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This user’s manual includes both hardware and software information on the RV5000, a dual-issue RISC
processor that serves many performance-critical applications. The processor’s 260 Dhrystone MIPS perfor-
mance and 4 GB/sec aggregate bandwidth makes it ideal for embedded applications, such as high-end
internetworking systems, color printers, and graphics terminals, as well as low-cost general computing with
special emphasis on flating-point operations and memory management. 
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Information not included in this manual such as mechanicals, package pin-outs and electrical character-
istics can be found in the data sheet for this device, which is available from the IDT website (www.idt.com)
as well as through your local IDT sales representative. 
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Chapter 1, “Overview,” provides a complete introduction to the performance capabilities of the
RV5000. Included in this chapter is a summary of features for the device as well as a system block diagram
and internal register maps. 

Chapter 2, “Central Processing Unit,” presents the functions of the CPU.

Chapter 3, “Floating-Point Unit,” presents the functions of the FPU. 

Chapter 4, “Instruction Pipeline,” describes the pipeline activities occurring during each ALU pipeline
stage, for load, store, and branch instructions. 

Chapter 5, “Integer (CPU) Exceptions,” describes the integer exception processing done by the CPU,
including an explanation of exception procesing followed by the format and use of each CPU exception
register.  

Chapter 6, “Floating-Point Exceptions,” describes the actions taken when the FPU cannot handle in
the normal way either the operands or the results of a floating-point operation. 

Chapter 7, “Memory Management Unit,” describes the processor virtual and physical address
spaces, the virtual-to-physical address translation, the operation of the TLB in making these translations,
and those System Control Coprocessor (CPO) registers that provide the software interface to the TLB. 

Chapter 8, “Cache,” describes the on-chip primary cache, the individual operations of the primary
cache, and the organization and operations of the on-chip secondary cache controller.

Chapter 9, “Signal Descriptions,” describes the signals used by and in conjunction with the R5000
processor, including System Interface, Clock Interface, Secondary Cache Interrace, Interrupt Interface,
Joint Test Action Group (JTAG) Interface and Initialization Interface. 

Chapter 10, “System Interface Transactions,” describes the system interface from the point of view
of both the processor and the external agent. 

Chapter 11, “System Interface Protocols,” contains a cycle-by-cycle description of the system inter-
face protocols for each type of R5000 processor and external request.

Chapter 12, “Interrupts,” describes the hardware and nonmaskable interrupts.

Chapter 13, “Error Checking,” describes the two major types of data errors that can occur in data
transmissio: hard errors and soft effors.

Chapter 14, “Initialization Interface,” describes the following reset and control signals: VccOK, Cold-
Reset, Reset, ModeIn, and Mode IDT79RC5000  Reference ManualClock.
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 Chapter 15, “Clock Interface and Standby Mode,” describes how the processor bases all internal and
external clocking on the single SysClock input signal.
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April 1998: Publish Version 1.1 of the manual.

October 1999: Added Set BadVA box to flow diagram in Figure 5.19.

September 26, 2000: Added explanation to Cache Error Register (27) section and Cache Error Excep-
tion section in Chapter 5 that when read responses (cached or uncached) are returned with bad parity, the
Cache Error Exception is taken. Also in Cache Error Exception section, changed BEV = 0 to BEV = 1 for
vector 0XFFFF FFFF BFC0 0300.
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The IDT79RV5000™ microprocessor (RV5000) is a 64-bit dual-issue RISC processor that serves many
performance-critical applications. The processor’s 260 Dhrystone MIPS performance and 4Gbytes/sec
aggregate bandwidth makes it ideal for embedded applications, such as high-end internetworking systems,
color printers, and graphics terminals, as well as low-cost general computing with special emphasis on
floating-point operations and memory management. For such applications it offers:

� A high-performance upgrade path for existing embedded customers in the internetworking, office 
automation and visualization markets.

� Significant improvements in floating-point performance in a moderately priced chip.
� Improved desktop-system memory hierarchy through the implementation of large primary instruc-

tion and data caches (32KB each) and an on-chip secondary cache controller.
� Improved performance through the use of the MIPS-IV instruction-set architecture (ISA). 
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The RV5000 conforms to the MIPS-IV Instruction Set Architecture (ISA) and provides complete upward
application-software compatibility with the IDT79R3xxx and IDT79R4xxx families of microprocessors. An
array of operating systems and development tools facilitates rapid development of systems that support
thousands of application programs.

The R5V000 is a true 64-bit processor but is also fully compatible with 32-bit operating systems and
applications. The RV5000 enables 32-bit applications to effortlessly access 64-bit compute power. For
embedded applications, the power and bandwidth of 64-bit data types can be used without the memory
expansion of 64-bit addressing. 
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Figure 1.1 on page 1-2 is a block diagram of the RV5000’s functional units. 
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Figure 1.1  RV5000 Block Diagram
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� True 64-bit Microprocessor

– 64-bit integer (CPU) operations
– 64-bit floating-point (FPU) IEEE-754 operations
– 64-bit registers
– 64-bit virtual addresses
� 7 Execution Resources

– Integer ALU, with bypassing
– Integer multiply/divide unit
– Floating-point ALU, pipelined to allow single-cycle repeat rate for single-precision operations
– Floating-point divide/square-root unit
– Load unit
– Store unit
– Branch unit
� Selectable Frequencies

– Bus-to-pipeline frequency ratios of 2, 3, 4, 5, 6, 7 or 8
� High Performance

– 260 Dhrystone MIPS
– 4Gbytes/sec aggregate bandwidth at 200MHz pipeline clock frequency
� Efficient Memory Hierarchy

– 32KB two-way set associative instruction cache
– 32KB two-way set associative data cache
– On-chip secondary cache controller
– 64Gbyte physical address space
– 1 terabyte (240) maximum user process size 
– Flexible MMU with 48-entry TLB
– 1.6Gbytes/sec cache bandwidth (each cache) at 200MHz pipeline frequency
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� Software Compatibility

– MIPS IV 64-bit instruction set, including CP1 and CP1X functional units
– Software-compatible with R3xxx and R4xxx families
� Compatible with Multiple Operating Systems

– JMI C-executive - Windows® CE
– VX Works
– OS9
– PSOS
� Development Tools

– Cross compilers
– Logic models
– Logic analyzer support
� Low-Power Operation

– 3.3V power supply
– 25mW/MHz internal power dissipation (5W @ 200MHz, 3.3V)
– Active power management, including WAIT operation
� 272-pin SuperBGA Package
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The RV5000 has a dual-issue, five-stage instruction pipeline that operates at a multiple of the frequency
of the input system clock. The pipeline has two parallel paths, one for integer (CPU) instructions and the
other floating-point (FPU) instructions. Each stage in the CPU-instruction path takes one processor clock. 

���� �����

Dual-issue instruction pairing in a given clock can consist of:
� 1 floating-point ALU instruction
� 1 instruction of any other type

These two instruction classes are pre-decoded as they are brought on-chip. The pre-decoded informa-
tion is stored in the instruction cache. If there are no pending resource conflicts, the RV5000 can issue one
instruction per class per pipeline clock cycle. Long-latency operations, such as floating-point DIV or SQRT,
or integer (CPU) multiply, can slow the issue of instructions. The RV5000 does not perform out-of-order or
speculative execution; instead, the pipeline slips until the required resource becomes available.

There are no alignment restrictions on dual-issue instruction pairs. However, since the RV5000 performs
aligned fetches, at two instructions per cycle from the instruction cache, compilers should attempt to align
branch targets to allow dual-issue on the first target cycle, in order to optimize performance. 
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The RV5000 implements a traditional five-stage pipeline, as shown in Figure 1.2 and Table 1.1:

Figure 1.2  Integer (CPU) Pipeline

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W ...

1I 2I 1R 2R 1A 2A 1D ...

1I 2I 1R 2R 1A ...

one cycle
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 1I - Instruction Fetch, Phase One

2I - Instruction Fetch, Phase Two

1R - Register Read, Phase One

2R - Register Read, Phase Two

1A - Execution, Phase One

2A - Execution, Phase Two

1D - Data Load/Store, Phase One

2D - Data Load/Store, Phase Two

1W - Write Back, Phase One

2W - Write Back, Phase Two

Typical integer (CPU) execution latencies are shown in Table 1.2. The RV5000’s short pipeline keeps
the load and branch latencies low. The caches allow any combination of loads and stores to execute in
back-to-back cycles without requiring pipeline slips or stalls if the operation hits in the cache.
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1I to 1R Instruction-cache access

2I Instruction virtual-to-physical address translation

2R Register-file read, bypass calculation, instruction decode, branch-address calcu-
lation

1A Issue or slip decision, data virtual-address calculation, branch decision

1A to 2A Integer add, logical, shift

2A Store align

2A to 2D Data-cache access and load align

1D to 2D Data virtual-to-physical address translation

1W Resolve exceptions

2W Register-file write

Table 1.1  Key to Integer Pipeline

,��
����� '�����# ������

Load 2 1

Store 2 1

MULT/MULTU 5 4

DMULT/DMULTU 9 8

DIV/DIVU 36 36

DDIV/DDIVU 68 68

Other Integer ALU 1 1

Branch 2 2

Jump 2 2

Table 1.2  Example Integer (CPU) Instruction Latencies
�� ������ * + 0 ��������
 ��� �			



,!�
!��- 1�
����+��+.�# ���� �22
�  ������)

��������			 ����
��

�����
 �������������� ���� ����� ��������

The on-chip floating-point unit (FPU) coprocessor includes a 64-bit floating-point register file. The FPU
forms a seamless interface with the integer (CPU) pipeline, decoding and executing instructions in parallel
with the CPU. 

The FPU supports single- and double-precision arithmetic, as specified in the IEEE Standard 754. It also
supports fully precise floating-point exceptions while allowing both overlapped and pipelined operations.
Precise exceptions are extremely important in mission-critical environments and are highly desirable for
debugging in any environment.

As described above, two instructions can be issued in a given clock if one is a floating-point ALU instruc-
tion and the another is any type other than floating-point ALU. Figure 1.3 shows a simplified diagram of this
dual-issue mechanism.

Figure 1.3  Dual-Issue Mechanism, Showing CPU and FPU Pipelines
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The RV5000 provides three modes of operation:
� user mode
� supervisor mode
� kernel mode

This mechanism is available to system software to provide a secure environment for user processes.
Bits in a status register determine the mode of operation. When operating in the kernel mode, up to four
distinct virtual-address spaces totalling 1024Gbytes are simultaneously available and are differentiated by
the high-order bits of the virtual address. The RV5000 also supports a supervisor mode in which the virtual
address space is 256Gbytes, divided into three regions based on the high-order bits of the virtual address.
When the RV5000 uses 64-bit virtual addresses, the address space layouts are an upward-compatible
extension of the 32-bit virtual address space layout. 
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For fast virtual-to-physical address decoding, the RV5000 uses a fully associative joint TLB which maps
96 virtual pages to their corresponding physical addresses. The TLB is organized as 48 pairs of even-odd
entries, and maps a virtual address and address space identifier into the 64Gbyte physical address space.
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 Two mechanisms assist in controlling the amount of mapped space, and the replacement characteristics
of various memory regions. First, the page size can be configured, on a per-entry basis, at 4Kbytes,
16Kbytes, 64Kbytes, 256Kbytes, 1Mbyte, 4Mbytes, or 16Mbytes. A CP0 register is loaded with the page
size of a mapping, and that size is entered into the TLB when a new entry is written. Thus, operating
systems can provide special purpose maps; for example, a typical frame buffer can be memory mapped
using only one TLB entry.

The second mechanism controls the replacement algorithm when a TLB miss occurs. The RV5000
implements a random replacement algorithm to select a TLB entry to be written with a new mapping.
However, the processor provides a mechanism whereby a system-specific number of mappings can be
locked into the TLB, and thus avoid being randomly replaced. This facilitates the design of real-time
systems, by allowing deterministic access to critical software.

The joint TLB also contains information to control the cache coherency protocol for each page. Specifi-
cally, each page has attribute bits to determine whether the coherency algorithm is: uncached, non-
coherent write-back, non-coherent write-through write-allocate, non-coherent write-through no write-allo-
cate, sharable, exclusive, or update. Non-coherent write-back is typically used for both code and data on
the RV5000. The write-through modes support more efficient frame-buffer accesses than the R4000 family.
The coherent modes are supported for R4000 compatibility and generate different transaction types on the
system interface; however, cache coherency is not supported.
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The RV5000 incorporates on-chip instruction and data caches that can be accessed in a single
processor cycle. The processor also includes an on-chip secondary cache controller for simple interfacing
to large, high-speed second-level cache SRAM. 

Both of the on-chip primary caches are 32KB in size, two-way set associative, virtually indexed, and
physically tagged. Because the caches are virtually indexed, virtual-to-physical address translation occurs
in parallel with the cache access. Each cache has its own 64-bit data path and can be accessed in parallel
each pipeline cycle. The cache subsystem provides the integer unit (CPU) and floating-point unit (FPU) with
an aggregate bandwidth of 3.2Gbytes per second at a pipeline clock frequency of 200MHz.

������!���� 
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The instruction cache is 64-bits wide. Cache lines are eight instructions (32 bytes). Instruction fetches
are 8 bytes per cycle, for a peak instruction-cache bandwidth of 1.6Gbytes/sec @ 200MHz. The instruction
cache is protected with word parity. The tag holds a 24-bit physical address and valid bit, and is parity
protected. 
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The data cache is 64-bits wide. Cache lines are 32 bytes. Data loads are 8 bytes per cycle, for a peak
data-cache bandwidth of 1.6Gbytes/sec @ 200MHz (in addition to the 1.6Gbytes/sec instruction-cache
bandwidth). The data cache is protected with byte parity and its tag is protected with a single parity bit. It is
virtually indexed and physically tagged to allow simultaneous address translation and data-cache accesses.
The normal write policy is writeback. Software can, however, select write-through on a per-page basis, such
as for frame buffers.

The data cache has an associated store buffer. When the RV5000 executes a store instruction, this
single-entry buffer gets written with the store data while the tag comparison is performed. If the tag
matches, the data is written into the data cache in the next cycle that the data cache is not accessed (the
next non-load cycle). The store buffer allows the RV5000 to execute a store every processor cycle and to
perform back-to-back stores without penalty.
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Writes to external memory, whether cache-miss writebacks or stores to uncached or write-through
addresses, use the on-chip write buffer. The write buffer holds up to four 64-bit address and data pairs or
one cache line to be written back. The entire buffer is used for a data-cache writeback and allows the
processor to proceed in parallel with memory update. 
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The RV5000 uses the system interface clock as its input clock. The pipeline speed is derived from this
clock using a PLL to multiply up the input reference. It is assumed that the system designer manages the
system clock distribution to fit the needs of the system. Thus, the RV5000 does not output a system refer-
ence clock, but rather operates in synchronization with the input clock.

The RV5000 outputs one low-frequency reference clock: the Mode Clock. This clock operates at 1/256
the rate of the input clock, and it is used to clock-in the serial initialization stream during reset. 

����������������������������������������������������������������

The RV5000 supports a 64-bit multiplexed system interface that is compatible with the R4xxx system
interface. The interface consists of a 64-bit address/data bus with 8 check bits and a 9-bit command bus. In
addition, there are 8 handshake signals and 6 interrupt inputs. The interface has a simple timing specifica-
tion and is capable of transferring data between the processor and memory at a peak rate of 800Mbytes/
sec at 100MHz. Figure 1.4 shows a typical system using the RV5000. 

Figure 1.4  Typical RV5000 System Block Diagram

RV5000

M em ory I/O
Controller

L2

Contro l

Address

SCSI ENET

64

9

(O ptional)

Boot
RO M

DRAM
(80ns)

Cache

321664 64 64

2

11
�� ������ * + � ��������
 ��� �			



,!�
!��- �# ��� ����
����

��������			 ����
��

�����
�� ������ * + 3 ��������
 ��� �			



�����

��������			 ����
���� ������ � + * ������

������ %
��
����������

	
���
	�

�����
�����������������	
�	
�	
�	
��������������������

In the MIPS instruction-set architecture, the central processing unit (CPU) executes integer and system
instructions, and the floating-point unit (FPU) coprocessor executes floating-point instructions. This chapter
describes only the CPU. Chapter 3 describes with the FPU. 
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The R5000 integer unit has thirty-two general purpose registers. These registers are used for scalar
integer operations and address calculation. The register file consists of two read ports and one write port,
and is fully bypassed to minimize operation latency in the pipeline. Figure 2.1 shows the R5000 CPU regis-
ters.

Figure 2.1  R5000 CPU Registers

Two of the CPU general purpose registers have assigned functions:
� r0 is hardwired to a value of zero, and can be used as the target register for any instruction whose 

result is to be discarded. r0 can also be used as a source when a zero value is needed.
� r31 is used as an implicit return destination address register by the JAL series of instructions.

The CPU has three special purpose registers:
� PC — Program Counter register
� HI — Multiply and Divide register, higher result
� LO — Multiply and Divide register, lower result

The two Multiply and Divide registers (HI, LO) store:
� the product of integer multiply operations, or
� the quotient (in LO) and remainder (in HI) of integer divide operations.

The R5000 has no Program Status Word (PSW) register as such; this is covered by the Status and
Cause registers incorporated within the System Control Coprocessor (CP0), as described in the next
section, below.
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The MIPS IV instruction set architecture defines three coprocessors, designated CP0, CP1, and CP2.
The R5000 implements the first two:

� Coprocessor 0 (CP0) supports the virtual memory system and exception handling. CP0 is also 
referred to as the System Control Coprocessor, and is described below. 

� Coprocessor 1 (CP1) implements the MIPS floating-point instruction set and is used by the FPU. 
The registers associated with CP1 are described in Chapter 3. 

� Coprocessor 2 (CP2) is reserved for future use.

The registers associated with CP0 are shown in Figure 2.2 and described in Table 2.1. CP0 translates
virtual addresses into physical addresses and manages exceptions and transitions between kernel, super-
visor, and user states. CP0 also controls the cache subsystem, controls power management, and provides
diagnostic control and error recovery facilities. Access to reserved or undefined CP0 register results are
undefined. An exception may or may not result. 

Power management is implemented in CP0 with the standby mode, which reduces power consumption
by the CPU core. The standby mode is entered by executing the WAIT instruction with the SysAD bus idle,
and it is exited by any interrupt. 

Figure 2.2  CP0 Registers

Index

Random

EntryLo0

EntryLo1

Context

PageMask

Wired

BadVAddr

Count

EntryHi

Compare

SR

Cause

EPC

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
PRId 15

Config

LLAddr

ECC

CacheErr

TagLo

TagHi

ErrorEPC

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Register Name Reg. #Register Name Reg. #

Exception Processing Memory Management Reserved

XContext
�� ������ � + � ��������
 ��� �			



����
�� .
���  ��) 4��� 5�.46 �.4 ���� (�
��� ��2 �22
�  ��)

��������			 ����
��

�����

 





��������������������������������!!!!���������������������������������	�	�	�	����%%%%								��������������������� � � � 

The R5000 processor uses four data formats: a 64-bit doubleword, a 32-bit word, a 16-bit halfword, and
an 8-bit byte. Byte ordering within the halfword, word, and doubleword data formats can be configured in
either big-endian or little-endian order. Endianness refers to the location of byte 0 within the multi-byte data
structure. Figures 1.4 and 1.5 show the ordering of bytes within words and the ordering of words within
multiple-word structures for the big-endian and little-endian conventions. 

When the R5000 processor is configured as a big-endian system, byte 0 is the most-significant (left-
most) byte, thereby providing compatibility with MC 68000 and IBM 370 conventions. Figure 2.3 illustrates
this configuration.

7����
 ��)� ��
 �� �
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0 Index Programmable pointer into TLB array

1 Random Pseudo-random pointer into TLB array (read only)

2 EntryLo0 Low half of TLB entry for even virtual page (VPN)

3 EntryLo1 Low half of TLB entry for odd virtual page (VPN)

4 Context Pointer to kernel virtual page table entry (PTE) for 32-bit address spaces

5 PageMask TLB page mask

6 Wired Number of wired TLB entries

7 — Reserved

8 BadVAddr Bad virtual address

9 Count Timer count

10 EntryHi High half of TLB entry

11 Compare Timer compare

12 SR Status register

13 Cause Cause of last exception

14 EPC Exception program counter

15 PRId Processor revision identifier

16 Config Configuration register

17 LLAddr Load linked address

18 - 19 — Reserved

20 XContext Pointer to kernel virtual PTE table for 64-bit address spaces

21–25 — Reserved

26 ECC Secondary-cache error checking and correcting (ECC) and primary parity

27 CacheErr Cache error and status register

28 TagLo Cache tag register

29 TagHi Cache tag register

30 ErrorEPC Error exception program counter

31 — Reserved

Table 2.1  System Control Coprocessor (CPO) Register Definitions
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Figure 2.3  Big-Endian Byte Ordering

When configured as a little-endian system, byte 0 is always the least-significant (right-most) byte, which

is compatible with x86 and DEC VAX conventions. Figure 2.4 illustrates this configuration.

Figure 2.4  Little-Endian Byte Ordering 

In this text, bit 0 is always the least-significant (right-most) bit; thus, bit designations are always little-
endian (although no instructions explicitly designate bit positions within words).

Figures 1.6 and 1.7 show little-endian and big-endian byte ordering in doublewords.
 

Figure 2.5  Little-Endian Data in a Doubleword
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Figure 2.6  Big-Endian Data in a Doubleword

The CPU uses byte addressing for halfword, word, and doubleword accesses with the following align-
ment constraints: 

� Halfword accesses must be aligned on an even byte boundary 
(0, 2, 4...).

� Word accesses must be aligned on a byte boundary divisible by four (0, 4, 8...).
� Doubleword accesses must be aligned on a byte boundary divisible by eight (0, 8, 16...).

The following special instructions load and store words that are not aligned on 4-byte (word) or 8-word
(doubleword) boundaries: 

These instructions are used in pairs to provide addressing of misaligned words. Addressing misaligned
data incurs one additional instruction cycle over that required for addressing aligned data. This extra cycle
is the result of an extra instruction for the “pair” (e.g., LWL and LWR form a pair). Also note that the CPU
moves the unaligned data at the same rate as a hardware mechanism.

Figures 1.8 and 1.9 show the access of a misaligned word that has byte address 3.

Figure 2.7  Big-Endian Misaligned Word Addressing

Figure 2.8  Little-Endian Misaligned Word Addressing
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The R5000 executes the MIPS IV instruction set, which is a superset of the MIPS III instruction set and
is backward-compatible with MIPS III. Each CPU instruction consists of a single 32-bit word, aligned on a
word boundary. There are three instruction formats—immediate (I-type), jump (J-type), and register (R-
type). The use of a small number of instruction formats simplifies instruction decoding, allowing the
compiler to synthesize more complicated (and less frequently used) operations and addressing modes from
these three formats as needed. 

Table 2.2 gives an overview of R5000 CPU-instruction latencies. A summary of the MIPS IV instruction
set additions is given in the remainder of this section, along with a brief explanation of each instruction. For
more information on the MIPS IV instruction set, refer to the IDT MIPS Microprocessor Family Software
Manual.

������!���� �������

The three types of instruction types are shown in Figure 2.9. 

Figure 2.9  Instruction Formats
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Arithmetic and Logical 1 1

Shift 1 1

Load 2 1

Store N/A 1

Multiply (32-bit) 5 4

Multiply (64-bit) 9 8

Divide (32-bit) 36 36

Divide (64-bit) 68 68

Table 2.2  Some Integer-Instruction Latencies

op 6-bit operation code

rs 5-bit source register specifier

rt 5-bit target (source/destination) register or branch condition

immediate 16-bit immediate value, branch displacement or address displacement

target 26-bit jump target address

rd 5-bit destination register specifier

sa 5-bit shift amount

funct 6-bit function field

015162021252631

015162021252631

0252631

op rs rt immediate

op target

functop rs rt
11 10 6 5

rd sa

R-Type (Register)

J-Type (Jump)

I-Type (Immediate)
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The CPU instruction set includes the following types of instructions:
� Load and Store instructions move data between memory and general registers. They are all imme-

diate (I-type) instructions, since the only addressing mode supported is base register plus 16-bit, 
signed immediate offset.

� Computational instructions perform arithmetic, logical, shift, multiply, and divide operations on val-
ues in registers. They include register (R-type, in which both the operands and the result are stored 
in registers) and immediate (I-type, in which one operand is a 16-bit immediate value) formats.

� Jump and Branch instructions change the control flow of a program. Jumps are always made to a 
paged, absolute address formed by combining a 26-bit target address with the high-order bits of the 
Program Counter (J-type format) or register address (R-type format). Branches have 16-bit offsets 
relative to the program counter (I-type). Jump And Link instructions save their return address in reg-
ister 31.

� Coprocessor instructions perform operations in the coprocessors. Coprocessor load and store 
instructions are I-type. 

� Coprocessor 0 (system coprocessor) instructions perform operations on CP0 registers to control 
the memory management and exception handling facilities of the processor and the standby mode 
for power management. 

� Special instructions perform system calls and breakpoint operations. These instructions are always 
R-type.

� Exception instructions cause a branch to the general exception-handling vector based upon the 
result of a comparison. These instructions occur in both R-type (both the operands and the result 
are registers) and I-type (one operand is a 16-bit immediate value) formats.

���� ��� '���� ������!�����

Load and store are immediate (I-type) instructions that move data between memory and the general
registers. The only addressing mode that load and store instructions directly support is base register plus
16-bit signed immediate offset.

Table 2.3 lists the load and store instructions. 
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A load instruction that does not allow its result to be used by the instruction immediately following is
called a delayed load instruction. The instruction slot immediately following this delayed load instruction is
referred to as the load delay slot.

In the R5000, the instruction immediately following a load instruction can reference the contents of the
loaded register, but hardware interlocks insert additional real cycles. Consequently, scheduling load delay
slots can be desirable, both for performance and R-Series processor compatibility. However, the scheduling
of load delay slots is not required. 

,���2� �� �
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LB Load Byte I

LBU Load Byte Unsigned I

LD Load Doubleword III

LDL Load Doubleword Left III

LDR Load Doubleword Right III

LH Load Halfword I

LHU Load Halfword Unsigned I

LL Load Linked II

LLD Load Linked Doubleword III

LW Load Word I

LWL Load Word Left I

LWR Load Word Right I

LWU Load Word Unsigned III

PREF1 Prefetch, Register + Offset IV

PREFX1 Prefetch Indexed, Register + Register IV

SB Store Byte I

SC Store Conditional II

SCD Store Conditional Doubleword III

SD Store Doubleword III

SDL Store Doubleword Left III

SDR Store Doubleword Right III

SH Store Halfword I

SW Store Word I

SWL Store Word Left I

SWR Store Word Right I

SYNC Sync II

1 Prefetch is not implemented in the R5000; these instructions are no-ops.

Table 2.3  Load and Store Instructions
�� ������ � + 3 ��������
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Access type indicates the size of an R5000 data item to be loaded or stored. The access type is deter-
mined by the load/store instruction opcode. Regardless of access type or byte ordering (endianness), the
address specifies the low-order byte in the addressed field. For a big-endian configuration, the low-order
byte is the most-significant byte; for a little-endian configuration, the low-order byte is the least-significant
byte.

The access type, together with the three low-order bits of the address, define the bytes accessed within
the addressed doubleword (shown in Table 2.4). Only the combinations shown in Table 2.4 are permissible;
other combinations cause address-error exceptions.
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Computational instructions can be either in register (R-type) format, in which both operands are regis-
ters, or in immediate (I-type) format, in which one operand is a 16-bit immediate. Computational instructions
perform the following operations on register values:

� arithmetic
� logical
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Doubleword (7) 0 0 0 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1 0

Septibyte (6) 0 0 0 0 1 2 3 4 5 6 6 5 4 3 2 1 0

0 0 1 1 2 3 4 5 6 7 7 6 5 4 3 2 1

Sextibyte (5) 0 0 0 0 1 2 3 4 5 5 4 3 2 1 0

0 1 0 2 3 4 5 6 7 7 6 5 4 3 2

Quintibyte (4) 0 0 0 0 1 2 3 4 4 3 2 1 0

0 1 1 3 4 5 6 7 7 6 5 4 3

Word (3) 0 0 0 0 1 2 3 3 2 1 0

1 0 0 4 5 6 7 7 6 5 4

Triplebyte (2) 0 0 0 0 1 2 2 1 0

0 0 1 1 2 3 3 2 1

1 0 0 4 5 6 6 5 4

1 0 1 5 6 7 7 6 5

Halfword (1) 0 0 0 0 1 1 0

0 1 0 2 3 3 2

1 0 0 4 5 5 4

1 1 0 6 7 7 6

Byte (0) 0 0 0 0 0

0 0 1 1 1

0 1 0 2 2

0 1 1 3 3

1 0 0 4 4

1 0 1 5 5

1 1 0 6 6

1 1 1 7 7

Table 2.4  Byte Access Within a Doubleword
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� shift
� multiply
� divide

These operations fit in the following four categories of computational instructions:
� ALU Immediate instructions
� three-Operand Register-Type instructions
� shift instructions
� multiply and divide instructions

Table 2.5 through Table 2.8 list the computational instructions. 
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ADDI Add Immediate I

ADDIU Add Immediate Unsigned I

ANDI AND Immediate I

DADDI Doubleword Add Immediate III

DADDIU Doubleword Add Immediate Unsigned III

LUI Load Upper Immediate I

ORI OR Immediate I

SLTI Set on Less Than Immediate I

SLTIU Set on Less Than Immediate Unsigned I

XORI Exclusive OR Immediate I

Table 2.5  Arithmetic Instructions (ALU Immediate)
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ADD Add I

ADDU Add Unsigned I

AND AND I

DADD Doubleword Add III

DADDU Doubleword Add Unsigned III

DSUB Doubleword Subtract III

DSUBU Doubleword Subtract Unsigned III

NOR NOR I

OR OR I

SLT Set on Less Than I

SLTU Set on Less Than Unsigned I

SUB Subtract I

SUBU Subtract Unsigned I

XOR Exclusive OR I

Table 2.6  Arithmetic (3-Operand, R-Type)
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DSLL Doubleword Shift Left Logical III

DSRL Doubleword Shift Right Logical III

DSRA Doubleword Shift Right Arithmetic III

DSLLV Doubleword Shift Left Logical Variable III

DSRLV Doubleword Shift Right Logical Variable III

DSRAV Doubleword Shift Right Arithmetic Vari-
able

III

DSLL32 Doubleword Shift Left Logical + 32 III

DSRL32 Doubleword Shift Right Logical + 32 III

DSRA32 Doubleword Shift Right Arithmetic + 32 III

SLL Shift Left Logical I

SLLV Shift Left Logical Variable I

SRA Shift Right Arithmetic I

SRAV Shift Right Arithmetic Variable I

SRL Shift Right Logical I

SRLV Shift Right Logical Variable I

Table 2.7  Shift Instructions
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DIV Divide I

DIVU Divide Unsigned I

DMULT Doubleword Multiply III

DMULTU Doubleword Multiply Unsigned III

DDIV Doubleword Divide III

DDIVU Doubleword Divide Unsigned III

MFHI Move From HI I

MTHI Move To HI I

MFLO Move From LO I

MOVF Move Conditional on Condition Code False IV

MOVN Move on Register Not Equal to Zero IV

MOVT Move Conditional on Condition Code True IV

MOVZ Move on Register Equal to Zero IV

MTLO Move To LO I

MULT Multiply I

MULTU Multiply Unsigned I

Table 2.8  Multiply and Divide Instructions
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When operating in 64-bit mode, 32-bit operands must be sign-extended. 32-bit operand opcodes include
all non-doubleword operations, such as ADD, ADDU, SUB, SUBU, ADDI, SLL, SRA, SLLV, etc. The result
of operations that use incorrect sign-extended 32-bit values is unpredictable.
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MFHI and MFLO instructions are interlocked so that any attempt to read them before prior instructions
complete, delays the execution of these instructions until the prior instructions finish. Table 2.9 gives the
number of processor cycles (PCycles) required to resolve an interlock or stall between various multiply or
divide instructions, and a subsequent MFHI or MFLO instruction.

���� ���  ���!� ������!�����

Jump and branch instructions change the control flow of a program. All jump and branch instructions
occur with a delay of one instruction; that is, the instruction immediately following the jump or branch (the
instruction in the delay slot) always executes while the target instruction is being fetched from storage.

Subroutine calls in high-level languages are usually implemented with Jump or Jump and Link instruc-
tions, both of which are J-type instructions. In J-type format, the 26-bit target address shifts left 2 bits and
combines with the high-order 4 bits of the current program counter to form an absolute address. Returns,
dispatches, and large cross-page jumps are usually implemented with the Jump Register or Jump and Link
Register instructions. Both are R-type instructions that take the 32-bit or 64-bit byte address contained in
one of the general purpose registers.

All branch-instruction target addresses are computed by adding the address of the instruction in the
delay slot to the 16-bit offset (shifts left 2 bits and is sign-extended to 32 bits). All branches occur with a
delay of one instruction. If a conditional branch is not taken, the instruction in the delay slot is nullified. 

Table 2.10 lists the jump and branch instructions. 
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MULT/MULTU 5 4

DIV/DIVU 36 36

DMULT/DMULTU 9 8

DDIV/DDIVU 68 68

Table 2.9  Multiply/Divide Instruction Latency and Repeat Rates

,���2� �� �
������ ��.� ��� '�!��

BCzFL Branch on Coprocessor z False Likely II

BCzTL Branch on Coprocessor z True Likely II

BEQ Branch on Equal I

BEQL Branch on Equal Likely II

BGEZ Branch on Greater Than or Equal to Zero I

BGEZAL Branch on Greater Than or Equal to Zero And Link I

BGEZALL Branch on Greater Than or Equal to Zero And Link Likely II

BGEZL Branch on Greater Than or Equal to Zero Likely II

BGTZ Branch on Greater Than Zero I

BGTZL Branch on Greater Than Zero Likely II

BLEZ Branch on Less Than or Equal to Zero I

Table 2.10  Jump and Branch Instructions  (Part 1 of 2)
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Special instructions allow the software to initiate traps. They are always R-type. Table 2.11 lists the
special instructions. 
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Coprocessor instructions perform operations in their respective coprocessors. Coprocessor loads and
stores are I-type, and coprocessor computational instructions have coprocessor-dependent formats. CP0
instructions perform operations specifically on the System Control Coprocessor registers to manipulate the
memory management and exception handling facilities of the processor. 

Table 2.12 and Table 2.13 list the coprocessor instructions. Table 2.14 lists the instructions used for
exception processing. 
 

BLEZL Branch on Less Than or Equal to Zero Likely II

BLTZ Branch on Less Than Zero I

BLTZL Branch on Less Than Zero Likely II

BLTZAL Branch on Less Than Zero And Link I

BLTZALL Branch on Less Than Zero And Link Likely II

BNE Branch on Not Equal I

BNEL Branch on Not Equal Likely II

J Jump I

JAL Jump And Link I

JALR Jump And Link Register I

JR Jump Register I

,���2� �� �
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SYSCALL System Call I

BREAK Break I

Table 2.11  Special Instructions

,���2� �� �
������ ��.� ��� '�!��

BCzT Branch on Coprocessor z True I

BCzF Branch on Coprocessor z False I

CFCz Move Control From Coprocessor z I

COPz Coprocessor Operation z I

CTCz Move Control to Coprocessor z I

DMFCz Doubleword Move From Coprocessor z II

DMTCz Doubleword Move To Coprocessor z II

LDCz Load Double Coprocessor z II

LWCz Load Word to Coprocessor z I

Table 2.12  Coprocessor Instructions  (Part 1 of 2)
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Table 2.10  Jump and Branch Instructions  (Part 2 of 2)
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MFCz Move From Coprocessor z I

MTCz Move To Coprocessor z I

SDCz Store Double Coprocessor z II

SWCz Store Word from Coprocessor z I

,���2� �� �
������ ��.� ��� '�!��

CACHE Cache Operation III

DCTR Data Cache Tag Read IV

DCTW Data Cache Tag Write IV

DMFC0 Doubleword Move From CP0 III

DMTC0 Doubleword Move To CP0 III

ERET Exception Return III

MFC0 Move from CP0 I

MTC0 Move to CP0 I

TLBP Probe TLB for Matching Entry I

TLBR Read Indexed TLB Entry I

TLBW Write TLB Entry IV

TLBWI Write Indexed TLB Entry I

TLBWR Write Random TLB Entry I

WAIT Enter Standby Mode III

Table 2.13  CPO Instructions

,���2� �� �
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TEQ Trap if Equal II

TEQI Trap if Equal Immediate II

TGE Trap if Greater Than or Equal II

TGEI Trap if Greater Than or Equal Immediate II

TGEIU Trap if Greater Than or Equal Immediate Unsigned II

TGEU Trap if Greater Than or Equal Unsigned II

TLT Trap if Less Than II

TLTI Trap if Less Than Immediate II

TLTIU Trap if Less Than Immediate Unsigned II

TLTU Trap if Less Than Unsigned II

TNE Trap if Not Equal II

TNEI Trap if Not Equal Immediate II

Table 2.14  Exception Instructions
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Table 2.12  Coprocessor Instructions  (Part 2 of 2)
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The following additions to MIPS III CPU instruction set are included in the MIPS IV CPU instruction set. 

���
��!�
� PREF - Register + Offset Format
� PREFX - Register + Register Format

The R5000 does not implement prefetch actions; these instruction are executed as NO-OPS, fully
compatible with the MIPS IV instruction set architecture. (In their normal implementation, rather than as no-
ops, the two prefetch instructions allow the compiler to issue instructions early so the corresponding data
can be fetched and placed as close as possible to the CPU. Each instruction contains a 5-bit hint field which
gives the coherency status of the line being prefetched. The line can be either shared, exclusive clean, or
exclusive dirty. The contents of the general register specified by the base is added either to the 16 bit sign-
extended offset or to the contents of the general register specified by the index to form a virtual address.
This address together with the hint field is sent to the cache controller and a memory access is initiated.
The region bits, 63:62, of the effective address must be supplied by the base. If the addition alters these bits
an address exception occurs. The prefetch instruction never generates TLB-related exceptions. The PREF
instruction is considered a standard processor instruction while the PREF instruction is considered a stan-
dard Coprocessor 1 instruction.) 

