure’s return address, normally the address of the instruction just after the CALL’s
delay-slot instruction, is as %i7+8.4

H.1.1.2 Local Registers

The locals are used for automatic5 variables and for most temporary values. For access
efficiency, a compiler may also copy parameters (that is, those past the sixth) from the
memory stack into the locals and use them from there.

See H.1.4, “Register Allocation within a Window,” for methods of allocating more or
fewer than eight registers for local values.

1. For example, due to an error in executing an instruction (for example, a mem_address_not_aligned

trap), or due to any type of external interrupt.

2. Six is more than adequate, since the overwhelming majority of procedures in system code take fewer

than six parameters. According to studies cited by Weicker (Weicker, R. P., “Dhrystone: A Synthetic

Systems Programming Benchmark,” CACM 27:10, October 1984), at least 97% (measured statically)

take fewer than six parameters. The average number of parameters did not exceed 2.1, measured either

statically or dynamically, in any of these studies.

3. If a JMPL instruction is used in place of a CALL, it should place its address in %o7 for consistency.

4. For convenience, SPARC-V9 assemblers may provide a “ret” (return) synthetic instruction that gener-

ates a “jmpl %i7+8, %g0” hardware instruction. See G.3, “Synthetic Instructions.”

5. In the C language, an automatic variable is a local variable whose lifetime is no longer than that of its

containing procedure.

H.1 Nonprivileged Software 303

H.1.1.3 Register Windows and %sp

Some caveats about the use of %sp and the SAVE and RESTORE instructions are appro-
priate. If the operating system and user code use register windows, it is essential that

— %sp always contains a correct value, so that when (and if) a register window spill/
fill trap occurs, the register window can be correctly stored to or reloaded from
memory.6

— Nonprivileged code uses SAVE and RESTORE instructions carefully. In particular,
“walking” the call chain through the register windows using RESTOREs, expect-
ing to be able to return to where one started using SAVEs, does not work as one
might suppose. Since user code cannot disable traps, a trap (e.g., an interrupt)
could write over the contents of a user register window that has “temporarily” been
RESTOREd7. The safe method is to flush the register windows to user memory
(the stack) by using the FLUSHW instruction. Then, user code can safely “walk”
the call chain through user memory, instead of through the register windows.

To avoid such problems, consider all data memory at addresses just less than %sp to be
volatile, and the contents of all register windows “below” the current one to be volatile.

H.1.1.4 Global Registers

Unlike the ins, locals, and outs, the globals are not part of any register window. The glo-

bals are a set of eight registers with global scope, like the register sets of more traditional
processor architectures. An ABI may define conventions that the globals (except %g0)
must obey. For example, if the convention assumes that globals are volatile across proce-
dure calls, either the caller or the callee must take responsibility for saving and restoring
their contents.

Global register %g0 has a hardwired value of zero; it always reads as zero, and writes to it
have no program-visible effect.

Typically, the global registers other than %g0 are used for temporaries, global variables, or
global pointers — either user variables, or values maintained as part of the program’s exe-
cution environment. For example, one could use globals in the execution environment by
establishing a convention that global scalars are addressed via offsets from a global base

6. Typically, the SAVE instruction is used to generate a new %sp value while shifting to a new register

window, all in one atomic operation. When SAVE is used this way, synchronization of the two opera-

tions should not be a problem.

7. Another reason this might fail is that user code has no way to determine how many register windows are

implemented by the hardware.

304 H Software Considerations

register. In the most general case, memory accessed at an arbitrary address requires six
instructions; for example,

sethi %uhi(address),tmp

or tmp, %ulo(address), tmp

sllx tmp, 32, tmp

sethi %hi(address), reg

or reg, %lo(address), reg

ld [reg+tmp], reg

Use of a global base register for frequently accessed global values would provide faster
(single-instruction) access to 213 bytes of those values; for example,

ld [%gn+offset], reg

Additional global registers could be used to provide single-instruction access to corre-
spondingly more global values.

H.1.1.5 Floating-Point Registers

There are sixteen quad-precision floating-point registers. The registers can also be
accessed as thirty-two double-precision registers. In addition, the first eight quad registers
can also be accessed as thirty-two single-precision registers. Floating-point registers are
accessed with different instructions than the integer registers; their contents can be moved
among themselves, and to or from memory. See 5.1.4, “Floating-Point Registers,” for
more information about floating-point register aliasing.

Like the global registers, the floating-point registers must be managed by software. Com-
pilers use the floating-point registers for user variables and compiler temporaries, pass
floating-point parameters, and return floating-point results in them.

H.1.1.6 The Memory Stack

A stack is maintained to hold automatic variables, temporary variables, and return infor-
mation for each invocation of a procedure. When a procedure is called, a stack frame is
allocated; it is released when the procedure returns. The use of a stack for this purpose
allows simple and efficient implementation of recursive procedures.

Under certain conditions, optimization can allow a leaf procedure to use its caller’s stack
frame instead of one of its own. In that case, the procedure allocates no space of its own
for a stack frame. See H.1.2, “Leaf-Procedure Optimization,” for more information.

The stack pointer %sp must always maintain the alignment required by the operating sys-
tem’s ABI. This is at least doubleword alignment, possibly with a constant offset to
increase stack addressability using constant offset addressing.

H.1.2 Leaf-Procedure Optimization

A leaf procedure is one that is a “leaf” in the program’s call graph; that is, one that does
not call (e.g., via CALL or JMPL) any other procedures.

H.1 Nonprivileged Software 305

Each procedure, including leaf procedures, normally uses a SAVE instruction to allocate a
stack frame and obtain a register window for itself, and a corresponding RESTORE
instruction to deallocate it. The time costs associated with this are

— Possible generation of register-window spill/fill traps at runtime. This only hap-
pens occasionally,8 but when either a spill or fill trap does occur, it costs several
machine cycles to process.

— The cycles expended by the SAVE and RESTORE instructions themselves.

There are also space costs associated with this convention, the cumulative cache effects of
which may be nonnegligible. The space costs include

— The space occupied on the stack by the procedure’s stack frame

— The two words occupied by the SAVE and RESTORE instructions

Of the above costs, the trap-processing cycles typically are the most significant.

Some leaf procedures can be made to operate without their own register window or stack
frame, using their caller’s instead. This can be done when the candidate leaf procedure
meets all of the following conditions:9

— It contains no references to %sp, except in its SAVE instruction.

— It contains no references to %fp.

— It refers to (or can be made to refer to) no more than eight of the thirty-two integer
registers, including %o7 (the return address).

If a procedure conforms to the above conditions, it can be made to operate using its
caller’s stack frame and registers, an optimization that saves both time and space. This
optimization is called leaf procedure optimization. The optimized procedure may safely
use only registers that its caller already assumes to be volatile across a procedure call.

The optimization can be performed at the assembly language level using the following
steps:

(1) Change all references to registers in the procedure to registers that the caller
assumes volatile across the call.

(a) Leave references to %o7 unchanged.

(b) Leave any references to %g0 ..%g7 unchanged.

(c) Change %i0 ..%i5 to %o0 ..%o5, respectively. If an in register is changed to an
out register that was already referenced in the original unoptimized version of
the procedure, all original references to that out register must be changed to
refer to an unused out or global register.

8. The frequency of overflow and underflow traps depends on the application and on the number of register

windows (NWINDOWS) implemented in hardware.

9. Although slightly less restrictive conditions could be used, the optimization would become more com-

plex to perform and the incremental gain would usually be small.

306 H Software Considerations

(d) Change references to each local register into references to any unused register
that is assumed to be volatile across a procedure call.

(2) Delete the SAVE instruction. If it was in a delay slot, replace it with a NOP
instruction. If its destination register was not %g0 or %sp, convert the SAVE into
the corresponding ADD instruction instead of deleting it.

(3) If the RESTORE’s implicit addition operation is used for a productive purpose
(such as setting the procedure’s return value), convert the RESTORE to the corre-
sponding ADD instruction. Otherwise, the RESTORE is only used for stack and
register-window deallocation; replace it with a NOP instruction (it is probably in
the delay slot of the RET, and so cannot be deleted).

(4) Change the RET (return) synthetic instruction to RETL (return-from-leaf-proce-
dure synthetic instruction).

(5) Perform any optimizations newly made possible, such as combining instructions or
filling the delay slot of the RETL (or the delay slot occupied by the SAVE) with a
productive instruction.

After the above changes, there should be no SAVE or RESTORE instructions, and no ref-
erences to in or local registers in the procedure body. All original references to ins are now
to outs. All other register references are to registers that are assumed to be volatile across a
procedure call.

Costs of optimizing leaf procedures in this way include

— Additional intelligence in a peephole optimizer to recognize and optimize candi-
date leaf procedures

— Additional intelligence in debuggers to properly report the call chain and the stack
traceback for optimized leaf procedures10

H.1.3 Example Code for a Procedure Call

This subsection illustrates common parameter-passing conventions and gives a simple
example of leaf-procedure optimization.

The code fragment in example 1 shows a simple procedure call with a value returned, and
the procedure itself.

Since sum3 does not call any other procedures (i.e., it is a leaf procedure), it can be opti-
mized to become:

sum3:

add %o0, %o1, %o0

retl ! (must use RETL, not RET,

add %o0, %o2, %o0 ! to return from leaf procedure)

10. A debugger can recognize an optimized leaf procedure by scanning it, noting the absence of a SAVE

instruction. Compilers often constrain the SAVE, if present, to appear within the first few instructions of

a procedure; in such a case, only those instruction positions need be examined.

H.1 Nonprivileged Software 307

H.1.4 Register Allocation within a Window

The usual SPARC-V9 software convention is to allocate eight registers (%l0 ..%l7) for
local values. A compiler could allocate more registers for local values at the expense of
having fewer outs and ins available for argument passing. For example, if instead of
assuming that the boundary between local values and input arguments is between r[23]
and r[24] (%l7 and %i0), software could, by convention, assume that the boundary is
between r[25] and r[26] (%i1 and %i2). This would provide ten registers for local values
and six in and out registers. This is shown in table 44.

! CALLER:

! int i; /* compiler assigns "i" to register %l7 */

! i = sum3(1, 2, 3);

...

mov 1, %o0 ! first arg to sum3 is 1

mov 2, %o1 ! second arg to sum3 is 2

call sum3 ! the call to sum3

mov 3, %o2 ! last parameter to sum3 in delay slot

mov %o0, %l7 ! copy return value to %l7 (variable "i")

...

#define SA(x) (((x)+15)&(~0x1F)) /* rounds "x" up to extended word boundary

*/

#define MINFRAME ((16+1+6)*8) /* minimum size stack frame, in bytes;

 * 16 extended words for saving the

current

 * register window,

 * 1 extended word for “hidden parameter”,

 * and 6 extended words in which a callee

 * can store its arguments.

 */

! CALLEE:

! int sum3(a, b, c)

! int a, b, c; /* args received in %i0, %i1, and %i2 */

! {

! return a+b+c;

! }

sum3:

save %sp,-SA(MINFRAME),%sp! set up new %sp; alloc min. stack frame

add %i0, %i1, %l7 ! compute sum in local %l7

add %l7, %i2, %l7 ! (or %i0 could have been used directly)

ret ! return from sum3, and...

restore %l7, 0, %o0 ! move result into output reg & restore

Example 1—Simple Procedure Call with Value Returned

308 H Software Considerations

H.1.5 Other Register-Window-Usage Models

So far, this appendix has described SPARC-V9 software conventions that are appropriate
for use in a general-purpose multitasking computer system. However, SPARC-V9 is used
in many other applications, notably embedded and/or real-time systems. In such applica-
tions, other schemes for allocation of SPARC-V9’s register windows might be more nearly
optimal than the one described above.

One possibility is to avoid using the normal register-window mechanism by not using
SAVE and RESTORE instructions. Software would see 32 general-purpose registers
instead of SPARC-V9’s usual windowed register file. In this mode, SPARC-V9 would
operate like processors with more traditional (flat) register architectures. Procedure call
times would be more determinate (due to lack of spill/fill traps), but for most types of soft-
ware, average procedure call time would significantly increase, due to increased memory
traffic for parameter passing and saving/restoring local variables.

Effective use of this software convention would require compilers to generate different
code (direct register spills/fills to memory and no SAVE/RESTORE instructions) than for
the software conventions described above.

It would be awkward, at best, to attempt to mix (link) code that uses the SAVE/RESTORE
convention with code that does not use it. If both conventions were used in the same sys-
tem, two versions of each library would be required.

It would be possible to run user code with one register-usage convention and supervisor
code with another. With sufficient intelligence in supervisor software, user processes with
different register conventions could be run simultaneously.11

H.1.6 Self-Modifying Code

If a program includes self-modifying code, it must issue a FLUSH instruction for each
modified doubleword of instructions (or a call to supervisor software having an equivalent
effect).

Table 44—Register Allocation within a Window

Standard
register
model

10 local
register
model

Arbitrary
register
model

Registers for local values 8 10 n

In / out registers

Reserved for %sp / %fp 1 1 1

Reserved for return address 1 1 1

Available for argument passing 6 4 14 − n

Total ins / outs 8 6 16 − n

11. Although technically possible, this is not to suggest that there would be significant utility in mixing user

processes with differing register-usage conventions.

H.1 Nonprivileged Software 309

Note that self-modifying code intended to be portable must use FLUSH instruction(s) (or
a call to supervisor software having equivalent effect) after storing into the instruction
stream.

All SPARC-V9 instruction accesses are big-endian. If a program is running in little-endian
mode and wishes to modify instructions, it must do one of the following:

— Use an explicit big-endian ASI to write the modified instruction to memory, or

— Reverse the byte ordering shown in the instruction formats in Appendix A,
“Instruction Definitions,” before doing a little-endian store, since the stored data
will be reordered before the bytes are written to memory.

H.1.7 Thread Management

SPARC-V9 provides support for the efficient management of user-level threads. The cost
of thread switching can be reduced by using the following features:

User Management of FPU:

The FEF bit in the FPRS register allows nonprivileged code to manage the FPU.
This is in addition to the management done by the supervisor code via the PEF bit
in the PSTATE register. A thread-management library can implement efficient
switching of the FPU among threads by manipulating the FEF bit in the FPRS reg-
ister and by providing a user trap handler (with support from the supervisor soft-
ware) for the fp_disabled exception. See the description of User Traps in H.2.4,
“User Trap Handlers.”

FLUSHW Instruction:
The FLUSHW instruction is an efficient way for a thread library to flush the regis-
ter windows during a thread switch. The instruction executes as a NOP if there are
no windows to flush.

H.1.8 Minimizing Branch Latency

The SPARC-V9 architecture contains several instructions that can be used to minimize
branch latency. These are described below.

Conditional Moves:
The conditional move instructions for both integer and floating-point registers can
be used to eliminate branches from the code generated for simple expressions and/
or assignments. The following example illustrates this.

The C code segment

double x,y;

int i;

...

i = (x > y) ? 1 : 2;

310 H Software Considerations

can be compiled to use a conditional move as follows:

fcmp %fcc1, x, y ! x and y are double regs

mov 1, i ! i is int; assume x > y

movfle %fcc1, 2, i ! fix i if wrong

Branch or Move Based on Register Contents:
The use of register contents as conditions for branch and move instructions allows
any integer register (other than r0) to hold a boolean value or the results of a com-
parison. This allows conditions to be used more efficiently in nested cases. It
allows the generation of a condition to be moved further from its use, thereby min-
imizing latency. In addition, it can eliminate the need for additional arithmetic
instructions to set the condition codes. This is illustrated in the following example.

The test for finding the maximum of an array of integers,

if (A[i] > max)

max = A[i];

can be compiled as follows, allowing the condition for the loop to be set before the
sequence and checked after it:

ldx [addr_of_Ai], Ai

sub Ai, max, tmp

movrgz tmp, Ai, max

H.1.9 Prefetch

The SPARC-V9 architecture includes a prefetch instruction intended to help hide the
latency of accessing memory.12

As a general rule, given a loop of the following form (using C for assembly language, and
assuming a cache line size of 64 bytes and that A and B are arrays of 8-byte values)

for (i = 0; i < N; i++) {

load A[i]

load B[i]

...

}

which takes C cycles per iteration (assuming all loads hit in cache) and given L cycles of
latency to memory, prefetch instructions may be inserted for data that will be needed
ceiling(L/C') iterations in the future, where C' is number of cycles per iteration of the
modified loop. Thus, the loop would be transformed into

12. Two papers describing the use of prefetch instructions are Callahan, D., K. Kennedy, A. Porterfield,

“Software Prefetching,” Proceedings of the Fourth International Conference on Architectural Support

for Programming Languages and Operating Systems, April 1991, pp. 40-52, and Mowry, T., M. Lam,

and A. Gupta, “Design and Evaluation of a Compiler Algorithm for Prefetching,” Proceedings of the

Fifth International Conference on Architectural Support for Programming Languages and Operating

Systems, October 1992, pp. 62-73.

H.1 Nonprivileged Software 311

K = ceiling(L/C');

for (i = 0; i < N; i++) {

load A[i]

load B[i]

prefetch A[i+K]

prefetch B[i+K]

...

}

This ensures that the loads will find their data in the cache, and will thus complete more
quickly. The first K iterations will not get any benefit from prefetching, so if the number of
iterations is small (see below), then prefetching will not help.

Note that in cases of contiguous access (like this one), many of the prefetch instructions
will in fact be unnecessary and may slow the program down. To avoid this, note that the
prefetch instruction always obtains at least 64 (cache-line-aligned) bytes.

/* Round up access to next cache line. */

K' = (ceiling(L/C') + 7) & ~7;

for (i = 0; i < N; i++) {

load A[i]

load B[i]

if (((int)(A+i) & 63) = = 0) {

prefetch A[i+K']

prefetch B[i+K']

}

...

}

or (unrolled eight times, assuming A and B are arrays of 8-byte values)

/* Be sure that we access the next cache line. */

K'' = ceiling(L/C') + 7;

for (i = 0; i < N; i++) {

load A[i]

load B[i]

prefetch A[i+K'']

prefetch B[i+K'']

...

load A[i+1]

load B[i+2]

... (no prefetching)

...

load A[i+7]

load B[i+7]

...

}

312 H Software Considerations

In the first case, the prefetching is performed exactly when needed, and thus the distance
need not be adjusted. However, the prefetching may not start on the first iteration, result-
ing in as many as K' + 7 iterations without prefetching.

In the second case, the prefetching occurs somewhere within a cache line, and thus, it is
not known exactly how long it will be until the next cache line is needed. However, by
prefetching seven further ahead, we ensure that the next cache line will be prefetched soon
enough. In the worst case, as many as K'' (≤ K' + 7) iterations will execute without any
benefit from prefetching.

Table 45 illustrates the cost tradeoffs between no prefetching, naive prefetching, and smart
prefetching (the second choice) for a small loop (two cycles) with varying uncovered
latencies to memory. Some of the latency may be overlapped with execution of surround-
ing instructions; that which is not is uncovered.

