SECTION 10
ON-CHIP EMULATION (OnCE)

L 10- 2 ON-CHIP EMULATION (OnCE) MOTOROLA J

SECTION CONTENTS

SECTION 10.1 INTRODUCTION ..ottt
SECTION 10.2 ON-CHIP EMULATION (ONnCE) PINS ..o
SECTION 10.3 OnCE CONTROLLER AND SERIAL INTERFACE
SECTION 10.4 OnCE MEMORY BREAKPOINT LOGICcccovviiiiiiiiiiiiiiiinnnn
SECTION 10.5 OnCE TRACE LOGIC ...,
SECTION 10.6 METHODS OF ENTERING THE DEBUG MODE

SECTION 10.7 PIPELINE INFORMATION AND GLOBAL DATA
BUS REGISTER ...

SECTION 10.8 PROGRAM ADDRESS BUS HISTORY BUFFER
SECTION 10.9 SERIAL PROTOCOL DESCRIPTIONccooiiiiiiiiiirneeeeeee

SECTION 10.10 DSP56K TARGET SITE DEBUG SYSTEM
REQUIREMENTS ...

SECTION 10.11 USING THE ONCEccoiiiiiiiiiii e

10-3 ON-CHIP EMULATION (OnCE) MOTOROLA

(ON-CHIP EMULATION INTRODUCTION \]

10.1 ON-CHIP EMULATION INTRODUCTION

The DSP56K on-chip emulation (OnCE) circuitry provides a sophisticated debugging tool
that allows simple, inexpensive, and speed independent access to the processor’s inter-
nal registers and peripherals. OnCE tells application programmers exactly what the status
is within the registers, memory locations, buses, and even the last five instructions that
were executed. OnCE capabilities are accessible through a standard set of pins which are
the same on all of the members of the DSP56K processor family. Figure 10-1 shows the
components of the OnCE circuitry. OnCE is shown as part of the DSP56K central pro-
cessing module in Figure 10-2.

PDB PIL GDB
Pipeline Breakpoint and
Information Trace Logic
DSCK/OS1
-
A A TA |_> OnCE DSI/0S0
n
p Controller [
XAB and bR
YAB Serial -
PAB ‘ Interface
y y * DSO
—>
PAB Breakpoint
FIFO Registers
and
Comparators

Figure 10-1 OnCE Block Diagram

10.2 ON-CHIP EMULATION (OnCE) PINS
The following paragraphs describe the OnCE pins associated with the OnCE controller
and serial interface component shown in Figure 10-1.

10.2.1 Debug Serial Input/Chip Status 0 (DSI/OS0)

Serial data or commands are provided to the OnCE controller through the DSI/OSO0 pin
when it is an input. The data received on the DSI pin will be recognized only when the
DSP56K has entered the debug mode of operation. Data is latched on the falling edge of
the DSCK serial clock (described in Section 10.2.2). Data is always shifted into the OnCE
serial port most significant bit (MSB) first. When the DSI/OSO0 pin is an output, it works in
conjunction with the OS1 pin to provide chip status information (see Table 10-1). The

L 10- 4

ON-CHIP EMULATION (OnCE) MOTOROLA J

(ON-CHIP EMULATION (OnCE) PINS \]

EXPANSION
AREA
- PROGRAM X MEMORY Y MEMORY
< PERIPHERAL RAM/ROM RAM/ROM RAM/ROM
. MODULES expansioN | ||| Expansion | ||| Expansion
&
i 1
I Y
2 't
)
iz
oo 8
ADDRESS [—|- EXTERNAL E
. GENERATION I~ ADDRESS a
24'B|t UNIT BUS <D(
56K Mod- SWITCH
<
BUS o)k
&
CONTROL |« > E 8
o]
O
INTERNAL EXTERNAL
DATA DATA BUS s
BUS g
SWITCH SWITCH a
- »| PLL 'y Y
PROGRAM PROGRAM PROGRAM DATA ALU
INTERRUPT DECODE ADDRESS 24X24+56 - 56-BIT MAC ONCE | «—F—»
oot | | CONTROLLER © TCONTROLLER| | GENERATOR | | | TWO 56-BIT ACCUMULATORS
A A A Program Control Unit
L— MODC/NMI
_ — 16 BITS
—— MODB/IRQB 24 BITS
MODA/IRQA
RESET

Figure 10-2 DSP56K Block Diagram

DSI/OSO0 pin is an output when the processor is not in debug mode. When switching from
output to input, the pin is three-stated. During hardware reset, this pin is defined as an out-
put and it is driven low.

Note: To avoid possible glitches, an external pull-down resistor should be attached to this
pin.

t MOTOROLA ON-CHIP EMULATION (OnCE) 10-5 J

(ON-CHIP EMULATION (OnCE) PINS \]

10.2.2 Debug Serial Clock/Chip Status 1 (DSCK/OS1)

The DSCK/OS1 pin supplies the serial clock to the OnCE when it is an input. The serial
clock provides pulses required to shift data into and out of the OnCE serial port. (Data is
clocked into the OnCE on the falling edge and is clocked out of the OnCE serial port on
the rising edge.) The debug serial clock frequency must be no greater than 1/8 of the pro-
cessor clock frequency. When an output, this pin, in conjunction with the OSO pin,
provides information about the chip status (see Table 10-1). The DSCK/OSL1 pin is an out-
put when the chip is not in debug mode. When switching from output to input, the pin is
three-stated. During hardware reset, this pin is defined as an output and it is driven low.

Note: To avoid possible glitches, an external pull-down resistor should be attached to this
pin.

Table 10-1 Chip Status Information

OS1 0S0 Status
0 0 Normal State
0 1 Stop or Wait State
1 0 Chip waits for bus mastership
1 1 Chip waits for end of memory wait states
(due to WT assertion or BCR)

10.2.3 Debug Serial Output (DSO)

Serial data is read from the OnCE through the DSO pin, as specified by the last command
received from the external command controller. Data is always shifted out the OnCE serial
port most significant bit (MSB) first. Data is clocked out of the OnCE serial port on the ris-
ing edge of DSCK.

The DSO pin also provides acknowledge pulses to the external command controller.
When the chip enters the debug mode, the DSO pin will be pulsed low to indicate (ac-
knowledge) that the OnCE is waiting for commands. After receiving a read command, the
DSO pin will be pulsed low to indicate that the requested data is available and the OnCE
serial port is ready to receive clocks in order to deliver the data. After receiving a write
command, the DSO pin will be pulsed low to indicate that the OnCE serial port is ready to
receive the data to be written; after the data is written, another acknowledge pulse will be
provided.

During hardware reset and when the processor is idle, the DSO pin is held high.

L 10- 6 ON-CHIP EMULATION (OnCE) MOTOROLA J

(OnCE CONTROLLER AND SERIAL INTERFACE \]

10.2.4 Debug Request Input (DR)

The debug request input (DR) allows the user to enter the debug mode of operation from
the external command controller. When DR is asserted, it causes the DSP56K to finish
the current instruction being executed, save the instruction pipeline information, enter the
debug mode, and wait for commands to be entered from the DSI line. While in debug
mode, the DR pin lets the user reset the OnCE controller by asserting it and deasserting
it after receiving acknowledge. It may be necessary to reset the OnCE controller in cases
where synchronization between the OnCE controller and external circuitry is lost. DR
must be deasserted after the OnCE responds with an acknowledge on the DSO pin and
before sending the first ONCE command. Asserting DR will cause the chip to exit the
STOP or WAIT state.