������� 
���������� +�,��
� MOVT - Move Conditional On Condition Code True
� MOVF - Move Conditional On Condition Code False
� MOVN - Move Conditional On Register Not Equal To Zero
� MOVZ - Move Conditional On Register Equal To Zero

The four Integer Conditional Move instructions are used to test a condition code or a general register
and then conditionally perform an integer move. The value of the floating-point condition code specified in
the instruction by the 3-bit condition code specifier, or the value of the register indicated by the 5-bit general
register specifier, is compared to zero. If the result indicates that the move should be performed, the
contents of the specified source register is copied into the specified destination register. 
�� ������ � + *� ��������
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The R5000 floating-point unit (FPU) operational functions consist of an adder, multiplier, and divider. The
FPU, with associated system software, conforms fully to the ANSI/IEEE Standard 754–1985, IEEE Stan-
dard for Binary Floating-Point Arithmetic. In addition, the MIPS architecture fully supports the recommenda-
tions of the standard and precise exceptions. 

The FPU operates as a coprocessor for the CPU (it is assigned coprocessor label CP1), and extends
the CPU instruction set to perform operations on floating-point values. It has the following basic features:

� 32-bit or 64-bit Operation. The FR bit in the CPU Status register controls the selection of 32-bit 
64-bit mode. Each register can hold single- or double-precision values. 

� Load and Store Instruction Set. Like the CPU, the FPU uses a load- and store-oriented instruc-
tion set, with single-cycle load and store operations.

� Tightly Coupled Coprocessor Interface. The FPU resides on-chip to form a tightly coupled unit 
with a seamless integration of floating-point and fixed-point instruction sets. Since each unit 
receives and executes instructions in parallel, some floating-point instructions can execute at the 
same single-cycle-per-instruction rate as fixed-point instructions.

Figure 3.1 illustrates the functional organization of the FPU.

Figure 3.1  FPU Functional Block Diagram
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The FPU has a set of Floating-Point General Registers (FGRs) that can be accessed in the following
ways:

� As 32 general purpose registers (32 FGRs), each of which is 32 bits wide, when the FR bit in the 
CPU Status register equals 0; or as 32 general purpose registers (32 FGRs), each of which is 64-
bits wide, when FR equals 1. The CPU accesses these registers through move, load, and store 
instructions.

� As 16 floating-point registers (see the next section for a description of FPRs), each of which is 64 
bits wide, when the FR bit in the CPU Status register equals 0. The FPRs hold values in either sin-
gle- or double-precision floating-point format. Each FPR corresponds to adjacently numbered 
FGRs, as shown in Figure 3.2.

� As 32 floating-point registers (see the next section for a description of FPRs), each of which is 64 
bits wide, when the FR bit in the CPU Status register equals 1. The FPRs hold values in either sin-
gle- or double-precision floating-point format. Each FPR corresponds to an FGR as shown in Figure 
3.2.

Figure 3.2  FPU Registers
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The FPRs are shown in Figure 3.2. These 64-bit registers hold floating-point values during floating-point
operations and are physically formed from the Floating-Point General Registers (FGRs). 

When the FR bit is set to a 1, the FPR references a single 64-bit FGR and all FPR register numbers are
valid. If the FR bit equals 0, only even numbers (the least register, as shown in Figure 3.2) can be used to
address FPRs. If the FR bit equals 0 during a double-precision floating-point operation, the general regis-
ters are accessed in double pairs. Thus, in a double-precision operation, selecting Floating-Point Register 0
(FPR0) actually addresses adjacent Floating-Point General Purpose registers FGR0 and FGR1.
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Table 3.1 lists the floating-point control registers (FCRs). These can only be accessed by Move opera-
tions. The FCRs include:

�������������� ��� /�,����� /������� ��
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The read-only Implementation and Revision register (FCR0) specifies the implementation and revision
number of the FPU. This information can determine the coprocessor revision and performance level, and
can also be used by diagnostic software. Figure 3.3 shows the layout of the register. Table 3.2 describes the
register fields.

Figure 3.3  Implementation/Revision Register

The revision number is a value of the form y.x, where:
� y is a major revision number held in bits 7:4.
� x is a minor revision number held in bits 3:0.

The revision number distinguishes some chip revisions; however, MIPS does not guarantee that
changes to its chips are necessarily reflected by the revision number, or that changes to the revision
number necessarily reflect real chip changes. For this reason, revision number values are not listed, and
software should not rely on the revision number to characterize the chip. 
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The Control/Status register (FCR31) contains control and status information that can be accessed by
instructions in either Kernel or User mode. FCR31 also controls the arithmetic rounding mode and enables
User-mode traps, as well as identifying any exceptions that may have occurred in the most recently
executed instruction, along with any exceptions that may have occurred without being trapped.

Figure 3.4 shows the format of the Control/Status register, and Table 3.3 describes the register fields.
Figure 3.5 shows the Control/Status register Cause, Flag, and Enable fields.

(�� 7����
 4 �

FCR0 Implementation/Revision register: holds revision information about the FPU.

FCR1 to FCR30 Reserved

FCR31 Control/Status register: controls and monitors exceptions, holds the result of 
compare operations, and establishes rounding modes.

Table 3.1  Floating-Point Control Register Assignments

(���2 �� �
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Imp Implementation number (0x23)

Rev Revision number in the form of y.x

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 3.2  FCRO Fields

16 15 7

Implementation/Revision Register (FCR0)

31 0

16

Rev

8 8

8

0 Imp
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When the Control/Status register is read by a Move Control From Coprocessor 1 (CFC1) instruction, all
unfinished instructions in the pipeline are completed before the contents of the register are moved to the
main processor. If a floating-point exception occurs as the pipeline empties, the FP exception is taken and
the CFC1 instruction is re-executed after the exception is serviced.

The bits in the Control/Status register can be set or cleared by writing to the register using a Move
Control To Coprocessor 1 (CTC1) instruction. FCR31 must only be written to when the FPU is not actively
executing floating-point operations; this can be ensured by reading the contents of the register to empty the
pipeline.

�222 '������� 34)

IEEE Standard 754 specifies that floating-point operations detect certain exceptional cases, raise flags,
and invoke an exception handler when an exception occurs. These features are implemented in the MIPS
architecture with the Cause, Enable, and Flag fields of the Control/Status register. The Flag bits implement
IEEE-754 exception-status flags, and the Cause and Enable bits implement exception handling.


������1'����� /������� �'  ��

When the FS bit is set, denormalized results are flushed to 0 instead of causing an unimplemented oper-
ation exception.
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When a floating-point Compare operation takes place, the result is stored at bit 23, the Condition bit, to
save or restore the state of the condition line. The C bit is set to 1 if the condition is true; the bit is cleared to
0 if the condition is false. Bit 23 is affected only by Compare and Move Control To FPU instructions.

(���2 �� �
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CC Condition code.

FS When set, denormalized results are flushed to 0 instead of causing an unimplemented operation exception.

C Condition bit. See description of Control/Status register Condition bit.

Cause Cause bits. See description of Control/Status register Cause, Flag, and Enable bits.

Enables Enable bits. See description of Control/Status register Cause, Flag, and Enable bits.

Flags Flag bits. See description of Control/Status register Cause, Flag, and Enable bits.

RM Rounding mode bits. See description of Control/Status register Rounding Mode Control bits.

Table 3.3  Control/Status Register Fields

Control/Status Register (FCR31)

31 24 23 22 18 17 12 11 7 6 2 1 0

7 1 5 6 5 5 2

C RM
FlagsEnablesCause

CC 0 E V Z O  U I V Z O  U I V  Z O  U I

25

FS

1

Legend:
E = Unimplemented Operation
V = Invalid Operation

Z = Division by zero
O = Overflow

U = Underflow
I = Inexact Operation
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Figure 3.5 illustrates the Cause, Flag, and Enable fields of the Control/Status register.

Figure 3.5  Control/Status Register Cause, Flag, and Enable Fields
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Bits 17:12 in the Control/Status register contain Cause bits, as shown in Figure 3.5. The Cause bits
reflect the results of the most recently executed instruction. The bits are a logical extension of the CP0
Cause register; they identify the exceptions raised by the last floating-point operation and raise an interrupt
or exception if the corresponding enable bit is set. If more than one exception occurs on a single instruction,
each appropriate bit is set.

The Cause bits are written by each floating-point operation (but not by Load, Store, or Move operations).
The Unimplemented Operation (E) bit is set to 1 if software emulation is required, otherwise it remains 0.
The other bits are set to 1 or cleared to 0 to indicate the occurrence or non-occurrence (respectively) of an
IEEE-754 exception.

When a floating-point exception is taken, no results are stored, and the only state affected is the Cause
bit. 

2��#��  ���

A floating-point exception is generated any time a Cause bit and the corresponding Enable bit are set. A
floating-point operation that sets an enabled Cause bit forces an immediate exception, as does setting both
Cause and Enable bits with CTC1. 

There is no enable for Unimplemented Operation (E). Setting Unimplemented Operation always gener-
ates a floating-point exception.

Before returning from a floating-point exception, software must first clear the enabled Cause bits with a
CTC1 instruction to prevent a repeat of the interrupt. Thus, User-mode programs can never observe
enabled Cause bits set; if this information is required in a User-mode handler, it must be passed some-
where other than the Status register.

For a floating-point operation that sets only unenabled Cause bits, no exception occurs and the default
result defined by IEEE-754 is stored. In this case, the exceptions that were caused by the immediately
previous floating-point operation can be determined by reading the Cause field.

E Z O U IV

17 16 15 14 13 12

Unimplemented Operation

Invalid Operation
Division by Zero

Inexact Operation

Overflow
Underflow

Bit #

Z O U IV

11 10 9 8 7Bit #

Z O U IV

6 5 4 3 2Bit #

Cause
Bits

Flag
Bits

Enable
Bits
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When an exception case is detected and the exception Enable is not set, the corresponding flag bit is
set. If an exception is taken, none of the flag bits are modified. Note, however, that system software may set
the flag bits before invoking a user exception handler.

The Flag bits are cumulative and indicate that an exception was raised by an operation that was
executed since they were explicitly reset. Flag bits are set to 1 if an IEEE-754 exception is raised, otherwise
they remain unchanged. The Flag bits are never cleared as a side effect of floating-point operations;
however, they can be set or cleared by writing a new value into the Status register, using a Move-To-Copro-
cessor Control instruction.
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Bits 1 and 0 in the Control/Status register constitute the Rounding Mode (RM) field.

As shown in Table 3.4, these bits specify the rounding mode that the FPU uses for all floating-point oper-
ations.

!!!!��������������������������������!!!!������������������������

The FPU supports both floating-point and fixed-point data formats. The floating-point formats can be
single-precision binary or double-precision binary. The fixed-point formats can be 32- or 64-bit binary.

�������������� �������

The FPU performs both 32-bit (single-precision) and 64-bit (double-precision) IEEE standard floating-
point operations. The 32-bit single-precision format has a 24-bit signed-magnitude fraction field (f+s) and an
8-bit exponent (e), as shown in Figure 3.6.

Figure 3.6  Single-Precision Floating-Point Format

The 64-bit double-precision format has a 53-bit signed-magnitude fraction field (f+s) and an 11-bit expo-
nent, as shown in Figure 3.7.

����2��)

��2� ��5*9	6
�������� �� �
������

0 RN Round result to nearest representable value; round to value with least-sig-
nificant bit 0 when the two nearest representable values are equally near.

1 RZ Round toward 0: round to value closest to and not greater in magnitude 
than the infinitely precise result.

2 RP Round toward +∞: round to value closest to and not less than the infinitely 
precise result.

3 RM Round toward – ∞: round to value closest to and not greater than the infi-
nitely precise result.

Table 3.4  Rounding Mode Bit Decoding

31 30 23 22 0

FractionSign Exponent

231 8

s e f
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Figure 3.7  Double-Precision Floating-Point Format

As shown in the above figures, numbers in floating-point format are composed of three fields:
� sign field, s
� biased exponent, e = E + bias
� fraction, f = .b1b2....bp–1

The range of the unbiased exponent E includes every integer between the two values Emin and Emax
inclusive, together with two other reserved values: 

� Emin -1 (to encode ±0 and denormalized numbers)
� Emax +1 (to encode ± • and NaNs [Not a Number])

For single- and double-precision formats, each representable non-zero numerical value has just one
encoding.

For single- and double-precision formats, the value of a number, v, is determined by the equations
shown in Table 3.5.

For all floating-point formats, if v is NaN, the most-significant bit of f determines whether the value is a
signaling or quiet NaN: v is a signaling NaN if the most-significant bit of f is set, otherwise, v is a quiet NaN.

Table 3.6 defines the values for the format parameters; minimum and maximum floating-point values are
given in Table 3.7.

7�: ;<������

(1) if E = Emax+1 and f ¼ 0, then v is NaN, regardless of s

(2) if E = Emax+1 and f = 0, then v = (–1)s •

(3) if Emin £ E £ Emax, then v = (–1)s2E(1.f)

(4) if E = Emin–1 and f ¼ 0, then v = (–1)s2Emin(0.f)

(5) if E = Emin–1 and f = 0, then v = (–1)s0

Table 3.5  Calculating Values in Single and Double-Precision Formats

.�
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Emax +127 +1023

Emin –126 –1022

Exponent bias +127 +1023

Exponent width in bits 8 11

Integer bit hidden hidden

f (Fraction width in bits) 24 53

Format width in bits 32 64

Table 3.6  Floating-Point Format Parameter Values

63 62 52 51 0

FractionS ign Exponent

521 11

s e f
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Binary fixed-point values are held in two’s complement format. Unsigned fixed-point values are not
directly provided by the floating-point instruction set. Figure 3.8 illustrates binary fixed-point format; Table
3.7 lists the binary fixed-point format fields.

Figure 3.8  Binary Fixed-Point Format
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All FPU instructions are 32 bits long, aligned on a word boundary. They can be divided into the following
groups:

� Load, Store, and Move instructions move data between memory, the main processor, and the FPU 
General Purpose registers.

� Conversion instructions perform conversion operations between the various data formats.
� Computational instructions perform arithmetic operations on floating-point values in the FPU regis-

ters.
� Compare instructions perform comparisons of the contents of registers and set a conditional bit 

based on the results.
� Branch on FPU Condition instructions perform a branch to the specified target if the specified 

coprocessor condition is met.

In the instruction formats shown in Table 3.9 through Table 3.12, the fmt appended to the instruction
opcode specifies the data format: S specifies single-precision binary floating-point, D specifies double-
precision binary floating-point, W specifies 32-bit binary fixed-point, and L specifies 64-bit (long) binary
fixed-point.

�#�� 1����

Float Minimum 1.40129846e–45

Float Minimum Norm 1.17549435e–38

Float Maximum 3.40282347e+38

Double Minimum 4.9406564584124654e–324

Double Minimum Norm 2.2250738585072014e–308

Double Maximum 1.7976931348623157e+308

Table 3.7  Minimum and Maximum Floating-Point Values

(���2 �� �
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sign sign bit

integer integer value

Table 3.8  Binary Fixed-Point Format Fields

31 30 0

S ign

311

Integer
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LWC1 Load Word to FPU

LWXC1 Load Word Indexed to FPU

SWC1 Store Word from FPU

SWXC1 Store Word Indexed from FPU

LDC1 Load Doubleword to FPU

LDXC1 Load Doubleword Indexed to FPU

SDC1 Store Doubleword From FPU

SDXC1 Store Doubleword Indexed From FPU

MTC1 Move Word To FPU

MFC1 Move Word From FPU

CTC1 Move Control Word To FPU

CFC1 Move Control Word From FPU

DMTC1 Doubleword Move To FPU

DMFC1 Doubleword Move From FPU

PREF Prefetch - Register + Offset

PREFX Prefetch Indexed - Register + Register

Table 3.9  FPU Instruction Summary: Load, Move and Store Instructions
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CVT.S.fmt Floating-Point Convert to Single FP

CVT.D.fmt Floating-Point Convert to Double FP

CVT.W.fmt Floating-Point Convert to 32-bit Fixed Point 

CVT.L.fmt Floating-Point Convert to 64-bit Fixed Point 

ROUND.W.fmt Floating-Point Round to 32-bit Fixed Point

ROUND.L.fmt Floating-Point Round to 64-bit Fixed Point

TRUNC.W.fmt Floating-Point Truncate to 32-bit Fixed Point

TRUNC.L.fmt Floating-Point Truncate to 64-bit Fixed Point

CEIL.W.fmt Floating-Point Ceiling to 32-bit Fixed Point

CEIL.L.fmt Floating-Point Ceiling to 64-bit Fixed Point

FLOOR.W.fmt Floating-Point Floor to 32-bit Fixed Point

FLOOR.L.fmt Floating-Point Floor to 64-bit Fixed Point

Table 3.10  FPU Instruction Summary: Conversion Instructions
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This section discusses the manner in which the FPU uses the load, store and move instructions listed in
Table 3.9.

�����
���  ��7��� ��� ��� +����&

All data movement between the FPU and memory is accomplished by using one of the following instruc-
tions: 

� Load Word To Coprocessor 1 (LWC1) or Store Word From Coprocessor 1 (SWC1) instructions, 
which reference a single 32-bit word of the FPU general registers.

� Load Doubleword (LDC1) or Store Doubleword (SDC1) instructions, which reference a 64-bit dou-
bleword.

These load and store operations are unformatted; no format conversions are performed and therefore
no floating-point exceptions can occur due to these operations. 

�����
���  ��7��� ��� ��� 
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Data can also be moved directly between the FPU and the CPU by using one of the following instruc-
tions:

� Move To Coprocessor 1 (MTC1).
� Move From Coprocessor 1 (MFC1).
� Doubleword Move To Coprocessor 1 (DMTC1).
� Doubleword Move From Coprocessor 1 (DMFC1).

,���2� �� �
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ADD.fmt Floating-Point Add

SUB.fmt Floating-Point Subtract

MUL.fmt Floating-Point Multiply

DIV.fmt Floating-Point Divide

ABS.fmt Floating-Point Absolute Value

MOV.fmt Floating-Point Move

NEG.fmt Floating-Point Negate

SQRT.fmt Floating-Point Square Root

RECIP Floating-Point Reciprocal

RSQRT Floating-Point Reciprocal Square Root

Table 3.11  FPU Instruction Summary: Computational Instructions

,���2� �� �
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C.cond.fmt Floating-Point Compare

BC1T Branch on FPU True

BC1F Branch on FPU False

BC1TL Branch on FPU True Likely

BC1FL Branch on FPU False Likely

Table 3.12  FPU Instruction Summary: Compare and Branch Instructions
�� ������ / + *	 ��������
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 Like the floating-point load and store operations, these operations perform no format conversions and
never cause floating-point exceptions.

���� ����& ��� 8���7��� �������!$�

The instruction immediately following a load can use the contents of the loaded register. In such cases
the hardware interlocks, requiring additional real cycles; for this reason, scheduling load-delay slots is desir-
able, although it is not required.

���� ���������

All coprocessor loads and stores reference the following aligned data items:
� For word loads and stores, the access type is always WORD, and the low-order 2 bits of the 

address must always be 0.
� For doubleword loads and stores, the access type is always DOUBLEWORD, and the low-order 3 

bits of the address must always be 0.

2���������

Regardless of byte-numbering order (endianness) of the data, the address specifies the byte that has
the smallest byte address in the addressed field. For a big-endian system, it is the leftmost byte; for a little-
endian system, it is the rightmost byte.

�������������� 
��,������ ������!�����

Conversion instructions perform conversions between the various data formats such as single- or
double-precision, fixed- or floating-point formats.

�������������� 
������������ ������!�����

Computational instructions perform arithmetic operations on floating-point values, in registers. There are
two categories of computational instructions:

� 3-operand register-type instructions, which perform floating-point addition, subtraction, multiplica-
tion, and division.

� 2-operand register-type instructions, which perform floating-point absolute value, move, negate, 
and square-root operations.

For a detailed description of each instruction, refer to the IDT MIPS Microprocessor Family Software
Manual.

 ���!� �� ��� 
�������� ������!�����

The Branch on FPU (coprocessor unit 1) condition instructions that can test the result of the FPU
compare (C.cond) instructions. For a detailed description of each instruction, refer to the IDT MIPS Micro-
processor Family Software Manual.

�������������� 
������ *���������

The floating-point compare (C.fmt.cond) instructions interpret the contents of two FPU registers (fs, ft) in
the specified format (fmt) and arithmetically compare them. A result is determined based on the comparison
and conditions (cond) specified in the instruction. 

Table 3.13 lists the mnemonics for the compare-instruction conditions.
�� ������ / + ** ��������
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The following additions to MIPS III FPU instruction set are included in the MIPS IV FPU instruction set. 

����6�� �������������� ����
� LWXC1 - Load word indexed to Coprocessor 1.
� LDXC1 - Load doubleword indexed to Coprocessor 1.

The two Indexed Floating-Point Load instructions transfer floating-point data types from memory to the
floating-point registers using register + register addressing mode. The contents of the general register
specified by the base is added to the contents of the general register specified by the index to form a virtual
address. The contents of the word or doubleword specified by the effective address are loaded into the
floating-point register specified in the instruction. There are no indexed loads to general registers. 

The region bits (63:62) of the effective address must be supplied by the base. If the addition alters these
bits an address exception occurs. Also, if the address is not aligned, an address exception occurs.

����6�� �������������� '����
� SWXC1 - Store word indexed to Coprocessor 1.
� SDXC1 - Store doubleword indexed to Coprocessor 1.

The two Indexed Floating-Point Store instructions transfer floating-point data types from the floating-
point registers to memory using register + register addressing mode. The contents of the general register
specified by the base is added to the contents of the general register specified by the index to form a virtual
address. The contents of the floating-point register specified in the instruction is stored to the memory loca-
tion specified by the effective address.

The region bits (63:62) of the effective address must be supplied by the base. If the addition alters these
bits an address exception occurs. Also, if the address is not aligned, an address exception occurs.

�������� ���������� �������� ����������

T True F False

OR Ordered UN Unordered

NEQ Not Equal EQ Equal

OLG Ordered or Less Than or Greater Than UEQ Unordered or Equal

UGE Unordered or Greater Than or Equal OLT Ordered Less Than

OGE Ordered Greater Than ULT Unordered or Less Than

UGT Unordered or Greater Than OLE Ordered Less Than or Equal

OGT Ordered Greater Than ULE Unordered or Less Than or Equal

ST Signaling True SF Signaling False

GLE Greater Than, or Less Than or Equal NGLE Not Greater Than or Less Than or Equal

SNE Signaling Not Equal SEQ Signaling Equal

GL Greater Than or Less Than NGL Not Greater Than or Less Than

NLT Not Less Than LT Less Than

GE Greater Than or Equal NGE Not Greater Than or Equal

NLE Not Less Than or Equal LE Less Than or Equal

GT Greater Than NGT Not Greater Than

Table 3.13  Mnemonics of Compare-Instruction Conditions
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� BC1T - Branch on FP Condition True
� BC1F - Branch on FP Condition False
� BC1TL - Branch on FP Condition True Likely
� BC1FL - Branch on FP Condition False Likely

The four Branch on Floating-Point Coprocessor instructions are extensions of the branch instructions in
various prior MIPS instruction sets, with which they are upward-compatible. The BC1T and BC1F instruc-
tions are extensions of MIPS I. BC1TL and BC1FL are extensions of MIPS III. These instructions test one of
eight floating-point condition codes. If no condition code is specified, condition code bit zero is selected.
This encoding is downward-compatible with previous MIPS architectures.

The branch target address is computed from the sum of the address of the instruction in the delay slot
and the 16-bit offset, shifted left two bits and sign-extended to 64 bits. If the contents of the floating-point
condition code specified in the instruction are equal to the test value, the target address is branched to with
a delay of one instruction. If the conditional branch is not taken and the nullify delay bit in the instruction is
set, the instruction in the branch delay slot is nullified.

�������������� +������&����1'�#���!�
� MADD - Floating-Point Multiply-Add
� MSUB - Floating-Point Multiply-Subtract
� NMADD - Floating-Point Negative Multiply-Add
� NMSUB - Floating-Point Negative Multiply-Subtract

The four Floating-Point Multiply-Add/Subtract instructions compute two floating-point operations with
one instruction. Each of the instructions performs intermediate rounding.

�������������� 
������
� C.cond - Compare
� C.cond - Implies cc=0

The two Floating-Point Compare instructions are upward-compatible extensions of the floating-point
compare instructions of the MIPS I instruction set and produce a boolean result which is stored in one of the
condition codes. 

The contents of the two FP source registers specified in the instruction are interpreted and arithmetically
compared. A result is determined based on the comparison and the conditions specified in the instruction. If
one of the values is not a number and the high order bit of the condition field is set, an invalid operations
trap occurs. Comparisons are exact and neither overflow or underflow.

The implication for compiler code scheduling is that a compare instruction may be immediately followed
by a dependent floating-point conditional move instruction, but may not be immediately followed by a
dependent branch on floating-point coprocessor condition instruction or a dependent integer conditional
move instruction. This restriction applies only to the condition code specified in the 3-bit condition code
specifier of the instruction. All other condition codes are unaffected.

�������������� 
���������� +�,��
� MOVT.fmt - Floating-Point Conditional Move on condition code true
� MOVF.fmt - Floating-Point Conditional Move on condition code false
� MOVN.fmt - Floating-Point Conditional Move on register not equal to zero
� MOVZ.fmt - Floating-Point Conditional Move on register equal to zero

The four Floating-Point Conditional Move instructions are used to test a condition code or a general
register and then conditionally perform a floating-point move. The value of the floating-point condition code
specified by the 3-bit condition code specifier, or the value of the register indicated by the 5-bit general
register specifier, is compared to zero. If the result indicates that the move should be performed, the
�� ������ / + */ ��������
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 contents of the specified source register is copied into the specified destination register. All of these condi-
tional floating-point move operations are non-arithmetic. Consequently, no IEEE-754 exceptions occur as a
result of these instructions.

/�!����!��9�
� RECIP.fmt - Reciprocal Approximation
� RSQRT.fmt - Reciprocal Square Root Approximation

The Reciprocal Approximation instruction performs a reciprocal approximation on a floating-point value.
The reciprocal of the value in the floating-point source register is approximated and placed in a destination
register. The numerical accuracy of this operation is implementation-dependent, based on the rounding
mode used. 

The Reciprocal Square Root Approximation instruction performs a reciprocal square root approximation
on a floating-point value. The reciprocal of the positive square root of a value in the floating-point source
register is approximated and placed in a destination register. The numerical accuracy of this operation is
implementation-dependent, based on the rounding mode used. 

The approximation is due to the fact that neither of these instructions meets IEEE accuracy require-
ments. In both cases a small amount of precision has been sacrificed, thereby significantly reducing execu-
tion time. For example, in the case of a RECIP instruction, X/Y is computed by taking the reciprocal of Y
and multiplying that result by X. The reduced execution time of the reciprocal operation allows a RECIP
followed by a MUL (multiply) instruction to be executed faster than a single DIV (divide) instruction. The
performance difference between a RSQRT instruction and a SQRT followed by a DIV instruction is imple-
mentation-dependent. 

On the R5000, the RECIP instruction has the same latency as a DIV instruction, but a RSQRT is faster
than a SQRT followed by a RECIP.

����������!���� �����!���

Table 3.14 shows the execution-stage latencies and repeat throughput for FPU instructions. The values
assume the result of the operation is immediately used in a succeeding operation.

�� �
������ 8
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Absolute 1 1

Add 4 1

BC1T 1 1

BC1F 1 1

BC1TL 1 1

BC1FL 1 1

CEIL.w 4 1

CEIL.l 4 1

CFC1 2 1

Compare 1 1

CTC1 3 3

CVT.s.d 4 1

CVT.s.w 6 3

1 Trap on greater than 53 bits of significance
2 Trap on greater than 52 bits of significance.

Table 3.14  Floating-Point Instruction Latencies
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CVT.s.l2 6 3

CVT.d.s 4 1

CVT.d.w 4 1

CVT.d.l2 4 1

CVT.w.s 4 1

CVT.w.d 4 1

CVT.l.s 4 1

CVT.l.d 4 1

DIV.s 21 19

DIV.d 36 34

DMFC1 2 1

DMTC1 2 1

FLOOR.w 4 1

FLOOR.l 4 1

LDC1 2 2

Load 2 1

Load Indexed 3 2

LWC1 1 1

MADD.s 4 1

MADD.d 5 2

MFC1 2 1

Move 1 1

Move Conditional 1 1

MSUB.s 4 1

MSUB.d 5 2

MTC1 2 1

MUL.s 4 1

MUL.d 5 2

Negative 1 1

NMADD.s 4 1

NMADD.d 5 2

NMSUB.s 4 1

NMSUB.d 5 2

Prefetch N/A 1

Prefetch Indexed N/A 2

�� �
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1 Trap on greater than 53 bits of significance
2 Trap on greater than 52 bits of significance.

Table 3.14  Floating-Point Instruction Latencies
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RECIP.s 21 19

RECIP.d 36 34

ROUND.w 4 1

ROUND.l1 4 1

RSQRT.s 38 36

RSQRT.d 68 66

SDC1 1 1

SQRT.s 21 19

SQRT.d 36 34

Store N/A 1

Store Indexed N/A 2

Subtract 4 1

SWC1 1 1

TRUNC.w 4 1

TRUNC.l 4 1

�� �
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1 Trap on greater than 53 bits of significance
2 Trap on greater than 52 bits of significance.

Table 3.14  Floating-Point Instruction Latencies
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The R5000 processor has a dual-issue, five-stage instruction pipeline with two parallel paths, one for
integer (CPU) instructions and the other floating-point (FPU) instructions. Each stage in the CPU-instruction
path takes one PCycle (one cycle of the processor clock, which runs at a multiple of the frequency of the
system clock, SysClock). Thus, the execution of each CPU instruction takes at least five PCycles. A CPU
instruction can take longer—for example, if the required data is not in the cache, the data must be retrieved
from main memory. In the FPU-instruction path, most FPU instructions require more than one PCycle in the
execution stage. 

Once the pipeline has been filled, five instructions can be executed simultaneously. Figure 4.1 shows
the five stages of the instruction pipeline.

Figure 4.1  Instruction Pipeline Stages

��������������������
��
��
��
������������������������������������������������������������������ � � � �����

1I - Instruction Fetch, Phase One

2I - Instruction Fetch, Phase Two

1R - Register Read, Phase One

2R - Register Read, Phase Two

1A - Execution, Phase One

2A - Execution, Phase Two

1D - Data Load/Store, Phase One

2D - Data Load/Store, Phase Two

1W - Write Back, Phase One

2W - Write Back, Phase Two

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W
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PCycle
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 Figure 4.2 shows the CPU pipeline activities occurring during each ALU pipeline stage, for load, store,
and branch instructions.

Figure 4.2  Integer (CPU) Pipeline Activities
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The R5000 dual-issue mechanism allows two instructions to be dispatched per processor cycle (PCycle)
under the following condition: a floating-point ALU operation can be dispatched along with any other type of
instruction, as long as the other instruction is not another floating-point ALU operation. In this context, “any
other type of instruction” includes all integer instructions as well as floating-point loads and stores.

Figure 4.3 shows a simplified diagram of the dual issue mechanism.

Figure 4.3  Dual-Issue Mechanism, Showing CPU and FPU Pipelines
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 The events that occur in each stage are:

I - Stage

Two instructions are fetched from the instruction cache and placed in a 2-deep instruction buffer. Issue
logic determines the type of instruction and which pipeline the instruction is routed to. Also, the instruction
cache tag is checked against the page frame number (PFN) obtained from the ITLB.

/ � '����

Any required operands are fetched from the appropriate register file, and the decision is made to either
proceed or slip the instruction based on any interlock conditions. For branch instruction, the branch address
is calculated.

� � '����

The appropriate ALU begins the arithmetic, logical, or shift operation. The data virtual address is calcu-
lated for any load or store instructions. The appropriate ALU determines whether the branch condition is
true. The data cache access is started.

� � '����

The data cache access is completed. Data is shifted down and extended. Data address translation in
the DTLB completes. The virtual to physical address translation in the JTLB is performed. The data cache
tag is checked against the PFN from the DTLB or JTLB for any data cache access. 

" � '����

The processor resolves all exceptions. For register-to-register and load instructions, the result is written
back to the appropriate register file. 

��������������������$$$$������������������������

The CPU pipeline has a branch delay of one cycle and a load delay of one cycle. The one-cycle branch
delay is a result of the branch comparison logic operating during the 1A pipeline stage of the branch. This
allows the branch-target address calculated in the previous stage to be used for the instruction access in
the following 1I stage. Figure 4.4 illustrates the branch delay. 

Figure 4.4  CPU-Pipeline Branch Delay
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The completion of a load at the end of the 2D pipeline stage produces an operand that is available for
the 1A pipeline stage of the subsequent instruction following the load delay slot. Figure 4.5 shows the load
delay. 

Figure 4.5  CPU-Pipeline Load Delay
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Smooth pipeline flow is interrupted when cache misses or exceptions occur, or when data dependencies
are detected. Interruptions handled using hardware, such as cache misses, are referred to as interlocks,
while those that are handled using software are called exceptions. 

There are two types of interlocks:
� Stalls, which are resolved by halting the pipeline.
� Slips, which require one part of the pipeline to advance while another part of the pipeline is held 

static.

At each cycle, exception and interlock conditions are checked for all active instructions. Because each
exception or interlock condition corresponds to a particular pipeline stage, a condition can be traced back to
the particular instruction in the exception/interlock stage. For instance, a Reserved Instruction (RI) excep-
tion is raised in the execution (A) stage.

�����
.������� ���)�

I R A D W

Stall ITM ICM DCM

CPE

Slip LDI

MDSt

FCBusy

Exceptions ITLB IBE RI DBE

IPErr CUn NMI

BP Reset

SC DPErr

DTLB OVF

DTMod Trap

Intr

Table 4.1  Relationship of CPU-Pipeline Stage to Interlock Condition
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When an exception condition occurs, the relevant instruction and all those that follow it in the pipeline
are cancelled. Accordingly, any stall conditions and any later exception conditions that may have refer-
enced this instruction are inhibited; there is no benefit in servicing stalls for a cancelled instruction.

When an exception condition is detected, the processor aborts the instruction which caused the excep-
tion, as well as all subsequent instructions. When this instruction reaches the W stage, three events occur;

� The exception flag causes the instruction to write various CP0 registers with the exception state, 
� The current PC is changed to the appropriate exception vector address, 
� The exception bits of earlier pipeline stages are cleared.

;$������� �� �
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ITLB Instruction Translation or Address Exception

Intr External Interrupt

IBE IBus Error

RI Reserved Instruction

BP Breakpoint

SC System Call

CUn Coprocessor Unusable

IPErr Instruction Parity Error

OVF Integer Overflow

FPE FP Interrupt

ExTrap EX Stage Traps

DTLB Data Translation or Address Exception

TLBMod TLB Modified

DBE Data Bus Error

DPErr Data Parity Error

NMI Non-maskable Interrupt

Reset Reset

Table 4.2  CPU-Pipeline Exceptions
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ITM Instruction TLB Miss

ICM Instruction Cache Miss 

CPBE Coprocessor Possible Exception 

DCM Data Cache Miss 

LDI Load Interlock 

MDSt Multiply/Divide Start

FCBsy FP Busy 

Table 4.3  CPU-Pipeline Interlocks
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 This implementation allows all instructions which occurred before the exception to complete, and all
instructions which occurred after the instruction to be aborted. Hence the value of the EPC is such that
execution can be restarted. In addition, all exceptions are guaranteed to be taken in order. Figure 4.6 illus-
trates the exception detection mechanism for a Reserved Instruction (RI) exception.

Figure 4.6  CPU-Pipeline Exception Detection Mechanism
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A stall condition is used to suspend the pipeline for conditions detected after the R pipeline stage. When
a stall occurs, the processor resolves the condition and then restarts the pipeline. Once the interlock is
removed, the restart sequence begins two cycles before the pipeline resumes execution. The restart
sequence reverses the pipeline overrun by inserting the correct information into the pipeline. Figure 4.7
shows a data cache miss stall.

Figure 4.7  CPU-Pipeline Servicing of Data Cache Miss

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

 O ne 
Cycle

 One 
Cycle

 O ne  One 
Cycle Cycle

 One 
Cycle

Exception

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W
Exception
Vector Address

Instruction
Aborted

1 2 3 4

I R A D W W W W W

I R A D D WD D D

I R A A WDA A A

I R R WDAR R R

1 - Detect cache miss
2 - Start moving dirty cache line data to write buffer
3 - Fetch first doubleword into cache and restart pipeline
4 - Load remainder of cache line into cache 
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 The data cache miss is detected in the D stage of the pipeline. If the cache line to be replaced is dirty,
the W bit is set and data is moved to the internal write buffer in the next cycle. The squiggly line in Figure
4.7 indicates the memory access. Once the memory is accessed and the first doubleword of data is
returned, the pipeline is restarted. The remainder of the cache line is returned in subsequent cycles. The
dirty data in the write buffer is written out to memory after the cache-line fill is completed.

��������������������
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During the 2R and 1A pipeline stages, internal logic determines whether it is possible to start the current
instruction in this cycle. If all required source operands are available, as well as all hardware resources
needed to complete the operation, the instruction is issued. Otherwise, the instruction slips. Slipped cycles
are retried on subsequent cycles until they are issued. Pipeline stages D and W advance normally during
slips in an attempt to resolve the conflict. NOPs are automatically inserted into the bubbles which are
created in the pipeline. Instructions caused by “branch likely” instructions, ERET, or exceptions do not
cause slips.

Figure 4.8 shows how an instruction can slip during an instruction-cache miss.

Figure 4.8  Slips During Instruction-Cache Miss

Instruction-cache misses are detected in the R-stage of the pipeline. Slips are detected in the A stage.
Instruction-cache misses never require a writeback operation because writes are not allowed to the instruc-
tion cache. Unlike the data cache, early restart, where the pipeline is restarted after only a portion of the
cache-line fill has occurred, is not implemented for the instruction cache. The requested cache line is
loaded into the instruction cache in its entirety before the pipeline is restarted.

1 2 3
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D W

D W

WR A D

A D W

WR A D

I R A

WDI R A

1 - Detect cache miss
2 - Start moving dirty cache line data to write buffer
3 - Fetch first doubleword into cache and restart pipeline
4 - Load remainder of cache line into cache 
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The processor has a write buffer which improves the performance of write operations to external
memory. All write cycles use the write buffer. The write buffer holds up to four 64-bit address and data pairs. 

On a cache miss requiring a write-back, the entire buffer is used for the write-back data and allows the
processor to proceed in parallel with the memory update. For uncached and write-through stores, the write
buffer decouples the CPU from the write to memory. If the write buffer is full, additional stores are stalled
until there is room for them in the write buffer. 
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This section describes the integer exception processing done by the CPU, including an explanation of
exception processing, followed by the format and use of each CPU exception register. FPU exception
processing is described in a later chapter.

