
V1.11

Dragon Architecture Reference Manual

Volume One: Infrastructure

March 2025

Loongson Technology Co., Ltd.

Machine Translated by Google

Zhongguancun Environmental Protection Park, Haidian District, Beijing

Any part of this document that is published, reproduced, or otherwise distributed to third parties will be subject to legal action.

Fax: 010-62600826

This document is copyrighted by Loongson Technology Co., Ltd., and all rights are reserved. No company or individual may reproduce, distribute, or otherwise use this document without written permission.

Our company assumes no responsibility for any direct or indirect losses caused.

Address: Building 2, Longxin Industrial Park, Zhongguancun Environmental Protection Science and Technology Demonstration Park, Haidian District, Beijing

This document provides information at this stage only, and its content is subject to change based on the actual product situation without notice. Improper use of this document may result in consequences.

Building No.2, Loongson Industrial Park,

Dragon Architecture Reference Manual Volume 1: Infrastructure

Telephone: 010-62546668

Loongson Technology Corporation Limited

Disclaimer

Copyright Notice

Loongson Technology Co., Ltd.

Machine Translated by Google

Dragon Architecture Reference Manual Volume 1: Infrastructure

This manual is the first volume of the Dragon Architecture Reference Manual, which introduces the basic architecture of the Dragon Architecture.

Reading Guide

Machine Translated by Google

The situation.

The manual's content has been improved:

4) In the last sentence of section 5.4.2 , [log2PS-1:12] should be [PS-1:12]. 5) In section 5.4.4, the

page privilege level non-compliance exception should be SignalException(PPI). 6) In section 7.5.3, the description of the PPN field

in the CSR registers TLBELO0 and TLBELO1 under the LA32 architecture should consider PALEN < 36.

2) Sections 4.2.1 and 7.2.3 further clarify the behavior of CSR directives accessing undefined or unimplemented CSRs.

Registers TLBELO0 and TLBELO1 are kept consistent.

1.01

The relationship between numbers was explained.

Improvements and revisions to the manual:

Internal review version.

The ̀convertToIntegerExact...` or ̀roundToIntegralExact` operations.

1.00

4) Corrected the inconsistency in the names of some CSR registers and their fields, and corrected several writing errors.

0.90

3) In section 5.1, the maximum physical address range under the LA32 architecture is adjusted to 36 bits.

1) Section 2.1.5 has been adjusted to no longer restrict the range of memory address space that application software can access at the instruction set level.

0.80

1.03

Improvements and revisions to the manual:

0.91

The control is specifically implemented by the system software.

3) Sections 2.1.4, 2.1.5 and 5.2.1 provide supplementary explanations on the rules for determining the exception triggered by the application's memory access.

Internal review version.

1) The floating-point to integer conversion operation in section 3.2.3 does not check whether an exception to the floating-point inaccuracy report is allowed; that is, it is always executed.

8) Section 7.5.15 Definition of CSR registers TLBRELO0 and TLBRELO1 in the PPN field of the LA32 architecture and CSR

1.02

1) In sections 2.2.1.3, 2.2.4, 2.2.5.3, 2.2.7.2, and 3.2.5, the immediate values used in the instruction assembly representation are neutral with the instruction code.

Official release version.

7) The ASID field description in Section 7.5.4 should not be used as an INVTLB instruction to query the ASID key value information of the TLB.

Manual content revisions:

Internal review version.

1) It is clear that the six instructions FSCALEB.S/D, FLOGB.S/D, and FRINT.S/D only need to be implemented under the LA64 architecture.

2) Section 2.2.7.2 provides details on the specific operation method for calculating the offset value when the LL/SC instruction calculates the address.

Instruction content adjustment:

Version History

1.11

Version number

Dragon Architecture Reference Manual Volume 1: Infrastructure

Dragon Architecture Reference Manual Volume 1 Infrastructure

2020/04/27

Creator Chip R&D Department

Update content

Document Update History: Document Name, Version Number

Creation Date

Update History

Machine Translated by Google

7) The instruction function descriptions in sections 4.2.4.3 and 4.2.4.4

Added content related to LoongArchV1.1.

10) In Section 5.2, paragraph 4, the content following "Rules for determining the legality of virtual address spaces:" is all...

1) Update the Chinese expression for TiesToEven to "round down to the nearest (intermediate)".

Supplementing TLB refill exception handling process regardless of

ÿ

9) In section 4.2.5.2, the instruction format should be seq instead of req; at the same time, the original wording in the last paragraph has been adjusted to clarify...

ÿ

The description was corrected; the typo "its value equals 2 (CSR.ECFG.VS+2)×(ecode+64)" was also corrected to "its value equals...".

Set the value to 0.

At the same time, it is recommended that…

4) In section 3.1.4.4, 2Emin should appear in the exponent position.

Improvements and revisions to the manual:

The register remains unchanged except for bit 0, while the exact behavior should be the rest of the register except for bit 0.

2) Correct FTINT.WD ÿ

1.11

2) The pseudocode description in section 2.2.3.3 was incorrect when the value of sa2 or sa3 was 0, and the expression was adjusted.

FTINT.LS

8) The last two paragraphs in section 4.2.5.1 have been revised to clarify the input information related to the Huge Page.

19) Sections 7.5.8 and 7.5.9, in the descriptions of Tables 7-29 and 7-30, have added explanations of which level of page table, in relation to LDDIR and LDPTE.

13) The range truncated in the second-to-last line of the pseudocode description in section 5.4.4 is incorrect. 14) In section 5.4.5,

the subscript of the PA field in the large page table entry format should be log2PageSize; the original 24 only applies to 16MB large pages.

The exception has an independent entry base address.

1.10

The FR[fd] update range is incorrect in the descriptions of the FTINTRP.LS, FTINTNE.WD, and FTINTNE.LS instructions.

ÿ

"2 (CSR.ECFG.VS+2)×ecode".

18) In the description of the VS field in Table 7-6 of Section 7.4.5, "...error exceptions have their own independent entry base address," should be changed to "...error..."

3) The CPUCFG instruction configuration information word number is prefixed with "0x" to eliminate ambiguity.

The function description in the instruction corresponds to the function description.

3) Adjustment of the meaning of bit 25 of CPUCFG word 1 in section 2.2.10.5.

Whether the CSR.TLBIDX.NE bit is 1 or not, a description of a valid TLB item is filled into the TLB.

Judgment and result generation operations.

FTINTRM.W.D

Smaller pages, larger pages.

ÿ ÿ

16) Regarding the priority of exceptions triggered during the execution phase in Section 6.2.2, the Address Error Exception (ADE) should have a higher priority than the required address error exception.

It should be changed to VALEN.

20) In Section 7.5.8, the bit widths represented by the PTEWIDTH field values 2 and 3 in Table 7-29 are corrected to 256 bits and 512 bits, respectively.

FTINTRM.L.S FTINTRP.WD

15) The order of the descriptive statements related to the ordinary exception entry offset in section 6.2.1 was adjusted to resolve the ambiguity in the original statement when CFG.VS=0.

12) In section 5.4.3.4, “INVTLB r0, r0” should be “INVTLB 0, r0, r0”.

Input information determination and result generation operations related to Huge Pages.

5) In the table of section 3.2.2.1, the IEEE 754-2008 function corresponding to the mnemonic CUNE should be compareQuietNotEqual.

11) The last paragraph of section 5.2.1 is deleted because it does not restrict the range of memory address space that application software can access at the instruction set level.

17) In the descriptions of the DATF and DATM fields in Table 7-2 of Section 7.4.1, “…, it is necessary to change …” to “…, push…”

Improvements and revisions to the manual:

6) The original wording of MOVCF2FR in section 3.2.4.6 and MOVCF2GR in section 3.2.4.7 is easily misunderstood as referring to the target.

Address alignment error exception (ALE) occurs when an address-aligned memory access instruction causes an address misalignment.

Instead of compareSignalingNotEqual.

Dragon Architecture Reference Manual Volume 1: Infrastructure

Machine Translated by Google

7) Corrected errors in the description of the LDDIR instruction in section 4.2.5.1 and adjusted the narrative style to increase readability.

2) Corrected redundant content in the natural language description of the LU52I.D instruction in section 2.2.1.4.

8) Corrected three instances in sections 5.4.5 and 6.3.4 where VALEN was mistakenly written as PALEN.

3) Corrected the description of non-compliant values for the DIV.W[U] and MOD.W[U] instructions in section 2.2.1.13.

6) Revised the description of basic floating-point instructions at the beginning of Chapter 3, which was only implemented under the LA64 architecture, and added "operating on single-precision floating-point numbers and..."

4) Adjust the pseudocode description of the BSTRINS.{W/D} instruction in section 2.2.3.8 to eliminate the original description's lsbw=0,

1) Add a description to section 2.2.1.3 explaining why the immediate value of this instruction is only 2 bits.

List of basic floating-point instructions for word integers.

5) Corrected the typo of writing amcas as awcas in section 2.2.7.3.

Ambiguity in these boundary cases: msbw=31, lsbd=0, msbd=63.

9) The number of load/store monitoring points and instruction fetch monitoring points in Table 7-1 can be adjusted to a maximum of 14.

Dragon Architecture Reference Manual Volume 1: Infrastructure

Machine Translated by Google

2.1 Basic Integer Instruction Programming Model..7

2.2.8 Barrier Commands..48

2.2 Overview of Basic Integer Instructions...11

3.1.4 Floating-point exception..59

2.2.5 Normal Memory Access Instructions..33

2.1.2 Registers...7

3.2 Overview of Basic Floating-Point Instructions..62

1 Introduction..1

1.5 Dragon Architecture Version Evolution Description..5

2.1.8 Unaligned Memory Access... 10

2.1.6 Tail end...9

2.1.4 Exceptions and Interruptions... 8

3.1.2 Fixed-point data types...57

2.2.2 Shift Operation Instructions... 21

2.2.6 Boundary Check Memory Access Instructions... 39

1.2 Instruction Encoding Format...2

2.1.5 Memory Address Space..9

2.2.9 CRC Check Command..49

1.3 Mnemonic Format for Instruction Assembly..3

1.4.1 Instruction Name Abbreviation Rules.. 4 1.4.2

Control Status Register Designation Method...4

1.5.1 LoongArch V1.1 New Features..5 2 Basic Integer

Commands.. 7

2.2.7 Atomic Memory Access Instructions... 44

2.1.7 Storage Access Types...9

2.1.9 Brief Description of Storage Consistency Model..11

3.1.3 Registers...57

2.2.3 Bit Manipulation Instructions.. 24

2.1.1 Data Types..7

3.2.1 Floating-point arithmetic instructions...62

3.1 Basic Floating-Point Instruction Programming Model... 55

3.2.4 Floating-point transfer instructions..73

I

2.2.1 Arithmetic Operation Instructions.. 12

3.2.2 Floating-point comparison instructions..69

3. Basic Floating-Point Instructions..55

2.1.3 Running Privilege Levels...8

2.2.10 Other Miscellaneous Instructions..50

3.1.1 Floating-point data types... 55

1.1 Overview of the Dragon Architecture.. 1

3.2.3 Floating-point conversion instructions..70

1.4 Some writing rules adopted in this manual.. 4

2.2.4 Transfer Instructions...30

Dragon Architecture Reference Manual Volume 1: Infrastructure

Table of contents

Machine Translated by Google

6.3.4 TLB Refill Exception Hardware Processing Procedure..104

6.1.1 Line Interruption Types... 101

5.4.1 TLB Organizational Structure..91

6.1.4 Processor Hardware Response Line Interrupt Handling Procedure..102

6.2.4 Message Interruption Response Handling Process...103

6. Exceptions and Interruptions.. 101

6.3 Exceptions..103

4.2 Overview of Privileged Instructions... 81

5.4 Page Table Mapping Storage Management... 91

4.2.1 CSR Access Commands..81

6.1.3 Line Interruption Entry...101

4.2.4 TLB Maintenance Instructions..83

4.2.6 Other Miscellaneous Instructions... 87

5.4.2 TLB Entries...91

6.3.3 General Procedures for Handling Common Exceptions in Hardware..104

5.2.1 Direct Mapping Address Translation Mode..89

5.4.5 Multi-level page table structures supported by the page table traversal process.. 97

3.2.5 Floating-point branch instructions..76

3.2.6 Floating-Point Ordinary Memory Access Instructions... 76

6.2.3 Message Interruption Entry Point..102

4.2.5 Software Page Table Traversal Instructions...86

5.2.3 Virtual Address Reduction Mode under LA64 Architecture...90

4.2.2 IOCSR Access Commands..82

6.2.1 Message Interruption Types...102

6.1.2 Line Interrupt Priority..101

6.3.2 Exception Priority..103

6.2.2 Message Interruption Priority.. 102

6.4 Reset.. ...

II

5.2.2 32-bit Address Mode under LA64 Architecture..90

5.4.4 TLB-based Virtual-to-Physical Address Translation Process... 94

5 Storage Management...89

5.4.3 TLB Software Management...93

3.2.7 Floating-point boundary check memory access instructions...78

4.2.3 Cache Maintenance Instructions... 82

6.1 Line interruption... 101

5.2 Virtual Address Space and Address Translation Mode...89

6.2 Message Interruption...102

4. Overview of Privileged Resource Architecture.. 81

5.3 Storage Access Types.. 90

5.1 Physical Address Space...89

4.1 Privilege Levels...81

6.3.1 Exception Entrances...103

6.3.5 Hardware Handling Procedures for Machine Error Exceptions..105

Dragon Architecture Reference Manual Volume 1: Infrastructure

Machine Translated by Google

Dragon Architecture Reference Manual Volume 1: Infrastructure

7.5 Mapped Address Translation Related Control Status Registers..121 7.5.1

TLB Index (TLBIDX)..121

7.4.20 Cache Tag (CTAG)..121

7.2.1 Read/Write Attributes...109 7.2.2

Differences in Control Status Register Bit Width between LA32 and LA64 Architectures..110

7.5.5 Global Directory Base Address in the Lower Half-Address Space (PGDL)... 124

7.5.9 Page Table Traversal Control of the High Half (PWCH)..126

7.4.13 Privileged Resource Configuration Information 1 (PRCFG1) .. 119

7.4.14 Privileged Resource Configuration Information 2 (PRCFG2) .. 119

7.2 Description of Control Status Register Access Characteristics... 109

7.4.1 Current Mode Information (CRMD)... 110

7.4.2 Pre-Exception Mode Information (PRMD)..112

7.4.6 Exception Status (ESTAT)..115

7.5.6 Global Directory Base Address in High Half-Space (PGDH)...125

7.4.15 Privileged Resource Configuration Information 3 (PRCFG3)..119

7.5.8 Page Table Traversal Control of the Lower Half (PWCL)..125

7.5.14 TLB Refill Exception Data Saving (TLBRSAVE).. 128

7.4.19 Implementing Related Control 2 (IMPCTL2)..121

7.1 Overview of Control Status Registers...107

7.5.10 STLB Page Size (STLBPS).. 126

7.5.4 Address Space Identifier (ASID)... 124

7.4.3 Extended Component Enable (EUEN).. 112

7.4.5 Exception Configuration (ECFG).. 115

7.5.15 TLB Refill Exception Entries Low Bits (TLBRELO0, TLBRELO1)...128

7.4.4 Miscellaneous (MISC)...113

7.4.12 Processor ID (CPUID)...119

7.3 Conflicts Caused by Control Status Register Related Data..110

7.4 Basic Control Status Register...110

7.4.9 Error Instruction (BADI)... 118

7.4.10 Exception Entry Address (EENTRY).. 118

7.4.18 Implementing Related Control 1 (IMPCTL1).. 121

7.5.2 TLB High Entries (TLBEHI).. 122

7.5.12 TLB Refill Exception Virtual Address (TLBRBADV) ..127

7.5.3 Low bits of TLB entries (TLBELO0, TLBELO1)...122

7.5.16 TLB Refill Exception Entries High Bit (TLBREHI)... 129

7.4.11 Reduced Virtual Address Configuration (RVACFG)... 118

7.5.11 TLB Refill Exception Entry Address (TLBRENTRY)...126

7.4.8 Error Virtual Address (BADV)...117

7.5.13 TLB Refill Exception Return Address (TLBRERA)..127

7.2.3 Effects of Accessing Undefined and Unimplemented Control Status Registers...110

7.4.16 Data Saving (SAVE)..120 7.4.17 LLBit Control

(LLBCTL)..120

III

7.4.7 Exception Return Address (ERA)..117

7.5.7 Global Directory Base Address (PGD).. 125

Machine Translated by Google

7.10.2 Debug Exception Return Address (DERA)..142

8.2.4 Cyclic Right Shift... 148

7.5.17 TLB Refill Exception Pre-Exception Schema Information (TLBRPRMD)..130

7.9.6 Configure monitoring points n (FWPnCFG1~3).. 141

7.7.3 Machine Error Exception Entry Address (MERRENTRY)..134

7.8.2 Performance Monitoring Counter (PMCNT)..136

7.6.1 Timer Number (TID).. 131

7.9 Monitoring Point Related Control Status Registers.. 136

8.2.2 Logical Right Shift... 148

8.2.7 Counting the number of consecutive 1s starting from the lowest digit...149

7.7.2 Machine Error Message 1/2 (MERRINFO 1/2) ... 134

7.10.3 Debug Data Saving (DSAVE)...143 7.11 Message Interrupt Related

Control Status Register...143

8.2 Pseudocode Description of Functions..147

7.9.3 Load/store monitoring point n configuration 1~4 (MWPnCFG1~4)...137

7.11.3 Message Interrupt Enable (MSGIE)..144

7.7.5 Machine Error Exception Data Saving (MERRSAVE).. 135

7.6 Timer-related Control Status Registers..131

IV

7.10 Debugging Related Control Status Registers.. 142

8.1 Operator Interpretation in Pseudocode..145

8.2.5 Count the number of consecutive 1s starting at the highest digit..149 8.2.6

Count the number of consecutive 0s starting at the highest digit..149

8.2.8 Counting the number of consecutive zeros starting from the lowest bit..149

7.7.4 Machine Error Exception Return Address (MERRERA)... 135

7.10.1 Debug Register (DBG)..142

8 Appendix A Functional Definition Pseudocode Description..145

7.11.1 Message Interruption Status 0ÿ3 (MSGIS0~3)..143

7.9.4 Overall Configuration of Command Monitoring Point (FWPC)..140

7.5.18 Direct Mapping Configuration Window (DMW0~DMW3).. 130

8.2.3 Arithmetic Right Shift..148

7.9.1 Load/Store Monitoring Point Overall Configuration (MWPC)..137

7.6.3 Timer Value (TVAL)...132

7.8.1 Performance Monitoring Configuration (PMCFG)..136

7.7.1 Machine Error Control (MERRCTL).. 133

7.9.2 Overall Status of Load/Store Monitoring Points (MWPS)...137

7.6.5 Timer Interrupt Clear (TICLR).. 133 7.7 RAS Related Control Status

Registers... 133

7.6.2 Timer Configuration (TCFG)...132

8.2.1 Logical Left Shift.. 148

7.9.5 Overall Status of the Monitor Point (FWPS)..140

7.6.4 Timer Compensation (CNTC)...132

7.11.2 Message Interruption Request (MSGIR)..144

7.8 Performance Monitoring Related Control Status Registers..135

8.2.9 Bit String Reversal..150

Dragon Architecture Reference Manual Volume 1: Infrastructure

Machine Translated by Google

Dragon Architecture Reference Manual Volume 1: Infrastructure

8.2.10 CRC-32 Checksum Calculation.. 150

8.2.14 Converting Double-Precision Floating-Point Numbers to Signed Double-Word Integers..151

In

8.2.13 Converting Double-Precision Floating-Point Numbers to Signed Word Integers...151

9 Appendix B List of Instruction Codes..153

8.2.11 Converting Single-Precision Floating-Point Numbers to Signed Word Integers.. 150

8.2.12 Converting Single-Precision Floating-Point Numbers to Signed Double-Word Integers...150

8.2.15 Single-precision floating-point number rounding..151

8.2.16 Rounding Double-Precision Floating-Point Numbers..151

Machine Translated by Google

Machine Translated by Google

Figure 5-1 TLB Entry Format...92

Figure 2-1 General-Purpose Registers and PC...7

Figure 1-1 Components of the Dragon Structure..1

Figure 3-1 Floating-point register..58

VII

Figure 5-2 Multi-level page table structures supported by the page table traversal process...98

Dragon Architecture Reference Manual Volume 1: Infrastructure

Catalog

Machine Translated by Google

Machine Translated by Google

Table of Contents

Dragon Architecture Reference Manual Volume 1: Infrastructure

Table 3-4 FCSR0 Register Field Definitions...58 Table 3-5 Default Results for Floating-Point

Exceptions.. 59

Table 7-2 Current Mode Information Register Definitions...110

Table 3-3 Numerical Calculation Methods for Double-Precision Floating-Point Numbers...56

Table 7-23 TLB Entries Low-order Register Definitions (LA64 Architecture)..123

Table 7-19 LLBit Register Definitions..120 Table 7-20 TLB Index Register

Definitions..121

Table 7-17 Privileged Resource Configuration Information 3 Register Definitions..120

Table 7-21 TLB Page Table High-Level Register Definitions (LA64 Architecture)..122

Table 7-1 Overview of Control Status Registers...107

Table 7-33 TLB Refill Exception Entry Address Register Definitions (LA32 Architecture) ..127

Table 2-1 Overview of LA32 Application-Level Basic Integer Instructions..11 Table 2-2 List of CPUCFG

Access Configuration Information... 52

Table 7-5 Miscellaneous Register Definitions...113

Table 7-9 Exception Program Counter Register Definitions... 117 Table 7-10 Error Virtual Address

Register Definitions... 117

Table 7-31 STLB Page Size Register Definitions...126

Table 7-34 TLB Refill Exception Error Virtual Address Register Definitions..127

Table 7-12 Exception Entry Page Number Register Definitions...118

Table 7-18 Data Storage Register Definitions.. 120

IX

Table 3-2 Numerical Calculation Methods for Single-Precision Floating-Point Numbers... 56

Table 7-8 Exception Code Table...116

Table 7-32 TLB Refill Exception Entry Address Register Definitions (LA64 Architecture) ..127

Table 7-16 Privileged Resource Configuration Information 2 Register Definitions...119

Table 7-7 Exception Status Register Definitions...115

Table 3-1 Basic Floating-Point Instructions for Single-Precision Floating-Point Numbers and Word Integers... 55

Table 1-1 Typical Instruction Encoding Format for Dragon Architecture..3

Error Instruction Register Definition...118

Table 7-26 Definition of Global Directory Base Address Registers in the Lower Half-Address Space.. 124

Table 7-4 Extended Instruction Enable Register Definitions..113

Table 7-13 Reduced Virtual Address Register Definitions..119

Table 7-28 Global Directory Base Address Register Definitions..125

Table 7-6 Exception Configuration Register Definitions..115

Table 7-27 Definitions of Global Directory Base Registers in the High Half-Address Space...125

Table 7-14 Processor Number Register Definitions... 119 Table 7-15 Privileged Resource

Configuration Information 1 Register Definitions..119

Table 7-24 TLB Entries: Low-order Register Definitions (LA32 Architecture)..123 Table 7-25 Address Space Identifier

Register Definitions..124

Table 7-29 Page table traversal control lower half register definitions..125 Table 7-30 Page table traversal control upper

half register definitions..126

Table 7-3 Definition of the Mode Information Register Before Exceptions... 112

Table 7-11

Table 7-22 TLB Page Table High-order Register Definitions (LA32 Architecture).. 122

Machine Translated by Google

Dragon Architecture Reference Manual Volume 1: Infrastructure

Table 7-71 Debug Exception Return Address Register Definitions.. 143

Table 7-37 TLB Refill Exception Entry Low-order Register Definitions (LA64 Architecture) ..128

Table 7-74 Message Interrupt Status Register 1 Definitions...143

Table 7-57 Definition of Overall Status Register for Load/Store Monitoring Points..137

Table 7-40 TLB Refill Exception Page Table High-order Register Definitions (LA32 Architecture) ..130

Table 7-52 Machine Error Exception Program Counter Register Definitions... 135

Table 7-58 Load/Store Watchpoint Judgment Process mbyten Definition.. 138 Table 7-59

Load/Store Watchpoint bytemask Definition..139

Table 7-60 Load/Store Monitoring Point Configuration 1 Register Definitions.. 139

Table 7-76 Message Interrupt Status Register 3 Definitions...143

Table 7-72 Definitions of Debug Data Storage Registers..143

Table 7-38 TLB Refill Exception Table Entry Low-order Register Definitions (LA32 Architecture) ...129 Table

7-39 TLB Refill Exception Page Table High-order Register Definitions (LA64 Architecture) ...129

Table 7-51 Machine Error Exception Entry Base Address Register Definitions (LA32 Architecture) ..135

Table 7-78 Message Interrupt Enable Register Definitions..144

Table 7-35 TLB Refill Exception Return Address Register Definitions..127

Table 7-66 Instruction Fetch Watchpoint Configuration 1 Register Definitions... 141

Table 7-45 Timer Configuration Register Definitions..132

Table 7-42 Direct Mapping Configuration Window Register Definitions (LA64 Architecture).. 131

Table 7-68 Instruction Fetch Watchpoint Configuration 3 Register Definitions...141

Table 7-69 Instruction Fetch Watchpoint Configuration 4 Register Definitions... 142

Table 7-41 TLB Mode Information Register Definitions Before Refilling Exceptions...130

Table 7-53 Machine Error Exception Data Storage Register Definitions... 135 Table 7-54

Performance Monitoring Configuration Register Definitions...136

Table 7-75 Message Interrupt Status Register 2 Definitions... 143

Table 7-43 Direct Mapping Configuration Window Register Definitions (LA32 Architecture) ...131

Table 7-44 Timer Number Register Definitions.. 131

Table 7-77 Message Interrupt Request Register Definitions..144

Table 7-70 Debug Register Definitions...142

Table 7-55 Performance Monitoring Counter Register Definitions.. 136

Table 7-63 Load/Store Watchpoint Configuration 4 Register Definitions.. 140 Table 7-64

Instruction Fetch Watchpoint Overall Configuration Register Definitions.. 140

Table 7-67 Instruction Fetch Watchpoint Configuration 2 Register Definitions.. 141

Table 7-61 Load/Store Watchpoint Configuration 2 Register Definitions.. 139

Table 7-50 Machine Error Exception Entry Base Address Register Definitions (LA64 Architecture)..134

Table 7-62 Load/Store Watchpoint Configuration 3 Register Definitions..139

Table 7-36 TLB Refill Exception Data Storage Register Definitions..128

X

Table 7-73 Message Interrupt Status Register 0 Definitions...143

Table 7-47 Timer Compensation Register Definitions..132

Table 7-48 Timer Interrupt Clear Register Definitions..133 Table 7-49 Machine Error

Control Register Definitions...133

Table 7-56 Overall Configuration Register Definitions for Load/Store Monitoring Points..137

Table 7-46 Timer Remaining Register Definitions..132

Table 7-65 Definition of Global Status Register for Instruction Fetch Watchpoint...140

Machine Translated by Google

Table 8-4 Explanation of Comparison Operators..146 Table

8-5 Explanation of Bitwise Operators...147

Table 8-6 Explanation of Logical Operators..147

Table 8-7 Operator Precedence..147

Table 8-3 Explanation of Arithmetic Operators..146

Table 8-1 Explanation of Keyword Definitions in Statements...145

Table 8-2 Explanation of Bit String Operators..146

XI

Dragon Architecture Reference Manual Volume 1: Infrastructure

Machine Translated by Google

XII

Dragon Architecture Reference Manual Volume 1: Infrastructure

Machine Translated by Google

quantity

Towards

Virtualization Extension
Binary Translation Extension

Expand

Loongson Basic Instruction Set

exhibition

1 Introduction

Compatible with LA32 architecture. "Application-level backward binary compatibility" means that the binary representation of application software using the LA32 architecture can be directly...

Loongson Binary Translation (LBT) and Loongson Virtualization (LVZ) extensions

The system uses one operand and one destination operand, employing a load/store architecture. This means that only load/store memory access instructions can access memory; other instructions cannot access it.

Dragon Architecture Reference Manual Volume 1: Infrastructure

Loongson SIMD Extension (LSX) and Loongson Advanced SIMD Extension (LSX)

The same results are always obtained when running on machines with the same architecture.

The Dragon architecture uses a base component (Loongson Base) plus an extension component (as shown in Figure 1-1). The extension component includes:

The objects are all immediate values in the registers or instruction codes inside the processor core.

This means that the same results are obtained when running on a machine compatible with the LA64 architecture. On the other hand, this backward binary compatibility is limited to application software.

This document describes the system architecture. The Dragon Architecture Reference Manual is used to explain the Dragon Architecture specification and consists of three volumes. This document is Volume One, which describes the fundamentals of the Dragon Architecture.

The architecture specification does not guarantee that the binaries of system software (such as the operating system kernel) running on LA32-compatible machines will be directly compatible with LA64.

The content of the section.

LoongArch is a Reduced Instruction Set Computing (RISC) style architecture.

The Dragon architecture comes in two versions: 32-bit and 64-bit, referred to as the LA32 and LA64 architectures, respectively. The LA64 architecture uses application-level backward binary.

The Dragon architecture exhibits typical characteristics of a RISC instruction set architecture. Its instructions have fixed lengths and regular encoding formats, with the vast majority of instructions having only two sources.

(Referred to as LASX).

1.1 Overview of Dragon Architecture

LVZLSXLBT LASX

Loongson Base

LoongArch Advanced

Vector Extensions

Figure 1-1 Components of the Dragon Architecture

1

Machine Translated by Google

1.2 Instruction Encoding Format

This chapter discusses privileged resources in the infrastructure, primarily including privileged instructions and the Control and Status Register.

It supports both integer and floating-point instructions, enabling it to generate efficient target code for all current mainstream compilation systems.

Dragon Architecture Reference Manual Volume 1: Infrastructure

They are arranged from highest to lowest order. If the instruction contains immediate operands, the immediate field is located between the register field and the opcode field.

An implementation of a dragon-compatible architecture must include at least the basic components of the architecture; the extended components can be implemented selectively. Each extended component can...

The length varies depending on the instruction type. Specifically, it includes 9 typical instruction encoding formats, namely 3 encoding formats without immediate values.

The specific definitions of the nine typical encoding formats are provided. It should be noted that a few instructions have an instruction encoding field that is not entirely equivalent to these nine typical formats.

The encoding format is not modified, but slightly altered. However, the number of such instructions is small, and the changes are minor, so they will not significantly affect the encoding.

This caused inconvenience to the developers of the translation system.

2R, 3R, 4R, and six encoding formats containing immediate values: 2RI8, 2RI12, 2RI14, 2RI16, 1RI21, and I26. Table 1-1 lists these nine.

Privileged resources include privileged instructions and control status registers, as well as new features added in areas such as exceptions and interrupts, and memory management.

The non-privileged instruction set section includes the functional definitions of basic integer instructions and basic floating-point instructions, as well as their application-level programming models. Chapters 4 through 7

An address error exception will be triggered at that time.

Some are basically the same in terms of instruction functionality, the difference being that the vector bit width of vector instruction extension operations is 128 bits, while that of high-level vector instruction extension operations is...

The instruction encoding style is such that register operand fields are typically arranged sequentially from bit 0 to bit 1. Opcodes always start from bit 31.

This manual will begin a detailed description of the Dragon architecture specification from Chapter 2 onwards. Chapters 2 and 3 specifically cover the infrastructure aspects...

The core of the Dragon architecture consists of two parts: a non-privileged instruction set and a privileged instruction set. The non-privileged instruction set defines commonly used integer instructions.

All instructions in the Dragon architecture are 32-bit fixed-length, and instruction addresses must be aligned to 4-byte boundaries. When instruction addresses are not aligned...

The choice is flexible; however, when choosing to implement LASX, LSX must also be implemented. Besides making an entire extension section optional, in the base section...

The virtualization extension of the Dragon architecture provides hardware acceleration for operating system virtualization to improve performance. This part mainly involves...

It extends beyond the existing parts, also including both non-privileged instruction sets and privileged instruction sets.

The binary translation extension for the Dragon architecture is designed to improve the execution efficiency of cross-instruction set binary translation on the Dragon architecture platform. Its foundation...

The vector width is 256 bits.

Both the Loongson Vector Instruction Extension and the Advanced Vector Instruction Extension utilize SIMD instructions to accelerate computationally intensive applications. (The two extensions...)

The sub-sections and their extensions further include optional subsets of functionality. All these optional extensions, or sub-sections, contain...

The specific implementation details of the optional feature subset can be dynamically identified by the software using configuration information words read by the CPUCFG instruction.

This document introduces the Command and Execution System (CSR) and its functional specifications regarding operating modes, exceptions and interrupts, and memory management. The main body of this document describes the instructions.

The pseudocode descriptions involved in the function definition are concentrated in Appendix A, and the specific encoding definitions of the instructions involved are uniformly listed in Appendix B.

2

Machine Translated by Google

1.3 Mnemonic Format for Instruction Assembly

2RI8-type

I26-type

3R-type

2RI12-type

4R-type

3

2R-type

Table 1-1 Typical instruction encoding format of the Dragon architecture

1RI21-type

2RI16-type

2RI14-type

This indicates that the instruction operates on the entire vector data as a whole. It should be noted that not all instructions use the ".XX" form.

Half-sign, unsigned, and unsigned double-sign. However, there is a special case where whether the operands are signed or unsigned does not affect the operation.

This is intended to facilitate use by assembly programmers and compiler developers.

This is used to characterize the type of the operand. For operands of integer type, the instruction name suffix is .B, .H, .W, .D, .BU, .HU, .WU, or .DU.

Instruction names begin with the letter "F"; all 128-bit vector floating-point instructions begin with "VF"; all 256-bit vector floating-point instructions...

Instruction names begin with "XVF".

Point-based instructions, or more specifically, those whose names begin with "F", "VF", and "XVF", have a suffix indicating their value.

When calculating the result, the instruction name does not include the suffix "U," but this does not restrict the operands to only signed numbers. For operands that are floats...

The instruction assembly mnemonic format mainly consists of two parts: the instruction name and the operands. The Dragon architecture standardizes the prefixes and suffixes for both instruction names and operands.

First, non-vector instructions and vector instructions, as well as integer and floating-point instructions, are distinguished by the prefix letters of their instruction names. All 128-bit vector instructions...

These represent the data types operated on by the instruction: signed byte, signed half-word, signed word, signed double-word, unsigned byte, and unsigned double-word, respectively.

The .H, .S, .D, .W, .L, .WU, and .LU symbols respectively indicate that the data type operated on by this instruction is half-precision floating-point, single-precision floating-point, and double-precision floating-point, respectively.

Dragon Architecture Reference Manual Volume 1: Infrastructure

Instruction names begin with the letter "V"; all 256-bit vector instructions begin with the letter "XV". All non-vector floating-point instructions...

Floating-point numbers, signed words, signed double words, unsigned words, and unsigned double words. Additionally, in instructions involving vector operations, the instruction name suffix is .V.

Secondly, the vast majority of instructions use a suffix in the form of ".XX" in the instruction name to indicate the target of the instruction, and this type of suffix is only used in specific instructions.

1

0 2 0 0 1 2

2 1 2

2 1 0

0 2 3

2 0

8

1 1

5

2

4 9

1

0 3

2 0 2 1 0 2

5

1

6 8 0 7 6 7

1 1 0 3

6

0

1

3

9 4

1

1 0

2

5 4 9 3 8

0 2

7

opcode

I14

rj

rj

rk rj

opcode

rd

opcode

opcode

I26[15:0]

rk

opcode

rd

opcode

day

opcode

rd

rd

opcode

rj

I21[15:0]

I26[25:16]

rd

rj

rd

rj

rd

I8

rj

opcode

I16

I21[20:16]

I12

rj

Machine Translated by Google

1.4 Some writing rules adopted in this manual

Instructions for moving data between register files also do not include this suffix indicating the type of the operand.

Each CSR typically contains several fields. Throughout this manual, the abbreviation will be referred to using the form CSR.%%%%.####.

Dragon Architecture Reference Manual Volume 1: Infrastructure

The Dragon architecture defines a series of Control and Status Registers (CSRs) for controlling instruction execution.

The first one represents the instruction names ADD.W and ADD.D, while BLT[U] represents the instruction names BLT and BLTU. A more complex one...

domain.

Different. In the introduction of commands and functions in this manual, such commands are often grouped together in one place for easy learning and reference by users.

They have very similar instruction codes.

Instructions such as SLT and SLTU are not appended to a suffix. Additionally, privileged instructions that operate on CSR, TLB, and Cache, as well as those in different...

Write the field named #### in the control status register %%%% of the specified value. For example, CSR.CRMD.PLV represents the PLV field in the CRMD register.

If the data width and whether it is signed or unsigned are the same, but different from the destination operand, then the instruction name will have two suffixes, from left to right.

The order of operands must be consistent. For example, in the instruction "MULW.D.WU rd, rj, rk", .D corresponds to the destination operand rd, and .WU corresponds to the source operands rj and rk.

The word indicates that the operation is performed on register number N in the register file.

ADD[I].{W/D} represents the four instruction names: ADD.W, ADD.D, ADDI.W, and ADDI.D.

The original 32-bit checksum is used to generate a new 32-bit checksum, which is then written into rd.

In the case of virtualization extension, there will be two CSRs in the processor, one for the host and one for the guest.

To maintain brevity, this manual employs a rule for abbreviating instruction names. In this rule, {A/B/C} indicates that A, B, and C are used respectively to refer to the instruction name.

When the data width and sign of the source and destination operands are the same, the instruction name has only one suffix. If all source operations

If the instruction is complex, then the instruction name will list the destination operand and each source operand from left to right, in the same order as the later operands in the instruction mnemonic.

The first .W corresponds to rd, .B corresponds to rj, and the second .W corresponds to rk, indicating that this CRC check operation compares the byte message in rj with the byte message in rk.

Register operands are identified by their initial letter, indicating which register file they belong to. General-purpose registers are labeled "rN", and those are labeled "fN".

Floating-point registers are labeled with "vN", 128-bit vector registers are labeled with "vN", and 256-bit vector registers are labeled with "xN". Where N is a number...

Instead of using A[B] to form different instruction names, A[B] indicates that A and AB are used to form different instruction names. For example, ADD.{W/D} means...

`rk` indicates that this multiplication involves multiplying two unsigned words, and the resulting double word is written to ̀rd`. For example, the instruction "CRC.WBW rd, rj, rk"

The suffix indicates the operand of the instruction. The data width of the operand is determined by whether the processor is 32-bit or 64-bit.

The first suffix indicates the destination operand, and the second suffix indicates the source operand. If the source and destination operand details are more...

It is important to note that this abbreviation rule is merely a writing rule; it does not mean that several instructions abbreviated together must also be...

Among the instructions defined in the Dragon architecture, there are often some instructions that have the same or similar operation patterns, differing only in the objects they operate on.

1.4.1 Command Name Abbreviation Rules

1.4.2 Control Status Register Designation Method

4

Machine Translated by Google

5

New features in LoongArch V1.1 version 1.5.1

The initial version of the Dragon Architecture was V1, denoted as LoongArch V1. Unless otherwise specified in the *Dragon Architecture Reference Manual*, the standard's content is assumed to be standard.

This refers to the client's CSR.

Dragon Architecture Reference Manual Volume 1: Infrastructure

When the context alone cannot distinguish between the two CSRs, CSR.XXXX represents the host's CSR, and GCSR.XXXX represents the host's CSR.

Each part can evolve independently, and higher versions are always backward binary compatible with lower versions. To more concisely illustrate the stages of the above architectural evolution process,

The FRSQRTE.S and FRSQRTE.D instructions, and the VFRECIPE.S, VFRECIPE.D, and VFRSQRTE.S instructions for 128-bit SIMD operations.

The XVFRSQRTE.D instruction.

The VFRSQRTE.D instruction and XVFRECIPE.S, XVFRECIPE.D, XVFRSQRTE.S for 256-bit SIMD operations.

3. Added the commands LLACQ.W, SCREL.W, LLACQ.D, and SCREL.D.

LoongArch V1.1 adds the following features:

2. Added the SC.Q command.

The newly added feature subset has independent flags in the CPUCFG instruction return value. It is recommended that software follow this information rather than the Dragon architecture version.

This belongs to LoongArch V1. Since LoongArch V1, subsequent evolutions of the Dragon architecture have adopted a fine-grained incremental evolution approach. Here, "fine-grained" refers to...

The AMCAS_DB.D, AMSWAP.B, and AMSWAP.H commands.

instruction.

6. Added the functionality definition for non-zero hint values in the dbar command section.

able.

4. ÿÿ AMCAS.BÿAMCAS.HÿAMCAS.WÿAMCAS.DÿAMCAS_DB.BÿAMCAS_DB.HÿAMCAS_DB.Wÿ

7. Added a method to determine whether the execution of a 32-bit integer division instruction on a 64-bit machine is affected by the value of the high 32 bits of the source operand register.

9. Add a definition for message interruption.

Evolution refers to the fact that each functional subset within the basic or extended parts can evolve independently; "incremental" means that for any

Hardware page table traversal support, byte/half-word atomic memory access instructions, and other features are collectively referred to as LoongArch V1.1. It should be noted that each new version...

The architecture specification does not require the processor hardware implementation to directly reflect the supported architecture version number to determine the functionality supported by the processor.

5. ÿÿ AMADD.BÿAMADD.HÿAMSWAP_DB.BÿAMSWAP_DB.HÿAMADD_DB.BÿAMADD_DB.H

8. Standardize the method for determining the order of execution of load memory access operations at the same address.

10. Allows hardware page table traversal.

1. Added instructions for approximate calculation of floating-point square roots and reciprocals of floating-point square roots, including FRECIPE.S and FRECIPE.D instructions for scalar operations.

A new version extension will refer to a collection of new features added during a specific phase. For example, the new features added compared to LoongArch V1...

Version Evolution of Dragon Architecture 1.5

Machine Translated by Google

Machine Translated by Google

7

Figure 2-1 General-purpose registers and PC

2 Basic Integer Instructions

point.

The concept of privileged resources will be introduced to ensure the completeness of the narrative. While the topic of privileged resources is touched upon here, it will not be elaborated upon.

Dragon Architecture Reference Manual Volume 1: Infrastructure

The non-privileged instruction set of the Dragon architecture's foundation can be divided into basic integer instructions and basic floating-point instructions based on differences in the software runtime context.

There are five data types that basic integer instructions operate on: bit (b), byte (B, 8 bits), halfword (H, 16 bits), word (W, 32 bits), and doubleword (D, 32 bits).

Couner (abbreviated as PC), as shown in Figure 2-1.

The basic integer instruction programming model described in this section only covers the aspects that application software developers need to focus on. This content primarily belongs to...

The instruction set consists of two parts: integer instructions and numbers. This chapter will describe the integer instruction part. The basic integer instruction part is the most fundamental part of the non-privileged instruction subset.

Readers who require a more comprehensive and in-depth understanding can refer to the relevant chapters in the manual based on the prompts in the text.

(64b). In the LA32 architecture, there are no integer instructions for operating double words.

The non-privileged parts of the architecture, however, are always related to some privileged resources in the runtime environment of application software, so they are used where necessary.

Byte, half-word, word, and double-word data types all use the two's complement encoding method.

The registers involved in basic integer instructions include the general-purpose register (GR) and the program counter.

1

2.1.2 Registers

2.1.1 Data Types

2.1 Basic Integer Instruction Programming Model

PC

LA32LA64

32 31 0

r30

r0 0

r31

63

r2

r3

r1

...

Application software refers to software that cannot directly manipulate privileged resources within the architecture. In the Linux operating system, it refers to software that runs in user mode.

Machine Translated by Google

8

Generally, privileged resources cannot be directly accessed by applications running at a non-privileged level, but when CSR.MISC ...

The Dragon architecture defines four privilege levels (PLVs): PLV0 to PLV3. Application software should run...

It can monitor counters. For more information on performance monitoring counters, please see Section 7.8 .

In the Binary Interface (ABI), r1 is fixed as a register for storing the return address of a function call.

The width of is always the same as the width of GR.

The software typically runs at PLV3 level. For more information on privilege levels, see Section 4.1 .

Exceptions and interrupts interrupt the currently executing application, switching the program execution flow to the exception/interrupt.

An interrupt input signal triggers this. In this architecture reference manual, we will strictly distinguish between "generating an exception/interrupt" and "triggering an exception/interrupt".

