@ MOTOROLA

M68040 User’'s Manual

Including the
MC68040,
MC68040V,
MC68LCO040,
MCG68EC040,
and
MC68EC040V

O©MOTOROLA INC., 1990
Revised 1992, 1993



Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal
injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and the ) are registered trademarks of Motorola, Inc. Motorola, Inc. is an
Equal Opportunity/Affirmative Action Employer.

©MOTOROLA INC., 1992




PREFACE

The complete documentation package for the MC68040, MC68040V, MC68LC040,
MC68EC040, and MC68EC040V (collectively called M68040) consists of the
M68040UM/AD, M68040 User’s Manual, and the M68000PM/AD, M68000 Family
Programmer’s Reference Manual. The M68040 User’s Manual describes the capabilities,
operation, and programming of the M68040 32-bit third-generation microprocessors. The
M68000 Family Programmer’s Reference Manual contains the complete instruction set for
the M68000 family.

The introduction of this manual includes general information concerning the MC68040 and
summarizes the differences between the M68040 member devices. Additionally, three
appendices provide detailed information on how these M68040 dirivatives operate
differently from the MC68040. For detailed information on one of these M68040
dirivatives, use the following table to determine which appendices to read in conjunction
with the rest of this manual.

Device Number Appendices

MC68040V Appendix A MC68LC040 and Appendix C MC68040V and MC68EC040V
MC68LC040 Appendix A MC68LC040

MC68EC040 Appendix B MC68EC040

MC68EC040V Appendix B MC68EC040 and Appendix C MC68040V and MC68EC040V

When reading this manual, remember to disregard information concerning floating-point
in reference to the MC68040V and MC68LC040, and to disregard information concerning
floating-point and memory management in reference to the MC68EC040 and
MCG68EC040V. The organization of this manual is as follows:

Section 1 Introduction

Section 2 Integer Unit

Section 3 Memory Management Unit (Except MC68EC040 and MC68EC040V)
Section 4 Instruction and Data Caches

Section 5 Signal Description

Section 6 IEEE 1149.1 Test Access Port (JTAG)

Section 7 Bus Operation

Section 8 Exception Processing

Section 9 Floating-Point Unit (MC68040)

Section 10 Instruction Timings

Section 11 MC68040 Electrical and Thermal Characteristics
Section 12 Ordering Information and Mechanical Data

Appendix A MC68LC040

Appendix B MCG68EC040

Appendix C MC68040V and MC68EC040V
Appendix D M68000 Family Summary

Appendix E Floating-Point Emulation (M68040FPSP)
Index

iv M68040 USER’S MANUAL MOTOROLA



TABLE OF CONTENTS

Paragraph Page
Number Title Number
Section 1
Introduction
1.1 DIffErENCES ..t et 1-1
111 MC68040V and MCB8BLCOM0 .........uuvreeereeiieeieeeeeeee ceeeeeisennneeeeeeeneeees 1-1
1.1.2 MCG68EC040 and MCBBECOAQV .........uuvririiiiiiiiiiiieaees eeesesineneeeneenee 1-2
1.2 FRALUIES ... e 1-3
1.3 Extensions to the M68000 Family ............ceevviiiiiiiiiiiiiis e 1-3
1.4 FUNCLIONAl BIOCKS ...t e 1-3
15 ProCessing STALES .....ooviiiiiiiiieiee e e 1-5
1.6 Programming MOEl ..........uiiiiiiiii i e 1-5
1.7 Data Format SUMMATY .......covviiiiiie et et 1-9
1.8 Addressing CapabilitieS SUMMAIY ........cccccuiiiiiiiiiiiiiie e 1-9
1.9 Notational CONVENLIONS .........c.uuiiiiiiiiiiiiiiiiiee e 1-11
1.10 INSLrUCION SEt OVEIVIEW ....euuiiiiiieii et et eeeeeeeees 1-13
Section 2
Integer Unit
2.1 Integer UNit PIPEIINE ..o e 2-1
2.2 Integer Unit Register DeSCIPLION .......ccccciiiiiiiiiiiiiieiie e 2-4
2.2.1 Integer Unit User Programming Model ...............cvvieiiiiiiiiee e, 2-4
2211 Data RegiSters (D7—DO0) .......uuuuuuuiiiiiiiieeeeeeeeee e 2-4
2.2.1.2 Address Registers (AB—AQD) ..........uuuuuuriieiieirieeiaes ereessieeeeeeeeee 2-4
2.2.1.3 System Stack POINtEr (A7) ...uueeeie e et 2-5
2214 Program COUNLET .......coooiiiiee e et 2-5
2.2.15 Condition Code REQISIEN .......ccoeieiiiiiiiiieit e 2-5
2.2.2 Integer Unit Supervisor Programming Model ...............ccccocciceieieeen . 2-5
2221 Interrupt and Master Stack POINtErs ..o, 2-6
2.2.2.2 STAUS REGISTET ...ttt e 2-7
2.2.2.3 VeECtor Base REQISIEN ........uvvvviiiiiiiee e e 2-7
2224 Alternate Function Code RegiSters .........ccccuuvriiiiiiiiiiiiiie ceeeeeeeeeeens 2-7
2.2.2.5 Cache Control REQISLEr .......ccovviiieeeeccee s s 2-8

vi M68040 USER’S MANUAL MOTOROLA



TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

Section 3
Memory Management Unit
(Except MC68EC040 and MC68EC040V)

3.1 Memory Management Programming Model ...............cccoeevviiviiiiinevinnnns 3-3

3.11 User and Supervisor Root Pointer Registers.............cccccvvvvviiiiieeneen. 3-3

3.1.2 Translation Control REQISTEr .........oooiiiiiiiiiie e 3-4

3.1.3 Transparent Translation RegIStErsS .........cccoovvviiiiiiiiiiiiis e, 3-5

3.14 MMU Status REQISIEN .....eveiiiiiiiiieeeeiii e e 3-6

3.2 Logical Address Translation .............oovvveviviiiiiiies i 3-7

3.21 Translation Tables ... 3-7

3.2.2 DESCIIPLONS ...t et e e e e e e e e eas 3-12
3.2.2.1 Table DESCIPLOIS ...ovviveeeieeieiiiiiieeees s s e e e e e e e e e e e e e e e e eeeeeeeeeaeeenane 3-12
3.2.2.2 Page DESCIPLOIS ..uvuiiiiiiiiiie et e aeeaaes 3-13
3.2.2.3 Descriptor Field Definitions ..........ccooociiiiiiiiiiiiie e 3-13
3.2.3 Translation Table EXample ... i, 3-16
3.24 Variations in Translation Table Structure .............ccccoeiiiiiiiiiiin i 3-16
3.24.1 1o [T STt 0o [ o PSRRI 3-16
3.24.2 Table Sharing Between TasksS ........ccccovviiiieeiiiiiiieeiee e 3-18
3.2.4.3 Table Paging .....cooeeuiiie s 3-19
3.24.4 Dynamically Allocated Tables ...........ccccviiiiiiiiiiii e 3-21
3.25 Table Search ACCESSES ......cooviiiiiiiiii e e 3-21
3.2.6 Address Translation ProteCtion ..............uueeeeiiiiinniees e 3-23
3.2.6.1 Supervisor and User Translation Tables..........ccccvvvvviiiiiiiiins e, 3-23
3.2.6.2 SUPEIVISON ONIY ..ot e e e e e e e e e eeeaaaaanns 3-23
3.2.6.3 WIEE PIOTECT ..o e eeeeeeaees 3-24
3.3 Address Translation Caches .............ouviiiiiiiii e 3-26
3.4 Transparent Translation ..o e 3-29
3.5 Address Translation SUMMATY .........ooooiiiiiiiii e 3-30
3.6 MMU Effect on RSTIand MDIS ..........ccccoiiiiiiiiiiiiieee e 3-31
3.6.1 Effect of RSTI 0N the MMUS .........coviiuiiiiieieeeeee e 3-31
3.6.2 Effect of MDIS on Address Translation ..........ccccooevveieiieeeeeen e, 3-31
3.7 MMU INSTIUCLIONS ..eviiiiiiiiiiiie ettt 3-33
3.7.1 IMOVEC ... ettt eees 3-33
3.7.2 o e I 1S PSP 3-33
3.7.3 P T E ST e et a e e e e e e e e e e e a e 3-33
3.7.4 Register Programming Considerations...........ccoooovvvviiiiieeeees cvieneeeeeens 3-34

MOTOROLA M68040 USER’S MANUAL Vi



TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
Section 4
Instruction and Data Caches
4.1 (O 1ol g T @] o= = 11 0] o H PP PPPPPPPPP PP 4-2
4.2 Cache ManagemeNt............ouvuiiiiiiiiieee e e e e e e e e e e 4-5
4.3 (O Tod o1 T 1Y, (o0 [ PSP 4-6
4.3.1 CaChable ACCESSES ...uuuiiiiii it e e e e e e 4-6
4.3.1.1 Write-Through MOde .........oovviiiiiiiee e 4-6
4.3.1.2 CopybaCK MOTE ...t e 4-6
4.3.2 Cache-INhibited ACCESSES ......ccuuviiiiiiiiieiiieeee e 4-7
4.3.3 SPECIAI ACCESSES ...ttt e 4-7
4.4 CaChe ProtOCOI .....ooeeeieeiiiiiee e e 4-7
4.4.1 REAU MISS ..t e 4-8
4.4.2 WIHEE IMIISS ..t et e e e e e e e e e e e e e e e eeeeeabaanes 4-8
4.4.3 Y= (o I o [ SRR 4-8
4.4.4 WWIIEE Hit ...t e e e e e e e e e 4-8
4.5 CacChe CONEIENCY ....ccoeeiiiie e et eaaes 4-9
4.6 Memory Accesses for Cache Maintenance...........ccccceeveeeeiiiiieee eveeiinns 4-11
4.6.1 Cache FilliNG .......cooiiiieeeeee s e e e e e e 4-11
4.6.2 CaACNE PUSNES ... e 4-13
4.7 Cache Operation SUMMANY ..........euiiiiiiiiiieeeeeeee s e 4-13
4.7.1 INSTrUCHION CACNE ... ..uiiiiiiiiiiiiii e 4-14
4.7.2 Data CacChe ... s 4-15
Section 5
Signal Description
51 Address BUS (A31—A0) ...ccooiiiiiiiiiiiiiieire s e 5-4
5.2 Data BUS (D31-DO0) ...uuvuiiiiiiiiiiieieieeee e e a e e e e e 5-5
5.3 Transfer Attribute SignalS...........uvvviiiiiiiii e e 5-5
5.3.1 Transfer Type (TTL, TTO) ..uuuuuiiiieieieiiiiiiie e e 5-5
5.3.2 Transfer Modifier (TM2—TMO) ........ouuuuiiiiiiiieee e e 5-6
5.3.3 Transfer Line Number (TLNL, TLNO) ......ccooviiiiiiiiiiieeceis e 5-6
5.34 User-Programmable Attributes (UPAL, UPAO) ..o 5-7
5.35 REAA/WIILE (RIW) ...eveeveeee ettt ettt 5-7
5.3.6 Transfer Size (SIZ1, SIZ0) ..o e 5-7
5.3.7 0o Tod Q10 1] SRR 5-7
5.3.8 LOCK ENA (LOCKE) ..coiiiiiiieeeeeee e ettt 5-7
5.3.9 Cache Inhibit Out (CIOUT) ...cooiiiiieeeeeeei s e 5-8
54 Bus Transfer Control Signals ... s 5-8
5.4.1 Transfer Start (TS) ....ccvevueeee et ettt ere s 5-8

viii M68040 USER’S MANUAL MOTOROLA



Paragraph
Number

5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.5
5.5.1
5.5.2
5.6
5.6.1
5.6.2
5.6.3
5.7
5.7.1
5.7.2
5.7.3
5.8
5.8.1
5.8.2
5.8.3
5.9
591
5.9.2
5.9.3
5.10
5.11
5.12
5.12.1
5.12.2
5.12.3
5.12.4
5.12.5
5.13
5.14

6.1
6.2
6.2.1

MOTOROLA

TABLE OF CONTENTS (Continued)

Page
Title Number
Transfer in Progress (TIP) ..cueo.cie e eeeeeeecee e et eneas 5-8
Transfer ACKNOWIEAGE (TA) ....couriueeeeeiecieeie et e 5-8
Transfer Error ACKNowledge (TEA) .......ceecveecueeceeeeiee e e svee e 5-8
Transfer Cache INNiDit (TCI) ....c.oocvveeeeieee e e, 5-9
Transfer Burst INhibit (TBI) .........ccooveeeieeieeeeee e 5-9
SNOOP CoNtrol SIgNAIS........uvueiiiiee e e 5-9
SNoop Control (SCL, SCO) .....uuuiiiiiiiiiiiiiiieeee e e 5-9
MeMOrY INIDIE (M) .....veieieieee et ettt ere e 5-9
ATDItration SIgNAIS ......uii i e 5-10
BUS REQUESTE (BR) ...vecveeeeeieeieeeieie et ettt 5-10
IV = LT (S1C) IR 5-10
BUS BUSY (BB) .....viiviiiieieitieecteeeee e e eteeete e etaseeta e snae e eaassnae e sreeseee e 5-10
Processor Control Signals ... e 5-10
Cache Disable (CDIS) ...t e 5-10
RESEL IN (RSTI) ..ottt ettt e e eae e 5-11
Reset OUL (RSTO) ...cooiiiiiiieit e 5-11
Interrupt Control SIgNaIS.........ooevvieiiiiiee e e 5-11
Interrupt Priority Level (IPL2—IPLO).........cccoveeueeieiieereeeeeee e enen, 5-11
Interrupt Pending Status (IPEND) .......oooooieiiiiiiiii e 5-12
AULOVECTON (AVEQC) ...ttt e a e e 5-12
Status And CIOCK SIgNalS .........uuuieiiiiiiieeee e 5-12
Processor Status (PST3—PSTO) ....ccuuviiiiiiiiiiiiiieeeeii e 5-12
BUS CIOCK (BCLK) ..ot e e e e e e e e e e 5-14
Processor Clock (PCLK)—Not on MC68040V and MC68ECO040V ...5-14
MMU Disable (MDIS)—Not on MCB8ECO40 ..........ceeeveeiiiiiiiiiieaeee i 5-14
Data Latch Enable (DLE)—Only on MC68040........ccccceeeeeevieivieiiiinn s 5-14
TESE SIGNAUS .t 5-15
=T S (0Tl (4 1 T 5-15
Test Mode SeleCt (TMS) ..uu e e 5-15
Test Data IN (TDI) oot e 5-15
Test Data Out (TDO) ..ocvveeeeieeiiiiiiie s e e e e e e e e 5-15
Test Reset (TRST)—Not on MC68040V and MC68EC040V............. 5-15
Power Supply CONNECHIONS .........uuiiiiiiiiiiiiiieeeeeee e 5-15
SIgNal SUMMANY ... e e e e e e 5-16
Section 6
IEEE 1149.1 Test Access Port (JTAG)
OVEIVIEW ..ttt ettt et e e e e e e e e e e e e e e e e e e s e n e ebabebeeeees 6-2
Instruction Shift REQISIEN ......oovviiiiii e 6-3
o = O SUERRRPPRPRRR 6-3
M68040 USER’S MANUAL iX



TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

6.2.2 HIGHZ oot 6-4
6.2.3 SAMPLE/PRELOAD ......oiiiiiiii ettt a e 6-4
6.2.4 DRV CTL.T ittt ettt et e e e e e e e e e e e e e e e e e e e s e s s s e nnnnes 6-4
6.2.5 SHUTDOWN .o ettt e e e e e e e e e e e e e e s s eanees 6-5
6.2.6 PRIV ATE L.t e e e e e e e e e e e e e e aaaaeeaaaaaeeaaaaans 6-5
6.2.7 DRV CTL.S oot ettt 6-5
6.2.8 BY P AS S .. —————————————————————————— 6-6
6.3 Boundary SCan REQISIEN ........iiiiiei et e e e e e e e e e e e e eeeeanenes 6-6
6.4 RESIICHONS ... e 6-12
6.5 Disabling The IEEE Standard 1149.1A Operation ............ccccoeeeveveeneee 6-13
6.6 Motorola M68040 BSDL Description (Version 2.2) .......ccccceeeeeevveveeennnns 6-15
6.7 MC68040, MC68LC040, MC68EC040

JTAG Electrical CharacteristiCS ...........cuuuvuiiiiiiiiieeees eeeeeeeeeeeeeeviiininnnns 6-21

Section 7
Bus Operation

7.1 BUS CharacCteriStiCS ......ceuuuuiiiiiiiiiie e eeeee ettt e e e e e e e eeeaaenens 7-1
7.2 Data Transfer MeChaniSM ............ccuviiiiiiiiiiiiis e 7-3
7.3 Misaligned OPErands ............eoiiiiiiiiee it e eeeaaeeens 7-6
7.4 Processor Data TranSfers ...... oot s e e eeeeaeeens 7-9
7.4.1 Byte, Word, and Long-Word Read Transfers ............cccccovvvvvvvivinnnnine 7-10
7.4.2 Line Read TranSIer .....ccooi i et 7-12
7.4.3 Byte, Word, and Long-Word Write Transfers ........ccccvvvvvvvviiiiinennn o, 7-20
7.4.4 Line WIIte TranSfers ... e 7-22
7.4.5 Read-Modify-Write Transfers (Locked Transfers) ........ccccccevevvveennnns 7-26
7.5 Acknowledge BUS CYCIES .......cooeiiiiiiiiiiiiiee e 7-29
7.5.1 Interrupt Acknowledge Bus CYCleS .......cccoeeiiiieiiiiiiiiii e 7-29
7.5.1.1 Interrupt Acknowledge BUS Cycle (Terminated Normally) ............ 7-31
7.5.1.2 Autovector Interrupt Acknowledge bus Cycle ..........cccoovvvvvvviinnnnnnn. 7-33
7.5.1.3 Spurious Interrupt Acknowledge Bus Cycle.........ccceeiiiiiiiiiinnn . 7-34
7.5.2 Breakpoint Interrupt Acknowledge Bus Cycle ............cccciciiiiiiiiiien e, 7-35
7.6 Bus Exception Control CYCIES.........cevuuiieiiiiiiiiieeeee e 7-36
7.6.1 BUS EITOIS oo e e 7-37
7.6.2 RELIY OPEIALION ...t e e e 7-41
7.6.3 Double BUS FaUIL.......oooiiiiieeieeee e 7-43
7.7 BUS SYNCAIONIZAtioN .......cccovviiiiiiiiiice s e 7-43
7.8 Bus Arbitration And EXamples ... 7-44
7.8.1 BUS ArDItratioN ......cccvviiiiiiiiiii i e 7-45
7.8.2 Bus Arbitration EXamPIes ........cooooo oo e 7-52
7.8.2.1 Dual M68040 Fairness Arbitration ............ccccceevvvvevervenin i 7-52
7.8.2.2 Dual M68040 Prioritized Arbitration ...........ccccceeeeeeiiiiiiiies i, 7-54

X M68040 USER’S MANUAL MOTOROLA



TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
7.8.2.3 M68040 Synchronous DMA Arbitration ...........cccceeeeiiiiiiiiiiineviiiins 7-55
7.8.2.4 M68040 Asynchronous DMA Arbitration ...........cccceeeeeiiiiiiiiiic v 7-57
7.9 Bus SNooping OPEeration .............uuuuuiiiiiiieeieees ceeeeeee e e e 7-59
7.9.1 SNoOoP-INNIBItEd CYCIE ... e 7-60
7.9.2 Snoop-Enabled Cycle (No Intervention Required) ...........ccoeeeviiinnns 7-61
7.9.3 Snoop Read Cycle (Intervention Required) .........ccccceeeviiiiieeeeeenee e, 7-63
7.9.4 Snoop Write Cycle (Intervention Required) ..........ccccvevevveiiiiiieeeee i 7-63
7.10 TS A O 01T = 11 0] o 7-65
7.11 Special Modes of Operation ..........ccooocvviiiiiiiiieiiir e 7-68
7.11.1 Output Buffer Impedance Selection ...........cccccoevviiiiiiiiiici i 7-68
7.11.2 Multiplexed BUS MOAE .......cccoeiiieeiiiiiieeeeeit e e e e e e e e e 7-68
7.11.3 Data Latch Enable Mode ...........cooiiiiiiiiiii e 7-69
Section 8
Exception Processing

8.1 Exception Processing OVEIVIEW .........c.uuiiieiiiiiiiiieeeee e ee et eeeaenns 8-1

8.2 Integer UNit EXCEPLIONS ...ttt e 8-5

8.2.1 AcCCESS Fault EXCEPLION ......coovviiiiiiiiiiiiicies s e e e e e e e 8-6

8.2.2 Address Error EXCEPLION .......ccuviii et et eeeeeaeeees 8-8

8.2.3 INStruction Trap EXCEPLION .......euviiiiiiiiiiiiiiieeeeees e 8-8

8.2.4 lllegal Instruction and Unimplemented Instruction Exceptions .......... 8-9

8.2.5 Privilege Violation EXCEPLION .......ccooiiiiiiiiiiiiiiiies s 8-9

8.2.6 Trace EXCEPLION ...ccooii it e 8-10
8.2.7 Format Error EXCEPLION .....coovieeeiiii e e 8-11
8.2.8 Breakpoint INStruction EXCEPLION ..........uvviiiiiiiiiiiiiiieees e 8-12
8.2.9 INTEITUPT EXCEPLION .ottt e 8-12
8.2.10 RESEt EXCEPLION.....ccciiiiiiiieieee s cr et e e e e e e ee e 8-17
8.3 EXCEPLION PrIOMTIES ...uviiiiiiiiiiiiiiieieee e et 8-19
8.4 Return From EXCEPLIONS.........ovvviiiiiiiiiie e e eeee et e e 8-20
8.4.1 Four-Word Stack Frame (Format $0) ..........coccvviiieiiiiiiiie e 8-21
8.4.2 Four-Word Throwaway Stack Frame (Format $1) ...........ccccvveeeeennns 8-21
8.4.3 Six-Word Stack Frame (Format $2) .........c.ccevveeriiiiiiiiieees e 8-22
8.4.4 Floating-Point Post-Instruction Stack Frame (Format $3) ................. 8-23
8.4.5 Eight-Word Stack Frame (Format $4) .........ccuveeeieeiiiiiiiiies e 8-23
8.4.6 Access Error Stack Frame (Format $7) ........ooocvvivvieeiiiiiiiies e, 8-24
8.4.6.1 Effective AdAress ... e 8-24
8.4.6.2 Special Status Word (SSW) .....coooiiiiiiiiiiiie e 8-24
8.4.6.3 WIHEE-BACK STATUS .....vvviiiiiiiiiiiiiiiiiee s e 8-26
8.4.6.4 FAUIE AQAIESS ... e 8-26

MOTOROLA M68040 USER’S MANUAL Xi



TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
8.4.6.5 Write-Back Address and Write-Back Data ..............eeveciiiiieneeneennnn. 8-26
8.4.6.6 U] 1 = - L 8-27
8.4.6.7 Access Error Stack Frame Return From Exception........................ 8-27
Section 9
Floating-Point Unit (MC68040 Only)
9.1 Floating-Point Unit Pipeline ... e, 9-1
9.2 Floating-Point User Programming Model .............ccooovvicics i, 9-2
9.21 Floating-Point Data Registers (FP7—FPO) ........ccccccceiiiiiiiiiiniiiinee 9-2
9.2.2 Floating-Point Control Register (FPCR) .........cceeiiiiiiiiieeeeeieee e 9-3
9.2.2.1 Exception Enable BYte ........cccoooviiiiiiiiiiies e 9-3
9.22.2 MOdE CONLIOI BYLE ...t e 9-3
9.2.3 Floating-Point Status Register (FPSR) ..........cccoevvviiveeiii e 9-4
9.2.3.1 Floating-Point Condition Code Byte...........ccoovvviiiiieiiiiiiis e, 9-4
9.23.2 QUOLIENT BYLE ..o ettt 9-5
9.2.3.3 EXception Status BYte.........covvvviiiiiiiiiiiieeee e 9-5
9.2.34 Accrued Exception (AEXC) BYLe. ....coovviiiiiiiiiiiieeeeee e 9-5
9.24 Floating-Point Instruction Address Register (FPIAR) ........cccccceeeenn. 9-6
9.3 Floating-Point Data Formats and Data TYPeS..........ccevvvvevvvvvivniiees e, 9-7
9.4 Computational ACCUIACY ..........covviiiiiiiiiiiiiiaas e 9-11
94.1 Intermediate RESUIL ..........cooviiiiee e 9-12
9.4.2 Rounding the RESUIt............ovvviiiiiiii e e 9-13
9.5 POStProcessing OPEration............ooeveuuiiiuuiiiiaaes e 9-15
9.5.1 Underflow, Round, OVErflow .........coovuiiiiiiiiiiiee e 9-16
9.5.2 ConditioNal TESHING ....cevveeeeiiieicee e e e e e e e 9-16
9.6 Floating-Point EXCEPLIONS ........eiiiiiiiiiiiiiieeeeeeees e 9-20
9.6.1 Unimplemented Floating-Point INStructions..............cccoooveviiiiin e 9-20
9.6.2 Unsupported Floating-Point Data TYPES .......cccoovvvvvveveiivviiiiiee v 9-22
9.7 Floating-Point Arithmetic EXCEPLIONS ........ccooiiiiiiiiiiiiieiie e 9-24
9.7.1 Branch/Set on Unordered (BSUN) .......ccoooviiiiiiiiiiiiiieeee e 9-25
9.7.1.1 Maskable Exception ConditioNS.............cceevieiiiiiiiiiiees e, 9-26
9.7.1.2 Nonmaskable Exception Conditions ............ccooviiiiiiiiiiiin e, 9-27
9.7.2 Signaling Not-a-Number (SNAN) ... e 9-27
9.7.2.1 Maskable Exception ConditionS............cceeveeiiiiiiiiiiees e, 9-27
9.7.2.2 Nonmaskable Exception Conditions ............coooviiiiiiiiiiiiin e, 9-27
9.7.3 (@] 01T = 1 [0 [ =1 o (o] S 9-28
9.7.3.1 Maskable Exception ConditionS............ccoeveeiviiiiiiiiees e, 9-29
9.7.3.2 Nonmaskable Exception Conditions ............coooviiiiiiiiiiiiin e, 9-30
9.7.4 OVEITIOW L.ttt e e e e e e e e e e e e e e e e e a e 9-31
9.74.1 Maskable Exception CoNditioNS........ccoovvveeieiiiiiiiiiiiit e 9-31
9.74.2 Nonmaskable Exception Conditions ............ccooviiiiiiiiiiiiin e, 9-31

Xii M68040 USER’S MANUAL MOTOROLA



TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
9.7.5 UNAEITIOW .t e 9-33
9.75.1 Maskable Exception CoNditioNS ............eeveeeiiiiiiiiiieies i 9-34
9.75.2 Nonmaskable Exception Conditions ..........ccceeeiviieeeeeiiiiiie e, 9-34
9.7.6 DIVIAE DY ZEI0.. i e 9-36
9.7.7 INEXACT RESUIL ... e 9-36
9.8 Floating-Point State Frames............ccceeeiiiiiiieeecees e 9-39

Section 10
Instruction Timings

10.1 OVEIVIEW ...ttt et e e e e et et e bbb as 10-3
10.2 Instruction TIMING EXamMPIES ......oooiiiiiiiiii e 10-5
10.3 CINV and CPUSH INStruction TiMiNgG ........ueoeiieeeeeeeeeeeeeeees cevvveiiinnnns 10-8
10.4 MOVE INStruction TIMING .....ccovvuiiiiieieiiiiie e i e e eeeeain e e e aeans 10-9
10.5 Miscellaneous Integer Unit Instruction TiMiNgS........ccoovveeeiiinniiiiiiiiieeene 10-11
10.6 Integer Unit Instruction TiMINGS .......ccoovvviiiiiiiiiiiiees e, 10-13
10.7 Floating-Point Unit Instruction TiMiNgS ........ccooveiviiiiiiiieeece e, 10-29
10.7.1 Miscellaneous Integer Unit Support TIMiNgS .......ccovvvviieeeeiiiniiniiinee 10-29
10.7.2 Integer Unit SUPPOrt TIMINGS .....cocvvvviiiiiiiiee e e 10-30
10.7.3 Timings in the Floating-Point UNit...........cccoooiiiiiiiiiiiiie e 10-35

Section 11
MC68040 Electrical and Thermal Characteristics

111 MaxXimum RALINGS ...coeeeiiiiiiiiiiiiee e ettt e e e e e e e eeeeeeeennnan 11-1
11.2 Thermal CharacCteriStiCS ......ccovveeiee et e e e e e e 11-1
11.3 DC Electrical SPecifiCatiOns ..........cccceiiiiieieeeiiiiiiie e 11-2
114 POWET DISSIPALION ....uuiiiiiiiiiiiiiiiieii et e e e e e e e e e 11-2
115 Clock AC Timing SPEeCIfICAtIONS ........cooovviiiiiiiiiiiiiit e 11-3
11.6 Output AC Timing Specifications ...........ccoevviiiiiiiiii e, 11-4
11.7 Input AC Timing SPECIfICAtIONS .......ccoiiiiiiiiiiiiiee e 11-5
11.8 MC68040 Thermal Device CharacterisStiCS.........uuuuuiiiiiiiiiiiiieeees s 11-12
11.8.1 MC68040 Die and PaCKage .........ccvvuruiiiiiiiiiiiiiies ceeeeiiie e e eeaans 11-12
11.8.2 MC68040 Power Considerations ...........cccoeeeeeeeeeeeeeeeeee e 11-12
11.9 MC68040 Thermal Management Techniques ............ccceeevvvvvvvveiiiinvnnns 11-14
11.9.1 0 U] L PP 11-17
119.2 0 £od=To 1 | R 11-18
11.9.3 With Heat SiNK ... e 11-19
1194 With Heat Sink and Forced Al .........oooviiiiiiiiiiiiiee e 11-22

MOTOROLA M68040 USER’S MANUAL Xiii



TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

Section 12
Ordering Information and Mechanical Data

12.1 Ordering INFOrMALION .........ueiiiiiiiiiieie e s 12-1
12.2 I TS o 10 0= ] £ 12-1
12.21 MCB8040 PiN Grid AITAY ...ceeeeeeieeeeeiieiiiiae e sreee e e e e e eeeeeeeeneen s 12-2
12.2.2 MCBBLCO40 PinN Gritd AITAY ......uvurriiiiieiiieeieeeaeaees seeaaeieeeneeeeeeeeeees 12-3
12.2.3 MCBBECO40 PiN Grid AMTAY ....uvvvvriiirieieieeeeeeeaaaaes easasnnenneenssseeeeeeeees 12-4
12.2.4 MC68040V and MCG68ECO040V Pin Grid AIray ........cccceeeeeeeeeniiennenn 12-5
12.2.5 MC68LCO040 Quad Flat PacK...........ccoooviiiiiiiiiin e 12-6
12.2.6 MCG68ECO040 Quad Flat Pack ............ccooviiiiiiiiiiit e 12-6
12.2.7 MC68040V and MC68EC040V Quad Flat Pack............cccccovuvvvenennn. 12-7
12.3 MechaniCal DAt ..........ccuuuuiiiiiiiiiiiiiiee e 12-9
Appendix A
MC68LC040
Al MCBBLCOA0 DIffErENCES ... uuvviiieiiiiiiiiiiiiieee e e A-5
A2 Interrupt Priority Level (IPL2=IPLO) .......cc.covveeueeeeeieereeet e A-5
A3 JTAG SCAN (JS0) et e A-5
A4 Data Latch And Multiplexed Bus MOdES ...........cccceeeiiiiiiieeiiiiie e, A-5
A5 Floating-Point Unit (FPU) .......oooiiiiiiiiee e A-5
AS5.1 Unimplemented Floating-Point Instructions and Exceptions ............. A-6
A5.2 MCB8LCO40 Stack Frames ........ccoeeeiiiiiiiiiiiit ettt A-7
A.6 MC68LCO040 Electrical CharacCterisStiCSs .........cooevviirieeiiiiiiiiiin e A-7
A6.1 Maximum RALINGS ... e A-8
A.6.2 Thermal CharacCteriStiCS ..........uuuuriiiiiiiiiiiiieees e A-8
A.6.3 DC Electrical SPecCifiCatiOns ...........ccoooiiiiiiiiiiiiiie e A-8
A.6.4 POWET DiSSIPALION .....cciiiiiiiiiiiiiiiii s e A-9
A.6.5 Clock AC Timing Specifications ..........cccceeeiiiieeeeeiieeee e A-9
A.6.6 Output AC Timing SPEeCIfICALIONS .......eeviviiiiieeiiiiiiii e A-11
A.6.7 Input AC Timing SPecCificationS..........cccevvivviieiiiiii e e e e A-12

Appendix B

MC68EC040
B.1 MCB8BECO40 DiffErENCES ....oiiieeeeeeeieeeeeeeen e e e e e e e e e e e B-4
B.2 JTAG SCAN (JSL1-JS0) .errrriiiiiiiiiiiiiiiiiieeeeeee s serssiirreeer e reeeaaaaeeaaaeaeas B-5
B.3 ACCESS CONLIOL UNITS ..uuuuiiiiiiiiei e ettt e e e e e e e e e e eeeeeaeeennnnes B-5
B.3.1 Access Control REJISIEIS .......vvvvviiiiiiiiiiei e e B-5
B.3.2 Address COMPATIISON ......uuuiiieieiiiiiee e e B-7
B.3.3 Effect of RSTI ONthe ACU .......ooveeeeieiecee et e B-8

Xiv M68040 USER’S MANUAL MOTOROLA



TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

B.4 Special Modes Of OPEration ............cooviiiiiiiiiiiiiiin e eeeeeeeieees B-8

B.5 EXCEPLION PrOCESSING ....ciiiiiiiiiiieeiiee e ittt B-10
B.5.1 Unimplemented Floating-Point Instructions and Exceptions ............. B-10
B.5.2 MCGB8ECO40 Stack Frames.........couuuuiiiiiiiiiiiiieees e B-11
B.6 Software CoNSIAEratioNsS ........ccoviieieeeeerieiiiieeit et e e e e e e e eeeeeaaenene B-12
B.7 MCG68ECO040 Electrical CharacteristiCS ...........uuuuviiieiiiiiiiiiies ceeriiiiiiinnnns B-12
B.7.1 MaXIMUM RATINGS ....vveeiiiieieiieee e s B-12
B.7.2 Thermal CharacCteriStiCS .......uuuuiiiiiiiieeiiiieiii e B-12
B.7.3 DC Electrical SpecCificationsS ..........cccouuuiiiiiiiiiiiiiis e B-13
B.7.4 POWET DISSIPALION ...ttt et B-13
B.7.5 Clock AC Timing SPeCIfiCationsS ..........cceviieeiieeeiieieeeee e B-14
B.7.6 Output AC Timing SPecificationsS ............ccuvviiiiiiiiiiiiiis e B-15
B.7.7 Input AC Timing SPecCifiCatioNnS...........coooiiiiiiiiiiiiiie e B-16

Appendix C
MC68040V and MC68EC040V

C1l Additional SIgNaAIS.........oooieiiiii C-1
C.l1 Low Frequency Operation (LFO) ........ccceeiiiiiiiieeeiiiieeee e C-2
C.1.2 LOSS Of CIOCK (LOC) it ettt C-2
C.13 System Clock Disable (SCD).......uuuuuiiiiiiiiiiiiiiiiiees e C-2
C.2 LOW-POWEr StOP MOAE ......iiiiiiiec it e C-3
c.21 Bus Arbitration and SNOOPING ......cuuvuruuiiiiieaeeeeeeeeee e C-5
C.22 Low Frequency OPeration .............oooviiiiiiiiiiiiit eeeeeeee e e C-5
c.23 Changing BCLK FIreqUENCY ........cciiiiiiieeeeieiieeeeit et e e C-5
C.24 LPSTOP INStruCtion SUMMATY .....covuiieiiiiiaeeeeeeeeeeeee ceeeeeeeeeiiieinn s C-6
C.3 Clocking During Normal Operation ..............ccceeeeieeeeeaeees seniiiiveeeeeneee C-7
C4 T A O 01T = 11 0] o SRS C-7
C.5 POWET CYCIING e e C-9
C.6 MC68040V and MC68EC040V JTAG (Preliminary) ........cccceeeevviviiinnns C-10
Cc6.1 Instruction Shift REQISIEr ......ccooiiiiiiii e e C-11
C.6.1.1 ) = S UEEERPUPPRR C-12
C.6.1.2 HIGHZ oot C-12
C.6.1.3 SAMPLE/PRELOAD .....coiiiiiieeeeeeeeeeet ettt C-12
C.6.14 CLAMP ..ttt et e e e e e e e e e e e e e e e e e e C-12
C.6.15 BY P A S S .. ——————————————————— C-13
C.6.2 Boundary Scan RegISter..........iiiiiiiiiiiiie e e C-13
C.6.3 S 1 Tod 1 0] o C-16
C.6.4 Disabling The IEEE Standard 1149.1A Operation..............cccccevvvvnnne C-16
C.6.5 MC68040V and MC68EC040V JTAG Electrical Characteristics........ C-17

MOTOROLA M68040 USER’S MANUAL XV



TABLE OF CONTENTS (Continued)

Paragraph
Number Title
C.7 MC68040V and MCG68EC040V Electrical Characteristics...........
C71 Maximum RaLiNGS ......uuuuiiiiiiiiiiiiiieee e e
C.7.2 Thermal CharacteristiCS .........uuvueviiiiiiiiiieeeeees e
C.7.3 DC Electrical SpecCifications ...........ccuvvvmmmiiieiiieeee eeeeeeeiiiies
C74 Power DiSSIPAtiON .......ccoiiiiiiiiiiiiiiiieee e
C.75 Clock AC Timing Specifications ...........ccccceeeiiiiiieieeeee e,
C.7.6 Output AC Timing Specifications ...............euveeeeiiiiiiiiieeeniinnnns
cC.7.7 Input AC Timing Specifications.............ccuvivvviiiiiiiiee e,
Appendix D
M68000 Family Summary
Appendix E
Floating-Point Emulation (M68040FPSP)
Index
XVi M68040 USER’S MANUAL

Page
Number

MOTOROLA



LIST OF ILLUSTRATIONS

Figure Page
Number Title Number
11 =] (o Tod QB = To | = o ¢ [P PURUPT 1-4
1-2 Programming MOAE ..........oooiiiiiiiiiiiiii e 1-7
2-1 Integer UNit PIPEINE ........ei e s 2-2
2-2 Write-Back Cycle BIOCK DIiagram ..............eeeeeeeeeieiiieies coeneneneesniiiiiinseeeeees 2-3
2-3 Integer Unit User Programming Model...............iiiiiiiiiii i, 2-4
2-4 Integer Unit Supervisor Programming Model ..............oooviiiiiiiini i, 2-6
2-5 STALUS REGISTET ...ttt e e e e e e e e e e e e e e e e e e 2-7
3-1 Memory Management UNit..........ooooiiiiiiiiiiiiii e 3-2
3-2 Memory Management Programming Model ..............cccuvviiiiiiii i, 3-3
3-3 URP and SRP Register FOrMALS..........ccovvuiviiiiiiiiieeee e 3-4
3-4 Translation Control Register FOrmat ...........cocciiiiiiiiiiiiiee e 3-4
3-5 Transparent Translation Register Format .............cccoevvviiiiiiiis i, 3-5
3-6 MMU Status Register FOrMAL............couuiiiiiiiiiiiiies e 3-6
3-7 Translation Table StrUCIUIe .........cooii i e 3-8
3-8 Logical AdAreSs FOMMAL ........uuuuuiiiiiieiieeeeeeeeee ettt e e e e e e e e e eeeeeeeneannnes 3-9
3-9 Detailed Flowchart of Table Search Operation ............c.ccoovviiiiiiiiin e, 3-10
3-10 Detailed Flowchart of Descriptor Fetch Operation ...............cooeeiiiiciiin e, 3-11
3-11 Table DeSCriptor FOrMALS........uuuuuiiiiiiie e eeeeiies ceeeeeeeteee s e e e e e e e e e e e eeeeeenaannnes 3-13
3-12  Page DescCriptor FOIMALS ........coocuuiiiiiiiiiiiis s e 3-13
3-13  Example Translation Table ... e 3-17
3-14  Translation Table Using Indirect DeSCHPLOrS .........uuvveiiiiiiieieeeeeieee ceveeeeeiiianns 3-18
3-15 Translation Table Using Shared Tables.............iiiiiiiii s 3-19
3-16  Translation Table with Nonresident Tables...........ccccoevvieiiiieiiiiie e 3-20
3-17  Translation Table Structure for TWO TaSKS ........cevviiiiiiiiiiiieiiiiis i 3-24
3-18 Logical Address Map with Shared Supervisor and User Address Spaces... 3-24
3-19 Translation Table Using S-Bit and W-Bit To Set Protection..........c..cc.......... 3-25
3-20  ATC OrganizZation..........coeeuiiuiuiiiiiiieeees eee e e e e e e e et e e e e e e e e e e e eeeeesnraaaaan 3-26
3-21 ATCENtry and Tag FIeldsS .........uuuiiiiiiiiieeeee e 3-27
3-22  Address Translation FIOWChArt.............cooiiiiiiiiiiiiiiie e 3-32
3-23 MMU Status INterpretation ...........cccceec e e e e, 3-35
4-1 Overview of Internal CacChEs .......ccccoiiieiiiiiiieeeeet e e e 4-2
4-2 Cache LinNe FOIMALS .......coooiiiiiiiiiiiit et 4-3
4-3 CaChING OPEIALION ...ttt e e e e e e e e e e e e e e e e e e 4-4
4-4 Cache Control REQISTEN .......ovvveiiiiccie e e e e e e e e e e eeaannes 4-5

MOTOROLA M68040 USER’S MANUAL Xvii



LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
4-5 Instruction-Cache Line State Diagram .............ouuuueeiiiiiiiines eeeeeeeeeeeeeeeeieienens 4-14
4-6 Data-Cache Line State Diagram .........cccccuuuriiiiiiiiiiiee ceeeeeee e 4-16
5-1 Functional Signal GrOUPS .....ooiieiieeeeeeeeeeeee s 5-4
6-1 M68040 Test Logic BIOCK Diagram ..............coovviuiviiiiiiiesceeieeeeeeeeeeeeeeeeeieiinnnns 6-2
6-2 BYPASS REQISTEN ... et 6-6
6-3 Output Latch Cell (O.LatCh) ..........uuiiiiiiiiiiiiiiiie e 6-7
6-4 INPUL PIN Cell (1LPIN) coeeiieeeeee e e e e e e e 6-7
6-5 Output Control Cells (IO.CHl) ...uiiieeei e s 6-8
6-6 General Arrangement of Bidirectional PiNS ..............euveiiiiiiiiiiiiis s 6-8
6-7 Circuit Disabling IEEE Standard 1149.1A .......cccoiiiiiiiie e e 6-14
6-8 Clock Input TimiNg DIAGraImM ..........uuuuuiiiiieiiiiiiiiees e e 6-22
6-9 TRST TiMING DIAQIaM ...ccvvieiiiiiiiee e e e e e e e e e e e e e e e eeeeenennnnes 6-22
6-10 Boundary Scan Timing Diagram .........ccccoveuiiiiiiiiiiiiiis i e 6-23
6-11  Test Access Port Timing Diagram ... 6-23
7-1 Signal Relationships t0 CIOCKS .......ccoiiiiiiiiii s e 7-2
7-2 Internal Operand Representation .............ooooooiiiiiiiiit e 7-3
7-3 D= 1= 1Y/ [0 0] 1= (T g T 7-4
7-4 Byte Enable Signal Generation and PAL Equation ...............ccccceeeeeeeveennnnnn, 7-5
7-5 Example of a Misaligned Long-Word Transfer...........ccccovvviiieie s 7-7
7-6 Example of a Misaligned Word Transfer..........cccccovvvrviiiiiics i 7-7
7-7 Misaligned Long-Word Read Transfer TimiNg ........ccccooevvviiiiiieiiiiiiiiiieeeeeens 7-8
7-8 Byte, Word, and Long-Word Read Transfer Flowchart..................cccoeeee 7-10
7-9 Byte, Word, and Long-Word Read Transfer Timing.............o.uvvviiiiiiiineneeenn, 7-11
7-10 Line Read Transfer FIOWChArT ... e 7-14
7-11  Line Read Transfer TIMING .........uueeeieiiiiiiiiiiieeees e 7-15
7-12  Burst-Inhibited Line Read Transfer Flowchart ...............ccccoviiiiiiiie e, 7-18
7-13  Burst-Inhibited Line Read Transfer TiIMINg ...........uueiiiiiniiieiiiiiee e 7-19
7-14  Byte, Word, and Long-Word Write Transfer Flowchart ..., 7-20
7-15  Long-Word Write Transfer TIMiNg ..........coooviiiiiiiiiiiics i 7-21
7-16  Line Write Transfer FIOWChart ...........oooooiiiiiiiiiiiis e 7-23
7-17  Line Write Transfer TIMING ... e 7-24
7-18  Locked Transfer for TAS Instruction TimMiNg ......ccccceeeeeeiiiiiiiiieiiiin e, 7-27
7-19  Interrupt Pending ProCeAUIE ..........uuiiiiiiiiiiiiiieeeeee e 7-30
7-20  ASSErtion Of IPEND ......ccoiiiiiiiiiiiiiiiee et e 7-30
7-21  Interrupt Acknowledge Bus Cycle Flowchart ...........ccccooooiiiiiiiii e, 7-32
7-22  Interrupt Acknowledge Bus Cycle TimiNg .......ccccccuimiiiiiiiiiiiiiee e 7-33
7-23  Autovector Interrupt Acknowledge Bus Cycle Timing .......cceeeeeeviieeeeeeeieennnn 7-34
7-24  Breakpoint Interrupt Acknowledge Bus Cycle Flowchart ............................ 7-35
7-25  Breakpoint Interrupt Acknowledge Bus Cycle Timing ............oooovviiiiiiniinnn 7-36

Xviii M68040 USER’S MANUAL MOTOROLA



LIST OF ILLUSTRATIONS (Continued)

Figure
Number Title
7-26  Word Write Access Terminated with TEA Timing ......ccccceevveveeveeeennenn.
7-27  Line Read Access Terminated with TEA Timing ........cccvevveeveeeereeveene e,
7-28 Retry Read Transfer TIMING ........iiiiiiiiiiieceeeeeeee e
7-29  Retry Operation 0N LiN€ W ..........uuuiiiiiiiiiiiiieeeees oo
7-30  M68040 Internal Interpretation State Diagram and

External Bus Arbiter CirCUIL ...........uuvuriiiiiiiiiiiiiies e
7-31  Lock Violation EXAMPIE ......ooviiiiiiiiieieiieii e et
7-32  Processor Bus ReqUEST TIMING ......uuuuiiiiieieeeeeeeeeiees ceeeeeecnninnne e e e e eeeeaes
7-33  Arbitration During Relinquish and Retry TiMing ..........ccoooveevviiiiiiieene cenns
7-34  Implicit Bus Ownership Arbitration TiIMiNg.........ooooviiiiiiiiiiiie e
7-35 Dual M68040 Fairness Arbitration State Diagram ...............cccceeeiieeeeenn ..
7-36  Dual M68040 Prioritized Arbitration State Diagram ..............ccccccveieeeenens
7-37  M68040 Synchronous DMA Arbitration ..........ccccuvvuviiiiiiiiiiies ceeeeeeeeeeeeae
7-38  Sample Synchronizer CirCUIL ..........ciiieiii e e
7-39  M68040 Asynchronous DMA Arbitration .............cccevvviiiiieeiiinciineeeeeeeennn,
7-40  Snoop-Inhibited BUS CYCIE ......coooiiiiiiiiiiiii e
7-41  Snoop Access With Memory RESPONSE.......ccccevvvviiiieiii e
7-42  Snooped Line Read, Memory Inhibited .............coooviiiiiiiiin e
7-43  Snooped Long-Word Write, Memory Inhibited ..............ccccociiiiiiiiin e,
7-44  Initial Power-On Reset TIMING..........oovviiiiiiiiiiiieeees e
7-45  Normal RSt TIMING ...cooiiiiiiiiiiiiiiiiiee s et e e
7-46  Multiplexed Address and Data Bus (Line Write)...........cccccvvvvviiiiiieeee vennn.
7-47  DLE Mode BIOCK Diagram ...........uceeiiiiiiieeeeeeeee e
7-48  DLE versus Normal Data Read TimiNg ..........uuveiiiiiniiieneeiiees ceeeeeeeeiiiiinnnns
8-1 General Exception Processing Flowchart ..............ccccovvvviicc e,
8-2 General Form of Exception Stack Frame ..........cccccoeeiiiiiiii i,
8-3 Interrupt Recognition EXamMPIES .........eueiiiiiiiiiiiiiiieiees e
8-4 Interrupt Exception Processing Flowchart ..............ccocevveiiiiiiiee e,
8-5 Reset Exception Processing FIOwChart..............uuuvviiiiiiiiiiiis s
8-6 Flowchart of RTE Instruction for Throwaway Four-Word Frame..............
8-7 Special Status Word FOrmat ............cooiiiiiiiiiiiiee e
8-8 Write-Back Status FOIMAL ..........coeviiiiiiiiiiiiiiis e
9-1 Floating-Point User Programming Model ............ccoooovviiiiieiiiie i,
9-2 Floating-Point Control REQISTEN ...........eeiiiiiiiiiiiies e
9-3 FPSR Condition Code BYLE......cccoiiiieiiiiiiiieeeeiiiit s e e e e e e eeeeaaanees
9-4 FPSR QUOLIENT BYLE ...uuiiiiiiiiiie s e
9-5 FPSR EXCeption Status BYLE .........oooeiiiiiiiiiiii et
9-6 FPSR Accrued EXception BYLe .........ouvviiiiiiiiiiiiiieeee e
9-7 Intermediate Result FOrMat..........oooooiiiiiiiiiiiiiit e
9-8 Rounding Algorithm FIOWChart .............eoeeeii e

MOTOROLA M68040 USER’S MANUAL

Page
Number

XiX



LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
9-9 Format of Denormalized Operand in State Frame ...........cccceeeeiiiiieieeeeen e, 9-24
9-10 MC68040 Floating-Point State Frames ..........ccccuuveeeiiiiiiiiiies e 9-40
9-11  Mapping of Command Bits for CMDREG3B Field ...............cccoovvvvvviiiinn v 9-42
10-1  Simple Instruction Timing EXample ...........cccoiiiiiiiiiii e, 10-5
10-2  Instruction Overlap with Multiple CIOCKS ...........coooviiiiiiiiiiiiis e 10-6
10-3  INterloCked STAgES .....ccooiiiieieiiiieie e e 10-7
11-1  Clock Input TIming DIagram ...........uuuueiiiiiiieieeeeeee e e e e e e 11-3
11-2  Drive Levels and Test Points for AC Specifications ............ccccccevveeeiiieinnnnnn. 11-6
11-3  ReAd/WIE TIMING ..eeeieiiiiiiiiiieeee e ettt e e 11-7
11-4  Bus Arbitration TiMiNg........cooeeriiiiiiiiiiee e e e e e e e e e e eees 11-8
11-5  SNOOP Hit THMING .uiiiiiiiiiiiiiiie et e e e e e e e e e e e e e e e e e 11-9
11-6  SNOOP MISS TIMING eevveiiiiiiiiiiiie e e e e et et e e e e e e e e e e e e eeeae e 11-10
11-7  Other Signal TIMING ...uieeeei e e e e e e e e et eeaeanae 11-11
11-8 MC68040 Termination NEIWOIK .........couiiiirieeeiiiiieieeee e 11-15
11-9 Typical Configuration for RC Termination Network ..........ccccoeeeiviieeeeieinen e, 11-15
11-10 Heat Sink With ADNESIVE ......oooviiiiiii e 11-20
11-11 Heat Sink with AttaChMENT ........ccooiiiiii e e 11-21
12-1 PGA Package DIMENSIONS ......ccciiiiiiiiieiieeiiie e ceeeviiis e e e e e et eeaeaaan 12-9
12-2  QFP Package DIMENSIONS ......cooiiiiiiiiiiiiiiiiieees eeee e e e s re e e e e e e e e e e e e 12-10
A-1 MCB8BLCO40 BIOCK DIagQram ........ccuuuuiiiieiiiiiiiiiiees ceeeeeiiiiee e e e e et e e s e eennnes A-2
A-2 MCG68LC040 Programming Model ...........cooovviiiiiiiiiiiiii e A-3
A-3 MC68LC040 Functional Signal Groups............uuuuriiiiiiiiiieeee eeeeeeeeeeeeeeennnnenns A-4
A-4 Clock Input TIMIiNg DIagram ...........oieeiiiiiiiiie et e A-10
A-5 REAU/WITEE TIMING ...ttt e e e e e e e e e e e e e e A-13
A-6 Bus Arbitration TimMING .........coooiiiiiiie et e e e e A-14
A-7 Yo To] oI o 11 0 110 11 T PP A-15
A-8 SNOOP MISS TIMING .eeviiiiiiiiiiiiiiiei e e e e e e e e e e e e e e e e e e s s A-16
A-9 Other Signal TIMING .....cooviiieiee e e e e e e e e e eeeeeaanans A-17
B-1 MCGBECO40 BIOCK DIagram .........ccoeiiiiiiiiiiiiiiiit e B-2
B-2 MCG68EC040 Programming Model .............oooriimiiiiiiiiies e, B-3
B-3 MCG68EC040 Functional Signal Groups ............euuveeiiiiiiiinieees e B-4
B-4 MCG68EC040 Access Control Register Format ..........ccccccvvvvviiiiiiiie e, B-6
B-5 MCG68EC040 Initial Power-On Reset TiMiNg..........cccovvvvviiiiiiiiiii e B-8
B-6 MCGB68EC040 Normal ReSet TIMING .....ccevvviiiiiiiiiiiaaeeeeees ceeeeeeeeeeeeeeeeainaes B-9
B-7 Clock Input TimiNg DIAQram ..........uuuueeiiiiiiieiiiiiees e e B-14
B-8 REAA/WHIILE TIMING ..vvuiiiieiii et e e e e e e e e B-17
B-9 Bus Arbitration TIMING ..........uuuieiieiiiiiiiiiieies e e e B-18

XX M68040 USER’S MANUAL MOTOROLA



LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
= KO IS Y s To o] o JN o 1 A 110 11 0T TR SRRPPP B-19
B-11  SNOOP MISS TIMING ..cciiiiiiiiiiiii it ettt B-20
B-12  Other Signal TIMING .....cooviiiiiiiiiciie e e e e e e e e e e e e e eaaaaanaes B-21
C-1 MC68040V and MC68EC040V Functional Signal Groups .........cccccceeeeeeeenn. C-3
C-2 MC68040V and MC68EC040V Initial Power-On Reset Timing ................... C-8
C-3 MC68040V and MCG68EC040V Normal Reset TiMiNg..........cceeeiieeeeeeeeieennee C-9
C-4 MC68040V and MC68EC040V Test Logic Block Diagram ................c..eeee.... C-11
C-5 BYPASS REQISIEN ... et e e e e e e e C-13
C-6 Output Latch Cell (O.LatCh) ... e C-14
C-7 INPUL PIN Cell (1LPIN) i et e e e e e e e e e e eennaeannnes C-14
C-8 Output Control Cells (IO.Ct) ovvuueiieieeece e e C-15
C-9 General Arrangement of Bidirectional PiNS ..............eeviiiiiiiiiiiie s C-15
C-10 Circuit Disabling IEEE Standard 1149.1A .......cooiiiiiiiiieeeeeeeeeeet e C-17
C-11 Drive Levels and Test Points for AC Specifications ............ccccceeeeeevviiiiiinnns C-18
C-12  Clock Input Timing DIagram ......ccoooeiiiiiiiiiiiiiiit e C-21
C-13  Read/WIE TIMING .eeeiiieiiiiiiiieiieee e e e e e e eee cee et s e e e e e e e e e e e e e e e eeaaseeannn s C-24
C-14  BuUS Arbitration TIMING .....covuuiieeiiiiiiee et e e e e e e e e e e enaaaas C-25
C-15  SNOOP HIt TIMING .cetiiiiiiiiiiiieee e et C-26
C-16  SNOOP MISS TIMING ...iieiieeeeiiiieeeee s e e e e e e e e e e e e e aaaeeeens C-27
C-17  Other Signal TIMING ....ooeiiiiiiiiiiiiiie s et e e e e e e e aeeeeeeaeeees C-28
C-18 Going into LPSTOP with Arbitration ..........cccuvviiiiiiiiiiiiiee oo C-29
C-19 LPSTOP no Arbitration, CPU iS MASIEr ...........uuuiiiiiiiiiiiiiiiees eeiiiiiiiiinenne C-30
C-20 Exiting LPSTOP With INtEIrUPL......ccoiiiiieeeeeieeees e C-31
C-21  Exiting of LPSTOP With RESET .......ccooiiiie e C-31

MOTOROLA M68040 USER’S MANUAL XXi



LIST OF TABLES

Table Page
Number Title Number
1-1 MBB040 Data FOIMALS .....coeveiiieiieiiie et e e eeennns 1-9
1-2 Effective ADdressing MOAES ..........uuuuiiiiiiiiiiiiiiiees e 1-10
1-3 Notational CONVENTIONS .......c..uuiiiiiiiiiiiiiiiiiiees ceee e eeaeaeeeeas 1-11
14 INSLrUCION SEt SUMMIAIY ..o e e e e 1-14
3-1 Updating U-Bit and M-Bit for Page DescCriptors..........cccovvvvvvveiiiiiiii e, 3-22
3-2 SFC and DFC ValUBS.....ccoiiiieii it e 3-22
4-1 Snoop Control ENCOAING .......ooiiiiiicee e et 4-9
4-2 LI N DG =t oo o [ T PP 4-11
4-3 Instruction-Cache Line State TransSitionNs .............vvveiiiiiiiieeeees oo 4-15
4-4 Data-Cache Line State TranSitioNs ..........c.ccuuvviiiieiiiiiieees coeeeeesssssiiieenneees 4-17
5-1 SIGNAI INAEX e e 5-2
5-2 Transfer-Type ENCOAING .....cccooeeiiiiiieee e 5-5
5-3 Normal and MOVE16 Access Transfer Modifier Encoding .............cc.evvveeeee. 5-6
5-4 Alternate Access Transfer Modifier Encoding ..........oooevvvviiiiiiiiiin e, 5-6
5-5 Output Driver Control GIOUPS .....uuuiieeiiiiiiieee e se e eeaaa s 5-11
5-6 Processor Status ENCOING .....ccoviiiiiiiiiiiiiiiiiiiei ettt 5-13
5-7 SIGNAl SUMMIATY ... e e e e e e e e e e e e e e e e e eaeeeeeeennnne 5-16
6-1 IEEE Standard 1149.1A INSIUCLIONS ....coiiiieieeeiiiieeeeeeeiiiiin et 6-3
6-2 Boundary Scan Bit DefiNitioNS .........uueiiiiiiiiiiieeeeiee e 6-10
7-1 Data Bus Requirements for Read and Write CycCles...........cccuvveiiviieeeieeeee e, 7-4
7-2 Summary of Access Types versus Bus Signal Encodings...........cccccevvvvvnnee. 7-6
7-3 Memory Alignment Influence on Noncachable and

Write-Through BUS CYCIES ... e 7-9
7-4 Interrupt Acknowledge Termination SUMMArY ............covvvveiiiiiiiieees eeeeeeeeean, 7-31
7-5 TA and TEA ASSertion RESUIS ...........cccoeviiieeeeieet e 7-37
7-6 M68040 Bus Arbitration STAteS ..........cceevuriiiimiiiiiiees e 7-48
8-1 Exception Vector ASSIGNMENTS ......couuiiiiiiiiiiiie et e a e 8-5
8-2 Tracing CONTIOl .......uuiiiiiiiiiiiiiiiee e e e e 8-11
8-3 Interrupt Levels and Mask ValUEs..............uciiiiiiiiieeiiis e 8-12
8-4 EXCeption Priority GIOUPS ......ccooiiiiiiiiiiiiiiiiiies s e e e e e 8-19

XXii M68040 USER’S MANUAL MOTOROLA



LIST OF TABLES (Continued)

Table Page
Number Title Number
8-5 Write-Back Data AIGNMENT ......c.coiiiiiiiiiiiie e e 8-27
8-6 Access Error Stack Frame Combinations .............ooeevvviiiiiiiiiis e, 8-31
9-1 Floating-Point Control Register ENCOdiNgS ..........uuuviiiiiiiiiiiiiiie e 9-3
9-2 MC68040 FPU Data Formats and Data TYPES .....ccvvvveviiieeeeieieiiiiiie i 9-7
9-3 Single-Precision Real Format SUMMaAry .............cccciiiiiiiiieeeee e, 9-8
9-4 Double-Precision Real Format SUMmary .............cccceeiiiiiiieeeees e 9-9
9-5 Extended-Precision Real Format SUMMAry ..........cccccuuviiiiiiiiiiiiie e 9-10
9-6 Packed Decimal Real Format SUMMaAry ...........cccccovvviviiiiiii s 9-11
9-7 Floating-Point Condition Code ENCOdiNgS.........ccoooviiiiiiiiiiiiiit e 9-17
9-8 Floating-Point Conditional TESES ........cccoviiiiiiiiiii e 9-19
9-9 Floating-Point EXCeption VECIOIS ........cccuuviiiiiiiiiiiiieees e 9-20
9-10  Unimplemented INSITUCHIONS ..........uuuiiiiiiiiiiiiiiiie s e 9-21
9-11 Possible Operand Errors EXCEPLIONS ......cccovveeieiiiiiiieeeiiiiit e e e e 9-29
9-12  Overflow Rounding Mode ValUes...........cooeuiiiiiiiiiiiiiis e 9-32
9-13  Underflow Rounding Mode ValUES.............uuuuiiiiiiiiiiiiiis e 9-34
9-14  Possible Divide by Zero EXCEpPLtioNS ..........covvveiiiiiiiiiiiiies e eeeeeeeeeeeeeiiiaens 9-36
9-15 Divide by Zero Rounding Mode Values.............cooeviiiiiiiiiiiii i, 9-37
9-16  State Frame Field INformation .............ueoooiiiiiiiieiiiis e 9-44
10-1  Instruction TiMING INAEX .....uuiiiiiiiiiiie e e 10-1
10-2  Number of MEMOIY ACCESSES .....ccoeeiiiiiiiiiieiieeet ettt 10-3
10-3  CINV TIMING ceiiiiiiieieiiiiitie et e e e e e e e e e e e e e e e e s s s s bbb e e eeeeeeas .10-8
10-4 CPUSH Best and Worst Case TIMING ......cccooveiiiiiiiiiiiiiiiiiin e e e 10-8
11-1  Maximum Power Dissipation for Output Buffer Mode Configuration............. 11-13
11-2  Thermal Parameters with No Heat Sink or Airflow ...........cceeeiiiiiiii e, 11-17
11-3 Thermal Parameters with Forced Airflow and

No Heat Sink for the MCB8040 ..........ocooiiiiiiiii e 11-18
11-4  Thermal Parameters with Forced Airflow and

No Heat Sink for the MC68LC040 and MCG68ECO040 ...........eeeeevvvvveveeennnns .11-19
11-5 Thermal Parameters with Heat Sink and No Airflow ..............cccccooiiiiinnnee, 11-21
11-6  Thermal Parameters with Heat Sink and Airflow..............cooovviiiiiiin i, 11-22
C-1 Additional MC68040V and MCG68ECO040V Signals..........ccceeeeeeeviiiiiiiiin e C-2
C-2 Bus Encodings During LPSTOP Broadcast CycCle ...........ccceeeviviiiiiiiiiin v C-4
C-3 IEEE Standard 1149.1A INSrUCLIONS .......ccovviiiiiiiiiiiiiieeees ceeeeeeeeeeeeeeeeeeaeennnnns C-12
E-1 MC68040 Floating-Point INSIFUCHIONS ......covviiiieiieiieeeeeeeeiiie ettt E-2
E-2 MCG68040FPSP Floating-Point INStrUCIONS..........ccvviiiiiiiiiiieeeeis i E-3
E-3 Support for Data Types and Data FOrmats ............ccccooevvvvviiiiiiin e, E-4
E-4 EXCePtioN CONAITIONS ....vviiiiiiiiiiiiiiii e e E-4

MOTOROLA M68040 USER’S MANUAL XXiii



SECTION 1
INTRODUCTION

The MC68040, MC68040V, MC68LC040, MC68EC040, and MC68EC040V (collectively
called M68040) are Motorola’s third generation of M68000-compatible, high-performance,
32-bit microprocessors. All five devices are virtual memory microprocessors employing
multiple concurrent execution units and a highly integrated architecture that provides very
high performance in a monolithic HCMOS device. They integrate an MC68030-compatible
integer unit (IU) and two independent caches. The MC68040, MC68040V, and
MC68LC040 contain dual, independent, demand-paged memory management units
(MMUSs) for instruction and data stream accesses and independent, 4-Kbyte instruction
and data caches. The MC68040 contains an MC68881/MC68882-compatible floating-
point unit (FPU). The use of multiple independent execution pipelines, multiple internal
buses, and a full internal Harvard architecture, including separate physical caches for both
instruction and data accesses, achieves a high degree of instruction execution parallelism
on all three processors. The on-chip bus snoop logic, which directly supports cache
coherency in multimaster applications, enhances cache functionality.

The M68040 family is user object-code compatible with previous M68000 family members
and is specifically optimized to reduce the execution time of compiler-generated code. All
five processors implement Motorola’s latest HCMOS technology, providing an ideal
balance between speed, power, and physical device size.

1.1 DIFFERENCES

Because the functionality of individual M68040 family members are similar, this manual is
organized so that the reader will take the following differences into account while reading
the rest of this manual. Unless otherwise noted, all references to M68040, with the
exception of the differences outlined below, will apply to the MC68040, MC68040V,
MC68LC040, MC68EC040, and MC68EC040V. The following paragraphs describe the
differences of MC68040V, MC68LC040, MC68EC040, and the MC6BEC040V from the
MC68040.

1.1.1 MC68040V and MC68LC040

The MC68040V and MC68LCO040 are derivatives of the MC68040. They implement the
same |IU and MMU as the MC68040, but have no FPU. The MC68LCO040 is pin compatible
with the MC68040. The MC68040V is not pin compatible with the MC68040 and contains
some additional features. The following differences exist between the MC68040V,
MC68LC040, and MC68040:

MOTOROLA M68040 USER’S MANUAL 1-1



e The DLE pin name has been changed to JSO on both the MC68040V and
MC68LC040. In addition, the MC68040V contains three new pins, system clock
disable (SCD), low frequency operation (LFO), and loss of clock (LOC).

* The MC68040V and MC68LC040 do not implement the data latch enable (DLE),
multiplexed, or output buffer impedance selection modes of operation. They
implement only the small output buffer mode of operation. All timing and drive
capabilities on both devices are equivalent to those of the MC68040 in small output
buffer impedance mode. The MC68040V has an additional mode of operation, the
low-power stop mode of operation.

* The MC68040V and MC68LC040 do not contain an FPU, causing unimplemented
floating-point exceptions to occur using a new stack frame format.

* The MC68040V is a 3.3 volt static microprocessor that operates down to 0 MHz.

For specific details on the MC68LC040, refer to Appendix A MC68LCO040. For specific
details on the MC68040V, refer to both Appendix A MC68LC040 and Appendix C
MC68040V and MC68ECO040V. Disregard all information concerning the FPU when
reading the following subsections.

1.1.2 MC68EC040 and MC68EC040V

The MC68EC040 and MC68EC040V are derivatives of the MC68040. They implement the
same IU as the MC68040, but have no FPU or MMU, which embedded control
applications generally do not require. The MC68EC040 is pin compatible with the
MC68040. The following differences exist between the MC68EC040, MC68EC040V, and
the MC68040:

* The DLE and MDI S pin names have been changed to JSO and JS1, respectively.

 PTEST and PFLUSH instructions cause an undetermined number of bus cycles; the
user should not execute these instructions.

» The access control unit (ACU) replaces the MMU. The MC68EC040 and
MC68EC040V ACU has two data and two instruction registers that are called data
and instruction transparent translation registers in the MC68040.

* The MC68EC040 and MC68EC040V do not implement the DLE, multiplexed, or
output buffer impedance selection modes of operation. They only implement the small
output buffer mode of operation. All MC68EC040 and MC68EC040V timing and drive
capabilities are equivalent to the MC68040 in small output buffer mode.

* The MC68EC040 and MC68EC040V do not contain an FPU, causing unimplemented
floating-point exceptions to occur using a new stack frame format.

* The MC68040V is a 3.3 volt static microprocessor that operates down to 0 MHz.

Refer to Appendix B MC68ECO040 for specific details on the MC68EC040. Refer to
Appendix B MC68ECO040 and Appendix C MC68040V and MC68EC040V for specific
details on the MC68EC040V. Disregard information concerning the FPU and MMU
when reading the following subsections.

12 M68040 USER’S MANUAL MOTOROLA



1.2 FEATURES

The main features of the M68040 are as follows:
» 6-Stage Pipeline, MC68030-Compatible U
» MC68881/MC68882-Compatible FPU
* Independent Instruction and Data MMUs

» Simultaneously Accessible, 4-Kbyte Physical Instruction Cache and 4-Kbyte Physical
Data Cache

» Low-Latency Bus Accesses for Reduced Cache Miss Penalty

» Multimaster/Multiprocessor Support via Bus Snooping

e Concurrent IU, FPU, MMU, and Bus Controller Operation Maximizes Throughput

» 32-Bit, Nonmultiplexed External Address and Data Buses with Synchronous Interface
» User Object-Code Compatible with All Earlier M68000 Microprocessors

* 4-Ghyte Direct Addressing Range

» Software Support Including Optimizing C Compiler and UNIX® System V Port

The on-chip FPU and large physical instruction and data caches yield improved system
performance and increased functionality. The independent instruction and data MMUs and
increased internal parallelism also improve performance.

1.3 EXTENSIONS TO THE M68000 FAMILY

The M68040 is compatible with the ANSI/IEEE Standard 754 for Binary Floating-Point
Arithmetic. The MC68040’s FPU has been optimized to execute the most commonly used
subset of the MC68881/MC68882 instruction sets and includes additional instruction
formats for single- and double-precision rounding results. Software emulates floating-point
instructions not directly supported in hardware. Refer to Appendix E M68040 Floating-
Point Emulation (MC68040FPSP) for details on software emulation. The MOVE16 user
instruction is new to the instruction set, supporting efficient 16-byte memory-to-memory
data transfers.

1.4 FUNCTIONAL BLOCKS

Figure 1-1 illustrates a simplified block diagram of the MC68040. Refer to Appendix A
MC68L C040 for information on the MC68LC040’s and MC68040V's functional blocks; and
Appendix B MC68ECO040 for information on the MC68EC040’s and MCG68EC040V's
functional blocks.

The M68040 IU pipeline has been expanded from the MC68030 to include effective
address calculation (<ea> calculate) and operand fetch Kea> fetch) stages with
commonly used effective addressing modes. Conditional branches are optimized for the

® UNIX is a registered trademark of AT&T Bell Laboratories.

MOTOROLA M68040 USER’S MANUAL 1-3



more common case of the branch taken, and both execution paths of the branch are
fetched and decoded to minimize refilling of the instruction pipeline.

INSTRUCTION DATA BUS >

{}

NS

INSTRUCTION :> INSTRUCTION
ATC CACHE

NS ﬁ F ﬁ r INSTRUCTION
INSTRUCTION > INSTRUCTION ADDRES
FETCH MMUICACHE/SNOOP ;
CONVERT CONTROLLER 8
< DECODE INSTRUCTION MEMORY UNIT S OORESS
BUS
EA c
CALCULATE 0
N
EXECUTE ” N
FETCH . wA:v,\DATA
0 BUS
KM | Execute DATA MEMORY UNIT L
WRITE- DATA L
BACK DATA ADDRESS E
WRITE- MMUICACHE/SNOOP K i R <:>
BACK CONTROLLER BUS
FLOATING- INTEGER {} CS(ID(IB\IJE&L
POINT UNIT
UNIT DATA DATA
ATC :"\/\ CACHE

A4

OPERAND DATA BUS

Figure 1-1. Block Diagram

To improve memory management, the M68040 includes separate, independent paged
MMUs for instruction and data accesses. Each MMU stores recently used address
mappings in separate 64-entry address translation caches (ATCs). Each MMU also has
two transparent translation registers that define a one-to-one mapping for address space
segments ranging in size from 16 Mbytes to 4 Gbytes each.

Two memory units independently interface with the IU and FPU. Each unit consists of an
MMU, an ATC, a main cache, and a snoop controller. The MMUs perform memory
management on a demand-page basis. By translating logical-to-physical addresses using
translation tables stored in memory, the MMUs support virtual memory systems. Each
MMU stores recently used address mappings in an ATC, reducing the average translation
time.

Separate on-chip instruction and data caches operate independently and are accessed in
parallel with address translation. The caches improve the overall performance of the
system by reducing the number of bus transfers required by the processor to fetch
information from memory and by increasing the bus bandwidth available for alternate bus

1-4 M68040 USER’S MANUAL MOTOROLA



masters in the system. Both caches are organized as four-way set associative with 64
sets of four lines. Each line contains four long words for a storage capability of 4 Kbytes
for each cache (8 Kbytes total). Each cache and corresponding MMU is allocated
separate internal address and data buses, allowing simultaneous access to both. The
data cache provides write-through or copyback write modes that can be configured on a
page-by-page basis. The caches are physically mapped, reducing software support for
multitasking operating systems, and support external bus snooping to maintain cache
coherency in multimaster systems.

The bus snoop logic provides cache coherency in multimaster applications. The bus
controller executes bus transfers on the external bus and prioritizes external memory
requests from each cache. The M68040 bus controller supports a high-speed,
nonmultiplexed, synchronous, external bus interface supporting burst accesses for both
reads and writes to provide high data transfer rates to and from the caches. Additional bus
signals support bus snooping and external cache tag maintenance.

The MC68040 contains an on-chip FPU, which is user object-code compatible with the
MC68881/MC68882 floating-point coprocessors. The FPU has pipelined instruction
execution. Floating-point instructions in the FPU execute concurrently with integer
instructions in the 1U.

1.5 PROCESSING STATES

The processor is always in one of three states: normal processing, exception processing,
or halted. It is in the normal processing state when executing instructions, fetching
instructions and operands, and storing instruction results.

Exception processing is the transition from program processing to system, interrupt, and
exception handling. Exception processing includes fetching the exception vector, stacking
operations, and refilling the instruction pipe caused after an exception. The processor
enters exception processing when an exceptional internal condition arises such as tracing
an instruction, an instruction results in a trap, or executing specific instructions. External
conditions, such as interrupts and access errors, also cause exceptions. Exception
processing ends when the first instruction of the exception handler begins to execute.

The processor halts when it receives an access error or generates an address error while
in the exception processing state. For example, if during exception processing of one
access error another access error occurs, the MC68040 is unable to complete the
transition to normal processing and cannot save the internal state of the machine. The
processor assumes that the system is not operational and halts. Only an external reset
can restart a halted processor. Note that when the processor executes a STOP
instruction, it is in a special type of normal processing state, one without bus cycles. The
processor stops, but it does not halt.

1.6 PROGRAMMING MODEL

The MC68040 programming model is separated into two privilege modes: supervisor and
user. The S-bit in the status register (SR) indicates the privilege mode that the processor

MOTOROLA M68040 USER’S MANUAL 1-5



uses. The IU identifies a logical address by accessing either the supervisor or user
address space, maintaining the differentiation between supervisor and user modes. The
MMUSs use the indicated privilege mode to control and translate memory accesses,
protecting supervisor code, data, and resources from user program accesses. Refer to
Appendix B MC68ECO040 for details concerning the MC68EC040 address translation.

Programs access registers based on the indicated mode. User programs can only access
registers specific to the user mode; whereas, system software executing in the supervisor
mode can access all registers, using the control registers to perform supervisory functions.
User programs are thus restricted from accessing privileged information, and the
operating system performs management and service tasks for the user programs by
coordinating their activities. This difference allows the supervisor mode to protect system
resources from uncontrolled accesses.

Most instructions execute in either mode, but some instructions that have important
system effects are privileged and can only execute in the supervisor mode. For instance,
user programs cannot execute the STOP or RESET instructions. To prevent a user
program from entering the supervisor mode, except in a controlled manner, instructions
that can alter the S-bit in the SR are privileged. The TRAP instructions provide controlled
access to operating system services for user programs.

If the S-bit in the SR is set, the processor executes instructions in the supervisor mode.
Because the processor performs all exception processing in the supervisor mode, all bus
cycles generated during exception processing are supervisor references, and all stack
accesses use the active supervisor stack pointer. If the S-bit of the SR is clear, the
processor executes instructions in the user mode. The bus cycles for an instruction
executed in the user mode are user references. The values on the transfer modifier pins
indicate either supervisor or user accesses.

The processor utilizes the user mode and the user programming model when it is in
normal processing. During exception processing, the processor changes from user to
supervisor mode. Exception processing saves the current value of the SR on the active
supervisor stack and then sets the S-bit, forcing the processor into the supervisor mode.
To return to the user mode, a system routine must execute one of the following
instructions: MOVE to SR, ANDI to SR, EORI to SR, ORI to SR, or RTE, which execute in
the supervisor mode, modifying the S-bit of the SR. After these instructions execute, the
instruction pipeline is flushed and is refilled from the appropriate address space.

The MC68040 integrates the functions of the IU, FPU, and MMU. The registers depicted
in the programming model (see Figure 1-2) provide operand storage and control for these
three units. The registers are partitioned into two levels of privilege modes: user and
supervisor. The user programming model is the same as the user programming model of
the MC68030, which consists of 16, general-purpose, 32-bit registers and two control
registers. The MC68040 user programming model also incorporates the
MC68881/MC68882 programming model consisting of eight, 80-bit, floating-point data
registers, a floating-point control register, a floating-point status register, and a floating-
point instruction address register.

1-6 M68040 USER’S MANUAL MOTOROLA



Only system programmers can use the supervisor programming model to implement
operating system functions, 1/0 control, and memory management subsystems. This
supervisor/user distinction in the M68000 family architecture allows for the writing of
application software that executes in the user mode and migrates to the MC68040 from
any M68000 family platform without modification. The supervisor programming model
contains the control features that system designers need to modify system software when
porting to a new design. For example, only the supervisor software can read or write to
the transparent translation registers of the MC68040. The existence of the transparent
translation registers does not affect the programming resources of user application

programs.

31 0 79
Do FPO
D1 FP1
D2 FP2
DATA D3 FLOATING-POINT EP3
REGISTERS D4 DATA Fpa
D5 REGISTERS
FP5
D6 FP6
b7 FP7
AD
I ﬁi 31 15
ADDRESS — as FP CONTROL REGISTER 0 [ FPCR
REGISTERS — | aa FP STATUS REGISTER FPSR
— s FP INSTRUCTION ADDRESS REGISTER FPIAR
A6
A7/USP  USER STACK POINTER
PC PROGRAM COUNTER
o CCR CONDITION CODE REGISTER
USER PROGRAMMING MODEL
31 0
AT/ISP INTERRUPT STACK POINTER
AT'IMSP  MASTER STACK POINTER
" (CCR) | SR STATUS REGISTER (CCR IS ALSO SHOWN IN THE USER PROGRAMMING MODEL)
VER VECTOR BASE REGISTER
SFC SOURCE FUNCTION CODE
DFC DESTINATION FUNCTION CODE
CACR CACHE CONTROL REGISTER
URP USER ROOT POINTER REGISTER
SRP SUPERVISOR ROOT POINTER REGISTER
TC TRANSLATION CONTROL REGISTER
DTTO DATA TRANSPARENT TRANSLATION REGISTER 0
DTT1 DATA TRANSPARENT TRANSLATION REGISTER 1
ITT0 INSTRUCTION TRANSPARENT TRANSLATION REGISTER 0
1 INSTRUCTION TRANSPARENT TRANSLATION REGISTER 1
MMUSR  MMU STATUS REGISTER
SUPERVISOR PROGRAMMING MODEL
Figure 1-2. Programming Model
MOTOROLA M68040 USER’'S MANUAL 1-7



The user programming model includes eight data registers, seven address registers, and
a stack pointer register. The address registers and stack pointer can be used as base
address registers or software stack pointers, and any of the 16 registers can be used as
index registers. Two control registers are available in the user mode—the program
counter (PC), which usually contains the address of the instruction that the MC68040 is
executing, and the lower byte of the SR, which is accessible as the condition code register
(CCR). The CCR contains the condition codes that reflect the results of a previous
operation and can be used for conditional instruction execution in a program.

The supervisor programming model includes the upper byte of the SR, which contains
operation control information. The vector base register (VBR) contains the base address
of the exception vector table, which is used in exception processing. The source function
code (SFC) and destination function code (DFC) registers contain 3-bit function codes.
These function codes can be considered extensions to the 32-bit logical address. The
processor automatically generates function codes to select address spaces for data and
program accesses in the user and supervisor modes. Some instructions use the alternate
function code registers to specify the function codes for various operations.

The cache control register (CACR) controls enabling of the on-chip instruction and data
caches of the MC68040. The supervisor root pointer (SRP) and user root pointer (URP)
registers point to the root of the address translation table tree to be used for supervisor
and user mode accesses.

The translation control register (TCR) enables logical-to-physical address translation and
selects either 4- or 8-Kbyte page sizes. There are four transparent translation registers,
two for instruction accesses and two for data accesses. These registers allow portions of
the logical address space to be transparently mapped and accessed without the use of
resident descriptors in an ATC. The MMU status register (MMUSR) contains status
information derived from the execution of a PTEST instruction. The PTEST instruction
searches the translation tables for the logical address, specified by this instruction’s
effective address field and the DFC, and returns status information corresponding to the
translation.

The user programming model can also access the entire floating-point programming
model. The eight 80-bit floating-point data registers are analogous to the integer data
registers. A 32-bit floating-point control register (FPCR) contains an exception enable byte
that enables and disables traps for each class of floating-point exceptions and a mode
byte that sets the user-selectable rounding and precision modes. A floating-point status
register (FPSR) contains a condition code byte, quotient byte, exception status byte, and
accrued exception byte. A floating-point exception handler can use the address in the 32-
bit floating-point instruction address register (FPIAR) to locate the floating-point instruction
that has caused an exception. Instructions that do not modify the FPIAR can be used to
read the FPIAR in the exception handler without changing the previous value.

1-8 M68040 USER’S MANUAL MOTOROLA



1.7 DATA FORMAT SUMMARY

The M68040 supports the basic data formats of the M68000 family. Some data formats
apply only to the 1U, some only to the FPU, and some to both. In addition, the instruction
set supports operations on other data formats such as memory addresses.

The operand data formats supported by the IU are the standard twos-complement data
formats defined in the M68000 family architecture plus a new data format (16-byte block)
for the MOVEL6 instruction. Registers, memory, or instructions themselves can contain U
operands. The operand size for each instruction is either explicitly encoded in the
instruction or implicitly defined by the instruction operation.

Whenever an integer is used in a floating-point operation, the FPU automatically converts
it to an extended-precision floating-point number before using the integer. The FPU
implements single- and double-precision floating-point data formats as defined by the
IEEE 754 standard. The FPU does not directly support packed decimal real format.
However, by trapping as an unimplemented data format instead of as an illegal instruction,
software emulation supports the packed decimal format. Additionally, each data format
has a special encoding that represents one of five data types: normalized numbers,
denormalized numbers, zeros, infinities, and not-a-numbers (NANs). Table 1-1 lists the
data formats for both the IU and the FPU. Refer to M68000PM/AD, M68000 Family
Programmer’s Reference Manual, for details on data format organization in registers and
memory.

Table 1-1. M68040 Data Formats

Operand Data Format Size Supported In Notes
Bit 1 Bit U —
Bit Field 1-32 Bits U Field of Consecutive Bits
Binary-Coded Decimal (BCD) 8 Bits U Packed: 2 Digits/Byte; Unpacked: 1 Digit/Byte
Byte Integer 8 Bits U, FPU —
Word Integer 16 Bits U, FPU —
Long-Word Integer 32 Bits U, FPU —
Quad-Word Integer 64 Bits (V] Any Two Data Registers
16-Byte 128 Bits (U] Memory Only, Aligned to 16-Byte Boundary
Single-Precision Real 32 Bits FPU 1-Bit Sign, 8-Bit Exponent, 23-Bit Fraction
Double-Precision Real 64 Bits FPU 1-Bit Sign, 11-Bit Exponent, 52-Bit Fraction
Extended-Precision Real 80 Bits FPU 1-Bit Sign, 15-Bit Exponent, 64-Bit Mantissa

1.8 ADDRESSING CAPABILITIES SUMMARY

The M68040 supports the basic addressing modes of the M68000 family. The register
indirect addressing modes support postincrement, predecrement, offset, and indexing,
which are particularly useful for handling data structures common to sophisticated

MOTOROLA M68040 USER’S MANUAL 1-9



applications and high-level languages. The program counter indirect mode also has
indexing and offset capabilities. This addressing mode is typically required to support
position-independent software. Besides these addressing modes, the M68040 provides
index sizing and scaling features.

An instruction’s addressing mode can specify the value of an operand, a register
containing the operand, or how to derive the effective address of an operand in memory.
Each addressing mode has an assembler syntax. Some instructions imply the addressing
mode for an operand. These instructions include the appropriate fields for operands that
use only one addressing mode. Table 1-2 lists a summary of the effective addressing
modes for the M68040. Refer to M68000PM/AD, M68000 Family Programmer’s

Reference Manual, for details on instruction format and addressing modes.

1-10

Table 1-2. Effective Addressing Modes

Addressing Modes Syntax

Register Direct

Data Dn

Address An
Register Indirect

Address (An)

Address with Postincrement (An)+

Address with Predecrement —(An)

Address with Displacement (d16,An)
Address Register Indirect with Index

8-Bit Displacement dg,An,Xn)

Base Displacement (bd,An,Xn)

Memory Indirect
Postindexed
Preindexed

([bd,An],Xn,od)
([bd,An,Xn],od)

Program Counter Indirect

with Displacement d16.PC)
Program Counter Indirect with Index

8-Bit Displacement dg,PC,Xn)

Base Displacement (bd,PC,Xn)

Program Counter Memory Indirect
Postindexed
Preindexed

([bd,PC],Xn,0d)
([bd,PC,Xn],0d)

Absolute Data Addressing

Short (xxx).W
Long (xxx).L
Immediate HIXXX>

M68040 USER’S MANUAL

MOTOROLA



1.9 NOTATIONAL CONVENTIONS

Table 1-3 lists the notation conventions used throughout this manual unless otherwise

specified.

Table 1-3. Notational Conventions

Single- And Double-Operand Operations

Arithmetic addition or postincrement indicator.

Arithmetic subtraction or predecrement indicator.

Arithmetic multiplication.

Arithmetic division or conjunction symbol.

Invert; operand is logically complemented.

Logical AND

Logical OR

Logical exclusive OR

e |O|<|>

Source operand is moved to destination operand.

t o

Two operands are exchanged.

<op>

Any double-operand operation.

<operand>tested

Operand is compared to zero and the condition codes are set appropriately.

sign-extended

All bits of the upper portion are made equal to the high-order bit of the lower portion.

Other Operations

TRAP Equivalent to Format + Offset Word g (SSP); SSP — 2 g SSP; PC & (SSP); SSP — 4 g SSP; SR
@ (SSP); SSP — 2 g SSP; (Vector) g PC
STOP Enter the stopped state, waiting for interrupts.
<operand>1Q The operand is BCD; operations are performed in decimal.

If <condition>
then <operations>
else <operations>

Test the condition. If true, the operations after “then” are performed. If the condition is false
and the optional “else” clause is present, the operations after “else” are performed. If the
condition is false and else is omitted, the instruction performs no operation. Refer to the Bcc
instruction description as an example.

Register Specification

An Any Address Register n (example: A3 is address register 3)
Ax, Ay Source and destination address registers, respectively.

BR Base Register—An, PC, or suppressed.

Dc Data register D7-D0, used during compare.
Dh, DI Data registers high- or low-order 32 bits of product.

Dn Any Data Register n (example: D5 is data register 5)
Dr, Dq Data register’s remainder or quotient of divide.

Du Data register D7-D0, used during update.
Dx, Dy Source and destination data registers, respectively.

MRn Any Memory Register n.

Rn Any Address or Data Register
Rx, Ry Any source and destination registers, respectively.

Xn Index Register—An, Dn, or suppressed.

MOTOROLA M68040 USER’'S MANUAL 1-11



Table 1-3. Notational Conventions (Continued)

Data Format And Type

+ inf Positive Infinity
<fmt> Operand Data Format: Byte (B), Word (W), Long (L), Single (S), Double (D), Extended (X), or
Packed (P).
B, W, L Specifies a signed integer data type (twos complement) of byte, word, or long word.
D Double-precision real data format (64 bits).
k A twos complement signed integer (—64 to +17) specifying a number’s format to be stored in
the packed decimal format.
P Packed BCD real data format (96 bits, 12 bytes).
S Single-precision real data format (32 bits).
X Extended-precision real data format (96 bits, 16 bits unused).
—inf Negative Infinity

Subfields and Qualifiers

#<xxx> or #<data>

Immediate data following the instruction word(s).

O

Identifies an indirect address in a register.

[]

Identifies an indirect address in memory.

bd Base Displacement
cce Index into the MC68881/MC68882 Constant ROM
dn Displacement Value, n Bits Wide (example: d1g is a 16-bit displacement).
LSB Least Significant Bit
LSW Least Significant Word
MSB Most Significant Bit
MSW Most Significant Word
od Outer Displacement
SCALE A scale factor (1, 2, 4, or 8, for no-word, word, long-word, or quad-word scaling, respectively).
SIZE The index register’s size (W for word, L for long word).
{offset:width} Bit field selection.
Register Names
CCR Condition Code Register (lower byte of status register)
DFC Destination Function Code Register
FPcr Any Floating-Point System Control Register (FPCR, FPSR, or FPIAR)
FPm, FPn Any Floating-Point Data Register specified as the source or destination, respectively.
IC, DC, IC/DC Instruction, Data, or Both Caches
MMUSR MMU Status Register
PC Program Counter
Rc Any Non Floating-Point Control Register
SFC Source Function Code Register
SR Status Register

1-12

M68040 USER’S MANUAL MOTOROLA



Table 1-3. Notational Conventions (Concluded)

Register Codes
* General Case.
C Carry Bitin CCR
cc Condition Codes from CCR
FC Function Code
N Negative Bit in CCR
U Undefined, Reserved for Motorola Use.
\Y Overflow Bit in CCR
X Extend Bitin CCR
z Zero Bitin CCR
— Not Affected or Applicable.
Stack Pointers
ISP Supervisor/Interrupt Stack Pointer
MSP Supervisor/Master Stack Pointer
SP Active Stack Pointer
SSP Supervisor (Master or Interrupt) Stack Pointer
USP User Stack Pointer
Miscellaneous
<ea> Effective Address
<label> Assemble Program Label
<list> List of registers, for example D3-DO0.
LB Lower Bound
m Bit m of an Operand
m-n Bits m through n of Operand
uB Upper Bound

1.10 INSTRUCTION SET OVERVIEW

The instruction set is tailored to support high-level languages and is optimized for those
instructions most commonly executed. The floating-point instructions for the M68040 are a
commonly used subset of the MC68881/MC68882 instruction set with new arithmetic
instructions to explicitly select single- or double-precision rounding. The remaining
unimplemented instructions are less frequently used and are efficiently emulated in the
M68040FPSP, maintaining compatibility with the MC68881/MC68882 floating-point
coprocessors. The M68040 instruction set includes MOVEL16, a new user instruction that
allows high-speed transfers of 16-byte blocks between external devices such as memory
to memory or coprocessor to memory. Table 1-4 provides an alphabetized listing of the
M68040 instruction set’s opcode, operation, and syntax. Refer to Table 1-3 for notations
used in Table 1-4. The left operand in the syntax is always the source operand, and the
right operand is the destination operand. Refer to M68000PM/AD, M68000 Family
Programmer’s Reference Manual, for details on instructions used by the M68040.

MOTOROLA M68040 USER’S MANUAL 1-13




Table 1-4. Instruction Set Summary

Opcode Operation Syntax
ABCD BCD Source + BCD Destination + X g Destination | ABCD Dy,Dx
ABCD —(Ay),—(Ax)
ADD Source + Destination @ Destination ADD <ea>,Dn
ADD Dn,<ea>
ADDA Source + Destination g Destination ADDA <ea>,An
ADDI Immediate Data + Destination @ Destination ADDI #<data>,<ea>
ADDQ Immediate Data + Destination g Destination ADDQ #<data>,<ea>
ADDX Source + Destination + X g Destination ADDX Dy,Dx
ADDX —(Ay),—(Ax)
AND Source A Destination g Destination AND <ea>,Dn
AND Dn,<ea>
ANDI Immediate Data A Destination g Destination ANDI #<data>,<ea>
ANDI to CCR Source A CCR g CCR ANDI #<data>,CCR
ANDI to SR If supervisor state ANDI #<data>,SR
then Source A SR @ SR
else TRAP
ASL, ASR Destination Shifted by count g Destination ASd Dx,Dyl
ASd #<data>,Dyl
ASd <ea>l
Bcc If condition true Bcc <label>
then PC +dp @ PC
BCHG ~(bit number of Destination) @ Z; BCHG Dn,<ea>
~(bit number of Destination) @ (bit number) of BCHG #<data>,<ea>
Destination
BCLR ~(bit number of Destination) @ Z; BCLR Dn,<ea>
0 @ bit number of Destination BCLR #<data>,<ea>
BFCHG ~(bit field of Destination) @ bit field of Destination BFCHG <ea>{offset:width}
BFCLR 0 g bit field of Destination BFCLR <ea>{offset:width}
BFEXTS bit field of Source @ Dn BFEXTS <ea>{offset:width},Dn
BFEXTU bit offset of Source @ Dn BFEXTU <ea>{offset:width},Dn
BFFFO bit offset of Source Bit Scan g Dn BFFFO <ea>{offset:width},Dn
BFINS Dn g bit field of Destination BFINS Dn,<ea>{offset:width}
BFSET 1s @ bit field of Destination BFSET <ea>{offset:width}
BFTST bit field of Destination BFTST <ea>{offset:width}
BKPT Run breakpoint acknowledge cycle; BKPT #<data>
TRAP as illegal instruction
BRA PC+dp g PC BRA <label>
BSET ~(bit number of Destination) @ Z; BSET Dn,<ea>
1 @ bit number of Destination BSET #<data>,<ea>
BSR SP -4 g SP; PCg (SP); PC + dng PC BSR <label>

1-14

M68040 USER’S MANUAL

MOTOROLA



Table 1-4. Instruction Set Summary (Continued)

Opcode Operation Syntax
BTST —(bit number of Destination) g Z; BTST Dn,<ea>
BTST #<data>,<ea>
CAS CAS Destination — Compare Operand @ cc; CAS Dc,Du,<ea>
if Z, Update Operand g Destination
else Destination g Compare Operand
CAS2 CAS2 Destination 1 — Compare 1 g cc; CAS2 Dc1-Dc2,Dul-Du2,(Rn1)—(Rn2)
if Z, Destination 2 — Compare @ cc;
if Z, Update 1 g Destination 1;
Update 2 g Destination 2
else Destination 1 g Compare 1;
Destination 2 g Compare 2
CHK If Dn < 0 or Dn > Source CHK <ea>,Dn
then TRAP
CHK2 IfRn<LBorlf Rn>UB CHK2 <ea>,Rn
then TRAP
CINV If supervisor state CINVL <caches>, (An)
then invalidate selected cache lines CINVP <caches>, (An)
else TRAP CINVA <caches>
CLR 0 @ Destination CLR <ea>
CMP Destination — Source @ cc CMP <ea>,Dn
CMPA Destination — Source CMPA <ea>,An
CMPI Destination — Immediate Data CMPI #<data>,<ea>
CMPM Destination — Source g cc CMPM (Ay)+,(AX)+
CMP2 Compare Rn < LB or Rn > UB CMP2 <ea>,Rn
and Set Condition Codes
CPUSH If supervisor state CPUSHL <caches>, (An)
then if data cache push selected dirty data CPUSHP <caches>, (An)
cache lines; invalidate selected cache lines CPUSHA <caches>
else TRAP
DBcc If condition false DBcc Dn,<label>
then (Dn—1 g Dn;
If Dn# -1
then PC + dp, 9 PC)
DIVS, DIVSL Destination + Source g Destination DIVS.W <ea>,Dn 32+ 16 g 16r:16q
DIVS.L <ea>,Dq 32+32@32q
DIVS.L <ea>,Dr:Dq 64 + 32 ¢ 32r:32q
DIVSL.L <ea>,Dr:Dg 32+ 32@32r:32q
DIVU, DIVUL Destination = Source @ Destination DIVU.W <ea>,Dn 32+ 16 g 16r:16q
DIVU.L <ea>,Dq 32+32@32q
DIVU.L <ea>,Dr:Dq 64 + 32 g32r:32q
DIVUL.L <ea>,Dr:Dq 32+ 32 @32r:32q
EOR Source O Destination g Destination EOR Dn,<ea>
EORI Immediate Data [0 Destination g Destination EORI #<data>,<ea>
EORI to CCR Source 0 CCR gCCR EORI #<data>,CCR
EORI to SR If supervisor state EORI #<data>,SR
then Source 0 SR g SR
else TRAP
MOTOROLA M68040 USER’S MANUAL 1-15



Table 1-4. Instruction Set Summary (Continued)

Opcode Operation Syntax
EXG Rxt @Ry EXG Dx,Dy
EXG Ax,Ay
EXG Dx,Ay
EXG Ay,Dx
EXT Destination Sign — Extended g Destination EXT.W Dn extend byte to word
EXTB EXT.LLDn extend word to long word
EXTB.L Dn extend byte to long word
FABS2 Absolute Value of Source g FPn FABS.<fmt> <ea>,FPn
FABS.X FPm,FPn
FABS.X FPn
FrABS.<fmt> <ea>,FPn3
FrABS.X FPm,FPn3
FrABS.X FPn3
FADD?Z Source + FPn g FPn FADD.<fmt> <ea>,FPn
FADD.X FPm,FPn
FrADD.<fmt> <ea>,FPn3
FrADD.X FPm,FPn3
FBcc? If condition true FBcc.SIZE <label>
then PC +dp g PC
FCMP2 EPn — Source FCMP.<fmt> <ea>,FPn
FCMP.X FPm,FPn
FDBcc2 If condition true FDBcc Dn,<label>
then no operation
else Dn—1@Dn
ifDn#-1
then PC +dp @ PC
else execute next instruction
FDIV2 FPn + Source g FPn FDIV.<fmt> <ea>,FPn
FDIV.X FPm,FPn
FrDIV.<fmt> <ea>,FPn3
FrDIV.X FPm,FPn3
FMOVE 2 Source g Destination FMOVE.<fmt> <ea>,FPn
FMOVE.<fmt> FPM,<ea>
FMOVE.P FPm,<ea>{Dn}
FMOVE.P FPm,<ea>{#k}
FrMOVE.<fmt> <ea>,FPn3
FMOVE 2 Source g Destination FMOVE.L <ea>,FPcr
FMOVE.L FPcr,<ea>
FMOVEMZ2 Register List g Destination FMOVEM.X <Iist>,<ea>4
Source g Register List FMOVEM.X Dn,<ea>
FMOVEM.X <ea> <list>%
FMOVEM.X <ea>,Dn
FMOVEM?2 Register List g Destination FMOVEM.L <list>,<ea>°
Source g Register List FMOVEM.L <ea>,<|is’[>5
FMUL2 Source x FPn g FPn FMUL.<fmt> <ea>,FPn
FMUL.X FPm,FPn
FrMUL<fmt> <ea>,FPn3
FrMUL.X FPm,FPn3

1-16

M68040 USER’S MANUAL

MOTOROLA



Table 1-4. Instruction Set Summary (Continued)

Opcode Operation Syntax
FNEG?2 —(Source) g FPn FNEG.<fmt> <ea>,FPn
FNEG.X FPm,FPn
FNEG.X FPn
FINEG.<fmt> <ea>,FPn3
FNEG.X FPm,FPn3
FINEG.X FPn3
FNOP2 None FNOP
FRESTOREZ | Ifin supervisor state FRESTORE <ea>
then FPU State Frame @ Internal State
else TRAP
FSAVE 2 If in supervisor state FSAVE <ea>
then FPU Internal State g State Frame
else TRAP
FScc? If condition true FScc.SIZE <ea>
then 1s g Destination
else 0s g Destination
FSGLDIV FPn <+ Source g FPn FSGLDIV.<fmt> <ea>,FPn
FSGLDIV.X FPm,FPn
FSGLMUL Source x FPn g FPn FSGMUL.<fmt> <ea>,FPn
FSGLMUL.X FPm, FPn
FSQRT2 Square Root of Source g FPn FSQRT.<fmt> <ea>,FPn
FSQRT.X FPm,FPn
FSQRT.X FPn
FrSQRT.<fmt> <ea>,FPn3
FrSQRT FPm,FPn3
FrSQRT FPn3
FSuUB2 FPn — Source g FPn FSUB.<fmt> <ea>,FPn
FSUB.X FPm,FPn
FrsSuB.<fmt> <ea>,FPn3
FrSUB.X FPm,FPn3
FTRAPcc? If condition true FTRAPcc
then TRAP FTRAPcc.W #<data>
FTRAPcc.L #<data>
FTST2 Condition Codes for Operand g FPCC FTST.<fmt> <ea>
FTST.X FPm
ILLEGAL SSP — 2 g SSP; Vector Offseta (SSP); ILLEGAL
SSP -4 g SSP; PC g (SSP);
SSp -2 @ SSP; SR g (SSP);
lllegal Instruction Vector Address g PC
JMP Destination Address @ PC JMP <ea>
JSR SP -4 g SP; PCg (SP) JSR <ea>
Destination Address g PC
LEA <ea> g An LEA <ea>,An
LINK SP — 4 g SP; An g(SP) LINK An,dp

SP g An, SP+d gSP

MOTOROLA

M68040 USER’S MANUAL

1-17



Table 1-4. Instruction Set Summary (Continued)

Opcode Operation Syntax
LPSTOPS If supervisor state LPSTOP #<data>
immediate data g SR
SR g broadcast cycle
STOP
else TRAP
LSL, LSR Destination Shifted by count g Destination LSd Dx,Dy1
LSd #<data>,Dy1
LSd <ea>l
MOVE Source g Destination MOVE <ea>,<ea>
MOVEA Source g Destination MOVEA <ea>,An
MOVE CCR g Destination MOVE CCR <ea>
from CCR
MOVE to CCR | Source g CCR MOVE <ea>,CCR

MOVE from SR

If supervisor state
then SR g Destination

MOVE SR,<ea>

else TRAP
MOVE to SR If supervisor state MOVE <ea>,SR
then Source g SR
else TRAP
MOVE USP If supervisor state MOVE USP,An
then USP g An or An g USP MOVE An,USP
else TRAP
MOVE16 Source block g Destination block MOVE16 (Ax)+, (Ay)+7
MOVEL16 (xxx).L, (An)
MOVE16 (An), (xxx).L
MOVE16 (An)+, (xxx).L
MOVEC If supervisor state MOVEC Rc,Rn
then Rc @ Rn or Rn gRc MOVEC Rn,Rc
else TRAP
MOVEM Registers g Destination MOVEM <list>,<ea>%
Source g Registers MOVEM <ea> <list>4
MOVEP Source g Destination MOVEP Dx,(dn,Ay)
MOVEP (dp,Ay),Dx
MOVEQ Immediate Data g Destination MOVEQ #<data>,Dn
MOVES If supervisor state MOVES Rn,<ea>
then Rn g Destination [DFC] or MOVES <ea>,Rn
Source [SFC] g Rn
else TRAP
MULS Source x Destination g Destination MULS.W <ea>,Dn 16 x 16 32
MULS.L <ea>,DI 32 x32@32
MULS.L <ea>,Dh-DI 32 x32 g64
MULU Source x Destination g Destination MULU.W <ea>,Dn 16 x16 232
MULU.L <ea>,DI 32 x32@32
MULU.L <ea>,Dh-DI 32 x32 @64
NBCD 0 — (Destination1g) — X @ Destination NBCD <ea>
NEG 0 — (Destination) g Destination NEG <ea>
NEGX 0 — (Destination) — X g Destination NEGX <ea>

1-18

M68040 USER’S MANUAL

MOTOROLA



Table 1-4. Instruction Set Summary (Continued)

Opcode Operation Syntax
NOP None NOP
NOT ~ Destination g Destination NOT <ea>
OR Source V Destination g Destination OR <ea>,Dn
OR Dn,<ea>
ORI Immediate Data V Destination g Destination ORI #<data>,<ea>
ORI to CCR Source V CCR g CCR ORI #<data>,CCR
ORI to SR If supervisor state ORI #<data>,SR
then Source V SR g SR
else TRAP
PACK Source (Unpacked BCD) + adjustment g PACK —(Ax),—(Ay),#(adjustment)
Destination (Packed BCD) PACK Dx,Dy,#(adjustment)
PEA SP -4 g SP; <ea>g (SP) PEA <ea>
PFLUSHS If supervisor state PFLUSH (An)
then invalidate instruction and data ATC entries | PFLUSHN (An)
for destination address PFLUSHA
else TRAP PFLUSHAN
PTEST8 If supervisor state PTESTR (An)
then logical address status g MMUSR; PTESTW (An)
entry g ATC
else TRAP
RESET If supervisor state RESET
then Assert RSTO Line
else TRAP
ROL, ROR Destination Rotated by count g Destination ROd Rx,Dyt
ROd #<data> Dyl
ROXL, ROXR | Destination Rotated with X by count g Destination | ROXd Dx,Dyl
ROXd #<data>,Dy?!
ROXd <ea>1
RTD (SP)@PC; SP +4 +d, 8 SP RTD #(dp)
RTE If supervisor state RTE
then (SP) g SR; SP + 2@ SP; (SP) gPC;
SP + 4 g SP; restore state and deallocate
stack according to (SP)
else TRAP
RTR (SP) g CCR; SP + 2 g SP; RTR
(SP)@PC; SP + 4 g SP
RTS (SP)@PC; SP + 4 g SP RTS
SBCD Destination10 — Source 10 — X @ Destination SBCD Dx,Dy
SBCD —(Ax),—(Ay)
Sce If condition true Scc <ea>
then 1s @ Destination
else Os g Destination
STOP If supervisor state STOP #<data>
then Immediate Data @ SR; STOP
else TRAP
sSuB Destination — Source g Destination SUB <ea>,Dn
SUB Dn,<ea>

MOTOROLA

M68040 USER’S MANUAL

1-19



Table 1-4. Instruction Set Summary (Concluded)

Opcode Operation Syntax
SUBA Destination — Source g Destination SUBA <ea>,An
SuUBI Destination — Immediate Data @ Destination SUBI #<data>,<ea>
SUBQ Destination — Immediate Data g Destination SUBQ #<data>,<ea>
SUBX Destination — Source — X g Destination SUBX Dx,Dy
SUBX —(Ax),—(Ay)
SWAP Register 31-16 ~ @ Register 15-0 SWAP Dn
TAS Destination Tested g Condition Codes; TAS <ea>
1 g bit 7 of Destination
TRAP SSP — 2 g SSP; Format + Offset g (SSP); TRAP #<vector>
SSP —4 g SSP; PC g (SSP); SSP — 2 gSSP;
SR @ (SSP); Vector Address g PC
TRAPcc If cc TRAPcc
then TRAP TRAPcc.W #<data>
TRAPcc.L #<data>
TRAPV If vV TRAPV
then TRAP
TST Destination Tested g Condition Codes TST <ea>
UNLK An g SP; (SP) gAn; SP + 4 g SP UNLK An
UNPK Source (Packed BCD) + adjustment g Destination | UNPACK —(Ax),—(Ay),#(adjustment)
(Unpacked BCD) UNPACK Dx,Dy,#(adjustment)
NOTES:
1. Where d is direction, left or right.
2. Available only on the MC68040.
3. Where ris rounding precision, single or double precision.
4, List refers to register.
5. List refers to control registers only.
6. Auvailable only on the MC68040V and MC68EC040V.
7. MOVEL16 (ax)+,(ay)+ is functionally the same as MOVEL16 (ax),(ay)+ when ax = ay. The address register is only
incremented once, and the line is copied over itself rather than to the next line.
8. Not available for the MC68EC040 or MC68EC040V.

