MIPS32 4KL]
Processor Core Family

Software User’s Manual

Revision 01.07
June 19, 2000

MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA. 94043

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Copyright (c) 1999-2000 MIPS Technologies, Inc. All rights reserved.
Unpublished rights reserved under the Copyright Laws of the United States of America.

This document contains information that is proprietary to MIPS Technologies, Inc. (“MIPS Technologies”). Any
copying, modifying or use of this information (in whole or in part) which is not expressly permitted in writing by
MIPS Technologies or a contractually-authorized third party is strictly prohibited. At a minimum, this information
is protected under unfair competition laws and the expression of the information contained herein is protected
under federal copyright laws. Violations thereof may result in criminal penalties and fines.

MIPS Technologies or any contractually-authorized third party reserves the right to change the information con-
tained in this document to improve function, design or otherwise. MIPS Technologies does not assume any liability
arising out of the application or use of this information. Any license under patent rights or any other intellectual
property rights owned by MIPS Technologies or third parties shall be conveyed by MIPS Technologies or any
contractually-authorized third party in a separate license agreement between the parties.

The information contained in this document constitutes one or more of the following: commercial computer soft-
ware, commercial computer software documentation or other commercial items. If the user of this information, or
any related documentation of any kind, including related technical data or manuals, is an agency, department, or
other entity of the United States government (“Government”), the use, duplication, reproduction, release, modifi-
cation, disclosure, or transfer of this information, or any related documentation of any kind, is restricted in accor-
dance with Federal Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition
Regulation Supplement 227.7202 for military agencies.

The use of this information by the Government is further restricted in accordance with the terms of the license
agreement(s) and/or applicable contract terms and conditions covering this information from MIPS Technologies
or any contractually-authorized third party.

MIPS, R3000, R4000, R5000, R8000 and R10000 are among the registered trademarks of MIPS Technologies,
Inc., and R4300, R20K, MIPS16, MIPS32, MIPS64, MIPS-3D, MIPS I, MIPS Il, MIPS IlI, MIPS IV, MIPS V, MDMX,
4K, 4Kc, 4Km, 4Kp, 5K, 5Kc, 20K, 20Kc, EC, MGB, SOC-it, SEAD, YAMON, ATLAS, JALGO, CorelLV and
MIPS-based are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

ii MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

References to Product Names

This manual encompasses the 4Kc™, 4Kp™ & 4Km™ processor cores. The three products are similar in design
hence the majority of information contained in this manual refers to all three cores.

Throughout this manual the terms “the core” or “the processor” refers to the 4Kc™, 4Kp™, and 4Km™ devices.
Some information in this manual, specifically in Chapters 2 and 4, is specific to one or more of the cores, but not
all three. This information is called out in the text wherever necessary. For example, the section dealing with the
TLB is denoted as being 4Kc™ core specific, whereas the section dealing with the BAT is denoted as being 4Kp™
and 4Km™ core specific.

Product Differentiation

The three products contained in this manual are similar in design. The main differences are in memory
management and the multiply-divide unit. In general the differences are as follows:

» 4Kc™ processor: Contains pipelined multiplier and translation lookaside buffer (TLB).

» 4Kp™ processor: Contains non-pipelined multiplier and block address translator (BAT).

* 4Km™ processor: Contains pipelined multiplier and block address translator.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 iii

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Revision History

PrID Rev.

Revision Date Number Description
1.0 August, 1999 0x01 First released version
11 November, 1999 0x02

7

« Re-organization to be more of a SoftWare User
Manual. Removed System Interface chapter.

e Count register no longer stops incrementing in
DebugMode - New bit added to Debug registe
to indicate this: CountDM

* New Bits added to Debug register for handling pf
imprecise exceptions: IEXI, DBUSEP, IBUSEP

e Added description of SubBlock ordering

« New MDU timing. Updated pipeline diagrams
and text in Chap. 2 to reflect new timing

« Modified Reset description. SoftReset cannot|be
masked by the core. SoftReset does not need to
be asserted when Reset is asserted

e ASID is not used in EJTAG breakpoint compai
sons if the TLB is not implemented

e Added MT Compare to Timer Interrupt cleared
to list of Hazard conditions

e Fixed Hazard from setting of SW Interrupt to
Interrupted instruction

e Changed SPECIAL opcode map to reflect
MOVCI FP instn as a Coprocessor Instn rathg
than a Reserved Instn

e L2 Cache encodings of CACHE instn are
reserved.

* Added note that | Fill CACHE instn will cause &
re-fetch even if the line is in the cache

S

-

-

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 v

vi

PriD Rev.

Revision Date Number Description
1.1, con- | November, 1999 0x02 « MUL instn description reiterates that the con
tinued tents of HI/LO are unpredictable after the MUL

operation.

Added ERL=1 as possible reason for being in
kernel mode in the kseg descriptions
Swapped priority of Rl and CU exceptions
Changed general exception code pseudo-code to
have correct vector offset of 0x180

Fixed typo in bus error description: stores OR
non-critical words... not stores of non-critical
words

Changed TLBWI to TLBWR in Random registe
description
Added note that behavior is undefined if illegal
page mask value is used

Added note that Statgs Statugg, and Status-
nmi bits and Causgp cannot be set by software
Noted undefined behavior if Stagyg is set

while executing code in useg/kuseg
Added Confighc and Configga bits. Both
wired to O

Changed Reset state of Watdiatcly, and

Watchy, to 0 from undefined

Removed some false statements about WAIT
induced sleep mode

CLO/CLZ instn description changed to reflect
use of rd as destination register instead of rt
Add sel field to format statements in
MFCO/MTCO instns

Removed redundant statement about writeback
invalidate from PREF instn
Add programming note to multiply instructions
that smaller source value should be placed in|rt
Updated listing of HW initialized Cop0 bits in
Reset chapter

=

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Revision

Date

PriD Rev.
Number

Description

1.2

December, 1999

0x02

Removed implication of internal mux for
SI_TimerInt from description of Compare regis
ter

01.03

January 28, 2000

0x04

Cleaned up old references to ‘both’ cores
Fixed some typos
Fixed pipe stages in figure 2-12
Added details on D-side micro TLB
Cleaned up usage of trademarks
Renamed title ttMIPS32 4k™ Processor Core
Family Software User's Manual
Changed revision numbering to xx.yy format fq
consistency with other documents

=

01.04

March 23, 2000

0x05

Cleaned up some old paragraph leftovers
Changed look of Table of Contents, List of Fig
ures and List of Tables
Added timing information regarding Early In td
divide algorithm for 4Kc and 4Km
Fixed CLO/CLZ description in section 10.7 to
reflect rt -> rd change in definition
Cleaned up Config register definition. Defined
BM field, defined reset state of several fields.
Changed reserved fields to O fields
Cleaned up decode tables - fixed font problems
and multi-line instn text
Updated PREF description

Made reset state of Stajys)
Fixed some Spell-check issues.

01.05

May 8, 2000

0x06

Clarified “Fetch and Lock” CACHE descriptipn.
Removed text saying that the upper bits of PriD
were available for implementors.

01.06

June 8, 2000

0x06

Rephrased field description of DatalLo regigter.
Updated copyright and trademark notices.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 vii

viii

Revision

Date

PriD Rev.
Number

Description

01.07

June 19, 2000

0x06

e Clarified initialization of Status.RP and
WatchLo.{l,R,W} bits duringCold Reset in
Chapters 4 and 5.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Table of Contents

REVISION HISTOY ...ttt ii ettt e et e e oo oo oo a bbb ettt et e e e e e e s o s aat bt £ mmmmmmmmmn £ £ 42 H R E b £ £ £ £ £t 42222 e e e e e e nnnbbbbsaeeaeaaaaaens
TaADIE OF CONTENTSeeiiiiiiiii ettt ekttt oottt e e s bttt e e o aa b ettt e e 1a s b e et e+ Smmmmemmmmmn £ £ £ 44412 R E e et 44 1R be et e e s an bbb e e e e annneeeas
(IS O o U] =TT PR UO P PPPRURPTR

[A O = o] = O PP P PP PP ETPRPPPPPPPN

Introduction to the MIPS32 4K™ Processor Core Familyoooiiiiiiiiiiiiie et meeeeeesemame e

ST (0T PP RTPRPRPPPRPRI
2 2 o Tl QD= Vo | - o o PSS
I B =0 (U1 =T o I I Yo T = T Yo €
IR Tt =Tt 1T T) RO RPR ST
1.3.2 Multiply/Divide Uit (MDU)ouiiiiiiiiiie oot e e e s s s s e e e e e e e e e e s s st eeae e e e s smmmmmmmmmn e s e e snnnsenrnneeeees
1.3.3 System Control CoproCeSSOr (CPO)uuuiiiiiieeeeii et e e e e e e s s s s e e e e e e e e e s e s se e e s mmmmmamam————— s seeees
1.3.4 Memory Management UNit (MMU) ... et s e r e e e e e e e e s s s ssne e nrenneeeeeeeeeesenanns
e R 0= ol s T @o] 1 o] | =T PP TP
1.3.6 Bus Interface Unit(BIU)
R A o 1Y gl 1Y/ = TP T =T 0 T o
@] o] 1 o] g F= 1IN 0T [To =] o o] SRR
Ot [T3 (W Tt o =Tl = ORI
R - = W 0= ol = PP PPP PRSP
e o @0 g o) | =T PSP PRP

T = 1T OSSR

A I T o= [T LIS = To [PP PPP TSRO
2.1.1 1 Stage: INSIIUCHION FEICKcooiiiiiiii ettt e et e e e e e e e e e e snr e s beeeeeaaaeeeaeaannnnnes
P I S v To M (Tl U1 1o] o TSP PPPRT
2.1.3 M Stage: MEMOIY FEICR ...ttt e e e e e e e e e anb e e e e e e e e e e e e e e nnnnbeeaees
2.1.4 A Stage: AlIGN/ACCUMUIALEoooii ittt e e e e e e e ettt e e e e e e e e e e s ammeeeeeeeeaasbesbeaeeaaaaaaaans
2.1.5 W Stage: WIEEDACKeeeiiiieieiiiiiitee ettt et e e e e ekttt ettt e e e e e e s e e e e e mmmnneesseeeeaaaaaeeaeaannnnes

2.2 INSEIUCHION CACNE IMISSeiiiiiiiiiii ittt e e e sttt e e skt e et e e 4 s meammmmeeeam s s b e et e e s anbbee e e s annneeeens

2.3 DAt@ CACNE MISS ...ttt ettt e e skttt e e e st e e e e ok b e et e e s ea b e e e mmeneeenan kR e et e e e abr e e e e e e nrrreeenaa

2.4 MUltiply/Divide OPEIALIONSccoeiiiiiiiiieeiee ettt et e e e e e e e e e bbbttt eeeaa e e e e s sananbeaeeeeaaaaaess

2.5 MDU Pipeline (4Kc and 4KIM COMES)uuuuiiiiiiiaaaiaiiiiiiieiieeeaaae e e e s sibebeeeeaeaaa e e e e eannnes
2.5.1 32x16 Multiply (4Kc & 4Km Cores)

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 iX

2.5.2 3232 MUIIPIY (AKC & AKIM COIES) ..eiiiiiiiiitie ittt ettt e e et e e e s snre e e e e e enneeas 2-11
2.5.3 Divide (4Kc & 4Km Cores)
2.6 MDU Pipeline (4Kp Core Only)

T Y 10T o YA 1 o O] £ IR PP PU PRSPPI

2.6.2 Multiply ACCUMUIALE (AKP COFE) ...t e ettt e e e e e e et e e e e e e e e e s s ne st emmmmmnms st 2-16

A 1Y o Lo 1 o T O o] =) SO 2-16
2.7 BranCR DEIAY ... ettt ekttt e 4o a bttt o442 s st ¢ ———— 111124441 b bttt e e n s 2-17
P2 < [(T (o Yo Sl o = U To | T T SRR 2-18
2SI [o J @fo T4 To [1 i o] o 1= ST OPP PRI 2-19
P2 O N 1S3 0 o 1 o g T [(=Y [Yo & PR 2-20

MEMOIY MANAGEIMENT ... e e e et e e e e e e e e e e e ettt et e e eeeeeeese s s e s e e e e e e e eeeeeeeeeeeeeeeennrnnnnnnnes 3-1

3.1 Translation Lookaside Buffer (4Kc COre ONIY)uueeeiiiiiiiiii et s e eeeeneenees 3-3

700 0 N T] I = 4 (o @ (=)

3.1.2 Instruction TLB (4Kc Core)

TR G T T = T I I B 3 o @ (=) PP

3.1.4 Virtual to Physical Address Translation (4KC CO€)ccccieiiiiii e e e e e e e e e e e e eeeaannens 3-4

3.1.5 Hits, Misses, and Multiple MatChes (AKC COME)uu ittt e e e e e e e 3-6

3.1.6 Page Sizes and Replacement Algorithm (4KC COre)uueiiiiiiiiiiiiiiiiieeee e 3-7

3.1.7 TLB Tag and Data FOrmats (4KC COIE) ...uuuiiiiiii i ———— 1 s OO
3.2 TLB Instructions (4Kc Core)
3.3 Block Address Translation (4Kp & 4KIM COMES)cccuuuuiiiiieiieeeee ittt e e e e et s 2211010 3= L2

R Y [o o (ST o] @] o 1] -1 o] o I PO PP U PPPPUPPPRO 3-15
O I U LT g 1V o T [OO PP PP PPTPTP 3-15
B2 KEIMEIMOE ...ttt oottt ettt e e e e e e e s s smmmeeeeeeeeasseeeeteaeeeeaaaannnberreees 3-16

3.4.2.1 Kernel Mode, USer SPACE (KUSEQ) ...ceetiiieiiiiiiiiiiiiiiite e e ettt e e e e e et s e 3-18
3.4.2.2 Kernel Mode, Kernel Space 0 (KSEO0) ...cciiiiiiiiiiiiiiiiiieiie ettt e e e e e e e e e e e 3-18
3.4.2.3 Kernel Mode, Kernel SPace 1 (KSEOL) ...cciiiiiiiiiiiiiiiiiiieiie ettt e e e e e e e e e e e 3-19
3.4.2.4 Kernel Mode, Kernel SPace 2 (KSEO2) ...coiiiiiiiiiiiiiiiieiieeie ettt e e e e e e e e e e 3-19
3.4.2.5 Kernel Mode, Kernel SPace 3 (KSEO3) ..eeiiiiiiiiiiiiiiiiiiiieei ettt e e e e e e e e e 3-19
G0 3 B 0= o 10 T 1 o o = 3-19
3.4.3.1 Conditions and Behavior for Access to drseg, EJTAG registerscccceeveveiiiiiiieeeeeveveiiiiiieens 3:21....
3.4.3.2 Conditions and Behavior for Access to dmseg, EJTAG MEMOIYccovvviviieivieeeieiiniiiinnnan e 221
3.5 SYSLEM CONLIOI COPIOCESSONeeiiiiieieeeiie ittt et e e e e e e e beb b et e et e e e e e e e s s asabbeeeeeeeeaaeeaeeeaaannnneneseeeeeaaeeesesannnnes 3-22
ol o 1[0 1 PP PP OO PPPPUPTTN 4-1

Iy Cot=T o] (T g @] oo 11T] L PP PP PPT TP 4-2

A (o =Y o 1 o} o T T PSS 4-2

4.3 EXCEPLON VECION LOCALIONSueteiieeiiitiiee e ettt ettt ettt ettt e e s ettt e e e ottt e e+ £ £+ £ 1151224424 1a kb e e e e e ans 4-4

4.4 General EXCEPION PrOCESSING ...ueiiiiieeeiiiiiiiiiiiiieet e e e e e et e e sttt e e et teeeessssasssnbeteeeeeeeeeeaaaammneeaeeessannsnsseeneeeaeeeeens 4-6

4.5 DebUg EXCEPLION PrOCESSINGeiiiiitiiiieiiiiiiie ettt ettt ettt e e st e e s sttt e e s e e b b et e e e anbee e e e saasbaeeeeeanbbeeeeeannees 4-7

X MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

G oy Cot=T o] 1T 1 PP RT U PPPTP
4.6.1 RESEE EXCEPLION ..ottt e e e ettt e e e e e e e s e e st et eete e e e s emmmmmmmmmmeee s e e reeeeeeeeeeeeeaaaanns
4.6.2 SOft RESEE EXCEPLON ..oceeiiiiiee ettt e e e et e et e e e e e e s e e st semeeeemmmmmmme e e e s e e e nnnseneneeees
4.6.3 Debug SiNgle SteP EXCEPLIONuuiiiiiiiiie ettt e e e e e e e e e s e st mmmmmmmmmmm e e e e e e s
4.6.4 Debug INterruPt EXCEPLION ...ccciiii ettt e e e e e e s e et r e e ee e e e e s e s meeememmmmmmm s s s beeeeeeeeeeeeas
4.6.5 Non Maskable Interrupt (NMI) EXCEPHONoiiiiiiiiiiiiii e e
4.6.6 Machine Check EXCEPLiON (4KC COIB) ...coiii i ee ettt ee et e e e e e e e et eee e e e e e e e smmmmmmmmeeeneesseeeeee s
T A a1 = 0T o A= CoT= o) o) o S
4.6.8 Debug INStruction Break EXCEPLIONcoiuutiiiiiiiiiiee ettt rse e e e s s sanee e s enneeees
4.6.9 Watch Exception — Instruction Fetch or Data ACCESSuveeiiiieeeeeiiiiiiiiiieeeeeae e e e e e eseeeeeeeeeeeees
4.6.10 Address Error Exception — Instruction Fetch/Data Access
4.6.11 TLB Refill Exception — Instruction Fetch or Data ACCeSS (4KC COMe)uuvvviiiiiiieiiiiiiiiieeniiiieeeeeene .4 20..
4.6.12 TLB Invalid Exception — Instruction Fetch or Data ACCeSS (4KC COre)covvuurieiiiiiiineeiiiiieee e 4-21...
4.6.13 Bus Error Exception — Instruction FetCh or Data ACCESSuuvieiiiiiieeiieiiiiiiiiieee e e e e e e ereeeeneeeas 4-22
4.6.14 Debug Software Breakpoint Exception - . 4-23
4.6.15 Execution Exception — System Callooiiiiiiiiiiiiiieee e e
4.6.16 Execution EXception — Breakpointcc.ueiiiiiiiiiiiiece e
4.6.17 Execution Exception — Reserved INSIIUCLIONoviiieiiiiiiiiiiiiee e eeeneeeesennnn s
4.6.18 Execution Exception — Coprocessor UNUSabIecoooiiiiiiiiiiiiiiiie e eee e e
4.6.19 Execution Exception — INteger OVEIMIOWooiuiiiiiiiiiiie e s
4.6.20 EXECULION EXCEPLION —— TIAP 1oiuteiiiiiiitiiiee ittt ettt sttt ettt e e sttt e e s et e e e s s e emn e e e e e emsnbe e e e e anneee
4.6.21 Debug Data Break EXCEPLIONccccuiiiiiiiiiiee e ettt e e e e e e e s s s r e e e e e e e e s s e mmemmmmmmmmnn s e
4.6.22 TLB Modified Exception — Data Access (4Kc core)

4.7 Exception Handling and Servicing FIOWCRHAISouiiiiiiiiiiiiir s emcmmcmmmme e

(O O =0 1S3 (T £ PSP

LT R OF S0 m =T o 1Y (T ST U] = Y/

LA 08 w0 I o =T 0 £ (= USSP
5.2.1 Index Register (CPO Register 0, SEIECt 0)viviiiiieieiiie e
5.2.2 Random Register (CP0O Register 1, Select 0)
5.2.3 EntryLo0, EntryLol (CPO Registers 2 and 3, Select 0)ccccoevieiiiiiiiiiieeee e 5-7
5.2.4 Context Register (CPO Register 4, SEIECL 0)cccoiiiiiiiieiieeeere s e e e e e e e e e e s e eeeen s 5-9
5.2.5 PageMask Register (CPO Register 5, Select 0) ..o s 000 =10
5.2.6 Wired Register (CPO Register 6, Select 0)

5.2.7 BadVAddr Register (CPO Register 8, SEIECE 0)uuuuiuiuiiiiiiiii i e e e e e e e ee e e eeeee et eeeesmnmsmamanaeeees 5-13
5.2.8 Count Register (CPO Register 9, SElECt 0)coovviiiiiiieiieieirrri s e e e e e e e e e neeeen s es 5-14
5.2.9 EntryHi Register (CP0O Register 10, SEIECL 0)coovviiiiiiiiiiiiiiiiiiiis i e e e e e e e e e e s 5-15

5.2.10 Compare Register (CP0O Register 11, SeleCt 0)ceuiiiiiiiiiiiiiiiiiiiiieeeeeee e« s -« =10
5.2.11 Status Register (CPO Register 12, Select 0)
5.2.12 Cause Register (CPO Register 13, SEIECT 0) ...uuciieiiiiiiiii i e e 5-22
5.2.13 Exception Program Counter (CP0O Register 14, SeleCt 0)cccuveeeiiiieeiiiiiiiiieieeee e s 972D

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 Xi

5.2.14 Processor Identification (CPO Register 15, SeleCt 0)eviiiiiiiiiiiiiiiiiie s meeeecmmmmeeeen s 5-26
5.2.15 Config Register (CP0O Register 16, Select 0)
5.2.16 Configl Register (CPO Register 16, Select 1)

5.2.17 Load Linked Address (CPO Register 17, SEIECt 0)uuuiiiiiieeeiiiiiiiiiiieee et mmmmmmmmmmmeeees 5-33
5.2.18 WatchLo Register (CPO REQISIEN 18)ciiiiiiiiiiiiiiiiiie ettt ettt e e s e e e e 5-34
5.2.19 WatchHi Register (CPO ReQISIEN 19) ...iieiiiiiiiiiiiiiie ettt et e e e e s e et e e e s mmmmmmeeneeeeneeeeeeeeas 5-35
5.2.20 Debug Register (CPO REQISIEN 23)uuiiiiiiiieee i e e e e e e s r e e e e e e s e s e s e e 5-37
5.2.21 Debug Exception Program Counter Register (CPO RegiSter 24)cceveiiiiiiiiiiiiiiiie e 5:42..
5.2.22 TagLo Register (CPO Register 28, SEIECE 0)uuiiiiiiieeiiiiiiiieie e oo e e eeeen e e 5-43
5.2.23 DataLo Register (CPO Register 28, SEIECTE 1)uuuiiiiiiiiie e mmmmeee e eeneee e es 5-44
5.2.24 ErrorEPC (CPO Register 30, SEIECE 0)ccuueiiiiiiiiieee e i e e e e e e s s e e e e e e s emmmmmmmeemememe e e e s 5-45
5.2.25 DeSave Register (CPO REGISIEN 3L) ...oiiiiiiiiiieiiiiiiie ettt ettt e e e e e eneeeeae sneneee s 5-46

Hardware and Software INHAliZAtIONcc.uuiiiiiiii e e e e e e e s smmmmmennneeens e e e e e eeeeeeeeannnnnereneeees 6-1

6.1 Hardware Initialized ProCESSOI STALEcciiiiiiiiiiiiiiiiee ittt eme e e e s e e e e e e 6-2
6.1.1 COPIrOCESSOI ZEID STALEiiiiiiiiii ittt e e e e e e e e e e et et e ettt et et e e e s mmamememmmmmmmmseeeeeeeaeeeeeereenees 6-2
6.1.2 TLB Initialization (4KC COTe ONIY)cooiiiiiiieeeeee e e e e e e e e e e e e e et e e e e e e e ee e e s o———— 1111111 n s annnan 6-3
6.1.3 Bus State Machines
6.1.4 Static Configuration INPULSc..eeeiiiiiiiiee ettt e e e e e e e s s b s b memmmmmmmmn s bbb e b e e eeeeaeeas 6-3
B.1.5 FEICN AUOIESSottt e et e e et e e e e e mmmsneenemme e s e e e e e et e e s 6-3

6.2 Software Initialized ProCeSSOr STALEcoiciiiiiiiiiiiie ettt e mmmmmmenneemm e e e e s nerreeee s e 6-3
L R =T 1S3 = 1 = 6-3
6.2.2 TLB (AKC €O ONIY) ..iiiiiiiiiieieieieie s e s e et et e e e e e e e e et et ettt et eeaa e e e et e e e S— 122 e 2 e e e e e e eees 6-4
6.2.3 Caches
6.2.4 COPIrOCESSOI ZEIO STALEeieiiiieiiiiiiiiititeie e e e e e e e e e e e e e e e et e ettt eeeeeeeeteteebe b b smmmmmmmmmmmmmmms e sesessesennnnnnnnnns 6-4

(02 Tod 12 SO U PR P R PPPPPPPPUPPRPRN 7-1
4% T = Vo TN o) oo) PSS 7-2
A7 |15 £ T 1o T = Vo o1 PSS 7-3
4 T = L= T - V] SR 7-3

POWET MANAGEIMENT ...ttt e e e e e e e e e e e et ettt et e et e e s e s o e e e e e+« com—— 1444444t £ e e e e e nn e nn e s
8.1 Register Controlled Power ManagemeENtuuuuuiiuiuiiiiiiaieieieeeeeeeeeeeeeeeeeeeeesesesesennnnnn————

8.2 Instruction Controlled POwer ManagemENLtccooeiiiiiiiiiiie et s —————

(SN Y D=t o 18 o ST U] o] o o] AP P PPPP PP 9-1
BB LT o T o @0] 1]l L= |1 L= OO PPP 9-2
9.2 HAardware Bre@KPOINTScoii ittt sttt ettt sttt e e s et e e s ekt et e e e abe e e e e e abeeee s e sbb e e e e e anbbeeeeeanabneas 9-4

9.2.1 Features of InStruction BreakpOintcooeiiiiiiiiieiee et ese e mmmne e e e e e s 9-4
9.2.2 Features of Data Brea@kPOINtcoiiiieeiiiiiiiiiiii e e e e e e e e s s er e e e e e e s e s s snnee e e e smmmmmmmmmm s eeeeeeeeee s 9-5
9.2.3 Overview of Registers for Instruction Breakpoint wrvvnenee -0
9.2.4 Registers for Data BreakpoinNt SELUDoouuiiiiiiiiiii ettt s e e s e e e aees 9-6

Xii MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

9.2.5 Conditions for MatChing Bre@akpOiNtSc..eeiiiiiiiiiieiiie et c—— e 9-7

9.2.5.1 Conditions for Matching Instruction Breakpointccccccevreeeiiiiiiiieee e e 9-7
9.2.5.2 Conditions for Matching Data Breakpointsccooiiiiiiiiiiiiieiiiiee e 9-8
9.2.6 Debug Exceptions from Breakpoints .. TP PP PP PP PPPRPPIPPRPRPPRN © Ll |
9.2.6.1 Debug Exception by Instruction Breakpomt ... 9-9
9.2.6.2 Debug Exception by Data Breakpoint .9-9
9.2.7 Breakpoint USed as THOGEIPOINTcoiiiiiiiiiei ittt ettt ettt e e eabb e+ s——— 1ttt e e s et 9-10
9.2.8 Instruction Breakpoint REGISIEIScoiiiiiiiiiiiiiie ettt e e e e e e s s aareeee s sbbeeeeesaaes 9-11
9.2.8.1 Instruction Breakpoint Status (IBS) REQISIENcceuiiiiiiiiiiie e e 9-12
9.2.8.2 Instruction Breakpoint Address n (IBAN) REGISIETcooiiiiiiiiiiiiiiiee e 9-13
9.2.8.3 Instruction Breakpoint Address Mask n (IBMN) REJISIErccuiiiiiiiiiiiiiiiiiieee e 9-14

9.2.8.4 Instruction Breakpoint ASID n (IBASIDn) Register
9.2.8.5 Instruction Breakpoint Control n (IBCn) Register
9.2.9 Data Breakpoint REGISIEISooiiiiiiiie ittt ¢ — 142
9.2.9.1 Data Breakpoint Status (DBS) REGISIELciiiiiiiiiieiiiiiie ettt
9.2.9.2 Data Breakpoint Address N (DBAN) REGISIENuuvviiiiiiiiiiiiiiiie ettt e 9= 19

9.2.9.3 Data Breakpoint Address Mask n (DBMN) REQISIETcccuiiuiiiiiiiiiiiie it eeeeeeee 9:20
9.2.9.4 Data Breakpoint ASID N (DBASIDN) REQISIETccoiiuuiiiiiiiiiiiie ittt e 9-21
9.2.9.5 Data Breakpoint Control N (DBCN) REGISIETuuiiiiiiiiiieeeiiiiee et ecee s 9-22
9.2.9.6 Data Breakpoint Value n (DBVN) REQISLENouuiiiiiiiiiiie ittt 9-24
9.2.10 TSt ACCESS POIt (TAP) oiiiiiiii ittt e et e e e e e e s sa st beeereeaeeeeeesessmmmeenameesaanseeeeeeeeeesaannnns 9-25
9.2.11 EJTAG Internal and EXternal INTErfACEScooiiiiiiiiiiiie e e s 9-25
9.3 TESt ACCESS POIT OPEIALIONeiiiiiiiiiiie ittt et e et e e e e ea b bt e eeeeeeme e e e s e s bbe e e e e e anbbeeeeeannees 9-26
9.3.1 TESI-LOGIC-RESEE STALEcoiiieiiieiiiiiie ettt ettt e e bt —— 111t e 222 e bt 9-28

9.3.2 RUN-TESHIAIE STALEeeeeeiiiiiieeeei sttt e e e et e e e e e e e e e e s s et ereeeeeeeeeasssasenennneeeeeeesesannnsnnneneeees 9-28
9.3.3 Select_ DR_Scan State
9.3.4 Select_IR_Scan State
9.3.5 Capture_DR State
9.3.6 Shift_ DR State
9.3.7 EXItL_DR STAE ...ooiiiiiiiiiiiiiiiiie ettt
9.3.8 Pause_DR State
9.3.9 EXIT2_ DR STALE ...eiiiiiitiiiiei ittt ettt e bt e e a bttt e e e a e bt ¢ ——— 11111t te e nbb s
9.3.10 Update_DR State
9.3.11 Capture_IR State
9.3.12 Shift_IR State
9.3.L3 EXItL_IR STALE ...eeiiiiiiiiiei ittt e e et et e e ekttt e e e eab bt S——— {11111t b e e e e e nnb e
9.3.14 Pause_IR State
9.3.15 EXIt2_ IR STALE ...eeiiiiiiiiiei ittt ettt ettt e ettt e e ettt e e ettt S———— {1111t b e e e e e nnb e
9.3.16 Update_IR State

9.4 Test Access Port (TAP) INSIIUCLIONS ...ttt e st e e e e e e e s smmmmmmeeeeeeenss s eeeeeeaeeeeaeannns 9-31
9.4.1 BYPASS INSIIUCTION ..etiiiittiieieiittiiee ettt e e ettt ettt e sttt e e e sttt et e e s bbbt e e e s sabb e et eemne e e e aeamne e e abbbeeeesannnneeas 9-32

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 Xiii

9.4.2 IDCODE INSLIUCTION ..eeiiiiieeiiiiiiiiiieeieee e e e e e e s e sttt eeeeaeeeesssssaeetaeeeeeeeeeeaesaassssss mmmmmmmmmmmnn s ssseeeeeeaeeeesesanns
9.4.3 IMPCODE Instruction
9.4.4 ADDRESS Instruction
ST A AN [1S3 1 U T 1T o PR
9.4.6 CONTROL Instruction
LS A I I 13 o3 1T o OO RREE
9.4.8 EJTAGBOOT INSIIUCLIONeiiiiiiiiiiiie e e e i ettt e e e e e e e et e e e e e eeeeess s nnsntaeeeeeeeeeeasaaassnnnnneeeeeeesesannnnne
9.4.9 NORMALBOOT Instruction
9.5 EJTAG REQISTEIS ...iiieiiitiiiie e ittt e e ettt e ettt e e ettt e e e oottt e e e e b b et e e e e e s bb et e oo ek bt e e e e e eaabe e e e e eaabe st e e e e anbbeeeesanbbeeeeannnes
9.5.1 INSLrUCION REGISIET .ceiiiiiiiiie ittt
9.5.2 Data Registers Overview
9.5.3 BYPASS REGISIET .. .eeeiiieiiiiii ettt
9.5.4 Device Identification (ID) Register
9.5.5 Implementation Register
9.5.6 EJTAG CONIrOl REQISIEI .oiieeeiii ittt e e e e e e e e st r e e e eeee e e s sen s s memmmmem———— e e e s e nnnsseeeees
9.5.7 Processor ACCESS AAIESS REGISTETciiiiiiiiiieiiiiiie ettt ettt s —— e
9.5.8 Processor Access Data Registers
9.6 Processor Accesses

9.6.1 Fetch/Load and Store from/to the EJTAG Probe through dmsSeqoccoviiiiiiiiiiiiiiiiee s e 9-47..
INSEIUCTION SEE OVEIVIEW ...cveiiiiiiiiitiee ettt e e e et e e e e e e ettt e e s et eeeeeeeeeaeeetaaaaaaasaaaaaeeaeaeseaeeesesssssessssstatnsnnnnnn 10-1
10.1 CPU INSLIUCHION FOMMALS ...ttt ettt e e ettt et e e e e e e s s e s sbb bt e eeeeeeaaaaaeeessaaannabbeaneeeaaaaeens 10-2
10.2 Load and STOre INSIIUCLIONSceiiiiiiiiiiiiiiiiee et e e e ettt e et e e e e e e e s s aa b et et e et e+ s— 111ttt ettt e aaeeas 10-3
10.2.1 Scheduling a Load Delay Slot emmmmmmmmmmsnnnenenaneneens 10-3
10.2.2 DEfINING ACCESS TYPES . .eiiiiitttteeeeeee e e e e e e e ettt ettt e e e e e e s s s a e bbb b et et e aaeeeeaesannbb et s mmmmmmmmmmms b e s st e e e e e aeeas 10-3
10.3 CompULAtIONAl INSTIUCTIONSceiiiiiiiiiiitite et e ettt e e e e e e et b bt e e e e e e e e s s eneeeeeaaaaan s e e s nsnbbeaneeeaaeaeens 10-4
10.3.1 Cycle Timing for Multiply and Divide INSIIUCHONScooiiiiiiiiiiiiiiiieeee e oo 10-5

Xiv

10.4 Jump and BranCh INSIIUCHIONScooiiiiiiiiiiie ittt e et e e e e e e e s e neeeeeeeaaaan s e s e e snnbbebneeeeeas
10.4.1 Overview of JUMP INSTIUCLIONSeiiiiiiiiiiiiiiii et e e eea e
10.4.2 Overview of Branch Instructions
10.5 CONrOl INSIFUCHIONSeeiiiiiiiieeeiie ittt e e e e et e e e e e e e e e e e smeeees
10.6 Coprocessor Instructions
10.7 Enhancements to the MIPS Architecture
10.7.1 CLO - Count Leading Ones
10.7.2 CLZ - Count Leading Zeros

10.7.3 MADD - MUltiply @nd Add WOooiiiiiiiiiieeiiiee ettt e e bee e e et s 122121 10-7
10.7.4 MADDU - Multiply and Add UnSIgNed WOoooiiiiiiiiiieie e 10-7
10.7.5 MSUB - Multiply and SUDLraCt WOTAoooiiiiiiiieiiieeeee ettt mmmmeeeeeeeee e e e e e an 10-7
10.7.6 MSUBU - Multiply and Subtract Unsigned WOIdooooiiiiiiiiiiiieeie e e 10-8
10.7.7 MUL = MUIIPIY WOTTeeeieeiiiiiie ettt ettt e ettt e e e sttt e e e s sttt e e e e snt e e anemnneesnsbeeeeeaanbaeeeenans 10-8

10.7.8 SSNOP- Superscalar Inhibit NOP

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

MIPS32 4K™ ProCeSSOr COrE INSTIUCTIONSu.iiireieiei e et e et e et e e et e et e e et eeeeat s e e saa s s mmmmm—m——— e s seansesesas 11-1

11.1 Understanding the INStrUCtioN FIEIASoooiiiiiiieee e —————— e 11-1
11.2.2 INSEPUCHION FIEIAS ..ottt e e e e e e e e e e e m e e e eeeeaaamt e e e e e e e e e e s nnnbbeneees 11-3
11.1.2 Instruction Descriptive Name and MNEMONICeeiiiiiieiiiiiiiiiiiiiiieeee e e e e e esiiieeeeeee e e s s s« L 173
11.1.3 FOrmat Fieldcoeeeeiieiiiieeee e
11.1.4 Purpose Field
11.1.5 Description Field
11.1.6 Restrictions Field
11.1.7 Operation Field
11.1.8 Exceptions Field

11.2 Instruction Hazards

11.3 CPU Opcode Map

11.4 Instruction Set

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 XV

XVi MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Figure 1-1
Figure 1-2
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-11
Figure 2-12
Figure 2-13
Figure 2-14
Figure 2-15
Figure 2-16
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5

List Of Figures

4K Processor Core BlOCK DIagram ...ttt e+ s, LD

Address Translation During a Cache Access ... 1-8

AKC COre PIpeliNg STAQgES ..ccooeiiiiiiiiete ettt e e e e e e e e e eeeeeeaaaan e 2-2

AKM COre PIPElNG SAQESuueiiiiiiiiiiie ettt e e e e e e e e s b s esmmmmmmmnne e 2-2

AKP COore PIPElING STAQEScooiiiiiieiiitie ettt e e e e e e e e meeeeeeeeaaaann s e e nn 2-3
Instruction Cache MISS TIMINGcccuuiiiiiiiieii e e e e s s eee 2=D
Load/Store Cache MISS TiMINGueeiiiiiiaiiiiiiiie ittt e e e e e e e e e e ees 2-6

MDU Pipeline Flow During a 32x16 Multiply Operationcc.eeeeiieiaiiiiiiiiiiiieeeeee e 11.....2-
MDU Pipeline Flow During a 32x32 Multiply Operationc.eeeeeiieaeiiiiiiiiiiiieeeeeee e 12.....2-
MDU Pipeline Flow During a 8 bit Divide Operationccccuveiiieiiiiieeiieiiiiieieeee e 2:13...

MDU Pipeline Flow During a 16 bit Divide Operationccccuuveieiiiiieaiininiiiiieieeeeeee e 2:13....

MDU Pipeline Flow During a 24 bit Divide Operationccccuuvieiiieiiaennniiiiieieeee e 2-13...

MDU Pipeline Flow During a 32 bit Divide Operationcccouuveeiiiiiiaaniniiiiiieieeee e 2-14...

4Kp MDU Pipeline Flow During a Multiply Operationcccueeeeieiiaaiiniiiiiiiieeeeeeee e 2-15....

4Kp MDU Pipeline Flow During a Multiply Accumulate Operationcccccceeeeiiiiiiiiieieeeneaeeenn 2-16
4Kp MDU Pipeline Flow During a Divide Operationceeeeiiaiianiiniiiiiiiiieeeee e 2-17....

CPU Pipeling BranCh DEIAYccoueiiiiiiiiiiiiieiiee ettt mmmneee s 2-18
INSErUCtion CaChe MISS SHP ...ueeiiiiiiiiiiee ettt b e mmmmmmmnne e 2-20
Address Translation DUrNG @ CACNE ACCESSeuiiiiiiiiiiiiiiiiiieeie e e e eeeaaeaas 3:2
Overview of a Virtual-to-Physical Address Translation in the 4Kc COreccooiiiiiiiiieiiiienniiis 3-5
32-bit Virtual Address TranSIationcceeeiiiiiiiiee e e e sme e e 3-6

TLB Tag ENtry FOIMALooiiiiiiiiiiiiiiitt e e e e e et et e et ettt et eete e be et e b mmmmmmmmmmmansrnbnrnne 3-8

TLB Data Array ENtry FOIMALoooiiiiiiiiiiiiii et 3-9

TLB Address Translation Flow in the 4Kc Processor COoreccoccevvevveeesiniieneessscnenenl, 3
BAT Memory Map (ERL=0) in the 4Kp and 4Km ProcessSor COreSccueeeieeeeeeiiiiiiiiiiiieeeeeaaaaenns 3-13
BAT Memory Map (ERL=1) in the 4Kp and 4Km Processor COIeSccueeeieeeeeeiniiiiiiiiiieeeeeaaaaens 3-14
User Mode Virtual ADAreSS SPACEuueiiiiiiiiieaaeee ittt e e e e e eeeeeeeeseennns

Kernel Mode Virtual AQArESS SPACEccooeiiiiiiiiiiieiieee ettt e e s

Debug Mode Virtual Address Space

General Exception Handler (HW) ...t

General Exception Servicing GUIAElNES (SW)uuuiiiiiiiiiiiiiiiieee e s 4-34

TLB Miss Exception Handler (HW) — 4KC COIEuuuiiiiiiiiiaaeeaeeeiiiiee e 4-35.....

TLB Exception Servicing Guidelines (SW) — 4Kc and 4Km COreSccooviiiiiiiuiiiiieeiaeaeee e 4-36
Reset, Soft Reset and NMI Exception Handling and Servicing Guidelinesccccooeiiiiennnnn. 4-37

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 Xvii

Figure 5-1 Wired and Random ENntries iN the TLBccueviiiiiiiiiiiiii et 5:11

Figure 9-1 Instruction Hardware Breakpoint OVEIVIEWc.eeiiiiiiiiiiiiiiiiiie e mneeeeeaae! 9-5
Figure 9-2 Data Hardware Breakpoint OVEIVIEWccccuviiiiiiieieeeeieieiiiiiee e e e e e e e e e e st e e e e s smmmmmmmmnnns
Figure 9-3 TAP Controller State diagramooiiiiiiiieiiiiie e e e snneeee s
Figure 9-4 Concatenation of the EJTAG Address, Data and Control Registers

Figure 9-5 Endian Formats for the PA Data REQISIErScoocuiiiiiiiiiiiiiiiiiiee e

Figure 10-1 INStrUCHION FOIMALSooviiiiiieiiiiiiiee e e e e e e e et e e e e e e e e s s memmeeennnannns

Figure 11-1 Example INStruction DESCIPLIONeiiiiiieeeiiiiieiieiiee e e e s r e e e e e e s eeeememnnnnn s

Figure 11-2 Example of Instruction Fields
Figure 11-3 Usage of Address Fields to Select Index and Way

Figure 11-4 Unaligned Word Load Using LWL and LWRc.ooiiiiiiiiiiiiiiiee e
Figure 11-5 Bytes Loaded by LWL INSIIUCHIONcovviieiiiiiiiiiiiiiiieee e eiiieeee e e e e e s e eeeemnmnnee
Figure 11-6 Unaligned Word Load Using LWR and LWLc..cooiiiiiiiiiiiiiii e
Figure 11-7 Bytes Loaded by LWR INSIIUCLIONoooviiiiiiiiiiiiiiecicee e e e m e
Figure 11-8 Example of LL/SC AtOMIC UPAALEviiiiiiiiiiiie it e
Figure 11-9 Unaligned Word Store Using SWL and SWR ...
Figure 11-10 Bytes Stored by an SWL INSTIUCHIONuuviiiiiiieeiieiiiiiiieeee e s s
Figure 11-11 Unaligned Word Store Using SWR and SWLoccoiiiiiiiiiiiiiieeee e
Figure 11-12 Bytes Stored by SWR INSLIUCHIONuuiiiiiieeeiii e e e e e e rmmme e e

XVii MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 3-9
Table 3-10
Table 3-11
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6
Table 4-7
Table 4-8
Table 4-9
Table 4-10
Table 4-11
Table 4-12
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5

List Of Tables

4Kc and 4Km Core INSrUCHION LAENCIESccivvniiiiiiieiiee et e e e e e e s e e s 27O

4Kc Core Instruction Repeat RAESuuiiiiiiiiaiiiiiiiiiee e emmmeeeeeeee e 2-9
MDU Pipeline Behavior During Multiply Operations (4Kc & 4Km Processors)ccccccuvvvveeeeenn.
AKP Core INSIIUCLION LAEINCIESeiiiiiiieeieiiiiiitiee et e e ettt e et e e e e e e s s e e e e e e e e e eeananes 2-14
PiIpeling INEITOCKS ...ttt e e 2-18
INSTIUCTION INTEITOCKSeieeiiieee e 2-21
Mask and Page Size VAlUESooiiiiiiii ettt e e 3-7
TLB Tag ENLry FIEIAS ..cooiiiiiieiee ettt ettt e anns 3-8
TLB Data Array ENtry FIldSeeeeiiiiiiiiii ettt e e e e e 3-9
TLB INSIIUCHIONS ...eiiiiitiiiee ittt ettt e et e s st e e s aas s mn e e e e e enmme e et e e e ennees 3-10
Cache Coherency ALHDULESueiiiiiiiie e e mmmmmmne e 3-12
Cacheability of Segments with Block Address Translation ... ~12....
(O LT Y oTe Lo =T o | 41T | KPP TR 3-16
Kernel MOde SEQIMENTS ...ttt e e e e e e e e e e bbb e e mmmmmmmeeeeeee e e 3-18
Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces
CPU Access to drseg ADAreSs RANGEoooiiiiiiiiiiiiieiee et oo 3:21
CPU Access to dmseg AddreSS RANGEoooiiiiiiiiiiiiiiie ettt eeeeaaeeee s 3-22
PriOFty OF EXCEPLIONS ...ttt ettt e e e e e e e e e n e e e e e e aaaaaeeeeaannnes 4-2
Exception Vector Base AJArESSEScoooccuviiiiiiiieieaeeee ittt e sniete e« e B4
EXCePtion VECIOr OffSELSciiiiiiiiiiiie ettt e e e e s e e e e e eeeaeaan e e e na 4-5
EXCEPLION VEBCIOIS ...ttt ettt e e e e e e e e e s bbb e e mmmmmmmmnneeeseeeeaaaa e s 4-5
Debug EXception VECIOr AQAIESSESceiiiiiiiiiiiiiitiieie ettt e e e e e e eeeeeeamnnae 4-8
Register States an Interrupt EXCEPLIONoooiiiiiiiiiiiieiee e 4-16
Register States 0n a WatCh EXCEPLIONcooiiiiiiiiiiiiiiiiiee e meeneeeee 4-18
CPO Register States on an Address EXCeption Errorcccuuviiiiiiiiiiiiiiiiiiiecce e 4-19...
CPO Register States on a TLB Refill EXCePLioncceeeeeieiieiiiiiiiiiiiiiiiieeeeeeee i . 4220,
CPO Register States on a TLB Invalid EXCEPLIONccoiiiiiiiiiiiiiiiieieeeee e 4:21
Register States on a Coprocessor Unusable EXCEepPLioNccoiiiiiiiiiiiiiiieeeeeead 4-27...
Register States on a TLB Modified EXCEPLIONueeiiiiiiiiiiiiiiiiieeee e 4-31
CPO REQISIEIS ..eieiiiiiie ettt ettt e e e e e e e e et s e e e e e e e e e e e s s

CPO Register Field TYPES ..ooiiiiiiiiiiie et

Index Register Field DeSCHPLIONScoiiiiiiiiiiiiiieeet et e e e e e
Random Register Field Descriptions

EntryLo0, EntryLol Register Field DeSCIPLONS ccoiiiiiiiiiiiiiiiiieeeee e 5-7..

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 XiX

Table 5-6
Table 5-7
Table 5-8
Table 5-9
Table 5-10
Table 5-11
Table 5-12
Table 5-13
Table 5-14
Table 5-15
Table 5-16
Table 5-17
Table 5-18
Table 5-19
Table 5-20
Table 5-21
Table 5-22
Table 5-23
Table 5-24
Table 5-25
Table 5-26
Table 5-27
Table 5-28
Table 5-29
Table 5-30
Table 5-31
Table 7-1
Table 7-2
Table 9-1
Table 9-2
Table 9-3
Table 9-4
Table 9-5
Table 9-6
Table 9-7
Table 9-8
Table 9-9
Table 9-10
Table 9-11
Table 9-12
Table 9-13

XX

Cache CoherencCy ALHDULESooooeiiiiie e e e e e e e e eeneenen e es 5-8
Context Register Field DeSCHPLIONSuuiiiiiiieeee e e e e e e s smmmmmme e e e 5-9
PageMask Register Field DeSCHPLIONSuvviiiiiiiiieeeiie e e e emmmmmmmnees 5:10
Values for the Mask Field of the PageMask RegiSter ... 5-10....
Wired Register Field DESCHPHONScoiiiiiiiiiiiiiiiiie ettt neeee s 5-12
BadVAddr Register Field DeSCPLIONcc.uuiiiiiiiiieee e mmmmmmmmeee 5-13
Count Register Field DEeSCHIPLIONocoeeiiieiiiiiee e e e e e e mmnnneeee s 5-14
EntryHi Register Field DeSCHPLIONSiiiiiiieiiiiiciiiieiir et e e e e e e e s meeemeennnmne s 5-15
Compare Register Field DeSCPLIONuiiiiiiiieeeii e e e eeeeeeeeennas 5-16
Status Register Field DeSCHPLONSoiiiiiiiiieiiiiiie et 5-18
Cause Register Field DeSCIPIONScoicceiiiiiiiiie e e e s eeemmmmmmmnnees 5-22
Cause Register ExcCode Field DeSCIPONScoiiuiiiiiiiiiiiiee et 5:23
EPC Register Field DESCHPLIONeeiiiiiiiieeee e ieeciiiiee e e e e e s seeee e e e e e e e vmmmem e s 5-25
PRId Register Field DeSCIIPLIONScviiiieeeiiiiiiiiiiiiieer e ee e e e s et r e e e e e e e s e memmemmmnnns s 5-26
Config Register Field DeSCIPLONS coviiieiiiiiiicieee e e e e e e e e s emnnnee 5-27
Cache Coherency AIHDULESuiiiiiiiieee et e e e e 5-29
Configl Register Field Descriptions — SeIeCt 1cooiuiiiiiiiiiiiieiieee e 5-30..
LLAddr Register Field DeSCHPONScoviiiieiiiiiiiiiiiiiiiie e e e e e
WatchLo Register Field DeSCIPLIONSuviiiiiiiiiee e e e e s smmmmmmeeeeeeas
WatchHi Register Field DeSCHPLONS uviiiiiiiiiie i
Debug Register Field DeSCHPLIONSuiiiiiiieeiiiiicciiieiir et e e e e s e e e e e e e e meeeeeemnnnnae
Debug RegISIEr FOIMALSoiiiiiiiiiiiiiiiiii et e e e e
TagLo Register Field DESCIPLIONScuiiiiieeieiiieciieeir et e e e e e s ee e e e e e esnnnne s
Datalo Register Field DESCHPLONcoiiiiiiiiiiiiiiiie et
ErrorEPC Register Field DeSCHPLIONccccviiieiiieiie et e e e e semmmmmmmmnnes
DeSave RegiSter DESCHPLIONoi.uuiiiiiiiiiiee ettt e e et e e et ee e e e s sbeeeeee e e
Instruction and Data Cache AMMNDULES oiiiiiiiiiiiie e e e
Instruction and Data CacChe SIZESocceeiiiiiiiiiiie e

Debug Control Register Field DeSCHPLONSccoiiiiiiieiiiiiiieieiiieee e

Overview of Status Register for Instruction Breakpoints .
Overview of Registers for each Instruction Breakpointcccveiiiiiiiieiniiiiee e 9:6....
Overview of Status Register for Data Breakpointsocueieiiiiiiiiieiiiiiiee e 9:6..
Overview of Registers for each Data Breakpointcccoovviiiiiiiiiiii e 9:6..
Addresses for Instruction Breakpoint REGISIErScooiiiiiiiiiiiiiiie e 9-:11
IBS Register Field DESCIPLONSccoiiiiiiiiiiiiiiie ettt e st e s s sneeee e e 9-12

IBAN Register Field DeSCIPLIONSccciiiiiiieeiiiiiiee ettt s« D7 13
IBMn Register Field Descriptions -.9-14
IBASIDn Register Field Descriptions
IBCn Register Field DEeSCHPLIONSeiiiiiiiiieiiiiiet ettt st e e e e s e aneeas

Addresses for Data Breakpoint REQISLEISccveeeiiiiiiiiiiiiiieee e eeeeeeeenes 9-17
DBS Register Field DeSCHPLIONSccoiiiiiiiieiiiiiie e e e e e e e s e s seneesmmmmmmmnee s 9-18

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Table 9-14 DBAnN Register Field DeSCHPLONSeeiiiiiiiiiiei et eeeseammneeeans 9-19

Table 9-15 DBMn Register Field DESCHPLONScoiiiiiiiiiiiiiiee ittt mmeeeeesanes 9-20
Table 9-16 DBASIDN Register Field DEeSCHPLIONSoiiiiiiiiiieiiiieiee ittt s meeenmmnns 9-21
Table 9-17 DBCn Register Field DeSCIPUONSc.uviiiiiiiiiiie ittt eeee e e e e enes 9-22
Table 9-18 DBVn Register Field DEeSCHPLONSuuiiiiiiiiiiieiiiiiiee et e eeeseammneeeans 9-24
Table 9-19 EJTAG INTEIACE PINS ...ttt e s e e e e anree s 9-25
Table 9-20 Implemented EJTAG INSIIUCHIONSciiieeiiiiiiiiieee e e e e e s e e e e e e e e s smmmmmmeeeeeeas 9-31
Table 9-21 Device |dentification REQISTENcuieeiiiiiiiiieieee e e e e mmmmmmmeeeeee e 9-35
Table 9-22 Implementation RegiSter DESCIPLONSocuueiiiiiiiiiie ettt oo 9-37
Table 9-23 EJTAG Control Register DeSCIPLONS uvviiiiiiiiieeeeieieiieiieeee e e ee e e e e s es s ee e e e e e e s smmmmmeenes 9-38
Table 10-1 Byte ACCESS WIthin @ WOIAcoiviiiiiiiiiiiiiiiie e e e e e e mmmmmmmeeeeen e 10-4
Table 11-1 INSIIUCHION HAZAITAS ooiiiiiiiiiii ettt e e et e e s ebe e e e e s senneeeeeane 11-7
Table 11-2 CPU Main OPCOUE MAPvveiiiiiiiiiiie ettt ettt ettt e sttt e e e e eeemmmneeeene e s 11-9
Table 11-3 Special SUDMAPvviiiiiiiiiie et e e e esmmmneeee e s erees 11-10
Table 11-4 SPECIAl2 SUDMAPeeeiiiiiiie ettt e e e mne e e e e s neaeas 11-10
Table 11-5 Register Immediate SUDMAPoeiiiiiiiiiiiiii e e 11-11
Table 11-6 Coprocessor 0 RS SUDIMAPo.uveiiiiiiiiee et 11-11
Table 11-7 COProCeSSOr O SUDMEP ..ooiiiiiiiieiiiiiiie ittt ettt s meeemmmmmneeen e 11-12
Table 11-8 INSIIUCTION STeiiiiiiiiiie et s bt e e s bbbt e+ meemmmmmnnen e e s 11-12
Table 11-9 Encoding of CACHE InStruction BitS[L7:16]eeteiiiiiiiieiiiiiiee it 11-48
Table 11-10 Encoding of CACHE Instruction BitS [20:18]c.ooviiiiiiiiiiiiiiieee e 11-48
Table 11-11 Values of Hint Fields for the PREF INSIIUCHIONccooiiiiiiiiiiiiiieiieeee e 11-104

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 XXi

XXil MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Chapter 1

EE— |

Introduction to the MIPS32 4K™ Processor Core Family

The MIPS32 4K™ processor cores from MIPS® Technologies are high-performance, low-power, 32-bit MIPS
RISC cores intended for custom system-on-silicon applications. The cores are designed for semiconductor
manufacturing companies, ASIC developers, and system OEMs who want to rapidly integrate their own custon
logic and peripherals with a high-performance RISC processor. The cores are fully synthesizable to allow
maximum flexibility; they are highly portable across processes and can be easily integrated into full
system-on-silicon designs, allowing developers to focus their attention on end-user products.

