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4)  When  the  TLBRD  instruction  reads  NE=0,  the  target  CSR  register  is  explicitly  updated  to  0.

The  instructions  implemented  below.

Released  to  the  public.

1)  Sections  2.1.4,  2.1.5  and  5.2.1  provide  supplementary  explanations  on  the  rules  for  determining  the  exception  triggered  by  the  application's  memory  access.

1.02  

5)  In  the  description  of  page  size  (PS)  in  section  5.4.2,  the  PS  value  of  the  TLB  entry  corresponding  to  a  page  size  of  4MB  should  be  21.

1.00  

8)  Adjust  the  definition  of  the  original  LIE[10]  bit  in  section  7.4.4;  adjust  the  definition  of  the  IS[10]  bit  in  section  7.4.5,  and  clarify  IS[9:2]  and  IS[11].

Improvements  and  revisions  to  the  manual:

Internal  review  version.

1)  Remove  the  following  six  floating-point  instructions  from  the  floating-point  instruction  definition:  FSCALEB.S/D,  FLOGB.S/D,  and  FRINT.S/D.  This  is  only  required  in  the  LA64  architecture.

1)  Sections  2.2.3,  2.2.5.1,  and  3.2.5  discuss  the  relationship  between  immediate  values  used  in  the  instruction  assembly  representation  and  immediate  values  in  the  instruction  code.

The  manual's  content  has  been  improved:

Internal  review  version.

0.90  

11)  The  ASID  field  description  in  Section  7.5.4  should  not  be  used  as  an  INVTLB  instruction  to  query  the  ASID  key  value  information  of  the  TLB.

7)  In  section  5.4.4,  the  exception  for  non-compliance  of  privilege  level  of  the  reporting  page  should  be  SignalException(PPI).

The  definition  of  IS[12]  bits.

9)  Section  7.4.5  explicitly  sets  all  undefined  Esubcode  values  to  the  default  value  of  0.

Instruction  content  adjustment:

This  is  an  explanation.

6)  In  the  last  sentence  of  section  5.4.2,  [log2PS-1:12]  should  be  [PS-1:12].

1)  The  floating-point  to  integer  conversion  operation  in  section  3.2.3  does  not  check  whether  an  exception  to  the  floating-point  inaccuracy  report  is  allowed;  that  is,  it  is  always  executed.

3)  All  “NUL  bit  of  CSR.TLBIDX”  in  Section  4.2.3  should  be  changed  to  “NE  bit  of  CSR.TLBIDX”.

Improvements  and  revisions  to  the  manual:

0.91  

Manual  content  revisions:

1.01  

The  convertToIntegerExact…  or  roundToIntegralExact  operations  have  been  implemented.  2)  Fixed  the  

inconsistency  in  the  names  of  some  CSR  registers  and  their  fields,  and  corrected  several  writing  errors.

10)  Section  7.5.3  describes  the  PPN  fields  of  the  CSR  registers  TLBELO0  and  TLBELO1,  taking  into  account  the  case  where  PALEN  <  36.

2)  Section  2.2.5.1  provides  details  on  the  specific  operation  method  for  calculating  the  offset  value  when  the  LL/SC  instruction  calculates  the  address.

1.03  

1)  The  description  of  the  address  error  exception  in  section  2.1.4  has  been  adjusted  because  the  memory  access  restrictions  imposed  on  application  software  at  the  instruction  set  level  are  no  longer  applied.
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The  range  of  memory  address  space  that  the  software  can  access.

5)  The  original  wording  of  MOVCF2FR  in  section  3.2.4.6  and  MOVCF2GR  in  section  3.2.4.7  is  easily  misunderstood  as  referring  to  the  target.

7)  The  instruction  function  descriptions  in  sections  4.2.3.3  and  4.2.3.4

Whether  the  CSR.TLBIDX.NE  bit  is  1  or  not,  a  description  of  a  valid  TLB  item  is  filled  into  the  TLB.

1)  Delete  the  content  related  to  sign  extension  after  concatenation  of  immediate  values  in  Section  2.2.1.6  of  the  Natural  Language  and  Pseudocode  description  to  conform  to  this  manual.

Improvements  and  revisions  to  the  manual:

10)  The  range  truncated  in  the  second-to-last  line  of  the  pseudocode  description  in  section  5.4.4  is  incorrect.  11)  The  memory  access  

instructions  during  the  execution  phase  in  section  6.2.2  will  no  longer  trigger  address  error  exceptions  because  the  application  is  not  restricted  at  the  instruction  set  level.

The  register  remains  unchanged  except  for  bit  0,  while  the  exact  behavior  should  be  the  rest  of  the  register  except  for  bit  0.

2)  Section  2.1.5  has  been  revised  to  no  longer  restrict  the  range  of  memory  address  space  that  application  software  can  access  at  the  instruction  set  level.

When  the  address  space  is  within  the  range,  the  only  exception  triggered  by  the  instruction  fetch  address  error  is  when  the  instruction  fetch  PC  is  misaligned.

14)  The  statement  involving  GRLEN  is  determined  to  be  32.

ÿ  

8)  The  last  paragraph  of  section  5.2.1  is  deleted  because  it  does  not  restrict  the  range  of  memory  address  space  that  application  software  can  access  at  the  instruction  set  level.

The  book  only  covers  the  context  of  32-bit  machines.

Set  the  value  to  0.

The  restrictions  are  implemented  by  the  system  software.

2)  Add  a  list  of  "basic  floating-point  instructions  for  operating  single-precision  floating-point  numbers  and  word  integers"  to  Chapter  3.

13)  The  RDTIME  instruction  described  in  section  7.6.1  should  be  changed  to  the  RDCNTID  instruction.

3)  Section  2.2.1.10  MULH.WU  is  missing  a  U.

6)  Section  3.2.6.1  simplifies  floating-point  memory  access  instructions  to  address  the  requirement  for  memory  address  alignment  in  the  32-bit  simplified  version  of  the  Dragon  architecture.

Supplementing  TLB  refill  exception  handling  process  regardless  of

9)  In  section  5.4.3.4,  “INVTLB  r0,  r0”  should  be  “INVTLB  0,  r0,  r0”.

At  the  same  time,  it  is  recommended  that…

12)  In  the  descriptions  of  the  DATF  and  DATM  fields  in  Table  7-2  of  Section  7.4.1,  “…,  it  is  necessary  to  change  …”  to  “…,  push…”.

4)  In  section  3.1.4.4,  2Emin  should  appear  in  the  exponent  position.

3)  Add  FFINT.{S/D}.L  and  FTINT.L.{S/D}  to  section  3.2.3.2,  and  add  them  to  section  3.2.3.3.

1.04  

Description  of  the  FTINT{RM/RP/RZ/RNE}.L.{S/D}  instruction.

Describe  the  non-alignment  exception  condition.
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LoongArch

1  Introduction

This  means  that  the  same  results  are  obtained  when  running  on  a  machine  compatible  with  the  LA64  architecture.  On  the  other  hand,  this  backward  binary  compatibility  is  limited  to  application  software.

The  architecture  uses  a  load/store  approach,  meaning  only  load/store  memory  access  instructions  can  access  memory;  other  instructions  operate  on  registers  within  the  processor  core.

LoongArch  is  a  Reduced  Instruction  Set  Computing  (RISC)  style  architecture.

The  core  of  the  Dragon  architecture  consists  of  two  parts:  a  non-privileged  instruction  set  and  a  privileged  instruction  set.  The  non-privileged  instruction  set  defines  commonly  used  integer  instructions.

The  system  architecture  is  characterized  by  fixed  instruction  lengths  and  standardized  encoding  formats.  Most  instructions  have  only  two  source  operands  and  one  destination  operand.

Compatible  with  LA32  architecture.  "Application-level  backward  binary  compatibility"  means  that  the  binary  representation  of  application  software  using  the  LA32  architecture  can  be  directly...

An  immediate  value  in  a  device  or  instruction  code.

The  same  results  are  always  obtained  when  running  on  machines  with  the  same  architecture.

Loongson  SIMD  Extension  (LSX)  and  Loongson  Advanced  SIMD  Extension  (LSX)

Loongson  Binary  Translation  (LBT)  and  Loongson  Virtualization  (LVZ)  extensions

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

The  Dragon  architecture  comes  in  two  versions:  32-bit  and  64-bit,  referred  to  as  the  LA32  and  LA64  architectures,  respectively.  The  LA64  architecture  uses  application-level  backward  binary.

The  Dragon  architecture  uses  a  base  component  (Loongson  Base)  plus  an  extension  component  (as  shown  in  Figure  1-1).  The  extension  component  includes:

(Referred  to  as  LASX).

The  architecture  specification  does  not  guarantee  that  the  binaries  of  system  software  (such  as  the  operating  system  kernel)  running  on  LA32-compatible  machines  will  be  directly  compatible  with  LA64.

The  LA32-bit  version  of  the  Dragon  architecture  includes  both  integer  and  floating-point  instructions,  fully  supporting  the  generation  of  efficient  target  code  by  existing  mainstream  compilation  systems.

1.1  Overview  of  Dragon  Architecture

Loongson  Basic  Instruction  Set

Towards

Binary  Translation  Extension Advanced  Vector  ExtensionsVirtualization  Extension

quantity

Expand

exhibition

LBT  LSX LASX

Loongson  Base  

LVZ

1  

Figure  1-1  Components  of  the  Dragon  Architecture
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Table  1-1  Typical  Instruction  Encoding  Format  of  the  Dragon  Architecture  32  -bit  Simplified  Version

3R-type

2RI8-type  

2RI12-type  

2RI14-type  

1RI21-type  

I26-type  

2RI16-type  

All  instructions  in  the  Dragon  architecture  32-bit  simplified  version  are  32-bit  fixed  length,  and  instruction  addresses  require  4-byte  boundary  alignment.

This  manual  will  begin  with  a  detailed  description  of  the  specifications  for  the  32-bit  simplified  version  of  the  Dragon  architecture  in  Chapter  2.  Chapters  2  and  3  specifically  cover  the  architecture...

The  basic  components  have  been  further  simplified  to  make  them  easier  to  implement  and  convenient  for  widespread  use  in  teaching  and  research.

The  non-privileged  instruction  set  portion  of  the  architecture  includes  the  functional  definitions  of  basic  integer  instructions  and  basic  floating-point  instructions,  as  well  as  their  application-level  programming  model.  Chapter  4

They  are  arranged  sequentially  from  high  to  low.  If  the  instruction  contains  immediate  operands,  the  immediate  field  is  located  between  the  register  field  and  the  opcode  field.

An  address  error  exception  will  be  triggered  if  the  address  is  misaligned.

The  length  varies  depending  on  the  instruction  type.  Specifically,  it  includes  9  typical  instruction  encoding  formats,  namely  3  encoding  formats  without  immediate  values.

The  specific  definitions  of  these  nine  typical  encoding  formats  are  as  follows.  It  should  be  noted  that  there  are  a  few  instructions  whose  instruction  encoding  fields  are  not  entirely  equivalent  to  these  nine  typical  formats.

The  instruction  encoding  style  is  such  that  all  register  operand  fields  are  arranged  sequentially  from  bit  0  to  bit  1.  The  opcode  starts  at  bit  31.

Chapters  7  through  7  cover  privileged  resources  in  the  infrastructure,  primarily  including  privileged  instructions  and  control  and  status  registers.

It's  not  a  standard  instruction  encoding  format,  but  rather  a  slightly  modified  version.  However,  the  number  of  such  instructions  is  small,  and  the  changes  are  minor,  so  they  won't  significantly  impact...

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

This  document  introduces  the  Register  (CSR)  and  its  functional  specifications  regarding  operating  modes,  exceptions  and  interrupts,  and  memory  management.  (The  main  text  of  this  document...)

The  pseudocode  descriptions  involved  in  defining  the  function  of  the  instructions  are  concentrated  in  Appendix  A,  while  the  specific  encoding  definitions  of  the  instructions  are  uniformly  listed  in  Appendix  B.

Equations  2R,  3R,  and  4R,  and  six  encoding  formats  containing  immediate  values:  2RI8,  2RI12,  2RI14,  2RI16,  1RI21,  and  126.  Table  1-1  lists  these.

This  causes  inconvenience  for  developers  of  the  compilation  system.

1.2  Instruction  Encoding  Format
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1.3  Mnemonic  Format  for  Instruction  Assembly

1.4  Some  writing  rules  adopted  in  this  manual

B  and  C  are  used  to  form  different  instruction  names,  and  A[B]  indicates  that  A  and  AB  are  used  to  form  different  instruction  names.  For  example,  ADD.{W/D}

Used  to  label  floating-point  registers.  Here,  N  is  a  number  indicating  that  the  operation  is  performed  on  register  number  N  in  the  register  file.

Secondly,  the  vast  majority  of  instructions  use  a  suffix  in  the  form  of  ".XX"  in  the  instruction  name  to  indicate  the  target  of  the  instruction,  and  this  type  of  suffix  is  only  used  in  specific  instructions.

This  is  used  to  characterize  the  type  of  the  operand.  For  operands  of  integer  type,  the  instruction  name  suffix  is .B, .H, .W, .BU, .HU,  or .WU.

The  first  suffix  indicates  the  destination  operand,  and  the  second  suffix  indicates  the  source  operand.  If  the  source  and  destination  operand  details  are  more...

The  order  of  operands  must  be  consistent.  For  example,  in  the  instruction  "MULW.D.WU  rd,  rj,  rk", .D  corresponds  to  the  destination  operand  rd,  and .WU  corresponds  to  the  source  operands  rj  and  rk.

The  original  32-bit  checksum  is  used  to  generate  a  new  32-bit  checksum,  which  is  then  written  into  rd.

All  instructions  use  a  suffix  in  the  form  of  ".XX"  to  indicate  the  operand  of  the  instruction.  This  applies  when  the  data  width  of  the  operand  is  implemented  by  a  32-bit  processor.

Do  not  specify  whether  the  data  type  operated  on  by  this  instruction  is  a  signed  byte,  a  signed  half-word,  a  signed  word,  an  unsigned  byte,  an  unsigned  half-word,  or  an  unsigned  byte.

For  brevity,  this  manual  uses  a  rule  for  abbreviating  command  names.  In  this  rule,  {A/B/C}  indicates  that  A,  B,  C,  and  C  are  used  respectively  here.

The  instruction  assembly  mnemonic  format  mainly  includes  two  parts:  the  instruction  name  and  the  operands.  The  Dragon  Architecture  32-bit  Simplified  Edition  specifies  the  prefix  and  suffix  of  the  instruction  name  and  operands.

There  are  some  differences.  In  the  introduction  of  commands  and  functions  in  this  manual,  such  commands  are  often  grouped  together  for  easy  learning  by  the  user.

First,  integer  and  floating-point  instructions  are  distinguished  by  the  prefix  letter  of  their  instruction  names.  All  non-vector  floating-point  instructions  begin  with  the  letter  "F".

These  are  instructions  whose  names  begin  with  "F"  and  whose  suffixes  are .H, .S, .D, .W,  and .WU,  respectively  indicating  the  data  type  the  instruction  operates  on.

These  are  half-precision  floating-point  numbers,  single-precision  floating-point  numbers,  double-precision  floating-point  numbers,  signed  words,  and  unsigned  words.  It  should  be  noted  that  not  all  instructions...

The  prefix  'U'  is  omitted,  but  this  does  not  restrict  the  operands  to  only  signed  numbers.  This  applies  to  operands  that  are  floating-point  types,  or  more  specifically...

The  first .W  corresponds  to  rd, .B  corresponds  to  rj,  and  the  second .W  corresponds  to  rk,  indicating  that  this  CRC  check  operation  compares  the  byte  message  in  rj  with  the  byte  message  in  rk.

Register  operands  are  identified  by  their  initial  letter,  indicating  which  register  file  they  belong  to.  General-purpose  registers  are  labeled  "rN",  and  those  are  labeled  "fN".

beginning.

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

A  unified  approach  was  taken  to  facilitate  use  by  assembly  programmers  and  compiler  developers.

State  instructions  and  instructions  that  move  data  between  different  register  files  also  do  not  have  this  suffix  indicating  the  type  of  operand.

If  the  data  width  and  whether  it  is  signed  or  unsigned  are  the  same,  but  different  from  the  destination  operand,  then  the  instruction  name  will  have  two  suffixes,  from  left  to  right.

When  the  data  width  and  sign  of  the  source  and  destination  operands  are  the  same,  the  instruction  name  has  only  one  suffix.  If  all  source  operations

In  the  instruction  set  defined  in  the  32-bit  simplified  version  of  the  Dragon  architecture,  there  are  often  some  instructions  that  have  the  same  or  similar  operation  modes,  differing  only  in  the  objects  they  operate  on.

`rk`  indicates  that  this  multiplication  involves  multiplying  two  unsigned  words,  and  the  resulting  double  word  is  written  to  ̀rd`.  For  example,  the  instruction  "CRC.WBW  rd,  rj,  rk"

However,  there  is  a  special  case:  when  whether  the  operands  are  signed  or  unsigned  does  not  affect  the  result,  the  suffix  in  the  instruction  name...

The  64-bit  architecture  still  determines  this,  as  seen  in  instructions  like  SLT  and  SLTU,  which  do  not  include  suffixes.  Furthermore,  privileges  for  operating  CSR,  TLB,  and  Cache  also  apply.

If  the  instruction  is  complex,  then  the  instruction  name  will  list  the  destination  operand  and  each  source  operand  from  left  to  right,  in  the  same  order  as  the  later  operands  in  the  instruction  mnemonic.

1.4.1  Command  Name  Abbreviation  Rules

3  
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1.4.2  Control  Status  Register  Designation  Method

This  refers  to  the  field  named  ####  in  the  control  status  register  whose  name  is  abbreviated  as  %%%% .  For  example,  CSR.CRMD.PLV  represents  the  CRMD  field.

The  Dragon  architecture  32-bit  simplified  version  defines  a  series  of  control  and  status  registers  (CSRs)  for  control.

ADD[I].{W/D}  represents  the  four  instruction  names:  ADD.W,  ADD.D,  ADDI.W,  and  ADDI.D.

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

This  represents  the  instruction  names  ADD.W  and  ADD.D,  while  BLT[U]  represents  the  instruction  names  BLT  and  BLTU.  A  more  complex  version...

They  have  very  similar  instruction  codes.

The  execution  behavior  of  control  instructions  is  described,  and  each  Control  Request  (CSR)  typically  contains  several  fields.  This  manual  will  use  the  form  CSR.%%%%.####  throughout  the  description.

It  is  important  to  note  that  this  abbreviation  rule  is  merely  a  writing  rule;  it  does  not  mean  that  several  instructions  abbreviated  together  must  also  be...

The  PLV  field  in  the  register.

4  
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5  

Figure  2-1  General-purpose  registers  and  PC

2.1  Basic  Integer  Instruction  Programming  Model

Readers  who  require  a  more  comprehensive  and  in-depth  understanding  can  refer  to  the  relevant  chapters  in  the  manual  based  on  the  prompts  in  the  text.

part.

Point  instructions  are  divided  into  two  parts.  This  chapter  will  describe  the  integer  instruction  part.  The  basic  integer  instruction  part  is  the  most  fundamental  part  of  the  non-privileged  instruction  subset.

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

The  non-privileged  instruction  set  of  the  Dragon  architecture  32-bit  simplified  version  can  be  divided  into  basic  integer  instructions  and  basic  floating-point  instructions  based  on  the  differences  in  the  software  runtime  context.

The  basic  integer  instruction  programming  model  described  in  this  section  only  covers  the  aspects  that  application  software  developers  need  to  focus  on.  This  content  primarily  belongs  to...

The  concept  of  privileged  resources  will  be  introduced  to  ensure  the  completeness  of  the  narrative.  While  the  topic  of  privileged  resources  is  touched  upon  here,  it  will  not  be  elaborated  upon.

The  non-privileged  parts  of  the  architecture,  however,  are  always  related  to  some  privileged  resources  in  the  runtime  environment  of  application  software,  so  they  are  used  where  necessary.

There  are  five  data  types  that  basic  integer  instructions  operate  on:  bit  (b),  byte  (B,  8  bits),  halfword  (H,  16  bits),  and  word  (W,  32  bits).  The  LA32  architecture  does  not  support  double-word  

operations.

Byte,  half-word,  and  word  data  types  all  use  the  two's  complement  encoding  method.

The  registers  involved  in  basic  integer  instructions  include  the  general-purpose  register  (GR)  and  the  program  counter.

Couner  (abbreviated  as  PC),  as  shown  in  Figure  2-1.

Integer  instructions.

2  Basic  Integer  Instructions

...  

r30

r2

r0

31  

r1

r3

0  

0  

r31

PC  

2.1.1  Data  Types

2.1.2  Registers

Application  software  refers  to  software  that  cannot  directly  manipulate  privileged  resources  within  the  architecture.  In  the  Linux  operating  system,  it  refers  to  software  that  runs  in  user  mode.
1  
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1  

An  interrupt  input  signal  triggers  this.  In  this  architecture  reference  manual,  we  will  strictly  distinguish  between  "generating  an  exception/interrupt"  and  "triggering  an  exception/interrupt".

This  will  trigger  an  Address  Fetch  Error  Exception  (ADEF).

The  handling  of  exceptions  and  interruptions  falls  under  the  scope  of  privileged  resource  management  in  the  architecture.  This  section  primarily  focuses  on  exceptions  that  are  perceptible  to  application  software.

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

ÿ  Address  Error  Exception:  When  a  program  malfunctions,  causing  an  illegal  instruction  fetch,  i.e.,  the  fetch  address  is  not  aligned  to  a  4-byte  boundary,

In  the  Application  Binary  Interface  (ABI),  r1  is  always  used  as  a  register  to  store  the  return  address  of  a  function  call.

The  PC  register  is  indirectly  modified  by  inbound  and  exception  return  instructions.  However,  it  can  be  directly  read  as  a  source  operand  for  some  non-jump  instructions.

The  Dragon  architecture  32-bit  simplified  version  defines  two  privilege  levels  (PLVs):  PLV0  and  PLV3.  Application  software  should  run  at  the  non-privileged  PLV3  level  to  isolate  it  from  system  

software  such  as  the  operating  system  running  at  PLV0.

Exceptions  and  interrupts  interrupt  the  currently  executing  application,  switching  the  program  execution  flow  to  the  exception/interrupt.

The  difference  between  the  two  concepts  is  that  the  former  may  not  necessarily  cause  a  change  in  the  execution  flow,  while  the  latter  will  definitely  change  the  current  execution  flow  and  transfer  it  to  the  exception/interrupt  handler.

2.1.2.2PC  

Here  is  a  brief  introduction.

There  is  only  one  PC  (Program  Counter),  which  records  the  address  of  the  current  instruction.  The  PC  register  cannot  be  directly  modified  by  instructions;  it  can  only  be  modified  by  jump  instructions  and  exception  traps.

Integer  instructions  and  general-purpose  registers  are  orthogonal.  That  is,  from  an  architectural  perspective,  any  register  operand  in  these  instructions  can  use  a  32-bit  register.

2.1.2.1  General-purpose  registers

If  it  is  treated  as  not  existing,  then  the  instruction  not  existing  exception  (INE)  will  be  triggered  immediately.

There  are  32  general-purpose  registers  GR,  denoted  as  r0~r31,  with  register  0  (r0)  always  having  a  value  of  0.  The  bit  width  of  GR  is  32  bits.  (Basic)

Any  of  the  GR  instructions.  The  only  exception  is  that  the  destination  register  implicitly  included  in  the  BL  instruction  is  always  register  r1,  number  1.  In  the  standard  Dragon  architecture...

Utensils.

Execution  begins  at  the  entry  point  of  the  handler.  Exceptions  are  triggered  by  unusual  conditions  that  occur  during  instruction  execution,  while  interrupts  are  caused  by  external  events  (such  as...).

ÿ  Privileged  Instruction  Error  Exception:  Executing  a  privileged  instruction  in  an  application  will  immediately  trigger  an  instruction  privilege  level  error  exception  (IPE).

At  the  mouth.

For  more  information  on  privilege  levels,  please  see  Section  4.1 .

The  width  of  is  always  the  same  as  the  width  of  GR.

ÿ  System  call  exception:  Executing  the  SYSCALL  instruction  will  immediately  trigger  a  system  call  exception  (SYS).

ÿ  Breakpoint  Exception:  Executing  the  BREAK  instruction  will  immediately  trigger  a  breakpoint  exception  (BRK).

ÿ  No  exceptions  to  the  instruction:  The  instruction  code  being  executed  is  not  defined  in  the  architecture,  or  the  architecture  specification  defines  the  instruction  in  the  current  context.

2.1.4  Exceptions  and  Interruptions

2.1.3  Execution  Privilege  Level

6  

In  the  32-bit  simplified  version  of  the  Loongson  architecture,  interrupts  are  always  invisible  to  application  software.
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7  

1  

The  instruction  cache  of  a  certain  processor  core  is  consistent  with  the  cache  or  cache  coherent  I/O  of  other  processor  cores.

Floating-point  error  exception  (FPE).  See  section  3.1.4  for  more  information.

These  contents  involve  the  relevant  specifications  of  privileged  resources  in  the  architecture,  which  will  be  introduced  in  the  latter  half  of  this  manual.

The  Dragon  architecture  32-bit  simplified  version  only  requires  that  strongly  ordered,  non-cached  memory  access  instructions  cannot  have  side  effects;  that  is,  such  instructions  cannot...

The  access  range  is:  0~  231-1 .

Even  if  the  action  originates  from  a  transfer  prediction,  it  is  permitted  to  execute.  To  prevent  such  speculative  executions  from  causing  unauthorized  out-of-core  memory  accesses,  execution  is  allowed.

Strongly-ordered  Uncached  (SUC).  The  memory  access  type  is  bound  to  the  accessed  virtual  address,  determined  by  the  MAT  (Memory  Access  Type)  field  in  the  page  table  entry.  The  value  range  of  the  MAT  field  

corresponds  to  the  memory  access  type  as  follows:  0  —  Strongly-ordered  Uncached,  1  —

—Consistently  cacheable,  2/3  reserved.  The  process  of  setting  storage  access  types  is  transparent  to  application  software.

Managing  the  address  space  requires  filtering  out  risky  accesses  within  the  on-chip  network.

Consistent  caching.  This  type  of  memory  access  is  typically  used  to  achieve  high  performance.

The  Dragon  architecture  32-bit  simplified  version  only  uses  little-endian  storage.

Memory  access  must  satisfy  sequential  consistency,  meaning  that  all  accesses  are  executed  strictly  in  the  order  specified  in  the  program,  and  no  new  access  can  begin  until  the  current  memory  access  operation  is  completely  completed.

When  accessing  objects  using  a  consistent  cacheable  access  type,  the  accessed  object  can  be  either  the  final  stored  object  or  a  cached  object  maintained  in  the  processor.

This  section  only  covers  the  virtual  memory  address  space  visible  to  the  application  software.  The  translation  from  virtual  memory  addresses  to  physical  memory  addresses  is  determined  by  the  runtime  environment.

ÿ  Floating-point  error  exception:  When  an  abnormal  data  condition  occurs  during  the  execution  of  a  floating-point  instruction,  special  handling  is  required,  which  may  generate  or  trigger  a  basic  error.
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Next  memory  access  operation.

Speculative  execution.  Software  can  leverage  this  characteristic  to  access  I/O  devices  in  the  system  via  strongly  ordered,  unbuffered  memory  access  instructions.  However,  the  gantry...

In  the  Dragon  architecture  32-bit  simplified  version,  the  memory  address  space  is  a  byte-addressable  linear  contiguous  address  space.  The  recommended  memory  address  space  for  application  software...

The  32-bit  simplified  version  allows  fetch  operations  on  strongly  ordered,  uncached  types  to  have  side  effects.  This  means  that  fetch  operations  on  strongly  ordered,  uncached  types...

