
Loongson Technology Co., Ltd.

years2025 2

Dragon Architecture 32-bit Compact Reference Manual

V1.04

Machine Translated by Google

Loongson Technology Co., Ltd.

Copyright Notice

Disclaimer

Loongson Technology Corporation Limited

This document provides information at this stage only, and its content is subject to change based on the actual product situation without notice. Improper use of this document may result in consequences.

This document is copyrighted by Loongson Technology Co., Ltd., and all rights are reserved. No company or individual may reproduce, distribute, or otherwise use this document without written permission.

Dragon Architecture 32 -bit Simplified Reference Manual

Any part of this document that is published, reproduced, or otherwise distributed to third parties will be subject to legal action.

Address: Building 2, Longxin Industrial Park, Zhongguancun Environmental Protection Science and Technology Demonstration Park, Haidian District, Beijing

Building No.2, Loongson Industrial Park,

Our company assumes no responsibility for any direct or indirect losses caused.

Telephone: 010-62546668

Fax: 010-62600826

Zhongguancun Environmental Protection Park, Haidian District, Beijing

Machine Translated by Google

This manual is for the introduction of the Dragon architecture 32-bit simplified version.

Dragon Architecture 32 -bit Simplified Reference Manual

Reading Guide

Machine Translated by Google

4) When the TLBRD instruction reads NE=0, the target CSR register is explicitly updated to 0.

The instructions implemented below.

Released to the public.

1) Sections 2.1.4, 2.1.5 and 5.2.1 provide supplementary explanations on the rules for determining the exception triggered by the application's memory access.

1.02

5) In the description of page size (PS) in section 5.4.2, the PS value of the TLB entry corresponding to a page size of 4MB should be 21.

1.00

8) Adjust the definition of the original LIE[10] bit in section 7.4.4; adjust the definition of the IS[10] bit in section 7.4.5, and clarify IS[9:2] and IS[11].

Improvements and revisions to the manual:

Internal review version.

1) Remove the following six floating-point instructions from the floating-point instruction definition: FSCALEB.S/D, FLOGB.S/D, and FRINT.S/D. This is only required in the LA64 architecture.

1) Sections 2.2.3, 2.2.5.1, and 3.2.5 discuss the relationship between immediate values used in the instruction assembly representation and immediate values in the instruction code.

The manual's content has been improved:

Internal review version.

0.90

11) The ASID field description in Section 7.5.4 should not be used as an INVTLB instruction to query the ASID key value information of the TLB.

7) In section 5.4.4, the exception for non-compliance of privilege level of the reporting page should be SignalException(PPI).

The definition of IS[12] bits.

9) Section 7.4.5 explicitly sets all undefined Esubcode values to the default value of 0.

Instruction content adjustment:

This is an explanation.

6) In the last sentence of section 5.4.2, [log2PS-1:12] should be [PS-1:12].

1) The floating-point to integer conversion operation in section 3.2.3 does not check whether an exception to the floating-point inaccuracy report is allowed; that is, it is always executed.

3) All “NUL bit of CSR.TLBIDX” in Section 4.2.3 should be changed to “NE bit of CSR.TLBIDX”.

Improvements and revisions to the manual:

0.91

Manual content revisions:

1.01

The convertToIntegerExact… or roundToIntegralExact operations have been implemented. 2) Fixed the

inconsistency in the names of some CSR registers and their fields, and corrected several writing errors.

10) Section 7.5.3 describes the PPN fields of the CSR registers TLBELO0 and TLBELO1, taking into account the case where PALEN < 36.

2) Section 2.2.5.1 provides details on the specific operation method for calculating the offset value when the LL/SC instruction calculates the address.

1.03

1) The description of the address error exception in section 2.1.4 has been adjusted because the memory access restrictions imposed on application software at the instruction set level are no longer applied.

Update History

Creator

Document Update History: Document Name, Version Number

Dragon Architecture 32 -bit Simplified Reference Manual

Dragon Architecture 32-bit Compact Reference Manual

2020/09/17

Chip R&D Department

1.04

Update contentVersion number

Creation Date

Version History

Machine Translated by Google

Dragon Architecture 32 -bit Simplified Reference Manual

The range of memory address space that the software can access.

5) The original wording of MOVCF2FR in section 3.2.4.6 and MOVCF2GR in section 3.2.4.7 is easily misunderstood as referring to the target.

7) The instruction function descriptions in sections 4.2.3.3 and 4.2.3.4

Whether the CSR.TLBIDX.NE bit is 1 or not, a description of a valid TLB item is filled into the TLB.

1) Delete the content related to sign extension after concatenation of immediate values in Section 2.2.1.6 of the Natural Language and Pseudocode description to conform to this manual.

Improvements and revisions to the manual:

10) The range truncated in the second-to-last line of the pseudocode description in section 5.4.4 is incorrect. 11) The memory access

instructions during the execution phase in section 6.2.2 will no longer trigger address error exceptions because the application is not restricted at the instruction set level.

The register remains unchanged except for bit 0, while the exact behavior should be the rest of the register except for bit 0.

2) Section 2.1.5 has been revised to no longer restrict the range of memory address space that application software can access at the instruction set level.

When the address space is within the range, the only exception triggered by the instruction fetch address error is when the instruction fetch PC is misaligned.

14) The statement involving GRLEN is determined to be 32.

ÿ

8) The last paragraph of section 5.2.1 is deleted because it does not restrict the range of memory address space that application software can access at the instruction set level.

The book only covers the context of 32-bit machines.

Set the value to 0.

The restrictions are implemented by the system software.

2) Add a list of "basic floating-point instructions for operating single-precision floating-point numbers and word integers" to Chapter 3.

13) The RDTIME instruction described in section 7.6.1 should be changed to the RDCNTID instruction.

3) Section 2.2.1.10 MULH.WU is missing a U.

6) Section 3.2.6.1 simplifies floating-point memory access instructions to address the requirement for memory address alignment in the 32-bit simplified version of the Dragon architecture.

Supplementing TLB refill exception handling process regardless of

9) In section 5.4.3.4, “INVTLB r0, r0” should be “INVTLB 0, r0, r0”.

At the same time, it is recommended that…

12) In the descriptions of the DATF and DATM fields in Table 7-2 of Section 7.4.1, “…, it is necessary to change …” to “…, push…”.

4) In section 3.1.4.4, 2Emin should appear in the exponent position.

3) Add FFINT.{S/D}.L and FTINT.L.{S/D} to section 3.2.3.2, and add them to section 3.2.3.3.

1.04

Description of the FTINT{RM/RP/RZ/RNE}.L.{S/D} instruction.

Describe the non-alignment exception condition.

Machine Translated by Google

2.1.3 Running Privilege Levels..6

2. Basic Integer Instructions.. 5

1 Introduction..1

1.1 Overview of the Dragon Architecture.. 1

2.2.7 Other Miscellaneous Instructions.. 21

3.1.4 Floating-point exception..26

1.3 Mnemonic Format for Instruction Assembly..3

2.1.2 Registers...5

3.2.2 Floating-point comparison instructions..35

2.1.4 Exceptions and Interruptions... 6

4.2 Overview of Privileged Instructions...45

2.1.8 Unaligned Memory Access..8

3.1.3 Registers...25

2.2.2 Shift Operation Instructions... 14

3.1.2 Fixed-point data types... 25

3.2.4 Floating-point transfer instructions..39

1.4.1 Instruction Name Abbreviation Rules...3 1.4.2

Control Status Register Designation Method..4

2.2 Overview of Basic Integer Instructions...9

3.2.3 Floating-point conversion instructions..36

2.1.6 Tail End..7

3.2.1 Floating-point arithmetic instructions..29

2.2.6 Barrier Commands..21

2.1.7 Storage Access Types..7

2.1.1 Data Types..5

I

2.1.9 Brief Overview of Storage Consistency Model.. 8

3.2.6 Floating-point Ordinary Memory Access Instructions...42

1.4 Some writing rules adopted in this manual.. 3

4. Overview of Privileged Resource Architecture.. 45

2.1.5 Memory Address Space..7

2.1 Basic Integer Instruction Programming Model..5

3.2.5 Floating-point branch instructions.. 41

2.2.1 Arithmetic Operation Instructions..9

4.1 Privilege Levels..45

1.2 Instruction Encoding Format...2

2.2.5 Atomic Memory Access Instructions... 20

3. Basic Floating-Point Instructions..23

3.2 Overview of Basic Floating-Point Instructions..29

2.2.3 Transfer Instructions..15

3.1 Basic Floating-Point Instruction Programming Model... 23

2.2.4 Normal Memory Access Instructions..18

3.1.1 Floating-point data types.. 23

Dragon Architecture 32 -bit Simplified Reference Manual

Table of contents

Machine Translated by Google

Dragon Architecture 32 -bit Simplified Reference Manual

5.2.1 Direct Mapping Address Translation Mode... 49

4.2.4 Other Miscellaneous Instructions... 48

7.2.1 Read/Write Attributes..60

5 Storage Management...49

6.1.1 Interrupt Types...55

5.2 Virtual Address Space and Address Translation Mode...49

7.4.3 Extended Component Enable (EUEN)..62

5.4.1 TLB Organizational Structure... 50

7.4 Basic Control Status Register...60

7.4.6 Exception Return Address (ERA)... 64

7.4.10 Data Saving (SAVE0~3).. 65

7.1 Overview of Control Status Registers..59

7.4.7 Error Virtual Address (BADV)... 64

7.3 Conflicts Caused by Control Status Register Related Data.. 60

4.2.1 CSR Access Commands..45

6.2 Exceptions...56

5.1 Physical Address Space..49

6.2.2 Exception Priority.. 56

5.4.3 TLB Software Management.. 51

7.4.1 Current Mode Information (CRMD)..60

5.4 Page Table Mapping Storage Management.. 50

7.4.11 LLBit Control (LLBCTL).. 65 7.5 Mapped Address

Translation Related Control Status Registers... 66

7.2.2 Effects of Accessing Undefined and Unimplemented Control Status Registers... 60

4.2.2 Cache Maintenance Instructions...46

6.1.4 Processor Hardware Interrupt Handling Procedure.. 55

4.2.3 TLB Maintenance Instructions..46

7.4.8 Exception Entry Address (EENTRY).. 65

7.4.4 Exception Control (ECFG)..62

5.3 Storage Access Types...50

5.4.2 TLB Entries...50

6.1.2 Interrupt Priority.. 55

6.2.1 Exception Entrances...56

6.2.3 General Procedures for Handling Exceptional Hardware...56

6.3 Reset...57

7.4.5 Exception Status (ESTAT)..63

6.1 Interrupt..55

7.2 Description of Control Status Register Access Characteristics...60

7.4.2 Pre-Exception Mode Information (PRMD).. 62

7.4.9 Processor ID (CPUID)...65

7. Control Status Register..59

6. Exceptions and Interruptions...55

II

5.4.4 TLB-based Virtual-to-Physical Address Translation Process..53

6.1.3 Interrupt Entry Point... 55

Machine Translated by Google

Dragon Architecture 32 -bit Simplified Reference Manual

7.5.4 Address Space Identifier (ASID)..68

7.5.2 TLB High Entries (TLBEHI)..66

7.5.1 TLB Index (TLBIDX).. 66

8.2.2 Logical Right Shift..76

8.2.5 Converting Single-Precision Floating-Point Numbers to Signed Double-Word Integers..77

7.5.5 Global Directory Base Address in Lower Half-Address Space (PGDL)...68 7.5.6 Global Directory

Base Address in Higher Half-Address Space (PGDH).. 68

9 Appendix B: List of Instruction Codes.. 79

8.2.4 Converting Single-Precision Floating-Point Numbers to Signed Word Integers.. 76

7.6.4 Timer Interrupt Clearing (TICLR)..71

7.6.1 Timer Number (TID)..70

7.5.9 Direct Mapping Configuration Window (DMW0~DMW1)..69

8.2.1 Logical Left Shift...76

8.2.7 Converting Double-Precision Floating-Point Numbers to Signed Double-Word Integers..77

8.2.8 Rounding Single-Precision Floating-Point Numbers... 77

III

8.2.6 Converting Double-Precision Floating-Point Numbers to Signed Word Integers...77

7.5.3 Low bits of TLB entries (TLBELO0, TLBELO1)...67

7.5.7 Global Directory Base Address (PGD)..69

8.2.3 Arithmetic Right Shift.. 76

7.5.8 TLB Refill Exception Entry Address (TLBRENTRY).. 69

7.6 Timer-related control status registers..70

7.6.2 Timer Configuration (TCFG).. 70

8.1 Operator Interpretation in Pseudocode.. 73

8 Appendix A Functional Definition Pseudocode Description..73

7.6.3 Timer Value (TVAL).. 70

8.2 Pseudocode Description of Functions..75

8.2.9 Rounding Double-Precision Floating-Point Numbers... 77

Machine Translated by Google

Machine Translated by Google

Catalog

Dragon Architecture 32 -bit Simplified Reference Manual

Figure 5-1 TLB Entry Format...50

Figure 3-1 Floating-point registers..25

Figure 1-1 Components of the Dragon Structure..1

Figure 2-1 General-Purpose Registers and PC...5

In

Machine Translated by Google

Table 7-4 Extended Instruction Enable Register Definitions.. 62

Table 7-25 Timer Remaining Register Definitions... 70

Table 3-3 Numerical Calculation Methods for Double-Precision Floating-Point Numbers... 24

Table 7-20 Global Directory Base Address Register Definitions.. 69

Table 7-26 Timer Interrupt Clear Register Definitions.. 71 Table 8-1 Statement Keyword

Explanations...73

Table 7-9 Error Virtual Address Register Definitions.. 64

Table 7-16 TLB Entries: Low-order Register Definitions..67 Table 7-17 Address Space Identifier

Register Definitions...68

Table 8-3 Explanation of Arithmetic Operators..74

Table 8-7 Operator Precedence.. 75

Table 7-15 TLB Page Table High-Level Register Definitions..66

Table 3-1 Basic Floating-Point Instructions for Single-Precision Floating-Point Numbers and Word Integers... 23

Table 3-2 Single-Precision Floating-Point Number Numerical Calculation Methods.. 23

Table 8-5 Bitwise Operator Explanation.. 75 Table 8-6 Logical Operator

Explanation..75

Table 7-1 Overview of Control Status Registers.. 59 Table 7-2 Definition of Current

Mode Information Register... 61

Table 7-6 Exception Status Register Definitions... 63 Table 7-7 Exception Encoding

Table... 63

Table 7-19 Definitions of Global Directory Base Address Registers in the High Half-Address Space...68

Table 7-5 Exception Configuration Register Definitions.. 62

Table 7-24 Timer Configuration Register Definitions...70

WE

Table 3-5 Default Results for Floating-Point Exceptions... 27

Table 7-3 Definition of the Pre-Exception Mode Information Register..62

Table 8-2 Definitions of Bit String Operators... 74

Table 7-11 Processor Number Register Definitions..65 Table 7-12 Data Storage Register

Definitions...65

Table 7-23 Timer Number Register Definitions... 70

Table 7-18 Definitions of Global Directory Base Address Registers in the Lower Half-Address Space...68

Table 8-4 Explanation of Comparison Operators... 74

Table 3-4 FCSR0 Register Field Definitions... 26

Table 1-1 Typical Instruction Encoding Format of the Dragon Architecture 32-bit Simplified Version...2

Table 7-14 TLB Index Register Definitions... 66

Table 7-21 TLB Refill Exception Entry Address Register Definitions...69 Table 7-22 Direct Mapping Configuration

Window Register Definitions...69

Table 7-8 Exception Return Address Register Definitions.. 64

Table 7-13 LLBit Register Definition...65

Table 7-10 Exception Entry Address Register Definitions... 65

Dragon Architecture 32 -bit Simplified Reference Manual

Table of Contents

Machine Translated by Google

LoongArch

1 Introduction

This means that the same results are obtained when running on a machine compatible with the LA64 architecture. On the other hand, this backward binary compatibility is limited to application software.

The architecture uses a load/store approach, meaning only load/store memory access instructions can access memory; other instructions operate on registers within the processor core.

LoongArch is a Reduced Instruction Set Computing (RISC) style architecture.

The core of the Dragon architecture consists of two parts: a non-privileged instruction set and a privileged instruction set. The non-privileged instruction set defines commonly used integer instructions.

The system architecture is characterized by fixed instruction lengths and standardized encoding formats. Most instructions have only two source operands and one destination operand.

Compatible with LA32 architecture. "Application-level backward binary compatibility" means that the binary representation of application software using the LA32 architecture can be directly...

An immediate value in a device or instruction code.

The same results are always obtained when running on machines with the same architecture.

Loongson SIMD Extension (LSX) and Loongson Advanced SIMD Extension (LSX)

Loongson Binary Translation (LBT) and Loongson Virtualization (LVZ) extensions

Dragon Architecture 32 -bit Simplified Reference Manual

The Dragon architecture comes in two versions: 32-bit and 64-bit, referred to as the LA32 and LA64 architectures, respectively. The LA64 architecture uses application-level backward binary.

The Dragon architecture uses a base component (Loongson Base) plus an extension component (as shown in Figure 1-1). The extension component includes:

(Referred to as LASX).

The architecture specification does not guarantee that the binaries of system software (such as the operating system kernel) running on LA32-compatible machines will be directly compatible with LA64.

The LA32-bit version of the Dragon architecture includes both integer and floating-point instructions, fully supporting the generation of efficient target code by existing mainstream compilation systems.

1.1 Overview of Dragon Architecture

Loongson Basic Instruction Set

Towards

Binary Translation Extension Advanced Vector ExtensionsVirtualization Extension

quantity

Expand

exhibition

LBT LSX LASX

Loongson Base

LVZ

1

Figure 1-1 Components of the Dragon Architecture

Machine Translated by Google

0

5

2 0

9

2 1 1

3

2

8

1

4 6 7

0 2

7 1 4

1

8

1 1

0

2 1

3

0

2 9

1

4 2

3 3

9 1

2

3 6

0

0

0

8

2 1

7 5 5 0

1 2 2

1 6

0 0 0 2

2

0

0 1

2

4R-type

2R-type

Table 1-1 Typical Instruction Encoding Format of the Dragon Architecture 32 -bit Simplified Version

3R-type

2RI8-type

2RI12-type

2RI14-type

1RI21-type

I26-type

2RI16-type

All instructions in the Dragon architecture 32-bit simplified version are 32-bit fixed length, and instruction addresses require 4-byte boundary alignment.

This manual will begin with a detailed description of the specifications for the 32-bit simplified version of the Dragon architecture in Chapter 2. Chapters 2 and 3 specifically cover the architecture...

The basic components have been further simplified to make them easier to implement and convenient for widespread use in teaching and research.

The non-privileged instruction set portion of the architecture includes the functional definitions of basic integer instructions and basic floating-point instructions, as well as their application-level programming model. Chapter 4

They are arranged sequentially from high to low. If the instruction contains immediate operands, the immediate field is located between the register field and the opcode field.

An address error exception will be triggered if the address is misaligned.

The length varies depending on the instruction type. Specifically, it includes 9 typical instruction encoding formats, namely 3 encoding formats without immediate values.

The specific definitions of these nine typical encoding formats are as follows. It should be noted that there are a few instructions whose instruction encoding fields are not entirely equivalent to these nine typical formats.

The instruction encoding style is such that all register operand fields are arranged sequentially from bit 0 to bit 1. The opcode starts at bit 31.

Chapters 7 through 7 cover privileged resources in the infrastructure, primarily including privileged instructions and control and status registers.

It's not a standard instruction encoding format, but rather a slightly modified version. However, the number of such instructions is small, and the changes are minor, so they won't significantly impact...

Dragon Architecture 32 -bit Simplified Reference Manual

This document introduces the Register (CSR) and its functional specifications regarding operating modes, exceptions and interrupts, and memory management. (The main text of this document...)

The pseudocode descriptions involved in defining the function of the instructions are concentrated in Appendix A, while the specific encoding definitions of the instructions are uniformly listed in Appendix B.

Equations 2R, 3R, and 4R, and six encoding formats containing immediate values: 2RI8, 2RI12, 2RI14, 2RI16, 1RI21, and 126. Table 1-1 lists these.

This causes inconvenience for developers of the compilation system.

1.2 Instruction Encoding Format

day

rd

rd

rj

I8

opcode

rd

rd

rd rj

I12

I26[15:0]

opcode

rj opcode rd

opcode

rj

rj

rj

I26[25:16]

opcode

I14

opcode

opcode

I21[20:16]

rj

rj

I16

rk

opcode

opcode

rk

I21[15:0]

rd

Machine Translated by Google

1.3 Mnemonic Format for Instruction Assembly

1.4 Some writing rules adopted in this manual

B and C are used to form different instruction names, and A[B] indicates that A and AB are used to form different instruction names. For example, ADD.{W/D}

Used to label floating-point registers. Here, N is a number indicating that the operation is performed on register number N in the register file.

Secondly, the vast majority of instructions use a suffix in the form of ".XX" in the instruction name to indicate the target of the instruction, and this type of suffix is only used in specific instructions.

This is used to characterize the type of the operand. For operands of integer type, the instruction name suffix is .B, .H, .W, .BU, .HU, or .WU.

The first suffix indicates the destination operand, and the second suffix indicates the source operand. If the source and destination operand details are more...

The order of operands must be consistent. For example, in the instruction "MULW.D.WU rd, rj, rk", .D corresponds to the destination operand rd, and .WU corresponds to the source operands rj and rk.

The original 32-bit checksum is used to generate a new 32-bit checksum, which is then written into rd.

All instructions use a suffix in the form of ".XX" to indicate the operand of the instruction. This applies when the data width of the operand is implemented by a 32-bit processor.

Do not specify whether the data type operated on by this instruction is a signed byte, a signed half-word, a signed word, an unsigned byte, an unsigned half-word, or an unsigned byte.

For brevity, this manual uses a rule for abbreviating command names. In this rule, {A/B/C} indicates that A, B, C, and C are used respectively here.

The instruction assembly mnemonic format mainly includes two parts: the instruction name and the operands. The Dragon Architecture 32-bit Simplified Edition specifies the prefix and suffix of the instruction name and operands.

There are some differences. In the introduction of commands and functions in this manual, such commands are often grouped together for easy learning by the user.

First, integer and floating-point instructions are distinguished by the prefix letter of their instruction names. All non-vector floating-point instructions begin with the letter "F".

These are instructions whose names begin with "F" and whose suffixes are .H, .S, .D, .W, and .WU, respectively indicating the data type the instruction operates on.

These are half-precision floating-point numbers, single-precision floating-point numbers, double-precision floating-point numbers, signed words, and unsigned words. It should be noted that not all instructions...

The prefix 'U' is omitted, but this does not restrict the operands to only signed numbers. This applies to operands that are floating-point types, or more specifically...

The first .W corresponds to rd, .B corresponds to rj, and the second .W corresponds to rk, indicating that this CRC check operation compares the byte message in rj with the byte message in rk.