Here, we treat the arrays accessed as if one were not in the cache. Thus, every eight itera-
tions, a cache line must be fetched from memory in the no-prefetch case; and thus, the
amortized cost of an iteration is C + L/8. The cost estimate for the smart case ignores any
benefits from unrolling, since it is reasonable to expect that the loop would be unrolled or
pipelined in this fashion, even if prefetching were not used. The startup costs assume an
alignment within the cache that maximizes the initial misses. The break-even cost was
chosen by solving the following equation for N.

N ∗ (C + L/8) = WM ∗ L + N ∗ (7C + C')/8 {e.g., 3N = 16 + 2.25N ⇒ N = 21}

Of course, this is a simplified model.

Another possibility to consider is the worst-case cost of prefetching. If, in the example
provided, everything accessed is always cached, then the smart-prefetching loop takes
12.5% longer. For each memory latency, there is a break-even point (in terms of how often
one of the array operands is cached) at which the prefetching loop begins to run faster.
Table 46 illustrates this.

Table 45—Prefetch Cost Tradeoffs

Limit cycles/iteration Smart startup costs

No pf Naive Smart Worst Worst

C C' L K K'' C+L/8 C' (7C+C')/8 Misses Breakeven

2 4 8 4 11 3 4 2.25 2 N = 21

2 4 16 8 15 4 4 2.25 2 N = 18

2 4 32 16 23 6 4 2.25 3 N = 26

Table 46—Cache Break-Even Points

L C-cached C-missed C-smart

Break-even
% cached
operands

Break-even
loop cache miss

rate

8 2 3 2.25 75% 1.56%

16 2 4 2.25 88% 0.75%

32 2 6 2.25 94% 0.375%

64 2 10 2.25 97% 0.188%

H.1 Nonprivileged Software 313

Note that one uncached operand corresponds to one load out of sixteen missing the cache;
the operand miss rate is sixteen times higher than the load miss rate. Note that this is the
miss rate for this loop alone; extrapolation from whole-program miss rates is not advised.

Binaries that run efficiently across different SPARC-V9 implementations can be created
for cases like this (where memory accesses are regular, though not necessarily contiguous)
by parameterizing the prefetch distance by machine type. In privileged code the machine
type is available in the VER register; nonprivileged code should be able to obtain this from
the operating system or ABI. Based on information about known machines and estimated
loop execution times, a compiler could precalculate values for K'' (assuming smart
prefetching) and store them in a table. At execution time, the proper value for K'' would be
fetched from the table before entering the loop.

For regular but noncontiguous accesses, a prefetch would be issued for every load. If
cache blocking is used, the prefetching strategy must be adjusted accordingly, since there
is no point in prefetching data that is expected to be in the cache already.

The prefetch variant should be chosen based on what is known about the local and global
use of the data prefetched. If the data is not being written locally, then variant 0 (several
reads) should be used. If it is being written (and possibly also read), then variant 2 (several
writes) should be used. If, in addition, it is known that this is likely to be the last use of the
data for some time (for example, if the loop iteration count is one million and dependence
analysis reveals no reuse of data), then it is appropriate to use either variant 1 (one read) or
3 (one write). If reuse of data is expected to occur soon, then use of variants 1 or 3 is not
appropriate, because of the risk of increased bus and memory traffic on a multiprocessor.

If the hardware does not implement all variants, it is expected to provide a sensible over-
loading of the unimplemented variants. Thus, correct use of a specific variant need not be
tied to a particular SPARC-V9 implementation or multi/uniprocessor configuration.

H.1.10 Nonfaulting Load

The SPARC-V9 architecture includes a way to specify load instructions that do not gener-
ate visible faults, so that compilers can have more freedom in scheduling instructions.
Note that these are not speculative loads, which may fault if their results are later used;
these are normal load instructions, but tagged to indicate to the kernel and/or hardware
that a fault should not be delivered to the code executing the instruction.

Five important rules govern the use of nonfaulting loads:

(1) Volatile memory references in the source language should not use nonfaulting load
instructions.

(2) Code compiled for debugging should not use nonfaulting loads, because they
remove the ability to detect common errors.

(3) If nonfaulting loads are used, page zero should be a page of zero values, mapped
read-only. Compilers that routinely use negative offsets to register pointers should
map page “–1” similarly, if the operating software permits it.

314 H Software Considerations

(4) Any use of nonfaulting loads in privileged code must be aware of how they are
treated by the host SPARC-V9 implementation.

(5) Nonfaulting loads from unaligned addresses may be substantially more expensive
than nonfaulting loads from other addresses.

Nonfaulting loads can be used to solve three scheduling problems.

— On super-scalar machines, it is often desirable to obtain the right mix of instruc-
tions to avoid conflicts for any given execution unit. A nonfaulting load can be
moved (backwards) past a basic block boundary to even out the instruction mix.

— On pipelined machines, there may be latency between loads and uses. A nonfault-
ing load can be moved past a block boundary to place more instructions between a
load into a register and the next use of that register.

— Software pipelining improves the scheduling of loops, but if a loop iteration begins
with a load instruction and contains an early exit, it may not be eligible for pipelin-
ing. If the load is replaced with a nonfaulting load, then the loop can be pipelined.

In the branch-laden code shown in example 2, nonfaulting loads could be used to separate
loads from uses. The result also has a somewhat better mix of instructions and is some-
what pipelined. The basic blocks are separated.

Source Code:
while (x ! = 0 && x -> key ! = goal) x = x -> next;

With Normal Loads:
entry:

brnz,a x,loop !

ldx [x],t1 ! (pre)load1 (key)

loop:

cmp t1,goal ! use1

bpe %xcc,out

nop ! no filling from loop.

ldx [x+8],x ! load2 (next)

brnz,a x,loop ! use2

ldx [x],t1 ! load1

out: ...

With Nonfaulting Loads:
entry:

mov x,t2

mov #ASI_PNF, %asi

ldxa [t2]%asi,t1 ! (pre)load1 (nf-load for key)

loop:

mov t2,x ! begin loop body

brz,pn t2,out

ldxa [t2+8]%asi,t2 ! load2 (nf-load for next)

cmp t1,goal ! use1

bpne %xcc,loop

ldxa [t2],%asi,t1 ! use2, load1 ! nf-load for x

out: ...

Example 2—Branch-Laden Code with Nonfaulting Loads

H.2 Supervisor Software 315

In the loop shown in example 3, nonfaulting loads allow pipelining. This loop might be

improved further using unrolling, prefetching, and multiple FCCs, but that is beyond the
scope of this discussion.

H.2 Supervisor Software

This subsection discusses how supervisor software can use the SPARC-V9 privileged
architecture. It is intended to illustrate how the architecture can be used in an efficient
manner. An implementation may choose to utilize different strategies based on its require-
ments and implementation-specific aspects of the architecture.

H.2.1 Trap Handling

The SPARC-V9 privileged architecture provides support for efficient trap handling, espe-
cially for window traps. The following features of the SPARC-V9 privileged architecture
can be used to write efficient trap handlers:

Multiple Trap Levels:
The trap handlers for trap levels less than MAXTL – 1 can be written to ignore
exceptional conditions and execute the common case efficiently (without checks
and branches). For example, the fill/spill handlers can access pageable memory

Example 3—Loop with Nonfaulting Loads

Source Code:
d_ne_index (double * d1, double * d2) {

int i = 0;

while(d1[i] = = d2[i]) i++;

return i;

}

With Normal Loads:
mov 0,t

mov 0,i

loop:

lddf [d1+t],a1

lddf [d2+t],a2 ! load

add t,8,t

fcmpd a1,a2 ! use

fbe,a loop ! fcc use

add i,1,i

With Nonfaulting Loads:
lddf [d1],a1

lddf [d2],a2

mov 8,t

mov 0,i

loop:

fcmpd a1,a2 ! use, fcc def

lddfa [d1+t],%asi,a1

lddfa [d2+t],%asi,a2 ! load

add t,8,t

fbe,a loop ! fcc use

add i,1,i

316 H Software Considerations

without first checking if it is resident. If the memory is not resident, the access will
cause a trap that will be handled at the next trap level.

Vectoring of Fill/Spill Traps:
Supervisor software can set up the vectoring of fill/spill traps prior to executing
code that uses register windows and may cause spill/fill traps. This feature can be
used to support SPARC-V8 and SPARC-V7 binaries. These binaries create stack
frames with save areas for 32-bit registers. SPARC-V9 binaries create stack frames
with save areas for 64-bit registers. By setting up the spill/fill trap vector based on
the type of binary being executed, the trap handlers can avoid checking and
branching to use the appropriate load/store instructions.

Saved Trap State:
Trap handlers need not save (restore) processor state that is automatically saved
(restored) on a trap (return from trap). For example, the fill/spill trap handlers can
load ASI_AS_IF_USER_PRIMARY{_LITTLE} into the ASI register in order to
access the user’s address space without the overhead of having to save and restore
the ASI register.

SAVED and RESTORED Instructions:
The SAVED (RESTORED) instruction provides an efficient way to update the
state of the register windows after successfully spilling (filling) a register window.
They implement a default policy of spilling (filling) one register window at a time.
If desired, the supervisor software can implement a different policy by directly
updating the state registers.

Alternate Globals:
The alternate global registers can be used to avoid saving and restoring the normal
global registers. They can be used like the local registers of the trap window in
SPARC-V8.

Large Trap Vectors for Spill/Fill:
The definition of the spill and fill trap vectors with reserved space between each
pair of vectors allows spill and fill trap handlers to be up to thirty-two instructions
long, thus avoiding a branch in the handler.

H.2.2 Example Code for Spill Handler

The code in example 4 shows a spill handler for a SPARC-V9 user binary. The handler is
located at the vector for trap type spill_0_normal (08016). It is assumed that supervisor soft-
ware has set the WSTATE register to 0 before executing the user binary. The handler is
invoked when user code executes a SAVE instruction that results in a window overflow.

H.2.3 Client-Server Model

SPARC-V9 provides mechanisms to support client-server computing efficiently. A call
from a client to a server (where the client and server have separate address spaces) can be
implemented efficiently using a software trap that switches the address space. This is often
referred to as a cross-domain call. A system call in most operating systems can be viewed

H.2 Supervisor Software 317

as a special case of a cross-domain call. The following features are useful in implementing
a cross-domain call:

Splitting the Register Windows

The register windows can be shared efficiently between multiple address spaces by using
the OTHERWIN register and providing additional trap handlers to handle spill/fill traps
for the other (not the current) address spaces. On a cross-domain call (a software trap), the
supervisor can set the OTHERWIN register to the number of register windows used by the
client (equal to CANRESTORE) and CANRESTORE to zero. At the same time the
WSTATE bit vectors can be set to vector the spill/fill traps appropriately for each address
space.

The sequence in example 5 shows a cross-domain call and return. The example assumes
the simple case, where only a single client-server pair can occupy the register windows.
More general schemes can be developed along the same lines.

ASI_SECONDARY{_LITTLE}

Supervisor software can use these unrestricted ASIs to support cross-address-space access
between clients and nonprivileged servers. For example, some services that are currently
provided as part of a large monolithic supervisor can be separated out as nonprivileged
servers (potentially occupying a separate address space). This is often referred to as the
microkernel approach.

H.2.4 User Trap Handlers

Supervisor software can provide efficient support for user (nonprivileged) trap handlers on
SPARC-V9. The RETURN instruction allows nonprivileged code to retry an instruction

T_NORMAL_SPILL_0:

!Set ASI to access user addr space

wr #ASI_AIUP, %asi

stxa %l0, [%sp+(8* 0)]%asi !Store window in memory stack

stxa %l1, [%sp+(8* 1)]%asi

stxa %l2, [%sp+(8* 2)]%asi

stxa %l3, [%sp+(8* 3)]%asi

stxa %l4, [%sp+(8* 4)]%asi

stxa %l5, [%sp+(8* 5)]%asi

stxa %l6, [%sp+(8* 6)]%asi

stxa %l7, [%sp+(8* 7)]%asi

stxa %i0, [%sp+(8* 8)]%asi

stxa %i1, [%sp+(8* 9)]%asi

stxa %i2, [%sp+(8*10)]%asi

stxa %i3, [%sp+(8*11)]%asi

stxa %i4, [%sp+(8*12)]%asi

stxa %i5, [%sp+(8*13)]%asi

stxa %i6, [%sp+(8*14)]%asi

stxa %i7, [%sp+(8*15)]%asi

saved ! Update state

retry ! Retry trapped instruction

! Restores old %asi

Example 4—Spill Handler

318 H Software Considerations

pointed to by the previous stack frame. This provides the semantics required for returning
from a user trap handler without any change in processor state. Supervisor software can
invoke the user trap handler by first creating a new register window (and stack frame) on
its behalf and passing the necessary arguments (including the PC and nPC for the trapped
instruction) in the local registers. The code in example 6 shows how a user trap handler
may be invoked and how it returns:

cross_domain_call:

save ! create a new register window for the server

.. ! Switch to the execution environment for the server;

.. ! Save trap state as necessary.

! Set CWP for caller in TSTATE

rdpr %tstate, %g1

rdpr %cwp, %g2

bclr TSTATE_CWP, %g1

wrpr %g1, %g2, %tstate

rdpr %canrestore, %g1

wrpr %g0, 0, %canrestore

wrpr %g0, %g1, %otherwin

rdpr %wstate, %g1

sll %g1, 3, %g1 ! Move WSTATE_NORMAL (client’s

! vector)to WSTATE_OTHER

or %g1, WSTATE_SERVER, %g1 ! Set WSTATE_NORMAL to the

! vector for the server

wrpr %g0, %g1, %wstate

.. ! Load trap state for server

done ! Execute server code

cross_domain_return:

rdpr %otherwin, %g1

wrpr %g0, %g1, %canrestore

wrpr %g0, 0, %otherwin

rdpr %wstate, %g1

srl %g1, 3, %g1

wrpr %g0, %g1, %wstate ! Reset WSTATE_NORMAL to

! client’s vector

.. ! Restore saved trap state as necessary; this includes

! the return PC for the caller.

restore ! Go back to the caller’s register window.

! Set CWP for caller in TSTATE

rdpr %tstate, %g1

rdpr %cwp, %g2

bclr TSTATE_CWP, %g1

wrpr %g1, %g2, %tstate

done ! return to the caller

Example 5—Cross-Domain Call and Return

H.2 Supervisor Software 319

T_EXAMPLE_TRAP: ! Supervisor trap handler for T_EXAMPLE_TRAP trap

save ! Create a window for the user trap handler

!Set CWP for new window in TSTATE

rdpr %tstate, %l6

rdpr %cwp, %l5

bclr TSTATE_CWP, %l6

wrpr %l6, %l5, %tstate

rdpr %tpc,%l6 !Put PC for trapped instruction in local register

rdpr %tnpc,%l7 !Put nPC for trapped instruction in local register

.. !Get the address of the user trap handler in %l5;

! for example, from a supervisor data structure.

wrpr %l5, %tnpc ! Put PC for user trap handler in %tnpc.

done ! Execute user trap handler.

USER_EXAMPLE_TRAP: !User trap handler for T_EXAMPLE_TRAP trap

.. !Execute trap handler logic. Local registers

! can be used as scratch.

jmpl %l6 !Return to retry the trapped instruction.

return %l7

Example 6—User Trap Handler

320 H Software Considerations

321

I Extending the SPARC-V9 Architecture

This appendix describes how extensions can be effectively added to the SPARC-V9 archi-
tecture. It describes how new instructions can be added through the use of read and write
ancillary state register (ASR) and implementation-dependent (IMPDEP1/IMPDEP2)
instructions.

I.1 Addition of SPARC-V9 Extensions

There are two approved methods of adding extensions to an implementation of the
SPARC-V9 architecture. An implementor who wishes to define and implement a new
SPARC-V9 instruction should, if possible, use one of the following methods.

I.1.1 Read/Write Ancillary State Registers (ASRs)

The first method of adding instructions to SPARC-V9 is through the use of the implemen-
tation-dependent Write Ancillary State Register (WRASR) and Read Ancillary State Reg-
ister (RDASR) instructions operating on ASRs 16..31. Through a read/write instruction
pair, any instruction that requires an rs1, reg_or_imm, and rd field can be implemented. A
WRASR instruction can also perform an arbitrary operation on two register sources, or on
one register source and a signed immediate value, and place the result in an ASR. A subse-
quent RDASR instruction can read the result ASR and place its value in an integer destina-
tion register.

I.1.2 Implementation-Dependent and Reserved Opcodes

The meaning of “reserved” for SPARC-V9 opcodes differs from its meaning in SPARC-
V8. The SPARC-V9 definition of “reserved” allows implementations to use reserved

This appendix is informative only.

It is not part of the SPARC-V9 specification.

Programs that make use of SPARC-V9 architectural extensions

may not be portable and likely will not conform to any current or

future SPARC-V9 binary standards.

— WARNING —

322 I Extending the SPARC-V9 Architecture

opcodes for implementation-specific purposes. While a hardware implementation that
uses reserved opcodes will be SPARC-V9-compliant, SPARC-V9 ABI-compliant pro-
grams cannot use these reserved opcodes and remain compliant. A SPARC-V9 platform
that implements instructions using reserved opcodes must provide software libraries that
provide the interface between SPARC-V9 ABI-compliant programs and these instructions.
Graphics libraries provide a good example of this. Hardware platforms have many diverse
implementations of graphics acceleration hardware, but graphics application programs are
insulated from this diversity through libraries.

There is no guarantee that a reserved opcode will not be used for additional instructions in
a future version of the SPARC architecture. Implementors who use reserved opcodes
should keep this in mind.

In some cases forward compatibility may not be an issue; for example, in an embedded
application, binary compatibility may not be an issue. These implementations can use any
reserved opcodes for extensions.

Even when forward compatibility is an issue, future SPARC revisions are likely to contain
few changes to opcode assignments, given that backward compatibility with previous ver-
sions must be maintained. It is recommended that implementations wishing to remain for-
ward-compatible use the new IMPDEP1 and IMPDEP2 reserved opcodes with
op3[5:0] = 11 01102 and 11 01112.

Compatibility Note:

IMPDEP1 and IMPDEP2 replace the SPARC-V8 CPop1 and CPop2 opcodes. SPARC-V9 includes

neither the SPARC-V8 coprocessor opcodes nor any other SPARC-V8 architectural support for

coprocessors. The coprocessor opcodes were eliminated because they have not been used in

SPARC-V7 and SPARC-V8, as witnessed by the lack of coprocessor implementations.

It is further recommended that SPARC International be notified of any use of IMPDEP1,
IMPDEP2, or other reserved opcodes. When and if future revisions to SPARC are contem-
plated, and if any SPARC-V9 implementations have made use of reserved opcodes,
SPARC International will make every effort not to use those opcodes. By going through
SPARC International, there can be feedback and coordination in the choice of opcodes
that maximizes the probability of forward compatibility. Given the historically small num-
ber of implementation-specific changes, coordinating through SPARC International
should be sufficient to ensure future compatibility.