10.3 OnCE CONTROLLER AND SERIAL INTERFACE
The OnCE Controller and Serial Interface contains the following blocks: OnCE command

register, bit counter, OnCE decoder, and the status/control register. Figure 10-3 illustrates
a block diagram of the OnCE controller and serial interface

10.3.1 OnCE Command Register (OCR)

The OCR is an 8-bit shift register that receives its serial data from the DSI pin. It holds the
8-bit commands to be used as input for the OnCE Decoder. The Command Register is
shown in Figure 10-4.

OnCE COMMAND REGISTER - DSl
n <_|_CJ DSCK

BIT 7
-
ISTRACE OnCE DECODER BIT COUNTER |

- ——————
BIT 23

ISDEBUG
ISSWDBG

ISBKPT

ISDR

P STATUS AND CONTROL ¢
REGISTER -
 E— —®» DSO
REG READ REG WRITE MODE SELECT

Figure 10-3 OnCE Controller and Serial Interface

L MOTOROLA ON-CHIP EMULATION (OnCE) 10-7 J

(OnCE CONTROLLER AND SERIAL INTERFACE

R/W

GO | EX |RS4 | RS3| RS2 |RS1| RSO

Figure 10-4 OnCE Command Register

10.3.1.1 Register Select (RS4-RS0) Bits 0-4
The Register Select bits define which register is source (destination) for the read (write)

operation. Table 10-2 indicates the OnCE register addresses.

Table 10-2 OnCE Register Addressing

RS4-RSO Register Selected
00000 OnCE Status and Control Register (OSCR)
00001 Memory Breakpoint Counter (OMBC)
00010 Reserved
00011 Trace Counter (OTC)

00100 Reserved

00101 Reserved

00110 Memory Upper Limit Register (OMULR)
00111 Memory Lower Limit Register (OMLLR)
01000 GDB Register (OGDBR)

01001 PDB Register (OPDBR)

01010 PAB Register for Fetch (OPABFR)
01011 PIL Register (OPILR)

01100 Clear Memory Breakpoint Counter (OMBC)
01101 Reserved

01110 Clear Trace Counter (OTC)

01111 Reserved

10000 Reserved

10001 Program Address Bus FIFO and Increment Counter
10010 Reserved

10011 PAB Register for Decode (OPABDR)
101xx Reserved

11xx0 Reserved

11x0x Reserved

110xx Reserved

11111 No Register Selected

L 10- 8

ON-CHIP EMULATION (OnCE)

MOTOROLA J

(OnCE CONTROLLER AND SERIAL INTERFACE \]

10.3.1.2 Exit Command (EX) Bit 5

If the EX bit is set, the processor will leave the debug mode and resume normal operation.
The Exit command is executed only if the Go command is issued, and the operation is
write to OPDBR or read/write to “No Register Selected”. Otherwise the EX bit is ignored.

EX Action
0 Remain in debug mode
1 Leave debug mode

10.3.1.3 Go Command (GO) Bit 6

If the GO bit is set, the chip will execute the instruction which resides in the PIL register.
To execute the instruction, the processor leaves the debug mode, and the status is reflect-
ed in the OS0-OS1 pins. The processor will return to the debug mode immediately after
executing the instruction if the EX bit is cleared. The processor goes on to normal opera-
tion if the EX bit is set. The GO command is executed only if the operation is write to
OPDBR or read/write to “No Register Selected”. Otherwise the GO bit is ignored.

GO Action
0 Inactive (no action taken)
1 Execute instruction in PIL

10.3.1.4 Read/Write Command (R/W) Bit 7
The R/W bit specifies the direction of data transfer. The table below describes the options
defined by the R/W bit.

R/W Action

0 Write the data associated with the command into the register
specified by RS4-RS0

1 Read the data contained in the register specified by RS4-RS0

10.3.2 OnCE Bit Counter (OBC)

The OBC is a 5-bit counter associated with shifting in and out the data bits. The OBC is
incremented by the falling edges of the DSCK. The OBC is cleared during hardware reset
and whenever the DSP56K acknowledges that the debug mode has been entered. The
OBC supplies two signals to the OnCE Decoder: one indicating that the first 8 bits were

t MOTOROLA ON-CHIP EMULATION (OnCE) 10-9 J

(OnCE CONTROLLER AND SERIAL INTERFACE \]

shifted in (so a new command is available) and the second indicating that 24 bits were
shifted in (the data associated with that command is available) or that 24 bits were shifted
out (the data required by a read command was shifted out).

10.3.3 OnCE Decoder (ODEC)

The ODEC supervises the entire OnCE activity. It receives as input the 8-bit command
from the OCR, two signals from OBC (one indicating that 8 bits have been received and
the other that 24 bits have been received), and two signals indicating that the processor
was halted. The ODEC generates all the strobes required for reading and writing the se-
lected OnCE registers.

10.3.4 OnCE Status and Control Register (OSCR)

The Status and Control Register is a 16-bit register used to select the events that will put
the chip in debug mode and to indicate the reason for entering debug mode. The control
bits are read/write while the status bits are read only. See Figure 10-5.

10.34.1 Memory Breakpoint Control (BC0-BC3) Bits 0-3

These control bits enable memory breakpoints. They allow memory breakpoints to occur
when a memory address is within the low and high memory address registers and will se-
lect whether the breakpoint will be recognized for read, write, or fetch (program space)
accesses. These bits are cleared on hardware reset. See Table 10-3 for the definition of
the BCO-BC3 bits.

When BC3-BC0=0001, program memory breakpoints are enabled for any fetch access
to the program space (true and false fetches, fetches of 2"d word, etc.). Explicit program
memory accesses resulting from MOVEP and MOVEM instructions to/from program
memory space are ignored.

When BC3-BC0=0010, program memory breakpoints are enabled for any read access to
the Program space (MOVEP and MOVEM instructions from P: memory space, true and
false fetches, fetches of 2"% word, etc.). Explicit program memory write accesses resulting
from MOVEP and MOVEM instructions to P: memory space are ignored.

15 11 10 9 8 7 6 S 4 3 2 1 0
* TO |MBO|SWO| * * * |TME|BC3|BC2|BC1|BCO

* Reserved, read as zero, should be written with zero for future compatibility.

Figure 10-5 OnCE Status and Control Register (OSCR)

L 10- 10 ON-CHIP EMULATION (OnCE) MOTOROLA J

(OnCE CONTROLLER AND SERIAL INTERFACE

When BC3-BC0=0011, program memory breakpoints are enabled for any read or write
access to the Program space (any kind of MOVE, true and false fetches, fetches of sec-

ond word, etc.).