2.1.2.1 General-purpose registers

2.1.2.2PC

At the three non-privileged levels PLV1 to PLV3, application software is isolated from system software such as the operating system running at PLV0.

From an architectural perspective, any register operand in these instructions can use any of the 32 registers (GRs). The only exception is...

2.1.3.1 Privileged Resources Accessible by Application Software

Some non-privileged functions that are enabled by default after a power-on reset can be disabled by the system software during operation. This can be done by configuring CSR.MISC .

The destination register implicitly included in the BL instruction is always register r1, which is the first register in the standard Dragon architecture application binary interface.

There is only one PC (Program Counter), which records the address of the current instruction. The PC register cannot be directly modified by instructions; it can only be modified by jump instructions and exception traps.

Instruction privilege level error exception (IPE).

There are 32 general-purpose registers GR, denoted as r0~r31, with register 0 (r0) always having a value of 0. The bit width of GR is denoted as GRLEN. LA32

Execution begins at the entry point of the handler. Exceptions are triggered by unusual conditions that occur during instruction execution, while interrupts are caused by external events (such as...).

2.1.3.2 Disabling some non-privileged functions

When RPCNTL1/RPCNTL2/RPCNTL3 is configured to 1, CSRRD instruction reads can be executed under the PLV1/PLV2/PLV3 privilege levels.

At the mouth.

The difference between the two concepts is that the former may not necessarily cause a change in the execution flow, while the latter will definitely change the current execution flow and transfer it to the exception/interrupt handler.

Dragon Architecture Reference Manual Volume 1: Infrastructure

The specific privilege level at which an application runs is determined by the system software at runtime; the application software has no precise knowledge of this. Under the Dragon architecture, applications...

The PC register is indirectly modified by inbound and exception return instructions. However, it can be directly read as a source operand for some non-jump instructions.

Setting DRDTL1/DRDTL2/DRDTL3 to 1 disables the execution of RDTIME type instructions at PLV1/PLV2/PLV3 levels. Violation will trigger a penalty.

In the LA64 architecture, the GR instruction has a 32-bit width, while in the LA64 architecture, the GR instruction has a 64-bit width. There is an orthogonality between basic integer instructions and general-purpose registers.

2.1.4 Exceptions and Interruptions

2.1.3 Execution Privilege Level

Machine Translated by Google

Within this range, the storage access type is configured by the specified control status register.

In the Loongson architecture, interrupts are always invisible to application

software. This only applies to the scope of application software. For system software, in direct address translation mode or mapped address translation mode, the address falls within the address range configured in the direct mapping window.

1

2

Here is a brief introduction.

ÿ Address Incorrect Exception: When a program malfunction causes an invalid address for an instruction fetch or memory access instruction, such as an address that is not 4.

ÿ Breakpoint Exception: Executing the BREAK instruction will immediately trigger a breakpoint exception (BRK).

Under the LA64 architecture, the recommended memory address space access range for application software is 0 to 2VALEN-1 -1. Here, VALEN is theoretically a...

ÿ Privileged Instruction Exceptions: Except for the special cases listed in Section 2.1.3 , executing a privileged instruction in an application will definitely result in an error.

This section only covers the virtual memory address space visible to the application software. The translation from virtual memory addresses to physical memory addresses is determined by the runtime environment.

The handling of exceptions and interruptions falls under the scope of privileged resource management in the architecture. This section primarily focuses on exceptions that are perceptible to application software.

In the Dragon architecture, the memory address space is a linear, contiguous address space that is byte-addressable.

ÿ Floating-point error exception: When an abnormal data condition occurs during the execution of a floating-point instruction, special handling is required, which may generate or trigger a basic error.

Errors such as byte boundary alignment errors or accessing illegal address spaces will trigger an Address Fetch Error Exception (ADEF) or a memory access instruction address error.

ÿ System call exception: Executing the SYSCALL instruction will immediately trigger a system call exception (SYS).

Dragon Architecture Reference Manual Volume 1: Infrastructure

Floating-point error exception (FPE). See section 3.1.4 for more information.

Under the LA32 architecture, the recommended memory address space access range for application software is 0 to 2^ 31 - 1.

ÿ No exceptions to the instruction: The instruction code being executed is not defined in the architecture, or the architecture specification defines the instruction in the current context.

The CPUCFG instruction reads the VALEN field of configuration word 0x1 to determine the specific value of VALEN.

The privilege level exception (IPE) of the trigger instruction is set.

These contents involve the relevant specifications of privileged resources in the architecture, which will be introduced in the latter half of this manual.

If it is treated as not existing, then the instruction not existing exception (INE) will be triggered immediately.

Error exception (ADEM).

Integers less than or equal to 64, their specific values are determined by the hardware implementation. Common VALEN values are in the range [40, 48]. Application software can execute...

The Dragon architecture uses only a small-tailed storage method.

The Dragon architecture supports three storage access types: Coherent Cached (CC) and Strong-Order Non-Cache.

Strongly-ordered Uncached (SUC) and Weakly-ordered Uncached (WUC) are two types of memory access types. The memory access type is bound to the accessed virtual address, determined by the MAT (Memory

Access Type) field in the page table entry. The value range of the MAT field determines the memory access type.

2.1.6 Tail end

2.1.5 Memory Address Space

2.1.7 Storage Access Types

9

Machine Translated by Google

2.1.8 Unaligned memory access

The next memory access operation; while weakly ordered uncached read access allows speculative execution, and weakly ordered uncached write data can be merged into the processor core.

The result also allows execution. To prevent such speculative execution from causing out-of-core memory accesses to mistakenly enter illegal physical address spaces, on-chip...

The effect of executing the command.

Alignment check. For memory access instructions that require address alignment checks, if the address being accessed is not naturally aligned to 1, an address misalignment check will be triggered.

Filter out risky access from the network.

Memory access must satisfy sequential consistency, meaning that all accesses are executed strictly in the order specified in the program, and no new access can begin until the current memory access operation is completely completed.

Dragon Architecture Reference Manual Volume 1: Infrastructure

It can be implemented to allow misaligned memory access addresses. However, in an implementation that allows misaligned memory access addresses, the system-level software can configure...

Fetch operations on cached types have side effects. This refers to fetch operations that access strongly ordered, non-cached types, even if they originate from transition prediction.

Apart from atomic memory access instructions, integer boundary-checking memory access instructions, and floating-point boundary-checking memory access instructions, the remaining load/store memory access instructions...

Maintaining cache coherence between the processor core's instruction cache and data cache can be implemented as hardware maintenance. This means that for self-repair...

The Dragon architecture only requires that strongly ordered, non-cached memory access instructions cannot have side effects, meaning that such instructions cannot be executed predictably.

Software can leverage this feature to access I/O devices in the system using strongly ordered, non-cached memory access instructions. However, the Dragon architecture allows strongly ordered, non-cached...

Cache consistency between Masters must be maintained by hardware.

However, due to the pipelined architecture and speculative instruction fetching behavior, the software still needs to use the IBAR instruction to ensure that the instruction fetch can definitely see the store.

All memory access addresses for instruction fetch operations must be aligned to 4-byte boundaries; otherwise, an Address Fetch Error Exception (ADEF) will be triggered.

By modifying the code, the software no longer needs to use cache maintenance instructions to ensure cache consistency between the instruction cache and the data cache within the same core.

Larger writes (such as a cache line) are then written in a burst, where subsequent writes can overwrite earlier ones during the merging process.

The configuration process is transparent to the application software.

The instruction cache of a certain processor core is consistent with the cache or cache coherent I/O of other processor cores.

When accessing data using either strong-order uncached or weak-order uncached types, only the final stored object can be accessed directly. The difference between the two is: strong-order uncached...

according to.

When accessing objects using a consistent cacheable access type, the accessed object can be either the final stored object or a cached object maintained in the processor.

The type correspondence is as follows: 0 – Strongly ordered, non-cached; 1 – Consistent, cacheable; 2 – Weakly ordered, non-cached; 3 – Reserved. Storage access classes.

The ALCL0~ALCL3 control bits in CSR.MISC , under privilege levels PLV0~PLV3, also address these load/store memory access instructions.

2.1.7.1 Cache Coherence Maintenance of Instruction Cache

ALE (Alternative for All).

Weakly ordered, non-cached access types are typically used to accelerate access to non-cached memory data, such as video memory data.

Consistent caching. This type of memory access is typically used to achieve high performance.

Natural alignment refers to the following: when accessing a half-word object, the address is aligned to a 2-byte boundary; when accessing a word object, the address is aligned to a 4-byte boundary; when accessing a double-word object, the address is aligned to an 8-byte

boundary; when accessing a 128-bit vector object, the address is aligned to a 16-byte boundary; and when accessing a 256-bit vector object, the address is aligned to a 32-byte boundary.

10

Machine Translated by Google

2.2 Overview of Basic Integer Instructions

The synchronization operations are executed in the order they are performed, and the next synchronization operation cannot begin until the current synchronization operation is completely completed.

This section describes the functionality of application-level basic integer instructions in the LA64 architecture. For the LA32 architecture, only the following needs to be implemented:

3. Before any synchronization operation is allowed to be executed, all ordinary memory access operations that precede this synchronization operation in the same processor must have been completed.

The Dragon architecture employs a weak consistency (WC) model for storage consistency. This section only discusses the architecture's implementation.

The following restrictions shall be imposed:

If memory access operations with the same address are executed sequentially, it should be ensured that the return value of CPUCFG.3.LD_SEQ_SA[bit23] is 1, so that the software can recognize the memory access sequence.

A subset of instructions is provided, and the list of instructions contained in this subset is shown in Table 2-1. Since the GR instruction has a bit width of only 32 bits in the LA32 architecture, the subsequent instruction descriptions...

In the Dragon architecture, the instructions capable of generating synchronous operations include DBAR, IBAR, AM atomic memory access instructions with DBAR functionality, and LL-SC.

Access to the shared memory unit is protected to ensure that access to the shared memory unit by multiple processor cores is mutually exclusive. The order of memory access events is also considered.

Completed;

Dragon Architecture Reference Manual Volume 1: Infrastructure

Command pair.

2.1.9.1 Sequential execution of load memory access operations at the same address

To ensure correct program execution, software needs to add data barrier instructions (dbar 0x700 is recommended) where necessary. This depends on the specific processor implementation.

In a weak consistency model, synchronization operations and regular memory accesses need to be distinguished. Programmers must use the synchronization operations defined by the architecture to handle these operations.

The sign extension operation in "write the 32-bit result sign extended into the general-purpose register rd" is not required.

Shift operation instructions: SLL.W, SRL.W, SRA.W, ROTR.W, SLLI.W, SRLI.W, SRAI.W, ROTRI.W

Here is a brief description of the weak consistency model.

After identifying this characteristic, relevant performance optimizations were performed.

Bit manipulation instructions

2. Before any normal memory access operation is allowed to be executed, all synchronization operations that precede this memory access operation in the same processor core have already been performed.

Arithmetic operation instructions

Transfer instructions and

memory access instructions

When the Dragon architecture uses a weakly consistent storage consistency model, it does not require by default that the hardware supports sequential execution of load memory access operations at the same address.

1. The execution of synchronization operations satisfies the sequential consistency condition. That is, synchronization operations are executed strictly in accordance with their order of appearance in the program across all processor cores.

become.

2.1.9 Brief Description of Storage Consistency Model

BEQ, BNE, BLT, BGE, BLTU, BGEU, BEQZ, BNEZ, B, BL, JIRL

PCADDI, PCADDU12I, PCALAU12I,

LD.B, LD.H, LD.W, LD.BU, LD.HU, ST.B, ST.H, ST.W, PRELD

11

AND, OR, NOR, XOR, ANDN, ORN, ANDI, ORI, XORI,

Table 2-1 Overview of LA32 Application-Level Basic Integer Instructions

ADD.W, SUB.W, ADDI.W, ALSL.W, LU12I.W, SLT, SLTU, SLTI, SLTUI,

MUL.W, MULH.W, MULH.WU, DIV.W, MOD.W, DIV.WU, MOD.WU

EXT.W.B, EXT.W.H, CLO.W, CLZ.W, CTO.W, CTZ.W, BYTEPICK.W,

REVB.2H, BITREV.4B, BITREV.W, BSTRINS.W, BSTRPICK.W, MASKEQZ, MASKNEZ

Machine Translated by Google

12

SYSCALL, BREAK, RDTIMEL.W, RDTIMEH.W, CPUCFG

LL.W, SC.W

DBAR, IBAR

add.d

2.2.1.1ADD.{W/D}, SUB.{W/D}

The above instructions do not perform any special handling for overflow situations.

Furthermore, for instructions whose operands have a data width of GR, the operand width is 32 bits in the LA32 architecture and 32 bits in the LA64 architecture.

Dragon Architecture Reference Manual Volume 1: Infrastructure

In the device rd.

rd, rj, rk Command format: add.w

Add the data in bits [63:0] of general-purpose register rj to the data in bits [63:0] of general-purpose register rk, and write the result back to the general-purpose register.

SUB.W subtracts the data in bits [31:0] of general-purpose register rj from the data in general-purpose register rk, and the sign bit [31:0] of the result is...

rd, rj, rk

rd, rj, rk

ADD.W adds the data in bits [31:0] of general-purpose register rj to the data in general-purpose register rk. The digits [31:0] of the result are delimited.

In the device rd.

sub.in

The architecture has an operation width of 64 bits. Unless otherwise specified, the instruction function description will not be further elaborated.

rd, rj, rk

The extended number is then written into the general-purpose register rd.

SUB.D subtracts the data in bits [63:0] of general-purpose register rj from the data in bits [63:0] of general-purpose register rk, and writes the result back to the general-purpose register.

The extended number is then written into the general-purpose register rd.

Atomic memory access instructions,

barrier instructions,

and other miscellaneous instructions

sub.d

2.2.1 Arithmetic Operation Instructions

tmp = GR[rj][63:0] - GR[rk][63:0]

ADD.W:

tmp = GR[rj][31:0] + GR[rk][31:0]

ADD.D:

SUB.D:

GR[rd] = tmp[63:0]

SUB.W:

GR[rd] = SignExtend(tmp[31:0], GRLEN)

tmp = GR[rj][63:0] + GR[rk][63:0]

GR[rd] = SignExtend(tmp[31:0], GRLEN)

GR[rd] = tmp[63:0]

tmp = GR[rj][31:0] - GR[rk][31:0]

Machine Translated by Google

GR[rd] = SignExtend(tmp[31:0], GRLEN)

tmp = GR[rj][31:0] + SignExtend(si12, 32)

GR[rd] = tmp[63:0]

GR[rd] = SignExtend(tmp[31:0], GRLEN)

tmp = GR[rj][63:0] + SignExtend({si16, 16'b0}, 64)

ALSL.WU:

ADDI.D:

tmp = (GR[rj][31:0]<<(sa2+1)) + GR[rk][31:0]

ADDI.W:

ADDU16I.D:

tmp = GR[rj][63:0] + SignExtend(si12, 64)

GR[rd] = tmp[63:0]

ALSL.W:

rd, rj, rk, sa2 alsl.wu

addi.d

etc.d

ALSL.W logically shifts the data in bits [31:0] of the general-purpose register rj left by (sa2+1) bits and then adds the data in bits [31:0] of the general-purpose register rk.

ALSL.WU logically shifts the data in bits [31:0] of the general-purpose register rj left by (sa2+1) bits and then adds the data in bits [31:0] of the general-purpose register rk.

The [31:0] bits of the result are zero-extended and written into the general-purpose register rd.

The sign extension of the [31:0] bits of the result is written into the general-purpose register rd.

Write it into the general-purpose register rd.

rd, rj, si16

The [31:0] bits are then written to the general-purpose register rd after sign extension.

Command format: alsl.w

ADDI.D adds the [63:0] bits of data in the general-purpose register rj to the 64-bit data after sign extension of the 12-bit immediate value si12. The result is...

Command format: addi.w

ADDU16I.D logically shifts the 16-bit immediate value si16 left by 16 bits and then sign-extends it. The resulting data is then added to [63:0] in the general-purpose register rj.

ADDI.W adds the [31:0] bits of data in the general-purpose register rj to the 32-bit data after sign extension of the 12-bit immediate value si12. The result is...

rd, rj, rk, sa2

addu16i.d

The bits of data are added together, and the result is written to the general-purpose register rd. The ADDU16I.D instruction is used in conjunction with the LDPTR.W/D and STPTR.W/D instructions to...

rd, rj, rk, sa2

rd, rj, si12 rd, rj, si12

Dragon Architecture Reference Manual Volume 1: Infrastructure

2.2.1.2ADDI.{W/D}, ADDU16I.D

To accelerate access to the GOT table in location-independent code.

The above instructions do not perform any special handling for overflow situations.

2.2.1.3ALSL.{W[U]/D}

13

Machine Translated by Google

14

2.2.1.4LU12I.W, LU32I.D, LU52I.D

The above instructions do not perform any special handling for overflow situations.

SLT compares the data in general-purpose register rj with the data in general-purpose register rk as signed integers. If the former is less than the latter...

ALSL.D logically shifts the data in bits [63:0] of the general-purpose register rj left by (sa2+1) bits and then adds the data in bits [63:0] of the general-purpose register rk.

lu32i.d

The result is written into the general-purpose register rd.

sltu rd, rj, rk

Command format: lu12i.w rd, si20

LU12I.W concatenates the least significant bit of the 20-bit immediate value si20 with 12 bits of 0, then signs-extends it and writes it into the general-purpose register rd.

The value of the field.

rd, rj, si12

Dragon Architecture Reference Manual Volume 1: Infrastructure

The LU32I.D concatenates the least significant bit of the sign-extended 20-bit immediate value si20 to bits [31:0] of the general-purpose register rd, and writes the result to...

It is loaded into the general-purpose register rd.

lu52i.d

rd, si20

2.2.1.5SLT[U]

The shift amount of rj in the above instructions only considers the cases of 1, 2, 3, and 4, so only a 2-bit immediate value sa2 is needed to represent it.

Command format: slt

LU52I.D connects the 12-bit immediate value si12 to the [51:0] bits of data in the general-purpose register rj, and writes the result to the general-purpose register rd.

The above instructions, together with the ORI instruction, are used to load immediate values of more than 12 bits into general-purpose registers.

It is important to note that the immediate value in the assembly representation of the above instructions should be filled in as (sa2+1), which is the actual shift value and not the immediate value in the instruction code.

rd, rj, rk

ALSL.D:

tmp = (GR[rj][31:0]<<(sa2+1)) + GR[rk][31:0]

LU32I.D:

GR[rd] = {SignExtend(si20, 32), GR[rd][31:0]}

tmp = (GR[rj][63:0]<<(sa2+1)) + GR[rk][63:0]

LU52I.D:

LU12I.W:

GR[rd] = ZeroExtend(tmp[31:0], GRLEN)

GR[rd] = tmp[63:0]

GR[rd] = SignExtend({si20, 12'b0}, GRLEN)

GR[rd] = {si12, GR[rj][51:0]}

Machine Translated by Google

GR[rd] = (unsigned(GR[rj]) < unsigned(GR[rk])) ? 1 : 0

GR[rd] = (signed(GR[rj]) < signed(GR[rk])) ? 1 : 0

SLT:

SLTI:

For SLT:

GR[rd] = (signed(GR[rj]) < signed(tmp)) ? 1 : 0

tmp = SignExtend(si12, GRLEN)

SLTU:

GR[rd] = (unsigned(GR[rj]) < unsigned(tmp)) ? 1 : 0

tmp = SignExtend(si12, GRLEN)

The latter will set the value of the general-purpose register rd to 1, otherwise set it to 0.

for the sake of

Command format: pcaddi

rd, si20

rd, si20

If the former is less than the latter, the value of the general-purpose register rd is set to 1; otherwise, it is set to 0.

rd, si20

pcalau12i

2.2.1.6 SLT[U]I instruction

format: slti

Please note that for SLTUI instructions, immediate values are still sign-extended.

If the former is less than the latter, the value of the general-purpose register rd is set to 1; otherwise, it is set to 0.

rd, si20

PCADDI appends 2 bits of 0 to the least significant bit of the 20-bit immediate value si20, then performs sign extension. The resulting data is then added to the program counter (PC) of the instruction.

SLTU compares the data in general-purpose register rj with the data in general-purpose register rk as unsigned integers. If the former is less than...

rd, rj, si12

2.2.1.7PCADDI, PCADDU12I, PCADDU18I, PCALAU12I

pcaddu18i

SLTI treats the data in the general-purpose register rj and the data obtained after sign-extending the 12-bit immediate value si12 as a signed integer and performs a size comparison.

The data bit width compared by SLT and SLTU is consistent with the bit width of the general-purpose registers of the machine being executed.

pcaddu12i

SLTUI treats the data in the general-purpose register rj and the data obtained after sign-expanding the 12-bit immediate value si12 as an unsigned integer for comparison.

The result is written to the general-purpose register rd.

Dragon Architecture Reference Manual Volume 1: Infrastructure

If the condition is met, the value of the general-purpose register rd is set to 1; otherwise, it is set to 0.

The data bit width compared by SLTI and SLTUI is consistent with the bit width of the general-purpose registers of the machine being executed.

rd, rj, si12

15

Machine Translated by Google

16

2.2.1.8AND, OR, NOR, XOR, ANDN, ORN

rd, rj, rk

Dragon Architecture Reference Manual Volume 1: Infrastructure

nor

The sum is written to the general-purpose register rd.

PCALAU12I appends 12 bits of 0 to the least significant bit of the 20-bit immediate value si20, then performs sign extension, and adds the PC of the instruction to the resulting data.

The AND operation performs a bitwise logical AND operation between the data in general-purpose register rj and the data in general-purpose register rk, and writes the result to general-purpose register rd.

PCADDU18I appends 18 bits of 0 to the least significant bit of the 20-bit immediate value si20, then performs sign extension, and adds the PC value of the instruction to the resulting data.

rd, rj, rk

Command format: and

rd, rj, rk

orn

middle.

The lowest 12 bits of the sum are erased and written to the general-purpose register rd.

OR performs a bitwise logical OR operation between the data in general-purpose register rj and the data in general-purpose register rk, and writes the result into general-purpose register rd.

The data bit width operated by the above instructions is consistent with the bit width of the general-purpose registers of the machine being executed.

rd, rj, rk

free

PCADDU12I appends 12 bits of 0 to the least significant bit of the 20-bit immediate value si20, then performs sign extension, and adds the PC value of the instruction to the resulting data.

rd, rj, rk

The sum is written to the general-purpose register rd.

rd, rj, rk

or

andn

tmp = PC + SignExtend({si20, 12'b0}, GRLEN)

PCADDI:

PCADDU12I:

GR[rd] = PC + SignExtend({si20, 18'b0}, GRLEN)

GR[rd] = {tmp[GRLEN-1:12], 12'b0}

GR[rd] = PC + SignExtend({si20, 12'b0}, GRLEN)

GR[rd] = GR[rj] & GR[rk]

PCADDU18I:

GR[rd] = PC + SignExtend({si20, 2'b0}, GRLEN)

OR:

GR[rd] = GR[rj] | GR[rk]

PCALAU12I:

AND:

Machine Translated by Google

17

In the general-purpose register rd.

rd, rj, ui12

2.2.1.9ANDI, ORI, HORI

ANDI performs a bitwise logical AND operation between the data in the general-purpose register rj and the zero-extended 12-bit immediate value, and writes the result into the general-purpose register rj.

middle.

In the register rd.

In register rd.

Dragon Architecture Reference Manual Volume 1: Infrastructure

NOR performs a bitwise OR operation between the data in general-purpose register rj and the data in general-purpose register rk, and writes the result to general-purpose register rd.

ANDN inverts the bits of the data in general-purpose register rk, then performs a bitwise AND operation with the data in general-purpose register rj, and writes the result to...

Use register rd.

OR

XOR performs a bitwise logical XOR operation between the data in general-purpose register rj and the data in general-purpose register rk, and writes the result to general-purpose register rd.

middle.

choir rd, rj, ui12

ORI performs a bitwise logical OR operation between the data in the general-purpose register rj and the zero-extended 12-bit immediate value, and writes the result into the general-purpose register rj.

Command format: andi

The data bit width operated by the above instructions is consistent with the bit width of the general-purpose registers of the machine being executed.

rd, rj, ui12

ORN inverts the bits of the data in general-purpose register rk, then performs a bitwise OR operation with the data in general-purpose register rj, and writes the result to the register.

GR[rd] = GR[rj] | ZeroExtend(ui12, GRLEN)

GR[rd] = ~(GR[rj] | GR[rk])

NOR:

GR[rk]

ANDN:

GR[rd] = GR[rj] ̂

GR[rd] = GR[rj] & ZeroExtend(ui12, GRLEN)

GR[rd] = GR[rj] | (~GR[rk])

WHEN:

ANDI:

FREE:

ORN:

GR[rd] = GR[rj] & (~GR[rk])

Machine Translated by Google

18

rd, rj, rk

The data is then written to the general-purpose register rd after symbol expansion.

The result, with its [63:32] bits of data sign extended, is written into the general-purpose register rd.

MULH.WU multiplies the data in bits [31:0] of general-purpose register rj with the data in bits [31:0] of general-purpose register rk as unsigned numbers.

The [63:32] bits of data in the product result are sign-extended and written into the general-purpose register rd.

rd, rj, rk

MUL.W multiplies the data in bits [31:0] of general-purpose register rj with the data in bits [31:0] of general-purpose register rk, and the [31:0] bits of the product are...

MULH.W treats the data in bits [31:0] of general-purpose register rj and the data in bits [31:0] of general-purpose register rk as signed numbers and multiplies them.

mulh.du

Command format: mul.w

2.2.1.10 NOP

mulh.w

rd, rj, rk

Dragon Architecture Reference Manual Volume 1: Infrastructure

XORI performs a bitwise logical XOR operation between the data in the general-purpose register rj and the zero-extended 12-bit immediate value, and writes the result into the register.

rd, rj, rk

It will not change the processor state visible to any other software.

rd, rj, rk

mulh.d

The data bit width operated by the above instructions is consistent with the bit width of the general-purpose registers of the machine being executed.

Use register rd.

2.2.1.11 MUL.{W/D}, MULH.{W[U]/D[U]}

mulh.wu

The NOP instruction is an alias for the instruction "andi r0, r0, 0". Its function is simply to occupy a 4-byte instruction code location and increment the PC by 4; otherwise...

thank you

rd, rj, rk

product = signed(GR[rj][31:0]) * signed(GR[rk][31:0])

product = signed(GR[rj][31:0]) * signed(GR[rk][31:0])

product = unsigned(GR[rj][31:0]) * unsigned(GR[rk][31:0])

GR[rd] = SignExtend(product[31:0], GRLEN)

MULH.W:

MULH.WU:

GR[rd] = SignExtend(product[63:32], GRLEN)

GR[rd] = GR[rj] ̂ ZeroExtend(ui12, GRLEN)

CHORUS:

MUL.W:

GR[rd] = SignExtend(product[63:32], GRLEN)

Machine Translated by Google

19

Data is written to the general-purpose register rd.

The [127:64] bits of the product result are written into the general-purpose register rd.

2.2.1.12 MULW.DW[U]

The result [127:64] bits of data are written into the general-purpose register rd.

rd, rj, rk

MULW.D.WU treats the data in bits [31:0] of general-purpose register rj and the data in bits [31:0] of general-purpose register rk as unsigned numbers and multiplies them.

MULW.DW multiplies the data in bits [31:0] of general-purpose register rj with the data in bits [31:0] of general-purpose register rk as signed numbers, resulting in 64...

The 64-bit product result is written to the general-purpose register rd.

Command format: mulw.dw

The result of the bit product is written into the general-purpose register rd.

MULH.DU multiplies the data in bits [63:0] of general-purpose register rj with the data in bits [63:0] of general-purpose register rk as unsigned numbers.

MULH.D treats the data in bits [63:0] of general-purpose register rj and the data in bits [63:0] of general-purpose register rk as signed numbers and multiplies them. The product...

rd, rj, rk mulw.dwu

Dragon Architecture Reference Manual Volume 1: Infrastructure

MUL.D multiplies the data in bits [63:0] of general-purpose register rj with the data in bits [63:0] of general-purpose register rk, and the [63:0] bits of the product are...

product = unsigned(GR[rj][63:0]) * unsigned(GR[rk][63:0])

GR[rd] = product[63:0]

MULW.D.WU:

MULW.DW:

product = signed(GR[rj][63:0]) * signed(GR[rk][63:0])

GR[rd] = product[127:64]

MULH.D:

GR[rd] = product[63:0]

MUL.D:

product = signed(GR[rj][31:0]) * signed(GR[rk][31:0])

GR[rd] = product[127:64]

product = unsigned(GR[rj][31:0]) * unsigned(GR[rk][31:0])

GR[rd] = product[63:0]

product = signed(GR[rj][63:0]) * signed(GR[rk][63:0])

YOU CAN:

Machine Translated by Google

20

rd, rj, rk you

Dragon Architecture Reference Manual Volume 1: Infrastructure

2.2.1.13 DIV.{W[U]/D[U]}, MOD.{W[U]/D[U]}

After the expansion, it is written into the general-purpose register rd.

div.wu

rd, rj, rk

div.d rd, rj, rk

Command format: div.w

mod.wu rd, rj, rk

mod.du rd, rj, rk

DIV.W and DIV.WU divide the data in bits [31:0] of general-purpose register rj by the data in bits [31:0] of general-purpose register rk, and the quotient is sign expanded.

MOD.W and MOD.WU divide the data in bits [31:0] of general-purpose register rj by the data in bits [31:0] of general-purpose register rk, and the remainder is the sign of the result.

On a LoongArch 64-bit compatible machine, when executing the DIV.W[U] and MOD.W[U] instructions, if the general-purpose register rj or rk contains...

Use register rd.

DIV.D and DIV.DU divide the data in bits [63:0] of general-purpose register rj by the data in bits [63:0] of general-purpose register rk, and write the quotient into the general-purpose register rj.

The extended number is then written into the general-purpose register rd.

mod.w rd, rj, rk

If bits 63 to 31 of the stored data are not 0x0 or 0x1ffffffff, the result of the instruction execution can be any meaningless value.

mod.d rd, rj, rk

rd, rj, rk

GR[rd] = SignExtend(remainder[31:0], GRLEN)

DIV.D:

MOD.W:

DIV.W:

DIV. YOU:

GR[rd] = SignExtend(quotient[31:0], GRLEN)

GR[rd] = SignExtend(remainder[31:0], GRLEN)

DIV.WU:

remainder = signed(GR[rj][31:0]) % signed(GR[rk][31:0])

remainder = unsigned(GR[rj][31:0]) % unsigned(GR[rk][31:0])

quotient = unsigned(GR[rj][31:0]) / unsigned(GR[rk][31:0])

GR[rd] = unsigned(GR[rj][63:0]) / unsigned(GR[rk][63:0])

MOD.WU:

quotient = signed(GR[rj][31:0]) / signed(GR[rk][31:0])

GR[rd] = SignExtend(quotient[31:0], GRLEN)

GR[rd] = signed(GR[rj][63:0]) / signed(GR[rk][63:0])

Machine Translated by Google

21

2.2.2 Shift Operation Instructions

Dragon Architecture Reference Manual Volume 1: Infrastructure

The result of the calculation satisfies the following conditions: the remainder has the same sign as the dividend, and the absolute value of the remainder is less than the absolute value of the divisor.

rd, rj, rk

When performing division operations with DIV.W, MOD.W, DIV.D, and MOD.D, the operands are all treated as signed numbers. DIV.WU, MOD.WU,

Enter it into the general-purpose register rd.

When performing division operations with DIV.DU and MOD.DU, the source operands are both treated as unsigned numbers.

When the divisor is 0, the result can be any value, but no exceptions will be triggered.

2.2.2.1SLL.W, SRL.W, SRA.W, ROTR.W

sra.w rd, rj, rk

MOD.D and MOD.DU divide the data in bits [63:0] of general-purpose register rj by the data in bits [63:0] of general-purpose register rk, and write the remainder to...

rd, rj, rk

SRA.W performs an arithmetic right shift of the data in bits [31:0] of the general-purpose register rj, and writes the sign-extended shift result into the general-purpose register rd.

Command format: sll.w

Each pair of instructions for finding the quotient/remainder is executed on DIV.W/MOD.W, DIV.WU/MOD.WU, DIV.D/MOD.D, and DIV.DU/MOD.DU.

SLL.W logically shifts the data in bits [31:0] of the general-purpose register rj to the left, and writes the sign extension of the shift result into the general-purpose register rd.

srl.w

SRL.W logically right-shifts the data in bits [31:0] of the general-purpose register rj, and writes the sign-extended shift result into the general-purpose register rd.

rd, rj, rk

rotr.w

FOR YOU:

MOD.D:

GR[rd] = SignExtend(tmp[31:0], GRLEN)

tmp = SRL(GR[rj][31:0], GR[rk][4:0])

tmp = SRA(GR[rj][31:0], GR[rk][4:0])

GR[rd] = SignExtend(tmp[31:0], GRLEN)

SRA.W:

tmp = SLL(GR[rj][31:0], GR[rk][4:0])

SRL.W:

GR[rd] = signed(GR[rj][63:0]) % signed(GR[rk][63:0])

SLL.W:

GR[rd] = SignExtend(tmp[31:0], GRLEN)

GR[rd] = unsigned(GR[rj][63:0]) % unsigned(GR[rk][63:0])

Machine Translated by Google

22

rd, rj, ui5

srli.w

ROTRI.W cyclically shifts the data in bits [31:0] of the general-purpose register rj to the right, and writes the sign extension of the shift result into the general-purpose register rd.

SRAI.W performs an arithmetic right shift of the data in bits [31:0] of the general-purpose register rj, and writes the sign-extended shift result into the general-purpose register rd.

2.2.2.2SLLI.W, SRLI.W, SRAI.W, ROTRI.W

SRLI.W logically right-shifts the data in bits [31:0] of the general-purpose register rj, and writes the sign extension of the shift result into the general-purpose register rd.

Dragon Architecture Reference Manual Volume 1: Infrastructure

rd, rj, ui5

srai.w

rotri.w

rd, rj, ui5

Command format: slli.w

SLLI.W logically shifts the data in bits [31:0] of the general-purpose register rj to the left, and writes the sign extension of the shift result into the general-purpose register rd.

ROTR.W cyclically shifts the data in bits [31:0] of the general-purpose register rj to the right, and writes the sign extension of the shift result into the general-purpose register rd.

The shift amount of the above shift instructions is the data in bits [4:0] of the general-purpose register rk, and is regarded as an unsigned number.

rd, rj, ui5

The shift amount of the above shift instructions is the 5-bit unsigned immediate value ui5 in the instruction code.

ROTR.W:

SLLI.W:

SRAI.W:

tmp = ROTR(GR[rj][31:0], ui5)

GR[rd] = SignExtend(tmp[31:0], GRLEN)

ROTRI.W:

tmp = SRL(GR[rj][31:0], ui5)

GR[rd] = SignExtend(tmp[31:0], GRLEN)

SRLI.W:

GR[rd] = SignExtend(tmp[31:0], GRLEN)

tmp = SLL(GR[rj][31:0], ui5)

tmp = SRA(GR[rj][31:0], ui5)

tmp = ROTR(GR[rj][31:0], GR[rk][4:0])

GR[rd] = SignExtend(tmp[31:0], GRLEN)

GR[rd] = SignExtend(tmp[31:0], GRLEN)

Machine Translated by Google

23

SRL.D logically right-shifts the data in bits [63:0] of the general-purpose register rj, and writes the shift result into the general-purpose register rd.

2.2.2.3SLL.D, SRL.D, SRA.D, ROTR.D

2.2.2.4SLLI.D, SRLI.D, SRAI.D, ROTRI.D

srai.d

SLLI.D logically shifts the data in bits [63:0] of the general-purpose register rj to the left, and writes the shift result into the general-purpose register rd.

rd, rj, rk

SRLI.D logically right-shifts the data in bits [63:0] of the general-purpose register rj, and writes the shift result into the general-purpose register rd.

srl.d

rd, rj, rk

rotri.d

rd, rj, ui6

rd, rj, rk

Command format: slli.d

Dragon Architecture Reference Manual Volume 1: Infrastructure

SLL.D logically shifts the data in bits [63:0] of the general-purpose register rj to the left, and writes the shift result into the general-purpose register rd.

rd, rj, rk

The shift amount of the above shift instructions is the data in bits [5:0] of the general-purpose register rk, and is regarded as an unsigned number.

SRA.D performs an arithmetic right shift of the data in bits [63:0] of the general-purpose register rj, and writes the shift result into the general-purpose register rd.

ROTR.D cyclically shifts the data in bits [63:0] of the general-purpose register rj to the right, and writes the shift result into the general-purpose register rd.

rd, rj, ui6

rd, rj, ui6

rotr.d

Command format: sll.d

srli.d

sra.d

rd, rj, ui6

GR[rd] =SRL(GR[rj][63:0], GR[rk][5:0])

GR[rd] =SRL(GR[rj][63:0], ui6)

SLL.D:

SRLI.D:

GR[rd] = SRA(GR[rj][63:0], GR[rk][5:0])

SLLI.D:

GR[rd] = ROTR(GR[rj][63:0], GR[rk][5:0])

SRL.D:

GR[rd] = SLL(GR[rj][63:0], ui6)

GR[rd] = SLL(GR[rj][63:0], GR[rk][5:0])

SRA.D:

ROTR.D:

Machine Translated by Google

2.2.3 Bit manipulation instructions

ROTRI.D cyclically shifts the data in bits [63:0] of the general-purpose register rj to the right, and writes the shift result into the general-purpose register rd.

ctz.d

rd, rj

Command format: clo.w

SRAI.D performs an arithmetic right shift of the data in bits [63:0] of the general-purpose register rj, and writes the shift result into the general-purpose register rd.

cto.w

EXT.WB sign-extends the data bits [7:0] in general-purpose register rj and writes them into general-purpose register rd.

EXT.WH writes the sign-extended data bits [15:0] in general-purpose register rj into general-purpose register rd.

rd, rj

2.2.3.2CL{O/Z}.{W/D}, CT{O/Z}.{W/D}

rd, rj

Dragon Architecture Reference Manual Volume 1: Infrastructure

cto.d

ext.w.h rd, rj

rd, rj

Command format: ext.wb

The shift amount of the above shift instructions is the 6-bit unsigned immediate value ui6 in the instruction code.

clz.w

rd, rj

ctz.w

clo.d

clz.d rd, rj

rd, rj

2.2.3.1EXT.W.{B/H}

For the data in bits [31:0] of the general-purpose register rj, CLO.W counts the number of consecutive "1" bits starting from bit 31 towards bit 0.

rd, rj

The result is written into the general-purpose register rd.

rd, rj

EXT.W.B:

GR[rd] = CLO(GR[rj][31:0])

SRAI.D:

GR[rd] = SignExtend(GR[rj][7:0], GRLEN)

GR[rd] = ROTR(GR[rj][63:0], ui6)

EXT.W.H:

ROTRI.D:

GR[rd] = SRA(GR[rj][63:0], ui6)

CLO.W:

GR[rd] = SignExtend(GR[rj][15:0], GRLEN)

24

Machine Translated by Google

25

Dragon Architecture Reference Manual Volume 1: Infrastructure

The result is written into the general-purpose register rd.

CTO.W counts the number of consecutive "1" bits in bits [31:0] of the general-purpose register rj, starting from bit 0 and moving towards bit 31.

The result is written into the general-purpose register rd.

For the data in bits [63:0] of the general-purpose register rj, CTZ.D counts the number of consecutive "0" bits starting from bit 0 and moving towards bit 63.

The result is written into the general-purpose register rd.

CLO.D counts the number of consecutive "1" bits in the [63:0] bits of the general-purpose register rj, starting from bit 63 and moving towards bit 0.

The result is written into the general-purpose register rd.

For the data in bits [31:0] of the general-purpose register rj, CLZ.W counts the number of consecutive "0" bits starting from bit 31 towards bit 0.

For the data in bits [31:0] of the general-purpose register rj, CTZ.W counts the number of consecutive "0" bits starting from bit 0 and moving towards bit 31.

The result is written into the general-purpose register rd.

The result is written into the general-purpose register rd.

For the data in bits [63:0] of the general-purpose register rj, CLZ.D counts the number of consecutive "0" bits starting from bit 63 towards bit 0.

CTO.D counts the number of consecutive "1" bits in bits [63:0] of the general-purpose register rj, starting from bit 0 and moving towards bit 63.

The result is written into the general-purpose register rd.

CLZ.D:

CTO.W:

CLZ.W:

GR[rd] = CLZ(GR[rj][63:0])

CTO.D:

GR[rd] = CTO(GR[rj][63:0])

GR[rd] = CLO(GR[rj][63:0])

CTZ.D:

CLO.D:

GR[rd] = CTZ(GR[rj][63:0])

GR[rd] = CLZ(GR[rj][31:0])

CTZ.W:

GR[rd] = CTZ(GR[rj][31:0])

GR[rd] = CTO(GR[rj][31:0])

Machine Translated by Google

REVB.4H:

REVB.2H:

BYTEPICK.D:

tmp0 = {GR[rj][7:0], GR[rj][15:8]}

GR[rd] = SignExtend(tmp[8×(8-h2)-1 : 8×(4-h2)], GRLEN)

tmp3 = {GR[rj][55:48], GR[rj][63:56]}

GR[rd] = tmp[8×(16-sa3)-1 : 8×(8-sa3)]

tmp1 = {GR[rj][23:16], GR[rj][31:24]}

tmp = {GR[rk][31:0], GR[rj][31:0]}

BYTEPICK.W:

GR[rd] = SignExtend({tmp1, tmp0}, GRLEN)

tmp2 = {GR[rj][39:32], GR[rj][47:40]}

tmp1 = {GR[rj][23:16], GR[rj][31:24]}

tmp = {GR[rk][63:0], GR[rj][63:0]}

tmp0 = {GR[rj][7:0], GR[rj][15:8]}

GR[rd] = {tmp3, tmp2, tmp1, tmp0}

rd, rj

Write the first byte in reverse order to bits [47:32] of the general-purpose register rd, and write the second byte in reverse order to bits [63:48] of the general-purpose register rj.

revb.2w

BYTEPICK.W concatenates bits [31:0] in general-purpose register rk with bits [31:0] in general-purpose register rj to form a 64-bit (8-byte) array.

rd, rj, rk, sa2

Command format: revb.2h

rd in.

rd, rj

Dragon Architecture Reference Manual Volume 1: Infrastructure

The two bytes in [31:16] are reversed to form the [31:16] bits of the intermediate result, and the 32-bit intermediate result sign extension is written into the general-purpose register rd.

REVB.4H reverses the order of bits [15:0] in general-purpose register rj and writes them into bits [15:0] of general-purpose register rd. This resets the general-purpose register...

rd, rj

rd, rj

Write the two bytes from bits [31:16] of register rj in reverse order into bits [31:16] of general-purpose register rd, and write the two bytes from bits [47:32] of general-purpose register rj into general-purpose register rd.

bytepick.d

The bit string is truncated by extracting four consecutive bytes starting from the leftmost byte sa2, and the resulting 32-bit bit string is then sign-extended and written into a general-purpose register.

The bit string of section (s) is truncated by extracting 8 consecutive bytes starting from the leftmost byte sa3, and the resulting 64-bit bit string is written into the general-purpose register rd.

Command format: bytepick.w

2.2.3.4REVB.{2H/4H/2W/D}

Use bits [63:48] of register rd.

revb.4h

2.2.3.3BYTEPICK.{W/D}

BYTEPICK.D concatenates bits [63:0] in general-purpose register rk with bits [63:0] in general-purpose register rj to form a 128-bit (16-word) concatenation.

rd, rj, rk, sa3

revb.d

REVB.2H reverses the two bytes in bits [15:0] of the general-purpose register rj to form bits [15:0] of the intermediate result, and then sets the general-purpose register rj...