The  Dragon  architecture  32-bit  simplified  version  supports  two  storage  access  types:  Coherent  Cached  (CC)  and  Strong  Cached.

2.1.7.1  Cache  Coherence  Maintenance  of  Instruction  Cache

Cache  consistency  between  Masters  must  be  maintained  by  hardware.

When  accessing  data  using  either  strong-order  uncached  or  weak-order  uncached  types,  only  the  final  stored  object  can  be  accessed  directly.  The  difference  between  the  two  is:  strong-order  uncached...

2.1.6  Tail  end

2.1.5  Memory  Address  Space

2.1.7  Storage  Access  Types

Within  this  range,  the  storage  access  type  is  configured  by  the  specified  control  status  register.

This  only  applies  to  application  software.  For  system  software,  the  address  falls  within  the  address  range  configured  in  the  direct  address  translation  mode  or  the  mapped  address  translation  mode.
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Natural  alignment  refers  to  the  following:  when  accessing  a  half-word  object,  the  address  is  aligned  to  a  2-byte  boundary;  when  accessing  a  word  object,  the  address  is  aligned  to  a  4-byte  boundary;  when  accessing  a  double-word  object,  the  address  is  aligned  to  an  8-byte  

boundary;  when  accessing  a  128-bit  vector  object,  the  address  is  aligned  to  a  16-byte  boundary;  and  when  accessing  a  256-bit  vector  object,  the  address  is  aligned  to  a  32-byte  boundary.

Due  to  the  existence  of  pipelined  architecture  and  speculative  instruction  fetching,  software  still  needs  to  use  the  IBAR  instruction  to  ensure  that  instruction  fetching  will  always  see  the  execution  of  store  instructions.

2.  Before  any  normal  memory  access  operation  is  allowed  to  be  executed,  all  synchronization  operations  that  precede  this  memory  access  operation  in  the  same  processor  core  have  already  been  performed.

The  software  needs  to  use  cache  maintenance  instructions  to  ensure  cache  consistency  between  the  instruction  cache  and  the  data  cache  within  the  same  core.  Furthermore,  because...

The  instructions  (i.e.,  Hit  Invalidate  I-Cache  and  Hit  Invalidate  and  Writeback  D-Cache)  are  downgraded  from  privileged  instructions  to  user-mode  instructions.

All  memory  access  addresses  for  instruction  fetch  operations  must  be  aligned  to  4-byte  boundaries;  otherwise,  an  Address  Fetch  Error  Exception  (ADEF)  will  be  triggered.

1.  The  execution  of  synchronization  operations  satisfies  the  sequential  consistency  condition.  That  is,  synchronization  operations  are  executed  strictly  in  accordance  with  their  order  of  appearance  in  the  program  across  all  processor  cores.

A  brief  description  of  the  weak  consistency  model  adopted  by  the  architecture.

Access  to  the  shared  memory  unit  is  protected  to  ensure  that  access  to  the  shared  memory  unit  by  multiple  processor  cores  is  mutually  exclusive.  The  order  of  memory  access  events  is  also  considered.

3.  Before  any  synchronization  operation  is  allowed  to  be  executed,  all  ordinary  memory  access  operations  that  precede  this  synchronization  operation  in  the  same  processor  must  have  been  completed.

The  Dragon  architecture  32-bit  simplified  version  uses  a  weak  consistency  (WC)  model  for  storage  consistency.  This  section  only...

Completed;

The  cache  coherency  between  the  processor  core's  instruction  cache  and  data  cache  is  maintained  by  software.  This  means  that  for  self-modifying  code,

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

Effect.  When  using  software  to  maintain  cache  coherence  between  the  same  core  instruction  cache  and  data  cache,  CACOP  with  codes  equal  to  8  and  9...

In  the  Dragon  architecture  32-bit  simplified  version,  the  instructions  that  can  generate  synchronous  operations  are  the  DBAR,  IBAR,  and  LL-SC  instruction  pairs.

If  it  is  naturally  aligned  to  1,  it  will  trigger  an  address  unaligned  exception  (ALE).

become.

The  following  restrictions  shall  be  imposed:

In  a  weak  consistency  model,  synchronization  operations  and  regular  memory  accesses  need  to  be  distinguished.  Programmers  must  use  the  synchronization  operations  defined  by  the  architecture  to  handle  these  operations.

The  synchronization  operations  are  executed  in  the  order  they  are  performed,  and  the  next  synchronization  operation  cannot  begin  until  the  current  synchronization  operation  is  completely  completed.

All  memory  access  instructions  must  undergo  address  alignment  checks.  For  memory  access  instructions  that  require  address  alignment  checks,  if  the  address  they  access  is  not...

2.1.9  Brief  Description  of  Storage  Consistency  Model

2.1.8  Unaligned  memory  access

8  
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GR[rd]  =  tmp[31:0]  

SUB.W:

tmp  =  GR[rj]  +  GR[rk]  

ADD.W:  

GR[rd]  =  tmp[31:0]  

tmp  =  GR[rj]  -  GR[rk]  

GR[rd]  =  tmp[31:0]  

ADDI.W:

tmp  =  GR[rj]  +  SignExtend(si12,  32)  

2.2  Overview  of  Basic  Integer  Instructions

middle.

sub.in

Use  register  rd.

rd,  rj,  rk  

ADD.W  adds  the  data  in  general-purpose  register  rj  to  the  data  in  general-purpose  register  rk,  and  writes  bits  [31:0]  of  the  result  into  general-purpose  register  rd.

rd,  rj,  rk  

The  above  instructions  do  not  perform  any  special  handling  for  overflow  situations.

2.2.1.3LU12I.W

middle.

SUB.W  subtracts  the  data  in  general-purpose  register  rj  from  the  data  in  general-purpose  register  rk,  and  writes  bits  [31:0]  of  the  result  into  general-purpose  register  rd.

2.2.1.1ADD.W,  SUB.W  

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

Command  format:  add.w

This  instruction  does  not  perform  any  special  handling  for  overflow  situations  when  it  is  executed.

Command  format:  lu12i.w  rd,  si20

2.2.1.2ADDI.W

Command  format:  addi.w rd,  rj,  si12  

ADDI.W  adds  the  32-bit  sign-extended  immediate  value  si12  to  the  data  in  the  general-purpose  register  rj,  and  writes  the  result  back  to  the  register.

2.2.1  Arithmetic  Operation  Instructions

9  
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10  

LU12I.W  concatenates  the  least  significant  bit  of  the  20-bit  immediate  value  si20  with  12  bits  of  0  and  writes  it  into  the  general-purpose  register  rd.

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

This  instruction,  along  with  the  ORI  instruction,  is  used  to  load  immediate  values  of  more  than  12  bits  into  a  general-purpose  register.

rd,  rj,  si12  

Command  format:  slt

SLTI  treats  the  data  in  the  general-purpose  register  rj  and  the  data  obtained  after  sign-extending  the  12-bit  immediate  value  si12  as  a  signed  integer  and  performs  a  size  calculation.

SLT  compares  the  data  in  general-purpose  register  rj  with  the  data  in  general-purpose  register  rk  as  signed  integers.  If  the  former  is  less  than...

SLTUI  treats  the  data  in  the  general-purpose  register  rj  and  the  data  obtained  after  sign-extending  the  12-bit  immediate  value  si12  as  an  unsigned  integer  and  performs  a  size  comparison.

If  the  latter,  the  value  of  the  general-purpose  register  rd  is  set  to  1;  otherwise,  it  is  set  to  0.

Command  format:  slti

rd,  rj,  rk  

If  the  former  is  less  than  the  latter,  the  value  of  the  general-purpose  register  rd  is  set  to  1;  otherwise,  it  is  set  to  0.

rd,  rj,  rk  

sltu

rd,  rj,  si12  

2.2.1.4SLT[U]

for  the  sake  of

SLTU  treats  the  data  in  general-purpose  register  rj  and  the  data  in  general-purpose  register  rk  as  unsigned  integers  and  compares  their  magnitudes.  If  the  former  is  smaller...

If  the  former  is  less  than  the  latter,  the  value  of  the  general-purpose  register  rd  is  set  to  1;  otherwise,  it  is  set  to  0.

2.2.1.5SLT[U]I  

The  data  bit  width  compared  by  SLT  and  SLTU  is  consistent  with  the  bit  width  of  the  general-purpose  registers  of  the  machine  being  executed.

The  latter  will  set  the  value  of  the  general-purpose  register  rd  to  1,  otherwise  set  it  to  0.

GR[rd]  =  (signed(GR[rj])  <  signed(tmp)) ?  1 :  0  

SLTU:

GR[rd]  =  {si20,  12'b0}  

LU12I.W:

SLT:  

GR[rd]  =  (unsigned(GR[rj])  <  unsigned(GR[rk])) ?  1 :  0  

SLTI:

GR[rd]  =  (signed(GR[rj])  <  signed(GR[rk])) ?  1 :  0  

For  SLT:

tmp  =  SignExtend(si12,  32)  

GR[rd]  =  (unsigned(GR[rj])  <  unsigned(tmp)) ?  1 :  0  

tmp  =  SignExtend(si12,  32)  
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rd,  rj,  rk  

Command  format:  pcaddu12i

rd  in.

2.2.1.6PCADDU12I

2.2.1.7AND,  OR,  NOR,  XOR  

Command  format:  and

The  data  bit  width  operated  by  the  above  instructions  is  consistent  with  the  bit  width  of  the  general-purpose  registers  of  the  machine  being  executed.

rd,  rj,  rk  

Enter  it  into  the  general-purpose  register  rd.

or  

nor  

PCADDU12I  concatenates  the  least  significant  bit  of  the  20-bit  immediate  value  si20  with  12  bits  of  0,  adds  the  PC  value  of  the  instruction  to  the  resulting  data,  and  writes  the  sum  to...

The  data  bit  width  compared  by  SLTI  and  SLTUI  is  consistent  with  the  bit  width  of  the  general-purpose  registers  of  the  machine  being  executed.

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

Please  note  that  for  SLTUI  instructions,  immediate  values  are  still  sign-extended.

free

rd,  si20  

The  AND  operation  performs  a  bitwise  logical  AND  operation  between  the  data  in  general-purpose  register  rj  and  the  data  in  general-purpose  register  rk,  and  writes  the  result  back  to  the  general-purpose  register.

NOR  performs  a  bitwise  OR  operation  between  the  data  in  general-purpose  register  rj  and  the  data  in  general-purpose  register  rk,  and  writes  the  result  back  to  the  general-purpose  register.

OR  performs  a  bitwise  logical  OR  operation  between  the  data  in  general-purpose  register  rj  and  the  data  in  general-purpose  register  rk,  and  writes  the  result  to  general-purpose  register  rd.

rd  in.

rd,  rj,  rk  

rd,  rj,  rk  

middle.

XOR  performs  a  bitwise  logical  XOR  operation  between  the  data  in  general-purpose  register  rj  and  the  data  in  general-purpose  register  rk,  and  writes  the  result  back  to  the  general-purpose  register.

GR[rd]  =  ~(GR[rj]  |  GR[rk])  

GR[rd]  =  GR[rj]  &  GR[rk]  

GR[rd]  =  PC  +  {si20,  12'b0}  

PCADDU12I:

AND:  

OR:  

GR[rd]  =  GR[rj]  |  GR[rk]  

NOR:  
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12  

In  the  general-purpose  register  rd.

rd,  rj,  rk  mulh.w

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

The  data  bit  width  operated  by  the  above  instructions  is  consistent  with  the  bit  width  of  the  general-purpose  registers  of  the  machine  being  executed.

Command  format:  mul.w

mulh.wu

2.2.1.8ANDI,  ORI,  HORI

rd,  rj,  ui12  

rd,  rj,  ui12  

Use  register  rd.

XORI  performs  a  bitwise  logical  XOR  operation  between  the  data  in  the  general-purpose  register  rj  and  the  zero-extended  12-bit  immediate  value,  and  writes  the  result  to...

The  NOP  instruction  is  an  alias  for  the  instruction  "andi  r0,  r0,  0".  Its  function  is  simply  to  occupy  a  4-byte  instruction  code  location  and  increment  the  PC  by  4;  otherwise...

ORI  performs  a  bitwise  logical  OR  operation  between  the  data  in  the  general-purpose  register  rj  and  the  12-bit  immediate  zero-extended  data,  and  writes  the  result  to  the  general-purpose  register  rj.

choir

rd  in.

2.2.1.9NOP  

The  data  bit  width  operated  by  the  above  instructions  is  consistent  with  the  bit  width  of  the  general-purpose  registers  of  the  machine  being  executed.

Command  format:  andi

OR

It  will  not  change  the  processor  state  visible  to  any  other  software.

rd,  rj,  rk  

rd,  rj,  rk  

ANDI  performs  a  bitwise  logical  AND  operation  between  the  data  in  the  general-purpose  register  rj  and  the  zero-extended  12-bit  immediate  value,  and  writes  the  result  into  the  register.

In  register  rd.

2.2.1.10  MUL.W,  MULH.W[U]

rd,  rj,  ui12  

CHORUS:

ANDI:  

GR[rd]  =  GR[rj]  ̂   

FREE:

GR[rk]  

GR[rd]  =  GR[rj]  &  ZeroExtend(ui12,  32)  

WHEN:

GR[rd]  =  GR[rj]  |  ZeroExtend(ui12,  32)  

GR[rd]  =  GR[rj]  ̂   ZeroExtend(ui12,  32)  
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GR[rd]  =  quotient[31:0]  

MULH.WU:

GR[rd]  =  product[63:32]  

GR[rd]  =  quotient[31:0]  

quotient  =  signed(GR[rj]) /  signed(GR[rk])  

product  =  signed(GR[rj])  *  signed(GR[rk])  

GR[rd]  =  product[31:0]  

MUL.W:

product  =  signed(GR[rj])  *  signed(GR[rk])  

GR[rd]  =  product[63:32]  

MULH.W:

DIV.W:  

DIV.WU:

quotient  =  unsigned(GR[rj]) /  unsigned(GR[rk])  

product  =  unsigned(GR[rj])  *  unsigned(GR[rk])  

MULH.WU  treats  the  data  in  general-purpose  register  rj  and  the  data  in  general-purpose  register  rk  as  unsigned  numbers  and  multiplies  the  product.

MUL.W  multiplies  the  data  in  general-purpose  register  rj  with  the  data  in  general-purpose  register  rk,  and  writes  bits  [31:0]  of  the  product  into  the  general-purpose  register.

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

Use  register  rd.

[63:32]  The  bit  data  is  written  to  the  general-purpose  register  rd  after  sign  extension.

MULH.W  multiplies  the  data  in  general-purpose  register  rj  and  the  data  in  general-purpose  register  rk  as  signed  numbers,  and  the  product  is  [63:32].

Command  format:  div.w

rd,  rj,  rk  

DIV.W  and  DIV.WU  divide  the  data  in  general-purpose  register  rj  by  the  data  in  general-purpose  register  rk,  and  write  the  quotient  into  general-purpose  register  rd.

rd,  rj,  rk  

2.2.1.11  DIV.W[U],  MOD.W[U]  

Bit  data  is  written  into  the  general-purpose  register  rd.

middle.

mod.w  rd,  rj,  rk  

div.wu

mod.wu  rd,  rj,  rk

13  
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MOD.WU:

GR[rd]  =  remainder[31:0]  

MOD.W:  

SLL.W:  

SRA.W:

tmp  =  SRL(GR[rj],  GR[rk][4:0])  

remainder  =  signed(GR[rj])  %  signed(GR[rk])  

remainder  =  unsigned(GR[rj])  %  unsigned(GR[rk])  

GR[rd]  =  remainder[31:0]  

GR[rd]  =  tmp[31:0]  

SRL.W:

GR[rd]  =  tmp[31:0]  

GR[rd]  =  tmp[31:0]  

tmp  =  SRA(GR[rj],  GR[rk][4:0])  

tmp  =  SLL(GR[rj],  GR[rk][4:0])  

When  performing  division  operations  with  DIV.W  and  MOD.W,  the  operands  are  both  treated  as  signed  numbers.  When  performing  division  operations  with  DIV.WU  and  MOD.WU,

In  the  device  rd.

SLL.W  logically  shifts  the  data  in  general-purpose  register  rj  to  the  left,  and  writes  the  shift  result  into  general-purpose  register  rd.

MOD.W  and  MOD.WU  divide  the  data  in  general-purpose  register  rj  by  the  data  in  general-purpose  register  rk,  and  write  the  remainder  into  the  general-purpose  register.

SRA.W  performs  an  arithmetic  right  shift  of  the  data  in  the  general-purpose  register  rj,  and  writes  the  shift  result  into  the  general-purpose  register  rd.

The  remainders  are  consistent  and  the  absolute  value  of  the  remainder  is  less  than  the  absolute  value  of  the  divisor.

2.2.2.1SLL.W,  SRL.W,  SRA.W  

Command  format:  sll.w

sra.w

When  the  divisor  is  0,  the  result  can  be  any  value,  but  no  exceptions  will  be  triggered.

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

SRL.W  logically  right-shifts  the  data  in  general-purpose  register  rj,  and  writes  the  shift  result  into  general-purpose  register  rd.

All  source  operands  are  treated  as  unsigned  numbers.

Each  pair  of  quotient/remainder  instructions  for  DIV.W/MOD.W  and  DIV.WU/MOD.WU  results  in  a  remainder  whose  sign  is  relative  to  the  dividend.

srl.w

rd,  rj,  rk  

rd,  rj,  rk  

rd,  rj,  rk  

2.2.2  Shift  Operation  Instructions
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SRAI.W:

GR[rd]  =  tmp[31:0]  

SLLI.W:

tmp  =  SLL(GR[rj],  ui5)  

tmp  =  SRL(GR[rj],  ui5)  

GR[rd]  =  tmp[31:0]  

SRLI.W:

GR[rd]  =  tmp[31:0]  

tmp  =  SRA(GR[rj],  ui5)  

rj,  rd,  offs16  

Command  format:  slli.w

see

blue

The  shift  amount  of  the  above  shift  instructions  is  the  data  in  bits  [4:0]  of  the  general-purpose  register  rk,  and  is  regarded  as  an  unsigned  number.

srli.w

The  shift  amount  of  the  above  shift  instructions  is  the  5-bit  unsigned  immediate  value  ui5  in  the  instruction  code.

rj,  rd,  offs16  

SLLI.W  logically  shifts  the  data  in  general-purpose  register  rj  to  the  left,  and  writes  the  shift  result  into  general-purpose  register  rd.

2.2.3.1BEQ,  BNE,  BLT[U],  BGE[U]  

rd,  rj,  ui5  

rj,  rd,  offs16  

SRAI.W  performs  an  arithmetic  right  shift  of  the  data  in  general-purpose  register  rj,  and  writes  the  shift  result  into  general-purpose  register  rd.

blt  

2.2.2.2SLLI.W,  SRLI.W,  SRAI.W

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

bge  

srai.w

rd,  rj,  ui5  

rd,  rj,  ui5  

SRLI.W  logically  right-shifts  the  data  in  general-purpose  register  rj  and  writes  the  shift  result  into  general-purpose  register  rd.

Command  format:  beq rj,  rd,  offs16  

rj,  rd,  offs16  

blue rj,  rd,  offs16  

2.2.3  Transfer  Instructions
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if  GR[rj]!=GR[rd] :  

BEQ:

if  GR[rj]==GR[rd] :  

PC  =  PC  +  SignExtend({offs16,  2'b0},  32)  

BLT:  

BGE:  

if  unsigned(GR[rj])  <  unsigned(GR[rd]) :  

PC  =  PC  +  SignExtend({offs16,  2'b0},  32)  

if  unsigned(GR[rj])  >=  unsigned(GR[rd]) :  

if  signed(GR[rj])  <  signed(GR[rd]) :  

PC  =  PC  +  SignExtend({offs16,  2'b0},  32)  

PC  =  PC  +  SignExtend({offs16,  2'b0},  32)  

BGEU:

BNE:

PC  =  PC  +  SignExtend({offs16,  2'b0},  32)  

PC  =  PC  +  SignExtend({offs16,  2'b0},  32)  

if  signed(GR[rj])  >=  signed(GR[rd]) :  

BLTU:

BLTU  treats  the  values  of  general-purpose  register  rj  and  general-purpose  register  rd  as  unsigned  numbers  and  compares  them;  if  the  former  is  less  than  the  latter,  it  jumps  to  the  target.

BNE  compares  the  values  of  general-purpose  register  rj  and  general-purpose  register  rd.  If  they  are  not  equal,  it  jumps  to  the  target  address;  otherwise,  it  does  not  jump.

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

Enter  the  offset  value  in  bytes,  which  is  offs16<<2  in  the  instruction  code.

The  URL  must  be  provided;  otherwise,  the  user  will  not  be  redirected.

Specify  the  address;  otherwise,  do  not  redirect.

The  offset  value  is  extended  by  the  branch  instruction,  and  the  resulting  offset  value  is  added  to  the  PC  of  that  branch  instruction.

BLT  compares  the  values  of  general-purpose  register  rj  and  general-purpose  register  rd  as  signed  numbers;  if  the  former  is  less  than  the  latter,  it  jumps  to  the  target  location.

BEQ  compares  the  values  of  general-purpose  register  rj  and  general-purpose  register  rd.  If  they  are  equal,  it  jumps  to  the  target  address;  otherwise,  it  does  not  jump.

BGE  compares  the  values  of  general-purpose  register  rj  and  general-purpose  register  rd  as  signed  numbers;  if  the  former  is  greater  than  or  equal  to  the  latter,  it  jumps  to  the  target.

Target  address;  otherwise,  do  not  redirect.

BGEU  compares  the  values  of  general-purpose  register  rj  and  general-purpose  register  rd  as  unsigned  numbers;  if  the  former  is  greater  than  or  equal  to  the  latter,  it  jumps  to...

The  jump  target  address  for  the  above  six  branch  instructions  is  calculated  by  logically  shifting  the  16-bit  immediate  value  off16  in  the  instruction  code  left  by  2  bits  before  recalculating.

The  address  must  be  displayed;  otherwise,  the  user  will  not  be  redirected.

However,  it  should  be  noted  that  if  the  above  instructions  are  written  by  directly  filling  in  the  offset  value  when  writing  the  assembly  code,  the  immediate  value  in  the  assembly  representation  should  be...

16  
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PC  =  PC  +  SignExtend({offs26,  2'b0},  32)  

PC  =  PC  +  SignExtend({offs26,  2'b0},  32)  

B:  

BL:

JIRL:

GR[rd]  =  PC  +  4  

GR[1]  =  PC  +  4  

PC  =  GR[rj]  +  SignExtend({offs16,  2'b0},  32)  

JIRLs  with  rd  equal  to  0,  rj  equal  to  1,  and  offs16  equal  to  0  are  often  used  as  indirect  jumps  back  from  calls.

Command  format:  b

2.2.3.4JIRL  

2.2.3.2B

offs26  

Command  format:  bl offs26  

The  jump  target  address  of  this  instruction  is  obtained  by  logically  left-shifting  the  26-bit  immediate  value  offs26  in  the  instruction  code  by  2  bits  and  then  sign-extending  it.

In  the  LA  ABI,  general-purpose  register  r1  is  used  as  the  return  address  register  ra.

2.2.3.3BL  

It  is  important  to  note  that  if  this  instruction  is  written  by  directly  filling  in  the  offset  value  during  assembly,  the  immediate  value  in  the  assembly  representation  should  be  filled  in  with  the  offset  value.

rd,  rj,  offs16  

The  offset  value  in  bytes,  i.e.,  offs26<<2  in  the  instruction  code.

B  unconditionally  jumps  to  the  target  address.  The  target  address  is  obtained  by  logically  left-shifting  the  26-bit  immediate  value  ̀offs26`  in  the  instruction  code  by  2  bits.

JIRL  jumps  unconditionally  to  the  target  address  and  simultaneously  writes  the  PC  value  of  the  instruction  plus  4  into  the  general-purpose  register  rd.
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The  jump  target  address  of  this  instruction  is  obtained  by  logically  left-shifting  the  16-bit  immediate  value  ̀offs16`  in  the  instruction  code  by  2  bits  and  then  sign-extending  it.

The  sign  is  extended,  and  the  resulting  offset  value  is  added  to  the  PC  of  the  branch  instruction.

It  is  important  to  note  that  if  this  instruction  is  written  by  directly  filling  in  the  offset  value  during  assembly,  the  immediate  value  in  the  assembly  representation  should  be  filled  in  with  the  offset  value.

Command  format:  jirl

The  value  is  added  to  the  value  in  the  general-purpose  register  rj.

BL  jumps  unconditionally  to  the  target  address  and  simultaneously  writes  the  PC  value  of  the  instruction  plus  4  into  general-purpose  register  r1.

The  offset  value  in  bytes,  i.e.,  offs26<<2  in  the  instruction  code.

Add  the  PC  value  to  the  branch  instruction.

When  rd  equals  0,  JIRL  functions  as  a  regular  non-call  indirect  jump  instruction.

17  
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2.2.4  Normal  Memory  Access  Instructions

st.b  

ld.h  

It  is  important  to  note  that  if  this  instruction  is  written  by  directly  filling  in  the  offset  value  during  assembly,  the  immediate  value  in  the  assembly  representation  should  be  filled  in  with  the  offset  value.

rd,  rj,  si12  

2.2.4.1LD.{B[U]/H[U]/W},  ST.{B/H/W}  

ld.bu

rd,  rj,  si12  

rd,  rj,  si12  

st.w  

rd,  rj,  si12  

st.h  

rd,  rj,  si12  

rd,  rj,  si12  

The  offset  value  in  bytes,  i.e.,  offs16<<2  in  the  instruction  code.
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LD.{B/H}  retrieves  one  byte/half-word  of  data  from  memory,  signs-extends  it,  and  writes  it  to  the  general-purpose  register  rd.  LD.W  retrieves  one  word  from  memory.

Command  format:  ld.b

ld.w  

ld.hu  

Data  is  written  to  the  general-purpose  register  rd.

rd,  rj,  si12  

rd,  rj,  si12  

paddr  =  AddressTranslation(vaddr)  

AddressComplianceCheck(vaddr)  

GR[rd]  =  SignExtend(byte,  32)  

halfword  =  MemoryLoad(paddr,  HALFWORD)

vaddr  =  GR[rj]  +  SignExtend(si12,  32)  

paddr  =  AddressTranslation(vaddr)  

vaddr  =  GR[rj]  +  SignExtend(si12,  32)  

GR[rd]  =  word  

LD.B:  

vaddr  =  GR[rj]  +  SignExtend(si12,  32)  

byte  =  MemoryLoad(paddr,  BYTE)  

AddressComplianceCheck(vaddr)  

LD.H:  

AddressComplianceCheck(vaddr)  

word  =  MemoryLoad(paddr,  WORD)  

GR[rd]  =  SignExtend(halfword,  32)

LD.W:  

paddr  =  AddressTranslation(vaddr)  

18  
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The  memory  address  of  the  above  instruction  is  calculated  by  adding  the  value  in  the  general-purpose  register  rj  to  the  sign-extended  12-bit  immediate  value  si12.

ST.{B/H/W}  writes  the  data  in  bits  [7:0]/[15:0]/[31:0]  of  the  general-purpose  register  rd  into  memory.
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LD.{BU/HU}  retrieves  one  byte/half-word  of  data  from  memory,  zero-extends  it,  and  writes  it  to  the  general-purpose  register  rd.

This  will  trigger  a  non-alignment  exception.