When BC3-BC0=0100, program memory breakpoints are enabled only for fetches of the
first instruction word of instructions that are actually executed. Aborted instructions and
prefetched instructions that are discarded (such as jump targets that are not taken) are

ignored by the breakpoint logic.

When BC3-BC0=0101, 0110 or 0111, program memory breakpoints are enabled only for
explicit program memory access resulting from MOVEP or MOVEM instructions to/from

P: memory space.

Table 10-3 Memory Breakpoint Control Table

BC3 | BC2 | BC1 | BCO DESCRIPTION
0 0 0 0 Breakpoint disabled
0 0 0 1 Breakpoint on any fetch (including aborted instructions)
0 0 1 0 Breakpoint on any P read (any fetch or move)
0 0 1 1 Breakpoint on any P access (any fetch, P move R/W)
0 1 0 0 Breakpoint on executed fetches only
0 1 0 1 Breakpoint on P space write
0 1 1 0 Breakpoint on P space read (no fetches)
0 1 1 1 Breakpoint on P space write or read (no fetches)
1 0 0 0 Reserved
1 0 0 1 Breakpoint on X space write
1 0 1 0 Breakpoint on X space read
1 0 1 1 Breakpoint on X space write or read
1 1 0 0 Reserved
1 1 0 1 Breakpoint on'Y space write
1 1 1 0 Breakpoint on Y space read
1 1 1 1 Breakpoint on'Y space write or read

10.3.4.2 Trace Mode Enable (TME) Bit 4
The TME control bit, when set, enables the Trace Mode of operation (see Section 10.5).
This bit is cleared on hardware reset.

10.3.4.3 Reserved (Bits 5-7, 11-15)
These bits are reserved for future use. They read as zero and should be written with zero

for future compatibility.

t MOTOROLA

ON-CHIP EMULATION (OnCE)

10-11 J

(OnCE MEMORY BREAKPOINT LOGIC \]

10.3.4.4 Software Debug Occurrence (SWO) Bit 8
This read-only status bit is set when the processor enters debug mode of operation as a

result of the execution of the DEBUG or DEBUGcc instruction with condition true. This bit
is cleared on hardware reset or when leaving the debug mode with the GO and EX bits
set.

10.3.4.5 Memory Breakpoint Occurrence (MBO) Bit 9
This read-only status bit is set when a memory breakpoint occurs. This bit is cleared on

hardware reset or when leaving the debug mode with the GO and EX bits set.

10.3.4.6 Trace Occurrence (TO) Bit 10
This read-only status bit is set when the processor enters debug mode of operation, when

the trace counter is zero and the trace mode has been armed. This bit is cleared on hard-
ware reset or when leaving the debug mode with the GO and EX bits set.

10.4 OnCE MEMORY BREAKPOINT LOGIC
Memory breakpoints may be set on program memory or data memory locations. Also, the

breakpoint does not have to be in a specific memory address but within an address range
of where the program may be executing. This significantly increases the programmer’s
ability to monitor what the program is doing in real-time.

The breakpoint logic contains a latch for the addresses, registers that store the upper and
lower address limit, comparators, and a breakpoint counter. Figure 10-6 illustrates the
block diagram of the OnCE Memaory Breakpoint Logic.

Address comparators help to determine where a program may be getting lost or when
data is being written to areas that should not be written to. They are also useful in halting
a program at a specific point to examine/change registers or memory. Using address com-
parators to set breakpoints enables the user to set breakpoints in RAM or ROM in any op-
erating mode. Memory accesses are monitored according to the contents of the OSCR.

The low address comparator will generate a logic true signal when the address on the bus
is greater than or equal to the contents of the lower limit register. The high address com-
parator will generate a logic true signal when the address on the bus is less than or equal
to the contents of the upper limit register. If the low address comparator and high address
comparator both issue a logic true signal, the address is within the address range and the
breakpoint counter is decremented if the contents are greater than zero. If zero, the
counter is not decremented and the breakpoint exception occurs (ISBKPT asserted).

10.4.1 Memory Address Latch (OMAL)

The Memory Address Latch is a 16-bit register that latches the PAB, XAB or YAB on every
instruction cycle according to the BC3-BCO bits in OSCR.

L 10- 12 ON-CHIP EMULATION (OnCE) MOTOROLA J

(OnCE MEMORY BREAKPOINT LOGIC

PAB XAB YAB

DSCK
DSI
DSO
MEMORY ADDRESS LATCH [«—— MEMORY BUS SELECT
HIGH ADDRESS COMPARATOR
LOWER
OR BC3-BCO
EQUAL
- L UPPER LIMIT REGISTER
¢ ‘> MEMORY
BREAKPOINT
LOW ADDRESS COMPARATOR ——p»| SELECTION
HIGHER
OR
EQUAL
< L LOWER LIMIT REGISTER
- BREAKPOINT
OCCURRED
DEC
- L BREAKPOINT COUNTER
COUNT=0
ISBKPT

Figure 10-6 OnCE Memory Breakpoint Logic

10.4.2 Memory Upper Limit Register (OMULR)
The 16-bit Memory Upper Limit Register stores the memory breakpoint upper limit. The

OMULR can be read or written through the OnCE serial interface. Before enabling break-
points, OMULR must be loaded by the external command controller.

10.4.3 Memory Lower Limit Register (OMLLR)
The 16-bit Memory Lower Limit Register stores the memory breakpoint lower limit. The
OMLLR can be read or written through the OnCE serial interface. Before enabling break-

t MOTOROLA ON-CHIP EMULATION (OnCE) 10-13

(OnCE TRACE LOGIC \]

points, OMLLR must be loaded by the external command controller.

10.4.4 Memory High Address Comparator (OMHC)

The OMHC compares the current memory address (stored in OMAL) with the OMULR
contents. If OMULR is higher than or equal to OMAL then the comparator delivers a signal
indicating that the address is lower than or equal to the upper limit.

10.4.5 Memory Low Address Comparator (OMLC)

The OMLC compares the current memory address (stored in OMAL) with the OMLLR con-
tents. If OMLLR is lower than or equal to OMAL then the comparator delivers a signal in-
dicating that the address is higher than or equal to the lower limit.

10.4.6 Memory Breakpoint Counter (OMBC)

The 24-bit OMBC is loaded with a value equal to the number of times, minus one, that a
memory access event should occur before a memory breakpoint is declared. The memory
access event is specified by the BC3-BCO bits in the OSCR register and by the memory
upper and lower limit registers. On each occurrence of the memory access event, the
breakpoint counter is decremented. When the counter has reached the value of zero and
a new occurrence takes place, the chip will enter the debug mode. The OMBC can be
read, written, or cleared through the OnCE serial interface.

Anytime the upper or lower limit registers are changed, or a different breakpoint event is
selected in the OSCR, the breakpoint counter must be written afterward. This assures that
the OnCE breakpoint logic is reset and that no previous events will affect the new break-
point event selected.

The breakpoint counter is cleared by hardware reset.

10.5 OnCE TRACE LOGIC

The OnCE trace logic allows the user to execute instructions in single or multiple steps
before the chip returns to the debug mode and awaits OnCE commands from the debug
serial port. (The ONnCE trace logic is independent of the trace facility of the
DSP56000/56001, which is operated through the trace interrupt discussed in Section
7.3.3.3, and started by setting the trace bit in the processor’s status register discussed in
Section 5.4.2.12). The OnCE trace logic block diagram is shown in Figure 10-7.