26

Machine Translated by Google

GR[rd] = { GR[rj][15:0], GR[rj][31:16], GR[rj][47:32], GR[rj][63:48]}

GR[rd] = SignExtend(bstr32, GRLEN)

bstr32[15: 8] = BITREV(GR[rj][15: 8])

REVH.D:

bstr32[31:24] = BITREV(GR[rj][31:24])

bstr32[7: 0] = BITREV(GR[rj][7: 0])

REVH.2W:

9:32], GR[rj][47:40], GR[rj][55:48], GR[rj][63:56]}

tmp1 = {GR[rj][47:32], GR[rj][63:48]}

REVB.2W:

bstr32[23:16] = BITREV(GR[rj][23:16])

GR[rd] = {GR[rj][7:0], GR[rj][15:8], GR[rj][23:16], GR[rj][31:24], GR[rj][3

GR[rd] = {tmp1, tmp0}

tmp1 = {GR[rj][39:32], GR[rj][47:40], GR[rj][55:48], GR[rj][63:56]}

tmp0 = {GR[rj][15:0], GR[rj][31:16]}

tmp0 = {GR[rj][7:0], GR[rj][15:8], GR[rj][23:16], GR[rj][31:24]}

REVB.D:

BITREV.4B:

GR[rd] = {tmp1, tmp0}

REVB.D writes the 8 bytes in bits [63:0] of general-purpose register rj into general-purpose register rd in reverse order.

The four bytes in bits [63:32] of register rj are written in reverse order to bits [63:32] of general-purpose register rd.

The two half-words in bits [63:32] of register rj are written in reverse order to bits [63:32] of general-purpose register rd.

revh.d

REVH.D writes the four half-words in bits [63:0] of general-purpose register rj into general-purpose register rd in reverse order.

rd, rj

2.2.3.6BITREV.{4B/8B}

BITREV.4B reverses the 8 bits in bits [7:0] of general-purpose register rj to form the intermediate result's bits [7:0], reverses the 8 bits in bits [15:8] of

general-purpose register rj to form the intermediate result's bits [15:8], reverses the 8 bits in bits [23:16] of general-purpose register rj to form the intermediate

result's bits [23:16], and reverses the 8 bits in bits [31:24] of general-purpose register rj to form the intermediate result's bits [31:24].

rd, rj

Dragon Architecture Reference Manual Volume 1: Infrastructure

REVB.2W reverses the order of bits [31:0] in general-purpose register rj and writes them into bits [31:0] of general-purpose register rd, thus resetting the general-purpose register.

2.2.3.5REVH.{2W/D}

bitrev.8b

REVH.2W reverses the order of bits [31:0] in general-purpose register rj and writes them into bits [31:0] of general-purpose register rd.

Command format: bitrev.4b

The 32-bit intermediate result sign extension is written into the general-purpose register rd.

Command format: revh.2w

rd, rj

rd, rj

27

Machine Translated by Google

GR[rd][63:56] = BITREV(GR[rj][63:56])

GR[rd][55:48] = BITREV(GR[rj][55:48])

BITREV.D:

bstr32[31:0] = BITREV(GR[rj][31:0])

maskv = {(msbw-lsbw+1){1’b1}}<<lsbw

BITREV.8B:

GR[rd][15: 8] = BITREV(GR[rj][15: 8])

0]

GR[rd] = BITREV(GR[rj][63:0])

GR[rd][7: 0] = BITREV(GR[rj][7: 0])

GR[rd] = SignExtend(bstr32[31:0], GRLEN)

bstr32 = GR[rd][31:0]&~maskv[31:0] | (GR[rj][msbw-lsbw:0]<<lsbw)&maskv[31:

BITREV.W:

GR[rd][31:24] = BITREV(GR[rj][31:24])

GR[rd][23:16] = BITREV(GR[rj][23:16])

GR[rd][47:40] = BITREV(GR[rj][47:40])

GR[rd] = SignExtend(bstr32, GRLEN)

GR[rd][39:32] = BITREV(GR[rj][39:32])

BSTRINS.W:

Write bits [23:16] of the general-purpose register rd in reverse order, and write 8 bits [31:24] of the general-purpose register rj in reverse order.

The 8 bits in the first position are reversed and written into bits [55:48] of the general-purpose register rd. The 8 bits in bits [63:56] of the general-purpose register rj are reversed.

Dragon Architecture Reference Manual Volume 1: Infrastructure

BITREV.8B reverses the order of bits [7:0] in general-purpose register rj and writes them into bits [7:0] of general-purpose register rd, thus resetting the general-purpose register.

bitrev.d

The fruit symbol extension is written into the general-purpose register rd.

Instruction format: bstrins.w rd, rj, msbw, lsbw BSTRINS.W

replaces the [msbw:lsbw] bits in the lowest 32 bits of the general-purpose register rd with the [msbw-lsbw:0] bits in the general-purpose register rj, resulting in...

2.2.3.7BITREV.{W/D}

BITREV.W reverses the 32 bits [31:0] in general-purpose register rj to form the intermediate result [31:0] bits.

Bits [31:24] of register rd will be written into bits [39:32] of general-purpose register rj in reverse order.

bstrins.d rd, rj, msbd, lsbd

BITREV.D reverses the order of 64 bits in bits [63:0] of general-purpose register rj and writes them into general-purpose register rd.

The obtained 32-bit result is sign-extended and written into the general-purpose register rd.

Write the column to bits [63:56] of the general-purpose register rd.

rd, rj rd, rj

2.2.3.8BSTRINS.{W/D}

Write the 8 bits from bits [15:8] of register rj in reverse order into bits [15:8] of general-purpose register rd, and write the 8 bits from bits [23:16] of general-purpose register rj into general-purpose register rd.

Reverse the order of bits [47:40] in general-purpose register rj and write them into bits [47:40] of general-purpose register rd. Then, write bits [55:48] from general-purpose register rj...

Command format: bitrev.w

28

Machine Translated by Google

MASKNEZ:

MASKEQZ:

BSTRPICK.D:

BSTRPICK.W:

bstr32[31:0] = ZeroExtend(GR[rj][msbw:lsbw], 32)

GR[rd] = (GR[rk]==0) ? 0 : GR[rj]

0]

GR[rd] = GR[rd][63:0]&~maskv[63:0] | (GR[rj][msbd-lsbd:0]<<lsbd)&maskv[63:

BSTRINS.D:

maskv = {(msbd-lsbd+1){1’b1}}<<lsbd

GR[rd] = SignExtend(bstr32[31:0], GRLEN)

GR[rd] = ZeroExtend(GR[rj][msbd:lsbd], 64)

GR[rd] = (GR[rk]!=0) ? 0 : GR[rj]

masknez

When MASKNEZ executes, if the value of the general-purpose register rk is not equal to 0, then the general-purpose register rd is set to all zeros; otherwise, it is assigned the value rj.

The value of the register.

Enter it into the general-purpose register rd.

bstrpick.d

rd, rj, rk

2.2.3.9BSTRPICK.{W/D}

The remaining bits remain unchanged.

BSTRPICK.D extracts the [msbd:lsbd] bits from the general-purpose register rj, extends them to 64 bits, and writes them into the general-purpose register rd.

2.2.3.10 MASKEKZ, MASKNEZ

Command format: bstrpick.w rd, rj, msbw, lsbw

rd, rj, rk

rd, rj, msbd, lsbd

The value of the register.

Command format: maskeqz

Dragon Architecture Reference Manual Volume 1: Infrastructure

BSTRINS.D replaces the [msbd:lsbd] bits in the general-purpose register rd with the [msbd-lsbd:0] bits in the general-purpose register rj.

BSTRPICK.W extracts the [msbw:lsbw] bits from the general-purpose register rj, zero-extends them to 32 bits, and writes the resulting 32-bit intermediate result after sign extension.

The MASKEQZ and MASKNEZ instructions perform conditional assignment operations.

When MASKEQZ executes, if the value of the general-purpose register rk is equal to 0, then the general-purpose register rd is set to all zeros; otherwise, it is assigned the value rj.

29

Machine Translated by Google

30

BLTU:

if GR[rj]==GR[rd] :

PC = PC + SignExtend({offs16, 2'b0}, GRLEN)

if unsigned(GR[rj]) < unsigned(GR[rd]) :

if GR[rj]!=GR[rd] :

PC = PC + SignExtend({offs16, 2'b0}, GRLEN)

BLT:

PC = PC + SignExtend({offs16, 2'b0}, GRLEN)

BGE:

PC = PC + SignExtend({offs16, 2'b0}, GRLEN)

BEQ:

PC = PC + SignExtend({offs16, 2'b0}, GRLEN)

if signed(GR[rj]) < signed(GR[rd]) :

if signed(GR[rj]) >= signed(GR[rd]) :

BNE:

The address must be displayed; otherwise, the user will not be redirected.

rj, rd, offs16

The URL must be provided; otherwise, the user will not be redirected.

Specify the address; otherwise, do not redirect.

bge

blue

rj, rd, offs16

BNE compares the values of general-purpose register rj and general-purpose register rd. If they are not equal, it jumps to the target address; otherwise, it does not jump.

blue

Command format: beq

Dragon Architecture Reference Manual Volume 1: Infrastructure

rj, rd, offs16

see rj, rd, offs16

BEQ compares the values of general-purpose register rj and general-purpose register rd. If they are equal, it jumps to the target address; otherwise, it does not jump.

BLT compares the values of general-purpose register rj and general-purpose register rd as signed numbers; if the former is less than the latter, it jumps to the target location.

BGE compares the values of general-purpose register rj and general-purpose register rd as signed numbers; if the former is greater than or equal to the latter, it jumps to the target.

blt rj, rd, offs16

2.2.4.1BEQ, BNE, BLT[U], BGE[U]

rj, rd, offs16

BLTU treats the values of general-purpose register rj and general-purpose register rd as unsigned numbers and compares them; if the former is less than the latter, it jumps to the target.

2.2.4 Transfer Command

Machine Translated by Google

BEQZ:

if unsigned(GR[rj]) >= unsigned(GR[rd]) :

BGEU:

PC = PC + SignExtend({offs16, 2'b0}, GRLEN)

PC = PC + SignExtend({offs26, 2'b0}, GRLEN)

PC = PC + SignExtend({offs21, 2'b0}, GRLEN)

BNEZ:

if GR[rj]!=0 :

B:

if GR[rj]==0 :

PC = PC + SignExtend({offs21, 2'b0}, GRLEN)

Enter the offset value in bytes, which is offs16<<2 in the instruction code.

Target address; otherwise, do not redirect.

rj, offs21

rj, offs21

However, it should be noted that if the above instructions are written by directly filling in the offset value when writing the assembly code, the immediate value in the assembly representation should be...

2.2.4.3B

2.2.4.2BEQZ, BNEZ

However, it should be noted that if the above instructions are written by directly filling in the offset value when writing the assembly code, the immediate value in the assembly representation should be...

B unconditionally jumps to the target address. The target address is obtained by logically left-shifting the 26-bit immediate value ̀offs26` in the instruction code by 2 bits.

BEQZ checks the value of the general-purpose register rj. If the value is 0, it jumps to the target address; otherwise, it does not jump.

Dragon Architecture Reference Manual Volume 1: Infrastructure

BGEU compares the values of general-purpose register rj and general-purpose register rd as unsigned numbers; if the former is greater than or equal to the latter, it jumps to...

Command format: beqz

Command format: b

The jump target address for the above six branch instructions is calculated by logically shifting the 16-bit immediate value off16 in the instruction code left by 2 bits before recalculating.

BNEZ checks the value of the general-purpose register rj. If the value is not equal to 0, it jumps to the target address; otherwise, it does not jump.

Enter the offset value in bytes, which is offs21<<2 in the instruction code.

The sign is extended, and the resulting offset value is added to the PC of the branch instruction.

bnez

The jump target address of the two branch instructions mentioned above is obtained by logically shifting the 21-bit immediate value offs21 in the instruction code left by 2 bits and then sign-extending it.

offs26

The resulting offset value is added to the PC of the branch instruction.

The offset value is extended by the branch instruction, and the resulting offset value is added to the PC of that branch instruction.

31

Machine Translated by Google

GR[1] = PC + 4

BL:

PC = PC + SignExtend({offs26, 2'b0}, GRLEN)

GR[rd] = PC + 4

PC = GR[rj] + SignExtend({offs16, 2'b0}, GRLEN)

JIRL:

2.2.4.4BL

BL jumps unconditionally to the target address and simultaneously writes the PC value of the instruction plus 4 into general-purpose register r1.

Dragon Architecture Reference Manual Volume 1: Infrastructure

It is important to note that if this instruction is written by directly filling in the offset value during assembly, the immediate value in the assembly representation should be filled in with the offset value.

The offset value in bytes, i.e., offs26<<2 in the instruction code.

The value is added to the value in the general-purpose register rj.

In the LA ABI, general-purpose register r1 is used as the return address register ra.

It is important to note that if this instruction is written by directly filling in the offset value during assembly, the immediate value in the assembly representation should be filled in with the offset value.

The offset value in bytes, i.e., offs16<<2 in the instruction code.

2.2.4.5JIRL

rd, rj, offs16

Command format: bl

Add the PC value to the branch instruction.

The jump target address of this instruction is obtained by logically left-shifting the 26-bit immediate value offs26 in the instruction code by 2 bits and then sign-extending it.

It is important to note that if this instruction is written by directly filling in the offset value during assembly, the immediate value in the assembly representation should be filled in with the offset value.

The jump target address of this instruction is obtained by logically left-shifting the 16-bit immediate value ̀offs16` in the instruction code by 2 bits and then sign-extending it.

The offset value in bytes, i.e., offs26<<2 in the instruction code.

When rd equals 0, JIRL functions as a regular non-call indirect jump instruction.

Command format: jirl

JIRLs with rd equal to 0, rj equal to 1, and offs16 equal to 0 are often used as indirect jumps back from calls.

offs26

JIRL jumps unconditionally to the target address and simultaneously writes the PC value of the instruction plus 4 into the general-purpose register rd.

32

Machine Translated by Google

vaddr = GR[rj] + SignExtend(si12, GRLEN)

halfword = MemoryLoad(paddr, HALFWORD)

GR[rd] = SignExtend(halfword, GRLEN)

GR[rd] = SignExtend(byte, GRLEN)

vaddr = GR[rj] + SignExtend(si12, GRLEN)

paddr = AddressTranslation(vaddr)

vaddr = GR[rj] + SignExtend(si12, GRLEN)

LD.B:

AddressComplianceCheck(vaddr)

AddressComplianceCheck(vaddr)

byte = MemoryLoad(paddr, BYTE)

word = MemoryLoad(paddr, WORD)

LD.D:

LD.H:

paddr = AddressTranslation(vaddr)

vaddr = GR[rj] + SignExtend(si12, GRLEN)

paddr = AddressTranslation(vaddr)

AddressComplianceCheck(vaddr)

GR[rd] = SignExtend(word, GRLEN)

GR[rd] = MemoryLoad(paddr, DOUBLEWORD)

LD.W:

paddr = AddressTranslation(vaddr)

AddressComplianceCheck(vaddr)

rd, rj, si12

ld.w

rd, rj, si12

2.2.5.1LD.{B[U]/H[U]/W[U]/D}, ST.{B/H/W/D}

st.b

ld.wu

st.h rd, rj, si12

LD.{B/H/W} retrieves a byte/half-word/word of data from memory, signs-extends it, and writes it to the general-purpose register rd. LD.D retrieves a...

st.d

ld.hu

rd, rj, si12

rd, rj, si12

rd, rj, si12

rd, rj, si12

ld.bu

rd, rj, si12

ld.d

Double-word data is written to the general-purpose register rd.

rd, rj, si12

Command format: ld.b

Dragon Architecture Reference Manual Volume 1: Infrastructure

rd, rj, si12

ld.h rd, rj, si12

st.w

2.2.5 Ordinary Memory Access Instructions

33

Machine Translated by Google

MemoryStore(GR[rd][7:0], paddr, BYTE)

paddr = AddressTranslation(vaddr)

vaddr = GR[rj] + SignExtend(si12, GRLEN)

paddr = AddressTranslation(vaddr)

MemoryStore(GR[rd][63:0], paddr, DOUBLEWORD)

LD.WU:

vaddr = GR[rj] + SignExtend(si12, GRLEN)

paddr = AddressTranslation(vaddr)

AddressComplianceCheck(vaddr)

AddressComplianceCheck(vaddr)

word = MemoryLoad(paddr, WORD)

LD.HU:

MemoryStore(GR[rd][31:0], paddr, WORD)

vaddr = GR[rj] + SignExtend(si12, GRLEN)

paddr = AddressTranslation(vaddr)

AddressComplianceCheck(vaddr)

vaddr = GR[rj] + SignExtend(si12, GRLEN)

AddressComplianceCheck(vaddr)

LD.BU:

vaddr = GR[rj] + SignExtend(si12, GRLEN)

paddr = AddressTranslation(vaddr)

AddressComplianceCheck(vaddr)

ST.H:

halfword = MemoryLoad(paddr, HALFWORD)

vaddr = GR[rj] + SignExtend(si12, GRLEN)

ST.W:

paddr = AddressTranslation(vaddr)

paddr = AddressTranslation(vaddr)

MemoryStore(GR[rd][15:0], paddr, HALFWORD)

GR[rd] = ZeroExtend(halfword, GRLEN)

ST.B:

GR[rd] = ZeroExtend(byte, GRLEN)

vaddr = GR[rj] + SignExtend(si12, GRLEN)

AddressComplianceCheck(vaddr)

ST.D:

GR[rd] = ZeroExtend(word, GRLEN)

byte = MemoryLoad(paddr, BYTE)

AddressComplianceCheck(vaddr)

ST.{B/H/W/D} writes the data in bits [7:0]/[15:0]/[31:0]/[63:0] from the general-purpose register rd into memory.

Dragon Architecture Reference Manual Volume 1: Infrastructure

LD.{BU/HU/WU} retrieves one byte/half-word/word of data from memory, zero-extends it, and writes it to the general-purpose register rd.

34

Machine Translated by Google

35

Dragon Architecture Reference Manual Volume 1: Infrastructure

ldx.w

LDX.{B/H/W} retrieves one byte/half-word/word of data from memory, signs-extends it, and writes it to the general-purpose register rd. LDX.D retrieves the data from memory...

stx.b

rd, rj, rk

ldx.d

For the LD.{H[U]/W[U]/D} and ST.{B/H/W/D} instructions, regardless of the hardware implementation or environment configuration, as long as they access memory...

ldx.h

ldx.wu

ldx.bu

ldx.hu

If the current operating environment is configured to allow unaligned memory access, then the unaligned exception will not be triggered; otherwise, the unaligned exception will be triggered.

stx.h

stx.d

rd, rj, rk

2.2.5.2LDX.{B[U]/H[U]/W[U]/D}, STX.{B/H/W/D}

A double word of data is written to the general-purpose register rd.

rd, rj, rk

rd, rj, rk

rd, rj, rk

rd, rj, rk

rd, rj, rk

The memory address of the above instruction is calculated by adding the value in the general-purpose register rj to the sign-extended 12-bit immediate value si12.

rd, rj, rk

rd, rj, rk

rd, rj, rk

rd, rj, rk

If the memory address is naturally aligned, no unaligned exception will be triggered; however, if the hardware implementation supports unaligned memory access and

stx.w

Command format: ldx.b

paddr = AddressTranslation(vaddr)

LDX.B:

vaddr = GR[rj] + GR[rk]

byte = MemoryLoad(paddr, BYTE)

halfword = MemoryLoad(paddr, HALFWORD)

AddressComplianceCheck(vaddr)

AddressComplianceCheck(vaddr)

GR[rd] = SignExtend(halfword, GRLEN)

vaddr = GR[rj] + GR[rk]

GR[rd] = SignExtend(byte, GRLEN)

vaddr = GR[rj] + GR[rk]

AddressComplianceCheck(vaddr)

word = MemoryLoad(paddr, WORD)

LDX.H:

GR[rd] = SignExtend(word, GRLEN)

paddr = AddressTranslation(vaddr)

paddr = AddressTranslation(vaddr)

LDX.W:

Machine Translated by Google

36

STX.{B/H/W/D} writes the data in bits [7:0]/[15:0]/[31:0]/[63:0] from the general-purpose register rd into memory.

Dragon Architecture Reference Manual Volume 1: Infrastructure

LDX.{BU/HU/WU} retrieves one byte/half-word/word of data from memory, zero-extends it, and writes it to the general-purpose register rd.

LDX.D:

AddressComplianceCheck(vaddr)

GR[rd] = MemoryLoad(paddr, DOUBLEWORD)

vaddr = GR[rj] + GR[rk]

paddr = AddressTranslation(vaddr)

AddressComplianceCheck(vaddr)

vaddr = GR[rj] + GR[rk]

AddressComplianceCheck(vaddr)

AddressComplianceCheck(vaddr)

AddressComplianceCheck(vaddr)

GR[rd] = ZeroExtend(word, GRLEN)

word = MemoryLoad(paddr, WORD)

MemoryStore(GR[rd][31:0], paddr, WORD)

MemoryStore(GR[rd][15:0], paddr, HALFWORD)

paddr = AddressTranslation(vaddr)

STX.H:

vaddr = GR[rj] + GR[rk]

paddr = AddressTranslation(vaddr)

paddr = AddressTranslation(vaddr)

paddr = AddressTranslation(vaddr)

byte = MemoryLoad(paddr, BYTE)

GR[rd] = ZeroExtend(byte, GRLEN)

MemoryStore(GR[rd][7:0], paddr, BYTE)

STX.W:

LDX.HU:

halfword = MemoryLoad(paddr, HALFWORD)

vaddr = GR[rj] + GR[rk]

vaddr = GR[rj] + GR[rk]

AddressComplianceCheck(vaddr)

LDX.BU:

vaddr = GR[rj] + GR[rk]

GR[rd] = ZeroExtend(halfword, GRLEN)

vaddr = GR[rj] + GR[rk]

STX.B:

paddr = AddressTranslation(vaddr)

paddr = AddressTranslation(vaddr)

LDX.WU:

AddressComplianceCheck(vaddr)

Machine Translated by Google

paddr = AddressTranslation(vaddr)

vaddr = GR[rj] + SignExtend({si14, 2'b0}, GRLEN)

vaddr = GR[rj] + SignExtend({si14, 2'b0}, GRLEN)

STPTR.W:

paddr = AddressTranslation(vaddr)

paddr = AddressTranslation(vaddr)

vaddr = GR[rj] + SignExtend({si14, 2'b0}, GRLEN)

GR[rd] = MemoryLoad(paddr, DOUBLEWORD)

AddressComplianceCheck(vaddr)

LDPTR.W:

GR[rd] = SignExtend(word, GRLEN)

word = MemoryLoad(paddr, WORD)

AddressComplianceCheck(vaddr)

MemoryStore(GR[rd][31:0], paddr, WORD)

paddr = AddressTranslation(vaddr)

LDPTR.D:

vaddr = GR[rj] + GR[rk]

STX.D:

MemoryStore(GR[rd][63:0], paddr, DOUBLEWORD)

AddressComplianceCheck(vaddr)

AddressComplianceCheck(vaddr)

Command format: ldptr.w

rd, rj, si14

LDPTR.W retrieves a word of data from memory, signs-extends it, and writes it to the general-purpose register rd. LDPTR.D retrieves a double word of data from memory.

ldptr.d

If the memory address is naturally aligned, no unaligned exception will be triggered; however, if the hardware implementation supports unaligned access, a memory address that is not naturally aligned will trigger an unaligned exception.

Dragon Architecture Reference Manual Volume 1: Infrastructure

The memory access address of the above instruction is calculated by adding the value in general-purpose register rj to the value in general-purpose register rk.

2.2.5.3LDPTR.{W/D}, STPTR.{W/D}

rd, rj, si14

stptr.w

stptr.d

Data is written to the general-purpose register rd.

STPTR.{W/D} writes the data in bits [31:0]/[63:0] of the general-purpose register rd into memory.

For LDX.{H[U]/W[U]/D} and STX.{B/H/W/D} instructions, regardless of the hardware implementation or environment configuration, as long as their access...

rd, rj, si14

If the current operating environment is configured to allow unaligned memory access, then the unaligned exception will not be triggered; otherwise, the unaligned exception will be triggered.

rd, rj, si14

37

Machine Translated by Google

vaddr = GR[rj] + SignExtend({si14, 2'b0}, GRLEN)

STPTR.D:

AddressComplianceCheck(vaddr)

MemoryStore(GR[rd][63:0], paddr, DOUBLEWORD)

paddr = AddressTranslation(vaddr)

2.2.5.5PRELDX

If the cache attribute of the memory address accessed by the PRELD instruction is not cached, then the instruction cannot perform a memory access operation and is treated as a NOP instruction.

The PRELDX instruction prefetches data continuously from memory into the cache according to configuration parameters. The data prefetched continuously starts from the specified base address.

Naturally aligned memory will not trigger unaligned exceptions; when the memory access address is not naturally aligned, if the hardware implementation supports unaligned memory access and the current...

The PRELD instruction will not trigger any MMU or address-related exceptions.

The LDPTR.{W/D} and STPTR.{W/D} instructions are used in conjunction with the ADDU16I.D instructions to accelerate GOT-based code in position-independent environments.

Dragon Architecture Reference Manual Volume 1: Infrastructure

The memory access address of the above instruction is calculated by logically shifting the 14-bit immediate value si14 left by 2 bits, then sign-extending it, and finally multiplying it by the general-purpose register rj.

If the computing environment is configured to allow unaligned memory access, then the unaligned exception will not be triggered; otherwise, the unaligned exception will be triggered.

Access to the table.

The value is summed with the sign-extended 12-bit immediate value si12. The memory access address falls within the cache line to be prefetched.

Command format: preldx

The meaning of the value is not yet defined; the processor will treat it as a NOP instruction during execution.

2.2.5.4PRELD

The ̀PRETLD` instruction provides hints to the processor about the type of data to prefetch and which cache level the fetched data should be placed in. Hints range from 0 to 31, with 32 possible values.

The stride between adjacent blocks is defined, and the basic unit of the stride is 1 byte.

The values in the above instructions are summed. It's important to note that the immediate address offset values in the assembly representation of the above instructions are in bytes; that is, their values refer to...

Bits [63:0] in register rj are added to bits [15:0] in the sign-extended general-purpose register rk. Bit [16] in general-purpose register rk is the address sequence ascending/descending flag, where 0

indicates ascending order and 1 indicates descending order. The value of bits [25:20] in general-purpose register rk is block_size - 1.

The value is block_num-1, therefore a single instruction can prefetch a maximum of 256 blocks. The values in bits [59:44] of the general-purpose register rk are treated as signed numbers.

PRELD prefetches a cache line of data from memory into the cache. Its memory access address is calculated by adjusting the value in the general-purpose register rj.

hint, rj, rk

Select a value. Currently, hint=0 is defined as load prefetching to the first-level data cache, and hint=8 is defined as store prefetching to the first-level data cache. Other hints...

Command format: preld

The first few data blocks (blocks) are spaced at stride intervals and have a length of block_size. The base address is calculated using a general method.

The basic unit of block_size is 16 bytes, therefore the maximum length of a single block is 1KB. The values of bits [39:32] in the general-purpose register rk...

deal with.

In the instruction code, si14<<2.

hint, rj, si12

For the LDPTR.{W/D} and STPTR.{W/D} instructions, regardless of the hardware implementation or environment configuration, as long as their memory access address is...

38

Machine Translated by Google

39

ÿ

The ̀PRELDX` instruction contains hints to the processor about the type of data to prefetch and which cache level the fetched data should be placed in. There are 32 hints, ranging from 0 to 31.

rd, rj, rk

rd, rj, rk

stle.w

If the condition is not met, the memory access operation is terminated and a boundary check exception is triggered. The instructions LDLE.{B/H/W/D} and STLE.{B/H/W/D}...

This prefetches data into the L1 cache for the store. The meanings of the other hint values are currently undefined; the processor will treat them as NOP instructions during execution.

rd, rj, rk

rd, rj, rk

The PRELDX instruction will not trigger any MMU or address-related exceptions.

ldgt.w

Command format: ldgt.b

ldle.h

The memory access addresses for the above instructions come directly from the value in the general-purpose register rj. All memory access addresses for the above instructions require natural alignment; otherwise, [the memory will be...].

ldgt.d

STGT/STLE.{B/H/W/D} writes the data in bits [7:0]/[15:0]/[31:0]/[63:0] from the general-purpose register rd into memory.

Order to process.

ldle.d

stgt.h

ldle.b

stle.h

rd, rj, rk

rd, rj, rk

rd, rj, rk

rd, rj, rk

LDGT/LDLE.D retrieves a double word of data from memory and writes it to the general-purpose register rd.

Triggering an unaligned exception.

If the cache attribute of the memory address accessed by the PRELDX instruction is not cached, then the instruction cannot perform a memory access operation and is treated as a NOP instruction.

Optional values. Currently, hint=0 defines load prefetching to the level 1 data cache, hint=2 defines load prefetching to the level 3 cache, and hint=8 defines...

rd, rj, rk

rd, rj, rk

And trigger a boundary check error exception.

rd, rj, rk

During execution, it checks whether the value in general-purpose register rj is less than or equal to the value in general-purpose register rk. If the condition is not met, the memory access operation is terminated.

stgt.w

rd, rj, rk

stle.b

stle.d

rd, rj, rk

Dragon Architecture Reference Manual Volume 1: Infrastructure

stgt.b

rd, rj, rk

When the LDGT.{B/H/W/D} and STGT.{B/H/W/D} instructions are executed, they check whether the value in the general-purpose register rj is greater than that in the general-purpose register rk.

2.2.6.1LD{GT/LE}.{B/H/W/D}, ST{GT/LE}.{B/H/W/D}

rd, rj, rk

rd, rj, rk

stgt.d

LDGT/LDLE.{B/H/W} retrieves a byte/half-word/word of data from memory, sign-extends it, and writes it to the general-purpose register rd.

ldle.w

ldgt.h

2.2.6 Boundary Check Memory Access Command

Machine Translated by Google

40

Dragon Architecture Reference Manual Volume 1: Infrastructure

else :

if GR[rj]>GR[rk] :

GR[rd] = SignExtend(word, GRLEN)

AddressComplianceCheck(vaddr)

LDGT.W:

LDGT.H:

AddressComplianceCheck(vaddr)

GR[rd] = SignExtend(byte, GRLEN)

paddr = AddressTranslation(vaddr)

byte = MemoryLoad(paddr, BYTE)

if GR[rj]>GR[rk] :

vaddr = GR[rj]

RaiseException(BCE) #Bound Check Error Exception

word = MemoryLoad(paddr, WORD)

GR[rd] = MemoryLoad(paddr, DOUBLEWORD)

else :

RaiseException(BCE) #Bound Check Error Exception

paddr = AddressTranslation(vaddr)

else :

AddressComplianceCheck(vaddr)

AddressComplianceCheck(vaddr)

halfword = MemoryLoad(paddr, HALFWORD)

RaiseException(BCE) #Bound Check Error Exception

LDGT.B:

vaddr = GR[rj]

RaiseException(BCE) #Bound Check Error Exception

else :

GR[rd] = SignExtend(halfword, GRLEN)

paddr = AddressTranslation(vaddr)

if GR[rj]>GR[rk] :

vaddr = GR[rj]

vaddr = GR[rj]

LDGT.D:

if GR[rj]>GR[rk] :

paddr = AddressTranslation(vaddr)

Machine Translated by Google

41

Dragon Architecture Reference Manual Volume 1: Infrastructure

paddr = AddressTranslation(vaddr)

GR[rd] = SignExtend(halfword, GRLEN)

paddr = AddressTranslation(vaddr)

if GR[rj]<=GR[rk] :

AddressComplianceCheck(vaddr)

AddressComplianceCheck(vaddr)

RaiseException(BCE) #Bound Check Error Exception

if GR[rj]<=GR[rk] :

else :

GR[rd] = MemoryLoad(paddr, DOUBLEWORD)

LDLE.W:

LDLE.D:

LDLE.H:

RaiseException(BCE) #Bound Check Error Exception

vaddr = GR[rj]

RaiseException(BCE) #Bound Check Error Exception

RaiseException(BCE) #Bound Check Error Exception

if GR[rj]<=GR[rk] :

halfword = MemoryLoad(paddr, HALFWORD)

else :

vaddr = GR[rj]

LDLE.B:

vaddr = GR[rj]

if GR[rj]<=GR[rk] :

byte = MemoryLoad(paddr, BYTE)

word = MemoryLoad(paddr, WORD)

GR[rd] = SignExtend(byte, GRLEN)

paddr = AddressTranslation(vaddr)

AddressComplianceCheck(vaddr)

paddr = AddressTranslation(vaddr)

GR[rd] = SignExtend(word, GRLEN)

vaddr = GR[rj]

else :

AddressComplianceCheck(vaddr)

else :

Machine Translated by Google

42

Dragon Architecture Reference Manual Volume 1: Infrastructure

else :

else :

if GR[rj]>GR[rk] :

MemoryStore(GR[rd][63:0], paddr, DOUBLEWORD)

paddr = AddressTranslation(vaddr)

RaiseException(BCE) #Bound Check Error Exception

else :

if GR[rj]>GR[rk] :

MemoryStore(GR[rd][15:0], paddr, HALFWORD)

RaiseException(BCE) #Bound Check Error Exception

AddressComplianceCheck(vaddr)

vaddr = GR[rj]

RaiseException(BCE) #Bound Check Error Exception

STGT.D:

STGT.B:

MemoryStore(GR[rd][7:0], paddr, BYTE)

paddr = AddressTranslation(vaddr)

vaddr = GR[rj]

AddressComplianceCheck(vaddr)

else :

if GR[rj]>GR[rk] :

MemoryStore(GR[rd][31:0], paddr, WORD)

RaiseException(BCE) #Bound Check Error Exception

if GR[rj]>GR[rk] :

vaddr = GR[rj]

AddressComplianceCheck(vaddr)

paddr = AddressTranslation(vaddr)

paddr = AddressTranslation(vaddr)

vaddr = GR[rj]

STGT.H:

AddressComplianceCheck(vaddr)

STGT.W:

Machine Translated by Google

43

Dragon Architecture Reference Manual Volume 1: Infrastructure

STLE.B:

MemoryStore(GR[rd][7:0], paddr, BYTE)

AddressComplianceCheck(vaddr)

STLE.W:

AddressComplianceCheck(vaddr)

vaddr = GR[rj]

vaddr = GR[rj]

else :

paddr = AddressTranslation(vaddr)

else :

RaiseException(BCE) #Bound Check Error Exception

if GR[rj]<=GR[rk] :

MemoryStore(GR[rd][31:0], paddr, WORD)

MemoryStore(GR[rd][15:0], paddr, HALFWORD)

vaddr = GR[rj]

paddr = AddressTranslation(vaddr)

RaiseException(BCE) #Bound Check Error Exception

paddr = AddressTranslation(vaddr)

STLE.D:

AddressComplianceCheck(vaddr)

MemoryStore(GR[rd][63:0], paddr, DOUBLEWORD)

if GR[rj]<=GR[rk] :

else :

STLE.H:

if GR[rj]<=GR[rk] :

if GR[rj]<=GR[rk] :

vaddr = GR[rj]

RaiseException(BCE) #Bound Check Error Exception

paddr = AddressTranslation(vaddr)

RaiseException(BCE) #Bound Check Error Exception

AddressComplianceCheck(vaddr)

else :

Machine Translated by Google

2.2.7 Atomic memory access instructions

ammax_db.w

rd, rk, rj

amadd.w

rd, rk, rj

ammax_db.d

rd, rk, rj

rd, rk, rj

admin_db.w

amxor.w

amxor.d

Atomic memory access instructions read from and write to memory, as well as perform intermediate operations, using 64-bit data. Regardless of whether the instruction ends in .W or .WU, atomic memory access instructions...

The operation is performed, and then the result is written back to the specified memory address. The entire "read-modify-write" process is atomic, meaning that the operation is performed atomically.

love.d

rd, rk, rj

ammin.d

Atomic memory access instructions ending in .W and .WU read, write, and perform intermediate operations with a data width of 32 bits. Instructions ending in .D and .DU...

amor_db.d

rd, rk, rj

If this condition is not met, an unaligned exception will be triggered.

rd, rk, rj

admin.w

rd, rk, rj

amswap.d

amand.w

The old value at the specified address is retrieved and written to the general-purpose register rd. Simultaneously, some simple operations are performed between this old value in memory and the value in the general-purpose register rd.

rd, rk, rj

The effect of write operations on the cache line containing the image is globally visible.

rd, rk, rj

admin_db.d

amor.w

rd, rk, rj

rd, rk, rj

rd, rk, rj

paragraph d

rd, rk, rj

rd, rk, rj

No other memory access/write operations were performed, no exceptions were triggered, and no other processor cores or cache coherence modules accessed the instruction.

amadd_db.w

rd, rk, rj

ammax.du

amadd_db.d

AM* atomic memory access instructions can atomically complete a sequence of "read-modify-write" operations on a specific memory location. Specifically, they atomically access memory...

amxor_db.w

ammax_db.du

Dragon Architecture Reference Manual Volume 1: Infrastructure

ammin_db.du

rd, rk, rj

rd, rk, rj

rd, rk, rj

ammax.wu rd, rk, rj

rd, rk, rj

rd, rk, rj

During instruction execution, from the time the data is returned from the memory access read operation to the time when the effect of the memory access write operation is globally visible, the processor executing the instruction...

rd, rk, rj

ammax_db.wu

amand_db.w

amand_db.d

rd, rk, rj

rd, rk, rj

rd, rk, rj

amxor_db.d

rd, rk, rj

rd, rk, rj ammax.w

The new value is the result of adding the old value in memory to the value in the general-purpose register rk. The new value written to memory by the AMAND[_DB].{W/D} instruction comes from...

rd, rk, rj

rd, rk, rj rd, rk, rj

Command format: amswap.w rd, rk, rj

rd, rk, rj

rd, rk, rj

ammyn.du

amswap_db.d

amen.i

almond.d

admin_db.wu

amor_db.w

amswap_db.w

The AMSWAP[_DB].{W/D} instruction writes a new value to memory from the general-purpose register rk. The AMADD[_DB].{W/D} instruction writes to memory.

rd, rk, rj

ammax.d

2.2.7.1AM{SWAP/ADD/AND/OR/XOR/MAX/MIN}[_DB].{W/D}, AM{MAX/MIN}[_DB].{WU/DU}

The memory address accessed by AM* atomic memory access instructions is the value of the general-purpose register rj. The memory address accessed by AM* atomic memory access instructions always requires natural alignment.

rd, rk, rj

Each word of data retrieved from memory is written to the general-purpose register rd after sign extension.

44

Machine Translated by Google

45

The AM*_DB.W[U]/D[U] instruction, in addition to performing the aforementioned atomic operation sequence, also implements data barrier functionality. That is, when such atoms...

rd, rk, rj

The value is compared with the value in the general-purpose register rk, and the result is the maximum value obtained after a signed number comparison. The AMMIN[_DB].{W/D} instruction writes the value to memory.

Command format: amswap.b

Other memory access and write operations did not trigger any exceptions, and no other processor cores or cache coherence modules were present where the instruction was accessing the target memory.

amadd.b amadd_db.b

The result of a bitwise logical OR operation between the old value and the value in the general-purpose register rk. The new value written to memory by the AMXOR[_DB].{W/D} instruction comes from the old value in memory.

rd, and simultaneously swap or add the old value in memory with the byte/half-word value of bits rk[7:0]/[15:0] in the general-purpose register, then...

The new value is the minimum value obtained by comparing the old value in memory with the value in the general-purpose register rk as a signed number.

AM* atomic memory access instructions will not be triggered unless the register numbers rd and rj are the same.

rd, rk, rj

LoongArch V1.1 Commands

rd, rk, rj

AM{SWAP/ADD}[_DB].{B/H} retrieves the old byte/half-word value at the specified memory address, performs sign extension, and writes it to a general-purpose register.

The memory access address of the AM{SWAP/ADD}[_DB].H atomic memory access instruction always requires natural alignment; otherwise, it will trigger an error.

amswap_db.h

The AMMAX[_DB].{WU/DU} instruction writes a new value to memory by treating the old value in memory and the value in the general-purpose register rk as an unsigned number and performing a large operation.

Only after such atomic memory access instructions have been executed can all memory access operations following those instructions in the same processor core be allowed.

amswap_db.b

During the period from when the data from the memory access read operation is returned to when the global effect of the memory access write operation is visible, the processor executing the instruction neither executes nor performs any other operations.

amswap.h

Before such an atomic memory access instruction is allowed to execute, all memory access operations preceding that atomic memory access instruction in the same processor core must have been completed;

The value is the result of a bitwise XOR operation between the value in the general-purpose register rk and the value in the register rk. The new value written to memory by the AMMAX[_DB].{W/D} instruction is the old value in memory.

The maximum value obtained after a small comparison. The new value written to memory by the AMMIN[_DB].{WU/DU} instruction is the old value in memory compared with the value in the general-purpose register rk.

If the register numbers rd and rk are the same in an AM* atomic memory access instruction, the execution result is uncertain. Please ensure that the software avoids this situation.

rd, rk, rj

Before a memory access instruction is allowed to execute, all memory access operations preceding that atomic memory access instruction in the same processor core must have been completed; only then can execution proceed.

rd, rk, rj

rd, rk, rj

Dragon Architecture Reference Manual Volume 1: Infrastructure

The result of a bitwise logical AND operation between the old value in memory and the value in the general-purpose register rk. The new value written to memory by the AMOR[_DB].{W/D} instruction comes from memory.

Once such an atomic memory access instruction has been executed, all memory access operations following that atomic memory access instruction in the same processor core are allowed to be executed.

amadd_db.h

The obtained byte/half-word result is written back to the specified memory address. The entire "read-modify-write" process is atomic, meaning that the instruction executes...

The memory address accessed by the AM{SWAP/ADD}[_DB].{B/H} atomic memory access instruction is the value of the general-purpose register rj.

2.2.7.2AM{SWAP/ADD}[_DB].{B/H}

The effects of write operations on cache lines are globally visible.

amadd.h

Xu was instructed to carry out the task.

The main difference between a "read-modify-write" operation sequence for a memory unit lies in whether the accessed data is a byte/half-word or a word/double word.

rd, rk, rj

Non-aligned exceptions.

AM{SWAP/ADD}[_DB].{B/H} and AM{SWAP/ADD}[_DB].{W/D} are both atomic memory access instructions, capable of being completed atomically.

rd, rk, rj

The AM{SWAP/ADD}_DB.{B/H} instruction, in addition to performing the aforementioned atomic operation sequence, also implements data barrier functionality. That is, when...

The value is the minimum value obtained after comparing the size of unsigned numbers.

Machine Translated by Google

46

LoongArch V1.1 Commands

This instruction fetches a word/double word of data from a specified memory address, sign-extends it, and writes it to the general-purpose register rd. The corresponding SC.{W/D} instruction then operates accordingly.

amcas_db.d

The LL-SC instruction pair is executed repeatedly until SC completes successfully. To construct this loop, the SC.{W/D} instruction will flag whether its execution was successful or not.

2.2.7.3AMCAS[_DB].{B/H/W/D}

The values are compared, and only if the comparison results are equal will the values stored in positions [7:0]/[15:0]/[31:0]/[63:0] in the general-purpose register rk be updated (the new values).

Data of the same width accesses the same memory address. The mechanism for maintaining the atomicity of memory access sequence is that LL.{W/D} records the accesses during execution.

ll.d rd, rj, si14

sc.w

sc.d

The effects of write operations on cache lines are globally visible.

rd, rk, rj

rd, rk, rj

Executing other memory access and write operations did not trigger any exceptions, and no other processor cores or cache coherence modules were involved in the instruction's access to the object.

The address is set to a flag (LLbit is set to 1). When the SC.{W/D} instruction is executed, it checks LLbit, and a write operation is only actually performed when LLbit is 1.

Command format: amcas.b

rd, rk, rj

The byte/half-word/word/double-word value retrieved from memory (old memory value) and the value stored at positions [7:0]/[15:0]/[31:0]/[63:0] in the general-purpose register rd (pre-value)

rd, rj, si14

amcas_db.w

rd, rk, rj

rd, rk, rj

This is the current situation.

During the period from the return of data from a memory access read operation to the global visibility of the memory access write operation's execution effect, the processor executing the instruction neither has...

Command format: ll.w

rd, rj, si14

rd, rj, si14

In the AM{SWAP/ADD}[_DB].{B/H} instruction, if the register numbers of rd and rj are the same, then there are no exceptions to the triggered instruction.

Actions must be specified; otherwise, no action is required. When software needs to successfully complete an atomic "read-modify-write" memory access sequence, a loop needs to be constructed.

rd, rk, rj amcas_db.b

amcas_db.h

During the above operations, if a write operation occurs because the old value in memory is equal to the expected value, then the entire "read-modify-write" process is the original...

The AMCAS_DB.{B/H/W/D} instruction, in addition to performing the aforementioned atomic operation sequence, also implements data barrier functionality. That is, when this type of instruction...