323

J Programming With the Memory Models

This appendix describes how to program with the SPARC-V9 memory models. An intui-
tive description of the models is provided in Chapter 8, “Memory Models.” A complete
formal specification appears in Appendix D, “Formal Specification of the Memory Mod-
els.” In this subsection, general programming guidelines are given first, followed by spe-
cific examples showing how low-level synchronization can be implemented in TSO, PSO,
and RMO.

Note that code written for a weaker memory model will execute correctly in any of the
stronger memory models. Furthermore, the only possible difference between code written
for a weaker memory model and the corresponding code for a stronger memory model is
the presence of memory ordering instructions (MEMBARs) that are not needed for the
stronger memory model. Hence, transforming code from/to a stronger memory model to/
from a weaker memory model means adding/removing certain memory ordering instruc-
tions.1 The required memory ordering directives are monotonically ordered with respect to
the strength of the memory model, with the weakest memory model requiring the stron-
gest memory ordering instructions.

The code examples given below are written to run correctly using the RMO memory
model. The comments on the MEMBAR instructions indicate which ordering constraints
(if any) are required for the PSO and TSO memory models.

J.1 Memory Operations

Programs access memory via five types of operations, namely, load, store, LDSTUB,
SWAP, and compare-and-swap. Load copies a value from memory or an I/O location to a
register. Store copies a value from a register into memory or an I/O location. LDSTUB,
SWAP, and compare-and-swap are atomic load-store instructions that store a value into

1. MEMBAR instructions specify seven independent ordering constraints; thus, there are cases where the

transition to a stronger memory model allows the use of a less restrictive MEMBAR instruction, but still

requires a MEMBAR instruction. To demonstrate this property, the code examples given in this subsec-

tion use multiple MEMBAR instructions if some of the ordering constraints are needed in some but not

all memory models. Multiple, adjacent MEMBAR instructions can always be replaced with a single

MEMBAR instruction by ORing the arguments.

This appendix is informative only.

It is not part of the SPARC-V9 specification.

324 J Programming With the Memory Models

memory or an I/O location and return the old value in a register. The value written by the
atomic instructions depends on the instruction. LDSTUB stores all ones in the accessed
byte, SWAP stores the supplied value, and compare-and-swap stores the supplied value
only if the old value equals the second supplied value.

Memory order and consistency are controlled by MEMBAR instructions. For example, a
MEMBAR #StoreStore (equivalent to a STBAR in SPARC-V8) ensures that all previ-
ous stores have been performed before subsequent stores and atomic load-stores are exe-
cuted by memory. This particular memory order is guaranteed implicitly in TSO, but PSO
and RMO require this instruction if the correctness of a program depends on the order in
which two store instructions can be observed by another processor.2

FLUSH is not a memory operation, but it is relevant here in the context of synchronizing
stores with instruction execution. When a processor modifies an instruction at address A, it
does a store to A followed by a FLUSH A. The FLUSH ensures that the change made by
the store will become visible to the instruction fetch units of all processors in the system.

J.2 Memory Model Selection

Given that all SPARC-V9 systems are required to support TSO, programs written for any
memory model will be able to run on any SPARC-V9 system. However, a system running
with the TSO model generally will offer lower performance than PSO or RMO, because
less concurrency is exposed to the CPU and the memory system. The motivation for weak-
ening the memory model is to allow the CPU to issue multiple, concurrent memory refer-
ences in order to hide memory latency and increase access bandwidth. For example, PSO
and RMO allow the CPU to initiate new store operations before an outstanding store has
completed.

Using a weaker memory model for an MP (multiprocessor) application that exhibits a high
degree of read-write memory sharing with fine granularity and a high frequency of syn-
chronization operations may result in frequent MEMBAR instructions.

In general, it is expected that the weaker memory models offer a performance advantage
for multiprocessor SPARC-V9 implementations.

J.3 Processors and Processes

In the SPARC-V9 memory models, the term “processor” may be replaced systematically
by the term “process” or “thread,” as long as the code for switching processes or threads is
written properly. The correct process-switch sequence is given in J.8, “Process Switch
Sequence.” If an operating system implements this process-switch sequence, application
programmers may completely ignore the difference between a process/thread and a pro-
cessor.

2. Memory order is of concern only to programs containing multiple threads that share writable memory

and that may run on multiple processors, and to those programs which reference I/O locations. Note that

from the processor’s point of view, I/O devices behave like other processors.

J.4 Higher-Level Programming Languages and Memory Models 325

J.4 Higher-Level Programming Languages and Memory Models

The SPARC-V9 memory models are defined at the machine instruction level. Special
attention is required to write the critical parts of MP/MT (multi-threaded) applications in a
higher-level language. Current higher-level languages do not support memory ordering
instructions and atomic operations. As a result, MP/MT applications that are written in a
higher-level language generally will rely on a library of MP/MT support functions, for
example, the parmacs library from Argonne National Laboratory.3 The details of con-
structing and using such libraries are beyond the scope of this document.

Compiler optimizations such as code motion and instruction scheduling generally do not
preserve the order in which memory is accessed but they do preserve the data dependen-
cies of a single thread. Compilers do not, in general, deal with the additional dependency
requirements to support sharing read-write data among multiple concurrent threads.
Hence, the memory semantics of a SPARC-V9 system in general are not preserved by
optimizing compilers. For this reason, and because memory ordering directives are not
available from higher-level languages, the examples presented in this subsection use
assembly language.

Future compilers may have the ability to present the programmer with a sequentially con-
sistent memory model despite the underlying hardware’s providing a weaker memory
model.4

J.5 Portability And Recommended Programming Style

Whether a program is portable across various memory models depends on how it synchro-
nizes access to shared read-write data. Two aspects of a program’s style are relevant to
portability:

— Good semantics refers to whether the synchronization primitives chosen and the
way in which they are used are such that changing the memory model does not
involve making any changes to the code that uses the primitives.

— Good structure refers to whether the code for synchronization is encapsulated
through the use of primitives such that when the memory model is changed,
required changes to the code are confined to the primitives.

Good semantics are a prerequisite for portability, while good structure makes porting eas-
ier.

Programs that use single-writer/multiple-reader locks to protect all access to shared read-
write data are portable across all memory models. The code that implements the lock
primitives themselves is portable across all models only if it is written to run correctly on
RMO. If the lock primitives are collected into a library, then, at worst, only the library rou-

3. Lusk, E. L., R.A. Overbeek, “Use of Monitors in Fortran: A Tutorial on the Barrier, Self-scheduling Do-

Loop, and Askfor Monitors,” TR# ANL-84-51, Argonne National Laboratory, June 1987.

4. See Gharachorloo, K., S.V. Adve, A. Gupta, J.L. Hennessy, and M.D. Hill, “Programming for Different

Memory Consistency Models,” Journal of Parallel and Distributed Systems, 15:4, August 1992.

326 J Programming With the Memory Models

tines must be changed. Note that mutual exclusion (mutex) locks are a degenerate type of
single-writer/multiple-readers lock.

Programs that use write locks to protect write accesses but read without locking are porta-
ble across all memory models only if writes to shared data are separated by MEMBAR
#StoreStore instructions, and if reading the lock is followed by a MEMBAR #Load-

Load instruction. If the MEMBAR instructions are omitted, the code is portable only
across TSO and Strong Consistency,5 but generally it will not work with PSO and RMO.
The code that implements the lock primitives is portable across all models only if it is
written to run correctly on RMO. If the lock routines are collected into a library, the only
possible changes not confined to the library routines are the MEMBAR instructions.

Programs that do synchronization without using single-writer/multiple-reader locks, write
locks, or their equivalent are, in general, not portable across different memory models.
More precisely, the memory models are ordered from RMO (which is the weakest, least
constrained, and most concurrent), PSO, TSO, to sequentially consistent (which is the
strongest, most constrained, and least concurrent). A program written to run correctly for
any particular memory model will also run correctly in any of the stronger memory mod-
els, but not vice versa. Thus, programs written for RMO are the most portable, those writ-
ten for TSO are less so, and those written for strong consistency are the least portable.
This general relationship between the memory models is shown graphically in figure 49.

Figure 49—Portability Relations among Memory Models

The style recommendations may be summarized as follows: Programs should use single-
writer/multiple-reader locks, or their equivalent, when possible. Other lower-level forms
of synchronization (such as Dekker’s algorithm for locking) should be avoided when pos-
sible. When use of such low-level primitives is unavoidable, it is recommended that the

5. Programs that assume a sequentially consistent memory are not guaranteed to run correctly on any

SPARC-V9-compliant system, since TSO is the strongest memory model required to be supported. How-

ever, sequential consistency is the most natural and intuitive programming model. This motivates the

development of compiler techniques that allow programs written for sequential consistency to be trans-

lated into code that runs correctly (and efficiently) on systems with weaker memory models.

Strong Consistency

TSO

PSO

RMO

J.6 Spin Locks 327

code be written to work on the RMO model to ensure portability. Additionally, lock prim-
itives should be collected together into a library and written for RMO to ensure portability.

Appendix D, “Formal Specification of the Memory Models,” describes a tool and method
that allows short code sequences to be formally verified for correctness.

J.6 Spin Locks

A spin lock is a lock for which the “lock held” condition is handled by busy waiting. The
code in example 7 shows how spin locks can be implemented using LDSTUB. A nonzero
value for the lock represents the locked condition, while a zero value means that the lock
is free. Note that the code busy waits by doing loads to avoid generating expensive stores
to a potentially shared location. The MEMBAR #StoreStore in UnLockWithLD-

STUB ensures that pending stores are completed before the store that frees the lock.

The code in example 8 shows how spin locks can be implemented using CASA. Again, a
nonzero value for the lock represents the locked condition, while a zero value means the
lock is free. The nonzero lock value (ID) is supplied by the caller and may be used to iden-
tify the current owner of the lock. This value is available while spinning and could be used
to maintain a time-out or to verify that the thread holding the lock is still running. As in
the previous case, the code busy-waits by doing loads, not stores.

J.7 Producer-Consumer Relationship

In a producer-consumer relationship,the producer process generates data and puts it into a
buffer, while the consumer process takes data from the buffer and uses it. If the buffer is
full, the producer process stalls when trying to put data into the buffer. If the buffer is
empty, the consumer process stalls when trying to remove data.

LockWithLDSTUB(lock)

retry:

ldstub [lock],%l0

tst %l0

be out

nop

loop:

ldub [lock],%l0

tst %l0

bne loop

nop

ba,a retry

out:

membar #LoadLoad | #LoadStore

UnLockWithLDSTUB(lock)

membar #StoreStore !RMO and PSO only

membar #LoadStore !RMO only

stub %g0,[lock]

Example 7—Lock and Unlock Using LDSTUB

328 J Programming With the Memory Models

Figure 50 shows the buffer data structure and register usage. Example 9 shows the pro-
ducer and consumer code. The code assumes the existence of two procedures, IncrHead
and IncrTail, which increment the head and tail pointers of the buffer in a wraparound
manner and return the incremented value, but do not modify the pointers in the buffer.

LockWithCAS(lock, ID)

retry:

mov [ID],%l0

cas [lock],%g0,%l0

tst %l0

be out

nop

loop:

ld [lock],%l0

tst %l0

bne loop

nop

ba,a retry

out:

membar #LoadLoad | #LoadStore !See example 7

UnLockWithCAS(lock)

membar #StoreStore !RMO and PSO only

membar #LoadStore !RMO only

st %g0,[lock]

Example 8—Lock and Unlock Using CAS

bufhead

buftail

bufdata

l

l

l

buffer Buffer Empty Condition:
bufhead == buftail

Buffer Full Condition:
IncrTail(buffer) == bufheadbuffer+4

(= %i0)

Buffer Data Structure:

Register Usage:

%i0 and %i1

%o0

%l0 and %l1

parameters

local values

result

Figure 50—Data Structures for Producer-Consumer Code

J.8 Process Switch Sequence 329

J.8 Process Switch Sequence

This subsection provides code that must be used during process or thread switching to
ensure that the memory model seen by a process or thread is the one seen by a processor.
The HeadSequence must be inserted at the beginning of a process or thread when it
starts executing on a processor. The TailSequence must be inserted at the end of a pro-
cess or thread when it relinquishes a processor.

Example 10 shows the head and tail sequences. The two sequences refer to a per-process
variable tailDone. The value 0 for tailDone means that the process is running, while the
value –1 (all ones) means that the process has completed its tail sequence and may be
migrated to another processor if the process is runnable. When a new process is created,
tailDone is initialized to –1.

The MEMBAR in HeadSequence is required to be able to provide a switching
sequence that ensures that the state observed by a process in its source processor will also
be seen by the process in its destination processor. Since FLUSHes and stores are totally
ordered, the head sequence need not do anything special to ensure that FLUSHes per-
formed prior to the switch are visible by the new processor.

Programming Note:

A conservative implementation may simply use a MEMBAR with all barriers set.

Produce(buffer, data)

call IncrTail

full:

ld [%i0],%l0

cmp %l0,%o0

be full

ld [%i0+4],%l0

st %i1,[%l0]

membar #StoreStore !RMO and PSO only

st %o0,[%i0+4]

Consume(buffer)

ld [%i0],%l0

empty:

ld [%i0+4],%l1

cmp %l0,%l1

be empty

call IncrHead

ld [%l0],%l0

membar #LoadStore !RMO only

st %o0,[%i0]

mov %l0,%o0

Example 9—Producer and Consumer Code

330 J Programming With the Memory Models

J.9 Dekker’s Algorithm

Dekker’s algorithm is the classical sequence for synchronizing entry into a critical section
using loads and stores only. The reason for showing this example here is to illustrate how
one may ensure that a store followed by a load in issuing order will be executed by the
memory system in that order. Dekker’s algorithm is not a valid synchronization primitive
for SPARC-V9, because it requires a sequentially consistent (SC) memory model in order
to work. Dekker’s algorithm (and similar synchronization sequences) can be coded on
RMO, PSO, and TSO by adding appropriate MEMBAR instructions. This example also
illustrates how future compilers can provide the equivalent of sequential consistency on
systems with weaker memory models.

Example 11 shows the entry and exit sequences for Dekker’s algorithm. The locations A

and B are used for synchronization; A = 0 means that process P1 is outside its critical sec-
tion, while any other value means that P1 is inside it; similarly, B = 0 means that P2 is out-
side its critical section, and any other value means that P2 is inside it.

Dekker’s algorithm guarantees mutual exclusion, but it does not guarantee freedom from
deadlock. In this case, it is possible that both processors end up trying to enter the critical
region without success. The code above tries to address this problem by briefly releasing
the lock in each retry loop. However, both stores are likely to be combined in a store
buffer, so the release has no chance of success. A more realistic implementation would use
a probabilistic back-off strategy that increases the released period exponentially while
waiting. If any randomization is used, such an algorithm will avoid deadlock with arbi-
trarily high probability.

J.10 Code Patching

The code patching example illustrates how to modify code that is potentially being exe-
cuted at the time of modification. Two common uses of code patching are in debuggers
and dynamic linking.

HeadSequence(tailDone)

nrdy:

ld [tailDone],%l0

cmp %l0,-1

bne nrdy

st %g0, [tailDone]

membar #StoreLoad

TailSequence(tailDone)

mov -1,%l0

membar #StoreStore !RMO and PSO only

membar #LoadStore !RMO only (combine with above)

st %l0,[tailDone]

Example 10—Process or Thread Switch Sequence

J.10 Code Patching 331

Code patching involves a modifying process, Pm, and one or more target processes Pt. For
simplicity, assume that the sequence to be modified is four instructions long: the old
sequence is (Old1, Old2, Old3, Old4), and the new sequence is (New1, New2, New3,
New4). There are two examples: noncooperative modification, in which the changes are
made without cooperation from Pt; and cooperative modification, in which the changes
require explicit cooperation from Pt.

In noncooperative modification, illustrated in example 12, changes are made in reverse
execution order. The three partially modified sequences (Old1, Old2, Old3, New4), (Old1,
Old2, New3, New4), and (Old1, New2, New3, New4) must be legal sequences for Pt, in
that Pt must do the right thing if it executes any of them. Additionally, none of the loca-
tions to be modified, except the first, may be the target of a branch. The code assumes that
%i0 contains the starting address of the area to be patched and %i1, %i2, %i3, and %i4
contain New1, New2, New3, and New4.

The constraint that all partially modified sequences must be legal is quite restrictive. When
this constraint cannot be satisfied, noncooperative code patching may require the target
processor to execute FLUSH instructions. One method of triggering such a non-local
FLUSH would be to send an interrupt to the target processor.

P1Entry()

mov -1,%l0

busy:

st %l0,[A]

membar #StoreLoad

ld [B],%l1

tst %l1

bne,a busy

st %g0,[A]

P1Exit()

membar #StoreStore !RMO and PSO only

membar #LoadStore !RMO only

st %g0,[A]

P2Entry()

mov -1,%l0

busy:

st %l0,[B]

membar #StoreLoad

ld [A],%l1

tst %l1

bne,a busy

st %g0,[B]

P2Exit()

membar #StoreStore !RMO and PSO only

membar #LoadStore !RMO only

st %g0,[B]

Example 11—Dekker’s Algorithm

332 J Programming With the Memory Models

In cooperative code patching, illustrated in example 13, changes to instructions can be
made in any order. When Pm is finished with the changes, it writes into the shared variable
done to notify Pt. Pt waits for done to change from 0 to some other value as a signal that
the changes have been completed. The code assumes that %i0 contains the starting
address of the area to be patched, %i1, %i2, %i3, and %i4 contain New1, New2, New3,
and New4, and %g1 contains the address of done. The FLUSH instructions in Pt ensure
that the instruction buffer of Pt’s processor is flushed so that the old instructions are not
executed.

NonCoopPatch(addr, instructions...)

st %i4,[%i0+12]

flush %i0+12

membar #StoreStore !RMO and PSO only

st %i3,[%i0+8]

flush %i0+8

membar #StoreStore !RMO and PSO only

st %i2,[%i0+4]

flush %i0+4

membar #StoreStore !RMO and PSO only

st %i1,[%i0]

flush %i0

Example 12—Nonxooperative Code Patching

CoopPatch(addr, instructions...) !%i0 = addr, %i1..%i4 = instructions

st %i1,[%i0]

st %i2,[%i0+4]

st %i3,[%i0+8]

st %i4,[%i0+12]

mov -1,%l0

membar #StoreStore !RMO and PSO only

st %l0,[%g1]

TargetCode()

wait:

ld [%g1],%l0

cmp %l0,0

be wait

flush A

flush A+4

flush A+8

flush A+12

A:

Old1

Old2

Old3

Old4

Example 13—Cooperative Code Patching

J.11 Fetch_and_Add 333

J.11 Fetch_and_Add

Fetch_and_Add performs the sequence a = a + b atomically with respect to other
Fetch_and_Adds to location a. Two versions of Fetch_and_Add are shown. The first
(example 14) uses the routine LockWithLDSTUB described above. This approach uses a
lock to guard the value. Since the memory model dependency is embodied in the lock
access routines, the code does not depend on the memory model.6

Fetch_and_Add originally was invented to avoid lock contention and to provide an effi-
cient means to maintain queues and buffers without cumbersome locks. Hence, using a
lock is inefficient and contrary to the intentions of the Fetch_and_Add. The CAS synthetic
instruction allows a more efficient version, as shown in example 15.