For  the  LD.{H[U]/W}  and  ST.{B/H/W}  instructions,  as  long  as  the  memory  access  address  is  naturally  aligned,  the  unaligned  exception  will  not  be  triggered;  otherwise...

vaddr  =  GR[rj]  +  SignExtend(si12,  32)  

AddressComplianceCheck(vaddr)  

LD.BU:

vaddr  =  GR[rj]  +  SignExtend(si12,  32)  

byte  =  MemoryLoad(paddr,  BYTE)  

paddr  =  AddressTranslation(vaddr)  

LD.HU:  

paddr  =  AddressTranslation(vaddr)  

vaddr  =  GR[rj]  +  SignExtend(si12,  32)  

AddressComplianceCheck(vaddr)  

GR[rd]  =  ZeroExtend(halfword,  32)

ST.B:  

vaddr  =  GR[rj]  +  SignExtend(si12,  32)  

AddressComplianceCheck(vaddr)  

MemoryStore(GR[rd][15:0],  paddr,  HALFWORD)

vaddr  =  GR[rj]  +  SignExtend(si12,  32)  

paddr  =  AddressTranslation(vaddr)  

AddressComplianceCheck(vaddr)  

AddressComplianceCheck(vaddr)  

MemoryStore(GR[rd][31:0],  paddr,  WORD)  

ST.H:  

GR[rd]  =  ZeroExtend(byte,  32)  

ST.W:  

paddr  =  AddressTranslation(vaddr)  

halfword  =  MemoryLoad(paddr,  HALFWORD)

MemoryStore(GR[rd][7:0],  paddr,  BYTE)  

paddr  =  AddressTranslation(vaddr)  
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vaddr  =  GR[rj]  +  SignExtend({si14,  2'b0},  32)  

The  SC.W  instruction  checks  the  LLbit  bit  during  execution.  It  only  performs  a  write  operation  if  the  LLbit  bit  is  1;  otherwise,  it  does  not  write.  This  is  necessary  when  the  software  requires  a  certain  level  of  success.
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When  performing  a  "read-modify-write"  memory  access  sequence  for  an  atom,  a  loop  needs  to  be  constructed  to  repeatedly  execute  the  LL-SC  instruction  pair  until  SC  completes  successfully.

PRELD  prefetches  a  cache  line  of  data  from  memory  into  the  cache.  Its  memory  access  address  is  calculated  by  adjusting  the  value  in  the  general-purpose  register  rj.

The  meaning  of  the  value  is  not  yet  defined;  the  processor  will  treat  it  as  a  NOP  instruction  during  execution.

During  the  execution  of  a  paired  LL-SC,  the  following  events  will  cause  the  LLbit  to  be  cleared  to  0:

rd,  rj,  si14  

Memory  address.  The  mechanism  for  maintaining  the  atomicity  of  memory  access  operation  sequences  is  that  LL.W  records  the  access  address  and  sets  a  flag  (LLbit  is  set  to  1)  during  execution.

ÿ  The  ERTN  instruction  was  executed  and  the  KLO  bit  in  CSR.LLBCTL  was  not  equal  to  1  at  the  time  of  execution;

However,  the  immediate  address  offset  values  presented  in  the  assembly  representation  of  these  instructions  are  still  in  bytes,  that  is,  their  value  is  si14<<2  in  the  instruction  code.

Command  format:  preld

Store  operations.

2.2.4.2PRELD  

To  construct  this  loop,  the  SC.{W/D}  instruction  will  use  a  flag  indicating  whether  its  execution  was  successful  (which  can  also  be  simply  understood  as  what  the  SC  instruction  shows  when  it  executes).

The  LLbit  value  is  written  to  the  general-purpose  register  rd  and  returned.

If  the  storage  access  attribute  of  the  LL-SC  instruction  at  the  access  address  is  not  cached,  then  the  execution  result  is  uncertain.

If  the  cache  attribute  of  the  memory  address  accessed  by  the  PRELD  instruction  is  not  cached,  then  the  instruction  cannot  perform  a  memory  access  operation  and  is  treated  as  a  NOP  instruction.

sc.w  

Select  a  value.  Currently,  hint=0  is  defined  as  load  prefetching  to  the  first-level  data  cache,  and  hint=8  is  defined  as  store  prefetching  to  the  first-level  data  cache.  Other  hints...

hint,  rj,  si12  

rd,  rj,  si14  

The  value  is  summed  with  the  sign-extended  12-bit  immediate  value  si12.  The  memory  access  address  falls  within  the  cache  line  to  be  prefetched.

It  is  important  to  note  that  when  calculating  the  memory  address,  the  above  instruction  requires  shifting  si14  two  bits  to  the  left  before  adding  it  to  the  base  address.

deal  with.

2.2.5.1LL.W,  SC.W  

ÿ  Other  processor  cores  or  the  cache  coherent  I/O  master  have  completed  a  process  in  the  cache  line  containing  the  address  corresponding  to  that  LLbit.

The  instruction  pair  LL.W  and  SC.W  is  used  to  implement  an  atomic  "read-modify-write"  memory  access  sequence.  The  LL.W  instruction  fetches  memory  from  a  specified  address.

The  ̀PRETLD`  instruction  provides  hints  to  the  processor  about  the  type  of  data  to  prefetch  and  which  cache  level  the  fetched  data  should  be  placed  in.  Hints  range  from  0  to  31,  with  32  possible  values.

The  PRELD  instruction  will  not  trigger  any  MMU  or  address-related  exceptions.

Command  format:  ll.w

After  sign-expanding  a  single  word  of  data,  it  is  written  to  the  general-purpose  register  rd.  The  paired  SC.W  instruction  operates  on  data  of  the  same  width  and  accesses  the  same  data.

2.2.5  Atomic  memory  access  instructions

20  
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The  IBAR  instruction  is  used  to  synchronize  the  internal  store  and  fetch  operations  of  a  single  processor  core.  Its  immediate  hint  is  used  to  specify  the  instruction.

The  DBAR  instruction  is  used  to  establish  a  barrier  between  load/store  memory  access  operations.  Its  immediate  hint  value  indicates  the  synchronization  of  that  barrier.
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2.2.6.1DBAR  

Executing  the  BREAK  instruction  will  immediately  and  unconditionally  trigger  a  breakpoint  exception.

hint  

Only  after  a  memory  access  operation  can  it  begin  to  be  executed.

Command  format:  ibar hint  

If  no  specific  function  is  implemented,  all  other  hint  values  must  be  executed  as  hint=0.

This  indicates  the  synchronization  target  and  the  degree  of  synchronization  for  the  barrier.

A  hint  value  of  0  is  required  by  default.  It  ensures  that  any  instruction  fetch  following  the  "IBAR  0"  instruction  will  be  able  to  observe  the  "IBAR  0"  instruction.

Executing  the  SYSCALL  instruction  will  immediately  and  unconditionally  trigger  a  system  call  exception.

code  

The  information  carried  in  the  code  field  of  the  instruction  code  can  be  used  by  exception  handling  routines  as  parameters  passed  to  them.

Command  format:  dbar

2.2.7.1SYSCALL  

Objects  and  synchronization  levels.

A  hint  value  of  0  is  required  by  default  and  indicates  a  fully  functional  synchronization  barrier.  This  only  applies  after  all  previous  load/store  memory  accesses  have  been  performed.

The  information  carried  in  the  code  field  of  the  instruction  code  can  be  used  by  exception  handling  routines  as  parameters  passed  to  them.

Command  format:  break

The  results  of  all  previous  store  operations.

Command  format:  syscall  code

2.2.7.2BREAK  

2.2.6.2IBAR

Only  after  the  "DBAR  0"  instruction  has  been  completely  executed  can  it  begin  execution;  and  only  after  "DBAR  0"  has  finished  executing  can  all  subsequent  load/store  operations  begin.

2.2.7  Other  Miscellaneous  Instructions

2.2.6  Barrier  Commands
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rj  

rdcntvh.w  

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

rd  

rd  

In  the  32-bit  simplified  version  of  the  Dragon  architecture,  the  instructions  RDCNTID  rj,  RDCNTH,  and  RDCNTL.W  rd,  RDCNTH.W  rd,  and  RDCNTID  rj  actually  correspond  to  the  three  

RDTIMEL.W  rd,  zero,  RDTIMEH.W  rd,  zero,  and  RDTIMEL.W  zero,  rj  instructions  in  the  32-bit  Dragon  architecture,  respectively.

The  RDCNTV{L/H}.W  instruction  is  used  to  read  information  from  a  constant  frequency  timer,  where  RDCNTVL.W  reads  bits  [31:0]  of  the  Counter  and  writes  them  to  the  Counter.

In  the  general-purpose  register  rd,  RDCNTVH.W  reads  bits  [63:32]  of  the  Counter.  The  RDCNTID  Counter  ID  information  is  written  to  the  general-purpose  register  rj.

2.2.7.3RDCNTV{L/H}.W,  RDCNTID  

Special  uses  of  the  command.

Command  format:  rdcntvl.w

radcnts

The  Dragon  architecture  32-bit  simplified  version  defines  a  constant  frequency  timer,  the  main  body  of  which  is  a  64-bit  counter  called  the  Stable  Counter.

Each  timer  has  a  software-configurable,  globally  unique  number  called  the  Counter  ID.

middle.

The  Stable  Counter  is  set  to  0  after  reset,  and  then  increments  by  1  every  counting  clock  cycle.  When  it  reaches  all  1s,  it  automatically  wraps  back  to  0  and  continues  incrementing.
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3.1  Basic  Floating-Point  Instruction  Programming  Model

3  Basic  Floating-Point  Instructions

Basic  floating-point  instructions  cannot  be  implemented  independently  of  basic  integer  instructions.  Generally,  we  recommend  implementing  both  basic  integer  instructions  and  basic  floating-point  instructions.

bit[22]  

Implement  basic  floating-point  instructions,  or  implement  only  the  instructions  in  the  basic  floating-point  instructions  that  operate  on  single-precision  floating-point  numbers  and  word  integers  (see  Table  3-1).

Floating-point  instructions.  However,  for  some  cost-sensitive  embedded  applications  with  extremely  low  floating-point  processing  performance  requirements,  the  architectural  specifications  also  allow  for...

Fraction  

Floating-point  data  types  include  single-precision  floating-point  numbers  and  double-precision  floating-point  numbers,  both  of  which  conform  to  the  definitions  in  the  IEEE  754-2008  standard  specification.

3.1.1.1  Single-precision  floating-point  numbers

Programming  with  basic  floating-point  instructions  builds  upon  the  basic  integer  instruction  programming  model  and  further  delves  into  the  content  discussed  in  this  section.

Floating-point  comparison  instructions  

Floating-point  conversion  instructions

Single-precision  floating-point  numbers  are  32  bits  wide  and  are  organized  in  the  following  format:

This  chapter  introduces  the  floating-point  instructions  in  the  non-privileged  subset  of  the  Dragon  Architecture  32-bit  Compact  Edition.  The  basic  floating-point  instructions  in  the  Dragon  Architecture  32-bit  Compact  Edition...
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The  function  definition  of  the  point  instruction  follows  the  IEEE  754-2008  standard.

Floating-point  arithmetic  instructions

S  

Floating-point  transfer  instructions

The  basic  floating-point  instruction  programming  model  described  in  this  section  only  covers  the  aspects  that  application  software  developers  need  to  focus  on.  Software  personnel  using...

Floating-point  branch  

instructions,  floating-point  normal  memory  access  instructions  FLD.S,  FST.S

Exponent  In

The  floating-point  values  represented  by  the  different  values  of  the  S,  Exponent,  and  Fraction  fields  are  shown  in  Table  3-2:

S  

MOVCF2FR,  MOVGR2CF,  MOVCF2GR  

0  

0  Any  value

0  

FFINT.SW,  FTINT.WS,  FTINTRM.WS,  FTINTRP.WS,  FTINTRZ.WS,  FTINTRNE.WS,

FMOV.S,  FSEL,  MOVGR2FR.W,  MOVFR2GR.S,  MOVGR2FCSR,  MOVFCSR2GR,  MOVFR2CF,  

=0  

Exponent  

-0  

Fraction  

1  

0  

0  

BCEQZ,  BCNEZ  

!=0  

23  

FADD.S,  FSUB.S,  FMUL.S,  FDIV.S,  FMADD.S,  FMSUB.S,  FNMADD.S,  FNMSUB.S,  FMAX.S,  FMIN.S,  

Table  3-1  Basic  Floating-Point  Instructions  for  Single-Precision  Floating-Point  Numbers  and  Word  Integers

FMAXA.S,  FMINA.S,  FABS.S,  FNEG.S,  FSQRT.S,  FRECIP.S,  FRSQRT.S,  FCOPYSIGN.S,  FCLASS.S  

The  denormalized  number  has  a  value  of  +2  -126  ×  (0.Fraction).

FCMP.cond.S  

Table  3-2  Methods  for  Calculating  Single-Precision  Floating-Point  Numbers

0  +0  

3.1.1  Floating-point  data  type

23  22  31  30  0  
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0  

Any  value  0

0  

1  

0  

Fraction  

The  denormalized  number  has  a  value  of  +2  -1022  ×  (0.Fraction).

1  

1  

1.  Any  value

!=0  

any  value

+0  

-0  

0  

0  

0x7FF  

Any  value  0

0xFF  

Negative  infinity  (-ÿ)

Positive  infinity  (+ÿ)

Exponent  

Positive  infinity  (+ÿ)0  

Normalization  number,  with  a  value  of  +2  (Exponent  -  127)  ×  (1.Fraction)

any  value  1

Signaling  Not  a  Number  (SNaN)

Normalization  number,  with  a  value  of  -2  (Exponent-127)×(1.Fraction)

Normalization  number,  with  a  value  of  -2  (Exponent  -  1023)  ×  (1.Fraction)

0  

Quiet  Not  a  Number  (QNaN)

[1,  0x7FE]  Any  value

Normalization  number,  with  a  value  of  +2  (Exponent  -  1023)  ×  (1.Fraction)

Table  3-3  Methods  for  Calculating  Double-Precision  Floating-Point  Numbers

=0  

0xFF  

1.  Any  value

=0  

0  

Negative  infinity  (-ÿ)

0  

0  Any  value
!=0  

=0  

0x7FF  

0  Any  value

0  

The  denormalized  number  has  a  value  of  -2  -126  ×  (0.Fraction).

!=0  

1.  Any  value

S  

0  

Quiet  Not  a  Number  (QNaN)

0  Any  value

24  

[1,  0xFE]  

Signaling  Not  a  Number  (SNaN)

any  value  1

The  denormalized  number  has  a  value  of  -2  -1022  ×  (0.Fraction).

1.  Any  value

For  the  specific  meanings  of  ±ÿ,  SNaN,  and  QNaN,  please  refer  to  the  IEEE  754-2008  standard  specification.

Exponent  bit[22]  

There  are  two  situations.

S  

Case  1:  When  an  instruction  generates  an  Invalid  Operation  floating-point  exception  due  to  a  source  operand  containing  SNaN,  but  the  Invalid  Operation  floating-point  exception...

The  priority  rule  for  source  operands  is:  if  there  are  two  source  operands  fj  and  fk,  then  fj  has  higher  priority  than  fk;  if  there  are  three...

For  the  specific  meanings  of  ±ÿ,  SNaN,  and  QNaN,  please  refer  to  the  IEEE  754-2008  standard  specification.

3.1.1.3  The  NOT  result  produced  by  the  instruction

Double-precision  floating-point  numbers  are  64  bits  wide  and  are  organized  in  the  following  format:

It  is  then  propagated  to  the  corresponding  NaN.
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The  non-number  result  of  1  generated  by  floating-point  instructions  either  comes  from  NaN  propagation  or  is  generated  directly.  The  situation  requiring  NaN  propagation  is...

Fraction  In

Inbit[51]  Exponent  

If  point  exceptions  are  not  enabled,  a  QNaN  result  will  be  generated.  The  value  of  this  QNaN  is  the  highest  priority  SNaN  among  the  source  operands.

The  floating-point  values  represented  by  the  different  values  of  the  S,  Exponent,  and  Fraction  fields  are  shown  in  Table  3-3:

Fraction  S  

3.1.1.2  Double-precision  floating-point  numbers

52  51  63  62  0  

At  this  point,  the  only  non-number  can  be  QNaN.
1  
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...  

3.1.3  Registers

3.1.2  Fixed-point  data  types

FCSRÿÿ  

Any  one  of  the  FRs.

The  rules  for  generating  SNaN  as  QNaN  are  as  follows:

If  the  source  operands  are  fa,  fj,  and  fk,  then  fa  has  higher  precedence  than  fj,  and  fj  has  higher  precedence  than  fk.

Case  2:  If  the  source  operand  does  not  contain  SNaN  but  does  contain  QNaN,  the  QNaN  with  the  highest  priority  is  selected  as  the  result  of  this  instruction.

The  value  of  precision  QNaN  is  0x7FC00000,  and  the  default  value  of  double  precision  QNaN  is  0x7FF8000000000000.

All  character  data  types  use  binary  two's  complement  encoding.

Floating-point  instruction  programming  involves  registers  such  as  the  floating-point  register  (FR)  and  the  condition  flag  register.

(Condition  Flag  Register,  abbreviated  as  CFR)  and  Floating-point  Control  and  Status  Register,  abbreviated  as

There  are  32  FRs,  denoted  as  f0  to  f31,  each  of  which  can  be  read  and  written.  This  applies  only  when  implementing  floating-point  instructions  that  operate  on  single-precision  floating-point  numbers  and  word  integers.

In  this  case,  the  method  for  determining  the  priority  of  the  source  operand  is  the  same  as  in  case  one  above.

ÿ  If  the  result  is  wider  than  the  source  operand,  then  pad  the  least  significant  bit  of  the  mantissa  with  0s  and  finally  set  the  most  significant  bit  of  the  mantissa  to  1.

The  instructions  and  floating-point  registers  are  orthogonal,  meaning  that  from  an  architectural  perspective,  any  floating-point  register  operand  in  these  instructions  can  use  32-bit  memory.
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3.1.3.1  Floating-point  registers

ÿ  If  the  result  is  narrower  than  the  source  operand,  then  retain  the  high-order  bits  of  the  mantissa,  discard  the  low-order  bits  that  exceed  the  range,  and  finally  set  the  highest  bit  of  the  mantissa  to  1.

ÿ  If  the  result  is  the  same  width  as  the  source  operand,  then  the  highest  bit  of  the  SNaN  mantissa  will  be  set  to  1,  while  the  remaining  bits  will  remain  unchanged.

Some  floating-point  instructions  (such  as  floating-point  conversion  instructions)  also  operate  on  fixed-point  data,  including  words  (abbreviated  W,  length  32  bits).

Except  for  the  two  cases  mentioned  above,  all  other  cases  requiring  a  QNaN  result  will  directly  set  the  default  QNaN  value.  The  default  single...

At  that  time,  the  bit  width  of  FR  is  32  bits.  Normally,  the  bit  width  of  FR  is  64  bits,  regardless  of  whether  it's  LA32  or  LA64  architecture.  Basic  floating-point  number.

32  31  

f0

63  

LA64  
LA32

f1

f2

f3

0  

f31

f30

25  

Figure  3-1  Floating-point  register
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3.1.4  Floating-point  exception

There  are  four  FCSRs,  denoted  as  fcsr0  to  fcsr3,  each  with  a  bit  width  of  32  bits.  fcsr1  to  fcsr3  are  aliases  for  certain  fields  within  fcsr0,  i.e.,  access...

3.1.3.2  Condition  Flag  Register
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When  the  floating-point  register  records  a  single-precision  floating-point  number  or  a  word  integer,  the  data  always  appears  in  bits  [31:0]  of  the  floating-point  register.

There  is  one  CFR,  denoted  as  fcc0,  and  each  one  can  be  read  and  written.  The  CFR  has  a  bit  width  of  1  bit.  The  result  of  the  floating-point  comparison  will  be  written  to  the  condition.

FCSR2  is  an  alias  for  the  Cause  and  Flags  fields  in  FCSR0.  The  positions  of  the  fields  are  consistent  with  those  in  FCSR0.

The  definitions  of  the  various  fields  of  fcsr0  are  unchanged.

Bit Name  reading  and  writing

FCSR3  is  an  alias  for  the  RM  field  in  FCSR0.  Its  location  is  the  same  as  in  FCSR0.

There  will  be  corresponding  exceptions.

Floating-point  exceptions  refer  to  situations  where  the  floating-point  processing  unit  cannot  process  operands  or  the  results  of  floating-point  calculations  in  the  usual  way,  and  the  floating-point  function  unit...

Bits  [63:32]  of  the  floating-point  register  can  have  any  value.

In  the  flag  register,  the  flag  is  set  to  1  if  the  comparison  result  is  true,  and  set  to  0  otherwise.  The  condition  for  floating-point  branch  instructions  comes  from  the  condition  flag  register.

3.1.3.3  Floating-point  control  status  register

Querying  fcsr1~fcsr3  actually  involves  accessing  certain  fields  of  fcsr0.  When  the  software  writes  to  fcsr1~fcsr3,  the  corresponding  fields  in  fcsr0  are  modified  while  the  remaining  bits  are  preserved.

describe

FCSR1  is  an  alias  for  the  Enables  field  in  FCSR0.  Its  location  is  the  same  as  in  FCSR0.

Bit  20  corresponds  to  V,  bit  19  corresponds  to  Z,  bit  18  corresponds  to  O,  bit  17  corresponds  to  U,  and  bit  16  corresponds  to  I.

Each  floating-point  operation  VZOUI  exception  has  an  enable  bit  that  allows  the  exception  to  be  triggered.

Enables  

Cause  

Rounding  mode  control.  It  includes  4  valid  values,  each  with  the  following  meaning:

Bit  28  corresponds  to  V,  bit  27  corresponds  to  Z,  bit  26  corresponds  to  O,  bit  25  corresponds  to  U,  and  bit  24  corresponds  to  I.

RW  

1:  RZ,  corresponding  to  roundTowardZero  in  IEEE  754-2008;9:8  

28:24  

Table  3-4  FCSR0  Register  Field  Definitions

0  

0  

0:  RNE,  corresponding  to  roundTiesToEven  in  IEEE  754-2008;

2:  RP,  corresponding  to  roundTowardsPositive  in  IEEE  754-2008;

RW  

0  

R0  is  a  reserved  field.  Reading  it  returns  0,  and  the  software  is  not  allowed  to  change  its  value.

7:5  

RW  

Bit  4  corresponds  to  V,  bit  3  corresponds  to  Z,  bit  2  corresponds  to  O,  bit  1  corresponds  to  U,  and  bit  0  corresponds  to  I.

26  

4:0  

R0  is  a  reserved  field.  Reading  it  returns  0,  and  the  software  is  not  allowed  to  change  its  value.

23:21  

VZOUI  exceptions  resulting  from  the  most  recent  floating-point  operation.

0  

31:29  

RM  

15:10  

R0  is  a  reserved  field.  Reading  it  returns  0,  and  the  software  is  not  allowed  to  change  its  value.

RW  
This  is  the  cumulative  number  of  VZOUI  exceptions  for  various  floating-point  operations  that  have  occurred  but  not  yet  trapped  since  the  Flags  field  was  cleared  by  the  software.

Flags  20:16  

R0  is  a  reserved  field.  Reading  it  returns  0,  and  the  software  is  not  allowed  to  change  its  value.

3:  RM,  corresponding  to  roundTowardsNegative  in  IEEE  754-2008.
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1  

Field  description  rounding  mode

ÿ  ÿÿ  Underflow  (U)  
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An  invalid  operation  exception  signal  is  issued  only  if  there  is  no  validly  defined  result.  If  no  exception  trap  is  triggered,  then...

ÿ  Overflow  (O)

ÿ  Invalid  Operation  (V)

When  a  floating-point  exception  occurs  during  the  execution  of  a  floating-point  instruction  but  does  not  trigger  a  floating-point  exception  trap,  the  floating-point  processing  unit  will  generate  a...

FCSR0  also  includes  an  enable  bit  (Enables  field)  for  each  floating-point  exception.  The  enable  bit  determines  the  exception  generated  by  the  floating-point  processing  unit.

This  will  trigger  a  floating-point  exception  trap;  if  the  corresponding  Enable  bit  is  0,  then  a  floating-point  exception  trap  will  not  be  triggered,  and  FCSR0  will  be  set  instead.

The  corresponding  position  1  in  the  Flag  field.

Default  result

Each  bit  in  the  Cause  field  of  FCSR0  corresponds  to  one  of  the  aforementioned  exceptions.  After  each  floating-point  instruction  is  executed,  the  exception  details  are  updated.

Generate  a  QNaN.  For  specific  details  on  the  determination  of  illegal  operation  exceptions,  please  refer  to  Section  7.2  of  the  IEEE  754-2008  specification.

ÿ  Inexact  (I)

The  basic  floating-point  instructions  support  five  floating-point  exceptions  defined  in  IEEE  754-2008:

ÿ  Division  by  Zero  (Z)

3.1.4.1  Illegal  Operation  Exception  (V)

The  new  Cause  field  is  in  FCSR0.

The  external  flag  will  either  trigger  an  exception  trap  or  set  a  status  flag.  When  a  floating-point  exception  occurs,  if  its  corresponding  Enable  bit  is  1,  then...

A  single  floating-point  instruction  can  generate  multiple  floating-point  exceptions  during  execution.

Default  results.  Different  exceptions  produce  default  results  in  different  ways;  Table  3-5  lists  the  specific  generation  rules.

RZ  The  result  after  rounding  may  be  0,  or  subnormal.

overflow

RNE  sets  the  result  to  +ÿ  or  -ÿ  based  on  the  sign  of  the  intermediate  result.

Set  the  result  to  the  maximum  number  based  on  the  sign  of  the  intermediate  results.RZ  

RP

RNE

27  

RM  

+2  -126,  double  precision:  +2  -1022)

WITH

I  

IN

RM  

The  rounded  result  could  be  0,  subnormal,  or  the  largest  negative  normal  number  (single  precision).

Degrees:  ±2  -126,  Double  precision:  ±2  -1022)

Correct  positive  overflow  to  the  largest  positive  number,  and  correct  negative  overflow  to  -ÿ.

The  result  of  rounding  in  any  non-precise  mode  or  the  result  after  overflow.

Correct  negative  overflow  to  the  smallest  negative  number,  and  correct  positive  overflow  to  +ÿ.

THE

overflow

The  rounded  result  could  be  0,  subnormal,  or  the  normal  number  with  the  smallest  absolute  value  (single-precision  rounding).

Table  3-5  Default  Results  for  Floating-Point  Exceptions

The  rounded  result  could  be  0,  subnormal,  or  the  smallest  positive  normal  number  (single  precision).

V.  Illegal  operation  in  any  mode  provides  a  QNaN.

Dividing  any  pattern  by  zero  yields  a  corresponding  signed  infinity.

RP

-2  -126,  double  precision:  -2  -1022)

In  fact,  only  the  four  exceptions  besides  underflow  strictly  conform  to  this  description.  Please  see  the  detailed  description  below  for  the  definition  of  underflow  exceptions.

Machine Translated by Google



Because  this  execution  mode  affects  performance,  inaccurate  exception  traps  are  only  enabled  when  necessary.

-1022ÿÿ  

If  an  exception  is  allowed  to  trap:  the  result  register  is  not  modified,  and  the  source  register  is  preserved.

Test.

If  exception  traps  are  allowed:  If  an  imprecise  exception  trap  is  enabled,  the  result  register  is  not  modified  and  the  source  register  is  preserved.

Whether  it's  exact  or  inaccurate,  it  will  trigger  a  floating-point  exception  trap.

Treating  the  exponent  field  as  unbounded  and  rounding  intermediate  results,  when  the  absolute  value  of  the  obtained  result  exceeds  the  maximum  finite  number  of  the  target  format,

An  underflow  exception  occurs  when  a  non-zero  tiny  value  is  detected.  The  method  for  detecting  non-zero  tiny  values  is  to  check  after  rounding.

3.1.4.3  Overflow  Exception  (O)

3.1.4.2  Division  by  zero  exception  (Z)

ÿ  The  rounding  result  overflows,  and  the  enable  bit  for  the  overflow  exception  is  not  set.