Register operands are identified by their initial letter, indicating which register file they belong to. General-purpose registers are labeled "rN", and those are labeled "fN".

beginning.

Dragon Architecture 32 -bit Simplified Reference Manual

A unified approach was taken to facilitate use by assembly programmers and compiler developers.

State instructions and instructions that move data between different register files also do not have this suffix indicating the type of operand.

If the data width and whether it is signed or unsigned are the same, but different from the destination operand, then the instruction name will have two suffixes, from left to right.

When the data width and sign of the source and destination operands are the same, the instruction name has only one suffix. If all source operations

In the instruction set defined in the 32-bit simplified version of the Dragon architecture, there are often some instructions that have the same or similar operation modes, differing only in the objects they operate on.

`rk` indicates that this multiplication involves multiplying two unsigned words, and the resulting double word is written to ̀rd`. For example, the instruction "CRC.WBW rd, rj, rk"

However, there is a special case: when whether the operands are signed or unsigned does not affect the result, the suffix in the instruction name...

The 64-bit architecture still determines this, as seen in instructions like SLT and SLTU, which do not include suffixes. Furthermore, privileges for operating CSR, TLB, and Cache also apply.

If the instruction is complex, then the instruction name will list the destination operand and each source operand from left to right, in the same order as the later operands in the instruction mnemonic.

1.4.1 Command Name Abbreviation Rules

3

Machine Translated by Google

1.4.2 Control Status Register Designation Method

This refers to the field named #### in the control status register whose name is abbreviated as %%%% . For example, CSR.CRMD.PLV represents the CRMD field.

The Dragon architecture 32-bit simplified version defines a series of control and status registers (CSRs) for control.

ADD[I].{W/D} represents the four instruction names: ADD.W, ADD.D, ADDI.W, and ADDI.D.

Dragon Architecture 32 -bit Simplified Reference Manual

This represents the instruction names ADD.W and ADD.D, while BLT[U] represents the instruction names BLT and BLTU. A more complex version...

They have very similar instruction codes.

The execution behavior of control instructions is described, and each Control Request (CSR) typically contains several fields. This manual will use the form CSR.%%%%.#### throughout the description.

It is important to note that this abbreviation rule is merely a writing rule; it does not mean that several instructions abbreviated together must also be...

The PLV field in the register.

4

Machine Translated by Google

5

Figure 2-1 General-purpose registers and PC

2.1 Basic Integer Instruction Programming Model

Readers who require a more comprehensive and in-depth understanding can refer to the relevant chapters in the manual based on the prompts in the text.

part.

Point instructions are divided into two parts. This chapter will describe the integer instruction part. The basic integer instruction part is the most fundamental part of the non-privileged instruction subset.

Dragon Architecture 32 -bit Simplified Reference Manual

The non-privileged instruction set of the Dragon architecture 32-bit simplified version can be divided into basic integer instructions and basic floating-point instructions based on the differences in the software runtime context.

The basic integer instruction programming model described in this section only covers the aspects that application software developers need to focus on. This content primarily belongs to...

The concept of privileged resources will be introduced to ensure the completeness of the narrative. While the topic of privileged resources is touched upon here, it will not be elaborated upon.

The non-privileged parts of the architecture, however, are always related to some privileged resources in the runtime environment of application software, so they are used where necessary.

There are five data types that basic integer instructions operate on: bit (b), byte (B, 8 bits), halfword (H, 16 bits), and word (W, 32 bits). The LA32 architecture does not support double-word

operations.

Byte, half-word, and word data types all use the two's complement encoding method.

The registers involved in basic integer instructions include the general-purpose register (GR) and the program counter.

Couner (abbreviated as PC), as shown in Figure 2-1.

Integer instructions.

2 Basic Integer Instructions

...

r30

r2

r0

31

r1

r3

0

0

r31

PC

2.1.1 Data Types

2.1.2 Registers

Application software refers to software that cannot directly manipulate privileged resources within the architecture. In the Linux operating system, it refers to software that runs in user mode.
1

Machine Translated by Google

1

An interrupt input signal triggers this. In this architecture reference manual, we will strictly distinguish between "generating an exception/interrupt" and "triggering an exception/interrupt".

This will trigger an Address Fetch Error Exception (ADEF).

The handling of exceptions and interruptions falls under the scope of privileged resource management in the architecture. This section primarily focuses on exceptions that are perceptible to application software.

Dragon Architecture 32 -bit Simplified Reference Manual

ÿ Address Error Exception: When a program malfunctions, causing an illegal instruction fetch, i.e., the fetch address is not aligned to a 4-byte boundary,

In the Application Binary Interface (ABI), r1 is always used as a register to store the return address of a function call.

The PC register is indirectly modified by inbound and exception return instructions. However, it can be directly read as a source operand for some non-jump instructions.

The Dragon architecture 32-bit simplified version defines two privilege levels (PLVs): PLV0 and PLV3. Application software should run at the non-privileged PLV3 level to isolate it from system

software such as the operating system running at PLV0.

Exceptions and interrupts interrupt the currently executing application, switching the program execution flow to the exception/interrupt.

The difference between the two concepts is that the former may not necessarily cause a change in the execution flow, while the latter will definitely change the current execution flow and transfer it to the exception/interrupt handler.

2.1.2.2PC

Here is a brief introduction.

There is only one PC (Program Counter), which records the address of the current instruction. The PC register cannot be directly modified by instructions; it can only be modified by jump instructions and exception traps.

Integer instructions and general-purpose registers are orthogonal. That is, from an architectural perspective, any register operand in these instructions can use a 32-bit register.

2.1.2.1 General-purpose registers

If it is treated as not existing, then the instruction not existing exception (INE) will be triggered immediately.

There are 32 general-purpose registers GR, denoted as r0~r31, with register 0 (r0) always having a value of 0. The bit width of GR is 32 bits. (Basic)

Any of the GR instructions. The only exception is that the destination register implicitly included in the BL instruction is always register r1, number 1. In the standard Dragon architecture...

Utensils.

Execution begins at the entry point of the handler. Exceptions are triggered by unusual conditions that occur during instruction execution, while interrupts are caused by external events (such as...).

ÿ Privileged Instruction Error Exception: Executing a privileged instruction in an application will immediately trigger an instruction privilege level error exception (IPE).

At the mouth.

For more information on privilege levels, please see Section 4.1 .

The width of is always the same as the width of GR.

ÿ System call exception: Executing the SYSCALL instruction will immediately trigger a system call exception (SYS).

ÿ Breakpoint Exception: Executing the BREAK instruction will immediately trigger a breakpoint exception (BRK).

ÿ No exceptions to the instruction: The instruction code being executed is not defined in the architecture, or the architecture specification defines the instruction in the current context.

2.1.4 Exceptions and Interruptions

2.1.3 Execution Privilege Level

6

In the 32-bit simplified version of the Loongson architecture, interrupts are always invisible to application software.

Machine Translated by Google

7

1

The instruction cache of a certain processor core is consistent with the cache or cache coherent I/O of other processor cores.

Floating-point error exception (FPE). See section 3.1.4 for more information.

These contents involve the relevant specifications of privileged resources in the architecture, which will be introduced in the latter half of this manual.

The Dragon architecture 32-bit simplified version only requires that strongly ordered, non-cached memory access instructions cannot have side effects; that is, such instructions cannot...

The access range is: 0~ 231-1 .

Even if the action originates from a transfer prediction, it is permitted to execute. To prevent such speculative executions from causing unauthorized out-of-core memory accesses, execution is allowed.

Strongly-ordered Uncached (SUC). The memory access type is bound to the accessed virtual address, determined by the MAT (Memory Access Type) field in the page table entry. The value range of the MAT field

corresponds to the memory access type as follows: 0 — Strongly-ordered Uncached, 1 —

—Consistently cacheable, 2/3 reserved. The process of setting storage access types is transparent to application software.

Managing the address space requires filtering out risky accesses within the on-chip network.

Consistent caching. This type of memory access is typically used to achieve high performance.

The Dragon architecture 32-bit simplified version only uses little-endian storage.

Memory access must satisfy sequential consistency, meaning that all accesses are executed strictly in the order specified in the program, and no new access can begin until the current memory access operation is completely completed.

When accessing objects using a consistent cacheable access type, the accessed object can be either the final stored object or a cached object maintained in the processor.

This section only covers the virtual memory address space visible to the application software. The translation from virtual memory addresses to physical memory addresses is determined by the runtime environment.

ÿ Floating-point error exception: When an abnormal data condition occurs during the execution of a floating-point instruction, special handling is required, which may generate or trigger a basic error.

Dragon Architecture 32 -bit Simplified Reference Manual

Next memory access operation.

Speculative execution. Software can leverage this characteristic to access I/O devices in the system via strongly ordered, unbuffered memory access instructions. However, the gantry...

In the Dragon architecture 32-bit simplified version, the memory address space is a byte-addressable linear contiguous address space. The recommended memory address space for application software...

The 32-bit simplified version allows fetch operations on strongly ordered, uncached types to have side effects. This means that fetch operations on strongly ordered, uncached types...

The Dragon architecture 32-bit simplified version supports two storage access types: Coherent Cached (CC) and Strong Cached.

2.1.7.1 Cache Coherence Maintenance of Instruction Cache

Cache consistency between Masters must be maintained by hardware.

When accessing data using either strong-order uncached or weak-order uncached types, only the final stored object can be accessed directly. The difference between the two is: strong-order uncached...

2.1.6 Tail end

2.1.5 Memory Address Space

2.1.7 Storage Access Types

Within this range, the storage access type is configured by the specified control status register.

This only applies to application software. For system software, the address falls within the address range configured in the direct address translation mode or the mapped address translation mode.

Machine Translated by Google

Natural alignment refers to the following: when accessing a half-word object, the address is aligned to a 2-byte boundary; when accessing a word object, the address is aligned to a 4-byte boundary; when accessing a double-word object, the address is aligned to an 8-byte

boundary; when accessing a 128-bit vector object, the address is aligned to a 16-byte boundary; and when accessing a 256-bit vector object, the address is aligned to a 32-byte boundary.

Due to the existence of pipelined architecture and speculative instruction fetching, software still needs to use the IBAR instruction to ensure that instruction fetching will always see the execution of store instructions.

2. Before any normal memory access operation is allowed to be executed, all synchronization operations that precede this memory access operation in the same processor core have already been performed.

The software needs to use cache maintenance instructions to ensure cache consistency between the instruction cache and the data cache within the same core. Furthermore, because...

The instructions (i.e., Hit Invalidate I-Cache and Hit Invalidate and Writeback D-Cache) are downgraded from privileged instructions to user-mode instructions.

All memory access addresses for instruction fetch operations must be aligned to 4-byte boundaries; otherwise, an Address Fetch Error Exception (ADEF) will be triggered.

1. The execution of synchronization operations satisfies the sequential consistency condition. That is, synchronization operations are executed strictly in accordance with their order of appearance in the program across all processor cores.

A brief description of the weak consistency model adopted by the architecture.

Access to the shared memory unit is protected to ensure that access to the shared memory unit by multiple processor cores is mutually exclusive. The order of memory access events is also considered.

3. Before any synchronization operation is allowed to be executed, all ordinary memory access operations that precede this synchronization operation in the same processor must have been completed.

The Dragon architecture 32-bit simplified version uses a weak consistency (WC) model for storage consistency. This section only...

Completed;

The cache coherency between the processor core's instruction cache and data cache is maintained by software. This means that for self-modifying code,

Dragon Architecture 32 -bit Simplified Reference Manual

Effect. When using software to maintain cache coherence between the same core instruction cache and data cache, CACOP with codes equal to 8 and 9...

In the Dragon architecture 32-bit simplified version, the instructions that can generate synchronous operations are the DBAR, IBAR, and LL-SC instruction pairs.

If it is naturally aligned to 1, it will trigger an address unaligned exception (ALE).

become.

The following restrictions shall be imposed:

In a weak consistency model, synchronization operations and regular memory accesses need to be distinguished. Programmers must use the synchronization operations defined by the architecture to handle these operations.

The synchronization operations are executed in the order they are performed, and the next synchronization operation cannot begin until the current synchronization operation is completely completed.

All memory access instructions must undergo address alignment checks. For memory access instructions that require address alignment checks, if the address they access is not...

2.1.9 Brief Description of Storage Consistency Model

2.1.8 Unaligned memory access

8

Machine Translated by Google

GR[rd] = tmp[31:0]

SUB.W:

tmp = GR[rj] + GR[rk]

ADD.W:

GR[rd] = tmp[31:0]

tmp = GR[rj] - GR[rk]

GR[rd] = tmp[31:0]

ADDI.W:

tmp = GR[rj] + SignExtend(si12, 32)

2.2 Overview of Basic Integer Instructions

middle.

sub.in

Use register rd.

rd, rj, rk

ADD.W adds the data in general-purpose register rj to the data in general-purpose register rk, and writes bits [31:0] of the result into general-purpose register rd.

rd, rj, rk

The above instructions do not perform any special handling for overflow situations.

2.2.1.3LU12I.W

middle.

SUB.W subtracts the data in general-purpose register rj from the data in general-purpose register rk, and writes bits [31:0] of the result into general-purpose register rd.

2.2.1.1ADD.W, SUB.W

Dragon Architecture 32 -bit Simplified Reference Manual

Command format: add.w

This instruction does not perform any special handling for overflow situations when it is executed.

Command format: lu12i.w rd, si20

2.2.1.2ADDI.W

Command format: addi.w rd, rj, si12

ADDI.W adds the 32-bit sign-extended immediate value si12 to the data in the general-purpose register rj, and writes the result back to the register.

2.2.1 Arithmetic Operation Instructions

9

Machine Translated by Google

10

LU12I.W concatenates the least significant bit of the 20-bit immediate value si20 with 12 bits of 0 and writes it into the general-purpose register rd.

Dragon Architecture 32 -bit Simplified Reference Manual

This instruction, along with the ORI instruction, is used to load immediate values of more than 12 bits into a general-purpose register.

rd, rj, si12

Command format: slt

SLTI treats the data in the general-purpose register rj and the data obtained after sign-extending the 12-bit immediate value si12 as a signed integer and performs a size calculation.

SLT compares the data in general-purpose register rj with the data in general-purpose register rk as signed integers. If the former is less than...

SLTUI treats the data in the general-purpose register rj and the data obtained after sign-extending the 12-bit immediate value si12 as an unsigned integer and performs a size comparison.

If the latter, the value of the general-purpose register rd is set to 1; otherwise, it is set to 0.

Command format: slti

rd, rj, rk

If the former is less than the latter, the value of the general-purpose register rd is set to 1; otherwise, it is set to 0.

rd, rj, rk

sltu

rd, rj, si12

2.2.1.4SLT[U]

for the sake of

SLTU treats the data in general-purpose register rj and the data in general-purpose register rk as unsigned integers and compares their magnitudes. If the former is smaller...

If the former is less than the latter, the value of the general-purpose register rd is set to 1; otherwise, it is set to 0.

2.2.1.5SLT[U]I

The data bit width compared by SLT and SLTU is consistent with the bit width of the general-purpose registers of the machine being executed.

The latter will set the value of the general-purpose register rd to 1, otherwise set it to 0.

GR[rd] = (signed(GR[rj]) < signed(tmp)) ? 1 : 0

SLTU:

GR[rd] = {si20, 12'b0}

LU12I.W:

SLT:

GR[rd] = (unsigned(GR[rj]) < unsigned(GR[rk])) ? 1 : 0

SLTI:

GR[rd] = (signed(GR[rj]) < signed(GR[rk])) ? 1 : 0

For SLT:

tmp = SignExtend(si12, 32)

GR[rd] = (unsigned(GR[rj]) < unsigned(tmp)) ? 1 : 0

tmp = SignExtend(si12, 32)

Machine Translated by Google

11

rd, rj, rk

Command format: pcaddu12i

rd in.

2.2.1.6PCADDU12I

2.2.1.7AND, OR, NOR, XOR

Command format: and

The data bit width operated by the above instructions is consistent with the bit width of the general-purpose registers of the machine being executed.

rd, rj, rk

Enter it into the general-purpose register rd.

or

nor

PCADDU12I concatenates the least significant bit of the 20-bit immediate value si20 with 12 bits of 0, adds the PC value of the instruction to the resulting data, and writes the sum to...

The data bit width compared by SLTI and SLTUI is consistent with the bit width of the general-purpose registers of the machine being executed.

Dragon Architecture 32 -bit Simplified Reference Manual

Please note that for SLTUI instructions, immediate values are still sign-extended.

free

rd, si20

The AND operation performs a bitwise logical AND operation between the data in general-purpose register rj and the data in general-purpose register rk, and writes the result back to the general-purpose register.

NOR performs a bitwise OR operation between the data in general-purpose register rj and the data in general-purpose register rk, and writes the result back to the general-purpose register.

OR performs a bitwise logical OR operation between the data in general-purpose register rj and the data in general-purpose register rk, and writes the result to general-purpose register rd.

rd in.

rd, rj, rk

rd, rj, rk

middle.

XOR performs a bitwise logical XOR operation between the data in general-purpose register rj and the data in general-purpose register rk, and writes the result back to the general-purpose register.

GR[rd] = ~(GR[rj] | GR[rk])

GR[rd] = GR[rj] & GR[rk]

GR[rd] = PC + {si20, 12'b0}

PCADDU12I:

AND:

OR:

GR[rd] = GR[rj] | GR[rk]

NOR:

Machine Translated by Google

12

In the general-purpose register rd.

rd, rj, rk mulh.w

Dragon Architecture 32 -bit Simplified Reference Manual

The data bit width operated by the above instructions is consistent with the bit width of the general-purpose registers of the machine being executed.

Command format: mul.w

mulh.wu

2.2.1.8ANDI, ORI, HORI

rd, rj, ui12

rd, rj, ui12

Use register rd.

XORI performs a bitwise logical XOR operation between the data in the general-purpose register rj and the zero-extended 12-bit immediate value, and writes the result to...

The NOP instruction is an alias for the instruction "andi r0, r0, 0". Its function is simply to occupy a 4-byte instruction code location and increment the PC by 4; otherwise...

ORI performs a bitwise logical OR operation between the data in the general-purpose register rj and the 12-bit immediate zero-extended data, and writes the result to the general-purpose register rj.

choir

rd in.

2.2.1.9NOP

The data bit width operated by the above instructions is consistent with the bit width of the general-purpose registers of the machine being executed.

Command format: andi

OR

It will not change the processor state visible to any other software.

rd, rj, rk

rd, rj, rk

ANDI performs a bitwise logical AND operation between the data in the general-purpose register rj and the zero-extended 12-bit immediate value, and writes the result into the register.

In register rd.

2.2.1.10 MUL.W, MULH.W[U]

rd, rj, ui12

CHORUS:

ANDI:

GR[rd] = GR[rj] ̂

FREE:

GR[rk]

GR[rd] = GR[rj] & ZeroExtend(ui12, 32)

WHEN:

GR[rd] = GR[rj] | ZeroExtend(ui12, 32)

GR[rd] = GR[rj] ̂ ZeroExtend(ui12, 32)

Machine Translated by Google

GR[rd] = quotient[31:0]

MULH.WU:

GR[rd] = product[63:32]

GR[rd] = quotient[31:0]

quotient = signed(GR[rj]) / signed(GR[rk])

product = signed(GR[rj]) * signed(GR[rk])

GR[rd] = product[31:0]

MUL.W:

product = signed(GR[rj]) * signed(GR[rk])

GR[rd] = product[63:32]

MULH.W:

DIV.W:

DIV.WU:

quotient = unsigned(GR[rj]) / unsigned(GR[rk])

product = unsigned(GR[rj]) * unsigned(GR[rk])

MULH.WU treats the data in general-purpose register rj and the data in general-purpose register rk as unsigned numbers and multiplies the product.

MUL.W multiplies the data in general-purpose register rj with the data in general-purpose register rk, and writes bits [31:0] of the product into the general-purpose register.

Dragon Architecture 32 -bit Simplified Reference Manual

Use register rd.

[63:32] The bit data is written to the general-purpose register rd after sign extension.

MULH.W multiplies the data in general-purpose register rj and the data in general-purpose register rk as signed numbers, and the product is [63:32].

Command format: div.w

rd, rj, rk

DIV.W and DIV.WU divide the data in general-purpose register rj by the data in general-purpose register rk, and write the quotient into general-purpose register rd.

rd, rj, rk

2.2.1.11 DIV.W[U], MOD.W[U]

Bit data is written into the general-purpose register rd.

middle.

mod.w rd, rj, rk

div.wu

mod.wu rd, rj, rk

13

Machine Translated by Google

14

MOD.WU:

GR[rd] = remainder[31:0]

MOD.W:

SLL.W:

SRA.W:

tmp = SRL(GR[rj], GR[rk][4:0])

remainder = signed(GR[rj]) % signed(GR[rk])

remainder = unsigned(GR[rj]) % unsigned(GR[rk])

GR[rd] = remainder[31:0]

GR[rd] = tmp[31:0]

SRL.W:

GR[rd] = tmp[31:0]

GR[rd] = tmp[31:0]

tmp = SRA(GR[rj], GR[rk][4:0])

tmp = SLL(GR[rj], GR[rk][4:0])

When performing division operations with DIV.W and MOD.W, the operands are both treated as signed numbers. When performing division operations with DIV.WU and MOD.WU,

In the device rd.

SLL.W logically shifts the data in general-purpose register rj to the left, and writes the shift result into general-purpose register rd.

MOD.W and MOD.WU divide the data in general-purpose register rj by the data in general-purpose register rk, and write the remainder into the general-purpose register.

SRA.W performs an arithmetic right shift of the data in the general-purpose register rj, and writes the shift result into the general-purpose register rd.

The remainders are consistent and the absolute value of the remainder is less than the absolute value of the divisor.

2.2.2.1SLL.W, SRL.W, SRA.W

Command format: sll.w

sra.w

When the divisor is 0, the result can be any value, but no exceptions will be triggered.

Dragon Architecture 32 -bit Simplified Reference Manual

SRL.W logically right-shifts the data in general-purpose register rj, and writes the shift result into general-purpose register rd.

All source operands are treated as unsigned numbers.

Each pair of quotient/remainder instructions for DIV.W/MOD.W and DIV.WU/MOD.WU results in a remainder whose sign is relative to the dividend.

srl.w

rd, rj, rk

rd, rj, rk

rd, rj, rk

2.2.2 Shift Operation Instructions

Machine Translated by Google

15

SRAI.W:

GR[rd] = tmp[31:0]

SLLI.W:

tmp = SLL(GR[rj], ui5)

tmp = SRL(GR[rj], ui5)

GR[rd] = tmp[31:0]

SRLI.W:

GR[rd] = tmp[31:0]

tmp = SRA(GR[rj], ui5)

rj, rd, offs16

Command format: slli.w

see

blue

The shift amount of the above shift instructions is the data in bits [4:0] of the general-purpose register rk, and is regarded as an unsigned number.

srli.w

The shift amount of the above shift instructions is the 5-bit unsigned immediate value ui5 in the instruction code.

rj, rd, offs16

SLLI.W logically shifts the data in general-purpose register rj to the left, and writes the shift result into general-purpose register rd.