1-20

M68040 USER’S MANUAL

MOTOROLA



SECTION 2
INTEGER UNIT

This section describes the organization of the M68040 integer unit (IU) and presents a
brief description of the associated registers. Refer to Section 3 Memory Management
Unit (Except MC68EC040 and MCG68EC040V) for details concerning the memory
management unit (MMU) programming model, and to Section 9 Floating-Point Unit
(MC68040 Only) for details concerning the floating-point unit (FPU) programming model.

2.1 INTEGER UNIT PIPELINE

The IU carries out logical and arithmetic operations using six separate subunits. Each unit
is dedicated to a different stage of the IU pipeline, handling a total of six separate
instructions simultaneously. Pipelining is a technique that overlaps the processing of
different parts of several instructions. Pipelining simulates an assembly line with the U
containing a number of instructions in different phases of processing. The IU pipeline
consists of six stages:

1. Instruction Fetch—Fetching an instruction from memory.
2. Decode—Converting an instruction into micro-instructions.

3. <ea> Calculate—If the instruction calls for data from memory, the location of the
data, its memory address is calculated.

4. <ea> Fetch—Data is fetched from memory.
5. Execute—The data is manipulated during execution.

6. Write-Back—The result of the computation is written back to on-chip caches or
external memory.

The pipeline contains special shadow registers that can begin processing future
instructions for conditional branches while the main pipeline is processing current
instructions. The <ea> calculate stage eliminates pipeline blockage for instructions with
postincrement, postdecrement, or immediate add and load to address register for updates
that occur in the <ea> calculate stage. The write-back stage can write data over the
system bus to store a result in external memory or directly to on-chip caches. These write-
backs to memory can be deferred until the most opportune moment because of the
M68040 bus interface. Figure 2-1 illustrates the IU pipeline.

MOTOROLA M68040 USER’S MANUAL 2-1



INSTRUCTION DATA
FROM CACHE OR BUS
CONTROLLER

.

INSTRUCTION
FETCH

SHADOW

ToFPU <«—{{  DECODE

Y

<ea> CALCULATE

Y

<ea> FETCH TO CACHE OR
BUS CONTROLLER

EXECUTE

Y

WRITE-BACK

SHADOW —

> TO CACHE OR
BUS CONTROLLER

Figure 2-1. Integer Unit Pipeline

An instruction stream is fetched from the instruction memory unit and decoded on an
instruction-by-instruction basis in the decode stage. Multiple instructions are fetched to
keep the pipeline stages full so that the pipeline will not stall.

The decoded instruction is then passed to the <ea> calculate stage to calculate the
effective addresses that the instruction requires. The <ea> calculate stage initiates
additional fetches from the instruction stream to obtain the effective address extension
words and performs the effective address calculation. The initial execution of the
instruction in the execute stage handles any data registers required for the calculation,
which passes the register back to the <ea> calculate stage.

The resulting effective address is passed to the <ea> fetch stage, which initiates an
operand fetch from the data memory controller if the effective address is for a source
operand. The fetched operand is returned to the execute stage, which completes
execution of the instruction and writes any result to either a data register, memory, or back
to the <ea> calculate stage for storage in an address register. For a memory destination,
the <ea> fetch stage passes the address to the execution stage.

The previously described sequence of effective address calculation and fetch can occur
multiple times for an instruction, depending on the source and/or destination addressing
modes. For memory indirect addressing modes, the <ea> calculate stage initiates an
operand fetch from the intermediate indirect memory address, then calculates the final

2-2 M68040 USER’S MANUAL MOTOROLA



effective address. Also, some instructions access multiple memory operands and initiate
fetches for each operand.

The instruction finishes execution in the execute stage. Instructions with write-back
operands to memory generate pending write accesses that are passed to the write-back
stage. The write occurs to the data memory unit if it is not busy. If the following instruction,
which is in the <ea> fetch stage, requires an operand fetch, the write-back stalls in the
write-back stage since it is at a lower priority. The write-back can stall indefinitely until
either the data memory unit is free or another write is pending from the execution stage.

Figure 2-2 illustrates a write cycle, which begins in the IU pipeline. The IU stores the
logical address and data for a write operation in a temporary holding register (WB3). Write
operation control passes from the IU to the data memory unit once the data memory unit
is idle. When the data memory unit receives the logical address and data from the IU, it
stores the logical address and data to a second temporary holding register (WB2). The
data memory unit then translates the logical address into a physical address. If the
address translation is successful, the data memory unit either stores an address
translation in the data cache (write hit) or passes it to the bus controller (write-through with
write miss). Once the bus controller is ready to execute the external write operation, it
multiplexes the data to the correct data byte lanes and stores the multiplexed data and
physical address into a third holding register (WB1). WB1 is used in the actual write
operation seen on the address and data buses. Appendix B MC68EC040 contains details
on address translation in the MC68ECO040.

BUS
INS'I';I;_LI_JSLION CONTROLLER
INSTRUCTION MEMORY UNIT il B ><:>
DECODE ! ADDRESS
! BUS
wn 1
<> || @ '
CALCULATE S | WEL
1 =) 1 V
12 A
e 2 DATA MEMORY UNIT | 'f e
O I
\ § DATA | _PHYSICALADDRESS _ 13, 3]
EXECUTE L P ATC : DATA MUX
DATA MMUI/ | <:>
CACHE/SNOOP '
WRITE- . BUS
BACK (WB3) CONTROLLER ! CONTROL
I PUSH | | SIGNALS
! BUFFER
INTEGER UNIT \ |
| DATA CACHE <

Figure 2-2. Write-Back Cycle Block Diagram

MOTOROLA M68040 USER’S MANUAL 2-3



2.2 INTEGER UNIT REGISTER DESCRIPTION

The following paragraphs describe the IU registers in the user and supervisor
programming models. Refer to Section 3 Memory Management Unit (Except
MC68EC040 and MCG68ECO040V) for details on the MMU programming model and
Section 9 Floating-Point Unit (MC68040 Only) for details on the FPU programming
model.

2.2.1 Integer Unit User Programming Model

Figure 2-3 illustrates the IU portion of the user programming model. The model is the
same as for previous M68000 family microprocessors, consisting of the following
registers:

* 16 General-Purpose 32-Bit Registers (D7-D0, A7—A0)
» 32-Bit Program Counter (PC)
« 8-Bit Condition Code Register (CCR)

2.2.1.1 DATA REGISTERS (D7-D0). These registers are used as data registers for bit
and bit field (1 to 32 bits), byte (8 bit), word (16 bit), long-word (32 bit), and quad-word (64
bit) operations. These registers may also be used as index registers.

2.2.1.2 ADDRESS REGISTERS (A6-A0). These registers can be used as software stack
pointers, index registers, or base address registers. The address registers may be used
for word and long-word operations.

31 15 0

D0 |
D1
D2
D3 | DATA
D4 REGISTERS
D5
D6
D7
31 15 0 _
A0
AL
A2 | ADDRESS
A3 REGISTERS
A4
A5
A6
3 15 0 —  USER
| | ?JSP) — STACK
— POINTER
* 0 "1 PROGRAM
| | PC |7 counTer
15 7 0 = CONDITION
r I Jecer [ cooe

— REGISTER

Figure 2-3. Integer Unit User Programming Model

2-4 M68040 USER’S MANUAL MOTOROLA



2.2.1.3 SYSTEM STACK POINTER (A7). A7 is used as a hardware stack pointer during
stacking for subroutine calls and exception handling. The register designation A7 refers to
three different uses of the register: the user stack pointer (USP) (A7) in the user
programming model and either the interrupt stack pointer (ISP) or master stack pointer
(MSP) (A7 or A7", respectively) in the supervisor programming model. When the S-bit in
the status register (SR) is clear, the USP is the active stack pointer. Explicit references to
the system stack pointer (SSP) refer to the USP while the processor is operating in the
user mode.

A subroutine call saves the program counter (PC) on the active system stack, and the
return restores it from the active system stack. Both the PC and the SR are saved on the
supervisor stack (either ISP or MSP) during the processing of exceptions and interrupts.
Thus, the execution of supervisor level code is independent of user code and condition of
the user stack. Conversely, user programs use the USP independently of supervisor stack
requirements.

2.2.1.4 PROGRAM COUNTER. The PC contains the address of the currently executing
instruction. During instruction execution and exception processing, the processor
automatically increments the contents of the PC or places a new value in the PC, as
appropriate. For some addressing modes, the PC can be used as a pointer for PC-relative
addressing.

2.2.1.5 CONDITION CODE REGISTER. The CCR consists of five bits of the SR least
significant byte. The first four bits represent a condition of the result generated by a
processor operation. The fifth bit, the extend bit (X-bit), is an operand for multiprecision
computations. The carry bit (C-bit) and the X-bit are separate in the M68000 family to
simplify programming techniques that use them.

2.2.2 Integer Unit Supervisor Programming Model

Only system programmers use the supervisor programming model (see Figure 2-4) to
implement sensitive operating system functions, 1/0 control, and MMU subsystems. All
accesses that affect the control features of the M68040 are in the supervisor programming
model. Thus, all application software is written to run in the user mode and migrates to the
M68040 from any M68000 platform without modification.

MOTOROLA M68040 USER’S MANUAL 2-5



31 15 0
| | | A7'0SP) | INTERRUPT STACK POINTER

3l 15 0

| [ | A7"(MSP) | MASTER STACK POINTER
15 7 0
| [ (ccR) | sR | sTaTUS REGISTER

3L 0

| VBR } VECTOR BASE REGISTER

31 2.0
. SFC ALTERNATE SOURCE AND DESTINATION
C DFC FUNCTION CODE REGISTERS

| CAcR | CACHE CONTROL REGISTER

Figure 2-4. Integer Unit Supervisor Programming Model

The supervisor programming model consists of the registers available to the user as well
as the following control registers:

» Two 32-Bit Supervisor Stack Pointers (ISP, MSP)
» 16-Bit Status Register (SR)
« 32-Bit Vector Base Register (VBR)

« Two 32-Bit Alternate Function Code Registers: Source Function Code (SFC) and
Destination Function Code (DFC)

» 32-Bit Cache Control Register (CACR)

The following paragraphs describe the supervisor programming model registers.
Additional information on the ISP, MSP, SR, and VBR registers can be found in Section 8
Exception Processing.

2.2.2.1 INTERRUPT AND MASTER STACK POINTERS. In a multitasking operating
system, it is more efficient to have a supervisor stack pointer associated with each user
task and a separate stack pointer for interrupt-associated tasks. The M68040 provides two
supervisor stack pointers, master and interrupt. Explicit references to the SSP refer to
either the MSP or ISP while the processor is operating in the supervisor mode. All
instructions that use the SSP implicitly reference the active stack pointer. The ISP and
MSP are general-purpose registers and can be used as software stack pointers, index
registers, or base address registers. The ISP and MSP can be used for word and long-
word operations.

The M-bit of the SR selects whether the ISP or MSP is active. SSP references access the
ISP when the M-bit is clear, putting the processor into the interrupt mode. If an exception
being processed is an interrupt and the M-bit is set, the M-bit is cleared, putting the
processor into the interrupt mode. The interrupt mode is the default condition after reset,
and all SSP references access the ISP. The ISP can be used for interrupt control
information and for workspace area as interrupt exception handling requires.

SSP references access the MSP when the M-bit is set. The operating system uses the
MSP for each task pointing to a task-related area of supervisor data space. This

2-6 M68040 USER’S MANUAL MOTOROLA



procedure separates task-related supervisor activity from asynchronous, 1/O-related
supervisor tasks that can only be coincidental to the currently executing task. The MSP
can separately maintain task control information for each currently executing user task,
and the software updates the MSP when a task switch is performed, providing an efficient
means for transferring task-related stack items. The value of the M-bit does not affect
execution of privileged instructions. Instructions that affect the M-bit are MOVE to SR,
ANDI to SR, EORI to SR, ORI to SR, and RTE. The processor automatically saves the M-
bit value and clears it in the SR as part of the exception processing for interrupts.

2.2.2.2 STATUS REGISTER. The SR (see Figure 2-5) stores the processor status. In the
supervisor mode, software can access the full SR, including the CCR available in user
mode (see 2.2.1.5 Condition Code Register) and the interrupt priority mask and
additional control bits available only in the supervisor mode. These bits indicate the
following states for the processor: one of two trace modes (T1, TO), supervisor or user
mode (S), and master or interrupt mode (M).

The term SSP refers to the ISP and MSP. The M and S bits of the SR decide which SSP
to use. When the S-bit is one and the M-bit is zero, the ISP is the active stack pointer;
when the S-bit is one and the M-bit is one, the MSP is the active stack pointer. The ISP is
the default mode after reset and corresponds to the MC68000, MC68008, MC68010, and
CPU32 supervisor mode.

USER BYTE
SYSTEM BYTE (CONDITION CODE REGISTER)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[mw s [w]ole]afulo] o] o] [ n]z]v]c]

TRACE INTERRUPT CARRY
ENABLE PRIORITY MASK
OVERFLOW
SUPERVISOR/USER STATE ———————— ZERO
NEGATIVE
MASTER/INTERRUPT STATE EXTEND

Figure 2-5. Status Register

2.2.2.3 VECTOR BASE REGISTER. The VBR contains the base address of the exception
vector table in memory. The displacement of an exception vector is added to the value in
this register to access the vector table. Refer to Section 8 Exception Processing for
information on exception vectors.

2.2.2.4 ALTERNATE FUNCTION CODE REGISTERS. The alternate function code
registers contain 3-bit function codes. Function codes can be considered extensions of the
32-bit logical address that optionally provides as many as eight 4-Gbyte address spaces.
The processor automatically generates function codes to select address spaces for data
and programs at the user and supervisor modes. Certain instructions use the SFC and
DFC registers to specify the function codes for operations.

MOTOROLA M68040 USER’S MANUAL 2-7



2.2.2.5 CACHE CONTROL REGISTER. The CACR contains two enable bits that allow
the instruction and data caches to be independently enabled or disabled. Setting an
enable bit enables the associated cache without affecting the state of any lines within the
cache. A hardware reset clears the CACR, disabling both caches.

2-8 M68040 USER’S MANUAL MOTOROLA



SECTION 3
MEMORY MANAGEMENT UNIT
(EXCEPT MC68EC040 AND MC68EC040V)

NOTE

This section does not apply to the MC68EC040 and
MCG68ECO040V. Refer to Appendix B MC68EC040 for details.
All references to M68040 in this section only, refer to the
MC68040, MC68040V, and MC68LC040.

The M68040 supports a demand-paged virtual memory environment. Demand means that
programs request memory accesses through logical addresses, and paged means that
memory is divided into blocks of equal size, called page frames. Each page frame is
divided into pages of the same size. The operating system assigns pages to page frames
as they are required to meet the needs of the program.

The M68040 memory management includes the following features:

Independent Instruction and Data Memory Management Units (MMUS)
32-Bit Logical Address Translation to 32-Bit Physical Address

User-Defined 2-Bit Physical Address Extension

Addresses Translated in Parallel with Indexing into Data or Instruction Cache

64-Entry Four-Way Set-Associative Address Translation Cache (ATC) for Each MMU
(128 Total Entries)

Global Bit Allowing Flushes of All Nonglobal Entries from ATCs
Selectable 4K or 8K Page Size
Separate Supervisor and User Translation tables

Two Independent Blocks for Each MMU Can Be Defined as Transparent
(Untranslated)

Three-Level Translation Tables with Optional Indirection

Supervisor and Write Protections

History Bits Automatically Maintained in Descriptors

External Translation Disable Input Signal (MDI S) for Emulator Support
Caching Mode Selected on Page Basis

The MMUs completely overlap address translation time with other processing activities
when the translation is resident in one of the ATCs. ATC accesses operate in parallel with

MOTOROLA M68040 USER'S MANUAL 31



indexing into the on-chip instruction and data caches. The MMU MDI S signal dynamically
disables address translation for emulation and diagnostic support.

Figure 3-1 illustrates the MMUs contained in the two memory units, one for instructions
(supporting instruction prefetches) and one for data (supporting all other accesses). Each
unit contains an MMU, main cache, and snoop controller. The corresponding MMUs
contain two transparent translation registers, which identify blocks of memory that can be
accessed without translation. The MMUs also contain control logic and corresponding
address translation caches (ATCs) in which recently used logical-to-physical address
translations are stored. The data memory unit contains a data write and data read buffer,
and the instruction memory unit contains an instruction line read buffer. These buffers
temporarily hold data until an opportune moment arises to write the data to external
memory or read the operand/instruction into the integer unit.

INSTRUCTION DATA BUS
INSTRUCTION :> INSTRUCTION
ATC CACHE
NS {? {\r INSTRUCTION
ADDRESS
NS e > IMUChCHERNa0R CE—
FETCH V] —
CONVERT CONTROLLER
¢ INSTRUCTION MEMORY UNIT B ——>
N e u | ApbpRrEss
s BUS
EA
CALCULATE C
EXECUTE ’c\l>
e T DATA
FETCH 1 T
LN 6]
(M | EXECUTE X
WRITE- DATA MEMORY UNIT DATA E
BACK DATA ADDRESS < : >
. | ADDRESS | |
"Bck > mmuicachEisnoop K- R BUS
CONTROLLER CONTROL
SIGNALS
FLOATING- {} {}
POINT INTEGER
UNIT UNIT DATA N DATA
T ATC —V CACHE
)
OPERAND DATA BUS

Figure 3-1. Memory Management Unit

The principal MMU function is to translate logical addresses to physical addresses using
translation tables stored in memory. As the MMU receives a logical address from the
integer unit, it searches its ATC for the corresponding physical address using the upper

32 M68040 USER'S MANUAL MOTOROLA



logical address bits. If the translation is resident, the MMU provides the physical address
to the cache controller, which determines if the instruction or data being accessed is
cached. The cache controller uses the lower address bits to index into memory. An
external bus cycle is performed only when explicitly requested by the cache controller.
When the translation is not in the ATC, the MMU searches the translation tables in
memory for the translation information. Microcode and dedicated logic perform the
address calculations and bus cycles required for this search.

3.1 MEMORY MANAGEMENT PROGRAMMING MODEL

The memory management programming model is part of the supervisor programming
model for the M68040. The eight registers that control and provide status information for
address translation in the M68040 are: the user root pointer register (URP), the supervisor
root pointer register (SRP), the translation control register (TCR), four independent
transparent translation registers (ITTO, ITT1, DTTO, and DTT1), and the MMU status
register (MMUSR). Only programs that execute in the supervisor mode can directly
access these registers. Figure 3-2 illustrates the memory management programming
model.

31 0
| | URP } USER ROOT POINTER REGISTER

31 0
| | SRP } SUPERVISOR ROOT POINTER REGISTER

15

0
| TCR } TRANSLATION CONTROL REGISTER

3L 0
| | DTTRO |- DATA TRANSPARENT TRANSLATION REGISTER 0
31 0
| | DTTRL |- DATA TRANSPARENT TRANSLATION REGISTER 1
| il °| ITTRO INSTRUCTION TRANSPARENT TRANSLATION
REGISTER 0
31 0
| | TR INSTRUCTION TRANSPARENT TRANSLATION
REGISTER 1

31 0
| | MMUSR |- MMU STATUS REGISTER

Figure 3-2. Memory Management Programming Model

3.1.1 User and Supervisor Root Pointer Registers

The SRP and URP registers each contain the physical address of the translation table’s
root, which the MMU uses for supervisor and user accesses, respectively. The URP points
to the translation table for the current user task. When a new task begins execution, the
operating system typically writes a new root pointer to the URP. A new translation table
address implies that the contents of the ATCs may no longer be valid. A PFLUSH
instruction should be executed to flush the ATCs before loading a new root pointer value,
if necessary. Figure 3-3 illustrates the format of the 32-bit URP and SRP registers. Bits 8—

MOTOROLA M68040 USER'S MANUAL 3-3



0 of an address loaded into the URP or the SRP must be zero. Transfers of data to and
from these 32-bit registers are long-word transfers.

3l

9 8 0
| USER ROOT POINTER |0|0|0|0|0|0|0|0|0|

| SUPERVISOR ROOT POINTER | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Figure 3-3. URP and SRP Register Formats

3.1.2 Translation Control Register

The 16-bit TCR contains two control bits to enable paged address translation and to select
page size. The operating system must flush the ATCs before enabling address translation
since the TCR accesses and reset do not flush the ATCs. All unimplemented bits of this
register are read as zeros and must always be written as zeros. The M68040 always uses
word transfers to access this 16-bit register. The fields of the TCRs are defined following
Figure 3-4, which illustrates the TCR.

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LelefofofofoJofofoJofofojofofojol]
NOTE: Bits 13-0 are undefined (reserved).

Figure 3-4. Translation Control Register Format

E—Enable

This bit enables and disables paged address translation.

0 = Disable

1 = Enable
A reset operation clears this bit. When translation is disabled, logical addresses are
used as physical addresses. The MMU instruction, PFLUSH, can be executed
successfully despite the state of the E-bit. PTEST results are undefined if the MMU is
disabled and no table search occurs. If translation is disabled and an access does not
match a transparent translation register (TTR), the access has the following default
attributes on the TTR: the caching mode is cachable/write-through, write protection is
disabled, and the user attribute signals (UPAL1 and UPAOQ) are zero.

P—Page Size
This bit selects the memory page size.
0 = 4 Kbytes
1 = 8 Kbytes
A reset operation does not affect this bit. The bit must be initialized after a reset.

34 M68040 USER'S MANUAL MOTOROLA



3.1.3 Transparent Translation Registers

The data transparent translation registers (DTTRO and DTTR1) and instruction
transparent translation registers (ITTRO and ITTR1) are 32-bit registers that define blocks
of logical address space. The TTRs operate independently of the E-bit in the TCR and the
state of the MDI S signal. Data transfers to and from these registers are long-word
transfers. The TTR fields are defined following Figure 3-5, which illustrates TTR format.
Bits 12-10, 7, 4, 3, 1, and 0 always read as zero.

31 24 23 % 15 14 13 12 11 100 9 8 7 6 5 4 3 2 1 0

| LOGICAL ADDRESS BASE | LOGICAL ADDRESS MASK | E | S-FIELD | 0 | 0 | 0 | U1|UO| 0 | CM | 0 | 0 | W| 0 | 0 |

Figure 3-5. Transparent Translation Register Format

Logical Address Base

This 8-bit field is compared with address bits A31-A24. Addresses that match in this
comparison (and are otherwise eligible) are transparently translated.

Logical Address Mask

Since this 8-bit field contains a mask for the Logical Address Mask field, setting a bit in
this field causes the corresponding bit in the Logical Address Base field to be ignored.
Blocks of memory larger than 16 Mbytes can be transparently translated by setting
some of the logical address mask bits to ones. The low-order bits of this field can be set
to define contiguous blocks larger than 16 Mbytes.

E—Enable
This bit enables or disables transparent translation of the block defined by this register:

0 = Transparent translation disabled
1 = Transparent translation enabled

S—Supervisor Mode
This field specifies the way FC2 is used in matching an address:

00 = Match only if FC2 = 0 (user mode access)
01 = Match only if FC2 = 1 (supervisor mode access)
1X = Ignore FC2 when matching

U0, Ul—User Page Attributes

The user defines these bits, and the M68040 does not interpret them. U0 and U1l are
echoed to the UPAO and UPAL1 signals, respectively, if an external bus transfer results
from an access. These bits can be programmed by the user to support external
addressing, bus snooping, or other applications.

MOTOROLA M68040 USER'S MANUAL 35



CM—Cache Mode
This field selects the cache mode and access serialization as follows:

00 = Cachable, Write-through
01 = Cachable, Copyback

10 = Noncachable, Serialized
11 = Noncachable

Section 4 Instruction and Data Caches provides detailed information on caching
modes, and Section 7 Bus Operation provides information on serialization.

W—Write Protect
This bit indicates if the transparent block is write protected. If set, write and read-modify-
write accesses are aborted as if the resident bit in a table descriptor were clear.

0 = Read and write accesses permitted
1 = Write accesses not permitted

3.1.4 MMU Status Register

The MMUSR is a 32-bit register that contains the status information returned by execution
of the PTEST instruction. The PTEST instruction searches the translation tables to
determine status information about the translation of a specified logical address. Transfers
to and from the MMUSR are long-word transfers. The fields of the MMUSR are defined
following Figure 3-6, which illustrates the MMUSR.

31 2 1 100 9 8 7 6 5 4 3 2 1 0

| PHYSICAL ADDRESS |B|G|U1|U0|S| CM |M|O|W|T|R|

Figure 3-6. MMU Status Register Format

Physical Address

This 20-bit field contains the upper bits of the translated physical address. Merging
these bits with the lower bits of the logical address forms the actual physical address.
Bit 12 is undefined if a PTEST is executed with 8-Kbyte pages selected.

B—Bus Error

The B-bit is set if a transfer error is encountered during the table search for the PTEST
instruction. If the B-bit is set, all other bits are zero.

G—Global
This bit is set if the G-bit is set in the page descriptor.

Ul, UO—User Page Attributes
These bits are set if corresponding bits in the page descriptor are set.

36 M68040 USER'S MANUAL MOTOROLA



S—Supervisor Protection

This bit is set if the S-bit in the page descriptor is set. Setting this bit does not indicate
that a violation has occurred.

CM—Cache Mode
This 2-bit field is copied from the CM bits in the page descriptor.

M—Modified
This bit is set if the M-bit is set in the page descriptor associated with the address.

W—Write Protect

This bit is set if the W-bit is set in any of the descriptors encountered during the table
search. Setting this bit does not indicate that a violation has occurred.

T—Transparent Translation Register Hit

If the T-bit is set, then the PTEST address matches an instruction or data TTR, the R-bit
is set, and all other bits are zero.

R—Resident

The R-bit is set if the PTEST address matches an instruction or data TTR or if the table
search completes by obtaining a valid page descriptor.

3.2 LOGICAL ADDRESS TRANSLATION

The function of the MMUs is to translate logical addresses to physical addresses. The
MMUs perform translations according to control information in translation tables. The
operating system creates these translation tables and stores them in memory. The
processor then fetches a translation table as needed and stores it in an ATC.

3.2.1 Translation Tables

The M68040 uses the ATCs in the instruction and data memory units with translation
tables stored in memory to perform the translations from logical to physical addresses.
The operating system loads the translation tables for a program into memory. No
distinction is made in the translation of instruction accesses versus data accesses
because the instruction and data MMUs access the same translation table for a specific
privilege mode, either user or supervisor. This lack of distinction results in a merged
instruction and data address space.

Figure 3-7 illustrates the three-level tree structure of a general translation table supported
by the M68040. The root- and pointer-level tables contain the base addresses of the
tables at the next level. The page-level tables contain either the physical address for the
translation or a pointer to the memory location containing the physical address. Only a
portion of the translation table for the entire logical address space is required to be
resident in memory at any time—specifically, only the portion of the table that translates

MOTOROLA M68040 USER'S MANUAL 37



the logical addresses of the currently executing process. Portions of translation tables can
be dynamically allocated as the process requires additional memory.

[ roOTPONTER | > .

FIRST [_ ROOT
LEVEL TABLES

SECOND |[_ POINTER
LEVEL TABLES

THIRD PAGE
LEVEL TABLES

Figure 3-7. Translation Table Structure

The current privilege mode determines the use of the URP or SRP for translation of the
access. The root pointer contains the base address of the translation table’s root-level
table. The translation table consists of tables of descriptors. The table descriptors of the
root- and pointer-levels can be either resident or invalid. The page descriptors of the page-
level table can be resident, indirect, or invalid. A page descriptor defines the physical
address of a page frame in memory that corresponds to the logical address of a page. An
indirect descriptor, which contains a pointer to the actual page descriptor, can be used
when two or more logical addresses access a single page descriptor.

The table search uses logical addresses to access the translation tables. Figure 3-8
illustrates a logical address format, which is segmented into four fields: root index (RI),
pointer index (PI), page index (PGI), and page offset. The first three fields extracted from
the logical address index the base address for each table level. The seven bits of the
logical address RI field are multiplied by 4 or shifted to the left by two bits. This sum is
concatenated with the upper 23 bits of the appropriate root pointer (URP or SRP) to yield
the physical address of a root-level table descriptor. Each of the 128 root-level table
descriptors corresponds to a 32-Mbyte block of memory and points to the base of a
pointer-level table.

3-8 M68040 USER'S MANUAL MOTOROLA



31 25 24 1817 13 12 11 0

78ITS 78ITS B i R aKPAGE T TS

I I I I
ROOT INDEX FIELD POINTER INDEX FIELD ~ PAGE INDEX FIELD PAGE OFFSET
RI) (P1) (PGI)

Figure 3-8. Logical Address Format

The seven bits of a logical address PI field are multiplied by 4 (shifted to the left by two
bits) and concatenated with the fetched root-level descriptor’s upper 23 bits to produce the
physical address of the pointer-level table descriptor. Each of the 128 pointer-level table
descriptors corresponds to a 256-Kbyte block of memory.

For 8-Kbyte pages, the five bits of the PGI field are multiplied by 4 (shifted to the left by
two bits) and concatenated with the fetched pointer-level descriptor’'s upper 25 bits to
produce the physical address of the 8-Kbyte page descriptor. The upper 19 bits of the
page descriptor are the page frame’s physical address. There are 32 8-Kbyte page
descriptors in a page-level table.

Similarly, for 4-Kbyte pages, the six bits of the PGl field are multiplied by 4 (shifted to the
left by two bits) and concatenated with the fetched pointer-level descriptor’'s upper 24 bits
to produce the physical address of the 4-Kbyte page descriptor. The upper 20 bits of the
page descriptor are the page frame’s physical address. There are 64 4-Kbyte page
descriptors in a page-level table.

Write-protect status is accumulated from each level's descriptor and combined with the
status from the page descriptor to form the ATC entry status. The M68040 creates the
ATC entry from the page frame address and the associated status bits and retries the
original bus access. Refer to 3.3 Address Translation Caches for details on ATC entries.

If the descriptor from a page table is an indirect descriptor, the page descriptor pointed to
by this descriptor is fetched. Invalid descriptors can be used at any level of the tree except
the root. When a table search for a normal translation encounters an invalid descriptor, the
processor takes an access fault exception. The invalid descriptor can be used to identify
either a page or branch of the tree that has been stored on an external device and is not
resident in memory or a portion of the translation table that has not yet been defined. In
these two cases, the exception routine can either restore the page from disk or add to the
translation table. Figures 3-9 and 3-10 illustrate detailed flowcharts of table search and
descriptor fetch operations.

A table search terminates successfully when a page descriptor is encountered. The
occurrence of an invalid descriptor or a transfer error acknowledge also terminates a table
search, and the M68040 takes an exception on the retry of the cycle because of these
conditions. The exception handler should distinguish between anticipated conditions and
true error conditions. The exception handler can correct an invalid descriptor that indicates
a nonresident page or one that identifies a portion of the translation table yet to be
allocated. An access error due to a system malfunction can require the exception handler
to write an error message and terminate the task.

MOTOROLA M68040 USER'S MANUAL 39



310

'INVALID'

‘INVALID'

'INVALID'

CREATE ATC ENTRY
WITH R-BIT CLEAR

C EXIT TABLE SEARCH)

Com O

SELECT ROOT POINTER
FC2 = 0:URP, 1:SRP

OTHERWISE

ABBREVIATIONS:

PFA - PAGE FRAME ADDRESS
DF[]- DESCRIPTOR FIELD
WP - ACCUMULATED WRITE-

O

PROTECTION STATUS
ASSIGNMENT OPERATOR

(INITIALIZE ACCRUED

STATUS)

WP 0
UPDATEL] FALSE
TYPEO 'POINTER'

|

FETCH ROOT
DESCRIPTOR
T

(CHECK DESCRIPTOR TYPE)
'RESIIIDENT'
FETCH POINTER
DESCRIPTOR
T
(CHECK DESCRIPTOR TYPE)
‘RESIDENT'
TYPE[ 'PAGE'
|
FETCH PAGE
DESCRIPTOR
I
(CHECK DESCRIPTOR TYPE)

'INDIFIQECT'

TYPE 'INDIRECT'
|

FETCH INDIRECT
DESCRIPTOR

|
(CHECK DESCRIPTOR TYPE)

‘RESIDENT'

'RESIDENT'

PFA = PHYSICAL ADDRESS
FIELD OF DESCRIPTOR
|

CREATE ATC ENTRY WITH R-BIT SET
ATC TAGO FC2, LA, DF[G]
ATC ENTRYC] PFA, DF[U1,U0,S,CM,M],WP

CEXIT TABLE SEARCH )

Figure 3-9. Detailed Flowchart of Table Search Operation

M68040 USER'S MANUAL

MOTOROLA



FETCH DESCRIPTOR &
UPDATE HISTORY AND STATUS

TYPE ='PAGE' OR 'POINTER'
—

FETCH DESCRIPTOR
AT PA=TA + (INDEX*4)

(INDEX = RI,:PI, OR PGI)

IF SCHEDULED, EXECUTE
WRITE ACCESS (UD 1) FOR
PREVIOUS DESCRIPTOR

TYPE ="INDIRECT"

FETCH DESCRIPTOR AT
PA = DESCRIPTOR ADDRESS

(SEE NOTE)
l/ OTHERWISE
WITH R-BIT CLEAR
EXIT TABLE SEARCH TYPE = TYPE ="'PAGE'
'POINTER' OR'INDIRECT'
'INVALID'
INVALID OR'INDIRECT'
'RESIDENT' RESIDENT
|
( RETURN WP=WPV W WP=WPV W ( RETURN
U= o/é)\ u=1
|’ READ ACCESS WRITE ACCESS
SCHEDULE
WRITE ACCESS
ubd 1 U=0& U=1&
(SEE NOTE) WP=10RM= wWp=1 OR M=1)
WP=0&M=0
EXECUTE
RETURN LOCKED EXECUTE
RMW ACCESS WRITE ACCESS
uo1 ud 1,mMO 1

NOTE : DUE TO ACCESS PIPELINING, A POINTER

DESCRIPTOR WRITE ACCESS TO UPDATE

THE U-BIT OCCURS AFTER THE READ OF OTHERWISE

THE NEXT LEVEL DESCRIPTOR. \I
ABBREVIATIONS: NORMAL TERMINATION CREATE ATC ENTRY

WP — ACCUMULATED WRITE-
PROTECTION STATUS

V- LOGICAL "OR" OPERATOR

O - ASSIGNMENT OPERATOR

OF ALL BUS TRANSFERS WITH R-BIT CLEAR

RETURN CEXIT TABLE SEARCH)

Figure 3-10. Detailed Flowchart of Descriptor Fetch Operation

MOTOROLA

M68040 USER'S MANUAL 311



Motorola highly recommends that the translation tables be placed in cache-inhibited
memory space. Motorola also highly recommends table descriptors must not be left in
states that are incoherent to the processor. Future processors may treat these
recommendations as mandatory. The following paragraphs apply only to M68040 systems
that cannot meet these recommendations.

The processor never allocates table descriptors in the data cache when the processor
performs a table search. Only normal accesses to the translation tables cause descriptors
to be allocated in the data cache. If table descriptors are allocated in the data cache and
the cache is disabled, the processor locks up trying to access a cached descriptor during
a table search. Ensuring that the data cache is invalidated before enabling the MMU or
disabling the data cache and ensuring that the pages containing table descriptors are
pushed and invalidated prevents lockup during table searches.

Table and page descriptors must not be left in a state that is incoherent to the processor.
Violation of this restriction can result in an undefined operation. Page descriptors must not
have an encoding of U-bit = 0, M-bit = 1 and PDT field = 01 or 11. This encoding indicates
that the page descriptor is resident, not used, and modified. The processor’s table search
algorithm never leaves a descriptor in this state. This state is possible through direct
manipulation by the operating system for this specific instance. A table search for a
MOVE16 write can corrupt the cache line being written if the table descriptors are marked
copyback.

3.2.2 Descriptors

There are two types of descriptors used in the translation tables, table and page. Table-
and page-level descriptors can be further divided into types of descriptors. Root table
descriptors are used in root-level tables and pointer table descriptors are used in pointer-
level tables. Descriptors in the page-level tables contain either a page descriptor for the
translation or an indirect descriptor that points to a memory location containing the page
descriptor. The P-bit in the TCR selects the page size as either 4 or 8 Kbytes.

3.2.2.1 TABLE DESCRIPTORS. Figure 3-11 illustrates the formats of the root and pointer
table descriptors. Two descriptor formats are possible at the pointer-level tables to support
4-Kbyte and 8-Kbyte page sizes.

312 M68040 USER'S MANUAL MOTOROLA



31 9 8 7 6 5 4 3 2 1 0
| POINTER TABLE ADDRESS | X | X | X | X | X | U | W | uot |
ROOT TABLE DESCRIPTOR (ROOT LEVEL)

31 8 7 6 5 4 3 2 1 0
| PAGE TABLE ADDRESS | X | X | X | X | U | W | () |
4K POINTER TABLE DESCRIPTOR (POINTER LEVEL)

31 7 6 5 4 3 2 1 0
| PAGE TABLE ADDRESS | X | X | X | U | W| ubt |

8K POINTER TABLE DESCRIPTOR (POINTER LEVEL)

Figure 3-11. Table Descriptor Formats

3.2.2.2 PAGE DESCRIPTORS. Figure 3-12 illustrates the page descriptors for both
4-Kbyte and 8-Kbyte page sizes. Refer to Section 4 Instruction and Data Caches for
details concerning caching page descriptors.

31 2 11 100 9 8 7 6 5 4 3 2 1 0
| PHYSICAL ADDRESS | R | G | U1| U0| S | m | M | U | W | PDT |
4K PAGE DESCIPTOR (PAGE LEVEL)

31 3 12 11 10 9 8 7 6 S5 4 3 2 1 0
| PHYSICAL ADDRESS | R | R | G | U1| U0| S | m | M | U | W | PDT |
8K PAGE DESCRIPTOR (PAGE LEVEL)

31 2 1 0
| DESCRIPTOR ADDRESS | PDT |

INDIRECT PAGE DESCRIPTOR (PAGE LEVEL)

Figure 3-12. Page Descriptor Formats

3.2.2.3 DESCRIPTOR FIELD DEFINITIONS. The field definitions for the table- and page-
level descriptors are listed in alphabetical order:

CM—Cache Mode
This field selects the cache mode and accesses serialization as follows:

00 = Cachable, Write-through
01 = Cachable, Copyback

10 = Noncachable, Serialized
11 = Noncachable

Section 4 Instruction and Data Caches provides detailed information on caching
modes, and Section 7 Bus Operation provides information on serialization.

MOTOROLA M68040 USER'S MANUAL 313



Descriptor Address

This 30-bit field, which contains the physical address of a page descriptor, is only used
in indirect descriptors.

G—Global

When this bit is set, it indicates the entry is global. PFLUSH instruction variants that
specify nonglobal entries do not invalidate global entries, even when all other selection
criteria are satisfied. If these PFLUSH variants are not used, then system software can
use this bit.

M—Modified
This bit identifies a modified page. The M68040 sets the M-bit in the corresponding
page descriptor before a write operation to a page for which the M-bit is clear, except for
write-protect or supervisor violations. The read portion of a read-modify-write access is
considered a write for updating purposes. The M68040 never clears this bit.

PDT—Page Descriptor Type

This field identifies the descriptor as an invalid descriptor, a page descriptor for a
resident page, or an indirect pointer to another page descriptor.

00 = Invalid
This code indicates that the descriptor is invalid. An invalid descriptor can
represent a nonresident page or a logical address range that is out of
bounds. All other bits in the descriptor are ignored. When an invalid
descriptor is encountered, an ATC entry is created for the logical address
with the resident bit in the MMUSR clear.

01 or 11 = Resident

These codes indicate that the page is resident.

10 = Indirect
This code indicates that the descriptor is an indirect descriptor. Bits 31-2
contain the physical address of the page descriptor. This encoding is invalid
for a page descriptor pointed to by an indirect descriptor.

Physical Address

This 20-bit field contains the physical base address of a page in memory. The logical
address supplies the low-order bits of the address required to index into the page.
When the page size is 8-Kbyte, the least significant bit of this field is not used.

S—Supervisor Protected

This bit identifies a page as supervisor only. Only programs operating in the supervisor
mode are allowed to access the portion of the logical address space mapped by this
descriptor when the S-bit is set. If the bit is clear, both supervisor and user accesses are
allowed.

314 M68040 USER'S MANUAL MOTOROLA



Page Table Address

This field contains the physical base address of a table of page descriptors. The low-
order bits of the address required to index into the page table are supplied by the logical
address.

U—Used

The processor automatically sets this bit when a descriptor is accessed in which the
U-bit is clear. In a page descriptor table, this bit is set to indicate that the page
corresponding to the descriptor has been accessed. In a pointer table, this bit is set to
indicate that the pointer has been accessed by the M68040 as part of a table search.
The U-bit is updated before the M68040 allows a page to be accessed. The processor
never clears this bit.

U0, Ul—User Page Attributes

These bits are user defined and the processor does not interpret them. U0 and U1 are
echoed to the UPAO and UPAL signals, respectively, if an external bus transfer results
from the access. Applications for these bits include extended addressing and snoop
protocol selection.

UDT—Upper Level Descriptor Type
These bits indicate whether the next level table descriptor is resident.

00 or 01 = Invalid
These codes indicate that the table at the next level is not resident or that
the logical address is out of bounds. All other bits in the descriptor are
ignored. When an invalid descriptor is encountered, an ATC entry is created
for the logical address with the resident bit in the MMUSR clear.

10 or 11 = Resident
These codes indicate that the page is resident.

UR—User Reserved
These single bit fields are reserved for use by the user.

W—Write Protected

Setting the W-bit in a table descriptor write protects all pages accessed with that
descriptor. When the W-bit is set, a write access or a read-modify-write access to the
logical address corresponding to this entry causes an access error exception to be
taken.

X—Motorola Reserved
These bit fields are reserved for future use by Motorola.

MOTOROLA M68040 USER'S MANUAL 315



3.2.3 Translation Table Example

Figure 3-13 illustrates an access example to the logical address $76543210 while in the
supervisor mode with an 8-Kbyte memory page size. The RI field of the logical address,
$3B, is mapped into bits 8-2 of the SRP value to select a 32-bit root table descriptor at a
root-level table. The selected root table descriptor points to the base of a pointer-level
table, and the PI field of the logical address, $15, is mapped into bits 8-2 of this base
address to select a pointer descriptor within the table. This pointer table descriptor points
to the base of a page-level table, and the PGl field of the logical address, $1, is mapped
into bits 6-2 of this base address to select a page descriptor within the table.

3.2.4 Variations in Translation Table Structure

Several aspects of the MMU translation table structure are software configurable, allowing
the system designer flexibility to optimize the performance of the MMUs for a particular
system. The following paragraphs discuss the variations of the translation table structure.

3.2.4.1 INDIRECT ACTION. The M68040 provides the ability to replace an entry in a page
table with a pointer to an alternate entry. The indirection capability allows multiple tasks to
share a physical page while maintaining only a single set of history information for the
page (i.e., the modified indication is maintained only in the single descriptor). The
indirection capability also allows the page frame to appear at arbitrarily different addresses
in the logical address spaces of each task.

316 M68040 USER'S MANUAL MOTOROLA



LOGICAL ADDRESS

ROOT INDEX POINTER INDEX ___PAGE INDEX PAGE OFFSET
$76543210 = 0111011|oo10101|00001|xxxxxxxxxxxxx
TABLE ENTRY # = $38 $15 $01
ADDRESS OFFSET = $EC $54 $04
TABLE $00 TABLE $00 TABLE $00
) TABLE $3B TABLE $15
SUPERVISOR—>{  SRP | — > —
MODE : :
$3B|  $00001800 $15 | $00003000 $01 |FRAME ADDRESS
TABLE $7F TABLE $1F
ROOT LEVEL POINTER LEVEL PAGE LEVEL
TABLES TABLES TABLES

Figure 3-13. Example Translation Table

Using the indirection capability, single entries or entire tables can be shared between
multiple tasks. Figure 3-14 illustrates two tasks sharing a page using indirect descriptors.

When the M68040 has completed a normal table search, it examines the PDT field of the
last entry fetched from the page tables. If the PDT field contains an indirect ($2) encoding,
it indicates that the address contained in the highest order 30 bits of the descriptor is a
pointer to the page descriptor that is to be used to map the logical address. The processor
then fetches the page descriptor from this address and uses the physical address field of
the page descriptor as the physical mapping for the logical address.

The page descriptor located at the address given by the indirect descriptor must not have
a PDT field with an indirect encoding (it must be either a resident descriptor or invalid).
Otherwise, the descriptor is treated as invalid, and the M68040 creates an ATC entry with
a signaled error condition (R-bit in MMUSR s clear).

MOTOROLA M68040 USER'S MANUAL 317



LOGICAL ADDRESS

ROOT INDEX POINTER INDEX PAGE INDEX PAGE OFFSET
$76543210 = 0111011|oo10101|00001|xxxxxxxxxxxxx
TABLE ENTRY # = $3B $15 $01
ADDRESS OFFSET = $EC $54 $04
TABLE $00 TABLE $00 TABLE $00
) TABLE $3B TABLE $15
ROOT POINTER — > -
TASKA — : : ‘ :
$3B | $00001800 $15|  $00003000 $01 |  $80000010
TABLE $7F TABLE $1F
ROOT POINTER >
TASKB — . J
>|FRAME ADDRESS
ROOT-LEVEL POINTER-LEVEL PAGE-LEVEL
TABLES TABLES TABLES

Figure 3-14. Translation Table Using Indirect Descriptors

3.2.4.2 TABLE SHARING BETWEEN TASKS. More than one task can share a pointer- or
page-level table by placing a pointer to a shared table in the address translation tables.
The upper (nonshared) tables can contain different write-protected settings, allowing
different tasks to use the memory areas with different write permissions. In Figure 3-15,
two tasks share the memory translated by the table at the pointer table level. Task A
cannot write to the shared area; task B, however, has the W-bit clear in its pointer to the
shared table so that it can read and write the shared area. Also, the shared area appears
at different logical addresses for each task. Figure 3-15 illustrates shared tables in a
translation table structure.

318 M68040 USER'S MANUAL MOTOROLA



LOGICAL ADDRESS

ROOT INDEX POINTER INDEX PAGE INDEX PAGE OFFSET
$76543210= |0 1 1 1 0 1 1/0 0 1 01 0 1J0 0 0 0 IJX X X X X X X X X X X X X
TABLE ENTRY # = $3B $15 $01
ADDRESS OFFSET = $EC $54 $04
TABLE $00 TABLE $00 TABLE $00

\i

I

ROOT POINTER —
TASKA — :
$3B| W-BITSET |—
) TABLE $3B TABLE $15
ROOT POINTER >
TASKB — . .
W-BIT CLEAR |— $15 | $00003000 $01 [FRAME ADDRESS*
ROOT-LEVEL POINTER-LEVEL PAGE-LEVEL
TABLES TABLES TABLES

* Page frame address shared by task A and B; write protected from task A.

Figure 3-15. Translation Table Using Shared Tables

3.2.4.3 TABLE PAGING. The entire translation table for an active task need not be
resident in main memory. In the same way that only the working set of pages must be
allocated in main memory, only the tables that describe the resident set of pages need be
available. Placing the invalid code ($0 or $1) in the UDT field of the table descriptor that
points to the absent table(s) implements this paging of tables. When a task attempts to
use an address that an absent table would translate, the M68040 is unable to locate a
translation and takes access error exception when the execution unit retries the bus
access that caused the table search to be initiated.

The operating system determines that the invalid code in the descriptor corresponds to
nonresident tables. This determination can be facilitated by using he unused bits in the
descriptor to store status information concerning the invalid encoding. The M68040 does
not interpret or modify an invalid descriptor’s fields except for the UDT field. This

MOTOROLA M68040 USER'S MANUAL 319



interpretation allows the operating system to store system-defined information in the
remaining bits. Information typically stored includes the reason for the invalid encoding
(tables paged out, region unallocated, etc.) and possibly the disk address for nonresident
tables. Figure 3-16 illustrates an address translation table in which only a single page
table (table $15) is resident; all other page tables are not resident.

LOGICAL ADDRESS
ROOT INDEX POINTER INDEX __ PAGE INDEX PAGE OFFSET
$76543210 = 0111011|oo10101|oooo1|xxxxxxxxxxxxx
TABLE ENTRY # = $3B $15 $01
ADDRESS OFFSET = $EC $54 $04
SUPERVISOR
TABLE $00 TABLE $00 TABLE $00
> >
NONRESIDENT NONRESIDENT NONRESIDENT
(PAGED OR (PAGED OR (PAGED OR
UNALLOCATED) UNALLOCATED) UNALLOCATED)
TABLE $3B TABLE $15
SRP UDT = INVALID | UDT = INVALD |—
: : .
L]
UDT = INVALID UDT = INVALID .
$3B | UDT = RESIDENT $15 | UDT = RESIDENT $01|FRAME ADDRESS
UDT = INVALID UDT = INVALID .
. . (]
UDT = INVALID UDT = INVALID
TABLE $7F TABLE $1F
NONRESIDENT NONRESIDENT NONRESIDENT
(PAGED OR (PAGED OR (PAGED OR
UNALLOCATED) UNALLOCATED) UNALLOCATED)
ROOT-LEVEL POINTER-LEVEL PAGE-LEVEL
TABLES TABLES TABLES

Figure 3-16. Translation Table with Nonresident Tables

320 M68040 USER'S MANUAL MOTOROLA



3.2.4.4 DYNAMICALLY ALLOCATED TABLES. Similar to paged tables, a complete
translation table need not exist for an active task. The operating system can dynamically
allocate the translation table based on requests for access to particular areas.

As in demand paging, it is difficult, if not impossible, to predict the areas of memory that a
task uses over any extended period. Instead of attempting to predict the requirements of
the task, the operating system performs no action for a task until a demand is made
requesting access to a previously unused area or an area that is no longer resident in
memory. This technique can be used to efficiently create a translation table for a task.

For example, consider an operating system that is preparing the system to execute a
previously unexecuted task that has no translation table. Rather than guessing what the
memory-usage requirements of the task are, the operating system creates a translation
table for the task that maps one page corresponding to the initial value of the program
counter (PC) for that task and one page corresponding to the initial stack pointer of the
task. All other branches of the translation table for this task remain unallocated until the
task requests access to the areas mapped by these branches. This technique allows the
operating system to construct a minimal translation table for each task, conserving
physical memory utilization and minimizing operating system overhead.

3.2.5 Table Search Accesses

The cache treats table search accesses that are not read-modify-write accesses as
cachable/write-through but do not allocate in the cache for misses. Read-modify-write
table search accesses (required to update some descriptor U-bit and M-bit combinations)
are treated as noncachable and force a matching cache line to be pushed and invalidated.
Table search bus accesses are locked only for the specific portions of the table search
that requires a read-modify-write access.

During a table search, the U-bit in each encountered descriptor is checked and set if not
already set. Similarly, when the table search is for a write access and the M-bit of the
page descriptor is clear, the processor sets the bit if the table search does not encounter a
set W-bit or a supervisor violation. Repeating the descriptor access as part of a read-
modify-write access updates specific combinations of the U and M bits, allowing the
external arbiter to prevent the update operation from being interrupted.

The M68040 asserts the LOCK signal during certain portions of the table search to ensure
proper maintenance of the U-bit and M-bit. The U-bit and M-bit are updated before the
M68040 allows a page to be accessed or written. As descriptors are fetched, the U-bit and
M-bit are monitored. Write cycles modify these bits when required. For a table descriptor,
a write cycle that sets the U-bit occurs only if the U-bit was clear. Table 3-1 lists the page
descriptor update operations for each combination of U-bit, M-bit, write-protected, and
read or write access type.

MOTOROLA M68040 USER'S MANUAL 321



Table 3-1. Updating U-Bit and M-Bit for Page Descriptors

Previous Status Access Page Descriptor New Status
u-Bit | m-Bit | wpBit| Tyre Update Operation U-Bit | M-Bit
0 0 Locked RMW Access to Set U 1 0
0 1 Locked RMW Access to Set U 1 1
1 0 X Read None 1 0
1 1 None 1 1
0 0 Write to Set U and M 1 1
0 1 Locked RMW Access to Set U 1 1
1 0 0 Write to Set M 1 1
1 1 Write None 1 1
0 0 Locked RMW Access to Set U 1 0
0 1 Locked RMW Access to Set U 1 1
1 0 1 None 1 0
1 1 None 1 1

NOTE: WP indicates the accumulated write-protect status.

An alternate address space access is a special case that is immediately used as a
physical address without translation. Because the M68040 implements a merged
instruction and data space, the integer unit translates MOVES accesses to instruction
address spaces (SFC/DFC = $6 or $2) into data references (SFC/DFC = $5 or $1). The
data memory unit handles these translated accesses as normal data accesses. If the
access fails due to an ATC fault or a physical bus error, the resulting access error stack
frame contains the converted function code in the TM field for the faulted access.
Invalidation of the instruction cache line containing the referenced location to maintain
cache coherency must precede MOVES accesses that write the instruction address

space. The SFC and DFC values and results are listed in Table 3-2.

322

Table 3-2. SFC and DFC Values

Results
SFC/DFC Value T ™
000 10 000
001 00 001
010 00 001
011 10 011
100 10 100
101 00 101
110 00 101
111 10 111

M68040 USER'S MANUAL

MOTOROLA



3.2.6 Address Translation Protection

The M68040 MMUs provide separate translation tables for supervisor and user address
spaces. The translation tables contain both mapping and protection information. Each
table and page descriptor includes a write-protect (W) bit that can be set to provide write
protection at any level. Page descriptors also contain a supervisor-only (S) bit that can
limit access to programs operating at the supervisor privilege level.

The protection mechanisms can be used individually or in any combination to protect:
» Supervisor address space from accesses by user programs.
» User address space from accesses by other user programs.

» Supervisor and user program spaces from write accesses (implicitly supported by
designating all memory pages used for program storage as write protected).

* One or more pages of memory from write accesses.

3.2.6.1 SUPERVISOR AND USER TRANSLATION TABLES. One way of protecting
supervisor and user address spaces from unauthorized accesses is to use separate
supervisor and user translation tables. Separate trees protect supervisor programs and
data from accesses by user programs and user programs and data from access by
supervisor programs. Access is granted to the supervisor programs that can accesses any
area of memory with MOVES. The translation table pointed to by the SRP is selected for
all other supervisor mode accesses. This translation table can be common to all tasks.
Figure 3-17 illustrates separate translation tables for supervisor accesses and for two user
tasks that share the common supervisor space. Each user task has an translation table
with unique mappings for the logical addresses in its user address space.

3.2.6.2 SUPERVISOR ONLY. A second mechanism protects supervisor programs and
data without requiring segmenting of the logical address space into supervisor and user
address spaces. Page descriptors contain S-bits to protect areas of memory from access
by user programs. When a table search for a user access encounters an S-bit set in a
page descriptor, the table search ends, and an ATC descriptor corresponding to the
logical address is created with the S-bit set. A subsequent retry of the user access results
in an access error exception being taken. The S-bit can be used to protect one or more
pages from user program access. Supervisor and user mode accesses can share
descriptors by using indirect descriptors or by sharing tables. The entire user and
supervisor address spaces can be mapped together by loading the same root pointer
address into both the SRP and URP registers.

MOTOROLA M68040 USER'S MANUAL 323



FOR TASK 'A'

USER A LEVEL TABLE
URP FOR TASK ‘A |—> 3
—>>
: TRANSLATION
. TABLE FOR
. TASK A
—>
——>
FOR TASK 'B' USER A LEVEL TABLE
URP FOR TASK 'B' |—> ]
——>
. TRANSLATION
. TABLE FOR
. TASK B'
——>
>
POINTER SUPERVISOR A LEVEL TABLE
COMMON SRP |—> L >
- TRANSLATION
. TABLE FOR
) ALL SUPERVISOR
. ACCESSES
—>

Figure 3-17. Translation Table Structure for Two Tasks

3.2.6.3 WRITE PROTECT. The M68040 provides write protection independent of other
protection mechanisms. All table and page descriptors contain W-bits to protect areas of
memory from write accesses of any kind, including supervisor writes. An ATC descriptor
corresponding to the logical address is created with the W-bit set after the table search is
completed when a table search encounters a W-bit set in any table or page descriptor.
The subsequent retry of the write access results in an access error exception being taken.
The W-bit can be used to protect the entire area of memory defined by a branch of the
translation table or protect only one or more pages from write accesses. Figure 3-18
illustrates a memory map of the logical address space organized to use supervisor-only
and write-protect bits for protection. Figure 3-19 illustrates an example translation table for
this technique.

SUPERVISOR AND USER SPACE

THIS AREA IS SUPERVISOR ONLY, READ-ONLY
THIS AREA IS SUPERVISOR ONLY, READ/WRITE

THIS AREA IS SUPERVISOR OR USER, READ-ONLY

THIS AREA IS SUPERVISOR OR USER, READ/WRITE

Figure 3-18. Logical Address Map with Shared
Supervisor and User Address Spaces

324 M68040 USER'S MANUAL MOTOROLA



THIS PAGE

SUPERVISOR ONLY,
READ ONLY
> W =X >| S-1w=X
: : THIS PAGE
. : SUPERVISOR ONLY,
READ/WRITE
> W=0 [——3| S=1W=0
. . THIS PAGE
. . SUPERVISOR/USER,
READ ONLY
PRIVILEGE —» SRP
MODE URP [ >—> w=1 — > W=X f——| S=0Ww=X
W=0 -
URP & SRP POINT . :
TO SAME A LEVEL : :
TABLE : . .
W=1
W=0
. . THIS PAGE
: : SUPERVISOR/USER,
READ/WRITE
W=0 > S=0Ww=0
ROOT-LEVEL POINTER-LEVEL PAGE-LEVEL
TABLE TABLE TABLE

NOTE: X =Don't care.

Figure 3-19. Translation Table Using S-Bit and W-Bit To Set Protection

MOTOROLA M68040 USER'S MANUAL 325



3.3 ADDRESS TRANSLATION CACHES

The ATCs in the MMUs are four-way set-associative caches that each store 64 logical-to-
physical address translations and associated page information similar in form to the
corresponding page descriptors in memory. The purpose of the ATC is to provide a fast
mechanism for address translation by avoiding the overhead associated with a table
search of the logical-to-physical mapping of recently used logical addresses. Figure 3-20
illustrates the organization of the ATC.

31 6 12 0
F
c PAGE FRAME PAGE OFFSET
2
161 ﬂt ﬂt 12 PA(11-0)
Y ¥ > ux |PAL2
PAGE SIZE —»| MUX
[ 1
1 3 | PAGESIZE _
17 _ I
SET SETO| TAG ENTRY
SELECT
A SET1 STATUS
4 29
_F,‘LL,
SET15 >
L , , I I Z| mux
17 P
l LINE SELECT
|
[ 3 HIT 3
— 1° HIT 2 T | HT
| HIT 1 DETECT
COMPARATOR |—— HITO
o ]

Figure 3-20. ATC Organization

3-26 M68040 USER'S MANUAL MOTOROLA



Each ATC entry consists of a physical address, attribute information from a corresponding
page descriptor, and a tag that contains a logical address and status information. Figure
3-21, which illustrates the entry and tag fields, is followed by field definitions listed in
alphabetical order.

| u1 | uo | S | v | M | W | R | PHYSICAL ADDRESS* |

ENTRY

| \Y | G | FC2 | LOGICAL ADDRESS* |

TAG

* For 4-Kbyte page sizes this field uses address bits 31-12; for 8-Kbyte page sizes, bits 31-13.

Figure 3-21. ATC Entry and Tag Fields

CM—Cache Mode
This field selects the cache mode and accesses serialization as follows:
00 = Cachable, Write-through
01 = Cachable, Copyback

10 = Noncachable, Serialized
11 = Noncachable

Section 4 Instruction and Data Caches provides detailed information on caching
modes, and Section 7 Bus Operation provides information on serialization.

FC2—Function Code Bit 2 (Supervisor/User)

This bit contains the function code corresponding to the logical address in this entry.
FC2 is set for supervisor mode accesses and cleared for user mode accesses.

G—Global

When set, this bit indicates the entry is global. Global entries are not invalidated by the
PFLUSH instruction variants that specify nonglobal entries, even when all other
selection criteria are satisfied.

Logical Address

This 13-bit field contains the most significant logical address bits for this entry. All 16
bits of this field are used in the comparison of this entry to an incoming logical address
when the page size is 4 Kbytes. For 8-Kbytes pages, the least significant bit of this field
is ignored.

M—Modified
The modified bit is set when a valid write access to the logical address corresponding to
the entry occurs. If the M-bit is clear and a write access to this logical address is
attempted, the M68040 suspends the access, initiates a table search to set the M-bit in
the page descriptor, and writes over the old ATC entry with the current page descriptor
information. The MMU then allows the original write access to be performed. This

MOTOROLA M68040 USER'S MANUAL 327



procedure ensures that the first write operation to a page sets the M-bit in both the ATC
and the page descriptor in the translation tables, even when a previous read operation
to the page had created an entry for that page in the ATC with the M-bit clear.

Physical Address
The upper bits of the translated physical address are contained in this field.

R—Resident

This bit is set if the table search successfully completes without encountering either a
nonresident page or a transfer error acknowledge during the search.

S—Supervisor Protected

This bit identifies a pointer table or a page as a supervisor-only table or page. Only
programs operating in the supervisor privilege mode are allowed to access the portion
of the logical address space mapped by this descriptor when the S-bit is set. If the bit is
clear, both supervisor and user accesses are allowed.

U0, Ul—User Page Attributes

These user-defined bits are not interpreted by the M68040. U0 and U1 are echoed to
the UPAO and UPAL1 signals, respectively, if an external bus transfer results from the
access.

V—Valid
When set, this bit indicates the validity of the entry. This bit is set when the M68040

loads an entry. A flush operation by a PFLUSH or PFLUSHA instruction that selects this
entry clears the bit.

W—Write Protected

This write-protect bit is set when a W-bit is set in any of the descriptors encountered
during the table search for this entry. Setting a W-bit in a table descriptor write protects
all pages accessed with that descriptor. When the W-bit is set, a write access or a read-
modify-write access to the logical address corresponding to this entry causes an access
error exception to be taken immediately.

For each access to a memory unit, the MMU uses the four bits of the logical address
located just above the page offset (LA16—LA13 for 8K pages, LA15-LA12 for 4K pages) to
index into the ATC. The tags are compared with the remaining upper bits of the logical
address and FC2. If one of the tags matches and is valid, then the multiplexer choses the
corresponding entry to produce the physical address and status information. The ATC
outputs the corresponding physical address to the cache controller, which accesses the
data within the cache and/or requests an external bus cycle. Each ATC entry contains a
logical address, a physical address, and status bits.

When the ATC does not contain the translation for a logical address, a miss occurs. The
MMU aborts the current access and searches the translation tables in memory for the
correct translation. If the table search completes without any errors, the MMU stores the

328 M68040 USER'S MANUAL MOTOROLA



translation in the ATC and provides the physical address for the access, allowing the
memory unit to retry the original access.

There are some variations in the logical-to-physical mapping because of the two page
sizes. If the page size is 4 Kbytes, then logical address bit 12 is used to access the ATC's
memory, the tag comparators use bit 16, and physical address bit 12 is an ATC output. If
the page size is 8 Kbytes, then logical address bit 16 is used to access the ATC's
memory, and physical address bit 12 is driven by logical address bit 12. It is advisable that
a translation always be disabled before changing size and that the ATCs are flushed
before enabling translation again.

The M68040 is organized such that other operations always completely overlap the
translation time of the ATCs; thus, no performance penalty is associated with ATC
searches. The address translation occurs in parallel with indexing into the on-chip
instruction and data caches.

The MMU replaces an invalid entry when the ATC stores a new address translation. When
all entries in an ATC set are valid, the ATC selects a valid entry to be replaced, using a
pseudo-random replacement algorithm. A 2-bit counter, which is incremented for each
ATC access, points to the entry to replace when an access misses in the ATC. ATC hit
rates are application and page-size dependent, but hit rates ranging from 98% to greater
than 99% can be expected. These high rates are achieved because the ATCs are
relatively large (64 entries) and utilization efficiency is high with 8-Kbyte and 4-Kbyte page
sizes.

3.4 TRANSPARENT TRANSLATION

Four independent TTRs (DTTO and DTT1 in the data MMU, ITTO and ITT1 in the
instruction MMU) define four blocks of logical address space to be translated to physical
address space. These logical address spaces must be at least 16 Mbytes and can overlap
or be separate. Each TTR can be disabled and completely ignored. The following
description assumes that the TTRs are enabled.

When an MMU receives an address to be translated, the privilege mode and the eight
high-order bits of the address are compared to the logical address spaces defined by the
two TTRs for the corresponding MMU. The logical address space for each TTR is defined
by an S-field, logical base address field, and logical address mask field. The S-field allows
matching either user or supervisor accesses or both accesses. When a bit in the logical
address mask field is set, the corresponding bit of the logical base address is ignored in
the address comparison and privilege mode. Setting successively higher order bits in the
address mask increases the size of the physical address space.

The address for the current bus cycle and a TTR address match when the privilege mode
and logical base address bits are equal. Each TTR can specify write protection for the
block. When write protection is enabled for a block, write or read-modify-write accesses to
the block are aborted.

MOTOROLA M68040 USER'S MANUAL 329



By appropriately configuring a TTR, flexible transparent mappings can be specified (refer
to 3.1.3 Transparent Translation Registers for field identification). For instance, to
transparently translate the user address space, the S-field is set to $0, and the logical
address mask is set to $FF in both an instruction and data TTR. To transparently translate
supervisor accesses of addresses $00000000—-$0FFFFFFF with write protection, the
logical base address field is set to $0x, the logical address mask is set to $0F, the W-bit is
set to one, and the S-field is set to $1. The inclusion of independent TTRs in both the
instruction and data MMUs provides an exception to the merged instruction and data
address space, allowing different translations for instruction and operand accesses. Also,
since the instruction memory unit is only used for instruction prefetches, different
instruction and data TTRs can cause PC relative operand fetches to be translated
differently from instruction prefetches.

If either of the TTRs matched during an access to a memory unit (either instruction or
data), the access is transparently translated. If both registers match, the TTO status bits
are used for the access. Transparent translation can also be implemented by the
translation tables of the translation tables if the physical addresses of pages are set equal
to their logical addresses.

3.5 ADDRESS TRANSLATION SUMMARY

The instruction and data MMUSs process translations by first comparing the logical address
and privilege mode with the parameters of the TTRs. If there is a match, the MMU uses
the logical address as a physical address for the access. If there is no match, the MMU
compares the logical address and privilege mode with the tag portions of the entries in the
ATC and uses the corresponding physical address for the access when a match occurs.
When neither a TTR nor a valid ATC entry matches, the MMU initiates a table search
operation to obtain the corresponding physical address from the translation table. When a
table search is required, the processor suspends instruction execution activity and, at the
end of a successful table search, stores the address mapping in the appropriate ATC and
retries the access. The MMU creates a valid ATC entry for the logical address, and the
access is retried. If an access hits in the ATC but an access error or invalid page
descriptor was detected during the table search that created the ATC entry, the access is
aborted, and a bus error exception is taken.

If a write or read-modify-write access results in an ATC hit but the page is write protected,
the access is aborted, and an access error exception is taken. If the page is not write
protected and the modified bit of the ATC entry is clear, a table search proceeds to set the
modified bit in both the page descriptor in memory and in the ATC; the access is retried.
The ATC provides the address translation for the access if the modified bit of the ATC
entry is set for a write or read-modify-write access to an unprotected page, if the resident
bit is set (indicating the table search for the entry completed successfully), and if none of
the TTRs (instruction or data, as appropriate) match.

An ATC access error is not reported immediately, if the last 16 bits of a page is either an
A-line, illegal, CHK, or unimplemented instruction and the next page is non-resident.
Instead, the M68040 attempts to prefetch the next instruction on the missing page, then
the ATC access error exception is reported. The stacked PC points to the exceptional

3-30 M68040 USER'S MANUAL MOTOROLA



instruction, and the stacked FA points to the first longword in the missing page. When an
ATC access error occurs while prefetching the next instruction on the non-existant page
after a change of flow instruction, the exception should be cleared by execution of the new
instruction flow. Either avoid this scenario, or have a dummy resident page following the
exceptional instruction.

Figure 3-22 illustrates a general flowchart for address translation. The top branch of the
flowchart applies to transparent translation. The bottom three branches apply to ATC
translation.

3.6 MMU EFFECT ON RSTI ANDMD S
The following paragraphs describe MMU effects on the RSTI andMDI S pins.

3.6.1 Effect of RSTI on the MMUs

When the M68040 is reset by the assertion of the reset input signal, the E-bits of the TCR
and TTRs are cleared, disabling address translation. This reset causes logical addresses
to be passed through as physical addresses, allowing an operating system to set up the
translation tables and MMU registers as required. After the translation tables and registers
are initialized, the E-bit of the TCR can be set, enabling paged address translation. While
address translation is disabled, the attribute bits for an access that an ATC entry or a TTR
normally supplies are zero, selecting write-through cachable mode, no write protection,
and user page attribute bits cleared. RSTI does not affect the P-bit of the TCR.

A reset of the processor does not invalidate any entries in the ATCs or alter the page size.
A PFLUSH instruction must be executed to flush all existing valid entries from the ATCs
after a reset operation and before translation is enabled. PFLUSH can be executed even if
the E-bit is cleared.

3.6.2 Effect of MDI S on Address Translation

The assertion of MDI' S prevents the MMUs from performing ATC searches and the
execution unit from performing table searches. With address translation disabled, logical
addresses are used as physical addresses. MDI S disables the MMUs on the next internal
access boundary when asserted and enables the MMUs on the next boundary after the
signal is negated. The assertion of this signal does not affect the operation of the
transparent translation registers or execution of the PFLUSH or PTEST instructions.

MOTOROLA M68040 USER'S MANUAL 331



o

OTHERWISE LOGICAL ADDRESS
MATCHES WITH
TTRx*
ATCHIT LOGICAL ADDRESS
ATC MISS /(5 O<OTHERW|SE MATGHES WITH TTR/EC)
(R=0)OR (TTRIW]=1)AND  (TTRO*[W] = 1) AND
(W= 1) AND (WRITE OR RMW (WRITE OR RMW
- ACCESS) >~ ACCESS)
(WRITE OR RMW CYCLE)] OTHERWISE
/ OTHERWISE
ABORT CYCLE
OTHERWISE
| ABORT CYCLE
TAKE ACCESS ERROR
EXCEPTION
TAKE ACCESS ERROR
(M=0) AND OTHERWISE EXCEPTION
(WRITE OR RMW CYCLE)
PA [ LOGICAL ADDRESS PA [0 LOGICAL ADDRESS
UPA O TTR1*[UL,U0] UPA T TTRO*[ULUO]
CM O TTR1*[CM] CM O_TTRO* [CM]
| ABORT CYCLE |
( EXIT ) ( EXIT )
TABLE SEARCH
OPERATION

PAO ATCENTRY [PA]
UPA [ ATC ENTRY [U1,U0]
CM O ATC ENTRY [CM]

EXIT

* Refers to either instruction or data transparent translation register.

Figure 3-22. Address Translation Flowchart

332 M68040 USER'S MANUAL MOTOROLA



3.7 MMU INSTRUCTIONS

The M68040 instruction set includes three privileged instructions that perform MMU
operations. The following paragraphs briefly describe each of these instructions. For
detailed descriptions of these instructions, refer to M68000PR/AD, M68000 Family
Programmer's Reference Manual.

3.7.1 MOVEC

The MOVEC instruction transfers data between an integer data register, or memory
location, and any of the M68040 control and status registers. The operating system uses
the MOVEC instruction to control and monitor MMU operation by manipulating and
reading the eight MMU registers.

3.7.2 PFLUSH

The PFLUSH instruction flushes or invalidates address translation descriptors in the
ATCs. PFLUSHA, a version of the PFLUSH instruction, flushes all entries. The PFLUSH
instruction flushes a user or supervisor entry with a specified logical address. The
PFLUSHAN and PFLUSHN instruction variants qualify entry selection further by flushing
only entries that are nonglobal, indicated by a cleared G-bit in the entry.

3.7.3 PTEST

The PTEST instruction performs a table search operation for a specified function code and
logical address and sets the appropriate bit fields in the MMUSR to indicate conditions
encountered during the search. PTEST automatically flushes the corresponding entry from
the cache before searching the tables and loads the latest information from the translation
tables into the ATC. The exception routines of the operating system can use this
instruction to identify MMU faults.

PTEST is primarily used in access error exception handlers. For example, if a bus error
has occurred, the handler can execute an instruction sequence such as the following
sequence:

MOVE.B (A7,offset1),DO Copy transfer modifier field from stack frame

MOVEC DO0O,DFC into DFC register

MOVEA.L (A7,0ffset2),A0 Copy fault address from stack frame into address register
PTESTW (A0) Test address in AO with function code in DFC registers

The transfer modifier field copied into the destination function code (DFC) register
indicates whether the faulted access was a supervisor or user mode access and whether
it was an instruction prefetch or data access. The PTEST instruction uses the DFC value
to determine which translation table (supervisor or user) to search and which ATC (data or
instruction) to create the entry in. After executing this code sequence, the handler can
examine the MMUSR for the source of the fault.

The M68040 MMU instructions use opcodes that are different from those for the
corresponding instructions in the MC68030 and MC68851. All MMU opcodes for the

MOTOROLA M68040 USER'S MANUAL 333



MC68030 and MC68851 cause F-line unimplemented instruction exceptions if executed in
either supervisor or user mode by the M68040.

3.7.4 Register Programming Considerations

If the entries in the ATCs are no longer valid when a reset operation occurs (as is normally
expected), an explicit flush operation must be specified by the system software. The
assertion of RSTI disables translation by clearing the E-bits of the TCR, DTTRx, and
ITTRX, but it does not flush the ATCs. Reading or writing any of the MMU registers (URP,
SRP, TCR, MMUSR, DTTRO, DTTR1, ITTRO, ITTR1) does not flush the ATCs. Since a
write to these registers can cause some or all the address translations to change, the write
should be followed by a PFLUSH operation to flush the ATCs if necessary.

The status bits in the MMUSR indicate conditions to which the operating system should
respond. In a typical access error exception handler, the flowchart illustrated in Figure
3-23 can be used to determine the cause of an MMU fault. The PTEST instruction sets
the bits in the MMUSR appropriately, and the program can branch to the appropriate code
segment for the condition.

334 M68040 USER'S MANUAL MOTOROLA



PTEST (An)

BRANCH TO "BUS ERROR
DURING TABLE SEARCH" CODE

BRANCH TO "PAGE FAULT" OR
1o O/O\ "INVALID DESCRIPTOR" CODE

T=1

S=1AND (USER ACCESS
INDICATED IN STACK FRAME)
OTHERWISE
OTHERWISE
BRANCH TO "SUPERVISOR
VOILATION" CODE
OTHERWISE
/O\ MATCH TTR1*
W=0 W=1
_— C
OTHERWISE

OTHERWISE

WRITE OR RMW ACCESS TTR1*W] = 1 AND (WRITE OR
INDICATED IN STACK RMW ACCESS INDICATED IN
FRAME STACK FRAME)

: > BRANCH TO "WRITE
NOT MMU C VIOLATION" CODE )

* Refers to either instruction or data transparent translation register.

Figure 3-23. MMU Status Interpretation

MOTOROLA M68040 USER'S MANUAL

MATCH TTRO*

OTHERWISE

TTRO*W] = 1 AND (WRITE OR
RMW ACCESS INDICATED IN

STACK FRAME)

BRANCH TO "WRITE
VIOLATION" CODE

( NOT MMU >

335



SECTION 4
INSTRUCTION AND DATA CACHES

NOTE

Ignore all references to the memory management unit (MMU)
when reading for the MC68EC040 and MC68ECO040V. The
functionality of the MC68040 transparent translation registers
has been changed in the MC68EC040 and MC68EC040V to
the access control registers. Refer to Appendix B
MC68EC040 for details.

The M68040 contains two independent, 4-Kbyte, on-chip caches located in the physical
address space. Accessing instruction words and data simultaneously through separate
caches increases instruction throughput. The M68040 caches improve system
performance by providing cached data to the on-chip execution unit with very low latency.
Systems with an alternate bus master receive increased bus availability.

Figure 4-1 illustrates the instruction and data caches contained in the instruction and data
memory units. The appropriate memory unit independently services instruction prefetch
and data requests from the integer unit (IU). The memory units translate the logical
address in parallel with indexing into the cache. If the translated address matches one of
the cache entries, the access hits in the cache. For a read operation, the memory unit
supplies the data to the IU, and for a write operation, the memory unit updates the cache.
If the access does not match one of the cache entries (misses in the cache) or a write
access must be written through to memory, the memory unit sends an external bus
request to the bus controller. The bus controller then reads or writes the required data.

Cache coherency in the M68040 is optimized for multimaster applications in which the
M68040 is the caching master sharing memory with one or more noncaching masters
(such as DMA controllers). The M68040 implements a bus snooper that maintains cache
coherency by monitoring an alternate bus master’s access and performing cache
maintenance operations as requested by the alternate bus master. Matching cache entries
can be invalidated during the alternate bus master’s access to memory, or memory can be
inhibited to allow the M68040 to respond to the access as a slave. For an external write
operation, the processor can intervene in the access and update its internal caches (sink
data). For an external read operation, the processor supplies cached data to the alternate
bus muster (source data). This prevents the M68040 caches from accumulating old or
invalid copies of data (stale data). Alternate bus masters are allowed access to locally
modified data within the caches that is no longer consistent with external memory (dirty
data). Allowing memory pages to be specified as write-through instead of copyback also
supports cache coherency. When a processor writes to write-through pages, external

MOTOROLA M68040 USER’S MANUAL 4-1



memory is always updated through an external bus access after updating the cache,
keeping memory and cached data consistent.

INSTRUCTION DATA BUS
INSTRUCTION :> INSTRUCTION
ATC CACHE
% INSTRUCTION
INSTRUCTION ADDRES
INSTRUCTION > MmuicACHEIsNOOP -
FETCH CONTROLLER
CONVERT <:>
< DECODE INSTRUCTION MEMORY UNIT B
U ADDRESS
S BUS
EA c
CALCULATE o
EXECUTE N <:>
EA T DATA
FETCH R BUS
0
- !
EXECUTE
WRITE- DATA MEMORY UNIT DATA L
BACK DATA ADDRESS E <:>
WRITEBACK > MMU/CACHE/SNOOP <: R BUS
CONTROLLER CONTROL
SIGNALS
FLOATING- INTEGER J\/l J\/l
POINT UNIT UNIT DATA :> DATA
ATC CACHE
OPERAND DATA BUS < >

Figure 4-1. Overview of Internal Caches

4.1 CACHE OPERATION

Both four-way set-associative caches have 64 sets of four 16-byte lines. There are two
formats that define each cache line, an instruction cache line format and a data cache line
format. Each format contains an address tag consisting of the upper 22 bits of the physical
address, status information, and four long words (128 bits) of data. The status information
for the instruction cache line address tag consists of a single valid bit for the entire line.
The status information for the data cache line address tag contains a valid bit and four
additional bits to indicate dirty status for each long word in the line. Note that only the data
cache supports dirty cache lines. Figure 4-2 illustrates the instruction cache line format (a)
and the data cache line format (b).

4-2 M68040 USER'S MANUAL MOTOROLA



| e [ v ] ws [ we | w [ wo |

(a) Instruction Cache Line

TAG | v | LW3 | b3 | LW2 | b2 | LW1 | b1 | LWO | oo |

TAG — 22-Bit Physical Address Tag
V — Line VALID Bit
LW — Long Word n (32-Bit) Data Entry
Dn — DIRTY Bit for Long Word n

(b) Data Cache Line
Figure 4-2. Cache Line Formats

The cache stores an entire line, providing validity on a line-by-line basis. Only burst mode
accesses that successfully read four long words can be cached. Memory devices unable
to support bursting can respond to a cache line read or write access by asserting the
transfer burst inhibit (TBI ) signal, forcing the processor to complete the access as a
sequence of three long-word accesses. The cache recognizes burst accesses as if the
access were never inhibited, detecting no difference.

A cache line is always in one of three states: invalid, valid, or dirty. For invalid lines, the V-
bit is clear, causing the cache line to be ignored during lookups. Valid lines have their V-bit
set and D-bits cleared, indicating all four long words in the line contain valid data
consistent with memory. Dirty cache lines have the V-bit and one or more D-bits set,
indicating that the line has valid long-word entries that have not been written to memory
(long words whose D-bit is set). A cache line changes from valid to invalid if the execution
of the CINV or CPUSH instruction explicitly invalidates the cache line; if a snooped write
access hits the cache line and the line is not dirty; or if the SCx signals for a snooped read
access invalidates the line. Both caches should be explicitly cleared after a hardware reset
of the processor since reset does not invalidate the cache lines.

Figure 4-3 illustrates the general flow of a caching operation. The corresponding memory
unit translates the logical address of each access to a physical address allowing the 1U to
access the data in the cache. To minimize latency of the requested data, the lower
untranslated bits of the logical address map directly to the physical address bits and are
used to access a set of cache lines in parallel with the translation. Physical address bits
9-4 are used to index into the cache and select one of the 64 sets of four cache lines. The
four tags from the selected cache set are compared with the translated physical address
bits 31-12 and bits 11 and 10 of the untranslated page offset. If any one of the four tags
matches and the tag status is either valid or dirty, then the cache has a hit. During read
accesses, a half-line (two long words) is accessed at a time, requiring two cache accesses
for reads that are greater than a half-line or two long words. Write accesses within a cache
line require a single cache access. If a misaligned access crosses two pages, then the
partial access to the first page always happens twice, even if the pages are serialized.
Consequently, if the accesses span page boundaries, misaligned accesses to peripherals
are not possible unless the peripheral can tolerate double reads or writes.

MOTOROLA M68040 USER’S MANUAL 4-3



LOGICAL ADDRESS
|

31

12

S PAGE FRAME . PAGE OFFSET
| | |1 LINE 3
| LINE 2
LINE 1
SUPERVISOR LINE O
BIT PHYSICAL
SET SELECT
PA9-PA4
I Y
LA31-LA12 | Y
| Y
SETO TAG | STATUS | DO | D1 | D2 | D3
SET1
PA11-PA10 . . . P O I —
. . . . . . . ]
[
SET 63 TAG | STATUS | DO | D1| D2 | D3 [
AN
) | I |
: T DATA OR
TRANSLATED oo ‘_+ INSTRUCTION
ADDRESS PHYSICAL o
TRANSLATION [~ PA31-PA12 ADDRESS b
' ——
CACHE PA31-PA10 MUX
Y Y 3 LINE SELECT
HIT 3
Y Y 5 |— >
Y \ 1 HT2 HIT
— LOGICALOR |—>
HIT1
COMPARATOR 0 i
HITO

Figure 4-3. Caching Operation

Both caches contain circuitry to automatically determine which cache line in a set to use
for a new line. The cache controller locates the first invalid line and uses it; if no invalid
lines exist, then a pseudo-random replacement algorithm is used to select a valid line,
replacing it with the new line. Each cache contains a 2-bit counter, which is incremented
for each access to the cache. The instruction cache counter is incremented for each half-
line accessed in the instruction cache. The data cache counter is incremented for each
half-line accessed during reads, for each full line accessed during writes in copyback
mode, and for each bus transfer resulting from a write in write-through mode. When a
miss occurs and all four lines in the set are valid, the line pointed to by the current counter
value is replaced, after which the counter is incremented.

4-4 M68040 USER'S MANUAL MOTOROLA



4.2 CACHE MANAGEMENT

Using the MOVEC instruction, the caches are individually enabled to access the 32-bit
cache control register (CACR) illustrated in Figure 4-4. The CACR contains two enable
bits that allow the instruction and data caches to be independently enabled or disabled.
Setting one of these bits enables the associated cache without affecting the state of any
lines within the cache. A hardware reset clears the CACR, disabling both caches;
however, reset does not affect the tags, state information, and data within the caches. The
CINV instruction must clear the caches before enabling them. It is not recommended that
page descriptors be cached. Specifically, the M68040 does not support the caching of
page descriptors in copyback mode with the bit pattern U=0, M =1, and R =1 in a page
descriptor. The M68040 table search algorithm will never leave this bit pattern for a page
descriptor.

31 30 16 15 14 0
| oE | UNDEFINED | E | UNDEFINED |
DE Enable Data Cache

IE Enable Instruction Cache

Figure 4-4. Cache Control Register

System hardware can assert the cache disable (CDI S) signal to dynamically disable both
caches, regardless of the state of the enable bits in the CACR. The caches are disabled
immediately after the current access completes. If CDI Sis asserted during the access for
the first half of a misaligned operand spanning two cache lines, the data cache is disabled
for the second half of the operand. Accesses by the execution units bypass the caches
while they are disabled and do not affect their contents (with the exception of CINV and
CPUSH instructions). Disabling the caches with CDI S does not affect snoop operations.
CDI S is intended primarily for use by in-circuit emulators to allow swapping between the
tags and emulator memories.

Even if the instruction cache is disabled, the M68040 can cache instructions because of
an internal cache line register. This happens for instruction loops that are completely
resident within the first six bytes of a half-line. Thus, the cache line holding register can
operate as a small cache. If a loop fits anywhere within the first three words of a half-line,
then it becomes cached.

The CINV and CPUSH instructions support cache management in the supervisor mode.
CINV allows selective invalidation of cache entries. CPUSH performs two operations: 1)
any selected data cache lines containing dirty data are pushed to memory; 2) all selected
cache lines are invalidated. This operation can be used to update a page in memory
before swapping it out with snooping disabled or to push dirty data when changing a page
caching mode to write-through. Because of the size of the caches, pushing pages or an
entire cache incurs a significant time penalty. However, these instructions are
interruptable to avoid large interrupt latencies. The state of the CDI S signal or the cache
enable bits in the CACR does not affect the operation of CINV and CPUSH. Both
instructions allow operation on a single cache line, all cache lines in a specific page, or an

MOTOROLA M68040 USER’S MANUAL 4-5



entire cache, and can select one or both caches for the operation. For line and page
operations, a physical address in an address register specifies the memory address.

4.3 CACHING MODES

Every IU access to the cache has an associated caching mode that determines how the
cache handles the access. An access can be cachable in either the write-through or
copyback modes, or it can be cache inhibited in nonserialized or serialized modes. The
CM field corresponding to the logical address of the access normally specifies, on a page-
by-page basis, one of these caching modes. The default memory access caching mode is
nonserialized. When the cache is enabled and memory management is disabled, the
default caching mode is write-through. The transparent translation registers and MMUs
allow the defaults to be overridden. In addition, some instructions and IU operations
perform data accesses that have an implicit caching mode associated with them. The
following paragraphs discuss the different caching accesses and their related cache
modes.

4.3.1 Cachable Accesses

If a page descriptor's CM field indicates write-through or copyback, then the access is
cachable. A read access to a write-through or copyback page is read from the cache if
matching data is found. Otherwise, the data is read from memory and used to update the
cache. Since instruction cache accesses are always reads, the selection of write-through
or copyback modes do not affected them. The following paragraphs describe the write-
through and copyback modes in detail.

4.3.1.1 WRITE-THROUGH MODE. Accesses to pages specified as write-through are
always written to the external address, although the cycle can be buffered, keeping
memory and cache data consistent. Writes in write-through mode are handled with a no-
write-allocate policy—i.e., writes that miss in a data cache are written to memory but do
not cause the corresponding line in memory to be loaded into the cache. Write accesses
always write through to memory and update matching cache lines. Specifying write-
through mode for the shared pages maintains cache coherency for shared memory areas
in a multiprocessing environment. The cache supplies data to instruction or data read
accesses that hit in the appropriate cache; misses cause a new cache line to be loaded
into the cache, replacing a valid cache line if there are no invalid lines.

4.3.1.2 COPYBACK MODE. Copyback pages are typically used for local data structures
or stacks to minimize external bus usage and reduce write access latency. Write accesses
to pages specified as copyback that hit in the data cache update the cache line and set
the corresponding D-bits without an external bus access. The dirty cached data is only
written to memory if 1) the line is replaced due to a miss, 2) a cache inhibited access
matches the line, or 3) the CPUSH instruction explicitly pushes the line. If a write access
misses in the cache, the memory unit reads the needed cache line from memory and
updates the cache. When a miss causes a dirty cache line to be selected for replacement,
the memory unit places the line in an internal copyback buffer. The replacement line is
read into the cache, and writing the dirty cache line back to memory updates memory.

4-6 M68040 USER'S MANUAL MOTOROLA



4.3.2 Cache-Inhibited Accesses

Address space regions containing targets such as 1/0 devices and shared data structures
in multiprocessing systems can be designated cache inhibited. If a page descriptor's CM
field indicates nonserialized or serialized, then the access is cache inhibited. The caching
operation is identical for both cache-inhibited modes. If the CM field of a matching address
indicates either nonserialized or serialized modes, the cache controller bypasses the
cache and performs an external bus transfer. The data associated with the access is not
cached internally, and the cache inhibited out (Cl OUT) signal is asserted during the bus
transfer to indicate to external memory that the access should not be cached. If the data
cache line is already resident in an internal cache, then the data cache line is pushed from
the cache if it is dirty or the data cache line is invalidated if it is valid.

If the CM field indicates serialized, then the sequence of read and write accesses to the
page is guaranteed to match the sequence of the instruction order. Without serialization,
the IU pipeline allows read accesses to occur before completion of a write-back for a
previous instruction. Serialization forces operand read accesses for an instruction to occur
only once by preventing the instruction from being interrupted after the operand fetch
stage. Otherwise, the instruction is aborted, and the operand is accessed when the
instruction is restarted. These guarantees apply only when the CM field indicates the
serialized mode and the accesses are aligned. Regardless of the selected cache mode,
locked accesses are implicitly serialized. The TAS, CAS, and CAS2 instructions use
locked accesses for operands in memory and for updating translation table entries during
table search operations.

4.3.3 Special Accesses

Several other processor operations result in accesses that have special caching
characteristics besides those with an implied cache-inhibited access in the serialized
mode. Exception stack accesses, exception vector fetches, and table searches that miss
in the cache do not allocate cache lines in the data cache, preventing replacement of a
cache line. Cache hits by these accesses are handled in the normal manner according to
the caching mode specified for the accessed address.

Accesses by the MOVEL16 instruction also do not allocate cache lines in the data cache for
either read or write misses. Read hits on either valid or dirty cache lines are read from the
cache. Write hits invalidate a matching line and perform an external access. Interacting
with the cache in this manner prevents a large block move or block initialization
implemented with a MOVE16 from being cached, since the data may not be needed
immediately.

If the data cache is re-enabled after a locked access has hit and the data cache was
disabled, the next non-locked access that results in a data cache miss will not be cached.

4.4 CACHE PROTOCOL

The cache protocol for processor and snooped accesses is described in the following
paragraphs. In all cases, an external bus transfer will cause a cache line state to change

MOTOROLA M68040 USER’S MANUAL 4-7



only if the bus transfer is marked as snoopable on the bus. The protocols described in the
following paragraphs assume that the data is cachable (i.e., write-through and copyback).

4.4.1 Read Miss

A processor read that misses in the cache causes the cache controller to request a bus
transaction that reads the needed line from memory and supplies the required data to the
IU. The line is placed in the cache in the valid state. Snooped external reads that miss in
the cache have no affect on the cache.

4.4.2 Write Miss

The cache controller handles processor writes that miss in the cache differently for write-
through and copyback pages. Write misses to copyback pages cause the processor to
perform a bus transaction that writes the needed cache line into its cache from memory in
the same manner as for a read miss. The new cache line is then updated with the write
data, and the D-bits are set for each long word that has been modified, leaving the cache
line in the dirty state. Write misses to write-through pages write directly to memory without
loading the corresponding cache line in the cache. Snooped external writes that miss in
the cache have no affect on the cache.

4.4.3 Read Hit

The cache controller handles processor reads that hit in the cache differently for write-
through and copyback pages. No bus transaction is performed, and the state of the cache
line does not change. Physical address bit 3 selects either the upper or lower half-line
containing the required operand. This half-line is driven onto the internal bus. If the
required data is allocated entirely within the half-line, only one access into the cache is
required. Because the organization of the cache does not allow selection of more than one
half-line at a time, misalignment across a half-line boundary requires two accesses into
the cache.

A snooped external read that hits in the cache is ignored if the cache line is valid. If the
snooped access hits a dirty line, memory is inhibited from responding, and the data is
sourced from the cache directly to the alternate bus master. A snooped read hit does not
change the state of the cache line unless the snooped access also indicates mark invalid,
which causes the line to be invalidated after the access, even if it is dirty. Alternate bus
masters should indicate mark invalid only for line reads to ensure the entire line is
transferred before invalidating.

4.4.4 Write Hit

The cache controller handles processor writes that hit in the cache differently for write-
through and copyback pages. For write-through accesses, a processor write hit causes
the cache controller to update the affected long-word entries in the cache line and to
request an external memory write transfer to update memory. The cache line state does
not change. A write-through access to a line containing dirty data constitutes a system
programming error even if the D-bits for the line are unchanged. This situation can be

4-8 M68040 USER'S MANUAL MOTOROLA



avoided by pushing cache lines when a page descriptor is changed and ensuring that
alternate bus masters indicate the appropriate snoop operation for writes to corresponding
pages (i.e., mark invalid for write-through pages and sink data for copyback pages). If the
access is copyback, the cache controller updates the cache line and sets the D-bit for of
the appropriate long words in the cache line. An external write is not performed, and the
cache line state changes to, or remains in, the dirty state.

An alternate bus master can drive the SCx signals for a write access with an encoding that
indicates to the M68040 that it should sink the data, inhibit memory, and respond as a
slave if the access hits in the cache. The cache operation depends on the access size and
current line state. A snooped line write that hits a valid line always causes the
corresponding cache line to be invalidated. For snooped writes of byte, word, or long-word
size that hit a dirty line, the processor inhibits memory and responds to the alternate bus
master as a slave, sinking the data. Data received from the alternate bus master is written
to the appropriate long word in the cache line, and the D-bit is set for that entry. The cache
controller invalidates a cache line if the snoop control pins have indicated that a matching
cache line is marked invalid for a snoop write.

4.5 CACHE COHERENCY

The M68040 provides several different mechanisms to assist in maintaining cache
coherency in multimaster systems. Both write-through and copyback memory update
techniques are supported to maintain coherency between the data cache and memory.

Alternate bus master accesses can reference data that the M68040 caches, causing
coherency problems if the accesses are not handled properly. The M68040 snoops the
bus during alternate bus master transfers. If a write access hits in the cache, the M68040
can update its internal caches, or if a read access hits, it can intervene in the access to
supply dirty data. Caches can be snooped even if they are disabled. The alternate bus
master controls snooping through the snoop control signals, indicating which access can
be snooped and the required operation for snoop hits. Table 4-1 lists the requested snoop
operation for each encoding of the snoop control signals. Since the processor and the bus
snooper must both access the caches, the snoop controller has priority over the processor
for snoopable accesses to maintain cache coherency.

Table 4-1. Snoop Control Encoding

Requested Snoop Operation
SC1 SCOo Alternate Bus Master Read Access Alternate Bus Master Write Access
0 0 Inhibit Snooping Inhibit Snooping
0 1 Supply Dirty Data and Leave Dirty Data Sink Byte/Word/Long/Long Word
1 0 Supply Dirty Data and Mark Line Invalid Invalidate Line
1 1 Reserved (Snoop Inhibited) Reserved (Snoop Inhibited)

The snooping protocol and caching mechanism supported by the M68040 are optimized to
support multimaster systems with the M68040 as the single caching master. In systems

MOTOROLA M68040 USER’S MANUAL 4-9



implementing multiple MC68040s as bus masters, shared data should be stored in write-
through pages. This procedure allows each processor to cache shared data for read
access while forcing a processor write to shared data to appear as an external write to
memory, which the other processors can snoop.

If shared data is stored in copyback pages, only one processor at a time can cache the
data since writes to copyback pages do not access the external bus. If a processor
accesses shared data cached by another processor, the slave can source the data to the
master without invalidating its own copy only if the transfer to the master is cache
inhibited. For the master processor to cache the data, it must force invalidation of the
slave processor’s copy of the data (by specifying mark invalid for the snoop operation),
and the memory controller must monitor the data transfer between the processors and
update memory with the transferred data. The memory update is required since the
master processor is unaware of the sourced data (valid data from memory or dirty data
from a snooping processor) and initially creates a valid cache line, losing dirty status if a
snooping processor supplies the data.

Coherency between the instruction cache and the data cache must be maintained in
software since the instruction cache does not monitor data accesses. Processor writes
that modify code segments (i.e., resulting from self-modifying code or from code executed
to load a new page from disk) access memory through the data memory unit. Because the
instruction cache does not monitor these data accesses, stale data occurs in the
instruction cache if the corresponding data in memory is modified. Invalidating instruction
cache lines before writing to the corresponding memory lines can prevent this coherency
problem, but only if the data cache line is in write-through mode and the page is marked
serialized. A cache coherency problem could arise if the data cache line is configured as
copyback and no serialization is done.

To fully support self-modifying code in any situation, it is imperative that a CPUSHA
instruction be executed before the execution of the first self-modified instruction. The
CPUSHA instruction has the effect of ensuring that there is no stale data in memory, the
pipeline is flushed, and instruction prefetches are repeated and taken from external
memory.

Another potential coherency problem exists due to the relationship between the cache
state information and the translation table descriptors. Because each cache line reflects
page state information, a page should be flushed from the cache before any of the page
attributes are changed. The presence of a valid or dirty cache line implicitly indicates that
accesses to the page containing the line are cachable. The presence of a dirty cache line
implies that the page is not write protected and that writes to the page are in copyback
mode. A system programming error occurs when page attributes are changed without
flushing the corresponding page from the cache, resulting in cache line states inconsistent
with their page definitions. Even with these inconsistencies, the cache is defined and
predictable.

4-10 M68040 USER'S MANUAL MOTOROLA



4.6 MEMORY ACCESSES FOR CACHE MAINTENANCE

The cache controller in each memory unit performs all maintenance activities that supply
data from the cache to the execution units. The activities include requesting accesses to
the bus interface unit for reading new cache lines and writing dirty cache lines to memory.
The following paragraphs describe the memory accesses resulting from cache fill
operations (by both caches) and push operations (by the data cache). Refer to Section 7
Bus Operation for detailed information about the bus cycles required.

4.6.1 Cache Filling

When a new cache line is required, the cache controller requests a line read from the bus
controller. The bus controller requests a burst read transfer by indicating a line access
with the size signals (S1Z1, S1Z0) and indicates which line in the set is being loaded with
the transfer line number signals (TLN1, TLNO). TLN1 and TLNO are undefined for the
instruction cache. These pins indicate the appropriate line numbers for data cache
transfers only. Table 4-2 lists the definition of the TLNx encoding.

Table 4-2. TLNx Encoding

TLN1 TLNO Line
0 0 Zero
0 1 One
1 0 Two
1 1 Three

The responding device sequentially supplies four long words of data and can assert the
transfer cache inhibit signal (TCl) if the line is not cachable. If the responding device does
not support the burst mode, it should assert the TBI signal for the first long word of the line
access. The bus controller responds by terminating the line access and completes the
remainder of the line read as three, sequential, long-word reads.

Bus controller line accesses implicitly request burst mode operations from external
memory. To operate in the burst mode, the device or external hardware must be able to
increment the low-order address bits as described in Section 7 Bus Operation. The
device indicates its ability to support the burst access by acknowledging the initial long-
word transfer with transfer acknowledge (TA) asserted and TBI negated. This procedure
causes the processor to continue to drive the address and bus control signals and to latch
a new data value for the cache line at the completion of each subsequent cycle (as
defined by TA) for a total of four cycles. The bursting mechanism requires addresses to
wrap around so that the entire four long words in the cache line are filled in a single
operation.

When a cache line read is initiated, the first cycle attempts to load the line entry
corresponding to the instruction half-line or data item requested by the IU. Subsequent
transfers are for the remaining entries in the cache line. In the case of a misaligned

MOTOROLA M68040 USER’S MANUAL 4-11



access in which the operand spans two line entries, the first cycle corresponds to the line
entry containing the portion of the operand at the lower address.

The cache controller temporarily stores the data from each cycle in a line read buffer,
where it is immediately available to the 1U. If a misaligned access spans two entries in the
line, the second portion of the operand is available to the IU as soon as the second
memory cycle completes. A new IU access that hits the cache line being filled is also
supplied data as soon as the required long word has been received from the bus
controller. During the period required to fill the buffer, other IU accesses that hit in the
cache are supplied data. This is vertical for a short cache-inhibited code loop that is less
than eight bytes in length. Subsequent interactions of the loop hit in the buffer, but appear
to hit in the cache since there is no external bus activity associated with the reads.

The assertion of TCl during the first cycle of a burst read operation inhibits loading of the
buffered line into the cache, but it does not cause the burst transfer (or pseudo-burst
transfer if TBI is asserted with TCl) to be terminated early. The data placed in the buffer is
accessible by the IU until the last long word of the burst is transferred from the bus
controller, after which the contents of the buffer are invalidated without being copied into
the cache. The assertion of TCl is ignored during the second, third, or fourth cycle of a
burst operation and is ignored for write operations.

A bus error occurring during a burst operation causes the burst operation to abort. If the
bus error occurs during the first cycle of a burst, the data from the bus is ignored. If the
access is a data cycle, exception processing proceeds immediately. If the cycle is for an
instruction prefetch, a bus error exception is pending. The bus error is processed only if
the IU attempts to use either instruction word. Refer to Section 7 Bus Operation for more
information about pipeline operation.

For either cache, when a bus error occurs on the second cycle or later, the burst operation
is aborted and the line buffer is invalidated. The processor may or may not take an
exception, depending on the status of the pending data request. If the bus error cycle
contains a portion of a data operand that the processor is specifically waiting for (e.g., the
second half of a misaligned operand), the processor immediately takes an exception.
Otherwise, no exception occurs, and the cache line fill is repeated the next time data
within the line is required. In the case of an instruction cache line fill, the data from the
aborted cycle is completely ignored.

On the initial access of a line read, a retry (indicated by the assertion of TA and TEA)
causes the bus controller to retry the bus cycle. However, a retry signaled during the
remaining cycles of the line access (either burst or pseudo-burst) is recognized as a bus
error, and the processor handles it as described in the previous paragraphs.

A cache inhibit or bus error on a line read can change the state of the line being replaced,
even though the new line is not copied into the cache. Before loading a new line, the
cache line being replaced is copied to the push buffer; if it is dirty, the cache line is
invalidated. If a cache inhibit or bus error occurs on a replacement line read, a dirty line is
restored to the cache from the push buffer. However, the line being replaced is not
restored in the cache if it was originally valid and the cache line remains invalid. If the line

4-12 M68040 USER'S MANUAL MOTOROLA



read resulting from a write miss in copyback mode is cache inhibited, the write access
misses in the cache and writes through to memory.

4.6.2 Cache Pushes

When the cache controller selects a dirty data cache line for replacement, memory must
be updated with the dirty data before the line is replaced. This occurs when a CPUSH
instruction execution explicitly selects the cache and when a cache inhibit access hits in
the cache. To reduce the requested data’s latency in the new line, the dirty line being
replaced is temporarily placed in a push buffer while the new line is fetched from memory.
When a line is allocated to the push buffer, an alternate bus master can snoop it, but the
execution units cannot access it. After the bus transfer for the new line successfully
completes, the dirty cache line is copied back to memory, and the push buffer is
invalidated. If the operation to access the replacement line is abnormally terminated or
signaled as cache inhibited, the line in the push buffer is copied back into its original
position in the cache, and the processor continues operation as described in the previous
paragraphs.

The number of dirty long words in the line to be pushed determines the size of the push
transfer on the bus, minimizing bus bandwidth required for the push. A single long word is
written to memory using a long-word push transfer if it is dirty. A push transfer is
distinguished from a normal write transfer by an encoding of 000 on the transfer modifier
signals (TM2-TMO) for the push. Asserting TA and TEA retries the transfer; a bus-error -
asserted TEA terminates it. If a bus error terminates a push transfer, the processor
immediately takes an exception.

A line containing two or more dirty long words is copied back to memory, using a line push
transfer. For a line push, the bus controller requests a burst write transfer by indicating a
line access with SIZ1 and S1Z0. The responding device sequentially accepts four long
words of data. If the responding device does not support the burst mode, it should assert
TBI for the first long word of the line access. The bus controller responds by terminating
the line access and completes the remainder of the line push as three, sequential, long-
word writes. The first cycle of the burst can be retried, but the bus controller interprets a
retry for any of the three remaining cycles as a bus error. If a bus error occurs in any cycle
in the line push transfer, the processor immediately takes an exception.

