
MIPS32 4K

Processor Core Family

Software User’s Manual

Revision 01.07

June 19, 2000

MIPS Technologies, Inc.

1225 Charleston Road

Mountain View, CA. 94043
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 i

:

Copyright (c) 1999-2000 MIPS Technologies, Inc. All rights reserved.

Unpublished rights reserved under the Copyright Laws of the United States of America.

This document contains information that is proprietary to MIPS Technologies, Inc. (“MIPS Technologies”). Any
copying, modifying or use of this information (in whole or in part) which is not expressly permitted in writing by
MIPS Technologies or a contractually-authorized third party is strictly prohibited. At a minimum, this information
is protected under unfair competition laws and the expression of the information contained herein is protected
under federal copyright laws. Violations thereof may result in criminal penalties and fines.

MIPS Technologies or any contractually-authorized third party reserves the right to change the information con-
tained in this document to improve function, design or otherwise. MIPS Technologies does not assume any liability
arising out of the application or use of this information. Any license under patent rights or any other intellectual
property rights owned by MIPS Technologies or third parties shall be conveyed by MIPS Technologies or any
contractually-authorized third party in a separate license agreement between the parties.

The information contained in this document constitutes one or more of the following: commercial computer soft-
ware, commercial computer software documentation or other commercial items. If the user of this information, or
any related documentation of any kind, including related technical data or manuals, is an agency, department, or
other entity of the United States government (“Government”), the use, duplication, reproduction, release, modifi-
cation, disclosure, or transfer of this information, or any related documentation of any kind, is restricted in accor-
dance with Federal Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition
Regulation Supplement 227.7202 for military agencies.

The use of this information by the Government is further restricted in accordance with the terms of the license
agreement(s) and/or applicable contract terms and conditions covering this information from MIPS Technologies
or any contractually-authorized third party.

MIPS, R3000, R4000, R5000, R8000 and R10000 are among the registered trademarks of MIPS Technologies,
Inc., and R4300, R20K, MIPS16, MIPS32, MIPS64, MIPS-3D, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MDMX,
4K, 4Kc, 4Km, 4Kp, 5K, 5Kc, 20K, 20Kc, EC, MGB, SOC-it, SEAD, YAMON, ATLAS, JALGO, CoreLV and
MIPS-based are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.
ii MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

esign,

ices.
ut not
ith the
4Kp™
References to Product Names

This manual encompasses the 4Kc™, 4Kp™ & 4Km™ processor cores. The three products are similar in d
hence the majority of information contained in this manual refers to all three cores.

Throughout this manual the terms “the core” or “the processor” refers to the 4Kc™, 4Kp™, and 4Km™ dev
Some information in this manual, specifically in Chapters 2 and 4, is specific to one or more of the cores, b
all three. This information is called out in the text wherever necessary. For example, the section dealing w
TLB is denoted as being 4Kc™ core specific, whereas the section dealing with the BAT is denoted as being
and 4Km™ core specific.

Product Differentiation

The three products contained in this manual are similar in design. The main differences are in memory
management and the multiply-divide unit. In general the differences are as follows:

• 4Kc™ processor: Contains pipelined multiplier and translation lookaside buffer (TLB).

• 4Kp™ processor: Contains non-pipelined multiplier and block address translator (BAT).

• 4Km™ processor: Contains pipelined multiplier and block address translator.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 iii

:

iv MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

0.Revision History

Revision Date
PrID Rev.
Number

Description

1.0 August, 1999 0x01 First released version

1.1 November, 1999 0x02
• Re-organization to be more of a SoftWare User’s

Manual. Removed System Interface chapter.
• Count register no longer stops incrementing in

DebugMode - New bit added to Debug register
to indicate this: CountDM

• New Bits added to Debug register for handling of
imprecise exceptions: IEXI, DBusEP, IBusEP

• Added description of SubBlock ordering
• New MDU timing. Updated pipeline diagrams

and text in Chap. 2 to reflect new timing
• Modified Reset description. SoftReset cannot be

masked by the core. SoftReset does not need to
be asserted when Reset is asserted

• ASID is not used in EJTAG breakpoint compari-
sons if the TLB is not implemented

• Added MT Compare to Timer Interrupt cleared
to list of Hazard conditions

• Fixed Hazard from setting of SW Interrupt to
Interrupted instruction

• Changed SPECIAL opcode map to reflect
MOVCI FP instn as a Coprocessor Instn rather
than a Reserved Instn

• L2 Cache encodings of CACHE instn are
reserved.

• Added note that I Fill CACHE instn will cause a
re-fetch even if the line is in the cache
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 v

:

1.1, con-
tinued

November, 1999 0x02 • MUL instn description reiterates that the con-
tents of HI/LO are unpredictable after the MUL
operation.

• Added ERL=1 as possible reason for being in
kernel mode in the kseg descriptions

• Swapped priority of RI and CU exceptions
• Changed general exception code pseudo-code to

have correct vector offset of 0x180
• Fixed typo in bus error description: stores OR

non-critical words... not stores of non-critical
words

• Changed TLBWI to TLBWR in Random register
description

• Added note that behavior is undefined if illegal
page mask value is used

• Added note that StatusTS, StatusSR, and Status-

NMI bits and CauseWP cannot be set by software
• Noted undefined behavior if StatusERL is set

while executing code in useg/kuseg
• Added Config1PC and Config1CA bits. Both

wired to 0
• Changed Reset state of WatchI, WatchR, and

WatchW to 0 from undefined
• Removed some false statements about WAIT

induced sleep mode
• CLO/CLZ instn description changed to reflect

use of rd as destination register instead of rt
• Add sel field to format statements in

MFC0/MTC0 instns
• Removed redundant statement about writeback

invalidate from PREF instn
• Add programming note to multiply instructions

that smaller source value should be placed in rt
• Updated listing of HW initialized Cop0 bits in

Reset chapter

Revision Date
PrID Rev.
Number

Description
vi MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

1.2 December, 1999 0x02 • Removed implication of internal mux for
SI_TimerInt from description of Compare regis-
ter

01.03 January 28, 2000 0x04 • Cleaned up old references to ‘both’ cores
• Fixed some typos
• Fixed pipe stages in figure 2-12
• Added details on D-side micro TLB
• Cleaned up usage of trademarks
• Renamed title toMIPS32 4k™ Processor Core

Family Software User’s Manual
• Changed revision numbering to xx.yy format for

consistency with other documents

01.04 March 23, 2000 0x05 • Cleaned up some old paragraph leftovers
• Changed look of Table of Contents, List of Fig-

ures and List of Tables
• Added timing information regarding Early In to

divide algorithm for 4Kc and 4Km
• Fixed CLO/CLZ description in section 10.7 to

reflect rt -> rd change in definition
• Cleaned up Config register definition. Defined

BM field, defined reset state of several fields.
Changed reserved fields to 0 fields

• Cleaned up decode tables - fixed font problems
and multi-line instn text

• Updated PREF description

• Made reset state of StatusRP0
• Fixed some Spell-check issues.

01.05 May 8, 2000 0x06 • Clarified “Fetch and Lock” CACHE description.
• Removed text saying that the upper bits of PrID

were available for implementors.

01.06 June 8, 2000 0x06 • Rephrased field description of DataLo register.
• Updated copyright and trademark notices.

Revision Date
PrID Rev.
Number

Description
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 vii

:

01.07 June 19, 2000 0x06 • Clarified initialization of Status.RP and
WatchLo.{I,R,W} bits duringCold Reset in
Chapters 4 and 5.

Revision Date
PrID Rev.
Number

Description
viii MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

v

x

ii

x

2

-1

1

0.Table of Contents

Revision History ...

Table of Contents ..i

List Of Figures .. xv

List Of Tables ..xi

 Introduction to the MIPS32 4K™ Processor Core Family ... 1-1

1.1 Features ... 1-
1.2 Block Diagram .. 1-4
1.3 Required Logic Blocks ... 1-5

1.3.1 Execution Unit ... 1-5
1.3.2 Multiply/Divide Unit (MDU) .. 1-6
1.3.3 System Control Coprocessor (CP0) ... 1-7
1.3.4 Memory Management Unit (MMU) .. 1-7
1.3.5 Cache Controllers .. 1-8
1.3.6 Bus Interface Unit(BIU) .. 1-9
1.3.7 Power Management ... 1-9

1.4 Optional Logic Blocks .. 1-9
1.4.1 Instruction Cache ... 1-10
1.4.2 Data Cache ... 1-10
1.4.3 EJTAG Controller .. 1-10

 Pipeline .. 2

2.1 Pipeline Stages .. 2-
2.1.1 I Stage: Instruction Fetch ... 2-3
2.1.2 E Stage: Execution ... 2-3
2.1.3 M Stage: Memory Fetch .. 2-4
2.1.4 A Stage: Align/Accumulate ... 2-4
2.1.5 W Stage: Writeback ... 2-5

2.2 Instruction Cache Miss ... 2-5
2.3 Data Cache Miss ... 2-5
2.4 Multiply/Divide Operations .. 2-6
2.5 MDU Pipeline (4Kc and 4Km Cores) .. 2-7

2.5.1 32x16 Multiply (4Kc & 4Km Cores) ... 2-11
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 ix

:

7

9

..
..... 3

1

2.5.2 32x32 Multiply (4Kc & 4Km Cores) ... 2-11
2.5.3 Divide (4Kc & 4Km Cores) ... 2-12

2.6 MDU Pipeline (4Kp Core Only) ... 2-14
2.6.1 Multiply (4Kp Core) .. 2-15
2.6.2 Multiply Accumulate (4Kp Core) .. 2-16
2.6.3 Divide (4Kp Core) ... 2-16

2.7 Branch Delay .. 2-1
2.8 Interlock Handling .. 2-18
2.9 Slip Conditions ... 2-1
2.10 Instruction Interlocks .. 2-20

 Memory Management ... 3-1

3.1 Translation Lookaside Buffer (4Kc Core Only) ... 3-3
3.1.1 Joint TLB (4Kc Core) .. 3-3
3.1.2 Instruction TLB (4Kc Core) ... 3-3
3.1.3 Data TLB (4Kc Core) .. 3-4
3.1.4 Virtual to Physical Address Translation (4Kc Core) .. 3-4
3.1.5 Hits, Misses, and Multiple Matches (4Kc Core) .. 3-6
3.1.6 Page Sizes and Replacement Algorithm (4Kc Core) ... 3-7
3.1.7 TLB Tag and Data Formats (4Kc Core) ... 3-8

3.2 TLB Instructions (4Kc Core) .. 3-10
3.3 Block Address Translation (4Kp & 4Km Cores) .. 3-12
3.4 Modes of Operation .. 3-15

3.4.1 User Mode .. 3-15
3.4.2 Kernel Mode .. 3-16

3.4.2.1 Kernel Mode, User Space (kuseg) ... 3-18
3.4.2.2 Kernel Mode, Kernel Space 0 (kseg0) .. 3-18
3.4.2.3 Kernel Mode, Kernel Space 1 (kseg1) .. 3-19
3.4.2.4 Kernel Mode, Kernel Space 2 (kseg2) .. 3-19
3.4.2.5 Kernel Mode, Kernel Space 3 (kseg3) .. 3-19

3.4.3 Debug Mode ... 3-19
3.4.3.1 Conditions and Behavior for Access to drseg, EJTAG registers ... 3-21
3.4.3.2 Conditions and Behavior for Access to dmseg, EJTAG memory ..-21

3.5 System Control Coprocessor .. 3-22

 Exceptions ... 4-

4.1 Exception Conditions .. 4-2
4.2 Exception Priority ... 4-2
4.3 Exception Vector Locations .. 4-4
4.4 General Exception Processing .. 4-6
4.5 Debug Exception Processing .. 4-7
x MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

8

1

4

4.6 Exceptions .. 4-
4.6.1 Reset Exception ... 4-9
4.6.2 Soft Reset Exception .. 4-11
4.6.3 Debug Single Step Exception .. 4-12
4.6.4 Debug Interrupt Exception ... 4-13
4.6.5 Non Maskable Interrupt (NMI) Exception .. 4-14
4.6.6 Machine Check Exception (4Kc core) ... 4-15
4.6.7 Interrupt Exception .. 4-16
4.6.8 Debug Instruction Break Exception ... 4-17
4.6.9 Watch Exception — Instruction Fetch or Data Access ... 4-18
4.6.10 Address Error Exception — Instruction Fetch/Data Access ... 4-19
4.6.11 TLB Refill Exception — Instruction Fetch or Data Access (4Kc core) .. 4-20
4.6.12 TLB Invalid Exception — Instruction Fetch or Data Access (4Kc core) .. 4-21
4.6.13 Bus Error Exception — Instruction Fetch or Data Access .. 4-22
4.6.14 Debug Software Breakpoint Exception ... 4-23
4.6.15 Execution Exception — System Call .. 4-24
4.6.16 Execution Exception — Breakpoint .. 4-25
4.6.17 Execution Exception — Reserved Instruction ... 4-26
4.6.18 Execution Exception — Coprocessor Unusable .. 4-27
4.6.19 Execution Exception — Integer Overflow .. 4-28
4.6.20 Execution Exception — Trap .. 4-29
4.6.21 Debug Data Break Exception .. 4-30
4.6.22 TLB Modified Exception — Data Access (4Kc core) ... 4-31

4.7 Exception Handling and Servicing Flowcharts .. 4-32

 CP0 Registers .. 5-

5.1 CP0 Register Summary .. 5-2
5.2 CP0 Registers ... 5-

5.2.1 Index Register (CP0 Register 0, Select 0) ... 5-5
5.2.2 Random Register (CP0 Register 1, Select 0) ... 5-6
5.2.3 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0) ... 5-7
5.2.4 Context Register (CP0 Register 4, Select 0) .. 5-9
5.2.5 PageMask Register (CP0 Register 5, Select 0) .. 5-10
5.2.6 Wired Register (CP0 Register 6, Select 0) .. 5-11
5.2.7 BadVAddr Register (CP0 Register 8, Select 0) ... 5-13
5.2.8 Count Register (CP0 Register 9, Select 0) ... 5-14
5.2.9 EntryHi Register (CP0 Register 10, Select 0) ... 5-15
5.2.10 Compare Register (CP0 Register 11, Select 0) ... 5-16
5.2.11 Status Register (CP0 Register 12, Select 0) ... 5-17
5.2.12 Cause Register (CP0 Register 13, Select 0) ... 5-22
5.2.13 Exception Program Counter (CP0 Register 14, Select 0) .. 5-25
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 xi

:

-1

3

1

1

5.2.14 Processor Identification (CP0 Register 15, Select 0) ... 5-26
5.2.15 Config Register (CP0 Register 16, Select 0) ... 5-27
5.2.16 Config1 Register (CP0 Register 16, Select 1) ... 5-30
5.2.17 Load Linked Address (CP0 Register 17, Select 0) .. 5-33
5.2.18 WatchLo Register (CP0 Register 18) .. 5-34
5.2.19 WatchHi Register (CP0 Register 19) ... 5-35
5.2.20 Debug Register (CP0 Register 23) ... 5-37
5.2.21 Debug Exception Program Counter Register (CP0 Register 24) ... 5-42
5.2.22 TagLo Register (CP0 Register 28, Select 0) .. 5-43
5.2.23 DataLo Register (CP0 Register 28, Select 1) ... 5-44
5.2.24 ErrorEPC (CP0 Register 30, Select 0) ... 5-45
5.2.25 DeSave Register (CP0 Register 31) ... 5-46

 Hardware and Software Initialization .. 6-1

6.1 Hardware Initialized Processor State .. 6-2
6.1.1 Coprocessor Zero State .. 6-2
6.1.2 TLB Initialization (4Kc core only) .. 6-3
6.1.3 Bus State Machines .. 6-3
6.1.4 Static Configuration Inputs .. 6-3
6.1.5 Fetch Address ... 6-3

6.2 Software Initialized Processor State ... 6-3
6.2.1 Register File ... 6-3
6.2.2 TLB (4Kc Core Only) .. 6-4
6.2.3 Caches .. 6-4
6.2.4 Coprocessor Zero state ... 6-4

 Caches .. 7

7.1 Cache Protocols .. 7-2
7.2 Instruction Cache .. 7-3
7.3 Data Cache .. 7-

 Power Management ... 8-

8.1 Register Controlled Power Management .. 8-2
8.2 Instruction Controlled Power Management .. 8-2

 EJTAG Debug Support .. 9-

9.1 Debug Control Register .. 9-2
9.2 Hardware Breakpoints .. 9-4

9.2.1 Features of Instruction Breakpoint ... 9-4
9.2.2 Features of Data Breakpoint .. 9-5
9.2.3 Overview of Registers for Instruction Breakpoint ... 9-6
9.2.4 Registers for Data Breakpoint Setup .. 9-6
xii MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

9.2.5 Conditions for Matching Breakpoints ... 9-7
9.2.5.1 Conditions for Matching Instruction Breakpoint .. 9-7
9.2.5.2 Conditions for Matching Data Breakpoints .. 9-8

9.2.6 Debug Exceptions from Breakpoints ... 9-9
9.2.6.1 Debug Exception by Instruction Breakpoint ... 9-9
9.2.6.2 Debug Exception by Data Breakpoint .. 9-9

9.2.7 Breakpoint used as Triggerpoint .. 9-10
9.2.8 Instruction Breakpoint Registers ... 9-11

9.2.8.1 Instruction Breakpoint Status (IBS) Register .. 9-12
9.2.8.2 Instruction Breakpoint Address n (IBAn) Register ... 9-13
9.2.8.3 Instruction Breakpoint Address Mask n (IBMn) Register .. 9-14
9.2.8.4 Instruction Breakpoint ASID n (IBASIDn) Register .. 9-15
9.2.8.5 Instruction Breakpoint Control n (IBCn) Register .. 9-16

9.2.9 Data Breakpoint Registers ... 9-17
9.2.9.1 Data Breakpoint Status (DBS) Register .. 9-18
9.2.9.2 Data Breakpoint Address n (DBAn) Register ... 9-19
9.2.9.3 Data Breakpoint Address Mask n (DBMn) Register .. 9-20
9.2.9.4 Data Breakpoint ASID n (DBASIDn) Register .. 9-21
9.2.9.5 Data Breakpoint Control n (DBCn) Register .. 9-22
9.2.9.6 Data Breakpoint Value n (DBVn) Register ... 9-24

9.2.10 Test Access Port (TAP) ... 9-25
9.2.11 EJTAG Internal and External Interfaces .. 9-25

9.3 Test Access Port Operation ... 9-26
9.3.1 Test-Logic-Reset State ... 9-28
9.3.2 Run-Test/Idle State .. 9-28
9.3.3 Select_DR_Scan State ... 9-28
9.3.4 Select_IR_Scan State ... 9-28
9.3.5 Capture_DR State .. 9-28
9.3.6 Shift_DR State ... 9-29
9.3.7 Exit1_DR State .. 9-29
9.3.8 Pause_DR State .. 9-29
9.3.9 Exit2_DR State .. 9-29
9.3.10 Update_DR State ... 9-29
9.3.11 Capture_IR State .. 9-30
9.3.12 Shift_IR State ... 9-30
9.3.13 Exit1_IR State .. 9-30
9.3.14 Pause_IR State ... 9-30
9.3.15 Exit2_IR State .. 9-31
9.3.16 Update_IR State ... 9-31

9.4 Test Access Port (TAP) Instructions ... 9-31
9.4.1 BYPASS Instruction .. 9-32
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 xiii

:

1

9.4.2 IDCODE Instruction .. 9-32
9.4.3 IMPCODE Instruction ... 9-32
9.4.4 ADDRESS Instruction ... 9-32
9.4.5 DATA Instruction ... 9-33
9.4.6 CONTROL Instruction ... 9-33
9.4.7 ALL Instruction ... 9-33
9.4.8 EJTAGBOOT Instruction ... 9-33
9.4.9 NORMALBOOT Instruction ... 9-34

9.5 EJTAG Registers ... 9-34
9.5.1 Instruction Register .. 9-34
9.5.2 Data Registers Overview .. 9-35
9.5.3 Bypass Register .. 9-35
9.5.4 Device Identification (ID) Register .. 9-35
9.5.5 Implementation Register .. 9-37
9.5.6 EJTAG Control Register .. 9-37
9.5.7 Processor Access Address Register ... 9-45
9.5.8 Processor Access Data Registers ... 9-45

9.6 Processor Accesses ... 9-46
9.6.1 Fetch/Load and Store from/to the EJTAG Probe through dmseg .. 9-47

 Instruction Set Overview ... 10-

10.1 CPU Instruction Formats .. 10-2
10.2 Load and Store Instructions .. 10-3

10.2.1 Scheduling a Load Delay Slot .. 10-3
10.2.2 Defining Access Types ... 10-3

10.3 Computational Instructions ... 10-4
10.3.1 Cycle Timing for Multiply and Divide Instructions .. 10-5

10.4 Jump and Branch Instructions .. 10-5
10.4.1 Overview of Jump Instructions .. 10-5
10.4.2 Overview of Branch Instructions ... 10-6

10.5 Control Instructions .. 10-6
10.6 Coprocessor Instructions .. 10-6
10.7 Enhancements to the MIPS Architecture .. 10-6

10.7.1 CLO - Count Leading Ones ... 10-7
10.7.2 CLZ - Count Leading Zeros ... 10-7
10.7.3 MADD - Multiply and Add Word .. 10-7
10.7.4 MADDU - Multiply and Add Unsigned Word .. 10-7
10.7.5 MSUB - Multiply and Subtract Word .. 10-7
10.7.6 MSUBU - Multiply and Subtract Unsigned Word ... 10-8
10.7.7 MUL - Multiply Word .. 10-8
10.7.8 SSNOP- Superscalar Inhibit NOP ... 10-8
xiv MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

2

 MIPS32 4K™ Processor Core Instructions ... 11-1

11.1 Understanding the Instruction Fields .. 11-1
11.1.1 Instruction Fields ... 11-3
11.1.2 Instruction Descriptive Name and Mnemonic ... 11-3
11.1.3 Format Field ... 11-4
11.1.4 Purpose Field ... 11-4
11.1.5 Description Field ... 11-5
11.1.6 Restrictions Field ... 11-5
11.1.7 Operation Field .. 11-6
11.1.8 Exceptions Field .. 11-6

11.2 Instruction Hazards ... 11-6
11.3 CPU Opcode Map ... 11-9
11.4 Instruction Set ... 11-1
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 xv

:

xvi MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

0.List Of Figures

Figure 1-1 4K Processor Core Block Diagram ...1-5
Figure 1-2 Address Translation During a Cache Access ..1-8
Figure 2-1 4Kc Core Pipeline Stages ..2-2
Figure 2-2 4Km Core Pipeline Stages ...2-2
Figure 2-3 4Kp Core Pipeline Stages ..2-3
Figure 2-4 Instruction Cache Miss Timing ...2-5
Figure 2-5 Load/Store Cache Miss Timing ...2-6
Figure 2-6 MDU Pipeline Flow During a 32x16 Multiply Operation ..2-11
Figure 2-7 MDU Pipeline Flow During a 32x32 Multiply Operation ..2-12
Figure 2-8 MDU Pipeline Flow During a 8 bit Divide Operation ..2-13
Figure 2-9 MDU Pipeline Flow During a 16 bit Divide Operation ..2-13
Figure 2-10 MDU Pipeline Flow During a 24 bit Divide Operation ..2-13
Figure 2-11 MDU Pipeline Flow During a 32 bit Divide Operation ..2-14
Figure 2-12 4Kp MDU Pipeline Flow During a Multiply Operation ...2-15
Figure 2-13 4Kp MDU Pipeline Flow During a Multiply Accumulate Operation ...2-16
Figure 2-14 4Kp MDU Pipeline Flow During a Divide Operation ..2-17
Figure 2-15 CPU Pipeline Branch Delay ..2-18
Figure 2-16 Instruction Cache Miss Slip ..2-20
Figure 3-1 Address Translation During a Cache Access ..3-2
Figure 3-2 Overview of a Virtual-to-Physical Address Translation in the 4Kc Core ...3-5
Figure 3-3 32-bit Virtual Address Translation ..3-6
Figure 3-4 TLB Tag Entry Format ..3-8
Figure 3-5 TLB Data Array Entry Format ..3-9
Figure 3-6 TLB Address Translation Flow in the 4Kc Processor Core ..3-11
Figure 3-7 BAT Memory Map (ERL=0) in the 4Kp and 4Km Processor Cores ..3-13
Figure 3-8 BAT Memory Map (ERL=1) in the 4Kp and 4Km Processor Cores ..3-14
Figure 3-9 User Mode Virtual Address Space ..3-15
Figure 3-10 Kernel Mode Virtual Address Space ...3-17
Figure 3-11 Debug Mode Virtual Address Space ...3-20
Figure 4-1 General Exception Handler (HW) ...4-33
Figure 4-2 General Exception Servicing Guidelines (SW) ...4-34
Figure 4-3 TLB Miss Exception Handler (HW) — 4Kc Core ..4-35
Figure 4-4 TLB Exception Servicing Guidelines (SW) — 4Kc and 4Km Cores ...4-36
Figure 4-5 Reset, Soft Reset and NMI Exception Handling and Servicing Guidelines4-37
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 xvii

:

Figure 5-1 Wired and Random Entries in the TLB ...5-11
Figure 9-1 Instruction Hardware Breakpoint Overview ...9-5
Figure 9-2 Data Hardware Breakpoint Overview ...9-5
Figure 9-3 TAP Controller State diagram ...9-27
Figure 9-4 Concatenation of the EJTAG Address, Data and Control Registers ...9-33
Figure 9-5 Endian Formats for the PA Data Registers ..9-46
Figure 10-1 Instruction Formats ..10-2
Figure 11-1 Example Instruction Description ...11-2
Figure 11-2 Example of Instruction Fields ...11-3
Figure 11-3 Usage of Address Fields to Select Index and Way ..11-48
Figure 11-4 Unaligned Word Load Using LWL and LWR ..11-75
Figure 11-5 Bytes Loaded by LWL Instruction ..11-76
Figure 11-6 Unaligned Word Load Using LWR and LWL ..11-79
Figure 11-7 Bytes Loaded by LWR Instruction ..11-80
Figure 11-8 Example of LL/SC Atomic Update ...11-109
Figure 11-9 Unaligned Word Store Using SWL and SWR ..11-128
Figure 11-10 Bytes Stored by an SWL Instruction ...11-129
Figure 11-11 Unaligned Word Store Using SWR and SWL ..11-132
Figure 11-12 Bytes Stored by SWR Instruction ..11-133
xviii MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

1

0.List Of Tables

Table 2-1 4Kc and 4Km Core Instruction Latencies ...2-8
Table 2-2 4Kc Core Instruction Repeat Rates ...2-9
Table 2-3 MDU Pipeline Behavior During Multiply Operations (4Kc & 4Km Processors)2-10
Table 2-4 4Kp Core Instruction Latencies ...2-14
Table 2-5 Pipeline Interlocks ...2-18
Table 2-6 Instruction Interlocks ...2-21
Table 3-1 Mask and Page Size Values ..3-7
Table 3-2 TLB Tag Entry Fields ...3-8
Table 3-3 TLB Data Array Entry Fields ...3-9
Table 3-4 TLB Instructions ...3-10
Table 3-5 Cache Coherency Attributes ..3-12
Table 3-6 Cacheability of Segments with Block Address Translation ..3-12
Table 3-7 User Mode Segments ..3-16
Table 3-8 Kernel Mode Segments ...3-18
Table 3-9 Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces3-2
Table 3-10 CPU Access to drseg Address Range ..3-21
Table 3-11 CPU Access to dmseg Address Range ..3-22
Table 4-1 Priority of Exceptions ..4-2
Table 4-2 Exception Vector Base Addresses ...4-4
Table 4-3 Exception Vector Offsets ...4-5
Table 4-4 Exception Vectors ..4-5
Table 4-5 Debug Exception Vector Addresses ..4-8
Table 4-6 Register States an Interrupt Exception ..4-16
Table 4-7 Register States on a Watch Exception ...4-18
Table 4-8 CP0 Register States on an Address Exception Error ...4-19
Table 4-9 CP0 Register States on a TLB Refill Exception ..4-20
Table 4-10 CP0 Register States on a TLB Invalid Exception ..4-21
Table 4-11 Register States on a Coprocessor Unusable Exception ...4-27
Table 4-12 Register States on a TLB Modified Exception ..4-31
Table 5-1 CP0 Registers ...5-2
Table 5-2 CP0 Register Field Types ..5-4
Table 5-3 Index Register Field Descriptions ...5-5
Table 5-4 Random Register Field Descriptions ...5-6
Table 5-5 EntryLo0, EntryLo1 Register Field Descriptions ..5-7
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 xix

:

Table 5-6 Cache Coherency Attributes ..5-8
Table 5-7 Context Register Field Descriptions ..5-9
Table 5-8 PageMask Register Field Descriptions ..5-10
Table 5-9 Values for the Mask Field of the PageMask Register ..5-10
Table 5-10 Wired Register Field Descriptions ...5-12
Table 5-11 BadVAddr Register Field Description ...5-13
Table 5-12 Count Register Field Description ..5-14
Table 5-13 EntryHi Register Field Descriptions ...5-15
Table 5-14 Compare Register Field Description ...5-16
Table 5-15 Status Register Field Descriptions ..5-18
Table 5-16 Cause Register Field Descriptions ..5-22
Table 5-17 Cause Register ExcCode Field Descriptions ..5-23
Table 5-18 EPC Register Field Description ...5-25
Table 5-19 PRId Register Field Descriptions ..5-26
Table 5-20 Config Register Field Descriptions ..5-27
Table 5-21 Cache Coherency Attributes ..5-29
Table 5-22 Config1 Register Field Descriptions — Select 1 ..5-30
Table 5-23 LLAddr Register Field Descriptions ...5-33
Table 5-24 WatchLo Register Field Descriptions ..5-34
Table 5-25 WatchHi Register Field Descriptions ...5-35
Table 5-26 Debug Register Field Descriptions ...5-38
Table 5-27 Debug Register Formats ..5-42
Table 5-28 TagLo Register Field Descriptions ..5-43
Table 5-29 DataLo Register Field Description ..5-44
Table 5-30 ErrorEPC Register Field Description ..5-45
Table 5-31 DeSave Register Description ...5-46
Table 7-1 Instruction and Data Cache Attributes ...7-1
Table 7-2 Instruction and Data Cache Sizes ...7-2
Table 9-1 Debug Control Register Field Descriptions ..9-2
Table 9-2 Overview of Status Register for Instruction Breakpoints ..9-6
Table 9-3 Overview of Registers for each Instruction Breakpoint ..9-6
Table 9-4 Overview of Status Register for Data Breakpoints ..9-6
Table 9-5 Overview of Registers for each Data Breakpoint ..9-6
Table 9-6 Addresses for Instruction Breakpoint Registers ..9-11
Table 9-7 IBS Register Field Descriptions ..9-12
Table 9-8 IBAn Register Field Descriptions ..9-13
Table 9-9 IBMn Register Field Descriptions ...9-14
Table 9-10 IBASIDn Register Field Descriptions ...9-15
Table 9-11 IBCn Register Field Descriptions ..9-16
Table 9-12 Addresses for Data Breakpoint Registers ..9-17
Table 9-13 DBS Register Field Descriptions ...9-18
xx MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Table 9-14 DBAn Register Field Descriptions ..9-19
Table 9-15 DBMn Register Field Descriptions ...9-20
Table 9-16 DBASIDn Register Field Descriptions ...9-21
Table 9-17 DBCn Register Field Descriptions ..9-22
Table 9-18 DBVn Register Field Descriptions ..9-24
Table 9-19 EJTAG Interface Pins ...9-25
Table 9-20 Implemented EJTAG instructions ...9-31
Table 9-21 Device Identification Register ...9-35
Table 9-22 Implementation Register Descriptions ..9-37
Table 9-23 EJTAG Control Register Descriptions ...9-38
Table 10-1 Byte Access within a Word ...10-4
Table 11-1 Instruction Hazards ..11-7
Table 11-2 CPU Main Opcode Map ..11-9
Table 11-3 Special Submap ...11-10
Table 11-4 Special2 Submap ...11-10
Table 11-5 Register Immediate Submap ...11-11
Table 11-6 Coprocessor 0 Rs Submap ...11-11
Table 11-7 Coprocessor 0 Submap ..11-12
Table 11-8 Instruction Set ..11-12
Table 11-9 Encoding of CACHE Instruction Bits[17:16] ...11-48
Table 11-10 Encoding of CACHE Instruction Bits [20:18] ...11-48
Table 11-11 Values of Hint Fields for the PREF Instruction ...11-104
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 xxi

:

xxii MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

IPS
or
ustom

twork,
ns.

f both

 the

4Kp

 cache
blocked
s are
s the

B
nd
Chapter 1

1.Introduction to the MIPS32 4K™ Processor Core Family

The MIPS32 4K™ processor cores from MIPS® Technologies are high-performance, low-power, 32-bit M
RISC cores intended for custom system-on-silicon applications. The cores are designed for semiconduct
manufacturing companies, ASIC developers, and system OEMs who want to rapidly integrate their own c
logic and peripherals with a high-performance RISC processor. The cores are fully synthesizable to allow
maximum flexibility; they are highly portable across processes and can be easily integrated into full
system-on-silicon designs, allowing developers to focus their attention on end-user products.

The cores are ideally positioned to support new products for emerging segments of the digital consumer, ne
systems, and information management markets, enabling new tailored solutions for embedded applicatio

The 4K family has three members: the 4Kc™, 4Km™, and 4Kp™ cores. The cores incorporate aspects o
the MIPS Technologies R3000® and R4000® processors. The three devices differ mainly in the type of
multiply-divide unit (MDU) and the memory management unit (MMU).

• The 4Kc core contains a fully-associative translation lookaside buffer (TLB) and pipelined MDU.

• The 4Kp core contains a block address translation (BAT) mechanism that is smaller and simpler than
TLB implementation in the 4Kc core, along with a non-pipelined MDU.

• The 4Km processor is really a hybrid of the 4Kc and 4Kp cores. It contains a BAT-based MMU (like the
core) along with a pipelined MDU (like the 4Kc core).

Optional instruction and data caches are fully programmable from 0 - 16 Kbytes in size. In addition, each
can be organized as direct-mapped, 2-way, 3-way, or 4-way set associative. On a cache miss, loads are
only until the first critical word becomes available. The pipeline resumes execution while the remaining word
being written to the cache. Both caches are virtually indexed and physically tagged. Virtual indexing allow
cache to be indexed in the same clock in which the address is generated rather than waiting for the
virtual-to-physical address translation in the Translation Lookaside Buffer (TLB).

All cores execute the MIPS32™ instruction set architecture (ISA). The MIPS32 ISA contains all MIPS II
instructions as well as special multiply-accumulate, conditional move, prefetch, wait, and zero/one detect
instructions. The R4000-style memory management unit of the 4Kc core contains a 3-entry instruction TL
(ITLB), a 3-entry data TLB(DTLB), and a 16 dual-entry joint TLB (JTLB) with variable page sizes. The 4Kp a
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 1-1

Chapter 1: Introduction to the MIPS32 4K™ Processor Core Family

g of

),

trol
ition,

EJTAG

ns:
4Km processors cores contain a simplified block address translation (BAT) mechanism where the mappin
address spaces is determined through bits in the Configuration register.

The 4Kc and 4Km multiply-divide unit (MDU) supports a maximum issue rate of one 32x16 multiply (MUL
multiply-add (MADD/MADDU), or multiply-subtract (MSUB/MSUBU) operation per clock, or one 32x32
MUL, MADD, or MSUB every other clock. The basic Enhanced JTAG (EJTAG) features provide CPU run con
with stop, single stepping and re-start, and with software breakpoints through the SDBBP instruction. In add
optional instruction and data virtual address hardware breakpoints, and optional connection to an external
probe through the Test Access Port (TAP), may be included.

This chapter provides an overview of the MIPS32 4K processor cores and consists of the following sectio

• Section 1.1, "Features"

• Section 1.2, "Block Diagram"

• Section 1.3, "Required Logic Blocks"

• Section 1.4, "Optional Logic Blocks"

1.1 Features

• 32-bit Address and Data Paths

• MIPS32 Compatible Instruction Set

– All MIPSII™ instructions

– Multiply-add and multiply-subtract instructions (MADD, MADDU, MSUB, MSUBU)

– Targeted multiply instruction (MUL)

– Zero and one detect instructions (CLZ, CLO)

– Wait instruction (WAIT)

– Conditional move instructions (MOVZ, MOVN)

– Prefetch instruction (PREF)

• Programmable Cache Sizes

– Individually configurable instruction and data caches

– Sizes from 0 - 16-Kbyte

– Direct mapped, 2-, 3-, or 4-way set associative
1-2 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Features
– Loads that miss in the cache are blocked only until critical word is available

– Write-through, no write-allocate

– 16-byte cache line size, word sectored

– Virtually indexed, physically tagged

– Cache line locking support

– Non-blocking prefetches

• R4000 Style Privileged Resource Architecture

– Count/compare registers for real-time timer interrupts

– Instruction and data watch registers for software breakpoints

– Separate interrupt exception vector

• Programmable Memory Management Unit (4Kc core only)

– 16 dual-entry R4000 style JTLB with variable page sizes

– 3-entry instruction TLB

– 3-entry data TLB

• Programmable Memory Management Unit (4Kp and 4Km cores only)

– Block address translation (no JTLB, ITLB, or DTLB)

– Address spaces mapped using register bits

• Simple Bus Interface Unit (BIU)

– All I/Os fully registered

– Separate unidirectional 32-bit address and data buses

– Two 16-byte collapsing write buffers

• Multiply-Divide Unit (4Kc and 4Km cores)

– Max issue rate of one 32x16 multiply per clock

– Max issue rate of one 32x32 multiply every other clock

– Early in divide control. Minimum 11, maximum 34 clock latency on divides

• Power Control

– Minimum frequency: 0 MHz
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 1-3

Chapter 1: Introduction to the MIPS32 4K™ Processor Core Family

lock
s based

4Kp
– Power-down mode (triggered by WAIT instruction)

– Support for software-controlled clock divider

• EJTAG Debug Support

– CPU control with start, stop and single stepping

– Software breakpoints via the SDBBP instruction

– Optional hardware breakpoints on virtual addresses; 4 instruction and 2 data breakpoints, 2
instruction and 1 data breakpoint, or no breakpoints

– Test Access Port (TAP) facilitates high speed download of application code

1.2 Block Diagram

All cores contain both required and optional blocks. Required blocks are the lightly shaded areas of the b
diagram and must be implemented to remain MIPS-compliant. Optional blocks can be added to the core
on the needs of the implementation. The required blocks are as follows:

• Execution Unit

• Multiply-Divide Unit (MDU)

• System Control Coprocessor (CP0)

• Memory Management Unit (MMU)

• Cache Controller

• Bus Interface Unit (BIU)

• Power Management

Optional blocks include:

• Instruction Cache

• Data Cache

• Enhanced JTAG (EJTAG) Controller

Figure 1-1 shows a block diagram of a 4K core. The MMU can be implemented using either a translation
lookaside buffer (TLB) in the case of the 4Kc core, or a fixed block address translator (BAT) in the case of the
and 4Km cores. Refer to Chapter 3 for more information.
1-4 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Required Logic Blocks

)
two
 file
ipeline.
Figure 1-1 4K Processor Core Block Diagram

1.3 Required Logic Blocks

The following subsections describe the various required logic blocks of the 4K processor cores.

1.3.1 Execution Unit

The core execution unit implements a load-store architecture with single-cycle Arithmetic Logic Unit (ALU
operations (logical, shift, add, subtract) and an autonomous multiply-divide unit. The core contains thirty-
32-bit general-purpose registers used for scalar integer operations and address calculation. The register
consists of two read ports and one write port and is fully bypassed to minimize operation latency in the p

 The execution unit includes:

• 32-bit adder used for calculating the data address

• Address unit for calculating the next instruction address

• Logic for branch determination and branch target address calculation

Mul/Div Unit

Execution
Core

System
Coprocessor

MMU

TLB/BAT

EJTAG

Cache
Controller

Instruction
Cache

Data
Cache

B
IU

T
hi

n
I/F

O
n-

C
hi

p
B

us
(e

s)

Fixed/Required Optional

Power
Mgmt.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 1-5

Chapter 1: Introduction to the MIPS32 4K™ Processor Core Family

U
chine,
ution
other
tions.
ycles
is 24,
ction

I and
these
are

s to
a

iply
rom
ters,

m
adds
wo
BU
• Load aligner

• Bypass multiplexers used to avoid stalls when executing instruction streams where data- producing
instructions are followed closely by consumers of their results

• Zero/One detect unit for implementing the CLZ and CLO instructions

• Arithmetic Logic Unit (ALU) for performing bitwise logical operations

• Shifter and Store Aligner

1.3.2 Multiply/Divide Unit (MDU)

The Multiply/Divide unit performs multiply and divide operations. In the 4Kc and 4Km processors, the MD
consists of a 32x16 booth-encoded multiplier, result-accumulation registers (HI and LO), a divide state ma
and all multiplexers and control logic required to perform these functions. This pipelined MDU supports exec
of a 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations can be issued every
clock cycle. Appropriate interlocks are implemented to stall the issue of back-to-back 32x32 multiply opera
Divide operations are implemented with a simple 1 bit per clock iterative algorithm and require 35 clock c
in worst case to complete. Early-in to the algorithm detects sign extension of the dividend, if it is actual size
16 or 8 bit. the divider will skip 7, 15 or 23 of the 32 iterations. An attempt to issue a subsequent MDU instru
while a divide is still active causes a pipeline stall until the divide operation is completed.

In the 4Kp processor, the non-pipelined MDU consists of a 32-bit full-adder, result-accumulation registers (H
LO), a combined multiply/divide state machine, and all multiplexers and control logic required to perform
functions. It performs any multiply using 32 cycles in an iterative 1 bit per clock algorithm. Divide operations
also implemented with a simple 1 bit per clock iterative algorithm (no early-in) and require 35 clock cycle
complete. An attempt to issue a subsequent MDU instruction while a multiply/divide is still active causes
pipeline stall until the operation is completed.

All cores implement an additional multiply instruction, MUL, which specifies that lower 32-bits of the mult
result be placed in the primary register file instead of the HI/LO register pair. By avoiding the explicit Move F
LO (MFLO) instruction, required when using the LO register, and by supporting multiple destination regis
the throughput of multiply-intensive operations is increased.

Two instructions, multiply-add (MADD/MADDU) and multiply-subtract (MSUB/MSUBU), are used to perfor
the multiply-add and multiply-subtract operations. The MADD instruction multiplies two numbers and then
the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies t
operands and then subtracts the product from the HI and LO registers. The MADD/MADDU and MSUB/MSU
operations are commonly used in Digital Signal Processor (DSP) algorithms.
1-6 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Required Logic Blocks

tocols,
. user

or more

e 4Kc
und

rs: a
try
are

onding
s and
iss
 for a

BAT
cal
1.3.3 System Control Coprocessor (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation and cache pro
the exception control system, the processor’s diagnostics capability, operating mode selection (kernel vs
mode), and the enabling and disabling of interrupts. Configuration information such as cache size, set
associativity, and EJTAG debug features are available by accessing the CP0 registers. Refer to Chapter 6 f
information on the CP0 registers. Refer to Chapter 9 for more information on EJTAG debug registers.

1.3.4 Memory Management Unit (MMU)

Each core contains an MMU that interfaces between the execution unit and the cache controller. Although th
core implements a 32-bit architecture, the Memory Management Unit (MMU) is modeled after the MMU fo
in the 64-bit R4000 family.

The 4Kc core implements a translation lookaside buffer (TLB). The TLB consists of three translation buffe
16 dual-entry fully associative Joint TLB (JTLB), a 3-entry fully associative Instruction TLB (ITLB) and a 3-en
fully associative data TLB(DTLB). The ITLB and DTLB (the micro TLBs) are managed by the hardware and
not software visible. The micro TLBs contain subsets of the JTLB. When translating addresses, the corresp
micro TLB (I or D) is accessed first. If there is not a matching entry, the JTLB is used to translate the addres
refill the micro TLB. If the entry is not found in the JTLB, an exception is taken. To minimize the micro TLB m
penalty, the JTLB is looked up in parallel with the DTLB for data references. This results in a 1 cycle stall
DTLB miss and a 2 cycle stall for an ITLB miss.

The 4Kp and 4Km cores implement a block address translation (BAT) mechanism instead of a TLB. The
replaces both the JTLB and ITLB in the 4Kc core. The BAT performs a simple translation to get the physi
address from the virtual address. Refer to Chapter 3 for more information on the BAT.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 1-7

Chapter 1: Introduction to the MIPS32 4K™ Processor Core Family

ivity. For
an be 8

to the
Figure 1-2 shows how the ITLB/BAT, DTLB/BAT, JTLB are used.

Figure 1-2 Address Translation During a Cache Access

1.3.5 Cache Controllers

The data and instruction cache controllers support caches of various sizes, organizations, and set associat
example, the data cache can be 2 Kbytes in size and 2-way set associative, while the instruction cache c
Kbytes in size and 4-way set associative.

Each cache controller contains and manages a one line fill buffer. Besides accumulating data to be written
cache, the fill buffer is accessed in parallel with the cache and data can be bypassed back to the core.

Refer to Chapter 7 for more information on the instruction and data cache controllers.

Instruction
Address
Calculator

ITLB/BAT 2

DTLB/BAT2
Data
Address
Calculator

Comparator

Comparator

Instruction
Cache
RAM

Data
Cache
RAM

Virtual Address

Virtual Address

Instruction
Hit/Miss

Data
Hit/Miss

1. JTLB only exists in the 4Kc core.
2. ITLB/DTLB implemented in the 4Kc core only. BAT implemented in the 4Kp and 4Km cores.

JTLB1

IVA Entry

Entry
1-8 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Optional Logic Blocks

tion
efore
cy, the
ng the

block
ther

ement,
ed to

ption

oftware

to
1.3.6 Bus Interface Unit(BIU)

The Bus Interface Unit (BIU) controls the external interface signals. Additionally, it contains the implementa
of the 32-byte collapsing write buffer. The purpose of this buffer is to hold and combine write transactions b
issuing them at the external interface. Since the data caches for all cores follow a write-through cache poli
write buffer significantly reduces the number of write transactions on the external interface as well as reduci
amount of stalling in the core due to issuance of multiple writes in a short period of time.

The write buffer is organized as two 16-byte buffers. Each buffer contains data from a single 16-byte aligned
of memory. One buffer contains the data currently being transferred on the external interface, while the o
buffer contains accumulating data from the core.

Refer to Chapter 6 for more information on the BIU.

1.3.7 Power Management

The core offers a number of power management features, including low-power design, active power manag
and power-down modes of operation. The core is a static design that supports a WAIT instruction design
signal the rest of the device that execution and clocking should be halted, reducing system power consum
during idle periods.

The core provides two mechanisms for system-level, low-power support:

• Register-controlled power management

• Instruction-controlled power management

In register controlled power management mode the core provides three bits in the CP0 Status register for s
control of the power management function and allows interrupts to be serviced even when the core is in
power-down mode. In instruction controlled power-down mode execution of the WAIT instruction is used
invoke low-power mode.

Refer to Chapter 8 for more information on power management.

1.4 Optional Logic Blocks

The core consists of the following optional logic blocks as shown in the block diagram in Figure 1-1.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 1-9

Chapter 1: Introduction to the MIPS32 4K™ Processor Core Family

d and
ccess
4 valid

 on a
king is
ry basis

nd
ccess.

to the
ntents

 on a

t
el code.

d two

ywhere
ss
BP).
nsaction
 ASID
1.4.1 Instruction Cache

The instruction cache is an optional on-chip memory array of up to 16 Kbytes. The cache is virtually indexe
physically tagged, allowing the virtual-to-physical address translation to occur in parallel with the cache a
rather than having to wait for the physical address translation. The tag holds 22 bits of the physical address,
bits, a lock bit, and the FIFO replacement bit.

All cores support instruction cache-locking. Cache locking allows critical code to be locked into the cache
“per-line” basis, enabling the system designer to maximize the efficiency of the system cache. Cache loc
always available on all instruction cache entries. Entries can be marked as locked or unlocked on a per-ent
using the CACHE instruction.

1.4.2 Data Cache

The data cache is an optional on-chip memory array of up to 16-Kbytes. The cache is virtually indexed a
physically tagged, allowing the virtual-to-physical address translation to occur in parallel with the cache a
The tag holds 22 bits of the physical address, 4 valid bits, a lock bit, and the FIFO replacement bit.

In addition to instruction cache locking, all cores also support a data cache locking mechanism identical
instruction cache, with critical data segments to be locked into the cache on a “per-line” basis. The locked co
cannot be selected for replacement on a cache miss, but can be updated on a store hit.

Cache locking is always available on all data cache entries. Entries can be marked as locked or unlocked
per-entry basis using the CACHE instruction.

1.4.3 EJTAG Controller

All cores provide basic EJTAG support with debug mode, run control, single step and software breakpoin
instruction (SDBBP) as part of the core. These features allow for the basic software debug of user and kern

Optional EJTAG features include hardware breakpoints. A 4K core may have four instruction breakpoints an
data breakpoints, two instruction breakpoints and one data breakpoint, or no breakpoints. The hardware
instruction breakpoints can be configured to generate a debug exception when an instruction is executed an
in the virtual address space. Bit mask and address space identifier (ASID) values may apply in the addre
compare. These breakpoints are not limited to code in RAM like the software instruction breakpoint (SDB
The data breakpoints can be configured to generate a debug exception on a data transaction. The data tra
may be qualified with both virtual address, data value, size and load/store transaction type. Bit mask and
values may apply in the address compare, and byte mask may apply in the value compare.
1-10 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Optional Logic Blocks

ough
code

JTAG
Refer to the Chapter 9 for more information on hardware breakpoints.

An optional Test Access Port (TAP) provides for the communication from an EJTAG probe to the CPU thr
a dedicated port, may also be applied to the core. This provides the possibility for debugging without debug
in the application, and for download of application code to the system.

Refer to Chapter 6 for a list of EJTAG interface signals. Refer to Chapter 9 for more information on the E
features.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 1-11

Chapter 1: Introduction to the MIPS32 4K™ Processor Core Family
1-12 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

he
cost
Chapter 2

2.Pipeline

The MIPS32 4K™ processor cores implement a 5-stage pipeline similar to the original R3000 pipeline. T
pipeline allows the processor to achieve high frequency while minimizing device complexity, reducing both
and power consumption. This chapter contains the following sections:

• Section 2.1, "Pipeline Stages"

• Section 2.2, "Instruction Cache Miss"

• Section 2.3, "Data Cache Miss"

• Section 2.4, "Multiply/Divide Operations"

• Section 2.5, "MDU Pipeline (4Kc and 4Km Cores)"

• Section 2.6, "MDU Pipeline (4Kp Core Only)"

• Section 2.7, "Branch Delay"

• Section 2.8, "Interlock Handling"

• Section 2.9, "Slip Conditions"

• Section 2.10, "Instruction Interlocks"

2.1 Pipeline Stages

The pipeline consists of five stages:

• Instruction (I Stage)

• Execution (E Stage)

• Memory (M Stage)

• Align/Accumulate (A Stage)

• Writeback (W stage)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 2-1

Chapter 2: Pipeline

ctly to
All three cores implement a bypass mechanism that allows the result of an operation to be forwarded dire
the instruction that needs it without having to write the result to the register and then read it back.

Figure 2-1 shows the operations performed in each pipeline stage of the 4Kc processor.

Figure 2-1 4Kc Core Pipeline Stages

Figure 2-2 shows the operations performed in each pipeline stage of the 4Km processor core.