2.2.3.1BEQ, BNE, BLT[U], BGE[U]

rd, rj, ui5

rj, rd, offs16

SRAI.W performs an arithmetic right shift of the data in general-purpose register rj, and writes the shift result into general-purpose register rd.

blt

2.2.2.2SLLI.W, SRLI.W, SRAI.W

Dragon Architecture 32 -bit Simplified Reference Manual

bge

srai.w

rd, rj, ui5

rd, rj, ui5

SRLI.W logically right-shifts the data in general-purpose register rj and writes the shift result into general-purpose register rd.

Command format: beq rj, rd, offs16

rj, rd, offs16

blue rj, rd, offs16

2.2.3 Transfer Instructions

Machine Translated by Google

if GR[rj]!=GR[rd] :

BEQ:

if GR[rj]==GR[rd] :

PC = PC + SignExtend({offs16, 2'b0}, 32)

BLT:

BGE:

if unsigned(GR[rj]) < unsigned(GR[rd]) :

PC = PC + SignExtend({offs16, 2'b0}, 32)

if unsigned(GR[rj]) >= unsigned(GR[rd]) :

if signed(GR[rj]) < signed(GR[rd]) :

PC = PC + SignExtend({offs16, 2'b0}, 32)

PC = PC + SignExtend({offs16, 2'b0}, 32)

BGEU:

BNE:

PC = PC + SignExtend({offs16, 2'b0}, 32)

PC = PC + SignExtend({offs16, 2'b0}, 32)

if signed(GR[rj]) >= signed(GR[rd]) :

BLTU:

BLTU treats the values of general-purpose register rj and general-purpose register rd as unsigned numbers and compares them; if the former is less than the latter, it jumps to the target.

BNE compares the values of general-purpose register rj and general-purpose register rd. If they are not equal, it jumps to the target address; otherwise, it does not jump.

Dragon Architecture 32 -bit Simplified Reference Manual

Enter the offset value in bytes, which is offs16<<2 in the instruction code.

The URL must be provided; otherwise, the user will not be redirected.

Specify the address; otherwise, do not redirect.

The offset value is extended by the branch instruction, and the resulting offset value is added to the PC of that branch instruction.

BLT compares the values of general-purpose register rj and general-purpose register rd as signed numbers; if the former is less than the latter, it jumps to the target location.

BEQ compares the values of general-purpose register rj and general-purpose register rd. If they are equal, it jumps to the target address; otherwise, it does not jump.

BGE compares the values of general-purpose register rj and general-purpose register rd as signed numbers; if the former is greater than or equal to the latter, it jumps to the target.

Target address; otherwise, do not redirect.

BGEU compares the values of general-purpose register rj and general-purpose register rd as unsigned numbers; if the former is greater than or equal to the latter, it jumps to...

The jump target address for the above six branch instructions is calculated by logically shifting the 16-bit immediate value off16 in the instruction code left by 2 bits before recalculating.

The address must be displayed; otherwise, the user will not be redirected.

However, it should be noted that if the above instructions are written by directly filling in the offset value when writing the assembly code, the immediate value in the assembly representation should be...

16

Machine Translated by Google

PC = PC + SignExtend({offs26, 2'b0}, 32)

PC = PC + SignExtend({offs26, 2'b0}, 32)

B:

BL:

JIRL:

GR[rd] = PC + 4

GR[1] = PC + 4

PC = GR[rj] + SignExtend({offs16, 2'b0}, 32)

JIRLs with rd equal to 0, rj equal to 1, and offs16 equal to 0 are often used as indirect jumps back from calls.

Command format: b

2.2.3.4JIRL

2.2.3.2B

offs26

Command format: bl offs26

The jump target address of this instruction is obtained by logically left-shifting the 26-bit immediate value offs26 in the instruction code by 2 bits and then sign-extending it.

In the LA ABI, general-purpose register r1 is used as the return address register ra.

2.2.3.3BL

It is important to note that if this instruction is written by directly filling in the offset value during assembly, the immediate value in the assembly representation should be filled in with the offset value.

rd, rj, offs16

The offset value in bytes, i.e., offs26<<2 in the instruction code.

B unconditionally jumps to the target address. The target address is obtained by logically left-shifting the 26-bit immediate value ̀offs26` in the instruction code by 2 bits.

JIRL jumps unconditionally to the target address and simultaneously writes the PC value of the instruction plus 4 into the general-purpose register rd.

Dragon Architecture 32 -bit Simplified Reference Manual

The jump target address of this instruction is obtained by logically left-shifting the 16-bit immediate value ̀offs16` in the instruction code by 2 bits and then sign-extending it.

The sign is extended, and the resulting offset value is added to the PC of the branch instruction.

It is important to note that if this instruction is written by directly filling in the offset value during assembly, the immediate value in the assembly representation should be filled in with the offset value.

Command format: jirl

The value is added to the value in the general-purpose register rj.

BL jumps unconditionally to the target address and simultaneously writes the PC value of the instruction plus 4 into general-purpose register r1.

The offset value in bytes, i.e., offs26<<2 in the instruction code.

Add the PC value to the branch instruction.

When rd equals 0, JIRL functions as a regular non-call indirect jump instruction.

17

Machine Translated by Google

2.2.4 Normal Memory Access Instructions

st.b

ld.h

It is important to note that if this instruction is written by directly filling in the offset value during assembly, the immediate value in the assembly representation should be filled in with the offset value.

rd, rj, si12

2.2.4.1LD.{B[U]/H[U]/W}, ST.{B/H/W}

ld.bu

rd, rj, si12

rd, rj, si12

st.w

rd, rj, si12

st.h

rd, rj, si12

rd, rj, si12

The offset value in bytes, i.e., offs16<<2 in the instruction code.

Dragon Architecture 32 -bit Simplified Reference Manual

LD.{B/H} retrieves one byte/half-word of data from memory, signs-extends it, and writes it to the general-purpose register rd. LD.W retrieves one word from memory.

Command format: ld.b

ld.w

ld.hu

Data is written to the general-purpose register rd.

rd, rj, si12

rd, rj, si12

paddr = AddressTranslation(vaddr)

AddressComplianceCheck(vaddr)

GR[rd] = SignExtend(byte, 32)

halfword = MemoryLoad(paddr, HALFWORD)

vaddr = GR[rj] + SignExtend(si12, 32)

paddr = AddressTranslation(vaddr)

vaddr = GR[rj] + SignExtend(si12, 32)

GR[rd] = word

LD.B:

vaddr = GR[rj] + SignExtend(si12, 32)

byte = MemoryLoad(paddr, BYTE)

AddressComplianceCheck(vaddr)

LD.H:

AddressComplianceCheck(vaddr)

word = MemoryLoad(paddr, WORD)

GR[rd] = SignExtend(halfword, 32)

LD.W:

paddr = AddressTranslation(vaddr)

18

Machine Translated by Google

19

The memory address of the above instruction is calculated by adding the value in the general-purpose register rj to the sign-extended 12-bit immediate value si12.

ST.{B/H/W} writes the data in bits [7:0]/[15:0]/[31:0] of the general-purpose register rd into memory.

Dragon Architecture 32 -bit Simplified Reference Manual

LD.{BU/HU} retrieves one byte/half-word of data from memory, zero-extends it, and writes it to the general-purpose register rd.

This will trigger a non-alignment exception.

For the LD.{H[U]/W} and ST.{B/H/W} instructions, as long as the memory access address is naturally aligned, the unaligned exception will not be triggered; otherwise...

vaddr = GR[rj] + SignExtend(si12, 32)

AddressComplianceCheck(vaddr)

LD.BU:

vaddr = GR[rj] + SignExtend(si12, 32)

byte = MemoryLoad(paddr, BYTE)

paddr = AddressTranslation(vaddr)

LD.HU:

paddr = AddressTranslation(vaddr)

vaddr = GR[rj] + SignExtend(si12, 32)

AddressComplianceCheck(vaddr)

GR[rd] = ZeroExtend(halfword, 32)

ST.B:

vaddr = GR[rj] + SignExtend(si12, 32)

AddressComplianceCheck(vaddr)

MemoryStore(GR[rd][15:0], paddr, HALFWORD)

vaddr = GR[rj] + SignExtend(si12, 32)

paddr = AddressTranslation(vaddr)

AddressComplianceCheck(vaddr)

AddressComplianceCheck(vaddr)

MemoryStore(GR[rd][31:0], paddr, WORD)

ST.H:

GR[rd] = ZeroExtend(byte, 32)

ST.W:

paddr = AddressTranslation(vaddr)

halfword = MemoryLoad(paddr, HALFWORD)

MemoryStore(GR[rd][7:0], paddr, BYTE)

paddr = AddressTranslation(vaddr)

Machine Translated by Google

vaddr = GR[rj] + SignExtend({si14, 2'b0}, 32)

The SC.W instruction checks the LLbit bit during execution. It only performs a write operation if the LLbit bit is 1; otherwise, it does not write. This is necessary when the software requires a certain level of success.

Dragon Architecture 32 -bit Simplified Reference Manual

When performing a "read-modify-write" memory access sequence for an atom, a loop needs to be constructed to repeatedly execute the LL-SC instruction pair until SC completes successfully.

PRELD prefetches a cache line of data from memory into the cache. Its memory access address is calculated by adjusting the value in the general-purpose register rj.

The meaning of the value is not yet defined; the processor will treat it as a NOP instruction during execution.

During the execution of a paired LL-SC, the following events will cause the LLbit to be cleared to 0:

rd, rj, si14

Memory address. The mechanism for maintaining the atomicity of memory access operation sequences is that LL.W records the access address and sets a flag (LLbit is set to 1) during execution.

ÿ The ERTN instruction was executed and the KLO bit in CSR.LLBCTL was not equal to 1 at the time of execution;

However, the immediate address offset values presented in the assembly representation of these instructions are still in bytes, that is, their value is si14<<2 in the instruction code.

Command format: preld

Store operations.

2.2.4.2PRELD

To construct this loop, the SC.{W/D} instruction will use a flag indicating whether its execution was successful (which can also be simply understood as what the SC instruction shows when it executes).

The LLbit value is written to the general-purpose register rd and returned.

If the storage access attribute of the LL-SC instruction at the access address is not cached, then the execution result is uncertain.

If the cache attribute of the memory address accessed by the PRELD instruction is not cached, then the instruction cannot perform a memory access operation and is treated as a NOP instruction.

sc.w

Select a value. Currently, hint=0 is defined as load prefetching to the first-level data cache, and hint=8 is defined as store prefetching to the first-level data cache. Other hints...

hint, rj, si12

rd, rj, si14

The value is summed with the sign-extended 12-bit immediate value si12. The memory access address falls within the cache line to be prefetched.

It is important to note that when calculating the memory address, the above instruction requires shifting si14 two bits to the left before adding it to the base address.

deal with.

2.2.5.1LL.W, SC.W

ÿ Other processor cores or the cache coherent I/O master have completed a process in the cache line containing the address corresponding to that LLbit.

The instruction pair LL.W and SC.W is used to implement an atomic "read-modify-write" memory access sequence. The LL.W instruction fetches memory from a specified address.

The ̀PRETLD` instruction provides hints to the processor about the type of data to prefetch and which cache level the fetched data should be placed in. Hints range from 0 to 31, with 32 possible values.

The PRELD instruction will not trigger any MMU or address-related exceptions.

Command format: ll.w

After sign-expanding a single word of data, it is written to the general-purpose register rd. The paired SC.W instruction operates on data of the same width and accesses the same data.

2.2.5 Atomic memory access instructions

20

Machine Translated by Google

21

The IBAR instruction is used to synchronize the internal store and fetch operations of a single processor core. Its immediate hint is used to specify the instruction.

The DBAR instruction is used to establish a barrier between load/store memory access operations. Its immediate hint value indicates the synchronization of that barrier.

Dragon Architecture 32 -bit Simplified Reference Manual

2.2.6.1DBAR

Executing the BREAK instruction will immediately and unconditionally trigger a breakpoint exception.

hint

Only after a memory access operation can it begin to be executed.

Command format: ibar hint

If no specific function is implemented, all other hint values must be executed as hint=0.

This indicates the synchronization target and the degree of synchronization for the barrier.

A hint value of 0 is required by default. It ensures that any instruction fetch following the "IBAR 0" instruction will be able to observe the "IBAR 0" instruction.

Executing the SYSCALL instruction will immediately and unconditionally trigger a system call exception.

code

The information carried in the code field of the instruction code can be used by exception handling routines as parameters passed to them.

Command format: dbar

2.2.7.1SYSCALL

Objects and synchronization levels.

A hint value of 0 is required by default and indicates a fully functional synchronization barrier. This only applies after all previous load/store memory accesses have been performed.

The information carried in the code field of the instruction code can be used by exception handling routines as parameters passed to them.

Command format: break

The results of all previous store operations.

Command format: syscall code

2.2.7.2BREAK

2.2.6.2IBAR

Only after the "DBAR 0" instruction has been completely executed can it begin execution; and only after "DBAR 0" has finished executing can all subsequent load/store operations begin.

2.2.7 Other Miscellaneous Instructions

2.2.6 Barrier Commands

Machine Translated by Google

22

rj

rdcntvh.w

Dragon Architecture 32 -bit Simplified Reference Manual

rd

rd

In the 32-bit simplified version of the Dragon architecture, the instructions RDCNTID rj, RDCNTH, and RDCNTL.W rd, RDCNTH.W rd, and RDCNTID rj actually correspond to the three

RDTIMEL.W rd, zero, RDTIMEH.W rd, zero, and RDTIMEL.W zero, rj instructions in the 32-bit Dragon architecture, respectively.

The RDCNTV{L/H}.W instruction is used to read information from a constant frequency timer, where RDCNTVL.W reads bits [31:0] of the Counter and writes them to the Counter.

In the general-purpose register rd, RDCNTVH.W reads bits [63:32] of the Counter. The RDCNTID Counter ID information is written to the general-purpose register rj.

2.2.7.3RDCNTV{L/H}.W, RDCNTID

Special uses of the command.

Command format: rdcntvl.w

radcnts

The Dragon architecture 32-bit simplified version defines a constant frequency timer, the main body of which is a 64-bit counter called the Stable Counter.

Each timer has a software-configurable, globally unique number called the Counter ID.

middle.

The Stable Counter is set to 0 after reset, and then increments by 1 every counting clock cycle. When it reaches all 1s, it automatically wraps back to 0 and continues incrementing.

Machine Translated by Google

3.1 Basic Floating-Point Instruction Programming Model

3 Basic Floating-Point Instructions

Basic floating-point instructions cannot be implemented independently of basic integer instructions. Generally, we recommend implementing both basic integer instructions and basic floating-point instructions.

bit[22]

Implement basic floating-point instructions, or implement only the instructions in the basic floating-point instructions that operate on single-precision floating-point numbers and word integers (see Table 3-1).

Floating-point instructions. However, for some cost-sensitive embedded applications with extremely low floating-point processing performance requirements, the architectural specifications also allow for...

Fraction

Floating-point data types include single-precision floating-point numbers and double-precision floating-point numbers, both of which conform to the definitions in the IEEE 754-2008 standard specification.

3.1.1.1 Single-precision floating-point numbers

Programming with basic floating-point instructions builds upon the basic integer instruction programming model and further delves into the content discussed in this section.

Floating-point comparison instructions

Floating-point conversion instructions

Single-precision floating-point numbers are 32 bits wide and are organized in the following format:

This chapter introduces the floating-point instructions in the non-privileged subset of the Dragon Architecture 32-bit Compact Edition. The basic floating-point instructions in the Dragon Architecture 32-bit Compact Edition...

Dragon Architecture 32 -bit Simplified Reference Manual

The function definition of the point instruction follows the IEEE 754-2008 standard.

Floating-point arithmetic instructions

S

Floating-point transfer instructions

The basic floating-point instruction programming model described in this section only covers the aspects that application software developers need to focus on. Software personnel using...

Floating-point branch

instructions, floating-point normal memory access instructions FLD.S, FST.S

Exponent In

The floating-point values represented by the different values of the S, Exponent, and Fraction fields are shown in Table 3-2:

S

MOVCF2FR, MOVGR2CF, MOVCF2GR

0

0 Any value

0

FFINT.SW, FTINT.WS, FTINTRM.WS, FTINTRP.WS, FTINTRZ.WS, FTINTRNE.WS,

FMOV.S, FSEL, MOVGR2FR.W, MOVFR2GR.S, MOVGR2FCSR, MOVFCSR2GR, MOVFR2CF,

=0

Exponent

-0

Fraction

1

0

0

BCEQZ, BCNEZ

!=0

23

FADD.S, FSUB.S, FMUL.S, FDIV.S, FMADD.S, FMSUB.S, FNMADD.S, FNMSUB.S, FMAX.S, FMIN.S,

Table 3-1 Basic Floating-Point Instructions for Single-Precision Floating-Point Numbers and Word Integers

FMAXA.S, FMINA.S, FABS.S, FNEG.S, FSQRT.S, FRECIP.S, FRSQRT.S, FCOPYSIGN.S, FCLASS.S

The denormalized number has a value of +2 -126 × (0.Fraction).

FCMP.cond.S

Table 3-2 Methods for Calculating Single-Precision Floating-Point Numbers

0 +0

3.1.1 Floating-point data type

23 22 31 30 0

Machine Translated by Google

0

Any value 0

0

1

0

Fraction

The denormalized number has a value of +2 -1022 × (0.Fraction).

1

1

1. Any value

!=0

any value

+0

-0

0

0

0x7FF

Any value 0

0xFF

Negative infinity (-ÿ)

Positive infinity (+ÿ)

Exponent

Positive infinity (+ÿ)0

Normalization number, with a value of +2 (Exponent - 127) × (1.Fraction)

any value 1

Signaling Not a Number (SNaN)

Normalization number, with a value of -2 (Exponent-127)×(1.Fraction)

Normalization number, with a value of -2 (Exponent - 1023) × (1.Fraction)

0

Quiet Not a Number (QNaN)

[1, 0x7FE] Any value

Normalization number, with a value of +2 (Exponent - 1023) × (1.Fraction)

Table 3-3 Methods for Calculating Double-Precision Floating-Point Numbers

=0

0xFF

1. Any value

=0

0

Negative infinity (-ÿ)

0

0 Any value
!=0

=0

0x7FF

0 Any value

0

The denormalized number has a value of -2 -126 × (0.Fraction).

!=0

1. Any value

S

0

Quiet Not a Number (QNaN)

0 Any value

24

[1, 0xFE]

Signaling Not a Number (SNaN)

any value 1

The denormalized number has a value of -2 -1022 × (0.Fraction).

1. Any value

For the specific meanings of ±ÿ, SNaN, and QNaN, please refer to the IEEE 754-2008 standard specification.

Exponent bit[22]

There are two situations.

S

Case 1: When an instruction generates an Invalid Operation floating-point exception due to a source operand containing SNaN, but the Invalid Operation floating-point exception...

The priority rule for source operands is: if there are two source operands fj and fk, then fj has higher priority than fk; if there are three...

For the specific meanings of ±ÿ, SNaN, and QNaN, please refer to the IEEE 754-2008 standard specification.

3.1.1.3 The NOT result produced by the instruction

Double-precision floating-point numbers are 64 bits wide and are organized in the following format:

It is then propagated to the corresponding NaN.

Dragon Architecture 32 -bit Simplified Reference Manual

The non-number result of 1 generated by floating-point instructions either comes from NaN propagation or is generated directly. The situation requiring NaN propagation is...

Fraction In

Inbit[51] Exponent

If point exceptions are not enabled, a QNaN result will be generated. The value of this QNaN is the highest priority SNaN among the source operands.

The floating-point values represented by the different values of the S, Exponent, and Fraction fields are shown in Table 3-3:

Fraction S

3.1.1.2 Double-precision floating-point numbers

52 51 63 62 0

At this point, the only non-number can be QNaN.
1

Machine Translated by Google

...

3.1.3 Registers

3.1.2 Fixed-point data types

FCSRÿÿ

Any one of the FRs.

The rules for generating SNaN as QNaN are as follows:

If the source operands are fa, fj, and fk, then fa has higher precedence than fj, and fj has higher precedence than fk.

Case 2: If the source operand does not contain SNaN but does contain QNaN, the QNaN with the highest priority is selected as the result of this instruction.

The value of precision QNaN is 0x7FC00000, and the default value of double precision QNaN is 0x7FF8000000000000.

All character data types use binary two's complement encoding.

Floating-point instruction programming involves registers such as the floating-point register (FR) and the condition flag register.

(Condition Flag Register, abbreviated as CFR) and Floating-point Control and Status Register, abbreviated as

There are 32 FRs, denoted as f0 to f31, each of which can be read and written. This applies only when implementing floating-point instructions that operate on single-precision floating-point numbers and word integers.

In this case, the method for determining the priority of the source operand is the same as in case one above.

ÿ If the result is wider than the source operand, then pad the least significant bit of the mantissa with 0s and finally set the most significant bit of the mantissa to 1.

The instructions and floating-point registers are orthogonal, meaning that from an architectural perspective, any floating-point register operand in these instructions can use 32-bit memory.

Dragon Architecture 32 -bit Simplified Reference Manual

3.1.3.1 Floating-point registers

ÿ If the result is narrower than the source operand, then retain the high-order bits of the mantissa, discard the low-order bits that exceed the range, and finally set the highest bit of the mantissa to 1.

ÿ If the result is the same width as the source operand, then the highest bit of the SNaN mantissa will be set to 1, while the remaining bits will remain unchanged.

Some floating-point instructions (such as floating-point conversion instructions) also operate on fixed-point data, including words (abbreviated W, length 32 bits).

Except for the two cases mentioned above, all other cases requiring a QNaN result will directly set the default QNaN value. The default single...

At that time, the bit width of FR is 32 bits. Normally, the bit width of FR is 64 bits, regardless of whether it's LA32 or LA64 architecture. Basic floating-point number.

32 31

f0

63

LA64
LA32

f1

f2

f3

0

f31

f30

25

Figure 3-1 Floating-point register

Machine Translated by Google

3.1.4 Floating-point exception

There are four FCSRs, denoted as fcsr0 to fcsr3, each with a bit width of 32 bits. fcsr1 to fcsr3 are aliases for certain fields within fcsr0, i.e., access...

3.1.3.2 Condition Flag Register

Dragon Architecture 32 -bit Simplified Reference Manual

When the floating-point register records a single-precision floating-point number or a word integer, the data always appears in bits [31:0] of the floating-point register.

There is one CFR, denoted as fcc0, and each one can be read and written. The CFR has a bit width of 1 bit. The result of the floating-point comparison will be written to the condition.

FCSR2 is an alias for the Cause and Flags fields in FCSR0. The positions of the fields are consistent with those in FCSR0.