J.12 Barrier Synchronization

Barrier synchronization ensures that each of N processes is blocked until all of them reach
a given state. The point in the flow of control at which this state is reached is called the
barrier; hence the name. The code uses the variable Count initialized to N. As each process
reaches its desired state, it decrements Count and waits for Count to reach zero before pro-
ceeding further.

6. Inlining of the lock-access functions with subsequent optimization may break this code.

/*Fetch and Add using LDSTUB*/

int Fetch_And_Add(Index, Increment, Lock)

int *Index;

int Increment;

int *Lock;

{

int old_value;

LockWithLDSTUB(Lock);

old_value = *Index;

*Index = old_value + Increment;

UnlockWithLDSTUB(Lock);

return(old_value);

}

Example 14—Fetch and Add Using LDSTUB

FetchAndAddCAS(address, increment) !%i0 = address, %i1 = increment

retry:

ld [%i0],%l0

add %l0,%i1,%l1

cas [%i0],%l0,%l1

cmp %l0,%l1

bne retry

mov %l1,%o0 !return old value

Example 15—Fetch and Add Using CAS

334 J Programming With the Memory Models

Similar to the fetch and add operation, barrier synchronization is easily implemented
using a lock to guard the counter variable, as shown in example 16.

The CAS implementation of barrier synchronization, shown in example 17, avoids the
extra lock access.

A practical barrier synchronization must be reusable because it is typically used once per
iteration in applications that require many iterations. Barriers that are based on counters
must have means to reset the counter. One solution to this problem is to alternate between
two complementary versions of the barrier: one that counts down to 0 and the other that
counts up to N. In this case, passing one barrier also initializes the counter for the next bar-
rier.

Passing a barrier can also signal that the results of one iteration are ready for processing by
the next iteration. In this case, RMO and PSO require a MEMBAR #StoreStore instruc-
tion prior to the barrier code to ensure that all local results become globally visible prior to
passing the barrier.

Barrier synchronization among a large number of processors will lead to access contention
on the counter variable, which may degrade performance. This problem can be solved by
using multiple counters. The butterfly barrier uses a divide-and-conquer technique to
avoid any contention and can be implemented without atomic operations.7

/*Barrier Synchronization using LDSTUB*/

Barrier(Count,Lock)

int *Count;

int *Lock;

{

LockWithLdstUB(Lock);

*Count = *Count - 1;

UnlockWithLdstUB(Lock);

while(*Count > 0) { ; /*busy-wait*/ }

}

Example 16—Barrier Synchronization Using LDSTUB

BarrierCAS(Count) !%i0 = address of counter variable

retry:

ld [%i0],%l0

add %l0,-1,%l1

cas [%i0],%l0,%l1

cmp %l0,%l1

bne retry

nop

wait:

ld [%i0],%l0

tst %l0

bne wait

nop

Example 17—Barrier Synchronization Using CAS

J.13 Linked List Insertion and Deletion 335

J.13 Linked List Insertion and Deletion

Linked lists are dynamic data structures that might be used by a multi-threaded applica-
tion. As in the previous examples, a lock can be used to guard access to the entire data
structure. However, single locks guarding large and frequently shared data structures can
be inefficient.

In example 18, the CAS synthetic instruction is used to operate on a linked list without
explicit locking. Each list element starts with an address field that contains either the
address of the next list element or zero. The head of the list is the address of a variable that
holds the address of the first list element. The head is zero for empty lists.

In the example, there is little difference in performance between the CAS and lock
approaches, however, more complex data structures can allow more concurrency. For
example, a binary tree allows the concurrent insertion and removal of nodes in different
branches.

J.14 Communicating With I/O Devices

I/O accesses may be reordered just as other memory reference are reordered. Because of
this, the programmer must take special care to meet the constraint requirements of physi-
cal devices, in both the uniprocessor and multiprocessor cases.

7. Brooks, E. D., “The Butterfly Barrier,” International Journal of Parallel Programming 15(4), pp. 295-

307, 1986.

ListInsert(Head, Element) !%i0 = Head addr, %i1 = Element addr

retry:

ld [%i0],%l0

st %l0, [%i1]

mov %i1, %l1

cas [%i0],%l0,%l1

cmp %l0,%l1

bne retry

nop

ListRemove(Head) !%i0 = Head addr

retry:

ld [%i0],%o0

tst %o0

be empty

nop

ld [%o0],%l0

cas [%i0],%o0,%l0

cmp %o0,%l0

bne retry

empty:

nop

Example 18—List Insertion and Removal

336 J Programming With the Memory Models

Accesses to I/O locations require sequencing MEMBARs under certain circumstances to
properly manage the order of accesses arriving at the device, and the order of device
accesses with respect to memory accesses. The following rules describe the use of MEM-
BARs in these situations. Maintaining the order of accesses to multiple devices will
require higher-level software constructs, which are beyond the scope of this discussion.

(1) Accesses to the same I/O location address:

— A store followed by a store is ordered in all memory models.

— A load followed by a load requires a MEMBAR #LoadLoad in RMO only..

Compatibility Note:

This MEMBAR is not needed in implementations that provide SPARC-V8 compati-

bility for I/O accesses in RMO.

— A load followed by a store is ordered in all memory models.

— A store followed by a load requires MEMBAR #Lookaside between the
accesses for all memory models; however, implementations that provide
SPARC-V8 compatiblity for I/O accesses in any of TSO, PSO, and RMO do
not need the MEMBAR in any model that provides this compatibility.

(2) Accesses to different I/O location addresses:

— The appropriate ordering MEMBAR is required to guarantee order within a
range of addresses assigned to a device.

— Device-specific synchronization of completion, such as reading back from an
address after a store, may be required to coordinate accesses to multiple
devices. This is beyond the scope of this discussion.

(3) Accesses to an I/O location address and a memory address.

— A MEMBAR #MemIssue is required between an I/O access and a memory
access if it is required that the I/O access reaches global visibility before the
memory access reaches global visibility. For example, if the memory location
is a lock that controls access to an I/O address, then MEMBAR #MemIssue

is required between the last access to the I/O location and the store that clears
the lock.

(4) Accesses to different I/O location addresses within an implementation-dependent
range of addresses are strongly ordered once they reach global visiblity. Beyond
the point of global visibility there is no guarantee of global order of accesses arriv-
ing at different devices having disjoint implementation-dependent address ranges
defining the device. Programmers can rely on this behavior from implementations.

(5) Accesses to I/O locations protected by a lock in shared memory that is subse-
quently released, with attention to the above barrier rules, are strongly ordered
with respect to any subsequent accesses to those locations that respect the lock.

J.14 Communicating With I/O Devices 337

J.14.1 I/O Registers With Side Effects

I/O registers with side effects are commonly used in hardware devices such as UARTs.
One register is used to address an internal register of the I/O device, and a second register
is used to transfer data to or from the selected internal register.

In examples 19 and 20, let X be the address of a device with two such registers; X.P is a
port register, and X.D is a data register. The address of an internal register is stored into
X.P; that internal register can then be read or written by loading into or storing from X.D.

Access to these registers, of course, must be protected by a mutual-exclusion lock to
ensure that multiple threads accessing the registers do not interfere. The sequencing
MEMBAR is required to ensure that the store actually completes before the load is issued.

J.14.2 The Control and Status Register (CSR)

A control and status register is an I/O location which is updated by an I/O device indepen-
dent of access by the processor. For example, such a register might contain the current sec-
tor under the head of a disk drive.

In example 21, let Y be the address of a control and status register that is read to obtain
status and written to assert control. Bits read differ from the last data that was stored to
them.

Access to these registers, of course, must be protected by a mutual-exclusion lock to
ensure that multiple threads accessing the registers do not interfere. The sequencing
MEMBAR is needed to ensure the value produced by the load comes from the register and
not from the write buffer since the write has side-effects. No MEMBAR is needed
between the load and the store, because of the anti-dependency on the memory address.

st %i1, [X+P]

membar #StoreStore ! PSO and RMO only

st %i2, [X+D]

Example 19—I/O Registers With Side-Effects: Store Followed by Store

st %i1, [X+P]

membar #StoreLoad |#MemIssue ! RMO only

ld [X+D], %i2

Example 20—I/O Registers With Side-Effects: Store Followed by Load

ld [Y], %i1 ! obtain status

st %i2, [Y] ! write a command

membar #Lookaside ! make sure we really read the register

ld [Y], %i3 ! obtain new status

Example 21—Accessing a Control/Status Register

338 J Programming With the Memory Models

J.14.3 The Descriptor

In example 22, let A be the address of a descriptor in memory. After initializing the
descriptor with information, the address of the descriptor is stored into device register D or
made available to some other portion of the program that will make decisions based upon
the value(s) in the descriptor. It is important to ensure that the stores of the data have com-
pleted before making the address (and hence the data in the descriptor) visible to the
device or program component.

Access must be protected by a mutual-exclusion lock to ensure that multiple threads
accessing the registers do not interfere. In addition, the agent reading the descriptor must
use a load-barrier MEMBAR after reading D to ensure that the most recent values are
read.

J.14.4 Lock-Controlled Access to a Device Register

Let A be a lock in memory that is used to control access to a device register D. The code
that accesses the device might look like that show in example 23.

The sequencing MEMBAR is needed to ensure that another CPU which grabs the lock and
loads from the device register will actually see any changes in the device induced by the
store. The ordering MEMBARs in the lock and unlock code (see J.6, “Spin Locks”), while
ensuring correctness when protecting ordinary memory, are insufficient for this purpose
when accessing device registers. Compare with J.14.1, “I/O Registers With Side Effects.”

st %i1, [A]

st %i2, [A+4]

... ! more stores

membar #StoreStore ! PSO and RMO only

st A, [D]

Example 22—Accessing a Memory Descriptor

set A, %l1 ! address of lock

set D, %l2 ! address of device register

call lock ! lock(A);

mov %l1, %o0

ld [%l2], %i1 ! read the register

... ! do some computation

st %i2, [%l2] ! write the register

membar #MemIssue ! all memory models

call unlock ! unlock(A);

mov %l1, %o0

Example 23—Accessing a Device Register

339

K Changes From SPARC-V8 to SPARC-V9

SPARC-V9 is complimentary to the SPARC-V8 architecture; it does not replace it.
SPARC-V9 was designed to be a higher-performance peer to SPARC-V8.

Application software for the 32-bit SPARC-V8 (Version 8) microprocessor architecture
can execute, unchanged, on SPARC-V9 systems. SPARC-V8 software executes natively
on SPARC-V9-conformant processors; no special compatibility mode is required.

Changes to the SPARC-V9 architecture since SPARC-V8 are in six main areas: the trap
model, data formats, the registers, alternate address space access, the instruction set, and
the memory model.

K.1 Trap Model

The trap model, visible only to privileged software, has changed substantially.

— Instead of one level of traps, four or more levels are now supported. This allows
first-level trap handlers, notably register window spill and fill (formerly called
overflow and underflow) traps, to execute much faster. This is because such trap
handlers can now execute without costly run-time checks for lower-level trap con-
ditions, such as page faults or a misaligned stack pointer. Also, multiple trap levels
support more robust fault-tolerance mechanisms.

— Most traps no longer change the CWP. Instead, the trap state (including the CWP
register) is saved in register stacks called TSTATE, TT, TPC, and TNPC.

— New instructions (DONE and RETRY) are used to return from a trap handler,
instead of RETT.

— A new instruction (RETURN) is provided for returning from a trap handler run-
ning in nonprivileged mode, providing support for user trap handlers.

— Terminology about privileged-mode execution has changed, from “supervisor/
user” to “privileged/nonprivileged.”

— A new processor state, RED_state, has been added to facilitate processing resets
and nested traps that would exceed MAXTL.

This appendix is informative only.

It is not part of the SPARC-V9 specification.

340 K Changes From SPARC-V8 to SPARC-V9

K.2 Data Formats

Data formats for extended (64-bit) integers have been added.

K.3 Little-Endian Support

Data accesses can be either big-endian or little-endian. Bits in the PSTATE register control
the implicit endianness of data accesses. Special ASI values are provided to allow specific
data accesses to be in a specific endianness.

K.4 Registers

These privileged SPARC-V8 registers have been deleted:

— PSR: Processor State Register

— TBR: Trap Base Register

— WIM: Window Invalid Mask

These registers have been widened from 32 to 64 bits:

— All integer registers

— All state registers: FSR, PC, nPC, Y

The contents of the following register has changed:

— FSR: Floating-Point State Register: fcc1, fcc2, and fcc3 (additional floating-point
condition code) bits have been added and the register widened to 64-bits..

These SPARC-V9 registers are fields within a register in SPARC-V8:

— PIL: Processor Interrupt Level register

— CWP: Current Window Pointer register

— TT[MAXTL]: Trap Type register

— TBA: Trap Base Address register

— VER: Version register

— CCR: Condition Codes Register

These registers have been added:

— Sixteen additional double-precision floating-point registers, f[32]..f[62], which are
aliased with and overlap eight additional quad-precision floating-point registers,
f[32]..f[60]

— FPRS: Floating-Point Register State register

— ASI: ASI register

K.5 Alternate Space Access 341

— PSTATE: Processor State register

— TL: Trap Level register

— TPC[MAXTL]: Trap Program Counter register

— TNPC[MAXTL]: Trap Next Program Counter register

— TSTATE[MAXTL]: Trap State register

— TICK: Hardware clock-tick counter

— CANSAVE: Savable windows register

— CANRESTORE: Restorable windows register

— OTHERWIN: Other windows register

— CLEANWIN: Clean windows register

— WSTATE: Window State register

The SPARC-V9 CWP register is incremented during a SAVE instruction and decremented
during a RESTORE instruction. Although this is the opposite of PSR.CWP’s behavior in
SPARC-V8, the only software it should affect is a few trap handlers that operate in privi-
leged mode, and that must be rewritten for SPARC-V9 anyway. This change will have no
effect on nonprivileged software.

K.5 Alternate Space Access

In SPARC-V8, access to all alternate address spaces is privileged. In SPARC-V9, loads
and stores to ASIs 0016 ..7f16 are privileged; those to ASIs 8016 ..FF16 are nonprivileged.
That is, load- and store-alternate instructions to one-half of the alternate spaces can now
be used in user code.

K.6 Little-Endian Byte Order

In SPARC-V8, all instruction and data accesses were performed in big-endian byte order.
SPARC-V9 supports both big- and little-endian byte orders for data accesses only; instruc-
tion accesses in SPARC-V9 are always performed using big-endian order.

K.7 Instruction Set

All changes to the instruction set were made such that application software written for
SPARC-V8 can run unchanged on a SPARC-V9 processor. Application software written

342 K Changes From SPARC-V8 to SPARC-V9

for SPARC-V8 should not even be able to detect that its instructions now process 64 bit
values.

The definitions of the following instructions were extended or modified to work with the
64-bit model:

— FCMP, FCMPE: Floating-Point Compare—can set any of the four floating-point
condition codes

— LDUW, LDUWA(same as “LD, LDA” in SPARC-V8)

— LDFSR, STFSR: Load/Store FSR: only affect low-order 32 bits of FSR

— RDASR/WRASR: Read/Write State Registers: access additional registers

— SAVE/RESTORE

— SETHI

— SRA, SRL, SLL: Shifts: split into 32-bit and 64-bit versions

— Tcc: (was Ticc) operates with either the 32-bit integer condition codes (icc), or the
64-bit integer condition codes (xcc)

— All other arithmetic operations now operate on 64-bit operands and produce 64-bit
results. Application software written for SPARC-V8 cannot detect that arithmetic
operations are now 64 bits wide. This is due to retention of the 32-bit integer con-
dition codes (icc), addition of 64-bit integer condition codes (xcc), and the carry-
propagation rules of 2’s-complement arithmetic.

The following instructions have been added to provide support for 64-bit operations and/
or addressing:

— F[sdq]TOx: Convert floating point to 64-bit word

— FxTO[sdq]: Convert 64-bit word to floating point

— FMOV[dq]: Floating-point Move, double and quad

— FNEG[dq]: Floating-point Negate, double and quad

— FABS[dq]: Floating-point Absolute Value, double and quad

— LDDFA, STDFA, LDFA, STFA: Alternate address space forms of LDDF, STDF,
LDF, and STF

— LDSW: Load a signed word

— LDSWA: Load a signed word from an alternate space

— LDX: Load an extended word

— LDXA: Load an extended word from an alternate space

— LDXFSR: Load all 64 bits of the FSR register

— STX: Store an extended word

K.7 Instruction Set 343

— STXA: Store an extended word into an alternate space

— STXFSR: Store all 64 bits of the FSR register

The following instructions have been added to support the new trap model:

— DONE: Return from trap and skip instruction that trapped

— RDPR and WRPR: Read and Write privileged registers

— RESTORED: Adjust state of register windows after RESTORE

— RETRY: Return from trap and reexecute instruction that trapped

— RETURN: Return

— SAVED: Adjust state of register windows after SAVE

— SIR: Signal Monitor (generate Software Initiated Reset)

The following instructions have been added to support implementation of higher-perfor-
mance systems:

— BPcc: Branch on integer condition code with prediction

— BPr: Branch on integer register contents with prediction

— CASA, CASXA: Compare and Swap from an alternate space

— FBPfcc: Branch on floating-point condition code with prediction

— FLUSHW: Flush windows

— FMOVcc: Move floating-point register if condition code is satisfied

— FMOVr: Move floating-point register if integer register contents satisfy condition

— LDQF(A), STQF(A): Load/Store Quad Floating-point (in an alternate space)

— MOVcc: Move integer register if condition code is satisfied

— MOVr: Move integer register if register contents satisfy condition

— MULX: Generic 64-bit multiply

— POPC: Population Count

— PREFETCH, PREFETCHA: Prefetch Data

— SDIVX, UDIVX: Signed and Unsigned 64-bit divide

The definitions of the following instructions have changed:

— IMPDEPn: Implementation-Dependent instructions (replace SPARC-V8 CPop
instructions)

The following instruction was added to support memory synchronization:

— MEMBAR: Memory barrier

344 K Changes From SPARC-V8 to SPARC-V9

The following instructions have been deleted:

— Coprocessor loads and stores

— RDTBR and WRTBR: TBR no longer exists. It has been replaced by TBA, which
can be read/written with RDPR/WRPR instructions.

— RDWIM and WRWIM: WIM no longer exists. WIM has been subsumed by sev-
eral register-window state registers.