The cores are ideally positioned to support new products for emerging segments of the digital consumer, network
systems, and information management markets, enabling new tailored solutions for embedded applications.

The 4K family has three members: the 4Kc™, 4Km™, and 4Kp™ cores. The cores incorporate aspects of bott
the MIPS Technologies R3000® and R4000® processors. The three devices differ mainly in the type of
multiply-divide unit (MDU) and the memory management unit (MMU).

e The 4Kc core contains a fully-associative translation lookaside buffer (TLB) and pipelined MDU.

e The 4Kp core contains a block address translation (BAT) mechanism that is smaller and simpler than the
TLB implementation in the 4Kc core, along with a non-pipelined MDU.

e The 4Km processor is really a hybrid of the 4Kc and 4Kp cores. It contains a BAT-based MMU (like the 4Kp
core) along with a pipelined MDU (like the 4Kc core).

Optional instruction and data caches are fully programmable from 0 - 16 Kbytes in size. In addition, each cach
can be organized as direct-mapped, 2-way, 3-way, or 4-way set associative. On a cache miss, loads are block
only until the first critical word becomes available. The pipeline resumes execution while the remaining words are
being written to the cache. Both caches are virtually indexed and physically tagged. Virtual indexing allows the
cache to be indexed in the same clock in which the address is generated rather than waiting for the
virtual-to-physical address translation in the Translation Lookaside Buffer (TLB).

All cores execute the MIPS32™ instruction set architecture (ISA). The MIPS32 ISA contains all MIPS 1I
instructions as well as special multiply-accumulate, conditional move, prefetch, wait, and zero/one detect
instructions. The R4000-style memory management unit of the 4Kc core contains a 3-entry instruction TLB
(ITLB), a 3-entry data TLB(DTLB), and a 16 dual-entry joint TLB (JTLB) with variable page sizes. The 4Kp and

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 1-1

Chapter 1: Introduction to the MIPS32 4K™ Processor Core Family

4Km processors cores contain a simplified block address translation (BAT) mechanism where the mapping of
address spaces is determined through bits in the Configuration register.

The 4Kc and 4Km multiply-divide unit (MDU) supports a maximum issue rate of one 32x16 multiply (MUL),
multiply-add (MADD/MADDU), or multiply-subtract (MSUB/MSUBU) operation per clock, or one 32x32

MUL, MADD, or MSUB every other clock. The basic Enhanced JTAG (EJTAG) features provide CPU run control
with stop, single stepping and re-start, and with software breakpoints through the SDBBP instruction. In addition,
optional instruction and data virtual address hardware breakpoints, and optional connection to an external EJTAG
probe through the Test Access Port (TAP), may be included.

This chapter provides an overview of the MIPS32 4K processor cores and consists of the following sections:

* Section 1.1, "Features"”

» Section 1.2, "Block Diagram"

e Section 1.3, "Required Logic Blocks"

e Section 1.4, "Optional Logic Blocks"

1.1 Features

* 32-bit Address and Data Paths
» MIPS32 Compatible Instruction Set
— Al MIPSII™ instructions
— Multiply-add and multiply-subtract instructions (MADD, MADDU, MSUB, MSUBU)
— Targeted multiply instruction (MUL)
— Zero and one detect instructions (CLZ, CLO)
— Wait instruction (WAIT)
— Conditional move instructions (MOVZ, MOVN)
— Prefetch instruction (PREF)
» Programmable Cache Sizes
— Individually configurable instruction and data caches
— Sizes from 0 - 16-Kbyte

— Direct mapped, 2-, 3-, or 4-way set associative

1-2 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Features

— Loads that miss in the cache are blocked only until critical word is available
— Write-through, no write-allocate
— 16-byte cache line size, word sectored
— Virtually indexed, physically tagged
— Cache line locking support
— Non-blocking prefetches
R4000 Style Privileged Resource Architecture
— Count/compare registers for real-time timer interrupts
— Instruction and data watch registers for software breakpoints
— Separate interrupt exception vector
Programmable Memory Management Unit (4Kc core only)
— 16 dual-entry R4000 style JTLB with variable page sizes
— 3-entry instruction TLB
— 3-entry data TLB
Programmable Memory Management Unit (4Kp and 4Km cores only)
— Block address translation (no JTLB, ITLB, or DTLB)
— Address spaces mapped using register bits
Simple Bus Interface Unit (BIU)
— All'l/Os fully registered
— Separate unidirectional 32-bit address and data buses
— Two 16-byte collapsing write buffers
Multiply-Divide Unit (4Kc and 4Km cores)
— Max issue rate of one 32x16 multiply per clock
— Max issue rate of one 32x32 multiply every other clock
— Early in divide control. Minimum 11, maximum 34 clock latency on divides
Power Control

— Minimum frequency: 0 MHz

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 1-3

Chapter 1: Introduction to the MIPS32 4K™ Processor Core Family

— Power-down mode (triggered by WAIT instruction)
— Support for software-controlled clock divider
» EJTAG Debug Support
— CPU control with start, stop and single stepping
— Software breakpoints via the SDBBP instruction

— Optional hardware breakpoints on virtual addresses; 4 instruction and 2 data breakpoints, 2
instruction and 1 data breakpoint, or no breakpoints

— Test Access Port (TAP) facilitates high speed download of application code

1.2 Block Diagram

All cores contain both required and optional blocks. Required blocks are the lightly shaded areas of the block
diagram and must be implemented to remain MIPS-compliant. Optional blocks can be added to the cores based
on the needs of the implementation. The required blocks are as follows:

* Execution Unit

e Multiply-Divide Unit (MDU)

e System Control Coprocessor (CPO0)
* Memory Management Unit (MMU)
* Cache Controller

e Bus Interface Unit (BIU)

* Power Management

Optional blocks include:

* Instruction Cache

» Data Cache

e Enhanced JTAG (EJTAG) Controller

Figure 1-1 shows a block diagram of a 4K core. The MMU can be implemented using either a translation

lookaside buffer (TLB) in the case of the 4Kc core, or a fixed block address translator (BAT) in the case of the 4Kp
and 4Km cores. Refer to Chapter 3 for more information.

1-4 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Required Logic Blocks

. EJTAG
Mul/Div Unit Instruction
Cache
i _
2
0
Execution Cache uw =
D f—
Gl MMU Controller o c |=—a
N ey
= Q
c
Jt t 2
System Data
Coprocessor TLB/BAT Power
P Cache Mgmt.
Fixed/Required Optional

Figure 1-1 4K Processor Core Block Diagram

1.3 Required Logic Blocks

The following subsections describe the various required logic blocks of the 4K processor cores.

1.3.1 Execution Unit

The core execution unit implements a load-store architecture with single-cycle Arithmetic Logic Unit (ALU)
operations (logical, shift, add, subtract) and an autonomous multiply-divide unit. The core contains thirty-two
32-bit general-purpose registers used for scalar integer operations and address calculation. The register file
consists of two read ports and one write port and is fully bypassed to minimize operation latency in the pipeline

The execution unit includes:
e 32-bit adder used for calculating the data address
e Address unit for calculating the next instruction address

e Logic for branch determination and branch target address calculation

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 1-5

Chapter 1: Introduction to the MIPS32 4K™ Processor Core Family

1-6

1.3.2

* Load aligner

» Bypass multiplexers used to avoid stalls when executing instruction streams where data- producing
instructions are followed closely by consumers of their results

» Zero/One detect unit for implementing the CLZ and CLO instructions
* Arithmetic Logic Unit (ALU) for performing bitwise logical operations

» Shifter and Store Aligner

Multiply/Divide Unit (MDU)

The Multiply/Divide unit performs multiply and divide operations. In the 4Kc and 4Km processors, the MDU
consists of a 32x16 booth-encoded multiplier, result-accumulation registers (HI and LO), a divide state machine,
and all multiplexers and control logic required to perform these functions. This pipelined MDU supports execution
of a 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations can be issued every other
clock cycle. Appropriate interlocks are implemented to stall the issue of back-to-back 32x32 multiply operations.
Divide operations are implemented with a simple 1 bit per clock iterative algorithm and require 35 clock cycles
in worst case to complete. Early-in to the algorithm detects sign extension of the dividend, if it is actual size is 24,
16 or 8 bit. the divider will skip 7, 15 or 23 of the 32 iterations. An attempt to issue a subsequent MDU instruction
while a divide is still active causes a pipeline stall until the divide operation is completed.

Inthe 4Kp processor, the non-pipelined MDU consists of a 32-bit full-adder, result-accumulation registers (Hl and
LO), a combined multiply/divide state machine, and all multiplexers and control logic required to perform these
functions. It performs any multiply using 32 cycles in an iterative 1 bit per clock algorithm. Divide operations are
also implemented with a simple 1 bit per clock iterative algorithm (no early-in) and require 35 clock cycles to
complete. An attempt to issue a subsequent MDU instruction while a multiply/divide is still active causes a
pipeline stall until the operation is completed.

All cores implement an additional multiply instruction, MUL, which specifies that lower 32-bits of the multiply
result be placed in the primary register file instead of the HI/LO register pair. By avoiding the explicit Move From
LO (MFLO) instruction, required when using the LO register, and by supporting multiple destination registers,
the throughput of multiply-intensive operations is increased.

Two instructions, multiply-add (MADD/MADDU) and multiply-subtract (MSUB/MSUBU), are used to perform
the multiply-add and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds
the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two
operands and then subtracts the product from the Hl and LO registers. The MADD/MADDU and MSUB/MSUBU
operations are commonly used in Digital Signal Processor (DSP) algorithms.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Required Logic Blocks

1.3.3

134

System Control Coprocessor (CPO0)

In the MIPS architecture, CPO is responsible for the virtual-to-physical address translation and cache protocols
the exception control system, the processor’s diagnostics capability, operating mode selection (kernel vs. user
mode), and the enabling and disabling of interrupts. Configuration information such as cache size, set
associativity, and EJTAG debug features are available by accessing the CPO registers. Refer to Chapter 6 for mo
information on the CPO registers. Refer to Chapter 9 for more information on EJTAG debug registers.

Memory Management Unit (MMU)

Each core contains an MMU that interfaces between the execution unit and the cache controller. Although the 4K
core implements a 32-bit architecture, the Memory Management Unit (MMU) is modeled after the MMU found
in the 64-bit R4000 family.

The 4Kc core implements a translation lookaside buffer (TLB). The TLB consists of three translation buffers: a
16 dual-entry fully associative Joint TLB (JTLB), a 3-entry fully associative Instruction TLB (ITLB) and a 3-entry
fully associative data TLB(DTLB). The ITLB and DTLB (the micro TLBs) are managed by the hardware and are
not software visible. The micro TLBs contain subsets of the JTLB. When translating addresses, the correspondin
micro TLB (I or D) is accessed first. If there is not a matching entry, the JTLB is used to translate the address anc
refill the micro TLB. If the entry is not found in the JTLB, an exception is taken. To minimize the micro TLB miss
penalty, the JTLB is looked up in parallel with the DTLB for data references. This results in a 1 cycle stall for a
DTLB miss and a 2 cycle stall for an ITLB miss.

The 4Kp and 4Km cores implement a block address translation (BAT) mechanism instead of a TLB. The BAT

replaces both the JTLB and ITLB in the 4Kc core. The BAT performs a simple translation to get the physical
address from the virtual address. Refer to Chapter 3 for more information on the BAT.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 1-7

Chapter 1: Introduction to the MIPS32 4K™ Processor Core Family

1-8

1.35

Figure 1-2 shows how the ITLB/BAT, DTLB/BAT, JTLB are used.

Virtual Address Instruction
Cache
RAM
Instruction ¢
Address ITLB/BAT2 —®» Comparator
Calculator |
IVA Entry In_stru_cnon
Hit/Miss
JTLB!
Entry Data
Hit/Miss
Data
Address DTLB/BAT 2 Comparator
Calculator
Virtual Address Data
> Cache
RAM

1. JTLB only exists in the 4Kc core.
2. ITLB/DTLB implemented in the 4Kc core only. BAT implemented in the 4Kp and 4Km cores.

Figure 1-2 Address Translation During a Cache Access

Cache Controllers

The data and instruction cache controllers support caches of various sizes, organizations, and set associativity. For

example, the data cache can be 2 Kbytes in size and 2-way set associative, while the instruction cache can be 8
Kbytes in size and 4-way set associative.

Each cache controller contains and manages a one line fill buffer. Besides accumulating data to be written to the
cache, the fill buffer is accessed in parallel with the cache and data can be bypassed back to the core.

Refer to Chapter 7 for more information on the instruction and data cache controllers.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Optional Logic Blocks

1.3.6 Bus Interface Unit(BIU)

The Bus Interface Unit (BIU) controls the external interface signals. Additionally, it contains the implementation
of the 32-byte collapsing write buffer. The purpose of this buffer is to hold and combine write transactions before
issuing them at the external interface. Since the data caches for all cores follow a write-through cache policy, the
write buffer significantly reduces the number of write transactions on the external interface as well as reducing the
amount of stalling in the core due to issuance of multiple writes in a short period of time.

The write buffer is organized as two 16-byte buffers. Each buffer contains data from a single 16-byte aligned block
of memory. One buffer contains the data currently being transferred on the external interface, while the other
buffer contains accumulating data from the core.

Refer to Chapter 6 for more information on the BIU.

1.3.7 Power Management

The core offers a number of power management features, including low-power design, active power managemen
and power-down modes of operation. The core is a static design that supports a WAIT instruction designed to
signal the rest of the device that execution and clocking should be halted, reducing system power consumptior
during idle periods.

The core provides two mechanisms for system-level, low-power support:

* Register-controlled power management

* Instruction-controlled power management

In register controlled power management mode the core provides three bits in the CPO0 Status register for softwar
control of the power management function and allows interrupts to be serviced even when the core is in

power-down mode. In instruction controlled power-down mode execution of the WAIT instruction is used to
invoke low-power mode.

Refer to Chapter 8 for more information on power management.

1.4 Optional Logic Blocks

The core consists of the following optional logic blocks as shown in the block diagram in Figure 1-1.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 1-9

Chapter 1: Introduction to the MIPS32 4K™ Processor Core Family

1-10

141

1.4.2

1.4.3

Instruction Cache

The instruction cache is an optional on-chip memory array of up to 16 Kbytes. The cache is virtually indexed and
physically tagged, allowing the virtual-to-physical address translation to occur in parallel with the cache access
rather than having to wait for the physical address translation. The tag holds 22 bits of the physical address, 4 valid
bits, a lock bit, and the FIFO replacement bit.

All cores support instruction cache-locking. Cache locking allows critical code to be locked into the cache on a
“per-line” basis, enabling the system designer to maximize the efficiency of the system cache. Cache locking is
always available on all instruction cache entries. Entries can be marked as locked or unlocked on a per-entry basis
using the CACHE instruction.

Data Cache

The data cache is an optional on-chip memory array of up to 16-Kbytes. The cache is virtually indexed and
physically tagged, allowing the virtual-to-physical address translation to occur in parallel with the cache access.
The tag holds 22 bits of the physical address, 4 valid bits, a lock bit, and the FIFO replacement bit.

In addition to instruction cache locking, all cores also support a data cache locking mechanism identical to the
instruction cache, with critical data segments to be locked into the cache on a “per-line” basis. The locked contents
cannot be selected for replacement on a cache miss, but can be updated on a store hit.

Cache locking is always available on all data cache entries. Entries can be marked as locked or unlocked on a
per-entry basis using the CACHE instruction.

EJTAG Controller

All cores provide basic EJTAG support with debug mode, run control, single step and software breakpoint
instruction (SDBBP) as part of the core. These features allow for the basic software debug of user and kernel code.

Optional EJTAG features include hardware breakpoints. A 4K core may have four instruction breakpoints and two
data breakpoints, two instruction breakpoints and one data breakpoint, or no breakpoints. The hardware
instruction breakpoints can be configured to generate a debug exception when an instruction is executed anywhere
in the virtual address space. Bit mask and address space identifier (ASID) values may apply in the address
compare. These breakpoints are not limited to code in RAM like the software instruction breakpoint (SDBBP).
The data breakpoints can be configured to generate a debug exception on a data transaction. The data transaction
may be qualified with both virtual address, data value, size and load/store transaction type. Bit mask and ASID
values may apply in the address compare, and byte mask may apply in the value compare.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Optional Logic Blocks

Refer to the Chapter 9 for more information on hardware breakpoints.

An optional Test Access Port (TAP) provides for the communication from an EJTAG probe to the CPU through
a dedicated port, may also be applied to the core. This provides the possibility for debugging without debug code
in the application, and for download of application code to the system.

Refer to Chapter 6 for a list of EJTAG interface signals. Refer to Chapter 9 for more information on the EJTAG
features.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 1-11

Chapter 1: Introduction to the MIPS32 4K™ Processor Core Family

1-12 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Chapter 2

Pipeline

The MIPS32 4K™ processor cores implement a 5-stage pipeline similar to the original R3000 pipeline. The
pipeline allows the processor to achieve high frequency while minimizing device complexity, reducing both cost
and power consumption. This chapter contains the following sections:

e Section 2.1, "Pipeline Stages"

» Section 2.2, "Instruction Cache Miss"

+ Section 2.3, "Data Cache Miss"

e Section 2.4, "Multiply/Divide Operations"

e Section 2.5, "MDU Pipeline (4Kc and 4Km Cores)"
e Section 2.6, "MDU Pipeline (4Kp Core Only)"

e Section 2.7, "Branch Delay"

e Section 2.8, "Interlock Handling"

e Section 2.9, "Slip Conditions"

» Section 2.10, "Instruction Interlocks"

2.1 Pipeline Stages

The pipeline consists of five stages:
* Instruction (I Stage)

» Execution (E Stage)

* Memory (M Stage)

» Align/Accumulate (A Stage)

* Writeback (W stage)

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 2-1

Chapter 2: Pipeline

All three cores implement a bypass mechanism that allows the result of an operation to be forwarded directly to
the instruction that needs it without having to write the result to the register and then read it back.

Figure 2-1 shows the operations performed in each pipeline stage of the 4Kc processor.

! | \ | I
[| ! E [M [A ! w |
I | | Bypass | | !
| - Bypass \ :
I-Cache RegRd| ALU Op | ' | \
I-TLB | | Dec | D-AC D-Cache | Align | RegW |
| D-TLB | \ :
! 1AL | 1-A2 ! | \
| \ w | Bypass | \ \
| \ ’ Iy 1 |
\ | [v i /] | [Reaw] \
| \ X 17 \ \
: : [Mutt, Macc 16x16, 32xa6 cpa [Regw] |
\ | /1 X !
| : |Mu|t, Macc 32x32// CPA | Reng :
| \) 1] I’ !) \
: \ | Div I// Sign Adjust | Regw| \
| |

|) .

Figure 2-1 4Kc Core Pipeline Stages

Figure 2-2 shows the operations performed in each pipeline stage of the 4Km processor core.

! | ! | \
I]
I ! [e | ™~ [A [w |
! | Bypass ! | :
! | ; Bypass | |
| I-Cache RegRd| ALU Op | ! |
| I Dec | D-AC | D-Cache Align | | Regw| :
! | | |
: AL [1-A2 : ! |
| w | Bypass \ ! |
| ! I 77 ! l
| : | Mul / / | | | Regw| |
\ \ 1 11 ! |
: | [Mult, Mace 16x16, 3216 cpa RegwW :
| /1l | |
: ! |Mu|t, Macc 32x32// | CPA RegW [
| | Iy \ T \
|
\ : [ow I/I/ [sign AdMM :
| \ | \ .

Figure 2-2 4Km Core Pipeline Stages

2-2 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Pipeline Stages

211

2.1.2

Figure 2-3 shows the operations performed in each pipeline stage of the 4Kp processor core.

| \ ! |
[) [)
! I [E [M ! A [w |
X ! |__Bypass \ ! !
| } Bypass \ : |
I-Cache RegRd ALU Op | | | :
\ | Dec | D-AC | D-Cache ! Align | RegW |
| | | ! |
| A1 | I-A2 | : !
! | N | '
| | | /1 |
| | [v /] | [Regw] !
\ | T 11 N |
\ | | I | |
| \ |mu|tip|y. divide // Reng \ :
| \ ! T |
' |

Figure 2-3 4Kp Core Pipeline Stages

| Stage: Instruction Fetch

During the Instruction fetch stage:

» The instruction translation lookaside buffer (I-TLB) perform a virtual-to-physical address translation (4Kc
core only).

* Aninstruction is fetched from the instruction cache.

E Stage: Execution

During the Execution stage:
e Operands are fetched from the register file.

» The Arithmetic Logic Unit (ALU) begins the arithmetic or logical operation for register-to-register
instructions.

 The ALU calculates the data virtual address for load and store instructions.

» The ALU determines whether the branch condition is true and calculates the virtual branch target address fo
branch instructions.

» Instruction logic selects an instruction address

« All multiply and divide operations begin in this stage.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 2-3

Chapter 2: Pipeline

2-4

2.1.3 M Stage: Memory Fetch

2.14

During the Memory Fetch stage:

The arithmetic or logic ALU operation completes.

The data cache fetch and the data virtual-to-physical address translation are performed for load and store
instructions.

Data TLB (4Kc core only) and data cache lookup are performed and a hit/miss determination is made.

A 16x16 or 32x16 MUL operation completes in the array and stalls for one clock in the M stage to complete
the carry-propagate-add in the M stage (4Kc and 4Km cores).

A 32x32 MUL operation stalls for two clocks in the M stage to complete second cycle of the array and the
carry-propagate-add in the M stage (4Kc and 4Km cores).

A 16x16 or 32x16 MULT/MADD/MSUB operation completes in the array (4Kc and 4Km cores).

A 32x32 MULT/MADD/MSUB operation stalls for one clock in thgf¥, stage of the MDU pipeline to
complete second cycle in the array (4Kc and 4Km cores).

A divide operation stalls for a maximum of 32 clocks in thgdy] stage of the MDU pipeline (4Kc and
4Km cores).

A multiply operation stalls for 31 clocks iny, stage (4Kp core only).
A multiply-accumulate operation stalls for 33 clocks igyM, stage (4Kp core only).

A divide operation stalls for 32 clocks in thg ¥ stage (4Kp core only).

A Stage: Align/Accumulate

During the Align/Accumulate stage:

A separate aligner aligns load data with its word boundary.

A MULT/MADD/MSUB operation performs the carry-propagate-add. This includes the accumulate step for
the MADD/MSUB operations. The actual register writeback is performed in the W stage (4Kc and 4Km
cores).

A MUL operation makes the result available for writeback. The actual register writeback is performed in the
W stage (all 4K cores).

A divide operation perform the final Sign-Adjust. The actual register writeback is performed in the W stage
(4Kc and 4Km cores)

A multiply/divide operation writes to HI/LO registers (4Kp core only).

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Cache Miss

2.1.5 W Stage: Writeback

» For register-to-register or load instructions, the result is written back to the register file during the W stage.

2.2 Instruction Cache Miss

When the instruction cache is indexed, the instruction address is translated to determine if the required instructiol
resides in the cache. An instruction cache miss occurs when the requested instruction address does not reside
the instruction cache. When a cache miss is detected in the | stage, the core transitions to the E stage. The pipeli
stalls in the E stage until the miss is resolved. The bus interface unit must select the address from multiple source
If the address bus is busy, the request will remain in this arbitration stage (B-ASel in Figure 2-4) until the bus is
available. The core drives the selected address onto the bus. The number of clocks required to access the bus
determined by the access time of the array that contains the data. The number of clocks required to return the da
once the bus is accessed is also determined by the access time of the array.

Once the data is returned to the core, the critical word is written to the instruction register for immediate use. The
bypass mechanism allows the core to use the data once it becomes available, as opposed to having the entire ca
line written to the instruction cache, then reading out the required word.

Figure 2-4 shows a timing diagram of an instruction cache miss.

|
1 ' 1

| \ | |
| E I E E I E |
| \ | |
| ! \ | : |
|-Cache ! N ' RegRd ALUOp |
I-TLB | I-TLB B-ASel\\ | Bus* \\ | IC-Bypass | |Dec
\ " A o AL | A2 |
|

* Contains all of the time that address and data are utilizing the bus.

Figure 2-4 Instruction Cache Miss Timing
2.3 Data Cache Miss

When an instruction is indexed, the instruction address is translated to determine if the required instruction reside
in the cache. A data cache miss occurs when the requested data address does not reside in the data cache.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 2-5

Chapter 2: Pipeline

When a data cache miss is detected in the M stage (D-TLB), the core transitions to the A stage. The pipeline stalls
in the A stage until the miss is resolved (requested data is returned). The bus interface unit arbitrates between
multiple requests and selects the correct address to be driven onto the bus (B-ASel in Figure 2-5). The core drives
the selected address onto the bus. The number of clocks required to access the bus is determined by the access
time of the array containing the data. The number of clocks required to return the data once the bus is accessed is
also determined by the access time of the array.

Once the data is returned to the core, the critical word of data passes through the aligner before being forwarded
to the execution unit and register file. The bypass mechanism allows the core to use the data once it becomes
available, as opposed to having the entire cache line written to the data cache, then reading out the required word.

Figure 2-5 shows a timing diagram of a data cache miss.

* Contains all of the time that address and data are utilizing the bus.

r L I I I I I | I I I I I
|) |) | i |

| E M I A A ! A l A ' W |

i

| | | |

| ' | : | : |

| RegR | ALU1 D-Cache | | : | :

: ome] : . : .

| N |

| : B-ASel \\\\ [Bus* \\ | DCBypass | Align | | RegW |
l A U \ \7| l

N | ! | |

| | |

Figure 2-5 Load/Store Cache Miss Timing

2.4 Multiply/Divide Operations

2-6

All three cores implement the standard MIPS 11™ multiply and divide instructions. Additionally, several new
instructions were added for enhanced code performance.

The targeted multiply instruction, MUL, specifies that multiply results be placed in the general purpose register
file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction, required when using the LO
register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is
increased.

Four instructions, multiply-add (MADD), multiply-add-unsigned (MADDU) multiply-subtract (MSUB), and

multiply-subtract-unsigned (MSUBU), are used to perform the multiply-accumulate and multiply-subtract
operations. The MADD/MADDU instruction multiplies two numbers and then adds the product to the current

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

MDU Pipeline (4Kc and 4Km Cores)

contents of the HI and LO registers. Similarly, the MSUB/MSUBU instruction multiplies two operands and then
subtracts the product from the HI and LO registers. The MADD/MADDU and MSUB/MSUBU operations are
commonly used in DSP algorithms.

All multiply operations (except the MUL instruction) write to the HI/LO register pair. All integer operations write

to the general purpose registers (GPR). Because MDU operations write to different registers than integer
operations, following integer instructions can execute before the MDU operation has completed. The MFLO and
MFHI instructions are used to move data from the HI/LO register pair to the GPR file. If a MFLO or MFHI
instruction is issued before the MDU operation completes, it will stall to wait for the data.

2.5 MDU Pipeline (4Kc and 4Km Cores)

The 4Kc and 4Km processor cores contain a multiply/divide unit (MDU) with a separate pipeline for multiply and
divide operations. This pipeline operates in parallel with the integer unit (IU) pipeline and does not stall when the
IU pipeline stalls. This allows long-running MDU operations, such as a divide, to be partially masked by system
stalls and/or other integer unit instructions.

The MDU consists of a 32x16 booth encoded multiplier, result/accumulation registers (HI and LO), a divide state
machine, and all necessary multiplexers and control logic. The first number shown (‘32’ of 32x16) represents the
rs operand. The second number (‘16’ of 32x16) represents tdperand. The core only checks the lattgr (

operand value to determine how many times the operation must pass through the multiplier. The 16x16 and 32x1
operations pass through the multiplier once. A 32x32 operation passes through the multiplier twice.

The MDU supports execution of a 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply
operations can be issued every other clock cycle. Appropriate interlocks are implemented to stall the issue of
back-to-back 32x32 multiply operations. Multiply operand size is automatically determined by logic built into the
MDU. Divide operations are implemented with a simple 1 bit per clock iterative algorithm with an early in
detection of sign extension on the dividems)(Any attempt to issue a subsequent MDU instruction while a divide

is still active causes an IU pipeline stall until the divide operation is completed.

Table 2-1 lists the latencies (number of cycles until a result is available) for multiply and divide instructions. The

latencies are listed in terms of pipeline clocks. In this table ‘latency’ refers to the number of cycles necessary for
the first instruction to produce the result needed by the second instruction.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 2-7

Chapter 2: Pipeline

2-8

Table 2-1 4Kc and 4Km Core Instruction Latencies
Size of operand Instruction Sequence
1st Instruction! - : - Latency
st Instruct 1st Instruction 2nd instruction
16 bit MULT/MULTU, MADD/MADDU, 1
MADD/MADDU, or MSUB/MSUBU, or
MSUB/MSUBU MFHI/MFLO
32 hit MULT/MULTU, MADD/MADDU, 2
MADD/MADDU, or MSUB/MSUBU, or
MSUB/MSUBU MFHI/MFLO

16 bit MUL Integer operatidfl 213
32 bit MUL Integer operatidf! 213
8 bit DIVU MFHI/MFLO 12
16 bit DIVU MFHI/MFLO 19
24 bit DIVU MFHI/MFLO 26
32 hit DIVU MFHI/MFLO 33
8 bit DIV MFHI/MFLO 13%4!
16 bit DIV MFHI/MFLO 204!

24 bit DIV MFHI/MFLO 274

32 bit DIV MFHI/MFLO 3414
any MFHI/MFLO Integer operatidfl 2
any MTHI/MTLO MADD/MADDU, or 1

MSUB/MSUBU

[1] For multiply operations this is thé operand. For divide operations this is theperand.
[2] Integer Operation refers to any integer instruction that uses the result of a previous MDU opera

[3] This does notinclude the 1 or 2 IU pipeline stalls (16 bit or 32 bit) that MUL operation causes irresp

of the following instruction.

[4] If both operands are positive the Sign Adjust stage is bypassed. Timing is then the same as for

ion.
bctive

DIVU.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

MDU Pipeline (4Kc and 4Km Cores)

In Table 2-1 a latency of one means that the first and second instruction can be issued back to back in the cod
without the MDU causing any stalls in the IU pipeline. A latency of two means that if issued back to back, the U
pipeline will be stalled for one cycle. MUL operations are special because it needs to stall the IU pipeline in order
to maintain its register file write slot. Consequently the MUL 16x16 or 32x16 operation will always force a one
cycle stall of the 1U pipeline, and the MUL 32x32 will force a two cycle stall. If the integer instruction immediately
following the MUL operation uses its result, an additional stall is forced on the 1U pipeline.

Table 2-2 lists the repeat rates (peak issue rate of cycles until the operation can be reissued) for multiply

accumulate/subtract instructions. The repeat rates are listed in terms of pipeline clocks. In this table ‘repeat rate
refers to the case where the first MDU instruction (in the table below) if back to back with the second instruction.

Table 2-2 4Kc Core Instruction Repeat Rates

Operand Size of Instruction Sequence Repeat
1st Instruction 1st Instruction 2nd instruction Rate
16 bit MULT/MULTU, MADD/MADDU, 1
MADD/MADDU, MSUB/MSUBU
MSUB/MSUBU
32 bit MULT/MULTU, MADD/MADDU, 2
MADD/MADDU, MSUB/MSUBU
MSUB/MSUBU

Table 2-3 below shows the pipeline flow for the following sequence:

1. 32x16 multiply (M)
2. Add
3. 32x32 multiply (M)
The 32x16 multiply operation requires one clock of each pipeline stage to complete. The 32x32 requires two
clocks in the M;py stage. The MDU pipeline is shown as the shaded areas of Table 2-3 and always starts a
computation in the final phase of the E stage. As shown in the table, jjzg,Mtage of the MDU pipeline occurs

in parallel with the M stage of the IU pipeline, thg,f, stage occurs in parallel with the A stage, and thgd{/
stage occurs in parallel with the W stage.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 2-9

Chapter 2: Pipeline

Table 2-3 MDU Pipeline Behavior During Multiply Operations (4Kc & 4Km Processors)

M A W
Clock I E
Mmpu Ambu Wby
1 M,
2 ADD M,
3 M, ADD
M3
4 M, ADD
My
5 ADD
M; My
6 ADD
M,
.
My
8
M;

The following is a clock-by-clock analysis of Table 2-3.

1. The first 32x16 multiply operation (M enters the | stage and is fetched from the instruction
cache.

2. An ADD operation enters the | stage. The dperation enters the E stage. The integer and MDU pipelines
share the | and E pipeline stages. At the end of the E stage in clock 2, the multiply opergtisrpégsed
to the MDU pipeline.

2-10 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

MDU Pipeline (4Kc and 4Km Cores)

251

252

3. Inclock 3 a 32x32 multiply operation (Menters the | stage and is fetched from the instruction cache. Since
the ADD operation has not yet reached the M stage by clock 3, there is no activity in the M stage of the
integer pipeline at this time.

4. In clock 4 the second multiply operation{jMnters the E stage. The ADD operation enters M stage of the
integer pipe. Since the Mnultiply is a 32x16 operation, only one clock is required for thg M stage,
hence the Moperation passes to thg,8, stage of the MDU pipeline.

5. Inclock 5 the M multiply enters the Mpy stage. The ADD operation enters the A stage of the integer
pipeline. The M operation completes and is written back in to the HI/LO register pair in ffjg Wtage.

6. Since a 32x32 multiply requires two passes through the multiplier, with each pass requiring one clock, the
32x32 remains in the Mpy stage in clock 6. The ADD operation completes and is written to the register
file in the W stage of the integer pipeline.

7. The M, multiply operation progresses to thg#, stage
8. The M, operation completes and is written to the HI/LO registers pair {g)/$tage.

32x16 Multiply (4Kc & 4Km Cores)

The 32x16 multiply operation begins in the last phase of the E stage, which is shared between the integer and
MDU pipelines. In the latter phase of the E stagergtendrt operands arrive and the booth recoding function
occurs at this time. The multiply calculation requires one clock and occurs injlig,Mtage. In the f4p stage,

the carry-propagate-add function occurs and the operation is completed. The result is written back to the HI/LC
register pair in the first half of the)} stage.

Figure 2-6 shows a diagram of a 32x16 multiply operation.

Clock 1 2 3 4
|4' E-Stage —>|4-Mypy-Stage P> | €-Aypy-Stage P> 4‘WMDU'Stage"|

] | I R

| Booth | Array | CPA |Reg WR|

Figure 2-6 MDU Pipeline Flow During a 32x16 Multiply Operation

32x32 Multiply (4Kc & 4Km Cores)

The 32x32 multiply operation begins in the last phase of the E stage, which is shared between the integer and
MDU pipelines. In the latter phase or the E stagerslaadrt operands arrive and the booth recoding function

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 2-11

Chapter 2: Pipeline

2.5.3

2-12

occurs at this time. The multiply calculation requires two clocks and occurs injhg sage. In the §py
stage, the carry-propagate-add (CPA) function occurs and the operation is completed. The result is written back
to the HI/LO register pair in the first half of the)y, stage.

Figure 2-7 shows a diagram of a 32x32 multiply operation.

Clock 1 2 3 4 5
|4- E Stage |4 Mypy Stage-P>| € Mypy Stage»| € Aypy Stage- € Wypy Stage'*

N S S S O B

| Booth | Array Array | CPA | Reg WR|
Booth

Figure 2-7 MDU Pipeline Flow During a 32x32 Multiply Operation

Divide(4Kc & 4Km Cores)

Divide operations are implemented using a simple non-restoring division algorithm. This algorithm works only
for positive operands, hence the first cycle of thgMstage is used to negate tkeperand (RS Adjust) if

needed. Note that this cycle is executed even if the adjustment is not necessary. At maximum the next 32 clocks
(3-34) execute an iterative add/subtract function. In cycle 3 an early in detection is performed in parallel with the
add/subtract. The adjustesloperand is detected to be zero extended on the upper most 8, 16 or 24 hits. If this is
the case the following 7, 15 or 23 cycles of the add/subtract iterations are skipped.

The remainder adjust (Rem Adjust) cycle is required if the remainder was negative. Note that this cycle is taken
even if the remainder was positive. A sign adjust is performed on the quotient and/or remainder if necessary. Note
that the sign adjust cycle is skipped if both operands are positive. In this case the Rem Adjust is movegtg the A
stage.

Figure 2-8, Figure 2-9, Figure 2-10 and Figure 2-11 shows the latency for a 8, 16, 24 and 32 bit divide operation.
The repeat rate is either 12, 20, 28 or 35 cycles (one less sigimeadjustage is skipped) as a second divide can
be in theRS Adjusstage when the first divide is in tReg WRstage.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

MDU Pipeline (4Kc and 4Km Cores)

Clock 1 2 3 4-11 12 13 14
|4- E Stage >4~ Mypy StageP>| 4= Mypy StageP>| € Mypy Stage{ € Mypy Stage{ 4 Aypy Stage-P < Wypy Stage—}l
| RS Adjust Add/Subtract Add/Subtract | Rem Adjust | Sign Adjust | Reg WR|
Early In
Figure 2-8 MDU Pipeline Flow During a 8 bit Divide Operation
Clock 1 2 3 4-19 20 21 22
|4- E Stage |4 Mypy Stage-P>| € Mypy Stage>| € Mypy Stage-P{ € Mypy Stage>| € Aypy Stage-P{ € Wypy Stage—}l
| RS Adjust Add/Subtract Add/Subtract | Rem Adjust | Sign Adjust | Reg WR|
Early In
Figure 2-9 MDU Pipeline Flow During a 16 bit Divide Operation
Clock 1 2 3 4-27 28 29 30
|4‘ E Stage |4 Mypy Stage-P>| € Mypy Stage | Mypy Stage-P| € Mypy StageP| € Aypy Stage-P[€ Wiypy Stage—}l
| RS Adjust Add/Subtract Add/Subtract | Rem Adjust | Sign Adjust | Reg WRl
Early In

Figure 2-10 MDU Pipeline Flow During a 24 bit Divide Operation

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

2-13

Chapter 2: Pipeline

Clock 1 2 3 4-34 35 36 37
|4- E Stage >4~ Mypy Stage>| 4= Mypy StageP>| €= Mypy Stage{ € Mypy Stage{ € Aypy Stage-P < Wypy Stage—}l

o | | | | —

| RS Adjust Add/Subtract Add/Subtract | Rem Adjust | Sign Adjust | Reg WR|

Early In

Figure 2-11 MDU Pipeline Flow During a 32 bit Divide Operation

2.6 MDU Pipeline (4Kp Core Only)

2-14

The multiply/divide unit (MDU) is a separate pipeline for multiply and divide operations. This pipeline operates
in parallel with the integer unit (1U) pipeline and does not stall when the 1U pipeline stalls. This allows the
long-running MDU operations to be partially masked by system stalls and/or other integer unit instructions.

The MDU consists of one 32-bit adder result-accumulate registers (HI and LO), a combined multiply/divide state
machine and all multiplexers and control logic. A simple 1-bit per clock recursive algorithm is used for both
multiply and divide operations. Using booth’s algorithm all multiply operations complete in 32 clocks. Two extra
clocks are needed for multiply-accumulate. The non-restoring algorithm used for divide operations will not work
with negative numbers. Adjustment before and after are thus required depending on the sign of the operands. All
divide operations complete in 33 to 35 clocks.

Table 2-4 lists the latencies (number of cycles until a result is available) for multiply and divide instructions. The

latencies are listed in terms of pipeline clocks. In this table ‘latency’ refers to the number of cycles necessary for
the second instruction to use the results of the first.

Table 2-4 4Kp Core Instruction Latencies

Operand Signs of Instruction Sequence
1st Instruction Latency
(Rs,RtY) 1st Instruction 2nd instruction
any, any MULT/MULTU MADD/MADDU, 32
MSUB/MSUBU, or
MFHI/MFLO

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

MDU Pipeline (4Kp Core Only)

Table 2-4 4Kp Core Instruction Latencies

Operand Signs of Instruction Sequence
1st Instruction Latency
(Rs,Rt) 1st Instruction 2nd instruction
any, any MADD/MADDU, MADD/MADDU, 34
MSUB/MSUBU MSUB/MSUBU, or
MFHI/MFLO
any, any MUL Integer operatidh 32
any, any DIVU MFHI/MFLO 33
pos, pos DIV MFHI/MFLO 33
any, neg DIV MFHI/MFLO 34
neg, pos DIV MFHI/MFLO 35
any, any MFHI/MFLO Integer operatigﬁ 2
any, any MTHI/MTLO MADD/MADDU, 1
MSUB/MSUBU
[1] Integer Operation refers to any integer instruction that uses the result of a previous MDU operation.

2.6.1 Multiply (4Kp Core)

Multiply operations implement a simple iterative multiply algorithm. Using Booth’s approach, this algorithm
works for both positive and negative operands. The operation uses 32 cyclgginshge to complete a
multiplication. The register writeback to Hl and LO are done in the A stage. For MUL operations, the register file
writeback is done in the)5 stage.

Figure 2-12 shows the latency for a multiply operation. The repeat rate is 33 cycles as a second multiply can be ir
the first My)py Sstage when the first multiply is iy stage.

Clock 1 2-33 34 35
|4' E-Stage —>|4-Mypy-Stage > |- Aypy-Stage P 4‘WMDU'Stage"|

] | I R

| Add/sub-shift | HI/LO Write |RegWR|

Figure 2-12 4Kp MDU Pipeline Flow During a Multiply Operation

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 2-15

Chapter 2: Pipeline

2-16

2.6.2 Multiply Accumulate (4Kp Core)

2.6.3

Multiply-accumulate operations use the same multiply machine as used for multiply only. Two extra stages are
needed to perform the addition/subtraction. The operations uses 34 cyclggs,insktdge to complete the
multiply-accumulate. The register writeback to HI and LO are done in the A stage.

Figure 2-13 shows the latency for a multiply-accumulate operation. The repeat rate is 35 cycles as a second
multiply-accumulate can be in the E stage when the first multiply is in the |asy [¢tage.

Clock 1 2-33 34 35 36 37
|4‘ E Stage {4 Mypy StageP> (€ Mypy StageP| € Mypy StageP| € Aypy Stage-}l(— Wypy Staged>

o 7 4 L1 LI L]

|Add/Subtract Shiftl Accumulate/LO | Accumulate/Hll HI/LO Write |

Figure 2-13 4Kp MDU Pipeline Flow During a Multiply Accumulate Operation

Divide(4Kp Core)

Divide operations also implement a simple non-restoring algorithm. This algorithm works only for positive
operands, hence the first cycle of thg(, stage is used to negate the rs operand (RS Adjust) if needed. Note
that this cycle is executed even if negation is not needed. The next 32 cycle (3-34) executes an interactive
add/subtract-shift function.

Two sign adjust (Sign Adjust 1/2) cycles are used to change the sign of one or both the quotient and the remainder.
Note that one or both of these cycles are skipped if they are not needed. The rule is, if both operands were positive
or if this is an unsigned division; both of the sign adjust cycles are skipped. i§ thyigerand was negative, one of

the sign adjust cycles is skipped. If only te@perand was negative, none of the sign adjust cycles are skipped.
Register writeback to HI and LO are done in the A stage.

Figure 2-11 shows the latency for a divide operation. The repeat rate is either 34, 35 or 36 cycles (depending on

how many sign adjust cycles are skipped) as a second divide can be in the E stage when the first divide is in the
last My,py stage.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Branch Delay

Clock

1

2

|4— E Stage |4 Mypy Stage P>

3-34

<4 Mypy Stage-P|

35

<4 Mypy Stage-P|

36

<4 Mypy StageP|

37

38

4 Avpu Stage>| 4 Wypy StageP

| RS Adjust

|Add/SubtractShift| Sign Adjust 1 | Sign Adjust 2 | HI/LO Write

Figure 2-14 4Kp MDU Pipeline Flow During a Divide Operation

2.7 Branch Delay

The pipeline has a branch delay of one cycle and a load delay of one cycle. The one-cycle branch delay is a resu
of the branch decision logic operating during the E pipeline stage. This allows the branch target address calculate
in the previous stage to be used for the instruction access in the following E stage. The branch delay slot meat
that no bubbles are injected into the pipeline on branch instructions. The address calculation and branch conditio
check are both performed in the E stage. The target PC is used for the next instruction in the | stage (2nd instructio
after the branch).

The pipeline begins the fetch of either the branch path or the fall-through path in the cycle following the delay slot.
After the branch decision is made, the processor continues with the fetch of either the branch path (for a taken

branch) or the fall-through path (for the non-taken branch).

Figure 2-15 illustrates the branch delay.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

2-17

Chapter 2: Pipeline

One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle
Jump or Branch—p | E M A W
Delay Slot Instruction—— | / E M A W
Jump Target Instruction é‘ | E M A

One Clock
Branch Delay

Figure 2-15 CPU Pipeline Branch Delay

2.8 Interlock Handling
Smooth pipeline flow is interrupted when cache misses occur or when data dependencies are detected.
Interruptions handled using hardware, such as cache misses, are referredddasks At each cycle, interlock
conditions are checked for all active instructions.

Table 2-5 lists the types of pipeline interlocks for the 4K processor cores.

Table 2-5 Pipeline Interlocks

Interlock Type Sources Slip Stage
ITLB Miss Instruction TLB | Stage
ICache Miss Instruction cache E Stage
Instruction Producer-consumer hazards E/M Stage
Hardware Dependencies (MDU/TLB) E Stage
DTLB Miss Data TLB M Stage

2-18 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Slip Conditions

Table 2-5 Pipeline Interlocks

Interlock Type Sources Slip Stage

Data Cache Miss Load that misses in data cache W Stage

Multi-cycle cache Op

Sync

Store when write thru buffer full

EJTAG breakpoint on store

VA match needing data value comparispn

Store hitting in fill buffer

In general, MIPS processors support two types of hardware interlocks:
» Stalls, which are resolved by halting the pipeline

» Slips, which allow one part of the pipeline to advance while another part of the pipeline is held static

In the 4K processor cores, all interlocks are handled as slips.

2.9 Slip Conditions

On every clock internal logic determines whether each pipe stage is allowed to advance. These slip conditions
propagate backwards down the pipe. For example, if the M stage does not advance, neither will the E or | stage

Slipped instructions are retried on subsequent cycles until they issue. The back end of the pipeline advances

normally during slips in an attempt to resolve the conflict. NOPS are inserted into the bubble in the pipeline. Figure
2-16 shows an instruction cache miss.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 2-19

Chapter 2: Pipeline

Clock 1 2 3 4 5 6

@ @ O
Stage ¢ ¢ ¢
e [ta s [os [s | 16 |
E Lz fta [[]
M|l [lo] of]
Al L lfofof

(@ Cache miss detected
(2) critical word received
(®) Execute E-stage

Figure 2-16 Instruction Cache Miss Slip

Figure 2-16 shows a diagram of a two-cycle slip. In the first clock cycle, the pipeline is full and the cache miss is
detected. Instruction 10 is in the A stage, instruction I1 is in the M stage, instruction 12 is in the E stage, and
instruction 13 is in the | stage. The cache miss occurs in clock 2 when the 14 instruction fetch is attempted. 14
advances to the E-stage and waits for the instruction to be fetched from main memory. In this example it takes two
clocks (3 and 4) to fetch the 14 instruction from memory. Once the cache miss is resolved in clock 4 and the
instruction is bypassed to the cache, the pipeline is restarted, causing the 14 instruction to finally execute it's

E-stage operations.

2.10 Instruction Interlocks

2-20

Most instructions can be issued at a rate of one per clock cycle. In some cases, in order to ensure a sequential
programming model, the issue of an instruction is delayed to ensure that the results of a prior instruction will be
available. Table 2-6 details the instruction interactions that delay the issuance of an instruction into the processor

pipeline.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Interlocks

Table 2-6 Instruction Interlocks

Instruction Interlocks

h

. . . Issue Delay (in .

First Instruction Second Instruction Clock Cycles) Slip Stage
LB/LBU/LH/LHU/LL/LW/LWL/LWR Consumer of load data 1 E stage
MFCO Consumer of destination 1 E stage

register
MULT/MADD/MSUB 16bx32b MFLO/MFHI 0 M stage
(4Kc and 4Km cores) 32bx32b 1 M stage
MUL 16bx32b Consumer of target data 2 E stagd
(4Kc and 4Km cores) 32bx32b 3 E stage
MUL 16bx32b Non-Consumer of target data 1 E stage
(4Kc and 4Km cores) 32bx32b 2 E stage
MFHI/MFLO Consumer of target data 1 E stage
MULT/MADD/MSUB 16bx32b MULT/MUL/MADD/MSUB 0 E stage
MTHI/MTLO/DIV
(4Kc and 4Km cores) 32bx32b 1 E stage
DIV MULT/MUL/MADD/MSUB Until DIV E stage
/MTHI/MTLO/MFHI/MFL completes
O/DIV
MULT/MUL/MADD/MSUB/MTHI/MTLO/ MULT/MUL/MADD/MSUB Until 1st MDU op E stage
MFHI/MFLO/DIV (4Kp core) IMTHI/MTLO/MFHI/MFL completes
O/DIV
MUL (4Kp core) Any Instruction Until MUL E stage
completes
MFCO Consumer of target data 1 E stage
TLBWR/TLBWI Load/Store/PREF/CACHE/C 2 E stage
op0 op
TLBR 1 E stage
MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07 2-21

Chapter 2: Pipeline

2-22 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Chapter 3

Memory Management

The MIPS32 4K™ processor cores contain a Memory Management Unit (MMU) that interfaces between the
execution unit and the cache controller. The 4Kc core implements a Translation Lookaside Buffer (TLB), while
the 4Kp and 4Km cores implement a simpler block address translation (BAT) scheme.

This chapter contains the following sections:

e Section 3.1, "Translation Lookaside Buffer (4Kc Core Only)"

e Section 3.2, "TLB Instructions (4Kc Core)"

e Section 3.3, "Block Address Translation (4Kp & 4Km Cores)"

e Section 3.4, "Modes of Operation"

e Section 3.5, "System Control Coprocessor"

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 3-1

Chapter 3: Memory Management

In the 4Kc processor core, the TLB consists of three address translation buffers: a 16 dual-entry fully associative
Joint TLB (JTLB), a 3-entry Instruction micro TLB (ITLB), and a 3-entry Data micro TLB (DTLB). When an
address is translated, the appropriate micro TLB (ITLB or DTLB) is accessed first. If the translation is not found
in the micro TLB, the JTLB is accessed. If there is a miss in the JTLB, an exception is taken.

In the 4Kp and 4Km processor cores, the BAT translates virtual addresses into physical addresses via a fixed
translation mechanism. These translations are different for the different regions of the virtual address space
(USeg/KUSeg, KSeg0, KSegl, KSeg2/3).

In the 4Kp and 4Km cores, note that the BAT replaces the ITLB and DTLB found in the 4Kc core, and that the
JTLB is not used.

Figure 3-1 shows how the ITLB, DTLB, JTLB, and BAT are implemented.

Virtual Address Instruction
Cache
RAM
Instruction l
Address ITLB/BAT2 |— | Comparator
Calculator |
IVA Entry Instruction
Hit/Miss
> JTLe!
Entry Data
Hit/Miss
Data
Address DTLB/BAT2 Comparator
A
Calculator
Virtual Address Data
> Cache
RAM

1.JTLB only implemented in the 4Kc core.
2. ITLB/DTLB implemented in the 4Kc core only. BAT implemented in the 4Kp and 4Km cores.

Figure 3-1 Address Translation During a Cache Access

3-2 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Translation Lookaside Buffer (4Kc Core Only)

3.1 Translation Lookaside Buffer (4Kc Core Only)

3.1.1

3.1.2

The following subsections discuss the TLB memory management scheme used in 4Kc processor core. The TL
consists of two address translation buffers:

e 16 dual-entry fully associative Joint TLB (JTLB)
« 3-entry fully associative Instruction TLB (ITLB)
« 3-entry fully associative Data TLB (DTLB)

Joint TLB (4Kc Core)

The 4Kc core implements a 16 dual-entry, fully associative JTLB that maps 32 virtual pages to their corresponding
physical addresses. The JTLB is organized as 16 pairs of even and odd entries containing pages that range in si
from 4-Kbytes to 16-Mbytes into the 4-Gbyte physical address space. The purpose of the TLB is to translate
virtual addresses and their corresponding ASID into a physical memory address. The translation is performed b
comparing the upper bits of the virtual address (along with the address space identifier(ASID)) against each of th
entries in theéag portion of the joint TLB structure.

The JTLB is organized in page pairs to minimize the overall size. Eapbntry corresponds to 2-data entries, an
even page entry and an odd page entry. The highest order virtual address bit not participating in the tag comparisc
is used to determine which of the data entries is used. Since page size can vary on a page-pair basis, the
determination of which address bits participate in the comparison and which bit is used to make the even-odd
determination must be determined dynamically during the TLB lookup.

Instruction TLB (4Kc Core)

The ITLB is a small 3-entry, fully associative TLB dedicated to performing translations for the instruction stream.
The ITLB only maps 4-Kbyte pages/sub-pages.

The ITLB is managed by hardware and is transparent to software. If a fetch address cannot be translated by tf
ITLB, the JTLB is used to attempt to translate it in the following clock cycle. If successful, the translation
information is copied into the ITLB. The ITLB is then re-accessed and the address will be successfully translated.
This results in an ITLB miss penalty of at least 2 cycles (If the JTLB is busy with other operations, it may take
additional cycles)

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 3-3

Chapter 3: Memory Management

3.1.3

3.14

3-4

Data TLB (4Kc Core)

The DTLB is a small 3-entry, fully associative TLB which provides a faster translation for Load/Store addresses
than is possible with the JTLB. The DTLB only maps 4-Kbyte pages/sub-pages.