The processor receives exceptions from a number of sources, including translation lookaside buffer
(TLB) misses, arithmetic overflows, I/O interrupts, and system calls. When the CPU detects one of these
exceptions, the normal sequence of instruction execution is suspended and the processor enters Kernel
mode. The processor then disables interrupts and forces execution of a software exception processor
(called a handler) located at a fixed address. The handler typically saves the context of the processor,
including the contents of the program counter, the current operating mode (User or Supervisor), and the
status of the interrupts (enabled or disabled). This context is saved so it can be restored when the exception
has been serviced.

When an exception occurs, the CPU loads the Exception Program Counter (EPC) register with a loca-
tion where execution can restart after the exception has been serviced. The restart location in the EPC
register is the address of the instruction that caused the exception or, if the instruction was executing in a
branch-delay slot, the address of the branch instruction immediately preceding the delay slot.

....////����������������������������������������������������������������� � � � ������������    ������������������������

The System Control Coprocessor (CP0) registers are used in exception processing. Table 5.1 lists these
registers and their unique register numbers. For instance, the ECC register is register number 26. The
remaining CP0 registers are used in memory management and are described in Chapter 7.

Software examines the CP0 registers during exception processing to determine the cause of the excep-
tion and the state of the CPU at the time the exception occurred. The registers in Table 5.1 are used in
exception processing, and are described in the sections that follow.
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Context R/W 4

BadVAddr (Bad Virtual Address) R 8

Count R/W 9

Compare register W1 11

Status R/W 12

Cause R/W 13

EPC (Exception Program Counter) R/W 14

XContext R/W 20 

ECC R/W 26

CacheErr (Cache Error and Status) R 27

ErrorEPC (Error Exception Program Counter) R/W 30

1  For diagnostics, this register is R/W.

Table 5.1  CPO Exception Processing Registers
��
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 CPU general registers are interlocked and the result of an instruction can normally be used by the next
instruction; if the result is not available right away, the processor stalls until it is available. CP0 registers and
the TLB are not interlocked, however; there may be some delay before a value written by one instruction is
available to following instructions. This delay may need to be explicitly coded in software. 
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The Context register is a read/write register containing the pointer to an entry in the page table entry
(PTE) array; this array is an operating system data structure that stores virtual-to-physical address transla-
tions. When there is a TLB miss, the CPU loads the TLB with the missing translation from the PTE array.
Normally, the operating system uses the Context register to address the current page map which resides in
the kernel-mapped segment, kseg3. The Context register duplicates some of the information provided in
the BadVAddr register, but the information is arranged in a form that is more useful for a software TLB
exception handler. Figure 5.1 shows the format of the Context register; Table 5.2 describes the Context
register fields. 

Figure 5.1  Context Register Format

The 19-bit BadVPN2 field contains bits 31:13 of the virtual address that caused the TLB miss; bit 12 is
excluded because a single TLB entry maps to an even-odd page pair. For a 4-Kbyte page size, this format
can directly address the pair-table of 8-byte PTEs. For other page and PTE sizes, shifting and masking this
value produces the appropriate address.

 �� -������ ������� /������� � ��-����� �:�

The Bad Virtual Address register (BadVAddr) is a read-only register that displays the most recent virtual
address that caused one of the following exceptions: TLB Invalid, TLB Modified, TLB Refill, Virtual Coher-
ency Data Access, or Virtual Coherency Instruction Fetch. Figure 5.2 shows the format of the BadVAddr
register. The BadVAddr register does not save any information for bus errors, since bus errors are not
addressing errors.

(���2 �>= �� �
������

BadVPN2 R This field is written by hardware on a miss. It contains the virtual page number 
(VPN) of the most recent virtual address that did not have a valid translation.

PTEBase R/W This field is for use by the operating system. It is normally written with a value 
that allows the operating system to use the Context register as a pointer into 
the current PTE array in memory.

Table 5.2  Context Register Fields

23 22 4 331 0

9

PTEBase BadVPN2

19 4

0

Context Register 

23 22 4 363 0

41

PTEBase BadVPN2

19 4

0

32-bit
Mode

64-bit
Mode
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Figure 5.2  BadVAddr Register Format
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The Count register acts as a timer, incrementing at a constant rate—half the maximum instruction issue
rate—whether or not an instruction is executed, retired, or any forward progress is made through the pipe-
line. This register can be read or written. It can be written for diagnostic purposes or system initialization; for
example, to synchronize processors. Figure 5.3 shows the format of the Count register.

Figure 5.3  Count Register Format
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The Compare register acts as a timer (see also the Count register); it maintains a stable value that does
not change on its own. When the value of the Count register equals the value of the Compare register, inter-
rupt bit IP(7) in the Cause register is set. This causes an interrupt as soon as the interrupt is enabled.

Writing a value to the Compare register, as a side effect, clears the timer interrupt. For diagnostic
purposes, the Compare register is a read/write register. In normal use however, the Compare register is
write-only. Figure 5.4 shows the format of the Compare register.

Figure 5.4  Compare Register Format
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The Status register (SR) is a read/write register that contains the operating mode, interrupt enabling,
and the diagnostic states of the processor. The following list describes the more important Status register
fields; Figures 34 and 35 show the format of the entire register, including descriptions of the fields. Some of
the important fields include:

� The 8-bit Interrupt Mask (IM) field controls the enabling of eight interrupt conditions. Interrupts must 
be enabled before they can be asserted, and the corresponding bits are set in both the Interrupt 
Mask field of the Status register and the Interrupt Pending field of the Cause register. IM[1:0] are 
software interrupt masks, while IM[7:2] correspond to Int[5:0].

� The 4-bit Coprocessor Usability (CU) field controls the usability of 4 possible coprocessors. 
Regardless of the CU0 bit setting, CP0 is always usable in Kernel mode. For all other cases, an 
access to an unusable coprocessor causes an exception.

BadVAddr Register
31 0

32

Bad Virtual Address

63 0

64

Bad Virtual Address

32-bit
Mode

64-bit
Mode

Count Register
31 0

32

 Count

Compare Register
31 0

32

Compare
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� The 9-bit Diagnostic Status (DS) field is used for self-testing, and checks the cache and virtual 

memory system.
� The Reverse-Endian (RE) bit, bit 25, reverses the endianness of the machine. The processor can 

be configured as either little-endian or big-endian at system reset; reverse-endian selection is used 
in Kernel and Supervisor modes, and in the User mode when the RE bit is 0. Setting the RE bit to 1 
inverts the User mode endianness.

Figure 5.5 shows the format of the Status register. Table 5.3 describes the Status register fields. Figure
5.6 and Table 5.4 provide additional information on the Diagnostic Status (DS) field. All bits in the DS field
except TS are readable and writable.

Figure 5.5  Status Register

(���2 �� �
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CU Controls the usability of each of the four coprocessor unit numbers. CP0 is always usable when in Kernel 
mode, regardless of the setting of the CU0 bit. Setting CU3 enables the MIPS IV instruction set,
1 → usable
0 → unusable

0 Reserved. Set to 0.

FR Enables additional floating-point registers
0 → 16 registers
1 → 32 registers

RE Reverse-Endian bit, valid in User mode.

DS Diagnostic Status field (see Figure 5.6).

IM Interrupt Mask: controls the enabling of each of the external, internal, and software interrupts. An interrupt 
is taken if interrupts are enabled, and the corresponding bits are set in both the Interrupt Mask field of the 
Status register and the Interrupt Pending field of the Cause register. 
0 → disabled
1→ enabled

KX Enables 64-bit addressing in Kernel mode. The extended-addressing TLB refill exception is used for TLB 
misses on kernel addresses.
0 → 32−bit
1 → 64−bit

SX Enables 64-bit addressing and operations in Supervisor mode. The extended-addressing TLB refill 
exception is used for TLB misses on supervisor addresses.
0 → 32−bit
1 → 64−bit

UX Enables 64-bit addressing and operations in User mode. The extended-addressing TLB refill exception is 
used for TLB misses on user addresses.
0 → 32−bit
1 → 64−bit

KSU Mode bits
102 → User
012 → Supervisor
002 → Kernel

Table 5.3  Status Register Fields  (Part 1 of 2)

Status Register

CU

 4

IM7 - IM0

31 1528 27 25 24 16

9

8 7 5 4 3 2 1 0

KSU ERL EXL IE

8 2 1 1 1

(Cu3:.Cu0)
RE

26

1

DS KX UX

6

SX

1 1 111

 0 FR
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Figure 5.6  Status Register DS Field

Fields of the Status register set the following modes and access states:
� Interrupt Enable: Interrupts are enabled by the settings of the IM bits when all of the following con-

ditions are true:
– IE = 1
– EXL = 0
– ERL = 0
� Operating Modes: The following CPU Status register bit settings are required for User, Kernel, and 

Supervisor modes.
– User Mode: KSU = 102, EXL = 0, and ERL = 0.
– Supervisor Mode: KSU = 012, EXL = 0, and ERL = 0.
– Kernel Mode: KSU = 002, or EXL = 1, or ERL = 1. 

ERL Error Level; set by the processor when Reset, Soft Reset, NMI, or Cache Error exception are taken.
0 → normal
1 → error

EXL Exception Level; set by the processor when any exception other than Reset, Soft Reset, NMI, or Cache 
Error exception are taken.
0 → normal
1 → exception

IE Interrupt Enable
0 → disable interrupts
1 → enables interrupts

%�� �� �
������

BEV Controls the location of TLB refill and general exception vectors.
0 → normal
1→ bootstrap

0 Reserved. Must be written as zeroes. Returns zeroes when read.

SR 1→ Indicates that a soft reset or NMI has occurred.

CH Hit (tag match and valid state) or miss indication for last CACHE Hit Invalidate, Hit Write Back Invalidate, Hit 
Write Back, Hit Set Virtual, or Create Dirty Exclusive for a secondary cache.
0 → miss
1 → hit

CE Contents of the ECC register set or modify the check bits of the caches when CE = 1; see description of the 
ECC register.

DE Specifies that cache parity or ECC errors cannot cause exceptions.
0 → parity/ECC remain enabled
1 → disables parity/ECC

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 5.4  Status Register Diagnostic Status Bits

(���2 �� �
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Table 5.3  Status Register Fields  (Part 2 of 2)

Diagnostic Status Field
24 22 21 20 19 18 17 16

TS SR CH CE DE

2 1 1 1 1 1 1

BEV

23

1

0 0
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� 32- and 64-bit Modes: The following CPU Status register bit settings select 32- or 64-bit operation 

for User, Kernel, and Supervisor operating modes. Enabling 64-bit operation permits the execution 
of 64-bit opcodes and translation of 64-bit addresses. 64-bit operation for User, Kernel and Supervi-
sor modes can be set independently.

– 64-bit addressing for Kernel mode is enabled when KX = 1. 64-bit operations are always valid in
Kernel mode.

– 64-bit addressing and operations are enabled for Supervisor mode when SX = 1.
– 64-bit addressing and operations are enabled for User mode when UX = 1.

Access to the kernel address space is allowed when the processor is in Kernel mode. Access to the
supervisor address space is allowed when the processor is in the Kernel or Supervisor operating mode.
Access to the user address space is allowed in any of the three operating modes.

The contents of the Status register are undefined at reset, except for the ERL and BEV bits, which are
set to 1. The SR bit distinguishes between the Reset exception and the Soft Reset exception (caused either
by Reset* or Nonmaskable Interrupt [NMI]).
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The 32-bit read/write Cause register describes the cause of the most recent exception. Figure 5.7 shows
the fields of this register. Table 5.5 describes the Cause register fields. All bits in the Cause register, with the
exception of the IP(1:0) bits, are read-only; IP(1:0) are used for software interrupts.

Figure 5.7  Cause Register Format
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BD Indicates whether the last exception taken occurred in a branch-delay slot.
1 → delay slot
0 → normal

CE Coprocessor unit number referenced when a Coprocessor Unusable exception is taken.

IP Indicates an interrupt is pending.
1 → interrupt pending
0 → no interrupt

ExcCode Exception code field (see Table 5.6)

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 5.5  Cause Register Fields

;$�������
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0 Int Interrupt

1 Mod TLB modification exception

2 TLBL TLB exception (load or instruction fetch)

Table 5.6  Cause Register ExcCode Fields  (Part 1 of 2)

Cause Register

 1

IP7

31 1527 16

2 12

8 7 6 2 0

8 1 251

0
Exc

Code

1

00

282930

BD 0 CE IP0

16
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The Exception Program Counter (EPC) is a read/write register that contains the address at which
processing resumes after an exception has been serviced. For synchronous exceptions, the EPC register
contains either:

� the virtual address of the instruction that was the direct cause of the exception, or
� the virtual address of the immediately preceding branch or jump instruction (when the instruction is 

in a branch-delay slot, and the Branch Delay bit in the Cause register is set).

The processor does not write to the EPC register when the EXL bit in the Status register is set to a 1.
Figure 5.8 shows the format of the EPC register.

Figure 5.8  EPC Register Format

<
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The read/write XContext register contains a pointer to an entry in the page table entry (PTE) array, an
operating system data structure that stores virtual-to-physical address translations. When there is a TLB
miss, the operating system software loads the TLB with the missing translation from the PTE array. The
XContext register duplicates some of the information provided in the BadVAddr register, and puts it in a
form useful for a software TLB exception handler. The XContext register is for use with the XTLB refill
handler, which loads TLB entries for references to a 64-bit address space, and is included solely for oper-

3 TLBS TLB exception (store)

4 AdEL Address error exception (load or instruction fetch)

5 AdES Address error exception (store)

6 IBE Bus error exception (instruction fetch)

7 DBE Bus error exception (data reference: load or store)

8 Sys Syscall exception

9 Bp Breakpoint exception

10 RI Reserved instruction exception

11 CpU Coprocessor Unusable exception

12 Ov Arithmetic Overflow exception

13 Tr Trap exception

14 ---- Reserved

15 FPE Floating-Point exception

16–31 –-- Reserved

;$�������
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Table 5.6  Cause Register ExcCode Fields  (Part 2 of 2)

EPC Register
31 0

EPC

32
63 0

EPC

64

32-bit
Mode

64-bit
Mode
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 ating system use. The operating system sets the PTE base field in the register, as needed. Normally, the
operating system uses the Context register to address the current page map, which resides in the kernel-
mapped segment kseg3. Figure 5.9 shows the format of the XContext register; Table 5.7 describes the
XContext register fields. 

Figure 5.9  XContext Register Format

The 27-bit BadVPN2 field has bits 39:13 of the virtual address that caused the TLB miss; bit 12 is
excluded because a single TLB entry maps to an even-odd page pair. For a 4-Kbyte page size, this format
may be used directly to address the pair-table of 8-byte PTEs. For other page and PTE sizes, shifting and
masking this value produces the appropriate address.
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The 8-bit Error Checking and Correcting (ECC) register reads or writes primary-cache data parity bits for
cache initialization, cache diagnostics, or cache error processing. (Tag ECC and parity are loaded from and
stored to the TagLo register.) Figure 5.10 shows the format of the ECC register; Table 5.8 describes the
register fields.

The ECC register is loaded by the Data Cache Index Load Tag operation. The content of the ECC
register is:

� written into the primary data cache on store instructions (instead of the computed parity) when the 
CE bit of the Status register is set.

� substituted for the computed instruction parity for the Instruction Cache Line Fill operation.

Figure 5.10  ECC Register Format

(���2 �� �
������

BadVPN2 The Bad Virtual Page Number/2 field is written by hardware on a miss. It contains the VPN of the 
most recent invalidly translated virtual address.

R The Region field contains bits 63:62 of the virtual address.
002 = user
012 = supervisor
112 = kernel. 

PTEBase The Page Table Entry Base read/write field is normally written with a value that allows the operating 
system to use the Context register as a pointer into the current PTE array in memory.

Table 5.7  XContext Register Fields

(���2 �� �
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ECC An 8-bit field specifying the parity bits read from or written to a primary cache.

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 5.8  ECC Register Fields

XContext Register 
31 30 4 363 0

31

PTEBase BadVPN2

27 4

0R

2

33 32

ECC Register31 

24 8

8 07

0 ECC
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The 32-bit read-only CacheErr register processes ECC errors in the secondary cache and parity errors
in the primary cache. The register holds cache index and status bits that indicate the source and nature of
the error; it is loaded when a Cache Error exception is taken. Parity errors cannot be corrected. When a
read response (cached or uncached) returns with bad parity, this exception is also taken.

Figure 5.11 shows the format of the CacheErr register and Table 5.9 describes the CacheErr register fields.

Figure 5.11  CacheErr Register Format
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The read/write ErrorEPC register is similar to the EPC register, except that ErrorEPC is used on parity-
error exceptions. It is also used to store the program counter (PC) on Reset, Soft Reset, and nonmaskable
interrupt (NMI) exceptions. The ErrorEPC register contains the virtual address at which instruction
processing can resume after servicing an error. This address can be: 

� the virtual address of the instruction that caused the exception
� the virtual address of the immediately preceding branch or jump instruction, when this address is in 

a branch-delay slot. 

There is no branch-delay slot indication for the ErrorEPC register. Figure 5.12 shows the format of the
ErrorEPC register.

(���2 �� �
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ER Type of reference
0 → instruction
1 → data

EC Cache level of the error
0 → primary
1 → reserved

ED Indicates if a data field error occurred
0 → no error
1 → error

ET Indicates if a tag field error occurred
0 → no error
1 → error

EE This bit is set if the error occurred on the SysAD bus.

EB This bit is set if a data error occurred in addition to the instruction error (indicated by the remainder 
of the bits). If so, this requires flushing the data cache after fixing the instruction error.

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 5.9  CacheErr Register Fields

CacheErr Register
31 

 0

19

2 0

ER 0

1

30 28 25

1

24 23 22 21

0

1 1

0

3

0EBEE

111

ETEDEC

1 1

262729

1

0
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Figure 5.12  ErrorEPC Register Format
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When the EXL bit in the Status register is 0, either User, Supervisor, or Kernel operating mode is speci-
fied by the KSU bits in the Status register. When the EXL bit is a 1, the processor is in Kernel mode. When
the processor takes an exception, the EXL bit is set to 1, which means the system is in Kernel mode. After
saving the appropriate state, the exception handler typically changes KSU to Kernel mode and resets the
EXL bit back to 0. When restoring the state and restarting, the handler restores the previous value of the
KSU field and sets the EXL bit back to 1. Returning from an exception also resets the EXL bit to 0.

'����� 8���7��� ���!����� ��� -������ 26!�������

In the following sections, sample hardware processes for various exceptions are shown, together with
the servicing required by the handler (software).

/����

Figure 5.13 shows the Reset exception process.

Figure 5.13  Reset Exception Processing
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Figure 5.14 shows the Cache Error exception process.
 

Figure 5.14  Cache Error Exception Processing

ErrorEPC Register31 0

ErrorEPC

32
63 0

ErrorEPC

64

32-bit
Mode

64-bit
Mode

T: undefined
Random ¨ TLBENTRIES–1
Wired ¨ 0
Config ¨ 0 || EC || EP || 00000000 || BE || 110 || 010 || 1 || 1 || 0 || undefined

 || DC || undefined6

ErrorEPC ¨ PC
SR ¨ SR31:23 || 1 || 0 || 0 || SR19:3 || 1 || SR1:0
PC ¨ 0xFFFF FFFF BFC0 0000

T: ErrorEPC ¨ PC 
CacheErr ¨ ER || EC || ED || ET || ES || EE || ED || 025 
SR ¨ SR31:3 || 1 ||SR1:0
if SR22 = 1 then   /*What is the BEV bit setting*/
  PC ¨ 0xFFFF FFFF BFC0 0200 + 0x100 /*Access boot-PROM area*/
else
  PC ¨ 0xFFFF FFFF A000 0000 + 0x100 /*Access main memory area*/
endif
�� ������ � + *	 ��������
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Figure 5.15 shows the Soft Reset and NMI exception process.
 

Figure 5.15  Soft Reset and NMI Exception Processing

>������ 26!�������

Figure 5.16 shows the process used for exceptions, other than Reset, Soft Reset, NMI, and Cache
Error.

Figure 5.16  General Exception Processing

26!������ -�!��� ��!������

The Reset, Soft Reset, and NMI exceptions are always vectored to location
0xFFFF_FFFF_BFC0_0000. Addresses for all other exceptions are a combination of a vector offset and a
base address. The vector associated with a general exception is called the common exception vector; its
base address is determined by the BEV bit of the Status register. 

Table 5.10 shows the 64-bit-mode vector base address for all exceptions; the 32-bit mode address is the
low-order 32 bits (for instance, the base address for NMI in 32-bit mode is 0xBFC0 0000). Table 5.11 shows
the vector offset added to the base address to create the exception address. When BEV = 0, the vector
base address for the cache error exception changes from kseg0 (0xFFFF FFFF 8000 0000) to kseg1
(0xFFFF FFFF A000 0000). This change indicates that the caches are initialized and that the vector can be
cached. When BEV = 1, the vector base for the cache error exception is 0xFFFF FFFF BFC0 0200. This is
an uncached and unmapped space, allowing the exception to bypass the cache and the TLB. 

%;1 %�� ��			 .
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0 0xFFFF FFFF 8000 0000

1 0xFFFF FFFF BFC0 0200

Table 5.10  Exception Vector Base Address

T: ErrorEPC ¨ PC  
SR ¨ SR31:23 || 1 || 0 || 1 || SR19:3 || 1 || SR1:0
PC ¨ 0xFFFF FFFF BFC0 0000

T:  Cause ¨ BD || 0 || CE || 012 || Cause15:8 || ExcCode || 02 
if SR1 = 0 then / * System is in User or Supervisor mode with no current exception */

  EPC ¨ PC      
endif
SR ¨ SR31:2 || 1 || SR0 
if SR22 = 1 then
  PC ¨ 0xFFFF FFFF BFC0 0200 + vector /*access to uncached space*/
else
  PC ¨ 0xFFFF FFFF 8000 0000 + vector /*access to cached space*/
endif
�� ������ � + ** ��������
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Table 5.12 describes exceptions in the order of highest to lowest priority. While more than one exception
can occur for a single instruction, only the exception with the highest priority is reported. In generally, the
exceptions described in the following sections are first processed by hardware, then serviced by software. 





����



������������2222����������������				����������������������������������������������������� � � � 2222������������				������������������������������������������������������������������������    ����
������������....////��������������������������������

/���� 26!������

Cause

The Reset exception occurs when the ColdReset* signal is asserted and then deasserted. This excep-
tion is not maskable.

Processing

The CPU provides a special interrupt vector for this exception:

;$������� ��			 .
���  �
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TLB refill, EXL = 0 0x000

XTLB refill, EXL = 0 
(X = 64-bit TLB)

0x080

Cache Error 0x100

Others 0x180

Reset, Soft Reset, NMI none

Table 5.11  Exception Vector Offsets

Reset (highest priority)

Soft Reset

Nonmaskable Interrupt (NMI)

Address error –– Instruction fetch

TLB refill –– Instruction fetch

TLB invalid –– Instruction fetch

Cache error –– Instruction fetch 

Bus error –– Instruction fetch

Integer overflow, Trap, System Call, Breakpoint, Reserved Instruction, Coprocessor 
Unusable, or Floating-Point Exception

Address error –– Data access

TLB refill –– Data access

TLB invalid –– Data access

TLB modified –– Data write

Cache error –– Data access 

Bus error –– Data access

Interrupt (lowest priority)

Table 5.12  Exception Priority Order
�� ������ � + *� ��������
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� location 0xFFFF_FFFF_BFC0_0000 in 64-bit mode.

The Reset vector resides in unmapped and uncached CPU address space, so the hardware need not
initialize the TLB or the cache to process this exception. It also means the processor can fetch and execute
instructions while the caches and virtual memory are in an undefined state. The contents of all registers in
the CPU are undefined when this exception occurs, except for the following register fields:

� The Random register is initialized to the value of its upper bound.
� The Wired register is initialized to 0.
� Some Config register bits are initialized from the boot-time mode stream.
� In the Status register, SR is cleared to 0, and ERL and BEV are set to 1. All other bits are unde-

fined.

See Figure 5.13 for additional information on this process.

Servicing

The Reset exception is serviced by:
� initializing all processor registers, coprocessor registers, caches, and the memory system
� performing diagnostic tests
�  bootstrapping the operating system

'�
� /���� 26!������

Cause

The Soft Reset exception occurs in response to assertion of the Reset* input signal. Execution begins at
the Reset vector when the Reset* signal is negated. The Soft Reset exception is not maskable. 

Processing

The Reset vector is used for this exception. The Reset vector is located within uncached and unmapped
address space. Hence, the cache and TLB need not be initialized in order to process the exception.
Regardless of the cause, when this exception occurs the SR bit of the Status register is set, distinguishing
this exception from a Reset exception. Cache and memory states are undefined when the Soft Reset
exception occurs because the Soft Reset can abort cache and bus operations.

The primary purpose of the Soft Reset exception is to reinitialize the processor after a fatal error during
normal operation. Unlike an NMI, all cache and bus state machines are reset by this exception. When the
Soft Reset exception occurs, all register contents are preserved with the following exceptions:

� ErrorEPC register, which contains the restart PC.
� ERL, BEV, and SR bits of the Status Register, each of which is set to 1.

See Figure 5.15 for additional information on this process.

Servicing

 The Soft Reset exception is serviced by saving the current processor state for diagnostic purposes, and
reinitializing for the Reset exception. 

=�� +��$�#�� ��������� �=+�� 26!������

Cause

The Non Maskable Interrupt exception occurs in response to the falling edge of the NMI signal, or an
external write to the Int*[6] bit of the Interrupt Register. The NMI interrupt is not maskable and occurs
regardless of the settings of the EXL, ERL, and IE bits in the Status Register.
�� ������ � + */ ��������
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 Processing

The Reset vector is used for this exception. The Reset vector is located within uncached and unmapped
address space. Hence, the cache and TLB need not be initialized in order to process the exception.
Regardless of the cause, when this exception occurs the SR bit of the Status register is set, distinguishing
this exception from a Reset exception. Because the NMI can occur in the midst of another exception, it is
typically not possible to continue program execution after servicing an NMI. An NMI exception is taken only
at instruction boundaries. The state of the caches and memory system are preserved. 

When the NMI exception occurs, all register contents are preserved with the following exceptions:
� ErrorEPC register, which contains the restart PC.
� ERL, BEV, and SR bits of the Status Register, each of which is set to 1.

See Figure 5.15 for additional information on this process.

Servicing

 The NMI exception is serviced by saving the current processor state for diagnostic purposes, and reini-
tializing for the Reset exception. 

��������2���� 26!������

Cause

The Address Error exception occurs when an attempt is made to execute one of the following:
� load or store a doubleword that is not aligned on a doubleword boundary
� load, fetch, or store a word that is not aligned on a word boundary
� load or store a halfword that is not aligned on a halfword boundary
� reference the kernel address space from User or Supervisor mode
� reference the supervisor address space from User mode

This exception is not maskable.

Processing

The common exception vector is used for this exception. The AdEL or AdES code in the Cause register
is set, indicating whether the instruction caused the exception with an instruction reference, load operation,
or store operation shown by the EPC register and BD bit in the Cause register.

When this exception occurs, the BadVAddr register retains the virtual address that was not properly
aligned or that referenced protected address space. The contents of the VPN field of the Context and
EntryHi registers are undefined, as are the contents of the EntryLo register.

The EPC register contains the address of the instruction that caused the exception, unless this instruc-
tion is in a branch-delay slot. If it is in a branch-delay slot, the EPC register contains the address of the
preceding branch instruction and the BD bit of the Cause register is set as indication.

Servicing

The process executing at the time is handed a segmentation violation signal. This error is usually fatal to
the process incurring the exception.

�� 26!�������

Three types of TLB exceptions can occur:
� TLB Refill occurs when there is no TLB entry that matches an attempted reference to a mapped 

address space.
� TLB Invalid occurs when a virtual address reference matches a TLB entry that is marked invalid.
� TLB Modified occurs when a store operation virtual address reference to memory matches a TLB 

entry which is marked valid but is not dirty (the entry is not writable).
�� ������ � + *0 ��������
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 The following three sections describe these TLB exceptions.

�� /�
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Cause

The TLB refill exception occurs when there is no TLB entry to match a reference to a mapped address
space. This exception is not maskable.

Processing

There are two special exception vectors for this exception; one for references to 32-bit address spaces,
and one for references to 64-bit address spaces. The UX, SX, and KX bits of the Status register determine
whether the user, supervisor or kernel address spaces referenced are 32-bit or 64-bit spaces. All refer-
ences use these vectors when the EXL bit is set to 0 in the Status register. This exception sets the TLBL or
TLBS code in the ExcCode field of the Cause register. This code indicates whether the instruction, as
shown by the EPC register and the BD bit in the Cause register, caused the miss by an instruction refer-
ence, load operation, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers hold the virtual
address that failed address translation. The EntryHi register also contains the ASID from which the transla-
tion fault occurred. The Random register normally contains a valid location in which to place the replace-
ment TLB entry. The contents of the EntryLo register are undefined. The EPC register contains the address
of the instruction that caused the exception, unless this instruction is in a branch-delay slot, in which case
the EPC register contains the address of the preceding branch instruction and the BD bit of the Cause
register is set.

Servicing

To service this exception, the contents of the Context or XContext register are used as a virtual address
to fetch memory locations containing the physical page frame and access control bits for a pair of TLB
entries. The two entries are placed into the EntryLo0/EntryLo1 register; the EntryHi and EntryLo registers
are written into the TLB.

It is possible that the virtual address used to obtain the physical address and access control information
is on a page that is not resident in the TLB. This condition is processed by allowing a TLB refill exception in
the TLB refill handler. This second exception goes to the common exception vector because the EXL bit of
the Status register is set.

�� ��,���� 26!������

Cause

The TLB invalid exception occurs when a virtual address reference matches a TLB entry that is marked
invalid (TLB valid bit cleared). This exception is not maskable.

Processing

The common exception vector is used for this exception. The TLBL or TLBS code in the ExcCode field
of the Cause register is set. This indicates whether the instruction, as shown by the EPC register and BD bit
in the Cause register, caused the miss by an instruction reference, load operation, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers contain the virtual
address that failed address translation. The EntryHi register also contains the ASID from which the transla-
tion fault occurred. The Random register normally contains a valid location in which to put the replacement
TLB entry. The contents of the EntryLo register is undefined.

The EPC register contains the address of the instruction that caused the exception unless this instruc-
tion is in a branch-delay slot, in which case the EPC register contains the address of the preceding branch
instruction and the BD bit of the Cause register is set.
�� ������ � + *� ��������
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 Servicing

A TLB entry is typically marked invalid when one of the following is true:
� a virtual address does not exist
� the virtual address exists, but is not in main memory (a page fault)
� a trap is desired on any reference to the page (for example, to maintain a reference bit)

After servicing the cause of a TLB Invalid exception, the TLB entry is located with TLBP (TLB Probe),
and replaced by an entry with that entry’s Valid bit set.

�� +���
��� 26!������

Cause

The TLB modified exception occurs when a store operation virtual address reference to memory
matches a TLB entry that is marked valid but is not dirty and therefore is not writable. This exception is not
maskable.

Processing

The common exception vector is used for this exception, and the Mod code in the Cause register is set.
When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers contain the virtual
address that failed address translation. The EntryHi register also contains the ASID from which the transla-
tion fault occurred. The contents of the EntryLo register is undefined.

The EPC register contains the address of the instruction that caused the exception unless that instruc-
tion is in a branch-delay slot, in which case the EPC register contains the address of the preceding branch
instruction and the BD bit of the Cause register is set.

Servicing

The kernel uses the failed virtual address or virtual page number to identify the corresponding access
control information. The page identified may or may not permit write accesses; if writes are not permitted, a
write protection violation occurs.

If write accesses are permitted, the page frame is marked dirty/writable by the kernel in its own data
structures. The TLBP instruction places the index of the TLB entry that must be altered into the Index
register. The EntryLo register is loaded with a word containing the physical page frame and access control
bits (with the D bit set), and the EntryHi and EntryLo registers are written into the TLB.


�!�� 2���� 26!������

Cause

The Cache Error exception occurs when either a primary or secondary cache parity error is detected.
This exception is maskable by the DE bit in the Status Register. When a read response (cached or
uncached) returns with bad parity, this exception is also taken.

Processing

The processor sets the ERL bit in the Status register, saves the exception restart address in the
ErrorEPC register, and then transfers the information to one of the following special vectors in uncached
space:

�  If BEV = 0, the vector is 0xFFFF FFFF A000 0100.
�  If BEV = 1, the vector is 0xFFFF FFFF BFC0 0300.

See Figure 5.14 for additional information on this process.
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 Servicing

All errors should be logged. To correct parity errors the system uses the CACHE instruction to invalidate
the cache block, overwrite the old data through a cache miss, and resumes execution with an ERET. Other
errors are not correctable and are likely to be fatal to the current process.

 �� 2���� 26!������

Cause

A Bus Error exception is raised by board-level circuitry for events such as bus time-out, backplane bus
parity errors, and invalid physical-memory addresses or access types. This exception is not maskable. A
Bus Error exception occurs when a cache-miss refill, uncached reference, or an unbuffered write occurs
synchronously; a Bus Error exception resulting from a buffered write transaction must be reported using the
general interrupt mechanism.

Processing

The common interrupt vector is used for a Bus Error exception. The IBE or DBE code in the ExcCode
field of the Cause register is set, signifying whether the instruction (as indicated by the EPC register and BD
bit in the Cause register) caused the exception by an instruction reference, load operation, or store opera-
tion.

The EPC register contains the address of the instruction that caused the exception, unless it is in a
branch-delay slot, in which case the EPC register contains the address of the preceding branch instruction
and the BD bit of the Cause register is set.

Servicing

The physical address at which the fault occurred can be computed from information available in the CP0
registers:

� If the IBE code in the Cause register is set (indicating an instruction fetch reference), the virtual 
address is contained in the EPC register. 

� If the DBE code is set (indicating a load or store reference), the instruction that caused the excep-
tion is located at the virtual address contained in the EPC register (or 4+ the contents of the EPC 
register if the BD bit of the Cause register is set). 

The virtual address of the load and store reference can then be obtained by interpreting the instruction.
The physical address can be obtained by using the TLBP instruction and reading the EntryLo register to
compute the physical page number. The process executing at the time of this exception is handed a bus
error signal, which is usually fatal.

������� *,��
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Cause

An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD, DADDI or DSUB instruction
results in a 2’s complement overflow. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the OV code in the Cause register is set.
The EPC register contains the address of the instruction that caused the exception unless the instruction is
in a branch-delay slot, in which case the EPC register contains the address of the preceding branch instruc-
tion and the BD bit of the Cause register is set.

Servicing

The process executing at the time of the exception is handed a floating-point exception/integer overflow
signal. This error is usually fatal to the current process.
�� ������ � + *� ��������
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Cause

The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEUI, TLTI, TLTUI,
TEQI, or TNEI instruction results in a TRUE condition. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Tr code in the Cause register is set.
The EPC register contains the address of the instruction causing the exception unless the instruction is in a
branch-delay slot, in which case the EPC register contains the address of the preceding branch instruction
and the BD bit of the Cause register is set.

Servicing

The process executing at the time of a Trap exception is handed a floating-point exception/integer over-
flow signal. This error is usually fatal.

'&���� 
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Cause

A System Call exception occurs during an attempt to execute the SYSCALL instruction. This exception
is not maskable.

Processing

The common exception vector is used for this exception, and the Sys code in the Cause register is set.
The EPC register contains the address of the SYSCALL instruction unless it is in a branch-delay slot, in
which case the EPC register contains the address of the preceding branch instruction. If the SYSCALL
instruction is in a branch-delay slot, the BD bit of the Status register is set; otherwise this bit is cleared.

Servicing

When this exception occurs, control is transferred to the applicable system routine. To resume execu-
tion, the EPC register must be altered so that the SYSCALL instruction does not re-execute; this is accom-
plished by adding a value of 4 to the EPC register (EPC register + 4) before returning. If a SYSCALL
instruction is in a branch-delay slot, a more complicated algorithm, beyond the scope of this description,
may be required.

 ���$����� 26!������

Cause

A Breakpoint exception occurs when an attempt is made to execute the BREAK instruction. This excep-
tion is not maskable.

Processing

The common exception vector is used for this exception, and the BP code in the Cause register is set.
The EPC register contains the address of the BREAK instruction unless it is in a branch-delay slot, in which
case the EPC register contains the address of the preceding branch instruction. If the BREAK instruction is
in a branch-delay slot, the BD bit of the Status register is set, otherwise the bit is cleared.

Servicing

When the Breakpoint exception occurs, control is transferred to the applicable system routine. Additional
distinctions can be made by analyzing the unused bits of the BREAK instruction (bits 25:6), and loading the
contents of the instruction whose address the EPC register contains. A value of 4 must be added to the
contents of the EPC register (EPC register + 4) to locate the instruction if it resides in a branch-delay slot.
�� ������ � + *3 ��������
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 To resume execution, the EPC register must be altered so that the BREAK instruction does not re-
execute; this is accomplished by adding a value of 4 to the EPC register (EPC register + 4) before returning.
If a BREAK instruction is in a branch-delay slot, interpretation of the branch instruction is required to
resume execution.

/����,�� ������!���� 26!������

Cause

The Reserved Instruction exception occurs when one of the following conditions occurs:
� an attempt is made to execute an instruction with an undefined major opcode (bits 31:26).
� an attempt is made to execute a SPECIAL instruction with an undefined minor opcode (bits 5:0).
� an attempt is made to execute a REGIMM instruction with an undefined minor opcode (bits 20:16).
� an attempt is made to execute 64-bit operations in 32-bit mode when in User or Supervisor modes.

64-bit operations are always valid in Kernel mode regardless of the value of the KX bit in the Status
register. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the RI code in the Cause register is set.
The EPC register contains the address of the reserved instruction unless it is in a branch-delay slot, in
which case the EPC register contains the address of the preceding branch instruction.

Servicing

No instructions in the MIPS ISA are currently interpreted. The process executing at the time of this
exception is handed an illegal instruction/reserved operand fault signal. This error is usually fatal.
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Cause

The Coprocessor Unusable exception occurs when an attempt is made to execute a coprocessor
instruction for either:

� a corresponding coprocessor unit that has not been marked usable, or
� CP0 instructions, when the unit has not been marked usable and the process executes in either 

User or Supervisor mode.

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the CPU code in the Cause register is set.
The contents of the Coprocessor Usage Error field of the coprocessor Control register indicate which of the
four coprocessors was referenced. The EPC register contains the address of the unusable coprocessor
instruction unless it is in a branch-delay slot, in which case the EPC register contains the address of the
preceding branch instruction.

Servicing

The coprocessor unit to which an attempted reference was made is identified by the Coprocessor Usage
Error field, which results in one of the following situations:

� If the process is entitled access to the coprocessor, the coprocessor is marked usable and the cor-
responding user state is restored to the coprocessor. 