2.2.7.4LL.{W/D}, SC.{W/D}

rd, rk, rj

In the instruction AM{SWAP/ADD}[_DB].{B/H}, if the register numbers of rd and rk are the same, the execution result is uncertain. Please avoid this in your software.

rd, rk, rj

The AMCAS[_DB].{B/H/W/D} instruction performs a byte/half-word/word/double-word Compare-and-Swap operation on a specified memory address.

amcas.w

Before an atomic memory access instruction is allowed to execute, all memory access operations preceding that instruction within the same processor core must have been completed; simultaneously only

If this condition is met, the non-alignment exception will be triggered.

OK.

Write the value to the same memory location. Regardless of whether the comparison results are equal, the old value in memory is sign-extended and written to the general-purpose register rd.

amcas.d

Dragon Architecture Reference Manual Volume 1: Infrastructure

amcas.h

The memory access address of the AMCAS[_DB].{H/W/D} instruction is the value of the general-purpose register rj, and the memory access address always requires natural alignment.

Only after such atomic memory access instructions have been executed can all subsequent memory access operations within the same processor core be allowed to execute.

The two pairs of instructions, LL.W and SC.W, and LL.D and SC.D, are used to implement the "read-modify-write" memory access sequence of atoms. LL.{W/D} refers to...

Machine Translated by Google

47

ÿ The ERTN instruction was executed and the KLO bit in CSR.LLBCTL was not equal to 1 at the time of execution;

ÿ Other processor cores or the cache coherent master complete a store operation on the cache line containing the address corresponding to that LLbit.

If the storage access attribute of the accessed address is not consistently cacheable (CC), then the execution result is unpredictable.

Returned in register rd.

rd, rj

During the execution of a paired LL-SC, the following events will cause the LLbit to be cleared to 0:

LL.ACQ.{W/D} is an LL.{W/D} instruction with added read-acquire semantics, meaning it will only acquire the data after LL.ACQ.{W/D} has finished executing (effective).

It is important to note that when calculating the memory address, the above instruction requires shifting si14 two bits to the left before adding it to the base address.

SC.Q writes the 128-bit data {GR[rk][63:0], GR[rd][63:0]} obtained by concatenating the general-purpose registers rk and rd into memory, and its memory access...

A word/double word value is written to a specified memory address. Whether or not a memory is written depends on LLbit. A write operation is only performed when LLbit is 1; otherwise, no write is performed.

ll.acq.d

rd, rk, rj

The SC.Q instruction writes a flag indicating whether its execution was successful (which can be simply understood as the LLbit value seen during the execution of the SC.Q instruction) to the general-purpose key.

2.2.7.5SC.Q

If the storage access attribute of the LL-SC instruction is not consistently cacheable (CC), then the execution result is unpredictable.

The memory address accessed by the SC.Q instruction always requires 16-byte alignment; otherwise, an unaligned exception will be triggered.

The memory address accessed by the LL-SC instruction always requires natural alignment; if this condition is not met, an unaligned exception will be triggered.

The LL.ACQ.{W/D} instruction retrieves a word/double word of data from a specified memory address, sign-extends it, writes it to the general-purpose register rd, and simultaneously records...

However, the immediate address offset values presented in the assembly representation of these instructions are still in bytes, that is, their value is si14<<2 in the instruction code.

Command format: SC.Q

2.2.7.6LL.ACQ.{W/D}, SC.REL.{W/D}

The write-release semantics of the SC.{W/D} instruction mean that it will only wait until all memory access operations prior to SC.REL.{W/D} have completed (the effect is global).

sc.rel.d

The value (which can also be simply understood as the LLbit value seen when the SC instruction is executed) is written into the general-purpose register rd and returned.

rd, rj

LoongArch V1.1 Commands

The SC.Q instruction is similar to the SC.D instruction and is used in conjunction with LL.D to implement an atomic "read-modify-write" memory access sequence for 128-bit data.

Command format: ll.acq.w rd, rj

The next access address is set and the previous flag is set (LLbit is set to 1). The SC.REL.{W/D} instruction conditionally moves the values in [31:0]/[63:0] of the general-purpose register rd.

Regardless of whether memory is written to, the SC.REL instruction will display a flag indicating whether its execution was successful (which can also be simply understood as what the SC.REL instruction sees during execution).

Once globally visible (i.e., after which all subsequent memory access operations can begin to execute, producing the effect of global visibility); SC.REL.{W/D} is added

Only after it is visible can SC.REL.{W/D} begin to execute (producing a globally visible effect).

LoongArch V1.1 Commands

sc.rel.w rd, rj

Dragon Architecture Reference Manual Volume 1: Infrastructure

The address is the value of the general-purpose register rj. When the SC.Q instruction is executed, it checks the LLbit and only performs a write operation if the LLbit is 1; otherwise, it does not write.

operate.

vaddr = GR[rj] + SignExtend({si14, 2'b0}, GRLEN)

Machine Translated by Google

2.2.8 Barrier Commands

ÿ 0x1~0x1f: Hint values within this range. Except for the reserved values 0xf and 0x1f, the meaning of each bit is defined as follows:

After this is completed, the memory access operation determined by the value of hint[1:0] following the dbar instruction can begin to execute.

hint

If the LL.ACQ and SC.REL instructions do not have a consistent cacheable (CC) memory access attribute for the accessed address, then the execution result will be...

Other I/O master; DBAR post-operation "start execution" means that the action that can be seen by other observers has begun.

ÿ 0x700: Ensures that the globally visible execution effect of load operations at the same address before and after dbar 0x700 conforms to the order in the program.

The execution effect of the memory access operation determined by the values of hint[1:0] following the dbar instruction is globally visible and must not be performed earlier than [the specified value].

At this point, the operation is only considered complete if all memory access operations defined by the values of hint[3:2] preceding the dbar instruction have been fully executed.

The DBAR instruction is used to establish a barrier between load/store memory access operations. Its 15-bit immediate hint indicates the nature of the barrier.

Bit0 being 1 indicates that all store operations following this dbar instruction are not bound by this barrier.

2.2.8.1DBAR

Bit2 being 1 indicates that all store operations prior to this dbar instruction will not affect the execution of this barrier.

Dragon Architecture Reference Manual Volume 1: Infrastructure

The LLbit value is written to the general-purpose register rd and returned.

Command format: dbar

Bit1 being 1 indicates that all load operations following this dbar instruction are not bound by this barrier.

ÿ Other processor cores or the cache coherent master complete a store operation on the cache line containing the address corresponding to that LLbit.

The storage operation can only begin execution after the data is stored. For the DBAR pre-operation, "completely completed" means that the retrieved result is written to the destination register for the load operation.

A value of 0 indicates that both cached and uncached load/store memory accesses before and after the dbar instruction are related to this barrier.

Bit 4 being 1 indicates that only cached load/store memory access operations before and after this dbar instruction are related to this barrier.

Bit3 being 1 indicates that all load operations prior to this dbar instruction will not affect the execution of this barrier.

Only after the bottom layer has finished executing can the "DBAR 0" instruction begin execution; and only after "DBAR 0" has completed execution can all subsequent load/store accesses proceed.

Synchronization objects and synchronization levels.

During the execution of a paired LL-SC, the following events will cause the LLbit to be cleared to 0:

In memory, a store operation means that the value written to it can be seen by all other observers in the system, which typically include the processor core and...

uncertain.

operate.

ÿ The ERTN instruction was executed and the KLO bit in CSR.LLBCTL was not equal to 1 at the time of execution;

The memory access addresses of the LL.ACQ and SC.REL instructions always require natural alignment; if this condition is not met, an unaligned exception will be triggered.

The execution effect of all memory access operations determined by the values of hint[3:2] before the dbar instruction is globally visible.

A hint value of 0 is mandatory and indicates a fully functional synchronization barrier. This is only possible after all previous load/store memory accesses have been completed.

Apart from the mandatory 0-value hint, the specific meanings of the following non-zero-value hints are defined:

48

Machine Translated by Google

2.2.9 CRC Check Command

Now, the desired execution effect must be achieved with hint=0.

hint

rd, rj, rk

crc.whw

The CRC checksum, after sign extension, is written to the general-purpose register rd. The difference lies in that CRC.W.{B/H/W/D}.W uses multiple terms from IEEE 802.3.

crc.www

2.2.9.1CRC[C].W.{B/H/W/D}.W

The formula (polynomial value 0xEDB88320), CRCC.W.{B/H/W/D}.W uses Castagnoli polynomial (polynomial value 0x82F63B78).

rd, rj, rk

The CRC instructions defined in this manual only support the "LSB-first" (little-endian) standard, which means transmitting the least significant bit (little-endian) of the data first.

crcc.wbw

crcc.w.d.w

This indicates the synchronization target and the degree of synchronization for the barrier.

rd, rj, rk

Command format: ibar

rd, rj, rk

Dragon Architecture Reference Manual Volume 1: Infrastructure

Undefined hint values are reserved and will be executed as if hint=0. Any non-reserved hints will be ignored if they are not executed according to the above definitions.

rd, rj, rk

crcc.www

The checksum and the message stored in bits [7:0]/[15:0]/[31:0]/[63:0] in the general-purpose register rj are used to obtain a new 32-bit checksum according to the CRC-32 checksum generation algorithm.

Command format: crc.wbw

The IBAR instruction is used to synchronize the internal store and fetch operations of a single processor core. Its immediate hint is used to specify the instruction.

rd, rj, rk

The least significant bit of the data is mapped to the coefficient of the most significant term of the message polynomial.

The results of all previous store operations.

crc.wdw

crcc.whw

CRC[C].W.{B/H/W/D}.W is used for CRC-32 checksum calculation, which calculates the 32-bit accumulated CRC checksum stored in the general-purpose register rk.

rd, rj, rk

2.2.8.2IBAR

rd, rj, rk

A hint value of 0 is required by default. It ensures that any instruction fetch following the "IBAR 0" instruction will be able to observe the "IBAR 0" instruction.

CRC.WHW:

GR[rd] = SignExtend(chksum, GRLEN)

chksum = CRC32(GR[rk][31:0], GR[rj][31:0], 32, 0xEDB88320)

chksum = CRC32(GR[rk][31:0], GR[rj][7:0], 8, 0xEDB88320)

chksum = CRC32(GR[rk][31:0], GR[rj][15:0], 16, 0xEDB88320)

GR[rd] = SignExtend(chksum, GRLEN)

CRC.WWW:

GR[rd] = SignExtend(chksum, GRLEN)

CRC.WBW:

49

Machine Translated by Google

2.2.10 Other Miscellaneous Instructions

code Command format: syscall

Dragon Architecture Reference Manual Volume 1: Infrastructure

2.2.10.1 SYSCALL

Executing the SYSCALL instruction will immediately and unconditionally trigger a system call exception.

The information carried in the code field of the instruction code can be used by exception handling routines as parameters passed to them.

chksum = CRC32(GR[rk][31:0], GR[rj][31:0], 32, 0x82F63B78)

chksum = CRC32(GR[rk][31:0], GR[rj][63:0], 64, 0xEDB88320)

chksum = CRC32(GR[rk][31:0], GR[rj][15:0], 16, 0x82F63B78)

GR[rd] = SignExtend(chksum, GRLEN)

chksum = CRC32(GR[rk][31:0], GR[rj][7:0], 8, 0x82F63B78)

CRCC.W.D.W:

CRCC.WWW:

GR[rd] = SignExtend(chksum, GRLEN)

GR[rd] = SignExtend(chksum, GRLEN)

chksum = CRC32(GR[rk][31:0], GR[rj][63:0], 64, 0x82F63B78)

CRCC.WBW:

CRC.WDW:

GR[rd] = SignExtend(chksum, GRLEN)

CRCC.WHW:

GR[rd] = SignExtend(chksum, GRLEN)

50

Machine Translated by Google

51

Command format: break

Command format: asrtle.d

The ASRTGT.D instruction triggers an exception if the value in general-purpose register rj is less than or equal to the value in general-purpose register rk.

When using the CPUCFG instruction, the source operand register rj stores the number of the configuration information word to be accessed. After the instruction is executed, the configuration information word read is...

rj, rk

Dragon Architecture Reference Manual Volume 1: Infrastructure

rd, rj

The character ÿ (xÿ).

The RDTIME{L/H}.W instruction is defined to allow access to the 64-bit Counter on a 32-bit processor.

The Counter is set to 0 after reset, and then increments by 1 every counting clock cycle. When it reaches all 1s, it automatically wraps back to 0 and continues incrementing. Meanwhile, each...

rd, rj

Executing the BREAK instruction will immediately and unconditionally trigger a breakpoint exception.

The RDTIME{L/H}.W and RDTIME.D instructions are used to read information from a constant frequency timer and write the Stable Counter value to a general-purpose register.

Result register.

2.2.10.3 ASRT{LE/GT}.D

rd, rj

rdtime.d

The bit remains unchanged regardless of how the processor core's clock frequency changes.

2.2.10.2 BREAK

Check for exceptions. For the ASRTLE.D instruction, an exception is triggered if the value in general-purpose register rj is greater than the value in general-purpose register rk; for

rj, rk

The configuration information word is written into the general-purpose register rd. Each configuration information word is 32 bits, and under the LA64 architecture, it is sign-extended before being written to the end.

Command format: cpucfg

The information carried in the code field of the instruction code can be used by exception handling routines as parameters passed to them.

The implementation details of these instruction set features are recorded in a series of configuration information words. Each execution of the CPUCFG instruction can read one configuration word.

asrtgt.d

Command format: rdtimel.w

The Loongson instruction set defines a constant-frequency timer, the main body of which is a 64-bit counter called the Stable Counter.

A 64-bit Counter value. On a 64-bit processor, the RDTIME{L/H}.W instruction reads a 32-bit value, sign-extended, and writes it to a general-purpose register.

rdtimeh.w

In the ̀rd` instruction, the Counter ID information is written to the general-purpose register ̀rj`. The difference between the three instructions lies in the different Stable

Counter information they read: ̀RDTIMEL.W` reads bits [31:0] of the Counter, ̀RDTIMEH.W` reads bits [63:32] of the Counter, and ̀RDTIME.D` reads the entire Counter.

The CPUCFG instruction is used by software to dynamically identify which features of the Dragon architecture are implemented in the running processor during execution.

The values in general-purpose register rj and general-purpose register rk are compared as signed numbers. If the comparison condition is not met, an address boundary event is triggered.

code

rd, rj

2.2.10.5 CPUCFG

2.2.10.4 RDTIME{L/H}.W, RDTIME.D

Each timer has a globally unique, software-configurable identifier called a Counter ID. A constant-frequency timer is characterized by its timing frequency changing over time.

Machine Translated by Google

meaning

The configuration information word contains a series of configuration bits (fields), recorded in the format CPUCFG.<configuration word size>.<configuration information mnemonic name>[bits]

[Subscript], where the bit subscript for a single-bit configuration bit is bitXX, representing the XXth bit of the configuration word; the bit subscript for a multi-bit configuration field is...

LA32 indicates that the mnemonic name for this configuration information field is LA32, and bit 0 indicates that the LA32 field is located at bit 0 of the configuration word. (Configuration field #1)

The PALEN field, which records the number of physical address bits supported by bits 11 to 4 in the set word, is denoted as CPUCFG.1.PALEN[bit11:4].

Value. Undefined fields within a defined configuration word can be read back with arbitrary values when CPUCFG is executed; the software should not interpret them.

bitXX:YY represents the consecutive (XX-YY+1) bits from bit XX to bit YY of the configuration word. For example, bit 0 in configuration word 1 is used to represent...

The configuration information accessible by the CPUCFG instruction in the Dragon architecture is listed in Table 2-2. Accessing an undefined configuration word using CPUCFG will read back all zeros.

Dragon Architecture Reference Manual Volume 1: Infrastructure

Font size subscript mnemonic name

Whether the LA32 architecture is implemented is recorded as CPUCFG.1.LA32[bit0], where 1 indicates that the word size of the configuration information word is 1.

0x2

20

A value of 1 indicates support for double-precision floating-point numbers.

COMPLEX set to 1 indicates support for complex vector operation instructions.

6

0

MSG_INT being 1 indicates support for external interrupts via message interrupt mode.

5:3

Table 2-2 CPUCFG Access Configuration Information List

A value of 1 indicates support for 128-bit vector extension.

A value of 1 indicates support for unaligned memory access.

26

2

52

A value of 1 indicates support for basic floating-point instructions.

FP_ver The version number of the floating-point arithmetic standard. 1 is the initial version number, indicating compatibility with the IEEE 754-2008 standard.

FP_SP

PGMMU

LSX

A value of 1 indicates support for the IOCSR instruction.

31:0

11:4

22

13:11

24

A value of 1 for LBT_X86 indicates support for the x86 binary translation extension.

21

A value of 1 indicates support for single-precision floating-point numbers.

17:15

18

FP_DP

14

25

ADJ

3

UAL

Processor Identifier0x0

A value of 1 indicates support for RPLV page attributes.

9

The number of virtual address bits supported by VALEN (VALEN value minus 1)

CRC

FP

LVZ

IOCSR

0x1

A value of 1 indicates that the MMU supports page mapping mode.

The number of supported physical address bits, PALEN value minus 1.

10

LLFTP_ver is the version number of the constant frequency timer and the timer itself. 1 indicates the initial version.

23

19:12

EP

7

2

2'b10 indicates the implementation of the LA64 architecture. 2'b11 is reserved.

A value of 1 indicates support for virtualization extensions.

RI

A value of 1 indicates support for huge page attributes.

CRYPTO

LVZ_ver is the version number of the virtualization hardware acceleration specification. 1 is the initial version number.

LLFTP

A value of 1 indicates support for the "read forbidden" page attribute.

1

8

A value of 1 indicates support for CRC check commands.

HP

POLES

A value of 1 indicates support for 256-bit vector extension.

A value of 1 indicates support for encryption/decryption vector commands.

1:0

2'b00 indicates the implementation of the LA32 simplified architecture; 2'b01 indicates the implementation of the LA32 architecture.

ARCH

A value of 1 indicates support for the "Execution Protection" page attribute.

RPLV

LASX

A value of 1 indicates support for constant frequency timers and timers.

Machine Translated by Google

Font size subscript mnemonic name

Dragon Architecture Reference Manual Volume 1: Infrastructure

meaning

A value of 1 indicates support for LL automatic bar display functionality.

27

The maximum number of directory levels supported by the page walk command.10:8

CCDMA

SFB

22

29

13:8

ITLBHMC

CC_FREQ is the crystal frequency corresponding to the constant frequency timer and the clock used by the timer.

A value of 1 indicates support for the performance counter.

FRECIPE

0

LSPW

11

A value of 1 indicates support for the LL instruction to fetch exclusive blocks.

If 256-bit vector extension is also supported, then XVFRECIPE.{S/D} and XVFRSQRTE.{S/D} are supported.

A value of 1 indicates support for Store Fill Buffer (SFB).

3:1

0x10

21

These 4 instructions.

A value of 1 indicates that the hardware maintains data consistency between the ICache and DCache within the same processor core.

UCACC

14

1

0x3

A value of 1 indicates support for user-mode read performance counters.

23

0

CC_DIV: Constant frequency timer and the frequency division factor corresponding to the clock used by the timer.

A value of 1 for DBAR_hints indicates that the non-zero value of DBAR is implemented according to the manual's recommended meaning.

3

LAMCAS

A value of 1 indicates support for AM* atomic memory access instructions.

SCQ

A value of 1 for SPW_HP_HF indicates that the page walk instruction will halve the page and fill it into the TLB when it encounters a large page.

A value of 1 for LD_SEQ_SA indicates that the hardware has enabled the function of ensuring sequential execution of load operations at the same address.

A L1 IU_Present value of 1 indicates the presence of a Level 1 instruction cache or a Level 1 unified cache.

0x5

53

A value of 1 indicates support for the four instructions FRECIPE.{S/D}, FRSQRTE.{S/D}, and if all of them are supported...

A value of 1 for LLACQ_SCREL indicates support for the four commands: LLACQ.{W/D}, SCREL.{W/D}, etc.

The 128-bit vector extension supports the four instructions VFRECIPE.{S/D}, VFRSQRTE.{S/D}, and so on.

PMBITS

5

19

ICHMC

16:13

A value of 1 indicates support for ucacc Win

LAM_BH

12

0x4

RVA

20

0x6

CC_MUL is the frequency multiplication factor for a constant frequency timer and the clock used by the timer.

2

A value of 1 indicates support for hardware cache coherent DMA.

4

RVAMAX-1 is the maximum configurable virtual address shortening bit width - 1.

PMVER

Performance monitoring counter bit width -1

LAM

A value of 1 indicates support for the SC.Q command.

31:0

26

A value of 1 indicates support for hardware page table walker.

17

UPM

A value of 1 indicates support for the 8 instructions AMCAS[_DB].{B/H/W/D}.

A value of 1 indicates support for software page table traversal instructions.

15:0

SPW_LVL

A value of 1 indicates support for the software configuration feature to shorten the virtual address range.

A value of 1 indicates support for the 8 instructions AM{SWAP/ADD}[_DB].{B/H}.

LLDBAR

A value of 1 for LBT_ARM indicates support for the ARM binary translation extension.

A value of 1 for LBT_MIPS indicates support for the MIPS binary translation extension.

PMNUM

In the performance monitor, the architecture defines the version number of the event, with 1 being the initial version.

A value of 1 indicates support for the random delay function after SC.

24

DIV32

28

6

7

A value of 1 indicates that the hardware maintains consistency between the ITLB and TLB.

PMP

A value of 1 indicates that on a 64-bit machine, the DIV.W[U] and MOD.W[U] instructions rely solely on the lower 32 bits of the input register.

7:4

30

LLEXC

25

0

SCDLY

31:16

Data calculation

Number of performance monitors - 1

HPTW

Machine Translated by Google

meaning

Dragon Architecture Reference Manual Volume 1: Infrastructure

Font size subscript mnemonic name

Linesize-log2

23:16

A value of 1 for L3 IU Unify indicates that the cache shown by L3 IU_Present is a unified cache.

log2 (number of cache lines per path) (Cache corresponding to L3 IU Present in configuration word 10)

A L3 D Present value of 1 indicates the existence of a three-level data cache.

5

A L3 D Private value of 1 indicates that the Level 3 data cache is private to each core.

A value of 1 for L2 IU Private indicates that the cache shown by L2 IU_Present is private to each core.

Linesize-log2

0x14

4

Number of paths -1

A L3 IU Present value of 1 indicates the presence of a Level 3 instruction cache or a Level 3 unified cache.

2

23:16

30:24

30:24

A L1 D Present value of 1 indicates the existence of a Level 1 data cache.

15:0

1

A value of 1 for L3 IU Inclusive indicates that the cache represented by L3 IU_Present is inclusive of lower levels (L1 and L2).

Way-1

6

13

Index-log2

0x12

(The cache corresponding to L1 D Present in configuration word 10)

log2(number of cache lines per path) (Cache corresponding to L1 IU_Present in configuration word 10)

0x13

A value of 1 for L3 D Inclusive indicates that the Level 3 data cache has an inclusion relationship with lower levels (L1 and L2).

(The cache corresponding to L3 IU Present in configuration word 10)

A value of 1 for L3 IU Private indicates that the cache shown by L3 IU_Present is private to each core.

54

7

9

10

Way-1

0x11

11

Number of paths -1

log2 (number of cache lines per path) (Cache corresponding to L1 D Present in configuration word 10)

Linesize-log2

(The cache corresponding to L1 IU_Present in configuration word 10)

(The cache corresponding to L1 IU_Present in configuration word 10)

(The cache corresponding to L2 IU Present in configuration word 10)

A value of 1 for L1 IU Unify indicates that the cache shown by L1 IU_Present is a unified cache.

23:16 Index-log2

14

log2(Cache line bytes)

log2(Cache line bytes)

12

Index-log2

log2(Cache line bytes)30:24

15

8

Index-log2

Linesize-log2

Number of paths -1

A L2 D Present value of 1 indicates the existence of a second-level data cache.

A L2 IU Present value of 1 indicates the presence of a Level 2 instruction cache or a Level 2 unified cache.

Number of paths -1

A value of 1 for L2 IU Inclusive indicates that the cache shown by L2 IU_Present is inclusive of the lower-level (L1) cache.

log2 (number of cache lines per path) (Cache corresponding to L2 IU Present in configuration word 10)

16

Way-1

15:0

(The cache corresponding to L1 D Present in configuration word 10)

log2(Cache line bytes)

3

(The cache corresponding to L2 IU Present in configuration word 10)

A value of 1 for L2 D Inclusive indicates that the second-level data cache has an inclusion relationship with the lower level (L1).

15:0

30:24

A L2 D Private value of 1 indicates that the L2 data cache is private to each core.

(The cache corresponding to L3 IU Present in configuration word 10)

23:16

Way-1

15:0

A value of 1 for L2 IU Unify indicates that the cache shown by L2 IU_Present is a unified cache.

Machine Translated by Google

3.1.1 Floating-point data type

3 Basic Floating-Point Instructions

The basic floating-point instruction programming model described in this section only covers the aspects that application software developers need to focus on. Software personnel using...

IEEE 754-2008 standard.

Programming with basic floating-point instructions builds upon the basic integer instruction programming model and further delves into the content discussed in this section.

3.1.1.1 Single-precision floating-point numbers

Floating-point branch instructions BCEQZ, BCNEZ

Floating-point ordinary memory access instructions FLD.S, FST.S, FLDX.S, FSTX.S

Floating-point transfer instructions

Floating-point data types include single-precision floating-point numbers and double-precision floating-point numbers, both of which conform to the definitions in the IEEE 754-2008 standard specification.

Floating-point instructions. However, for some cost-sensitive embedded applications with extremely low floating-point processing performance requirements, the architectural specifications also allow for...

The 20 instructions FLD{GT/LE}.{S/D} and FST{GT/LE}.{S/D} only need to be implemented under the LA64 architecture.

The floating-point values represented by the different values of the S, Exponent, and Fraction fields are shown in Table 3-2:

Dragon Architecture Reference Manual Volume 1: Infrastructure

Floating-point arithmetic instructions

Single-precision floating-point numbers are 32 bits wide and are organized in the following format:

Whether the basic floating-point instructions include instructions for operating on double-precision floating-point numbers and double-word integers is independent of whether the architecture is LA32 or LA64. However...

MOVGR2FR.DÿMOVFR2GR.DÿFSCALEB.S/DÿFLOGB.S/DÿFRINT.S/DÿFRECIPE.S/DÿFRSQRTE.S/Dÿ

This chapter introduces the floating-point instructions in the non-privileged subset of the Dragon architecture's foundation. The functional definitions of the basic floating-point instructions in the Dragon architecture follow...

Floating-point comparison instructions

Floating-point conversion instructions

Implement basic floating-point instructions, or only implement the instructions within the basic floating-point instruction set that operate on single-precision floating-point numbers and word integers (see Table 3-1).

Basic floating-point instructions cannot be implemented independently of basic integer instructions. Generally, we recommend implementing both basic integer instructions and basic floating-point instructions.

Exponent Fraction

55

S

FCMP.cond.S

FMAXA.S, FMINA.S, FABS.S, FNEG.S, FSQRT.S, FRECIP.S, FRSQRT.S, FCOPYSIGN.S, FCLASS.S

Table 3-1 Basic Floating-Point Instructions for Single-Precision Floating-Point Numbers and Word Integers

FADD.S, FSUB.S, FMUL.S, FDIV.S, FMADD.S, FMSUB.S, FNMADD.S, FNMSUB.S, FMAX.S, FMIN.S,

FFINT.SW, FTINT.WS, FTINTRM.WS, FTINTRP.WS, FTINTRZ.WS, FTINTRNE.WS,

MOVCF2FR, MOVGR2CF, MOVCF2GR

FMOV.S, FSEL, MOVGR2FR.W, MOVFR2GR.S, MOVGR2FCSR, MOVFCSR2GR, MOVFR2CF,

23 22 31 30 0

3.1 Basic Floating-Point Instruction Programming Model

Machine Translated by Google

1

+0

0

1

The denormalized number has a value of +2 -1022 × (0.Fraction).

=0

1. Any value

any value

any value 1

=0

Signaling Not a Number (SNaN)

0 Any value

Positive infinity (+ÿ)

Exponent

0x7FF

56

0

Quiet Not a Number (QNaN)

1. Any value

any value 1

Normalization number, with a value of -2 (Exponent - 1023) × (1.Fraction)

[1, 0xFE]

Fraction

0 Any value

0

-0

=0

The denormalized number has a value of -2 -1022 × (0.Fraction).

0

Normalization number, with a value of +2 (Exponent - 1023) × (1.Fraction)

0 Any value

0

!=0

Normalization number, with a value of -2 (Exponent-127)×(1.Fraction)

0

Positive infinity (+ÿ)

=0

0xFF

0

0

Negative infinity (-ÿ)

0

!=0

Negative infinity (-ÿ)

Any value 0

Table 3-2 Methods for Calculating Single-Precision Floating-Point Numbers

[1, 0x7FE] Any value

1. Any value

-0

0 Any value

0

1

0xFF

1 0

0x7FF

!=0

S

The denormalized number has a value of +2 -126 × (0.Fraction).

Any value 0

0

+0

0

Quiet Not a Number (QNaN)

!=0

0

The denormalized number has a value of -2 -126 × (0.Fraction).

0

Table 3-3 Methods for Calculating Double-Precision Floating-Point Numbers

1. Any value

Signaling Not a Number (SNaN)

1

Normalization number, with a value of +2 (Exponent - 127) × (1.Fraction)

0

There are two situations.

S

The non-number result of 1 generated by floating-point instructions either comes from NaN propagation or is generated directly. The situation requiring NaN propagation is...

3.1.1.3 The NOT result produced by the instruction

Fraction

Case 1: When an instruction generates an Invalid Operation floating-point exception due to a source operand containing SNaN, but the Invalid Operation floating-point exception...

Exponent

In

bit[22]

Double-precision floating-point numbers are 64 bits wide and are organized in the following format:

bit[51]

For the specific meanings of ±ÿ, SNaN, and QNaN, please refer to the IEEE 754-2008 standard specification.

Fraction

Exponent

Dragon Architecture Reference Manual Volume 1: Infrastructure

S In

For the specific meanings of ±ÿ, SNaN, and QNaN, please refer to the IEEE 754-2008 standard specification.

The floating-point values represented by the different values of the S, Exponent, and Fraction fields are shown in Table 3-3:

3.1.1.2 Double-precision floating-point numbers

0 63 62 52 51

At this point, the only non-number can be QNaN.

Machine Translated by Google

57

3.1.3.1 Floating-point registers

Any one of the FRs.

If the source operands are fa, fj, and fk, then fa has higher precedence than fj, and fj has higher precedence than fk.

The instructions and floating-point registers are orthogonal, meaning that from an architectural perspective, any floating-point register operand in these instructions can use 32-bit memory.

There are 32 FRs, denoted as f0 to f31, each of which can be read and written. This applies only when implementing floating-point instructions that operate on single-precision floating-point numbers and word integers.

In this case, the method for determining the priority of the source operand is the same as in case one above.

FCSRÿÿ

ÿ If the result is the same width as the source operand, then the highest bit of the SNaN mantissa will be set to 1, while the remaining bits will remain unchanged.

(Abbreviated as L, length 64b).

Except for the two cases mentioned above, all other cases requiring a QNaN result will directly set the default QNaN value. The default single...

The value of precision QNaN is 0x7FC00000, and the default value of double precision QNaN is 0x7FF8000000000000.

Dragon Architecture Reference Manual Volume 1: Infrastructure

If point exceptions are not enabled, a QNaN result will be generated. The value of this QNaN is the highest priority SNaN among the source operands.

Floating-point instruction programming involves registers such as the floating-point register (FR) and the condition flag register.

The rules for generating SNaN as QNaN are as follows:

The priority rule for source operands is: if there are two source operands fj and fk, then fj has higher priority than fk; if there are three...

ÿ If the result is wider than the source operand, then pad the least significant bit of the mantissa with 0s and finally set the most significant bit of the mantissa to 1.

At that time, the bit width of FR is 32 bits. Normally, the bit width of FR is 64 bits, regardless of whether it's LA32 or LA64 architecture. Basic floating-point number.

It is then propagated to the corresponding NaN.

ÿ If the result is narrower than the source operand, then retain the high-order bits of the mantissa, discard the low-order bits that exceed the range, and finally set the highest bit of the mantissa to 1.

Case 2: If the source operand does not contain SNaN but does contain QNaN, the QNaN with the highest priority is selected as the result of this instruction.

Both single-character and long-character data types use binary two's complement encoding.

Some floating-point instructions (such as floating-point conversion instructions) also operate on fixed-point data, including words (abbreviated as W, length 32 bits) and long words (...).

(Condition Flag Register, abbreviated as CFR) and Floating-point Control and Status Register, abbreviated as

3.1.2 Fixed-point data types

3.1.3 Registers

Machine Translated by Google

...

Bit

Dragon Architecture Reference Manual Volume 1: Infrastructure

Bits [63:32] of the floating-point register can have any value.

In the condition flag register, the flag is set to 1 if the comparison result is true, and set to 0 otherwise. The condition for floating-point branch instructions is determined by the condition flag register.

3.1.3.3 Floating-point control status register

describe

Querying fcsr1~fcsr3 actually involves accessing certain fields of fcsr0. When the software writes to fcsr1~fcsr3, the corresponding fields in fcsr0 are modified while the remaining bits are preserved.

The definitions of the various fields of fcsr0 are unchanged.

When the floating-point register records a single-precision floating-point number or a word integer, the data always appears in bits [31:0] of the floating-point register.

There are four FCSRs, denoted as fcsr0 to fcsr3, each with a bit width of 32 bits. fcsr1 to fcsr3 are aliases for certain fields within fcsr0, i.e., access...

Name reading and writing

There are 8 CFRs, denoted as fcc0 to fcc7, each of which can be read and written. Each CFR has a bit width of 1 bit. The result of a floating-point comparison will be written to...

3.1.3.2 Condition Flag Register

f31

LA64

f0

32 31

f1

LA32

f30

63

f2

f3

0

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

VZOUI exceptions resulting from the most recent floating-point operation.

2: RP, corresponding to RoundtowardsPositive in IEEE 754-2008;

15:10

23:21

Bit 28 corresponds to V, bit 27 corresponds to Z, bit 26 corresponds to O, bit 25 corresponds to U, and bit 24 corresponds to I.

RW

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.7:5

Table 3-4 FCSR0 Register Field Definitions

0

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

Bit 4 corresponds to V, bit 3 corresponds to Z, bit 2 corresponds to O, bit 1 corresponds to U, and bit 0 corresponds to I.

Enables

Figure 3-1 Floating-point register

58

0

Rounding mode control. It includes 4 valid values, each with the following meaning:

This is the cumulative number of VZOUI exceptions for various floating-point operations that have occurred but not yet trapped since the Flags field was cleared by the software.

9:8 1: RZ, corresponding to Roundtoward Zero in IEEE 754-2008;

Cause

20:16 Flags

RW

0

4:0

28:24

0: RNE, corresponding to Round to Ward Nearest, ties to Even in IEEE 754-2008;

RM

Each floating-point operation VZOUI exception has an enable bit that allows the exception to be triggered.

RW

3: RM, corresponding to RoundtowardsNegative in IEEE 754-2008.

RW

Bit 20 corresponds to V, bit 19 corresponds to Z, bit 18 corresponds to O, bit 17 corresponds to U, and bit 16 corresponds to I.

Machine Translated by Google

-2 -126, double precision: -2 -1022)

0 R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

RZ

RP
overflow

The result after rounding may be 0, or subnormal.

The rounded result could be 0, subnormal, or the largest negative normal number (single precision).
RM

I

+2 -126, double precision: +2 -1022)

RNE

IN

The rounded result could be 0, subnormal, or the normal number with the smallest absolute value (single-precision rounding).

59

31:29

The result of rounding in any non-precise mode or the result after overflow.

Degrees: ±2 -126, Double precision: ±2 -1022)

Default results. Different exceptions generate default results in different ways; Table 3-5 lists the specific generation rules. Table 3-5 Default results for floating-

point exceptions.

The rounded result could be 0, subnormal, or the smallest positive normal number (single precision).

FCSR1 is an alias for the Enables field in FCSR0. Its location is the same as in FCSR0.

Floating-point exceptions refer to situations where the floating-point processing unit cannot process operands or the results of floating-point calculations in the usual way, and the floating-point function unit...

Name reading and writing

ÿ Inexact (I)

ÿ Overflow (O)

FCSR3 is an alias for the RM field in FCSR0. Its location is the same as in FCSR0.

There will be corresponding exceptions.

This will trigger a floating-point exception trap; if the corresponding Enable bit is 0, then a floating-point exception trap will not be triggered, and FCSR0 will be set instead.

The corresponding position 1 in the Flag field.

Dragon Architecture Reference Manual Volume 1: Infrastructure

Bit

FCSR2 is an alias for the Cause and Flags fields in FCSR0. The positions of the fields are consistent with those in FCSR0.

The basic floating-point instructions support five floating-point exceptions defined in IEEE 754-2008:

Each bit in the Cause field of FCSR0 corresponds to one of the aforementioned exceptions. After each floating-point instruction is executed, the exception details are updated.

FCSR0 also includes an enable bit (Enables field) for each floating-point exception. The enable bit determines the exception generated by the floating-point processing unit.

The external flag will either trigger an exception trap or set a status flag. When a floating-point exception occurs, if its corresponding Enable bit is 1, then...

describe

A single floating-point instruction can generate multiple floating-point exceptions during execution.

When a floating-point exception occurs during the execution of a floating-point instruction but does not trigger a floating-point exception trap, the floating-point processing unit will generate a...

Field description rounding mode

The new Cause field is in FCSR0.

ÿ Division by Zero (Z)

ÿ Invalid Operation (V)

Default result

ÿ ÿÿ Underflow (U)

3.1.4 Floating-point exception

In fact, only the four exceptions besides underflow strictly conform to this description. Please see the detailed description below for the definition of underflow exceptions.1

Machine Translated by Google

If an exception is allowed to trap: the result register is not modified, and the source register is preserved.

In the case of Emin , this result is considered a non-zero infinitesimal value. (Single-precision number Emin = -126, double-precision number Emin = ...)

Treating the exponent field as unbounded and rounding intermediate results, when the absolute value of the obtained result exceeds the maximum finite number of the target format,

Default result

If an exception is prohibited from trapping: if no trap occurs, the result is a signed infinity.

An invalid operation exception signal is issued only if there is no validly defined result. If no exception trap is triggered, then...

Whether it's exact or inaccurate, it will trigger a floating-point exception trap.

In division operations, when the divisor is 0 and the dividend is a finite non-zero number, a signal is issued to indicate division by zero.

(2) If the final rounding result of the floating-point operation is accurate, then neither U nor I in FCSR.Cause should be set to 1.

If an exception prevents trapping: If no other exception occurs, QNaN is written to the destination register.

When FCSR.Enable.U=1, if the detected result is a non-zero tiny value, regardless of whether the final rounded result of the floating-point operation is accurate...

Test.

,

An underflow exception occurs when a non-zero tiny value is detected. The method for detecting non-zero tiny values is to check after rounding.

Field description rounding mode

3.1.4.2 Division by zero exception (Z)

The result is in (-2 Emin)

If an exception is prohibited from trapping: if no trap occurs, the final result is determined by the rounding mode and the sign of the intermediate result.

When FCSR.Enable.U=0, if the detected result is a non-zero tiny value:

Dragon Architecture Reference Manual Volume 1: Infrastructure

An overflow exception is signaled. (This exception also sets up both inaccuracy exceptions and a flag.)

(1) If the final result of the floating-point operation is not precise, then both U and I in FCSR.Cause should be set to 1;

-1022ÿÿ

3.1.4.1 Illegal Operation Exception (V)

Rounding check: For a non-zero result, if the exponent field is considered unbounded, the intermediate result is rounded.

If an exception is allowed to trap: the result register is not modified, and the source register is preserved.

3.1.4.3 Overflow Exception (O)

If an exception is allowed to trap: the result register is not modified, and the source register is preserved.

3.1.4.4 Underflow Exception (U)

Generate a QNaN. For specific details on the determination of illegal operation exceptions, please refer to Section 7.2 of the IEEE 754-2008 specification.

Correct positive overflow to the largest positive number, and correct negative overflow to -ÿ.

V. Illegal operation in any mode provides a QNaN.

overflowTHE

WITH

60

Correct negative overflow to the smallest negative number, and correct positive overflow to +ÿ.

Set the result to the maximum number based on the sign of the intermediate results.

RNE sets the result to +ÿ or -ÿ based on the sign of the intermediate result.

RZ

RM

RP

Dividing any pattern by zero yields a corresponding signed infinity.

Machine Translated by Google

The FPU generates an inaccuracy exception when the following conditions occur:

Dragon Architecture Reference Manual Volume 1: Infrastructure

3.1.4.5 Exceptions to Inaccuracy (I)

ÿ Rounding results are not precise.

Because this execution mode affects performance, inaccurate exception traps are only enabled when necessary.

If exception traps are allowed: If an imprecise exception trap is enabled, the result register is not modified and the source register is preserved.

If an exception is prevented from trapping: If no other software traps occur, the rounded or overflow result is sent to the destination register.

ÿ The rounding result overflows, and the enable bit for the overflow exception is not set.

61

Machine Translated by Google

3.2.1 Floating-point arithmetic instructions

The single-precision/double-precision floating-point result is written to the floating-point register fd. Floating-point division operations follow the IEEE 754-2008 standard.

fmul.d

Command format: fadd.s

The FADD.{S/D} instruction adds the single-precision/double-precision floating-point number in floating-point register fj to the single-precision/double-precision floating-point number in floating-point register fk.

fd, fj, fk

Dragon Architecture Reference Manual Volume 1: Infrastructure

fdiv.s fd, fj, fk

Specifications for the multiplication(x,y) operation.

The resulting single-precision/double-precision floating-point number is written to the floating-point register fd. Floating-point multiplication operations follow the IEEE 754-2008 standard.

The single-precision/double-precision floating-point result is written to the floating-point register fd. Floating-point addition operations follow the IEEE 754-2008 standard.

Specifications for the addition(x,y) operation.

fd, fj, fk

fsub.d

The single-precision/double-precision floating-point result is written to the floating-point register fd. Floating-point subtraction operations follow the IEEE 754-2008 standard.

fd, fj, fk

The FMUL.{S/D} instruction multiplies the single-precision/double-precision floating-point number in floating-point register fj by the single-precision/double-precision floating-point number in floating-point register fk.

3.2.1.1F{ADD/SUB/MUL/DIV}.{S/D}

fadd.d fd, fj, fk

fdiv.d

fd, fj, fk

The FSUB.{S/D} instruction subtracts the single-precision/double-precision floating-point number in floating-point register fk from the single-precision/double-precision floating-point number in floating-point register fj.

fd, fj, fk fd, fj, fk

fmul.s

Specifications for the subtraction(x,y) operation.

The FDIV.{S/D} instruction divides the single-precision/double-precision floating-point number in floating-point register fj by the single-precision/double-precision floating-point number in floating-point register fk.

fsub.s

3.2 Overview of Basic Floating-Point Instructions

62

FADD.S:

FMUL.S:

FSUB.S:

FR[fd][31:0] = FP32_subtraction(FR[fj][31:0], FR[fk][31:0])

FR[fd] = FP64_addition(FR[fj], FR[fk])

FR[fd] = FP64_subtraction(FR[fj], FR[fk])

FSUB.D:

FADD.D:

FMUL.D:

FR[fd][31:0] = FP32_addition(FR[fj][31:0], FR[fk][31:0])

FR[fd] = FP64_multiplication(FR[fj], FR[fk])

FR[fd][31:0] = FP32_multiplication(FR[fj][31:0], FR[fk][31:0])

Machine Translated by Google

FDIV.D:

FNMADD.D:

FR[fd][31:0] = FP32_fusedMultiplyAdd(FR[fj][31:0], FR[fk][31:0], -FR[fa][3

FNMADD.S:

FMSUB.D:

FR[fd][31:0] = -FP32_fusedMultiplyAdd(FR[fj][31:0], FR[fk][31:0], FR[fa][3

FDIV.S:

0])

FR[fd] = -FP64_fusedMultiplyAdd(FR[fj], FR[fk], FR[fa])

FR[fd] = FP64_division(FR[fj], FR[fk])

FR[fd] = FP64_fusedMultiplyAdd(FR[fj], FR[fk], FR[fa])

1:0])

1:0])

FR[fd][31:0] = FP32_fusedMultiplyAdd(FR[fj][31:0], FR[fk][31:0], FR[fa][31:

FMSUB.S:

FR[fd] = FP64_fusedMultiplyAdd(FR[fj], FR[fk], -FR[fa])

FR[fd][31:0] = FP32_division(FR[fj][31:0], FR[fk][31:0])

FMADD.S:

FMADD.D:

Command format: fmadd.s

fnmsub.s

Multiply the numbers, subtract the single-precision/double-precision floating-point number in the floating-point register fa from the result, and then negate the single-precision/double-precision floating-point result.