— RDPSR and WRPSR: PSR no longer exists. It has been replaced by several sepa-
rate registers which are read/written with other instructions.

— RETT: Return from trap (replaced by DONE/RETRY).

— STDFQ: Store Double from Floating-point Queue (replaced by the RDPR FQ
instruction).

K.8 Memory Model

SPARC-V9 defines a new memory model called Relaxed Memory Order (RMO). This
very weak model allows the CPU hardware to schedule memory accesses such as loads
and stores in nearly any order, as long as the program computes the correct answer. Hence,
the hardware can instantaneously adjust to resource contentions and schedule accesses in
the most efficient order, leading to much faster memory operations and better perfor-
mance.

345

Bibliography

General References

For general information, see the following:

-----. The SPARC Architecture Manual, Version 8, Prentice-Hall, Inc., 1992.

Boney, Joel [1992]. “SPARC Version 9 Points the Way to the Next Generation RISC,”
SunWorld, October 1992, pp. 100-105.

Catanzaro, Ben, ed. The SPARC Technical Papers, Springer-Verlag, 1991.

Cmelik, R. F., S. I. Kong, D. R. Ditzel, and E. J. Kelly, “An Analysis of MIPS and SPARC
Instruction Set Utilization on the SPEC Benchmarks,” Proceedings of the Fourth Interna-

tional Symposium on Architectural Support for Programming Languages and Operating

Systems, April 8-11, 1991.

Dewar, R. B. K. and M. Smosna. Microprocessors: A Programmer’s View, McGraw-Hill,
Inc., 1990.

Ditzel, David R. [1993]. “SPARC Version 9: Adding 64-Bit Addressing and Robustness to
an Existing RISC Architecture.” Videotape available from University Video Communica-
tions, P. O. Box 5129, Stanford, CA, 94309.

Garner, R. B. [1988]. “SPARC: The Scalable Processor Architecture,” SunTechnology, vol.
1, no. 3, Summer, 1988; also appeared in M. Hall and J. Barry (eds.), The SunTechnology

Papers, Springer-Verlag, 1990, pp. 75-99.

Garner, R. B., A. Agrawal, F. Briggs, E. W. Brown, D. Hough, W. N. Joy, S. Kleiman, S.
Muchnick, M. Namjoo, D. Patterson, J. Pendleton, K. G. Tan, and R. Tuck [1988]. “The
Scalable Processor Architecture (SPARC),” 33rd Annual IEEE Computer Conference

(COMPCON), February, 1988, San Francisco, CA.

Hennessy, J. and D. Patterson. Computer Architecture: A Quantitative Approach, Morgan
Kaufman Publishers, Inc., San Mateo, CA. 1990.

This bibliography is informative only.

It is not part of the SPARC-V9 specification.

346 Bibliography

IEEE Standard for Binary Floating-Point Arithmetic, IEEE Std 754-1985, IEEE, New
York, NY, 1985.

Katevenis, M. [1983]. Reduced Instruction Set Computer Architectures for VLSI, Ph.D.
dissertation, Computer Science Div., Univ. of California, Berkeley, 1983; also published
by M.I.T. Press, Cambridge, MA, 1985.

Kleiman, S. and D. Williams [1988]. “SunOS on SPARC,” 33rd Annual IEEE Comp. Conf.

(COMPCON), February, 1988, San Francisco, CA; also appeared in M. Hall and J. Barry
(eds.), The SunTechnology Papers, Springer-Verlag, 1990, pp. 13-27.

Muchnick, S. [1988]. “Optimizing Compilers for SPARC,” SunTechnology, Summer 1988,
pp. 64-71; also appeared in W. Stallings (ed.), Reduced Instruction Set Computers (2nd
edition), IEEE Computer Society Press, 1990, pp. 160-173, and in M. Hall and J. Barry
(eds.), The SunTechnology Papers, Springer-Verlag, 1990, pp. 41-68.

Patterson, D. [1985]. “Reduced Instruction Set Computers,” Communications of the ACM,
vol. 28, no. 1, January, 1985.

Patterson, D., and D. R. Ditzel, “The Case for the Reduced Instruction Set Computer,”
Computer Architecture News, vol 8, no. 7, 1980.

Memory Model References

The concept of a memory model has become a significant one as shared memory multipro-
cessors are more widely used. The issues are complex and interesting, and have created an
active and extensive literature. A partial annotated list of references is as follows:

Collier, W. W. Reasoning About Parallel Architectures, Prentice Hall, 1992.

Provides a mathematical framework for the study of parallel processors and their inter-
action with memory.

Dill, David, Seungjoon Park, and Andreas G. Nowatzyk, “Formal Specification of
Abstract Memory Models” in Research on Integrated Systems: Proceedings of the 1993

Symposium, Ed. Gaetano Borriello and Carl Ebeling, MIT Press, 1993.

Describes an application of software tools to the verification of the TSO and PSO
memory models.

Gharachorloo, K., D. Lenoski, J. Laudon, P. Gibbon, A. Gupta, and J. Hennessy. “Memory
Consistency and Event Ordering in Scalable Shared-Memory Multiprocessors,” Proceed-

ings of the 17th Annual International Symposium on Computer Architecture, May 1990,
pp. 15-29.

Provides an overview of contemporary research in memory models.

Gharachorloo, K., S. Adve, A. Gupta, J. Hennessy, and M. Hill. “Programming for Differ-
ent Memory Consistency Models,” Journal of Parallel and Distributed Processing, 15:4,
August 1992.

Prefetching 347

This paper proposes a new programming model which allows programmers to reason
about programs that have not been reduced to sequential consistency.

Gharachorloo, K., A. Gupta, and J. Hennessy, “Performance Evaluation of Memory Con-
sistency Models for Shared Memory Multiprocessors,” Proceedings of the 4th Interna-

tional Conference on Architectural Support for Programming Languages and Operating

Systems, pp. 245-257, ACM, New York, 1991.

This paper discusses the performance benefits that can be obtained when a relaxed
memory model is used in a shared-memory model processor.

Lamport, Leslie. “How to Make a Multiprocessor Computer That Correctly Executes Mul-
tiprocess Programs,” IEEE Transactions on Computers, C-28, 9, September 1979, pp.
690-691.

Defines sequential consistency and shows how it can be used in simple shared-mem-
ory systems.

Reynal, M. Algorithms for Mutual Exclusion, MIT Press, 1986.

Provides an overview of the mutual exclusion problem and the extensive literature
associated with it.

Scheurich, C., and M. Dubois. “Dependency and Hazard Resolution in Multiprocessors,”
Proceedings of the 14th International Symposium on Computer Architecture, pp. 234-243,
IEEE CS Press, Los Alamitos, CA, 1987.

Sindhu, Predeep, Jean-Marc Frailong, and Michel Ceklov. “Formal Specification of Mem-
ory Models,” Xerox Palo Alto Research Center Report CSL-91-11, December 1991.

Introduces the formal framework used to define the SPARC-V8 TSO and PSO mem-
ory models.

Treiber, R. Kent. “Systems Programming: Coping with Parallelism,” IBM Research
Report RJ5118 (53162), 1986.

Provides an overview of the operational issues for systems programming in a multi-
processing environment.

Prefetching

Callahan, D., K. Kennedy, A. Porterfield. “Software Prefetching,” Proceedings of the

Fourth International Conference on Architectural Support for Programming Languages

and Operating Systems, April 1991, pp. 40-52.

Mowry, T., M. Lam, and A. Gupta. “Design and Evaluation of a Compiler Algorithm for
Prefetching.” Proceedings of the Fifth International Conference on Architectural Support

for Programming Languages and Operating Systems, October 1992, pp. 62-73.

348 Bibliography

349

A
a field of instructions, 66, 138, 141, 144, 147,

148, 152

ABI, see SPARC-V9 Application Binary Interface

(ABI)

accrued exception (aexc) field of FSR register, 46,
48, 100, 247, 254

activation record, see stack frame

ADD instruction, 137, 299

ADDC instruction, 137

ADDcc instruction, 137, 222, 299

ADDCcc instruction, 137

address, 120

aliased, 120

physical, 120, 281

virtual, 120, 281

address, 295

address aliases, 281

address mask (AM) field of PSTATE register, 53,
151, 172, 215

address space, 4, 281, 282

address space identifier (ASI), 9, 16, 17, 50, 63,
67, 69, 73, 120, 121, 174, 179, 207, 227,
254, 283, 317, 341

architecturally specified, 122

restricted, 74, 122, 254

unrestricted, 74, 122, 254

address space identifier (ASI) register, 16, 21, 50,
56, 73, 89, 122, 157, 176, 181, 183, 207,
227, 232, 235, 245, 316

addressing conventions, 17, 70

addressing modes, 4

ADDX instruction (SPARC-V8), 137

ADDXcc instruction (SPARC-V8), 137

aexc, see accrued exception (aexc) field of FSR reg-

ister

AG, see alternate globals enable (AG) field of

PSTATE register

aggregate data values, see data aggregates

alias

address, 120

floating-point registers, 36

alignment, 304

data (load/store), 17, 69, 121

doubleword, 17, 69, 121

extended-word, 69

halfword, 17, 69, 121

instructions, 17, 69, 121

integer registers, 179, 181

memory, 121

quadword, 17, 69, 121

stack pointer, 304

word, 17, 69, 121

alternate address space, 207

alternate global registers, 15, 30, 30, 316

alternate globals enable (AG) field of PSTATE reg-

ister, 30, 31, 54

alternate space instructions, 18, 50, 341

AM, see address mask (AM) field of PSTATE regis-

ter

ancillary state registers (ASRs), 18, 35, 36, 60,
214, 215, 244, 245, 252, 253, 292, 321

AND instruction, 184

ANDcc instruction, 184, 299

ANDN instruction, 184, 299

ANDNcc instruction, 184

annul bit, 35, 138

in conditional branches, 141

annulled branches, 138

application program, 9, 14, 16, 30, 46, 47, 50, 61,
104, 341

architectural extensions, 7, 321

arguments to a subroutine, 302

arithmetic overflow, 41

ASI register, see address space identifier (ASI) reg-

ister

ASI, see address space identifier (ASI)

ASI_AS_IF_USER_PRIMARY, 75, 123, 254,
287, 316

ASI_AS_IF_USER_PRIMARY_LITTLE, 75,
123, 254, 287, 316

ASI_AS_IF_USER_SECONDARY, 75, 123, 254,
287

ASI_AS_IF_USER_SECONDARY_LITTLE, 75,
123, 254, 287

ASI_NUCLEUS, 75, 75, 122, 254, 287

ASI_NUCLEUS_LITTLE, 75, 122, 254, 287

ASI_PRIMARY, 73, 75, 75, 122, 123, 254, 287

ASI_PRIMARY_LITTLE, 52, 75, 122, 254, 287

ASI_PRIMARY_NOFAULT, 75, 75, 123, 254,
284, 287

ASI_PRIMARY_NOFAULT_LITTLE, 75, 254

Index

350 C

ASI_SECONDARY, 75, 75, 123, 254, 287, 317

ASI_SECONDARY_LITTLE, 75, 254, 287, 317

ASI_SECONDARY_NOFAULT, 75, 75, 123,
254, 284, 287

ASI_SECONDARY_NOFAULT_LITTLE, 75,
254, 287

asr_reg, 292

assembler

synthetic instructions, 297

assigned value

implementation-dependent, 252

async_data_error exception, 113, 133, 153, 174,
177, 179, 181, 182, 183, 226, 228, 230, 232,
234, 236

atomic, 130, 230, 232

memory operations, 127, 130

atomic load-store instructions, 69, 152

compare and swap, 98, 152

load-store unsigned byte, 182, 234, 235

load-store unsigned byte to alternate space, 183

swap r register with alternate space memory,
235

swap r register with memory, 152, 234

atomicity, 121, 224, 258

automatic variables, 302

B
BA instruction, 147, 278

BCC instruction, 146, 278

BCLR synthetic instruction, 299

BCS instruction, 146, 278

BE instruction, 146, 278

Berkeley RISCs, xiv, 5

BG instruction, 146, 278

BGE instruction, 146, 278

BGU instruction, 146, 278

bibliography, 345

Bicc instructions, 35, 42, 146, 273, 278

big-endian btye order, 9

big-endian byte order, 17, 52, 70

binary compatibility, 6

bit vector concatenation, 3

BL instruction, 278

BLE instruction, 146, 278

BLEU instruction, 146, 278

BN instruction, 146, 147, 209, 278, 297

BNE instruction, 146, 278

BNEG instruction, 146, 278

BPA instruction, 148, 278

BPCC instruction, 148, 278

BPcc instructions, 35, 41, 42, 66, 67, 148, 209

BPCS instruction, 148, 278

BPE instruction, 148, 278

BPG instruction, 148, 278

BPGE instruction, 148, 278

BPGU instruction, 148, 278

BPL instruction, 148, 278

BPLE instruction, 148, 278

BPLEU instruction, 148, 278

BPN instruction, 148, 278

BPNE instruction, 148, 278

BPNEG instruction, 148, 278

BPOS instruction, 146, 278

BPPOS instruction, 148, 278

BPr instructions, 35, 66, 67, 138, 273, 278

BPVC instruction, 148, 278

BPVS instruction, 148, 278

branch

annulled, 138

delayed, 63

elimination, 81

fcc-conditional, 141, 144

icc-conditional, 147

prediction bit, 138

unconditional, 141, 144, 147, 149

with prediction, 5

branch if contents of integer register match condi-

tion instructions, 138

branch on floating-point condition codes instruc-

tions, 140

branch on floating-point condition codes with pre-

diction instructions, 143

branch on integer condition codes instructions, 146

branch on integer condition codes with prediction

instructions, 148

BRGEZ instruction, 138

BRGZ instruction, 138

BRLEZ instruction, 138

BRLZ instruction, 138

BRNZ instruction, 138

BRZ instruction, 138

BSET synthetic instruction, 299

BTOG synthetic instruction, 299

BTST synthetic instruction, 299

BVC instruction, 146, 278

BVS instruction, 146, 278

byte, 9

addressing, 70, 71

data format, 23

order, 17, 70

order, big-endian, 17, 52

order, implicit, 52

order, little-endian, 17, 52

C
C condition code bit, see carry (C) bit of condition

fields of CCR

cache

coherence in RED_state, 92

data, 125

D 351

in RED_state, 92

instruction, 125

memory, 253

miss, 209

non-consistent instruction cache, 125

system, 6

call chain

walking, 303

CALL instruction, 19, 33, 34, 35, 151, 172, 302,
304

CALL synthetic instruction, 297

CANRESTORE, see restorable windows (CANRE-

STORE) register

CANSAVE, see savable windows (CANSAVE) reg-

ister

carry (C) bit of condition fields of CCR, 41

CAS synthetic instruction, 127, 299

CASA instruction, 98, 130, 152, 182, 183, 234,
235, 299

CASX synthetic instruction, 127, 130, 299

CASXA instruction, 98, 130, 152, 182, 183, 234,
235, 299

catastrophic_error exception, 89, 91, 98, 99, 113,
114, 115

cc0 field of instructions, 66, 144, 148, 159, 195

cc1 field of instructions, 66, 144, 148, 159, 195

cc2 field of instructions, 66, 195

CCR, see condition codes (CCR) register

certificate of compliance, 8

cexc, see current exception (cexc) field of FSR reg-

ister

CLE, see current_little-endian (CLE) field of

PSTATE register

clean register window, 9, 33, 58, 60, 82, 86, 88,
114, 217

clean windows (CLEANWIN) register, 58, 60, 82,
83, 86, 87, 88, 211, 242, 259

clean_window exception, 60, 82, 87, 98, 101, 114,
218, 256

clock cycle, 51

clock-tick register (TICK), 51, 116, 211, 242, 257

CLR synthetic instruction, 299

CMP synthetic instruction, 233, 297

coherence, 120, 258

memory, 121, 224

unit, memory, 122

compare and swap instructions, 98, 152

comparison instruction, 76, 233

compatibility note, 4

compatibility with SPARC-V8, 4, 19, 30, 40, 43,
54, 58, 76, 78, 85, 104, 114, 115, 116, 121,
142, 145, 160, 170, 171, 174, 179, 181, 187,
215, 224, 226, 230, 232, 233, 237, 239, 241,
245, 322, 336

compatibility with SPARC-V9, 137

compliance, 8

certificate of, 8

certification process, 8

Level I, 7

Level II, 8

compliant SPARC-V9 implementation, 7

concatenation of bit vectors, 3

concurrency, 15

cond field of instructions, 66, 141, 144, 147, 148,
189, 195

condition codes, 153

floating-point, 141

integer, 41

condition codes (CCR) register, 21, 89, 137, 157,
202, 245

conditional branches, 141, 144, 147

conditional move instructions, 20

conforming SPARC-V9 implementation, 7

const22 field of instructions, 170

constants

generating, 220

contexts

Nucleus, 122, 287

control and status registers, 35

control-transfer instructions (CTIs), 19, 157

conventions

software, 301

convert between floating-point formats instructions,
162, 248

convert floating-point to integer instructions, 161,
250

convert integer to floating-point instructions, 163

coprocessor, 322

counter field of TICK register, 51

CPopn instructions (SPARC-V8), 171, 322

cross-domain call, 316

CTI, see control-transfer instructions (CTIs)

current exception (cexc) field of FSR register, 44,
46, 48, 84, 115, 247, 254

current window, 9

current window pointer (CWP) register, 9, 15, 21,
33, 56, 58, 58, 60, 82, 87, 89, 157, 169, 211,
217, 218, 242, 259

current_little_endian (CLE) field of PSTATE regis-

ter, 52, 52, 122

CWP, see current window pointer (CWP) register

D
d16hi field of instructions, 66, 138

d16lo field of instructions, 66, 138

data access

RED_state, 92

data aggregate

argument passed by value, 302

examples of, 302

data alignment, see alignment

352 D

data cache, 125

data flow order constraints

memory reference instructions, 124

register reference instructions, 124

data formats

byte, 23

doubleword, 23

extended word, 23

halfword, 23

quadword, 23

tagged word, 23

word, 23

data memory, 131

data types, 23

floating-point, 23

signed integer, 23

unsigned integer, 23

data_access_error exception, 114, 153, 174, 177,
179, 181, 182, 183, 226, 228, 230, 232, 234,
236

data_access_exception exception, 114, 153, 174,
177, 179, 181, 182, 183, 226, 228, 230, 232,
234, 236

data_access_MMU_miss exception, 114, 153,
174, 177, 179, 181, 182, 183, 210, 226, 228,
230, 232, 234, 236, 256

data_access_protection exception, 114, 153, 175,
177, 179, 181, 182, 183, 226, 228, 230, 232