L 10- 14 ON-CHIP EMULATION (OnCE) MOTOROLA J

(OnCE TRACE LOGIC \]

The trace counter allows more than one instruction to be executed in real time before the
chip returns to the debug mode of operation. This feature helps the software developer
debug sections of code which do not have a normal flow or are getting hung up in infinite
loops. The trace counter also enables the user to count the number of instructions exe-
cuted in a code segment.

To initiate the trace mode of operation, the counter is loaded with a value, the program
counter is set to the start location of the instruction(s) to be executed real-time, the TME
bit is set in the OSCR, and the processor exits the debug mode by executing the appro-
priate command issued by the external command controller.

Upon exiting the debug mode, the counter is decremented after each execution of an in-
struction. Interrupts are serviceable, and all instructions executed (including fast interrupt
services and the execution of each repeated instruction) will decrement the trace counter.

Upon decrementing the trace counter to zero, the processor will re-enter the debug mode,
the trace occurrence bit TO in the OSCR will be set, and the DSO pin will be toggled to
indicate that the processor has entered debug mode and is requesting service (ISTRACE
asserted).

END OF INSTRUCTION

DSI

DSOaw——
TRACE COUNTER
DSCK

DEC

COUNT=0

ISTRACE

Figure 10-7 OnCE Trace Logic Block Diagram

10.5.1 Trace Counter (OTC)

The OTC is a 24-bit counter that can be read, written, or cleared through the OnCE serial
interface. If N instructions are to be executed before entering the debug mode, the Trace
Counter should be loaded with N-1. The Trace Counter is cleared by hardware reset.

L MOTOROLA ON-CHIP EMULATION (OnCE) 10-15 J

(METHODS OF ENTERING THE DEBUG MODE \]

10.6 METHODS OF ENTERING THE DEBUG MODE

The chip acknowledges having entered the debug mode by pulsing low the DSO line, in-
forming the external command controller that the chip has entered the debug mode and
is waiting for commands.The following paragraphs discuss conditions that bring the pro-
cessor into the debug mode.

10.6.1 External Debug Request During RESET

Holding the DR line asserted during the assertion of RESET causes the chip to enter the
debug mode. After receiving the acknowledge, the external command controller must
deassert the DR line before sending the first command. Note that in this case the chip
does not execute any instruction before entering the debug mode.

10.6.2 External Debug Request During Normal Activity

Holding the DR line asserted during normal chip activity causes the chip to finish the ex-
ecution of the current instruction and then enter the debug mode. After receiving the ac-
knowledge, the external command controller must deassert the DR line before sending
the first command. Note that in this case the chip completes the execution of the current
instruction and stops after the newly fetched instruction enters the instruction latch. This
process is the same for any newly fetched instruction including instructions fetched by the
interrupt processing, or those that will be aborted by the interrupt processing.

10.6.3 External Debug Request During STOP

Asserting DR when the chip is in the stop state (i. e., has executed a STOP instruction)
and keeping it asserted until an acknowledge pulse in DSO is produced causes the chip
to exit the stop state and enter the debug mode. After receiving the acknowledge, the ex-
ternal command controller must deassert DR before sending the first command. Note that
in this case, the chip completes the execution of the STOP instruction and halts after the
next instruction enters the instruction latch.

10.6.4 External Debug Request During WAIT

Asserting DR when the chip is in the wait state (i. e., has executed a WAIT instruction)
and keeping it asserted until an acknowledge pulse in DSO is produced causes the chip
to exit the wait state and enter the debug mode. After receiving the acknowledge, the ex-
ternal command controller must deassert DR before sending the first command. Note that
in this case, the chip completes the execution of the WAIT instruction and halts after the
next instruction enters the instruction latch.

L 10- 16 ON-CHIP EMULATION (OnCE) MOTOROLA J

(PIPELINE INFORMATION AND GLOBAL DATA BUS REGISTER \]

10.6.5 Software Request During Normal Activity

Upon executing the DEBUG or DEBUGcc instruction when the specified condition is true,
the chip enters the debug mode after the instruction following the DEBUG instruction has
entered the instruction latch.

10.6.6 Enabling Trace Mode

When the trace mode mechanism is enabled and the trace counter is greater than zero,
the trace counter is decremented after each instruction execution. The completed execu-
tion of an instruction when the trace counter is zero will cause the chip to enter the debug
mode.

Note: Only instructions actually executed cause the trace counter to decrement, i.e. an
aborted instruction will not decrement the trace counter and will not cause the chip to enter
the debug mode.

10.6.7 Enabling Memory Breakpoints

When the memory breakpoint mechanism is enabled with a breakpoint counter value of
zero, the chip enters the debug mode after completing the execution of the instruction that
caused the memory breakpoint to occur. In case of breakpoints on executed program
memory fetches, the breakpoint will be acknowledged immediately after the execution of
the fetched instruction. In case of breakpoints on data memory addresses (accesses to
X, Y or P memory spaces by MOVE instructions), the breakpoint will be acknowledged
after the completion of the instruction following the instruction that accessed the specified
address.

10.7 PIPELINE INFORMATION AND GLOBAL DATA BUS REGISTER
A number of on-chip registers store the chip pipeline status to restore the pipeline and re-

sume normal chip activity upon return from the debug mode. Figure 10-8 shows the block
diagram of the pipeline information registers with the exception of the program address
bus (PAB) registers, which are shown in Figure 10-9.

10.7.1 Program Data Bus Register (OPDBR)
The OPDBR is a 24-bit latch that stores the value of the program data bus which was gen-

erated by the last program memory access before the chip entered the debug mode.
OPDBR can be read or written through the OnCE serial interface. It is affected by the op-
erations performed during the debug mode and must be restored by the external com-
mand controller when the chip returns to normal mode.

L MOTOROLA ON-CHIP EMULATION (OnCE) 10-17 J

(PROGRAM ADDRESS BUS HISTORY BUFFER \]

10.7.2 Pipeline Instruction Latch Register (OPILR)

The OPILR is a 24-bit latch that stores the value of the instruction latch before the debug
mode is entered. OPILR can only be read through the OnCE serial interface. This register
is affected by the operations performed during the debug mode and must be restored by
the external command controller when returning to normal mode. Since there is no direct
write access to this register, this task is accomplished in the first write to OPDBR after en-
tering the debug mode or after executing the GO command; the data from OPDBR is
transferred to OPILR only in these cases.

10.7.3 Global Data Bus Register (OGDBR)

The OGDBR is a 24-bit latch that can only be read through the OnCE serial interface.
OGDBR is not actually required from a pipeline status restore point of view but is required
as a means of passing information between the chip and the external command controller.
OGDBR is mapped on the X internal I/O space at address $FFFC. Whenever the external
command controller needs the contents of a register or memory location, it will force the
chip to execute an instruction that brings that information to OGDBR. Then, the contents
of OGDBR will be delivered serially to the external command controller by the command
“READ GDB REGISTER”.