� If the process is entitled access to the coprocessor, but the coprocessor does not exist or has failed, 
interpretation of the coprocessor instruction is possible.

� If the BD bit is set in the Cause register, the branch instruction must be interpreted; then the copro-
cessor instruction can be emulated and execution resumed with the EPC register advanced past 
�� ������ � + *� ��������
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 the coprocessor instruction.
� If the process is not entitled access to the coprocessor, the process executing at the time is handed 

an illegal instruction/privileged instruction fault signal. This error is usually fatal.

�������������� 26!������

Cause

The Floating-Point exception is used by the floating-point coprocessor. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the FPE code in the Cause register is set.
The contents of the Floating-Point Control/Status register indicate the cause of this exception.

Servicing

This exception is cleared by clearing the appropriate bit in the Floating-Point Control/Status register. For
an unimplemented instruction exception, the kernel should emulate the instruction; for other exceptions, the
kernel should pass the exception to the user program that caused the exception.

��������� 26!������

Cause

The Interrupt exception occurs when one of the eight interrupt conditions is asserted. The significance of
these interrupts is dependent upon the specific system implementation. Each of the eight interrupts can be
masked by clearing the corresponding bit in the Int-Mask field of the Status register, and all of the eight
interrupts can be masked at once by clearing the IE bit of the Status register.

Processing

The common exception vector is used for this exception, and the Int code in the Cause register is set.
The IP field of the Cause register indicates current interrupt requests. It is possible that more than one of
the bits can be simultaneously set (or even no bits may be set) if the interrupt is asserted and then deas-
serted before this register is read.

Servicing

If the interrupt is caused by one of the two software-generated exceptions (SW1 or SW0), the interrupt
condition is cleared by setting the corresponding Cause register bit to 0. If the interrupt is hardware-gener-
ated, the interrupt condition is cleared by correcting the condition causing the interrupt pin to be asserted.

Due to the on-chip write buffer, a store to an external device may not occur until after other instructions
in the pipeline finish. Hence, the user must ensure that the store will occur before the return from exception
instruction (ERET) is executed. Otherwise the interrupt may be serviced again even though there is no
actual interrupt pending. 

....////��������������������������������������	��	��	��	������������    ������	��	��	��	������������������������������������    ����!!!!����������������$$$$����������������

The remainder of this section contains flowcharts for the following exceptions and guidelines for their
handlers:

� general exceptions and their exception handler
� TLB/XTLB miss exception and their exception handler
� cache error exception and its handler
� reset, soft reset and NMI exceptions, and a guideline to their handler.

Generally speaking, the exceptions are handled by hardware (HW); the exceptions are then serviced by
software (SW).
�� ������ � + �	 ��������
 ��� �			



����)�
 5�.46 ;$������� ;$������� "��2���) ��2 ��
!����) (��-���
� 

��������			 ����
��

�����
Figure 5.17  General Exception Handler (HW)
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Figure 5.18  General Exception Servicing Guidelines (SW)
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Figure 5.19  TLB/XTLB Miss Exception Handler (HW)
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Figure 5.20  TLB/XTLB Exception Servicing Guidelines (SW)
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Figure 5.21  Cache Error Exception Handling (HW) and Servicing Guidelines
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Figure 5.22  Reset, Soft Reset & NMI Exception Handling
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A floating-point exception occurs whenever the FPU cannot handle either the operands or the results of
a floating-point operation in its normal way. The FPU responds by generating an exception to initiate a soft-
ware trap or by setting a status flag.

....////��������������������������������++++����������������

The FP Control/Status register described in Chapter 3 contains an Enable bit for each exception type.
Exception Enable bits determine whether an exception will cause the FPU to initiate a trap or set a status
flag:

� If a trap is taken, the FPU remains in the state found at the beginning of the operation, and a soft-
ware exception handling routine executes.

� If no trap is taken, an appropriate value is written into the FPU destination register and execution 
continues.

The FPU supports the five IEEE Standard 754 exceptions:
� Inexact (I)
� Underflow (U)
� Overflow (O)
� Division by Zero (Z)
� Invalid Operation (V)

Cause bits, Enables, and Flag bits (status flags) are used. The FPU adds a sixth exception type, Unim-
plemented Operation (E), to use when the FPU cannot implement the standard MIPS floating-point archi-
tecture, including cases in which the FPU cannot determine the correct exception behavior. This exception
indicates the use of a software implementation. The Unimplemented Operation exception has no Enable or
Flag bit; whenever this exception occurs, an unimplemented exception trap is taken (if the FPU interrupt
input to the CPU is enabled). 

Figure 6.1 illustrates the Control/Status register bits that support exceptions.

Figure 6.1  Control/Status Register Exception/Flag/Trap/Enable Bits
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 Each of the five IEEE Standard 754 exceptions (V, Z, O, U, I) is associated with a trap under user
control, and is enabled by setting one of the five Enable bits. When an exception occurs, the corresponding
Cause bit is set. If the corresponding Enable bit is not set, the Flag bit is also set. If the corresponding
Enable bit is set, the Flag bit is not set and the FPU generates an interrupt to the CPU. Subsequent excep-
tion processing allows a trap to be taken.

....////��������������������������������++++����������������������������������������������������    

When a floating-point exception trap is taken, the Cause register indicates the floating-point coprocessor
is the cause of the exception trap. The Floating-Point Exception (FPE) code is used, and the Cause bits of
the floating-point Control/Status register indicate the reason for the floating-point exception. These bits are,
in effect, an extension of the system coprocessor Cause register.

++++����������������������������				����������������������������������������............��������������������				��������				����345345345345����....////��������������������������������

The IEEE Standard 754 strongly recommends that users be allowed to specify a trap handler for any of
the five standard exceptions that can compute; the trap handler can either compute or specify a substitute
result to be placed in the destination register of the operation.

By retrieving an instruction using the processor Exception Program Counter (EPC) register, the trap
handler determines:

� exceptions occurring during the operation
� the operation being performed 
� the destination format

On Overflow or Underflow exceptions (except for conversions), and on Inexact exceptions, the trap
handler gains access to the correctly rounded result by examining source registers and simulating the oper-
ation in software. On Overflow or Underflow exceptions encountered on floating-point conversions, and on
Invalid Operation and Divide-by-Zero exceptions, the trap handler gains access to the operand values by
examining the source registers of the instruction. 

The IEEE Standard 754 recommends that, if enabled, the overflow and underflow traps take prece-
dence over a separate inexact trap. This prioritization is accomplished in software; hardware sets the bits
for both. 

!!!!��������    ����

A Flag bit is provided for each IEEE exception. This Flag bit is set to 1 on the assertion of its corre-
sponding exception, with no corresponding exception trap signaled. The Flag bit is reset (cleared to 0) by
writing a new value into the Status register. Flags can be saved and restored by software either individually
or as a group.

When no exception trap is signaled, floating-point coprocessor takes a default action, providing a substi-
tute value for the exception-causing result of the floating-point operation. The particular default action taken
depends upon the type of exception. Table 6.1 lists the default action taken by the FPU for each of the IEEE
exceptions. 
�� ������ � + � ��������
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Table 6.2 lists the exception-causing situations and contrasts the behavior of the FPU with the require-
ments of the IEEE Standard 754.

!!!!������������....////��������������������������������

The following sections describe the conditions that cause the FPU to generate each of its exceptions,
and the FPU response to each exception-causing condition.

���6�!� 26!������ ���

The FPU generates the Inexact exception if one of the following occurs:
� the rounded result of an operation is not exact.

(���2 �� �
������
����2��)

��2�
������� ������

I Inexact exception Any Supply a rounded result

U Underflow
exception

RN Modify underflow values to 0 with the sign of the intermediate result

RZ Modify underflow values to 0 with the sign of the intermediate result

RP Modify positive underflows to the format’s smallest positive finite
number; modify negative underflows to -0

RM Modify negative underflows to the format’s smallest negative finite 
number; modify positive underflows to 0

O Overflow
exception

RN Modify overflow values to ∞ with the sign of the intermediate result

RZ Modify overflow values to the format’s largest finite number with the 
sign of the intermediate result

RP Modify negative overflows to the format’s most negative finite number; 
modify positive overflows to + ∞

RM Modify positive overflows to the format’s largest finite number; modify 
negative overflows to – ∞

Z Division by zero Any Supply a properly signed ∞
V Invalid operation Any Supply a quiet Not a Number (NaN)

Table 6.1  Default FPU Exception Actions

(.� ����
���

�� ���

�;;;

����2�
2

��0

�
��

;�����

�
��

�� ����
7��� 

Inexact result I I I Loss of accuracy

Exponent overflow O,I1 O,I O,I Normalized exponent > Emax

Division by zero Z Z Z Zero is (exponent = Emin-1, mantissa = 0)

Overflow on convert V E E Source out of integer range

Signaling NaN source V V V

Invalid operation V V V 0/0, etc.

Exponent underflow U E E Normalized exponent < Emin

Denormalized or QNaN None E E Denormalized is (exponent = Emin-1 and 
mantissa <> 0)

1 The IEEE Standard 754 specifies an inexact exception on overflow only if the overflow trap is disabled.

Table 6.2  FPU Exception-Causing Conditions
�� ������ � + / ��������
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� the rounded result of an operation overflows.
� the rounded result of an operation underflows and both the Underflow and Inexact Enable bits are 

not set and the FS bit is set.

The FPU usually examines the operands of floating-point operations before execution actually begins, to
determine (based on the exponent values of the operands) if the operation can possibly cause an excep-
tion. If there is a possibility of an instruction causing an exception trap, the FPU uses a coprocessor stall to
execute the instruction.

It is impossible, however, for the FPU to predetermine if an instruction will produce an inexact result. If
Inexact exception traps are enabled, the FPU uses the coprocessor stall mechanism to execute all floating-
point operations that require more than one cycle. Since this mode of execution can impact performance,
Inexact exception traps should be enabled only when necessary. 

The enabling of Inexact exception traps have the following results:
� Trap Enabled: The result register is not modified and the source registers are preserved.
� Trap Disabled: The rounded or overflowed result is delivered to the destination register if no other 

software trap occurs. 

��,���� *�������� 26!������ �-�

The Invalid Operation exception is signaled if one or both of the operands are invalid for an implemented
operation. When the exception occurs without a trap, the MIPS ISA defines the result as a quiet Not a
Number (NaN). The invalid operations are:

� Addition or subtraction: magnitude subtraction of infinities, such as: ( + ∞  ) + ( – ∞ ) or ( – ∞  ) – ( 
– ∞ ).

� Multiplication: 0 times ∞, with any signs.
� Division: 0/0, or ∞/∞, with any signs.
� Comparison of predicates involving < or > without?, when the operands are unordered.
� Comparison or a Convert From Floating-point Operation on a signaling NaN.
� Any arithmetic operation on a signaling NaN. A move (MOV) operation is not considered to be an 

arithmetic operation, but absolute value (ABS) and negate (NEG) are considered to be arithmetic 
operations and cause this exception if one or both operands is a signaling NaN.

� Square root: √x, where x is less than zero.

Software can simulate the Invalid Operation exception for other operations that are invalid for the given
source operands. Examples of these operations include IEEE Standard 754-specified functions imple-
mented in software, such as Remainder: x REM y, where y is 0 or x is infinite; conversion of a floating-point
number to a decimal format whose value causes an overflow, is infinity, or is NaN; and transcendental func-
tions, such as ln (–5) or cos–1(3). 

The enabling of traps have the following results:
� Trap Enabled: The original operand values are undisturbed.
� Trap Disabled: A quiet NaN is delivered to the destination register if no other software trap occurs. 

��,������#&�?��� 26!������ �?�

The Division-by-Zero exception is signaled on an implemented divide operation if the divisor is zero and
the dividend is a finite nonzero number. Software can simulate this exception for other operations that
produce a signed infinity, such as ln(0), sec(p/2), csc(0), or 0–1.

The enabling of traps have the following results:
� Trap Enabled: The result register is not modified, and the source registers are preserved.
� Trap Disabled: The result, when no trap occurs, is a correctly signed infinity.
�� ������ � + 0 ��������
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The Overflow exception is signaled when the magnitude of the rounded floating-point result, with an
unbounded exponent range, is larger than the largest finite number of the destination format. (This excep-
tion also sets the Inexact exception and Flag bits.) 

The enabling of traps have the following results:
� Trap Enabled: The result register is not modified, and the source registers are preserved.
� Trap Disabled: The result, when no trap occurs, is determined by the rounding mode and the sign of 

the intermediate result.

�����
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Two related events contribute to the Underflow exception:
� creation of a tiny nonzero result between ±2Emin which can cause some later exception because it 

is so tiny
� extraordinary loss of accuracy during the approximation of such tiny numbers by denormalized 

numbers.

IEEE Standard 754 allows a variety of ways to detect these events, but requires they be detected the
same way for all operations. Tininess can be detected by one of the following methods:

� after rounding (when a nonzero result, computed as though the exponent range were unbounded, 
would lie strictly between ±2Emin)

� before rounding (when a nonzero result, computed as though the exponent range and the precision 
were unbounded, would lie strictly between ±2Emin).

The MIPS architecture requires that tininess be detected after rounding. Loss of accuracy can be
detected by one of the following methods:

� denormalization loss (when the delivered result differs from what would have been computed if the 
exponent range were unbounded)

� inexact result (when the delivered result differs from what would have been computed if the expo-
nent range and precision were both unbounded).

The MIPS architecture requires that loss of accuracy be detected as an inexact result.

The enabling of traps have the following results:
� Trap Enabled: If Underflow or Inexact traps are enabled, or if the FS bit is not set, then an Unimple-

mented exception (E) is generated, and the result register is not modified.
� Trap Disabled: If Underflow and Inexact traps are not enabled and the FS bit is set, the result is 

determined by the rounding mode and the sign of the intermediate result (as listed in Table 6.1).

������������� ������!���� 26!������ �2�

Any attempt to execute an instruction with an operation code or format code that has been reserved for
future definition sets the Unimplemented bit in the Cause field in the FPU Control/Status register and traps.
The operand and destination registers remain undisturbed and the instruction is emulated in software. Any
of the IEEE Standard 754 exceptions can arise from the emulated operation, and these exceptions in turn
are simulated.

The Unimplemented Instruction exception can also be signaled when unusual operands or result condi-
tions are detected that the implemented hardware cannot handle properly. These include:

� Denormalized operand, except for Compare instruction
� Quiet Not a Number operand, except for Compare instruction
� Denormalized result or Underflow, when either Underflow or Inexact Enable bits are set or the FS 

bit is not set.
� Reserved opcodes
� Unimplemented formats
�� ������ � + � ��������
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� Operations which are invalid for their format (for instance, CVT.S.S)

Denormalized and NaN operands are only trapped if the instruction is a convert or computational opera-
tion. Moves do not trap if their operands are either denormalized or NaNs.

The use of this exception for such conditions is optional; most of these conditions are newly developed
and are not expected to be widely used in early implementations. Loopholes are provided in the architec-
ture so that these conditions can be implemented with assistance provided by software, maintaining full
compatibility with the IEEE Standard 754.

The enabling of traps have the following results:
� Trap Enabled: The original operand values are undisturbed.
� Trap Disabled: This trap cannot be disabled.

����������������� � � � ������������				��������������������������������� � � � ������������������������

Sixteen or thirty-two doubleword coprocessor load or store operations save or restore the coprocessor
floating-point register state in memory. The remainder of control and status information can be saved or
restored through Move To/From Coprocessor Control Register instructions, and saving and restoring the
processor registers. Normally, the Control/Status register is saved first and restored last.

When the coprocessor Control/Status register (FCR31) is read, and the coprocessor is executing one or
more floating-point instructions, the instruction(s) in progress are either completed or reported as excep-
tions. The architecture requires that no more than one of these pending instructions can cause an excep-
tion. If the pending instruction cannot be completed, this instruction is placed in the Exception register, if
present. Information indicating the type of exception is placed in the Control/Status register. When state is
restored, state information in the status word indicates that exceptions are pending.

Writing a zero value to the Cause field of Control/Status register clears all pending exceptions, permit-
ting normal processing to restart after the floating-point register state is restored.

The Cause field of the Control/Status register holds the results of only one instruction; the FPU exam-
ines source operands before an operation is initiated to determine if this instruction can possibly cause an
exception. If an exception is possible, the FPU executes the instruction in stall mode to ensure that no more
than one instruction (that might cause an exception) is executed at a time.
�� ������ � + � ��������
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The processor provides a full-featured memory management unit (MMU) which uses an on-chip transla-
tion lookaside buffer (TLB) to translate virtual addresses into physical addresses. 

This chapter describes the processor virtual and physical address spaces, the virtual-to-physical
address translation, the operation of the TLB in making these translations, and those System Control
Coprocessor (CP0) registers that provide the software interface to the TLB.

%%%%								��������������������������������������������

This section describes the virtual and physical address spaces and the manner in which virtual
addresses are translated into physical addresses in the TLB.

-������ ������� '��!�

The processor virtual address can be either 32 or 64 bits wide, depending on whether the processor is
operating in 32-bit or 64-bit mode. 

� In 32-bit mode (extended address bit = 0), addresses are 32 bits wide. The maximum user process 
size is 2 gigabytes (231). 

� In 64-bit mode (extended address bit = 1), addresses are 64 bits wide. The maximum user process 
size is 1 terabyte (240).

Figure 7.1 shows the translation of a virtual address into a physical address.

Figure 7.1  Overview of a Virtual-to-Physical Address Translation

As shown in Figures 11 and 12, the virtual address is extended with an 8-bit address space identifier
(ASID), which reduces the frequency of TLB flushing when switching contexts. This 8-bit ASID is in the CP0
EntryHi register. The Global bit (G) is in the EntryLo0 and EntryLo1 registers.
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Using a 36-bit address, the processor supports a physical address space of 64 gigabytes. The following
section describes the translation of a virtual address to a physical address.

-������������&��!�� ������� �����������

Converting a virtual address to a physical address begins by comparing the virtual address from the
processor with the virtual addresses in the TLB; there is a match when the virtual page number (VPN) of the
address is the same as the VPN field of the entry, and either:

� the Global (G) bit of the TLB entry is set, or
� the ASID field of the virtual address is the same as the ASID field of the TLB entry.

This match is referred to as a TLB hit. If there is no match, a TLB Miss exception is taken by the
processor and software is allowed to refill the TLB from a page table of virtual/physical addresses in
memory. If there is a virtual address match in the TLB, the physical address is output from the TLB and
concatenated with the Offset, which represents an address within the page frame space. The Offset does
not pass through the TLB.

Virtual-to-physical translation is described in greater detail throughout the remainder of this chapter. The
next two sections describe the 32-bit and 64-bit address translations.

.%�#�� +��� -������ ������� �����������

Figure 7.2 shows the virtual-to-physical-address translation of a 32-bit mode address: 
� The top portion of Figure 7.2 shows a virtual address with a 12-bit, or 4-Kbyte, page size, labelled 

Offset. The remaining 20 bits of the address represent the VPN, and index the 1M-entry page table.
� The bottom portion of Figure 7.2 shows a virtual address with a 24-bit, or 16-Mbyte, page size, 

labelled Offset. The remaining 8 bits of the address represent the VPN, and index the 256-entry 
page table.

Figure 7.2  32-bit Mode Virtual Address Translation
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Figure 7.3 shows the virtual-to-physical-address translation of a 64-bit mode address. This figure illus-
trates the two extremes in the range of possible page sizes: a 4-Kbyte page (12 bits) and a 16-Mbyte page
(24 bits): 

� The top portion of Figure 7.3 shows a virtual address with a 
12-bit, or 4-Kbyte, page size, labelled Offset. The remaining 28 bits of the address represent the 
VPN, and index the 256M-entry page table.

� The bottom portion of Figure 7.3 shows a virtual address with a 24-bit, or 16-Mbyte, page size, 
labelled Offset. The remaining 16 bits of the address represent the VPN, and index the 64K-entry 
page table.

Figure 7.3  64-bit Mode Virtual Address Translation
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The processor has three operating modes—user, supervisor, and kernel—that function in both 32- and
64-bit operations. These modes are described in the next three sections.

���� +��� *���������

Figure 7.4 shows User mode virtual address space. In User mode, a single, uniform virtual address
space—labelled User segment—is available; its size is:

� 2 Gbytes (231 bytes) in 32-bit mode. UX = 0 (useg)
� 1 Tbyte (240 bytes) in 64-bit mode. UX = 1 (xuseg)
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Figure 7.4   User Mode Virtual Address Space

The User segment starts at address 0 and the current active user process resides in either useg (in 32-
bit mode) or xuseg (in 64-bit mode). The TLB identically maps all references to useg/xuseg from all modes,
and controls cache accessibility.

The processor operates in User mode when the Status register contains the following bit-values:
� KSU bits = 102
� EXL = 0
� ERL = 0

In conjunction with these bits, the UX bit in the Status register selects between 32- or 64-bit User mode
addressing as follows:

� when UX = 0, 32-bit useg space is selected.
� when UX = 1, 64-bit xuseg space is selected.

Table 7.1 lists the characteristics of the two user mode segments, useg and xuseg.
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In User mode, when UX = 0 in the Status register, User mode addressing is compatible with the 32-bit
addressing model shown in Figure 7.4, and a 2-Gbyte user address space is available, labelled useg. The
system maps all references to useg through the TLB, and bit settings within the TLB entry for the page
determine the cacheability of a reference. All valid User mode virtual addresses have their most-significant
bit cleared to 0; any attempt to reference an address with the most-significant bit set while in User mode
causes an Address Error exception. 
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KSU EXL ERL UX

32-bit
A(31) = 0

102 0 0 0 useg 0x0000 0000
through
0x7FFF FFFF

2 Gbyte
(231 bytes)

64-bit
A(63:40) = 0

102 0 0 1 xuseg 0x0000 0000 0000 0000
through
0x0000 00FF FFFF 
FFFF

1 Tbyte
(240 bytes)

Table 7.1  32-bit and 64-bit User Mode Segments
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Address
Error

Mapped

2 GB
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In User mode, when UX = 1 in the Status register, User mode addressing is extended to 64-bits. In 64-

bit User mode, the processor provides a single, uniform address space of 240 bytes, labelled xuseg. All
valid User mode virtual addresses have bits 63:40 equal to 0; an attempt to reference an address with bits
63:40 not equal to 0 causes an Address Error exception. 
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Supervisor mode is designed for layered operating systems in which a true kernel runs in Kernel mode,
and the rest of the operating system runs in Supervisor mode. The processor operates in Supervisor mode
when the Status register contains the following bit-values:

� KSU = 012
� EXL = 0
� ERL = 0

In conjunction with these bits, the SX bit in the Status register selects between 32- or 64-bit Supervisor
mode addressing:

� when SX = 0, 32-bit supervisor space is selected and TLB misses are handled by the 32-bit TLB 
refill exception handler

� when SX = 1, 64-bit supervisor space is selected and TLB misses are handled by the 64-bit XTLB 
refill exception handler. Figure 7.5 shows Supervisor mode address mapping. Table 7.2 lists the 
characteristics of the supervisor mode segments; descriptions of the address spaces follow.

Figure 7.5  Supervisor Mode Address Space
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In Supervisor mode, when SX = 0 in the Status register and the most-significant bit of the 32-bit virtual

address is set to 0, the suseg virtual address space is selected; it covers the full 231 bytes (2 Gbytes) of the
current user address space. The virtual address is extended with the contents of the 8-bit ASID field to form
a unique virtual address. 

This mapped space starts at virtual address 0x0000 0000 and runs through 0x7FFF FFFF.
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In Supervisor mode, when SX = 0 in the Status register and the three most-significant bits of the 32-bit

virtual address are 1102, the sseg virtual address space is selected; it covers 229-bytes (512 Mbytes) of the
current supervisor address space. The virtual address is extended with the contents of the 8-bit ASID field
to form a unique virtual address.

This mapped space begins at virtual address 0xC000 0000 and runs through 0xDFFF FFFF.

()�#�� '����,���� +���5 ���� '��!� ��������

In Supervisor mode, when SX = 1 in the Status register and bits 63:62 of the virtual address are set to

002, the xsuseg virtual address space is selected; it covers the full 240 bytes (1 Tbyte) of the current user
address space. The virtual address is extended with the contents of the 8-bit ASID field to form a unique
virtual address.

This mapped space starts at virtual address 0x0000 0000 0000 0000 and runs through 0x0000 00FF
FFFF FFFF.

()�#�� '����,���� +���5 
������ '����,���� '��!� �������

In Supervisor mode, when SX = 1 in the Status register and bits 63:62 of the virtual address are set to
012, the xsseg current supervisor virtual address space is selected. The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

�22
�  

%��

1���� 

����� ��)� ��


��)����

7���
�22
�  ���)�

��)����

��?�%�� 1���� 

KSU EXL ERL SX

32-bit
A(31) = 0

012 0 0 0 suseg 0x0000 0000
through
0x7FFF FFFF

2 Gbytes
231 bytes)

32-bit
A(31:29) = 
1102

012 0 0 0 ssseg 0xC000 0000
through
0xDFFF FFFF

512 Mbytes 
(229 bytes)

64-bit
A(63:62) = 
002

012 0 0 1 xsuseg 0x0000 0000 0000 0000
through
0x0000 00FF FFFF 
FFFF

1 Tbyte
(240 bytes)

64-bit
A(63:62) = 
012

012 0 0 1 xsseg 0x4000 0000 0000 0000
through
0x4000 00FF FFFF 
FFFF

1 Tbyte
(240 bytes)

64-bit
A(63:62) = 
112

012 0 0 1 csseg 0xFFFF FFFF C000 
0000
through
0xFFFF FFFF DFFF 
FFFF

512 Mbytes
(229 bytes)

Table 7.2  32-bit and 64-bit Supervisor Mode Segments
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 This mapped space begins at virtual address 0x4000 0000 0000 0000 and runs through 0x4000 00FF
FFFF FFFF.

()�#�� '����,���� +���5 '������� '����,���� '��!� �������

In Supervisor mode, when SX = 1 in the Status register and bits 63:62 of the virtual address are set to
112, the csseg separate supervisor virtual address space is selected. Addressing of the csseg is compatible
with addressing sseg in 32-bit mode. The virtual address is extended with the contents of the 8-bit ASID
field to form a unique virtual address.

This mapped space begins at virtual address 0xFFFF FFFF C000 0000 and runs through 0xFFFF FFFF
DFFF FFFF.
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The processor operates in Kernel mode when the Status register contains one of the following values:
� KSU = 002
� EXL = 1
� ERL = 1

In conjunction with these bits, the KX bit in the Status register selects between 32- or 64-bit Kernel mode
addressing:

� when KX = 0, 32-bit kernel space is selected.
� when KX = 1, 64-bit kernel space is selected.

The processor enters Kernel mode whenever an exception is detected and it remains in Kernel mode
until an Exception Return (ERET) instruction is executed. The ERET instruction restores the processor to
the mode existing prior to the exception.

Kernel mode virtual address space is divided into regions differentiated by the high-order bits of the
virtual address, as shown in Figure 7.6. Table 7.3 lists the characteristics of the 32-bit kernel mode
segments, and Table 7.4 lists the characteristics of the 64-bit kernel mode segments.

Figure 7.6  Kernel Mode Address Space
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In Kernel mode, when KX = 0 in the Status register, and the most-significant bit of the virtual address,

A31, is cleared, the 32-bit kuseg virtual address space is selected; it covers the full 231 bytes (2 Gbytes) of
the current user address space. The virtual address is extended with the contents of the 8-bit ASID field to
form a unique virtual address.

.%�#�� @����� +���5 @����� '��!� 0 �������

In Kernel mode, when KX = 0 in the Status register and the most-significant three bits of the virtual

address are 1002, 32-bit kseg0 virtual address space is selected; it is the 229-byte (512-Mbyte) kernel phys-
ical space. References to kseg0 are not mapped through the TLB; the physical address selected is defined
by subtracting 0x8000 0000 from the virtual address. The K0 field of the Config register, described in this
chapter, controls cacheability and coherency.
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In Kernel mode, when KX = 0 in the Status register and the most-significant three bits of the 32-bit virtual

address are 1012, 32-bit kseg1 virtual address space is selected; it is the 229-byte (512-Mbyte) kernel phys-
ical space. References to kseg1 are not mapped through the TLB; the physical address selected is defined
by subtracting 0xA000 0000 from the virtual address. Caches are disabled for accesses to these
addresses, and physical memory (or memory-mapped I/O device registers) are accessed directly.
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In Kernel mode, when KX = 0 in the Status register and the most-significant three bits of the 32-bit virtual

address are 1102, the ksseg virtual address space is selected; it is the current 229-byte (512-Mbyte) super-
visor virtual space. The virtual address is extended with the contents of the 8-bit ASID field to form a unique
virtual address.
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In Kernel mode, when KX = 0 in the Status register and the most-significant three bits of the 32-bit virtual

address are 1112, the kseg3 virtual address space is selected; it is the current 229-byte (512-Mbyte) kernel
virtual space. The virtual address is extended with the contents of the 8-bit ASID field to form a unique
virtual address.
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KSU EXL ERL KX

A(31) = 0

KSU = 002
or
EXL = 1
or
ERL =1

0 kuseg 0x0000 0000
through
0x7FFF FFFF

2 Gbytes
(231 bytes)

A(31:29) = 1002 0 kseg0 0x8000 0000
through
0x9FFF FFFF

512 Mbytes 
(229 bytes)

A(31:29) = 1012 0 kseg1 0xA000 0000
through
0xBFFF FFFF

512 Mbytes 
(229 bytes)

A(31:29) = 1102 0 ksseg 0xC000 0000
through
0xDFFF FFFF

512 Mbytes 
(229 bytes)

A(31:29) = 1112 0 kseg3 0xE000 0000
through
0xFFFF FFFF

512 Mbytes 
(229 bytes)

Table 7.3  32-Bit Kernel Mode Segments
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In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit virtual address are 002,
the xkuseg virtual address space is selected; it covers the current user address space. The virtual address
is extended with the contents of the 8-bit ASID field to form a unique virtual address. When ERL = 1 in the

Status register, the user address region becomes a 231-byte unmapped (that is, mapped directly to physical
addresses) uncached address space. 
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In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit virtual address are 012,
the xksseg virtual address space is selected; it is the current supervisor virtual space. The virtual address is
extended with the contents of the 8-bit ASID field to form a unique virtual address.
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KSU EXL ERL KX

A(63:62) = 002

KSU = 002
or
EXL = 1
or
ERL =1

1 xksuseg 0x0000 0000 0000 0000
through
0x0000 00FF FFFF 
FFFF

1 Tbyte
(240 bytes)

A(63:62) = 012 1 xksseg 0x4000 0000 0000 0000
through
0x4000 00FF FFFF 
FFFF

1 Tbyte
(240 bytes)

A(63:62) = 102 1 xkphys 0x8000 0000 0000 0000
through
0xBFFF FFFF FFFF 
FFFF

8 236-byte 
spaces

A(63:62) = 112 1 xkseg 0xC000 0000 0000 0000
through
0xC000 00FF 7FFF 
FFFF

(240–231) 
bytes

A(63:62) = 112
A(61:31) = -1

1 ckseg0 0xFFFF FFFF 8000 
0000
through
0xFFFF FFFF 9FFF 
FFFF

512 Mbytes 
(229 bytes)

A(63:62) = 112
A(61:31) = -1

1 ckseg1 0xFFFF FFFF A000 
0000
through
0xFFFF FFFF BFFF 
FFFF

512 Mbytes 
(229 bytes)

A(63:62) = 112
A(61:31) = -1

1 cksseg 0xFFFF FFFF C000 
0000
through
0xFFFF FFFF DFFF 
FFFF

512 Mbytes 
(229 bytes)

A(63:62) = 112
A(61:31) = -1

1 ckseg3 0xFFFF FFFF E000 
0000
through
0xFFFF FFFF FFFF 
FFFF

512 Mbytes 
(229 bytes)

Table 7.4  64-Bit Kernel Mode Segments
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In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit virtual address are 102,

the xkphys virtual address space is selected; it is a set of eight 236-byte kernel physical spaces. Accesses
with address bits 58:36 not equal to 0 cause an address error. References to this space are not mapped;
the physical address selected is taken from bits 35:0 of the virtual address. Bits 61:59 of the virtual address
specify the cacheability and coherency attributes, as shown in Table 7.5.
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In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit virtual address are 112,
the address space selected is one of the following:

� kernel virtual space, xkseg, the current kernel virtual space; the virtual address is extended with the con-
tents of the 8-bit ASID field to form a unique virtual address 

� one of the four 32-bit kernel compatibility spaces, as described in the next section.
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In Kernel mode, when KX = 1 in the Status register, bits 63:62 of the 64-bit virtual address are 112, and
bits 61:31 of the virtual address equal –1. The lower two bytes of address, as shown in figure 15, select
one of the following 512-Mbyte compatibility spaces.

� ckseg0. This 64-bit virtual address space is an unmapped region, compatible with the 32-bit 
address model kseg0. The K0 field of the Config register controls cacheability and coherency.

� ckseg1. This 64-bit virtual address space is an unmapped and uncached region, compatible with 
the 32-bit address model kseg1. 

� cksseg. This 64-bit virtual address space is the current supervisor virtual space, compatible with the 
32-bit address model ksseg.

� ckseg3. This 64-bit virtual address space is kernel virtual space, compatible with the 32-bit address 
model kseg3.
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The System Control Coprocessor (CP0) is implemented as an integral part of the CPU, and supports
memory management, address translation, exception handling, and other privileged operations. CP0
contains the registers shown in Figure 7.7 plus a 48-entry TLB. The sections that follow describe how the
processor uses the memory management-related registers.

Each CP0 register has a unique number that identifies it; this number is referred to as the register
number. For instance, the Page Mask register is register number 5.

1����

5�*9��6

�����������# ��2 ����
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0 Cacheable, noncoherent, write-through, no write allocate 0x8000 0000 0000 0000

1 Cacheable, noncoherent, write-through, write allocate 0x8800  0000 0000 0000

2 Uncached 0x9000  0000 0000 0000

3 Cacheable, noncoherent 0x9800 0000 0000 0000

4-7 Reserved 0xA000 0000 0000 0000

Table 7.5  Cacheability and Coherency Attributes
�� ������ � + *	 ��������
 ��� �			



����
# ����)����� 4��� �# ��� ����
�� ���
���  �


��������			 ����
��

�����
Figure 7.7  CP0 Registers and the TLB
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Mapped virtual addresses are translated into physical addresses using an on-chip TLB.1 The TLB is a
fully associative memory that holds 48 entries, which provide mapping to 48 odd/even page pairs (96
pages). When address mapping is indicated, each TLB entry is checked simultaneously for a match with
the virtual address that is extended with an ASID stored in the EntryHi register. The page size can be
configured, on a per-entry basis, at 4Kbytes, 16Kbytes, 64Kbytes, 256Kbytes, 1Mbytes, 4Mbytes, or
16Mbytes

������ �
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Figure 7.8 shows the TLB entry formats for both 32- and 64-bit modes. Each field of an entry has a
corresponding field in the EntryHi, EntryLo0, EntryLo1, or PageMask registers. Figure 7.9 and Figure 7.10
show the EntryHi, EntryLo0, EntryLo1, and PageMask registers. The formats of these registers are nearly
the same as the TLB-entry formats. The one exception is the Global field (G bit), which is used in the TLB,
but is reserved in the EntryHi register. 

1. There are virtual-to-physical address translations that occur outside of the TLB. For example, addresses in the 
kseg0 and kseg1 spaces are unmapped translations. In these spaces the physical address is 0x000_0000_0 || 
VA[28:0]. 
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Figure 7.8  Format of a TLB Entry

Figure 7.9  Fields of the PageMask and EntryHi Registers
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VPN2 .......Virtual page number divided by two (maps to two pages).
ASID ........Address space ID field. An 8-bit field that lets multiple processes share the TLB; each 

process has a distinct mapping of otherwise identical virtual page numbers. 
R..............Region. (00 → user, 01 → supervisor, 11 → kernel) used to match vAddr63...62
Fill............Reserved. 0 on read; ignored on write.
0 ..............Reserved. Must be written as zeroes, and returns zeroes when read.
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Figure 7.10  Fields of the EntryLo0 and EntryLo1 Registers

The TLB page coherency attribute (C) bits specify whether references to the page should be cached; if
cached, the algorithm selects between several coherency attributes. Table 7.6 shows the coherency
attributes selected by the C bits.
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The following sections describe the CP0 registers that are assigned specifically as a software interface
with memory management (each register is followed by its register number in parentheses). 

� Index register (CP0 register number 0)
� Random register (1)
� EntryLo0 (2) and EntryLo1 (3) registers
� PageMask register (5)
� Wired register (6)
� EntryHi register (10)
� PRId register (15)
� Config register (16)
� LLAddr register (17)
� TagLo (28) and TagHi (29) registers

�5�9/6 1���� .�)� ����
���# ���
�����

0 Cacheable, noncoherent, write-through, no write allocate

1 Cacheable, noncoherent, write-through, write allocate

2 Uncached

3 Cacheable, noncoherent, write-back

4 - 7 Reserved

Table 7.6  TLB Page Coherency (C) Bit Values
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PFN ......... Page frame number; the upper bits of the physical address.
C ............. Specifies the TLB page coherency attribute; see Table 7.6.
D ............. Dirty. If this bit is set, the page is marked as dirty and, therefore, writable. This bit is 

actually a write-protect bit that software can use to prevent alteration of data.
V ............. Valid. If this bit is set, it indicates that the TLB entry is valid; otherwise, a TLBL or TLBS 

miss occurs.
G ............. Global. If this bit is set in both Lo0 and Lo1, then the processor ignores the ASID during 

TLB lookup.
0 .............. Reserved. Must be written as zeroes, and returns zeroes when read.
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The Index register is a 32-bit, read/write register containing six bits to index an entry in the TLB. The
high-order bit of the register shows the success or failure of a TLB Probe (TLBP) instruction. The Index
register also specifies the TLB entry affected by TLB Read (TLBR) or TLB Write Index (TLBWI) instructions.

Figure 7.11 shows the format of the Index register; Table 7.7 describes the Index register fields.

Figure 7.11  Index Register
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The Random register is a read-only register of which six bits index an entry in the TLB. This register
decrements as each instruction executes, and its values range between an upper and a lower bound, as
follows:

� A lower bound is set by the number of TLB entries reserved for exclusive use by the operating sys-
tem (the contents of the Wired register).

� An upper bound is set at one less than the total number of TLB entries (47 maximum).

The Random register specifies the entry in the TLB that is affected by the TLB Write Random instruc-
tion. The register does not need to be read for this purpose; however, the register is readable to verify
proper operation of the processor. To simplify testing, the Random register is set to the value of the upper
bound upon system reset. This register is also set to the upper bound when the Wired register is written. 