Like the ITLB, the DTLB is managed by hardware and is transparent to software. Unlike the ITLB, when
translating Load/Store addresses, the JTLB is accessed in parallel with the DTLB. If there is a DTLB miss and a
JTLB hit, the DTLB can be reloaded that cycle. The DTLB is then re-accessed and the translation will be
successful. This parallel access reduces the DTLB miss penalty to 1 cycle.

Virtual to Physical Address Translation (4Kc Core)

Converting a virtual address to a physical address begins by comparing the virtual address from the processor with
the virtual addresses in the TLB. There is a match when the virtual page number (VPN) of the address is the same
as the VPN field of the entry, and either:

* The Global (G) bit of both the even and odd pages of the TLB entry are set, or
« The ASID field of the virtual address is the same as the ASID field of the TLB entry

This match is referred to as a TIH&. If there is no match, a TLBissexception is taken by the processor and
software is allowed to refill the TLB from a page table of virtual/physical addresses in memory.

Figure 3-2 shows the logical translation of a virtual address into a physical address.
In this figure the virtual address is extended with an 8-bit address-space identifier (ASID), which reduces the

frequency of TLB flushing during a context switch. This 8-bit ASID contains the number assigned to that process
and is stored in the CHEntryHi register.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Translation Lookaside Buffer (4Kc Core Only)

Virtual address
1.Virtual address (VA) represented by the virtual page

number (VPN) is compared with tag in TLB. G ASID VPN Offset I

2. Ifthere is a match, the page frame number (PFN) G ASID VPN
representing the upper bits of the physical address:
(PA) is output from the TLB. TLB
Entry
PFN

3. The Offset, which does not pass through the TLB,[i
then concatenated with the PFN. | PEN I| Offset I

Physical address

Figure 3-2 Overview of a Virtual-to-Physical Address Translation in the 4Kc Core

If there is a virtual address match in the TLB, the physical address is output from the TLB and concatenated with
the Offset which represents an address within the page frame spaceff3éidoes not pass through the TLB.

Figure 3-3 shows a flow diagram of the 4Kc core address translation process. The top portion of the figure show:
avirtual address for a 4-Kbyte page size. The width ofiffieetis defined by the page size. The remaining 20 bits
of the address represent the virtual page number (VPN), and index the 1M-entry page table.

The bottom portion of Figure 3-3 shows the virtual address for a 16-Mbyte page size. The remaining 8 bits of the
address represent the VPN, and index the 256-entry page table.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 3-5

Chapter 3: Memory Management

3.1.5

3-6

Virtual address with 1M @é’) 4-Kbyte pages

39 3231 20 bits = 1M pages 12 11 0
ASID | VPN Offset
8 20 12
:) Y.
Virtual-to-physical Offset passed unchanged to
translation in TLB physical memory.
Bit 31 of the virtual address selects TLB
user and kernel address spaces. 32-bit Physical Address
31 0
| PFN | offset |
Virtual-to-physical Offset passed unchanged to
translation in TLB physical memory.
TLB
A A
\Yel M
.
39 3231 24 23 0
ASID VPN Offset
24

8
8 bits = 256 pages
Virtual Address with 256 (28)16-Mbyte pages

Figure 3-3 32-bit Virtual Address Translation

Hits, Misses, and Multiple Matches (4Kc Core)

Each JTLB entry contains a tag portion and a data portion. If a match is found, the upper bits of the virtual address
are replaced with the page frame number (PFN) stored in the corresponding entry in the data array of the joint
TLB (JTLB). The granularity of JTLB mappings is defined in terms of Tih&yes The 4Kc core JTLB supports

pages of different sizes ranging from 4-Kbyte to 16-MB in powers of 4. If a match is found, but the entry is invalid,

a TLB Invalid exception is taken.

If no match occurs (TLB miss), an exception is taken and software refills the TLB from the page table resident in
memory. Software can write over a selected TLB entry or use a hardware mechanism to write into a random entry.
In addition, there is a hidden bit in each TLB entry that is cleared on a ColdReset. This bit is set once the TLB
entry is written and is included in the match detection. Therefore, uninitialized TLB entries will not cause a TLB
shutdown.

The 4Kc core implements a TLB write-compare mechanism to ensure that multiple TLB matches do not occur.
On the TLB write operation, the write value is compared with all other entries in the TLB. If a match occurs, the

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Translation Lookaside Buffer (4Kc Core Only)

4Kc core takes a machine-check exception, sets the TS bit in th&t@R&egister, and aborts the write
operation.

Note: To be compatible with other MIPS processors, it is recommended that software initialize all TLB entries
with unique tag values and V bits cleared before the first access to a memory mapped location.

Table 3-1 shows the address bits used for even/odd bank selection depending on page size and the relationsh
between the legal values in the mask register and the selected page size.

Table 3-1 Mask and Page Size Values

PageMask[11:0] Page Size Even/Odd Bank Select Bit
0000_0000_0000 4KB VAddr[12]
0000_0000_0011 16KB VAddr[14]
0000_0000_ 1111 64KB VAddr[16]
0000_0011_1111 256KB VAddr[18]
0000_1111 1111 1MB VAddI[20]
0011_1111 1111 4MB VAddr[22]
1111 1111 1111 16MB VAddr[24]

3.1.6 Page Sizes and Replacement Algorithm (4Kc Core)

To assist in controlling both the amount of mapped space and the replacement characteristics of various memot
regions, the 4Kc core provides two mechanisms. First, the page size can be configured, on a per entry basis, t
map a page size of 4 kbyte to 16 Mbyte (in multiples of 4). The CP0 PageMask register is loaded with the mapping
page size, which is then entered into the TLB when a new entry is written. Thus, operating systems can provid
special-purpose maps. For example, a typical frame buffer can be memory mapped with only one TLB entry.

The second mechanism controls the replacement algorithm when a TLB miss occurs. To select a TLB entry to b
written with a new mapping, the 4Kc core provides a random replacement algorithm. However, the processor alsc
provides a mechanism whereby a programmable number of mappings can be locked into the TLB via the Wire
register, thus avoiding random replacement.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 3-7

Chapter 3: Memory Management

3.1.7 TLB Tag and Data Formats (4Kc Core)

Figure 3-4 shows the format of a Tlt8g entry. The entry is divided into the following fields:
» Global process indicator (G bit)

» Address space identifier

e \Virtual page number

e Compressed page mask

Setting the G bit indicates that the entry is global to all processes and/or threads in the system. In this case, the
8-bit ASID value is ignored since the entry is not relative to a specific thread or process.

The address space identifier (ASID) helps to reduce the frequency of TLB flushing on a context switch. The
existence of the ASID allows multiple processes to exist in both the TLB and instruction caches. The ASID value
is stored in the EntryHi register and is compared to the ASID value of each entry. Figure 3-4 and Table 3-2 show
the TLB tag entry format. Figure 3-5 and Table 3-3 show the TLB data array entry format.

G| ASID[7:0] | VPN2[31:25] VPN2[24:13] | CMASK[5:0
1 8 7 12 6

Figure 3-4 TLB Tag Entry Format

Table 3-2 TLB Tag Entry Fields

Field Name Description
G Global Bit. When set, indicates that this entry is global to all processes arjd/or
threads and thus disables inclusion of the ASID in the comparison.
ASID[7:0] Address Space Identifier. Identifies which process or thread this TLB entfry is
associated with.
VPN2[31:25], Virtual Page Number divided by 2. This field contains the upper bits of the
VPN2[24:13] virtual page number. Because it represents a pair of TLB pages, itis dividgd by

2. Bits 31:25 are always included in the TLB lookup comparison. Bits 24113
are included depending on the page size.

CMASK]5:0] Compressed Page Mask Value. This field is a compressed version of thg page
mask. It defines the page size by masking the appropriate VPN2 bits from being
involved in a comparison. Itis also used to determine which address bit is ised
to make the even-odd page determination.

3-8 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Translation Lookaside Buffer (4Kc Core Only)

PFN[31:12]

Cl20]| D| Vv

20

3 1 1

Figure 3-5 TLB Data Array Entry Format

Table 3-3 TLB Data Array Entry Fields

Field Name Description

PFN[31:12] Physical Frame Number. Defines the upper bits of the physical addiess.
For page sizes larger than 4 Kbytes, only a subset of these bits is actually
used.

C[2:0] Cacheability. Contains an encoded value of the cacheability attributeg and
determines whether the page should be placed in the cache or not. The field
is encoded as follows:

CSJ[2:0] Coherency Attribute
000 Maps to entry 011b*
001 Maps to entry 011b*
010 Uncached
011 Cacheable, noncoherent, write-through, no write
allocated
100 Maps to entry 011b*
101 Maps to entry 011b*
110 Maps to entry 011b*
111 Maps to entry 010b*
*These mappings are not used on the 4K processor cores but do
have meaning in other MIPS Technologies implementations.
Refer to the MIPS32 specification for more information.

D “Dirty” or Write-enable Bit. Indicates that the page has been written,
and/or is writable. If this bit is set, stores to the page are permitted. If the
bit is cleared, stores to the page cause a TLB Modified exception.

\% Valid Bit. Indicates that the TLB entry and, thus, the virtual page mappjng
are valid. If this bit is set, accesses to the page are permitted. If the bit is
cleared, accesses to the page cause a TLB Invalid exception.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 3-9

Chapter 3: Memory Management

3.2 TLB Instructions (4Kc Core)
Table 3-4 lists the 4Kc core TLB-related instructions. Refer to Chapter 11 for more information on these
instructions.

Table 3-4 TLB Instructions

Op Code Description of Instruction
TLBP Translation Lookaside Buffer Probe
TLBR Translation Lookaside Buffer Read
TLBWI Translation Lookaside Buffer Write Index
TLBWR Translation Lookaside Buffer Write Random

3-10 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

TLB Instructions (4Kc Core)

Virtual Address (Input)

For valid
address space, see

the section describing
Modes of operation
in this chapter.

Address
Error

Exception

Address? >

Yes

\

\J

Y

Y
TLB TLB TLB
Modified Invalid Refill

Access
Main

Access
Memory Cache

Physical Address (Output)

Figure 3-6 TLB Address Translation Flow in the 4Kc Processor Core

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 3-11

Chapter 3: Memory Management

3.3 Block Address Translation (4Kp & 4Km Cores)

The 4Kp and 4Km cores implement a simple block address translation (BAT) mechanism that is smaller than the
4Kc TLB and more easily synthesized. Like the 4Kc TLB, the BAT performs virtual-to-physical address
translation and provides attributes for the different segments. Those segments which are unmapped in the 4Kc
TLB implementation (kseg0 and ksegl) are translated identically by the BAT.

The BAT also determines the cacheability of each segment. These attributes are controlled via bits in the Confide

register. Table 3-5 shows the encoding for the K23 (bits 30:28), KU (bits 27:25) and KO (bits 2:0) of the Config
register.

Table 3-5 Cache Coherency Attributes

Config Register Fields

K23, KU, and KO Cache Coherency Attribute

0,1,3,4,5,6 Cacheable, noncoherent, write through, no write allocate

2,7 Uncached

In the 4Kp & 4Km cores, no translation exceptions can be taken, although address errors are still possible.

Table 3-6 Cacheability of Segments with Block Address Translation

Segment Virtual Address Cacheability
Range
USeg/KUSeg 0x0000_0000- Controlled by the KU field (bits 27:25) of the Config register. Refer|to

OX7FFF_FFFF Table 3.5 for the encoding.

KSeg0 0x8000_0000- Controlled by the KO field (bits 2:0) of the Config register. See Table
OX9FFF_FFFF 3-5 for the encoding.

KSegl 0xA000_0000- Always uncacheable
OxBFFF_FFFF

KSeg2 0xC000_0000- Controlled by the K23 field (bits 30:28) of the Config register. Referto
OXDFFF_FFFF Table 3.5 for the encoding.

KSeg3 0xE000_0000- Controlled by K23 field (bits 30:28) of the Config register. Refer tg
OXFFFF_FFFF Table 3.5 for the encoding.

3-12 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Block Address Translation (4Kp & 4Km Cores)

The BAT performs a simple translation to map from virtual addresses to physical addresses. This mapping is
shown in Figure 3-7. When ERL=1, USeg and KUSeg become unmapped and uncached. This behavior is the san
as if there was a JTLB. This mapping is shown in Figure 3-8.

Virtual Address Physical Address
kseg3 kseg3
0xE000_0000 - 0xE000_0000
kseg2 kseg2
0xC000_0000 - 0xC000_0000
ksegl
0xA000_0000
kseg0
0x8000_0000
useg/kuseg
useg/kuseg 0x4000_0000
reserved
0x2000_0000
0x0000_0000 0x0000_0000 Kseg0/ksegl

Figure 3-7 BAT Memory Map (ERL=0) in the 4Kp and 4Km Processor Cores

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 3-13

Chapter 3: Memory Management

3-14

Virtual Address

kseg3
0xE000_0000

Physical Address

kseg3
0xEO000_0000

kseg2
0xC000_0000

kseg2
0xC000_0000

ksegl
0xA000_0000

0x8000_0000"5°%°

useg/kuseg

0x0000_0000

reserved

0x8000_0000

useg/kuseg

0x0000_0000XS€90/ksegl

L

Figure 3-8 BAT Memory Map (ERL=1) in the 4Kp and 4Km Processor Cores

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Modes of Operation

3.4 Modes of Operation

34.1

All 4K processor cores support three modes of operation: user mode, kernel mode and debug mode. User mode
most often used for applications programs. kernel mode is typically used for handling exceptions and operating
system kernel functions, including CPO management and I/O device accesses.

The core enters kernel mode both at reset and when an exception is recognized. While in kernel mode, softwa
has access to the entire address space, as well as all CPO registers. User mode accesses are limited to a sub.
the virtual address space (0x0000_0000 to Ox7FFF_FFFF) and can be inhibited from accessing CPO functions. |
user mode, addresses 0x8000_0000 to OxFFFF_FFFF are invalid and cause an exception if accessed.

Debug mode is entered on a debug exception. While in debug mode the debug software has access to the sar
address space and CPO registers as for kernel mode, and in addition, access to the debug area in the address sj

User Mode

In user mode, a single 2 G-bytesf%ytes) uniform virtual address space called user segment (useg) is available.
Figure 3-9 shows the location of user mode virtual address space.

32-hit
OXFFFF_FFFF
Unmapped
(Address
Error)
0x8000_0000
OX7FFF_FFFF
2GB
Mapped useg
0x0000_0000

Figure 3-9 User Mode Virtual Address Space

The user segment starts at address 0x0000_0000 and ends at address 0x7FFF_FFFF. Accesses to all other
addresses cause an address error exception.

The processor operates in user mode wheStatisregister contains the following bit values:
e UM=1

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 3-15

Chapter 3: Memory Management

3-16

3.4.2

 EXL=0
 ERL=0

In addition to the above values, the DM bit in Bebugregister must be 0.

Table 3-7 lists the characteristics of tieguser mode segments.

Table 3-7 User Mode Segments

Status Register

Segment
Address Bit Value Address Range Segment Size
Bit Value Name
EXL | ERL | UM
32-bit 0 0 1 useg 0x0000_0000 --> 2 Gbyte
A(31) =0 Ox7FFF_FFFF (2°! bytes)

All valid user mode virtual addresses have their most-significant bit cleared to 0, indicating that user mode can
only access the lower half of the virtual memory map. Any attempt to reference an address with the
most-significant bit set while in user mode causes an address error exception.

The system maps all referencesisegthrough the TLB, and bit settings within the TLB entry for the page
determine the cacheability of a reference.
Kernel Mode

The processor operates in kernel mode when the DM bit iD#tRigregister is 0 and th8tatusregister contains
one or more of the following values:

 UM=0
 ERL=1
« EXL=1

When a non-debug exception is detected, EXL or ERL will be set and the processor will enter kernel mode. At the
end of exception handler routine, an Exception Return (ERET) instruction is generally executed. The ERET
instruction jumps to the Exception PC, clears ERL, and clears EXL if ERL=0. This may return the processor to
user mode.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Modes of Operation

Kernel mode virtual address space is divided into regions differentiated by the high-order bits of the virtual
address, as shown in Figure 3-10 which lists the characteristics of the kernel mode segments.

OXFFFF_FFFF
Kernel virtual address space

0xFF40_0000 Mapped
FF3F_FFFF .
8§|:|:go—oooo Kernel virtual address space | ykseg3

OXFIFF_FFFF! ernel virtual address space

0xE000_0000 Mapped
OXDFFF_FFFF

Kernel virtual address space | geg2

0xC000_0000 Mapped, 512 MB

OxBFFF_FFFF| Kernel virtual address space

Unmapped, 512 MB kseg1
0xA000_0000 Uncached
Ox9FFF_FFFF .

Kernel virtual 2ddress Space| yseqo
0x8000_0000 Unmapped, 512 MB
OXx7FFF_FFFF

Mapped, 2048 MB kuseg

0x0000_0000

Figure 3-10 Kernel Mode Virtual Address Space

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 3-17

Chapter 3: Memory Management

3-18

Table 3-8 Kernel Mode Segments
_ Status Register Is
Address Bit One of These Values| Segment Address Range Seg_ment
Values Name Size
UM EXL | ERL
A(B1l)=0 UM=0 kuseg 0x0000_0000 2 Ghytes

or through (21 bytes)

ExL =1 OX7FFF_FFFF
A(31:29) = 109 or ksegO 0x8000_0000 512 Mbytes
ERL=1 through (229 bytes)

and OX9FFF_FFFF
A(31:29) = 103 DM =0 ksegl 0XA000_0000 512 Mbytes
through (229 bytes)

OXBFFF_FFFF
A(31:29) = 119 ksseg? 0xC000_0000 512 Mbytes
through (22° bytes)

OXDFFF_FFFF
A(31:29) = 113 kseg3 0XE000_0000 512 Mbytes
through (229 ytes)

OxFFFF_FFFF

3.4.2.1 Kernel Mode, User Space (kuseg)

In kernel mode, when the most-significant bit of the virtual address (A31) is cleared, thé&Bbiirtual
address space is selected and covers the%ﬂes (2 Ghytes) of the current user address space mapped to
addresses 0x000_0000 - Ox7FFF_FFHte virtual address is extended with the contents of the 8-bit ASID field
to form a unique virtual address.

WhenERL = 1in theStatusregister, the user address region becomé%—by;le unmapped (that is, mapped
directly to physical addresses) uncached address space.

3.4.2.2 Kernel Mode, Kernel Space 0 (kseg0)

In kernel mode, when the most-significant three bits of the virtual address ar82-@tksegOvirtual address
space is selected; it is th%gébyte (512-Mbyte) kernel virtual space located at addresses 0x8000_0000 -

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Modes of Operation

Ox9FFF_FFFF. ReferencesksegOare not mapped through the TLB; the physical address selected is defined by
subtracting 0x8000_0000 from the virtual address.Rhé&eld of theConfigregister controls cacheability.

3.4.2.3 Kernel Mode, Kernel Space 1 (ksegl)

In kernel mode, when the most-significant three bits of the 32-bit virtual address ard2tbitkseglvirtual

address space is selected; and is ﬁ?eb&te (512-Mbyte) kernel virtual space located at addresses 0xA000_0000

- OXBFFF_FFFF. Referenceskeseglare not mapped through the TLB; the physical address selected is defined
by subtracting 0xA000_0000 from the virtual address. Caches are disabled for accesses to these addresses, &
physical memory (or memory-mapped I/O device registers) are accessed directly.

3.4.2.4 Kernel Mode, Kernel Space 2 (kseg2)

In kernel mode, wheldM = 0, ERL = 1,0r EXL = 1in the Statusregister, anddM = 0 in the Debug registeand
the most-significant three bits of the 32-bit virtual address arg, BEbitkseg2virtual address space is selected.
In the 4Kp and 4Km processor cores ttﬁ%l&yte (512-Mbyte) kernel virtual space is located at addresses
0xC000_0000 - OXxDFFF_FFFF. In the 4Kc processor core this space is mapped through the TLB.

3.4.2.5 Kernel Mode, Kernel Space 3 (kseg3)

In kernel mode, when the most-significant three bits of the 32-bit virtual address gréfekieg3dvirtual address

space is selected. In the 4Kp and 4Km processor core§?lrti§'@ (512-Mbyte) kernel virtual space is located

at addresses OXEQ00_0000 - OxFFFF_FHRithe 4Kc processor core this space is mapped through the TLB.
3.4.3 Debug Mode

Debug mode address space is identical to kernel mode address space with respect to unmapped areas. Mapp

areas are only accessible if a valid translation is resident in the TLB. In parallel with this, a debug dsggnent
co-exists in the virtual address range OxFF20_0000 to OxFF3F_FFFF. The layout is shown in Figure 3-11.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 3-19

Chapter 3: Memory Management

3-20

OXFFFF_FFFF - - - - - - - -
OXFF40_0000 -

OxFF20_0000 -

0x0000_0000

Figure 3-11 Debug Mode Virtual Address Space

ksegl

kseg0

Unmapped

Unmapped if unmapped in kernel mode,
otherwise conditionally mapped and only
accessible if valid translation is resident in TLB

Accesses to memory that would normally cause an exception if tried from kernel mode, cause the core to re-enter
debug mode via a debug mode exception. This includes accesses usually causing a TLB exception, with the result
that such accesses are not handled by the usual memory management routines.

The unmapped kseg0 and ksegl segments from kernel mode address space are available from debug mode, which
allows the debug handler to be executed from uncached and unmapped memory.

Thedsegis sub-divided into themsegegment at OxFF20_0000 to OxFF2F_FFFF which is used when the probe
services the memory segment, anddtsegsegment at OxFF30_0000 to OxFF3F_FFFF which is used when
memory mapped debug registers are accessed. The subdivision and attributes for the segments are shown in Table

3-9.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Modes of Operation

Table 3-9 Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces

men - men , . h
Segment | Sub-Segment Virtual Address | Generates Physical Addressg CQC c
Name Name Attribute
dseg dmseg O0xFF20_0000 dmseg maps to addresses | Uncached
through 0x0_0000 - 0XF_FFFF in EJTAG
OXFF2F_FFFF probe memory space.
drseg OxFF30_0000 drseg maps to the breakpoint
through registers 0x0_0000 - OxF_FFFF
OXFF3F_FFFF

3.4.3.1 Conditions and Behavior for Access to drseg, EJTAG registers

The behavior of CPU access to the drseg address range at OxFF30_0000 to OxFF3F_FFFF is determined as sho
in Table 3-10.

Table 3-10 CPU Access to drseg Address Range

Transaction LSNM bit.in Debug Access
register
Load / Store 1 Kernel mode address space
Fetch Don't care drseg, see comments below
Load / Store 0

Debug software is expected to read the debug control register (DCR) register to determine which other memor
mapped registers exist in drseg. The value returned in response to a read of any unimplemented memory mapp:
register is unpredictable, and writes are ignored to any unimplemented register in the drseg. Refer to Chapter 9 fc
more information on the DCR.

The allowed access size is limited for the drseg. Only word size transactions are allowed. Operation of the
processor is undefined for other transaction sizes.

3.4.3.2 Conditions and Behavior for Access to dmseg, EJTAG memory

The behavior of CPU access to the dmseg address range at 0xFF20_0000 to OxFF2F _FFFF is determined by t
table shown in Table 3-11

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 3-21

Chapter 3: Memory Management

Table 3-11 CPU Access to dmseg Address Range

Transaction ProbEn pit in LSNM bit'in ACCESS
DCR register Debug register
Load / Store Don't care 1 Kernel mode address space
Fetch 1 Don't care dmseg
Load / Store 1 0
Fetch 0 Don't care See comments below
Load / Store 0 0

The case with access to the dmseg when the ProbEn bit in the DCR register is 0 is not expected to happen. Debug
software is expected to check the state of ProbEn bitin DCR register before attempting to reference dmseg. If such

a reference does happen, the reference hangs until it is satisfied by the probe. The probe can not assume that there
will never be a reference to dmseg if the ProbEn bit in the DCR register is 0 because there is an inherent race
between the debug software sampling the ProbEn bit as 1 and the probe clearing it to 0.

3.5 System Control Coprocessor

3-22

The System Control Coprocessor (CPO) is implemented as an integral part of the 4K processor cores and supports
memory management, address translation, exception handling, and other privileged operations. Certain CP0O

registers are used to support memory management. Refer to Chapter 5 for more information on the CPO register
set.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Chapter 4

Exceptions

All MIPS32 4K™ processor cores receive exceptions from a number of sources, including translation lookaside
buffer (TLB) misses, arithmetic overflows, I/O interrupts, and system calls. When the CPU detects one of these
exceptions, the normal sequence of instruction execution is suspended and the processor enters kernel mode.

In kernel mode the core disables interrupts and forces execution of a software exception processor (called a
handle) located at a fixed address. The handler saves the context of the processor, including the contents of tt
program counter, the current operating mode, and the status of the interrupts (enabled or disabled). This conte
is saved so it can be restored when the exception has been serviced.

When an exception occurs, the core load€tkeeption Program CountdEPC) register with a location where
execution can restart after the exception has been serviced. The restart locatidBRCHtegister is the address
of the instruction that caused the exception or, if the instruction was executing in a branch delay slot, the addres
of the branch instruction immediately preceding the delay slot.

This chapter contains the following sections.

e Section 4.1, "Exception Conditions"

e Section 4.2, "Exception Priority"

e Section 4.3, "Exception Vector Locations"

e Section 4.4, "General Exception Processing"

e Section 4.5, "Debug Exception Processing"

e Section 4.6, "Exceptions"

e Section 4.7, "Exception Handling and Servicing Flowcharts"

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 4-1

Chapter 4: Exceptions

4.1 Exception Conditions

When an exception condition occurs, the relevant instruction and all those that follow it in the pipeline are
cancelled. Accordingly, any stall conditions and any later exception conditions that may have referenced this
instruction are inhibited; there is no benefit in servicing stalls for a cancelled instruction.

When an exception condition is detected on an instruction fetch, the core aborts that instruction and all instructions
that follow. When this instruction reaches the W stage, the exception flag causes it to write various CPO registers
with the exception state, change the current program counter (PC) to the appropriate exception vector address, and
clear the exception bits of earlier pipeline stages.

This implementation allows all preceding instructions to complete execution and prevents all subsequent
instructions from completing. Thus, the value in the EPC (ErrorEPC for errors, or DEPC for debug exceptions) is
sufficient to restart execution. It also ensures that exceptions are taken in the order of execution; an instruction
taking an exception may itself be killed by an instruction further down the pipeline that takes an exception in a
later cycle.

4.2 Exception Priority

Table 4-1 lists all possible exceptions, and the relative priority of each, highest to lowest.

Table 4-1 Priority of Exceptions

Exception Description
Reset Assertion of SI_ColdReset signal.
Soft Reset Assertion of SI_Reset signal.
DSS EJTAG Debug Single Step.
DINT EJTAG Debug Interrupt. Caused by the assertion of the external EJ_DINT

input, or by setting th&jtagBrkbit in the ECR register.

NMI Asserting edge of EB_NMI signal.
Machine Check TLB write that conflicts with an existing entry (4Kc core).
Interrupt Assertion of unmasked HW or SW interrupt signal.
Deferred Watch Deferred Watch (unmasked by K|DM->!(K|DM) transition).
DIB EJTAG debug hardware instruction break matched.

4-2 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Exception Priority

bled.

on

Table 4-1 Priority of Exceptions
Exception Description
WATCH A reference to an address in one of the watch registers (fetch).
AdEL Fetch address alignment error.
Fetch reference to protected address.
TLBL Fetch TLB miss (4Kc core).
TLBL Fetch TLB hit to page with V=0 (4Kc core).
IBE Instruction fetch bus error.
DBp EJTAG Breakpoint (execution of SDBBP instruction).
Sys Execution of SYSCALL instruction.
Bp Execution of BREAK instruction.
CpuU Execution of a coprocessor instruction for a coprocessor that is not ena
RI Execution of a Reserved Instruction.
Ov Execution of an arithmetic instruction that overflowed.
Tr Execution of a trap (when trap condition is true).
DDBL / DDBS EJTAG Data Address Break (address only) or EJTAG Data Value Break
Store (address and value).
WATCH A reference to an address in one of the watch registers (data).
AdEL Load address alignment error.
Load reference to protected address.
AdES Store address alignment error.
Store to protected address.
TLBL Load TLB miss (4Kc core).
TLBL Load TLB hit to page with V=0 (4Kc core).
TLBS Store TLB miss (4Kc core).
TLBS Store TLB hit to page with V=0 (4Kc core).
TLB Mod Store to TLB page with D=0 (4Kc core).

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Chapter 4: Exceptions

Table 4-1 Priority of Exceptions

Exception Description

DBE Load or store bus error.

DDBL EJTAG data hardware breakpoint matched in load data compare.

4.3 Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to location 0OXBFCO_0000. Debug exceptions are
vectored to location OXBFCO_0480 or to location OxFF20_0200 if the ProbTrap bit is O or 1, respectively, in the
EJTAG Control register (ECR). Addresses for all other exceptions are a combination of a vector offset and a base
address. Table 4-2 gives the base address as a function of the exception and whether the BEV bit istatiis the
register. Table 4-3 gives the offsets from the base address as a function of the exception. Table 4-4 combines these
two tables into one that contains all possible vector addresses as a function of the state that can affect the vector
selection.

Table 4-2 Exception Vector Base Addresses

Statusggy
Exception
0 1
Reset, Soft Reset, NMI 0OxBFCO_0000
Debug (with ProbTrap = 0 in the EJTAG Control 0xBFCO0_0480
register)
Debug (with ProbTrap = 1 in the EJTAG Control O0xFF20_0200
register) (in dmseg handled by probe, and not system mempry)
Other 0x8000_0000 0xBFC0_0200

4-4 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Exception Vector Locations

Table 4-3 Exception Vector Offsets

Exception Vector Offset

TLB refill, EXL = 0 (4Kc core) 0x000

Reset, Soft Reset, NMI 0x000 (uses reset base address)

General Exception 0x180
Interrupt, Causg =1 0x200

Table 4-4 Exception Vectors

Exception BEV | EXL | IV PEC\)]S)??I’ ip Vector

Reset, Soft Reset, NMI X X X 0xBFCO0_0000
Debug X X X 0 0xBFCO0_0480
Debug X X X 1 0xFF20_0200 (in dmseg)
TLB Refill (4Kc core) 0 0 X X 0x8000_0000
TLB Refill (4Kc core) 0 1 X X 0x8000_0180
TLB Refill (4Kc core) 1 0 X X O0xBFCO0_0200
TLB Refill (4Kc core) 1 1 X X OxBFCO0_0380
Interrupt 0 0 0 X 0x8000_0180
Interrupt 0 0 1 X 0x8000_0200
Interrupt 1 0 0 X OxBFCO0_0380
Interrupt 1 0 1 X O0xBFCO0_0400
All others 0 X X X 0x8000_0180
All others 1 X X X 0xBFCO0_0380
‘X’ denotes don’t care

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Chapter 4: Exceptions

4.4 General Exception Processing

With the exception of Reset, Soft Reset, NMI, and Debug exceptions, which have their own special processing as
described below, exceptions have the same basic processing flow:

« Ifthe EXL bitin theStatugegister is cleared, tHePCregister is loaded with the PC at which execution will
be restarted and the BD bit is set appropriately inGlaeseregister. If the instruction is not in the delay slot
of a branch, the BD bit it€ausewill be cleared and the value loaded into tBBCregister is the current PC.

If the instruction is in the delay slot of a branch, the BD bE&useis set andEPCis loaded with PC-4. If
the EXL bit in theStatusregister is set, thEPC register is not loaded and the BD bit is not changed in the
Causeregister.

» The CE and ExcCode fields of tBauseregisters are loaded with the values appropriate to the exception.
The CE field is loaded, but not defined, for any exception type other than a coprocessor unusable exception.

« The EXL bit is set in th&tatusregister.

» The processor is started at the exception vector.

The value loaded into EPC represents the restart address for the exception and need not be modified by exception
handler software in the normal case. Software need not look at the BD bit in the Cause register unless is wishes to
identify the address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. This is noted in the
description of each exception type below.

Operation:
if SR EXL™ 0
if InstructionInBranchDelaySlot then
EPC<-PC-4
Causegp<-1
else
EPC <- PC
Causegp<-0
endif
if ExceptionType = TLBRefill then
vectorOffset <- 0x000
elseif (ExceptionType = Interrupt) and
(Cause y =1) then
vectorOffset <- 0x200
else
vectorOffset <- 0x180
endif
else

4-6 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Debug Exception Processing

vectorOffset <- 0x180
endif
Cause g <- FaultingCoprocessorNumber
Cause gyccode <- ExceptionType
SRexL <-1
if SR BEV™— 1 then

PC <- OxBFCO0_0200 + vectorOffset
else

PC <- 0x8000_0000 + vectorOffset
endif

4.5 Debug Exception Processing

All debug exceptions have the same basic processing flow:

» The DEPC register is loaded with the program counter (PC) value at which execution will be restarted and
the DBD bit is set appropriately in the Debug register. The value loaded into the DEPC register is the current
PC if the instruction is not in the delay slot of a branch, or the PC-4 of the branch if the instruction is in the
delay slot of a branch.

 The DSS, DBp, DDBL, DDBS, DIB and DINT bits (D* bits at [5:0]) in the Debug register are updated
appropriately depending on the debug exception.

» Halt and Doze bits in the Debug register are updated appropriately.

* DM bit in the Debug register is set to 1.

* The processor is started at the debug exception vector.

The value loaded into DEPC represents the restart address for the debug exception and need not be modified

the debug exception handler software in the usual case. Debug software need not look at the DBD bit in the Debu
register unless it wishes to identify the address of the instruction that actually caused the debug exception.

A unique debug exception is indicated through the DSS, DBp, DDBL, DDBS, DIB and DINT bits (D* bits at
[5:0]) in the Debug register.

No other CPO registers or fields are changed due to the debug exception, thus no additional state is saved.

Operation:
if InstructionInBranchDelaySlot then
DEPC <- PC-4
Debugpgp<- 1
else

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 4-7

Chapter 4: Exceptions

DEPC <- PC
DebUgDBD<' 0
endif
Debugp+ pits at at [5:0] <- DebugExceptionType
Debugp,e <- HaltStatusAtDebugException
Debugpgze <- DozeStatusAtDebugException
DebugDM<- 1
if EJTAGControlRegister ProbTrap = 1 then
PC <- 0xFF20_0200
else
PC <- 0xBFC0_0480
endif

The same debug exception vector location is used for all debug exceptions. The location is determined by the
ProbTrap bit in the EJTAG Control register (ECR), as shown in Table 4-5.

Table 4-5 Debug Exception Vector Addresses

ProbTrap bit in
ECR Reqgister

0 OXBFCO_0480

Debug Exception Vector Address

1 0xFF20_0200 in dmseg

4.6 Exceptions

The following subsections describe each of the exceptions listed in the same sequence as shown in Table 4-1.

4-8 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Exceptions

4.6.1 Reset Exception

A reset exception occurs when the SI_ColdReset signal is asserted to the processor. This exception is not
maskable. When a Reset exception occurs, the processor performs a full reset initialization, including aborting
state machines, establishing critical state, and generally placing the processor in a state in which it can execut
instructions from uncached, unmapped address space. On a Reset exception, the state of the processor in no
defined, with the following exceptions:

TheRandonregister is initialized to the number of TLB entries - 1.

TheWiredregister is initialized to zero.

The Configregister is initialized with its boot state.

The RP, BEV, TS, SR, NMI, and ERL fields of tB&tusregister are initialized to a specified state.
The I, R, and W fields of thé&/atchLoregister are initialied to 0.

TheErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an
instruction in the delay slot of a branch. Otherwise BhverEPC register is loaded with PC. Note that this
value may or may not be predictable.

PC is loaded with 0XBFCQ_0000.

CauseRegister ExcCode Value:

None

Additional State Saved:

None

Entry Vector Used:
Reset (0xBFCO_0000)

Operation:

Random <- TLBEntries - 1
Wired <- 0

Config <- ConfigurationState
SRyp<-0

SReev<-1

SRrg<-0

SRr<-0

SRymi <- 0

SRerp <- 1

WatchLo| <-0

WatchLo g <-0

WatchLo \y<- 0

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 4-9

Chapter 4: Exceptions

if InstructionInBranchDelaySlot then
ErrorEPC <- PC - 4

else
ErrorEPC <- PC

endif

PC <- OxBFCO0_0000

4-10 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Exceptions

4.6.2 Soft Reset Exception

A soft reset exception occurs when the Reset signal is asserted to the processor. This exception is not maskat
When a soft reset exception occurs, the processor performs a subset of the full reset initialization. Although a sof
reset exception does not unnecessarily change the state of the processor, it may be forced to do so in order to pla
the processor in a state in which it can execute instructions from uncached, unmapped address space. Since |
cache, or other operations may be interrupted, portions of the cache, memory, or other processor state may be
inconsistent. In addition to any hardware initialization required, the following state is established on a soft rese
exception:

e The BEV, TS, SR, NMI, and ERL fields of ti¢atusregister are initialized to a specified state.

» TheErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an
instruction in the delay slot of a branch. Otherwise BhverEPC register is loaded with PC. Note that this
value may or may not be predictable.

e PCis loaded with OxBFCO_0000.

CauseRegister ExcCode Value:
None

Additional State Saved:
None

Entry Vector Used:
Reset (0xBFCO_0000)

Operation:

SRgey<-1

SRrg <- 0

SRgp<-1

SRumi <- 0

SRerL<-1

if InstructionInBranchDelaySlot then
ErrorEPC <- PC - 4

else
ErrorEPC <- PC

endif

PC <- 0OxBFCO0_0000

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 4-11

Chapter 4: Exceptions

4.6.3 Debug Single Step Exception

A debug single step exception occurs after the CPU has executed one/two instructions in non-debug mode, when
returning to non-debug mode after debug mode. One instruction is allowed to execute when returning to a non
jump/branch instruction, otherwise two instructions are allowed to execute since the jump/branch and the
instruction in the delay slot are executed as one step. Debug single step exceptions are enabled by the SSt bit in
the Debug register, and are always disabled for the first one/two instructions after a DERET.

The DEPC register points to the instruction on which the debug single step exception occurred, which is also the
next instruction to single step or execute when returning from debug mode. So the DEPC will not point to the
instruction which has just been single stepped, but rather the following instruction. The DBD bit in the Debug
register is never set for a debug single step exception, since the jump/branch and the instruction in the delay slot
is executed in one step.

Exceptions occurring on the instruction(s) executed with debug single step exception enabled are taken even
though debug single step was enabled. For a normal exception (other than reset), a debug single step exception is
then taken on the first instruction in the normal exception handler. Debug exceptions are unaffected by single step
mode, e.g. returning to a SDBBP instruction with debug single step exceptions enabled causes a debug software
breakpoint exception, and the DEPC will point to the SDBBP instruction. However, returning to an instruction
(not jump/branch) just before the SDBBP instruction, causes a debug single step exception with the DEPC
pointing to the SDBBP instruction.

To ensure proper functionality of single step, the debug single step exception has priority over all other exceptions,
except reset and soft reset.

Debug Register Debug Status Bit Set
DSS

Additional State Saved

4-12

None

Entry Vector Used
Debug exception vector

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Exceptions

4.6.4 Debug Interrupt Exception

A debug interrupt exception is either caused by the EjtagBrk bit in the EJTAG Control register (controlled through
the TAP), or caused by the debug interrupt request signal to the CPU.

The debug interrupt exception is an asynchronous debug exception which is taken as soon as possible, but with r
specific relation to the executed instructions. The DEPC register is set to the instruction where execution shoul
continue after the debug handler is through. The DBD bit is set based on whether the interrupted instruction wa:
executing in the delay slot of a branch.

Debug Register Debug Status Bit Set
DINT

Additional State Saved
None

Entry Vector Used
Debug exception vector

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 4-13

Chapter 4: Exceptions

4.6.5 Non Maskable Interrupt (NMI) Exception

A non maskable interrupt exception occurs when the NMI signal is asserted to the processor. NMl is an edge
sensitive signal - only one NMI exception will be taken each time NMI is asserted. An NMI exception occurs only

at instruction boundaries, so it does not cause any reset or other hardware initialization. The state of the cache,
memory, and other processor states are consistent and all registers are preserved, with the following exceptions:

e The BEV, TS, SR, NMI, and ERL fields of ti¢atusregister are initialized to a specified state.

» TheErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an
instruction in the delay slot of a branch. Otherwise BhverEPC register is loaded with PC.

e PCis loaded with OxBFCO_0000.

CauseRegister ExcCode Value:
None

Additional State Saved:
None

Entry Vector Used:
Reset (0xBFCO_0000)

Operation:

SReey<-1

SRrs<-0

SRgr<-0

SRywm <-1

SRegp L <-1

if InstructionInBranchDelaySlot then
ErrorEPC <- PC -4

else
ErrorEPC <- PC

endif

PC <- OXxBFCO0_0000

4-14 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Exceptions

4.6.6 Machine Check Exception (4Kc core)

A machine check exception occurs when the processor detects an internal inconsistency. The following conditior
causes a machine check exception;

» The detection of multiple matching entries in the TLB in a TLB-based MMU. The core detects this
condition on a TLB write and prevents the write from being completed. The TS bitStatiusregister is
set to indicate this condition. This bit is only a status flag and does not affect the operation of the device.
Software clears this bit at the appropriate time. This condition is resolved by flushing the conflicting TLB
entries. The TLB write can then be completed.

CauseRegister ExcCode Value:
MCheck

Additional State Saved:
Depends on the condition that caused the exception.

Entry Vector Used:
General exception vector (offset 0x180)

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 4-15

Chapter 4: Exceptions

4.6.7 Interrupt Exception

The interrupt exception occurs when one or more of the eight interrupt requests is enableitdtystagister
and the interrupt input is asserted.

Register ExcCode Value:
Int

Additional State Saved:

Table 4-6 Register States an Interrupt Exception

Register State Value

Causg indicates the interrupts that are pending.

Entry Vector Used:
General exception vector (offset 0x180) if the IV bit in @auseregister is 0;
interrupt vector (offset 0x200) if the IV bit in tlizauseregister is 1.

4-16 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Exceptions

4.6.8 Debug Instruction Break Exception

A debug instruction break exception occurs when an instruction hardware breakpoint matches an executed
instruction. The DEPC register and DBD bit in the Debug register indicates the instruction that caused the

instruction hardware breakpoint to match. This exception can only occur if instruction hardware breakpoints are
implemented.

Debug Register Debug Status Bit Set:
DIB

Additional State Saved:
None

Entry Vector Used:
Debug exception vector

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 4-17

Chapter 4: Exceptions

4.6.9 Watch Exception — Instruction Fetch or Data Access

The Watch facility provides a software debugging vehicle by initiating a watch exception when an instruction or
data reference matches the address information stored WdtadhHiandWatchLoregisters. A Watch exception

is taken immediately if the EXL and ERL bits of titatusregister are both zero. If either bit is a one at the time
that a watch exception would normally be taken, the WP bit iCtheseregister is set, and the exception is
deferred until both the EXL and ERL bits in the Status register are zero. Software may use the WP l@snsbe
register to determine if the EPC register points at the instruction that caused the watch exception, or if the
exception actually occurred while in kernel mode.

The Watch exception can occur on either an instruction fetch or a data access. Watch exceptions that occur on an
instruction fetch have a higher priority than watch exceptions that occur on a data access.

Register ExcCode Value:
WATCH

Additional State Saved:

Table 4-7 Register States on a Watch Exception

Register State Value

Causg,p Indicates that the watch exception was deferred until ajter
both Statusy, and Statusg, were zero. This bit directly
causes a watch exception, so software must clear thig bit
as part of the exception handler to prevent a watch
exception loop at the end of the current handler
execution.

Entry Vector Used:
General exception vector (offset 0x180)

4-18 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Exceptions

4.6.10 Address Error Exception — Instruction Fetch/Data Access
An address error exception occurs on an instruction or data access when an attempt is made to execute one of t
following:
» Fetch an instruction, load a word, or store a word that is not aligned on a word boundary
» Load or store a halfword that is not aligned on a halfword boundary
» Reference the kernel address space from user mode
Note that in the case of an instruction fetch that is not aligned on a word boundary, PC is updated before the
condition is detected. Therefore, both EPC and BadVAddr point to the unaligned instruction address. In the cas

of a data access the exception is taken if either an unaligned address or an address that was inaccessible in tt
current processor mode was referenced by a load or store instruction.

CauseRegister ExcCode Value:
ADEL: Reference was a load or an instruction fetch
ADES: Reference was a store

Additional State Saved:

Table 4-8 CPO Register States on an Address Exception Error

Register State Value
BadVAddr failing address

Context/pny UNPREDICTABLE
EntryHiypno UNPREDICTABLE

EntryLoO UNPREDICTABLE

EntryLol UNPREDICTABLE

Entry Vector Used:
General exception vector (offset 0x180)

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 4-19

Chapter 4: Exceptions

4.6.11 TLB Refill Exception — Instruction Fetch or Data Access (4Kc core)

During an instruction fetch or data access, a TLB refill exception occurs when no TLB entry in a TLB-based MMU
matches a reference to a mapped address space and the EXL bit is Siattieeegister. Note that this is distinct
from the case in which an entry matches but has the valid bit off. In that case, a TLB Invalid exception occurs.

CauseRegister ExcCode Value:
TLBL: Reference was a load or an instruction fetch
TLBS: Reference was a store

Additional State Saved:

Table 4-9 CPO Register States on a TLB Refill Exception

Register State Value

BadVAddr failing address

Context The BadVPN?2 fields contains y4 30f the failing
address

EntryHi The VPN2 field contains V., 30f the failing address;
the ASID field contains the ASID of the reference that
missed

EntryLoO UNPREDICTABLE

EntryLol UNPREDICTABLE

Entry Vector Used:
TLB refill vector (offset 0x000) if Statgg, = O at the time of exception;

general exception vector (offset 0x180) if Statys= 1 at the time of exception

4-20 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Exceptions

4.6.12 TLB Invalid Exception — Instruction Fetch or Data Access (4Kc core)

During an instruction fetch or data access, a TLB invalid exception occurs in one of the following cases:
« No TLB entry in a TLB-based MMU matches a reference to a mapped address space; and the EXL bitis 1 in
the Statusregister.

e ATLB entry in a TLB-based MMU matches a reference to a mapped address space, but the matched entr
has the valid bit off.

e The virtual address is greater than or equal to the bounds address in a BAT-based MMU.
CauseRegister ExcCode Value:
TLBL: Reference was a load or an instruction fetch
TLBS: Reference was a store

Additional State Saved:

Table 4-10 CPO Register States on a TLB Invalid Exception

Register State Value

BadVAddr failing address

Context The BadVPN2 field contains ¥A;30f the failing
address

EntryHi The VPN2 field contains V@ .;30f the failing address;
the ASID field contains the ASID of the reference that
missed

EntryLoO UNPREDICTABLE

EntryLol UNPREDICTABLE

Entry Vector Used:
General exception vector (offset 0x180)

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 4-21

Chapter 4: Exceptions

4.6.13 Bus Error Exception — Instruction Fetch or Data Access

A bus error exception occurs when an instruction or data access makes a bus request (due to a cache miss or an
uncacheable reference) and that request terminates in an error. The bus error exception can occur on either an
instruction fetch or a data access. Bus error exceptions that occur on an instruction fetch have a higher priority
than bus error exceptions that occur on a data access.

Bus errors taken on the requested (critical) word of an instruction fetch or data load are precise. Other bus errors,
such as stores or non-critical words of a burst read, can be imprecise. These errors are taken when the EB_RBE(r
or EB_WBETr signals are asserted and may occur on an instruction that was not the source of the offending bus
cycle.

CauseRegister ExcCode Value:
IBE: Error on an instruction reference
DBE: Error on a data reference

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

4-22 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Exceptions

4.6.14 Debug Software Breakpoint Exception

A debug software breakpoint exception occurs when a SDBBP instruction is executed. The DEPC register and
DBD bit in the Debug register will indicate the SDBBP instruction that caused the debug exception.

Debug Register Debug Status Bit Set:
DBp

Additional State Saved:
None

Entry Vector Used:
Debug exception vector

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 4-23

Chapter 4: Exceptions

4.6.15 Execution Exception — System Call

The system call exception is one of the six execution exceptions. All of these exceptions have the same priority.
A system call exception occurs when a SYSCALL instruction is executed.

CauseRegister ExcCode Value:
Sys

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

4-24 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Exceptions

4.6.16 Execution Exception — Breakpoint

The breakpoint exception is one of the six execution exceptions. All of these exceptions have the same priority. A
breakpoint exception occurs when a BREAK instruction is executed.

CauseRegister ExcCode Value:
Bp

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 4-25

Chapter 4: Exceptions

4.6.17 Execution Exception — Reserved Instruction

The reserved instruction exception is one of the six execution exceptions. All of these exceptions have the same
priority. A reserved instruction exception occurs when a reserved or undefined major opcode or function field is
executed.

CauseRegister ExcCode Value:
RI

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

4-26 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Exceptions

4.6.18 Execution Exception — Coprocessor Unusable

The coprocessor unusable exception is one of the six execution exceptions. All of these exceptions have the san
priority. A coprocessor unusable exception occurs when an attempt is made to execute a coprocessor instructi
for one of the following:

e acorresponding coprocessor unit that has not been marked usable by setting its CU Statusrenister

e CPO instructions, when the unit has not been marked usable, and the processor is executing in user mode

CauseRegister ExcCode Value:
CpuU

Additional State Saved:

Table 4-11 Register States on a Coprocessor Unusable Exception

Register State Value

Causeg unit number of the coprocessor being referenced

Entry Vector Used:
General exception vector (offset 0x180)

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 4-27

Chapter 4: Exceptions

4.6.19 Execution Exception — Integer Overflow

The integer overflow exception is one of the six execution exceptions. All of these exceptions have the same
priority. An integer overflow exception occurs when selected integer instructions result in a 2's complement
overflow.

CauseRegister ExcCode Value:
Ov

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

4-28 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Exceptions

4.6.20 Execution Exception — Trap

The trap exception is one of the six execution exceptions. All of these exceptions have the same priority. A tray
exception occurs when a trap instruction results in a TRUE value.

CauseRegister ExcCode Value:
Tr

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 4-29

Chapter 4: Exceptions

4.6.21 Debug Data Break Exception

A debug data break exception occurs when a data hardware breakpoint matches the load/store transaction of an
executed load/store instruction. The DEPC register and DBD bit in the Debug register will indicate the load/store
instruction that caused the data hardware breakpoint to match. The load/store instruction that caused the debug

exception has not completed e.g. not updated the register file, and the instruction can be re-executed after returning
from the debug handler.

Debug Register Debug Status Bit Set:
DDBL for a load instruction or DDBS for a store instruction

Additional State Saved:
None

Entry Vector Used:
Debug exception vector

4-30 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Exceptions

4.6.22 TLB Modified Exception — Data Access (4Kc core)

During a data access, a TLB modified exception occurssinrareference to a mapped address if the following
condition is true:
e The matching TLB entry in a TLB-based MMU is valid, but not dirty.

CauseRegister ExcCode Value:
Mod

Additional State Saved:

Table 4-12 Register States on a TLB Modified Exception

Register State Value

BadVAddr failing address

Context The BadVPN2 field contains ¥A;30f the failing
address.

EntryHi The VPN2 field contains V@ .;30f the failing address;
the ASID field contains the ASID of the reference that
missed.

EntryLoO UNPREDICTABLE

EntryLol UNPREDICTABLE

Entry Vector Used:
General exception vector (offset 0x180)

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 4-31

Chapter 4: Exceptions

4.7 Exception Handling and Servicing Flowcharts

4-32

The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their handlers:
* General exceptions and their exception handler

» TLB miss exception and their exception handler

* Reset, soft reset and NMI exceptions, and a guideline to their handler.

» Debug exceptions

Generally speaking, the exceptions are handled by hardware (HW); the exceptions are then serviced by software
(SW). Note that unexpected debug exceptions to the debug exception vector at OXBFCO_0200 may be viewed as
a reserved instruction since uncontrolled execution of a SDBBP instruction caused the exception. The DERET

instruction must be used at return from the debug exception handler, in order to leave debug mode and return to
non-debug mode. The DERET instruction returns to the address in the DEPC register.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Exceptions

Exceptions other than Reset, Soft Reset, NMI, or first-level miss
Note: Interrupts can be masked by IE or IMs
and Watch is masked if EXL = 1 Comments

EnHi and Context are set only for

EnHi <- VPN2, ASID *TLB- Invalid, Modified,

Context <- VPN2 & Refill exceptions.

Set Cause Register BadVA is set only for
EXCCode, CE TLB- Invalid, Modified,

Set BadVA Refill- and VCED/| exceptions

Note: not set if it is a Bus Error

Check if exception within
another exception

Instr. in
Br.Dly. Slot?

Yes No

Cause 31 (BD) <- 1 Cause 31 (BD) <-0
EPC <- (PC - 4) EPC <-PC
EXL<-1 - Processor forced to Kernel Mode

& interrupt disabled

=1 (bootstrap)

=0 (normal)

PC <- 0x8000_0000 + 180 PC <- 0xBFC0_0200 + 180
(unmapped, cached) (unmapped, uncached)

I - I
l

To General Exception Servicing Guidelines

Figure 4-1 General Exception Handler (HW)

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 4-33

Chapter 4: Exceptions

Comments
* Unmapped vector so TLBMod, TLBInv,
TLB Refill exceptions not possible
MFCO -
Context < * EXL=1 so Watch, Interrupt exceptions disabled
EPC
Status * OS/System to avoid all other exceptions
Cause
*Only CacheError, Reset, Soft Reset, NMI
exceptions possible.
Y
MTCO -
(Set Status Bits:)
UM<-0
EXL<-0)))
& IE=1 (Optional - only to enable Interrupts while keeping Kernel Mode)

!

* After EXL=0, all exceptions allowed.
Check Cause value & Jump to (except interrupt if masked by IE or IM
appropriate Service Code and CacheError if masked by DE)

EXL=1

MTCO -
EPC
STATUS
* ERET is not allowed in the branch delay slot of
another Jump Instruction
* Processor does not execute the instruction which is
in the ERET's branch delay slot
ERET

*PC <-EPC; EXL<-0
* LLbit<- 0

Figure 4-2 General Exception Servicing Guidelines (SW)

4-34 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Exceptions

Yes

Y

Br.Dly. Slot?

EnHi <- VPN2, ASID
Context <- VPN2
Set Cause Reg.