The definitions of the various fields of fcsr0 are unchanged.

Bit Name reading and writing

FCSR3 is an alias for the RM field in FCSR0. Its location is the same as in FCSR0.

There will be corresponding exceptions.

Floating-point exceptions refer to situations where the floating-point processing unit cannot process operands or the results of floating-point calculations in the usual way, and the floating-point function unit...

Bits [63:32] of the floating-point register can have any value.

In the flag register, the flag is set to 1 if the comparison result is true, and set to 0 otherwise. The condition for floating-point branch instructions comes from the condition flag register.

3.1.3.3 Floating-point control status register

Querying fcsr1~fcsr3 actually involves accessing certain fields of fcsr0. When the software writes to fcsr1~fcsr3, the corresponding fields in fcsr0 are modified while the remaining bits are preserved.

describe

FCSR1 is an alias for the Enables field in FCSR0. Its location is the same as in FCSR0.

Bit 20 corresponds to V, bit 19 corresponds to Z, bit 18 corresponds to O, bit 17 corresponds to U, and bit 16 corresponds to I.

Each floating-point operation VZOUI exception has an enable bit that allows the exception to be triggered.

Enables

Cause

Rounding mode control. It includes 4 valid values, each with the following meaning:

Bit 28 corresponds to V, bit 27 corresponds to Z, bit 26 corresponds to O, bit 25 corresponds to U, and bit 24 corresponds to I.

RW

1: RZ, corresponding to roundTowardZero in IEEE 754-2008;9:8

28:24

Table 3-4 FCSR0 Register Field Definitions

0

0

0: RNE, corresponding to roundTiesToEven in IEEE 754-2008;

2: RP, corresponding to roundTowardsPositive in IEEE 754-2008;

RW

0

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

7:5

RW

Bit 4 corresponds to V, bit 3 corresponds to Z, bit 2 corresponds to O, bit 1 corresponds to U, and bit 0 corresponds to I.

26

4:0

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

23:21

VZOUI exceptions resulting from the most recent floating-point operation.

0

31:29

RM

15:10

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

RW
This is the cumulative number of VZOUI exceptions for various floating-point operations that have occurred but not yet trapped since the Flags field was cleared by the software.

Flags 20:16

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

3: RM, corresponding to roundTowardsNegative in IEEE 754-2008.

Machine Translated by Google

1

Field description rounding mode

ÿ ÿÿ Underflow (U)

Dragon Architecture 32 -bit Simplified Reference Manual

An invalid operation exception signal is issued only if there is no validly defined result. If no exception trap is triggered, then...

ÿ Overflow (O)

ÿ Invalid Operation (V)

When a floating-point exception occurs during the execution of a floating-point instruction but does not trigger a floating-point exception trap, the floating-point processing unit will generate a...

FCSR0 also includes an enable bit (Enables field) for each floating-point exception. The enable bit determines the exception generated by the floating-point processing unit.

This will trigger a floating-point exception trap; if the corresponding Enable bit is 0, then a floating-point exception trap will not be triggered, and FCSR0 will be set instead.

The corresponding position 1 in the Flag field.

Default result

Each bit in the Cause field of FCSR0 corresponds to one of the aforementioned exceptions. After each floating-point instruction is executed, the exception details are updated.

Generate a QNaN. For specific details on the determination of illegal operation exceptions, please refer to Section 7.2 of the IEEE 754-2008 specification.

ÿ Inexact (I)

The basic floating-point instructions support five floating-point exceptions defined in IEEE 754-2008:

ÿ Division by Zero (Z)

3.1.4.1 Illegal Operation Exception (V)

The new Cause field is in FCSR0.

The external flag will either trigger an exception trap or set a status flag. When a floating-point exception occurs, if its corresponding Enable bit is 1, then...

A single floating-point instruction can generate multiple floating-point exceptions during execution.

Default results. Different exceptions produce default results in different ways; Table 3-5 lists the specific generation rules.

RZ The result after rounding may be 0, or subnormal.

overflow

RNE sets the result to +ÿ or -ÿ based on the sign of the intermediate result.

Set the result to the maximum number based on the sign of the intermediate results.RZ

RP

RNE

27

RM

+2 -126, double precision: +2 -1022)

WITH

I

IN

RM

The rounded result could be 0, subnormal, or the largest negative normal number (single precision).

Degrees: ±2 -126, Double precision: ±2 -1022)

Correct positive overflow to the largest positive number, and correct negative overflow to -ÿ.

The result of rounding in any non-precise mode or the result after overflow.

Correct negative overflow to the smallest negative number, and correct positive overflow to +ÿ.

THE

overflow

The rounded result could be 0, subnormal, or the normal number with the smallest absolute value (single-precision rounding).

Table 3-5 Default Results for Floating-Point Exceptions

The rounded result could be 0, subnormal, or the smallest positive normal number (single precision).

V. Illegal operation in any mode provides a QNaN.

Dividing any pattern by zero yields a corresponding signed infinity.

RP

-2 -126, double precision: -2 -1022)

In fact, only the four exceptions besides underflow strictly conform to this description. Please see the detailed description below for the definition of underflow exceptions.

Machine Translated by Google

Because this execution mode affects performance, inaccurate exception traps are only enabled when necessary.

-1022ÿÿ

If an exception is allowed to trap: the result register is not modified, and the source register is preserved.

Test.

If exception traps are allowed: If an imprecise exception trap is enabled, the result register is not modified and the source register is preserved.

Whether it's exact or inaccurate, it will trigger a floating-point exception trap.

Treating the exponent field as unbounded and rounding intermediate results, when the absolute value of the obtained result exceeds the maximum finite number of the target format,

An underflow exception occurs when a non-zero tiny value is detected. The method for detecting non-zero tiny values is to check after rounding.

3.1.4.3 Overflow Exception (O)

3.1.4.2 Division by zero exception (Z)

ÿ The rounding result overflows, and the enable bit for the overflow exception is not set.

The result is in (-2 Emin)

In division operations, when the divisor is 0 and the dividend is a finite non-zero number, a signal is issued to indicate division by zero.

In the case of Emin , this result is considered a non-zero infinitesimal value. (Single-precision number Emin = -126, double-precision number Emin = ...)

3.1.4.4 Underflow Exception (U)

When FCSR.Enable.U=1, if a non-zero tiny value is detected, the final rounding result of the floating-point operation is not considered precise.

ÿ Rounding results are not precise.

If an exception prevents trapping: If no other exception occurs, QNaN is written to the destination register.

(2) If the final rounding result of the floating-point operation is accurate, then neither U nor I in FCSR.Cause should be set to 1.

If an exception is prevented from trapping: If no other software traps occur, the rounded or overflow result is sent to the destination register.

If an exception is prohibited from trapping: if no trap occurs, the result is a signed infinity.

If an exception is allowed to trap: the result register is not modified, and the source register is preserved.

If an exception is prohibited from trapping: if no trap occurs, the final result is determined by the rounding mode and the sign of the intermediate result.

The FPU generates an inaccuracy exception when the following conditions occur:

,

Dragon Architecture 32 -bit Simplified Reference Manual

If an exception is allowed to trap: the result register is not modified, and the source register is preserved.

(1) If the final result of the floating-point operation is not precise, then both U and I in FCSR.Cause should be set to 1;

An overflow exception is signaled. (This exception also sets up both inaccuracy exceptions and a flag.)

3.1.4.5 Exceptions to Inaccuracy (I)

Rounding check: For a non-zero result, if the exponent field is considered unbounded, the intermediate result is rounded.

When FCSR.Enable.U=0, if the detected result is a non-zero tiny value:

28

Machine Translated by Google

3.2.1 Floating-point arithmetic instructions

The FSUB.{S/D} instruction subtracts the single-precision/double-precision floating-point number in floating-point register fk from the single-precision/double-precision floating-point number in floating-point register fj.

Dragon Architecture 32 -bit Simplified Reference Manual

fd, fj, fk

fd, fj, fk

The FDIV.{S/D} instruction divides the single-precision/double-precision floating-point number in floating-point register fj by the single-precision/double-precision floating-point number in floating-point register fk.

fsub.d fd, fj, fk

fdiv.s

fd, fj, fk

Command format: fadd.s

The resulting single-precision/double-precision floating-point number is written to the floating-point register fd. Floating-point multiplication operations follow the IEEE 754-2008 standard.

fmul.d

Specifications for the addition(x,y) operation.

Specifications for the multiplication(x,y) operation.

fd, fj, fk

The FMUL.{S/D} instruction multiplies the single-precision/double-precision floating-point number in floating-point register fj by the single-precision/double-precision floating-point number in floating-point register fk.

fd, fj, fk

fd, fj, fk

The single-precision/double-precision floating-point result is written to the floating-point register fd. Floating-point addition operations follow the IEEE 754-2008 standard.

The single-precision/double-precision floating-point result is written to the floating-point register fd. Floating-point subtraction operations follow the IEEE 754-2008 standard.

fadd.d

3.2.1.1F{ADD/SUB/MUL/DIV}.{S/D}

fdiv.d

The single-precision/double-precision floating-point result is written to the floating-point register fd. Floating-point division operations follow the IEEE 754-2008 standard.

fsub.s

Specifications for the division(x,y) operation.

fmul.s

The FADD.{S/D} instruction adds the single-precision/double-precision floating-point number in floating-point register fj to the single-precision/double-precision floating-point number in floating-point register fk.

Specifications for the subtraction(x,y) operation.

fd, fj, fk

3.2 Overview of Basic Floating-Point Instructions

29

FMUL.S:

FR[fd][31:0] = FP32_subtraction(FR[fj][31:0], FR[fk][31:0])

FADD.D:

FADD.S:

FR[fd][31:0] = FP32_addition(FR[fj][31:0], FR[fk][31:0])

FSUB.D:

FSUB.S:

FR[fd] = FP64_addition(FR[fj], FR[fk])

FR[fd][31:0] = FP32_multiplication(FR[fj][31:0], FR[fk][31:0])

FMUL.D:

FR[fd] = FP64_multiplication(FR[fj], FR[fk])

FR[fd] = FP64_subtraction(FR[fj], FR[fk])

Machine Translated by Google

30

fd, fj, fk, fa

fnmadd.s

fd, fj, fk, fa

Dragon Architecture 32 -bit Simplified Reference Manual

Command format: fmadd.s

fd, fj, fk, fa

The FMADD.{S/D} instruction modifies the single-precision/double-precision floating-point number in floating-point register fj and the single-precision/double-precision floating-point number in floating-point register fk.

In the floating-point register fd.

The FMSUB.{S/D} instruction modifies the single-precision/double-precision floating-point number in floating-point register fj and the single-precision/double-precision floating-point number in floating-point register fk.

fd, fj, fk, fa

fd, fj, fk, fa

fmsub.d

fnmadd.d

fnmsub.d

fd, fj, fk, fa

Multiply the numbers, subtract the single-precision/double-precision floating-point number in the floating-point register fa from the result, and write the resulting single-precision/double-precision floating-point number to the...

In the floating-point register fd.

The FNMADD.{S/D} instruction modifies the single-precision/double-precision floating-point number in floating-point register fj and the single-precision/double-precision floating-point number in floating-point register fk.

3.2.1.2F{MADD/MSUB/NMADD/NMSUB}.{S/D}

The numbers are multiplied, the result is added to the single-precision/double-precision floating-point number in the floating-point register fa, and the resulting single-precision/double-precision floating-point number is written to [the register name].

fmsub.s fd, fj, fk, fa

fd, fj, fk, fa

fnmsub.s

Then it is written to the floating-point register fd.

fmadd.d

Multiply the points, add the result to the single-precision/double-precision floating-point number in the floating-point register fa, and then negative the resulting single-precision/double-precision floating-point number.

FDIV.D:

FR[fd] = -FP64_fusedMultiplyAdd(FR[fj], FR[fk], FR[fa])

FMADD.S:

FR[fd][31:0] = -FP32_fusedMultiplyAdd(FR[fj][31:0], FR[fk][31:0], FR[fa][3

FR[fd][31:0] = FP32_fusedMultiplyAdd(FR[fj][31:0], FR[fk][31:0], -FR[fa][3

FMADD.D:

1:0])

FR[fd] = FP64_division(FR[fj], FR[fk])

FNMADD.S:

FDIV.S:

FR[fd][31:0] = FP32_division(FR[fj][31:0], FR[fk][31:0])

FR[fd][31:0] = FP32_fusedMultiplyAdd(FR[fj][31:0], FR[fk][31:0], FR[fa][31:

0])

FMSUB.S:

FNMADD.D:

FMSUB.D:

FR[fd] = FP64_fusedMultiplyAdd(FR[fj], FR[fk], FR[fa])

FR[fd] = FP64_fusedMultiplyAdd(FR[fj], FR[fk], -FR[fa])

1:0])

Machine Translated by Google

FMIN.D:

FR[fd] = -FP64_fusedMultiplyAdd(FR[fj], FR[fk], -FR[fa])

FR[fd][31:0] = -FP32_fusedMultiplyAdd(FR[fj][31:0], FR[fk][31:0], -FR[fa]

FNMSUB.S:

[31:0])

FMAX.S:

FR[fd][31:0] = FP32_maxNum(FR[fj][31:0], FR[fk][31:0])

FNMSUB.D:

FR[fd] = FP64_minNum(FR[fj], FR[fk])

FMIN.S:

FR[fd][31:0] = FP32_minNum(FR[fj][31:0], FR[fk][31:0])

FR[fd] = FP64_maxNum(FR[fj], FR[fk])

FMAX.D:

fd, fj, fk

The FMAX.{S/D} instruction selects a single-precision/double-precision floating-point number from the floating-point register fj and a single-precision/double-precision floating-point number from the floating-point register fk.

The FNMSUB.{S/D} instruction modifies the single-precision/double-precision floating-point number in floating-point register fj and the single-precision/double-precision floating-point number in floating-point register fk.

Fan.

Command format: fmaxa.s

Command format: fmax.s fd, fj, fk

fd, fj, fk

Write it to the floating-point register fd.

Fan.

Dragon Architecture 32 -bit Simplified Reference Manual

Multiply the numbers, subtract the single-precision/double-precision floating-point number in the floating-point register fa from the result, and then negate the single-precision/double-precision floating-point result.

The above four floating-point fused multiply-add operations follow the specifications of the fusedMultiplyAdd(x,y,z) operation in the IEEE 754-2008 standard.

3.2.1.3F{MAX/MIN}.{S/D}

fd, fj, fk fmaxa.d

The FMAXA.{S/D} instruction selects a single-precision/double-precision floating-point number from floating-point register fj and a single-precision/double-precision floating-point number from floating-point register fk.

The larger of the two numbers is written to the floating-point register fd. The operation of these two instructions follows the rules of the maxNum(x,y) operation in the IEEE 754-2008 standard.

fmin.s

The smaller of the two numbers is written into the floating-point register fd. The operation of these two instructions follows the rules of the minNum(x,y) operation in the IEEE 754-2008 standard.

fmina.d

fd, fj, fk

fmax.d

The larger absolute value of the points is written to the floating-point register fd. The operation of these two instructions follows the IEEE 754-2008 standard for maxNumMag(x,y).

fd, fj, fk

3.2.1.4F{MAXA/MINA}.{S/D}

The FMIN.{S/D} instruction selects a single-precision/double-precision floating-point number from floating-point register fj and a single-precision/double-precision floating-point number from floating-point register fk.

fmina.s fd, fj, fk

fmin.d

fd, fj, fk

31

Machine Translated by Google

FR[fd][31:0] = FP32_abs(FR[fj][31:0])

FR[fd] = FP64_maxNumMag(FR[fj], FR[fk])

FMAXA.D:

FMAXA.S:

FMINA.S:

FMINA.D:

FABS.S:

FABS.D:

FR[fd] = FP64_abs(FR[fj])

FNEG.S:

FR[fd][31:0] = FP32_negate(FR[fj][31:0])

FR[fd] = FP64_minNumMag(FR[fj], FR[fk])

FR[fd] = FP64_negate(FR[fj])

FR[fd][31:0] = FP32_maxNumMag(FR[fj][31:0], FR[fk][31:0])

FR[fd][31:0] = FP32_minNumMag(FR[fj][31:0], FR[fk][31:0])

FNEG.D:

The smaller absolute value of the points is written into the floating-point register fd. The operation of these two instructions follows the IEEE 754-2008 standard for minNumMag(x,y).

(It remains partially unchanged) and is written to the floating-point register fd. The operation of these two instructions follows the specification of the abs(x) operation in the IEEE 754-2008 standard.

frecip.s

The FMINA.{S/D} instruction selects a single-precision/double-precision floating-point number from the floating-point register fj and a single-precision/double-precision floating-point number from the floating-point register fk.

The FSQRT.{S/D} instruction selects a single-precision or double-precision floating-point number from the floating-point register fj, and then takes the square root of the resulting single-precision or double-precision floating-point number.

fneg.s

3.2.1.6F{SQRT/RECIP/RSQRT}.{S/D}

fd, fj

frecip.d fd, fj

fd, fj

Standard operating procedures.

The FABS.{S/D} instruction selects a single-precision or double-precision floating-point number from the floating-point register fj and takes its absolute value (i.e., sets the sign bit to 0).

Standard operating procedures.

The FNEG.{S/D} instruction selects a single-precision/double-precision floating-point number from the floating-point register fj and inverts it (that is, inverts the sign bit and the rest).

fd, fj

fd, fj

(Partially unchanged), written to the floating-point register fd. The operation of these two instructions follows the specifications of the nexteer(x) operation in the IEEE 754-2008 standard.

fd, fj

Command format: fabs.s

frsqrt.s fd, fj

fabs.d

fd, fj

fd, fj

fd, fj

frsqrt.d

Dragon Architecture 32 -bit Simplified Reference Manual

3.2.1.5F{ABS/NEG}.{S/D}

fsqrt.d

fneg.d

Command format: fsqrt.s

32

Machine Translated by Google

FRSQRT.D:

FSQRT.D:

FR[fd][31:0] = FP32_squareRoot(FR[fj][31:0]);

FR[fd][31:0] = FP32_division(1.0, FR[fj][31:0])

FR[fd][31:0] = FP32_copySign(FR[fj][31:0], FR[fk][31:0])

FCOPYSIGN.D:

FR[fd] = FP64_division(1.0, FR[fj])

FR[fd] = FP64_squareRoot(FR[fj]);

FSQRT.S:

FRECIP.S:

FR[fd] = FP64_copySign(FR[fj], FR[fk])

FRECIP.D:

FRSQRT.S:

FR[fd] = FP64_division(1.0, FP_squareRoot(FR[fj]));

FCOPYSIGN.S:

FR[fd][31:0] = FP32_division(1.0, FP_squareRoot(FR[fj][31:0]));

3.2.1.7FCOPYSIGN.{S/D}

Dragon Architecture 32 -bit Simplified Reference Manual

The meanings are shown in the table below:

Divide the number by 1.0 again, and write the resulting single-precision/double-precision floating-point number into the floating-point register fd. The floating-point square root and inverse operation follows IEEE 754-2008.

The FCOPYSIGN.{S/D} instruction selects the single-precision/double-precision floating-point number in the floating-point register fj and changes its sign bit to the floating-point register fk.

fcopysign.d

The sign bit of the single-precision/double-precision floating-point number is removed, and the resulting new single-precision/double-precision floating-point number is written to the floating-point register fd. (Floating-point copy character)

Command format: fclass.s fd, fj

This instruction determines the category of the floating-point number in the floating-point register fj. The result consists of 10 bits of information, each bit...

The precision/double-precision floating-point number is written to the floating-point register fd. This is equivalent to the division(1.0,x) operation in the IEEE 754-2008 standard.

The number is written to the floating-point register fd. The floating-point square root operation follows the specification of the squareRoot(x) operation in the IEEE 754-2008 standard.

3.2.1.8FCLASS.{S/D}

The FRECIP.{S/D} instruction selects a single-precision or double-precision floating-point number from the floating-point register fj, and divides 1.0 by this floating-point number to obtain the single-precision or double-precision floating-point number.

The FRSQRT.{S/D} instruction selects a single-precision/double-precision floating-point number from the floating-point register fj, and then takes the square root of the resulting single-precision/double-precision floating-point number.

The sign operation follows the specification of the copySign(x, y) operation in the IEEE 754-2008 standard.

The specification of the rSqrt(x) operation in the standard.

fd, fj, fk fd, fj, fk

fclass.d fd, fj

Command format: fcopysign.s

Bit4 Bit1Bit0 Bit2 Bit5 Bit6 Bit3 Bit8

33

Bit9Bit7

Machine Translated by Google

Dragon Architecture 32 -bit Simplified Reference Manual

QNaN
normal subnormal

positive value

normal
SNaN

subnormal

negative value

0 ÿ ÿ 0

34

Machine Translated by Google

FCLASS.D:

FCLASS.S:

FR[fd][31:0] = FP32_class(FR[fj][31:0])

FR[fd] = FP64_class(FR[fj])

mnemonic cond

3.2.2.1FCMP.cond.{S/D}

When the data being evaluated meets the condition corresponding to a certain bit, the corresponding bit in the result information vector will be set to 1. This instruction corresponds to...

Dragon Architecture 32 -bit Simplified Reference Manual

The class(x) function in the IEEE-754-2008 standard.

Instruction format: ̀fcmp.cond.s cc, fj, fk`. This is a floating-point

comparison instruction that stores the comparison result in the specified status code (cc). There are 22 possible ̀cond` values for this instruction, which compare...

fcmp.cond.d cc, fj, fk

The conditions and criteria for judgment are listed in the table below.

QNaN whether

Report exceptions

True

Condition
meaning Corresponding to IEEE 754-2008 functions

3.2.2 Floating-point comparison instructions

orderly

compareSignalingLessEqual

ANDSUN

35

Unequal

compareQuietUnordered Incomparable

Unequal GT LT

0x6

SLE

BEER

A LT EQ

equal

AND LT

compareSignalingNotGreater

WITH

SAF 0x1

CNE

LT

Not greater than or equal to

compareQuietNotGreater

0x0

0x18 Cannot be compared or are not equal to UN GT LT

compareQuietLessUnordered

LT EQ

CUEQ

EQ

0x11

0xB

CEQ

0x8

compareQuietLessEqual

no

0x2

Not greater than

Not greater than or less than

CLE

Equal or incomparable

CUTE

SNOW

SULT

0x19 Cannot be compared or are not equal to UN GT LT

Less than

0x10

Note: UN indicates that they cannot be compared, EQ indicates that they are equal, and LT indicates that they are less than. Two operands cannot be compared if at least one of them is NaN.

0x9 is not greater than, less than, or equal to.