Specifications for the division(x,y) operation.

In the floating-point register fd.

fmadd.d

The FMSUB.{S/D} instruction modifies the single-precision/double-precision floating-point number in floating-point register fj and the single-precision/double-precision floating-point number in floating-point register fk.

fmsub.s

fd, fj, fk, fa

The FNMADD.{S/D} instruction modifies the single-precision/double-precision floating-point number in floating-point register fj and the single-precision/double-precision floating-point number in floating-point register fk.

fnmadd.s

The FMADD.{S/D} instruction modifies the single-precision/double-precision floating-point number in floating-point register fj and the single-precision/double-precision floating-point number in floating-point register fk.

fmsub.d

fd, fj, fk, fa fd, fj, fk, fa

fd, fj, fk, fa

fd, fj, fk, fa

fd, fj, fk, fa

fnmadd.d

In the floating-point register fd.

Dragon Architecture Reference Manual Volume 1: Infrastructure

Multiply the points, add the result to the single-precision/double-precision floating-point number in the floating-point register fa, and then negative the resulting single-precision/double-precision floating-point number.

The FNMSUB.{S/D} instruction modifies the single-precision/double-precision floating-point number in floating-point register fj and the single-precision/double-precision floating-point number in floating-point register fk.

fd, fj, fk, fa

fnmsub.d

3.2.1.2F{MADD/MSUB/NMADD/NMSUB}.{S/D}

Multiply the numbers, subtract the single-precision/double-precision floating-point number in the floating-point register fa from the result, and write the resulting single-precision/double-precision floating-point number to the...

Then it is written to the floating-point register fd.

fd, fj, fk, fa

The numbers are multiplied, the result is added to the single-precision/double-precision floating-point number in the floating-point register fa, and the resulting single-precision/double-precision floating-point number is written to [the register name].

63

Machine Translated by Google

FMIN.D:

FMIN.S:

FR[fd][31:0] = -FP32_fusedMultiplyAdd(FR[fj][31:0], FR[fk][31:0], -FR[fa]

FR[fd] = -FP64_fusedMultiplyAdd(FR[fj], FR[fk], -FR[fa])

FMAX.S:

FR[fd][31:0] = FP32_maxNum(FR[fj][31:0], FR[fk][31:0])

FR[fd] = FP64_minNum(FR[fj], FR[fk])

FMAXA.D:

[31:0])

FMAX.D:

FR[fd][31:0] = FP32_minNum(FR[fj][31:0], FR[fk][31:0])

FNMSUB.S:

FR[fd][31:0] = FP32_maxNumMag(FR[fj][31:0], FR[fk][31:0])

FNMSUB.D:

FMAXA.S:

FR[fd] = FP64_maxNum(FR[fj], FR[fk])

The FMAXA.{S/D} instruction selects a single-precision/double-precision floating-point number from floating-point register fj and a single-precision/double-precision floating-point number from floating-point register fk.

fmin.s

3.2.1.4F{MAXA/MINA}.{S/D}

Command format: fmax.s

The larger of the two numbers is written to the floating-point register fd. The operation of these two instructions follows the rules of the maxNum(x,y) operation in the IEEE 754-2008 standard.

The FMIN.{S/D} instruction selects a single-precision/double-precision floating-point number from floating-point register fj and a single-precision/double-precision floating-point number from floating-point register fk.

fmina.d

fmaxa.d

fmax.d

fd, fj, fk

fmin.d

Dragon Architecture Reference Manual Volume 1: Infrastructure

fd, fj, fk

The smaller of the two numbers is written into the floating-point register fd. The operation of these two instructions follows the rules of the minNum(x,y) operation in the IEEE 754-2008 standard.

fd, fj, fk

fd, fj, fk

Write it to the floating-point register fd.

Fan.

Command format: fmaxa.s

The FMAX.{S/D} instruction selects a single-precision/double-precision floating-point number from the floating-point register fj and a single-precision/double-precision floating-point number from the floating-point register fk.

Standard operating procedures.

fd, fj, fk

fd, fj, fk

3.2.1.3F{MAX/MIN}.{S/D}

The above four floating-point fused multiply-add operations follow the specifications of the fusedMultiplyAdd(x,y,z) operation in the IEEE 754-2008 standard.

The larger absolute value of the points is written to the floating-point register fd. The operation of these two instructions follows the IEEE 754-2008 standard for maxNumMag(x,y).

Fan.

fd, fj, fk

fd, fj, fk

fmina.s

64

Machine Translated by Google

FR[fd][31:0] = FP32_negate(FR[fj][31:0])

FMINA.S:

FR[fd] = FP64_maxNumMag(FR[fj], FR[fk])

FABS.D:

FNEG.D:

FMINA.D:

FR[fd] = FP64_abs(FR[fj])

FABS.S:

FR[fd] = FP64_negate(FR[fj])

FR[fd][31:0] = FP32_minNumMag(FR[fj][31:0], FR[fk][31:0])

FNEG.S:

FR[fd] = FP64_minNumMag(FR[fj], FR[fk])

FR[fd][31:0] = FP32_abs(FR[fj][31:0])

The FSQRT.{S/D} instruction selects a single-precision or double-precision floating-point number from the floating-point register fj, and then takes the square root of the resulting single-precision or double-precision floating-point number.

fd, fj

fabs.d

Dragon Architecture Reference Manual Volume 1: Infrastructure

fd, fj

fd, fj

Standard operating procedures.

3.2.1.6F{SQRT/RECIP/RSQRT}.{S/D}

fd, fj

fd, fj

Command format: fabs.s

fd, fj

fd, fj fneg.s

Command format: fsqrt.s

The number is written to the floating-point register fd. The floating-point square root operation follows the specification of the squareRoot(x) operation in the IEEE 754-2008 standard.

The FNEG.{S/D} instruction selects a single-precision/double-precision floating-point number from the floating-point register fj and inverts it (that is, inverts the sign bit and the rest).

frecip.d fd, fj

3.2.1.5F{ABS/NEG}.{S/D}

The FABS.{S/D} instruction selects a single-precision or double-precision floating-point number from the floating-point register fj and takes its absolute value (i.e., sets the sign bit to 0).

The smaller absolute value of the points is written into the floating-point register fd. The operation of these two instructions follows the IEEE 754-2008 standard for minNumMag(x,y).

frecip.s

(It remains partially unchanged) and is written to the floating-point register fd. The operation of these two instructions follows the specification of the abs(x) operation in the IEEE 754-2008 standard.

fsqrt.d

(Partially unchanged), written to the floating-point register fd. The operation of these two instructions follows the specifications of the nexteer(x) operation in the IEEE 754-2008 standard.

The FMINA.{S/D} instruction selects a single-precision/double-precision floating-point number from the floating-point register fj and a single-precision/double-precision floating-point number from the floating-point register fk.

fd, fj

fneg.d

frsqrt.s frsqrt.d

fd, fj

65

Machine Translated by Google

FR[fd] = FP64_scaleB(FR[fj], FR[fk])

FR[fd] = FP64_division(1.0, FP_squareRoot(FR[fj]));

FR[fd][31:0] = FP32_division(1.0, FR[fj][31:0])

FR[fd] = FP64_division(1.0, FR[fj])

FSQRT.D:

FSQRT.S:

FR[fd][31:0] = FP32_scaleB(FR[fj][31:0], FR[fk][31:0])

FR[fd][31:0] = FP32_division(1.0, FP_squareRoot(FR[fj][31:0]));

FLOGB.S:

FRSQRT.D:

FRECIP.D:

FR[fd][31:0] = FP32_logB(FR[fj][31:0])

FLOGB.D:

FSCALEB.D:

FR[fd] = FP64_squareRoot(FR[fj]);

FR[fd] = FP64_logB(FR[fj])

FSCALEB.S:

FR[fd][31:0] = FP32_squareRoot(FR[fj][31:0]);

FRSQRT.S:

FRECIP.S:

fd, fj, fk

fcopysign.s

fd, fj, fk

flogb.d

fcopysign.d

Command format: fscaleb.s

fd, fj

fd, fj, fk

The specification of the rSqrt(x) operation in the standard.

The FRECIP.{S/D} instruction selects a single-precision or double-precision floating-point number from the floating-point register fj, and divides 1.0 by this floating-point number to obtain the single-precision or double-precision floating-point number.

Dragon Architecture Reference Manual Volume 1: Infrastructure

3.2.1.7F{SCALEB/LOGB/COPYSIGN}.{S/D}

flogb.s

fscaleb.d

fd, fj

fd, fj, fk

The FLOGB.{S/D} instruction selects a single-precision/double-precision floating-point number from the floating-point register fj, calculates its logarithm to base 2, and obtains the single-precision/double-precision floating-point number.

The double-precision floating-point number is written to the floating-point register fd. The operation of these two instructions follows the specification of the logB(x) operation in the IEEE 754-2008 standard.

The precision/double-precision floating-point number is written to the floating-point register fd. This is equivalent to the division(1.0,x) operation in the IEEE 754-2008 standard.

Divide the number by 1.0 again, and write the resulting single-precision/double-precision floating-point number into the floating-point register fd. The floating-point square root and inverse operation follows IEEE 754-2008.

The FSCALEB.{S/D} instruction selects a single-precision/double-precision floating-point number 'a' from floating-point register fj, then retrieves a word/double-word integer 'N' from floating-point

register fk, calculates 'a*2N', and writes the resulting single-precision/double-precision floating-point number into floating-point register fd. The operation of these two instructions conforms to IEEE 754-2008.

The specification for the scaleB(x, N) operation in the standard.

The FRSQRT.{S/D} instruction selects a single-precision/double-precision floating-point number from the floating-point register fj, and then takes the square root of the resulting single-precision/double-precision floating-point number.

66

Machine Translated by Google

QNaN
normal

Bit6

subnormalnormal

Bit5 Bit8 Bit9Bit3

ÿ

SNaN

Bit2 Bit0

0

Bit7

negative value

ÿ

67

subnormal

positive value

Bit1 Bit4

0

When the input value is 2N , the output value is 2 ̂ (-N). The results for inputs of QNaN, SNaN, ±ÿ, ±0, and the conditions for generating floating-point exceptions are also provided.

This instruction determines the category of the floating-point number in the floating-point register fj. The result consists of 10 bits of information, each bit...

Dragon Architecture Reference Manual Volume 1: Infrastructure

The meanings are shown in the table below:

Command format: fclass.s fd, fj

The class(x) function in the IEEE-754-2008 standard.

The sign operation follows the specification of the copySign(x, y) operation in the IEEE 754-2008 standard.

frsqrte.d fd, fj

LoongArch V1.1 Commands

The FCOPYSIGN.{S/D} instruction selects the single-precision/double-precision floating-point number in the floating-point register fj and changes its sign bit to the floating-point register fk.

fclass.d fd, fj

The FRSQRTE.{S/D} instruction selects a single-precision/double-precision floating-point number from the floating-point register fj, and then takes the square root of the resulting single-precision/double-precision floating-point number.

When the data being evaluated meets the condition corresponding to a certain bit, the corresponding bit in the result information vector will be set to 1. This instruction corresponds to...

frsqrte.s fd, fj

frecipe.d fd, fj

3.2.1.8FCLASS.{S/D}

The approximate results for single-precision/double-precision floating-point numbers are written to the floating-point register fd. The relative error of the obtained approximate results is less than 2ÿ¹ÿ .

3.2.1.9F{RECIPE/RSQRTE}.{S/D}

The FRECIPE.{S/D} instruction selects a single-precision or double-precision floating-point number from the floating-point register fj, and calculates the result by dividing 1.0 by this floating-point number.

The approximate result of dividing the point by 1.0 is written into the floating-point register fd to obtain a single-precision/double-precision floating-point number. The relative error of the obtained approximation result...

The sign bit of the single-precision/double-precision floating-point number is removed, and the resulting new single-precision/double-precision floating-point number is written to the floating-point register fd. (Floating-point copy character)

Command format: frecipe.s fd, fj

The default result when a floating-point exception is generated but not triggered is the same as that of the FRECIP.{S/D} instruction.

FCLASS.D:

FR[fd][31:0] = FP32_copySign(FR[fj][31:0], FR[fk][31:0])

FCOPYSIGN.S:

FRECIPE.D:

FR[fd] = FP64_reciprocal_estimate(FR[fj])

FR[fd][31:0] = FP32_class(FR[fj][31:0])

FR[fd] = FP64_copySign(FR[fj], FR[fk])

FR[fd][31:0] = FP32_reciprocal_estimate(FR[fj][31:0])

FCOPYSIGN.D:

FCLASS.S:

FR[fd] = FP64_class(FR[fj])

FRECIPE.S:

Machine Translated by Google

FR[fd][31:0] = FP32_reciprocal_squareroot_estimate(FR[fj][31:0]);

FRSQRTE.S:

FRSQRTE.D:

FR[fd] = FP64_reciprocal_squareroot_estimate(FR[fj]);

The default result when a floating-point exception is generated but not triggered is the same as that of the FRSQRT.{S/D} instruction.

The difference is less than 2 -14.

Dragon Architecture Reference Manual Volume 1: Infrastructure

When the input value is 2 ̂ 2N , the output value is 2 ̂ -N. The results for inputs of QNaN, SNaN, ±ÿ, ±0, and the conditions for generating floating-point exceptions are as follows.

68

Machine Translated by Google

Less than

SLE

THEY ARE 0x19

Unequal

CULT

no

GT LT

CUTE

A LT EQ

SEQ

CEQ

0x18

0x3

EQ

orderly

compareQuietNotEqual

none

Not greater than or less thanSUEQ

EQ

WITH

AND

0x10

compareSignalingNotGreater

Less than

GT LT

compareQuietUnordered

Less than or equal to

0xF

none

0x1

0x6

0x14 orderly

Unequal

GT LT EQ

compareQuietNotGreater

yes

Unable to be compared or unequal UN GT LT

compareQuietLess

0x9 is not greater than, less than, or equal to.

compareSignalingEqual

compareSignalingLess

no

0x11

no

GT LT EQ

CLT LT

compareQuietEqual

0x7

0x15

AND LT

compareQuietLessUnordered

0xE Less than or equal to or cannot be compared UN LT EQ

0xC

SLT

Smaller than or cannot be compared

Not greater than or equal to

Not greater than

CUEQ

SULT compareSignalingLessUnordered

AND LT

EQ

0x4

compareQuietLessEqual

SAF

compareSignalingLessEqual

LT

SNOW

Less than or equal to

Incomparable

equal

Equal or incomparable

0xA

LT EQ

vesicles

0x8

69

0x0

AND

CNE

COR

0xD

0x2

SUN

CAF

Unable to be compared or unequal UN GT LT

0xB

SULE

BEER

LT EQ CLE

equal

0x5

EQ

QNaN whetherTrue

fcmp.cond.d cc, fj, fk

Corresponding to IEEE 754-2008 functions

Numbers cannot be compared.

Command format: fcmp.cond.s cc, fj, fk

Dragon Architecture Reference Manual Volume 1: Infrastructure

Report exceptions

This is a floating-point comparison instruction that stores the comparison result in the specified status code (CC). This instruction has 22 possible conditions (cond), which compare...

The comparison conditions and judgment criteria are listed in the table below.

Condition
mnemonic cond

3.2.2.1FCMP.cond.{S/D}

meaning

Note: UN indicates that they cannot be compared, EQ indicates that they are equal, and LT indicates that they are less than. When two operands contain at least one NaN, these two...

3.2.2 Floating-point comparison instructions

Machine Translated by Google

70

FR[fd][31:0] = FP32_convertFromInt(FR[fj][31:0], SINT32)

FR[fd][31:0] = FP32_convertFormat(FR[fj], FP64)

FFINT.D.W:

FCVT.D.S:

FFINT.S.W:

FR[fd] = FP64_convertFromInt(FR[fj][31:0], SINT32)

FR[fd] = FP64_convertFromInt(FR[fj], SINT64)

FCVT.S.D:

FR[fd][31:0] = FP32_convertFromInt(FR[fj], SINT64)

FFINT.D.L:

FFINT.S.L:

FR[fd] = FP64_convertFormat(FR[fj][31:0], FP32)

fd, fj

3.2.3.2FFINT.{S/D}.{W/L}, FTINT.{W/L}.{S/D}

fd, fj

Command format: ffint.sw fd, fj

fd, fj

In the floating-point register fd.

Dragon Architecture Reference Manual Volume 1: Infrastructure

fcvt.d.s fd, fj

The FCVT.DS instruction selects a single-precision floating-point number in the floating-point register fj, converts it to a double-precision floating-point number, and writes the resulting double-precision floating-point number to fj.

ftint.w.s fd, fj

The FCVT.SD instruction selects a double-precision floating-point number in the floating-point register fj, converts it to a single-precision floating-point number, and writes the resulting single-precision floating-point number to fj.

ftint.lsffint.s.l fd, fj

Specifications for the convertFromInt(x) operation.

fd, fj

ffint.d.w fd, fj

Command format: fcvt.sd

The obtained single-precision/double-precision floating-point number is written to the floating-point register fd. This floating-point format conversion operation conforms to the IEEE 754-2008 standard.

In the floating-point register fd.

ftint.w.d fd, fj

ffint.d.l

3.2.3.1FCVT.S.D, FCVT.D.S

Floating-point format conversion operations follow the specifications of the convertFormat(x) operation in the IEEE 754-2008 standard.

ftint.ld

The resulting integer/long integer fixed-point number is written to the floating-point register fd. Depending on the state in the FCSR, this floating-point format conversion operation follows...

The FFINT.{S/D}.{W/L} instruction selects the integer/long integer fixed-point number in the floating-point register fj and converts it to a single-precision/double-precision floating-point number.

The FTINT.{W/L}.{S/D} instruction selects the single-precision/double-precision floating-point number in the floating-point register fj and converts it to an integer/long integer fixed-point number.

3.2.3 Floating-point conversion instructions

Machine Translated by Google

convertToIntegerExactTowardNegative(x)

convertToIntegerExactTiesToEven(x)

convertToIntegerExactTowardZero(x)

71

Rounding to zero

Round to the nearest integer (eventh integer).

Rounding to positive infinity convertToIntegerExactTowardPositive(x)

Rounding to negative infinity

fd, fj

The FTINTRM.{W/L}.{S/D} instruction selects the single-precision/double-precision floating-point number in the floating-point register fj and converts it to an integer/long integer fixed-point number.

The FTINTRP.{W/L}.{S/D} instruction selects the single-precision/double-precision floating-point number in the floating-point register fj and converts it to an integer/long integer fixed-point number.

The operation in accordance with the IEEE 754-2008 standard is shown in the table below.

3.2.3.3FTINT{RM/RP/RZ/RNE}.{W/L}.{S/D}

fd, fj

fd, fj

fd, fj

ftintrne.w.s

fd, fj

fd, fj

fd, fj

ftintrne.l.s fd, fj

ftintrne.w.d

Command format: ftintrm.ws

fd, fj

ftintrne.l.d

Operations in the IEEE 754-2008 standard

ftintrm.w.d

fd, fj

ftintrz.ld

ftintrp.wd

Dragon Architecture Reference Manual Volume 1: Infrastructure

These instructions convert floating-point numbers to fixed-point numbers using a specified rounding mode.

The obtained integer/long integer fixed-point number is written into the floating-point register fd, using the "rounding towards positive infinity" method.

fd, fj

ftintrz.l.s

fd, fj

fd, fj

fd, fj

ftintrp.l.d

fd, fj

The integer/long integer fixed-point number obtained is written into the floating-point register fd, using the "rounding towards negative infinity" method.

ftintrz.ws

ftintrm.l.s

Rounding mode

fd, fj

ftintrm.l.d

ftintrz.wd

ftintrp.ws

ftintrp.l.s

FTINT.LS:

FR[fd][31:0] = FP32convertToSint32(FR[fj][31:0], FCSR.RM)

FTINT.WD:

FTINTRM.L.D:

FR[fd][31:0] = FP64convertToSint32(FR[fj], 3)

FR[fd] = FP64convertToSint64(FR[fj], FCSR.RM)

FTINTRM.L.S:

FR[fd][31:0] = FP64convertToSint32(FR[fj], FCSR.RM)

FTINTRM.W.D:

FR[fd] = FP64convertToSint64(FR[fj], 3)

FTINTRM.W.S:

FR[fd] = FP32convertToSint64(FR[fj][31:0], FCSR.RM)

FTINT.LD:

FR[fd][31:0] = FP32convertToSint32(FR[fj][31:0], 3)

FTINT.W.S:

FR[fd] = FP32convertToSint64(FR[fj][31:0], 3)

Machine Translated by Google

72

FTINTRP.{W/L}.{S/D}

FTINTRNE.{W/L}.{S/D}

FTINTRZ.{W/L}.{S/D}

convertToIntegerExactTiesToEven(x)

convertToIntegerExactTowardZero(x)

convertToIntegerExactTowardPositive(x)

convertToIntegerExactTowardNegative(x) FTINTRM.{W/L}.{S/D}

The integer/long integer fixed-point number obtained is written into the floating-point register fd, using the "rounding to the nearest (eventh)" method.

The FTINTRZ.{W/L}.{S/D} instruction selects the single-precision/double-precision floating-point number in the floating-point register fj and converts it to an integer/long integer fixed-point number.

Dragon Architecture Reference Manual Volume 1: Infrastructure

The obtained integer/long integer fixed-point number is written into the floating-point register fd, using the "rounding towards zero" method.

IEEE 754-2008

The FTINTRNE.{W/L}.{S/D} instruction selects the single-precision/double-precision floating-point number in the floating-point register fj and converts it to an integer/long integer fixed-point number.

The operations in the IEEE 754-2008 standard followed by the above four floating-point format conversion operations are shown in the table below.

FR[fd][31:0] = FP32convertToSint64(FR[fj][31:0], 1)

FTINTRNE.W.D:

FTINTRP.WD:

FTINTRP.L.S:

FR[fd] = FP32convertToSint64(FR[fj][31:0], 2)

FTINTRZ.WS:

FR[fd] = FP64convertToSint32(FR[fj], 1)

FTINTRNE.W.S:

FTINTRNE.L.D:

FTINTRP.L.D:

FTINTRZ.WD:

FR[fd][31:0] = FP64convertToSint32(FR[fj], 2)

FR[fd][31:0] = FP32convertToSint32(FR[fj][31:0], 2)

FTINTRZ.L.S:

FTINTRNE.L.S:

FR[fd] = FP32convertToSint64(FR[fj][31:0], 0)

FR[fd] = FP64convertToSint64(FR[fj], 2)

FR[fd][31:0] = FP32convertToSint32(FR[fj][31:0], 0)

FR[fd] = FP64convertToSint64(FR[fj], 0)

FR[fd] = FP64convertToSint64(FR[fj], 1)

FTINTRP.WS:

FR[fd][31:0] = FP64convertToSint32(FR[fj], 0)

FTINTRZ.LD:

FR[fd][31:0] = FP32convertToSint32(FR[fj][31:0], 1)

Machine Translated by Google

FR[fd] = FP64_roundToInteger(FR[fj])

FRINT.Dÿ

FRINT.Sÿ

FR[fd][31:0] = FP32_roundToInteger(FR[fj])

FMOV.Sÿ

FR[fd] = FR[fj]

FSELÿ

FR[fd] = CFR[ca] ? FR[fk] : FR[fj]

FMOV.dÿ

FR[fd][31:0] = FR[fj][31:0]

frint.d

3.2.3.4FRINT.{S/D}

If it is a single-precision/double-precision floating-point number format, the result is uncertain.

Command format: frint.s fd, fj

The value is written to the floating-point register fd; otherwise, the value of the floating-point register fk is written to the floating-point register fd.

Command format: fsel

The instructions are shown in the table below.

Operations in the IEEE 754-2008 standard

Dragon Architecture Reference Manual Volume 1: Infrastructure

3.2.4.1FMOV.{S/D}

fmov.d

domain.

fd, fj, fk, ca

fd, fj

Rounding mode

3.2.4.2FSEL

The FSEL instruction performs a conditional assignment operation. When FSEL is executed, if the value of the condition flag register ca is equal to 0, then the value of the floating-point register fj is incremented.

The FRINT.{S/D} instruction selects a single-precision/double-precision floating-point number in the floating-point register fj and converts it to an integer single-precision/double-precision floating-point number.

fd, fj

FMOV.{S/D} writes the value of floating-point register fj to floating-point register fd in single-precision/double-precision floating-point format. If the value of fj is not...

The resulting single-precision/double-precision floating-point number is written to the floating-point register fd. This floating-point format conversion operation follows the IEEE 754-2008 standard.

fd, fj

The above instruction operation is non-arithmic, will not trigger an IEEE 754 exception, and will not modify the Cause and Flags of the floating-point control status register.

Command format: fmov.s

Rounding to positive infinity

Round to the nearest integer (eventh integer).

Rounding to zero

roundToIntegralExact(x)

73

Rounding to negative infinity

3.2.4 Floating-point transport instructions

Machine Translated by Google

74

fd, rj movgr2fr.d

rd, fj

3.2.4.5MOVGR2FCSR, MOVFCSR2GR

3.2.4.4MOVFR2GR.{S/D}, MOVFRH2GR.S

MOVFR2GR/MOVFRH2GR.S writes the sign-extended value of the lower 32 bits/higher 32 bits of the floating-point register fj to the general-purpose register rd.

movfcsr2gr

MOVGR2FCSR modifies the software-writable field corresponding to the floating-point control status register indicated by fcsr based on the value of the lower 32 bits of the general-purpose register rj.

fcsr, rj

Dragon Architecture Reference Manual Volume 1: Infrastructure

Command format: movgr2fcsr

fd, rj

movfrh2gr.s rd, fj

movfr2gr.d

MOVGR2FRH.W writes the lower 32 bits of the general-purpose register rj into the higher 32 bits of the floating-point register fd.

MOVGR2FR.D writes the 64-bit value of the general-purpose register rj to the floating-point register fd.

Command format: movfr2gr.s

rd, fcsr

MOVGR2FR.W writes the lower 32 bits of the general-purpose register rj into the lower 32 bits of the floating-point register fd. If the floating-point register has a bit width of 64...

fd, rj

The bit value remains unchanged.

3.2.4.3MOVGR2FR.{W/D}, MOVGR2FRH.W

rd, fj

Command format: movgr2fr.w

movgr2frh.w

MOVFR2GR.D writes the 64-bit value of the floating-point register fj to the general-purpose register rd.

If the higher 32 bits of fd are not specified, then the value of fd is uncertain.

MOVGR2FR.Dÿ

FR[fd][31:0] = GR[rj][31:0]

MOVGR2FR.Wÿ

MOVFRH2GR.Sÿ

GR[rd] = SignExtend(FR[fj][63:32], GRLEN)

MOVFR2GR.Dÿ

GR[rd] = FR[fj]

GR[rd] = SignExtend(FR[fj][31:0], GRLEN)

MOVFR2GR.Sÿ

MOVGR2FRH.Wÿ

FR[fd][31: 0] = FR[fd][31:0]

FR[fd] = GR[rj]

FR[fd][63:32] = GR[rj][31:0]

Machine Translated by Google

75

Dragon Architecture Reference Manual Volume 1: Infrastructure

MOVGR2CF writes the value of the least significant bit of the general-purpose register rj to the condition flag register cd.

3.2.4.6MOVFR2CF, MOVCF2FR

Command format: movgr2cf cd, rj

movcf2fr fd, cj

3.2.4.7MOVGR2CF, MOVCF2GR

The value. If the MOVGR2FCSR instruction modifies FCSR0 so that the bit in its Cause field and the corresponding Enables bit are both 1, or modifies...

MOVCF2GR writes the value of the condition flag register cj to the general-purpose register rd, and fills the remaining bits of rd with 0.

The Enables field of FCSR1 and the Cause field of FCSR2 are set so that both the Cause bit and the corresponding Enables bit are 1, as specified in the MOVGR2FCSR instruction.

Command format: movfr2cf cd, fj

It will not trigger a floating-point exception on its own.

MOVFR2CF writes the value of the least significant bit of the floating-point register fj to the condition flag register cd.

MOVCF2FR writes the value of the condition flag register cj to the lowest bit of the floating-point register fd, and pads the remaining bits of fd with 0.

MOVFCSR2GR writes the 32-bit value of the floating-point control status register indicated by fcsr to the general-purpose register rd after sign extension.

If the floating-point control status register indicated by fcsr in the above instruction does not exist, the result is uncertain.

movcf2gr rd, cj

CFR[cd] = FR[fj][0]

MOVCF2FRÿ

MOVGR2FCSRÿ

MOVFCSR2GRÿ

MOVCF2GRÿ

GR[rd] = SignExtend(FCSR[fcsr], GRLEN)

GR[rd] = ZeroExtend(CFR[cj], GRLEN)

FCSR[fcsr] = GR[rj][31:0]

FR[fd] = ZeroExtend(CFR[cj], 64)

MOVGR2CFÿ

MOVFR2CFÿ

CFR[cd] = GR[rj][0]

Machine Translated by Google

76

3.2.6 Floating-point ordinary memory access instructions

3.2.5 Floating-point branch instructions

FLD.S retrieves a word of data from memory and writes it to the lower 32 bits of the floating-point register fd. If the floating-point register is 64 bits wide, then the higher 32 bits of fd...

3.2.6.1FLD.{S/D}, FST.{S/D}

Dragon Architecture Reference Manual Volume 1: Infrastructure

fst.s

cj, offs21

cj, offs21

However, it should be noted that if the above instructions are written by directly filling in the offset value when writing the assembly code, the immediate value in the assembly representation should be...

Command format: bceqz

fd, rj, si12

The 32-bit value is uncertain. FLD.D retrieves a double word of data from memory and writes it to the floating-point register fd.

BCEQZ checks the value of the condition flag register cj. If it is equal to 0, it jumps to the target address; otherwise, it does not jump.

3.2.5.1BCEQZ, BCNEZ

BCNEZ checks the value of the condition flag register cj. If the value is not equal to 0, it jumps to the target address; otherwise, it does not jump.

Command format: fld.s

The jump target address of the two branch instructions mentioned above is obtained by logically shifting the 21-bit immediate value offs21 in the instruction code left by 2 bits and then sign-extending it.

The resulting offset value is added to the PC of the branch instruction.

fld.d

Enter the offset value in bytes, which is offs21<<2 in the instruction code.

fd, rj, si12 fd, rj, si12

fst.d fd, rj, si12

bcnez

FR[fd] = doubleword

BCEQZ:

vaddr = GR[rj] + SignExtend(si12, GRLEN)

paddr = AddressTranslation(vaddr)

word = MemoryLoad(paddr, WORD)

paddr = AddressTranslation(vaddr)

doubleword = MemoryLoad(paddr, DOUBLEWORD)

FLD.D:

AddressComplianceCheck(vaddr)

BCNEZ:

if CFR[cj]==0 :

PC = PC + SignExtend({offs21, 2'b0}, GRLEN)

if CFR[cj]!=0 :

FLD.S:

FR[fd][31:0] = word

PC = PC + SignExtend({offs21, 2'b0}, GRLEN)

AddressComplianceCheck(vaddr)

vaddr = GR[rj] + SignExtend(si12, GRLEN)

Machine Translated by Google

77

fstx.d

FST.S writes the lower 32 bits of the floating-point register fd into memory. FST.D writes a double word of data from the floating-point register fd into memory.

For the FLD.{S/D} and FST.{S/D} instructions, regardless of the hardware implementation or environment configuration, as long as their memory access address is naturally aligned...

FSTX.S writes the lower 32 bits of the floating-point register fd to memory. FSTX.D writes a double-word of data from the floating-point register fd to memory.

fd, rj, rk fstx.s

Command format: fldx.s fd, rj, rk

Dragon Architecture Reference Manual Volume 1: Infrastructure

fd, rj, rk

Naturally aligned memory addresses will not trigger unaligned exceptions; however, when the memory access address is not naturally aligned, if the hardware implementation supports unaligned memory access and the current operation cycle...

If the environment is configured to allow unaligned memory access, then the unaligned exception will not be triggered; otherwise, the unaligned exception will be triggered.

The value of the high 32 bits is uncertain. FLDX.D retrieves a double word of data from memory and writes it to the floating-point register fd.

fldx.d

3.2.6.2FLDX.{S/D}, FSTX.{S/D}

fd, rj, rk

middle.

FLDX.S retrieves a word of data from memory and writes it to the lower 32 bits of the floating-point register fd. If the floating-point register is 64 bits wide, then fd...

The memory address of the above instruction is calculated by adding the value in the general-purpose register rj to the sign-extended 12-bit immediate value si12.

paddr = AddressTranslation(vaddr)

doubleword = MemoryLoad(paddr, DOUBLEWORD)

paddr = AddressTranslation(vaddr)

word = MemoryLoad(paddr, WORD)

FR[fd] = doubleword

FLDX.D:

vaddr = GR[rj] + SignExtend(si12, GRLEN)

FLDX.S:

paddr = AddressTranslation(vaddr)

AddressComplianceCheck(vaddr)

FST.S:

MemoryStore(FR[fd][31:0], paddr, WORD)

FST.D:

AddressComplianceCheck(vaddr)

vaddr = GR[rj] + GR[rk]

paddr = AddressTranslation(vaddr)

vaddr = GR[rj] + SignExtend(si12, GRLEN)

MemoryStore(FR[fd][63:0], paddr, DOUBLEWORD)

FR[fd][31:0] = word

AddressComplianceCheck(vaddr)

vaddr = GR[rj] + GR[rk]

AddressComplianceCheck(vaddr)

Machine Translated by Google

78

3.2.7 Floating-point boundary check memory access instructions

Certainly.

fd, rj, rk

fldle.d

fd, rj, rk

fstle.d

The memory access address of the above instruction is calculated by adding the value in general-purpose register rj to the value in general-purpose register rk.

fd, rj, rk

A word of data is retrieved from memory and written to the lower 32 bits of the floating-point register fd. If the floating-point register is 64 bits wide, the higher 32 bits of fd are undefined.

Retrieve a double word of data from memory and write it to the floating-point register fd.

fstgt.d

fd, rj, rk

fldgt.d

fstgt.s

fstle.s

FLD{GT/LE}.S checks if the value in general-purpose register rj is greater than or less than or equal to the value in general-purpose register rk. If the condition is met, it proceeds from...

fd, rj, rk

If the computing environment is configured to allow unaligned memory access, then the unaligned exception will not be triggered; otherwise, the unaligned exception will be triggered.

FLD{GT/LE}.D checks if the value in general-purpose register rj is greater than or less than or equal to the value in general-purpose register rk. If the condition is met, it proceeds from...

Command format: fldgt.s

In memory.

fd, rj, rk

fd, rj, rk

FLD{GT/LE}.{S/D} checks if the valid address is out of bounds, and retrieves the value from memory and writes it to the floating-point register.

3.2.7.1FLD{GT/LE}.{S/D}, FST{GT/LE}.{S/D}

Naturally aligned memory will not trigger unaligned exceptions; however, when the memory access address is not naturally aligned, if the hardware implementation supports unaligned memory access and the current operation...

fldle.s

Dragon Architecture Reference Manual Volume 1: Infrastructure

fd, rj, rk

For the FLDX.{S/D} and FSTX.{S/D} instructions, regardless of the hardware implementation or environment configuration, as long as their memory access address is...

MemoryStore(FR[fd][63:0], paddr, DOUBLEWORD)

AddressComplianceCheck(vaddr)

MemoryStore(FR[fd][31:0], paddr, WORD)

AddressComplianceCheck(vaddr)

paddr = AddressTranslation(vaddr)

AddressComplianceCheck(vaddr)

vaddr = GR[rj] + GR[rk]

FSTX.D:

FLDGT.S:

FSTX.S:

paddr = AddressTranslation(vaddr)

FR[fd][31:0] = word

paddr = AddressTranslation(vaddr)

if GR[rj]>GR[rk] :

vaddr = GR[rj]

word = MemoryLoad(paddr, WORD)

vaddr = GR[rj] + GR[rk]

Machine Translated by Google

FLDLE.D:

RaiseException(BCE) #Bound Check Error Exception

vaddr = GR[rj]

word = MemoryLoad(paddr, WORD)

vaddr = GR[rj]

paddr = AddressTranslation(vaddr)

FLDLE.S:

else :

vaddr = GR[rj]

AddressComplianceCheck(vaddr)

AddressComplianceCheck(vaddr)

RaiseException(BCE) #Bound Check Error Exception

FSTGT.S:

RaiseException(BCE) #Bound Check Error Exception

else :

if GR[rj]<=GR[rk] :

RaiseException(BCE) #Bound Check Error Exception

paddr = AddressTranslation(vaddr)

else :

FLDGT.D:

if GR[rj]>GR[rk] :

FR[fd][31:0] = word

if GR[rj]<=GR[rk] :

RaiseException(BCE) #Bound Check Error Exception

else :

FR[fd] = MemoryLoad(paddr, DOUBLEWORD)

paddr = AddressTranslation(vaddr)

FR[fd] = MemoryLoad(paddr, DOUBLEWORD)

MemoryStore(FR[fd][31:0], paddr, WORD)

vaddr = GR[rj]

AddressComplianceCheck(vaddr)

AddressComplianceCheck(vaddr)

if GR[rj]>GR[rk] :

paddr = AddressTranslation(vaddr)

else :

FST{GT/LE}.D checks if the value in general-purpose register rj is greater than or less than or equal to the value in general-purpose register rk. If the condition is met, then...

FST{GT/LE}.S checks if the value in general-purpose register rj is greater than or less than or equal to the value in general-purpose register rk. If the condition is met, then...

Dragon Architecture Reference Manual Volume 1: Infrastructure

FST{GT/LE}.{S/D} checks if the valid address is out of bounds and writes the value of the floating-point register to memory.

The double-word data in the floating-point register fd is written into memory.

The lower 32 bits of the floating-point register fd are written into memory.

79

Machine Translated by Google

80

The memory access addresses for the above instructions come directly from the value in the general-purpose register rj. All memory access addresses for the above instructions require natural alignment; otherwise, [the memory will be...].

Dragon Architecture Reference Manual Volume 1: Infrastructure

Trigger an unalignment exception. If the above instruction fails to meet the check conditions, it terminates the memory access operation and triggers a boundary check error exception.

RaiseException(BCE) #Bound Check Error Exception

AddressComplianceCheck(vaddr)

MemoryStore(FR[fd][31:0], paddr, WORD)

if GR[rj]<=GR[rk] :

vaddr = GR[rj]

MemoryStore(FR[fd][63:0], paddr, DOUBLEWORD)

FSTLE.S:

else :

RaiseException(BCE) #Bound Check Error Exception

AddressComplianceCheck(vaddr)

RaiseException(BCE) #Bound Check Error Exception

paddr = AddressTranslation(vaddr)

if GR[rj]<=GR[rk] :

else :

FSTLE.D:

AddressComplianceCheck(vaddr)

vaddr = GR[rj]

vaddr = GR[rj]

else :

MemoryStore(FR[fd][63:0], paddr, DOUBLEWORD)

paddr = AddressTranslation(vaddr)

FSTGT.D:

paddr = AddressTranslation(vaddr)

if GR[rj]>GR[rk] :

Machine Translated by Google

4.2.1 CSR Access Commands

4.2 Overview of Privileged Instructions

4.1 Privilege Levels

For Linux systems, only PLV0 level in the architecture corresponds to kernel mode, while it is recommended to use PLV3 level to correspond to user mode.

creator

When RPCNTL1/RPCNTL2/RPCNTL3 is configured to 1, CSRRD instruction reads can be executed under the PLV1/PLV2/PLV3 privilege levels.

Energy counter.

csrxchg

rd, csr_num

The CSRRD, CSRWR, and CSRXCHG instructions are used for software access to CSRs. The CSRRD instruction writes the value of the specified CSR to a general-purpose register.

The CSRXCHG instruction, based on the write mask information stored in the general-purpose register rj, writes the old value from the general-purpose register rd to the bits in the specified

CSR where the write mask is 1. The remaining bits in the CSR remain unchanged, and the old value of the CSR is updated in the general-purpose register rd.

Of all privilege levels, PLV0 is the highest privilege level, and the only one that can use privileged instructions and access all privileged resources.

All privileged instructions are accessible only at the PLV0 privilege level. There is only one exception.

Dragon Architecture Reference Manual Volume 1: Infrastructure

In the Dragon architecture, processor cores are divided into four privilege levels (PLVs): PLV0 to PLV3.

The privilege levels PLV1 through PLV3 are not allowed to execute privileged instructions or access privileged resources. However, these three privilege levels are configured in the MMU.

ÿ

Command format: csrrd

The CSRWR instruction writes the old value from the general-purpose register rd to the specified CSR, and simultaneously updates the old value of the specified CSR to the general-purpose register rd.

rd, csr_num

The privilege level previously held is uniquely determined by the value of the PLV field in CSR.CRMD.

rd, rj, csr_num

All CSR registers are either 32 bits wide or the same width as the GR registers in the architecture; therefore, CSR access instructions are not distinguishable by bit width.

All CSR registers use an independent address space. In the above instructions, the address value of the CSR comes from the 14-bit immediate value csr_num in the instruction.

In the LA32 architecture, all CSRs are naturally 32 bits wide. In the LA64 architecture, CSRs with a fixed width of 32 bits in the definition are always sign-expanded.

The addressing unit of a CSR is a CSR register, that is, the csr_num of CSR 0 is 0, the csr_num of CSR 1 is 1, and so on.

The result is written to the general-purpose register rd after the expansion.

In the device rd.

4.2.1.1CSRRD, CSRWR, CSRXCHG

Different access permissions are used when using the mapped address translation mode.

When in CSR.MISC

4. Overview of Privileged Resource Architecture

81

Machine Translated by Google

4.2.3 Cache Maintenance Instructions

4.2.2 IOCSR Access Commands

code, rj, si12

iocsrwr.w

rd, rj

Storage format. The IOCSR space uses direct address mapping, where the physical address is directly equal to the logical address. IOCSR{RD/WR}.{B/H/W/D}

rd, rj

The write action to update the CSR also includes the read action to read the old value of the CSR.

The IOCSRRD.D and IOCSRWR.D instructions only appear in the LA64 architecture.

iocsrrd.h

rd, rj

The instruction's IOCSR address comes from the general-purpose register rj.

The write operation does not modify any software-visible state of the processor. It is important to note that the CSRWR and CSRXCHG instructions not only contain...

In register rd.

4.2.2.1IOCSR{RD/WR}.{B/H/W/D}

yoxrwr.b

4.2.3.1CACOP

The IOCSR{RD/WR}.{B/H/W/D} instruction is used to access the IOCSR.

yoxrwr.h

rd, rj

rd, rj

All IOCSR registers use independent addressing spaces, with the basic addressing unit being the byte. All data in the IOCSR space is little-endian.

The IOCSRWR.{B/H/W/D} instruction writes bits [7:0]/[15:0]/[31:0]/[63:0] from the general-purpose register rd to the IOCSR space.

iocsrrd.w

rd, rj

The CACOP instruction is primarily used for cache initialization and cache consistency maintenance.

The IOCSRRD.{B/H/W} instruction retrieves a byte/half-word/word of data from the specified address in the IOCSR space, sign-extends it, and writes it to the specified address.

The IOCSR register can typically be accessed simultaneously by multiple processor cores. The execution of IOCSR access instructions on multiple processor cores must satisfy a sequential order.

rd, rj

Dragon Architecture Reference Manual Volume 1: Infrastructure

When a CSR access instruction accesses a CSR that is not defined in the architecture or not implemented in the hardware, the read operation can return any value (returning all zeros is recommended).

Using register rd, the IOCSRRD.D instruction retrieves a double-word length of data from the specified address in the IOCSR space, sign-extends it, and writes it to the general purpose register.