EXCCode, CE and
Set BadVA

EnHi <- VPN2, ASID

Context <- VPN2

Set Cause Reg.
EXCCode, CE and
Set BadVA

Check if exception within
another exception

EPC<- (PC-4)
Cause bit 31 (BD) <- 1

EPC <- PC
Cause bit 31 (BD) <- 0

l

Y

Vec. Off. = 0x000

Vec. Off. = 0x180

A

Points to General Exception

EXL<-1

Processor forced to Kernel Mode &
interrupt disabled

=0 (normal)

Y

PC <- 08000_0000 + Vec.Off.
(unmapped. cached)

B

(SR bit 22)

EV =1 (bootstrap)

PC <- 0xBFCO0_0200 + Vec.Off.
(unmapped, uncached)

Figure 4-3

To TLB Exception Servicing Guidelines

TLB Miss Exception Handler (HW) — 4Kc Core

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

4-35

Chapter 4: Exceptions

MFCO -

CONTEXT

Service Code

ERET

Comments

* Unmapped vector so TLBMod, TLBInv,
TLB Refill or VCEP exceptions
not possible

* EXL=1 so Watch, Interrupt exceptions disabled
* OS/System to avoid all other exceptions

*Only Reset, Soft Reset, NMI
exceptions possible.

* Load the mapping of the virtual address in Context Reg.
Move it to ENLO and Write into the TLB

* There could be a TLB miss again during the mapping
of the data or instruction address. The processor will
jump to the general exception vector since the EXL is 1.
(Option to complete the first level refill in the general
exception handler or ERET to the original instruction
and take the exception again)

* ERET is not allowed in the branch delay slot of
another Jump Instruction

* Processor does not execute the instruction which is
in the ERET’s branch delay slot
*PC <- EPC; EXL<-0

* LLbit <- 0

Figure 4-4 TLB Exception Servicing Guidelines (SW) — 4Kc and 4Km Cores

4-36 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Exceptions

Soft Reset or NMI Exception

Reset Exception

Random <- TLBENTRIES - 1
Wired <- 0
Config <- Update(31:6)|| Undef(5:0)

Status:
RP <-0

BEV<-1
TS<-0
SR<-0
ERL<-1
WatchLo:
ILRW<-0

-
'

\

A

ErrorEP

C<-PC

\

[

PC <- 0xBFCO0_0000

— Status:

= BEV <- 1

~:I—:/ TS<-0

g’ SR<-1

§ ERL <- 1

©

T

c

il

=

o

©

(]

=

L

=

Z

o3

©

[%2]

o}

o

=

o

0

—

©

7]

o}

[n'd

—_)

s=

z8

& »

oL _____ Y _____

0= |

[) |

£T !

£ 2 ' NMIService Code :

o0

No ! '

= et :

© 0 l

=

x3 ERET
(Optional)

Figure 4-5

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Status bit 20
(SR)

=0

Reset, Soft Reset and NMI Exception Handling and Servicing Guidelines

4-37

Chapter 4: Exceptions

4-38 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Chapter 5

CPO Registers

The System Control Coprocessor (CPO) provides the register interface to the MIPS32 4K™ processor cores al
supports memory management, address translation, exception handling, and other privileged operations. Eact
CPO register has a unique number that identifies it; this number is referred toregither numberFor instance,
thePageMaskegister is register number 5. For more information on the EJTAG registers, refer to Chapter 9. This
chapter contains the following sections:

e Section 5.1, "CPO Register Summary"
e Section 5.2, "CPO Registers"

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 5-1

Chapter 5: CPO Registers

5.1 CPO Register Summary

Table 5-1 lists the CPO registers in numerical order. The individual registers are described throughout this chapter.

Table 5-1 CPO Registers

Register . .
egiste Register Name Function
Number

0 Indext Index into the TLB array (4Kc core). This register is reserved|in
the 4Kp and 4Km cores.

1 Random Randomly generated index into the TLB array (4Kc core). This
register is reserved in the 4Kp and 4Km cores.

2 EntryLoO1 Low-order portion of the TLB entry for even-numbered virtugl
pages (4Kc core). This register is reserved in the 4Kp and 4Km
cores.

3 EntryLot Low-order portion of the TLB entry for odd-numbered virtug|
pages (4Kc core). This register is reserved in the 4Kp and 4Km
cores.

4 Context Pointer to page table entry in memory (4Kc core). This register
is reserved in the 4Kp and 4Km cores.

5 PageMask Controls the variable page sizes in TLB entries (4Kc core). This
register is reserved in the 4Kp and 4Km cores.

6 Wired Controls the number of fixed (“wired”) TLB entries (4Kc core).
This register is reserved in the 4Kp and 4Km cores.

7 Reserved Reserved

8 BadVAddP Reports the address for the most recent address-related
exception

9 Count Processor cycle count

10 EntryHi1 High-order portion of the TLB entry (4Kc core). This register |s
reserved in the 4Kp and 4Km cores.

11 Compar% Timer interrupt control

12 Statu$ Processor status and control

13 Causé Cause of last exception

5-2 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Table 5-1 CPO Registergcontinued)

Register

Number Register Name Function
14 EPCG Program counter at last exception
15 PRId Processor identification and revision
16 Config/Configl Configuration register
17 LLAddr Load linked address
18 WatchLd Low-order watchpoint address
19 WatchHf High-order watchpoint address
20-22 Reserved Reserved
23 Debug Debug control and exception status
24 DEPC Program counter at last debug exception
25-27 Reserved Reserved
28 TagLo/DatalLo Low-order portion of cache tag interface
29 Reserved Reserved
30 ErrorEPG Program counter at last error
31 DESAVE Debug handler scratch pad register

1. Registers used in memory management.
2. Registers used in exception processing.

3. Registers used in debug.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Chapter 5: CPO Registers

5.2 CPO Registers

The CPO registers provide the interface between the ISA and the architecture. Each register is discussed below,

with the registers presented in numerical order, first by register number, then by select field number.

For each register described below, field descriptions include the read/write properties of the field, and the reset

state of the field. For the read/write properties of the field, the following notation is used:

Table 5-2 CPO Register Field Types
R ri . .
eadN\/ te Hardware Interpretation Software Interpretation
Notation
R/W A field in which all bits are readable and writable by software and, potentially, by hardwarg.

Hardware updates of this field are visible by software read. Software updates of this field jare

visible by hardware read.

If the reset state of this field is “Undefined,” either software or hardware must initialize the value

before the first read will return a predictable value. This should not be confused with the fprmal

definition of UNDEFINED behavior.

R Afield that is either static or is updated only by A field to which the value written by software

hardware. is ignored by hardware. Software may write

If the Reset State of this field is either “0” or| @ny value to this field without affecting

“Preset’, hardware initializes this field to zero hardware behavior. Software reads of this field

or to the appropriate state, respectively, on | return the last value updated by hardware.

powerup. If the Reset State of this field is “Undefined,

If the Reset State of this field is “Undefined’], SOftware reads of this field result in an

hardware updates this field only under thos¢ UNPREDICTABLE value except after a.

conditions specified in the description of the{ hardware update done under the conditions

field. specified in the description of the field.

0 A field that hardware does not update, and foA field to which the value written by software

which hardware can assume a zero value. | must be zero. Software writes of non-zero
values to this field may resultin UNDEFINED
behavior of the hardware. Software reads o
this field return zero as long as all previous
software writes are zero.
If the Reset State of this field is “Undefined,
software must write this field with zero before
it is guaranteed to read as zero.

5-4

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

5.2.1

Index Register (CPO Register 0, Select 0)

Thelndexregister is a 32-bit read/write register that contains the index used to access the TLB for TLBP, TLBR,
and TLBWI instructions. The width of the index field is implementation-dependent as a function of the number
of TLB entries that are implemented. The minimum value for TLB-based MMQsilsg(Log2(TLBEnNtries))

The operation of the processor is UNDEFINED if a value greater than or equal to the number of TLB entries is
written to thelndexregister.

This register is only valid with the TLB (4Kc core). It is reserved if the BAT is implemented (4Kp and 4Km).

Index Register Format

31 30

P

Table 5-3 Index Register Field Descriptions

Fields R
Description Wegt\d/ Reset State
Name Bit(s) rte
P 31 Probe Failure. Set to 1 when the previous TLBProbe R Undefined
(TLBP) instruction failed to find a match in the TLB.
0 30:4 Must be written as zero; returns zero on read. 0
Index 3.0 Index to the TLB entry affected by the TLBRead and R/W Undefined
TLBWrite instructions.
MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 5-5

Chapter 5: CPO Registers

5-6

5.2.2 Random Register (CPO Register 1, Select 0)

TheRandonregister is a read-only register whose value is used to index the TLB during a TLBWR instruction.
The width of the Random field is calculated in the same manner as that describedhiexhegister above.

The value of the register varies between an upper and lower bound as follow:

« Alower bound is set by the number of TLB entries reserved for exclusive use by the operating system (the
contents of th&Viredregister). The entry indexed by ti\redregister is the first entry available to be
written by a TLB Write Random operation.

e An upper bound is set by the total number of TLB entries minus 1.

The Random register is decremented by one every clock until the valuewirbaregister is reached. To enhance
the level of randomness and reduce the possibility of a live lock condition, an LFSR register is used that prevents
the decrement pseudo-randomly.

The processor initializes thieandonregister to the upper bound on a Reset exception and whékiitedregister

is written.

This register is only valid with the TLB (4Kc core). It is reserved if the BAT is implemented (4Kp and 4Km).

Random Register Format

31

4 3 0

| Random

Table 5-4 Random Register Field Descriptions

Fields R
Description We?tld/ Reset State
Name Bit(s) nte
0 31:4 Must be written as zero; returns zero on read. 0
Random 3.0 TLB Random Index R TLB Entries - 1

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

5.2.3 EntryLoO, EntryLol (CPO Registers 2 and 3, Select 0)
The pair of EntryLo registers act as the interface between the TLB or BAT and the TLBR, TLBWI, and TLBWR
instructions. For a TLB-based MMU, EntryLo0O holds the entries for even pages and EntryLol holds the entries
for odd pages. For a BAT-based MMU, only EntryLoO is used to hold the base information for the BAT entry.

The contents of the EntryLo0O and EntryLo1l registers are undefined after an address error, TLB invalid, TLB
modified, or TLB refill exceptions.

These registers are only valid with the TLB (4Kc core). They are reserved if the BAT is implemented (4Kp and

4Km).

EntryLoO, EntryLol Register Format

31 30 29 26 25 6 5 3210
R | 0 PFN | c |fVvo

Table 5-5 EntryLoO, EntryLol Register Field Descriptions

Fields Read/
Description : Reset State
. Write
Name Bit(s)
R 31:30 Reserved. Should be ignored on writes; returns zero on R 0
read.
0 29:26 These 4 bits are normally part of the PFN. However, since R/W 0

the core supports only 32-bits of physical address, the RFN
is only 20-bits wide. Therefore, bits 29:26 of this register
must be written with zeros.

PFN 25:6 Page Frame Number. Corresponds to bits 31:12 of the R/W Undefined
physical address.
C 5:3 Coherency attribute of the page. See Table 5-6. R/W Undefined
D 2 “Dirty” or write-enable bit, indicating that the page has| R/W Undefined

been written, and/or is writable. If this bit is a one, stores
to the page are permitted. If this bit is a zero, stores to the
page cause a TLB Modified exception.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 5-7

Chapter 5: CPO Registers

Table 5-5 EntryLoO, EntryLol Register Field Descriptions (continued)

Fields Read/
Description Write Reset State
Name Bit(s)

\% 1 Valid bit, indicating that the TLB entry, and thus the virtual R/W Undefined
page mapping are valid. If this bit is a one, accesses to|the
page are permitted. If this bitis a zero, accesses to the page
cause a TLB Invalid exception.

G 0 Global bit. On a TLB write, the logical AND of the G bit R/W Undefined
in both the EntryLo0 and EntryLo1l registers become the G
bitin the TLB entry. If the TLB entry G bitis a one, ASID
comparisons are ignored during TLB matches. On a read
from a TLB entry, the G bits of both EntryLoO and
EntryLol reflect the state of the TLB G bit.

Table 5-6 lists the encoding of the C field of BreryLoOandEntryLolregisters and the KO field of ti@onfig
register.

Table 5-6 Cache Coherency Attributes

C(5:3) Value Cache Coherency Attribute
0,1,3%*4,5,6 Cacheable, noncoherent, write through, no write allocate
2% 7 Uncached

* These two values are required by the MIPS32 architecture. All other values are not used. For example, valjes 0, 1,
4, 5 and 6 are not used and are mapped to 3. The value 7 is not used and is mapped to 2.

Note that these values do have meaning in other MIPS Technologies processor implementations. Refer to thel MIPS32
specification for more information.

5-8 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

5.2.4 Context Register (CPO Register 4, Select 0)

The Contextregister is a read/write register containing a pointer to an entry in the page table entry (PTE) array.
This array is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the
operating system loads the TLB with the missing translation from the PTE arragditextregister duplicates

some of the information provided in tBadVAddiregister but is organized in such a way that the operating system

can directly reference an 8-byte page table entry (PTE) in memory.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits M3 0f the virtual address to be
written into theBadVPNZ2field of theContextregister. Thd°®TEBasdield is written and used by the operating

system.

The BadVPNZ2 field of th€ontextregister is not defined after an address error exception.

Context Register Format

31 23 22 4 3 2 10
PTEBase BadVPN2 0
Table 5-7 Context Register Field Descriptions
Fields R
Description Wef”tld/ Reset State
Name Bit(s) nee
PTEBase 31:23 This field is for use by the operating system and is R/W Undefined
normally written with a value that allows the operating
system to use th@ontextRegister as a pointer into the
current PTE array in memory.
BadVPN2 22:4 This field is written by hardware on a TLB miss. It R Undefined
contains bits VA;.130f the virtual address that missed,
0 3:.0 Must be written as zero; returns zero on read. 0
MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 5-9

Chapter 5: CPO Registers

5.2.5 PageMask Register (CPO Register 5, Select 0)

ThePageMaskegister is a read/write register used for reading from and writing to the TLB. It holds a comparison
mask that sets the variable page size for each TLB entry as shown in Table 5-9. BehdNEERNED if a
value other than those listed is used.

This register is only valid with the TLB (4Kc core). It is reserved if the BAT is implemented (4Kp and 4Km).

PageMask Register Format
31 2524 13 12 0

0 Mask | 0

Table 5-8 ~ PageMask Register Field Descriptions

Fields
Description \?/ei:d/ Reset State
Name Bit(s) ne
Mask 24:13 The Mask field is a bit mask in which a “1” indicates that R/W Undefined

the corresponding bit of the virtual address should not
participate in the TLB match.

0 31:25, | Must be written as zero; returns zero on read. 0 0
12:0

Table 5-9 Values for the Mask Field of the PageMask Register

Bit
Page Size
24 23 22 21 20 19 18 17 16 15 14 18

4 KBytes 0 0 0 0 0 0 0 0 0 0 0 0
16 KBytes 0 0 0 0 0 0 0 0 0 0 1 1
64 KBytes 0 0 0 0 0 0 0 0 1 1 1 1
256 KBytes 0 0 0 0 0 0 1 1 1 1 1 1

1 MByte 0 0 0 0 1 1 1 1 1 1 1 1

4 MByte 0 0 1 1 1 1 1 1 1 1 1 1
16 Mbyte 1 1 1 1 1 1 1 1 1 1 1 1

5-10 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

5.2.6 Wired Register (CPO Register 6, Select 0)

TheWiredregister is a read/write register that specifies the boundary between the wired and random entries in the
TLB as shown in Figure 5-1. The width of the Wired field is calculated in the same manner as that described for
thelndexregister above. Wired entries are fixed, non-replaceable entries that are not overwritten by a TLBWR
instruction. Wired entries can be overwritten by a TLBWI instruction.

TheWiredregister is set to zero by a Reset exception. WritingMined register causes tlRandonregister to
reset to its upper bound.

The operation of the processor is undefined if a value greater than or equal to the number of TLB entries is writter
to theWiredregister.

This register is only valid with a TLB (4Kc core). It is reserved if the BAT is implemented (4Kp and 4Km cores).

Random

Wired Register — | Entry10

A
<

Wired

Entry O

Figure 5-1 Wired and Random Entries in the TLB

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 5-11

Chapter 5: CPO Registers

5-12

Wired Register Format

31

Wired

Table 5-10 Wired Register Field Descriptions

Fields
Description \F/zvef’:d/ Reset State
Name Bit(s) ree
0 31:4 Must be written as zero; returns zero on read. 0
Wired 3.0 TLB wired boundary. R/W 0

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

5.2.7 BadVAddr Register (CPO Register 8, Select 0)
TheBadVAddrregister is a read-only register that captures the most recent virtual address that caused one of th
following exceptions:
e Address error (AdEL or AJES)
e TLB RE€fill (4Kc core)
e TLB Invalid (4Kc core)
e TLB Modified (4Kc core)

TheBadVAddrregister does not capture address information for cache or bus errors, since neither is an addressin
error.

BadVAddr Register Format
31 0

BadVAddr

Table 5-11 BadVAddr Register Field Description

Fields
Description \?/egd/ Reset State
Name Bits rite
BadVAddr 31:0 Bad virtual address R Undefine(F

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 5-13

Chapter 5: CPO Registers

5.2.8 Count Register (CPO Register 9, Select 0)

The Count register acts as a timer, incrementing at a constant rate, whether or not an instruction is executed,
retired, or any forward progress is made through the pipeline. The counter increments every other clock.

The Count register can be written for functional or diagnostic purposes, including at reset or to synchronize
processors.

The Count register continues incrementing while the processor is in debug mode.

Count Register Format
31 0

Count

Table 5-12 Count Register Field Description

Fields
Description \I?Ve'ad/ Reset State
Name Bits rite
Count 31:.0 Interval counter. R/W Undefined

5-14 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

5.2.9 EntryHi Register (CPO Register 10, Select 0)

The EntryHi register contains the virtual address match information used for TLB read, write, and access

operations.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits M3 0f the virtual address to be

written into the VPNZ2 field of th&ntryHi register. The ASID field is written by software with the current address
space identifier value and is used during the TLB comparison process to determine TLB match. The ASID fielc
is not implemented in a BAT-based MMU.

The VPNZ2 field of thé&ntryHi register is not defined after an address error exception.

This register is only valid with the TLB (4Kc core). Itis reserved if the BAT is implemented (4Kp and 4Km cores).

EntryHi Register Format

31

1312

8 7

VPN2 0

ASID

Table 5-13 EntryHi Register Field Descriptions

Fields

Name

Bit(s)

Description

Read/
Write

Reset State

VPN2

31:13

VAg1.130f the virtual address (virtual page number /2
This field is written by hardware on a TLB exception
onaTLBread, and is written by software before a T
write.

).

pr

R/W

Undefined

12:8

Must be written as zero; returns zero on read.

0

ASID

7:0

Address space identifier. This field is written by
hardware on a TLB read and by software to establi
the current ASID value for TLB write and against
which TLB references match each entry’s TLB ASI
field. For a BAT-based MMU, this field must be writte
as zero and returns zero on read.

5h

-

R/W

Undefined

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

5-15

Chapter 5: CPO Registers

5-16

5.2.10 Compare Register (CPO Register 11, Select 0)

The Compareregister acts in conjunction with t@®untregister to implement a timer and timer interrupt
function. The timer interrupt is an output of the cores. Twnpareregister maintains a stable value and does not
change on its own.

When the value of th€ountregister equals the value of tBempareregister, the SI_TimerInt pin is asserted.

This pin will remain asserted until tteompareregister is written. The SI_TimerInt pin can be fed back into the
core on one of the interrupt pins to generate an interrupt. Traditionally, this has been done by multiplexing it with
hardware interrupt 5 to set interrupt bit IP(7) in @euseregister.

For diagnostic purposes, t®mpareregister is a read/write register. In normal use, howeve€ dhegpare
register is write-only. Writing a value to t®mpareregister, as a side effect, clears the timer interrupt.

Compare Register Format
31 0

Compare

Table 5-14 Compare Register Field Description

Fields
Description @eid/ Reset State
Name Bit(s) nte
Compare 31:.0 Interval count compare value R/W Undefined

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

5.2.11 Status Register (CPO Register 12, Select 0)
The Statusregister (SR) is a read/write register that contains the operating mode, interrupt enabling, and the
diagnostic states of the processor. Fields of this register combine to create operating modes for the processor,
follows:

Interrupt Enable : Interrupts are enabled when all of the following conditions are true:

 |E=1
 EXL=0
 ERL=0
« DM=0

If these conditions are met, the settings of the IM and IE bits enable the interrupt.

Operating Modes If the DM bit in the Debug register is 1, the processor is in debug mode. Otherwise the
processor is in either kernel or user mode. The following CPU Status register bit settings determine user or kerne
mode.

e Usermode:UM=1,EXL=0,and ERL=0
e Kernel mode: UM =0,0orEXL=1,0rERL=1

Coprocessor Accessibility: The Status register CU bits control coprocessor accessibility. If any coprocessor is
unusable, an instruction that accesses it generates an exception.

Coprocessor 0 is always enabled in kernel mode, regardless of the setting of the CUO bit.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 5-17

Chapter 5: CPO Registers

5-18

Status Register Format

31 28 27 26 25 2423 22 2120 19 18 17 16 15

87 5 4 3 2

0

CU3-CUO| R H RE 0| BEY TS SR NMI §

0]

IM7-IMO |

R| UM R ERL EXL |

T

Table 5-15

Status Register Field Descriptions

Fields

Name

Bit(s)

Description

Read/
Write

Reset State

CU3-CU0

31:28

Controls access to coprocessors 3, 2, 1, and 0,
respectively:

0: access not allowed
1. access allowed

Coprocessor 0 is always usable when the processg
running in kernel mode, independent of the state of {
CUO bit.

The core does not support coprocessors 1-3, but CY
can still be set. However, processor behavior is
unpredictable if a coprocessor instruction to
coprocessors 1-3 is attempted with the correspond
CU3:1 bit set.

R/W

ris
he
3:1

ng

Undefined

RP

27

Enables reduced power mode. The state of the RP
available on the bus interface as the SI_RP signal.

it IR/W

0 for Cold
Reset only.

26

This bit must be ignored on write and read as zero

0

RE

25

Used to enable reverse-endian memory references
while the processor is running in user mode:

0: User mode uses configured endianness
1: User mode uses reversed endianness

Kernel or debug mode references are not affected
the state of this bit.

R/W

Dy

Undefined

24:23

This bit must be written as zero; returns zero on re

0

Undefi

BEV

22

Controls the location of exception vectors:
0: Normal
1: Bootstrap

R/W

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

ned

Table 5-15 Status Register Field Descriptiongcontinued)

Fields

Name

Bit(s)

Description

Read/
Write

Reset State

TS

21

TLB shutdown. This bitis set if a TLBWI or TLBWR|

instruction is issued that would cause a TLB shutdoyvn

o

condition if allowed to complete. This bit is only use
in the 4Kc processor and is reserved in the 4Kp an
4Km processors.

Software can only write a 0 to this bit to clear it and
cannot force a 0-1 transition.

L

R/W

SR

20

Indicates that the entry through the reset exception
vector was due to a Soft Reset:

0: Not Soft Reset (NMI or hard reset)
1. Soft Reset

Software can only write a 0 to this bit to clear it and
cannot force a 0-1 transition.

R/W

1 for Soft
Reset; 0
otherwise

NMI

19

Indicates that the entry through the reset exception
vector was due to an NMIL.

0: Not NMI (soft or hard reset)
1. NMI

Software can only write a 0 to this bit to clear it and
cannot force a 0-1 transition.

R/W

1 for NMI; O
otherwise

18

Must be written as zero; returns zero on read.

17:16

Reserved. Must be ignored on write and read as zgro.

Undef

IM[7:0]

15:8

Interrupt Mask: Controls the enabling of each of the

R/W

external, internal, and software interrupts. An interrypt
is taken if interrupts are enabled and the corresponding
bits are setin both the Interrupt Mask field of the Status

register and the Interrupt Pending field of the Causge
register and the IE bit is set in the Status register.

0: Interrupt request disabled
1: Interrupt request enabled

Undefined

Undefined

ined

75

Reserved. Must be ignored on write and read as zéro.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

5-19

Chapter 5: CPO Registers

5-20

Table 5-15 Status Register Field Descriptiongcontinued)

Fields

Name

Bit(s)

Description

Read/
Write

Reset State

UM

4

Indicates that the processor is operating in user mad
0: processor is operating in kernel mode
1. processor is operating in user mode

Note that the processor can also be in kernel mods
EXR or ERL are set. This condition does not affect t
state of the UM bit.

de:R/W

f
ne

Undefined

Reserved. Must be ignored on write and read as z¢

£ro.

ERL

Error Level. Set by the processor when a Reset, S
Reset, or NMI exceptions is taken.

0: normal level

1: error level
When ERL is set:
The processor is running in kernel mode.
Interrupts are disabled.

The ERET instruction uses the return address held
ErrorEPC instead of EPC.

bft R/IW

n

kuseg is treated as an unmapped and uncached region.

This allows main memory to be accessed in the
presence of cache errors.Behavidd SDEFINED if
ERL is set while executing code in useg/kuseg.

EXL

Exception Level. Set by the processor when any
exception other than Reset, Soft Reset, or NMI
exceptions is taken.

0: normal level

1: exception level
When EXL is set:
The processor is running in kernel mode.
Interrupts are disabled.

In the 4Kc core, TLB refill exceptions use the gene
exception vector instead of the TLB refill vector.

EPC is not updated if another exception is taken.

R/W

al

Undefined

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Table 5-15 Status Register Field Descriptiongcontinued)

Fields

Description \F;Vef”tld/ Reset State
Name Bit(s) re
IE 0 Interrupt Enable. Acts as the master enable for softwareR/W Undefined
and hardware interrupts:
0: disables interrupts
1: enables interrupts
MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 5-21

Chapter 5: CPO Registers

5.2.12 Cause Register (CPO Register 13, Select 0)

The Causeregister primarily describes the cause of the most recent exception. In addition, fields also control
software interrupt requests and the vector through which interrupts are dispatched. With the exception of the
IP[1:0], IV, and WP fields, all fields in the Cause register are read-only.

Cause Register Format
31 30 29 28 27 2423 22 21 16 15 10 9 8 765 4 3 2 1 0

BD|0| CE | o [V wp| 0 | IP[7:2] | IP[1:0]| § Exc Code 0

Table 5-16 Cause Register Field Descriptions

Fields
Description Sve?,:d/ Reset State
Name Bit(s) nte
BD 31 Indicates whether the last exception taken occurred in a brgnch R Undefined
delay slot:

0: Notin delay slot
1: In delay slot

Note that the BD bit is not updated on a new exception if the
EXL bit is set.

Undefined

_,
Py}

CE 29:28 Coprocessor unit number referenced when a Coprocessq
Unusable exception is taken. This field is loaded by hardware
on every exception but is unpredictable for all exceptions
except for Coprocessor Unusable.

v 23 Indicates whether an interrupt exception uses the general R/W Undefined
exception vector or a special interrupt vector:

0: Use the general exception vector (0x180)
1: Use the special interrupt vector (0x200)

5-22 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Table 5-16 Cause Register Field Descriptiongcontinued)

Fields
Description \Ffveid/ Reset State
Name Bit(s) ne
WP 22 Indicates that a watch exception was deferred because R/W Undefined
Statugy, or Statugr, were a one at the time the watch
exception was detected. This bit both indicates that the watch
exception was deferred and causes the exception to be initipted
once Statusy, and Statusg, are both zero. As such, softwarg
must clear this bit as part of the watch exception handler tp
prevent a watch exception loop.
Software can only write a 0 to this bit to clear it and canno
force a 0-1 transition.
IP[7:2] 15:10 Indicates an external interrupt is pending: R Undefined
15: Hardware interrupt 5 or timer interrupt
14: Hardware interrupt 4
13: Hardware interrupt 3
12: Hardware interrupt 2
11: Hardware interrupt 1
10: Hardware interrupt O
IP[1:0] 9:8 Controls the request for software interrupts: R/W Undefined
9: Request software interrupt 1
8: Request software interrupt O
Exc Code 6:2 Exception code — see Table 5-17. R Undefin
0 30, Must be written as zero; returns zero on read. 0 0
27:24,
21:16,7,
1:0
Table 5-17 Cause Register ExcCode Field Descriptions
Exception . -
Code Value Mnemonic Description
0 Int Interrupt
1 Mod TLB modification exception (4Kc core)
MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 5-23

Chapter 5: CPO Registers

Table 5-17 Cause Register ExcCode Field Descriptiongontinued)

(:E(;(dceer\)};l)ge Mnemonic Description

2 TLBL TLB exception (load or instruction fetch) (4Kc core)
3 TLBS TLB exception (store) (4Kc core)
4 AdEL Address error exception (load or instruction fetch)
5 AdES Address error exception (store)
6 IBE Bus error exception (instruction fetch)
7 DBE Bus error exception (data reference: load or store)
8 Sys Syscall exception
9 Bp Breakpoint exception
10 RI Reserved instruction exception
11 CpuU Coprocessor Unusable exception
12 Ov Integer Overflow exception
13 Tr Trap exception

14-22 - Reserved
23 WATCH Reference to WatchHi/WatchLo address
24 MCheck Machine check

25-31 - Reserved

5-24 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

5.2.13 Exception Program Counter (CPO Register 14, Select 0)

The Exception Program Counter (EP@)a read/write register that contains the address at which processing

resumes after an exception has been serviced. All bits &RBaegister are significant and must be writable.

For synchronous(precise) exceptions, EHfC contains one of the following:

» The virtual address of the instruction that was the direct cause of the exception

» The virtual address of the immediately preceding branch or jump instruction, when the exception causing
instruction is in a branch delay slot and Branch Delaybit in theCauseregister is set.

On new exceptions, the processor does not write t&t€register when the EXL bit in thStatusregister is set.
However, the register can still be written via the MTCO instruction.

EPC Register Format
31 0

EPC

Table 5-18 EPC Register Field Description

Fields
Description @eid/ Reset State
Name Bit(s) nte
EPC 31:.0 Exception Program Counter. R/W Undefined

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 5-25

Chapter 5: CPO Registers

5.2.14 Processor ldentification (CPO Register 15, Select 0)

TheProcessor Identification (PRIdggister is a 32 bit read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification, and revision level of the processor.

Processor Identification Register Format
31 24 23 16 15 8 7 0
R Company ID Processor ID Revision
Table 5-19 PRId Register Field Descriptions
Fields R
Description Wei:d/ Reset State
Name Bit(s) ne
R 31:24 Reserved. Must be ignored on write and read as zerp R Preget
Company 23:16 Identifies the company that designed or manufactured the R Preset
ID processor. In all three cores this field contains a valu¢ of
1 to indicate MIPS Technologies, Inc.
Processor 15:8 Identifies the type of processor. This field allows software R Preset
ID to distinguish between the various types of MIPS
Technologies processors. For the 4Kc processor, this fleld
contains a value of 0x80. For the 4Kp and 4Km
processors, the value is 0x83.
Preset

7:0 Specifies the revision number of the processor. This field R
allows software to distinguish between one revision gnd
another of the same processor type.

Revision

5-26 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

5.2.15 Config Register (CPO Register 16, Select 0)

The Configregister specifies various configuration and capabilities information. Most of the field<iorthg
register are initialized by hardware during the Reset exception process, or are constant. One field, KO, must be
initialized by software in the Reset exception handler.

Config Register Format — Select 0
3130 2827 2524 21 20 191817 16 15 14 1312 10 9 7 6 3 2 0

M| K23| KU | R |MDU|R|MM|BM|BE|AT| AR | MT \ 0 KO

Table 5-20 Config Register Field Descriptions

Fields R
Description Wegtld/ Reset State
Name Bit(s) nte
M 31 This bit is hardwired to ‘1’ to indicate the presence of the R 1
Configl register.
K23 30:28 This field controls the cacheability of the kseg2 and ksgeg3BAT: BAT: 010
address segments in BAT implementations. This field |s R/W TLB: 000

valid in the 4Kp and 4Km processor and is reserved in theT| B: R
4Kc processor.

Refer to Table 5-21 for the field encoding.

KU 27:25 This field controls the cacheability of the kuseg and usegBAT: BAT: 010
address segments in BAT implementations. This field |s R/W TLB: 000
valid in the 4Kp and 4Km processor and is reserved in theT| B: R
4Kc processor.

Refer to Table 5-21 for the field encoding.

0 24:21 Must be written as 0. Returns 0 on read. 0 0

MDU 20 This bit indicates the MDU type. R Preset
0 = Fast Multiplier Array (4Kc and 4Km cores)
1 = Iterative multiplier (4Kp cores)

0 19 Must be written as 0. Returns 0 on read. 0 0

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 5-27

Chapter 5: CPO Registers

5-28

Table 5-20 Config Register Field Descriptiongcontinued)

Fields

Description \Ffvef”tld/ Reset State
Name Bit(s) ne
MM 18:17 This field contains the merge mode for the 32-byte R Externally Set
collapsing write buffer:
00 = No Merging
01 = SysAD Valid merging
10 = Full merging
11 = Reserved
BM 16 Burst order. R Externally Set
0: Sequential
1: SubBlock
BE 15 Indicates the endian mode in which the processor is R Externally Set
running:
0: Little endian
1. Big endian
AT 14:13 Architecture type implemented by the processor. Thisfield R 00
is always 00 to indicate MIPS32.
AR 12:10 Architecture revision level. This field is always 000 to R 000
indicate revision 1.
0: Revision 1
1-7: Reserved
MT 9:7 MMU Type: R Preset
1: Standard TLB (4Kc core)
3: Fixed Mapping (4Kp, 4Km cores)
0, 2, 4-7: Reserved
0 6:3 Must be written as zero; returns zero on read. 0
KO 2:0 KsegO0 coherency algorithm. Refer to Table 5-21 for the R/W 010
field encoding.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Table 5-21 Cache Coherency Attributes

C(2:0) Value Cache Coherency Attribute
0,1,3%4,5,6 Cacheable, noncoherent, write-through, no write allocate
2%, 7 Uncached

* These two values are required by the MIPS32 architecture. In the 4K processor cores, all other values are 1
For example, values 0, 1, 4, 5 and 6 are not used and are mapped to 3. The value 7 is not used and is mag

Note that these values do have meaning in other MIPS Technologies processor implementations. Refer to the

specification for more information.

ot used.
ped to 2.

MIPS32

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

5-29

Chapter 5: CPO Registers

5.2.16 Configl Register (CPO Register 16, Select 1)

TheConfiglregister is an adjunct to the Config register and encodes additional capabilities information. All fields
in the Configl register are read-only.

The instruction and data cache configuration parameters include encodings for the number of sets per way, the line
size, and the associativity. The total cache size for a cache is therefore:

Associativity * Line Size * Sets Per Way
If the line size is zero, there is no cache implemented.

Configl Register Format — Select 1
31 30 2524 2221 19 18 16 15 1312 10 9 7 6 4 3 2 10

0 MMU Size | IS | IL | IA | DS | DL| DA \ 0|P WR|CA|EF|>F

U

Table 5-22 Configl Register Field Descriptions — Select 1

Fields R
Description We?tld/ Reset State
Name Bit(s) nte
0 31 This bit is reserved to and must be read or written as zero. R Preset
MMU Size 30:25 This field contains the number of entries in the TLB minus R Preset

one. The field is read as 15 decimal in the 4Kc processor
and as 0 decimal in the 4Kp and 4Km processors.

IS 24:22 This field contains the number of instruction cache setgper R Preset
way. Three options are available in all the 4K cores. Al
others values are reserved:

0x0: 64
Ox1: 128
0x2: 256
0x3 - 0x7: Reserved

5-30 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Table 5-22 Configl Register Field Descriptions — Select (tontinued)

Fields

Name Bit(s)

Description

Read/
Write

Reset State

IL 21:19

This field contains the instruction cache line size. If an
instruction cache is present, it must contain a fixed line §
of 16 bytes.

0x0: No Icache present
0x3: 16 bytes
0x1, 0x2, Ox4 - Ox7: Reserved

ize

Preset

IA 18:16

This field contains the level of instruction cache
associativity.

0x0: Direct mapped
Ox1: 2-way
0x2: 3-way
0x3: 4-way
0x4 - 0x7: Reserved

Preset

DS 15:13

This field contains the number of data cache sets per
0x0: 64

Ox1: 128

0x2: 256

0x3 - 0x7: Reserved

way:R

Preset

DL 12:10

This field contains the data cache line size. If a data ca
is present, it must contain a line size of 16 bytes.

0x0: No Dcache present
0x3: 16 bytes
0x1, 0x2, 0x4 - Ox7: Reserved

che R

Preset

DA 9:7

This field contains the type of set associativity for the da
cache:

0x0: Direct mapped
0x1: 2-way
0x2: 3-way
0x3: 4-way
0x4 - 0x7: Reserved

ata R

Preset

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

5-31

Chapter 5: CPO Registers

5-32

Table 5-22 Configl Register Field Descriptions — Select (tontinued)

Fields
i Read/
Description Writ Reset State
Name Bit(s) ne
0 6:5 Must be written as zero; returns zero on read. 0

PC 4 Performance Counter registers implemented. Always p 0 R 0
since the cores do not implement any.

WR 3 Watch registers implemented. This bit is alwaysread as 1 R 1
since the cores each contain one pair of Watch registefrs.

CA 2 Code compression (MIPS16™) implemented. This bitjs R 0
always read as 0 because MIPS16 is not supported.

EP 1 EJTAG present: This bit is always set to indicate that the R 1
core implements EJTAG.

FP 0 FPU implemented. This bit is always zero since the cqre R 0
does not contain a floating point unit.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

5.2.17 Load Linked Address (CPO Register 17, Select 0)

TheLLAddrregister contains the physical address read by the most recent Load Linked (LL) instruction. This
register is for diagnostic purposes only and serves no function during normal operation.

Load Linked Address Register Format

31 28 27 0
0 PAddr[31:4]
Table 5-23 LLAddr Register Field Descriptions
Fields
Description \Ijvegt\d/ Reset State
Name Bit(s) re
0 31:28 Must be written as zero; returns zero on read. q 0
PAddr[31:4] 27:0 This field encodes the physical address read by the most R Undefined
recent Load Linked instruction.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 5-33

Chapter 5: CPO Registers

5.2.18 WatchLo Register (CPO Register 18)

5-34

TheWatchLoandWatchHiregisters together provide the interface to a watchpoint debug facility that initiates a
watch exception if an instruction or data access matches the address specified in the registers. As such, they
duplicate some functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits
are zero in thé&tatugegister. If either bit is a one, the WP bit is set in @auseregister, and the watch exception

is deferred until both the EXL and ERL bits are zero.

TheWatchLoregister specifies the base virtual address and the type of reference (instruction fetch, load, store) to

match.

WatchLo Register Format

31 3 2 10
VAddr | 1 [R]w
Table 5-24 WatchLo Register Field Descriptions
Fields R
Description Wei:d/ Reset State
Name Bits ne
VAddr 31:3 This field specifies the virtual address to match. Note thatR/W Undefined
this is a doubleword address, since bits [2:0] are used|to
control the type of match.
| 2 If this bit is set, watch exceptions are enabled for R/W 0 for Cold
instruction fetches that match the address. Reset only.
R 1 If this bit is set, watch exceptions are enabled for loads that R/W 0 for Cold
match the address. Reset only.
W 0 If this bitis set, watch exceptions are enabled for stores that R/W 0 for Cold
match the address. Reset only.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

5.2.19 WatchHi Register (CPO Register 19)

TheWatchLoandWatchHiregisters together provide the interface to a watchpoint debug facility that initiates a
watch exception if an instruction or data access matches the address specified in the registers. As such, they
duplicate some functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits
are zero in th&tatugegister. If either bit is a one, the WP bit is set in @auseregister, and the watch exception

is deferred until both the EXL and ERL bits are zero.

TheWatchHiregister contains information that qualifies the virtual address specified WatahLoregister: an

ASID, a G(lobal) bit, and an optional address mask. If the G bit is 1, any virtual address reference that matche:
the specified address will cause a watch exception. If the G bit is a 0, only those virtual address references for
which the ASID value in th#&vatchHiregister matches the ASID value in thetryHi register cause a watch
exception. The optional mask field provides address masking to qualify the address spatfietlio

WatchHi Register Format

31 30 29

24 23 16 15 1211

3 210

O|G| 0

ASID 0 MASK

Table 5-25 WatchHi Register Field Descriptions

Fields R
Description Wef"t‘d/ Reset State
Name Bit(s) re
0 31 Must be written as zero; returns zero on read. 0
G 30 If this bitis one, any address that matches that specifigd inR/W Undefined
theWatchLoregister causes a watch exception. If this bit
is zero, the ASID field of thgvatchHiregister must match
the ASID field of theEntryHi register to cause a watch
exception.
0 29:24 Must be written as zero; returns zero on read. 0
ASID 23:16 ASID value which is required to match that in EvgryHi R/W Undefined
register if the G bit is zero in th¥atchHiregister.
0 15:12 Must be written as zero; returns zero on read. 0
MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 5-35

Chapter 5: CPO Registers

5-36

Table 5-25 WatchHi Register Field Descriptions(continued)

Fields
Description \I7ve§t1d/ Reset State

Name Bit(s) re

Mask 11:3 Bit mask that qualifies the address invia¢chLo R/W Undefined
register. Any bit in this field that is a set inhibits the
corresponding address bit from participating in the
address match.

0 2:0 Must be written as zero; returns zero on read. 0

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

5.2.20 Debug Register (CPO Register 23)

The Debug register is used to control the debug exception and provide information about the cause of the deb
exception and when re-entering at the debug exception vector due to a normal exception in debug mode. The re:
only information bits are updated every time the debug exception is taken or when a normal exception is taken
when already in debug mode.

Only the DM bit and the EJTAGver field are valid when read from non-debug mode; the value of all other bits and
fields is UNPREDICTABLE. Operation of the processor is UNDEFINED if the Debug register is written from
non-debug mode.

Some of the bits and fields are only updated on debug exceptions and/or exceptions in debug mode, as showr
below:

« DSS, DBp, DDBL, DDBS, DIB, DINT are updated on both debug exceptions and on exceptions in debug
modes

» DExcCode is updated on exceptions in debug mode, and is undefined after a debug exception
e Halt and Doze are updated on a debug exception, and is undefined after an exception in debug mode
« DBD is updated on both debug and on exceptions in debug modes

All bits and fields are undefined when read from normal mode, except those explicitly described to be defined, e.g
EJTAGver and DM.

Debug Register Format

22 111 11 1
31 3029 28 27 26 25 24 39 21 2098754 098765 4 3 2 1 0
DB| D | R| LSN|DozHalfCountDIBusH R | DBus|IEX| R | Ver| DExcQR|SS R |DIN|DI|DDB|DDB|DB| DS
DM M| e M P EP | I ode t T|Bl S| L|p]|S

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 5-37

Chapter 5: CPO Registers

5-38

Table 5-26 Debug Register Field Descriptions

Fields
Description \F;Ve."jtld/ Reset
Mnemonic | Bit(s) rie
DBD 31 Indicates whether the last debug exception piR Undefined
exception in debug mode, occurred in a branch
delay slot:

0: Not in delay slot
1: In delay slot

DM 30 Indicates that the processor is operating in | R 0
debug mode:

0: Processor is operating in non-debug mod
1: Processor is operating in debug mode

D

R 29 Reserved. Must be written as zero; returns ze@® 0
on read.
LSNM 28 Controls access of load/store between dseg pRdIW 0

remain memory:
0: Load/stores in dseg address range goes {o
dseg.
1: Load/stores in dseg address range goes {o
remain memory.

Doze 27 Indicates that the processor was in any kind d? Undefined
low power mode when a debug exception
occurred:

0: Processor not in low power mode when
debug exception occurred

1: Processor in low power mode when debup
exception occurred

Halt 26 Indicates that the internal system bus clock| R Undefined
was stopped when the debug exception
occurred:

0: Internal system bus clock stopped

1: Internal system bus clock running

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Table 5-26 Debug Register Field Descriptiongcontinued)

Fields
Description @ead/ Reset
Mnemonic | Bit(s) rite
CountDM | 25 Indicates the Count register behavior in debu® 1
mode.

Encoding of the bit is:
0: Count register stopped in debug mode
1: Count register is running in debug mode

IBUsEP 24 Instruction fetch Bus Error exception PendingR/W1 0
Set when an instruction fetch bus error event
occurs or if a 1 is written to the bit by soft-
ware.Cleared when a Bus Error exception oh
instruction fetch is taken by the processor, apd
by reset. If IBUSEP is set when IEXI is cleared,
a Bus Error exception on instruction fetch is
taken by the processor, and IBUSEP is cleared.

R 23:22 | Reserved. Must be written as zero; returns ze 0
on read.
DBuUsEP 21 Data access Bus Error exception Pending.Caw/W1 0

ers imprecise bus errors on data access, simjilar
to behavior of IBUSEP for imprecise bus errofs
on an instruction fetch.

IEXI 20 Imprecise Error eXception Inhibit controls | R/W 0
exceptions taken due to imprecise error indica-
tions. Set when the processor takes a debug
exception or exception in debug mode. Cleared
by execution of the DERET instruction.
Other-wise modifiable by debug mode soft-
ware. When IEXI is set then the imprecise
error exceptions from bus error on instructio|
fetch or data access, cache error or machin
check are inhibited and deferred until the bit
cleared.

=]

R 19:18 | Reserved. Must be written as zero; returns zef 0
on read.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

5-39

Chapter 5: CPO Registers

5-40

Table 5-26 Debug Register Field Descriptiongcontinued)

Fields
Description @ead/ Reset
Mnemonic | Bit(s) rite
Ver 17:15 | EJTAG version R 1
DExcCode | 14:10 | Indicates the cause of the latest exception inR Undefined

debug mode. The field is encoded as the Exc-
Code field in the Cause register for those nar-
mal exceptions that may occur in debug moge.
Value is undefined after a debug exception.

R 9 Reserved. Must be written as zero; returns z¢ro 0
on read.

SSt 8 Controls if debug single step exception is R/W 0
enabled:

0: No debug single step exception enabled
1: Debug single step exception enabled

R 7:6 Reserved. Must be written as zero; returns zer@ 0
on read.
DINT 5 Indicates that a debug interrupt exception | R Undefined

occurred. Cleared on exception in debug mode.
0: No debug interrupt exception
1: Debug interrupt exception

DIB 4 Indicates that a debug instruction break excgp Undefined
tion occurred. Cleared on exception in debug
mode.

0: No debug instruction exception
1: Debug instruction exception

DDBS 3 Indicates that a debug data break exception R Undefined
occurred on a store. Cleared on exception in
debug mode.

0: No debug data exception on a store

1: Debug instruction exception on a store

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Table 5-26 Debug Register Field Descriptiongcontinued)

Fields

Mnemonic

Bit(s)

Description

Read/
Write

Reset

DDBL

2

Indicates that a debug data break exception
occurred on a load. Cleared on exception in
debug mode.

0: No debug data exception on a load

1: Debug instruction exception on a load

Undefined

DBp

Indicates that a debug software breakpoint
exception occurred. Cleared on exception in
debug mode.

0: No debug software breakpoint exception
1: Debug software breakpoint exception

Undefined

DSS

Indicates that a debug single step exception
occurred. Cleared on exception in debug mo
0: No debug single step exception

1: Debug single step exception

Undefined

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

5-41

Chapter 5: CPO Registers

5.2.21 Debug Exception Program Counter Register (CPO Register 24)

The Debug Exception Program Counter (DEPC) register is a read/write register that contains the address at which
processing resumes after a debug exception or debug mode exception has been serviced.

For synchronous (precise) debug and debug mode exceptions, the DEPC contains either:

» The virtual address of the instruction that was the direct cause of the debug exception, or

» The virtual address of the immediately preceding branch or jump instruction, when the debug exception

causing instruction is in a branch delay slot, and the Debug Branch Delay (BDB) bit in the Debug register is
set.

For asynchronous debug exceptions (debug interrupt), the DEPC contains the virtual address of the instruction
where execution should resume after the debug handler code is executed.

Debug Exception Program Counter Register Format
31 0

DEPC

Table 5-27 Debug Register Formats

Fields
Description Reid/ Reset
Mnemonic | Bit(s) nte
DEPC 31:0 The DEPC register is updated with the virtual address of R/W Undefined

the instruction that caused the debug exception. If the
instruction is in the branch delay slot, the virtual addrgss
of the immediately preceding branch or jump instructipn
is placed in this register.

Execution of the DERET instruction causes a jump to the
address in the DEPC.

5-42 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

5.2.22 TagLo Register (CPO Register 28, Select 0)

TheTaglLoregister acts as the interface to the cache tag array. The Index Store Tag and Index Load Tag operatior
of the CACHE instruction use thEagLoregister as the source of tag information, respectively. Note that the 4K
cores do not implement the TagHi register.

TagLo Register Format
31 109 8 7 6 5 4 3 2 1 O
PA | R| vaid |R|L|RAR

Table 5-28 TagLo Register Field Descriptions

Fields R
Description Wegtld/ Reset State
Name Bit(s) ne
PA 31:10 This field contains the physical address of the cache [ine R/W Undefined
being stored.
R 9:8 Must be written as zero; returns zero on read. 0 0
Valid 7:4 This field indicates whether the corresponding word in the R/W Undefined
cache line is valid in the cache.
R 3 Must be written as zero; returns zero on read. 0 0
L 2 Specifies the lock bit for the cache tag. When this bitis get, R/'W Undefined
the corresponding cache line should not be replaced by the
cache replacement algorithm.
LRF 1 LRF. One bit of the LRF bits for the set this cache lineisa R/W Undefined
part of. This bit is inverted every time a new cache ling is
filled in the cache entry.
R 0 Must be written as zero; returns zero on read. 0 0

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 5-43

Chapter 5: CPO Registers

5.2.23 DatalLo Register (CPO Register 28, Select 1)

TheDatalLoregister is a read-only register that acts as the interface to the cache data array and are intended for
diagnostic operations only. The Index Load Tag operation of the CACHE instruction reads the corresponding data
values into théataloregister. Note that the 4K cores do not implement the DataHi register.

DatalLo Register Format
31 0
DATA

Table 5-29 Datalo Register Field Description

Fields - Read/W | Reset
Description it Stat
Name Bit(s) ne ate
DATA 31.0 Low-order data read from the cache data array. R Undefjned

5-44 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

5.2.24 ErrorEPC (CPO Register 30, Select 0)

TheErrorEPCregister is a read-write register, similar to tBBCregister, except thairrorEPC s used on error
exceptions. All bits of th&rrorEPC register are significant and must be writable. It is also used to store the
program counter on Reset, Soft Reset, and honmaskable interrupt (NMI) exceptions.

TheErrorEPC register contains the virtual address at which instruction processing can resume after servicing an

error. This address can be:

e The virtual address of the instruction that caused the exception

e The virtual address of the immediately preceding branch or jump instruction when the error causing
instruction is in a branch delay slot

Unlike theEPCregister, there is no corresponding branch delay slot indication farthe&PC register.

ErrorEPC Register Format
31 0

ErrorEPC

Table 5-30 ErrorEPC Register Field Description

Fields
Description \?Ve.?d/ Reset State
Name Bit(s) rte
ErrorEPC 31:0 Error Exception Program Counter R/IW Undefingd

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 5-45

Chapter 5: CPO Registers

5.2.25 DeSave Register (CPO Register 31)

The Debug Exception Save (DeSave) register is a read/write register that functions as a simple memory location.
This register is used by the debug exception handler to save one of the GPRs that is then used to save the rest of
the context to a pre-determined memory area (such as in the EJTAG Probe). This register allows the safe

debugging of exception handlers and other types of code where the existence of a valid stack for context saving
cannot be assumed.

DeSave Register Format
31 0
DESAVE

Table 5-31 DeSave Register Description

Bit(s) | Mnemonic Description R/W Reset

31:0 DESAVE Debug exception save contents. R/W Undefirjed

5-46 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Chapter 6

Hardware and Software Initialization

The MIPS32 4K™ processor cores have only a minimal amount of hardware initialization and rely on software to
fully initialize the device.

This chapter contains the following sections:
e Section 6.1, "Hardware Initialized Processor State"

e Section 6.2, "Software Initialized Processor State"

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 6-1

Chapter 6: Hardware and Software Initialization

6.1 Hardware Initialized Processor State

The 4K processor cores, like most MIPS processors, are not fully initialized by reset. Only a minimal subset of
the processor state is cleared. This is enough to bring the core up while running in unmapped and uncached code
space. All other processor states can then be initialized by software. Reset is asserted after power-up to bring the
device into a known state. SoftReset can be used when the device is already up and running and does not need as
much initialization.

6.1.1 Coprocessor Zero State

Much of the hardware initialization occurs in Coprocessor Zero.

* Random (4Kc core only)- Set to maximum value on Reset

* Wired (4Kc core only)- Set to 0 on Reset

+ Statuggy - set to 1 on Reset/SoftReset

+ Statugg- cleared to 0 on Reset/SoftReset

+ Statugr- cleared to 0 on Reset, set to 1 on SoftReset

» Statugy, - cleared to 0 on Reset/SoftReset

» Statugp, - setto 1 on Reset/SoftReset

* Statugp - set to 0 on Reset

¢ WatchLq Ry - cleared to 0 on Reset

» Config fields related to static inputs - set to input value by Reset
+ Configgg - set to 010 on Reset

+ Configgy - set to 010 on Reset (4Km™ and 4Kp™ cores only)
+ Configgoz - set to 010 on Reset (4Km and 4Kp cores only)

* Debug,y - cleared to 0 on Reset/SoftReset (unless EJTAGBOOT option is used to boot into DebugMode,
see EJTAG chapter for details)

» Debug gny - cleared to 0 on Reset/SoftReset
» Debugg,sep- cleared to 0 on Reset/SoftReset
+ Debugyg sep- Cleared to O on Reset/SoftReset

» Debuggy, - cleared to 0 on Reset/SoftReset

6-2 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Software Initialized Processor State

6.1.2

6.1.3

6.1.4

6.1.5

» Debug;g,- cleared to 0 on Reset/SoftReset

TLB Initialization (4Kc core only)

Each 4Kc TLB entry has a “hidden” state bit which is set by Reset/SoftReset and is cleared when the TLB entry
is written. This bit disables matches and prevents “TLB Shutdown” conditions from being generated by the
power-up values in the TLB array (when two or more TLB entries match on a single address). This bitis not visible
to software.

Bus State Machines

All pending bus transactions are aborted and the state machines in the bus interface unit are reset when a Reset
SoftReset exception is taken.

Static Configuration Inputs

All static configuration inputs (defining the bus mode and cache size for example) should only be changed during
Reset.

Fetch Address

Upon Reset/SoftReset, unless the EJTAGBOOQOT option is used, the fetch is directed to VA 0xBFC00000 (PA
0x1FCO00000). This address is in KSeg1,which is unmapped and uncached, so that the TLB and caches do no
require hardware unitization.

6.2 Software Initialized Processor State

6.2.1

Software is required to initialize the following parts of the device.