0xE Less than or equal to or cannot be compared UN LT EQ

0xA

no

EQ

compareSignalingLessUnordered

compareSignalingLess

COR

CLT

equal

LT

CULT

LT EQ

GT LT EQ

SUEQ

CAF

THEY ARE

0xF

0x3

0x4 EQ

SULE

vesicles

none

0xD

compareQuietEqual

SLT

none

Less than or equal to

Less than or equal to

SEQ

GT LT

GT LT EQ

compareQuietNotEqual

compareSignalingEqual

0x14

yes

Less than

0xC

orderly

0x5

0x15

no

AND LT

AND

0x7

EQ

Smaller than or cannot be compared

compareQuietLess

Machine Translated by Google

36

3.2.3 Floating-point conversion instructions

In the floating-point register fd.

fcvt.d.s

3.2.3.1FCVT.S.D, FCVT.D.S

fd, fj

Command format: fcvt.sd

ftint.ls

In the floating-point register fd.

The FCVT.DS instruction selects a single-precision floating-point number in the floating-point register fj, converts it to a double-precision floating-point number, and writes the resulting double-precision floating-point number to fj.

Specifications for the convertFromInt(x) operation.

Command format: ffint.sw

ffint.d.w

The FTINT.{W/L}.{S/D} instruction selects the single-precision/double-precision floating-point number in the floating-point register fj and converts it to an integer/long integer fixed-point number.

fd, fj

The FCVT.SD instruction selects a double-precision floating-point number in the floating-point register fj, converts it to a single-precision floating-point number, and writes the resulting single-precision floating-point number to fj.

ffint.s.l

fd, fj

The obtained single-precision/double-precision floating-point number is written to the floating-point register fd. This floating-point format conversion operation conforms to the IEEE 754-2008 standard.

Floating-point format conversion operations follow the specifications of the convertFormat(x) operation in the IEEE 754-2008 standard.

3.2.3.2FFINT.{S/D}.{W/L}, FTINT.{W/L}.{S/D}

ftint.w.s

The resulting integer/long integer fixed-point number is written to the floating-point register fd. Depending on the state in the FCSR, this floating-point format conversion operation follows...

fd, fj fd, fj

fd, fj

fd, fj

fd, fj

ftint.wd

Dragon Architecture 32 -bit Simplified Reference Manual

fd, fj

The FFINT.{S/D}.{W/L} instruction selects the integer/long integer fixed-point number in the floating-point register fj and converts it to a single-precision/double-precision floating-point number.

fd, fj

ftint.ldffint.d.l

FR[fd][31:0] = FP32_convertFromInt(FR[fj], SINT64)

FR[fd][31:0] = FP32_convertFromInt(FR[fj][31:0], SINT32)

FCVT.D.S:

FCVT.S.D:

FR[fd][31:0] = FP32_convertFormat(FR[fj], FP64)

FFINT.S.L:

FFINT.S.W:

FR[fd] = FP64_convertFormat(FR[fj][31:0], FP32)

FFINT.D.W:

FR[fd] = FP64_convertFromInt(FR[fj][31:0], SINT32)

FR[fd] = FP64_convertFromInt(FR[fj], SINT64)

FFINT.D.L:

Machine Translated by Google

Rounding to negative infinity

Rounding to zero

Round to the nearest even number

Rounding to positive infinity

convertToIntegerExactTiesToEven(x)

convertToIntegerExactTowardZero(x)

convertToIntegerExactTowardPositive(x)

37

convertToIntegerExactTowardNegative(x)

ftintrz.ws

ftintrz.l.s

Rounding mode

3.2.3.3FTINT{RM/RP/RZ/RNE}.{W/L}.{S/D}

Command format: ftintrm.ws

ftintrne.w.s fd, fj

fd, fj

fd, fj

ftintrp.l.s

fd, fj ftintrne.l.s

ftintrp.ws

Operations in the IEEE 754-2008 standard

The operation in accordance with the IEEE 754-2008 standard is shown in the table below.

Dragon Architecture 32 -bit Simplified Reference Manual

fd, fj

fd, fj

The integer/long integer fixed-point number obtained is written into the floating-point register fd, using the "rounding towards negative infinity" method.

fd, fj

fd, fj

ftintrz.ld

ftintrm.w.d

ftintrm.l.d ftintrp.l.d

ftintrz.wd

fd, fj

fd, fj

The FTINTRM.{W/L}.{S/D} instruction selects the single-precision/double-precision floating-point number in the floating-point register fj and converts it to an integer/long integer fixed-point number.

ftintrp.wd

fd, fj

fd, fj

ftintrne.l.d

ftintrne.w.d

fd, fj

The FTINTRP.{W/L}.{S/D} instruction selects the single-precision/double-precision floating-point number in the floating-point register fj and converts it to an integer/long integer fixed-point number.

fd, fj

ftintrm.l.s fd, fj

fd, fj

These instructions convert floating-point numbers to fixed-point numbers using a specified rounding mode.

FR[fd] = FP64convertToSint64(FR[fj], FCSR.RM)

FR[fd][31:0] = FP32convertToSint32(FR[fj][31:0], FCSR.RM)

FR[fd] = FP32convertToSint64(FR[fj][31:0], FCSR.RM)

FR[fd][31:0] = FP32convertToSint32(FR[fj][31:0], 3)

FTINTRM.W.D:

FTINTRM.W.S:

FR[fd] = FP32convertToSint64(FR[fj][31:0], 3)

FR[fd] = FP64convertToSint32(FR[fj], FCSR.RM)

FTINT.WD:

FTINT.W.S:

FTINTRM.L.D:

FTINT.LS:

FTINT.LD:

FR[fd] = FP64convertToSint32(FR[fj], 3)

FTINTRM.L.S:

FR[fd] = FP64convertToSint64(FR[fj], 3)

Machine Translated by Google

FR[fd] = FP64convertToSint64(FR[fj], 2)

FR[fd] = FP64convertToSint32(FR[fj], 2)

FTINTRP.WD:

FTINTRNE.L.D:

FTINTRP.L.S:

FTINTRNE.W.D:

FR[fd] = FP64convertToSint64(FR[fj], 0)

FTINTRZ.LD:

FR[fd] = FP32convertToSint64(FR[fj][31:0], 0)

FR[fd][31:0] = FP32convertToSint32(FR[fj][31:0], 1)

FR[fd][31:0] = FP32convertToSint32(FR[fj][31:0], 0)

FTINTRZ.L.S:

FR[fd] = FP64convertToSint32(FR[fj], 0)

FTINTRP.WS:

FR[fd][31:0] = FP32convertToSint32(FR[fj][31:0], 2)

FR[fd] = FP32convertToSint64(FR[fj][31:0], 2)

FTINTRP.L.D:

FTINTRZ.WS:

FR[fd] = FP64convertToSint32(FR[fj], 1)

FTINTRNE.W.S:

FTINTRZ.WD:

FTINTRNE.L.S:

FR[fd][31:0] = FP32convertToSint64(FR[fj][31:0], 1)

FR[fd] = FP64convertToSint64(FR[fj], 1)

Command Name

The integer/long integer fixed-point number obtained is written to the floating-point register fd, using the method of "rounding to the nearest even number".

The FTINTRZ.{W/L}.{S/D} instruction selects the single-precision/double-precision floating-point number in the floating-point register fj and converts it to an integer/long integer fixed-point number.

Dragon Architecture 32 -bit Simplified Reference Manual

The obtained integer/long integer fixed-point number is written into the floating-point register fd, using the "rounding towards positive infinity" method.

The FTINTRNE.{W/L}.{S/D} instruction selects the single-precision/double-precision floating-point number in the floating-point register fj and converts it to an integer/long integer fixed-point number.

The operations in the IEEE 754-2008 standard followed by the above four floating-point format conversion operations are shown in the table below.

The obtained integer/long integer fixed-point number is written into the floating-point register fd, using the "rounding towards zero" method.

Operations in the IEEE 754-2008 standard

FTINTRZ.{W/L}.{S/D}

convertToIntegerExactTiesToEven(x) FTINTRNE.{W/L}.{S/D}

convertToIntegerExactTowardZero(x)

FTINTRP.{W/L}.{S/D} convertToIntegerExactTowardPositive(x)

FTINTRM.{W/L}.{S/D}

38

convertToIntegerExactTowardNegative(x)

Machine Translated by Google

39

3.2.4 Floating-point transport instructions

If it is a single-precision/double-precision floating-point number format, the result is uncertain.

3.2.4.3MOVGR2FR.W, MOVGR2FRH.W

3.2.4.1FMOV.{S/D}

Dragon Architecture 32 -bit Simplified Reference Manual

movgr2frh.w

fd, fj

FMOV.{S/D} writes the value of floating-point register fj to floating-point register fd in single-precision/double-precision floating-point format. If the value of fj is not...

The value is written to the floating-point register fd; otherwise, the value of the floating-point register fk is written to the floating-point register fd.

fd, rj

Command format: fsel

MOVGR2FR.W writes the value of the general-purpose register rj into the lower 32 bits of the floating-point register fd. If the floating-point register is 64 bits wide, then fd...

domain.

fmov.d

Command format: movgr2fr.w

Command format: fmov.s

fd, rj

fd, fj

3.2.4.2FSEL

MOVGR2FRH.W writes the value of the general-purpose register rj into the high 32 bits of the floating-point register fd, while leaving the low 32 bits of the floating-point register fd unchanged.

The above instruction operation is non-arithmic, will not trigger an IEEE 754 exception, and will not modify the Cause and Flags of the floating-point control status register.

The FSEL instruction performs a conditional assignment operation. When FSEL is executed, if the value of the condition flag register ca is equal to 0, then the value of the floating-point register fj is incremented.

fd, fj, fk, ca

The value of the high 32 bits is uncertain.

FR[fd][31:0] = GR[rj]

MOVGR2FR.Wÿ

FMOV.dÿ

FMOV.Sÿ

FR[fd][31:0] = FR[fj][31:0]

FSELÿ

FR[fd] = CFR[ca] ? FR[fk] : FR[fj]

FR[fd] = FR[fj]

FR[fd][63:32] = GR[rj]

FR[fd][31: 0] = FR[fd][31:0]

MOVGR2FRH.Wÿ

Machine Translated by Google

40

3.2.4.5MOVGR2FCSR, MOVFCSR2GR

3.2.4.4MOVFR2GR.S, MOVFRH2GR.S

Dragon Architecture 32 -bit Simplified Reference Manual

Command format: movfr2gr.s rd, fj

3.2.4.6MOVFR2CF, MOVCF2FR

rd, fj

Command format: movgr2fcsr

rd, fcsr

fcsr, rj

The Enables field and the Cause field of FCSR2 are set so that the Cause bit and the corresponding Enables bit are both 1. The MOVGR2FCSR instruction itself will not...

MOVGR2FCSR modifies the value of the software-writable field corresponding to the floating-point control status register indicated by fcsr based on the value of the general-purpose register rj. If

If the floating-point control status register indicated by fcsr in the above instruction does not exist, the result is uncertain.

movcf2fr fd, cj

MOVFR2CF writes the value of the least significant bit of the floating-point register fj to the condition flag register cd.

MOVCF2FR writes the value of the condition flag register cj to the lowest bit of the floating-point register fd, and pads the remaining bits of fd with 0.

movfrh2gr.s

Triggering a floating-point exception.

MOVFCSR2GR writes the 32-bit value of the floating-point control status register indicated by fcsr to the general-purpose register rd.

MOVFR2GR/MOVFRH2GR.S writes the lower 32-bit/high 32-bit value of the floating-point register fj to the general-purpose register rd.

Command format: movfr2cf cd, fj

The MOVGR2FCSR instruction modifies FCSR0 so that both the Cause field bit and the corresponding Enables bit are 1, or modifies FCSR1.

movfcsr2gr

CFR[cd] = FR[fj][0]

GR[rd] = FR[fj][63:32]

GR[rd] = FR[fj][31:0]

MOVFR2GR.Sÿ

MOVFRH2GR.Sÿ

MOVGR2FCSRÿ

FCSR[fcsr] = GR[rj]

MOVFCSR2GRÿ

MOVFR2CFÿ

MOVCF2FRÿ

GR[rd] = FCSR[fcsr]

Machine Translated by Google

GR[rd][0] = ZeroExtend(CFR[cj], 32)

MOVGR2CFÿ

FR[fd][0] = ZeroExtend(CFR[cj], 64)

CFR[cd] = GR[rj][0]

BCEQZ:

if CFR[cj]==0 :

MOVCF2GRÿ

BCNEZ:

PC = PC + SignExtend({offs21, 2'b0}, 32)

if CFR[cj]!=0 :

PC = PC + SignExtend({offs21, 2'b0}, 32)

Enter the offset value in bytes, which is offs21<<2 in the instruction code.

MOVGR2CF writes the value of the least significant bit of the general-purpose register rj to the condition flag register cd.

Command format: movgr2cf cd, rj

3.2.5.1BCEQZ, BCNEZ

movcf2gr rd, cj

cj, offs21

cj, offs21

However, it should be noted that if the above instructions are written by directly filling in the offset value when writing the assembly code, the immediate value in the assembly representation should be...

The jump target address of the two branch instructions mentioned above is obtained by logically shifting the 21-bit immediate value offs21 in the instruction code left by 2 bits and then sign-extending it.

The resulting offset value is added to the PC of the branch instruction.

Command format: bceqz

3.2.4.7MOVGR2CF, MOVCF2GR

Dragon Architecture 32 -bit Simplified Reference Manual

MOVCF2GR writes the value of the condition flag register cj to the lowest bit of the general-purpose register rd, and pads the remaining bits of rd with 0.

BCNEZ checks the value of the condition flag register cj. If the value is not equal to 0, it jumps to the target address; otherwise, it does not jump.

BCEQZ checks the value of the condition flag register cj. If it is equal to 0, it jumps to the target address; otherwise, it does not jump.

bcnez

3.2.5 Floating-point branch instructions

41

Machine Translated by Google

3.2.6 Floating-point ordinary memory access instructions

fld.d

Dragon Architecture 32 -bit Simplified Reference Manual

fd, rj, si12

The memory address of the above instruction is calculated by adding the value in the general-purpose register rj to the sign-extended 12-bit immediate value si12.

FLD.S retrieves a word of data from memory and writes it to the lower 32 bits of the floating-point register fd. If the floating-point register is 64 bits wide, then the higher 32 bits of fd...

fd, rj, si12

Command format: fld.s

3.2.6.1FLD.{S/D}, FST.{S/D}

fd, rj, si12

fst.s

fst.d fd, rj, si12

The 32-bit value is uncertain. FLD.D retrieves a double word of data from memory and writes it to the floating-point register fd.

FST.S writes the lower 32 bits of the floating-point register fd into memory. FST.D writes a double word of data from the floating-point register fd into memory.

middle.

For the FLD.{S/D} and FST.{S/D} instructions, an unaligned exception will be triggered when the memory access address is not naturally aligned.

AddressComplianceCheck(vaddr)

AddressComplianceCheck(vaddr)

vaddr = GR[rj] + SignExtend(si12, 32)

word = MemoryLoad(paddr, WORD)

FR[fd][31:0] = word

FLD.D:

FST.D:

FST.S:

vaddr = GR[rj] + SignExtend(si12, 32)

vaddr = GR[rj] + SignExtend(si12, 32)

paddr = AddressTranslation(vaddr)

MemoryStore(FR[fd][31:0], paddr, WORD)

vaddr = GR[rj] + SignExtend(si12, 32)

paddr = AddressTranslation(vaddr)

FLD.S:

AddressComplianceCheck(vaddr)

AddressComplianceCheck(vaddr)

FR[fd] = doubleword

doubleword = MemoryLoad(paddr, DOUBLEWORD)

paddr = AddressTranslation(vaddr)

MemoryStore(FR[fd][63:0], paddr, DOUBLEWORD)

paddr = AddressTranslation(vaddr)

42

Machine Translated by Google

43

Dragon Architecture 32 -bit Simplified Reference Manual

Machine Translated by Google

Machine Translated by Google

4.2 Overview of Privileged Instructions

4.1 Privilege Levels

In the Dragon architecture 32-bit simplified version, the processor cores are divided into two privilege levels (Privilege Level, or PLV for short): PLV0 and PLV3.

The addressing unit of a CSR is a CSR register, that is, the csr_num of CSR 0 is 0, the csr_num of CSR 1 is 1, and so on.

Any software-visible state of the processor. It should be noted that the CSRWR and CSRXCHG instructions not only include write operations to update the CSR,

The privilege level is PLV3. At this privilege level, privileged instructions cannot be executed to access privileged resources.

The CSRRD, CSRWR, and CSRXCHG instructions are used for software access to CSRs. The CSRRD instruction writes the value of the specified CSR to a general-purpose register.

All CSR registers use an independent address space. In the above instructions, the address value of the CSR comes from the 14-bit immediate value csr_num in the instruction.

rd, csr_num

rd, csr_num

The bits in the CSR that correspond to the write mask being 1 are left unchanged, while the old value of the CSR is updated in the general register.

4.2.1.1CSRRD, CSRWR, CSRXCHG

The CSRWR instruction writes the old value from the general-purpose register rd to the specified CSR, and simultaneously updates the old value of the specified CSR to the general-purpose register rd.

creator

Of all privilege levels, PLV0 is the highest privilege level, and the only one that can use privileged instructions and access all privileged resources.

In the Dragon architecture 32-bit simplified version, all CSR registers are 32 bits wide.

Dragon Architecture 32 -bit Simplified Reference Manual

The current privilege level of a processor core is uniquely determined by the value of the PLV field in CSR.CRMD.

In the device rd.

All privileged instructions are only accessible at the PLV0 privilege level. However, Hit-class CACOP instructions can be executed at the PLV3 privilege level.

For Linux systems, only PLV0 corresponds to kernel mode in the architecture, while PLV3 corresponds to user mode.

The CSRXCHG instruction, based on the write mask information stored in the general-purpose register rj, writes the old value from the general-purpose register rd to the specified register.

When a CSR access instruction accesses a CSR that is not defined in the architecture or not implemented in the hardware, the read operation returns all zeros, and the write operation does not modify the value.

rd, rj, csr_num csrxchg

Command format: csrrd

It also includes read operations that retrieve old CSR values.

4. Overview of Privileged Resource Architecture

45

4.2.1 CSR Access Commands

Machine Translated by Google

46

code, rj, si12

4.2.2.1CACOP

Dragon Architecture 32 -bit Simplified Reference Manual

The storage level into which data is stored is determined by the specific cache hierarchy implemented and the inclusion or mutual exclusion relationships between each level. For data caches or hybrid caches,

The query process may involve virtual-to-physical address translation, so in this case, the CACOP instruction may trigger TLB-related exceptions. However, because CACOP...

Used to indicate the location of the cache line being operated on.

The CACOP instruction is primarily used for cache initialization and cache consistency maintenance.

Please refer to the previous paragraph for the definition of direct address indexing. Maintaining consistency involves invalidating and writing back a specified cache entry.

`code[2:0]=0` indicates operation on the first-level private instruction cache, ̀code[2:0]=1` indicates operation on the first-level private data cache, and ̀code[2:0]=2` indicates...

Operate the secondary shared hybrid cache.

If the operation is on the instruction cache, then only an invalidation operation is needed; it is not necessary to write back the data in the cache line. The written-back data then...

There are (1<<Way) paths, each path has (1<<Index) cache lines, and each cache line is (1<<Offset) bytes in size. Therefore, using direct address indexing means operating on the

VA[Way-1:0]th path of this cache and the VA[Index+Offset-1:Offset]th cache line.

code[4:3]=2 indicates that the cache consistency is maintained using a query index method (Hit Invalidate / Invalidate and Writeback).

The ̀load` instruction accesses the cache to be operated on. If a cache hit occurs, the operation is performed on the hit cache line; otherwise, no operation is performed. Because of this...

code[4:3]=3 is a custom cache operation that is not explicitly defined in the architecture specification.

The CACOP instruction determines which cache it accesses and what cache operation it performs, determined by the 5-bit code in the instruction. code[2:0] indicates the operation.

4.2.3.1TLBSRCH

Command format: tlbsrch

The specific implementation determines whether to write back cached line data only when the cache line data is dirty.

Command format: cacop

Adding the value of the general-purpose register rj to the sign-extended 12-bit immediate value si12 will yield the virtual address VA used by the CACOP instruction, which will...

The instruction operates on cache lines, so address alignment is not a concern in this case.

Use the CSR.ASID and CSR.TLBEHI information to query the TLB. If a match is found, write the index value of the match to...

The Cache object, code[4:3] indicates the operation type.

The operations for maintaining cache consistency are the same as described in the previous paragraph. The so-called lookup index method treats the VA of the CACOP instruction as a regular...

`code[4:3]=0` indicates that this is used for cache initialization (Store Tag), setting the tag of the specified cache line to all zeros. Assuming the accessed cache...

The index field of CSR.TLBIDX is set, and the NE position of CSR.TLBIDX is set to 0; if no item is found, then the index field of CSR.TLBIDX is set to 0.

code[4:3]=1 indicates that the cache consistency is maintained by direct address indexing (Index Invalidate / Invalidate and Writeback).

4.2.3 TLB Maintenance Commands

4.2.2 Cache Maintenance Instructions

Machine Translated by Google

47

Command format: tlbfill

The value of the Index field of CSR.TLBIDX is used as the index to read the specified item in the TLB. If the specified position is a valid TLB...

The index value of each item in the TLB is calculated by sequentially incrementing the number from 0 to the last row.

Dragon Architecture 32 -bit Simplified Reference Manual

Check the value of the CSR.TLBIDX.NE bit. If CSR.TLBIDX.NE = 1, then an invalid TLB entry will be filled into the TLB; only when...

If an item is specified, then the page table information of that TLB item is written to CSR.TLBEHI, CSR.TLBELO0, CSR.TLBELO1, and CSR.TLBIDX.PS

Command format: tlbrd

4.2.3.2TLBRD

You need to check the value of the CSR.TLBIDX.NE bit. If CSR.TLBIDX.NE = 1, then an invalid TLB entry will be filled into the TLB; only when...

It is important to note that valid/invalid TLB entries and valid/invalid page table entries in the TLB are two different concepts.

If the index value used for access exceeds the range of the TLB, the processor's behavior is unpredictable.

Command format: tlbwr

The TLBWR instruction writes page table entry information stored in the TLB's associated CSR to a specified entry in the TLB. The page table entry information being filled comes from...

This applies to CSR.TLBEHI, CSR.TLBELO0, CSR.TLBELO1, and CSR.TLBIDX.PS. If CSR.ESTAT.Ecode=0x3F at this time, then...

When executing TLBWR, the location where page table entries are written to the TLB is specified by the value of the Index field of CSR.TLBIDX. Specific corresponding rules...

The TLBFILL instruction fills the TLB with page table entry information stored in the relevant CSR. The page table entry information being filled comes from...

CSR.TLBEHI, CSR.TLBELO0, CSR.TLBELO1, and CSR.TLBIDX.PS. If CSR.ESTAT.Ecode=0x3F at this time, it is in the state of...

During TLB refill exception handling, a valid entry is always filled into the TLB (i.e., the E bit of the TLB entry is 1). Otherwise, it would be necessary to...

A valid TLB entry will only be filled into the TLB when CSR.TLBIDX.NE=0.