data_protection exception, 234, 236

DEC synthetic instruction, 299

DECcc synthetic instruction, 299

deferred trap, 95, 95, 96, 99, 254

avoiding, 96

floating-point, 212

deferred-trap queue, 95

floating-point (FQ), 47, 61, 96, 211, 243

integer unit, 61

Dekker's algorithm, 326

delay instruction, 19, 35, 138, 141, 144, 150, 157,
216, 302, 306

delayed branch, 63

delayed control transfer, 35, 138

deprecated instructions

BCC, 146

BCS, 146

BE, 146

BG, 146

BGE, 146

BGU, 146

Bicc, 146

BLE, 146

BLEU, 146

BN, 146

BNE, 146

BNEG, 146

BPOS, 146

BVC, 146

BVS, 146

FBE, 140

FBfcc, 140

FBG, 140

FBGE, 140

FBL, 140

FBLE, 140

FBLG, 140

FBN, 140

FBNE, 140

FBO, 140

FBU, 140

FBUE, 140

FBUGE, 140

FBUL, 140

FBULE, 140

LDDA, 180

LDFSR, 173

MULScc, 202

SDIV, 154

SDIVcc, 154

SMULcc, 200

STFSR, 225

SWAP, 234

SWAPA, 235

TSUBccTV, 237, 238

UDIVcc, 154

UMULcc, 200

destination register, 13

dirty bits, see lower and upper registers dirty (DL

and DU) fields of FPRS register

disp19 field of instructions, 66, 144, 148

disp22 field of instructions, 66, 141, 147

disp30 field of instructions, 66, 151

disrupting traps, 95, 96, 97, 98, 254

divide instructions, 19, 154, 199

divide-by-zero mask (DZM) bit of TEM field of

FSR register, 48

division_by_zero exception, 77, 98, 104, 114, 156,
199

division-by-zero accrued (dza) bit of aexc field of

FSR register, 49

division-by-zero current (dzc) bit of cexc field of

FSR register, 49

DL, see lower registers dirty (DL) field of FPRS

register

DONE instruction, 20, 41, 42, 89, 91, 95

doublet, 9

doubleword, 9, 17, 69, 121

addressing, 70, 72

in memory, 35

doubleword data format, 23

DU, see upper registers dirty (DU) field of FPRS

register

E 353

dza, see division-by-zero accrued (dza) bit of aexc

field of FSR register

dzc, see division-by-zero current (dzc) bit of cexc

field of FSR register

DZM, see divide-by-zero mask (DZM) bit of TEM

field of FSR register

E
emulating multiple unsigned condition codes, 81

enable floating-point (FEF) field of FPRS register,
42, 53, 84, 99, 114, 142, 145, 174, 176, 226,
227, 243

enable floating-point (PEF) field of PSTATE regis-

ter, 42, 53, 84, 99, 114, 142, 145, 174, 176,
226, 227, 309

enable RED_state (RED) field of PSTATE register,
91

error_state processor state, 56, 90, 91, 94, 105,
106, 109, 110, 111, 112, 117, 255

exceptions, 21, 89

async_data_error, 113, 133, 153, 174, 177,
179, 181, 182, 183, 226, 228, 230, 232,
234, 236

catastrophic, 98

catastrophic_error, 89, 91, 99, 113, 114, 115

clean_window, 60, 82, 87, 98, 101, 114, 218,
256

data_access_error, 114, 153, 174, 177, 179,
181, 182, 183, 226, 228, 230, 232, 234,
236

data_access_exception, 114, 153, 174, 177,
179, 181, 182, 183, 226, 228, 230, 232,
234, 236

data_access_MMU_miss, 114, 153, 174, 177,
179, 181, 182, 183, 210, 226, 228, 230,
232, 234, 236, 256

data_access_protection, 114, 153, 175, 177,
179, 181, 226, 228, 230, 232

data_protection, 234, 236

division_by_zero, 77, 98, 104, 114, 156, 199

externally_initiated_reset (XIR), 56, 108, 110

fill_n_normal, 98, 114, 216, 218

fill_n_other, 98, 114, 216, 218

floating-point, 10, 99

fp_disabled, 16, 42, 84, 98, 114, 142, 145,
158, 160, 161, 162, 163, 164, 165, 166,
174, 176, 177, 191, 193, 197, 226, 227,
228, 309

fp_exception, 45

fp_exception_ieee_754, 44, 48, 99, 100, 104,
115, 158, 160, 161, 162, 163, 165, 166,
247

fp_exception_other, 40, 47, 61, 85, 104, 115,
158, 160, 161, 162, 163, 164, 165, 166,
174, 177, 191, 193, 213, 226, 228, 247

illegal_instruction, 35, 47, 58, 85, 115, 133,
139, 150, 157, 168, 170, 171, 174, 179,
181, 197, 198, 205, 212, 213, 215, 219,
226, 229, 230, 231, 232, 241, 243, 245,
254, 255, 256

implementation_dependent_n, 91, 104, 255

instruction_access, 97

instruction_access_error, 98, 115, 133

instruction_access_exception, 115, 133

instruction_access_MMU_miss, 115, 133

internal_processor_error, 91, 115, 133

invalid_exception, 161

LDDF_mem_address_not_aligned, 70, 98,
115, 174, 177, 226, 228, 257

LDQF_mem_address_not_aligned, 70, 116,
174, 177, 257

mem_address_not_aligned, 69, 98, 116, 153,
172, 174, 177, 179, 181, 216, 226, 228,
230, 232, 234, 236

persistence, 100

power_on_reset (POR), 108, 116

privileged_action, 51, 73, 97, 116, 153, 176,
177, 181, 183, 215, 227, 228, 232, 236

privileged_instruction (SPARC-V8), 116

privileged_opcode, 98, 116, 157, 212, 215,
219, 243, 245

r_register_access_error (SPARC-V8), 115

software_initiated reset (SIR), 105

software_initiated_reset, 97

software_initiated_reset (SIR), 97, 111, 116,
223

spill_n_normal, 98, 116, 169, 218

spill_n_other, 116, 169, 218

STDF_mem_address_not_aligned, 70, 98,
116, 226, 228, 257

STQF_mem_address_not_aligned, 70, 116,
226, 228, 257

tag_overflow, 77, 98, 104, 117, 237, 239

trap_instruction, 98, 117, 241

unimplemented_LDD, 98, 117, 179, 181, 257

unimplemented_STD, 98, 117, 230, 232, 257

watchdog_reset (WDR), 108

window_fill, 58, 59, 60, 82, 216, 305

window_overflow, 301

window_spill, 58, 60, 305

exceptions, also see trap types

execute protection, 282

execute unit, 123

execute_state, 90, 105, 106, 110, 111, 117

extended word, 10

extended word addressing, 70, 72

extended word data format, 23

extensions

architectural, 7, 321

externally_initiated_reset (XIR), 56, 91, 93, 97,
108, 110, 111

354 F

F
f registers, 16, 36, 100, 247, 255

FABSd instruction, 164, 275, 276, 277

FABSq instruction, 164, 275, 276, 277

FABSs instruction, 164, 275

FADDd instruction, 158, 275

FADDq instruction, 158, 275

FADDs instruction, 158, 275

FBA instruction, 141, 278

FBE instruction, 140, 278

FBfcc instructions, 35, 43, 84, 99, 114, 140, 142,
273, 278

FBG instruction, 140, 278

FBGE instruction, 140, 278

FBL instruction, 140, 278

FBLE instruction, 140, 278

FBLG instruction, 140, 278

FBN instruction, 140, 141, 278

FBNE instruction, 140, 278

FBO instruction, 140, 278

FBPA instruction, 143, 144, 278

FBPcc instructions, 66

FBPE instruction, 143, 278

FBPfcc instructions, 35, 43, 66, 67, 84, 99, 142,
143, 273, 278

FBPG instruction, 143, 278

FBPGE instruction, 143, 278

FBPL instruction, 143, 278

FBPLE instruction, 143, 278

FBPLG instruction, 143, 278

FBPN instruction, 143, 144, 278

FBPNE instruction, 143, 278

FBPO instruction, 143, 278

FBPU instruction, 143, 278

FBPUE instruction, 143, 278

FBPUG instruction, 143, 278

FBPUGE instruction, 143, 278

FBPUL instruction, 143, 278

FBPULE instruction, 143, 278

FBU instruction, 140, 278

FBUE instruction, 140, 278

FBUG instruction, 140, 278

FBUGE instruction, 140, 278

FBUL instruction, 140, 278

FBULE instruction, 140, 278

fcc, see floating-point condition codes (fcc) fields of

FSR register

fcc-conditional branches, 141, 144

fccN, 10

FCMP* instructions, 43, 159

FCMPd instruction, 159, 248, 277

FCMPE* instructions, 43, 159

FCMPEd instruction, 159, 248, 277

FCMPEq instruction, 159, 248, 277

FCMPEs instruction, 159, 248, 277

FCMPq instruction, 159, 248, 277

FCMPs instruction, 159, 248, 277

fcn field of instructions, 157, 206

FDIVd instruction, 165, 275

FDIVq instruction, 165, 275

FDIVs instruction, 165, 275

FdMULq instruction, 165, 275

FdTOi instruction, 161, 250, 275

FdTOq instruction, 162, 248, 275

FdTOs instruction, 162, 248, 275

FdTOx instruction, 161, 275, 276, 277

FEF, see enable floating-point (FEF) field of FPRS

register

fill register window, 33, 58, 59, 82, 83, 86, 87,
88, 114, 217, 218, 219, 316

fill_n_normal exception, 98, 114, 216, 218

fill_n_other exception, 98, 114, 216, 218

FiTOd instruction, 163, 275

FiTOq instruction, 163, 275

FiTOs instruction, 163, 275

floating-point add and subtract instructions, 158

floating-point compare instructions, 43, 159, 159,
248

floating-point condition code bits, 141

floating-point condition codes (fcc) fields of FSR

register, 43, 46, 100, 141, 144, 159, 247, 292

floating-point data type, 23

floating-point deferred-trap queue (FQ), 47, 61, 96,
211, 212, 243, 254

floating-point enable (FEF) field of FPRS register,
309

floating-point exception, 10, 99

floating-point move instructions, 164

floating-point multiply and divide instructions, 165

floating-point operate (FPop) instructions, 10, 20,
36, 45, 48, 67, 84, 99, 114, 115, 174

floating-point queue, see floating-point deferred-

trap queue (FQ)

floating-point registers, 40, 247, 255, 304

floating-point registers state (FPRS) register, 42,
215, 245

floating-point square root instructions, 166

floating-point state (FSR) register, 43, 48, 50, 174,
225, 226, 247, 250, 254

floating-point trap type (ftt) field of FSR register,
10, 43, 45, 48, 61, 84, 85, 115, 212, 226, 247

floating-point trap types

fp_disabled, 53

FPop_unfinished, 85

FPop_unimplemented, 85

hardware_error, 10, 45, 47

IEEE_754_exception, 10, 46, 46, 48, 50, 100,
115, 247

invalid_fp_register, 10, 40, 46, 158, 160, 161,
162, 163, 164, 165, 166, 174, 177, 191,
193, 226, 228

F 355

numeric values, 45

sequence_error, 45, 46, 47, 61, 212, 213

unfinished_FPop, 10, 46, 46, 50, 247, 253

unimplemented_FPop, 10, 46, 46, 50, 85,
191, 212, 247, 253

floating-point traps

deferred, 212

precise, 212

floating-point unit (FPU), 10, 16

FLUSH instruction, 131, 167, 253, 258, 308, 324

in multiprocess environment, 132

flush instruction memory instruction, 167, 324

FLUSH latency, 258

flush register windows instruction, 169

FLUSHW instruction, 20, 83, 86, 87, 116, 169,
303

FMOVA instruction, 188

FMOVCC instruction, 188

FMOVcc instructions, 41, 42, 43, 66, 67, 80, 84,
188, 191, 196, 197, 278

FMOVccd instruction, 277

FMOVccq instruction, 277

FMOVccs instruction, 277

FMOVCS instruction, 188

FMOVd instruction, 164, 275, 276, 277

FMOVE instruction, 188

FMOVFA instruction, 188

FMOVFE instruction, 188

FMOVFG instruction, 188

FMOVFGE instruction, 188

FMOVFL instruction, 188

FMOVFLE instruction, 188

FMOVFLG instruction, 188

FMOVFN instruction, 188

FMOVFNE instruction, 188

FMOVFO instruction, 188

FMOVFU instruction, 188

FMOVFUE instruction, 188

FMOVFUG instruction, 188

FMOVFUGE instruction, 188

FMOVFUL instruction, 188

FMOVFULE instruction, 188

FMOVG instruction, 188

FMOVGE instruction, 188

FMOVGU instruction, 188

FMOVL instruction, 188

FMOVLE instruction, 188

FMOVLEU instruction, 188

FMOVN instruction, 188

FMOVNE instruction, 188

FMOVNEG instruction, 188

FMOVPOS instruction, 188

FMOVq instruction, 164, 275, 276, 277

FMOVr instructions, 67, 84, 192

FMOVRGEZ instruction, 192

FMOVRGZ instruction, 192

FMOVRLEZ instruction, 192

FMOVRLZ instruction, 192

FMOVRNZ instruction, 192

FMOVRZ instruction, 192

FMOVs instruction, 164, 275

FMOVVC instruction, 188

FMOVVS instruction, 188

FMULd instruction, 165, 275

FMULq instruction, 165, 275

FMULs instruction, 165, 275

FNEGd instruction, 164, 275, 276, 277

FNEGq instruction, 164, 275, 276, 277

FNEGs instruction, 164, 275

formats

instruction, 63

fp_disabled floating-point trap type, 16, 42, 53, 84,
98, 114, 142, 145, 158, 160, 161, 162, 163,
164, 165, 166, 174, 176, 177, 191, 193, 197,
226, 227, 228, 309

fp_exception exception, 45, 48

fp_exception_ieee_754 exception, 44, 48, 99, 100,
104, 115, 158, 160, 161, 162, 163, 165, 166,
247

fp_exception_other exception, 40, 47, 61, 85, 104,
115, 158, 160, 161, 162, 163, 164, 165, 166,
174, 177, 191, 193, 212, 213, 226, 228, 247

FPop instructions, see floating-point operate (FPop)

instructions

FPop_unimplemented floating-point trap type, 85

FPop1 instructions, 10

FPop2 instructions, 10

FPRS, see floating-point register state (FPRS) reg-

ister

FPU, see floating-point unit

FQ, see floating-point deferred-trap queue (FQ)

FqTOd instruction, 162, 248, 275

FqTOi instruction, 161, 250, 275

FqTOs instruction, 162, 248, 275

FqTOx instruction, 161, 275, 276, 277

frame pointer register, 302

freg, 292

FsMULd instruction, 165, 275

FSQRTd instruction, 166, 275

FSQRTq instruction, 166, 275

FSQRTs instruction, 166, 275

FsTOd instruction, 162, 248, 275

FsTOi instruction, 161, 250, 275

FsTOq instruction, 162, 248, 275

FsTOx instruction, 161, 275, 276, 277

FSUBd instruction, 158, 275

FSUBq instruction, 158, 275

FSUBs instruction, 158, 275

ftt, see floating-point trap type (ftt) field of FSR reg-

ister

function return value, 302

functional choice

356 I

implementation-dependent, 252

FxTOd instruction, 163, 275, 276, 277

FxTOq instruction, 163, 275, 276, 277

FxTOs instruction, 163, 275, 276, 277

G
generating constants, 220

global registers, 4, 15, 30, 30, 30, 303

H
halfword, 10, 17, 69, 121

addressing, 70, 72

data format, 23

halt, 105

hardware

dependency, 251

traps, 101

hardware_error floating-point trap type, 10, 45, 47

has, 7

hexlet, 10

I
i field of instructions, 66, 137, 154, 167, 169, 172,

173, 176, 178, 180, 182, 183, 184, 195, 198,
199, 200, 202, 205, 206, 214, 216

I/O, see input/output (I/O)

i_or_x_cc, 292

icc field of CCR register, 41, 42, 137, 147, 149,
155, 156, 184, 196, 200, 202, 203, 233, 237,
241

icc-conditional branches, 147

IE, see interrupt enable (IE) field of PSTATE regis-

ter

IEEE Std 754-1985, 10, 15, 44, 46, 48, 50, 85,
247, 249, 250, 253, 254

IEEE_754_exception floating-point trap type, 10,
46, 46, 48, 50, 100, 115, 247

IER register (SPARC-V8), 245

illegal_instruction exception, 35, 47, 58, 85, 115,
133, 139, 150, 157, 168, 170, 171, 174, 179,
181, 197, 198, 205, 210, 212, 213, 215, 219,
226, 229, 230, 231, 232, 241, 243, 245, 254,
255, 256