Register File

The register file powers up in an unknown state with the exception of rO which is always 0. Initializing the rest of
the register file is not required for proper operation. Good code will generally not read a register before writing to
it, but the boot code can initialize the register file for added safety.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 6-3

Chapter 6: Hardware and Software Initialization

6.2.2 TLB (4Kc Core Only)

Because of the hidden bit indicating initialization, the 4Kc core does not require TLB initialization upon
ColdReset. This is an implementation specific feature of the 4Kc core and cannot be relied upon if writing generic
code for MIPS32/64 processors. When initializing the TLB, care must be taken to avoid creating a “TLB
Shutdown” condition where two TLB entries could match on a single address. Unique virtual addresses should be
written to each TLB entry to avoid this

6.2.3 Caches

The cache tag and data arrays power up to an unknown state and are not affected by reset. Every tag in the cache
arrays should be initialized to an invalid state using the CACHE instruction (typically the Index Invalidate
function). This can be a long process, especially since the instruction cache initialization needs to be run in an
uncached address region.

6.2.4 Coprocessor Zero state

Miscellaneous Cop0 state needs to be initialized prior to leaving the boot code. There are various exceptions which
are blocked by ERL=1 or EXL=1 and which are not cleared by Reset. These can be cleared to avoid taking
spurious exceptions when leaving the boot code.

» Cause: WP (Watch Pending), SWO0/1 (Software Interrupts) should be cleared.
» Config: KO should be set to the desired Cache Coherency Algorithm (CCA) prior to accessing KSeg0.

* Config: (4Km and 4Kp cores only) KU and K23 should be set to the desired CCA for USeg/KUSeg and
KSeg2/3 respectively prior to accessing those regions.

* Count: Should be set to a known value if Timer Interrupts are used.

* Compare: Should be set to a known value if Timer Interrupts are used. The write to compare will also clear
any pending Timer Interrupts (Thus, Count should be set before Compare to avoid any unexpected
interrupts).

» Status: Desired state of the device should be set.

» Other CopO state: Other registers should be written before they are read. Some registers are not explicitly
writeable, and are only updated as a by-product of instruction execution or a taken exception. Uninitialized
bits should be masked off after reading these registers.

6-4 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Chapter 7

Caches

The instruction and data cache controllers of the MIPS32 4K™ processor cores support caches of various size
organizations, and set-associativity. For example, the data cache can be 2 Kbytes in size and 2-way set associati
while the instruction cache can be 8 Kbytes in size and 4-way set associative. Each cache can each be accessec
a single processor cycle. In addition, each cache has its own 32-bit data path and both caches can be accesse

the same pipeline clock cycle.

This chapter contains the following sections.

* Section 7.1, "Cache Protocols"
e Section 7.2, "Instruction Cache"

e Section 7.3, "Data Cache"

Table 7-1 lists the instruction and data cache attributes:

Table 7-1 Instruction and Data Cache Attributes

Parameter

Instruction

Data

Size

0 - 16 Kbytes

0 - 16 Kbytes

Number of Cache Sets

0, 64, 128 and 256

0, 64, 128 and 256

Lines Per Set (Associativity)

1 - 4 way set associative

1 - 4 way set associati

Line Size 16 bytes 16 bytes
Read Unit 32-bits 32-bits
Write Policy N/A write-throughwithout
write-allocate
Miss restart after transfer of miss word miss word
Cache Locking per line per line

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Chapter 7: Caches

The core provides a flexible cache configuration structure that allows the instruction and data caches to be
configured in any combination of ways based on the following sizes. All of the cache sizes listed below can be 1-,
2-, 3-, or 4-way set associative.

Table 7-2 Instruction and Data Cache Sizes

Cache Size Way Organization Options
0K No cache
1K One 1K way
2K One 2K way
Two 1K ways
3K Three 1K ways
4K One 4K way
Two 2K ways

Four 1K ways

6K Three 2K ways
8K Two 4K ways
Four 2K ways
12K Three 4K ways
16K Four 4K ways

7.1 Cache Protocols

All the 4K cores support the following cache protocols:

» Uncached Addresses in a memory area indicated as uncached are not read from the cache. Stores to such
addresses are written directly to main memory, without changing cache contents.

* Write-through : Loads and instruction fetches first search the cache, reading main memory only if the
desired data does not reside in the cache. On data store operations, the cache is first searched to see if the
target address is cache resident. If it is resident, the cache contents are updated, and main memory is also
written. If the cache lookup misses, only main memory is written.

7-2 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Cache

7.2 Instruction Cache

The instruction cache is an optional on-chip memory block of up to 16 Kbytes. The virtually indexed, physically
tagged cache allows the virtual-to-physical address translation to occur in parallel with the cache access rathe
than having to wait for the physical address translation. The tag contains 22 bits of physical address, 4 valid bits
a lock bit, and the FIFO replacement bit.

All the cores support instruction cache-locking. Cache locking allows critical code or data segments to be locked
into the cache on a “per-line” basis, enabling the system programmer to maximize the efficiency of the system
cache.

The cache locking function is always enabled on all instruction cache entries. Entries can then be marked as locke
or unlocked on a per entry basis using the CACHE instruction.

7.3 Data Cache

The data cache is an optional on-chip memory block of up to 16 Kbytes. The virtually indexed, physically tagged
cache allows the virtual-to-physical address translation to occur in parallel with the cache access rather than
having to wait for the physical address translation. The tag contains 22 bits of physical address, 4 valid bits, a lock
bit, and the FIFO replacement bit.

In addition to instruction cache locking, the core also supports a data cache locking mechanism identical to the
instruction cache. Critical data segments to be locked into the cache on a “per-line” basis. The locked contents ca
be updated on a store hit, but cannot be selected for replacement on a store miss.

The cache locking function is always enabled on all data cache entries. Entries can then be marked as locked
unlocked on a per entry basis using the CACHE instruction.

MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07 7-3

Chapter 7: Caches

7-4 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Chapter 8

Power Management

The MIPS32 4K™ processor cores offer a number of power management features, including low-power desigr
active power management and power-down modes of operation. The core is a static design that supports a WAI
instruction designed to signal the rest of the device that execution and clocking should be halted, reducing syster
power consumption during idle periods.

The core provides two mechanisms for system level low power support discussed in the following sections.

e Section 8.1, "Register Controlled Power Management"

e Section 8.2, "Instruction Controlled Power Management"

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 8-1

Chapter 8: Power Management

8.1 Register Controlled Power Management

The RP bitin the CPO Status register a standard software mechanism for placing the system into a low power state.
The state of the RP bit is available externally via the SI_RP signal. Three additional pins, SI_EXL, SI_ERL, and
EJ_DebugM support the power management function by allowing the user to change the power state if an
exception or error occurs while the core is in a low power state.

Setting the RP bit of the CPO Status register causes the core to assert the SI_RP signal. The external agent can then
decide whether to reduce the clock frequency and place the core into power down mode.

If an interrupt is taken while the device is in power down mode, that interrupt may need to be serviced depending
on the needs of the application. The interrupt causes an exception which in turn causes the EXL bit to be set. The
setting of the EXL bit causes the assertion of the SI_EXL signal on the external bus, indicating to the external
agent that an interrupt has occurred. At this time the external agent can choose to either speed up the clocks and
service the interrupt or let it be serviced at the lower clock speed.

The setting of the ERL bit causes the assertion of the SI_ERL signal on the external bus, indicating to the external
agentthat an error has occurred. At this time the external agent can choose to either speed up the clocks and service
the error or let it be serviced at the lower clock speed.

Similarly, the EJ_DebugM signal indicates that the processor is in debug mode. Debug mode is entered when the
processor takes a debug exception. If fast handling of this is desired, the external agent can speed up the clocks.

The core provides 4power down signals that are part of the system interface. Three of the pins change state as the
corresponding bits in the CFatusregister are set or cleared. The fourth pin indicates that the processor is in
debug mode.

* The SI_RP signal represents the state of the RP bit (27) in the CP0 Status register.
» The SI_EXL signal represents the state of the EXL bit (1) in the CPO Status register.
» The SI_ERL signal represents the state of the ERL bit (2) in the CPO Status register.

* The EJ_DebugM signal indicates that the processor has entered debug mode

8.2 Instruction Controlled Power Management

8-2

The second mechanism for invoking power down mode is through execution of the WAIT instruction. If the bus
is idle at the time the WAIT instruction reaches the M stage of the pipeline the internal clocks are suspended and
the pipeline is frozen. However, the internal timer and some of the input pins (SI_Int[5:0], SI_NMI, SI_Reset,

Sl_ColdReset, and EJ_DINT) continue to run. If the bus is not idle at the time the WAIT instruction reaches the

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Controlled Power Management

M stage, the pipeline stalls until the bus becomes idle, at which time the clocks are stopped. Once the CPU is
instruction controlled power management mode, any enabled interrupt, NMI, debug interrupt through EJ_DINT,
or reset condition causes the CPU to exit this mode and resume normal operation. While the part is in this
low-power mode, the SI_SLEEP signal is asserted to indicate to external agents what the state of the chip is.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 8-3

Chapter 8: Power Management

8-4 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Chapter 9

EJTAG Debug Support

The EJTAG debug logic in the MIPS32 4K™ processor cores provide two optional modules, one for hardware
breakpoints, and the other a Test Access Port (TAP) for a dedicated connection to a debug host.

This chapter contains the following sections.

e Section 9.1, "Debug Control Register"

e Section 9.2, "Hardware Breakpoints"

e Section 9.3, "Test Access Port Operation”

e Section 9.4, "Test Access Port (TAP) Instructions"

e Section 9.5, "EJTAG Registers"

e Section 9.6, "Processor Accesses"

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 9-1

Chapter 9: EJTAG Debug Support

9.1 Debug Control Register

9-2

The Debug Control Register (DCR) register controls and provides information about debug issues, and is always
provided with the CPU core. The register is memory mapped in drseg at offset 0x0.

The DataBrk and InstBrk bits indicates if hardware breakpoints are included in the implementation, and debug
software is expected to read hardware breakpoint registers for additional information.

Hardware and software interrupts are maskable for non-debug mode with the INTE bit, which works in addition
to the other mechanisms for interrupt masking and enabling. NMI is maskable in non-debug mode with the NMIE
bit, and a pending NMI is indicated through the NMIP bit.

The SRE bit allows implementation dependent masking of none, some or all sources for soft reset. The soft reset
masking may only be applied to a soft reset source, if that source can be efficiently masked in the system, thus
resulting on no reset at all. If that is not possible, then that soft reset source should not be masked, since a “half”
soft reset may cause the system to fail or hang. There is no automatic indication of whether the SRE is effective,
but the user must consult system documentation.

The PE bit reflects the ProbEn bit from the EJTAG Control register (ECR), whereby the probe can indicate to the
debug software running on the CPU if the probe expects to service dmseg accesses. The reset value in the table
below takes effect on both hard and soft reset.

Debug Control Register
3130 29 28 18 17 16 15 5 4 3 2 1 0

m

Res|EN|\/| Res | DEI! |B| Res | INTF NMIEt NMI|P SF{E P

Table 9-1 Debug Control Register Field Descriptions

Fields
Description \?ve?tld/ Reset State
Name Bit(s) rte
Res 31:30 reserved R 0
ENM 29 Endianess in Kernel and Debug mode R Preset
This bit indicates the endianess in Kernel and Debug
mode.
0: Little Endian
1: Big Endian
Res 28:18 reserved R 0

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Table 9-1

Debug Control Register Field Descriptiongcontinued)

Fields

Name

Bit(s)

Description

Read/
Write

Reset State

DB

17

Data Break Implemented
This bitindicates if the Data Break feature is implement

0: No Data Break feature implemented
1: Data Break feature is implemented

Preset

16

Instruction Break Implemented
This bit indicates if the Instruction Break feature is
implemented.

0: No Instruction Break feature implemented
1: Instruction Break feature is implemented

Preset

Res

5:15

reserved

INTE

Interrupt Enable in Normal Mode. This bit provides the
hardware and software interrupt enable for non-debug
mode, in addition to other masking mechanisms:

0: Interrupt disabled.
1: Interrupts enabled (depending on other enabling
mechanisms).

R/W

NMIE

Non-Maskable Interrupt Enable for non-debug mode

0: NMI disabled.
1: NMI enabled.

R/W

NMIP

NMI Pending Indication.

0: No NMI pending.
1: NMI pending.

SRE

Soft Reset Enable

This bit allows the system to mask soft resets. The co
does not internally mask soft reset. Rather the state of
bit appears on the EJ_SRSstE external output signal,
allowing the system to mask soft resets if desired.

R/W

his

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Chapter 9: EJTAG Debug Support

Table 9-1 Debug Control Register Field Descriptiongcontinued)

Fields
Description \Ijve?tld/ Reset State
Name Bit(s) re
PE 0 Probe Enable R Same value ag
This bit reflects the ProbEn bit in the EJTAG Control ProbEn in
register. ECR
0: No accesses to dmseg allowed (see Table
1: EJTAG probe services accesses to dmseg 9-23)

9.2 Hardware Breakpoints

9-4

9.2.1

Hardware breakpoints provide for the comparison by hardware of executed instructions and data load/store
transactions. Itis possible to set instruction breakpoints on addresses even in ROM area, and set data breakpoints
to cause a debug exception on a specific data transaction. Instruction and data hardware breakpoints are alike for
may aspects, and are thus described in parallel in the following. The term hardware is not applied to breakpoint,
unless required to distinguish it from software breakpoint.

There are two types of simple hardware breakpoints implemented in the 4K cores; Instruction breakpoints and
Data breakpoints.

Each core can be configured with the following breakpoint options:

* No data or instruction breakpoints

» Two instruction and one data breakpoint

* Four instruction and two data breakpoints

Features of Instruction Breakpoint

Instruction breaks occur on instruction fetch operations and the break is set on virtual address on the bus between
the CPU and the instruction cache. Instruction breaks can also be made on the ASID value used by the MMU.
Finally, a mask can be applied to the virtual address to set breakpoints on a range of instructions.

Instruction breakpoints compare the virtual address of the executed instructions (PC) and the ASID, with the

registers for each instruction breakpoint including masking of address and ASID. Overview is shown in
Figure 9-1.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Hardware Breakpoints

9.2.2

PC Debug Exception

— Instruction -
Hardware . .
ASID) Breakpoint Trigger Indication)

Figure 9-1 Instruction Hardware Breakpoint Overview

When a instruction breakpoint matches, a debug exception and/or a trigger is generated. An internal bit in the
instruction breakpoint registers is set to indicate that the match occurred.

Features of Data Breakpoint

Data breakpoints occur on load/store transactions. Breakpoints are set on virtual address and ASID values, simil:
to the Instruction breakpoint. Data breakpoints can be set on a load, a store or both. Data breakpoints can also
set based on the value of the load/store operation. Finally, masks can be applied to both the virtual address and tl
load/store value.

Data breakpoints compare the transaction type (TYPE), which may be load or store, the virtual address of the
transaction (ADDR), the ASID, accessed bytes (BYTELANE) and data value (DATA), with the registers for each
data breakpoint including masking or qualification on the transaction properties. An overview is shown in
Figure 9-2.

TYPE
—>

ADDR
—_— .
Debug Exception

ASID Data

—_— Hardware

BYTELANE Breakpoint
_BYTELANE |

DATA
—>

|
Trigger Indication >

Figure 9-2 Data Hardware Breakpoint Overview

When a data breakpoint matches, a debug exception and/or a trigger is generated, and an internal bit in the de
breakpoint registers is set to indicate that the match occurred. The match is either precise whereby the debug
exception or trigger occurs on the instruction that caused the breakpoint to match, or it is imprecise whereby the
debug exception or trigger occurs later in the program flow.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 9-5

Chapter 9: EJTAG Debug Support

9-6

9.2.3

9.2.4

Overview of Registers for Instruction Breakpoint
The register with implementation indication and status for instruction breakpoints in general is shown in Table 9-2.

Table 9-2 Overview of Status Register for Instruction Breakpoints

Register Mnemonic Register Name and Description

IBS Instruction Breakpoint Status

The four instruction breakpoints are numbered 0 to 3 for registers and breakpoints, and the number is indicated by
n. The registers for each breakpoint are shown in Figure 9-3

Table 9-3 Overview of Registers for each Instruction Breakpoint
Register Mnemonic Register Name and Description
IBAN Instruction Breakpoint Address n
IBMn Instruction Breakpoint Address Mask n
IBASIDn Instruction Breakpoint ASID n
IBCn Instruction Breakpoint Control n

Registers for Data Breakpoint Setup
The register with implementation indication and status for data breakpoints in general is shown in Table 9-4.

Table 9-4 Overview of Status Register for Data Breakpoints

Register Mnemonic Register Name and Description

DBS Data Breakpoint Status

The two data breakpoints are numbered 0 and 1 for registers and breakpoints, and the number is indicated by n.
The registers for each breakpoint are shown in Table 9-5.

Table 9-5 Overview of Registers for each Data Breakpoint

Register Mnemonic Register Name and Description

DBAN Data Breakpoint Address n

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Hardware Breakpoints

Table 9-5 Overview of Registers for each Data Breakpoint

Register Mnemonic Register Name and Description
DBMn Data Breakpoint Address Mask n
DBASIDn Data Breakpoint ASID n
DBCn Data Breakpoint Control n
DBVn Data Breakpoint Value n

9.2.5 Conditions for Matching Breakpoints

A number of conditions must be fulfilled in order for a breakpoint to match on an executed instruction or a data
transaction, and the conditions for matching instruction and data breakpoints are described below. The breakpoin
only matches for instructions executed in non-debug mode, thus never on instructions executed in debug mod

The match of an enabled breakpoint can either generate a debug exception or a trigger indication. The BE and/c
TE bits in the IBCn or DBCn registers are used to enable the breakpoints.

Debug software should not configure breakpoints to compare on ASID value, unless a TLB is present in the
implementation.

9.2.5.1 Conditions for Matching Instruction Breakpoint

When an instruction breakpoint is enabled, that breakpoint is evaluated for the address of every executed
instruction in non-debug mode, including execution of instructions at an address causing an address error on
instruction fetch. The breakpoint is not evaluated on instructions from speculative fetch or execution, nor for
addresses which are unaligned with an executed instruction.

Match of the breakpoint depends on the virtual address of the executed instruction (PC) which can be masked ¢
bit level, and match may also include optional compare of ASID value. The registers for each instruction
breakpoint has the values and mask used in the compare, and the equation that determines the match is show
below in C-like notation.

IB_match
('1BCn ASIDuse ” (ASID == IBASIDn ASID)) &&
(<all 1's> == (IBMn IBM I ~(PC"IBAN IBA))

The match indication for data breakpoints is always precise, i.e. indicated on the instruction causing the IB_matct
to be true.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 9-7

Chapter 9: EJTAG Debug Support

9-8

9.2.5.2 Conditions for Matching Data Breakpoints

When a data breakpoint is enabled, that breakpoint is evaluated for every data transaction due to a load/store
instruction executed in non-debug mode, including load/store for coprocessor, and transactions causing an address
error on data access. The breakpoint is not evaluated due to PREF instruction or other transactions which are not
part of explicit load/store transactions in the execution flow, nor for addresses which are not the explicit load/store
source or destination address.

Match of the breakpoint depends on the transaction type (TYPE) as load or store, the address, and optionally the
data value of a transaction. The registers for each data breakpoint has the values and mask used in the compare,
and the equations that determines the match is shown below in C-like notation.

The overall match equation is the DB_match.

DB_match =
(((TYPE ==load) && ! DBCn NotB) Il ((TYPE == store) && ! DBCn NosB)) &&
DB_addr_match && (DB_no_value_compare || DB_value_match)

Match on the address part, DB_addr_match, depends on virtual address of the transaction (ADDR), the ASID
value, and the accessed bytes (BYTELANE) where BYTELANE[O] is 1 only if the byte at bits [7:0] on the busis
accessed, and BYTELANE[1]is 1 only if byte at bits [15:8] is accessed, etc. The DB_addr_match is shown below.

DB_addr_match =
('DBCn ASIDuse ” (AS'D ==DBASIDn ASID)) &&
(<all 1's>==(DBMn oev ~(ADDRADBAN pgp))) &
(<all 0's> 1= (~ BAI & BYTELANE))

The size of DBCgp, and BYTELANE is 4 bits.

Data value compare is included in the match condition for the data breakpoint depending on the bytes
(BYTELANE as described above) accessed by the transaction, and the contents of breakpoint registers. The
DB_no_value_compare is shown below.

DB_no_value_compare =
(<all I's>==(DBCn BLMI DBCn BAI I ~BYTELANE))
The size of DBCp|)y, DBCrgp and BYTELANE is 4 bits.

In case data value compare is required, DB_no_value_compare is false, then the data value from the data bus
(DATA) is compared and masked with the registers for the data breakpoint. The endianess is not considered in
these match equations for value, as the compare uses the data bus value directly, thus debug software is responsible
for setup of the breakpoint corresponding with endianess.

DB_value_match =

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Hardware Breakpoints

9.2.6

((DATA[7:0]==DBVn DBV[7:0]) ” I BYTELANE[O] ” DBCn BLM[O] ” DBCn BAIO]) &&
((DATA[15:8] ==DBVn peviis:g)) Il BYTELANE[1] || DBCn vy IIDBCn papyy) &&
((DATA[23:16] == DBVn peviea:16]) | BYTELANE[Z] || DBCn v IIDBCN gy) &&
((DATA[3L:24]==DBVn peviaL24]) I BYTELANE[3] || DBCn B IIDBCN gaps)

The match for a data breakpoint is always precise, since the match expression is fully evaluated at the time the
load/store instruction is executed. A true DB_match can thereby be indicated on the very same instruction causin
the DB_match to be true.

Debug Exceptions from Breakpoints

Instruction and data breakpoints may be setup to generate a debug exception when the match condition is true,
described below.

9.2.6.1 Debug Exception by Instruction Breakpoint

If the breakpoint is enabled by BE in the IBCn register, then a debug instruction break exception occurs if the
IB_match equation is true. The corresponding BS[n] bit in the IBS register is set when the breakpoint generate
the debug exception.

The debug instruction break exception is always precise, so the DEPC register and DBD bit in the Debug registe
points to the instruction that caused the IB_match equation to be true.

The instruction receiving the debug exception does not update any registers due to the instruction, nor does ar
load or store by that instruction occur. Thus a debug exception from a data breakpoint can not occur for
instructions receiving a debug instruction break exception.

The debug handler usually returns to the instruction causing the debug instruction break exception, whereby tt

instruction is executed. Debug software is responsible for disabling the breakpoint when returning to the
instruction, otherwise the debug instruction break exception reoccurs.

9.2.6.2 Debug Exception by Data Breakpoint

If the breakpoint is enabled by BE in the DBCn register, then a debug exception occurs when the DB_match
condition is true. The corresponding BS[n] bit in the DBS register is set when the breakpoint generates the debu
exception.

A debug data break exception occurs when a data breakpoint indicates a match. In this case the DEPC register a
DBD bit in the Debug register points to the instruction that caused the DB_match equation to be true.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 9-9

Chapter 9: EJTAG Debug Support

9-10

9.2.7

The instruction causing the debug data break exception does not update any registers due to the instruction, and
the following applies to the load or store transaction causing the debug exception:

* A store transaction is not allowed to complete the store to the memory system.

» Aload transaction with no data value compare, i.e. where the DB_no_value_compare is true for the match,
is not allowed to complete the load.

» Aload transaction for a breakpoint with data value compare must occur from the memory system, since the
value is required in order to evaluate the breakpoint.

The result of this is that the load or store instruction causing the debug data break exception appears as not
executed, with the exception that a load from the memory system do occur for a breakpoint with data value
compare, but the result of this load is discarded since the register file is not updated by the load.

If both data breakpoints without and with data value compare would match the same transaction and generate a
debug exception, then the following rules apply with respect to updating the BS[n] bits.

* Onboth aload and store the BS[n] bits are required to be set for all matching breakpoints without data value
compare.

» Onastore then BS[n] bits are allowed but not required to be set for all matching breakpoints with data value
compare, but either all or none of the BS[n] bits must be set for these breakpoints.

* On aload then no of the BS[n] bits are allowed to be set, since the load is not allowed to occur due to the
debug exception from a breakpoint without data value compare, and a valid data value is therefore not
returned.

Any BS[n] bit set prior to the match and debug exception are kept set, since BS[n] bits are only cleared by debug
software.

The debug handler usually returns to the instruction causing the debug data break exception, whereby the
instruction is re-executed. This re-execution may result in a repeated load from system memory, since the load
may have occurred previously in order to evaluate the breakpoint as described above. I/O devices with side effects
on load must be able to allow such reloads, or debug software should alternatively avoid setting data breakpoint
with data value compare on such I/O devices. Debug software is responsible for disabling breakpoints when
returning to the instruction, otherwise the debug data break exception will reoccur.

Breakpoint used as Triggerpoint

Both instruction and data hardware breakpoints may be setup by software so a matching breakpoint does not
generate a debug exception, but only an indications through the BS[n] bit. The TE bitin the IBCn or DBCn register

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Hardware Breakpoints

controls if a instruction respectively data breakpoint is used as a so-called triggerpoint. The triggerpoints are, like
breakpoints, only compared for instructions executed in non-debug mode.

The BS[n] bit in the IBS or DBS register is set when the respective IB_match or DB_match bit is true.

9.2.8 Instruction Breakpoint Registers

The registers for instruction breakpoints are described below. These registers have implementation informatior
and are used for setup the instruction breakpoints. All registers are in drseg, and the addresses are shown in sect
Table 9-6.

Table 9-6 Addresses for Instruction Breakpoint Registers

Offset in drseg Mii?rifgsirc Register Name and Description
0x1000 IBS Instruction Breakpoint Status
0x1100 + n * 0x100 IBAN Instruction Breakpoint Address n
0x1108 + n * 0x100 IBMn Instruction Breakpoint Address Mask n
0x1110 + n * 0x100 IBASIDn Instruction Breakpoint ASID n
0x1118 + n * 0x100 IBCn Instruction Breakpoint Control n
n is breakpoint number in range O to 3

An example of some of the registers; IBAO is at offset 0x1100 and IBC2 is at offset 0x1318.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 9-11

Chapter 9: EJTAG Debug Support

9.2.8.1 Instruction Breakpoint Status (IBS) Register
Compliance Level:Implemented only if any instruction breakpoints.

The Instruction Breakpoint Status (IBS) register holds implementation and status information about the
instruction breakpoints.

The ASIDsup applies to all the instruction breakpoints.

IBS Register Format
31 30 29 2827 24 23 4 3 0

Res} AS|D| Res| BCN Res BS

Table 9-7 IBS Register Field Descriptions

Fields R
o ead/
Description Writ Reset State
Name Bit(s) nee
Res 31 Must be written as zero; returns zero on read. D 0
ASID 30 Indicates that ASID compare is supported ininstruction R 4Kc core- 1
breakpoints. 4Km/ 4Kp cores O
Res 29:28 Must be written as zero; returns zero on read. D 0
BCN 27:24 Number of instruction breakpoints implemented R 4
Res 23:4 Must be written as zero; returns zero on read. D 0
BS 3:0 Break status for breakpoint n is at BS[n], with n as Ojto R/W Undefined
3. The bit is set to 1 when the condition for the
corresponding breakpoint has matched.

9-12 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Hardware Breakpoints

9.2.8.2 Instruction Breakpoint Address n (IBAn) Register
Compliance Level:Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Address n (IBAn) register has the address used in the condition for instruction
breakpoint n

IBAN Register Format
31 0

IBA

Table 9-8 IBAn Register Field Descriptions

Fields
Description \Ffve.é,:d/ Reset State
Name Bit(s) ree
IBA 31.0 Instruction breakpoint address for condition RM Undefined

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 9-13

Chapter 9: EJTAG Debug Support

9.2.8.3 Instruction Breakpoint Address Mask n (IBMn) Register
Compliance Level:Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Address Mask n (IBMn) register has the mask for address compare used in the
condition for instruction breakpoint n.

IBMn Register Format
31 0
IBM

Table 9-9 IBMn Register Field Descriptions

Fields
Description \F/Qve_e:d/ Reset State
Name Bit(s) ree
IBM 31.0 Instruction breakpoint address mask for conditiopn: R/W Undefined

0: Corresponding address bit not masked
1: Corresponding address bit masked

9-14 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Hardware Breakpoints

9.2.8.4 Instruction Breakpoint ASID n (IBASIDn) Register
Compliance Level:Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint ASID n (IBASIDn) register has the ASID value used in the compare for instruction
breakpoint n. The number of bits in the ASID field is 8, to match the ASID size in the TLB. This register is only
valid for the 4Kc core.

IBASIDn Register Format
31 8 7 0
Res ASID

Table 9-10 IBASIDn Register Field Descriptions

Fields
Description \Ffve.étld/ Reset State
Name Bit(s) ree
Res 318 Must be written as zero; returns zero on read. 0 0
ASID 7:0 Instruction breakpoint ASID value for compare: R/W Undefined

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 9-15

Chapter 9: EJTAG Debug Support

9.2.8.5 Instruction Breakpoint Control n (IBCn) Register

Compliance Level:Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Control n (IBCn) register controls setup of instruction breakpoint n.

IBCn Register Format

31 24 23 22 3 210
Res | Asig Res | TERpsH
Table 9-11 IBCn Register Field Descriptions
Fields
Description Read/Write Reset State
Name Bits
Res 31:24 Must be written as zero; returns zero on read. 0 0
ASID 23 Use ASID value in compare for instruction breakpoint4Kc core- R/W Undefined
n: 4Km/4Kp
0: Don’t use ASID value in compare cores -0
1: Use ASID value in compare
Res 22:3 Must be written as zero; returns zero on read. 0 0
TE 2 Use instruction breakpoint n as triggerpoint: R/W 0
0: Don't use it as triggerpoint
1: Use it as triggerpoint
Res 1 Must be written as zero; returns zero on read. 0 0
BE 0 Use instruction breakpoint n as breakpoint: R/W 0
0: Don’t use it as breakpoint
1: Use it as breakpoint

9-16

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Hardware Breakpoints

9.2.9 Data Breakpoint Registers

The registers for data breakpoints are described below. These registers have implementation information and a
used for setup the data breakpoints. All registers are in drseg, and the addresses are shown in section Table 9

Table 9-12 Addresses for Data Breakpoint Registers

Offset in drseg MF::Z?;S;(;:C Register Name and Description
0x2000 DBS Data Breakpoint Status
0x2100 + 0x100 * n DBAN Data Breakpoint Address n
0x2108 + 0x100 * n DBMn Data Breakpoint Address Mask n
0x2110 + 0x100 * n DBASIDn Data Breakpoint ASID n
0x2118 + 0x100 * n DBCn Data Breakpoint Control n
0x2120 + 0x100 * n DBVn Data Breakpoint Value n
n is breakpoint number as 0 or 1

An example of some of the registers; DBMO is at offset 0x2108 and DBV1 is at offset 0x2220.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 9-17

Chapter 9: EJTAG Debug Support

9.2.9.1 Data Breakpoint Status (DBS) Register
Compliance Level:Implemented only if any data breakpoints.

The Data Breakpoint Status (DBS) register holds implementation and status information about the instruction
breakpoints.

The ASID applies to all the data breakpoints.

DBS Register Format
31 30 29 2827 24 23 210

Res} AS|D| Res| BCN Res BY

Table 9-13 DBS Register Field Descriptions

Fields R
o ead/
Description Writ Reset State
Name Bit(s) nee
Res 31 Must be written as zero; returns zero on read. D 0
ASID 30 Indicates that ASID compare is supported ininstruction R 4Kc core - 1
breakpoints. 4Km/4Kp cores - 0
Res 29:28 Must be written as zero; returns zero on read. D 0
BCN 27:24 Number of instruction breakpoints implemented R 2
Res 23:2 Must be written as zero; returns zero on read. D 0
BS 1:0 Break status for breakpoint n is at BS[n], with n as 0[to R/WO Undefined
3. The bit is set to 1 when the condition for the
corresponding breakpoint has matched.

9-18 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Hardware Breakpoints

9.2.9.2 Data Breakpoint Address n (DBAnN) Register
Compliance Level:Implemented only for implemented data breakpoints.
The Data Breakpoint Address n (DBAn) register has the address used in the condition for data breakpoint n.

DBAnN Register Format
31 0

DBA

Table 9-14 DBAnN Register Field Descriptions

Fields
Description \Ffve.é,:d/ Reset State
Name Bit(s) ree
DBA 31.0 Data breakpoint address for condition RM Undefined

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 9-19

Chapter 9: EJTAG Debug Support

9.2.9.3 Data Breakpoint Address Mask n (DBMn) Register
Compliance Level:Implemented only for implemented data breakpoints.

The Data Breakpoint Address Mask n (DBMn) register has the mask for address compare used in the condition
for data breakpoint n.

DBMn Register Format
31 0
DBM

Table 9-15 DBMn Register Field Descriptions

Fields
Description @eid/ Reset State
Name Bit(s) re
DBM 31:0 Data breakpoint address mask for condition: R/W Undefined

0: Corresponding address bit not masked
1: Corresponding address bit masked

9-20 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Hardware Breakpoints

9.2.9.4 Data Breakpoint ASID n (DBASIDn) Register

Compliance Level:Implemented only for implemented data breakpoints.

The Data Breakpoint ASID n (DBASIDn) register has the ASID value used in the compare for data breakpoint n.
This register is only valid in the 4Kc core.

DBASIDn Register Format
31 8 7 0

Res ASID

Table 9-16 DBASIDnN Register Field Descriptions

Fields
Description @eid/ Reset State
Name Bit(s) ree
Res 318 Must be written as zero; returns zero on read. D 0
ASID 7:0 Data breakpoint ASID value for compare: R/W Undefined

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 9-21

Chapter 9: EJTAG Debug Support

9-22

9.2.9.5 Data Breakpoint Control n (DBCn) Register

Compliance Level:Implemented only for implemented data breakpoints.

The Data Breakpoint Control n (DBCn) register controls setup of data breakpoint n.

DBCn Register Format

31 24 23 22 18 17 14 13 12 11

8 7 4 3 2 1 0

Re

|A8|q Res | BAI |NoS|{3NoL13 Res|

BLM | R+s TE qes BE

Table 9-17 DBCn Register Field Descriptions

Fields

Name Bits

Description

Read/Write

Reset State

Res 31:24

Must be written as zero; returns zero on read.

0

0

ASID 23

Use ASID value in compare for data breakpoint n:
0: Don't use ASID value in compare
1: Use ASID value in compare

4Kc core - R/IW

4Km/4Kp cores
-0

Undefined

Res 22:18

Must be written as zero; returns zero on read

0

BAI 17:14

Byte access ignore controls ignore of access to spe
byte. BAI[0] ignores access to byte at bits [7:0] of th
data bus, BAI[1] ignores access to byte at bits [15:§
etc.:

]

)

tific R/IW
e

0: Condition depends on access to corresponding byte

1: Access for corresponding byte is ignored

Undefined

NoSB 13

Controls if condition for data breakpoint is never
fulfilled on a store transaction:

0: Condition may be fulfilled on store transaction
1: Condition is never fulfilled on store transaction

R/W

Undefined

NoLB 12

Controls if condition for data breakpoint is never
fulfilled on a load transaction:

0: Condition may be fulfilled on load transaction
1: Condition is never fulfilled on load transaction

R/W

Undefined

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Hardware Breakpoints

Table 9-17 DBCn Register Field Descriptions
Fields
Description Read/Write Reset State
Name Bits
Res 11:8 Must be written as zero; returns zero on read 0 0
BLM 74 Byte lane mask for value compare on data breakpgint. R/W Undefined
BLM[O] masks byte at bits [7:0] of the data bus,
BLM[1] masks byte at bits [15:8], etc.:
0: Compare corresponding byte lane
1: Mask corresponding byte lane
Res 3 Must be written as zero; returns zero on read. 0 0
TE 2 Use data breakpoint n as triggerpoint: R/W 0
0: Don't use it as triggerpoint
1: Use it as triggerpoint
Res 1 Must be written as zero; returns zero on read. 0 0
BE 0 Use data breakpoint n as breakpoint: R/W 0
0: Don't use it as breakpoint
1: Use it as breakpoint
MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 9-23

Chapter 9: EJTAG Debug Support

9.2.9.6 Data Breakpoint Value n (DBVn) Register
Compliance Level:Implemented only for implemented data breakpoints.
The Data Breakpoint Value n (DBVn) register has the value used in the condition for data breakpoint n.

DBVn Register Format
31 0

DBV

Table 9-18 DBVn Register Field Descriptions

Fields
Description \I/?Ve?d/ Reset State
Name Bit(s) ne
DBV 31:0 Data breakpoint value for condition R/W Undefined

9-24 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Hardware Breakpoints

9.2.10 Test Access Port (TAP)

The following main features are supported by the TAP module:

e 5-pin industry standard JTAG Test Access Port (TCK, TMS, TDI, TDO, TRST_N) interface which are
compatible with IEEE Std. 1149.1.

e Target chip and EJTAG feature identification available through the Test Access Port (TAP) controller.

e The processor can access external memory on the EJTAG Probe serially through the EJTAG pins. This is
achieved through so-called Processor Access (PA), and is used to eliminate the use of the user’s system
memory for debug routines.

e Support for both ROM based debugger and debugging both through TAP.

9.2.11 EJTAG Internal and External Interfaces

The external interface of the EJTAG Module consists of the 5 signals defined by the IEEE standard.

Table 9-19 EJTAG Interface Pins

Pin Type Description

TCK | Test Clock Input

Input clock used to shift data into or out of the Instruction or data
registers. The TCK clock is independent of the processor clock, so the
EJTAG probe can drive TCK independently of the processor clock
frequency.

The core signal for this is called EJ_TCK

TMS Test Mode Select Input

The TMS input signal is decoded by the TAP controller to control test
operation. TMS is sampled on the rising edge of TCK.

The core signal for this is called EJ_TMS

TDI | Test Data Input

Serial input data (TDI) is shifted into the Instruction register or data
registers on the rising edge of the TCK clock, depending on the TAP
controller state.

The core signal for this is called EJ_TDI

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 9-25

Chapter 9: EJTAG Debug Support

9.3 Test Access Port Operation

9-26

Table 9-19

EJTAG Interface Pins (continued)

Pin

Type

Description

TDO

0]

Test Data Output

Serial output data is shifted from the Instruction or data register to {
TDO pin at the falling edge of the TCK clock. When no data is shift
out, the TDO is tri-stated.

The core signal for this is called EJ_TDO with output enable contro
EJ_TDOgzstate.

he
od

by

TRST_N

Test Reset Input (Optional pin)

The TRST_N pin is an active-low signal for asynchronous reset of
TAP controller and instruction in the TAP module, independent of th
processor logic. The processor is not reset by the assertion of TRS
The core signal for this is called EJ_TRST_N

This signal is optional, but power-on reset must apply a low pulse on
is signal at power-on and then leave it high, in case the signal is no
available as a pin on the chip. If available on the chip, then it must be

he

T N.

this
[
low

on the board when the EJTAG debug features are unused by the p

obe.

The TAP controller is controlled by the Test Clock (TCK) and Test Mode Select (TMS) inputs. These two inputs
determine whether an the Instruction register scan or data register scan is performed. The TAP consists of a small
controller, driven by the TCK input, which responds to the TMS input as shown in the state diagram in Figure 9-3.
The TAP uses both clock edges of TCK. TMS and TDI are sampled on the rising edge of TCK, while TDO
changes on the falling edge of TCK.

At power-up the TAP is forced into tAest-Logic-Resetdither by low value on TRST_N. The TAP instruction
register is thereby reset to IDCODE. No other parts of the EJTAG hardware are reset throlegtthegic-Reset

state.

When test access is required, a protocol is applied via the TMS and TCK inputs, causing the TAP to exit the
Test-Logic-Resedtate and move through the appropriate states. FroRuthdest/Idlestate, an Instruction

register scan or a data register scan can be issued to transition the TAP through the appropriate states shown in
Figure 9-3.

The states of the data and instruction register scan blocks are mirror images of each other adding symmetry to the
protocol sequences. The first action that occurs when either block is entered is a capture operation. For the data

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Test Access Port Operation

registers, th€apture-DRstate is used to capture (or parallel load) the data into the selected serial data path. In
the Instruction register, tHéapture-IRstate is used to capture status information into the Instruction register.

From the Capture states, the TAP transitions to either the Shift or Exit1 states. Normally the Shift state follows the
Capture state so that test data or status information can be shifted out for inspection and new data shifted in.
Following the Shift state, the TAP either returns to Bumn-Test/Idlestate via the Exitl and Update states or enters

the Pause state via Exitl. The reason for entering the Pause state is to temporarily suspend the shifting of dat:
through either the Data or Instruction Register while a required operation, such as refilling a host memory buffer,
is performed. From the Pause state shifting can resume by re-entering the Shift state via the Exit2 state or
terminated by entering tHeun-Test/Idlestate via the Exit2 and Update states.

Upon entering the data or Instruction register scan blocks, shadow latches in the selected scan path are forced
hold their present state during the Capture and Shift operations. The data being shifted into the selected scan pa
is not output through the shadow latch until the TAP enters the Update-DR or Update-IR state. The Update state
causes the shadow latches to update (or parallel load) with the new data that has been shifted into the selected sc
path.

Select_IR_Sca
0
Capture_IR

0

4

Figure 9-3 TAP Controller State diagram

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 9-27

Chapter 9: EJTAG Debug Support

9-28

9.3.1

9.3.2

9.3.3

9.3.4

9.3.5

Test-Logic-Reset State

In theTest-Logic-Resedtate the boundary scan test logic is disabled. The test logic entéestii®gic-Reset

state when the TMS input is held HIGH for at least five rising edges of TCK. The BYPASS instruction is forced
into the instruction register output latches during this state. The controller remainsTigstheogic-Resettate as

long as TMS is HIGH.

Run-Test/Idle State

The controller enters thRun-Test/Idlestate between scan operations. The controller remains in this state as long
as TMS is held LOW. The instruction register and all test data registers retain their previous state. The instruction
cannot change when the TAP controller is in this state.

When TMS is sampled HIGH at the rising edge of TCK, the controller transitions $elhet DRstate.

Select_ DR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction retain their
previous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitionCiptiiee_ DR

state. A HIGH on TMS causes the controller to transition t&#lect_|IRstate. The instruction cannot change

while the TAP controller is in this state.

Select_IR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction retain their
previous state. If TMS is sampled LOW at the rising edge of TCK, the controller transition<eptihee IR

state. A HIGH on TMS causes the controller to transition td#¢ise-Reset-Logistate. The instruction cannot

change while the TAP controller is in this state.

Capture_DR State

In this state the boundary scan register captures value of the register addressed by the Instruction register, and the
value is then shifted out in ti&hift DR If TMS is sampled LOW at the rising edge of TCK, the controller

transitions to th&hift DRstate. A HIGH on TMS causes the controller to transition t&#id DRstate. The
instruction cannot change while the TAP controller is in this state.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Test Access Port Operation

9.3.6

9.3.7

9.3.8

9.3.9

Shift DR State

In this state the test data register connected between TDI and TDO as a result of the current instruction shifts dat
one stage toward its serial output on the rising edge of TCK. If TMS is sampled LOW at the rising edge of TCK,
the controller remains in thghift DRstate. A HIGH on TMS causes the controller to transition toEki#l DR

state. The instruction cannot change while the TAP controller is in this state.

Exitl DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain thei
previous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitionsRaulse DFRtate.

A HIGH on TMS causes the controller to transition to ygdate_ DRstate which terminates the scanning process.
The instruction cannot change while the TAP controller is in this state.

Pause_DR State

The Pause_DR state allows the controller to temporarily halt the shifting of data through the test data register i
the serial path between TDI and TDO. All test data registers selected by the current instruction retain their
previous state. If TMS is sampled LOW at the rising edge of TCK, the controller remainsRatise_DFRstate.

A HIGH on TMS causes the controller to transition to the EXiiR state. The instruction cannot change while

the TAP controller is in this state.

Exit2_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain thei
previous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitions$hifhieDRstate
to allow another serial shift of data. A HIGH on TMS causes the controller to transitionipdhte DRstate
which terminates the scanning process. The instruction cannot change while the TAP controller is in this state.

9.3.10 Update DR State

When the TAP controller is in this state the value shifted in duringsthi& DRstate takes effect at the rising edge
of the TCK for the register indicated by the Instruction register.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions tdriine-Test/Id|estate. A HIGH
on TMS causes the controller to transition to 8elect DR_Scastate. The instruction cannot change while the

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 9-29

Chapter 9: EJTAG Debug Support

TAP controller is in this state and all shift register stages in the test data registers selected by the current instruction
retain their previous state.

9.3.11 Capture_IR State

In this state the shift register contained in the Instruction register loads a fixed pattern{0@9@ie rising edge
of TCK. The data registers selected by the current instruction retain their previous state.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions t8Hifie IRstate. A HIGH on
TMS causes the controller to transition to Ehétl IRstate. The instruction cannot change while the TAP
controller is in this state.

9.3.12 Shift_IR State

In this state the instruction register is connected between TDI and TDO and shifts data one stage toward its serial
output on the rising edge of TCK. If TMS is sampled LOW at the rising edge of TCK, the controller remains in
the Shift_IRstate. A HIGH on TMS causes the controller to transition t&iitd IR state.

9.3.13 Exitl IR State

This is a temporary controller state in which all registers retain their previous state. If TMS is sampled LOW at
the rising edge of TCK, the controller transitions to Bause_|Rstate. A HIGH on TMS causes the controller to
transition to theJpdate_IRstate which terminates the scanning process. The instruction cannot change while the
TAP controller is in this state and the instruction register retains its previous state.

9.3.14 Pause IR State

ThePause_IRstate allows the controller to temporarily halt the shifting of data through the instruction register in
the serial path between TDI and TDO. If TMS is sampled LOW at the rising edge of TCK, the controller remains
in thePause_IRstate. A HIGH on TMS causes the controller to transition to the HRit®ate. The instruction
cannot change while the TAP controller is in this state.

9-30 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Test Access Port (TAP) Instructions

9.3.15 Exit2_IR State

This is a temporary controller state in which the instruction register retains its previous state. If TMS is sampled
LOW at the rising edge of TCK, the controller transitions to 8feft |IRstate to allow another serial shift of data.

A HIGH on TMS causes the controller to transition to thedate IRstate which terminates the scanning process.
The instruction cannot change while the TAP controller is in this state.

9.3.16 Update IR State
The instruction shifted into the instruction register takes effect on the rising edge of TCK.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions tdrilne-Test/Id|estate. A HIGH
on TMS causes the controller to transition to$leéect DR_Scastate.

9.4 Test Access Port (TAP) Instructions

The TAP Instruction register allows instructions to be serially input into the device when TAP controller is in the
Shift-IR state. Instructions are decoded and define the serial test data register path that is used to shift data betwe
TDI and TDO during data register scanning.

The Instruction register is a 5-bit register. In the current EJTAG implementation only some instructions have been
decoded; the unused instructions are set default to the BYPASS instruction.

Table 9-20 Implemented EJTAG instructions

Value Instruction Function

0x01 IDCODE Select Chip Identification data register

0x03 IMPCODE Select Implementation Register

0x08 ADDRESS Select Address register

0x09 DATA Select Data register

O0x0A CONTROL Select EJTAG Control register

0x0B ALL Select the Address, Data and EJTAG Control registers
0x0C EJTAGBOOT Set EjtagBrk, ProbEn and ProbTrap to 1 as reset value

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 9-31

Chapter 9: EJTAG Debug Support

Table 9-20 Implemented EJTAG instructions

Value Instruction Function
0x0D NORMALBOOT Set EjtagBrk, ProbEn and ProbTrap to O as reset value
Ox1F BYPASS Bypass mode

9.4.1 BYPASS Instruction

The required BYPASS instruction allows the processor to remain in a functional mode and selects the Bypass
register to be connected between TDI and TDO. The BYPASS instruction allows serial data to be transferred

through the processor from TDI to TDO without affecting its operation. The bit code of this instruction is defined

to be all ones by the IEEE 1149.1 standard. Any unused instruction is defaulted to the BYPASS instruction.

9.4.2 IDCODE Instruction
The IDCODE instruction allows the processor in its functional mode and selects the Device Identification (ID)
register to be connected between TDI and TDO. The Device ID register is a 32- bit shift register containing
information regarding the IC manufacturer, device type, and version code. Accessing the Identification Register
does not interfere with the operation of the processor. Also, access to the Identification Register is immediately
available, via a TAP data scan operation, after power-up when the TAP has been reset with on-chip power-on or
through the optional TRST_N pin.

9.4.3 IMPCODE Instruction

This instruction selects the Implementation register for output, which is always 32 bit.

9.4.4 ADDRESS Instruction

This instruction is used to select the Address register to be connected between TDI and TDO. The EJTAG Probe
shifts 32-bits through the TDI pin into the Address register and shifts out the captured address via the TDO pin.

9-32 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Test Access Port (TAP) Instructions

9.4.5

9.4.6

9.4.7

9.4.8

DATA Instruction

This instruction is used to select the Data register to be connected between TDI and TDO. The EJTAG Probe shift
32-bits of TDI data into the Data register and shifts out the captured data via the TDO pin.

CONTROL Instruction

This instruction is used to select the EJTAG Control register to be connected between TDI and TDO. The EJTAG
Probe shifts 32- bits of TDI data into the EJTAG Control register and shifts out the EJTAG Control register bits
via TDO.

ALL Instruction

This instruction is used to select the concatenation of the Address and Data register, and the EJTAG Control

register between TDl and TDO. It can be used in particular if switching instructions in the instruction register takes
too many TCK cycles. The first bit shifted out is bit O.

DI _>| Address q_‘

___p| Data q_‘
\—H EJTAG Control 0L TpO

Figure 9-4 Concatenation of the EJTAG Address, Data and Control Registers

EJTAGBOOT Instruction

When the EJTAGBOOQT instruction is given and Update-IR state is left, then the reset value of the ProbTrap,
ProbEn and EjtagBrk bits in the EJTAG Control register are set to 1 after hard or soft reset.

This EJTAGBOOT indication is effective until NORMALBOOQOT instruction is given, TRST_N is asserted or rising
edge of TCK occurs when TAP controller is in Test-Logic-Reset state.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 9-33

Chapter 9: EJTAG Debug Support

9.4.9

It is thereby possible to make the CPU go into debug mode just after hard or soft reset, without fetching or
executing any instructions from the normal memory area. This can be used for download of code to a system which
have no code in ROM.

The Bypass register is selected when the EJTAGBOOQOT instruction is given.

NORMALBOOT Instruction

When the NORMALBOOT instruction is given and Update-IR state is left, then the reset value of the ProbTrap,
ProbEn and EjtagBrk bits in the EJTAG Control register are set to 0 after hard or soft reset.

The Bypass register is selected when the NORMALBOQOT instruction is given.

9.5 EJTAG Registers

9-34

951

The EJTAG TAP Module has the following registers accessible through the TAP:
e Instruction Register

« Data Registers Overview

e Bypass Register

» Deuvice Identification Register

e Implementation Register

e EJTAG Control Register (ECR)

e Processor Access Address Register

e Processor Access Data Register

Instruction Register

The Instruction register is accessed when the TAP receives an Instruction register scan protocol. During an
Instruction register scan operation the TAP controller selects the output of the Instruction register to drive the TDO
pin. The shift register consists of a series of bits arranged to form a single scan path between TDIl and TDO. During
an Instruction register scan operations, the TAP controls the register to capture status information and shift data
from TDI to TDO. Both the capture and shift operations occur on the rising edge of TCK. However, the data
shifted out from the TDO occurs on the falling edge of TCK. In the Test-Logic-Reset and Capture-IR state, the

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

EJTAG Registers

9.5.2

9.5.3

9.54

instruction shift register is set to 00@0&s for IDCODE instruction. This forces the device into the functional
mode and selects the Device ID register. The Instruction register is 5 bits wide. The instruction shifted in takes
effect for the following data register scan operation.

Data Registers Overview

The EJTAG uses several data registers, which are arranged in parallel from the primary TDI input to the primary
TDO output. The Instruction register supplies the address that allows one of the data registers to be accessed
during a data register scan operation. During a data register scan operation, the addressed scan register recei
TAP control signals to capture the register and shift data from TDI to TDO. During a data register scan operation,
the TAP selects the output of the data register to drive the TDO pin. The register is updated in the Update-DR stat
with respect to write bits.

This description applies in general to the following data registers.

Bypass Register

TheBypasgegister consists of a single scan register bit. When selected, the Bypass register provides a single bi
scan path between TDI and TDO. The Bypass register allows abbreviating the scan path through devices that al
not involved in the test. The Bypass register is selected when the Instruction register is loaded with a pattern of al
ones to satisfy the IEEE 1149.1 Bypass instruction requirement.

Device Identification (ID) Register

TheDevice Identificatiomegister is defined by IEEE 1149.1, to identify the device's manufacturer, part number,
revision, and other device-specific information. Table 9-21 shows the bit assignments defined for the read-only
Device Identification Register, and inputs to the core determine the value of these bits. These bits can be scanne
out of the ID register after being selected. The register is selected when the Instruction register is loaded with the
IDCODE instruction.

Table 9-21 Device Identification Register

Bit(s) | Mnemonic Description R/W Reset

31:28 Version Version (4 bits) R EJ_Version[3:0]
This field identifies the version number of the
processor derivative.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 9-35

Chapter 9: EJTAG Debug Support

Table 9-21 Device Identification Register

Bit(s) | Mnemonic Description R/W Reset
27:12 PartNumber | Part Number (16 bits) R EJ_PartNumber[15:0]
This field identifies the part number of the procesgor
derivative.
11:1 ManuflD Manufacturer Identity (11 bits) R EJ_ManuflD[10:0]

Accordingly to IEEE 1149.1-1990, the manufacturer
identity code shall be a compressed form of the
JEDEC Publications 106-A.

0 reserved reserved R 1

9-36 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

EJTAG Registers

9.5.5 Implementation Register

This 32-bit read-only register is used to identify the features of the EJTAG implementation. Some of the reset
value are set by inputs to the core.The register is selected when the Instruction register is loaded with the
IMPCODE instruction.

Table 9-22 Implementation Register Descriptions

Fields
Description svef”tld/ Reset State
Name Bit(s) ne

EJTAGver 31:29 EJTAG Version R 1
reserved 28:25 reserved R 0
DINTsup 24 DINT Signal Supported from Probe R EJ_DINTsup

This bit indicates if the DINT signal from the probe is

supported:

0: DINT signal from the probe is not supported
1: Probe can use DINT signal to make debug interrupt.

ASIDsize 23:21 Size of ASID field in implementation R See description
This is determined by the EJ_ASIDused signal to the
core.
No ASID in implementation: EJ_ASIDused should he
setto 0.