Figure 7.12 shows the format of the Random register. Table 7.8 describes the Random register fields.

Figure 7.12  Random Register
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The EntryLo register consists of two registers that have identical formats: 
� EntryLo0 is used for even virtual pages.

(���2 �� �
������

P Probe failure. Set to 1 when the previous TLBProbe (TLBP) instruction was unsuccessful.

Index Index to the TLB entry affected by the TLBRead and TLBWrite instructions

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 7.7  Index Register Field Descriptions

(���2 �� �
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Random TLB Random index

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 7.8  Random Register Field Descriptions

Index Register
31 

1

30 6 5 0

25 6

    IndexP 0

Random Register
31 6 5 0

26 6

    Random0
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� EntryLo1 is used for odd virtual pages.

The EntryLo0 and EntryLo1 registers are read/write registers. They hold the physical page frame
number (PFN) of the TLB entry for even and odd pages, respectively, when performing TLB read and write
operations. Figure 7.10 shows the format of these registers. 

����+��$ /������� �4�

The PageMask register is a read/write register used for reading from or writing to the TLB; it holds a
comparison mask that sets the variable page size for each TLB entry. TLB read and write operations use
this register as either a source or a destination; when virtual addresses are presented for translation into
physical address, the corresponding bits in the TLB identify which virtual address bits among bits 24:13 are
used in the comparison. When the Mask field is not one of the values shown in Table 7.9, the operation of
the TLB is undefined.

"���� /������� �(�

The Wired register is a read/write register that specifies the boundary between the wired and random
entries of the TLB as shown in Figure 7.13. Wired entries are fixed, nonreplaceable entries, which cannot
be overwritten by a TLB write operation. Random entries can be overwritten.

Figure 7.13  Wired Register Boundary

The Wired register is set to 0 upon system reset. Writing this register also sets the Random register to
the value of its upper bound (see Random register, above). Figure 7.14 shows the format of the Wired
register; Table 7.9 describes the register fields.

Figure 7.14  Wired Register
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4 Kbytes 0 0 0 0 0 0 0 0 0 0 0 0

16 Kbytes 0 0 0 0 0 0 0 0 0 0 1 1

64 Kbytes 0 0 0 0 0 0 0 0 1 1 1 1

256 Kbytes 0 0 0 0 0 0 1 1 1 1 1 1

1 Mbyte 0 0 0 0 1 1 1 1 1 1 1 1

4 Mbytes 0 0 1 1 1 1 1 1 1 1 1 1

16 Mbytes 1 1 1 1 1 1 1 1 1 1 1 1

Table 7.9  Mask Field Values for Page Sizes

47

Wired

Range of Random entries

0

TLB

Register
Range of Wired entries

Wired Register 
31 6 5 0

26 6

    Wired0
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The EntryHi register holds the high-order bits of a TLB entry for TLB read and write operations. The
EntryHi register is accessed by the TLB Probe, TLB Write Random, TLB Write Indexed, and TLB Read
Indexed instructions. When either a TLB refill, TLB invalid, or TLB modified exception occurs, the EntryHi
register is loaded with the virtual page number (VPN2) and the ASID of the virtual address that did not have
a matching TLB entry. 
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The 32-bit, read-only Processor Revision Identifier (PRId) register contains information identifying the
implementation and revision level of the CPU and CP0. Figure 7.15 shows the format of the PRId register;
Table 7.11 describes the PRId register fields.

Figure 7.15  Processor Revision Identifier Register Format

The low-order byte (bits 7:0) of the PRId register is interpreted as a revision number, and the high-order
byte (bits 15:8) is interpreted as an implementation number. The implementation number of the R5000
processor is 0x23. The content of the high-order halfword (bits 31:16) of the register are reserved.

The revision number is stored as a value in the form y.x, where y is a major revision number in bits 7:4
and x is a minor revision number in bits 3:0. The revision number can distinguish some chip revisions,
however there is no guarantee that changes to the chip will necessarily be reflected in the PRId register, or
that changes to the revision number necessarily reflect real chip changes. For this reason, these values are
not listed and software should not rely on the revision number in the PRId register to characterize the chip.
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The Config register specifies various configuration options. Some configuration options, as defined by
Config bits 31:13 and 11:3, are set by the hardware during Reset and are included in the Config register as
read-only status bits. Other configuration options are read/write (as indicated by Config register bits 12 and
2:0) and controlled by software; on Reset, these fields are undefined. Certain configurations have restric-
tions. The Config register should be initialized by software before caches are used. Caches should be rein-
itialized after any change is made. 

(���2 �� �
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Wired TLB Wired boundary

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 7.10  Wired Register Field Descriptions
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Imp Implementation number
Imp=0x23

Rev Revision number

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 7.11  PRId Register Fields

16 15

PRId Register

31 0

16
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8 8
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8
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 Figure 7.16 shows the format of the Config register; Table 7.12 describes the Config register fields.
Refer to Chapter 8 for more information on the SE, SC and SS fields. 

Figure 7.16  Config Register Format

(���2 �� �
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EC System clock ratio:
0 → processor clock frequency divided by 2
1 → processor clock frequency divided by 3
2 → processor clock frequency divided by 4
3 → processor clock frequency divided by 5
4 → processor clock frequency divided by 6
5 → processor clock frequency divided by 7
6 → processor clock frequency divided by 8
7 → Reserved

EP Transmit data pattern (pattern for write-back data):
0 → DDoubleword every cycle
1 → DDxDDx2 Doublewords every 3 cycles
2 → DDxxDDxx2 Doublewords every 4 cycles
3 → DxDxDxDx2 Doublewords every 4 cycles
4 → DDxxxDDxxx2 Doublewords every 5 cycles
5 → DDxxxxDDxxxx2 Doublewords every 6 cycles
6 → DxxDxxDxxDxx2 Doublewords every 6 cycles
7 → DDxxxxxxDDxxxxxx2 Doublewords every 8 cycles
8 → DxxxDxxxDxxxDxxx2 Doublewords every 8 cycles

SS Secondary Cache Size
       00 → 512 KByte
       01 → 1 MByte
       10 → 2 MByte
       11 → None

BE Big Endian Mode:
0 → Little Endian
1 → Big Endian

SE Secondary Cache Enable
0 → Disabled
1 → Enabled

SC Secondary Cache Present
0 → Present
1 → Not Present

IC Primary I-cache Size (I-cache size = 212+IC bytes). In the R5000 processor, this is set to 32 Kbytes (IC=3).

DC Primary D-cache Size (D-cache size = 212+DC bytes). In the R5000 processor, this is set to 32 Kbytes 
(DC=3).

IB Primary I-cache line size. In the R5000 processor, this is set to 32 bytes (IB=1).
0 → 16 bytes
1 → 32 bytes

Table 7.12  Config Register Fields  (Part 1 of 2)

Config Register
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The read/write Load Linked Address (LLAddr) register contains the physical address read by the most
recent Load Linked instruction. This register is for diagnostic purposes only, and serves no function during
normal operation. Figure 7.17 shows the format of the LLAddr register; PAddr represents bits of the phys-
ical address, PA(35:4).

Figure 7.17  LLAddr Register Format
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The TagLo and TagHi registers are 32-bit read/write registers that hold either the primary cache tag and
parity, or the secondary cache tag and ECC during cache initialization, cache diagnostics, or cache error
processing. The Tag registers are written by the CACHE and MTC0 instructions.

The P and ECC fields of these registers are ignored on Index Store Tag operations. Parity and ECC are
computed by the store operation. Avoid using Instruction Index Store Tag operations except during primary-
cache initialization, because the IType field determines the instruction type and problems occur if this spec-
ified incorrectly. 

Figure 7.18 shows the format of these registers for primary cache operations. Figure 7.19 shows the
format of these registers for secondary cache operations. Table 7.13 lists the field definitions of these regis-
ters.

Figure 7.18  TagLo and TagHi Register (P-cache) Formats

Figure 7.19  TagLo and TagHi Register (S-cache) Formats

DB Primary D-cache line size. In the R5000 processor, this is set to 32 bytes (DB=1).
0 → 16 bytes
1 → 32 bytes

K0 kseg0 coherency algorithm (see EntryLo0 and EntryLo1 registers and the C field of Table 7.6)

(���2 �� �
������

Table 7.12  Config Register Fields  (Part 2 of 2)

LLAddr Register
31 0

PAddr(35:4)

32

31 0
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During virtual-to-physical address translation, the CPU compares the 8-bit ASID (if the Global bit, G, is
not set) of the virtual address to the ASID of the TLB entry to see if there is a match. One of the following
comparisons are also made:

� In 32-bit mode, the highest 7-to-19 bits (depending upon the page size) of the virtual address are 
compared to the contents of the TLB virtual page number.

� In 64-bit mode, the highest 15-to-27 bits (depending upon the page size) of the virtual address are 
compared to the contents of the TLB virtual page number.

If a TLB entry matches, the physical address and access control bits (C, D, and V) are retrieved from the
matching TLB entry. While the V bit of the entry must be set for a valid translation to take place, it is not
involved in the determination of a matching TLB entry. Figure 7.20 illustrates the TLB address translation
process.

(���2 �� �
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PTagLo Specifies the physical address bits 35:12.

PState Specifies the primary cache state.

IType Instruction-type bits: (28) MS instruction, (25) LS instruction.
Specifies the even-word instruction type as integer or floating-point. 

F The FIFO bit, used to implement FIFO refill of the cache.

P Specifies the primary tag even parity bit.

STagLo Specifies the physical address bits 35:19.

SV Specifies the Valid bit for secondary cache.

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 7.13  Cache Tag Register Fields
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Figure 7.20  TLB Address Translation
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If there is a virtual address match, or hit, in the TLB, the physical page number is extracted from the TLB
and concatenated with the offset to form the physical address. If there is no TLB entry that matches the
virtual address, a TLB miss exception occurs and software refills the TLB from the page table resident in
memory. Software can write over a selected TLB entry or use a hardware mechanism to write into a random
entry. 
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The processor does not provide any detection or shutdown mechanism for multiple matches in the TLB.
The result of this condition is undefined, and software is expected to never allow this to occur.

��,���� �� �!!�����

If the access control bits (D and V) indicate that the access is not valid, a TLB modification or TLB invalid
exception occurs. If the C bits equal 0102, the physical address that is retrieved accesses main memory,
bypassing the cache.
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Table 7.14 lists the instructions that the CPU provides for working with the TLB.
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TLBP Translation Lookaside Buffer Probe

TLBR Translation Lookaside Buffer Read

TLBWI Translation Lookaside Buffer Write Index

TLBWR Translation Lookaside Buffer Write Random

Table 7.14  TLB Instructions

User
M ode?

VPN
Match?

ASID
Match?

G
= 1?

Valid

V
= 1?

D
= 1?

No

Yes

Yes

Yes

No

No
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W rite?
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No
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TLB
Invalid

TLB
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M ain Access
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Error
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Exception
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Error
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address space, see
the section describing
Operating Modes
in this chapter.
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Valid
Address?
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This chapter describes the on-chip primary cache, the individual operations of the primary cache, and
the organization and operations of the on-chip secondary cache controller. 

Figure 8.1 shows the R5000 system memory hierarchy. In the logical memory hierarchy, caches lie
between the CPU and main memory. They are designed to make the speedup of memory accesses trans-
parent to the user. Each functional block in Figure 8.1 has the capacity to hold more data than the block
above it. At the same time, each functional block takes longer to access than any block above it. To
improve, the speed of access to stored instructions and data, the processor has two on-chip primary
caches, one for instruction and one for data, plus an on-chip secondary-cache controller.

Figure 8.1  Logical Hierarchy of Memory

Caches provide fast, temporary data storage, and they make the speedup of memory accesses trans-
parent to the user. In general, the processor attempts to access the next-required instruction or datum in the
primary cache. A successful access is called a primary-cache hit. If the instruction/data is not present in the
primary cache, it is retrieved as a cache line from secondary cache (if installed) or memory and is written
into the primary cache. For a data cache miss, the processor can restart the pipeline after the first double-
word (the one at the miss address) is retrieved and continues the cache line refill in parallel.
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 It is possible for the same data to be in three places simultaneously: main memory, secondary cache,
and primary cache. This data is kept consistent through the use of either a write-back or a write-through
protocol. For a write-back cache, the modified data is not written to memory until the cache line is replaced.
In a write-through cache, the data is written to memory when the cached data is modified (with a possible
delay due to the write buffer).
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This section describes the organization of on-chip primary caches and the optional secondary cache. 
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A cache line is the smallest unit of information that can be fetched from memory to be filled into the
cache. A primary cache line is 8 words (32 bytes) in length and is represented by a single tag. Upon a
cache miss in the primary cache, the missing cache line is loaded from memory into the primary cache.
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This section describes the organization of the primary cache, including the manner in which it is
mapped, the addressing used to index the cache, and composition of the cache lines. The primary instruc-
tion and data caches are indexed with a virtual address (VA). 
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Each line of primary I-cache data (although it is actually an instruction, it is referred to as data to distin-
guish it from its tag) has an associated 31-bit tag that contains a 24-bit physical address, a single valid bit, a
reserved bit, a single parity bit and the FIFO replacement bit. Word parity is used on I-cache data. Instruc-
tion-type bits determine whether the even-word instruction is an integer instruction or a floating-point
instruction. A four-bit IType field is created to be written with the tag. The four bits correspond to each of the
four instructions associated with this tag, with the most-significant bit corresponding to the most-significant
instruction. 

The primary I-cache has the following characteristics:
� two-way set associative.
� indexed with a virtual address.
� checked with a physical tag.
� organized with 8-word (32-byte) cache line.

Figure 8.2 shows the format of a primary I-cache line.

Figure 8.2  Primary I-Cache Line Format
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Each line of primary D-cache data has an associated 28-bit tag that contains a 24-bit physical address,
2-bit cache line state, a write-back bit, a parity bit for the physical address and cache state fields, a parity bit
for the write-back bit, and the FIFO replacement bit.

The primary D-cache has the following characteristics:
� write-back or write-through on a per-page basis.
� two-way set associative.
� indexed with a virtual address.
� checked with a physical tag.
� organized with 8-word (32-byte) cache line.

Figure 8.3 shows the format of a primary D-cache line. In the R5000, the W (write-back) bit, not the
cache state, indicates whether or not the primary cache contains modified data that must be written back to
memory. There is no hardware support for cache coherency. The only cache states used are Dirty Exclusive
and Invalid.

Figure 8.3  8-Word Primary Data-Cache Line Format
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Figure 8.4 shows the virtual address (VA) index into the primary caches. Each instruction and data
cache size is 32 Kbytes.

Key to Figure:  
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Figure 8.4  Primary Cache Data and Tag Organization
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Figure 8.5 shows a block diagram of how a secondary cache might be configured to the R5000
processor. Figure 8.6 shows a timing diagram of hit and miss read followed by write cycles. Figure 8.7
shows a timing diagram of basic read and write cycles.
 

Figure 8.5  Secondary Cache Block Diagram
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Figure 8.6  Tag RAM Hit and Miss Read-Followed-By-Write Cycles

 

Figure 8.7  Tag RAM Read and Write Cycles
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The data RAMs are pipelined synchronous SRAMs with registered -inputs and outputs. The chip enable
and write enable signals are pipelined. The output enable signal is asynchronous. Figure 8.8 shows a block
diagram of the data RAMs.
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Figure 8.8  Data RAM Block Diagram

As illustrated in the above block diagrams, the RAMs synchronously enable their outputs two cycles
after a read operation is issued, and synchronously disable their outputs two cycles after the end of a read
operation. The tag RAM has the same architecture as the data RAM with the addition of a load enable
signal for the data input register and a registered comparator output of the data input register and the RAM
array. The tag RAM may optionally support a flash clear of the valid bit column. 

Figure 8.9 shows a block diagram of the tag RAM.

Figure 8.9  Tag RAM Block Diagram
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The CACHE instruction defines two operations for the secondary cache: index load tag and index store
tag. The following orientation of the index bits determine the type of operation:

� Index Bits [17:16] equal to 11b (3h) specifies the secondary cache. 
� Index bits [20:18] equal to 001b (1h) specifies the index load tag. The index load tag reads the sec-

ondary cache for the specified index and places it into the TagLo CP0 register.
� Index bits [20:18] equal to 010b (2h) specify the index store tag. The index store tag writes the sec-

ondary cache for the specified index from the physical address generated by the CACHE instruc-
tion. 

� Index bits [20:18] equal to 000b (0h) generates a valid clear sequence to flush the entire cache in 
one operation.

� Index bits [20:18] equal to 101b (5h) generates a cache page invalidate instruction to flush 128 
lines of the cache in one operation with the tag value from the TagLo CP0 register. The index for the 
cache page invalidate must be page aligned.

� Interrupts are deferred until a cache page invalidate instruction completes (up to 512 processor 
clocks for a SysClock ratio of 4).

� TagLo[12] is the valid bit and TagLo[31:15] is the tag for all secondary cache operations.

'�!�����& 
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The secondary cache configuration is specified by the processor ROM mode serial bit [12]. The state of
this bit is indicated by the Secondary Cache (SC) bit in the CP0 configuration register (bit 17). If bit [17] is
zero, a secondary cache is present in the system. 

If no secondary cache is present and the mode ROM is configured for no secondary cache, the ScMatch
and ScDOE* signals become don’t-care inputs and must be terminated to valid logic levels, and the
processor drives all secondary cache signals to their inactive state. If the secondary cache is present and
enabled, then the SysADC signals must implement valid parity during block read responses. 

The doublewords transferred on SysAD during secondary-cache block read transactions are in subblock
order (see Chapter 11 for a description of subblock order). The doublewords transferred on SysAD during
secondary cache block write transactions are in sequential order. 

The size of the secondary cache is indicated by the processor mode ROM serial bits [17:16], and are
encoded as follows:

� [17:16] = 00 - 512 Kbyte
� [17:16] = 01 - 1 Mbyte
� [17:16] = 10 - 2 Mbyte
� [17:16] = 11 - Reserved

The state of these bits appear as configuration register bits [21:20].

'�!�����& 
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The secondary cache may be enabled or disabled by software control via CP0 configuration register bit
12 (SE). When the SE bit is set (1) the secondary cache is enabled. When the SE bit is cleared (0) the
secondary cache is disabled. The SE bit is cleared at reset. When the secondary cache is enabled by
setting the SE bit, the state of the cache is undefined and software must explicitly invalidate the entire
secondary cache before using it. 
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The terms below are used to describe the state of a cache line:
� Exclusive: a cache line that is present in exactly one cache in the system is exclusive. This is 

always the case for the R5000. All cache lines are in an exclusive state.
� Dirty: a cache line containing data that has changed since it was loaded from memory. 
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� Clean: a cache line containing data that has not changed since it was loaded from memory.
� Shared: a cache line present in more than one cache in the system. The R5000 does not provide 

for hardware cache coherency. This state will never happen in normal operations.

The R5000 supports the four data-cache states shown in Table 8.1. Under normal operations, however,
the only cache-line states that will occur in the data cache are the Dirty Exclusive and Invalid states. Each
primary instruction cache line is either valid or invalid.

Although valid data is in the Dirty Exclusive state, it may still be consistent with memory. One must look
at the dirty bit, W, to determine if the cache line is to be written back to memory when it is replaced.
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The processor is the owner of a cache line when it is in the dirty exclusive state, and is responsible for
the contents of that line. There can only be one owner for each cache line. The ownership of a cache line is
set and maintained through the rules described below.

� A processor assumes ownership of the cache line if the state of the primary cache line is dirty 
exclusive. 

� A processor that owns a cache line is responsible for writing the cache line back to memory if the 
line is replaced during the execution of a Write-back or Write-back Invalidate cache instruction if the 
line is in a write-back page. The cache instruction is explained further in the IDT MIPS Microproces-
sor Family Software Reference Manual.

� Memory always owns clean cache lines.
� The processor gives up ownership of a cache line when the state of the cache line changes to 

invalid. 

Therefore, based on these rules and that any valid data cache line is in the Dirty Exclusive state (under
normal operating conditions), the processor is considered to be the owner of the cache line.
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The R5000 manages its primary data cache by using either a write-back or a write-through policy on a
per-page basis. Four policies are supported: 

� Uncached
� Writeback
� Write-Through With Write Allocation
� Write-Through With No Write Allocation. 

Uncached writes do not modify the cache and are written directly to main memory. 

�����'���
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Invalid A cache line that does not contain valid information must be marked invalid, and cannot be 
used. A cache line in any other state than invalid is assumed to contain valid information.

Shared A cache line that is present in more than one cache in the system is shared. This state will not 
occur for normal operations.

Clean Exclusive A clean exclusive cache line contains valid information and this cache line is not present in any 
other cache. The cache line is consistent with memory and is not owned by the processor (see 
“Cache-Line Ownership” on page 8-8). This state will not occur for normal operations.

Dirty Exclusive A dirty exclusive cache line contains valid information and is not present in any other cache. 
The cache line may or may not be consistent with memory and is owned by the processor (see 
“Cache-Line Ownership” on page 8-8). Use the W bit to determine if the line must be written 
back on replacement.

Table 8.1  Cache States
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 A write-back policy does not write data to main memory until the cache line is replaced or the CACHE
instruction flushes and possibly invalidates the dirty cache line. If a write hits in cache, the data is stored in
cache and the cache line is marked dirty: no main memory access occurs. If a write misses in cache, the
replaced cache line is written to memory, if dirty. The new cache line is read, the data is written to cache,
and the cache line is marked dirty. 

A write-through policy writes the data to main memory, immediately. If a write hits in cache, the data is
stored in cache and written to memory. The cache line is not marked dirty, since cache and main memory
have the same value. If the write misses in the cache and the policy is write-through with write allocation,
the replaced cache line is written to memory, if dirty; the new cache line is read, the data is stored in cache
and written to memory. If the policy is write-through with no write allocate, the data is written to memory and
does not modify the cache.
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Figure 8.10 shows the cache-state transitions for the primary cache. When an external agent supplies a
cache line, it need not return the initial state of the cache line for normal operations (refer to Chapter 10 for
a definition of an external agent). This is because the only read request the R5000 should issue are for non-
coherent data, and the lower three bits for the data identifier are reserved. The initial state will automatically
be set to dirty exclusive by the R5000. Otherwise, the processor changes the state of the cache line during
one of the following events:

� A store to a dirty exclusive line remains in a dirty exclusive state.
� The state is changed to invalid for:

– for a Cache invalidate operation
– if the line is replaced

.

Figure 8.10  Primary Data Cache State Diagram
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Systems using more than one master must have a mechanism to maintain data consistency throughout
the system. This mechanism is called a cache coherency protocol. The R5000 does not provide any hard-
ware cache coherency. Cache coherency must be handled with software.
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Uncached N/A Write to main memory

Write-back Store in cache
Cache line marked dirty

Flush cache line (if dirty)
Read new cache line
Store in cache
Cache line marked dirty

Write-Through
Write Allocate

Store in cache
Write to main memory

Flush cache line (if dirty)
Read new cache line
Store in cache
Write to main memory

Write-Through
No Write Allocate

Store in cache
Write to main memory

Write to main memory

Table 8.2  CPU Cache Write Policy

Write hit
Read hit

Dirty ExclusiveInvalid

Index Invalidate
Hit Invalidate
Hit Writeback Invalidate
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The TLB contains 3 bits per entry that provide two possible cache-coherency attribute types, uncached
and noncoherent. These attribute types can be used to control cache coherency on a per-page basis. Table
8.3 lists the two attribute types and summarizes the behavior of the processor on load misses and store
misses for each type. 
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Lines within an uncached page are never in a cache. When a virtual address has the uncached coher-
ency attribute, the processor issues a doubleword, partial-doubleword, word, or partial-word read or write
request directly to main memory (bypassing the cache) for any load or store to a location within that page. 

=��!������� �����#���

Lines with a noncoherent attribute type can reside in a cache. A load miss causes the processor to issue
a noncoherent block read request to a location within the cached page. For a store miss to a write-allocate
page, the processor issues a noncoherent block read request to a location within the cached page and then
does the write-through. If the virtual address has the no write-allocate attribute, a store miss will generate a
write to the memory as in the uncached case.

&&&&
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In a multiprocessor system, it is essential that two or more processors working on a common task can
execute without corrupting each other’s subtasks. Synchronization, an operation that guarantees an orderly
access to shared memory, must be implemented for a properly functioning multiprocessor system. Two of
the more widely used methods are discussed in this section: test-and-set, and counter. Even though the
R5000 does not support symmetric multi-processing (SMP), these are useful for multi-master and hetero-
geneous multi-processing.

���������'��

Test-and-set uses a variable called the semaphore, which protects data from being simultaneously
modified by more than one processor. In other words, a processor can lock out other processors from
accessing shared data when the processor is in a critical section, a part of program in which no more than a
fixed number of processors is allowed to execute. In the case of test-and-set, only one processor can enter
the critical section.

Figure 8.11 illustrates a test-and-set synchronization procedure that uses a semaphore; when the sema-
phore is cleared to 0, the shared data is unlocked, and when the semaphore is set to 1, the shared data is
locked.
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Uncached Main-memory read Main-memory write

Noncoherent Noncoherent read Noncoherent read (write-allocate page)
Main-memory write (no write-allocate page)

Table 8.3  Coherency Attributes and Processor Behavior
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Figure 8.11  Synchronization with Test-and-Set

The processor begins by loading the semaphore and checking to see if it is unlocked (0) in steps 1 and
2. If the semaphore is not 0, the processor loops back to step 1. If the semaphore is 0, indicating the shared
data is not locked, the processor next tries to lock out any other access to the shared data (step 3). If not
successful, the processor loops back to step 1, and reloads the semaphore.

If the processor is successful at setting the semaphore (step 4), it executes the critical section of code
(step 5) and gains access to the shared data, completes its task, unlocks the semaphore (step 6), and
continues processing.


������

Another common synchronization technique uses a counter. A counter is a designated memory location
that can be incremented or decremented. In the test-and-set method, only one processor at a time is
permitted to enter the critical section. Using a counter, up to N processors are allowed to concurrently
execute the critical section. All processors after the Nth processor must wait until one of the N processors
exits the critical section and a space becomes available.

The counter works by not allowing more than one processor to modify it at any given time. Conceptually,
the counter can be viewed as a variable that counts the number of limited resources (for example, the
number of processes, or software licenses, etc.). Figure 8.12 shows this process.
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  (=0?)

3. Try locking
  semaphore
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Figure 8.12  Synchronization Using a Counter
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The R5000 instructions Load Linked (LL) and Store Conditional (SC) provide support for processor
synchronization. These two instructions work very much like their simpler counterparts, load and store. The
LL instruction, in addition to doing a simple load, has the side effect of setting a bit called the link bit. This
link bit forms a breakable link between the LL instruction and the subsequent SC instruction. The SC
performs a simple store if the link bit is set when the store executes. If the link bit is not set, then the store
fails to execute. The success or failure of the SC is indicated in the target register of the store. The link is
broken upon completion of an ERET (return from exception) instruction. 

The most important features of LL and SC are that:
� they provide a mechanism for generating all of the common synchronization primitives including 

test-and-set, counters, sequencers, etc., with no additional overhead
� when they operate, bus traffic is generated only if the state of the cache line changes; lock words 

stay in the cache until some other processor takes ownership of that cache line

Figure 8.13 shows how to implement test-and-set using LL and SC instructions.

Figure 8.13  Test-and-Set using LL and SC
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 Figure 8.14 shows synchronization using a counter. 

Figure 8.14  Counter Using LL and SC
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This chapter describes the signals used by and in conjunction with the R5000 processor. The signals
include the System Interface, Clock Interface, Secondary Cache Interface, Interrupt Interface, Joint Test
Action Group (JTAG) Interface, and Initialization Interface signals.

Figure 9.1 illustrates the functional groupings of the processor signals. Active-low signals have a trailing
asterisk—for instance, the low-active Read Ready signal is RdRdy*. 

Figure 9.1  R5000 Processor Signals
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System interface signals provide the connection between the R5000 processor and the other compo-
nents in the system. Table 9.1 lists the system interface signals. 
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The Clock interface signals make up the interface for clocking. Table 9.2 lists the Clock interface signals.
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Secondary Cache interface signals constitute the interface between the R5000 processor and
secondary cache. Table 9.3 lists the Secondary Cache interface signals in alphabetical order.
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ExtRqst* External request Input An external agent asserts ExtRqst* to request use of the 
System interface. The processor grants the request by 
asserting Release*. 

Release* Release interface Output In response to the assertion of ExtRqst*, the processor 
asserts Release*, signalling to the requesting device that 
the System interface is available.

RdRdy* Read ready Input The external agent asserts RdRdy* to indicate that it can 
accept processor read requests in either secondary or no-
secondary cache mode. 

SysAD(63:0) System address/data 
bus

Input/Output A 64-bit address and data bus for communication 
between the processor, the secondary cache, and an 
external agent. 

SysADC(7:0) System address/
data check bus

Input/Output An 8-bit bus containing parity for the SysAD bus. SysADC 
is valid on data cycles only. 

SysCmd(8:0) System command/
data identifier

Input/Output A 9-bit bus for command and data identifier transmission 
between the processor and an external agent. 

SysCmdP System command/
data identifier bus 
parity

Input/Output Always zero when driven by the processor. Never 
checked by the processor. This signal is defined to main-
tain R4000 compatibility.

ValidIn* Valid input Input The external agent asserts ValidIn* when it is driving a 
valid address or data on the SysAD bus and a valid com-
mand or data identifier on the SysCmd bus. 

ValidOut* Valid output Output The processor asserts ValidOut* when it is driving a valid 
address or data on the SysAD bus and a valid command 
or data identifier on the SysCmd bus to the external agent. 

WrRdy* Write ready Input The external agent asserts WrRdy* when it can accept a 
processor write request.

Table 9.1  System Interface Signals
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SysClock System Clock Input System clock input that establishes the system inter-
face operating frequency and phase. 

VccP Quiet Vcc for PLL Input Quiet Vcc for the internal phase locked loop.

VssP Quiet Vss for PLL Input Quiet Vss for the internal phase locked loop.

Table 9.2  Secondary Cache Interface Signals
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The Interrupt interface signals make up the interface used by external agents to interrupt the R5000
processor. Table 9.4 lists the Interrupt interface signals.
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The JTAG interface signals make up the boundary scan interface. Table 9.5 lists the JTAG interface
signals. While JTAG signals are shown on the pinout, the JTAG interface is not supported by the R5000. 
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ScCLR* Secondary Cache Block Clear Output Clears all valid bits in those Tag RAMs which 
support this function. 

ScCWE*(1:0) Secondary Cache Write Enable Output Asserted during writes to the secondary 
cache. Two signals are provided to minimize 
loading from the cache RAMs.

ScDCE*(1:0) Data RAM Chip Enable Output Chip Enable for Secondary Cache Data RAM. 
Two signals are provided to minimize load-
ing from the cache RAMs.

ScDOE* Data RAM Output Enable Input Asserted by the external agent to enable data 
onto the SysAD bus

ScLine (15:0) Secondary Cache Line Index Output Cache line index for secondary cache

ScMatch Secondary cache Tag Match Input Asserted by Tag RAM on Secondary cache 
tag match

ScTCE* Secondary cache Tag RAM Chip Enable Output Chip enable for secondary cache tag RAM.

ScTDE* Secondary cache Tag RAM Data Enable Output Data Enable for Secondary Cache Tag RAM.

ScTOE* Secondary cache Tag RAM Output 
Enable

Output Tag RAM Output enable for Secondary 
Cache Tag RAM

ScWord (1:0) Secondary cache Word Index Input/Output Determines correct double-word of Second-
ary cache Index

ScValid Secondary cache Valid Input/Output Always driven by the CPU except during a 
CACHE Probe operation, where it is driven by 
the Tag RAM.

Table 9.3  Secondary Cache Interface Signals
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Int*(5:0) Interrupt Input General processor interrupts, bit-wise ORed with bits 5:0 of the 
interrupt register. 

NMI* Nonmaskable interrupt Input Nonmaskable interrupt, ORed with bit 6 of the interrupt register.

Table 9.4  Interrupt Interface Signals
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JTDI JTAG data in Input Data is serially scanned in through this pin. 

JTCK TAG clock input Input The processor accepts a serial clock on JTCK. On the rising edge of 
JTCK, both JTDI and JTMS are sampled.

JTDO JTAG data out Output Data is serially scanned out through this pin on the falling edge of JTCK.

JTMS JTAG command Input JTAG command signal, indicating the incoming serial data is command data.

Table 9.5  JTAG Interface Signals
�� ������ � + / ��������
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The Initialization interface signals make up the interface by which an external agent initializes the
processor operating parameters. Table 9.6 lists the Initialization interface signals.
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BigEndian Endian Mode Select Input Allows the system to change the processor addressing mode 
without rewriting the mode ROM. If endianness is to be spec-
ified via the BigEndian pin, program mode ROM bit 8 to zero. 
If endianness is to be specified by the mode ROM, ground 
the BigEndian pin.

 ColdReset* Cold reset Input This signal must be asserted for a power on reset or a cold 
reset. ColdReset* must be deasserted synchronously with 
SysClock.

ModeClock Boot mode clock Output Serial boot-mode data clock output; runs at the system clock 
frequency divided by 256: (SysClock/256).

ModeIn Boot mode data in Input Serial boot-mode data input. 

Reset* Reset Input This signal must be asserted for any reset sequence. It can 
be asserted synchronously or asynchronously for a cold 
reset, or synchronously to initiate a warm reset. Reset* must 
be deasserted synchronously with SysClock.

VccOk Vcc is OK Input When asserted, this signal indicates to the processor that the 
Vcc Min power supply has been above 3.135 volts for more 
than 100 milliseconds and will remain stable. The assertion of 
VccOk initiates the initialization sequence.

Table 9.6  Initialization Interface Signals
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The System interface allows the processor to access external resources that are needed to satisfy
cache misses and uncached operations, while permitting an external agent access to some of the
processor internal resources. This chapter describes the system interface from the point of view of both the
processor and the external agent.

The system interface of the R5000 processor is a modification of the R4600 system interface. The clock
portion of the system interface has been simplified and many of the external clock signals have been
deleted. 

The R5000 processor supports up to a 100 MHz pipelined SysAD bus. R5000 also implements a unified,
write-through secondary cache controller which has the same 32-byte line size as the primary caches.
Secondary cache index and control signals are supplied by the processor. Secondary cache sizes of 512
KByte, 1 MByte, and 2 MByte are supported. 

++++��������������������������������    ����

The following terms are used in this chapter: 

An external agent is any logic device connected to the processor over the system interface that allows
the processor to issue requests.

A system event is an event that occurs within the processor and requires access to external system
resources.

Sequence refers to the precise series of requests that a processor generates to service a system event. 

Protocol refers to the cycle-by-cycle signal transitions that occur on the system interface pins to assert a
processor or external request. 

Syntax refers to the precise definition of bit patterns on encoded buses, such as the command bus. 

������������������������������������������������8888
�
�
�
�������������

When a system event occurs, the processor issues either a single request or a series of requests—
called processor requests—through the System interface, to access an external resource and service the
event. For this to work, the processor System interface must be connected to an external agent that is
compatible with the System interface protocol, and can coordinate access to system resources.

An external agent requesting access to a processor internal resource generates an external request.
This access request passes through the System interface. System events and request cycles are shown in
Figure 10.1
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Figure 10.1  Requests and System Events
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A processor request is a request or a series of requests, through the System interface, to access some
external resource. As shown in Figure 10.2, processor requests include read and write.

Figure 10.2  Processor Requests to External Agent

A read request asks for a partial word, word, partial doubleword, doubleword, or larger block of data
either from main memory or from another system resource. A write request provides a partial word, word,
partial doubleword, doubleword, or larger block of data to be written either to main memory or to another
system resource.

The processor is only allowed to have one request pending at any time. For example, the processor
issues a read request and waits for a read response before issuing any subsequent requests. The
processor submits a write request only if there are no read requests pending.

The processor has the input signals RdRdy* and WrRdy* to allow an external agent to manage the flow
of processor requests. RdRdy* controls the flow of processor read requests, while WrRdy* controls the flow
of processor write requests. The processor request cycle sequence is shown in Figure 10.3. 

Figure 10.3  Processor Request Flow Control

R5000 External Agent

Processor Requests
• Read
• Write

External Requests
• Read
• Write
• Null

System Events
• Load Miss
• Store Miss
• Write Back
• Write Through
• Store Hit
• Uncached Load/Store

R5000 External Agent

Processor Requests
• Read
• Write

R5000 External Agent

1. Processor issues read or write

2. External system controls acceptance 
of requests by asserting RdRdy* or 
WrRdy*
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When a processor issues a read request, the external agent must access the specified resource and
return the requested data. A processor read request can be split from the external agent’s return of the
requested data; in other words, the external agent can initiate an unrelated external request before it
returns the response data for a processor read. A processor read request is completed after the last word of
response data has been received from the external agent. The data identifier associated with the response
data can signal that the returned data is erroneous, causing the processor to take a bus error.

Processor read requests that have been issued, but for which data has not yet been returned, are said
to be pending. A read remains pending until the requested read data is returned. The external agent must
be capable of accepting a processor read request any time the following two conditions are met:

� There is no processor read request pending.
� The signal RdRdy* has been asserted for two or more cycles before the issue cycle.

���!����� "���� /�D����

When a processor issues a write request, the specified resource is accessed and the data is written to it.
A processor write request is complete after the last word of data has been transmitted to the external agent.
The R5000 processor supports R4000 compatible, write-reissue and pipelined write operations as defined
in section 4. The external agent must be capable of accepting a processor write request any time the
following two conditions are met:

� No processor read request is pending.
� The signal WrRdy* has been asserted for two or more cycles.
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This section describes external requests, which include read, write, and null requests, and read
response, a special case of an external request. The external requests (except read-response, which is
described later) are shown in Figure 10.4:

Figure 10.4  External Requests to Processor (except Read Response)

� Read request asks for a word of data from the processor’s internal resource. 
� Write request provides a word of data to be written to the processor’s internal resource. 
� Null request requires no action by the processor; it provides a mechanism for the external agent to 

return the System interface to the master state without affecting the processor.

The processor controls the flow of external requests through the arbitration signals ExtRqst* and
Release*, as shown in Figure 10.5. The external agent must acquire mastership of the System interface
before it is allowed to issue an external request; the external agent arbitrates for mastership of the System
interface by asserting ExtRqst* and then waiting for the processor to assert Release* for one cycle. If
Release* is asserted as part of an uncompelled change to slave state during a processor read request, and
the secondary cache is enabled, the secondary cache access must be resolved and be a miss. Otherwise
the system interface remains in the master state.