ILLTRAP instruction, 115, 170, 273

imm_asi field of instructions, 67, 73, 152, 173,
176, 178, 180, 182, 183, 206

imm22 field of instructions, 67

IMPDEPn instructions, see implementation-depen-

dent (IMPDEPn) instructions

IMPL, 171

impl field of VER register, 45

impl_dep (PID) fields of PSTATE register, 52

implementation, 10

implementation dependency, 7, 251

implementation note, 4

implementation number (impl) field of VER regis-

ter, 57

implementation_dependent_n exception, 91, 104,
115, 255

implementation-dependent, 10

assigned value (a), 252

functional choice (c), 252

total unit (t), 252

trap, 108

value (v), 252

implementation-dependent (IMPDEPn) instruc-

tions, 85, 171, 257, 321

implicit

ASI, 73

byte order, 52

in registers, 15, 30, 33, 217, 301

INC synthetic instruction, 299

INCcc synthetic instruction, 299

inexact accrued (nxa) bit of aexc field of FSR regis-

ter, 49, 250

inexact current (nxc) bit of cexc field of FSR regis-

ter, 48, 49, 249, 250

inexact mask (NXM) bit of TEM field of FSR regis-

ter, 48, 48

inexact quotient, 154, 155

infinity, 250

initiated, 11

input/output (I/O), 6, 18

input/output (I/O) locations, 120, 121, 130, 253,
258

order, 121

value semantics, 121

instruction

access in RED_state, 92

alignment, 17, 69, 121

cache, 125

dispatch, 98

execution, 98

fetch, 69

formats, 4, 63

memory, 131

reordering, 124

instruction fields, 11

a, 66, 138, 141, 147, 148, 152

cc0, 66, 144, 148, 159, 195

cc1, 66, 144, 148, 159, 195

cc2, 66, 195

cond, 66, 141, 144, 147, 148, 189, 195

const22, 170

d16hi, 66, 138

d16lo, 66, 138

disp19, 66, 144, 148

disp22, 66, 141, 147

I 357

disp30, 66, 151

fcn, 157, 206

i, 66, 137, 154, 167, 169, 172, 173, 176, 178,
180, 182, 183, 184, 195, 198, 199, 200,
202, 205, 206, 214, 216

imm_asi, 67, 73, 152, 173, 176, 178, 180,
206

imm22, 67

mmask, 67, 224

op3, 67, 137, 152, 154, 157, 167, 169, 172,
173, 176, 178, 180, 182, 183, 184, 199,
200, 202, 206, 211, 214, 216

opf, 67, 158, 159, 161, 162, 163, 164, 165,
166

opf_cc, 67, 189

opf_low, 67, 189, 192

p, 67, 138, 139, 144, 148

rcond, 67, 138, 192, 198

rd, 13, 68, 137, 152, 154, 158, 161, 162,
163, 164, 165, 166, 172, 173, 176, 178,
180, 182, 183, 184, 189, 192, 195, 198,
199, 200, 202, 205, 211, 214, 321

reg_or_imm, 321

reserved, 133

rs1, 13, 68, 137, 138, 152, 154, 158, 159,
165, 167, 172, 173, 176, 178, 180, 182,
183, 184, 192, 198, 199, 200, 202, 206,
211, 214, 216, 321

rs2, 13, 68, 137, 152, 154, 158, 159, 161,
162, 163, 164, 165, 166, 167, 172, 173,
176, 178, 180, 182, 183, 184, 189, 192,
195, 198, 199, 200, 202, 205, 206, 216

simm10, 68, 198

simm11, 68, 195

simm13, 68, 137, 154, 167, 172, 173, 176,
178, 180, 182, 183, 184, 199, 200, 202,
205, 206, 216

sw_trap#, 68

undefined, 171

instruction set architecture, 5, 10, 11

instruction_access exception, 97

instruction_access_error exception, 98, 115, 133

instruction_access_exception exception, 115, 133

instruction_access_MMU_miss exception, 115, 133

instructions

atomic, 152

atomic load-store, 69, 98, 152, 182, 183, 234,
235

branch if contents of integer register match con-

dition, 138

branch on floating-point condition codes, 140

branch on floating-point condition codes with

prediction, 143

branch on integer condition codes, 146

branch on integer condition codes with predic-

tion, 148

compare and swap, 98, 152

comparison, 76, 233

conditional move, 20

control-transfer (CTIs), 19, 157

convert between floating-point formats, 162,
248

convert floating-point to integer, 161, 250

convert integer to floating-point, 163

divide, 19, 154, 199

floating-point add and subtract, 158

floating-point compare, 43, 159, 159, 248

floating-point move, 164

floating-point multiply and divide, 165

floating-point operate (FPop), 20, 45, 48, 99,
174

floating-point square root, 166

flush instruction memory, 167, 324

flush register windows, 169

implementation-dependent (IMPDEPn), 85,
171

jump and link, 19, 172

load, 323

load floating-point, 69, 173

load floating-point from alternate space, 176

load integer, 69, 178

load integer from alternate space, 180

load-store unsigned byte, 98, 152, 182, 234,
235

load-store unsigned byte to alternate space, 183

logical, 184

move floating-point register if condition is true,
188

move floating-point register if contents of inte-

ger register satisfy condition, 192

move integer register if condition is satisfied,
194

move integer register if contents of integer reg-

ister satisfies condition, 198

move on condition, 5

multiply, 19, 199, 200, 200

multiply step, 19, 202

prefetch data, 206

read privileged register, 211

read state register, 20, 214

register window management, 20

reserved, 85

reserved fields, 133

shift, 19, 221

software-initiated reset, 223

store, 323

store floating point, 69

store floating-point, 225

store floating-point into alternate space, 227

store integer, 69, 229, 231

subtract, 233

358 L

swap r register with alternate space memory,
235

swap r register with memory, 234

synthetic, 297

tagged add, 237

tagged arithmetic, 19

test-and-set, 131

timing, 133

trap on integer condition codes, 240

write privileged register, 242

write state register, 244

integer condition codes, see icc field of CCR register

integer divide instructions, see divide instructions

integer multiply instructions, see multiply instruc-

tions

integer unit (IU), 11, 11, 15

integer unit deferred-trap queue, 61

internal_processor_error exception, 91, 115, 133

and RED_state, 93

interrupt enable (IE) field of PSTATE register, 54,
96, 99, 115

interrupt level, 54

interrupt request, 11, 21, 89, 133

interrupts, 54

invalid accrued (nva) bit of aexc field of FSR regis-

ter, 49

invalid current (nvc) bit of cexc field of FSR regis-

ter, 49, 250

invalid mask (NVM) bit of TEM field of FSR regis-

ter, 48

invalid_exception exception, 161

invalid_fp_register floating-point trap type, 10, 40,
46, 158, 160, 161, 162, 163, 164, 165, 166,
174, 177, 191, 193, 226, 228

IPREFETCH synthetic instruction, 297

ISA, see instruction set architecture

issue unit, 123, 124

issued, 11

italic font

in assembly language syntax, 291

IU, see integer unit

J
JMP synthetic instruction, 297

JMPL instruction, 19, 33, 35, 116, 172, 216, 297,
304

jump and link instruction, 19, 172

L
LD instruction (SPARC-V8), 179

LDA instruction (SPARC-V8), 181

LDD instruction, 35, 98, 117, 178, 257

LDDA instruction, 35, 61, 98, 180, 257

LDDF instruction, 70, 98, 115, 173

LDDF_mem_address_not_aligned exception, 70,
98, 115, 174, 177, 228, 257

LDDFA instruction, 70, 98, 176

LDF instruction, 173

LDFSR instruction, 43, 45, 48, 50, 173

LDQF instruction, 70, 116, 173

LDQF_mem_address_not_aligned exception, 70,
116, 174, 177, 257

LDQFA instruction, 70, 176

LDSB instruction, 178

LDSBA instruction, 180

LDSH instruction, 178

LDSHA instruction, 180

LDSTUB insruction, 69

LDSTUB instruction, 98, 127, 131, 182, 327

LDSTUBA instruction, 98, 183

LDSW instruction, 178

LDSWA instruction, 180

LDUB instruction, 178

LDUBA instruction, 180

LDUH instruction, 178

LDUHA instruction, 180

LDUW instruction, 178

LDUWA instruction, 180

LDX instruction, 98, 178

LDXA instruction, 98, 180

LDXFSR instruction, 43, 45, 48, 50, 173

leaf procedure, 11, 82, 304, 304

optimization, 305, 306

Level I compliance, 7

Level II compliance, 8

little-endian byte order, 11, 17, 52

load floating-point from alternate space instruc-

tions, 176

load floating-point instructions, 173

load instructions, 69, 323

load integer from alternate space instructions, 180

load integer instructions, 178

LoadLoad MEMBAR relationship, 127, 187

loads

non-faulting, 123, 123

loads from alternate space, 18, 50, 73, 341

load-store alignment, 17, 69, 121

load-store instructions, 17, 98

compare and swap, 98, 152

load-store unsigned byte, 152, 182, 234, 235

load-store unsigned byte to alternate space, 183

swap r register with alternate space memory,
235

swap r register with memory, 152, 234

LoadStore MEMBAR relationship, 127, 128, 187

local registers, 15, 30, 33, 217, 302, 307

logical instructions, 184

Lookaside MEMBAR relationship, 187

lower registers dirty (DL) field of FPRS register, 42

M 359

M
manual

audience, 1

fonts, 3

where to start, 1

manufacturer (manuf) field of VER register, 57,
256

mask number (mask) field of VER register, 57

maximum trap levels (maxtl) field of VER register,
57

MAXTL, 54, 90, 106, 223

maxtl, see maximum trap levels (maxtl) field of VER

register

may, 11

mem_address_not_aligned exception, 69, 98, 116,
153, 172, 174, 177, 179, 181, 216, 226, 228,
230, 232, 234, 236

MEMBAR instruction, 67, 76, 121, 125, 126–
128, 129, 131, 167, 186, 214, 224, 324

membar_mask, 295

MemIssue MEMBAR relationship, 187

memory

alignment, 121

atomicity, 258

coherence, 120, 121, 258

coherency unit, 122

data, 131

instruction, 131

ordering unit, 121

page, 281

real, 120, 121

stack layout, 304

memory access instructions, 17

memory management unit (MMU), 6, 114, 115,
253, 291

address translation, 286

ASI input, 283

atomic input, 283

context, 281

Data / Instr input, 283

diagram, 283

disabled, 207

disabling, 282

fault address, 288

fault status, 288

in RED_state, 92

memory protection, 286

modified statistics, 282, 288

NF-Load_violation output, 285

No_translation output, 284

Non-faultable attribute, 284

Nucleus Context, 287

Prefetch input, 283

Prefetch_violation output, 285

Prefetchable attribute, 284

Primary Context, 286

Privilege input, 283

Privilege_violation output, 285, 286

Protection_violation output, 285, 286

Read / Write input, 283

Read, Write, and Execute attributes, 284

RED_state, 92, 288

RED_state input, 283

referenced statistics, 282, 288

Restricted attribute, 284

Secondary Context, 286

Translation_error output, 284

Translation_not_valid output, 284

Translation_successful output, 285

memory model, 119–132

barrier synchronization, 333, 334

Dekker's algorithm, 326

issuing order, 330

mode control, 129

mutex (mutual exclusion) locks, 326

operations, 323

overview, 119

partial store order (PSO), 119, 128, 130, 257,
323

portability and recommended programming

style, 324

processors and processes, 324

programming with, 323–335

relaxed memory order (RMO), 119, 128, 130,
257, 323

sequential consistency, 120

SPARC-V9, 128

spin lock, 327

strong, 120

strong consistency, 120, 325, 330

total store order (TSO), 92, 119, 129, 130, 323

weak, 120

memory operations

atomic, 130

memory order, 125

program order, 124

memory reference instructions

data flow order constraints, 124

memory_model (MM) field of PSTATE register,
52, 92, 125, 129, 130, 258

microkernel, 317

MM, see memory_model (MM) field of PSTATE

register

mmask field of instructions, 67, 224

MMU, see memory management unit (MMU)

mode

nonprivileged, 6, 15, 75

privileged, 15, 51, 85, 122

user, 30, 50, 303

MOV synthetic instruction, 299

MOVA instruction, 194

360 N

MOVCC instruction, 194

MOVcc instructions, 41, 42, 43, 66, 68, 80, 191,
194, 196, 197, 278

MOVCS instruction, 194

move floating-point register if condition is true, 188

move floating-point register if contents of integer

register satisfy condition, 192

MOVE instruction, 194

move integer register if condition is satisfied in-

structions, 194

move integer register if contents of integer register

satisfies condition instructions, 198

move on condition instructions, 5

MOVFA instruction, 194

MOVFE instruction, 194

MOVFG instruction, 194

MOVFGE instruction, 194

MOVFL instruction, 194

MOVFLE instruction, 194

MOVFLG instruction, 194

MOVFN instruction, 194

MOVFNE instruction, 194

MOVFO instruction, 194

MOVFU instruction, 194

MOVFUE instruction, 194

MOVFUG instruction, 194

MOVFUGE instruction, 194

MOVFUL instruction, 194

MOVFULE instruction, 194

MOVG instruction, 194

MOVGE instruction, 194

MOVGU instruction, 194

MOVL instruction, 194

MOVLE instruction, 194

MOVLEU instruction, 194

MOVN instruction, 194

MOVNE instruction, 194

MOVNEG instruction, 194

MOVPOS instruction, 194

MOVr instruction, 67

MOVr instructions, 68, 81, 198

MOVRGEZ instruction, 198

MOVRGZ instruction, 198

MOVRLEZ instruction, 198

MOVRLZ instruction, 198

MOVRNZ instruction, 198

MOVRZ instruction, 198

MOVVC instruction, 194

MOVVS instruction, 194

MULScc (multiply step) instruction, 19, 202

multiple unsigned condition codes

emulating, 81

multiply instructions, 19, 199, 200, 200

multiply step instruction, see MULScc (multiply

step) instruction

multiply/divide register, see Y register

multiprocessor synchronization instructions, 5,
152, 234, 235

multiprocessor system, 5, 125, 167, 208, 210,
234, 235, 258

MULX instruction, 199

must, 11

mutex (mutual exclusion) locks, 326

N
N condition code bit, see negative (N) bit of condi-

tion fields of CCR

NaN (not-a-number), 161, 248, 250

quiet, 159, 160, 248

signaling, 43, 159, 160, 162, 248

NEG synthetic instruction, 299

negative (N) bit of condition fields of CCR, 41

negative infinity, 250

nested traps, 5

next program counter (nPC), 11, 21, 35, 35, 55,
63, 95, 97, 157, 204, 318

non-faulting load, 11, 123, 123, 123

non-leaf routine, 172

nonprivileged

mode, 6, 9, 12, 15, 45, 75

registers, 30

software, 42

nonprivileged trap (NPT) field of TICK register,
51, 215

nonstandard floating-point (NS) field of FSR regis-

ter, 44, 44, 250, 254

nonstandard modes

in FPU, 44

non-virtual memory, 209

NOP instruction, 141, 144, 147, 204, 206, 220,
241

normal traps, 90, 101, 106, 106, 108

NOT synthetic instruction, 299

note

compatibility, 4

implementation, 4

programming, 4

nPC, see next program counter (nPC)

NPT, see nonprivileged trap (NPT) field of TICK

register)

NS, see nonstandard floating-point (NS) field of

FSR register

Nucleus Context, 122, 287

number of windows (maxwin) field of VER register,
58, 87

nva, see invalid accrued (nva) bit of aexc field of

FSR register

nvc, see invalid current (nvc) bit of cexc field of FSR

register

NVM, see invalid mask (NVM) bit of TEM field of

FSR register

O 361

NWINDOWS, 12, 15, 32, 33, 58, 217, 218, 253,
259

nxa, see inexact accrued (nxa) bit of aexc field of

FSR register

nxc, see inexact current (nxc) bit of cexc field of FSR

register

NXM, see inexact mask (NXM) bit of TEM field of

FSR register

O
object-oriented programming, 6

octlet, 12

ofa, see overflow accrued (ofa) bit of aexc field of

FSR register

ofc, see overflow current (ofc) bit of cexc field of

FSR register

OFM, see overflow mask (OFM) bit of TEM field of

FSR register

op3 field of instructions, 67, 137, 152, 154, 157,
167, 169, 172, 173, 176, 178, 180, 182, 183,
184, 199, 200, 202, 206, 211, 214, 216

opcode, 12

reserved, 321

opf field of instructions, 67, 158, 159, 161, 162,
163, 164, 165, 166

opf_cc field of instructions, 67, 189

opf_low field of instructions, 67, 189, 192

optimized leaf procedure, see leaf procedure (opti-

mized)

OR instruction, 184, 299

ORcc instruction, 184, 297

ordering unit

memory, 121

ORN instruction, 184

ORNcc instruction, 184

other windows (OTHERWIN) register, 58, 59, 60,
83, 86, 87, 169, 211, 218, 242, 259, 317

out register #7, 34, 151, 172, 215

out registers, 15, 30, 33, 217, 301

overflow, 86

window, 316

overflow (V) bit of condition fields of CCR, 41, 77

overflow accrued (ofa) bit of aexc field of FSR reg-

ister, 49

overflow current (ofc) bit of cexc field of FSR regis-

ter, 48, 49

overflow mask (OFM) bit of TEM field of FSR reg-

ister, 48, 48

P
p field of instructions, 67, 138, 139, 144, 148

page attributes, 281

page descriptor cache (PDC), 114, 115

page fault, 209

page-level protections, 282

parameters to a subroutine, 302

parity error, 115

partial store order (PSO) memory model, 52, 119,
120, 128, 130, 257, 323

PC, see program counter (PC)

PDC, see page descriptor cache (PDC)

PEF, see enable floating-point (PEF) field of

PSTATE register

physical address, 120, 281, 282

PID0, PID1 fields of PSTATE register, 52

PIL, see processor interrupt level (PIL) register

POPC instruction, 205

positive infinity, 250

power failure, 97, 110

power-on reset, 51, 92, 93, 97, 109

power-on reset (POR) trap, 108

power-on_reset, 91

precise floating-point traps, 212

precise trap, 94, 95, 95, 96, 254

predict bit, 139

prefetch

for one read, 208

for one write, 209

for several reads, 208

for several writes, 208

implementation dependent, 209

instruction, 209

page, 209

prefetch data instruction, 206

PREFETCH instruction, 69, 149, 206, 256

prefetch_fcn, 295

PREFETCHA instruction, 206, 256

prefetchable, 12

PRIV, see privileged (PRIV) field of PSTATE regis-

ter

privileged, 11, 12

mode, 12, 15, 51, 85, 122, 223

registers, 51

software, 6, 33, 45, 53, 73, 101, 169, 256,
288

privileged (PRIV) field of PSTATE register, 14,
53, 116, 122, 153, 176, 183, 215, 227, 232,
235

privileged_action exception, 51, 73, 97, 116, 153,
176, 177, 181, 183, 215, 227, 228, 232, 236

privileged_instruction exception (SPARC-V8), 116

privileged_opcode exception, 98, 116, 157, 212,
215, 219, 243, 245

processor, 12, 15

execute unit, 123

halt, 94, 105

issue unit, 123, 124

model, 123

reorder unit, 123

self-consistency, 124

362 R

state diagram, 90

processor interrupt level (PIL) register, 54, 96, 99,
100, 115, 211, 242

processor state (PSTATE) register, 21, 30, 51, 52,
56, 89, 91, 157, 211, 242

processor states

error_state, 56, 91, 94, 105, 106, 109, 110,
111, 112, 117, 255

execute_state, 105, 106, 110, 111, 117

RED_state, 90, 91, 94, 101, 105, 106, 108,
109, 110, 111, 112, 117, 130, 258

program counter (PC), 12, 21, 35, 35, 55, 63, 89,
95, 97, 151, 157, 172, 204, 318

program order, 124, 124

programming note, 4

protection

execute, 282

read, 282

write, 282

PSO, see partial store ordering (PSO) memory mod-

el

PSR register (SPARC-V8), 245

PTD, see page table descriptor (PTD)

PTE, see page table entry (PTE)

Q
qne, see queue not empty (qne) field of FSR register

quadlet, 12

quadword, 12, 17, 69, 121

addressing, 71, 73

data format, 23

queue not empty (qne) field of FSR register, 47, 47,
61, 212, 213, 243, 247

quiet NaN (not-a-number), 43, 159, 160, 248

R
r register, 30

#15, 34, 151, 172

alignment, 179, 181

r registers, 253

r_register_access_error exception (SPARC-V8),
115

rcond field of instructions, 67, 138, 192, 198

rd field of instructions, 13, 68, 137, 152, 154, 158,
161, 162, 163, 164, 165, 166, 172, 173, 176,
178, 180, 182, 183, 184, 189, 192, 195, 198,
199, 200, 202, 205, 211, 214, 321