8-bit ASID in implementation: EJ_ASIDused should
be setto 1.

reserved 20:15 reserved R 0

NoDMA 14 No EJTAG DMA Support R 1

reserved 13:0 reserved R 0

9.5.6 EJTAG Control Register

This 32-hit register controls the various operations of the TAP modules. This register is selected by shifting in the
CONTROL instruction. Bits in the EJTAG Control register can be set/cleared by shifting in data; status is read by
shifting out the contents of this register. This EJTAG Control register can only be accessed by the TAP interfac

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 9-37

Chapter 9: EJTAG Debug Support

9-38

The EJTAG Control register is not updated in the Update-DR state unless the Reset occurred (Rocc), bit 31, is

either O or written to 0. This is in order to ensure prober handling of processor accesses.

The value used for reset indicated in the table below takes effect on both hard and soft CPU reset, but no on TAP
controller reset by e.g. TRST_N. TCK clock is not required when the hard or soft CPU reset occurs, but the bits
are still updated to the reset value when the TCK applies. The first 5 TCK clocks after hard or soft CPU reset may

result in reset of the bits, due to synchronization between clock domains.

Table 9-23 EJTAG Control Register Descriptions

Fields
Description \l/qveid/ Reset State
Name Bit(s) ne
Rocc 31 Reset Occurred R/W 1

The bit indicates if hard or soft reset has occurred:
0: No reset occurred since bit last cleared.
1: Reset occurred since bit last cleared.

The Rocc bit will keep the 1 value as long as hard pr
soft reset is applied.

This bit must be cleared by the probe, to acknowledge

that the incident was detected.

The EJTAG Control register is not updated in the
Update-DR state unless Rocc is 0, or written to 0. This
is in order to ensure prober handling of processor
access.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

EJTAG Registers

Table 9-23

EJTAG Control Register Descriptions(continued)

Fields

Name

Bit(s)

Description

Read/
Write

Reset State

Psz[1:0]

30:29

Processor Access Transfer Size

These bits are used in combination with the lower tv
address bits of the Address register to determine t
size of a processor access transaction. The bits are
valid when processor access is pending.

Transfer Size
Byte (LE, byte 0; BE, byte 3
Byte (LE, byte 1; BE, byte 2
Byte (LE, byte 2; BE, byte 1
Byte (LE, byte 3; BE, byte 0
Halfword (LE, bytes 1:0; BE, bytes 3:2)
Halfword (LE, bytes 3:2; BE, bytes 1.0)
Word (LE, BE; bytes 3, 2, 1, 0)
Triple (LE, bytes 2, 1, 0; BE, bytes 3, 2,1)
Triple (LE, bytes 3, 2, 1; BE, bytes 2, 1, 0)

PA[1:0] |Psz[1:0]
00 00
01 00
10 00
11 00
00 01
10 01
00 10
00 11
01 11

All others

)
)
)
)

Reserved

Note: LE=little endian, BE=big endian, the byte#
refers to the byte number in a 32-bit register, wher
byte 3 = bits 31:24; byte 2 = bits 23:16; byte 1 = bi
15:8; byte O=bits 7:0, independently of the need.

VO
ne
bnly

Undefined

Res

28:23

reserved

Doze

22

Doze state

The Doze bit indicates any kind of low power mode.

The value is sampled in the Capture-DR state of th
TAP controller:

0: CPU not in low power mode.
1: CPU is in low power mode

Doze includes the Reduced Power (RP) and WAIT]
power-reduction modes.

D

n.a.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

9-39

Chapter 9: EJTAG Debug Support

9-40

Table 9-23 EJTAG Control Register Descriptions(continued)

Fields
- Read/
Description Writ Reset State
Name Bit(s) nee
Halt 21 Halt state R n.a.

The Halt bit indicates if the internal system bus clogk
is running or stopped. The value is sampled in the
Capture-DR state of the TAP controller:
0: Internal system clock is running
1: Internal system clock is stopped

PerRst 20 Peripheral Reset R/W 0
When the bit is set to 1, it is only guaranteed that the
peripheral reset has occurred in the system when the
read value of this bitis also 1. This is to ensure that the
setting from the TCK clock domain gets effect in the
CPU clock domain, and in peripherals.
When the bit is written to 0, then the bit must also be
read as 0 before it is guaranteed that the indication is
cleared in the CPU clock domain also.
This bit controls the EJ_PerRst signal on the core

PRnW 19 Processor Access Read and Write R Undef.
This bit indicates if the pending processor access isffor
a read or write transaction, and the bit is only valid
while PrAcc is set:
0: Read transaction
1: Write transaction

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

EJTAG Registers

Table 9-23 EJTAG Control Register Descriptions(continued)

Fields

Name

Bit(s)

Description

Read/
Write

Reset State

PrAcc

18

Processor Access (PA)

Read value of this bit indicates if a Processor Acce
(PA) to the EJTAG memory is pending:

0: No pending processor access

1: Pending processor access

The probe’s software must clear this bit to 0 to indicd
the end of the PA. Write of 1 is ignored.

R/WO

te

A pending PA is cleared when Rocc is set, but another

PA may occur just after the reset if a debug except
occurs.

Finishing a PA is not accepted while the Rocc bitis s
This is to avoid that a PA occurring after the reset i
finished due to indication of a PA that occurred befg
the reset.

on

et.

re

Res

17

reserved

R

PrRst

16

Processor Reset (Implementation dependent beha

When the bit is set to 1, then it is only guaranteed th
this setting has taken effectin the system whenther
value of this bit is also 1. This is to ensure that the
setting from the TCK clock domain gets effect in th
CPU clock domain, and in peripherals.

When the bit is written to 0, then the bit must also
read as O before it is guaranteed that the indicatio
cleared in the CPU clock domain also.

This bit controls the EJ_PerRst signal. If the signal
used in the system, then it must be ensured that b
the processor and all devices required for a reset g

vioR/W
at
pad

ne
S

is
bth
re

properly reset. Otherwise the system may fail or ha

g.

The bit resets itself, since the EJTAG Control register

is reset by hard or soft reset.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

9-41

Chapter 9: EJTAG Debug Support

9-42

Table 9-23 EJTAG Control Register Descriptions(continued)

Fields

Name

Bit(s)

Description

Read/
Write

Reset State

ProbEn

15

Probe Enable

This bit indicates to the CPU if the EJTAG memory
handled by the probe so processor accesses are
answered:

0: The probe does not handle EJTAG memory
transactions

1: The probe does handle EJTAG memory transacti

Itis an error by the software controlling the probe if
sets the ProbTrap to 1 but the ProbEn to 0. The
operation of the processor is UNDEFINED in this
case.

The ProbEn bit is reflected as a read-only bit in the
ProbEn bit, bit 0, in the Debug Control Register
(DCR).

The read value indicates the effective value in the
DCR, due to synchronization issues between TCK 3
CPU clock domains. However, it is ensured that

change of the ProbEn prior to setting the EjtagBrk bit

will have effect for the debug handler executed due
the debug exception.

The reset value of the bit depends on whether the
EJTAGBOOT indication is given or not:

No EJTAGBOOT indication given: 0

EJTAGBOOQT indication given: 1

R/W

[

pons

—

nd

to

Oorl
from
EJTAGBOOT

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

EJTAG Registers

Table 9-23 EJTAG Control Register Descriptions(continued)

Fields Read/

Description) Reset State
Name Bit(s) Write

ProbTrap 14 Probe Trap R/W Oor1l

This bit controls the location of the debug exceptio from
vector: EJTAGBOOT
0: In normal memory OxBFC0.0480

1: In EJTAG memory at OxFF20.0200 in dmseg

Valid setting of the ProbTrap bit depends on the setting
of the ProbEn bit, see comment under ProbEn bit.

The ProbTrap should not be set to 1, for debug
exception vector in EJTAG memory, unless the ProbEn
bit is also set to 1 to indicate that the EJTAG memory
may be accessed.

-

The read value indicates the effective value to the CRU,
due to synchronization issues between TCK and CPU
clock domains. However, it is ensured that change|of
the ProbTrap prior to setting the EjtagBrk bit will have
effect for the EjtagBrk.

The reset value of the bit depends on whether the
EJTAGBOOQT indication is given or not:

No EJTAGBOOT indication given: 0

EJTAGBOOT indication given: 1

Res 13 reserved R 0

EjtagBrk 12 EJTAG Break W1/R Oorl

Setting this bit to 1 causes a debug exception to th from
processor, unless the CPU was in debug mode or EJTAGBOOT
another debug exception occurred.

D

When the debug exception occurs, the processor gore
clock is restarted if the CPU was in low power mod
This bit is cleared by hardware when the debug
exception is taken.

o

The reset value of the bit depends on whether the
EJTAGBOOQT indication is given or not:

No EJTAGBOOT indication given: 0

EJTAGBOOT indication given: 1

Res 11:4 reserved R 0

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 9-43

Chapter 9: EJTAG Debug Support

9-44

Table 9-23 EJTAG Control Register Descriptions(continued)

Fields

Name

Bit(s)

Description

Read/
Write

Reset State

BrkSt

3

Break Status

This bit indicates the debug or non-debug mode:
0: Processor is in non-debug mode

1: Processor is in debug mode

The bitis sampled in the Capture-DR state of the T4
controller.

\P

Res

2:0

reserved

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

EJTAG Registers

9.5.7

9.5.8

Processor Access Address Register

The Processor Access Address (PAA) register is used to provide the address of the processor access in the dms
and the register is only valid when a processor access is pending. The length of the Address register is 32 bits, ar
this register is selected by shifting in the ADDRESS instruction.

Processor Access Data Registers

The Processor Access Data (PAD) register is used to provide data value to and from a processor access. The len
of the Address register is 32 bits, and this register is selected by shifting in the DATA instruction.

The register has the written value for a processor access write due to a CPU store to the dmseg, and the outpi
from this register is only valid when a processor access write is pending. The register is used to provide the da
value for processor access read due to a CPU load or fetch from the dmseg, and the register should only be updat
with a new value when a processor access write is pending.

The PA Data register is 32 bits wide. Data alignment is not used for this register, so the value in the PAD register
matches data on the internal bus. The undefined bytes for a PA write are undefined, and for a PAD read then (
(zero) must be shifted in for the unused bytes.

The organization of bytes in the PAD register depends on the endianess of the core, as shown in Figure 9-5. T
endian mode for debug/kernel mode is determined by the stateEBtlendianinput at power-up.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 9-45

Chapter 9: EJTAG Debug Support

MSB LSB
bit 31 24 23 1615 8 7 0
Aln:0l =4 5 6 7 An2]=1
BIG-ENDIAN
An:0]=0 1 2 3 An:2]=0

Most significant byte is at lowest address
Word is addressed by byte address of most significant byte

MSB LSB

bit 31 24 23 1615 8 7 0
LITTLE-ENDIAN Aln:0l=7 6 5 4 Aln2]=1
Aln:0]=3 2 1 0 Aln:2] =0

Least significant byte is at lowest address
Word is addressed by byte address of least significant byte

Figure 9-5 Endian Formats for the PA Data Registers

The size of the transaction and thus the number of bytes available/required for the PA Data register is determined
by the Psz field in the ECR.

9.6 Processor Accesses

9-46

The TAP modules support handling of fetch, load and store from the CPU through the dmseg segment, whereby
the TAP module can operate like a islave unitconnected to the on-chip bus. The core can then execute code
taken from the EJTAG Probe and it can access data (via load or store) which is located on the EJTAG Probe. This
occurs in a serial way through the EJTAG interface: the core can thus execute instructions e.g. debug monitor code,
without occupying the user’s memory.

Accessing the dmseg segment (EJTAG memory) can only occur when the processor accesses an address in the
range from OxFF20.0000 to OxFF2F.FFFF, the ProbEn bit is set, and the processor is in debug mode (DM=1). In
addition the LSNM bit in the CPO Debug register controls transactions to/from the dmseg.

When a debug exception is taken, while the ProbTrap bit is set, the processor will start fetching instructions from
address 0xFF20.0200.

A pending processor access can only finish if the probe writes 0 to PrAcc or by soft or hard reset.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Processor Accesses

9.6.1 Fetch/Load and Store from/to the EJTAG Probe through dmseg

N o g &

©

1. Theinternal hardware latches the requested address into the PA Address register (in case ¢
the Debug exception: 0OxFF20-0200).

The internal hardware sets the following bits in the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)

PRnW = 0 (selects processor read operation)

Psz[1:0] = value depending on the transfer size

The EJTAG Probe selects the EJTAG Control register, shifts out this control register's data and tests the
PrAcc status bit (Processor Access): when the PrAcc bit is found 1, it means that the requested address is
available and can be shifted out.

The EJTAG Probe checks the PRnW bit to determine the required access.
The EJTAG Probe selects the PA Address register and shifts out the requested address.
The EJTAG Probe selects the PA Data register and shifts in the instruction corresponding to this address.

The EJTAG Probe selects the EJTAG Control register and shifts acRrAdit into this register to indicate
to the processor that the instruction is available.

The instruction becomes available in the instruction register and the processor starts executing.

The processor increments the program counter and outputs an instruction read request for the next
instruction. This starts the whole sequence again.

Using the same protocol, the processor can also execute a load instruction to access the EJTAG Probe’s memol
For this to happen, the processor must execute a load instruction (e.g. a LW, LH, LB) with the target address ir
the appropriate range.

Almost the same protocol is used to execute a store instruction to the EJTAG Probe’s memory through dmseg. Th
store address must be in the range: OxFF20-0000 to OxFF2F-FFFF, the ProbEn bit must be set and the proces
has to be in debug mode (DM=1). The sequence of actions is found below:

2.
3.

1. The internal hardware latches the requested address into the PA Address register
The internal hardware latches the data to be written into the PA Data register.

The internal hardware sets the following bits in the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)

PRnW = 1 (selects processor write operation)

Psz[1:0] = value depending on the transfer size

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 9-47

Chapter 9: EJTAG Debug Support

9-48

© N o U

9.

The EJTAG Probe selects the EJTAG Control register, shifts out this control register’'s data and tests the
PrAcc status bit (Processor Access): when the PrAcc bit is found 1, it means that the requested address is
available and can be shifted out.

The EJTAG Probe checks the PRnW bit to determine the required access.
The EJTAG Probe selects the PA Address register and shifts out the requested address.
The EJTAG Probe selects the PA Data register and shifts out the data to be written.

The EJTAG Probe selects the EJTAG Control register and shifts acRrAdit into this register to indicate
to the processor that the write access is finished.

The EJTAG Probe writes the data to the requested address in its memory.

10. The processor detects that PrAcc bit = 0, which means that it is ready to handle a new access.

The above examples implies that no reset occurs during the operations, and that Rocc is cleared.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Chapter 10

EE— |

Instruction Set Overview

This chapter provides a general overview on the three CPU instruction set formats of the MIPS architecture:
Immediate, Jump, and Register. Refer to Chapter 11 for a complete listing and description of instructions.
This chapter discusses the following topics

» Section 10.1, "CPU Instruction Formats"

» Section 10.2, "Load and Store Instructions"

e Section 10.3, "Computational Instructions"

e Section 10.4, "Jump and Branch Instructions"

» Section 10.5, "Control Instructions"

e Section 10.6, "Coprocessor Instructions"

e Section 10.7, "Enhancements to the MIPS Architecture"

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 10-1

Chapter 10: Instruction Set Overview

10.1 CPU Instruction Formats

Each CPU instruction consists of a single 32-bit word, aligned on a word boundary. There are three instruction
formats—immediate (I-type), jump (J-type), and register (R-type)—as shown in Figure 10-1. The use of a small
number of instruction formats simplifies instruction decoding, allowing the compiler to synthesize more
complicated (and less frequently used) operations and addressing modes from these three formats as needed.

[-Type (Immediate)
31 2625 2120 1615 0
op rs rt immediate

J-Type (Jump)
31 2625 0

op target

R-Type (Register)
31 2625 2120 1615 1110 65 0

op rs rt rd sa | funct
op 6-bit operation code
rs 5-bit source register specifier

5-bit target (source/destination) register or branch

"t condition

16-bit immediate value, branch displacement or address

immediate displacement

target 26-bit jump target address

rd 5-bit destination register specifier
sa 5-bit shift amount

funct 6-bit function field

Figure 10-1 Instruction Formats

10-2 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Load and Store Instructions

10.2 Load and Store Instructions

Load and store are immediate (I-type) instructions that move data between memory and the general registers. Tt

only addressing mode that load and store instructions directly suppadésegister plus 16-bit signed immediate
offset

10.2.1 Scheduling a Load Delay Slot

A load instruction that does not allow its result to be used by the instruction immediately following is called a

delayed load instructionT he instruction slot immediately following this delayed load instruction is referred to as
theload delay slat

In all the 4K cores, the instruction immediately following a load instruction can use the contents of the loaded
register, however in such cases hardware interlocks insert additional real cycles. Although not required, the
scheduling of load delay slots can be desirable, both for performance and R-Series processor compatibility.

10.2.2 Defining Access Types

Access typindicates the size of a core data item to be loaded or stored, set by the load or store instruction opcode

Regardless of access type or byte ordering (endianness), the address given specifies the low-order byte in the
addressed field. For a big-endian configuration, the low-order byte is the most-significant byte; for a little-endian
configuration, the low-order byte is the least-significant byte.

MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07 10-3

Chapter 10: Instruction Set Overview

The access type, together with the three low-order bits of the address, define the bytes accessed within the
addressed word as shown in Table 10-1. Only the combinations shown in Table 10-1 are permissible; other
combinations cause address error exceptions.

Table 10-1 Byte Access within a Word

Bytes Accessed
Access Type Low Order
P . Big Endian Little Endian
Mnemonic Address Bits
(Byte) (Byte)
(Value)
2 1 0 o |1 |2 |3 |3|2]1]0o0
Word @) 0 0
Triplebyte @) 0 0
0 0
Halfword (1) 0 0
0 1
Byte 0) 0 0
0 0
0 1
0 1

10.3 Computational Instructions

Computational instructions can be either in register (R-type) format, in which both operands are registers, or in
immediate (I-type) format, in which one operand is a 16-bit immediate.
Computational instructions perform the following operations on register values:

— Arithmetic

— Logical

— Shift

— Multiply

10-4 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Jump and Branch Instructions

— Divide

These operations fit in the following four categories of computational instructions:
— ALU Immediate instructions
— Three-operand Register-type Instructions
— Shift Instructions

— Multiply And Divide Instructions

10.3.1 Cycle Timing for Multiply and Divide Instructions

Any multiply instruction in the integer pipeline is transferred to the multiplier as remaining instructions continue
through the pipeline; the product of the multiply instruction is saved in the HI and LO registers. If the multiply
instruction is followed by an MFHI or MFLO before the product is available, the pipeline interlocks until this
product does become available. Refer to Chapter 2 for more information on instruction latency and repeat rate

10.4 Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All jump and branch instructions occur with
a delay of one instruction: that is, the instruction immediately following the jump or branch (this is known as the
instruction in thedelay slof always executes while the target instruction is being fetched from storage.

10.4.1 Overview of Jump Instructions

Subroutine calls in high-level languages are usually implemented with Jump or Jump and Link instructions, both
of which are J-type instructions. In J-type format, the 26-bit target address shifts left 2 bits and combines with the
high-order 4 bits of the current program counter to form an absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented with the Jump Register or Jump an
Link Register instructions. Both are R-type instructions that take the 32-bit byte address contained in one of th
general purpose registers.

For more information about jump instructions, refer to the individual instructions in Section 10.6.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 10-5

Chapter 10: Instruction Set Overview

10.4.2 Overview of Branch Instructions

All branch instruction target addresses are computed by adding the address of the instruction in the delay slot to
the 16-bitoffset(shifted left 2 bits and sign-extended to 32 bits). All branches occur with a delay of one instruction.

If a conditional branch likely is not taken, the instruction in the delay slot is nullified.

Branches, jumps, ERET, and DERET instructions should not be placed in the delay slot of a branch or jump.

10.5 Control Instructions

Control instructions allow the software to initiate traps; they are always R-type.

10.6 Coprocessor Instructions

CPO instructions perform operations on the System Control Coprocessor registers to manipulate the memory
management and exception handling facilities of the processor. Refer to Chapter 11 for a listing of CPO
instructions.

10.7 Enhancements to the MIPS Architecture

The core execution unit implements the MIPS3&chitecture, which includes the following instructions.
* CLOCount Leading Ones

 CLZCount Leading Zeros

MADDMultiply and Add Word

« MADDUMultiply and Add Unsigned Word

* MSUBMultiply and Subtract Word

* MSUBUMultiply and Subtract Unsigned Word

* MULMultiply Word to Register

* SSNOPSuperscalar Inhibit NOP

10-6 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Enhancements to the MIPS Architecture

10.7.1 CLO - Count Leading Ones

The CLO instruction counts the number of leading ones in a word. The 32-bit word in thes@P&anned from
most-significant to least-significant bit. The number of leading ones is counted and the result is written to the GPR
rd. If all 32 bits are set in the GRR the result written to the GPR is 32.

10.7.2 CLZ - Count Leading Zeros

The CLZ instruction counts the number of leading zeros in a word. The 32-bit word in thei$stanned from
most-significant to least-significant bit. The number of leading zeros is counted and the result is written to the GPR
rd. If all 32 bits are cleared in the GP& the result written to the GPR is 32.

10.7.3 MADD - Multiply and Add Word

The MADD instruction multiplies two words and adds the result to the HI/LO register pair. The 32-bit word value
in the GPRrs is multiplied by the 32-bit value in the GPiR treating both operands as signed values, to produce

a 64-bit result. The product is added to the 64-bit concatenated values in the Hl and LO register pair. The resultin
value is then written back to the HI and LO registers. No arithmetic exception occurs under any circumstances

10.7.4 MADDU - Multiply and Add Unsigned Word

The MADDU instruction multiplies two unsigned words and adds the result to the HI/LO register pair. The 32-bit
word value in the GPRs is multiplied by the 32-bit value in the GRR treating both operands as unsigned values,

to produce a 64-bit result. The product is added to the 64-bit concatenated values in the HI and LO register pa
The resulting value is then written back to the HI and LO registers. No arithmetic exception occurs under any
conditions.

10.7.5 MSUB - Multiply and Subtract Word

The MSUB instruction multiplies two words and subtracts the result from the HI/LO register pair. The 32-bit word
value in the GPRs is multiplied by the 32-bit value in the GPR treating both operands as signed values, to
produce a 64-bit result. The product is subtracted from the 64-bit concatenated values in the HI and LO registe
pair. The resulting value is then written back to the HI and LO registers. No arithmetic exception occurs under any
circumstances.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 10-7

Chapter 10: Instruction Set Overview

10.7.6 MSUBU - Multiply and Subtract Unsigned Word

The MSUBU instruction multiplies two unsigned words and subtracts the result from the HI/LO register pair. The
32-bit word value in the GPRs is multiplied by the 32-bit value in the GPR treating both operands as unsigned
values, to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values in the Hl and LO

register pair. The resulting value is then written back to the HI and LO registers. No arithmetic exception occurs
under any circumstances.

10.7.7 MUL - Multiply Word

The MUL instruction multiplies two words and writes the result to a GPR. The 32-bit word value in thre GPR
is multiplied by the 32-bit value in the GPR treating both operands as signed values, to produce a 64-bit result.
The least-significant 32-bits of the product are written to the &PRhe contents of the HI and LO register pair
are not defined after the operation. No arithmetic exception occurs under any circumstances.

10.7.8 SSNOP- Superscalar Inhibit NOP

The MIPS32 4K™ processor cores treat this instruction as a regular NOP.

10-8 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Chapter 11

MIPS32 4K™ Processor Core Instructions

This chapter provides a detailed guide to understanding the instruction set for the MIPS32 4K™ processor cores
which is a subset of the MIPS32 architecture. The chapter is divided into the following sections:

e Section 11.1, "Understanding the Instruction Fields"
» Section 11.2, "Instruction Hazards"
e Section 11.3, "CPU Opcode Map"

e Section 11.4, "Instruction Set"

11.1 Understanding the Instruction Fields
Figure 11-1 shows an example instruction. Following the figure are descriptions of the fields listed below. Som
or all of these field appear in the description of each instruction.
* “Instruction Fields"
* ‘“Instruction Descriptive Name and Mnemonic"
* “Format Field"
* “Purpose Field"
» “Description Field"
* “Restrictions Field"
e “Operation Field"

» “Exceptions Field"

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-1

Chapter 11: MIPS32 4K™ Processor Core Instructions

Instruction mnemonic

and descriptive name > Example Instruction Name EXAMPLE

Instruction encoding 31 26 25 21 20 16 15 11 10 6 5 0

constant and variable

field names and values SPECIAL rs rt rd 0 EXAMPLE
000000 00000 000000

Architecture level at 6 5 5 5 5 6
which instruction waq
defined/redefined and MIPS |

'Y » Format: EXAMPLE rd, rs, rt
assembler format(s)

for each definition
Purpose:to execute an EXAMPLE op

Short description —
Symbolic descriptio/(Description: rd — rs exampleop rt

Full description of This section describes the operation of the instruction in text, tables, and illustrations. It
instruction operation
includes information that would be difficult to encode in the Operation section.

Restrictions 03 » Restrictions: This section lists any restrictions for the instruction. This can include values
Instruction an of the instruction encoding fields such as register specifiers, operand values, operand

operands
P formats, address alignment, instruction scheduling hazards, and type of memory access for
addressed locations.
High-level language —> Opera,tlon S
description of * This section describes the operation of an instruction in a */

instruction operation /* high-level pseudo-language. It is precise in ways that the */
[* Description section is not, but is also missing information */
/* that is hard to express in pseudocode.*/
temp — GPR[rs] exampleop GPRrt]
GPR[rd] « sign_extend(temp 31.0)

Exceptions that

instruction can cause—> £xceptions: A list of exceptions taken by the instruction

Notes for programmers Programming Notes:Information useful to programmers, but not necessary to describe
the operation of the instruction

Figure 11-1 Example Instruction Description

11-2 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Understanding the Instruction Fields

11.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. The
following rules are followed:

e The values of constant fields and thiecodenames foopcodefields are listed in uppercase (SPECIAL and
ADD in Figure 11-2).

« All variable fields are listed with the lowercase names used in the instruction descriptibar{drd in

Figure 11-2).
« Fields that contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figur
11-2).
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 ADD
rs rt rd
000000 00000 100000
6 5 5 5 5 6

Figure 11-2 Example of Instruction Fields

11.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown belc

Add Word ADD

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-3

Chapter 11: MIPS32 4K™ Processor Core Instructions

11-4

11.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined
are given in thé-ormatfield. If the instruction definition was later extended, the architecture levels at which it was
extended and the assembler formats for the extended definition are shown in their order of extension (for an
example, see C.cond.fmt). The MIPS architecture levels are inclusive; higher architecture levels include all
instructions in previous levels. Extensions to instructions are backwards compatible. The original assembler
formats are valid for the extended architecture.

Format: ADDrd, rs, rt MIPS |

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectural level at
which the instruction was first defined, for example “MIPS I,” is shown at the right side of the page.

There can be more than one assembler format for each architecture level. Floating point operations on formatted
data show an assembly format with the actual assembler mnemonic for each valid valfiatdfelte For
example, the ADD.fmt instruction lists both ADD.S and ADD.D.

The assembler format lines sometimes include parenthetical comments to help explain variations in the formats
(once again, see C.cond.fmt). These comments are not a part of the assembler format.

11.1.4 Purpose Field

The Purposefield gives a short description of the use of the instruction.

Purpose: to add 32-bit integers. If overflow occurs, then trap.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Understanding the Instruction Fields

11.1.5 Description Field

If a one-line symbolic description of the instruction is feasible, it appears immediately to the right of the
Descriptionheading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical
operation.

Description : rd < rs+rt

The 32-bit word value in GPR rtis added to the 32-bit value in GPR rs to produce a 32-bit result. If the
addition results in 32-bit 2’'s complement arithmetic overflow then the destination register is not modified
and an Integer Overflow exception occurs. If it does not overflow, the 32-bit result is placed into GPR rd.

The body of the section is a description of the operation of the instruction in text, tables, and figures. This
description complements the high-level language description i@keationsection.

This section uses acronyms for register descriptions. “GHR CPU general-purpose register specified by the
instruction fieldrt. “FPRfs’ is the floating point operand register specified by the instructionfeet€CP1 register
fd” is the coprocessor 1 general register specified by the instructiorfdi¢lBCSR is the floating pointControl
/Statusregister.

11.1.6 Restrictions Field
TheRestrictiondield documents any possible restrictions that may affect the instruction. Most restrictions fall
into one of the following six categories:
* Valid values for instruction fields (for example, see BGEZAL)
» Alignment requirements for memory addresses (for example, see LW)

* Valid values of operands (for example, see DIV)

fmt) (Floating Point only)

» Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline
hazards for which some processors do not have hardware interlocks (for example, see ERET).

» Valid memory access types (for example, see LL/SC)

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-5

Chapter 11: MIPS32 4K™ Processor Core Instructions

11.1.7 Operation Field

The Operationfield describes the operation of the instruction as pseudocode in a high-level language notation
resembling Pascal. This formal description complementBdéseriptionsection; it is not complete in itself
because many of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Operation :
temp <— GPR[rt]31..0

FCC[0] <— GPRI[r]31..0

11.1.8 Exceptions Field

The Exceptiondield lists the exceptions that can be cause@®pgrationof the instruction. It omits exceptions
that can be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused
by asynchronous external events such as an Interrupt.

Exceptions :

Integer Overflow

11.2 Instruction Hazards

In general, the core ensures that instructions are executed following a fully sequential program model. Each
instruction in the program sees the results of the previous instruction. There are some exceptions to this model.
These exceptions are referred tarestruction hazards

The following table shows the instruction hazards that exist in the core. The first and second instruction fields
indicate the combination of instructions that do not ensure a sequential programming model. The Spacing field
indicates the number of unrelated instructions (such as NOPs or SSNOPs) that should be placed between the first
and second instructions of the hazard in order to ensure that the effects of the first instruction are seen by the
second instruction. Entries in the table that are listed as O are traditional MIPS hazards which are not hazards on
the 4K cores. (MT Compare to Timer Interrupt cleared is system dependent since Timer Interrupt is an output of

11-6 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Hazards

the core that can be returned to the core on one of the SI_Int pins. This number is the minimum time due to going
through the core’s I/O registers. Typical implementations will not add any latency to this).

Table 11-1 Instruction Hazards

Instruction Hazards
First Instruction Second Instruction (In;ﬂ?gtiir(])%s)

Watch Register Write Instruction Fetch Matching Watch Register 2

Load/Store Reference Matching Watch 0

Register
TLBWI/TLBWR Instruction fetch affected by new page 3

mapping

Load/Store affected by new page mappirlg 0

TLBP/TLBR 0
TLBR Move from Coprocessor Zero Register 0
Move to EntryHI TLBWR/TLBWI/TLBP 1
Move to EntryLoO or EntryLol TLBWR/TLBWI 0
Move to EntryHi Load/Store affected by new ASID 1
Move to EntryHi Instruction fetch affected by new ASID 3
TLBP Move from Coprocessor Zero Register 0
Move to Index Register TLBR/TLBWI 1
Change to CU Bits in Status Register Coprocessor Instruction 1
Move to EPC, ErrorPC or DEPC ERET 1
Move to Status Register ERET 0
Set of IP in Cause Register Interrupted Instruction 3
Any Other Move to Coprocessor 0 Registgrs Instruction Affected by Change 2
CACHE instruction operating on I$ Instruction fetch seeing new cache state 3
LL Move From LLAddr 1

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-7

Chapter 11: MIPS32 4K™ Processor Core Instructions

Table 11-1 Instruction Hazards (continued)

Instruction Hazards

. . : Spacin
First Instruction Second Instruction P . 9
(Instructions)
Move to Compare Instruction not seeing TimerInterrupt* 4

11-8 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

CPU Opcode Map

11.3 CPU Opcode Map

Key
* CAPITALIZED text indicates an opcode mnemonic
» ltalicizedtext indicates to look at the specified opcode submap for further instruction bit decode

« Entries containing the symbol indicate that a reserved instruction fault occurs if the core executes this
instruction.

» Entries containing thB symbol indicate that a coprocessor unusable exception occurs if the core executes
this instruction

Table 11-2 CPU Main Opcode Map

Main Opcode[28:26]
Opcode
Map 0 1 2 3 4 5 6 7
Opcode? Special | Reglmm | J JAL BEQ BNE BLEZ BGTz
[31:29] 1 || ADDI ADDIU SLTI SLTIU | ANDI ORI XORI LUI
2 || COPO B B B BEQL BNEL | BLEZL | BGTZL
3| a a a a Special2| a a a
4 (| LB LH LWL LW LBU LHU LWR a
51| SB SH SWL SwW a a SWR CACHE
6| LL B B PREF | a B B a
7| sc B B a o B B o

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-9

Chapter 11: MIPS32 4K™ Processor Core Instructions

Table 11-3 Special Submap

Special Opcode[2:0]

Submap 0 1 2 3 4 5 6 7
Opcode T SLL B SRL SRA SLLV a SRLV | SRAV
[5:3] 1| JR JALR MOVZ | MOVN | SYSCALL | BREAK | a SYNC

2 || MFHI | MTHI MFLO MTLO a a a a

3 || MULT | MUTLU | DIV DIvU a a a a

4 || ADD ADDU SUB SUBU AND OR XOR NOR

5| a a SLT SLTU a a a of

6 || TGE TGEU TLT TLTU TEQ a TNE a

7| a a a a a a a a
Table 11-4 Special2 Submap

Special2 Opcode[2:0]

Submap 0 1 2 3 4 5 6 7
Opcode T MADD | MADDU | MUL a MSUB | MSUBU | a a
[5:3] 1|a a a a a of a a

2| a a a a o a a a
3|a o a a a a a a
4| CLZ CLO a a a a a a
5] a a a a o a a a
6| a o a a a a a a
71 a a a a a a a SDBBP

11-10

MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

CPU Opcode Map

Table 11-5 Register Immediate Submap
Reglmm Opcode[18:16]
Submap 0 1 2 3 4 6 7
Opcode| O || BLTZ BGEZ BLTZL BGEZL a a
[20:19]
1| TGEI TGEIU TLTI TLTIU TEQI TNEI
2 || BLTZAL | BGEZAL | BLTZALL |BGEZALL | a a
3|l a a a a a a
Table 11-6 Coprocessor 0 Rs Submap
COPO Rs Opcode[23:21]
Submap 0 1 2 3 4 6 7
Opcode| 0 || MFCz a a a MTCz a
[25:24]
1i|la a a a a a
2 COPz
3
MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-11

Chapter 11: MIPS32 4K™ Processor Core Instructions

Table 11-7 Coprocessor 0 Submap

Opcode[2:0]

COPz
Submap 0 1 2 3 4 5 6 7

Opcode| 0 || a TLBR TLBWI | a a a TLBWR | a

[5:3] 1 || TLBP a a a a a o} a
2 ||a a a a a a a a
3 ERET a a o a a a DERET
4 || WAIT a a a a a o} a
5 ||la a a a a a a a
6 ||a a a o a a a a
7 || a a a a a a a a

11.4 Instruction Set

This section describes the core instructions. Table 11-8 lists the instructions in alphabetical order, followed by a
detailed description of each instruction.

Table 11-8 Instruction Set

Instruction Description Function
ADD Integer Add Rd =Rs + Rt
ADDI Integer Add Immediate Rt = Rs + Immed
ADDIU Unsigned Integer Add Immediate Rt = Rg tmmed
ADDU Unsigned Integer Add Rd = Ry Rt

11-12 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Table 11-8 Instruction Set (continued)

Instruction Description Function
AND Logical AND Rd =Rs & Rt
ANDI Logical AND Immediate Rt = Rs & (& || Immed)
BEQ Branch On Equal if Rs == Rt
PC += (int)offset
BEQL Branch On Equal Likely if Rs == Rt
PC += (int)offset
else
Ignore Next Instruction
BGEZ Branch on Greater Than or Equal To Zero if IRs[31]
PC += (int)offset
BGEZAL Branch on Greater Than or Equal To Zero AdGPR[31] = PC + 8
Link if IRs[31]
PC += (int)offset
BGEZALL Branch on Greater Than or Equal To Zero AdGPR[31] = PC + 8
Link Likely if IRs[31]
PC += (int)offset
else
Ignore Next Instruction
BGEZL Branch on Greater Than or Equal To Zero | if IRs[31]
Likely PC += (int)offset
else
Ignore Next Instruction
BGTzZ Branch on Greater Than Zero if IRS[31] && Rs =0
PC += (int)offset
BGTZL Branch on Greater Than Zero Likely if IRS[31] && Rs =0

PC += (int)offset
else
Ignore Next Instruction

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

11-13

Chapter 11: MIPS32 4K™ Processor Core Instructions

11-14

Table 11-8 Instruction Set (continued)
Instruction Description Function
BLEZ Branch on Less Than or Equal to Zero if Rs[31] || Rs ==
PC += (int)offset
BLEZL Branch on Less Than or Equal to Zero Likel if RS[31] || Rs==0
PC += (int)offset
else
Ignore Next Instruction
BLTZ Branch on Less Than Zero if Rs[31]
PC += (int)offset
BLTZAL Branch on Less Than Zero And Link GPR[31]=PC +8
if Rs[31]
PC += (int)offset
BLTZALL Branch on Less Than Zero And Link Likely GPR[31]=PC + 8
if Rs[31]
PC += (int)offset
else
Ignore Next Instruction
BLTZL Branch on Less Than Zero Likely if Rs[31]
PC += (int)offset
else
Ignore Next Instruction
BNE Branch on Not Equal if Rs 1= Rt
PC += (int)offset
BNEL Branch on Not Equal Likely if Rs I= Rt
PC += (int)offset
else
Ignore Next Instruction
BREAK Breakpoint Break Exception
CACHE Cache Operation See Cache Description

MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Table 11-8 Instruction Set (continued)

Instruction Description Function
COPO Coprocessor 0 Operation See Coprocessor Description
CLO Count Leading Ones Rd = NumLeadingOnes(Rs)
CLz Count Leading Zeroes Rd = NumLeadingZeroes(Rs)
DERET Return from Debug Exception PC = DEPC
Exit Debug Mode
DIV Divide LO = (int)Rs / (int)Rt
HI = (int)Rs % (int)Rt
DIvU Unsigned Divide LO = (uns)Rs / (uns)Rt
HI = (uns)Rs % (uns)Rt
ERET Return from Exception if SR[2]
PC = ErrorEPC
else
PC = EPC
SR[1]=0
SR[2]=0
LL=0
J Unconditional Jump PC = PC[31:28] || offset<<2
JAL Jump and Link GPR[31]=PC +8
PC = PC[31:28] || offset<<2
JALR Jump and Link Register Rd=PC+38
PC =Rs
JR Jump Register PC =Rs
LB Load Byte Rt = (byte)Mem[Rs+offset]
LBU Unsigned Load Byte Rt = (ubyte))Mem[Rs+offset]
LH Load Halfword Rt = (half)Mem[Rs+offset]
LHU Unsigned Load Halfword Rt = (uhalf)Mem[Rs+offset]

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Chapter 11: MIPS32 4K™ Processor Core Instructions

11-16

Table 11-8 Instruction Set (continued)

Instruction Description Function
LL Load Linked Word Rt = Mem[Rs+offset]
LL=1
LLAdr = Rs + offset
LUI Load Upper Immediate Rt = immediate << 16
LW Load Word Rt = Mem[Rs+offset]
LWL Load Word Left
LWR Load Word Right
MADD Multiply-Add HI, LO += (int)Rs * (int)Rt
MADDU Multiply-Add Unsigned HI, LO += (uns)Rs * (uns)Rt
MFCO Move From Coprocessor 0 Rt = CPRJ[O, n, sel] = Rt
MFHI Move From HI Rd = HI
MFLO Move From LO Rd =LO
MOVN Move Conditional on Not Zero if GPR[r# O then
GPR[rd] « GPR]rs]
MOVZz Move Conditional on Zero if GPR[rt] = 0 then
GPR[rd] — GPR]rs]
MSUB Multiply-Subtract HI, LO -= (int)Rs * (int)Rt
MSUBU Multiply-Subtract Unsigned HI, LO -= (uns)Rs * (uns)Rt
MTCO Move To Coprocessor 0 CPRJ0, n] =Rt SEL
MTHI Move To HI HI =Rs
MTLO Move To LO LO =Rs
MUL Multiply with register write HI | LO =Unpredictable
Rd=LO
MULT Integer Multiply HI'| LO = (int)Rs * (int)Rd
MULTU Unsigned Multiply HI'| LO = (uns)Rs * (uns)Rd

MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Table 11-8 Instruction Set (continued)

Instruction Description Function
NOR Logical NOR Rd = ~(Rs | Rt)
OR Logical OR Rd =Rs | Rt
ORI Logical OR Immediate Rt = Rs | Immed
PREF Prefetch Load Specified Line into Cache
SB Store Byte (byte)Mem[Rs+offset] = Rt
SC Store Conditional Word if LE1
mem[Rxoffs] = Rt
Rt=LL
SDBBP Software Debug Break Point Trap to SW Debug Handler
SH Store Half (half)Mem[Rs+offset] = Rt
SLL Shift Left Logical Rd =Rt << sa
SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]
SLT Set on Less Than if (int)Rs < (int)Rt
Rd=1
else
Rd=0
SLTI Set on Less Than Immediate if (int)Rs < (int)lmmed
Rt=1
else
Rt=0
SLTIU Set on Less Than Immediate Unsigned if (uns)Rs < (uns)immed
Rt=1
else
Rt=0

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-17

Chapter 11: MIPS32 4K™ Processor Core Instructions

11-18

Table 11-8 Instruction Set (continued)
Instruction Description Function
SLTU Set on Less Than Unsigned if (uns)Rs < (uns)immed
Rd=1
else
Rd=0
SRA Shift Right Arithmetic Rd = (int)Rt >> sa
SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]
SRL Shift Right Logical Rd = (uns)Rt >> sa
SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]
SSNOP Superscalar Inhibit No Operation
SuUB Integer Subtract Rt = (int)Rs - (int)Rd
SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd
SW Store Word Mem[Rs+offset] = Rt
SWL Store Word Left
SWR Store Word Right
SYNC Synchronize
SYSCALL System Call SystemCallException
TEQ Trap if Equal if Rs == Rt
TrapException
TEQI Trap if Equal Immediate if Rs == (int)lmmed
TrapException
TGE Trap if Greater Than or Equal if (int)Rs >= (int)Rt
TrapException
TGEI Trap if Greater Than or Equal Immediate if (int)Rs >= (int)immed
TrapException
TGEIU Trap if Greater Than or Equal Immediate if (uns)Rs >= (uns)immed

Unsigned

TrapException

MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Table 11-8 Instruction Set (continued)

Instruction Description Function
TGEU Trap if Greater Than or Equal Unsigned if (uns)Rs >= (uns)Rt
TrapException
TLBWI Write Indexed TLB Entry
TLBWR Write Random TLB Entry
TLBP Probe TLB for Matching Entry
TLBR Read Index for TLB Entry
TLT Trap if Less Than if (int)Rs < (int)Rt
TrapException
TLTI Trap if Less Than Immediate if (int)Rs < (int)lmmed
TrapException
TLTIU Trap if Less Than Immediate Unsigned if (uns)Rs < (uns)immed
TrapException
TLTU Trap if Less Than Unsigned if (uns)Rs < (uns)Rt
TrapException
TNE Trap if Not Equal if Rs I= Rt
TrapException
TNEI Trap if Not Equal Immediate if Rs != (int)immed
TrapException
WAIT Wait for Interrupts Stall until interrupt occurs
XOR Exclusive OR Rd =Rs "Rt
XORI Exclusive OR Immediate Rt = Rs ” (uns)immed

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-19

Chapter 11: MIPS32 4K™ Processor Core Instructions

Add Word ADD
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 ADD
s rt rd
000000 00000 100000
6 5 5 5 5 6
Format: ADD rd, rs, rt MIPS |

Purpose: To add 32-bit integers. If an overflow occurs, then trap.

Description: rd « rs+rt

The 32-bit word value in GPR is added to the 32-bit value in GPP&Rto produce a 32-bit result.

e If the addition results in 32-bit 2's complement arithmetic overflow, the destination register is not modified

and an Integer Overflow exception occurs.

« If the addition does not overflow, the 32-bit result is placed into (PR
Restrictions:
None

Operation:

temp ~ (GPR[rs] 31|IGPR[rs] 310)+ (GPRIt] 31]IGPR[rt] 310)
iftemp 3, #temp 3 then

SignalException(IntegerOverflow)

else

GPR[rd] < sign_extend(temp 31.0)

endif

Exceptions: Integer Overflow

Programming Notes:ADDU performs the same arithmetic operation but does not trap on overflow.

11-20 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Add Immediate Word ADDI
31 26 25 21 20 16 15 0
ADDI rs rt immediate
001000
6 5 5 16
Format: ADDI rt, rs, immediate MIPS |

Purpose: To add a constant to a 32-bit integer. If overflow occurs, then trap
Description: rd < rs + immediate

The 16-bit signedmmediatds added to the 32-bit value in GP&to produce a 32-bit result.

» If the addition results in 32-bit 2's complement arithmetic overflow, the destination register is not modified
and an Integer Overflow exception occurs.

» If the addition does not overflow, the 32-bit result is placed into GPR
Restrictions:
None

Operation:

temp « (GPR[rs] 31]IGPR[rs] 31 0) * sign_extend(immediate)
iftemp 3, #temp 3 then

SignalException(IntegerOverflow)

else

GPR[rt] ~ sign_extend(temp 31.0)

endif

Exceptions:Integer Overflow
Programming Notes:

ADDIU performs the same arithmetic operation but does not trap on overflow.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-21

Chapter 11: MIPS32 4K™ Processor Core Instructions

Add Immediate Unsigned Word ADDIU
31 26 25 21 20 16 15 0
ADDIU rs rt immediate
001001
6 5 5 16
Format: ADDIU rt, rs, immediate MIPS |

Purpose: To add a constant to a 32-bit integer

Description: rd < rs + immediate

The 16-bit signedmmediateas added to the 32-bit value in GRRand the 32-bit arithmetic result is placed into
GPRtt.

No Integer Overflow exception occurs under any circumstances.
Restrictions:
None

Operation:

temp ~ GPR[rs] + sign_extend(immediate)
GPR[rt] < sign_extend(temp 31.0)

Exceptions:None
Programming Notes:
The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does

not trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer
arithmetic environments that ignore overflow, such as C language arithmetic.

11-22 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Add Unsigned Word ADDU
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 ADDU
000000 00000 100001
6 5 5 5 5 6
Format: ADDU rd, rs, rt MIPS |

Purpose: To add 32-bit integers

Description: rd « rs + 1t

The 32-bit word value in GPR is added to the 32-bit value in GPRand the 32-bit arithmetic result is placed
into GPRrd.

No Integer Overflow exception occurs under any circumstances.
Restrictions:

None

Operation:

temp ~ GPR[rs] + GPR[rt]
GPR[rd] < sign_extend(temp 31.0)

Exceptions:None
Programming Notes:
The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does

not trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integel
arithmetic environments that ignore overflow, such as C language arithmetic.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-23

Chapter 11: MIPS32 4K™ Processor Core Instructions

And AND
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 AND
000000 00000 100100
6 5 5 5 5 6
Format: AND rd, rs, rt MIPS |

Purpose: To do a bitwise logical AND

Description: rd « rs AND rt

The contents of GPIRs are combined with the contents of GPRn a bitwise logical AND operation. The result
is placed into GPRd.

Restrictions: None

Operation:
GPR[rd] < GPRJ[rs] and GPRJrt]

Exceptions:None

11-24 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

ANDI

And Immediate
31 26 25 21 20 16 15 0
ANDI rs rt immediate
001100
6 5 5 16
Format: ANDI rt, rs, immediate MIPS |

Purpose: To do a bitwise logical AND with a constant

Description: rt

« rs AND immediate

The 16-bitimmediatas zero-extended to the left and combined with the contents ofr&RR bitwise logical
AND operation. The result is placed into GRR

Restrictions: None

Operation:

GPR[rt] « GPR][rs] and zero_extend(immediate)

Exceptions:None

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-25

Chapter 11: MIPS32 4K™ Processor Core Instructions

Branch on Equal BEQ
31 26 25 21 20 16 15 0
BEQ rs rt offset
000100
6 5 5 16
Format: BEQ rs, rt, offset MIPS |

Purpose: To compare GPRs then do a PC-relative conditional branch

Description: if rs = rt then branch

An 18-hit signed offset (the 16-hifffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPIRs and GPRt are equal, branch to the effective target address after the instruction in the
delay slot is executed.

Restrictions: None

Operation:

I: target_offset ~ sign_extend(offset || O 2)
condition ~ (GPR[rs] = GPRIrt])
I+1: if condition then
PC ~ PC +target_offset
endif

Exceptions:None
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangé28 Kbytes. Use jump (J) or jump
register (JR) instructions to branch to addresses outside this range.

11-26 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Branch on Equal Likely BEQL
31 26 25 21 20 16 15 0
BEQL rs rt offset
010100
6 5 5 16
Format: BEQL rs, rt, offset MIPS I

Purpose: To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the branch is
taken.

Description: if rs = rt then branch_likely

An 18-hit signed offset (the 16-hifffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs and GPRt are equal, branch to the target address after the instruction in the delay slot
is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions: None

Operation:
I: target_offset ~ sign_extend(offset || O 2)
condition ~ (GPR[rs] = GPRIrt])

I+1: if condition then

PC ~ PC +target_offset

else

NullifyCurrentinstruction()

endif

Programming Notes:

It is recommended that new software not use this instruction as it will be phased out in future versions of the
MIPS32 architecture.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-27

Chapter 11: MIPS32 4K™ Processor Core Instructions

Branch on Greater Than or Equal to Zero BGEZ
31 26 25 21 20 16 15 0
REGIMM rs BGEZ offset
000001 00001
6 5 5 16
Format: BGEZ rs, offset MIPS |

11-28

Purpose:To test a GPR then do a PC-relative conditional branch

Description: ifrs =0 then branch

An 18-hit signed offset (the 16-hifffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs are greater than or equal to zero (sign bit is 0), branch to the effective target address after
the instruction in the delay slot is executed.

Restrictions: None

Operation:

I: target_offset ~ sign_extend(offset || O 2)
conditon — GPR[rs] >0 GPRLEN
I+1: if condition then
PC ~ PC +target_offset
endif

Exceptions:None
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rang&28 KBytes. Use jump (J) or jump
register (JR) instructions to branch to addresses outside this range.

MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Branch on Greater Than or Equal to Zero and Link BGEZAL
31 26 25 21 20 16 15 0
REGIMM rs BGEZAL offset
000001 10001
6 5 5 16
Format: BGEZAL rs, offset MIPS |

Purpose: To test a GPR then do a PC-relative conditional procedure call

Description: ifrs = 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the
branch, where execution continues after a procedure call.

An 18-hit signed offset (the 16-hifffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs are greater than or equal to zero (sign bit is 0), branch to the effective target address after
the instruction in the delay slot is executed.

Restrictions:

GPR 31 must not be used for the source registdrecause such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is undefined. This restriction permits an exception handle
to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Operation:

I: target_offset ~ sign_extend(offset || O 2)
conditon — GPR[rs] >0 GPRLEN
GPR[31] ~ PC+8
I+1: if condition then
PC ~ PC + target_offset
endif

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-29

Chapter 11: MIPS32 4K™ Processor Core Instructions

Branch on Greater Than or Equal to Zero and Link (cont.) BGEZAL

Exceptions:None
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangel®8 KBytes. Use jump and link (JAL)
or jump and link register (JALR) instructions for procedure calls to addresses outside this range.

11-30 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Branch on Greater Than or Equal to Zero and Link Likely BGEZALL
31 26 25 21 20 16 15 0
REGIMM rs BGEZALL offset
000001 10011
6 5 5 16
Format: BGEZALL rs, offset MIPS I

Purpose:To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only if the branch
is taken.

Description: ifrs = 0 then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second instruction following the
branch, where execution continues after a procedure call.

An 18-hit signed offset (the 16-hifffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs are greater than or equal to zero (sign bit is 0), branch to the effective target address after
the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not
executed.

Restrictions:

GPR 31 must not be used for the source registdrecause such an instruction does not have the same effect when

reexecuted. The result of executing such an instruction is undefined. This restriction permits an exception handle
to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-31

Chapter 11: MIPS32 4K™ Processor Core Instructions

Branch on Greater Than or Equal to Zero and Link Likely (cont.) BGEZALL

Operation:

I: target_offset ~ sign_extend(offset || O 2)
conditon — GPR[rs] >0 GPRLEN
GPR[31] ~ PC+8
I+1: if condition then
PC — PC + target_offset
else
NullifyCurrentinstruction()
endif

Exceptions:None
Programming Notes:

It is recommended that new software not use this instruction as it will be phased out in future versions of the
MIPS32 architecture.

11-32 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Branch on Greater Than or Equal to Zero Likely BGEZL
31 26 25 21 20 16 15 0
REGIMM rs BGEZL offset
000001 00011
6 5 5 16
Format: BGEZL rs, offset MIPS I

Purpose:To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken

Description: if rs > 0 then branch_likely

An 18-hit signed offset (the 16-hifffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs are greater than or equal to zero (sign bit is 0), branch to the effective target address after
the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not
executed.

Restrictions: None

Operation:
I: target_offset ~ sign_extend(offset || O 2)
conditon — GPR[rs] >0 GPRLEN
I+1: if condition then
PC ~ PC +target_offset
else
NullifyCurrentinstruction()
endif

Exceptions:None
Programming Notes:

It is recommended that new software not use this instruction as it will be phased out in future versions of the
MIPS32 architecture.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-33

Chapter 11: MIPS32 4K™ Processor Core Instructions

Branch on Greater Than Zero BGTZ
31 26 25 21 20 16 15 0
BGTZ rs 0 offset
000111 00000
6 5 5 16
Format: BGTZ rs, offset MIPS |

Purpose:To test a GPR then do a PC-relative conditional branch

Description: if rs > 0 then branch

An 18-hit signed offset (the 16-hifffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPIRs are greater than zero (sign bit is O but value not zero), branch to the effective target
address after the instruction in the delay slot is executed.

Restrictions: None

Operation:

I: target_offset ~ sign_extend(offset || O 2)
conditon — GPR[rs]>0 GPRLEN
I+1: if condition then
PC ~ PC +target_offset
endif

Exceptions:None
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rang&28 KBytes. Use jump (J) or jump
register (JR) instructions to branch to addresses outside this range.

11-34 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Branch on Greater Than Zero Likely BGTZL
31 26 25 21 20 16 15 0
BGTZL rs 0 offset
010111 00000
6 5 5 16
Format: BGTZL rs, offset MIPS 1l

Purpose:To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken

Description: if rs > 0 then branch_likely

An 18-bit signed offset (the 16-hifffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs are greater than zero (sign bit is O but value not zero), branch to the effective target
address after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slo
is not executed.