A dirty cache line hit by a cache-inhibited access is pushed before the external bus access
occurs. If the access is part of a locked transfer sequence for TAS, CAS, or CAS2
operand accesses or translation table updates, the LOCK signal is also asserted for the
push access.

4.7 CACHE OPERATION SUMMARY

The instruction and data caches function independently when servicing access requests
from the IU. The following paragraphs discuss the operational details for the caches and
present state diagrams depicting the cache line state transitions.

MOTOROLA M68040 USER’S MANUAL 4-13



4.7.1 Instruction Cache

The U uses the instruction cache to store instruction prefetches as it requests them.
Instruction prefetches are normally requested from sequential memory locations except
when a change of program flow occurs (e.g., a branch taken) or when an instruction that
can modify the status register (SR) is executed, in which case the instruction pipe is
automatically flushed and refilled. The instruction cache supports a line-based protocol
that allows individual cache lines to be in either the invalid or valid states.

For instruction prefetch requests that hit in the cache, the half-line selected by physical
address bit 3 is multiplexed onto the internal instruction data bus. When an access misses
in the cache, the cache controller requests the line containing the required data from
memory and places it in the cache. If available, an invalid line is selected and updated
with the tag and data from memory. The line state then changes from invalid to valid by
setting the V-bit. If all lines in the set are already valid, a pseudo-random replacement
algorithm is used to select one of the four cache lines replacing the tag and data contents
of the line with the new line information. Figure 4-5 illustrates the instruction-cache line
state transitions resulting from processor and snoop controller accesses. Transitions are
labeled with a capital letter, indicating the previous state, followed by a number indicating
the specific case listed in Table 4-3.

I3-CINV/CPUSH V1-CPU READ MISS
V2-CPU READ HIT

11-CPU READ MISS

INVALID VALID

V3-CINV/CPUSH
V5-SNOOP READ HIT
V6-SNOOP WRITE HIT

Figure 4-5. Instruction-Cache Line State Diagram

4-14 M68040 USER'S MANUAL MOTOROLA



Table 4-3. Instruction-Cache Line State Transitions

Current State

Cache Operation Invalid Cases Valid Cases

CPU Read Miss 11 | Read line from memory; V1 |Read line from memory; supply
supply data to CPU and data to CPU and update cache
update cache; go to valid (replacing old line); remain in
state. current state.

CPU Read Hit I2 | Not Possible V2 | Supply data to CPU; remain in

current state.

Cache Invalidate or Push I3 | No action; remain in V3 | No action; go to invalid state.

(CINV or CPUSH) current state.

Alternate Master Read Hit 14 | Not possible; not snooped. V4 | Not possible; not snooped.

(Snoop Control = 01 — Leave Dirty)

Alternate Master Read Hit I5 | Not Possible V5 | No action; go to invalid state.
(Snoop Control = 10 — Invalidate)

Alternate Master Write Hit 16 | Not Possible V6 | No action; go to invalid state.
(Snoop Control = 01 — Leave Dirty or
Snoop Control = 10 — Invalidate)

4.7.2 Data Cache

The IU uses the data cache to store operand data as it generates the data. The data
cache supports a line-based protocol allowing individual cache lines to be in one of three
states: invalid, valid, or dirty. To maintain coherency with memory, the data cache
supports both write-through and copyback modes, specified by the CM field for the page.

Read misses and write misses to copyback pages cause the cache controller to read a
new cache line from memory into the cache. If available, an invalid line in the selected set
is updated with the tag and data from memory. The line state then changes from invalid to
valid by setting the V-bit for the line. If all lines in the set are already valid or dirty, the
pseudo-random replacement algorithm is used to select one of the four lines and replace
the tag and data contents of the line with the new line information. Before replacement,
dirty lines are temporarily buffered and later copied back to memory after the new line has
been read from memory. If a snoop access occurs before the buffered line is written to
memory, the snoop controller snoops the buffer and the caches. Figure 4-6 illustrates the
three possible states for a data cache line, with the possible transitions caused by either
the processor or snooped accesses. Transitions are labeled with a capital letter, indicating
the previous state, followed by a number indicating the specific case listed in Table 4-4.

MOTOROLA M68040 USER’S MANUAL 4-15



V7—CINV V1—CPU READ MISS

VB CPUSH V2—CPU READ HIT
V10—SNOOP READ HIT/INVALIDATE xg—ggﬂ VWVS:IE mlTS/\SN/\?/T
I—CPU WRITE MISSWT V11—SNOOP WRITE HIT/INVALIDATE —
7—CINV V12—SNOOP WRITE HIT/SINK DATA & V8—SNOOP READ HITLEAVE DIRTY

18—CPUSH SIZE = LINE
V13—SNOOP WRITE HIT/SINK DATA &
SIZE = LINE
INVALID
11—CPU READ MISS
D7—CINV 13—CPU WRITE MISS/CB V3—CPU WRITE MISS/CB
D8—CPUSH V5—CPU WRITE HIT/CB
D10—SNOOP READ
HIT/INVALIDATE
D11—SNOOP WRITE HIT/ DI—CPU READ MISS
INVALIDATE

D13—SNOOP WRITE HIT/SINK
DATA & SIZE = LINE

D2—CPU READ HIT
D3—CPU WRITE MISS/CB

D4—CPU WRITE MISSWT

D5—CPU WRITE HIT/CB
ABBREVIATIONS: D6—CPU WRITE HIT/WT
WT—WRITE-THROUGH MODE D9—SNOOP READ HIT/LEAVE DIRTY
CB—COPYBACK MODE

D12—SNOOP WRITE HIT/SINK DATA
SNOOP OPERATION INDICATES: & SIZE 7 LINE
READ OR WRITE / SNOOP CONTROL
ENCODING

Figure 4-6. Data-Cache Line State Diagram

4-16 M68040 USER'S MANUAL MOTOROLA



Table 4-4. Data-Cache Line State Transitions

Current State
Cache Operation Invalid Cases Valid Cases Dirty Cases
CPU Read Miss 11 | Read line from V1 | Read line from D1 | Buffer dirty cache line;
memory; supply data memory; supply data read new line from
to CPU and update to CPU and update memory; supply data
cache; go to valid cache (replacing old to CPU and update
state. line); remain in current cache; write buffered
state. dirty data to memory;
go to valid state.
CPU Read Hit 12 | Not Possible V2 | Supply data to CPU; D2 | Supply data to CPU;
remain in current state. remain in current state.
CPU Write Miss I3 | Read line from V3 | Read line from D3 | Buffer dirty cache line;
(Copyback) memory into cache; memory into cache read new line from
write data to cache; (replacing old line); memory; write data to
set Dn bits of modified write data to cache cache and set Dn bits;
long words; go to dirty and set Dn bits; go to write buffered dirty
state. dirty state. data to memory;
remain in current state.
CPU Write Miss 14 | Write data to memory; | V4 | Write data to memory; | D4 | Write data to memory;
(Write-through) remain in current state. remain in current state. remain in current state
(see note).
CPU Write Hit I5 | Not Possible V5 | Write data into cache; | D5 | Write data in cache;
(Copyback) set Dn bits of modified set Dn bits of modified
long words; go to dirty long words; remain in
state. current state.
CPU Write Hit 16 | Not Possible V6 | Write data to cache; D6 | Write data into cache
(Write-through) write data to memory; (no change to Dn bits);
remain in current state. write data to memory;
remain in current state
(see note).
Cache Invalidate I7 | No action; remain in V7 | No action; go to invalid | D7 | No action (dirty data
(CINV) current state. state. lost); go to invalid
state.
Cache Push I8 | No action; remain in V8 | No action; go to invalid | D8 | Write dirty data to
(CPUSH) current state. state. memory; go to invalid
state.
Alternate Master Read Hit 19 | Not Possible V9 | No action; remain in D9 | Inhibit memory and
(Snoop Control = 01 current state. source data; remain in
— Leave Dirty) current state.

NOTE: Dirty state transitions D4 and D6 are the result of a system programming error and should be avoided even
though they are technically valid.

MOTOROLA

M68040 USER’S MANUAL

4-17



Table 4-4. Data-Cache Line State Transitions (Continued)

Cache Operation

Current State

Invalid Cases

Valid Cases

Dirty Cases

Alternate Master Read Hit | 110 | Not Possible V10| No action; go to invalid | D10 | Inhibit memory and

(Snoop Control = 10 state. source data; go to

— Invalidate) invalid state

Alternate Master Write Hit 111 | Not Possible V11| No action; go to invalid | D11 | No action; go to invalid

(Snoop Control = 10 state. state.

—Invalidate)

Alternate Master Write Hit 112 | Not Possible V12| No action; go to invalid | D12 | Inhibit memory and

(Snoop Control = 01 state. sink data; set Dn bits

— Sink Data and of modified long

Size # Line) words; remain in
current state.

Alternate Master Write Hit 113 | Not Possible V13| No action; go to invalid | D13 | No action; go to invalid

(Snoop Control = 01
— Sink Data and
Size = Line)

state.

state.

4-18

M68040 USER'S MANUAL

MOTOROLA



SECTION 5
SIGNAL DESCRIPTION

This section contains brief descriptions of the input and output signals in their functional
groups (see Figure 5-1). Each signal’s function is briefly explained, referencing other
sections that contain detailed information about the signal and related operations. Table
5-1 lists the signal names, mnemonics, and functional descriptions of the input and output
signals for the M68040. Timing specifications for these signals can be found in Section 11
MC68040 Electrical and Thermal Characteristics.

MOTOROLA

NOTES

Assertion and negation are used to specify forcing a signal to a
particular state. Assertion and assert refer to a signal that is
active or true. Negation and negate refer to a signal that is
inactive or false. These terms are used independent of the
voltage level (high or low) that they represent.

For the MC68040V, MC68LC040, MC68EC040, and
MCG68ECO040V ignore all references to the floating-point unit
(FPU). For the MC6BEC040 and MC68ECO040V only, ignore all
references to the memory management unit (MMU). Some pin
names are different on these parts; please refer to the
appropriate appendix in the back of this book for more
information.

M68040 USER’S MANUAL

51



Table 5-1. Signal Index

Signal Name Mnemonic Function

Address Bus A31-A0 32-bit address bus used to address any of 4-Gbytes.

Data Bus D31-DO0 | 32-bit data bus used to transfer up to 32 bits of data per bus transfer.

Transfer Type TT1,TTO Indicates the general transfer type: normal, MOVEL6, alternate logical
function code, and acknowledge.

Transfer Modifier TM2-TMO | Indicates supplemental information about the access.

Transfer Line Number TLN1,TLNO | Indicates which cache line in a set is being pushed or loaded by the current
line transfer.

User-Programmable UPA1,UPAO | User-defined signals, controlled by the corresponding user attribute bits from

Attributes the address translation entry.

Read/Write RIW Identifies the transfer as a read or write.

Transfer Size S1Z1,S1Z0 | Indicates the data transfer size. These signals, together with A0 and A1,
define the active sections of the data bus.

Bus Lock LOCK Indicates a bus transfer is part of a read-modify-write operation, and the
sequence of transfers should not be interrupted.

Bus Lock End LOCKE Indicates the current transfer is the last in a locked sequence of transfers.

Cache Inhibit Out a adr Indicates the processor will not cache the current bus transfer.

Transfer Start TS Indicates the beginning of a bus transfer.

Transfer in Progress TIP Asserted for the duration of a bus transfer.

Transfer Acknowledge TA Asserted to acknowledge a bus transfer.

Transfer Error TEA Indicates an error condition exists for a bus transfer.

Acknowledge

Transfer Cache Inhibit TA Indicates the current bus transfer should not be cached.

Transfer Burst Inhibit TBI Indicates the slave cannot handle a line burst access.

Data Latch Enablel DLE Alternate clock input used to latch input data when the processor is operating
in DLE mode.

Snoop Control SC1,SCO | Indicates the snooping operation required during an alternate master access.

Memory Inhibit M Inhibits memory devices from responding to an alternate master access
during snooping operations.

Bus Request BR Asserted by the processor to request bus mastership.

Bus Grant BG Asserted by an arbiter to grant bus mastership to the processor.

Bus Busy BB Asserted by the current bus master to indicate it has assumed ownership of
the bus.

Cache Disable cD's Dynamically disables the internal caches to assist emulator support.

MMU Disable? MDD S Disables the translation mechanism of the MMUs.

Reset In RSTI Processor reset.

Reset Out RSTO Asserted during execution of a RESET instruction to reset external devices.

Interrupt Priority Level3 | PL2— PLO| Provides an encoded interrupt level to the processor.

Interrupt Pending | PEND Indicates an interrupt is pending.

Autovector AVEC Used during an interrupt acknowledge transfer to request internal generation
of the vector number.

Processor Status PST3-PSTO | Indicates internal processor status.

Bus Clock BCLK Clock input used to derive all bus signal timing.

52

M68040 USER’S MANUAL

MOTOROLA



Table 5-1. Signal Index (Continued)

Signal Name

Mnemonic

Function

Processor Clock

PCLK4

Clock input used for internal logic timing. The PCLK frequency is exactly 2 x
the BCLK frequency.

Test Clock TCK Clock signal for the IEEE P1149.1 Test Access Port (TAP).
Test Mode Select T™MS Selects the principle operations of the test-support circuitry.
Test Data Input TDI Serial data input for the TAP.

Test Data Output TDO Serial data output for the TAP.

Test Reset TRST4 Provides an asynchronous reset of the TAP controller.
Power Supply Vee Power supply.

Ground GND Ground connection.

NOTES:

1. This signal is only available on the MC68040.

2. This signal is not available on the MC68EC040 and the MC68EC040V.

3. These signals are different on power-up for the MC68LC040 and MC68EC040.
4. These signals are not available on the MC68040V and MC68EC040V.

MOTOROLA

M68040 USER’S MANUAL 5-3



- SCO ]
-
ADDRESS _| BUS SNOOP CONTROL
sc1 -
BUS | T) AND RESPONSE
— —————————— > _
DATABUS -| BR .
¢ BG — BUS ARBITRATION
B BB
« TT0 5 < >
(?T10>  CDIS h
< (MZ | PROCESSOR
(T ¢ RST CONTROL
- RSTO
¢ TLNO — > -
TLN1 o _
TRANSFER _| <& o~ < PL03
ATTRIBUTES -————— PL1S
IPLL
UPAL (W | INTERRUPT
RIW -——— CONTROL
<> MC68040
S1Z0 [ IPEND o,
« SZL 3 < AVEC__ ]
< LOCK
¢ LOCKE PSTO
¢ ClOUT PST1
- | PST2 o, | STATUSAND
waster | w5 PST3 3 CLOCKS
-<——
TRANSFER TIP BCLK4
CONTROL | €& < PO
B TA ¢ TCK ]
TEA ™S
SLAVE — TEA 5| <————
TRANSFER | — TCI 5] <2 - TEST
CONTROL Bl o] TDO
DLEL 5 ¢ TRST
<VCC— POWER SUPPLY
¢ GND

NOTES:
1. This signal is only available on the MC68040.
2. This signal is not available on the MC68EC040 and MC68EC040V.
3. These signals are different on power-up for the MC68LC040 and MC68EC040.
4. These signals are not available on the MC68040V and MC68EC040V.

Figure 5-1. Functional Signal Groups

5.1 ADDRESS BUS (A31-A0)

These three-state bidirectional signals provide the address of the first item of a bus
transfer (except for acknowledge transfers) when the M68040 is the bus master. When an
alternate bus master is controlling the bus, the processor examines (snoops) these signals
to determine whether the processor should intervene in the access to maintain cache
coherency.

The level on CDI S can select a multiplexed bus mode during processor reset, which
allows the address bus and data bus to be physically tied together for multiplexed bus

54 M68040 USER’S MANUAL MOTOROLA



applications. Refer to Section 7 Bus Operation for detailed information about the
relationship of the address bus to bus operation and the multiplexed bus mode. Refer to
Appendix A MC68LCO040 and Appendix B MC68ECO040 for details concerning the CDI S
level and multiplexed bus mode.

5.2 DATA BUS (D31-DO0)

These three-state bidirectional signals provide the general-purpose data path between the
M68040 and all other devices. The data bus can transfer 8, 16, or 32 bits of data per bus
transfer. During a burst transfer, the data lines are time-multiplexed to carry all 128 bits of
the burst request using four 32-bit transfers.

The level on CDI S can select a multiplexed bus mode during processor reset, which
allows the data bus and address bus to be physically tied together for multiplexed bus
applications. The level on MDI S can select a data latch mode during processor reset,
which allows the memory interface to specify when the processor should latch input data
through the DLE signal. Section 7 Bus Operation provides detailed information about the
relationship of the data bus to bus operation, the multiplexed bus mode, and the data latch
mode. Refer to Appendix A MC68LC040 and Appendix B MC68EC040 for details
concerning the CDI S level and multiplexed bus mode.

5.3 TRANSFER ATTRIBUTE SIGNALS

The following paragraphs describe the transfer attribute signals, which provide additional
information about the bus transfer. Refer to Section 7 Bus Operation for detailed
information about the relationship of the transfer attribute signals to bus operation.

5.3.1 Transfer Type (TT1, TTO)

The processor drives these three-state bidirectional signals to indicate the type of access
for the current bus transfer. During bus transfers by an alternate bus master, the
processor samples these signals to determine if it should snoop the transfer; only normal
and MOVE16 accesses can be snooped. Table 5-2 lists the definition of the transfer-type
encoding. The acknowledge access (TT1 =1 and TTO = 1) is used for both interrupt and
breakpoint acknowledge transfers, and for LPSTOP broadcast cycles on the MC68040V
and MC68ECO040V.

Table 5-2. Transfer-Type Encoding

TT1 TTO Transfer Type
0 0 Normal Access
0 1 MOVE16 Access
1 0 Alternate Logical Function Code Access
1 1 Acknowledge Access

MOTOROLA M68040 USER’S MANUAL 55



5.3.2 Transfer Modifier (TM2-TMO)

These three-state outputs provide supplemental information for each transfer type. Table
5-3 lists the encoding for normal and MOVE16 transfers, and Table 5-4 lists the encoding
for alternate access transfers. For interrupt acknowledge transfers, the TMx signals carry
the interrupt level being acknowledged; for breakpoint acknowledge transfers and
LPSTOP broadcast cycles on the MC68040V and MC68EC040V, the TMx signals are low.
When the M68040 is not the bus master, the TMx signals are set to a high-impedance
State.

Table 5-3. Normal and MOVE16 Access
Transfer Modifier Encoding

T™2 ™1 T™MO Transfer Modifier
0 0 0 Data Cache Push Access
0 0 1 User Data Access*
0 1 0 User Code Access
0 1 1 MMU Table Search Data Access
1 0 0 MMU Table Search Code Access
1 0 1 Supervisor Data Access*
1 1 0 Supervisor Code Access
1 1 1 Reserved

* MOVE16 accesses use only these encodings.

Table 5-4. Alternate Access Transfer Modifier Encoding

T™2 ™1 T™MO Transfer Modifier
0 0 0 Logical Function Code 0
0 0 1 Reserved
0 1 0 Reserved
0 1 1 Logical Function Code 3
1 0 0 Logical Function Code 4
1 0 1 Reserved
1 1 0 Reserved
1 1 1 Logical Function Code 7

5.3.3 Transfer Line Number (TLN1, TLNO)

These three-state outputs indicate which line in the set of four data cache lines is being
accessed for normal push and line data read accesses. TLNx signals are undefined for all
other accesses to instruction space and are placed in a high-impedance state when the
processor relinquishes the bus.

56 M68040 USER’S MANUAL MOTOROLA



The TLNx signals can be used in high-performance systems to build an external snoop
filter with a duplicate set of cache tags. The TLNx signals and address bus provide a
direct indication of the state of the data caches and can be used to help maintain the
duplicate tag store. The TLNx pins do not indicate the correct TLN number when an
instruction cache burst fill occurs.

5.3.4 User-Programmable Attributes (UPA1, UPAOQ)

The UPAX signals are three-state outputs. If they match the logical address, the user-
programmable attribute bits in the address translation entry or the transparent translation
register determine the UPAX signal level. These signals are only for normal code, data,
and MOVE16 accesses. For all other accesses, including table search and cache line
push accesses, which may result from a normal access, the UPAX signals are zero. If the
transparent translation register and the memory management unit are disabled, the UPAX
signals are also zero. When the M68040 is not the bus master, these signals are set to a
high-impedance state.

5.3.5 Read/Write (R/W

This bidirectional three-state signal defines the data transfer direction for the current bus
cycle. A high level indicates a read cycle, and a low level indicates a write cycle. The bus
snoop controller examines this signal when the processor is not the bus master.

5.3.6 Transfer Size (SIZ1, SIZ0)

These bidirectional three-state signals indicate the data size for the bus transfer. The bus
snoop controller examines this signal when the processor is not the bus master. Refer to
Section 7 Bus Operation for more information on the encoding of these signals.

5.3.7 Lock (LOCK)

This three-state output indicates that the current transfer is part of a sequence of locked
transfers for a read-modify-write operation. The external arbiter can use LOCK to prevent
an alternate bus master from gaining control of the bus and accessing the same operand
between processor accesses for the locked sequence of transfers. Although LOCK
indicates that the processor requests the bus be locked, the processor will give up the bus
if the external arbiter negates the BG signal. When the M68040 is not the bus master, the
LOCK signal is set to a high-impedance state. LOCK drives high before three-stating.
Refer to Section 7 Bus Operation for information on locked transfers.

5.3.8 Lock End (LOCKE)

This three-state output indicates that the current transfer is the last in a sequence of
locked transfers for a read-modify-write operation. The external arbiter can use LOCKE to
support arbitration between unrelated locked transfer sequences while still maintaining the
indivisible nature of each read-modify-write operation. When the M68040 is not the bus
master, the LOCKE signal is set to a high-impedance state. LOCKE drives high before

MOTOROLA M68040 USER’S MANUAL 57



three-stating. Do not use LOCKE if it is possible to retry the last write of a read-write-
modify operation.

5.3.9 Cache Inhibit Out (Cl OUT)

This three-state output reflects the state of the cache mode field in one of the address
translation caches and is asserted for accesses to noncachable pages to indicate that an
external cache should ignore the bus transfer. When the referenced logical address is
within an area specified for transparent translation, the cache mode field of the
appropriate transparent translation register controls the state of Cl OUT. Refer to Section
3 Memory Management Unit (Except MC6BEC040 and MC68EC040V) for more
information about the address translation caches and transparent translation. When the
M68040 is not the bus master, the Cl OUT signal is set to a high-impedance state.

5.4 BUS TRANSFER CONTROL SIGNALS

The following signals provide control functions for bus transfers. Refer to Section 7 Bus
Operation for detailed information about the relationship of the bus transfer control
signals to bus operation.

5.4.1 Transfer Start (TS)

The processor asserts this three-state bidirectional signal for one clock period to indicate
the start of each transfer. During alternate bus master accesses, the processor monitors
this signal to detect the start of each transfer to be snooped.

5.4.2 Transfer in Progress (TI B

This three-state output is asserted to indicate that a bus transfer is in progress and is
negated during idle bus cycles if the bus is still granted to the processor. When the
processor loses the bus, Tl Pnegates after completion of the current transfer and goes to
a high-impedance state. Note that Tl Pis kept asserted on back-to-back bus cycles.

5.4.3 Transfer Acknowledge (TA)

This three-state bidirectional signal indicates the completion of a requested data transfer
operation. During transfers by the M68040, TA is an input signal from the referenced slave
device indicating completion of the transfer. During alternate bus master accesses, TA is
normally three-stated to allow the referenced slave device to respond, and the M68040
samples it to detect the completion of each bus transfer. The M68040 can inhibit memory
and intervene in the access to source or sink data in its internal caches by asserting TA to
acknowledge the data transfer. This capability applies to alternate bus master accesses
that reference modified (dirty) data in the M68040 caches.

5.4.4 Transfer Error Acknowledge (TEA)

The current slave asserts this input signal to indicate an error condition for the bus
transaction. When asserted with TA, this signal indicates that the processor should retry

58 M68040 USER’S MANUAL MOTOROLA



the access. During alternate bus master accesses, the M68040 samples TEA to detect
completion of each bus transfer.

5.4.5 Transfer Cache Inhibit (TCl)

This input signal inhibits read data from being loaded into the M68040 instruction or data
caches. TCl is ignored during all writes and after the first data transfer for both burst line
reads and burst-inhibited line reads. TCl is also ignored during all alternate bus master
transfers.

5.4.6 Transfer Burst Inhibit (TBI)

This input signal indicates to the processor that the accessed device cannot support burst
mode accesses and that the requested line transfer should be divided into individual long-
word transfers. Asserting TBI with TA terminates the first data transfer of a line access,
which causes the processor to terminate the burst and access the remaining data for the
line as three successive long-word transfers. During alternate bus master accesses, the
M68040 samples the TBI to detect completion of each bus transfer.

5.5 SNOOP CONTROL SIGNALS

The following signals control the operation of the M68040 on-chip snoop logic. Section 4
Instruction and Data Caches provides information about the relationship of the snoop
control signals to the caches, and Section 7 Bus Operation discusses the relationship of
these signals to bus operation.

5.5.1 Snoop Control (SC1, SC0)

These input signals specify the snoop operation to be performed by the M68040 for an
alternate bus master transfer. If the M68040 is allowed to snoop an alternate bus master
read transfer, it can intervene in the access to supply data from its data cache when the
memory copy is stale, ensuring that the alternate bus master receives valid data. Writes
by an alternate bus master can also be snooped to either update the M68040 internal data
cache with the new data or invalidate the matching cache lines, ensuring that subsequent
M68040 reads access valid data. These signals are ignored when the processor is the bus
master.

5.5.2 Memory Inhibit (M)

This output signal prevents an alternate bus master from accessing possibly stale data in
memory while the M68040 is unable to respond. M is asserted during reset preventing
external memory from responding. When the SCx signals indicate an access should be
snooped, the M68040 keeps M asserted until it determines if intervention in the access is
required. If no intervention is required, M is negated and memory is allowed to respond to
complete the access. Otherwise, M remains asserted and the M68040 completes the
transfer as a slave. It updates its caches on a write or supplies data to the alternate bus
master on a read. M is negated when the M68040 is the bus master. During a snoop

MOTOROLA M68040 USER’S MANUAL 59



cycle, the M68040 ignores all TA and TEA assertions while M is asserted; when RSTI is
asserted, M is asserted.

5.6 ARBITRATION SIGNALS

The following control signals support requests to an external arbiter to become the bus
master. Refer to Section 7 Bus Operation for detailed information about the relationship
of the arbitration signals to bus operation.

5.6.1 Bus Request (BR)

This output signal indicates to the external arbiter that the processor needs to become bus
master for one or more bus transfers. BR is negated when the M68040 begins an access
to the external bus with no other accesses pending, and BR remains negated until another
access is required. There are some situations in which the M68040 asserts BR and then
negates it without having run bus transfers; this is a disregard request condition. Refer to
Section 7 Bus Operation for details about this state.

5.6.2 Bus Grant (BG)

This input signal from an external arbiter indicates that the bus is available to the M68040
as soon as the current bus access completes. BG must be asserted and BB must be
negated (indicating the bus is free) before the M68040 assumes ownership of the bus.

5.6.3 Bus Busy (BB)

This three-state bidirectional signal indicates that the bus is currently owned. BB is
monitored as a processor input to determine when a alternate bus master has released
control of the bus. BG must be asserted and BB must be negated (indicating the bus is
free) before the M68040 asserts BB as an output to assume ownership of the bus. The
processor keeps BB asserted until the external arbiter negates BG and the processor
completes the bus transfer in progress. When releasing the bus, the processor negates
BB, then sets it to a high-impedance state for use again as an input.

5.7 PROCESSOR CONTROL SIGNALS

The following signals control disabling caches and memory management units (MMUS)
and support processor and external device initialization.

5.7.1 Cache Disable (CDI §

CDI S dynamically disables the on-chip caches on the next internal cache access
boundary. CDI S does not flush the data and instruction caches; entries remain unaltered
and become available after CDI S is negated. The assertion of CDI S does not affect
snooping. During a processor reset, the level on CDI S is latched and used to select the
normal bus mode (CDI S high) or multiplexed bus mode (CDI S low). Refer to Section 4
Instruction and Data Caches for information about the caches and to Section 7 Bus
Operation for information about the multiplexed bus mode. Refer to Appendix E

510 M68040 USER’S MANUAL MOTOROLA



MC68040 Floating-Point Emulation (MC68040FPSP) for descriptions of emulator use of
this signal.

5.7.2 Reset In (RSTI)

This input signal causes the M68040 to enter reset exception processing. The RSTI signal
is an asynchronous input that is internally synchronized to the next rising edge of the
BCLK signal. All three-state signals are set to the high-impedance state, and all outputs,
except M, are negated when RSTI is recognized. The assertion of RSTI does not affect
the test pins. Refer to Section 7 Bus Operation for a description of reset operation and to
Section 8 Exception Processing for information about the reset exception.

5.7.3 Reset Out (RSTO

The M68040 asserts this output during execution of the RESET instruction to initialize
external devices. Refer to Section 7 Bus Operation for a description of reset out bus
operation.

5.8 INTERRUPT CONTROL SIGNALS

The following signals control the interrupt functions.

5.8.1 Interrupt Priority Level (I PL24+PLQ

These input signals provide an indication of an interrupt condition and the encoding of the

interrupt level from a peripheral or external prioritizing circuitry. | PL2is the most significant

bit of the level number. For example, since the | PL signals are active low, | PL2-1 PLO = $5
corresponds to an interrupt request at interrupt priority level 2.

During a processor reset, the levels on the | PL lines are latched and used to select the
output driver characteristics for three signal groups listed in Table 5-5. Refer to Section 8
Exception Processing for information on interrupts and to Section 11 MC68040
Electrical and Thermal Characteristics for information on driver characteristics. Refer to
Appendix A MC68LC040 and Appendix B MC68EC040 for how these signals are
different on power-up.

Table 5-5. Output Driver Control Groups

Signal Output Buffers Controlled
I PL2 Data-Bus: D31-D0

I PL1 Address Bus and Transfer Attributes:
A31-A0, Cl QUT, LOCK, LOCKE , R/W SIZ1-SIZ0,
TLN1-TLNO, TM2-TMO, TT1-TTO0, UPA1-UPAO

| PLO Miscellaneous Control Signals:
BB, BR, | PEND, M, PST3-PSTO, RSTO, TA, TDO, TIR TS

NOTE: High input level = small buffers enabled; low input level = large buffers enabled.

MOTOROLA M68040 USER’S MANUAL 511



5.8.2 Interrupt Pending Status (I PEND)

This output signal indicates that an interrupt request has been recognized internally and
exceeds the current interrupt priority mask in the status register (SR). External devices
(other bus masters) can use | PEND to predict processor operation on the next instruction
boundaries. | PEND is not intended for use as an interrupt acknowledge to external
peripheral devices. Refer to Section 7 Bus Operation for bus information related to
interrupts and to Section 8 Exception Processing for interrupt information.

5.8.3 Autovector (AVEC)

This input signal is asserted with TA during an interrupt acknowledge transfer to request
internal generation of the vector number. Refer to Section 7 Bus Operation for more
information about automatic vectors.

5.9 STATUS AND CLOCK SIGNALS

The following paragraphs explain the signals that provide timing, test control, and the
internal processor status.

5.9.1 Processor Status (PST3-PSTO0)

These outputs indicate the internal execution unit’'s status. The timing is synchronous with
BCLK, and the status may have nothing to do with the current bus transfer. The PSTx
signal is updated depending on the type of PSTx encoding. There are two classes of
PSTx encodings. The first class is associated with instruction boundaries, and the second
class indicates the processor’'s present status. Table 5-6 lists the definition of the
encodings.

The encodings 0, 8, 4, 5, C, D, E, and F indicate the present status and do not reflect a
specific stage of the pipe. These encodings persist as long as the processor stays in the
indicated state. The default encoding O (user) or 8 (supervisor) is indicated if none of the
above conditions apply. The encodings 1, 2, 3, 9, A, and B belong to the first class of
PSTx encoding. This class indicates that the instruction is in its last instruction execution
stage. These encodings exist for only one BCLK period per instruction and are mutually
exclusive.

512 M68040 USER’S MANUAL MOTOROLA



Table 5-6. Processor Status Encoding

Hex PST3 | PST2 | PST1 | PSTO Internal Status
0 0 0 0 0 User, Start/Continue Current Instruction
1 0 0 0 1 User, End Current Instruction
2 0 0 1 0 User, Branch Not Taken/End Current Instruction
3 0 0 1 1 User, Branch Taken/End Current Instruction
4 0 1 0 0 User, Table Search
5 0 1 0 1 Halted State (Double Bus Fault)
6 0 1 1 0 Low-Power Stop Mode (Supervisor Instruction)*
7 0 1 1 1 Reserved
8 1 0 0 0 Supervisor, Start/Continue Current Instruction
9 1 0 0 1 Supervisor, End Current Instruction
A 1 0 1 0 Supervisor, Branch Not Taken/End Current Instruction
B 1 0 1 1 Supervisor, Branch Taken/End Current Instruction
C 1 1 0 0 Supervisor, Table Search
D 1 1 0 1 Stopped State (Supervisor Instruction)
E 1 1 1 0 RTE Executing
F 1 1 1 1 Exception Stacking

NOTE: *MC68040V and MCG68SECO040V only.

When a ‘branch taken/end current instruction’ is indicated, it means that a change of
instruction flow is pending. Along with the following instructions, an exception stacking
(encoding F) sequence is ended with the ‘supervisor, branch taken/end current instruction’
encoding as though it were a virtual JMP instruction. This includes all the possible
exceptions listed in the processor’s vector table. Instructions that cause a ‘branch
taken/end current instruction’ encoding when they are executed are as follows:

ANDI to SR DBcc (Taken) MOVE to SR RTD
Bcc (Taken) FBcc (Taken) MOVE USP RTE
BRA FDBcc (Always) MOVEC RTR
BSR FMOVEM Rc,MRn MOVES RTS
CAS FMOVEM FPm,MRn NOP STOP
CAS2 FSAVE ORI to SR TAS
CINV IJMP PFLUSH

CPUSH JSR PTEST

The Bcc (not taken) and DBcc (not taken) are the only instructions that cause a ‘branch
not taken/end current instruction’ encoding. Note that the FBcc (not taken) is not included
in this category. The FBcc (not taken) instruction ends with an ‘end current instruction’
encoding. All other instructions and conditions end with the ‘end current instruction’
encoding. For instance, if the processor is running back-to-back single clock instructions,
the encoding ‘end current instruction’ remains asserted for as many clock cycles as
instructions.

MOTOROLA M68040 USER’S MANUAL 513



The following examples are for PSTx encodings:

1. An access error terminates an instruction such that the instruction execution stage is
not reached. In this case, an ‘end current instruction’ is not indicated. Exception
processing starts, the exception stacking status is indicated, and then the virtual
JMP causes the ‘supervisor, branch taken/end current instruction’ encoding.

2. An FTRAPcc that does not take an exception ending with the ‘end current
instruction’ encoding. The exception stacking status is indicated and then reaches
the ‘supervisor, branch taken/end current instruction’ encoding if the FTRAPcc ends
in an exception.

3. Two simultaneous interrupt exception processing sequences follow an ADD
instruction. The ADD instruction ends with ‘end current instruction’, followed by
exception stacking, followed by ‘branch taken/end current instruction’, followed by
exception stacking, followed by ‘branch taken/end current instruction’.

4. An RTE instruction follows an ADD instruction. The ‘end current instruction’ is
followed by RTE executing followed by a branch taken/end current instruction.

5.9.2 Bus Clock (BCLK)

This input signal is used as a reference for all bus timing. It is a TTL-compatible signal and
cannot be gated off. Refer to Section 11 MC68040 Electrical and Thermal
Characteristics for electrical specifications.

5.9.3 Processor Clock (PCLK)—Not on MC68040V and MC68EC040V

PCLK is used to derive all internal timing. This clock is also TTL compatible and cannot be
gated off. Refer to Section 11 MC68040 Electrical and Thermal Characteristics for
electrical specifications.

5.10 MMU DISABLE (MDI S)—NOT ON MC68EC040

The MMU disable signal dynamically disables the translation of addresses by the MMUs.
The assertion of MDI S does not flush the address translation caches (ATCs); ATC entries
become available again when MDI S is negated. During a processor reset, the level on
MDIS is latched and used to select the normal data latch mode (MDI S high) or DLE mode
(MDI S low). Refer to Section 3 Memory Management Unit (Except MC68ECO040 and
MCG68EC040V) for a description of address translation and to Section 7 Bus Operation
for information about DLE mode.

5.11 DATA LATCH ENABLE (DLE)—ONLY ON MC68040

This input signal is used in DLE mode to latch the input data bus on read transfers. DLE
mode can be used to support asynchronous memory interfaces by allowing the interface
to specify when data should be latched instead of requiring data to be valid on the rising
edge of BCLK.

514 M68040 USER’S MANUAL MOTOROLA



5.12 TEST SIGNALS

The M68040 includes dedicated user-accessible test logic that is fully compatible with the
IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture. Problems
associated with testing high-density circuit boards have led to the development of this
standard under the IEEE Test Technology Committee and Joint Test Action Group (JTAG)
sponsorship. The M68040 implementation supports circuit board test strategies based on
this standard. However, the JTAG interface is not intended to provide an in-circuit test to
verify M68040 operations; therefore, it is impossible to test M68040 operations using this
interface. Section 6 IEEE 1149.1 Test Access Port (JTAG) describes the M68040
implementation of the IEEE 1149.1 and is intended to be used with the supporting IEEE
document.

5.12.1 Test Clock (TCK)

This input signal is used as a dedicated clock for the test logic. Since clocking of the test
logic is independent of the normal operation of the MC68040, several other components
on a board can share a common test clock with the processor even though each
component may operate from a different system clock. The design of the test logic allows
the test clock to run at low frequencies, or to be gated off entirely as required for test
purposes.

5.12.2 Test Mode Select (TMS)

This input signal is decoded by the TAP controller and distinguishes the principle
operationas of the test support circuitry.

5.12.3 Test Data In (TDI)

This input signal provides a serial data input to the TAP.

5.12.4 Test Data Out (TDO)

This three-state output signal provides a serial data output from the TAP. The TDO output
can be placed in a high-impedance mode to allow parallel connection of board-level test
data paths.

5.12.5 Test Reset (TRST )—Not on MC68040V and MC68EC040V

This input signal provides an asynchronous reset of the TAP controller.

5.13 POWER SUPPLY CONNECTIONS

The M68040 requires connection to a V¢ power supply, positive with respect to ground.
The V¢ and ground connections are grouped to supply adequate current to the various
sections of the processor. Section 12 Ordering Information and Mechanical Data
describes the groupings of V¢ and ground connections.

MOTOROLA M68040 USER’S MANUAL 515



5.14 SIGNAL SUMMARY

Table 5-7 provides a summary of the electrical characteristics of the signals discussed in
this section.

Table 5-7. Signal Summary

Signal Name Mnemonic Type Active Three-State
Address Bus A31-A0 Input/Output High Yes
Autovector AVEC Input Low —
Bus Busy BB Input/Output Low Yes
Bus Clock BCLK Input — —
Bus Grant BG Input Low —
Bus Request BR Output Low No
Cache Disable cD s Input Low —
Cache Inhibit Out a aur Output Low Yes
Data Bus D31-D0 Input/Output High Yes
Data Latch Enablel DLE Input High —
Ground GND Ground — —
Interrupt Pending | PEND Output Low No
Interrupt Priority Level? | PL2- PLO Input Low —
Bus Lock LOCK Output Low Yes
Bus Lock End LOCKE Output Low Yes
Memory Inhibit M Output Low No
MMU Disable3 MOl S Input Low —
Processor Clock PCLK Input — —
Processor Status PST3-PSTO Output High No
Read/Write RIW Input/Output High/Low Yes
Reset In RSTI Input Low —
Reset Out RSTO Output Low No
Snoop Control SC1, SCo Input High —
Transfer Acknowledge TA Input/Output Low Yes
Transfer Burst Inhibit TBI Input Low —
Transfer Cache Inhibit T4 Input Low —
Transfer Error Acknowledge TEA Input Low —
Transfer in Progress TIP Output Low Yes
Transfer Line Number TLN1, TLNO Output High Yes
Transfer Modifier TM2-TMO Output High Yes
Transfer Size SIZ1, SIz0 Input/Output High Yes
M68040 USER’'S MANUAL MOTOROLA




Table 5-7 Signal Summary (Continued)

Signal Name Mnemonic Type Active Three-State

Transfer Start TS Input/Output Low Yes
Transfer Type TT1, TTO Input/Output High Yes
Test Clock TCK Input — —
Test Data Input TDI Input High —
Test Data Output TDO Output High Yes
Test Mode Select T™MS Input High —
Test Reset TRST Input Low —
User-Programmable Attributes UPA1, UPAO Output High Yes
Power Supply Vee Power — —
NOTES:

1. This signal is not available on the MC68LC040 and MC68EC040.
2. These signals are different on power-up for the MC68LC040 and MC68EC040.
3. This signal is not available on the MC68EC040.

MOTOROLA

M68040 USER’S MANUAL

517



SECTION 6
IEEE 1149.1A TEST ACCESS PORT (JTAG)

NOTE

This section does not apply to the MC68040V and
MC6BEC040V. Refer to Appendix C MC68040V and
MCG68EC040 for details. All references to M68040 in this
section only, refer to the MC68040, MC68LC040, and
MC68EC040.

The M68040 includes dedicated user-accessible test logic that is fully compatible with the
IEEE standard 1149.1A Standard Test Access Port and Boundary Scan Architecture.
Problems associated with testing high-density circuit boards have led to the standard’s
development under the sponsorship of the IEEE Test Technology Committee and the
Joint Test Action Group (JTAG).

This section is to be used in conjunction with the supporting IEEE document and includes
those chip-specific items that the IEEE standard requires to be defined and additional
information specific to the M68040 implementation. For example, the IEEE standard
1149.1A test access port (TAP) controller states are referenced in this section but are not
described. For these details and application information regarding the standard, refer to
the IEEE standard 1149.1A document.

The M68040 implementation supports circuit board test strategies based on the standard.
The test logic utilizes static logic design and is system logic independent of the device.
The M68040 implementation provides capabilities to:

a. Perform boundary scan operations to test circuit board electrical continuity,
b. Bypass the M68040 by reducing the shift register path to a single cell,

c. Sample the M68040 system pins during operation and transparently shift out the
result,

d. Disable the output drive to output-only pins during circuit board testing, and
e. Select one of two output drivers on a pin-by-pin basis.

NOTE

The IEEE standard 1149.1A test logic cannot be considered
completely benign to those planning not to use this capability.
Certain precautions must be observed to ensure that this logic
does not interfere with system operation. Refer to 6.5
Disabling the IEEE Standard 1149.1A Operation.

MOTOROLA M68040 USER’S MANUAL 6-1



6.1 OVERVIEW

Figure 6-1 illustrates a block diagram of the M68040 implementation of IEEE standard
1149.1A. The test logic includes a 16-state dedicated TAP controller. These 16 controller
states are defined in detail in the IEEE standard 1149.1A, but only 8 are included in this
section.

Test-Logic-Reset  Run-Test/Idle

Capture-IR Capture-DR
Update-IR Update-DR
Shift-IR Shift-DR

The TAP controller provides access to five dedicated signal pins:
TCK—A test clock input that synchronizes the test logic.

TMS—A test mode select input with an internal pullup resistor sampled on the rising
edge of TCK to sequence the TAP controller.

TDI—A test data input with an internal pullup resistor sampled on the rising edge of
TCK.

TDO—A three-state test data output actively driven only in the shift-IR and shift-DR
controller states that changes on the falling edge of TCK.

TRST —An active-low asynchronous reset with an internal pullup resistor that forces
the TAP controller into the test-logic-reset state.

The test logic also includes an instruction shift register and two test data registers, a
boundary scan register and a bypass register. The boundary scan register links all device
signal pins into the instruction shift register.

TEST DATA REGISTERS
183 0
[ 184-BIT BOUNDARY SCAN REGISTER

DI A

[ gvpass |
1 BYPASS I

MUX

LATCHED DECODER |J
A A A

2 0 x
% =) TDO

3-BIT INSTRUCTION SHIFT REGISTER
j A

T™MS

TCK

TAP
CONTROLLER

I

TRST —

Figure 6-1. M68040 Test Logic Block Diagram

6-2 M68040 USER’S MANUAL MOTOROLA



6.2 INSTRUCTION SHIFT REGISTER

The M68040 IEEE standard 1149.1A implementation includes a 3-bit instruction shift
register without parity. The register shifts one of eight instructions, which can either select
the test to be performed or access a test data register, or both. Data is transferred from
the instruction shift register to latched decoded outputs during the update-IR state. The
instruction shift register is reset to all ones in the TAP controller test-logic-reset state,
which is equivalent to selecting the BYPASS instruction. During the capture-IR state, the
binary value 001 is loaded into the parallel inputs of the instruction shift register.

The M68040 IEEE standard 1149.1A implementation includes three mandatory public
instructions (BYPASS, SAMPLE/PRELOAD, and EXTEST) and four manufacturer's public
instructions. The four manufacturer’s public instructions provide the capability to disable all
device output drivers, operate the device in a BYPASS configuration without a system
clocking requirement, and select one of two output drive capabilities on a pin-by-pin basis.
The M68040 implementation does not support the optional standard public instructions.
Table 6-1 lists the three bits used in the instruction shift register to decode the instructions
and their related encodings. Note that the least significant bit of the instruction (bit 0) is the
first bit to be shifted into the instruction shift register.

Table 6-1. IEEE Standard 1149.1A Instructions

Bit2 | Bitl | Bit0O Instruction Selected Test Data Register Accessed
0 0 0 EXTEST Boundary Scan
0 0 1 HIGHZ Bypass
0 1 0 SAMPLE/PRELOAD Boundary Scan
0 1 1 DRVCTL.T Boundary Scan
1 0 0 SHUTDOWN Bypass
1 0 1 PRIVATE Bypass
1 1 0 DRVCTL.S Boundary Scan
1 1 1 BYPASS Bypass

EXTEST, HIGHZ, DRVCTL.T, SHUTDOWN, and PRIVATE have a PCLK and BCLK
restriction. Failure to comply with this restriction results in potential internal damage to the
device (see 6.4 Restrictions). Once the restriction is complied with, SHUTDOWN,
EXTEST, HIGHZ, and DRVCTL.T can be entered regardless of order. The system clocks
(PCLK and BCLK) must be kept running while in the SAMPLE/PRELOAD, DRVCLT.S,
and BYPASS instructions. Failure to do so could result in potential internal damage to the
device.

6.2.1 EXTEST

The external test instruction (EXTEST) selects the 184-bit boundary scan register. This
instruction also activates two internal functions that are intended to protect the device from
potential damage while performing boundary scan operations.

MOTOROLA M68040 USER’S MANUAL 6-3



EXTEST asserts internal reset for the M68040 system logic to force a predictable benign
internal state and activates an internal keep-alive clock to protect the device from potential
internal damage. This internal clock eliminates the requirement to keep the system clocks
(PCLK and BCLK) running during EXTEST operations and allows these two system clock
pins to be included in boundary scan testing.

6.2.2 HIGHZ

The HIGHZ instruction is an optional instruction provided as a Motorola public instruction
to anticipate the need to backdrive output pins during circuit board testing. The HIGHZ
instruction activates an internal keep-alive clock, asserts internal system reset, selects the
bypass register, and forces all output and bidirectional pins to the high-impedance state.

Asserting TRST or holding TMS high and clocking TCK for at least five rising edges
causes the TAP controller to enter the test-logic-reset state. Using only the TMS and TCK
pins and the capture-IR and update-IR states invokes the HIGHZ instruction. This scheme
works because the value captured by the instruction shift register during the capture-IR
state is identical to the HIGHZ opcode.

6.2.3 SAMPLE/PRELOAD

The SAMPLE/PRELOAD instruction provides two separate functions. First, it provides a
means to obtain a sample system data and control signal. Sampling occurs on the rising
edge of TCK in the capture-DR state. The user can observe the data by shifting it through
the boundary scan register to output TDO using the shift-DR state. Both the data capture
and the shift operations are transparent to system operation. The user must provide some
form of external synchronization to achieve meaningful results since there is no internal
synchronization between TCK and BCLK.

The second function of the SAMPLE/PRELOAD instruction is to initialize the boundary
scan register output cells before selecting EXTEST, which is accomplished by ignoring
data being shifted out of TDO while shifting in initialization data. The update-DR state can
then be used to initialize the boundary scan register and ensure that known data and
output state will occur on the outputs after entering the EXTEST instruction.

6.2.4 DRVCTL.T

The DRVCTL.T instruction is a Motorola public instruction that provides the ability to select
one of two output drivers on a pin-by-pin basis. It is intended for use with EXTEST or
SHUTDOWN to provide an IEEE-compatible environment to select the output drivers for
board-level test environments. This instruction allows data in the boundary scan register to
select the output driver. A logic zero in the appropriate boundary scan output cell (see
Table 6-1) selects the large buffer, and a logic one selects the small buffer (see Section 7
Bus Operation). Data captured in the capture-DR state for this instruction is identical to
that captured during EXTEST: output data cells for outputs and pin state for inputs. Note
that no data relevant to the drive control function is captured during the capture-DR state.

6-4 M68040 USER’S MANUAL MOTOROLA



The DRVCTL.T instruction is intended to be used in test applications in conjunction with
the EXTEST and SHUTDOWN instructions and not for system applications. It therefore
differs from DRVCTL.S in that this instruction invokes the keep-alive clock, asserts the
internal reset, and the test logic, not the system logic, has control of the 1/0O pins.

When the system logic has control of signal pin I/O directions and levels, the drive control
latch is loaded from the | PL2-1 PLO pins during the negation ofRSTI . DRVCTL.T overwrites
this value with boundary scan data in the update-DR state. The selected output driver
state remains unchanged if only the DRVCTL.T, EXTEST, or SHUTDOWN instructions
are invoked. If an instruction other than one of these three is executed, the system logic
protocol regains control of the output driver state and overwrites the value that the
DRVCTL.T instruction previously defined.

Note that the output drive control state does not change while the 1149.1A instruction is
one of the three instructions DRVCTL.T, EXTEST, or SHUTDOWN. If DRVCTL.T changes
the output driver state and then the test-logic-reset state is entered, the instruction shift
register is reset to BYPASS, and the system logic can change the output driver state.

6.2.5 SHUTDOWN

This instruction provides an opcode for automatic test pattern generation (ATPG)
programs to cope with the clocking protocol required to stop the system clocks. This
instruction asserts internal system reset, activates an internal keep alive clock, and selects
the bypass register. Internal decoding of the instruction selects the bypass register, and
the test logic, not the system logic, has control of the 1/O ports. Note that initializing the
boundary scan data register and then selecting the SHUTDOWN instruction provides a
clamping function. The test logic controls the I/O state, and the bypass register is
selected.

6.2.6 PRIVATE

Motorola reserves this instruction for manufacturing use. The instruction does not change
pin I/O as defined for system operation.

6.2.7 DRVCTL.S

The DRVCTL.S instruction controls the output driver selection on a pin-by-pin basis. This
instruction allows data in the boundary scan register to select the output driver during the
update-DR state when the system logic has control of the signal I/0O directions and levels.
A logic zero selects the large buffer or driver; a logic one selects the small buffer or driver
(see Table 6-1).

The DRVCTL.S instruction is intended to be used in system applications and not in test
applications. In system applications, the system logic has control of the signal pin I/O
directions and levels; whereas, in test applications, the 1149.1A test logic has control of it.
It therefore differs from DRVCTL.T in that this instruction does not invoke the internal keep
alive clock, it does not assert the internal reset, and the system logic, not the test logic,

MOTOROLA M68040 USER’S MANUAL 6-5



has control of the I/O pins. The 1149.1A interface is transparent to system operation
except for drive control selection during execution of this instruction.

When the system logic has control of the signal I/O directions and levels, the drive control
latches are loaded from the | PL2+ PLOpins at the negation of the RSTI signal. After RSTI
has been negated, and the 128-clock internal reset cycle has expired (see Section 7 Bus
Operation), the DRVCTL.S instruction is executed. Each drive control latch is modified
during the update-DR state. Any subsequent RSTI signal negation while in a system
configuration (i.e., system logic has control of the signal 1/0O directions and levels) can
cause the drive control latches to be overwritten with new | PL signal values. The system
bus can be suspended in a wait state while this function is being performed.

6.2.8 BYPASS

The BYPASS instruction selects the single-bit bypass register, creating a single-bit shift-
register path from TDI to the bypass register to TDO. The instruction enhances test
efficiency when a component other than the M68040 becomes the device under test.
When the bypass register is initially selected, the instruction shift register stage is set to a
logic zero on the rising edge of TCK following entry into the capture-DR state. Therefore,
the first bit to be shifted out after selecting the bypass register is always a logic zero.
Figure 6-2 illustrates the bypass register.

SHIFT DR —Lﬁ

0 —1

MUX 1D
FROMTDI —1 —— TO TDO

D C1
,_

Figure 6-2. Bypass Register

CLOCK DR

6.3 BOUNDARY SCAN REGISTER

The 184-bit boundary scan register uses the TAP controller to scan user-defined values
into the output buffers, capture values presented to input pins, and control the direction of
bidirectional pins. The instruction shift register cell nearest TDO (i.e., first to be shifted out)
is defined as bit zero. The last bit to be shifted out is bit 183. This register includes cells
for all device signal pins and clock pins along with associated control signals.

The M68040 boundary scan register consists of three cell structure types, O.Latch, I.Pin,
and 10.Ctl, that are associated with a boundary scan register bit. All boundary scan output
cells capture the logic level of the device output latch during the capture-DR state. Figures
6-3 through 6-5 illustrate these three cell types. Figure 6-6 illustrates the general
arrangement of these cells.

6-6 M68040 USER’S MANUAL MOTOROLA



1=EXTEST, DRVCTL.T,

TO OUTPUT

AND SHUTDOWN
0= OTHERWISE SHIFT DR TONEXTCELL  DRIVER SELECT
A A
Gl
DATA FROM T
SYSTEM LOGIC MUX
,— 1
o1
1D
—1 a [
MUX 1D |_
] o 1D
—[>c1
FROM CLOCK DR UPDATE DR2 UPDATE DRL
LAST (DRVCTLX)  (DRVCTLX)
CELL

Figure 6-3. Output Latch Cell (O.Latch)

TO NEXT CELL
T0 A

SYSTEM <&
LOGIC

1D

— |

CLOCK DR

- e

MUX

INPUT
PIN

FROM  SHIFTDR

LAST
CELL

Figure 6-4. Input Pin Cell (1.Pin)

MOTOROLA

M68040 USER’S MANUAL

TO OUTPUT
BUFFER

6-7



6-8

1=EXTEST
0=0THERWISE SHIFT DR

TO NEXT CELL
L A
[c1 |
OUTPUTCONTROL [ 0 QUTPUT
FROM SYSTEM LOGIC MUX > BUFFER
- ! (1=DRIVE)
—[e1 |
1
MUX 1D
1
o 1D
c1
’—k :
FROM CLOCK DR RESET
LAST

CELL UPDATE DR

Figure 6-5. Output Control Cells (10.Ctl)

TO NEXT CELL
OUTPUT
ENABLE —> 1/10.CTL ]
/
EN
OUTPUT - INPUT
DATA —> O.LATCH > PIN
/
INPUT
< «<
DATA | PIN
R
FROM TO NEXT

LAST CELL PIN PAIR

Figure 6-6. General Arrangement of Bidirectional Pins

M68040 USER’S MANUAL

MOTOROLA



All M68040 bidirectional pins include two boundary scan data cells, an input, and an
output. One of five associated boundary scan control cells controls each bidirectional pin.
If these cells contain a logic one, the associated bidirectional or three-state pin will be
configured as an output and enabled. The cell captures the current value during the
capture-DR state. All five control cells are reset (i.e., logic zero) in the test-logic-reset
state. The five bidirectional/three-state control cells and their boundary scan register bit
positions are as follows:

Cell Name Bit
io.ab 150
io.db 151
i0.2 154
io.1 155
i0.0 156

Table 6-2 lists the 184 boundary scan bit definitions. The first column in the table defines
the bit position in the boundary scan register. The second column references one of the
three cell types. The third column lists the pin name for all pin-related cells. The fourth
column lists the system pin type for convenience where TS-Output indicates a three-state
output pin and 1I/O indicates a bidirectional pin. The last column lists the name of the
associated control bit of the boundary scan register for three-state output and bidirectional
pins. The boundary scan description language (BSDL) type for each cell can be found in
note 1.

MOTOROLA M68040 USER’S MANUAL 6-9



Table 6-2. Boundary Scan Bit Definitions?

Pin/Cell Output Pin/Cell Output
Bit Cell Type Name Pin Type |[Ctrl Cell Bit Cell Type Name Pin Type |[Ctrl Cell
0 O.Latch RSTO Output?  |(Note 3) 37 | o.Latch A24 1102 i0.ab
1 O.Latch | PEND Output2 (Note 3) 38 I.Pin A24 1/0 io.ab
2 O.latch | cour | TS-Output? | i0.0 39 | O.Latch A25 1102 io.ab
3 O.Latch UPAO TS-Output2 i0.0 40 I.Pin A25 1/0 io.ab
4 O.Latch UPA1 | TS-Output? | 0.0 41 | O.Latch A26 1102 io.ab
5 O.Latch TTO 1102 i0.0 42 I.Pin A26 /0 io.ab
6 I.Pin TT0 /0 0.0 43 | oO.Latch A27 1102 i0.ab
7 O.Latch TT1 1102 0.0 44 I.Pin A27 /0 i0.ab
8 I.Pin TT1 /0 i0.0 45 | O.Latch A28 1102 i0.ab
9 O.Latch Al0 1102 io.ab 46 I.Pin A28 110 io.ab
10 I.Pin A10 /0 i0.ab 47 | o.Latch A29 1102 i0.ab
11 | O.Latch A1l 1102 i0.ab 48 I.Pin A29 /0 i0.ab
12 I.Pin A1l /0 i0.ab 49 | o.Latch A30 1102 i0.ab
13 | O.Latch Al12 1102 i0.ab 50 I.Pin A30 /0 i0.ab
14 I.Pin A12 /0 i0.ab 51 | O.Latch A31 1102 i0.ab
15 | O.Latch A13 1102 i0.ab 52 I.Pin A31 /0 i0.ab
16 I.Pin A13 /0 i0.ab 53 | O.Latch DO 1102 io.db
17 | O.Latch Al4 1102 i0.ab 54 | o.Latch D1 1102 io.db
18 I.Pin Al4 /0 i0.ab 55 | O.Latch D2 1102 io.db
19 | O.Latch A15 1102 i0.ab 56 | O.Latch D3 1102 io.db
20 I.Pin A15 /0 i0.ab 57 | o.Latch D4 1102 io.db
21 | O.Latch Al6 1102 i0.ab 58 | O.Latch D5 1102 io.db
22 I.Pin A16 /0 i0.ab 59 | O.Latch D6 1102 io.db
23 | o.Latch A17 1102 i0.ab 60 | O.Latch D7 1102 io.db
24 I.Pin A17 /0 i0.ab 61 | O.Latch D8 1102 io.db
25 | O.Latch A18 1102 i0.ab 62 | O.Latch D9 1102 io.db
26 I.Pin A18 /0 i0.ab 63 | O.Latch D10 1102 io.db
27 | O.Latch A19 1102 i0.ab 64 | O.Latch D11 1102 io.db
28 I.Pin A19 /0 i0.ab 65 | O.Latch D12 1102 io.db
29 | O.Latch A20 1102 i0.ab 66 | O.Latch D13 /02 io.db
30 I.Pin A20 /0 i0.ab 67 | O.Latch D14 1102 io.db
31 |oO.Latch A21 1102 i0.ab 68 | O.Latch D15 1102 io.db
32 I.Pin A21 /0 i0.ab 69 | o.Latch D16 /02 io.db
33 | O.Latch A22 1102 i0.ab 70 | O.Latch D17 1102 io.db
34 I.Pin A22 /0 i0.ab 71 | O.Latch D18 1102 io.db
35 | O.Latch A23 /02 i0.ab 72 | O.Latch D19 /02 i0.db
36 I.Pin A23 /0 i0.ab 73 | O.Latch D20 1102 io.db

6-10 M68040 USER’S MANUAL MOTOROLA



Table 6-2. Boundary Scan Bit Definitions (Continued)

Pin/Cell Output Pin/Cell Output
Bit Cell Type Name Pin Type |[Ctrl Cell Bit Cell Type Name Pin Type |[Ctrl Cell
74 | O.Latch D21 /02 io.db 111 I.Pin D26 /0 io.db
75 | O.Latch D22 1102 io.db 112 I.Pin D27 /0 io.db
76 | o.Latch D23 1102 io.db 113 I.Pin D28 /0 io.db
77 | O.Latch D24 /02 io.db 114 I.Pin D29 /0 io.db
78 | O.Latch D25 1102 io.db 115 I.Pin D30 /0 io.db
79 | o.Latch D26 1102 io.db 116 I.Pin D31 /0 io.db
80 | O.Latch D27 1102 io.db 117 | O.Latch A9 1102 i0.ab
81 | O.Latch D28 1102 io.db 118 I.Pin A9 /0 i0.ab
82 | o.Latch D29 1102 io.db 119 | O.Latch A8 /02 io.ab
83 | O.Latch D30 1102 io.db 120 I.Pin A8 /0 i0.ab
84 | O.Latch D31 1102 io.db 121 | O.Latch A7 1102 i0.ab
85 I.Pin DO /0 io.db 122 I.Pin A7 /0 i0.ab
86 I.Pin D1 /0 io.db 123 | O.Latch A6 1102 i0.ab
87 I.Pin D2 1/0 io.db 124 I.Pin A6 /0 io.ab
88 I.Pin D3 /0 io.db 125 | O.Latch A5 /02 i0.ab
89 I.Pin D4 /0 io.db 126 I.Pin A5 /0 i0.ab
90 I.Pin D5 /0 io.db 127 | O.Latch A4 1102 i0.ab
91 I.Pin D6 /0 io.db 128 I.Pin A4 /0 i0.ab
92 I.Pin D7 /0 io.db 129 | O.Latch A3 1102 i0.ab
93 I.Pin D8 /0 io.db 130 I.Pin A3 /0 io.ab
94 I.Pin D9 /0 io.db 131 | O.Latch A2 1102 i0.ab
95 I.Pin D10 /0 io.db 132 I.Pin A2 /0 i0.ab
96 I.Pin D11 /0 io.db 133 | O.Latch Al 1102 i0.ab
97 I.Pin D12 /0 io.db 134 I.Pin Al /0 i0.ab
98 I.Pin D13 /0 io.db 135 | O.Latch AO 1102 i0.ab
99 I.Pin D14 1/0 io.db 136 I.Pin A0 /0 io.ab
100 I.Pin D15 /0 io.db 137 | O.Latch ™2 TS-Output? | 0.0
101 I.Pin D16 /0 io.db 138 | O.Latch ™1 TS-Output? | 0.0
102 I.Pin D17 /0 i0.db 139 | O.Latch T™O TS-Output? | 0.0
103 I.Pin D18 1/0 io.db 140 O.Latch TLN1 TS-Output2 i0.0
104 I.Pin D19 /0 io.db 141 | O.Latch TLNO | TS-Output? | i0.0
105 I.Pin D20 /0 io.db 142 | O.Latch SIZ0 1102 0.0
106 I.Pin D21 /0 io.db 143 I.Pin SIZ0 /0 i0.0
107 I.Pin D22 /0 io.db 144 | O.Latch RIW 1102 0.0
108 I.Pin D23 /0 io.db 145 I.Pin RIW /0 0.0
109 I.Pin D24 I/O io.db 146 O.Latch LOCKE TS-Output2 i0.1
110 I.Pin D25 /0 io.db 147 | O.Latch siz1 1102 0.0
MOTOROLA M68040 USER’S MANUAL 6-11



Table 6-2. Boundary Scan Bit Definitions (Concluded)

Pin/Cell Output Pin/Cell Output
Bit Cell Type Name Pin Type |[Ctrl Cell Bit Cell Type Name Pin Type |[Ctrl Cell
148 I.Pin SIZz1 1/0 i0.0 166 O.Latch TA 1102 i0.2
149 O.Latch LOCK TS-Output2 i0.1 167 I.Pin TA I/0 i0.2
150 10.Ctl io.ab — (Note 4) 168 I.Pin TEA Input —
151 10.Ctl io.db — (Note 4) 169 I.Pin BG Input —
152 | O.Latch M Output?  |(Note 3) 170 1.Pin sc1 Input —
153 O.Latch BR Output2 (Note 3) 171 I.Pin SCO Input —
154 10.Ctl i0.2 — (Note 4) 172 .Pin TBI Input —
155 10.Ctl i0.1 — (Note 4) 173 I.Pin AVEC Input —
156 10.Ctl i0.0 — (Note 4) 174 I.Pin TA Input —
157 O.Latch TS 1102 i0.0 175 I.Pin DLE® Input —
158 I.Pin TS I/0 i0.0 176 I.Pin PCLK Input —
159 O.Latch BB 1102 i0.1 177 I.Pin BCLK Input —
160 I.Pin BB 1/0 i0.1 178 I.Pin | PLO Input —
161 O.Latch TIP TS-Output2 i0.1 179 I.Pin I PL1 Input —
162 O.Latch PST3 Output2 (Note 3) 180 I.Pin I PL2 Input —
163 O.Latch PST2 Output2 (Note 3) 181 I.Pin RSTI Input —
164 | O.Latch PST1 Output?  |(Note 3) 182 1.Pin 'S Input —
165 | O.Latch PSTO Output?  |(Note 3) 183 I.Pin Ml 6 Input —

NOTES:
1. I.Pin, 10.Ctl, and O.Latch are equivalent to the BSDL descriptions: BC_4, BC_2, and BC_2, respectively.
2. Boundary scan register bit positions that are used during the drive control (DRVCTL.X) instructions.
3. These output-only cells can be turned off (high impedance) by using the HIGHZ instruction.
4. All of the control signals (10.Ctl) are cleared in the test-logic-reset state.
5. Renamed JSO on the MC68LC040 and MC68EC040.
6. Renamed JS1 on the MC68EC040.

6.4 RESTRICTIONS

The test logic is implemented using static logic design, and TCK can be stopped in either
a high or low state without loss of data. The system logic, however, includes considerable
dynamic logic. For this reason, the system clocks (PCLK and BCLK) cannot be stopped or
allowed to run slower than the specified frequency except when the EXTEST, HIGHZ,
DRVCTL.T, or SHUTDOWN instructions have been properly invoked.

PCLK and BCLK must be kept running for two additional BCLK periods upon initial entry
into any of the four instructions, EXTEST, HIGHZ, DRVCTL.T, or SHUTDOWN. This
restriction is necessary to allow time for an internal reset to propagate through an internal
synchronizer. After this period, the user has complete time-domain freedom with the two
system clock pins. After any of the four instructions has been properly entered, these
instructions can be executed in any order without a time-domain clocking restriction.
Entering any instruction other than one of these four requires that the system clocks be

6-12 M68040 USER’S MANUAL MOTOROLA



restarted, and a proper reentry into any of the four instructions is again required before the
system clocks can be stopped.

Control over the output enable signals using the boundary scan register and the EXTEST
and HIGHZ instructions requires a compatible circuit-board test environment to avoid
destructive configurations. The user is responsible for avoiding situations in which the
M68040 output drivers are enabled into actively driven networks.

The TRST signal provides the ability for an asynchronous reset of the test logic and
requires no internal clocking to force the TAP controller into the test-logic-reset state. This
signal should be asserted during system power-up to initialize the 1149.1A test interface
and avoid the potential for board-level bus conflicts. Essentially the TRST signal provides
the ability to prevent possible board-level bus contention during power-up due to the test
logic having control of the pins. The device has no internal power-up reset circuit. The
TRST signal should be treated similar to the RSTI signal for board design considerations
concerning power-up conditions.

Negation of the TRST signal requires certain precautions to achieve a predictable TAP
controller state. The TMS signal is sampled on the rising edge of TCK and sequences the
TAP controller. If TMS is low and TRST is negated simultaneously with the rising edge of
TCK, the resultant TAP controller state is unpredictable but will be either test-logic-reset or
run-test/idle. To avoid this uncertainty, either 1) the negation of TRST can be synchronized
with the falling edge of TCK or 2) TMS can remain high until after TRST negation.
Alternatively, holding TMS low for two or more TCK periods following TRST negation
ensures that the TAP controller is in the run-test/idle state.

6.5 DISABLING THE IEEE STANDARD 1149.1A OPERATION

There are two considerations for non-IEEE standard 1149.1A operation. First, TCK does
not include an internal pullup resistor and should not be left unconnected to preclude mid-
level inputs. The second consideration is to ensure that the IEEE standard 1149.1A test
logic remains transparent to the system logic by providing the ability to force the test-logic-
reset state.

Figure 6-7 illustrates disabling the IEEE standard 1149.1A operation through connecting
TRST directly or through a resistor to ground or a suitable logic network. Connecting TRST
to RSTI while TCK is held either high or low meets the two considerations. If a pulse
asserts TRST, the TAP controller is forced into the test-logic-reset state and can remain in
this state as long as a rising edge on the TCK signal does not occur when TMS is low.

MOTOROLA M68040 USER’S MANUAL 6-13



6-14

+5V

D

T™MS

TRST

TCLK

TDO |—— NO CONNECTION

Figure 6-7. Circuit Disabling
IEEE Standard 1149.1A

M68040 USER’S MANUAL

MOTOROLA



6.6 MOTOROLA M68040 BSDL DESCRIPTION (VERSION 2.2)

Revision List:
1. LOCK and LOCKE controlled by io.1 vice io.0 (4D98D).
3. No other changes to Version 2.1 BSDL.
2. Instruction opcodes changed for SAMPLE, SHUTDOWN, and BYPASS.
3. New instructions DRVCTL.T, DRVCTL.S and PRIVATE added.
4. New instructions DRVCTL.T and DRVCTL.S renamed to DRVCTL_T and
DRVCTL_S for syntax compatibility.
5. Register access specified for DRVCTL_T, DRVCTL_S, and PRIVATE instructions.
6. No other changes to Version 1.0 BSDL.

Package Type: 18 x 18 PGA

This BSDL is for the newer MC68040 mask sets of E26A and after (roughly after the
second half of 1992). It does not include the 0.8-um mask sets D43B, D50D, and D98D.
For MC68LC040 and MC68ECO040, two pin names have changed. To make the necessary
modifications, change all occurrences of DLE to JSO and MDI S to JS1.

entity MC68040 is

generic(PHYSICAL_PIN_MAP:string := "PGA_18x18");

port (TDI: in bit;
TDO: out bit;
TMS: in bit;
TCK: in bit;
TRST: in bit;

RSTO: buffer bit;
IPEND: buffer bit;

CIOUT: out bit;

UPA: out bit_vector(0 to 1);
TT: inout bit_vector(0 to 1);
A inout bit_vector(0 to 31);
D: inout bit_vector(0 to 31);
LOCKE: out bit;

LOCK: out bit;

R W: inout bit;

TLN: out bit_vector(0 to 1);
T™: out bit_vector(0 to 2);
SIZ: inout bit_vector(0 to 1);
MI: buffer  bit;

BR: buffer  bit;

TS: inout bit;

BB: inout bit;

TIP: out bit;

PST: buffer  bit_vector(0 to 3);
TA: inout bit;

TEA: in bit;

BG: in bit;

SC: in bit_vector(0 to 1);
TBI: in bit;

AVEC: in bit;

TClI: in bit;

MOTOROLA M68040 USER’S MANUAL 6-15



DLE: in bit;

PCLK: in bit;
BCLK: in bit;
IPL: in bit_vector(0 to 2);
RSTI: in bit;
CDIS: in bit;
MDIS: in bit;

EGND: linkage bit_vector(1 to 23);
EVDD: linkage bit_vector(1 to 12);
IGND: linkage bit_vector(1 to 12);
IVDD: linkage bit vector(1 to 7);
CGND: linkage bit_vector(1 to 2);
CVDD: linkage bit_vector(l to 6);
PGND: linkage bit_vector(1 to 3);
PVDD: linkage bit_vector(1 to 2)

)

use STD_1149 1 _1990.all;

attribute PIN_MAP of MC68040 : entity is PHYSICAL_PIN_MAP;

—18x18 PGA Pin Map

constant PGA_18x18 : PIN_MAP_STRING :=

6-16

"TDI: S3,

"TDO: T2,

"TMS: S5,

"TCK:  S4,

"TRST: T3,

"RSTO: R3,

"IPEND: S1,

"CIOUT: R1,

"UPA:  (Q3, Q1),

"TT: (P3, P2),

"A (L18, K18, J17, J18, H18, G18, G16, F18, E18, F16, P1, N3,
" N1, M1, L1, K1, K2, J1, H1, J2, G1, F1, E1, G3,
" D1, F3, E2, C1, E3, B1, D3, Al),

"D: (C3, B3, C4, A2, A3, A4, A5, A6, B7, A7, A8, A9,
" A10, A11, A12, A13, B11, Al4, B12, A15, A16, Al7, B16, C15,
" A18, C16, B18, D16, C18, E16, E17, D18),

"LOCKE: RI8,

"LOCK: S18,

"R_W:  N16,

"TLN:  (Q18, P18),

"TM: (N18, M18, K17),

"SIZ: (P17, P16),

"MI: Q16,

"BR: T18,

"TS: R16,

"BB: T17,

"TIP: R15,

"PST:  (T15, S14, R14, T16),

"TA: T14,

"TEA:  S13,

"BG: T13,

"SC: (T12, S12),

"TBI: S11,

"AVEC: T11,

M68040 USER’S MANUAL

Ro Ro Ro R0 Ro R0 Ro R0 RO Ro R0 RO R0 RO Ro RO RO RO RO Ro Ro RO Ro RO RO RO RO RO RO RO RO Ro Ro Ro

MOTOROLA



"TCI: T10, "
"DLE:  T9, "
"PCLK: R, "
"BCLK: R7, "
"IPL: (T8, T7, T6), "
"RSTI:  S7, "
"CDIS: TS5, "
"MDIS: S, "
"EGND: (S2, Q2, N2, L2, H2, F2, D2, B2, B4, B6, BS, B10, "
" B13, B15, B17, D17, F17, H17, L17, N17, Q17, S17, S15), "
"EVDD: (R2, M2, G2, C2, B5, B9, B14, C17, G17, M17, R17, S16), "
"IGND: (T4, R4, L3, K3, C7, C9, Cl1, K16, M16, R13, R11, S10), "
"\VDD:  (R5, M3, C8, C10, C12, L16, R12), "
"CGND: (C6, C13), "
"CVDD: (J3, H3, C5, C14, H16, J16), "
"PGND: (S9, R10, R6), "
"PVDD: (S8, RS) "

T R0 Ro R0 Ro Ro RO RO Ro R0 R0 R0 Ro R0 R0 Ro Ro

—Other Pin Maps here when documented

attribute TAP_SCAN_IN of TDl:signal is true;

attribute TAP_SCAN_OUT of TDO:signal is true;

attribute TAP_SCAN_MODE of TMS:signal is true;

attribute TAP_SCAN_CLOCK of TCK:signal is (10.0e6, BOTH);
attribute TAP_SCAN_RESET of TRST:signal is true;

attribute INSTRUCTION_LENGTH of MC68040:entity is 3;
attribute INSTRUCTION_OPCODE of MC68040:entity is

"EXTEST (000), "
"HI_Z (001), "
"SAMPLE (010), "
"DRVCTL.T  (011), "
"SHUTDOWN  (100), "
"PRIVATE (101), "
"DRVCTL.S  (110), "
"BYPASS (111) "

" Ro Ro Ro Ro Ro Ro Ro

attribute INSTRUCTION_CAPTURE of MC68040:entity is "001";
attribute INSTRUCTION_DISABLE of MC68040:entity is "HI_Z";
attribute REGISTER_ACCESS of MC68040:entity is

"BYPASS (SHUTDOWN, HI_Z, PRIVATE), " &

"BOUNDARY (DRVCTL_T, DRVCTL_S) "
attribute BOUNDARY_CELLS of MC68040:entity is

"BC_2,BC_4 "o

attribute BOUNDARY_LENGTH of MC68040:entity is 184;
attribute BOUNDARY_REGISTER of MC68040:entity is

MOTOROLA M68040 USER’S MANUAL 6-17



S
c
3

SIS RWBINES

6-18

cell

(BC_2,
(BC_2,
(BC_2,
(BC_2,
(BC_2,
(BC_2,
(BC_4
(BC_2,
(BC_4,
(BC_2,
(BC_4,
(BC_2,
(BC_4
(BC_2,
(BC_4,
(BC_2,
(BC_4
(BC_2,
(BC_4
(BC_2,
(BC_4,
(BC_2,
(BC_4
(BC_2,
(BC_4
(BC_2,
(BC_4,
(BC_2,
(BC_4
(BC_2,
(BC_4
(BC_2,
(BC_4,
(BC_2,
(BC_4
(BC_2,
(BC_4
(BC_2,
(BC_4,
(BC_2,
(BC_4,
(BC_2,
(BC_4
(BC_2,
(BC_4,
(BC_2,
(BC_4,
(BC_2,
(BC_4
(BC_2,
(BC_4,
(BC_2,
(BC_4,
(BC_2,
(BC_2,
(BC_2,
(BC_2,

port

RSTO,
IPEND,
CIOUT,
UPA(0),
UPA(L),
TT(0),
TT(0),
TT(2),
TT(1),
A(10),
A(10),
A(11),
A(11),
A(12),
A(12),
A(13),
A(13),
A(14),
A(14),
A(15),
A(15),
A(16),
A(16),
A(17),
A(17),
A(18),
A(18),
A(19),
A(19),
A(20),
A(20),
A(21),
A(21),
A(22),
A(22),
A(23),
A(23),
A(24),
A(24),
A(25),
A(25),
A(26),
A(26),
A(27),
A(27),
A(28),
A(28),
A(29),
A(29),
A(30),
A(30),
A(31),
A(31),
D(0),
D(1),
D(2),
D(3)1

function

output2,
output2,
output3,
output3,
output3,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
output3,
output3,
output3,

safe

X),
X),

ccell

156,
156,
156,
156,
156,
150,
150,
150,
150,
150,
150,
150,
150,
150,
150,
150,
150,
150,
150,
150,
150,
150,
150,
150,
150,
150,
150,
151,
151,

151,
151,

dsval

oo

o

o

000O

rslt

2),
2),
2),
2),
2),
2),
2),
2),
2),
2),
2),
2),
2),
2),
2),
2),
2),
2),
2),
2),
2),
2),
2),
2),
2),
2),
2),
2),

2),
2),

M68040 USER’S MANUAL

Ro R0 Ro Ro Ro R0 Ro R0 Ro RO R0 RO Ro RO Ro R0 Ro RO RO RO R0 RO R0 RO Ro RO Ro RO Ro RO Ro RO RO RO R0 RO Ro RO Ro RO Ro RO RO RO RO RO RO RO RO RO Ro RO RO RO RO Ro Ro

—156 =i0.0

—150 =io.ab

— 151 =io.db

MOTOROLA



num  cell port function safe  ccell dsval rslt

"57 (BC_2, D(4), output3, X, 151, O, 2), " &
"58 (BC_2, D(5), output3, X, 151, O, 2), " &
"59 (BC_2, D(6), output3, X, 151, O, 2), " &
"60 (BC_2, D(7), output3, X, 151, O, 2), " &
"61 (BC_2, D(8), output3, X, 151, O, 2), " &
"62 (BC_2, D(9), output3, X, 151, O, Z), " &
"63 (BC_2, D(10), output3, X, 151, O, 2), " &
"64 (BC_2, D(11), output3, X, 151, O, 2), " &
"65 (BC_2, D(12), output3, X, 151, O, 2), " &
"66 (BC_2, D(13), output3, X, 151, O, 2), " &
"67 (BC_ 2, D(14), output3, X, 151, O, Z), " &
"68 (BC_2, D(15), output3, X, 151, O, Z), " &
"69 (BC_2, D(16), output3, X, 151, O, 2), " &
"70 (BC_2, D7), output3, X, 151, O, 2), " &
"71 (BC_2, D(18), output3, X, 151, O, 2), " &
"72 (BC_2, D(19), output3, X, 151, O, 2), " &
"73 (BC_2, D(20), output3, X, 151, O, 2), " &
"74 (BC_2, D(21), output3, X, 151, O, Z), " &
"75 (BC_2, D(22), output3, X, 151, O, 2), " &
"76 (BC_2, D(23), output3, X, 151, O, 2), " &
77 (BC_2, D(24), output3, X, 151, O, 2), " &
"78 (BC_2, D(25), output3, X, 151, O, 2), " &
"79 (BC_2, D(26), output3, X, 151, O, 2), " &
"80 (BC_2, D(27), output3, X, 151, O, 2), " &
"81 (BC_2, D(28), output3, X, 151, O, 2), " &
"82 (BC_2, D(29), output3, X, 151, O, 2), " &
"83 (BC_2, D(30), output3, X, 151, O, 2), " &
"84 (BC_2, D(31), output3, X, 151, O, 2), " &
"85 (BC_4, D(0), input, X), " &
"86 (BC_4, D(1), input, X), " &
"87 (BC_4, D(2), input, X), " &
"88 (BC_4, D(@3), input, X), " &
"89 (BC_4, D(4), input, X), " &
"90 (BC_4, D(5), input, X), " &
"91 (BC_4, D(6), input, X), " &
"92 (BC_4, D(7), input, X), " &
"93 (BC_4, D(8), input, X), " &
"94 (BC_4, D(9), input, X), " &
"95 (BC_4, D(10), input, X), " &
"96 (BC_4, D(11), input, X), " &
"97 (BC_4, D@12, input, X), " &
"98 (BC_4, D(13), input, X), " &
"99 (BC_4, D(14), input, X), " &
"100 (BC_4, D(15), input, X), " &
"101 (BC_4, D(16), input, X), " &
"102 (BC_4, D(17), input, X), " &
"103 (BC_4, D(18), input, X), " &
"104 (BC_4, D(19), input, X), " &
"105 (BC_4, D(20), input, X), " &
"106 (BC_4, D(21), input, X), " &
"107 (BC_4, D(22), input, X), " &
"108 (BC_4, D(23), input, X), " &
"109 (BC_4, D(24), input, X), " &
"110 (BC_4, D(25), input, X), " &
"111  (BC_4, D(26), input, X), " &
"112  (BC_4, D(27), input, X), " &
"113  (BC_4, D(28), input, X), &

MOTOROLA M68040 USER’S MANUAL 6-19



num

"114
"115
"116
"117
"118
"119
"120
"121
"122
"123
"124
"125
"126
"127
"128
"129
"130
"131
"132
"133
"134
"135
"136
"137
"138
"139
"140
"141
"142
"143
"144
"145
"146
"147
"148
"149
"150
"151
"152
"153
"154
"155
"156
"157
"158
"159
"160
"161
"162
"163
"164
"165
"166
"167
"168
"169
"170

6-20

cell

(BC_4,
(BC_4,
(BC_4,
(BC_2,
(BC_4,
(BC_2,
(BC_4,
(BC_2,
(BC_4,
(BC_2,
(BC_4,
(BC_2,
(BC_4,
(BC_2,
(BC_4,
(BC_2,
(BC_4,
(BC_2,
(BC_4,
(BC_2,
(BC_4,
(BC_2,
(BC_4,
(BC_2,
(BC_2,
(BC_2,
(BC_2,
(BC_2,
(BC_2,
(BC_4,
(BC_2,
(BC_4,
(BC_2,
(BC 2,
(BC_4,
(BC_2,
(BC_2,
(BC_2,
(BC_2,
(BC_2,
(BC_2,
(BC_2,
(BC_2,
(BC_2,
(BC_4,
(BC_2,
(BC_4,
(BC_2,
(BC_2,
(BC_2,
(BC_2,
(BC_2,
(BC_2,
(BC_4,
(BC_4
(BC_4,
(BC_4,

port

D(29),
D(30),
D(31),
A9),
A9),
A(8),
A(8),
A(7),
A(7),
A(6),
A(6),
A(5),
A(3),
A(4),
A(4),
A(3),
A(3),
A(2),
A(2),
A1),
A1),
A(0),
A(0),
TM(2),
TM(2),
TM(0),
TLN(L),
TLN(0),
SIZ(0),
S1Z(0),
R.W,
R W,
LOCKE,
SIz(1),
SIZ(1),
LOCK,

1
*

MI,
BR,
*

*
’

*l

TS,

TS,
BB,
BB,
TIP,
PST(3),
PST(2),
PST(1),
PST(0),
TA,

TA,
TEA,
BG,
SC(1),

function

input,
input,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
input,
output3,
output3,
output3,
output3,
output3,
output3,
input,
output3,
input,
output3,
output3,
input,
output3,
controlr,
controlr,
output2,
output2,
controlr,
controlr,
controlr,
output3,
input,
output3,
input,
output3,
output2,
output2,
output2,
output2,
output3,
input,
input,
input,
input,

safe ccell
X),
X),
X),
X, 150,
X),
X, 150,
X),
X, 150,
X),
X, 150,
X),
X, 150,
X),
X, 150,
X),
X, 150,
X),
X, 150,
X),
X, 150,
X),
X, 150,
X),
X, 156,
X, 156,
X, 156,
X, 156,
X, 156,
X, 156,
X),
X, 156,
X),
X, 156,
X, 156,
X),
X, 156,
0),
0),
X),
X),
0),
0),
0),
X, 156,
X),
X, 155,
X),
X, 155,
X),
X),
X),
X),
X, 154,
X),
X),
X),
X),

dsval

o

[eYoReoR=N=Xo)

rslt

2),
2),
2),
2),
2),
2),
2),
2),
2),
2),
2),
2),
2),
2),
2),
2),
2),

2),
2),

2),

2),
2),

2),

2),

M68040 USER’S MANUAL

Ro R0 R0 Ro Ro Ro Ro Ro Ro RO RO RO RO R0 Ro Ro R0 R0 R0 RO RO RO Ro R0 R0 RO R0 Ro RO R0 R0 RO RO R0 R0 R0 RO RO RO RO RO RO RO RO R0 RO RO RO RO RO RO RO RO RO RO Ro Ro

—150 =io.ab

—156 =i0.0

—io.ab
—jo.db

—i0.2
—io.l
—i0.0
— 156 =i0.0
— 155 =i0.1

—155=i0.1

— 154 =i0.2

MOTOROLA



num  cell port function safe

"171 (BC_4, SC(0), input, X),
"172 (BC_4, TBI, input, X),
"173 (BC_4, AVEC, input, X),
"174 (BC_4, TCI, input, X),
"175 (BC_4, DLE, input, X),
"176  (BC_4, PCLK,  input, X),
"177 (BC_4, BCLK, input, X),
"178 (BC_4, IPL(0), input, X),
"179 (BC_4, IPL(1), input, X),
"180 (BC_4, IPL(2), input, X),
"181 (BC_4, RSTI,  input, X),
"182 (BC_4, CDIS, input, X),
"183 (BC_4, MDIS, input, X)

attribute DESIGN_WARNING of MC68040: entity is
"A non-standard clocking protocol on BCLK and PCLK must be
"observed when entering Boundary Scan Test Mode.

end MC68040

dsval

rslt

" R0 Ro R0 Ro Ro R0 Ro Ro Ro Ro Ro Ro

6.7 MC68040, MC68LC040, MC68EC040 JTAG ELECTRICAL

CHARACTERISTICS

The following paragraphs provide information on JTAG electrical and timing specifications.
This section is subject to change. For the most recent specifications, contact a Motorola

sales office or complete the registration card at the beginning of this manual.

JTAG DC Electrical Specifications

Characteristic Symbol Min Max Unit
Input High Voltage VIH 2 Vce \%
Input Low Voltage VL GND 0.8 \Y,
Undershoot — — 0.8 \Y,
TCK Input Leakage Current @ 0.5-2.4 V lin 20 20 A
TDO Hi-Z (Off-State) Leakage Current @ 0.5-2.4 V ITsT 20 20 HA
Signal Low Input Current, V| = 0.8 V I 11 018 mA
TMS, TDI, TRST
Signal High Input Current, Vi = 2.0V Iy 094 016 mA
TMS, TDI, TRST
TDO Output High Voltage VOH 24 — Y,
TDO Output Low Voltage VoL — 0.5 \%
Capacitance*, Vin =0V, f=1 MHz Cin — 25 pF

*Capacitance is periodically sampled rather than 100% tested.

MOTOROLA

M68040 USER’S MANUAL

6-21



JTAG Timing Specifications (All Operating Frequencies)

Num Characteristic Min Max Unit

TCK Frequency of Operation 0 10 MHz
1 TCK Cycle Time 100 — ns
2 TCK Clock Pulse Width Measured at 1.5 V 40 — ns
3 TCK Rise and Fall Times 0 10 ns
4 TRST Setup Time to TCK Falling Edge 40 — ns
5 TRST Assert Time 100 — ns
6 Boundary Scan Input Data Setup Time 50 — ns
7 Boundary Scan Input Data Hold Time 50 — ns
8 TCK to Output Data Valid 0 50 ns
9 TCK to Output High Impedance 0 50 ns
10 TMS, TDI Data Setup Time 20 — ns
11 TMS, TDI Data Hold Time 5 — ns
12 TCK to TDO Data Valid 0 20 ns
13 TCK to TDO High Impedance 0 20 ns

6-22

<2 —><—(2)—>

VM VM

Figure 6-8. Clock Input Timing Diagram

\_/\

TRST

Figure 6-9. TRST Timing Diagram

M68040 USER’S MANUAL MOTOROLA



MOTOROLA

TCK \

—
DATA INPUTS N INPUT DATA VALID
N—\/
DATA OUTPUTS >§ OUTPUT DATA VALID
'\l
'\l
DATA OUTPUTS >
'\l
on
DATA OUTPUTS N \ OUTPUT DATA VALID
\

Figure 6-10. Boundary Scan Timing Diagram

TCLK \

TDI, TMS
N /
TDO >§ OUTPUT DATA VALID
'\l \N
N\
TDO >
N\

TDO N ; OUTPUT DATA VALID

Figure 6-11. Test Access Port Timing Diagram

M68040 USER’S MANUAL

6-23



SECTION 7
BUS OPERATION

The M68040 bus interface supports synchronous data transfers between the processor
and other devices in the system. This section provides a functional description of the bus,
the signals that control the bus, and the bus cycles provided for data transfer operations.
Operation of the bus is defined for transfers initiated by the processor as a bus master and
for transfers initiated by an alternate bus master, which the processor snoops as a slave
device. Descriptions of the error and halt conditions, bus arbitration, and the reset
operation are also included. For timing specifications, refer to Section 11 MC68040
Electrical and Thermal Characteristics.

NOTE

For the MC68040V, MC68LC040, and MC68EC040 ignore all
references to floating-point. For the MC68EC040 and
MCG68EC040V ignore all references to the memory
management unit (MMU). Special modes of operation do not
apply to these devices. Refer to Appendix A MC68LC040 and
Appendix B MC68EC040 for details.

7.1 BUS CHARACTERISTICS

The M68040 uses the address bus (A31-A0) to specify the address for a data transfer
and the data bus (D31-D0) to transfer the data. Control signals indicate the beginning and
type of a bus cycle as well as the address space and size of the transfer. The selected
device then controls the length of the cycle by terminating it using the control signals.

The M68040 uses two clocks to generate timing: a processor clock (PCLK) and a bus
clock (BCLK). The PCLK signal is twice the frequency of the BCLK signal and is internally
phase-locked to BCLK. PCLK is also distributed throughout the device to generate
additional timing for additional edges for internal logic blocks and has no bearing on bus
timing. The use of dual clock inputs allows the bus interface to operate at half the speed of
the internal logic of the processor, requiring less stringent memory interface requirements.
Since the rising edge of BCLK is used as the reference point for the phase-locked loop
(PLL), all timing specifications are referenced to this edge.

Figure 7-1 illustrates the general relationship between the two clock signals and most
input and output signals. The rising edge of the internally phase-locked PCLK is aligned
with the rising edge of BCLK, and the two PCLK cycles corresponding to each BCLK cycle
are divided into four states, T1-T4. Most outputs change during state T4, whether
transitioning between a driven and high-impedance state or switching between assert and

MOTOROLA M68040 USER’S MANUAL 7-1



negate logic levels. The exceptions to this rule are the TIP, TA, and BB signals that
transition between logic levels during T4 but transition from a driven state to a high-
impedance state during T1. The input setup time (tsy), input hold time (tyi), output hold
time (tho), and delay time (tq) illustrated in Figure 7-1 are described in the AC electrical
timing specifications in Section 11 MC68040 Electrical and Thermal Characteristics.

BCLK ; \ 7 \ 5
INTERNALLY
PHASE-LOCKED T T2 T3 T4 Tl
PCLK
<t ————
e t
|—— thgp—>=
——>tho'|<—
OUTPUTS
re—tgy —»
|— thj —»
INPUTS
NOTES:
1. tg = Propagation delay of signal relative to BLK rising edge.

2.

o0~ Ww

td' = Propagation delay of signal relative to PCLK falling edge; td'= td—1/2 PCLK

except for TIP, TA, BB when used as outputs.

. tho = Output hold time relative to BCLK rising edge.

. tho'= Output hold time relative to BCLK rising edge; tho'=th —1/2 PCLK.
. tsu = Required input setup time relative to BCLK rising edge.

. thi = Required input hold time relative to BCLK rising edge.

Figure 7-1. Signal Relationships to Clocks

Inputs to the M68040 (other than the IPL2-IPLO and RSTI signals) are synchronously
sampled and must be stable during the sample window defined by tsy, thi, and tho (see
Figure 7-1) to guarantee proper operation. The asynchronous IPLx and RSTI signals are
also sampled on the rising edge of BCLK, but are internally synchronized to resolve the
input to a valid level before using it. Since the timing specifications for the M68040 are
referenced to the rising edge of BCLK, they are valid only for the specified operating
frequency and must be scaled for lower operating frequencies.

M68040 USER’S MANUAL

MOTOROLA



7.2 DATA TRANSFER MECHANISM

Figure 7-2 illustrates how the bus designates operands for transfers on a byte boundary
system. The integer unit handles floating-point operands as a sequence of related long-
word operands. These designations are used in the figures and descriptions that follow.

BYTE 3 BYTE 2 BYTE1 BYTEO
31 24 23 16 15 8 7 0
MOST SIGNIFICANT BYTE LEAST SIGNIFICANT BYTE| LONG-WORD OPERAND

MOST SIGNIFICANT BYTE | LEAST SIGNIFICANT BYTE| WORD OPERAND

BYTE OPERAND

Figure 7-2. Internal Operand Representation

Figure 7-3 illustrates general multiplexing between an internal register and the external
bus. The internal register connects to the external data bus through the internal data bus
and multiplexer. The data multiplexer establishes the necessary connections for different
combinations of address and data sizes.

Unlike the MC68020 and MC68030 processors, the M68040 does not support dynamic
bus sizing and expects the referenced device to accept the requested access width. The
MC68150 dynamic bus sizer is designed to allow the 32-bit M68040, MC68EC040,
MC68LC040 bus to communicate bidirectionally with 32-, 16-, or 8-bit peripherals and
memories. It dynamically recognizes the size of the selected peripheral or memory device
and then reads or writes the appropriate data from that location. Refer to MC68150/D,
MC68150 Dynamic Bus Sizer, for information on this device.

Blocks of memory that must be contiguous, such as for code storage or program stacks,
must be 32 bits wide. Byte- and word-sized 1/O ports that return an interrupt vector during
interrupt acknowledge cycles must be mapped into the low-order 8 or 16 bits, respectively,
of the data bus.

The multiplexer takes the four bytes of the 32-bit bus transfer and routes them to their
required positions. For example, byte 0 would normally be routed to D31-D24, but it can
also be routed to any other byte position supporting a misaligned data transfer. The same
is true for any of the other operand bytes. The transfer size (SI1Z0 and SIZ1) and byte
offset (Al and AO) signals determine the positioning of the bytes (see Table 7-1). The size
indicated on the SlZx signals corresponds to the size of the operand transfer for the entire
bus cycle. During an operand transfer, A31-A2 indicate the long-word base address for
the first byte of the operand to be accessed; A1l and AO indicate the byte offset from the
base. For a burst-inhibited line transfer, A1 and AO for each of the four accesses (the
burst-inhibited line transfer and three long-word transfers) are copied from the lowest two
bits of the access address used to initiate the line transfer.

MOTOROLA M68040 USER’S MANUAL 7-3



31 24 23 16 15 7 0
REGISTER BYTE 3 BYTE 2 BYTE1 BYTE 0
\ Y r /
MULTIPLEXER ROUTING T
/ Y Y \ INTERNAL TO
EXTERNAL THE MC68040
" DATABUS | D31-D24 D23-D16 D15-D8 b7-p0  f---------
EXTERNAL BUS

31

2423

Y 16 15

Y

l Y

0 ¢

ADDRESS
$xxxxxxx0

BYTE3

BYTE 2

BYTE 1

BYTEO

Figure 7-3. Data Multiplexing

Table 7-1 lists the combinations of the SIZx, Al, and AO signals, collectively called byte
enable signals, that are used for each of the four sections of the data bus. In the table,
BYTEn indicates the data bus section that is active, the portion of the requested operand
that is read or written during that bus transfer. For line transfers, all bytes are valid as
listed and can correspond to portions of the requested operand or to data required to fill
the remainder of the cache line. The bytes labeled with a dash are not required; they are
ignored on read transfers and driven with undefined data on write transfers. Not selecting
these bytes prevents incorrect accesses in sensitive areas such as I/O devices. Figure 7-4
illustrates a logic diagram for one method for generating byte enable signals from the
SlIzx, Al, and AO and the associated PAL equation. These byte enable signals can be
combined with the address decode logic.

7-4

Table 7-1. Data Bus Requirements for Read and Write Cycles

Transfer Signal Encodings Active Data Bus Sections
Size SIZ1 | SIZz0 | AL | A0 | D31-D24 D23-D16 D15-D8 D7-DO
Byte 0 1 0 0 BYTEn — — —
0 1 0 1 — BYTEn — —
0 1 1 0 — — BYTEn —
0 1 1 1 — — — BYTEn
Word 1 0 0 0 BYTEn BYTEn — —
1 0 1 0 — — BYTEn BYTEn
Long Word 0 0 X X BYTEn BYTEn BYTEn BYTEn
Line 1 1 X |1 X BYTEn BYTEn BYTEn BYTEn
M68040 USER'S MANUAL MOTOROLA



UPPER UPPER DATA SELECT
D31-D24

[ UPPER MIDDLE DATA SELECT
D23-D16

LOWER MIDDLE DATA SELECT
< D15-D8

< LOWER LOWER DATA SELECT
D7-DO

A |
Al
SIZ0
Siz1

PAL16L8

Ul

MC68040 Byte Data Select Generation.

Motorola Worldwide Marketing Training Organization

A0 Al SIZ0 SIZ1 NC NC NC NC NC GND NC UUD UMD LMD LLD
NC NC NC NC VCC

/UUD = /A0 * /Al ; directly addressed, any size
+/S1Z1 * /S1Z0 ; enable every byte for long word size
+ SIZ1 * SI1Z0 ; enable every byte for line size
/UMD = A0 * /Al ; directly addressed, any size
+ /A1 */SIZ1 ; word aligned, size is word or line
+ SIZ1 * SIZ0 ; enable every byte for long word size
+/SI1Z1 * /SI1Z0 ; enable every byte for line size
/LMD = /A0 * /A1 ; directly addressed, any size
+/S1Z1 * /SI1Z0 ; enable every byte for long word size
+ SIZ1 * S1Z0 ; enable every byte for line size
/LLD = A0 */Al ; directly addressed, any size
+ /A1 */SIZ1 ; word aligned, word or line size
+ SIZ1 * SIZ0 ; enable every byte for long word size
+/SI1Z1 * /SI1Z0 ; enable every byte for line size

Figure 7-4. Byte Enable Signal Generation and PAL Equation

A brief summary of the bus signal encodings for each access type is listed in Table 7-2.
Additional information on the encodings for the M68040 signals can be found in Section 5
Signal Description.

MOTOROLA

M68040 USER’S MANUAL



Table 7-2. Summary of Access Types versus Bus Signal Encodings

Data Cache Normal Table
Bus Push Data/Code Search MOVE16 Alternate Interrupt Breakpoint
Signal Access Access Access Access Access Acknowledge | Acknowledge
A31-A0 Access Access Entry Access Access $FFFFFFFF $00000000
Address Address Address Address Address
UPA1, UPAO $0 MMU $0 MMU $0 $0 $0
Sourcel Sourcel
SIZ1, S1zo L/Line B/WI/L/Line | Long Word Line B/WI/L Byte Byte
TT1, TTO $0 $0 $0 $1 $2 $3 $3
TM4-TM2 $0 $1,2,5,0r6 $3o0r4 $lor5 Function Int. Level $1-7 $0
Code
TLN1, TLNO | Cache Set Cache Set Undefined Undefined Undefined Undefined Undefined
Entry Entry2
R'W Write Read/Write | Read/Write | Read/Write | Read/Write Read Read
LOCK Negated Asserted/ Asserted/ Negated Negated Negated Negated
LOCKE Negated3 | Negated3
CIoUT Negated MMU Negated MMU Asserted Negated Negated
Sourcel Sourcel
NOTES

1. The UPA1, UPAO, and CIOUT signals are determined by the U1, U0 data and CM bit fields, respectively,
corresponding to the access address.

2. The TLNXx signals are defined only for normal push accesses and normal data line read accesses.

3. The LOCK signal is asserted during TAS, CAS, and CAS2 operand accesses and for some table search update
sequences. LOCKE is asserted for the last transfer of each locked sequence of transfers.

4. Referto Section 5 Signal Description for definitions of the TMx signal encodings for normal, MOVE186,
and alternate accesses.

7.3 MISALIGNED OPERANDS

All M68040 data formats can be located in memory on any byte boundary. A byte operand
is properly aligned at any address; a word operand is misaligned at an odd address; and a
long word is misaligned at an address that is not evenly divisible by 4. However, since
operands can reside at any byte boundary, they can be misaligned. Although the M68040
does not enforce any alignment restrictions for data operands (including PC relative data
addressing), some performance degradation occurs when additional bus cycles are
required for long-word or word operands that are misaligned. For maximum performance,
data items should be aligned on their natural boundaries. All instruction words and
extension words must reside on word boundaries. Attempting to prefetch an instruction
word at an odd address causes an address error exception. Refer to Section 8 Exception
Processing for details on address error exceptions.

The M68040 data memory unit converts misaligned operand accesses that are
noncachable to a sequence of aligned accesses. These aligned accesses are then sent to
the bus controller for completion, always resulting in aligned bus transfers. Misaligned
operand accesses that miss in the data cache are cachable and are not aligned before
line filling. Refer to Section 4 Instruction and Data Caches for details on line fill and the
data cache.

7-6 M68040 USER’S MANUAL MOTOROLA



Figure 7-5 illustrates the transfer of a long-word operand from an odd address requiring
more than one bus cycle. For the first transfer or bus cycle, the SIZx signals specify a byte
transfer, and the byte offset is $1. The slave device supplies the byte and acknowledges
the data transfer. When the processor starts the second cycle, the SIZx signals specify a
word transfer with a byte offset of $2. The next two bytes are transferred during this cycle.
The processor then initiates the third cycle, with the SIZEx signals indicating a byte
transfer. The byte offset is now $0; the port supplies the final byte and the operation is
complete. This example is similar to the one illustrated in Figure 7-6 except that the
operand is word sized and the transfer requires only two bus cycles. Figure 7-7 illustrates

a functional timing diagram for a misaligned long-word read transfer.

DATA BUS
31 24 23 16 15 7 0
— BYTE 3 — —
— — BYTE 2 BYTE 1
BYTE 0 — — X
MEMORY
31 24 23 16 15 7 0
XXX BYTE 3 BYTE 2 BYTE 1
BYTE 0O XXX XXX XXX

L

Figure 7-5. Example of a Misaligned Long-Word Transfer

DATA BUS
31 24 23 16 15 7 0
— — — BYTE 1
BYTEO — — BYTE 1
MEMORY
31 24 23 16 15 7 0
XXX XXX XXX BYTE1
BYTEO XXX XXX XXX

MOTOROLA

Figure 7-6. Example of a Misaligned Word Transfer

M68040 USER’S MANUAL

e
i

TRANSFER 1

TRANSFER 2

TRANSFER 3

TRANSFER 1

TRANSFER 2



O
=

C2 Cl C2 Cl C2

BCLK ‘
oo DO G
UV NIEVE
oA I S
UPA1, UPAO :>< | >< | | >< | ><
@ T\ TN
" BYTE | | WORD | " BYTE |
SIZ0 J | i \ 3 3 / | | \\
mm O\ N .
wemo Y X X X
“ 7w
L
- 2 r
D31-D24 3 i i @
om0 ) (orrea) | ‘
D15-D8 3 , @
D7-D0 3 : : : @ : :
R e

Figure 7-7. Misaligned Long-Word Read Transfer Timing

M68040 USER’S MANUAL MOTOROLA



The combination of operand size and alignment determines the number of bus cycles
required to perform a particular memory access. Table 7-3 lists the number of bus cycles
required for different operand sizes with all possible alignment conditions for read and
write cycles. The table confirms that alignment significantly affects bus cycle throughput
for noncachable accesses. For example, in Figure 7-5 the misaligned long-word operand
took three bus cycles because the byte offset = $1. If the byte offset = $0, then it would
have taken one bus cycle. The M68040 system designer and programmer should account
for these effects, particularly in time-critical applications.

Table 7-3. Memory Alignment Influence on
Noncachable and Write-Through Bus Cycles

Number of Bus Cycles
Transfer Size $0" $1” $2" $3"
Instruction 1 N/A N/A N/A
Byte Operand 1 1 1 1
Word Operand 1 2 1 2
Long-Word Operand 1 3 2 3

*Where the byte offset (A1 and AO) equals this encoding.

The processor always prefetches instructions by reading a long word from a half-line
address (A2—-A0 = $0), regardless of alignment. When the required instruction begins at
the second long word, the processor attempts to fetch the entire half-line (two long words)
although the second long word contains the required instruction.