R5000 External Agent

External Requests
• Read
• Write
• Null
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Figure 10.5  External Request Arbitration

Mastership of the System interface always returns to the processor after an external request is issued.
The processor does not accept a subsequent external request until it has completed the current request. If
there are no processor requests pending, the processor decides, based on its internal state, whether to
accept the external request, or to issue a new processor request. The processor can issue a new processor
request even if the external agent is requesting access to the System interface.

The external agent asserts ExtRqst* indicating that it wishes to begin an external request. The external
agent then waits for the processor to signal that it is ready to accept this request by asserting Release*. The
processor signals that it is ready to accept an external request based on the following criteria:

� The processor completes any request in progress.
� While waiting for the assertion of RdRdy* to issue a processor read request, the processor can 

accept an external request if the request is delivered to the processor one or more cycles before 
RdRdy* is asserted. 

� While waiting for the assertion of WrRdy* to issue a processor write request, the processor can 
accept an external request provided the request is delivered to the processor one or more cycles 
before WrRdy* is asserted.

� If waiting for the response to a read request after the processor has made an uncompelled change 
to a slave state, the external agent can issue an external request before providing the read 
response data.

26������ /��� /�D����

The processor does not contain any resources that are readable by an external read request. In
response to an external read request, the processor returns undefined data and a data identifier with its
Erroneous Data bit, SysCmd(5), set.

26������ "���� /�D����

When an external agent issues a write request, the specified resource is accessed and the data is
written to it. An external write request is complete after the word of data has been transmitted to the
processor. The only processor resource available to an external write request is the IP field of the Cause
register. 

/��� /�������

A read response returns data in response to a processor read request, as shown in Figure 10.6. While a
read response is technically an external request, it has one characteristic that differentiates it from all other
external requests—it does not perform System interface arbitration. For this reason, read responses are
handled separately from all other external requests, and are simply called read responses. The data identi-
fier associated with the response data can signal that the returned data is erroneous, causing the processor
to take a bus error.

R5000 External Agent

1. External system requests bus 
mastership by asserting ExtRqst*

2. Processor grants mastership by 
asserting Release*

3. External system issues an 
External Request

4. Processor regains bus mastership
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Figure 10.6  External Agent Read Response to Processor
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For processors configured with a secondary cache, the secondary cache is a special form of external
agent that is jointly controlled by both the processor and the external agent. Figure 10.7 illustrates a
processor request to the secondary cache and external agent.

Figure 10.7  Processor Requests to Secondary Cache and External Agent
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For secondary cache invalidate, clear, and probe operations, the secondary cache is controlled by the
processor and the external agent is not involved in these operations. Issuance of secondary cache invali-
date, clear, and probe operations is not flow-controlled and proceeds at the maximum data rate. Figure 10.8
and Figure 10.9 show the secondary cache invalidate and tag probe operations.

Figure 10.8  Secondary Cache Invalidate and Clear

R5000 External Agent

1. Read request

2. Read response

R5000

Processor Requests
• Read
• Write

External Agent

Secondary Cache

R5000

1. Invalidate/Clear Re-
quest

Secondary Cache
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Figure 10.9  Secondary Cache Tag Probe
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For secondary cache write-through, the processor issues a block write operation that is directed to both
the secondary cache and the external agent. Issuance of secondary cache writes is controlled by the
normal WrRdy* flow control mechanism. Secondary cache write data transfers proceed at the data transfer
rate specified in the Mode ROM for block writes. Figure 10.10 illustrates a secondary cache write operation.

Figure 10.10  Secondary Cache Write Through
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For secondary cache reads, the processor issues a block read speculatively to both the secondary
cache and the external agent.

� If the block is present in the secondary cache, the secondary cache provides the read response 
and the block read to the external agent is aborted.

� If the block is not present in the secondary cache, the secondary cache read is aborted and the 
external agent provides the read response to both the secondary cache and the processor.

Figure 10.11 and Figure 10.12 show a secondary cache read hit and miss respectively.

R5000

1. Probe Request

Secondary Cache

2. Tag Response

R5000
External Agent

Secondary Cache

1. Block Write Request
2. Write Response 
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Figure 10.11  Secondary Cache Read Hit

Figure 10.12  Secondary Cache Read Miss

Issuance of the secondary cache read is controlled by the normal RdRdy* flow control mechanism.
Secondary cache read responses always proceed at the maximum data transfer rate. External agent read
responses to the secondary cache proceed at the data transfer rate generated by the external agent.
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This section details the sequence, protocol, and syntax of both processor and external requests. The
following system events are discussed:

� load miss 
� store miss 
� store hit
� uncached loads/stores
� load linked store conditional.

R5000

1. Block Read Request

External Agent

Secondary Cache

2. Tag Compare

3. Read Response

3. Memory Read 
Abort

R5000

1. Block Read Request

External Agent

Secondary Cache

2. Tag Compare

3. Read Response

3. Fill Cache Line
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When a processor-load misses in the primary cache, before the processor can proceed it must obtain
the cache line that contains the data element to be loaded from the external agent. The processor exam-
ines the coherency attribute in the TLB entry for the page that contains the requested cache line. Table 10.1
shows the actions taken on a load miss to the primary data cache.

The processor performs the following steps:
1.  Issues a noncoherent block read request for the cache line that contains the data element to be

loaded. If the secondary cache is enabled and the page coherency attribute is write-back, the read
request is also issued to the secondary cache.

2.  Waits for an external agent to provide the read response. 
3.  Restarts the pipeline after the first doubleword of the data cache miss is received. The remaining

three doublewords are placed in the cache in parallel with the pipeline restart. 

If the new cache line replaces a current dirty exclusive or dirty shared cache line, the current cache line
must be written back before the new line can be loaded in the primary cache. In this case, the processor
issues a block write request to save the dirty cache line in memory. If the secondary cache is enabled and
the page attribute is write-back, the write request is also issued to the secondary cache. 

'���� +���

When a processor-store misses in the primary cache, the processor may request, from the external
agent, the cache line that contains the target location of the store for pages that are either write-back or
write-through with write-allocate only. The processor examines the coherency attribute in the TLB entry for
the page that contains the requested cache line to see if the cache line is being maintained with either a
write-allocate or no-write-allocate.

The processor then executes one of the following requests:
� If the coherency attribute is noncoherent write-back, or write-through with write-allocate, a nonco-

herent block read request is issued. 
� If the coherency attribute is noncoherent write-through with no write-allocate, a non-block write 

request is issued.

Table 10.2 shows the actions taken on a store miss to the primary cache.

If the coherency attribute is write-back, or write-through with write-allocate, the processor issues a non-
coherent block read request for the cache line that contains the data element to be loaded, then waits for
the external agent to provide read data in response to the read request. If the secondary cache is enabled
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Noncoherent NCBR
(Processor noncoherent block read 
request)

NCBR/W
(Processor noncoherent block read request followed 
by processor block write request)

Table 10.1  Action Taken On Load Miss to Primary Data Cache
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Noncoherent-write-back or non-
coherent-write-through with write-
allocate

NCBR
(Processor noncoherent block 
read request)

NCBR/W
(Processor noncoherent block read request 
followed by processor block write request)

Noncoherent-write-through with 
no-write-allocate

NCW
(Processor noncoherent write 
request)

NA

Table 10.2  Store Miss to Primary and Secondary Data Caches
�� ������ *	 + 3 ��������
 ��� �			



�# ��� ����
���� �
�� ������ %
����+��
)�� ���)�����

��������			 ����
��

�����
 and the page coherency attribute is write-back, the read request is also issued to the secondary cache. If
the current cache line must be written back, the processor issues a write request for the current cache line.
If the page coherency attribute is write-through, the processor issues a non-block write request. 

For a write-through, no-write-allocate store miss, the processor issues a non-block write request only. 
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The action on the system bus is determined by whether the line is write-back or write-through. All lines
that use a write-back policy are set to the dirty exclusive state. This means store hits cause no bus transac-
tions. For lines with a write-through policy, the store generates a processor non-block write request for the
store data.

��!�!��� ����� �� '�����

When the processor performs an uncached load, it issues a noncoherent doubleword, partial double-
word, word, or partial word read request. When the processor performs an uncached store, it issues a
doubleword, partial doubleword, word, or partial word write request. All writes by the processor are buffered
from the system interface by a 4-deep write buffer. The write requests are sent to the system bus only when
no other requests are in progress. However, once the emptying of the write buffer has begun, it is allowed to
complete. Therefore, if the write buffer contains any entries when a block read is requested, the write buffer
is allowed to empty before the block read request is serviced. Uncached loads and stores do not affect the
secondary cache.

��!�!��� ������!���� ���!�

The processor issues doubleword reads for instruction fetches to uncached addresses. Thus any
system ROM address space accessed during a processor boot-restart must support 64-bit reads. 
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Generally, the execution of a Load-Linked/Store-Conditional instruction sequence is not visible at the
System interface. That is, no special requests are generated due to the execution of this instruction
sequence. 

There is, however, one situation in which the execution of a Load Linked Store Conditional instruction
sequence is visible, as indicated by the link address retained bit during a processor read request, as
programmed by the SysCmd(2) bit. This situation occurs when the data location targeted by a Load Linked
Store Conditional instruction sequence maps to the same cache line to which the instruction area
containing the Load-Linked/Store- Conditional code sequence is mapped. In this case, immediately after
executing the Load Linked instruction, the cache line that contains the link location is replaced by the
instruction line containing the code. The link address is kept in a register separate from the cache, and
remains active as long as the link bit, set by the Load Linked instruction, is set.

The link bit, which is set by the load linked instruction, is cleared by a change of cache state for the line
containing the link address, or by a Return From Exception.
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Since the instruction cache performs aligned fetches of two instructions per cycle from uncached
addresses, compilers should attempt to align branch targets to allow dual-issue on the first target cycle. If
code contains unaligned branch target, the processor requests an uncached doubleword read from an odd
word address, which is an offset of 0x4 or 0xC. The external agent must ignore odd word addresses due to
the alignment constraint. For example, if the processor issues an uncached doubleword read from address
0xBFCXXX04, the processor expects to read two instructions, one even-word instruction from
0xBFCXXX00 and one odd-word instruction from 0xBFCXXX04, even though the 0xBFCXXX00 instruction
will not be used. The external agent must ignore the three least-significant bits [2:0] of the address because
offsets 0x0 = 0x4 and 0x8 = 0xC. 
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The following sections contain a cycle-by-cycle description of the system interface protocols for each
type of R5000 processor and external request. 
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Cycles in which the SysAD bus contains a valid address are called address cycles. Cycles in which the
SysAD bus contains valid data are called data cycles. Validity of addresses and data from the processor is
determined by the state of the ValidOut* signal. Validity of addresses and data from the external agent is
determined by the state of the ValidIn* signal. Validity of data from the secondary cache is determined by
the state of the pipelined ScDCE* and ScCWE* signals from the processor and the ScDOE* signal from the
external agent. 

The SysCmd bus identifies the contents of the SysAD bus during any cycle in which it is valid from the
processor or the external agent. The most significant bit of the SysCmd bus is always used to indicate
whether the current cycle is an address cycle or a data cycle: 

� During address cycles SysCmd(8) = 0. The remainder of the SysCmd bus, SysCmd(7:0), contains 
the encoded system interface command.

� During data cycles [SysCmd(8) = 1], the remainder of the SysCmd bus, SysCmd(7:0), contains an 
encoded data identifier. There is no SysCmd associated with a secondary cache read response. 
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There are two types of processor issue cycles:
� processor read request.
� processor write request.

The processor samples the signal RdRdy* to determine the issue cycle for a processor read; the
processor samples the signal WrRdy* to determine the issue cycle of a processor write request. As shown
in Figure 11.1, RdRdy* must be asserted two cycles prior to the address cycle of the processor read
request in order to define the address cycle as the issue cycle.

Figure 11.1  State of RdRdy* Signal for Read Requests

As shown in Figure 11.2, WrRdy* must be asserted two cycles prior to the first address cycle of the
processor write request in order to define the address cycle as the issue cycle.
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Figure 11.2  State of WrRdy* Signal for Write Requests

The processor repeats the address cycle for the request until the conditions for a valid issue cycle are
met. After the issue cycle, if the processor request requires data to be sent, the data transmission begins.
There is only one issue cycle for any processor request. The processor accepts external requests, even
while attempting to issue a processor request, by releasing the System interface to slave state in response
to an assertion of ExtRqst* by the external agent. 

The rules governing the issue cycle of a processor request are strictly applied to determine which action
the processor takes. The processor can either:

� complete the issuance of the processor request in its entirety before the external request is 
accepted, or

� release the System interface to slave state without completing the issuance of the processor 
request.

In the latter case, the processor issues the processor request (provided the processor request is still
necessary) after the external request is complete. The rules governing an issue cycle again apply to the
processor request.
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The processor manages the flow of requests through the following six control signals:
� RdRdy*, WrRdy* are used by the external agent to indicate when it can accept a new read 

(RdRdy*) or write (WrRdy*) transaction.
� ExtRqst*, Release* are used to transfer control of the SysAD and SysCmd buses. ExtRqst* is 

used by an external agent to indicate a need to control the interface. Release* is asserted by the 
processor when it transfers the mastership of the System interface to the external agent. For sec-
ondary cache reads, assertion of Release* to the external agent is speculative, and is aborted if 
there is a hit in the secondary cache.

� The R5000 processor uses ValidOut* and the external agent uses ValidIn* to indicate valid com-
mand/data on the SysCmd/SysAD buses.

� The secondary cache uses the ScDCE*, ScCWE* and ScDOE* signals to control validation on the 
SysAD and SysADC buses.

��������������������������������������������������������������������1111��������������������������������

Figure 11.3 shows how the system interface operates from register to register. Processor outputs come
directly from output registers and begin to change with the rising edge of SysClock. Processor inputs are
fed directly to input registers that latch these input signals with the rising edge of SysClock. This allows the
System interface to run at the highest possible clock frequency.

SysCycle 1 2 3 4 5 6

SysClock

SysAD Bus Addr

WrRdy*
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Figure 11.3  System Interface Register-to-Register Operation
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When the processor is driving the SysAD and SysCmd buses, the System interface is in master state.
When the external agent is driving the SysAD and SysCmd buses, the System interface is in slave state.
When the secondary cache is driving the SysAD and SysADC buses, the System interface is in slave
state.

In master state, the processor asserts the signal ValidOut* whenever the SysAD and SysCmd buses
are valid. In slave state, the external agent asserts the signal ValidIn* whenever the SysAD and SysCmd
buses are valid and the secondary cache drives the SysAD and SysADC buses in response to the
ScDCE*, ScCWE*, and ScDOE* signals.

The System interface remains in master state unless one of the following occurs:
� The external agent requests and is granted the System interface (external arbitration).
� The processor issues a read request.

26������ ��#��������

The System interface must be in slave state for the external agent to issue an external request through
the System interface. The transition from master state to slave state is arbitrated by the processor using the
System interface handshake signals ExtRqst* and Release*. This transition is described by the following
procedure:

1.  An external agent signals that it wishes to issue an external request by asserting ExtRqst*.
2.  When the processor is ready to accept an external request, it releases the System interface from

master to slave state by asserting Release* for one cycle.
3.  The System interface returns to master state as soon as the issue of the external request is

complete. 
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An uncompelled change to slave state is the transition of the System interface from master state to slave
state, initiated by the processor when a processor read request is pending. Release* is asserted automati-
cally after a read request and an uncompelled change to slave state then occurs. This transition to slave
state allows the external agent to return read response data without arbitrating for bus ownership. 

R5000

Input data

Output data

SysClock

OUTPUT
LATCH

INPUT
LATCH

D63:0
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 If the secondary cache is enabled and a secondary cache hit occurs, then the uncompelled change to
slave state is aborted. If the secondary cache is enabled and a secondary cache miss occurs, the uncom-
pelled change to slave state is delayed until the external agent has disabled the secondary cache outputs,
even though Release* was issued with the read request.

After an uncompelled change to slave state, the processor returns to master state at the end of the next
external request. This can be a read response, or some other type of external request. If the external agent
issues some other type of external request while there is a pending read request, the processor performs
another uncompelled change to slave state by asserting Release* for one cycle. 

An external agent must note that the processor has performed an uncompelled change to slave state
and begin driving the SysAD bus along with the SysCmd bus. As long as the System interface is in slave
state, the external agent can begin an external request without arbitrating for the System interface; that is,
without asserting ExtRqst*. 

Table 11.1 lists the abbreviations and definitions for each of the buses that are used in the timing
diagrams that follow.
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Processor read and write request protocols are described in this section. In the timing diagrams, the two
closely spaced, wavy vertical lines, such as those shown in Figure 11.4, indicate one or more identical
cycles which are not illustrated due to space constraints. 

Figure 11.4  Symbol for Undocumented Cycles
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The following sequence describes the protocol for doubleword, partial doubleword, word, partial word,
and non-secondary cache mode processor read requests. The secondary cache block read request
protocol is described later in this section. 

The following numbered steps correspond to Figure 11.5:
1.  RdRdy* is asserted, indicating the external agent is ready to accept a read request.

����� ���
�!������ ������)

Global Unsd Unused

SysAD bus Addr Physical address

Data<n> Data element number n of a block of data

SysCmd bus Cmd An unspecified System interface command

Read A processor or external read request command

Write A processor or external write request command

SINull A System interface release external null request command

NData A noncoherent data identifier for a data element other than the last data element

NEOD A noncoherent data identifier for the last data element

Table 11.1  System Interface Requests
�� ������ ** + 0 ��������
 ��� �			



�# ��� ����
���� .
������ .
���  �
 ��<�� � .
������ 

��������			 ����
��

�����
 2.  With the System interface in master state, a processor read request is issued by driving a read
command on the SysCmd bus and a read address on the SysAD bus. The physical address is
driven onto SysAD[35:0], and virtual address bits [13:12] are driven onto SysAD[57:56]. All other
bits are driven to zero.

3.  At the same time, the processor asserts ValidOut* for one cycle, indicating valid data is present on
the SysCmd and the SysAD buses. 

4.  Only one processor read request can be pending at a time.
5.  The processor makes an uncompelled change to slave state during the issue cycle of the read

request. The external agent must not assert the signal ExtRqst* for the purposes of returning a read
response, but rather must wait for the uncompelled change to slave state. The signal ExtRqst* can
be asserted before or during a read response to perform an external request other than a read
response.

6.  The processor releases the SysCmd and the SysAD buses one SysClock after the assertion of
Release*.

7.  The external agent drives the SysCmd and the SysAD buses within two cycles after the assertion
of Release*.

Once in slave state, the external agent can return the requested data through a read response. The read
response can return the requested data or, if the requested data could not be successfully retrieved, an
indication that the returned data is erroneous. If the returned data is erroneous, the processor takes a bus
error exception.

Figure 11.5 illustrates a processor read request, coupled with an uncompelled change to slave state,
that occurs as the read request is issued. Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

Figure 11.5  Processor Read Request Protocol

If a read request is pending while ExtRqst* is asserted and Release* is asserted for one cycle, it may
be unclear if the assertion of Release* is in response to ExtRqst*, or represents an uncompelled change to
slave state. If these three conditions exist, the processor accepts the external request as opposed to the
read response. 

In all other cases, the assertion of Release* indicates either an uncompelled change to slave state, or a
response to the assertion of ExtRqst*, whereupon the processor accepts either a read response, or any
other external request. If any external request other than a read response is issued, the processor performs
another uncompelled change to slave state, asserting Release*, after processing the external request.

���!����� "���� /�D���� �����!��

Processor write requests are issued using one of three protocols: 
� Doubleword, partial doubleword, word, or partial word writes use a non-block write request protocol. 
� Non-secondary cache block writes use a block write request protocol. 
� Secondary cache block write request protocol.
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 Processor doubleword write requests are issued with the System interface in master state, as described
below in the steps below (Figure 11.6 shows a processor noncoherent single non-block write request cycle):

1.  WrRdy* is asserted, indicating the external agent is ready to accept a write request.
2.  A processor single non-block write request is issued by driving a write command on the SysCmd

bus and a write address on the SysAD bus. The physical address is driven onto SysAD[35:0], and
virtual address bits [13:12] are driven onto SysAD[57:56]. All other bits are driven to zero.

3.  The processor asserts ValidOut*. 
4.  The processor drives a data identifier on the SysCmd bus and data on the SysAD bus.
5.  The data identifier associated with the data cycle must contain a last data cycle indication. At the end

of the cycle, ValidOut* is deasserted.

Timings for the SysADC and SysCmdP buses are the same as those of the SysAD and SysCmd
buses, respectively.

Figure 11.6  Processor Noncoherent Single Word Write Request Protocol

Figure 11.7 illustrates a non-secondary cache block write request.

Figure 11.7  Processor Non-Coherent, Non-Secondary Cache Block Write Request 
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The external agent uses RdRdy* to control the flow of processor read requests. Figure 11.8 illustrates
this flow control, as described in the steps below:

1.  The processor samples RdRdy* to determine if the external agent is capable of accepting a read
request. 

2.  Read request is issued to the external agent.
3.  The external agent deasserts RdRdy*, indicating it cannot accept additional read requests.
4.  The read request issue is stalled because RdRdy* was negated two cycles earlier.
5.  Read request is again issued to the external agent.
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Figure 11.8  Processor Request Flow Control

Figure 11.9 illustrates two processor write requests in which the issue of the second is delayed for the
assertion of WrRdy*:

1.  WrRdy* is asserted, indicating the external agent is ready to accept a write request. 
2.  The processor asserts ValidOut*, a write command on the SysCmd bus, and a write address on the

SysAD bus.
3.  The second write request is delayed until the WrRdy* signal is again asserted.
4.  The processor does not complete the issue of a write request until it issues an address cycle in

response to the write request for which the signal WrRdy* was asserted two cycles earlier.

Timings for the SysADC and SysCmdP buses are the same as those of the SysAD and SysCmd
buses, respectively.

Figure 11.9  Two Processor Write Requests with Second Write Delayed

The processor interface requires that WrRdy* be asserted two system cycles prior to the issue of a write
cycle. An external agent that negates WrRdy* immediately upon receiving the write that fills its buffer will
suspend any subsequent writes for four system cycles in R4000 non-block write-compatible mode. The
processor always inserts at least two unused system cycles after a write address/data pair in order to give
the external agent time to suspend the next write. 

Figure 11.10 shows back-to-back write cycles in R4000-compatible mode:
1.  WrRdy* is asserted, indicating the processor can issue a write request.
2.  WrRdy* remains asserted, indicating the external agent can accept another write request.
3.  WrRdy* deasserts, indicating the external agent cannot accept another write request, stalling the

issue of the next write request.
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Figure 11.10  R4000-Compatible Back-to-Back Write Cycle Timing

An address/data pair every four system cycles is not sufficiently high performance for all applications.
For this reason, the R5000 processor provides two protocol options that modify the R4000 back-to-back
write protocol to allow an address/data pair every two system cycles. These two protocols are:

� Write Reissue allows WrRdy* to be negated during the address cycle and forces the write cycle to 
be re-issued. 

� Pipelined Writes leave the sample point of WrRdy* unchanged and require that the external agent 
accept one more write than dictated by the R4000 protocol. 

The write re-issue protocol is shown in Figure 11.11. Writes issue when WrRdy* is asserted both two
cycles prior to the address cycle and during the address cycle:

1.  WrRdy* is asserted, indicating the external agent can accept a write request.
2.  WrRdy* remains asserted as the write is issued, and the external agent is ready to accept another

write request.
3.  WrRdy* deasserts during the address cycle. This write request is aborted and reissued.
4.  WrRdy* is asserted, indicating the external agent can accept a write request.
5.  WrRdy* remains asserted as the write is issued, and the external agent is able to accept another

write request.

Figure 11.11  Write Reissue

The pipelined write protocol is shown in Figure 11.12. Writes issue when WrRdy* is asserted two cycles
before the address cycle and the external agent is required to accept one more writes after WrRdy* is
negated:

1.  WrRdy* is asserted, indicating the external agent can accept a write request.
2.  WrRdy* remains asserted as the write is issued, and the external agent is able to accept another

write request.
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 3.  WrRdy* is deasserted, indicating the external agent cannot accept another write request; it does,
however, accept this write.

4.  WrRdy* is asserted, indicating the external agent can accept a write request.

Figure 11.12  Pipelined Writes
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This section describes read, null, write, and read-response protocols. External requests can only be
issued when the System interface is in slave state. An external agent asserts ExtRqst* to arbitrate for the
System interface, then waits for the processor to release the System interface to slave state by asserting
Release* before the external agent issues its request. If the System interface is already in slave state—that
is, the processor has previously performed an uncompelled change to slave state—the external agent can
begin an external request immediately.

After issuing an external request, the external agent must return the System interface to master state. If
the external agent does not have any additional external requests to perform, ExtRqst* must be deasserted
two cycles after the cycle in which Release* was asserted. For a string of external requests, the ExtRqst*
signal is asserted until the last request cycle, whereupon it is deasserted two cycles after the cycle in which
Release* was asserted. 

The processor continues to handle external requests as long as ExtRqst* is asserted; however, the
processor cannot release the System interface to slave state for a subsequent external request until it has
completed the current request. As long as ExtRqst* is asserted, the string of external requests is not inter-
rupted by a processor request.

26������ ��#�������� �����!��

System interface arbitration uses the signals ExtRqst* and Release* as described above. Figure 11.13
is a timing diagram of the arbitration protocol, in which slave and master states are shown. The arbitration
cycle consists of the following steps:

1.  The external agent asserts ExtRqst* when it wishes to submit an external request. 
2.  The processor waits until it is ready to handle an external request, whereupon it asserts Release*

for one cycle.
3.  The processor sets the SysAD and SysCmd buses to tri-state. 
4.  The external agent must wait at least two cycles after the assertion of Release* before it drives the

SysAD and SysCmd buses. 
5.  The external agent negates ExtRqst* two cycles after the assertion of Release*, unless the external

agent wishes to perform an additional external request. 
6.  The external agent sets the SysAD and the SysCmd buses to tri-state at the completion of an

external request. The processor can start issuing a processor request one cycle after the external
agent sets the bus to tri-state.

Timings for the SysADC and SysCmdP buses are the same as those of the SysAD and SysCmd
buses, respectively.
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Figure 11.13  Arbitration Protocol for External Requests

26������ /��� /�D���� �����!��

External reads are requests for a word of data from a processor internal resource, such as a register.
However, the R5000 processor does not contain any resources that are readable by an external read
request. In response to an external read request, the processor returns undefined data and a data identifier
with its Erroneous Data bit, SysCmd(5), set.

Figure 11.14 shows a timing diagram of an external read request and the return of invalid data:
1.  An external agent asserts ExtRqst* to arbitrate for the System interface.
2.  The processor releases the System interface to slave state by asserting Release* for one cycle and

then deasserting Release*.
3.  After Release* is deasserted, the SysAD and SysCmd buses are set to a tri-state for one cycle.
4.  The external agent drives a read request command on the SysCmd bus and a read request address

on the SysAD bus and asserts ValidIn* for one cycle. 
5.  After the address and command are sent, the external agent releases the SysCmd and SysAD

buses by setting them to tri-state and allowing the processor to drive them. The processor returns
undefined data to the external agent. The processor accomplishes this by driving a data identifier
on the SysCmd bus with its Erroneous Data bit SysCmd(5) set, the invalid data on the SysAD bus,
and asserting ValidOut* for one cycle. The data identifier indicates that this is last-data-cycle
response data. 

6.  The System interface is in master state. The processor continues driving the SysCmd and SysAD
buses after the read response is returned.

Timings for the SysADC and SysCmdP buses are the same as those of the SysAD and SysCmd
buses, respectively. 

Figure 11.14  External Read Request, System Interface in Master State
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The processor supports a system interface external null request, which returns the System interface to
master state from slave state without otherwise affecting the processor. External null requests require no
action from the processor other than to return the System interface to master state.

Figure 11.15 shows a timing diagram of an external null request, which consist of the following steps:
1.  The external agent drives a system interface release external null request command on the SysCmd

bus, and asserts ValidIn* for one cycle to return system interface ownership to the processor.
2.  The SysAD bus is unused (does not contain valid data) during the address cycle associated with an

external null request.
3.  After the address cycle is issued, the null request is complete.
4.  For a System interface release external null request, the external agent releases the SysCmd and

SysAD buses, and expects the System interface to return to the master state.

Figure 11.15  System Interface Release External Null Request
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External write requests use a protocol identical to the processor single-word write protocol, except the
ValidIn* signal is asserted instead of ValidOut*. The only processor resource available to an external write
request is the IP field of the Cause register. 

Figure 11.16 shows a timing diagram of an external write request, which consists of the following steps: 
1.  The external agent asserts ExtRqst* to arbitrate for the System interface.
2.  The processor releases the System interface to slave state by asserting Release*.
3.  The external agent drives a write command on the SysCmd bus, a write address on the SysAD bus,

and asserts ValidIn*. 
4.  The external agent drives a data identifier on the SysCmd bus, data on the SysAD bus, and asserts

ValidIn*. 
5.  The data identifier associated with the data cycle must contain a coherent or noncoherent last data

cycle indication. 
6.  After the data cycle is issued, the write request is complete and the external agent sets the SysCmd

and SysAD buses to a tri-state, allowing the System interface to return to master state. Timings for
the SysADC and SysCmdP buses are the same as those of the SysAD and SysCmd buses,
respectively.

External write requests are only allowed to write a word of data to the processor. Processor behavior in
response to an external write request for any data element other than a word is undefined.
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Figure 11.16  External Write Request, with System Interface Initially a Bus Master
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An external agent must return data to the processor in response to a processor read request by using a
read response protocol. A read response protocol consists of the following steps: 

1.  The external agent waits for the processor to perform an uncompelled change to slave state.
2.  The processor returns the data through a single data cycle or a series of data cycles. 
3.  After the last data cycle is issued, the read response is complete and the external agent sets the

SysCmd and SysAD buses to a tri-state.
4.  The System interface returns to master state.
5.  The processor always performs an uncompelled change to slave state after issuing a read request.
6.  The data identifier for data cycles must indicate the fact that this data is response data.
7.  The data identifier associated with the last data cycle must contain a last data cycle indication. 

For read responses to non-coherent block read requests, the response data does not need to identify
the initial cache state. The cache state is automatically assigned as dirty exclusive by the processor. 

The data identifier associated with a data cycle can indicate that the data transmitted during that cycle is
erroneous; however, an external agent must return a data block of the correct size regardless of the fact
that the data may be in error. The processor only checks the error bit for the first doubleword of the block.
The remaining error bits for the block are ignored. 

Read response data must only be delivered to the processor when a processor read request is pending.
The behavior of the processor is undefined when a read response is presented to it and there is no
processor read pending. 

Figure 11.17 illustrates a processor word read request followed by a word read response. Figure 11.18
illustrates a read response for a processor block read with the System interface already in slave state.
Timings for the SysADC and SysCmdP buses are the same as those of the SysAD and SysCmd buses,
respectively.
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Figure 11.17  Processor Word Read Request, followed by a Word Read Response

Figure 11.18  Block Read Response, System Interface already in Slave State
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There are three possible scenarios which can occur on a secondary cache access. 
� Secondary cache read hit
� Secondary cache miss
� Secondary cache miss with bus error
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Figure 11.19 shows the secondary cache read hit protocol. When a block read request is speculatively
issued to both the secondary cache and the external agent, but completed by the secondary cache:

1.  The processor issues a block read request and also asserts the ScTCE*, ScTDE*, and ScDCE*
secondary cache control signals. In addition the processor drives the cache index onto
ScLine[15:0] and the sub-block order doubleword onto ScWord[1:0]. Assertion of ScTCE*, along
with ValidOut* and SysCmd, indicates to the external agent that this is a secondary cache read
request. In addition, the assertion of ScTCE* initiates a tag RAM probe. The assertion of ScTDE*
loads the tag portion of the SysAD bus into the tag RAM. The ScValid signal is asserted to probe
for a valid cache tag. The assertion of ScDCE* initiates a speculative read of the secondary cache
data RAMs.

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysC lock

SysAD Bus Addr Data0

SysCm d Bus R ead NEO D

ValidO ut*

Valid In*
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Release*
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 2.  The ScMatch signal from the tag RAM is sampled by both the processor and the external agent.
Assertion of ScMatch indicates a secondary cache tag hit, causing the external agent to abort the
memory read. Hence there is no uncompelled change to slave state. The data RAMs now own
SysAD and supply the first of a 4 doubleword burst in response to the 4-cycle ScDCE* burst. The
SysCmd bus is not driven during the secondary cache read.

3.  Ownership of the SysAD bus is returned to the processor. 

Figure 11.19  Secondary Cache Read Hit
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Figure 11.20 shows the secondary cache read miss protocol when a block read request is speculatively
issued to both the secondary cache and the external agent, but is completed by the external agent with a
response to both the secondary cache and the processor. 

1.  The processor issues a clock read request and also asserts the ScTCE*, ScTDE*, ScDCE*, and
ScValid signals and drives the cache index onto ScLine[15:0] and ScWord[1:0]. 

2.  The ScMatch signal from the tag RAM is sampled by the processor and external agent. Since the
signal is negated, indicating a secondary cache miss, the SysAD data from the secondary cache is
invalid. 

3.  The external agent negates ScDOE* to tri-state the data RAM outputs, indicating that it will be
supplying the read response. The processor tri-states its ScWord[1:0] outputs to allow the external
agent to drive them during the read response. 

4.  The processor asserts ScCWE* to prepare the data RAMs for a write of the response data. 
5.  The external agent supplies the first doubleword of the read response and asserts ValidIn*. The data

is both written into the secondary cache and accepted by the processor. SysCmd indicates that data
is not erroneous. Note that this response may be delayed additional cycles. 

6.  The processor asserts ScTCE* to write the tag value stored in the tag RAM data input register two
cycles after ValidIn* is asserted.

7.  The external agent asserts ScDOE* to indicate that it will supply the last doubleword of the read
response in the next cycle.

8.  The processor negates ScDCE* two cycles after the next assertion of ScDOE* in order to complete
the secondary cache line fill. 
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Figure 11.20  Secondary Cache Read Miss
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Figure 11.21 shows a secondary cache read miss with bus error protocol. This protocol is the same as
the secondary cache read miss except:

1.  The external agent supplies the first doubleword of the read response data with the data error bit set
(SysCmd[5]=1). Note that the data error bit of SysCmd is only checked during the first doubleword
of a read response. 

2.  The processor asserts ScTCE* and SCTDE* to write the new tag value into the secondary cache tag
RAM with ScValid negated to invalidate this line.
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Figure 11.21  Secondary Cache Read Miss with Bus Error
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Figure 11.22 shows a secondary cache read write protocol. For the external agent, this protocol is the
same as a non-secondary cache mode block write to the external agent, but the data is also written into the
secondary cache.

1.  The processor issues a block write and also asserts ScTCE*, ScTDE*, and ScCWE* in order to write
the tag portion of the address on SysAD into the secondary cache tag RAM. The processor asserts
ScValid to set the secondary cache tag to valid. 

2.  The processor asserts ScDCE* to write the block into the secondary cache data RAMs. 
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Figure 11.22  Secondary Cache Write Operation
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The processor can invalidate either a single line of the secondary cache, or an entire secondary cache
block. The invalidate operation is analogous to writing to the Tag RAM and invalidating the line in question.
The ScTCE*, ScTDE*, and ScCWE* signals are driven active in the same clock as the SysAD and ScLine
busses with ScValid negated. Invalidates are the only cache operations which may occur back-to-back.
Note that ValidOut* is not asserted during secondary cache invalidate operations as the external agent
does not participate in secondary cache invalidates.

Figure 11.23 shows the secondary cache invalidate protocol. The repeat rate for cache line invalidate
instructions is two SysClocks. The repeat rate for cache page invalidate is one SysClock per line for 128
consecutive SysClock cycles.
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Figure 11.23  Secondary Cache Line Invalidate 
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The secondary cache probe operation is analogous to a Tag RAM read operation. The ScTCE* and
ScTDE* signals are asserted in the same clock as system address and the secondary cache line index.
The processor then tri-states the SysAD bus. ScTOE* is asserted one clock later and the tag information is
driven onto the SysAD bus. ValidOut* is not asserted during a secondary cache probe operation as the
external agent does not participate in secondary cache probes. The Tag RAM bits are driven onto SysAD
[35:19] and ScValid, which are the only SysAD signals valid during a probe operation. Figure 11.24 shows
a timing diagram of a secondary cache probe protocol.

Figure 11.24  Secondary Cache Probe (Tag RAM Read)
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In addition to the line invalidate operation, the R5000 processor also has the ability to invalidate the
entire secondary cache in one operation. This operation allows the processor to clear the entire column of
Tag RAM valid bits. In order to execute this operation the Tag RAM must support a flash clear of the valid bit
column. As with the line invalidate operation, ValidOut* is not asserted during the block invalidate operation
as the external agent does not participate in block clear operations. In addition, the ScTCE*, ScTDE*, and
ScCWE* signals need not be asserted. The assertion of ScCLR* is all that is necessary for the Tag RAM to
perform the requested operation. Figure 11.25 illustrates the secondary cache block clear protocol.

Figure 11.25  Secondary Cache Block Clear
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The following rules apply to the use of SysADC[7:0] during a block read response.
� Data is checked on only the first doubleword of the transfer. If data is erroneous (SysCmd[5]=1), or 

if the check parity bit is set (SysCmd[4]=1), and a parity error is detected on the first doubleword, 
the primary and secondary cache lines are invalidated and a bus error exception is generated. 

� On the following three doublewords; The data erroneous bit is ignored. The check parity bit is 
ignored. Parity for each of the three doublewords is written into the cache, but is not checked until 
the data is referenced. 

� For a secondary cache mode read hit cycle; Data erroneous is implicitly OFF. Check parity is implic-
itly ON, indicating that the secondary cache must implement the SysADC bits.

� If a memory error occurs during a block read operation, the SysADC bits should be forced to bad 
parity for all bytes affected by the memory error during the read response. Since the processor per-
forms an early-restart on data cache line fills, setting the SysCmd[5] bit on any transfer other than 
the first doubleword does not cause a bus error. Forcing bad parity will generate a cache error if any 
of the remaining three doublewords of the transfer are referenced.
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The System interface supports a maximum data rate of one doubleword per cycle. The rate at which
data is delivered to the processor can be determined by the external agent—for example, the agent can
drive data and assert ValidIn* every n cycles, instead of every cycle. The processor only accepts cycles as
valid when ValidIn* is asserted and the SysCmd bus contains a data identifier; thereafter, the processor
continues to accept data until it receives the data word tagged as the last one.
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A data pattern is a sequence of letters indicating the data and unused cycles that repeat to provide the
appropriate data rate. For example, the data pattern DDxx specifies a repeatable data rate of two double-
words every four cycles, with the last two cycles unused. Table 11.2 lists the maximum processor data rate
for each of the possible block write modes that may be specified at boot time. In this table, data patterns are
specified using the letters D and x; D indicates a data cycle and x indicates an unused cycle. 