A valid TLB entry will only be filled into the TLB when CSR.TLBIDX.NE=0.

The NE position is 1.

When TLBFILL is executed, the page table entry is randomly selected by the hardware to be filled into which TLB entry.

During TLB refill exception handling, a valid entry is always filled into the TLB (i.e., the E bit of the TLB entry is 1). Otherwise, it is necessary to...

Set it to 1, and set CSR.ASID.ASID, CSR.TLBEHI, CSR.TLBELO0, CSR.TLBELO1 and CSR.TLBIDX.PS to 0.

Please refer to the TLBSRCH instruction for the calculation rules of various index values in the TLB.

4.2.3.4TLBFILL

4.2.3.3TLBWR

In the middle, set the NE bit of CSR.TLBIDX to 0; if the specified position is an invalid TLB entry, the NE bit of CSR.TLBIDX must be set to 0.

Machine Translated by Google

0x6 Clears all page table entries where G=1 or ASID equals the ASID specified in the register and VA equals the VA specified in the register.

0x2 Clear all page table entries where G=1.

0x0 Clear all page table entries.

0x1 Clears all page table entries. This operation has the same effect as op=0.

0x4 Clears all page table entries where G=0 and ASID equals the ASID specified in the register.

0x5 Clears page table entries where G=0, ASID equals the ASID specified in the register, and VA equals the VA specified in the register.

0x3 Clear all page table entries where G=0.

48

After the IDLE instruction completes execution, the processor core will stop fetching instructions and enter a wait state until it is awakened by an interrupt or reset. From the stop state...

4.2.3.5INVTLB

Command format: ertn

4.2.4.2IDLE

The INVTLB instruction is used to invalidate the contents of the TLB in order to maintain the consistency of page table data between the TLB and memory.

Bits [9:0] of the general-purpose register rj store the ASID information required for invalid operations (called the "register-specified ASID"). The remaining bits must be filled.

level

When the operation does not require virtual address information, the general-purpose register rk should be set to r0.

The operations corresponding to each op are shown in the table below. Ops that do not appear in the table will trigger reserved instruction exceptions.

Update the PPLV, PIE and other information corresponding to the exception to CSR.CRMD, and at the same time jump to the ERA corresponding to the exception to start fetching the pointer.

on

0. When the operation indicated by op does not require ASID, the general-purpose register rj should be set to r0.

up, rj, rk

When executing the ERTN instruction, if the KLO bit in CSR.LLBCTL is not equal to 1, then LLbit is set to 0; otherwise, LLbit is not modified.

Dragon Architecture 32 -bit Simplified Reference Manual

Command format: invtlb

Command format: idle

Of the three source operands of the instruction, op is a 5-bit immediate value used to indicate the operation type.

After being woken up by an interrupt, the first instruction executed by the processor core is the one following IDLE.

The general-purpose register rk stores the virtual address information (called the "register specification VA") required for invalid operations. When op indicates...

4.2.4.1ERTN

operate

The ERTN instruction is used to return from exception handling.

The PPLV and PIE information corresponding to the exceptions comes from CSR.PRMD, and the ERA information corresponding to the exceptions comes from CSR.ERA.

4.2.4 Other Miscellaneous Instructions

Machine Translated by Google

5.2.1 Direct Mapping Address Translation Mode

5 Storage Management

The physical address is by default directly equal to the [PALEN-1:0] bits of the virtual address (padded with 0s if necessary), unless a higher priority is used in the specific implementation.

The proposed value is 32.

The physical address space range of memory is 0~ 2PALEN-1.

Dragon Architecture 32 -bit Simplified Reference Manual

In the 32-bit simplified version of the Dragon architecture, PALEN is theoretically a positive integer not exceeding 36, with its specific value determined by the implementation.

Access type.

When DA=1 and PG=0 in CSR.CRMD, the processor core's MMU is in direct address translation mode. In this mapping mode,

Virtual and physical address translation rules. As you can see, the entire virtual address space is valid at this point. After the processor resets, it will enter the direct address translation phase.

model.

There are two types of address translation mode (referred to as "direct mapping mode") and page table mapping address translation mode (referred to as "page table mapping mode"). Translation

For a detailed explanation of mapping modes, please see Section 5.2.1. For a detailed explanation of page table mapping modes, please see Section 5.4.

In addition to the address range information, you can also configure under which privilege levels this window is available, and the storage of memory access operations where virtual addresses fall on this window.

For example, by configuring DMW0 to 0x80000011, then at PLV0 level, the range 0x80000000 ~ 0x9FFFFFFF...

The address will be directly mapped to the physical address space 0x0 ~ 0x1FFFFFFF, and its storage access type is consistent and cacheable.

They are equal, and the current privilege level is allowed in this configuration window.

In the Dragon Architecture 32-bit Lite version, each Direct Mapping configuration window can be configured with a fixed-size virtual address space of 229 bytes.

In the Dragon architecture 32-bit simplified version, the virtual address space is linearly flat. For PLV0 level, the virtual address space size is 2^ 32 bytes.

The Dragon architecture 32-bit simplified MMU supports two virtual and physical address translation modes: direct address translation mode and mapped address translation mode.

When the processor core's MMU is in mapped address mode, direct mapping between virtual and physical addresses can also be achieved through the direct mapping configuration window mechanism.

When a virtual address hits a valid direct-mapped configuration window, its physical address is directly equal to the [28:0] bits of the virtual address appended to the address of that mapping window.

When DA=0 and PG=1 in CSR.CRMD, the processor core's MMU is in mapped address translation mode. This is further divided into direct mapping...

When translating addresses, the system will first check if they can be translated using the direct mapping mode; if not, it will then proceed with the page table mapping mode. (Regarding direct mapping...)

There are two direct mapping configuration windows, which can be used for both instruction fetching and load/store operations simultaneously.

The system software configures two direct-map configuration windows by configuring the CSR.DMW0~CSR.DMW1 registers. Each window, in addition to...

The high-order bits of the configured physical address. The hit detection method is: the highest 3 bits of the virtual address (bits [31:29]) match the bits [31:29] in the configuration window register.

5.1 Physical Address Space

5.2 Virtual Address Space and Address Translation Mode

49

Machine Translated by Google

50

Figure 5-1 TLB Entry Format

5.4.2 TLB Entries

5.4.1 TLB Organizational Structure

ÿ Address Space Identifier (ASID), 10 bits. The address space identifier is used to distinguish the same virtual address in different processes, avoiding process switching.

CC (Cardinal Cache) and Strongly-ordered Uncached (SUC).

Dragon Architecture 32 -bit Simplified Reference Manual

As mentioned in Section 2.1.7 above, the 32-bit simplified version of the Dragon architecture supports two storage access types: Coherent Cached.

TLB uses a fully associative lookup table organization.

The storage access type for load/store operations is determined by the CSR.CRMD.DATM domain.

The format of each TLB entry is shown in Figure 5-1, which contains two parts: a comparison part and a physical conversion part.

In mapped address translation mode, all valid addresses, except those falling within the direct mapping configuration window, must be translated through the page table.

Save, 2/3 — Keep.

The performance penalty of clearing the entire TLB during swapping. The operating system assigns a unique ASID to each process, and the TLB performs lookups...

ÿ Existence bit (E), 1 bit. A value of 1 indicates that the corresponding TLB entry is not empty and can participate in the search and matching.

The MAT field in the CSR register determines the memory access type. If instruction fetching or load/store can only be mapped through the page table, then the memory access type is determined by the page table.

When the processor core MMU is in direct address translation mode, all memory access types for instruction fetching are determined by CSR.CRMD.DATF.

When the processor core MMU is in mapped address translation mode, the determination of the memory access type falls into two categories. If it's instruction fetch or load/store...

If the address of the operation falls on a direct mapping configuration window, then the storage access type of the fetch or load/store operation is determined by the configuration of that window.

The MAT field in the item determines this.

Regardless of the specific circumstances, the definition of the storage access type control value remains the same: 0 – strong order, non-cached; 1 – consistent, cached.

The comparison section of the TLB entries includes:

In addition to matching the address information, the ASID information also needs to be compared.

The mapping completes the virtual-to-physical address translation. The TLB, acting as a temporary cache in the processor storing operating system page table information, is used to accelerate the address mapping process.

The virtual-to-physical address translation process for instruction fetch and load/store operations in translation mode.

5.4 Page Table Mapping Storage Management

5.3 Storage Access Types

MAT0

ACIDG VPPN PS AND

PPN0 PLV0

PLV1 MAT1 PPN1 D1 V1

D0 V0

Machine Translated by Google

In the Linux kernel, a 4MB page size corresponds to a page table entry in a transparent big page, which is divided into two 2MB entries with the same page table attributes during the TLB filling process.
1

To perform maintenance or make a final ruling on the legality of program execution. Exceptions related to TLB management in the 32-bit Dragon Architecture Lite version include:

Dragon Architecture 32 -bit Simplified Reference Manual

When all processes share the same virtual address, the G bit in the TLB page table entry can be set to 1.

ÿ TLB Refill Exception: This exception is triggered when no match is found in the TLB for the virtual address accessed in the memory access operation, notifying the system software to proceed.

ÿ Privilege Level (PLV), 2 bits. The privilege level corresponding to this page table entry. This page table entry can be accessed by any privilege level not lower than PLV.

The physical translation section of the table entry stores the physical translation information for a pair of odd-even adjacent page tables. The translation information for each page includes:

ÿ Physical Page Number (PPN), (PALEN-12) bits. When the page size is greater than 4KB, the PPN stored in the TLB is [PS-1:12] bits.

This is an exception.

ÿ Page Size (PS), 6 bits. Appears only in MTLB. Used to specify the page size stored in this page table entry. The value is 2 times the page size.

The TLB refill operation is performed. This exception has its own independent exception entry. While the TLB refill exception is trapped, the hardware will automatically...

12 and 21 1.

If the exception handler itself triggers the TLB to refill the exception again, the exception context will not be saved or restored.

5.4.3.1 TLB -related exceptions

Physical conversion information of the page.

For the specific meaning of the value, see Section 5.3 .

The TLB performs virtual-to-physical address translation automatically in hardware. However, this can happen when there is no matching entry in the TLB, or when a match is found but the page table entry is invalid.

ÿ Global Flag (G), 1 bit. When this bit is 1, no ASID consistency check is performed during the lookup. This is necessary when the operating system requires...

Setting DA to 1 and PG to 0 in CSR.CRMD automatically enters direct address translation mode, thus avoiding TLB refill exceptions.

It does not need to be stored in the TLB. When searching the TLB, the least significant bit of the virtual page number being searched determines whether to select an odd-numbered page or an even-numbered page.

Managing the TLB in the 32-bit simplified version of the Dragon architecture involves software aspects, including TLB refilling and consistency between the TLB and memory page tables.

The bit can be any value.

Since the TLB page table entries store virtual page numbers, the virtual page number stored in the TLB page table entries is the virtual page number in the system divided by 2, which is the least significant bit of the virtual page number.

ÿ Load operation page invalid exception: If a match is found in the TLB for the virtual address of the load operation, but the matching page table entry has V=0, this will trigger an exception.

Maintenance is still entirely software-driven.

If access is illegal, an exception needs to be triggered, handing the matter over to the operating system kernel or other monitoring programs for further processing by the software, including the contents of the TLB.

The exponentiation of the power. The Dragon architecture 32-bit simplified version only supports two page sizes: 4KB and 4MB, corresponding to the PS values in the TLB table entries.

ÿ Virtual Double Page Number (VPPN), (VALEN-13) bits. In the Dragon architecture 32-bit simplified version, each page table entry stores an adjacent pair of odd-numbered bytes.

ÿ Valid bit (V), 1 bit. A value of 1 indicates that the page table entry is valid and has been accessed.

ÿ Dirty bit (D), 1 bit. A value of 1 indicates that there is dirty data in the address range corresponding to this page table entry.

ÿ Memory Access Type (MAT), 2 bits. Controls the memory access type of memory access operations falling within the address space of this page table entry. (Each number...)

Access to the program.

5.4.3 TLB Software Management

51

Machine Translated by Google

This is an exception.

ÿ PGD

This is an exception.

TLB-related instructions mainly involve operations such as searching, reading, writing, and invalidating the TLB, and are used for TLB filling, updating, and consistency.

5.4.3.2 TLB- related instructions

5.4.3.3 TLB- related CSR

For details on the interaction between the above CSR registers and the TLB, please refer to the detailed definitions of each CSR in Section 7.4 .

The third category includes:

5.4.3.4 TLB Initialization

ÿ Store operation page invalid exception: If a match is found in the TLB for the virtual address of the store operation, but the V=0 of the matching page table entry, this will trigger an exception.

Dragon Architecture 32 -bit Simplified Reference Manual

Complete this function.

ÿ TLBELO1

Maintenance. For specific instruction definitions, please refer to section 4.2.3 of this manual.

ÿ EXPECTATION0

This exception will be triggered if the D bit of the entry is 0.

PLV.

ÿ Page Modification Exception: The virtual address of the store operation is matched in the TLB, V=1, and the privilege level is compliant, but the page...

ÿ TLBIDX

The Dragon architecture 32-bit simplified version allows hardware initialization without implementing TLB, allowing the software during startup to execute "INVTLB 0, r0, r0" to initialize the TLB.

ÿ Instruction fetch page invalid exception: If a match is found in the TLB for the virtual address of the instruction fetch operation, but the matching page table entry has V=0, this will trigger an exception.

ÿ OBSERVATION

The third category is only used for TLB refill exceptions.

ÿ ACID

ÿ PGDL

This exception will be triggered if the privilege level is non-compliant. Privilege level non-compliance is manifested as the CSR.CRMD.PLV value of the page table entry being greater than the value in the page table entry.

ÿ BADV

ÿ Page privilege level non-compliance exception: The virtual address of the memory access operation found a matching entry with V=1 in the TLB, but the access privilege level...

ÿ PGDH

The second category includes:

TLB-related CSRs are mainly divided into two categories according to their functions: the first category is used for TLB access and interaction interfaces, and the second category is used for software page table traversal.

ÿ TLBRENTRY

The first category includes:

52

Machine Translated by Google

5.4.4 TLB -based virtual-physical address translation process

This section describes the virtual-to-physical address translation process based on TLB.

Dragon Architecture 32 -bit Simplified Reference Manual

else :

va: Virtual address to be

searched # mem_type: Memory access operation type, FETCH is instruction fetch, LOAD is load, STORE is store # plv: Current

privilege level, i.e., the value of CSR.CRMD.PLV # pa: Translated

physical address # mat: Translated

memory access type # VALEN: Effective number

of bits in the virtual address # PALEN:

Effective number of bits in the physical

address # TLB[]: TLB[N] represents the Nth entry in

the TLB # TLB_ENTRIES: Number of entries in the TLB

((TLB[i].G==1) or (TLB[i].ASID==CSR.ASID.ASID)) and

(TLB[i].VPPN[VALEN-1: TLB[i].PS+1]==va[VALEN-1: TLB[i].PS+1]) :

found_mat = TLB[i].MAT1

else: # Multiple hits occurred, and the processor's execution result is uncertain.

found_ps = TLB[i].PS

if (tlb_found==0) :

found_ppn = TLB[i].PPN0

found_ppn = TLB[i].PPN1

if (tlb_found==0) :

for i in range(TLB_ENTRIES) :

tlb_found = 1

if (va[found_ps]==0) :

found_v = TLB[i].V0

found_d = TLB[i].D1

#Report TLB re-entry exception

if (TLB[i].E==1) and

case mem_type :

found_d = TLB[i].D0

found_mat = TLB[i].MAT0

found_v = TLB[i].V1

found_plv = TLB[i].PLV1

Find TLB

tlb_found = 0

FETCH : SignalException(PIF) # Reports an invalid fetch operation page exception

SignalException(TLBR)

found_plv = TLB[i].PLV0

if (found_v==0) :

53

Machine Translated by Google

54

Dragon Architecture 32 -bit Simplified Reference Manual

SignalException(PPI)

elif (mem_type==STORE) and (found_d==0)): # Write permission check is not enabled

#Store action page invalid exception

#Error message: Load operation page invalid exception

#Exceptions to non-compliant newspaper page privilege levels

LOAD : SignalException(PIL)

STORE : SignalException(PIS)

elif (plv > found_plv) :

#Exception to page modification

else :

pa = {found_ppn[PALEN-13:found_ps-12], va[found_ps-1:0]}

mat = found_mat

ÿ

SignalException(PME)

Machine Translated by Google

6.1.4 Processor hardware interrupt handling procedure

6.1.3 Interrupt Entry Point

6.1.1 Interrupt Types

6.1.2 Interrupt Priority

6 Exceptions and Interruptions

This is accomplished by writing 1 to the TI bit of the CSR.TICLR register.

Some line interrupts are level interrupts, and all of them are active high.

Interrupt signals from each interrupt source are sampled by the processor and stored in the CSR.ESTAT.IS field. This information, along with software configuration, is stored in CSR.ECFG.LIE.

Once an interrupt is marked as an instruction by the processor hardware, it is treated as an exception; therefore, the calculation of the interrupt entry point follows the same rules as ordinary exceptions.

The Dragon architecture 32-bit simplified version uses wired interrupts. Each processor core can internally record 12 wired interrupts, namely: 1...

The timer interrupt originates from the internal constant-frequency timer. This interrupt is triggered when the constant-frequency timer counts down to all zeros.

Enabled. Once enabled, the timer interrupt is sampled and recorded by the processor core in the CSR.ESTAT.IS bit[11]. Clearing the timer interrupt requires software intervention.

The interrupt source for hardware interrupts originates outside the processor core, typically from an external interrupt controller. The eight hardware interrupts HWI[7:0] are...

TI is next, ..., SWI0 has the lowest priority.

0 clears the soft interrupt.

The interrupt number for SWI1 is 1, ..., and the interrupt number for IPI is 12.

When the processor determines that there is an interrupt that needs to be responded to, it selects an instruction from the executed instruction stream and marks it as a special exception.

Inter-core interrupt (IPI), 1 timer interrupt (TI), 8 hardware interrupts (HWI0~HWI7), and 2 software interrupts (SWI0~SWI1).

Dragon Architecture 32 -bit Simplified Reference Manual

Inter-core interrupts are input from the external interrupt controller and are sampled and recorded by the processor core in the CSR.ESTAT.IS[12] bit.

Calculation rules for entry points. Please refer to Section 6.2.1 for the calculation rules for ordinary exception entry points .

The local interrupt enable information in the domain is bitwise ANDed to obtain a multi-bit interrupt vector int_vec. This is achieved when CSR.CRMD.IE = 1 and int_vec is not all zeros.

The processor core sampling record is in bits CSR.ESTAT.IS[9:2].

The interrupt source for a software interrupt originates from within the processor core. Software enables a software interrupt by writing 1 to CSR.ESTAT.IS[1:0] using the CSR instruction.

The index value of the location of the interrupt recorded in the CSR.ESTAT.IS field is also called the interrupt number (Int Number). The interrupt number for SWI0 is equal to 0.

The response to multiple interrupts at the same time uses a fixed priority arbitration base address, with higher interrupt numbers having higher priority. Therefore, IPI has the highest priority.

6.1 Interruption

55

Machine Translated by Google

1

6.2 Exceptions

ÿ Restore the PPLV and PIE values from CSR.PRMD to the PLV and IE values from CSR.CRMD;

The entry point for TLB refill exceptions comes from CSR.TLBRENTRY.

Dragon Architecture 32 -bit Simplified Reference Manual

If the value is 0, IE will set it to 0;

The specific exception type is determined by the information in the Ecode and IS fields.

ÿ Jump to the address recorded in CSR.ERA to fetch the instruction.

Exception priority follows two basic principles: first, interrupts have higher priority than exceptions; second, for exceptions, those detected during the instruction fetch phase have higher priority.

When an exception is triggered, the processor hardware will perform the following operations:

When the software returns from an exception execution by executing the ERTN instruction, the processor hardware performs the following operations:

The system stores information such as PIE and restores the saved information to CSR.PRMD before the exception returns.

Different exceptions may be handled in slightly different ways by the processor hardware. Here is a general handling procedure common to all exceptions.

During the execution phase, there may be only memory access instructions or multiple exceptions triggered simultaneously, with their priorities from highest to lowest as follows: memory access instructions requiring address alignment, and so on.

Describe it.

The highest priority is detected during the decoding stage, followed by the next highest priority, and then the lowest priority is detected during the execution stage.

For the hardware implementation described above, if the software needs to enable interrupts during the exception handling process, it needs to save the PPLV in CSR.PRMD.

ÿ Record the PC value that triggered the exception instruction in CSR.ERA;

The subsequent processing by the processor hardware is the same as that for ordinary exceptions; please refer to the description in Section 6.2.3 .

— Interruption exception.

All other common exceptions, except those mentioned above, share the same entry point: CSR.EENTRY. In this case, the software needs to access CSR.ESTA.

For exceptions detected during the instruction fetch phase: exceptions with incorrect fetch address have the highest priority, followed by exceptions related to the instruction fetch TLB.

The exceptions that can be detected during the decoding phase are mutually exclusive, so there is no need to consider their priority.

Address misalignment exception (ALE) > TLB related exception 1.

ÿ Store the PLV and IE of CSR.CRMD into the PPLV and PIE of CSR.PRMD respectively, and then set the PLV of CSR.CRMD to

ÿ Jump to the exception entry point to retrieve the pointer.

6.2.2 Exception Priority

6.2.1 Exception Entrance

6.2.3 General Process for Exceptional Hardware Handling

The definition of TLB-related exceptions dictates that, under any circumstances, a memory access instruction will only generate a single type of TLB-related exception.

56

Machine Translated by Google

57

The physical address of the first instruction fetched after the bit is also 0x1C000000.

A reset will reset all logic in the processor core, placing the circuitry into a defined state. The definition of the processor's state after a reset will be given here.

The PC of the first instruction after reset is 0x1C000000. Since the MMU will definitely be in direct address translation mode after the reset is reversed, the reset...

ÿ CSR.CRMD ÿ PLV=0ÿIE=0ÿDA=1ÿPG=0ÿDATF=0ÿDATM=0ÿ

ÿ CSR.TCFG's En=0;

In addition to the above-specified content, after a reset is reversed, the values of other software-visible registers in the processor are uncertain, and the software...

ÿ The LIE value in CSR.ECFG is 0;

Dragon Architecture 32 -bit Simplified Reference Manual

ÿ CSR.EUEN's FPUen is 0;

After the reset is canceled, the contents of the registers in the determined state are:

ÿ In CSR.ESTAT, IS[1:0] are all 0;

Whether the TLB and Cache undergo a hardware reset during a reset is determined by the implementation; if not, a software reset is required.

ÿ In all implemented CSR.DMW, PLV0 and PLV3 are both 0;

Before use, its state must be set to a defined state.