7.4 PROCESSOR DATA TRANSFERS

The transfer of data between the processor and other devices involves the address bus,
data bus, and control signals. The address and data buses are normally parallel,
nonmultiplexed buses, supporting byte, word, long-word, and line (16-byte) bus cycles.
Line transfers are normally performed using an efficient burst transfer, which provides an
initial address and time-multiplexes the data bus to transfer four long words of information
to or from the slave device. Slave devices that do not support bursting can burst-inhibit the
first long word of a line transfer, forcing the bus master to complete the access using three
additional long-word bus cycles. All bus input and output signals are synchronous to the
rising edge of the BCLK signal. The M68040 moves data on the bus by issuing control
signals and using a handshake protocol to ensure correct data movement. The following
paragraphs describe the bus cycles for byte, word, long-word, and line read, write, and
read-modify-write transfers.

MOTOROLA M68040 USER’S MANUAL 7-9



7.4.1 Byte, Word, and Long-Word Read Transfers

During a read transfer, the processor receives data from a memory or peripheral device.
Since the data read for a byte, word, or long-word access is not placed in either of the
internal caches by definition, the processor ignores the level on the transfer cache inhibit
(TCI) signal when latching the data. The bus controller performs byte, word, and long-word
read transfers for the following cases:

» Accesses to a disabled cache.
» Accesses to a memory page that is specified noncachable.

» Accesses that are implicitly noncachable (read-modify-write accesses and accesses
to an alternate logical address space via the MOVES instruction).

» Accesses that do not allocate in the data cache on a read miss (table searches,
exception vector fetches, and exception stack deallocation for an RTE instruction).

+ The first transfer of a line read is terminated with transfer burst inhibit (TBI), forcing
completion of the line access using three additional long-word read transfers.

Figure 7-8 is a flowchart for byte, word, and long-word read transfers. Bus operations are
similar for each case and vary only with the size indicated and the portion of the data bus
used for the transfer. Figure 7-9 is a functional timing diagram for byte, word, and long-
word read transfers.

PROCESSOR EXTERNAL DEVICE

ADDRESS DEVICE

1) SET R/IW TO READ
2) DRIVE ADDRESS ON A31-A0
3) DRIVE USER PAGE ATTRIBUTES ON UPAL, UPAO
4) DRIVE SIZE ON SIZ1, SIZ0 (BYTE, WORD,

OR LONG WORD)
5) DRIVE TRANSFER TYPE ON TT1, TTO
6) DRIVE TRANSFER MODIFIER ON TM2-TMO
7) CIOUT BECOMES VALID
8)
9)

ASSERT TS FOR ONE CLOCK
ASSERT TIP

Y

PRESENT DATA

1) DECODE ADDRESS

2) PLACE DATA ON APPROPRIATE BYTES OF
D31-D0 BASED ON SIZEx, A0, AND Al

3) ASSERT TA

A

ACQUIRE DATA

1) LATCH DATA Y

TERMINATE CYCLE

Y 1) REMOVE DATA FROM D31-D0
START NEXT CYCLE 2) NEGATE TA

Figure 7-8. Byte, Word, and Long-Word Read Transfer Flowchart

7-10 M68040 USER’S MANUAL MOTOROLA



MOTOROLA

BCLK

A31-A2

Al

A0

UPAL, UPAO

SIz1

SIZ0

TT1,TT0

TM2-TMO

D31-D24

D23-D16

D15-D8

D7-D0

|c1 c2 c1 cw c2 c1 c2
X X
/ \
\
X X
e e
— - o

B S B N = e

5 ThARRRRRR R

§

‘
)

SRR URS

< WORD READ >
- —3»
BYTE READ WITH WAIT

<L ONG- WORD

READ

g;@@

Figure 7-9. Byte, Word, and Long-WordRead Transfer Timing

M68040 USER’S MANUAL

7-11



Clock 1 (C1)

The read cycle starts in C1. During the first half of C1, the processor places valid values
on the address bus and transfer attributes. For user and supervisor mode accesses,
which the corresponding memory unit translates, the user-programmable attribute
signals (UPAX) are driven with the values from the matching user bits (U1 and UO0). The
transfer type (TTx) and transfer modifier (TMx) signals identify the specific access type.
The read/write (R/W) signal is driven high for a read cycle. Cache inhibit out (CIOUT) is
asserted since the access is identified as noncachable. Refer to Section 3 Memory
Management Unit (Except MC68EC040 and MC68ECO040V) for information on the
M68040 and MC68LC040 memory units and Appendix B MC68ECO040 for information
on the MC68EC040 memory unit.

The processor asserts transfer start (TS) during C1 to indicate the beginning of a bus
cycle. If not already asserted from a previous bus cycle, the transfer in progress (TIP)
signal is also asserted at this time to indicate that a bus cycle is active.

Clock 2 (C2)

During the first half of the clock after C1, the processor negates TS. The selected
peripheral device uses R/W, SIZ1, SIZ0, A1, and A0 to place its information on the data
bus. With the exception of the R/W signal, these signals also select any or all of the
operand bytes (D31-D24, D23-D16, D15-D8, and D7-D0). If the first clock after C1 is
not a wait state (CW), then the selected peripheral device asserts the transfer
acknowledge (TA) signal.

At the end of the first clock cycle after C1, the processor samples the level of TA and
latches the current value on the data bus; the bus cycle terminates, and the data is
passed to the processor’s appropriate memory unit if TA is asserted. If TA is not
recognized asserted at the end of the clock cycle, the processor ignores the data and
inserts a wait state instead of terminating the transfer. The processor continues to
sample TA on successive rising edges of BCLK until TA is recognized asserted. The
data is then passed to the processor’s appropriate memory unit.

When the processor recognizes TA at the end of a clock and terminates the bus cycle,
TIP remains asserted if the processor is ready to begin another bus cycle. Otherwise,
the processor negates TIP during the first half of the next clock.

7.4.2 Line Read Transfer

The processor uses line read transfers to access a 16-byte operand for a MOVE16
instruction and to support cache line filling. A line read accesses a block of four long
words, aligned to a 16-byte memory boundary, by supplying a starting address that points
to one of the long words and requiring the memory device to sequentially drive each long
word on the data bus. The selected device must internally increment A3 and A2 of the
supplied address for each transfer, causing the address to wrap around at the end of the
block. The address and transfer attributes supplied by the processor remain stable during
the transfers, and the selected device terminates each transfer by driving the long word on

7-12 M68040 USER’S MANUAL MOTOROLA



the data bus and asserting TA. A line transfer performed in this manner with a single
address is referred to as a line burst transfer.

The M68040 also supports burst-inhibited line transfers for memory devices that are
unable to support bursting. For this type of bus cycle, the selected device supplies the first
long word pointed to by the processor address and asserts transfer burst inhibit (TBI) with
TA for the first transfer of the line access. The processor responds by terminating the line
burst transfer and accessing the remainder of the line, using three long-word read bus
cycles. Although the selected device can then treat the line transfer as four, independent,
long-word bus cycles, the bus controller still handles the four transfers as a single line
transfer and does not allow other unrelated processor accesses or bus arbitration to
intervene between the transfers. TBI is ignored after the first long-word transfer.

Line reads to support cache line filling can be cache inhibited by asserting transfer cache
inhibit (TCI) with TA for the first long-word transfer of the line. The assertion of TCI does
not affect completion of the line transfer, but the bus controller latches and passes it to the
memory controller for use. TCI is ignored after the first long-word transfer of a line burst
transfer and during the three long-word bus cycles for a burst-inhibited line transfer.

The address placed on the address bus by the processor for line transfers does not
necessarily point to the most significant byte of each long word because for a line read, Al
and AO are copied from the original operand address supplied to the memory unit by the
integer unit. These two bits are also unchanged for the three long-word bus cycles for a
burst-inhibited line transfer. The selected device should ignore A1l and AO for long-word
and line read transfers.

The address of an instruction fetch will always be aligned to a half-line boundary
(EXXXXXXX0 or $XXXXXXX8); therefore, compilers should attempt to locate branch
targets on half-line boundaries to minimize branch stalls. For example, if the target of a
branch is a two-word instruction located at $1000000C, the following burst sequence will
occur upon a cache miss: $10000008, $1000000C, $10000000, then $10000004. The
internal pipeline of the M68040 stalls until the second access of the burst (the address of
the instruction to be executed) has completed. Figures 7-10 and 7-11 illustrate a flowchart
and functional timing diagram for a line read bus transfer.

MOTOROLA M68040 USER’S MANUAL 7-13



PROCESSOR EXTERNAL DEVICE

ADDRESS DEVICE

1) SET R/W TO READ

2) DRIVE ADDRESS ON A31-A0

3) DRIVE USER PAGE ATTRIBUTES ON UPAL, UPAO
4) DRIVE SIZE ON SIZ1, SIZ0 (LINE)

5) DRIVE TRANSFER TYPE ON TT1, TTO

6) DRIVE TRANSFER MODIFIER ON TM2-TMO

7) CIOUT BECOMES VALID

8) ASSERT TS FOR ONE CLOCK

9) ASSERT TIP

A

Y

PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON D31-D0
3) ASSERT TA

A

ACQUIRE DATA

1) LATCHDATA Y
2) SAMPLE TBI AND TCI (FOR FIRST TRANSFER)

Y

TERMINATE CYCLE

1) REMOVE DATA FROM D31-D0
2) NEGATE TA (IF NECESSARY)
3) INCREMENT ADDRESS BITS A3, A2 (IF NECESSARY)

A

END OF BURST
WHEN FOUR LONG WORDS UNTIL FOUR LONG WORDS

TRANSFERRED TRANSFERRED

1) NEGATE TIP (IF REQUIRED)

Y
START NEXT CYCLE

Figure 7-10. Line Read Transfer Flowchart

7-14 M68040 USER’S MANUAL MOTOROLA



C3 C4 C5

(9]
-
o
N

BCLK

A31-A4

A3

A2-A0

UPAL, UPAO

SIZ1, SIZ0

TT1,TT0

LI LIPS

TM2-TMO

RIW

ClouT

TCl

D31-D0

Tiianricrtanrinrthr

9Pe

A3, A2 =

o
=
=
o
-
[N
o
S

NOTE: The selected device increments the value of A3 and A2.

Figure 7-11. Line Read Transfer Timing

Clock 1 (C1)

The line read cycle starts in C1. During the first half of C1, the processor places valid
values on the address bus and transfer attributes. For user and supervisor mode
accesses that are translated by the corresponding memory unit, the UPAX signals are
driven with the values from the matching U1l and UO bits. The TTx and TMx signals
identify the specific access type. The R/W signal is driven high for a read cycle, and the
size signals (SlIZx) indicate line size. CIOUT is asserted for a MOVE16 operand read if
the access is identified as noncachable. Refer to Section 3 Memory Management Unit

MOTOROLA M68040 USER’S MANUAL 7-15



(Except MC68BEC040 and MC68ECO040V) for information on the M68040 and
MC68LC040 memory units and Appendix B MC68EC040 for information on the
MC68EC040 memory unit.

The processor asserts TS during C1 to indicate the beginning of a bus cycle. If not
already asserted from a previous bus cycle, TIP is also asserted at this time to indicate
that a bus cycle is active.

Clock 2 (C2)

During the first half of the first clock after C1, the processor negates TS. The selected
device uses R/W, SIZ1, and SIZ0 to place the data on the data bus. (The first transfer
must supply the long word at the corresponding long-word boundary.) Concurrently, the
selected device asserts TA and either negates or asserts TBI to indicate it can or cannot
support a burst transfer. At the end of the first clock cycle after C1, the processor
samples the level of TA, TBI, and TCI and latches the current value on the data bus. If
TA is asserted, the transfer terminates and the data is passed to the appropriate
memory unit. If TA is not recognized asserted, the processor ignores the data and
inserts wait states instead of terminating the transfer. The processor continues to
sample TA, TBI, and TCI on successive rising edges of BCLK until TA is recognized
asserted. The latched data and the level on TCI are then passed to the appropriate
memory unit.

If TBI was negated with TA, the processor continues the cycle with C3. Otherwise, if TBI
was asserted, the line transfer is burst inhibited, and the processor reads the remaining
three long words using long-word read bus cycles. The processor increments A3 and
A2 for each read, and the new address is placed on the address bus for each bus cycle.
Refer to 7.4.1 Byte, Word, and Long-Word Read Transfers for information on long-
word reads. If no wait states are generated, a burst-inhibited line read completes in
eight clocks instead of the five required for a burst read.

Clock 3 (C3)

The processor holds the address and transfer attribute signals constant during C3. The
selected device must increment A3 and A2 to reference the next long word to transfer,
place the data on the data bus, and assert TA. At the end of C3, the processor samples
the level of TA and latches the current value on the data bus. If TA is asserted, the
transfer terminates, and the second long word of data is passed to the appropriate
memory unit. If TA is not recognized asserted at the end of C3, the processor ignores
the latched data and inserts wait states instead of terminating the transfer. The
processor continues to sample TA on successive rising edges of BCLK until it is
recognized. The latched data is then passed to the appropriate memory unit.

Clock 4 (C4)

This clock is identical to C3 except that once TA is recognized asserted, the latched
value corresponds to the third long word of data for the burst.

7-16 M68040 USER’S MANUAL MOTOROLA



Clock 5 (C5)

This clock is identical to C3 except that once TA is recognized, the latched value
corresponds to the third long word of data for the burst. After the processor recognizes
the last TA assertion and terminates the line read bus cycle, TIP remains asserted if the
processor is ready to begin another bus cycle. Otherwise, the processor negates TIP
during the first half of the next clock.

Figures 7-12 and 7-13 illustrate a flowchart and functional timing diagram for a burst-
inhibited line read bus cycle.

MOTOROLA M68040 USER’S MANUAL 7-17



PROCESSOR EXTERNAL DEVICE

ADDRESS DEVICE

1) SET R/W TO READ

2) DRIVE ADDRESS ON A31-A0

3) DRIVE USER PAGE ATTRIBUTES ON UPA1, UPAO
4) DRIVE SIZE ON SIZ1, SIZ0 (LINE)

5) DRIVE TRANSFER TYPE ON TT1, TTO

6) DRIVE TRANSFER MODIFIER ON TM2-TMO

7) CIOUT BECOMES VALID
8) ASSERT TS FOR ONE CLOCK
9) ASSERT TIP

PRESENT DATA

Y

1) DECODE ADDRESS
2) PLACE DATA ON D31-D0
3) ASSERT TA AND TBI

ACQUIRE DATA

A

1) LATCHDATA
2) SAMPLE TBI AND TCI Y
3) RECOGNIZE TBI ASSERTED

TERMINATE CYCLE

1) REMOVE DATA FROM D31-D0
Y 2) NEGATE TA

Y

ADDRESS DEVICE

1) INCREMENT ADDRESS BITS A3, A2 AND DRIVE
NEW ADDRESS ON A31-A0
2) DRIVE SIZE ON SIZ1, SIZ0 (LONG WORD)

3) ASSERT TRANSFER START (TS) FOR ONE CLOCK

Y

PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON D31-D0
3) ASSERT TA

A

ACQUIRE DATA

1) LATCH DATA

Y

T

UNTIL THREE LONG WORDS

TRANSFERRED | TERMINATE CYCLE
WHEN THREE LONG WORDS
TRANSFERRED 1) REMOVE DATA FROM D31-D0
* 2) NEGATE TA
END OF LINE TRANSFER

1) NEGATE TIP (IF REQUIRED)

Y
START NEXT CYCLE

Figure 7-12. Burst-Inhibited Line Read Transfer Flowchart

7-18 M68040 USER’S MANUAL MOTOROLA



C2 C3 C4 C5 C6 C7 C8

B N N S = N I N N [

BCLK

A31-A4

A3

A2

Al, AO

UPA1, UPAO

| | | | | | | |
SIZ1, SIZ0 | LINE | LONG | | LONG | | LONG |
| | | |

TT1,TTO

TM2-TMO

TLN1, TLNO

S > >
><
><

>
>

RIW

Clout

SAAARRARAARRE

TBI

TCI

/
X

—
E—

—/\ . //\ i //\
-/ 0 —J o =

I
INHIBITED o, | ¢ LONG-WORD 5, | o LONG-WORD | ¢ LONG-WORD _,,
LNEREAD > | € READ < READ < READ

Figure 7-13. Burst-Inhibited Line Read Transfer Timing

D31-DO

AU

MOTOROLA M68040 USER’S MANUAL 7-19



7.4.

3 Byte, Word, and Long-Word Write Transfers

During a write transfer, the processor transfers data to a memory or peripheral device.
The level on the TCI signal is ignored by the processor during all write cycles. The bus
controller performs byte, word, and long-word write transfers for the following cases:

Accesses to a disabled cache.
Accesses to a memory page that is specified noncachable.

Accesses that are implicitly noncachable (read-modify-write accesses and accesses
to an alternate logical address space via the MOVES instruction).

Writes to write-through pages.

Accesses that do not allocate in the data cache on a write miss (table updates and
exception stacking).

The first transfer of a line write is terminated with TBI, forcing completion of the line
access using three additional long-word write transfers.

Cache line pushes for lines containing a single dirty long word.

Figures 7-14 and 7-15 illustrate a flowchart and functional timing diagram for byte, word,

and

7-20

long-word write bus transfers.

PROCESSOR EXTERNAL DEVICE

ADDRESS DEVICE

1) SET R/IW TO WRITE

2) DRIVE ADDRESS ON A31-A0

3) DRIVE USER PAGE ATTRIBUTES ON UPAL, UPAO

4) DRIVE SIZE ON SIZ1, SIZ0 (BYTE, WORD, OR
LONG WORD)

5) DRIVE TRANSFER TYPE ON TT1, TTO

6) DRIVE TRANSFER MODIFIER ON TM2-TMO

7) CIOUT BECOMES VALID

8) ASSERT TS FOR ONE CLOCK

9)

0)

ASSERT TIP
DRIVE DATA ON APPROPRIATE BYTES OF — ACCEPT DATA
D31-D0 BASED ON SIZEx, AL, AND AO

1

1) DECODE ADDRESS
2) LATCH DATA ON APPROPRIATE BYTES OF
D31-D0 BASED ON SIZEx, A1, ANDAO __
< 3) ASSERT TRANSFER ACKNOWLEDGE (TA)

TERMINATE TRANSFER

1) REMOVE DATA FROM D31-D0 ¢
2) NEGATE TIP (IF REQUIRED)
¢ TERMINATE CYCLE
1) NEGATE TA
START NEXT CYCLE

Figure 7-14. Byte, Word, and Long-Word Write Transfer Flowchart

M68040 USER’S MANUAL MOTOROLA



(@]
=

C2

BCLK

A31-A0 X X
l l
UPAL, UPAO X X
| |
| |
siz1, S1Z0 \ ' ong 0/
| |
I I
TT1, TTO \ v/
TM2-TMO X X
RIW \ /
clouT / \

3
|

I
D31-D0 Jj == )
_/ | \_/}
<—L0NG-W0RD~>{
WRITE

Figure 7-15. Long-Word Write Transfer Timing

Clock 1 (C1)

The write cycle starts in C1. During the first half of C1, the processor places valid values
on the address bus and transfer attributes. For user and supervisor mode accesses,
which the corresponding memory unit translates, the UPAXx signals are driven with the
values from the Ul and UO bits for the area. The TTx and TMx signals identify the
specific access type. The R/W signal is driven low for a write cycle. CIOUT is asserted if
the access is identified as noncachable or if the access references an alternate address
space. Refer to Section 3 Memory Management Unit (Except MC68EC040 and
MCG68EC040V) for information on the M68040 and MC68LC040 memory units and
Appendix B MC68ECO040 for information on the MC68EC040 memory unit.

The processor asserts TS during C1 to indicate the beginning of a bus cycle. If not
already asserted from a previous bus cycle, the TIP signal is also asserted at this time
to indicate that a bus cycle is active.

MOTOROLA M68040 USER’S MANUAL 7-21



Clock 2 (C2)

During the first half of the clock after C1, the processor negates TS and drives the
appropriate bytes of the data bus with the data to be written. All other bytes are driven
with undefined values. The selected device uses R/W, SIZ1, SIZ0, A1, A0, and CIOUT
to latch only the required information on the data bus. With the exception of R/W and
CIOUT, these signals also select any or all of the bytes (D31-D24, D23-D16, D15-D8,
and D7-DO0). If the first clock after C1 is not a wait state, then the selected peripheral
device asserts the TA signal.

At the end of the first clock cycle after C1, the processor samples the level of TA,
terminating the bus cycle if TA is asserted. If TA is not recognized asserted at the end of
the clock cycle, the processor ignores the data and inserts a wait state instead of
terminating the transfer. The processor continues to sample TA on successive rising
edges of BCLK until TA is recognized asserted. The data bus then three-states and the
bus cycle ends.

When the processor recognizes TA at the clock edge and terminates the bus cycle, TIP
remains asserted if the processor is ready to begin another bus cycle. Otherwise, the
processor negates TIP during the first half of the next clock. The processor also three-
states the data bus during the first half of the next clock following termination of the
write transfer.

7.4.4 Line Write Transfers

The processor uses line write bus cycles to access a 16-byte operand for a MOVE16
instruction and to support cache line pushes. Both burst and burst-inhibited transfers are
supported. Figures 7-16 and 7-17 illustrate a flowchart and functional timing diagram for a
line write bus cycle.

7-22 M68040 USER’S MANUAL MOTOROLA



PROCESSOR EXTERNAL DEVICE

ADDRESS DEVICE

1) SET R/W TO WRITE

2) DRIVE ADDRESS ON A31-A0

3) DRIVE USER PAGE ATTRIBUTES ON UPAL, UPAO

4) DRIVE SIZE ON SIZ1, SIZ0 (LINE)

5) DRIVE TRANSFER TYPE ON TT1, TTO

6) DRIVE TRANSFER MODIFIER ON TM2-TM0

7) CIOUT BECOMES VALID

8) ASSERT TS FOR ONE CLOCK
)

9) ASSERT TIP
Eagl SUPPLY DATA > ACCEPT DATA =3

1) DRIVE DATA ON D31-D0 1) DECODE ADDRESS (FIRST TRANSFER ONLY)

2)SAMPLETA < 2) LATCH DATA ON D31-D0

3) SAMPLE TBI AND TCI (FOR FIRST TRANSFER) 3) ASSERT TA

UNTIL FOUR LONG WHEN FOUR LONG
WORDS TRANSFERRED WORDS TRANSFERRED
TERMINATE CYCLE
END OF BURST
1) NEGATE TA (IF NECESSARY)
1) REMOVE DATA FROM D31-D0 2) INCREMENT ADDRESS BITS A3, A2 (IF
2) NEGATE TIP (IF REQUIRED) NECESSARY)
¢ UNTIL FOUR LONG
WORDS TRANSFERRED
START NEXT CYCLE

Figure 7-16. Line Write Transfer Flowchart

MOTOROLA M68040 USER’S MANUAL 7-23



C3 C4 C5

O
-
O
N

BCLK

A31-Ad4

A3

A2-A0

UPAL, UPAO

SIZ1, SIZ0

TT1,TTO

TM2-TMO

J LIRS

Tahrirthnncncihr

mo (XX

NOTE: The selected device increments the value of A3 and A2.

Figure 7-17. Line Write Transfer Timing

Clock 1 (C1)

The line write cycle starts in C1. During the first half of C1, the processor places valid
values on the address bus and transfer attributes. For user and supervisor mode
accesses that are translated by the corresponding memory unit, UPAX signals are
driven with the values from the matching U1l and UO bits. The TTx and TMx signals
identify the specific access type. The R/W signal is driven low for a write cycle, and
SIZ1 and SIZ0 indicate line size. CIOUT is asserted for a MOVE16 operand read if the
access is identified as noncachable. Refer to Section 3 Memory Management Unit
(Except MC68EC040 and MCG68EC040V) for information on the M68040 and

7-24 M68040 USER’S MANUAL MOTOROLA



MC68LC040 memory units and Appendix B MCG68ECO040 for information on the
MCG68EC040 memory unit.

The processor asserts TS during C1 to indicate the beginning of a bus cycle. If not
already asserted from a previous bus cycle, the TIP signal is also asserted at this time
to indicate that a bus cycle is active.

Clock 2 (C2)

During the first half of the first clock after C1, the processor negates TS and drives the
data bus with the data to be written. The selected device uses R/W, SIZ1, and SIZ0 to
latch the data on the data bus. Concurrently, the selected device asserts TA and either
negates or asserts TBI to indicate it can or cannot support a burst transfer. At the end of
the first clock after C1, the processor samples the level of TA and TBI. If TA is asserted,
the transfer terminates. If TA is not recognized asserted, the processor inserts wait
states instead of terminating the transfer. The processor continues to sample TA and
TBI on successive rising edges of BCLK until TA is recognized asserted.

If TBI was negated with TA, the processor continues the cycle with C3. Otherwise, if TBI
was asserted, the line transfer is burst inhibited, and the processor writes the remaining
three long words using long-word write bus cycles. Only in this case does the processor
increment A3 and A2 for each write, and the new address is placed on the address bus
for each bus cycle. Refer to 7.4.3 Byte, Word, and Long-Word Write Transfers for
information on long-word writes. If no waits states are generated, a burst-inhibited line
write completes in eight clocks instead of the five required for a burst write.

Clock 3 (C3)

The processor drives the second long word of data on the data bus and holds the
address and transfer attribute signals constant during C3. The selected device
increments A3 and A2 to reference the next long word, latches this data from the data
bus, and asserts TA. At the end of C3, the processor samples the level of TA; if TA is
asserted, the transfer terminates. If TA is not recognized asserted at the end of C3, the
processor inserts wait states instead of terminating the transfer. The processor
continues to sample TA on successive rising edges of BCLK until TA is recognized
asserted.

Clock 4 (C4)

This clock is identical to C3 except that the value driven on the data bus corresponds to
the third long word of data for the burst.

Clock 5 (C5)

This clock is identical to C3 except that the value driven on the data bus corresponds to
the fourth long word of data for the burst. After the processor recognizes the last TA
assertion and terminates the line write bus cycle, TIP remains asserted if the processor
is ready to begin another bus cycle. Otherwise, the processor negates TIP during the
first half of the next clock. The processor also three-states the data bus during the first
half of the next clock following termination of the write cycle.

MOTOROLA M68040 USER’S MANUAL 7-25



7.4.5 Read-Modify-Write Transfers (Locked Transfers)

The read-modify-write transfer performs a read, conditionally modifies the data in the
processor, and writes the data out to memory. In the M68040, this operation can be
indivisible, providing semaphore capabilities for multiprocessor systems. During the entire
read-modify-write sequence, the M68040 asserts the LOCK signal to indicate that an
indivisible operation is occurring and asserts the LOCKE signal for the last transfer to
indicate completion of the locked sequence. The external arbiter can use the LOCK and
LOCKE signals to prevent arbitration of the bus during locked processor sequences.
External bus arbitrations can use LOCKE to support bus arbitration between consecutive
read-modify-write cycles. A read-modify-write operation is treated as noncachable. If the
access hits in the data cache, it invalidates a matching valid entry and pushes a matching
dirty entry. The read-modify-write transfer begins after the line push (if required) is
complete; however, LOCK may assert during the line push bus cycle.

The TAS, CAS, and CAS2 instructions are the only M68040 instructions that utilize read-
modify-write transfers. Some page descriptor updates during translation table searches
also use read-modify-write transfers. Refer to Section 3 Memory Management Unit
(Except MC68EC040 and MC68EC040V) for information about table searches.

The read-modify-write transfer for the CAS and CAS2 instructions in the M68040 differs
from those used by previous members of the M68000 family. If an operand does not
match one of these instructions, the M68040 still executes a single write transfer to
terminate the locked sequence with LOCKE asserted. For the CAS instruction, the value
read from memory is written back; for the CAS2 instruction, the second operand read is
written back. Figure 7-18 illustrates a functional timing diagram for a TAS instruction read-
modify-write bus transfer.

Clock 1 (C1)

The read cycle starts in C1. During the first half of C1, the processor places valid values
on the address bus and transfer attributes. LOCK is asserted to identify a locked read-
modify-write bus cycle. For user and supervisor mode accesses, which the
corresponding memory unit translates, the UPAX signals are driven with the values from
the matching Ul and UO bits. The TTx and TMx signals identify the specific access
type. R/W is driven high for a read cycle. CIOUT is asserted if the access is identified as
noncachable. The processor asserts TS during C1 to indicate the beginning of a bus
cycle. If not already asserted from a previous bus cycle, the TIP signal is also asserted
at this time to indicate that a bus cycle is active. Refer to Section 3 Memory
Management Unit (Except MC68EC040 and MC68EC040V) for information on the
M68040 and MC68LC040 memory units and Appendix B MC68ECO040 for information
on the MC68EC040 memory unit.

7-26 M68040 USER’S MANUAL MOTOROLA



MOTOROLA

O
-
O
N

| N
' . x
im K N X
o N -
w 7 A
2\ N [~
S N X
w T [
sor ] A A
= 1\ N s
o ] AEnE e
s /T
R T

=
Ve

v

e

mon " — —

waon ) . o

s )~ Co—

wn ) 0
}(—

|

|

| |
LOCKED TRANSFER—)|
I:I Undefined

Figure 7-18. Locked Transfer for TAS Instruction Timing

M68040 USER’S MANUAL

7-27



Clock 2 (C2)

During the first half of the first clock cycle after C1, the processor negates TS. The
selected device uses R/W, SIZ1, SIZ0, A1, and A0 to place its information on the data
bus. With the exception of R/W, these signals also select any or all of the bytes (D24—
D31, D16-D23, D15-D8, and D7-D0). Concurrently, the selected device asserts TA. At
the end of the first clock cycle after C1, the processor samples the level of TA and
latches the current value on the data bus. If TA is asserted, the read transfer terminates,
and the latched data is passed to the appropriate memory unit. If TA is not recognized
asserted, the processor ignores the data and appends a wait state instead of
terminating the transfer. The processor continues to sample TA on successive rising
edges of BCLK until TA is recognized as asserted. The latched data is then passed to
the appropriate memory unit. If more than one read cycle is required to read in the
operand(s), C1 and C2 are repeated accordingly.

When the processor recognizes TA at the end of the last read transfer for the locked
bus cycle, it negates TIP during the first half of the next clock.

Clock Idle (CI)

The processor does not assert any new control signals during the idle clock states, but it
may begin the modify portion of the cycle at this time. The R/W signal remains in the
read mode until C3 to prevent bus conflicts with the preceding read portion of the cycle;
the data bus is not driven until C4.

Clock 3 (C3)

During the first half of C3, the processor places valid values on the address bus and
transfer attributes and drives R/W low for a write cycle. The processor asserts TS to
indicate the beginning of a bus cycle. The TIP signal is also asserted at this time to
indicate that a bus cycle is active.

LOCKE is asserted during C3 for the last write transfer of the locked sequence. If
multiple write transfers are required for misaligned operands or multiple operands,
LOCKE is asserted only for the final write transfer. The external arbiter can use this
indication to distinguish between two back-to-back locked bus cycles and allow
arbitration between them.

Clock 4 (C4)

During the first half of C4, the processor negates TS and drives the appropriate bytes of
the data bus with the data to be written. All other bytes are driven with undefined values.
The selected device uses R/W, SIZ1, SIZ0, Al, and AO to latch the information on the
data bus. Any or all of the bytes (D31-D24, D23-D16, D15-D8, and D7-DO0) are
selected by SIZ1, SIZ0, A1, and AO. Concurrently, the selected device asserts TA. At
the end of C4, the processor samples the level of TA; if TA is asserted, the bus cycle
terminates. If TA is not recognized asserted at the end of C4, the processor appends a
wait state instead of terminating the transfer. The processor continues to sample the TA
signal on successive rising edges of BCLK until it is recognized asserted.

7-28 M68040 USER’S MANUAL MOTOROLA



When the processor recognizes TA at the end of a clock, the bus cycle is terminated,
but TIP remains asserted if the processor is ready to begin another bus cycle.
Otherwise, the processor negates TIP during the first half of the next clock. The
processor also three-states the data bus during the first half of the next clock following
termination of the write cycle. When the last write transfer is terminated, LOCKE is
negated. The processor also negates LOCK if the next bus cycle is not a read-modify-
write.

7.5 ACKNOWLEDGE BUS CYCLES

Bus transfers with transfer type signals TT1 and TTO = $3 are classified as acknowledge
bus cycles. The following paragraphs describe interrupt acknowledge and breakpoint
acknowledge bus cycles that use this encoding.

7.5.1 Interrupt Acknowledge Bus Cycles

When a peripheral device requires the services of the M68040 or is ready to send
information that the processor requires, it can signal the processor to take an interrupt
exception. The interrupt exception transfers control to a routine that responds
appropriately. The peripheral device uses the active-low interrupt priority level signals
(IPL2-IPLO) to signal an interrupt condition to the processor and to specify the priority level
for the condition. Refer to Section 8 Exception Processing for a discussion on the 1PLx
levels and IPEND.

The status register (SR) of the M68040 contains an interrupt priority mask (12—10 bits). The
value in the interrupt mask is the highest priority level that the processor ignores. When an
interrupt request has a priority higher than the value in the mask, the processor makes the
request a pending interrupt. IPL2—IPLO must maintain the interrupt request level until the
M68040 acknowledges the interrupt to guarantee that the interrupt is recognized. The
M68040 continuously samples IPL2—-IPLO on consecutive rising edges of BCLK to
synchronize and debounce these signals. An interrupt request that is held constant for two
consecutive clock periods is considered a valid input. Although the protocol requires that
the request remain until the processor runs an interrupt acknowledge cycle for that
interrupt value, an interrupt request that is held for as short a period as two clock cycles
can be recognized. Figure 7-19 is a flowchart of the procedure for making an interrupt
pending.

MOTOROLA M68040 USER’S MANUAL 7-29



{ RESET }

SAMPLE AND SYNCHRONIZE
IPL2-IPLO

INTERRUPT LEVEL >12-0,
OR TRANSITION ON LEVEL 7

OTHERWISE ASSERT IPEND

Figure 7-19. Interrupt Pending Procedure

The M68040 asserts IPEND when an interrupt request is pending. Figure 7-20 illustrates
the assertion of IPEND relative to the assertion of an interrupt level on the IPLx signals.
IPEND signals external devices that an interrupt exception will be taken at an upcoming
instruction boundary (following any higher priority exception). The IPEND signal negates
after the processor recognizes the internal interrupt acknowledge and can precede the
external interrupt acknowledge bus cycle.

BCLK
! ! ! ! ! !
1 1 1 1 1 1
IPL2-IPLO —( ; ; ; ; ; ;
1 1 1 1 1 1
1 1 1 1 1 1
| | ] | | |
|PEND | | | \ | | |
| | | | |
| | | I I :
| | | | | |
IPLs RECOGNIZED —> —= ASSERT IPEND
IPLs SYNCHRONIZED —>|
COMPARE REQUEST WITH MASK IN SR — -

Figure 7-20. Assertion of IPEND

7-30 M68040 USER’S MANUAL MOTOROLA



The M68040 takes an interrupt exception for a pending interrupt within one instruction
boundary after processing any other pending exception with a higher priority. Thus, the
M68040 executes at least one instruction in an interrupt exception handler before
recognizing another interrupt request. The following paragraphs describe the various kinds
of interrupt acknowledge bus cycles that can be executed as part of interrupt exception
processing. Table 7-4 provides a summary of the possible interrupt acknowledge
terminations and the exception processing results.

Table 7-4. Interrupt Acknowledge Termination Summary

TA TEA AVEC Termination Condition

High High Don’t Care | Insert Waits

High Low Don't Care | Take Spurious Interrupt Exception

Low High High Latch Vector Number on D7-D0 and Take Interrupt
Exception

Low High Low Take Autovectored Interrupt Exception

Low Low Don't Care | Retry Interrupt Acknowledge Cycle

7.5.1.1 INTERRUPT ACKNOWLEDGE BUS CYCLE (TERMINATED NORMALLY).
When the M68040 processes an interrupt exception, it performs an interrupt acknowledge
bus cycle to obtain the vector number that contains the starting location of the interrupt
exception handler. Some interrupting devices have programmable vector registers that
contain the interrupt vectors for the exception handlers they use. Other interrupting
conditions or devices cannot supply a vector number and use the autovector bus cycle
described in 7.5.1.2 Autovector Interrupt Acknowledge Bus Cycle.

MOTOROLA M68040 USER’S MANUAL 7-31



The interrupt acknowledge bus cycle is a read transfer. It differs from a normal read cycle
in the following respects:

1. TT1 and TTO = $3 to indicate an acknowledged bus cycle.
2. Address signals A31-A0 are set to all ones ($FFFFFFFF).
3. TM2-TMO are set to the interrupt request level (the inverted values of IPL2—IPLO).

The responding device places the vector number on the data bus during the interrupt
acknowledge bus cycle, and the cycle is terminated normally with TA. Figures 7-21 and
7-22 illustrate a flowchart and functional timing diagram for an interrupt acknowledge cycle
terminated with TA.

7-32

PROCESSOR

ACKNOWLEDGE INTERRUPT

EXTERNAL DEVICE

1) IPEND RECOGNIZED, WAIT FOR
INSTRUCTION BOUNDARY

2) SET R/IWTO READ

3) DRIVE A31-A0 TO $FFFFFFFF

4) DRIVE UPAL, UPAO TO $0

5) SET SIZE TO BYTE

6) SET TRANSFER TYPE ON TT1, TTO TO $3

7) PLACE INTERRUPT LEVEL ON TM2-TMO

8) NEGATE CIOUT

9) ASSERT TS FOR ONE CLOCK

0)

10) ASSERT TIP

REQUEST INTERRUPT

PROVIDE VECTOR INFORMATION

ACQUIRE DATA

1) LATCH VECTOR NUMBER

1) PLACE VECTOR NUMBER ON BYTE D7-D0
2) ASSERT TRANSFER ACKNOWLEDGE (TA)

Y

!

TERMINATE CYCLE

START NEXT CYCLE

1) REMOVE DATA FROM D7-D0
2) NEGATE TA

Figure 7-21. Interrupt Acknowledge Bus Cycle Flowchart

M68040 USER’S MANUAL

MOTOROLA



(@}
-
Q
N

Cl C2
BCLK | | | N—] |
o/
UPA1, UPAO ‘\ i i '\, i / |
- ‘\ ‘ BYTE ‘ : ‘ !

so [/ | A\

TT1, TTO J ,\l \ |
TM2-TMO :>< INTERRUPTLEVEQ ><
w T S
wor ] A
75 3 N\

T T

3|
=

.

I

I

|

— N : l
ks j—\_/ | o\

I | ‘

= | N— :

AVEC | : |
I ‘ !
| | ‘

D31-D8 — : | |
| 1 | |
| VECTOR# | ‘
| ‘ !

D7-D0 ‘ ‘ ! S
| | L
| | ‘ !

INTERRUPT
— -
‘ ACKNOWLEDGE ‘ % WRITE STACK

Figure 7-22. Interrupt Acknowledge Bus Cycle Timing

7.5.1.2 AUTOVECTOR INTERRUPT ACKNOWLEDGE BUS CYCLE. When the
interrupting device cannot supply a vector number, it requests an automatically generated
vector (autovector). Instead of placing a vector number on the data bus and asserting TA,
the device asserts the autovector (AVEC) signal with TA to terminate the cycle. AVEC is
only sampled with TA asserted. AVEC can be grounded if all interrupt requests are
autovectored.

The vector number supplied in an autovector operation is derived from the interrupt priority
level of the current interrupt. When the AVEC signal is asserted with TA during an interrupt
acknowledge bus cycle, the M68040 ignores the state of the data bus and internally

MOTOROLA M68040 USER’S MANUAL 7-33



generates the vector number, which is the sum of the interrupt priority level plus 24 ($18).
There are seven distinct autovectors that can be used, corresponding to the seven levels
of interrupts available with IPL2—IPLO signals. Figure 7-23 illustrates a functional timing
diagram for an autovector operation.

‘ Cl C2 Cl C2
BCLK |
| | '\l | |
s L\
UPAL, UPAO ‘\ '\, /
. ‘\ BYTE '\l % !
SIZo J 3 3 N 3 \
TT1, TTO J % % '\l % |
S S s s
TM2-TMO :>< : INTITRRUPT LEVE'<I >< :
W/ \
N A T
S Ve N o

‘ |
‘ |
w0\ :
_ 1 | N |
T J : \_:/ : \
| T ‘
AVEC | \ | / :
| | ‘
| | ‘
D31-DO 3 1 1 N | /a
| | ‘ \
> INTERRUPT
‘ ACKNOWLEDGE ‘ < ‘4— WRITE STACK
AUTOVECTORED

Figure 7-23. Autovector Interrupt Acknowledge Bus Cycle Timing

7.5.1.3 SPURIOUS INTERRUPT ACKNOWLEDGE BUS CYCLE. When a device does
not respond to an interrupt acknowledge bus cycle with TA, or AVEC and TA, the external
logic typically returns the transfer error acknowledge signal (TEA). In this case, the
M68040 automatically generates the spurious interrupt vector number 24 ($18) instead of
the interrupt vector number. If TA and TEA are both asserted, the processor retries the
cycle.

7-34 M68040 USER’S MANUAL MOTOROLA



7.5.2 Breakpoint Interrupt Acknowledge Bus Cycle

The execution of a breakpoint instruction (BKPT) generates the breakpoint interrupt
acknowledge bus cycle. An acknowledged access is indicated with TT1 and TTO = $3,
address A31-A0 = $00000000, and TM2-TMO = $0. When the external device terminates
the cycle with either TA or TEA, the processor takes an illegal instruction exception.
Figures 7-24 and 7-25 illustrate a flowchart and functional timing diagram for a breakpoint

interrupt acknowledge transfer.

PROCESSOR

BREAKPOINT ACKNOWLEDGE

1) SET RIW TO READ

2) DRIVE A31-A0 TO $00000000

3) DRIVE UPAL, UPAQ TO $0

4) SET SIZE TO BYTE

5) SET TRANSFER TYPE ON TT1, TTO TO $3
6) SET TRANSFER MODIFIER TM2-TMO TO $0
8) NEGATE CIOUT
9) ASSERT TS FOR ONE CLOCK
0)

10) ASSERT TIP

EXTERNAL DEVICE

INITIATE ILLEGAL
INSTRUCTION EXCEPTION PROCESSING

Y

MOTOROLA

A

ASSERT TA OR TEA

Y

TERMINATE CYCLE

1) NEGATE TA OR TEA

Figure 7-24. Breakpoint Interrupt Acknowledge Bus Cycle Flowchart

M68040 USER’S MANUAL

7-35



Cl C2

O
-
O
N

BCLK

A31-A0

UPAL, UPAO

Siz1

w
<
3
m

SIZ0

J 7 < <7

SR

TT1, 770

TM2-TMO

RIW

JYPP PP

ClouT

< 7 <L

E

|

P

e

I\l

BREAKPOINT
ACKNOWLEDGE | < ‘<— WRITE STACK

Figure 7-25. Breakpoint Interrupt Acknowledge Bus Cycle Timing

7.6 BUS EXCEPTION CONTROL CYCLES

The M68040 bus architecture requires assertion of TA from an external device to signal
that a bus cycle is complete. TA is not asserted in the following cases:

» The external device does not respond.

* No interrupt vector is provided.

» Various other application-dependent errors occur.
External circuitry can provide TEA when no device responds by asserting TA within an
appropriate period of time after the processor begins the bus cycle. This allows the cycle

to terminate and the processor to enter exception processing for the error condition. TEA
can also be asserted in combination with TA to cause a retry of a bus cycle in error.

7-36 M68040 USER’S MANUAL MOTOROLA



To properly control termination of a bus cycle for a bus error or retry condition, TA and
TEA must be asserted and negated for the same rising edge of BCLK. Table 7-5 lists the
control signal combinations and the resulting bus cycle terminations. Bus error and retry
terminations during burst cycles operate as described in 7.4.2 Line Read Transfers and
7.4.4 Line Write Transfers.

Table 7-5. TA and TEA Assertion Results

Case No. TA TEA Result
1 High Low Bus Error—Terminate and Take Bus Error Exception,
Possibly Deferred
2 Low Low Retry Operation—Terminate and Retry
Low High Normal Cycle Terminate and Continue
4 High High Insert Wait States

7.6.1 Bus Errors

The system hardware can use the TEA signal to abort the current bus cycle when a fault
is detected. A bus error is recognized during a bus cycle when TA is negated and TEA is
asserted. When the processor recognizes a bus error condition for an access, the access
is terminated immediately. A line access that has TEA asserted for one of the four long-
word transfers aborts without completing the remaining transfers, regardless of whether
the line transfer uses a burst or burst-inhibited access.

When TEA is asserted to terminate a bus cycle, the M68040 can enter access error
exception processing immediately following the bus cycle, or it can defer processing the
exception. The instruction prefetch mechanism requests instruction words from the
instruction memory unit before it is ready to execute them. If a bus error occurs on an
instruction fetch, the processor does not take the exception until it attempts to use the
instruction. Should an intervening instruction cause a branch or should a task switch
occur, the access error exception for the unused access does not occur. Similarly, if a bus
error is detected on the second, third, or fourth long-word transfer for a line read access,
an access error exception is taken only if the execution unit is specifically requesting that
long word. Otherwise, the line is not placed in the cache, and the processor repeats the
line access when another access references the line. If a misaligned operand spans two
long words in a line, a bus error on either the first or second transfer for the line causes
exception processing to begin immediately. A bus error termination for any write accesses
or for read accesses that reference data specifically requested by the execution unit
causes the processor to begin exception processing immediately. Refer to Section 8
Exception Processing for details of access error exception processing.

When a bus error terminates an access, the contents of the corresponding cache can be
affected in different ways, depending on the type of access. For a cache line read to
replace a valid instruction or data cache line, the cache line being filled is invalidated
before the bus cycle begins and remains invalid if the replacement line access is
terminated with a bus error. If a dirty data cache line is being replaced and a bus error
occurs during the replacement line read, the dirty line is restored from an internal push

MOTOROLA M68040 USER’S MANUAL 7-37



buffer into the cache to eliminate an unnecessary push access. If a bus error occurs
during a data cache push, the corresponding cache line remains valid (with the new line
data) if the line push follows a replacement line read, or is invalidated if a CPUSH
instruction explicitly forces the push. Write accesses to memory pages specified as write-
through by the data memory unit update the corresponding cache line before accessing
memory. If a bus error occurs during a memory access, the cache line remains valid with
the new data. Figure 7-26 illustrates a functional timing diagram of a bus error on a word
write access causing an access error exception. Figure 7-27 illustrates a functional timing
diagram of a bus error on a line read access that does not cause an access error
exception.

A physical bus error during an FSAVE instruction results in corruption of the floating-point
state frame. This is not a serious limitation since, prior to writing the stack frame, the
M68040 ensures that the pages required for the floating-point state frame are resident.
Therefore, only a physical bus error can cause an access error during the stacking of the
state frame. In a normal application, writes caused by the processor should not result in a
physical bus error since the logical address space has already been translated and
allocated. Since there should be no parity errors caused by processor write accesses, only
spurious assertions of the TEA pin can cause physical bus errors. Furthermore, because
FSAVE instructions usually place the state frame on the system stack, the occurrence of a
physical bus error when using the system stack indicates a serious hardware error.

7-38 M68040 USER’S MANUAL MOTOROLA



MOTOROLA

BCLK

A31-A0

UPAL, UPAO

SIz1

SIZ0

TT1,TT0

TM2-TMO

Figure 7-26. Word Write Access Terminated with TEA Timing

(9]
-
Q
N

| N

X X
X X
/AR
N A
A .
X X
A N

, :\__

/

E

P

'( WRITE CYCLE )‘

M68040 USER’S MANUAL

alsls

‘f WRITE STACK

7-39



C4

C3

C2

Cl

BCLK

A31-A4

UPA1, UPAO

SIz1, SIZ0

TT1,TT0

TM2-TMO

TBI

|
D31-D0 H

H A )—

NO EXCEPTION

TEA ENDS BURST -
TAKEN

01‘10‘11}¢

NOTE: The selected device increments the value on A3 and A2.

A3, A2

Figure 7-27. Line Read Access Terminated with TEA Timing

MOTOROLA

M68040 USER’S MANUAL

7-40



7.6.2 Retry Operation

When an external device asserts both the TA and TEA signals during a bus cycle, the
processor enters the retry sequence. The processor terminates the bus cycle and
immediately retries the cycle using the same access information (address and transfer
attributes). However, if the bus cycle was a cache push operation, the bus is arbitrated
away from the M68040 before the retry operation, and a snoop during the arbitration
invalidates the cache push, then the processor does not use the same access information.
Figure 7-28 illustrates a functional timing diagram for a retry of a read bus transfer.

(@]
=

C2 Cw C1 C2

BCLK

A31-A0

UPAL, UPAO

SIZ1, SIZ0

TT1, 770

[ ER N
o
=
@
=
o
o)

|- o -

TM2-TMO

RIW

ClouT

BN
RIEIniRIRIRID

LA [
TA / | | | \ /
TA | | |
| | |
| | | |
w0 -
| | | |
| | | |
| | | / \
D31-D0 3 ; ; — )
| | | [l
READ CYCLE RETRY
RETRY SIGNALED CYCLE

Figure 7-28. Retry Read Transfer Timing

The processor retries any read or write cycles of a read-modify-write transfer separately;
LOCK remains asserted during the entire retry sequence. If the last bus cycle of a locked
access is retried, LOCKE remains asserted through the retry of the write cycle.

MOTOROLA M68040 USER’S MANUAL 7-41



On the initial cycle of a line transfer, a retry causes the processor to retry the bus cycle as
illustrated in Figure 7-29. However, the processor recognizes a retry signaled during the
second, third, or fourth cycle of a line as a bus error and causes the processor to abort the
line transfer. A burst-inhibited line transfer can only be retried on the initial transfer. A
burst-inhibited line transfer aborts if a retry is signaled for any of the three long-word
transfers used to complete the line transfer. Negating the bus grant (BG) signal on the
M68040 while asserting both TA and TEA provides a relinquish and retry operation for any
bus cycle that can be retried (see Figure 7-31).

(@]
-

C2 C1 C2 C3 C4 C5

BCLK

A31-A0

UPA1L, UPAO

SIZ1, SIZ0

TT1, 770

TM2-TMO

J I LIS ]

3|
=

aintalslniainlsinln

ey,

w
D31-D0 % ‘ >< ‘ >< | >< ‘ >_

RETRY — > <——— RETRY CYCLE ————— >
SIGNALED

Figure 7-29. Retry Operation on Line Write

7-42 M68040 USER’S MANUAL MOTOROLA



7.6.3 Double Bus Fault

A double bus fault occurs when an access or address error occurs during the exception
processing sequence—e.g., the processor attempts to stack several words containing
information about the state of the machine while processing an access error exception. If
a bus error occurs during the stacking operation, the second error is considered a double
bus fault.

The M68040 indicates a double bus fault condition by continuously driving PST3—-PSTO
with an encoded value of $5 until the processor is reset. Only an external reset operation
can restart a halted processor. While the processor is halted, negating BR and forcing alll
outputs to a high-impedance state releases the external bus.

A second access or address error that occurs during execution of an exception handler or
later, does not cause a double bus fault. A bus cycle that is retried does not constitute a
bus error or contribute to a double bus fault. The processor continues to retry the same
bus cycle as long as external hardware requests it.

7.7 BUS SYNCHRONIZATION

The M68040 integer unit generates access requests to the instruction and data memory
units to support integer and floating-point operations. Both the <ea> fetch and write-back
stages of the integer unit pipeline perform accesses to the data memory unit, with effective
address fetches assigned a higher priority. This priority allows data read and write
accesses to occur out of order, with a memory write access potentially delayed for many
clocks while allowing read accesses generated by later instructions to complete. The
processor detects a read access that references earlier data waiting to be written (address
collisions) and allows the corresponding write access to complete. A given sequence of
read accesses or write accesses is completed in order, and reordering only occurs with
writes relative to reads. Figure 2-1 in Section 2 Integer Unit illustrates the integer pipeline
stages.

Besides address collisions, the instruction restart model used for exception processing in
the M68040 causes another potential problem. After the operand fetch for an instruction,
an exception that causes the instruction to be aborted can occur, resulting in another
access for the operand after the instruction restarts. For example, an exception could
occur after a read access of an 1/O device’s status register. The exception causes the
instruction to be aborted and the register to be read again. If the first read accesses clears
the status bits, the status information is lost, and the instruction obtains incorrect data.

Designating the memory page containing the address of the device as serialized
noncachable prevents multiple out-of-order accesses to devices sensitive to such
accesses. When the data memory unit detects an attempt to read an operand from a page
designated as serialized noncachable, it allows all pending write accesses to complete
before beginning the external read access. The definition of a page as noncachable
versus serialized noncachable only affects read accesses. When a write operation
reaches the integer unit’'s write-back stage, all previous instructions have completed.
When a read access to a serialized noncachable page begins, only a bus error exception

MOTOROLA M68040 USER’S MANUAL 7-43



on the operand read itself can cause the instruction to be aborted, preventing multiple
reads. It is important to note that when memory accesses are serialized noncachable,
FMOVE will cause two identical writes to the same location to occur if the next instruction
prefetch receives a bus error.

Since write cycles can be deferred indefinitely, many subsequent instructions can be
executed, resulting in seemingly nonsequential instruction execution. When this action is
not desired and the system depends on sequential execution following bus activity, the
NOP instruction can be used. The NOP instruction forces instruction and bus
synchronization because it freezes instruction execution until all pending bus cycles have
completed.

A write operation of control information to an external register in which the external
hardware attempts to control program execution based on the data that is written with the
conditional assertion of TEA is one situation where the NOP instruction can be used to
prevent multiple executions. If the data cache is enabled and the write cycle results in a hit
in the data cache, the cache is updated. That data, in turn, may be used in a subsequent
instruction before the external write cycle completes. Since the M68040 cannot process
the bus error until the end of the bus cycle, the external hardware cannot successfully
interrupt program execution. To prevent a subsequent instruction from executing until the
external cycle completes, the NOP instruction can be inserted after the instruction causing
the write. In this case, access error exception processing proceeds immediately after the
write before subsequent instructions are executed. This is an irregular situation, and the
use of the NOP instruction for this purpose is not required by most systems.

Note that the NOP instruction can also be used to force access serialization by placing
NOP before the instruction that reads an 1/O device. This practice eliminates the need to
specify the entire page as serialized noncachable but does not prevent the instruction
from being aborted by an exception condition.

7.8 BUS ARBITRATION AND EXAMPLES

The bus design of the M68040 provides for one bus master at a time, either the M68040
or an external device. More than one device having the capability to control the bus can
be attached to the bus. An external arbiter prioritizes requests and determines which
device is granted access to the bus. Bus arbitration is the protocol by which the processor
or an external device becomes the bus master. When the M68040 is the bus master, it
uses the bus to read instructions and data not contained in its internal caches from
memory and to write data to memory. When an alternate bus master owns the bus, the
M68040 is able to monitor the alternate bus master’s transfer and intervene when
necessary to maintain cache coherency. This capability is discussed in more detail in 7.9
Bus Snooping Operation.

Unlike earlier members of the M68000 family, the M68040 implements an arbitration
method in which an external arbiter controls bus arbitration and the processor acts as a
slave device requesting ownership of the bus from the arbiter. Since the user defines the
functionality of the external arbiter, it can be configured to support any desired priority
scheme. For systems in which the processor is the only possible bus master, the bus can

7-44 M68040 USER’S MANUAL MOTOROLA



be continuously granted to the processor, and no arbiter is needed. Systems that include
several devices that can become bus masters require an arbiter to assign priorities to
these devices so that, when two or more devices simultaneously attempt to become the
bus master, the one having the highest priority becomes the bus master first.

7.8.1 Bus Arbitration

The M68040 bus controller generates bus requests to the external arbiter in response to
internal requests from the instruction and data memory units. The M68040 performs bus
arbitration using the bus request (BR), bus grant (BG), and bus busy (BB) signals. The
arbitration protocol, which allows arbitration to overlap with bus activity, requires a single
idle clock to prevent bus contention when transferring bus ownership between bus
masters. The bus arbitration unit in the M68040 operates synchronously and transitions
between states on the rising edge of BLCK.

The M68040 requests the bus from the external bus arbiter by asserting BR whenever an
internal bus request is pending. The processor continues to assert BR for as long as it
requires the bus. The processor negates BR at any time without regard to the status of BG
and BB. If the bus is granted to the processor when an internal bus request is generated,
BR is asserted simultaneously with transfer start (TS), allowing the access to begin
immediately. The processor always drives BR, and BR cannot be wire-ORed with other
devices.

The external arbiter asserts BG to indicate to the processor that it has been granted the
bus. If BG is negated while a bus cycle is in progress, the processor relinquishes the bus
at the completion of the bus cycle. To guarantee that the bus is relinquished, BG must be
negated prior to the rising edge of the BCLK in which the last TA or TEA is asserted. Note
that the bus controller considers the four bus transfers for a burst-inhibited line transfer to
be a single bus cycle and does not relinquish the bus until completion of the fourth
transfer. The read and write portions of a locked read-modify-write sequence are divisible
in the M68040, allowing the bus to be arbitrated away during the locked sequence. For
system applications that do not allow locked sequences to be broken, the arbiter can use
LOCK to detect locked accesses and prevent the negation of BG to the processor during
these sequences. The processor also provides the LOCKE signal to indicate the last write
cycle of a locked sequence, allowing arbitration between back-to-back locked sequences.
See 7.4.5 Read-Modify-Write Transfers (Locked Transfers) for a detailed description of
read-modify-write transfers.

When the bus has been granted to the processor in response to the assertion of BR, one
of two situations can occur. In the first situation, the processor monitors BB to determine
when the bus cycle of the alternate bus master is complete. After the alternate bus master
negates BB, the processor asserts BB to indicate explicit bus ownership and begins the
bus cycle by asserting TS. The processor continues to assert BB until the external arbiter
negates BG, after which BB is first negated at the completion of the bus cycle, then forced
to a high-impedance state. As long as BG is asserted, BB remains asserted to indicate the
bus is owned, and the processor continuously drives the bus signals. The processor
negates BR when there are no pending accesses to allow the external arbiter to grant the
bus to the alternate bus master if necessary.

MOTOROLA M68040 USER’S MANUAL 7-45



In the second situation, the processor samples BB until the external bus arbiter negates
BB. The processor drives its output pins with undetermined values and three-states BB,
but does not perform a bus cycle. This procedure, called implicit ownership of the bus,
occurs when the processor is granted the bus but there are no pending bus cycles. If an
internal access request is generated, the processor assumes explicit ownership of the bus
and immediately begins an access, simultaneously asserting BB, BR, TIP, and TS. If the
external arbiter keeps BG asserted after completion of the bus cycle, the processor keeps
BB asserted and drives the bus with undefined values, causing the processor to park. In
this case, because BB remains asserted until the external arbiter negates BG, the
processor must assert BR, TIP, and TS simultaneously to enter an active bus cycle. When
it completes the active bus cycle and the external arbiter has not negated BG, the
processor goes back into park, negating BR, TIP, and TS. As long as BG is asserted, the
processor oscillates between park and active bus cycles.

The M68040 can be in any one of five bus arbitration states during bus operation: idle,
snoop, implicit ownership, park, and active bus cycle. There are two characteristics that
determine these five states: whether the three-state logic determines if the M68040 drives
the bus and how the M68040 drives BB. If neither the processor nor the external bus
arbiter asserts BB, then an external pullup resistor drives BB high to negate it. Note that
the relationship between the internal BR and the external BR is best described as a
synchronous delay off BCLK.

The idle state occurs when the M68040 does not have ownership of the bus and is not in
the process of snooping an access. In the idle state, BB is negated and the M68040 does
not drive the bus. The snoop state is similar to the idle state in that the M68040 does not
have ownership of the bus. The snoop state differs from the idle state in that the M68040
is ready to service snooped transfers. Otherwise, the status of BB and the bus is identical.

The implicit ownership state indicates that the M68040 owns the bus. The M68040
explicitly owns the bus when it runs a bus cycle immediately after being granted the bus. If
the processor has completed at least one bus cycle and no internal transfers are pending,
the processor drives the bus with undefined values, entering the park state. In either case,
BG remains asserted. The simultaneous assertion of BR, TIP, and TS allows the processor
to leave the park state and enter the active bus cycle state.

Figure 7-30 is a bus arbitration state diagram illustrating the relationship of these five
states with an example of an external bus arbiter circuit. Table 7-6 lists the five states and
the conditions that indicate them.

7-46 M68040 USER’S MANUAL MOTOROLA



*BG A TSI A *BBI

BBIA*BG A IBRA TS|

BGATSI

PROTOCOL
VIOLATION

*BG A*TSIA BBl
~IDLE, >
BBO DRIVEN BY
MC68040,
*THREE-STATED

\

BBIA*BG A *IBRA TSI

BGATIP

BG A *ENDCYCLE A TIP*

*BGI A *TSI A *BBI

IMPLICIT OWNIPARK *BG
/[ OWNERSHP, \wg — — — — — — _ | N O _Ov ;
“BGAIBR | BBODRIVEN BY BG* A BR *BB?AEQXEON BY
MC68040, ,
THREE-STATED THREE-STATED

*ENDCYCLE A BBI A *BG A IBR

BG A ENDCYCLE
ATIP

*ENDCYCLE A BBI A BG

*ENDCYCLE A *BBI

*ENDCYCLE A BBI A *BG A *IBR

\

___SNOOP,
BBO DRIVEN BY
MC68040,
*THREE-STATED

85I BB ENDCYCLE
IBR = Internal bus request signal (see schematic below).
BBO BBI = Bus busy driven by alternate bus master.
TSI = Transfer start as an input, sampled by the MC68040.
ENDCYCLE = Whatever terminates a bus transaction
whether it is normal, bus error, or retried. Note
- _ that false burst cycles are treated as a line
BR fp g BR transaction. False locked transactions
are treated the same as any other bus cycle.
Yo d N = The 040 may or may not transition if an active bus
— cycle is terminated with a bus error, and BG is
asserted.
* = Indicates the signal is asserted for that device.

MOTOROLA

Figure 7-30. M68040 Internal Interpretation State Diagram and
External Bus Arbiter Circuit

M68040 USER’S MANUAL

7-47



Table 7-6. M68040 Bus Arbitration States

BB BG State Conditions

M68040 three-states BB; arbiter negates
BG: bus is not driven.

M68040 three-states BB; arbiter asserts
BG: bus is driven with undefined values.

_ M68040 asserts BB; arbiter asserts BG;
Asserted Negated Active Bus Cycle bus is driven with defined values;

TIP is asserted.
M68040 asserts BB; arbiter asserts BG;

Asserted Asserted Park bus is driven with undefined values; TIP is
asserted.

Negated Negated Idle

Negated Asserted Implicit Ownership

Alternate Bus Master Ownership M68040 three-states BB; arhiter asserts

Asserted Asserted = ;
and Snooped BG; M68040 does not drive the bus.

The M68040 can be in the active bus cycle, park, or implicit ownership states when BG is
negated. Depending on the state the processor is in when BG is negated, uncertain
conditions can occur. The only guaranteed time that the processor relinquishes the bus is
when BG is negated prior to the rising edge of BCLK in which the last TA or TEA is
asserted and the processor is in the active bus cycle state. However, if the processor is in
either the active bus cycle, park, or implicit ownership states and BG is negated at the
same time or after the last TA or TEA is asserted, then from the standpoint of the external
bus arbiter, the next action that the processor takes is undetermined because the
processor can internally decide to perform another active bus cycle (indeterminate
condition).

External bus arbiters must consider this indeterminate condition when negating BG and
must be designed to examine the state of BB immediately after negating BG to determine
whether or not the processor will run another bus cycle. A somewhat dangerous situation
exists when the processor begins a locked transfer after the bus has been granted to the
alternate bus master, causing the alternate bus master to perform a bus transfer during a
locked sequence. To correct this situation, the external bus arbiter must be able to
recognize the possible indeterminate condition and reassert BG to the processor when the
processor begins a locked sequence. The indeterminate condition is most significant when
dealing with systems that cannot allow locked transfers to be broken. Figure 7-31
illustrates an example of an error condition that is a consequence of the interaction
between the indeterminate condition and a locked transfer. External bus arbiters must be
designed so that all bus grants to all bus masters be nagated for at least one rising edge
of BCLK between bus tenures; preventing bus conflicts resulting from the above
conditions.

7-48 M68040 USER’S MANUAL MOTOROLA



|
|

040_BG v/
|

040_BB —}F\—/
|

— |

040_TS r\ /

|

040_TA

|
I
I
I
o\
040_LOCK :
I
o\
I
I
I
I
|
I
I
I

AM_BG*

AM_BB* \
AM_TS* \_/_
POSSIBLE THE 040 LOCK IS
INDETERMINATE ACTIVELY VIOLATED
CONDITION OWNS THE

BUS HERE

* AM indicates the alternate bus master.

Figure 7-31. Lock Violation Example

In addition to the indeterminate condition, the external arbiter’'s design needs to include
the function of BR. For example, in certain cases associated with conditional branches,
the M68040 can assert BR to request the bus from an alternate bus master, then negate
BR without using the bus, regardless of whether or not the external arbiter eventually
asserts BG. This situation happens when the M68040 attempts to prefetch an instruction
for a conditional branch. To achieve maximum performance, the processor prefetches the
instructions of both paths for a conditional branch. If the conditional branch results in a
branch-not-taken, the previously issued branch-taken prefetch is then terminated since the
prefetch is no longer needed. In an attempt to save time, the M68040 negates BR. If BG
takes too long to assert, the M68040 enters a disregard request condition.

The BR signal can be reasserted immediately for a different pending bus request, or it can
stay negated indefinitely. If an external bus arbiter is designed to wait for the M68040 to
assert BB before proceeding, then the system experiences an extended period of time in
which bus arbitration is locked. Motorola recommends that an external bus arbiter not
assume that there is a direct relationship between BR and BB or BR and BG signals.

Figure 7-32 illustrates an example of the processor requesting the bus from the external
bus arbiter. During C1, the M68040 asserts BR to request the bus from the arbiter, which
negates the alternate bus master's BG signal and grants the bus to the processor by
asserting BG during C3. During C3, the alternate bus master completes its current access
and relinquishes the bus by three-stating all bus signals. Typically, the BB and TIP signals

MOTOROLA M68040 USER’S MANUAL 7-49



require a pullup resistor to maintain a logic-one level between bus master tenures. The
alternate bus master should negate these signals before three-stating to minimize rise
time of the signals and ensure that the processor recognizes the correct level on the next
BCLK rising edge. At the end of C3, the processor recognizes the bus grant and bus idle
conditions (BG asserted and BB negated) and assumes ownership of the bus by asserting
BB and immediately beginning a bus cycle during C4. During C6, the processor begins the
second bus cycle for the misaligned operand and negates BR since no other accesses are
pending. During C7, the external bus arbiter grants the bus back to the alternate bus
master that is waiting for the processor to relinquish the bus. The processor negates BB
and TIP before three-stating these and all other bus signals during C8. Finally, the
alternate bus master recognizes the bus grant and idle conditions at the end of C8 and is
able to resume bus activity during C9.

BCLK |

| |

| |

| |

| |

TRANSFER ! >< !

ATTRIBUTES | |
1
P |

" T

AM_BG* /

oo =) O—0
-1\
o\ HEED AN
s [ | WA

L | |

ALTERNATE‘), %— PROCESSOR —)1 ’(;ALTERNATE
MASTER MASTER

*AM indicates the alternate bus master.

Figure 7-32. Processor Bus Request Timing

7-50 M68040 USER’S MANUAL MOTOROLA



Figure 7-33 illustrates a functional timing diagram for an arbitration of a relinquish and
retry operation. Figure 7-34 is a functional timing diagram for implicit ownership of the bus.
In Figure 7-33, the processor read access that begins in C1 is terminated at the end of C2
with a retry request and BG negated, forcing the processor to relinquish the bus and allow
the alternate master to access the bus. Note that the processor reasserts BR during C3
since the original access is pending again. After alternate bus master ownership, the bus
is granted to the processor to allow it to retry the access beginning in C7.

‘Cl‘CZ‘CS‘M‘CS‘CG‘C?‘CS

BCLK ‘

|
|
|
| | | |
TRANSFER ‘
ATTRIBUTES !
| |
| |
: |
- | |
r\S S
|
| |
| |
| |
| |
- l
TA / | \ /
|
|
N |
TEA ! \ /
|
|
|
|
|
|
|
|

K

L
M

|

[

E

AM_BR*

T

PROCESSOR‘){ }(—ALTERNATE_)
MASTER

* AM indicates the alternate bus master.

~&— PROCESSOR

Figure 7-33. Arbitration During Relinquish and Retry Timing

MOTOROLA M68040 USER’S MANUAL 7-51



\C1‘cz\c3\c4‘cs\ce\c7‘cs\c9

BCLK |

| |

| |

o X -
| |

| |

TRANSFER ! >< ;
ATTRIBUTES | |
|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
| | |
|
| | |
| | |
| | |
1 l l !
p—— | | | |
TIP \ ‘ : |
; ‘ | | ‘ ;
TA /o / : | m
| | | | |
| | | | | | ‘
D31-DO — 3 1 1 Y 1
J ! !/ | | | | \ / |
| | | | | | | |
- l l l l —\ Y e l
BR | | | | | | | |
| | | | | | | |
| | | | | | | |
I L | | | | | |
— | | | | | | | |
BG | | \ | | | | | |
: : | | | | | |
| | | | | | | |
e | | | | | | | |
BB /_\
f f l l i — f f
| | | | | | | |
X
AM_BR /! ; : | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
YET
AM_BG J | | | | | | |
| | | | | | | |
| | | | | | | |
|MPE|UCS|TLY BUS OWNED BUS OWNED
ALTERNATE s —>> 1« —AND ACTIVE > ~€— AND IDLE >
MASTER PROCESSOR >

*AM indicates the alternate bus master.

Undefined

Figure 7-34. Implicit Bus Ownership Arbitration Timing

7.8.2 Bus Arbitration Examples

The following paragraphs illustrate the behavior of the M68040 bus arbitration scheme
and provide examples of how an external bus arbiter can be designed to keep the integrity
of locked bus operations. The examples include the previously mentioned indeterminate
and disregard request conditions.

7.8.2.1 DUAL M68040 FAIRNESS ARBITRATION. The following state diagram illustrates
a fairness algorithm using two MC68040s and assigning the least priority to the processor
that owns the bus. If both processors keep their respective BR signals asserted, bus
ownership alternates between the two processors so that each processor can run at least
one bus cycle during its tenure. Each processor is allowed to own the bus without
relinquishing it to maintain the integrity of locked transfers. This example also illustrates

7-52 M68040 USER’S MANUAL MOTOROLA



how the LOCKE signal can be used to end a locked sequence and to yield the bus one
bus cycle earlier than is normally possible. Figure 7-35 illustrates the state diagram of a
hypothetical external arbiter design.

BB A LOCK A LOCKE*

BB A LOCK* V BB A
LOCK A LOCKE

STATEC

BR1 A LOCK A LOCKE
V BR1 A LOCK*

STATED

BGL*, BG2 BGL, BG2*

BR1*V BRLA
LOCK A LOCKE*

BRZ* STATEB

BR2 A LOCK A LOCKE

BG1*, BG2 BGL, BG2*

BR2 A LOCK A LOCKE
V BR2 A LOCK*

BB A LOCK* V BB A
LOCK A LOCKE

STATEA

BB A LOCK A LOCKE*

NOTES:

1. Because this example uses two MC68040s, 1 and 2 refer to the processor and its signals.
2. *Indicates the signal is asserted for that device.

Figure 7-35. Dual M68040 Fairness Arbitration State Diagram

Assuming that processor 1 currently owns the bus, the external arbiter is in state A. If
processor 2 asserts BR2, then processor 1 behaves in one of three ways:

1. If processor 1 is currently in the middle of a nonlocked bus access, then the external
arbiter proceeds to state B, in which BG1 is negated and BG2 is asserted. The
external arbiter then proceeds to state C only when BB is negated, signifying the end
of the bus cycle.

2. If processor 1 is currently in the middle of a locked bus access, then the external
arbiter stays in state A until LOCKE is asserted. Once LOCKE is asserted, the
external arbiter enters state B, in which BG1 is negated and BG2 is asserted. The
external arbiter proceeds to state C once BB is negated, signifying the end of the
bus cycle.

3. If processor 1 is in one of the three boundary conditions, then the external arbiter
proceeds to state B. During state B, the external arbiter checks for the possibility of a
newly initiated locked bus access. If it detects a locked bus cycle, it returns the bus
to processor 1 by entering state A. Note that even though processor 1 recognizes
BG1 is asserted, it does not take the bus because processor 1 asserts BB whenever
the boundary condition results in processor 1 performing another bus cycle. The
external arbiter stays in state A until LOCKE is asserted, then proceeds to state B to

MOTOROLA M68040 USER’S MANUAL 7-53



give the bus to processor 2. The arbiter remains in state B until BB is negated,
signifying the end of the bus cycle.

Once state C is reached, depending on whether or not processor 2 asserts BR2 and then
negates BR2 because of a disregard request condition, processor 1 may or may not
actively begin a bus cycle. If no other bus requests are pending by the time state C is
reached, processor 2 is in the implicit ownership state. If processor 1 asserts BR1, then it
is possible for state C to persist for only one clock. In this case, processor 2 does not have
a chance to run any active bus cycles.

A null bus cycle tenure is better than having the external bus arbiter wait for processor 2 to
perform at least one bus cycle before returning bus ownership to processor 1, even
though this appears to be a waste of bus arbitration overhead. Note that once processor 2
enters the disregard request condition, processor 2 reasserts BR anywhere from one clock
to an undetermined number of clocks before running another bus cycle. Waiting for
processor 2 to run a bus cycle can result in a temporary bus arbitration lockup.

This bus arbitration scheme is restricted if the system supports the relinquish and retry
operation that can occur for the last write cycle of a locked transfer. In this case, LOCKE
cannot be used. Assuming that LOCKE is always negated excludes the need for LOCKE in
an arbitration similar to this example. The reason for this restriction is that the external bus
arbiter gives up the bus to the other processor once LOCKE is asserted. If a relinquish and
retry operation were to occur, then the next bus cycle would be from the other processor
violating the integrity of the locked transfer.

7.8.2.2 DUAL M68040 PRIORITIZED ARBITRATION. This example is very similar to the
dual M68040 fairness arbitration example, except that one processor is assigned higher
priority over the other. Processor 2 can own the bus only if there are no processor 1
pending requests. It is important to note that when the processor asserts the LOCK signal,
it also asserts BR1. This implementation replaces LOCK with BR because BR is more
demanding than using LOCK. Only when processor 2 is in the middle of a locked
operation does it have higher priority than processor 1. Similar to the M68040 fairness
arbitration example, the restriction on using LOCKE applies to this example. Figure 7-36
illustrates the state diagram for dual M68040 prioritized arbitration.

7-54 M68040 USER’S MANUAL MOTOROLA



BB A BR2

BB A BR2*
STATEC

STATED

BRLA BR2*

BGL*, BG2 BGL, BG2*

BR2 V BRI*A
BR2*

BR2*V STATEB

BR2 A LOCK A LOCKE*

BGL*, BG2 BGL, BG2*

BR2 A LOCK A LOCKE
V BR2 A LOCK*

BB A LOCK* V BB &
LOCK A LOCKE

STATEA

BB A LOCK A LOCKE*

NOTES:

1. Because this example uses two MC68040s, 1 or 2 refers to the processor and its signals.
2. *Indicates the signal is asserted for that device.

Figure 7-36. Dual M68040 Prioritized Arbitration State Diagram

7.8.2.3 M68040 SYNCHRONOUS DMA ARBITRATION. Figure 7-37 illustrates a system
with an M68040 and a synchronous direct memory access (DMA) that contains an
M68040 interface. Figure 7-37(a) illustrates that the DMA owning the bus only when the
M68040 has no pending requests, and Figure 7-37(b) illustrates the DMA having higher
priority than the M68040 causing the M68040 to yield the bus to the DMA at any time
except when the M68040 is performing a locked bus operation. In either case, the M68040
is the default bus master; if there are no pending requests from either device, the external
arbiter gives the bus to the M68040. Similar to the M68040 fairness arbitration example,
the restriction on using LOCKE applies to this example.

MOTOROLA M68040 USER’S MANUAL 7-55



STATEC

STATED

AM_BG, 040_BG* AM_BG*, 040_BG

040_BR

040_BR V AM_BR* STATEB

AM_BG, 040_BG* >| AM_BG* 040_BG

AM_BR, 040_BG*

BB A 040_BR*
STATE A

BB A 040_BR

(a) MC68040 High Priorty, Default Bus Master

BB A AM_BR

BB A AM_BR*
STATEC

STATED

AM_BG, 040_BG* 040_BR*

AM_BG*, 040_BG

040 BR

AM_BR*V AM_BR A STATEB

LOCK A LOCKE*

AM_BG, 040_BG*

AM_BG*, 040_BG

AM_BR A LOCK A LOCKE V
AM_BR A LOCK*

BB A LOCK* V BB
A LOCK A LOCKE

STATEA

BB A LOCK A LOCKE*

* Indicates the signal is asserted for that device.

(b) MC68040 Low-Priorty, Default Bus Master

Figure 7-37. M68040 Synchronous DMA Arbitration

7-56 M68040 USER’S MANUAL MOTOROLA



7.8.2.4 M68040 ASYNCHRONOUS DMA ARBITRATION. Figure 7-38 illustrates a
sample synchronizer circuit. Figure 7-39 illustrates how an M68040 can be implemented
to simulate an MC68030. The synchronizer circuit has an output indicating whether or not
a signal has been asserted for at least two consecutive rising edges of BCLK. If the
synchronizer circuit indicates that the input has not been stable for at least two clocks,
then the processor and alternate bus master stay in the current state. Figure 7-37(a)
duplicates the MC68030 implementation of the bus arbitration circuitry in which the
M68040 is allowed to yield the bus only after the indeterminate condition has been
eliminated. Figure 7-37(b) is similar to the MC68030 implementation except that the DMA
device has lower priority and can only perform transfers when the M68040 is in the idle
state. In either case, the M68040 is the default bus master; therefore, if there are no
pending requests from either device, the external bus arbiter gives the bus to the M68040.

,’ABR4CII>—L )Di "
[

4C[>_L

=

CLK

ABGACK

CLK

Figure 7-38. Sample Synchronizer Circuit

MOTOROLA M68040 USER’S MANUAL 7-57



R* ARV A A* A AV

R* ARVAAAAV

RARVALOCKA V RV*V RA*

R* ARV A A* A
AVV AA AV

= = LOCK A LOCKE*
R*V RV*V

RARVALOCKA
LOCKE*

RARVAA*A

% \/ R\/* _
AVVAVTV RV RARVAA* A\ AV

S6
RV*V RA*V
RARVAANAV
(a) MC68040 Low-Priorty, Default Bus Master
R ARVAA* A AV
V RARVA040_BR _
R*ARVAAAAV
‘ V RV*V RA*

R ARV A 040 BR

R ARV A 040_BR

R*ARVAA*AA

== 040_BR
R*V RV*V 040_BR -

R* ARV A A* A AV

% % —
VAVEVRY RARVAA*NAV

S6

RV*V RA*V
RARVAANAV
NOTES: o o

1. It is assumed that the asynchronous device takes the bus only after TIP or the MC68040's BB is negated.
2. *Indicates the signal is asserted for that device.

(b) MC68040 High-Priorty, Default Bus Master

Figure 7-39. M68040 Asynchronous DMA Arbitration

7-58 M68040 USER’S MANUAL MOTOROLA



7.9 BUS SNOOPING OPERATION

When required, the M68040 can monitor alternate bus master transfers and intervene in
the access to maintain cache coherency. The encoding of the SCx signals generated by
the alternate bus master for each bus cycle controls the process of bus monitoring and
intervention called snooping. Only byte, word, long-word, and line bus transfers can be
snooped. Refer to Section 4 Instruction and Data Caches for SCx encodings.

When the M68040 recognizes that an alternate bus master has asserted TS, the
processor latches the level on the byte offset, SIZx, TMx, and R/W signals during the
rising edge of BCLK for which TS is first asserted. The processor then evaluates the SCx
and TTx signals to determine the type of access (TTx = $0 or $1), if it is snoopable, and, if
so, how it should be snooped. If snooping is enabled for the access, the processor inhibits
memory from responding by continuing to assert the memory inhibit signal (MI) while
checking the internal caches for matching lines. During the snooped bus cycle, the
M68040 ignores all TA assertions while Ml is asserted. Unless the data cache contains a
dirty line corresponding to the access and the requested snoop operation indicates sink
data for a write or source data for a read, MI is negated, and memory is allowed to
respond and complete the access. Otherwise, the processor continues to intervene in the
access by keeping MI asserted and responding to the alternate bus master as a slave
device. The processor monitors the levels of TA, TEA, and TBI to detect normal, bus error,
retry, and burst-inhibited terminations. Note that for alternate bus master burst-inhibited
line transfers, the M68040 snoops each of the four resulting long-word transfers. If
snooping is disabled, Ml is negated, and the M68040 counts the appropriate number of TA
or TEA assertions before proceeding. For example, if the SIZx signals are pulled high, the
M68040 requires four TA assertions, one TEA assertion, or one retry termination before
proceeding.

As a bus master, the M68040 can be configured to request snooping operations on a
page-by-page basis. The UPAX signals are connected to the SCx inputs of the snooping
processors. Appropriately programming the user attribute bits in the corresponding page
descriptor selects the required snooping operation for a page. Refer to Section 3 Memory
Management Unit (Except MC68EC040 and MCG68EC040V) for details on configuring
the caching mode and user attribute bits for each memory page for the M68040 and
MC68LCO040, and refer to Appendix B MC68EC040 for the MC68EC040.

In a system with multiple bus masters, the memory unit must wait for each snooping bus
master to negate Ml before responding to an access. A termination signal asserted before
the negation of MI leads to undefined operation and must be avoided at all costs. Also, if
the system contains multiple caching masters, then each master must access shared data
using write-through pages that allow writes to the data to be snooped by other masters.
The copyback caching mode is typically used for data local to a processor because in a
multimaster caching system only one master at a time can access a given page of
copyback data. The copyback caching mode also prevents multiple snooping processors
from intervening in a specific access.

MOTOROLA M68040 USER’S MANUAL 7-59



7.9.1 Snoop-Inhibited Cycle

For alternate bus master accesses in which the SCx signal encodings indicate that
snooping is inhibited (SCx = $0), the M68040 immediately negates MI and allows memory
to respond to the access. Snoop-inhibited alternate bus master accesses do not affect
performance of the processor since no cache lookups are required. Figure 7-40 illustrates
an example of a snoop-inhibited operation in which an alternate bus master is granted the
bus for an access. No matter what the values are on the SCx and TTx signals, Ml is
asserted between bus cycles. Because MI is asserted while a cache lookup is performed,
snooping inherently degrades system performance.

MI is asserted from the last TA of the current bus cycle if the M68040 owns the bus and
loses it (see Figure 7-40). If an alternate bus master has the bus and loses it, there are
two different resulting cases. Usually, an idle clock occurs between the alternate bus
master’s cycle and the MC68040’s cycle. If so, Ml is asserted during the idle clock and
negated from the same edge that the M68040 asserts the TS signal (see Figure 7-40). If
there is no idle clock, Ml is not asserted. Ml is asserted during and after reset until the first
bus cycle of the M68040. Even though snoop is inhibited, all TA or TEA assertions while
Ml is asserted are ignored. If a line snoop is started, the M68040 still requires four TA
assertions.

7-60 M68040 USER’S MANUAL MOTOROLA



BCLK |
|
|
SC1, SCO \ ; /
| |
: |
A31-A0 ‘
|
!
SIZ1, SIZ0 ‘
!
|

i |
s T\
S i &
-
./ \
” .

* AM indicates the alternate bus master.

I:I Undefined

Figure 7-40. Snoop-Inhibited Bus Cycle

7.9.2 Snoop-Enabled Cycle (No Intervention Required)

For alternate bus master accesses in which SCx = $1 or $2, indicating that snooping is
enabled, the M68040 continues to assert MI while checking for a matching cache line. If
intervention in the alternate bus master access is not required, Ml is then negated, and
memory is allowed to respond and complete the access. Figure 7-41 illustrates an
example of snooping in which memory is allowed to respond. Best-case timing is

MOTOROLA M68040 USER’S MANUAL 7-61



illustrated, which results in a memory access having the equivalent of two wait states.
Variations in the timing required by snooping logic to access the caches can delay the
negation of MI by up to two additional clocks. External logic must ensure that the
termination signals negate at all rising BCLK edges in which Ml is asserted. Otherwise, if
one of the termination signals is asserted, either the M68040 ignores all termination
signals, reading them as negated, or the M68040 exhibits improper operation.

BCLK |

SC1-SCO %—<

A31-A0 :>——<
Slz1, SIzo ::>———ﬂ——<
TT1, TT0 —

e ey
. i
U N O—

AM_BG*

s
AM_BR* /

~«——— ALTERNATE —)i }(‘ PROCESSOR
MASTER

* AM indicates the alternate bus master.
I:I Undefined

Figure 7-41. Snoop Access with Memory Response

7-62 M68040 USER’S MANUAL MOTOROLA



7.9.3 Snoop Read Cycle (Intervention Required)

If snooping is enabled for a read access and the corresponding data cache line contains
dirty data, the M68040 inhibits memory and responds to the access as a slave device to
supply the requested read data. Intervention in a byte, word, or long-word access is
independent of which long-word entry in the cache line is dirty. Figure 7-42 illustrates an
alternate bus master line read that hits a dirty line in the M68040 data cache. The
processor asserts TA to acknowledge the transfer of data to the alternate bus master, and
the data bus is driven with the four long words of data for the line. The timing illustrated is
for a best-case response time. Variations in the timing required by snooping logic to
access the caches can delay the assertion of TA by up to two additional clocks.

7.9.4 Snoop Write Cycle (Intervention Required)

If snooping with sink data is enabled for a byte, word, or long-word write access and the
corresponding data cache line contains dirty data, the M68040 inhibits memory and
responds to the access as a slave device to read the data from the bus and update the
data cache line. The dirty bit is set for the long word changed in the cache line. Figure
7-43 illustrates a long-word write by an alternate bus master that hits a dirty line in the
M68040 data cache. The processor asserts TA to acknowledge the transfer of data from
the alternate master, and the processor reads the value on the data bus. The timing
illustrated is for a best-case response time. Variations in the timing required by snooping
logic to access the caches can delay the assertion of TA by up to two additional clocks.

MOTOROLA M68040 USER’S MANUAL 7-63



C9

C8

C7

C6

C5

c4

C3

C2

Cl

BCLK

\\\\\\\\\\\\\\\ N E N N Y S (N AN IS
o
9]
il
o
8 P
o4
— _ I _ e I P a - o
>
[an]
=
w
g P
@
_ _ _ _ I N I B ol -8 o
=l =
a <
2 3
o o
5 -2 -]
_ _ _ _ I N I B el -1 o
o =
=
& —
[
— — i — FEE ) N - -k - - |--_-_-__
[WE]
=
Q
T
=
_ _ _ _ I N I B >l __
o
o
=
41|
=
=3 o o o %) = < o o
O z N [ , =
s I & E 2 ¥ = 3 &
™ T i
o < N E a8
3 N -
wn

‘(— PROCESSOR

ALTERNATE MASTER
LINE READ

* AM indicates the alternate bus master.

Figure 7-42. Snooped Line Read, Memory Inhibited

MOTOROLA

M68040 USER’S MANUAL

7-64



BCLK |

SC1, SCO

A31-A0

—
O
Bann
—

TT1,TTO

RIW

|
_ : | | | :
M \ ' MEMORY INHIBITED FROM RESPONDING -/
| | | | | |
o f\ l ' TADRIVEN BY PROCESSOR l
TA + + + |
| | | | | |
| | | | | |
| | | | |
_\ | | | | |
D300 ) : : : —{ —
l l l l ‘ l
| | | | | |
BR l l DATA WRITTEN BY ALTERNATE BUS MASTER
| |
_ l
BG |
|
|
|
|

}(7 ALTERNATE MASTER ——— > }(— PROCESSOR
LONG-WORD WRITE
* AM indicates the alternate bus master.

Figure 7-43. Snooped Long-Word Write, Memory Inhibited

7.10 RESET OPERATION

An external device asserts the reset input signal (RSTI) to reset the processor. When
power is applied to the system, external circuitry should assert RSTI for a minimum of 10
BCLK cycles after Vcc is within tolerance. Figure 7-44 is a functional timing diagram of
the power-on reset operation, illustrating the relationships among Vcc, RSTI, mode
selects, and bus signals. The BCLK and PCLK clock signals are required to be stable by
the time V¢ reaches the minimum operating specification. The V,y levels of the clocks

MOTOROLA M68040 USER’S MANUAL 7-65



should not exceed Vcc while it is ramping up. RSTI is internally synchronized for two
BCLKS before being used and must meet the specified setup and hold times to BCLK
(specifications #51 and #52 in Section 11 MC68040 Electrical and Thermal
Characteristics) only if recognition by a specific BCLK rising edge is required. Ml is
asserted while the M68040 is in reset.

’( t210 )% 2 128
CLOCKS CLOCKS CLOCKS
BCLK

45V S S NS E— L N——
V L .| || I L |
Ccov/llll o | e
IR T N U SN R
oo o el

IPL2JPLO :::::N_D : —
\ | L | o

SIGNE\E? /1'\’11 l'\'lll::X:

s 7 L
. NI S SN NN N N B N

EE— o | =
L N N

BR /: o | ::::::\_
LV

B8 N R A e e e W
! T\ — N

Figure 7-44. Initial Power-On Reset Timing

Once RSTI negates, the processor is internally held in reset for another 128 clock cycles.
During the reset period, all signals that can be, are three-stated, and the rest are driven to
their inactive state. Once the internal reset signal negates, all bus signals continue to
remain in a high-impedance state until the processor is granted the bus. Afterwards, the
first bus cycle for reset exception processing begins. In Figure 7-44 the processor
assumes implicit bus ownership before the first bus cycle begins. The levels on CDIS,
MDIS, and IPL2-IPLO are used to selectively enable the special modes of operation when
RSTI is negated. These signals should be driven to their normal levels before the end of
the 128-clock internal reset period.

7-66 M68040 USER’S MANUAL MOTOROLA



For processor resets after the initial power-on reset, RSTI should be asserted for at least
10 clock periods. Figure 7-45 illustrates timings associated with a reset when the
processor is executing bus cycles. Note that BB and TIP (and TA if driven during a
snooped access) are negated before transitioning to a three-state level.

< 2 > <— *>{
CtLOé&S CLOZCKS CL%)ZC?KS
BCLK

T | N
RSTl \\\\\'\l\ [ L .
(ﬁ'm’ \33:3 | :: 3/\ | | [
PP \’_D R S S
— | - L
saws )TN R B A I
s " — N
oL NN
\\\\j'\lj \\'\lj | | | \j
o [ | o L
== N
s ] | o SR
s [ — N
N VA N TGN U o o

Figure 7-45. Normal Reset Timing

Resetting the processor causes any bus cycle in progress to terminate as if TA or TEA
had been asserted. In addition, the processor initializes registers appropriately for a reset
exception. Section 8 Exception Processing describes exception processing. When a
RESET instruction is executed, the processor drives the reset out (RSTO) signal for 512
BCLK cycles. In this case, the processor resets the external devices of the system, and
the internal registers of the processor are unaffected. The external devices connected to
the RSTO signal are reset at the completion of the RESET instruction. An RSTI signal that
is asserted to the processor during execution of a RESET instruction immediately resets
the processor and causes the RSTO signal to negate. RSTO can be logically ANDed with
the external signal driving RSTI to derive a system reset signal that is asserted for both an
external processor reset and execution of a RESET instruction.

MOTOROLA M68040 USER’S MANUAL 7-67



7.11 SPECIAL MODES OF OPERATION

The MC68LC040 and MC68EC040 do not support the following three modes of operation,
which for the M68040 are selectively enabled during processor reset and remain in effect
until the next processor reset. Refer to Appendix A MC68LC040 and Appendix B
MC68ECO040 for differences in the special modes of operation for the MC68LC040 and
MCG68EC040.

7.11.1 Output Buffer Impedance Selection

All output drivers in the M68040 can be configured to operate in either a large buffer mode
(low-impedance driver) or small buffer mode (high-impedance driver). Large buffers have
a nominal output impedance of 6 Q for both high and low drive, resulting in minimum
output delays. Signal traces driven by large buffers usually require transmission line
effects to be considered in their design, including the use of signal termination. Small
buffers have a nominal impedance of 25 Q for high and low drive, resulting in longer
output delays and less critical board-design requirements. Refer to Section 11 MC68040
Electrical and Thermal Characteristics for further information on electrical
specifications, buffer characteristics, and transmission line design examples. The output
drivers are configured in three groups. Each group of signals is configured depending on
the corresponding IPLx signal level during processor reset (see Table 5-5).

7.11.2 Multiplexed Bus Mode

The multiplexed bus mode changes the timing of the three-state control logic for the
address and data buses to support generation of a multiplexed address/data bus. When
the M68040 is operating in this mode, the address and data bus signals can be hardwired
together to form a single 32-bit bus, with address and data information time-multiplexed on
the bus. This configuration minimizes the number of pins required to interface to
peripheral devices without requiring additional discrete multiplexing logic. This mode is
enabled during a processor reset by a logic zero on the CDIS signal.

Figure 7-46 illustrates a line write with multiplexed bus mode enabled. The address bus
drivers are enabled during C1 and disabled during C2. Later in C2, the data bus drivers
are enabled to drive the data bus with the data to be written. The address bus is only
driven for the BCLK rising edge at the start of each bus cycle.

7-68 M68040 USER’S MANUAL MOTOROLA



C3 C4 C5

(@}
i
Q
N

BCLK

UPAL, UPAO

L ]

SIZ1, SIZ0

TT1,TT0

TM2-TMO

TLNZ, TLNO

EKJEAQQ

3
|

1

A31-A0

YA SRAARARAAR

>
>
>

D31-DO

Al, A0 = 01 ‘ 10 ‘ 11 ‘ 00 ‘

NOTE: The selected device increments the value of A3 and A2.

Figure 7-46. Multiplexed Address and Data Bus (Line Write)

7.11.3 Data Latch Enable Mode

The data latch enable (DLE) mode allows read data to be latched by the assertion of the
DLE signal instead of by the BCLK rising edge at the end of each transfer. In some
applications, this mode can reduce the number of clocks required to perform line burst
reads. A logic zero on the MDIS enables this mode during a processor reset.

Figure 7-47 illustrates a conceptual block diagram of the logic used to latch the read data
bus in DLE mode. The DLE signal controls transparent latch A, which allows data to be
latched before the rising edge of BCLK. Latch A operates transparently when DLE is
negated and latches the level on the data bus when DLE is asserted. Note that the DLE
signal only controls latching of the read data and does not affect termination of the bus

MOTOROLA M68040 USER’S MANUAL 7-69



transfer. Edge-triggered latch B is clocked by the rising edge of BCLK and latches the
data from latch A for use by internal logic.

WRITE DATA
EXTERNAL TRANSPARENT EDGE-TRIGGERED
DATA BUS LATCH-A LATCH-B
> LATCHED
D Q D Q READ DATA
G
DLE BCLK

A TEA THI 3 TERMINATION

CONTROL

Figure 7-47. DLE Mode Block Diagram

Figure 7-48 illustrates the data read timing for both normal operation and DLE mode.
During normal operation (i.e., DLE mode disabled), latch A is always transparent, and by
the rising edge of BCLK, read data is latched. Data must meet setup and hold time
specifications #15 and #16 in this case. When the DLE mode is enabled, the data can be
latched by the rising edge of BCLK or the falling edge of DLE, depending on the timing for
DLE.

7-70 M68040 USER’S MANUAL MOTOROLA



DLE MODE DATA BUS TIMING

CASE 1 CASE 2

BCLK

DLE

D0-D31 IN
(READ)

Lty
I
f@
0

NORMAL DATA BUS TIMING

B> ~

DO-D3LIN -
(READ) { /
— (16)
TA \ /

Figure 7-48. DLE versus Normal Data Read Timing

Case 1
If DLE is negated and meets setup time specification #35 to the rising edge of BCLK
when the bus read is terminated, latch A is transparent, and the read data must meet
setup and hold time specifications #36 and #37 to the rising edge of BCLK. Read timing
is similar to normal timing for this case.

Case 2
If DLE is asserted, the data bus levels are latched and held internally. D31-D0 must
meet setup and hold time specifications #32 and #33 to the falling edge of DLE, and can
transition to a new level once DLE is asserted. D31-D0 must still meet setup time
specification #36 to BCLK, but not hold time specification #37, since the data is
internally held valid as long as DLE remains asserted low.

MOTOROLA M68040 USER’S MANUAL 7-71



SECTION 8
EXCEPTION PROCESSING

Exception processing is the activity performed by the processor in preparing to execute a
special routine for any condition that causes an exception. In particular, exception
processing does not include execution of the routine itself. This section describes the
processing for each type of integer unit exception, exception priorities, the return from an
exception, and bus fault recovery. This section also describes the formats of the exception
stack frames. For details on floating-point exceptions refer to Section 9 Floating-Point
Unit (MC68040 Only).

NOTE

For the MC68040V, MC68LC040, MC68EC040, and
MCG68EC040V ignore all references to floating-point, including
any instructions that begin with an “F”. Also, for the
MC68EC040 and MC68ECO040V ignore all references to the
memory management unit (MMU) and the instructions
PFLUSH and PTEST. The functionality of the MC68040
transparent translation register has been changed in the
MC68EC040 and MC68EC040V to the access control registers
(ACR). Refer to Appendix A MC68LC040 and Appendix B
MCG68EC040 for details.

8.1 EXCEPTION PROCESSING OVERVIEW

Exception processing is the transition from the normal processing of a program to the
processing required for any special internal or external condition that preempts normal
processing. External conditions that cause exceptions are interrupts from external
devices, bus errors, and resets. Internal conditions that cause exceptions are instructions,
address errors, and tracing. For example, the TRAP, TRAPcc, FTRAPcc, CHK, RTE, DIV,
and FDIV instructions can generate exceptions as part of their normal execution. In
addition, illegal instructions, unimplemented floating-point instructions and data types, and
privilege violations cause exceptions. Exception processing uses an exception vector
table and an exception stack frame. The following paragraphs describe the vector table
and a generalized exception stack frame.

The M68040 uses a restart exception processing model to minimize interrupt and
instruction latency and to reduce the size of the stack frame (compared to the frame
required for a continuation model). Exceptions are recognized at each instruction
boundary in the execute stage of the integer pipeline and force later instructions that have
not yet reached the execute stage to be aborted. Instructions that cannot be interrupted,

MOTOROLA M68040 USER’S MANUAL 81



such as those that generate locked bus transfers or access serialized pages, are allowed
to complete before exception processing begins.

Exception processing occurs in four functional steps. However, all individual bus cycles
associated with exception processing (vector acquisition, stacking, etc.) are not
guaranteed to occur in the order in which they are described in this section. Figure 8-1
illustrates a general flowchart for the steps taken by the processor during exception
processing.

During the first step, the processor makes an internal copy of the status register (SR).
Then the processor changes to the supervisor mode by setting the S-bit and inhibits
tracing of the exception handler by clearing the trace enable (T1 and TO) bits in the SR.
For the reset and interrupt exceptions, the processor also updates the interrupt priority
mask in the SR.

During the second step, the processor determines the vector number for the exception.
For interrupts, the processor performs an interrupt acknowledge bus cycle to obtain the
vector number. For all other exceptions, internal logic provides the vector number. This
vector number is used in the last step to calculate the address of the exception vector.
Throughout this section, vector numbers are given in decimal notation.

82 M68040 USER’S MANUAL MOTOROLA



ENTRY

SAVE INTERNAL
COPY OF SR

sol
T1, 70 00
(SEE NOTE)

FETCH VECTOR
NUMBER

OTHERWISE

BUS ERROR

/

SAVE CONTENTS (DOUBLE BUS FAULT)
TO STACK FRAME
(SEE NOTE)

/

OTHEIRWISE BUS ERROR

EXECUTE EXCEPTION
HANDLER
| (DOUBLE BUS FAULT)

/

PREFETCH 4
LONG WORDS

;

BUS ERROR OR
ADDRESS ERROR
OTHERWISE
BEGIN INSTRUCTION

EXECUTION (DOUBLE BUS FAULT)

HALTED STATE
(PST3-PSTO = $5)

EXIT { EXIT }

NOTE: These blocks vary for reset and interrupt exceptions.

:

Figure 8-1. General Exception Processing Flowchart

MOTOROLA M68040 USER’S MANUAL



The third step is to save the current processor contents for all exceptions other than reset.
The processor creates one of five exception stack frame formats on the active supervisor
stack and fills it with information appropriate for the type of exception. Other information
can also be stacked, depending on which exception is being processed and the state of
the processor prior to the exception. If the exception is an interrupt and the M-bit of the
SR is set, the processor clears the M-bit and builds a second stack frame on the interrupt
stack. Figure 8-2 illustrates the general form of the exception stack frame.

15 12 0
SP ——>» STATUS REGISTER

PROGRAM COUNTER

FORMAT VECTOR OFFSET

ADDITIONAL PROCESSOR STATE INFORMATION
(2 OR 26 WORDS, IF NEEDED)

Figure 8-2. General Form of Exception Stack Frame

The last step initiates execution of the exception handler. The processor multiplies the
vector number by four to determine the exception vector offset. It adds the offset to the
value stored in the vector base register (VBR) to obtain the memory address of the
exception vector. Next, the processor loads the program counter (PC) (and the interrupt
stack pointer (ISP) for the reset exception) from the exception vector table entry. After
prefetching the first four long words to fill the instruction pipe, the processor resumes
normal processing at the address in the PC. When the processor executes an RTE
instruction, it examines the stack frame on top of the active supervisor stack to determine
if it is a valid frame and what type of context restoration it requires.

All exception vectors are located in the supervisor address space and are accessed using
data references. Only the initial reset vector is fixed in the processor's memory map; once
initialization is complete, there are no fixed assignments. Since the VBR provides the base
address of the exception vector table, the exception vector table can be located anywhere
in memory; it can even be dynamically relocated for each task that an operating system
executes.

The M68040 supports a 1024-byte vector table containing 256 exception vectors (see
Table 8-1). Motorola defines the first 64 vectors and reserves the other 192 vectors for
user-defined interrupt vectors. External devices can use vectors reserved for internal
purposes at the discretion of the system designer. External devices can also supply vector
numbers for some exceptions. External devices that cannot supply vector numbers use
the autovector capability, which allows the M68040 to automatically generate a vector
number.

84 M68040 USER’S MANUAL MOTOROLA



Table 8-1.

Exception Vector Assignments

Vector Vector Offset
Number(s) (Hex) Assignment

0 000 Reset Initial Interrupt Stack Pointer
1 004 Reset Initial Program Counter
2 008 Access Fault
3 ooc Address Error
4 010 lllegal Instruction
5 014 Integer Divide by Zero
6 018 CHK, CHK2 Instruction
7 01C FTRAPcc, TRAPcc, TRAPV Instructions
8 020 Privilege Violation
9 024 Trace
10 028 Line 1010 Emulator (Unimplemented A-Line Opcode)
11 02C Line 1111 Emulator (Unimplemented F-Line Opcode)
12 030 (Unassigned, Reserved)
13 034 Defined for MC68020 and MC68030, not used by M68040
14 038 Format Error
15 03C Uninitialized Interrupt

16-23 040-05C (Unassigned, Reserved)
24 060 Spurious Interrupt
25 064 Level 1 Interrupt Autovector
26 068 Level 2 Interrupt Autovector
27 06C Level 3 Interrupt Autovector
28 070 Level 4 Interrupt Autovector
29 074 Level 5 Interrupt Autovector
30 078 Level 6 Interrupt Autovector
31 07C Level 7 Interrupt Autovector

32-47 080-0BC TRAP #0-15 Instruction Vectors

48-55 0C0-0DC Floating-Point Exception Vectors (see Note)
56 OEO Defined for MC68030 and MC68851, not used by M68040
57 OE4 Defined for MC68851, not used by M68040
58 OE8 Defined for MC68851, not used by M68040

59-63 OEC-0FC (Unassigned, Reserved)

64-255 100-3FC User Defined Vectors (192)

NOTE: Refer to Section 9 Floating-Point Unit (MC68040 Only).

8.2 INTEGER UNIT EXCEPTIONS

The following paragraphs describe the external interrupt exceptions and the different types
of exceptions generated internally by the M68040 integer unit. The following exceptions
are discussed:

Access Fault
Address Error

Instruction Trap

lllegal and Unimplemented Instructions

Privilege Violation

MOTOROLA

M68040 USER’S MANUAL

85



* Trace

* Format Error

» Breakpoint Instruction
* Interrupt

* Reset

8.2.1 Access Fault Exception

An access fault exception occurs when a data or instruction prefetch access faults due to
either an external bus error or an internal access fault. Both types of access faults are
treated identically and the access fault exception handler or a status bit in the access fault
stack frame distinguishes them. An access fault exception may or may not be taken
immediately, depending on whether the faulted access specifically references data
required by the execution unit or whether there are any other exceptions that can occur,
allowing the execution pipeline to idle.

An external access fault (bus error) occurs when external logic aborts a bus cycle and
asserts the TEA input signal. A bus error on a data write access always results in an
access fault exception, causing the processor to begin exception processing immediately.
A bus error on a data read also causes exception processing to begin immediately if the
access is a byte, word, or long-word access or if the bus error occurs on the first transfer
of a line read. Bus errors on the second, third, or fourth transfers for a data line read
cause the transfer to be aborted, but result in a bus error only if the execution unit is
specifically requesting the long word being transferred. For example, if a misaligned
operand spans the first two long words in the line being read, a bus error on the second
transfer causes an exception, but a bus error on the third or last transfer does not, unless
the execution unit has generated another operand access that references data in these
transfers.

Bus errors that occur during instruction prefetches are deferred until the processor
attempts to use the information. For instance, if a bus error occurs while prefetching other
instructions after a change-of-flow instruction (BRA, JMP, JSR, TRAP#n, etc.), BRA, JMP,
JSR, TRAP#n execution of the new instruction flow clears the exception condition. This
also applies to the not-taken branch for a conditional branch instruction, even though both
sides of the branch are decoded.

Processor accesses for either data or instructions can result in internal access faults.
Internal access faults must be corrected to complete execution of the current context. Four
types of internal access faults can occur:

1. Push transfer faults occur when the execution unit is idle, the integer unit pipeline is
frozen, the instruction and data cache requests are cancelled (however, writes are
not lost), and pending writes are stacked.

2. Data access faults occur when the bus controller and the execution unit are idle. A
data access fault freezes the pipeline and cancels any pending instruction cache
accesses. Pending writes are stacked because the data cache is deadlocked until
stacking transfers are initiated.