Coherence conditions.

iocsrwr.d

Command format: cacop

The starting point of the address.

iocsrrd.d

Command format: iocsrrd.b

rd, rj

82

Machine Translated by Google

4.2.4 TLB Maintenance Commands

The storage level into which data is stored is determined by the specific cache hierarchy implemented and the inclusion or mutual exclusion relationships between each level. For data caches or hybrid caches,

The ̀load` instruction accesses the cache to be operated on. If a cache hit occurs, the operation is performed on the hit cache line; otherwise, no operation is performed. Because of this...

The operations for maintaining cache consistency are the same as described in the previous paragraph. The so-called lookup index method treats the VA of the CACOP instruction as a regular...

The index field of CSR.TLBIDX is set, and the NE position of CSR.TLBIDX is set to 0; if no item is found, then the index field of CSR.TLBIDX is set to 0.

The instruction operates on cache lines, so address alignment is not a concern in this case.

`code[4:3]=0` indicates that this is used for cache initialization (Store Tag), setting the tag of the specified cache line to all zeros. Assuming the accessed cache...

Use the CSR.ASID and CSR.TLBEHI information to query the TLB. If a match is found, write the index value of the match to...

There are (1<<Way) paths, each path has (1<<Index) cache lines, and each cache line is (1<<Offset) bytes in size. Then, the...

code[4:3]=2 indicates that the cache consistency is maintained using a query index method (Hit Invalidate / Invalidate and Writeback).

The Cache object, code[4:3] indicates the operation type.

The specific implementation determines whether to write back cached line data only when the cache line data is dirty.

Command format: tlbsrch

4.2.4.1TLBSRCH

Used to indicate the location of the cache line being operated on.

From row 0 to the last row, then from row 0 to the last row of the first path, until the last row of the last path, MTLB is from row 0 to the last row.

The cache object indicated by code[2:0] is consistent with the cache order identified in CPUCFG10. For example, when CPUCFG10=0x02C3D

Please refer to the previous paragraph for the definition of direct address indexing. Maintaining consistency involves invalidating and writing back a specified cache entry.

At that time, code[2:0]=0 indicates operation on the first-level private instruction cache, code[2:0]=1 indicates operation on the first-level private data cache, and code[2:0]=2 indicates...

The query process may involve virtual-to-physical address translation, so in this case, the CACOP instruction may trigger TLB-related exceptions. However, because CACOP...

This section provides the functional definition of the TLBSRCH instruction when the LVZ extension is not implemented.

The NE position is 1.

If the operation is on the instruction cache, then only an invalidation operation is needed; it is not necessary to write back the data in the cache line. The written-back data then...

The CACOP instruction determines which cache it accesses and what cache operation it performs, determined by the 5-bit code in the instruction. code[2:0] indicates the operation.

The operation of the second-level private hybrid cache, code[2:0]=3 indicates the operation of the third-level shared hybrid cache.

The index value calculation rule for each item in the TLB is to start from 0 and increment sequentially, first for STLB then for MTLB. In STLB, the index value starts from the 0th path.

Using direct address indexing means operating on the VA[Index+Offset-1:Offset]th cache line of the VA[Way-1:0]th path of this cache.

code[4:3]=3 is a custom cache operation that is not explicitly defined in the architecture specification.

Dragon Architecture Reference Manual Volume 1: Infrastructure

Adding the value of the general-purpose register rj to the sign-extended 12-bit immediate value si12 will yield the virtual address VA used by the CACOP instruction, which will...

code[4:3]=1 indicates that the cache consistency is maintained by direct address indexing (Index Invalidate / Invalidate and Writeback).

83

Machine Translated by Google

It is important to note that valid/invalid TLB entries and valid/invalid page table entries in the TLB are two different concepts.

The location where page table entries are written to the TLB is specified by the value of the Index field of CSR.TLBIDX. For specific rules, please refer to TLBSRCH.

This section defines the functionality of the TLBFILL instruction when LVZ extensions are not implemented.

This section provides the functional definition of the TLBWR instruction when the LVZ extension is not implemented.

Set to 1, and it is recommended to mask and protect the read content, such as CSR.ASID.ASID, CSR.TLBEHI, CSR.TLBELO0, CSR.TLBELO1.

Neither CSR.TLBIDX.PS is updated or all are set to 0.

A valid TLB entry will only be filled into the TLB when CSR.TLBIDX.NE=0.

This section provides the functional definition of the TLBRD instruction when the LVZ extension is not implemented.

4.2.4.2TLBRD

Page entries will be populated in the STLB if the page size is equal to the page size configured in the STLB (CSR.STLBPS); otherwise, they will be populated in the MTLB.

4.2.4.3TLBWR

Command format: tlbwr

The TLBFILL instruction fills the TLB with page table entry information stored in the relevant CSR. The page table entry information being filled comes from...

If there is a conflict between the value of VPPN and CSR.TLBEHI and CSR.TLBIDX.PS, then the processor's behavior is uncertain.

When page table entries are populated, the first step is to determine whether to write to the STLB or MTLB based on the page size of the page table entry being populated.

The instructions specify the calculation rules for each index value in the TLB. If a page table entry is to be written to the STLB, but the Index field of CSR.TLBIDX...

Command format: tlbrd

If the index value used for access exceeds the range of the TLB, the processor's behavior is unpredictable.

If an item is specified, then the page table information of that TLB item is written to CSR.TLBEHI, CSR.TLBELO0, CSR.TLBELO1, and CSR.TLBIDX.PS

CSR.TLBEHI, CSR.TLBELO0, CSR.TLBELO1, and CSR.TLBIDX.PS. If CSR.TLBRERA.IsTLBR=1 at this time, that is, at...

Dragon Architecture Reference Manual Volume 1: Infrastructure

If the TLB is in the process of being refilled as an exception, then a valid entry will always be filled into the TLB (i.e., the E bit of the TLB entry will be 1). Otherwise,

4.2.4.4TLBFILL

Command format: tlbfill

The value of the Index field of CSR.TLBIDX is used as the index to read the specified item in the TLB. If the specified position is a valid TLB...

The TLBWR instruction writes page table entry information stored in the relevant CSR in the TLB to a specified entry in the TLB. The page table entry information being filled in comes from...

In the middle, set the NE bit of CSR.TLBIDX to 0; if the specified position is an invalid TLB entry, the NE bit of CSR.TLBIDX must be set to 0.

You need to check the value of the CSR.TLBIDX.NE bit. If CSR.TLBIDX.NE = 1, then an invalid TLB entry will be filled into the TLB; only when...

A valid TLB entry will only be filled into the TLB when CSR.TLBIDX.NE=0.

This requires checking the value of the CSR.TLBIDX.NE bit. If CSR.TLBIDX.NE = 1, then an invalid TLB entry will be filled into the TLB.

During TLB refill exception handling, a valid entry is always filled into the TLB (i.e., the E bit of the TLB entry is 1). Otherwise, it is necessary to...

From CSR.TLBEHI, CSR.TLBELO0, CSR.TLBELO1, and CSR.TLBIDX.PS. If CSR.TLBRERA.IsTLBR=1 at this time,

84

Machine Translated by Google

Command format: invtlb

In the extended case, the function definition of the INVTLB instruction.

The INVTLB instruction is used to invalidate the contents of the TLB to maintain page table data consistency between the TLB and memory. Here is an example of a non-implemented LVZ.

Command format: tlbflush

The function definition of the TLBFLUSH instruction without implementing LVZ extension.

Page table entries with G=0 and ASID equal to CSR.ASID.ASID are invalidated.

When CSR.TLBIDX.Index falls within the MTLB range (greater than or equal to the STLB number of items), execute TLBFLUSH to move all items in the MTLB.

0. When the operation indicated by op does not require ASID, the general-purpose register rj should be set to r0.

Dragon Architecture Reference Manual Volume 1: Infrastructure

When CSR.TLBIDX.Index falls within the MTLB range (greater than or equal to the STLB number of items), TLBCLR is executed, removing all items from the MTLB.

The function definition of the TLBCLR instruction without implementing LVZ extension.

When the operation does not require virtual address information, the general-purpose register rk should be set to r0.

When CSR.TLBIDX.Index falls within the STLB range (less than the number of STLB items), execute a TLBFLUSH statement to move items from the STLB.

Command format: tlbclr

All page table entries in the group indicated by the low bit of CSR.TLBIDX.Index that are equal to G=0 and have ASID equal to CSR.ASID.ASID are invalidated.

4.2.4.6TLBFLUSH

The content in the TLB is invalidated based on the information in the TLB-related CSR to maintain the consistency of page table data between the TLB and memory. This is given here.

The content in the TLB is invalidated based on the information in the TLB-related CSR to maintain the consistency of page table data between the TLB and memory. This is given here.

4.2.4.7INVTLB

Of the three source operands of the instruction, op is a 5-bit immediate value used to indicate the operation type.

Bits [9:0] of the general-purpose register rj store the ASID information required for invalid operations (called the "register-specified ASID"). The remaining bits must be filled.

The general-purpose register rk stores the virtual address information (called the "register specification VA") required for invalid operations. When op indicates...

Which path in the STLB or which item in the MTLB is entered is randomly selected by the hardware.

The page table entries in all paths of the group indicated by the low bit of CSR.TLBIDX.Index are invalidated.

4.2.4.5TLBCLR

Page table entries are invalidated.

up, rj, rk

When CSR.TLBIDX.Index falls within the STLB range (less than the number of STLB items), execute a TLBCLR statement to change the STLB value from the specified value.

85

Machine Translated by Google

0x3 Clear all page table entries where G=0.

0x2 Clear all page table entries where G=1.

0x6 Clears all page table entries where G=1 or ASID equals the ASID specified in the register and VA equals the VA specified in the register.

86

0x5 Clears page table entries where G=0, ASID equals the ASID specified in the register, and VA equals the VA specified in the register.

0x0 Clear all page table entries.

0x1 Clears all page table entries. This operation has the same effect as op=0.

0x4 Clears all page table entries where G=0 and ASID equals the ASID specified in the register.

If bit [6] of the general-purpose register rj is 1, it indicates that the value of the general-purpose register rj is a page table entry of a HugePage.

operate

Dir1, level=2 corresponds to Dir2 in CSR.PWCL; level=3 corresponds to Dir3 in CSR.PWCH; level=4 corresponds to Dir3 in CSR.PWCH.

4.2.5.2LDPTE

Command format: lddir

The LDPTE instruction is used to access page table entries during software page table traversal.

If bits [14:13] of rj are not equal to 0, it indicates that the page table entry for that large page has been marked with the corresponding page table level. In this case, the general-purpose register rj will be...

on

The LDDIR instruction is used to access directory entries during software page table traversal.

Dragon Architecture Reference Manual Volume 1: Infrastructure

The operations corresponding to each op are shown in the table below. Ops that do not appear in the table will trigger reserved instruction exceptions.

Command format: ldpte

Write to the general-purpose register rd. Note that the next level page table after the level 1 page table is not limited to the level-1 page table.

The value is written directly into the general-purpose register rd.

The 8-bit immediate value ̀level` in the ̀LDDIR` instruction indicates which level of page table is being accessed. ̀level=1` corresponds to the value in ̀CSR.PWCL`.

The immediate value ̀seq` in the LDPTE instruction indicates whether the page being accessed is even or odd. When accessing an even page, the result will be written to...

CSR.TLBRELO0 means that when accessing odd-numbered pages, the results will be written to CSR.TLBRELO1.

If bit [6] of the general-purpose register rj is 0, it indicates that the value of the general-purpose register rj is the physical address of the base address of the level-1 page table.

4.2.5.1LDDIR

Dir4.

Step by step, if bits [14:13] of the general-purpose register rj are equal to 0, it indicates that the page table entry for that large page has not yet been marked with the corresponding page table level.

rj, seq

In this case, replace bits [14:13] of the general-purpose register rj with level[1:0] and then write the entire value into the general-purpose register rd; if the general-purpose register

rd, rj, level

When the LDDIR instruction is executed, it will access the level-1 page table based on the currently processed TLB refill address and retrieve the base address of the next-level page table.

If bit [6] of the general-purpose register rj is 0, it indicates that the content in rj is the physical address of the base address of the page table at the PTE level.

4.2.5 Software Page Table Traversal Instructions

Machine Translated by Google

4.2.6 Other Miscellaneous Instructions

If bit [6] of the general-purpose register rj is 1, it indicates that the content of rj is a HugePage page table entry. In this case,

Command format: dbcl

When the LDPTE instruction is executed, it accesses the PTE-level page table based on the currently processed TLB refill address, retrieves the page table entry, and writes it to the corresponding address.

The information comes from CSR.PRMD, and the return address corresponding to the exception comes from CSR.ERA.

The corresponding return address comes from CSR.MERRERA. In addition, the Error class exception also requires the PDA, PPG, and other files in CSR.MERRCTL to be returned.

If the exception being processed is a TLB refill exception, the corresponding PPLV, PIE, and PWE information comes from CSR.TLBRSAVE, for example...

The finger is taken from the starting point.

Bits [14:13] of the general-purpose register rj should be a non-zero value 'n', indicating that it is a large page table entry corresponding to the nth level page table. Set the general-purpose register rj...

In CSR.CRMD, the program simultaneously jumps to the return address corresponding to the exception to begin fetching instructions.

4.2.6.1ERTN

Executing the DBCL command will immediately enter debug mode.

If the exception being handled is not a Debug exception, an Error class exception, or a TLB refill exception, then the corresponding PPLV, PIE, and PWE...

When executing the ERTN instruction, if the KLO bit in CSR.LLBCTL is not equal to 1, then LLbit is set to 0; otherwise, LLbit is not modified.

code

If the exception being handled is an Error class exception, the corresponding PPLV, PIE, and PWE information comes from CSR.MERRCTL.

The corresponding return address comes from CSR.TLBRERA. In addition, the DA bit in CSR.CRMD must be cleared to 0 and the PG bit set to 1.

Dragon Architecture Reference Manual Volume 1: Infrastructure

4.2.6.3IDLE

If the exception being handled is not a debug exception, update the corresponding PPLV, PIE, PWE, and other information to [the relevant information].

4.2.6.2DBCL

level Command format: idle

Command format: ertn

If the exception being handled is a Debug exception, clear the DS bit in CSR.DBG and jump to the address stored in CSR.DERA.

PDCAF and PDCAM information are updated in CSR.CRMD.

After executing the IDLE instruction, the processor core will stop fetching instructions and enter a wait state until it is woken up by an interrupt or reset.

CSR.

After a pause, the first instruction executed by the processor core is the one following IDLE.

The values in the table are converted into the final page table entry format and then written into the corresponding CSR.

The ERTN instruction is used to return from exception handling.

87

Machine Translated by Google

Machine Translated by Google

89

5.2 Virtual Address Space and Address Translation Mode

5.1 Physical Address Space

The system software configures four direct mapping configuration windows by configuring the CSR.DMW0~CSR.DMW3 registers. Each window, in addition to...

In addition to the address range information, you can also configure under which privilege levels this window is available, and the storage of memory access operations where virtual addresses fall on this window.

The Dragon architecture's MMU supports two virtual and physical address translation modes: direct address translation mode and mapped address translation mode.

The physical address is by default directly equal to the [PALEN-1:0] bits of the virtual address (padded with 0s if necessary), unless a higher priority is used in the specific implementation.

When DA=0 and PG=1 in CSR.CRMD, the processor core's MMU is in mapped address translation mode. This is further divided into direct mapping...

In the Dragon architecture, the virtual address space is linearly flat. For PLV0 level, the virtual address space size under the LA32 architecture is 2^ 32 bytes.

When DA=1 and PG=0 in CSR.CRMD, the processor core's MMU is in direct address translation mode. In this mapping mode,

When the processor core's MMU is in mapped address mode, direct mapping between virtual and physical addresses can also be achieved through the direct mapping configuration window mechanism.

In the mapping mode, there is no need to perform this address invalidity check.

In the LA32 architecture, PALEN is theoretically a positive integer not exceeding 36, with its specific value determined by the implementation, but 32 is usually recommended.

Dragon Architecture Reference Manual Volume 1: Infrastructure

The physical address space range of memory is 0~ 2PALEN-1.

The system software can determine the specific value of PALEN by reading the PALEN field of configuration word 0x1 through CPUCFG.

Virtual and physical address translation rules. As you can see, the entire virtual address space is valid at this point. After the processor resets, it will enter the direct address translation phase.

In the LA64 architecture, PALEN is theoretically a positive integer not exceeding 60, with its specific value determined by the implementation.

There are two types of address translation mode (referred to as "direct mapping mode") and page table mapping address translation mode (referred to as "page table mapping mode"). Translation

The virtual address space in the LA64 architecture is 2 ̂ 64 bytes. However, for the LA64 architecture, not all 2 ̂ 64 bytes of virtual address space are...

It is legal, and it can be assumed that some virtual address gaps exist. A legal virtual address space is closely related to the address mapping pattern, which will be discussed later.

Under this architecture, when using page table mapping mode, the rule for determining the validity of the virtual address space is: the [63:VALEN] bits of a valid virtual address must be equal to...

The [VALEN-1] bits must be identical, meaning all bits above [VALEN-1] are its sign extension; otherwise, an Address Error (ADE) exception will be triggered. However, in direct...

model.

The direct mapping configuration window has four windows. The first two windows can be used for both instruction fetching and load/store operations simultaneously, while the last two windows are only used for...

Load/store operations.

For a detailed explanation of mapping modes, please refer to Section 5.2.1; for a detailed explanation of page table mapping modes, please refer to Section 5.4. This section focuses on LA64.

This will be introduced in conjunction with the definition of address mapping modes.

When translating addresses, the system will first check if they can be translated using the direct mapping mode; if not, it will then proceed with the page table mapping mode. (Regarding direct mapping...)

5 Storage Management

5.2.1 Direct Mapping Address Translation Mode

Machine Translated by Google

5.3 Storage Access Types

When a valid direct mapping configuration window is hit, its physical address is directly equal to the [28:0] bits of the virtual address, appended with the physical address configured in that mapping window.

For example, with PALEN equal to 48, by configuring DMW0 to 0x9000000000000011, then at PLV0 level...

In the LA32 architecture, each direct-mapped configuration window can be configured with a fixed-size virtual address space of 229 bytes. When the virtual address...

Access type.

The address will be directly mapped to the physical address space 0x0 ~ 0x1FFFFFFF, and its storage access type is consistent and cacheable.

When application software binaries based on the LA32 architecture are run on processors implementing the LA64 architecture, in order to obtain the same results, it is necessary to...

Special handling is required for address calculations within instructions; this is the 32-bit address mode control unique to the LA64 architecture. When CSR.MISC...

At this point, the hardware will use the value after zero-extending the lower 32 bits of the virtual address of the memory access (including instruction fetch memory access) to 64 bits as the virtual address of the memory access, and BL and JIRL...

When a physical address hits a valid directly mapped configuration window, its physical address is directly equal to the [PALEN-1:0] bits of the virtual address. The hit determination method is:

Instructions like PCADD will also sign-extend the lower 32 bits of the result to 64 bits before writing it back to the result register.

Dragon Architecture Reference Manual Volume 1: Infrastructure

The high-order bits of the virtual address. The hit detection method is: the highest 3 bits of the virtual address (bits [31:29]) are equal to [31:29] in the configuration window register, and when...

The highest 4 bits of the virtual address (bits [63:60]) are equal to the VSEG field in the configuration window register, and the current privilege level is allowed in this configuration window.

When VA32L1/VA32L2/VA32L3 is set to 1, software running at PLV1/PLV2/PLV3 levels will run in 32-bit address mode.

The virtual address space from 0x900000000000000 to 0x9000FFFFFFFFFFFF, which was originally invalid in page mapping mode, will be mapped.

To reduce page table levels in certain applications, the LA64 architecture also provides a virtual address reduction mode. When system software...

When the RDVA in the CSR.RVACFG register is configured to a value between 1 and 8, the valid bits of the virtual address in the mapped address translation mode will be determined according to...

(VALEN-RDVA) requires so many bits for processing. For example, on a processor with VALEN=48, when RDVA is configured to 8, the valid address...

CC, Strongly-ordered Uncached (SUC), and Weakly-ordered Uncached (WC)

As mentioned in Section 2.1.7 above, the Dragon architecture supports three storage access types: Coherent Cached (or simply Cached).

It is mapped to the physical address space 0x0 ~ 0xFFFFFFFFFFFF, and the storage access type is consistent and cacheable.

(referred to as WUC).

For example, by configuring DMW0 to 0x80000011, then at PLV0 level, the range 0x80000000 ~ 0x9FFFFFFF...

The [63:40]th bit needs to be the sign extension of the [39]th bit.

Under the LA64 architecture, each direct mapping configuration window can be configured with a fixed-size virtual address space of 2 PALEN bytes. When the virtual address space...

When the processor core MMU is in direct address translation mode, all memory access types for instruction fetching are determined by CSR.CRMD.DATF.

May.

The previous privilege level is allowed in this configuration window.

5.2.3 Virtual Address Reduction Mode under LA64 Architecture

5.2.2 32 -bit address mode under the LA64 architecture

90

Machine Translated by Google

5.4.2 TLB Entries

5.4.1 TLB Organizational Structure

The MAT field in the CSR register determines the memory access type. If instruction fetching or load/store can only be mapped through the page table, then the memory access type is determined by the page table.

When the processor core MMU is in mapped address translation mode, the determination of the memory access type falls into two categories. If it's instruction fetch or load/store...

Regardless of the specific circumstances, the definition of the storage access type control value remains the same: 0 – strong order, non-cached; 1 – consistent, cached.

The storage access type for load/store operations is determined by the CSR.CRMD.DATM domain.

It is configured in the PS field of the CSR.STLBPS register by the system software.

Store, 2 - weak order, no cache, 3 - keep.

If the group is configured with a page size of 2 PS bytes, then during the hardware STLB lookup process, the [PS+INDEX:PS+1] bits of the virtual address are used as the index.

The virtual-to-physical address translation process for instruction fetch and load/store operations in translation mode.

The hit occurs when the processor is active; otherwise, the processor's behavior will be unpredictable.

The table entry formats of STLB and MTLB are basically the same, the only difference being that each entry in MTLB includes page size information, while STLB...

Use reference values to access various information.

The format of each TLB entry is shown in Figure 5-1, which contains two parts: a comparison part and a physical conversion part.

Whether a page table entry with the same page size as the STLB can enter the MTLB is determined by the implementation and is not restricted by the architecture specification.

If the address of the operation falls on a direct mapping configuration window, then the storage access type of the fetch or load/store operation is determined by the configuration of that window.

Since it's the same page size, the TLB entry doesn't need to store the page size information again. For STLB, the page size of the page table entry it stores...

MTLB uses a fully associative lookup table organization, while STLB uses a multi-way set-associative organization. For STLB, if it has 2 INDEX...

MTLB).

The MAT field in the item determines this.

The mapping completes the virtual-to-physical address translation. The TLB, acting as a temporary cache in the processor storing operating system page table information, is used to accelerate the address mapping process.

In the Dragon architecture, the TLB is divided into two parts: a single-page-size TLB where all entries have the same page size.

During the virtual-to-physical address translation process, both the STLB and MTLB are looked up simultaneously. Accordingly, the software must ensure that the MTLB and STLB are not accessed concurrently.

Dragon Architecture Reference Manual Volume 1: Infrastructure

In mapped address translation mode, all valid addresses, except those falling within the direct mapping configuration window, must be translated through the page table.

The other is the Multiple-Page-Size TLB (TLB), which supports different page sizes for different entries.

5.4 Page Table Mapping Storage Management

91

Machine Translated by Google

92

Figure 5-1 TLB Entry Format

The comparison section of the TLB entries includes:

Therefore, the virtual page number stored in the TLB page table entry is the virtual page number in the system divided by 2, meaning the least significant bit of the virtual page number does not need to be stored.

In addition to verifying that the address information matches, it is also necessary to verify the ASID information.

It is based on the LA64 architecture.

It is based on the LA64 architecture.

ÿ Page Size (PS), 6 bits. Appears only in MTLB. Used to specify the page size stored in this page table entry. The value is 2 times the page size.

ÿ Privilege Level (PLV), 2 bits. The privilege level corresponding to this page table entry. When RPLV=0, this page table entry can be accessed by any privileged user.

ÿ Valid bit (V), 1 bit. A value of 1 indicates that the page table entry is valid and has been accessed.

ÿ Restricted Privilege Level Enable (RPLV), 1 bit. A control bit indicating whether a page table entry is accessed only by programs of the corresponding privilege level. Please refer to [link/reference].

When all processes share the same virtual address, the G bit in the TLB page table entry can be set to 1.

ÿ Non-executable bit (NX), 1 bit. A value of 1 indicates that instruction fetching is not allowed in the address space containing this page table entry. This control bit only determines...

The performance penalty of clearing the entire TLB during swapping. The operating system assigns a unique ASID to each process, and the TLB performs lookups...

ÿ Dirty bit (D), 1 bit. A value of 1 indicates that there is dirty data in the address range corresponding to this page table entry.

See the contents of PLV above. This control bit is only defined in the LA64 architecture.

ÿ Virtual Double Page Number (VPPN), (VALEN-13) bits. In the Dragon architecture, each page table entry stores a pair of adjacent odd-even adjacent page tables.

Dragon Architecture Reference Manual Volume 1: Infrastructure

ÿ Existence bit (E), 1 bit. A value of 1 indicates that the corresponding TLB entry is not empty and can participate in the search and matching.

Change information.

For the specific meaning of the value, see Section 5.3 .

The power of the power. That is, for a 16KB page, PS=14.

ÿ Address Space Identifier (ASID), 10 bits. The address space identifier is used to distinguish the same virtual address in different processes, avoiding process switching.

The bit can be any value.

Programs with a privilege level of at least PLV can access this page table entry; when RPLV=1, this page table entry can only be accessed by programs with a privilege level equal to PLV.

The physical translation section of the table entry stores the physical translation information for a pair of odd-even adjacent page tables. The translation information for each page includes:

ÿ Global Flag (G), 1 bit. When this bit is 1, no ASID consistency check is performed during the lookup. This is necessary when the operating system requires...

In the TLB, when searching the TLB, the least significant bit of the virtual page number being searched determines whether to select an odd-numbered or even-numbered page for physical transfer.

ÿ Unreadable bit (NR), 1 bit. A value of 1 indicates that a load operation is not allowed in the address space containing this page table entry. This control bit is only used to specify the access level.

ÿ Physical Page Number (PPN), (PALEN-12) bits. When the page size is greater than 4KB, the PPN stored in the TLB is [PS-1:12] bits.

ÿ Memory Access Type (MAT), 2 bits. Controls the memory access type of memory access operations falling within the address space of this page table entry. (Each number...)

PLV0

G

RPLV0

PS

PPN1

ACID

RPLV1 PLV1 MAT1 NX1 NR1 D1 V1

AND

D0 V0

VPPN

PPN0 MAT0 NX0 NR0

Machine Translated by Google

93

ÿ Page privilege level non-compliance exception: The virtual address of the memory access operation found a matching entry with V=1 in the TLB, but the access privilege level...

ÿ Instruction fetch page invalid exception: If a match is found in the TLB for the virtual address of the instruction fetch operation, but the matching page table entry has V=0, this will trigger an exception.

TLB-related instructions mainly involve operations such as searching, reading, writing, and invalidating the TLB, and are used for TLB filling, updating, and consistency.

ÿ TLB Refill Exception: This exception is triggered when no match is found in the TLB for the virtual address accessed in the memory access operation, notifying the system software to proceed.

If access is illegal, an exception needs to be triggered, handing the matter over to the operating system kernel or other monitoring programs for further processing by the software, including the contents of the TLB.

The TLB performs virtual-to-physical address translation automatically in hardware. However, this can happen when there is no matching entry in the TLB, or when a match is found but the page table entry is invalid.

ÿ Load operation page invalid exception: If a match is found in the TLB for the virtual address of the load operation, but the matching page table entry has V=0, this will trigger an exception.

ÿ Page Modification Exception: The virtual address of the store operation is matched in the TLB, V=1, and the privilege level is compliant, but the page...

This exception will be triggered if the privilege level is non-compliant. Non-compliance is manifested as RPLV=0 and CSR.CRMD.PLV value being large for the page table entry.

In the Dragon architecture, TLB management involves software aspects. In version 1.0x of this architecture specification, TLB refilling and the relationship between TLB and memory pages...

Maintaining consistency between tables is still entirely handled by the software.

This exception will be triggered if the D bit of the entry is 0.

The PLV in the page table entry; or the RPLV of the page table entry is 1 and CSR.CRMD.PLV is not equal to the PLV in the page table entry.

It will also automatically set CSR.TLBRERA.ISTLBR to position 1.

ÿ Page Non-Executable Exception: A matching entry was found in the TLB for the virtual address of the instruction fetch operation, where V=1 and the privilege level is compliant, but...

5.4.3.1 TLB -related exceptions

When this happens, the hardware will automatically set DA to 1 and PG to 0 in CSR.CRMD, thus automatically entering direct address translation mode and avoiding...

This is an exception.

The TLB refills the CSR used after an exception trap and the CSRs available for other exceptions. Simultaneously with the TLB refilling of the exception trap, the hardware...

ÿ Page Unreadable Exception: The virtual address of the load operation is found to match in the TLB, V=1, and the privilege level is compliant, but the...

Dragon Architecture Reference Manual Volume 1: Infrastructure

This exception will be triggered if the NX bit of this page table entry is 1.

The TLB access interface CSR means that this exception can be triggered during the handling of other exceptions. The TLB refill exception trap is the same...

ÿ Store operation page invalid exception: If a match is found in the TLB for the virtual address of the store operation, but the V=0 of the matching page table entry, this will trigger an exception.

This exception will be triggered if the NR bit of a page table entry is 1.

To perform maintenance or make a final ruling on the legality of program execution. Exceptions related to TLB management in the Dragon architecture include:

5.4.3.2 TLB- related instructions

If the exception handler that was previously exempt from TLB re-filling triggers a TLB re-filling exception again, the exception context will not be saved or restored. This is to prevent...

This is an exception.

This is an exception.

Maintenance. For specific instruction definitions, please refer to sections 4.2.4 and 4.2.5 of this manual.

The TLB is refilled. This exception has its own exception entry point, a separate CSR for maintaining the exception context, and a separate set of procedures.

5.4.3 TLB Software Management

Machine Translated by Google

94

5.4.4 TLB -based virtual-physical address translation process

ÿ ACID

ÿ TLBRELO0

The Dragon architecture allows for hardware initialization of the TLB without implementation, allowing the startup software to accomplish this function by executing "INVTLB 0, r0, r0".

ÿ PWCL

ÿ PGDL

ÿ EXPECTATION0

ÿ OBSERVATION

ÿ PWCH

The second category includes:

ÿ TLBRSAVE

ÿ TLBRPRMD

ÿ STLBPS

ÿ TLBRERA

ÿ TLBRELO1

ÿ PGDH

Dragon Architecture Reference Manual Volume 1: Infrastructure

ÿ PGD

ÿ TLBRBADV

The third category includes:

The first category includes:

TLB-related CSRs are mainly divided into three categories according to their functions. The first category is for the interaction interface of the TLB in non-TLB refill exception cases.

5.4.3.3 TLB- related CSR

ÿ TLBRENTRY

ÿ TLBELO1

This section describes the virtual-to-physical address translation process based on the TLB. The following description uses pseudocode to illustrate the process of first checking the STLB and then the MTLB.

The process described here is for ease of description only; in the processor hardware implementation, both STLB and MTLB can be searched simultaneously.

5.4.3.4 TLB Initialization

The first class is used for traversing hardware and software page tables, and the third class is used for TLB refill exceptions.

ÿ TLBREHI

ÿ BADV

For details on the interaction between the above CSR registers and the TLB, please refer to the detailed definitions of each CSR in Section 7.4 .

ÿ TLBIDX

va: Virtual address to be found

Machine Translated by Google

((STLB[way][stlb_idx].G==1) or (STLB[way][stlb_idx].ASID==CSR.ASID.ASID))

sfound_d = STLB[way][stlb_idx].D0

Find STLB

sfound_ppn = STLB[way][stlb_idx].PPN0

stlb_ps = CSR.STLBPS.PS

else :

and

(STLB[way][stlb_idx].VPPN[VALEN-1:stlb_ps+1]==va[VALEN-1:stlb_ps+1]) :

sfound_nr = STLB[way][stlb_idx].NR0

else :

stlb_found = 0

sfound_ppn = STLB[way][stlb_idx].PPN1

stlb_idx = and[stlb_ps+STLB_INDEX:stlb_ps+1]

sfound_v = STLB[way][stlb_idx].V1

sfound_nx = STLB[way][stlb_idx].NX0

sfound_rplv = STLB[way][stlb_idx].RPLV1

mem_type: Memory access operation type, FETCH is instruction fetch, LOAD is load, STORE is store # plv: Current privilege level,

i.e., the value of CSR.CRMD.PLV # pa: Translated physical address

mat: Translated memory access

type # VALEN: Effective number of bits in the

virtual address # PALEN: Effective number

of bits in the physical address # STLB[][]:

STLB[N][M] represents the Mth item of the Nth path in the STLB #

STLB_WAY: Number of paths in the

STLB # STLB_INDEX: The number of groups in each path of the STLB raised to the power of 2, i.e., each path

has 2STLB_INDEX groups # MTLB[]: MTLB[N] represents the

Nth item in the MTLB # MTLB_ENTRIES: Number of items in the MTLB

if (stlb_found==0) :

if (STLB[way][stlb_idx].E==1) and

stlb_found = 1

sfound_mat = STLB[way][stlb_idx].MAT0

sfound_d = STLB[way][stlb_idx].D1

if (va[stlb_ps]==0) :

Multiple hits occurred, and the processor's execution result is uncertain.

sfound_plv = STLB[way][stlb_idx].PLV1

for way in range(STLB_WAY)ÿ

sfound_plv = STLB[way][stlb_idx].PLV0

sfound_nr = STLB[way][stlb_idx].NR1

sfound_mat = STLB[way][stlb_idx].MAT1

sfound_rplv = STLB[way][stlb_idx].RPLV0

sfound_nx = STLB[way][stlb_idx].NX1

sfound_v = STLB[way][stlb_idx].V0

Dragon Architecture Reference Manual Volume 1: Infrastructure

95

Machine Translated by Google

96

Dragon Architecture Reference Manual Volume 1: Infrastructure

found_plv = sfound_plv

mfound_ppn = MTLB[i].PPN0

mfound_plv = MTLB[i].PLV1

found_v = sfound_v

if (MTLB[i].E==1) and

mfound_nx = MTLB[i].NX0

mfound_nx = MTLB[i].NX1

mfound_mat = MTLB[i].MAT0

((MTLB[i].G==1) or (MTLB[i].ACID==CSR.ACID.ACID)) and

for i in range(MTLB_ENTRIES) :

if (mtlb_found==0) :

if (stlb_found==1) and (mtlb_found==1) :

mfound_mat = MTLB[i].MAT1

found_d = sfound_d

mfound_nr = MTLB[i].NR1

mfound_ps = MTLB[i].PS

mfound_ppn = MTLB[i].PPN1

mtlb_found = 0

mfound_rplv = MTLB[i].RPLV0

found_rplv = sfound_rplv

found_ps = stlb_ps

mfound_v = MTLB[i].V0

found_ppn = sfound_ppn

mfound_plv = MTLB[i].PLV0

found_nr = sfound_nr

Find MTLB

mtlb_found = 1

mfound_rplv = MTLB[i].RPLV1

else: # Multiple hits occurred, and the processor's execution result is uncertain.

(MTLB[i].VPPN[VALEN-1:MTLB[i].PS+1]==va[VALEN-1: MTLB[i].PS+1]) :

if (va[mfound_ps]==0) :

mfound_d = MTLB[i].D1

else :

elif (stlb_found==1) :

found_mat = sfound_mat

mfound_v = MTLB[i].V1

#Multiple hits occurred, and the processor's execution result is uncertain.

found_nx = sfound_nx

mfound_d = MTLB[i].D0

mfound_nr = MTLB[i].NR0

Machine Translated by Google

5.4.5 Multi-level page table structures supported by the page table traversal process

Whether it's software page table traversal implemented using LDDIR and LDPTE instructions or hardware page table traversal, it supports multi-level page table structures.

Dragon Architecture Reference Manual Volume 1: Infrastructure

They are the same, as shown in Figure 5-2.

SignalException(PPI)

elif (mtlb_found==1):

found_nx = mfound_nx

found_rplv = mfound_rplv

elif ((found_rplv==0) and (plv > found_plv)) or

SignalException(PNR)

found_v = mfound_v

found_d = mfound_d

found_ppn = mfound_ppn

#Exceptions to non-compliant newspaper page privilege levels

((found_rplv==1) and (plv!= found_plv)) :

elif (mem_type==STORE) and (found_d==0)

ÿ

SignalException(PME)

mat = found_mat

FETCH : SignalException(PIF) # Reports invalid fetch operation page # Reports

invalid load operation page #

Reports invalid store operation page

found_ps = mfound_ps

found_mat = mfound_mat

else :

and ((plv==3) or (CSR.MISC[16+plv]==0)): #Write is disabled, check function is not enabled#Page

modification exception

SignalException(TLBR) #Report TLB re-entry exception

LOAD : SignalException(PIL)

#Unreadable page exception

found_plv = mfound_plv

pa = {found_ppn[PALEN-13:found_ps-12], va[found_ps-1:0]}

#Exception that the page cannot be executed

if (found_v==0) :

STORE : SignalException(PIS)

else :

elif (mem_type==LOAD) and (found_nr==1) :

found_nr = mfound_nr

SignalException(PNX)

elif (mem_type==FETCH) and (found_nx==1) :

case mem_type :

97

Machine Translated by Google

CSR.PGDL

4 3

CSR.PGDH

2

PGD

1

The format defines page table entries.

Basic page table item format:

Large page table item format:

In the above definition of page table entry format, the main difference in format between page table entries for large pages and page table entries for basic pages is: (1) the first page table entry of the table of contents...

Bits not explicitly defined in the above two formats will be automatically ignored by the LDDIR, LDPTE instructions or hardware page table traversal logic.

The G position for the item is in position 6, while the G position for the large page table item is in position 12.

The page table structure is (VALEN-1) bits.

The base address PGD of the top-level directory (Global Directory) of the page table being traversed needs to be determined based on the (VALEN-1)th digit of the virtual address being queried.

Dragon Architecture Reference Manual Volume 1: Infrastructure

This is determined by a specific bit. When this bit is 0, PGD comes from CSR.PGDL; when this bit is 1, PGD comes from CSR.PGDH. This means that the entire...

Whether page table traversal is performed using LDDIR and LDPTE instructions or hardware, the system software needs to follow these guidelines:

6 bits are the large page table entry flag H, and a value of 1 indicates that the directory entry at this time actually stores the page table entry information of a large page; (2) Basic page table

The specifications of directory entries and page table entries at all levels are configured by the system software in CSR.PWCL and CSR.PWCH.

Dir2_width

Dir4_base PTbase

PTwidth

Dir1_baseDir2_base

Dir3_width

Dir3_base

Dir1_width Dir4_width

Figure 5-2 shows the multi-level page table structures supported by the page table traversal process.

PA[PALEN-1:12]

RPLV NX NR W P H MAT PLV D V

WPG MAT PLV DVRPLV NX NR

G NOT[PALEN-1:log2PageSize]

98

62 61 8 7 6 5 4 3 2 1 0

63 62 61 8 7 6 5 4 3 2 1 0

12 63 POLES-1

POLES-1 log2PageSize 12

2

3

TLB

4

1

Machine Translated by Google

99

The address configured in the directory entry of the page table must be a physical address.

The LDPTE instruction for a component will automatically split the page table entry information of the large page into two half-sized page table entries and fill them into the TLB. For example, the standard

Because address mapping is in direct address translation mode during TLB refill exception (TLBR) processing, PGD and memory...

Although the information is not filled into the TLB table entries, it is used in the page table traversal process.

Dragon Architecture Reference Manual Volume 1: Infrastructure

In the page table entry format described above, the "P" and "W" fields represent whether the physical page exists and whether the page is writable, respectively. These information...

After the "rj, 1" instruction, two page table entries of 16MB each will be filled into the TLB, and no special software intervention is required.

If the page size is 16KB, then the size of the first-level big page is typically 32MB. After the software page table traversal process completes "LDPTE rj, 0" and "LDPTE

Because the TLB entries use a double-page storage structure, for large-page page table entries (which have only one entry), the hardware page table refill logic or software...

Machine Translated by Google

Machine Translated by Google

Line 6.1 interrupted

The Dragon architecture supports two types of interrupts: line interrupts and message interrupts. Line interrupts are mandatory, while message interrupts are optional.

TI is next, ..., SWI0 has the lowest priority.

The interrupt source for a software interrupt originates from within the processor core. Software enables a software interrupt by writing 1 to CSR.ESTAT.IS[1:0] using the CSR instruction.

The timer interrupt originates from the internal constant-frequency timer. This interrupt is triggered when the constant-frequency timer counts down to all zeros.

This is accomplished by writing 1 to the TI bit of the CSR.TICLR register.

Once an interrupt is marked as an instruction by the processor hardware, it is treated as an exception; therefore, the calculation of the interrupt entry point follows the same rules as ordinary exceptions.

CSR.ESTAT.IS[10] bit. Clearing a performance counter overflow interrupt requires setting bit[63] of the performance counter that caused the interrupt to 0, or

The index value of the location of the interrupt recorded in the CSR.ESTAT.IS field is also called the interrupt number (Int Number). The interrupt number for SWI0 is equal to 0.

Disable the interrupt enable for this performance counter.

1 Performance Monitor Count Overflow Interrupt (PMI), 8 hard interrupts (HWI0~HWI7), and 2 soft interrupts (SWI0~SWI1). All lines

The performance counter overflow interrupt originates from the performance counter within the kernel. When any interrupt enables the performance counter, the counting process resumes.

Under the Dragon architecture, each processor core can record 13 line interrupts: 1 inter-core interrupt (IPI) and 1 timer interrupt (TI).

All interrupts are level interrupts, and all are active high.

The processor core sampling record is in bits CSR.ESTAT.IS[9:2].

Dragon Architecture Reference Manual Volume 1: Infrastructure

The implemented interrupt is an extension of the online interrupt. This section will introduce the specifications of online interrupts.

Enabled. Once enabled, the timer interrupt is sampled and recorded by the processor core in the CSR.ESTAT.IS bit[11]. Clearing the timer interrupt requires software intervention.

0 clears the soft interrupt.

The response to multiple interrupts simultaneously employs a fixed-priority arbitration mechanism, with higher interrupt numbers having higher priority. Therefore, IPI has the highest priority.

Inter-core interrupts are input from the external interrupt controller and are sampled and recorded by the processor core in the CSR.ESTAT.IS[12] bit.

When bit [63] of the value is 1, the interrupt will be enabled. The enabled performance counter overflow interrupt is sampled and recorded by the processor core.

The interrupt number for SWI1 is 1, ..., and the interrupt number for IPI is 12.

The interrupt source for hardware interrupts originates outside the processor core, typically from an external interrupt controller. The eight hardware interrupts HWI[7:0] are...

6 Exceptions and Interruptions

101

6.1.3 Line Interruption Entry

6.1.1 Line Interruption Types

6.1.2 Line interrupt priority

Machine Translated by Google

6.2 Message Interruption

The corresponding exception numbers are 65, ..., and so on.

Message No. 1 has the highest interrupt priority, followed by Message No. 254, and so on, with Message No. 0 having the lowest interrupt priority.

Each logic processor core internally records message interrupts only if their priority is not lower than the message interrupt enable priority threshold (recorded in...).

The subsequent processing by the processor hardware is the same as that for ordinary exceptions; please refer to the description in Section 6.2.3 .

Only when the CSR.MSGIE.PT domain is reached can the hardware further select and initiate a message interrupt request.

In the Dragon architecture, each logical processor core can record 256 message interrupts internally, including message-type inter-core interrupts input from outside the processor core.

ask.

When the processor determines that there is an interrupt that needs to be responded to, it selects an instruction from the executed instruction stream and marks it as a special exception.

When addressing an interrupt, the exception number corresponding to that interrupt is its own interrupt number plus 64. That is, the exception number corresponding to interrupt 0 (SWI0) is 64, and the exception number corresponding to interrupt 1 (SWI1) is 64.

Whether message interrupts are triggered. The specific sources of the 256 message interrupts within each processor core are determined by the implementation, and software developers need to consult [the relevant documentation].

Calculation rules for entry points. For calculation rules regarding ordinary exception entry points, please refer to Section 6.2.1 . It should be noted that, in calculating the entry point location...