ÿ CSR.LLBCTL's KLO=0;

6.3 Reset

Machine Translated by Google

Machine Translated by Google

Timer number

DMW0~DMW1

Timer configuration

0x6

0x41

PGD

Address space identifier

Cache tags

0x60

ERA

Exceptional state

0x11 TLBEHI

EU

0x1B

TLBRENTRY

Exception Entry Address

Global directory base address in the lower half of the address space

ACID

ECFG

0x40

LLBit control

Direct mapping configuration window

SAVE0~SAVE3

TLB Low Item 1

TLB entry low 0

0x2

BADV

TCFG

59

Error virtual address

0x20

0x18

0x4

TLB Re-entry Exception Address

PGDL

TLB High Level

LLBCTL

0x19

CPUID Processor number

TICLR

0x13

EENTRY

High half-address space global directory base address

CTAG

TLB Index

0x98

Data storage

0x44

0x0 CRMD

Global directory base address

PRMD

Table 7-1 Overview of Control Status Registers

Exception Configuration

TIME

0x30~0x33

0x12

0x7

TLBELO1

Extended component enable

0x180~0x181

0x88

Timer value

PGDH

Exception return address

0x5

Timed interrupt clear

TVAL

EXPECTATION0

0x1

0xc

Current mode information

Exception Pre-Mode Information

0x42

TLBIDX 0x10

STATE

0x1A

7. Control Status Register

name

Dragon Architecture 32 -bit Simplified Reference Manual

address

7.1 Overview of Control Status Registers

Machine Translated by Google

60

7.4 Basic Control Status Register

7.2 Description of Control Status Register Access Characteristics

7.3 Conflicts caused by control status registers

Although the software uses the CSRWR or CSRXCHG instructions to write these undefined or unimplemented control status registers, in addition to changing the general-purpose register rd...

From the perspective of software access, it can be defined into four types:

These new fields must either be written with a value of 0 when updating them. This requirement is to ensure backward compatibility in the software. For hardware...

In practice, fields marked with this attribute will prevent software from writing to them.

When the software accesses a CSR object using a CSR directive that is not defined in the architecture specification, or is an implementable item defined in the architecture specification but...

The information in this register is used to determine the current privilege level of the processor core, global interrupt enable, and address translation mode.

ÿ R — Read-only. Writing to these fields by software will not update their contents and will not produce any other side effects.

ÿ RW—Software readable and writable. Except for illegal values explicitly stated in the definition that would lead to indeterminate processor execution results, the software can...

The "read/write" attribute of each field will be defined later in this manual in the section on the definition of control status register fields. This "read/write" attribute primarily...

Dragon Architecture 32 -bit Simplified Reference Manual

Conflicts caused by control status registers are handled by the hardware; software does not need to add barrier instructions to avoid these conflicts.

You can write any value to these fields. Normally, software performs a write-then-read operation on these fields, and the value read should be the one written. However,

An error may occur if the accessed domain can be updated by the hardware, or if an interrupt occurs between two instructions performing a read or write operation.

The current situation is that the read value and the written value are inconsistent.

ÿ R0 — The software always returns 0 when reading these fields. However, the software must also ensure that, either by setting the CSR write mask, it prevents further...

Setting these values to 0 will not change the processor state visible to other software, but software should not actively write these registers to ensure backward compatibility.

Storage.

ÿ W1 — Software write of 1 is valid. Writing 0 to these fields will not clear them to 0 and will not produce any other side effects. Also, define...

The read values of the fields for this attribute have no software meaning and the software should ignore them.

If the specific hardware does not implement this, a read operation will return all zeros, and a write operation should not change the processor state visible to the software.

7.4.1 Current Mode Information (CRMD)

7.2.1 Read/Write Attributes

7.2.2 Effects of accessing undefined and unimplemented control status registers

Machine Translated by Google

RW When an exception is triggered, the hardware sets the value of this field to 0 to ensure that the user is in the highest privilege level after a trap.

Privilege level.

RW

61

When the execution of the ERTN instruction returns from the exception handler, the hardware restores the value of the PPLV field of CSR.PRMD to its original value.

Sure.

When the software sets PG to 1, it is recommended to also set the DATF field to 0b01, which is a consistent cacheable type.

Sure.

RW

RW

IE

8:7

When the software sets PG to 1, it is recommended to also set DATM to 0b01, which is a consistent cacheable type.

RW

RW

DATM

Current privilege level. Its valid values are 0 and 3. 0 represents the highest privilege level, and 3 represents the lowest.

here.

Global interrupts are currently enabled, active high.

To re-enable interrupt response, this bit must be explicitly set to 1.

When a TLB refill exception is triggered, the hardware sets this field to 0.

inside.

Set the field to 1.

DATF

Enabled for mapped address translation mode, highly active.

POS

When an exception is triggered, the hardware sets the value of this field to 0 to ensure that interrupts are masked after a trap. The exception handler determines...

AND

Set the field to 0.

When the execution of the ERTN instruction returns from the exception handler, if CSR.ESTAT.Ecode=0x3F, the hardware will...

PG

6:5

When the execution of the ERTN instruction returns from the exception handler, the hardware restores the value of the PIE field of CSR.PRMD to this value.

Storage access type for load and store operations in direct address translation mode.

Enable direct address translation mode, highly effective.

The valid combinations of the PG and DA bits are 0 and 1 or 1 and 0. When the software is configured with other combinations, the result will not be valid.

1:0

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

4

The memory access type for instruction fetch operations in direct address translation mode.

0

Table 7-2 Current Mode Information Register Definition

2

The valid combinations of the DA and PG bits are 0 and 1 or 1 and 0. When the software is configured with other combinations, the result will not be valid.

31:9

When a TLB refill exception is triggered, the hardware sets this field to 1.

When the execution of the ERTN instruction returns from the exception handler, if CSR.ESTAT.Ecode=0x3F, the hardware will...

3

Name reading and writingBit

Dragon Architecture 32 -bit Simplified Reference Manual

describe

Machine Translated by Google

7.4.3 Extended Component Enable (EUEN)

7.4.2 Pre-Exception Mode Information (PRMD)

7.4.4 Exception Control (ECFG)

When an instruction is invalid, executing the corresponding instruction will trigger the relevant instruction unavailability exception. The software uses this mechanism to determine the scope of context saving.

Used to restore the processor core's state upon exception return.

Name reading and writing

When an exception is triggered, the hardware saves the processor core's privilege level and global interrupt enable bit to the pre-exception mode information register.

In addition to the basic integer instruction set and privileged instruction set, the basic floating-point instruction set has software-configurable enable bits. When these enable bits are active...

describe

Name reading and writing

Hardware implementations can also utilize the control bits here to control circuit power consumption.

Name reading and writing

Dragon Architecture 32 -bit Simplified Reference Manual

Bit describe

describeBit

This register is used to control the local enable bits for each interrupt.

Bit

62

0

When an exception is triggered, the hardware will record the old value of the PLV field in CSR.CRMD in this field.

When an exception is triggered, the hardware will record the old value of the IE field in CSR.CRMD in this field.

Floating-point instruction not enabled exception (FPD).

PPLV

Table 7-4 Extended Instruction Enable Register Definitions

0

RW

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

Local interrupt enable bits, active high. These local interrupt enable bits are related to the 10 bits recorded in the IS[9:0] field of CSR.ESTAT.

10

12:11 RW

0

LIE[9:0]

domain.

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

2

9:0

RW

Each interrupt source corresponds to one interrupt source, with each bit controlling one interrupt source.

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

When the ERTN instruction is executed and returns from the exception handler, the hardware restores the value of this field to the value in CSR.CRMD.

0

RW

LIE[12:11]

domain.

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

0

RW

ABOUT

Each interrupt source corresponds to one interrupt source, with each bit controlling one interrupt source.

31:1

When the ERTN instruction is executed and the system returns from the exception handler, the hardware restores the value of this field to the PLV of CSR.CRMD.

Table 7-3 Definition of Exception Mode Information Register

Basic floating-point instruction enable bit. When this bit is 0, execution of the basic floating-point instructions described in Section 3.2 will be triggered.

31:3

1:0

Local interrupt enable bits, active high. These local interrupt enable bits are related to the 2 bits recorded in the IS[12:11] field of CSR.ESTAT.

31:13

Table 7-5 Exception Configuration Register Definitions

FPE

Machine Translated by Google

1:0

Exception type level-one encoding. When an exception is triggered, the hardware will assign the number defined in the Ecode column of Table 7-7 according to the exception type.

ADEM memory access instruction address error exception

0x2

IS[11]

0

Each interrupt source records its status here. The requirement that all interrupts must be level interrupts is determined by the interrupt...

Inter-core interrupt (IPI) status bit. Active high. In in-circuit interrupt mode, the hardware only samples step-by-step.

Interrupted.

ADEF Fetch Address Error Exception

PPI

0

Each interrupt source records its status here. The requirement that all interrupts must be level interrupts is determined by the interrupt...

Store action page invalid exception

PIF

The value is written to this field.

R

0

0

Invalid Fetch Operation Page Exception

SYS

0

EsubCode

0x7

SMEs

The source is responsible for ensuring this, but it is not maintained here.

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

The source is responsible for ensuring this, but it is not maintained here.

0

R

Page modification exceptions0x4

Software interrupt settings are also accomplished using these two bits: 1 for software write, 0 for write clear interrupt.

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

0x8

0

R

31

10

Interrupt status bit for Timer Interrupt (TI). Active high. In in-circuit interrupt mode, the hardware samples only one clock cycle.

0x0

Two software interrupt status bits. Bits 0 and 1 correspond to SWI0 and SWI1, respectively.

0xB

In online interrupt mode, the hardware simply samples each interrupt source on a clock cycle and records its state. At this time, for all...

Interrupt status bits for 8 hardware interrupts (HWI0~HWI7). Active high.

15:13

R

9:2

BUT

0x1

System call exceptions

0

0

R

1

IS[9:2]

0x9

Ecode

30:22

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

Table 7-7 Exception Code Table

The requirement that interrupts must be level interrupts is guaranteed by the interrupt source and is not maintained here.

PIL

IS[1:0]

Exceptions to address misalignment

21:16

RW

11

0 Load operation page invalid exception

Page privilege level non-compliance exception

PIS

Table 7-6 Exception Status Register Definitions

0

Exception type secondary encoding. When an exception is triggered, the hardware will assign the EsubCode column defined in Table 7-7 according to the exception type.

12

0

The value is written into this field.

INT

0x3

IS[12]

63

Name reading and writing describe

Dragon Architecture 32 -bit Simplified Reference Manual

This register records the status information of the exception, including the first and second level codes of the triggered exception, as well as the status of each interrupt.

Bit

EsubCode Exception Code Exception typesEcode

7.4.5 Exception Status (ESTAT)

Machine Translated by Google

Table 7-9 Error Virtual Address Register Definitions

Command privilege level error exception

FPD

0x1A-0x3E

0

0

I HAVE

BRK

PC

0x12

TLBR

Reserved code

Table 7-8 Exception Return Address Register Definitions

When a TLB refill exception or an address error-related exception is triggered, the hardware records the erroneous virtual address here, VAddr RW.

When an exception is triggered by RW, the hardware records the PC of the instruction that triggered the exception here.

Exceptions to basic floating-point instructions

0xC

CALL

0

The instruction has no exceptions

FPE

0x3F

31:0

0xD

0

0

Breakpoint Exception

31:0

TLB Refill Exception

Floating-point instruction not enabled exception

64

0

0xF

0xE

Exception typesEsubCode Exception Code

When an exception is triggered, the program counter (PC) of the instruction that triggered the exception will be recorded in this register.

Bit

ÿ Invalid Fetch Page Exception (PIF)

ÿ TLB Refill Exception

ÿ Address alignment misalignment exception (ALE)

Name reading and writing

ÿ Page Privilege Level Non-Compliance Exception (PPI)

ÿ Store Action Page Invalid Exception (PIS)

Ecode

Bit

Dragon Architecture 32 -bit Simplified Reference Manual

Name reading and writing

describe

This register is used to record the virtual address of the error when an address error-related exception is triggered. Such exceptions include:

ÿ Page Modification Exception (PME)

ÿ Instruction Fetch Error (ADEF) exception: In this case, the PC of the instruction is recorded.

describe

ÿ Load operation page invalid exception (PIL)

7.4.6 Exception Return Address (ERA)

7.4.7 Error Virtual Address (BADV)

Machine Translated by Google

31:9

5:0 R is always 0 when read-only, and writes are ignored.

Table 7-10 Exception Entry Address Register Definitions

RW represents bits [31:6] of the exception and interrupt entry address. This means that the lower 6 bits of the exception and interrupt entry address must be 0.

0

AND

31:0

The processor core number. This information is used by software to distinguish each processor core in a multi-core system. During system integration, each...

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

R

The numbering starts from 0 and increments.

CoreID

Data RW is data that can only be read and written by software. The hardware will not modify the contents of this field except when executing CSR instructions.

Table 7-12 Data Storage Register Definitions

Table 7-13 LLBit Register Definition

8:0

R is a read-only bit that returns the current value of LLBit.

Writing a 1 to this bit in the W1 software will clear LLBit to 0. Writing a 0 to this bit in the software will be ignored by the hardware.WCLLB

31:6

0

1

0

65

ROLLB

The processor core number information for each processor core is set by the hardware based on the specific implementation. It is recommended that the processor in the system...

Table 7-11 Processor Number Register Definition

Name reading and writing

This register contains processor core number information.

describe

The data storage control status register is used to temporarily store data for system software. Each data storage register can store data from one general-purpose register.

describe

describeBit

All data storage control status registers use the same format, as shown in Table 7-12.

Name reading and writing

Bit

This register is used to configure the entry addresses for exceptions and interrupts, excluding TLB refill exceptions.

Dragon Architecture 32 -bit Simplified Reference Manual

Name reading and writing

Bit Name reading and writing

Bit describe

data.

This register is used for access control operations on LLBit.

7.4.9 Processor ID (CPUID)

7.4.8 Exception Entry Address (EENTRY)

7.4.10 Data Saving (SAVE0~3)

7.4.11 LLBit Control (LLBCTL)

Machine Translated by Google

7.5 Mapped Address Translation Related Control Status Registers

describe

describeName reading and writing

Dragon Architecture 32 -bit Simplified Reference Manual

Bit

This register contains information such as index values related to TLB instruction operations. The bit width of the Index field in Table 7-14 is implementation-dependent, however...

The allowed index bit width in this architecture is no more than 16 bits.

This register also contains information related to the PS and E fields in the TLB entry during TLB instruction operations.

Bit Name reading and writing

The bit width of a field is related to the effective virtual address range supported by the implementation, so the definitions of register fields are described separately.

This register contains information related to the virtual page number (VPPN) in the high-order part of the TLB entry during TLB instruction operations.

The values of the PS field in the TLB entries written are derived from this when the TLBWR and TLBFILL instructions are executed.

TLB entries).

29:24

2

0

RW

31:3

When executing TLBWR, the value of this bit is inverted and written to the E bit of the TLB entry being written.

15:n

30

Table 7-15 Definition of TLB Page Table High-Level Register

RW

A value of 1 indicates that the TLB entry is empty (invalid TLB entry), and a value of 0 indicates that the TLB entry is not empty (valid).

n-1:0

Move to bit E of the TLB entry being written; if CSR.ESTAT.Ecode=0x3F at this time, then bit E of the TLB entry being written...

Index When the TLBSRCH instruction is executed, if a hit occurs, the index value of the hit item is recorded here.

PS

0

R is always 0 when read-only, and writes are ignored.

AT

RW

When this bit is equal to 1, the LLBit bit is not cleared to 0 when the ERTN instruction is executed, but the bit will be automatically cleared by the hardware.

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

IS

When executing the TLBRD and TLBWR instructions, the index value for accessing TLB entries comes from this.

Table 7-14 TLB Index Register Definition

For information on the correspondence between index values and TLB entries, please refer to the relevant content in Section 4.2.3.1.

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

66

RW

When executing the TLBWR or TLBFILL instruction, if CSR.ESTAT.Ecode != 0x3F, the value of that bit is inverted and then written.

It is always set to 1, regardless of the value of that bit.

Setting KLO to 0 means that each time KLO is set to 1, it can only affect the execution of the ERTN instruction once.

Used to control the operation of LLBit when the ERTN instruction is executed.

When the TLBRD instruction is executed, the value of the PS field of the read TLB entry is recorded here.

0

0

When executing TLBRD, the E bit information of the read TLB entry is inverted and recorded here.

When executing TLBSRCH, if there is a hit, this bit is recorded as 0; otherwise, it is recorded as 1.

31

23:16 R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

7.5.2 TLB High Bit (TLBEHI)

7.5.1 TLB Index (TLBIDX)

Machine Translated by Google

7.5.3 Low bits of TLB entries (TLBELO0, TLBELO1)

The definitions of its various domains are shown in Table 7-16.

Name reading and writingBit

Dragon Architecture 32 -bit Simplified Reference Manual

describe

Name reading and writing

When the TLBRD instruction is executed, the information read from the TLB entries is written one by one into the TLBEL0 and TLBEL01 registers.

describe

Execute the TLBWR and TLBFILL instructions to write the following entries to the TLB table: G, PPN0, V0, PLV0, MAT0, D0, PPN1, V1, PLV1.

Bit

The TLBELO0 and TLBELO1 registers contain information such as the physical page number of the lower-order part of the TLB entry when the TLB instruction is executed.

Because the TLB in the 32-bit simplified version of the Dragon architecture uses a double-page structure, the low-order bits of the TLB entry correspond to two physical page entries, one odd and one even.

Odd-numbered page information is stored in TLBELO0, and odd-numbered page information is stored in TLBELO1. The format definitions of the TLBELO0 and TLBELO1 registers are exactly the same.

In the corresponding domain.

The values of the MAT1 and D1 fields come from TLBELO0 and TLBELO1, respectively.

12:0

The value of the VPPN field in the TLB entry comes from this.

The TLBSRCH instruction queries the VPPN value used by the TLB, and the TLBWR and TLBFILL instructions write data to the TLB.

5:4

31:13

Storage Access Type (MAT) for RW page table entries.

0

The valid bit (V) of the RW page table entry.

Global flags (G) for page table entries.

The G bit in the page table entry in the TLB is 1.6

Physical page number (PPN) of the RW page table.

D

Privilege Level (PLV) of RW page entries.

PPN

Recording ends here.

31:POLES-4

0

ALONG WITH

7

R is always 0 when read-only, and writes are ignored.

In

When triggering TLB refill exception, load operation page invalid exception, store operation page invalid exception, or fetch operation page invalid exception.

When an exception occurs, such as a page write permission exception or a page privilege level non-compliance exception, bits [31:13] of the virtual address that triggered the exception are recorded.

Dirty position (D) of RW page table entries.

3:2

Table 7-16 TLB Entries Low-order Register Definitions

The G bit is simultaneously set to 1.

POLES-5:8

POS

67

R is always 0 when read-only, and writes are ignored.

R is always 0 for read-only operations; write operations are ignored. This field does not exist when PALEN=36.

When the TLBRD instruction is executed, the value of the VPPN field of the read TLB entry is recorded here.

RW

When the TLBRD instruction is executed, if the G bit of the read TLB entry is 1, then the entries in TLBLO0 and TLBLO1...

0

1

VPPN RW

When executing the TLBFILL and TLBWR instructions, the fill is only performed if the G bits in both TLBELO0 and TLBELO1 are 1.

G

0

Machine Translated by Google

The base address of the global directory in the lower half of the address space.

When executing the TLBSRCH instruction, it is used to query the ASID key value information of the TLB.

The address space identifier corresponding to the currently executing program.

Table 7-17 Address Space Identifier Register Definitions

The so-called high half-address space refers to the virtual address where the [VALEN-1]th bit is equal to 1.

ACID

The so-called lower half-address space refers to the virtual address where the [VALEN-1]th bit is equal to 0.

Table 7-19 Definitions of Global Directory Base Register in High Half-Address Space

68

0

R is always 0 when read-only, and writes are ignored.

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

9:0

Table 7-18 Definition of Global Directory Base Address Register in Lower Half Address Space

The base address of the global directory in the high half-address space.

31:24

11:0

ASIDBITS

11:0

31:12

R is always 0 when read-only, and writes are ignored.

Base

31:12 Base

15:10

0

The bit width of the R ASID field. It is directly equal to the value of this field.

R is always 0 when read-only, and writes are ignored.

RW

It is used as the ASID key value information for querying the TLB when fetching instructions and executing load/store instructions.

When the TLBWR or TLBFILL instruction is executed, the value written to the ASID field of the TLB entry comes from this.

When the TLBRD instruction is executed, the contents of the ASID field of the TLB entry are recorded here.

23:16

0

RW

0

RW

describe

describe

Bit

Dragon Architecture 32 -bit Simplified Reference Manual

The specification may evolve further, and to make it easier for software to clearly define the bit width of the ASID, this information will be provided directly.

Bit

Bit

Therefore, the lowest 12 bits of this register are not configurable by software and are always 0 (read-only).

Name reading and writing

Therefore, the lowest 12 bits of this register are not configurable by software and are always 0 (read-only).

This register contains the address space identifier (ASID) information used for memory access operations and TLB instructions. The bit width of the ASID varies depending on the architecture.

Name reading and writing

This register is used to configure the base address of the global directory in the lower half of the address space. The base address of the global directory must be aligned to a 4KB boundary address.

Name reading and writing describe

This register is used to configure the base address of the global directory in the high half-address space. The base address of the global directory must be aligned to a 4KB boundary address.

7.5.5 Global Directory Base Address in the Lower Half-Address Space (PGDL)

7.5.4 Address Space Identifier (ASID)

7.5.6 Global Directory Base Address in High Half-Space (PGDH)

Machine Translated by Google

7.5.8 TLB Refill Exception Entry Address (TLBRENTRY)

7.5.7 Global Directory Base Address (PGD)

7.5.9 Direct Mapping Configuration Window (DMW0~DMW1)

Name reading and writing

Dragon Architecture 32 -bit Simplified Reference Manual

The read-only information of the device is used to read the return value of CSR-type instructions.

Bit describe

This set of registers is involved in completing the direct-mapped address translation mode. For details on this address translation mode, please refer to Section 5.2.1.

describeBit

describe

This register is a read-only register, and its content is the global directory base address information corresponding to the virtual address of the error in the current context.

Name reading and writing

This register is used to configure the entry address for a TLB refill exception. Because after a TLB refill exception is triggered, the processor core will enter the direct address...

Bit Name reading and writing

Since this is a translation mode, the entry address entered here should be a physical address.

0

It is equal to the Base field of CSR.PGDH.

PLV0

69

11:0

Table 7-22 Direct Mapping Configuration Window Register Definitions

0

0

R

5:0

5:4

0

The RW virtual address is the memory access type of the memory access operation that falls under this mapping window.

28

31:6

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

31:12

Table 7-21 TLB Refill Exception Entry Address Register Definition

PLV3

31:29

PSEG RW directly maps the physical address of the window in bits [31:29].

A value of 1 for RW indicates that the configuration of this window can be used for direct address mapping translation under privilege level PLV0.