SysClock

ScCLR*

SysCycle 1 2 3 4 5

Master
Processor
�� ������ ** + *� ��������
 ��� �			



�# ��� ����
���� .
������ ��2����2��� �
�� ��  ��� �� ��� �# �� %� 

��������			 ����
��

�����
Figure 11.26 shows a read response in which data is provided to the processor at a rate of two double-
words every three cycles using the data pattern DDx.

Figure 11.26  Read Response, Reduced Data Rate, System Interface in Slave State
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In most applications, the SysAD bus is a point-to-point connection, running from the processor to a bidi-
rectional registered transceiver residing in an external agent. For these applications, the SysAD bus has
only two possible drivers, the processor or the external agent. 

Certain applications may require connection of additional drivers and receivers to the SysAD bus, to
allow transmissions over the SysAD bus that the processor is not involved in. These are called independent
transmissions. To effect an independent transmission, the external agent must coordinate control of the
SysAD bus by using arbitration handshake signals and external null requests.

An independent transmission on the SysAD bus follows this procedure:
1.  The external agent requests mastership of the SysAD bus, to issue an external request. 
2.  The processor releases the System interface to slave state.
3.  The external agent then allows the independent transmission to take place on the SysAD bus,

making sure that ValidIn* is not asserted while the transmission is occurring. 
4.  When the transmission is complete, the external agent must issue a System interface release

external null request to return the System interface to master state. 
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1 Double/1 SysClock Cycle DD

2 Doubles/3 SysClock Cycles DDxDDx

1 Double/2 SysClock Cycles DDxxDDxx

1 Double/2 SysClock Cycles DxDx

2 Doubles/5 SysClock Cycles DDxxxDDxxx

1 Double/3 SysClock Cycles DDxxxxDDxxxx

1 Double/3 SysClock Cycles DxxDxx

1 Double/4 SysClock Cycles DDxxxxxxDDxxxxxx

1 Double/4 SysClock Cycles DxxxDxxx

Table 11.2  Transmit Data Rates and Patterns

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysClock

SysAD Bus Data0 Data1 Data2 Data3

SysCmd Bus NData NData NData NEOD

ValidOut*

ValidIn*

ExtRqst*

Release*

Master External Agent Processor
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The endianness of the System interface is programmed at boot time through the boot-time mode control
interface and the BigEndian pin. The BigEndian pin allows the system to change the processor
addressing mode without rewriting the mode ROM. If endianness is to be specified via the BigEndian pin,
program mode ROM bit 8 to zero. If endianness is to be specified by the mode ROM, ground the BigEn-
dian pin. Software cannot change the endianness of the System interface and the external system; soft-
ware can set the reverse endian bit to reverse the interpretation of endianness inside the processor, but the
endianness of the System interface remains unchanged. 
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The processor specifies minimum and maximum cycle counts for various processor transactions and for
the processor response time to external requests. Processor requests themselves are constrained by the
System interface request protocol, and request cycle counts can be determined by examining the protocol.
The following System interface interactions can vary within minimum and maximum cycle counts; minimum
and maximum cycle counts are described in the sections that follow:

� waiting period for the processor to release the System interface to slave state in response to an 
external request (release latency)

� response time for an external request that requires a response (external response latency).
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Release latency is generally defined as the number of cycles the processor can wait to release the
System interface to slave state for an external request. When no processor requests are in progress,
internal activity can cause the processor to wait some number of cycles before releasing the System inter-
face. Release latency is therefore more specifically defined as the number of cycles that occur between the
assertion of ExtRqst* and the assertion of Release*. 

There are three categories of release latency:
� Category 1: when the external request signal is asserted two cycles before the last cycle of a pro-

cessor request.
� Category 2: when the external request signal is not asserted during a processor request or is 

asserted during the last cycle of a processor request.
� Category 3: when the processor makes an uncompelled change to slave state.

Table 11.3 summarizes the minimum and maximum release latencies for requests that fall into catego-
ries 1, 2, and 3. The maximum and minimum cycle count values are subject to change. 
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System interface commands specify the nature and attributes of any System interface request; this
specification is made during the address cycle for the request. System interface data identifiers specify the
attributes of data transmitted during a System interface data cycle. 

The sections that follow describe the syntax, that is, the bitwise encoding of System interface
commands and data identifiers. Reserved bits and reserved fields in the command or data identifier should
be set to 1 for System interface commands and data identifiers associated with external requests. For
System interface commands and data identifiers associated with processor requests, reserved bits and
reserved fields in the command and data identifier are undefined.

����)�
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1 4 6

2 4 24

3 0 0

Table 11.3  Release Latency for External Requests
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System interface commands and data identifiers are encoded in 9 bits and are transmitted on the
SysCmd bus from the processor to an external agent, or from an external agent to the processor, during
address and data cycles. Bit 8 (the most-significant bit) of the SysCmd bus determines whether the current
content of the SysCmd bus is a command or a data identifier and, therefore, whether the current cycle is an
address cycle or a data cycle. For System interface commands, SysCmd(8) must be set to 0. For System
interface data identifiers, SysCmd(8) must be set to 1.
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This section describes the SysCmd bus encoding for System interface commands. Figure 11.27 shows
a common encoding used for all System interface commands. SysCmd(8) must be set to 0 for all System
interface commands. SysCmd(7:5) specify the System interface request type which may be read, write, or
null. Table 11.4 shows the types of requests encoded by the SysCmd(7:5) bits. SysCmd(4:0) are specific
to each type of request and are defined in each of the following sections. 

Figure 11.27  System Interface Command Syntax Bit Definition
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Figure 11.28 shows the format of a SysCmd read request. Table 11.5 through Table 11.7 list the encod-
ings of SysCmd(4:0) for read requests.

Figure 11.28  Read Request SysCmd Bus Bit Definition

�# ��25�9�6 ������2

0 Read Request

1 Reserved

2 Write Request

3 Null Request

4-7 Reserved

Table 11.4  Encoding of SysCmd(7:5) for System Interface Commands

�# ��2509/6 ���2 ���
����� 

0-1 Reserved

2 Noncoherent block read

3 Doubleword, partial doubleword, word, or partial word

Table 11.5  Encoding of SysCmd(4:3) for Read Requests

Request Type0 Request Specific

8 7 5 4 0

000 0

8 7 5 4 03 2 1

Read Request Specific
(see tables)
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Figure 11.29 shows the format of a SysCmd write request. Table 11.8 lists the write attributes encoded
in bits SysCmd(4:3). Table 11.9 lists the block write replacement attributes encoded in bits SysCmd(2:0).
Table 11.10 lists the write request bit encodings in SysCmd(2:0).

Figure 11.29  Write Request SysCmd Bus Bit Definition

�# ��25�6 '��& �22
�  �������2 ��2�������

0 Link address not retained

1 Link address retained

�# ��25*9	6 ���2 %���& ��?�

0 Reserved

1 8 words

2-3 Reserved

Table 11.6  Encoding of SysCmd(2:0) for Block Read Request

�# ��25�9	6 ���2 ���� ��?�

0 1 byte valid (Byte)

1 2 bytes valid (Halfword)

2 3 bytes valid (Tribyte)

3 4 bytes valid (Word)

4 5 bytes valid (Quintibyte)

5 6 bytes valid (Sextibyte)

6 7 bytes valid (Septibyte)

7 8 bytes valid (Doubleword)

Table 11.7  Read Request of Data Size Encoding of SysCmd(2:0)

�# ��2509/6 =
��� ���
����� 

0 Reserved

1 Reserved

2 Block write

3 Doubleword, partial doubleword, word, or 
partial word

Table 11.8  Write Request Encoding of SysCmd(4:3)

010 0

8 7 5 4 03 2 1

Write Request Specific
(see tables)
�� ������ ** + �/ ��������
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Figure 11.30 shows the format of a SysCmd null request. System interface release external null
requests use the null request command. Table 11.11 lists the encodings of SysCmd(4:3) for external null
requests. SysCmd(2:0) are reserved for null requests.

Figure 11.30  Null Request SysCmd Bus Bit Definition

'&���� �����
�!� ���� ������
��� '&���6

This section defines the encoding of the SysCmd bus for System interface data identifiers. Figure 11.31
shows a common encoding used for all System interface data identifiers. SysCmd(8) must be set to 1 for all
System interface data identifiers. SysCmd(4) is reserved for processor data identifier. In an external data
identifier, SysCmd(4) indicates whether or not to check the data and check bits for error.

�# ��25�6 ����� '��� ����������� ���
����� 

0 Cache line replaced

1 Cache line retained

�# ��25*9	6 =
��� %���& ��?�

0 Reserved

1 8 words

2-3 Reserved

Table 11.9  Block Write Request Encoding of SysCmd(2:0)

�# ��25�9	6 =
��� ���� ��?�

0 1 byte valid (Byte)

1 2 bytes valid (Halfword)

2 3 bytes valid (Tribyte)

3 4 bytes valid (Word)

4 5 bytes valid (Quintibyte)

5 6 bytes valid (Sextibyte)

6 7 bytes valid (Septibyte)

7 8 bytes valid (Doubleword)

Table 11.10  Write Request Data Size Encoding of SysCmd(2:0)

�# ��2509/6 7��� ���
����� 

0 System Interface release

1-3 Reserved

Table 11.11  External Null Request Encoding of SysCmd(4:3)

0110

8 7 5 4 03 2 1

Null Request Specific
(see tables)
�� ������ ** + �0 ��������
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Figure 11.31  Data Identifier SysCmd Bus Bit Definition
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Noncoherent data is defined as:
� data that is associated with processor block write requests and processor doubleword, partial double-

word, word, or partial word write requests
� data that is returned in response to a processor noncoherent block read request or a processor dou-

bleword, partial doubleword, word, or partial word read request
� data that is associated with external write requests
� data that is returned in response to an external read request

���� ������
���  �� ��
��������
� SysCmd(7) marks the last data element and SysCmd(6) indicates whether or not the data is 

response data, for both processor and external coherent and noncoherent data identifiers. 
Response data is data returned in response to a read request. 

� SysCmd(5) indicates whether or not the data element is error free. Erroneous data contains an 
uncorrectable error and is returned to the processor, forcing a bus error. In the case of a block 
response, the entire line must be delivered to the processor no matter how minimal the error. Note 
that the processor only checks SysCmd[5] during the first doubleword of a block read response. 
The processor delivers data with the good data bit deasserted if a primary parity error is detected 
for a transmitted data item. 

� SysCmd(4) indicates to the processor whether to check the data and check bits for this data ele-
ment, for both coherent and noncoherent external data identifiers.

� SysCmd(3) is reserved for external data identifiers.
� SysCmd(4:3) are reserved for noncoherent processor data identifiers.
� SysCmd(2:0) are reserved for non-coherent data identifiers. 
� Table 11.12 lists the encodings of SysCmd(7:3) for processor data identifiers. Table 11.13 lists the 

encodings of SysCmd(7:3) for external data identifiers. 

�# ��25�6 '� � ���� ;������ ��2�������

0 Last data element

1 Not the last data element

�# ��25�6 �� ��� � ���� ��2�������

0 Data is response data

1 Data is not response data

�# ��25�6 8��2 ���� ��2�������

0 Data is error free

1 Data is erroneous

�# ��2509/6 �� �
!�2

Table 11.12  Processor Data Identifier Encoding of SysCmd(7:3)

Last
Data

1

8 7 5 4 03 2

Resp
Data

6

Err
Data

See 
Note
below

Cache 
State

Reserved
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System interface addresses are full 36-bit physical addresses presented on the least-significant 36 bits
(bits 35 through 0) of the SysAD bus during address cycles; the remaining bits of the SysAD bus are
unused during address cycles. 

���������� 
��,�������

Addresses associated with doubleword, partial doubleword, word, or partial word transactions and
update requests, are aligned for the size of the data element. The system uses the following address
conventions:

� Addresses associated with block requests are aligned to double-word boundaries; that is, the low-
order 3 bits of address are 0.

� Doubleword requests set the low-order 3 bits of address to 0.
� Word requests set the low-order 2 bits of address to 0.
� Halfword requests set the low-order bit of address to 0.
� Byte, tribyte, quintibyte, sextibyte, and septibyte requests use the byte address.

'�##��!$ *�������

The order in which data is returned in response to a processor block read request is called subblock
ordering. In subblock ordering, the processor delivers the address of the requested doubleword within the
block. An external agent must return the block of data using subblock ordering, starting with the addressed
doubleword. 

For block write requests, the processor always delivers the address of the doubleword at the beginning
of the block; the processor delivers data beginning with the doubleword at the beginning of the block and
progresses sequentially through the doublewords that form the block.

A block of data elements (whether bytes, halfwords, words, or doublewords) can be retrieved from
storage in two ways: in sequential order, or using a subblock order. Sequential ordering retrieves the data
elements of a block in serial, or sequential, order. Figure 11.32 shows a sequential order in which double-
word 0 is taken first and doubleword 3 is taken last.

�# ��25�6 '� � ���� ;������ ��2�������

0 Last data element

1 Not the last data element

�# ��25�6 �� ��� � ���� ��2�������

0 Data is response data

1 Data is not response data

�# ��2��	 8��2 ���� ��2�������

0 Data is error free

1 Data is erroneous

�# ��2506 ���� ����&��) ;�����

0 Check the data and check bits

1 Do not check the data and check bits

�# ��25/6 �� �
!�2

Table 11.13  External Data Identifier Encoding of SysCmd(7:3)
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Figure 11.32   Retrieving a Data Block in Sequential Order

Subblock ordering allows the system to define the order in which the data elements are retrieved. The
smallest data element of a block transfer for the R5000 is a doubleword. Figure 11.33 shows the retrieval of
a block of data that consists of four doublewords, in which DW2 is taken first. Using the subblock ordering
shown in Figure 11.33, the doubleword at the target address is retrieved first (DW2), followed by the
remaining doubleword (DW3) in this quadword. 

Figure 11.33   Retrieving Data in a Subblock Order

It may be easier to understand subblock ordering by taking a look at the method used for generating the
address of each doubleword as it is retrieved. The subblock ordering logic generates this address by
executing a bit-wise exclusive-OR (XOR) of the starting block address with the output of a binary counter
that increments with each doubleword, starting at doubleword zero (002).

Using this scheme, Table 11.14 through Table 11.16 list the subblock ordering of doublewords for an 8-
word block, based on three different starting-block addresses: 102, 112, and 012. The subblock ordering is
generated by an XOR of the subblock address (either 102, 112, and 012) with the binary count of the
doubleword (002 through 112). Thus, the third doubleword retrieved from a block of data with a starting
address of 102 is found by taking the XOR of address 102 with the binary count of DW2, 102. The result is
002, or DW0.

The remaining tables illustrate this method of subblock ordering, using various address permutations.

DW 0 DW 1 DW 2 DW 3

Doubleword 0
taken first

Doubleword 1
taken second

Doubleword 2
taken third

Doubleword 3
taken fourth

DW0 DW1 DW2 DW3

DW0
taken third

DW1
taken fourth

DW2
taken first

DW 3
taken second

2 3 0 1Order of retrieval

quadword

octalword
�� ������ ** + �� ��������
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During data cycles, the valid byte lines depend upon the position of the data with respect to the aligned
doubleword (this may be a byte, halfword, tribyte, quadbyte/word, quintibyte, sextibyte, septibyte, or an
octalbyte/doubleword). For example, in little-endian mode, on a byte request where the address modulo 8 is
0, SysAD(7:0) are valid during the data cycles. Table 11.17 lists the byte lanes used for partial-word trans-
fers for both big and little endian.

�#���
���
���) %���&

�22
�  
%���
# �����

������ =�
2

���
��!�2

1 10 00 10

2 10 01 11

3 10 10 00

4 10 11 01

Table 11.14  Subblock Ordering Sequence: Address 102

�#���
���
���) %���&

�22
�  
%���
# �����

������ =�
2

���
��!�2

1 11 00 11

2 11 01 10

3 11 10 01

4 11 11 00

Table 11.15  Subblock Ordering Sequence: Address 112

�#���
���
���) %���&

�22
�  
%���
# �����

������ =�
2

���
��!�2

1 01 00 01

2 01 01 00

3 01 10 11

4 01 11 10

Table 11.16  Subblock Ordering Sequence: Address 012
�� ������ ** + �3 ��������
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External reads and writes provide access to processor internal resources that may be of interest to an
external agent. The processor decodes bits SysAD(6:4) of the address associated with an external read or
write request to determine which processor internal resource is the target. However, the processor does not
contain any resources that are readable through an external read request. Therefore, in response to an
external read request the processor returns undefined data and a data identifier with its Erroneous Data bit,
SysCmd(5), set. The Interrupt register is the only processor internal resource available for write access by
an external request. The Interrupt register is accessed by an external write request with an address of 0002
on bits 6:4 of the SysAD bus.

C %#�� 

�# ��2A�9	B

�22
�  

��2 3

�# �� �#�� ���� � �2 5%�) ;�2���6

63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

1
(000)

0 X

1 X

2 X

3 X

4 X

5 X

6 X

7 X

2
(001)

0 X X

2 X X

4 X X

6 X X

3
(010)

0 X X X

1 X X X

4 X X X

5 X X X

4
(011)

0 X X X X

4 X X X X

5
(100)

0 X X X X X

3 X X X X X

6
(101)

0 X X X X X X

2 X X X X X X

7
(110)

0 X X X X X X X

1 X X X X X X X

8 (111) 0 X X X X X X X X

7:0 15:8 23:16 31:24 39:32 47:40 55:48 63:56

SysAD byte lanes used (Little Endian)

Table 11.17  Partial-Word Transfer Byte Lane Usage
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The processor takes an exception on any of the following interrupts: 
� six hardware interrupts
� one internal timer interrupt
� two software interrupts
� one nonmaskable interrupt. 

This section describes the hardware and nonmaskable interrupts. The six CPU hardware interrupts can
be caused by either an external write request to the R5000, or through dedicated interrupt pins. These pins
are latched into an internal register by the rising edge of SysClock. The nonmaskable interrupt is caused
either by an external write request to the R5000 or by a dedicated pin in the R5000. This pin is latched into
an internal register by the rising edge of SysClock.

%%%%������������������������� � � � ����������������������������
��
��
��
������

External writes to the CPU are directed to various internal resources, based on an internal address map
of the processor. When SysAD[6:4] = 0, an external write to any address writes to an architecturally trans-
parent register called the Interrupt register. This register is available for external write cycles, but not for
external reads. 

During a data cycle, SysAD[22:16] are the write enables for the seven individual Interrupt register bits
and SysAD[6:0] are the values to be written into these bits. This allows any subset of the Interrupt register
to be set or cleared with a single write request. Figure 12.1 shows the mechanics of an external write to the
Interrupt register.

Figure 12.1  Interrupt Register Bits and Enables

Figure 12.2 shows how the interrupts are readable through the Cause register:
� Bit 5 of the Interrupt register is OR’ed with the Int*[5] pin and then multiplexed with the TimerInter-

rupt signal. The result is directly readable as bit 15 of the Cause register. 
� Bits 4:0 of the Interrupt register are bit-wise ORed with the current value of interrupt pins Int*[4:0]. 

The result is directly readable as bits 14:10 of the Cause register. 

3 2 015 46

19 18 161721 2022

SysAD(6:0)
Interrupt Value

SysAD(22:16)
Write Enables

Interrupt register

2

1

0

4

3

5

6
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Figure 12.2  R5000 Interrupt Signals

Figure 12.3 shows the internal derivation of the NMI signal for the R5000 processor. The NMI* pin is
latched by the rising edge of SysClock. Bit 6 of the Interrupt register is then ORed with the inverted value of
NMI* to form the nonmaskable interrupt. Only the falling edge of the latched signal will cause the NMI.

Figure 12.3  R5000 Nonmaskable Interrupt Signal

Figure 12.4 shows the masking of the R5000 interrupt signal:
� Cause register bits 15:8 (IP7-IP0) are AND-ORed with Status register interrupt mask bits 15:8 (IM7-

IM0) to mask individual interrupts.
� Status register bit 0 is a global Interrupt Enable (IE). It is ANDed with the output of the AND-OR 

logic to produce the R5000 interrupt signal.

Cause 
register
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2 1 04 35

1 03 245SClock
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IP3

IP2

IP6
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IP7
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�� ������ *� + � ��������
 ��� �			



����

��� �  �
���) ����

��� 

��������			 ����
��

�����
Figure 12.4  Masking of the R5000 Interrupt
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Two major types of data errors can occur in data transmission:
� hard errors, which are permanent, arise from broken interconnects, internal shorts, or open leads
� soft errors, which are transient, are caused by system noise, power surges, and alpha particles.

Hard errors must be corrected by physical repair of the damaged equipment and restoration of data from
backup. Soft errors can be corrected by using error checking and correcting codes.

The processor verifies data correctness by using parity as it passes data from the System interface to/
from the primary caches. By appending a bit to the end of an item of data—called a parity bit—single-bit
errors can be detected; however, these errors cannot be corrected. Parity generation and checking allows
single-bit error detection, but it does not indicate which bit is in error. There are two types of parity: 

� Odd Parity adds 1 to the data, if the data has an even number of 1s, making the total number of 1s 
odd (including the parity bit).

� Even Parity adds 1 to the data, if the data has an odd number of 1s, making the total number of 1s 
even (including the parity bit).

����������������������������,,,,������������������������������������������	��	��	��	����
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The System interface command bus has a single parity bit, SysCmdP, that provides even parity over
the 9 bits of this bus. The SysCmdP parity bit is not generated when the system interface is in master state
and is not checked when the System interface is in slave state. This signal is defined to maintain R4000
compatibility and is not functional in the R5000.

The processor generates parity bits for doubleword, word, or partial-word data transmitted to the System
interface. As it checks for data correctness, the processor passes data check bits from the primary cache,
directly without changing the bits, to the System interface. 

The processor does not check data received from the System interface for external writes. By setting the
SysCmd[4] bit in the data identifier, it is possible to prevent the processor from checking read-response
data from the System interface. The processor does not check addresses received from the System inter-
face and does not generate check bits for addresses transmitted to the System interface. 

The processor does not contain a data corrector; instead, the processor takes a cache error exception
when it detects an error based on data check bits. Software is responsible for error handling.

����
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Parity generation and checking operations are summarized in Table 13.1.
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Bus Uncached 
Load

Uncached 
Store

Primary 
Cache Load 
from
System 
Interface

Primary 
Cache 
Write to 
System 
Interface

Cache 
Instruction

External 
Read

External 
Write

Processor Data From
system

Not checked From
system
interface 
unchanged

Checked; 
Trap on 
error

Check on 
cache
write-back; 
Trap on 
error

NA NA

System Address,
Command, and 
Check bits; 
Transmit

Not 
Generated

Not
Generated

Not
Generated

Not
Generated

Not
Generated

Not 
Generated

Not
Generated

System Address, 
Command, and 
Check Bits; 
Receive

Not 
Checked

Not 
Checked

Not 
Checked

Not 
Checked

Not 
Checked

Not 
Checked

Not 
Checked

System 
Interface Data

Checked, 
Trap on 
error

From 
Processor

Checked, 
Trap on 
error

From
primary
cache

From
primary
cache

From
Processor

Not 
Checked

System
Interface Data
Check Bits

Checked, 
Trap on 
error

Generated Checked, 
Trap on 
error

From
primary
cache

From
primary
cache

Generated Not 
Checked

Table 13.1  Parity Generation and Checking Operations
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The R5000 processor has the following three types of resets:
� Power-On Reset: starts when the power supply is turned on and completely reinitializes the internal 

state machines of the processor without saving any state information.
� Cold Reset: restarts all clocks, but the power supply remains stable. A cold reset completely reini-

tializes the internal state machines of the processor without saving any state information.
� Warm Reset: restarts the processor, but does not affect clocks. A warm reset preserves the proces-

sor internal state.

The Initialization interface is a serial interface that operates at the frequency of the SysClock divided by
256: (SysClock/256). This low-frequency operation allows the initialization information to be stored in a
low-cost ROM device. This section describes the following reset and control signals:

� VccOk: When asserted, VccOk indicates to the processor that the Vcc Min power supply (Vcc) has 
been above 3.135 volts for more than 100 milliseconds (ms) and is expected to remain stable. The 
assertion of VccOk initiates the reading of the boot-time mode control serial stream (described in 
“Initialization Sequence” on page 14-3).

� ColdReset*: The ColdReset* signal must be asserted (low) for either a power-on reset or a cold 
reset. ColdReset* must be deasserted synchronously with SysClock.

� Reset*: the Reset* signal must be asserted for any reset sequence. It can be asserted synchro-
nously or asynchronously for a cold reset, or synchronously to initiate a warm reset. Reset* must be 
deasserted synchronously with SysClock.

� ModeIn: Serial boot mode data in.
� ModeClock: Serial boot mode data clock, at the SysClock frequency divided by 256 (SysClock/

256).

��������������������####��������������������������������

Figure 14.1 shows the power-on system reset timing diagram. The sequence for power-on reset is:
1.  Power-on reset applies a stable Vcc of at least Vcc Min volts to the processor. It also supplies a

stable, continuous system clock at the processor operational frequency.
2.  After at least 100 ms of stable Vcc and SysClock, the VccOk signal is asserted to the processor.

The assertion of VccOk initializes the processor operating parameters. After the mode bits have
been read in, the processor allows its internal phase locked loops to lock, stabilizing the processor
internal clock, PClock. Note that JTAG is not implemented; JTCK must be tied low at the rising edge
of VccOk for the processor to properly reset. 

3.  ColdReset* is asserted for at least 64K (216) SysClock cycles after the assertion of VCCOk. Once
the processor reads the boot-time mode control serial data stream, ColdReset* can be deasserted.
ColdReset* must be deasserted synchronously with SysClock. 

4.  After ColdReset* is deasserted synchronously, Reset* is deasserted to allow the processor to begin
running. (Reset* must be held asserted for at least 64 SysClock cycles after the deassertion of
ColdReset*.) Reset* must be deasserted synchronously with SysClock. 

5.  ColdReset* must be asserted when VccOk asserts. The behavior of the processor is undefined if
VccOk asserts while ColdReset* is deasserted.
��
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Figure 14.1  Power-On Reset Timing Diagram
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A cold reset can begin anytime after the processor has read the initialization data stream, causing the
processor to start with the Reset exception. A cold reset requires the same sequence as a power-on reset
except that the power is presumed to be stable before the assertion of the reset inputs and the deassertion
of VccOk. To begin the reset sequence, VccOk must be deasserted for a minimum of at least 64 Master-
Clock cycles before reassertion. Figure 14.2 shows the cold reset timing diagram. 

Figure 14.2  Cold Reset Timing Diagram
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To execute a warm reset, the Reset* input is asserted synchronously with SysClock. It is then held
asserted for at least 64 SysClock cycles before being deasserted synchronously with SysClock. The boot-
time mode control serial data stream is not read by the processor on a warm reset. A warm reset forces the
processor to start with a Soft Reset exception. Figure 14.3 shows the warm reset timing diagram.

Figure 14.3  Warm Reset Timing Diagram
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After a power-on reset, cold reset, or warm reset, all processor internal state machines are reset, and
the processor begins execution at the reset vector. All processor internal states are preserved during a
warm reset, although the precise state of the caches depends on whether or not a cache miss sequence
has been interrupted by resetting the processor state machines.
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The boot-mode initialization sequence begins immediately after VccOk is asserted. As the processor
reads the serial stream of 256 bits through the ModeIn pin, the boot-mode bits initialize all fundamental
processor modes.

The initialization sequence is:
1.  The system deasserts the VccOk signal. The ModeClock output is held asserted.
2.  The processor synchronizes the ModeClock output at the time VccOk is asserted. The first rising

edge of ModeClock occurs 256 SysClock cycles after VccOk is asserted.
3.  Each bit of the initialization stream is presented at the ModeIn pin after each rising edge of the Mode-

Clock. The processor samples 256 initialization bits from the ModeIn input.

����������������####&&&&�	��	��	��	�������������������������� � � � ����

The following rules apply to the boot-mode settings:
� Bit 0 of the stream is presented to the processor when VccOk is first asserted.
� Selecting a reserved value results in undefined processor behavior.
� Zeros must be scanned in for all reserved bits.

Table 14.1 shows the boot mode settings.
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0 Reserved: must be zero

1:4 XmitDatPat: System interface data rate for block writes only

0 DDDD

1 DDxDDx

2 DDxxDDxx

3 DxDxDxDx

4 DDxxxDDxxx

5 DDxxxxDDxxxx

6 DxxDxxDxxDxx

7 DDxxxxxxDDxxxxxx

8 DxxxDxxxDxxxDxxx

9:15 Reserved

5:7 SysCkRatio: Pclock to SysClock Multiplier. 

0 Multiply by 2

1 Multiply by 3

2 Multiply by 4

3 Multiply by 5

4 Multiply by 6

5 Multiply by 7

6 Multiply by 8

7 Reserved

8 EndBit: Specifies byte ordering. Logically ORed with the BigEndian signal.

0 Little-Endian

1 Big Endian

9:10 Non-Block Write: Determines how non-block writes are handled.

0 R4x00 compatible

1 Reserved

2 Pipelined writes

3 Write-reissue

11 TmrIntEn: Disables Timer Interrupt on Int*[5]

0 Timer Interrupt Enabled

1 Timer Interrupt Disabled

12 Secondary Cache Enable

0 Secondary Cache Disabled

1 Secondary Cache Enabled

Table 14.1  Boot Mode Settings  (Part 1 of 2)
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The speed of the R5000 output drivers is statically controlled at boot time using an output buffer strength
control mechanism. Two of the boot time mode bits are used to control the strength of the output buffer.
These are boot mode bit 13 and 14. These bits select the static strength control for simple CMOS output
buffers.

The output driver strength can be from 100% (fastest) to 50% (slowest), based on the value of boot
mode bits 13 and 14. Table 14.2 shows the encoding for these boot mode bits and the selected driver
strength.
 

13:14 DrvOut: Output driver slew rate control

10 100% (fastest)

11 83%

00 67%

01 50% (slowest)

15 Reserved: Must be zero

16:17 Secondary cache size

0 512 KByte secondary cache

1 1 MByte secondary cache

2 2 MByte secondary cache

3 Reserved

18:255 Reserved: Must be zero

%��� ��2� %�� 

*0 */
�
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1   0 100%

1   1 83%

0   0 67%

0   1 50%

Table 14.2  Boot Mode Bits and Drive Strength
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Table 14.1  Boot Mode Settings  (Part 2 of 2)
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The processor bases all internal and external clocking on the single SysClock input signal. Processor
outputs and inputs have the following relationships to SysClock: 

� Output: Processor output data changes a minimum of Tdm ns and becomes stable a maximum of 
Tdo ns after the rising edge of SysClock. This drive-time is the sum of the maximum delay through 
the processor output drivers together with the maximum clock-to-Q delay of the processor output 
registers.

� Input: Processor input data must be stable for a maximum of Tds ns before the rising edge of 
SysClock and must remain stable a minimum of Tdh ns after the rising edge of SysClock.

����
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The processor generates an internal clock, PClock, at the initialization-interface-specified frequency
multiplier of SysClock and phase-aligned to SysClock. All internal registers and latches use PClock.

����$�$�$�$���������####-�-�-�-����������	�	�	�	����----����������������''''����--------****

The processor aligns PClock and SysClock with internal phase-locked loop (PLL) circuits that generate
aligned clocks. By their nature, PLL circuits are only capable of generating aligned clocks for SysClock
frequencies within a limited range. 

Clocks generated using PLL circuits contain some inherent inaccuracy, or jitter; a clock aligned with
SysClock by the PLL can lead or trail SysClock by as much as the related maximum jitter Tjo allowed by
the individual vendor. The Tjo parameter must be added to the Tds, Tdh, and Tdo parameters, and
subtracted from the Tdm parameters to get the total input and output timing parameters.

Figure 15.1 shows the SysClock timing parameters.

Figure 15.1  SysClock Timing

Figure 15.2 shows the input timing parameters.

Figure 15.2  Input Timing

Figure 15.3 shows the output timing parameters measured at the midpoint of the rising clock edge.
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Figure 15.3  Output Timing

The SysClock input must meet the maximum rise time (Tcr), maximum fall time (Tcf), minimum Tch time,
minimum Tcl time, and Tji input jitter parameters for proper operation of the PLL. 

����--------����%%%%����������������    ����������������������������!!!!������������������������� � � � 

For noisy module environments, a filter circuit of the following form (shown in Figure 15.4) is recom-
mended.
 

Figure 15.4  PLL Filter Circuit
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The R5000 provides a Standby Mode in order to reduce the power consumed by the internal core when
the CPU would otherwise not be performing any useful operations. To enter Standby Mode, first execute the
WAIT instruction. When the WAIT instruction finishes the W pipe-stage, if the SysAD bus is currently idle,
the internal clocks will shut down, thus freezing the pipeline. The PLL, internal timer, some of the input pin
clocks (Int[5:0]*, NMI*, ExtRqst*, Reset* and ColdReset*) and the output clocks (TClock[1:0],
RClock[1:0], SyncOut, ModeClock and MasterOut) will continue to run. If the conditions are not correct
when the WAIT instruction finishes the W pipe-stage (i.e., the SysAD bus is not idle), the WAIT is treated as
a NOP.

Once the CPU is in Standby Mode, any interrupt, including ExtRqst* or Reset*, will cause the CPU to
exit Standby Mode.