When a processor core has both a message interrupt request and a line interrupt request triggered simultaneously, the message interrupt request has higher priority than the line interrupt request.

All message interrupts use a unified entry point, and the "entry page number" used to calculate the entry address is the same as that of line interrupts, originating from CSR.EENTRY.

— Interruption exception.

Dragon Architecture Reference Manual Volume 1: Infrastructure

Interrupt signals from each interrupt source are sampled by the processor and stored in the CSR.ESTAT.IS field. This information, along with software configuration, is stored in CSR.ECFG.LIE.

Its calculated entry address “page offset” is equal to 2 (CSR.ECFG.VS+2)×78 (0x4E).

Hardware interrupts include both breakpoint and message-based interrupts. Each processor core internally has four 64-bit CSRs (CSR.MSGIS0~CSR.MSGIS3) that sequentially record values from 0 to 255.

Refer to the specific chip user manual for relevant information.

The local interrupt enable information in the domain is bitwise ANDed to obtain a 13-bit interrupt vector int_vec. This is achieved when CSR.CRMD.IE = 1 and int_vec is not all zeros.

In the Dragon architecture, each logical processor core has 256 message interrupts with a fixed priority. The higher the interrupt number, the higher the priority; for example, the 255th interrupt has the highest priority.

6.2.1 Message Interruption Types

6.1.4 Processing procedure for interrupts on the processor hardware response line

6.2.2 Message Interruption Priority

6.2.3 Message Interruption Entry Point

102

Machine Translated by Google

6.3 Exceptions

For the message interruption number in the CSR.MSGIR.IntNum field, clear the corresponding status bits of CSR.MSGIS0~CSR.MSGIS3 to 0. If the message interruption status...

Once a message interrupt is routed to the designated processor core, that core will internally process CSR.MSGIS0~CSR.MSGIS3 according to its interrupt number.

After the status bit is cleared to 0, if there are no more selectable message interrupts in CSR.MSGIS0~CSR.MSGIS3, then in the next processor core internal clock cycle...

The "|" operator is used for bitwise OR operations.

In the CSR.MSGIR.IntNum field, simultaneously clear the CSR.MSGIR.Null bit to 0 and set the CSR.ESTAT.MsgInt bit to 1. This process interrupts the message.

To confirm the exception type, see the Ecode column in Table 7-8 for the ecode values of ordinary exceptions, excluding interrupts; the ecode of an interrupt is the interrupt number plus 64.

Bit.

It is necessary to ensure that all possible offset values do not exceed the boundary alignment space corresponding to the low bit of the entry base address.

Dragon Architecture Reference Manual Volume 1: Infrastructure

The corresponding status position is 1, and this process is for recording message interrupts. Subsequently, the processor core records interrupts with interrupt numbers no lower than message interrupt enable priority.

The selected and triggered message interruption request.

When the CSR.ESTAT.MsgInt bit is 1, if the software reads the CSR.MSGIR register, the hardware will automatically adjust the current record accordingly.

From the message interrupts with the highest priority (recorded in the CSR.MSGIE.PT field), select the one with the highest priority and record its message interrupt number.

When the exception entry offsets are the same, the software needs to determine the specific exception type using the Ecode and IS fields in CSR.ESTAT.

The highest priority is detected during the decoding stage, followed by the next highest priority, and then the lowest priority is detected during the execution stage.

When CSR.ECFG.VS != 0, the entry offset for each normal exception is equal to 2 (CSR.ECFG.VS+2)×ecode, and the software does not need to access CSR.ESTAT.

The entry point for TLB refill exceptions comes from CSR.TLBRENTRY.

Exceptions other than the two types mentioned above are called ordinary exceptions, and their entry addresses are calculated using the formula "entry page number | offset within page".

The CSR.ESTAT.MsgInt bit will be cleared to 0 by hardware, while the CSR.MSGIR.Null bit will be set to 1. Software developers are especially advised to take note, because...

Since the exception entry is an offset value obtained by bitwise ORing the entry page number, when CSR.ECFG.VS != 0, the software allocates the exception entry base address.

The selection and triggering of message interrupt requests. When the CSR.ESTAT.MsgInt bit is 1, CSR.CRMD.IE masking can only be enabled via global interrupts.

The CSR.MSGIR register has a "read clear" feature, so it is recommended to read CSR.ESTAT.MsgInt when you need to check for pending message interrupts.

The offset of a normal exception entry is determined by both CSR.ECFG.VS and the exception number (ecode). When CSR.ECFG.VS = 0, all normal exception entries...

The entry point for the machine error exception comes from CSR.MERRENTRY.

All ordinary exception entries have the same entry page number, and all originate from CSR.EENTRY.

Exception priority follows two basic principles: first, interrupts have higher priority than exceptions; second, for exceptions, those detected during the instruction fetch phase have higher priority.

6.3.2 Exception Priority

6.2.4 Message Interruption Response Process

6.3.1 Exception Entrance

103

Machine Translated by Google

This exception only occurs with bound memory access instructions. Except for AM*

atomic memory access instructions, all other memory access instructions will generate only one type of TLB-related exception, but AM* atomic memory access instructions may simultaneously detect both page unreadable and page modified exceptions.

In addition, in this case, the page unreadable exception takes precedence over the page modified exception.

2

1

ÿ Record the PC value that triggered the exception instruction in CSR.ERA;

ÿ Restore the PPLV and PIE values from CSR.PRMD to the PLV and IE values from CSR.CRMD;

When the software executes the ERTN instruction and returns from a normal exception execution, the processor hardware performs the following operations:

The processing procedure is described.

When a normal exception is triggered, the processor hardware performs the following operations:

(ALE). However, there is a detail that needs special explanation: for memory access instructions that require address alignment, if the address is not aligned...

For the hardware implementation described above, if the software needs to enable interrupts during the exception handling process, it needs to save the PPLV in CSR.PRMD.

When a TLB refill exception is triggered, the processor hardware performs the following operations:

Dragon Architecture Reference Manual Volume 1: Infrastructure

ÿ Store the PLV and IE of CSR.CRMD into the PPLV and PIE of CSR.TLBRPRMD respectively, and then store the PLV of CSR.CRMD.

Exception 2 > Address alignment errors caused by memory access instructions that allow unaligned addresses spanning two pages of different memory access types.

Address alignment error exception (ALE) caused by address misalignment in memory access instructions > Boundary constraint check exception 1 (BCE) > TLB related

If the value is 0, IE will set it to 0;

The exceptions that can be detected during the decoding phase are mutually exclusive, so there is no need to consider their priority.

If the condition is met, then the instruction triggers an ADE exception. However, if the instruction only meets the ADE exception criteria within the access region containing the higher address, then...

This instruction then triggers an ALE exception instead of an ADE exception.

Different common exceptions may have some subtle differences in how the processor hardware handles them. Here, we discuss the general principles common to all common exceptions.

During the execution phase, if only memory access instructions are executed or multiple exceptions are triggered simultaneously, their priorities from highest to lowest are: Address Error Exception (ADE) > Address Request Exception ...

The WE property of CSR.CRMD is set to 0;

ÿ For implementations that support the Watch function, the PWE value in CSR.PRMD must also be restored to the WE value in CSR.CRMD;

ÿ Jump to the address recorded in CSR.ERA to fetch the instruction.

The system stores information such as PIE and restores the saved information to CSR.PRMD before the exception returns.

For exceptions detected during the instruction fetch phase: fetch Watch exceptions have the highest priority, followed by fetch address errors, and then fetch TLB exceptions.

ÿ For implementations supporting the Watch function, the WE of CSR.CRMD should be stored in the PWE of CSR.PRMD, and then...

The priority of the off exception is next, and the priority of the machine error exception is the lowest.

ÿ Store the PLV and IE of CSR.CRMD into the PPLV and PIE of CSR.PRMD respectively, and then set the PLV of CSR.CRMD to

ÿ Jump to the exception entry point to retrieve the pointer.

If the instruction happens to cross two access regions with different attributes, then if the instruction satisfies the ADE exception condition within the access region containing the lower address...

6.3.4 TLB Refill Exception Hardware Processing

6.3.3 General Process for Handling Common Exceptions in Hardware

104

Machine Translated by Google

105

Set DATF to 0 and DATM to 0;

The WE property of CSR.CRMD is set to 0;

ÿ Set IsTLBR of CSR.TLBRERA to 0;

ÿ Set the IsMERR bit of CSR.MERRCTL to 1;

When the software executes the ERTN instruction and returns from a machine error exception, the processor hardware performs the following operations:

IE, DA, PG, DATF, DATM;

Dragon Architecture Reference Manual Volume 1: Infrastructure

ÿ For implementations that support the Watch function, the PWE value in CSR.MERRCTL must also be restored to the WE value in CSR.CRMD;

ÿ Record the PC that triggered the exception instruction in CSR.MERRERA;

ÿ Set DA to 0 and PG to 1 in CSR.CRMD;

When the software executes the ERTN instruction and returns from the TLB refill exception execution, the processor hardware performs the following operations:

ÿ Restore the PPLV and PIE values from CSR.TLBRPRMD to the PLV and IE values from CSR.CRMD;

When a machine error exception is triggered, the processor hardware will perform the following operations:

ÿ Restore the PPLV, PIE, PDA, PPG, PDATF, and PDATM values in CSR.MERRCTL to the PLV values in CSR.CRMD.

The WE property of CSR.CRMD is set to 0;

ÿ Record the [GRLEN-1:2] bits of the PC that triggered the exception instruction into the ERA field of CSR.TLBRERA, and then record the ERA field of CSR.TLBRERA.

Set the IsMERR bit in CSR.MERRCTL to 0;

ÿ Jump to the address recorded in CSR.MERRERA to fetch the pointer.

ÿ For implementations supporting the Watch function, the WE of CSR.CRMD should also be stored in the PWE of CSR.MERRCTL, and then...

ÿ Jump to the exception entry configured in CSR.TLBRENTTRY to fetch the pointer.

ÿ Store PLV, IE, DA, PG, DATF, and DATM from CSR.CRMD into PPLV, PIE, PDA, and PDA from CSR.MERRCTL, respectively.

ÿ For implementations supporting the Watch function, the WE of CSR.CRMD should be stored in the PWE of CSR.TLBRPRMD, and then...

In PPG, PDATF, and PDATM, then set PLV of CSR.CRMD to 0, IE to 0, DA to 1, and PG to 0.

Set IsTLBR to 1;

ÿ Record the specific error information of the verification into CSR.MERRINFO1 and CSR.MERRINFO2;

ÿ Record the virtual memory address that triggered the exception (or PC if it was triggered by instruction fetch) in CSR.TLBRBADV, and then record the virtual address...

Set IE to 0, DA to 1, and PG to 0;

ÿ Jump to the address recorded in CSR.TLBRERA to fetch the instruction.

ÿ Jump to the exception entry configured in CSR.MERRENTRY to fetch the instruction.

ÿ For implementations that support the Watch function, the PWE value in CSR.TLBRPRMD must also be restored to the WE value in CSR.CRMD;

The [VALEN-1:13] bits of the address are recorded in the VPPN field of CSR.TLBREHI;

6.3.5 Hardware Handling Procedures for Machine Error Exceptions

Machine Translated by Google

106

The physical address of the first instruction fetched after the bit is also 0x1C000000.

ÿ In all implemented CSR.PMCFGs, all configurable bits except EvCode are 0;

ÿ CSR.EUEN's FPUen, VPUen, XVPUen, and BTUen are all 0;

ÿ In CSR.ESTAT, IS[1:0] are all 0;

Before use, its state must be set to a defined state.

ÿ CSR.LLBCTL's KLO=0;

A reset will reset all logic in the processor core, placing the circuitry into a defined state. The definition of the processor's state after a reset will be given here.

ÿ All configurable bits in all implemented instruction breakpoint control CSRs are 0;

Whether the TLB and Cache undergo a hardware reset during reset is determined by the implementation; the startup software can use the configuration information provided by the processor.

ÿ DS=0 in CSR.DBG.

ÿ CSR.CRMD ÿ PLV=0ÿIE=0ÿDA=1ÿPG=0ÿDATF=0ÿDATM=0ÿWE=0ÿ

ÿ CSR.TCFG's En=0;

ÿ IsMERR=0 for CSR.ERRCTL;

ÿ In CSR.ECFG, both VS and LIE are 0;

Dragon Architecture Reference Manual Volume 1: Infrastructure

The PC of the first instruction after reset is 0x1C000000. Since the MMU will definitely be in direct address translation mode after the reset is reversed, the reset...

ÿ CSR.TLBRERA ÿ IsTLBR=0ÿ

In addition to the above-specified content, after a reset is reversed, the values of other software-visible registers in the processor are uncertain, and the software...

ÿ RDVA=0 in CSR.RVACFG;

ÿ In all implemented CSR.DMWs, PLV0~PLV3 are all 0;

Decide whether a software reset is needed.

ÿ All configurable bits in CSR.MISC are set to 0;

After the reset is canceled, the contents of the registers in the determined state are:

ÿ All configurable bits in all implemented data breakpoint control CSRs are set to 0;

6.4 Reset

Machine Translated by Google

Page table traversal controls the lower half of the process.

Exception return address

PGDL

Extended component enable

0x1B

0x0

PGD

0x18

TLBIDX

Reduce virtual address configuration

107

CRMD

Privileged resource allocation information 2

0x19

TLB Index

PRMD

TLB Low Item 1

Miscellaneous Controls

0x1A PGDH

0x1

0x1F

TLB High Level

0x12

Processor number

TLBEHI

PRCFG2

Table 7-1 Overview of Control Status Registers

0x1D

EXPECTATION0

ERA

Privileged resource allocation information 1

0x22

0x6

TLBELO1

0x10

PWCH

BADV

STLB page size

RVACFG

PRCFG3

EU

STLBPS

Exception Configuration

Address space identifier

Page table traversal control of the high half

0x8

0x13

0x1C

0x1E

Error virtual address

Exception Entry Address

0x23

Exceptional state

0x2

High half-address space global directory base address

0x7

0x11

PWCL

Error command

0x4 ECFG

BADI

Global directory base address

0x21 PRCFG1

ACID

Exception Pre-Mode Information

TLB entry low 0

0x20

STATE

Current mode information

MISC

Privileged resource allocation information 3

0x5

EENTRY

Global directory base address in the lower half of the address space

0x3

0xc

CPUID

7. Control Status Register

address

Dragon Architecture Reference Manual Volume 1: Infrastructure

name

7.1 Overview of Control Status Registers

Machine Translated by Google

IMPCTL2

Machine error exception entry address

GETINFO2

LLBit control0x60

Message interruption status 2

Machine error message 2

0xa0

DMWn

0x201+2n (0ÿnÿ31) Performance monitoring counter n

TLB Refill Exception Return Address

0x93

0x89

0x30+n (0ÿnÿ15) Data storage

TLB Refill Exception Entry Low 1

0x88

CNTC

Message interrupt enable

CTAG

MSGIE

Timed interrupt clear

0x180+n (0ÿnÿ3) Directly maps configuration window n

0x90

Message interruption status 1

0xa3

108

TLB Refill Exception Entries Low Bit 0

Implement relevant control 1

0x92

Message interruption request

0xa5

TLB Refill Exception Pre-Mode Information

0x80

TCFG

TLBRSAVE

TLBREHI

Implement relevant control 2

LLBCTL

MERRA

0x98

MSGIS1

0x200+2n (0ÿnÿ31) Performance monitoring configuration n

MSGIR

TLB Refill Exception Entries High Bit

Message interruption status 3

0x42

TLBRENTRY

0x8C

GETINFO1

PMCFGn

TICLR

Machine error exception data saving MERRSAVE

Timer configuration

PMCNTn

0xa1

TLBRELO1

TLBRELO0

Machine error exception return address

0x8E

0x40

Timer compensation

0x8A

SAVE

0x8D

Timer value

0x8F

TLB refill exception virtual address error

Cache tags

Message interruption status 0

MERRENTRY

0x95

TVAL

MSGIS0

0x43

IMPCTL1

0x81

0x91

TIME

0xa2

Machine error message 1

TLB Re-entry Exception Address

0x8B

0x44

MSGIS2

TLBRPRMD

0x94

TLBRERA

Timer number

TLBRBADV

MERRCTL

0x41

Machine error control

0xa4

MSGIS3

TLB Refill Exception Data Saving

address

Dragon Architecture Reference Manual Volume 1: Infrastructure

name

Machine Translated by Google

FWPC

0x300

FWPnCFG3

FWPnCFG1

AREA

MWPnCFG4

FWPnCFG2

0x501

MWPC

load/store monitoring point n configuration 1

Debug data saving

0x392+8n (0ÿnÿ13) Indicates monitoring point n, configured with 3.

Overall status of the monitoring point

0x312+8n (0ÿnÿ13)

0x390+8n (0ÿnÿ13) Indicates monitoring point n, configured 1

Debug Register

0x393+8n (0ÿnÿ13) Indicates monitoring point n, configured with 4.

DSAVE

0x301

DBG

load/store monitoring point n configured 2

FWPS

0x310+8n (0ÿnÿ13)

0x391+8n (0ÿnÿ13) Indicates monitoring point n, configured 2

0x313+8n (0ÿnÿ13)

MWPnCFG1

0x502

Debug exception return address

0x500

109

0x381

Overall status of load/store monitoring points

0x380

FWPnCFG4

Load/store monitoring point n configured 3

Overall control of monitoring points

0x311+8n (0ÿnÿ13)

MWPS

Overall control of load/store monitoring points

MWPnCFG3

Load/store monitoring point n configured 4

MWPnCFG2

ÿ R0 — The software always returns 0 when reading these fields. However, the software must also ensure that, either by setting the CSR write mask, it prevents further...

address

ÿ W1 — Software write of 1 is valid. Writing 0 to these fields will not clear them to 0 and will not produce any other side effects. Also, define...

From the perspective of software access, it can be defined into four types:

An error may occur if the accessed domain can be updated by the hardware, or if an interrupt occurs between two instructions performing a read or write operation.

Dragon Architecture Reference Manual Volume 1: Infrastructure

The read values of the fields for this attribute have no software meaning and the software should ignore them.

These new fields must either be written with a value of 0 when updating them. This requirement is to ensure backward compatibility in the software. For hardware...

ÿ RW—Software readable and writable. Except for illegal values explicitly stated in the definition that would lead to indeterminate processor execution results, the software can...

You can write any value to these fields. Normally, software performs a write-then-read operation on these fields, and the value read should be the one written. However,

name

The current situation is that the read value and the written value are inconsistent.

The "read/write" attribute of each field will be defined later in this manual in the section on the definition of control status register fields. This "read/write" attribute primarily...

ÿ R — Read-only. Writing to these fields by software will not update their contents and will not produce any other side effects.

In practice, fields marked with this attribute will prevent software from writing to them.

7.2 Description of Control Status Register Access Characteristics

7.2.1 Read/Write Attributes

Machine Translated by Google

Otherwise, if CSR.TLBRERA.IsTLBR=1, the hardware restores the value of the PPLV field of CSR.TLBRPRMD to 1.

1:0

Current privilege level. Its valid value range is 0 to 3, where 0 represents the highest privilege level and 3 represents the lowest.

110

POS

here;

If CSR.ERRCTL.IsMERR=1, the hardware restores the value of the PPLV field of CSR.ERRCTL to this value;

Authority level.

Table 7-2 Current Mode Information Register Definition

Otherwise, the hardware will restore the value of the PPLV field of CSR.PRMD to this location.

When the execution of the ERTN instruction returns from the exception handler,

RW

When an exception is triggered, the hardware sets the value of this field to 0 to ensure that the user is in the highest privilege level after a trap.

7.2.3 Effects of accessing undefined and unimplemented control status registers

7.2.2 Differences and similarities in the bit width of the control status register under the LA32 and LA64 architectures

7.4.1 Current Mode Information (CRMD)

Although the software uses the CSRWR or CSRXCHG instructions to write these undefined or unimplemented control status registers, in addition to changing the general-purpose register rd...

Dragon Architecture Reference Manual Volume 1: Infrastructure

If the specific hardware does not implement this, a read operation can return any value, but a write operation should not change the processor state visible to the software.

The information in this register is used to determine the processor core's current privilege level, global interrupt enable, watchpoint enable, and address translation mode.

The bit width of all control status registers is either fixed at 32 bits, or depends on whether an LA32 or LA64 architecture is being implemented. For the first...

Write to these registers.

When the software accesses a CSR object using a CSR directive that is not defined in the architecture specification, or is an implementable item defined in the architecture specification but...

describe

For registers of a certain type, when accessed by the CSR instruction under the LA64 architecture, the read return value is the sign-extended value to 64 bits, and the write return value is the high-order value.

Setting it to any meaningless value will not change the processor state visible to other software, but if backward compatibility is desired, the software should not actively...

Conflicts caused by control status registers are handled by the hardware; software does not need to add barrier instructions to avoid these conflicts.

32-bit values are automatically ignored by the hardware. For the second type, the definition will explicitly specify the differences between the LA32 and LA64 architectures.

Mode.

Name reading and writingBit

7.3 Conflicts caused by control status registers

7.4 Basic Control Status Register

Machine Translated by Google

Bit

Dragon Architecture Reference Manual Volume 1: Infrastructure

describeName reading and writing

When a TLB refill exception or machine error exception is triggered, the hardware sets this field to 0.

AND

DATF

DATM

PG

The value of the PDATM field of CSR.ERRCTL is restored here.

The value of the PDATF field of CSR.ERRCTL is restored here.

Otherwise, if CSR.TLBRERA.IsTLBR=1, the hardware sets this field to 1.

4

When using software to handle TLB refills, it is recommended to set DATM to 1 when the software sets PG to 1.

When a TLB refill exception or machine error exception is triggered, the hardware sets this field to 1.

Enabled for mapped address translation mode, highly active.

here;

When an exception is triggered, the hardware sets the value of this field to 0 to ensure that interrupts are masked after a trap. The exception handler determines...

Global interrupts are currently enabled, active high.

RW

The valid combinations of the DA and PG bits are 0 and 1 or 1 and 0. When the software is configured with other combinations, the result will not be valid.

Sure.

8:7

111

Storage access type for load and store operations in direct address translation mode.

Otherwise, the hardware will restore the value of the PIE field of CSR.PRMD to this location.

If CSR.ERRCTL.IsMERR=1, the hardware restores the value of the PIE field of CSR.ERRCTL to this value;

When the execution of the ERTN instruction returns from the exception handler,

The memory access type for instruction fetch operations in direct address translation mode.

3

When the execution of the ERTN instruction returns from the exception handler and CSR.ERRCTL.IsMERR=1, the hardware will...

RW

When the execution of the ERTN instruction returns from the exception handler,

If CSR.ERRCTL.IsMERR=1, the hardware restores the value of the PDA field of CSR.ERRCTL to this value;

6:5

RW

RW

Sure.

When the execution of the ERTN instruction returns from the exception handler and CSR.ERRCTL.IsMERR=1, the hardware will...

It is 0b01, which means it is a consistent cacheable type.

0b01, which is a consistent cacheable type.

Enable direct address translation mode, highly effective.

RW

The valid combinations of the PG and DA bits are 0 and 1 or 1 and 0. When the software is configured with other combinations, the result will not be valid.

When using software to handle TLB refills, it is recommended to set the DATF field to 1 simultaneously when the software sets PG to 1.

Otherwise, if CSR.TLBRERA.IsTLBR=1, the hardware restores the value of the PIE field of CSR.TLBRPRMD to 1.

IE

Otherwise, if CSR.TLBRERA.IsTLBR=1, the hardware sets this field to 0.

When the execution of the ERTN instruction returns from the exception handler,

2

When a machine error exception is triggered, the hardware sets this field to 0.

To re-enable interrupt response, this bit must be explicitly set to 1.

When a machine error exception is triggered, the hardware sets this field to 0.

If CSR.ERRCTL.IsMERR=1, the hardware restores the value of the PPG field of CSR.ERRCTL to this value;

Machine Translated by Google

1:0

Table 7-3 Definition of Exception Mode Information Register

Enable bit for command and data monitoring points, active high.

3

When the exception being handled is neither a TLB refill exception (CSR.TLBRERA.IsTLBR=0) nor a machine error exception

The value of this field is restored to the WE field of CSR.CRMD.

The old value of the IE field is recorded in this field.

2

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

When CSR.ERRCTL.IsMERR=0, the hardware will return from the exception handler after executing the ERTN instruction.

0

WE

WEIGHT

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

When the exception being handled is neither a TLB refill exception (CSR.TLBRERA.IsTLBR=0) nor a machine error exception

0

Otherwise, the hardware will restore the value of the PWE field of CSR.PRMD to this location.

31:4

When an exception is triggered, if the exception type is not a TLB refill exception or a machine error exception, the hardware will call CSR.CRMD.

The value of this field is restored to the PLV field of CSR.CRMD.

When the execution of the ERTN instruction returns from the exception handler,

ABOUT

112

If CSR.ERRCTL.IsMERR=1, the hardware restores the value of the PWE field of CSR.ERRCTL to this value;

When the exception being handled is neither a TLB refill exception (CSR.TLBRERA.IsTLBR=0) nor a machine error exception

here;

When CSR.ERRCTL.IsMERR=0, the hardware will return from the exception handler after executing the ERTN instruction.

31:10

RW

When an exception is triggered, if the exception type is not a TLB refill exception or a machine error exception, the hardware will call CSR.CRMD.

RW

The old value of the PLV field is recorded in this field.

9

When an exception is triggered, if the exception type is not a TLB refill exception or a machine error exception, the hardware will call CSR.CRMD.

PPLV RW

RW

When CSR.ERRCTL.IsMERR=0, the hardware will return from the exception handler after executing the ERTN instruction.

When an exception is triggered, the hardware sets the value of this field to 0.

The value of this field is restored to the IE field of CSR.CRMD.

Otherwise, if CSR.TLBRERA.IsTLBR=1, the hardware restores the value of the PWE field of CSR.TLBRPRMD to 1.

The old value of the WE field is recorded in this field.

Name reading and writingBit describe

The global interrupt enable and watchpoint enable bits are saved to the pre-exception mode information register, which is used to restore the processor core's context when the exception returns.

Bit

In addition to the basic integer instruction set and privileged instruction set, there are also the basic floating-point instruction set, the binary translation extended instruction set, and the 128-bit vector extended instruction set.

Name reading and writing

Dragon Architecture Reference Manual Volume 1: Infrastructure

describe

When an exception is triggered, if the exception type is not a TLB refill exception or a machine error exception, the hardware will adjust the privilege level of the processor core at that time.

Both the standard instruction set and the 256-bit vector extension instruction set have software-configurable enable bits. When these enable bits are disabled, the corresponding instruction is executed.

This will trigger a corresponding instruction unavailability exception. Software can use this mechanism to determine the scope of context saving. Hardware implementations can also utilize this.

7.4.2 Pre-Exception Mode Information (PRMD)

7.4.3 Extended Component Enable (EUEN)

Machine Translated by Google

7.4.4 Miscellaneous (MISC)

describe

Dragon Architecture Reference Manual Volume 1: Infrastructure

The control bit at the location enables circuit power consumption control.

Controls whether partial privileged instructions are allowed to be used at non-privileged levels, and controls address non-alignment checks and page table write-allowed checks.

Name reading and writing

Name reading and writing

Bit

describe

This register contains control bits for processor core behavior at different privilege levels, including whether to enable 32-bit address mode.

Bit

31:4

3

0

VA32L1

RW

VA32L3

Under PLV3 privilege level, whether to disable RDTIME type instructions. When this bit is 1, instructions executed under PLV3 privilege level...

ASXE

RDTIME type instructions will trigger an instruction privilege level error exception (IPE).

RW

RW

Under PLV2 privilege level, whether to disable RDTIME type instructions. When this bit is 1, instructions executed under PLV2 privilege level...

Table 7-4 Extended Instruction Enable Register Definitions

4

2

113

DRDTL3

0

Basic floating-point instruction enable bit. When this bit is 0, execution of the basic floating-point instructions described in Section 3.2 will be triggered.

RW

256-bit vector extension instruction enable control bit. When this bit is 0, the 256-bit vector extension described in Volume 2-a is executed.

2

0

RW

Table 7-5 Miscellaneous Register Definitions

RW

RW

SXE

The instruction will trigger a 256-bit vector extension instruction not enabled exception (ASXD).

128-bit vector extension instruction enable control bit. When this bit is 0, the 128-bit vector extension described in Volume 2-a is executed.

Floating-point instruction not enabled exception (FPD).

DRDTL2

1

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

This will trigger a Binary Translation Extensions Not Enabled (BTD) exception.

Binary translation extension instruction enable control bit. When this bit is 0, the binary translation extension instructions described in Volume 3 are executed.

RW

This bit is readable and writable only in the LA64 architecture. In the LA32 architecture privilege level, the read/write attribute of this bit is R0.

This bit is readable and writable only in the LA64 architecture. In the LA32 architecture privilege level, the read/write attribute of this bit is R0.

At PLV3 privilege level, whether to enable 32-bit address mode. 0—Disabled, 1—Enabled.

The instruction will trigger a 128-bit vector extension instruction not enabled exception (SXD).

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

At PLV1 privilege level, whether to enable 32-bit address mode. 0—Disabled, 1—Enabled.

RDTIME type instructions will trigger an instruction privilege level error exception (IPE).

5

7

BTE

8

0

This bit is readable and writable only in the LA64 architecture. In the LA32 architecture privilege level, the read/write attribute of this bit is R0.

0

VA32L2

RW

DRDTL1 RW

RDTIME type instructions will trigger an instruction privilege level error exception (IPE).

Under PLV2 privilege level, whether to enable 32-bit address mode. 0—Disabled, 1—Enabled.

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

FPE

1

Under PLV1 privilege level, whether to disable RDTIME type instructions. When this bit is 1, instructions executed under PLV1 privilege level...

0

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

6

3

Machine Translated by Google

1

describe

Dragon Architecture Reference Manual Volume 1: Infrastructure

Name reading and writingBit

RPCNTL3

14

Under PLV1 privilege level, whether to perform an alignment check on non-vector load/store instructions that are allowed to be unaligned . (Set to 1)

9

RW

External (IPE).

At PLV3 privilege level, this determines whether software is allowed to read the read performance counter. When this bit is 1, the PLV3 privilege level...

When the bit is 1, the store instruction will not trigger a page modification exception even if it accesses a page table entry with D=0.

RW

This bit is read-only and is always 1.

RW

Under PLV1 privilege level, does it disable the check of page table entry write enable bits during TLB virtual-to-physical address translation?

ALCL2

18

Using the CSRRD instruction to access any implemented performance counter PCNT will not trigger an instruction privilege level error.

When the bit is 1, the store instruction will not trigger a page modification exception even if it accesses a page table entry with D=0.

ALCL0

15

31:19

External (IPE).

0

Under PLV2 privilege level, should the check of the page table entry write enable bit be disabled during TLB virtual-to-physical address translation?

10

Under PLV2 privilege level, whether to perform an alignment check on non-vector load/store instructions that are allowed to be unaligned . (Set to 1)

This bit is readable and writable only if the hardware implementation supports non-vector load/store instruction address unalignment; otherwise...

At PLV0 privilege level, whether to perform an alignment check on non-vector load/store instructions that are allowed to be unaligned . The value is 1.

RW

RW

RW

When the bit is 1, the store instruction will not trigger a page modification exception even if it accesses a page table entry with D=0.

ALCL3

This indicates that an inspection will be performed, and if a violation is found, an address alignment error exception will be triggered.

Using the CSRRD instruction to access any implemented performance counter PCNT will not trigger an instruction privilege level error.

This bit is readable and writable only if the hardware implementation supports non-vector load/store instruction address unalignment; otherwise...

This indicates that an inspection will be performed, and if a violation is found, an address alignment error exception will be triggered.

RPCNTL1

This bit is read-only and is always 1.

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

This bit is readable and writable only if the hardware implementation supports non-vector load/store instruction address unalignment; otherwise...

11

16

At PLV1 privilege level, this determines whether software is allowed to read performance counters. When this bit is 1, at PLV1 privilege level...

DWPL2

RW

RW

At PLV3 privilege level, whether to perform an alignment check on non-vector load/store instructions that are allowed to be unaligned . (Set to 1)

DWPL0

This indicates that an inspection will be performed, and if a violation is found, an address alignment error exception will be triggered.

This indicates that an inspection will be performed, and if a violation is found, an address alignment error exception will be triggered.

RPCNTL2

12

17

ALCL1

Under PLV2 privilege level, this determines whether software is allowed to read the read performance counter. When this bit is 1, the PLV2 privilege level...

(CALL).

This bit is readable and writable only if the hardware implementation supports non-vector load/store instruction address unalignment; otherwise...

RW

DWPL1

This bit is read-only and is always 1.

Accessing any implemented performance counter using the CSRRD instruction will not trigger an instruction privilege level exception.

RW

This bit is read-only and is always 1.

Under PLV0 privilege level, should the check of the page table entry write enable bit be disabled during TLB virtual-to-physical address translation?

114

13

The instructions affected by this control bit are: LD[X].{H[U]/W[U]/D}, ST[X].{H/W/D}, LDPTR.{W/D}, STPTR.{W/D}, FLD[X].{S/D}, FST[X].{S/D}, LDPTE, LDDIR,

IOCSRRD.{H/W/D}ÿIOCSRWR.{H/W/D}ÿ

Machine Translated by Google

0

0, and the software does not allow its value to be changed.

EsubCode

Table 7-7 Exception Status Register Definitions

Otherwise, the hardware will write the value defined in the Ecode column of Table 7-8 into this field, depending on the exception type.

The requirement that interrupts must be level interrupts is guaranteed by the interrupt source and is not maintained here.

0

Because TLB refill exceptions and machine error exceptions have independent entry base addresses, their exception entries are not affected by VS.

12:0

When the implementation does not support external interrupts and uses message interrupt mode (CPUCFG.1.MSG_INT[bit26]=0), read return.

0 R0

0 31:19

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

Table 7-6 Exception Configuration Register Definitions

18:16

RW

15

Exception type first-level encoding. When an exception is triggered:

Local interrupt enable bits, active high. These local interrupt enable bits correspond to the 13 bits recorded in the IS field of CSR.ESTAT.

IS[1:0]

14

21:16

R

The impact of the domain.

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

VS

When VS!=0, the entry address spacing between each exception and interrupt is 2VS instructions.

RW

R

MsgInt

When the implementation does not support external interrupts and uses message interrupt mode (CPUCFG.1.MSG_INT[bit26]=0), this bit is...

LIE

One performance counter overflow interrupt (PMI), and eight hardware interrupts (HWI0~HWI7).

Configure the spacing between exception and interrupt entries. When VS=0, all exceptions and interrupts share the same entry address.

R

Exception type two-level encoding. When an exception is triggered:

14

1:0

0

Otherwise, the hardware will write the value defined in the EsubCode column of Table 7-8 into this field, depending on the exception type.

1 indicates that a message interruption has occurred.

Ecode

RW

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

15:13

R

Software interrupt settings are also accomplished using these two bits: 1 for software write, 0 for write clear interrupt.

If it is a TLB refill exception or a machine error exception, the field remains unchanged;

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

Interrupt status bit. A value of 1 indicates that the corresponding interrupt is enabled. There is one inter-core interrupt (IPI) and one timer interrupt (TI).

12:2

In online interrupt mode, the hardware simply samples each interrupt source on a clock cycle and records its state. At this time, for all...

115

Two software interrupt status bits. Bits 0 and 1 correspond to SWI0 and SWI1, respectively.

If it is a TLB refill exception or a machine error exception, the field remains unchanged;

Each interrupt source is matched one-to-one, with each bit controlling one interrupt source.

IS[12:2]

13

30:22

Name reading and writing

Name reading and writing

This register is used to control the entry calculation method for exceptions and interrupts, as well as the local enable bits for each interrupt.

Bit

Dragon Architecture Reference Manual Volume 1: Infrastructure

describe

describe

This register records the status information of the exception, including the first and second level codes of the triggered exception, as well as the status of each interrupt.

Bit

7.4.5 Exceptional Configuration (ECFG)

7.4.6 Exception Status (ESTAT)

Machine Translated by Google

Ecode

describeName reading and writing

EsubCode Exception Code Exception types

Bit

Dragon Architecture Reference Manual Volume 1: Infrastructure

Store action page invalid exception

0xC

Command privilege level error exception

GCSC

PPI

0x3

Boundary check error exception

1

Invalid Fetch Operation Page Exception

BRK

0x7

0x11

SYS

Virtual machine monitoring call exception

Exceptions to address misalignment

The instruction has no exceptions

0

PIF

HVC

0x4

0x9

WPEF finger retrieval monitoring point exception

0x0

0x5

Client CSR software modification exception

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

1

CALL

0x10

Page unreadable exception

128-bit vector extension instruction not enabled exception

INT

0xF

Page non-executable exception

1

SMEs

Breakpoint Exception

0xE

0x1

GCHC Client CSR Hardware Modification Exception

0

116

VFPE

PNR

Page modification exceptions

SXD

Floating-point instruction not enabled exception

System call exceptions

Load/store operation monitoring point exception

PIL

An interrupt is indicated only when CSR.ECFG.VS=0.

0x12

0xA

ADEM memory access instruction address error exception

0

0x17

1

I HAVE

FPD

Table 7-8 Exception Code Table

BUT

BCE

31

BTD

0x16

ADEF Fetch Address Error Exception

Exceptions related to binary translation

FPE

Binary translation extension instructions not enabled exception0x14

Page privilege level non-compliance exception

ASXD

Vector floating-point instruction exceptions

0x6

0

WPEM

GSPR Client Sensitive Privileged Resource Exception

BTE

0xB

0

0x8

Load operation page invalid exception

0x13

0x2

256-bit vector extension instruction not enabled exception

Exceptions to basic floating-point instructions

0xD

0x15

PNX

0x18

PIS

Machine Translated by Google

7.4.7 Exception Return Address (ERA)

7.4.8 Error Virtual Address (BADV)

Ecode

ÿ Load operation page invalid exception (PIL)

ÿ Page Modification Exception (PME)

describe

This register is used to record the virtual address of the error when an address error-related exception is triggered. Such exceptions include:

Name reading and writing

EsubCode Exception Code

Bit

Exception types

This register records the return address after a normal exception has been handled. When an exception is triggered, if the exception type is not TLB, the exception is refilled.

ÿ Load/store operation address error exception (ADEM)

ÿ Store Action Page Invalid Exception (PIS)

describeBit

ÿ Instruction Fetch Error (ADEF) exception: In this case, the PC of the instruction is recorded.

Dragon Architecture Reference Manual Volume 1: Infrastructure

If it is not a machine error exception, the PC of the instruction that triggered the exception will be recorded in this register.

ÿ Page Unreadable Exception (PNR)

ÿ Address alignment misalignment exception (ALE)

ÿ Boundary constraint check error exception (BCE)

ÿ Page Privilege Level Non-Compliance Exception (PPI)

ÿ Page Non-Executable Exception (PNX)

Name reading and writing

ÿ Invalid Fetch Page Exception (PIF)

117

Table 7-9 Exception Program Counter Register Definitions

If the privilege level that triggered the exception is in 32-bit address mode, then the high 32 bits of the recorded PC value are forcibly set to 0.

Table 7-10 Error Virtual Address Register Definitions

When an address error-related exception is triggered, the hardware records the erroneous virtual address here. For the LA64 architecture, this...

GRLEN-1:0

In this case, if the privilege level that triggers the exception is in 32-bit address mode, then the high 32 bits of the recorded virtual address...GRLEN-1:0 VAddr RW

RW

When an exception is triggered:

Otherwise, the hardware will record the PC that triggered the exception here. For the LA64 architecture, in this case,

0ÿ

Reserved code0x1A-0x3E

If it is a TLB refill exception or a machine error exception, the field remains unchanged;

PC

The bit is forcibly set to 0.

Machine Translated by Google

7.4.10 Exception Entry Address (EENTRY)

7.4.9 Error Instruction (BADI)

7.4.11 Reduce Virtual Address Configuration (RVACFG)

describe

This register is used to record the instruction code of the instruction that triggers a synchronization class exception. Synchronization class exceptions refer to exceptions other than interrupts (INT) and guest exceptions.

Dragon Architecture Reference Manual Volume 1: Infrastructure

Bit

This register is used to control the reduced address width in virtual address reduction mode.

Name reading and writing

Name reading and writing

All exceptions except CSR Hardware Modification Exception (GCHC) and Machine Error Exception (MERR).

describeBit

This register is used to configure the entry address for normal exceptions and interrupts.

31:0

0

When R triggers a synchronization class exception, the hardware records the instruction code that triggered the exception here.

Table 7-12 Exception Entry Page Number Register Definitions

R is always 0 when read-only, and writes are ignored.

GRLEN-1:12

118

Inst

RW is the page number of the page containing the entry address for normal exceptions and interrupts.

Table 7-11 Error Instruction Register Definitions

VPN

11:0

Machine Translated by Google

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

R 8:0

0

0

CoreID

119

The maximum value that can be set for the R exception and interrupt vector entry spacing (CSR.ECFG.VS domain).

31:4

In virtual address reduction mode, this refers to the number of bits in the high-order address space that are reduced. It can be configured to a value between 0 and 8.

GRLEN-1:0

11:4 TimerBits

0 is a special configuration value that means virtual address reduction mode is not enabled.RW

Table 7-14 Processor Number Register Definition

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

VSMax

31:9

PSAVL

The numbering starts from 0 and increments.

RBits

If the configured value is greater than 8, the processor behavior is unpredictable.

0

3:0

The processor core number information for each processor core is set by the hardware based on the specific implementation. It is recommended that the processor in the system...

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

Decrement the effective number of bits of the R timer by 1.

14:12

Table 7-16 Privileged Resource Configuration Information 2 Register Definitions

3:0

Table 7-15 Privileged Resource Configuration Information 1. Register Definitions

R indicates the page size that the TLB can support. When the i-th bit is 1, it indicates that pages of size 2i bytes are supported.

R SAVE controls the number of status registers.

31:15

Table 7-13 Reduced Virtual Address Register Definitions

SAVENum

The processor core number. This information is used by software to distinguish each processor core in a multi-core system. During system integration, each...

Name reading and writing

Bit

This register contains configuration information for some privileged resources.

This register contains configuration information for some privileged resources.

This register contains configuration information for some privileged resources.

describe

Bit

Dragon Architecture Reference Manual Volume 1: Infrastructure

describe

This register contains processor core number information.

Name reading and writing describe

Bit describe

Name reading and writing

Name reading and writing

Bit

7.4.14 Privileged Resource Configuration Information 2 (PRCFG2)

7.4.12 Processor ID (CPUID)

7.4.13 Privileged Resource Configuration Information 1 (PRCFG1)

7.4.15 Privileged Resource Configuration Information 3 (PRCFG3)

Machine Translated by Google

7.4.16 Data Saving (SAVE)

7.4.17 LLBit Control (LLBCTL)

Bit

We learned that, starting from SAVE0, the addresses of each SAVE register are 0x30, 0x31, ..., 0x30+SAVENum-1.

Bit

Name reading and writing

This register is used for access control operations on LLBit.

data.

Name reading and writing describe

All data storage control status registers use the same format, as shown in Table 7-18.

Name reading and writing

The minimum number of data storage registers implemented is 1, and the maximum is 16. The specific number can be determined by software configuration using CSR.PRCFG1.SAVENum.

describeBit

Dragon Architecture Reference Manual Volume 1: Infrastructure

The data storage control status register is used to temporarily store data for system software. Each data storage register can store data from one general-purpose register.

describe

25:20

Setting KLO to 0 means that each time KLO is set to 1, it can only affect the execution of the ERTN instruction once.

R

ROLLB

When TLBType=1 or 2, the value of this field is the number of entries in the fully associative multi-page size TLB minus 1.

3:0

When TLBType=2, the value of this field is a power of the number of items per way in a group-associative single-page-size TLB, i.e., per

Table 7-17 Privileged Resource Configuration Information 3 Register Definitions

When TLBType=0, this field is read-only and always equal to 0;

STLBSets

Writing a 1 to this bit in the W1 software will clear LLBit to 0. Writing a 0 to this bit in the software will be ignored by the hardware.

AT RW

When TLBType=0 or 1, this field is read-only and always equal to 0;

GRLEN-1:0

2: A fully associative multi-page-size TLB (MTLB) + a group-associative single-page-size TLB (STLB).

When this bit is equal to 1, the LLBit bit is not cleared to 0 when the ERTN instruction is executed, but the bit will be automatically cleared by the hardware.