The  result  is  in  (-2  Emin)

In  division  operations,  when  the  divisor  is  0  and  the  dividend  is  a  finite  non-zero  number,  a  signal  is  issued  to  indicate  division  by  zero.

In  the  case  of  Emin ,  this  result  is  considered  a  non-zero  infinitesimal  value.  (Single-precision  number  Emin  =  -126,  double-precision  number  Emin  = ...)

3.1.4.4  Underflow  Exception  (U)

When  FCSR.Enable.U=1,  if  a  non-zero  tiny  value  is  detected,  the  final  rounding  result  of  the  floating-point  operation  is  not  considered  precise.

ÿ  Rounding  results  are  not  precise.

If  an  exception  prevents  trapping:  If  no  other  exception  occurs,  QNaN  is  written  to  the  destination  register.

(2)  If  the  final  rounding  result  of  the  floating-point  operation  is  accurate,  then  neither  U  nor  I  in  FCSR.Cause  should  be  set  to  1.

If  an  exception  is  prevented  from  trapping:  If  no  other  software  traps  occur,  the  rounded  or  overflow  result  is  sent  to  the  destination  register.

If  an  exception  is  prohibited  from  trapping:  if  no  trap  occurs,  the  result  is  a  signed  infinity.

If  an  exception  is  allowed  to  trap:  the  result  register  is  not  modified,  and  the  source  register  is  preserved.

If  an  exception  is  prohibited  from  trapping:  if  no  trap  occurs,  the  final  result  is  determined  by  the  rounding  mode  and  the  sign  of  the  intermediate  result.

The  FPU  generates  an  inaccuracy  exception  when  the  following  conditions  occur:

,  
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If  an  exception  is  allowed  to  trap:  the  result  register  is  not  modified,  and  the  source  register  is  preserved.

(1)  If  the  final  result  of  the  floating-point  operation  is  not  precise,  then  both  U  and  I  in  FCSR.Cause  should  be  set  to  1;

An  overflow  exception  is  signaled.  (This  exception  also  sets  up  both  inaccuracy  exceptions  and  a  flag.)

3.1.4.5  Exceptions  to  Inaccuracy  (I)

Rounding  check:  For  a  non-zero  result,  if  the  exponent  field  is  considered  unbounded,  the  intermediate  result  is  rounded.

When  FCSR.Enable.U=0,  if  the  detected  result  is  a  non-zero  tiny  value:

28  

Machine Translated by Google



3.2.1  Floating-point  arithmetic  instructions

The  FSUB.{S/D}  instruction  subtracts  the  single-precision/double-precision  floating-point  number  in  floating-point  register  fk  from  the  single-precision/double-precision  floating-point  number  in  floating-point  register  fj.

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

fd,  fj,  fk  

fd,  fj,  fk  

The  FDIV.{S/D}  instruction  divides  the  single-precision/double-precision  floating-point  number  in  floating-point  register  fj  by  the  single-precision/double-precision  floating-point  number  in  floating-point  register  fk.

fsub.d  fd,  fj,  fk  

fdiv.s

fd,  fj,  fk  

Command  format:  fadd.s

The  resulting  single-precision/double-precision  floating-point  number  is  written  to  the  floating-point  register  fd.  Floating-point  multiplication  operations  follow  the  IEEE  754-2008  standard.

fmul.d  

Specifications  for  the  addition(x,y)  operation.

Specifications  for  the  multiplication(x,y)  operation.

fd,  fj,  fk  

The  FMUL.{S/D}  instruction  multiplies  the  single-precision/double-precision  floating-point  number  in  floating-point  register  fj  by  the  single-precision/double-precision  floating-point  number  in  floating-point  register  fk.

fd,  fj,  fk  

fd,  fj,  fk  

The  single-precision/double-precision  floating-point  result  is  written  to  the  floating-point  register  fd.  Floating-point  addition  operations  follow  the  IEEE  754-2008  standard.

The  single-precision/double-precision  floating-point  result  is  written  to  the  floating-point  register  fd.  Floating-point  subtraction  operations  follow  the  IEEE  754-2008  standard.

fadd.d

3.2.1.1F{ADD/SUB/MUL/DIV}.{S/D}  

fdiv.d

The  single-precision/double-precision  floating-point  result  is  written  to  the  floating-point  register  fd.  Floating-point  division  operations  follow  the  IEEE  754-2008  standard.

fsub.s  

Specifications  for  the  division(x,y)  operation.

fmul.s  

The  FADD.{S/D}  instruction  adds  the  single-precision/double-precision  floating-point  number  in  floating-point  register  fj  to  the  single-precision/double-precision  floating-point  number  in  floating-point  register  fk.

Specifications  for  the  subtraction(x,y)  operation.

fd,  fj,  fk  

3.2  Overview  of  Basic  Floating-Point  Instructions

29  

FMUL.S:  

FR[fd][31:0]  =  FP32_subtraction(FR[fj][31:0],  FR[fk][31:0])  

FADD.D:

FADD.S:  

FR[fd][31:0]  =  FP32_addition(FR[fj][31:0],  FR[fk][31:0])  

FSUB.D:  

FSUB.S:  

FR[fd]  =  FP64_addition(FR[fj],  FR[fk])  

FR[fd][31:0]  =  FP32_multiplication(FR[fj][31:0],  FR[fk][31:0])  

FMUL.D:  

FR[fd]  =  FP64_multiplication(FR[fj],  FR[fk])  

FR[fd]  =  FP64_subtraction(FR[fj],  FR[fk])  
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30  

fd,  fj,  fk,  fa  

fnmadd.s  

fd,  fj,  fk,  fa  
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Command  format:  fmadd.s

fd,  fj,  fk,  fa  

The  FMADD.{S/D}  instruction  modifies  the  single-precision/double-precision  floating-point  number  in  floating-point  register  fj  and  the  single-precision/double-precision  floating-point  number  in  floating-point  register  fk.

In  the  floating-point  register  fd.

The  FMSUB.{S/D}  instruction  modifies  the  single-precision/double-precision  floating-point  number  in  floating-point  register  fj  and  the  single-precision/double-precision  floating-point  number  in  floating-point  register  fk.

fd,  fj,  fk,  fa  

fd,  fj,  fk,  fa  

fmsub.d  

fnmadd.d  

fnmsub.d  

fd,  fj,  fk,  fa  

Multiply  the  numbers,  subtract  the  single-precision/double-precision  floating-point  number  in  the  floating-point  register  fa  from  the  result,  and  write  the  resulting  single-precision/double-precision  floating-point  number  to  the...

In  the  floating-point  register  fd.

The  FNMADD.{S/D}  instruction  modifies  the  single-precision/double-precision  floating-point  number  in  floating-point  register  fj  and  the  single-precision/double-precision  floating-point  number  in  floating-point  register  fk.

3.2.1.2F{MADD/MSUB/NMADD/NMSUB}.{S/D}  

The  numbers  are  multiplied,  the  result  is  added  to  the  single-precision/double-precision  floating-point  number  in  the  floating-point  register  fa,  and  the  resulting  single-precision/double-precision  floating-point  number  is  written  to  [the  register  name].

fmsub.s  fd,  fj,  fk,  fa  

fd,  fj,  fk,  fa  

fnmsub.s  

Then  it  is  written  to  the  floating-point  register  fd.

fmadd.d

Multiply  the  points,  add  the  result  to  the  single-precision/double-precision  floating-point  number  in  the  floating-point  register  fa,  and  then  negative  the  resulting  single-precision/double-precision  floating-point  number.

FDIV.D:

FR[fd]  =  -FP64_fusedMultiplyAdd(FR[fj],  FR[fk],  FR[fa])  

FMADD.S:  

FR[fd][31:0]  =  -FP32_fusedMultiplyAdd(FR[fj][31:0],  FR[fk][31:0],  FR[fa][3  

FR[fd][31:0]  =  FP32_fusedMultiplyAdd(FR[fj][31:0],  FR[fk][31:0],  -FR[fa][3  

FMADD.D:

1:0])  

FR[fd]  =  FP64_division(FR[fj],  FR[fk])  

FNMADD.S:  

FDIV.S:

FR[fd][31:0]  =  FP32_division(FR[fj][31:0],  FR[fk][31:0])  

FR[fd][31:0]  =  FP32_fusedMultiplyAdd(FR[fj][31:0],  FR[fk][31:0],  FR[fa][31:  

0])  

FMSUB.S:  

FNMADD.D:  

FMSUB.D:  

FR[fd]  =  FP64_fusedMultiplyAdd(FR[fj],  FR[fk],  FR[fa])  

FR[fd]  =  FP64_fusedMultiplyAdd(FR[fj],  FR[fk],  -FR[fa])  

1:0])  
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FMIN.D:  

FR[fd]  =  -FP64_fusedMultiplyAdd(FR[fj],  FR[fk],  -FR[fa])  

FR[fd][31:0]  =  -FP32_fusedMultiplyAdd(FR[fj][31:0],  FR[fk][31:0],  -FR[fa]  

FNMSUB.S:  

[31:0])  

FMAX.S:  

FR[fd][31:0]  =  FP32_maxNum(FR[fj][31:0],  FR[fk][31:0])  

FNMSUB.D:  

FR[fd]  =  FP64_minNum(FR[fj],  FR[fk])  

FMIN.S:  

FR[fd][31:0]  =  FP32_minNum(FR[fj][31:0],  FR[fk][31:0])

FR[fd]  =  FP64_maxNum(FR[fj],  FR[fk])  

FMAX.D:  

fd,  fj,  fk  

The  FMAX.{S/D}  instruction  selects  a  single-precision/double-precision  floating-point  number  from  the  floating-point  register  fj  and  a  single-precision/double-precision  floating-point  number  from  the  floating-point  register  fk.

The  FNMSUB.{S/D}  instruction  modifies  the  single-precision/double-precision  floating-point  number  in  floating-point  register  fj  and  the  single-precision/double-precision  floating-point  number  in  floating-point  register  fk.

Fan.

Command  format:  fmaxa.s

Command  format:  fmax.s fd,  fj,  fk  

fd,  fj,  fk  

Write  it  to  the  floating-point  register  fd.

Fan.
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Multiply  the  numbers,  subtract  the  single-precision/double-precision  floating-point  number  in  the  floating-point  register  fa  from  the  result,  and  then  negate  the  single-precision/double-precision  floating-point  result.

The  above  four  floating-point  fused  multiply-add  operations  follow  the  specifications  of  the  fusedMultiplyAdd(x,y,z)  operation  in  the  IEEE  754-2008  standard.

3.2.1.3F{MAX/MIN}.{S/D}  

fd,  fj,  fk  fmaxa.d

The  FMAXA.{S/D}  instruction  selects  a  single-precision/double-precision  floating-point  number  from  floating-point  register  fj  and  a  single-precision/double-precision  floating-point  number  from  floating-point  register  fk.

The  larger  of  the  two  numbers  is  written  to  the  floating-point  register  fd.  The  operation  of  these  two  instructions  follows  the  rules  of  the  maxNum(x,y)  operation  in  the  IEEE  754-2008  standard.

fmin.s  

The  smaller  of  the  two  numbers  is  written  into  the  floating-point  register  fd.  The  operation  of  these  two  instructions  follows  the  rules  of  the  minNum(x,y)  operation  in  the  IEEE  754-2008  standard.

fmina.d  

fd,  fj,  fk  

fmax.d  

The  larger  absolute  value  of  the  points  is  written  to  the  floating-point  register  fd.  The  operation  of  these  two  instructions  follows  the  IEEE  754-2008  standard  for  maxNumMag(x,y).

fd,  fj,  fk  

3.2.1.4F{MAXA/MINA}.{S/D}

The  FMIN.{S/D}  instruction  selects  a  single-precision/double-precision  floating-point  number  from  floating-point  register  fj  and  a  single-precision/double-precision  floating-point  number  from  floating-point  register  fk.

fmina.s  fd,  fj,  fk  

fmin.d  

fd,  fj,  fk  
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FR[fd][31:0]  =  FP32_abs(FR[fj][31:0])  

FR[fd]  =  FP64_maxNumMag(FR[fj],  FR[fk])  

FMAXA.D:

FMAXA.S:  

FMINA.S:  

FMINA.D:  

FABS.S:  

FABS.D:  

FR[fd]  =  FP64_abs(FR[fj])  

FNEG.S:  

FR[fd][31:0]  =  FP32_negate(FR[fj][31:0])  

FR[fd]  =  FP64_minNumMag(FR[fj],  FR[fk])

FR[fd]  =  FP64_negate(FR[fj])  

FR[fd][31:0]  =  FP32_maxNumMag(FR[fj][31:0],  FR[fk][31:0])  

FR[fd][31:0]  =  FP32_minNumMag(FR[fj][31:0],  FR[fk][31:0])

FNEG.D:

The  smaller  absolute  value  of  the  points  is  written  into  the  floating-point  register  fd.  The  operation  of  these  two  instructions  follows  the  IEEE  754-2008  standard  for  minNumMag(x,y).

(It  remains  partially  unchanged)  and  is  written  to  the  floating-point  register  fd.  The  operation  of  these  two  instructions  follows  the  specification  of  the  abs(x)  operation  in  the  IEEE  754-2008  standard.

frecip.s  

The  FMINA.{S/D}  instruction  selects  a  single-precision/double-precision  floating-point  number  from  the  floating-point  register  fj  and  a  single-precision/double-precision  floating-point  number  from  the  floating-point  register  fk.

The  FSQRT.{S/D}  instruction  selects  a  single-precision  or  double-precision  floating-point  number  from  the  floating-point  register  fj,  and  then  takes  the  square  root  of  the  resulting  single-precision  or  double-precision  floating-point  number.

fneg.s  

3.2.1.6F{SQRT/RECIP/RSQRT}.{S/D}

fd,  fj  

frecip.d  fd,  fj  

fd,  fj  

Standard  operating  procedures.

The  FABS.{S/D}  instruction  selects  a  single-precision  or  double-precision  floating-point  number  from  the  floating-point  register  fj  and  takes  its  absolute  value  (i.e.,  sets  the  sign  bit  to  0).

Standard  operating  procedures.

The  FNEG.{S/D}  instruction  selects  a  single-precision/double-precision  floating-point  number  from  the  floating-point  register  fj  and  inverts  it  (that  is,  inverts  the  sign  bit  and  the  rest).

fd,  fj  

fd,  fj  

(Partially  unchanged),  written  to  the  floating-point  register  fd.  The  operation  of  these  two  instructions  follows  the  specifications  of  the  nexteer(x)  operation  in  the  IEEE  754-2008  standard.

fd,  fj  

Command  format:  fabs.s

frsqrt.s  fd,  fj  

fabs.d  

fd,  fj  

fd,  fj  

fd,  fj  

frsqrt.d  
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3.2.1.5F{ABS/NEG}.{S/D}  

fsqrt.d

fneg.d

Command  format:  fsqrt.s
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FRSQRT.D:  

FSQRT.D:

FR[fd][31:0]  =  FP32_squareRoot(FR[fj][31:0]);

FR[fd][31:0]  =  FP32_division(1.0,  FR[fj][31:0])  

FR[fd][31:0]  =  FP32_copySign(FR[fj][31:0],  FR[fk][31:0])  

FCOPYSIGN.D:  

FR[fd]  =  FP64_division(1.0,  FR[fj])  

FR[fd]  =  FP64_squareRoot(FR[fj]);

FSQRT.S:  

FRECIP.S:  

FR[fd]  =  FP64_copySign(FR[fj],  FR[fk])  

FRECIP.D:

FRSQRT.S:  

FR[fd]  =  FP64_division(1.0,  FP_squareRoot(FR[fj]));

FCOPYSIGN.S:  

FR[fd][31:0]  =  FP32_division(1.0,  FP_squareRoot(FR[fj][31:0]));

3.2.1.7FCOPYSIGN.{S/D}  
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The  meanings  are  shown  in  the  table  below:

Divide  the  number  by  1.0  again,  and  write  the  resulting  single-precision/double-precision  floating-point  number  into  the  floating-point  register  fd.  The  floating-point  square  root  and  inverse  operation  follows  IEEE  754-2008.

The  FCOPYSIGN.{S/D}  instruction  selects  the  single-precision/double-precision  floating-point  number  in  the  floating-point  register  fj  and  changes  its  sign  bit  to  the  floating-point  register  fk.

fcopysign.d  

The  sign  bit  of  the  single-precision/double-precision  floating-point  number  is  removed,  and  the  resulting  new  single-precision/double-precision  floating-point  number  is  written  to  the  floating-point  register  fd.  (Floating-point  copy  character)

Command  format:  fclass.s  fd,  fj

This  instruction  determines  the  category  of  the  floating-point  number  in  the  floating-point  register  fj.  The  result  consists  of  10  bits  of  information,  each  bit...

The  precision/double-precision  floating-point  number  is  written  to  the  floating-point  register  fd.  This  is  equivalent  to  the  division(1.0,x)  operation  in  the  IEEE  754-2008  standard.

The  number  is  written  to  the  floating-point  register  fd.  The  floating-point  square  root  operation  follows  the  specification  of  the  squareRoot(x)  operation  in  the  IEEE  754-2008  standard.

3.2.1.8FCLASS.{S/D}  

The  FRECIP.{S/D}  instruction  selects  a  single-precision  or  double-precision  floating-point  number  from  the  floating-point  register  fj,  and  divides  1.0  by  this  floating-point  number  to  obtain  the  single-precision  or  double-precision  floating-point  number.

The  FRSQRT.{S/D}  instruction  selects  a  single-precision/double-precision  floating-point  number  from  the  floating-point  register  fj,  and  then  takes  the  square  root  of  the  resulting  single-precision/double-precision  floating-point  number.

The  sign  operation  follows  the  specification  of  the  copySign(x,  y)  operation  in  the  IEEE  754-2008  standard.

The  specification  of  the  rSqrt(x)  operation  in  the  standard.

fd,  fj,  fk  fd,  fj,  fk  

fclass.d  fd,  fj  

Command  format:  fcopysign.s

Bit4  Bit1Bit0 Bit2  Bit5 Bit6  Bit3 Bit8  
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QNaN
normal  subnormal

positive  value  

normal  
SNaN

subnormal

negative  value  

0  ÿ  ÿ  0  
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FCLASS.D:  

FCLASS.S:  

FR[fd][31:0]  =  FP32_class(FR[fj][31:0])  

FR[fd]  =  FP64_class(FR[fj])  

mnemonic  cond

3.2.2.1FCMP.cond.{S/D}  

When  the  data  being  evaluated  meets  the  condition  corresponding  to  a  certain  bit,  the  corresponding  bit  in  the  result  information  vector  will  be  set  to  1.  This  instruction  corresponds  to...
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The  class(x)  function  in  the  IEEE-754-2008  standard.

Instruction  format:  ̀fcmp.cond.s  cc,  fj,  fk`.  This  is  a  floating-point  

comparison  instruction  that  stores  the  comparison  result  in  the  specified  status  code  (cc).  There  are  22  possible  ̀cond`  values  for  this  instruction,  which  compare...

fcmp.cond.d  cc,  fj,  fk  

The  conditions  and  criteria  for  judgment  are  listed  in  the  table  below.

QNaN  whether

Report  exceptions

True  

Condition  
meaning Corresponding  to  IEEE  754-2008  functions

3.2.2  Floating-point  comparison  instructions

orderly

compareSignalingLessEqual  

ANDSUN  
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Unequal

compareQuietUnordered  Incomparable

Unequal GT  LT  

0x6  

SLE  

BEER

A  LT  EQ

equal

AND  LT

compareSignalingNotGreater  

WITH

SAF  0x1

CNE  

LT  

Not  greater  than  or  equal  to

compareQuietNotGreater  

0x0  

0x18  Cannot  be  compared  or  are  not  equal  to  UN  GT  LT

compareQuietLessUnordered  

LT  EQ  

CUEQ  

EQ  

0x11  

0xB  

CEQ

0x8  

compareQuietLessEqual  

no

0x2  

Not  greater  than

Not  greater  than  or  less  than

CLE  

Equal  or  incomparable

CUTE

SNOW

SULT  

0x19  Cannot  be  compared  or  are  not  equal  to  UN  GT  LT

Less  than

0x10  

Note:  UN  indicates  that  they  cannot  be  compared,  EQ  indicates  that  they  are  equal,  and  LT  indicates  that  they  are  less  than.  Two  operands  cannot  be  compared  if  at  least  one  of  them  is  NaN.

0x9  is  not  greater  than,  less  than,  or  equal  to.

0xE  Less  than  or  equal  to  or  cannot  be  compared  UN  LT  EQ

0xA

no

EQ

compareSignalingLessUnordered  

compareSignalingLess  

COR  

CLT  

equal

LT  

CULT  

LT  EQ  

GT  LT  EQ  

SUEQ

CAF  

THEY  ARE

0xF  

0x3  

0x4  EQ  

SULE  

vesicles

none

0xD  

compareQuietEqual  

SLT  

none

Less  than  or  equal  to

Less  than  or  equal  to

SEQ  

GT  LT  

GT  LT  EQ  

compareQuietNotEqual  

compareSignalingEqual  

0x14  

yes

Less  than

0xC  

orderly

0x5  

0x15  

no

AND  LT

AND

0x7  

EQ

Smaller  than  or  cannot  be  compared

compareQuietLess  
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3.2.3  Floating-point  conversion  instructions

In  the  floating-point  register  fd.

fcvt.d.s  

3.2.3.1FCVT.S.D,  FCVT.D.S  

fd,  fj  

Command  format:  fcvt.sd

ftint.ls

In  the  floating-point  register  fd.

The  FCVT.DS  instruction  selects  a  single-precision  floating-point  number  in  the  floating-point  register  fj,  converts  it  to  a  double-precision  floating-point  number,  and  writes  the  resulting  double-precision  floating-point  number  to  fj.

Specifications  for  the  convertFromInt(x)  operation.

Command  format:  ffint.sw

ffint.d.w  

The  FTINT.{W/L}.{S/D}  instruction  selects  the  single-precision/double-precision  floating-point  number  in  the  floating-point  register  fj  and  converts  it  to  an  integer/long  integer  fixed-point  number.

fd,  fj  

The  FCVT.SD  instruction  selects  a  double-precision  floating-point  number  in  the  floating-point  register  fj,  converts  it  to  a  single-precision  floating-point  number,  and  writes  the  resulting  single-precision  floating-point  number  to  fj.

ffint.s.l  

fd,  fj  

The  obtained  single-precision/double-precision  floating-point  number  is  written  to  the  floating-point  register  fd.  This  floating-point  format  conversion  operation  conforms  to  the  IEEE  754-2008  standard.

Floating-point  format  conversion  operations  follow  the  specifications  of  the  convertFormat(x)  operation  in  the  IEEE  754-2008  standard.

3.2.3.2FFINT.{S/D}.{W/L},  FTINT.{W/L}.{S/D}

ftint.w.s  

The  resulting  integer/long  integer  fixed-point  number  is  written  to  the  floating-point  register  fd.  Depending  on  the  state  in  the  FCSR,  this  floating-point  format  conversion  operation  follows...

fd,  fj  fd,  fj  

fd,  fj  

fd,  fj  

fd,  fj  

ftint.wd
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fd,  fj  

The  FFINT.{S/D}.{W/L}  instruction  selects  the  integer/long  integer  fixed-point  number  in  the  floating-point  register  fj  and  converts  it  to  a  single-precision/double-precision  floating-point  number.

fd,  fj  

ftint.ldffint.d.l  

FR[fd][31:0]  =  FP32_convertFromInt(FR[fj],  SINT64)  

FR[fd][31:0]  =  FP32_convertFromInt(FR[fj][31:0],  SINT32)  

FCVT.D.S:  

FCVT.S.D:  

FR[fd][31:0]  =  FP32_convertFormat(FR[fj],  FP64)  

FFINT.S.L:  

FFINT.S.W:  

FR[fd]  =  FP64_convertFormat(FR[fj][31:0],  FP32)  

FFINT.D.W:  

FR[fd]  =  FP64_convertFromInt(FR[fj][31:0],  SINT32)  

FR[fd]  =  FP64_convertFromInt(FR[fj],  SINT64)  

FFINT.D.L:  
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Rounding  to  negative  infinity

Rounding  to  zero

Round  to  the  nearest  even  number

Rounding  to  positive  infinity

convertToIntegerExactTiesToEven(x)  

convertToIntegerExactTowardZero(x)  

convertToIntegerExactTowardPositive(x)  

37  

convertToIntegerExactTowardNegative(x)  

ftintrz.ws

ftintrz.l.s  

Rounding  mode

3.2.3.3FTINT{RM/RP/RZ/RNE}.{W/L}.{S/D}  

Command  format:  ftintrm.ws

ftintrne.w.s  fd,  fj  

fd,  fj  

fd,  fj  

ftintrp.l.s  

fd,  fj  ftintrne.l.s  

ftintrp.ws

Operations  in  the  IEEE  754-2008  standard

The  operation  in  accordance  with  the  IEEE  754-2008  standard  is  shown  in  the  table  below.
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fd,  fj  

fd,  fj  

The  integer/long  integer  fixed-point  number  obtained  is  written  into  the  floating-point  register  fd,  using  the  "rounding  towards  negative  infinity"  method.

fd,  fj  

fd,  fj  

ftintrz.ld

ftintrm.w.d  

ftintrm.l.d  ftintrp.l.d  

ftintrz.wd

fd,  fj  

fd,  fj  

The  FTINTRM.{W/L}.{S/D}  instruction  selects  the  single-precision/double-precision  floating-point  number  in  the  floating-point  register  fj  and  converts  it  to  an  integer/long  integer  fixed-point  number.

ftintrp.wd

fd,  fj  

fd,  fj  

ftintrne.l.d  

ftintrne.w.d  

fd,  fj  

The  FTINTRP.{W/L}.{S/D}  instruction  selects  the  single-precision/double-precision  floating-point  number  in  the  floating-point  register  fj  and  converts  it  to  an  integer/long  integer  fixed-point  number.

fd,  fj  

ftintrm.l.s  fd,  fj  

fd,  fj  

These  instructions  convert  floating-point  numbers  to  fixed-point  numbers  using  a  specified  rounding  mode.

FR[fd]  =  FP64convertToSint64(FR[fj],  FCSR.RM)  

FR[fd][31:0]  =  FP32convertToSint32(FR[fj][31:0],  FCSR.RM)  

FR[fd]  =  FP32convertToSint64(FR[fj][31:0],  FCSR.RM)  

FR[fd][31:0]  =  FP32convertToSint32(FR[fj][31:0],  3)  

FTINTRM.W.D:  

FTINTRM.W.S:  

FR[fd]  =  FP32convertToSint64(FR[fj][31:0],  3)  

FR[fd]  =  FP64convertToSint32(FR[fj],  FCSR.RM)  

FTINT.WD:

FTINT.W.S:  

FTINTRM.L.D:  

FTINT.LS:

FTINT.LD:

FR[fd]  =  FP64convertToSint32(FR[fj],  3)  

FTINTRM.L.S:  

FR[fd]  =  FP64convertToSint64(FR[fj],  3)  
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FR[fd]  =  FP64convertToSint64(FR[fj],  2)  

FR[fd]  =  FP64convertToSint32(FR[fj],  2)  

FTINTRP.WD:

FTINTRNE.L.D:  

FTINTRP.L.S:  

FTINTRNE.W.D:  

FR[fd]  =  FP64convertToSint64(FR[fj],  0)  

FTINTRZ.LD:

FR[fd]  =  FP32convertToSint64(FR[fj][31:0],  0)  

FR[fd][31:0]  =  FP32convertToSint32(FR[fj][31:0],  1)  

FR[fd][31:0]  =  FP32convertToSint32(FR[fj][31:0],  0)  

FTINTRZ.L.S:  

FR[fd]  =  FP64convertToSint32(FR[fj],  0)  

FTINTRP.WS:

FR[fd][31:0]  =  FP32convertToSint32(FR[fj][31:0],  2)  

FR[fd]  =  FP32convertToSint64(FR[fj][31:0],  2)  

FTINTRP.L.D:  

FTINTRZ.WS:

FR[fd]  =  FP64convertToSint32(FR[fj],  1)  

FTINTRNE.W.S:  

FTINTRZ.WD:

FTINTRNE.L.S:  

FR[fd][31:0]  =  FP32convertToSint64(FR[fj][31:0],  1)  

FR[fd]  =  FP64convertToSint64(FR[fj],  1)  

Command  Name

The  integer/long  integer  fixed-point  number  obtained  is  written  to  the  floating-point  register  fd,  using  the  method  of  "rounding  to  the  nearest  even  number".