Figure 2-2 4Km Core Pipeline Stages

I E M A W

I-TLB

I-A1

I-Cache RegRd

I Dec

ALU Op

D-TLB

D-Cache Align RegWD-AC

Bypass

Bypass

I-A2

RegW

RegW

RegWMul

Bypass

Div RegW

CPA

CPAMult, Macc 16x16, 32x16

Mult, Macc 32x32

Sign Adjust

RegRd

I Dec

I E M A W

I-A1

I-Cache ALU Op

D-Cache Align RegWD-AC

Bypass

Bypass

I-A2

RegW

RegW

RegWMul

Bypass

Div RegW

CPA

CPAMult, Macc 16x16, 32x16

Mult, Macc 32x32

Sign Adjust
2-2 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Pipeline Stages

Kc

ss for
Figure 2-3 shows the operations performed in each pipeline stage of the 4Kp processor core.

Figure 2-3 4Kp Core Pipeline Stages

2.1.1 I Stage: Instruction Fetch

During the Instruction fetch stage:

• The instruction translation lookaside buffer (I-TLB) perform a virtual-to-physical address translation (4
core only).

• An instruction is fetched from the instruction cache.

2.1.2 E Stage: Execution

During the Execution stage:

• Operands are fetched from the register file.

• The Arithmetic Logic Unit (ALU) begins the arithmetic or logical operation for register-to-register
instructions.

• The ALU calculates the data virtual address for load and store instructions.

• The ALU determines whether the branch condition is true and calculates the virtual branch target addre
branch instructions.

• Instruction logic selects an instruction address

• All multiply and divide operations begin in this stage.

I E M A W

I-A1

I-Cache RegRd

I Dec

ALU Op

D-Cache Align RegWD-AC

Bypass

Bypass

I-A2

Mul RegW

multiply, divide RegW
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 2-3

Chapter 2: Pipeline

store

e.

plete

d the

p for
m

n the

tage
2.1.3 M Stage: Memory Fetch

During the Memory Fetch stage:

• The arithmetic or logic ALU operation completes.

• The data cache fetch and the data virtual-to-physical address translation are performed for load and
instructions.

• Data TLB (4Kc core only) and data cache lookup are performed and a hit/miss determination is mad

• A 16x16 or 32x16 MUL operation completes in the array and stalls for one clock in the M stage to com
the carry-propagate-add in the M stage (4Kc and 4Km cores).

• A 32x32 MUL operation stalls for two clocks in the M stage to complete second cycle of the array an
carry-propagate-add in the M stage (4Kc and 4Km cores).

• A 16x16 or 32x16 MULT/MADD/MSUB operation completes in the array (4Kc and 4Km cores).

• A 32x32 MULT/MADD/MSUB operation stalls for one clock in the MMDU stage of the MDU pipeline to
complete second cycle in the array (4Kc and 4Km cores).

• A divide operation stalls for a maximum of 32 clocks in the MMDU stage of the MDU pipeline (4Kc and
4Km cores).

• A multiply operation stalls for 31 clocks in MMDU stage (4Kp core only).

• A multiply-accumulate operation stalls for 33 clocks in MMDU stage (4Kp core only).

• A divide operation stalls for 32 clocks in the MMDU stage (4Kp core only).

2.1.4 A Stage: Align/Accumulate

During the Align/Accumulate stage:

• A separate aligner aligns load data with its word boundary.

• A MULT/MADD/MSUB operation performs the carry-propagate-add. This includes the accumulate ste
the MADD/MSUB operations. The actual register writeback is performed in the W stage (4Kc and 4K
cores).

• A MUL operation makes the result available for writeback. The actual register writeback is performed i
W stage (all 4K cores).

• A divide operation perform the final Sign-Adjust. The actual register writeback is performed in the W s
(4Kc and 4Km cores)

• A multiply/divide operation writes to HI/LO registers (4Kp core only).
2-4 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Cache Miss

tage.

ruction
reside in
pipeline
ources.
bus is
e bus is
he data

. The
ire cache

esides
he.
2.1.5 W Stage: Writeback

• For register-to-register or load instructions, the result is written back to the register file during the W s

2.2 Instruction Cache Miss

When the instruction cache is indexed, the instruction address is translated to determine if the required inst
resides in the cache. An instruction cache miss occurs when the requested instruction address does not
the instruction cache. When a cache miss is detected in the I stage, the core transitions to the E stage. The
stalls in the E stage until the miss is resolved. The bus interface unit must select the address from multiple s
If the address bus is busy, the request will remain in this arbitration stage (B-ASel in Figure 2-4) until the
available. The core drives the selected address onto the bus. The number of clocks required to access th
determined by the access time of the array that contains the data. The number of clocks required to return t
once the bus is accessed is also determined by the access time of the array.

Once the data is returned to the core, the critical word is written to the instruction register for immediate use
bypass mechanism allows the core to use the data once it becomes available, as opposed to having the ent
line written to the instruction cache, then reading out the required word.

Figure 2-4 shows a timing diagram of an instruction cache miss.

Figure 2-4 Instruction Cache Miss Timing

2.3 Data Cache Miss

When an instruction is indexed, the instruction address is translated to determine if the required instruction r
in the cache. A data cache miss occurs when the requested data address does not reside in the data cac

I E E E

I-TLB
I-Cache

B-ASelI-TLB

E

I-A1

RegRd
I Dec

ALU Op

I-A2

IC-BypassBus*

* Contains all of the time that address and data are utilizing the bus.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 2-5

Chapter 2: Pipeline

e stalls
ween
drives
 access
ssed is

arded
omes
d word.

w

gister
LO
is

ent
When a data cache miss is detected in the M stage (D-TLB), the core transitions to the A stage. The pipelin
in the A stage until the miss is resolved (requested data is returned). The bus interface unit arbitrates bet
multiple requests and selects the correct address to be driven onto the bus (B-ASel in Figure 2-5). The core
the selected address onto the bus. The number of clocks required to access the bus is determined by the
time of the array containing the data. The number of clocks required to return the data once the bus is acce
also determined by the access time of the array.

Once the data is returned to the core, the critical word of data passes through the aligner before being forw
to the execution unit and register file. The bypass mechanism allows the core to use the data once it bec
available, as opposed to having the entire cache line written to the data cache, then reading out the require

Figure 2-5 shows a timing diagram of a data cache miss.

Figure 2-5 Load/Store Cache Miss Timing

2.4 Multiply/Divide Operations

All three cores implement the standard MIPS II™ multiply and divide instructions. Additionally, several ne
instructions were added for enhanced code performance.

The targeted multiply instruction, MUL, specifies that multiply results be placed in the general purpose re
file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction, required when using the
register, and by supporting multiple destination registers, the throughput of multiply-intensive operations
increased.

Four instructions, multiply-add (MADD), multiply-add-unsigned (MADDU) multiply-subtract (MSUB), and
multiply-subtract-unsigned (MSUBU), are used to perform the multiply-accumulate and multiply-subtract
operations. The MADD/MADDU instruction multiplies two numbers and then adds the product to the curr

E M

D-TLB
D-CacheALU1

AA

B-ASel

RegR

A

Bus*

W

RegWAlignDC Bypass

A

* Contains all of the time that address and data are utilizing the bus.
2-6 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

MDU Pipeline (4Kc and 4Km Cores)

then
re

ite

O and

and
n the
stem

state
ts the

32x16

e of
the

e

The
ry for
contents of the HI and LO registers. Similarly, the MSUB/MSUBU instruction multiplies two operands and
subtracts the product from the HI and LO registers. The MADD/MADDU and MSUB/MSUBU operations a
commonly used in DSP algorithms.

All multiply operations (except the MUL instruction) write to the HI/LO register pair. All integer operations wr
to the general purpose registers (GPR). Because MDU operations write to different registers than integer
operations, following integer instructions can execute before the MDU operation has completed. The MFL
MFHI instructions are used to move data from the HI/LO register pair to the GPR file. If a MFLO or MFHI
instruction is issued before the MDU operation completes, it will stall to wait for the data.

2.5 MDU Pipeline (4Kc and 4Km Cores)

The 4Kc and 4Km processor cores contain a multiply/divide unit (MDU) with a separate pipeline for multiply
divide operations. This pipeline operates in parallel with the integer unit (IU) pipeline and does not stall whe
IU pipeline stalls. This allows long-running MDU operations, such as a divide, to be partially masked by sy
stalls and/or other integer unit instructions.

The MDU consists of a 32x16 booth encoded multiplier, result/accumulation registers (HI and LO), a divide
machine, and all necessary multiplexers and control logic. The first number shown (‘32’ of 32x16) represen
rs operand. The second number (‘16’ of 32x16) represents thert operand. The core only checks the latter (rt)
operand value to determine how many times the operation must pass through the multiplier. The 16x16 and
operations pass through the multiplier once. A 32x32 operation passes through the multiplier twice.

The MDU supports execution of a 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply
operations can be issued every other clock cycle. Appropriate interlocks are implemented to stall the issu
back-to-back 32x32 multiply operations. Multiply operand size is automatically determined by logic built into
MDU. Divide operations are implemented with a simple 1 bit per clock iterative algorithm with an early in
detection of sign extension on the dividend (rs). Any attempt to issue a subsequent MDU instruction while a divid
is still active causes an IU pipeline stall until the divide operation is completed.

Table 2-1 lists the latencies (number of cycles until a result is available) for multiply and divide instructions.
latencies are listed in terms of pipeline clocks. In this table ‘latency’ refers to the number of cycles necessa
the first instruction to produce the result needed by the second instruction.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 2-7

Chapter 2: Pipeline
Table 2-1 4Kc and 4Km Core Instruction Latencies

Size of operand
1st Instruction[1]

Instruction Sequence
Latency

1st Instruction 2nd instruction

16 bit MULT/MULTU,
MADD/MADDU, or

MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU, or

MFHI/MFLO

1

32 bit MULT/MULTU,
MADD/MADDU, or

MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU, or

MFHI/MFLO

2

16 bit MUL Integer operation[2] 2[3]

32 bit MUL Integer operation[2] 2[3]

8 bit DIVU MFHI/MFLO 12

16 bit DIVU MFHI/MFLO 19

24 bit DIVU MFHI/MFLO 26

32 bit DIVU MFHI/MFLO 33

8 bit DIV MFHI/MFLO 13[4]

16 bit DIV MFHI/MFLO 20[4]

24 bit DIV MFHI/MFLO 27[4]

32 bit DIV MFHI/MFLO 34[4]

any MFHI/MFLO Integer operation[2] 2

any MTHI/MTLO MADD/MADDU, or
MSUB/MSUBU

1

[1] For multiply operations this is thert operand. For divide operations this is thers operand.

[2] Integer Operation refers to any integer instruction that uses the result of a previous MDU operation.

[3] This does not include the 1 or 2 IU pipeline stalls (16 bit or 32 bit) that MUL operation causes irrespective
of the following instruction.

[4] If both operands are positive the Sign Adjust stage is bypassed. Timing is then the same as for DIVU.
2-8 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

MDU Pipeline (4Kc and 4Km Cores)

e code
e IU
order
 one
ely

t rate’
ction.

two
 a
In Table 2-1 a latency of one means that the first and second instruction can be issued back to back in th
without the MDU causing any stalls in the IU pipeline. A latency of two means that if issued back to back, th
pipeline will be stalled for one cycle. MUL operations are special because it needs to stall the IU pipeline in
to maintain its register file write slot. Consequently the MUL 16x16 or 32x16 operation will always force a
cycle stall of the IU pipeline, and the MUL 32x32 will force a two cycle stall. If the integer instruction immediat
following the MUL operation uses its result, an additional stall is forced on the IU pipeline.

Table 2-2 lists the repeat rates (peak issue rate of cycles until the operation can be reissued) for multiply
accumulate/subtract instructions. The repeat rates are listed in terms of pipeline clocks. In this table ‘repea
refers to the case where the first MDU instruction (in the table below) if back to back with the second instru

Table 2-3 below shows the pipeline flow for the following sequence:

1. 32x16 multiply (M1)

2. Add

3. 32x32 multiply (M2)

The 32x16 multiply operation requires one clock of each pipeline stage to complete. The 32x32 requires
clocks in the MMDU stage. The MDU pipeline is shown as the shaded areas of Table 2-3 and always starts
computation in the final phase of the E stage. As shown in the table, the MMDU stage of the MDU pipeline occurs
in parallel with the M stage of the IU pipeline, the AMDU stage occurs in parallel with the A stage, and the WMDU
stage occurs in parallel with the W stage.

Table 2-2 4Kc Core Instruction Repeat Rates

Operand Size of
1st Instruction

Instruction Sequence Repeat
Rate1st Instruction 2nd instruction

16 bit MULT/MULTU,
MADD/MADDU,
MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU

1

32 bit MULT/MULTU,
MADD/MADDU,
MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU

2

MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 2-9

Chapter 2: Pipeline

n

es

U

The following is a clock-by-clock analysis of Table 2-3.

1. The first 32x16 multiply operation (M1) enters the I stage and is fetched from the instructio
cache.

2. An ADD operation enters the I stage. The M1 operation enters the E stage. The integer and MDU pipelin
share the I and E pipeline stages. At the end of the E stage in clock 2, the multiply operation (M1) is passed
to the MDU pipeline.

Table 2-3 MDU Pipeline Behavior During Multiply Operations (4Kc & 4Km Processors)

Clock I E
M A W

MMDU AMDU WMD

1 M1

2 ADD M1

3 M2 ADD

M1

4 M2 ADD

M1

5 ADD

M2 M1

6 ADD

M2

7

M2

8

M2
2-10 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

MDU Pipeline (4Kc and 4Km Cores)

ce
he

the

k, the
er

r and

 HI/LO

r and
3. In clock 3 a 32x32 multiply operation (M2) enters the I stage and is fetched from the instruction cache. Sin
the ADD operation has not yet reached the M stage by clock 3, there is no activity in the M stage of t
integer pipeline at this time.

4. In clock 4 the second multiply operation (M2) enters the E stage. The ADD operation enters M stage of
integer pipe. Since the M1 multiply is a 32x16 operation, only one clock is required for the MMDU stage,
hence the M1 operation passes to the AMDU stage of the MDU pipeline.

5. In clock 5 the M2 multiply enters the MMDU stage. The ADD operation enters the A stage of the integer
pipeline. The M1 operation completes and is written back in to the HI/LO register pair in the WMDU stage.

6. Since a 32x32 multiply requires two passes through the multiplier, with each pass requiring one cloc
32x32 remains in the MMDU stage in clock 6. The ADD operation completes and is written to the regist
file in the W stage of the integer pipeline.

7. The M2 multiply operation progresses to the AMDU stage

8. The M2 operation completes and is written to the HI/LO registers pair the WMDU stage.

2.5.1 32x16 Multiply(4Kc & 4Km Cores)

The 32x16 multiply operation begins in the last phase of the E stage, which is shared between the intege
MDU pipelines. In the latter phase of the E stage, thers andrt operands arrive and the booth recoding function
occurs at this time. The multiply calculation requires one clock and occurs in the MMDU stage. In the AMDU stage,
the carry-propagate-add function occurs and the operation is completed. The result is written back to the
register pair in the first half of the WMDU stage.

Figure 2-6 shows a diagram of a 32x16 multiply operation.

Figure 2-6 MDU Pipeline Flow During a 32x16 Multiply Operation

2.5.2 32x32 Multiply(4Kc & 4Km Cores)

The 32x32 multiply operation begins in the last phase of the E stage, which is shared between the intege
MDU pipelines. In the latter phase or the E stage, thers andrt operands arrive and the booth recoding function

Booth Array CPA

E-Stage MMDU-Stage AMDU-Stage

Reg WR

WMDU-Stage

Clock 1 2 3 4
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 2-11

Chapter 2: Pipeline

n back

 only

 clocks
th the
is is

 taken
. Note
A

ation.
n

occurs at this time. The multiply calculation requires two clocks and occurs in the MMDU stage. In the AMDU
stage, the carry-propagate-add (CPA) function occurs and the operation is completed. The result is writte
to the HI/LO register pair in the first half of the WMDU stage.

Figure 2-7 shows a diagram of a 32x32 multiply operation.

Figure 2-7 MDU Pipeline Flow During a 32x32 Multiply Operation

2.5.3 Divide(4Kc & 4Km Cores)

Divide operations are implemented using a simple non-restoring division algorithm. This algorithm works
for positive operands, hence the first cycle of the MMDU stage is used to negate thers operand (RS Adjust) if
needed. Note that this cycle is executed even if the adjustment is not necessary. At maximum the next 32
(3-34) execute an iterative add/subtract function. In cycle 3 an early in detection is performed in parallel wi
add/subtract. The adjustedrs operand is detected to be zero extended on the upper most 8, 16 or 24 bits. If th
the case the following 7, 15 or 23 cycles of the add/subtract iterations are skipped.

The remainder adjust (Rem Adjust) cycle is required if the remainder was negative. Note that this cycle is
even if the remainder was positive. A sign adjust is performed on the quotient and/or remainder if necessary
that the sign adjust cycle is skipped if both operands are positive. In this case the Rem Adjust is moved to theMDU

stage.

Figure 2-8, Figure 2-9, Figure 2-10 and Figure 2-11 shows the latency for a 8, 16, 24 and 32 bit divide oper
The repeat rate is either 12, 20, 28 or 35 cycles (one less if thesign adjuststage is skipped) as a second divide ca
be in theRS Adjust stage when the first divide is in theReg WR stage.

Booth Array

E Stage MMDU Stage MMDU Stage AMDU Stage

Reg WR

WMDU Stage

CPAArray

Booth

Clock 1 2 3 4 5
2-12 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

MDU Pipeline (4Kc and 4Km Cores)
Figure 2-8 MDU Pipeline Flow During a 8 bit Divide Operation

Figure 2-9 MDU Pipeline Flow During a 16 bit Divide Operation

Figure 2-10 MDU Pipeline Flow During a 24 bit Divide Operation

RS Adjust

E Stage MMDU Stage MMDU Stage MMDU Stage AMDU Stage

Rem AdjustAdd/Subtract

Clock 1 2 4-11 12 13

WMDU Stage

14

Reg WRSign Adjust

MMDU Stage

Add/Subtract

3

Early In

RS Adjust

E Stage MMDU Stage MMDU Stage MMDU Stage AMDU Stage

Rem AdjustAdd/Subtract

Clock 1 2 4-19 20 21

WMDU Stage

22

Reg WRSign Adjust

MMDU Stage

Add/Subtract

3

Early In

RS Adjust

E Stage MMDU Stage MMDU Stage MMDU Stage AMDU Stage

Rem AdjustAdd/Subtract

Clock 1 2 4-27 28 29

WMDU Stage

30

Reg WRSign Adjust

MMDU Stage

Add/Subtract

3

Early In
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 2-13

Chapter 2: Pipeline

ates

s.

state
th
xtra
work
ds. All

The
ry for
Figure 2-11 MDU Pipeline Flow During a 32 bit Divide Operation

2.6 MDU Pipeline (4Kp Core Only)

The multiply/divide unit (MDU) is a separate pipeline for multiply and divide operations. This pipeline oper
in parallel with the integer unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows the
long-running MDU operations to be partially masked by system stalls and/or other integer unit instruction

The MDU consists of one 32-bit adder result-accumulate registers (HI and LO), a combined multiply/divide
machine and all multiplexers and control logic. A simple 1-bit per clock recursive algorithm is used for bo
multiply and divide operations. Using booth’s algorithm all multiply operations complete in 32 clocks. Two e
clocks are needed for multiply-accumulate. The non-restoring algorithm used for divide operations will not
with negative numbers. Adjustment before and after are thus required depending on the sign of the operan
divide operations complete in 33 to 35 clocks.

Table 2-4 lists the latencies (number of cycles until a result is available) for multiply and divide instructions.
latencies are listed in terms of pipeline clocks. In this table ‘latency’ refers to the number of cycles necessa
the second instruction to use the results of the first.

Table 2-4 4Kp Core Instruction Latencies

Operand Signs of
1st Instruction

(Rs,Rt)

Instruction Sequence
Latency

1st Instruction 2nd instruction

any, any MULT/MULTU MADD/MADDU,
MSUB/MSUBU, or

MFHI/MFLO

32

RS Adjust

E Stage MMDU Stage MMDU Stage MMDU Stage AMDU Stage

Rem AdjustAdd/Subtract

Clock 1 2 4-34 35 36

WMDU Stage

37

Reg WRSign Adjust

MMDU Stage

Add/Subtract

3

Early In
2-14 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

MDU Pipeline (4Kp Core Only)

r file

n be in
2.6.1 Multiply (4Kp Core)

Multiply operations implement a simple iterative multiply algorithm. Using Booth’s approach, this algorithm
works for both positive and negative operands. The operation uses 32 cycles in MMDU stage to complete a
multiplication. The register writeback to HI and LO are done in the A stage. For MUL operations, the registe
writeback is done in the WMDU stage.

Figure 2-12 shows the latency for a multiply operation. The repeat rate is 33 cycles as a second multiply ca
the first MMDU stage when the first multiply is in AMDU stage.

Figure 2-12 4Kp MDU Pipeline Flow During a Multiply Operation

any, any MADD/MADDU,
MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU, or

MFHI/MFLO

34

any, any MUL Integer operation[1] 32

any, any DIVU MFHI/MFLO 33

pos, pos DIV MFHI/MFLO 33

any, neg DIV MFHI/MFLO 34

neg, pos DIV MFHI/MFLO 35

any, any MFHI/MFLO Integer operation[1] 2

any, any MTHI/MTLO MADD/MADDU,
MSUB/MSUBU

1

[1] Integer Operation refers to any integer instruction that uses the result of a previous MDU operation.

Table 2-4 4Kp Core Instruction Latencies

Operand Signs of
1st Instruction

(Rs,Rt)

Instruction Sequence
Latency

1st Instruction 2nd instruction

Add/sub-shift HI/LO Write

E-Stage MMDU-Stage AMDU-Stage

Reg WR

WMDU-Stage

Clock 1 2-33 34 35
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 2-15

Chapter 2: Pipeline

s are

ond

ote
e

ainder.
ositive

ped.

ding on
is in the
2.6.2 Multiply Accumulate (4Kp Core)

Multiply-accumulate operations use the same multiply machine as used for multiply only. Two extra stage
needed to perform the addition/subtraction. The operations uses 34 cycles in MMDU stage to complete the
multiply-accumulate. The register writeback to HI and LO are done in the A stage.

Figure 2-13 shows the latency for a multiply-accumulate operation. The repeat rate is 35 cycles as a sec
multiply-accumulate can be in the E stage when the first multiply is in the last MMDU stage.

Figure 2-13 4Kp MDU Pipeline Flow During a Multiply Accumulate Operation

2.6.3 Divide(4Kp Core)

Divide operations also implement a simple non-restoring algorithm. This algorithm works only for positive
operands, hence the first cycle of the MMDU stage is used to negate the rs operand (RS Adjust) if needed. N
that this cycle is executed even if negation is not needed. The next 32 cycle (3-34) executes an interactiv
add/subtract-shift function.

Two sign adjust (Sign Adjust 1/2) cycles are used to change the sign of one or both the quotient and the rem
Note that one or both of these cycles are skipped if they are not needed. The rule is, if both operands were p
or if this is an unsigned division; both of the sign adjust cycles are skipped. If thers operand was negative, one of
the sign adjust cycles is skipped. If only thers operand was negative, none of the sign adjust cycles are skip
Register writeback to HI and LO are done in the A stage.

Figure 2-11 shows the latency for a divide operation. The repeat rate is either 34, 35 or 36 cycles (depen
how many sign adjust cycles are skipped) as a second divide can be in the E stage when the first divide
last MMDU stage.

Add/Subtract Shift

E Stage MMDU Stage MMDU Stage MMDU Stage

HI/LO Write

AMDU Stage

Accumulate/HIAccumulate/LO

Clock 1 2-33 34 35 36

WMDU Stage

37
2-16 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Branch Delay

a result
culated
 means
ndition
ruction

slot.
 taken
Figure 2-14 4Kp MDU Pipeline Flow During a Divide Operation

2.7 Branch Delay

The pipeline has a branch delay of one cycle and a load delay of one cycle. The one-cycle branch delay is
of the branch decision logic operating during the E pipeline stage. This allows the branch target address cal
in the previous stage to be used for the instruction access in the following E stage. The branch delay slot
that no bubbles are injected into the pipeline on branch instructions. The address calculation and branch co
check are both performed in the E stage. The target PC is used for the next instruction in the I stage (2nd inst
after the branch).

The pipeline begins the fetch of either the branch path or the fall-through path in the cycle following the delay
After the branch decision is made, the processor continues with the fetch of either the branch path (for a
branch) or the fall-through path (for the non-taken branch).

Figure 2-15 illustrates the branch delay.

RS Adjust

E Stage MMDU Stage MMDU Stage MMDU Stage MMDU Stage

Sign Adjust 1Add/Subtract Shift

Clock 1 2 3-34 35 36

AMDU Stage

37

HI/LO WriteSign Adjust 2

WMDU Stage

38
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 2-17

Chapter 2: Pipeline
Figure 2-15 CPU Pipeline Branch Delay

2.8 Interlock Handling

Smooth pipeline flow is interrupted when cache misses occur or when data dependencies are detected.
Interruptions handled using hardware, such as cache misses, are referred to asinterlocks. At each cycle, interlock
conditions are checked for all active instructions.

Table 2-5 lists the types of pipeline interlocks for the 4K processor cores.

Table 2-5 Pipeline Interlocks

Interlock Type Sources Slip Stage

ITLB Miss Instruction TLB I Stage

ICache Miss Instruction cache E Stage

Instruction Producer-consumer hazards E/M Stage

Hardware Dependencies (MDU/TLB) E Stage

DTLB Miss Data TLB M Stage

I E M A

I E M A

I E M A

One Cycle One Cycle One Cycle One Cycle One Cycle

One Clock

Branch Delay

One Cycle

Jump or Branch

Delay Slot Instruction

Jump Target Instruction

W

W

2-18 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Slip Conditions

itions
stages.

ces
igure
In general, MIPS processors support two types of hardware interlocks:

• Stalls, which are resolved by halting the pipeline

• Slips, which allow one part of the pipeline to advance while another part of the pipeline is held static

In the 4K processor cores, all interlocks are handled as slips.

2.9 Slip Conditions

On every clock internal logic determines whether each pipe stage is allowed to advance. These slip cond
propagate backwards down the pipe. For example, if the M stage does not advance, neither will the E or I

Slipped instructions are retried on subsequent cycles until they issue. The back end of the pipeline advan
normally during slips in an attempt to resolve the conflict. NOPS are inserted into the bubble in the pipeline. F
2-16 shows an instruction cache miss.

Data Cache Miss Load that misses in data cache W Stage

Multi-cycle cache Op

Sync

Store when write thru buffer full

EJTAG breakpoint on store

VA match needing data value comparison

Store hitting in fill buffer

Table 2-5 Pipeline Interlocks

Interlock Type Sources Slip Stage
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 2-19

Chapter 2: Pipeline

iss is
nd
. I4

es two
the
 it’s

ential
 will be
cessor
Figure 2-16 Instruction Cache Miss Slip

Figure 2-16 shows a diagram of a two-cycle slip. In the first clock cycle, the pipeline is full and the cache m
detected. Instruction I0 is in the A stage, instruction I1 is in the M stage, instruction I2 is in the E stage, a
instruction I3 is in the I stage. The cache miss occurs in clock 2 when the I4 instruction fetch is attempted
advances to the E-stage and waits for the instruction to be fetched from main memory. In this example it tak
clocks (3 and 4) to fetch the I4 instruction from memory. Once the cache miss is resolved in clock 4 and
instruction is bypassed to the cache, the pipeline is restarted, causing the I4 instruction to finally execute
E-stage operations.

2.10 Instruction Interlocks

Most instructions can be issued at a rate of one per clock cycle. In some cases, in order to ensure a sequ
programming model, the issue of an instruction is delayed to ensure that the results of a prior instruction
available. Table 2-6 details the instruction interactions that delay the issuance of an instruction into the pro
pipeline.

1 Cache miss detected

1 2

00

E

M I1 I2 I3

A

I

0I3I0 I1 I2

I4I4I2 I3 I4

I5I5I3 I4 I5

3 Execute E-stage

Stage

I4

0

I5

I6

3

Clock 1 2 3 4 5 6

2 Critical word received
2-20 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Interlocks
Table 2-6 Instruction Interlocks

Instruction Interlocks

First Instruction Second Instruction
Issue Delay (in
Clock Cycles)

Slip Stage

LB/LBU/LH/LHU/LL/LW/LWL/LWR Consumer of load data 1 E stage

MFC0 Consumer of destination
register

1 E stage

MULT/MADD/MSUB

(4Kc and 4Km cores)

16bx32b MFLO/MFHI 0 M stage

32bx32b 1 M stage

MUL

(4Kc and 4Km cores)

16bx32b Consumer of target data 2 E stage

32bx32b 3 E stage

MUL

(4Kc and 4Km cores)

16bx32b Non-Consumer of target data 1 E stage

32bx32b 2 E stage

MFHI/MFLO Consumer of target data 1 E stage

MULT/MADD/MSUB

(4Kc and 4Km cores)

16bx32b MULT/MUL/MADD/MSUB
MTHI/MTLO/DIV

0 E stage

32bx32b 1 E stage

DIV MULT/MUL/MADD/MSUB
/MTHI/MTLO/MFHI/MFL
O/DIV

Until DIV
completes

E stage

MULT/MUL/MADD/MSUB/MTHI/MTLO/
MFHI/MFLO/DIV (4Kp core)

MULT/MUL/MADD/MSUB
/MTHI/MTLO/MFHI/MFL
O/DIV

Until 1st MDU op
completes

E stage

MUL (4Kp core) Any Instruction Until MUL
completes

E stage

MFC0 Consumer of target data 1 E stage

TLBWR/TLBWI Load/Store/PREF/CACHE/C
op0 op

2 E stage

TLBR 1 E stage
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 2-21

Chapter 2: Pipeline
2-22 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

the
while
Chapter 3

3.Memory Management

The MIPS32 4K™ processor cores contain a Memory Management Unit (MMU) that interfaces between
execution unit and the cache controller. The 4Kc core implements a Translation Lookaside Buffer (TLB),
the 4Kp and 4Km cores implement a simpler block address translation (BAT) scheme.

This chapter contains the following sections:

• Section 3.1, "Translation Lookaside Buffer (4Kc Core Only)"

• Section 3.2, "TLB Instructions (4Kc Core)"

• Section 3.3, "Block Address Translation (4Kp & 4Km Cores)"

• Section 3.4, "Modes of Operation"

• Section 3.5, "System Control Coprocessor"
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 3-1

Chapter 3: Memory Management

ciative
n
ound

fixed
ce

t the
In the 4Kc processor core, the TLB consists of three address translation buffers: a 16 dual-entry fully asso
Joint TLB (JTLB), a 3-entry Instruction micro TLB (ITLB), and a 3-entry Data micro TLB (DTLB). When a
address is translated, the appropriate micro TLB (ITLB or DTLB) is accessed first. If the translation is not f
in the micro TLB, the JTLB is accessed. If there is a miss in the JTLB, an exception is taken.

In the 4Kp and 4Km processor cores, the BAT translates virtual addresses into physical addresses via a
translation mechanism. These translations are different for the different regions of the virtual address spa
(USeg/KUSeg, KSeg0, KSeg1, KSeg2/3).

In the 4Kp and 4Km cores, note that the BAT replaces the ITLB and DTLB found in the 4Kc core, and tha
JTLB is not used.

Figure 3-1 shows how the ITLB, DTLB, JTLB, and BAT are implemented.

Figure 3-1 Address Translation During a Cache Access

Instruction
Address
Calculator

ITLB/BAT 2

DTLB/BAT2
Data
Address
Calculator

Comparator

Comparator

Instruction
Cache
RAM

Data
Cache
RAM

Virtual Address

Virtual Address

Instruction
Hit/Miss

Data
Hit/Miss

1. JTLB only implemented in the 4Kc core.
2. ITLB/DTLB implemented in the 4Kc core only. BAT implemented in the 4Kp and 4Km cores.

JTLB1

IVA Entry

Entry
3-2 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Translation Lookaside Buffer (4Kc Core Only)

he TLB

nding
e in size
late
ed by
of the

n
parison
e
-odd

am.

 by the

lated.
take
3.1 Translation Lookaside Buffer (4Kc Core Only)

The following subsections discuss the TLB memory management scheme used in 4Kc processor core. T
consists of two address translation buffers:

• 16 dual-entry fully associative Joint TLB (JTLB)

• 3-entry fully associative Instruction TLB (ITLB)

• 3-entry fully associative Data TLB (DTLB)

3.1.1 Joint TLB (4Kc Core)

The 4Kc core implements a 16 dual-entry, fully associative JTLB that maps 32 virtual pages to their correspo
physical addresses. The JTLB is organized as 16 pairs of even and odd entries containing pages that rang
from 4-Kbytes to 16-Mbytes into the 4-Gbyte physical address space. The purpose of the TLB is to trans
virtual addresses and their corresponding ASID into a physical memory address. The translation is perform
comparing the upper bits of the virtual address (along with the address space identifier(ASID)) against each
entries in thetag portion of the joint TLB structure.

The JTLB is organized in page pairs to minimize the overall size. Eachtagentry corresponds to 2-data entries, a
even page entry and an odd page entry. The highest order virtual address bit not participating in the tag com
is used to determine which of the data entries is used. Since page size can vary on a page-pair basis, th
determination of which address bits participate in the comparison and which bit is used to make the even
determination must be determined dynamically during the TLB lookup.

3.1.2 Instruction TLB (4Kc Core)

The ITLB is a small 3-entry, fully associative TLB dedicated to performing translations for the instruction stre
The ITLB only maps 4-Kbyte pages/sub-pages.

The ITLB is managed by hardware and is transparent to software. If a fetch address cannot be translated
ITLB, the JTLB is used to attempt to translate it in the following clock cycle. If successful, the translation
information is copied into the ITLB. The ITLB is then re-accessed and the address will be successfully trans
This results in an ITLB miss penalty of at least 2 cycles (If the JTLB is busy with other operations, it may
additional cycles)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 3-3

Chapter 3: Memory Management

sses

and a

or with
e same

 the
cess
3.1.3 Data TLB (4Kc Core)

The DTLB is a small 3-entry, fully associative TLB which provides a faster translation for Load/Store addre
than is possible with the JTLB. The DTLB only maps 4-Kbyte pages/sub-pages.

Like the ITLB, the DTLB is managed by hardware and is transparent to software. Unlike the ITLB, when
translating Load/Store addresses, the JTLB is accessed in parallel with the DTLB. If there is a DTLB miss
JTLB hit, the DTLB can be reloaded that cycle. The DTLB is then re-accessed and the translation will be
successful. This parallel access reduces the DTLB miss penalty to 1 cycle.

3.1.4 Virtual to Physical Address Translation (4Kc Core)

Converting a virtual address to a physical address begins by comparing the virtual address from the process
the virtual addresses in the TLB. There is a match when the virtual page number (VPN) of the address is th
as the VPN field of the entry, and either:

• The Global (G) bit of both the even and odd pages of the TLB entry are set, or

• The ASID field of the virtual address is the same as the ASID field of the TLB entry

This match is referred to as a TLB hit. If there is no match, a TLBmiss exception is taken by the processor and
software is allowed to refill the TLB from a page table of virtual/physical addresses in memory.

Figure 3-2 shows the logical translation of a virtual address into a physical address.

In this figure the virtual address is extended with an 8-bit address-space identifier (ASID), which reduces
frequency of TLB flushing during a context switch. This 8-bit ASID contains the number assigned to that pro
and is stored in the CP0EntryHi register.
3-4 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Translation Lookaside Buffer (4Kc Core Only)

d with

shows
ts

of the
Figure 3-2 Overview of a Virtual-to-Physical Address Translation in the 4Kc Core

If there is a virtual address match in the TLB, the physical address is output from the TLB and concatenate
theOffset, which represents an address within the page frame space. Theoffset does not pass through the TLB.

Figure 3-3 shows a flow diagram of the 4Kc core address translation process. The top portion of the figure
a virtual address for a 4-Kbyte page size. The width of theoffsetis defined by the page size. The remaining 20 bi
of the address represent the virtual page number (VPN), and index the 1M-entry page table.

The bottom portion of Figure 3-3 shows the virtual address for a 16-Mbyte page size. The remaining 8 bits
address represent the VPN, and index the 256-entry page table.

1.Virtual address (VA) represented by the virtual page
number (VPN) is compared with tag in TLB.

Virtual address

2. If there is a match, the page frame number (PFN)
representing the upper bits of the physical address
(PA) is output from the TLB.

VPN

PFN

TLB

Physical address

PFN

Offset

Offset

TLB

3. The Offset, which does not pass through the TLB, is
then concatenated with the PFN.

Entry

ASIDG

VPNASIDG
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 3-5

Chapter 3: Memory Management

dress
 joint

alid,

ent in
entry.
 TLB
TLB

occur.
, the
Figure 3-3 32-bit Virtual Address Translation

3.1.5 Hits, Misses, and Multiple Matches (4Kc Core)

Each JTLB entry contains a tag portion and a data portion. If a match is found, the upper bits of the virtual ad
are replaced with the page frame number (PFN) stored in the corresponding entry in the data array of the
TLB (JTLB). The granularity of JTLB mappings is defined in terms of TLBpages. The 4Kc core JTLB supports
pages of different sizes ranging from 4-Kbyte to 16-MB in powers of 4. If a match is found, but the entry is inv
a TLB Invalid exception is taken.

If no match occurs (TLB miss), an exception is taken and software refills the TLB from the page table resid
memory. Software can write over a selected TLB entry or use a hardware mechanism to write into a random
In addition, there is a hidden bit in each TLB entry that is cleared on a ColdReset. This bit is set once the
entry is written and is included in the match detection. Therefore, uninitialized TLB entries will not cause a
shutdown.

The 4Kc core implements a TLB write-compare mechanism to ensure that multiple TLB matches do not
On the TLB write operation, the write value is compared with all other entries in the TLB. If a match occurs

11 0

 20 12

31

VPN Offset

3239

ASID

 8

Virtual address with 1M (220) 4-Kbyte pages

23 0

 8 24

Offset

39

Virtual Address with 256 (28)16-Mbyte pages

8 bits = 256 pages

20 bits = 1M pages 12

ASID

 8

3132

VPN

24

Virtual-to-physical
translation in TLB

Bit 31 of the virtual address selects
user and kernel address spaces.

Offset passed unchanged to
physical memory.

Virtual-to-physical
translation in TLB

 TLB

 TLB

 31 0
PFN Offset

Offset passed unchanged to
physical memory.

32-bit Physical Address
3-6 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Translation Lookaside Buffer (4Kc Core Only)

tries

tionship

emory
asis, to
pping
rovide
try.

y to be
or also
 Wired
4Kc core takes a machine-check exception, sets the TS bit in the CP0Status register, and aborts the write
operation.

Note: To be compatible with other MIPS processors, it is recommended that software initialize all TLB en
with unique tag values and V bits cleared before the first access to a memory mapped location.

Table 3-1 shows the address bits used for even/odd bank selection depending on page size and the rela
between the legal values in the mask register and the selected page size.

3.1.6 Page Sizes and Replacement Algorithm (4Kc Core)

To assist in controlling both the amount of mapped space and the replacement characteristics of various m
regions, the 4Kc core provides two mechanisms. First, the page size can be configured, on a per entry b
map a page size of 4 kbyte to 16 Mbyte (in multiples of 4). The CP0 PageMask register is loaded with the ma
page size, which is then entered into the TLB when a new entry is written. Thus, operating systems can p
special-purpose maps. For example, a typical frame buffer can be memory mapped with only one TLB en

The second mechanism controls the replacement algorithm when a TLB miss occurs. To select a TLB entr
written with a new mapping, the 4Kc core provides a random replacement algorithm. However, the process
provides a mechanism whereby a programmable number of mappings can be locked into the TLB via the
register, thus avoiding random replacement.

Table 3-1 Mask and Page Size Values

PageMask[11:0] Page Size Even/Odd Bank Select Bit

0000_0000_0000 4KB VAddr[12]

0000_0000_0011 16KB VAddr[14]

0000_0000_1111 64KB VAddr[16]

0000_0011_1111 256KB VAddr[18]

0000_1111_1111 1MB VAddr[20]

0011_1111_1111 4MB VAddr[22]

1111_1111_1111 16MB VAddr[24]
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 3-7

Chapter 3: Memory Management

se, the

he
value
show
3.1.7 TLB Tag and Data Formats (4Kc Core)

Figure 3-4 shows the format of a TLBtag entry. The entry is divided into the following fields:

• Global process indicator (G bit)

• Address space identifier

• Virtual page number

• Compressed page mask

Setting the G bit indicates that the entry is global to all processes and/or threads in the system. In this ca
8-bit ASID value is ignored since the entry is not relative to a specific thread or process.

The address space identifier (ASID) helps to reduce the frequency of TLB flushing on a context switch. T
existence of the ASID allows multiple processes to exist in both the TLB and instruction caches. The ASID
is stored in the EntryHi register and is compared to the ASID value of each entry. Figure 3-4 and Table 3-2
the TLB tag entry format. Figure 3-5 and Table 3-3 show the TLB data array entry format.

Figure 3-4 TLB Tag Entry Format

Table 3-2 TLB Tag Entry Fields

Field Name Description

G Global Bit. When set, indicates that this entry is global to all processes and/or
threads and thus disables inclusion of the ASID in the comparison.

ASID[7:0] Address Space Identifier. Identifies which process or thread this TLB entry is
associated with.

VPN2[31:25],

VPN2[24:13]

Virtual Page Number divided by 2. This field contains the upper bits of the
virtual page number. Because it represents a pair of TLB pages, it is divided by
2. Bits 31:25 are always included in the TLB lookup comparison. Bits 24:13
are included depending on the page size.

CMASK[5:0] Compressed Page Mask Value. This field is a compressed version of the page
mask. It defines the page size by masking the appropriate VPN2 bits from being
involved in a comparison. It is also used to determine which address bit is used
to make the even-odd page determination.

G ASID[7:0] VPN2[31:25] VPN2[24:13] CMASK[5:0]

612781
3-8 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Translation Lookaside Buffer (4Kc Core Only)
Figure 3-5 TLB Data Array Entry Format

Table 3-3 TLB Data Array Entry Fields

Field Name Description

PFN[31:12] Physical Frame Number. Defines the upper bits of the physical address.
For page sizes larger than 4 Kbytes, only a subset of these bits is actually
used.

C[2:0] Cacheability. Contains an encoded value of the cacheability attributes and
determines whether the page should be placed in the cache or not. The field
is encoded as follows:

D “Dirty” or Write-enable Bit. Indicates that the page has been written,
and/or is writable. If this bit is set, stores to the page are permitted. If the
bit is cleared, stores to the page cause a TLB Modified exception.

V Valid Bit. Indicates that the TLB entry and, thus, the virtual page mapping
are valid. If this bit is set, accesses to the page are permitted. If the bit is
cleared, accesses to the page cause a TLB Invalid exception.

PFN[31:12] C[2:0] D V

11320

CS[2:0] Coherency Attribute
000 Maps to entry 011b*

001 Maps to entry 011b*

010 Uncached

011 Cacheable, noncoherent, write-through, no write
allocated

100 Maps to entry 011b*

101 Maps to entry 011b*

110 Maps to entry 011b*

111 Maps to entry 010b*

* These mappings are not used on the 4K processor cores but do
have meaning in other MIPS Technologies implementations.
Refer to the MIPS32 specification for more information.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 3-9

Chapter 3: Memory Management
3.2 TLB Instructions (4Kc Core)

Table 3-4 lists the 4Kc core TLB-related instructions. Refer to Chapter 11 for more information on these
instructions.

Table 3-4 TLB Instructions

Op Code Description of Instruction

TLBP Translation Lookaside Buffer Probe

TLBR Translation Lookaside Buffer Read

TLBWI Translation Lookaside Buffer Write Index

TLBWR Translation Lookaside Buffer Write Random
3-10 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

TLB Instructions (4Kc Core)
Figure 3-6 TLB Address Translation Flow in the 4Kc Processor Core

User
Mode?

VPN
Match?

ASID
Match?

G
= 1?

User

V
= 1?

D
= 1?

No

Yes

Yes

Yes

No

No

Yes

Write?
Yes

No
Yes

TLB
Invalid

TLB
Modified

TLB
Refill

VPN
and

ASID

Virtual Address (Input)

C=010

Yes No

Access
Main Access

Cache

Physical Address (Output)

Memory

No

Valid

Dirty

Non-
cacheable

Global

No

No

Unmapped
Access

Yes

Exception

No

Yes

No

Address
Error

Yes

Address?

For valid
address space, see
the section describing
Modes of operation
in this chapter.

KSeg0/1
Address?

or
111
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 3-11

Chapter 3: Memory Management

an the

e 4Kc

onfide
onfig

e.
3.3 Block Address Translation (4Kp & 4Km Cores)

The 4Kp and 4Km cores implement a simple block address translation (BAT) mechanism that is smaller th
4Kc TLB and more easily synthesized. Like the 4Kc TLB, the BAT performs virtual-to-physical address
translation and provides attributes for the different segments. Those segments which are unmapped in th
TLB implementation (kseg0 and kseg1) are translated identically by the BAT.

The BAT also determines the cacheability of each segment. These attributes are controlled via bits in the C
register. Table 3-5 shows the encoding for the K23 (bits 30:28), KU (bits 27:25) and K0 (bits 2:0) of the C
register.

In the 4Kp & 4Km cores, no translation exceptions can be taken, although address errors are still possibl
C

Table 3-5 Cache Coherency Attributes

Config Register Fields
K23, KU, and K0

Cache Coherency Attribute

0, 1, 3, 4, 5, 6 Cacheable, noncoherent, write through, no write allocate

2, 7 Uncached

Table 3-6 Cacheability of Segments with Block Address Translation

Segment
Virtual Address

Range
Cacheability

USeg/KUSeg 0x0000_0000-

0x7FFF_FFFF

Controlled by the KU field (bits 27:25) of the Config register. Refer to
Table 3.5 for the encoding.

KSeg0 0x8000_0000-

0x9FFF_FFFF

Controlled by the K0 field (bits 2:0) of the Config register. See Table
3-5 for the encoding.

KSeg1 0xA000_0000-

0xBFFF_FFFF

Always uncacheable

KSeg2 0xC000_0000-

0xDFFF_FFFF

Controlled by the K23 field (bits 30:28) of the Config register. Refer to
Table 3.5 for the encoding.

KSeg3 0xE000_0000-

0xFFFF_FFFF

Controlled by K23 field (bits 30:28) of the Config register. Refer to
Table 3.5 for the encoding.
3-12 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Block Address Translation (4Kp & 4Km Cores)

g is
e same
The BAT performs a simple translation to map from virtual addresses to physical addresses. This mappin
shown in Figure 3-7. When ERL=1, USeg and KUSeg become unmapped and uncached. This behavior is th
as if there was a JTLB. This mapping is shown in Figure 3-8.

Figure 3-7 BAT Memory Map (ERL=0) in the 4Kp and 4Km Processor Cores

useg/kuseg

kseg0

kseg3

kseg2

kseg1

Virtual Address

0x8000_0000

0x0000_0000

0xA000_0000

0xC000_0000

0xE000_0000

useg/kuseg

kseg3

kseg2

Physical Address

0x0000_0000

0xC000_0000

0xE000_0000

0x2000_0000

kseg0/kseg1

0x4000_0000

reserved
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 3-13

Chapter 3: Memory Management
Figure 3-8 BAT Memory Map (ERL=1) in the 4Kp and 4Km Processor Cores

useg/kuseg

kseg0

kseg3

kseg2

kseg1

Virtual Address

useg/kuseg

kseg3

kseg2

Physical Address

kseg0/kseg1

reserved

0x8000_0000

0x0000_0000

0xA000_0000

0xC000_0000

0xE000_0000

0x8000_0000

0x0000_0000

0xC000_0000

0xE000_0000
3-14 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Modes of Operation

mode is
rating

oftware
a subset of
ions. In

e same
ess space.

ble.

ther
3.4 Modes of Operation

All 4K processor cores support three modes of operation: user mode, kernel mode and debug mode. User
most often used for applications programs. kernel mode is typically used for handling exceptions and ope
system kernel functions, including CP0 management and I/O device accesses.

The core enters kernel mode both at reset and when an exception is recognized. While in kernel mode, s
has access to the entire address space, as well as all CP0 registers. User mode accesses are limited to
the virtual address space (0x0000_0000 to 0x7FFF_FFFF) and can be inhibited from accessing CP0 funct
user mode, addresses 0x8000_0000 to 0xFFFF_FFFF are invalid and cause an exception if accessed.

Debug mode is entered on a debug exception. While in debug mode the debug software has access to th
address space and CP0 registers as for kernel mode, and in addition, access to the debug area in the addr

3.4.1 User Mode

In user mode, a single 2 G-byte (231 bytes) uniform virtual address space called user segment (useg) is availa
Figure 3-9 shows the location of user mode virtual address space.

Figure 3-9 User Mode Virtual Address Space

The user segment starts at address 0x0000_0000 and ends at address 0x7FFF_FFFF. Accesses to all o
addresses cause an address error exception.

The processor operates in user mode when the Status register contains the following bit values:

• UM = 1

useg

32-bit

(Address
Error)

Mapped
2 GB

0x7FFF_FFFF

0x0000_0000

0x8000_0000

0xFFFF_FFFF

Unmapped
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 3-15

Chapter 3: Memory Management

e can

At the
ET
sor to
• EXL= 0

• ERL= 0

In addition to the above values, the DM bit in theDebug register must be 0.

Table 3-7 lists the characteristics of theuseg user mode segments.

All valid user mode virtual addresses have their most-significant bit cleared to 0, indicating that user mod
only access the lower half of the virtual memory map. Any attempt to reference an address with the
most-significant bit set while in user mode causes an address error exception.

The system maps all references touseg through the TLB, and bit settings within the TLB entry for the page
determine the cacheability of a reference.

3.4.2 Kernel Mode

The processor operates in kernel mode when the DM bit in theDebugregister is 0 and theStatusregister contains
one or more of the following values:

• UM = 0

• ERL= 1

• EXL = 1

When a non-debug exception is detected, EXL or ERL will be set and the processor will enter kernel mode.
end of exception handler routine, an Exception Return (ERET) instruction is generally executed. The ER
instruction jumps to the Exception PC, clears ERL, and clears EXL if ERL=0. This may return the proces
user mode.

Table 3-7 User Mode Segments

Address
Bit Value

Status Register
Segment

Name
Address Range Segment SizeBit Value

EXL ERL UM

32-bit

A(31) = 0

0 0 1 useg 0x0000_0000 -->

0x7FFF_FFFF

2 Gbyte
(231 bytes)
3-16 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Modes of Operation

l
Kernel mode virtual address space is divided into regions differentiated by the high-order bits of the virtua
address, as shown in Figure 3-10 which lists the characteristics of the kernel mode segments.

Figure 3-10 Kernel Mode Virtual Address Space

kuseg

kseg0

kseg1

kseg2

kseg3

0x0000_0000

0x7FFF_FFFF
0x8000_0000

0x9FFF_FFFF
0xA000_0000

0xBFFF_FFFF
0xC000_0000

0xDFFF_FFFF
0xE000_0000

0xF1FF_FFFF

Mapped, 512 MB
Kernel virtual address space

Unmapped, 512 MB
Kernel virtual address space

Unmapped, 512 MB
Kernel virtual address space

Mapped, 2048 MB

0xFF20_0000
0xFF3F_FFFF
0xFF40_0000

0xFFFF_FFFF

Kernel virtual address space

Uncached

Mapped
Kernel virtual address space

Mapped
Kernel virtual address space
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 3-17

Chapter 3: Memory Management

to
ld
3.4.2.1 Kernel Mode, User Space (kuseg)

In kernel mode, when the most-significant bit of the virtual address (A31) is cleared, the 32-bitkuseg virtual
address space is selected and covers the full 231bytes (2 Gbytes) of the current user address space mapped
addresses 0x000_0000 - 0x7FFF_FFFF. The virtual address is extended with the contents of the 8-bit ASID fie
to form a unique virtual address.

WhenERL = 1 in theStatus register, the user address region becomes a 231-byte unmapped (that is, mapped
directly to physical addresses) uncached address space.