If the highest bit of CSR.BADV is 0, the read return value is equal to the Base field of CSR.PGDL; otherwise, the read return value is not equal to the Base field of CSR.PGDL.

R is always 0 when read-only, and writes are ignored.0

2:1 R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

24:6

RW TLB refills the exception entry address [31:6]. The address entered here should be a physical address.

0

A value of 1 for RW indicates that the configuration of this window can be used for direct mapping address translation under privilege level PLV3.

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

PA

Table 7-20 Global Directory Base Address Register Definitions

ALONG WITH

RW directly maps the virtual address of the window in bits [31:29].VSEG

R TLB refills the exception entry address [5:0]. Read-only is always 0, write is ignored.

27:25

3

Base

Machine Translated by Google

Timer enable bit. The timer will only count down when this bit is 1, and will be reset when it reaches 0.
In

n-1:0

Timer number. Software configurable. During processor core reset, hardware can reset it to the value in CSR.CPUID.

31:n

Table 7-25 Timer Remaining Register Definitions

Timer interrupt signal.

InitVal RW

The least significant bit of the field value is padded with two 0 bits before it is used.

70

n-1:2

R is always 0 when read-only, and writes are ignored.

Timer cycle mode control bit. If this bit is 1, a timer interrupt will be set when the timer counts down to 0.

Simultaneously with the signal, the timer will be automatically reloaded to the initial value configured in the TimeVal field, and then the next...

R is always 0 when read-only, and writes are ignored.

The same value for CoreID.

Periodic RW

Table 7-24 Timer Configuration Register Definitions

31:n

1

0

The clock cycle continues to decrement. If this bit is 0, the timer will stop counting when it reaches 0, until the software...

R is the current timer count value.

TIME

TimeVal

Table 7-23 Timer Number Register Definitions

RW

RW 31:0

0

Configure the timer again.

0

The initial value for the timer's countdown decrement. This initial value must be an integer multiple of 4. The hardware will automatically set this value.

7.6 Timer-related control status register

Name reading and writing

Dragon Architecture 32 -bit Simplified Reference Manual

This register is the interface for configuring the timer in software. The effective number of bits for the timer is determined by the implementation, therefore the bit width of the TimeVal field in this register is...

describe

The software can read this register to determine the current timer count. The effective number of bits for the timer is determined by the implementation, therefore this register...

Bit describe

It will also change accordingly.

For each timer, when the software uses the RDCNTID instruction to read the timer ID number, the returned value is the corresponding timer number.

Name reading and writing

Each timer in the processor has a unique, identifiable number, configured in a register by software. Each timer is also unique.

describeBit

Name reading and writingBit

The bit width of the TimeVal field will also change accordingly.

7.6.3 Timer Value (TVAL)

7.6.1 Timer Number (TID)

7.6.2 Timer Configuration (TCFG)

Machine Translated by Google

0 When a value of 1 is written to this bit, the clock interrupt flag will be cleared. The register will always read a value of 0.

Table 7-26 Timer Interrupt Clear Register Definitions

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

CLR

31:1 0

71

Bit Name reading and writing

Dragon Architecture 32 -bit Simplified Reference Manual

The software clears the timer interrupt signal that the timer was set by writing 1 to bit 0 of the register.

describe

7.6.4 Timer Interrupt Clearing (TICLR)

Machine Translated by Google

Machine Translated by Google

8 Appendix A Functional Definition Pseudocode Description

Operators

ÿ Use the prefix "'b" or "##'b" to represent binary numbers, where the prefix "##'b" indicates that the bit width of this binary number is ## bits;

In addition, the common conventions for representing numerical values in pseudocode are as follows:

Dragon Architecture 32 -bit Simplified Reference Manual

This section lists the meanings of statement keywords and various operators involved in pseudocode, as well as the operator precedence relationships.

Bit;

ÿ Use the prefix "'h" or "##'h" to represent hexadecimal numbers, where the prefix "##'h" indicates that the bit width of this hexadecimal number is ## bits.

ÿ Decimal numbers are represented without a prefix or with a prefix of "'d" or "##'d", where the prefix "##'d" indicates that the bit width of this decimal number is ##.

meaning

In hexadecimal numbers, A through F are written in uppercase.

8.1 Operator Interpretation in Pseudocode

half-precision floating-point number

Conditional statements

Elif

):

)

Execute statement 2

N

fp16(

if

Determine the variable

…

sequence

…

Judgment condition 2

unsigned integers

Start value End value Step value

Double-precision floating-point numbers

Default execution statement

:

case conditional statement

(Return type function name

…

:

Value 2

conditional statements

Single-precision floating-point number

Execution statement

73

…

)

Execute statement 1

)

case

A sequence of specified step values from the start value (inclusive) to the end value (exclusive).

range() A sequence of integers from 0 to N-1 with a step size of 1.

:

TRUE executes the statement.

break

signed(

else:

Return value

function body

default:

…

return

Signed integers

?

of:

Table 8-1 Explanation of Key Words in Statements

:

variable

Judgment conditions

Abort the current loop

Execute statement 2

)

range()

…

FALSE statement

fp32(

in

,

Function definition

)

for

:

loop variable

:

fp64(

,

for loop statement

unsigned(

Condition 1 Execute

Statement 1

,

Execute statement 3

Value 1

Machine Translated by Google

N

{

remove

M

{

Variable zero-extended to N bits,

boolean

N

/

The value is TRUE if the variable is a quiet NaN, otherwise it is FALSE.

Bit string M is copied N times and concatenated

Integer type

:

power

)

Greater than or equal to

isSNaN(

>

The bit strings N, M, ... are concatenated in sequence

*

Mold taking

=

The value is TRUE if the variable is a signaling NaN number, and FALSE otherwise.

]

}

)

N-bit type

Assignment

add

SignalException(

M

{

,

Less than

bits()

!=

)

>=

variable

exception

Less than or equal to

bit

integer

}}

reduce

==

,

)

N

<

N M

N

equal

variable

**

Boolean type

variable

)

Greater than

SignExtend(

N to M bits of the bit string

Table 8-3 Definitions of Arithmetic Operators

-

take

%

Bit type

,

Table 8-2 Explanation of String Operators

Not equal to

Single-line comment

Table 8-4 Explanation of Comparison Operators

variable

ZeroExtend(

…

isQNaN(

+

Variable sign extended to N bits

<=

N

[

74

Triggering exceptions

Operators

meaning

Dragon Architecture 32 -bit Simplified Reference Manual

Operators

meaning

Operators meaning

meaningOperators

Machine Translated by Google

^, |

power

Logical NOT

Table 8-6 Explanation of Logical Operators

Equal to, not equal to

+, -

>, <, >=, <=

Add, subtract

Logical NOT

~

or

<<

Logical right shift

Bitwise AND

Logical OR

Bitwise or

Invert bitwise

Bitwise AND

*, /, %

==, !=

~

>>>

Bitwise XOR, Bitwise OR

75

and

&

not

Table 8-5 : Definitions of Bitwise Operators

Logical left shift, logical right shift, arithmetic right shift

Invert bitwise

**

&

|

and, or

Table 8-7 Operator Precedence

<<, >>, >>>

Multiplication, division, modulo

Logical left shift

bitwise XOR

Logic AND

not

^

>>

Greater than, less than, greater than or equal to, less than or equal to

Logical AND, Logical OR

Arithmetic right shift

meaning

Operators

meaning

Dragon Architecture 32 -bit Simplified Reference Manual

Operators

meaning

The operator precedence in pseudocode, from highest to lowest, is listed in Table 8-7:

Operators

The pseudocode definitions used in the instruction descriptions in this manual are as follows.

8.2 Pseudocode Description of Functions

Machine Translated by Google

8.2.2 Logical Right Shift

8.2.1 Logical Left Shift

8.2.3 Arithmetic right shift

8.2.4 Converting Single-Precision Floating-Point Numbers to Signed Word Integers

Dragon Architecture 32 -bit Simplified Reference Manual

result = x

return result

result = {{in{x[N-1]}}, x[N-1:in]}

{2'd0}: return Sint32_convertToIntegerExactTiesToEven(x)

{2'd3}: return Sint32_convertToIntegerExactTowardNegative(x)

result = {x[N-sa-1:0], {sa{1'b0}}}

bits(N) SRL(bits(N) x, integer sa):

else :

return result

result = {{sa{1'b0}}, x[N-1:sa]}

result = x

if sa==0 :

if sa==0 :

result = x

bits(N) SLL(bits(N) x, integer sa):

if sa==0 :

else :

return result

{2'd1}: return Sint32_convertToIntegerExactTowardZero(x)

{2'd2}: return Sint32_convertToIntegerExactTowardPositive(x)

bits(N) SRA(bits(N) x, integer sa):

else :

case {rm} of:

{bits(32) } FP32convertToSint32(bits(32) x, bits(2) rm):

76

Machine Translated by Google

8.2.6 Converting Double-Precision Floating-Point Numbers to Signed Word Integers

8.2.5 Converting Single-Precision Floating-Point Numbers to Signed Double-Word Integers

8.2.7 Converting Double-Precision Floating-Point Numbers to Signed Double-Word Integers

8.2.9 Rounding Double-Precision Floating-Point Numbers

8.2.8 Rounding Single-Precision Floating-Point Numbers

Dragon Architecture 32 -bit Simplified Reference Manual

{bits(32) } FP64convertToSint32(bits(64) x, bits(2) rm):

{2'd2}: return Sint64_convertToIntegerExactTowardPositive(x)

case {rm} of:

{2'd3}: return Sint64_convertToIntegerExactTowardNegative(x)

{2'd1}: return Sint64_convertToIntegerExactTowardZero(x)

{2'd2}: return Sint32_convertToIntegerExactTowardPositive(x)

{2'd0}: return Sint64_convertToIntegerExactTiesToEven(x)

{bits(32) } FP32_roundToInteger(bits(N) x, bits(2) rm):

case {rm} of:

{2'd0}: return Sint64_convertToIntegerExactTiesToEven(x)

{bits(64) } FP32convertToSint64(bits(32) x, bits(2) rm):

{2'd3}: return Sint64_convertToIntegerExactTowardNegative(x)

{2'd2}: return Sint64_convertToIntegerExactTowardPositive(x)

return FP32_roundToIntegralExact(x)

{2'd1}: return Sint64_convertToIntegerExactTowardZero(x)

{2'd0}: return Sint32_convertToIntegerExactTiesToEven(x)

{bits(64) } FP64_roundToInteger(bits(N) x, bits(2) rm):

{2'd3}: return Sint32_convertToIntegerExactTowardNegative(x)

{bits(64) } FP64convertToSint64(bits(64) x, bits(2) rm):

{2'd1}: return Sint32_convertToIntegerExactTowardZero(x)

case {rm} of:

return FP64_roundToIntegralExact(x)

77

Machine Translated by Google

Machine Translated by Google

79

1

fj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0

3

rj

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1

rd

0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1

rk

rk

rk

fj

rd

2

rj

1

rj

fd fk

rj

1

rd

rk

5

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0

fd

1

8

rd

rj

fj

rj

fd

fj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

rk

fd

rk

0

fk

1

rj

fd

1

0

rk

rj

rd

rd

rd

rd

rk

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

1

7

2

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1

rj

fk

0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0

0

ui5

rk

rj

0

rd

3

0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0

6

fk

rd

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1

rk

0

fd

9

2

code

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0

5

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

fd

rj

0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0

2

fk

fk

rd

fd

rd rk

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1

code

0

fd

rj

4

fk

rj

0 3

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

2 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

1 0 3

rj

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0

2

fk

2

fk

rk

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

rk

2

rd

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1

fd

rd

rj

0

9 6

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

ui5

rk

rd

fk

8

rj

2 0

rd

rd

rk

2

rd

4

rd

0

rj

rk

fd

1

1

rd

9

1

fj

5

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1

rk

fj

fj

rj

8

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1

0 0 0 0 0

ui5

fj

7

1

rj

1

rj

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1

0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0

fj

3

2 2

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

1

7

rd

rj

rk

fj

rd

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0

rj

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1

fj

2 6

fk

rd

Dragon Architecture 32 -bit Simplified Reference Manual

9. Appendix B : List of Instruction Codes

rd, rj, rk

RDCNTVH.W rd

DIV.WU

RDCNTVL.W rd

rd, rj, rk

SUB.W

rd, rj, rk

fd, fj, fk

OR

FDIV.S

fd, fj, fk

rd, rj, rk

rd, rj, rk

rd, rj, rk

rd, rj, rk

rd, rj, ui5

NOR

SRAI.W

BREAK

SRLI.W

FDIV.D

SLLI.W

fd, fj, fk

rd, rj, rk

MUL.W

MOD.W

SLTU

fd, fj, fk

FMAX.D

MOD.WU

rd, rj, rk

FADD.D

rd, rj, rk

rd, rj, rk

rd, rj, rk

FSUB.D

rd, rj, ui5

MULH.W

rd, rj, rk

fd, fj, fk

rd, rj, rk

code

fd, fj, fk

SRL.W

fd, fj, fk

fd, fj, fk

FREE

fd, fj, fk

code

rd, rj, rk

FADD.S

FMAX.S

rd, rj, rk

FSUB.S

SYSCALL

FMIN.S

rd, rj, ui5

SLL.W

MULH.WU

SRA.W

FMUL.D

rd, rj, rk

fd, fj, fk

SLT

ADD.W

DIV.W

RDCNTID.W rj

FMUL.S

rd, rj, rk

fd, fj, fk

AND

Machine Translated by Google

80

fd

1

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0

fd

rj

rj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 0

0

2

fd

fj

8 4 3

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 1

fj

fj

fd

fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 1 0 1

fj

6

rd

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 0 0 1 0

fd

2

fj

7

fk

fj

cd

5

1

fd

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 0 1

1

fd

5

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 0 0 0 1

0 0

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 0 0

rd

2

fk

fj

1 6

fj

fd

fd

fd

0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1

fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0

0

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 0 0

1

7 7

rd

1

fj

8

fj

fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0

2 2

0

fd 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0

fj

fj

fj

fj

fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 1 0

1

fd

0

fcsr

0

fj

fd

fd

0

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 1

0 5

fj

1

8 9

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 1

1

fk

fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 1 0

fd

fj

fj

2

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1

fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1

0

fj

fd

fd

0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1

fk

fd

0 0

0

4

fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1

fk

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 1 1 0

0 3

fj

0

2

fk

fcsr

2 0

fd

fd

9

0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0

fd

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 1 1 1

fd

fd

fj

3

fj

2

fd

0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0

1

0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0

rj

0

fd

cd

3

fd

fk

rd

0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0

2

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 0

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0

1

4

0

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1

fd

6

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 cj

3

fj

0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1

1

rj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1

fd

cj

fd

fj

fd

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 1 0

2

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1

9

fd

fj

fj

1

fd

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0

2

fd

1

2

fd

fj

Dragon Architecture 32 -bit Simplified Reference Manual

FSQRT.D

fd, cj

fd, fj, fk

FMOV.S

FTINTRM.W.S fd, fj

FCOPYSIGN.D fd, fj, fk

MOVFR2GR.S rd, fj

fd, fj

fd, fj

fd, fj

fd, fj

MOVFRH2GR.S rd, fj

FNEG.D

FRSQRT.D

FCOPYSIGN.S fd, fj, fk

MOVCF2FR

MOVGR2FCSR fcsr, rj

fd, fj, fk

fd, fj

fd, fj

FTINTRZ.W.S fd, fj

fd, fj, fk

FCLASS.D

FCVT.D.S

FMAXA.S

FSQRT.S

FMOV.D

fd, fj

FTINTRP.W.D fd, fj

fd, fj

FMAXA.D

cd, fj

FTINTRP.W.S fd, fj

MOVFCSR2GR rd, fcsr

fd, fj

MOVFR2CF

MOVGR2FR.W fd, rj

fd, fj

FNEG.S

FTINTRM.W.D fd, fj

fd, fj, fk

fd, fj

fd, fj FRSQRT.S

FRECIP.S

FMINA.D

fd, fj, fk

fd, fj

fd, fj

FCVT.S.D

FMINA.S

FTINTRNE.W.S fd, fj

FTINTRZ.W.D fd, fj

MOVGR2CF cd, rj

MOVCF2GR rd, cj

FCLASS.S

FTINTRNE.W.D fd, fj

FMIN.D

FRECIP.D

FABS.D

FABS.S fd, fj

fd, fj

MOVGR2FRH.W fd, rj

Machine Translated by Google

81

8

0 0 1 0 1 0 0 0 0 1

rd

0 0 0 0 0 1 0 0

3

fk

but

0 0 0 0 0 0 1 1 0 1

si12

1

rj

0 0 0 0 0 0 1 1 1 0

0 0 0 0 1 0 0 0 1 0 0 1

fk

0 0 0 0 0 1 0 0

8 5

2

7

fj

but

fj

si12

2

rd

6

si12

fj

ui12

0 0 0 0 1 0 0 0 1 1 1 0

fd

0 0 1 0 1 0 0 1 0 1

but fd

2 1

9

fj

2

ui12

fj

fd

rd

rd

7 0

0 0 0 0 1 0 0 0 0 1 1 0

0

rd

2

rd

csr

fj

0 0 1 0 1 0 0 0 1 0

2

rd

fj

1

rd

0 0 0 0 0 0 1 0 1 0

but

rd

rd

1 2

rj

0 0 0 0 1 0 0 0 0 0 0 1

fk

fd

fk

0 0 0 0 0 0 1 0 0 0

si12

fj

rj

1

fd

2

fd

1

0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 1 0

1

0 0 0 0 0 0 1 0 0 1

1

0 0

0

3

fd

si12 rd

0 0 0 0 1 1 0 1 0 0 0 0 0 0

0

0 0 0 0 0 1 0 0

si12

4

fj

1

fk

fk

that

si20

0

fk

rj

1

0 0 0 0 1 0 0 0 0 1 0 1

1

2

1

but

cd

rj

rd

0 0 0 1 1 1 0

rj

code

fd

7

fj

cd

0

0

rd

cond

0

fj

0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 0

0 0 0 0 0 1 1 0 0 0

rk

0 0 0 0 1 0 0 0 0 0 1 0

5

0 0 0 1 0 1 0

9

0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 0

si12

on

fk

rj

si20

6

0

0 0 0 0 1 0 0 0 1 1 0 1

si12

0 0

but

0

5

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 1

fd

fj

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0

level

0 0 0 0 1 1 0 0 0 0 0 1

rj

rd

rj

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1

8

yes14

rj

fj

but

cond

rj

rd

0 0 0 0 0 0 1 1 1 1

4

fd

fk

4 1

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0

fk

0

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0

1

rj

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1

rj

0

2

rj

si12

0 0 1 0 0 0 0 0

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

rj

3

0 0 0 0 1 0 0 0 1 0 1 0

ui12

csr

0 0 1 0 1 0 0 1 0 0

3

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0

fk

fj

rd

but

0

yes14

9

rd

6

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

3

2

0 0 0 0 1

2

csr

2

fj fd

rd

rj!=0,1

0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 0 0 0

fd

fd

Dragon Architecture 32 -bit Simplified Reference Manual

rd, rj, si12

rd, rj, si12

rd, rj, ui12

FSEL

fd, fj, fk, fa

rd, rj, si12

fd, fj

rd, rj, si14

FMSUB.S

OR

fd, fj, fk, fa

FNMSUB.D

rd, rj, ui12

SLTI

fd, fj, fk, fa

rd, rj, si12

FNMADD.S

LD.B

LD.W

ANDI

FFINT.D.W

rd, rj, ui12

ADDI.W

FNMADD.D

up, rj, rk

rd, rj, si12

fd, fj, fk, fa

fd, fj

code, rj, si12

rd, rj, si12

IDLE

FMADD.S

rd, rj, si12

LD.H

fd, fj

CHORUS

ERTN

FMSUB.D

fd, fj

fd, fj, fk, ca

rd, si20

LL.W

rd, si20

SLTUI

INVTLB

LU12I.W

fd, fj, fk, fa

ST.B

CSRRD

TLBSRCH

fd, fj, fk, fa

level

PCADDU12I

rd, rj, si14

FMADD.D

SC.W

rd, rj, csr

FFINT.S.W

FTINT.W.S

FTINT.WD

TLBWR

FNMSUB.S

rd, rj, si12

rd, csr

CAP

fd, fj, fk, fa

FCMP.cond.S cd, fj, fk

TLBFILL

ST.H

rd, csr

TLBRD

CSRXCHG

CSRWR

fd, fj, fk, fa

FCMP.cond.D cd, fj, fk

Machine Translated by Google

82

si12

3

fd

0 0

offs[15:0]

rd

offs[15:0]

0

1

3

1

offs[15:0]

1

fd

cj

si12

0 0

4

0 0 1 0 1 0 1 0 0 1

0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 0

si12

si12

0 0 1 0 1 0 1 1 0 1

3

si12

cj

rd

0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 1

fd

offs[20:16]

1 3

2

si12

rd

rj

0 0 1 0 1 0 0 1 1 0

6

1 2

0 1 0 0 1 0

6 7

1

0 1 1 0 1 0

rj

rj

0 0 1 0 1 0 1 0 0 0

0 1 0 0 1 0

5

offs[15:0]

offs[20:16]

8

hint

2

2

rj

1 1

5

rd

rd

rj

2

0 1 1 0 0 1

offs[15:0]

1 6

rj rd

si12

0 0 1 0 1 0 1 0 1 1

2 1

4

1 1

3

rj

hint

rj

0 1 1 0 0 0

0

9

rd

rj

0

rj

9

0 0

fd

si12

0

0 1 0 1 1 1

rj

2 7

2 0

0 0 1 0 1 0 1 1 1 0

0 1 0 0 1 1

8

0

1

rj

0

4

offs[15:0]

0 1

5

0

0 1 0 1 0 1

0 0 1 0 1 0 1 1 0 0

rj

2

0 1 0 1 1 0

9

rd

0

2 2

hint

0 1 0 1 0 0

offs[25:16]

rj

2

offs[15:0]

rd

offs[15:0]

8

0

rj

7

rd

offs[15:0]

0 0 1 0 1 0 1 1 1 1

0 1 1 0 1 1

1

2

offs[15:0] offs[25:16]

offs[15:0]

Dragon Architecture 32 -bit Simplified Reference Manual

FST.D

BLTU

offs

BLT

rd, rj, si12

rj, rd, offs

JIRL

BEQ

offs

rj, rd, offs

fd, rj, si12

cj, offs

PRELD

fd, rj, si12

cj, offs

LD.BU

FST.S

rd, rj, si12

BCNEZ

rd, rj, offs

B

BL

LD.HU

ST.W

hint

FLD.S

rj, rd, offs

rd, rj, si12

hint, rj, si12

BCEQZ

BGEU

fd, rj, si12

hint

rj, rd, offs

rj, rd, offs

FLD.D

DBAR

fd, rj, si12

BNE

BGE

rj, rd, offs

VALLEY

Machine Translated by Google