10.8 PROGRAM ADDRESS BUS HISTORY BUFFER

There are two read-only PAB registers which give pipeline information when the debug
mode is entered. The OPABFR register tells which opcode address is in the fetch stage
of the pipeline and OPABDR tells which opcode is in the decode stage. To ease debug-
ging activity and keep track of program flow, a First-In-First-Out (FIFO) buffer stores the

DSCK
DSO DSI
-t > GDB REGISTER (OGDBR)
+ GDB
= _: PDB REGISTER (OPDBR)
4 = PDB
-t ~ PIL REGISTER (OPILR)
4 PIL

Figure 10-8 OnCE Pipeline Information and GDB Registers

L 10- 18 ON-CHIP EMULATION (OnCE) MOTOROLA J

(PROGRAM ADDRESS BUS HISTORY BUFFER \]

PAB

!

FETCH ADDRESS (OPABFR)
DECODE ADDRESS (OPABDR)

—

PAB FIFO REGISTER 0

;

o

IFO REGISTER 1 —

1t
<

CIRCULAR
IFO REGISTER 2 | BUFFER
POINTER

0
>
w
T

"

IFO REGISTER 3 -

HE

nl

PAB FIFO REGISTER 4

Lo
y

¢——— DSCK
——» DSO

PAB FIFO SHIFT REGISTER

Figure 10-9 OnCE PAB FIFO

addresses of the last five instructions that were executed.

10.8.1 PAB Register for Fetch (OPABFR)
The OPABFR is a 16-bit register that stores the address of the last instruction that was

fetched before the debug mode was entered. The OPABFR can only be read through the
OnCE serial interface. This register is not affected by the operations performed during the
debug mode.

10.8.2 PAB Register for Decode (OPABDR)

The OPABDR is a 16-bit register that stores the address of the instruction currently in the
instruction latch. This is the instruction that would have been decoded if the chip would
not have entered the debug mode. OPABDR can only be read through the serial interface.

t MOTOROLA ON-CHIP EMULATION (OnCE) 10-19 J

(SERIAL PROTOCOL DESCRIPTION \]

This register is not affected by the operations performed during the debug mode.

10.8.3 PAB FIFO

The PAB FIFO stores the addresses of the last five instructions that were executed. The
FIFO is implemented as a circular buffer containing five 16-bit registers and one 3-bit
counter. All the registers have the same address but any read access to the FIFO address
will cause the counter to increment, making it point to the next FIFO register. The registers
are serially available to the external command controller through their common FIFO ad-
dress. Figure 10-9 shows the block diagram of the PAB FIFO. The FIFO is not affected
by the operations performed during the debug mode except for the FIFO pointer incre-
ment when reading the FIFO. When entering the debug mode, the FIFO counter will be
pointing to the FIFO register containing the address of the oldest of the five executed in-
structions. The first FIFO read will obtain the oldest address and the following FIFO reads
will get the other addresses from the oldest to the newest (the order of execution).

To ensure FIFO coherence, a complete set of five reads of the FIFO must be performed
because each read increments the FIFO pointer, thus making it point to the next location.
After five reads the pointer will point to the same location it pointed to before starting the
read procedure.

10.9 SERIAL PROTOCOL DESCRIPTION
The following protocol permits an efficient means of communication between the OnCE’s

external command controller and the DSP56K chip. Before starting any debugging activ-
ity, the external command controller must wait for an acknowledge on the DSO line, indi-
cating that the chip has entered the debug mode. The external command controller com-
municates with the chip by sending 8-bit commands that may be accompanied by 24 bits
of data. Both commands and data are sent or received most significant bit first. After send-
ing a command, the external command controller must wait for the processor to acknowl-
edge execution of the command before it may send a new command.

When accessing OnCE 16-bit registers, the register contents appear in the 16 most sig-
nificant bits in the 24-bit data field, and the 8 least significant bits are zeroed.

10.9.1 OnCE Commands
The OnCE commands may be classified as follows:

* read commands (when the chip will deliver the required data).

» write commands (when the chip will receive data and write the data in one of the OnCE
registers).

* commands that do not have data transfers associated with them.

The commands are 8 bits long and have the format shown in Figure 10-4.

L 10- 20 ON-CHIP EMULATION (OnCE) MOTOROLA J

(DSP56K TARGET SITE DEBUG SYSTEM REQUIREMENTS \]

10.10 DSP56K TARGET SITE DEBUG SYSTEM REQUIREMENTS
A typical DSP56K debug environment consists of a target system where the DSP56K re-

sides in the user defined hardware. The debug serial port interfaces to the external com-
mand controller over a 6-wire link which includes the 4 OnCE wires, a ground, and a reset
wire. The reset wire is optional and is only used to reset the DSP56K and its associated
circuitry.

The external command controller acts as the medium between the DSP56K target system
and a host computer. The external command controller circuit acts as a DSP56K serial
debug port driver and host computer command interpreter. The controller issues com-
mands based on the host computer inputs from a user interface program which commu-
nicates with the user.

10.11 USING THE OnCE
The following notations are used:

ACK = Wait for acknowledge on the DSO pin

CLK = Issue 24 clocks to read out data from the selected register

10.11.1 Begin Debug Activity
Most of the debug activities have the following beginning:
1. ACK
2. Save pipeline information:
a. Send command READ PDB REGISTER (10001001)
b. ACK
c. CLK
d. Send command READ PIL REGISTER (10001011)
e. ACK
f. CLK
3. Read PAB FIFO and fetch/decode info (this step is optional):
a. Send command READ PAB address for fetch (10001010)
b. ACK
c. CLK
d. Send command READ PAB address for decode (10010011)
e. ACK

L MOTOROLA ON-CHIP EMULATION (OnCE) 10-21 J

(USING THE OnCE \]

f. CLK

g. Send command READ FIFO REGISTER and increment counter (10010001)
h. ACK

i. CLK

j. Send command READ FIFO REGISTER and increment counter (10010001)
k. ACK

I. CLK

m. Send command READ FIFO REGISTER and increment counter (10010001)
n. ACK

0. CLK

p. Send command READ FIFO REGISTER and increment counter (10010001)
g. ACK

r. CLK

s. Send command READ FIFO REGISTER and increment counter (10010001)
t. ACK

u. CLK

10.11.2 Displaying A Specified Register
1. Send command WRITE PDB REGISTER, GO, no EX (01001001). The OnCE con-
troller selects PDB as destination for serial data.
2. ACK

3. Send the 24-bit DSP56K opcode: “MOVE reg,x:0OGDB”
After 24 bits have been received, the PDB register drives the PDB. The OnCE con-
troller releases the chip from the debug mode, the chip executes the MOVE
instruction, and the contents of the register specified in the instruction are loaded in
the GDB REGISTER. The signal that marks the end of the instruction returns the
chip to the debug mode.

4. ACK
5. Send command READ GDB REGISTER (10001000)

L 10- 22 ON-CHIP EMULATION (OnCE) MOTOROLA J

(USING THE OnCE \]

The OnCE controller selects GDB as source for serial data.
6. ACK
7. CLK

10.11.3 Displaying X Memory Area Starting From Address XXXX
This command uses RO to minimize serial traffic.

1. Send command WRITE PDB REGISTER, GO, no EX (01001001).
The OnCE controller selects PDB as destination for serial data.