Tdm

Tdo

SysClock

Data

DataData

10 uF 3.3 uF 1000 pF

Vcc

Vss

VccP

VssP
�� ������ *� + � ��������
 ��� �			



�
)�"
Numerics
32-bit

addressing ........................................................................ 5-6
instructions........................................................................ 2-6
operands, in 64-bit mode ................................................ 2-12
operations ......................................................................... 7-3
single-precision FP format ................................................ 3-6
virtual-to-physical-address translation .............................. 7-2

32-bit mode
address translation................................................... 7-2, 7-19
addresses ......................................................................... 7-1
FPU operations ................................................................. 3-1
TLB entry format ..............................................................7-11

64-bit
addressing ........................................................................ 5-6
bus, address and data ...................................................... 9-2
double-precision FP format............................................... 3-6
floating-point registers....................................................... 3-2
operations ................................................................ 2-12, 7-3
virtual-to-physical-address translation .............................. 7-3

64-bit mode
32-bit operands, handling of ........................................... 2-12
address translation................................................... 7-3, 7-19
addresses ......................................................................... 7-1
FPU operations ................................................................. 3-1
TLB entry format ..............................................................7-11

A
Address Error exception ......................................................... 5-14
address space identifier (ASID) ................................................ 7-1
address spaces

32-bit translation of ........................................................... 7-2
64-bit translation of ........................................................... 7-3
address space identifier (ASID) ........................................ 7-1
physical ............................................................................. 7-2
virtual ................................................................................ 7-1
virtual-to-physical translation of ........................................ 7-2

Addresses
System Interface ............................................................11-26

addressing
Kernel mode...................................................................... 7-7
Supervisor mode............................................................... 7-5
User mode ........................................................................ 7-3
virtual address translation ............................................... 7-19
See also address spaces

Alignment................................................................................ 10-9
array, page table entry (PTE).................................................... 5-2
ASID. See address space identifier
B
Bad Virtual Address register (BadVAddr).................................. 5-2
��������			 ����
���� ������ � + *
big-endian, byte addressing .................................................... 3-11
binary fixed-point format............................................................3-8
bit definition of

ERL ............................................................. 5-5, 7-4, 7-5, 7-7
EXL..............................................5-5, 5-7, 5-10, 7-4, 7-5, 7-7
IE .......................................................................................5-5
KSU.................................................................... 7-4, 7-5, 7-7
KX...............................................................................5-6, 7-7
SX...............................................................................5-6, 7-5
UX ..............................................................................5-6, 7-4

block...................................................................................... 11-27
branch delay..............................................................................4-3
branch instructions, FPU......................................................... 3-11
Branch-Target Alignment.........................................................10-9
Breakpoint exception...............................................................5-18
Bus Error exception.................................................................5-17
byte addressing

big-endian........................................................................ 3-11
little-endian ...................................................................... 3-11

Byte Lanes
valid ............................................................................... 11-28

C
Cache Error (CacheErr) register ...............................................5-9
Cache Error exception ............................................................5-16
caches

misses
handling.....................................................................4-4

Cause register ...........................................................................5-6
central processing unit (CPU)

instruction formats .............................................................2-6
interrupts .........................................................................12-1

See also interrupts, CPU
System Control Coprocessor (CP0) ................................7-10
transfers between FPU and CPU ....................................3-10

ckseg0.....................................................................................7-10
ckseg1.....................................................................................7-10
ckseg3.....................................................................................7-10
cksseg .....................................................................................7-10
Clock interface

signals ...............................................................................9-2
cold reset.................................................................................14-1
common exception vector ....................................................... 5-11
compare instructions, FPU...................................................... 3-11
Compare register ......................................................................5-3
computational instructions, CPU

64-bit operations..............................................................2-12
cycle timing for multiply and divide instructions...............2-12
formats ..............................................................................2-9

computational instructions, FPU
��������
 ��� �			



��2�$
floating-point ....................................................................3-11
Config register ........................................................................ 7-16
Context register ........................................................................ 5-2
Control/Status register .............................................................. 3-3
Control/Status register, FPU ..................................................... 3-3
conversion instructions, FPU ...................................................3-11
coprocessor instructions ......................................................... 2-13
Coprocessor Unusable exception........................................... 5-19
Coprocessors............................................................................ 2-2
Count register ........................................................................... 5-3
Counter synchronization ..........................................................8-11
CP0........................................................................................... 2-2
CP1........................................................................................... 2-2
CP2........................................................................................... 2-2
csseg ........................................................................................ 7-7
D
data alignment .........................................................................3-11
data identifiers .......................................................................11-21
Delay

load ................................................................................... 4-4
delayed load instruction ............................................................ 2-8
divide instructions, CPU

cycle timing ..................................................................... 2-12
Division-by-Zero exception ....................................................... 6-4
Driver Strength Control ........................................................... 14-5
E
EntryHi register .............................................................. 7-11, 7-16
EntryLo register ...................................................................... 7-14
EntryLo0 register ........................................................... 7-11, 7-14
EntryLo1 register ........................................................... 7-11, 7-14
ERL bit .................................................................5-5, 7-4, 7-5, 7-7
Error Checking........................................................................ 13-1
Error Checking and Correcting (ECC) register ......................... 5-8
Error Exception Program Counter (ErrorEPC) register............. 5-9
Exception

common exception vector ................................................5-11
general .............................................................................5-11

exception instructions, CPU.................................................... 2-13
exception processing, CPU

conditions.......................................................................... 4-5
exception handler flowcharts .......................................... 5-20
exception types

Address Error.......................................................... 5-14
Breakpoint............................................................... 5-18
Bus Error................................................................. 5-17
Cache Error............................................................. 5-16
Cache Error exception process............................... 5-10
Coprocessor Unusable ........................................... 5-19
Floating-Point.......................................................... 5-20
general exception process .......................................5-11
Integer Overflow...................................................... 5-17
Interrupt................................................................... 5-20
Nonmaskable Interrupt (NMI) exception process.....5-11
Reserved Instruction ............................................... 5-19
Reset....................................................................... 5-12
��������			 ����
���� ������ � + �
Reset exception process .........................................5-10
Soft Reset................................................................5-13
Soft Reset exception process.................................. 5-11
System Call .............................................................5-18
TLB..........................................................................5-14
Trap .........................................................................5-18

exception vector location
Reset ....................................................................... 5-11

Illegal Instruction (II) ..........................................................4-4
exception processing, FPU

exception types
Division by Zero.........................................................6-4
Inexact .......................................................................6-3
Invalid Operation .......................................................6-4
Overflow ....................................................................6-5
overview ....................................................................6-1
Underflow ..................................................................6-5
Unimplemented Instruction........................................6-5

flags...................................................................................6-2
saving and restoring state .................................................6-6
trap handlers .....................................................................6-2

Exception Program Counter (EPC) register .......................5-1, 5-7
Exceptions

floating-point......................................................................6-1
EXL bit.................................................5-5, 5-7, 5-10, 7-4, 7-5, 7-7
F
FCR0.........................................................................................3-3
FCR31.......................................................................................3-3
FCRs .........................................................................................3-3
Features

Floating-Point Unit (FPU) ..................................................3-2
Floating-Point exception..........................................................5-20
Floating-Point Exceptions .........................................................6-1
Floating-Point General-Purpose registers (FGRs) ....................3-2
Floating-Point Unit (FPU)

designated as CP1 ............................................................3-1
exception types .................................................................6-1

See also exception processing, FPU, exception types
features .............................................................................3-2
formats

binary fixed-point .......................................................3-8
floating-point .......................................................3-6, 3-8

instruction execution cycle time.......................................3-14
instruction pipeline.............................................................4-1
instruction set summary ....................................................3-8
overview ............................................................................3-1
transfers between FPU and CPU ....................................3-10
transfers between FPU and memory...............................3-10

G
general exception.................................................................... 5-11

handler ............................................................................5-21
process............................................................................ 5-11
servicing guidelines .........................................................5-22

H
hardware
��������
 ��� �			



��2�$
interlocks..........................................................................3-11
interrupts ......................................................................... 12-1

I
IE bit.......................................................................................... 5-5
Illegal Instruction (II) exception ................................................. 4-4
Implementation/Revision register ............................................. 3-3
Implementation/Revision register, FPU .................................... 3-3
Index register .......................................................................... 7-14
Initialization interface

cold reset ............................................................... 14-1, 14-2
initialization sequence..................................................... 14-3
power-on reset ................................................................ 14-1
reset signal description ................................................... 14-1
signals............................................................................... 9-4
warm reset ............................................................. 14-1, 14-3

initialization sequence, system ............................................... 14-3
Instruction pipeline.................................................................... 4-1
instruction set, FPU .................................................................. 3-8
instructions, CPU

computational
64-bit operations ..................................................... 2-12
cycle timing for multiply and divide instructions ...... 2-12
formats ...................................................................... 2-9

coprocessor .................................................................... 2-13
divide, cycle timing.......................................................... 2-12
exception......................................................................... 2-13
load

defining access types................................................ 2-9
delayed load instruction ............................................ 2-8
scheduling a load delay slot...................................... 2-8

multiply, cycle timing ....................................................... 2-12
special............................................................................. 2-13
store

defining access types................................................ 2-9
translation lookaside buffer (TLB) ................................... 7-20

instructions, FPU
branch..............................................................................3-11
compare ...........................................................................3-11
computational...................................................................3-11
conversion........................................................................3-11
load ................................................................................. 3-10
move ............................................................................... 3-10
store ................................................................................ 3-10

Integer Overflow exception ..................................................... 5-17
interlocks, CPU

handling ............................................................................ 4-4
types of ............................................................................. 4-4

interlocks, hardware.................................................................3-11
Interrupt exception .................................................................. 5-20
Interrupt interface, signals ........................................................ 9-3
Interrupt register ............................................................ 12-1–12-2
interrupts, CPU

accessing ........................................................................ 12-1
handling ............................................................................ 4-4
Nonmaskable Interrupt (NMI).......................................... 12-1
��������			 ����
���� ������ � + /
Invalid Operation exception.......................................................6-4
J
Joint Test Action Group (JTAG) interface

signals ...............................................................................9-3
K
Kernel mode

and exception processing..................................................5-1
ckseg0 .............................................................................7-10
ckseg1 .............................................................................7-10
ckseg3 .............................................................................7-10
cksseg .............................................................................7-10
kseg0.................................................................................7-8
kseg1.................................................................................7-8
kseg3.................................................................................7-8
ksseg .................................................................................7-8
kuseg.................................................................................7-8
operations..........................................................................7-7
xkphys .............................................................................7-10
xkseg ...............................................................................7-10
xksseg ...............................................................................7-9
xkuseg ...............................................................................7-9

kseg0.........................................................................................7-8
kseg1.........................................................................................7-8
kseg3.........................................................................................7-8
ksseg.........................................................................................7-8
KSU bit ....................................................................... 7-4, 7-5, 7-7
kuseg.........................................................................................7-8
KX bit..................................................................................5-6, 7-7
L
latency

external response.......................................................... 11-21
FPU operation .................................................................3-14
release........................................................................... 11-21

little-endian, byte addressing .................................................. 3-11
Load Delay ................................................................................4-4
load delay.........................................................................3-11, 4-3
load delay slot ...........................................................................2-8
load instructions, CPU

defining access types ........................................................2-9
delayed load instruction.....................................................2-8
scheduling a load delay slot ..............................................2-8

load instructions, FPU .............................................................3-10
Load Linked Address (LLAddr) register ..................................7-18
M
memory management

address spaces .................................................................7-1
memory management unit (MMU).....................................7-1
register numbers .............................................................7-13
registers. See registers, CPU, memory management
System Control Coprocessor (CP0) ................................7-10

MFHI instructions ....................................................................2-12
MFLO instructions ...................................................................2-12
move instructions, FPU ...........................................................3-10
multiply instructions, CPU

cycle timing......................................................................2-12
��������
 ��� �			



��2�$
N
Nonmaskable Interrupt (NMI) exception

handling .......................................................................... 5-26
process ............................................................................5-11

O
operating modes

Kernel mode...................................................................... 7-7
Supervisor mode............................................................... 7-5
User mode ........................................................................ 7-3

Ordering
subblock.........................................................................11-26

Overflow exception ................................................................... 6-5
P
page table entry (PTE) array .................................................... 5-2
PageMask register......................................................... 7-11, 7-15
Parity Generation and Checking............................................. 13-1
Partial-Word Transfers...........................................................11-28
physical address space ............................................................ 7-2
Pipeline ..................................................................................... 4-1
pipeline

branch delay ..................................................................... 4-3
pipeline, CPU

exception conditions ......................................................... 4-5
load delay.......................................................................... 4-3
stall conditions .................................................................. 4-6

power-on reset........................................................................ 14-1
Processor Revision Identifier (PRId) register.......................... 7-16
R
R4400

clock ratio........................................................................ 7-17
EC bit .............................................................................. 7-17
IC bit, setting primary I-cache size......................... 7-17, 7-18

Random register ..................................................................... 7-14
registers, CPU

exception processing
Bad Virtual Address (BadVAddr)............................... 5-2
Cache Error (CacheErr) ............................................ 5-9
Cause........................................................................ 5-6
Compare ................................................................... 5-3
Config...................................................................... 7-16
Context...................................................................... 5-2
Count ........................................................................ 5-3
Error Checking and Correcting (ECC) ...................... 5-8
Error Exception Program Counter (ErrorEPC).......... 5-9
Exception Program Counter (EPC)........................... 5-7
Load Linked Address (LLAddr) ............................... 7-18
Processor Revision Identifier (PRId)....................... 7-16
register numbers ....................................................... 5-1
Status........................................................................ 5-3
TagHi....................................................................... 7-18
TagLo ...................................................................... 7-18
XContext ................................................................... 5-7

Exception Program Counter (EPC)................................... 5-1
Interrupt.................................................................. 12-1–12-2
memory management
��������			 ����
���� ������ � + 0
EntryHi............................................................7-11, 7-16
EntryLo ....................................................................7-14
EntryLo0 .........................................................7-11, 7-14
EntryLo1 .........................................................7-11, 7-14
Index........................................................................7-14
PageMask ......................................................7-11, 7-15
Random...................................................................7-14
register numbers (CP0) ...........................................7-10
Wired ..............................................................7-14, 7-15

System Control Coprocessor (CP0) ..........................7-10–??
registers, FPU

Control/Status....................................................................3-3
Floating-Point (FPRs)........................................................3-2
Floating-Point General-Purpose (FGRs) ...........................3-2
Implementation/Revision ...................................................3-3

requests. See System interface
Reserved Instruction exception...............................................5-19
Reset exception

handling...........................................................................5-26
overview ..........................................................................5-12

resets
cold..................................................................................14-2
power-on .........................................................................14-1
warm................................................................................14-3

S
Secondary Cache interface

signals ...............................................................................9-2
semaphore ..............................................................................8-10
sequential order .................................................................... 11-26
sequential ordering................................................................ 11-26
signals

Clock interface...................................................................9-2
descriptions .......................................................................9-1
Initialization interface.........................................................9-4
Interrupt interface ..............................................................9-3
JTAG interface...................................................................9-3
request cycle control signals ........................................... 11-2
Secondary Cache interface ...............................................9-2
System interface................................................................9-2

Soft Reset exception
handling...........................................................................5-26
overview ..........................................................................5-13
process............................................................................ 5-11

special instructions, CPU ........................................................2-13
sseg...........................................................................................7-6
stalls

conditions ..........................................................................4-6
Standby Mode .........................................................................15-2
Status register

access states.....................................................................5-5
format ................................................................................5-3
operating modes................................................................5-5

store instructions, CPU
defining access types ........................................................2-9

store instructions, FPU............................................................3-10
��������
 ��� �			



��2�$
Subblock order.......................................................................... 8-7
Subblock Ordering .................................................................11-26
subblock ordering ..................................................................11-26
Supervisor mode

csseg................................................................................. 7-7
operations ......................................................................... 7-5
sseg .................................................................................. 7-6
suseg ................................................................................ 7-6
xsseg................................................................................. 7-6
xsuseg............................................................................... 7-6

suseg ........................................................................................ 7-6
SX bit ................................................................................. 5-6, 7-5
Synchronization ...................................................................... 8-10
System Call exception ............................................................ 5-18
System Control Coprocessor.................................................... 2-2
System Control Coprocessor (CP0)

register numbers ............................................................. 7-10
registers

used in exception processing.................................... 5-1
used in memory management .......................... 7-10–??

System interface
addressing conventions .................................................11-26
commands

null requests...........................................................11-24
overview.................................................................11-21
read requests .........................................................11-22
syntax.....................................................................11-22
write requests.........................................................11-23

cycle time
release latency.......................................................11-21

data identifiers
overview.................................................................11-21

data identifiers, syntax ........................................11-22, 11-24
data rate control

data transfer patterns.............................................11-19
independent transmissions on SysAD bus ............11-20

endianness.....................................................................11-21
external request protocols

arbitration request ....................................................11-9
null request ............................................................11-11
overview...................................................................11-9
read request...........................................................11-10
write request ..........................................................11-11

external requests
null request ............................................................11-11
overview......................................................... 10-3–10-4
read request............................................................ 10-4
read response request ............................................ 10-4
write request ........................................................... 10-4

handling requests
Load Linked Store Conditional operation................ 10-9
load miss................................................................. 10-8
store hit ................................................................... 10-9
store miss.......................................................... 10-8–??
uncached loads or stores.................. 10-9, 11-17, 11-19
��������			 ����
���� ������ � + �
issue cycles ..................................................................... 11-1
master state..................................................................... 11-3
processor internal address map .................................... 11-29
processor request protocols

cluster flow control................................................... 11-6
read request ............................................................ 11-4
write request ............................................................ 11-5

processor requests
overview ..................................................................10-2
read request ............................................................10-3
write request ............................................................10-3

request
control signals ......................................................... 11-2
rules.........................................................................10-2

sequential ordering........................................................ 11-26
signals ...............................................................................9-2
slave state ....................................................................... 11-3
subblock ordering .......................................................... 11-26

System Interface Addresses ................................................. 11-26
T
TagHi register ..........................................................................7-18
TagLo register .........................................................................7-18
Test-and-Set synchronization..................................................8-10
TLB invalid exception ..............................................................5-15
TLB modified exception...........................................................5-16
TLB refill exception..................................................................5-15
TLB/XTLB miss exception handler ..........................................5-23
TLB/XTLB refill exception servicing guidelines .......................5-24
translation lookaside buffer (TLB)

and memory management ................................................7-1
and virtual memory.......................................................... 7-11
entry formats ................................................................... 7-11
exceptions .......................................................................5-14
instructions ......................................................................7-20
misses ............................................................ 5-2, 5-20, 7-20
page attributes.................................................................7-10

translation, virtual to physical
32-bit .................................................................................7-2
64-bit .................................................................................7-3

Trap exception.........................................................................5-18
U
Uncompelled Change to Slave State ...................................... 11-3
Underflow exception..................................................................6-5
Unimplemented Instruction exception .......................................6-5
useg ...................................................................................7-3, 7-4
User mode

operations..........................................................................7-3
useg...................................................................................7-4
xuseg.................................................................................7-5

UX bit .................................................................................5-6, 7-4
V
Valid Byte Lanes.................................................................... 11-28
virtual address space ................................................................7-1
virtual memory

and the TLB..................................................................... 7-11
��������
 ��� �			



��2�$
hits and misses ............................................................... 7-20
virtual address translation ............................................... 7-19

W
warm reset ..................................................................... 14-1, 14-3
Wired register ................................................................ 7-14, 7-15
X
XContext register ...................................................................... 5-7
xkphys..................................................................................... 7-10
xkseg ...................................................................................... 7-10
xksseg....................................................................................... 7-9
xkuseg ...................................................................................... 7-9
xsseg ........................................................................................ 7-6
xsuseg ...................................................................................... 7-6
xuseg ................................................................................. 7-3, 7-5
��������			 ����
���� ������ � + �
 ��������
 ��� �			


	About This Manual
	Introduction
	Additional information

	Content Summary
	Revision History
	About This Manual


	1 Overview
	2 Central Processing Unit (CPU)
	3 Floating-Point Unit (FPU)
	4 Instruction Pipeline
	5 Integer (CPU) Exceptions
	6 Floating-Point (FPU) Exceptions
	7 Memory Management Unit
	8 Cache
	9 Signal Descriptions
	10 System Interface Transactions
	11 System Interface Protocols
	12 Interrupts
	13 Error Checking
	14 Initialization Interface
	15 Clock Interface and Standby Mode
	Overview
	Performance
	Upward Compatibility
	Block Diagram
	Figure 1.1 RV5000 Block Diagram

	Features
	Instruction Pipeline
	Dual Issue
	Integer (CPU) Pipeline
	Figure 1.2 Integer (CPU) Pipeline
	Table 1.1 Key to Integer Pipeline
	Table 1.2 Example Integer (CPU) Instruction Latencies
	Floating-Point Unit (FPU) Pipeline
	Figure 1.3 Dual-Issue Mechanism, Showing CPU and FPU Pipelines

	Virtual-to-Physical Address Mapping
	Joint TLB

	Cache
	Instruction Cache
	Data Cache
	Write buffer
	Clocks

	System Interface
	Figure 1.4 Typical RV5000 System Block Diagram


	Central Processing Unit (CPU)
	Introduction
	CPU Registers
	Figure 2.1 R5000 CPU Registers

	Coprocessors (CP0-CP2) and Their Registers
	Figure 2.2 CP0 Registers
	Table 2.1 System Control Coprocessor (CPO) Register Definitions

	CPU Data Formats and Addressing
	Figure 2.3 Big-Endian Byte Ordering
	Figure 2.4 Little-Endian Byte Ordering
	Figure 2.5 Little-Endian Data in a Doubleword
	Figure 2.6 Big-Endian Data in a Doubleword
	Figure 2.7 Big-Endian Misaligned Word Addressing
	Figure 2.8 Little-Endian Misaligned Word Addressing

	CPU Instruction Set Summary
	Table 2.2 Some Integer-Instruction Latencies
	Instruction Formats
	Figure 2.9 Instruction Formats
	Instruction Types
	Load and Store Instructions
	Table 2.3 Load and Store Instructions
	Scheduling a Load Delay Slot
	Defining Access Types
	Table 2.4 Byte Access Within a Doubleword
	Computational Instructions
	Table 2.5 Arithmetic Instructions (ALU Immediate)
	Table 2.6 Arithmetic (3-Operand, R-Type)
	Table 2.7 Shift Instructions
	Table 2.8 Multiply and Divide Instructions
	64-bit Operations
	Cycle Timing for Multiply and Divide Instructions
	Table 2.9 Multiply/Divide Instruction Latency and Repeat Rates
	Jump and Branch Instructions
	Table 2.10 Jump and Branch Instructions (Part 1 of 2)
	Special Instructions
	Table 2.11 Special Instructions
	Coprocessor Instructions
	Table 2.12 Coprocessor Instructions (Part 1 of 2)
	Table 2.13 CPO Instructions
	Table 2.14 Exception Instructions
	MIPS IV Instruction Set Additions to CPU Instructions
	Prefetch
	Integer Conditional Moves


	Floating-Point Unit (FPU)
	Introduction
	Figure 3.1 FPU Functional Block Diagram

	Floating-Point General Registers (FGRs)
	Figure 3.2 FPU Registers

	Floating-Point Registers (FPRs)
	Floating-Point Control Registers (FCRs)
	Table 3.1 Floating-Point Control Register Assignments
	Implementation and Revision Register (FCR0)
	Figure 3.3 Implementation/Revision Register
	Table 3.2 FCRO Fields
	Control/Status Register (FCR31)
	Figure 3.4 FP Control/Status Register Bit Assignments
	Table 3.3 Control/Status Register Fields
	Accessing the Control/Status Register
	IEEE Standard 754
	Control/Status Register FS Bit
	Control/Status Register Condition Bit
	Control/Status Register Cause, Flag, and Enable Fields
	Figure 3.5 Control/Status Register Cause, Flag, and Enable Fields
	Cause Bits
	Enable Bits
	Flag Bits
	Control/Status Register Rounding Mode Control Bits
	Table 3.4 Rounding Mode Bit Decoding

	FPU Data Formats
	Floating-Point Formats
	Figure 3.6 Single-Precision Floating-Point Format
	Figure 3.7 Double-Precision Floating-Point Format
	Table 3.5 Calculating Values in Single and Double-Precision Formats
	Table 3.6 Floating-Point Format Parameter Values
	Table 3.7 Minimum and Maximum Floating-Point Values
	Binary Fixed-Point Format
	Figure 3.8 Binary Fixed-Point Format
	Table 3.8 Binary Fixed-Point Format Fields

	Floating-Point Instruction Set Summary
	Table 3.9 FPU Instruction Summary: Load, Move and Store Instructions
	Table 3.10 FPU Instruction Summary: Conversion Instructions
	Table 3.11 FPU Instruction Summary: Computational Instructions
	Table 3.12 FPU Instruction Summary: Compare and Branch Instructions
	Floating-Point Load, Store, and Move Instructions
	Transfers Between FPU and Memory
	Transfers Between FPU and CPU
	Load Delay and Hardware Interlocks
	Data Alignment
	Endianness
	Floating-Point Conversion Instructions
	Floating-Point Computational Instructions
	Branch on FPU Condition Instructions
	Floating-Point Compare Operations
	Table 3.13 Mnemonics of Compare-Instruction Conditions
	MIPS IV Instruction Set Additions to FPU Instructions
	Indexed Floating-Point Load
	Indexed Floating-Point Store
	Branch on Floating-Point Coprocessor
	Floating-Point Multiply-Add/Subtract
	Floating-Point Compare
	Floating-Point Conditional Moves
	Reciprocal’s
	FPU-Instruction Latencies
	Table 3.14 Floating-Point Instruction Latencies


	Instruction Pipeline
	Introduction
	Figure 4.1 Instruction Pipeline Stages

	Instruction Pipeline Stages
	Figure 4.2 Integer (CPU) Pipeline Activities

	Dual Issue
	Figure 4.3 Dual-Issue Mechanism, Showing CPU and FPU Pipelines
	R - Stage
	A - Stage
	D - Stage
	W - Stage

	Branch Delay
	Figure 4.4 CPU-Pipeline Branch Delay

	Load Delay
	Figure 4.5 CPU-Pipeline Load Delay

	Interlock and Exception Handling
	Table 4.1 Relationship of CPU-Pipeline Stage to Interlock Condition
	Table 4.2 CPU-Pipeline Exceptions
	Table 4.3 CPU-Pipeline Interlocks
	Figure 4.6 CPU-Pipeline Exception Detection Mechanism

	Stall Conditions
	Figure 4.7 CPU-Pipeline Servicing of Data Cache Miss

	Slip Conditions
	Figure 4.8 Slips During Instruction-Cache Miss

	Write Buffer

	Integer (CPU) Exceptions
	Introduction
	Exception Processing Registers
	Table 5.1 CPO Exception Processing Registers
	Context Register (4)
	Figure 5.1 Context Register Format
	Table 5.2 Context Register Fields
	Bad Virtual Address Register (BadVAddr) (8)
	Figure 5.2 BadVAddr Register Format
	Count Register (9)
	Figure 5.3 Count Register Format
	Compare Register (11)
	Figure 5.4 Compare Register Format
	Status Register (12)
	Figure 5.5 Status Register
	Table 5.3 Status Register Fields (Part 1 of 2)
	Figure 5.6 Status Register DS Field
	Table 5.4 Status Register Diagnostic Status Bits
	Cause Register (13)
	Table 5.5 Cause Register Fields
	Figure 5.7 Cause Register Format
	Table 5.6 Cause Register ExcCode Fields (Part 1 of 2)
	Exception Program Counter (EPC) Register (14)
	Figure 5.8 EPC Register Format
	XContext Register (20)
	Figure 5.9 XContext Register Format
	Table 5.7 XContext Register Fields
	Error Checking and Correcting (ECC) Register (26)
	Figure 5.10 ECC Register Format
	Table 5.8 ECC Register Fields
	Cache Error (CacheErr) Register (27)
	Figure 5.11 CacheErr Register Format
	Table 5.9 CacheErr Register Fields
	Error Exception Program Counter (Error EPC) Register (30)
	Figure 5.12 ErrorEPC Register Format

	Overview of Exception Types and Handling
	Sample Hardware Processes For Various Exceptions
	Reset
	Figure 5.13 Reset Exception Processing
	Cache Error
	Figure 5.14 Cache Error Exception Processing
	Soft Reset and NMI
	Figure 5.15 Soft Reset and NMI Exception Processing
	General Exceptions
	Figure 5.16 General Exception Processing
	Exception Vector Locations
	Table 5.10 Exception Vector Base Address
	Table 5.11 Exception Vector Offsets
	Priority of Exceptions
	Table 5.12 Exception Priority Order

	Causes, Hardware Processing, and Software Servicing of Exceptions
	Reset Exception
	Soft Reset Exception
	Non Maskable Interrupt (NMI) Exception
	Address-Error Exception
	TLB Exceptions
	TLB Refill Exception
	TLB Invalid Exception
	TLB Modified Exception
	Cache Error Exception
	Bus Error Exception
	Integer Overflow Exception
	Trap Exception
	System Call Exception
	Breakpoint Exception
	Reserved Instruction Exception
	Coprocessor Unusable Exception
	Floating-Point Exception
	Interrupt Exception

	Exception Handling and Servicing Flowcharts
	Figure 5.17 General Exception Handler (HW)
	Figure 5.18 General Exception Servicing Guidelines (SW)
	Figure 5.19 TLB/XTLB Miss Exception Handler (HW)
	Figure 5.20 TLB/XTLB Exception Servicing Guidelines (SW)
	Figure 5.21 Cache Error Exception Handling (HW) and Servicing Guidelines
	Figure 5.22 Reset, Soft Reset & NMI Exception Handling


	Floating-Point (FPU) Exceptions
	Introduction
	Exception Types
	Figure 6.1 Control/Status Register Exception/Flag/Trap/Enable Bits

	Exception Trap Processing
	Trap Handlers for IEEE Standard 754 Exceptions
	Flags
	Table 6.1 Default FPU Exception Actions
	Table 6.2 FPU Exception-Causing Conditions

	FPU Exceptions
	Inexact Exception (I)
	Invalid Operation Exception (V)
	Division-by-Zero Exception (Z)
	Overflow Exception (O)
	Underflow Exception (U)
	Unimplemented Instruction Exception (E)

	Saving and Restoring State

	Memory Management Unit
	Introduction
	Address Spaces
	Virtual Address Space
	Figure 7.1 Overview of a Virtual-to-Physical Address Translation
	Physical Address Space
	Virtual-to-Physical Address Translation
	32-bit Mode Virtual Address Translation
	Figure 7.2 32-bit Mode Virtual Address Translation
	64-bit Mode Virtual Address Translation
	Figure 7.3 64-bit Mode Virtual Address Translation

	Operating Modes
	User Mode Operations
	Figure 7.4 User Mode Virtual Address Space
	Table 7.1 32-bit and 64-bit User Mode Segments
	32-bit User Mode (useg)
	64-bit User Mode (xuseg)
	Supervisor Mode Operations
	Figure 7.5 Supervisor Mode Address Space
	Table 7.2 32-bit and 64-bit Supervisor Mode Segments
	32-bit Supervisor Mode, User Space (suseg)
	32-bit Supervisor Mode, Supervisor Space (sseg)
	64-bit Supervisor Mode, User Space (xsuseg)
	64-bit Supervisor Mode, Current Supervisor Space (xsseg)
	64-bit Supervisor Mode, Separate Supervisor Space (csseg)
	Kernel Mode Operations
	Figure 7.6 Kernel Mode Address Space
	Table 7.3 32-Bit Kernel Mode Segments
	32-bit Kernel Mode, User Space (kuseg)
	32-bit Kernel Mode, Kernel Space 0 (kseg0)
	32-bit Kernel Mode, Kernel Space 1 (kseg1)
	32-bit Kernel Mode, Supervisor Space (ksseg)
	32-bit Kernel Mode, Kernel Space 3 (kseg3)
	Table 7.4 64-Bit Kernel Mode Segments
	64-bit Kernel Mode, User Space (xkuseg)
	64-bit Kernel Mode, Current Supervisor Space (xksseg)
	64-bit Kernel Mode, Physical Spaces (xkphys)
	Table 7.5 Cacheability and Coherency Attributes
	64-bit Kernel Mode, Kernel Space (xkseg)
	64-bit Kernel Mode, Compatibility Spaces

	System Control Coprocessor
	Figure 7.7 CP0 Registers and the TLB
	Translation Lookaside Buffer (TLB)
	Format of a TLB Entry
	Figure 7.8 Format of a TLB Entry
	Figure 7.9 Fields of the PageMask and EntryHi Registers
	Figure 7.10 Fields of the EntryLo0 and EntryLo1 Registers
	Table 7.6 TLB Page Coherency (C) Bit Values
	CP0 Registers
	Index Register (0)
	Figure 7.11 Index Register
	Table 7.7 Index Register Field Descriptions
	Random Register (1)
	Figure 7.12 Random Register
	Table 7.8 Random Register Field Descriptions
	EntryLo0 (2), and EntryLo1 (3) Registers
	PageMask Register (5)
	Table 7.9 Mask Field Values for Page Sizes
	Wired Register (6)
	Figure 7.13 Wired Register Boundary
	Figure 7.14 Wired Register
	Table 7.10 Wired Register Field Descriptions
	EntryHi Register (CP0 Register 10)
	Processor Revision Identifier (PRId) Register (15)
	Figure 7.15 Processor Revision Identifier Register Format
	Table 7.11 PRId Register Fields
	Config Register (16)
	Figure 7.16 Config Register Format
	Table 7.12 Config Register Fields (Part 1 of 2)
	Load Linked Address (LLAddr) Register (17)
	Figure 7.17 LLAddr Register Format
	Cache Tag Registers [TagLo (28) and TagHi (29)]
	Figure 7.18 TagLo and TagHi Register (P-cache) Formats
	Figure 7.19 TagLo and TagHi Register (S-cache) Formats
	Table 7.13 Cache Tag Register Fields

	Virtual-to-Physical Address Translation Process
	Figure 7.20 TLB Address Translation
	TLB Hits and Misses
	Multiple TLB Matches
	Invalid TLB Accesses
	TLB Instructions
	Table 7.14 TLB Instructions


	Cache
	Introduction
	Figure 8.1 Logical Hierarchy of Memory

	Primary Caches
	Cache Line Size
	Cache Organization and Accessibility
	Organization of the Primary Instruction Cache (I-Cache)
	Figure 8.2 Primary I-Cache Line Format
	Organization of the Primary Data Cache (D-Cache)
	Figure 8.3 8-Word Primary Data-Cache Line Format
	Accessing the Primary Caches
	Figure 8.4 Primary Cache Data and Tag Organization

	Secondary Cache Controller
	Organization
	Figure 8.5 Secondary Cache Block Diagram
	Figure 8.6 Tag RAM Hit and Miss Read-Followed-By-Write Cycles
	Figure 8.7 Tag RAM Read and Write Cycles
	Interface Block Diagram
	Figure 8.8 Data RAM Block Diagram
	Figure 8.9 Tag RAM Block Diagram
	Secondary Cache Operations
	Secondary Cache Mode Configuration
	Secondary Cache Software Enable

	Cache-Line States
	Table 8.1 Cache States

	Cache-Line Ownership
	Cache Write Policy
	Table 8.2 CPU Cache Write Policy

	Cache-State Transitions
	Figure 8.10 Primary Data Cache State Diagram

	Cache Coherency
	Cache Coherency Attributes
	Table 8.3 Coherency Attributes and Processor Behavior
	Uncached Attribute
	Noncoherent Attribute

	Multiprocessor Synchronization Support
	Test-and-Set
	Figure 8.11 Synchronization with Test-and-Set
	Counter
	Figure 8.12 Synchronization Using a Counter
	Load Linked and Store Conditional
	Figure 8.13 Test-and-Set using LL and SC
	Figure 8.14 Counter Using LL and SC


	Signal Descriptions
	Introduction
	Figure 9.1 R5000 Processor Signals

	System Interface Signals
	Table 9.1 System Interface Signals

	Clock Interface Signals
	Table 9.2 Secondary Cache Interface Signals

	Secondary Cache Interface Signals
	Table 9.3 Secondary Cache Interface Signals

	Interrupt Interface Signals
	Table 9.4 Interrupt Interface Signals

	JTAG Interface Signals
	Table 9.5 JTAG Interface Signals

	Initialization Interface Signals
	Table 9.6 Initialization Interface Signals


	System Interface Transactions
	Introduction
	Terminology
	Processor Requests
	Figure 10.1 Requests and System Events
	Rules for Processor Requests
	Figure 10.2 Processor Requests to External Agent
	Figure 10.3 Processor Request Flow Control
	Processor Read Request
	Processor Write Request

	External Requests
	Figure 10.4 External Requests to Processor (except Read Response)
	Figure 10.5 External Request Arbitration
	External Read Request
	External Write Request
	Read Response
	Figure 10.6 External Agent Read Response to Processor

	Secondary Cache Transactions
	Figure 10.7 Processor Requests to Secondary Cache and External Agent
	Secondary Cache Probe, Invalidate, and Clear
	Figure 10.8 Secondary Cache Invalidate and Clear
	Figure 10.9 Secondary Cache Tag Probe
	Secondary Cache Write
	Figure 10.10 Secondary Cache Write Through
	Secondary Cache Read
	Figure 10.11 Secondary Cache Read Hit
	Figure 10.12 Secondary Cache Read Miss

	Handling Requests
	Load Miss
	Table 10.1 Action Taken On Load Miss to Primary Data Cache
	Store Miss
	Table 10.2 Store Miss to Primary and Secondary Data Caches
	Store Hit
	Uncached Loads or Stores
	Uncached Instruction Fetch
	Load Linked Store Conditional Operation

	Branch-Target Alignment

	System Interface Protocols
	Introduction
	Address and Data Cycles
	Issue Cycles
	Figure 11.1 State of RdRdy* Signal for Read Requests
	Figure 11.2 State of WrRdy* Signal for Write Requests

	Handshake Signals
	System Interface Operation
	Figure 11.3 System Interface Register-to-Register Operation
	Master and Slave States
	External Arbitration
	Uncompelled Change to Slave State
	Table 11.1 System Interface Requests

	Processor Request Protocols
	Figure 11.4 Symbol for Undocumented Cycles
	Processor Read Request Protocol
	Figure 11.5 Processor Read Request Protocol
	Processor Write Request Protocol
	Figure 11.6 Processor Noncoherent Single Word Write Request Protocol
	Figure 11.7 Processor Non-Coherent, Non-Secondary Cache Block Write Request
	Processor Request Flow Control
	Figure 11.8 Processor Request Flow Control
	Figure 11.9 Two Processor Write Requests with Second Write Delayed
	Figure 11.10 R4000-Compatible Back-to-Back Write Cycle Timing
	Figure 11.11 Write Reissue
	Figure 11.12 Pipelined Writes

	External Request Protocols
	External Arbitration Protocol
	Figure 11.13 Arbitration Protocol for External Requests
	External Read Request Protocol
	Figure 11.14 External Read Request, System Interface in Master State
	External Null Request Protocol
	Figure 11.15 System Interface Release External Null Request
	External Write Request Protocol
	Figure 11.16 External Write Request, with System Interface Initially a Bus Master
	Read Response Protocol
	Figure 11.17 Processor Word Read Request, followed by a Word Read Response
	Figure 11.18 Block Read Response, System Interface already in Slave State

	Secondary Cache Protocols
	Secondary Cache Read Protocol
	Secondary Cache Read Hit
	Figure 11.19 Secondary Cache Read Hit
	Secondary Cache Read Miss
	Figure 11.20 Secondary Cache Read Miss
	Secondary Cache Read Miss with Bus Error
	Figure 11.21 Secondary Cache Read Miss with Bus Error
	Secondary Cache Write
	Figure 11.22 Secondary Cache Write Operation
	Secondary Cache Line Invalidate
	Figure 11.23 Secondary Cache Line Invalidate
	Secondary Cache Probe Protocol
	Figure 11.24 Secondary Cache Probe (Tag RAM Read)
	Secondary Cache Block Clear Protocol
	Figure 11.25 Secondary Cache Block Clear

	SysADC[7:0] Protocol
	Data Rate Control
	Data-Transfer Patterns
	Table 11.2 Transmit Data Rates and Patterns
	Figure 11.26 Read Response, Reduced Data Rate, System Interface in Slave State

	Independent Transmissions on the SysAD Bus
	System Interface Endianness
	System Interface Cycle Time
	Release Latency
	Table 11.3 Release Latency for External Requests

	System Interface Commands/Data Identifiers
	Command and Data Identifier Syntax
	System Interface Command Syntax
	Figure 11.27 System Interface Command Syntax Bit Definition
	Table 11.4 Encoding of SysCmd(7:5) for System Interface Commands
	Read Requests
	Figure 11.28 Read Request SysCmd Bus Bit Definition
	Table 11.5 Encoding of SysCmd(4:3) for Read Requests
	Table 11.6 Encoding of SysCmd(2:0) for Block Read Request
	Table 11.7 Read Request of Data Size Encoding of SysCmd(2:0)
	Write Requests
	Figure 11.29 Write Request SysCmd Bus Bit Definition
	Table 11.8 Write Request Encoding of SysCmd(4:3)
	Table 11.9 Block Write Request Encoding of SysCmd(2:0)
	Table 11.10 Write Request Data Size Encoding of SysCmd(2:0)
	Null Requests
	Figure 11.30 Null Request SysCmd Bus Bit Definition
	Table 11.11 External Null Request Encoding of SysCmd(4:3)
	System Interface Data Identifier Syntax
	Figure 11.31 Data Identifier SysCmd Bus Bit Definition
	Noncoherent Data
	Data Identifier Bit Definitions
	Table 11.12 Processor Data Identifier Encoding of SysCmd(7:3)
	Table 11.13 External Data Identifier Encoding of SysCmd(7:3)

	System Interface Addresses
	Addressing Conventions
	Subblock Ordering
	Figure 11.32 Retrieving a Data Block in Sequential Order
	Figure 11.33 Retrieving Data in a Subblock Order
	Table 11.14 Subblock Ordering Sequence: Address 102
	Table 11.15 Subblock Ordering Sequence: Address 112
	Table 11.16 Subblock Ordering Sequence: Address 012
	Valid Byte Lanes During Partial-Word Transfers
	Table 11.17 Partial-Word Transfer Byte Lane Usage
	Processor Internal Address Map


	Interrupts
	Introduction
	Asserting Interrupts
	Figure 12.1 Interrupt Register Bits and Enables
	Figure 12.2 R5000 Interrupt Signals
	Figure 12.3 R5000 Nonmaskable Interrupt Signal
	Figure 12.4 Masking of the R5000 Interrupt


	Error Checking
	Introduction
	Parity Generation and Checking at the System Interface
	Summary of Parity Generation and Checking
	Table 13.1 Parity Generation and Checking Operations


	Initialization Interface
	Reset Signals
	Power-on Reset
	Figure 14.1 Power-On Reset Timing Diagram

	Cold Reset
	Figure 14.2 Cold Reset Timing Diagram

	Warm Reset
	Figure 14.3 Warm Reset Timing Diagram

	Processor Reset State
	Initialization Sequence
	Boot-Mode Settings
	Table 14.1 Boot Mode Settings (Part 1 of 2)

	Driver Strength Control
	Table 14.2 Boot Mode Bits and Drive Strength


	Clock Interface and Standby Mode
	SysClock
	PClock
	Phase-Locked Loop (PLL)
	Figure 15.1 SysClock Timing
	Figure 15.2 Input Timing
	Figure 15.3 Output Timing

	PLL Analog Power Filtering
	Figure 15.4 PLL Filter Circuit

	Standby Mode

	Index