RD, see rounding direction (RD) field of FSR regis-

ter

RDASI instruction, 214

RDASR instruction, 18, 61, 214, 224, 256, 299,
321

RDCCR instruction, 214

RDFPRS instruction, 214

RDPC instruction, 35, 214

RDPR instruction, 47, 51, 52, 58, 61, 85, 211,
215

RDTICK instruction, 214, 215

RDY instruction, 36, 214, 299

read privileged register instruction, 211

read protection, 282

read state register instructions, 20, 214

read-after-write memory hazard, 124

real memory, 120, 121

real-time software, 308

RED, see enable RED_state (RED) field of PSTATE

register

RED_state, 13, 90, 91, 94, 101, 105, 106, 108,
109, 110, 111, 112, 117, 282

and internal_processor_error exception, 93

cache behavior, 92

cache coherence in, 92

data access, 92

instruction access, 92

memory management unit (MMU) in, 92

restricted environment, 92

RED_state (RED) field of PSTATE register, 53,
91, 93

RED_state processor state, 130, 258

RED_state trap table, 101

RED_state trap vector, 91, 92, 258

RED_state trap vector address (RSTVaddr), 258

reference MMU, 6, 291

references, 345

reg, 291

reg_or_imm, 296

reg_or_imm field of instructions, 296, 321

reg_plus_imm, 295

regaddr, 295

register

allocation within a window, 307

destination, 13

renaming mechanism, 124

sets, 29, 33

window usage models, 308

register reference instructions

data flow order constraints, 124

register window management instructions, 20

register windows, 4, 5, 15, 33, 301, 303

clean, 9, 58, 60, 82, 86, 88, 114

fill, 33, 58, 59, 82, 83, 86, 87, 88, 114, 218,
219

spill, 33, 58, 59, 82, 83, 85, 86, 87, 88, 116,
218, 219

registers

address space identifier (ASI), 89, 122, 157,
176, 181, 183, 207, 227, 232, 235, 245,
316

alternate global, 15, 30, 30, 316

R 363

ancillary state registers (ASRs), 18, 36, 60,
252, 321

ASI, 50, 56

clean windows (CLEANWIN), 58, 60, 82, 83,
86, 87, 88, 211, 242, 259

clock-tick (TICK), 116

condition codes register (CCR), 56, 89, 137,
157, 202, 245

control and status, 29, 35

current window pointer (CWP), 15, 33, 56,
58, 58, 60, 87, 89, 157, 169, 211, 217,
218, 242, 259

f, 36, 100, 247, 255

floating-point, 16, 40, 255, 304

floating-point deferred-trap queue (FQ), 212

floating-point registers state (FPRS), 42, 215,
245

floating-point state (FSR), 43, 48, 50, 174,
225, 247, 250, 254

frame pointer, 302

global, 4, 15, 30, 30, 30, 303

IER (SPARC-V8), 245

in, 15, 30, 33, 217, 301

input/output (I/O), 18, 252

local, 15, 30, 33, 217, 302, 307

nonprivileged, 30

other windows (OTHERWIN), 58, 59, 60, 83,
86, 87, 169, 211, 218, 242, 259, 317

out, 15, 30, 33, 217, 301

out #7, 34, 151, 172, 215

privileged, 51

processor interrupt level (PIL), 54, 211, 242

processor state (PSTATE), 30, 51, 52, 56, 89,
157, 211, 242

PSR (SPARC-V8), 245

PSTATE, 91

r, 30, 253

r register
#15, 34, 151, 172, 215

restorable windows (CANRESTORE), 16, 33,
58, 59, 60, 82, 83, 86, 87, 211, 218, 219,
242, 259, 317

savable windows (CANSAVE), 16, 33, 58,
59, 82, 83, 86, 87, 169, 211, 218, 219,
242, 259

stack pointer, 301, 303

TBR (SPARC-V8), 245

TICK, 51, 211, 242

trap base address (TBA), 14, 57, 89, 100, 211,
242

trap level (TL), 54, 54, 55, 56, 57, 60, 89, 94,
157, 211, 212, 219, 223, 242, 243

trap next program counter (TNPC), 55, 95,
113, 211, 242

trap program counter (TPC), 55, 95, 113, 211,
212, 242

trap state (TSTATE), 52, 56, 157, 211, 242

trap type (TT), 56, 57, 60, 101, 105, 110,
111, 211, 241, 242, 255

version register (VER), 57, 211

WIM (SPARC-V8), 245

window state (WSTATE), 58, 60, 87, 169,
211, 218, 242, 316, 317

working, 29

Y, 35, 36, 154, 200, 202, 245

relaxed memory order (RMO) memory model, 5,
52, 119, 128, 130, 257, 323

renaming mechanism

register, 124

reorder unit, 123

reordering

instruction, 124

reserved, 13

fields in instructions, 133

instructions, 85

opcodes, 321

reset

externally initiated (XIR), 91, 93, 97, 111

externally_initiated (XIR), 91

externally_initiated_reset (XIR), 56, 110

power_on_reset (POR) trap, 116

power-on, 51, 91, 92, 93, 97, 109

processing, 91

request, 91, 116

reset

trap, 51, 56, 96, 97

software_initiated (SIR), 91

software_initiated_reset (SIR), 97, 111, 116

software-initiated, 93, 97, 105

trap, 13, 51, 95, 97, 105, 255

trap table, 13

watchdog, 56, 91, 93, 94, 97, 109, 110, 111

Reset, Error, and Debug state, 90

restorable windows (CANRESTORE) register, 16,
33, 58, 59, 60, 82, 83, 86, 87, 211, 218, 219,
242, 259, 317

RESTORE instruction, 6, 20, 33, 35, 58, 59, 82,
86, 114, 217, 303, 305, 306, 308

RESTORE synthetic instruction, 297

RESTORED instruction, 20, 83, 88, 218, 219, 316

restricted, 13

restricted address space identifier, 73, 74, 254

RET synthetic instruction, 297, 306

RETL synthetic instruction, 297, 306

RETRY instruction, 20, 41, 42, 88, 89, 91, 95,
96, 97, 157, 218

return address, 302, 305

return from trap (DONE) instruction, see DONE in-

struction

return from trap (RETRY) instruction, see RETRY

instruction

RETURN instruction, 19, 35, 114, 116, 216, 317

364 S

RMO, see relaxed memory ordering (RMO) memo-

ry model

rounding

in signed division, 155

rounding direction (RD) field of FSR register, 44,
158, 161, 162, 163, 165, 166

routine

non-leaf, 172

rs1 field of instructions, 13, 68, 137, 138, 152,
154, 158, 159, 165, 167, 172, 173, 176, 178,
180, 182, 183, 184, 192, 198, 199, 200, 202,
206, 211, 214, 216, 321

rs2 field of instructions, 13, 68, 137, 152, 154,
158, 159, 161, 162, 163, 164, 165, 166, 167,
172, 173, 176, 178, 180, 184, 189, 192, 195,
198, 199, 200, 202, 205, 206

RSTVaddr, 92, 101, 258

S
savable windows (CANSAVE) register, 16, 33, 58,

59, 82, 83, 86, 87, 169, 211, 218, 219, 242,
259

SAVE instruction, 6, 20, 33, 35, 58, 59, 60, 82,
85, 86, 87, 114, 116, 172, 216, 217, 302,
303, 305, 306, 308

SAVE synthetic instruction, 297

SAVED instruction, 20, 83, 88, 218, 219, 316

SDIV instruction, 36, 154

SDIVcc instruction, 36, 154

SDIVX instruction, 199

self-consistency

processor, 124

self-modifying code, 167, 308

sequence_error floating-point trap type, 10, 45,
46, 47, 61, 115, 212, 213

sequential consistency memory model, 120

SET synthetic instruction, 297

SETHI instruction, 19, 67, 76, 204, 220, 273,
297, 304

shall (special term), 13

shared memory, 119, 325, 326, 327, 332

shift instructions, 19, 76, 221

should (special term), 13

side effects, 13, 120, 121, 123

signal handler, see trap handler

signal monitor instruction, 223

signaling NaN (not-a-number), 43, 159, 160, 162,
248

signed integer data type, 23

sign-extended 64-bit constant, 68

sign-extension, 299

SIGNX synthetic instruction, 299

simm10 field of instructions, 68, 198

simm11 field of instructions, 68, 195

simm13 field of instructions, 68, 137, 154, 167,
172, 173, 176, 178, 180, 182, 183, 184, 199,
200, 202, 205, 206, 216

SIR instruction, 89, 97, 111, 116, 223

SIR, see software_initiated_reset (SIR)

SIR_enable control flag, 223, 258

SLL instruction, 221

SLLX instruction, 221, 297

SMUL instruction, 36, 200

SMULcc instruction, 36, 200

software conventions, 301

software trap, 101, 101, 241

software_initiated_reset (SIR), 91, 97, 105, 108,
111, 116, 223

software_trap_number, 296

software-initiated_reset, 93, 97

SPARC Architecture Committee, 7

SPARC-V8 compatibility, 4, 19, 30, 40, 43, 54,
58, 76, 78, 104, 114, 115, 116, 121, 137,
142, 145, 160, 170, 171, 174, 179, 181, 187,
215, 224, 226, 230, 232, 233, 237, 239, 241,
245, 322, 336

SPARC-V8 compatiblity, 85

SPARC-V9 Application Binary Interface (ABI), 6,
7, 75

SPARC-V9 features, 4

SPARC-V9 memory models, 128

SPARC-V9-NP, 7

special terms

shall, 13

should, 13

special traps, 90, 101

speculative load, 13

spill register window, 33, 58, 59, 82, 83, 85, 86,
87, 88, 116, 218, 219, 316

spill windows, 217

spill_n_normal exception, 98, 116, 169, 218

spill_n_other exception, 116, 169, 218

spin lock, 327

SRA instruction, 221, 299

SRAX instruction, 221

SRL instruction, 221

SRLX instruction, 221

ST instruction, 299

stack frame, 217

stack pointer alignment, 304

stack pointer register, 301, 303

STB instruction, 229, 231, 299

STBA instruction, 229, 231

STBAR instruction, 76, 125, 127, 187, 214, 224

STD instruction, 35, 98, 117, 229, 231, 257

STDA instruction, 35, 61, 98, 229, 231, 257

STDF instruction, 70, 116, 225

STDF_mem_address_not_aligned exception, 70,
98, 116, 226, 228, 257

STDFA instruction, 70, 98, 227

T 365

STF instruction, 225

STFSR instruction, 43, 45, 48, 50, 225

STH instruction, 229, 231, 299

STHA instruction, 229, 231

store floating-point instructions, 225

store floating-point into alternate space instructions,
227

store instructions, 69, 323

store integer instructions, 229, 231

StoreLoad MEMBAR relationship, 127, 187

stores to alternate space, 18, 50, 73, 341

StoreStore MEMBAR relationship, 127, 187

STQF instruction, 70, 116, 225

STQF_mem_address_not_aligned exception, 70,
116, 226, 228, 257

STQFA instruction, 70, 227

strong consistency memory model, 120, 325, 330

strong ordering, see strong consistency memory

model

STW instruction, 229, 231

STWA instruction, 229, 231

STX instruction, 98, 229, 231

STXA instruction, 98, 229, 231

STXFSR instruction, 43, 45, 48, 50, 225

SUB instruction, 233, 299

SUBC instruction, 233

SUBcc instruction, 76, 233, 297

SUBCcc instruction, 233

subtract instructions, 233

SUBX instruction (SPARC-V8), 233

SUBXcc instruction (SPARC-V8), 233

supervisor software, 13, 18, 30, 31, 46, 47, 48,
61, 89, 95, 105, 111, 243, 249, 253, 301,
315, 316, 317

supervisor-mode trap handler, 101

sw_trap# field of instructions, 68

SWAP instruction, 69, 127, 131, 182, 183, 234,
327

swap r register with alternate space memory instruc-

tions, 235

swap r register with memory instructions, 152, 234

SWAPA instruction, 182, 183, 235

Sync MEMBAR relationship, 187

synthetic instructions, 2

BCLR, 299

BSET, 299

BTOG, 299

BTST, 299

CALL, 297

CAS, 299

CASX, 299

CLR, 299

CMP, 233, 297

DEC, 299

DECcc, 299

INC, 299

INCcc, 299

IPREFETCH, 297

JMP, 297

MOV, 299

NEG, 299

NOT, 299

RESTORE, 297

RET, 297, 306

RETL, 297, 306

SAVE, 297

SET, 297

SIGNX, 299

TST, 297

synthetic instructions in assembler, 2, 297

system call, 316

system software, 116, 122, 123, 132, 168, 255,
303, 304, 308, 309, 316, 317

T
TA instruction, 278

TADDcc instruction, 77, 237

TADDccTV instruction, 77, 117, 237

tag overflow, 77

tag_overflow exception, 77, 98, 104, 117, 237, 239

tagged add instructions, 237

tagged arithmetic, 77

tagged arithmetic instructions, 19

tagged word data format, 23

task switching, see context switching

TBR register (SPARC-V8), 245

Tcc instructions, 21, 41, 42, 66, 89, 101, 117,
240, 278

TCS instruction, 278

TE instruction, 278

TEM, see trap enable mask (TEM) field of FSR reg-

ister

test-and-set instruction, 131

TG instruction, 278

TGE instruction, 278

TGU instruction, 278

threads, see multithreaded software

Ticc instruction (SPARC-V8), 241

TICK, see clock-tick register (TICK)

timing

instruction, 133

tininess (floating-point), 49, 249, 256

TL instruction, 278

TLB, see page descriptor cache (PDC)

TLE instruction, 278

TLE, see trap_little_endian (TLE) field of PSTATE

register

TLEU instruction, 278

TN instruction, 278

TNE instruction, 278

TNEG instruction, 278

366 U

total order, 126

total store order (TSO) memory model, 52, 92,
119, 129, 130, 323

total unit

implementation-dependent, 252

TPOS instruction, 278

Translation Lookaside Buffer (TLB), see page de-

scriptor cache (PDC)

trap, 14, 21, 21, 89, 302

trap base address (TBA) register, 14, 57, 89, 100,
211, 242

trap categories

deferred, 95, 96, 99

disrupting, 96, 97, 98

precise, 95, 95, 96

reset, 97

trap enable mask (TEM) field of FSR register, 44,
48, 99, 100, 115, 254

trap handler, 157

supervisor-mode, 101

user, 46, 249, 317

trap level, 54

trap level (TL) register, 54, 54, 55, 56, 57, 60, 89,
94, 157, 211, 212, 219, 223, 242, 243

trap model, 97

trap next program counter (TNPC) register, 55, 95,
113, 211, 242

trap on integer condition codes instructions, 240

trap priorities, 104

trap processing, 91, 105

trap program counter (TPC) register, 55, 95, 113,
211, 212, 242

trap stack, 5, 106

trap state (TSTATE) register, 52, 56, 157, 211,
242

trap type (TT) register, 56, 57, 60, 90, 101, 105,
110, 111, 211, 241, 242, 255

trap types, also see exceptions

trap vector

RED_state, 91

trap_instruction exception, 98, 117, 241

trap_little_endian (TLE) field of PSTATE register,
52, 52

traps

also see exceptions

causes, 21

deferred, 95, 254

disrupting, 95, 254

hardware, 101

implementation-dependent, 108

nested, 5

normal, 90, 101, 106, 106, 108

precise, 94, 95, 254

reset, 56, 95, 96, 97, 105, 255

software, 101, 241

software-initiated reset (SIR), 108

special, 90, 101

window fill, 101

window spill, 101

TSO, see total store ordering (TSO) memory model

TST synthetic instruction, 297

TSUBcc instruction, 77

TSUBccTV instruction, 77, 117

TVC instruction, 278

TVS instruction, 278

typewriter font

in assembly language syntax, 291

U
UDIV instruction, 36

UDIVcc instruction, 36, 154

UDIVX instruction, 199

ufa, see underflow accrued (ufa) bit of aexc field of

FSR register

ufc, see underflow current (ufc) bit of cexc field of

FSR register

UFM, see underflow mask (UFM) bit of TEM field

of FSR register

UMUL instruction, 36, 200

UMULcc instruction, 36, 200

unassigned, 14

unconditional branches, 141, 144, 147, 149

undefined, 14

underflow, 86

underflow accrued (ufa) bit of aexc field of FSR reg-

ister, 49, 249

underflow current (ufc) bit of cexc field of FSR reg-

ister, 48, 49, 249

underflow mask (UFM) bit of TEM field of FSR

register, 48, 48, 49, 249

unfinished_FPop floating-point trap type, 10, 46,
46, 50, 85, 247, 253

UNIMP instruction (SPARC-V8), 170

unimplemented_FPop floating-point trap type, 10,
46, 46, 50, 85, 191, 212, 247, 253

unimplemented_LDD exception, 98, 117, 179, 181,
257

unimplemented_STD exception, 98, 117, 230, 232,
257

unrestricted, 14

unrestricted address space identifier, 74, 254, 317

unsigned integer data type, 23

upper registers dirty (DU) field of FPRS register, 42

user

mode, 30, 48, 50, 223, 303

program, 253

software, 308

trap handler, 46, 249, 317

user application program, see application program

V 367

V
V condition code bit, see overflow (V) bit of condi-

tion fields of CCR

value

implementation-dependent, 252

value semantics of input/output (I/O) locations, 121

variables

automatic, 302

ver, see version (ver) field of FSR register

version (ver) field of FSR register, 45, 254

version register (VER), 57, 211

virtual address, 120, 281, 282

virtual address aliasing, 288

virtual memory, 209

W
walking the call chain, 303

watchdog reset, 56, 91, 93, 94, 97, 109, 110, 111

watchdog timer, 109

watchdog_reset, 91

watchdog_reset (WDR), 108

WIM register (SPARC-V8), 245

window

clean, 217

window fill exception, 58, 60

window fill trap, 101

window fill trap handler, 20

window overflow, 33, 86, 316

window spill trap, 101

window spill trap handler, 20

window state (WSTATE) register, 58, 60, 87, 169,
211, 218, 242, 316, 317

window underflow, 33, 86

window_fill exception, 59, 82, 216, 305

window_overflow exception, 301

window_spill exception, 58, 60

windows

register, 303

windows, see register windows

word, 14, 17, 69, 121

word data format, 23

WRASI instruction, 244

WRASR instruction, 18, 61, 244, 256, 299, 321

WRCCR instruction, 41, 42, 244

WRFPRS instruction, 243, 244

WRIER instruction (SPARC-V8), 245

write privileged register instruction, 242

write protection, 282

write state register instructions, 244

write-after-read memory hazard, 124

write-after-write memory hazard, 124

WRPR instruction, 51, 52, 58, 85, 91, 242

WRPSR instruction (SPARC-V8), 245

WRTBR instruction (SPARC-V8), 245

WRWIM instruction (SPARC-V8), 245

WRY instruction, 36, 244, 299

WTYPE subfield field of trap type field, 104

X
xcc field of CCR register, 41, 137, 149, 155, 156,

184, 196, 200, 203, 233, 237

XIR, see externally_initiated_reset (XIR)

XNOR instruction, 184, 299

XNORcc instruction, 184

XOR instruction, 184, 299

XORcc instruction, 184

Y
Y register, 35, 36, 154, 200, 202, 245

Z
Z condition code bit, see zero (Z) bit of condition

fields of CCR

zero (Z) bit of condition fields of CCR, 41

368 Z

369