The  FTINTRZ.{W/L}.{S/D}  instruction  selects  the  single-precision/double-precision  floating-point  number  in  the  floating-point  register  fj  and  converts  it  to  an  integer/long  integer  fixed-point  number.
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The  obtained  integer/long  integer  fixed-point  number  is  written  into  the  floating-point  register  fd,  using  the  "rounding  towards  positive  infinity"  method.

The  FTINTRNE.{W/L}.{S/D}  instruction  selects  the  single-precision/double-precision  floating-point  number  in  the  floating-point  register  fj  and  converts  it  to  an  integer/long  integer  fixed-point  number.

The  operations  in  the  IEEE  754-2008  standard  followed  by  the  above  four  floating-point  format  conversion  operations  are  shown  in  the  table  below.

The  obtained  integer/long  integer  fixed-point  number  is  written  into  the  floating-point  register  fd,  using  the  "rounding  towards  zero"  method.

Operations  in  the  IEEE  754-2008  standard

FTINTRZ.{W/L}.{S/D}  

convertToIntegerExactTiesToEven(x)  FTINTRNE.{W/L}.{S/D}  

convertToIntegerExactTowardZero(x)  

FTINTRP.{W/L}.{S/D}  convertToIntegerExactTowardPositive(x)  

FTINTRM.{W/L}.{S/D}  
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3.2.4  Floating-point  transport  instructions

If  it  is  a  single-precision/double-precision  floating-point  number  format,  the  result  is  uncertain.

3.2.4.3MOVGR2FR.W,  MOVGR2FRH.W

3.2.4.1FMOV.{S/D}  
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movgr2frh.w

fd,  fj  

FMOV.{S/D}  writes  the  value  of  floating-point  register  fj  to  floating-point  register  fd  in  single-precision/double-precision  floating-point  format.  If  the  value  of  fj  is  not...

The  value  is  written  to  the  floating-point  register  fd;  otherwise,  the  value  of  the  floating-point  register  fk  is  written  to  the  floating-point  register  fd.

fd,  rj  

Command  format:  fsel

MOVGR2FR.W  writes  the  value  of  the  general-purpose  register  rj  into  the  lower  32  bits  of  the  floating-point  register  fd.  If  the  floating-point  register  is  64  bits  wide,  then  fd...

domain.

fmov.d  

Command  format:  movgr2fr.w

Command  format:  fmov.s

fd,  rj  

fd,  fj  

3.2.4.2FSEL  

MOVGR2FRH.W  writes  the  value  of  the  general-purpose  register  rj  into  the  high  32  bits  of  the  floating-point  register  fd,  while  leaving  the  low  32  bits  of  the  floating-point  register  fd  unchanged.

The  above  instruction  operation  is  non-arithmic,  will  not  trigger  an  IEEE  754  exception,  and  will  not  modify  the  Cause  and  Flags  of  the  floating-point  control  status  register.

The  FSEL  instruction  performs  a  conditional  assignment  operation.  When  FSEL  is  executed,  if  the  value  of  the  condition  flag  register  ca  is  equal  to  0,  then  the  value  of  the  floating-point  register  fj  is  incremented.

fd,  fj,  fk,  ca  

The  value  of  the  high  32  bits  is  uncertain.

FR[fd][31:0]  =  GR[rj]  

MOVGR2FR.Wÿ

FMOV.dÿ  

FMOV.Sÿ  

FR[fd][31:0]  =  FR[fj][31:0]

FSELÿ  

FR[fd]  =  CFR[ca] ?  FR[fk] :  FR[fj]

FR[fd]  =  FR[fj]

FR[fd][63:32]  =  GR[rj]  

FR[fd][31:  0]  =  FR[fd][31:0]

MOVGR2FRH.Wÿ
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3.2.4.5MOVGR2FCSR,  MOVFCSR2GR  

3.2.4.4MOVFR2GR.S,  MOVFRH2GR.S  
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Command  format:  movfr2gr.s rd,  fj  

3.2.4.6MOVFR2CF,  MOVCF2FR  

rd,  fj  

Command  format:  movgr2fcsr

rd,  fcsr  

fcsr,  rj  

The  Enables  field  and  the  Cause  field  of  FCSR2  are  set  so  that  the  Cause  bit  and  the  corresponding  Enables  bit  are  both  1.  The  MOVGR2FCSR  instruction  itself  will  not...

MOVGR2FCSR  modifies  the  value  of  the  software-writable  field  corresponding  to  the  floating-point  control  status  register  indicated  by  fcsr  based  on  the  value  of  the  general-purpose  register  rj.  If

If  the  floating-point  control  status  register  indicated  by  fcsr  in  the  above  instruction  does  not  exist,  the  result  is  uncertain.

movcf2fr  fd,  cj  

MOVFR2CF  writes  the  value  of  the  least  significant  bit  of  the  floating-point  register  fj  to  the  condition  flag  register  cd.

MOVCF2FR  writes  the  value  of  the  condition  flag  register  cj  to  the  lowest  bit  of  the  floating-point  register  fd,  and  pads  the  remaining  bits  of  fd  with  0.

movfrh2gr.s  

Triggering  a  floating-point  exception.

MOVFCSR2GR  writes  the  32-bit  value  of  the  floating-point  control  status  register  indicated  by  fcsr  to  the  general-purpose  register  rd.

MOVFR2GR/MOVFRH2GR.S  writes  the  lower  32-bit/high  32-bit  value  of  the  floating-point  register  fj  to  the  general-purpose  register  rd.

Command  format:  movfr2cf  cd,  fj

The  MOVGR2FCSR  instruction  modifies  FCSR0  so  that  both  the  Cause  field  bit  and  the  corresponding  Enables  bit  are  1,  or  modifies  FCSR1.

movfcsr2gr  

CFR[cd]  =  FR[fj][0]

GR[rd]  =  FR[fj][63:32]  

GR[rd]  =  FR[fj][31:0]  

MOVFR2GR.Sÿ  

MOVFRH2GR.Sÿ  

MOVGR2FCSRÿ  

FCSR[fcsr]  =  GR[rj]  

MOVFCSR2GRÿ  

MOVFR2CFÿ  

MOVCF2FRÿ  

GR[rd]  =  FCSR[fcsr]  
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GR[rd][0]  =  ZeroExtend(CFR[cj],  32)  

MOVGR2CFÿ  

FR[fd][0]  =  ZeroExtend(CFR[cj],  64)  

CFR[cd]  =  GR[rj][0]  

BCEQZ:  

if  CFR[cj]==0 :  

MOVCF2GRÿ  

BCNEZ:  

PC  =  PC  +  SignExtend({offs21,  2'b0},  32)  

if  CFR[cj]!=0 :  

PC  =  PC  +  SignExtend({offs21,  2'b0},  32)  

Enter  the  offset  value  in  bytes,  which  is  offs21<<2  in  the  instruction  code.

MOVGR2CF  writes  the  value  of  the  least  significant  bit  of  the  general-purpose  register  rj  to  the  condition  flag  register  cd.

Command  format:  movgr2cf  cd,  rj

3.2.5.1BCEQZ,  BCNEZ  

movcf2gr  rd,  cj  

cj,  offs21  

cj,  offs21  

However,  it  should  be  noted  that  if  the  above  instructions  are  written  by  directly  filling  in  the  offset  value  when  writing  the  assembly  code,  the  immediate  value  in  the  assembly  representation  should  be...

The  jump  target  address  of  the  two  branch  instructions  mentioned  above  is  obtained  by  logically  shifting  the  21-bit  immediate  value  offs21  in  the  instruction  code  left  by  2  bits  and  then  sign-extending  it.

The  resulting  offset  value  is  added  to  the  PC  of  the  branch  instruction.

Command  format:  bceqz

3.2.4.7MOVGR2CF,  MOVCF2GR  
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MOVCF2GR  writes  the  value  of  the  condition  flag  register  cj  to  the  lowest  bit  of  the  general-purpose  register  rd,  and  pads  the  remaining  bits  of  rd  with  0.

BCNEZ  checks  the  value  of  the  condition  flag  register  cj.  If  the  value  is  not  equal  to  0,  it  jumps  to  the  target  address;  otherwise,  it  does  not  jump.

BCEQZ  checks  the  value  of  the  condition  flag  register  cj.  If  it  is  equal  to  0,  it  jumps  to  the  target  address;  otherwise,  it  does  not  jump.

bcnez  

3.2.5  Floating-point  branch  instructions
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3.2.6  Floating-point  ordinary  memory  access  instructions

fld.d  
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fd,  rj,  si12  

The  memory  address  of  the  above  instruction  is  calculated  by  adding  the  value  in  the  general-purpose  register  rj  to  the  sign-extended  12-bit  immediate  value  si12.

FLD.S  retrieves  a  word  of  data  from  memory  and  writes  it  to  the  lower  32  bits  of  the  floating-point  register  fd.  If  the  floating-point  register  is  64  bits  wide,  then  the  higher  32  bits  of  fd...

fd,  rj,  si12  

Command  format:  fld.s

3.2.6.1FLD.{S/D},  FST.{S/D}  

fd,  rj,  si12  

fst.s  

fst.d  fd,  rj,  si12  

The  32-bit  value  is  uncertain.  FLD.D  retrieves  a  double  word  of  data  from  memory  and  writes  it  to  the  floating-point  register  fd.

FST.S  writes  the  lower  32  bits  of  the  floating-point  register  fd  into  memory.  FST.D  writes  a  double  word  of  data  from  the  floating-point  register  fd  into  memory.

middle.

For  the  FLD.{S/D}  and  FST.{S/D}  instructions,  an  unaligned  exception  will  be  triggered  when  the  memory  access  address  is  not  naturally  aligned.

AddressComplianceCheck(vaddr)  

AddressComplianceCheck(vaddr)  

vaddr  =  GR[rj]  +  SignExtend(si12,  32)  

word  =  MemoryLoad(paddr,  WORD)  

FR[fd][31:0]  =  word  

FLD.D:  

FST.D:  

FST.S:  

vaddr  =  GR[rj]  +  SignExtend(si12,  32)  

vaddr  =  GR[rj]  +  SignExtend(si12,  32)  

paddr  =  AddressTranslation(vaddr)  

MemoryStore(FR[fd][31:0],  paddr,  WORD)  

vaddr  =  GR[rj]  +  SignExtend(si12,  32)  

paddr  =  AddressTranslation(vaddr)  

FLD.S:  

AddressComplianceCheck(vaddr)  

AddressComplianceCheck(vaddr)  

FR[fd]  =  doubleword  

doubleword  =  MemoryLoad(paddr,  DOUBLEWORD)  

paddr  =  AddressTranslation(vaddr)  

MemoryStore(FR[fd][63:0],  paddr,  DOUBLEWORD)  

paddr  =  AddressTranslation(vaddr)  

42  
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4.2  Overview  of  Privileged  Instructions

4.1  Privilege  Levels

In  the  Dragon  architecture  32-bit  simplified  version,  the  processor  cores  are  divided  into  two  privilege  levels  (Privilege  Level,  or  PLV  for  short):  PLV0  and  PLV3.

The  addressing  unit  of  a  CSR  is  a  CSR  register,  that  is,  the  csr_num  of  CSR  0  is  0,  the  csr_num  of  CSR  1  is  1,  and  so  on.

Any  software-visible  state  of  the  processor.  It  should  be  noted  that  the  CSRWR  and  CSRXCHG  instructions  not  only  include  write  operations  to  update  the  CSR,

The  privilege  level  is  PLV3.  At  this  privilege  level,  privileged  instructions  cannot  be  executed  to  access  privileged  resources.

The  CSRRD,  CSRWR,  and  CSRXCHG  instructions  are  used  for  software  access  to  CSRs.  The  CSRRD  instruction  writes  the  value  of  the  specified  CSR  to  a  general-purpose  register.

All  CSR  registers  use  an  independent  address  space.  In  the  above  instructions,  the  address  value  of  the  CSR  comes  from  the  14-bit  immediate  value  csr_num  in  the  instruction.

rd,  csr_num  

rd,  csr_num  

The  bits  in  the  CSR  that  correspond  to  the  write  mask  being  1  are  left  unchanged,  while  the  old  value  of  the  CSR  is  updated  in  the  general  register.

4.2.1.1CSRRD,  CSRWR,  CSRXCHG  

The  CSRWR  instruction  writes  the  old  value  from  the  general-purpose  register  rd  to  the  specified  CSR,  and  simultaneously  updates  the  old  value  of  the  specified  CSR  to  the  general-purpose  register  rd.

creator

Of  all  privilege  levels,  PLV0  is  the  highest  privilege  level,  and  the  only  one  that  can  use  privileged  instructions  and  access  all  privileged  resources.

In  the  Dragon  architecture  32-bit  simplified  version,  all  CSR  registers  are  32  bits  wide.
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The  current  privilege  level  of  a  processor  core  is  uniquely  determined  by  the  value  of  the  PLV  field  in  CSR.CRMD.

In  the  device  rd.

All  privileged  instructions  are  only  accessible  at  the  PLV0  privilege  level.  However,  Hit-class  CACOP  instructions  can  be  executed  at  the  PLV3  privilege  level.

For  Linux  systems,  only  PLV0  corresponds  to  kernel  mode  in  the  architecture,  while  PLV3  corresponds  to  user  mode.

The  CSRXCHG  instruction,  based  on  the  write  mask  information  stored  in  the  general-purpose  register  rj,  writes  the  old  value  from  the  general-purpose  register  rd  to  the  specified  register.

When  a  CSR  access  instruction  accesses  a  CSR  that  is  not  defined  in  the  architecture  or  not  implemented  in  the  hardware,  the  read  operation  returns  all  zeros,  and  the  write  operation  does  not  modify  the  value.

rd,  rj,  csr_num  csrxchg

Command  format:  csrrd

It  also  includes  read  operations  that  retrieve  old  CSR  values.

4.  Overview  of  Privileged  Resource  Architecture
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4.2.1  CSR  Access  Commands

Machine Translated by Google



46  

code,  rj,  si12  

4.2.2.1CACOP  
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The  storage  level  into  which  data  is  stored  is  determined  by  the  specific  cache  hierarchy  implemented  and  the  inclusion  or  mutual  exclusion  relationships  between  each  level.  For  data  caches  or  hybrid  caches,

The  query  process  may  involve  virtual-to-physical  address  translation,  so  in  this  case,  the  CACOP  instruction  may  trigger  TLB-related  exceptions.  However,  because  CACOP...

Used  to  indicate  the  location  of  the  cache  line  being  operated  on.

The  CACOP  instruction  is  primarily  used  for  cache  initialization  and  cache  consistency  maintenance.

Please  refer  to  the  previous  paragraph  for  the  definition  of  direct  address  indexing.  Maintaining  consistency  involves  invalidating  and  writing  back  a  specified  cache  entry.

`code[2:0]=0`  indicates  operation  on  the  first-level  private  instruction  cache,  ̀code[2:0]=1`  indicates  operation  on  the  first-level  private  data  cache,  and  ̀code[2:0]=2`  indicates...

Operate  the  secondary  shared  hybrid  cache.

If  the  operation  is  on  the  instruction  cache,  then  only  an  invalidation  operation  is  needed;  it  is  not  necessary  to  write  back  the  data  in  the  cache  line.  The  written-back  data  then...

There  are  (1<<Way)  paths,  each  path  has  (1<<Index)  cache  lines,  and  each  cache  line  is  (1<<Offset)  bytes  in  size.  Therefore,  using  direct  address  indexing  means  operating  on  the  

VA[Way-1:0]th  path  of  this  cache  and  the  VA[Index+Offset-1:Offset]th  cache  line.

code[4:3]=2  indicates  that  the  cache  consistency  is  maintained  using  a  query  index  method  (Hit  Invalidate /  Invalidate  and  Writeback).

The  ̀load`  instruction  accesses  the  cache  to  be  operated  on.  If  a  cache  hit  occurs,  the  operation  is  performed  on  the  hit  cache  line;  otherwise,  no  operation  is  performed.  Because  of  this...

code[4:3]=3  is  a  custom  cache  operation  that  is  not  explicitly  defined  in  the  architecture  specification.

The  CACOP  instruction  determines  which  cache  it  accesses  and  what  cache  operation  it  performs,  determined  by  the  5-bit  code  in  the  instruction.  code[2:0]  indicates  the  operation.

4.2.3.1TLBSRCH  

Command  format:  tlbsrch

The  specific  implementation  determines  whether  to  write  back  cached  line  data  only  when  the  cache  line  data  is  dirty.

Command  format:  cacop

Adding  the  value  of  the  general-purpose  register  rj  to  the  sign-extended  12-bit  immediate  value  si12  will  yield  the  virtual  address  VA  used  by  the  CACOP  instruction,  which  will...

The  instruction  operates  on  cache  lines,  so  address  alignment  is  not  a  concern  in  this  case.

Use  the  CSR.ASID  and  CSR.TLBEHI  information  to  query  the  TLB.  If  a  match  is  found,  write  the  index  value  of  the  match  to...

The  Cache  object,  code[4:3]  indicates  the  operation  type.

The  operations  for  maintaining  cache  consistency  are  the  same  as  described  in  the  previous  paragraph.  The  so-called  lookup  index  method  treats  the  VA  of  the  CACOP  instruction  as  a  regular...

`code[4:3]=0`  indicates  that  this  is  used  for  cache  initialization  (Store  Tag),  setting  the  tag  of  the  specified  cache  line  to  all  zeros.  Assuming  the  accessed  cache...

The  index  field  of  CSR.TLBIDX  is  set,  and  the  NE  position  of  CSR.TLBIDX  is  set  to  0;  if  no  item  is  found,  then  the  index  field  of  CSR.TLBIDX  is  set  to  0.

code[4:3]=1  indicates  that  the  cache  consistency  is  maintained  by  direct  address  indexing  (Index  Invalidate /  Invalidate  and  Writeback).

4.2.3  TLB  Maintenance  Commands

4.2.2  Cache  Maintenance  Instructions

Machine Translated by Google



47  

Command  format:  tlbfill

The  value  of  the  Index  field  of  CSR.TLBIDX  is  used  as  the  index  to  read  the  specified  item  in  the  TLB.  If  the  specified  position  is  a  valid  TLB...

The  index  value  of  each  item  in  the  TLB  is  calculated  by  sequentially  incrementing  the  number  from  0  to  the  last  row.
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Check  the  value  of  the  CSR.TLBIDX.NE  bit.  If  CSR.TLBIDX.NE  =  1,  then  an  invalid  TLB  entry  will  be  filled  into  the  TLB;  only  when...

If  an  item  is  specified,  then  the  page  table  information  of  that  TLB  item  is  written  to  CSR.TLBEHI,  CSR.TLBELO0,  CSR.TLBELO1,  and  CSR.TLBIDX.PS

Command  format:  tlbrd

4.2.3.2TLBRD  

You  need  to  check  the  value  of  the  CSR.TLBIDX.NE  bit.  If  CSR.TLBIDX.NE  =  1,  then  an  invalid  TLB  entry  will  be  filled  into  the  TLB;  only  when...

It  is  important  to  note  that  valid/invalid  TLB  entries  and  valid/invalid  page  table  entries  in  the  TLB  are  two  different  concepts.

If  the  index  value  used  for  access  exceeds  the  range  of  the  TLB,  the  processor's  behavior  is  unpredictable.

Command  format:  tlbwr

The  TLBWR  instruction  writes  page  table  entry  information  stored  in  the  TLB's  associated  CSR  to  a  specified  entry  in  the  TLB.  The  page  table  entry  information  being  filled  comes  from...

This  applies  to  CSR.TLBEHI,  CSR.TLBELO0,  CSR.TLBELO1,  and  CSR.TLBIDX.PS.  If  CSR.ESTAT.Ecode=0x3F  at  this  time,  then...

When  executing  TLBWR,  the  location  where  page  table  entries  are  written  to  the  TLB  is  specified  by  the  value  of  the  Index  field  of  CSR.TLBIDX.  Specific  corresponding  rules...

The  TLBFILL  instruction  fills  the  TLB  with  page  table  entry  information  stored  in  the  relevant  CSR.  The  page  table  entry  information  being  filled  comes  from...

CSR.TLBEHI,  CSR.TLBELO0,  CSR.TLBELO1,  and  CSR.TLBIDX.PS.  If  CSR.ESTAT.Ecode=0x3F  at  this  time,  it  is  in  the  state  of...

During  TLB  refill  exception  handling,  a  valid  entry  is  always  filled  into  the  TLB  (i.e.,  the  E  bit  of  the  TLB  entry  is  1).  Otherwise,  it  would  be  necessary  to...

A  valid  TLB  entry  will  only  be  filled  into  the  TLB  when  CSR.TLBIDX.NE=0.

A  valid  TLB  entry  will  only  be  filled  into  the  TLB  when  CSR.TLBIDX.NE=0.

The  NE  position  is  1.

When  TLBFILL  is  executed,  the  page  table  entry  is  randomly  selected  by  the  hardware  to  be  filled  into  which  TLB  entry.

During  TLB  refill  exception  handling,  a  valid  entry  is  always  filled  into  the  TLB  (i.e.,  the  E  bit  of  the  TLB  entry  is  1).  Otherwise,  it  is  necessary  to...

Set  it  to  1,  and  set  CSR.ASID.ASID,  CSR.TLBEHI,  CSR.TLBELO0,  CSR.TLBELO1  and  CSR.TLBIDX.PS  to  0.

Please  refer  to  the  TLBSRCH  instruction  for  the  calculation  rules  of  various  index  values  in  the  TLB.

4.2.3.4TLBFILL  

4.2.3.3TLBWR

In  the  middle,  set  the  NE  bit  of  CSR.TLBIDX  to  0;  if  the  specified  position  is  an  invalid  TLB  entry,  the  NE  bit  of  CSR.TLBIDX  must  be  set  to  0.
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0x6  Clears  all  page  table  entries  where  G=1  or  ASID  equals  the  ASID  specified  in  the  register  and  VA  equals  the  VA  specified  in  the  register.

0x2  Clear  all  page  table  entries  where  G=1.

0x0  Clear  all  page  table  entries.

0x1  Clears  all  page  table  entries.  This  operation  has  the  same  effect  as  op=0.

0x4  Clears  all  page  table  entries  where  G=0  and  ASID  equals  the  ASID  specified  in  the  register.

0x5  Clears  page  table  entries  where  G=0,  ASID  equals  the  ASID  specified  in  the  register,  and  VA  equals  the  VA  specified  in  the  register.

0x3  Clear  all  page  table  entries  where  G=0.

48  

After  the  IDLE  instruction  completes  execution,  the  processor  core  will  stop  fetching  instructions  and  enter  a  wait  state  until  it  is  awakened  by  an  interrupt  or  reset.  From  the  stop  state...

4.2.3.5INVTLB

Command  format:  ertn

4.2.4.2IDLE  

The  INVTLB  instruction  is  used  to  invalidate  the  contents  of  the  TLB  in  order  to  maintain  the  consistency  of  page  table  data  between  the  TLB  and  memory.

Bits  [9:0]  of  the  general-purpose  register  rj  store  the  ASID  information  required  for  invalid  operations  (called  the  "register-specified  ASID").  The  remaining  bits  must  be  filled.

level  

When  the  operation  does  not  require  virtual  address  information,  the  general-purpose  register  rk  should  be  set  to  r0.

The  operations  corresponding  to  each  op  are  shown  in  the  table  below.  Ops  that  do  not  appear  in  the  table  will  trigger  reserved  instruction  exceptions.

Update  the  PPLV,  PIE  and  other  information  corresponding  to  the  exception  to  CSR.CRMD,  and  at  the  same  time  jump  to  the  ERA  corresponding  to  the  exception  to  start  fetching  the  pointer.

on

0.  When  the  operation  indicated  by  op  does  not  require  ASID,  the  general-purpose  register  rj  should  be  set  to  r0.

up,  rj,  rk

When  executing  the  ERTN  instruction,  if  the  KLO  bit  in  CSR.LLBCTL  is  not  equal  to  1,  then  LLbit  is  set  to  0;  otherwise,  LLbit  is  not  modified.
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Command  format:  invtlb

Command  format:  idle

Of  the  three  source  operands  of  the  instruction,  op  is  a  5-bit  immediate  value  used  to  indicate  the  operation  type.

After  being  woken  up  by  an  interrupt,  the  first  instruction  executed  by  the  processor  core  is  the  one  following  IDLE.

The  general-purpose  register  rk  stores  the  virtual  address  information  (called  the  "register  specification  VA")  required  for  invalid  operations.  When  op  indicates...

4.2.4.1ERTN

operate

The  ERTN  instruction  is  used  to  return  from  exception  handling.

The  PPLV  and  PIE  information  corresponding  to  the  exceptions  comes  from  CSR.PRMD,  and  the  ERA  information  corresponding  to  the  exceptions  comes  from  CSR.ERA.

4.2.4  Other  Miscellaneous  Instructions
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5.2.1  Direct  Mapping  Address  Translation  Mode

5  Storage  Management

The  physical  address  is  by  default  directly  equal  to  the  [PALEN-1:0]  bits  of  the  virtual  address  (padded  with  0s  if  necessary),  unless  a  higher  priority  is  used  in  the  specific  implementation.

The  proposed  value  is  32.

The  physical  address  space  range  of  memory  is  0~  2PALEN-1.
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In  the  32-bit  simplified  version  of  the  Dragon  architecture,  PALEN  is  theoretically  a  positive  integer  not  exceeding  36,  with  its  specific  value  determined  by  the  implementation.

Access  type.

When  DA=1  and  PG=0  in  CSR.CRMD,  the  processor  core's  MMU  is  in  direct  address  translation  mode.  In  this  mapping  mode,

Virtual  and  physical  address  translation  rules.  As  you  can  see,  the  entire  virtual  address  space  is  valid  at  this  point.  After  the  processor  resets,  it  will  enter  the  direct  address  translation  phase.

model.

There  are  two  types  of  address  translation  mode  (referred  to  as  "direct  mapping  mode")  and  page  table  mapping  address  translation  mode  (referred  to  as  "page  table  mapping  mode").  Translation

For  a  detailed  explanation  of  mapping  modes,  please  see  Section  5.2.1.  For  a  detailed  explanation  of  page  table  mapping  modes,  please  see  Section  5.4.

In  addition  to  the  address  range  information,  you  can  also  configure  under  which  privilege  levels  this  window  is  available,  and  the  storage  of  memory  access  operations  where  virtual  addresses  fall  on  this  window.

For  example,  by  configuring  DMW0  to  0x80000011,  then  at  PLV0  level,  the  range  0x80000000  ~  0x9FFFFFFF...

The  address  will  be  directly  mapped  to  the  physical  address  space  0x0  ~  0x1FFFFFFF,  and  its  storage  access  type  is  consistent  and  cacheable.

They  are  equal,  and  the  current  privilege  level  is  allowed  in  this  configuration  window.

In  the  Dragon  Architecture  32-bit  Lite  version,  each  Direct  Mapping  configuration  window  can  be  configured  with  a  fixed-size  virtual  address  space  of  229  bytes.