3.4.2.2 Kernel Mode, Kernel Space 0 (kseg0)

In kernel mode, when the most-significant three bits of the virtual address are 1002, 32-bitkseg0 virtual address
space is selected; it is the 229-byte (512-Mbyte) kernel virtual space located at addresses 0x8000_0000 -

Table 3-8 Kernel Mode Segments

Address Bit
Values

Status Register Is
One of These Values Segment

Name
Address Range

Segment
Size

UM EXL ERL

A(31) = 0 UM = 0

or

EXL = 1

or

ERL = 1

and

DM = 0

kuseg 0x0000_0000
through

0x7FFF_FFFF

2 Gbytes
(231 bytes)

A(31:29) = 1002 kseg0 0x8000_0000
through

0x9FFF_FFFF

512 Mbytes
(229 bytes)

A(31:29) = 1012 kseg1 0xA000_0000
through

0xBFFF_FFFF

512 Mbytes
(229 bytes)

A(31:29) = 1102 ksseg2 0xC000_0000
through

0xDFFF_FFFF

512 Mbytes
(229 bytes)

A(31:29) = 1112 kseg3 0xE000_0000
through

0xFFFF_FFFF

512 Mbytes
(229 bytes)
3-18 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Modes of Operation

d by

000
ned
ses, and

.

.

Mapped
nt
.

0x9FFF_FFFF. References tokseg0are not mapped through the TLB; the physical address selected is define
subtracting 0x8000_0000 from the virtual address. TheK0 field of theConfig register controls cacheability.

3.4.2.3 Kernel Mode, Kernel Space 1 (kseg1)

In kernel mode, when the most-significant three bits of the 32-bit virtual address are 1012, 32-bitkseg1 virtual
address space is selected; and is the 229-byte (512-Mbyte) kernel virtual space located at addresses 0xA000_0
- 0xBFFF_FFFF. References tokseg1 are not mapped through the TLB; the physical address selected is defi
by subtracting 0xA000_0000 from the virtual address. Caches are disabled for accesses to these addres
physical memory (or memory-mapped I/O device registers) are accessed directly.

3.4.2.4 Kernel Mode, Kernel Space 2 (kseg2)

In kernel mode, whenUM = 0, ERL = 1,or EXL = 1 in theStatusregister, andDM = 0 in the Debug register, and
the most-significant three bits of the 32-bit virtual address are 1102, 32-bitkseg2virtual address space is selected
In the 4Kp and 4Km processor cores this 229-byte (512-Mbyte) kernel virtual space is located at addresses
0xC000_0000 - 0xDFFF_FFFF. In the 4Kc processor core this space is mapped through the TLB.

3.4.2.5 Kernel Mode, Kernel Space 3 (kseg3)

In kernel mode, when the most-significant three bits of the 32-bit virtual address are 1112, thekseg3virtual address
space is selected. In the 4Kp and 4Km processor cores this 229-byte (512-Mbyte) kernel virtual space is located
at addresses 0xE000_0000 - 0xFFFF_FFFF. In the 4Kc processor core this space is mapped through the TLB

3.4.3 Debug Mode

Debug mode address space is identical to kernel mode address space with respect to unmapped areas.
areas are only accessible if a valid translation is resident in the TLB. In parallel with this, a debug segmedseg
co-exists in the virtual address range 0xFF20_0000 to 0xFF3F_FFFF. The layout is shown in Figure 3-11
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 3-19

Chapter 3: Memory Management

-enter
e result

e, which

obe

in Table
Figure 3-11 Debug Mode Virtual Address Space

Accesses to memory that would normally cause an exception if tried from kernel mode, cause the core to re
debug mode via a debug mode exception. This includes accesses usually causing a TLB exception, with th
that such accesses are not handled by the usual memory management routines.

The unmapped kseg0 and kseg1 segments from kernel mode address space are available from debug mod
allows the debug handler to be executed from uncached and unmapped memory.

Thedsegis sub-divided into thedmsegsegment at 0xFF20_0000 to 0xFF2F_FFFF which is used when the pr
services the memory segment, and thedrseg segment at 0xFF30_0000 to 0xFF3F_FFFF which is used when
memory mapped debug registers are accessed. The subdivision and attributes for the segments are shown
3-9.

dseg

Unmapped

Unmapped if unmapped in kernel mode,

0x0000_0000

0xFF20_0000

0xFF40_0000

0xFFFF_FFFF

otherwise conditionally mapped and only
accessible if valid translation is resident in TLB

kseg1

kseg0
3-20 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Modes of Operation

s shown

emory
mapped
er 9 for

e

d by the
3.4.3.1 Conditions and Behavior for Access to drseg, EJTAG registers

The behavior of CPU access to the drseg address range at 0xFF30_0000 to 0xFF3F_FFFF is determined a
in Table 3-10.

Debug software is expected to read the debug control register (DCR) register to determine which other m
mapped registers exist in drseg. The value returned in response to a read of any unimplemented memory
register is unpredictable, and writes are ignored to any unimplemented register in the drseg. Refer to Chapt
more information on the DCR.

The allowed access size is limited for the drseg. Only word size transactions are allowed. Operation of th
processor is undefined for other transaction sizes.

3.4.3.2 Conditions and Behavior for Access to dmseg, EJTAG memory

The behavior of CPU access to the dmseg address range at 0xFF20_0000 to 0xFF2F_FFFF is determine
table shown in Table 3-11

Table 3-9 Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces

Segment
Name

Sub-Segment
Name

Virtual Address Generates Physical Address
Cache

Attribute

dseg dmseg 0xFF20_0000

through

0xFF2F_FFFF

dmseg maps to addresses
0x0_0000 - 0xF_FFFF in EJTAG

probe memory space.

drseg maps to the breakpoint
registers 0x0_0000 - 0xF_FFFF

Uncached

drseg 0xFF30_0000

through

0xFF3F_FFFF

Table 3-10 CPU Access to drseg Address Range

Transaction
LSNM bit in Debug

register
Access

Load / Store 1 Kernel mode address space

Fetch Don’t care drseg, see comments below

Load / Store 0
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 3-21

Chapter 3: Memory Management

. Debug
If such
hat there
 race

upports
CP0
 register
.

The case with access to the dmseg when the ProbEn bit in the DCR register is 0 is not expected to happen
software is expected to check the state of ProbEn bit in DCR register before attempting to reference dmseg.
a reference does happen, the reference hangs until it is satisfied by the probe. The probe can not assume t
will never be a reference to dmseg if the ProbEn bit in the DCR register is 0 because there is an inherent
between the debug software sampling the ProbEn bit as 1 and the probe clearing it to 0.

3.5 System Control Coprocessor

The System Control Coprocessor (CP0) is implemented as an integral part of the 4K processor cores and s
memory management, address translation, exception handling, and other privileged operations. Certain
registers are used to support memory management. Refer to Chapter 5 for more information on the CP0
set.

Table 3-11 CPU Access to dmseg Address Range

Transaction
ProbEn bit in
DCR register

LSNM bit in
Debug register

Access

Load / Store Don’t care 1 Kernel mode address space

Fetch 1 Don’t care dmseg

Load / Store 1 0

Fetch 0 Don’t care See comments below

Load / Store 0 0
3-22 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

kaside
 these
mode.

d a
s of the
 context

ddress
Chapter 4

4.Exceptions

All MIPS32 4K™ processor cores receive exceptions from a number of sources, including translation loo
buffer (TLB) misses, arithmetic overflows, I/O interrupts, and system calls. When the CPU detects one of
exceptions, the normal sequence of instruction execution is suspended and the processor enters kernel

In kernel mode the core disables interrupts and forces execution of a software exception processor (calle
handler) located at a fixed address. The handler saves the context of the processor, including the content
program counter, the current operating mode, and the status of the interrupts (enabled or disabled). This
is saved so it can be restored when the exception has been serviced.

When an exception occurs, the core loads theException Program Counter (EPC) register with a location where
execution can restart after the exception has been serviced. The restart location in theEPCregister is the address
of the instruction that caused the exception or, if the instruction was executing in a branch delay slot, the a
of the branch instruction immediately preceding the delay slot.

This chapter contains the following sections.

• Section 4.1, "Exception Conditions"

• Section 4.2, "Exception Priority"

• Section 4.3, "Exception Vector Locations"

• Section 4.4, "General Exception Processing"

• Section 4.5, "Debug Exception Processing"

• Section 4.6, "Exceptions"

• Section 4.7, "Exception Handling and Servicing Flowcharts"
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 4-1

Chapter 4: Exceptions

this

ctions
gisters
ess, and

ns) is
uction
 in a
4.1 Exception Conditions

When an exception condition occurs, the relevant instruction and all those that follow it in the pipeline are
cancelled. Accordingly, any stall conditions and any later exception conditions that may have referenced
instruction are inhibited; there is no benefit in servicing stalls for a cancelled instruction.

When an exception condition is detected on an instruction fetch, the core aborts that instruction and all instru
that follow. When this instruction reaches the W stage, the exception flag causes it to write various CP0 re
with the exception state, change the current program counter (PC) to the appropriate exception vector addr
clear the exception bits of earlier pipeline stages.

This implementation allows all preceding instructions to complete execution and prevents all subsequent
instructions from completing. Thus, the value in the EPC (ErrorEPC for errors, or DEPC for debug exceptio
sufficient to restart execution. It also ensures that exceptions are taken in the order of execution; an instr
taking an exception may itself be killed by an instruction further down the pipeline that takes an exception
later cycle.

4.2 Exception Priority

Table 4-1 lists all possible exceptions, and the relative priority of each, highest to lowest.

Table 4-1 Priority of Exceptions

Exception Description

Reset Assertion of SI_ColdReset signal.

Soft Reset Assertion of SI_Reset signal.

DSS EJTAG Debug Single Step.

DINT EJTAG Debug Interrupt. Caused by the assertion of the external EJ_DINT
input, or by setting theEjtagBrk bit in the ECR register.

NMI Asserting edge of EB_NMI signal.

Machine Check TLB write that conflicts with an existing entry (4Kc core).

Interrupt Assertion of unmasked HW or SW interrupt signal.

Deferred Watch Deferred Watch (unmasked by K|DM->!(K|DM) transition).

DIB EJTAG debug hardware instruction break matched.
4-2 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Exception Priority
WATCH A reference to an address in one of the watch registers (fetch).

AdEL Fetch address alignment error.

Fetch reference to protected address.

TLBL Fetch TLB miss (4Kc core).

TLBL Fetch TLB hit to page with V=0 (4Kc core).

IBE Instruction fetch bus error.

DBp EJTAG Breakpoint (execution of SDBBP instruction).

Sys Execution of SYSCALL instruction.

Bp Execution of BREAK instruction.

CpU Execution of a coprocessor instruction for a coprocessor that is not enabled.

RI Execution of a Reserved Instruction.

Ov Execution of an arithmetic instruction that overflowed.

Tr Execution of a trap (when trap condition is true).

DDBL / DDBS EJTAG Data Address Break (address only) or EJTAG Data Value Break on
Store (address and value).

WATCH A reference to an address in one of the watch registers (data).

AdEL Load address alignment error.

Load reference to protected address.

AdES Store address alignment error.

Store to protected address.

TLBL Load TLB miss (4Kc core).

TLBL Load TLB hit to page with V=0 (4Kc core).

TLBS Store TLB miss (4Kc core).

TLBS Store TLB hit to page with V=0 (4Kc core).

TLB Mod Store to TLB page with D=0 (4Kc core).

Table 4-1 Priority of Exceptions

Exception Description
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 4-3

Chapter 4: Exceptions

ons are
in the
a base
e
s these
e vector
4.3 Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to location 0xBFC0_0000. Debug excepti
vectored to location 0xBFC0_0480 or to location 0xFF20_0200 if the ProbTrap bit is 0 or 1, respectively,
EJTAG Control register (ECR). Addresses for all other exceptions are a combination of a vector offset and
address. Table 4-2 gives the base address as a function of the exception and whether the BEV bit is set in thStatus
register. Table 4-3 gives the offsets from the base address as a function of the exception. Table 4-4 combine
two tables into one that contains all possible vector addresses as a function of the state that can affect th
selection.

DBE Load or store bus error.

DDBL EJTAG data hardware breakpoint matched in load data compare.

Table 4-2 Exception Vector Base Addresses

Exception
StatusBEV

0 1

Reset, Soft Reset, NMI 0xBFC0_0000

Debug (with ProbTrap = 0 in the EJTAG Control
register)

0xBFC0_0480

Debug (with ProbTrap = 1 in the EJTAG Control
register)

0xFF20_0200

(in dmseg handled by probe, and not system memory)

Other 0x8000_0000 0xBFC0_0200

Table 4-1 Priority of Exceptions

Exception Description
4-4 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Exception Vector Locations
Table 4-3 Exception Vector Offsets

Exception Vector Offset

TLB refill, EXL = 0 (4Kc core) 0x000

Reset, Soft Reset, NMI 0x000 (uses reset base address)

General Exception 0x180

Interrupt, CauseIV = 1 0x200

Table 4-4 Exception Vectors

Exception BEV EXL IV
EJTAG

ProbTrap
Vector

Reset, Soft Reset, NMI x x x x 0xBFC0_0000

Debug x x x 0 0xBFC0_0480

Debug x x x 1 0xFF20_0200 (in dmseg)

TLB Refill (4Kc core) 0 0 x x 0x8000_0000

TLB Refill (4Kc core) 0 1 x x 0x8000_0180

TLB Refill (4Kc core) 1 0 x x 0xBFC0_0200

TLB Refill (4Kc core) 1 1 x x 0xBFC0_0380

Interrupt 0 0 0 x 0x8000_0180

Interrupt 0 0 1 x 0x8000_0200

Interrupt 1 0 0 x 0xBFC0_0380

Interrupt 1 0 1 x 0xBFC0_0400

All others 0 x x x 0x8000_0180

All others 1 x x x 0xBFC0_0380

‘x’ denotes don’t care
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 4-5

Chapter 4: Exceptions

ing as

l

e

n.
ception.

ception
shes to

the
4.4 General Exception Processing

With the exception of Reset, Soft Reset, NMI, and Debug exceptions, which have their own special process
described below, exceptions have the same basic processing flow:

• If the EXL bit in theStatusregister is cleared, theEPCregister is loaded with the PC at which execution wil
be restarted and the BD bit is set appropriately in theCauseregister. If the instruction is not in the delay slot
of a branch, the BD bit inCausewill be cleared and the value loaded into theEPCregister is the current PC.
If the instruction is in the delay slot of a branch, the BD bit inCause is set andEPC is loaded with PC-4. If
the EXL bit in theStatus register is set, theEPC register is not loaded and the BD bit is not changed in th
Cause register.

• The CE and ExcCode fields of theCause registers are loaded with the values appropriate to the exceptio
The CE field is loaded, but not defined, for any exception type other than a coprocessor unusable ex

• The EXL bit is set in theStatus register.

• The processor is started at the exception vector.

The value loaded into EPC represents the restart address for the exception and need not be modified by ex
handler software in the normal case. Software need not look at the BD bit in the Cause register unless is wi
identify the address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. This is noted in
description of each exception type below.

Operation:
if SR EXL = 0

if InstructionInBranchDelaySlot then
EPC <- PC - 4
CauseBD <- 1

else
EPC <- PC
CauseBD <- 0

endif
if ExceptionType = TLBRefill then

vectorOffset <- 0x000
elseif (ExceptionType = Interrupt) and

(Cause IV = 1) then
vectorOffset <- 0x200

else
vectorOffset <- 0x180

endif
else
4-6 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Debug Exception Processing

d and
rrent

in the

dified by
Debug
n.

at

d.
vectorOffset <- 0x180
endif
CauseCE <- FaultingCoprocessorNumber
CauseExcCode <- ExceptionType
SREXL <- 1
if SR BEV = 1 then

PC <- 0xBFC0_0200 + vectorOffset
else

PC <- 0x8000_0000 + vectorOffset
endif

4.5 Debug Exception Processing

All debug exceptions have the same basic processing flow:

• The DEPC register is loaded with the program counter (PC) value at which execution will be restarte
the DBD bit is set appropriately in the Debug register. The value loaded into the DEPC register is the cu
PC if the instruction is not in the delay slot of a branch, or the PC-4 of the branch if the instruction is
delay slot of a branch.

• The DSS, DBp, DDBL, DDBS, DIB and DINT bits (D* bits at [5:0]) in the Debug register are updated
appropriately depending on the debug exception.

• Halt and Doze bits in the Debug register are updated appropriately.

• DM bit in the Debug register is set to 1.

• The processor is started at the debug exception vector.

The value loaded into DEPC represents the restart address for the debug exception and need not be mo
the debug exception handler software in the usual case. Debug software need not look at the DBD bit in the
register unless it wishes to identify the address of the instruction that actually caused the debug exceptio

A unique debug exception is indicated through the DSS, DBp, DDBL, DDBS, DIB and DINT bits (D* bits
[5:0]) in the Debug register.

No other CP0 registers or fields are changed due to the debug exception, thus no additional state is save

Operation:
if InstructionInBranchDelaySlot then

DEPC <- PC-4
DebugDBD <- 1

else
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 4-7

Chapter 4: Exceptions

y the

e 4-1.
DEPC <- PC
DebugDBD <- 0

endif
DebugD* bits at at [5:0] <- DebugExceptionType
DebugHalt <- HaltStatusAtDebugException
DebugDoze <- DozeStatusAtDebugException
DebugDM <- 1
if EJTAGControlRegister ProbTrap = 1 then

PC <- 0xFF20_0200
else

PC <- 0xBFC0_0480
endif

The same debug exception vector location is used for all debug exceptions. The location is determined b
ProbTrap bit in the EJTAG Control register (ECR), as shown in Table 4-5.

4.6 Exceptions

The following subsections describe each of the exceptions listed in the same sequence as shown in Tabl

Table 4-5 Debug Exception Vector Addresses

ProbTrap bit in
ECR Register

Debug Exception Vector Address

0 0xBFC0_0480

1 0xFF20_0200 in dmseg
4-8 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Exceptions

ot
orting
xecute
 in not

 an
4.6.1 Reset Exception

A reset exception occurs when the SI_ColdReset signal is asserted to the processor. This exception is n
maskable. When a Reset exception occurs, the processor performs a full reset initialization, including ab
state machines, establishing critical state, and generally placing the processor in a state in which it can e
instructions from uncached, unmapped address space. On a Reset exception, the state of the processor
defined, with the following exceptions:

• TheRandom register is initialized to the number of TLB entries - 1.

• TheWired register is initialized to zero.

• TheConfig register is initialized with its boot state.

• The RP, BEV, TS, SR, NMI, and ERL fields of theStatus register are initialized to a specified state.

• The I, R, and W fields of theWatchLo register are initialied to 0.

• TheErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing
instruction in the delay slot of a branch. Otherwise, theErrorEPC register is loaded with PC. Note that this
value may or may not be predictable.

• PC is loaded with 0xBFC0_0000.

Cause Register ExcCode Value:
None

Additional State Saved:
None

Entry Vector Used:
Reset (0xBFC0_0000)

Operation:
Random <- TLBEntries - 1
Wired <- 0
Config <- ConfigurationState
SRRP <- 0
SRBEV <- 1
SRTS <- 0
SRSR <- 0
SRNMI <- 0
SRERL <- 1
WatchLo I <- 0
WatchLo R <- 0
WatchLo W <- 0
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 4-9

Chapter 4: Exceptions
if InstructionInBranchDelaySlot then
ErrorEPC <- PC - 4

else
ErrorEPC <- PC

endif
PC <- 0xBFC0_0000
4-10 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Exceptions

askable.
a soft
to place
ince bus,
ay be

t reset

 an
4.6.2 Soft Reset Exception

A soft reset exception occurs when the Reset signal is asserted to the processor. This exception is not m
When a soft reset exception occurs, the processor performs a subset of the full reset initialization. Although
reset exception does not unnecessarily change the state of the processor, it may be forced to do so in order
the processor in a state in which it can execute instructions from uncached, unmapped address space. S
cache, or other operations may be interrupted, portions of the cache, memory, or other processor state m
inconsistent. In addition to any hardware initialization required, the following state is established on a sof
exception:

• The BEV, TS, SR, NMI, and ERL fields of theStatus register are initialized to a specified state.

• TheErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing
instruction in the delay slot of a branch. Otherwise, theErrorEPC register is loaded with PC. Note that this
value may or may not be predictable.

• PC is loaded with 0xBFC0_0000.

Cause Register ExcCode Value:
None

Additional State Saved:
None

Entry Vector Used:
Reset (0xBFC0_0000)

Operation:
SRBEV <- 1
SRTS <- 0
SRSR <- 1
SRNMI <- 0
SRERL <- 1
if InstructionInBranchDelaySlot then

ErrorEPC <- PC - 4
else

ErrorEPC <- PC
endif
PC <- 0xBFC0_0000
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 4-11

Chapter 4: Exceptions

, when
a non

St bit in

lso the
 the
bug
elay slot

ven
eption is
le step
software
tion
C

ptions,
4.6.3 Debug Single Step Exception

A debug single step exception occurs after the CPU has executed one/two instructions in non-debug mode
returning to non-debug mode after debug mode. One instruction is allowed to execute when returning to
jump/branch instruction, otherwise two instructions are allowed to execute since the jump/branch and the
instruction in the delay slot are executed as one step. Debug single step exceptions are enabled by the S
the Debug register, and are always disabled for the first one/two instructions after a DERET.

The DEPC register points to the instruction on which the debug single step exception occurred, which is a
next instruction to single step or execute when returning from debug mode. So the DEPC will not point to
instruction which has just been single stepped, but rather the following instruction. The DBD bit in the De
register is never set for a debug single step exception, since the jump/branch and the instruction in the d
is executed in one step.

Exceptions occurring on the instruction(s) executed with debug single step exception enabled are taken e
though debug single step was enabled. For a normal exception (other than reset), a debug single step exc
then taken on the first instruction in the normal exception handler. Debug exceptions are unaffected by sing
mode, e.g. returning to a SDBBP instruction with debug single step exceptions enabled causes a debug
breakpoint exception, and the DEPC will point to the SDBBP instruction. However, returning to an instruc
(not jump/branch) just before the SDBBP instruction, causes a debug single step exception with the DEP
pointing to the SDBBP instruction.

To ensure proper functionality of single step, the debug single step exception has priority over all other exce
except reset and soft reset.

Debug Register Debug Status Bit Set
DSS

Additional State Saved
None

Entry Vector Used
Debug exception vector
4-12 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Exceptions

ough

with no
 should
n was
4.6.4 Debug Interrupt Exception

A debug interrupt exception is either caused by the EjtagBrk bit in the EJTAG Control register (controlled thr
the TAP), or caused by the debug interrupt request signal to the CPU.

The debug interrupt exception is an asynchronous debug exception which is taken as soon as possible, but
specific relation to the executed instructions. The DEPC register is set to the instruction where execution
continue after the debug handler is through. The DBD bit is set based on whether the interrupted instructio
executing in the delay slot of a branch.

Debug Register Debug Status Bit Set
DINT

Additional State Saved
None

Entry Vector Used
Debug exception vector
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 4-13

Chapter 4: Exceptions

dge
only
cache,
eptions:

 an
4.6.5 Non Maskable Interrupt (NMI) Exception

A non maskable interrupt exception occurs when the NMI signal is asserted to the processor. NMI is an e
sensitive signal - only one NMI exception will be taken each time NMI is asserted. An NMI exception occurs
at instruction boundaries, so it does not cause any reset or other hardware initialization. The state of the
memory, and other processor states are consistent and all registers are preserved, with the following exc

• The BEV, TS, SR, NMI, and ERL fields of theStatus register are initialized to a specified state.

• TheErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing
instruction in the delay slot of a branch. Otherwise, theErrorEPC register is loaded with PC.

• PC is loaded with 0xBFC0_0000.

Cause Register ExcCode Value:
None

Additional State Saved:
None

Entry Vector Used:
Reset (0xBFC0_0000)

Operation:
SRBEV <- 1
SRTS <- 0
SRSR <- 0
SRNMI <- 1
SRERL <- 1
if InstructionInBranchDelaySlot then

ErrorEPC <- PC - 4
else

ErrorEPC <- PC
endif
PC <- 0xBFC0_0000
4-14 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Exceptions

ndition

ice.
LB
4.6.6 Machine Check Exception (4Kc core)

A machine check exception occurs when the processor detects an internal inconsistency. The following co
causes a machine check exception;

• The detection of multiple matching entries in the TLB in a TLB-based MMU. The core detects this
condition on a TLB write and prevents the write from being completed. The TS bit in theStatus register is
set to indicate this condition. This bit is only a status flag and does not affect the operation of the dev
Software clears this bit at the appropriate time. This condition is resolved by flushing the conflicting T
entries. The TLB write can then be completed.

Cause Register ExcCode Value:
MCheck

Additional State Saved:
Depends on the condition that caused the exception.

Entry Vector Used:
General exception vector (offset 0x180)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 4-15

Chapter 4: Exceptions
4.6.7 Interrupt Exception

The interrupt exception occurs when one or more of the eight interrupt requests is enabled by theStatus register
and the interrupt input is asserted.

Register ExcCode Value:
Int

Additional State Saved:

Entry Vector Used:
General exception vector (offset 0x180) if the IV bit in theCause register is 0;
interrupt vector (offset 0x200) if the IV bit in theCause register is 1.

Table 4-6 Register States an Interrupt Exception

Register State Value

CauseIP indicates the interrupts that are pending.
4-16 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Exceptions

ed
e
ts are
4.6.8 Debug Instruction Break Exception

A debug instruction break exception occurs when an instruction hardware breakpoint matches an execut
instruction. The DEPC register and DBD bit in the Debug register indicates the instruction that caused th
instruction hardware breakpoint to match. This exception can only occur if instruction hardware breakpoin
implemented.

Debug Register Debug Status Bit Set:
DIB

Additional State Saved:
None

Entry Vector Used:
Debug exception vector
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 4-17

Chapter 4: Exceptions

n or

e

e

r on an
4.6.9 Watch Exception — Instruction Fetch or Data Access

The Watch facility provides a software debugging vehicle by initiating a watch exception when an instructio
data reference matches the address information stored in theWatchHiandWatchLoregisters. A Watch exception
is taken immediately if the EXL and ERL bits of theStatusregister are both zero. If either bit is a one at the tim
that a watch exception would normally be taken, the WP bit in theCause register is set, and the exception is
deferred until both the EXL and ERL bits in the Status register are zero. Software may use the WP bit in theCause
register to determine if the EPC register points at the instruction that caused the watch exception, or if th
exception actually occurred while in kernel mode.

The Watch exception can occur on either an instruction fetch or a data access. Watch exceptions that occu
instruction fetch have a higher priority than watch exceptions that occur on a data access.

Register ExcCode Value:
WATCH

Additional State Saved:

Entry Vector Used:
General exception vector (offset 0x180)

Table 4-7 Register States on a Watch Exception

Register State Value

CauseWP Indicates that the watch exception was deferred until after
both StatusEXL and StatusERL were zero. This bit directly
causes a watch exception, so software must clear this bit
as part of the exception handler to prevent a watch
exception loop at the end of the current handler
execution.
4-18 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Exceptions

ne of the

 the
e case
le in the
4.6.10 Address Error Exception — Instruction Fetch/Data Access

An address error exception occurs on an instruction or data access when an attempt is made to execute o
following:

• Fetch an instruction, load a word, or store a word that is not aligned on a word boundary

• Load or store a halfword that is not aligned on a halfword boundary

• Reference the kernel address space from user mode

Note that in the case of an instruction fetch that is not aligned on a word boundary, PC is updated before
condition is detected. Therefore, both EPC and BadVAddr point to the unaligned instruction address. In th
of a data access the exception is taken if either an unaligned address or an address that was inaccessib
current processor mode was referenced by a load or store instruction.

Cause Register ExcCode Value:
ADEL: Reference was a load or an instruction fetch
ADES: Reference was a store

Additional State Saved:

Entry Vector Used:
General exception vector (offset 0x180)

Table 4-8 CP0 Register States on an Address Exception Error

Register State Value

BadVAddr failing address

ContextVPN2 UNPREDICTABLE

EntryHiVPN2 UNPREDICTABLE

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 4-19

Chapter 4: Exceptions

MU

curs.
4.6.11 TLB Refill Exception — Instruction Fetch or Data Access (4Kc core)

During an instruction fetch or data access, a TLB refill exception occurs when no TLB entry in a TLB-based M
matches a reference to a mapped address space and the EXL bit is 0 in theStatusregister. Note that this is distinct
from the case in which an entry matches but has the valid bit off. In that case, a TLB Invalid exception oc

Cause Register ExcCode Value:
TLBL: Reference was a load or an instruction fetch
TLBS: Reference was a store

Additional State Saved:

Entry Vector Used:
TLB refill vector (offset 0x000) if StatusEXL = 0 at the time of exception;
general exception vector (offset 0x180) if StatusEXL = 1 at the time of exception

Table 4-9 CP0 Register States on a TLB Refill Exception

Register State Value

BadVAddr failing address

Context The BadVPN2 fields contains VA31:13 of the failing
address

EntryHi The VPN2 field contains VA31:13of the failing address;
the ASID field contains the ASID of the reference that
missed

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE
4-20 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Exceptions

is 1 in

d entry
4.6.12 TLB Invalid Exception — Instruction Fetch or Data Access (4Kc core)

During an instruction fetch or data access, a TLB invalid exception occurs in one of the following cases:

• No TLB entry in a TLB-based MMU matches a reference to a mapped address space; and the EXL bit
theStatus register.

• A TLB entry in a TLB-based MMU matches a reference to a mapped address space, but the matche
has the valid bit off.

• The virtual address is greater than or equal to the bounds address in a BAT-based MMU.

Cause Register ExcCode Value:
TLBL: Reference was a load or an instruction fetch
TLBS: Reference was a store

Additional State Saved:

Entry Vector Used:
General exception vector (offset 0x180)

Table 4-10 CP0 Register States on a TLB Invalid Exception

Register State Value

BadVAddr failing address

Context The BadVPN2 field contains VA31:13 of the failing
address

EntryHi The VPN2 field contains VA31:13 of the failing address;
the ASID field contains the ASID of the reference that
missed

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 4-21

Chapter 4: Exceptions

iss or an
her an
riority

errors,
_RBErr
ing bus
4.6.13 Bus Error Exception — Instruction Fetch or Data Access

A bus error exception occurs when an instruction or data access makes a bus request (due to a cache m
uncacheable reference) and that request terminates in an error. The bus error exception can occur on eit
instruction fetch or a data access. Bus error exceptions that occur on an instruction fetch have a higher p
than bus error exceptions that occur on a data access.

Bus errors taken on the requested (critical) word of an instruction fetch or data load are precise. Other bus
such as stores or non-critical words of a burst read, can be imprecise. These errors are taken when the EB
or EB_WBErr signals are asserted and may occur on an instruction that was not the source of the offend
cycle.

Cause Register ExcCode Value:
IBE: Error on an instruction reference
DBE: Error on a data reference

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)
4-22 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Exceptions

r and
4.6.14 Debug Software Breakpoint Exception

A debug software breakpoint exception occurs when a SDBBP instruction is executed. The DEPC registe
DBD bit in the Debug register will indicate the SDBBP instruction that caused the debug exception.

Debug Register Debug Status Bit Set:
DBp

Additional State Saved:
None

Entry Vector Used:
Debug exception vector
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 4-23

Chapter 4: Exceptions

priority.
4.6.15 Execution Exception — System Call

The system call exception is one of the six execution exceptions. All of these exceptions have the same
A system call exception occurs when a SYSCALL instruction is executed.

Cause Register ExcCode Value:
Sys

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)
4-24 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Exceptions

rity. A
4.6.16 Execution Exception — Breakpoint

The breakpoint exception is one of the six execution exceptions. All of these exceptions have the same prio
breakpoint exception occurs when a BREAK instruction is executed.

Cause Register ExcCode Value:
Bp

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 4-25

Chapter 4: Exceptions

e same
field is
4.6.17 Execution Exception — Reserved Instruction

The reserved instruction exception is one of the six execution exceptions. All of these exceptions have th
priority. A reserved instruction exception occurs when a reserved or undefined major opcode or function
executed.

Cause Register ExcCode Value:
RI

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)
4-26 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Exceptions

e same
struction

mode
4.6.18 Execution Exception — Coprocessor Unusable

The coprocessor unusable exception is one of the six execution exceptions. All of these exceptions have th
priority. A coprocessor unusable exception occurs when an attempt is made to execute a coprocessor in
for one of the following:

• a corresponding coprocessor unit that has not been marked usable by setting its CU bit in theStatus register

• CP0 instructions, when the unit has not been marked usable, and the processor is executing in user

Cause Register ExcCode Value:
CpU

Additional State Saved:

Entry Vector Used:
General exception vector (offset 0x180)

Table 4-11 Register States on a Coprocessor Unusable Exception

Register State Value

CauseCE unit number of the coprocessor being referenced
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 4-27

Chapter 4: Exceptions

me
nt
4.6.19 Execution Exception — Integer Overflow

The integer overflow exception is one of the six execution exceptions. All of these exceptions have the sa
priority. An integer overflow exception occurs when selected integer instructions result in a 2’s compleme
overflow.

Cause Register ExcCode Value:
Ov

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)
4-28 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Exceptions

 A trap
4.6.20 Execution Exception — Trap

The trap exception is one of the six execution exceptions. All of these exceptions have the same priority.
exception occurs when a trap instruction results in a TRUE value.

Cause Register ExcCode Value:
Tr

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 4-29

Chapter 4: Exceptions

on of an
/store
 debug
turning
4.6.21 Debug Data Break Exception

A debug data break exception occurs when a data hardware breakpoint matches the load/store transacti
executed load/store instruction. The DEPC register and DBD bit in the Debug register will indicate the load
instruction that caused the data hardware breakpoint to match. The load/store instruction that caused the
exception has not completed e.g. not updated the register file, and the instruction can be re-executed after re
from the debug handler.

Debug Register Debug Status Bit Set:
DDBL for a load instruction or DDBS for a store instruction

Additional State Saved:
None

Entry Vector Used:
Debug exception vector
4-30 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Exceptions

g

4.6.22 TLB Modified Exception — Data Access (4Kc core)

During a data access, a TLB modified exception occurs on astorereference to a mapped address if the followin
condition is true:

• The matching TLB entry in a TLB-based MMU is valid, but not dirty.

Cause Register ExcCode Value:
Mod

Additional State Saved:

Entry Vector Used:
General exception vector (offset 0x180)

Table 4-12 Register States on a TLB Modified Exception

Register State Value

BadVAddr failing address

Context The BadVPN2 field contains VA31:13 of the failing
address.

EntryHi The VPN2 field contains VA31:13 of the failing address;
the ASID field contains the ASID of the reference that
missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 4-31

Chapter 4: Exceptions

ndlers:

oftware
wed as
RET

eturn to
4.7 Exception Handling and Servicing Flowcharts

The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their ha

• General exceptions and their exception handler

• TLB miss exception and their exception handler

• Reset, soft reset and NMI exceptions, and a guideline to their handler.

• Debug exceptions

Generally speaking, the exceptions are handled by hardware (HW); the exceptions are then serviced by s
(SW). Note that unexpected debug exceptions to the debug exception vector at 0xBFC0_0200 may be vie
a reserved instruction since uncontrolled execution of a SDBBP instruction caused the exception. The DE
instruction must be used at return from the debug exception handler, in order to leave debug mode and r
non-debug mode. The DERET instruction returns to the address in the DEPC register.
4-32 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Exceptions
Figure 4-1 General Exception Handler (HW)

PC <- 0xBFC0_0200 + 180PC <- 0x8000_0000 + 180

EXL <- 1

BEV
=1 (bootstrap)=0

To General Exception Servicing Guidelines

(unmapped, cached) (unmapped, uncached)

Exceptions other than Reset, Soft Reset, NMI, or first-level miss
Note: Interrupts can be masked by IE or IMs

and Watch is masked if EXL = 1

Check if exception within

Processor forced to Kernel Mode

(normal)

EPC <- PC

Instr. inYes No

EPC <- (PC - 4)

Br.Dly. Slot?

EXL
(SR1)

=1

=0

BadVA is set only for
TLB- Invalid, Modified,

Note: not set if it is a Bus Error

Cause 31 (BD) <- 1 Cause 31 (BD) <- 0

Refill- and VCED/I exceptions

EnHi and Context are set only for
*TLB- Invalid, Modified,
& Refill exceptions.

Set Cause Register

EnHi <- VPN2, ASID
Context <- VPN2

EXCCode, CE

& interrupt disabled

Comments

another exception

Set BadVA
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 4-33

Chapter 4: Exceptions
Figure 4-2 General Exception Servicing Guidelines (SW)

MFC0 -
Context
EPC
Status
Cause

EXL <- 0

Check Cause value & Jump to
appropriate Service Code

EXL = 1

MTC0 -
EPC

STATUS

ERET

* Unmapped vector so TLBMod, TLBInv,
TLB Refill exceptions not possible

* EXL=1 so Watch, Interrupt exceptions disabled

*Only CacheError, Reset, Soft Reset, NMI

* OS/System to avoid all other exceptions

* After EXL=0, all exceptions allowed.
(except interrupt if masked by IE or IM
and CacheError if masked by DE)

Comments

 exceptions possible.

UM <- 0

(Optional - only to enable Interrupts while keeping Kernel Mode)

MTC0 -
(Set Status Bits:)

& IE=1

Reset the processor

Status

* PC <- EPC; EXL <- 0

* LLbit <- 0

* ERET is not allowed in the branch delay slot of

* Processor does not execute the instruction which is
in the ERET’s branch delay slot

another Jump Instruction

=1

=0

Service Code

bit 21(TS)
4-34 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Exceptions
Figure 4-3 TLB Miss Exception Handler (HW) — 4Kc Core

EXL <- 1

PC <- 0xBFC0_0200 + Vec.Off.PC <- 08000_0000 + Vec.Off.

=0 (normal) =1

To TLB Exception Servicing Guidelines

(unmapped. cached) (unmapped, uncached)

BEV
(SR bit 22)

Vec. Off. = 0x000 Vec. Off. = 0x180

Instr. inYes

Processor forced to Kernel Mode &

Check if exception within

(bootstrap)

Br.Dly. Slot?

EXL
(SR bit 1)

=1

=0

Points to General Exception

No

Set Cause Reg.

EnHi <- VPN2, ASID
Context <- VPN2

EXCCode, CE and
Set Cause Reg.

EnHi <- VPN2, ASID
Context <- VPN2

EXCCode, CE and

Cause bit 31 (BD) <- 0
EPC <- PCEPC <- (PC - 4)

Set BadVA Set BadVA

another exception

interrupt disabled

EXL
(SR bit 1)

=1

=0

Cause bit 31 (BD) <- 1
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 4-35

Chapter 4: Exceptions
Figure 4-4 TLB Exception Servicing Guidelines (SW) — 4Kc and 4Km Cores

MFC0 -

CONTEXT

Service Code

ERET

* Unmapped vector so TLBMod, TLBInv,
TLB Refill or VCEP exceptions

* EXL=1 so Watch, Interrupt exceptions disabled

*Only Reset, Soft Reset, NMI

* OS/System to avoid all other exceptions

* PC <- EPC; EXL <- 0

* LLbit <- 0

Comments

 exceptions possible.

* There could be a TLB miss again during the mapping

not possible

of the data or instruction address. The processor will
jump to the general exception vector since the EXL is 1.
(Option to complete the first level refill in the general

* Load the mapping of the virtual address in Context Reg.
Move it to ENLO and Write into the TLB

* ERET is not allowed in the branch delay slot of

* Processor does not execute the instruction which is
in the ERET’s branch delay slot

another Jump Instruction

exception handler or ERET to the original instruction
and take the exception again)
4-36 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Exceptions
Figure 4-5 Reset, Soft Reset and NMI Exception Handling and Servicing Guidelines

R
es

et
, S

of
t R

es
et

 &
 N

M
I E

xc
ep

tio
n

H
an

dl
in

g
(H

W
)

Random <- TLBENTRIES - 1

Wired <- 0

Config <- Update(31:6)|| Undef(5:0)

Status:

BEV <- 1

TS <- 0

SR<- 0

ERL <- 1

ErrorEPC <- PC

PC <- 0xBFC0_0000

Status:
BEV <- 1

TS <- 0

SR<- 1

ERL <- 1

Soft Reset or NMI Exception

Reset Exception

NMI Service Code

Soft Reset Service Code

Status

Reset Service Code

= 1

= 0

Status bit 20

= 1

=0

ERET

(Optional)

(SR)

R
es

et
, S

of
t R

es
et

 &
 N

M
I

S
er

vi
ci

ng
 G

ui
de

lin
es

 (
S

W
)

bit 19
(NMI)

RP <- 0

WatchLo:
I,R,W <- 0
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 4-37

Chapter 4: Exceptions
4-38 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

res and
. Each

This
Chapter 5

5.CP0 Registers

The System Control Coprocessor (CP0) provides the register interface to the MIPS32 4K™ processor co
supports memory management, address translation, exception handling, and other privileged operations
CP0 register has a unique number that identifies it; this number is referred to as theregister number. For instance,
thePageMaskregister is register number 5. For more information on the EJTAG registers, refer to Chapter 9.
chapter contains the following sections:

• Section 5.1, "CP0 Register Summary"

• Section 5.2, "CP0 Registers"
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 5-1

Chapter 5: CP0 Registers

hapter.
5.1 CP0 Register Summary

Table 5-1 lists the CP0 registers in numerical order. The individual registers are described throughout this c

Table 5-1 CP0 Registers

Register
Number

Register Name Function

0 Index1 Index into the TLB array (4Kc core). This register is reserved in
the 4Kp and 4Km cores.

1 Random1 Randomly generated index into the TLB array (4Kc core). This
register is reserved in the 4Kp and 4Km cores.

2 EntryLo01 Low-order portion of the TLB entry for even-numbered virtual
pages (4Kc core). This register is reserved in the 4Kp and 4Km
cores.

3 EntryLo11 Low-order portion of the TLB entry for odd-numbered virtual
pages (4Kc core). This register is reserved in the 4Kp and 4Km
cores.

4 Context2 Pointer to page table entry in memory (4Kc core). This register
is reserved in the 4Kp and 4Km cores.

5 PageMask1 Controls the variable page sizes in TLB entries (4Kc core). This
register is reserved in the 4Kp and 4Km cores.

6 Wired1 Controls the number of fixed (“wired”) TLB entries (4Kc core).
This register is reserved in the 4Kp and 4Km cores.

7 Reserved Reserved

8 BadVAddr2 Reports the address for the most recent address-related
exception

9 Count2 Processor cycle count

10 EntryHi1 High-order portion of the TLB entry (4Kc core). This register is
reserved in the 4Kp and 4Km cores.

11 Compare2 Timer interrupt control

12 Status2 Processor status and control

13 Cause2 Cause of last exception
5-2 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

14 EPC2 Program counter at last exception

15 PRId Processor identification and revision

16 Config/Config1 Configuration register

17 LLAddr Load linked address

18 WatchLo2 Low-order watchpoint address

19 WatchHi2 High-order watchpoint address

20 - 22 Reserved Reserved

23 Debug3 Debug control and exception status

24 DEPC3 Program counter at last debug exception

25 - 27 Reserved Reserved

28 TagLo/DataLo Low-order portion of cache tag interface

29 Reserved Reserved

30 ErrorEPC2 Program counter at last error

31 DESAVE3 Debug handler scratch pad register

1. Registers used in memory management.

2. Registers used in exception processing.

3. Registers used in debug.

Table 5-1 CP0 Registers(continued)

Register
Number

Register Name Function
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 5-3

Chapter 5: CP0 Registers

 below,

 reset
5.2 CP0 Registers

The CP0 registers provide the interface between the ISA and the architecture. Each register is discussed
with the registers presented in numerical order, first by register number, then by select field number.

For each register described below, field descriptions include the read/write properties of the field, and the
state of the field. For the read/write properties of the field, the following notation is used:

Table 5-2 CP0 Register Field Types

Read/Write
Notation

Hardware Interpretation Software Interpretation

R/W A field in which all bits are readable and writable by software and, potentially, by hardware.

Hardware updates of this field are visible by software read. Software updates of this field are
visible by hardware read.

If the reset state of this field is “Undefined,” either software or hardware must initialize the value
before the first read will return a predictable value. This should not be confused with the formal
definition of UNDEFINED behavior.

R A field that is either static or is updated only by
hardware.

If the Reset State of this field is either “0” or
“Preset”, hardware initializes this field to zero
or to the appropriate state, respectively, on
powerup.

If the Reset State of this field is “Undefined”,
hardware updates this field only under those
conditions specified in the description of the
field.

A field to which the value written by software
is ignored by hardware. Software may write
any value to this field without affecting
hardware behavior. Software reads of this field
return the last value updated by hardware.

If the Reset State of this field is “Undefined,”
software reads of this field result in an
UNPREDICTABLE value except after a
hardware update done under the conditions
specified in the description of the field.

0 A field that hardware does not update, and for
which hardware can assume a zero value.

A field to which the value written by software
must be zero. Software writes of non-zero
values to this field may result in UNDEFINED
behavior of the hardware. Software reads of
this field return zero as long as all previous
software writes are zero.

If the Reset State of this field is “Undefined,”
software must write this field with zero before
it is guaranteed to read as zero.
5-4 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

LBR,
mber

ies is

).
5.2.1 Index Register (CP0 Register 0, Select 0)

TheIndexregister is a 32-bit read/write register that contains the index used to access the TLB for TLBP, T
and TLBWI instructions. The width of the index field is implementation-dependent as a function of the nu
of TLB entries that are implemented. The minimum value for TLB-based MMUs isCeiling(Log2(TLBEntries)).

The operation of the processor is UNDEFINED if a value greater than or equal to the number of TLB entr
written to theIndex register.

This register is only valid with the TLB (4Kc core). It is reserved if the BAT is implemented (4Kp and 4Km

Index Register Format
31 30 4 3 0

P 0 Index

Table 5-3 Index Register Field Descriptions

Fields
Description

Read/
Write

Reset State
Name Bit(s)

P 31 Probe Failure. Set to 1 when the previous TLBProbe
(TLBP) instruction failed to find a match in the TLB.

R Undefined

0 30:4 Must be written as zero; returns zero on read. 0 0

Index 3:0 Index to the TLB entry affected by the TLBRead and
TLBWrite instructions.

R/W Undefined
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 5-5

Chapter 5: CP0 Registers

tion.

 (the

events

).
5.2.2 Random Register (CP0 Register 1, Select 0)

TheRandom register is a read-only register whose value is used to index the TLB during a TLBWR instruc
The width of the Random field is calculated in the same manner as that described for theIndex register above.

The value of the register varies between an upper and lower bound as follow:

• A lower bound is set by the number of TLB entries reserved for exclusive use by the operating system
contents of theWired register). The entry indexed by theWired register is the first entry available to be
written by a TLB Write Random operation.

• An upper bound is set by the total number of TLB entries minus 1.

The Random register is decremented by one every clock until the value in theWiredregister is reached. To enhance
the level of randomness and reduce the possibility of a live lock condition, an LFSR register is used that pr
the decrement pseudo-randomly.

The processor initializes theRandomregister to the upper bound on a Reset exception and when theWiredregister
is written.

This register is only valid with the TLB (4Kc core). It is reserved if the BAT is implemented (4Kp and 4Km

Random Register Format
31 4 3 0

0 Random

Table 5-4 Random Register Field Descriptions

Fields
Description

Read/
Write

Reset State
Name Bit(s)

0 31:4 Must be written as zero; returns zero on read. 0 0

Random 3:0 TLB Random Index R TLB Entries - 1
5-6 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

WR
ntries
try.

LB

 and
5.2.3 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)

The pair of EntryLo registers act as the interface between the TLB or BAT and the TLBR, TLBWI, and TLB
instructions. For a TLB-based MMU, EntryLo0 holds the entries for even pages and EntryLo1 holds the e
for odd pages. For a BAT-based MMU, only EntryLo0 is used to hold the base information for the BAT en

The contents of the EntryLo0 and EntryLo1 registers are undefined after an address error, TLB invalid, T
modified, or TLB refill exceptions.

These registers are only valid with the TLB (4Kc core). They are reserved if the BAT is implemented (4Kp
4Km).

EntryLo0, EntryLo1 Register Format
31 30 29 26 25 6 5 3 2 1 0

R 0 PFN C D V G

Table 5-5 EntryLo0, EntryLo1 Register Field Descriptions

Fields
Description

Read/
Write

Reset State
Name Bit(s)

R 31:30 Reserved. Should be ignored on writes; returns zero on
read.

R 0

0 29:26 These 4 bits are normally part of the PFN. However, since
the core supports only 32-bits of physical address, the PFN
is only 20-bits wide. Therefore, bits 29:26 of this register
must be written with zeros.

R/W 0

PFN 25:6 Page Frame Number. Corresponds to bits 31:12 of the
physical address.

R/W Undefined

C 5:3 Coherency attribute of the page. See Table 5-6. R/W Undefined

D 2 “Dirty” or write-enable bit, indicating that the page has
been written, and/or is writable. If this bit is a one, stores
to the page are permitted. If this bit is a zero, stores to the
page cause a TLB Modified exception.

R/W Undefined
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 5-7

Chapter 5: CP0 Registers

,

2

Table 5-6 lists the encoding of the C field of theEntryLo0 andEntryLo1 registers and the K0 field of theConfig
register.

V 1 Valid bit, indicating that the TLB entry, and thus the virtual
page mapping are valid. If this bit is a one, accesses to the
page are permitted. If this bit is a zero, accesses to the page
cause a TLB Invalid exception.

R/W Undefined

G 0 Global bit. On a TLB write, the logical AND of the G bits
in both the EntryLo0 and EntryLo1 registers become the G
bit in the TLB entry. If the TLB entry G bit is a one, ASID
comparisons are ignored during TLB matches. On a read
from a TLB entry, the G bits of both EntryLo0 and
EntryLo1 reflect the state of the TLB G bit.

R/W Undefined

Table 5-6 Cache Coherency Attributes

C(5:3) Value Cache Coherency Attribute

0, 1, 3*, 4, 5, 6 Cacheable, noncoherent, write through, no write allocate

2*, 7 Uncached

* These two values are required by the MIPS32 architecture. All other values are not used. For example, values 0, 1
4, 5 and 6 are not used and are mapped to 3. The value 7 is not used and is mapped to 2.

Note that these values do have meaning in other MIPS Technologies processor implementations. Refer to the MIPS3
specification for more information.

Table 5-5 EntryLo0, EntryLo1 Register Field Descriptions (continued)

Fields
Description

Read/
Write

Reset State
Name Bit(s)
5-8 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

array.
ss, the

em
5.2.4 Context Register (CP0 Register 4, Select 0)

TheContext register is a read/write register containing a pointer to an entry in the page table entry (PTE)
This array is an operating system data structure that stores virtual-to-physical translations. During a TLB mi
operating system loads the TLB with the missing translation from the PTE array. TheContextregister duplicates
some of the information provided in theBadVAddrregister but is organized in such a way that the operating syst
can directly reference an 8-byte page table entry (PTE) in memory.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VA31:13 of the virtual address to be
written into theBadVPN2 field of theContext register. ThePTEBase field is written and used by the operating
system.

The BadVPN2 field of theContext register is not defined after an address error exception.

Context Register Format
31 23 22 4 3 2 1 0

PTEBase BadVPN2 0

Table 5-7 Context Register Field Descriptions

Fields
Description

Read/
Write

Reset State
Name Bit(s)

PTEBase 31:23 This field is for use by the operating system and is
normally written with a value that allows the operating
system to use theContext Register as a pointer into the
current PTE array in memory.

R/W Undefined

BadVPN2 22:4 This field is written by hardware on a TLB miss. It
contains bits VA31:13 of the virtual address that missed.

R Undefined

0 3:0 Must be written as zero; returns zero on read. 0 0
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 5-9

Chapter 5: CP0 Registers

ison

).
5.2.5 PageMask Register (CP0 Register 5, Select 0)

ThePageMaskregister is a read/write register used for reading from and writing to the TLB. It holds a compar
mask that sets the variable page size for each TLB entry as shown in Table 5-9. Behavior isUNDEFINED if a
value other than those listed is used.