ACK

Send the 24-bit DSP56K opcode: “MOVE R0,x:0GDB”

After 24 bits have been received the PDB register drives the PDB. The OnCE con-
troller releases the chip from the debug mode and the contents of RO are loaded
in the GDB REGISTER. The signal that marks the end of the instruction returns the
chip to the debug mode.

ACK
Send command READ GDB REGISTER (10001001)
The OnCE controller selects GDB as source for serial data.
6. ACK
7. CLK
The external command controller generates 24 clocks that shift out the contents of

the GDB register. The value of RO is thus saved and should be restored before ex-
iting the debug mode.

8. Send command WRITE PDB REGISTER, no GO, no EX (00001001)
ONCE controller selects PDB as destination for serial data.

9. ACK

10. Send the 24-bit DSP56K opcode: “MOVE #$xxxx,R0”

After 24 bits have been received, the PDB register drives the PDB. The OnCE con-
troller causes the processor to load the opcode.

11. ACK

12. Send command WRITE PDB REGISTER, GO, no EX (01001001)
The OnCE controller selects PDB as destination for serial data.
13. ACK

14. Send the 24-bit 2" word of: “MOVE #$xxxx,R0” (the xxxx field).
After 24 bits have been received, the PDB register drives the PDB. The OnCE con-

L MOTOROLA ON-CHIP EMULATION (OnCE) 10 - 23 J

(USING THE OnCE

troller releases the chip from the debug mode and the instruction starts execution.
The signal that marks the end of the instruction returns the chip to the debug mode.

15. ACK

16. Send command WRITE PDB REGISTER, GO, no EX (01001001)
The OnCE controller selects PDB as destination for serial data.

17. ACK

18. Send the 24-bit DSP56K opcode: “MOVE X:(R0)+,x:0GDB”
After 24 bits have been received, the PDB register drives the PDB. The OnCE con-
troller releases the chip from the debug mode and the contents of X:(R0O) are

loaded in the GDB REGISTER. The signal that marks the end of the instruction re-
turns the chip to the debug mode.

19. ACK

20. Send command READ GDB REGISTER (10001000)
The OnCE controller selects GDB as source for serial data.

21. ACK
22. CLK

23. Send command NO REGISTER SELECTED, GO, no EX (01011111)
The OnCE controller releases the chip from the debug mode and the instruction is
executed again in a “REPEAT-like” fashion. The signal that marks the end of the
instruction returns the chip to the debug mode.

24. ACK

25. Send command READ GDB REGISTER (10001000)
The OnCE controller selects GDB as source for serial data.

26. ACK

27. CLK

28. Repeat from step 23 until the entire memory area is examined.

29. After finishing reading the memory, RO should to be restored as follows.

30. Send command WRITE PDB REGISTER, no GO, no EX (00001001)
ONnCE controller selects PDB as destination for serial data.

31. ACK

32. Send the 24-bit DSP56K opcode: “MOVE #saved_r0,R0”
After 24 bits have been received, the PDB register drives the PDB. The OnCE con-

L 10- 24 ON-CHIP EMULATION (OnCE) MOTOROLA

(USING THE OnCE \]

troller causes the processor to load the opcode.
33. ACK

34. Send command WRITE PDB REGISTER, GO, no EX (01001001)
The OnCE controller selects PDB as destination for serial data.

35. ACK

36. Send the 24-bit second word of: “MOVE #saved_r0,R0” (the saved_rO field).
After 24 bits have been received, the PDB register drives the PDB. The OnCE con-
troller releases the chip from the debug mode and the instruction starts execution.
The signal that marks the end of the instruction returns the chip to the debug mode.

37. ACK

L MOTOROLA ON-CHIP EMULATION (OnCE) 10-25 J

(USING THE OnCE \]

10.11.4 Executing a Single-Word DSP56K Instruction While in Debug Mode
1. Send command WRITE PDB REGISTER, GO, no EX (01001001).
The OnCE controller selects PDB as destination for serial data.

2. ACK

3. Send the single-word 24-bit DSP56K opcode to be executed.
After 24 bits have been received, the PDB register drives the PDB. The OnCE con-
troller releases the chip from the debug mode and the chip executes the instruction.
The signal that marks the end of the instruction returns the chip to the debug mode.
Some DSP56K instructions should not be executed in this state: DO, REP, ILLE-
GAL or any opcode that is considered illegal, and DEBUG.

4. ACK

10.11.5 Executing a Two-Word DSP56K Instruction While in Debug Mode
1. Send command WRITE PDB REGISTER, no GO, no EX (00001001).
The OnCE controller selects PDB as destination for serial data.
2. ACK

3. Send the first instruction word (24-bit DSP56K opcode)
After 24 bits have been received, the PDB register drives the PDB. The OnCE con-
troller causes the processor to load the opcode.
Some DSP56K instructions should not be executed in this state: DO, REP, ILLE-
GAL or any opcode that is considered illegal, and DEBUG.

4. ACK

5. Send command WRITE PDB REGISTER, GO, no EX (01001001)
The OnCE controller selects PDB as destination for serial data.

6. ACK

7. Send the second 24-bit instruction word.
After 24 bits have been received, the PDB register drives the PDB. The OnCE con-
troller releases the chip from the debug mode and the instruction starts execution.
The signal that marks the end of the instruction returns the chip to the debug mode.

8. ACK
10.11.6 Returning from Debug Mode to Normal Mode
There are two cases for returning from the debug mode in a single processor:

» Control is returned to the program that was running before debug was initiated.
* Jump to a different program location is executed.

L 10- 26 ON-CHIP EMULATION (OnCE) MOTOROLA J

(USING THE OnCE \]

10.11.6.1 Case 1: Return To The Previous Program (Return To Normal Mode)
1. Send command WRITE PDB REGISTER, no GO, no EX (00001001)

The OnCE controller selects the PDB as the destination for serial data. Also, the
OnCE controller selects the on-chip PAB register as the source for the PAB bus.

2. ACK

3. Send the 24 bits of the saved PIL (instruction latch) value.
After the 24 bits have been received, the PDB register drives the PDB. The OnCE
controller causes the PIL to latch the PDB value. In this way, the PIL is restored to
the same state as before entering the debug mode.

4. ACK

5. Send command WRITE PDB REGISTER, GO, EX (01101001)
The OnCE controller selects PDB as destination for the serial data to follow.

6. ACK

7. Send the 24 bits of the saved PDB value.
After the 24 bits have been received, the PDB register drives the PDB. In this way,
the PDB is restored to the same state as before entering the debug mode. The EX
bit causes the OnCE controller to release the chip from the debug mode and the
status bits in OSCR are cleared. The GO bit causes the chip to start executing
instructions.

10.11.6.2 Case 2: Jump To A New Program (Go From Address $xxxx)
1. Send command WRITE PDB REGISTER, no GO, no EX (00001001)

The OnCE controller selects PDB as destination for serial data. Also, the OnCE
controller selects the on-chip PAB register as the source for the PAB bus.