In  the  Dragon  architecture  32-bit  simplified  version,  the  virtual  address  space  is  linearly  flat.  For  PLV0  level,  the  virtual  address  space  size  is  2^  32  bytes.

The  Dragon  architecture  32-bit  simplified  MMU  supports  two  virtual  and  physical  address  translation  modes:  direct  address  translation  mode  and  mapped  address  translation  mode.

When  the  processor  core's  MMU  is  in  mapped  address  mode,  direct  mapping  between  virtual  and  physical  addresses  can  also  be  achieved  through  the  direct  mapping  configuration  window  mechanism.

When  a  virtual  address  hits  a  valid  direct-mapped  configuration  window,  its  physical  address  is  directly  equal  to  the  [28:0]  bits  of  the  virtual  address  appended  to  the  address  of  that  mapping  window.

When  DA=0  and  PG=1  in  CSR.CRMD,  the  processor  core's  MMU  is  in  mapped  address  translation  mode.  This  is  further  divided  into  direct  mapping...

When  translating  addresses,  the  system  will  first  check  if  they  can  be  translated  using  the  direct  mapping  mode;  if  not,  it  will  then  proceed  with  the  page  table  mapping  mode.  (Regarding  direct  mapping...)

There  are  two  direct  mapping  configuration  windows,  which  can  be  used  for  both  instruction  fetching  and  load/store  operations  simultaneously.

The  system  software  configures  two  direct-map  configuration  windows  by  configuring  the  CSR.DMW0~CSR.DMW1  registers.  Each  window,  in  addition  to...

The  high-order  bits  of  the  configured  physical  address.  The  hit  detection  method  is:  the  highest  3  bits  of  the  virtual  address  (bits  [31:29])  match  the  bits  [31:29]  in  the  configuration  window  register.

5.1  Physical  Address  Space

5.2  Virtual  Address  Space  and  Address  Translation  Mode
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Figure  5-1  TLB  Entry  Format

5.4.2  TLB  Entries

5.4.1  TLB  Organizational  Structure

ÿ  Address  Space  Identifier  (ASID),  10  bits.  The  address  space  identifier  is  used  to  distinguish  the  same  virtual  address  in  different  processes,  avoiding  process  switching.

CC  (Cardinal  Cache)  and  Strongly-ordered  Uncached  (SUC).

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

As  mentioned  in  Section  2.1.7  above,  the  32-bit  simplified  version  of  the  Dragon  architecture  supports  two  storage  access  types:  Coherent  Cached.

TLB  uses  a  fully  associative  lookup  table  organization.

The  storage  access  type  for  load/store  operations  is  determined  by  the  CSR.CRMD.DATM  domain.

The  format  of  each  TLB  entry  is  shown  in  Figure  5-1,  which  contains  two  parts:  a  comparison  part  and  a  physical  conversion  part.

In  mapped  address  translation  mode,  all  valid  addresses,  except  those  falling  within  the  direct  mapping  configuration  window,  must  be  translated  through  the  page  table.

Save,  2/3  —  Keep.

The  performance  penalty  of  clearing  the  entire  TLB  during  swapping.  The  operating  system  assigns  a  unique  ASID  to  each  process,  and  the  TLB  performs  lookups...

ÿ  Existence  bit  (E),  1  bit.  A  value  of  1  indicates  that  the  corresponding  TLB  entry  is  not  empty  and  can  participate  in  the  search  and  matching.

The  MAT  field  in  the  CSR  register  determines  the  memory  access  type.  If  instruction  fetching  or  load/store  can  only  be  mapped  through  the  page  table,  then  the  memory  access  type  is  determined  by  the  page  table.

When  the  processor  core  MMU  is  in  direct  address  translation  mode,  all  memory  access  types  for  instruction  fetching  are  determined  by  CSR.CRMD.DATF.

When  the  processor  core  MMU  is  in  mapped  address  translation  mode,  the  determination  of  the  memory  access  type  falls  into  two  categories.  If  it's  instruction  fetch  or  load/store...

If  the  address  of  the  operation  falls  on  a  direct  mapping  configuration  window,  then  the  storage  access  type  of  the  fetch  or  load/store  operation  is  determined  by  the  configuration  of  that  window.

The  MAT  field  in  the  item  determines  this.

Regardless  of  the  specific  circumstances,  the  definition  of  the  storage  access  type  control  value  remains  the  same:  0  –  strong  order,  non-cached;  1  –  consistent,  cached.

The  comparison  section  of  the  TLB  entries  includes:

In  addition  to  matching  the  address  information,  the  ASID  information  also  needs  to  be  compared.

The  mapping  completes  the  virtual-to-physical  address  translation.  The  TLB,  acting  as  a  temporary  cache  in  the  processor  storing  operating  system  page  table  information,  is  used  to  accelerate  the  address  mapping  process.

The  virtual-to-physical  address  translation  process  for  instruction  fetch  and  load/store  operations  in  translation  mode.

5.4  Page  Table  Mapping  Storage  Management

5.3  Storage  Access  Types

MAT0  

ACIDG  VPPN  PS  AND

PPN0 PLV0  

PLV1 MAT1  PPN1 D1  V1

D0  V0  
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In  the  Linux  kernel,  a  4MB  page  size  corresponds  to  a  page  table  entry  in  a  transparent  big  page,  which  is  divided  into  two  2MB  entries  with  the  same  page  table  attributes  during  the  TLB  filling  process.
1  

To  perform  maintenance  or  make  a  final  ruling  on  the  legality  of  program  execution.  Exceptions  related  to  TLB  management  in  the  32-bit  Dragon  Architecture  Lite  version  include:
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When  all  processes  share  the  same  virtual  address,  the  G  bit  in  the  TLB  page  table  entry  can  be  set  to  1.

ÿ  TLB  Refill  Exception:  This  exception  is  triggered  when  no  match  is  found  in  the  TLB  for  the  virtual  address  accessed  in  the  memory  access  operation,  notifying  the  system  software  to  proceed.

ÿ  Privilege  Level  (PLV),  2  bits.  The  privilege  level  corresponding  to  this  page  table  entry.  This  page  table  entry  can  be  accessed  by  any  privilege  level  not  lower  than  PLV.

The  physical  translation  section  of  the  table  entry  stores  the  physical  translation  information  for  a  pair  of  odd-even  adjacent  page  tables.  The  translation  information  for  each  page  includes:

ÿ  Physical  Page  Number  (PPN),  (PALEN-12)  bits.  When  the  page  size  is  greater  than  4KB,  the  PPN  stored  in  the  TLB  is  [PS-1:12]  bits.

This  is  an  exception.

ÿ  Page  Size  (PS),  6  bits.  Appears  only  in  MTLB.  Used  to  specify  the  page  size  stored  in  this  page  table  entry.  The  value  is  2  times  the  page  size.

The  TLB  refill  operation  is  performed.  This  exception  has  its  own  independent  exception  entry.  While  the  TLB  refill  exception  is  trapped,  the  hardware  will  automatically...

12  and  21  1.

If  the  exception  handler  itself  triggers  the  TLB  to  refill  the  exception  again,  the  exception  context  will  not  be  saved  or  restored.

5.4.3.1  TLB  -related  exceptions

Physical  conversion  information  of  the  page.

For  the  specific  meaning  of  the  value,  see  Section  5.3 .

The  TLB  performs  virtual-to-physical  address  translation  automatically  in  hardware.  However,  this  can  happen  when  there  is  no  matching  entry  in  the  TLB,  or  when  a  match  is  found  but  the  page  table  entry  is  invalid.

ÿ  Global  Flag  (G),  1  bit.  When  this  bit  is  1,  no  ASID  consistency  check  is  performed  during  the  lookup.  This  is  necessary  when  the  operating  system  requires...

Setting  DA  to  1  and  PG  to  0  in  CSR.CRMD  automatically  enters  direct  address  translation  mode,  thus  avoiding  TLB  refill  exceptions.

It  does  not  need  to  be  stored  in  the  TLB.  When  searching  the  TLB,  the  least  significant  bit  of  the  virtual  page  number  being  searched  determines  whether  to  select  an  odd-numbered  page  or  an  even-numbered  page.

Managing  the  TLB  in  the  32-bit  simplified  version  of  the  Dragon  architecture  involves  software  aspects,  including  TLB  refilling  and  consistency  between  the  TLB  and  memory  page  tables.

The  bit  can  be  any  value.

Since  the  TLB  page  table  entries  store  virtual  page  numbers,  the  virtual  page  number  stored  in  the  TLB  page  table  entries  is  the  virtual  page  number  in  the  system  divided  by  2,  which  is  the  least  significant  bit  of  the  virtual  page  number.

ÿ  Load  operation  page  invalid  exception:  If  a  match  is  found  in  the  TLB  for  the  virtual  address  of  the  load  operation,  but  the  matching  page  table  entry  has  V=0,  this  will  trigger  an  exception.

Maintenance  is  still  entirely  software-driven.

If  access  is  illegal,  an  exception  needs  to  be  triggered,  handing  the  matter  over  to  the  operating  system  kernel  or  other  monitoring  programs  for  further  processing  by  the  software,  including  the  contents  of  the  TLB.

The  exponentiation  of  the  power.  The  Dragon  architecture  32-bit  simplified  version  only  supports  two  page  sizes:  4KB  and  4MB,  corresponding  to  the  PS  values  in  the  TLB  table  entries.

ÿ  Virtual  Double  Page  Number  (VPPN),  (VALEN-13)  bits.  In  the  Dragon  architecture  32-bit  simplified  version,  each  page  table  entry  stores  an  adjacent  pair  of  odd-numbered  bytes.

ÿ  Valid  bit  (V),  1  bit.  A  value  of  1  indicates  that  the  page  table  entry  is  valid  and  has  been  accessed.

ÿ  Dirty  bit  (D),  1  bit.  A  value  of  1  indicates  that  there  is  dirty  data  in  the  address  range  corresponding  to  this  page  table  entry.

ÿ  Memory  Access  Type  (MAT),  2  bits.  Controls  the  memory  access  type  of  memory  access  operations  falling  within  the  address  space  of  this  page  table  entry.  (Each  number...)

Access  to  the  program.

5.4.3  TLB  Software  Management
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This  is  an  exception.

ÿ  PGD  

This  is  an  exception.

TLB-related  instructions  mainly  involve  operations  such  as  searching,  reading,  writing,  and  invalidating  the  TLB,  and  are  used  for  TLB  filling,  updating,  and  consistency.

5.4.3.2  TLB-  related  instructions

5.4.3.3  TLB-  related  CSR

For  details  on  the  interaction  between  the  above  CSR  registers  and  the  TLB,  please  refer  to  the  detailed  definitions  of  each  CSR  in  Section  7.4 .

The  third  category  includes:

5.4.3.4  TLB  Initialization

ÿ  Store  operation  page  invalid  exception:  If  a  match  is  found  in  the  TLB  for  the  virtual  address  of  the  store  operation,  but  the  V=0  of  the  matching  page  table  entry,  this  will  trigger  an  exception.
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Complete  this  function.

ÿ  TLBELO1

Maintenance.  For  specific  instruction  definitions,  please  refer  to  section  4.2.3  of  this  manual.

ÿ  EXPECTATION0

This  exception  will  be  triggered  if  the  D  bit  of  the  entry  is  0.

PLV.

ÿ  Page  Modification  Exception:  The  virtual  address  of  the  store  operation  is  matched  in  the  TLB,  V=1,  and  the  privilege  level  is  compliant,  but  the  page...

ÿ  TLBIDX  

The  Dragon  architecture  32-bit  simplified  version  allows  hardware  initialization  without  implementing  TLB,  allowing  the  software  during  startup  to  execute  "INVTLB  0,  r0,  r0"  to  initialize  the  TLB.

ÿ  Instruction  fetch  page  invalid  exception:  If  a  match  is  found  in  the  TLB  for  the  virtual  address  of  the  instruction  fetch  operation,  but  the  matching  page  table  entry  has  V=0,  this  will  trigger  an  exception.

ÿ  OBSERVATION

The  third  category  is  only  used  for  TLB  refill  exceptions.

ÿ  ACID

ÿ  PGDL  

This  exception  will  be  triggered  if  the  privilege  level  is  non-compliant.  Privilege  level  non-compliance  is  manifested  as  the  CSR.CRMD.PLV  value  of  the  page  table  entry  being  greater  than  the  value  in  the  page  table  entry.

ÿ  BADV

ÿ  Page  privilege  level  non-compliance  exception:  The  virtual  address  of  the  memory  access  operation  found  a  matching  entry  with  V=1  in  the  TLB,  but  the  access  privilege  level...

ÿ  PGDH

The  second  category  includes:

TLB-related  CSRs  are  mainly  divided  into  two  categories  according  to  their  functions:  the  first  category  is  used  for  TLB  access  and  interaction  interfaces,  and  the  second  category  is  used  for  software  page  table  traversal.

ÿ  TLBRENTRY  

The  first  category  includes:
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5.4.4  TLB  -based  virtual-physical  address  translation  process

This  section  describes  the  virtual-to-physical  address  translation  process  based  on  TLB.

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

else :  

#  va:  Virtual  address  to  be  

searched  #  mem_type:  Memory  access  operation  type,  FETCH  is  instruction  fetch,  LOAD  is  load,  STORE  is  store  #  plv:  Current  

privilege  level,  i.e.,  the  value  of  CSR.CRMD.PLV  #  pa:  Translated  

physical  address  #  mat:  Translated  

memory  access  type  #  VALEN:  Effective  number  

of  bits  in  the  virtual  address  #  PALEN:  

Effective  number  of  bits  in  the  physical  

address  #  TLB[]:  TLB[N]  represents  the  Nth  entry  in  

the  TLB  #  TLB_ENTRIES:  Number  of  entries  in  the  TLB

((TLB[i].G==1)  or  (TLB[i].ASID==CSR.ASID.ASID))  and  

(TLB[i].VPPN[VALEN-1:  TLB[i].PS+1]==va[VALEN-1:  TLB[i].PS+1]) :

found_mat  =  TLB[i].MAT1  

else:  #  Multiple  hits  occurred,  and  the  processor's  execution  result  is  uncertain.

found_ps  =  TLB[i].PS  

if  (tlb_found==0) :  

found_ppn  =  TLB[i].PPN0  

found_ppn  =  TLB[i].PPN1  

if  (tlb_found==0) :  

for  i  in  range(TLB_ENTRIES) :  

tlb_found  =  1  

if  (va[found_ps]==0) :  

found_v  =  TLB[i].V0  

found_d  =  TLB[i].D1  

#Report  TLB  re-entry  exception

if  (TLB[i].E==1)  and  

case  mem_type :  

found_d  =  TLB[i].D0  

found_mat  =  TLB[i].MAT0  

found_v  =  TLB[i].V1  

found_plv  =  TLB[i].PLV1  

#  Find  TLB

tlb_found  =  0  

FETCH :  SignalException(PIF)  #  Reports  an  invalid  fetch  operation  page  exception

SignalException(TLBR)  

found_plv  =  TLB[i].PLV0  

if  (found_v==0) :  
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SignalException(PPI)  

elif  (mem_type==STORE)  and  (found_d==0)):  #  Write  permission  check  is  not  enabled

#Store  action  page  invalid  exception

#Error  message:  Load  operation  page  invalid  exception

#Exceptions  to  non-compliant  newspaper  page  privilege  levels

LOAD :  SignalException(PIL)  

STORE :  SignalException(PIS)  

elif  (plv  >  found_plv) :  

#Exception  to  page  modification

else :  

pa  =  {found_ppn[PALEN-13:found_ps-12],  va[found_ps-1:0]}  

mat  =  found_mat  

ÿ  

SignalException(PME)  
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6.1.4  Processor  hardware  interrupt  handling  procedure

6.1.3  Interrupt  Entry  Point

6.1.1  Interrupt  Types

6.1.2  Interrupt  Priority

6  Exceptions  and  Interruptions

This  is  accomplished  by  writing  1  to  the  TI  bit  of  the  CSR.TICLR  register.

Some  line  interrupts  are  level  interrupts,  and  all  of  them  are  active  high.

Interrupt  signals  from  each  interrupt  source  are  sampled  by  the  processor  and  stored  in  the  CSR.ESTAT.IS  field.  This  information,  along  with  software  configuration,  is  stored  in  CSR.ECFG.LIE.

Once  an  interrupt  is  marked  as  an  instruction  by  the  processor  hardware,  it  is  treated  as  an  exception;  therefore,  the  calculation  of  the  interrupt  entry  point  follows  the  same  rules  as  ordinary  exceptions.

The  Dragon  architecture  32-bit  simplified  version  uses  wired  interrupts.  Each  processor  core  can  internally  record  12  wired  interrupts,  namely:  1...

The  timer  interrupt  originates  from  the  internal  constant-frequency  timer.  This  interrupt  is  triggered  when  the  constant-frequency  timer  counts  down  to  all  zeros.

Enabled.  Once  enabled,  the  timer  interrupt  is  sampled  and  recorded  by  the  processor  core  in  the  CSR.ESTAT.IS  bit[11].  Clearing  the  timer  interrupt  requires  software  intervention.

The  interrupt  source  for  hardware  interrupts  originates  outside  the  processor  core,  typically  from  an  external  interrupt  controller.  The  eight  hardware  interrupts  HWI[7:0]  are...

TI  is  next, ...,  SWI0  has  the  lowest  priority.

0  clears  the  soft  interrupt.

The  interrupt  number  for  SWI1  is  1, ...,  and  the  interrupt  number  for  IPI  is  12.

When  the  processor  determines  that  there  is  an  interrupt  that  needs  to  be  responded  to,  it  selects  an  instruction  from  the  executed  instruction  stream  and  marks  it  as  a  special  exception.

Inter-core  interrupt  (IPI),  1  timer  interrupt  (TI),  8  hardware  interrupts  (HWI0~HWI7),  and  2  software  interrupts  (SWI0~SWI1).
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Inter-core  interrupts  are  input  from  the  external  interrupt  controller  and  are  sampled  and  recorded  by  the  processor  core  in  the  CSR.ESTAT.IS[12]  bit.

Calculation  rules  for  entry  points.  Please  refer  to  Section  6.2.1  for  the  calculation  rules  for  ordinary  exception  entry  points .

The  local  interrupt  enable  information  in  the  domain  is  bitwise  ANDed  to  obtain  a  multi-bit  interrupt  vector  int_vec.  This  is  achieved  when  CSR.CRMD.IE  =  1  and  int_vec  is  not  all  zeros.

The  processor  core  sampling  record  is  in  bits  CSR.ESTAT.IS[9:2].

The  interrupt  source  for  a  software  interrupt  originates  from  within  the  processor  core.  Software  enables  a  software  interrupt  by  writing  1  to  CSR.ESTAT.IS[1:0]  using  the  CSR  instruction.

The  index  value  of  the  location  of  the  interrupt  recorded  in  the  CSR.ESTAT.IS  field  is  also  called  the  interrupt  number  (Int  Number).  The  interrupt  number  for  SWI0  is  equal  to  0.

The  response  to  multiple  interrupts  at  the  same  time  uses  a  fixed  priority  arbitration  base  address,  with  higher  interrupt  numbers  having  higher  priority.  Therefore,  IPI  has  the  highest  priority.

6.1  Interruption
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1  

6.2  Exceptions

ÿ  Restore  the  PPLV  and  PIE  values  from  CSR.PRMD  to  the  PLV  and  IE  values  from  CSR.CRMD;

The  entry  point  for  TLB  refill  exceptions  comes  from  CSR.TLBRENTRY.
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If  the  value  is  0,  IE  will  set  it  to  0;

The  specific  exception  type  is  determined  by  the  information  in  the  Ecode  and  IS  fields.

ÿ  Jump  to  the  address  recorded  in  CSR.ERA  to  fetch  the  instruction.

Exception  priority  follows  two  basic  principles:  first,  interrupts  have  higher  priority  than  exceptions;  second,  for  exceptions,  those  detected  during  the  instruction  fetch  phase  have  higher  priority.

When  an  exception  is  triggered,  the  processor  hardware  will  perform  the  following  operations:

When  the  software  returns  from  an  exception  execution  by  executing  the  ERTN  instruction,  the  processor  hardware  performs  the  following  operations:

The  system  stores  information  such  as  PIE  and  restores  the  saved  information  to  CSR.PRMD  before  the  exception  returns.

Different  exceptions  may  be  handled  in  slightly  different  ways  by  the  processor  hardware.  Here  is  a  general  handling  procedure  common  to  all  exceptions.

During  the  execution  phase,  there  may  be  only  memory  access  instructions  or  multiple  exceptions  triggered  simultaneously,  with  their  priorities  from  highest  to  lowest  as  follows:  memory  access  instructions  requiring  address  alignment,  and  so  on.

Describe  it.

The  highest  priority  is  detected  during  the  decoding  stage,  followed  by  the  next  highest  priority,  and  then  the  lowest  priority  is  detected  during  the  execution  stage.

For  the  hardware  implementation  described  above,  if  the  software  needs  to  enable  interrupts  during  the  exception  handling  process,  it  needs  to  save  the  PPLV  in  CSR.PRMD.

ÿ  Record  the  PC  value  that  triggered  the  exception  instruction  in  CSR.ERA;

The  subsequent  processing  by  the  processor  hardware  is  the  same  as  that  for  ordinary  exceptions;  please  refer  to  the  description  in  Section  6.2.3 .

—  Interruption  exception.

All  other  common  exceptions,  except  those  mentioned  above,  share  the  same  entry  point:  CSR.EENTRY.  In  this  case,  the  software  needs  to  access  CSR.ESTA.

For  exceptions  detected  during  the  instruction  fetch  phase:  exceptions  with  incorrect  fetch  address  have  the  highest  priority,  followed  by  exceptions  related  to  the  instruction  fetch  TLB.

The  exceptions  that  can  be  detected  during  the  decoding  phase  are  mutually  exclusive,  so  there  is  no  need  to  consider  their  priority.

Address  misalignment  exception  (ALE)  >  TLB  related  exception  1.

ÿ  Store  the  PLV  and  IE  of  CSR.CRMD  into  the  PPLV  and  PIE  of  CSR.PRMD  respectively,  and  then  set  the  PLV  of  CSR.CRMD  to

ÿ  Jump  to  the  exception  entry  point  to  retrieve  the  pointer.

6.2.2  Exception  Priority

6.2.1  Exception  Entrance

6.2.3  General  Process  for  Exceptional  Hardware  Handling

The  definition  of  TLB-related  exceptions  dictates  that,  under  any  circumstances,  a  memory  access  instruction  will  only  generate  a  single  type  of  TLB-related  exception.

56  
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The  physical  address  of  the  first  instruction  fetched  after  the  bit  is  also  0x1C000000.

A  reset  will  reset  all  logic  in  the  processor  core,  placing  the  circuitry  into  a  defined  state.  The  definition  of  the  processor's  state  after  a  reset  will  be  given  here.

The  PC  of  the  first  instruction  after  reset  is  0x1C000000.  Since  the  MMU  will  definitely  be  in  direct  address  translation  mode  after  the  reset  is  reversed,  the  reset...

ÿ  CSR.CRMD  ÿ  PLV=0ÿIE=0ÿDA=1ÿPG=0ÿDATF=0ÿDATM=0ÿ  

ÿ  CSR.TCFG's  En=0;

In  addition  to  the  above-specified  content,  after  a  reset  is  reversed,  the  values  of  other  software-visible  registers  in  the  processor  are  uncertain,  and  the  software...

ÿ  The  LIE  value  in  CSR.ECFG  is  0;
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ÿ  CSR.EUEN's  FPUen  is  0;

After  the  reset  is  canceled,  the  contents  of  the  registers  in  the  determined  state  are:

ÿ  In  CSR.ESTAT,  IS[1:0]  are  all  0;

Whether  the  TLB  and  Cache  undergo  a  hardware  reset  during  a  reset  is  determined  by  the  implementation;  if  not,  a  software  reset  is  required.

ÿ  In  all  implemented  CSR.DMW,  PLV0  and  PLV3  are  both  0;

Before  use,  its  state  must  be  set  to  a  defined  state.

ÿ  CSR.LLBCTL's  KLO=0;

6.3  Reset
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Timer  number

DMW0~DMW1  

Timer  configuration

0x6  

0x41  

PGD  

Address  space  identifier

Cache  tags

0x60  

ERA  

Exceptional  state

0x11  TLBEHI

EU

0x1B  

TLBRENTRY  

Exception  Entry  Address

Global  directory  base  address  in  the  lower  half  of  the  address  space

ACID

ECFG  

0x40  

LLBit  control

Direct  mapping  configuration  window

SAVE0~SAVE3  

TLB  Low  Item  1

TLB  entry  low  0

0x2  

BADV

TCFG  

59  

Error  virtual  address

0x20  

0x18  

0x4  

TLB  Re-entry  Exception  Address

PGDL  

TLB  High  Level

LLBCTL  

0x19  

CPUID  Processor  number

TICLR  

0x13  

EENTRY  

High  half-address  space  global  directory  base  address

CTAG

TLB  Index

0x98  

Data  storage

0x44  

0x0  CRMD  

Global  directory  base  address

PRMD  

Table  7-1  Overview  of  Control  Status  Registers

Exception  Configuration

TIME

0x30~0x33  

0x12  

0x7  

TLBELO1

Extended  component  enable

0x180~0x181  

0x88  

Timer  value

PGDH

Exception  return  address

0x5  

Timed  interrupt  clear

TVAL

EXPECTATION0

0x1

0xc  

Current  mode  information

Exception  Pre-Mode  Information

0x42  

TLBIDX  0x10  

STATE

0x1A  

7.  Control  Status  Register

name
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address

7.1  Overview  of  Control  Status  Registers
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7.4  Basic  Control  Status  Register

7.2  Description  of  Control  Status  Register  Access  Characteristics

7.3  Conflicts  caused  by  control  status  registers

Although  the  software  uses  the  CSRWR  or  CSRXCHG  instructions  to  write  these  undefined  or  unimplemented  control  status  registers,  in  addition  to  changing  the  general-purpose  register  rd...

From  the  perspective  of  software  access,  it  can  be  defined  into  four  types:

These  new  fields  must  either  be  written  with  a  value  of  0  when  updating  them.  This  requirement  is  to  ensure  backward  compatibility  in  the  software.  For  hardware...

In  practice,  fields  marked  with  this  attribute  will  prevent  software  from  writing  to  them.

When  the  software  accesses  a  CSR  object  using  a  CSR  directive  that  is  not  defined  in  the  architecture  specification,  or  is  an  implementable  item  defined  in  the  architecture  specification  but...

The  information  in  this  register  is  used  to  determine  the  current  privilege  level  of  the  processor  core,  global  interrupt  enable,  and  address  translation  mode.

ÿ  R  —  Read-only.  Writing  to  these  fields  by  software  will  not  update  their  contents  and  will  not  produce  any  other  side  effects.

ÿ  RW—Software  readable  and  writable.  Except  for  illegal  values  explicitly  stated  in  the  definition  that  would  lead  to  indeterminate  processor  execution  results,  the  software  can...

The  "read/write"  attribute  of  each  field  will  be  defined  later  in  this  manual  in  the  section  on  the  definition  of  control  status  register  fields.  This  "read/write"  attribute  primarily...
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Conflicts  caused  by  control  status  registers  are  handled  by  the  hardware;  software  does  not  need  to  add  barrier  instructions  to  avoid  these  conflicts.

You  can  write  any  value  to  these  fields.  Normally,  software  performs  a  write-then-read  operation  on  these  fields,  and  the  value  read  should  be  the  one  written.  However,

An  error  may  occur  if  the  accessed  domain  can  be  updated  by  the  hardware,  or  if  an  interrupt  occurs  between  two  instructions  performing  a  read  or  write  operation.

The  current  situation  is  that  the  read  value  and  the  written  value  are  inconsistent.