This register is only valid with the TLB (4Kc core). It is reserved if the BAT is implemented (4Kp and 4Km

PageMask Register Format
31 25 24 13 12 0

0 Mask 0

Table 5-8 PageMask Register Field Descriptions

Fields
Description

Read/
Write

Reset State
Name Bit(s)

Mask 24:13 The Mask field is a bit mask in which a “1” indicates that
the corresponding bit of the virtual address should not
participate in the TLB match.

R/W Undefined

0 31:25,
12:0

Must be written as zero; returns zero on read. 0 0

Table 5-9 Values for the Mask Field of the PageMask Register

Page Size
Bit

24 23 22 21 20 19 18 17 16 15 14 13

4 KBytes 0 0 0 0 0 0 0 0 0 0 0 0

16 KBytes 0 0 0 0 0 0 0 0 0 0 1 1

64 KBytes 0 0 0 0 0 0 0 0 1 1 1 1

256 KBytes 0 0 0 0 0 0 1 1 1 1 1 1

1 MByte 0 0 0 0 1 1 1 1 1 1 1 1

4 MByte 0 0 1 1 1 1 1 1 1 1 1 1

16 Mbyte 1 1 1 1 1 1 1 1 1 1 1 1
5-10 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

in the
ed for

WR

ritten

es).
5.2.6 Wired Register (CP0 Register 6, Select 0)

TheWiredregister is a read/write register that specifies the boundary between the wired and random entries
TLB as shown in Figure 5-1. The width of the Wired field is calculated in the same manner as that describ
theIndex register above. Wired entries are fixed, non-replaceable entries that are not overwritten by a TLB
instruction. Wired entries can be overwritten by a TLBWI instruction.

TheWired register is set to zero by a Reset exception. Writing theWired register causes theRandom register to
reset to its upper bound.

The operation of the processor is undefined if a value greater than or equal to the number of TLB entries is w
to theWired register.

This register is only valid with a TLB (4Kc core). It is reserved if the BAT is implemented (4Kp and 4Km cor

Figure 5-1 Wired and Random Entries in the TLB

Entry 0

Entry 10

Entry n-1

10Wired Register

W
ire

d
R

an
do

m

MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 5-11

Chapter 5: CP0 Registers
Wired Register Format
31 4 3 0

0 Wired

Table 5-10 Wired Register Field Descriptions

Fields
Description

Read/
Write

Reset State
Name Bit(s)

0 31:4 Must be written as zero; returns zero on read. 0 0

Wired 3:0 TLB wired boundary. R/W 0
5-12 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

of the

ressing
5.2.7 BadVAddr Register (CP0 Register 8, Select 0)

TheBadVAddrregister is a read-only register that captures the most recent virtual address that caused one
following exceptions:

• Address error (AdEL or AdES)

• TLB Refill (4Kc core)

• TLB Invalid (4Kc core)

• TLB Modified (4Kc core)

TheBadVAddrregister does not capture address information for cache or bus errors, since neither is an add
error.

BadVAddr Register Format
31 0

BadVAddr

Table 5-11 BadVAddr Register Field Description

Fields
Description

Read/
Write

Reset State
Name Bits

BadVAddr 31:0 Bad virtual address R Undefined
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 5-13

Chapter 5: CP0 Registers

ted,

ze
5.2.8 Count Register (CP0 Register 9, Select 0)

The Count register acts as a timer, incrementing at a constant rate, whether or not an instruction is execu
retired, or any forward progress is made through the pipeline. The counter increments every other clock.

The Count register can be written for functional or diagnostic purposes, including at reset or to synchroni
processors.

The Count register continues incrementing while the processor is in debug mode.

Count Register Format
31 0

Count

Table 5-12 Count Register Field Description

Fields
Description

Read/
Write

Reset State
Name Bits

Count 31:0 Interval counter. R/W Undefined
5-14 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

ss
D field

es).
5.2.9 EntryHi Register (CP0 Register 10, Select 0)

TheEntryHi register contains the virtual address match information used for TLB read, write, and access
operations.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VA31:13 of the virtual address to be
written into the VPN2 field of theEntryHi register. The ASID field is written by software with the current addre
space identifier value and is used during the TLB comparison process to determine TLB match. The ASI
is not implemented in a BAT-based MMU.

The VPN2 field of theEntryHi register is not defined after an address error exception.

This register is only valid with the TLB (4Kc core). It is reserved if the BAT is implemented (4Kp and 4Km cor

EntryHi Register Format
31 13 12 8 7 0

VPN2 0 ASID

Table 5-13 EntryHi Register Field Descriptions

Fields
Description

Read/
Write

Reset State
Name Bit(s)

VPN2 31:13 VA31:13of the virtual address (virtual page number / 2).
This field is written by hardware on a TLB exception or
on a TLB read, and is written by software before a TLB
write.

R/W Undefined

0 12:8 Must be written as zero; returns zero on read. 0 0

ASID 7:0 Address space identifier. This field is written by
hardware on a TLB read and by software to establish
the current ASID value for TLB write and against
which TLB references match each entry’s TLB ASID
field. For a BAT-based MMU, this field must be written
as zero and returns zero on read.

R/W Undefined
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 5-15

Chapter 5: CP0 Registers

ot

e
t with
5.2.10 Compare Register (CP0 Register 11, Select 0)

TheCompare register acts in conjunction with theCount register to implement a timer and timer interrupt
function. The timer interrupt is an output of the cores. TheCompareregister maintains a stable value and does n
change on its own.

When the value of theCount register equals the value of theCompare register, the SI_TimerInt pin is asserted.
This pin will remain asserted until theCompareregister is written. The SI_TimerInt pin can be fed back into th
core on one of the interrupt pins to generate an interrupt. Traditionally, this has been done by multiplexing i
hardware interrupt 5 to set interrupt bit IP(7) in theCause register.

For diagnostic purposes, theCompare register is a read/write register. In normal use, however, theCompare
register is write-only. Writing a value to theCompare register, as a side effect, clears the timer interrupt.

Compare Register Format
31 0

Compare

Table 5-14 Compare Register Field Description

Fields
Description

Read/
Write

Reset State
Name Bit(s)

Compare 31:0 Interval count compare value R/W Undefined
5-16 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

the
ssor, as

kernel

or is
5.2.11 Status Register (CP0 Register 12, Select 0)

TheStatus register (SR) is a read/write register that contains the operating mode, interrupt enabling, and
diagnostic states of the processor. Fields of this register combine to create operating modes for the proce
follows:

Interrupt Enable : Interrupts are enabled when all of the following conditions are true:

• IE = 1

• EXL = 0

• ERL = 0

• DM = 0

If these conditions are met, the settings of the IM and IE bits enable the interrupt.

Operating Modes: If the DM bit in the Debug register is 1, the processor is in debug mode. Otherwise the
processor is in either kernel or user mode. The following CPU Status register bit settings determine user or
mode.

• User mode: UM = 1, EXL = 0, and ERL = 0

• Kernel mode: UM = 0, or EXL = 1, or ERL = 1

Coprocessor Accessibility: The Status register CU bits control coprocessor accessibility. If any coprocess
unusable, an instruction that accesses it generates an exception.

Coprocessor 0 is always enabled in kernel mode, regardless of the setting of the CU0 bit.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 5-17

Chapter 5: CP0 Registers
Status Register Format
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 8 7 5 4 3 2 1 0

CU3-CU0 RP R RE 0 BEV TS SR NMI 0 0 IM7-IM0 R UM R ERL EXL IE

Table 5-15 Status Register Field Descriptions

Fields
Description

Read/
Write

Reset State
Name Bit(s)

CU3-CU0 31:28 Controls access to coprocessors 3, 2, 1, and 0,
respectively:

 0: access not allowed

 1: access allowed

Coprocessor 0 is always usable when the processor is
running in kernel mode, independent of the state of the
CU0 bit.

The core does not support coprocessors 1-3, but CU3:1
can still be set. However, processor behavior is
unpredictable if a coprocessor instruction to
coprocessors 1-3 is attempted with the corresponding
CU3:1 bit set.

R/W Undefined

RP 27 Enables reduced power mode. The state of the RP bit is
available on the bus interface as the SI_RP signal.

R/W 0 for Cold
Reset only.

R 26 This bit must be ignored on write and read as zero. R 0

RE 25 Used to enable reverse-endian memory references
while the processor is running in user mode:

 0: User mode uses configured endianness

 1: User mode uses reversed endianness

Kernel or debug mode references are not affected by
the state of this bit.

R/W Undefined

0 24:23 This bit must be written as zero; returns zero on read. 0 Undefined

BEV 22 Controls the location of exception vectors:

 0: Normal

 1: Bootstrap

R/W 1
5-18 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

TS 21 TLB shutdown. This bit is set if a TLBWI or TLBWR
instruction is issued that would cause a TLB shutdown
condition if allowed to complete. This bit is only used
in the 4Kc processor and is reserved in the 4Kp and
4Km processors.

Software can only write a 0 to this bit to clear it and
cannot force a 0-1 transition.

R/W 0

SR 20 Indicates that the entry through the reset exception
vector was due to a Soft Reset:

 0: Not Soft Reset (NMI or hard reset)

 1: Soft Reset

Software can only write a 0 to this bit to clear it and
cannot force a 0-1 transition.

R/W 1 for Soft
Reset; 0

otherwise

NMI 19 Indicates that the entry through the reset exception
vector was due to an NMI.

 0: Not NMI (soft or hard reset)

 1: NMI

Software can only write a 0 to this bit to clear it and
cannot force a 0-1 transition.

R/W 1 for NMI; 0
otherwise

0 18 Must be written as zero; returns zero on read. 0 Undefined

R 17:16 Reserved. Must be ignored on write and read as zero. Undefined

IM[7:0] 15:8 Interrupt Mask: Controls the enabling of each of the
external, internal, and software interrupts. An interrupt
is taken if interrupts are enabled and the corresponding
bits are set in both the Interrupt Mask field of the Status
register and the Interrupt Pending field of the Cause
register and the IE bit is set in the Status register.

 0: Interrupt request disabled

 1: Interrupt request enabled

R/W Undefined

R 7:5 Reserved. Must be ignored on write and read as zero. R 0

Table 5-15 Status Register Field Descriptions(continued)

Fields
Description

Read/
Write

Reset State
Name Bit(s)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 5-19

Chapter 5: CP0 Registers
UM 4 Indicates that the processor is operating in user mode:

 0: processor is operating in kernel mode

 1: processor is operating in user mode

Note that the processor can also be in kernel mode if
EXR or ERL are set. This condition does not affect the
state of the UM bit.

R/W Undefined

R 3 Reserved. Must be ignored on write and read as zero. R 0

ERL 2 Error Level. Set by the processor when a Reset, Soft
Reset, or NMI exceptions is taken.

 0: normal level

 1: error level

When ERL is set:

The processor is running in kernel mode.

Interrupts are disabled.

The ERET instruction uses the return address held in
ErrorEPC instead of EPC.

kuseg is treated as an unmapped and uncached region.
This allows main memory to be accessed in the
presence of cache errors.Behavior isUNDEFINED if
ERL is set while executing code in useg/kuseg.

R/W 1

EXL 1 Exception Level. Set by the processor when any
exception other than Reset, Soft Reset, or NMI
exceptions is taken.

 0: normal level

 1: exception level

When EXL is set:

The processor is running in kernel mode.

Interrupts are disabled.

In the 4Kc core, TLB refill exceptions use the general
exception vector instead of the TLB refill vector.

EPC is not updated if another exception is taken.

R/W Undefined

Table 5-15 Status Register Field Descriptions(continued)

Fields
Description

Read/
Write

Reset State
Name Bit(s)
5-20 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

IE 0 Interrupt Enable. Acts as the master enable for software
and hardware interrupts:

 0: disables interrupts

 1: enables interrupts

R/W Undefined

Table 5-15 Status Register Field Descriptions(continued)

Fields
Description

Read/
Write

Reset State
Name Bit(s)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 5-21

Chapter 5: CP0 Registers

trol
 the
5.2.12 Cause Register (CP0 Register 13, Select 0)

TheCause register primarily describes the cause of the most recent exception. In addition, fields also con
software interrupt requests and the vector through which interrupts are dispatched. With the exception of
IP[1:0], IV, and WP fields, all fields in the Cause register are read-only.

Cause Register Format
31 30 29 28 27 24 23 22 21 16 15 10 9 8 7 6 5 4 3 2 1 0

BD 0 CE 0 IV WP 0 IP[7:2] IP[1:0] 0 Exc Code 0

Table 5-16 Cause Register Field Descriptions

Fields
Description

Read/
Write

Reset State
Name Bit(s)

BD 31 Indicates whether the last exception taken occurred in a branch
delay slot:

 0: Not in delay slot

 1: In delay slot

Note that the BD bit is not updated on a new exception if the
EXL bit is set.

R Undefined

CE 29:28 Coprocessor unit number referenced when a Coprocessor
Unusable exception is taken. This field is loaded by hardware
on every exception but is unpredictable for all exceptions
except for Coprocessor Unusable.

R Undefined

IV 23 Indicates whether an interrupt exception uses the general
exception vector or a special interrupt vector:

 0: Use the general exception vector (0x180)

 1: Use the special interrupt vector (0x200)

R/W Undefined
5-22 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

WP 22 Indicates that a watch exception was deferred because
StatusEXL or StatusERL were a one at the time the watch
exception was detected. This bit both indicates that the watch
exception was deferred and causes the exception to be initiated
once StatusEXL and StatusERL are both zero. As such, software
must clear this bit as part of the watch exception handler to
prevent a watch exception loop.

Software can only write a 0 to this bit to clear it and cannot
force a 0-1 transition.

R/W Undefined

IP[7:2] 15:10 Indicates an external interrupt is pending:

 15: Hardware interrupt 5 or timer interrupt

 14: Hardware interrupt 4

 13: Hardware interrupt 3

 12: Hardware interrupt 2

 11: Hardware interrupt 1

 10: Hardware interrupt 0

R Undefined

IP[1:0] 9:8 Controls the request for software interrupts:

 9: Request software interrupt 1

 8: Request software interrupt 0

R/W Undefined

Exc Code 6:2 Exception code — see Table 5-17. R Undefined

0 30,
27:24,

21:16, 7,
1:0

Must be written as zero; returns zero on read. 0 0

Table 5-17 Cause Register ExcCode Field Descriptions

Exception
Code Value

Mnemonic Description

0 Int Interrupt

1 Mod TLB modification exception (4Kc core)

Table 5-16 Cause Register Field Descriptions(continued)

Fields
Description

Read/
Write

Reset State
Name Bit(s)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 5-23

Chapter 5: CP0 Registers
2 TLBL TLB exception (load or instruction fetch) (4Kc core)

3 TLBS TLB exception (store) (4Kc core)

4 AdEL Address error exception (load or instruction fetch)

5 AdES Address error exception (store)

6 IBE Bus error exception (instruction fetch)

7 DBE Bus error exception (data reference: load or store)

8 Sys Syscall exception

9 Bp Breakpoint exception

10 RI Reserved instruction exception

11 CpU Coprocessor Unusable exception

12 Ov Integer Overflow exception

13 Tr Trap exception

14-22 - Reserved

23 WATCH Reference to WatchHi/WatchLo address

24 MCheck Machine check

25-31 - Reserved

Table 5-17 Cause Register ExcCode Field Descriptions(continued)

Exception
Code Value

Mnemonic Description
5-24 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

g

sing
5.2.13 Exception Program Counter (CP0 Register 14, Select 0)

The Exception Program Counter (EPC)is a read/write register that contains the address at which processin
resumes after an exception has been serviced. All bits of theEPC register are significant and must be writable.

For synchronous(precise) exceptions, theEPC contains one of the following:

• The virtual address of the instruction that was the direct cause of the exception

• The virtual address of the immediately preceding branch or jump instruction, when the exception cau
instruction is in a branch delay slot and theBranch Delay bit in theCause register is set.

On new exceptions, the processor does not write to theEPCregister when the EXL bit in theStatusregister is set.
However, the register can still be written via the MTC0 instruction.

EPC Register Format
31 0

EPC

Table 5-18 EPC Register Field Description

Fields
Description

Read/
Write

Reset State
Name Bit(s)

EPC 31:0 Exception Program Counter. R/W Undefined
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 5-25

Chapter 5: CP0 Registers

he
5.2.14 Processor Identification (CP0 Register 15, Select 0)

TheProcessor Identification (PRId)register is a 32 bit read-only register that contains information identifying t
manufacturer, manufacturer options, processor identification, and revision level of the processor.

Processor Identification Register Format
31 24 23 16 15 8 7 0

R Company ID Processor ID Revision

Table 5-19 PRId Register Field Descriptions

Fields
Description

Read/
Write

Reset State
Name Bit(s)

R 31:24 Reserved. Must be ignored on write and read as zero R Preset

Company
ID

23:16 Identifies the company that designed or manufactured the
processor. In all three cores this field contains a value of
1 to indicate MIPS Technologies, Inc.

R Preset

Processor
ID

15:8 Identifies the type of processor. This field allows software
to distinguish between the various types of MIPS
Technologies processors. For the 4Kc processor, this field
contains a value of 0x80. For the 4Kp and 4Km
processors, the value is 0x83.

R Preset

Revision 7:0 Specifies the revision number of the processor. This field
allows software to distinguish between one revision and
another of the same processor type.

R Preset
5-26 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

ust be
5.2.15 Config Register (CP0 Register 16, Select 0)

TheConfig register specifies various configuration and capabilities information. Most of the fields in theConfig
register are initialized by hardware during the Reset exception process, or are constant. One field, K0, m
initialized by software in the Reset exception handler.

Config Register Format — Select 0
31 30 2827 2524 21 20 19 18 17 16 15 14 13 12 10 9 7 6 3 2 0

M K23 KU R MDU R MM BM BE AT AR MT 0 K0

Table 5-20 Config Register Field Descriptions

Fields
Description

Read/
Write

Reset State
Name Bit(s)

M 31 This bit is hardwired to ‘1’ to indicate the presence of the
Config1 register.

R 1

K23 30:28 This field controls the cacheability of the kseg2 and kseg3
address segments in BAT implementations. This field is
valid in the 4Kp and 4Km processor and is reserved in the
4Kc processor.

Refer to Table 5-21 for the field encoding.

BAT:
R/W

TLB: R

BAT: 010

TLB: 000

KU 27:25 This field controls the cacheability of the kuseg and useg
address segments in BAT implementations. This field is
valid in the 4Kp and 4Km processor and is reserved in the
4Kc processor.

Refer to Table 5-21 for the field encoding.

BAT:
R/W

TLB: R

BAT: 010

TLB: 000

0 24:21 Must be written as 0. Returns 0 on read. 0 0

MDU 20 This bit indicates the MDU type.

0 = Fast Multiplier Array (4Kc and 4Km cores)

1 = Iterative multiplier (4Kp cores)

R Preset

0 19 Must be written as 0. Returns 0 on read. 0 0
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 5-27

Chapter 5: CP0 Registers
MM 18:17 This field contains the merge mode for the 32-byte
collapsing write buffer:

00 = No Merging

01 = SysAD Valid merging

10 = Full merging

11 = Reserved

R Externally Set

BM 16 Burst order.

0: Sequential

1: SubBlock

R Externally Set

BE 15 Indicates the endian mode in which the processor is
running:

 0: Little endian

 1: Big endian

R Externally Set

AT 14:13 Architecture type implemented by the processor. This field
is always 00 to indicate MIPS32.

R 00

AR 12:10 Architecture revision level. This field is always 000 to
indicate revision 1.

 0: Revision 1

 1-7: Reserved

R 000

MT 9:7 MMU Type:

1: Standard TLB (4Kc core)

3: Fixed Mapping (4Kp, 4Km cores)

0, 2, 4-7: Reserved

R Preset

0 6:3 Must be written as zero; returns zero on read. 0 0

K0 2:0 Kseg0 coherency algorithm. Refer to Table 5-21 for the
field encoding.

R/W 010

Table 5-20 Config Register Field Descriptions(continued)

Fields
Description

Read/
Write

Reset State
Name Bit(s)
5-28 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

.
2.
Table 5-21 Cache Coherency Attributes

C(2:0) Value Cache Coherency Attribute

0, 1, 3*, 4, 5, 6 Cacheable, noncoherent, write-through, no write allocate

2*, 7 Uncached

* These two values are required by the MIPS32 architecture. In the 4K processor cores, all other values are not used
For example, values 0, 1, 4, 5 and 6 are not used and are mapped to 3. The value 7 is not used and is mapped to

Note that these values do have meaning in other MIPS Technologies processor implementations. Refer to the MIPS32
specification for more information.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 5-29

Chapter 5: CP0 Registers

elds

the line
5.2.16 Config1 Register (CP0 Register 16, Select 1)

TheConfig1register is an adjunct to the Config register and encodes additional capabilities information. All fi
in the Config1 register are read-only.

The instruction and data cache configuration parameters include encodings for the number of sets per way,
size, and the associativity. The total cache size for a cache is therefore:

Associativity * Line Size * Sets Per Way

If the line size is zero, there is no cache implemented.

Config1 Register Format — Select 1
31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 4 3 2 1 0

0 MMU Size IS IL IA DS DL DA 0 PC WR CA EP FP

Table 5-22 Config1 Register Field Descriptions — Select 1

Fields
Description

Read/
Write

Reset State
Name Bit(s)

0 31 This bit is reserved to and must be read or written as zero. R Preset

MMU Size 30:25 This field contains the number of entries in the TLB minus
one. The field is read as 15 decimal in the 4Kc processor
and as 0 decimal in the 4Kp and 4Km processors.

R Preset

IS 24:22 This field contains the number of instruction cache sets per
way. Three options are available in all the 4K cores. All
others values are reserved:

0x0: 64

0x1: 128

0x2: 256

0x3 - 0x7: Reserved

R Preset
5-30 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

IL 21:19 This field contains the instruction cache line size. If an
instruction cache is present, it must contain a fixed line size
of 16 bytes.

0x0: No Icache present

0x3: 16 bytes

0x1, 0x2, 0x4 - 0x7: Reserved

R Preset

IA 18:16 This field contains the level of instruction cache
associativity.

0x0: Direct mapped

0x1: 2-way

0x2: 3-way

0x3: 4-way

0x4 - 0x7: Reserved

R Preset

DS 15:13 This field contains the number of data cache sets per way:

0x0: 64

0x1: 128

0x2: 256

0x3 - 0x7: Reserved

R Preset

DL 12:10 This field contains the data cache line size. If a data cache
is present, it must contain a line size of 16 bytes.

0x0: No Dcache present

0x3: 16 bytes

0x1, 0x2, 0x4 - 0x7: Reserved

R Preset

DA 9:7 This field contains the type of set associativity for the data
cache:

0x0: Direct mapped

0x1: 2-way

0x2: 3-way

0x3: 4-way

0x4 - 0x7: Reserved

R Preset

Table 5-22 Config1 Register Field Descriptions — Select 1(continued)

Fields
Description

Read/
Write

Reset State
Name Bit(s)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 5-31

Chapter 5: CP0 Registers
0 6:5 Must be written as zero; returns zero on read. 0 0

PC 4 Performance Counter registers implemented. Always a 0
since the cores do not implement any.

R 0

WR 3 Watch registers implemented. This bit is always read as 1
since the cores each contain one pair of Watch registers.

R 1

CA 2 Code compression (MIPS16™) implemented. This bit is
always read as 0 because MIPS16 is not supported.

R 0

EP 1 EJTAG present: This bit is always set to indicate that the
core implements EJTAG.

R 1

FP 0 FPU implemented. This bit is always zero since the core
does not contain a floating point unit.

R 0

Table 5-22 Config1 Register Field Descriptions — Select 1(continued)

Fields
Description

Read/
Write

Reset State
Name Bit(s)
5-32 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

his
5.2.17 Load Linked Address (CP0 Register 17, Select 0)

TheLLAddr register contains the physical address read by the most recent Load Linked (LL) instruction. T
register is for diagnostic purposes only and serves no function during normal operation.

Load Linked Address Register Format
31 28 27 0

0 PAddr[31:4]

Table 5-23 LLAddr Register Field Descriptions

Fields
Description

Read/
Write

Reset State
Name Bit(s)

0 31:28 Must be written as zero; returns zero on read. 0 0

PAddr[31:4] 27:0 This field encodes the physical address read by the most
recent Load Linked instruction.

R Undefined
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 5-33

Chapter 5: CP0 Registers

s a
 they
L bits

ore) to
5.2.18 WatchLo Register (CP0 Register 18)

TheWatchLo andWatchHi registers together provide the interface to a watchpoint debug facility that initiate
watch exception if an instruction or data access matches the address specified in the registers. As such,
duplicate some functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ER
are zero in theStatusregister. If either bit is a one, the WP bit is set in theCauseregister, and the watch exception
is deferred until both the EXL and ERL bits are zero.

TheWatchLoregister specifies the base virtual address and the type of reference (instruction fetch, load, st
match.

WatchLo Register Format
31 3 2 1 0

VAddr I R W

Table 5-24 WatchLo Register Field Descriptions

Fields
Description

Read/
Write

Reset State
Name Bits

VAddr 31:3 This field specifies the virtual address to match. Note that
this is a doubleword address, since bits [2:0] are used to
control the type of match.

R/W Undefined

I 2 If this bit is set, watch exceptions are enabled for
instruction fetches that match the address.

R/W 0 for Cold
Reset only.

R 1 If this bit is set, watch exceptions are enabled for loads that
match the address.

R/W 0 for Cold
Reset only.

W 0 If this bit is set, watch exceptions are enabled for stores that
match the address.

R/W 0 for Cold
Reset only.
5-34 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

s a
 they
L bits

atches
es for
5.2.19 WatchHi Register (CP0 Register 19)

TheWatchLo andWatchHi registers together provide the interface to a watchpoint debug facility that initiate
watch exception if an instruction or data access matches the address specified in the registers. As such,
duplicate some functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ER
are zero in theStatusregister. If either bit is a one, the WP bit is set in theCauseregister, and the watch exception
is deferred until both the EXL and ERL bits are zero.

TheWatchHiregister contains information that qualifies the virtual address specified in theWatchLoregister: an
ASID, a G(lobal) bit, and an optional address mask. If the G bit is 1, any virtual address reference that m
the specified address will cause a watch exception. If the G bit is a 0, only those virtual address referenc
which the ASID value in theWatchHi register matches the ASID value in theEntryHi register cause a watch
exception. The optional mask field provides address masking to qualify the address specified inWatchLo.

WatchHi Register Format
31 30 29 24 23 16 15 12 11 3 2 1 0

0 G 0 ASID 0 MASK 0

Table 5-25 WatchHi Register Field Descriptions

Fields
Description

Read/
Write

Reset State
Name Bit(s)

0 31 Must be written as zero; returns zero on read. 0 0

G 30 If this bit is one, any address that matches that specified in
theWatchLoregister causes a watch exception. If this bit
is zero, the ASID field of theWatchHiregister must match
the ASID field of theEntryHi register to cause a watch
exception.

R/W Undefined

0 29:24 Must be written as zero; returns zero on read. 0 0

ASID 23:16 ASID value which is required to match that in theEntryHi
register if the G bit is zero in theWatchHi register.

R/W Undefined

0 15:12 Must be written as zero; returns zero on read. 0 0
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 5-35

Chapter 5: CP0 Registers
Mask 11:3 Bit mask that qualifies the address in theWatchLo
register. Any bit in this field that is a set inhibits the
corresponding address bit from participating in the
address match.

R/W Undefined

0 2:0 Must be written as zero; returns zero on read. 0 0

Table 5-25 WatchHi Register Field Descriptions(continued)

Fields
Description

Read/
Write

Reset State
Name Bit(s)
5-36 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

e debug
he read
taken

and
m

shown

bug

e

d, e.g.
5.2.20 Debug Register (CP0 Register 23)

The Debug register is used to control the debug exception and provide information about the cause of th
exception and when re-entering at the debug exception vector due to a normal exception in debug mode. T
only information bits are updated every time the debug exception is taken or when a normal exception is
when already in debug mode.

Only the DM bit and the EJTAGver field are valid when read from non-debug mode; the value of all other bits
fields is UNPREDICTABLE. Operation of the processor is UNDEFINED if the Debug register is written fro
non-debug mode.

Some of the bits and fields are only updated on debug exceptions and/or exceptions in debug mode, as
below:

• DSS, DBp, DDBL, DDBS, DIB, DINT are updated on both debug exceptions and on exceptions in de
modes

• DExcCode is updated on exceptions in debug mode, and is undefined after a debug exception

• Halt and Doze are updated on a debug exception, and is undefined after an exception in debug mod

• DBD is updated on both debug and on exceptions in debug modes

All bits and fields are undefined when read from normal mode, except those explicitly described to be define
EJTAGver and DM.

Debug Register Format

31 30 29 28 27 26 25 24
2
3

2
2

21 20
1
9

1
8

1
7

1
5

1
4

1
0

9 8 76 5 4 3 2 1 0

DB
D

D
M

R LSN
M

Doz
e

Halt CountD
M

IBusE
P

R DBus
EP

IEX
I

R Ver DExcC
ode

R SS
t

R DIN
T

DI
B

DDB
S

DDB
L

DB
p

DS
S

MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 5-37

Chapter 5: CP0 Registers
Table 5-26 Debug Register Field Descriptions

Fields
Description

Read/
Write

Reset
Mnemonic Bit(s)

DBD 31 Indicates whether the last debug exception or
exception in debug mode, occurred in a branch
delay slot:
0: Not in delay slot
1: In delay slot

R Undefined

DM 30 Indicates that the processor is operating in
debug mode:
0: Processor is operating in non-debug mode
1: Processor is operating in debug mode

R 0

R 29 Reserved. Must be written as zero; returns zero
on read.

0 0

LSNM 28 Controls access of load/store between dseg and
remain memory:
0: Load/stores in dseg address range goes to
dseg.
1: Load/stores in dseg address range goes to
remain memory.

R/W 0

Doze 27 Indicates that the processor was in any kind of
low power mode when a debug exception
occurred:
0: Processor not in low power mode when
debug exception occurred
1: Processor in low power mode when debug
exception occurred

R Undefined

Halt 26 Indicates that the internal system bus clock
was stopped when the debug exception
occurred:
0: Internal system bus clock stopped
1: Internal system bus clock running

R Undefined
5-38 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

CountDM 25 Indicates the Count register behavior in debug
mode.
Encoding of the bit is:
0: Count register stopped in debug mode
1: Count register is running in debug mode

R 1

IBusEP 24 Instruction fetch Bus Error exception Pending.
Set when an instruction fetch bus error event
occurs or if a 1 is written to the bit by soft-
ware.Cleared when a Bus Error exception on
instruction fetch is taken by the processor, and
by reset. If IBusEP is set when IEXI is cleared,
a Bus Error exception on instruction fetch is
taken by the processor, and IBusEP is cleared.

R/W1 0

R 23:22 Reserved. Must be written as zero; returns zero
on read.

0 0

DBusEP 21 Data access Bus Error exception Pending.Cov-
ers imprecise bus errors on data access, similar
to behavior of IBusEP for imprecise bus errors
on an instruction fetch.

R/W1 0

IEXI 20 Imprecise Error eXception Inhibit controls
exceptions taken due to imprecise error indica-
tions. Set when the processor takes a debug
exception or exception in debug mode. Cleared
by execution of the DERET instruction.
Other-wise modifiable by debug mode soft-
ware. When IEXI is set then the imprecise
error exceptions from bus error on instruction
fetch or data access, cache error or machine
check are inhibited and deferred until the bit is
cleared.

R/W 0

R 19:18 Reserved. Must be written as zero; returns zero
on read.

0 0

Table 5-26 Debug Register Field Descriptions(continued)

Fields
Description

Read/
Write

Reset
Mnemonic Bit(s)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 5-39

Chapter 5: CP0 Registers
Ver 17:15 EJTAG version R 1

DExcCode 14:10 Indicates the cause of the latest exception in
debug mode. The field is encoded as the Exc-
Code field in the Cause register for those nor-
mal exceptions that may occur in debug mode.
Value is undefined after a debug exception.

R Undefined

R 9 Reserved. Must be written as zero; returns zero
on read.

0 0

SSt 8 Controls if debug single step exception is
enabled:
0: No debug single step exception enabled
1: Debug single step exception enabled

R/W 0

R 7:6 Reserved. Must be written as zero; returns zero
on read.

0 0

DINT 5 Indicates that a debug interrupt exception
occurred. Cleared on exception in debug mode.
0: No debug interrupt exception
1: Debug interrupt exception

R Undefined

DIB 4 Indicates that a debug instruction break excep-
tion occurred. Cleared on exception in debug
mode.
0: No debug instruction exception
1: Debug instruction exception

R Undefined

DDBS 3 Indicates that a debug data break exception
occurred on a store. Cleared on exception in
debug mode.
0: No debug data exception on a store
1: Debug instruction exception on a store

R Undefined

Table 5-26 Debug Register Field Descriptions(continued)

Fields
Description

Read/
Write

Reset
Mnemonic Bit(s)
5-40 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

DDBL 2 Indicates that a debug data break exception
occurred on a load. Cleared on exception in
debug mode.
0: No debug data exception on a load
1: Debug instruction exception on a load

R Undefined

DBp 1 Indicates that a debug software breakpoint
exception occurred. Cleared on exception in
debug mode.
0: No debug software breakpoint exception
1: Debug software breakpoint exception

R Undefined

DSS 0 Indicates that a debug single step exception
occurred. Cleared on exception in debug mode.
0: No debug single step exception
1: Debug single step exception

R Undefined

Table 5-26 Debug Register Field Descriptions(continued)

Fields
Description

Read/
Write

Reset
Mnemonic Bit(s)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 5-41

Chapter 5: CP0 Registers

t which

ion
ter is

uction
5.2.21 Debug Exception Program Counter Register (CP0 Register 24)

The Debug Exception Program Counter (DEPC) register is a read/write register that contains the address a
processing resumes after a debug exception or debug mode exception has been serviced.

For synchronous (precise) debug and debug mode exceptions, the DEPC contains either:

• The virtual address of the instruction that was the direct cause of the debug exception, or

• The virtual address of the immediately preceding branch or jump instruction, when the debug except
causing instruction is in a branch delay slot, and the Debug Branch Delay (BDB) bit in the Debug regis
set.

For asynchronous debug exceptions (debug interrupt), the DEPC contains the virtual address of the instr
where execution should resume after the debug handler code is executed.

Debug Exception Program Counter Register Format
31 0

DEPC

Table 5-27 Debug Register Formats

Fields
Description

Read/
Write

Reset
Mnemonic Bit(s)

DEPC 31:0 The DEPC register is updated with the virtual address of
the instruction that caused the debug exception. If the
instruction is in the branch delay slot, the virtual address
of the immediately preceding branch or jump instruction
is placed in this register.

Execution of the DERET instruction causes a jump to the
address in the DEPC.

 R/W Undefined
5-42 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

rations
4K
5.2.22 TagLo Register (CP0 Register 28, Select 0)

TheTagLoregister acts as the interface to the cache tag array. The Index Store Tag and Index Load Tag ope
of the CACHE instruction use theTagLoregister as the source of tag information, respectively. Note that the
cores do not implement the TagHi register.

TagLo Register Format
31 10 9 8 7 6 5 4 3 2 1 0

PA R Valid R L LRF R

Table 5-28 TagLo Register Field Descriptions

Fields
Description

Read/
Write

Reset State
Name Bit(s)

PA 31:10 This field contains the physical address of the cache line
being stored.

R/W Undefined

R 9:8 Must be written as zero; returns zero on read. 0 0

Valid 7:4 This field indicates whether the corresponding word in the
cache line is valid in the cache.

R/W Undefined

R 3 Must be written as zero; returns zero on read. 0 0

L 2 Specifies the lock bit for the cache tag. When this bit is set,
the corresponding cache line should not be replaced by the
cache replacement algorithm.

R/W Undefined

LRF 1 LRF. One bit of the LRF bits for the set this cache line is a
part of. This bit is inverted every time a new cache line is
filled in the cache entry.

R/W Undefined

R 0 Must be written as zero; returns zero on read. 0 0
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 5-43

Chapter 5: CP0 Registers

ded for
g data
5.2.23 DataLo Register (CP0 Register 28, Select 1)

TheDataLo register is a read-only register that acts as the interface to the cache data array and are inten
diagnostic operations only. The Index Load Tag operation of the CACHE instruction reads the correspondin
values into theDataLo register. Note that the 4K cores do not implement the DataHi register.

DataLo Register Format
31 0

DATA

Table 5-29 DataLo Register Field Description

Fields
Description

Read/W
rite

Reset
StateName Bit(s)

DATA 31:0 Low-order data read from the cache data array. R Undefined
5-44 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

ing an
5.2.24 ErrorEPC (CP0 Register 30, Select 0)

TheErrorEPC register is a read-write register, similar to theEPCregister, except thatErrorEPC is used on error
exceptions. All bits of theErrorEPC register are significant and must be writable. It is also used to store the
program counter on Reset, Soft Reset, and nonmaskable interrupt (NMI) exceptions.

TheErrorEPC register contains the virtual address at which instruction processing can resume after servic
error. This address can be:

• The virtual address of the instruction that caused the exception

• The virtual address of the immediately preceding branch or jump instruction when the error causing
instruction is in a branch delay slot

Unlike theEPC register, there is no corresponding branch delay slot indication for theErrorEPC register.

ErrorEPC Register Format
31 0

ErrorEPC

Table 5-30 ErrorEPC Register Field Description

Fields
Description

Read/
Write

Reset State
Name Bit(s)

ErrorEPC 31:0 Error Exception Program Counter R/W Undefined
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 5-45

Chapter 5: CP0 Registers

cation.
he rest of

 saving
5.2.25 DeSave Register (CP0 Register 31)

The Debug Exception Save (DeSave) register is a read/write register that functions as a simple memory lo
This register is used by the debug exception handler to save one of the GPRs that is then used to save t
the context to a pre-determined memory area (such as in the EJTAG Probe). This register allows the safe
debugging of exception handlers and other types of code where the existence of a valid stack for context
cannot be assumed.

DeSave Register Format
31 0

DESAVE

Table 5-31 DeSave Register Description

Bit(s) Mnemonic Description R/W Reset

31:0 DESAVE Debug exception save contents. R/W Undefined
5-46 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

re to
Chapter 6

6.Hardware and Software Initialization

The MIPS32 4K™ processor cores have only a minimal amount of hardware initialization and rely on softwa
fully initialize the device.

This chapter contains the following sections:

• Section 6.1, "Hardware Initialized Processor State"

• Section 6.2, "Software Initialized Processor State"
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 6-1

Chapter 6: Hardware and Software Initialization

set of
ed code
ring the
need as

ode,
6.1 Hardware Initialized Processor State

The 4K processor cores, like most MIPS processors, are not fully initialized by reset. Only a minimal sub
the processor state is cleared. This is enough to bring the core up while running in unmapped and uncach
space. All other processor states can then be initialized by software. Reset is asserted after power-up to b
device into a known state. SoftReset can be used when the device is already up and running and does not
much initialization.

6.1.1 Coprocessor Zero State

Much of the hardware initialization occurs in Coprocessor Zero.

• Random (4Kc core only)- Set to maximum value on Reset

• Wired (4Kc core only)- Set to 0 on Reset

• StatusBEV - set to 1 on Reset/SoftReset

• StatusTS - cleared to 0 on Reset/SoftReset

• StatusSR - cleared to 0 on Reset, set to 1 on SoftReset

• StatusNMI - cleared to 0 on Reset/SoftReset

• StatusERL - set to 1 on Reset/SoftReset

• StatusRP - set to 0 on Reset

• WatchLoI,R,W - cleared to 0 on Reset

• Config fields related to static inputs - set to input value by Reset

• ConfigK0 - set to 010 on Reset

• ConfigKU - set to 010 on Reset (4Km™ and 4Kp™ cores only)

• ConfigK23 - set to 010 on Reset (4Km and 4Kp cores only)

• DebugDM - cleared to 0 on Reset/SoftReset (unless EJTAGBOOT option is used to boot into DebugM
see EJTAG chapter for details)

• DebugLSNM - cleared to 0 on Reset/SoftReset

• DebugIBusEP - cleared to 0 on Reset/SoftReset

• DebugDBusEP - cleared to 0 on Reset/SoftReset

• DebugIEXI - cleared to 0 on Reset/SoftReset
6-2 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Software Initialized Processor State

entry
e
isible

Reset or

during

PA
do not

st of
ing to
• DebugSSt - cleared to 0 on Reset/SoftReset

6.1.2 TLB Initialization (4Kc core only)

Each 4Kc TLB entry has a “hidden” state bit which is set by Reset/SoftReset and is cleared when the TLB
is written. This bit disables matches and prevents “TLB Shutdown” conditions from being generated by th
power-up values in the TLB array (when two or more TLB entries match on a single address). This bit is not v
to software.

6.1.3 Bus State Machines

All pending bus transactions are aborted and the state machines in the bus interface unit are reset when a
SoftReset exception is taken.

6.1.4 Static Configuration Inputs

All static configuration inputs (defining the bus mode and cache size for example) should only be changed
Reset.

6.1.5 Fetch Address

Upon Reset/SoftReset, unless the EJTAGBOOT option is used, the fetch is directed to VA 0xBFC00000 (
0x1FC00000). This address is in KSeg1,which is unmapped and uncached, so that the TLB and caches
require hardware unitization.

6.2 Software Initialized Processor State

Software is required to initialize the following parts of the device.

6.2.1 Register File

The register file powers up in an unknown state with the exception of r0 which is always 0. Initializing the re
the register file is not required for proper operation. Good code will generally not read a register before writ
it, but the boot code can initialize the register file for added safety.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 6-3

Chapter 6: Hardware and Software Initialization

neric

uld be

e cache

 in an

which
ng

.

nd

 clear

licitly
alized
6.2.2 TLB (4Kc Core Only)

Because of the hidden bit indicating initialization, the 4Kc core does not require TLB initialization upon
ColdReset. This is an implementation specific feature of the 4Kc core and cannot be relied upon if writing ge
code for MIPS32/64 processors. When initializing the TLB, care must be taken to avoid creating a “TLB
Shutdown” condition where two TLB entries could match on a single address. Unique virtual addresses sho
written to each TLB entry to avoid this

6.2.3 Caches

The cache tag and data arrays power up to an unknown state and are not affected by reset. Every tag in th
arrays should be initialized to an invalid state using the CACHE instruction (typically the Index Invalidate
function). This can be a long process, especially since the instruction cache initialization needs to be run
uncached address region.

6.2.4 Coprocessor Zero state

Miscellaneous Cop0 state needs to be initialized prior to leaving the boot code. There are various exceptions
are blocked by ERL=1 or EXL=1 and which are not cleared by Reset. These can be cleared to avoid taki
spurious exceptions when leaving the boot code.

• Cause: WP (Watch Pending), SW0/1 (Software Interrupts) should be cleared.

• Config: K0 should be set to the desired Cache Coherency Algorithm (CCA) prior to accessing KSeg0

• Config: (4Km and 4Kp cores only) KU and K23 should be set to the desired CCA for USeg/KUSeg a
KSeg2/3 respectively prior to accessing those regions.

• Count: Should be set to a known value if Timer Interrupts are used.

• Compare: Should be set to a known value if Timer Interrupts are used. The write to compare will also
any pending Timer Interrupts (Thus, Count should be set before Compare to avoid any unexpected
interrupts).

• Status: Desired state of the device should be set.

• Other Cop0 state: Other registers should be written before they are read. Some registers are not exp
writeable, and are only updated as a by-product of instruction execution or a taken exception. Uniniti
bits should be masked off after reading these registers.
6-4 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

s sizes,
ociative,
essed in
cessed in
Chapter 7

7.Caches

The instruction and data cache controllers of the MIPS32 4K™ processor cores support caches of variou
organizations, and set-associativity. For example, the data cache can be 2 Kbytes in size and 2-way set ass
while the instruction cache can be 8 Kbytes in size and 4-way set associative. Each cache can each be acc
a single processor cycle. In addition, each cache has its own 32-bit data path and both caches can be ac
the same pipeline clock cycle.

This chapter contains the following sections.

• Section 7.1, "Cache Protocols"

• Section 7.2, "Instruction Cache"

• Section 7.3, "Data Cache"

Table 7-1 lists the instruction and data cache attributes:

Table 7-1 Instruction and Data Cache Attributes

Parameter Instruction Data

Size 0 - 16 Kbytes 0 - 16 Kbytes

Number of Cache Sets 0, 64, 128 and 256 0, 64, 128 and 256

Lines Per Set (Associativity) 1 - 4 way set associative 1 - 4 way set associative

Line Size 16 bytes 16 bytes

Read Unit 32-bits 32-bits

Write Policy N/A write-throughwithout
write-allocate

Miss restart after transfer of miss word miss word

Cache Locking per line per line
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 7-1

Chapter 7: Caches

e
be 1-,

o such

e if the
is also
The core provides a flexible cache configuration structure that allows the instruction and data caches to b
configured in any combination of ways based on the following sizes. All of the cache sizes listed below can
2-, 3-, or 4-way set associative.

7.1 Cache Protocols

All the 4K cores support the following cache protocols:

• Uncached: Addresses in a memory area indicated as uncached are not read from the cache. Stores t
addresses are written directly to main memory, without changing cache contents.

• Write-through : Loads and instruction fetches first search the cache, reading main memory only if the
desired data does not reside in the cache. On data store operations, the cache is first searched to se
target address is cache resident. If it is resident, the cache contents are updated, and main memory
written. If the cache lookup misses, only main memory is written.

Table 7-2 Instruction and Data Cache Sizes

Cache Size Way Organization Options

0K No cache

1K One 1K way

2K One 2K way

Two 1K ways

3K Three 1K ways

4K One 4K way

Two 2K ways

Four 1K ways

6K Three 2K ways

8K Two 4K ways

Four 2K ways

12K Three 4K ways

16K Four 4K ways
7-2 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Cache

cally
 rather
id bits,

ocked
stem

locked

gged
han
a lock

 to the
nts can

cked or
7.2 Instruction Cache

The instruction cache is an optional on-chip memory block of up to 16 Kbytes. The virtually indexed, physi
tagged cache allows the virtual-to-physical address translation to occur in parallel with the cache access
than having to wait for the physical address translation. The tag contains 22 bits of physical address, 4 val
a lock bit, and the FIFO replacement bit.

All the cores support instruction cache-locking. Cache locking allows critical code or data segments to be l
into the cache on a “per-line” basis, enabling the system programmer to maximize the efficiency of the sy
cache.

The cache locking function is always enabled on all instruction cache entries. Entries can then be marked as
or unlocked on a per entry basis using the CACHE instruction.

7.3 Data Cache

The data cache is an optional on-chip memory block of up to 16 Kbytes. The virtually indexed, physically ta
cache allows the virtual-to-physical address translation to occur in parallel with the cache access rather t
having to wait for the physical address translation. The tag contains 22 bits of physical address, 4 valid bits,
bit, and the FIFO replacement bit.

In addition to instruction cache locking, the core also supports a data cache locking mechanism identical
instruction cache. Critical data segments to be locked into the cache on a “per-line” basis. The locked conte
be updated on a store hit, but cannot be selected for replacement on a store miss.

The cache locking function is always enabled on all data cache entries. Entries can then be marked as lo
unlocked on a per entry basis using the CACHE instruction.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 7-3

Chapter 7: Caches
7-4 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

esign,
a WAIT
system

s.
Chapter 8

8.Power Management

The MIPS32 4K™ processor cores offer a number of power management features, including low-power d
active power management and power-down modes of operation. The core is a static design that supports
instruction designed to signal the rest of the device that execution and clocking should be halted, reducing
power consumption during idle periods.

The core provides two mechanisms for system level low power support discussed in the following section

• Section 8.1, "Register Controlled Power Management"

• Section 8.2, "Instruction Controlled Power Management"
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 8-1

Chapter 8: Power Management

r state.
, and
n

can then

nding
et. The
ernal
ocks and

xternal
d service

en the
e clocks.

e as the
s in

e bus
d and

set,
es the
8.1 Register Controlled Power Management

The RP bit in the CP0 Status register a standard software mechanism for placing the system into a low powe
The state of the RP bit is available externally via the SI_RP signal. Three additional pins, SI_EXL, SI_ERL
EJ_DebugM support the power management function by allowing the user to change the power state if a
exception or error occurs while the core is in a low power state.

Setting the RP bit of the CP0 Status register causes the core to assert the SI_RP signal. The external agent
decide whether to reduce the clock frequency and place the core into power down mode.

If an interrupt is taken while the device is in power down mode, that interrupt may need to be serviced depe
on the needs of the application. The interrupt causes an exception which in turn causes the EXL bit to be s
setting of the EXL bit causes the assertion of the SI_EXL signal on the external bus, indicating to the ext
agent that an interrupt has occurred. At this time the external agent can choose to either speed up the cl
service the interrupt or let it be serviced at the lower clock speed.

The setting of the ERL bit causes the assertion of the SI_ERL signal on the external bus, indicating to the e
agent that an error has occurred. At this time the external agent can choose to either speed up the clocks an
the error or let it be serviced at the lower clock speed.

Similarly, the EJ_DebugM signal indicates that the processor is in debug mode. Debug mode is entered wh
processor takes a debug exception. If fast handling of this is desired, the external agent can speed up th

The core provides 4power down signals that are part of the system interface. Three of the pins change stat
corresponding bits in the CP0Status register are set or cleared. The fourth pin indicates that the processor i
debug mode.

• The SI_RP signal represents the state of the RP bit (27) in the CP0 Status register.

• The SI_EXL signal represents the state of the EXL bit (1) in the CP0 Status register.

• The SI_ERL signal represents the state of the ERL bit (2) in the CP0 Status register.

• The EJ_DebugM signal indicates that the processor has entered debug mode

8.2 Instruction Controlled Power Management

The second mechanism for invoking power down mode is through execution of the WAIT instruction. If th
is idle at the time the WAIT instruction reaches the M stage of the pipeline the internal clocks are suspende
the pipeline is frozen. However, the internal timer and some of the input pins (SI_Int[5:0], SI_NMI, SI_Re
SI_ColdReset, and EJ_DINT) continue to run. If the bus is not idle at the time the WAIT instruction reach
8-2 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Controlled Power Management

U is in
INT,

is
ip is.
M stage, the pipeline stalls until the bus becomes idle, at which time the clocks are stopped. Once the CP
instruction controlled power management mode, any enabled interrupt, NMI, debug interrupt through EJ_D
or reset condition causes the CPU to exit this mode and resume normal operation. While the part is in th
low-power mode, the SI_SLEEP signal is asserted to indicate to external agents what the state of the ch
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 8-3

Chapter 8: Power Management
8-4 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

ware
Chapter 9

9.EJTAG Debug Support

The EJTAG debug logic in the MIPS32 4K™ processor cores provide two optional modules, one for hard
breakpoints, and the other a Test Access Port (TAP) for a dedicated connection to a debug host.

This chapter contains the following sections.

• Section 9.1, "Debug Control Register"

• Section 9.2, "Hardware Breakpoints"

• Section 9.3, "Test Access Port Operation"

• Section 9.4, "Test Access Port (TAP) Instructions"

• Section 9.5, "EJTAG Registers"

• Section 9.6, "Processor Accesses"
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 9-1

Chapter 9: EJTAG Debug Support

lways

ebug

ition
NMIE

ft reset
, thus
“half”

ective,

to the
he table
9.1 Debug Control Register

The Debug Control Register (DCR) register controls and provides information about debug issues, and is a
provided with the CPU core. The register is memory mapped in drseg at offset 0x0.

The DataBrk and InstBrk bits indicates if hardware breakpoints are included in the implementation, and d
software is expected to read hardware breakpoint registers for additional information.

Hardware and software interrupts are maskable for non-debug mode with the INTE bit, which works in add
to the other mechanisms for interrupt masking and enabling. NMI is maskable in non-debug mode with the
bit, and a pending NMI is indicated through the NMIP bit.