86 M68040 USER’S MANUAL MOTOROLA



3. Instruction access faults occur when the PC section is deadlocked because of the
faulted data or another prefetch is required, the copyback stage is empty, and the
data cache and bus controller are idle. Since instruction access faults are reset, they
can be ignored.

4. An internal access fault also occurs when the data or instruction MMU detects that a
successful address translation is not possible because the page is write protected,
supervisor only, or nonresident. Furthermore, when an address translation cache
(ATC) miss occurs, the processor searches the translation tables in memory for the
mapping, and then retries the access. If a valid translation for the logical address is
not available due to a problem encountered during the table search, an internal
access fault occurs when the aborted access is retried. The problem encountered
could be either an invalid descriptor or the assertion of the TEA signal during a bus
cycle used to access the translation tables. A miss in the ATC causes the processor
to automatically initiate a table search but does not cause an internal access fault
unless one of the three previous conditions is encountered. However, this is not true
if the memory management unit (MMU) is disabled.

When an exception is detected, all parts of the execution unit either remain or are forced
to idle, at which time the highest priority exception is taken. Restarting the instruction or a
user-defined supervisor cleanup exception handler routine regenerates lower priority
exceptions on the return from exception handling. Internal access faults and bus errors
are reported after all other pending integer instructions complete execution. If an
exception is generated during completion of the earlier instructions, the pending
instruction fault is cleared, and the new exception is serviced first. The processor restarts
the pending prefetch after completing exception handling for the earlier instructions and
takes a bus error exception if the access faults again. For data access faults, the
processor aborts current instruction execution. If a data access fault is detected, the
processor waits for the current instruction prefetch bus cycle to complete, then begins
exception processing immediately.

As illustrated in Figure 8-1, the processor begins exception processing for an access fault
by making an internal copy of the current SR. The processor then enters the supervisor
mode and clears T1 and TO. The processor generates exception vector number 2 for the
access fault vector. It saves the vector offset, PC, and internal copy of the SR on the
stack. The saved PC value is the logical address of the instruction executing at the time
the fault was detected. This instruction is not necessarily the one that initiated the bus
cycle since the processor overlaps execution of instructions. It also saves information to
allow continuation after a fault during a MOVEM instruction and to support other pending
exceptions. The faulted address and pending write-back information is saved. The
information saved on the stack is sufficient to identify the cause of the bus error, complete
pending write-backs, and recover from the error. The exception handler must complete the
pending write-backs. Up to three write-backs can be pending for push errors and data
access errors.

If a bus error occurs during the exception processing for an access fault, address error, or
reset or while the processor is loading internal state information from the stack during the
execution of an RTE instruction, a double bus fault occurs, and the processor enters the
halted state as indicated by the PST3—-PSTO encoding $5. In this case, the processor

MOTOROLA M68040 USER’S MANUAL 87



does not attempt to alter the current state of memory. Only an external reset can restart a
processor halted by a double bus fault.

The supervisor stack has special requirements to ensure that exceptions can be stacked.
The stack must be resident with correct protection in the direction of growth to ensure that
exception stacking never has a bus error or internal access fault. Memory pages allocated
to the stack that are higher in memory than the current stack pointer can be nonresident
since an RTE or FRESTORE instruction can check for residency and trap before restoring
the state.

A special case exists for systems that allow arbitration of the processor bus during locked
transfer sequences. If the arbiter can signal a bus error of a locked translation table
update due to an improperly broken lock, any pages touched by exception stack
operations must have the U-bit set in the corresponding page descriptor to prevent the
occurrence of the locked access during translation table searches.

8.2.2 Address Error Exception

An address error exception occurs when the processor attempts to prefetch an instruction
from an odd address. This includes the case of a conditional branch instruction with an
odd branch offset that is not taken. A prefetch bus cycle is not executed, and the
processor begins exception processing after the currently executing instructions have
completed. If the completion of these instructions generates another exception, the
address error exception is deferred, and the new exception is serviced. After exception
processing for the address error exception commences, the sequence is the same as an
access fault exception, except that the vector number is 3 and the vector offset in the
stack frame refers to the address error vector. The stack frame is generated containing
the address of the instruction that caused the address error and the address itself (AO is
cleared). If an address error occurs during the exception processing for a bus error,
address error, or reset, a double bus fault occurs.

8.2.3 Instruction Trap Exception

Certain instructions are used to explicitly cause trap exceptions. The TRAP#n instruction
always forces an exception and is useful for implementing system calls in user programs.
The TRAPcc, FTRAPcc, TRAPV, CHK, and CHK2 instructions force exceptions if the user
program detects an error, which can be an arithmetic overflow or a subscript value that is
out of bounds. The DIVS and DIVU instructions force exceptions if a division operation is
attempted with a divisor of zero.

As illustrated in Figure 8-1, when a trap exception occurs, the processor internally copies
the SR, enters the supervisor mode, and clears T1 and TO. The processor generates a
vector number according to the instruction being executed. Vector 5 is for DIVX, vector 6 is
for CHK and CHK2, and vector 7 is for FTRAPcc, TRAPcc, and TRAPV instructions. For
the TRAP#n instruction, the vector number is 32 plus n. The stack frame saves the trap
vector offset, the PC, and the internal copy of the SR on the supervisor stack. The saved
value of the PC is the logical address of the instruction following the instruction that
caused the trap. For all instruction traps other than TRAP#n, a pointer to the instruction

88 M68040 USER’S MANUAL MOTOROLA



that caused the trap is also saved. Instruction execution resumes at the address in the
exception vector after the required instruction is prefetched.

8.2.4 lllegal Instruction and Unimplemented Instruction Exceptions

An illegal instruction exception corresponds to vector number 4, and occurs when the
processor attempts to execute an illegal instruction. An illegal instruction is an instruction
that contains any bit pattern that does not correspond to the bit pattern of a valid M68040
instruction. An illegal instruction exception is also taken after a breakpoint acknowledge
bus cycle is terminated, either by the assertion of the transfer acknowledge (TA) or the
transfer error acknowledge (TEA) signal. An illegal instruction exception can also be a
MOVEC instruction with an undefined register specification field in the first extension
word.

Instruction word patterns with bits 15-12 equal to $A do not correspond to legal
instructions for the M68040 and are treated as unimplemented instructions. $A word
patterns are referred to as an unimplemented instruction with A-line opcodes. When the
processor attempts to execute an unimplemented instruction with an A-line opcode, an
exception is generated with vector number 10, permitting efficient emulation of
unimplemented instructions. For instruction word patterns with bits 15-12 equal to $F refer
to Section 9 Floating-Point Unit (MC68040 Only).

Exception processing for illegal and unimplemented instructions is similar to that for
instruction traps. When the processor has identified an illegal or unimplemented
instruction, it initiates exception processing instead of attempting to execute the
instruction. The processor copies the SR, enters the supervisor mode, and clears T1 and
TO, disabling further tracing. The processor generates the vector number, either 4 or 10,
according to the exception type. The illegal or unimplemented instruction vector offset,
current PC, and copy of the SR are saved on the supervisor stack, with the saved value of
the PC being the address of the illegal or unimplemented instruction. Instruction execution
resumes at the address contained in the exception vector. It is the responsibility of the
exception handling routine to adjust the stacked PC if the instruction is emulated in
software or is to be skipped on return from the exception handler.

8.2.5 Privilege Violation Exception

To provide system security, some instructions are privileged. An attempt to execute one of
the following privileged instructions while in the user mode causes a privilege violation
exception:

ANDI to SR FSAVE MOVEC PTEST
CINV MOVE from SR MOVES RESET
CPUSH MOVE to SR ORI to SR RTE
EORI to SR MOVE USP PFLUSH STOP
FRESTORE

Exception processing for privilege violations is similar to that for illegal instructions. When
the processor identifies a privilege violation, it begins exception processing before

MOTOROLA M68040 USER’S MANUAL 89



executing the instruction. As illustrated in Figure 8-1, the processor copies the SR, enters
the supervisor mode, and clears the trace bits. The processor generates vector number 8,
saves the privilege violation vector offset, the current PC value, and the internal copy of
the SR on the supervisor stack. The saved value of the PC is the logical address of the
first word of the instruction that caused the privilege violation. Instruction execution
resumes after the required prefetches from the address in the privilege violation exception
vector.

8.2.6 Trace Exception

To aid in program development, the M68000 family includes an instruction-by-instruction
tracing capability. The M68040 can be programmed to trace all instructions or only
instructions that change program flow. In the trace mode, an instruction generates a trace
exception after the instruction completes execution, allowing a debugging program to
monitor execution of a program.

In general terms, a trace exception is an extension to the function of any traced
instruction. The execution of a traced instruction is not complete until trace exception
processing is complete. If an instruction does not complete due to an access fault or
address error exception, trace exception processing is deferred until after execution of the
suspended instruction is resumed. If an interrupt is pending at the completion of an
instruction, trace exception processing occurs before interrupt exception processing starts.
If an instruction forces an exception as part of its normal execution, the forced exception
processing occurs before the trace exception is processed.

The T1 and TO bits in the supervisor portion of the SR control tracing. The state of these
bits when an instruction begins execution determines whether the instruction generates a
trace exception after the instruction completes. T1 and TO bit = $1 causes an instruction
that forces a change of flow to take a trace exception. The following instructions cause a
trace exception to be taken when trace on change of flow is enabled.

ANDI to SR CAS2 FBcc (Taken) JMP MOVES RTD
Bcc (Taken) CINV FDBcc (Always) JSR NOP RTE
BRA CPUSH FMOVEM MOVE to SR ORIto SR RTR
BSR DBcc (Taken) FRESTORE MOVE USP PFLUSH RTS
CAS EORIto SR FSAVE MOVEC PTEST STOP

Instructions that increment the PC normally do not take the trace exception. This mode
also includes SR manipulations because the processor must prefetch instruction words
again to fill the pipeline any time an instruction that modifies the SR is executed. Table 8-2
lists the different trace modes.

810 M68040 USER’S MANUAL MOTOROLA



Table 8-2. Tracing Control

T1 TO Tracing Function

0 0 No Tracing

0 1 Trace on Change of Flow

1 0 Trace on Instruction Execution (Any Instruction)
1 1 Undefined, Reserved

When the processor is in the trace mode and attempts to execute an illegal or
unimplemented instruction, that instruction does not cause a trace exception since the
instruction is not executed. This is of particular importance to an instruction emulation
routine that performs the instruction function, adjusts the stacked PC to skip the
unimplemented instruction, and returns. Before returning, the trace bits of the SR on the
stack should be checked. If tracing is enabled, the trace exception processing should also
be emulated for the trace exception handler to account for the emulated instruction.

Trace exception processing starts at the end of normal processing for the traced
instruction and before the start of the next instruction. As illustrated in Figure 8-1, the
processor makes an internal copy of the SR, and enters the supervisor mode. It also
clears the T1 and TO bits of the SR, disabling further tracing. The processor supplies
vector number 9 for the trace exception and saves the trace exception vector offset, PC
value, and the internal copy of the SR on the supervisor stack. The saved value of the PC
is the logical address of the next instruction to be executed. Instruction execution resumes
after the required prefetches from the address in the trace exception vector.

When the STOP instruction is traced, the processor never enters the stopped condition. A
STOP instruction that begins execution with the trace bits equal to $3 forces a trace
exception after it loads the SR. Upon return from the trace exception handler, execution
continues with the instruction following the STOP instruction, and the processor never
enters the stopped condition.

8.2.7 Format Error Exception

Just as the processor checks for valid prefetched instructions, it also performs some
checks of data values for control operations. The RTE instruction checks the validity of the
stack format code. For floating-point unit (FPU) state frames, the FRESTORE instruction
compares the internal version number of the processor to that contained in the state frame
(refer to Section 9 Floating-Point Unit (MC68040 Only)). This check ensures that the
processor can correctly interpret internal FPU state information from the state frame. If
any of these checks determine that the format of the data is improper, the instruction
generates a format error exception. This exception saves a stack frame, generates
exception vector number 14, and continues execution at the address in the format
exception vector. The stacked PC value is the logical address of the instruction that
detected the format error.

MOTOROLA M68040 USER’S MANUAL 811



8.2.8 Breakpoint Instruction Exception

To use the M68040 in a hardware emulator, the processor must provide a means of
inserting breakpoints in the emulator code and performing appropriate operations at each
breakpoint. Inserting an illegal instruction at the breakpoint and detecting the illegal
instruction exception from its vector location can achieve this. However, since the VBR
allows arbitrary relocation of exception vectors, the exception address cannot reliably
identify a breakpoint. Consequently, the processor provides a breakpoint capability with a
set of breakpoint exceptions, $4848—-$484F.

When the M68040 executes a breakpoint instruction, it performs a breakpoint
acknowledge cycle (read cycle) with an acknowledge transfer type and transfer modifier
value of $0. Refer to Section 7 Bus Operation for a description of the breakpoint
acknowledge cycle. After external hardware terminates the bus cycle with either TA or
TEA, the processor performs illegal instruction exception processing.

8.2.9 Interrupt Exception

When a peripheral device requires the services of the M68040 or is ready to send
information that the processor requires, it can signal the processor to take an interrupt
exception using the active-low IPL2-IPLO signals. The three signals encode a value of 0-7
(IPLO is the least significant bit). High levels on all three signals correspond to no interrupt
requested (level 0). Values 1-7 specify one of seven levels of interrupts, with level 7
having the highest priority. Table 8-3 lists the interrupt levels, the states of IPL2—IPLO that
define each level, and the SR interrupt mask value that allows an interrupt at each level.

Table 8-3. Interrupt Levels and Mask Values

Requested Control Line Status Interrupt Mask Level
Interrupt Level P2 P 1PLO Required for Recognition
0 High High High No Interrupt Requested
1 High High Low 0
2 High Low High 0-1
3 High Low Low 0-2
4 Low High High 0-3
5 Low High Low 0-4
6 Low Low High 0-5
7 Low Low Low 0-7

When an interrupt request has a priority higher than the value in the interrupt priority mask
of the SR (bits 10-8), the processor makes the request a pending interrupt. Priority level
7, the nonmaskable interrupt, is a special case. Level 7 interrupts cannot be masked by
the interrupt priority mask, and they are transition sensitive. The processor recognizes an
interrupt request each time the external interrupt request level changes from some lower
level to level 7, regardless of the value in the mask. Figure 8-3 shows two examples of
interrupt recognitions, one for level 6 and one for level 7. When the M68040 processes a

812 M68040 USER’S MANUAL MOTOROLA



level 6 interrupt, the SR mask is automatically updated with a value of 6 before entering
the handler routine so that subsequent level 6 interrupts and lower level interrupts are
masked. Provided no instruction that lowers the mask value is executed, the external
request can be lowered to level 3 and then raised back to level 6 and a second level 6
interrupt is not processed. However, if the M68040 is handling a level 7 interrupt (SR
mask set to level 7) and the external request is lowered to level 3 and than raised back to
level 7, a second level 7 interrupt is processed. The second level 7 interrupt is processed
because the level 7 interrupt is transition sensitive. A level comparison also generates a
level 7 interrupt if the request level and mask level are at 7 and the priority mask is then
set to a lower level (with the MOVE to SR or RTE instruction, for example). The level 6
interrupt request and mask level example in Figure 8-3 is the same as for all interrupt
levels except 7.

MOTOROLA M68040 USER’S MANUAL 813



EXTERNAL INTERRUPT PRIORITY
IPL2-IPLO MASK (12-10) ACTION

| 100 ($3) 101 ($5) | (INITIAL CONDITIONS)
W | IF 001 ($6) THEN 110 ($6) AND LEVEL 6 INTERRUPT | (LEVEL COMPARISON)
-
o
2 Y
u | IF 100 ($3) AND STILL 110 ($6) THEN  NO ACTION |
-
w
& Y
—

| IF 001 ($6) AND STILL 110 (%6) THEN NO ACTION |

Y

| IFSTILL 001 ($6) AND RTE SO THAT 101 (35) THEN  LEVEL 6 INTERRUPT | (LEVEL COMPARISON)

| 100 ($3) 101 ($5) | (INITIAL CONDITIONS)
W | IF 000 ($7) THEN 111 ($7) AND LEVEL 7 INTERRUPT | (TRANSITION)
—
o
= Y
§ | IF 100 ($3) AND STILL 111 ($7) THEN  NO ACTION |
-
L
& Y

| IF 000 ($7) AND STILL 111 ($7) THEN  NOACTION | (TRANSITION)

| IFSTILL 000 ($7) AND RTE SO THAT 101 ($5) THEN LEVEL 7 INTERRUPT | (LEVEL COMPARISON)

Figure 8-3. Interrupt Recognition Examples

Note that a mask value of 6 and a mask value of 7 both inhibit request levels of 1-6 from
being recognized. In addition, neither masks a transition to an interrupt request level of 7.
The only difference between mask values of 6 and 7 occurs when the interrupt request
level is 7 and the mask value is 7. If the mask value is lowered to 6, a second level 7

interrupt is recognized.

External circuitry can chain or otherwise merge signals from devices at each level,
allowing an unlimited number of devices to interrupt the processor. When several devices
are connected to the same interrupt level, each device should hold its interrupt priority
level constant until its corresponding interrupt acknowledge bus cycle ensures that all
requests are processed. Refer to Section 7 Bus Operation for details on the interrupt

acknowledge cycle.

814

M68040 USER’S MANUAL

MOTOROLA



Figure 8-4 illustrates a flowchart for interrupt exception processing. When processing an
interrupt exception, the processor first makes an internal copy of the SR, sets the mode to
supervisor, suppresses tracing, and sets the processor interrupt mask level to the level of
the interrupt being serviced. The processor attempts to obtain a vector number from the
interrupting device using an interrupt acknowledge bus cycle with the interrupt level
number output on the transfer modifier signals. For a device that cannot supply an
interrupt vector, the autovector signal (AVEC) must be asserted. In this case, the M68040
uses an internally generated autovector, which is one of vector numbers 25-31, that
corresponds to the interrupt level number (see Table 8-1). If external logic indicates a bus
error during the interrupt acknowledge cycle, the interrupt is considered spurious, and the
processor generates the spurious interrupt vector number, 24.

Once the vector number is obtained, the processor saves the exception vector offset, PC
value, and the internal copy of the SR on the active supervisor stack. The saved value of
the PC is the logical address of the instruction that would have been executed had the
interrupt not occurred.

If the M-bit of the SR is set, the processor clears the M-bit and creates a throwaway
exception stack frame on top of the interrupt stack as part of interrupt exception
processing. This second frame contains the same PC value and vector offset as the frame
created on top of the master stack, but has a format number of $1. The copy of the SR
saved on the throwaway frame has the S-bit set, the M-bit clear, and the interrupt mask
level set to the new interrupt level. It may or may not be set in the copy saved on the
master stack. The resulting SR (after exception processing) has the S-bit set and the M-bit
cleared. The processor loads the address in the exception vector into the PC, and normal
instruction execution resumes after the required prefetches for the interrupt handler
routine.

Most M68000 family peripherals use programmable interrupt vector numbers as part of
the interrupt acknowledge operation for the system. If this vector number is not initialized
after reset and the peripheral must acknowledge an interrupt request, the peripheral
usually returns the vector number for the uninitialized interrupt vector, 15.

MOTOROLA M68040 USER’S MANUAL 815



816

ENTRY

SAVE INTERNAL
COPY OF SR

S=1
T1,70 = 00

12-10 = LEVEL OF
INTERUPT

FETCH VECTOR
FROM INTERRUPTING
DEVICE

IF NO VECTOR #

BUS ERROR

57)7

AUTOVECTOR 25-31

SPURIOUS INTERRUPT

VECTOR #24

S

IFM=0
THEN VECTOR OFFSET, |
PC, AND SR LJACTIVE OTHERWISE
STACK FRAME
M [J0; VECTOR
OFFSET, PC, AND SR
OTHROWAWAY
STACK FRAME ON ISP
VECTOR OPC BUS ERROR
PREFETCH FOUR
LONG WORDS
BUS ERROR OR
ADDRESS ERROR

OTHERWISE
BEGIN INSTRUCTION
EXECUTION

EXIT

:

M68040

USER’S MANUAL

(DOUBLE BUS FAULT)

HALTED STATE
(PST3-PSTO = $5)

{ EXIT }

Figure 8-4. Interrupt Exception Processing Flowchart

MOTOROLA



8.2.10 Reset Exception

Asserting the reset in (RSTI) input signal causes a reset exception. The reset exception
has the highest priority of any exception; it provides for system initialization and recovery
from catastrophic failure. Reset also aborts any processing in progress when RSTI is
recognized; processing cannot be recovered. Figure 8-5 is a flowchart of the reset
exception processing.

The reset exception places the processor in the interrupt mode of the supervisor privilege
mode by setting the S-bit and clearing the M-bit and disables tracing by clearing the T1
and TO bits in the SR. This exception also sets the processor’s interrupt priority mask in
the SR to the highest level, level 7. Next the VBR is initialized to zero ($00000000), and
the enable bits in the cache control register (CACR) for the on-chip caches are cleared.
The reset exception also clears the enable bit but does not affect page size in the
translation control registers. It clears the enable bit in each of the four transparent
translation registers. An interrupt acknowledge bus cycle is begun to generate a vector
number. This vector number references the reset exception vector (two long words, vector
numbers 0 and 1) at offset zero in the supervisor address space. The first long word is
loaded into the interrupt stack pointer, and the second long word is loaded into the PC.
Reset exception processing concludes with the prefetch of the first four long words
beginning at the memory location pointed to by the PC.

MOTOROLA M68040 USER’S MANUAL 817



ENTRY
S =1
M =0
TL,T0O = 0
120 = $7
VBR = $0
CACR = %0
DTTn[E-bit] = 0
ITTn[E-bit] = O
|
FETCH VECTOR #0

-

OTHERWISE
| BUS ERROR

VECTOR #0 ISP \
| (DOUBLE BUS FAULT)

FETCH VECTOR #1

-

OTHERWISE

| BUS ERROR
VECTOR #1 OPC \
| (DOUBLE BUS FAULT)
PREFETCH 4
LONG WORDS

e

BUS ERROR OR
ADDRESS ERROR
OTHERWISE
BEGIN INSTRUCTION
EXECUTION (DOUBLE BUS FAULT)

HALTED STATE
(PST3-PSTO = $5)

EXIT { EXIT }

Figure 8-5. Reset Exception Processing Flowchart

:

After the initial instruction is prefetched, program execution begins at the address in the
PC. The reset exception does not flush the ATCs or invalidate entries in the instruction or
data caches; it does not save the value of either the PC or the SR. If an access fault or
address error occurs during the exception processing sequence for a reset, a double bus
fault is generated. The processor halts, and the processor status (PST3—PSTO) signals
indicate $5. Execution of the reset instruction does not cause a reset exception, or affect

818 M68040 USER’S MANUAL MOTOROLA



any internal registers, but it does cause the M68040 to assert the reset out (RSTO) signal,
resetting all external devices.

8.3 EXCEPTION PRIORITIES

When several exceptions occur simultaneously, they are processed according to a fixed
priority. Table 8-4 lists the exceptions, grouped by characteristics. Each group has a
priority, from 0—7, with O as the highest priority.

Table 8-4. Exception Priority Groups

Group/

e Exception and Relative Priority Characteristics
Priority

0 Reset Aborts all processing (instruction or exception) and does not
save old context.

1 Data Access Error Aborts current instructions; can have pending trace, floating-

(ATC Fault or Bus Error) point post-instruction, or unimplemented floating-point
instruction exceptions.

2 Floating-Point Pre-Instruction* Exception processing begins before current floating-point
instruction is executed. Instruction is restarted on return from
exception.

3 BKPT #n, CHK, CHK2, Divide by Zero, Exception processing is part of instruction execution.

FTRAPcc, RTE, TRAP#n, TRAPV
lllegal Instruction, Unimplemented A- and Exception processing begins before instruction is executed.

F-Line, Privilege Violation

Unimplemented Floating-Point Instruction* | Exception processing begins after memory operands are
fetched and before instruction is executed.

4 Floating-Point Post-Instruction* Only reported for FMOVE to memory. Exception processing
begins when FMOVE instruction and previous exception
processing have completed.

5 Address Error Reported after all previous instructions and associated
exceptions have completed.
6 Trace Exception processing begins when current instruction or
previous exception processing has completed.
7 Instruction Access Error Reported after all previous instructions and associated
(ATC Fault or Bus Error) exceptions have completed.
8 Interrupt Exception processing begins when current instruction or

previous exception processing has completed.

* Refer to Section 9 Floating-Point Unit (MC68040 Only) for details concerning floating-point instructions.

The method used to process exceptions in the M68040 is significantly different from that
used in earlier members of the M68000 processor family due to the restart exception
model. In general, when multiple exceptions are pending, the exception with the highest
priority is processed first, and the remaining exceptions are regenerated when the current
instruction restarts. Note that the reset operation clears all other exceptions except in the
following circumstances:

* As soon as the M68040 has completed exception processing for a condition when an
interrupt exception is pending, it begins exception processing for the interrupt

MOTOROLA M68040 USER’S MANUAL 819



exception instead of executing the exception handler for the original exception
condition. For example, if simultaneous interrupt and trap exceptions are pending, the
exception processing for the trap exception occurs first, followed immediately by
exception processing for the interrupt. When the processor resumes normal
instruction execution, it is in the interrupt handler, which returns to the trap exception
handler.

» Exception processing for access error exceptions creates a format $7 stack frame
that contains status information that can indicate a pending trace, floating-point post-
instruction, or unimplemented floating-point instruction exception. The RTE instruction
used to return from the access error exception handler checks the status bits for one
of these pending exceptions. If one is indicated, the RTE changes the access error
stack frame to match the pending exception and fetches the vector for the exception.
Instruction execution then resumes in the new exception handler.

« |If an access error, trace, and one of the two (mutually exclusive) floating-point
exceptions occur simultaneously, the pending floating-point exception is indicated in
the access error stack and the trace exception flag is undefined. The exception
handler for the floating-point exception must check the trace bits on the stack and call
the trace handler directly (after adjusting the stack frame to match the format for the
trace exception).

 |If atrace exception is pending at the same time an exception priority level 3 or
floating-point post-instruction exception is pending, the trace exception is not
reported, and the exception handler for the other exception condition must check for
the trace condition.

8.4 RETURN FROM EXCEPTIONS

After the processor has completed executing the exception handlers for all pending
exceptions, the processor resumes normal instruction execution at the address in the
processor’s vector table for the last exception processed. Once the exception handler has
completed execution, if possible the processor must return the system context as it was
prior to the exception using the RTE instruction. (If the internal data of the exception stack
frames are manipulated, M68040 may enter into an undefined state; this applies
specifically to the SSW on the access error stack frame.)

When the processor executes an RTE instruction, it examines the stack frame on top of
the active supervisor stack to determine if it is a valid frame and what type of context
restoration it requires. If during restoration, a stack frame has an odd address PC and an
SR that indicates user trace mode enabled, then an address error is taken. The SR
stacked for the address error has the SR S-bit set. For previous members of the M68000
family the S-bit is clear. When the M68040 writes or reads a stack frame, it uses long-
word operand transfers wherever possible. Using a long-word-aligned stack pointer
greatly enhances exception processing performance. The processor does not necessarily
read or write the stack frame data in sequential order. The system software should not
depend on a particular exception generating a particular stack frame. For compatibility
with future devices, the software should be able to handle any format of stack frame for
any type of exception. The following paragraphs discuss in detail each stack frame format.

820 M68040 USER’S MANUAL MOTOROLA



8.4.1 Four-Word Stack Frame (Format $0)

If a four-word stack frame is on the active stack and an RTE instruction is encountered,
the processor updates the SR and PC with the data read from the stack, increments the
stack pointer by eight, and resumes normal instruction execution.

Stack Frames Exception Types Stacked PC Points To
* Interrupt * Next Instruction
» Format Error » RTE or RESTORE
15 0 Instruction
SP—> STATUS REGISTER  TRAP #N * Next Instruction
+$02  lllegal Instruction  lllegal Instruction
PROGRAM COUNTER « A-Line Instruction « A-Line Instruction
+$06 0000 | VECTOR OFFSET * F-Line Instruction » F-Line Instruction

First Word of Instruction

Causing Privilege Violation

* Floating-Point Pre- » Floating-Point Pre-
Instruction Instruction Exception

Privilege Violation
FOUR-WORD STACK FRAME-FORMAT $0

8.4.2 Four-Word Throwaway Stack Frame (Format $1)

If a four-word throwaway stack frame is on the active stack and an RTE instruction is
encountered, the processor increments the active stack pointer by eight, updates the SR
with the value read from the stack, and then begins RTE processing again, as illustrated in
Figure 8-6. The processor reads a new format word from the stack frame on top of the
active stack (which may or may not be the same stack used for the previous operation)
and performs the proper operations corresponding to that format. In most cases, the
throwaway frame is on the interrupt stack, and when the SR value is read from the stack,
the S-bit and M-bit are set. In that case, there is a normal four-word frame on the master
stack. However, the second frame can be any format (even another throwaway frame)
and can reside on any of the three system stacks.

Stack Frames Exception Types Stacked PC Points To
15 0 » Created on interrupt stack * Next Instruction: same as
Sp—> STATUS REGISTER during interrupt exception on master stack.
+$02 processing when transition
PROGRAM COUNTER from master state to
+$06 0001 | VECTOR OFFSET interrupt state occurs.
THROWAWAY FOUR-WORD STACK FRAME-FORMAT $1

MOTOROLA M68040 USER’S MANUAL 821



INVALID FORMAT
WORD

TAKE FORMAT
ERROR EXCEPTION

ENTRY
-

TEMP O (SP)+

READ FORMAT WORD

OTHERWISE

OTHERWISE

OTHERWISE

SR O TEMP
SP O SP+6

FORMAT CODE = $1
(THROWAWAY
FRAME)

FORMAT CODE = $0
(4-WORD FRAME)

PC O (SP)+

OTHER FORMATS
SP O SP+6

SR O TEMP

( EXIT )

Figure 8-6. Flowchart of RTE Instruction for Throwaway Four-Word Frame

8.4.3 Six-Word Stack Frame (Format $2)

If a six-word throwaway stack frame is on the active stack and an RTE instruction is
encountered, the processor restores the SR and PC values from the stack, increments the
active supervisor stack pointer by $C, and resumes normal instruction execution.

Stack Frames

Exception Types

Stacked PC Points To

15

p—> STATUS REGISTER
+§02 PROGRAM COUNTER
+06 | 0010 | VECTOR OFFSET
+$08 ADDRESS

SIX-WORD STACK FRAME-FORMAT $2

CHK, CHK2, TRAPcc,
FTRAPcc, TRAPV, Trace,
or Zero Divide

Unimplemented Floating-
Point Instruction

Address Error

Next Instruction: address is
the address of the
instruction that caused the
exception.

Next Instruction: address is
the calculated <ea> for the
floating-point instruction.
Instruction that caused the
address error, address is
the reference address — 1.

822

M68040 USER’S MANUAL

MOTOROLA




8.4.4 Floating-Point Post-Instruction Stack Frame (Format $3)

The processor restores the SR and PC values from the stack and increments the active
supervisor stack pointer by $C. If another floating-point post-instruction exception is
pending, exception processing begins immediately for the new exception; otherwise, the
processor resumes normal instruction execution.

Stack Frames

Exception Types

Stacked PC Points To

FLOATING-POINT POST-INSTRUCTION
STACK FRAME-FORMAT $3

15 0 * Floating-Point Post- * Next Instruction: <ea> is the
SP—>| STATUS REGISTER Instruction calculated effective address
+$02 for the floating-point
PROGRAM COUNTER instruction.
+$06 0011 | VECTOR OFFSET
+$08
EFFECTIVE ADDRESS

8.4.5 Eight-Word Stack Frame (Format $4)

The MC68040V, MC68LC040, MC68EC040, and MC68EC040V use this stack frame for
unimplemented floating-point instructions. The MC68040 does not generate or recognize
this format stack frame. Refer to Appendix A MC68LC040 and Appendix B MC68EC040
for further details about this stack frame.

MOTOROLA

M68040 USER’S MANUAL

823



8.4.6 Access Error Stack Frame (Format $7)

A 30-word access error stack frame is created for data and instruction access faults other
than instruction address errors. In addition to information about the current processor
status and the faulted access, the stack frame also contains pending write-backs that the
access error exception handler must complete. The following paragraphs describe in
detail the format for this frame and how the processor uses it when returning from
exception processing.

Stack Frames Exception Types Stacked PC Points To
15 0 » Data or Instruction Access ¢ Next Instruction
SP—> STATUS REGISTER Fault (ATC Fault or Bus
+$02 PROGRAM COUNTER Error)
+506 | 0111 | VECTOR OFFSET
+908 EFFECTIVE ADDRESS (EA)
+$0A
+$0C SPECIAL STATUS WORD (SSW)
+$0E $00 WRITE-BACK 3 STATUS (WB3S)
+$10 $00 WRITE-BACK 2 STATUS (WB2S)
+$12 $00 WRITE-BACK 1 STATUS (WB1S)
+$14
s FAULT ADDRESS (FA)
+318 WRITE-BACK 3 ADDRESS (WB3A)
+$1C WRITE-BACK 3 DATA (WB3D)
+$20
WRITE-BACK 2 ADDRESS (WB2A)
+$24 WRITE-BACK 2 DATA (WB2D)
+$28
WRITE-BACK 1 ADDRESS (WB1A)
+$2C
WRITE-BACK 1 DATA/PUSH DATA LWO (WB1D/PDO)
+$30
PUSH DATA LW 1 (PD1)
+$34
PUSH DATA LW 2 (PD2)
+338 PUSH DATA LW 3 (PD3)
ACCESS ERROR STACK FRAME
(30 WORDS)-FORMAT $7

8.4.6.1 EFFECTIVE ADDRESS. The effective address contains address information when
one of the continuation flags CM, CT, CU, or CP in the SSW is set.

8.4.6.2 SPECIAL STATUS WORD (SSW). The SSW information indicates whether an
access to the instruction stream or the data stream (or both) caused the fault and contains
status information for the faulted access. Figure 8-7 illustrates the SSW format.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[op [au ]| |[om | wafarc| wk |[rw | x| sze | = | ™

Figure 8-7. Special Status Word Format

824 M68040 USER’S MANUAL MOTOROLA



CP—Continuation of Floating-Point Post-Instruction Exception Pending

CP is set for an access error with a floating-point post-instruction exception pending. All
pending accesses are allowed to complete after a trace condition is recognized. If any
of these accesses fault, the resulting stack frame has the CT bit set, and the effective
address field contains the address of the instruction being traced. The RTE fetches the
appropriate floating-point post-instruction exception vector.

When a post-instruction exception occurs during tracing, the post-instruction exception
takes precedence. CP is set, and CT = 0 and can be traced. The kernel must check for
a trace condition using the stacked SR. The effective address field contains the
calculated effective address determined by the effective address field of the floating-
point instruction that caused the post-instruction exception.

CU—Continuation of Unimplemented Floating-Point Instruction Exception Pending

CU is set for an access error with a pending exception for an unimplemented floating-
point instruction. Operation is the same as for the CP flag except the RTE fetches the
F-line exception vector. The effective address field contains the calculated effective
address determined by the effective address field of the unimplemented instruction.

When an unimplemented floating-point instruction is traced, the unimplemented
exception takes precedence, CU is set, and CT = 0. The kernel must check for a trace
condition using the stacked SR. If this condition is true, create the required stack frame
and jump directly to the trace handler.

CT—Continuation of Trace Exception Pending

CT is set for an access error with a pending trace exception. Operation is the same as
for the CP flag. When RTE is executed with CT set, the M68040 will move the words on
the stack an offset of $00-$0B from the current SP to offset $30-$3B, adjusting the
stack pointer by +$30. The M68040 changes the stack frame format to $2 before
fetching the trace exception vector and jumping directly to trace exception handling.
This stack adjustment creates the stack frame that normally would have been created
for the trace exception had the pending access not encountered a bus error.

CM—Continuation of MOVEM Instruction Execution Pending

CM is set if a data access encounters a bus error for a MOVEM. Since the MOVEM
operation can write over the memory location or registers used to calculate the effective
address, the M68040 internally saves the effective address after calculation. When
MOVEM encounters a bus error, a stack frame is created with CM set, and the effective
address field contains the calculated effective address for the instruction. When RTE is
executed, MOVEM restarts using the effective address on the stack (instead of
repeating the effective address calculate operation) if the address mode is PC relative
(mode = 111, register = 010 or 011) or indirect with index (mode = 110).

MA—Misaligned Access

MA is set if an ATC fault occurs for second-page access that spans two pages in
memory.

MOTOROLA M68040 USER’S MANUAL 825



ATC—ATC Fault

This bit is set for an ATC fault due to a nonresident entry (bus error during table search
or invalid descriptor encountered) or privilege violation (write protected or supervisor
only). It is cleared for a bus-errored instruction, data, or cache line-push access.

LK—Locked Transfer (Read-Modify-Write)
This bit is set if a fault occurred on a locked transfer; it is cleared otherwise.

RW—Read/Write
This bit is set if a fault occurred on a read transfer; it is cleared otherwise.

X—Undefined

SIZE—Transfer Size

The SIZE field corresponds to the original access size. If a data cache line read results
from a read miss and the line read encounters a bus error, the SIZE field in the resulting
stack frame indicates the size of the original read generated by the execution unit.

TT—Transfer Type
This field defines the TT1-TTO signal encodings for the faulted transfer.

TM—Transfer Modifier
This field defines the TM2—TMO signal encodings for the faulted transfer.

8.4.6.3 WRITE-BACK STATUS. These fields contain status information for the three
possible write-backs that could be pending after the faulted access (see Figure 8-8). For a
data cache line-push fault or a MOVE16 write fault, WB1S is zero (invalid).

7 6 5 4 3 2 1 0

| v | SIZE | T | ™ |

TM—Transfer Modifier

TT—Transfer Type

SIZE—Transfer Size

V—Valid Write (write-back pending if set)

Figure 8-8. Write-Back Status Format

8.4.6.4 FAULT ADDRESS. The fault address (FA) is the initial address for the access that
faulted. The FA is a physical address only for cache pushes and a logical address for all
other cases. For a misaligned access that faults, the FA field contains the address of the
first byte of the transfer, regardless of which of the two or three bus transfers for the
misaligned access was faulted. For a push fault, the WB1A and FA addresses are the
same.

8.4.6.5 WRITE-BACK ADDRESS AND WRITE-BACK DATA. Write-back addresses
(WB3A, WB2A, and WB1A) are memory pointers that indicate where to place the write-

826 M68040 USER’S MANUAL MOTOROLA



back data (WB3D, WB2D, and WB1D). WB3A and WB3D correspond to the temporary
holding register in the integer unit (WB3). WB2A and WB2D correspond to the temporary
holding register in the data memory unit (WB2) prior to address translation. WB1A and
WB1D correspond to the temporary holding register in the bus controller (WB1), which
determines the external address and data bus bit patterns. Refer to Section 2 Integer
Unit for details on the operation of the integer unit pipeline.

The write-back data in WB3D and WB2D is register aligned with byte and word data
contained in the least significant byte and word, respectively, of the field. Write-back data
in WB1D is memory aligned and resides in the byte positions corresponding to the data
bus lanes used in writing each byte to memory. Table 8-5 lists the data alignment for each
combination of data format and Al and AO.

Table 8-5. Write-Back Data Alignment

Address Data Alignment
Data Format Al AO WB1D WB2D, WB3D
Byte 0 0 31-24 7-0
0 1 23-16 7-0
1 0 15-8 7-0
1 1 7-0 7-0
Word 0 0 31-16 150
0 1 23-8 150
1 0 15-0 15-0
1 1 7-0, 31-24 15-0
Long Word 0 0 310 310
0 1 23-0, 31-24 31-0
1 0 15-0, 31-16 31-0
1 1 7-0, 31-8 31-0

NOTE: For a line transfer fault, the four long words of data in PD3—
PDO are already aligned with memory. Bits 31-0 of each field
correspond to bits 31-0 of the memory location to be written to,
regardless of the value of the address bits A1 and AO for the
write-back address.

8.4.6.6 PUSH DATA. The push data field contains an image of the cache line that needs
to be pushed to memory.

8.4.6.7 ACCESS ERROR STACK FRAME RETURN FROM EXCEPTION. For the access
error stack frame (format $7), the processor restores the SR and PC values from the stack
and checks the four continuation status bits in the SSW on the stack. If these bits are not
set, the processor increments the active supervisor stack pointer by 30 words and
resumes normal instruction execution. If the MOVEM continuation bit is set, the processor
restores the calculated effective address from the stack frame, increments the active
supervisor stack pointer by 30 words, and restarts the MOVEM instruction at a point after
the effective address calculation. All operand accesses for the MOVEM that occurred
before the faulted access are repeated. If a continuation bit is set for a pending trace,
unimplemented floating-point instruction, or floating-point post-instruction exception, the
processor restores the calculated effective address from the stack frame, increments the
active supervisor stack pointer by 30 words, and immediately begins exception processing

MOTOROLA M68040 USER’S MANUAL 827



for the pending exception. The processor sets only one of the continuation bits when the
access error stack frame is created. If the access error exception handler sets multiple
bits, operation of the RTE instruction is undefined.

If the frame format field in the stack frame contains an illegal format code, a format
exception occurs. If a format error or access fault exception occurs during the frame
validation sequence of the RTE instruction, the processor creates a normal four-word or
an access error stack frame below the frame that it was attempting to use. The illegal
stack frame remains intact, so that the exception handler can examine or repair the illegal
frame. In a multiprocessor system, the illegal frame can be left so that, when appropriate,
another processor of a different type can use it.

The bus error exception handler can identify bus error exceptions due to instruction faults
by examining the TM field in the SSW of the access error stack frame. For user and
supervisor instruction faults, the TM field contains $2 and $6, respectively (see Figure
8-7). Since the processor allows all pending accesses to complete before reporting an
instruction fault, the stack frame for an instruction fault will not contain any pending write-
backs. The ATC bit of the SSW is used to distinguish between ATC faults and physical
bus errors, and the FA field contains the logical address of the instruction prefetch. For
ATC faults, the exception handler can execute a PTEST instruction (using the FA and TM
fields from the SSW) to determine the specific cause of the address translation failure.
After the handler corrects the cause of the fault, it executes an RTE instruction to restart
execution of the instruction that contained the faulted prefetch.

For an address error fault, the processor saves a format $2 exception stack frame on the
stack. This stack frame contains the PC pointing to the instruction that caused the address
error as well as the actual address referenced by the instruction. Note that bit O of the
referenced address is cleared on the stack frame. Address error faults must be repaired in
software.

For a fault due to a data ATC fault or bus error, pending write-backs are also saved on the
access error stack frame and must be completed by the exception handler. For the faulted
access, the fault address in the FA field combined with the transfer attribute information
from the SSW can be used to identify the cause of the fault. In identifying the fault, the
system programmer should be aware that the data memory unit considers the read portion
of read-modify-write transfers (for TAS, CAS, CAS2, and some translation table updates)
a write. This prevents both read and write accesses from occurring unless all pages
touched by the instruction or table update are write enabled.

All accesses other than instruction prefetches go through the data memory unit, and the
M68040 treats the instruction and data address spaces as a single merged address space
(the exception is the presence of separate transparent translation registers). The function
codes for accesses such as PC relative operand addressing and MOVES transfers to
function codes $2 and $6 (user and supervisor instruction spaces in the MC68000) are
converted to data references to go through the data memory unit, and appear in the TM
field of the access error stack frame as data references.

828 M68040 USER’S MANUAL MOTOROLA



After the fault is corrected, any pending write-backs on the stack frame must be
completed. The write-back status fields should be checked for possible write-backs, which
the exception handler should complete in the following order: write-back 1, write-back 2,
and write-back 3. For a push fault, the push must be completed first, followed by two
potential write-backs. Completion of write-back 1 should not generate another access
error since this write-back corresponds to the faulted access that has been corrected by
the handler. However, write-backs 2 and 3 can cause another bus error exception when
the handler attempts to write to memory and should be checked before attempting the
write to prevent nesting of exceptions if required by the operating system. The following
general bus fault examples indicate the resulting contents of the access error stack frame
fields:

1. All Read Access Errors (SSW-RW =$1, TT = $0, TM = $1 or $5)—The FA field
contains the logical address of the fault. The WB1S and WB2S fields are zero, and
only WB3S can indicate an additional write-back.

2. Cache Push Physical Bus Error (SSW-RW = $0, TT = $0, TM = $0)—The assertion
of TEA causes this error when a cache push bus cycle is in progress. The FA field
contains the physical address of the fault, and the WB1S field is ignored. All four
long words of the data for a push are contained in LW3—-LWO regardless of the size
of the transfer. The size of the transfer is indicated in the SIZE field of the SSW and
can be either a line or long word. If a line is indicated, all four long words need to be
pushed out. If a long word is indicated, all four long words can be written out, or bits
3 and 2 of the FA field can be evaluated to indicate which long words need to be
written out to memory ($3, $2, $1, and $0 indicate LW3, LW2, LW1, and LWO,
respectively). The WB2S and WB3S fields indicate up to two additional write-backs.
If WB2S is valid and if it indicates a MOVE16 instruction, no data should be written
out for that write-back slot.

3. Normal Write Physical Bus Error (SSW-RW = $0, TT = $0, TM = $1 or $5)—The
assertion of TEA causes this error when a normal write bus cycle is in progress. The
FA field contains the logical address of the fault, and the WB1S field indicates that it
is valid. The FA and WB1A are equivalent. The WB2S and WB3S fields indicate up
to two additional write-backs.

4. MOVE16 Write Physical Bus Error (SSW-RW = $0, TT = $1)—The assertion of TEA
causes this error during the write portion of a MOVE16 instruction. The FA field
contains the logical address of the fault, and the WB1S field indicates that it is valid.
All four long words are contained in LW3-LWO0 and must be written out before using
FA. Software must ensure that address bits 1 and 0 are both clear if regular move
instruction are to be used to write out to the destination.

5. Page Fault (SSW-RW = $0, WB1S-V = $0)—The FA field contains the physical
address of the faulted instruction, WB1S = 0, and WB2S indicates that it is valid.
Only WB3S can indicate an additional write-back. If WB2S indicates a MOVE16
instruction and if the MOVE16 instruction is used to read from a peripheral that
cannot tolerate double reads, then software must write the data contained in PD3—
PDO out to memory and increment the stacked PC to take it beyond the MOVE16
instruction that caused the page fault. Otherwise, if the MOVE16 instruction is
allowed to be restarted, another read from the peripheral would occur. If double
reads can be tolerated, simply do no write-backs and allow instruction to restart. This
is the only case in which the action to be taken depends on whether or not a double
read can be tolerated.

MOTOROLA M68040 USER’S MANUAL 829



Table 8-6 lists the possible combinations of write-backs and the proper way to handle
them. The SSW_RW column indicates a read or write cycle; the SSW_PUSH column
indicates whether the fault is for a push (TT = 00 and TM = 000). The WB1S, WB2S, and
WB3S columns list the respective field’s V-bit and indicate a MOVEL6 transfer type (TT =
01). The easy cleanup data written column lists the stack’s field to be written out to
memory if the user is not concerned with retouching peripherals. The hard cleanup action
column lists the action to be taken if the peripherals cannot be retouched by MOVE16 (if
different from easy cleanup). Note that if a push access error is reported and the size is
long word, all four long words, PDO-PD3, are still valid for the line. The exception handler
can either write PDO-PD3 using the fault address with bits 3—0 cleared or write the PD
corresponding to bits 3-2 of the address (e.g., address $0000000C corresponds to PD3).
Note that a MOVEL6 is never reported in the WB3S. The SIZE field of WB3S is never a
line.

After the bus error exception handler completes all pending operations and executes an
RTE to return, the RTE reads only the stack information from offset $0—$D in the access
error stack frame. For a pending trace exception, unimplemented floating-point instruction
exception, or floating-point post-instruction exception, the RTE adjusts the stack to match
the pending exception and immediately begins exception processing, without requiring the
exception to reoccur.

830 M68040 USER’S MANUAL MOTOROLA



Table 8-6. Access Error Stack Frame Combinations

WB1S WB2S [ WB3S Easy Cleanup Hard Cleanup
Main Case |SSW_RW |SSW_PUSH 1v | 1m1e | 2v | 2m16 3V Data Written Action
All Read 18 No o] X o] X 0 |None
Access Errors 18 No 0 X 0 X 1 WB3D (Note b)
All other read cases are not possible.
Cache Push 0 Yes 0 X 0 X 0 PD3-0
Physical Bus 0 Yes 0 X 0 X 1 PD3-0, WB3D
ErrorC 0 Yes 0| X 1 0 0 |PD3-0, WB2D (Note b)
0 Yes 0 X 1 0 1 PD3-0, WB2D, WB3D
0 Yes o x |1] 1 0 |PD3-0, ~wB2Dd
Normal Write 0 No 1 0 0 X 0 WB1D
Physical bus 0 No 1 0 0 X 1 WB1D, WB3D
Error 0 No 1 0 1 0 0 WB1D, WB2D (Note b)
0 No 1 0 1 0 1 WB1D, WB2D, WB3D
0 No 1 0 1 1 0 WB1D, ~wB2Dd
MOVE16 0 No 1 1 0 X 1 PD3-0, WB3D
Write Physical 0 No 1 1 0 X 0 PD3-0
Bus Error 0 No 1 1 1 0 0 PD3-0, WB2D (Note b)
0 No 1 1 1 0 1 PD3-0, WB2D, WB3D
0 No 1 1 1 1 0 PD3-0, ~ws2Dd
Write Page 0 No 0 X 1 0 0 WB2D
Fault 0 No 0 X 1 0 1 WB2D, WB3D Write PD3-0
0 No ol x [1] 1 o [~ws2pd and skip®.
Impossible 0 Yes 1 X X X X (Note f) _
Write Cases 0 Don't Care | X X X 1 1 (Note g)
NOTES:

a. The data memory unit stage is tied up until the bus controller passes the read back through the data memory
unit and to the execution stage in the integer unit. Therefore, no pending write is possible in WB1 or WB2.
WB3 could hold a pending write that was deferred due to operand read or was generated after the read.

b. If any kind of access error is reported and if a MOVE16 write is pending in the WB2 stage, then that MOVE16
read must hit in the cache so the MOVE16 can be safely restarted since it has not caused bus cycles that could
retouch peripherals.

c. A cache push physical bus error is normally considered a fatal error. For these cases, the FA field is a physical

address, not a logical address as in the other cases.

d. Indicates that the data should not be written even though the V-bit for it is set (WB2 corresponds to a MOVE16

write).

e. The exception handler must alter the stacked PC to point past the MOVE16 and predecrement and
postincrement address registers.

f. 1V must be 0 for push exceptions.

g. The execution stage does not post a write until the MOVEL16 is in the integer unit.

MOTOROLA

M68040 USER’S MANUAL

831




SECTION 9
FLOATING-POINT UNIT (MC68040 ONLY)

NOTE

This section does not apply to the MC68040V, MC68LC040,
MCG68EC040, or MCG68EC040V. Refer to Appendix A
MC68LC040 and Appendix B MC68ECO040 for details.

Floating-point math refers to numeric calculations with a variable decimal point location. It
is distinguished from integer math, which deals only with whole numbers and fixed
decimal point locations. Historically, general-purpose microprocessors have had to
depend on add-on coprocessors and accelerators such as the MC68881/MC68882 for fast
floating-point capabilities. The MC68040 features a built-in floating-point unit (FPU).
Consolidating this important function on chip speeds up the overall processing and
eliminates some interfacing overhead required for external accelerators. The MC68040
FPU operates in parallel with the integer unit (IU). The FPU does the numeric calculation
while the IU moves on to other tasks. Like the IU, the FPU has its own three-stage
pipeline overlapping operations such as integer to floating-point conversion, instruction
execution, and write-back. When used with the M68040FPSP, the MC68040 FPU is fully
compliant with IEEE floating-point standards.

9.1 FLOATING-POINT UNIT PIPELINE

Integer data from memory (memory to register) requires a pass through the FPU pipeline,
converting the data to the extended-precision format for the FPU to use. The result of this
conversion is presented to the conversion stage of the FPU pipeline where the desired
operation begins, starting a second pass through the pipeline. The IU is then released to
execute other instructions once the data has been transferred to the FPU.

Floating-point data to memory (register to memory) requires a complete pass through the
FPU pipeline, converting the data from the extended-precision format to an integer data
format. Register-to-memory instructions are normally handled entirely by the conversion
stage of the pipeline where the data move to memory operation completes. The IU is not
released until it has received the converted data (during the last conversion unit cycle).

Like the IU, the FPU has been optimized for the most frequently used instructions and
data types to provide the highest possible performance. To boost performance further, the
FMOVE instruction concurrently executes with arithmetic calculations and executes
completely transparent to the user. Instructions can execute nonsequentially as long as
there are no register dependencies. Refer to Section 10 Instruction Timings for details
on floating-point timings.

MOTOROLA M68040 USER’S MANUAL 91



The MC68040 FPU is compatible with the MC68881/MC68882. The MC68040 performs
basic math functions such as floating-point addition and multiplication directly on
dedicated circuitry and performs transcendental functions such as sine and cosine
calculations by means of software routines. Motorola offers the M68040FPSP, a software
package providing these routines. The software functions are compatible with the
MC68881/MC68882, refer to Appendix E Floating-Point Emulation (M68040FPSP).

9.2 FLOATING-POINT USER PROGRAMMING MODEL

Figure 9-1 illustrates the floating-point portion of the user programming model. The
following paragraphs describe the FPU portion of the user programming model for the
MC68040. The model, which is identical to the programming model for the
MC68881/MC68882 floating-point coprocessors, consists of the following registers:

» Eight 80-Bit Floating-Point Data Registers (FP7—FP0)

» 16-Bit Floating-Point Control Register (FPCR)

» 32-Bit Floating-Point Status Register (FPSR)

« 32-Bit Floating-Point Instruction Address Register (FPIAR)

79 63 0 _
FPO
FP1
FP2
FP3 | FLOATING-POINT
P4 DATA REGISTERS
FP5
FP6
FP7
31 15 7 0
|r ______ 0_ _____ EXCEPTION MODE FPCR E'E)?\‘AT%E'POWT
______________ ENABLE CONTROL | REGISTER
31 23 15 7 0
CONDITION QUOTIENT EXCEPTION ACCRUED PSR §§2¢5‘SNG'P°'NT
CODE STATUS EXCEPTION | RecIsTER
31 0 __ FLOATING-POINT
| INSTRUCTION
FPIAR |~ ADDRESS

REGISTER

Figure 9-1. Floating-Point User Programming Model

9.2.1 Floating-Point Data Registers (FP7—FPQ)

The floating-point data registers are analogous to the integer data registers of the M68000
family. The floating-point data registers always contain extended-precision numbers. All
external operands, regardless of the data format, are converted to extended-precision
values before being used in any calculation or stored in a floating-point data register. A

9-2 M68040 USER’S MANUAL MOTOROLA



reset or a restore operation of the null state sets FP7—FPO to positive, nonsignaling not-a-
numbers (NANS).

9.2.2 Floating-Point Control Register (FPCR)

The FPCR (see Figure 9-2) contains an exception enable (ENABLE) byte that enables or
disables traps for each class of floating-point exceptions and a mode control (MODE) byte
that sets the user-selectable modes. The user can read or write to the FPCR. Motorola
reserves bits 31-16 for future definition; these bits are always read as zero and are
ignored during write operations. The reset function or a restore operation of the null state
clears the FPCR. When cleared, this register provides the IEEE 754 standard defaults.

9.2.2.1 EXCEPTION ENABLE BYTE. Each bit of the ENABLE byte (see Figure 9-2)
corresponds to a floating-point exception class. The user can separately enable traps for
each class of floating-point exceptions.

9.2.2.2 MODE CONTROL BYTE. The MODE byte (see Figure 9-2) controls the user-
selectable rounding modes and precisions. Zeros in this byte select the IEEE 754
standard defaults. The rounding mode (RND) specifies how inexact results are rounded,
and the rounding precision (PREC) selects the boundary for rounding the mantissa.

The processor supports four rounding modes specified by the IEEE 754 standard. These
modes are: round to nearest (RN), round toward zero (RZ), round toward plus infinity
(RP), and round toward minus infinity (RM). The RP and RM modes are directed rounding
modes that are useful in interval arithmetic. Rounding is accomplished through the
intermediate result. Single-precision results are rounded to a 24-bit boundary; double-
precision results are rounded to a 53-bit boundary; and extended-precision results are
rounded to a 64-bit boundary. Table 9-1 lists the encodings for the FPCR.

Table 9-1. Floating-Point Control Register Encodings

Rounding Mode Encoding Rounding Precision
(RND Field) (PREC Field)
To Nearest (RN) 0 0 Extend (X)
Toward Zero (RZ) 0 1 Single (S)
Toward Minus Infinity (RM) 1 0 Double (D)
Toward Plus Infinity (RP) 1 1 Undefined

MOTOROLA M68040 USER’S MANUAL 9-3



EXCEPTION ENABLE MODE CONTROL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BSUN | SNAN |OPERR| OVFL | UNFL | DZ | INEX2| INEX1 PREC RND 0

ROUNDING MODE

ROUNDING PRECISION
INEXACT DECIMAL INPUT
INEXACT OPERATION

DIVIDE BY ZERO

UNDERFLOW

OVERFLOW

OPERAND ERROR

SIGNALING NOT-A-NUMBER
BRANCH/SET ON UNORDERED

Figure 9-2. Floating-Point Control Register

9.2.3 Floating-Point Status Register (FPSR)

The FPSR (see Figure 9-1) contains a floating-point condition code (FPCC) byte, a
guotient byte, a floating-point exception status byte (EXC), and a floating-point accrued
exception byte (AEXC). The user can read or write to all bits in the FPSR. Execution of
most floating-point instructions modifies this register. The reset function or a restore
operation of the null state clears the FPSR. Floating-point conditional operations are not
guaranteed if the FPSR is written directly, because the FPSR is only valid as a result of a
floating-point instruction.

9.2.3.1 FLOATING-POINT CONDITION CODE BYTE. The FPCC byte (see Figure 9-3)
contains four condition code bits that are set at the end of all arithmetic instructions
involving the floating-point data registers. These bits are sign of mantissa (N), zero (2),
infinity (1), and NAN. The FMOVE FPm,<ea>, FMOVEM FPm, and FMOVE FPCR
instructions do not affect the FPCC.

31 30 29 28 27 26 25 24

0 N z | NAN

|\ NOT-A-NUMBER OR UNORDERED
INFINITY

ZERO

NEGATIVE

Figure 9-3. FPSR Condition Code Byte

To aid programmers of floating-point subroutine libraries, the MC68040 implements the
four FPCC bits in hardware instead of only implementing the four IEEE conditions. An
instruction derives the IEEE conditions when needed. For example, the programmers of a
complex arithmetic multiply subroutine usually prefer to handle special data types such as

9-4 M68040 USER’S MANUAL MOTOROLA



zeros, infinities, or NANs separately from normal data types. The floating-point condition
codes allow users to efficiently detect and handle these special values.

9.2.3.2 QUOTIENT BYTE. The quotient byte (see Figure 9-4) provides compatibility with
the MC68881/MC68882 FPU. This byte contains the seven least significant bits of the
unsigned quotient as well as the sign of the entire quotient.

The quotient bits can be used in argument reduction for transcendentals and other
functions. For example, seven bits are more than enough to determine the quadrant of a
circle in which an operand resides. The quotient field (bits 22—16) remains set until the
user clears it.

23 22 21 20 19 18 17 16

S QUOTIENT

SEVEN LEAST SIGNIFICANT
BITS OF QUOTIENT

SIGN OF QUOTIENT

Figure 9-4. FPSR Quotient Byte

9.2.3.3 EXCEPTION STATUS BYTE. The EXC byte (see Figure 9-5) contains a bit for
each floating-point exception that can occur during the most recent arithmetic instruction
or move operation. The start of most operations clears this byte; however, operations that
cannot generate floating-point exceptions do not clear this byte. An exception handler can
use this byte to determine which floating-point exception(s) caused a trap.

15 14 13 12 11 10 9 8

BSUN SNAN OPERR OVFL UNFL Dz INEX2 INEX1
BRANCH/SET ON
INEXACT DECIMAL
UNORDERED INPUT
SIGNALING NOT-A-NUMBER ——————— — INEXACT OPERATION
OPERAND ERROR DIVIDE BY ZERO
OVERFLOW UNDERFLOW

Figure 9-5. FPSR Exception Status Byte

9.2.3.4 ACCRUED EXCEPTION (AEXC) BYTE. The AEXC byte contains five exception
bits (see Figure 9-6) that the IEEE 754 standard requires for exception disabled
operations. These exceptions are logical combinations of the bits in the EXC byte. The
AEXC byte contains the history of all floating-point exceptions that have occurred since
the user last cleared the AEXC byte. In normal operations, only the user clears this byte
by writing to the FPSR; however, a reset or a restore operation of the null state can also
clear the AEXC byte.

MOTOROLA M68040 USER’S MANUAL 9-5



Many users elect to disable traps for all or part of the floating-point exception classes. The
AEXC byte makes it unnecessary to poll the EXC byte after each floating-point instruction.
At the end of most operations (FMOVEM and FMOVE excluded), the bits in the EXC byte
are logically combined to form an AEXC value that is logically ORed into the existing
AEXC byte. This operation creates sticky floating-point exception bits in the AEXC byte
that the user needs to poll only once (i.e., at the end of a series of floating-point
operations). A sticky bit is one that remains set until the user clears it.

0P OVFL UNFL Dz INEX

INEXACT

DIVIDE BY ZERO

UNDERFLOW

OVERFLOW

INVALID OPERATION

Figure 9-6. FPSR Accrued Exception Byte

Setting or clearing the AEXC bits neither causes nor prevents an exception. The following
equations show the comparative relationship between the EXC byte and AEXC byte.
Comparing the current value in the AEXC bit with a combination of bits in the EXC byte
derives a new value in the corresponding AEXC bit. These equations apply to setting the
AEXC bits at the end of each operation affecting the AEXC byte:

New =OldAEXC v  ExcBits
AEXC Bit Bit
IoP = IOP V  (SNANV OPERR)
OVFL =OVFL V  (OVFL)
UNFL =UNFL  V  (UNFL AINEX2)
DZ =Dz V (D2
INEX = INEX V  (INEX1 V INEX2V OVFL)

9.2.4 Floating-Point Instruction Address Register (FPIAR)

For the subset of the floating-point instructions that generate exception traps, the FPU
loads the 32-bit FPIAR with the logical address of the instruction before executing the
instruction. Because the IU can execute instructions while the FPU executes floating-point
instructions and, the FPU can concurrently execute two floating-point instructions the PC
value stacked by the MC68040 in response to a floating-point exception handler cannot
point to the offending instruction. Therefore, a floating-point exception handler uses the
address in the FPIAR to locate a floating-point instruction that has caused an exception.
Since the FMOVE to/from the FPCR, FPSR, or FPIAR and FMOVEM instructions cannot
generate floating-point exceptions, these instructions do not modify the FPIAR. However,

9-6 M68040 USER’S MANUAL MOTOROLA



they can be used to read the FPIAR in an exception handler without changing the
previous value. A reset or a restore operation of the null state clears the FPIAR.

9.3 FLOATING-POINT DATA FORMATS AND DATA TYPES

The M68000 floating-point model (MC68881, MC68882, MC68040) supports the following
data formats: single precision, double precision, extended precision, and packed decimal.
The M68000 floating-point model supports the following data types: normalized, zeros,
infinities, denormalized numbers, and NANs. The MC68040 supports part of the M68000
floating-point model in hardware. Table 9-2 lists the data formats and data types
supported by the MC68040. Tables 9-3 through 9-6 summarize the floating-point data
formats and data types details. For further information on the data formats and data types,

refer to the M68000UM/AD, M68000 Family Programmer’s Reference Manual.

Table 9-2. MC68040 FPU Data Formats and Data Types

Data Formats

Single- Double- Extended- Packed- Long-
Number Precision | Precision Precision Decimal Byte Word Word
Types Real Real Real Real Integer Integer Integer
Normalized * * * T * * *
Zero * * * + * * *
Infinity * * * t
NAN * * * t
Denormalized T T t T
Unnormalized T t

*Data Format/Type Supported by On-Chip MC68040 FPU Hardware
tData Format/Type Supported by Software (MC68040FPSP)

MOTOROLA

M68040 USER’S MANUAL

9-7



Table 9-3. Single-Precision Real Format Summary

Data Format

3130 23 22 0
Ls] e | f |
Field Size In Bits
Sign (s) 1
Biased Exponent (e) 8
Fraction (f) 23
Total 32
Interpretation of Sign
Positive Fraction =0
Negative Fraction =1
Normalized Numbers
Bias of Biased Exponent +127 ($7F)

Range of Biased Exponent

0 < e < 255 ($FF)

Range of Fraction

Zero or Nonzero

Fraction

1f

Relation to Representation of Real Numbers

1)S x 26=127 » 15

Denormalized Numbers

Biased Exponent Format Minimum 0 ($00)
Bias of Biased Exponent +126 ($7E)
Range of Fraction Nonzero
Fraction 0.f

Relation to Representation of Real Numbers

1)S x27126 x o f

Signed Zeros
Biased Exponent Format Minimum 0 ($00)
Fraction 0.f=0.0
Signed Infinities
Biased Exponent Format Maximum 255 ($FF)
Fraction 0.f=0.0
NANs
Sign Don't Care
Biased Exponent Format Maximum 255 ($FF)
Fraction Nonzero
Representation of Fraction
Nonsignaling LIXXXX... XXXX
Signaling OXXXX. .. XXXX
Nonzero Bit Pattern Created by User XXXXX. . . XXXX
Fraction When Created by FPCP 11111...1111
Approximate Ranges
Maximum Positive Normalized 3.4x1038
Minimum Positive Normalized 1.2 x 1038
Minimum Positive Denormalized 1.4x 10749

9-8 M68040 USER’S MANUAL

MOTOROLA



Table 9-4. Double-Precision Real Format Summary

Data Format

63 62 52 51 0
[s| e | f |
Field Size (in Bits)
Sign (s) 1
Biased Exponent (e) 11
Fraction (f) 52
Total 64

Interpretation of Sign

Positive Fraction

Negative Fraction

1
= l|O

Normalized Numbers

Bias of Biased Exponent

+1023 ($3FF)

Range of Biased Exponent

0 < e <2047 ($7FF)

Range of Fraction

Zero or Nonzero

Fraction

1f

Relation to Representation of Real Numbers

(-1)S x 26-1023 » 1 f

Denormalized Numbers

Biased Exponent Format Minimum 0 ($000)
Bias of Biased Exponent +1022 ($3FE)
Range of Fraction Nonzero
Fraction 0.f

Relation to Representation of Real Numbers

1)S x2—1022 » o f

Signed Zeros

Biased Exponent Format Minimum

0 ($00)

Fraction (Mantissa/Significand)

0.f=0.0

Signed Infinities

Biased Exponent Format Maximum

2047 ($7FF)

Fraction 0.f=0.0
NANs
Sign Oorl
Biased Exponent Format Maximum 255 ($7FF)
Fraction Nonzero
Representation of Fraction
Nonsignaling LIXXXX... XXXX
Signaling OXXXX. .. XXXX
Nonzero Bit Pattern Created by User XXXXX. . . XXXX
Fraction When Created by FPCP 11111...1111
Approximate Ranges
Maximum Positive Normalized 1.8 x 10308
Minimum Positive Normalized 2.2 x 10-308
Minimum Positive Denormalized 4.9 x 107324

MOTOROLA

M68040 USER’S MANUAL

9-9



Table 9-5. Extended-Precision Real Format Summary

Data Format

9594 8079 646362 0
[s| e [ u [j] f |
Field Size (in Bits)
Sign (s) 1
Biased Exponent (e) 15
Zero, Reserved (u) 16
Explicit Integer Bit (j) 1
Mantissa (f) 63
Total 96
Interpretation of Unused Bits
Input Don’t Care
Output All Zeros
Interpretation of Sign
Positive Mantissa s=0
Negative Mantissa =1

Normalized Numbers

Bias of Biased Exponent

+16383 ($3FFF)

Range of Biased Exponent

0 < =e < 32767 ($7FFF)

Explicit Integer Bit 1
Range of Mantissa Zero or Nonzero
Mantissa (Explicit Integer Bit and Fraction ) 1f

Relation to Representation of Real Numbers

(~1)S x 26-16383 4 1 ¢

Denormalized Numbers

Biased Exponent Format Minimum 0 ($0000)
Bias of Biased Exponent +16383 ($3FFF)
Explicit Integer Bit 0

Range of Mantissa Nonzero
Mantissa (Explicit Integer Bit and Fraction ) 0.f

Relation to Representation of Real Numbers

(_1)5 x2—16383 x O.f

Signed Zeros
Biased Exponent Format Minimum 0 ($0000)
Mantissa (Explicit Integer Bit and Fraction ) 0.0

Signed Infinities

Biased Exponent Format Maximum

32767 ($7FFF)

Explicit Integer Bit

Don't Care

Mantissa (Explicit Integer Bit and Fraction )

x.000...0000

9-10 M68040 USER’S MANUAL

MOTOROLA



Table 9-5. Extended-Precision Real
Format Summary (Continued)

NANs
Sign Don't Care
Explicit Integer Bit Don't Care
Biased Exponent Format Maximum 32767 ($7FFF)
Mantissa Nonzero
Representation of Mantissa
Nonsignaling X IXXXX. .. XXXX
Signaling X.0XXXX. .. XXXX
Nonzero Bit Pattern Created by User XXXXXX . . o XXXX
Mantissa When Created by FPCP 1.11111...1111
Approximate Ranges
Maximum Positive Normalized 1.2 x 104932
Minimum Positive Normalized 1.7 x 1074932
Minimum Positive Denormalized 3.7 x 104951

Table 9-6. Packed Decimal Real Format Summary

DataType | SM | SE Y Y 3-Digit 1-Digit 16-Digit Fraction
Exponent Integer
*Infinity 0/1 1 1 1 $FFF SXXXX $00...00
*NAN 0/1 1 1 1 $FFF SXXXX Nonzero
*SNAN 0/1 1 1 1 $FFF SXXXX Nonzero
+Zero 0 0/1 X X $000-$999 $XXX0 $00...00
—Zero 1 0/1 X X $000-$999 $XXXO0 $00...00
+In-Range 0 0/1 X X $000-$999 SXXX0-$XXX9 $00...01-$99...99
—In-Range 1 0/1 X X $000-$999 SXXXO0-$XXX9 | $00...01-$99...99

9.4 COMPUTATIONAL ACCURACY

Whenever an attempt is made to represent a real number in a binary format of finite
precision, there is a possibility that the number can not be represented exactly. This is
commonly referred to as a round-off error. Furthermore, when two inexact numbers are
used in a calculation, the error present in each number is reflected, and possibly
aggravated, in the result. All FPU calculations use an intermediate result. When the
MC68040 performs an operation, the calculation is carried out using extended-precision
inputs, and the intermediate result is calculated as if to produce infinite precision. After the
calculation is complete, the intermediate result is rounded to the selected precision and
stored in the destination.

The FPCR encodings provide emulation for devices that only support single and double
precision. The execution speed of all instructions is the same whether using single- or
double-precision rounding. When using these two forced rounding precisions, the

MOTOROLA M68040 USER’S MANUAL 911



MC68040 produces the same results as any other device that conforms to the IEEE 754
standard but does not support extended precision. The results are the same when
performing the same operation in extended precision and storing the results in single- or
double-precision format.

The FPU performs all floating-point internal operations in extended precision. It supports
mixed-mode arithmetic by converting single- and double-precision operands to extended-
precision values before performing the specified operation. The FPU converts all memory
data formats to extended-precision before using it in a floating-point operation or loading it
in a floating-point data register. The FPU also converts extended-precision data formats in
a floating-point data register to any data format and either stores it in a memory
destination or in an integer data register.

If the external operand is a denormalized number, the number is normalized before an
operation is performed. However, an external denormalized number moved into a floating-
point data register is stored as a denormalized number.

If an external operand is an unnormalized number, the number is normalized before it is
used in an arithmetic operation. If the external operand is an unnormalized zero (i.e., with
a mantissa of all zeros), the number is converted to a normalized zero before the specified
operation is performed. The regular use of unnormalized inputs not only defeats the
purpose of the IEEE 754 standard, but also can produce gross inaccuracies in the results.

9.4.1 Intermediate Result

Figure 9-7 illustrates the intermediate result format. The intermediate result's exponent for
some dyadic operations (i.e., multiply and divide) can easily overflow or underflow the 15-
bit exponent of the destination floating-point register. To simplify the overflow and
underflow detection, intermediate results in the FPU maintain a 16-bit, twos-complement
integer exponent. Detection of an overflow or underflow intermediate result always
converts the 16-bit exponent into a 15-bit biased exponent before being stored in a
floating-point data register. The FPU internally maintains the 67-bit mantissa for rounding
purposes. The mantissa is always rounded to 64 bits (or less, depending on the selected
rounding precision) before it is stored in a floating-point data register.

63-BIT FRACTION o
11
LSB OF FRACTION J
INTEGER BIT GUARD BIT
OVERFLOW BIT ROUND BIT

STICKY BIT

16-BIT EXPONENT

Figure 9-7. Intermediate Result Format

If the destination is a floating-point data register, the result is in the extended-precision
format and is rounded to the precision specified by the FPSR PREC bits before being
stored. All mantissa bits beyond the selected precision are zero. If the single- or double-

9-12 M68040 USER’S MANUAL MOTOROLA



precision mode is selected, the exponent value is in the correct range even if it is stored in
extended-precision format. If the destination is a memory location, the FPSR PREC bits
are ignored. In this case, a number in the extended-precision format is taken from the
source floating-point data register, rounded to the destination format precision, and then
written to memory.

Depending on the selected rounding mode or destination data format in effect, the location
of the least significant bit of the mantissa and the locations of the guard, round, and sticky
bits in the 67-bit intermediate result mantissa varies. The guard and round bits are always
calculated exactly. The sticky bit is used to create the illusion of an infinitely wide
intermediate result. As the arrow illustrates in Figure 9-7, the sticky bit is the logical OR of
all the bits in the infinitely precise result to the right of the round bit. During the calculation
stage of an arithmetic operation, any non-zero bits generated that are to the right of the
round bit set the sticky bit to one. Because of the sticky bit, the rounded intermediate
result for all required IEEE arithmetic operations in the RN mode is in error by no more
than one-half unit in the last place.

9.4.2 Rounding The Result

Range control is the process of rounding the mantissa of the intermediate result to the
specified precision and checking the 16-bit intermediate exponent to ensure that it is
within the representable range of the selected rounding-precision format. Range control
ensures correct emulation of a device that only supports single- or double-precision
arithmetic. If the intermediate result’'s exponent exceeds the range of the selected
precision, the exponent value appropriate for an underflow or overflow is stored as the
result in the 16-bit extended-precision format exponent. For example, if the data format
and rounding mode is single-precision RM and the result of an arithmetic operation
overflows the magnitude of the single-precision format, the largest normalized single-
precision value is stored as an extended-precision number in the destination floating-point
data register (i.e., an unbiased 15-bit exponent of $00FF and a mantissa of
$FFFFFF0000000000). If an infinity is the appropriate result for an underflow or overflow,
the infinity value for the destination data format is stored as the result (i.e., an exponent
with the maximum value and a mantissa of zero).

Figure 9-8 illustrates the algorithm that is used to round an intermediate result to the
selected rounding precision and destination data format. If the destination is a floating-
point data register, either the selected rounding precision specified by the FPCR PREC
bits or by the instruction itself determines the rounding boundary. For example, FSADD
and FDADD specify single- and double-precision rounding regardless of the precision
specified in the FPCR PREC bits. If the destination is external memory or an integer data
register, the destination data format determines the rounding boundary. If the rounded
result of an operation is not exact, then the INEX2 bit is set in the FPSR EXC byte.

MOTOROLA M68040 USER’S MANUAL 9-13



ENTRY

GUARD, ROUND,
AND STICKY BITS =0

INEX2 01

SELECT ROUNDING MODE

S
RN RM RP RZ
C (@)
POS NEG POS NEG
GUARD AND LSB =1,
ROUND AND STICKY =0
OR INTERMEDIATE | INTERMEDIATE
GUARD =1 RESULT RESULT
ROUND OR STICKY =1
EXACT RESULT
ADD1TO ADD1TO GUARD, ROUND,
LSB LSB AND STICKY ARE
CHOPPED

OVERFLOW =1

SHIFT MANTISSA
RIGHT 1 BIT,
ADD 1 TO EXPONENT

GUARD [0
ROUND [0
STICKY [0

EXIT { EXIT }

Figure 9-8. Rounding Algorithm Flowchart

The three additional bits beyond the extended-precision format, the difference between
the intermediate result’'s 67-bit mantissa and the stored result's 64-bit mantissa, allow the
FPU to perform all calculations as though it were performing calculations using a float
engine with infinite bit precision. The result is always correct for the specified destination’s
data format before performing rounding (unless an overflow or underflow error occurs).
The specified rounding operation then produces a number that is as close as possible to
the infinitely precise intermediate value and still representable in the selected precision.

9-14 M68040 USER’S MANUAL MOTOROLA



The following tie-case example illustrates how the 67-bit mantissa allows the FPU to meet
the error bound of the IEEE specification:

Result Integer 63-Bit Fraction Guard Round Sticky
Intermediate X XXX...X00 1 0 0
Rounded-to-Nearest X XXX...X00 0 0 0

The least significant bit of the rounded result does not increment even though the guard
bit is set in the intermediate result. The IEEE 754 standard specifies that tie cases should
be handled in this manner. If the destination data format is extended and there is a
difference between the infinitely precise intermediate result and the round-to-nearest
result, the relative difference is 2-64 (the value of the guard bit). This error is equal to one-
half of the least significant bit's value and is the worst case error that can be introduced
when using the RN mode. Thus, the term one-half unit in the last place correctly identifies
the error bound for this operation. This error specification is the relative error present in
the result; the absolute error bound is equal to 2exponent x 2-64 The following example
illustrates the error bound for the other rounding modes:

Result Integer 63-Bit Fraction Guard Round Sticky
Intermediate X XXX...X00 1 1 1
Rounded-to-Nearest X XXX...X00 0 0 0

The difference between the infinitely precise result and the rounded result is 2—64 + 2-65 +
2-66 which is slightly less than 2-63 (the value of the least significant bit). Thus, the error
bound for this operation is not more than one unit in the last place. For all arithmetic
operations, the FPU meets these error bounds, providing accurate and repeatable results.

9.5 POSTPROCESSING OPERATION

Most operations end with a postprocessing step. The FPU provides two steps in
postprocessing. First, the condition code bits in the FPSR are set or cleared at the end of
each arithmetic operation or move operation to a single floating-point data register. The
condition code bits are consistently set based on the result of the operation. Second, the
FPU supports 32 conditional tests that allow floating-point conditional instructions to test
floating-point conditions in exactly the same way as the integer conditional instructions
test the integer condition codes. The combination of consistently set condition code bits
and the simple programming of conditional instructions gives the MC68040 a very flexible,
high-performance method of altering program flow based on floating-point results. While
reading the summary for each instruction, it should be assumed that an instruction
performs postprocessing unless the summary specifically states that the instruction does
not do so. The following paragraphs describe postprocessing in detalil.

MOTOROLA M68040 USER’S MANUAL 9-15



9.5.1 Underflow, Round, Overflow

During the calculation of an arithmetic result, the FPU arithmetic logic unit (ALU) has more
precision and range than the 80-bit extended-precision format. However, the final result of
these operations is an extended-precision floating-point value. In some cases, an
intermediate result becomes either smaller or larger than can be represented in extended
precision. Also, the operation can generate a larger exponent or more bits of precision
than can be represented in the chosen rounding precision. For these reasons, every
arithmetic instruction ends by rounding the result and checking for overflow and underflow.

At the completion of an arithmetic operation, the intermediate result is checked to see if it
is too small to be represented as a normalized number in the selected precision. If so, the
UNFL-bit is set in the FPSR EXC byte. The MC68040 then takes a nonmaskable
underflow exception and executes the M68040FPSP underflow exception handler,
denormalizing the result. Denormalizing a number causes a loss of accuracy, but a zero is
not returned unless absolutely necessary. If a number has grossly underflowed, the
M68040FPSP returns a zero or the smallest denormalized number with the correct sign,
depending on the rounding mode in effect.

If no underflow occurs, the intermediate result is rounded according to the user-selected
rounding precision and rounding mode. After rounding, the INEX2-bit of the FPSR EXC
byte is set accordingly. Finally, the magnitude of the result is checked to see if it is too
large to be represented in the current rounding precision. If so, the OVFL-bit of the FPSR
EXC byte is set. The M68040FPSP returns a correctly signed infinity or a correctly signed
largest normalized number, depending on the rounding mode in effect.

9.5.2 Conditional Testing

Unlike the integer arithmetic condition codes, an instruction either always sets the floating-
point condition codes in the same way or it does not change them at all. Therefore, the
instruction descriptions do not include floating-point condition code settings. The following
paragraphs describe how floating-point condition codes are set for all instructions that
modify condition codes. Refer to 9.2.3.1 Floating-Point Condition Code Byte for a
description of the FPCC byte.

The condition code bits differ slightly from the integer condition codes. Unlike the
operation-type-dependent integer condition codes, examining the result at the end of the
operation sets or clears the floating-point condition codes accordingly. The M68000 family
integer condition codes bits N and Z have this characteristic, but the V and C bits are set
differently for different instructions. The data type of the operation’s result determines how
the four condition code bits are set. Table 9-7 lists the condition code bit setting for each
data type. The MC68040 generates only eight of the 16 possible combinations. Loading
the FPCC with one of the other combinations and executing a conditional instruction can
produce an unexpected branch condition.

9-16 M68040 USER’S MANUAL MOTOROLA



Table 9-7. Floating-Point Condition Code Encodings

pd
>
2

Data Type

+ Normalized or Denormalized

— Normalized or Denormalized
+0
-0

+ Infinity

— Infinity
+ NAN
—NAN

Rrlo|lr|lolr]|Oolrr]|lo]|Z
o|lo|lo|lo|r|r|lo|lo]|N
o|lo|r|r|o|lo|lo]lo]|—
Rrlr|lo|lo|lolo|lo]lo

The inclusion of the NAN data type in the IEEE floating-point number system requires
each conditional test to include the NAN condition code bit in its Boolean equation.
Because a comparison of a NAN with any other data type is unordered (i.e., it is
impossible to determine if a NAN is bigger or smaller than an in-range number), the
compare instruction sets the NAN condition code bit when an unordered compare is
attempted. All arithmetic instructions also set the FPCC NAN bit if the result of an
operation is a NAN. The conditional instructions interpret the NAN condition code bit equal
to one as the unordered condition.

The IEEE 754 standard defines four conditions: equal to (EQ), greater than (GT), less
than (LT), and unordered (UN). In addition, the standard only requires the generation of
the condition codes as a result of a floating-point compare operation. The FPU tests for
these conditions and 28 others at the end of any operation affecting the condition codes.
For purposes of the floating-point conditional branch, set byte on condition, decrement
and branch on condition, and trap on condition instructions, the MC68040 logically
combines the four FPCC bits to form 32 conditional tests. The 32 conditional tests are
separated into two groups—16 that cause an exception if an unordered condition is
present when the conditional test is attempted, IEEE nonaware tests, and 16 that do not
cause an exception, IEEE aware tests. The set of IEEE nonaware tests is best used:

* when porting a program from a system that does not support the IEEE 754 standard
to a conforming system or

» when generating high-level language code that does not support IEEE floating-point
concepts (i.e., the unordered condition).

An unordered condition occurs when one or both of the operands in a floating-point
compare operation is a NAN. The inclusion of the unordered condition in floating-point
branches destroys the familiar trichotomy relationship (greater than, equal, less than) that
exists for integers. For example, the opposite of floating-point branch greater than (FBGT)
is not floating-point branch less than or equal (FBLE). Rather, the opposite condition is
floating-point branch not greater than (FBNGT). If the result of the previous instruction was
unordered, FBNGT is true; whereas, both FBGT and FBLE would be false since
unordered fails both of these tests (and sets BSUN). Compiler programmers should be

MOTOROLA M68040 USER’S MANUAL 9-17



particularly careful of the lack of trichotomy in the floating-point branches since it is
common for compilers to invert the sense of conditions.

When using the IEEE nonaware tests, the user receives a BSUN exception whenever a
branch is attempted and the NAN condition code bit is set, unless the branch is an FBEQ
or an FBNE. If the BSUN exception is enabled in the FPCR, the exception causes another
exception. Therefore, the IEEE nonaware program is interrupted if an unexpected
condition occurs. Compilers and programmers who are knowledgeable of the IEEE 754
standard should use the IEEE aware tests in programs that contain ordered and
unordered conditions. Since the ordered or unordered attribute is explicitly included in the
conditional test, the BSUN bit is not set in the FPSR EXC byte when the unordered
condition occurs. Table 9-8 summarizes the conditional mnemonics, definitions,
equations, predicates, and whether the BSUN bit is set in the FPSR EXC byte for the 32
floating-point conditional tests. The equation column lists the combination of FPCC bits for
each test in the form of an equation.

9-18 M68040 USER’S MANUAL MOTOROLA



Table 9-8. Floating-Point Conditional Tests

Mnemonic Definition Equation Predicate BSUN Bit Set
IEEE Nonaware Tests
EQ Equal z 000001 No
NE Not Equal Z 001110 No
GT Greater Than NANV ZV N 010010 Yes
NGT Not Greater Than NANV ZV N 011101 Yes
GE Greater Than or Equal zV (m) 010011 Yes
NGE Not Greater Than or Equal NANV (N A 2) 011100 Yes
LT Less Than N A (NANV Z) 010100 Yes
NLT Not Less Than NANV (ZV N) 011011 Yes
LE Less Than or Equal ZV(NA M) 010101 Yes
NLE Not Less Than or Equal NAN V (W) 011010 Yes
GL Greater or Less Than NANV Z 010110 Yes
NGL Not Greater or Less Than NANYV Z 011001 Yes
GLE Greater, Less, or Equal NAN 010111 Yes
NGLE Not Greater, Less, or Equal NAN 011000 Yes
IEEE Aware Tests
EQ Equal z 000001 No
NE Not Equal z 001110 No
OGT Ordered Greater Than NANV ZV N 000010 No
ULE Unordered or Less or Equal NANV ZV N 001101 No
OGE Ordered Greater Than or Equal | ZV (m) 000011 No
ULT Unordered or Less Than NANV (N A 2) 001100 No
OLT Ordered Less Than N A(NAN V Z) 000100 No
UGE Unordered or Greater or Equal NANV ZV N 001011 No
OLE Ordered Less Than or Equal ZV (N ANAN) 000101 No
UGT Unordered or Greater Than NAN V (N—VZ) 001010 No
OGL Ordered Greater or Less Than NANV Z 000110 No
UEQ Unordered or Equal NANYV Z 001001 No
OR Ordered NAN 000111 No
UN Unordered NAN 001000 No
Miscellaneous Tests
False False 000000 No
True True 001111 No
SF Signaling False False 010000 Yes
ST Signaling True True 011111 Yes
SEQ Signaling Equal z 010001 Yes
SNE Signaling Not Equal z 011110 Yes

NOTE: All condition codes with an overbar indicate cleared bits; all other bits are set.

MOTOROLA

M68040 USER’S MANUAL

9-19



9.6 FLOATING-POINT EXCEPTIONS

There are two classes of floating-point-related exceptions: nonarithmetic floating-point
exceptions and arithmetic floating-point exceptions. The latter relates to the handling of
arithmetic exceptions caused by floating-point activity, and the former includes
unimplemented floating-point instructions and unsupported data types not related to the
handling of arithmetic exceptions. Format error and FTRAPcc exceptions may seem to be
floating-point related, but are considered IU exceptions (see Section 8 Exception
Processing). The following sections detail floating-point exceptions and how the
MC68040 and M68040FPSP handle them. Table 9-9 lists the vector numbers related to
floating-point exceptions.

Table 9-9. Floating-Point Exception Vectors

Vector Vector Offset Assignment
Number (Hex)

11 02C Floating-Point Unimplemented Instruction

(also used for F-line instruction)

48 0Co Floating-Point Branch or Set on Unordered Condition

49 0c4 Floating-Point Inexact Result

50 0C8 Floating-Point Divide by Zero

51 ocC Floating-Point Underflow

52 0DO Floating-Point Operand Error

53 oD4 Floating-Point Overflow

54 0D8 Floating-Point SNAN

55 obC Floating-Point Unimplemented Data Type

The following paragraphs detail nonarithmetic floating-point exceptions.

9.6.1 Unimplemented Floating-Point Instructions

F-line instructions are instruction word patterns with bits 15-12 that have an $F encoding,
causing F-line exceptions. These instructions are termed unimplemented floating-point
instructions and cause an unimplemented floating-point exception. The MC68040
recognizes some F-line instructions, such as the FMUL and CPUSH, which do not cause
F-line exceptions. There are some F-line instructions that the MC68040 recognizes as
valid MC68881/MC68882 floating-point instruction patterns, but as floating-point
instructions that the processor cannot complete in hardware. Table 9-10 lists the floating-
point instructions that are unimplemented and therefore cause an unimplemented
instruction exception.

If the processor encounters an F-line instruction and the instruction patterns do not match
either of the above two cases, the processor takes an F-line illegal exception. F-line illegal
exceptions are discussed further in Section 8 Exception Processing. The processor
generates an exception with vector number 11 and pushes a four-word stack frame format
$0 on the system stack. An illegal instruction exception is also reported when a breakpoint
acknowledge bus cycle is run and terminated with either a transfer acknowledge (TA) or
transfer error acknowledge (TEA) signal. Since the unimplemented floating-point

9-20 M68040 USER’S MANUAL MOTOROLA



exception and the F-line illegal instruction share the same vector, the exception handler
uses the stack frame format ($0 or $2) to distinguish between the two.

Table 9-10. Unimplemented Instructions

Monadic Operations
FACOS FINTRZ
FASIN FLOG10
FATAN FLOGN
FATANH FLOGNP1
FCOS FMOVECR
FCOSH FSIN
FETOX FSINCOS
FETOXM1 FSINH
FGETEXP FTAN
FGETMAN FTANH
FINT FTENTOX
FTWOTOX —
Dyadic Operations
FMOD FREM
FSCALE —

When an unimplemented floating-point instruction is encountered, the processor waits for
all previous floating-point instructions to complete execution. Pending exceptions are
taken and handled prior to the execution of the unimplemented instruction.

Next, the instruction is partially decoded to allow fetching of the memory source operand,
if required. When the operand fetch begins, all other read accesses for previous
instructions are complete, and only the execution and write-back of results for previous
integer instructions remains to be completed. If an access error (bus error) occurs in
fetching the operand or in completing any other access before beginning the operand
fetch, the unimplemented instruction is restarted after the processor returns from
exception handling for the error. Refer to Section 8 Exception Processing for more
information on access errors.

The fetched source operand is passed to the FPU, which converts the operand to
extended precision and saves the intermediate result. If the operand is an unsupported
data type (denormalized, unnormalized, or packed decimal real), the unimplemented
floating-point exception takes precedence, and the floating-point instruction emulation
routine must detect the unsupported data type.

The processor begins exception processing for the unimplemented floating-point
instruction by making an internal copy of the current SR. The processor then enters the
supervisor mode and clears the trace bits (T1, TO). The processor creates a format $2
stack frame and saves the vector offset, PC, internal copy of the SR, and calculated

MOTOROLA M68040 USER’S MANUAL 9-21



effective address in the stack frame. The saved PC value is the logical address of the
instruction that follows the unimplemented floating-point instruction. The processor
generates exception vector number 11 for the unimplemented F-line instruction exception
vector, fetches the address of the F-line exception handler from the processor’s exception
vector table, pushes the format $2 stack frame on the system stack, and begins execution
of the exception handler after prefetching instructions to fill the pipeline. The exception
handler emulates the unimplemented floating-point instruction in software, maintaining
user-object-code compatibility. Refer to Section 8 Exception Processing for details
about exception vectors and format $2 stack frames.

The F-line exception handler checks for the format $2 stack frame to distinguish an
unimplemented floating-point instruction from other F-line unimplemented instructions.
When the exception handler for unimplemented floating-point instructions executes an
FSAVE, a 26-word unimplemented instruction state frame is created (see Figure 9-10). At
this point, an FSAVE instruction yields the information as listed in Table 9-16. Note that
unless the instruction specifies a packed decimal real source, the state frame contains
both operands (if required). For packed decimal real data format, the second operand is in
the designated format of the destination floating-point data register.

The exception handler uses the information provided in the state frame to determine the
instruction that it needs to emulate and the input operands to that instruction. Once the
instruction has been emulated and the result is reached, the exception handler moves the
result into the appropriate destination floating-point data register, discards the
unimplemented instruction state frame, and returns to normal instruction flow using the
RTE instruction. The limitation to this approach is that no floating-point arithmetic
exceptions can be reported at the end of the emulated instruction.

The M68040FPSP not only emulates the instruction, but in addition, it ensures that if any
floating-point arithmetic exceptional conditions arise from the emulation of the
unimplemented instruction and if the corresponding floating-point arithmetic exception is
enabled, the M68040FPSP manipulates the stack and restores the stack back into the
FPU in the desired exceptional state. This effectively imitates the action of the MC68040
implemented instructions since the exception is not reported until the next floating-point
instruction is encountered. This manipulation of the stack is rather complicated and is
beyond the scope of this manual. Motorola recommends that the user utilize the
M68040FPSP if a full exception-reporting model is required. Motorola does not provide
any printed documentation other than what is embedded in the source code of the
M68040FPSP.

9.6.2 Unsupported Floating-Point Data Types

An unsupported data type exception occurs when either operand to an implemented
floating-point instruction is denormalized (for single-, double-, and extended-precision
operands), unnormalized (for extended-precision operands), or either the source or
destination data format is packed decimal real. These data types are unimplemented in
the MC68040 and must be emulated in software.

9-22 M68040 USER’S MANUAL MOTOROLA



NOTE

In this manual, all references to the unsupported floating-point
data types also refer to the unimplemented data types in the
M68040FPSP.

When the processor encounters an unsupported data type, the procedure taken is
identical to that used when an unimplemented instruction is taken. Unsupported data
types with operands that have opclass 010 or 000 (register-to-register or memory-to-
register) instructions cause a pre-instruction exception. When an unsupported data type is
detected for opclass 011 (register-to-memory) instructions, a post-instruction exception is
generated immediately. A format $0 (for the pre-instruction exception) or format $3 (for the
post-instruction exception) stack frame is saved, and vector number 55 is fetched. A
denormalized value generated as the result of a floating-point operation generates a
nonmaskable underflow exception instead of an unsupported data type exception.

Table 9-16 lists the floating-point state frame fields for unsupported data type exceptions
resulting from the execution of opclass 010 or 000 (register-to-register or memory-to-
register) instructions, and opclass 011 (register-to-memory) instructions defined for the
use by the supervisor exception handler.

A denormalized or unnormalized extended-precision source or destination operand is
copied directly without modification to ETEMP or FPTEMP fields in the floating-point state
frame. If a packed decimal real source operand is specified, the upper 32 bits of the
operand are copied to the FPTEMP field, and the lower 64 bits are copied to ETEMP. The
destination operand in this case remains in the destination floating-point register, and can
be either denormalized or unnormalized. Figure 9-9 illustrates denormalized single- (a)
and double-precision (b) operands stored in ETEMP field.

The exception handler uses the floating-point state frame information to determine which
operand (or operands) is the unsupported data type and which instruction attempted to
use the offending operand. The exception handler must provide the routines needed to
complete the instruction and to store that instruction to the proper destination, whether it
be in a floating-point data register, integer data register, or external memory. Once the
destination is written, the floating-point state frame is discarded, and normal execution is
resumed by using the RTE instruction. This approach does not report floating-point
arithmetic exceptions that may have been generated. Motorola recommends that the user
utilize the M68040FPSP if a full exception-reporting model is required. Motorola does not
provide any printed documentation other than what is embedded in the source code of the
M68040FPSP.

MOTOROLA M68040 USER’S MANUAL 9-23



3130 23 22 0

DENORMALIZED SINGLE PRECISION $0 FRACTION
9594 80 79 64 63 62 4039 0
FORMAT IN STATE FRAME | | $0 $0 0 $0

S EXP MANTISSA
1

(a) Single Precision

6362 52 51 0
DENORMALIZED DOUBLE PRECISION sl %0 MANTISSA

9594 80 79 64 63 62 1110 0

FORMAT IN STATE FRAME | | $0 | $0 |o| | $0 |
EXP MANTISSA

(b) Double Precision

Figure 9-9. Format of Denormalized Operand in State Frame

9.7 FLOATING-POINT ARITHMETIC EXCEPTIONS

The following eight user floating-point arithmetic exceptions are listed in order of priority.
The MC68040 generates the first seven exceptions in hardware and the eighth only in
software.

Branch/Set on Unordered (BSUN)
Signaling Not-A-Number (SNAN)
Operand Error (OPERR)
Overflow (OVFL)

Underflow (UNFL)

Divide by Zero (DZ)

Inexact 2 (INEX2)

Inexact 1 (INEX1)

INEX1 exception is the condition that exists when a packed decimal operand cannot be
converted exactly to the extended-precision format in the current rounding mode. Since

9-24

M68040 USER’S MANUAL MOTOROLA



the MC68040 does not directly support packed decimal real operands, the processor
never sets INEX1 bit in the FPSR EXC byte, but provides it as a latch so that emulation
software can report the exception.

A floating-point arithmetic exception is taken in one of two situations. The first situation
occurs when the user program enables an arithmetic exception by setting a bit in the
FPCR ENABLE byte and the corresponding bit in the FPSR EXC byte matches the bit in
the FPCR ENABLE byte as a result of program execution; this is referred to as maskable
exception conditions. A user write operation to the FPSR, which sets a bit in the EXC byte,
does not cause an exception to be taken, regardless of the value in the ENABLE byte.
When a user writes to the ENABLE byte that enables a class of floating-point exceptions,
a previously generated floating-point exception does not cause an exception to be taken,
regardless of the value in the FPSR EXC byte. The user can clear a bit in the FPCR
ENABLE byte, disabling each corresponding exception.

The second situation occurs when the processor encounters a nonmaskable SNAN,
OPERR, OVFL, and UNFL condition; this is referred to as nonmaskable exception
conditions. This allows a supervisor exception handler to correct a defaulting result
generated by the MC68040 that is different from the result generated by an
MC68881/MC68882 executing the same code. After correcting the result, the supervisor
exception handler calls a user-defined exception handler if the exception has been
enabled in the FPCR ENABLE byte or returns to the main program flow if the exception is
disabled.

A single instruction execution can generate dual and triple exceptions. When multiple
exceptions occur with exceptions enabled for more than one exception class, the highest
priority exception is reported; the lower priority exceptions are never reported or taken.
The previous list of arithmetic floating-point exceptions is in order of priority. The bits of
the ENABLE byte are organized in decreasing priority, with bit 15 being the highest and bit
8 the lowest. The exception handler must check for multiple exceptions. The address of
the exception handler is derived from the vector number corresponding to the exception.
The following is a list of multiple instruction exceptions that can occur:

* SNAN and INEX1

* OPERR and INEX2

OPERR and INEX1

OVFL and INEX2 and/or INEX1
UNFL and INEX2 and/or INEX1

9.7.1 Branch/Set On Unordered (BSUN)

The BSUN exception is the result of performing an IEEE nonaware conditional test
associated with the FBcc, FDBcc, FTRAPcc, and FScc instructions when an unordered
condition is present. Refer to 9.5.2 Conditional Testing for information on conditional
tests.

MOTOROLA M68040 USER’S MANUAL 9-25



If a floating-point exception is pending from a previous floating-point instruction, a pre-
instruction exception is taken. After the appropriate exception handler is executed, the
conditional instruction is restarted. When the FPU pipeline is idle (all previous floating-
point instructions have completed) and no exceptions are pending, the processor
evaluates the conditional predicate and checks for a BSUN exception before executing the
conditional instruction.

9.7.1.1 MASKABLE EXCEPTION CONDITIONS. A BSUN exception occurs if the
conditional predicate is one of the IEEE nonaware branches and the FPCC NAN bit is set.
When the processor detects this condition, it sets the BSUN bit in the FPSR EXC byte.

a. If the user BSUN exception handler is disabled, the floating-point condition is
evaluated as if it were the equivalent IEEE aware conditional predicate. No
exceptions are taken.

b. If the user BSUN exception handler is enabled, the processor takes a floating-point
pre-instruction exception. A $0 stack frame is saved, and vector number 48 is
generated to access the BSUN exception vector. The BSUN entry in the processor’'s
vector table points to the M68040FPSP BSUN exception handler.

For MC68881/MC68882 compatibility, the M68040FPSP updates the FPIAR by copying
the PC value in the pre-instruction stack frame to the FPIAR. The M68040FPSP BSUN
exception handler restores the FPU to its exceptional state, cleans up the stack to the
state prior to the M68040FPSP BSUN exception handler’s execution, and continues
instruction execution at the user BSUN exception handler. No parameters are passed to
the user BSUN exception handler since the M68040FPSP BSUN exception handler
provides the illusion that it never existed.

The user BSUN exception handler must execute an FSAVE as its first floating-point
instruction. FSAVE allows other floating-point instructions to execute without reporting the
BSUN exception again, although none of the state frame values are useful in the
execution of the user BSUN exception handler. The BSUN exception is unique in that the
exception is taken before the conditional predicate is evaluated. If the user BSUN
exception handler does not set the PC to the instruction following the one that caused
BSUN exception when returning, the exception is executed again. Therefore, it is the
responsibility of the user BSUN exception handler to prevent the conditional instruction
from taking the BSUN exception again. There are four ways to prevent taking the
exception again:

1. Incrementing the stored PC in the stack bypasses the conditional instruction. This
technique applies to situations where a fall-through is desired. Note that accurate
calculation of the PC increment requires detailed knowledge of the size of the
conditional instruction being bypassed.

2. Clearing the NAN bit prevents the exception from being taken again. However, this
alone cannot deterministically control the result’s indication (true or false) that would
be returned when the conditional instruction reexecutes.

3. Disabling the BSUN bit also prevents the exception from being taken again. Like the
second method, this method cannot control the result indication (true or false) that
would be returned when the conditional instruction reexecutes.

9-26 M68040 USER’S MANUAL MOTOROLA



4. Examining the conditional predicate and setting the FPCC NAN bit accordingly
prevents the exception from being taken again. This technique gives the most
control since it is possible to pre-determine the direction of program flow. Bit 7 of the
F-line operation word indicates where the conditional predicate is located. If bit 7 is
set, the conditional predicate is the lower six bits of the F-line operation word.
Otherwise, the conditional predicate is the lower six bits of the instruction word,
which immediately follows the F-line operation word. Using the conditional predicate
and the table for IEEE nonaware test in 9.5.2 Conditional Testing, the condition
codes can be set to return a known result indication when the conditional instruction
IS reexecuted.

Prior to exiting the user BSUN exception handler, the exception handler discards the
floating-point state frame.

9.7.1.2 NONMASKABLE EXCEPTION CONDITIONS. There are no conditions.

9.7.2 Signaling Not-a-Number (SNAN)

An SNAN is used as an escape mechanism for a user-defined, non-IEEE data type. The
processor never creates an SNAN as a result of an operation; a NAN created by an
operand error exception is always a nonsignaling NAN. When an operand is an SNAN
involved in an arithmetic instruction, the SNAN bit is set in the FPSR EXC byte. Since the
FMOVEM, FMOVE FPCR, and FSAVE instructions do not modify the status bits, they
cannot generate exceptions. Therefore, these instructions are useful for manipulating
SNANS.

9.7.2.1 MASKABLE EXCEPTION CONDITIONS. When an SNAN is encountered, if the
destination is a floating-point data register or is in memory (or an integer data register) and
the format is single, double, or extended precision, the SNAN is maskable and may or
may not take an exception.

a. If the user SNAN exception is disabled, the processor clears the SNAN bit in the
NAN data format and the resulting nonsignaling NAN is transferred to the
destination. No bits other than the SNAN bit of the NAN data format are modified,
although the input NAN is truncated if necessary. Instruction execution continues
without taking any exceptions.

b. If the user SNAN exception handler is enabled, the processor posts an exception
and another floating-point instruction is eventually encountered; a pre-instruction
exception is reported at that time. The SNAN entry in the processor’s vector table
points to the M68040FPSP SNAN exception handler. Once the M68040FPSP SNAN
exception handler recognizes the operand error as a maskable condition, it does not
modify the destination or pass control to the user SNAN exception handler.

9.7.2.2 NONMASKABLE EXCEPTION CONDITIONS. When an SNAN is encountered, if
the destination is either in memory or an integer data register and the format is byte, word,
or long word, a nonmaskable post-instruction exception occurs and is taken immediately.
The SNAN entry in the processor’'s vector table points to the M68040FPSP SNAN
exception handler.

MOTOROLA M68040 USER’S MANUAL 9-27



The M68040FPSP SNAN exception handler checks to see if the instruction is an FMOVE
to byte, word, or long word. If one of these conditions is met, the M68040FPSP SNAN
exception handler stores the most significant 8, 16, or 32 bits, respectively, of the SNAN
mantissa, with the SNAN bit set, to the destination. Next, it determines whether or not the
user SNAN exception is enabled.

a. If the user SNAN exception is disabled, the M68040FPSP SNAN exception handler
checks for an INEX1 or INEX2 exception condition and determines whether or not it
needs to go to the user INEX exception handler. If not, the M68040FPSP returns to
normal instruction execution. Otherwise, the M68040FPSP SNAN exception handler
restores the FPU to its exceptional state, cleans up the stack to the conditions prior
to execution, and continues instruction execution at the user INEX exception
handler. No parameters are passed to the user INEX exception handler since the
M68040FPSP SNAN exception handler provides the illusion that it never existed.

b. If the user SNAN exception handler is enabled, the M68040FPSP SNAN exception
handler checks to see if the destination is a floating-point data register or in memory
(or an integer data register) with single-, double-, or extended-precision format. If so,
the M68040FPSP SNAN exception handler determines which input operand is the
SNAN, sets the SNAN bit in the NAN data format, and transfers the resulting
nonsignaling NAN to the destination. Once the destination has been written, the
M68040FPSP SNAN exception handler restores the FPU to its exceptional state,
cleans up the stack to the conditions prior to its execution, and continues instruction
execution at the user SNAN exception handler. No parameters are passed to the
user SNAN exception handler since the M68040FPSP SNAN exception handler
provides the illusion that it never existed.