Restrictions: None

Operation:
I: target_offset ~ sign_extend(offset || O 2)
conditon — GPR[rs]>0 GPRLEN
I+1: if condition then
PC ~ PC +target_offset
else
NullifyCurrentlnstruction()
endif

Exceptions: None
Programming Notes:

It is recommended that new software not use this instruction as it will be phased out in future versions of the
MIPS32 architecture.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-35

Chapter 11: MIPS32 4K™ Processor Core Instructions

Branch on Less Than or Equal to Zero BLEZ
31 26 25 21 20 16 15 0
BLEZ rs 0 offset
000110 00000
6 5 5 16
Format: BLEZ rs, offset MIPS |

Purpose: To test a GPR then do a PC-relative conditional branch

Description: if rs < 0 then branch

An 18-hit signed offset (the 16-hifffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs are less than or equal to zero (sign bitis 1 or value is zero), branch to the effective target
address after the instruction in the delay slot is executed.

Restrictions: None

Operation:

I: target_offset ~ sign_extend(offset || O 2)
conditon — GPR[rs] <0 GPRLEN
I+1: if condition then
PC ~ PC +target_offset
endif

Exceptions:None
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangé28 KBytes. Use jump (J) or jump
register (JR) instructions to branch to addresses outside this range.

11-36 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Branch on Less Than or Equal to Zero Likely BLEZL
31 26 25 21 20 16 15 0
BLEZL rs 0 offset
010110 00000
6 5 5 16
Format: BLEZL rs, offset MIPS 1l

Purpose:To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken

Description: if rs < 0 then branch_likely

An 18-hit signed offset (the 16-hifffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs are less than or equal to zero (sign bitis 1 or value is zero), branch to the effective target
address after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slo
is not executed.

Restrictions: None

Operation:

I: target_offset ~ sign_extend(offset || O 2)
conditon — GPR[rs] <0 GPRLEN
I+1: if condition then
PC ~ PC +target_offset
else
NullifyCurrentinstruction()
endif

Exceptions:None
Programming Notes:

It is recommended that new software not use this instruction as it will be phased out in future versions of the
MIPS32 architecture.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-37

Chapter 11: MIPS32 4K™ Processor Core Instructions

Branch on Less Than Zero BLTZ
31 26 25 21 20 16 15 0
REGIMM rs BLTZ offset
000001 00000
6 5 5 16
Format: BLTZ rs, offset MIPS |

Purpose: To test a GPR then do a PC-relative conditional branch

Description: if rs < 0 then branch

An 18-hit signed offset (the 16-hifffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs are less than zero (sign bitis 1), branch to the effective target address after the instruction
in the delay slot is executed.

Restrictions: None

Operation:

I: target_offset ~ sign_extend(offset || O 2)
conditon — GPR[rs]<0 GPRLEN
I+1: if condition then
PC ~ PC +target_offset
endif

Exceptions:None
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangel®8 KBytes. Use jump and link (JAL)
or jump and link register (JALR) instructions for procedure calls to addresses outside this range.

11-38 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Branch on Less Than Zero and Link BLTZAL
31 26 25 21 20 16 15 0
REGIMM rs BLTZAL offset
000001 10000
6 5 5 16
Format: BLTZAL rs, offset MIPS |

Purpose: To test a GPR then do a PC-relative conditional procedure call

Description: if rs < 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the
branch, where execution continues after a procedure call.

An 18-hit signed offset (the 16-hifffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs are less than zero (sign bitis 1), branch to the effective target address after the instruction
in the delay slot is executed.

Restrictions:
GPR 31 must not be used for the source registdrecause such an instruction does not have the same effect when

reexecuted. The result of executing such an instruction is undefined. This restriction permits an exception handle
to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-39

Chapter 11: MIPS32 4K™ Processor Core Instructions

Branch on Less Than Zero and Link (cont.) BLTZAL

Operation:

I: target_offset ~ sign_extend(offset || O 2)
conditon — GPR[rs]<0 GPRLEN
GPR[31] ~ PC+8
I+1: if condition then
PC ~ PC +target_offset
endif

Exceptions:None
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangel®8 KBytes. Use jump and link (JAL)
or jump and link register (JALR) instructions for procedure calls to addresses outside this range.

11-40 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Branch on Less Than Zero and Link Likely BLTZALL
31 26 25 21 20 16 15 0
REGIMM rs BLTZALL offset
000001 10010
6 5 5 16
Format: BLTZALL rs, offset MIPS 1l

Purpose:To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only if the branch
is taken.

Description: if rs < 0 then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second instruction following the
branch, where execution continues after a procedure call.

An 18-hit signed offset (the 16-hifffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs are less than zero (sign bitis 1), branch to the effective target address after the instruction
in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:
GPR 31 must not be used for the source registdrecause such an instruction does not have the same effect when

reexecuted. The result of executing such an instruction is undefined. This restriction permits an exception handle
to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-41

Chapter 11: MIPS32 4K™ Processor Core Instructions

Branch on Less Than Zero and Link Likely (cont.) BLTZALL

Operation:

I: target_offset ~ sign_extend(offset || O 2)
condition —~ GPR[rs]<0 GPRLEN
GPR[31] ~ PC+8
I+1: if condition then
PC — PC + target_offset
else
NullifyCurrentinstruction()
endif

Exceptions: Reserved Instruction

Programming Notes:

It is recommended that new software not use this instruction as it will be phased out in future versions of the
MIPS32 architecture.

11-42 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Branch on Less Than Zero Likely BLTZL
31 26 25 21 20 16 15 0
REGIMM rs BLTZL offset
000001 00010
6 5 5 16
Format: BLTZL rs, offset MIPS 1l

Purpose:To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken

Description: if rs < 0 then branch_likely

An 18-hit signed offset (the 16-hifffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs are less than zero (sign bitis 1), branch to the effective target address after the instruction
in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions: None

Operation:
I: target_offset ~ sign_extend(offset || O 2)
conditon — GPR[rs]<0 GPRLEN
I+1: if condition then
PC ~ PC +target_offset
else
NullifyCurrentinstruction()
endif

Exceptions:None
Programming Notes:

It is recommended that new software not use this instruction as it will be phased out in future versions of the
MIPS32 architecture.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-43

Chapter 11: MIPS32 4K™ Processor Core Instructions

Branch on Not Equal BNE
31 26 25 21 20 16 15 0
BNE rs rt offset
000101
6 5 5 16
Format: BNE rs, rt, offset MIPS |

11-44

Purpose: To compare GPRs then do a PC-relative conditional branch

Description: if rs # rt then branch

An 18-hit signed offset (the 16-hifffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRs and GPRt are not equal, branch to the effective target address after the instruction in
the delay slot is executed.

Restrictions: None

Operation:

I: target_offset ~ sign_extend(offset || O 2)
condition ~ (GPRIrs] # GPR[rt])
I+1: if condition then
PC ~ PC +target_offset
endif

Exceptions:None
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rang&28 KBytes. Use jump (J) or jump
register (JR) instructions to branch to addresses outside this range.

MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Branch on Not Equal Likely BNEL
31 26 25 21 20 16 15 0
BNEL rs rt offset
010101
6 5 5 16
Format: BNEL rs, rt, offset MIPS I

Purpose: To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the branch is
taken.

Description: if rs # rt then branch_likely

An 18-hit signed offset (the 16-hifffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPIRs and GPRt are not equal, branch to the effective target address after the instruction in
the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions: None

Operation:
I: target_offset ~ sign_extend(offset || O 2)
condition ~ (GPRYrs] # GPR{rt])
I+1: if condition then
PC ~ PC +target_offset
else
NullifyCurrentinstruction()
endif

Exceptions:None
Programming Notes:

It is recommended that new software not use this instruction as it will be phased out in future versions of the
MIPS32 architecture.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-45

Chapter 11: MIPS32 4K™ Processor Core Instructions

Breakpoint BREAK
31 26 25 65 0
SPECIAL code BREAK
000000 001101
6 20 6
Format: BREAK MIPS |

Purpose: To cause a Breakpoint exception

Description:
A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler.
The codefield is available for use as software parameters, but is retrieved by the exception handler only by loading
the contents of the memory word containing the instruction.

Restrictions: None

Operation:

SignalException(Breakpoint)

Exceptions: Breakpoint

11-46 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Perform Cache Operation CACHE
31 26 25 21 20 16 15 0
CACHE base op Offset
101111
6 5 5 16
Format:
CACHE op, offset(base) MIPS32

Purpose:

To perform the cache operation specified by op.

Description:
The 16-bit offset is sign-extended and added to the contents of the base register to form an effective address. T
effective address is used in one of three ways based on the operation to be performed and the type of cache
described in the following table.

Operation Type of

Requires an Cache Usage of Effective Address

Address Physical The effective address is translated by the MMU to a physical adgdress.
The physical address is then used to address the cache

Index N/A The effective address is translated by the MMU to a physical address.
The address is used to index the cache.
Assuming that the total cache size in bytes is CS, the associativjty is
A, and the number of bytes per tag is BPT, the following calculations

give the fields of the address which specify the way and the index:

OffsetBit <- Log2(BPT)

IndexBit <- Log2(CS / A)

WayBit <- IndexBit + Ceiling(Log2(A))
Way <- Addiyaygit-1..IndexBit

Index <- Addfgexgit-1..OffsetBit

For a direct-mapped cache, the Way calculation is ignored and the
Index value fully specifies the cache tag. This is shown symbolically
in Figure 11-3.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-47

Chapter 11: MIPS32 4K™ Processor Core Instructions

/_ WayBit“— IndexBit ’_ OﬁsetBito

Unused Way Index byte index

Figure 11-3 Usage of Address Fields to Select Index and Way

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For index
operations (where the address is used to index the cache but need not match the cache tag) unmapped addresses ma
be used to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB Refill exceptions
with a cause code of TLBS nor data Watch exceptions.

Bits [17:16] of the instruction specify the cache on which to perform the operation, as follows:

Table 11-9 Encoding of CACHE Instruction Bits[17:16]

Code Name Cache
00 I Primary Instruction
01 D Primary Data or Unified Primary
10 Reserved Not supported 4K cores
11 Reserved Not supported 4K cores

Bits [20:18] of the instruction specify the operation to perform. On Index Load Tag operations, the specific word that
is addressed in loaded into the Datalo register. All ofbACHE instructions are line based and the word and byte
indexes will not affect their operation..

Table 11-10 Encoding of CACHE Instruction Bits [20:18]

Effective Address

Code | Caches Name Operand Type Operation

000 I,.D Index Invalidate Index Set the state of the cache block at the
specified index to invalid.

001 I, D Index Load Tag Index Read the tag for the cache block at the

specified index into the TagLo COPO
register. Also read the wordcorresponding o
the byte index into the Datal o register.

11-48 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Table 11-10 Encoding of CACHE Instruction Bits [20:18] (continued)

Code | Caches Name Effective Address Operation
Operand Type

010 I, D Index Store Tag Index Write the tag for the cache block at the|
specified index from the TagLo and TagH
COPO registers.

011 Reserved Treated as a NOP.

100 I, D Hit Invalidate Address If the cache block contains the specified
address, set the state of the cache block to
invalid.

101 | Fill Address Fill the cache from the specified addresg.

The cache line will be re-fetched even if it is
already in the cache.

D Hit Invalidate Address For a write-through cache: If the cache
block contains the specified address, set the
state of the cache block to invalid.

110 D Hit Writeback Address This operation is treated as a NOP.

111 I,D Fetch and Lock Address. If the cache does not contain the entir¢ line
at the specified address it is fetched from
memory, and the state is set to locked. If the
cache already contains the line, set the state
to locked.

The lock state may be cleared by executipng
an Index Invalidate or Hit Invalidate
operation to the locked line, or via an Index
Store Tag operation to the line that clears the
lock bit.

Restrictions:
Execution of this instruction is legal only if the processor is operating in kernel mode, or if the CPO enable bit is set in
the Status register. In other circumstances, a Coprocessor Unusable Exception is taken.

The operation of this instruction ISNDEFINED for any operation/cache combination that is not implemented. The
operation of this instruction ISNDEFINED for uncacheable addresses.

Operation:
if (SR cuo— 1) or (SR UM = 0) or (SR EXL = 1) or (SR ERL™ 1) then

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-49

Chapter 11: MIPS32 4K™ Processor Core Instructions

vAddr <- GPRJ[base] + sign_extend(offset)
(pAddr, uncached) <- AddressTranslation(vAddr, DataReadReference)
CacheOp(op, vAddr, pAddr)
else
InitiateCoprocessorUnusableException(0)
endif

Exceptions:
TLB Refill Exception.
TLB Invalid Exception
Coprocessor Unusable Exception

11-50 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Count Leading Ones in Word CLO
31 26 25 21 20 16 15 11 10 6 5 0
SPEC2 rs 0 rd 0 CLO
011100 00000 00000 100001
6 5 5 5 5 6
Format:
CLO rd, rs MIPS32
Purpose:

Count the number of leading ones in a word

Description:
The 32-bit word in GPRs is scanned from most significant to least significant bit. The number of leading ones is
counted and the result is written to GRRf all 32 bits were set in GPR, the result written to GPHRl is 32.

Restrictions:

None
Operation:
temp <- 32
foriin31..0
if GPR[rs] ; =0then
temp <- 31 -
break
endif
endfor
GPR([rd] <- temp
Exceptions:
None

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-51

Chapter 11: MIPS32 4K™ Processor Core Instructions

Count Leading Zeros in Word CLz
31 26 25 21 20 16 15 11 10 6 0
SPEC2 rs 0 rd 0 CLz
011100 00000 00000 100000
6 5 5 5 5 6
Format:
CLZ rd, rs MIPS32
Purpose

Count the number of leading zeros in a word

Description:

The 32-bit word in GPRs is scanned from most significant to least significant bit. The number of leading zeros is
counted and the result is written to GRRIf no bits were set in GPR, the result written to GPRI is 32.

Restrictions:

None
Operation:
temp <- 32
foriin31..0
if GPR[rs] ; =1then
temp <- 31 -
break
endif
endfor
GPR][rd] <- temp
Exceptions:
None

11-52 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Coprocessor Operation for Coprocessor 0 COPO
31 26 25 24 0
COPO Cco Coprocessor Function
010000 1
6 1 25
Format:
COPO r1t,rd MIPS32
Purpose:

Perform the coprocessor function specified by Bits [24:0].

Description:
A coprocessor function, as described by Bits [24:0] is performed that is specific to coprdadReter to the instruc-
tion descriptions for each coprocessor for more details.

Restrictions:
If the coprocessor enable bit for coproces8as off in the Status register, execution of this instruction results in a
Coprocessor Unusable Exception. For coprocessor 0, this instruction is legal only if the processor is in kernel mod
or if the CPO usable bit is set in the Status register. In other circumstances, execution of this instruction results in
Coprocessor Unusable Exception.

Operation:
if (SRCUO = 1) or
((SRym = 0) or (SRex = 1) or (SR = 1)) then
CoprocessorOperation(z, CoprocessorFunction)
else
InitiateCoprocessorUnusableException (0)
endif

Exceptions:
Coprocessor Unusable Exception (if access is not allowed)
Reserved Instruction Exception (if access is allowed, but function not implemented)

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-53

Chapter 11: MIPS32 4K™ Processor Core Instructions

Debug Exception Return DERET
31 26 25 24 6 5 0
COPO co 0 DERET
010000 1 000 0000 000000000000 011111
6 1 19 6
Format:

DERET MIPS32

Purpose:

Return from debug exception.

Description:
DERET returns to normal mode at the instruction pointed to by DEPC, e.qg. the instruction that received the debug
exception. DERET does not execute the next instruction (i.e. it has no delay slot).

Restrictions:
The operation of the processorU8NDEFINED if a DERET is placed in the delay slot of a branch or jump instruc-
tion. A DERET placed between an LL and SC instruction does not cause the SC to fail. This instruction is legal only
if the processor is in kernel or debug mode, or if the CPO usable bit is set in the Status register. In other circumstances,
execution of this instruction results in a coprocessor unusable exception.

If the DEPC register with the return address was modified by an MTCO instruction, then a minimum of two instruc-
tions must be executed before executing the DERET. The DERET instruction implements a software barrier for all
changes in the CPO state that could affect the fetch and decode of the instruction at the PC to which the DERET
returns, such as changes to the effective ASID, user-mode state, and addressing mode.

Operation:
if (SR CUO: 1) or (SR UM: O) or (SR EXL— 1) or (SR ERL™ 1) or (Debug DM—
1) then
DebugDM<- 0
PC <- DEPC
else
SignalException(CoprocessorUnusable)
endif
Exceptions:

Coprocessor Unusable Exception

11-54 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

DIV

Divide Word
31 26 25 21 20 16 15 5 0
SPECIAL Is rt 0 DIV
000000 00 00000000 011010
6 5 5 10 6
Format: DIV rs,rt MIPS |

Purpose: To divide 32-bit signed integers

Description: (LO, HI) —rs/rt

The 32-bit word value in GPR is divided by the 32-bit value in GPR, treating both operands as signed values.
The 32-bit quotient is placed into special regi&t®rand the 32-bit remainder is placed into special redititer

No arithmetic exception occurs under any circumstances.

Restrictions:
None

If the divisor in GPRt is zero, the arithmetic result value is undefined.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

11-55

Chapter 11: MIPS32 4K™ Processor Core Instructions

Divide Word (cont.) DIV
Operation:
if (NotWordValue(GPR[rs]) or NotWordValue(GPR]rt])) then
UndefinedResult()
endif
MIPS I-11I

I: g GPR[rS] 31..0 div GPR[rt] 31.0
LO- sign_extend(q 31.0)

r —« GPR[rs] 379 modGPR[rt] 37 ¢
HI — sign_extend(r 31.0)

Exceptions:None

Programming Notes:
In some processors the integer divide operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to ré&or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the divide so that other instructions can execute in parallel.

No arithmetic exception occurs under any circumstances. If divide-by-zero or overflow conditions are detected and
some action taken, then the divide instruction is typically followed by additional instructions to check for a zero divi-
sor and/or for overflow. If the divide is asynchronous then the zero-divisor check can execute in parallel with the
divide. The action taken on either divide-by-zero or overflow is either a convention within the program itself, or more
typically within the system software; one possibility is to take a BREAK exception withdzfield value to signal

the problem to the system software.

As an example, the C programming language in a URiBivironment expects division by zero to either terminate

the program or execute a program-specified signal handler. C does not expect overflow to cause any exceptional con-
dition. If the C compiler uses a divide instruction, it also emits code to test for a zero divisor and execute a BREAK
instruction to inform the operating system if a zero is detected.

11-56 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Divide Unsigned Word

31 26 25 21 20 16 15 6 5
SPECIAL rs rt 0 DIVU
000000 0000000000 011011
6 5 5 10 6
Format: DIVU rs, 1t MIPS |

Purpose: To divide 32-bit unsigned integers

Description: (LO, HI)

—rs/rt

DIVU

The 32-bit word value in GPR is divided by the 32-bit value in GRR treating both operands as unsigned
values. The 32-bit quotientis placed into special regist&and the 32-bit remainder is placed into special register

HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If the divisor in GPRt is zero, the arithmetic result value is undefined.

Operation:

if (NotWordValue(GPR[rs]) or NotWordValue(GPR]rt])) then

UndefinedResult()

endif

I < (0] GPR[rs] 31.0) div (0 || GPRIr] 31.0)
r — (0] GPRrs] 31.0) mod (O || GPRrt] 31.0)
LO- sign_extend(q 31.0)

HI — sign_extend(r 31.0)

Exceptions:None

Programming Notes:See “Programming Notes” for the DIV instruction.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

11-57

Chapter 11: MIPS32 4K™ Processor Core Instructions

Exception Return

31 26 25 24 0
COPO co 0 ERET
010000 1 0000000 000000000000 011000
6 1 19 6
Format:
ERET MIPS32
Purpose:

Return from interrupt, exception, or error trap

Description:

ERET

ERET returns to the interrupted instruction at the completion of interrupt, exception, or error trap process-

ing. ERET does not execute the next instruction (i.e., it has no delay slot).

Restrictions:

The operation of the processorUdNDEFINED if an ERET is placed in the delay slot of a branch or jump instruc-

tion.

An ERET placed between an LL and SC instruction will always cause the SC to fail.

This instruction is legal only if the processor is in kernel mode, or if the CPO usable bit is set in the Status register. In

other circumstances, execution of this instruction results in a Coprocessor Unusable Exception.

ERET implements a software barrier for all changes in the CPO state that could affect the fetch and decode of the
instruction at the PC to which the ERET returns, such as changes to the effective ASID, user-mode state, and address-

ing mode.

Operation:
if (SR cuo= l) or (SR
if SR ERL: 1 then
PC <- ErrorEPC
SRerL<- 0
else
PC <- EPC
SRexL<-0
endif

UM = 0) or (SR

EXL = 1) or (SR

ERL™ 1) then

11-58 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

LLbit<-0

else
InitiateCoprocessorUnusableException(0)
endif

Exceptions:
Coprocessor Unusable Exception

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-59

Chapter 11: MIPS32 4K™ Processor Core Instructions

Jump

11-60

J
31 26 25 0
J instr_index
000010
6 26
Format: J target MIPS |

Purpose: To branch within the current 256 MB-aligned region
Description:

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned
region. The low 28 bits of the target address idrtb_indexfield shifted left 2 bits. The remaining upper bits
are the corresponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before
executing the jump itself.

Restrictions: None
Exceptions:None

Operation:

I:
I+1. PC PCGPRLEN..ZB || instr_index || 0 2

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is
an advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a
branch from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.
This definition creates the following boundary case: When the branch instruction is in the last word of a 256 MB
region, it can branch only to the following 256 MB region containing the branch delay slot.

MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Jump and Link JAL
31 26 25 0
JAL instr_index
000011
6 26
Format: JAL target MIPS |

Purpose: To execute a procedure call within the current 256 MB-aligned region
Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the
branch, at which location execution continues after a procedure call.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned
region. The low 28 bits of the target address idrtb_indexfield shifted left 2 bits. The remaining upper bits
are the corresponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before
executing the jump itself.

Restrictions: None

Operation:

I GPR[31] — PC+8
I+1. PC PCGPRLEN..ZB || instr_index || 0

Exceptions:None

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-61

Chapter 11: MIPS32 4K™ Processor Core Instructions

Jump and Link (cont.) JAL

11-62

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is
an advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a
branch from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the branch instruction is in the last word of a 256 MB
region, it can branch only to the following 256 MB region containing the branch delay slot.

MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Jump and Link Register JALR
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rd hint JALR
000000 00000 001001
6 5 5 5 5 6
Format: JALR rs (rd = 31 implied) MIPS |
JALR rd, rs MIPS |

Purpose: To execute a procedure call to an instruction address in a register

Description: rd « return_addr, PC —Trs

Place the return address link in GRRThe return link is the address of the second instruction following the
branch, where execution continues after a procedure call.

Jump to the effective target address in GBBRExecute the instruction that follows the jump, in the branch delay
slot, before executing the jump itself.

At this time the only defined hint field value is 0, which sets default handling of JALR. Future implementations
may define additional hint values.

Restrictions:
Register specifiens andrd must not be equal, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is undefined. This restriction permits an exception handle

to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

The effective target address in GPRmust be naturally-aligned. If either of the two least-significant bits are not
zero, an Address Error exception occurs when the branch target is subsequently fetched as an instruction.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-63

Chapter 11: MIPS32 4K™ Processor Core Instructions

Jump and Link Register (cont.) JALR

Operation:
I: temp ~ GPRJrs]

GPR[rd] -~ PC+8
I+1: PC ~ temp
Exceptions:None

Programming Notes:

This is the only branch-and-link instruction that can select a register for the return link; all other link instructions
use GPR 31. The default register for GiRif omitted in the assembly language instruction, is GPR 31.

11-64 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Jump Register JR
31 26 25 2120 11 10 6 5 0
SPECIAL rs hint JR
000000 0000000000 001000
6 5 10 5 6
Format: JR rs MIPS |

Purpose: To execute a branch to an instruction address in a register

Description: PC « rs

Jump to the effective target address in GRHRExecute the instruction following the jump, in the branch delay
slot, before jumping.

Restrictions:

The effective target address in GBRnust be naturally-aligned. If either of the 2 least-significant bits are not
zero, then an Address Error exception occurs when the branch target is subsequently fetched as an instructior

At this time the only defined hint field value is 0, which sets default handling of JR. Future implementations may
define additional hint values.

Operation:

I: temp ~ GPRJrs]
I+1: PC — temp

Exceptions:None
Programming Notes:

Software should use the value 31 for tedield of the instruction word on return from a JAL, JALR, or BGEZAL,
and should use a value other than 31 for remaining uses of JR.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-65

Chapter 11: MIPS32 4K™ Processor Core Instructions

Load Byte

11-66

LB
31 26 25 21 20 16 15 0
LB base rt offset
100000
6 5 5 16
Format: LB rt, offset(base) MIPS |

Purpose: To load a byte from memory as a signed value

Description: rt

~— memory[base+offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, sign-extended,
and placed in GPR. The 16-bit signeaffsetis added to the contents of GRRseto form the effective address.

Restrictions: None

Operation:
vAddr

~ sign_extend(offset) + GPR[base]
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddr pgze.1.2 || (PAddr 1 o xor ReverseEndian 2)
memword— LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte — vAddr ; o xor BigEndianCPU
GPR[rt] «~ sign_extend(memword 7,gwyte gtoyte)

Exceptions: TLB Refill, TLB Invalid, Address Error

MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Load Byte Unsigned

LBU

31 26 25 21 20 16 15 0
LBU base re offset
100100
6 5 5 16
Format: LBU rt, offset(base) MIPS |

Purpose: To load a byte from memory as an unsigned value

Description: rt — memory[base+offset]

The contents of the 8-hit byte at the memory location specified by the effective address are fetched, zero-extende
and placed in GPR. The 16-bit signeaffsetis added to the contents of GRRseto form the effective address.

Restrictions: None

Operation:

vAddr ~ sign_extend(offset) + GPR[base]
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)

pAddr — pAddr pgize_1.»> |l (PAddr 1.0 Xor ReverseEndian 2)

memword— LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte — vAddr ; o xor BigEndianCPU
GPR[rtf] « zero_extend(memword 7.g pyte.8* byte)

Exceptions: TLB Refill, TLB Invalid, Address Error

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

11-67

Chapter 11: MIPS32 4K™ Processor Core Instructions

Load Halfword LH
31 26 25 21 20 16 15 0
LH base re offset
100001
6 5 5 16
Format: LH rt, offset(base) MIPS |

Purpose: To load a halfword from memory as a signed value

Description: rt — memory[base+offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
sign-extended, and placed in GRRThe 16-bit signedffsetis added to the contents of GBRseto form the
effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ~ sign_extend(offset) + GPR[base]
if vAddr o # 0 then SignalException(AddressError) endif
(pAddr, CCA) — AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddr pgize_1 2> || (PAddr 1.0 Xor (ReverseEndian || 0))
memword — LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ~ vAddr ; o xor (BigEndianCPU || 0)
GPR[rtf] « sign_extend(memword 15.gshyte. 8* byte)

Exceptions: TLB Refill, TLB Invalid, Bus Error, Address Error

11-68 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Load Halfword Unsigned

LHU

31 26 25 21 20 16 15 0
LHU base rt offset
100101
6 5 5 16
Format: LHU rt, offset(base) MIPS |

Purpose: To load a halfword from memory as an unsigned value

Description: rt

~— memory[base+offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched
zero-extended, and placed in GRRThe 16-bit signedffsetis added to the contents of GBRseto form the
effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Addres
Error exception occurs.

Operation:
vAddr

~ sign_extend(offset) + GPR[base]
if vAddr o # 0 then SignalException(AddressError) endif
hwsel ~ (vAddr 4 xor BigEndianCPU) || O
VAddr « VvAddr pgizg.1.2 || hwsel
memword — LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
(pAddr, CCA) — AddressTranslation (vAddr, DATA, LOAD)
memword— LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
GPR[rtf] « zero_extend(memword 15+ @g«hwsel)..8*hwsel)

Exceptions: TLB Refill, TLB Invalid, Address Error

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

11-69

Chapter 11: MIPS32 4K™ Processor Core Instructions

Load Linked Word LL
31 26 25 21 20 16 15 0
LL base rt offset
110000
6 5 5 16
Format: LL rt, offset(base) MIPS I

11-70

Purpose: To load a word from memory for an atomic read-modify-write

Description: rt — memory[base+offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
cached memory locations.

The 16-bit signedffsetis added to the contents of GBRseto form an effective address. The contents of the
32-bit word at the memory location specified by the aligned effective address are fetched, sign-extended to the
GPR register length if necessary, and written into @PR

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per
processor.

When an LL is executed it starts an active RMW sequence replacing any other sequence that was active.

The RMW sequence is completed by a subsequent SC instruction that either completes the RMW sequence
atomically and succeeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to fail on
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the RMW
sequence without attempting a write.

MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Load Linked Word (cont.) LL

Restrictions:
The addressed location must be cached; if it is not, the result is undefined.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address i
non-zero, an Address Error exception occurs.
Operation:

vAddr ~ sign_extend(offset) + GPR[base]
ifvAddr 1 o #0 2 then SignalException(AddressError) endif
(pAddr, CCA) — AddressTranslation (vAddr, DATA, LOAD)
memword — LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rf] ~ memword
LLbit ~ 1

Exceptions: TLB Refill, TLB Invalid, Address Error, Reserved Instruction
Programming Notes:

There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-71

Chapter 11: MIPS32 4K™ Processor Core Instructions

Load Upper Immediate LUI
31 26 25 21 20 16 15 0
LUl 0 rt immediate
001111 00000
6 5 5 16
Format: LUI rt, immediate MIPS |

Purpose: To load a constant into the upper half of a word

Description: it immediate || 0 16

The 16-bitimmediatas shifted left 16 bits and concatenated with 16 bits of low-order zeros. The 32-bit result is
sign-extended and placed into GRR

Restrictions: None

Operation:

GPR[rt] « sign_extend(immediate || O 16)

Exceptions:None

11-72 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Load Word LW
31 26 25 21 20 16 15 0
LW base rt offset
100011
6 5 5 16
Format: Lw rt, offset(base) MIPS |

Purpose: To load a word from memory as a signed value

Description: rt — memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched,
sign-extended to the GPR register length if necessary, and placed it. GRR 16-bit signedffsetis added to
the contents of GPRaseto form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero
an Address Error exception occurs.

Operation:

vAddr ~ sign_extend(offset) + GPR[base]
ifvAddr ;o #0 2 then SignalException(AddressError) endif
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)
memword — LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] « memword

Exceptions: TLB Refill, TLB Invalid, Bus Error, Address Error

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-73

Chapter 11: MIPS32 4K™ Processor Core Instructions

Load Word Left LWL
31 26 25 21 20 16 15 0
LWL base rt offset
100010
6 5 5 16
Format: LWL rt, offset(base) MIPS |

Purpose: To load the most-significant part of a word as a signed value from an unaligned
memory address

Description: it « rt MERGE memory[base+offset]

The 16-bit signedffsetis added to the contents of GBRseto form an effective addreg¢EffAddy. EffAddris
the address of the most-significant of 4 consecutive bytes forming a@rith memory starting at an arbitrary
byte boundary.

The most-significant 1 to 4 bytes @l is in the aligned word containing tieffAddr This part ofWis loaded into
the most-significant (left) part of the word in GRRThe remaining least-significant part of the word in GPR
is unchanged.

Figure 11-4 illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4
consecutive bytes in 2.5 form an unaligned word starting at location 2. A p@ftdbytes, is in the aligned word
containing the most-significant byte at 2. First, LWL loads these 2 bytes into the left part of the destination register
word and leaves the right part of the destination word unchanged. Next, the complementary LWR loads the
remainder of the unaligned word

11-74 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Load Word Left (cont.) LWL

Word at byte 2 in big-endian memory; each memory byte contains its own address

most - significance - least

}O ‘1 2 ‘3 |4I 5 |6 ‘7 |8 ‘9 l@emoryinitialcontents
g ;

e f o} B2-bit GPR 24: Initial contents
‘ e f]g} h

g After executingt WL $24,2($0)
o] *—)
4 |5 Then aftet WR $24,5($0)

Figure 11-4 Unaligned Word Load Using LWL and LWR

The bytes loaded from memory to the destination register depend on both the offset of the effective address withil
an aligned word, that is, the low 2 bits of the address (vAgdand the current byte-ordering mode of the
processor (big- or little-endian). Figure 11-5 shows the bytes loaded for every combination of offset and byte
ordering.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-75

Chapter 11: MIPS32 4K™ Processor Core Instructions

Load Word Left (cont.) LWL
Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 ~ big-endian
‘I P ‘K ‘L ‘ offset (vAddr_g
3 2 1 0 « little-endian most — significance — least
most least 32-bit register F ﬁ ‘g ‘h ‘
— significance —

The word sign (31) is always loaded and the value is copied into bits 63..32.

32-bit register Big-endian vAddry Little-endian
I J K L D L f g h
b K L]h 1 K L]g h
K L g h [J K L h
L F g 3 I J K L

Figure 11-5 Bytes Loaded by LWL Instruction

The unaligned loads, LWL and LWR, are exceptions to the load-delay scheduling restriction in MIPS |
architecture (seRestrictionsbelow). An unaligned load instruction to GRRhat immediately follows another

load to GPRt can read the loaded data. It correctly merges the 1 to 4 loaded bytes with the data loaded by the
previous instruction.

11-76 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Load Word Left (cont.)

Restrictions: None

Operation:
vAddr

~ sign_extend(offset) + GPR[base]
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddr pgize.1.o |l (PAddr 1.0 Xor ReverseEndian
if BigEndianMem = 0 then
PAddr pAddr pgize.q2 110 2
endif
byte — VAddr ; o xor BigEndianCPU 2
memword— LoadMemory (CCA, byte, pAddr, vAddr, DATA)
GPR[rt] — memword7.g«pyre.0 Il GPRIM 23_g+yte.0

Exceptions: TLB Refill, TLB Invalid, Bus Error, Address Error

2)

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

LWL

11-77

Chapter 11: MIPS32 4K™ Processor Core Instructions

Load Word Right LWR
31 26 25 21 20 16 15 0
LWR base rt offset
100110
6 5 5 16
Format: LWR rt, offset(base) MIPS |

Purpose: To load the least-significant part of a word from an unaligned memory address as a signed value

Description: it « rt MERGE memory[base+offset]

The 16-bit signedffsetis added to the contents of GBRseto form an effective addreg¢EffAddy. EffAddris
the address of the least-significant of 4 consecutive bytes forming gWoir memory starting at an arbitrary
byte boundary.

A part of W, the least-significant 1 to 4 bytes, is in the aligned word contaigif@ddr This part ofWis loaded
into the least-significant (right) part of the word in GRPRThe remaining most-significant part of the word in
GPRrt is unchanged.

Executing both LWR and LWL, in either order, delivers a sign-extended word value in the destination register.
Figure 11-6 illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4
consecutive bytes in 2..5 form an unaligned word starting at location 2. A pattdbytes, is in the aligned word

containing the least-significant byte at 5. First, LWR loads these 2 bytes into the right part of the destination
register. Next, the complementary LWL loads the remainder of the unaligned word.

11-78 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Load Word Right (cont.) LWR

Word at byte 2 in memory, big-endian byte order, each mem byte contains its address

most |- significance - least
‘0 ‘1 2 ‘3 |4 ‘5 6 ‘7 |8 ‘9 Memory initial contents
e g n J 32-bi 24: Initial contents
e f
e f # B After executind-WR $24,5($0)
e f

Then aftel. WL $24,2($0)

Figure 11-6 Unaligned Word Load Using LWR and LWL

The bytes loaded from memory to the destination register depend on both the offset of the effective address withil
an aligned word—that is, the low 2 bits of the address (vAgd+and the current byte-ordering mode of the
processor (big- or little-endian). Figure 11-7 shows the bytes loaded for every combination of offset and byte

ordering.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-79

Chapter 11: MIPS32 4K™ Processor Core Instructions

Load Word Right (cont.) LWR

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 « big-endian

‘I P k IL ‘ offset (vAddrl1..0)

3 2 1 0 « little-endian most — significance — least

most least 32-bit register ’e # ‘g ‘h ‘

— significance —

32-bit register big-endian vAddrl..0 little-endian
e f g \| 0 I J K L
e f] J & e | 3 K
e | 3 Kk p e f]
I J K L B e f g |

Figure 11-7 Bytes Loaded by LWR Instruction

The unaligned loads, LWL and LWR, are exceptions to the load-delay scheduling restriction in the MIPS |
architecture. An unaligned load to GPRhat immediately follows another load to GPRcan “read” the loaded
data. It correctly merges the 1 to 4 loaded bytes with the data loaded by the previous instruction.

11-80 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Load Word Right (cont.)

Restrictions: None

Operation:
vAddr

~ sign_extend(offset) + GPR[base]
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddr pgize.1.o |l (PAddr 1.0 Xor ReverseEndian
if BigEndianMem = 0 then
PAddr pAddr pgize.q2 110 2
endif
byte — VAddr ; o xor BigEndianCPU 2
memword— LoadMemory (CCA, byte, pAddr, vAddr, DATA)
GPR[r] ~ memwords; zpgmyte || GPRIM 31-gwyte..0

Exceptions: TLB Refill, TLB Invalid, Bus Error, Address Error

2)

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

LWR

11-81

Chapter 11: MIPS32 4K™ Processor Core Instructions

Multiply and Add Word to Hi,Lo MADD
31 26 25 21 20 16 15 11 10 6 5 0
SPEC2 rs rt 0 0 MADD
011100 00000 00000 000000
6 5 5 5 5 6
Format:
MADD rs, rt MIPS32
Purpose:

Multiply two words and add the result to Hi, Lo

Description:
The 32-bit word value in GPRs is multiplied by the 32-bit value in GPR, treating both operands as signed values,
to produce a 64-bit result. The product is added to the 64-bit concatenated valliearafL O and the result is writ-
ten back intdHl andLO. No arithmetic exception occurs under any circumstances.

Restrictions:
None.
Operation:
temp <- (HI || LO) + (GPR[rs] * GPR]rt])
Hi<-temp ¢3.32
LO<-temp 310

Exceptions:
None

Programming Note:
Where the size of the operands are known, software should place the shorter operand in GPR rt. The 4Kc and 4Km
processor cores have a multiplier that has a lower latency when rt is a 16 bit value.

11-82 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Multiply and Add Unsigned Word to Hi,Lo MADDU
31 26 25 21 20 16 15 1 10 6 5 0
SPEC2 rs rt 0 0 MADDU
011100 00000 00000 000001
6 5 5 5 5 6
Format:
MADDU rs, rt MIPS32
Purpose:

Multiply two unsigned words and add the result to Hi, Lo

Description:
The 32-bit word value in GPRs is multiplied by the 32-bit value in GPR, treating both operands as unsigned val-
ues, to produce a 64-bit result. The product is added to the 64-bit concatenated vadliesmdf. O and the result is
written back intaHl andLO. No arithmetic exception occurs under any circumstances.

Restrictions:
None.
Operation:
temp <- (HI || LO) + ((0 32| GPRIrs]) * (0 32 || GPRIr])
Hi <-temp ¢3.32
LO<-temp 310

Exceptions:
None

Programming Note:
Where the size of the operands are known, software should place the shorter operand in GPR rt. The 4Kc and 4K
processor cores have a multiplier that has a lower latency when rt is a 16 bit value.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-83

Chapter 11: MIPS32 4K™ Processor Core Instructions

Move from Coprocessor 0 MFCO
31 26 25 21 20 16 15 11 10 32 0
COPO MF rt rd 0 sel
010000 00000 00000000
6 5 5 5 8 3
Format:
MFCO rt, rd, sel MIPS32

Purpose:

Move the contents of a coprocessor register to a general register.

Description:

The contents of the coprocessor 0 register specified by the combination f and selare loaded into general
register rt. Not all coprocessors or registers within a coprocessor support the sub-selection specified by Het
field. In those instances, theelfield must be set to zero

Restrictions:

For coprocessor 0, this instruction is legal only if the processor is in kernel mode, or if the CPO usable bit is set in the
Status register. In other circumstances, execution of this instruction results in a Coprocessor Unusable Exception.

The results arelNPREDICTABLE if coprocessor 0 does not contain a register as specifietiandsel

Operation:
if (SRcyz=1) or

((SRum = 0) Or (SRt = 1) Of (SR, = 1)) then

else

data <- CPR][z,rd,sel]
GPR{rt] <- data

InitiateCoprocessorUnusableException(0)

endif

Exceptions:

Coprocessor Unusable Exception

11-84 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Move From HI Register MFHI
31 26 25 16 15 1110 6 5 0
SPECIAL 0 rd 0 MFHI
000000 0000000000 00000 010000
6 10 5 5 6
Format: MFHI rd MIPS |

Purpose: To copy the special purpob# register to a GPR

Description: rd < Hl

The contents of special registér are loaded into GPRI.

Restrictions: None

Operation:
GPR[rd] « HI

Exceptions:None

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-85

Chapter 11: MIPS32 4K™ Processor Core Instructions

Move From LO Register

11-86

31 26 25 16 15 1110 6 5
SPECIAL 0 rd 0 MFLO
000000 0000000000 00000 010010
6 10 5 5 6
Format: MFLO rd MIPS |

Purpose: To copy the special purpok® register to a GPR
Description: rd < LO

The contents of special registad are loaded into GPRI.
Restrictions: None

Operation:
GPR[rd] « LO

Exceptions:None

MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

MFLO

Instruction Set

Move Conditional on Not Zero MOVN
31 26 25 21 20 16 15 1110 6 5 0
SPECIAL s it d 0 MOVN
000000 00000 001011
6 5 5 5 5 6
Format: MOVN rd, rs, rt MIPS IV

Purpose: To conditionally move a GPR after testing a GPR value

Description: if rt # 0 then rd —rs

If the value in GPRt is not equal to zero, then the contents of GP&e placed into GPRI.
Restrictions: None

Operation:

if GPR[rt] # 0 then
GPR[rd] < GPR][rs]
endif

Exceptions: Reserved Instruction
Programming Notes:

The non-zero value tested here is¢badition trueresult from the SLT, SLTI, SLTU, and SLTIU comparison
instructions.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-87

Chapter 11: MIPS32 4K™ Processor Core Instructions

Move Conditional on Zero

11-88

31 26 25 21 20 16 15 1110 6
SPECIAL s rt d 0 MOvVZ
000000 00000 001010
6 5 5 5 5 6
Format: MOVZ rd, rs, rt MIPS IV

Purpose: To conditionally move a GPR after testing a GPR value

Description: if rt = 0 then rd

«~ IS

If the value in GPRt is equal to zero, then the contents of GPRre placed into GPRI.

Restrictions: None

Operation:

if GPR[rt] =0then
GPR]rd]
endif

— GPRJrs]

Exceptions: Reserved Instruction

Programming Notes:

MOVZ

The zero value tested here is tdomdition falseresult from the SLT, SLTI, SLTU, and SLTIU comparison

instructions.

MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Multiply and Subtract Word to Hi,Lo MSUB
31 26 25 21 20 16 15 11 10 6 5 0
SPEC2 rs rt 0 0 MSUB
011100 00000 00000 000100
6 5 5 5 5 6
Format:
MSUB rs,rt MIPS32
Purpose:

Multiply two words and subtract the result from Hi, Lo

Description:
The 32-bit word value in GPRs is multiplied by the 32-bit value in GPR, treating both operands as signed values,
to produce a 64-bit result. The product is subtracted from the 64-bit concatenated vatienadiLO and the result
is written back intddl andLO. No arithmetic exception occurs under any circumstances.

Restrictions:
None.
Operation:
temp <- (HI || LO) - (GPR[rs] * GPR]rt])
Hi<-temp ¢3.32
LO<-temp 310

Exceptions:
None

Programming Note:
Where the size of the operands are known, software should place the shorter operand in GPR rt. The 4Kc and 4K
processor cores have a multiplier that has a lower latency when rt is a 16 bit value.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-89

Chapter 11: MIPS32 4K™ Processor Core Instructions

Multiply and Subtract Unsigned Word to Hi,Lo MSUBU
31 26 25 21 20 16 15 1 10 6 5 0
SPEC2 rs rt 0 0 MSUBU
011100 00000 00000 000101
6 5 5 5 5 6
Format:
MSUBU rs, 1t MIPS32
Purpose:

Multiply two unsigned words and subtract the result from Hi, Lo

Description:
The 32-bit word value in GPRs is multiplied by the 32-bit value in GPR, treating both operands as unsigned val-
ues, to produce a 64-bit result. The product is subtracted from the 64-bit concatenated valles@fO and the
result is written back intbll andLO. No arithmetic exception occurs under any circumstances.

Restrictions:
None.
Operation:
temp <- (HI || LO) - (0 32| GPRIrs]) * (0 32 || GPRIr))
Hi <-temp ¢3.32
LO<-temp 310

Exceptions:
None

Programming Note:
Where the size of the operands are known, software should place the shorter operand in GPR rt. The 4Kc and 4Km
processor cores have a multiplier that has a lower latency when rt is a 16 bit value.

11-90 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Move to Coprocessor 0 MTCO
31 26 25 21 20 16 15 11 10 320
COPO MT rt rd 0 sel
010000 00100 0000000
6 5 5 5 8 3
Format:
MTCO rt, rd, sel MIPS32
Purpose:

Move the contents of a general register to a coprocessor register.

Description:
The contents of general registert are loaded into the coprocessor z register specified by the combination af
and sel Not all coprocessors or registers within a coprocessor support the sub-selection specified by ted
field. In those instances, theelfield must be set to zero.

Restrictions:
For coprocessor 0, this instruction is legal only if the processor is in kernel mode, or if the CPO usable bit is set in the
Status register. In other circumstances, execution of this instruction results in a Coprocessor Unusable Exception.

The results ar&NPREDICTABLE if coprocessor 0 does not contain a register as specifietiandsel

Operation:
if (SRcy,=1) or
((SRym = 0) or (SR = 1) or (SRg = 1)) then
data <- GPR]rt]
CPR]z,rd,sel] <- data

else

InitiateCoprocessorUnusableException(0)
endif
Exceptions:

Coprocessor Unusable Exception

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-91

Chapter 11: MIPS32 4K™ Processor Core Instructions

Move to HI Register

11-92

31 26 25 21 20
SPECIAL rs 0 MTHI
000000 0 0000 0000 0000 0O 010001

6 5 15 6

Format: MTHI rs MIPS |

Purpose: To copy a GPR to the special purpbieegister
Description: HI < rs

The contents of GPRs are loaded into special registé.
Restrictions: None

Operation:
HlI « GPR[rs]

Exceptions:None

MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

MTHI

Instruction Set

Move to LO Register MTLO

31 26 25 21 20 6 0

SPECIAL rs 0 MTLO

000000 0 0000 0000 0000 00 010011

6 5 15 6
Format: MTLO rs MIPS |
Purpose: To copy a GPR to the special purpas®ister
Description: LO « rs
The contents of GPRs are loaded into special registead.
Restrictions: None
Operation:
LO «~ GPR([rs]
Exceptions:None
MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-93

Chapter 11: MIPS32 4K™ Processor Core Instructions

Multiply Word to GPR MUL
31 26 25 21 20 16 15 11 10 6 5 0
SPEC2 rs rt rd 0 MUL
011100 00000 000010
6 5 5 5 5 6
Format:
MUL rd, rs, rt MIPS32
Purpose:

Multiply two words write the result to a GPR

Description:
The 32-bit word value in GPRs is multiplied by the 32-bit value in GPR, treating both operands as signed values,
to produce a 64-bit result. The least significant 32 bits of the product are written tadsHRe contents oHI and
LO are not defined after the operation. No arithmetic exception occurs under any circumstances.

Restrictions:
Note that this instruction does not provide the capability of writing the result to the HI and LO registers. This is to
prevent having two destination registers that would be difficult to support in potential high-performance processor
implementations that rename registers.

Operation:
temp <- GPR[rs] * GPR]rt]
GPR[rd] <- temp; o
HI <- UNPREDICTABLE
LO <- UNPREDICTABLE

Exceptions:
None

Programming Note:
Where the size of the operands are known, software should place the shorter operand in GPR rt. The 4Kc and 4Km
processor cores have a multiplier that has a lower latency when rt is a 16 bit value.

11-94 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Multiply Word MULT
31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 MULT
000000 0000000000 011000
6 5 5 10 6
Format: MULT rs, 1t MIPS |

Purpose: To multiply 32-bit signed integers

Description: (LO, HI) —rs xrt

The 32-bit word value in GPR is multiplied by the 32-bit value in GPR, treating both operands as signed
values, to produce a 64-bit result. The low-order 32-bit word of the result is placed into specialli&gistet
the high-order 32-bit word is placed into special regidter

No arithmetic exception occurs under any circumstances.

Restrictions: None

Operation:

prod « GPR[rs] 310 XGPR[rt] 310
LO- sign_extend(prod 31.0)
HI — sign_extend(prod 63.32)

Exceptions:None

Programming Notes:

Integer multiply operations may proceed asynchronously and allow other CPU instructions to execute before it is
complete. An attempt to readD or HI before the results are written interlocks until the results are ready.
Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-95

Chapter 11: MIPS32 4K™ Processor Core Instructions

Where the size of the operands are known, software should place the shorter operand in GPR rt. The 4Kc and 4Km
processor cores have a multiplier that has a lower latency when rt is a 16 bit value.

11-96 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Multiply Unsigned Word MULTU
31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 MULTU
000000 0000000000 011001
6 5 5 10 6
Format: MULTU rs, rt MIPS |

Purpose: To multiply 32-bit unsigned integers

Description: (LO, HI) —rs xrt

The 32-bit word value in GPR is multiplied by the 32-bit value in GPR, treating both operands as unsigned
values, to produce a 64-bit result. The low-order 32-bit word of the result is placed into specialli&gistet
the high-order 32-bit word is placed into special regidter

No arithmetic exception occurs under any circumstances.

Restrictions: None

Operation:

prod — (0 || GPR(rs] 31.0) X (0| GPRIrt] 31.0)

LO- sign_extend(prod 31.0)

HI — sign_extend(prod 63..32
Exceptions:None
Programming Notes:
Integer multiply operations may proceed asynchronously and allow other CPU instructions to execute before it is
complete. An attempt to readD or HI before the results are written interlocks until the results are ready.
Asynchronous execution does not affect the program result, but offers an opportunity for performance

improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-97

Chapter 11: MIPS32 4K™ Processor Core Instructions

Where the size of the operands are known, software should place the shorter operand in GPR rt. The 4Kc and 4Km
processor cores have a multiplier that has a lower latency when rt is a 16 bit value.

11-98 MIPS32 4K™ Processor Core Family Software User’'s Manual, Revision 01.07

Instruction Set

Not Or NOR
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 NOR
000000 00000 100111
6 5 5 5 5 6
Format: NOR rd, rs, rt MIPS |

Purpose: To do a bitwise logical NOT OR

Description: rd « rs NOR rt

The contents of GPIRs are combined with the contents of GIRn a bitwise logical NOR operation. The result
is placed into GPRd.

Restrictions: None

Operation:
GPR[rd] « GPRJrs] nor GPR[r]

Exceptions:None

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-99

Chapter 11: MIPS32 4K™ Processor Core Instructions

Or OR
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 OR
000000 00000 100101
6 5 5 5 5 6
Format: OR rd, rs, rt MIPS |

Purpose: To do a bitwise logical OR

Description: rd « rsorrt

The contents of GPRs are combined with the contents of GIRRn a bitwise logical OR operation. The result is
placed into GPRd.

Restrictions: None

Operation:
GPR[rd] < GPR]rs] or GPR]r]

Exceptions:None

11-100 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

Or Immediate ORI
31 26 25 21 20 16 15 0
ORI rs rt immediate
001101
6 5 5 16
Format: ORI rt, rs, immediate MIPS |

Purpose: To do a bitwise logical OR with a constant

Description: rd < rs or immediate

The 16-bitimmediatas zero-extended to the left and combined with the contents ofr&RR bitwise logical
OR operation. The result is placed into GRPR

Restrictions: None

Operation:

GPR[rt] « GPR]rs] or zero_extend(immediate)

Exceptions:None

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-101

Chapter 11: MIPS32 4K™ Processor Core Instructions

Prefetch PREF
31 PREEF 26 25 21 20 16 15 0
base hint offset
110011
6 5 5 16
Format: PREF hint, offset(base) MIPS IV

Purpose: To prefetch data from memory

Description: prefetch_memory(base+offset)

PREF adds the 16-bit signeffsetto the contents of GPBRaseto form an effective byte address. It advises that
data at the effective address may be used in the near futurdiifttfield supplies information about the way that
the data is expected to be used.

PREF is an advisory instruction that may change the performance of the program. Howevehifdwvalues and
all effective addresses, it neither changes the architecturally visible state nor does it alter the meaning of the
program.

PREF does not cause addressing-related exceptions. If the address specified would cause an addressing exception,
the exception condition is ignored and no data prefetch occurs.

PREF never generates a memory operation for a location withcathednemory access type.

If PREF results in a memory operation, the memory access type used for the operation is determined by the
memory access type of the effective address, just as it would be if the memory operation had been caused by a
load or store to the effective address.

Thehint field supplies information about the way the data is expected to be ukid vAlue cannot cause an

action to modify architecturally visible state. A processor may usatavalue to improve the effectiveness of the
prefetch action.

11-102 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

Prefetch (cont.)

PREF

Any of the following conditions causes the core to treat a PREF instruction as a NOP.

A reserved hint value is used
Writeback-invalidate (25) hint value is used
The address has a translation error

The address maps to an uncacheable page
The data is already in the cache

There is already another load/prefetch outstanding

In all other cases execution of the PREF instruction initiates an external bus read transaction. PREF is a
non-blocking operation and does not cause the pipeline to stall while waiting for the data to be returned.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-103

Chapter 11: MIPS32 4K™ Processor Core Instructions

11-104

Table 11-11 Values of Hint Fields for the PREF Instruction
Value Name Data use and desired prefetch action
0 load Data is expected to be loaded (not modified).
1 store Data is expected to be stored or modified.
2-3 Reserved. Treated as a NOP
4 load_streamed Data is expected to be loaded (not modified) but not reused extensively;
it “streams” through cache.
5 store_streamed Data is expected to be stored or modified but not reused extensively; it
“streams” through cache.
Fetch data as if for a store and place it in the cache so that it does|not
displace data prefetched as “retained.”
6 load_retained Data is expected to be loaded (not modified) and reused extensively; it
should be “retained” in the cache.
Fetch data as if for a load and place it in the cache so that it is not
displaced by data prefetched as “streamed.”
7 store_retained Data is expected to be stored or modified and reused extensively; it
should be “retained” in the cache.
8-24 Reserved. Treated as a NOP
25 writeback_invalidate MIPS32 4K processor cores treat this hint as a NOP.
26-31 Reserved. Treated as a NOP

Reserved hint values and writeback_invalidate are treated as NOPs. All other hint values are treated the sam
the cache if the conditions listed on the previous page are met.

e - filling

Restrictions: None

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

Prefetch (cont.) PREE

Operation:

vAddr ~ GPR[base] + sign_extend(offset)
(pAddr, CCA) ~ AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:None

Programming Notes:

Prefetch cannot prefetch data from a mapped location unless the translation for that location is present in the TLB
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so prefet

may not be effective for such locations.