The SRE bit allows implementation dependent masking of none, some or all sources for soft reset. The so
masking may only be applied to a soft reset source, if that source can be efficiently masked in the system
resulting on no reset at all. If that is not possible, then that soft reset source should not be masked, since a
soft reset may cause the system to fail or hang. There is no automatic indication of whether the SRE is eff
but the user must consult system documentation.

The PE bit reflects the ProbEn bit from the EJTAG Control register (ECR), whereby the probe can indicate
debug software running on the CPU if the probe expects to service dmseg accesses. The reset value in t
below takes effect on both hard and soft reset.

Debug Control Register
31 30 29 28 18 17 16 15 5 4 3 2 1 0

Res ENM Res DB IB Res INTE NMIE NMIP SRE PE

Table 9-1 Debug Control Register Field Descriptions

Fields
Description

Read/
Write

Reset State
Name Bit(s)

Res 31:30 reserved R 0

ENM 29 Endianess in Kernel and Debug mode
This bit indicates the endianess in Kernel and Debug
mode.

0: Little Endian
1: Big Endian

R Preset

Res 28:18 reserved R 0
9-2 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

DB 17 Data Break Implemented
This bit indicates if the Data Break feature is implemented.

0: No Data Break feature implemented
1: Data Break feature is implemented

R Preset

IB 16 Instruction Break Implemented
This bit indicates if the Instruction Break feature is
implemented.

0: No Instruction Break feature implemented
1: Instruction Break feature is implemented

R Preset

Res 5:15 reserved R 0

INTE 4 Interrupt Enable in Normal Mode. This bit provides the
hardware and software interrupt enable for non-debug
mode, in addition to other masking mechanisms:

0: Interrupt disabled.
1: Interrupts enabled (depending on other enabling
mechanisms).

 R/W 1

NMIE 3 Non-Maskable Interrupt Enable for non-debug mode

0: NMI disabled.
1: NMI enabled.

R/W 1

NMIP 2 NMI Pending Indication.

0: No NMI pending.
1: NMI pending.

R 0

SRE 1 Soft Reset Enable

This bit allows the system to mask soft resets. The core
does not internally mask soft reset. Rather the state of this
bit appears on the EJ_SRstE external output signal,
allowing the system to mask soft resets if desired.

R/W 1

Table 9-1 Debug Control Register Field Descriptions(continued)

Fields
Description

Read/
Write

Reset State
Name Bit(s)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 9-3

Chapter 9: EJTAG Debug Support

re
akpoints
alike for
kpoint,

s and

etween
MU.

 the
9.2 Hardware Breakpoints

Hardware breakpoints provide for the comparison by hardware of executed instructions and data load/sto
transactions. It is possible to set instruction breakpoints on addresses even in ROM area, and set data bre
to cause a debug exception on a specific data transaction. Instruction and data hardware breakpoints are
may aspects, and are thus described in parallel in the following. The term hardware is not applied to brea
unless required to distinguish it from software breakpoint.

There are two types of simple hardware breakpoints implemented in the 4K cores; Instruction breakpoint
Data breakpoints.

Each core can be configured with the following breakpoint options:

• No data or instruction breakpoints

• Two instruction and one data breakpoint

• Four instruction and two data breakpoints

9.2.1 Features of Instruction Breakpoint

Instruction breaks occur on instruction fetch operations and the break is set on virtual address on the bus b
the CPU and the instruction cache. Instruction breaks can also be made on the ASID value used by the M
Finally, a mask can be applied to the virtual address to set breakpoints on a range of instructions.

Instruction breakpoints compare the virtual address of the executed instructions (PC) and the ASID, with
registers for each instruction breakpoint including masking of address and ASID. Overview is shown in
Figure 9-1.

PE 0 Probe Enable

This bit reflects the ProbEn bit in the EJTAG Control
register.

0: No accesses to dmseg allowed
1: EJTAG probe services accesses to dmseg

R Same value as
ProbEn in

ECR

(see Table
9-23)

Table 9-1 Debug Control Register Field Descriptions(continued)

Fields
Description

Read/
Write

Reset State
Name Bit(s)
9-4 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Hardware Breakpoints

n the

, similar
also be
and the

f the
ach

the data
ebug
by the
Figure 9-1 Instruction Hardware Breakpoint Overview

When a instruction breakpoint matches, a debug exception and/or a trigger is generated. An internal bit i
instruction breakpoint registers is set to indicate that the match occurred.

9.2.2 Features of Data Breakpoint

Data breakpoints occur on load/store transactions. Breakpoints are set on virtual address and ASID values
to the Instruction breakpoint. Data breakpoints can be set on a load, a store or both. Data breakpoints can
set based on the value of the load/store operation. Finally, masks can be applied to both the virtual address
load/store value.

Data breakpoints compare the transaction type (TYPE), which may be load or store, the virtual address o
transaction (ADDR), the ASID, accessed bytes (BYTELANE) and data value (DATA), with the registers for e
data breakpoint including masking or qualification on the transaction properties. An overview is shown in
Figure 9-2.

Figure 9-2 Data Hardware Breakpoint Overview

When a data breakpoint matches, a debug exception and/or a trigger is generated, and an internal bit in
breakpoint registers is set to indicate that the match occurred. The match is either precise whereby the d
exception or trigger occurs on the instruction that caused the breakpoint to match, or it is imprecise where
debug exception or trigger occurs later in the program flow.

Instruction
Hardware
Breakpoint

Debug Exception

Trigger IndicationASID

PC

Data
Hardware
Breakpoint

TYPE

ASID
Debug Exception

Trigger Indication

ADDR

DATA

BYTELANE
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 9-5

Chapter 9: EJTAG Debug Support

le 9-2.

ted by

-4.

ed by n.
9.2.3 Overview of Registers for Instruction Breakpoint

The register with implementation indication and status for instruction breakpoints in general is shown in Tab

The four instruction breakpoints are numbered 0 to 3 for registers and breakpoints, and the number is indica
n. The registers for each breakpoint are shown in Figure 9-3

9.2.4 Registers for Data Breakpoint Setup

The register with implementation indication and status for data breakpoints in general is shown in Table 9

The two data breakpoints are numbered 0 and 1 for registers and breakpoints, and the number is indicat
The registers for each breakpoint are shown in Table 9-5.

Table 9-2 Overview of Status Register for Instruction Breakpoints

Register Mnemonic Register Name and Description

IBS Instruction Breakpoint Status

Table 9-3 Overview of Registers for each Instruction Breakpoint

Register Mnemonic Register Name and Description

IBAn Instruction Breakpoint Address n

IBMn Instruction Breakpoint Address Mask n

IBASIDn Instruction Breakpoint ASID n

IBCn Instruction Breakpoint Control n

Table 9-4 Overview of Status Register for Data Breakpoints

Register Mnemonic Register Name and Description

DBS Data Breakpoint Status

Table 9-5 Overview of Registers for each Data Breakpoint

Register Mnemonic Register Name and Description

DBAn Data Breakpoint Address n
9-6 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Hardware Breakpoints

 data
kpoints
 mode.

and/or

the

r on
for

sked at

 shown

match
9.2.5 Conditions for Matching Breakpoints

A number of conditions must be fulfilled in order for a breakpoint to match on an executed instruction or a
transaction, and the conditions for matching instruction and data breakpoints are described below. The brea
only matches for instructions executed in non-debug mode, thus never on instructions executed in debug

The match of an enabled breakpoint can either generate a debug exception or a trigger indication. The BE
TE bits in the IBCn or DBCn registers are used to enable the breakpoints.

Debug software should not configure breakpoints to compare on ASID value, unless a TLB is present in
implementation.

9.2.5.1 Conditions for Matching Instruction Breakpoint

When an instruction breakpoint is enabled, that breakpoint is evaluated for the address of every executed
instruction in non-debug mode, including execution of instructions at an address causing an address erro
instruction fetch. The breakpoint is not evaluated on instructions from speculative fetch or execution, nor
addresses which are unaligned with an executed instruction.

Match of the breakpoint depends on the virtual address of the executed instruction (PC) which can be ma
bit level, and match may also include optional compare of ASID value. The registers for each instruction
breakpoint has the values and mask used in the compare, and the equation that determines the match is
below in C-like notation.

IB_match
(! IBCn ASIDuse || (ASID == IBASIDn ASID)) &&
(<all 1’s> == (IBMn IBM | ~ (PC ^ IBAn IBA))

The match indication for data breakpoints is always precise, i.e. indicated on the instruction causing the IB_
to be true.

DBMn Data Breakpoint Address Mask n

DBASIDn Data Breakpoint ASID n

DBCn Data Breakpoint Control n

DBVn Data Breakpoint Value n

Table 9-5 Overview of Registers for each Data Breakpoint

Register Mnemonic Register Name and Description
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 9-7

Chapter 9: EJTAG Debug Support

store
address
are not
/store

ally the
compare,

ASID
s is
elow.

The

ta bus
red in
ponsible
9.2.5.2 Conditions for Matching Data Breakpoints

When a data breakpoint is enabled, that breakpoint is evaluated for every data transaction due to a load/
instruction executed in non-debug mode, including load/store for coprocessor, and transactions causing an
error on data access. The breakpoint is not evaluated due to PREF instruction or other transactions which
part of explicit load/store transactions in the execution flow, nor for addresses which are not the explicit load
source or destination address.

Match of the breakpoint depends on the transaction type (TYPE) as load or store, the address, and option
data value of a transaction. The registers for each data breakpoint has the values and mask used in the
and the equations that determines the match is shown below in C-like notation.

The overall match equation is the DB_match.

DB_match =
(((TYPE == load) && ! DBCn NoLB) || ((TYPE == store) && ! DBCn NoSB)) &&
DB_addr_match && (DB_no_value_compare || DB_value_match)

Match on the address part, DB_addr_match, depends on virtual address of the transaction (ADDR), the
value, and the accessed bytes (BYTELANE) where BYTELANE[0] is 1 only if the byte at bits [7:0] on the bu
accessed, and BYTELANE[1] is 1 only if byte at bits [15:8] is accessed, etc. The DB_addr_match is shown b

DB_addr_match =
(! DBCn ASIDuse || (ASID == DBASIDn ASID)) &&
(<all 1’s> == (DBMn DBM | ~ (ADDR ̂ DBAn DBA))) &&
(<all 0’s> != (~ BAI & BYTELANE))

The size of DBCnBAI and BYTELANE is 4 bits.

Data value compare is included in the match condition for the data breakpoint depending on the bytes
(BYTELANE as described above) accessed by the transaction, and the contents of breakpoint registers.
DB_no_value_compare is shown below.

DB_no_value_compare =
(<all 1’s> == (DBCn BLM | DBCn BAI | ~ BYTELANE))

The size of DBCnBLM, DBCnBAI and BYTELANE is 4 bits.

In case data value compare is required, DB_no_value_compare is false, then the data value from the da
(DATA) is compared and masked with the registers for the data breakpoint. The endianess is not conside
these match equations for value, as the compare uses the data bus value directly, thus debug software is res
for setup of the breakpoint corresponding with endianess.

DB_value_match =
9-8 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Hardware Breakpoints

e the
ausing

true, as

f the
erates

egister

es any

eby the

tch
debug

ster and
((DATA[7:0] == DBVn DBV[7:0]) || ! BYTELANE[0] || DBCn BLM[0] || DBCn BAI[0]) &&
((DATA[15:8] == DBVn DBV[15:8]) || ! BYTELANE[1] || DBCn BLM[1] || DBCn BAI[1]) &&
((DATA[23:16] == DBVn DBV[23:16]) || ! BYTELANE[2] || DBCn BLM[2] || DBCn BAI[2]) &&
((DATA[31:24] == DBVn DBV[31:24]) || ! BYTELANE[3] || DBCn BLM[3] || DBCn BAI[3])

The match for a data breakpoint is always precise, since the match expression is fully evaluated at the tim
load/store instruction is executed. A true DB_match can thereby be indicated on the very same instruction c
the DB_match to be true.

9.2.6 Debug Exceptions from Breakpoints

Instruction and data breakpoints may be setup to generate a debug exception when the match condition is
described below.

9.2.6.1 Debug Exception by Instruction Breakpoint

If the breakpoint is enabled by BE in the IBCn register, then a debug instruction break exception occurs i
IB_match equation is true. The corresponding BS[n] bit in the IBS register is set when the breakpoint gen
the debug exception.

The debug instruction break exception is always precise, so the DEPC register and DBD bit in the Debug r
points to the instruction that caused the IB_match equation to be true.

The instruction receiving the debug exception does not update any registers due to the instruction, nor do
load or store by that instruction occur. Thus a debug exception from a data breakpoint can not occur for
instructions receiving a debug instruction break exception.

The debug handler usually returns to the instruction causing the debug instruction break exception, wher
instruction is executed. Debug software is responsible for disabling the breakpoint when returning to the
instruction, otherwise the debug instruction break exception reoccurs.

9.2.6.2 Debug Exception by Data Breakpoint

If the breakpoint is enabled by BE in the DBCn register, then a debug exception occurs when the DB_ma
condition is true. The corresponding BS[n] bit in the DBS register is set when the breakpoint generates the
exception.

A debug data break exception occurs when a data breakpoint indicates a match. In this case the DEPC regi
DBD bit in the Debug register points to the instruction that caused the DB_match equation to be true.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 9-9

Chapter 9: EJTAG Debug Support

tion, and

match,

ce the

not
ue

erate a

value

value

o the
ot

debug

e
e load
effects
akpoint
en

s not
gister
The instruction causing the debug data break exception does not update any registers due to the instruc
the following applies to the load or store transaction causing the debug exception:

• A store transaction is not allowed to complete the store to the memory system.

• A load transaction with no data value compare, i.e. where the DB_no_value_compare is true for the
is not allowed to complete the load.

• A load transaction for a breakpoint with data value compare must occur from the memory system, sin
value is required in order to evaluate the breakpoint.

The result of this is that the load or store instruction causing the debug data break exception appears as
executed, with the exception that a load from the memory system do occur for a breakpoint with data val
compare, but the result of this load is discarded since the register file is not updated by the load.

If both data breakpoints without and with data value compare would match the same transaction and gen
debug exception, then the following rules apply with respect to updating the BS[n] bits.

• On both a load and store the BS[n] bits are required to be set for all matching breakpoints without data
compare.

• On a store then BS[n] bits are allowed but not required to be set for all matching breakpoints with data
compare, but either all or none of the BS[n] bits must be set for these breakpoints.

• On a load then no of the BS[n] bits are allowed to be set, since the load is not allowed to occur due t
debug exception from a breakpoint without data value compare, and a valid data value is therefore n
returned.

Any BS[n] bit set prior to the match and debug exception are kept set, since BS[n] bits are only cleared by
software.

The debug handler usually returns to the instruction causing the debug data break exception, whereby th
instruction is re-executed. This re-execution may result in a repeated load from system memory, since th
may have occurred previously in order to evaluate the breakpoint as described above. I/O devices with side
on load must be able to allow such reloads, or debug software should alternatively avoid setting data bre
with data value compare on such I/O devices. Debug software is responsible for disabling breakpoints wh
returning to the instruction, otherwise the debug data break exception will reoccur.

9.2.7 Breakpoint used as Triggerpoint

Both instruction and data hardware breakpoints may be setup by software so a matching breakpoint doe
generate a debug exception, but only an indications through the BS[n] bit. The TE bit in the IBCn or DBCn re
9-10 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Hardware Breakpoints

e, like

ation
section
controls if a instruction respectively data breakpoint is used as a so-called triggerpoint. The triggerpoints ar
breakpoints, only compared for instructions executed in non-debug mode.

The BS[n] bit in the IBS or DBS register is set when the respective IB_match or DB_match bit is true.

9.2.8 Instruction Breakpoint Registers

The registers for instruction breakpoints are described below. These registers have implementation inform
and are used for setup the instruction breakpoints. All registers are in drseg, and the addresses are shown in
Table 9-6.

An example of some of the registers; IBA0 is at offset 0x1100 and IBC2 is at offset 0x1318.

Table 9-6 Addresses for Instruction Breakpoint Registers

Offset in drseg
Register

Mnemonic
Register Name and Description

0x1000 IBS Instruction Breakpoint Status

0x1100 + n * 0x100 IBAn Instruction Breakpoint Address n

0x1108 + n * 0x100 IBMn Instruction Breakpoint Address Mask n

0x1110 + n * 0x100 IBASIDn Instruction Breakpoint ASID n

0x1118 + n * 0x100 IBCn Instruction Breakpoint Control n

n is breakpoint number in range 0 to 3
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 9-11

Chapter 9: EJTAG Debug Support
9.2.8.1 Instruction Breakpoint Status (IBS) Register

Compliance Level: Implemented only if any instruction breakpoints.

The Instruction Breakpoint Status (IBS) register holds implementation and status information about the
instruction breakpoints.

The ASIDsup applies to all the instruction breakpoints.

IBS Register Format
31 30 29 28 27 24 23 4 3 0

Res ASID Res BCN Res BS

Table 9-7 IBS Register Field Descriptions

Fields
Description

Read/
Write

Reset State
Name Bit(s)

Res 31 Must be written as zero; returns zero on read. 0 0

ASID 30 Indicates that ASID compare is supported in instruction
breakpoints.

R 4Kc core- 1
4Km/ 4Kp cores- 0

Res 29:28 Must be written as zero; returns zero on read. 0 0

BCN 27:24 Number of instruction breakpoints implemented R 4

Res 23:4 Must be written as zero; returns zero on read. 0 0

BS 3:0 Break status for breakpoint n is at BS[n], with n as 0 to
3. The bit is set to 1 when the condition for the
corresponding breakpoint has matched.

R/W Undefined
9-12 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Hardware Breakpoints
9.2.8.2 Instruction Breakpoint Address n (IBAn) Register

Compliance Level: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Address n (IBAn) register has the address used in the condition for instruction
breakpoint n

IBAn Register Format
31 0

IBA

Table 9-8 IBAn Register Field Descriptions

Fields
Description

Read/
Write

Reset State
Name Bit(s)

IBA 31:0 Instruction breakpoint address for condition R/W Undefined
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 9-13

Chapter 9: EJTAG Debug Support

e

9.2.8.3 Instruction Breakpoint Address Mask n (IBMn) Register

Compliance Level: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Address Mask n (IBMn) register has the mask for address compare used in th
condition for instruction breakpoint n.

IBMn Register Format
31 0

IBM

Table 9-9 IBMn Register Field Descriptions

Fields
Description

Read/
Write

Reset State
Name Bit(s)

IBM 31:0 Instruction breakpoint address mask for condition:

0: Corresponding address bit not masked

1: Corresponding address bit masked

R/W Undefined
9-14 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Hardware Breakpoints

tion
nly
9.2.8.4 Instruction Breakpoint ASID n (IBASIDn) Register

Compliance Level: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint ASID n (IBASIDn) register has the ASID value used in the compare for instruc
breakpoint n. The number of bits in the ASID field is 8, to match the ASID size in the TLB. This register is o
valid for the 4Kc core.

IBASIDn Register Format
31 8 7 0

Res ASID

Table 9-10 IBASIDn Register Field Descriptions

Fields
Description

Read/
Write

Reset State
Name Bit(s)

Res 31:8 Must be written as zero; returns zero on read. 0 0

ASID 7:0 Instruction breakpoint ASID value for compare: R/W Undefined
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 9-15

Chapter 9: EJTAG Debug Support
9.2.8.5 Instruction Breakpoint Control n (IBCn) Register

Compliance Level: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Control n (IBCn) register controls setup of instruction breakpoint n.

IBCn Register Format
31 24 23 22 3 2 1 0

Res ASID Res TE Res BE

Table 9-11 IBCn Register Field Descriptions

Fields
Description Read/Write Reset State

Name Bits

Res 31:24 Must be written as zero; returns zero on read. 0 0

ASID 23 Use ASID value in compare for instruction breakpoint
n:

0: Don’t use ASID value in compare

1: Use ASID value in compare

4Kc core- R/W

4Km/4Kp
cores -0

Undefined

Res 22:3 Must be written as zero; returns zero on read. 0 0

TE 2 Use instruction breakpoint n as triggerpoint:

0: Don’t use it as triggerpoint

1: Use it as triggerpoint

R/W 0

Res 1 Must be written as zero; returns zero on read. 0 0

BE 0 Use instruction breakpoint n as breakpoint:

0: Don’t use it as breakpoint

1: Use it as breakpoint

R/W 0
9-16 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Hardware Breakpoints

and are
able 9-12.
9.2.9 Data Breakpoint Registers

The registers for data breakpoints are described below. These registers have implementation information
used for setup the data breakpoints. All registers are in drseg, and the addresses are shown in section T

An example of some of the registers; DBM0 is at offset 0x2108 and DBV1 is at offset 0x2220.

Table 9-12 Addresses for Data Breakpoint Registers

Offset in drseg
Register

Mnemonic
Register Name and Description

0x2000 DBS Data Breakpoint Status

0x2100 + 0x100 * n DBAn Data Breakpoint Address n

0x2108 + 0x100 * n DBMn Data Breakpoint Address Mask n

0x2110 + 0x100 * n DBASIDn Data Breakpoint ASID n

0x2118 + 0x100 * n DBCn Data Breakpoint Control n

0x2120 + 0x100 * n DBVn Data Breakpoint Value n

n is breakpoint number as 0 or 1
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 9-17

Chapter 9: EJTAG Debug Support

tion
9.2.9.1 Data Breakpoint Status (DBS) Register

Compliance Level: Implemented only if any data breakpoints.

The Data Breakpoint Status (DBS) register holds implementation and status information about the instruc
breakpoints.

The ASID applies to all the data breakpoints.

DBS Register Format
31 30 29 28 27 24 23 2 1 0

Res ASID Res BCN Res BS

Table 9-13 DBS Register Field Descriptions

Fields
Description

Read/
Write

Reset State
Name Bit(s)

Res 31 Must be written as zero; returns zero on read. 0 0

ASID 30 Indicates that ASID compare is supported in instruction
breakpoints.

R 4Kc core - 1

4Km/4Kp cores - 0

Res 29:28 Must be written as zero; returns zero on read. 0 0

BCN 27:24 Number of instruction breakpoints implemented R 2

Res 23:2 Must be written as zero; returns zero on read. 0 0

BS 1:0 Break status for breakpoint n is at BS[n], with n as 0 to
3. The bit is set to 1 when the condition for the
corresponding breakpoint has matched.

R/W0 Undefined
9-18 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Hardware Breakpoints

t n.
9.2.9.2 Data Breakpoint Address n (DBAn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Address n (DBAn) register has the address used in the condition for data breakpoin

DBAn Register Format
31 0

DBA

Table 9-14 DBAn Register Field Descriptions

Fields
Description

Read/
Write

Reset State
Name Bit(s)

DBA 31:0 Data breakpoint address for condition R/W Undefined
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 9-19

Chapter 9: EJTAG Debug Support

ndition
9.2.9.3 Data Breakpoint Address Mask n (DBMn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Address Mask n (DBMn) register has the mask for address compare used in the co
for data breakpoint n.

DBMn Register Format
31 0

DBM

Table 9-15 DBMn Register Field Descriptions

Fields
Description

Read/
Write

Reset State
Name Bit(s)

DBM 31:0 Data breakpoint address mask for condition:

0: Corresponding address bit not masked

1: Corresponding address bit masked

R/W Undefined
9-20 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Hardware Breakpoints

int n.
9.2.9.4 Data Breakpoint ASID n (DBASIDn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint ASID n (DBASIDn) register has the ASID value used in the compare for data breakpo

This register is only valid in the 4Kc core.

DBASIDn Register Format
31 8 7 0

Res ASID

Table 9-16 DBASIDn Register Field Descriptions

Fields
Description

Read/
Write

Reset State
Name Bit(s)

Res 31:8 Must be written as zero; returns zero on read. 0 0

ASID 7:0 Data breakpoint ASID value for compare: R/W Undefined
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 9-21

Chapter 9: EJTAG Debug Support
9.2.9.5 Data Breakpoint Control n (DBCn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Control n (DBCn) register controls setup of data breakpoint n.

DBCn Register Format
31 24 23 22 18 17 14 13 12 11 8 7 4 3 2 1 0

Re ASID Res BAI NoSB NoLB Res BLM Res TE Res BE

Table 9-17 DBCn Register Field Descriptions

Fields
Description Read/Write Reset State

Name Bits

Res 31:24 Must be written as zero; returns zero on read. 0 0

ASID 23 Use ASID value in compare for data breakpoint n:

0: Don’t use ASID value in compare

1: Use ASID value in compare

4Kc core - R/W

4Km/4Kp cores
- 0

Undefined

Res 22:18 Must be written as zero; returns zero on read. 0 0

BAI 17:14 Byte access ignore controls ignore of access to specific
byte. BAI[0] ignores access to byte at bits [7:0] of the
data bus, BAI[1] ignores access to byte at bits [15:8],
etc.:

0: Condition depends on access to corresponding byte

1: Access for corresponding byte is ignored

R/W Undefined

NoSB 13 Controls if condition for data breakpoint is never
fulfilled on a store transaction:

0: Condition may be fulfilled on store transaction

1: Condition is never fulfilled on store transaction

R/W Undefined

NoLB 12 Controls if condition for data breakpoint is never
fulfilled on a load transaction:

0: Condition may be fulfilled on load transaction

1: Condition is never fulfilled on load transaction

R/W Undefined
9-22 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Hardware Breakpoints
Res 11:8 Must be written as zero; returns zero on read. 0 0

BLM 7:4 Byte lane mask for value compare on data breakpoint.
BLM[0] masks byte at bits [7:0] of the data bus,
BLM[1] masks byte at bits [15:8], etc.:

0: Compare corresponding byte lane

1: Mask corresponding byte lane

R/W Undefined

Res 3 Must be written as zero; returns zero on read. 0 0

TE 2 Use data breakpoint n as triggerpoint:

0: Don’t use it as triggerpoint

1: Use it as triggerpoint

R/W 0

Res 1 Must be written as zero; returns zero on read. 0 0

BE 0 Use data breakpoint n as breakpoint:

0: Don’t use it as breakpoint

1: Use it as breakpoint

R/W 0

Table 9-17 DBCn Register Field Descriptions

Fields
Description Read/Write Reset State

Name Bits
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 9-23

Chapter 9: EJTAG Debug Support
9.2.9.6 Data Breakpoint Value n (DBVn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Value n (DBVn) register has the value used in the condition for data breakpoint n.

DBVn Register Format
31 0

DBV

Table 9-18 DBVn Register Field Descriptions

Fields
Description

Read/
Write

Reset State
Name Bit(s)

DBV 31:0 Data breakpoint value for condition R/W Undefined
9-24 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Hardware Breakpoints

his is
tem
9.2.10 Test Access Port (TAP)

The following main features are supported by the TAP module:

• 5-pin industry standard JTAG Test Access Port (TCK, TMS, TDI, TDO, TRST_N) interface which are
compatible with IEEE Std. 1149.1.

• Target chip and EJTAG feature identification available through the Test Access Port (TAP) controller.

• The processor can access external memory on the EJTAG Probe serially through the EJTAG pins. T
achieved through so-called Processor Access (PA), and is used to eliminate the use of the user’s sys
memory for debug routines.

• Support for both ROM based debugger and debugging both through TAP.

9.2.11 EJTAG Internal and External Interfaces

The external interface of the EJTAG Module consists of the 5 signals defined by the IEEE standard.

Table 9-19 EJTAG Interface Pins

Pin Type Description

TCK I Test Clock Input

Input clock used to shift data into or out of the Instruction or data
registers. The TCK clock is independent of the processor clock, so the
EJTAG probe can drive TCK independently of the processor clock
frequency.

The core signal for this is called EJ_TCK

TMS I Test Mode Select Input

The TMS input signal is decoded by the TAP controller to control test
operation. TMS is sampled on the rising edge of TCK.

The core signal for this is called EJ_TMS

TDI I Test Data Input

Serial input data (TDI) is shifted into the Instruction register or data
registers on the rising edge of the TCK clock, depending on the TAP
controller state.

The core signal for this is called EJ_TDI
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 9-25

Chapter 9: EJTAG Debug Support

puts
a small
9-3.

the

hown in

y to the
the data
9.3 Test Access Port Operation

The TAP controller is controlled by the Test Clock (TCK) and Test Mode Select (TMS) inputs. These two in
determine whether an the Instruction register scan or data register scan is performed. The TAP consists of
controller, driven by the TCK input, which responds to the TMS input as shown in the state diagram in Figure
The TAP uses both clock edges of TCK. TMS and TDI are sampled on the rising edge of TCK, while TDO
changes on the falling edge of TCK.

At power-up the TAP is forced into theTest-Logic-Reset either by low value on TRST_N. The TAP instruction
register is thereby reset to IDCODE. No other parts of the EJTAG hardware are reset through theTest-Logic-Reset
state.

When test access is required, a protocol is applied via the TMS and TCK inputs, causing the TAP to exit
Test-Logic-Reset state and move through the appropriate states. From theRun-Test/Idle state, an Instruction
register scan or a data register scan can be issued to transition the TAP through the appropriate states s
Figure 9-3.

The states of the data and instruction register scan blocks are mirror images of each other adding symmetr
protocol sequences. The first action that occurs when either block is entered is a capture operation. For

TDO O Test Data Output

Serial output data is shifted from the Instruction or data register to the
TDO pin at the falling edge of the TCK clock. When no data is shifted
out, the TDO is tri-stated.

The core signal for this is called EJ_TDO with output enable control by
EJ_TDOzstate.

TRST_N I Test Reset Input (Optional pin)

The TRST_N pin is an active-low signal for asynchronous reset of the
TAP controller and instruction in the TAP module, independent of the
processor logic. The processor is not reset by the assertion of TRST_N.

The core signal for this is called EJ_TRST_N

This signal is optional, but power-on reset must apply a low pulse on this
is signal at power-on and then leave it high, in case the signal is not
available as a pin on the chip. If available on the chip, then it must be low
on the board when the EJTAG debug features are unused by the probe.

Table 9-19 EJTAG Interface Pins (continued)

Pin Type Description
9-26 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Test Access Port Operation

th. In
r.

s the
d in.
rs
of data
uffer,
r

rced to
an path

e state
ted scan
registers, theCapture-DR state is used to capture (or parallel load) the data into the selected serial data pa
the Instruction register, theCapture-IR state is used to capture status information into the Instruction registe

From the Capture states, the TAP transitions to either the Shift or Exit1 states. Normally the Shift state follow
Capture state so that test data or status information can be shifted out for inspection and new data shifte
Following the Shift state, the TAP either returns to theRun-Test/Idlestate via the Exit1 and Update states or ente
the Pause state via Exit1. The reason for entering the Pause state is to temporarily suspend the shifting
through either the Data or Instruction Register while a required operation, such as refilling a host memory b
is performed. From the Pause state shifting can resume by re-entering the Shift state via the Exit2 state o
terminated by entering theRun-Test/Idle state via the Exit2 and Update states.

Upon entering the data or Instruction register scan blocks, shadow latches in the selected scan path are fo
hold their present state during the Capture and Shift operations. The data being shifted into the selected sc
is not output through the shadow latch until the TAP enters the Update-DR or Update-IR state. The Updat
causes the shadow latches to update (or parallel load) with the new data that has been shifted into the selec
path.

Figure 9-3 TAP Controller State diagram

Test-Logic-Reset1

Run-Test/Idle

0

Select_DR_Scan Select_IR_Scan

Capture_DR Capture_IR

Shift_DR Shift_IR

Exit1_DR Exit1_IR

Pause_DR Pause_IR

Exit2_DR Exit2_IR

Update_DR Update_IR

10

0

0

0

0

1

0

0

1

0

1

1

1 0

0

0

1

0

1

1

1

1

0

1

0

1

1 0

1

MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 9-27

Chapter 9: EJTAG Debug Support

rced

long
uction

in their

in their

and the
9.3.1 Test-Logic-Reset State

In theTest-Logic-Reset state the boundary scan test logic is disabled. The test logic enters theTest-Logic-Reset
state when the TMS input is held HIGH for at least five rising edges of TCK. The BYPASS instruction is fo
into the instruction register output latches during this state. The controller remains in theTest-Logic-Resetstate as
long as TMS is HIGH.

9.3.2 Run-Test/Idle State

The controller enters theRun-Test/Idlestate between scan operations. The controller remains in this state as
as TMS is held LOW. The instruction register and all test data registers retain their previous state. The instr
cannot change when the TAP controller is in this state.

When TMS is sampled HIGH at the rising edge of TCK, the controller transitions to theSelect_DR state.

9.3.3 Select_DR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction reta
previous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitions to theCapture_DR
state. A HIGH on TMS causes the controller to transition to theSelect_IR state. The instruction cannot change
while the TAP controller is in this state.

9.3.4 Select_IR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction reta
previous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitions to theCapture_IR
state. A HIGH on TMS causes the controller to transition to theTest-Reset-Logic state. The instruction cannot
change while the TAP controller is in this state.

9.3.5 Capture_DR State

In this state the boundary scan register captures value of the register addressed by the Instruction register,
value is then shifted out in theShift_DR. If TMS is sampled LOW at the rising edge of TCK, the controller
transitions to theShift_DR state. A HIGH on TMS causes the controller to transition to theExit1_DR state. The
instruction cannot change while the TAP controller is in this state.
9-28 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Test Access Port Operation

fts data
CK,

in their

s.

ister in
ir

in their

state.

e

9.3.6 Shift_DR State

In this state the test data register connected between TDI and TDO as a result of the current instruction shi
one stage toward its serial output on the rising edge of TCK. If TMS is sampled LOW at the rising edge of T
the controller remains in theShift_DRstate. A HIGH on TMS causes the controller to transition to theExit1_DR
state. The instruction cannot change while the TAP controller is in this state.

9.3.7 Exit1_DR State

This is a temporary controller state in which all test data registers selected by the current instruction reta
previous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitions to thePause_DRstate.
A HIGH on TMS causes the controller to transition to theUpdate_DRstate which terminates the scanning proces
The instruction cannot change while the TAP controller is in this state.

9.3.8 Pause_DR State

The Pause_DR state allows the controller to temporarily halt the shifting of data through the test data reg
the serial path between TDI and TDO. All test data registers selected by the current instruction retain the
previous state. If TMS is sampled LOW at the rising edge of TCK, the controller remains in thePause_DRstate.
A HIGH on TMS causes the controller to transition to the Exit2_DR state. The instruction cannot change while
the TAP controller is in this state.

9.3.9 Exit2_DR State

This is a temporary controller state in which all test data registers selected by the current instruction reta
previous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitions to theShift_DRstate
to allow another serial shift of data. A HIGH on TMS causes the controller to transition to theUpdate_DR state
which terminates the scanning process. The instruction cannot change while the TAP controller is in this

9.3.10 Update_DR State

When the TAP controller is in this state the value shifted in during theShift_DRstate takes effect at the rising edge
of the TCK for the register indicated by the Instruction register.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to theRun-Test/Idlestate. A HIGH
on TMS causes the controller to transition to theSelect_DR_Scanstate. The instruction cannot change while th
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 9-29

Chapter 9: EJTAG Debug Support

ruction

s serial
ns in

W at

le the

r in
ains
TAP controller is in this state and all shift register stages in the test data registers selected by the current inst
retain their previous state.

9.3.11 Capture_IR State

In this state the shift register contained in the Instruction register loads a fixed pattern (000012) on the rising edge
of TCK. The data registers selected by the current instruction retain their previous state.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to theShift_IR state. A HIGH on
TMS causes the controller to transition to theExit1_IR state. The instruction cannot change while the TAP
controller is in this state.

9.3.12 Shift_IR State

In this state the instruction register is connected between TDI and TDO and shifts data one stage toward it
output on the rising edge of TCK. If TMS is sampled LOW at the rising edge of TCK, the controller remai
theShift_IR state. A HIGH on TMS causes the controller to transition to theExit1_IR state.

9.3.13 Exit1_IR State

This is a temporary controller state in which all registers retain their previous state. If TMS is sampled LO
the rising edge of TCK, the controller transitions to thePause_IRstate. A HIGH on TMS causes the controller to
transition to theUpdate_IRstate which terminates the scanning process. The instruction cannot change whi
TAP controller is in this state and the instruction register retains its previous state.

9.3.14 Pause_IR State

ThePause_IRstate allows the controller to temporarily halt the shifting of data through the instruction registe
the serial path between TDI and TDO. If TMS is sampled LOW at the rising edge of TCK, the controller rem
in thePause_IR state. A HIGH on TMS causes the controller to transition to the Exit2_IR state. The instruction
cannot change while the TAP controller is in this state.
9-30 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Test Access Port (TAP) Instructions

pled
.
s.

the
between

been
9.3.15 Exit2_IR State

This is a temporary controller state in which the instruction register retains its previous state. If TMS is sam
LOW at the rising edge of TCK, the controller transitions to theShift_IRstate to allow another serial shift of data
A HIGH on TMS causes the controller to transition to theUpdate_IRstate which terminates the scanning proces
The instruction cannot change while the TAP controller is in this state.

9.3.16 Update_IR State

The instruction shifted into the instruction register takes effect on the rising edge of TCK.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to theRun-Test/Idlestate. A HIGH
on TMS causes the controller to transition to theSelect_DR_Scan state.

9.4 Test Access Port (TAP) Instructions

The TAP Instruction register allows instructions to be serially input into the device when TAP controller is in
Shift-IR state. Instructions are decoded and define the serial test data register path that is used to shift data
TDI and TDO during data register scanning.

The Instruction register is a 5-bit register. In the current EJTAG implementation only some instructions have
decoded; the unused instructions are set default to the BYPASS instruction.

Table 9-20 Implemented EJTAG instructions

Value Instruction Function

0x01 IDCODE Select Chip Identification data register

0x03 IMPCODE Select Implementation Register

0x08 ADDRESS Select Address register

0x09 DATA Select Data register

0x0A CONTROL Select EJTAG Control register

0x0B ALL Select the Address, Data and EJTAG Control registers

0x0C EJTAGBOOT Set EjtagBrk, ProbEn and ProbTrap to 1 as reset value
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 9-31

Chapter 9: EJTAG Debug Support

pass
rred
ned
n.

 (ID)
g

egister
iately
r-on or

Probe
O pin.
9.4.1 BYPASS Instruction

The required BYPASS instruction allows the processor to remain in a functional mode and selects the By
register to be connected between TDI and TDO. The BYPASS instruction allows serial data to be transfe
through the processor from TDI to TDO without affecting its operation. The bit code of this instruction is defi
to be all ones by the IEEE 1149.1 standard. Any unused instruction is defaulted to the BYPASS instructio

9.4.2 IDCODE Instruction

The IDCODE instruction allows the processor in its functional mode and selects the Device Identification
register to be connected between TDI and TDO. The Device ID register is a 32- bit shift register containin
information regarding the IC manufacturer, device type, and version code. Accessing the Identification R
does not interfere with the operation of the processor. Also, access to the Identification Register is immed
available, via a TAP data scan operation, after power-up when the TAP has been reset with on-chip powe
through the optional TRST_N pin.

9.4.3 IMPCODE Instruction

This instruction selects the Implementation register for output, which is always 32 bit.

9.4.4 ADDRESS Instruction

This instruction is used to select the Address register to be connected between TDI and TDO. The EJTAG
shifts 32-bits through the TDI pin into the Address register and shifts out the captured address via the TD

0x0D NORMALBOOT Set EjtagBrk, ProbEn and ProbTrap to 0 as reset value

0x1F BYPASS Bypass mode

Table 9-20 Implemented EJTAG instructions

Value Instruction Function
9-32 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Test Access Port (TAP) Instructions

e shifts

JTAG
r bits

trol
takes

ap,

ing
9.4.5 DATA Instruction

This instruction is used to select the Data register to be connected between TDI and TDO. The EJTAG Prob
32-bits of TDI data into the Data register and shifts out the captured data via the TDO pin.

9.4.6 CONTROL Instruction

This instruction is used to select the EJTAG Control register to be connected between TDI and TDO. The E
Probe shifts 32- bits of TDI data into the EJTAG Control register and shifts out the EJTAG Control registe
via TDO.

9.4.7 ALL Instruction

This instruction is used to select the concatenation of the Address and Data register, and the EJTAG Con
register between TDI and TDO. It can be used in particular if switching instructions in the instruction register
too many TCK cycles. The first bit shifted out is bit 0.

Figure 9-4 Concatenation of the EJTAG Address, Data and Control Registers

9.4.8 EJTAGBOOT Instruction

When the EJTAGBOOT instruction is given and Update-IR state is left, then the reset value of the ProbTr
ProbEn and EjtagBrk bits in the EJTAG Control register are set to 1 after hard or soft reset.

This EJTAGBOOT indication is effective until NORMALBOOT instruction is given, TRST_N is asserted or ris
edge of TCK occurs when TAP controller is in Test-Logic-Reset state.

 Address

 Data

0

0

TDI

0EJTAG Control TDO
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 9-33

Chapter 9: EJTAG Debug Support

r
which

Trap,

an
TDO

During
ift data
ta
, the
It is thereby possible to make the CPU go into debug mode just after hard or soft reset, without fetching o
executing any instructions from the normal memory area. This can be used for download of code to a system
have no code in ROM.

The Bypass register is selected when the EJTAGBOOT instruction is given.

9.4.9 NORMALBOOT Instruction

When the NORMALBOOT instruction is given and Update-IR state is left, then the reset value of the Prob
ProbEn and EjtagBrk bits in the EJTAG Control register are set to 0 after hard or soft reset.

The Bypass register is selected when the NORMALBOOT instruction is given.

9.5 EJTAG Registers

The EJTAG TAP Module has the following registers accessible through the TAP:

• Instruction Register

• Data Registers Overview

• Bypass Register

• Device Identification Register

• Implementation Register

• EJTAG Control Register (ECR)

• Processor Access Address Register

• Processor Access Data Register

9.5.1 Instruction Register

The Instruction register is accessed when the TAP receives an Instruction register scan protocol. During
Instruction register scan operation the TAP controller selects the output of the Instruction register to drive the
pin. The shift register consists of a series of bits arranged to form a single scan path between TDI and TDO.
an Instruction register scan operations, the TAP controls the register to capture status information and sh
from TDI to TDO. Both the capture and shift operations occur on the rising edge of TCK. However, the da
shifted out from the TDO occurs on the falling edge of TCK. In the Test-Logic-Reset and Capture-IR state
9-34 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

EJTAG Registers

l
takes

imary
ssed
 receives
ation,
R state

gle bit
that are
n of all

ber,
-only

canned
ith the
instruction shift register is set to 000012, as for IDCODE instruction. This forces the device into the functiona
mode and selects the Device ID register. The Instruction register is 5 bits wide. The instruction shifted in
effect for the following data register scan operation.

9.5.2 Data Registers Overview

The EJTAG uses several data registers, which are arranged in parallel from the primary TDI input to the pr
TDO output. The Instruction register supplies the address that allows one of the data registers to be acce
during a data register scan operation. During a data register scan operation, the addressed scan register
TAP control signals to capture the register and shift data from TDI to TDO. During a data register scan oper
the TAP selects the output of the data register to drive the TDO pin. The register is updated in the Update-D
with respect to write bits.

This description applies in general to the following data registers.

9.5.3 Bypass Register

TheBypassregister consists of a single scan register bit. When selected, the Bypass register provides a sin
scan path between TDI and TDO. The Bypass register allows abbreviating the scan path through devices
not involved in the test. The Bypass register is selected when the Instruction register is loaded with a patter
ones to satisfy the IEEE 1149.1 Bypass instruction requirement.

9.5.4 Device Identification (ID) Register

TheDevice Identificationregister is defined by IEEE 1149.1, to identify the device's manufacturer, part num
revision, and other device-specific information. Table 9-21 shows the bit assignments defined for the read
Device Identification Register, and inputs to the core determine the value of these bits. These bits can be s
out of the ID register after being selected. The register is selected when the Instruction register is loaded w
IDCODE instruction.

Table 9-21 Device Identification Register

Bit(s) Mnemonic Description R/W Reset

 31:28 Version Version (4 bits)
This field identifies the version number of the
processor derivative.

 R EJ_Version[3:0]
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 9-35

Chapter 9: EJTAG Debug Support
 27:12 PartNumber Part Number (16 bits)
This field identifies the part number of the processor
derivative.

 R EJ_PartNumber[15:0]

 11:1 ManufID Manufacturer Identity (11 bits)

Accordingly to IEEE 1149.1-1990, the manufacturer
identity code shall be a compressed form of the
JEDEC Publications 106-A.

 R EJ_ManufID[10:0]

 0 reserved reserved R 1

Table 9-21 Device Identification Register

Bit(s) Mnemonic Description R/W Reset
9-36 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

EJTAG Registers

eset

in the
ad by
terface.
9.5.5 Implementation Register

This 32-bit read-only register is used to identify the features of the EJTAG implementation. Some of the r
value are set by inputs to the core.The register is selected when the Instruction register is loaded with the
IMPCODE instruction.

9.5.6 EJTAG Control Register

This 32-bit register controls the various operations of the TAP modules. This register is selected by shifting
CONTROL instruction. Bits in the EJTAG Control register can be set/cleared by shifting in data; status is re
shifting out the contents of this register. This EJTAG Control register can only be accessed by the TAP in

Table 9-22 Implementation Register Descriptions

Fields
Description

Read/
Write

Reset State
Name Bit(s)

EJTAGver 31:29 EJTAG Version R 1

reserved 28:25 reserved R 0

DINTsup 24 DINT Signal Supported from Probe

This bit indicates if the DINT signal from the probe is
supported:
0: DINT signal from the probe is not supported
1: Probe can use DINT signal to make debug interrupt.

R EJ_DINTsup

ASIDsize 23:21 Size of ASID field in implementation

This is determined by the EJ_ASIDused signal to the
core.

No ASID in implementation: EJ_ASIDused should be
set to 0.

8-bit ASID in implementation: EJ_ASIDused should
be set to 1.

R See description

reserved 20:15 reserved R 0

NoDMA 14 No EJTAG DMA Support R 1

reserved 13:0 reserved R 0
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 9-37

Chapter 9: EJTAG Debug Support

 31, is

n TAP
he bits
t may
The EJTAG Control register is not updated in the Update-DR state unless the Reset occurred (Rocc), bit
either 0 or written to 0. This is in order to ensure prober handling of processor accesses.

The value used for reset indicated in the table below takes effect on both hard and soft CPU reset, but no o
controller reset by e.g. TRST_N. TCK clock is not required when the hard or soft CPU reset occurs, but t
are still updated to the reset value when the TCK applies. The first 5 TCK clocks after hard or soft CPU rese
result in reset of the bits, due to synchronization between clock domains.

Table 9-23 EJTAG Control Register Descriptions

Fields
Description

Read/
Write

Reset State
Name Bit(s)

Rocc 31 Reset Occurred

The bit indicates if hard or soft reset has occurred:
0: No reset occurred since bit last cleared.
1: Reset occurred since bit last cleared.

The Rocc bit will keep the 1 value as long as hard or
soft reset is applied.

This bit must be cleared by the probe, to acknowledge
that the incident was detected.

The EJTAG Control register is not updated in the
Update-DR state unless Rocc is 0, or written to 0. This
is in order to ensure prober handling of processor
access.

R/W 1
9-38 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

EJTAG Registers
 Psz[1:0] 30:29 Processor Access Transfer Size

These bits are used in combination with the lower two
address bits of the Address register to determine the
size of a processor access transaction. The bits are only
valid when processor access is pending.

Note: LE=little endian, BE=big endian, the byte#
refers to the byte number in a 32-bit register, where
byte 3 = bits 31:24; byte 2 = bits 23:16; byte 1 = bits
15:8; byte 0=bits 7:0, independently of the need.

R Undefined

Res 28:23 reserved R 0

Doze 22 Doze state

The Doze bit indicates any kind of low power mode.
The value is sampled in the Capture-DR state of the
TAP controller:
0: CPU not in low power mode.
1: CPU is in low power mode

Doze includes the Reduced Power (RP) and WAIT
power-reduction modes.

 R n.a.

Table 9-23 EJTAG Control Register Descriptions(continued)

Fields
Description

Read/
Write

Reset State
Name Bit(s)

PA[1:0] Psz[1:0] Transfer Size

00 00 Byte (LE, byte 0; BE, byte 3)

01 00 Byte (LE, byte 1; BE, byte 2)

10 00 Byte (LE, byte 2; BE, byte 1)

11 00 Byte (LE, byte 3; BE, byte 0)

00 01 Halfword (LE, bytes 1:0; BE, bytes 3:2)

10 01 Halfword (LE, bytes 3:2; BE, bytes 1:0)

00 10 Word (LE, BE; bytes 3, 2, 1, 0)

00 11 Triple (LE, bytes 2, 1, 0; BE, bytes 3, 2,1)

01 11 Triple (LE, bytes 3, 2, 1; BE, bytes 2, 1, 0)

All others Reserved
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 9-39

Chapter 9: EJTAG Debug Support
Halt 21 Halt state

The Halt bit indicates if the internal system bus clock
is running or stopped. The value is sampled in the
Capture-DR state of the TAP controller:

0: Internal system clock is running
1: Internal system clock is stopped

 R n.a.

PerRst 20 Peripheral Reset

When the bit is set to 1, it is only guaranteed that the
peripheral reset has occurred in the system when the
read value of this bit is also 1. This is to ensure that the
setting from the TCK clock domain gets effect in the
CPU clock domain, and in peripherals.

When the bit is written to 0, then the bit must also be
read as 0 before it is guaranteed that the indication is
cleared in the CPU clock domain also.

This bit controls the EJ_PerRst signal on the core.

R/W 0

PRnW 19 Processor Access Read and Write

This bit indicates if the pending processor access is for
a read or write transaction, and the bit is only valid
while PrAcc is set:
0: Read transaction
1: Write transaction

 R Undef.

Table 9-23 EJTAG Control Register Descriptions(continued)

Fields
Description

Read/
Write

Reset State
Name Bit(s)
9-40 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

EJTAG Registers
 PrAcc 18 Processor Access (PA)

Read value of this bit indicates if a Processor Access
(PA) to the EJTAG memory is pending:
0: No pending processor access
1: Pending processor access

The probe’s software must clear this bit to 0 to indicate
the end of the PA. Write of 1 is ignored.

A pending PA is cleared when Rocc is set, but another
PA may occur just after the reset if a debug exception
occurs.

Finishing a PA is not accepted while the Rocc bit is set.
This is to avoid that a PA occurring after the reset is
finished due to indication of a PA that occurred before
the reset.

R/W0 0

Res 17 reserved R 0

PrRst 16 Processor Reset (Implementation dependent behavior)

When the bit is set to 1, then it is only guaranteed that
this setting has taken effect in the system when the read
value of this bit is also 1. This is to ensure that the
setting from the TCK clock domain gets effect in the
CPU clock domain, and in peripherals.

When the bit is written to 0, then the bit must also be
read as 0 before it is guaranteed that the indication is
cleared in the CPU clock domain also.

This bit controls the EJ_PerRst signal. If the signal is
used in the system, then it must be ensured that both
the processor and all devices required for a reset are
properly reset. Otherwise the system may fail or hang.
The bit resets itself, since the EJTAG Control register
is reset by hard or soft reset.

R/W 0

Table 9-23 EJTAG Control Register Descriptions(continued)

Fields
Description

Read/
Write

Reset State
Name Bit(s)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 9-41

Chapter 9: EJTAG Debug Support
ProbEn 15 Probe Enable

This bit indicates to the CPU if the EJTAG memory is
handled by the probe so processor accesses are
answered:
0: The probe does not handle EJTAG memory
transactions
1: The probe does handle EJTAG memory transactions

It is an error by the software controlling the probe if it
sets the ProbTrap to 1 but the ProbEn to 0. The
operation of the processor is UNDEFINED in this
case.

The ProbEn bit is reflected as a read-only bit in the
ProbEn bit, bit 0, in the Debug Control Register
(DCR).

The read value indicates the effective value in the
DCR, due to synchronization issues between TCK and
CPU clock domains. However, it is ensured that
change of the ProbEn prior to setting the EjtagBrk bit
will have effect for the debug handler executed due to
the debug exception.