The user SNAN exception handler must execute an FSAVE as the first floating-point
instruction. Table 9-16 lists the floating-point state frame fields for SNAN pre-instruction
exceptions resulting from the execution of opclass 010 or 000 (register-to-register or
memory-to-register) instructions, and for SNAN post-instruction exceptions resulting from
the execution of opclass 011 (register-to-memory) instructions defined for the use by the
supervisor exception handler. A source or destination SNAN is stored in ETEMP or
FPTEMP, respectively, with its SNAN bit set.

The user SNAN exception handler can overwrite the result to the specified destination.
The exception handler must be aware that it is possible for an INEX1 exceptional
condition to co-exist with an SNAN exception. Since the SNAN exception has higher
priority, the INEX1 exception is hidden, and it becomes the responsibility of the SNAN
exception handler to detect and correct this if desired. To return to normal execution, the
state frame is discarded prior to execution of the RTE of the user-defined exception
handler.

9.7.3 Operand Error

The operand error exception encompasses problems arising in a variety of operations,
including those errors not frequent or important enough to merit a specific exceptional
condition. Basically, an operand error occurs when an operation has no mathematical
interpretation for the given operands. Table 9-11 lists the possible operand errors, both
native and not native to the MC68040, which the M68040FPSP unimplemented instruction

9-28 M68040 USER’S MANUAL MOTOROLA



exception handler can report. When an operand error occurs, the OPERR bit is set in the

FPSR EXC byte.

Table 9-11. Possible Operand Errors Exceptions

Instruction Condition Causing Operand Error
Native to MC68040
FADD (+inf) + (=inf) or (—inf) + (+inf)
FDIV 0+ O orinf+inf
FMOVE to B,W,or L Integer overflow where the source is nonsignaling NAN or +infinity.
FMUL One operand is 0 and other is +inf.
FSQRT Source < 0 or #inf.
FSUB (+inf) — (+inf) or (=inf) — (inf)
Nonnative to MC68040
FACOS Source is #inf, > +1, or < -1
FASIN Source is #inf, > +1, or < -1
FATANH Sourceis > +1or<-1
FCOS Source is #inf
FGETEXP Source is #inf
FGETMAN Source is #inf
FLOG10 Sourceis<0
FLOG2 Source is< 0
FLOGN Source is <0
FLOGNP1 Sourceis< 1
FMOD Floating-point data register is inf or source is 0, other operand is not a NAN
FMOVE to P Source exponent > 999 (decimal) or k-Factor > 17
FREM Floating-point data register is +inf or source is 0, other operand is not a NAN
FSCALE Source is #inf
FSGLDIV 0+ 0 orinf+inf
FSGLMUL One operand is 0, other operand is inf
FSIN Source is #inf
FSINCOS Source is #inf
FTAN Source is #inf

9.7.3.1 MASKABLE EXCEPTION CONDITIONS. All conditions apply as listed in Table

9-11, with the exception of the FMOVE to byte, word, or long-word case.

a. If the user OPERR exception handler is disabled, an extended-precision

nonsignaling NAN with all mantissa bits set is stored in the destination floating-point
data register. No exceptions are reported, and instruction execution proceeds
normally.

MOTOROLA M68040 USER’S MANUAL 9-29



b. If the user OPERR exception handler is enabled and the destination floating-point
data register is not modified, an OPERR exception is posted. The next floating-point
instruction that is encountered takes a pre-instruction exception. The OPERR entry
in the processor’s vector table points to the M68040FPSP OPERR exception
handler. Once the M68040FPSP OPERR exception handler recognizes the operand
error as a maskable condition, it does not modify the destination or pass control to
the user OPERR exception handler.

9.7.3.2 NONMASKABLE EXCEPTION CONDITIONS. If an FMOVE to byte, word, or long
word has a source operand that is too large to be represented in the specified destination
integer format (integer overflow, NAN, infinity) or if the source operand is equal to the
largest negative integer representable in the specified destination integer format
(erroneous MC68040 condition), the processor immediately takes a post-instruction
exception. Instruction execution continues at the M68040FPSP OPERR exception
handler.

If the M68040FPSP determines a nonmaskable erroneous MC68040 condition caused the
exception, it stores the largest negative integer representable in the given destination
integer format (—27 for byte, —215 for word, and —231 for long word). The M68040FPSP
OPERR exception handler then returns the processor to normal processing. If an integer
overflow or an FMOVE to byte, word, or long word with a source of infinity causes the
exception, then the destination is written with the largest positive or negative integer that
can be represented in the given format. If an FMOVE to byte of word or long word with a
source of NAN causes the exception, then the most significant 8, 16, or 32 bits,
respectively, are written to the destination. Next, the M68040FPSP OPERR exception
handler checks to see if the user OPERR exception handler is enabled.

a. If the user OPERR exception handler is disabled, an exception-causing INEX1 or
INEX2 condition exists, and the user INEX exception handler is enabled. The
M68040FPSP OPERR exception handler restores the FPU to its exceptional state,
cleans up the stack to the conditions prior to execution, and continues instruction
execution at the user INEX exception handler. No parameters are passed to the user
INEX exception handler since the M68040FPSP OPERR exception handler provides
the illusion that it never existed. Otherwise, the M68040FPSP OPERR exception
handler returns the processor to normal processing.

b. If the user OPERR exception handler is enabled and the destination is a floating-
point data register, then the M68040FPSP exception handler does not modify the
register. The M68040FPSP OPERR exception handler restores the FPU to its
exceptional state, cleans up the stack to the conditions prior to execution, and
continues instruction execution at the user OPERR exception handler. No
parameters are passed to the user OPERR exception handler since the
M68040FPSP OPERR exception handler provides the illusion that it never existed.

The user OPERR exception handler must execute an FSAVE as its first floating-point
instruction. Table 9-16 lists the floating-point state frame fields for OPERR exceptions
resulting from the execution of opclass 010 or 000 (register-to-register or memory-to-
register) instructions and opclass 011 (register-to-memory) instructions defined for the use
by the supervisor exception handler.

9-30 M68040 USER’S MANUAL MOTOROLA



The CMDREGI1B field of the floating-point state frame can be used to determine the
instruction that caused of the OPERR exception. Note that CMDREG1B could be any of
the instructions listed in Table 9-11. If the destination is a floating-point data register, this
exception handler needs to supply the contents. If the destination is memory, the effective
address is supplied in the format $3 stack frame. If the destination is an integer data
register, the FPIAR points to the F-line instruction word that contains the integer data
register number. To exit the user OPERR exception handler, the saved floating-point
frame need not be restored and can be discarded prior to execution of the RTE
instruction.

9.7.4 Overflow

An overflow exception is detected for arithmetic operations in which the destination is a
floating-point data register or memory when the intermediate result’s exponent is greater
than or equal to the maximum exponent value of the selected rounding precision.
Overflow can only occur when the destination is in the single-, double-, or extended-
precision format; all other data format overflows are handled as operand errors. At the end
of any operation that could potentially overflow, the intermediate result is checked for
underflow, rounded, and then checked for overflow before it is stored to the destination. If
overflow occurs, the OVFL bit is set in the FPSR EXC byte.

Even if the intermediate result is small enough to be represented as an extended-
precision number, an overflow can occur. The intermediate result is rounded to the
selected precision, and the rounded result is stored in the extended-precision format. If the
magnitude of the intermediate result exceeds the range of the selected rounding precision
format, an overflow occurs.

9.7.4.1 MASKABLE EXCEPTION CONDITIONS. There are no conditions.

9.7.4.2 NONMASKABLE EXCEPTION CONDITIONS. When the OVFL bit is set in the
FPSR EXC byte as a result of a floating-point instruction, the processor always takes a
nonmaskable overflow exception. If the destination is a floating-point data register, then
the register is not affected, and either a pre-instruction or a post-instruction exception is
reported. If the destination is a memory or integer data register, an undefined result is
stored, and a post-instruction exception is taken immediately. Execution begins at the
M68040FPSP OVFL exception handler.

The values defined in Table 9-12 are stored in the destination based on the rounding
mode defined in the FPCR MODE byte. The M68040FPSP OVFL exception handler
rounds the result according to the rounding precision defined in the FPCR MODE byte if
the destination is a floating-point data register. If the destination is in memory or an integer
data register, then the rounding precision in the FPCR MODE byte is ignored, and the
given destination format defines the rounding precision. If the instruction has a forced
rounding precision (e.g., FSADD, FDMUL), the instruction defines the rounding precision.
The M68040FPSP OVFL exception handler then checks to see if the user OVFL
exception handler is enabled.

MOTOROLA M68040 USER’S MANUAL 9-31



Table 9-12. Overflow Rounding Mode Values

Rounding Result
Mode
RN Infinity, with the sign of the intermediate result.
RZ Largest magnitude number, with the sign of the intermediate result.
RM For positive overflow, largest positive number; for negative overflow, infinity.
RP For positive overflow, infinity; for negative overflow, largest negative number.

a. If the user OVFL exception handler is disabled, the M68040FPSP OVFL exception
handler checks for an INEX1 or INEX2 exception condition with the user INEX
exception handler enabled. If not, the processor returns to normal instruction flow.
Otherwise, the M68040FPSP OVFL exception handler restores the FPU to its
exceptional state, cleans up the stack to the conditions prior its execution, and
continues instruction execution at the user INEX exception handler. No parameters
are passed to the user INEX exception handler since the M68040FPSP OVFL
exception handler provides the illusion that it never existed. Otherwise, the
M68040FPSP OVFL exception handler returns the processor to normal processing.

b. If the user OVFL exception handler is enabled, the M68040FPSP OVFL restores the
FPU to its exceptional state, cleans up the stack to the conditions prior to execution,
and continues instruction execution at the user OVFL exception handler. No
parameters are passed to the user OVFL exception handler since the M68040FPSP
OVFL exception handler provides the illusion that it never existed.

The user OVFL exception handler must execute an FSAVE as its first floating-point
instruction. The destination contains the rounding mode values listed in Table 9-12, and
the user OVFL exception handler can choose to modify these values. The E3 and E1 bits
of the floating-point state frame are examined to determine which fields on the floating-
point state frame are valid. E3 always takes precedence and must be serviced first. Table
9-16 lists the floating-point state frame fields for OVFL exceptions with E3 set or with E3
clear and E1 set. Note that it is possible for an FADD, FSUB, FMUL, and FDIV to report a
post-instruction exception, although these instructions normally generate a pre-instruction
exception. The following example illustrates the reason why a post-instruction exception is
generated.

FADD FP2,FPO ; this instruction generates an overflow exception
FMOVE FPO, <ea> ; this instruction is executing when overflow occurs

In this example, assume that the FMOVE instruction starts once the FADD instruction
generates an overflow. Given the register dependency on FPO, the destination of the
FADD instruction, FPO needs to be resolved prior to FMOVE instruction execution. For
this example, there is no choice but to have the FADD instruction report a post-instruction
exception immediately. Note that for this case, even though the T-bit of the floating-point
state frame is set, (post-instruction exception), it does not imply an FMOVE OUT
instruction. Therefore, the effective address field in the format $3 stack frame is invalid.

The FMOVE OUT instruction generates a post-instruction exception. For this case, the
effective address field in the format $3 stack frame points to the destination memory
location. If the destination is an integer data register, the FPIAR points to the F-line word

9-32 M68040 USER’S MANUAL MOTOROLA



of the offending instruction, and the F-line word contains the integer data register number.
If the M68040FPSP unimplemented instruction exception handler is used, there can be
some other cases in which an overflow is reported.

In addition to normal overflow, the exponential instructions can generate results that
catastrophically overflow the 16-bit exponent used for intermediate results. For these
instructions (FETOX, FTENTOX, FTWOTOX, FSINH, and FCOSH), the intermediate
result found in either FPTEMP or WBTEMP fields of the floating-point state frame are
invalid. If an INEX2 or INEX1 exceptional condition exists and the user INEX exception
handler is enabled, it is the responsibility of the user OVFL exception handler to look for
this situation.

The user OVFL exception handler examines the E3 bit of the floating-point state frame to
exit from this exception handler. If the E3 bit is set, it must be cleared prior to restoring the
floating-point frame through the FRESTORE instruction. If the E3 bit is clear and the E1 bit
is set, the floating-point state frame is discarded. The RTE instruction must be executed to
return to normal instruction flow.

9.7.5 Underflow

An underflow exception occurs when the intermediate result of an arithmetic operation is
too small to be represented as a normalized number in a floating-point data register or
memory using the selected rounding precision. An arithmetic operation is too small when
the intermediate result exponent is less than or equal to the minimum exponent value of
the selected rounding precision. Underflow is not detected for intermediate result
exponents that are equal to the extended-precision minimum exponent since the explicit
integer part bit permits representation of normalized numbers with a minimum extended-
precision exponent. Underflow can only occur when the destination format is single,
double, or extended precision. When the destination format is byte, word, or long word,
the conversion underflows to zero without causing either an underflow or an operand
error. At the end of any operation that could potentially underflow, the intermediate result
iIs checked for underflow, rounded, and checked for overflow before it is stored at the
destination. If an underflow occurs, the UNFL bit is set in the FPSR EXC byte.

Even if the intermediate result is large enough to be represented as an extended-precision
number, an underflow can occur. The intermediate result is rounded to the selected
precision, and the rounded result is stored in extended-precision format. If the magnitude
of the intermediate result is too small to be represented in the selected rounding precision,
an underflow occurs.

The IEEE 754 standard defines two causes of an underflow: 1) when the absolute value of
the number is less than the minimum number that can be represented by a normalized
number in a specific data format; 2) when loss of accuracy occurs while attempting to
calculate such a number (a loss of accuracy also causes an inexact exception). The IEEE
754 standard specifies that if the underflow exception is disabled, an underflow should
only be signaled when both of these cases are satisfied (i.e., the result is too small to be
represented with a given format and there is a loss of accuracy during calculation of the

MOTOROLA M68040 USER’S MANUAL 9-33



final result). If the exception is enabled, the underflow should be signaled any time a very
small result is produced, regardless of whether accuracy is lost in calculating it.

The processor UNFL bit in the FPSR AEXC byte implements the IEEE exception disabled
definition since it is only set when a very small number is generated and accuracy has
been lost when calculating that number. The UNFL bit in the FPCR EXC byte implements
the IEEE exception enabled definition since it is set any time a tiny number is generated.

9.7.5.1 MASKABLE EXCEPTION CONDITIONS. There are no conditions.

9.7.5.2 NONMASKABLE EXCEPTION CONDITIONS. When the UNFL bit of the FPSR is
set, the processor always takes an exception regardless of whether or not the user UNFL
exception handler is enabled. If the destination is a floating-point data register, the register
is not affected, and either a pre-instruction or a post-instruction exception is reported. If
the destination is a memory or integer data register, then an undefined result is stored,
and a post-instruction exception is taken immediately. Exception processing begins with
the M68040FPSP UNFL exception handler.

The M68040FPSP UNFL exception handler stores the result in the destination as either a
denormalized number or zero. Shifting the mantissa of the intermediate result to the right
while incrementing the exponent until it is equal to the denormalized exponent value for
the destination format accomplishes denormalization. The denormalized intermediate
result is rounded to the selected rounding precision if the destination is a floating-point
data register or rounded to the destination format in the case of an FMOVE OUT
instruction. For the instructions with forced rounding precision (e.g., FSADD and FDMUL),
the destination is rounded using the precision defined by the instruction.

If in the process of denormalizing the intermediate result, all of the most significant bits are
shifted off to the right, the selected rounding mode determines the value to be stored at
the destination, Table 9-13 lists these values. Once the result is stored in the destination,
the M68040FPSP UNFL exception handler checks to see if the user UNFL exception
handler is enabled.

Table 9-13. Underflow Rounding Mode Values

Rounding Result
Mode

RN Zero, with the sign of the intermediate result.

Rz Zero, with the sign of the intermediate result.

RM For positive overflow, + zero; for negative underflow, smallest denormalized
negative number.

RP For positive overflow, smallest denormalized positive number; for negative
underflow, —zero.

9-34 M68040 USER’S MANUAL MOTOROLA



a. If the user UNFL exception handler is disabled, the M68040FPSP UNFL exception
handler checks for an INEX1 or INEX2 exception condition with the user INEX
exception handler enabled. If not, the processor returns to normal instruction flow.
Otherwise, the M68040FPSP UNFL exception handler restores the FPU to its
exceptional state, cleans up the stack to the conditions prior to execution, and
continues instruction execution at the user INEX exception handler. No parameters
are passed to the user INEX exception handler since the M68040FPSP UNFL
exception handler provides the illusion that it never existed. Otherwise, the
M68040FPSP UNFL exception handler returns the processor to normal processing.

b. If the user UNFL exception handler is enabled, the M68040FPSP UNFL exception
handler restores the FPU to its exceptional state, cleans up the stack to the
conditions prior to execution, and continues instruction execution at the user UNFL
exception handler. Once the M68040FPSP UNFL exception handler recognizes the
operand error as a maskable condition, it does not modify the destination or pass
control to the user UNFL exception handler.

The user UNFL exception handler must execute an FSAVE as its first floating-point
instruction. At this point, the destination contains the rounding mode values listed in Table
9-13, and the user UNFL exception handler can choose to modify these values. The E3
and E1 bits of the floating-point state frame need to be examined to determine which fields
on the floating-point state frame are valid. E3 always takes precedence and must always
be serviced first. Table 9-16 lists the floating-point state frame fields for OVFL exceptions
with E3 set or with E3 clear and E1 set. It is possible for an FADD, FSUB, FMUL, and
FDIV to report a post-instruction exception, although these instructions normally generate
a pre-instruction exception. The following example illustrates why a post-instruction
exception is generated.

FADD FP2,FPO ; this instruction generates an underflow exception
FMOVE FPO, <ea> ; this instruction is executing when underflow occurs

In this example, assume that the FMOVE instruction starts once the FADD instruction
generates an underflow. Given the register dependency on FPO, the destination of the
FADD instruction, FPO needs to be resolved prior to the FMOVE instruction execution. For
this example, there is no choice but to have the FADD instruction report a post-instruction
exception immediately. Note that for this case, even though the T-bit of the floating-point
state frame is set (post-instruction exception), it does not imply an FMOVE OUT
instruction. Therefore, the effective address field in the format $3 stack frame is invalid.

The FMOVE OUT instruction generates a post-instruction exception. For this case, the
effective address field in the format $3 stack frame points to the destination memory
location. If the destination is an integer data register, the FPIAR points to the F-line word
of the offending instruction, and the F-line word contains the integer data register number.
If the M68040FPSP unimplemented instruction exception handler is used, there can be
some other cases in which an underflow is reported. If an INEX2 or INEX1 exceptional
condition exists and the user INEX exception handler is enabled, it is the responsibility of
the user UNFL exception handler to look for this situation.

The user UNFL exception handler examines the E3 bit of the floating-point state frame to
exit from this exception handler. If the E3 bit is set, it must be cleared prior to restoring the
floating-point frame through the FRESTORE instruction. If the E3 bit is clear and the E1 bit

MOTOROLA M68040 USER’S MANUAL 9-35



is set, the floating-point frame is discarded. The RTE instruction must be executed to
return to normal instruction flow.

9.7.6 Divide by Zero

This exception happens when a zero divisor occurs for a divide instruction or when a
transcendental function is asymptotic with infinity as the asymptote. Table 9-14 lists the
instructions that can cause the divide by zero exception. Note that only the FDIV and
FSGLDIV instructions are native to the MC68040. The other conditions occur only if the
M68040FPSP is used. When a divide by zero is detected, the DZ bit is set in the FPSR
EXC byte. The divide by zero exception only has maskable exceptional conditions;
therefore, no M68040FPSP intervention is needed. An exception is taken only if the DZ bit
is set in FPSR EXC byte and the corresponding bit in the FPCR ENABLE byte is set.

a. If the user divide by zero exception handler is enabled, an infinity with the sign set to
the exclusive OR of the signs of the input operands is stored in the destination
floating-point data register. No exception is taken.

b. If the user divide by zero exception handler is disabled, the destination floating-point
data register is not modified, and the exception is reported as a pre-instruction
exception when the next floating-point instruction is attempted. The divide by zero
entry in the processor’s vector table points to the user divide by zero exception

handler.
Table 9-14. Possible Divide by Zero Exceptions
Instruction Operand Value
FDIV Source operand = 0 and floating-point data register is not a NAN
FLOG10 Source operand =0
FLOG2 Source operand =0
FLOGN Source operand =0
FTAN Source operand is an odd multiple of +11+ 2
FSGLDIV Source operand = 0 and floating-point data register is not a NAN

An FSAVE must be the first instruction of the user divide by zero exception handler. The
user divide by zero exception handler must generate a result to store in the destination. To
assist the exception handler in this function, the processor supplies the information listed
in Table 9-16, which lists the floating-point state frame fields for divide by zero exceptions
that are defined for supervisor exception handler use. To exit the user divide by zero
exception handler, the saved floating-point frame is discarded, and an RTE returns the
processor to normal processing.

9.7.7 Inexact Result

The processor provides two inexact bits in the FPSR EXC byte to help distinguish
between inexact results generated by emulated decimal input (INEX1 exceptions) and
other inexact results (INEX2 exceptions). These two bits are useful in instructions where
both types of inexact results can occur (e.g., FDIV.P #7E-1,FP3). In this case, the packed
decimal to extended-precision conversion of the immediate source operand causes an

9-36 M68040 USER’S MANUAL MOTOROLA



inexact error to occur that is signaled as INEX1 exception. Furthermore, the subsequent
divide could also produce an inexact result and cause INEX2 to be set in the FPCR EXC
byte. Note that only one inexact exception vector number is generated by the processor. If
either of the two inexact exceptions is enabled, the processor fetches the inexact
exception vector, and the user INEX exception handler is initiated. INEX refers to both
exceptions in the following paragraphs.

The INEX2 exception is the condition that exists when any operation, except the input of a
packed decimal number, creates a floating-point intermediate result whose infinitely
precise mantissa has too many significant bits to be represented exactly in the selected
rounding precision or in the destination data format. If this condition occurs, the INEX2 bit
is set in the FPSR EXC byte, and the infinitely precise result is rounded. Table 9-15 lists
these rounding mode values.

Table 9-15. Divide by Zero Rounding Mode Values

Rounding Result
Mode

RN The representable value nearest to the infinitely precise intermediate value is
the result. If the two nearest representable values are equally near (a tie), then
the one with the least significant bit equal to zero (even) is the result. This is
sometimes referred to as “round nearest, even.”

RZ The result is the value closest to and no greater in magnitude than the infinitely
precise intermediate result. This is sometimes referred to as the “chip mode,”
since the effect is to clear the bits to the right of the rounding point.

RM The result is the value closest to and no greater than the infinitely precise
intermediate result (possibly minus infinity).

RP The result is the value closest to and no less than the infinitely precise
intermediate result (possibly plus infinity).

The INEX1 and INEX2 exceptions are always maskable. Therefore, any INEX exception
goes directly to the user INEX exception handler. The M68040FPSP does not provide any
special handling for the INEX exception. When an INEX2 or INEX1 bit in the FPSR EXC
byte is set, the processor stores the rounded result (listed in Table 9-15), to the
destination. The FPCR MODE byte determines the rounding mode, and the PREC byte
determines the rounding precision if the destination is a floating-point data register.
Otherwise, if the destination is memory or an integer data register, the destination format
determines the rounding precision. If one of the instructions has a forced precision, the
instruction determines the rounding precision. If the INEX2 or INEX1 condition exists and
if the corresponding INEX bit in the FPCR ENABLE byte is set, then the user INEX
exception handler is taken.

a. If the user INEX exception handler is disabled, result is rounded and normal
processing continues.

b. If the user INEX exception handler is enabled, the exception is taken. The INEX
entry in the processor’s vector table points to the user INEX exception handler.

The user INEX exception handler must execute an FSAVE as its first floating-point
instruction. At this point, the destination contains the rounding mode values as listed in

MOTOROLA M68040 USER’S MANUAL 9-37



Table 9-15, and the user INEX exception handler can choose to modify these values. The
E3 and E1 of the floating-point state frame bits need to be examined to determine which
fields in the floating-point state frame are valid. E3 always takes precedence and must
always be serviced first. Table 9-16 lists the floating-point state frame fields for INEX
exceptions with E3 set or with E3 clear and E1 set. It is possible for an FADD, FSUB,
FMUL, and FDIV to report a post-instruction exception, although these instructions
normally generate a pre-instruction exception. The following example shows why a post-
instruction exception is generated.

FADD FP2,FPO ; this instruction generates an inexact exception
FMOVE FPO, <ea> ; this instruction is executing when inexact occurs

For this example, assume that the FMOVE instruction starts once the FADD instruction
generates an underflow. Given the register dependency on FPO, the destination of the
FADD instruction, FPO needs to be resolved prior to the FMOVE instruction execution. For
this example, there is no choice but to have the FADD instruction report a post-instruction
exception immediately. Note that for this case, even though the T-bit of the floating-point
state frame is set (post instruction exception), it does not imply an FMOVE OUT
instruction. Therefore, the effective address field in the format $3 stack frame is invalid.

The FMOVE OUT instruction generates a post-instruction exception. For this case, the
effective address field in the format $3 stack frame points to the destination memory
location. If the destination is an integer data register, the FPIAR points to the F-line word
of the offending instruction, and the F-line word contains the integer data register number.
If the MC68040FPSP unimplemented instruction exception handler is used, there can be
some other cases in which an inexact exception is reported.

The user INEX exception handler examines the E3 bit of the floating-point state frame to
exit from this exception handler. If the E3 bit is set, it must be cleared prior to restoring the
floating-point frame via the FRESTORE instruction. If the E3 bit is clear and the E1 bit is
set, the floating-point frame is discarded. The RTE instruction must be executed to return
to normal instruction flow.

NOTE

The IEEE 754 standard specifies that inexactness should be
signaled on overflow as well as for rounding. The processor
implements this via the INEX bit in the FPSR AEXC byte.
However, the standard also indicates that the inexact
exception should be taken if an overflow occurs with the OVFL
bit disabled and the INEX bit enabled in the FPSR AEXC byte.
Therefore, the processor takes the inexact exception if this
combination of conditions occurs, even though the INEX1 or
INEX2 bit may not be set in the FPSR EXC byte. In this case,
the INEX bit is set in the FPSR AEXC byte, and the OVFL bit is
set in both the FPSR EXC and AEXC bytes.

9-38 M68040 USER’S MANUAL MOTOROLA



9.8 FLOATING-POINT STATE FRAMES

All floating-point arithmetic exception handlers must have FSAVE as the first floating-point
instruction; any other floating-point instruction causes another exception to be reported.
Once the FSAVE instruction has executed, the exception handler should use only the
FMOVEM instruction to read or write to the floating-point data registers since FMOVEM
cannot generate further exceptions or change the FPCR.

The FPU executes an FSAVE instruction to save the current floating-point internal state
for context switches and floating-point exception handling. When an FSAVE is executed,
the processor waits until the FPU either completes execution of all current instructions or
is unable to perform further processing due to a pending exception that must be serviced.
Any exceptions generated during this time are not reported and are saved in the resulting
busy state frame.

Four state frames can be generated as a result of an FSAVE instruction: busy, null, idle,
and unimplemented floating-point instruction. When an unimplemented floating-point
exception occurs, the FSAVE generates a 26-word unimplemented instruction state frame.
When an unsupported data type exception occurs, the FSAVE generates a 50-word busy
state frame. All floating-point arithmetic exceptions causes the FSAVE to generate either
the 26-word unimplemented instruction state frame or the 50-word busy state frame. For a
hardware reset or an FRESTORE of a null state frame, the FSAVE instruction generates a
null state frame. This null state frame is generated until the first nonconditional floating-
point instruction is executed (conditionals include FNOP, FBcc, FDBcc, FScc, and
FTRAPcc). Floating-point conditional instructions do not set an internal flag, which
changes the state frame from null to idle. If these instructions are the only ones executed
after a reset or an FRESTORE of a null state frame, then when FSAVE is executed, it
stacks a null state frame instead of an idle state frame. Note that this function is different
from that of the MC68881 and MC68882, and software must be aware of this difference if
compatibility with the MC68881 and MC68882 is desired. Once a nonconditional floating-
point instruction is executed, an FSAVE generates an idle state frame. The idle state
frame is generated whenever the FPU has no exceptions pending. An idle state frame is
saved if no exceptions are pending and at least one instruction has been executed since
the last hardware reset or FRESTORE of a null state frame. A 26-word unimplemented
floating-point instruction state frame is saved if the last instruction was an unimplemented
floating-point instruction. Figure 9-10 illustrates each of these state frames, followed by
definitions for each of the fields listed in alphabetical order.

NOTE

The notation [XX-XX] indicates the length of the field but does
not indicate the field’s actual location. [XX, XX-XX] indicates
that one bit of the field is located separately or termed
differently from the other bits. This notation is for convenience
of explanation only. For example, WBTM [65—-34] indicates that
WBTM is 32 bits long and gives a reference to each bit in
WBTM without giving its actual location in the state frame. For
the actual locations refer to Figure 9-10.

MOTOROLA M68040 USER’S MANUAL 9-39



ov -6

TVYNNVYIN S.43SN 07089\

Y104OLON

$00
$04
$08
$0C
$10
$14
$18
$1C
$20
$24
$28
$2C
$30
$34
$38
$3C
$40
$44
$48
$4C
$50
$54
$58
$5C
$60

31 24 23 16 15
VERSION = $41 | $60
CU_SAVEPC
WBTS WBTE [14-00]
WBTM [65-34]
WBTM [33-02]
FPIARCU
| | | CMDREG3B
WBT | WBT | WBT
STAG | | |M66 ML | Mo |SB'T| | | | | | |
CMDREG1B
WBT
DTAG wer
El | E3 T
FPTS FPTE
FPTM [63-32]
FPTM [31-00]
ETS ETE
ETM [63-32]
ETM [31-00]

Figure 9-10. MC68040 Floating-Point State Frames (Sheet 1 of 2)

(a) Busy FPU State Frame




V104010

IVNNVIA S d3SN 0¥089IN

6

$00

$00

$00
$04
$08
$0C
$10
$14
$18
$1C
$20
$24
$28
$2C
$30

31 2% 3 16 15 0
$00 (UNDEFINED) |
(b) Null FPU State Frame
31 2% 23 16 15 0
VERSION NUMBER = $41 $00 |
(c) Idle FPU State Frame
31 2% 2 16 15 0
VERSION = $41 $30
| | | | CMDREG3B
WBT | WBT | WBT
sme | [ el Wler] | T 1 [ |
CMDREG1B
WBT
DTAG wer
| El | E3 T
FPTS FPTE
FPTM [63-32]
FPTM [31-00]
ETS ETE
ETM [63-32]
ETM [31-00]

(d) Unimplemented Instruction FPU State Frame

Figure 9-10. MC68040 Floating-Point State Frames (Sheet 2 of 2)



CMDREG1B—This field contains the command word of the exceptional floating-point
instruction for an E1 exception, which is an exception detected by the conversion unit
(CU) in the floating-point pipeline (see Figure 9-1). For FSQRT, CMDREG1B [6-0] are
mapped from $4 for the instruction to $5 in CMDREG1B. All other instructions map
directly.

CMDREG3B—This field contains the encoded instruction command word for an E3
exception, which is an exception detected by the write-back unit (WB) in the floating-point
pipeline (see Figure 9-1). Figure 9-11 details the bit mapping between CMDREG1B and
CMDREG3B. For FSQRT, bits CMDREG1B [6-0] are changed from $4 for the instruction
to $5 for CMDREG1B, and therefore map to $21 for CMDREG3B.

15 1312 10 9 76 0

T T T T T T
SRC DST

CMDREGIB | OPCLASS CMD

(RX) (Ry) | | | | | |
10 9 76 0

T T T T T T

CMDREG3B 0 DRST CMD
( Y) | | | | | |

Figure 9-11. Mapping of Command Bits for CMDREG3B Field

CU_SAVEPC—This field contains the PC for the FPU pipeline’s conversion unit.

E1—If set, this bit indicates that an exception has been detected by the conversion unit
pipeline stage. All exception types are possible. The exception handler first checks for an
E3 exception and processes it before checking and processing an E1 exception. The E1
exception is processed if the E1 bit is set. For the unimplemented instruction state frame,
the source operand’s unsupported data type is packed if the E1 bit is set.

E3—If set, this bit indicates that an exception has been detected by the WB pipeline
stage. Only OVFL, UNFL, and INEX2 exceptions on opclass 010 or 000 (register to
register and memory to register) for FADD, FSUB, FMUL, FDIV, FSQRT can occur. The
exception handler must check for and process an E3 exception first.

ETS, ETE, ETM—Collectively, these fields are referred to as the ETEMP register and
normally contain the source operand converted to extended precision. If the instruction
specifies a packed decimal real source, bits 63—0 of the operand reside in ETM [63-00],
and the ETS and ETE fields are undefined.

FPIARCU—This field contains the instruction address register for the FPU pipeline’s
conversion unit.

9-42 M68040 USER’S MANUAL MOTOROLA



FPTS, FPTE, FPTM—Collectively, these fields are referred to as the FPTEMP register
and normally contain the destination operand for dyadic operations converted to extended
precision. If the instruction specifies a packed decimal real source, bits 95-64 of the
operand reside in FPTM [31-00], and the FPTS, FPTE, and FPTM [63-32] fields are
undefined.

OPCLASS—This field refers to bits 15-13 of CMDREG1B. Note that CMDREGI1B is
identical to the second word of a floating-point arithmetic instruction opcode.

STAG, DTAG—These 3-bit fields specify the data type of the source and destination
operands, respectively. STAG is undefined for a packed decimal real source operand. The
encodings for STAG and DTAG are as follows:

000 = Normalized

001 = Zero
010 = Infinity
011 = NAN

100 = Extended-Precision Denormalized or Unnormalized Input
101 = Single- or Double-Precision Denormalized Input

T—If set, this bit indicates that a post-instruction exception has occurred. Since only an
opclass 3 instruction can indicate a post-instruction exception, this bit indicates that the
exception is caused by an FMOVE OUT instruction.

WBTS, WBTE [15,14-00], WBTM [66,65-02,01,00], SBIT—These fields contain the
exception operand in internal data format for E3 exceptions. Collectively, these fields are
called the WBTEMP and are an image of the intermediate result. WBTMG66 is the overflow
bit, WBTM1, WBTMO, and SBIT are the guard, round, and sticky bits, respectively.

MOTOROLA M68040 USER’S MANUAL 9-43



9-44

Table 9-16. State Frame Field Information

FSAVE State

Frame Field Contents
Unimplemented Instruction Exceptions (For Opclass 000 and 010)
CMDREG1B Exception Instruction Command Word
ETEMP Source operand is converted to extended precision. If format is packed, ETM
[63-0] contains bits 63-0 of the packed decimal operand.
STAG Source operand tag (undefined if format is packed).
FPTEMP Destination operand, if any, is converted to extended precision. If format is
packed, FPTM [31-0] contains bits 95-64 of the packed decimal operand.
DTAG Destination operand tag, if any.
El Always 1
T Always 0
Unsupported Data Type (For Opclass 000 and 010)
CMDREG1B Exception Instruction Command Word
ETEMP Source operand is converted to extended precision. If format is packed, ETM
[63—0] contains bits 63-0 of the packed decimal operand.
STAG Source operand tag (undefined if format is packed).
FPTEMP Destination operand, if any, is converted to extended precision. If format is
packed, FPTM [31-0] contains bits 95-64 of the packed decimal operand.
DTAG Destination operand tag, if any.
El Always 1
T Always 0
Unsupported Data Type (For Opclass 011)
CMDREG1B FMOVE Command Word
ETEMP Unrounded Source Operand from Floating-Point Data Register
STAG Source Operand Tag
El Always 1
T Always 1
SNAN (For Opclass 000 and 010)
CMDREG1B Exception Instruction Command Word
ETEMP Source operand is converted to extended precision.
STAG Source Operand Tag
FPTEMP Destination operand, if any, is converted to extended precision.
DTAG Destination operand tag, if any.
El Always 1
T Always 0

M68040 USER’S MANUAL

MOTOROLA



Table 9-16. State Frame Field Information (Continued)

FSAVE State Contents
Frame Field
SNAN (For Opclass 011)
CMDREG1B FMOVE Instruction Command Word
ETEMP Unrounded Source Operand from Floating-Point Register, with SNAN bit set.
STAG Source Operand Tag, indicated NAN.
El Always 1
T Always 1
OPERR (For Opclass 000 and 010)
CMDREG1B Exception Instruction Command Word
ETEMP Source operand is converted to extended precision.
STAG Source Operand Tag
FPTEMP Destination operand, if any, is converted to extended precision.
DTAG Destination operand tag, if any.
El Always 1
T Always 0
OPERR (For Opclass 011)
CMDREG1B FMOVE Instruction Command Word
ETEMP Unrounded Source Operand from Floating-Point Register
STAG Source Operand Tag
WBTEMP Contains the rounded integer used to check for erroneous integer overflow.
El Always 1
T Always 1
OVFL (FMOVE to Register, FABS, and FNEG)
CMDREG1B Exception Instruction Command Word
FPTEMP Intermediate result with mantissa rounded to correct precision.
STAG Source Operand Tag = Normalized
El Always 1
T Always 0
OVFL (FADD, FSUB, FMUL, FDIV, and FSQRT)
CMDREG3B Encoded Exception Instruction Command Word
WBTEMP WBTS, WBTE, and WBTM equal the intermediate result with mantissa rounded
to the correct precision.
WBTE15 Bit 15 of the intermediate result's 16-bit exponent = 0 for overflow.
E3 Always 1
T Either 1 or O

MOTOROLA

M68040 USER’S MANUAL

9-45



Table 9-16. State Frame Field Information (Continued)

FSAVE State

Frame Field Contents
OVFL (FMOVE to Memory)
CMDREG1B FMOVE instruction command word
FPTEMP Intermediate result with mantissa rounded to correct precision.
STAG Source Operand Tag = Normalized
El Always 1
T Always 1
UNFL (FMOVE to Register, FABS, and FNEG)
CMDREG1B Exception Instruction Command Word
FPTEMP Unrounded, Extended-Precision Intermediate Result
STAG Source Operand Tag = Normalized
El Always 1
T Always 0
UNFL (FADD, FSUB, FMUL, FDIV, and FSQRT)
CMDREG3B Encoded Exception Instruction Command Word
WBTEMP WBTS, WBTE, and WBTM = intermediate result sign, biased 15-bit
exponent, and 64-bit mantissa prior to rounding.
WBTE15 Bit 15 of the intermediate result's 16-bit exponent = 1 for underflow.

WBTM1, WBTMO,
SBIT

Guard, round, and sticky of intermediate result's 67-bit mantissa.

E3 Always 1
T Either 1 or O

UNFL (FMOVE to Memory)
CMDREG1B FMOVE Instruction Command Word
FPTEMP Intermediate result with mantissa prior to rounding.
STAG Source Operand Tag = Normalized
El Always 1
T Always 1

Dz

CMDREG1B M68040FPSP divide by zero can generate.
ETEMP Source operand is converted to extended precision.
STAG Source Operand Tag
FPTEMP Destination operand is converted to extended precision.
El Always 1
T Always 0

M68040 USER’S MANUAL

MOTOROLA



Table 9-16. State Frame Field Information (Concluded)

FSAVE State

Frame Field Contents

INEX (FMOVE to Register, FABS, and FNEG)
CMDREG1B Exception Instruction Command Word
FPTEMP Unrounded, Extended-Precision Intermediate Result
STAG Source Operand Tag = Normalized
El Always 1
T Always 0

INEX (FADD, FSUB, FMUL, FDIV, and FSQRT)
CMDREG3B Encoded Exception Instruction Command Word
WBTEMP WBTS, WBTE, and WBTM = intermediate result sign, biased 15-bit

exponent, and 64-bit mantissa prior to rounding.

WBTE15 Either 1 or 0, generally useless for INEX exceptions.

WBTM1, WBTMO,
SBIT

Guard, round, and sticky of intermediate result's 67-bit mantissa.

E3 Always 1
T Either 1 or O
INEX (FMOVE to Memory)
CMDREG1B FMOVE Instruction Command Word
FPTEMP Intermediate result with mantissa prior to rounding.
STAG Source Operand Tag = Normalized
El Always 1
T Always 1

NOTE: If the M68040FPSP unimplemented exception handler is used, the above state frame
information applies. The CMDREG1B or CMDREGS3B fields of the state frame are modified as
appropriate to encode the unimplemented instruction opcode. It is the user exception handler’'s
responsibility to use the E3 and E1 field encodings to recognize which state frame information
applies. When E3 =1 and E1 = 1, E3 takes priority and the state frame information for E3 =1
must be used.

MOTOROLA M68040 USER’S MANUAL 9-47



SECTION 10
INSTRUCTION TIMINGS

This section summarizes instruction timings for the M68040. The timings are divided into
two groups: integer unit and floating-point unit instruction timings. Each group is further
subdivided to separate more complex instruction timings. Each of these subdivided groups
is in alphabetical order with no reference to mode. Table 10-1 alphabetically lists
instruction timings and their location in this section.

Table 10.1. Instruction Timing Index

Instruction Page Instruction Page Instruction Page
ABCD 10-11 BRA 10-11 || EOR 10-13
ADD 10-13 || BSET 10-15 || EORI 10-13
ADDA 10-13 || BSR <offset> 10-11 || EORI #<xxx>,CCR 10-11
ADDI 10-13 BTST 10-17 || EORI #<xxx>,SR 10-11
ADDQ 10-14 || CAS 10-17 || EXG 10-11
ADDX 10-11 || CAS2 10-11 || EXT 10-11
AND 10-13 || CHK <ea>, Dn 10-17 || EXTB 10-11
ANDI 10-13 || CHK2 <ea>, Rn 10-18 || FABS 10-30,36
ANDI #<xxx>,CCR 10-11 |[CLR 10-18 || FADD 10-30,35
ANDI #<xxx>,SR 10-11 || CINV 10-8 FBcc 10-29
ASL 10-14 || CMP 10-18 || FCMP 10-30,37
ASR 10-14 || CMP2 10-19 || FDBcc 10-29
Bcc 10-11 |[CMPA.L 10-19 || FDIV 10-30,35
BCHG 10-15 || CMPI 10-19 || FMOVE 10-30,36
BCLR 10-15 || CMPM 10-11 || FMOVE FPn,<ea> 10-31
BFCHG 10-15 || CPUSH 10-8 FMOVE/FMOVEM 10-32

to/from CR
BFCLR 10-15 || DBcc 10-11 FMOVEM 10-37
BFEXTS 10-15 |[DIVS.L 10-20 || FMOVEM <ea> <list> 10-32
BFEXTU 10-15 || DIVS.W 10-20 || FMOVEM <list>,<ea> 10-32
BFFFO 10-16 || DIVSL.L 10-20 || FMUL 10-30,35
BFINS 10-16 DIVU.L 10-20 || FNEG 10-30,36
BFSET 10-15 || DIVU.W 10-20 || FNOP 10-29
BFTST 10-16 DIVUL.L 10-20 || FRESTORE <ea> 10-34

MOTOROLA M68040 USER’S MANUAL 101



Table 10.1.

Instruction Timing Index (Continued)

Instruction Page Instruction Page Instruction Page
FSAVE <ea> 10-33 || MOVEP 10-11 || ROL 10-26
FScc 10-32 || MOVEQ 10-11 || ROR 10-26
FSQRT 10-30,36 || MOVES <ea>,An 10-24 || ROXL 10-27
FSUB 10-30,35 || MOVES <ea>,Dn 10-24 || ROXR 10-27
FTRAPcc 10-29 || MOVES Rn,<ea> 10-24 || RTD 10-11
FTST <ea>, FPn 10-30 || MULS.WIL 10-25 || RTE 10-11
ILLEGAL 10-11 || MULU.W/L 10-25 |[|RTR 10-11
JMP 10-20 || NBCD 10-25 || RTS 10-11
JSR 10-21 NEG 10-26 || SBCD 10-11
LEA 10-21 NEGX 10-26 || Scc 10-27
LINK 10-11 NOP 10-11 || SuB 10-13
LSL 10-14 |[NOT 10-26 || SUBA 10-27
LSR 10-14 ||OR 10-13 || SUBI 10-13
MOVE 10-9,10 || ORI 10-13 || SUBQ 10-14
MOVE from CCR 10-21 || ORI #<xxx>,CCR 10-11 || SUBX 10-11
MOVE from SR 10-22 || ORI #<xxx>,SR 10-11 || SWAP 10-11
MOVE to CCR 10-22 || PACK 10-11 || TAS 10-28
MOVE to SR 10-22 || PEA 10-26 || TRAP# 10-11
MOVE USP 10-11 PFLUSH 10-11 || TRAPcc 10-11
MOVE16 10-11 PFLUSHA 10-11 || TRAPV 10-11
MOVEA.L 10-23 PFLUSHAN 10-11 || TST 10-13
MOVEC 10-11 || PFLUSHN (An) 10-11 || UNLK 10-11
MOVEM <list>,<ea> 10-23 PTESTR, PTESTW 10-11 || UNPK 10-11
MOVEM.L <ea><list> 10-23 || RESET 10-11

10-2

M68040 USER’S MANUAL

MOTOROLA



10.1 OVERVIEW

Refer to Section 2 Integer Unit for information on the integer unit pipeline. The <ea>
fetch timing is not listed in the following tables because most instructions require one clock
in the <ea> fetch stage for each memory access to obtain an operand. An instruction
requires one clock to pass through the <ea> fetch stage even if no operand is fetched.
Table 10-2 summarizes the number of memory fetches required to access an operand
using each addressing mode for long-word aligned accesses. The user must perform his
own calculations for <ea> fetch timing for misaligned accesses.

Table 10-2. Number of Memory Accesses

Evaluate <ea> Evaluate <ea>
And Fetch And Send To
Addressing Mode Operand Execution Stage
Dn 0 0
An 0 0
(An) 1 0
(An)+ 1 0
—(An) 1 0
(d16,AN) 1 0
d16,PC) 1 0
(xxx).W, (xxx).L 1 0
HIXXX> 0 0
(dg,An,Xn) 1 0
dg,PC,Xn) 1 0
(BR,Xn) 1 0
(bd,BR,Xn) 1 0
([bd,BR,Xn]) 2 1
([bd,BR,Xn],od) 2 1
([bd,BR],Xn) 2 1
([bd,BR],Xn,od) 2 1

In the instruction timing tables, the <ea> calculate column lists the number of clocks
required for the instruction to execute in the <ea> calculate stage of the integer unit
pipeline. Dual effective address instructions such as ABCD —(Ay),—(Ax) require two
calculations in the <ea> calculate stage and two memory fetches. Due to pipelining, the
fetch of the first operand occurs in the same clock as the <ea> calculation for the second
operand.

The execute column lists the number of clocks required for the instruction to execute in
the execute stage of the integer unit pipeline. This number is presented as a lead time and
a base time. The lead time is the number of clocks the instruction can stall when entering
the execution stage without delaying the instruction execution. If the previous instruction is
still executing in the execution stage when the current instruction is ready to move from
the <ea> fetch stage, the current instruction stalls until the previous one completes. For

MOTOROLA M68040 USER’S MANUAL 10-3



example, if an execution time is listed as 2| + 1, the lead time is two clocks and the base
time is one for a total execution time of three. The instruction can stall for two clocks
without delaying the instruction execution time.

The <ea> calculate and execute stages operate in an interlocked manner for all
instructions using the brief and full extension word formats. If an instruction using one of
these formats is stalled for more than N clocks waiting to begin execution in the execute
stage, a similar increase in the <ea> calculate time will result. For example, if the
execution time listed is 2| + 1 and the instruction stalls for three clocks, then the <ea>
calculate time increases by one clock (3 — 1 = 2 ). Write-back times are not listed because
they are system dependent and do not affect either <ea> calculate or execute stages of
the pipeline.

Not all addressing modes listed in the following tables for an instruction are valid for all
variations of the instruction. For example, the table for the integer ADD instruction lists
times for both ADD <ea>,Dn and ADD Dn,<ea>. All addressing modes listed are valid for
ADD <ea>,Dn. For ADD Dn,<ea> the following invalid modes should be ignored: An,
(d16,PC), #<xxx>, (dg,PC,Xn), and modes with BR = PC. Refer to the M68000PM/AD,
M68000 Family Programmer's Reference Manual for a complete summary of valid
instruction and addressing mode combinations. The instruction timings are based on the
following suppositions unless otherwise noted:

1. Alltimings are related to BCLK cycles and are for BR = An or suppressed. For BR =
PC, 1 and 1, clocks to the <ea> calculate and execution times unless otherwise
noted. For memory indirect postindexed with suppressed index — ([bd,BR],Xn) or
([bd,BR],Xn,0d) with Xn suppressed — times are the same as for memory indirect
preindexed with suppressed index — ([bd,BR,Xn]) or ([bd,BR,Xn],od) with Xn
suppressed.

2. All memory accesses hit in the caches; no table searches occur as a result of ATC
misses except for the operand accesses for the CAS, CAS2, and TAS instructions.
These accesses are implicitly noncachable and force external bus accesses. It is
assumed that external memory has a zero-wait state in this case and that the bus is
granted to the M68040.

The result increases access time equal to the number of clocks for the memory
access (first bus cycle if the operand access results in a line memory access) if
aligned accesses miss in the data cache. As an approximation, this time should be
added to the execution time for each operand fetch generated by the instruction.

3. All accesses are aligned to a byte boundary that is a multiple of the operand size.
For instance, the timing for all long-word accesses assumes that the operands are
on long-word boundaries.

4. The integer execution times for floating-point instructions assume that the floating-
point unit (FPU) is idle.

10-4 M68040 USER’S MANUAL MOTOROLA



10.2 INSTRUCTION TIMING EXAMPLES

The following examples utilize the instruction timing information given in this section.
Figure 10-1 illustrates the integer unit pipeline flow for the simple code sequence listed.
The three instructions in the code sequence require only a single clock in each pipeline
stage. The TRAPF instructions are also single-clock instructions that function as
nonsynchronizing NOPs.

C1
C2

C3

C4

C5

C6

C7

<ea>

LABEL INSTRUCTION CALCULATE  EXECUTE
P1 TRAPF 1 1
A MOVE.L $1000,D0 1 1
B ADDQ.L #1,D0 1 1
C MOVE.L DO0,$1000 1 1
N1 TRAPF 1 1
N2 TRAPF 1 1

CL C €3 Cc4 C5 C6 C7
<ea>CALCULATE | PL| | A || B || c |[Ne][N2]

<ea> FETCH (Pl a8 ][c]|[n][n]
EXECUTE lpr][AaflB|[c|[nm]
WRITE-BACK

Figure 10-1. Simple Instruction Timing Example

The previous instruction (P1) finishes in the <ea> calculate.

MOVE.L (A) starts in the <ea> calculate and requests an immediate extension
word for its effective address.

MOVE.L (A) starts in the <ea> fetch, which fetches the operand at $1000. ADDQ.L
(B) starts in the <ea> calculate stage with the operand encoded in the instruction.

MOVE.L (A) executes in the execute stage, storing the fetched operand in register
DO0. ADDQ.L (B) starts in the <ea> fetch with no operation performed. MOVE.L (C)
starts in the <ea> calculate requesting an immediate extension word for its effective
address.

ADDQ.L (B) executes in the execution stage, incrementing DO by 1. MOVE.L (C)
passes through the <ea> fetch with no operation performed. The next instruction
starts in the <ea> calculate stage.

MOVE.L (C) executes in the execution stage generating a write of DO to the
effective address.

The write to memory by MOVE.L (C) occurs to the data memory unit if it is not
busy. If the second TRAPF instruction (N2) in the <ea> fetch stage requires an
operand fetch, the write-back for MOVE.L (C) stalls in the write-back stage since it
Is a lower priority.

MOTOROLA M68040 USER’S MANUAL 10-5



The separation of calculation and execution in the <ea> calculate and execute stages
allows instruction reordering during compile time to take advantage of potential instruction
overlap. Figure 10-2 illustrates this overlap for an instruction requiring multiple clocks in
the execute stage and with an instruction with a long lead time. The execution time for
LEA (3L + 1) indicates that the instruction can be stalled three clocks without affecting
execution.

When the LEA (A) instruction precedes the ABCD (B) instruction, the execution stalls
during C4-C6 (equivalent to the LEA lead time) while the instruction completes in the
<ea> calculate and <ea> fetch stages. The resulting execution time for the LEA (A) and
ABCD (B) sequence is eight clocks.

However, if the LEA (C) instruction follows the ABCD (B) instruction, the LEA stalls in the
<ea> fetch instead, during C9-C11. The LEA then executes in a single clock in the
execution stage. The resulting execution time for the LEA (C) and ABCD (B) sequence is
five clocks.

<ga>

LABEL INSTRUCTION CALCULATE  EXECUTE
P1 TRAPF 1 1
A LEA  $24(PC)AL 4 3L+1
B ABCD D01 1 3
c LEA  $24(PC)AL 4 3L+1
N1 TRAPF 1 1
N2 TRAPF 1 1

CL c €3 C4 C5 C6 C7 C8 C9 ClO Cll Cl2 cCI3
<ea>CALCULATE [ PL] | Al Aa]lAallAa]llB]|[c|{c]|]c]|[c]|[n][n2]

<ea> FETCH Leoflallallallafle]lc]leullcol os][n][ne]

EXECUTE Leefla ) [al[a]lalle][s][e][c]|[c]|[n]

WRITE-BACK

NOTE: *Possible stalls in this stage.

Figure 10-2. Instruction Overlap with Multiple Clocks

10-6 M68040 USER’S MANUAL MOTOROLA



Instructions using the brief and full extension word format addressing modes cause the
<ea> calculate and execute stages to operate in an interlocked manner. When these
instructions wait to begin execution in the execution stage, there is a similar increase in
the <ea> calculate time. Figure 10-3 illustrates this effect for an ADD instruction using a
brief format extension word. The ADD instruction stalls for two clocks waiting to enter the
execution stage. Since this time exceeds by one clock the ADD lead time, the ADD
instruction remains in the <ea> calculate stage for one additional clock. If the ADD
instruction was in the execution stage for two clocks, the ABCD instruction would not have
stalled in the <ea> calculate stage.

MOTOROLA

<ea>

LABEL INSTRUCTION CALCULATE  EXECUTE
P1 TRAPF 1 1
A ABCD  DODL 3 3
B ADDL  4(A0,D3),D2 5 1 +4
N1 TRAPF 1 1
N2 TRAPF 1 1

CL C 3 c4 C C6 C7 €8 € Cl0 Cll CL2
<ea>CALCULATE [PL| | A || B |[B||[B |[B|[B]|[B|[N]][N2]

<ea> FETCH [pf[afle][8][e][e][8][8][n][n]

EXECUTE pfla]lallalle][s][e][e][n]][n]

WRITE-BACK

NOTE: *Possible stalls in this stage.

Figure 10-3. Interlocked Stages

M68040 USER’S MANUAL

10-7



10.3 CINV AND CPUSH INSTRUCTION TIMING

The following details the execution time for the CINV and CPUSH instructions used to
perform maintenance of the instruction and data caches. These two instructions sample
interrupt request (IPLx) signals on every clock instead of at instruction boundaries. While
performing the actual cache invalidate operation, the execution unit stalls to allow previous
write-backs and any pending instruction prefetches to complete. The total time required to
execute a cache invalidate instruction is dependent on the previous instruction stream.
Execution time for this instruction is independent of the selected cache combination. The
CINV instructions interlock operation of the <ea> calculate and execution stages to
prevent a previous instruction from accessing the caches until the invalidate operation is
complete. Idle refers to the number of clocks required for all pending writes and instruction
prefetches to complete. Table 10-3 list the CINV timings.

Table 10-3. CINV Timing

Instruction

Execution Time

CINVL 9 + Idle
CINVP 266 + Idle
CINVA 9 + Idle

Execution time for the CPUSH instruction is dependent on several factors, such as the
number of dirty cache lines and the size of the resulting push (either long-word or line); the
overlapping operations within the data cache and the bus controller; the distribution of
dirty cache lines; and the number of wait states in the push access on the bus. The
interaction of these factors determines the total time required to execute a CPUSH
instruction.

Since the distribution of dirty data within the cache is entirely dependent on the nature of
the user’s code, it is impossible to provide an equation for execution time that works for all
code sequences. Table 10-4 provides baseline information indicating best and worst case
execution times for the three CPUSH instruction variants. Best case corresponds to a
cache containing no dirty entries, while the worst case corresponds to all lines dirty and
requiring line pushes. In Table 10-4, line refers to the number of clocks required in the
user’s system for a line transfer. Idle refers to the number of clocks required for all
pending writes and instruction prefetches to complete.

Table 10-4. CPUSH Best and Worst Case Timing

Execution Time
Instruction Best Case Worst Case
CPUSHL 6 6 + Line + Idle
CPUSHP 267 11 + 256 x Line + Idle
CPUSHA

M68040 USER’S MANUAL

MOTOROLA



10.4 MOVE INSTRUCTION TIMING

DESTINATION
Dn (An) (An)+
SOURCE CaT§3I>ate Execute CaT§3I>ate Execute CaT(?j:slte Execute
Dn 1 1 1 1 1 1
(An) 1 1 1 1 2 1L +1
(An)+ 1 1 2 1L +1 2 1L +1
—(An) 1 1 2 1L +1 2 1L +1
(d16,AN) 1 1 2 1L +1 2 1L +1
d16,PC) 3 2L +1 3 2L +1 3 2L +1
(xxx).W, (xxx).L 1 1 1 1 2 1L +1
HIXXX> 1 1 1 1 2 1L +1
dg,An,Xn) 3 3 4 4 5 5
dg,PC,Xn) 5 1 +4 5 1. +4 6 1. +5
(b16,BR,Xn) 7 1. +6 7 1. +6 8 1L +7
(Ibd,BR,Xn]) 10 1L +9 10 1L+9 11 1L +10
(Ibd,BR,Xn],od) 11 1. +10 11 1, + 10 12 1 +11
([pd,BR],Xn) 11 3L+8 11 3L+8 12 3L+ 9
([bd,BR],Xn,o0d) 12 3L+9 12 3L+9 13 3L +10
—(An) (d16.AN) (xxx).W, (xxx).L
Dn 1 1 1 1 1 1
(An) 2 1L +1 2 1L +1 1 1
(An)+ 2 1L +1 2 IL+1 2 1L +1
—(An) 2 1L +1 2 1L +1 2 1L +1
(d16,AN) 2 1L +1 2 1L +1 2 1L +1
d16,PC) 3 2L +1 4 3L+1 4 3L+1
(xxx).W, (xxx).L 2 1 +1 2 1L +1 2 1L +1
HIXXX> 2 1L +1 2 1L +1 2 1L +1
dg,An,Xn) 5 5 5 5 5 5
dg,PC,Xn) 6 1. +5 6 1. +5 6 1. +5
(b16,BR,Xn) 8 1L +7 8 1L +7 8 1L +7
(Ibd,BR,Xn]) 11 1, + 10 11 1. +10 11 1L +10
(Ibd,BR,Xn],od) 12 1 +11 12 1 +11 12 1 +11
([pd,BR],Xn) 12 3L+9 12 3L+9 12 3L+9
([bd,BR],Xn,o0d) 13 3L +10 13 3L +10 13 3L +10

MOTOROLA

M68040 USER’S MANUAL

10-9



10.4 MOVE INSTRUCTION TIMING (Continued)

DESTINATION
(dg,An,Xn) (b16,AN,Xn) ([bd,An,Xn])
SOURCE CaT§3I>ate Execute CaT§3I>ate Execute CaT(?j:slte Execute
Dn 3 3 7 1 +6 10 1 +9
(An) 4 4 7 1. +6 10 1L +9
(An)+ 4 4 7 1 +6 10 1L +9
—(An) 4 4 7 1 +6 10 1L +9
(d16,AN) 4 4 7 1. +6 10 1L +9
d16,PC) 8 4 +4 10 4 +6 13 4 +9
(xxx).W, (xxx).L 4 4 7 1 +6 10 1L +9
HIXXX> 3 3 1 +6 10 1L +9
dg,An,Xn) 8 8 10 10 13 13
(dg,PC,Xn) 9 1 +8 11 1. +10 14 1 +13
(b16,BR,Xn) 11 1. +10 13 1 +12 16 1 +15
(Ibd,BR,Xn]) 14 1 +13 16 1 +15 19 1 +18
([bd,BR,Xn],od) 15 1 +14 17 1 +16 20 1 +19
([pd,BR],Xn) 15 3L +12 17 3L +14 20 3L +17
(Ibd,BR],Xn,od) 16 3 +13 18 3 +15 21 3 +18
([bd,An,Xn],od) ([bd,An],Xn) ([bd,An],Xn,od)
Dn 11 1 +10 11 3 +8 12 3L +9
(An) 11 1 +10 11 3L +8 12 3L+9
(An)+ 11 1. +10 11 3L +8 12 3L+9
—(An) 11 1 +10 11 3 +8 12 3L +9
(d16,AN) 11 1. +10 11 3L +8 12 3L+9
d16,PC) 14 4 +10 14 6 +8 15 6L +9
(xxx).W, (xxx).L 11 1. +10 11 3L +8 12 3L+9
HIXXX> 11 1 +10 11 3L +8 12 3L+9
(dg,An,Xn) 14 14 14 14 15 15
dg,PC,Xn) 15 1 +14 15 1 +14 16 1 +15
(b16,BR,Xn) 17 1. +16 17 1 +16 18 1 +17
([bd,BR,Xn]) 20 1 +19 20 1 +19 21 1 +20
(Ibd,BR,Xn],od) 21 1 +20 21 1L +20 22 1 +21
([pd,BR],Xn) 21 3_+18 21 3L +18 22 3L +19
([bd,BR],Xn,o0d) 22 3L +19 22 3L +19 23 3L +20

10-10

M68040 USER’S MANUAL

MOTOROLA



10.5 MISCELLANEOUS INTEGER UNIT INSTRUCTION TIMINGS

Instruction Condition <ea> Calculate Execute
ABCD Dy,Dx 1 3
—(Ay),—(Ax) 3 1 +3
ADDX Dy,Dx 1 1
—(Ay),~(Ax) 3 1 +2
ANDI #<xxx>,CCR — 1 4
ANDI #<xxx>,SR& — 9 1. +8
Bcc Branch Taken 2 2
Branch Not Taken 3 3
BRA Branch Taken 2 2
Branch Not Taken 3 3
BSR <offset> — 2 1L +1
cAs2b True 56 6L + 49
False 51 6 +44
CMPM — 3 1L+2
DBcc© False, Count > -1 3 3
False, Count = -1 4 4
True 4 4
EORI #<xxx>,CCR — 1 4
EORI #<xxx>,SR2& — 9 1. +8
EXG Dy,Dx 1 1
Ay,Ax 2 1L +1
Dy,Ax 1 1
EXT Word 1 2
Long Word 1 1
EXTB Long Word 1 1
ILLEGAL® A-Line Unimplemented 16 16
F-Line Unimplemented 16 16
LINK — 3 2L +1
MOVE USP USP,An 3 2L +1
An,Uspa 7 1. +6
MOVE16¢.d (AX)+,(Ay)+ 6 1L+7
xxx.L,(An) 4 7
xxx.L,(An)+ 5 8
(An),xxx.L 4 7
(An)+,xxx.L 4 7
MOVECH Rn,Rc 7 1. +6
Rc,Rn 11 1. +10
MOVEP ¢ MOVEP.W Dn,d16(An) 11 2L +9
MOVEP.L Dn,d16(An) 13 2L +11
MOVEP.W d16(An),Dn 4 2L+5
MOVEP.L d16(An),Dn 8 2L +8
MOVEQ — 1 1
NOoP& — 8 1 +7

MOTOROLA

M68040 USER’S MANUAL

10-11



10.5 MISCELLANEOUS INTEGER UNIT INSTRUCTION TIMINGS

10-12

(Continued)

Instruction Condition <ea> Calculate Execute
ORI #<xxx>,CCR — 1 4
ORI #<xxx>,SR& — 9 1. +8
PACK Dx,Dy,#<xxx> 1 3
—(Ay),—(AX),H<xxx> 3 2L +3
PFLUSHP — 11 1, + 10
PFLUSHAP — 11 1, +10
PFLUSHAND — 27 1 +26
PFLUSHN (An)P — 11 1, + 10
PTESTR, PTESTW® — 25 11 +14
RESET?@ — 521 521
RTDC — 6 1. +5
RTE& Stack Format $0 2 13
Stack Format $1 4 23
Stack Format $2 2 14
Stack Format $3 3 20
Stack Format $4 2 15
Stack Format $7 4 23
RTRC — 7 1. +6
RTSC — 5 5
SBCD Dy,Dx 1 3
—(Ay),~(Ax) 3 1 +3
SUBX Dy,Dx 1 1
—(Ay),—(Ax) 3 1L +2
SWAP — 1 2
TRAP#& — 16 16
TRAPccf Taken 19 19
Not Taken 5 5
TRAPVf Taken 19 19
Not Taken 5 5
UNLK — 2 1 +1
UNPK Dx,Dy,# 1 4
NOTES:

a. Times listed are minimum. This instruction interlocks the <ea> calculate and execute
stages and synchronizes some portions of the processor before execution.

b. Times listed are typical. This instruction interlocks the <ea> calculate and execute stages

and synchronizes some portions of the processor before execution.

This instruction interlocks the <ea> calculate and execute stages.

Successive in-line MOVEL16 instructions each add eight clocks to the <ea> calculate and

execute times.

e. Typical measurement for three-level table search with no descriptor writes, no entries
cached, and four-clock memory access times.

f. This instruction interlocks the <ea> calculate and execute stages. For the exception taken,
this instruction also synchronizes some portions of the processor before execution; times
listed are minimum in this case.

ao

M68040 USER’S MANUAL MOTOROLA



10.6 INTEGER UNIT INSTRUCTION TIMINGS

ADD, AND, EOR, OR,

ADDA

ADDI, ANDI, EORI,

SUB, TST ORI, SUBI
Addressing <ea> Execute <ea> Execute <ea> Execute
Mode Calculate Calculate Calculate

Dn 1 1 1 2 1 1
An 1 1 1 1 — —
(An) 1 1 1 2 1 1
(An)+ 1 1 2 1L +2 2 1L +1
—(An) 1 1 2 1L +2 2 1L +1
(d16,An) 1 1 2 1L +2 2 1L +1
(d16,PC) 3 2L +1 3 2L +2 — —
(xxx).W, (xxx).L 1 1 1 2 2 1L +1
HIXXX> 1 1 1 1 — —
(dg,An,Xn) 3 3 4 5 3 3
dg,PC,Xn) 5 1. +4 5 1 .+5 — —
(BR,Xn) 6 1L +5 6 1. +6 1. +6
(bd,BR,Xn) 7 1L +6 7 1L +7 8 1L +7
([bd,BR,Xn]) 10 1 +9 10 1. +10 10 1 +10
([bd,BR,Xn],od) 11 1 +11 11 1L +12 11 1L+11
(Ibd,BR],Xn) 11 3L+8 11 3L+9 11 3L+9
(Ibd,BR],Xn,od) 12 3L +10 12 3L +11 12 3L +10

MOTOROLA

M68040 USER’S MANUAL

10-13



10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

ADDQ, SUBQ ASL ASR, LSL, LSR
Addressing <ea> Execute <ea> Execute <ea> Execute
Mode Calculate Calculate Calculate
Dn 1 1 1 314" 1 213"
An 1 1 — — — —
(An) 1 1 1 3 1 2
(An)+ 2 1L +1 1 3 1 2
—(An) 2 1 +1 1 3 1 2
(d16,An) 2 1L +1 1 3 1 2
d16,PC) — — — — — —
(xxx).W, (xxx).L 1 1 1 3 1 2
H#IXXX> — — — — — —
(dg,An,Xn) 3 3 3 5 3 4
dg,PC,Xn) — — — — _ _
(BR,Xn) 7 1. +6 1. +8 1L +7
(bd,BR,Xn) 8 1L+7 8 1L+9 8 1. +8
([bd,BR,Xn]) 10 1L +9 10 1 +11 10 1 +10
([bd,BR,Xn],od) 11 1 +11 11 1L +12 11 1L +11
(Ibd,BR],Xn) 11 3L+8 11 3L +10 11 3L+9
(Ibd,BR],Xn,od) 12 3L +10 12 3L +11 12 3L +10
*Immediate count specified for shift count/shift count specified in register, respectively.
10-14 M68040 USER’'S MANUAL MOTOROLA



10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

BCHG, BCLR, BSET2 BFCHG, BFCLR, BFSETP:C BFEXTS, BFEXTUb.d
Addressing <ea> Execute <ea> Execute <ea> Execute
Mode Calculate Calculate Calculate

Dn 1 3/4 3/4€ 6/7¢ 1/2¢€ 4/5®
An — — — — — —
(An) 1 3/4 9 2L +8 9 2L +7
(An)+ 1 3/4 — — — —
—(An) 1 3/4 — — — —
(d16,AN) 2/1 1. +3/4 9 2L +8 9 2L +7
(d16,PC) — — — — 10 3L +7
(xxx).W, (xxx).L 211 1. +3/4 9 2. +8 9 2L +7
HIXXX> — — — — — —
dg,An,Xn) 3 5/6 10 11 10 10
dg,PC,Xn) — — — — 11 1L +10
(BR,Xn) 1. +8/1L+9 13 1 +13 13 1. +12
(bd,BR,Xn) 8 1L +9/1 +10 14 1+ 14 14 1 +13
(Ibd,BR,Xn]) 10 1 +11/1 +12 16 1 +16 16 1 +15
([pd,BR,Xn],od) 11 1. +12/1 +13 17 1 +17 17 1. +16
(Ibd,BR],Xn) 11 3L +10/3 +11 17 3 +15 17 3. +14
(Ibd,BR],Xn,od) 12 3L +11/3 +12 18 3L +16 18 3L +15

NOTES:

a. Bitinstruction <ea> calculate and execute times T1/T2 apply to #<xxx>/Dn bit numbers.
b. This instruction interlocks the <ea> calculate and execute stages.
c. If the bit field spans a long-word boundary, add ten and nine clocks to the <ea> calculate and execute times,

respectively. Two memory addresses are accessed in this case.

d. If the bit field spans a long-word boundary, add two clocks to the execute time. Two memory addresses are
accessed in this case.
e. Immediate count specified for both width and offset and width and/or offset specified in register, respectively.

MOTOROLA

M68040 USER’S MANUAL

10-15



10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

BFFFO&D BFINS &C BFTST2
Addressing <ea> Execute <ea> Execute <ea> Execute
Mode Calculate Calculate Calculate

Dn 3/4d 6/74 2/3d 5/64 1/2d 3/4d
An — — — — — —
(An) 9 2L +9 9 2L +7 9 2L +7
(An)+ — — — — — —
—(An) — — — — — —
(d16,An) 9 2L +9 9 2L +7 9 2L +7
d16,PC) 10 3L+9 — — 10 3L+7
(xxx).W, (xxx).L 9 2L+9 9 2L +7 9 2L +7
H#IXXX> — — — — — —
(dg,An,Xn) 10 12 10 10 10 10
(dg,PC,Xn) 11 1 +12 — — 11 1. +10
(BR,Xn) 13 1. +14 13 1L +12 13 1L +12
(bd,BR,Xn) 14 1 +15 14 1 +13 14 1 +13
([bd,BR,Xn]) 16 1 +17 16 1 +15 16 1 +15
([bd,BR,Xn],od) 17 1 +18 17 1. +16 17 1. +16
(Ibd,BR],Xn) 17 3 +16 17 3. +14 17 3. +14
([bd,BR],Xn,o0d) 18 3L +17 18 3L+15 18 3L+15

NOTES:

a. This instruction interlocks the <ea> calculate and execute stages.
b. If the bit field spans a long-word boundary, add two clocks to the execute time. Two memory addresses are
accessed in this case.
c. Ifthe bit field spans a long-word boundary, add seven clocks to both the <ea> calculate and execute times.
Two memory addresses are accessed in this case.
d. If the bit field spans a long-word boundary, add ten and nine clocks to both the <ea> calculate and execute
times, respectively. Two memory addresses are accessed in this case.

10-16

M68040 USER’S MANUAL

MOTOROLA



10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

BTST cAsP CHKC.d (<ea>, Dn)
Addressing <ea> Execute <ea> Execute <ea> Execute
Mode Calculate Calculate Calculate

Dn 1 1/28 — — 8 1 +7
An — — — — — —
(An) 1 1/2 36 6L + 31 9 2L+7
(An)+ 1 1/2 37 5. +31 9 2L+7
—(An) 1 1/2 37 5. + 31 9 2L+7
(d16,AN) 2/1 1L +1/2 37 5. +31 9 2L+7
d16,PC) 3 2L +12+2 — — 10 3L+7
(xxx).W, (xxx).L 211 1 +1/2 36 5. +31 9 2L +7
HIXXX> — — — — 8 1L +7
dg,An,Xn) 3 3/4 36 36 10 10
dg,PC,Xn) 5 1. +4/1+5 — — 11 1. +10
(BR,Xn) 716 1L +6/1L+7 36 1. +35 12 1L +11
(bd,BR,Xn) 8/7 1 +7/1 +8 37 1L +36 13 1L +12
([bd,BR,Xn]) 10/9 1. +9/1 +10 42 40 16 1 +15
([pd,BR,Xn],od) 11/10 1. +10/1 +11 42 1L +41 17 1. +16
([bd,BR],Xn) 11/10 3. +8/3+9 42 3. +38 17 3. +14
([bd,BR],Xn,od) 12/11 3L+9/3+10 42 3L +39 18 3L+15

NOTES:

a. Bitinstruction <ea> calculate and execute times T1/T2 apply to #<xxx>/Dn bit numbers.

b. Times listed are typical. This instruction interlocks the <ea> calculate and execute stages and synchronizes
some portions of the processor before execution.

c. This instruction interlocks the <ea> calculate and execute stages.

d. Times listed are for Dn within bounds. This instruction interlocks the <ea> calculate and execute stages.

MOTOROLA

M68040 USER’S MANUAL

10-17



10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

CHK2" (<ea>, Rn) CLR CMP
Addressing <ea> Execute <ea> Execute <ea> Execute
Mode Calculate Calculate Calculate
Dn — — 1 1 1 1
An — — — — 1 1
(An) 11 2L+9 1 1 1 1
(An)+ — — 1 1 1 1
—(An) — — 1 1 1 1
d16,An) 11 2L+9 1 1 1 1
d16,PC) 12 3L+9 — — 3 2L +1
(xxx).W, (xxx).L 11 2L+9 1 1 1 1
HIXXX> — — — — 1 1
dg,An,Xn) 13 1 +12 3 3 3 3
(dg,PC,Xn) 14 2L +12 — — 5 1 +4
(BR,Xn) 15 2L +13 6 1. +5 6 1. +5
(bd,BR,Xn) 16 2L +14 7 1L +6 7 1L +6
([bd,BR,Xn]) 19 2L+ 17 9 1. +8 9 1. +8
([bd,BR,Xn],od) 20 2L +18 10 1L +9 10 1L+9
(Ibd,BR],Xn) 20 4 +16 10 3L+7 10 3L+7
([bd,BR],Xn,od) 21 4 +17 11 3L+8 11 3L+8

*This instruction interlocks the <ea> calculate and execute stages. Timing for Dn within bounds, UB > LB. For UB <
LB, add three clocks to <ea> calculate and execute times. For Rn = An, add one clock to <ea> calculate and execute

times.

10-18

M68040 USER’S MANUAL

MOTOROLA



10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

CMPA.L CMPI cmp2”
Addressing <ea> Execute <ea> Execute <ea> Execute
Mode Calculate Calculate Calculate

Dn 1 1 1 1 — —
An 1 1 — — — —
(An) 1 1 1 1 13 20 +11
(An)+ 2 1L +1 2 1L +1 0 0
—(An) 2 1L +1 2 1L +1 0 0
(d16,An) 2 1L +1 2 1L +1 13 2L +11
(d16,PC) 3 2L+1 3 2L +1 14 3L +11
(xxx).W, (xxx).L 1 1 2 1L +1 13 2L +11
HIXXX> 1 1 — — — —
(dg,An,Xn) 3 3 3 3 15 1 +14
dg,PC,Xn) 5 1. +4 5 2L+4 16 2+ 14
(BR,Xn) 6 1. +5 6 2L +5 17 2L +15
(bd,BR,Xn) 7 1. +6 7 2L +6 18 2| +16
([bd,BR,Xn]) 9 1 +8 9 2L +8 21 2 +19
([bd,BR,Xn],od) 10 1. +9 10 2L +9 22 2L +20
(Ibd,BR],Xn) 10 3L+7 10 4 +7 22 4 +18
([bd,BR],Xn,o0d) 11 3L+8 11 4. +8 23 4. +19

*Times listed are typical.

MOTOROLA M68040 USER’S MANUAL 10-19



10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

DIVS.W, DIVUW' DIVS.L, DIVU.L, | IMP
DIVSL.L, DIVUL.L
Addressing <ea> Execute <ea> Execute <ea> Execute
Mode Calculate Calculate Calculate

Dn 8 27 9 44 — —
An — — — — — —
(An) 8 27 9 44 3 2L +1
(An)+ 8 27 9 44 _ _
—(An) 8 27 9 44 _ _
d16,An) 8 27 11 2L +44 4 3L+1
(d16,PC) 11 3L +27 12 3L+44 6 50+1
(xxx).W, (xxx).L 8 27 11 2 +44 3 2L +1
H<XXX> 8 27 10 1 +44 — —
(dg,An,Xn) 11 30 12 47 6 6
dg,PC,Xn) 12 1 +30 13 1L +47 7 1 +6
(BR,Xn) 13 1L +31 14 1_+48 8 1L+7
(bd,BR,Xn) 14 1 +32 15 1L +49 9 1 +8
(Ibd,BR,Xn]) 17 1 +35 18 1 +52 12 1 +11
([bd,BR,Xn],od) 18 1. +36 19 1_+53 12 1L+11
(Ibd,BR],Xn) 18 3 +34 19 3. +51 13 3. +10
(Ibd,BR],Xn,od) 19 3L +35 20 3L +52 14 3L+ 11

*This instruction interlocks the <ea> calculate and execute stages. Execution time for a DIV/0 exception taken and
exception processing is approximately 16 + <ea> calculate clocks. For example, DIV.W #0,Dn takes approximately
24 clocks in both the <ea> calculate and execute times to execute the divide instruction, perform exception stacking,
fetch the exception vector, and prefetch the next instruction.

10-20

M68040 USER’S MANUAL

MOTOROLA



10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

JSR LEA MOVE from CCR
Addressing <ea> Execute <ea> Execute <ea> Execute
Mode Calculate Calculate Calculate
Dn — — — — 1 2
An — — — — — —
(An) 3 2L +1 1 1 1 2
(An)+ — — — — 1 2
—(An) — — — — 1 2
(d16,An) 4 3L+1 2 1L +1 1 2
d16,PC) 6 50+1 4 3L+1 — —
(xxx).W, (xxx).L 3 2L +1 1 1 1 2
H#IXXX> — — — — — —
(dg,An,Xn) 6 6 4 4 3 4
dg,PC.Xn) 7 1. +6 5 1 +4 — _
(BR,Xn) 8 1L +7 6 1. +5 6 1. +6
(bd,BR,Xn) 9 1 +8 7 1L +6 7 1L +7
([bd,BR,Xn]) 12 1 +11 9 1. +8 10 1 +10
([bd,BR,Xn],od) 13 1 +12 10 1L +9 11 1L +11
(Ibd,BR],Xn) 13 3. +10 10 3L+7 11 3L+9
(Ibd,BR],Xn,od) 14 3 +11 11 3 +8 12 3L +10
MOTOROLA M68040 USER’'S MANUAL 10-21



10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

MOVE to CCR MOVE from SR@ MOVE to SRP
Addressing <ea> Execute <ea> Execute <ea> Execute
Mode Calculate Calculate Calculate

Dn 1 2 2 1L +2 9 1. +8
An — — — — — —
(An) 1 2 2 1L +2 10 2L +8
(An)+ 1 2 2 1 L+2 10 2L +8
—(An) 1 2 2 1L +2 10 2. +8
(d16,An) 1 2 2 1L +2 10 2L +8
d16,PC) 3 2L +2 — — 11 3L+8
(xxx).W, (xxx).L 1 2 2 1L +2 10 2. +8
HIXXX> 1 2 — — 9 1. +8
(dg,An,Xn) 3 4 4 5 11 11
(dg,PC,Xn) 4 1. +4 — — 12 1L +11
(BR,Xn) 6 1. +6 6 1. +6 — —
(bd,BR,Xn) 7 1 +7 7 1L +7 14 1 +13
([bd,BR,Xn]) 10 1 +10 10 1 +10 17 1 +16
([bd,BR,Xn],od) 11 1 +11 11 1L +11 18 1L +17
(Ibd,BR],Xn) 11 3L+9 11 3L+9 18 3. +15
(Ibd,BR],Xn,od) 12 3L +10 12 3L +10 19 3L +16
NOTES:

a. This instruction interlocks the <ea> calculate and execute stages.

b. Times listed are minimum. This instruction interlocks the <ea> calculate and execute

stages and synchronizes some portions of the processor before execution.
10-22 M68040 USER’'S MANUAL MOTOROLA




10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

MOVEA.L 2 MOVEM <list>,<ea>P.C MOVEM.L <ea> <list>P.C
Addressing <ea> Execute <ea> Execute <ea> Execute
Mode Calculate Calculate Calculate

Dn 1 1 — — — —

An 1 1 — — — —

(An) 1 1 2+D'+A |1 +1+D+A || 3+D'+A |1 +2+D +A
(An)+ 1 1 — — 3+D'+A |1 +2+D'+A
—(An) 1 1 2+D'+A" |1 +1+D+A — —

d16,An) 1 1 2+D'+A |1 +1+D'+A || 3+D'+A |1 +2+D +A
d16,PC) 3 2L +1 — — 4+D'+A |[2L+2+D'+A
(xxx).W, (xxx).L 1 1 2+D'+A" |1 +1+D'+A" || 3+D'+A |1 .+2+D'+A
HIXXX> 1 1 — — — —

(dg,An,Xn) 4 4 9+D'+A" |2L+7+D'+A || 1I0+D'+A |2.+8+D' +A
dg,PC,Xn) 5 1. +4 — — 11+D'+A (3.+8+D'+A
(BR,Xn) 6 1 +5 11+D'+A |3 +8+D'+A || 12+D'+A |3 +9+D +A’
(bd,BR,Xn) 7 1. +6 12+D'+A" |3L+9+D'+A" || 13+D'+A |3 +10+D"'+A’
([pd,BR,Xn]) 10 1L +9 15+D'+A" [3L+12+D'+A'|| 16+D'+A |3_.+13+D'+ A
([pd,BR,Xn],od) 11 1L +10 16+D'+A" |3 +13+D'+A'|| 17+D'+A |3_.+14+D'+ A
(Ibd,BR],Xn) 11 3L+8 16+D' +A" |5 +11+D' +A'|| 17+D'+A |5 +12+D' + A’
([bd,BR],Xn,od) 12 3L+9 17+D'+ A" [5.+12+D'+A'|| 18+D'+A |5 +13+D'+ A’

NOTES:

a. Except for Dn and #<xxx> cases, add one clock to execute times for MOEA.W.

b. This instruction interlocks the <ea> calculate and execute stages.
c. D'and A'indicate the number of data and address registers, respectively (if no data registers specified the
number one). For MOVEM.W <ea>,<list>, add N — 2 and N clocks to <ea> calculate and execute times,

respectively, for N address registers specified.

MOTOROLA

M68040 USER’S MANUAL

10-23



10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

MOVES <ea>,An" MOVES <ea>,Dn" MOVES Rn,<ea>"
Addressing <ea> Execute <ea> Execute <ea> Execute
Mode Calculate Calculate Calculate
Dn — — — — — —
An — — — — — —
(An) 28 4 +24 20 4 +19 13 4 +9
(An)+ 28 4 +24 20 4 +19 13 4 +9
—(An) 17 2. +15 11 12 11 2L +9
(d16,AN) 29 4 +24 21 4 +19 14 4 +9
d16,PC) — — — — — —
(}xX).W, (xxx).L 17 2L +15 11 4. +10 11 2L +9
HIXXX> — — — — — —
(dg,An,Xn) 29 1L +27 21 1 +22 14 1 +12
dg,PC,Xn) — — — — _ _
(BR,Xn) 21 2L +19 15 2L +14 15 2L +13
(bd,BR,Xn) 22 2 +20 16 2L +15 16 2L +14
(Ibd,BR,Xn]) 35 2. +32 26 2L +27 21 2L +17
([pd,BR,Xn],od) 31 2L +29 23 2L +24 20 2L +18
(Ibd,BR],Xn) 36 4 +31 27 4 +26 21 4 +16
(Ibd,BR],Xn,od) 32 4 +28 24 4 +23 21 4 +17

*Times listed are typical. This instruction interlocks the <ea> calculate and execute stages and synchronizes some
portions of the processor before execution.

10-24 M68040 USER’S MANUAL MOTOROLA



10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

MULS.W/L”

MULU.W/L " NBCD
Addressing <ea> Execute <ea> Execute <ea> Execute
Mode Calculate Calculate Calculate
Dn 1 16/20 1 14/20 1 3
An — — — — — —
(An) 1 16/20 1 14/20 1 2
(An)+ 1 16/20 1 14/20 1 2
—(An) 1 16/20 1 14/20 1 2
d16,An) 1/2 16/20 1/2 14/20 1 2
d16,PC) 3 2L +16/2 +20 3 14/20 — —
(xxX). W, (xxx).L 12 16/20 12 14/20 1 2
HIXXX> 1 16/20 1 14/20 — —
dg,An,Xn) 3 18/22 3 16/22 3 4
(dg,PC,Xn) 5 1 +19/1 +23 5 1 +17/1 +23 — —
(BR,Xn) 6 1. +20/1 +24 6 1. +18/1 +24 6 1. +6
(bd,BR,Xn) 7 1 +21/1 +25 7 1 +19/1 +25 7 1L +7
(Ibd,BR,Xn]) 9 1 +23/1 +27 9 1 +21/1 +27 9 1L +9
([pd,BR,Xn],od) 10 1. +24/1 +28 10 1. +22/1 +28 10 1. +10
([bd,BR],Xn) 10 3L +22/3 +26 10 3L +20/3+26 10 3L+8
(Ibd,BR],Xn,od) 11 3L +23/3 +27 11 3L +21/3 +27 11 3L+9

*Multiply <ea> calculate and execute times; T1/T2 apply to word/long-word operand size.

MOTOROLA

M68040 USER’S MANUAL

10-25



10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

NEG, NEGX, NOT PEA ROL, ROR
Addressing <ea> Execute <ea> Execute <ea> Execute
Mode Calculate Calculate Calculate

Dn 1 1 — — 1 34"
An — — — — — —
(An) 1 1 2 1L +1 1 3
(An)+ 1 1 — — 1 3
—(An) 1 1 — — 1 3
d16.An) 1 1 2 1L +1 1 3
d16,PC) — — 4 3L+1 — —
(xxx).W, (xxx).L 1 1 2 1L +1 1 3
HIXXX> — — — — — —
(dg,An,Xn) 3 3 4 1L +3 3 5
dg,PC,Xn) — — 6 2L+ 4 — —
(BR,Xn) 6 1. +5 7 2L +5 6 1L +7
(bd,BR,Xn) 7 1. +6 8 2L +6 7 1. +8
([bd,BR,Xn]) 9 1. +8 10 2L +8 9 1 +10
([pd,BR,Xn],od) 10 1L+9 11 2L +9 10 1L +11
(Ibd,BR],Xn) 10 3L+7 11 4 +7 10 3L+9
(Ibd,BR],Xn,od) 11 3 +8 12 4 +8 11 3L +10

*Immediate count specified for shift count/shift count specified in register, respectively.

10-26

M68040 USER’S MANUAL

MOTOROLA



10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

ROXL, ROXR Scc SUBA
Addressing <ea> Execute <ea> Execute <ea> Execute
Mode Calculate Calculate Calculate

Dn 1 5/6 1 2 1 1
An — — — — 1 2
(An) 1 2 1 2 1 2
(An)+ 1 2 1 2 2 1L +2
—(An) 1 2 1 2 2 1 +2
d16,An) 1 2 1 2 2 1 +2
(d16,PC) — — — — 3 2L +2
(xxx).W, (xxx).L 1 2 1 2 1 2
HIXXX> — — — — 1 2
(dg,An,Xn) 3 4 4 5 4 5
(dg,PC,Xn) — — — — 5 1. +5
(BR,Xn) 6 1. +6 6 1. +6 6 1. +6
(bd,BR,Xn) 7 1 +7 7 1L +7 7 1L +7
([bd,BR,Xn]) 9 1L +9 10 1 +10 9 1. +9
([bd,BR,Xn],od) 10 1L +10 11 1L +11 10 1. +10
([bd,BR],Xn) 10 3L+8 11 3L+9 10 3L+8
(Ibd,BR],Xn,od) 11 3L +9 12 3L +10 11 3L+9

*Immediate count specified for shift count/shift count specified in register, respectively.

MOTOROLA

M68040 USER’S MANUAL

10-27



10.6 INTEGER UNIT INSTRUCTION TIMINGS (Concluded)

*

TAS
Addressing <ea> Execute <ea> Execute <ea> Execute
Mode Calculate Calculate Calculate

Dn 1 2

An — —

(An) 26 2L +24

(An)+ 26 2L +24

—(An) 26 2L +24

(d16,An) 26 2L +24

d16.PC) — —

(xxx).W, (xxx).L 26 2L +24

H#IXXX> — —

(dg,An,Xn) 27 27

(dg,PC,Xn) — —

(BR,Xn) 30 1. +28

(bd,BR,Xn) 31 1L +29

([bd,BR,Xn]) 33 33

([bd,BR,Xn],od) 35 34

([bd,BR],Xn) 34 3L+31

([bd,BR],Xn,o0d) 36 3L+32

*Times listed are typical. This instruction interlocks the <ea> calculate and execute stages and synchronizes some
portions of the processor before execution.

10-28

M68040 USER’S MANUAL

MOTOROLA



10.7 FLOATING-POINT UNIT INSTRUCTION TIMINGS

For floating-point instructions in the MC68040, the integer pipeline passes the decoded
instruction to the floating-point unit for execution, then supports the floating-point unit by
calculating effective addresses and transferring operands to and from this unit. For these
instructions, the execution times listed in the integer unit timing section show the overhead
required by the integer unit to support the floating-point unit, assuming the floating-point
unit is not busy with the previous floating-point instructions.

Times in parentheses are the total time that that stage uses to execute an instruction even
though the stage can pass data to the next stage early. The order of operands is generally
not significant for timing purposes. Different rounding modes (i.e., round to zero, etc.)
never incur a time penalty. Instructions with an S or D (e.g., FSADD) have the same effect
as setting the rounding precision to S or D. All FMOVEM instructions wait for the pipe to
idle before starting. Refer to Section 9 Floating-Point Unit (MC68040 Only) for details
on the operation of the floating-point unit pipeline.

10.7.1 Miscellaneous Integer Unit Support Timings

MOTOROLA

Instruction Condition <ea> Calculate Execute
FBcc Taken 7 7
Not Taken 6 6
FDBcc cc True 9 1L +7
cc False 11 1L +9
FNOP FPU Idle 6 6
FTRAPcc Not Taken 6 1L +5

M68040 USER’S MANUAL

10-29



10.7.2 Integer Unit Support Timings

FABS, FADD, FCMP, FDIV, FMOVE, FMUL, FNEG, FSQRT, FSUB, FTST <ea>,FPn"

Addressing Byte and Word Long Word Single Precision
Mode <ea> Execute <ea> Execute <ea> Execute
Calculate Calculate Calculate
FPn — — — — — —
Dn 2 1L +2 2 1L +2 2 1L +2
(An) 2 2 2 2 2 2
(An)+ 2 2 2 2 2 2
—(An) 2 2 2 2 2 2
d16.An) 2 2 2 2 2 2
d16,PC) 4 2L+2 4 2L +2 4 2L +2
(xxx).W, (xxx).L 3 1L +2 3 1L +2 3 1L +2
HIXXX> 5 3L+2 3 1L +2 3 1L +2
dg,An,Xn) 5 5 5 5 5 5
(dg,PC,Xn) 6 1. +5 6 1L +5 6 1. +5
(An,Xn) 7 1. +6 7 1L +6 7 1. +6
(bd,An,Xn) 8 1L+7 8 1L+7 8 1L +7
([pd,An,Xn]) 11 1L +10 11 1. +10 11 1. +10
([bd,An,Xn],od) 12 1 +11 12 1 +11 12 1 +11
([bd,An],Xn) 12 3L+9 12 3L+9 12 3L+9
([pd,An],Xn,od) 13 3L +10 13 3L+10 13 3L+10
Double Precision Extended Precision

FPn — — 2 1L +2
Dn — — — —
(An) 2 2 3 3
(An)+ 2 2 3 3
—(An) 2 2 3 3
(d16,AN) 2 2 3 3
d16,PC) 4 1L +3 5 1. +4
(xxx).W, (xxx).L 3 1L +2 4 1L +3
HIXXX> 4 2L +2 5 2L +3
(dg,An,Xn) 5 5 6 6
dg,PC,Xn) 6 6 7 7
(An,Xn) 7 1. +6 8 1L +7
(bd,An,Xn) 8 1L+7 9 1. +8
([bd,An,Xn]) 11 1. +10 12 1 +11
([pd,An,Xn],od) 12 1L +11 13 1L +12
([bd,An],Xn) 12 3L+9 13 3L +10
([bd,An],Xn,od) 13 3L+ 10 14 3L+11

*For BR = PC, add one clock to both <ea> calculate and execute times. Timings are for an idle FPU.

10-30

M68040 USER’S MANUAL

MOTOROLA



10.7.2 Integer Unit Support Timings (Continued)

FMOVE FPn,<ea>"

Addressing Byte, Word, and Long Word || Single and Double Precision Extended Precision
Mode <ea> Execute <ea> Execute <ea> Execute
Calculate Calculate Calculate
Dn 9 9L +3 2 1L +3 — —
An — — — — — —
(An) 8 9L+2 2 1L +2 4 1L +3
(An)+ 8 9L+2 2 1L +2 4 1. +3
—(An) 8 9L +2 2 1L +2 4 1. +3
(xxx).W, (xxx).L 8 9L+2 3 1L +2 4 1L +3
HIXXX> — — — — — —
(d16,AN) 8 9L +2 2 1L +2 4 1. +3
d16,PC) — — — — — —
dg,An,Xn) 8 6L +5 5 5 6 6
dg,PC,Xn) — — — — — —
(An,Xn) 4. +6 7 1. +6 8 1L+7
(bd,An,Xn) 8 4_+7 8 1L+7 9 1. +8
([pd,An,Xn]) 11 1L +10 11 1. +10 12 1L +11
([bd,An,Xn],od) 12 1 +11 12 1 +11 13 1L +12
([bd,An],Xn) 12 3L+9 12 3L+9 13 3L +10
([pd,An],Xn,od) 13 3L +10 13 3L+10 14 3L+11

*Timings are for an idle floating-point unit.

MOTOROLA

M68040 USER’S MANUAL

10-31



10.7.2 Integer Unit Support Timings (Continued)

FMOVE/FMOVEM to/from FMOVEM <list>,<ea> FScca
Addressing 1 Control Register@ and <ea> <list>&b

ode CaTcejlialte Execute CaTcejlialte Execute CaTcejli';lte Execute
Dn 2 1 +2 — — 5 6
An 2 1L +2 — — — —
(An) 4 2L +3 17 2L +15 4 5
(An)+ 4 2L +3 17 2L +15 6 2L +5
—(An) 5 3L+3 16 1. +15 6 2L +5
(xXxx).W, (xxx).L 4 2L+3 19 3L+15 4 5
HIXXX> 4 2L +3 19 1 +17 — —
d16.An) 4 2L +3 17 2L +15 4 5
(d16,PC) 5 4. +3 — — — —
dg,An,Xn) 5 6 19 18 7 8
dg,PC,Xn) 6 1. +6 20 1 +18 — —
(An,Xn) 7 1L+7 20 1L +19 9 1L+9
(bd,An,Xn) 8 1 +8 21 1L +20 10 1L +10
([bd,An,Xn]) 11 1L +11 25 1 +23 13 1 +13
([pd,An,Xn],od) 12 1. +13 25 1L +24 14 1. +14
([bd,An],Xn) 12 3L +10 26 3L+22 14 3L+12
([bd,An],Xn,od) 13 3L+12 26 3L+23 15 3L +13
NOTES:

a. Timings are for an idle floating-point unit. Same as FMOVE <ea>,FPCR.
b. Add three clocks to both <ea> calculate and execute times for each additional floating-point register. Add one
clock to both <ea> calculate and execute times for dynamic register list.

10-32 M68040 USER’S MANUAL MOTOROLA



10.7.2 Integer Unit Support Timings (Continued)

FSAVE <ea>"
Addressing Idle or Null Short Long

ode CaT::sSIthe Execute CaT(‘:st;te Execute CaT(?j:slte Execute
FPn — — — — — —
Dn — — — — — —
An — — — — — —
(An) 12 1 +11 33 1 +32 50 1L +49
(An)+ — — — — — —
—(An) 11 11 32 32 49 49
(xxX).W, (xxx).L 13 1 +11 34 1L +32 51 1 +49
HIXXX> — — — — — —
d16,An) 12 L +11 33 1. +32 50 1. +49
d16.PC) — — — — — —
(dg,An,Xn) 13 13 34 34 51 51
dg,PC,Xn) — — — — — —
(An,Xn) 16 1+ 14 37 1 +35 54 1L +52
(bd,An,Xn) 17 1L +15 38 1. +36 55 1 +53
([bd,An,Xn]) 19 1, +18 40 1 +39 57 1L +56
(Ibd,An,Xn],od) 21 1 +19 42 1L+ 40 59 1 +57
([pd,An],Xn) 20 3L +17 41 3L +38 58 3L +55
([bd,An],Xn,od) 22 3L +18 46 3L +42 65 3L +61

*Timings are for an idle floating-point unit.

MOTOROLA

M68040 USER’S MANUAL

10-33



10.7.2 Integer Unit Support Timings (Concluded)

FRESTORE <ea>"
Addressing Idle or Null Short Long

ode CaT::sSIthe Execute CaT(‘:st;te Execute CaT(?j:slte Execute
FPn — — — — — —
Dn — — — — — —
An — — — — — —
(An) 13 1 +12 26 1. +25 40 1+ 39
(An)+ 13 1 +12 26 1 +25 40 1, +39
—(An) — — — — — —
d16.An) 13 1L +12 26 1. +25 40 1+ 39
(d16,PC) — — — — — —
(xxx).W, (xxx).L 14 1L +12 27 1. +25 41 1L +39
HIXXX> — — — — — —
(dg,An,Xn) 14 14 27 27 41 41
dg,PC,Xn) — — — — — —
(An,Xn) 16 1 +14 29 1 +27 43 1 +41
(bd,An,Xn) 17 1L +15 30 1. +28 44 1. +42
([bd,An,Xn]) 20 1. +19 33 1 +32 47 1 +46
(Ibd,An,Xn],od) 21 1 +19 34 1 +32 48 1, +46
([pd,An],Xn) 21 3L +18 34 3L+31 48 3L +45
([bd,An],Xn,od) 22 3L+19 35 3L+31 49 3L+45
*Timings are for an idle floating-point unit.

10-34 M68040 USER’'S MANUAL MOTOROLA



10.7.3 Timings in the Floating-Point Unit

Times in parentheses are the total time that the stage uses to execute an instruction even
though the stage can pass data to the next stage earlier. So that 2(3) in the conversion
stage means that the instruction takes two cycles to execute, but this stage is actually

busy for three cycles.

Instruction | Opclass | Size | Precision Operands Conversion Execution Normalization
FADD,FSUB 0 — Any Norm,Norm 2(3) 3 2(3)
0 — Any Norm,Zero 2(3) 3 2(3)
0 — Any Zero,Zero 4 0 0
0 — Any — ,Inf 4 0 0
0 — Any — NAN 4 0 0
0 S,D Any Norm,Norm 2(3) 3 2(3)
2 S,D Any Norm,Zero 2(3) 3 2(3)
2 S,D Any Zero,Zero 4 0 0
2 S,D Any — ,Inf 4 0 0
2 SD Any — NAN 4 0 0
2 X Any Norm,Norm 34) 3 2(3)
2 X Any Norm,Zero 34) 3 2(3)
2 X Any Zero,Zero 5 0 0
2 X Any — ,Inf 5 0 0
2 X Any — ,NAN 5 0 0
FMUL 0 — Any Norm,Norm 2(3) 5 2(3)
0 — Any — ,Zero 4 0 0
0 — Any — ,Inf 4 0 0
0 — Any — NAN 4 0 0
2 SD Any Norm,Norm 2(3) 5 2(3)
2 S,D Any — ,Zero 4 0 0
2 S,D Any — ,Inf 4 0 0
2 S,D Any — ,NAN 4 0 0
2 X Any Norm,Norm 34) 5 2(3)
2 X Any — ,Zero 5 0 0
2 X Any — ,Inf 5 0 0
2 X Any — ,NAN 5 0 0
FDIV 0 Any Norm,Norm 2(3) 375 2(3)
0 — Any — ,Zero 4 0 0
0 — Any — ,Inf 4 0 0
0 — Any — NAN 4 0 0
2 SD Any Norm,Norm 2(3) 375 2(3)
2 S,D Any — ,Zero 4 0 0
2 S,D Any — ,Inf 4 0 0
MOTOROLA M68040 USER’'S MANUAL 10-35



10.7.3 Timings in the Floating-Point Unit (Continued)

Instruction | Opclass | Size | Precision Operands Conversion Execution Normalization
FDIV 2 S,D Any — ,NAN 4 0 0
2 X Any Norm,Norm 34) 375 2(3)
2 X Any — ,Zero 5 0 0
2 — Any — ,Inf 5 0 0
2 X Any — ,NAN 5 0 0
FSQRT 0 — Any Norm 2(3) 103 2(3)
0 — Any (Zero|InfINAN) 4 0 0
2 S,D Any Norm 2(3) 103 2(3)
2 S,D Any (Zero|InfINAN) 4 0 0
2 X Any Norm 34) 103 2(3)
2 X Any (Zero|InfINAN) 5 0 0
FMOVE, 0 — X (Norm|Zero|Inf) 2 0 0
FABS, 0 — X NAN 3 0 0
FNEG 0 — S,D Norm 5 0 0
0 — S,D (ZerolInf) 3 0 0
0 — S,D NAN 4 0 0
2 S Any (Norm|Zero|Inf) 3 0 0
2 S Any NAN 4 0 0
2 D D,X (Norm|ZerolInf) 3 0 0
2 D D,X NAN 4 0 0
2 D S Norm 5 0 0
2 D S (ZerolInf) 4 0 0
2 D S NAN 5 0 0
2 X X (Norm|Zero|Inf) 4 0 0
2 X X NAN 5 0 0
2 X S,D Norm 6 0 0
2 X S,D (ZerolInf) 5 0 0
2 X S,D NAN 6 0 0
2 B,wW Any (+Norm|Zero) 1.5(11) 45 2
2 L D,X (+Norm|Zero) 1.5(11) 45 2
2 L S (+Norm|Zero) 1.5(12.5) 45 2
2 B,wW Any —Norm 1.5(11.5) 5 2
2 L D,X —Norm 1.5(11.5) 5 2
2 L S —Norm 1.5(13) 5 2
FMOVE 3 S,D Any Any 3 0 0
3 X Any Any 4 0 0
3 B,W,L Any +(Norm|Zero) 3(9) 15 35
3 B,wW,L Any —(Norm|Zero) 3(10) 15 45

10-36

M68040 USER’S MANUAL

MOTOROLA



10.7.3 Timings in the Floating-Point Unit (Concluded)

Instruction | Opclass | Size | Precision Operands Conversion Execution Normalization

FMOVEM 4 — — — 2 + (2 per reg) 0 0
5 — — — 2 + (2 per reg) 0 0
6 — — — 2 + (3 per reg) 0 0
7 — — — 2 + (3 per reg) 0 0

FCMP 0 — Any Norm,Norm 2(3) 3 1
0 — Any Norm,Zero 2(3) 3 1
0 — Any Zero,Zero 4 0 0
0 — Any — ,Inf 4 0 0
0 — Any — NAN 4 0 0
2 S,D Any Norm,Norm 2(3) 3 1
2 S,D Any Norm,Zero 2(3) 3 1
2 S,D Any Zero,Zero 4 0 0
2 S,D Any — ,Inf 4 0 0
2 S,D Any — ,NAN 4 0 0
2 X Any Norm,Norm 3(4) 3 1
2 X Any Norm,Zero 34) 3 1
2 X Any Zero,Zero 5 0 0
2 X Any — ,Inf 5 0 0
2 X Any — NAN 5 0 0

MOTOROLA

M68040 USER’S MANUAL

10-37



SECTION 11
MC68040 ELECTRICAL AND
THERMAL CHARACTERISTICS

The following paragraphs provide information on the maximum rating and thermal
characteristics for the MC68040. This section is subject to change. For the most recent
specifications, contact a Motorola sales office or complete the registration card at the end
of this manual.