ÿ  R0  —  The  software  always  returns  0  when  reading  these  fields.  However,  the  software  must  also  ensure  that,  either  by  setting  the  CSR  write  mask,  it  prevents  further...

Setting  these  values  to  0  will  not  change  the  processor  state  visible  to  other  software,  but  software  should  not  actively  write  these  registers  to  ensure  backward  compatibility.

Storage.

ÿ  W1  —  Software  write  of  1  is  valid.  Writing  0  to  these  fields  will  not  clear  them  to  0  and  will  not  produce  any  other  side  effects.  Also,  define...

The  read  values  of  the  fields  for  this  attribute  have  no  software  meaning  and  the  software  should  ignore  them.

If  the  specific  hardware  does  not  implement  this,  a  read  operation  will  return  all  zeros,  and  a  write  operation  should  not  change  the  processor  state  visible  to  the  software.

7.4.1  Current  Mode  Information  (CRMD)

7.2.1  Read/Write  Attributes

7.2.2  Effects  of  accessing  undefined  and  unimplemented  control  status  registers
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RW  When  an  exception  is  triggered,  the  hardware  sets  the  value  of  this  field  to  0  to  ensure  that  the  user  is  in  the  highest  privilege  level  after  a  trap.

Privilege  level.

RW  

61  

When  the  execution  of  the  ERTN  instruction  returns  from  the  exception  handler,  the  hardware  restores  the  value  of  the  PPLV  field  of  CSR.PRMD  to  its  original  value.

Sure.

When  the  software  sets  PG  to  1,  it  is  recommended  to  also  set  the  DATF  field  to  0b01,  which  is  a  consistent  cacheable  type.

Sure.

RW  

RW  

IE  

8:7  

When  the  software  sets  PG  to  1,  it  is  recommended  to  also  set  DATM  to  0b01,  which  is  a  consistent  cacheable  type.

RW  

RW  

DATM  

Current  privilege  level.  Its  valid  values  are  0  and  3.  0  represents  the  highest  privilege  level,  and  3  represents  the  lowest.

here.

Global  interrupts  are  currently  enabled,  active  high.

To  re-enable  interrupt  response,  this  bit  must  be  explicitly  set  to  1.

When  a  TLB  refill  exception  is  triggered,  the  hardware  sets  this  field  to  0.

inside.

Set  the  field  to  1.

DATF  

Enabled  for  mapped  address  translation  mode,  highly  active.

POS

When  an  exception  is  triggered,  the  hardware  sets  the  value  of  this  field  to  0  to  ensure  that  interrupts  are  masked  after  a  trap.  The  exception  handler  determines...

AND

Set  the  field  to  0.

When  the  execution  of  the  ERTN  instruction  returns  from  the  exception  handler,  if  CSR.ESTAT.Ecode=0x3F,  the  hardware  will...

PG  

6:5  

When  the  execution  of  the  ERTN  instruction  returns  from  the  exception  handler,  the  hardware  restores  the  value  of  the  PIE  field  of  CSR.PRMD  to  this  value.

Storage  access  type  for  load  and  store  operations  in  direct  address  translation  mode.

Enable  direct  address  translation  mode,  highly  effective.

The  valid  combinations  of  the  PG  and  DA  bits  are  0  and  1  or  1  and  0.  When  the  software  is  configured  with  other  combinations,  the  result  will  not  be  valid.

1:0  

R0  is  a  reserved  field.  Reading  it  returns  0,  and  the  software  is  not  allowed  to  change  its  value.

4  

The  memory  access  type  for  instruction  fetch  operations  in  direct  address  translation  mode.

0  

Table  7-2  Current  Mode  Information  Register  Definition

2  

The  valid  combinations  of  the  DA  and  PG  bits  are  0  and  1  or  1  and  0.  When  the  software  is  configured  with  other  combinations,  the  result  will  not  be  valid.

31:9  

When  a  TLB  refill  exception  is  triggered,  the  hardware  sets  this  field  to  1.

When  the  execution  of  the  ERTN  instruction  returns  from  the  exception  handler,  if  CSR.ESTAT.Ecode=0x3F,  the  hardware  will...

3  

Name  reading  and  writingBit
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describe
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7.4.3  Extended  Component  Enable  (EUEN)

7.4.2  Pre-Exception  Mode  Information  (PRMD)

7.4.4  Exception  Control  (ECFG)

When  an  instruction  is  invalid,  executing  the  corresponding  instruction  will  trigger  the  relevant  instruction  unavailability  exception.  The  software  uses  this  mechanism  to  determine  the  scope  of  context  saving.

Used  to  restore  the  processor  core's  state  upon  exception  return.

Name  reading  and  writing

When  an  exception  is  triggered,  the  hardware  saves  the  processor  core's  privilege  level  and  global  interrupt  enable  bit  to  the  pre-exception  mode  information  register.

In  addition  to  the  basic  integer  instruction  set  and  privileged  instruction  set,  the  basic  floating-point  instruction  set  has  software-configurable  enable  bits.  When  these  enable  bits  are  active...

describe

Name  reading  and  writing

Hardware  implementations  can  also  utilize  the  control  bits  here  to  control  circuit  power  consumption.

Name  reading  and  writing

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

Bit describe

describeBit

This  register  is  used  to  control  the  local  enable  bits  for  each  interrupt.

Bit

62  

0  

When  an  exception  is  triggered,  the  hardware  will  record  the  old  value  of  the  PLV  field  in  CSR.CRMD  in  this  field.

When  an  exception  is  triggered,  the  hardware  will  record  the  old  value  of  the  IE  field  in  CSR.CRMD  in  this  field.

Floating-point  instruction  not  enabled  exception  (FPD).

PPLV  

Table  7-4  Extended  Instruction  Enable  Register  Definitions

0  

RW  

R0  is  a  reserved  field.  Reading  it  returns  0,  and  the  software  is  not  allowed  to  change  its  value.

Local  interrupt  enable  bits,  active  high.  These  local  interrupt  enable  bits  are  related  to  the  10  bits  recorded  in  the  IS[9:0]  field  of  CSR.ESTAT.

10  

12:11  RW  

0  

LIE[9:0]  

domain.

R0  is  a  reserved  field.  Reading  it  returns  0,  and  the  software  is  not  allowed  to  change  its  value.

2  

9:0  

RW  

Each  interrupt  source  corresponds  to  one  interrupt  source,  with  each  bit  controlling  one  interrupt  source.

R0  is  a  reserved  field.  Reading  it  returns  0,  and  the  software  is  not  allowed  to  change  its  value.

When  the  ERTN  instruction  is  executed  and  returns  from  the  exception  handler,  the  hardware  restores  the  value  of  this  field  to  the  value  in  CSR.CRMD.

0  

RW  

LIE[12:11]  

domain.

R0  is  a  reserved  field.  Reading  it  returns  0,  and  the  software  is  not  allowed  to  change  its  value.

0  

RW  

ABOUT

Each  interrupt  source  corresponds  to  one  interrupt  source,  with  each  bit  controlling  one  interrupt  source.

31:1  

When  the  ERTN  instruction  is  executed  and  the  system  returns  from  the  exception  handler,  the  hardware  restores  the  value  of  this  field  to  the  PLV  of  CSR.CRMD.

Table  7-3  Definition  of  Exception  Mode  Information  Register

Basic  floating-point  instruction  enable  bit.  When  this  bit  is  0,  execution  of  the  basic  floating-point  instructions  described  in  Section  3.2  will  be  triggered.

31:3  

1:0  

Local  interrupt  enable  bits,  active  high.  These  local  interrupt  enable  bits  are  related  to  the  2  bits  recorded  in  the  IS[12:11]  field  of  CSR.ESTAT.

31:13  

Table  7-5  Exception  Configuration  Register  Definitions

FPE
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1:0  

Exception  type  level-one  encoding.  When  an  exception  is  triggered,  the  hardware  will  assign  the  number  defined  in  the  Ecode  column  of  Table  7-7  according  to  the  exception  type.

ADEM  memory  access  instruction  address  error  exception

0x2  

IS[11]  

0  

Each  interrupt  source  records  its  status  here.  The  requirement  that  all  interrupts  must  be  level  interrupts  is  determined  by  the  interrupt...

Inter-core  interrupt  (IPI)  status  bit.  Active  high.  In  in-circuit  interrupt  mode,  the  hardware  only  samples  step-by-step.

Interrupted.

ADEF  Fetch  Address  Error  Exception

PPI  

0  

Each  interrupt  source  records  its  status  here.  The  requirement  that  all  interrupts  must  be  level  interrupts  is  determined  by  the  interrupt...

Store  action  page  invalid  exception

PIF  

The  value  is  written  to  this  field.

R  

0  

0  

Invalid  Fetch  Operation  Page  Exception

SYS  

0  

EsubCode  

0x7  

SMEs

The  source  is  responsible  for  ensuring  this,  but  it  is  not  maintained  here.

R0  is  a  reserved  field.  Reading  it  returns  0,  and  the  software  is  not  allowed  to  change  its  value.

The  source  is  responsible  for  ensuring  this,  but  it  is  not  maintained  here.

0  

R  

Page  modification  exceptions0x4  

Software  interrupt  settings  are  also  accomplished  using  these  two  bits:  1  for  software  write,  0  for  write  clear  interrupt.

R0  is  a  reserved  field.  Reading  it  returns  0,  and  the  software  is  not  allowed  to  change  its  value.

0x8  

0  

R  

31  

10  

Interrupt  status  bit  for  Timer  Interrupt  (TI).  Active  high.  In  in-circuit  interrupt  mode,  the  hardware  samples  only  one  clock  cycle.

0x0  

Two  software  interrupt  status  bits.  Bits  0  and  1  correspond  to  SWI0  and  SWI1,  respectively.

0xB  

In  online  interrupt  mode,  the  hardware  simply  samples  each  interrupt  source  on  a  clock  cycle  and  records  its  state.  At  this  time,  for  all...

Interrupt  status  bits  for  8  hardware  interrupts  (HWI0~HWI7).  Active  high.

15:13  

R  

9:2  

BUT

0x1

System  call  exceptions

0  

0  

R  

1  

IS[9:2]  

0x9  

Ecode  

30:22  

R0  is  a  reserved  field.  Reading  it  returns  0,  and  the  software  is  not  allowed  to  change  its  value.

Table  7-7  Exception  Code  Table

The  requirement  that  interrupts  must  be  level  interrupts  is  guaranteed  by  the  interrupt  source  and  is  not  maintained  here.

PIL  

IS[1:0]  

Exceptions  to  address  misalignment

21:16  

RW  

11  

0  Load  operation  page  invalid  exception

Page  privilege  level  non-compliance  exception

PIS

Table  7-6  Exception  Status  Register  Definitions

0  

Exception  type  secondary  encoding.  When  an  exception  is  triggered,  the  hardware  will  assign  the  EsubCode  column  defined  in  Table  7-7  according  to  the  exception  type.

12  

0  

The  value  is  written  into  this  field.

INT  

0x3  

IS[12]  

63  

Name  reading  and  writing describe
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This  register  records  the  status  information  of  the  exception,  including  the  first  and  second  level  codes  of  the  triggered  exception,  as  well  as  the  status  of  each  interrupt.

Bit

EsubCode  Exception  Code Exception  typesEcode  

7.4.5  Exception  Status  (ESTAT)
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Table  7-9  Error  Virtual  Address  Register  Definitions

Command  privilege  level  error  exception

FPD  

0x1A-0x3E  

0  

0  

I  HAVE

BRK  

PC  

0x12  

TLBR

Reserved  code

Table  7-8  Exception  Return  Address  Register  Definitions

When  a  TLB  refill  exception  or  an  address  error-related  exception  is  triggered,  the  hardware  records  the  erroneous  virtual  address  here,  VAddr  RW.

When  an  exception  is  triggered  by  RW,  the  hardware  records  the  PC  of  the  instruction  that  triggered  the  exception  here.

Exceptions  to  basic  floating-point  instructions

0xC  

CALL

0  

The  instruction  has  no  exceptions

FPE

0x3F  

31:0  

0xD  

0  

0  

Breakpoint  Exception

31:0  

TLB  Refill  Exception

Floating-point  instruction  not  enabled  exception

64  

0  

0xF  

0xE  

Exception  typesEsubCode  Exception  Code

When  an  exception  is  triggered,  the  program  counter  (PC)  of  the  instruction  that  triggered  the  exception  will  be  recorded  in  this  register.

Bit

ÿ  Invalid  Fetch  Page  Exception  (PIF)

ÿ  TLB  Refill  Exception

ÿ  Address  alignment  misalignment  exception  (ALE)

Name  reading  and  writing

ÿ  Page  Privilege  Level  Non-Compliance  Exception  (PPI)

ÿ  Store  Action  Page  Invalid  Exception  (PIS)

Ecode  

Bit

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

Name  reading  and  writing

describe

This  register  is  used  to  record  the  virtual  address  of  the  error  when  an  address  error-related  exception  is  triggered.  Such  exceptions  include:

ÿ  Page  Modification  Exception  (PME)

ÿ  Instruction  Fetch  Error  (ADEF)  exception:  In  this  case,  the  PC  of  the  instruction  is  recorded.

describe

ÿ  Load  operation  page  invalid  exception  (PIL)

7.4.6  Exception  Return  Address  (ERA)

7.4.7  Error  Virtual  Address  (BADV)
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31:9  

5:0  R  is  always  0  when  read-only,  and  writes  are  ignored.

Table  7-10  Exception  Entry  Address  Register  Definitions

RW  represents  bits  [31:6]  of  the  exception  and  interrupt  entry  address.  This  means  that  the  lower  6  bits  of  the  exception  and  interrupt  entry  address  must  be  0.

0  

AND

31:0  

The  processor  core  number.  This  information  is  used  by  software  to  distinguish  each  processor  core  in  a  multi-core  system.  During  system  integration,  each...

R0  is  a  reserved  field.  Reading  it  returns  0,  and  the  software  is  not  allowed  to  change  its  value.

R  

The  numbering  starts  from  0  and  increments.

CoreID

Data  RW  is  data  that  can  only  be  read  and  written  by  software.  The  hardware  will  not  modify  the  contents  of  this  field  except  when  executing  CSR  instructions.

Table  7-12  Data  Storage  Register  Definitions

Table  7-13  LLBit  Register  Definition

8:0  

R  is  a  read-only  bit  that  returns  the  current  value  of  LLBit.

Writing  a  1  to  this  bit  in  the  W1  software  will  clear  LLBit  to  0.  Writing  a  0  to  this  bit  in  the  software  will  be  ignored  by  the  hardware.WCLLB  

31:6  

0  

1  

0  

65  

ROLLB

The  processor  core  number  information  for  each  processor  core  is  set  by  the  hardware  based  on  the  specific  implementation.  It  is  recommended  that  the  processor  in  the  system...

Table  7-11  Processor  Number  Register  Definition

Name  reading  and  writing

This  register  contains  processor  core  number  information.

describe

The  data  storage  control  status  register  is  used  to  temporarily  store  data  for  system  software.  Each  data  storage  register  can  store  data  from  one  general-purpose  register.

describe

describeBit

All  data  storage  control  status  registers  use  the  same  format,  as  shown  in  Table  7-12.

Name  reading  and  writing

Bit

This  register  is  used  to  configure  the  entry  addresses  for  exceptions  and  interrupts,  excluding  TLB  refill  exceptions.
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Name  reading  and  writing

Bit Name  reading  and  writing

Bit describe

data.

This  register  is  used  for  access  control  operations  on  LLBit.

7.4.9  Processor  ID  (CPUID)

7.4.8  Exception  Entry  Address  (EENTRY)

7.4.10  Data  Saving  (SAVE0~3)

7.4.11  LLBit  Control  (LLBCTL)
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7.5  Mapped  Address  Translation  Related  Control  Status  Registers

describe

describeName  reading  and  writing

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

Bit

This  register  contains  information  such  as  index  values  related  to  TLB  instruction  operations.  The  bit  width  of  the  Index  field  in  Table  7-14  is  implementation-dependent,  however...

The  allowed  index  bit  width  in  this  architecture  is  no  more  than  16  bits.

This  register  also  contains  information  related  to  the  PS  and  E  fields  in  the  TLB  entry  during  TLB  instruction  operations.

Bit Name  reading  and  writing

The  bit  width  of  a  field  is  related  to  the  effective  virtual  address  range  supported  by  the  implementation,  so  the  definitions  of  register  fields  are  described  separately.

This  register  contains  information  related  to  the  virtual  page  number  (VPPN)  in  the  high-order  part  of  the  TLB  entry  during  TLB  instruction  operations.

The  values  of  the  PS  field  in  the  TLB  entries  written  are  derived  from  this  when  the  TLBWR  and  TLBFILL  instructions  are  executed.

TLB  entries).

29:24  

2  

0  

RW  

31:3  

When  executing  TLBWR,  the  value  of  this  bit  is  inverted  and  written  to  the  E  bit  of  the  TLB  entry  being  written.

15:n  

30  

Table  7-15  Definition  of  TLB  Page  Table  High-Level  Register

RW  

A  value  of  1  indicates  that  the  TLB  entry  is  empty  (invalid  TLB  entry),  and  a  value  of  0  indicates  that  the  TLB  entry  is  not  empty  (valid).

n-1:0  

Move  to  bit  E  of  the  TLB  entry  being  written;  if  CSR.ESTAT.Ecode=0x3F  at  this  time,  then  bit  E  of  the  TLB  entry  being  written...

Index  When  the  TLBSRCH  instruction  is  executed,  if  a  hit  occurs,  the  index  value  of  the  hit  item  is  recorded  here.

PS  

0  

R  is  always  0  when  read-only,  and  writes  are  ignored.

AT

RW  

When  this  bit  is  equal  to  1,  the  LLBit  bit  is  not  cleared  to  0  when  the  ERTN  instruction  is  executed,  but  the  bit  will  be  automatically  cleared  by  the  hardware.

R0  is  a  reserved  field.  Reading  it  returns  0,  and  the  software  is  not  allowed  to  change  its  value.

IS

When  executing  the  TLBRD  and  TLBWR  instructions,  the  index  value  for  accessing  TLB  entries  comes  from  this.

Table  7-14  TLB  Index  Register  Definition

For  information  on  the  correspondence  between  index  values  and  TLB  entries,  please  refer  to  the  relevant  content  in  Section  4.2.3.1.

R0  is  a  reserved  field.  Reading  it  returns  0,  and  the  software  is  not  allowed  to  change  its  value.

66  

RW  

When  executing  the  TLBWR  or  TLBFILL  instruction,  if  CSR.ESTAT.Ecode !=  0x3F,  the  value  of  that  bit  is  inverted  and  then  written.

It  is  always  set  to  1,  regardless  of  the  value  of  that  bit.

Setting  KLO  to  0  means  that  each  time  KLO  is  set  to  1,  it  can  only  affect  the  execution  of  the  ERTN  instruction  once.

Used  to  control  the  operation  of  LLBit  when  the  ERTN  instruction  is  executed.

When  the  TLBRD  instruction  is  executed,  the  value  of  the  PS  field  of  the  read  TLB  entry  is  recorded  here.

0  

0  

When  executing  TLBRD,  the  E  bit  information  of  the  read  TLB  entry  is  inverted  and  recorded  here.

When  executing  TLBSRCH,  if  there  is  a  hit,  this  bit  is  recorded  as  0;  otherwise,  it  is  recorded  as  1.

31  

23:16  R0  is  a  reserved  field.  Reading  it  returns  0,  and  the  software  is  not  allowed  to  change  its  value.

7.5.2  TLB  High  Bit  (TLBEHI)

7.5.1  TLB  Index  (TLBIDX)
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7.5.3  Low  bits  of  TLB  entries  (TLBELO0,  TLBELO1)

The  definitions  of  its  various  domains  are  shown  in  Table  7-16.

Name  reading  and  writingBit

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

describe

Name  reading  and  writing

When  the  TLBRD  instruction  is  executed,  the  information  read  from  the  TLB  entries  is  written  one  by  one  into  the  TLBEL0  and  TLBEL01  registers.

describe

Execute  the  TLBWR  and  TLBFILL  instructions  to  write  the  following  entries  to  the  TLB  table:  G,  PPN0,  V0,  PLV0,  MAT0,  D0,  PPN1,  V1,  PLV1.

Bit

The  TLBELO0  and  TLBELO1  registers  contain  information  such  as  the  physical  page  number  of  the  lower-order  part  of  the  TLB  entry  when  the  TLB  instruction  is  executed.

Because  the  TLB  in  the  32-bit  simplified  version  of  the  Dragon  architecture  uses  a  double-page  structure,  the  low-order  bits  of  the  TLB  entry  correspond  to  two  physical  page  entries,  one  odd  and  one  even.

Odd-numbered  page  information  is  stored  in  TLBELO0,  and  odd-numbered  page  information  is  stored  in  TLBELO1.  The  format  definitions  of  the  TLBELO0  and  TLBELO1  registers  are  exactly  the  same.

In  the  corresponding  domain.

The  values  of  the  MAT1  and  D1  fields  come  from  TLBELO0  and  TLBELO1,  respectively.

12:0  

The  value  of  the  VPPN  field  in  the  TLB  entry  comes  from  this.

The  TLBSRCH  instruction  queries  the  VPPN  value  used  by  the  TLB,  and  the  TLBWR  and  TLBFILL  instructions  write  data  to  the  TLB.

5:4  

31:13  

Storage  Access  Type  (MAT)  for  RW  page  table  entries.

0  

The  valid  bit  (V)  of  the  RW  page  table  entry.

Global  flags  (G)  for  page  table  entries.

The  G  bit  in  the  page  table  entry  in  the  TLB  is  1.6  

Physical  page  number  (PPN)  of  the  RW  page  table.

D  

Privilege  Level  (PLV)  of  RW  page  entries.

PPN  

Recording  ends  here.

31:POLES-4

0  

ALONG  WITH

7  

R  is  always  0  when  read-only,  and  writes  are  ignored.

In

When  triggering  TLB  refill  exception,  load  operation  page  invalid  exception,  store  operation  page  invalid  exception,  or  fetch  operation  page  invalid  exception.

When  an  exception  occurs,  such  as  a  page  write  permission  exception  or  a  page  privilege  level  non-compliance  exception,  bits  [31:13]  of  the  virtual  address  that  triggered  the  exception  are  recorded.

Dirty  position  (D)  of  RW  page  table  entries.

3:2  

Table  7-16  TLB  Entries  Low-order  Register  Definitions

The  G  bit  is  simultaneously  set  to  1.

POLES-5:8

POS

67  

R  is  always  0  when  read-only,  and  writes  are  ignored.

R  is  always  0  for  read-only  operations;  write  operations  are  ignored.  This  field  does  not  exist  when  PALEN=36.

When  the  TLBRD  instruction  is  executed,  the  value  of  the  VPPN  field  of  the  read  TLB  entry  is  recorded  here.

RW  

When  the  TLBRD  instruction  is  executed,  if  the  G  bit  of  the  read  TLB  entry  is  1,  then  the  entries  in  TLBLO0  and  TLBLO1...

0  

1  

VPPN  RW  

When  executing  the  TLBFILL  and  TLBWR  instructions,  the  fill  is  only  performed  if  the  G  bits  in  both  TLBELO0  and  TLBELO1  are  1.

G  

0  
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The  base  address  of  the  global  directory  in  the  lower  half  of  the  address  space.

When  executing  the  TLBSRCH  instruction,  it  is  used  to  query  the  ASID  key  value  information  of  the  TLB.

The  address  space  identifier  corresponding  to  the  currently  executing  program.

Table  7-17  Address  Space  Identifier  Register  Definitions

The  so-called  high  half-address  space  refers  to  the  virtual  address  where  the  [VALEN-1]th  bit  is  equal  to  1.

ACID

The  so-called  lower  half-address  space  refers  to  the  virtual  address  where  the  [VALEN-1]th  bit  is  equal  to  0.

Table  7-19  Definitions  of  Global  Directory  Base  Register  in  High  Half-Address  Space

68  

0  

R  is  always  0  when  read-only,  and  writes  are  ignored.

R0  is  a  reserved  field.  Reading  it  returns  0,  and  the  software  is  not  allowed  to  change  its  value.

9:0  

Table  7-18  Definition  of  Global  Directory  Base  Address  Register  in  Lower  Half  Address  Space

The  base  address  of  the  global  directory  in  the  high  half-address  space.

31:24  

11:0  

ASIDBITS  

11:0  

31:12  

R  is  always  0  when  read-only,  and  writes  are  ignored.

Base  

31:12  Base  

15:10  

0  

The  bit  width  of  the  R  ASID  field.  It  is  directly  equal  to  the  value  of  this  field.

R  is  always  0  when  read-only,  and  writes  are  ignored.

RW  

It  is  used  as  the  ASID  key  value  information  for  querying  the  TLB  when  fetching  instructions  and  executing  load/store  instructions.

When  the  TLBWR  or  TLBFILL  instruction  is  executed,  the  value  written  to  the  ASID  field  of  the  TLB  entry  comes  from  this.

When  the  TLBRD  instruction  is  executed,  the  contents  of  the  ASID  field  of  the  TLB  entry  are  recorded  here.

23:16  

0  

RW  

0  

RW  

describe

describe

Bit

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

The  specification  may  evolve  further,  and  to  make  it  easier  for  software  to  clearly  define  the  bit  width  of  the  ASID,  this  information  will  be  provided  directly.

Bit

Bit

Therefore,  the  lowest  12  bits  of  this  register  are  not  configurable  by  software  and  are  always  0  (read-only).

Name  reading  and  writing

Therefore,  the  lowest  12  bits  of  this  register  are  not  configurable  by  software  and  are  always  0  (read-only).

This  register  contains  the  address  space  identifier  (ASID)  information  used  for  memory  access  operations  and  TLB  instructions.  The  bit  width  of  the  ASID  varies  depending  on  the  architecture.

Name  reading  and  writing

This  register  is  used  to  configure  the  base  address  of  the  global  directory  in  the  lower  half  of  the  address  space.  The  base  address  of  the  global  directory  must  be  aligned  to  a  4KB  boundary  address.

Name  reading  and  writing describe

This  register  is  used  to  configure  the  base  address  of  the  global  directory  in  the  high  half-address  space.  The  base  address  of  the  global  directory  must  be  aligned  to  a  4KB  boundary  address.

7.5.5  Global  Directory  Base  Address  in  the  Lower  Half-Address  Space  (PGDL)

7.5.4  Address  Space  Identifier  (ASID)

7.5.6  Global  Directory  Base  Address  in  High  Half-Space  (PGDH)
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7.5.8  TLB  Refill  Exception  Entry  Address  (TLBRENTRY)

7.5.7  Global  Directory  Base  Address  (PGD)

7.5.9  Direct  Mapping  Configuration  Window  (DMW0~DMW1)

Name  reading  and  writing

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

The  read-only  information  of  the  device  is  used  to  read  the  return  value  of  CSR-type  instructions.

Bit describe

This  set  of  registers  is  involved  in  completing  the  direct-mapped  address  translation  mode.  For  details  on  this  address  translation  mode,  please  refer  to  Section  5.2.1.

describeBit

describe

This  register  is  a  read-only  register,  and  its  content  is  the  global  directory  base  address  information  corresponding  to  the  virtual  address  of  the  error  in  the  current  context.

Name  reading  and  writing

This  register  is  used  to  configure  the  entry  address  for  a  TLB  refill  exception.  Because  after  a  TLB  refill  exception  is  triggered,  the  processor  core  will  enter  the  direct  address...

Bit Name  reading  and  writing

Since  this  is  a  translation  mode,  the  entry  address  entered  here  should  be  a  physical  address.

0  

It  is  equal  to  the  Base  field  of  CSR.PGDH.

PLV0  

69  

11:0  

Table  7-22  Direct  Mapping  Configuration  Window  Register  Definitions

0  

0  

R  

5:0  

5:4  

0  

The  RW  virtual  address  is  the  memory  access  type  of  the  memory  access  operation  that  falls  under  this  mapping  window.