The reset value of the bit depends on whether the
EJTAGBOOT indication is given or not:
No EJTAGBOOT indication given: 0
EJTAGBOOT indication given: 1

R/W 0 or 1

from

EJTAGBOOT

Table 9-23 EJTAG Control Register Descriptions(continued)

Fields
Description

Read/
Write

Reset State
Name Bit(s)
9-42 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

EJTAG Registers
ProbTrap 14 Probe Trap

This bit controls the location of the debug exception
vector:
0: In normal memory 0xBFC0.0480
1: In EJTAG memory at 0xFF20.0200 in dmseg

Valid setting of the ProbTrap bit depends on the setting
of the ProbEn bit, see comment under ProbEn bit.

The ProbTrap should not be set to 1, for debug
exception vector in EJTAG memory, unless the ProbEn
bit is also set to 1 to indicate that the EJTAG memory
may be accessed.

The read value indicates the effective value to the CPU,
due to synchronization issues between TCK and CPU
clock domains. However, it is ensured that change of
the ProbTrap prior to setting the EjtagBrk bit will have
effect for the EjtagBrk.

The reset value of the bit depends on whether the
EJTAGBOOT indication is given or not:
No EJTAGBOOT indication given: 0
EJTAGBOOT indication given: 1

R/W 0 or 1

from

EJTAGBOOT

 Res 13 reserved R 0

EjtagBrk 12 EJTAG Break

Setting this bit to 1 causes a debug exception to the
processor, unless the CPU was in debug mode or
another debug exception occurred.

When the debug exception occurs, the processor core
clock is restarted if the CPU was in low power mode.
This bit is cleared by hardware when the debug
exception is taken.

The reset value of the bit depends on whether the
EJTAGBOOT indication is given or not:
No EJTAGBOOT indication given: 0
EJTAGBOOT indication given: 1

W1/R 0 or 1

from

EJTAGBOOT

Res 11:4 reserved R 0

Table 9-23 EJTAG Control Register Descriptions(continued)

Fields
Description

Read/
Write

Reset State
Name Bit(s)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 9-43

Chapter 9: EJTAG Debug Support
BrkSt 3 Break Status

This bit indicates the debug or non-debug mode:
0: Processor is in non-debug mode
1: Processor is in debug mode

The bit is sampled in the Capture-DR state of the TAP
controller.

R 0

Res 2:0 reserved R 0

Table 9-23 EJTAG Control Register Descriptions(continued)

Fields
Description

Read/
Write

Reset State
Name Bit(s)
9-44 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

EJTAG Registers

e dmseg,
its, and

e length

 output
he data
updated

gister
then 0

9-5. The
9.5.7 Processor Access Address Register

The Processor Access Address (PAA) register is used to provide the address of the processor access in th
and the register is only valid when a processor access is pending. The length of the Address register is 32 b
this register is selected by shifting in the ADDRESS instruction.

9.5.8 Processor Access Data Registers

The Processor Access Data (PAD) register is used to provide data value to and from a processor access. Th
of the Address register is 32 bits, and this register is selected by shifting in the DATA instruction.

The register has the written value for a processor access write due to a CPU store to the dmseg, and the
from this register is only valid when a processor access write is pending. The register is used to provide t
value for processor access read due to a CPU load or fetch from the dmseg, and the register should only be
with a new value when a processor access write is pending.

The PA Data register is 32 bits wide. Data alignment is not used for this register, so the value in the PAD re
matches data on the internal bus. The undefined bytes for a PA write are undefined, and for a PAD read
(zero) must be shifted in for the unused bytes.

The organization of bytes in the PAD register depends on the endianess of the core, as shown in Figure
endian mode for debug/kernel mode is determined by the state of theEB_Endian input at power-up.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 9-45

Chapter 9: EJTAG Debug Support

rmined

hereby
de
e. This
r code,

ss in the
=1). In

from
Figure 9-5 Endian Formats for the PA Data Registers

The size of the transaction and thus the number of bytes available/required for the PA Data register is dete
by the Psz field in the ECR.

9.6 Processor Accesses

The TAP modules support handling of fetch, load and store from the CPU through the dmseg segment, w
the TAP module can operate like a is aslave unit connected to the on-chip bus. The core can then execute co
taken from the EJTAG Probe and it can access data (via load or store) which is located on the EJTAG Prob
occurs in a serial way through the EJTAG interface: the core can thus execute instructions e.g. debug monito
without occupying the user’s memory.

Accessing the dmseg segment (EJTAG memory) can only occur when the processor accesses an addre
range from 0xFF20.0000 to 0xFF2F.FFFF, the ProbEn bit is set, and the processor is in debug mode (DM
addition the LSNM bit in the CP0 Debug register controls transactions to/from the dmseg.

When a debug exception is taken, while the ProbTrap bit is set, the processor will start fetching instructions
address 0xFF20.0200.

A pending processor access can only finish if the probe writes 0 to PrAcc or by soft or hard reset.

Least significant byte is at lowest address
Word is addressed by byte address of least significant byte

bit 31 2324 1516 8 7 0

A[n:0] = 4

LSB

LITTLE-ENDIAN

bit 31 2324 1516 8 7 0
MSB LSB

MSB

A[n:0] = 0

 5 6 7

 3 2 1

A[n:2] = 0

A[n:2] = 1A[n:0] = 7 6 5 4

A[n:0] = 3 2 1 0

A[n:2] = 0

A[n:2] = 1
BIG-ENDIAN

Most significant byte is at lowest address
Word is addressed by byte address of most significant byte
9-46 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Processor Accesses

ase of

 the
ess is

ress.

emory.
ess in

g. The
rocessor
9.6.1 Fetch/Load and Store from/to the EJTAG Probe through dmseg

1. The internal hardware latches the requested address into the PA Address register (in c
the Debug exception: 0xFF20-0200).

2. The internal hardware sets the following bits in the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)
PRnW = 0 (selects processor read operation)
Psz[1:0] = value depending on the transfer size

3. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests
PrAcc status bit (Processor Access): when the PrAcc bit is found 1, it means that the requested addr
available and can be shifted out.

4. The EJTAG Probe checks the PRnW bit to determine the required access.

5. The EJTAG Probe selects the PA Address register and shifts out the requested address.

6. The EJTAG Probe selects the PA Data register and shifts in the instruction corresponding to this add

7. The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate
to the processor that the instruction is available.

8. The instruction becomes available in the instruction register and the processor starts executing.

9. The processor increments the program counter and outputs an instruction read request for the next
instruction. This starts the whole sequence again.

Using the same protocol, the processor can also execute a load instruction to access the EJTAG Probe’s m
For this to happen, the processor must execute a load instruction (e.g. a LW, LH, LB) with the target addr
the appropriate range.

Almost the same protocol is used to execute a store instruction to the EJTAG Probe’s memory through dmse
store address must be in the range: 0xFF20-0000 to 0xFF2F-FFFF, the ProbEn bit must be set and the p
has to be in debug mode (DM=1). The sequence of actions is found below:

1. The internal hardware latches the requested address into the PA Address register

2. The internal hardware latches the data to be written into the PA Data register.

3. The internal hardware sets the following bits in the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)
PRnW = 1 (selects processor write operation)
Psz[1:0] = value depending on the transfer size
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 9-47

Chapter 9: EJTAG Debug Support

 the
ess is
4. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests
PrAcc status bit (Processor Access): when the PrAcc bit is found 1, it means that the requested addr
available and can be shifted out.

5. The EJTAG Probe checks the PRnW bit to determine the required access.

6. The EJTAG Probe selects the PA Address register and shifts out the requested address.

7. The EJTAG Probe selects the PA Data register and shifts out the data to be written.

8. The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate
to the processor that the write access is finished.

9. The EJTAG Probe writes the data to the requested address in its memory.

10. The processor detects that PrAcc bit = 0, which means that it is ready to handle a new access.

The above examples implies that no reset occurs during the operations, and that Rocc is cleared.
9-48 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

re:
.

Chapter 10

10.Instruction Set Overview

This chapter provides a general overview on the three CPU instruction set formats of the MIPS architectu
Immediate, Jump, and Register. Refer to Chapter 11 for a complete listing and description of instructions

This chapter discusses the following topics

• Section 10.1, "CPU Instruction Formats"

• Section 10.2, "Load and Store Instructions"

• Section 10.3, "Computational Instructions"

• Section 10.4, "Jump and Branch Instructions"

• Section 10.5, "Control Instructions"

• Section 10.6, "Coprocessor Instructions"

• Section 10.7, "Enhancements to the MIPS Architecture"
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 10-1

Chapter 10: Instruction Set Overview

ction
small

eded.
10.1 CPU Instruction Formats

Each CPU instruction consists of a single 32-bit word, aligned on a word boundary. There are three instru
formats—immediate (I-type), jump (J-type), and register (R-type)—as shown in Figure 10-1. The use of a
number of instruction formats simplifies instruction decoding, allowing the compiler to synthesize more
complicated (and less frequently used) operations and addressing modes from these three formats as ne

Figure 10-1 Instruction Formats

op 6-bit operation code

rs 5-bit source register specifier

rt
5-bit target (source/destination) register or branch
condition

immediate
16-bit immediate value, branch displacement or address
displacement

target 26-bit jump target address

rd 5-bit destination register specifier

sa 5-bit shift amount

funct 6-bit function field

015162021252631

015162021252631

0252631

op rs rt immediate

op target

functop rs rt
1110 6 5

rd sa

R-Type (Register)

J-Type (Jump)

I-Type (Immediate)
10-2 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Load and Store Instructions

rs. The

d a
as

ded
he
ity.

pcode.

in the
ndian
10.2 Load and Store Instructions

Load and store are immediate (I-type) instructions that move data between memory and the general registe
only addressing mode that load and store instructions directly support isbase register plus 16-bit signed immediate
offset.

10.2.1 Scheduling a Load Delay Slot

A load instruction that does not allow its result to be used by the instruction immediately following is calle
delayed load instruction. The instruction slot immediately following this delayed load instruction is referred to
the load delay slot.

In all the 4K cores, the instruction immediately following a load instruction can use the contents of the loa
register, however in such cases hardware interlocks insert additional real cycles. Although not required, t
scheduling of load delay slots can be desirable, both for performance and R-Series processor compatibil

10.2.2 Defining Access Types

Access typeindicates the size of a core data item to be loaded or stored, set by the load or store instruction o

Regardless of access type or byte ordering (endianness), the address given specifies the low-order byte
addressed field. For a big-endian configuration, the low-order byte is the most-significant byte; for a little-e
configuration, the low-order byte is the least-significant byte.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 10-3

Chapter 10: Instruction Set Overview

he
er

, or in
The access type, together with the three low-order bits of the address, define the bytes accessed within t
addressed word as shown in Table 10-1. Only the combinations shown in Table 10-1 are permissible; oth
combinations cause address error exceptions.

Table 10-1 Byte Access within a Word

10.3 Computational Instructions

Computational instructions can be either in register (R-type) format, in which both operands are registers
immediate (I-type) format, in which one operand is a 16-bit immediate.

Computational instructions perform the following operations on register values:

– Arithmetic

– Logical

– Shift

– Multiply

Access Type

Mnemonic

(Value)

Low Order

Address Bits

Bytes Accessed

Big Endian

(Byte)

Little Endian

(Byte)

2 1 0 0 1 2 3 3 2 1 0

Word (3) 0 0 0 0 1 2 3 3 2 1 0

Triplebyte (2) 0 0 0 0 1 2 2 1 0

0 0 1 1 2 3 3 2 1

Halfword (1) 0 0 0 0 1 1 0

0 1 0 2 3 3 2

Byte (0) 0 0 0 0 0

0 0 1 1 1

0 1 0 2 2

0 1 1 3 3
10-4 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Jump and Branch Instructions

inue
iply
is
t rates.

r with
s the

, both
ith the

p and
 of the
– Divide

These operations fit in the following four categories of computational instructions:

– ALU Immediate instructions

– Three-operand Register-type Instructions

– Shift Instructions

– Multiply And Divide Instructions

10.3.1 Cycle Timing for Multiply and Divide Instructions

Any multiply instruction in the integer pipeline is transferred to the multiplier as remaining instructions cont
through the pipeline; the product of the multiply instruction is saved in the HI and LO registers. If the mult
instruction is followed by an MFHI or MFLO before the product is available, the pipeline interlocks until th
product does become available. Refer to Chapter 2 for more information on instruction latency and repea

10.4 Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All jump and branch instructions occu
a delay of one instruction: that is, the instruction immediately following the jump or branch (this is known a
instruction in thedelay slot) always executes while the target instruction is being fetched from storage.

10.4.1 Overview of Jump Instructions

Subroutine calls in high-level languages are usually implemented with Jump or Jump and Link instructions
of which are J-type instructions. In J-type format, the 26-bit target address shifts left 2 bits and combines w
high-order 4 bits of the current program counter to form an absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented with the Jump Register or Jum
Link Register instructions. Both are R-type instructions that take the 32-bit byte address contained in one
general purpose registers.

For more information about jump instructions, refer to the individual instructions in Section 10.6.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 10-5

Chapter 10: Instruction Set Overview

y slot to
tion.

mp.

ory
10.4.2 Overview of Branch Instructions

All branch instruction target addresses are computed by adding the address of the instruction in the dela
the 16-bitoffset(shifted left 2 bits and sign-extended to 32 bits). All branches occur with a delay of one instruc

If a conditional branch likely is not taken, the instruction in the delay slot is nullified.

Branches, jumps, ERET, and DERET instructions should not be placed in the delay slot of a branch or ju

10.5 Control Instructions

Control instructions allow the software to initiate traps; they are always R-type.

10.6 Coprocessor Instructions

CP0 instructions perform operations on the System Control Coprocessor registers to manipulate the mem
management and exception handling facilities of the processor. Refer to Chapter 11 for a listing of CP0
instructions.

10.7 Enhancements to the MIPS Architecture

The core execution unit implements the MIPS32 architecture, which includes the following instructions.

• CLOCount Leading Ones

• CLZCount Leading Zeros

• MADDMultiply and Add Word

• MADDUMultiply and Add Unsigned Word

• MSUBMultiply and Subtract Word

• MSUBUMultiply and Subtract Unsigned Word

• MULMultiply Word to Register

• SSNOPSuperscalar Inhibit NOP
10-6 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Enhancements to the MIPS Architecture

GPR

GPR

alue
ce
sulting
nces.

2-bit
s,
ter pair.
 any

ord

egister
er any
10.7.1 CLO - Count Leading Ones

The CLO instruction counts the number of leading ones in a word. The 32-bit word in the GPRrs is scanned from
most-significant to least-significant bit. The number of leading ones is counted and the result is written to the
rd. If all 32 bits are set in the GPRrs, the result written to the GPRrd is 32.

10.7.2 CLZ - Count Leading Zeros

The CLZ instruction counts the number of leading zeros in a word. The 32-bit word in the GPRrs is scanned from
most-significant to least-significant bit. The number of leading zeros is counted and the result is written to the
rd. If all 32 bits are cleared in the GPRrs, the result written to the GPRrd is 32.

10.7.3 MADD - Multiply and Add Word

The MADD instruction multiplies two words and adds the result to the HI/LO register pair. The 32-bit word v
in the GPRrs is multiplied by the 32-bit value in the GPRrt, treating both operands as signed values, to produ
a 64-bit result. The product is added to the 64-bit concatenated values in the HI and LO register pair. The re
value is then written back to the HI and LO registers. No arithmetic exception occurs under any circumsta

10.7.4 MADDU - Multiply and Add Unsigned Word

The MADDU instruction multiplies two unsigned words and adds the result to the HI/LO register pair. The 3
word value in the GPRrs is multiplied by the 32-bit value in the GPRrt, treating both operands as unsigned value
to produce a 64-bit result. The product is added to the 64-bit concatenated values in the HI and LO regis
The resulting value is then written back to the HI and LO registers. No arithmetic exception occurs under
conditions.

10.7.5 MSUB - Multiply and Subtract Word

The MSUB instruction multiplies two words and subtracts the result from the HI/LO register pair. The 32-bit w
value in the GPRrs is multiplied by the 32-bit value in the GPRrt, treating both operands as signed values, to
produce a 64-bit result. The product is subtracted from the 64-bit concatenated values in the HI and LO r
pair. The resulting value is then written back to the HI and LO registers. No arithmetic exception occurs und
circumstances.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 10-7

Chapter 10: Instruction Set Overview

. The
d
nd LO
ccurs

R
ult.
10.7.6 MSUBU - Multiply and Subtract Unsigned Word

The MSUBU instruction multiplies two unsigned words and subtracts the result from the HI/LO register pair
32-bit word value in the GPRrs is multiplied by the 32-bit value in the GPRrt, treating both operands as unsigne
values, to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values in the HI a
register pair. The resulting value is then written back to the HI and LO registers. No arithmetic exception o
under any circumstances.

10.7.7 MUL - Multiply Word

The MUL instruction multiplies two words and writes the result to a GPR. The 32-bit word value in the GPrs
is multiplied by the 32-bit value in the GPRrt, treating both operands as signed values, to produce a 64-bit res
The least-significant 32-bits of the product are written to the GPRrd. The contents of the HI and LO register pair
are not defined after the operation. No arithmetic exception occurs under any circumstances.

10.7.8 SSNOP- Superscalar Inhibit NOP

The MIPS32 4K™ processor cores treat this instruction as a regular NOP.
10-8 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

cores,

 Some
Chapter 11

11.MIPS32 4K™ Processor Core Instructions

This chapter provides a detailed guide to understanding the instruction set for the MIPS32 4K™ processor
which is a subset of the MIPS32 architecture. The chapter is divided into the following sections:

• Section 11.1, "Understanding the Instruction Fields"

• Section 11.2, "Instruction Hazards"

• Section 11.3, "CPU Opcode Map"

• Section 11.4, "Instruction Set"

11.1 Understanding the Instruction Fields

Figure 11-1 shows an example instruction. Following the figure are descriptions of the fields listed below.
or all of these field appear in the description of each instruction.

• “Instruction Fields"

• “Instruction Descriptive Name and Mnemonic"

• “Format Field"

• “Purpose Field"

• “Description Field"

• “Restrictions Field"

• “Operation Field"

• “Exceptions Field"
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-1

Chapter 11: MIPS32 4K™ Processor Core Instructions

It

s

for
Figure 11-1 Example Instruction Description

Format: EXAMPLE rd, rs, rt MIPS I

Purpose: to execute an EXAMPLE op

Description: rd ← rs exampleop rt

This section describes the operation of the instruction in text, tables, and illustrations.
includes information that would be difficult to encode in the Operation section.

Restrictions: This section lists any restrictions for the instruction. This can include value
of the instruction encoding fields such as register specifiers, operand values, operand
formats, address alignment, instruction scheduling hazards, and type of memory access
addressed locations.

Operation

Exceptions: A list of exceptions taken by the instruction

Programming Notes:Information useful to programmers, but not necessary to describe
the operation of the instruction

Example Instruction Name EXAMPLE

/* This section describes the operation of an instruction in a */
/* high-level pseudo-language. It is precise in ways that the */
/* Description section is not, but is also missing information */
/* that is hard to express in pseudocode.*/
temp ← GPR[rs] exampleop GPR[rt]
GPR[rd] ← sign_extend(temp 31..0)

Instruction mnemonic
and descriptive name

Instruction encoding
constant and variable
field names and values

Architecture level at

Short description

Symbolic description

Full description of
instruction operation

Restrictions on
instruction and

High-level language
description of

Exceptions that
instruction can cause

Notes for programmers

operands

which instruction was
defined/redefined and
assembler format(s)
for each definition

instruction operation

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 EXAMPLE

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11-2 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Understanding the Instruction Fields

he

Figure

n below.
11.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. T
following rules are followed:

• The values of constant fields and theopcodenames foropcodefields are listed in uppercase (SPECIAL and
ADD in Figure 11-2).

• All variable fields are listed with the lowercase names used in the instruction description (rs, rt andrd in
Figure 11-2).

• Fields that contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in
11-2).

Figure 11-2 Example of Instruction Fields

11.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as show

31 2526 2021 1516

SPECIAL
rs rt

6 5 5

rd
0 ADD

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Add Word ADD
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-3

Chapter 11: MIPS32 4K™ Processor Core Instructions

fined
as

 an
ll
ler

rs. The
l level at

matted

ormats
11.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally de
are given in theFormatfield. If the instruction definition was later extended, the architecture levels at which it w
extended and the assembler formats for the extended definition are shown in their order of extension (for
example, see C.cond.fmt). The MIPS architecture levels are inclusive; higher architecture levels include a
instructions in previous levels. Extensions to instructions are backwards compatible. The original assemb
formats are valid for the extended architecture.

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characte
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectura
which the instruction was first defined, for example “MIPS I,” is shown at the right side of the page.

There can be more than one assembler format for each architecture level. Floating point operations on for
data show an assembly format with the actual assembler mnemonic for each valid value of thefmt field. For
example, the ADD.fmt instruction lists both ADD.S and ADD.D.

The assembler format lines sometimes include parenthetical comments to help explain variations in the f
(once again, see C.cond.fmt). These comments are not a part of the assembler format.

11.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Format: MIPS IADD rd, rs, rt

Purpose: to add 32-bit integers. If overflow occurs, then trap.
11-4 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Understanding the Instruction Fields

gical

e

 fall

eline
11.1.5 Description Field

If a one-line symbolic description of the instruction is feasible, it appears immediately to the right of the
Descriptionheading. The main purpose is to show how fields in the instruction are used in the arithmetic or lo
operation.

The body of the section is a description of the operation of the instruction in text, tables, and figures. This
description complements the high-level language description in theOperation section.

This section uses acronyms for register descriptions. “GPRrt” is CPU general-purpose register specified by th
instruction fieldrt. “FPRfs” is the floating point operand register specified by the instruction fieldfs. “CP1 register
fd” is the coprocessor 1 general register specified by the instruction fieldfd. “FCSR” is the floating pointControl
/Status register.

11.1.6 Restrictions Field

TheRestrictions field documents any possible restrictions that may affect the instruction. Most restrictions
into one of the following six categories:

• Valid values for instruction fields (for example, see BGEZAL)

• Alignment requirements for memory addresses (for example, see LW)

• Valid values of operands (for example, see DIV)

• Valid operand formats (for example, see floating point ADD.fmt) (Floating Point only)

• Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pip
hazards for which some processors do not have hardware interlocks (for example, see ERET).

• Valid memory access types (for example, see LL/SC)

Description : rd ← rs + rt

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit result. If the
addition results in 32-bit 2’s complement arithmetic overflow then the destination register is not modified
and an Integer Overflow exception occurs. If it does not overflow, the 32-bit result is placed into GPR rd.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-5

Chapter 11: MIPS32 4K™ Processor Core Instructions

tion

ity.

caused

ch
model.

elds
g field
the first
y the
rds on
put of
11.1.7 Operation Field

TheOperation field describes the operation of the instruction as pseudocode in a high-level language nota
resembling Pascal. This formal description complements theDescription section; it is not complete in itself
because many of the restrictions are either difficult to include in the pseudocode or are omitted for legibil

11.1.8 Exceptions Field

TheExceptions field lists the exceptions that can be caused byOperation of the instruction. It omits exceptions
that can be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be
by asynchronous external events such as an Interrupt.

11.2 Instruction Hazards

In general, the core ensures that instructions are executed following a fully sequential program model. Ea
instruction in the program sees the results of the previous instruction. There are some exceptions to this
These exceptions are referred to asinstruction hazards.

The following table shows the instruction hazards that exist in the core. The first and second instruction fi
indicate the combination of instructions that do not ensure a sequential programming model. The Spacin
indicates the number of unrelated instructions (such as NOPs or SSNOPs) that should be placed between
and second instructions of the hazard in order to ensure that the effects of the first instruction are seen b
second instruction. Entries in the table that are listed as 0 are traditional MIPS hazards which are not haza
the 4K cores. (MT Compare to Timer Interrupt cleared is system dependent since Timer Interrupt is an out

Operation :
temp GPR[rt]31..0

FCC[0] GPR[rt]31..0

Exceptions :
Integer Overflow
11-6 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Hazards

going
the core that can be returned to the core on one of the SI_Int pins. This number is the minimum time due to
through the core’s I/O registers. Typical implementations will not add any latency to this).

Table 11-1 Instruction Hazards

Instruction Hazards

First Instruction Second Instruction
Spacing

(Instructions)

Watch Register Write Instruction Fetch Matching Watch Register 2

Load/Store Reference Matching Watch
Register

0

TLBWI/TLBWR Instruction fetch affected by new page
mapping

3

Load/Store affected by new page mapping 0

TLBP/TLBR 0

TLBR Move from Coprocessor Zero Register 0

Move to EntryHI TLBWR/TLBWI/TLBP 1

Move to EntryLo0 or EntryLo1 TLBWR/TLBWI 0

Move to EntryHi Load/Store affected by new ASID 1

Move to EntryHi Instruction fetch affected by new ASID 3

TLBP Move from Coprocessor Zero Register 0

Move to Index Register TLBR/TLBWI 1

Change to CU Bits in Status Register Coprocessor Instruction 1

Move to EPC, ErrorPC or DEPC ERET 1

Move to Status Register ERET 0

Set of IP in Cause Register Interrupted Instruction 3

Any Other Move to Coprocessor 0 Registers Instruction Affected by Change 2

CACHE instruction operating on I$ Instruction fetch seeing new cache state 3

LL Move From LLAddr 1
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-7

Chapter 11: MIPS32 4K™ Processor Core Instructions
Move to Compare Instruction not seeing TimerInterrupt* 4

Table 11-1 Instruction Hazards (continued)

Instruction Hazards

First Instruction Second Instruction
Spacing

(Instructions)
11-8 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

CPU Opcode Map

s

utes
11.3 CPU Opcode Map

Key

• CAPITALIZED text indicates an opcode mnemonic

• Italicized text indicates to look at the specified opcode submap for further instruction bit decode

• Entries containing theα symbol indicate that a reserved instruction fault occurs if the core executes thi
instruction.

• Entries containing theβ symbol indicate that a coprocessor unusable exception occurs if the core exec
this instruction

Table 11-2 CPU Main Opcode Map

Main
Opcode

Map

Opcode[28:26]

0 1 2 3 4 5 6 7

Opcode
[31:29]

0 Special RegImm J JAL BEQ BNE BLEZ BGTZ

1 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 COP0 β β β BEQL BNEL BLEZL BGTZL

3 α α α α Special2 α α α

4 LB LH LWL LW LBU LHU LWR α

5 SB SH SWL SW α α SWR CACHE

6 LL β β PREF α β β α

7 SC β β α α β β α
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-9

Chapter 11: MIPS32 4K™ Processor Core Instructions
Table 11-3 Special Submap

Special
Submap

Opcode[2:0]

0 1 2 3 4 5 6 7

Opcode
[5:3]

0 SLL β SRL SRA SLLV α SRLV SRAV

1 JR JALR MOVZ MOVN SYSCALL BREAK α SYNC

2 MFHI MTHI MFLO MTLO α α α α

3 MULT MUTLU DIV DIVU α α α α

4 ADD ADDU SUB SUBU AND OR XOR NOR

5 α α SLT SLTU α α α α

6 TGE TGEU TLT TLTU TEQ α TNE α

7 α α α α α α α α

Table 11-4 Special2 Submap

Special2
Submap

Opcode[2:0]

0 1 2 3 4 5 6 7

Opcode
[5:3]

0 MADD MADDU MUL α MSUB MSUBU α α

1 α α α α α α α α

2 α α α α α α α α

3 α α α α α α α α

4 CLZ CLO α α α α α α

5 α α α α α α α α

6 α α α α α α α α

7 α α α α α α α SDBBP
11-10 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

CPU Opcode Map
Table 11-5 Register Immediate Submap

RegImm
Submap

Opcode[18:16]

0 1 2 3 4 5 6 7

Opcode
[20:19]

0 BLTZ BGEZ BLTZL BGEZL α α α α

1 TGEI TGEIU TLTI TLTIU TEQI a TNEI α

2 BLTZAL BGEZAL BLTZALL BGEZALL α α α α

3 α α α α α α α α

Table 11-6 Coprocessor 0 Rs Submap

COP0 Rs
Submap

Opcode[23:21]

0 1 2 3 4 5 6 7

Opcode
[25:24]

0 MFCz α α α MTCz α α α

1 α α α α α α α

2 COPz

3

MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-11

Chapter 11: MIPS32 4K™ Processor Core Instructions

d by a
11.4 Instruction Set

This section describes the core instructions. Table 11-8 lists the instructions in alphabetical order, followe
detailed description of each instruction.

Table 11-7 Coprocessor 0 Submap

COPZ
Submap

Opcode[2:0]

0 1 2 3 4 5 6 7

Opcode
[5:3]

0 α TLBR TLBWI α α α TLBWR α

1 TLBP α α α α α α α

2 α α α α α α α α

3 ERET α α α α α α DERET

4 WAIT α α α α α α α

5 α α α α α α α α

6 α α α α α α α α

7 α α α α α α α α

Table 11-8 Instruction Set

Instruction Description Function

ADD Integer Add Rd = Rs + Rt

ADDI Integer Add Immediate Rt = Rs + Immed

ADDIU Unsigned Integer Add Immediate Rt = Rs +U Immed

ADDU Unsigned Integer Add Rd = Rs +U Rt
11-12 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set
AND Logical AND Rd = Rs & Rt

ANDI Logical AND Immediate Rt = Rs & (016 || Immed)

BEQ Branch On Equal if Rs == Rt

 PC += (int)offset

BEQL Branch On Equal Likely if Rs == Rt

 PC += (int)offset

else

 Ignore Next Instruction

BGEZ Branch on Greater Than or Equal To Zero if !Rs[31]

 PC += (int)offset

BGEZAL Branch on Greater Than or Equal To Zero And
Link

GPR[31] = PC + 8

if !Rs[31]

 PC += (int)offset

BGEZALL Branch on Greater Than or Equal To Zero And
Link Likely

GPR[31] = PC + 8

if !Rs[31]

 PC += (int)offset

else

 Ignore Next Instruction

BGEZL Branch on Greater Than or Equal To Zero
Likely

if !Rs[31]

 PC += (int)offset

else

 Ignore Next Instruction

BGTZ Branch on Greater Than Zero if !Rs[31] && Rs != 0

 PC += (int)offset

BGTZL Branch on Greater Than Zero Likely if !Rs[31] && Rs != 0

 PC += (int)offset

else

 Ignore Next Instruction

Table 11-8 Instruction Set (continued)

Instruction Description Function
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-13

Chapter 11: MIPS32 4K™ Processor Core Instructions
BLEZ Branch on Less Than or Equal to Zero if Rs[31] || Rs == 0

 PC += (int)offset

BLEZL Branch on Less Than or Equal to Zero Likely if Rs[31] || Rs == 0

 PC += (int)offset

else

 Ignore Next Instruction

BLTZ Branch on Less Than Zero if Rs[31]

 PC += (int)offset

BLTZAL Branch on Less Than Zero And Link GPR[31] = PC + 8

if Rs[31]

 PC += (int)offset

BLTZALL Branch on Less Than Zero And Link Likely GPR[31] = PC + 8

if Rs[31]

 PC += (int)offset

else

 Ignore Next Instruction

BLTZL Branch on Less Than Zero Likely if Rs[31]

 PC += (int)offset

else

 Ignore Next Instruction

BNE Branch on Not Equal if Rs != Rt

 PC += (int)offset

BNEL Branch on Not Equal Likely if Rs != Rt

 PC += (int)offset

else

 Ignore Next Instruction

BREAK Breakpoint Break Exception

CACHE Cache Operation See Cache Description

Table 11-8 Instruction Set (continued)

Instruction Description Function
11-14 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set
COP0 Coprocessor 0 Operation See Coprocessor Description

CLO Count Leading Ones Rd = NumLeadingOnes(Rs)

CLZ Count Leading Zeroes Rd = NumLeadingZeroes(Rs)

DERET Return from Debug Exception PC = DEPC

Exit Debug Mode

DIV Divide LO = (int)Rs / (int)Rt

HI = (int)Rs % (int)Rt

DIVU Unsigned Divide LO = (uns)Rs / (uns)Rt

HI = (uns)Rs % (uns)Rt

ERET Return from Exception if SR[2]

 PC = ErrorEPC

else

 PC = EPC

SR[1] = 0

SR[2] = 0

LL = 0

J Unconditional Jump PC = PC[31:28] || offset<<2

JAL Jump and Link GPR[31] = PC + 8

PC = PC[31:28] || offset<<2

JALR Jump and Link Register Rd = PC + 8

PC = Rs

JR Jump Register PC = Rs

LB Load Byte Rt = (byte)Mem[Rs+offset]

LBU Unsigned Load Byte Rt = (ubyte))Mem[Rs+offset]

LH Load Halfword Rt = (half)Mem[Rs+offset]

LHU Unsigned Load Halfword Rt = (uhalf)Mem[Rs+offset]

Table 11-8 Instruction Set (continued)

Instruction Description Function
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-15

Chapter 11: MIPS32 4K™ Processor Core Instructions
LL Load Linked Word Rt = Mem[Rs+offset]

LL = 1

LLAdr = Rs + offset

LUI Load Upper Immediate Rt = immediate << 16

LW Load Word Rt = Mem[Rs+offset]

LWL Load Word Left

LWR Load Word Right

MADD Multiply-Add HI, LO += (int)Rs * (int)Rt

MADDU Multiply-Add Unsigned HI, LO += (uns)Rs * (uns)Rt

MFC0 Move From Coprocessor 0 Rt = CPR[0, n, sel] = Rt

MFHI Move From HI Rd = HI

MFLO Move From LO Rd = LO

MOVN Move Conditional on Not Zero if GPR[rt]≠ 0 then

 GPR[rd]← GPR[rs]

MOVZ Move Conditional on Zero if GPR[rt] = 0 then

 GPR[rd]← GPR[rs]

MSUB Multiply-Subtract HI, LO -= (int)Rs * (int)Rt

MSUBU Multiply-Subtract Unsigned HI, LO -= (uns)Rs * (uns)Rt

MTC0 Move To Coprocessor 0 CPR[0, n] = Rt SEL

MTHI Move To HI HI = Rs

MTLO Move To LO LO = Rs

MUL Multiply with register write HI | LO =Unpredictable

Rd = LO

MULT Integer Multiply HI | LO = (int)Rs * (int)Rd

MULTU Unsigned Multiply HI | LO = (uns)Rs * (uns)Rd

Table 11-8 Instruction Set (continued)

Instruction Description Function
11-16 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set
NOR Logical NOR Rd = ~(Rs | Rt)

OR Logical OR Rd = Rs | Rt

ORI Logical OR Immediate Rt = Rs | Immed

PREF Prefetch Load Specified Line into Cache

SB Store Byte (byte)Mem[Rs+offset] = Rt

SC Store Conditional Word if LL=1

 mem[Rxoffs] = Rt

Rt = LL

SDBBP Software Debug Break Point Trap to SW Debug Handler

SH Store Half (half)Mem[Rs+offset] = Rt

SLL Shift Left Logical Rd = Rt << sa

SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]

SLT Set on Less Than if (int)Rs < (int)Rt

 Rd = 1

else

 Rd = 0

SLTI Set on Less Than Immediate if (int)Rs < (int)Immed

 Rt = 1

else

 Rt = 0

SLTIU Set on Less Than Immediate Unsigned if (uns)Rs < (uns)Immed

 Rt = 1

else

 Rt = 0

Table 11-8 Instruction Set (continued)

Instruction Description Function
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-17

Chapter 11: MIPS32 4K™ Processor Core Instructions
SLTU Set on Less Than Unsigned if (uns)Rs < (uns)Immed

 Rd = 1

else

 Rd = 0

SRA Shift Right Arithmetic Rd = (int)Rt >> sa

SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]

SRL Shift Right Logical Rd = (uns)Rt >> sa

SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]

SSNOP Superscalar Inhibit No Operation

SUB Integer Subtract Rt = (int)Rs - (int)Rd

SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd

SW Store Word Mem[Rs+offset] = Rt

SWL Store Word Left

SWR Store Word Right

SYNC Synchronize

SYSCALL System Call SystemCallException

TEQ Trap if Equal if Rs == Rt

 TrapException

TEQI Trap if Equal Immediate if Rs == (int)Immed

 TrapException

TGE Trap if Greater Than or Equal if (int)Rs >= (int)Rt

 TrapException

TGEI Trap if Greater Than or Equal Immediate if (int)Rs >= (int)Immed

 TrapException

TGEIU Trap if Greater Than or Equal Immediate
Unsigned

if (uns)Rs >= (uns)Immed

 TrapException

Table 11-8 Instruction Set (continued)

Instruction Description Function
11-18 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set
TGEU Trap if Greater Than or Equal Unsigned if (uns)Rs >= (uns)Rt

 TrapException

TLBWI Write Indexed TLB Entry

TLBWR Write Random TLB Entry

TLBP Probe TLB for Matching Entry

TLBR Read Index for TLB Entry

TLT Trap if Less Than if (int)Rs < (int)Rt

 TrapException

TLTI Trap if Less Than Immediate if (int)Rs < (int)Immed

 TrapException

TLTIU Trap if Less Than Immediate Unsigned if (uns)Rs < (uns)Immed

 TrapException

TLTU Trap if Less Than Unsigned if (uns)Rs < (uns)Rt

 TrapException

TNE Trap if Not Equal if Rs != Rt

 TrapException

TNEI Trap if Not Equal Immediate if Rs != (int)Immed

 TrapException

WAIT Wait for Interrupts Stall until interrupt occurs

XOR Exclusive OR Rd = Rs ^ Rt

XORI Exclusive OR Immediate Rt = Rs ^ (uns)Immed

Table 11-8 Instruction Set (continued)

Instruction Description Function
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-19

Chapter 11: MIPS32 4K™ Processor Core Instructions

ified
Format: ADD rd, rs, rt MIPS I

Purpose: To add 32-bit integers. If an overflow occurs, then trap.

The 32-bit word value in GPRrt is added to the 32-bit value in GPRrs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not mod
and an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is placed into GPRrd.

Restrictions:

None

Operation:

Exceptions: Integer Overflow

Programming Notes:ADDU performs the same arithmetic operation but does not trap on overflow.

31 2526 2021 1516

SPECIAL
rs rt

6 5 5

rd
0 ADD

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Add Word ADD

Description: rd ← rs + rt

temp ← (GPR[rs] 31||GPR[rs] 31..0) + (GPR[rt] 31||GPR[rt] 31..0)
if temp 32 ≠ temp 31 then
SignalException(IntegerOverflow)
else
GPR[rd] ← sign_extend(temp 31..0)
endif
11-20 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

ified
Format: ADDI rt, rs, immediate MIPS I

Purpose: To add a constant to a 32-bit integer. If overflow occurs, then trap.

The 16-bit signedimmediateis added to the 32-bit value in GPRrs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not mod
and an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is placed into GPRrt.

Restrictions:

None

Operation:

Exceptions:Integer Overflow

Programming Notes:

ADDIU performs the same arithmetic operation but does not trap on overflow.

31 2526 2021 1516 0

ADDI
rs rt immediate

6 5 5 16

0 0 1 0 0 0

Add Immediate Word ADDI

Description: rd ← rs + immediate

temp ← (GPR[rs] 31||GPR[rs] 31..0) + sign_extend(immediate)
if temp 32 ≠ temp 31 then
SignalException(IntegerOverflow)
else
GPR[rt] ← sign_extend(temp 31..0)
endif
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-21

Chapter 11: MIPS32 4K™ Processor Core Instructions

t does
nteger
Format: ADDIU rt, rs, immediate MIPS I

Purpose: To add a constant to a 32-bit integer

The 16-bit signedimmediateis added to the 32-bit value in GPRrs and the 32-bit arithmetic result is placed into
GPRrt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

Exceptions:None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic tha
not trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or i
arithmetic environments that ignore overflow, such as C language arithmetic.

31 2526 2021 1516 0

ADDIU
rs rt immediate

6 5 5 16

0 0 1 0 0 1

Add Immediate Unsigned Word ADDIU

Description: rd ← rs + immediate

temp ← GPR[rs] + sign_extend(immediate)
GPR[rt] ← sign_extend(temp 31..0)
11-22 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

t does
nteger
Format: ADDU rd, rs, rt MIPS I

Purpose: To add 32-bit integers

The 32-bit word value in GPRrt is added to the 32-bit value in GPRrs and the 32-bit arithmetic result is placed
into GPRrd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

Exceptions:None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic tha
not trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or i
arithmetic environments that ignore overflow, such as C language arithmetic.

Add Unsigned Word ADDU

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 ADDU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

Description: rd ← rs + rt

temp ← GPR[rs] + GPR[rt]
GPR[rd] ← sign_extend(temp 31..0)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-23

Chapter 11: MIPS32 4K™ Processor Core Instructions
Format: AND rd, rs, rt MIPS I

Purpose: To do a bitwise logical AND

The contents of GPRrs are combined with the contents of GPRrt in a bitwise logical AND operation. The result
is placed into GPRrd.

Restrictions: None

Operation:

Exceptions: None

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 AND

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

And AND

Description: rd ← rs AND rt

GPR[rd] ← GPR[rs] and GPR[rt]
11-24 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set
Format: ANDI rt, rs, immediate MIPS I

Purpose: To do a bitwise logical AND with a constant

The 16-bitimmediateis zero-extended to the left and combined with the contents of GPRrs in a bitwise logical
AND operation. The result is placed into GPRrt.

Restrictions: None

Operation:

Exceptions: None

31 2526 2021 1516 0

ANDI rs rt immediate

6 5 5 16

0 0 1 1 0 0

And Immediate ANDI

Description: rt ← rs AND immediate

GPR[rt] ← GPR[rs] and zero_extend(immediate)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-25

Chapter 11: MIPS32 4K™ Processor Core Instructions

g

 the
Format: BEQ rs, rt, offset MIPS I

Purpose: To compare GPRs then do a PC-relative conditional branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followin
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs and GPRrt are equal, branch to the effective target address after the instruction in
delay slot is executed.

Restrictions: None

Operation:

Exceptions: None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 Kbytes. Use jump (J) or jump
register (JR) instructions to branch to addresses outside this range.

31 2526 2021 1516 0

BEQ rs rt offset

6 5 5 16

0 0 0 1 0 0

Branch on Equal BEQ

Description: if rs = rt then branch

I: target_offset ← sign_extend(offset || 0 2)
condition ← (GPR[rs] = GPR[rt])
I+1: if condition then
PC ← PC + target_offset
endif
11-26 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

nch is

g

slot

 the
Format: BEQL rs, rt, offset MIPS II

Purpose:To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the bra
taken.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followin
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs and GPRrt are equal, branch to the target address after the instruction in the delay
is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions: None

Operation:

Programming Notes:

It is recommended that new software not use this instruction as it will be phased out in future versions of
MIPS32 architecture.

31 2526 2021 1516 0

BEQL rs rt offset

6 5 5 16

0 1 0 1 0 0

Branch on Equal Likely BEQL

Description: if rs = rt then branch_likely

I: target_offset ← sign_extend(offset || 0 2)
condition ← (GPR[rs] = GPR[rt])
I+1: if condition then
PC ← PC + target_offset
else
NullifyCurrentInstruction()
endif
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-27

Chapter 11: MIPS32 4K™ Processor Core Instructions

g

after
Format: BGEZ rs, offset MIPS I

Purpose:To test a GPR then do a PC-relative conditional branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followin
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than or equal to zero (sign bit is 0), branch to the effective target address
the instruction in the delay slot is executed.

Restrictions: None

Operation:

Exceptions: None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump
register (JR) instructions to branch to addresses outside this range.

31 2526 2021 1516 0

REGIMM rs BGEZ offset

6 5 5 16

0 0 0 0 0 1 0 0 0 0 1

Branch on Greater Than or Equal to Zero BGEZ

Description: if rs ≥ 0 then branch

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≥ 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset
endif
11-28 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

 the

g

after

hen
andler
Format: BGEZAL rs, offset MIPS I

Purpose:To test a GPR then do a PC-relative conditional procedure call

Place the return address link in GPR 31. The return link is the address of the second instruction following
branch, where execution continues after a procedure call.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followin
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than or equal to zero (sign bit is 0), branch to the effective target address
the instruction in the delay slot is executed.

Restrictions:

GPR 31 must not be used for the source registerrs, because such an instruction does not have the same effect w
reexecuted. The result of executing such an instruction is undefined. This restriction permits an exception h
to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Operation:

Branch on Greater Than or Equal to Zero and Link BGEZAL

31 2526 2021 1516 0

REGIMM rs BGEZAL offset

6 5 5 16

0 0 0 0 0 1 1 0 0 0 1

Description: if rs ≥ 0 then procedure_call

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≥ 0 GPRLEN

GPR[31] ← PC + 8
I+1: if condition then
PC ← PC + target_offset
endif
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-29

Chapter 11: MIPS32 4K™ Processor Core Instructions
Exceptions:None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump and link (JAL)
or jump and link register (JALR) instructions for procedure calls to addresses outside this range.

Branch on Greater Than or Equal to Zero and Link (cont.) BGEZAL
11-30 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

ranch

 the

g

after
ot

hen
andler
Format: BGEZALL rs, offset MIPS II

Purpose:To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only if the b
is taken.

Place the return address link in GPR 31. The return link is the address of the second instruction following
branch, where execution continues after a procedure call.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followin
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than or equal to zero (sign bit is 0), branch to the effective target address
the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is n
executed.

Restrictions:

GPR 31 must not be used for the source registerrs, because such an instruction does not have the same effect w
reexecuted. The result of executing such an instruction is undefined. This restriction permits an exception h
to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Branch on Greater Than or Equal to Zero and Link Likely BGEZALL

31 2526 2021 1516 0

REGIMM rs BGEZALL offset

6 5 5 16

0 0 0 0 0 1 1 0 0 1 1

Description: if rs ≥ 0 then procedure_call_likely
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-31

Chapter 11: MIPS32 4K™ Processor Core Instructions

 the
Operation:

Exceptions: None

Programming Notes:

It is recommended that new software not use this instruction as it will be phased out in future versions of
MIPS32 architecture.

Branch on Greater Than or Equal to Zero and Link Likely (cont.) BGEZALL

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≥ 0 GPRLEN

GPR[31] ← PC + 8
I+1: if condition then
PC ← PC + target_offset
else
NullifyCurrentInstruction()
endif
11-32 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

taken.

g

after
ot

 the
Format: BGEZL rs, offset MIPS II

Purpose:To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followin
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than or equal to zero (sign bit is 0), branch to the effective target address
the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is n
executed.

Restrictions: None

Operation:

Exceptions:None

Programming Notes:

It is recommended that new software not use this instruction as it will be phased out in future versions of
MIPS32 architecture.

Branch on Greater Than or Equal to Zero Likely BGEZL

31 2526 2021 1516 0

REGIMM rs BGEZL offset

6 5 5 16

0 0 0 0 0 1 0 0 0 1 1

Description: if rs ≥ 0 then branch_likely

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≥ 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset
else
NullifyCurrentInstruction()
endif
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-33

Chapter 11: MIPS32 4K™ Processor Core Instructions

g

et
Format: BGTZ rs, offset MIPS I

Purpose:To test a GPR then do a PC-relative conditional branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followin
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than zero (sign bit is 0 but value not zero), branch to the effective targ
address after the instruction in the delay slot is executed.

Restrictions: None

Operation:

Exceptions: None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump
register (JR) instructions to branch to addresses outside this range.

Branch on Greater Than Zero BGTZ

31 2526 2021 1516 0

BGTZ rs 0 offset

6 5 5 16

0 0 0 1 1 1 0 0 0 0 0

Description: if rs > 0 then branch

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] > 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset
endif
11-34 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

taken.

g

et
ay slot

 the
Format: BGTZL rs, offset MIPS II

Purpose:To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followin
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than zero (sign bit is 0 but value not zero), branch to the effective targ
address after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the del
is not executed.

Restrictions: None

Operation:

Exceptions: None

Programming Notes:

It is recommended that new software not use this instruction as it will be phased out in future versions of
MIPS32 architecture.

Branch on Greater Than Zero Likely BGTZL

31 2526 2021 1516 0

BGTZL rs 0 offset

6 5 5 16

0 1 0 1 1 1 0 0 0 0 0

Description: if rs > 0 then branch_likely

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] > 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset
else
NullifyCurrentInstruction()
endif
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-35

Chapter 11: MIPS32 4K™ Processor Core Instructions

g

rget
Format: BLEZ rs, offset MIPS I

Purpose: To test a GPR then do a PC-relative conditional branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followin
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective ta
address after the instruction in the delay slot is executed.

Restrictions: None

Operation:

Exceptions: None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump
register (JR) instructions to branch to addresses outside this range.

Branch on Less Than or Equal to Zero BLEZ

31 2526 2021 1516 0

BLEZ rs 0 offset

6 5 5 16

0 0 0 1 1 0 0 0 0 0 0

Description: if rs ≤ 0 then branch

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≤ 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset
endif
11-36 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

taken.

g

rget
ay slot

 the
Format: BLEZL rs, offset MIPS II

Purpose:To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followin
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective ta
address after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the del
is not executed.

Restrictions: None

Operation:

Exceptions: None

Programming Notes:

It is recommended that new software not use this instruction as it will be phased out in future versions of
MIPS32 architecture.

Branch on Less Than or Equal to Zero Likely BLEZL

31 2526 2021 1516 0

BLEZL rs 0 offset

6 5 5 16

0 1 0 1 1 0 0 0 0 0 0

Description: if rs ≤ 0 then branch_likely

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≤ 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset
else
NullifyCurrentInstruction()
endif
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-37

Chapter 11: MIPS32 4K™ Processor Core Instructions

g

ction
Format: BLTZ rs, offset MIPS I

Purpose: To test a GPR then do a PC-relative conditional branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followin
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrsare less than zero (sign bit is 1), branch to the effective target address after the instru
in the delay slot is executed.

Restrictions: None

Operation:

Exceptions: None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump and link (JAL)
or jump and link register (JALR) instructions for procedure calls to addresses outside this range.

Branch on Less Than Zero BLTZ

31 2526 2021 1516 0

REGIMM rs BLTZ offset

6 5 5 16

0 0 0 0 0 1 0 0 0 0 0

Description: if rs < 0 then branch

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] < 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset
endif
11-38 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

 the

g

ction

hen
andler
Format: BLTZAL rs, offset MIPS I

Purpose: To test a GPR then do a PC-relative conditional procedure call

Place the return address link in GPR 31. The return link is the address of the second instruction following
branch, where execution continues after a procedure call.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followin
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrsare less than zero (sign bit is 1), branch to the effective target address after the instru
in the delay slot is executed.

Restrictions:

GPR 31 must not be used for the source registerrs, because such an instruction does not have the same effect w
reexecuted. The result of executing such an instruction is undefined. This restriction permits an exception h
to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Branch on Less Than Zero and Link BLTZAL

31 2526 2021 1516 0

REGIMM rs BLTZAL offset

6 5 5 16

0 0 0 0 0 1 1 0 0 0 0

Description: if rs < 0 then procedure_call
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-39

Chapter 11: MIPS32 4K™ Processor Core Instructions
Operation:

Exceptions: None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump and link (JAL)
or jump and link register (JALR) instructions for procedure calls to addresses outside this range.

Branch on Less Than Zero and Link (cont.) BLTZAL

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] < 0 GPRLEN

GPR[31] ← PC + 8
I+1: if condition then
PC ← PC + target_offset
endif
11-40 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

ranch

 the

g

ction

hen
andler
Format: BLTZALL rs, offset MIPS II

Purpose:To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only if the b
is taken.

Place the return address link in GPR 31. The return link is the address of the second instruction following
branch, where execution continues after a procedure call.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followin
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrsare less than zero (sign bit is 1), branch to the effective target address after the instru
in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

GPR 31 must not be used for the source registerrs, because such an instruction does not have the same effect w
reexecuted. The result of executing such an instruction is undefined. This restriction permits an exception h
to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Branch on Less Than Zero and Link Likely BLTZALL

31 2526 2021 1516 0

REGIMM rs BLTZALL offset

6 5 5 16

0 0 0 0 0 1 1 0 0 1 0

Description: if rs < 0 then procedure_call_likely
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-41

Chapter 11: MIPS32 4K™ Processor Core Instructions

 the
Operation:

Exceptions: Reserved Instruction

Programming Notes:

It is recommended that new software not use this instruction as it will be phased out in future versions of
MIPS32 architecture.