Prefetch does not cause addressing exceptions. It does not cause an exception to prefetch using an address poi
value before the validity of a pointer is determined.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-105

Chapter 11: MIPS32 4K™ Processor Core Instructions

SB

Store Byte
31 26 25 21 20 16 15 0
SB base rt offset
101000
6 5 5 16
Format: SB rt, offset(base) MIPS |

Purpose: To store a byte to memory

Description: memory[base+offset] —rt

The least-significant 8-bit byte of GRRis stored in memory at the location specified by the effective address.
The 16-bit signedffsetis added to the contents of GBRseto form the effective address.

Restrictions: None

Operation:

vAddr ~ sign_extend(offset) + GPR[base]

(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, STORE)

pAddr — pAddr pgize.1.o |l (PAddr 1.0 Xor ReverseEndian 2)
byte — vAddr , g xor BigEndianCPU

dataword «— GPR[t] 31 gyeo [0 &PV©

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

Exceptions: TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

11-106 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

Store Conditional Word sC
31 26 25 21 20 16 15 0
sSC base rt offset
111000
6 5 5 16
Format: SC rt, offset(base) MIPS I

Purpose: To store a word to memory to complete an atomic read-modify-write

Description: if atomic_update then memory[base+offset] —rt,rt <1
else rt <0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for
cached memory locations.

The 16-bit signedffsetis added to the contents of GB&seto form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processor. To
complete the RMW sequence atomically, the following occur:

* The least-significant 32-bit word of GRRis stored into memory at the location specified by the aligned
effective address.

e A1, indicating success, is written into GRR
Otherwise, memory is not modified and a 0, indicating failure, is written intorGPR

If the following event occurs between the execution of LL and SC, the SC fails and an exception occurs on the
processor as detected by execution of the ERET instruction.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-107

Chapter 11: MIPS32 4K™ Processor Core Instructions

Store Conditional Word (cont.) SC

The following conditions must be true or the result of the SC is undefined:
« Execution of SC must have been preceded by execution of an LL instruction.

« A RMW sequence executed without intervening exceptions must use the same address in the LL and SC.
The address is the same if the virtual address, physical address, and cache-coherence algorithm are identical.

Atomic RMW is provided only for cached memory locations. The extent to which the detection of atomicity
operates correctly depends on the system implementation and the memory access type used for the location:

e Uniprocessor atomicityTo provide atomic RMW on a single processor, all accesses to the location must be
made with memory access type of eitbached noncoheremr cached coherenfll accesses must be to
one or the other access type, and they may not be mixed.

Restrictions:

The addressed location must have a memory access tgpeloséd noncohereor cached coherenif it does not,
the result is undefined.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero,
an Address Error exception occurs.

Operation:

vAddr ~ sign_extend(offset) + GPR[base]
ifvAddr 1 o #0 2 then SignalException(AddressError) endif
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, STORE)
dataword ~ GPRJrt]
if LLbit then
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt] « 03! || LLbit

Exceptions: TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction

11-108 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

Store Conditional Word (cont.) SC

Programming Notes:

LL and SC are used to atomically update memory locations, as shown in Figure 11-8.

L1:

LLT1, (TO) load counter

ADDIT2, T1, 1#increment

SCT2, (TO)# try to store, checking for atomicity
BEQT2, 0, L1# if not atomic (0), try again
NOP# branch-delay slot

Figure 11-8 Example of LL/SC Atomic Update

Exceptions between the LL and SC cause SC to falil, so persistent exceptions must be avoided. Some examples
these are arithmetic operations that trap, system calls, and floating point operations that trap or require softwa
emulation assistance.

LL and SC function on a single processordached noncoheremiemory so that parallel programs can be run
on uniprocessor systems that do not supgeehed coheremhemory access types.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-109

Chapter 11: MIPS32 4K™ Processor Core Instructions

Software Debug Breakpoint SDBBP
31 26 25 6 5 0
SPEC2 code SDBBP
011100 111111
6 20 6
Format:
SDBBP code
Purpose:

To cause a debug software breakpoint exception.

Description:
A debug software breakpoint exception occurs, immediately and unconditionally transferring control to the debug
exception handler.

The code field is available as software parameter, but is retrieved by the debug exception handler only by loading the
contents of the memory containing the instruction.

Restrictions:
The operation of the processotdBIDEFINED if a SDBBP is executed in debug mode.

Operation:
SignalException(DebugSoftwareBreakpoint)

Exceptions:
Debug Software Breakpoint Exception

11-110 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

Store Halfword SH
31 26 25 21 20 16 15 0
SH base rt offset
101001
6 5 5 16
Format: SH rt, offset(base) MIPS |

Purpose: To store a halfword to memory

Description: memory[base+offset] —n

The least-significant 16-bit halfword of registers stored in memory at the location specified by the aligned
effective address. The 16-bit signeffsetis added to the contents of GBRseto form the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Addres

Error exception occurs.

Operation:

vAddr ~ sign_extend(offset) + GPR[base]
if vAddr o # 0 then SignalException(AddressError) endif
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, STORE)

pAddr — pAddr pgize.1.o || (PAddr 1.0 Xor (ReverseEndian || 0))

byte — vAddr 1 g xor (BigEndianCPU || 0)
dataword — GPR[rt] 31 gyeo [0 5PV©
StoreMemory (CCA, HALFWORD, dataword, pAddr, vAddr, DATA)

Exceptions: TLB Refill, TLB Invalid, TLB Modified, Address Error

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

11-111

Chapter 11: MIPS32 4K™ Processor Core Instructions

Shift Word Left Logical SLL
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa SLL
000000 00000 000000
6 5 5 5 5 6
Format: SLL rd, rt, sa MIPS |

Purpose: To left-shift a word by a fixed nhumber of bits

Description: rd « rt<<sa

The contents of the low-order 32-bit word of GPRare shifted left, inserting zeros into the emptied bits; the word
result is placed in GPRI. The bit-shift amount is specified bg.

Restrictions: None

Operation:

s ~ sa
temp —~ GPR]rt] (31-5)..0 || O
GPR[rd] < sign_extend(temp)

Exceptions:None
Programming Notes:

Some assemblers, particularly 32-bit assemblers, treat an SLL with a shift amount of zero as a NOP and either
delete it or replace it with an actual NOP.

11-112 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

Shift Word Left Logical Variable SLLV
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SLLV
000000 00000 000100
6 5 5 5 5 6
Format: SLLV rd, rt, rs MIPS |

Purpose: To left-shift a word by a variable number of bits

Description: rd < rt<<rs

The contents of the low-order 32-bit word of GPPfRare shifted left, inserting zeros into the emptied bits; the result
word is placed in GPRI. The bit-shift amount is specified by the low-order 5 bits of GPR

Restrictions: None

Operation:

s ~ GPR[rs] 4.0
temp — GPR[rt] (31-s)..0 ” 0 S
GPR[rd] « sign_extend(temp)

Exceptions:None

Programming Notes:None

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-113

Chapter 11: MIPS32 4K™ Processor Core Instructions

None

Set on Less Than

11-114

SLT
31 26 25 21 20 16 15 11 10 0
SPECIAL s rt rd 0 SLT
000000 00000 101010
6 5 5 5 5 6
Format: SLT rd, rs, rt MIPS |

Purpose: To record the result of a less-than comparison

Description: rd ~ (rs <rt)

Compare the contents of GPRand GPRt as signed integers and record the Boolean result of the comparison
in GPRrd. If GPRrsis less than GPR, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions: None

Operation:

if GPR[rs] < GPRJrt] then
GPR[rd] . 0 GPRLEN-} g

else

GPR[rd] .~ 0 GPRLEN

endif

Exceptions:None

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

SLTI

Set on Less Than Immediate
31 26 25 21 20 16 15 0
SLTI rs rt immediate
001010
6 5 5 16
Format: rt, rs, immediate MIPS |

Purpose: To record the result of a less-than comparison with a constant

Description: it~ (rs < immediate)

Compare the contents of GRRand the 16-bit signemnmediateas signed integers and record the Boolean result
of the comparison in GPR. If GPRrs is less thaimmediatethe result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions: None

Operation:

if GPR[rs] < sign_extend(immediate) then

GPR[rd] . 0 GPRLENG

else

GPR]rd]

endif

Exceptions:None

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

-0 GPRLEN

11-115

Chapter 11: MIPS32 4K™ Processor Core Instructions

Set on Less Than Immediate SLTI
31 26 25 21 20 16 15 0
SLTI rs rt immediate
001010
6 5 5 16
Format: SLTI rt, rs, immediate MIPS |

Purpose: To record the result of a less-than comparison with a constant

Description: it~ (rs < immediate)

Compare the contents of GRRand the 16-bit signemnmediateas signed integers and record the Boolean result
of the comparison in GPR. If GPRrs is less thaimmediatethe result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.
Restrictions: None

Operation:

if GPR[rs] < sign_extend(immediate) then
GPR[rd] .~ 0 GPREENq
else
GPR[rd] .~ 0 GPRLEN
endif

Exceptions:None

11-116 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

Set on Less Than Immediate Unsigned SLTIU
31 26 25 21 20 16 15 0
SLTIU rs rt immediate
001011
6 5 5 16
Format: SLTIU rt, rs, immediate MIPS |

Purpose: To record the result of an unsigned less-than comparison with a constant

Description: it~ (rs < immediate)

Compare the contents of GPRand the sign-extended 16-bitmediateas unsigned integers and record the
Boolean result of the comparison in GRRIf GPRrs is less thaimmmediatethe result is 1 (true); otherwise, it
is O (false).

Because the 16-bimmediates sign-extended before comparison, the instruction can represent the smallest or
largest unsigned numbers. The representable values are at the minimum [0, 32767] or maximum
[max_unsigned-32767, max_unsigned] end of the unsigned range.

The arithmetic comparison does not cause an Integer Overflow exception.
Restrictions: None

Operation:

if (0 || GPR]rs]) < (0 || sign_extend(immediate)) then
GPR[rd] . 0 GPRLEN-1) 1
else
GPR[rd] . 0 GPRLEN
endif

Exceptions:None

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-117

Chapter 11: MIPS32 4K™ Processor Core Instructions

Set on Less Than Immediate Unsigned SLTIU
31 26 25 21 20 16 15 0
SLTIU rs rt immediate
001011
6 5 5 16
Format: SLTIU rt, rs, immediate MIPS |

11-118

Purpose: To record the result of an unsigned less-than comparison with a constant

Description: it~ (rs < immediate)

Compare the contents of GPRand the sign-extended 16-bitmediateas unsigned integers and record the
Boolean result of the comparison in GRRIf GPRrs is less thaimmmediatethe result is 1 (true); otherwise, it
is O (false).

Because the 16-bimmediates sign-extended before comparison, the instruction can represent the smallest or
largest unsigned numbers. The representable values are at the minimum [0, 32767] or maximum
[max_unsigned-32767, max_unsigned] end of the unsigned range.

The arithmetic comparison does not cause an Integer Overflow exception.
Restrictions: None

Operation:

if (0 || GPR]rs]) < (0 || sign_extend(immediate)) then
GPR[rd] . 0 GPRLEN-1) 1
else
GPR[rd] . 0 GPRLEN
endif

Exceptions:None

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

Set on Less Than Unsigned SLTU
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SLTU
000000 00000 101011
6 5 5 5 5 6
Format: SLTU rd, rs, rt MIPS |

Purpose: To record the result of an unsigned less-than comparison

Description: rd ~ (rs <rt)

Compare the contents of GRRand GPRt as unsigned integers and record the Boolean result of the comparison
in GPRrd. If GPRrsis less than GPR, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.
Restrictions: None

Operation:

if (0 || GPRIrs]) < (0 || GPRIrt]) then
GPR[rd] . 0 GPRLEN1) 1
else
GPR[rd] .~ 0 GPRLEN
endif

Exceptions:None

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-119

Chapter 11: MIPS32 4K™ Processor Core Instructions

Shift Word Right Arithmetic

11-120

SRA
31 26 25 21 20 16 15 11 10 0
SPECIAL 0 rt rd sa SRA
000000 00000 000011
6 5 5 5 5 6
Format: SRA rd, rt, sa MIPS |

Purpose: To execute an arithmetic right-shift of a word by a fixed number of bits

Description: rd « rt>>sa (arithmetic)

The contents of the low-order 32-bit word of GRRre shifted right, duplicating the sign-bit (bit 31) in the
emptied bits; the word result is placed in GEERThe bit-shift amount is specified bg.

Restrictions:
None

Operation:

S~ sa

temp « (GPR[rtf] 31) % || GPR[rt]

GPR[rd] < sign_extend(temp)

Exceptions:None

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

3l.s

Instruction Set

SRAV

Shift Word Right Arithmetic Variable
31 26 25 21 20 16 15 11 10 0
SPECIAL rs rt rd 0 SRAV
000000 00000 000111
6 5 5 5 5 6
Format: SRAV rd, rt, rs MIPS |

Purpose: To execute an arithmetic right-shift of a word by a variable number of bits

Description: rd

— t>>rs

(arithmetic)

The contents of the low-order 32-bit word of GRRre shifted right, duplicating the sign-bit (bit 31) in the
emptied bits; the word result is placed in GIERThe bit-shift amount is specified by the low-order 5 bits of

GPRrs.
Restrictions:
None

Operation:

s « GPRJrs]

GPR[rd] < sign_extend(temp)

Exceptions:None

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

4.0
temp ~ (GPR[rt]

31) ° || GPRIrt]

3l.s

11-121

Chapter 11: MIPS32 4K™ Processor Core Instructions

Shift Word Right Logical SRL
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa SRL
000000 00000 000010
6 5 5 5 5 6
Format: SRL rd, rt, sa MIPS |

Purpose: To execute a logical right-shift of a word by a fixed number of bits
Description: rd ~ rt>>sa (logical)

The contents of the low-order 32-bit word of GRRre shifted right, inserting zeros into the emptied bits; the
word result is placed in GPI. The bit-shift amount is specified baq.

Restrictions: None

Operation:

S— sa
temp — 0 5 || GPR][rt] 31.s
GPR[rd] < sign_extend(temp)

Exceptions:None

11-122 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

Shift Word Right Logical Variable SRLV
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SRLV
000000 00000 000110
6 5 5 5 5 6
Format: SRLV rd, rt, rs MIPS |

Purpose: To execute a logical right-shift of a word by a variable number of bits

Description: rd « rt>>rs (logical)

The contents of the low-order 32-bit word of GRRre shifted right, inserting zeros into the emptied bits; the
word result is placed in GPR. The bit-shift amount is specified by the low-order 5 bits of GPR

Restrictions:
None

Operation:

S GPR[rs] 4.9
temp — 0 5 || GPR[rt] 31.s
GPR[rd] < sign_extend(temp)

Exceptions:None

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-123

Chapter 11: MIPS32 4K™ Processor Core Instructions

Subtract Word SUB
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SuUB
000000 00000 100010
6 5 5 5 5 6
Format: SUB rd, rs, rt MIPS |

Purpose: To subtract 32-bit integers. If overflow occurs, then trap

Description: rd « rs-rt

The 32-bit word value in GPR is subtracted from the 32-bit value in GBRo produce a 32-bit result. If the
subtraction results in 32-bit 2's complement arithmetic overflow, then the destination register is not modified and
an Integer Overflow exception occurs. If it does not overflow, the 32-bit result is placed intd.GPR

Restrictions: None

Operation:

temp « (GPRIrs] 31[IGPRIrs] 310) ~(GPRIM 51lIGPRIM 310)
iftemp 3, #Ztemp 31 then

SignalException(IntegerOverflow)

else

GPR[rd] < sign_extend(temp 31.0)

endif

Exceptions: Integer Overflow

Programming Notes:SUBU performs the same arithmetic operation but does not trap on overflow.

11-124 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

Subtract Unsigned Word SUBU
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SUBU
000000 00000 100011
6 5 5 5 5 6
Format: SUBU rd, rs, rt MIPS |

Purpose: To subtract 32-bit integers

Description: rd « rs-rt

The 32-bit word value in GPR is subtracted from the 32-bit value in GBRand the 32-bit arithmetic result is
placed into GPRd.

No integer overflow exception occurs under any circumstances.
Restrictions: None
Operation:

temp — GPRJrs] - GPR|rt]
GPR[rd] ~ temp

Exceptions:None
Programming Notes: The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo

arithmetic that does not trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, o
integer arithmetic environments that ignore overflow, such as C language arithmetic.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-125

Chapter 11: MIPS32 4K™ Processor Core Instructions

Store Word SW
31 26 25 21 20 16 15 0
SwW base rt offset
101011
6 5 5 16
Format: SW rt, offset(base) MIPS |

Purpose: To store a word to memory

Description: memory[base+offset] —n

The least-significant 32-bit word of registeis stored in memory at the location specified by the aligned effective
address. The 16-bit signeffsetis added to the contents of GBRseto form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero,
an Address Error exception occurs.

Operation:

vAddr ~ sign_extend(offset) + GPR[base]
ifvAddr ;o #0 2 then SignalException(AddressError) endif
(pAddr, CCA) — AddressTranslation (vAddr, DATA, STORE)
dataword ~ GPRJrt]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions: TLB Refill, TLB Invalid, TLB Modified, Address Error

11-126 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

Store Word Left SWL
31 26 25 21 20 16 15 0
SWL base rt offset
101010
6 5 5 16
Format: SWL rt, offset(base) MIPS |

Purpose: To store the most-significant part of a word to an unaligned memory address

Description: memory[base+offset] —n

The 16-bit signedffsetis added to the contents of GBRseto form an effective addreg¢EffAdd. EffAddris
the address of the most-significant of 4 consecutive bytes forming a@rith memory starting at an arbitrary
byte boundary.

A part of W, the most-significant 1 to 4 bytes, is in the aligned word contaiBif§ddr The same number of the
most-significant (left) bytes from the word in GRRare stored into these bytes\if

Figure 11-9 illustrates this operation using big-endian byte ordering for 32-bit registers. The 4 consecutive bytes
in 2..5 form an unaligned word starting at location 2. A paM\b® bytes, is located in the aligned word containing

the most-significant byte at 2. First, SWL stores the most-significant 2 bytes of the low word from the source
register into these 2 bytes in memory. Next, the complementary SWR stores the remainder of the unaligned worc

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-127

Chapter 11: MIPS32 4K™ Processor Core Instructions

Store Word Left (cont.) SWL

Word at byte 2 in memory, big-endian byte order; each memory byte contains its own address

most — significance — least

‘0 ‘1 2 ‘3 P ‘5 6 ‘7 I% ‘ Memory: Initial contents

32-bit GPR 24

‘o \1 EF F \5 6 \ After executingSWL $24,2($0)

‘o ‘1 E ‘F F H & \ Then afterSWR $24,5($0)

Figure 11-9 Unaligned Word Store Using SWL and SWR

The bytes stored from the source register to memory depend on both the offset of the effective address within an
aligned word—that is, the low 2 bits of the addregsdfirl..0—and the current byte-ordering mode of the
processor (big- or little-endian). Figure 11-10 shows the bytes stored for every combination of offset and byte
ordering.

11-128 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

Store Word Left (cont.) SWL
Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 «<bhig-endian
’i % ‘k ‘I ‘ offset (VAddy, o
3 2 1 0 «little-endian most — significance — least
most least 32-bit register ‘E ‘F ‘G ‘H ‘
— significance —

Memory contents after instruction (shaded is unchanged)

Big-endian vAddr; o Little-endian
byte ordering byte ordering
E F G H [ik ‘E
i ‘E F G [i ‘E F
i ‘E F P i ‘E F

i ik ‘E 3 E F G H

Figure 11-10 Bytes Stored by an SWL Instruction

Restrictions: None

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-129

Chapter 11: MIPS32 4K™ Processor Core Instructions

Store Word Left (cont.)

11-130

Operation:
vAddr

~ sign_extend(offset) + GPR[base]
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, STORE)
pAddr — pAddr pgize.1.o |l (PAddr 1.0 Xor ReverseEndian
If BigEndianMem = 0 then
pPAddr « pAddr pgize1p 10 2
endif
byte ~ vAddr 1,0 xor BigEndianCPU
dataword — 0 248V | GPRM] 31 54 gyt
StoreMemory (CCA, byte, dataword, pAddr, vAddr, DATA)

2

Exceptions: TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

2)

SWL

Instruction Set

Store Word Right SWR
31 26 25 21 20 16 15 0
SWR base rt offset
101110
6 5 5 16
Format: SWR rt, offset(base) MIPS |

Purpose: To store the least-significant part of a word to an unaligned memory address

Description: memory[base+offset] —n

The 16-bit signedffsetis added to the contents of GBRseto form an effective addreg¢EffAdd. EffAddris
the address of the least-significant of 4 consecutive bytes forming gWoir memory starting at an arbitrary
byte boundary.

A part of W, the least-significant 1 to 4 bytes, is in the aligned word contai&if@yddr The same number of the
least-significant (right) bytes from the word in GRRire stored into these bytes\uf

Figure 11-11 illustrates this operation using big-endian byte ordering for 32-bit registers. The 4 consecutive bytes
in 2..5 form an unaligned word starting at location 2. A paw/d bytes, is contained in the aligned word
containing the least-significant byte at 5. First, SWR stores the least-significant 2 bytes of the low word from the
source register into these 2 bytes in memory. Next, the complementary SWL stores the remainder of the unaligne
word.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-131

Chapter 11: MIPS32 4K™ Processor Core Instructions

Store Word Right (cont.) SWR

Word at byte 2 in memory, big-endian byte order, each mem byte contains its address

most — significance — least
‘o ‘1 2 ‘3 |4 ‘5 6 ‘7 Ia ‘ Memory: Initial contents
E F G H
32-bit GPR 24
‘o ‘1 2 ‘3 F H & \ After executingSWR $24,5($0)
\o \1 EF P ‘H 6 \ Then afterSWL $24,2($0)

Figure 11-11 Unaligned Word Store Using SWR and SWL

The bytes stored from the source register to memory depend on both the offset of the effective address within an
aligned word—that is, the low 2 bits of the addregsdfirl..0—and the current byte-ordering mode of the
processor (big- or little-endian). Figure 11-12 shows the bytes stored for every combination of offset and
byte-ordering.

11-132 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

Store Word Right (cont.) SWR
Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 « big-endian
’i % ‘k ‘I ‘ offset (VAddy, o
3 2 1 0 « little-endian most — significance — least
most least 32-bit register ‘E ‘F ‘G ‘H
— significance —
Memory contents after instruction (shaded is unchanged)
Big-endian vAddr; o Little-endian byte
byte ordering ordering
H ‘, kK | D E F G H
G ’k b F G H ’I
F H ’I 7 G H ’k |
E F H B H % ko
Figure 11-12 Bytes Stored by SWR Instruction
Restrictions: None
Operation:
vAddr — sign_extend(offset) + GPR[base]

(pAddr, CCA) — AddressTranslation (vAddr, DATA, STORE)

pAddr — pAddr pgize.1.o |l (PAddr 1.0 Xor ReverseEndian 2)
if BigEndianMem = 0 then

PAddr — pAddr pgize.q2 110 2

endif

byte — vAddr ; ; xor BigEndianCPU 2

dataword — GPRIr] 31 gipye [0 &PV

StoreMemory (CCA, WORD-byte, dataword, pAddr, vAddr, DATA)

Exceptions: TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-133

Chapter 11: MIPS32 4K™ Processor Core Instructions

Synchronize Shared Memory SYNC
31 26 25 11 10 6 5 0
SPECIAL 0 stype SYNC
000000 00 0000 0000 0000 O 001111
6 15 5 6
Format: SYNC (stype = 0 implied) MIPS I

11-134

Purpose: To order loads and stores.

Description:

The SYNC instruction affects onlyncachedndcached coherenbads and stores. The loads and stores that occur
before the SYNC must be completed before the loads and stores after the SYNC are allowed to start. Loads are
completed when the destination register is written. Stores are completed when the stored value is visible to every
other processor in the system.

SYNC does not guarantee the order in which instruction fetches are performestypbealues 1-31 are reserved,;

they produce the same result as the value zero. Executing a SYNC instruction causes the write-through buffer to
be flushed. The SYNC instruction stalls until all loads and stores are completed.

Restrictions:

The effect of SYNC on the global order of loads and stores for memory access types otinecabhadand
cached cohereris not defined.

Operation:

SyncOperation(stype)

Exceptions:None

Programming Note:

The description above refers to the 4K core implementation of the SYNC instruction. For a more detailed

description of the programming effects of SYNC on a generic MIPS32 processor, refer to the MIPS32
Specification.

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

System Call SYSCALL
31 26 25 6 5 0
SPECIAL code SYSCALL
000000 001100
6 20 6

Format: SYSCALL MIPS |

Purpose: To cause a System Call exception

Description:

A system call exception occurs, immediately and unconditionally transferring control to the exception handler.

Thecodefield is available for use as software parameters, but is retrieved by the exception handler only by loading
the contents of the memory word containing the instruction.

Restrictions: None

Operation:

SignalException(SystemCall)

Exceptions: System Call

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-135

Chapter 11: MIPS32 4K™ Processor Core Instructions

Trap if Equal TEQ
31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt code TEQ
000000 110100
6 5 5 10 6
Format: TEQ rs, rt MIPS I

Purpose: To compare GPRs and do a conditional trap

Description: if rs = rt then Trap

Compare the contents of GPRand GPRt as signed integers; if GRRIs equal to GPRt, then take a Trap
exception.

The contents of theodefield are ignored by hardware and may be used to encode information for system
software. To retrieve the information, system software must load the instruction word from memory.

Restrictions: None

Operation:

if GPR[rs] = GPR]rt] then
SignalException(Trap)
endif

Exceptions: Trap

11-136 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

Trap if Equal Immediate

TEQI

31 26 25 21 20 16 15 0
REGIMM rs TEQI immediate
000001 01100
6 5 5 16
Format: TEQI rs, immediate

Purpose: To compare a GPR to a constant and do a conditional trap

Description: if rs = immediate then Trap

Compare the contents of GPRand the 16-bit signedhmediateas signed integers; if GARIs equal to
immediatethen take a Trap exception.

Restrictions: None

Operation:

if GPR[rs] = sign_extend(immediate) then
SignalException(Trap)
endif

Exceptions: Trap

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

11-137

Chapter 11: MIPS32 4K™ Processor Core Instructions

Trap if Greater or Equal TGE
31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt code TGE
000000 110000
6 5 5 10 6
Format: TGE rs, rt MIPS Il

Purpose: To compare GPRs and do a conditional trap

Description: if rs > rt then Trap

Compare the contents of GRRand GPRt as signed integers; if GPR is greater than or equal to GRR then
take a Trap exception.

The contents of theodefield are ignored by hardware and may be used to encode information for system
software. To retrieve the information, system software must load the instruction word from memory.

Restrictions: None

Operation:

if GPR[rs] = GPR[rt] then
SignalException(Trap)
endif

Exceptions: Trap

11-138 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

Trap if Greater or Equal Immediate TGEI
31 26 25 21 20 16 15 0
REGIMM rs TGEI immediate
000001 01000
6 5 5 16
Format: TGEI rs, immediate MIPS Il

Purpose: To compare a GPR to a constant and do a conditional trap

Description: if rs

> immediate then Trap

Compare the contents of GRRand the 16-bit signetinmediateas signed integers; if GPR is greater than or
equal tommediate then take a Trap exception.

Restrictions: None

Operation:
if GPR[rs]

> sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions: Trap

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

11-139

Chapter 11: MIPS32 4K™ Processor Core Instructions

Trap if Greater or Equal Immediate Unsigned

11-140

TGEIU
31 26 25 21 20 16 15 0
REGIMM s TGEIU immediate
000001 01001
6 5 5 16
Format: TGEIU rs, immediate MIPS Il

Purpose: To compare a GPR to a constant and do a conditional trap

Description: if rs

immediate then Trap

Compare the contents of GRRand the 16-bit sign-extendédmediateas unsigned integers; if GRRIs greater

than or equal ttmmediate then take a Trap exception.

Because the 16-bimmediates sign-extended before comparison, the instruction can represent the smallest or
largest unsigned numbers. The representable values are at the minimum [0, 32767] or maximum
[max_unsigned-32767, max_unsigned] end of the unsigned range.

Restrictions: None

Operation:

if (0 || GPR]rs])

SignalException(Trap)

endif

Exceptions: Trap

> (0 |] sign_extend(immediate)) then

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

Trap if Greater or Equal Unsigned TGEU
31 26 25 21 20 16 15 0
SPECIAL rs rt code TGEU
000000 110001
6 5 5 10 6
Format: TGEU rs, rt MIPS I

Purpose: To compare GPRs and do a conditional trap

Description: if rs > rt then Trap

Compare the contents of GPRand GPRt as unsigned integers; if GRRis greater than or equal to GPR

then take a Trap exception.

The contents of theodefield are ignored by hardware and may be used to encode information for system
software. To retrieve the information, system software must load the instruction word from memory.

Restrictions: None

Operation:

if (0 || GPR]rs]) > (0 || GPRIrt]) then

SignalException(Trap)
endif

Exceptions: Trap

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

11-141

Chapter 11: MIPS32 4K™ Processor Core Instructions

Probe TLB for Matching Entry TLBP
31 26 25 24 0
COPO Cco 0 TLBP
010000 1 0000000 000000000000 001000
6 1 19 6
Format:

TLBP MIPS32

Purpose:

Find a matching entry in the TLB.

Description:
The Index register is loaded with the address of the TLB entry whose contents match the contents of the
EntryHi register. If no TLB entry matches, the high-order bit of thelndex register is set.

Restrictions:
This instruction is legal only if the processor is in kernel mode, or if the CPO usable bit is set in the Status register. In
other circumstances, execution of this instruction results in a Coprocessor Unusable Exception.

For processors that do not include the standard TLB MMU, the operation of this instruttidDEFINED .

Operation:
|f (SR CUO: 1) or (SR UM = 0) or (SR EXL = 1) or (SR ERL: 1) then
Index <- 1] UNPREDICTABLE!
foriin 0...TLBEntries-1
if((TLBI[] vpnzand not (TLBIi] Mask)) =
(EntryHi ypn2and not (TLBJI] Mask))) and
(TLB[|] Gor (TLB[l] ASID = EntryHl AS|D)) then
Index <- i
endif
endfor
else
InitiateCoprocessorUnusableException(0)
endif

Exceptions:
Coprocessor Unusable Exception

11-142 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

Read Indexed TLB Entry TLBR
31 26 25 24 0
COPO co 0 TLBR
010000 1 0000000 000000000000 000001
6 1 19 6
Format:

TLBR MIPS32

Purpose:

Read an entry from the TLB.

Description:

The EntryHi, EntryLoO, EntryLol, and PageMaskregisters are loaded with the contents of the TLB entry

pointed to by the Index register. Note that the value written to the EntryHi, EntryLoO, and EntryLo1l registers

may be different from that originally written to the TLB via these registers in that:

» The value returned in the VPN2 field of theEntryHi register has those bits set to zero corresponding to the
one bits in the Mask field of the TLB entry.

» the value returned in the G bit in both thetryLoOandEntryLolregisters comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G biEninyLoOandEntryLolwhen
the TLB was written.

» The value returned in the ASID field of tRetryHi register is zero for those chips that implement a BAT-based
MMU organization.

Restrictions:
This instruction is legal only if the processor is in kernel mode, or if the CPO usable bit is set in the Status register. Ir
other circumstances, execution of this instruction results in a Coprocessor Unusable Exception.

The operation is UNDEFINED if the contents of thelndex register are greater than or equal to the number of
TLB entries in the processor.

For processors that do not include the standard TLB, the operation of this instruciMDESINED .

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-143

Chapter 11: MIPS32 4K™ Processor Core Instructions

um=— O) or (SR EXL = 1) or (SR

Operation:
i <- Index
if i > TLBEntries -1 then
UNDEFINED
endif
if (SR cuo= 1) or (SR
PageMaskpask <- TLBJI] Mask
EntryHi <- (TLBJi] vpNz and not TLBYi] Masko) ||
0°|| TLBll asip
EntryLol <- TLB[]] pen || TLBII] c1 || TLBIi] ozl
TLB[] v I LBl
EntryLoO <- TLBI[I] prNo || TLB(] coll TLB(] po Il
TLB[] voll TLBE] ¢
else
InitiateCoprocessorUnusableException(0)
endif
Exceptions:

Coprocessor Unusable Exception

ERL™ 1) then

11-144 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

Write Indexed TLB Entry TLBWI
31 26 25 24 0
COPO co 0 TLBWI
010000 1 000 0000 000000000000 000010
6 1 19 6
Format:

TLBWI MIPS32

Purpose:

Write a TLB entry indexed by tHadexregister.

Description:
The TLB entry pointed to by the Index register is written from the contents of the EntryHi, EntryLoO,
EntryLol, and PageMaskregisters. Note that the single G bit in the TLB entry is set from the logical AND of
the G bits in the EntryLoO and EntryLol registers.

Restrictions:
This instruction is legal only if the processor is in kernel mode, or if the CPO usable bit is set in the Status register. Ir
other circumstances, execution of this instruction results in a Coprocessor Unusable Exception.

The operation is UNDEFINED if the contents of thelndex register are greater than or equal to the number of
TLB entries in the processor.

For processors that do not include the standard TLB, the operation of this instruciMDESINED .

Operation:
i <- Index
if i > TLBEntries -1 then
UNDEFINED
endif
|f (SR CUOZ 1) or (SR UM = O) or (SR EXL = 1) or (SR ERL= 1) then
TLB[] mask<- PageMaskyask
TLB[I] vpn2< EntryHi ypn2

TLB[] asip<- EntryHi agip
TLB[i] g<-EntryLol gandEntryLo0 g

TLBI[i] peNg <- EntryLol PEN
TLB[i] ¢1<-EntryLol ¢
TLB[i] p;<-EntryLol

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-145

Chapter 11: MIPS32 4K™ Processor Core Instructions

TLBJ[i] v1 <- EntryLol V;

TLB[I] PENO <- EntryLOO PEN

TLB[i] ¢o<-EntryLo0 ¢

TLB[i] pgo<-EntryLo0 p

TLB[i] vo<-EntryLo0

else
InitiateCoprocessorUnusableException(0)
endif

Exceptions:
Coprocessor Unusable Exception

11-146 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

Write Random TLB Entry TLBWR
31 26 25 24 0
COPO co 0 TLBWR
010000 1 0000000 000000000000 000110
6 1 19 6
Format:

TLBWR MIPS32

Purpose:

Write a TLB entry indexed by tHeandonregister.

Description:
The TLB entry pointed to by the Randomregister is written from the contents of the EntryHi, EntryLoO,
EntryLol, and PageMaskregisters. Note that the single G bit in the TLB entry is set from the logical AND of
the G bits in the EntryLoO and EntryLol registers.

Restrictions:
This instruction is legal only if the processor is in kernel mode, or if the CPO usable bit is set in the Status register. Ir
other circumstances, execution of this instruction results in a Coprocessor Unusable Exception.

For processors that do not include the standard TLB MMU, the operation of this instruttidDEFINED .

Operation:
i <- Random
if (SR cuo— 1) or (SR um=— O) or (SR EXL = 1) or (SR ERL™ 1) then
TLB[i] mask<- PageMaskyask
TLB[] vpn2< EntryHi ypn2
TLB[] asp< EntryHi asip
TLB[i] g<-EntryLol gandEntryLo0 g
TLB[i] ppn1<- EntryLol pppn
TLB[i] 1 <-EntryLol
TLB[i] p1<- EntryLol
TLBI[i] v1 <- EntryLol V;
TLB[I] PENO <- EntryLOO PEN
TLB[i] o <- EntryLoO
TLB[i] pg<-EntryLo0 p
TLB[i] vo<-EntryLo0
else
InitiateCoprocessorUnusableException(0)

O 0

(@]

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-147

Chapter 11: MIPS32 4K™ Processor Core Instructions

endif

Exceptions:
Coprocessor Unusable Exception

11-148 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

Trap if Less Than TLT
31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt code TLT
000000 110010
6 5 5 10 6
Format: TLT rs, rt MIPS Il

Purpose: To compare GPRs and do a conditional trap

Description: if rs <rtthen Trap

Compare the contents of GPRand GPRt as signed integers; if GRRIs less than GPR, then take a Trap
exception.

The contents of theodefield are ignored by hardware and may be used to encode information for system
software. To retrieve the information, system software must load the instruction word from memory.

Restrictions: None

Operation:

if GPR[rs] < GPRJrt] then
SignalException(Trap)
endif

Exceptions: Trap

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-149

Chapter 11: MIPS32 4K™ Processor Core Instructions

Trap if Less Than Immediate

11-150

TLTI
31 26 25 21 20 16 15 0
REGIMM rs TLTI immediate
000001 01010
6 5 5 16
Format: TLTI rs, immediate MIPS Il

Purpose: To compare a GPR to a constant and do a conditional trap

Description: if rs

< immediate then Trap

Compare the contents of GPRand the 16-bit signeidimediateas signed integers; if GRRIs less than
immediatethen take a Trap exception.

Restrictions: None

Operation:

if GPR[rs] < sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions: Trap

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

Trap if Less Than Immediate Unsigned TLTIU
31 26 25 21 20 16 15 0
REGIMM rs TLTIU immediate
000001 01011
6 5 5 16
Format: TLTIU rs, immediate MIPS Il

Purpose: To compare a GPR to a constant and do a conditional trap

Description: if rs < immediate then Trap

Compare the contents of GPRand the 16-bit sign-extend@dmediateas unsigned integers; if GRRIs less
thanimmediatethen take a Trap exception.

Because the 16-bimmediates sign-extended before comparison, the instruction can represent the smallest or
largest unsigned numbers. The representable values are at the minimum [0, 32767] or maximum
[max_unsigned-32767, max_unsigned] end of the unsigned range.

Restrictions: None

Operation:

if (0 || GPR]rs]) < (0 || sign_extend(immediate)) then
SignalException(Trap)
endif

Exceptions: Trap

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-151

Chapter 11: MIPS32 4K™ Processor Core Instructions

Trap if Less Than Unsigned

11-152

31 26 25 21 20 16 15
SPECIAL rs rt code TLTU
000000 110011
6 5 5 10 6
Format: TLTU rs, rt MIPS Il

Purpose: To compare GPRs and do a conditional trap

Description: if rs

<rtthen Trap

TLTU

Compare the contents of GRRand GPRt as unsigned integers; if GRRIs less than GPR, then take a Trap

exception.

The contents of theodefield are ignored by hardware and may be used to encode information for system
software. To retrieve the information, system software must load the instruction word from memory.

Restrictions:

Operation:

None

if (0 || GPRrs]) < (0 || GPRIrt]) then

SignalException(Trap)

endif

Exceptions: Trap

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

TNE

Trap if Not Equal
31 26 25 21 20 16 15 5 0
SPECIAL s rt code TNE
000000 110110
6 5 5 10 6
Format: TNE rs, rt MIPS Il

Purpose: To compare GPRs and do a conditional trap

Description: ifrs

rt then Trap

Compare the contents of GRRand GPRt as signed integers; if GPR is not equal to GPRt, then take a Trap

exception.

The contents of theodefield are ignored by hardware and may be used to encode information for system
software. To retrieve the information, system software must load the instruction word from memory.

Restrictions: None

Operation:

if GPR[rs] # GPR[rt] then
SignalException(Trap)
endif

Exceptions: Trap

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

11-153

Chapter 11: MIPS32 4K™ Processor Core Instructions

Trap if Not Equal TNEI
31 26 25 21 20 16 15 0
REGIMM rs TNEI immediate
000001 01110
6 5 5 16
Format: TNEI rs, immediate MIPS Il

11-154

Purpose: To compare a GPR to a constant and do a conditional trap

Description: if rs # immediate then Trap

Compare the contents of GPRand the 16-bit signeidhmediateas signed integers; if GRRIs not equal to
immediatethen take a Trap exception.

Restrictions: None

Operation:

if GPR[rs] # sign_extend(immediate) then
SignalException(Trap)
endif

Exceptions: Trap

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

Enter Standby Mode WAIT
31 26 25 24 0
COPO co WAIT
010000 1 Implementation-Dependent Code 100000
6 1 19 6
Format:
WAIT MIPS32

Purpose:

Wait for Event

Description:
The WAIT instruction forces the core into low power mode. The pipeline is stalled and when all external requests are
completed, the processor’s main clock is stopped. The processor will restart when reset (SI_Reset or SI_ColdReset
signaled, or a non-masked interrupt is taken (SI_NMI, SI_Int, or EJ_DINT). Note that the 4K cores do not use the
code field in this instruction.

Restrictions:
The operation of the processor is undefined if a wait instruction is placed in the delay slot of a branch or a jump.

This instruction is legal only if the processor is in kernel mode, or if the CPO usable bit is set in the Status register. Ir
other circumstances, execution of this instruction results in a Coprocessor Unusable Exception.

Operation:
if (SR CUO: 1) or (SR UM = 0) or (SR EXL = 1) or (SR ERL™ 1) then
Enter lower power mode
else
InitiateCoprocessorUnusableException(0)
endif
Exceptions:

Coprocessor Unusable Exception

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07 11-155

Chapter 11: MIPS32 4K™ Processor Core Instructions

Exclusive OR XOR
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 XOR
000000 00000 100110
6 5 5 5 5 6
Format: XOR rd, rs, rt MIPS |

Purpose: To do a bitwise logical Exclusive OR

Description: rd « rs XOR rt

Combine the contents of GRRand GPRt in a bitwise logical Exclusive OR operation and place the result into
GPRIrd.

Restrictions: None

Operation:
GPR[rd] < GPR]rs] xor GPRrt]

Exceptions:None

11-156 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

Instruction Set

Exclusive OR Immediate XORI
31 26 25 21 20 16 15 0
XORI rs rt immediate
001110
6 5 5 16
Format: XORI rt, rs, immediate MIPS |

Purpose: To do a bitwise logical Exclusive OR with a constant

Description: it rs XOR immediate

Combine the contents of GRRand the 16-bit zero-extendadmediaten a bitwise logical Exclusive OR

operation and place the result into GiPR

Restrictions: None

Operation:

GPR[rt] < GPR]rs] xor zero_extend(immediate)

Exceptions:None

MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

11-157

Chapter 11: MIPS32 4K™ Processor Core Instructions

11-158 MIPS32 4K™ Processor Core Family Software User's Manual, Revision 01.07

	Revision History
	Table of Contents
	List Of Figures
	List Of Tables
	Chapter 1
	Introduction to the MIPS32 4K™ Processor Core Family
	1.1 Features
	1.2 Block Diagram
	1.3 Required Logic Blocks
	1.3.1 Execution Unit
	1.3.2 Multiply/Divide Unit (MDU)
	1.3.3 System Control Coprocessor (CP0)
	1.3.4 Memory Management Unit (MMU)
	1.3.5 Cache Controllers
	1.3.6 Bus Interface Unit(BIU)
	1.3.7 Power Management

	1.4 Optional Logic Blocks
	1.4.1 Instruction Cache
	1.4.2 Data Cache
	1.4.3 EJTAG Controller

	Chapter 2
	Pipeline
	2.1 Pipeline Stages
	2.1.1 I Stage: Instruction Fetch
	2.1.2 E Stage: Execution
	2.1.3 M Stage: Memory Fetch
	2.1.4 A Stage: Align/Accumulate
	2.1.5 W Stage: Writeback

	2.2 Instruction Cache Miss
	2.3 Data Cache Miss
	2.4 Multiply/Divide Operations
	2.5 MDU Pipeline (4Kc and 4Km Cores)
	2.5.1 32x16 Multiply (4Kc & 4Km Cores)
	2.5.2 32x32 Multiply (4Kc & 4Km Cores)
	2.5.3 Divide (4Kc & 4Km Cores)

	2.6 MDU Pipeline (4Kp Core Only)
	2.6.1 Multiply (4Kp Core)
	2.6.2 Multiply Accumulate (4Kp Core)
	2.6.3 Divide (4Kp Core)

	2.7 Branch Delay
	2.8 Interlock Handling
	2.9 Slip Conditions
	2.10 Instruction Interlocks

	Chapter 3
	Memory Management
	3.1 Translation Lookaside Buffer (4Kc Core Only)
	3.1.1 Joint TLB (4Kc Core)
	3.1.2 Instruction TLB (4Kc Core)
	3.1.3 Data TLB (4Kc Core)
	3.1.4 Virtual to Physical Address Translation (4Kc Core)
	3.1.5 Hits, Misses, and Multiple Matches (4Kc Core)
	3.1.6 Page Sizes and Replacement Algorithm (4Kc Core)
	3.1.7 TLB Tag and Data Formats (4Kc Core)

	3.2 TLB Instructions (4Kc Core)
	3.3 Block Address Translation (4Kp & 4Km Cores)
	3.4 Modes of Operation
	3.4.1 User Mode
	3.4.2 Kernel Mode
	3.4.2.1 Kernel Mode, User Space (kuseg)
	3.4.2.2 Kernel Mode, Kernel Space 0 (kseg0)
	3.4.2.3 Kernel Mode, Kernel Space 1 (kseg1)
	3.4.2.4 Kernel Mode, Kernel Space 2 (kseg2)
	3.4.2.5 Kernel Mode, Kernel Space 3 (kseg3)

	3.4.3 Debug Mode
	3.4.3.1 Conditions and Behavior for Access to drseg, EJTAG registers
	3.4.3.2 Conditions and Behavior for Access to dmseg, EJTAG memory

	3.5 System Control Coprocessor

	Chapter 4
	Exceptions
	4.1 Exception Conditions
	4.2 Exception Priority
	4.3 Exception Vector Locations
	4.4 General Exception Processing
	4.5 Debug Exception Processing
	4.6 Exceptions
	4.6.1 Reset Exception
	4.6.2 Soft Reset Exception
	4.6.3 Debug Single Step Exception
	4.6.4 Debug Interrupt Exception
	4.6.5 Non Maskable Interrupt (NMI) Exception
	4.6.6 Machine Check Exception (4Kc core)
	4.6.7 Interrupt Exception
	4.6.8 Debug Instruction Break Exception
	4.6.9 Watch Exception — Instruction Fetch or Data Access
	4.6.10 Address Error Exception — Instruction Fetch/Data Access
	4.6.11 TLB Refill Exception — Instruction Fetch or Data Access (4Kc core)
	4.6.12 TLB Invalid Exception — Instruction Fetch or Data Access (4Kc core)
	4.6.13 Bus Error Exception — Instruction Fetch or Data Access
	4.6.14 Debug Software Breakpoint Exception
	4.6.15 Execution Exception — System Call
	4.6.16 Execution Exception — Breakpoint
	4.6.17 Execution Exception — Reserved Instruction
	4.6.18 Execution Exception — Coprocessor Unusable
	4.6.19 Execution Exception — Integer Overflow
	4.6.20 Execution Exception — Trap
	4.6.21 Debug Data Break Exception
	4.6.22 TLB Modified Exception — Data Access (4Kc core)

	4.7 Exception Handling and Servicing Flowcharts

	Chapter 5
	CP0 Registers
	5.1 CP0 Register Summary
	5.2 CP0 Registers
	5.2.1 Index Register (CP0 Register 0, Select 0)
	5.2.2 Random Register (CP0 Register 1, Select 0)
	5.2.3 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)
	5.2.4 Context Register (CP0 Register 4, Select 0)
	5.2.5 PageMask Register (CP0 Register 5, Select 0)
	5.2.6 Wired Register (CP0 Register 6, Select 0)
	5.2.7 BadVAddr Register (CP0 Register 8, Select 0)
	5.2.8 Count Register (CP0 Register 9, Select 0)
	5.2.9 EntryHi Register (CP0 Register 10, Select 0)
	5.2.10 Compare Register (CP0 Register 11, Select 0)
	5.2.11 Status Register (CP0 Register 12, Select 0)
	5.2.12 Cause Register (CP0 Register 13, Select 0)
	5.2.13 Exception Program Counter (CP0 Register 14, Select 0)
	5.2.14 Processor Identification (CP0 Register 15, Select 0)
	5.2.15 Config Register (CP0 Register 16, Select 0)
	5.2.16 Config1 Register (CP0 Register 16, Select 1)
	5.2.17 Load Linked Address (CP0 Register 17, Select 0)
	5.2.18 WatchLo Register (CP0 Register 18)
	5.2.19 WatchHi Register (CP0 Register 19)
	5.2.20 Debug Register (CP0 Register 23)
	5.2.21 Debug Exception Program Counter Register (CP0 Register 24)
	5.2.22 TagLo Register (CP0 Register 28, Select 0)
	5.2.23 DataLo Register (CP0 Register 28, Select 1)
	5.2.24 ErrorEPC (CP0 Register 30, Select 0)
	5.2.25 DeSave Register (CP0 Register 31)

	Chapter 6
	Hardware and Software Initialization
	6.1 Hardware Initialized Processor State
	6.1.1 Coprocessor Zero State
	6.1.2 TLB Initialization (4Kc core only)
	6.1.3 Bus State Machines
	6.1.4 Static Configuration Inputs
	6.1.5 Fetch Address

	6.2 Software Initialized Processor State
	6.2.1 Register File
	6.2.2 TLB (4Kc Core Only)
	6.2.3 Caches
	6.2.4 Coprocessor Zero state

	Chapter 7
	Caches
	7.1 Cache Protocols
	7.2 Instruction Cache
	7.3 Data Cache

	Chapter 8
	Power Management
	8.1 Register Controlled Power Management
	8.2 Instruction Controlled Power Management

	Chapter 9
	EJTAG Debug Support
	9.1 Debug Control Register
	9.2 Hardware Breakpoints
	9.2.1 Features of Instruction Breakpoint
	9.2.2 Features of Data Breakpoint
	9.2.3 Overview of Registers for Instruction Breakpoint
	9.2.4 Registers for Data Breakpoint Setup
	9.2.5 Conditions for Matching Breakpoints
	9.2.5.1 Conditions for Matching Instruction Breakpoint
	9.2.5.2 Conditions for Matching Data Breakpoints

	9.2.6 Debug Exceptions from Breakpoints
	9.2.6.1 Debug Exception by Instruction Breakpoint
	9.2.6.2 Debug Exception by Data Breakpoint

	9.2.7 Breakpoint used as Triggerpoint
	9.2.8 Instruction Breakpoint Registers
	9.2.8.1 Instruction Breakpoint Status (IBS) Register
	9.2.8.2 Instruction Breakpoint Address n (IBAn) Register
	9.2.8.3 Instruction Breakpoint Address Mask n (IBMn) Register
	9.2.8.4 Instruction Breakpoint ASID n (IBASIDn) Register
	9.2.8.5 Instruction Breakpoint Control n (IBCn) Register

	9.2.9 Data Breakpoint Registers
	9.2.9.1 Data Breakpoint Status (DBS) Register
	9.2.9.2 Data Breakpoint Address n (DBAn) Register
	9.2.9.3 Data Breakpoint Address Mask n (DBMn) Register
	9.2.9.4 Data Breakpoint ASID n (DBASIDn) Register
	9.2.9.5 Data Breakpoint Control n (DBCn) Register
	9.2.9.6 Data Breakpoint Value n (DBVn) Register

	9.2.10 Test Access Port (TAP)
	9.2.11 EJTAG Internal and External Interfaces

	9.3 Test Access Port Operation
	9.3.1 Test-Logic-Reset State
	9.3.2 Run-Test/Idle State
	9.3.3 Select_DR_Scan State
	9.3.4 Select_IR_Scan State
	9.3.5 Capture_DR State
	9.3.6 Shift_DR State
	9.3.7 Exit1_DR State
	9.3.8 Pause_DR State
	9.3.9 Exit2_DR State
	9.3.10 Update_DR State
	9.3.11 Capture_IR State
	9.3.12 Shift_IR State
	9.3.13 Exit1_IR State
	9.3.14 Pause_IR State
	9.3.15 Exit2_IR State
	9.3.16 Update_IR State

	9.4 Test Access Port (TAP) Instructions
	9.4.1 BYPASS Instruction
	9.4.2 IDCODE Instruction
	9.4.3 IMPCODE Instruction
	9.4.4 ADDRESS Instruction
	9.4.5 DATA Instruction
	9.4.6 CONTROL Instruction
	9.4.7 ALL Instruction
	9.4.8 EJTAGBOOT Instruction
	9.4.9 NORMALBOOT Instruction

	9.5 EJTAG Registers
	9.5.1 Instruction Register
	9.5.2 Data Registers Overview
	9.5.3 Bypass Register
	9.5.4 Device Identification (ID) Register
	9.5.5 Implementation Register
	9.5.6 EJTAG Control Register
	9.5.7 Processor Access Address Register
	9.5.8 Processor Access Data Registers

	9.6 Processor Accesses
	9.6.1 Fetch/Load and Store from/to the EJTAG Probe through dmseg

	Chapter 10
	Instruction Set Overview
	10.1 CPU Instruction Formats
	10.2 Load and Store Instructions
	10.2.1 Scheduling a Load Delay Slot
	10.2.2 Defining Access Types

	10.3 Computational Instructions
	10.3.1 Cycle Timing for Multiply and Divide Instructions

	10.4 Jump and Branch Instructions
	10.4.1 Overview of Jump Instructions
	10.4.2 Overview of Branch Instructions

	10.5 Control Instructions
	10.6 Coprocessor Instructions
	10.7 Enhancements to the MIPS Architecture
	10.7.1 CLO - Count Leading Ones
	10.7.2 CLZ - Count Leading Zeros
	10.7.3 MADD - Multiply and Add Word
	10.7.4 MADDU - Multiply and Add Unsigned Word
	10.7.5 MSUB - Multiply and Subtract Word
	10.7.6 MSUBU - Multiply and Subtract Unsigned Word
	10.7.7 MUL - Multiply Word
	10.7.8 SSNOP- Superscalar Inhibit NOP

	Chapter 11
	MIPS32 4K™ Processor Core Instructions
	11.1 Understanding the Instruction Fields
	11.1.1 Instruction Fields
	11.1.2 Instruction Descriptive Name and Mnemonic
	11.1.3 Format Field
	11.1.4 Purpose Field
	11.1.5 Description Field
	11.1.6 Restrictions Field
	11.1.7 Operation Field
	11.1.8 Exceptions Field

	11.2 Instruction Hazards
	11.3 CPU Opcode Map
	11.4 Instruction Set