28  

31:6  

R0  is  a  reserved  field.  Reading  it  returns  0,  and  the  software  is  not  allowed  to  change  its  value.

31:12  

Table  7-21  TLB  Refill  Exception  Entry  Address  Register  Definition

PLV3  

31:29  

PSEG  RW  directly  maps  the  physical  address  of  the  window  in  bits  [31:29].

A  value  of  1  for  RW  indicates  that  the  configuration  of  this  window  can  be  used  for  direct  address  mapping  translation  under  privilege  level  PLV0.

If  the  highest  bit  of  CSR.BADV  is  0,  the  read  return  value  is  equal  to  the  Base  field  of  CSR.PGDL;  otherwise,  the  read  return  value  is  not  equal  to  the  Base  field  of  CSR.PGDL.

R  is  always  0  when  read-only,  and  writes  are  ignored.0  

2:1  R0  is  a  reserved  field.  Reading  it  returns  0,  and  the  software  is  not  allowed  to  change  its  value.

24:6  

RW  TLB  refills  the  exception  entry  address  [31:6].  The  address  entered  here  should  be  a  physical  address.

0  

A  value  of  1  for  RW  indicates  that  the  configuration  of  this  window  can  be  used  for  direct  mapping  address  translation  under  privilege  level  PLV3.

R0  is  a  reserved  field.  Reading  it  returns  0,  and  the  software  is  not  allowed  to  change  its  value.

PA

Table  7-20  Global  Directory  Base  Address  Register  Definitions

ALONG  WITH

RW  directly  maps  the  virtual  address  of  the  window  in  bits  [31:29].VSEG

R  TLB  refills  the  exception  entry  address  [5:0].  Read-only  is  always  0,  write  is  ignored.

27:25  

3  

Base  
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Timer  enable  bit.  The  timer  will  only  count  down  when  this  bit  is  1,  and  will  be  reset  when  it  reaches  0.
In

n-1:0  

Timer  number.  Software  configurable.  During  processor  core  reset,  hardware  can  reset  it  to  the  value  in  CSR.CPUID.

31:n  

Table  7-25  Timer  Remaining  Register  Definitions

Timer  interrupt  signal.

InitVal  RW

The  least  significant  bit  of  the  field  value  is  padded  with  two  0  bits  before  it  is  used.

70  

n-1:2  

R  is  always  0  when  read-only,  and  writes  are  ignored.

Timer  cycle  mode  control  bit.  If  this  bit  is  1,  a  timer  interrupt  will  be  set  when  the  timer  counts  down  to  0.

Simultaneously  with  the  signal,  the  timer  will  be  automatically  reloaded  to  the  initial  value  configured  in  the  TimeVal  field,  and  then  the  next...

R  is  always  0  when  read-only,  and  writes  are  ignored.

The  same  value  for  CoreID.

Periodic  RW  

Table  7-24  Timer  Configuration  Register  Definitions

31:n  

1  

0  

The  clock  cycle  continues  to  decrement.  If  this  bit  is  0,  the  timer  will  stop  counting  when  it  reaches  0,  until  the  software...

R  is  the  current  timer  count  value.

TIME

TimeVal

Table  7-23  Timer  Number  Register  Definitions

RW  

RW  31:0  

0  

Configure  the  timer  again.

0  

The  initial  value  for  the  timer's  countdown  decrement.  This  initial  value  must  be  an  integer  multiple  of  4.  The  hardware  will  automatically  set  this  value.

7.6  Timer-related  control  status  register

Name  reading  and  writing

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

This  register  is  the  interface  for  configuring  the  timer  in  software.  The  effective  number  of  bits  for  the  timer  is  determined  by  the  implementation,  therefore  the  bit  width  of  the  TimeVal  field  in  this  register  is...

describe

The  software  can  read  this  register  to  determine  the  current  timer  count.  The  effective  number  of  bits  for  the  timer  is  determined  by  the  implementation,  therefore  this  register...

Bit describe

It  will  also  change  accordingly.

For  each  timer,  when  the  software  uses  the  RDCNTID  instruction  to  read  the  timer  ID  number,  the  returned  value  is  the  corresponding  timer  number.

Name  reading  and  writing

Each  timer  in  the  processor  has  a  unique,  identifiable  number,  configured  in  a  register  by  software.  Each  timer  is  also  unique.

describeBit

Name  reading  and  writingBit

The  bit  width  of  the  TimeVal  field  will  also  change  accordingly.

7.6.3  Timer  Value  (TVAL)

7.6.1  Timer  Number  (TID)

7.6.2  Timer  Configuration  (TCFG)
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0  When  a  value  of  1  is  written  to  this  bit,  the  clock  interrupt  flag  will  be  cleared.  The  register  will  always  read  a  value  of  0.

Table  7-26  Timer  Interrupt  Clear  Register  Definitions

R0  is  a  reserved  field.  Reading  it  returns  0,  and  the  software  is  not  allowed  to  change  its  value.

CLR  

31:1  0  

71  

Bit Name  reading  and  writing

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

The  software  clears  the  timer  interrupt  signal  that  the  timer  was  set  by  writing  1  to  bit  0  of  the  register.

describe

7.6.4  Timer  Interrupt  Clearing  (TICLR)
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8  Appendix  A  Functional  Definition  Pseudocode  Description

Operators

ÿ  Use  the  prefix  "'b"  or  "##'b"  to  represent  binary  numbers,  where  the  prefix  "##'b"  indicates  that  the  bit  width  of  this  binary  number  is  ##  bits;

In  addition,  the  common  conventions  for  representing  numerical  values  in  pseudocode  are  as  follows:

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

This  section  lists  the  meanings  of  statement  keywords  and  various  operators  involved  in  pseudocode,  as  well  as  the  operator  precedence  relationships.

Bit;

ÿ  Use  the  prefix  "'h"  or  "##'h"  to  represent  hexadecimal  numbers,  where  the  prefix  "##'h"  indicates  that  the  bit  width  of  this  hexadecimal  number  is  ##  bits.

ÿ  Decimal  numbers  are  represented  without  a  prefix  or  with  a  prefix  of  "'d"  or  "##'d",  where  the  prefix  "##'d"  indicates  that  the  bit  width  of  this  decimal  number  is  ##.

meaning

In  hexadecimal  numbers,  A  through  F  are  written  in  uppercase.

8.1  Operator  Interpretation  in  Pseudocode

half-precision  floating-point  number

Conditional  statements

Elif

):  

)  

Execute  statement  2

N

fp16(

if  

Determine  the  variable

…

sequence

…

Judgment  condition  2

unsigned  integers

Start  value  End  value  Step  value

Double-precision  floating-point  numbers

Default  execution  statement

:  

case  conditional  statement

(Return  type  function  name

…

:  

Value  2

conditional  statements

Single-precision  floating-point  number

Execution  statement

73  

…

)  

Execute  statement  1

)  

case  

A  sequence  of  specified  step  values  from  the  start  value  (inclusive)  to  the  end  value  (exclusive).

range()  A  sequence  of  integers  from  0  to  N-1  with  a  step  size  of  1.

:  

TRUE  executes  the  statement.

break  

signed(

else:  

Return  value

function  body

default:  

…

return  

Signed  integers

?  

of:  

Table  8-1  Explanation  of  Key  Words  in  Statements

:  

variable

Judgment  conditions

Abort  the  current  loop

Execute  statement  2

)  

range( )  

…

FALSE  statement

fp32(

in  

,  

Function  definition

)  

for  

:  

loop  variable

:  

fp64(

,  

for  loop  statement

unsigned(

Condition  1  Execute  

Statement  1

,  

Execute  statement  3

Value  1
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N

{

remove

M

{

Variable  zero-extended  to  N  bits,

boolean  

N

/  

The  value  is  TRUE  if  the  variable  is  a  quiet  NaN,  otherwise  it  is  FALSE.

Bit  string  M  is  copied  N  times  and  concatenated

Integer  type

#  

:

power

)  

Greater  than  or  equal  to

isSNaN(

>  

The  bit  strings  N,  M, ...  are  concatenated  in  sequence

*  

Mold  taking

=  

The  value  is  TRUE  if  the  variable  is  a  signaling  NaN  number,  and  FALSE  otherwise.

]  

}  

)  

N-bit  type

Assignment

add

SignalException(

M

{

,

Less  than

bits()  

!=  

)  

>=  

variable

exception

Less  than  or  equal  to

bit  

integer  

}}  

reduce

==  

,  

)  

N

<  

N M

N

equal

variable

**  

Boolean  type

variable

)  

Greater  than

SignExtend(

N  to  M  bits  of  the  bit  string

Table  8-3  Definitions  of  Arithmetic  Operators

-  

take

%  

Bit  type

,  

Table  8-2  Explanation  of  String  Operators

Not  equal  to

Single-line  comment

Table  8-4  Explanation  of  Comparison  Operators

variable

ZeroExtend(

…

isQNaN(

+  

Variable  sign  extended  to  N  bits

<=  

N

[

74  

Triggering  exceptions

Operators

meaning
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Operators

meaning

Operators meaning

meaningOperators
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^,  |  

power

Logical  NOT

Table  8-6  Explanation  of  Logical  Operators

Equal  to,  not  equal  to

+,  -  

>,  <,  >=,  <=  

Add,  subtract

Logical  NOT

~  

or  

<<  

Logical  right  shift

Bitwise  AND

Logical  OR

Bitwise  or

Invert  bitwise

Bitwise  AND

*, /,  %  

==, !=  

~  

>>>  

Bitwise  XOR,  Bitwise  OR

75  

and  

&  

not  

Table  8-5 :  Definitions  of  Bitwise  Operators

Logical  left  shift,  logical  right  shift,  arithmetic  right  shift

Invert  bitwise

**  

&  

|  

and,  or  

Table  8-7  Operator  Precedence

<<,  >>,  >>>  

Multiplication,  division,  modulo

Logical  left  shift

bitwise  XOR

Logic  AND

not  

^  

>>  

Greater  than,  less  than,  greater  than  or  equal  to,  less  than  or  equal  to

Logical  AND,  Logical  OR

Arithmetic  right  shift

meaning

Operators

meaning
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Operators

meaning

The  operator  precedence  in  pseudocode,  from  highest  to  lowest,  is  listed  in  Table  8-7:

Operators

The  pseudocode  definitions  used  in  the  instruction  descriptions  in  this  manual  are  as  follows.

8.2  Pseudocode  Description  of  Functions
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8.2.2  Logical  Right  Shift

8.2.1  Logical  Left  Shift

8.2.3  Arithmetic  right  shift

8.2.4  Converting  Single-Precision  Floating-Point  Numbers  to  Signed  Word  Integers

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

result  =  x  

return  result  

result  =  {{in{x[N-1]}},  x[N-1:in]}

{2'd0}:  return  Sint32_convertToIntegerExactTiesToEven(x)  

{2'd3}:  return  Sint32_convertToIntegerExactTowardNegative(x)  

result  =  {x[N-sa-1:0],  {sa{1'b0}}}

bits(N)  SRL(bits(N)  x,  integer  sa):  

else :  

return  result  

result  =  {{sa{1'b0}},  x[N-1:sa]}

result  =  x  

if  sa==0 :

if  sa==0 :

result  =  x  

bits(N)  SLL(bits(N)  x,  integer  sa):  

if  sa==0 :

else :  

return  result  

{2'd1}:  return  Sint32_convertToIntegerExactTowardZero(x)  

{2'd2}:  return  Sint32_convertToIntegerExactTowardPositive(x)  

bits(N)  SRA(bits(N)  x,  integer  sa):  

else :  

case  {rm}  of:  

{bits(32) }  FP32convertToSint32(bits(32)  x,  bits(2)  rm):  

76  
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8.2.6  Converting  Double-Precision  Floating-Point  Numbers  to  Signed  Word  Integers

8.2.5  Converting  Single-Precision  Floating-Point  Numbers  to  Signed  Double-Word  Integers

8.2.7  Converting  Double-Precision  Floating-Point  Numbers  to  Signed  Double-Word  Integers

8.2.9  Rounding  Double-Precision  Floating-Point  Numbers

8.2.8  Rounding  Single-Precision  Floating-Point  Numbers

Dragon  Architecture  32  -bit  Simplified  Reference  Manual

{bits(32) }  FP64convertToSint32(bits(64)  x,  bits(2)  rm):  

{2'd2}:  return  Sint64_convertToIntegerExactTowardPositive(x)  

case  {rm}  of:  

{2'd3}:  return  Sint64_convertToIntegerExactTowardNegative(x)  

{2'd1}:  return  Sint64_convertToIntegerExactTowardZero(x)  

{2'd2}:  return  Sint32_convertToIntegerExactTowardPositive(x)  

{2'd0}:  return  Sint64_convertToIntegerExactTiesToEven(x)  

{bits(32) }  FP32_roundToInteger(bits(N)  x,  bits(2)  rm):  

case  {rm}  of:  

{2'd0}:  return  Sint64_convertToIntegerExactTiesToEven(x)  

{bits(64) }  FP32convertToSint64(bits(32)  x,  bits(2)  rm):  

{2'd3}:  return  Sint64_convertToIntegerExactTowardNegative(x)  

{2'd2}:  return  Sint64_convertToIntegerExactTowardPositive(x)  

return  FP32_roundToIntegralExact(x)  

{2'd1}:  return  Sint64_convertToIntegerExactTowardZero(x)  

{2'd0}:  return  Sint32_convertToIntegerExactTiesToEven(x)  

{bits(64) }  FP64_roundToInteger(bits(N)  x,  bits(2)  rm):  

{2'd3}:  return  Sint32_convertToIntegerExactTowardNegative(x)  

{bits(64) }  FP64convertToSint64(bits(64)  x,  bits(2)  rm):  

{2'd1}:  return  Sint32_convertToIntegerExactTowardZero(x)  

case  {rm}  of:  

return  FP64_roundToIntegralExact(x)  

77  
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79  

1  

fj  

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  0  0  1  0  0  0  0  0  

3  

rj  

0  0  0  0  0  0  0  1  0  0  0  0  0  1  0  0  1  

rd  

0  0  0  0  0  0  0  1  0  0  0  0  0  1  1  1  0  

0  0  0  0  0  0  0  1  0  0  0  0  1  0  0  0  1  

rk  

rk  

rk  

fj  

rd  

2  

rj  

1  

rj  

fd  fk  

rj  

1  

rd  

rk  

5  

0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  

0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  1  

0  0  0  0  0  0  0  1  0  0  0  0  0  0  1  1  0  

fd  

1  

8  

rd  

rj  

fj  

rj  

fd  

fj  

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  0  0  0  0  0  0  0  0  

rk  

fd  

rk  

0  

fk  

1  

rj  

fd  

1  

0  

rk  

rj  

rd  

rd  

rd  

rd  

rk  

0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  1  

1  

7  

2  

0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  1  0  

0  0  0  0  0  0  0  1  0  0  0  0  0  0  1  0  1  

rj  

fk  

0  0  0  0  0  0  0  1  0  0  0  0  1  0  0  1  0  

0  

ui5

rk  

rj  

0  

rd  

3  

0  0  0  0  0  0  0  1  0  0  0  0  1  0  1  0  1  

0  0  0  0  0  0  0  0  0  0  1  0  1  0  1  1  0  

6  

fk  

rd  

0  0  0  0  0  0  0  0  0  0  0  1  0  1  1  1  1  

rk  

0  

fd  

9  

2  

code  

0  0  0  0  0  0  0  0  0  0  0  1  1  0  0  0  0  

0  

5  

0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  1  1  

0  0  0  0  0  0  0  0  0  0  0  1  0  1  0  0  0  

fd  

rj  

0  0  0  0  0  0  0  0  0  0  1  0  1  0  1  0  0  

2  

fk  

fk  

rd  

fd  

rd  rk  

0  0  0  0  0  0  0  0  0  0  0  1  0  0  1  0  1  

code  

0  

fd  

rj  

4  

fk  

rj  

0  3  

0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  1  0  

2  0  

0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  1  0  

1  0  3  

rj  

0  0  0  0  0  0  0  0  0  0  0  1  0  1  1  1  0  

2  

fk  

2  

fk  

rk  

0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  1  

rk  

2  

rd  

0  0  0  0  0  0  0  0  0  0  0  1  1  1  0  0  1  

fd  

rd  

rj  

0  

9  6  

0  0  0  0  0  0  0  0  0  0  0  1  1  1  0  0  0  

0  

0  0  0  0  0  0  0  0  0  0  0  1  0  0  1  0  0  

ui5

rk  

rd  

fk  

8  

rj  

2  0  

rd  

rd  

rk  

2  

rd  

4  

rd  

0  

rj  

rk  

fd  

1  

1  

rd  

9  

1  

fj  

5  

0  0  0  0  0  0  0  0  0  1  0  0  1  0  0  0  1  

rk  

fj  

fj  

rj  

8  

0  0  0  0  0  0  0  0  0  0  0  1  0  1  0  1  0  

0  0  0  0  0  0  0  0  0  1  0  0  0  1  0  0  1  

0  0  0  0  0  

ui5

fj  

7  

1  

rj  

1  

rj  

0  0  0  0  0  0  0  0  0  0  0  1  0  1  0  0  1  

0  0  0  0  0  0  0  1  0  0  0  0  0  1  1  0  1  

0  0  0  0  0  0  0  0  0  0  0  1  1  1  0  1  0  

fj  

3  

2  2  

0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  

4  

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  0  0  0  

1  

7  

rd  

rj  

rk  

fj  

rd  

0  0  0  0  0  0  0  1  0  0  0  0  0  1  0  1  0  

rj  

0  0  0  0  0  0  0  0  0  0  0  1  0  1  0  1  1  

fj  

2  6  

fk  

rd  
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9.  Appendix  B :  List  of  Instruction  Codes

rd,  rj,  rk  

RDCNTVH.W  rd  

DIV.WU

RDCNTVL.W  rd  

rd,  rj,  rk  

SUB.W

rd,  rj,  rk  

fd,  fj,  fk  

OR  

FDIV.S

fd,  fj,  fk  

rd,  rj,  rk  

rd,  rj,  rk  

rd,  rj,  rk  

rd,  rj,  rk  

rd,  rj,  ui5  

NOR  

SRAI.W

BREAK  

SRLI.W

FDIV.D

SLLI.W

fd,  fj,  fk  

rd,  rj,  rk  

MUL.W

MOD.W  

SLTU

fd,  fj,  fk  

FMAX.D  

MOD.WU

rd,  rj,  rk  

FADD.D

rd,  rj,  rk  

rd,  rj,  rk  

rd,  rj,  rk  

FSUB.D  

rd,  rj,  ui5  

MULH.W

rd,  rj,  rk  

fd,  fj,  fk  

rd,  rj,  rk  

code  

fd,  fj,  fk  

SRL.W

fd,  fj,  fk  

fd,  fj,  fk  

FREE

fd,  fj,  fk  

code  

rd,  rj,  rk  

FADD.S  

FMAX.S  

rd,  rj,  rk  

FSUB.S  

SYSCALL  

FMIN.S  

rd,  rj,  ui5  

SLL.W  

MULH.WU

SRA.W

FMUL.D  

rd,  rj,  rk  

fd,  fj,  fk  

SLT  

ADD.W  

DIV.W  

RDCNTID.W  rj  

FMUL.S  

rd,  rj,  rk  

fd,  fj,  fk  

AND  
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fd  

1  

0  0  0  0  0  0  0  1  0  0  0  1  0  1  0  0  0  1  0  0  1  0  

fd  

rj  

rj  

0  0  0  0  0  0  0  1  0  0  0  1  0  1  0  0  1  1  0  1  1  1  0  0  

0  

2  

fd  

fj  

8  4  3  

0  0  0  0  0  0  0  1  0  0  0  1  0  1  0  0  1  0  1  0  1  1  

fj  

fj  

fd  

fj  

0  0  0  0  0  0  0  1  0  0  0  1  0  1  0  0  1  0  1  1  0  1  

fj  

6  

rd  

0  0  0  0  0  0  0  1  0  0  0  1  1  0  1  0  1  0  0  0  1  0  

fd  

2  

fj  

7  

fk  

fj  

cd  

5  

1  

fd  

0  0  0  0  0  0  0  1  0  0  0  1  1  0  1  0  1  1  0  0  0  1  

1  

fd  

5  

0  0  0  0  0  0  0  1  0  0  0  1  1  0  1  0  1  0  0  0  0  1  

0  0  

0  0  0  0  0  0  0  1  0  0  0  1  0  1  0  0  1  1  0  1  0  0  

rd  

2  

fk  

fj  

1  6  

fj  

fd  

fd  

fd  

0  0  0  0  0  0  0  1  0  0  0  0  1  1  1  0  1  

fj  

0  0  0  0  0  0  0  1  0  0  0  1  1  0  1  0  1  1  0  0  1  0  

0  

0  0  0  0  0  0  0  1  0  0  0  1  0  1  0  0  1  1  0  0  0  0  

1  

7  7  

rd  

1  

fj  

8  

fj  

fj  

0  0  0  0  0  0  0  1  0  0  0  1  0  1  0  0  0  0  0  1  1  0  

2  2  

0  

fd  0  0  0  0  0  0  0  1  0  0  0  0  1  0  1  1  0  

fj  

fj  

fj  

fj  

fj  

0  0  0  0  0  0  0  1  0  0  0  1  0  1  0  0  1  1  0  0  1  0  

1  

fd  

0  

fcsr  

0  

fj  

fd  

fd  

0  

0  0  0  0  0  0  0  1  0  0  0  1  0  1  0  0  1  0  1  0  0  1  

0  5  

fj  

1  

8  9  

0  0  0  0  0  0  0  1  0  0  0  1  0  1  0  0  0  0  1  1  0  1  

0  0  0  0  0  0  0  1  0  0  0  1  1  0  1  0  0  1  0  0  0  1  

1  

fk  

fj  

0  0  0  0  0  0  0  1  0  0  0  1  1  0  1  0  0  0  0  0  1  0  

fd  

fj  

fj  

2  

0  0  0  0  0  0  0  1  0  0  0  1  0  1  0  0  1  0  0  1  0  1  

fj  

0  0  0  0  0  0  0  1  0  0  0  1  0  1  0  0  0  1  0  0  0  1  

0  

fj  

fd  

fd  

0  0  0  0  0  0  0  1  0  0  0  1  1  0  0  1  0  0  1  0  0  1  

fk  

fd  

0  0  

0  

4  

fj  

0  0  0  0  0  0  0  1  0  0  0  1  1  0  1  0  0  0  0  0  0  1  

fk  

0  0  0  0  0  0  0  1  0  0  0  1  0  1  0  0  0  0  1  1  1  0  

0  3  

fj  

0  

2  

fk  

fcsr  

2  0  

fd  

fd  

9  

0  0  0  0  0  0  0  1  0  0  0  1  0  0  1  1  0  

fd  

0  0  0  0  0  0  0  1  0  0  0  1  0  1  0  0  1  0  1  1  1  1  

fd  

fd  

fj  

3  

fj  

2  

fd  

0  0  0  0  0  0  0  1  0  0  0  1  1  0  0  1  0  0  0  1  1  0  

1  

0  0  0  0  0  0  0  1  0  0  0  0  1  1  1  1  0  

rj  

0  

fd  

cd  

3  

fd  

fk  

rd  

0  0  0  0  0  0  0  1  0  0  0  0  1  1  0  1  0  

2  

0  0  0  0  0  0  0  1  0  0  0  1  0  1  0  0  0  1  0  1  0  1  

0  0  0  0  0  0  0  1  0  0  0  1  0  1  0  0  1  1  0  1  1  0  

0  0  0  0  0  0  0  1  0  0  0  1  1  0  1  0  0  1  0  0  1  0  

0  0  0  0  0  0  0  1  0  0  0  1  0  1  0  0  0  0  0  0  1  0  

1  

4  

0  

0  0  0  0  0  0  0  1  0  0  0  1  0  1  0  0  0  1  1  0  0  1  

fd  

6  

0  0  0  0  0  0  0  1  0  0  0  1  0  1  0  0  1  1  0  1  0  1  0  0  cj  

3  

fj  

0  0  0  0  0  0  0  1  0  0  0  0  1  1  0  0  1  

1  

rj  

0  0  0  0  0  0  0  1  0  0  0  1  0  1  0  0  0  0  0  0  0  1  

fd  

cj  

fd  

fj  

fd  

0  0  0  0  0  0  0  1  0  0  0  1  0  1  0  0  0  0  0  1  0  1  

0  0  0  0  0  0  0  1  0  0  0  1  0  1  0  0  0  1  1  0  1  0  

2  

0  0  0  0  0  0  0  1  0  0  0  1  0  1  0  0  1  0  0  1  1  0  

0  0  0  0  0  0  0  1  0  0  0  1  0  0  1  0  1  

9  

fd  

fj  

fj  

1  

fd  

0  0  0  0  0  0  0  1  0  0  0  1  0  1  0  0  0  1  0  1  1  0  

2  

fd  

1  

2  

fd  

fj  
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FSQRT.D

fd,  cj  

fd,  fj,  fk  

FMOV.S  

FTINTRM.W.S  fd,  fj  

FCOPYSIGN.D  fd,  fj,  fk  

MOVFR2GR.S  rd,  fj  

fd,  fj  

fd,  fj  

fd,  fj  

fd,  fj  

MOVFRH2GR.S  rd,  fj  

FNEG.D

FRSQRT.D  

FCOPYSIGN.S  fd,  fj,  fk  

MOVCF2FR  

MOVGR2FCSR  fcsr,  rj  

fd,  fj,  fk  

fd,  fj  

fd,  fj  

FTINTRZ.W.S  fd,  fj  

fd,  fj,  fk  

FCLASS.D  

FCVT.D.S  

FMAXA.S  

FSQRT.S  

FMOV.D  

fd,  fj  

FTINTRP.W.D  fd,  fj  

fd,  fj  

FMAXA.D

cd,  fj

FTINTRP.W.S  fd,  fj  

MOVFCSR2GR  rd,  fcsr  

fd,  fj  

MOVFR2CF  

MOVGR2FR.W  fd,  rj  

fd,  fj  

FNEG.S  

FTINTRM.W.D  fd,  fj  

fd,  fj,  fk  

fd,  fj  

fd,  fj  FRSQRT.S  

FRECIP.S  

FMINA.D  

fd,  fj,  fk  

fd,  fj  

fd,  fj  

FCVT.S.D  

FMINA.S  

FTINTRNE.W.S  fd,  fj  

FTINTRZ.W.D  fd,  fj  

MOVGR2CF  cd,  rj  

MOVCF2GR  rd,  cj  

FCLASS.S  

FTINTRNE.W.D  fd,  fj  

FMIN.D  

FRECIP.D

FABS.D  

FABS.S  fd,  fj  

fd,  fj  

MOVGR2FRH.W  fd,  rj  
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8  

0  0  1  0  1  0  0  0  0  1  

rd  

0  0  0  0  0  1  0  0  

3  

fk  

but

0  0  0  0  0  0  1  1  0  1  

si12

1  

rj  

0  0  0  0  0  0  1  1  1  0  

0  0  0  0  1  0  0  0  1  0  0  1  

fk  

0  0  0  0  0  1  0  0  

8  5  

2  

7  

fj  

but

fj  

si12

2  

rd  

6  

si12

fj  

ui12

0  0  0  0  1  0  0  0  1  1  1  0  

fd  

0  0  1  0  1  0  0  1  0  1  

but fd  

2  1  

9  

fj  

2  

ui12

fj  

fd  

rd  

rd  

7  0  

0  0  0  0  1  0  0  0  0  1  1  0  

0  

rd  

2  

rd  

csr  

fj  

0  0  1  0  1  0  0  0  1  0  

2  

rd  

fj  

1  

rd  

0  0  0  0  0  0  1  0  1  0  

but
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