Branch on Less Than Zero and Link Likely (cont.) BLTZALL

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] < 0 GPRLEN

GPR[31] ← PC + 8
I+1: if condition then
PC ← PC + target_offset
else
NullifyCurrentInstruction()
endif
11-42 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

taken.

g

ction

 the
Format: BLTZL rs, offset MIPS II

Purpose:To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followin
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrsare less than zero (sign bit is 1), branch to the effective target address after the instru
in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions: None

Operation:

Exceptions: None

Programming Notes:

It is recommended that new software not use this instruction as it will be phased out in future versions of
MIPS32 architecture.

Branch on Less Than Zero Likely BLTZL

31 2526 2021 1516 0

REGIMM rs BLTZL offset

6 5 5 16

0 0 0 0 0 1 0 0 0 1 0

Description: if rs < 0 then branch_likely

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] < 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset
else
NullifyCurrentInstruction()
endif
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-43

Chapter 11: MIPS32 4K™ Processor Core Instructions

g

n in
Format: BNE rs, rt, offset MIPS I

Purpose: To compare GPRs then do a PC-relative conditional branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followin
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs and GPRrt are not equal, branch to the effective target address after the instructio
the delay slot is executed.

Restrictions: None

Operation:

Exceptions: None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump
register (JR) instructions to branch to addresses outside this range.

Branch on Not Equal BNE

31 2526 2021 1516 0

BNE rs rt offset

6 5 5 16

0 0 0 1 0 1

Description: if rs ≠ rt then branch

I: target_offset ← sign_extend(offset || 0 2)
condition ← (GPR[rs] ≠ GPR[rt])
I+1: if condition then
PC ← PC + target_offset
endif
11-44 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

nch is

g

n in

 the
Format: BNEL rs, rt, offset MIPS II

Purpose:To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the bra
taken.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followin
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs and GPRrt are not equal, branch to the effective target address after the instructio
the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions: None

Operation:

Exceptions: None

Programming Notes:

It is recommended that new software not use this instruction as it will be phased out in future versions of
MIPS32 architecture.

Branch on Not Equal Likely BNEL

31 2526 2021 1516 0

BNEL rs rt offset

6 5 5 16

0 1 0 1 0 1

Description: if rs ≠ rt then branch_likely

I: target_offset ← sign_extend(offset || 0 2)
condition ← (GPR[rs] ≠ GPR[rt])
I+1: if condition then
PC ← PC + target_offset
else
NullifyCurrentInstruction()
endif
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-45

Chapter 11: MIPS32 4K™ Processor Core Instructions

ading
Format: BREAK MIPS I

Purpose: To cause a Breakpoint exception

Description:
A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler.
Thecodefield is available for use as software parameters, but is retrieved by the exception handler only by lo
the contents of the memory word containing the instruction.

Restrictions: None

Operation:

Exceptions: Breakpoint

Breakpoint BREAK

31 2526

SPECIAL

6

0

BREAKcode

6 5

620

0 0 0 0 0 0 0 0 1 1 0 1

SignalException(Breakpoint)
11-46 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

ss. The
ache as
Format:
CACHE op, offset(base) MIPS32

Purpose:
To perform the cache operation specified by op.

Description:
The 16-bit offset is sign-extended and added to the contents of the base register to form an effective addre
effective address is used in one of three ways based on the operation to be performed and the type of c
described in the following table.

Operation
Requires an

Type of
Cache

Usage of Effective Address

Address Physical The effective address is translated by the MMU to a physical address.
The physical address is then used to address the cache

Index N/A The effective address is translated by the MMU to a physical address.
The address is used to index the cache.
Assuming that the total cache size in bytes is CS, the associativity is
A, and the number of bytes per tag is BPT, the following calculations
give the fields of the address which specify the way and the index:

OffsetBit <- Log2(BPT)
IndexBit <- Log2(CS / A)
WayBit <- IndexBit + Ceiling(Log2(A))
Way <- AddrWayBit-1..IndexBit

Index <- AddrIndexBit-1..OffsetBit

For a direct-mapped cache, the Way calculation is ignored and the
Index value fully specifies the cache tag. This is shown symbolically
in Figure 11-3.

Perform Cache Operation CACHE

31 0

6 5 5 16

CACHE base op Offset

21 20 16 1526 25

1 0 1 1 1 1
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-47

Chapter 11: MIPS32 4K™ Processor Core Instructions

dex
esses may
tions

d that
te
Figure 11-3 Usage of Address Fields to Select Index and Way

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For in
operations (where the address is used to index the cache but need not match the cache tag) unmapped addr
be used to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB Refill excep
with a cause code of TLBS nor data Watch exceptions.

Bits [17:16] of the instruction specify the cache on which to perform the operation, as follows:

Bits [20:18] of the instruction specify the operation to perform. On Index Load Tag operations, the specific wor
is addressed in loaded into the DataLo register. All otherCACHE instructions are line based and the word and by
indexes will not affect their operation..

Table 11-9 Encoding of CACHE Instruction Bits[17:16]

Code Name Cache

0 0 I Primary Instruction

0 1 D Primary Data or Unified Primary

1 0 Reserved Not supported on4K cores

1 1 Reserved Not supported on4K cores

Table 11-10 Encoding of CACHE Instruction Bits [20:18]

Code Caches Name
Effective Address

Operand Type
Operation

0 0 0 I,D Index Invalidate Index Set the state of the cache block at the
specified index to invalid.

0 0 1 I, D Index Load Tag Index Read the tag for the cache block at the
specified index into the TagLo COP0
register. Also read the wordcorresponding to
the byte index into the DataLo register.

Way

0

Index

OffsetBitIndexBitWayBit

Unused byte index
11-48 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

set in

he
Restrictions:
Execution of this instruction is legal only if the processor is operating in kernel mode, or if the CP0 enable bit is
the Status register. In other circumstances, a Coprocessor Unusable Exception is taken.

The operation of this instruction isUNDEFINED for any operation/cache combination that is not implemented. T
operation of this instruction isUNDEFINED for uncacheable addresses.

Operation:
if (SR CU0 = 1) or (SR UM = 0) or (SR EXL = 1) or (SR ERL = 1) then

0 1 0 I, D Index Store Tag Index Write the tag for the cache block at the
specified index from the TagLo and TagHi
COP0 registers.

0 1 1 Reserved Treated as a NOP.

1 0 0 I, D Hit Invalidate Address If the cache block contains the specified
address, set the state of the cache block to
invalid.

1 0 1 I Fill Address Fill the cache from the specified address.
The cache line will be re-fetched even if it is
already in the cache.

D Hit Invalidate Address For a write-through cache: If the cache
block contains the specified address, set the
state of the cache block to invalid.

1 1 0 D Hit Writeback Address This operation is treated as a NOP.

1 1 1 I, D Fetch and Lock Address. If the cache does not contain the entire line
at the specified address it is fetched from
memory, and the state is set to locked. If the
cache already contains the line, set the state
to locked.

The lock state may be cleared by executing
an Index Invalidate or Hit Invalidate
operation to the locked line, or via an Index
Store Tag operation to the line that clears the
lock bit.

Table 11-10 Encoding of CACHE Instruction Bits [20:18] (continued)

Code Caches Name
Effective Address

Operand Type
Operation
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-49

Chapter 11: MIPS32 4K™ Processor Core Instructions
vAddr <- GPR[base] + sign_extend(offset)
(pAddr, uncached) <- AddressTranslation(vAddr, DataReadReference)
CacheOp(op, vAddr, pAddr)

else
InitiateCoprocessorUnusableException(0)

endif

Exceptions:
TLB Refill Exception.
TLB Invalid Exception
Coprocessor Unusable Exception
11-50 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

s is
Format:
CLO rd, rs MIPS32

Purpose:
Count the number of leading ones in a word

Description:
The 32-bit word in GPRrs is scanned from most significant to least significant bit. The number of leading one
counted and the result is written to GPRrd If all 32 bits were set in GPRrs, the result written to GPRrd is 32.

Restrictions:
None

Operation:
temp <- 32
for i in 31 .. 0

if GPR[rs] i = 0 then
temp <- 31 - i
break

endif
endfor
GPR[rd] <- temp

Exceptions:
None

Count Leading Ones in Word CLO

31 0

6 5 5 5 6

SPEC2 rs 0 rd

11 1021 20 16 1526 25

0 1 1 1 0 0

CLO
1 0 0 0 0 1

6 5

5

0
0 0 0 0 00 0 0 0 0
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-51

Chapter 11: MIPS32 4K™ Processor Core Instructions

os is
Format:
CLZ rd, rs MIPS32

Purpose
Count the number of leading zeros in a word

Description:
The 32-bit word in GPRrs is scanned from most significant to least significant bit. The number of leading zer
counted and the result is written to GPRrd. If no bits were set in GPRrs, the result written to GPRrd is 32.

Restrictions:
None

Operation:
temp <- 32
for i in 31 .. 0

if GPR[rs] i = 1 then
temp <- 31 - i
break

endif
endfor
GPR[rd] <- temp

Exceptions:
None

Count Leading Zeros in Word CLZ

31 0

6 5 5 5 6

SPEC2 rs 0 rd

11 1021 20 16 1526 25

0 1 1 1 0 0

CLZ
1 0 0 0 0 0

6 5

5

0
0 0 0 0 00 0 0 0 0
11-52 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

a
l mode,
lts in a
Format:
COP0 rt, rd MIPS32

Purpose:
Perform the coprocessor function specified by Bits [24:0].

Description:
A coprocessor function, as described by Bits [24:0] is performed that is specific to coprocessor0. Refer to the instruc-
tion descriptions for each coprocessor for more details.

Restrictions:
If the coprocessor enable bit for coprocessor0 is off in the Status register, execution of this instruction results in
Coprocessor Unusable Exception. For coprocessor 0, this instruction is legal only if the processor is in kerne
or if the CP0 usable bit is set in the Status register. In other circumstances, execution of this instruction resu
Coprocessor Unusable Exception.

Operation:
if (SRCU0 = 1) or
 ((SRUM = 0) or (SREXL = 1) or (SRERL = 1)) then

CoprocessorOperation(z, CoprocessorFunction)
else

InitiateCoprocessorUnusableException (0)
endif

Exceptions:
Coprocessor Unusable Exception (if access is not allowed)
Reserved Instruction Exception (if access is allowed, but function not implemented)

Coprocessor Operation for Coprocessor 0 COP0

31 0

6 1 25

COP0 CO

2426 25

0 1 0 0 0 0 1
Coprocessor Function
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-53

Chapter 11: MIPS32 4K™ Processor Core Instructions

debug

c-
l only
tances,

truc-
for all
ERET
Format:
DERET MIPS32

Purpose:
Return from debug exception.

Description:
DERET returns to normal mode at the instruction pointed to by DEPC, e.g. the instruction that received the
exception. DERET does not execute the next instruction (i.e. it has no delay slot).

Restrictions:
The operation of the processor isUNDEFINED if a DERET is placed in the delay slot of a branch or jump instru
tion. A DERET placed between an LL and SC instruction does not cause the SC to fail. This instruction is lega
if the processor is in kernel or debug mode, or if the CP0 usable bit is set in the Status register. In other circums
execution of this instruction results in a coprocessor unusable exception.

If the DEPC register with the return address was modified by an MTC0 instruction, then a minimum of two ins
tions must be executed before executing the DERET. The DERET instruction implements a software barrier
changes in the CP0 state that could affect the fetch and decode of the instruction at the PC to which the D
returns, such as changes to the effective ASID, user-mode state, and addressing mode.

Operation:
if (SR CU0 = 1) or (SR UM = 0) or (SR EXL = 1) or (SR ERL = 1) or (Debug DM =
1) then
DebugDM <- 0
PC <- DEPC
else
SignalException(CoprocessorUnusable)
endif

Exceptions:
Coprocessor Unusable Exception

Debug Exception Return DERET

31 0

6 1 19

COP0 CO

2426 25

0 1 0 0 0 0 1
DERET0

6

0 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 5
11-54 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

s.
Format: DIV rs, rt MIPS I

Purpose: To divide 32-bit signed integers

The 32-bit word value in GPRrs is divided by the 32-bit value in GPRrt, treating both operands as signed value
The 32-bit quotient is placed into special registerLO and the 32-bit remainder is placed into special registerHI.
No arithmetic exception occurs under any circumstances.

Restrictions:
None

If the divisor in GPRrt is zero, the arithmetic result value is undefined.

Divide Word

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DIV
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0

DIV

Description: (LO, HI) ← rs / rt
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-55

Chapter 11: MIPS32 4K™ Processor Core Instructions

tions to
re

mance

ed and
divi-

th the
more

te
nal con-
EAK
Operation:

Exceptions: None

Programming Notes:
In some processors the integer divide operation may proceed asynchronously and allow other CPU instruc
execute before it is complete. An attempt to readLO or HI before the results are written interlocks until the results a
ready. Asynchronous execution does not affect the program result, but offers an opportunity for perfor
improvement by scheduling the divide so that other instructions can execute in parallel.

No arithmetic exception occurs under any circumstances. If divide-by-zero or overflow conditions are detect
some action taken, then the divide instruction is typically followed by additional instructions to check for a zero
sor and/or for overflow. If the divide is asynchronous then the zero-divisor check can execute in parallel wi
divide. The action taken on either divide-by-zero or overflow is either a convention within the program itself, or
typically within the system software; one possibility is to take a BREAK exception with acodefield value to signal
the problem to the system software.

As an example, the C programming language in a UNIX® environment expects division by zero to either termina
the program or execute a program-specified signal handler. C does not expect overflow to cause any exceptio
dition. If the C compiler uses a divide instruction, it also emits code to test for a zero divisor and execute a BR
instruction to inform the operating system if a zero is detected.

Divide Word (cont.) DIV

if (NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then
UndefinedResult()
endif

MIPS I-III
I: q← GPR[rs] 31..0 div GPR[rt] 31..0
LO← sign_extend(q 31..0)
r ← GPR[rs] 31..0 mod GPR[rt] 31..0
HI ← sign_extend(r 31..0)
11-56 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

er
Format: DIVU rs, rt MIPS I

Purpose: To divide 32-bit unsigned integers

The 32-bit word value in GPRrs is divided by the 32-bit value in GPRrt, treating both operands as unsigned
values. The 32-bit quotient is placed into special registerLOand the 32-bit remainder is placed into special regist
HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If the divisor in GPRrt is zero, the arithmetic result value is undefined.

Operation:

Exceptions: None

Programming Notes:See “Programming Notes” for the DIV instruction.

Divide Unsigned Word

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DIVU
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1

DIVU

Description: (LO, HI) ← rs / rt

if (NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then
UndefinedResult()
endif
I: q← (0 || GPR[rs] 31..0) div (0 || GPR[rt] 31..0)
r ← (0 || GPR[rs] 31..0) mod (0 || GPR[rt] 31..0)
LO← sign_extend(q 31..0)
HI ← sign_extend(r 31..0)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-57

Chapter 11: MIPS32 4K™ Processor Core Instructions

c-

ter. In

of the
address-
Format:
ERET MIPS32

Purpose:
Return from interrupt, exception, or error trap

Description:
ERET returns to the interrupted instruction at the completion of interrupt, exception, or error trap process-
ing. ERET does not execute the next instruction (i.e., it has no delay slot).

Restrictions:
The operation of the processor isUNDEFINED if an ERET is placed in the delay slot of a branch or jump instru
tion.

An ERET placed between an LL and SC instruction will always cause the SC to fail.

This instruction is legal only if the processor is in kernel mode, or if the CP0 usable bit is set in the Status regis
other circumstances, execution of this instruction results in a Coprocessor Unusable Exception.

ERET implements a software barrier for all changes in the CP0 state that could affect the fetch and decode
instruction at the PC to which the ERET returns, such as changes to the effective ASID, user-mode state, and
ing mode.

Operation:
if (SR CU0 = 1) or (SR UM = 0) or (SR EXL = 1) or (SR ERL = 1) then
if SR ERL = 1 then
PC <- ErrorEPC
SRERL <- 0
else
PC <- EPC
SREXL <- 0
endif

Exception Return ERET

31 0

6 1 19

COP0 CO

2426 25

0 1 0 0 0 0 1
ERET0

6

0 1 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11-58 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set
LLbit <- 0
else
InitiateCoprocessorUnusableException(0)
endif

Exceptions:
Coprocessor Unusable Exception
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-59

Chapter 11: MIPS32 4K™ Processor Core Instructions

d

before

e PC is
lows a
 offset.
6 MB
Format: J target MIPS I

Purpose: To branch within the current 256 MB-aligned region

Description:

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligne
region. The low 28 bits of the target address is theinstr_index field shifted left 2 bits. The remaining upper bits
are the corresponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot,
executing the jump itself.

Restrictions: None

Exceptions: None

Operation:

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to th
an advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It al
branch from anywhere in the region to anywhere in the region, an action not allowed by a signed relative
This definition creates the following boundary case: When the branch instruction is in the last word of a 25
region, it can branch only to the following 256 MB region containing the branch delay slot.

Jump J

31 2526

J

6

0

instr_index

26

0 0 0 0 1 0

I:
I+1: PC ← PC GPRLEN..28 || instr_index || 0 2
11-60 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

 the

d

before
Format: JAL target MIPS I

Purpose: To execute a procedure call within the current 256 MB-aligned region

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following
branch, at which location execution continues after a procedure call.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligne
region. The low 28 bits of the target address is theinstr_index field shifted left 2 bits. The remaining upper bits
are the corresponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot,
executing the jump itself.

Restrictions: None

Operation:

Exceptions: None

Jump and Link JAL

31 2526

JAL

6

0

instr_index

26

0 0 0 0 1 1

I: GPR[31] ← PC + 8
I+1: PC ← PC GPRLEN..28 || instr_index || 0 2
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-61

Chapter 11: MIPS32 4K™ Processor Core Instructions

e PC is
lows a
 offset.

6 MB
Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to th
an advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It al
branch from anywhere in the region to anywhere in the region, an action not allowed by a signed relative

This definition creates the following boundary case: When the branch instruction is in the last word of a 25
region, it can branch only to the following 256 MB region containing the branch delay slot.

Jump and Link (cont.) JAL
11-62 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

y

tions

 when
andler

ot
n.
Format: JALR rs (rd = 31 implied) MIPS I
JALR rd, rs MIPS I

Purpose: To execute a procedure call to an instruction address in a register

Place the return address link in GPR rd. The return link is the address of the second instruction following the
branch, where execution continues after a procedure call.

Jump to the effective target address in GPRrs. Execute the instruction that follows the jump, in the branch dela
slot, before executing the jump itself.

At this time the only defined hint field value is 0, which sets default handling of JALR. Future implementa
may define additional hint values.

Restrictions:

Register specifiersrs andrd must not be equal, because such an instruction does not have the same effect
reexecuted. The result of executing such an instruction is undefined. This restriction permits an exception h
to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

The effective target address in GPRrs must be naturally-aligned. If either of the two least-significant bits are n
zero, an Address Error exception occurs when the branch target is subsequently fetched as an instructio

Jump and Link Register JALR

31 2526 2021 1516

SPECIAL rs

6 5 5

rd JALR

5 5 6

11 10 6 5 0

0 0 1 0 0 1
hint

0 0 0 0 00 0 0 0 0 0

Description: rd ← return_addr, PC ← rs
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-63

Chapter 11: MIPS32 4K™ Processor Core Instructions

tions
Operation:

Exceptions: None

Programming Notes:

This is the only branch-and-link instruction that can select a register for the return link; all other link instruc
use GPR 31. The default register for GPRrd, if omitted in the assembly language instruction, is GPR 31.

Jump and Link Register (cont.) JALR

I: temp ← GPR[rs]
GPR[rd] ← PC + 8
I+1: PC ← temp
11-64 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

t
uction.

may
Format: JR rs MIPS I

Purpose: To execute a branch to an instruction address in a register

Jump to the effective target address in GPRrs. Execute the instruction following the jump, in the branch delay
slot, before jumping.

Restrictions:

The effective target address in GPRrs must be naturally-aligned. If either of the 2 least-significant bits are no
zero, then an Address Error exception occurs when the branch target is subsequently fetched as an instr

At this time the only defined hint field value is 0, which sets default handling of JR. Future implementations
define additional hint values.

Operation:

Exceptions: None

Programming Notes:

Software should use the value 31 for thers field of the instruction word on return from a JAL, JALR, or BGEZAL,
and should use a value other than 31 for remaining uses of JR.

Jump Register

21 2031 2526

SPECIAL

6

0

JRrs

5 10 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

JR

5

5

11 10 6

hint

Description: PC ← rs

I: temp ← GPR[rs]
I+1: PC← temp
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-65

Chapter 11: MIPS32 4K™ Processor Core Instructions

tended,
Format: LB rt, offset(base) MIPS I

Purpose: To load a byte from memory as a signed value

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, sign-ex
and placed in GPRrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions: None

Operation:

Exceptions: TLB Refill, TLB Invalid, Address Error

Load Byte LB

31 2526 2021 1516 0

LB base rt offset

6 5 5 16

1 0 0 0 0 0

Description: rt ← memory[base+offset]

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor ReverseEndian 2)
memword← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr 1..0 xor BigEndianCPU 2

GPR[rt] ← sign_extend(memword 7+8*byte..8*byte)
11-66 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

tended,
Format: LBU rt, offset(base) MIPS I

Purpose: To load a byte from memory as an unsigned value

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-ex
and placed in GPRrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions: None

Operation:

Exceptions: TLB Refill, TLB Invalid, Address Error

Load Byte Unsigned LBU

31 2526 2021 1516 0

LBU base rt offset

6 5 5 16

1 0 0 1 0 0

Description: rt ← memory[base+offset]

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE–1..2 || (pAddr 1..0 xor ReverseEndian 2)
memword← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr 1..0 xor BigEndianCPU 2

GPR[rt] ← zero_extend(memword 7+8* byte..8* byte)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-67

Chapter 11: MIPS32 4K™ Processor Core Instructions

tched,

ddress
Format: LH rt, offset(base) MIPS I

Purpose: To load a halfword from memory as a signed value

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fe
sign-extended, and placed in GPRrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the
effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an A
Error exception occurs.

Operation:

Exceptions: TLB Refill, TLB Invalid, Bus Error, Address Error

Load Halfword LH

31 2526 2021 1516 0

LH base rt offset

6 5 5 16

1 0 0 0 0 1

Description: rt ← memory[base+offset]

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 0 ≠ 0 then SignalException(AddressError) endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE–1..2 || (pAddr 1..0 xor (ReverseEndian || 0))
memword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr 1..0 xor (BigEndianCPU || 0)
GPR[rt] ← sign_extend(memword 15+8*byte..8* byte)
11-68 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

tched,

ddress
Format: LHU rt, offset(base) MIPS I

Purpose: To load a halfword from memory as an unsigned value

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fe
zero-extended, and placed in GPRrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the
effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an A
Error exception occurs.

Operation:

Exceptions: TLB Refill, TLB Invalid, Address Error

Load Halfword Unsigned LHU

31 2526 2021 1516 0

LHU base rt offset

6 5 5 16

1 0 0 1 0 1

Description: rt ← memory[base+offset]

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 0 ≠ 0 then SignalException(AddressError) endif
hwsel ← (vAddr 1 xor BigEndianCPU) || 0
vAddr ← vAddr PSIZE-1..2 || hwsel
memword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
GPR[rt] ← zero_extend(memword 15+(8*hwsel)..8*hwsel)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-69

Chapter 11: MIPS32 4K™ Processor Core Instructions

for

 to the

er

.

nce

fail on

MW
Format: LL rt, offset(base) MIPS II

Purpose: To load a word from memory for an atomic read-modify-write

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations
cached memory locations.

The 16-bit signedoffset is added to the contents of GPRbase to form an effective address. The contents of the
32-bit word at the memory location specified by the aligned effective address are fetched, sign-extended
GPR register length if necessary, and written into GPRrt.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence p
processor.

When an LL is executed it starts an active RMW sequence replacing any other sequence that was active

The RMW sequence is completed by a subsequent SC instruction that either completes the RMW seque
atomically and succeeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the R
sequence without attempting a write.

Load Linked Word LL

31 2526 2021 1516 0

LL base rt offset

6 5 5 16

1 1 0 0 0 0

Description: rt ← memory[base+offset]
11-70 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

ress is
Restrictions:

The addressed location must be cached; if it is not, the result is undefined.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective add
non-zero, an Address Error exception occurs.

Operation:

Exceptions: TLB Refill, TLB Invalid, Address Error, Reserved Instruction

Programming Notes:

There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

Load Linked Word (cont.) LL

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then SignalException(AddressError) endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ← memword
LLbit ← 1
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-71

Chapter 11: MIPS32 4K™ Processor Core Instructions

lt is
Format: LUI rt, immediate MIPS I

Purpose: To load a constant into the upper half of a word

The 16-bitimmediateis shifted left 16 bits and concatenated with 16 bits of low-order zeros. The 32-bit resu
sign-extended and placed into GPRrt.

Restrictions: None

Operation:

Exceptions: None

Load Upper Immediate LUI

31 2526 2021 1516 0

LUI
rt immediate

6 5 5 16

0 0 1 1 1 1

0

0 0 0 0 0

Description: rt ← immediate || 0 16

GPR[rt] ← sign_extend(immediate || 0 16)
11-72 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

hed,

-zero,
Format: LW rt, offset(base) MIPS I

Purpose: To load a word from memory as a signed value

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetc
sign-extended to the GPR register length if necessary, and placed in GPRrt. The 16-bit signedoffsetis added to
the contents of GPRbaseto form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non
an Address Error exception occurs.

Operation:

Exceptions: TLB Refill, TLB Invalid, Bus Error, Address Error

Load Word LW

31 2526 2021 1516 0

LW base rt offset

6 5 5 16

1 0 0 0 1 1

Description: rt ← memory[base+offset]

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then SignalException(AddressError) endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ← memword
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-73

Chapter 11: MIPS32 4K™ Processor Core Instructions

gister
he
Format: LWL rt, offset(base) MIPS I

Purpose: To load the most-significant part of a word as a signed value from an unaligned
memory address

The 16-bit signedoffset is added to the contents of GPRbaseto form an effective address (EffAddr). EffAddr is
the address of the most-significant of 4 consecutive bytes forming a word(W) in memory starting at an arbitrary
byte boundary.

The most-significant 1 to 4 bytes ofW is in the aligned word containing theEffAddr. This part ofW is loaded into
the most-significant (left) part of the word in GPRrt. The remaining least-significant part of the word in GPRrt
is unchanged.

Figure 11-4 illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4
consecutive bytes in 2.5 form an unaligned word starting at location 2. A part ofW, 2 bytes, is in the aligned word
containing the most-significant byte at 2. First, LWL loads these 2 bytes into the left part of the destination re
word and leaves the right part of the destination word unchanged. Next, the complementary LWR loads t
remainder of the unaligned word

Load Word Left LWL

31 2526 2021 1516 0

LWL base rt offset

6 5 5 16

1 0 0 0 1 0

Description: rt ← rt MERGE memory[base+offset]
11-74 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

within

yte
Figure 11-4 Unaligned Word Load Using LWL and LWR

The bytes loaded from memory to the destination register depend on both the offset of the effective address
an aligned word, that is, the low 2 bits of the address (vAddr1..0), and the current byte-ordering mode of the
processor (big- or little-endian). Figure 11-5 shows the bytes loaded for every combination of offset and b
ordering.

Load Word Left (cont.) LWL

Word at byte 2 in big-endian memory; each memory byte contains its own address

 most - significance - least

0 1 2 3 4 5 6 7 8 9 Memory initial contents

e f g h 32-bit GPR 24: Initial contents

e f g h

2 3 g h After executing LWL $24,2($0)

2 3 g h

2 3 4 5 Then after LWR $24,5($0)

2 3 4 5
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-75

Chapter 11: MIPS32 4K™ Processor Core Instructions

y the
Figure 11-5 Bytes Loaded by LWL Instruction

The unaligned loads, LWL and LWR, are exceptions to the load-delay scheduling restriction in MIPS I
architecture (seeRestrictions below). An unaligned load instruction to GPR rt that immediately follows another
load to GPR rt can read the loaded data. It correctly merges the 1 to 4 loaded bytes with the data loaded b
previous instruction.

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ←big-endian

I J K L offset (vAddr1..0)

3 2 1 0 ←little-endian most — significance — least

most least 32-bit register e f g h

— significance —

The word sign (31) is always loaded and the value is copied into bits 63..32.

 32-bit register Big-endian vAddr1..0 Little-endian

I J K L 0 L f g h

J K L h 1 K L g h

K L g h 2 J K L h

L f g h 3 I J K L

Load Word Left (cont.) LWL
11-76 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set
Restrictions: None

Operation:

Exceptions: TLB Refill, TLB Invalid, Bus Error, Address Error

Load Word Left (cont.) LWL

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor ReverseEndian 2)
if BigEndianMem = 0 then
pAddr ← pAddr PSIZE-1..2 || 0 2

endif
byte ← vAddr 1..0 xor BigEndianCPU 2

memword← LoadMemory (CCA, byte, pAddr, vAddr, DATA)
GPR[rt] ← memword 7+8*byte..0 || GPR[rt] 23–8*byte..0
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-77

Chapter 11: MIPS32 4K™ Processor Core Instructions

e

ster.

ion
Format: LWR rt, offset(base) MIPS I

Purpose: To load the least-significant part of a word from an unaligned memory address as a signed valu

The 16-bit signedoffset is added to the contents of GPRbaseto form an effective address (EffAddr). EffAddr is
the address of the least-significant of 4 consecutive bytes forming a word(W) in memory starting at an arbitrary
byte boundary.

A part ofW, the least-significant 1 to 4 bytes, is in the aligned word containingEffAddr. This part ofW is loaded
into the least-significant (right) part of the word in GPRrt. The remaining most-significant part of the word in
GPRrt is unchanged.

Executing both LWR and LWL, in either order, delivers a sign-extended word value in the destination regi

Figure 11-6 illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4
consecutive bytes in 2..5 form an unaligned word starting at location 2. A part ofW, 2 bytes, is in the aligned word
containing the least-significant byte at 5. First, LWR loads these 2 bytes into the right part of the destinat
register. Next, the complementary LWL loads the remainder of the unaligned word.

Load Word Right LWR

31 2526 2021 1516 0

LWR base rt offset

6 5 5 16

1 0 0 1 1 0

Description: rt ← rt MERGE memory[base+offset]
11-78 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

within

yte
Figure 11-6 Unaligned Word Load Using LWR and LWL

The bytes loaded from memory to the destination register depend on both the offset of the effective address
an aligned word—that is, the low 2 bits of the address (vAddr1..0)—and the current byte-ordering mode of the
processor (big- or little-endian). Figure 11-7 shows the bytes loaded for every combination of offset and b
ordering.

Load Word Right (cont.) LWR

Word at byte 2 in memory, big-endian byte order, each mem byte contains its address

 most - significance - least

0 1 2 3 4 5 6 7 8 9 Memory initial contents

e f g h 32-bit GPR 24: Initial contents

e f g h

e f 4 5 After executingLWR $24,5($0)

e f 4 5

2 3 4 5 Then afterLWL $24,2($0)

2 3 4 5
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-79

Chapter 11: MIPS32 4K™ Processor Core Instructions

I

Figure 11-7 Bytes Loaded by LWR Instruction

The unaligned loads, LWL and LWR, are exceptions to the load-delay scheduling restriction in the MIPS
architecture. An unaligned load to GPRrt that immediately follows another load to GPRrt can “read” the loaded
data. It correctly merges the 1 to 4 loaded bytes with the data loaded by the previous instruction.

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ←big-endian

I J K L offset (vAddr1..0)

3 2 1 0 ←little-endian most — significance — least

most least 32-bit register e f g h

— significance —

32-bit register big-endian vAddr1..0 little-endian

e f g I 0 I J K L

e f I J 1 e I J K

e I J K 2 e f I J

I J K L 3 e f g I

Load Word Right (cont.) LWR
11-80 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set
Restrictions: None

Operation:

Exceptions: TLB Refill, TLB Invalid, Bus Error, Address Error

Load Word Right (cont.) LWR

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor ReverseEndian 2)
if BigEndianMem = 0 then
pAddr ← pAddr PSIZE-1..2 || 0 2

endif
byte ← vAddr 1..0 xor BigEndianCPU 2

memword← LoadMemory (CCA, byte, pAddr, vAddr, DATA)
GPR[rt] ← memword 31..32-8*byte || GPR[rt] 31–8*byte..0
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-81

Chapter 11: MIPS32 4K™ Processor Core Instructions

s,

nd 4Km
Format:
MADD rs, rt MIPS32

Purpose:
Multiply two words and add the result to Hi, Lo

Description:
The 32-bit word value in GPRrs is multiplied by the 32-bit value in GPRrt, treating both operands as signed value
to produce a 64-bit result. The product is added to the 64-bit concatenated values ofHI andLO and the result is writ-
ten back intoHI andLO. No arithmetic exception occurs under any circumstances.

Restrictions:
None.

Operation:

temp <- (HI || LO) + (GPR[rs] * GPR[rt])

HI <- temp 63..32

LO <- temp 31..0

Exceptions:
None

Programming Note:
Where the size of the operands are known, software should place the shorter operand in GPR rt. The 4Kc a
processor cores have a multiplier that has a lower latency when rt is a 16 bit value.

Multiply and Add Word to Hi,Lo MADD

31 0

6 5 5 5 6

SPEC2 rs rt 0

11 1021 20 16 1526 25

0 1 1 1 0 0

MADD
0 0 0 0 0 0

6 5

5

0
0 0 0 0 00 0 0 0 0
11-82 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

l-

nd 4Km
Format:
MADDU rs, rt MIPS32

Purpose:
Multiply two unsigned words and add the result to Hi, Lo

Description:
The 32-bit word value in GPRrs is multiplied by the 32-bit value in GPRrt, treating both operands as unsigned va
ues, to produce a 64-bit result. The product is added to the 64-bit concatenated values ofHI andLO and the result is
written back intoHI andLO. No arithmetic exception occurs under any circumstances.

Restrictions:
None.

Operation:

temp <- (HI || LO) + ((0 32 || GPR[rs]) * (0 32 || GPR[rt]))

HI <- temp 63..32

LO <- temp 31..0

Exceptions:
None

Programming Note:
Where the size of the operands are known, software should place the shorter operand in GPR rt. The 4Kc a
processor cores have a multiplier that has a lower latency when rt is a 16 bit value.

Multiply and Add Unsigned Word to Hi,Lo MADDU

31 0

6 5 5 5 6

SPEC2 rs rt 0

11 1021 20 16 1526 25

0 1 1 1 0 0

MADDU
0 0 0 0 0 1

6 5

5

0
0 0 0 0 00 0 0 0 0
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-83

Chapter 11: MIPS32 4K™ Processor Core Instructions

t in the
tion.
Format:
MFC0 rt, rd, sel MIPS32

Purpose:
Move the contents of a coprocessor register to a general register.

Description:
The contents of the coprocessor 0 register specified by the combination ofrd and sel are loaded into general
register rt. Not all coprocessors or registers within a coprocessor support the sub-selection specified by thesel
field. In those instances, thesel field must be set to zero

Restrictions:
For coprocessor 0, this instruction is legal only if the processor is in kernel mode, or if the CP0 usable bit is se
Status register. In other circumstances, execution of this instruction results in a Coprocessor Unusable Excep

The results areUNPREDICTABLE if coprocessor 0 does not contain a register as specified byrd andsel.

Operation:
if (SRCUz = 1) or
((SRUM = 0) or (SREXL = 1) or (SRERL = 1)) then

data <- CPR[z,rd,sel]
GPR[rt] <- data

else
InitiateCoprocessorUnusableException(0)

endif

Exceptions:
Coprocessor Unusable Exception

Move from Coprocessor 0 MFC0

31 0

6 5 5 5 8

COP0 MF rt rd

11 1021 20 16 1526 25

0 1 0 0 0 0

0
0 0 0 0 0

23

3

0 0 0 0 0 0 0 0
sel
11-84 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set
Format: MFHI rd MIPS I

Purpose: To copy the special purposeHI register to a GPR

The contents of special registerHI are loaded into GPRrd.

Restrictions: None

Operation:

Exceptions: None

Move From HI Register MFHI

0

31 2526 1516 0

rd

6 10 5

6 5

6

SPECIAL MFHI0

5

11 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Description: rd ← HI

GPR[rd] ← HI
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-85

Chapter 11: MIPS32 4K™ Processor Core Instructions
Format: MFLO rd MIPS I

Purpose: To copy the special purposeLO register to a GPR

The contents of special registerLO are loaded into GPRrd.

Restrictions: None

Operation:

Exceptions: None

Move From LO Register MFLO

0

31 2526 1516 0

rd

6 10 5

6 5

6

SPECIAL MFLO0

5

11 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

Description: rd ← LO

GPR[rd] ← LO
11-86 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set
Format: MOVN rd, rs, rt MIPS IV

Purpose: To conditionally move a GPR after testing a GPR value

If the value in GPRrt is not equal to zero, then the contents of GPRrs are placed into GPRrd.

Restrictions: None

Operation:

Exceptions: Reserved Instruction

Programming Notes:

The non-zero value tested here is thecondition true result from the SLT, SLTI, SLTU, and SLTIU comparison
instructions.

Move Conditional on Not Zero MOVN

31 2526 1516 0

6 5 5

6 5

6

SPECIAL

5

11 1021 20

5

0 MOVNrdrtrs
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

Description: if rt ≠ 0 then rd ← rs

if GPR[rt] ≠ 0 then
GPR[rd] ← GPR[rs]
endif
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-87

Chapter 11: MIPS32 4K™ Processor Core Instructions
Format: MOVZ rd, rs, rt MIPS IV

Purpose: To conditionally move a GPR after testing a GPR value

If the value in GPRrt is equal to zero, then the contents of GPRrs are placed into GPRrd.

Restrictions: None

Operation:

Exceptions: Reserved Instruction

Programming Notes:

The zero value tested here is thecondition false result from the SLT, SLTI, SLTU, and SLTIU comparison
instructions.

Move Conditional on Zero MOVZ

31 2526 1516 0

6 5 5

6 5

6

SPECIAL

5

11 1021 20

5

0 MOVZrdrtrs
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

Description: if rt = 0 then rd ← rs

if GPR[rt] = 0 then
GPR[rd] ← GPR[rs]
endif
11-88 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

s,

nd 4Km
Format:
MSUB rs, rt MIPS32

Purpose:
Multiply two words and subtract the result from Hi, Lo

Description:
The 32-bit word value in GPRrs is multiplied by the 32-bit value in GPRrt, treating both operands as signed value
to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values ofHI andLO and the result
is written back intoHI andLO. No arithmetic exception occurs under any circumstances.

Restrictions:
None.

Operation:

temp <- (HI || LO) - (GPR[rs] * GPR[rt])

HI <- temp 63..32

LO <- temp 31..0

Exceptions:
None

Programming Note:
Where the size of the operands are known, software should place the shorter operand in GPR rt. The 4Kc a
processor cores have a multiplier that has a lower latency when rt is a 16 bit value.

Multiply and Subtract Word to Hi,Lo MSUB

31 0

6 5 5 5 6

SPEC2 rs rt 0

11 1021 20 16 1526 25

0 1 1 1 0 0

MSUB
0 0 0 1 0 0

6 5

5

0
0 0 0 0 00 0 0 0 0
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-89

Chapter 11: MIPS32 4K™ Processor Core Instructions

l-

nd 4Km
Format:
MSUBU rs, rt MIPS32

Purpose:
Multiply two unsigned words and subtract the result from Hi, Lo

Description:
The 32-bit word value in GPRrs is multiplied by the 32-bit value in GPRrt, treating both operands as unsigned va
ues, to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values ofHI andLO and the
result is written back intoHI andLO. No arithmetic exception occurs under any circumstances.

Restrictions:
None.

Operation:

temp <- (HI || LO) - ((0 32 || GPR[rs]) * (0 32 || GPR[rt]))

HI <- temp 63..32

LO <- temp 31..0

Exceptions:
None

Programming Note:
Where the size of the operands are known, software should place the shorter operand in GPR rt. The 4Kc a
processor cores have a multiplier that has a lower latency when rt is a 16 bit value.

Multiply and Subtract Unsigned Word to Hi,Lo MSUBU

31 0

6 5 5 5 6

SPEC2 rs rt 0

11 1021 20 16 1526 25

0 1 1 1 0 0

MSUBU
0 0 0 1 0 1

6 5

5

0
0 0 0 0 00 0 0 0 0
11-90 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

t in the
tion.
Format:
MTC0 rt, rd, sel MIPS32

Purpose:
Move the contents of a general register to a coprocessor register.

Description:
The contents of general registerrt are loaded into the coprocessor z register specified by the combination ofrd
and sel. Not all coprocessors or registers within a coprocessor support the sub-selection specified by thesel
field. In those instances, thesel field must be set to zero.

Restrictions:
For coprocessor 0, this instruction is legal only if the processor is in kernel mode, or if the CP0 usable bit is se
Status register. In other circumstances, execution of this instruction results in a Coprocessor Unusable Excep

The results areUNPREDICTABLE if coprocessor 0 does not contain a register as specified byrd andsel.

Operation:
if (SRCUz = 1) or
((SRUM = 0) or (SREXL = 1) or (SRERL = 1)) then

data <- GPR[rt]
CPR[z,rd,sel] <- data

else
InitiateCoprocessorUnusableException(0)

endif

Exceptions:
Coprocessor Unusable Exception

Move to Coprocessor 0 MTC0

31 0

6 5 5 5 8

COP0 MT rt rd

11 1021 20 16 1526 25

0 1 0 0 0 0

0
0 0 1 0 0

23

3

0 0 0 0 0 0 0
sel
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-91

Chapter 11: MIPS32 4K™ Processor Core Instructions
Format: MTHI rs MIPS I

Purpose: To copy a GPR to the special purposeHI register

The contents of GPRrs are loaded into special registerHI.

Restrictions: None

Operation:

Exceptions: None

Move to HI Register MTHI

31 2526 2021 0

rs

6 5

6 5

15 6

SPECIAL 0 MTHI
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

Description: HI ← rs

HI ← GPR[rs]
11-92 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set
Format: MTLO rs MIPS I

Purpose: To copy a GPR to the special purposeLO register

The contents of GPRrs are loaded into special registerLO.

Restrictions: None

Operation:

Exceptions: None

Move to LO Register MTLO

31 2526 2021 0

rs

6 5

6 5

15 6

SPECIAL 0 MTLO
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

Description: LO ← rs

LO← GPR[rs]
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-93

Chapter 11: MIPS32 4K™ Processor Core Instructions

s,

is to
essor

nd 4Km
Format:
MUL rd, rs, rt MIPS32

Purpose:
Multiply two words write the result to a GPR

Description:
The 32-bit word value in GPRrs is multiplied by the 32-bit value in GPRrt, treating both operands as signed value
to produce a 64-bit result. The least significant 32 bits of the product are written to GPRrd. The contents ofHI and
LO are not defined after the operation. No arithmetic exception occurs under any circumstances.

Restrictions:
Note that this instruction does not provide the capability of writing the result to the HI and LO registers. This
prevent having two destination registers that would be difficult to support in potential high-performance proc
implementations that rename registers.

Operation:
temp <- GPR[rs] * GPR[rt]
GPR[rd] <- temp31..0

HI <- UNPREDICTABLE
LO <- UNPREDICTABLE

Exceptions:
None

Programming Note:
Where the size of the operands are known, software should place the shorter operand in GPR rt. The 4Kc a
processor cores have a multiplier that has a lower latency when rt is a 16 bit value.

Multiply Word to GPR MUL

31 0

6 5 5 5 6

SPEC2 rs rt rd

11 1021 20 16 1526 25

0 1 1 1 0 0

MUL
0 0 0 0 1 0

6 5

5

0
0 0 0 0 0
11-94 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

re it is
Format: MULT rs, rt MIPS I

Purpose: To multiply 32-bit signed integers

The 32-bit word value in GPRrt is multiplied by the 32-bit value in GPRrs, treating both operands as signed
values, to produce a 64-bit result. The low-order 32-bit word of the result is placed into special registerLO, and
the high-order 32-bit word is placed into special registerHI.

No arithmetic exception occurs under any circumstances.

Restrictions: None

Operation:

Exceptions: None

Programming Notes:

Integer multiply operations may proceed asynchronously and allow other CPU instructions to execute befo
complete. An attempt to readLO or HI before the results are written interlocks until the results are ready.
Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Multiply Word MULT

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 MULT
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

Description: (LO, HI) ← rs × rt

prod ← GPR[rs] 31..0 × GPR[rt] 31..0
LO← sign_extend(prod 31..0)
HI ← sign_extend(prod 63..32)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-95

Chapter 11: MIPS32 4K™ Processor Core Instructions

d 4Km
Where the size of the operands are known, software should place the shorter operand in GPR rt. The 4Kc an
processor cores have a multiplier that has a lower latency when rt is a 16 bit value.
11-96 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

d

re it is
Format: MULTU rs, rt MIPS I

Purpose: To multiply 32-bit unsigned integers

The 32-bit word value in GPRrt is multiplied by the 32-bit value in GPRrs, treating both operands as unsigne
values, to produce a 64-bit result. The low-order 32-bit word of the result is placed into special registerLO, and
the high-order 32-bit word is placed into special registerHI.

No arithmetic exception occurs under any circumstances.

Restrictions: None

Operation:

Exceptions: None

Programming Notes:

Integer multiply operations may proceed asynchronously and allow other CPU instructions to execute befo
complete. An attempt to readLO or HI before the results are written interlocks until the results are ready.
Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Multiply Unsigned Word MULTU

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 MULTU

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1

Description: (LO, HI) ← rs × rt

prod ← (0 || GPR[rs] 31..0) × (0 || GPR[rt] 31..0)
LO← sign_extend(prod 31..0)
HI ← sign_extend(prod 63..32
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-97

Chapter 11: MIPS32 4K™ Processor Core Instructions

d 4Km
Where the size of the operands are known, software should place the shorter operand in GPR rt. The 4Kc an
processor cores have a multiplier that has a lower latency when rt is a 16 bit value.
11-98 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set
Format: NOR rd, rs, rt MIPS I

Purpose: To do a bitwise logical NOT OR

The contents of GPRrs are combined with the contents of GPRrt in a bitwise logical NOR operation. The result
is placed into GPRrd.

Restrictions: None

Operation:

Exceptions: None

Not Or NOR

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 NOR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1

Description: rd ← rs NOR rt

GPR[rd] ← GPR[rs] nor GPR[rt]
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-99

Chapter 11: MIPS32 4K™ Processor Core Instructions
Format: OR rd, rs, rt MIPS I

Purpose: To do a bitwise logical OR

The contents of GPRrs are combined with the contents of GPRrt in a bitwise logical OR operation. The result is
placed into GPRrd.

Restrictions: None

Operation:

Exceptions: None

Or OR

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 OR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1

Description: rd ← rs or rt

GPR[rd] ← GPR[rs] or GPR[rt]
11-100 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set
Format: ORI rt, rs, immediate MIPS I

Purpose: To do a bitwise logical OR with a constant

The 16-bitimmediateis zero-extended to the left and combined with the contents of GPRrs in a bitwise logical
OR operation. The result is placed into GPRrt.

Restrictions: None

Operation:

Exceptions: None

Or Immediate ORI

31 2526 2021 1516 0

ORI rs rt immediate

6 5 5 16

0 0 1 1 0 1

Description: rd ← rs or immediate

GPR[rt] ← GPR[rs] or zero_extend(immediate)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-101

Chapter 11: MIPS32 4K™ Processor Core Instructions

t
t

 the

xception,

 the
d by a
Format: PREF hint, offset(base) MIPS IV

Purpose: To prefetch data from memory

PREF adds the 16-bit signedoffset to the contents of GPRbase to form an effective byte address. It advises tha
data at the effective address may be used in the near future. Thehint field supplies information about the way tha
the data is expected to be used.

PREF is an advisory instruction that may change the performance of the program. However, for allhint values and
all effective addresses, it neither changes the architecturally visible state nor does it alter the meaning of
program.

PREF does not cause addressing-related exceptions. If the address specified would cause an addressing e
the exception condition is ignored and no data prefetch occurs.

PREF never generates a memory operation for a location with anuncached memory access type.

If PREF results in a memory operation, the memory access type used for the operation is determined by
memory access type of the effective address, just as it would be if the memory operation had been cause
load or store to the effective address.

Thehint field supplies information about the way the data is expected to be used. Ahint value cannot cause an
action to modify architecturally visible state. A processor may use ahint value to improve the effectiveness of the
prefetch action.

Prefetch PREF

31 2526 2021 1516

base hint

6 5 5

offset

16

0

1 1 0 0 1 1

PREF

Description: prefetch_memory(base+offset)
11-102 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set
Any of the following conditions causes the core to treat a PREF instruction as a NOP.

– A reserved hint value is used

– Writeback-invalidate (25) hint value is used

– The address has a translation error

– The address maps to an uncacheable page

– The data is already in the cache

– There is already another load/prefetch outstanding

In all other cases execution of the PREF instruction initiates an external bus read transaction. PREF is a
non-blocking operation and does not cause the pipeline to stall while waiting for the data to be returned.

Prefetch (cont.) PREF
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-103

Chapter 11: MIPS32 4K™ Processor Core Instructions

g

Restrictions: None

Table 11-11 Values of Hint Fields for the PREF Instruction

Value Name Data use and desired prefetch action

0 load Data is expected to be loaded (not modified).

1 store Data is expected to be stored or modified.

2-3 Reserved. Treated as a NOP

4 load_streamed Data is expected to be loaded (not modified) but not reused extensively;
it “streams” through cache.

5 store_streamed Data is expected to be stored or modified but not reused extensively; it
“streams” through cache.
Fetch data as if for a store and place it in the cache so that it does not
displace data prefetched as “retained.”

6 load_retained Data is expected to be loaded (not modified) and reused extensively; it
should be “retained” in the cache.
Fetch data as if for a load and place it in the cache so that it is not
displaced by data prefetched as “streamed.”

7 store_retained Data is expected to be stored or modified and reused extensively; it
should be “retained” in the cache.

8-24 Reserved. Treated as a NOP

25 writeback_invalidate MIPS32 4K processor cores treat this hint as a NOP.

26-31 Reserved. Treated as a NOP

Reserved hint values and writeback_invalidate are treated as NOPs. All other hint values are treated the same - fillin
the cache if the conditions listed on the previous page are met.
11-104 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

e TLB.
refetch

ss pointer
Operation:

Exceptions: None

Programming Notes:

Prefetch cannot prefetch data from a mapped location unless the translation for that location is present in th
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so p
may not be effective for such locations.

Prefetch does not cause addressing exceptions. It does not cause an exception to prefetch using an addre
value before the validity of a pointer is determined.

Prefetch (cont.) PREF

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-105

Chapter 11: MIPS32 4K™ Processor Core Instructions

ss.
Format: SB rt, offset(base) MIPS I

Purpose: To store a byte to memory

The least-significant 8-bit byte of GPRrt is stored in memory at the location specified by the effective addre
The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions: None

Operation:

Exceptions: TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

Store Byte SB

31 2526 2021 1516 0

SB base rt offset

6 5 5 16

1 0 1 0 0 0

Description: memory[base+offset] ← rt

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor ReverseEndian 2)
byte ← vAddr 1..0 xor BigEndianCPU 2

dataword ← GPR[rt] 31–8*byte..0 || 0 8*byte

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)
11-106 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

for

r. To

n the
Format: SC rt, offset(base) MIPS II

Purpose: To store a word to memory to complete an atomic read-modify-write

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations
cached memory locations.