11.1 MAXIMUM RATINGS

Characteristic Symbol Value Unit Ii?gﬁitg’,e;g,‘;?nsﬁﬁgﬁfg‘;’; dpJg tf,cﬁ:\éﬁ
Supply Voltage Ve | 0310470 | V| fowever ftie advised that normal
Input Voltage Vin | —0510+70 | V| Boication of any vorages higher
Maximum Operating Junction Temperature T3 110 °C L?Sﬂ_?n%xé?:rﬂgactﬁgu\ﬁ 'tsgﬁast}ﬁ’&hff
Minimum Operating Ambient Temperature TA 0 °C %ﬂ,iﬂi“‘;?e i?ie%n ?{;" ”;’,? dagpr%r;ﬁ;‘ig
Storage Temperature Range Tstg -55 to 150 °C I(?rg\i/ccxg))l.tage level (¢.g., either GND

11.2 THERMAL CHARACTERISTICS

Characteristic Symbol Value Rating

Thermal Resistance, Junction to Case— 01c 3 °C/IW
PGA Package

MOTOROLA M68040 USER’S MANUAL 111



11.3 DC ELECTRICAL SPECIFICATIONS (v¢c =5.0 vDC 5 %)

Characteristic Symbol Min Max Unit
Input High Voltage VIH 2 Vce \Y
Input Low Voltage VIL GND 0.8 \%
Undershoot — — 0.8 \Y
Input Leakage Current @ 0.5/2.4 V
AVEC, BCLK, BG, CDIS , MDIS, TPLx, PCLK, RSTI, SCx, lin 20 20 HA

TBI, TLNx, TCI, TCK, TEA

Hi-Z (Off-State) Leakage Current @ 0.5/2.4 V
An, BB, CIOUT, Dn, LOCK, LOCKE, R/ W, SIzx, TA, TDO, TSI 20 20 HA
TIP, TMx, TLNx, TS, TTx, UPAX

Signal Low Input Current, V|_= 0.8V

TMS, TDI, TRST L -1.1 -0.18 mA
Signal High Input Current, V|4 =2.0V m —0.94 _0.16 mA
TMS, TDI, TRST
Output High Voltage, IoH = 5 mA (Small Buffer Mode) VOH 24 — \%
Output Low Voltage, lo = 5 mA (Small Buffer Mode) VoL — 0.5 \Y,
Output High Voltage, IoH = 55 mA (Large Buffer Mode) VOH 24 — \%
Output Low Voltage, loL = 55 mA (Large Buffer Mode) VoL — 05 \%
Capacitance*, Vi =0V, f=1MHz Cin — 25 pF
*Capacitance is periodically sampled rather than 100% tested.
11.4 POWER DISSIPATION
Buffer Mode 25 MHz 33 MHz 40 MHz
Worst Case (Vcc =5.25V, Ta =0°C)
Small Unterminated, I = IoH =5 mA 49 W 6.2W 7.2W
Large Unterminated, lo. = 1oH =5 mA 51W 6.6 W 7.7W
Large Terminated, 50 Q, 2.5V, IgL =1oH =55 mA 6.5W 8.0wW 9.1W
Typical Values (Vcc =5V, Tj =90°C)*
Small 3.0W 41W 45W
Large Unterminated 33w 4.4W 4.8 W
Large Terminated, 50 Q, 2.5V 4.7W 58W 6.2 W

*This information is for system reliability purposes.

11-2 M68040 USER’S MANUAL MOTOROLA



11.5 CLOCK AC TIMING SPECIFICATIONS (see Figure 11-1)

25 MHz 33 MHz 40 MHz
Num Characteristic Min Max Min Max Min Max Unit
Frequency of Operation 20 25 20 33 20 40 MHz
1 PCLK Cycle Time 20 25 15 25 125 25 ns
2 PCLK Rise Time — 1.7 — 1.7 — 15 ns
3 PCLK Fall Time — 1.6 — 1.6 — 15 ns
4 PCLK Duty Cycle Measured at 1.5V 4750 | 52.50 | 46.67 | 53.33 | 46.00 | 54.00 %
4a* PCLK Pulse Width High Measured at 1.5V | 9.50 10.50 7 5.75 6.75 ns
4b* PCLK Pulse Width Low Measured at 1.5V | 9.50 10.50 7 5.75 6.75 ns
5 BCLK Cycle Time 40 60 30 60 25 50 ns
6,7 BCLK Rise and Fall Time — 4 — 3 — 3 ns
8 BCLK Duty Cycle Measured at 1.5 V 40 60 40 60 40 60 %
8a* BCLK Pulse Width High Measured at 1.5 V 16 24 12 18 10 15 ns
8b* | BCLK Pulse Width Low Measured at 1.5 V 16 24 12 18 10 15 ns
9 PCLK, BCLK Frequency Stability — 1000 — 1000 — 1000 ppm
10 PCLK to BCLK Skew — 9 — n/a — n/a ns
*Specification value at maximum frequency of operation.
«~—(1)—>
. 4] / " _\7 ViH I
ViL
10-He—><—>+(10) —> <(b) —>{ <7)
BCLK j‘ / 14 Vi o
A/ Vi
< (&) >

MOTOROLA

Figure 11-1. Clock Input Timing Diagram

M68040 USER’S MANUAL




11.6 OUTPUT AC TIMING SPECIFICATIONS (see Figures 11-3 to 11-7)

25 MHz 33 MHz 40 Mhz
Large1 Small2 Large1 Small2 Largel Small2
Num Characteristic Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | Unit
3 BCLK to Address CIOUT, LOCK,
11 LOCKE, RIW, SIZx, TLN, TMx, TTx, | 9 21| 9 30 [6.50| 18 |6.50| 25 [5.25] 16 |5.25| 24 | ns
UPAX Valid
12 |BCLK o Output Invalid 9| —| 9 |— 65| — [650] — |525| — |525| — | ns
(Output Hold)
13 BCLK to TS Valid 21 30 |6.50| 18 |6.50| 25 |5.25| 16 |5.25| 24 ns
14 BCLK to TIP Valid 21 30 [6.50| 18 |6.50| 25 |5.25]| 17 |5.25]| 24 ns
184 | BCLK to Data Out Valid 231 9 32 |6.50| 20 [6.50| 27 |5.25| 18 |5.25]| 26 | ns
194 |BCLK to Data Out Invalid (Output 9 . 9 — les0| — les0l — |s25|] — |s25] — | ns
Hold) ' ' ' '

2034 BCLK to Output Low Impedance 9 _ 9 — |lesol — lesol — |s25] — |525] — ns
21° | BCLK to Data-Out High Impedance | 9 20| 9 20 |6.50| 17 |[6.50| 17 |5.25| 16 |5.25| 16 | ns
263 | BCLK to Multiplexed 1931|1940 14| 26| 14|33]13|25]13]32]ns

Address Valid
2735 | BCLK to Multiplexed 19| —|wo| —|w| || —|13|—=]|13|—=]ns
Address Driven
283,4,5| BCLK to Multiplexed Address o | 18| 9 | 18 |650| 15 [650] 15 |5.25| 14 |525| 14 | ns
High Impedance
2945 | BCLK to Multiplexed 19| —|19| —|14|20| 14|20 13|129]|13]|19]ns
Data Driven
304 BCLK to Multiplexed Data Valid 19 | 33 19 | 42 14 | 28 14 | 35 13 27 13 34 | ns
3 BCLK to Address, CIOUT, LOCK,
38 m’ R/W, S|ZX, ﬁ, TLNX, TMX, 9 18 9 18 |6.50 15 | 6.50 15 | 5.25 14 | 5.25 14 ns
TTx, UPAXx High Impedance
39 |BCLK1w0BB, TA, TIP 19| 28|19 28| 14| 23] 14| 23105 22 |125] 22| ns
High Impedance
40 BCLK to BR, BB Valid 9 21 9 30 |6.50| 18 |6.50| 25 |5.25| 16 |5.25]| 24 ns
43 BCLK to MI Valid 9 21 9 30 |6.50| 18 [6.50| 25 [5.25| 17 |5.25| 24 | ns
48 |BCLK to TA Valid 9 21| 9 30 |6.50| 18 |6.50| 25 |5.25| 17 |5.25| 24 | ns
50 BCLK to IPEND, PSTx, RSTO Valid 9 21 9 30 |6.50] 18 [6.50| 25 |5.25] 17 |5.25| 24 | ns
NOTES:

1. Output timing is specified for a valid signal measured at the pin. Large buffer timing is specified driving a 50 Q
transmission line with a length characterized by a 2.5-ns one-way propagation delay, terminated through 50 Q to

2.5 V. Large buffer output impedance is 4-12 Q, resulting in incident wave switching for this environment. All

large buffer outputs must be terminated to guarantee operation.
2. Small buffer timing is specified driving an unterminated 30 Q transmission line with a length characterized by a

2.5 ns one-way propagation delay. Small buffer output impedance is typically 30 Q; the small buffer specifications

include approximately 5 ns for the signal to propagate the length of the transmission line and back.
3. Timing specifications 11, 20, and 38 for address bus output timing apply when normal bus operation is selected.

Specifications 26, 27, and 28 should be used when the multiplexed bus mode of operation is enabled.

4. Timing specifications 18 and 19 for data bus output timing apply when normal bus operation is selected.
Specifications 28 and 29 should be used when the multiplexed bus mode of operation is enabled.
5. Timing specifications 21, 27, 28, and 29 are measured from BCLK edges. By design, the MC68040 cannot drive
address and data simultaneously during multiplexed operations.

11-4

M68040 USER’S MANUAL

MOTOROLA




11.7 INPUT AC TIMING SPECIFICATIONS (see Figures 11-3 to 11-7)

25 MHz 33 MHz 40 MHz
Num Characteristic Min Max | Min Max | Min. | Max. | Unit
15 [ Data-In Valid to BCLK (Setup) 5 — 4 — 3 — ns
16 | BCLK to Data-In Invalid (Hold) 4 — 4 — 3 — ns
7 | (Read Followed by Wit) o e Bl e sl
22a | TA Valid to BCLK (Setup) 10 — 10 — 8 — ns
22b | TEA Valid to BCLK (Setup) 10 — 10 — 9 — ns
22c | TCI Valid to BCLK (Setup) 10 — 10 — 9 — ns
22d | TBI Valid to BCLK (Setup) 11 — 10 — 9 — ns
23 |BCLK to TA, TEA, TCI, TBI Invalid (Hold) 2 — 2 — 2 — ns
24 | AVEC Valid to BCLK (Setup) 5 — 5 — 5 — ns
25 |BCLK to AVEC Invalid (Hold) 2 — 2 — 2 — ns
31 | DLE width High 8 — 8 — 8 — ns
32 | Data-In Valid to DLE (Setup) 2 — 2 — 2 — ns
33 | DLE to Data-In Invalid (Hold) 8 — 8 — 8 — ns
34 |BCLK to DLE Hold 3 — 3 — 3 — ns
35 | DLE High to BCLK 16 — 12 — 12 — ns
36 | Data-In Valid to BCLK (DLE Mode Setup) 5 — 5 — 5 — ns
37 | BCLK to Data-In Invalid (DLE Mode Hold) 4 — 4 — 4 — ns
41a (BB Valid to BCLK (Setup) 7 — 7 — 7 — ns
41b | BG Valid to BCLK (Setup) 8 — 7 — 7 — ns
41c |CDIS, MDIS Valid to BCLK (Setup) 10 — 8 — 8 — ns
41d |[TPLx Valid to BCLK (Setup) 4 — 3 — 3 — ns
42 |BCLK to BB, BG, CDIS, IPLx, MDIS Invalid (Hold) — 2 — 2 — ns
44a | Address Valid to BCLK (Setup) — 7 — 7 — ns
44b | SIZx Valid to BCLK (Setup) 12 — 8 — 8 — ns
44c | TTx Valid to BCLK (Setup) 6 — 85 — 85 — ns
44d | R/W Valid to BCLK (Setup) 6 — 5 — 5 — ns
44e | SCx Valid to BCLK (Setup) 10 — 11 — 8 — ns
45 | BCLK to Address,SIZx, TTx, R/W, SCx Invalid (Hold) 2 — 2 — 2 — ns
46 | TS Valid to BCLK (Setup) 5 — 9 — 7 — ns
47 |BCLK to TS Invalid (Hold) 2 — 2 — 2 — ns
49 ?l\f(IZ_ESt(()JgE,;Ai?J?nl?spgSs rIl\/(I:Zstership) o ° o ° - o ns
51 |RSTI Valid to BCLK 5 — 4 — 4 — ns
52 | BCLK to RSTI Invalid 2 — — — ns
53 [ Mode Select Setup to RSTI Negated 20 — 20 — 20 — ns
54 | RSTI Negated to Mode Selects Invalid 2 — 2 — 2 — ns
MOTOROLA M68040 USER’'S MANUAL 11-5



DRIVE
TO24V

BCLK

DRIVE TO
05V
20V 2.0
VALID VALID
OUTPUTS(1) 0 v
OUTPUT N ¢, gy OUTPUT  n+1

DRIVETO —m
24V 20V 20V
INPUTS(2) mLLlJ[T)
DRVETO — 08V 08V
05V
- 20V
RSTI (3)
-<—
—>| [ |-—
iPLx, CDIS, 20V
MDIS 08V
NOTES:

1. This output timing is applicable to all parameters specified relative to the rising edge of the clock.
2. This input timing is applicable to all parameters specified relative to the rising edge of the clock.
3. This timing is applicable to all parameters specified relative to the negation of the RSTI signal.

LEGEND:

A. Maximum output delay specification.

B. Minimum output hold time.

C. Minimum input setup time specification.
D. Minimum input hold time specification.

E. Mode select setup time to RSTI negated.
F. Mode select hold time from RSTI negated.

Figure 11-2. Drive Levels and Test Points for AC Specifications

11-6 M68040 USER’S MANUAL MOTOROLA



MOTOROLA

ok /0 N/ S/ _/

<—>11 <> @
A31-A0 XC X
ATTRIBUTES X X

®
A

)
!

®
A
Y

Q=>

J
T

TIP
B> -
>
D31-DO IN P \
(READ) Jv® 4
P> @=Zg
D31-D0 OUT ] ) o
(WRITE) > f
Q>
TA |y
TEA |y

Tl N
-
24>

AVEC N

<®
ci \_/
<®
—

LOCKE, CIOUT

Figure 11-3. Read/Write Timing

M68040 USER’S MANUAL

11-7



BCLK 71_\_7[_\_7[_\_7
@) <> 1)-<—>
\ 4r
A31-A0 1
TRANSFER — T ) )
ATTRIBUTES —— | IS
LOCK, LOCKE \ {
s | ©=
-
@
ﬁ @ < :Fr 14 )= i
<> @ 20>
D31-D0 OUT
(WRITE)  ———t
(—) —> (_@
BR
(a1) - >
BG
. | |
BB OUT
— @<
B Olimiiy 12)-+€>
M \ 7/

NOTE: Transfer Attribute Signals = UPAX, SIZx, TTx, TMx, TLNX, RNV, ClouT

Figure 11-4. Bus Arbitration Timing

11-8 M68040 USER’S MANUAL MOTOROLA



e 4/ N/ _/F/ _/f _f 1
@5 <>
A31-AQ IN { iz
SIZx, TTX, s s
RIW IN 2 b
SC1, S0 { >
@D @)
TSIN \ /
<>(12
— \
Mi \
43— (::)—) |- > (—‘
D31-DO IN ® - g &
(ALT. MASTER xl )
WRITE) <>2)
<> 19>
D31-D0 OUT )= > ®
(ALT. MASTER {
READ
) 20> 39)
TAOUT N @ —
@) <> |
_ r—u» - @ >
BB IN @< ;7

Figure 11-5. Snoop Hit Timing

MOTOROLA M68040 USER’S MANUAL 11-9



BCLK _7(_\_%_\_7[_\_7[_\_

<>H1)
A3L-AOIN  — ———— j[—
SIZx, TTX, 3
RIW IN { b
SC15C0  ————— SNOOP —
B> @)
TSIN \ / @
43 <>
M \ /

TEA \

el L/

Jé
®
A

BB IN

Figure 11-6. Snoop Miss Timing

11-10 M68040 USER’S MANUAL MOTOROLA



e e N
(50 <> <—>1)
m xr 7
'ﬁ) xr l\/ 7Z
PST3-PSTO X
@—<—A <
cois \ /
<—
MDIS \ /
- (_
IPL2-IPLO X? jK
@—q -< >
RSTI @
@
515, VD, &>
PL2-PL0 X X

Figure 11-7. Other Signal Timing

MOTOROLA M68040 USER’S MANUAL 11-11



11.8 MC68040 THERMAL DEVICE CHARACTERISTICS

The need to efficiently cool microprocessors is becoming more important as they become
more complex and require more power. In the past, the M68000 family has been able to
provide a 0—70°C ambient temperature part for speeds less than 40 MHz. However, the
MC68040, MC68LC040, and MC68EC040 with a 50 MHz processor clock has a maximum
power dissipation for a particular operating mode, a maximum junction temperature, and a
thermal resistance from the die junction to the case. This section provides a more
accurate method of evaluating the environment, taking into consideration both the airflow
and ambient temperature. This section also gives the user information to design a cooling
method that meets both thermal performance requirements and constraints of the board
environment. This section discusses the device characteristics and several methods for
thermal management as well as an example of one method for cooling the MC68040,
MC68LC040, and MC68EC040. The MC68040, MC68LC040, and MC68EC040 contain
inherent characteristics that should be considered when evaluating a method for cooling
the device. The following paragraphs discuss these die/package and power
considerations for each of these parts.

NOTE

All references to the MC68040 also include the MC68LC040
and MC68EC040. Note that the MC68LC040 and MC68EC040
only implement the small buffer mode.

11.8.1 MC68040 Die and Package

The MC68040 is in a cavity-down alumina-ceramic 179-pin PGA that has a worst case
thermal resistance from junction to case of 3°C/W. The package differs from previous
M68000 family PGA packages that are cavity-up. The cavity-down design allows the die to
be attached to the top surface of the package, increasing the part’s ability to dissipate heat
through the package surface or an attached heat sink. The system designer needs to
determine the specific dimensions and design of the particular heat sink, considering both
thermal performance and size requirements.

11.8.2 MC68040 Power Considerations

The MC68040 has a maximum power rating, which varies depending on the combination
of output buffer mode and operating frequency. Note that this section assumes large
buffers terminated to 2.5 V. The large buffer output mode dissipates more power than the
small, and higher frequencies of operation dissipate more power than the lower
frequencies.

The MC68040 allows a combination of either large or small buffers on the outputs of the
miscellaneous control signals, data bus, and address bus/transfer attribute pins. The large
buffers offer quicker output times, allowing for an easier logic design. However, they do so
by driving about 10 times as much current as the small buffers. The designer should
consider whether the quicker timings present enough advantage to justify the additional
consideration to the individual signal terminations, the die power consumption, and the
required cooling for the device. Since the MC68040 can be powered up in one of many
output buffer modes upon reset, the actual maximum power consumption for an MC68040

11-12 M68040 USER’S MANUAL MOTOROLA



rated at a particular maximum operating frequency is dependent upon the power-up
mode. Therefore, the MC68040 is rated at a maximum power dissipation for either the
large or small buffers at a particular frequency. This allows for control of some of the
thermal management upon reset. The following equation provides a rough method to
calculate the maximum power consumption for a chosen output buffer mode:

Pp = Ppsg + (PpLe — Ppsg) X ( PINS g + PINSc )

where:
Po = Maximum Power Dissipation for Output Buffer Mode Selected
Ppss = Maximum Power Dissipation for Small Buffer Mode (All Outputs)
PpLs = Maximum Power Dissipation for Large Buffer Mode (All Outputs)
PINS g = Number of Pins Large Buffer Mode
PINSc g = Number of Pins Capable of the Large Buffer Mode

Table 11-1 lists the simplified relationship on the maximum power dissipation for eight
possible configurations of output buffer modes.

Table 11-1. Maximum Power Dissipation for
Output Buffer Mode Configurations

Output Configuration
Address Bus and
Data Bus Transfer Attributes Control Signals Maximum Power Dissipation

Small* Small Small Ppss
Small Small Large Ppsg + (PpLe —Ppsg) X 13%
Small Large Small Ppsg + (PpLe —Ppsg) X 52%
Small Large Large Ppsg + (PpLe —Ppsg) X 65%
Large Small Small Ppsg + (PpLe — Ppsg) X 35%
Large Small Large Ppsg + PpLe —Ppsp) X 48%
Large Large Small Ppsg + (PpLs —Ppsg) * 87%
Large Large Large Ppsg + (PpLe — Ppsg) X 100%

*The MC68LC040 and MC68EC040 only utilize this row of information.

To calculate the specific power dissipation of a design, the termination method of each
signal must be considered. For example, a signal output that is not connected would not
dissipate any additional power if it were configured in the large rather than the small buffer
mode. Since the maximum operating junction temperature is specified as 110°C, the
maximum case temperature (T¢) in °C can be obtained from the following equation:

Tc=T;-Ppx86ic

where:
Tc = Maximum Case Temperature
T; = Maximum Junction Temperature
Pp = Maximum Power Dissipation of the Device
08;c = Thermal Resistance between the Junction of the Die and the Case

MOTOROLA M68040 USER’S MANUAL 11-13



In general, the ambient temperature (T ) in °C is a function of the following equation:
Ta=T;—-Pp x6;c —Pp X 6ca

The thermal resistance from case to outside ambient (6¢ca) is the only user-dependent
parameter once a buffer output configuration has been determined. Reducing the case to
ambient thermal resistance increases the maximum operating ambient temperature.
Therefore, by utilizing methods such as heat sinks and ambient air cooling to minimize
Bca, a higher ambient operating temperature and/or a lower junction temperature can be
achieved. However, an easier approach to thermal evaluation uses the following
equations:

TA:TJ—PDXGJA or TJ:TA+PDX9JA

where:
0;a = Thermal Resistance from the Junction to the Ambient (03¢ + 8¢ca)

The total thermal resistance for a package (63a) is a combination of its two components,
B;c and B¢ca. These components represent the barrier to heat flow from the semiconductor
junction to the package case surface (6;¢c) and 6¢ca. Although 05c is package related and
the user cannot influence it, 6¢ca is user dependent. Good thermal management by the
user, such as heat sink and airflow, can significantly reduce 6¢ca achieving either a lower
semiconductor junction temperature or a higher ambient operating temperature.

11.9 MC68040 THERMAL MANAGEMENT TECHNIQUES

To attain a reasonable maximum ambient operating temperature, the user must reduce
the barrier to heat flow from 635. The only way to accomplish this is to significantly reduce
Bca by applying thermal management techniques such as heat sinks and forced air
cooling. The following paragraphs discuss thermal study results for the MC68040 that did
not use thermal management techniques, airflow cooling, heat sink, and heat sink
combined with airflow cooling.

The MC68040 power dissipation values given in this section represent the sum of the
power dissipated by the internal circuitry and the output buffers of the MC68040. The
termination network chosen by the system designer strongly influences this last
component of power. Values listed in this section for large buffer terminated entries reflect
a termination network as illustrated in Figure 11-8 and are consistent with specifications
for the MC68040. For additional termination schemes, refer to AN1051, Transmission Line
Effects in PCB Applications, or AN1061, Reflecting on Transmission Line Effects.

11-14 M68040 USER’S MANUAL MOTOROLA



MC68040 OUTPUT
BUFFER

TYPICAL Z(y= 4-12 Q (LARGE) — 25V

TYPICAL Z= 25 Q (SMALL)

Figure 11-8. MC68040 Termination Network

If a designer uses alternative standard termination methods, such as RC termination
network (see Figure 11-9), Thévenin termination network (not illustrated), or no
termination method at all, which is not recommended, then the power dissipation of the
MC68040 will be significantly less than the large buffer terminated values. For termination
networks other than that illustrated in Figure 11-31, the designer must calculate the
component of power dissipated in the output buffer and add this value to the small buffer
unterminated value.

MC68040 OUTPUT

BUFFER 50QTL. R=500Q

TYPICAL Z(y = 4-12 Q (LARGE) C =300 pF
TYPICAL Z=25 Q (SMALL)

Figure 11-9. Typical Configuration for RC Termination Network

The following paragraphs describe how the large buffer terminated values were
calculated. The MC68040 termination network causes current flow through the output
buffer of the MC68040, regardless of whether the MC68040 is driving a logic one or a
logic zero. The following equation gives the large buffer termination network power
dissipation for a given pin:

| = (V+(R+Zy)+5mA
P = I2Reff

Reff is the effective average output resistance, including typical pullup resistance, typical
pulldown resistance, and a duty cycle average of how often the pin is high, low, or three-
stated. Typical values for Zy are 6 Q for large buffer low output, 12 Q for large buffer high
output, and 25 Q for small buffer output. Using these values and duty cycle assumptions
based on sequential burst write cycles, Reff calculates to 7.7 Q for the MC68040 large
buffer mode and 25 Q for the small buffer mode.

Maximum termination current in the large buffer mode occurs for output:
Low: kg =(2.5V+(50+6Q))+5mA=49.6 mA
High: I =(2.75V = (50 + 12 Q)) + 5 mA = 50.8 mA

MOTOROLA M68040 USER’S MANUAL 11-15



Maximum power dissipation in the large buffer mode occurs for output:
Low: Pib =12R =(49.6 mA)2 x 6 Q = 14.8 mW
High: Phib = 12R = (50.8 mA)2 x 12 Q = 30.1 mW

Similar calculations for unterminated small buffers yield:

| =5 mA (by spec)
and
P=12R=(5mA)2 x25Q
o)
Phsp = 0.625 mW
Pisp = 0.625 mW

Assuming that the duty cycle of output j is driving a valid logic value instead of being
three-stated as given by DCj, then the following equation approximates total average
power dissipation in the output buffers:

Number of
Outputs Used
ITotal = Z (Ij = DCj)2 X Reffj
j=1

lj and Zy are calculated for every pin as illustrated above. In practice the above
summation is carried out by groups of pins instead of individual pins.

Motorola has calculated the values for DCj for typical situations. On an average clock
there will be 37.8 pins high, 41.5 pins low, and 11.7 pins three-stated. The following
examples demonstrate how to calculate the power dissipation that is added to small buffer
power dissipation numbers, assuming a termination as illustrated in Figure 11-18.

a. For the numbers listed in this section in a large buffer design with no caching.
P = (Number of Pins High) x (Php) + (Number of Pins Low) x (Pp)
= 37.8 Pins x 30.1 mW per Pin + 41.5 Pins x 14.8 mW per Pin
=1.75W

b. For a single bus master system in a large buffer design with no caching or snooping
and only standard features (i.e., TLN, UPA, BR, BB, LOCK, LOCKE, CIOUT, TIP, MI,
TDO, IPEND, PST not used):

P = (Number of Pins High) % (Php) + (Number of Pins Low) % (Pjp)
= 29.8 Pins x 30.1 mW per Pin + 34.5 Pins x 14.8 mW per Pin
=141W

c. For the example b system with copyback caching, assuming 85% cache hit rate:
P = (29.8 Pins x 30.1 mW per Pin + 34.5 Pins x 14.8 mW per Pin) x (1 — 0.85)
=0.21 W

11-16 M68040 USER’S MANUAL MOTOROLA



d. For the example ¢ system running the data bus in small buffer mode with other
outputs in large buffer mode terminated:

P = (Number of Pins Large Buffer High) x (Phlp) + (Number of Pins Large Buffer
Low) x (P|Ib) + (Number of Pins Small Buffer High) x (Phsb) + (Number of Pins
Small Buffer Low) x (P|sb)

=19.1 Pins x 30.1 mW per Pin + 23.8 Pins x 14.8 mW per Pin + 10.7 Pins x 0.625
mW per Pin + 10.7 Pins x 0.625 mW per Pin

=0.94 W x (1 —0.85)
=0.14 W

11.9.1 Still Air

In this study, a small sample of MC68040 packages was tested in free-air cooling with no
heat sink. Measurements showed that the average 6;5 was 22.8°C/W with a standard
deviation of 0.44°C/W. The test was performed with approximately 6 W of power being
dissipated from within the package. The test determined that 8;5 decreases slightly for the
increasing power dissipation range possible. Therefore, since the variance in 835 within
the possible power dissipation range is negligible, it can be assumed for calculation
purposes that 034 is valid at all power levels. Using the previous equations, Table 11-2
lists the results of a maximum power dissipation at maximum 03¢ with no heat sink or
airflow (see Table 11-1 to calculate other power dissipation values). The ambient
temperature results illustrate the need to implement some type of thermal management to
obtain a reasonable maximum ambient temperature.

Table 11-2. Thermal Parameters with No Heat Sink or Airflow

Defined Parameters Measured Calculated
MHz Pp T Bc 0a Bca Tc Ta
(64 — 6xc) (Ty=Ppx6c) [ (Ty—=Ppx6ja)
MC68040
25 6.3 110°C 3 22.8 19.8 91.1 -33.64
25 6.6 110°C 3 22.8 19.8 90.2 -40.48
25 8.6 110°C 3 22.8 19.8 84.2 —86.08
33 7.7 110°C 3 22.8 19.8 86.9 —65.56
33 8.0 110°C 3 22.8 19.8 86.0 —72.40
33 10.0 110°C 3 22.8 19.8 80.0 -118.00
MC68LC040 and MC68EC040
20 4 110°C 3 22.8 19.8 98 18.8
25 5 110°C 3 22.8 19.8 95 -4
33 6.3 110°C 3 22.8 19.8 91.1 -33.64

MOTOROLA M68040 USER’S MANUAL 11-17



11.9.2 Forced Air

In this study, a small sample of MC68040 packages was tested in forced-air cooling in a
wind tunnel with no heat sink. The test was performed with approximately 6 W of power
being dissipated from within the package. As previously mentioned, since the variance in
0;a within the possible power range is negligible, it can be assumed for calculation
purposes that 63 is constant at all power levels. Using the previous equations, Table 11-3
lists the results of the maximum power dissipation at maximum 03¢ with airflow and no
heat sink for the MC68040, and Table 11-4 lists the results for the MC68LC040 and
MCG68EC040. Refer to Table 11-1 for calculating other power dissipation values.

Table 11-3. Thermal Parameters with Forced Airflow
and No Heat Sink for the MC68040

Thermal Mgmt. Defined Parameters Measured Calculated
Technique
MHz Airflow Ve'OCity PD TJ BJC BJA SCA TC TA
25 6.3W 91.1°C | 29.90 °C
25 6.6 W 90.2°C | 26.18 °C
25 8.6 W 84.9°C | 00.76 °C
33 100 LFM 77W 110°C 3°C/W 12.7 °C/IW 9.7°C/W | ggg°c | 12.21 °C
33 8.0wW 86.0°C | 08.40 °C
33 10.0w 80.0 °C | 00.00°C
25 6.3W 91.1°C | 40.70 °C
25 6.6 W 90.2°C | 37.40°C
25 8.6 W 84.2°C | 15.40°C
33 250 LFM 77 W 110 OC 3 °C/W 110 och 80 0C:/W 869 OC 2530 °C
33 8.0WwW 86.0°C | 22.00 °C
33 10.0w 80.0°C | 00.00 °C
25 6.3W 91.1°C | 47.63°C
25 6.6 W 90.2°C | 44.66 °C
25 8.6 W 84.2°C | 24.86 °C
33 500 LFM 77W 110°C 3°C/wW 9.9 °C/W 6.9°C/W | ggo°c | 33.77°C
33 8.0wW 86.0°C | 30.80 °C
33 10.0wW 80.0°C | 11.00 °C
25 6.3W 91.1°C | 50.15°C
25 6.6 W 90.2°C | 47.30°C
25 8.6 W 84.2°C | 28.30°C
33 750 LFM 77 W 110°C 3°C/wW 9.5 °C/W 6.5°C/W | ggo°c | 36.85°C
33 8.0WwW 86.0 °C | 34.00 °C
33 10.0wW 80.0°C | 15.00 °C
25 6.3W 91.1°C | 51.41°C
25 6.6 W 90.2°C | 48.62 °C
25 8.6 W 84.2°C | 30.02°C
33 1000 LFM 7.7 W 110 °C 3°C/W 9.3 °C/W 6.3°C/W | gg9°c | 38.39 °C
33 8.0wW 80.0°C | 17.00 °C
33 10.0wW 81.8°C | 22.58 °C

11-18 M68040 USER’S MANUAL MOTOROLA




Table 11-4. Thermal Parameters with Forced Airflow and No Heat Sink
for the MC68LC040 and MC68EC040

Thermal Mgmt. Defined Parameters Measured Calculated
Technique
MHz Airflow Velocity Pp Ty GJC GJA GCA Tc Ta
20 4W 98 °C 59.2°C
25 100 LFM 5W 110°C 3°C/W 12.7 °C/W 9.7 °C/W 95°C 46.5 °C
33 6.3W 91.1°C | 29.9°C
20 4W 98 °C 66 °C
25 250 LFM 5W 110°C 3°C/W 11 °C/W 8 °C/W 95 °C 55°C
33 6.3W 91.1°C | 40.70 °C
20 4W 98 °C 70.4 °C
25 500 LFM 5W 110 °C 3°C/IW 9.9 °C/W 6.9 °C/W 95°C 60.5 °C
33 6.3W 91.1°C | 47.63°C
20 4W 98 °C 72 °C
25 750 LFM 5W 110°C 3°C/W 9.5 °C/W 6.5 °C/W 95 °C 62.5°C
33 6.3W 91.1°C | 50.15°C
20 4W 98 °C 72.8 °C
25 1000 LFM 5W 110°C 3°C/W 9.3 °C/W 6.3 °C/W 95°C 63.5°C
33 6.3W 91.1°C | 51.41°C

Reviewing the maximum ambient operating temperatures illustrates that using an all small
buffer configuration of the MC68040 with a relatively small amount of airflow (100 LFM)
achieves a 0—70 °C ambient operating temperature. However, depending on the output
buffer configuration and available forced-air cooling, additional thermal management
techniques may be required.

11.9.3 With Heat Sink

The designer must consider many factors in choosing a heat sink: heat-sink size and
composition, method of attachment, and choice of a dry or wet (i.e., thermal grease)
connection. The following paragraphs discuss the relationship of these decisions to the
thermal performance of the design noticed during experimentation.

The heat-sink size is one of the most significant parameters to consider in the selection of
a heat sink. Obviously a larger heat sink provides better cooling. Under forced-air
conditions as low as 100 LFM, the difference between the B¢ca is very small (0.4 °C/W or
less). This difference continues to decrease as the forced airflow increases.

The area of this example heat-sink base perimeter is 1.8" x 1.8", with a height of 0.65".
The heat-sink used a pin-fin (i.e., bed-of-nails) design composed of aluminum alloy. Figure
11-32 illustrates the heat sink, which can be obtained through Thermalloy, Inc.

MOTOROLA M68040 USER’S MANUAL 11-19




HEAT SINK

PIN GRID
ARRAY

NOTE: Do not cover up microprocessor markings with an adhesive mounted heat sink.

Figure 11-10. Heat Sink with Adhesive

All pin-fin heat sinks tested were made from extrusion aluminum products. The planar face
of the heat-sink matting to the package should have a good degree of planarity; if it has
any curvature, the curvature should be convex at the central region of the heat-sink
surface to provide intimate physical contact to the PGA surface. This heat sinks meet this
criteria. Nonplanar, concave curvature in the central regions of the heat sink results in
poor thermal contact to the package.

Although there are several ways to attach a heat sink to the package, it is easiest to use a
demountable heat-sink attachment called “E-Z attach for PGA packages” (see Figure 11-
33). A steel spring clamps the heat sink and the package to a plastic frame. Besides the
height of the heat sink and plastic frame, no additional height is added to the package.
The interface between the ceramic package and the aluminum heat sink was evaluated
for both dry and wet interfaces in still air. The thermal grease reduced the B¢ca quite
significantly (about 2.5 °C/W) in still air. An attachment with thermal grease provided
about the same thermal performance as if a thermal epoxy had been used.

11-20 M68040 USER’S MANUAL MOTOROLA



SPRING

HEAT SINK

PIN GRID
ARRAY

FRAME

Figure 11-11. Heat Sink with Attachment

In the specification provided by Thermalloy, Inc., a chart illustrates the heat-sink
temperature rise above ambient versus heat dissipated. This chart applies if no airflow is
used with the heat-sink. Table 11-5 lists the calculations based on this chart.

Table 11-5. Thermal Parameters with Heat Sink and No Airflow

Thermal Mgmt. Defined Parameters Heat-Sink Calculated
Technique Spec.
MHz Airflow Velocity Pp T; 01c Tc-Ta Tc Ta
MC68040
25 0 6.3 W 110°C 3°C/IW 64.4 °C 91.1°C | 26.7°C
25 0 6.6 W 110°C 3°C/W 66.8 °C 90.2°C | 234°C
25 0 8.6 W 110°C 3°C/W 82.8°C 84.2°C 1.4°C
33 0 7.7W 110°C 3°C/IW 75.6 °C 86.9°C | 11.3°C
33 0 8.0wW 110°C 3°C/W 78.0 °C 86.0 °C 8.0°C
33 0 10.0wW 110°C 3°C/W 94.0 °C 80.0°C | -14.0°C
MC68LC040 and MC68EC040
20 0 4.0W 110°C 3°C/IW 45.0 °C 98.0°C | 53.0°C
25 0 50wW 110°C 3°C/W 54.0 °C 95.0°C | 41.0°C
33 0 6.3W 110°C 3°C/W 64.4 °C 91.1°C | 26.7°C

MOTOROLA M68040 USER’S MANUAL 11-21



11.9.4 With Heat Sink and Forced Air

In the specification provided by Thermalloy, Inc., a chart illustrates the air velocity versus
thermal resistance. This chart applies if airflow is used with the heat sink. Table 11-6 lists
the calculations based on this chart.

Table 11-6. Thermal Parameters with Heat Sink and Airflow

Thermal Mgmt.

Heat-Sink

Defined Parameters Calculated
Technique Spec.
MHz Airflow Ve'OCity PD TJ GJC MAX. eCA eJA TC TA
MC68040
25 6.3W 91.1°C | 64.3°C
25 6.6 W 90.2°C | 62.2°C
25 200 LFM 8.6 W 110°C 3 °C/W 4.25°C/W | 7.25°C/W | 84.2°C | 47.7 °C
33 77W 86.9°C | 54.2°C
33 8.0WwW 86.0°C | 52.0°C
33 10.0W 80.0°C | 375°C
25 6.3W 91.1°C | 76.9°C
25 6.6 W 90.2°C | 75.4°C
25 400 LFM 8.6 W 110°C 3°C/W 2.30°C/W | 5.25°C/W | 84.2°C | 64.9°C
33 7.7W 86.9°C | 69.6 °C
33 8.0wW 86.0°C | 68.0°C
33 10.0wW 80.0°C | 57.5°C
25 6.3W 91.1°C | 81.7°C
25 6.6 W 90.2°C | 80.3°C
25 600 LFM 8.6 W 110°C 3°C/W 1.50°C/W | 450°C/W | 84.2°C | 71.3°C
33 77W 86.9°C | 75.4°C
33 8.0wW 86.0°C | 74.0°C
33 10.0W 80.0°C | 65.0°C
25 6.3W 91.1°C | 83.2°C
25 6.6 W 90.2°C | 82.0°C
25 800 LFM 8.6 W 110°C 3°C/W 1.25°C/W | 4.25°C/W | 84.2°C | 73.5°C
33 77W 86.9°C | 77.3°C
33 8.0W 86.0°C | 76.0°C
33 10.0W 80.0°C | 67.5°C
MC68LC040 and MC68EC040
20 40W 98.0°C | 81.0°C
25 200 LFM 50W 110°C 3°C/wW 4.25°C/W | 7.25°C/W | 95.0°C | 73.8°C
33 6.3W 91.1°C | 64.3°C
20 40W 98.0°C | 89.0°C
25 400 LFM 50w 110°C 3 °C/W 2.30°C/W | 5.25°C/W | 95.0°C | 83.8°C
33 6.3W 91.1°C | 76.9°C
20 40W 98.0°C | 92.0°C
25 600 LFM 50w 110°C 3 °C/W 1.50°C/W | 450°C/W | 95.0°C | 87.5°C
33 6.3W 91.1°C | 81.7°C
20 40W 98.0°C | 93.0°C
25 800 LFM 50w 110°C 3°C/wW 1.25°C/W | 4.25°C/W | 95.0°C | 88.8 °C
33 6.3W 91.1°C | 83.2°C
11-22 M68040 USER’'S MANUAL MOTOROLA




SECTION 12

ORDERING INFORMATION AND

MECHANICAL DATA

This section contains the ordering information, pin assignments, and package dimensions
of the MC68040, MC68040V, MC68LC040, MC68EC040, and MC68EC040V. The pin
assignments depicted in this section for the MC68LC040 also serve as the pin
assignments for the MC68040V with a few differences as indicated.

12.1 ORDERING INFORMATION

The following table provides ordering information pertaining to the MC68040, MC68040V,
MC68LC040, MC68EC040, and MC68EC040V package types, frequencies, temperatures,
and Motorola order numbers.

Package Type

Frequency

Maximum Junction

Minimum Ambient

Order Number

Temperature Temperature
Pin Grid Array 20 MHz 110 °C 0°C MC68LC040RC20B
RC Suffix MC68EC040RC20B
o MC68040RC25
Pin Grid Array 25 MHz 110 °C 0°C MC68LCO40RC25B
RC Suffix MCGSEC040RC25B
MC68040RC25V
o MC68040RC33
Pin Grid Array 33 MHz 110 °C 0°C MC68LCO40RC33B
RC Suffix MCGSEC040RC33B
MC68040RC33V
184 Pin QFP 20 MHz 110°C 0°C MC68LCO40FE20B
FE Suffix MCGS8EC040FE20B
: MC68LCO40FE25B
184 Pin QFP
,E:;E S'Sﬁ%( 25 MHz 110 °C 0°C MCG8EC040FE25B
MC68040FE25V
, MC68LCO40FE33B
1§f§ Z'Sﬁ%FP 33 MHz 110°C 0°C MC68EC040FE33B
MC68040FE33V

12.2 PIN ASSIGNMENTS

The following are the pin assignments for the MC68040, MC68040V, MC68LC040,
MC68EC040, and MC68EC040V package types.

MOTOROLA

M68040 USER’S MANUAL

121



12.2.1 MC68040 Pin Grid Array

T o O o °© o o ©o o o 9 o o o © o o O
TDO TRST GND CDIS IPL2 IPL1 IPLO DLE TCI AVEC SCO BG TA PSTO PST3 BB BR
S O o O o O O o o© o o o o o o© o o o o
IPEND GND TDI TCK TMS MDIS RSTI Vcc GND GND TBI SC1 TEA PST1 GND Vg GND LOCK
R O o O o O o o o o o o o o o o O o
CIOUT Vcc RSTO GND  Vec GND BCLK Voo PCLK GND GND  Vcc GND PST2 TIP TS  Vcc LOCKE
Q o o o o o
UPA1 GND UPAO Ml GND TLNO
P O o O o o o
A0 TT1 TTO SIZz1 SIZ0 TLN1
N o o o o o o
Al2 GND A1l RW GND TMO
M O o O o o o
A3  Vee Vee GND Vcc TM1
L o o o o o o
Al4 GND GND MC68040 PINOUT Vcc GND A0
K o o © (BOTTOM VIEW) o o o
A15  A16 GND 18 X 18 CAVITY DOWN PGA GND TM2 Al
J o o o o o o
A7 A9 VcC Voo A2 A3
H o) o o) o o o
Al8 GND Vcc Vcc GND A4
G @) o @) o o o
A0 Voo A3 A6 Vcc A5
F o o o o o o
A21 GND A25 A9 GND A7
E o o o o o o
A22  A26 A28 D29 D30 A8
D o o o o o o
A24  GND A30 D27 GND D31
c o o o o o o o o o o o o o o o o o o
AT _Vcg DO D2 Voo GND GND Voo GND Voo GND Vcc GND Ve D23 D25 Vee D28
B o ot o o o o o o o o o o o o o o o o
A29 GNDE DI GND Vgc GND D8 GND Vcc GND D16 D18 GND Vcc GND D22 GND D26
A o ot o o o o o o o o o o o o o o o o
A31 D3 ! D4 D5 D6 D7 D9 D10 D11 D12 D13 D14 D15 D17 D19 D20 D21 D24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Pin Group GND Vee
PLL S9, R6, R10 R8, S8

Internal Logic

C6, C7, C9, C11, C13, K3, K16, L3, M16, R4,
R11, R13, S6, S10, T4

C5, C8, C10, C12, C14, H3, H16, J3, J16, L16,
M3, R5, R12

Output Drivers

B2, B4, B6, B8, B10, B13, B15, B17, D2, D17,
F2, F17, H2, H17, L2, L17, N2, N17, Q2, Q17,
S2, S15, S17

B5, B9, B14, C2, C17, G2, G17, M2, M17, R2,
R17, S16

12-2

M68040 USER’S MANUAL

MOTOROLA




12.2.2 MC68LCO040 Pin Grid Array

T © o o o o o o o o o o0 o o o o 0 0
TDO TRST GND CDIS IPL2 IPL1 IPLO JSO TCI AVEC SCO BG TA PSTO PST3 BB BR
S O o O O o O o © O o o o o © O O 0 @)
IPEND GND TDI TCK TMS MDIS RSTI Vcc GND GND TBI SC1 TEA PST1 GND Vcc GND LOCK
R O O O O O O O O O O O O O O o O O
CIOUT Ve RSTO GND Vgc GND BCLK Voo PCLK GND GND  \gc GND PST2 TIP TS  vgc LOCKE
Q O O O o O O
UPA1 GND UPAO Ml GND TLNO
P O O O O O O
A10 TT1 TTO SIZ1  SIZ0 TLN1
N O o) O o O O
Al2 GND All RW GND TMO
M O O O O O O
A3 Vee Vec GND Vcc TML
L o) o} o) o) o} o)
Al4 GND GND MC68LC040 PINOUT vec GND A0
K o 0o © (BOTTOM VIEW) o o ©
AL5  AL6  GND 18 X 18 CAVITY DOWN PGA GND TM2 Al
J o o) o o o) o
Al7 A9 Vco Voo A2 A3
H o) o} o) o) o} o)
Al8 GND Ve Vcc GND A4
G @) o) @) @) o @)
A2 Voo A23 A6 Vcc A5
= o o) o o o) o
A21 GND A25 A9 GND A7
E @) o) @) @) o @)
A22  A26 A28 D29 D30 A8
D o @) o o e o
A24 GND A30 D27 GND D31
C O O (@] O O (@] O (@] O O (@] O O (@] (@] O O O
_A21_Vgc DO D2 Vgc GND GND Vec GND Voo GND Vg GND Ve D23 D25 Ve D28
B O O : (@] O O (@] O (@] O O (@] O O (@] (@] O O O
A29 GND! D1 GND Vgc GND D8 GND Voc GND D16 D18 GND Vcc GND D22 GND D26
A O O : ©] O O ©] O ©] ©] O ©] O O ©] ©] O O O
A3l D3: D4 D5 D6 D7 D9 D10 D11 D12 D13 D14 D15 D17 D19 D20 D21 D24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Pin Group GND Vee
PLL S9, R6, R10 RS, S8
Internal Logic | C6, C7, C9, C11, C13, K3, K16, L3, M16, R4, | C5, C8, C10, C12, C14, H3, H16, J3, J16, L16,
R11, R13, S6, S10, T4 M3, R5, R12

F2, F17,H2, H17, L2, L17, N2, N17, Q2, Q17, R17, S16
S2, S15, S17

Output Drivers B2, B4, B6, B8, B10, B13, B15, B17, D2, D17, B5, B9, B14, C2, C17, G2, G17, M2, M17, R2,

MOTOROLA M68040 USER’S MANUAL

12-3




12.2.3 MC68EC040 Pin Grid Array

T ©o o o o o o o o o o o 0o 0o O O O O
TDO TRST GND CDIS IPL2 IPLL IPLO JSO TCI AVEC SCO BG TA PSTO PST3 BB  BR

S o o o o o o o o o o o o o o o o o0 ©
IPEND GND TDI TCK TMS JSI RSTI Vcc GND GND TBI SCI TEA PSTL GND Vge GND LOCK

R O O O O O O O O O O O O O O O o O

CIOUT Vg RSTO GND Vec GND BCLK Vog PCLK GND GND  \Vcc GND PST2 TP TS Ve LOCKE

Q @] @] @] o @] @]
UPAL GND UPAO M GND TLNO

P @] @] @] @] @] @]
A0 TTL TTO SizL SIZ0 TLN1

N o o o o o o
Al2 GND All RW GND TMO

M O O O O O O
A3 Ve Veg GND Voo TML

L o o o o o o
Al4 GND GND Ve GND A0

«l o o o MC68EC040 PINOUT 6 o o
Al5 Al6 GND (BOTTOM VIEW) GND T™M2 Al

] o o o 18 X 18 CAVITY DOWN PGA o o o
A7 A9 VcC Voo A2 A3

H o o o o o o
A8 GND Vcc Ve GND A4

G o o o o o o
A0 Voo A3 A6 Voe A5

F o o o o o o
A21 GND A25 A9 GND A7

E o o o o o o
A2  A26 A28 D29 D30 A8

D o o o o o o
A24 GND A30 D27 GND D3l

C O O O O O O O O O O O O O O O O O O
M7 _Vec DO D2 Vgg GND GND Voo GND Voo GND Vec GND Vee D23 D25 Vec D28

B o ofo o o o o o o o o o o o o o o o
A29 GND: DI GND Vgc GND D8 GND Vcc GND DI6 DI8 GND Vcc GND D22 GND D26

A O O : O O O O O O O O O O O O O O O O
A3l D3: D4 D5 D6 D7 D9 DO DIl DI2 DI3 D14 DI5 D17 D19 D20 D21 D24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Pin Group GND Vee

PLL

S9, R6, R10

R8, S8

Internal Logic

C6, C7, C9, C11, C13, K3, K16, L3, M16, R4,
R11, R13, S6, S10, T4

C5, C8, C10, C12, C14, H3, H16, J3, J16, L16,
M3, R5, R12

Output Drivers

B2, B4, B6, B8, B10, B13, B15, B17, D2, D17,
F2, F17, H2, H17, L2, L17, N2, N17, Q2, Q17,
S2, S15, S17

B5, B9, B14, C2, C17, G2, G17, M2, M17, R2,
R17, S16

12-4

M68040 USER’S MANUAL

MOTOROLA




12.2.4 MC68040V and MC68EC040V Pin Grid Array

T ©o o o o o o o o o0 o o0 o o O o0 0o O
TDO N/C GND CDIS IPL2 IPL1 IPLO NC TCI AVEC SCO BG TA PSTO PST3 BB BR
S o e} e} e} e} 0O o © e} e} o o o o @) e} @) o
IPEND GND TDI TCK TMS MDIS* RSTI Vcc GND GND* TBI SC1 TEA PST1 GND Vcc GND LOCK
R O e} 0 e} e} e} e} e} e} e} e} e} @) o o o @) O
CIOUT Ve RSTO GND  Vec GND BCLK Vg JS2* GND GND  Voc GND PST2 TIP TS Ve LOCKE
Q e} e} e} o @) e}
UPA1 GND UPAO Ml GND TLNO
p e} e} e} e} @) e}
A10 TT1 TTO SIZ1 SIZ0 TLN1
N e} e} e} o O e}
Al2 GND All RW GND TMO
M e} e} o O e} @) e}
A13 Voc Vec SCD GND Vgc TM1
L e} e} e} e} @) e}
Al4 GND GND MC68040V and MC68EC040V PINOUT Vec GND - A0
K o o o o (BOTTOM VIEW) o o o©
Al5 Al6 GND LOC 18 X 18 CAVITY DOWN PGA GND TM2 Al
J e} e} e} e} @) e}
Al7  Al9  Vcc Vee A2 A3
H e} e} e} e} @) e}
Al8 GND Vcc Vcc GND A4
G e} e} e} e} @) e}
A20 Vcco A23 A6  Vcc A5
F e} e} e} e} @) e}
A21 GND A25 A9 GND A7
E e} e} e} e} @) e}
A22  A26 A28 D29 D30 A8
D e} e} o O e} @) e}
A24 GND A30 LFO D27 GND D31
C @) @) @) @) @) @) @) @) @) @) @) @) O @) O @) O @)
_ A1 Vcc DO D2 Vcc GND GND Vg GND Voo GND Voe GND Voe D23 D25 Ve D28
B e} e} e} e} e} e} e} e} e} e} e} e} @) e} @) e} @) e}
A29 GND: D1 GND* Voc GND D8 GND Vec GND D16 D18 GND Vcc GND D22 GND D26
A @) @) : @) @) @) @) @) @) O @) @) @) O @) O @) O @)
A3l D3: D4 D5 D6 D7 D9 D10 D11 D12 D13 D14 D15 D17 D19 D20 D21 D24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
NOTES:
* On MC68ECO040V this pin is called JS1.
** All these pins are in the JTAG scan chain. On an MC68040 design JS2 = GND; on an MC68060 design JS2 = CLK.
Pin Group GND Vee
PLL S9, R6, R10 R8, S8

Internal Logic

C6, C7, C9, C11, C13, K3, K16, L3, M16, R4,
R11, R13, S10, T4

C5, C8, C10, C12, C14, H3, H16, J3, J16, L16,
M3, R5, R12

Output Drivers

B2, B4, B6, B8, B10, B13, B15, B17, D2, D17,
F2, F17,H2, H17, L2, L17, N2, N17, Q2, Q17, R17, S16
S2, S15, S17

BS5, B9, B14, C2, C17, G2, G17, M2, M17, R2,

MOTOROLA

M68040 USER’S MANUAL

12-5




12.2.5 MC68LC040 Quad Flat Pack

[eF=] [=] =] Q =] O 12 Qa0 V20200 Qau Qo2 v Qo
8BS ENRGEE RSB R83Y5 8600006060060 898928688898
aooononoooonoooooooonoooooooonoonooonnoonoonnnnn
138 128127 116115 105104 93
GND []139 921 D27
GND [ 1 GND
AL 1 D28
A30 1 D29
vee 1 vee
A29 1 1 D30
A28 1 D31
GND [ 1 GND
A27 1 GND
A26 1 A9
vee 1149 821 A8
A25 []150 81— Ve
A4 1 A7
GND [ 1 A6
A3 ] 1 GND
A22 1 A5
Vee 1 A4
A1 1 vee
A20 1 A3
GND 1 A2
A9 1 GND
A18 1 A1
vec 161 MC68LC040 703 n0
GND 162 (TOP VIEW) 691 Ve
A7 1 GND
Al6 1 T™M2
GND [ 1 T™M1
A15 1 GND
A4 1 T™M0
vee 1 TLN1
A13 1 Vvce
A2 1 TLNO
GND 1 SIz0
ALl Q172 59—1 GND
A10 173 58— RIW
GND [ 1 LOCKE
Vee 1 Ve
1] 1 GND
TT0 1 s1z1
GND [ ] LOCK
UPAL ] 1 GND
UPAO [ = |
vee 18R
clout [ 1 vee
IPEND [ 1 7S
GND []184 471 8B
1 1112 23 24 34 35 46
gbauttutufiotubutuiuiiuouuooououguuoouo oo
AR EEEFFEEEEEEEEE EEE R BT FEFLEF R B
Pin Group GND Vee
PLL 17, 22, 24 19, 21
Internal Logic 5, 8, 10, 27, 28, 33, 55, 68, 95, 108, 121, 162, 9, 32, 56, 69, 81, 94, 100, 109, 122, 136, 149,

130, 135, 174

161, 175

Output Drivers

16, 20, 25, 40, 46, 52, 59, 65, 72, 78, 84, 85, 91,
98, 105, 112, 118, 125, 132, 139, 140, 146, 152,
158, 165, 171, 178, 184

181

43, 49, 62, 75, 88, 102, 115, 128, 143, 155, 168,

12-6

M68040 USER’S MANUAL

MOTOROLA




12.2.6 MC6BEC040 Quad Flat Pack

[eF=] [=] =] Q =] O d 2 m OO0~ 020200 Qau Qo2 v Qo
8BS ENRGEE RSB 83Y5 8600006060060 8989286888°8
aooononoooonoooooooonoooooooonoonooonnoonoonnnnn
138 128127 116115 105104 93
GND []139 921 D27
GND [ 1 GND
A31 ] 1 D28
A30 1 D29
vee 1 vce
A29 [ 1 D30
A28 1 D31
GND [ 1 GND
A27 1 GND
A26 1 A9
vee 1149 821 A8
A25 []150 81— Ve
A4 1 A7
GND [ 1 A6
A3 ] 1 GND
A22 1 A5
Vee 1 A4
A1 1 vee
A20 1 A3
GND [ 1 A2
A9 1 GND
A18 1 A1
vce 161 MC68EC040 701 A0
GND []162 69— vce
AL7 (TOP VIEW) 1 GND
A16 1 T™™2
GND [ 1 T™M1
A15 1 GND
A4 1 T™O0
vee 1 TLN1
A13 1 Vvce
A2 1 TLNO
GND [ 1 S120
ALl Q172 59—1 GND
A10 173 58— RIW
GND [ 1 LOCKE
Vee 1 vee
1] 1 GND
TT0 [ 1 siz1
GND [ ] LOCK
UPAL ] 1 GND
UPAO [ = |
vee 18R
clout [ 1 Vce
IPEND [ 1 7S
GND []184 471 8B
1 1112 23 24 34 35 46
gauttutufiobubutuiuiiuuouuooouooouuoouo oo
O_xD}—U)DU‘—'U)_NZ,'EDDX(_)DUD!DDODD_Q_ODOHO<<ODHNQP”&D
CBPPERFaSR80de35555535506%65°2PS3888E7E3hE0EF3
MCG68EC040 184 Pin QFP Pin Assignment
Pin Group GND Vee
PLL 17, 22, 24 19, 21
Internal Logic 5, 8, 10, 27, 28, 33, 55, 68, 95, 108, 121, 162, 9, 32, 56, 69, 81, 94, 100, 109, 122, 136, 149,

130, 135, 174

161, 175

Output Drivers

16, 20, 25, 40, 46, 52, 59, 65, 72, 78, 84, 85, 91,
98, 105, 112, 118, 125, 132, 139, 140, 146, 152,
158, 165, 171, 178, 184

181

43, 49, 62, 75, 88, 102, 115, 128, 143, 155, 168,

MOTOROLA

M68040 USER’S MANUAL

12-7




12.2.7 MC68040V and MC68ECO040V Quad Flat Pack

[a) E =] Q =] Q00 1 2am Qe o~ Q800801 Qau Qo vw2 Qo
BB NREEG 88558895866 aonStonoadeadydassges
anononooonoonoaononoonoononooooonoonoooononononoooent
138 128127 116115 105104 93
GND 139 921 D27
vee [ 1 GND
A3l 1 D28
A30 1 D29
Vee 1 vee
A29 1 D30
A28 [ 1 D31
GND ] 1 GND
A27 1 vce
A26 1 A9
vee EJ149 821 A8
A25 150 81— vce
A4 1 A7
GND ] 1 A6
A23 1 GND
A22 ] 1 A5
vee 1 A4
A21 ] 1 vce
A20 1 A3
GND ] 1 A2
A19 [ 1 GND
Vee 161 MC68040V and MC68EC040V =W
GND 162 (TOP VIEW) 691 vee
A7 [ 1 GND
Al6 1 T™M2
GND ] 1 T™ML
Al5 [ 1 GND
Al4 1 T™MO
vee 1 TINL
A13 1 vee
A2 1 TLNO
GND ] 1 SI120
A1l []172 591 GND
A10 173 58 1 RIW
GND ] 1 LOCKE
Vee 1 Ve
TT1 ] GND
TT0 1 sIz1
GND ] 1 LoCK
UPAL ] 1 GND
UPAO [ m BV
vee 1 BR
clout [ 1 vee
IPEND [ 17s
GND 184 47 18BB
1 1112 23 24 34 35 46
duubbooouioiuiidoouiuiouiiogiuooioiooooroooud
o = oo x 0O x 3 o o — o~ ™ o
BBRS35E258452728258088530285 P PE200%E753R50E"S
NOTES:

* On MC68ECO040V this pin is called JS1.

** All these pins are in the JTAG scan chain. On an MC68040 design JS2 = GND; on an MC68060 design JS2 = CLK.

12-8 M68040 USER’S MANUAL

MOTOROLA



12.3 MECHANICAL DATA

Figure 12-1 illustrates the MC68040, MC68LC040, and MC68EC040 PGA package
dimensions. Figure 12-2 illustrates the MC68040, MC68LC040, and MC68EC040 QFP
package dimensions. Due to space limitation, Figure 12-2 is represented by a general
(smaller) package outline drawing rather than showing all 184 leads.

A

A

PIN A1 INDICATOR J

7]

‘<

-<—

N

> wmOoOoOmMMEIT «x-=Zz70v0 00w —

G —>

[XOXOXOJOXOXOXOXOXOJOJOJONORORL:

DN
ZAA\
W
ZBANi

\\ZAN7

(0XOXOXOJOJOXOXOXOXOXOJCHOJONORORL:

(oJoJoJoJoJoJoJoJoJoJoJooJoJoXoXoXo)

@O0 QOO
@06 [oJoJo
[0JOXO] @EO
@06 QOO
@O [oJoJo
[0JOJXO] (0JOXO]
@O0 [oJoJo
@06 [oJoJo
[0JoXO] (0JOXO]
[oJoXo [oJoJo
@06 @O
@06 QOO
(oJojojeoeleleleloJoJoJoloJoJOXOXO)
@POOOOOOOOOOLOOOOO
OOOOOOOOOOOOOOBOOO®
1 2345 67 891011121314 15 1617 18

D 179 PLACES

©.030 (.76)

—

BW [ cW]

D

©.010 (.25)

SIS

DIM

MILLIMETERS

INCHES

MIN

MAX

MIN

MAX

46.74

47.75

1.840

1.880

46.74

4775

1.840

1.880

2.79

3.05

0.110

0.140

0.41

051

0.016

0.020

2.54 BSC

0.100 BSC

X®OOO|W@|>

381

4.32

0.150

0.170

Figure 12-1. PGA Package Dimensions

MOTOROLA

M68040 USER’S MANUAL

12-9



Figure 12-2. QFP Package Dimensions

M68040 USER’S MANUAL MOTOROLA




REV2.3 (01/29/2000)

APPENDIX A
MC68LC040

NOTE

Rev. 2.3 contains timing informationg for 40 MHz operation.
Refer to chang bars for these additions.

All references to MC68LC040 also apply to the MC68040V.
Refer to Appendix C MC68040V and MC68EC040V for more
information on the MC68040V.

The MC68LC040 is Motorola's integer-only version of the MC68040 third-generation,
M68000-compatible, high-performance, 32-bit microprocessor. The MC68LCO040 is a virtual
memory microprocessor with a highly integrated architecture that provides very high perfor-
mance in a monolithic HCMOS device. On a single chip, the MC68LC040 integrates an
MC68040-compatible integer unit and fully independent instruction and data demand-paged
memory management units (MMUS), including independent 4-Kbyte instruction and data
caches. A high degree of instruction execution parallelism is achieved through the use of a
six-stage instruction pipeline, multiple internal buses, and a full internal Harvard architec-
ture, including separate physical caches for both instruction and data accesses. The
MC68LCO040 also directly supports cache coherency in multimaster applications with dedi-
cated on-chip bus snooping logic.

The MC68LC040 achieves its high performance through the use of the MC68040 integer
unit. The six-stage pipeline operates on up to six instructions concurrent with MMU, cache,
and bus controller operations. Multiple internal buses, separate data and instruction caches,
and a sophisticated bus controller allow internal units to operate concurrently and decouple
the MC68LCO040 from the external bus. The internal caches and the decoupling of the exter-
nal bus allow for an external memory subsystem to be built from slower and less expensive
memories with minimal impact to the overall system performance. The potential for a
low-cost system design with the price/performance of the MC68LC040 makes it a good
choice for embedded microprocessor applications as well as central processor applications.

The MC68LCO040 is user-object-code compatible with previous members of the M68000
family and is specifically optimized to reduce the execution time of compiler-generated code.
The high level of performance is ideal for integer-intensive applications. The MC68LC040 is
implemented in Motorola's latest HCMOS technology, providing an ideal balance between
speed, power, and physical device size. Independent data and instruction MMUs control the
main caches and the address translation caches (ATCs). The ATCs speed up logi-
cal-to-physical address translations by storing recently used translations. The bus snooper
circuit ensures cache coherency in multimaster and multiprocessing applications. The

MOTOROLA M68040 USER’S MANUAL A-1



| MC68LC040 REV2.3 (01/29/2000)

MC68LCO040 is pin compatible with the MC68040 and the MC68EC040. Figure A-1 illus-
trates a simplified block diagram of the MC68LC040.

INSTRUCTION DATA BUS
INSTRUCTION INSTRUCTION
ATC CACHE
ﬁ ﬁ INSTRUCTION
INSTRUGTION INSTRUCTION ADDRESS
FETCH CACHE/ACCESS/SNOOP _—
CONTROLLER T
B
INSTRUCTION MEMORY MANAGEMENT UNIT U
DECODE S ADDRESS
BUS
EFFECTIVE C
ADDRESS o)
CALCULATE N
T
EFFECTIVE
ADDRESS R D
FETCH o
L
L
EXECUTE E
DATA MEMORY MANAGEMENT UNIT
DATA R
DATA ADDRESS, ConTROL
WRITE-BACK CACHE/ACCESS/SNOOP - SIGNALS
CONTROLLER .
INTEGER UNIT @ {}
DATA DATA
/\ ATC CACHE
OPERAND DATA BUS

Figure A-1. MC68LC040 Block Diagram

The main features of the MC68LC040 include:
» 22 MIPS Integer Performance at 25 MHz
* Independent Instruction and Data MMUs

» 4-Kbyte Physical Instruction Cache and 4-Kbyte Physical Data Cache Accessible Si-
multaneously

» 32-Bit, Nonmultiplexed External Address and Data Buses with Synchronous Interface
» User-Object-Code Compatible with All M68000 Microprocessors
» Multimaster/Multiprocessor Support Via Bus Snooping

» Concurrent Integer Unit, MMU, Bus Controller, and Bus Snooper Operation Maximizes
Throughput

A-2 M68040 USER'S MANUAL MOTOROLA



» 4-Gbyte Direct Addressing Range
« Software Support Including Optimizing C Compiler and UNIX® System V Port

MC68LC040 REV2.3 (01/29/2000)

With the exception of the floating-point unit (FPU) and its registers, the MC68LC040 pro-
gramming model, data formats and types, instruction set (except all instructions beginning
with an “F”), caches, and MMUs are the same as those described in Section 1 Introduction

for the MC68040. Figures A-2 and A-3 illustrate the programming model and functional sig-
nal groups for the MC68LC040.

DATA ——
REGISTERS

——— ADDRESS

REGISTERS

L _

A7/USP USER STACK POINTER
PROGRAM COUNTER
CONDITIONAL CODE REGISTER

USER PROGRAMMING MODEL

PC
CCR

31

1(CCR)

AT/ISP
AT’ IMSP
SR

VBR
SFC
DFC
CACR
URP
SRP

TC
DTTO
DTT1
ITTO
ITT1
MMUSR

INTERRUPT STACK POINTER

MASTER STACK POINTER

STATUS REGISTER

VECTOR BASE REGISTER

SOURCE FUNCTION CODE

DESTINATION FUNCTION CODE

CACHE CONTROL REGISTER

USER ROOT POINTER REGISTER

SUPERVISOR ROOT POINTER REGISTER

TRANSLATION CONTROL REGISTER

DATA TRANSPARENT TRANSLATION REGISTER 0

DATA TRANSPARENT TRANSLATION REGISTER 1
INSTRUCTION TRANSPARENT TRANSLATION REGISTER 0
INSTRUCTION TRANSPARENT TRANSLATION REGISTER 1
MMU STATUS REGISTER

SUPERVISOR PROGRAMMING MODEL

Figure A-2. MC68LC040 Programming Model

®UNIX is a registered trademark of AT&T Bell Laboratories.

MOTOROLA

M68040 USER’S MANUAL

A-3



MC68LC040 REV2.3 (01/29/2000)

ADDRESS BUS SNOOP CONTROL
-1 A31-A0 SC1 —
BUS L <:> <W— AND RESPONSE
— —p |
DATA <:> -
BUS -1 D31-D0 BR
- = > L. BUS ARBITRATION
_ <= »
. TTO . -
< TT1 » ' CDIS .
T™O RSTI
T -« L PROCESSOR
<—TM2 | RSTO g, CONTROL
MDIS
TLNO .
TLN1 =R
TRANSFER _| UPAO <
ATTRIBUTES - PLL
g UPAL - L INTERRUPT
RIW - CONTROL
< P MC68LC040 IPEND
SIZ1 &
LOCK —_
- PSTO
LOCKE PST1>
.CIOUT ————
| - PST2 o | STATUS AND
_ PST3 CLOCKS
MASTER TS BCLK
TRANSFER -| E—P> -
CONTROL | -—2— =
r TA JS0 .
P |l ——
— TCK
SLAVE TEA ——
TRANSFER Tor B> S EITSE— TEST
CONTROL —>m >
| ——> 10O g
I TRST
<VL ] POWER SUPPLY
GND I~
-

Figure A-3. MC68LC040 Functional Signal Groups

A.1 MC68LC040 DIFFERENCES

The following differences exist between the MC68LC040 and MC68040:

* The MC68LCO040 does not implement the small output bufferr impedance selection
mode.

» The DLE pin name has been changed to JSO

» The MC68LCO040 does not implement the data latch (DLE) or multiplexed bus modes
of operation. All timing and drive capabilities of the MC68LCO040 are equivalent to those
of the MC68040 in small output buffer impedance mode.

» The MC68LCO040 does not contain an FPU, which causes unimplemented floating-point
exceptions to occur using a new eight-word stack frame format.

A-4 M68040 USER'S MANUAL MOTOROLA



MC68LC040 REV2.3 (01/29/2000)

A.2 INTERRUPT PRIORITY LEVEL (IPL2 —-IPLO)

The IPL2—IPLO pins do not have any affect on the selection of output buffer impedance.

A.3 JTAG SCAN (JS0)

The MC68040 DLE pin name has been changed to JSO. During normal operation, the JSO
pin cannot float, it must be tied to GND or Vcc directly or through a resistor. During board
testing, this pin retains the functionality of the JTAG scan of the MC68040 for compatibility
purposes. Refer to Section 6 IEEE 1149.1A Test Access Port (JTAG) for details concern-
ing IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture.

A.4 DATA LATCH AND MULTIPLEXED BUS MODES

The MC68LC040 does not implement the data latch or multiplexed modes of operation. The
CDIS pin is ignored at the rising edge of reset. All timing and drive capabilities of the
MC68LC040 are equivalent to those of the MC68040 in small output buffer impedance
mode.

A.5 FLOATING-POINT UNIT (FPU)

The FPU is not implemented on the MC68LC040. All floating-point instructions cause an
unimplemented floating-point exception to be taken with a new eight-word stack frame (for-
mat $4). The stack frame contains the status register (SR), program counter (PC), vector off-
set, effective address of the operand (where applicable), and PC value of the
unimplemented floating-point instruction.

A.5.1 Unimplemented Floating-Point Instructions and Exceptions

All legal MC68040 and MC68881/MC68882 floating-point instructions are defined as unim-
plemented floating-point instructions on the MC68LC040. These instructions generate a for-
mat $4 stack frame during exception processing before taking an F-line exception. These
instructions trap as an F-line exception, and the F-line exception handler can emulate them
in software to maintain user-object-code compatibility.

The MC68LC040 assists the emulation process by distinguishing unimplemented float-
ing-point instructions from other unimplemented F-line instructions. To aid emulation, the
effective address is calculated and saved in the format $4 stack frame. This simplifies and
speeds up the emulation process by eliminating the need for the emulation routine to deter-
mine the effective address and by providing information required to emulate the instruction
on the exception stack frame in the supervisor address space. However, the floating-point
instruction can reside in user space; therefore, the floating-point unimplemented exception
handler may need to access user instruction space. The following processing steps occur
for an unimplemented floating-point instruction:

1. When an unimplemented floating-point instruction is encountered, the instruction is
partially decoded, and the effective address is calculated, if required.

2. The processor waits for all previous integer instructions, write-backs, and associated
exception processing to complete before beginning exception processing for the un-
implemented floating-point instruction. Any access error that occurs in completing the
write-backs causes an access error exception, and the resulting stack frame indicates

MOTOROLA M68040 USER’S MANUAL A-5



MC68LC040 REV2.3 (01/29/2000)

a pending unimplemented floating-point instruction exception. The access error ex-
ception handler then completes the write-backs in software, and exception processing
for the unimplemented floating-point instruction exception begins immediately after re-
turn from the access error handler.

The processor begins exception processing for the unimplemented floating-point in-
struction by making an internal copy of the current SR. The processor then enters the
supervisor mode and clears the trace bits (T1 and T0). It creates a format $4 stack
frame and saves the internal copy of the SR, PC, vector offset, calculated effective ad-
dress, and PC value of the faulted instruction in the stack frame.

The effective address field of the format $4 stack frame contains the calculated effec-
tive address of the operand for the faulted floating-point instruction using the address-
ing mode in which the effective address is calculated. For immediate and register
direct addressing modes, this field is $0. The saved PC value is the logical address of
the instruction that follows the unimplemented floating-point instruction. This value will
be restored during RTE execution. The vector offset format number ($4) is used for
this eight-word stack frame. Note that an MC68040 cannot correctly handle a stack for-
mat $4. The PC of the faulted instruction contains a long-word PC of the floating-point
instruction that caused the trap to occur. The information is provided so that the in-
struction is available for software emulation of floating-point instructions. The proces-
sor generates exception vector number 11 for the unimplemented F-line instruction
exception vector, fetches the address of the F-line exception handler from the excep-
tion vector table, and begins execution of the handler after prefetching instructions to
fill the pipeline. Refer to Section 8 Exception Processing  for details about exception
processing.

A.5.2 MC68LC040 Stack Frames

When the processor executes an RTE instruction, it examines the stack frame on top of the
active supervisor stack to determine if it is a valid frame and what type of context restoration
it requires. The MC68LC040 provides five different stack frames for exception processing
and allows for an MC68040-specific stack frame. The set of frames includes four- and
six-word stack frames, a four-word throwaway stack frame, an access error stack frame, and
a new eight-word unimplemented floating-point stack frame. The stack frame that the
MC68040 can generate and the MC68LC040 can process is the floating-point post-instruc-
tion stack frame. Refer to Section 8 Exception Processing for details about exception
stack frames.

Table 12-1. Eight-Word Stack Frame (Format $4)

Stack Frames ‘ Exception Types ‘ Stacked PC Points To

M68040 USER'S MANUAL MOTOROLA



MC68LC040 REV2.3 (01/29/2000)
Table 12-1. Eight-Word Stack Frame (Format $4)

* The MC68040 cannot « Effective address field is
generate or read this stack. the address of the faulted
15 0 instruction operand.
SP—p» STATUS REGISTER

+$02 PROGRAM COUNTER

+$06 | 0100 VECTOR OFFSET

+$08 EFFECTIVE ADDRESS

Vil —

When the MC68LC040 writes or reads a stack frame, it uses long-word operand transfers
wherever possible. Using a long-word-aligned stack pointer greatly enhances exception pro-
cessing performance. The processor does not necessarily read or write the stack frame data
in sequential order. The system software should not depend on a particular exception gen-
erating a particular stack frame. For compatibility with future devices, the software should be
able to handle any format of stack frame for any type of exception. The MC68LC040 does
not generate the floating-point post-instruction stack frame. The MC68040 cannot accept the
eight-word unimplemented stack frame. The MC68LC040 can handle all MC68040 stack
frame formats.

A.6 MC68LC040 ELECTRICAL CHARACTERISTICS

The following paragraphs provide information on the maximum rating and thermal charac-
teristics for the MC68LCO040. This section is subject to change. For the most recent specifi-
cations, contact a Motorola sales office or complete the registration card at the end of this
manual.

A.6.1 Maximum Ratings

Characteristic Symbol Value Unit This device contains protective

circuitry against damage due to

Supply Voltage Vee -0.3t0 +7.0 Y, high static voltages or electrical

fields; however, it is advised that

Input Voltage Vi, _05t0+7.0 v normal precautions be taken to
i . .

avoid application of any voltages

- - - higher = than  maximum-rated
Maximum Operating Junction Temperature T; 110 °C vcﬂtages to this hi?h—impedance

circuit. Reliablity of operation is
Minimum Operating Ambient Temperature Ta 0 °C enhanced if unused inputs are

tied to an appropriate logic

Storage Temperature Range Tetg 5510150 | “C | \Pligge level (e.g., either GND or

A.6.2 Thermal Characteristics

Characteristic Symbol Value Rating

Thermal Resistance, Junction to Case— 8;c 3 °CIW
PGA Package

MOTOROLA M68040 USER’S MANUAL A-7




MC68LC040 REV2.3 (01/29/2000)

A.6.3 DC Electrical Specifications

(Ve = 5.0 Vdc £5 %)

Characteristic Symbol Min Max Unit
Input High Voltage ViH 2 Vee Y,
Input Low Voltage i GND 0.8
Undershoot — — 0.8
Input Leakage Current @ 0.5/2.4 V lin 20 20 HA
AVEC, BCLK, BG, CDIS, MDIS, IPLA, PCLK, RSTI, SCx,
TBI, TLNx, TCI, TCK, TEA
Hi-Z (Off-State) Leakage Current @ 0.5/2.4 V o
An, BB, CIOUT, Dn, LOCK, LOCKE, R/W, SIZx, TA, TDO, Itsi 20 20 HA
TIP, TMx, TLNX, TS, TTx, UPAX
Signal Low Input Current, V| =0.8V m -11 -0.18 mA
TMS, TDI, TRST
Signal High Input Current, V,; - 2.0V (I -0.94 -0.16 mA
TMS, TDI, TRST
Output High Voltage, lon = 5 ma (small Buffer Mode) Vou 2.4 — v
Output Low Voltage, Io, =5 mA (Small Buffer Mode) VoL — 0.5 \
Output High Voltage, Igy = 55 mA (Large Buffer Mode) VoH 2.4 — \
Output Low Voltage, lo; =55 mA (Large Buffer Mode) VoL — 0.5 \
Capacitance*, Vi, =0V, f=1 MHz Cin — 25 pF
*Capacitance is periodically sampled rather than 100% tested.
A.6.4 Power Dissipation
Frequency Watts
Maximum Values (V cc =5.25V, Tp = 0°C)
20 MHz 3.2
25 MHz 3.9
33 MHz 4.9
40 MHz 55
Typical Values (V cc =5V, T = 25°C)*
20 MHz 2.0
25 MHz 2.4
33 MHz 3.0
40 MHz 35
*This information is for system reliability purposes.
A-8 M68040 USER’'S MANUAL MOTOROLA




MC68LC040 REV2.3 (01/29/2000)

A.6.5 Clock AC Timing Specifications

(see Figure A-4)

20 MHz 25 MHz 33 MHz 40 MHz
Num Characteristic Min Max Min Max Min Max Min Max Unit
Frequency of Operation 16.67 20 16.67 25 16.67 33 20 40 MHz
1 PCLK Cycle Time 25 30 20 30 15 30 12.5 25 nS
2 PCLK Rise Time — 1.7 — 1.7 — 1.7 — 15 nS
3 PCLK Fall Time — 1.6 — 1.6 — 1.6 — 1.5 nS
4 Eg"\f Duty Cycle Measured at 48 | 52 | 475 | 525 | 46.67 | 53.33 | 46.00 | 54.00 | %
4a* PCLK Pulse Width High 5.75 6.75
Measured at 1.5V 12 13 9.5 105 ! 8 ns
4b* | PCLK Pulse Width Low
Measured at 1.5 V 12 13 9.5 10.5 7 8 5.75 | 6.75 nS
5 BCLK Cycle Time 50 60 40 60 30 60 25 50 nS
6,7 | BCLK Rise and Fall Time — 4 — 4 — 3 — 3 nS
8 ?(.;L\;( Duty Cycle Measured at 40 60 40 60 40 60 40 60 %
8a* | BCLK Pulse Width High
Measured at 1.5 V 20 30 16 24 12 18 10 15 nS
8b* | BCLK Pulse Width Low
Measured at 1.5 V 20 30 16 24 12 18 10 15 nS
9 PCLK, BCLK Frequency Stability — 1000 — 1000 — 1000 — 1000 | ppm
10 PCLK to BCLK Skew — 9 — 9 — N/A — N/A nS
*Specification value at maximum frequency of operation.
PCLK
(19
BCLK a/ %
> E—_
g
Figure A-4. Clock Input Timing Diagram
MOTOROLA M68040 USER'S MANUAL A-9




| MC68LC040 REV2.3 (01/29/2000)

A.6.6 A.6.7 Output AC Tlmlng SpeCiﬁcationS (see Figures A-5" to A-9)

20 MHz 25 MHz 33 MHz 40 MHz
Unit
I Num Characteristic Min Max Min Max Min Max Min Max
11 |BCLK to Address, CIOUT, LOCK,
LOCKE, PSTx, R/W, SIZx,
I TLNX, TMx, TTX, UPAX 115 | 35 9 30 | 65 | 25 | 25| 24 | NS
Valid
| 12 | BCLK to Output Invalid (Output 115 . 9 . 6.5 . 525 . ns
Hold)
| 13 |BCLKto TS Valid 11.5 35 9 30 6.5 25 5.25 24 nS
| 14 |BCLK to TIP Valid 11.5 35 9 30 6.5 25 5.25 24 nS
| 18 |BCLK to Data-Out Valid 11.5 37 9 32 6.5 27 5.25 26 ns
I 19 |BCLK to Data-Out Invalid (Output 115 . 9 . 6.5 . 525 . ns
Hold)
| 20 |BCLK to Output Low Impedance 115 — 9 — 6.5 — 5.25 — nS
I 21 | BCLK to Data-Out High 115 | 25 9 20 | 65 | 17 | 525 | 16 | ns
Impedance
38 |BCLK to Address, CIOUT, LOCK,
LOCKE, R/W, SIZx, TS, TLNX,
| TMx, TTx, UPAX High 11.5 23 9 18 6.5 15 5.25 14 nS
Impedance
I 39 |BCLK 10 BB, TA, TIP High 23 33 19 28 14 25 | 115 | 22 | ns
Impedance
| 40 |BCLK to BR, BB Valid 11.5 35 9 30 6.5 23 5.25 14 nS
| 43 |BCLK to MI Valid 11.5 35 9 30 6.5 25 5.25 24 nS
| 48 |BCLK to TA Valid 11.5 35 9 30 6.5 25 5.25 24 nS
I 50 BCVL;;CEO IPEND, PSTx, RSTO 115 | 35 9 30 | 65 | 25 | 525 | 24 | ns

*Output timing is specified for a valid signal measured at the pin. Timing is specified driving an unterminated 30-Q
transmission line with a length characterized by a 2.5-nS one-way propagation delay. Buffer output impedance is
typically 30 Q; the buffer specifications include approximately 5 nS for the signal to propagate the length of the
transmission line and back.

A-10 M68040 USER'S MANUAL MOTOROLA



MC68LC040 REV2.3 (01/29/2000)

A.6.8 Input AC Timing Specifications

(See Figures A-5 to A-9)

20 MHz 25 MHz 33 MHz 40 MHz
Num Characteristic Min Max Min Max Min Max Min Max Unit
15 Data-In Valid to BCLK (Setup) 6 — 5 — 4 — 3 — nS
16 BCLK to Data-In Invalid (Hold) 5 — 4 — 4 — 3 — nS
| ¥ ead roliowed by wite) | — | et | — | ® | — |ses | — |w0zs] ns
22a | TA Valid to BCLK (Setup) 125 — 10 — 10 — 8 — nS
22b | TEA Valid to BCLK (Setup) 125 — 10 — 10 — 9 — nS
22c | TCI Valid to BCLK (Setup) 125 — 10 — 10 — 9 — nS
22d | TBI Valid to BCLK (Setup) 14 — 11 — 10 — 9 — nS
23 B(irl;\}l(ar%‘l('ﬁéLI)EA, TCI, TBI 25 . 2 . 5 . 5 . ns
24 | AVEC Valid to BCLK (Setup) 6 — 5 — 5 — 5 — nS
25 | BCLK to AVEC Invalid (Hold) 25 — 2 — 2 — 2 — nS
41a | BB Valid to BCLK (Setup) 8 — 7 — 7 — 7 — nS
41b | BG Valid to BCLK (Setup) 10 — 8 — 7 — 7 — nS
41c C?sséu’:/lpl))ls Valid to BCLK 125 . 10 . 8 . 8 . ns
41d | TPLA Valid to BCLK (Setup) 5 — 4 — 3 — 3 — nS
R e e e e N e - e A I
44a | Address Valid to BCLK (Setup) 10 — 8 — 7 — 7 — nS
44b | Slzx Valid to BCLK (Setup) 15 — 12 — 8 — 8 — nS
44c | TTx Valid to BCLK (Setup) 7.5 — 6 — 8.5 — 8.5 — nS
44d | R/W Valid to BCLK (Setup) 7.7 — 6 — 5 — 5 — nS
44e | SCx Valid to BCLK (Setup) 12.5 — 10 — 11 — 8 — nS
45 BCLK to Address SIZx, TTx,
R/W, SCx 25 — 2 — 2 — 2 — nS
Invalid (Hold)
46 TS Valid to BCLK (Setup) 6 — 5 — 9 — 7 — nS
47 BCLK to TS Invalid (Hold) 2.5 — 2 — 2 — 2 — nS
49 | BCLK to BB High Impedance
(MC68LC040 Assumes Bus — 11 — 9 — 9 — 9 nS
Mastership)
51 RSTI Valid to BCLK 6 — 5 — 4 — 4 — nS
52 | BCLK to RSTI Invalid 25 — 2 — 2 — 2 — nS
MOTOROLA M68040 USER'S MANUAL A-11



| MC68LC040 REV2.3 (01/29/2000)

ST S T 2 S Y

o
®
ok
©®

A31-A0 X ]
ATTRIBUTES s X
© @
- % I
> 12)| >
ﬁ N 7
> -t
D31-DO IN © =
(READ) E
oo 2oy O LS
il J@
-
_ 2

—
m
>

[

—
Qe
[
N
I

TBI \ 14
@)= @
AVEC N/

NOTE: Transfer Attribute Signals = UPAX, SIZx, TTx, TMx,
TLNx, R/W, LOCK, LOCKE, and CIOUT

Figure A-5. Read/Write Timing

A-12 M68040 USER'S MANUAL MOTOROLA



MC68LC040 REV2.3 (01/29/2000)

BCLK 1—\_71—\_7*\_747
38)|=a»
A31-A0 7 Ok ;¢
TRANSFER —— =
ATTRIBUTES — | L
LOCK, LOCKE | Z
s —— D> =
w OFgl | e- |-
@ A\
D31-DOOUT — |
(WRITE) -/

BG

IO e !
- —"\L@

NOTE: Transfer Attribute Signals = UPAX, SIZx, TTx, TMx, TLNx, R/W, and CIOUT

©
ﬁ @T@* @

1

o

@

Figure A-6. Bus Arbitration Timing

MOTOROLA M68040 USER’S MANUAL A-13



MC68LC040 REV2.3 (01/29/2000)

BCLK

A31-A0 IN

SlIzx, TTX,
R/W IN

SC1, SC0

TSIN

-
D31-DO IN
(ALT. MASTER
WRITE)
D31-D0 OUT
(ALT. MASTER
READ)

TA OUT

BB IN

A-14

o

=%

@

A

Figure A-7. Snoop Hit Timing

4>7L—@

M68040 USER'S MANUAL

MOTOROLA



MC68LC040 REV2.3 (01/29/2000)

A-15

BCLK

A31-A0 IN

SIzx, TTX,
R/W IN

SC1, SCO

4< 2w - i
] i
AL
S SNOOP F—

Q&j’

i

> - (23
N
N |V
!

Figure A-8. Snoop Miss Timing

M68040 USER'S MANUAL

MOTOROLA



MC68LC040 REV2.3 (01/29/2000)

A-16

@) > 1=

@) =
P

Figure A-9. Other Signal Timing

M68040 USER'S MANUAL

MOTOROLA



REV2.3 (01/31/2000)

APPENDIX B
MCG68EC040

NOTE

Rev. 2.3 contains timing informationg for 40 MHz operation.
Refer to chang bars for these additions.

All references to MC68EC040 also apply to the MC68EC040V.
Refer to Appendix C MC68040V and MC68EC040V for more
information on the MC68ECO040V.

The MC68ECO040 is Motorola's third generation of M68000-compatible, high-performance,
32-bit microprocessors. The MC68EC040 is an embedded controller employing a highly
integrated architecture to provide very high performance in a monolithic HCMOS device. The
MCG68ECO040 integrates an MC68040-compatible integer unit, an access control unit (ACU),
and independent 4-Kbyte instruction and data caches. A six-stage instruction pipeline, mul-
tiple internal buses, and a full internal Harvard architecture, including separate caches for
both instruction and data accesses, provides a high degree of instruction execution parallel-
ism. The inclusion of on-chip bus snooping logic, which directly supports cache coherency
in multimaster applications, enhances cache functionality.

The MCG68ECO040 is user-object-code compatible with previous members of the M68000
family and is specifically optimized to reduce the execution time of compiler-generated code.
The MCGB8ECO040 is pin compatible with the MC68040 and MC68LC040. The MC68EC040
is implemented in Motorola's latest HCMOS technology, providing an ideal balance between
speed, power, and physical device size. Figure B-1 provides a simplified block diagram of
the MC68EC040.

The main features of the MC68ECO040 include:
* MC68040-Compatible Integer Execution Unit

» 4-Kbyte Instruction Cache and 4-Kbyte Data Cache Accessible Simultaneously

» 32-Bit, Nonmultiplexed External Address and Data Buses with Synchronous Bursting
Interface

» User-Object-Code Compatible with All M68000 Microprocessors

» Concurrent Integer Unit, ACU, and Bus Controller Operation Maximizes Throughput
* Low-Latency Bus Accesses for Reduced Cache-Miss Penalty

» Multimaster/Multiprocessor Support via Bus Snooping

» 4-Gbyte Direct Addressing Range

MOTOROLA M68040 USER’S MANUAL B-1



MC68EC040 REV2.3 (01/31/2000)

INSTRUCTION DATA BUS

7,
2

INSTRUCTION INSTRUCTION
ATC CACHE

ﬁ ﬁ INSTRUCTION

INSTRUCTION ADDRESS
CACHE/ACCESS/SNOOP -
CONTROLLER T

INSTRUCTION
FETCH

INSTRUCTION MEMORY MANAGEMENT UNIT
DECODE

ADDRESS
BUS

EFFECTIVE
ADDRESS
CALCULATE

EFFECTIVE
ADDRESS
FETCH

DATA
BUS

EXECUTE
DATA MEMORY MANAGEMENT UNIT

amrrQoxru—HzZ00 wCw

DATA
ADDRESS BUS

CONTROL
SIGNALS

DATA
WRITE-BACK CACHE/ACCESS/SNOOP *
CONTROLLER ]

INTEGER UNIT @ @

DATA DATA
/\ ATC CACHE

PAN
\

OPERAND DATA BUS

Figure B-1. MC68ECO040 Block Diagram

With the exception of the memory management unit (MMU), the floating-point unit (FPU),
and their respective registers, the MC68EC040 programming model, data formats and
types, instruction set (except all instructions beginning with an “F”, PTEST, and PFLUSH),
and caches are the same as described in Section 1 Introduction for the MC68040. Figures
B-2 and B-3 illustrate the programming model and functional signal groups for the
MC68EC040.

B.1 MC68EC040 DIFFERENCES

The following differences exist between the MC68EC040 and MC68040:

» Two independent access control units (ACUs) replace the MC68040 MMUs. The ACU
has four corresponding registers (access control registers) that the MC68040 imple-
ments as data transparent translation registers. The page size is fixed at 4 Kbytes.

B-2 M68040 USER'S MANUAL MOTOROLA



MC68EC040 REV2.3 (01/31/2000)

31 0
DO
D1
D2
—— pata —D3
REGISTERS D2
D6
D7
A0
Al
| ADDRESS e
REGISTERS h
A5
A6
A7/USP USER STACK POINTER
PC PROGRAM COUNTER
. CCR  CONDITIONAL CODE REGISTER
USER PROGRAMMING MODEL

31 0
l A7'ISP INTERRUPT STACK POINTER
l A7"/MSP MASTER STACK POINTER

[(CCR)| SR STATUS REGISTER
VBR VECTOR BASE REGISTER
SFC SOURCE FUNCTION CODE
DFC DESTINATION FUNCTION CODE
CACR  CACHE CONTROL REGISTER
URP USER ROOT POINTER REGISTER
SRP SUPERVISOR ROOT POINTER REGISTER
TC TRANSLATION CONTROL REGISTER

DTTO DATA TRANSPARENT TRANSLATION REGISTER 0

DTT1 DATA TRANSPARENT TRANSLATION REGISTER 1

ITTO INSTRUCTION TRANSPARENT TRANSLATION REGISTER 0
ITT1 INSTRUCTION TRANSPARENT TRANSLATION REGISTER 1
MMUSR MMU STATUS REGISTER

SUPERVISOR PROGRAMMING MODEL

Figure B-2. MC68EC040 Programming Model

* PTEST and PFLUSH instructions cause an indeterminate result (i.e., an undetermined
number of bus cycles); the user should not execute them on the MC68EC040.

» The MC68EC040 does not contain an FPU which causes unimplemented floating-point
exceptions to occur using a new stack frame format.

» The DLE and MDIS pin names have been changed to JSO and JS1, respectively.

e The MC68EC040 does not implement the DLE mode, multiplexed, or output buffer im-
pedance selection modes of operation. The MC68EC040 implements only the small
output buffer mode of operation. All timing and drive capabilities of the MC68EC040 are
equivalent to those of the MC68040 in the small buffer mode of operation.

B.2 JTAG SCAN (JS1-JS0)

The MC68040 MDIS and DLE pin names have been changed to JS1 and JSO respectively.
During normal operation, the JS1 and JSO0 pin cannot float, they must be tied to GND or Vcc
directly or through a resistor. During board testing, these pins retain the functionality of the
JTAG scan of the MC68040 for compatibility purposes. Refer to Section 6 IEEE 1149.1A

MOTOROLA M68040 USER’S MANUAL B-3



MC68EC040 REV2.3 (01/31/2000)

- SCO
ADDRESS g BUS SNOOP CONTROL
A31-A0 1 —
BUS i <:> - AND RESPONSE
_ —p |
DATA -1 D31-D0 ]
BUS = BR
- PR > | BUS ARBITRATION
_ <= p
. TTO . -
< TT1 > ¢ CDIS -
T™MO RSTI
D lETTEE -« L PROCESSOR
<—TM2 | RSTO g, CONTROL
- M
. TLNO
TLN1 =
- PLO
TRANSFER _| UPAG 4?
: UPAL <t | INTERRUPT
RIW —— CONTROL
<0 MCBBEC040 [PEND
< SIZl. & _
LOCK
4— PSTO
LOCKE PST1>
'CIOUT —
| -— PST2 g | STATUS AND
~ PST3 o CLOCKS
MASTER TS BCLK
TRANSFER -| E—P> q—————
CONTROL | ——~—— -
— TA . JSO .
— TCK
SLAVE TEA
TRANSFER — Tor > SEnIT-E— TEST
CONTROL —>W « 2
| ——— 10O g
I TRST
<L | POWER SUPPLY
GND I~
g

Figure B-3. MC6BEC040 Functional Signal Groups

Test Access Port (JTAG) for details concerning IEEE 1149.1 Standard Test Access Port
and Boundary Scan Architecture.

B.3 ACCESS CONTROL UNITS

The information in this section replaces the information in Section 3 Memory Management
Unit (Except MC68EC040 and MC68EC040V) . When reading Section 4 Instruction and
Data Caches, disregard any references to the MMU; remember the functionality of the
access control registers has replaced that of transparent translation registers. The
MCG68EC040 contains two independent ACUs, one for instructions and one for data. Each
ACU allows memory selections to be made requiring attributes particular to peripherals,
shared memory, or other special memory requirements. The following paragraphs describe
the ACUs and the access control registers contained in them.

B-4 M68040 USER'S MANUAL MOTOROLA



MC68EC040 REV2.3 (01/31/2000)

B.3.1 Access Control Registers

Each ACU has two independent access control registers (ACRs). The instruction ACU con-
tains the instruction access control registers (IACRO and IACR1). The data ACU contains
the data access control registers (DACRO and DACR1). Both ACRs provide and control sta-
tus information for access control of memory in the MC68EC040. Only programs that exe-
cute in the supervisor mode using the MOVEC instruction can directly access the ACRs.

The 32-bit ACRs each define blocks of MC68EC040:address space for access control.
These blocks of address space can overlap or be separate, and are a minimum of 16
Mbytes. Three blocks are used with two user-defined attributes, cachability control and
optional write protection. The ACRs specify a block of address space as serialized noncach-
able for peripheral selections and as write-through for shared blocks of address space in
multi-processing applications. The ACRs can be configured to support many embedded
control applications while maintaining cache integrity. Refer to Section 4 Instruction and
Data Caches for details concerning cachability. Figure B-4 illustrates the ACR format.

31 24 23 16 151413121110 9 8 7 6 5 4 3 2 1 O

LOGICAL ADDRESS BASE ‘LOGICALADDRESSMASK‘E‘ S ‘o‘o‘o‘m‘uo‘ 0 ‘ CM ‘ 0 ‘ 0 ‘W‘ 0 ‘ 0 ‘

Figure B-4. MC68ECO040 Access Control Register Format

ADDRESS BASE

This 8-bit field is compared with physical address bits A31-A24. Addresses that match in
this comparison (and are otherwise eligible) are accessible.

ADDRESS MASK

This 8-bit field contains a mask for the ADDRESS BASE field. Setting a bit in the AD-
DRESS MASK field causes the processor to ignore the corresponding bit in the AD-
DRESS BASE field. Setting some of the ADDRESS MASK bits to ones obtains blocks of
memory larger than 16 Mbytes. The low-order bits of this field are normally set to define
contiguous blocks larger than 16 Mbytes, although contiguous blocks are not required.

E—Enable

This bit enables and disables transparent translation of the block defined by this register.
Refer to Section 3 Memory Management Unit (Except MC68EC040 and
MCG68EC040V) for details on transparent translation.

0 = Access control disabled.
1 = Access control enabled.

S—Supervisor/User Mode
This field specifies the way FC2 is used in matching an address:

00 =Match only if FC2 = 0 (user mode access).
01 =Match only if FC2 = 1 (supervisor mode access).
10, 11 =Ignore FC2 when matching.

MOTOROLA M68040 USER’S MANUAL B-5



MC68EC040 REV2.3 (01/31/2000)

Ul, U0O—User Page Attributes

These two bits drive on the user page attribute signals (UPA1 and UPAQ). If an external
bus transfer results from the access, U0 and Ul are echoed to the UPAO and UPA1l
signals, respectively. The user can program these bits to support extended addressing,
bus snooping, or other applications. The MC68EC040 does not interpret these bits.

CM—Cache Mode
This field selects the cache mode and access serialization for a page as follows:

00 = Cachable, Write-through
01 = Cachable, Copyback

10 = Noncachable, Serialized
11 = Noncachable

Detailed information on caching modes is available in Section 4 Instruction and Data
Caches, and information on serialization is available in Section 7 Bus Operation

W—Write Protect

This bit indicates if the transparent block is write protected. If set, write and read-modi-
fy-write accesses are aborted as if the R-bit in a table descriptor were clear. Refer to 3.2.2
Descriptors for a description of table descriptors.

0 = Read and write accesses permitted.
1 = Write accesses not permitted.

B.3.2 Address Comparison

The following description of address comparison assumes that the ACRs are enabled.
Clearing the E-bit in each ACR independently disables access control, causing the proces-
sor to ignore it.

When an ACU receives a physical address, the privilege mode and the eight high-order bits
of the address are compared to the block of addresses defined by the two ACRs for the cor-
responding ACU. Each block of address space for an ACR contains an S-field, a BASE
ADDRESS field, and an ADDRESS MASK field. The S-field allows for matching either user
or supervisor accesses (or both). Setting a bit in the ADDRESS MASK field causes the cor-
responding bit of the ADDRESS BASE to be ignored in the address comparison and privi-
lege mode. Setting successively higher order bits in the ADDRESS MASK field increases
the size of the block of address space.

The address for the current bus cycle and an ACR address match when the privilege mode
and address bits for each (not including the masked bits) are equal. Each ACR specifies
write protection for the block of address space. Enabling write protection for a block of
address space causes the abortion of write or read-modify-write accesses to the block, and
an access error exception occurs.

By appropriately configuring an ACR, flexible mappings can be specified. For example, to
control access to the user address space, the S-field equals $0, and the ADDRESS MASK
field equals $FF in all four ACRs. To control access to the supervisor address space
($00000000-$0FFFFFFF) with write protection, the BASE ADDRESS field = $0X, the

B-6 M68040 USER'S MANUAL MOTOROLA



MC68EC040 REV2.3 (01/31/2000)

ADDRESS MASK field equals $0F, the W-bit is set to one, and the S-field = $1. The inclusion
of independent ACRs in both the instruction ACU (IACU) and data ACU (DACU provides an
exception to the merged instruction and data address space, allowing different access con-
trol for instruction and operand accesses. Also, since the instruction memory unit is only
used for instruction prefetches, different instruction and data ACRs can cause PC relative
operand fetches to be translated differently from instruction prefetches.

Matching either of the ACRs in a corresponding ACU during an access to a memory unit
completes the access with the ACU. If both registers match, the access uses the xACRO sta-
tus bits. Addresses are passed through without translation if there is no match in the ACRs
and no table search occurs. The MC68EC040 does not perform table searches.

B.3.3 Effect of RSTI on the ACU

When the assertion of the reset input (RSTI) signal resets the MC68EC040, the E-bits of the
ACRs are cleared, disabling address access control.

B.4 SPECIAL MODES OF OPERATION

This part of the M68040 User's Manual does not apply to the MC68EC040. The
MCG68EC040 does not sample the IPL2—-IPLO, CDIS, JSO (DLE on the MC68040), or JS1
(MDIS on the MC68040) pins on the rising edge of RSTI.

An external device asserts RSTI to reset the processor. When power is applied to the sys-
tem, external circuitry should assert RSTI for a minimum of 10 BCLK cycles after V¢ is
within tolerance. Figure B-5 is a functional timing diagram of the power-on reset operation,
illustrating the relationships between V¢, RSTI, and bus signals. The BCLK and PCLK
clock signals are required to be stable by the time V¢ reaches the minimum operating spec-
ification. RSTI is internally synchronized for two BCLKS before being used, and must meet
the specified setup and hold times to BCLK (specifications #51 and #52 in MCG68EC040
Electrical Characteristics ) only if recognition by a specific BCLK rising edge is required.

Once RSTI is negated, the processor is internally held in reset for another 128 clock cycles.
During the reset period, all three-statable signals are three-stated, and the rest are driven to
their inactive state. Once the internal reset signal negates, all bus signals remain in a
high-impedance state until the processor is granted the bus. After this, the first bus cycle for
reset exception processing begins. In Figure B-6, the processor assumes implicit ownership
of the bus before the first bus cycle begins. The levels on the CDIS, JS1 (MDIS on the
MC68040), and IPL2—-IPLO signals are not sampled when RSTI is negated.

For processor resets after the initial power-on reset, should be asserted for at least 10 clock
periods. Figure B-6 illustrates timing associated with a reset when the processor is executing
bus cycles. Note that BB and TIP (and TA driven during a snooped access) are asserted
before transitioning to a three-state level. Processor reset causes any bus cycle in progress
to terminate as if TA or TEA had been asserted. Also, the processor initializes registers
appropriately for a reset exception.

MOTOROLA M68040 USER’S MANUAL B-7



MC68EC040 REV2.3 (01/31/2000)

VI L T T O A B
=" P T T N Y O I B
S R B I
s T DN - GEERC
——— | L1 |1
s 1 1| I 1
R Y EFY B N
" T N T T T T YT T T -
w T T T T NT T T T NT T T T 711
T T 1 | B R
Be Y Y Y [ N [ Y N N
s L L
jli e e AT T T T R I lFL
i I L1 L0
1 l 1 1 1 N 1 1 1 1 N 1 1 1 1 1 1
- Undefined

Figure B-5. MC68EC040 Initial Power-On Reset Timing

1210 }4(? 128
CLOCKS CLOCKS| CLOCKS

N
e N LT T 1 T 1T T T 07 1
e B Lo

SNAs | | | T N T T T NT T T T T

e T T T TV

T T 7,1 N N
v TN TN T T T T T
- T T N T T N T T T T

I e Y T QR Y
s | 1 1/ Lol R
S T T T T T Y I B
— 11 | Lol N
]

Figure B-6. MC68EC040 Normal Reset Timing
When a RESET instruction is executed, the processor drives the reset out (RSTO) signal for

512 BCLK cycles. In this case, the processor resets the external devices of the system, and
the internal registers of the processor are unaffected. The external devices connected to

B-8 M68040 USER'S MANUAL MOTOROLA



MC68EC040 REV2.3 (01/31/2000)

RSTO are reset at the completion of the RESET instruction. An RSTI signal that is asserted
to the processor during execution of a RESET instruction immediately resets the processor
and causes RSTO to negate. RTSO can be logically ANDed with the external signal driving
RTSI to derive a system reset signal that is asserted for both an external processor reset
and execution of a RESET instruction.

B.5 EXCEPTION PROCESSING

The MC68ECO040 provides five different stack frames for exception processing and allows
for a MC68040-specific stack frame. Refer to Section 8 Exception Processing  for details
on exception processing.

B.5.1 Unimplemented Floating-Point Instructions and Exceptions

All legal MC68040 and MC68881/MC68882 floating-point instructions are defined as unim-
plemented floating-point instructions on the MC68ECO040. These instructions generate an
eight-word stack frame (format $4) during exception processing before taking an F-line
exception. These instructions trap as an F-line exception and can be emulated in software
by the F-line exception handler to maintain user-object-code compatibility.

The MC68EC040 assists the emulation process by distinguishing unimplemented float-
ing-point instructions from other unimplemented F-line instructions. To aid emulation, the
effective address is calculated and saved in the format $4 stack frame. This simplifies and
speeds up the emulation process by eliminating the need for the emulation routine to deter-
mine the effective address and by providing information required to emulate the instruction
on the exception stack frame in the supervisor address space. However, the floating-point
instruction can reside in user space; therefore, the floating-point unimplemented exception
handler may need to access user instruction space. The following processing steps occur
for an unimplemented floating-point instruction:

1. When an unimplemented floating-point instruction is encountered, the instruction is
partially decoded, and the effective address is calculated, if required.

2. The processor waits for all previous integer instructions, write-backs, and associated
exception processing to complete before beginning exception processing for the un-
implemented floating-point instruction. Any access error that occurs in completing the
write-backs causes an access error exception, and the resulting stack frame indicates
a pending unimplemented floating-point instruction exception. The access error ex-
ception handler then completes the write-backs in software, and exception processing
for the unimplemented floating-point instruction exception begins immediately after re-
turn from the access error handler.

3. The processor begins exception processing for the unimplemented floating-point in-
struction by making an internal copy of the current SR. The processor then enters the
supervisor mode and clears the trace bits (T1 and T0). It creates a format $4 stack
frame and saves the internal copy of the SR, PC, vector offset, calculated effective ad-
dress, and PC value of the faulted instruction in the stack frame.

The effective address field of the format $4 stack frame contains the calculated effec-
tive address of the operand for the faulted floating-point instruction using the address-
ing mode in which the effective address is calculated. For immediate and register

MOTOROLA M68040 USER’S MANUAL B-9



MC68EC040 REV2.3 (01/31/2000)

direct addressing modes, this field is $0. The saved PC value is the logical address of
the instruction that follows the unimplemented floating-point instruction. This value will
be restored during RTE execution. The vector offset format number ($4) is used for
this eight-word stack frame. Note that an MC68040 cannot correctly handle a stack for-
mat $4. The PC of the faulted instruction contains a long-word PC of the floating-point
instruction that caused the trap to occur. The information is provided so that the in-
struction is available for software emulation of floating-point instructions. The proces-
sor generates exception vector number 11 for the unimplemented F-line instruction
exception vector, fetches the address of the F-line exception handler from the excep-
tion vector table, and begins execution of the handler after prefetching instructions to
fill the pipeline. Refer to Section 8 Exception Processing for details about exception
processing.