2. ACK

3. Send 24 bits of the opcode of a two-word jump instruction instead of the saved PIL
value. After the 24 bits have been received, the PDB register drives the PDB. The
OnCE controller causes the PIL to latch the PDB value. In this way, the instruction
latch will contain the opcode of the jump instruction which will cause the change in
the program flow.

4. ACK

5. Send command WRITE PDB REGISTER, GO, EX (01101001)
The OnCE controller selects PDB as destination for serial data.

6. ACK

7. Send 24 bits of the jump target absolute address ($xxxxxx).
After 24 bits have been received, the PDB register drives the PDB. In this way, the
PDB contains the second word of the jump as required for the jump instruction ex-

L MOTOROLA ON-CHIP EMULATION (OnCE) 10 - 27 J

(USING THE OnCE \]

ecution. The EX bit causes the OnCE controller to release the chip from the debug
mode and the status bits in OSCR are cleared. The GO bit causes the chip to start
executing the jump instruction which will then cause the chip to continue instruction
execution from the target address. Note that the trace counter will count the jump
instruction so the current trace counter may need to be corrected if the trace mode
is enabled.

10.11.7 Debugging Multiprocessor Systems With a Single External Command
Controller

In multiprocessor systems, each processor may be individually debugged as described

above. When simultaneous exit of the debug state is desired for more than one processor,

each processor must first be loaded with the required PIL and PDB values where process-

ing should proceed. This is accomplished by the following sequence as applied to each

processor:

1. Send command WRITE PDB REGISTER, no GO, no EX (00001001)
The OnCE controller selects PDB as destination for serial data. Also, the OnCE
controller selects the on-chip PAB register as the source for the PAB bus.

2. ACK

3. Send 24 bits of either the opcode of a 2-word jump instruction or the saved PIL val-
ue. After the 24 bits have been received, the PDB register drives the PDB. The
OnCE controller causes the PIL to latch the PDB value.

4. ACK

5. Send command WRITE PDB REGISTER, no GO, no EX (00001001)
The OnCE controller selects PDB as destination for serial data.

6. ACK

7. Send 24 bits of either the jump target absolute address ($xxxxxx) or the saved PDB
value. After 24 bits have been received, the PDB register drives the PDB.

8. ACK

At this point, all processors should have the required PIL and PDB values while still in de-
bug mode. To return all processors to the normal execution state simultaneously, the fol-
lowing command should be issued to all processors in parallel:

9. Send command NO REGISTER SELECTED, GO, EX (01111111)
The OnCE controller releases the chips from the debug mode and instruction exe-
cution is resumed.

L 10- 28 ON-CHIP EMULATION (OnCE) MOTOROLA J

USING THE OnCE

t MOTOROLA

ON-CHIP EMULATION (OnCE)

	10.1 ON-CHIP EMULATION INTRODUCTION
	Figure 10-2 DSP56K Block Diagram
	Figure 10-1 OnCE Block Diagram

	10.2 ON-CHIP EMULATION (OnCE) PINS
	10.2.1 Debug Serial Input/Chip Status 0 (DSI/OS0)
	10.2.2 Debug Serial Clock/Chip Status 1 (DSCK/OS1)...
	Table 10-1 Chip Status Information

	0
	0
	Normal State
	0
	1
	Stop or Wait State
	1
	0
	Chip waits for bus mastership
	1
	1
	Chip waits for end of memory wait states (due to W...
	10.2.3 Debug Serial Output (DSO)
	10.2.4 Debug Request Input (DR)
	10.3 OnCE CONTROLLER AND SERIAL INTERFACE
	Figure 10-3 OnCE Controller and Serial Interface
	10.3.1 OnCE Command Register (OCR)
	Figure 10-4 OnCE Command Register
	10.3.1.1 Register Select (RS4-RS0) Bits 0-4
	Table 10-2 OnCE Register Addressing

	00000
	OnCE Status and Control Register (OSCR)
	00001
	Memory Breakpoint Counter (OMBC)
	00010
	Reserved
	00011
	Trace Counter (OTC)
	00100
	Reserved
	00101
	Reserved
	00110
	Memory Upper Limit Register (OMULR)
	00111
	Memory Lower Limit Register (OMLLR)
	01000
	GDB Register (OGDBR)
	01001
	PDB Register (OPDBR)
	01010
	PAB Register for Fetch (OPABFR)
	01011
	PIL Register (OPILR)
	01100
	Clear Memory Breakpoint Counter (OMBC)
	01101
	Reserved
	01110
	Clear Trace Counter (OTC)
	01111
	Reserved
	10000
	Reserved
	10001
	Program Address Bus FIFO and Increment Counter
	10010
	Reserved
	10011
	PAB Register for Decode (OPABDR)
	101xx
	Reserved
	11xx0
	Reserved
	11x0x
	Reserved
	110xx
	Reserved
	11111
	No Register Selected
	10.3.1.2 Exit Command (EX) Bit 5

	0
	Remain in debug mode
	1
	Leave debug mode
	10.3.1.3 Go Command (GO) Bit 6

	0
	Inactive (no action taken)
	1
	Execute instruction in PIL
	10.3.1.4 Read/Write Command (R/W) Bit 7

	0
	Write the data associated with the command into th...
	1
	Read the data contained in the register specified ...
	10.3.2 OnCE Bit Counter (OBC)
	10.3.3 OnCE Decoder (ODEC)
	10.3.4 OnCE Status and Control Register (OSCR)
	Figure 10-5 OnCE Status and Control Register (OSCR...
	10.3.4.1 Memory Breakpoint Control (BC0-BC3) Bits ...
	Table 10-3 Memory Breakpoint Control Table

	0
	0
	0
	0
	Breakpoint disabled
	0
	0
	0
	1
	Breakpoint on any fetch (including aborted instruc...
	0
	0
	1
	0
	Breakpoint on any P read (any fetch or move)
	0
	0
	1
	1
	Breakpoint on any P access (any fetch, P move R/W)...
	0
	1
	0
	0
	Breakpoint on executed fetches only
	0
	1
	0
	1
	Breakpoint on P space write
	0
	1
	1
	0
	Breakpoint on P space read (no fetches)
	0
	1
	1
	1
	Breakpoint on P space write or read (no fetches)
	1
	0
	0
	0
	Reserved
	1
	0
	0
	1
	Breakpoint on X space write
	1
	0
	1
	0
	Breakpoint on X space read
	1
	0
	1
	1
	Breakpoint on X space write or read
	1
	1
	0
	0
	Reserved
	1
	1
	0
	1
	Breakpoint on Y space write
	1
	1
	1
	0
	Breakpoint on Y space read
	1
	1
	1
	1
	Breakpoint on Y space write or read
	10.3.4.2 Trace Mode Enable (TME) Bit 4
	10.3.4.3 Reserved (Bits 5-7, 11-15)
	10.3.4.4 Software Debug Occurrence (SWO) Bit 8
	10.3.4.5 Memory Breakpoint Occurrence (MBO) Bit 9
	10.3.4.6 Trace Occurrence (TO) Bit 10
	10.4 OnCE MEMORY BREAKPOINT LOGIC
	Figure 10-6 OnCE Memory Breakpoint Logic
	10.4.1 Memory Address Latch (OMAL)
	10.4.2 Memory Upper Limit Register (OMULR)
	10.4.3 Memory Lower Limit Register (OMLLR)
	10.4.4 Memory High Address Comparator (OMHC)
	10.4.5 Memory Low Address Comparator (OMLC)
	10.4.6 Memory Breakpoint Counter (OMBC)