The 16-bit signedoffset is added to the contents of GPRbaseto form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processo
complete the RMW sequence atomically, the following occur:

• The least-significant 32-bit word of GPRrt is stored into memory at the location specified by the aligned
effective address.

• A 1, indicating success, is written into GPRrt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPRrt.

If the following event occurs between the execution of LL and SC, the SC fails and an exception occurs o
processor as detected by execution of the ERET instruction.

Store Conditional Word SC

31 2526 2021 1516 0

SC base rt offset

6 5 5 16

1 1 1 0 0 0

Description: if atomic_update then memory[base+offset] ← rt, rt ← 1

else rt ← 0
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-107

Chapter 11: MIPS32 4K™ Processor Core Instructions

 SC.
dentical.

y
tion:

t be

-zero,
The following conditions must be true or the result of the SC is undefined:

• Execution of SC must have been preceded by execution of an LL instruction.

• A RMW sequence executed without intervening exceptions must use the same address in the LL and
The address is the same if the virtual address, physical address, and cache-coherence algorithm are i

Atomic RMW is provided only for cached memory locations. The extent to which the detection of atomicit
operates correctly depends on the system implementation and the memory access type used for the loca

• Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the location mus
made with memory access type of eithercached noncoherent or cached coherent. All accesses must be to
one or the other access type, and they may not be mixed.

Restrictions:

The addressed location must have a memory access type ofcached noncoherentor cached coherent; if it does not,
the result is undefined.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non
an Address Error exception occurs.

Operation:

Exceptions: TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction

Store Conditional Word (cont.) SC

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then SignalException(AddressError) endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[rt]
if LLbit then
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt] ← 0 31 || LLbit
11-108 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

ples of
oftware

n

Programming Notes:

LL and SC are used to atomically update memory locations, as shown in Figure 11-8.

Figure 11-8 Example of LL/SC Atomic Update

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some exam
these are arithmetic operations that trap, system calls, and floating point operations that trap or require s
emulation assistance.

LL and SC function on a single processor forcached noncoherent memory so that parallel programs can be ru
on uniprocessor systems that do not supportcached coherent memory access types.

Store Conditional Word (cont.) SC

L1:
LLT1, (T0)# load counter
ADDIT2, T1, 1# increment
SCT2, (T0)# try to store, checking for atomicity
BEQT2, 0, L1# if not atomic (0), try again
NOP# branch-delay slot
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-109

Chapter 11: MIPS32 4K™ Processor Core Instructions

debug

ing the
Format:
SDBBP code

Purpose:
To cause a debug software breakpoint exception.

Description:
A debug software breakpoint exception occurs, immediately and unconditionally transferring control to the
exception handler.

The code field is available as software parameter, but is retrieved by the debug exception handler only by load
contents of the memory containing the instruction.

Restrictions:
The operation of the processor isUNDEFINED if a SDBBP is executed in debug mode.

Operation:
SignalException(DebugSoftwareBreakpoint)

Exceptions:
Debug Software Breakpoint Exception

Software Debug Breakpoint SDBBP

31 0

6 20

SPEC2

26 25

0 1 1 1 0 0

SDBBPcode

6

1 1 1 1 1 1

6 5
11-110 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

ddress
Format: SH rt, offset(base) MIPS I

Purpose: To store a halfword to memory

The least-significant 16-bit halfword of registerrt is stored in memory at the location specified by the aligned
effective address. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an A
Error exception occurs.

Operation:

Exceptions: TLB Refill, TLB Invalid, TLB Modified, Address Error

Store Halfword SH

31 2526 2021 1516 0

SH base rt offset

6 5 5 16

1 0 1 0 0 1

Description: memory[base+offset] ← rt

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 0 ≠ 0 then SignalException(AddressError) endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor (ReverseEndian || 0))
byte ← vAddr 1..0 xor (BigEndianCPU || 0)
dataword ← GPR[rt] 31–8*byte..0 || 0 8*byte

StoreMemory (CCA, HALFWORD, dataword, pAddr, vAddr, DATA)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-111

Chapter 11: MIPS32 4K™ Processor Core Instructions

rd

 either
Format: SLL rd, rt, sa MIPS I

Purpose: To left-shift a word by a fixed number of bits

The contents of the low-order 32-bit word of GPRrt are shifted left, inserting zeros into the emptied bits; the wo
result is placed in GPRrd. The bit-shift amount is specified bysa.

Restrictions: None

Operation:

Exceptions: None

Programming Notes:

Some assemblers, particularly 32-bit assemblers, treat an SLL with a shift amount of zero as a NOP and
delete it or replace it with an actual NOP.

Shift Word Left Logical SLL

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa SLL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0

Description: rd ← rt << sa

s ← sa
temp ← GPR[rt] (31-s)..0 || 0 s

GPR[rd] ← sign_extend(temp)
11-112 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

ult
Format: SLLV rd, rt, rs MIPS I

Purpose: To left-shift a word by a variable number of bits

The contents of the low-order 32-bit word of GPRrt are shifted left, inserting zeros into the emptied bits; the res
word is placed in GPRrd. The bit-shift amount is specified by the low-order 5 bits of GPRrs.

Restrictions: None

Operation:

Exceptions: None

Programming Notes:None

Shift Word Left Logical Variable SLLV

31 2526 2021 1516

SPECIAL rt

6 5 5

rd 0 SLLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 1 0 00 0 0 0 0
rs

Description: rd ← rt << rs

s ← GPR[rs] 4..0
temp ← GPR[rt] (31-s)..0 || 0 s

GPR[rd] ← sign_extend(temp)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-113

Chapter 11: MIPS32 4K™ Processor Core Instructions

ison
None

Format: SLT rd, rs, rt MIPS I

Purpose: To record the result of a less-than comparison

Compare the contents of GPRrs and GPRrt as signed integers and record the Boolean result of the compar
in GPRrd. If GPRrs is less than GPRrt, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions: None

Operation:

Exceptions: None

Set on Less Than SLT

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SLT

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 0 1 0 1 00 0 0 0 0

Description: rd ← (rs < rt)

if GPR[rs] < GPR[rt] then
GPR[rd] ← 0 GPRLEN-1 || 1
else
GPR[rd] ← 0 GPRLEN

endif
11-114 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

ult
Format: SLTI rt, rs, immediate MIPS I

Purpose: To record the result of a less-than comparison with a constant

Compare the contents of GPRrs and the 16-bit signedimmediateas signed integers and record the Boolean res
of the comparison in GPRrt. If GPRrs is less thanimmediate,the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions: None

Operation:

Exceptions: None

Set on Less Than Immediate SLTI

31 2526 2021 1516 0

SLTI rs rt immediate

6 5 5 16

0 0 1 0 1 0

Description: rt ← (rs < immediate)

if GPR[rs] < sign_extend(immediate) then
GPR[rd] ← 0 GPRLEN-1|| 1
else
GPR[rd] ← 0 GPRLEN

endif
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-115

Chapter 11: MIPS32 4K™ Processor Core Instructions

ult
Format: SLTI rt, rs, immediate MIPS I

Purpose: To record the result of a less-than comparison with a constant

Compare the contents of GPRrs and the 16-bit signedimmediateas signed integers and record the Boolean res
of the comparison in GPRrt. If GPRrs is less thanimmediate,the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions: None

Operation:

Exceptions: None

Set on Less Than Immediate SLTI

31 2526 2021 1516 0

SLTI rs rt immediate

6 5 5 16

0 0 1 0 1 0

Description: rt ← (rs < immediate)

if GPR[rs] < sign_extend(immediate) then
GPR[rd] ← 0 GPRLEN-1|| 1
else
GPR[rd] ← 0 GPRLEN

endif
11-116 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

st or
Format: SLTIU rt, rs, immediate MIPS I

Purpose: To record the result of an unsigned less-than comparison with a constant

Compare the contents of GPRrs and the sign-extended 16-bitimmediate as unsigned integers and record the
Boolean result of the comparison in GPRrt. If GPRrs is less thanimmediate, the result is 1 (true); otherwise, it
is 0 (false).

Because the 16-bitimmediate is sign-extended before comparison, the instruction can represent the smalle
largest unsigned numbers. The representable values are at the minimum [0, 32767] or maximum
[max_unsigned-32767, max_unsigned] end of the unsigned range.

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions: None

Operation:

Exceptions: None

Set on Less Than Immediate Unsigned SLTIU

31 2526 2021 1516 0

SLTIU rs rt immediate

6 5 5 16

0 0 1 0 1 1

Description: rt ← (rs < immediate)

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then
GPR[rd] ← 0 GPRLEN-1 || 1
else
GPR[rd] ← 0 GPRLEN

endif
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-117

Chapter 11: MIPS32 4K™ Processor Core Instructions

st or
Format: SLTIU rt, rs, immediate MIPS I

Purpose: To record the result of an unsigned less-than comparison with a constant

Compare the contents of GPRrs and the sign-extended 16-bitimmediate as unsigned integers and record the
Boolean result of the comparison in GPRrt. If GPRrs is less thanimmediate, the result is 1 (true); otherwise, it
is 0 (false).

Because the 16-bitimmediate is sign-extended before comparison, the instruction can represent the smalle
largest unsigned numbers. The representable values are at the minimum [0, 32767] or maximum
[max_unsigned-32767, max_unsigned] end of the unsigned range.

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions: None

Operation:

Exceptions: None

Set on Less Than Immediate Unsigned SLTIU

31 2526 2021 1516 0

SLTIU rs rt immediate

6 5 5 16

0 0 1 0 1 1

Description: rt ← (rs < immediate)

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then
GPR[rd] ← 0 GPRLEN-1 || 1
else
GPR[rd] ← 0 GPRLEN

endif
11-118 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

ison
Format: SLTU rd, rs, rt MIPS I

Purpose: To record the result of an unsigned less-than comparison

Compare the contents of GPRrs and GPRrt as unsigned integers and record the Boolean result of the compar
in GPRrd. If GPRrs is less than GPRrt, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions: None

Operation:

Exceptions: None

Set on Less Than Unsigned SLTU

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SLTU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1

Description: rd ← (rs < rt)

if (0 || GPR[rs]) < (0 || GPR[rt]) then
GPR[rd] ← 0 GPRLEN-1 || 1
else
GPR[rd] ← 0 GPRLEN

endif
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-119

Chapter 11: MIPS32 4K™ Processor Core Instructions
Format: SRA rd, rt, sa MIPS I

Purpose: To execute an arithmetic right-shift of a word by a fixed number of bits

The contents of the low-order 32-bit word of GPRrt are shifted right, duplicating the sign-bit (bit 31) in the
emptied bits; the word result is placed in GPRrd. The bit-shift amount is specified bysa.

Restrictions:

None

Operation:

Exceptions: None

Shift Word Right Arithmetic SRA

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa SRA

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Description: rd ← rt >> sa (arithmetic)

s← sa
temp ← (GPR[rt] 31) s || GPR[rt] 31..s
GPR[rd] ← sign_extend(temp)
11-120 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set
Format: SRAV rd, rt, rs MIPS I

Purpose: To execute an arithmetic right-shift of a word by a variable number of bits

The contents of the low-order 32-bit word of GPRrt are shifted right, duplicating the sign-bit (bit 31) in the
emptied bits; the word result is placed in GPRrd. The bit-shift amount is specified by the low-order 5 bits of
GPRrs.

Restrictions:

None

Operation:

Exceptions: None

Shift Word Right Arithmetic Variable SRAV

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SRAV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Description: rd ← rt >> rs (arithmetic)

s← GPR[rs] 4..0
temp ← (GPR[rt] 31) s || GPR[rt] 31..s
GPR[rd] ← sign_extend(temp)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-121

Chapter 11: MIPS32 4K™ Processor Core Instructions
Format: SRL rd, rt, sa MIPS I

Purpose: To execute a logical right-shift of a word by a fixed number of bits

The contents of the low-order 32-bit word of GPRrt are shifted right, inserting zeros into the emptied bits; the
word result is placed in GPRrd. The bit-shift amount is specified bysa.

Restrictions: None

Operation:

Exceptions: None

Shift Word Right Logical SRL

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa SRL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 1 0
0

0 0 0 0 0

Description: rd ← rt >> sa (logical)

s← sa
temp ← 0 s || GPR[rt] 31..s
GPR[rd] ← sign_extend(temp)
11-122 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set
Format: SRLV rd, rt, rs MIPS I

Purpose: To execute a logical right-shift of a word by a variable number of bits

The contents of the low-order 32-bit word of GPRrt are shifted right, inserting zeros into the emptied bits; the
word result is placed in GPRrd. The bit-shift amount is specified by the low-order 5 bits of GPRrs.

Restrictions:

None

Operation:

Exceptions: None

Shift Word Right Logical Variable SRLV

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SRLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Description: rd ← rt >> rs (logical)

s← GPR[rs] 4..0
temp ← 0 s || GPR[rt] 31..s
GPR[rd] ← sign_extend(temp)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-123

Chapter 11: MIPS32 4K™ Processor Core Instructions

d and
Format: SUB rd, rs, rt MIPS I

Purpose: To subtract 32-bit integers. If overflow occurs, then trap

The 32-bit word value in GPRrt is subtracted from the 32-bit value in GPRrs to produce a 32-bit result. If the
subtraction results in 32-bit 2’s complement arithmetic overflow, then the destination register is not modifie
an Integer Overflow exception occurs. If it does not overflow, the 32-bit result is placed into GPRrd.

Restrictions: None

Operation:

Exceptions: Integer Overflow

Programming Notes:SUBU performs the same arithmetic operation but does not trap on overflow.

Subtract Word SUB

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SUB

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

Description: rd ← rs - rt

temp ← (GPR[rs] 31||GPR[rs] 31..0) − (GPR[rt] 31||GPR[rt] 31..0)
if temp 32 ≠ temp 31 then
SignalException(IntegerOverflow)
else
GPR[rd] ← sign_extend(temp 31..0)
endif
11-124 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

ulo
tic, or
Format: SUBU rd, rs, rt MIPS I

Purpose: To subtract 32-bit integers

The 32-bit word value in GPRrt is subtracted from the 32-bit value in GPRrs and the 32-bit arithmetic result is
placed into GPRrd.

No integer overflow exception occurs under any circumstances.

Restrictions: None

Operation:

Exceptions: None

Programming Notes:The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit mod
arithmetic that does not trap on overflow. It is appropriate for unsigned arithmetic, such as address arithme
integer arithmetic environments that ignore overflow, such as C language arithmetic.

Subtract Unsigned Word SUBU

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SUBU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1

Description: rd ← rs - rt

temp ← GPR[rs] - GPR[rt]
GPR[rd] ← temp
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-125

Chapter 11: MIPS32 4K™ Processor Core Instructions

ve

-zero,
Format: SW rt, offset(base) MIPS I

Purpose: To store a word to memory

The least-significant 32-bit word of registerrt is stored in memory at the location specified by the aligned effecti
address. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non
an Address Error exception occurs.

Operation:

Exceptions: TLB Refill, TLB Invalid, TLB Modified, Address Error

Store Word SW

31 2526 2021 1516 0

SW base rt offset

6 5 5 16

1 0 1 0 1 1

Description: memory[base+offset] ← rt

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then SignalException(AddressError) endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[rt]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
11-126 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

bytes
g
rce
word.
Format: SWL rt, offset(base) MIPS I

Purpose: To store the most-significant part of a word to an unaligned memory address

The 16-bit signedoffset is added to the contents of GPRbaseto form an effective address (EffAddr). EffAddr is
the address of the most-significant of 4 consecutive bytes forming a word(W) in memory starting at an arbitrary
byte boundary.

A part ofW, the most-significant 1 to 4 bytes, is in the aligned word containingEffAddr. The same number of the
most-significant (left) bytes from the word in GPRrt are stored into these bytes ofW.

Figure 11-9 illustrates this operation using big-endian byte ordering for 32-bit registers. The 4 consecutive
in 2..5 form an unaligned word starting at location 2. A part ofW, 2 bytes, is located in the aligned word containin
the most-significant byte at 2. First, SWL stores the most-significant 2 bytes of the low word from the sou
register into these 2 bytes in memory. Next, the complementary SWR stores the remainder of the unaligned

Store Word Left SWL

31 2526 2021 1516 0

SWL base rt offset

6 5 5 16

1 0 1 0 1 0

Description: memory[base+offset] ← rt
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-127

Chapter 11: MIPS32 4K™ Processor Core Instructions

thin an

byte
Figure 11-9 Unaligned Word Store Using SWL and SWR

The bytes stored from the source register to memory depend on both the offset of the effective address wi
aligned word—that is, the low 2 bits of the address (vAddr1..0)—and the current byte-ordering mode of the
processor (big- or little-endian). Figure 11-10 shows the bytes stored for every combination of offset and
ordering.

Word at byte 2 in memory, big-endian byte order; each memory byte contains its own address

most — significance — least

0 1 2 3 4 5 6 7 8 ... Memory: Initial contents

32-bit GPR 24 E F G H

0 1 E F 4 5 6 ... After executingSWL $24,2($0)

0 1 E F G H 6 ... Then afterSWR $24,5($0)

Store Word Left (cont.) SWL
11-128 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set
Figure 11-10 Bytes Stored by an SWL Instruction

Restrictions: None

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ←big-endian

i j k l offset (vAddr1..0)

3 2 1 0 ←little-endian most — significance — least

most least 32-bit register E F G H

— significance —

Memory contents after instruction (shaded is unchanged)

Big-endian
byte ordering

vAddr1..0 Little-endian
byte ordering

E F G H 0 i j k E

i E F G 1 i j E F

i j E F 2 i E F G

i j k E 3 E F G H

Store Word Left (cont.) SWL
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-129

Chapter 11: MIPS32 4K™ Processor Core Instructions
Operation:

Exceptions: TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

Store Word Left (cont.) SWL

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor ReverseEndian 2)
If BigEndianMem = 0 then
pAddr ← pAddr PSIZE-1..2 || 0 2

endif
byte ← vAddr 1..0 xor BigEndianCPU 2

dataword ← 0 24–8*byte || GPR[rt] 31..24–8*byte
StoreMemory (CCA, byte, dataword, pAddr, vAddr, DATA)
11-130 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

bytes

m the
aligned
Format: SWR rt, offset(base) MIPS I

Purpose: To store the least-significant part of a word to an unaligned memory address

The 16-bit signedoffset is added to the contents of GPRbaseto form an effective address (EffAddr). EffAddr is
the address of the least-significant of 4 consecutive bytes forming a word(W) in memory starting at an arbitrary
byte boundary.

A part ofW, the least-significant 1 to 4 bytes, is in the aligned word containingEffAddr. The same number of the
least-significant (right) bytes from the word in GPRrt are stored into these bytes ofW.

Figure 11-11 illustrates this operation using big-endian byte ordering for 32-bit registers. The 4 consecutive
in 2..5 form an unaligned word starting at location 2. A part ofW, 2 bytes, is contained in the aligned word
containing the least-significant byte at 5. First, SWR stores the least-significant 2 bytes of the low word fro
source register into these 2 bytes in memory. Next, the complementary SWL stores the remainder of the un
word.

Store Word Right SWR

31 2526 2021 1516 0

SWR base rt offset

6 5 5 16

1 0 1 1 1 0

Description: memory[base+offset] ← rt
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-131

Chapter 11: MIPS32 4K™ Processor Core Instructions

thin an
Figure 11-11 Unaligned Word Store Using SWR and SWL

The bytes stored from the source register to memory depend on both the offset of the effective address wi
aligned word—that is, the low 2 bits of the address (vAddr1..0)—and the current byte-ordering mode of the
processor (big- or little-endian). Figure 11-12 shows the bytes stored for every combination of offset and
byte-ordering.

Word at byte 2 in memory, big-endian byte order, each mem byte contains its address

most — significance — least

0 1 2 3 4 5 6 7 8 ... Memory: Initial contents

E F G H

32-bit GPR 24 E F G H

0 1 2 3 G H 6 ... After executingSWR $24,5($0)

0 1 E F G H 6 ... Then afterSWL $24,2($0)

Store Word Right (cont.) SWR
11-132 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set
Figure 11-12 Bytes Stored by SWR Instruction

Restrictions: None

Operation:

Exceptions: TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ← big-endian

i j k l offset (vAddr1..0)

3 2 1 0 ← little-endian most — significance — least

most least 32-bit register E F G H

— significance —

Memory contents after instruction (shaded is unchanged)

Big-endian
byte ordering

vAddr1..0 Little-endian byte
ordering

H j k l 0 E F G H

G H k l 1 F G H l

F G H l 2 G H k l

E F G H 3 H j k l

Store Word Right (cont.) SWR

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor ReverseEndian 2)
if BigEndianMem = 0 then
pAddr ← pAddr PSIZE-1..2 || 0 2

endif
byte ← vAddr 1..0 xor BigEndianCPU 2

dataword ← GPR[rt] 31–8*byte || 0 8*byte

StoreMemory (CCA, WORD-byte, dataword, pAddr, vAddr, DATA)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-133

Chapter 11: MIPS32 4K™ Processor Core Instructions

ur
ads are

every

uffer to
Format: SYNC (stype = 0 implied) MIPS II

Purpose: To order loads and stores.

Description:

The SYNC instruction affects onlyuncachedandcached coherentloads and stores. The loads and stores that occ
before the SYNC must be completed before the loads and stores after the SYNC are allowed to start. Lo
completed when the destination register is written. Stores are completed when the stored value is visible to
other processor in the system.

SYNC does not guarantee the order in which instruction fetches are performed. Thestypevalues 1-31 are reserved;
they produce the same result as the value zero. Executing a SYNC instruction causes the write-through b
be flushed. The SYNC instruction stalls until all loads and stores are completed.

Restrictions:

The effect of SYNC on the global order of loads and stores for memory access types other thanuncached and
cached coherent is not defined.

Operation:

Exceptions: None

Programming Note:

The description above refers to the 4K core implementation of the SYNC instruction. For a more detailed
description of the programming effects of SYNC on a generic MIPS32 processor, refer to the MIPS32
Specification.

Synchronize Shared Memory SYNC

31 2526

SPECIAL

6 15

0 SYNC

6

6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
stype

5

 1011

SyncOperation(stype)
11-134 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

dler.

ading
Format: SYSCALL MIPS I

Purpose: To cause a System Call exception

Description:

A system call exception occurs, immediately and unconditionally transferring control to the exception han

Thecodefield is available for use as software parameters, but is retrieved by the exception handler only by lo
the contents of the memory word containing the instruction.

Restrictions: None

Operation:

Exceptions: System Call

System Call SYSCALL

31 2526

SPECIAL

6 20

code SYSCALL

6

6 5 0

0 0 0 0 0 0 0 0 1 1 00

SignalException(SystemCall)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-135

Chapter 11: MIPS32 4K™ Processor Core Instructions
Format: TEQ rs, rt MIPS II

Purpose: To compare GPRs and do a conditional trap

Compare the contents of GPRrs and GPRrt as signed integers; if GPRrs is equal to GPRrt, then take a Trap
exception.

The contents of thecode field are ignored by hardware and may be used to encode information for system
software. To retrieve the information, system software must load the instruction word from memory.

Restrictions: None

Operation:

Exceptions: Trap

Trap if Equal TEQ

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TEQ

10 6

6 5 0

0 0 0 0 0 0 1 1 0 1 0 0

Description: if rs = rt then Trap

if GPR[rs] = GPR[rt] then
SignalException(Trap)
endif
11-136 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set
Format: TEQI rs, immediate MIPS II

Purpose: To compare a GPR to a constant and do a conditional trap

Compare the contents of GPRrs and the 16-bit signedimmediate as signed integers; if GPRrs is equal to
immediate,then take a Trap exception.

Restrictions: None

Operation:

Exceptions: Trap

Trap if Equal Immediate TEQI

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTEQI

16

0

0 0 0 0 0 1 0 1 1 0 0

Description: if rs = immediate then Trap

if GPR[rs] = sign_extend(immediate) then
SignalException(Trap)
endif
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-137

Chapter 11: MIPS32 4K™ Processor Core Instructions
Format: TGE rs, rt MIPS II

Purpose: To compare GPRs and do a conditional trap

Compare the contents of GPRrs and GPRrt as signed integers; if GPRrs is greater than or equal to GPRrt, then
take a Trap exception.

The contents of thecode field are ignored by hardware and may be used to encode information for system
software. To retrieve the information, system software must load the instruction word from memory.

Restrictions: None

Operation:

Exceptions: Trap

Trap if Greater or Equal TGE

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TGE

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 0 0

Description: if rs ≥ rt then Trap

if GPR[rs] ≥ GPR[rt] then
SignalException(Trap)
endif
11-138 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set
Format: TGEI rs, immediate MIPS II

Purpose: To compare a GPR to a constant and do a conditional trap

Compare the contents of GPRrs and the 16-bit signedimmediateas signed integers; if GPRrs is greater than or
equal toimmediate, then take a Trap exception.

Restrictions: None

Operation:

Exceptions: Trap

Trap if Greater or Equal Immediate TGEI

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTGEI

16

0

0 0 0 0 0 1 0 1 0 0 0

Description: if rs ≥ immediate then Trap

if GPR[rs] ≥ sign_extend(immediate) then
SignalException(Trap)
endif
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-139

Chapter 11: MIPS32 4K™ Processor Core Instructions

st or
Format: TGEIU rs, immediate MIPS II

Purpose: To compare a GPR to a constant and do a conditional trap

Compare the contents of GPRrsand the 16-bit sign-extendedimmediateas unsigned integers; if GPRrs is greater
than or equal toimmediate, then take a Trap exception.

Because the 16-bitimmediate is sign-extended before comparison, the instruction can represent the smalle
largest unsigned numbers. The representable values are at the minimum [0, 32767] or maximum
[max_unsigned-32767, max_unsigned] end of the unsigned range.

Restrictions: None

Operation:

Exceptions: Trap

Trap if Greater or Equal Immediate Unsigned TGEIU

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTGEIU

16

0

0 0 0 0 0 1 0 1 0 0 1

Description: if rs ≥ immediate then Trap

if (0 || GPR[rs]) ≥ (0 || sign_extend(immediate)) then
SignalException(Trap)
endif
11-140 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set
Format: TGEU rs, rt MIPS II

Purpose: To compare GPRs and do a conditional trap

Compare the contents of GPRrs and GPRrt as unsigned integers; if GPRrs is greater than or equal to GPRrt,
then take a Trap exception.

The contents of thecode field are ignored by hardware and may be used to encode information for system
software. To retrieve the information, system software must load the instruction word from memory.

Restrictions: None

Operation:

Exceptions: Trap

Trap if Greater or Equal Unsigned TGEU

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TGEU

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 0 1

Description: if rs ≥ rt then Trap

if (0 || GPR[rs]) ≥ (0 || GPR[rt]) then
SignalException(Trap)
endif
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-141

Chapter 11: MIPS32 4K™ Processor Core Instructions

ter. In
Format:
TLBP MIPS32

Purpose:
Find a matching entry in the TLB.

Description:
The Index register is loaded with the address of the TLB entry whose contents match the contents of the
EntryHi register. If no TLB entry matches, the high-order bit of theIndex register is set.

Restrictions:
This instruction is legal only if the processor is in kernel mode, or if the CP0 usable bit is set in the Status regis
other circumstances, execution of this instruction results in a Coprocessor Unusable Exception.

For processors that do not include the standard TLB MMU, the operation of this instruction isUNDEFINED .

Operation:
if (SR CU0 = 1) or (SR UM = 0) or (SR EXL = 1) or (SR ERL = 1) then

Index <- 1 || UNPREDICTABLE31

for i in 0...TLBEntries-1
if((TLB[i] VPN2 and not (TLB[i] Mask)) =

 (EntryHi VPN2 and not (TLB[i] Mask))) and
 (TLB[i] G or (TLB[i] ASID = EntryHi ASID)) then

Index <- i
endif

endfor
else

InitiateCoprocessorUnusableException(0)
endif

Exceptions:
Coprocessor Unusable Exception

Probe TLB for Matching Entry TLBP

31 0

6 1 19

COP0 CO

2426 25

0 1 0 0 0 0 1
TLBP0

6

0 0 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11-142 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

d

ter. In
Format:
TLBR MIPS32

Purpose:
Read an entry from the TLB.

Description:
The EntryHi , EntryLo0, EntryLo1, and PageMaskregisters are loaded with the contents of the TLB entry
pointed to by the Index register. Note that the value written to the EntryHi, EntryLo0, and EntryLo1 registers
may be different from that originally written to the TLB via these registers in that:
• The value returned in the VPN2 field of theEntryHi register has those bits set to zero corresponding to the

one bits in the Mask field of the TLB entry.
• the value returned in the G bit in both theEntryLo0 andEntryLo1 registers comes from the single G bit in the

TLB entry. Recall that this bit was set from the logical AND of the two G bits inEntryLo0 andEntryLo1 when
the TLB was written.

• The value returned in the ASID field of theEntryHi register is zero for those chips that implement a BAT-base
MMU organization.

Restrictions:
This instruction is legal only if the processor is in kernel mode, or if the CP0 usable bit is set in the Status regis
other circumstances, execution of this instruction results in a Coprocessor Unusable Exception.

The operation is UNDEFINED if the contents of theIndex register are greater than or equal to the number of
TLB entries in the processor.

For processors that do not include the standard TLB, the operation of this instruction isUNDEFINED .

Read Indexed TLB Entry TLBR

31 0

6 1 19

COP0 CO

2426 25

0 1 0 0 0 0 1
TLBR0

6

0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-143

Chapter 11: MIPS32 4K™ Processor Core Instructions
Operation:
i <- Index
if i > TLBEntries -1 then

UNDEFINED
endif
if (SR CU0 = 1) or (SR UM = 0) or (SR EXL = 1) or (SR ERL = 1) then
PageMaskMask <- TLB[i] Mask
EntryHi <- (TLB[i] VPN2 and not TLB[i] Mask) ||
 0 5 || TLB[i] ASID
EntryLo1 <- TLB[i] PFN1 || TLB[i] C1 || TLB[i] D1 ||
 TLB[i] V1 || TLB[i] G
EntryLo0 <- TLB[i] PFN0 || TLB[i] C0 || TLB[i] D0 ||
 TLB[i] V0 || TLB[i] G
else
InitiateCoprocessorUnusableException(0)
endif

Exceptions:
Coprocessor Unusable Exception
11-144 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

ter. In
Format:
TLBWI MIPS32

Purpose:
Write a TLB entry indexed by theIndex register.

Description:
The TLB entry pointed to by the Index register is written from the contents of the EntryHi , EntryLo0,
EntryLo1, and PageMaskregisters. Note that the single G bit in the TLB entry is set from the logical AND of
the G bits in theEntryLo0 and EntryLo1 registers.

Restrictions:
This instruction is legal only if the processor is in kernel mode, or if the CP0 usable bit is set in the Status regis
other circumstances, execution of this instruction results in a Coprocessor Unusable Exception.

The operation is UNDEFINED if the contents of theIndex register are greater than or equal to the number of
TLB entries in the processor.

For processors that do not include the standard TLB, the operation of this instruction isUNDEFINED .

Operation:
i <- Index
if i > TLBEntries -1 then
UNDEFINED
endif
if (SR CU0 = 1) or (SR UM = 0) or (SR EXL = 1) or (SR ERL = 1) then
TLB[i] Mask <- PageMaskMask
TLB[i] VPN2 <- EntryHi VPN2
TLB[i] ASID <- EntryHi ASID
TLB[i] G <- EntryLo1 G and EntryLo0 G
TLB[i] PFN1 <- EntryLo1 PFN
TLB[i] C1 <- EntryLo1 C
TLB[i] D1 <- EntryLo1 D

Write Indexed TLB Entry TLBWI

31 0

6 1 19

COP0 CO

2426 25

0 1 0 0 0 0 1
TLBWI0

6

0 0 0 0 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-145

Chapter 11: MIPS32 4K™ Processor Core Instructions
TLB[i] V1 <- EntryLo1 V
TLB[i] PFN0 <- EntryLo0 PFN
TLB[i] C0 <- EntryLo0 C
TLB[i] D0 <- EntryLo0 D
TLB[i] V0 <- EntryLo0 V
else
InitiateCoprocessorUnusableException(0)
endif

Exceptions:
Coprocessor Unusable Exception
11-146 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

ter. In
Format:
TLBWR MIPS32

Purpose:
Write a TLB entry indexed by theRandom register.

Description:
The TLB entry pointed to by the Random register is written from the contents of the EntryHi , EntryLo0,
EntryLo1, and PageMaskregisters. Note that the single G bit in the TLB entry is set from the logical AND of
the G bits in theEntryLo0 and EntryLo1 registers.

Restrictions:
This instruction is legal only if the processor is in kernel mode, or if the CP0 usable bit is set in the Status regis
other circumstances, execution of this instruction results in a Coprocessor Unusable Exception.

For processors that do not include the standard TLB MMU, the operation of this instruction isUNDEFINED .

Operation:
i <- Random
if (SR CU0 = 1) or (SR UM = 0) or (SR EXL = 1) or (SR ERL = 1) then
TLB[i] Mask <- PageMaskMask
TLB[i] VPN2 <- EntryHi VPN2
TLB[i] ASID <- EntryHi ASID
TLB[i] G <- EntryLo1 G and EntryLo0 G
TLB[i] PFN1 <- EntryLo1 PFN
TLB[i] C1 <- EntryLo1 C
TLB[i] D1 <- EntryLo1 D
TLB[i] V1 <- EntryLo1 V
TLB[i] PFN0 <- EntryLo0 PFN
TLB[i] C0 <- EntryLo0 C
TLB[i] D0 <- EntryLo0 D
TLB[i] V0 <- EntryLo0 V
else
InitiateCoprocessorUnusableException(0)

Write Random TLB Entry TLBWR

31 0

6 1 19

COP0 CO

2426 25

0 1 0 0 0 0 1
TLBWR0

6

0 0 0 1 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-147

Chapter 11: MIPS32 4K™ Processor Core Instructions
endif

Exceptions:
Coprocessor Unusable Exception
11-148 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set
Format: TLT rs, rt MIPS II

Purpose: To compare GPRs and do a conditional trap

Compare the contents of GPRrs and GPRrt as signed integers; if GPRrs is less than GPRrt, then take a Trap
exception.

The contents of thecode field are ignored by hardware and may be used to encode information for system
software. To retrieve the information, system software must load the instruction word from memory.

Restrictions: None

Operation:

Exceptions: Trap

Trap if Less Than TLT

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TLT

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 1 0

Description: if rs < rt then Trap

if GPR[rs] < GPR[rt] then
SignalException(Trap)
endif
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-149

Chapter 11: MIPS32 4K™ Processor Core Instructions
Format: TLTI rs, immediate MIPS II

Purpose: To compare a GPR to a constant and do a conditional trap

Compare the contents of GPRrs and the 16-bit signedimmediate as signed integers; if GPRrs is less than
immediate, then take a Trap exception.

Restrictions: None

Operation:

Exceptions: Trap

Trap if Less Than Immediate TLTI

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTLTI

16

0

0 0 0 0 0 1 0 1 0 1 0

Description: if rs < immediate then Trap

if GPR[rs] < sign_extend(immediate) then
SignalException(Trap)
endif
11-150 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

st or
Format: TLTIU rs, immediate MIPS II

Purpose: To compare a GPR to a constant and do a conditional trap

Compare the contents of GPRrs and the 16-bit sign-extendedimmediate as unsigned integers; if GPRrs is less
thanimmediate, then take a Trap exception.

Because the 16-bitimmediate is sign-extended before comparison, the instruction can represent the smalle
largest unsigned numbers. The representable values are at the minimum [0, 32767] or maximum
[max_unsigned-32767, max_unsigned] end of the unsigned range.

Restrictions: None

Operation:

Exceptions: Trap

Trap if Less Than Immediate Unsigned TLTIU

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTLTIU

16

0

0 0 0 0 0 1 0 1 0 1 1

Description: if rs < immediate then Trap

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then
SignalException(Trap)
endif
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-151

Chapter 11: MIPS32 4K™ Processor Core Instructions
Format: TLTU rs, rt MIPS II

Purpose: To compare GPRs and do a conditional trap

Compare the contents of GPRrs and GPRrt as unsigned integers; if GPRrs is less than GPRrt, then take a Trap
exception.

The contents of thecode field are ignored by hardware and may be used to encode information for system
software. To retrieve the information, system software must load the instruction word from memory.

Restrictions: None

Operation:

Exceptions: Trap

Trap if Less Than Unsigned TLTU

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TLTU

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 1 1

Description: if rs < rt then Trap

if (0 || GPR[rs]) < (0 || GPR[rt]) then
SignalException(Trap)
endif
11-152 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set
Format: TNE rs, rt MIPS II

Purpose: To compare GPRs and do a conditional trap

Compare the contents of GPRrs and GPRrt as signed integers; if GPRrs is not equal to GPRrt, then take a Trap
exception.

The contents of thecode field are ignored by hardware and may be used to encode information for system
software. To retrieve the information, system software must load the instruction word from memory.

Restrictions: None

Operation:

Exceptions: Trap

Trap if Not Equal TNE

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TNE

10 6

6 5 0

0 0 0 0 0 0 1 1 0 1 1 0

Description: if rs ≠ rt then Trap

if GPR[rs] ≠ GPR[rt] then
SignalException(Trap)
endif
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-153

Chapter 11: MIPS32 4K™ Processor Core Instructions
Format: TNEI rs, immediate MIPS II

Purpose: To compare a GPR to a constant and do a conditional trap

Compare the contents of GPRrs and the 16-bit signedimmediate as signed integers; if GPRrs is not equal to
immediate, then take a Trap exception.

Restrictions: None

Operation:

Exceptions: Trap

Trap if Not Equal TNEI

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTNEI

16

0

0 0 0 0 0 1 0 1 1 1 0

Description: if rs ≠ immediate then Trap

if GPR[rs] ≠ sign_extend(immediate) then
SignalException(Trap)
endif
11-154 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set

sts are
eset) is

se the

p.

ter. In
Format:
WAIT MIPS32

Purpose:
Wait for Event

Description:
The WAIT instruction forces the core into low power mode. The pipeline is stalled and when all external reque
completed, the processor’s main clock is stopped. The processor will restart when reset (SI_Reset or SI_ColdR
signaled, or a non-masked interrupt is taken (SI_NMI, SI_Int, or EJ_DINT). Note that the 4K cores do not u
code field in this instruction.

Restrictions:
The operation of the processor is undefined if a wait instruction is placed in the delay slot of a branch or a jum

This instruction is legal only if the processor is in kernel mode, or if the CP0 usable bit is set in the Status regis
other circumstances, execution of this instruction results in a Coprocessor Unusable Exception.

Operation:
if (SR CU0 = 1) or (SR UM = 0) or (SR EXL = 1) or (SR ERL = 1) then

Enter lower power mode
else

InitiateCoprocessorUnusableException(0)
endif

Exceptions:
Coprocessor Unusable Exception

Enter Standby Mode WAIT

31 0

6 1 19

COP0 CO

2426 25

0 1 0 0 0 0 1
WAIT

6

1 0 0 0 0 0Implementation-Dependent Code
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-155

Chapter 11: MIPS32 4K™ Processor Core Instructions

to
Format: XOR rd, rs, rt MIPS I

Purpose:To do a bitwise logical Exclusive OR

Combine the contents of GPRrs and GPRrt in a bitwise logical Exclusive OR operation and place the result in
GPRrd.

Restrictions: None

Operation:

Exceptions: None

Exclusive OR XOR

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 XOR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 0 0 1 1 00 0 0 0 0

Description: rd ← rs XOR rt

GPR[rd] ← GPR[rs] xor GPR[rt]
11-156 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

Instruction Set
Format: XORI rt, rs, immediate MIPS I

Purpose: To do a bitwise logical Exclusive OR with a constant

Combine the contents of GPRrs and the 16-bit zero-extendedimmediatein a bitwise logical Exclusive OR
operation and place the result into GPRrt.

Restrictions: None

Operation:

Exceptions: None

Exclusive OR Immediate XORI

31 2526 2021 1516 0

XORI rs rt immediate

6 5 5 16

0 0 1 1 1 0

Description: rt ← rs XOR immediate

GPR[rt] ← GPR[rs] xor zero_extend(immediate)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07 11-157

Chapter 11: MIPS32 4K™ Processor Core Instructions
11-158 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.07

	Revision History
	Table of Contents
	List Of Figures
	List Of Tables
	Chapter 1
	Introduction to the MIPS32 4K™ Processor Core Family
	1.1 Features
	1.2 Block Diagram
	1.3 Required Logic Blocks
	1.3.1 Execution Unit
	1.3.2 Multiply/Divide Unit (MDU)
	1.3.3 System Control Coprocessor (CP0)
	1.3.4 Memory Management Unit (MMU)
	1.3.5 Cache Controllers
	1.3.6 Bus Interface Unit(BIU)
	1.3.7 Power Management

	1.4 Optional Logic Blocks
	1.4.1 Instruction Cache
	1.4.2 Data Cache
	1.4.3 EJTAG Controller

	Chapter 2
	Pipeline
	2.1 Pipeline Stages
	2.1.1 I Stage: Instruction Fetch
	2.1.2 E Stage: Execution
	2.1.3 M Stage: Memory Fetch
	2.1.4 A Stage: Align/Accumulate
	2.1.5 W Stage: Writeback

	2.2 Instruction Cache Miss
	2.3 Data Cache Miss
	2.4 Multiply/Divide Operations
	2.5 MDU Pipeline (4Kc and 4Km Cores)
	2.5.1 32x16 Multiply (4Kc & 4Km Cores)
	2.5.2 32x32 Multiply (4Kc & 4Km Cores)
	2.5.3 Divide (4Kc & 4Km Cores)

	2.6 MDU Pipeline (4Kp Core Only)
	2.6.1 Multiply (4Kp Core)
	2.6.2 Multiply Accumulate (4Kp Core)
	2.6.3 Divide (4Kp Core)

	2.7 Branch Delay
	2.8 Interlock Handling
	2.9 Slip Conditions
	2.10 Instruction Interlocks

	Chapter 3
	Memory Management
	3.1 Translation Lookaside Buffer (4Kc Core Only)
	3.1.1 Joint TLB (4Kc Core)
	3.1.2 Instruction TLB (4Kc Core)
	3.1.3 Data TLB (4Kc Core)
	3.1.4 Virtual to Physical Address Translation (4Kc Core)
	3.1.5 Hits, Misses, and Multiple Matches (4Kc Core)
	3.1.6 Page Sizes and Replacement Algorithm (4Kc Core)
	3.1.7 TLB Tag and Data Formats (4Kc Core)

	3.2 TLB Instructions (4Kc Core)
	3.3 Block Address Translation (4Kp & 4Km Cores)
	3.4 Modes of Operation
	3.4.1 User Mode
	3.4.2 Kernel Mode
	3.4.2.1 Kernel Mode, User Space (kuseg)
	3.4.2.2 Kernel Mode, Kernel Space 0 (kseg0)
	3.4.2.3 Kernel Mode, Kernel Space 1 (kseg1)
	3.4.2.4 Kernel Mode, Kernel Space 2 (kseg2)
	3.4.2.5 Kernel Mode, Kernel Space 3 (kseg3)

	3.4.3 Debug Mode
	3.4.3.1 Conditions and Behavior for Access to drseg, EJTAG registers
	3.4.3.2 Conditions and Behavior for Access to dmseg, EJTAG memory

	3.5 System Control Coprocessor

	Chapter 4
	Exceptions
	4.1 Exception Conditions
	4.2 Exception Priority
	4.3 Exception Vector Locations
	4.4 General Exception Processing
	4.5 Debug Exception Processing
	4.6 Exceptions
	4.6.1 Reset Exception
	4.6.2 Soft Reset Exception
	4.6.3 Debug Single Step Exception
	4.6.4 Debug Interrupt Exception
	4.6.5 Non Maskable Interrupt (NMI) Exception
	4.6.6 Machine Check Exception (4Kc core)
	4.6.7 Interrupt Exception
	4.6.8 Debug Instruction Break Exception
	4.6.9 Watch Exception — Instruction Fetch or Data Access
	4.6.10 Address Error Exception — Instruction Fetch/Data Access
	4.6.11 TLB Refill Exception — Instruction Fetch or Data Access (4Kc core)
	4.6.12 TLB Invalid Exception — Instruction Fetch or Data Access (4Kc core)
	4.6.13 Bus Error Exception — Instruction Fetch or Data Access
	4.6.14 Debug Software Breakpoint Exception
	4.6.15 Execution Exception — System Call
	4.6.16 Execution Exception — Breakpoint
	4.6.17 Execution Exception — Reserved Instruction
	4.6.18 Execution Exception — Coprocessor Unusable
	4.6.19 Execution Exception — Integer Overflow
	4.6.20 Execution Exception — Trap
	4.6.21 Debug Data Break Exception
	4.6.22 TLB Modified Exception — Data Access (4Kc core)

	4.7 Exception Handling and Servicing Flowcharts

	Chapter 5
	CP0 Registers
	5.1 CP0 Register Summary
	5.2 CP0 Registers
	5.2.1 Index Register (CP0 Register 0, Select 0)
	5.2.2 Random Register (CP0 Register 1, Select 0)
	5.2.3 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)
	5.2.4 Context Register (CP0 Register 4, Select 0)
	5.2.5 PageMask Register (CP0 Register 5, Select 0)
	5.2.6 Wired Register (CP0 Register 6, Select 0)
	5.2.7 BadVAddr Register (CP0 Register 8, Select 0)
	5.2.8 Count Register (CP0 Register 9, Select 0)
	5.2.9 EntryHi Register (CP0 Register 10, Select 0)
	5.2.10 Compare Register (CP0 Register 11, Select 0)
	5.2.11 Status Register (CP0 Register 12, Select 0)
	5.2.12 Cause Register (CP0 Register 13, Select 0)
	5.2.13 Exception Program Counter (CP0 Register 14, Select 0)
	5.2.14 Processor Identification (CP0 Register 15, Select 0)
	5.2.15 Config Register (CP0 Register 16, Select 0)
	5.2.16 Config1 Register (CP0 Register 16, Select 1)
	5.2.17 Load Linked Address (CP0 Register 17, Select 0)
	5.2.18 WatchLo Register (CP0 Register 18)
	5.2.19 WatchHi Register (CP0 Register 19)
	5.2.20 Debug Register (CP0 Register 23)
	5.2.21 Debug Exception Program Counter Register (CP0 Register 24)
	5.2.22 TagLo Register (CP0 Register 28, Select 0)
	5.2.23 DataLo Register (CP0 Register 28, Select 1)
	5.2.24 ErrorEPC (CP0 Register 30, Select 0)
	5.2.25 DeSave Register (CP0 Register 31)

	Chapter 6
	Hardware and Software Initialization
	6.1 Hardware Initialized Processor State
	6.1.1 Coprocessor Zero State
	6.1.2 TLB Initialization (4Kc core only)
	6.1.3 Bus State Machines
	6.1.4 Static Configuration Inputs
	6.1.5 Fetch Address

	6.2 Software Initialized Processor State
	6.2.1 Register File
	6.2.2 TLB (4Kc Core Only)
	6.2.3 Caches
	6.2.4 Coprocessor Zero state

	Chapter 7
	Caches
	7.1 Cache Protocols
	7.2 Instruction Cache
	7.3 Data Cache

	Chapter 8
	Power Management
	8.1 Register Controlled Power Management
	8.2 Instruction Controlled Power Management

	Chapter 9
	EJTAG Debug Support
	9.1 Debug Control Register
	9.2 Hardware Breakpoints
	9.2.1 Features of Instruction Breakpoint
	9.2.2 Features of Data Breakpoint
	9.2.3 Overview of Registers for Instruction Breakpoint
	9.2.4 Registers for Data Breakpoint Setup
	9.2.5 Conditions for Matching Breakpoints
	9.2.5.1 Conditions for Matching Instruction Breakpoint
	9.2.5.2 Conditions for Matching Data Breakpoints

	9.2.6 Debug Exceptions from Breakpoints
	9.2.6.1 Debug Exception by Instruction Breakpoint
	9.2.6.2 Debug Exception by Data Breakpoint

	9.2.7 Breakpoint used as Triggerpoint
	9.2.8 Instruction Breakpoint Registers
	9.2.8.1 Instruction Breakpoint Status (IBS) Register
	9.2.8.2 Instruction Breakpoint Address n (IBAn) Register
	9.2.8.3 Instruction Breakpoint Address Mask n (IBMn) Register
	9.2.8.4 Instruction Breakpoint ASID n (IBASIDn) Register
	9.2.8.5 Instruction Breakpoint Control n (IBCn) Register

	9.2.9 Data Breakpoint Registers
	9.2.9.1 Data Breakpoint Status (DBS) Register
	9.2.9.2 Data Breakpoint Address n (DBAn) Register
	9.2.9.3 Data Breakpoint Address Mask n (DBMn) Register
	9.2.9.4 Data Breakpoint ASID n (DBASIDn) Register
	9.2.9.5 Data Breakpoint Control n (DBCn) Register
	9.2.9.6 Data Breakpoint Value n (DBVn) Register

	9.2.10 Test Access Port (TAP)
	9.2.11 EJTAG Internal and External Interfaces

	9.3 Test Access Port Operation
	9.3.1 Test-Logic-Reset State
	9.3.2 Run-Test/Idle State
	9.3.3 Select_DR_Scan State
	9.3.4 Select_IR_Scan State
	9.3.5 Capture_DR State
	9.3.6 Shift_DR State
	9.3.7 Exit1_DR State
	9.3.8 Pause_DR State
	9.3.9 Exit2_DR State
	9.3.10 Update_DR State
	9.3.11 Capture_IR State
	9.3.12 Shift_IR State
	9.3.13 Exit1_IR State
	9.3.14 Pause_IR State
	9.3.15 Exit2_IR State
	9.3.16 Update_IR State

	9.4 Test Access Port (TAP) Instructions
	9.4.1 BYPASS Instruction
	9.4.2 IDCODE Instruction
	9.4.3 IMPCODE Instruction
	9.4.4 ADDRESS Instruction
	9.4.5 DATA Instruction
	9.4.6 CONTROL Instruction
	9.4.7 ALL Instruction
	9.4.8 EJTAGBOOT Instruction
	9.4.9 NORMALBOOT Instruction

	9.5 EJTAG Registers
	9.5.1 Instruction Register
	9.5.2 Data Registers Overview
	9.5.3 Bypass Register
	9.5.4 Device Identification (ID) Register
	9.5.5 Implementation Register
	9.5.6 EJTAG Control Register
	9.5.7 Processor Access Address Register
	9.5.8 Processor Access Data Registers

	9.6 Processor Accesses
	9.6.1 Fetch/Load and Store from/to the EJTAG Probe through dmseg

	Chapter 10
	Instruction Set Overview
	10.1 CPU Instruction Formats
	10.2 Load and Store Instructions
	10.2.1 Scheduling a Load Delay Slot
	10.2.2 Defining Access Types

	10.3 Computational Instructions
	10.3.1 Cycle Timing for Multiply and Divide Instructions

	10.4 Jump and Branch Instructions
	10.4.1 Overview of Jump Instructions
	10.4.2 Overview of Branch Instructions

	10.5 Control Instructions
	10.6 Coprocessor Instructions
	10.7 Enhancements to the MIPS Architecture
	10.7.1 CLO - Count Leading Ones
	10.7.2 CLZ - Count Leading Zeros
	10.7.3 MADD - Multiply and Add Word
	10.7.4 MADDU - Multiply and Add Unsigned Word
	10.7.5 MSUB - Multiply and Subtract Word
	10.7.6 MSUBU - Multiply and Subtract Unsigned Word
	10.7.7 MUL - Multiply Word
	10.7.8 SSNOP- Superscalar Inhibit NOP

	Chapter 11
	MIPS32 4K™ Processor Core Instructions
	11.1 Understanding the Instruction Fields
	11.1.1 Instruction Fields
	11.1.2 Instruction Descriptive Name and Mnemonic
	11.1.3 Format Field
	11.1.4 Purpose Field
	11.1.5 Description Field
	11.1.6 Restrictions Field
	11.1.7 Operation Field
	11.1.8 Exceptions Field

	11.2 Instruction Hazards
	11.3 CPU Opcode Map
	11.4 Instruction Set