B.5.2 MC68EC040 Stack Frames

When the processor executes an RTE instruction, it examines the stack frame on top of the
active supervisor stack to determine if it is a valid frame and what type of context restoration
it requires. The set of stack frames included for exception processing are four- and six-word
stack frames, a four-word throwaway stack frame, an access error stack frame, and a new
eight-word unimplemented floating-point stack frame. The stack frame that the MC68040
can generate and the MC68EC040 can process is the floating-point post-instruction stack
frame. Refer to Section 8 Exception Processing for details about exception stack frames.

Eight-Word Stack Frame (Format $4)

Stack Frames Exception Types Stacked PC Points To
¢ The MC68040 cannot » Effective address field is
15 0 generate or read this stack. t_he addr_ess of the faulted
instruction operand.
SP—p» STATUS REGISTER

+$02 PROGRAM COUNTER
+$06 0100 VECTOR OFFSET
+$08 EFFECTIVE ADDRESS
R 1 —

When the MC68ECO040 writes or reads a stack frame, it uses long-word operand transfers
wherever possible. Using a long-word-aligned stack pointer greatly enhances exception pro-
cessing performance. The processor does not necessarily read or write the stack frame data
in sequential order. The system software should not depend on a particular exception gen-
erating a particular stack frame. For compatibility with future devices, the software should be
able to handle any type of stack frame for any type of exception. The MC68EC040 does not
generate the floating-point post-instruction stack frame. The MC68040 cannot accept the
eight-word unimplemented stack frame. The MC68ECO040 can handle all MC68040 stack
frame formats.

B.6 SOFTWARE CONSIDERATIONS

The following MC68EC040 instructions are different from the MC68040: PTEST, PFLUSH,
CPUSH, CINV, MOVEC, and all floating-point instructions.

B-10 M68040 USER'S MANUAL MOTOROLA



MC68EC040 REV2.3 (01/31/2000)

The PTEST and PFLUSH instructions should not be executed. Execution of the PTEST
instruction causes random bus cycles to occur. Execution of the PFLUSH instruction
produces indeterminate results. Neither instruction causes the MC68EC040 to generate an
exception.

The CPUSH and CINV instructions require special consideration. A page is defined as a
4-Kbyte block of external memory. The CPUSH and CINV page instruction opcodes can be
used to push or invalidate 4-Kbyte blocks of memory. The MC68EC040 does not support
8-Kbyte pages.

The MOVEC to URP and SRP instructions are not valid and will produce indeterminate
results. Each ACU has a status register and translation control register that replace the MMU
status register and translation control register of the MC68040. The MMU status register
opcode of the MOVEC instruction can modify the ACU status register. The MC68EC040
ACU status register does not provide additional functionality to the ACU and is only provided
for compatibility with the ACU MC68ECO030 status register. The ACU status register may not
be implemented in future M68BECOXO0 products.

B.7 MC68EC040 ELECTRICAL CHARACTERISTICS

The following paragraphs provide information on the maximum rating and thermal charac-
teristics for the MC68ECO040 only. Refer to Appendix C MC68040V and MC68EC040V for
more information on electrical characteristics for the MC68EC040V. This section is subject
to change. For the most recent specifications, contact a Motorola sales office or complete
the registration card at the end of this manual.

B.7.1 Maximum Ratings

Table 12-2.
Characteristic Symbol Value Unit This device contains protective
circuitry against damage due to
Supply Voltage Vee -0.3t0+7.0 Vv high static’ voltages or electrical
fields; |however,_ it is gdvnsid that
] . normal precautions be taken to
Input Voltage Vin 0510 +7.0 v avoid application of any voltages
- - - higher ~ than ~ maximum-rated
Maximum Operating Junction Temperature T; 110 °C Vogftages to this high-impedance
circuit. Reliablity 0? operation is
Minimum Operating Ambient Temperature Ta 0 °C enhanced if unused inputs are
tied to an appropriate logic
Storage Temperature Range Totg —55 to 150 °C Y/?Jtcage level (e.g., either GND or
B.7.2 Thermal Characteristics
Characteristic Symbol Value Rating
Thermal Resistance, Junction to Case— 0;c 3 °CIW
PGA Package

MOTOROLA M68040 USER’S MANUAL B-11



| MC68EC040 REV2.3 (01/31/2000)

B.7.3 DC Electrical Specifications (v =5.0vdc +5 %)

Characteristic Symbol Min Max Unit
Input High Voltage ViH 2 Vee Y
Input Low Voltage Vi GND 0.8
Undershoot — — 0.8
Input Leakage Current @ 0.5-2.4 V
AVEC, BCLK, BG, CDIS, TPLA, PCLK, RSTI, SCx, TBI, lin 20 20 mA
TLNx, TCI, TCK, TEA
Hi-Z (Off-State) Leakage Current @ 0.5-2.4V - L
An, BB, CIO[I', Dn, LOCK, LOCKE, R/W, SIZx, TA, TDO, TIP, [ 20 20 mA
TMX, TLNXx, TS, TTx, UPAX
Slir;jgg?rvgllyn%urrent, V, =08V I a1 018 mA
Slgrr'alsiy—l_lrgglylrjr[g;?urrent, V=20V " _0.94 016 mA
Output High Voltage, loy = 5 ma Vou 2.4 —
Output Low Voltage, I, =5 mA Vou — 0.5
Capacitance*, Vi, =0V, f =1 MHz Cin — 25 pF
*Capacitance is periodically sampled rather than 100% tested.
B.7.4 Power Dissipation
Frequency Watts
Maximum Values (V ¢c =5.25V, Tp = 0°C)
20 MHz 3.2
25 MHz 3.9
33 MHz 4.9
| 40 MHz 5.5
Typical Values (V cc =5V, T = 25°C)*
20 MHz 2.0
25 MHz 24
33 MHz 3.0
| 40 MHz 35
*This information is for system reliability purposes.
B-12 M68040 USER’'S MANUAL MOTOROLA



MC68EC040 REV2.3 (01/31/2000)

B.7.5 Clock AC Tlmlng SpECiﬁcationS (see Figure B-7)

20 MHz 25 MHz 33 MHz 40 MHz
Num Characteristic Min Max Min Max Min Max Min Max Unit
Frequency of Operation 16.67 | 20 | 16.67 | 25 | 16.67 | 33.3 20 40 MHz
1 PCLK Cycle Time 25 30 20 30 15 30 12.5 25 nS
2 PCLK Rise Time — 1.7 — 1.7 — 1.7 — 1.5 nS
3 PCLK Fall Time — 1.6 — 1.6 — 1.6 — 15 nS

PCLK Duty Cycle Measured at

15V 48 52 47.5 52.5 | 46.67 | 53.33 | 46.00 | 54.00 %

PCLK Pulse Width High 5.75 6.75

*
4a Measured at 1.5 V 12 13 9.5 10.5 7 8 nS

ab* PCI\I/T:aZSEz\;\?TgI\_/OW 12 | 13 | 95 | 105 | 7 8 | 575|675 | ns

5 BCLK Cycle Time 50 60 40 60 30 60 25 50 nS
6,7 BCLK Rise and Fall Time — 4 — 4 — 3 — 3 nS
8 BCLK Duty Cycle Measured at 40 60 20 60 20 60 40 60 %

15V

BCLK Pulse Width High

8a Measured at 1.5 V

20 30 16 24 12 18 10 15 nS

, | BCLK Pulse Width Low
8b Measured at 1.5 V 20 30 16 24 12 18 10 15 nS

9 PCLK, BCLK Frequency Stability — 1000 — 1000 — 1000 — 1000 | ppm

10 PCLK to BCLK Skew — 9 — 9 — N/A — N/A nS

*Specification value at maximum frequency of operation.

PCLK

Figure B-7. Clock Input Timing Diagram

MOTOROLA M68040 USER’S MANUAL B-13




| MC68EC040 REV2.3 (01/31/2000)

B.7.6 Output AC Tlmlng SpeCiﬁcationS (see Figures B-8" to B-12)

| 20 MHz 25 MHz 33 MHz 40 MHz
Num Characteristic Min Max Min Max Min Max Min Max Unit
BCLK to Address CIOUT, LOCK,
LOCKE,
| 11 RIW, SIZx, TLNX, TMx, TTx, 11.5 35 9 30 6.5 25 5.25 24 nS
UPAX Valid
| 12 BCLK to Output Invalid (Output 115 . 9 . 6.5 . 525 . ns
Hold)
| 13 BCLK to TS Valid 11.5 35 9 30 6.5 25 5.25 24 nS
| 14 BCLK to TIP Valid 115 35 9 30 6.5 25 5.25 24 nS
| 18 BCLK to Data-Out Valid 11.5 37 9 32 6.5 27 5.25 26 ns
I 19 BCLK to Data-Out Invalid (Output 115 . 9 . 6.5 . 525 . ns
Hold)
to Output Low Impedance . — — . — . — n
20 BCLK to O Low | d 11.5 9 6.5 5.25 S
| | 21 |BCLKtoDaw-OutHighlmped- | 4 5 | 5 | 9 | 20 | 65 | 17 | 525 | 16 | ns
ance
BCLK to Address, CIOUT, LOCK,
LOCKE,
W, SIZx, TS, TLNX, TMXx, . ) . n
38 R/W, SIZx, TS, TLNx, TM 11.5 23 9 18 6.5 15 5.25 14 S
TTx, UPAX High
Impedance
I 39 | BCLKI0BB, TA TIPHighlmped- | 53 | 33 | 19 | 28 | 14 | 25 | 115 | 22 | ns
ance
| 40 BCLK to BR, BB Valid 115 35 9 30 6.5 23 5.25 14 nS
to MI Vali . . ) n
43 BCLK to MI Valid 11.5 35 9 30 6.5 25 5.25 24 S
to TA Vali . . . n
48 BCLK to TA Valid 11.5 35 9 30 6.5 25 5.25 24 S
| 50 B%‘aﬁéo IPEND, PSTx, RSTO 115 35 9 30 6.5 25 5.25 24 nS

*Qutput timing is specified for a valid signal measured at the pin. Timing is specified driving an unterminated 30-Q
transmission line with a length characterized by a 2.5-nS one-way propagation delay. Buffer output impedance is
typically 30 Q; the buffer specifications include approximately 5 nS for the signal to propagate the length of the
transmission line and back.

B-14 M68040 USER'S MANUAL MOTOROLA



MC68EC040 REV2.3 (01/31/2000)

B.7.7 Input AC Timing Specifications

(see Figures B-8 to B-12)

20 MHz 25 MHz 33 MHz 40 MHz
Num Characteristic Min Max Min Max Min Max Min Max Unit
15 Data-In Valid to BCLK (Setup) 6 — 5 — 4 — 3 — nS
16 BCLK to Data-In Invalid (Hold) 5 — 4 — 4 — 3 — nS
17 B‘i;ﬁ;ﬂ 'ﬁiﬁf‘éwe'gigg wﬁte;a”ce — | 61 | — | 4 | — | 35| — |3025]| ns
22a | TA Valid to BCLK (Setup) 125 — 10 — 10 — 8 — nS
22b | TEA Valid to BCLK (Setup) 125 — 10 — 10 — 9 — nS
22c | TCI Valid to BCLK (Setup) 125 — 10 — 10 — 9 — nS
22d | TBI Valid to BCLK (Setup) 14 — 11 — 10 — 9 — nS
23 B(f/l;ﬁdtczl_‘:'sa)TEA, TCI, TBI In- 25 . 2 . 5 . 5 . ns
24 | AVEC Valid to BCLK (Setup) 6 — 5 — 5 — 5 — nS
25 | BCLK to AVEC Invalid (Hold) 25 — 2 — 2 — 2 — nS
41a | BB Valid to BCLK (Setup) 8 — 7 — 7 — 7 — nS
41b | BG Valid to BCLK (Setup) 10 — 8 — 7 — 7 — nS
41c | CDIS Valid to BCLK (Setup) 125 — 10 — 8 — 8 — nS
41d | TPLA Valid to BCLK (Setup) 5 — 4 — 3 — 3 — nS
BCLK to BB, BG, CDIS, IPLA In-
42 valid 2.5 — 2 — 2 — 2 — nS
(Hold)
44a | Address Valid to BCLK (Setup) 10 — 8 — 7 — 7 — nS
44b | Slzx Valid to BCLK (Setup) 15 — 12 — 8 — 8 — nS
44c | TTx Valid to BCLK (Setup) 7.5 — 6 — 8.5 — 8.5 — nS
44d | R/W Valid to BCLK (Setup) 7.7 — 6 — 5 — 5 — nS
44e | SCx Valid to BCLK (Setup) 12.5 — 10 — 11 — 8 — nS
BCLK to Address SIZx, TTx,
45 R/W, SCx 25 — 2 — 2 — 2 — nS
Invalid (Hold)
46 TS Valid to BCLK (Setup) 6 — 5 — 9 — 7 — nS
47 BCLK to TS Invalid (Hold) 2.5 — 2 — 2 — 2 — nS
BCLK to BB High Impedance
49 (MC68EC040 Assumes Bus — 11 — 9 — 9 — 9 nS
Mastership)
51 RSTI Valid to BCLK 6 — 5 — 4 — 4 — nS
52 | BCLK to RSTI Invalid 25 — 2 — 2 — 2 — nS
MOTOROLA M68040 USER'S MANUAL B-15



| MC68EC040 REV2.3 (01/31/2000)

B-16

BCLK

A31-A0

TRANSFER
ATTRIBUTES

TS

TIP

D31-DO IN
(READ)

D31-DO0 OUT
(WRITE)

TA

NOTE: Transfer Attribute Signals = UPAX, SIZx, TTx, TMXx,
TLNx, R/W, LOCK, LOCKE, and CIOUT

v vl Ly

i
®

~— 7

-®
—

Figure B-8. Read/Write Timing

M68040 USER'S MANUAL

MOTOROLA



BCLK

A31-A0

TRANSFER
ATTRIBUTES

LOCK, LOCKE

S

_|

IP

D31-D0 OUT
(WRITE)

BR

MI

MC68EC040 REV2.3 (01/31/2000)

y——

7

| #g

jZaN|

of

©ly
'

-
—

@

<

®
®@WJt v
i
v
B

@
ﬂ@

NOTE: Transfer Attribute Signals = UPAX, SIZx, TTx, TMx, TLNx, R/W, and CIOUT

MOTOROLA

Figure B-9. Bus Arbitration Timing

M68040 USER’S MANUAL

B-17



MC68EC040 REV2.3 (01/31/2000)

BCLK

A31-A0 IN

SIzx, TTX,
R/W IN

SC1, SCO

TS IN

i
D31-DO IN
(ALT. MASTER
WRITE)
D31-D0 OUT
(ALT. MASTER
READ)

TA OUT

BB IN

B-18

va D e N S N S N
<>
L3 i) R
——=C I 7
74§: b

@3) o @*&4

A

(18 »

Figure B-10. Snoop Hit Timing

M68040 USER'S MANUAL

MOTOROLA



MC68EC040 REV2.3 (01/31/2000)

B-19

BCLK N NN N
<) > - i
A31-AOIN — | —
Sizx, TTx, | s S
R/W IN i
sc1,sco  — SNOOP —
Tl
TSIN
>
M i © > - (23
22) s
TA \ 7[7
TEA N |/
ﬁ - 7Z
BB IN \r‘inh" q9<»>yf————
Figure B-11. Snoop Miss Timing
Indleg B
IPEND
-~ |
RSTO
A‘T—/\F
PST3-PSTO N
@ - »
CDIS \ ;
@)» |-
-
PL2-IPLO ) %
C)» = > =62
RSTI

Figure B-12. Other Signal Timing

M68040 USER'S MANUAL

MOTOROLA



| MC68EC040 REV2.3 (01/31/2000)

B-20 M68040 USER'S MANUAL MOTOROLA



APPENDIX C
MC68040V AND MC68EC040V

The MC68040V and MC68ECO040V are Motorola’s 3.3 volt, static versions of the
MC68040 third-generation, M68000-compatible, high-performance, 32-bit microprocessor.
They require a 3.3V power supply providing over 50 percent reduction in power
consumption compared to a 5.0V device. The maximum power used at 3.3 volts is 1.5
watts at an operating frequency of 33 MHz. They also have a low-power stop mode. Once
in this state, both devices remain quiescent, consuming less than 330 uW of power. The
low-power usage of these microprocessors makes them an ideal choice for portable
computing and power constrained applications.

The MC68040V programming model, data formats and types, instruction set, caches, and
MMUs are the same as those described for the MC68LC040 in Appendix A MC68LC040.
The MCG68EC040V programming model, data formats and types, and instruction set are
the same as those described for the MC68EC040 in Appendix B MC68EC040. However,
both devices contain additional features:

* For the MC68040V, all differences that exist between the MC68LC040 and the
MC68040, as described in Appendix A MC68LC040, also apply to the MC68040V.
For the MC68ECO040V, all differences that exist between the MC68EC040 and the
MC68040, as described in Appendix B MC68ECO040, also apply to the
MCG68EC040V.

» Both devices operate to 0 Hz and can accept 3.3V or 5V input.

» Both devices have a new processor status state, low-power stop mode, indicated
when PST(3-0) = $6.

* There is no PCLK or TRST pin on either device.

» Both devices provide three new pins, system clock disable (SCD), low frequency
operation (LFO), and loss of clock (LOC).

C.1 ADDITIONAL SIGNALS

Table C-1 lists the additional signals and Figure C-1 illustrates the functional signal groups
of the MC68040V and MC68EC040V.

MOTOROLA M68040 USER’S MANUAL C-1



Table C-1. Additional MC68040V and MC68EC040V Signals

Signal Name Mnemonic Function
Low Frequency LFO Used to enter the low frequency mode of operation.
Operation
Loss of Clock LOC Indicates loss of BCLK input, a reset is required
System Clock Disable SCD Indicates normal operation is suspended and low-power stop mode is active,
system logic may remove or change the frequency of the BCLK input.

C.1.1 Low Frequency Operation (LFO)

When asserted, this input signal allows the frequency of BCLK to be changed
instantaneously (0 to 16 MHz) providing minimum pulse width constraints are met (see
C.7 MC68040V and MCG68ECO040V Electrical Characteristics. LFO is only recognized
during low-power stop mode and reset.

C.1.2 Loss of Clock (LOC)

Whenever the internal clock circuitry detects either a phase lock error or a loss of BCLK,
this output signal is driven high (only during normal mode of clocking operation). LOC is
also three-stated during reset, low-power stop, or low frequency operation. There should
be a pull-down resistor on the system board to ground.

C.1.3 System Clock Disable (SCD)

When asserted this output signal indicates, when asserted, that the BCLK input can be
disabled or changed in frequency. SCD is asserted upon termination of the LPSTOP
broadcast cycle. BCLK must be stable when SCD is negated, in accordance with the
specifications in C.7 MC68040V and MC68ECO040V Electrical Characteristics.

C-2 M68040 USER’S MANUAL MOTOROLA



ADDRESS _|
BUS

DATABUS —

TRANSFER _|
ATTRIBUTES

MASTER
TRANSFER
CONTROL

SLAVE
TRANSFER —
CONTROL

i

TT0
TT1
< M0
TML
™2
TLNO
TLN1
UPAO
UPAL
RIW
< 570 5
Siz1
LOCK
LOCKE

< ClouT

!

i

TS
TIP

TA
TEA
TCl
TBI

MC68040V
MC68EC040V

CDIS
MDIS*
RST
RSTO

IPLO
IPL1
IPL2
IPEND
< AVEC

PSTO
PST1
PST2
PST3
BCLK
SCD
LOC
LFO

TCK
T™MS
TDI
TDO
JS0
JS2

Vce
< GND

NOTE: *This signal is JS1 on the MC68EC040V.

C.2 LOW-POWER STOP MODE

The low-power stop mode is a reduced power mode of operation, that causes the
MC68040V and MCG68ECO040V to remain quiescent until either a reset or non-masked
interrupt occurs. This mode of operation has four phases of operation and is triggered by
the low-power stop (LPSTOP) instruction:

1.
2.

MOTOROLA

Perform a LPSTOP broadcast cycle.

End integer unit (IU) instruction pipeline sequencing, which is similar to the STOP
instruction sequence (IMM data * SR), at termination of the LPSTOP broadcast
cycle.

M68040 USER’S MANUAL

BUS SNOOP CONTROL
AND RESPONSE

— BUS ARBITRATION

PROCESSOR
CONTROL

INTERRUPT
CONTROL

STATUS AND
CLOCKS

— TEST

— POWER SUPPLY

Figure C-1. MC68040V and MC68EC040V Functional Signal Groups

C-3



3. Orderly shutdown of the clock circuitry, culminating in the low-power stop mode.

4. Return to normal operation after the receipt of a non-masked interrupt or reset when
the clocks are restarted in an orderly manner.

Once the LPSTOP instruction has reached the execute stage of the 1U pipeline and when
all CPU and bus activity has completed, the IU generates an LPSTOP broadcast cycle.
Table C-2 lists how the LPSTOP broadcast cycle drives the bus.

Table C-2. Bus Encodings During
LPSTOP Broadcast Cycle

Signals Encoding Signals Encoding

A31-A0 $FFFFFFFE R'W 0
TT1, TTO $3 D31-D16 SXXXX
TM2-TMO $0 D15-DO0 #<data>
SIZ1, S1Z0 $2

Either TA or TEA terminates the LPSTOP broadcast cycle. By withholding the assertion of
TA or TEA, external logic can extend the cycle, controlling the beginning of the low-power
stop mode. During this extension, the processor is ready for bus arbitration.

Upon termination of the LPSTOP broadcast cycle, the status register (SR) is updated with
the data portion of the immediate operand (updating the interrupt priority mask level). The
IU updates the processor status lines PST3-PSTO0 with the new status code of $6 and
halts. Then, SCD is asserted signaling the beginning of the low-power stop mode. All
instructions in the integer unit pipeline that followed LPSTOP remain in the pipeline during
the low-power stop mode.

The processor stays in the low-power stop mode until a non-masked interrupt or reset
exception occurs. A non-masked interrupt exception is defined as a higher priority than the
value in the interrupt priority mask bits of the SR, while holding the interrupt priority level
(IPLx) lines until IPEND is asserted. IPLx are used in the low-power stop mode to restart
the clocks and return the processor to normal operation. If an interrupt request has a
priority higher than the value in the interrupt priority mask bits of the SR, the clock control
logic negates SCD and restarts the PLL. If the pending interrupt has a lower priority than
the interrupt priority mask bits, the clock logic doesn't restart the PLL and the processor
will not resume normal operation. The MC68040V and MC68EC040V will enter low-power
mode regardless of any interrupts that are pending once the LPSTOP instruction starts.

Once the clock control logic negates SCD and the PLL is restarted, a valid BCLK must be
provided to the processor. When the clocks are phase locked, an interrupt, a bus error, or
a reset exception begins. The interrupt exception forces all instructions in the pipeline to
be aborted that have not reached the execute stage; while the reset exception aborts any
processing in progress (pre-fetched instructions prior to entering low-power stop mode)
and cannot be recovered.

C-4 M68040 USER’S MANUAL MOTOROLA



C.2.1 Bus Arbitration and Snooping

Bus arbitration and snooping are not allowed during low-power stop mode. If an alternate
bus master requires ownership, arbitration must occur before the processor is allowed to
enter low-power stop mode. This is achieved by externally decoding the LPSTOP
broadcast cycle and negating the BG signal before the termination of the cycle, allowing
bus arbitration to complete at the end of the cycle.

If the MC68040V or the MC68ECO040V is the bus master during low-power stop mode,
lowest power consumption cannot be achieved due to the DC loads on the processor
output pins. To achieve maximum power savings, arbitrate bus mastership away from the
processor during the LPSTOP broadcast cycle.

In a single bus master system the caches do not need to be shut down prior to the
execution of LPSTOP. In a multi-master system, the programmer is responsible for
providing a shut down sequence for the caches.

C.2.2 Low Frequency Operation

In addition to the low-power mode of operation the MC68040V and MC68EC040V provide
a low frequency mode of operation. This mode of operation can be entered one of in two
ways: directly from reset by asserting LFO prior to negating RSTI; or by asserting LFO
prior to generating the interrupt or reset when exiting the low-power stop mode. In the
former case, the BCLK input can be changed as long as the frequency is 0-16 MHz and
the minimum pulse width constraints are met. Normal operation can be resumed through
the low-power stop mode and deasserting LFO.

C.2.3 Changing BCLK Frequency

The frequency of the BCLK input can be changed only during the low-power stop or low
frequency modes of operation. Once in the low-power stop mode and SCD is asserted,
BCLK can be disabled or its frequency can be changed. Reducing the frequency or
removing the BCLK input is not required for proper operation, but is an additional power
saving measure. BCLK can be removed during the low-power stop mode as an additional
system power saving measure. However, it is not necessary for normal operation and has
no effect on the MC68040V's or MC68EC040V's power consumption.

MOTOROLA M68040 USER’S MANUAL C-5



C.2.4 LPSTOP Instruction Summary

Operation: If Supervisor State
Immediate Data » SR
SR » Broadcast Cycle
STOP
Else TRAP

Assembler Syntax: LPSTOP #<data>

Attributes: Privileged Word Sized

Condition Codes: Set according to the immediate operand.
Description: See C.2 Low Power Stop Mode.

Instruction Format:

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

IMMEDIATE DATA

Instruction Fields: Immediate field—Specifies the data to be loaded into the status
register.

C-6 M68040 USER’S MANUAL MOTOROLA



C.3 CLOCKING DURING NORMAL OPERATION

During normal operation of the processor, the BCLK should be driven with a 50% (+5%)
duty cycle (refer to C.7 MC68040V and MC68EC040V Electrical Characteristics for
details). The frequency of BCLK can not be changed during normal operation. Altering the
BCLK frequency during normal operation (the LFO signal is negated) will result in
unspecified operation. In the event that the BCLK input is lost, a processor reset is
required. Once the loss of BCLK is detected during normal operation, the processor
asserts LOC, indicating a loss of clock. External logic can then reset the processor to
resume normal operation.

C.4 RESET OPERATION

An external device asserts the RSTI to reset the processor. When power is applied to the
system, external circuitry should assert RSTI for a minimum of 10 BCLK cycles after Vcc
is within tolerance. Figure C-2 is a functional timing diagram of the power-on reset
operation, illustrating the relationships among Vcc, RSTI, and bus signals. The BCLK
signal is required to be stable by the time RSTI is negated. The V|4 levels of any pin must
not exceed Vcc + 2.5V. RSTI is internally synchronized for two BCLKs before being used
and must meet the specified setup and hold times to BCLK (specifications #51 and #52 in
C.7 MC68040V and MCG68ECO040V Electrical Characteristics) only if recognition by a
specific BCLK rising edge is required. Ml is asserted while the MC68040V is in reset.

MOTOROLA M68040 USER’S MANUAL C-7



% t>10 ﬁ(— 2 )*(— 128 ﬂ
CLOCKS CLOCKS CLOCKS
BCLK
5V |
Vee /
oV

RSTI

CDIS, MDIS*,
IPL2-IPLO

BUS
SIGNALS

J < <7 < <<

J < <7 <7

<z
<z

Ve
Ve

NOTE: * Not on MC68EC040V.

Figure C-2. MC68040V and MC68EC040V Initial Power-On Reset Timing

Once RSTI negates, the processor is internally held in reset for another 124 clocks
maximum. During the reset period, all signals that can be, are three-stated, and the rest
are driven to their inactive state. Once the internal reset signal negates, all bus signals
continue to remain in a high-impedance state until the processor is granted the bus.
Afterwards, the first bus cycle for reset exception processing begins. Figure C-2 illustrates
that the processor assumes implicit bus ownership before the first bus cycle begins.

For processor resets after the initial power-on reset, RSTI should be asserted for at least
10 clock periods. The Figure C-3 illustrates timings associated with a reset when the
processor is executing bus cycles. Note that BB and TIP (and TA if driven during a
snooped access) are negated before transitioning to a three-state level.

C-8 M68040 USER’S MANUAL MOTOROLA



A

t210 > €—2 128 »{
CLOCKS CLOCKS CLOCKS

BCLK

RSTI

§

CDIS, MDIS,
IPL2-IPLO

BUS
SIGNALS

||V

7 < <7 < < <7
i << < <7 <

<

e

3|
e
B — — B ~— ~—

W\

NOTE: * Not on MC68EC040V.

Figure C-3. MC68040V and MC68EC040V Normal Reset Timing

Resetting the processor causes any bus cycle in progress to terminate as if TA or TEA
had been asserted. In addition, the processor initializes registers appropriately for a reset
exception. When a RESET instruction is executed, the processor drives the reset out
(RSTO) signal for 512 BCLK cycles. In this case, the processor resets the external devices
of the system, and the internal registers of the processor are unaffected. The external
devices connected to the RSTO signal are reset at the completion of the RESET
instruction. An RSTI signal that is asserted to the processor during execution of a RESET
instruction immediately resets the processor and causes the RSTO signal to negate.
RSTO can be logically ANDed with the external signal driving RSTI to derive a system
reset signal that is asserted for both an external processor reset and execution of a
RESET instruction. It is necessary that the MC68040V and MCG68ECO040V be powered up
before other 5V devices; because the two power supplies must be within 2.5V of each
other.

C.5 POWER CYCLING

In cases were power is cycled off, then on with a duration of one second, RESET must be
asserted prior to removing power. This allows for an orderly shutdown within the
MC68040V and enables circuitry for the subsequent power-up.

MOTOROLA M68040 USER’S MANUAL C-9



C.6 MC68040V AND MC68EC040V JTAG (PRELIMINARY)

The MC68040V and MC68EC040V include dedicated user-accessible test logic that is
fully compatible with the IEEE standard 1149.1A Standard Test Access Port and
Boundary Scan Architecture. Problems associated with testing high-density circuit boards
have led to the standard’s development under the sponsorship of the IEEE Test
Technology Committee and the Joint Test Action Group (JTAG).

The following paragraphs are to be used in conjunction with the supporting IEEE
document and includes those chip-specific items that the IEEE standard requires to be
defined and additional information specific to the MC68040V and MC68EC040V
implementations. For example, the IEEE standard 1149.1A test access port (TAP)
controller states are referenced in this section but are not described. For these details and
application information regarding the standard, refer to the IEEE standard 1149.1A
document.

The MC68040V and MC68EC040V implementations support circuit board test strategies
based on the standard. The test logic utilizes static logic design and is system logic
independent of the device. The MC68040V and MC68EC040V implementations provide
capabilities to:

a. Perform boundary scan operations to test circuit board electrical continuity,

b. Bypass the MC68040V and MC68ECO040V by reducing the shift register path to a
single cell,

c. Sample the MC68040V and MC68EC040V system pins during operation and
transparently shift out the result,

d. Disable the output drive to output-only pins during circuit board testing.

NOTE

The IEEE standard 1149.1A test logic cannot be considered
completely benign to those planning not to use this capability.
Certain precautions must be observed to ensure that this logic
does not interfere with system operation. Refer to C.6.4
Disabling The IEEE Standard 1149.1A Operation.

Figure C-4 illustrates a block diagram of the MC68040V and MCG68EC040V
implementations of IEEE standard 1149.1A. The test logic includes a 16-state dedicated
TAP controller. These 16 controller states are defined in detail in the IEEE standard
1149.1A, but only 8 are included in this section.

Test-Logic-Reset  Run-Test/Idle

Capture-IR Capture-DR
Update-IR Update-DR
Shift-IR Shift-DR

Four dedicated signal pins provides access to the TAP controller:
TCK—A test clock input that synchronizes the test logic.

TMS—A test mode select input with an internal pullup resistor sampled on the rising
edge of TCK to sequence the TAP controller.

C-10 M68040 USER’S MANUAL MOTOROLA



TDI—A test data input with an internal pullup resistor sampled on the rising edge of
TCK.

TDO—A three-state test data output actively driven only in the shift-IR and shift-DR
controller states that changes on the falling edge of TCK.

The test logic also includes an instruction shift register and two test data registers, a
boundary scan register and a bypass register. The boundary scan register links all device
signal pins into a chain that can be controlled by the 3-bit instruction shift register.

TEST DATA REGISTERS

187 0
[ 188-BIT BOUNDARY SCAN REGISTER
DI \ 3
=
[  ovpsce |
| BYPASS |
LATCHED DECODER |J
\ \ A
>
2 0 2 } TDO
3-BIT INSTRUCTION SHIFT REGISTER
™S i
a9
< ¥
TCK T E
o
o

Figure C-4. MC68040V and MC68EC040V Test Logic Block Diagram

C.6.1 Instruction Shift Register

The MC68040V and MC68EC040V IEEE standard 1149.1A implementations include a 3-
bit instruction shift register without parity. The register shifts one of six instructions, which
can either select the test to be performed or access a test data register, or both. Data is
transferred from the instruction shift register to latched decoded outputs during the
update-IR state. The instruction shift register is reset to all ones in the TAP controller test-
logic-reset state, which is equivalent to selecting the BYPASS instruction. During the
capture-IR state, the binary value 001 is loaded into the parallel inputs of the instruction
shift register.

The MC68040V and MC68ECO040V IEEE standard 1149.1A implementations include three
mandatory standard public instructions (BYPASS, SAMPLE/PRELOAD, and EXTEST),
two optional public standard instructions, and one manufacturer's private instruction. The
five public instructions provide the capability to disable all device output drivers, operate
the device in a BYPASS configuration, and conduct boundary scan test operations. Table
C-3 lists the three bits used in the instruction shift register to decode the instructions and

MOTOROLA M68040 USER’S MANUAL C-11



their related encodings. Note that the least significant bit of the instruction (bit 0) is the first
bit to be shifted into the instruction shift register.

Table C-3. IEEE Standard 1149.1A Instructions

Bit2 | Bitl | Bit0O Instruction Selected Test Data Register Accessed
0 0 0 EXTEST Boundary Scan
0 0 1 HIGHZ Bypass
0 1 0 SAMPLE/PRELOAD Boundary Scan
1 0 0 CLAMP Bypass
1 1 0 PRIVATE —
1 1 1 BYPASS Bypass

C.6.1.1 EXTEST. The external test instruction (EXTEST) selects the boundary scan
register. This instruction also activates one internal function that is intended to protect the
device from potential damage while performing boundary scan operations. EXTEST
asserts internal reset for the MC68040V and MC68EC040V system logic to force a
predictable benign internal state.

C.6.1.2 HIGHZ. The HIGHZ instruction is an optional instruction provided as a Motorola
public instruction to anticipate the need to backdrive output pins during circuit board
testing. The HIGHZ instruction asserts internal system reset, selects the bypass register,
and forces all output and bidirectional pins to the high-impedance state.

Holding TMS high and clocking TCK for at least five rising edges causes the TAP
controller to enter the test-logic-reset state. Using only the TMS and TCK pins and the
capture-IR and update-IR states invokes the HIGHZ instruction. This scheme works
because the value captured by the instruction shift register during the capture-IR state is
identical to the HIGHZ opcode.

C.6.1.3 SAMPLE/PRELOAD. The SAMPLE/PRELOAD instruction provides two separate
functions. First, it provides a means to obtain a sample system data and control signal.
Sampling occurs on the rising edge of TCK in the capture-DR state. The user can observe
the data by shifting it through the boundary scan register to output TDO using the shift-DR
state. Both the data capture and the shift operations are transparent to system operation.
The user must provide some form of external synchronization to achieve meaningful
results since there is no internal synchronization between TCK and BCLK.

The second function of the SAMPLE/PRELOAD instruction is to initialize the boundary
scan register output cells before selecting EXTEST or CLAMP, which is accomplished by
ignoring data being shifted out of TDO while shifting in initialization data. The update-DR
state can then be used to initialize the boundary scan register and ensure that known data
and output state will occur on the outputs after entering the EXTEST or CLAMP
instruction.

C.6.1.4 CLAMP. The CLAMP instruction allows the state of the signals driven from the
MC68040V and MC68EC040V pins to be determined from the boundary scan register,

C-12 M68040 USER’S MANUAL MOTOROLA



while the bypass register is selected as the serial path between TDI and TDO. The signals
driven from the MC68040V and MCG68EC040V pins do not change while the CLAMP
instruction is selected.

C.6.1.5 BYPASS. The BYPASS instruction selects the single-bit bypass register, creating
a single-bit shift-register path from TDI to the bypass register to TDO. The instruction
enhances test efficiency when a component other than the MC68040V and MC68EC040V
becomes the device under test. When the bypass register is initially selected, the
instruction shift register stage is set to a logic zero on the rising edge of TCK following
entry into the capture-DR state. Therefore, the first bit to be shifted out after selecting the
bypass register is always a logic zero. Figure C-5 illustrates the bypass register.

SHIFT DR —m

0 —1

MUX 1D
FROMTDI —1 —— TO TDO

,—>C1

Figure C-5. Bypass Register

CLOCK DR

C.6.2 Boundary Scan Register

The 188-bit boundary scan register uses the TAP controller to scan user-defined values
into the output buffers, capture values presented to input pins, and control the direction of
bidirectional pins. The instruction shift register cell nearest TDO (i.e., first to be shifted out)
is defined as bit zero. The last bit to be shifted out is bit 187. This register includes cells
for all device signal pins and clock pins along with associated control signals.

The MC68040V and MC68EC040V boundary scan register consists of three cell structure
types, O.Latch, I.Pin, and 10.Ctl, that are associated with a boundary scan register bit. All
boundary scan output cells capture the logic level of the device output latch during the
capture-DR state. Figures C-6 through C-9 illustrate these three cell types. Figure 6-6
illustrates the general arrangement of these cells.

MOTOROLA M68040 USER’S MANUAL C-13



C-14

1=EXTEST AND CLAMP
TO NEXT CELL

TO OUTPUT
BUFFER

0= OTHERWISE SHIFT DR
A
Gl
DATA FROM T
SYSTEM LOGIC MUX
,— 1
—|Gl |
1
MUX 1D
—1 c1 1D
T F a
FROM CLOCK DR UPDATE BSR
LAST
CELL
Figure C-6. Output Latch Cell (O.Latch)
TO NEXT CELL
T0 A
SYSTEM <€ ”\mT
LOGIC
r
T |
1D MUX
1 E—
Cl —‘
CLOCK DR FROM  SHIFTDR
LAST
CELL

Figure C-7. Input Pin Cell (I.Pin)

M68040 USER’S MANUAL

MOTOROLA



MOTOROLA

1=EXTEST AND CLAMP

0=O0THERWISE

OUTPUT CONTROL

FROM SYSTEM LOGIC

Figure C-8. Output Control Cells (10.Ctl)

TO NEXT CELL
OUTPUT
EBlE ] 10.CTL
A
EN
OUTPUT
oaTa 2| OLATCH >
A
INPUT
DATA IPIN -
by
FROM TO NEXT

Figure C-9. General Arrangement of Bidirectional Pins

LAST CELL PIN PAIR

M68040 USER’S MANUAL

BIDIRECTIONAL
PIN

SHIFT DR TO NEXT CELL
L A
|Gl |
— N1 TO OUTPUT
MUX > BUFFER
|_ 1 (1=DRIVE)
—| Gl |
1
MUX 1D
1
o1 1D
c1
’—B R
FROM CLOCK DR RESET
LAST
CELL UPDATE BSR

C-15



All MC68040V and MC68EC040V bidirectional pins include two boundary scan data cells,
an input, and an output. One of five associated boundary scan control cells controls each
bidirectional pin. If these cells contain a logic one, the associated bidirectional or three-
state pin will be configured as an output and enabled. The cell captures the current value
during the capture-DR state. All five control cells are reset (i.e., logic zero) in the test-
logic-reset state. The five bidirectional/three-state control cells, their boundary scan
register bit positions, and the 188 boundary scan bit definitions are not currently available.

C.6.3 Restrictions

Control over the output enable signals using the boundary scan register and the EXTEST
and HIGHZ instructions requires a compatible circuit-board test environment to avoid
destructive configurations. The user is responsible for avoiding situations in which the
MC68040V and MC68EC040V output drivers are enabled into actively driven networks.

The MC68040V and MC68EC040V include on-chip circuitry to detect the initial application
of power to the device. Power-on reset (POR, which is an internal signal), the output of
this circuitry, is used to reset both the system and the IEEE 1149.1A logic. The purpose of
applying POR to the IEEE 1149.1A circuitry is to avoid the possibility of bus contention
during power-on. The time required to complete device power-on is power supply
dependent. However, the TAP controller remains in the test-logic-reset state while POR is
asserted. The TAP controller does not respond to user commands until POR is negated.

The following restrictions apply:

1. Leaving the TAP controller test-logic-reset state negates the ability to achieve the
lowest power consumption during the LPSTOP instruction, but does not otherwise
affect device functionality.

2. The TCK input is not blocked in LPSTOP mode. To consume minimal power, the
TCK input should be externally connected to Vcc or ground.

3. The TMS and TDI pins include on-chip pull-up resistors. In LPSTOP mode, these
two pins should remain either connected to Vcc or ground to achieve minimal
power consumption.

4. The external system must assert RSTI within eight bus clocks of exiting from the
EXTEST JTAG instruction or else on the tenth bus clock, the MC68040V and
MC68EC040V will begin normal reset processing.

C.6.4 Disabling The IEEE Standard 1149.1A Operation

There are two considerations for non-IEEE standard 1149.1A operation. First, TCK does
not include an internal pullup resistor and should not be left unconnected to preclude mid-
level inputs. The second consideration is to ensure that the IEEE standard 1149.1A test
logic remains transparent to the system logic by providing the ability to force the test-logic-
reset state. Figure C-10 illustrates a circuit to disable the IEEE standard 1149.1A test logic
for the MC68040V and MC68EC040V.

C-16 M68040 USER’S MANUAL MOTOROLA



+5V

1K
TDI

T™S

TCLK  |—

TDO  |—— NO CONNECTION

Figure C-10. Circuit Disabling IEEE Standard 1149.1A

C.6.5 MC68040V and MC68EC040V JTAG Electrical Characteristics

The following paragraphs provide information on JTAG electrical and timing specifications
This section is subject to change. For the most recent specifications, contact a Motorola

sales office or complete the registration card at the beginning of this manual.

JTAG DC Electrical Specifications—PRELIMINARY

Characteristic Symbol Min Max Unit
Input High Voltage VIH 2 55 \%
Input Low Voltage VIL GND 0.8 \%
Overshoot — — TBD \Y,
TCK Input Leakage Current @ 0.5-2.4 V lin TBD TBD HA
TDO Hi-Z (Off-State) Leakage Current @ 0.5-2.4 V ITST TBD TBD HA
Signal Low Input Current, V| = 0.8V I TBD TBD mA
TMS, TDI
Signal High Input Current, Vi =2.0V IH TBD TBD mA
TMS, TDI
TDO Output High Voltage IoH = 5ma VOH 24 — \Y
TDO Output Low Voltage IQL = 5ma VoL — 0.5 \Y
Capacitance*, Vinh =0V, f=1 MHz Cin — TBD pF
*Capacitance is periodically sampled rather than 100% tested.
MOTOROLA M68040 USER’'S MANUAL

C-17



DRIVE
TO24V

BCLK
DRIVE TO <A
05V B -
20V 20
VALID VALID
OUTPUTS(1) n v
OUTPUT N oy, 0gy OUTPUT  n+1
<—C—>»<—D—>
DRIVETO —=
24V 20V 20V
INPUTS(2) m&‘g
DRVETO — 08V 08V
05V
NOTES:

1. This output timing is applicable to all parameters specified relative to the rising edge of the clock.
2. This input timing is applicable to all parameters specified relative to the rising edge of the clock.

LEGEND:

A. Maximum output delay specification.

B. Minimum output hold time.

C. Minimum input setup time specification.
D. Minimum input hold time specification.

Figure C-11. Drive Levels and Test Points for AC Specifications

C-18 M68040 USER’S MANUAL MOTOROLA



C.7 MC68040V AND MC68ECO040V ELECTRICAL CHARACTERISTICS

The following paragraphs provide information on the maximum rating and thermal
characteristics for the MC68040V and MCG68ECO040V. This section is subject to change.
For the most recent specifications, contact a Motorola sales office.

C.7.1 Maximum Ratings

Characteristic Symbol Value Unit
Supply Voltage Vce -0.3t0 +3.6 Y
Input Voltage Vin —-0.5t0 +5.5 \Y
Maximum Operating Junction Temperature T TBD °C
Minimum Operating Ambient Temperature TA 0 °C
Storage Temperature Range Tstg -551t0 150 °C
C.7.2 Thermal Characteristics

Characteristic Symbol Value Rating
Thermal Resistance, Junction to Case— 01c 3 °C/W
PGA Package
Thermal Resistance, Junction to Case— e TBD °C/W

Surface Mount Package

MOTOROLA

M68040 USER’S MANUAL

This device contains protective
circuitry against damage due to high
static voltages or electrical fields;
however, it is advised that normal
precautions be taken to avoid
application of any voltages higher
than maximum-rated voltages to this
high-impedance circuit. Reliability of
operation is enhanced if unused
inputs are tied to an appropriate
logic voltage level (e.g., either GND
orVce)

C-19



C.7.3 DC Electrical Specifications vcc =3.3 vdc +10 %)

Characteristic Symbol Min Max Unit
Input High Voltage VIH 2 55 \%
Input Low Voltage VL GND 0.8 \Y,
Overshoot — — TBD Y

Input Leakage Current @ 0.5/2.4 V During Normal Operation Only
AVEC, BCLK, BG, CDIS, MDIS?, TPLx, RSTI, SCx, lin TBD TBD HA
TBI, TLNx, TCI, TCK, TEA

Hi-Z (Off-State) Leakage Current @ 0.5/2.4 V During Normal Operation

An, BB, CIOUT, Dn, LOCK, LOCKE, R/W, SIzx, TA, TDO, ITsI TBD TBD pA
TIP, TMx, TLNX, TS, TTx, UPAX

Signal Low Input Current, V|_= 0.8 V L TBD TBD mA
TMS, TDI

Signal High Input Current, V|4 = 2.0 V IH TBD TBD mA
TMS, TDI

Output High Voltage IoH = 5ma VOH 24 — \Y,

Output Low Voltage IoL = 5ma VoL — 0.5 \Y,

Capacitance2, Vi =0V, f=1MHz Cin — TBD pF

NOTES:
1. There is no MDIS on the MC68EC040V.
2. Capacitance is periodically sampled rather than 100% tested.

C.7.4 Power Dissipation

25 MHz 33 MHz
Worst Case (Vcc =3.6V,Ta =0°C)
MC68040V TBD 2W
MC68EC040V TBD 2W
LPSTOP Mode - No output loads, not driving bus
MC68040V TBD TBD
MC68EC040V TBD TBD
Typical Values (Vcc =3.3V, Tg = TBD°C)* - Normal Operation
MC68040V TBD 15W
MC68EC040V TBD 15W

*This information is for system reliability purposes.

C-20 M68040 USER’S MANUAL MOTOROLA




C.7.5 Clock AC Timing Specifications (see Figure c-12)

PRELIMINARY
0-16.67 MHz 25 MHz 33 MHz

Num Characteristic Min Max Min Max Min Max Unit

Frequency of Operation 0 16.67 | 16.67 25 16.67 33 MHz
5 BCLK Cycle Time 60 — 40 60 30 60 ns
6,71 BCLK Rise and Fall Time — 2 — 2 — 2 ns
8 BCLK Duty Cycle Measured at 1.5V 45 55 45 55 45 55 %
8a2 BCLK Pulse Width High Measured at 1.5V | 28.5 — 18 22 13.63 | 16.66 ns
8b2 BCLK Pulse Width Low Measured at 1.5V | 285 — 18 22 13.63 | 16.66 ns
9 BCLK edge to edge jitter — — — 20 — 20 ps

NOTES:
1. Rising and falling edges of BCLK must be monotonic.

2. Specification value at maximum frequency of operation. BCLK must not exceed 16.67 MHz for low
frequency operation

BCLK '// '// VIV
/ it \

A
)
Y

Figure C-12. Clock Input Timing Diagram

MOTOROLA M68040 USER’S MANUAL C-21



C.7.6 Output AC Timing Specifications (see Figures C-13*to C-21)

PRELIMIINARY
0-16.67 MHz 25 MHz 33 MHz
Num Characteristic Min Max Min Max Min Max Unit
BCLK to Address, CIOUT, LOCK, LOCKE,
1 PSTx, R/W, SIZx, TLNx, TMx, TTx, UPAX o 30 o 30 | 65 25 ns
Valid
12 BCLK to Output Invalid (Output Hold) 9 — 9 — 6.5 — ns
13 BCLK to TS Valid 9 30 9 30 6.5 25 ns
14 BCLK to TIP Valid 9 30 9 30 6.5 25 ns
18 BCLK to Data-Out Valid 9 32 9 32 6.5 27 ns
19 BCLK to Data-Out Invalid (Output Hold) 9 — 9 — 6.5 — ns
20 BCLK to Output Low Impedance 9 — 9 — 6.5 — ns
21 BCLK to Data-Out High Impedance 9 20 9 20 6.5 17 ns
BCLK to Address, CIOUT, LOCK, LOCKE,
38 RM, SIZx, TS, TLNx, TMx, TTx, UPAX High 9 18 9 18 | 65 15 ns
Impedance
39 BCLK to BB, TA, TIP High Impedance 19 28 19 28 14 25 ns
40 BCLK to BR, BB Valid 9 30 9 30 6.5 23 ns
43 BCLK to MI Valid 9 30 9 30 6.5 25 ns
48 BCLK to TA Valid 9 30 9 30 6.5 25 ns
50 BCLK to IPEND, PSTx, RSTO Valid 9 30 9 30 6.5 25 ns
w RSTI active to SCD inactive. 8 100 8 100 8 100 ns
A IPLx to SCD invalid 8 100 8 100 8 100 ns
NOTE:

*Qutput timing is specified for a valid signal measured at the pin. Timing is specified driving an unterminated
30-Q transmission line with a length characterized by a 2.5-ns one-way propagation delay. Buffer output
impedance is typically 30 Q; the buffer specifications include approximately 5 ns for the signal to propagate
the length of the transmission line and back.

C-22 M68040 USER’S MANUAL MOTOROLA




C.7.7 Input AC Timing Specifications (see Figures C-13 to C-21)

PRELIMINARY
0-16.67 MHz 25 MHz 33 MHz
Num Characteristic Min Max Min Max Min Max Unit
15 Data-In Valid to BCLK (Setup) 5 — 5 — 4 — ns
16 BCLK to Data-In Invalid (Hold) 4 — 4 — 4 — ns
17 BCLK to Data—lp High Impedance (Read . 49 . 49 . 36.5 ns
Followed by Write)
22a | TA valid to BCLK (Setup) 10 — 10 — 10 — ns
22b TEA Valid to BCLK (Setup) 10 — 10 — 10 — ns
22c TCI Valid to BCLK (Setup) 10 — 10 — 10 — ns
22d TBI Valid to BCLK (Setup) 11 — 11 — 10 — ns
23 BCLK to TA, TEA, TCI, TBI Invalid (Hold) 2 — 2 — 2 — ns
24 AVEC Valid to BCLK (Setup) 5 — 5 — 5 — ns
25 BCLK to AVEC Invalid (Hold) 2 — 2 — 2 — ns
41a | BB Valid to BCLK (Setup) 7 — 7 — 7 — ns
41b | BG Valid to BCLK (Setup) 8 — 8 — 7 — ns
41c CDIS, MDIS* Valid to BCLK (Setup) 10 — 10 — 8 — ns
41d | IPLx Valid to BCLK (Setup) 4 — 4 — 3 — ns
42 I(BH%%S to BB, BG, CDIS, MDIS*, TPLx Invalid 2 . 2 . > . ns
44a Address Valid to BCLK (Setup) 8 — 8 — 7 — ns
44b S1Zx Valid to BCLK (Setup) 12 — 12 — 8 — ns
44c TTx Valid to BCLK (Setup) 6 — 6 — 8.5 — ns
44d RW Valid to BCLK (Setup) 6 — 6 — 5 — ns
44e SCx Valid to BCLK (Setup) 10 — 10 — 11 — ns
45 ES;IEI?Hg%o)Iress SIzx, TTx, RW, SCx 2 . 2 . 2 . ns
46 TS Valid to BCLK (Setup) 5 — 5 — 9 — ns
47 BCLK to TS Invalid (Hold) — — — ns
49 ?P(iI(;(}fetsosfrl'3 Al-s"sguh mlrensp;iznl\(;?astership) o ? o ? o ? e
51 RSTI Valid to BCLK 5 — 5 — 4 — ns
52 BCLK to RSTI Invalid 2 — 2 — 2 — ns
B LFO change to valid IPLx, RSTI (setup) 5 — 5 — 5 ns
D TPEND valid to TPLx invalid (Hold) 0 — 0 — 0 — ns
\% RSTI pulse width, leaving LPSTOP mode 10 — 10 — 10 — ns
z IPLx, RSTI valid to LFO change (Hold) 500 — 500 — 500 — ns

NOTE: *Not on the MC68EC040V.

MOTOROLA

M68040 USER’S MANUAL

C-23



C-24

ok £ N\ S
<>(11 <>1)
A31-AQ X X
TRANSFER r
ATTRIBUTES X X
<> <>
T \ / \
H-<—> @ i<>
TP \ /
B> -
>
D31-DO IN +
(READ) JVO (-
<> )< > T
D31-D0 OUT §O
WRITE f
( ) @ <> o > <)
T L/
Tﬁ - w
C |/
T8l |/
> <
(2>
AVEC \ /

NOTE: Transfer Attribute Signals = UPAX, SIZx, TTX, TMx, TLNX, RI\XI, LOCK,
LOCKE, CIOUT

Figure C-13. Read/Write Timing

M68040 USER’S MANUAL MOTOROLA



BCLK 7Z_\_7Z_\_7Z_\_7
@) <> 1)<
— \ 4r
A31-A0 {
TRANSFER i
ATTRBUTES — | S
LOCK, LOCKE \ {
s | @<
-
- <> 14)=<
5 @<= @<
<>21) @ <>
D31-D0 OUT
(WRITE) ~ ———t
(301> >
BR
(a1) - >
BG
| |
S <@
BB OUT
P @=<>"
<> 12>

=|
ﬂ/|
\,

N

NOTE: Transfer Attribute Signals = UPAX, SIZx, TTx, TMx, TLNX, RAW, ClouT

Figure C-14. Bus Arbitration Timing

MOTOROLA M68040 USER’S MANUAL C-25



e _ /N S/ S/ S _7
(@) <>
A31-AQ IN { ¥
SIZx, TTX, Fa s
RWIN L £
SC1, S0 { >
@ @)
TS IN \ /
<>12
T Al
Wi \
43— (::)—) |- > (—‘
D31-DO IN ® - N ©
(ALT. MASTER L F
WRITE) <> 21
@)<> (19> @
D31-D0 OUT T
(ALT. MASTER {
READ
) 20) € 39)
TAOUT N @ —
@ @ <>
— @2)r=> /—:t
BB IN i

Figure C-15. Snoop Hit Timing

C-26 M68040 USER’S MANUAL MOTOROLA



MOTOROLA

BCLK

A31-A0 IN

SIZx, TTX,
R/W IN

SC1, SC0

TSIN

TEA

TBI

BB IN

\

—
<) > <>|®)
{ —
v Ry
Al s
{_sNooP j —
<>1)
/
X 7
(43)-+<—>]
@3 <> 5{ >
N
- > (<)
QH>
L/
L/
S/
o

A
4\‘1

Figure C-16. Snoop Miss Timing

M68040 USER’S MANUAL

C-27



0> <—>11)
IPEND XV /
R57T(3 xr /\/ 7Z
PST3-PSTO X
1) <>
<
cois \ /
<
MDIS* XV /
- —> (_
IPL2-IPLO Xt X

< —>
RSTI

NOTE: *Not on MC68EC040V.

Figure C-17. Other Signal Timing

C-28 M68040 USER’S MANUAL MOTOROLA



MOTOROLA

S N > < ®@
A31-AQ $FF§\lFFFFE
N
TT1-TT0 ;5\3/
N
TM2-TMO 3
N
SIz1-s120 ,$\2/
RIW N
N 4
LOCK, LOCKE N ) @
< (%)
Al\l
BR
BG
(39)
BB OUT e
N > @
>(18) < N > <
D15-D0 < DATA }
NPT
PST3-PSTO N >< $6
SCD N \
@ »
TA ;
N ~ @
BBIN
- <@

Figure C-18. Going into LPSTOP with Arbitration

M68040 USER’S MANUAL C-29



C-30

AV RV VWA VS
g N
A31-AD SRFFRE 7/
TT1-TT0 é % 7/
TM2-TMO é % 7/
$171-5120 é % 7/
RIW y/
D15-D0 oATA 1}/
N @‘e
A i
—
SCD N X

BB OUT

'

BG

R—

Figure C-19. LPSTOP no Arbitration, CPU is Master

4

M68040 USER’S MANUAL

MOTOROLA



124 CLOCKS NORMAL OPERATION
BCLK

—_— (I I\/ i
IPL2-IPLO >§( VALID INTERRUPT N 7§<
= / N @ <
<—@—>
N %PQ
—> -<—
IPEND L —
Figure C-20. Exiting LPSTOP with Interrupt
—> 124 CLOCKS oﬁggkAT/TI(_)N
e PN N P

y Ay, N

SCD /]

o N— >£_> N
LFO
N —\v
—> (W) <—
RSTI \ J

Y,

)

Figure C-21. Exiting of LPSTOP with RESET

MOTOROLA M68040 USER’S MANUAL C-31



APPENDIX D

M68000 FAMILY SUMMARY

This appendix summarizes the characteristics of the microprocessors in the M68000
family. The M68000PM/AD, M68000 Family Programmer's Reference Manual, includes
more detailed information on the M68000 Family differences.

Attribute MC68000 MC68008 MC68010 MC68020 MC68030 MC68040
Data Bus Size (Bits) 16 8 16 8, 16, 32 8, 16, 32 32
Address Bus Size (Bits) 24 20 24 32 32 32
Instruction Cache (In Bytes) — — 3* (Words) 256 256 4096
Data Cache (In Bytes) — — — — 256 4096

*The MC68010 supports a three-word cache for the loop mode.

Coprocessor Interface

MC68000, MC68008, MC68010

Emulated in Software

MC68020, MC68030

In Microcode

MC68040

Emulated in Software (On-Chip Floating-Point Unit)

Word/Long-Word Data Alignment

MC68000, MC68008, MC68010

Word/Long-Word Data, Instructions, and Stack

Must Be Word Aligned

MC68020, MC68030, MC68040

Only Instructions Must Be Word Aligned
(Data Alignment Improves Performance)

Control Registers

MC68000, MC68008 None

MC68010 SFC, DFC, VBR

MC68020 SFC, DFC, VBR, CACR, CAAR

MC68030 SFC, DFC, VBR, CACR, CAAR, CRP, SRP, TC, TTO,
TT1l, MMUSR

MC68040 SFC, DFC, VBR, CACR, URP, SRP, TC, DTTO, DTT1,
ITTO, ITT1, MMUSR

MOTOROLA M68040 USER'S MANUAL D-1



Stack Pointer

MC68000, MC68008, MC68010 USP, SSP

MC68020, MC68030, MC68040 USP, SSP (MSP, ISP)

Status Register Bits

MC68000, MC68008, MC68010 T, S, 10/11/12, XIN/ZIVIC

MC68020, MC68030, MC68040 TO, T1, S, M, 10/11/12, XIN/Z/VIC

Function Code/Address Space

MC68000, MC68008 FC2—-FCO0 = 7 Is Interrupt Acknowledge Only
MC68010, MC68020, MC68030, MC68040 FC2—-FCO0 =7 Is CPU Space
MC68040 User, Supervisor, and Acknowledge

Indivisible Bus Cycles

MC68000, MC68008, MC68010 Use AS Signal
MC68020, MC68030 Use RMC Signal
MC68040 Use LOCK and LOCKE Signal

Stack Frames

MC68000, MC68008 Supports Original Set

MC68010 Supports Formats $0, $8

MC68020, MC68030 Supports Formats $0, $1, $2, $9, $A, $B
MC68040 Supports Formats $0, $1, $2, $3, $7
MC68EC040, MC68LC040 Supports Formats $0, $1, $2, $3, $4, $7

Addressing Modes

MC68020, MC68030, and MC68040 Extensions Memory indirect addressing modes, scaled index, and
larger displacements. Refer to specific data sheets
for details.

D-2 M68040 USER’S MANUAL MOTOROLA



MC68020, MC68030, and MC68040 Instruction Set Extensions

Applies To
Instruction Notes MC68020 | MC68030 | MC68040
Bcc Supports 32-Bit Displacements
BFxxxx Bit Field Instructions (BCHG, BFCLR, BFEXTS,
BFEXTU, BFFFO, BFINS, BFSET, BFTST)
BKPT New Instruction Functionally
BRA Supports 32-Bit Displacement
BSR Supports 32-Bit Displacement
CALLM New Instruction
CAS, CAS2 New Instructions
CHK Supports 32-Bit Operands
CHK2 New Instruction
CINV Cache Maintenance Instruction
CMPI Supports Program Counter Relative Addressing Modes
CMP2 New Instruction
CPUSH Cache Maintenance Instruction
cp Coprocessor Instructions
DIVS/DIVU Supports 32-Bit and 64-Bit Operands
EXTB Supports 8-Bit Extend to 32-Bits
FABS New Instruction
FADD New Instruction
FBcc New Instruction
FCMP New Instruction
FDBcc New Instruction
FDIV New Instruction
FMOVE New Instruction
FMOVEM New Instruction
FMUL New Instruction
FNEG New Instruction
FNOP New Instruction
FRESTORE New Instruction
FSGLDIV New Instruction
FSGLMUL New Instruction
FSAVE New Instruction
FScc New Instruction
FSQRT New Instruction
FSUB New Instruction
FTRAPcc New Instruction
FTST New Instruction
LINK Supports 32-Bit Displacement
MOTOROLA M68040 USER'S MANUAL D-3



MC68020, MC68030, and MC68040 Instruction Set Extensions (Continued)

Applies To
Instruction Notes MC68020 | MC68030 | MC68040
MOVE16 New Instruction
MOVEC Supports New Control Registers
MULS, MULU Supports 32-Bit Operands
PACK New Instruction
PFLUSH MMU Instruction
PLOAD MMU Instruction
PMOVE MMU Instruction
PTEST MMU Instruction
RTM New Instruction
TST Supports Program Counter Relative Addressing Modes
TRAPcc New Instruction
UNPK New Instruction
D-4 M68040 USER’'S MANUAL MOTOROLA



APPENDIX E
FLOATING-POINT EMULATION (M68040FPSP)

The MC68040 is user-object-code compatible with the MC68030 and MC68881/MC68882.
The MC68040 floating-point unit is optimized to directly execute the most commonly used
subset of the extensive MC68881/MC68882 instruction set through hardware. Special
traps and stack frames for the unimplemented instructions and data types provide support
for the remaining instructions. These functions coupled with Motorola’s floating-point
software package (M68040FPSP) ensure complete user-object-code compatibility.

There are two versions of the M68040FPSP, one for applications compiled for the
MC68881/MC68882 (kernel version) and the other for applications compiled for the
MC68040 (library version). System integrators can install the kernel version as part of an
MC68040-based operating system. The kernel version is used to execute preexisting user
object code written for the MC68881/MC68882 as part of the operating system. User
applications need not be recompiled or modified in any way once the kernel version is
installed.

The MC68040 compiler writer and system integrator use the library version which provides
less overhead than the kernel version. Overhead is reduced because the appropriate
floating-point exception routine is called directly rather than taking an unimplemented
instruction trap. The library is M68000 application binary interface (ABI) and IEEE
exception-reporting compliant; it is not UNIX® exception-reporting compliant.

The M68040FPSP provides the following features:
* Arithmetic and Transcendental Instructions

IEEE-Compliant Exception Handlers

MC68040 Unimplemented Data Type and Data Format Handlers
Can Reside in a 64-Kbyte ROM
Code Is Reentrant

The M68040FPSP satisfies the IEEE Standard 754 for Binary Floating-Point Arithmetic.
The average 25-MHz performance of the transcendental function subroutines is equivalent
to that of the 33-MHz MC68881/MC68882. The error bound is equivalent to that of the
MC68881/MC68882.

®UNIX is a registered trademark of AT&T Bell Laboratories.

MOTOROLA M68040 USER’S MANUAL E-1



System designers integrate the M68040FPSP into the system so that the user object code
runs unchanged and remains totally transparent to the end user. The M68040FPSP can
be installed into any operating system. It provides kernel routines to support
unimplemented instructions and unsupported data types. Unimplemented instructions for
end-user applications compiled for the MC68881/MC68882 are contained in a library for
improved performance. For all MC68040 floating-point instructions, the coprocessor 1D
field must be 001. Table E-1 lists the floating-point functions implemented as instructions
by the MC68040.

Table E-1. MC68040 Floating-Point Instructions

Floating-Point Instructions

Name Description Name Description
FMOVE Move to FPx or CR FDMOVE Double-Precision Move
FSMOVE Single-Precision Move FABS Absolute Value
FCMP Compare FDABS Double-Precision Absolute Value
FSABS Single-Precision Absolute Value FNEG Negate
FTST Test FDNEG Double-Precision Negate
FSNEG Single-Precision Negate FSUB Subtract
FADD Add FMUL Multiply
FDIV Divide FScc Set According to Condition
FBcc Branch Conditionally FTRAPcc Trap Conditionally
FDBcc Test Condition, Decrement, and Branch || FSSUB Single-Precision Subtract
FSADD Single-Precision Add FSDIV Single-Precision Divide
FSMUL Single-Precision Multiply FDSUB Double-Precision Subtract
FDADD Double-Precision Add FDDIV Double-Precision Divide
FDMUL Double-Precision Multiply FSSQRT Single-Precision Square Root
FSQRT Square Root FNOP No Operation
FSAVE Save Internal State FSGLMUL Single-Precision Multiply
FMOVEM Move Multiple Registers FRESTORE Restore Internal State

E-2

M68040 USER’S MANUAL

MOTOROLA



Table E-2 list the arithmetic and transcendental instructions that the M68040FPSP
implements for the MC68040. New instructions have been added to the
MC68881/MC68882 base instructions.

Table E-2. M68040FPSP Floating-Point Instructions

Arithmetic Instructions

Name Description Name Description
FADD* Add FSUB* Subtract
FSADD*t Single-Precision Add FSSUB*t Single-Precision Subtract
FDADD*t Double-Precision Add FDSUB*t Double-Precision Subtract
FMUL* Multiply FDIV* Divide
FSMUL*t Single-Precision Multiply FSDIV*t Single-Precision Divide
FDMUL*T Double-Precision Multiply FDDIV*t Double-Precision Divide
FINT Integer Part FINTRZ Integer Part (Truncated)
FABS* Absolute Value FNEG* Negate
FGETEXP Get Exponent FGETMAN Get Mantissa
FTST* Test Operand FCMP* Compare
FREM IEEE Remainder FSCALE Scale Exponent
FMOVE* Move FP Data Register FSMOVE* Single-Precision Move
FDMOVE* Double-Precision Move FSQRT* Square Root
FSSQRT* Single-Precision Square Root FDSQRT* Double-Precision Square Root
FMOD Modulo Remainder FSMOD Single-Precision Modulo Remainder
FDMOD Double-Precision Modulo Remainder

Transcendental Instructions

Name Description Name Description
FCOS Cosine FSIN Sine
FACOS Arc Cosine FASIN Arc Sine
FCOSH Hyperbolic Cosine FSINH Hyperbolic Sine
FSINCOS Simultaneous Sine & Cosine FATAN Arc Tangent
FTAN Tangent FATANH Hyperbolic Arc Tan
FTANH Hyperbolic Tangent FLOG10 Log Base 10
FLOG2 Log Base 2 FLOGNP1 Log Base e of (x + 1)
FLOGN Log Base e FETOXM1 (e to the x Power) -1
FETOX e to the x Power FTWOTOX 2 to the x Power
FTENTOX 10 to the x Power

*The MC68040 provides these functions for all data formats except single, double, and extended denormalized data
types and extended unnormalized data types. The M68040FPSP provides the functions for the special data types.

tAdditional functions not provided by the MC68881/MC68882.

MOTOROLA

M68040 USER’S MANUAL

E-3




Table E-3 lists all the data formats and types supported by the MC68040 FPU. Also
included are the data formats and types that the MC68040 FPU does not support but that
are supported by the M68040FPSP.

Table E-3. Support for Data Types and Data Formats

Data Formats
Data Types SGL DBL EXT Decimal Byte Word Long
Word
Normalized T T t * t T T
Zero T T T * T T T
Infinity T t t *
NAN T T T *
Denormalized ¥ ¥ * *
Unnormalized * *

* Supported by M68040FPSP
T Supported by the MC68040 FPU
¥ Supported by M68040FPSP after being converted to extended precision by the MC68040 FPU

The M68040FPSP provides system designers with a simple path to port existing
MC68881/MC68882 exceptions handlers to the MC68040. It also provides an entry point
for the IEEE-defined exception conditions listed in Table E-4.

Table E-4. Exception Conditions

Mnemonic Description
BSUN Branch/Set on Unordered
SNAN Signaling Not-a-Number

OPERR Operand Error
OVFL Overflow
UNFL Underflow
Dz Divide by Zero
INEX1/INEX2 Inexact Result 1/2

The M68040FPSP is written in M68000 family assembly code and comes with an
installation guide. Tape contains both Motorola syntax and UNIX “as” syntax. Tape
cartridge (M68040FPSPT) media is available in CPIO and TAR formats. Also available is
9-track (M68040FPSPP) media in high or low density as well as CPIO and TAR formats. A
license is required to obtain rights to use and distribute the M68040FPSP. License terms
include the right to use and modify source code and redistribute resulting object code.

E-4 M68040 USER’S MANUAL MOTOROLA



INDEX

—A—

Access Control Unit, 1-2, B-4, B-5
Access Control Unit Register, B-5;
Field Definitions, B-6—B-7
Access Error, 1-5, 3-22, 3-23, 3-24, 5-14, 7-37,
7-43, 8-20, 9-21, A-6, A-7, B-11
Access Fault, 3-9, 8-6, 8-7
Access Serialization, 7-44
Acknowledge Bus Cycle
Breakpoint Operation, 7-29, 7-35, 9-20
Interrupt Operation, 5-12, 7-31,
7-29-7-35, 8-2
Address Bus, 7-1
Address Collisions, 7-43
Address Error, 7-6, 7-43, 8-8
Address Registers, 1-8, 2-4
Addressing Modes, 1-10, 2-5, 10-3, 10-4
Brief Extension Word Format, 10-7
Full Extension Word Format, 10-7
Index Scaling, 1-9, 1-10
Index Sizing, 1-9, 1-10
Memory Indirect, 2-2
Postincrement, 1-9
Predecrement, 1-9
Program Counter Indirect, 1-9, 1-10
Program Counter Relative, 7-6
Register Indirect, 1-9, 1-10
Address Translation, 3-1
Address Translation Cache, 1-4, 3-2, 3-3, 3-4,
3-7, 3-26, 5-8, 5-14, 8-7, 8-18
Address Translation Cache Entry, 3-15, 3-30, 4-2
Field Definitions, 3-27, 3-28
Airflow, 11-29, 11-31
Alternate Bus Master, 4-1, 4-8, 4-9, 5-4, 5-5, 5-8,
5-9
Arithmetic Floating-Point Exceptions,
see Floating-Point Exceptions
Automatic Test Pattern Generation (ATPG), 6-5
Autovector, 7-33, 7-34

-B-—

Boundary Scan Control, 6-6, 6-9
Breakpoint Operations, 8-12

Bus Cycle, 7-29, 7-35, 9-20
BSDL Description, 6-15

MOTOROLA

Buffer Selection, 7-69
Burst Mode Operations, 4-3, 4-11, 5-9
Burst Bus Cycles, see Bus Cycles
Burst-Inhibited Bus Cycles, see Bus Cycles
Bus Arbitration, 7-44—7-58
Disregard Request Condition, 7-50
Indeterminate Condition, 7-49, 7-58
Bus Arbitration States, 7-46—7-49
Explicit Bus Ownership, 7-45
Implicit Bus Ownership, 7-67
with Direct Memory Access, 7-56
Bus Controller, 1-5, 7-6, 7-10, 7-13, 7-20, 7-45,
8-7, 10-8
Bus Cycles,
Burst, 5-9, 7-9, 7-10, 7-12, 7-13, 7-22, 7-37,
7-38, 7-42, 7-70
Burst-Inhibited, 7-13, 7-22, 7-42, 7-45, 7-60
Line, 7-4, 7-9
Line Write, 7-22
Locked, 5-7, 7-49, 7-53, 7-55, 8-8
Push, 4-13
Read, 7-4, 7-10, 7-12, 7-32
Read-Modify-Write, 3-21, 7-26, 7-41, 7-45, see
also Bus Cycles, Locked
Write, 7-4, 7-20
Bus Error, 3-22, 3-30, 4-12, 7-37, 7-42,7-43,
9-21
Bus Operations
Access Serialization, 7-44
Synchronization, 7-44
Conditional Branch, 7-50
Data Cache, 7-44
Double Bus Fault, 8-8, 8-18
Exceptions, 8-8
Interrupt Pending Procedure, 7-30
Locked Transfer, 8-8
Misaligned Access, 4-3, 4-11, 10-3
Misaligned Operand, 7-6, 7-37
Relinquish and Retry, 4-12, 7-41, 7-42, 7-55
Reset, 7-66
Bus Synchronization, 7-44
BYPASS, 6-3
Byte Enable Signals, 7-4
PAL Equation, 7-4
Byte Offset, 7-3

M68040 USER’'S MANUAL INDEX-1



—C—

Cache, 1-4, 2-8
Burst Mode Operations, 4-11
Data, 2-3, 2-8, 3-1, 3-12, 7-44, 8-7, 8-18
Exceptions, 8-7, 8-18
Instruction Prefetches, 4-13
Instruction, 3-1, 8-7, 8-18
Misaligned Accesses, 4-11
Page Descriptors, 4-5
Replacement Algorithm, 4-4
Retry Operation, 4-12
Shared Data, 4-9, 4-10
Cache Coherency, 4-10
Cache Controller, 3-2, 3-28, 4-4, 4-8, 4-12
Cache Inhibited, see Caching Modes
Cache Line, 4-3
D-Bit, 4-6
Dirty, 4-3
Format, 4-2
Invalid, 4-3; Timing, 10-8
V-Bit, 4-3
Valid, 4-3
Caching Modes, 4-6
Cache Inhibited, 4-7
Copyback, 4-6, 7-60
Default, 4-6
Nonserialized, 4-6
Serialized, 4-6
Write-Through, 4-6
Caching Operation, 4-3
Calculate Stage, see Integer Unit Pipeline
CM Field, 4-6, 5-8, see also Descriptors
Conditional Branch, 7-50
Conditional Tests, 9-15, 9-17
Floating-Point IEEE Tests, 9-17, 9-18, 9-25
Unordered Conditions, 9-17, 9-18
Control Signals, 7-1, 7-9
Copyback, see Caching Modes

—-D-

Data Bus, 7-1, 7-3

Data Format, 1-9, 9-7
Extended Precision, 9-12, 9-21, 9-23, 9-24
Floating-Point Conversion of, 9-12
Packed Decimal Real, 9-22

INDEX-2 M68040 USER’'S MANUAL

Data Latch Enable (DLE) Mode, 1-2, 5-5, 5-14,
7-70, A-5
Data Registers, 2-4
Data Types, 9-7
Denormalized Numbers, 1-9, 9-12, 9-22,
9-23, 9-16
Infinities, 1-9
NANs, 1-9, 9-17
Normalized Numbers, 1-9, 9-16, 9-33
Unnormalized Numbers, 9-12, 9-22, 9-23
Zeros, 1-9
Decode Stage, see Integer Unit Pipeline
Demand Memory, 3-1
Denormalized Numbers, see Data Types
Descriptors, 3-8, 3-12
CM Field, 4-6, 5-8
Field Definitions, 3-13
Indirect, 3-9, 3-14; PDT Field, 3-17
Invalid, 3-9, 3-14
M-Bit, 3-21
Page, 3-12, 3-13, 3-17, 3-23, 3-24, 4-5
Resident, 3-14
S-Bits, 3-23
Table, 3-12, 3-13, 3-24; UDT Field, 3-19
U-Bit, 3-21
W-Bits, 3-24
Direct Memory Access (DMA), 7-56
Dirty Data, 4-1, 5-8
Disabling JTAG, 6-13
Disregard Request Condition, 7-55
Double Bus Fault, 7-43, 8-8, 8-18
DRVCTL.T, 6-3, 6-12
Dynamic Bus Sizing, 7-3

—E-

Effective Address (<ea>), 2-3
Execute Stage, see Integer Unit Pipeline
Exception Handler, 8-4
Exception Processing, 1-6, 2-5, 7-36, 7-37, 7-43,
A-6
Exception Vector, 2-7
Table, 8-1, 8-4
Exceptions
Access Error, 1-5, 3-23, 3-24, 5-14, 7-37,
7-43, 9-21, A-6
Access Fault, 3-9, 8-6, 8-7
Address Error, 7-6, 7-43, 8-8

MOTOROLA



Bus Error, 3-22, 3-30, 4-12, 7-37, 7-42, 7-43,
9-21
Double Bus Fault, 7-43, 8-8, 8-18
F-Line, A-6, B-10
Format Error, 8-12, 8-28, 9-20
FTRAPcc, 9-20
lllegal Instruction, 8-9
Interrupt, 5-14, 7-29, 7-31, 8-12, 8-20
Memory Management Unit, 8-7
Priority, 8-19
Privilege Violation, 8-10
Reset, 5-11, 7-67, 7-68, 8-17
Trace, 8-10
Trap, 8-8, 8-20
Unimplemented Floating-Point Instruction, 1-2,
9-20
Unimplemented Instruction, 8-9
Explicit Bus Ownership, see Bus Arbitration
States
Extended Precision, see Data Format
External Bus Arbiter, 5-7, 5-10, 7-45, 7-46, 7-50,
7-53, 7-55, 7-58
EXTEST, 6-3, 6-12

—F—

F-line, A-6, B-10
Fetch Stage, see Integer Unit Pipeline
Floating-Point Exceptions, 1-8, 9-3
Arithmetic, 9-24
Branch/Set on Unordered (BSUN), 9-18,
9-25-9-27
Divide by Zero, 9-36
Floating-Point, 9-5
Inexact Result (INEX1 And INEX2), 9-24,
9-36-9-38, 9-42
Multiple Exceptions, 9-25
Operand Error (OPERR), 9-28-9-31
Overflow Exception (OVFL), 9-16, 9-31-9-33,
9-42
Round-Off Error, 9-11
SNAN Exception, 9-27, 9-28
Underflow (UNFL), 9-16, 9-33-9-36, 9-42
Floating-Point Pipeline, 9-1, 9-26
Floating-Point Registers
Floating-Point Status Register (FPSR), 1-8,
9-4, 9-15
AEXC Byte, 9-5; Setting the AEXC, 9-6

MOTOROLA

M68040 USER’'S MANUAL

EXC Byte, 9-5, 9-13, 9-34, 9-37
Floating-Point Registers
FPCC Byte, 9-4
Quotient Byte, 9-5
Floating-Point Control Register (FPCR), 1-8,
9-3, 9-11, 9-18
ENABLE Byte, 9-3, 9-25; Encodings, 9-3
MODE Byte, 9-3, 9-31, 9-37
Floating-Point Data Register, 9-2, 9-15
Floating-Point Registers
Floating-Point Instruction Address Register
(FPIAR), 1-8, 9-6, 9-32, 9-35, 9-38
Floating-Point State Frames, 7-38, 9-39;
Field Definitions, 9-42, 9-43
Floating-Point Unit (FPU), 1-2, 1-4
Exception Handler, 9-5
Floating-Point State Frame, 7-38
Format $4 Stack Frame, A-5
Integer Pipeline, 10-29
Programming Model, 9-2
Floating-Point User Exception Handler
BSUN, 9-26
Divide by Zero, 9-36
INEX, 9-28, 9-30, 9-32, 9-33, 9-35, 9-37, 9-38
OPERR, 9-29, 9-30
OVFL, 9-32, 9-33
SNAN, 9-28
UNFL, 9-35
Floating-Point Vector Numbers, 9-20
Forced Rounding Precision, 9-13, 9-31, 9-34
Format Error, 8-12, 8-28, 9-20

—H-

Heat Sink, 11-29, 11-31
HIGHZ, 6-3, 6-12

IEEE Aware Tests, see Conditional Tests

IEEE Standard 1149.1, see JTAG

Implicit Bus Ownership, see Bus Arbitration
States

Indeterminate Condition, see Bus Arbitration

Indirect Descriptor, see Descriptors

Instruction Execution, 2-5

Instruction Timing, 10-1-10-36

Instruction Prefetches, 4-13

INDEX-3



Instructions
Forced Rounding Precision, 9-13, 9-31, 9-34
Privilege Violation Generating, 8-10
Trace Exception Generating, 8-10
Integer Unit, 1-4, 2-1, 7-3
Supervisor Programming Model, 1-7, 2-5, 2-6
User Programming Model, 1-6, 2-4
Integer Unit Pipeline, 1-3, 2-1-2-3, 10-5
<ea> Calculate Stage, 1-3, 2-1, 2-2, 10-3,
10-4, 10-6
<ea> Fetch Stage, 1-3, 2-1, 2-2, 2-3, 7-4, 10-3
Decode Stage, 2-1, 2-2
Execute Stage, 2-2, 5-12, 8-1, 8-7, 10-3, 10-4,
10-6
Write-Back Stage, 7-43, 10-4, see also Write-
Backs
Integer Unit Registers
Address Registers, 1-8, 2-4
Cache Control Register (CACR), 1-8, 2-8, 4-5,
8-17
Condition Code Register (CCR), 1-8, 2-5;
X-Bit, 2-5
Data Registers, 2-4
Function Code Registers, 1-8, 2-7
Index Registers, 1-8
Interrupt Stack Pointer (ISP), 8-4
Program Counter (PC), 1-8, 2-5, 8-4
Stack Pointer (SP), 1-8, 2-5; Supervisor, 2-6
Status Register (SR), 2-7, 8-2
S-Bit, 1-5
M-Bit, 2-6, 2-7, 8-4
I-Bits, 7-29, 8-13
Vector Base Register (VBR), 1-8, 2-7, 8-4,
8-17
Intermediate Result, 9-11, 9-13, 9-15, 9-16, 9-21,
9-31, 9-33, 9-37; Format, 9-12
Interrupt Exceptions, 5-14, 7-29, 7-31, 8-12, 8-20
Interrupts, 1-5
Acknowledged Bus Cycle, 5-12, 7-29-7-35,
7-31, 8-2
Pending Procedure, 7-30
Priority Level, 5-11
Priority Mask, 7-29, 8-2
Request, 8-13
Vector Numbers, 8-15

INDEX-4 M68040 USER’'S MANUAL

.,

JTAG (IEEE Standard 1149.1), 5-15, 6-1
Boundary Scan Control, 6-6, 6-9
BSDL Description, 6-15
Disabling, 6-13
Electrical And Timing Specifications, 11-1
Instructions, see JTAG Instructions

JTAG Instructions
BYPASS, 6-3
DRVCTL.T, 6-3, 6-12
EXTEST, 6-3, 6-12
HI-Z, 6-3, 6-12
PRIVATE, 6-3
SAMPLE/PRELOAD, 6-3
SHUTDOWN, 6-3, 6-12

JTAG Output Drivers, 6-4, 6-5

JTAG Registers
Boundary Scan Data Register, 6-2, 6-4, 6-5,

6-13
Instruction Shift Register, 6-2—6-6
Test Data Register, 6-3, 6-2

JTAG Scan, A-5, B-5
Output Drivers, 6-4, 6-5
Registers, see JTAG Registers
System Clock Restriction, 6-3
TAP Controller, 6-1, 6-2, 6-6, 6-13

Junction Temperature, 11-29, 11-30

—L—

Line Filling, 7-6, 7-12, 7-13

Line Bus Cycles, see Bus Cycles

Locked Bus Cycles, see Bus Cycles

Logical Address, 2-3, 2-7, 3-29, 4-3, 3-2, 3-4
Format, 3-8
Space, 1-8; Defined 3-29

—M—

M68040FPSP Exception Handler, 9-23
BSUN, 9-26
OPERR, 9-30
OVFL, 9-31, 9-32
SNAN, 9-27, 9-28
Unimplemented Instruction, 9-35, 9-38

MOTOROLA



MC68EC040
4-Kbyte Page Size, B-4
Access Control Registers, see Access Control
Unit
Address Space, B-5
DLE Mode, 1-2
Electrical Characteristics, 11-19
Exception Processing, B-10
Multiplexed Bus Mode, 1-2
Output Buffer Mode, 1-2
Special Modes of Operation, 1-2, B-5
Unimplemented Floating-Point Instruction
Exceptions, 1-2, B-10
MC68LC040
DLE Mode, 1-2, A-5
Electrical Characteristics, 11-15
Exception Processing, A-6
F-Line Exception, A-6
Main Features, A-2
Multiplex Bus Mode, 1-2, A-5
Output Buffers, A-5
Special Modes of Operation, 1-2
Unimplemented Floating-Point Instruction
Exceptions, 1-2, A-5
Memory Controller, 7-13
Memory Management Unit (MMU), 1-4
Cache Controller, 3-2
Disable Dynamically, 5-14
Memory Controller, 7-13
Translation Tables, 3-2
Memory Management Unit Registers, 3-33
Initializing, 3-32
MMU Status Register (MMUSR), 1-8, 3-3, 3-15
Field Definitions, 3-6, 3-7
Status Bits, 3-34
Supervisor Root Pointer (SRP), 1-8, 3-3
Translation Control Register (TCR), 1-8, 3-4;
Field Definitions, 3-4; E-Bit 3-33;
P-Bit, 3-32, 8-17
Transparent Translation Registers (TTR), 1-4,
1-7, 3-2, 3-3, 3-29, 3-30, 4-6, 5-7, 8-17;
Field Definitions, 3-5
User Root Pointer (URP), 1-8, 3-3
Misaligned Access, 4-3, 4-11, 10-3
Misaligned Operand, 7-6, 7-37
Multiplexed Bus Mode, 1-2, 5-4, 5-5, 7-69, A-5
Multiplexer, 7-3

MOTOROLA

—N-—

NAN, see Data Types
Normalized, see Data Types

—O-—

Operand Size, 1-9
Output Buffer Mode, 1-2, 7-69, 11-29

—P—

Packed Decimal Real, 9-22
Page Descriptor, see Descriptors
Page Index Field (PGI), 3-8
Page Size, 3-4, 3-12, 8-17
4 Kbytes, 3-9, 3-29, B-4
8 Kbytes, 3-6, 3-9, 3-29
Paged Memory, 3-1, 3-21
Page Offset Field, 3-8
Page State Information, 4-10
PDT Field 3-17, see also Descriptors
Physical Address, 3-2, 3-8, 3-9, 3-29, 4-3
Translation of, see Address Translation
Pointer Index Field (PI), 3-8
Power Dissipation, 11-29
PRIVATE, 6-3
Privilege Modes, 1-5
User, 1-6, 2-7
Supervisor, 1-6, 2-7, 3-3, 4-5
Processing States, 1-5-1-6
Push Bus Cycles, see Bus Cycles

-R—

Range Control, 9-13
Read-Modify-Write Bus Cycles, see Bus Cycles
Registers
Floating-Point Unit, see Floating-Point Unit
Registers
Integer Unit, see Integer Unit Registers
JTAG, see JTAG Registers
Memory Management Unit, see Memory
Management Unit Registers
Replacement Algorithm, 4-4
Reset Operation, 2-8, 3-4, 3-32, 4-3, 4-5, 5-9,
5-11, 7-66, 9-3, 9-4, 9-6, 9-39, 11-29, 11-30
Retry Operation, 4-12, 7-41, 7-42, 7-55
Root Index Field (RI), 3-8

M68040 USER’'S MANUAL INDEX-5



Rounding Algorithm, 9-14

Rounding Mode, 9-3, 9-13, 9-16, 9-24, 9-37
Overflow And Underflow, 9-16, 9-30

Rounding Precision, 9-3, 9-13, 9-33, 9-37, 9-16
Forced, 9-31, 9-34

-S—

SAMPLE/PRELOAD, 6-3
Self-Modifying Code, 4-10
Shadow Registers, 2-1
SHUTDOWN, 6-3, 6-12
Signals
A31-A0, 7-1
AVEC, 7-33, 7-34
BB, 7-45-7-58
BCLK, 6-12, 7-1
BG, 7-45-7-58
BR, 7-45-7-58
CDIS, 4-5, 5-4, 5-5, 7-67, 7-69
CIOUT, 4-7
D31-D0, 7-1
DLE, 1-1, 1-2, 5-5, A-5, B-5
IPEND, 5-12, 7-29
IPLx, 7-2, 7-29, 7-34, 7-67, 5-11, 6-5, 8-12,
10-8, A-5, B-8
JSO, 1-1, 1-2, A-5, B-5, B-8
JS1, 1-2, B-5, B-8
LOCK, 3-21, 4-13, 7-26, 7-45—7-58
LOCKE, 7-26, 7-45-7-58, 7-54
MDIS, 1-2, 3-1, 3-5, 3-32, 5-5, 7-67, B-5, B-8
MI, 7-60
PCLK, 6-12, 7-1
PSTx, 8-18
Relationship to System CLOCKSs, 7-2
RSTI, 3-32, 6-5, 6-6, 6-13, 7-2, 7-66, 7-67,
8-17, B-8
RSTO, 8-18
SCx, 4-3, 7-60; Encodings 4-9
SIZx, 4-13, 7-3, 7-7; Encodings 4-11
TA, 4-11, 4-12, 4-13, 8-9, 8-12, 7-60, 8-9,
8-12, 9-20
TBI, 4-3, 4-11, 4-12, 4-13, 7-10, 7-20, 7-60
TCI, 4-11, 4-12
TCK, 6-2, 6-4, 6-6, 6-12
TDI, 6-2
TDO, 6-2, 6-4, 6-6

INDEX-6 M68040 USER’'S MANUAL

TEA, 4-12, 4-13, 7-60, 8-6, 8-7, 8-9,
8-12, 9-20
TLNx Encodings, 4-11
TMS, 6-2, 6-4
TMx, 4-13, 5-6
TRST, 6-2, 6-4, 6-13
TS, 7-60
UPAX, 3-5, 3-15, 3-28,7-60, B-6
Signal Descriptions, 5-2-5-3
Sink Data, 4-1, 4-9, 5-8
Small Output Buffer, A-5
Snoop Controller, 1-4, 5-7
Snooping, 4-1, 5-9
Cache Coherency, 4-10
Logic, 1-1, 1-5
Operation, 5-9
Snoop-Inhibited Operation, 7-61
Snooped External Read, 4-8
Source Data, 4-1, 4-8, 4-10, 5-8
Stack Frames
Access Error, 3-22, 8-20, A-7, B-11;
Fields Defined 8-24-8-27
Floating-Point Post-Instruction, A-7, B-11
Format $0, 8-21
Format $1, 8-21
Format $2, 8-22, 9-21, 9-22
Format $3, 8-23, 9-31, 9-32, 9-35, 9-38
Format $4, 8-23, A-5, B-11
Format $7, 8-24
MC68LC040, A-5
MC68EC040, B-11
SSW Field Format Defined, 8-24-8-26
State Data, 4-1, 5-9
State Frames, see Floating-Point State Frames
Sticky Bit, 9-6
Supervisor Address Space, 3-23, 8-4
Supervisor Mode, see Privilege Modes
Synchronization, 7-44
Synchronizer Circuit, 7-58

—T-

Table Descriptor, see Descriptors

Table Search, 3-9, 3-12, 3-24, 3-28

TAP Controller, 6-1, 6-2, 6-6, 6-13

TAP Controller States, 6-3—6-4

Tag Entry, see Address Translation Cache Entry
Thermal Management, 11-29, 11-30, 11-31

MOTOROLA



Thermal Resistance, 11-29

Trace Exceptions, 8-10

Trace Mode, 2-7

Translation Table, 1-4, 3-2, 3-3, 3-6, 3-7, 3-12,

Unimplemented Instruction Exceptions,
see Exceptions

Unnormalized, see Data Types

Unordered Condition, 9-25

3-16, 3-32

Dynamically Allocated, 3-21
Page Frame Address, 3-9
Page-Level Tables, 3-7, 3-8
Pointer-Level Tables, 3-7

User Address Space, 3-23
Unsupported Data Types,

see Unimplemented Data Type
User-Programmable Attribute Bits, 5-7

Protection Mechanisms, 3-23 -V—-
Root-Level Tables, 3-7
Supervisor Root Pointer, 3-23 Vector
Transparent Translation, 3-5 Number, 7-31, 7-33, 7-34, 8-2
Offset, 8-15

Transparent Translation Registers,
see Memory Management Unit Registers
Trap Exceptions, 8-8, 8-20 —W-—

Table, see Exception Vector Table

-U- Word, see Data Format
Write Buffer, see Buffers
Write Bus Cycles, see Bus Cycles
Write-Back Stage, see Integer Unit Pipeline
Write-Backs, 2-1, 2-3

Block Diagram, 2-3

External Write, 2-3
Write-Through, see Caching Modes

UDT field 3-19, see also Descriptors

Unimplemented Data Type, 9-22, 9-23, D-2
Exception, 9-20, 9-39

Unimplemented Floating-Point Instruction,
9-21, A-6, D-2
Exception, 1-2, 9-20, 9-39

MOTOROLA M68040 USER’'S MANUAL INDEX-7



	Preface
	Table of Contents
	List of Illustrations
	List of Tables
	Sec. 1- Introduction
	1.1 Differences
	1.1.1 MC68040V and MC68LC040
	1.1.2 MC68EC040 and MC68EC040V

	1.2 Features
	1.3 Extensions to the M68000 Family
	1.4 Functional Blocks
	1.5 Processing States
	1.6 Programming Model
	1.7 Data Format Summary
	1.8 Addressing Capabilities Summary
	1.9 Notational Conventions
	1.10 Instruction Set Overview

	Sec. 2- Integer Unit
	2.1 Integer Unit Pipeline
	2.2 Integer Unit Register Description
	2.2.1 Integer Unit User Programming Model
	2.2.2 Integer Unit Supervisor Programming Model


	Sec. 3- Memory Management Unit
	3.1 Memory Management Programming Model
	3.1.1 User and Supervisor Root Pointer Registers
	3.1.2 Translation Control Register
	3.1.3 Transparent Translation Registers
	3.1.4 MMU Status Register

	3.2 Logical Address Translation
	3.2.1 Translation Tables
	3.2.2 Descriptors
	3.2.3 Translation Table Example
	3.2.4 Variations in Translation Table Structure
	3.2.5 Table Search Accesses
	3.2.6 Address Translation Protection

	3.3 Address Translation Caches
	3.4 Transparent Translation
	3.5 Address Translation Summary
	3.6 MMU Effect on RSTI and MDIS
	3.6.1 Errect of RSTI on the MMUs
	3.6.2 Effect of MDIS on Address Translation

	3.7 MMU Instructions
	3.7.1 MOVEC
	3.7.2 PFLUSH
	3.7.3 PTEST
	3.7.4 Register Programming Considerations


	Sec. 4- Instruction and Data Caches
	4.1 Cache Operation
	4.2 Cache Management
	4.3 Caching Modes
	4.3.1 Cachable Accesses
	4.3.2 Cache-Inhibited Accesses
	4.3.3 Special Accesses

	4.4 Cache Protocol
	4.4.1 Read Miss
	4.4.2 Write Miss
	4.4.3 Read Hit
	4.4.4 Write Hit

	4.5 Cache Coherency
	4.6 Memory Accesses for Cache Maintenance
	4.6.1 Cache Filling
	4.6.2 Cache Pushes

	4.7 Cache Operation Summary
	4.7.1 Instruction Cache
	4.7.2 Data Cache


	Sec. 5- Signal Description
	5.1 Address Bus
	5.2 Data Bus
	5.3 Transfer Attribute Signals
	5.3.1 Transfer Type
	5.3.2 Transfer Modifier
	5.3.3 Transfer Line Number
	5.3.4 User-Programmable Attributes
	5.3.5 Read/Write
	5.3.6 Transfer Size
	5.3.7 Lock
	5.3.8 Lock End
	5.3.9 Cache Inhibit Out

	5.4 Bus Transfer Control Signals
	5.4.1 Transfer Start
	5.4.2 Transfer in Progress
	5.4.3 Transfer Acknowledge
	5.4.4 Transfer Error Acknowledge
	5.4.5 Transfer Cache Inhibit
	5.4.6 Transfer Burst Inhibit

	5.5 Snoop Control Signals
	5.5.1 Snoop Control
	5.5.4 Memory Inhibit

	5.6 Arbitration Signals
	5.6.1 Bus Request
	5.6.2 Bus Grant
	5.6.3 Bus Busy

	5.7 Processor Control Signals
	5.7.1 Cache Disable
	5.7.2 Reset In
	5.7.3 Reset Out

	5.8 Interrupt Control Signals
	5.8.1 Interrupt Priority Level
	5.8.2 Interrupt Pending Status
	5.8.3 Autovector

	5.9 Status and Clock Signals
	5.9.1 Processor Status
	5.9.2 Bus Clock
	5.9.3 Processor Clock

	5.10 MMU Disable
	5.11 Data Latch Enable 
	5.12 Test Signals
	5.12.1 Test Clock
	5.12.2 Test Mode Select
	5.12.3 Test Data In
	5.12.4 Test Data Out
	5.12.5 Test Reset

	5.13 Power Supply Connections
	5.14 Signal Summary

	Sec. 6- IEEE 1149.1A Test Access Port (JTAG)
	6.1 Overview
	6.2 Instruction Shift Register
	6.2.1 EXTEST
	6.2.2 HIGHZ
	6.2.3 Sample/Preload
	6.2.4 DRVCTL.T
	6.2.5 Shutdown
	6.2.6 Private
	6.2.7 DRVCTL.S
	6.2.8 Bypass

	6.3 Boundary Scan Register
	6.4 Restrictions
	6.5 Disabling the IEEE Standard 1149.1A Operation
	6.6 Motorola M68040 BSDL Description
	6.7 MC68040, MC68LC040, MC68EC040 JTAG Electrical Characteristics

	Sec. 7 - Bus Operation
	7.1 Bus Characteristics
	7.2 Data Transfer Mechanism
	7.3 Misaligned Operands
	7.4 Processor Data Transfers
	7.4.1 Byte, Word, and Long-Word Read Transfers
	7.4.2 Line Read Transfer
	7.4.3 Byte, Word, and Long-Word Write Transfers
	7.4.4 Line Write Transfers
	7.4.5 Read-Modify-Write Transfers

	7.5 Acknowledge Bus Cycles
	7.5.1 Interrupt Acknowledge Bus Cycles
	7.5.2 Breakpoint Interrupt Acknowledge Bus Cycle

	7.6 Bus Exception Control Cycles
	7.6.1 Bus Errors
	7.6.2 Retry Operation
	7.6.3 Double Bus Fault

	7.7 Bus Synchronization
	7.8 Bus Arbitration and Examples
	7.8.1 Bus Arbitration
	7.8.2 Bus Arbitration Examples

	7.9 Bus Snooping Operation
	7.9.1 Snoop-Inhibited Cycle
	7.9.2 Snoop-Enabled Cycle (No Intervention Required)
	7.9.3 Snoop Read Cycle (Intervention Required)
	7.9.4 Snoop Write Cycle (Intervention Required)

	7.10 Reset Operation
	7.11 Special Modes of Operation
	7.11.1 Output Buffer Impedance Selection
	7.11.2 Multiplexed Bus Mode
	7.11.3 Data Latch Enable Mode


	Sec. 8- Exception Processing
	8.1 Exception Processing Overview
	8.2 Interger Unit Exceptions
	8.2.1 Access Fault Exception
	8.2.2 Address Error Exception
	8.2.3 Instruction Trap Exception
	8.2.4 Illegal Instruction and Unimplemented Instruction Exceptions
	8.2.5 Privilege Violation Exception
	8.2.6 Trace Exception
	8.2.7 Format Error Exception
	8.2.8 Breakpoint Instruction Exception
	8.2.9 Interrupt Exception
	8.2.10 Reset Exception

	8.3 Exception Priorities
	8.4 Return from Exceptions
	8.4.1 Four-Word Stack Frame
	8.4.2 Four-Word Throwaway Stack Frame
	8.4.3 Six-Word Stack Frame
	8.4.4 Floating-Point Post-Instruction Stack Frame
	8.4.5 Eight-Word Stack Frame
	8.4.6 Access Error Stack Frame


	Sec. 9- Floating-Point Unit
	9.1 Floating-Point Unit Pipeline
	9.2 Floating-Point User Programming Model
	9.2.1 Floating-Point Data Registers
	9.2.2 Floating-Point Control Register
	9.2.3 Floating-Point Status Register
	9.2.4 Floating-Point Instruction Address Register

	9.3 Floating-Point Data Formats and Data Types
	9.4 Computational Accuracy
	9.4.1 Intermediate Result
	9.4.2 Rounding the Result

	9.5 Postprocessing Operation
	9.5.1 Underflow, Round, Overflow
	9.5.2 Conditional Testing

	9.6 Floating-Point Exceptions
	9.6.1 Unimplemented Floating-Point Instructions
	9.6.2 Unsupported Floating-Point Data Types

	9.7 Floating-Point Arithmetic Exceptions
	9.7.1 Branch/Set On Unordered
	9.7.2 Signaling Not-a-Number
	9.7.3 Operand Error
	9.7.4 Overflow
	9.7.5 Underflow
	9.7.6 Divide by Zero
	9.7.7 Inexact Result

	9.8 Floating-Point State Frames

	Sec. 10- Instruction Timings
	10.1 Overview
	10.2 Instruction Timing Examples
	10.3 CINV and CPUSH Instruction Timing
	10.4 Move Instruction Timing
	10.5 Miscellaneous Interger Unit Instruction Timings
	10.6 Integer Unit Instruction Timings
	10.7 Floating-Point Unit Instruction Timings
	10.7.1 Miscellaneous Integer Unit Support Timings
	10.7.2 Integer Unit Support Timings
	10.7.3 Timings in the Floating-Point Unit


	Sec. 11- MC68040 Electrical and Thermal Characteristics
	11.1 Maximum Ratings
	11.2 Thermal Characteristics
	11.3 DC Electrical Specifications
	11.4 Power Dissipation
	11.5 Clock AC Timing Specifications
	11.6 Output AC Timing Specifications
	11.7 Input AC Timing Specifications
	11.8 MC68040 Thermal Device Characteristics
	11.8.1 MC68040 Die and Package
	11.8.2 MC68040 Power Considerations

	11.9 MC68040 Thermal Management Techniques
	11.9.1 Still Air
	11.9.2 Forced Air
	11.9.3 With Heat Sink
	11.9.4 With Heat Sink and Forced Air


	Sec. 12 - Ordering Information and Mechanical Data
	12.1 Ordering Information
	12.2 Pin Assignments
	12.2.1 MC68040 Pin Grid Array
	12.2.2 MC68LC040 Pin Grid Array
	12.2.3 MC68EC040 Pin Grid Array
	12.2.4 MC68040V and MC68EC040V Pin Grid Array
	12.2.5 MC68LC040 Quad Flat Pack
	12.2.6 MC68EC040 Quad Flat Pack
	12.2.7 MC68040V and MC68EC040V Quad Flat Pack

	12.3 Mechanical Data

	Appx. A- MC68LC040
	A.1 MC68LC040 Differences
	A.2 Interrupt Priority Level
	A.3 JTAG Scan
	A.4 Data Latch and Multiplexed Bus Modes
	A.5 Floating-Point Unit
	A.5.1 Unimplemented Floating-Point Instructions and Exceptions
	A.5.2 MC68LC040 Stack Frames

	A.6 MC68LC040 Electrical Characteristics
	A.6.1 Maximum Ratings
	A.6.2 Thermal Characteristics
	A.6.3 DC Electrical Specifications
	A.6.4 Power Dissipation
	A.6.5 Clock AC Timing Specifications
	A.6.6 Output AC Timing Specifictions
	A.6.7 Output AC Timing Specifications
	A.6.8 Input AC Timing Specifications


	Appx. B- MC68EC040
	B.1 MC68EC040 Differences
	B.2 JTAG Scan
	B.3 Access Control Units
	B.3.1 Access Control Registers
	B.3.2 Address Comparison
	B.3.3 Effect of RSTI on the ACU

	B.4 Special Modes of Operation
	B.5 Exception processing
	B.5.1 Unimplemented Floating-Point Instructions and Exceptions
	B.5.2 MC68EC040 Stack Frames

	B.6 Software Considerations
	B.7 MC68EC040 Electrical Characteristics
	B.7 MC68EC040 Electrical Characteristics
	B.7.2 Thermal Characteristics
	B.7.3 DC Electrical Specifications
	B.7.4 Power Dissipation
	B.7.5 Clock AC Timing Specifications
	B.7.6 Output AC Timing Specifications
	B.7.7 Input AC Timing Specifications


	Appx. C- MC68040V and MC68EC040V
	C.1 Additional Signals
	C.1.1 Low Frequency Operation
	C.1.2 Loss of Clock
	C.1.3 System Clock Disable

	C.2 Low-Power Stop Mode
	C.2.1 Bus Arbitration and Snooping
	C.2.2 Low Frequency Operation
	C.2.3 Changing BCLK Frequency
	C.2.4 LPSTOP Instruction Summary

	C.3 Clocking During Normal Operation
	C.4 Reset Operation
	C.5 Power Cycling
	C.6 MC68040V and MC68EC040V JTAG
	C.6.1 Instruction Shift Register
	C.6.2 Boundary Scan Register
	C.6.3 Restrictions
	C.6.4 Disabling the IEEE Standard 1149.1A Operation
	C.6.5 MC68040V and MC68EC040V JTAG Electrical Characteristics

	C.7 MC68040V and MC68EC040V Electrical Characteristics
	C.7.1 Maximum Ratings
	C.7.2 Thermal Characteristics
	C.7.3 DC Electrical Specifications
	C.7.4 Power Dissipation
	C.7.5 Clock AC Timing Specifications
	C.7.6 Output AC Timing Specifications
	C.7.7 Input AC Timing Specifications


	Appx. D-M68000 Family Summary
	Appx. E- Floating-Point Emulation
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	040UM.pdf