	10.5 OnCE TRACE LOGIC
	Figure 10-7 OnCE Trace Logic Block Diagram
	10.5.1 Trace Counter (OTC)

	10.6 METHODS OF ENTERING THE DEBUG MODE
	10.6.1 External Debug Request During RESET
	10.6.2 External Debug Request During Normal Activi...
	10.6.3 External Debug Request During STOP
	10.6.4 External Debug Request During WAIT
	10.6.5 Software Request During Normal Activity
	10.6.6 Enabling Trace Mode
	10.6.7 Enabling Memory Breakpoints

	10.7 PIPELINE INFORMATION AND GLOBAL DATA BUS REGI...
	Figure 10-8 OnCE Pipeline Information and GDB Regi...
	Figure 10-9 OnCE PAB FIFO
	10.7.1 Program Data Bus Register (OPDBR)
	10.7.2 Pipeline Instruction Latch Register (OPILR)...
	10.7.3 Global Data Bus Register (OGDBR)

	10.8 PROGRAM ADDRESS BUS HISTORY BUFFER
	10.8.1 PAB Register for Fetch (OPABFR)
	10.8.2 PAB Register for Decode (OPABDR)
	10.8.3 PAB FIFO

	10.9 SERIAL PROTOCOL DESCRIPTION
	10.9.1 OnCE Commands

	10.10 DSP56K TARGET SITE DEBUG SYSTEM REQUIREMENTS...
	10.11 USING THE OnCE
	10.11.1 Begin Debug Activity
	1. ACK
	2. Save pipeline information:
	a. Send command READ PDB REGISTER (10001001)
	b. ACK
	c. CLK
	d. Send command READ PIL REGISTER (10001011)
	e. ACK
	f. CLK
	3. Read PAB FIFO and fetch/decode info (this step ...
	a. Send command READ PAB address for fetch (100010...
	b. ACK
	c. CLK
	d. Send command READ PAB address for decode (10010...
	e. ACK
	f. CLK
	g. Send command READ FIFO REGISTER and increment c...
	h. ACK
	i. CLK
	j. Send command READ FIFO REGISTER and increment c...
	k. ACK
	l. CLK
	m. Send command READ FIFO REGISTER and increment c...
	n. ACK
	o. CLK
	p. Send command READ FIFO REGISTER and increment c...
	q. ACK
	r. CLK
	s. Send command READ FIFO REGISTER and increment c...
	t. ACK
	u. CLK

	10.11.2 Displaying A Specified Register
	1. Send command WRITE PDB REGISTER, GO, no EX (010...
	2. ACK
	3. Send the 24-bit DSP56K opcode: “MOVE reg,x:OGDB...
	4. ACK
	5. Send command READ GDB REGISTER (10001000) 5. Th...
	6. ACK
	7. CLK

	10.11.3 Displaying X Memory Area Starting From Add...
	1. Send command WRITE PDB REGISTER, GO, no EX (010...
	2. ACK
	3. Send the 24-bit DSP56K opcode: “MOVE R0,x:OGDB”...
	4. ACK
	5. Send command READ GDB REGISTER (10001001) 5. Th...
	6. ACK
	7. CLK 7. The external command controller generate...
	8. Send command WRITE PDB REGISTER, no GO, no EX (...
	9. ACK
	10. Send the 24-bit DSP56K opcode: “MOVE #$xxxx,R0...
	11. ACK
	12. Send command WRITE PDB REGISTER, GO, no EX (01...
	13. ACK
	14. Send the 24-bit 2nd word of: “MOVE #$xxxx,R0” ...
	15. ACK
	16. Send command WRITE PDB REGISTER, GO, no EX (01...
	17. ACK
	18. Send the 24-bit DSP56K opcode: “MOVE X:(R0)+,x...
	19. ACK
	20. Send command READ GDB REGISTER (10001000) 20. ...
	21. ACK
	22. CLK
	23. Send command NO REGISTER SELECTED, GO, no EX (...
	24. ACK
	25. Send command READ GDB REGISTER (10001000) 25. ...
	26. ACK
	27. CLK
	28. Repeat from step 23 until the entire memory ar...
	29. After finishing reading the memory, R0 should ...
	30. Send command WRITE PDB REGISTER, no GO, no EX ...
	31. ACK
	32. Send the 24-bit DSP56K opcode: “MOVE #saved_r0...
	33. ACK
	34. Send command WRITE PDB REGISTER, GO, no EX (01...
	35. ACK
	36. Send the 24-bit second word of: “MOVE #saved_r...
	37. ACK

	10.11.4 Executing a Single-Word DSP56K Instruction...
	1. Send command WRITE PDB REGISTER, GO, no EX (010...
	2. ACK
	3. Send the single-word 24-bit DSP56K opcode to be...
	4. ACK

	10.11.5 Executing a Two-Word DSP56K Instruction Wh...
	1. Send command WRITE PDB REGISTER, no GO, no EX (...
	2. ACK
	3. Send the first instruction word (24-bit DSP56K ...
	4. ACK
	5. Send command WRITE PDB REGISTER, GO, no EX (010...
	6. ACK
	7. Send the second 24-bit instruction word. 7. Aft...
	8. ACK

	10.11.6 Returning from Debug Mode to Normal Mode
	10.11.6.1 Case 1: Return To The Previous Program (...
	1. Send command WRITE PDB REGISTER, no GO, no EX (...
	2. ACK
	3. Send the 24 bits of the saved PIL (instruction ...
	4. ACK
	5. Send command WRITE PDB REGISTER, GO, EX (011010...
	6. ACK
	7. Send the 24 bits of the saved PDB value. 7. Aft...

	10.11.6.2 Case 2: Jump To A New Program (Go From A...
	1. Send command WRITE PDB REGISTER, no GO, no EX (...
	2. ACK
	3. Send 24 bits of the opcode of a two-word jump i...
	4. ACK
	5. Send command WRITE PDB REGISTER, GO, EX (011010...
	6. ACK
	7. Send 24 bits of the jump target absolute addres...

	10.11.7 Debugging Multiprocessor Systems With a Si...
	1. Send command WRITE PDB REGISTER, no GO, no EX (...
	2. ACK
	3. Send 24 bits of either the opcode of a 2-word j...
	4. ACK
	5. Send command WRITE PDB REGISTER, no GO, no EX (...
	6. ACK
	7. Send 24 bits of either the jump target absolute...
	8. ACK
	9. Send command NO REGISTER SELECTED, GO, EX (0111...

	SECTION 10 SECTION 10 ON-CHIP EMULATION (OnCE)