There are 2 on the way

0

TLBType

31:26

Data RW is data that can only be read and written by software. The hardware will not modify the contents of this field except when executing CSR instructions.

0

When TLBType=0 or 1, this field is read-only and always equal to 0;
19:12

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

When TLBType=2, the value of this field is the number of paths in a group-associative single page size TLB minus 1.

0: No TLB;

1

Other values: Reserved.

1: A fully associative multi-page size TLB (MTLB)R

STLBWays

Table 7-19 LLBit Register Definition

WCLLB

Instructions for TLB organization:

STLBSets items.

R is a read-only bit that returns the current value of LLBit.

MTLBEntries R

Table 7-18 Data Storage Register Definitions

Used to control the operation of LLBit when the ERTN instruction is executed.

2

120

11:4

R

Machine Translated by Google

7.4.19 Implement Related Control 2 (IMPCTL2)

7.4.18 Implement related control 1 (IMPCTL1)

7.4.20 Cache Tag (CTAG)

7.5.1 TLB Index (TLBIDX)

Bit describe

Dragon Architecture Reference Manual Volume 1: Infrastructure

Name reading and writing

The content, format, and specific meaning of each field are defined by the implementation.

This register contains control information related to the microarchitectural characteristics of the specific implementation. Its format and the specific meaning of each field are defined by the specific implementation.

This register is used by the CACOP instruction to directly access the cache, storing content read from the cache tag or content to be written to the cache tag.

This register contains information such as index values related to TLB instruction operations. The bit width of the Index field in Table 7-20 is implementation-dependent, however...

This register also contains information related to the PS and E fields in the TLB entry during TLB instruction operations.

describe

The allowed index bit width in this architecture is no more than 16 bits.

Name reading and writing

This register contains control information related to the microarchitectural characteristics of the specific implementation. Its format and the specific meaning of each field are defined by the specific implementation.

Bit

RW

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

29:24

0

23:16

When executing the TLBRD and TLBWR instructions, the index value for accessing TLB entries comes from this.

Table 7-20 TLB Index Register Definitions

R is always 0 when read-only, and writes are ignored.

When the TLBRD instruction is executed, the value of the PS field of the read TLB entry is recorded here.

n-1:0

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

When CSR.TLBRERA.IsTLBR=0, the TLBWR and TLBFILL instructions are executed, writing the PS of the TLB table entry.

When the TLBSRCH instruction is executed, if a hit occurs, the index value of the hit item is recorded here.

PS

30

121

Index

0 R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

RW

15:n

31:3

0

0

The value of the field comes from this.

For information on the correspondence between index values and TLB entries, please refer to the relevant content in Section 4.2.4.1.

7.5 Mapped Address Translation Related Control Status Registers

Machine Translated by Google

7.5.3 Low bits of TLB entries (TLBELO0, TLBELO1)

7.5.2 TLB High Bit (TLBEHI)

Name reading and writingBit

Dragon Architecture Reference Manual Volume 1: Infrastructure

Name reading and writing

Name reading and writing

Bit

Bit

describe

The TLBELO0 and TLBELO1 registers contain information such as the physical page number of the lower-order part of the TLB entry when the TLB instruction is executed.

describe

This register contains information related to the virtual page number (VPPN) in the high-order part of the TLB entry during TLB instruction operations.

The bit width of a field is related to the effective virtual address range supported by the implementation, so the definitions of register fields are described separately.

describe

It is always set to 1, regardless of the value of that bit.

When an exception occurs, such as an unreadable page exception, a non-executable page exception, or a non-compliant page privilege level exception, the virtual space that triggers the exception is...

VALEN-1:13

When an exception occurs, such as an unreadable page exception, a non-executable page exception, or a non-compliant page privilege level exception, the virtual space that triggers the exception is...

When CSR.TLBRERA.IsTLBR=0, the TLBSRCH instruction queries the VPPN value used by the TLB, and executes...

When the TLBRD instruction is executed, the value of the VPPN field of the read TLB entry is recorded here.

When executing TLBRD, the E bit information of the read TLB entry is inverted and recorded here.

When the following exceptions are triggered: load operation page invalidity exception, store operation page invalidity exception, fetch operation page invalidity exception, page modification...

31:13

Sign_Ext

When executing TLBSRCH, if there is a hit, this bit is recorded as 0; otherwise, it is recorded as 1.

When the TLBRD instruction is executed, the value of the VPPN field of the read TLB entry is recorded here.

The R read return value is a sign extension of the highest bit of the VPPN field; these bits are ignored when writing.

12:0

The [VALEN-1:13] bit of the address is recorded here.

When CSR.TLBRERA.IsTLBR=0, the TLBSRCH instruction queries the VPPN value used by the TLB, and executes...

A value of 1 indicates that the TLB entry is empty (invalid TLB entry), and a value of 0 indicates that the TLB entry is not empty (valid).

IS RW

The value of the VPPN field written to the TLB entry when executing the TLBWR and TLBFILL instructions comes from this.

63:VALEN

122

Table 7-21 TLB Page Table High-Level Register Definitions (LA64 Architecture)

0

TLB entries).

When executing the TLBWR or TLBFILL instruction, if CSR.TLBRERA.IsTLBR=0, the value of this bit is inverted and then written.

When the following exceptions are triggered: load operation page invalidity exception, store operation page invalidity exception, fetch operation page invalidity exception, page modification...

12:0 0

The [31:13]th position of the address is recorded here.

R is always 0 when read-only, and writes are ignored.

VPPN RW

Table 7-22 TLB Page Table High-Level Register Definitions (LA32 Architecture)

R is always 0 when read-only, and writes are ignored.

The value of the VPPN field written to the TLB entry when executing the TLBWR and TLBFILL instructions comes from this.

VPPN RW

Move to bit E of the TLB entry being written; if CSR.TLBRERA.IsTLBR=1 at this time, then bit E of the TLB entry being written...

31

Machine Translated by Google

Programs with a privilege level of at least PLV can access this page table entry; when RPLV=1, this page table entry can only be accessed by programs with a privilege level equal to PLV.

Global flags (G) for page table entries.

D

Physical page number (PPN) of the RW page table.

Storage Access Type (MAT) for RW page table entries.

Restricted Privilege Level (RPLV) enable for page tables. When RPLV=0, the page table entry can be accessed by any privilege level.

PPN

When executing the TLBFILL and TLBWR instructions, the fill is only performed if the G bits in both TLBELO0 and TLBELO1 are 1.

1

NX

0

0

63

6

3:2 Privilege Level (PLV) of RW page entries.

R is always 0 when read-only, and writes are ignored.

In

G

POLES-1:12

RPLV

In

1

When the TLBRD instruction is executed, if the G bit of the read TLB entry is 1, then the entries in TLBLO0 and TLBLO1...

Dirty position (D) of RW page table entries.

The non-executable bit (NX) of the RW page table entry.

Unreadable bit (NR) of RW page table entries.

5:4

0

123

11:7

0 The valid bit (V) of the RW page table entry.

The valid bit (V) of the RW page table entry.

60:POLES

The G bit is simultaneously set to 1.

POS

access.

RW

R is always 0 when read-only, and writes are ignored.

D

No.61

ALONG WITH

62

RW

Table 7-23 TLB Entries Low-order Register Definitions (LA64 Architecture)

Table 7-24 TLB Entries Low-order Register Definitions (LA32 Architecture)

Dirty position (D) of RW page table entries.

The G bit in the page table entry in the TLB is 1.

The values of the fields MAT0, D0, NR0, NX0, RPLV0, PPN1, V1, PLV1, MAT1, D1, NR1, NX1, and RPLV1 come from...

For TLBELO0 and TLBELO1.

Dragon Architecture Reference Manual Volume 1: Infrastructure

describe

When CSR.TLBRERA.IsTLBR=0, the TLBWR and TLBFILL instructions are executed, writing to the G, PPN0, V0, PLV0, and PLV0 entries in the TLB table.

The definitions are in Tables 7-23 and 7-24.

Because the TLB in the Dragon architecture uses a two-page structure, the low-order bits of the TLB entry correspond to the odd and even physical page entries, with the even-numbered page information in...

Name reading and writingBit

In the corresponding domain.

When the TLBRD instruction is executed, the information read from the TLB entries is written one by one into the TLBEL0 and TLBEL01 registers.

Bit

In TLBELO0, odd-numbered page information is stored in TLBELO1. The format definitions of the TLBELO0 and TLBELO1 registers are identical, and their respective fields...

Name reading and writing describe

Machine Translated by Google

7.5.5 Global Directory Base Address in the Lower Half-Address Space (PGDL)

7.5.4 Address Space Identifier (ASID)

Name reading and writing

This register is used to configure the base address of the global directory in the lower half of the address space. The base address of the global directory must be aligned to a 4KB boundary address.

Therefore, the lowest 12 bits of this register are not configurable by software and are always 0 (read-only).

Bit

This register contains the address space identifier (ASID) information used for memory access operations and TLB instructions. The bit width of the ASID varies depending on the architecture.

describeBit

Name reading and writingBit

Dragon Architecture Reference Manual Volume 1: Infrastructure

describe

Name reading and writing

The specification may evolve further, and to make it easier for software to clearly define the bit width of the ASID, this information will be provided directly.

describe

G

The base address of the global directory in the lower half of the address space.

124

31:POLES-4

ACID

ALONG WITH

0

The bit width of the R ASID field. It is directly equal to the value of this field.

When executing the TLBFILL and TLBWR instructions, the fill is only performed if the G bits in both TLBELO0 and TLBELO1 are 1.

POLES-5:8

R is always 0 when read-only, and writes are ignored.

RW

The address space identifier corresponding to the currently executing program.

Table 7-26 Definitions of Global Directory Base Address Registers in the Lower Half-Address Space

GRLEN-1:12

ASIDBITS

R is always 0 for read-only operations; write operations are ignored. This field does not exist when PALEN=36.

7

9:0

3:2

Base

23:16

31:24

11:0

The G bit in the page table entry in the TLB is 1.

When the TLBRD instruction is executed, if the G bit of the read TLB entry is 1, then the entries in TLBLO0 and TLBLO1...

When the TLBRD instruction is executed, the contents of the ASID field of the TLB entry are recorded here.

The G bit is simultaneously set to 1.

0

0

5:4

0

POS

RW

RW

0

Table 7-25 Address Space Identifier Register Definitions

When executing the TLBSRCH and TLBCLR instructions, the ASID key value information of the TLB is used to query the TLB.

When the TLBWR or TLBFILL instruction is executed, the value written to the ASID field of the TLB entry comes from this.

R is always 0 when read-only, and writes are ignored.

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

Privilege Level (PLV) of RW page entries.

The so-called lower half-address space refers to the virtual address where the [VALEN-1]th bit is equal to 0.

PPN

6

Global flags (G) for page table entries.

Physical page number (PPN) of the RW page table.

Storage Access Type (MAT) for RW page table entries.

It is used as the ASID key value information for querying the TLB when fetching instructions and executing load/store instructions.

15:10

R is always 0 when read-only, and writes are ignored.

Machine Translated by Google

7.5.7 Global Directory Base Address (PGD)

7.5.6 Global Directory Base Address in High Half-Space (PGDH)

7.5.8 Page Table Traversal Control of Lower Half (PWCL)

Name reading and writing

Bit

Therefore, the lowest 12 bits of this register are not configurable by software and are always 0 (read-only).

Together with the information in this register and the CSR.PWCH register, it defines the page table structure used by the operating system. This information will be used for...

The starting address of the page table and the lowest two-level directories cannot exceed 32 bits, a limitation that still exists under the LA64 architecture.

Name reading and writing

This register is a read-only register, and its content is the global directory base address information corresponding to the virtual address of the error in the current context.

Dragon Architecture Reference Manual Volume 1: Infrastructure

Instructs the software or hardware to perform page table traversal. See Section 5.4.5 for a diagram of the page table structure and traversal process.

The read-only information of the device is used not only for the read return value of CSR-type instructions, but also for the base address information required by the LDDIR instruction when accessing the global directory.

describeBit Name reading and writing

describe

This register is used to configure the base address of the global directory in the high half-address space. The base address of the global directory must be aligned to a 4KB boundary address.

In the LA32 architecture, only CSR.PWCL is implemented. Therefore, the PWCL register must contain all the information describing the page table structure, which leads to...

describeBit

The base address of the global directory in the high half-address space.

0

14:10

Base

Dir1_width

Table 7-28 Global Directory Base Address Register Definitions

11:0

RW: The number of bits in the index of the lowest level directory (level 1 page tables). 0 indicates that this level does not exist.19:15

GRLEN-1:12 R

Dir1_base

PTbase

RW

RW is the starting address of the last-level page table (level 0 page table).

The number of index bits for the RW last-level page table (level 0 page table).PTwidth

R is always 0 when read-only, and writes are ignored.

If the highest bit of the error virtual address in the current context is 0, the read return value is equal to the Base field of CSR.PGDL; otherwise...

Then, the read return value is equal to the Base field of CSR.PGDH.

Table 7-29 defines the lower half registers for traversal control.

The so-called high half-address space refers to the virtual address where the [VALEN-1]th bit is equal to 1.

Table 7-27 Definitions of Global Directory Base Address Registers in the High Half-Address Space

R is always 0 when read-only, and writes are ignored.

0

Base

4:0

GRLEN-1:12

9:5

The error virtual address information is located in CSR.TLBRBADV.

When CSR.TLBRERA.IsTLBR=0, the error virtual address information in the current context is located in CSR.BADV; otherwise...

125

11:0

RW is the starting address of the lowest level directory (level 1 page table).

Machine Translated by Google

The enable bit is set to 1 to enable and 0 to disable.

11:6

The starting address of the second-lowest level directory (level 2 page table) in RW.

RW index bit length for the next higher level directory (level 3 page table). 0 indicates that this level does not exist.

RW is the starting address of the highest-level directory (level 4 page table).

0

0

Dir3_width

Dir4_width

RW index bit length for the next lower level directory (level 2 page table). 0 indicates that this level does not exist.

Dir3_base

24

Table 7-30 defines the high half registers for traversal control.

Table 7-31 STLB Page Size Register Definition

0

24:20

24

RW specifies the number of bits in the index of the highest-level directory (level 4 page tables). 0 indicates that this level does not exist.

PTEWidth

5:0

31:6

31:30

The bit width of each page table entry in memory.

5:0

31:25

Dir2_width

RW

0

29:25

23:18

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

When the implementation does not support hardware page table traversal (CPUCFG.2.HPTW[bit24]=0), the read returns 0, and the software does not allow it.

RW HPTW_En

17:12

The page size of a RW STLB is a power of 2. For example, if the page size is 16KB, then PS = 0xE.

Dir4_base

PS

The starting address of the RW next-highest level directory (3rd level page table).

When hardware page table traversal is supported (CPUCFG.2.HPTW[bit24]=1), this bit enables hardware page table traversal functionality.

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

Dir2_base

126

0 represents 64 bits, 1 represents 128 bits, 2 represents 256 bits, and 3 represents 512 bits.

Allow it to change its value.

Together with the information in this register and the CSR.PWCL register, it defines the page table structure used by the operating system. This information will be used...

describe

describe

describe

Name reading and writing

Name reading and writing

Bit

Bit

This register is used to configure the page size in STLB.

Name reading and writing

This register is used to configure the entry address for a TLB refill exception. Because after a TLB refill exception is triggered, the processor core will enter the direct address...

Dragon Architecture Reference Manual Volume 1: Infrastructure

This register is defined only in the LA64 architecture.

Instructs the software or hardware to perform page table traversal. See Section 5.4.5 for a diagram of the page table structure and traversal process.

Bit

Since this is a translation mode, the entry address entered here should be a physical address.

7.5.10 STLB Page Size (STLBPS)

7.5.9 Page Table Traversal Control of the High Half (PWCH)

7.5.11 TLB Refill Exception Entry Address (TLBRENTRY)

Machine Translated by Google

7.5.12 TLB Refill Exception Error Virtual Address (TLBRBADV)

7.5.13 TLB Refill Exception Return Address (TLBRERA)

Name reading and writing

describe

This is a flag for TLB refill exceptions.

Bit

Bit

Dragon Architecture Reference Manual Volume 1: Infrastructure

Name reading and writing

Bit

Bit

describe

Name reading and writing

This register is used to record the virtual address of the error that triggers the TLB refill exception.

Name reading and writing

describe

describe

This register stores the return address after the TLB refill exception handling is complete. In addition, this register also contains information to identify the current exception.

Because a separate CSR is defined for TLB refill exceptions in the architecture, when this bit is 1,

PPN RW TLB Refill the exception entry address [31:12]. The address entered here should be a physical address.

VAddr RW

PPN RW TLB Refill the exception entry address [PALEN-1:12] bits. The address entered here should be a physical address.

The error virtual address information required for the execution of LDDIR and LDPTE instructions will come from CSR.TLBRBADV.

127

When a TLB refill exception is triggered, the hardware sets this bit to 1.

0

R TLB refills the exception entry address [11:0]. Read-only is always 0, write is ignored.

When ERTN returns, the information used to restore CSR.CRMD will come from CSR.TLBRPRMD;

0

CSR.TLBELO0ÿCSR.TLBELO1ÿ

Table 7-35 TLB Refill Exception Return Address Register Definition

R TLB refills the exception entry address [11:0]. Read-only is always 0, write is ignored.

63:POLES

11:0

Otherwise, it remains unchanged.

When a TLB refill exception is triggered, the hardware records the erroneous virtual address here. For the LA64 architecture, in this situation...

In this case, if the privilege level that triggers the exception is in 32-bit address mode, then the high 32 bits of the recorded virtual address are strong.

Table 7-32 TLB Refill Exception Entry Address Register Definition (LA64 Architecture)

The information retrieved by the TLBSRCH command comes from CSR.TLBREHI;

ÿ

Table 7-33 TLB Refill Exception Entry Address Register Definitions (LA32 Architecture)

The ERTN return address information will come from CSR.TLBRERA;

When this bit is 1, the ERTN instruction will clear it to 0 only if CSR.ERRCTL.IsMERR=0.

IsTLBR RW

R is always 0 when read-only, and writes are ignored.

11:0

31:12

Table 7-34 TLB Refill Exception Error Virtual Address Register Definitions

POLES-1:12

GRLEN-1:0

The table entry information to be written by the TLBWR and TLBFILL commands will come from CSR.TLBREHI.

The setting is 0.

0

0

A value of 1 indicates that the current context is TLB refill exception handling.

Machine Translated by Google

7.5.14 TLB Refill Exception Data Saving (TLBRSAVE)

7.5.15 TLB Refill Exception Entries Low Bits (TLBRELO0, TLBRELO1)

Bit

Name reading and writing

describe

Name reading and writing

The TLBRELO0/1 registers are used when the TLB is in a TLB refill exception context (when CSR.TLBRERA.IsTLBR=1), to store TLB pointers.

Bit

The TLBELO0/1 registers are identical.

Bit

The reason for setting up an additional SAVE register for the TLB refill exception handler is to handle non-TLB refill exceptions.

The TLB refill exception is triggered during the process.

Name reading and writing

This is reflected in two points:

Dragon Architecture Reference Manual Volume 1: Infrastructure

However, the TLBRELO0/1 registers are not a complete replica of the TLBRELO0/1 registers when CSR.TLBRERA.IsTLBR=1.

This register is used to temporarily store data for system software. Each data storage register can hold the data of one general-purpose register.

describe

describe

During operation, the lower-order bits of the TLB entry contain information such as the physical page number. The format of the TLBRELO0/1 registers and the meaning of each field are respectively...

ÿ Regardless of the value of CSR.TLBRERA.IsTLBR, executing the LDPTE instruction will only update the TLBRELO0/1 registers.

ÿ Regardless of the value of CSR.TLBRERA.IsTLBR, executing the TLBRD instruction will only update the TLBELO0/1 registers.

Privilege Level (PLV) of RW page entries.

In

Data RW is data that can only be read and written by software. The hardware will not modify the contents of this field except when executing CSR instructions.

1

When executing the TLBFILL and TLBWR instructions, the fill is only performed if the G bits in both TLBELO0 and TLBELO1 are 1.

5:4

0

Dirty position (D) of RW page table entries.

11:7

Table 7-37 TLB Refill Exception Entries Low-order Register Definitions (LA64 Architecture)

0

0

Record the [GRLEN-1:2] bits of the PC that triggered the TLB refill exception. This occurs when the ERTN instruction is executed to refill from the TLB.

When the exception handler returns (at this time, IsTLBR in this register = 1 and CSR.ERRCTL.IsMERR = 0), the hardware automatically...

Global flags (G) for page table entries.

POS

POLES-1:12

PC

RW

GRLEN-1:2

3:2

The valid bit (V) of the RW page table entry.

Table 7-36 TLB Refill Exception Data Storage Register Definitions

128

Storage Access Type (MAT) for RW page table entries.

The value stored here will be padded with two 0 bits at its least significant bit and used as the final return address.

G

Physical page number (PPN) of the RW page table.

GRLEN-1:0

R is always 0 when read-only, and writes are ignored.

PPN

RW

D

6

1

ALONG WITH

R is always 0 when read-only, and writes are ignored.

The G bit in the page table entry in the TLB is 1.

Machine Translated by Google

7.5.16 TLB Refill Exception Entries High Bit (TLBREHI)

Name reading and writing

The TLBREHI register stores TLB instruction operations when the system is in a TLB refill exception context (where CSR.TLBRERA.IsTLBR=1).

describe

However, the TLBREHI register is not a complete replica of the TLBREHI register when CSR.TLBRERA.IsTLBR=1. This is reflected in:

Name reading and writing

Name reading and writingBit describe

Bit

It's the same as a memory.

ÿ Regardless of the value of CSR.TLBRERA.IsTLBR, executing the TLBRD instruction will only update the TLBEHI register.

describe

Bit

Dragon Architecture Reference Manual Volume 1: Infrastructure

The lower-order bits of the TLB entry contain information such as the physical page number. The format of the TLBREHI register and the meaning of each field are related to the TLBREHI register.

POS

7

Physical page number (PPN) of the RW page table.

Programs with a privilege level of at least PLV can access this page table entry; when RPLV=1, this page table entry can only be accessed by programs with a privilege level equal to PLV.

RW

0

The TLBFILL instruction writes the value of the PS field of the TLB entry from this instruction.

5:0

0

The G bit in the page table entry in the TLB is 1.

access.

Privilege Level (PLV) of RW page entries.

R is always 0 when read-only, and writes are ignored.

In

0

When executing the TLBFILL and TLBWR instructions, the fill is only performed if the G bits in both TLBELO0 and TLBELO1 are 1.

R is always 0 when read-only, and writes are ignored.

Dirty position (D) of RW page table entries.

ALONG WITH

R is always 0 when read-only, and writes are ignored.

No.

RPLV

6

3:2

1

Restricted Privilege Level (RPLV) enable for page tables. When RPLV=0, the page table entry can be accessed by any privilege level.

63

TLB refills the page size value for exceptions. Specifically, when CSR.TLBRERA.IsTLBR=1, TLBWR and...

PS

POLES-5:8

RW

The valid bit (V) of the RW page table entry.

NX

12:6

D

R is always 0 for read-only operations; write operations are ignored. This field does not exist when PALEN=36.

Table 7-39 TLB Refill Exception Page Table High-order Register Definitions (LA64 Architecture)

60:POLES

0

Global flags (G) for page table entries.

The non-executable bit (NX) of the RW page table entry.

61 Unreadable bit (NR) of RW page table entries.

0

5:4

62

Table 7-38 TLB Refill Exception Entries Low-order Register Definitions (LA32 Architecture)

PPN

RW

31:POLES-4

129

Storage Access Type (MAT) for RW page table entries.

G

Machine Translated by Google

7.5.17 TLB Refill Exception Pre-Exception Schema Information (TLBRPRMD)

7.5.18 Direct Mapping Configuration Window (DMW0~DMW3)

This set of registers is involved in completing the direct-mapped address translation mode. For details on this address translation mode, please refer to Section 5.2.1.

Bit

Dragon Architecture Reference Manual Volume 1: Infrastructure

Name reading and writing

Bit describe

Bit describe

Name reading and writing

The bits are saved to this register and used to restore the processor core's state upon exception return.

describe

Name reading and writing

When a TLB refill exception is triggered, the hardware will update the processor core's privilege level, guest mode, global interrupt enable, and watchpoint settings at that time.

63:VALEN

5:0

Table 7-40 TLB Refill Exception Page Table High-order Register Definitions (LA32 Architecture)

VPPN RW

0 R is always 0 when read-only, and writes are ignored.

TLB refills the page size value for exceptions. Specifically, when CSR.TLBRERA.IsTLBR=1, TLBWR and...

When a TLB refill exception is triggered, the hardware will record the old value of the PLV field in CSR.CRMD in this field.

The TLBFILL instruction writes the value of the PS field of the TLB entry from this instruction.

RW

The value of each field is restored to the IE field in CSR.CRMD.

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

The R read return value is a sign extension of the highest bit of the VPPN field; these bits are ignored when writing.

31:13

ABOUT

1:0

3

When a TLB refill exception is triggered, the hardware will record the old value of the IE field in CSR.CRMD in this field.

RW

31:5

When CSR.TLBRERA.IsTLBR=1, the hardware will return from the exception handler when executing the ERTN instruction.PPLV

When a TLB refill exception is triggered, the [VALEN-1:13] bits of the virtual address that triggered the exception are recorded here.

0

The value of the VPPN field written to the TLB entry when executing the TLBWR and TLBFILL instructions comes from this.

VPPN RW

12:6

When CSR.TLBRERA.IsTLBR=1, the TLBSRCH instruction queries the VPPN value used by the TLB, and executes...

VALEN-1:13

When a TLB refill exception is triggered, the hardware will record the old value of the WE field in CSR.CRMD in this field.

When CSR.TLBRERA.IsTLBR=1, the TLBSRCH instruction queries the VPPN value used by the TLB, and executes...

When a TLB refill exception is triggered, bits [31:13] of the virtual address that triggered the exception are recorded here.

PS

WEIGHT

If virtualization extensions are not implemented, this bit is always 0 for read-only mode, and writes are ignored.

When CSR.TLBRERA.IsTLBR=1, the hardware will return from the exception handler when executing the ERTN instruction.

0

Sign_Ext

Table 7-41 Definition of TLB Refill Exception Mode Information Register

2

RW

When CSR.TLBRERA.IsTLBR=1, the hardware will return from the exception handler when executing the ERTN instruction.

4

The values of each field are restored to the PLV field of CSR.CRMD.

The value of each field is restored to the WE field of CSR.CRMD.

The value of the VPPN field written to the TLB entry when executing the TLBWR and TLBFILL instructions comes from this.

RW

130

Machine Translated by Google

7.6.1 Timer Number (TID)

7.6 Timer-related control status register

Name reading and writing

Bit

Dragon Architecture Reference Manual Volume 1: Infrastructure

describeBit

The timer number.

Bit

Each timer in the processor has a unique, identifiable number, configured in a register by software. Each timer is also unique.

Name reading and writing

describe

Name reading and writing

For each corresponding timer, when the software uses the RDTIME instruction to read the timer value, the timer ID number returned is also the corresponding timer ID.

describe

VSEG

PLV2

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

PSEG

ALONG WITH

VSEG

RW directly maps the physical address of the window in bits [31:29].

2

A value of 1 for RW indicates that the configuration of this window can be used for direct address mapping translation under privilege level PLV0.

Table 7-44 Timer Number Register Definition

0

Table 7-42 Direct Mapping Configuration Window Register Definitions (LA64 Architecture)

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

59:6

Table 7-43 Direct Mapping Configuration Window Register Definitions (LA32 Architecture)

PLV2 A value of 1 for RW indicates that the configuration of this window can be used for direct mapping address translation under privilege level PLV2.

3

TIME31:0

5:4

27:25

63:60

A value of 1 for RW indicates that the configuration of this window can be used for direct mapping address translation under privilege level PLV3.

PLV3

The RW virtual address is the memory access type of the memory access operation that falls under this mapping window.

A value of 1 for RW indicates that the configuration of this window can be used for direct mapping address translation under privilege level PLV3.

Timer number. Software configurable. During processor core reset, hardware can reset it to the value in CSR.CPUID.

0

PLV3

A value of 1 for RW indicates that the configuration of this window can be used for direct mapping address translation under privilege level PLV2.

5:4

RW directly maps bits [63:60] of the virtual address of the window.

RW directly maps the virtual address of the window in bits [31:29].

PLV0

24:6

PLV1

A value of 1 for RW indicates that the configuration of this window can be used for direct mapping address translation under privilege level PLV1.

RW

131

1

ALONG WITH

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

A value of 1 for RW indicates that the configuration of this window can be used for direct address mapping translation under privilege level PLV0.

A value of 1 for RW indicates that the configuration of this window can be used for direct mapping address translation under privilege level PLV1.

31:29

PLV1

2

0

0

0

3

1

The RW virtual address is the memory access type of the memory access operation that falls under this mapping window.

The same value for CoreID.

28

PLV0

Machine Translated by Google

Timer cycle mode control bit. If this bit is 1, a timer interrupt will be set when the timer counts down to 0.

Timer enable bit. The timer will only count down when this bit is 1, and will be reset when it reaches 0.

Table 7-47 Timer Compensation Register Definition

Timer interrupt signal.

The initial value for the timer's countdown decrement. This initial value must be an integer multiple of 4. The hardware will automatically set this value.

The clock cycle continues to decrement. If this bit is 0, the timer will stop counting when it reaches 0, until the software...

132

Table 7-46 Timer Remaining Register Definitions

Simultaneously with the signal, the timer will automatically reload to the initial value configured in the InitVal field, and then proceed to the next...

InitVal RW

R is the current timer count value.

Configure the timer again.

n-1:2

The least significant bit of the field value is padded with two 0 bits before it is used.

RW

Periodic RW

GRLEN-1:n

In

n-1:0

Table 7-45 Timer Configuration Register Definitions

R is always 0 when read-only, and writes are ignored.

1

R is always 0 when read-only, and writes are ignored.0

GRLEN-1:0

0

0

GRLEN-1:n

TimeVal

Compensation RW software provides configurable timer compensation values.

The software can configure this register to correct the timer's read value. The final read value is: the original timer count value + the countdown.

This register is the interface for configuring the timer in software. The effective number of bits for the timer is determined by the implementation, therefore the bit width of the TimeVal field in this register is...

Name reading and writing

Name reading and writingBit

The bit width of the TimeVal field will also change accordingly.

Bit

Bit

It will also change accordingly.

The timer compensation value. Note that configuring this register does not directly change the timer's count value.

The software can read this register to determine the current timer count. The effective number of bits for the timer is determined by the implementation, therefore this register...

describe

describe

Dragon Architecture Reference Manual Volume 1: Infrastructure

In the LA32 architecture, this register is 32 bits, and its value is sign-extended to 64 bits before being added to the original counter value.

Name reading and writing

describe

7.6.3 Timer Value (TVAL)

7.6.2 Timer Configuration (TCFG)

7.6.4 Timer Compensation (CNTC)

Machine Translated by Google

7.7 RAS Related Control Status Register

7.7.1 Machine Error Control (MERRCTL)

7.6.5 Timer Interrupt Clearing (TICLR)

describe

The software clears the timer interrupt signal that the timer was set by writing 1 to bit 0 of the register.

Dragon Architecture Reference Manual Volume 1: Infrastructure

Bit

Because the timing of machine error exceptions cannot be predicted or controlled by the software, in order to prevent any other existing systems from being damaged when a machine error exception is triggered...

Name reading and writing

In this context, a separate set of Conditional Records (CSRs) is defined specifically for machine error exceptions, allowing the system software to save and restore other contexts. This set of separate CSRs...

Name reading and writing

Apart from MERRERA and ERRSAVE, the rest are concentrated in the MERRCTL register.

describeBit

ABOUT

3:2

When IsMERR in this register is 1, the hardware will return from the exception handler when the ERTN instruction is executed.

PPLV

The ERTN return address information will come from CSR.ERRERA.

0

When ERTN returns, the information used to restore CSR.CRMD will come from PPLV, PIE, etc. in this register.

0

Repairable

The value of each field is restored to the IE field in CSR.CRMD.

31:1

Because the architecture defines a separate CSR for machine error exceptions, when this bit is 1,

When a value of 1 is written to this bit, the clock interrupt flag will be cleared. The register will always read a value of 0.

Table 7-48 Timer Interrupt Clear Register Definitions

When this bit is 1, executing the ERTN instruction will clear it to 0.

The values of each field are restored to the PLV field of CSR.CRMD.

R

A value of 1 indicates that the current context is machine error exception handling.

R

CLR

When a machine error exception is triggered, the hardware records the old value of the IE field in CSR.CRMD in this field.

5

0

If virtualization extensions are not implemented, this bit is always 0 for read-only mode, and writes are ignored.

Return.

RW

133

When a machine error exception is triggered, the hardware will record the old value of the PLV field in CSR.CRMD in this field.

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

4

0

Table 7-49 Machine Error Control Register Definitions

domain;

RW

A value of 1 indicates that the hardware can automatically repair the machine error, therefore the exception handler can proceed without any processing.

When IsMERR in this register is 1, the hardware will return from the exception handler when the ERTN instruction is executed.

When a machine error exception is triggered, the hardware sets this bit to 1.

1

IsMERR

Machine Translated by Google

0

The values of each field are restored to the DATM field of CSR.CRMD.

When IsMERR in this register is 1, the hardware will return from the exception handler when the ERTN instruction is executed.

7

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

RW

When a machine error exception is triggered, the hardware will record the old value of the DATF field in CSR.CRMD in this field.

12:11

RW

63:POLES

Cause

11:0

134

PDATF

R machine error exception entry address [11:0] bits. Always 0 for read-only, write is ignored.

The value of each field is restored to the PG field of CSR.CRMD.

0

When a machine error exception is triggered, the hardware will record the old value of the WE field in CSR.CRMD in this field.

When IsMERR in this register is 1, the hardware will return from the exception handler when the ERTN instruction is executed.

23:16

POLES-1:12

R0 Reserved returns 0 when read, and must be written to 0, or can be masked using CSR mask write.

8 When IsMERR in this register is 1, the hardware will return from the exception handler when the ERTN instruction is executed.

When IsMERR in this register is 1, the hardware will return from the exception handler when the ERTN instruction is executed.

RW

Currently, only the value 0x1 is defined to indicate a cache check error. The remaining encoded values are reserved.

6 WEIGHT

Machine error type encoding.

The value of each field is restored to the WE field of CSR.CRMD.

When a machine error exception is triggered, the hardware will record the old value of the DATM field in CSR.CRMD in this field.

PPG

RW

10:9

When a machine error exception is triggered, the hardware will record the old value of the PG field in CSR.CRMD in this field.

15:13

R

0

0

RW

PPN RW Machine Error Exception Entry Address [PALEN-1:12] bits. The address entered here should be a physical address.

Table 7-50 Machine Error Exception Entry Base Address Register Definitions (LA64 Architecture)

The values of each field are restored to the DATF field of CSR.CRMD.

PDATM

When a machine error exception is triggered, the hardware will record the old value of the DA field in CSR.CRMD in this field.

R is always 0 when read-only, and writes are ignored.

31:24

The values of each field are restored to the DA field of CSR.CRMD.

When IsMERR in this register is 1, the hardware will return from the exception handler when the ERTN instruction is executed.PDA

describe

Bit

Bit

Name reading and writing

Name reading and writing

Since this is a translation mode, the entry address entered here should be a physical address.

This register is used to configure the entry address for machine error exceptions. Because after a machine error exception is triggered, the processor core will enter the direct address...

Dragon Architecture Reference Manual Volume 1: Infrastructure

When a machine error exception is triggered, the hardware stores more information related to the error into these two registers for system software diagnostics.

Its format and the specific meaning of each field are defined by the specific implementation.

describe

7.7.2 Machine Error Message 1/2 (MERRINFO1/2)

7.7.3 Machine Error Exception Entry Address (MERRENTRY)

Machine Translated by Google

7.7.5 Machine Error Exception Data Saving (MERRSAVE)

7.7.4 Machine Error Exception Return Address (MERRERA)

Name reading and writing

All performance monitoring-related configuration registers (CSRs) are alternately addressed starting from address 0x200. The address of the nth performance monitoring configuration register is 0x200+n, and the address of the nth CSR is...

This register is used to temporarily store data for system software. Each data storage register can hold the data of one general-purpose register.

Name reading and writing

A minimum of one monitor and a maximum of 32 monitors can be implemented, the exact number depending on the implementation. The software can access this information by reading CPUCFG.6.PMNUM[bit7:4].

This register is used to record the return address after machine error exception handling is completed.

Bit

Name reading and writing

describe

Dragon Architecture Reference Manual Volume 1: Infrastructure

To determine how many performance monitors are available.

Bit

Bit

The reason for setting up an additional SAVE register for use by the machine error exception handler is due to the timing of machine error exceptions.

The software cannot predict or control this; it could happen during any other exceptional processing.

The Dragon architecture defines a hardware performance monitoring mechanism that supports software performance analysis. The core of this mechanism is a series of performance monitors.

describe

The format of the monitoring counter is the same, as described in Section 7.8.2.

describe

The address of each performance monitoring counter is 0x201+n. All performance monitoring configuration registers have the same format, as described in Section 7.8.1; all performance...

Each performance monitor contains two CSRs: a performance monitoring configuration register (PMCFG) and a performance monitoring counter (PMCNT).

When returning (at this time CSR.ERRCTL.IsMERR=1), the value stored here will be used as the return address.

PPN RW Machine Error Exception Entry Address [31:12]. The address entered here should be a physical address.

GRLEN-1:0

0

GRLEN-1:0 PC

135

Table 7-53 Machine Error Exception Data Saving Register Definitions

The PC records the instruction that triggered the machine error exception. When the ERTN instruction is executed, it returns from the machine error exception handler.

Table 7-52 Machine Error Exception Program Counter Register Definitions

31:12

11:0

Table 7-51 Machine Error Exception Entry Base Address Register Definitions (LA32 Architecture)

R machine error exception entry address [11:0] bits. Always 0 for read-only, write is ignored.

RW

Data RW is data that can only be read and written by software. The hardware will not modify the contents of this field except when executing CSR instructions.

7.8 Performance monitoring related control status registers

Machine Translated by Google

SMEs20

Table 7-54 Performance Monitoring Configuration Register Definitions

15:10

RW PLV0 privilege level enables counting for this performance monitor. 1 - Start counting, 0 - Stop counting.

This interrupt is invoked. This also means that the software can cancel the interrupt by clearing the most significant bit of Count to 0.

9:0

0

The meaning of the event numbers is that all processors compatible with this architecture must implement them; the meaning of the remaining event numbers is related to the specific implementation.EvCode

17

The counter increments by 1 each time a performance event monitored by the performance monitor occurs.

The definition is left to the processor implementer.

Count RW

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

Table 7-55 Performance Monitoring Counter Register Definitions

PLV1

136

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

RW PLV3 privilege level enables counting for this performance monitor. 1 - Start counting, 0 - Stop counting.

RW

GRLEN-1:0

0

0 If virtualization extensions are not implemented in R, the read-only value of this field will always be 0, and writes will be ignored.

PLV2

PLV0

18

16

31:23

RW PLV2 privilege level enables counting for this performance monitor. 1 - Start counting, 0 - Stop counting.

PLV3

RW is the performance monitoring counter overflow interrupt enable bit for this performance monitor. 1 – Enable, 0 – Disable.

19

If the performance monitor has enabled the performance monitor count overflow interrupt, then when the most significant bit of Count is 1, it will...

RW PLV1 privilege level enables counting for this performance monitor. 1 - Start counting, 0 - Stop counting.

22:21

The event number of the monitored performance event. The definition of the event number consists of two parts: one part is explicitly stated in the architecture specification.

The Dragon architecture defines hardware watchpoint functionality for instruction fetch and load/store operations. After configuring the watchpoints for instruction fetch and load/store in the software,

The next numbers are 0x390+8n, 0x391+8n, 0x392+8n, and 0x393+8n.

Bit

The control status registers of each monitoring point have a similar layout, consisting of a register containing the overall configuration of all monitoring points and a register recording all monitoring data.

The addresses of the set registers are 0x310+8n, 0x311+8n, 0x312+8n, and 0x313+8n respectively; the address of the fetch watchpoint overall configuration register is...

The watchpoint-related control status register serves as the interface for software configuration of instruction fetching and load/store operations on the watchpoint. Load/store of the watchpoint and instruction fetching...

The address is 0x300, the address of the overall status register of the load/store monitoring point is 0x301, and the four components numbered 1 to 4 of the nth load/store monitoring point...

Bit

The system includes a register for the status of each monitoring point, as well as four registers required for the individual configuration of each monitoring point. Among these, the overall configuration register for the load/store monitoring point is...

Name reading and writing

Name reading and writing describe

describe

Dragon Architecture Reference Manual Volume 1: Infrastructure

The processor hardware will monitor memory access addresses for instruction fetch and load/store operations, and trigger a watchpoint exception when the watchpoint settings are met.

0x380, the address of the overall status register of the instruction fetch watchpoint is 0x381, and the addresses of the four configuration registers (numbers 1-4) of the nth instruction fetch watchpoint are...

7.8.1 Performance Monitoring Configuration (PMCFG)

7.8.2 Performance Monitoring Counter (PMCNT)

7.9 Monitoring Point Related Control Status Register

Machine Translated by Google

This Skip bit corresponds to all load/store monitoring points. If the software modifies the breakpoint configuration or changes the breakpoint,

R is always 0 when read-only, and writes are ignored.

Status

When an address involved in a load/store operation hits a watchpoint, its corresponding bit is set to 1. This applies except during reset.

31:20

31:17

This simplifies watchpoint exceptions by preventing the endless re-triggering of the same watchpoint without canceling it.

RW

R is always 0 when read-only, and writes are ignored.

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

The monitoring point was hit. This characteristic also means that the value read after writing a 1 to this bit may not necessarily be 1.

19:16

The software sets this bit to 1 to instruct the hardware to ignore the next load/store watchpoint hit result. This "ignore" refers to...

n-1:0

0

In

0

137

The load/store status indicates the hit rate of the watchpoints. Each watchpoint corresponds one-to-one with a specific bit, with bit i corresponding to the i-th watchpoint.

When the Skip bit is 1, if the hardware encounters a load/store watchpoint hit, it will ignore that hit.Skip

0

15:n

R load/store: The number of monitoring points.

The Skip bit is cleared to 0 at the same time as the result is obtained. This means that each time the software sets the Skip bit to 1, the hardware ignores at most one...

Do not set this bit; in fact, for safety, you should write 0 to clear the bit.

0

The hardware will not clear the bits of this field to 0.

16

Table 7-57 Definition of Overall Status Register for Load/Store Monitoring Points

The processing.

5:0

RW1

"Abbreviated" means neither setting the corresponding bit in the Stauts field of this register to 1 nor triggering a watchpoint exception. This function can...

Table 7-56 Overall Configuration Register Definitions for Load/Store Monitoring Points

If virtualization extensions are not implemented in R, the read-only value of this field will always be 0, and writes will be ignored.

The software can only clear it to 0 by comparing it to close-up 1; close-up 0 will be ignored.

It is worth noting that the global enable control signal for all monitoring points is the WE bit in CSR.CRMD.

The values of CSR.MWPC.Num and CSR.FWPC.Num determine how many hardware monitoring points can be used.

Dragon Architecture Reference Manual Volume 1: Infrastructure

describeName reading and writing

Bit

The configuration information contained in this register is used to tell the software the exact number of monitoring points to load/store.

describe

The information contained in registers 1-3 of the configuration for each load/store monitoring point is directly used for comparison and judgment during monitoring point checks. Assuming the points to be compared...

Name reading and writing

The load/store watchpoint and fetch watchpoint each have a maximum of 14 implementations, with the actual number determined by the specific implementation. The software can read...

Bit

7.9.3 Configure 1~4 load/store monitoring points n (MWPnCFG1~4)

7.9.1 Overall Configuration of Load/Store Monitoring Points (MWPC)

7.9.2 Overall Status of Load/Store Monitoring Points (MWPS)

Machine Translated by Google

AM{SWAP/ADD/AND/OR/XOR/MAX/MIN}[_DB].D,

LD{GT/LE}.H, ST{GT/LE}.H

FLD{GT/LE}.S, FST{GT/LE}.S

0x10 0x20 0x40 0x80

0xF0

LD[X].W[U], ST[X].W,

AM{MAX/MIN}[_DB].DU,

LL.W, SC.W,

0xC0

LL.D, SC.D,

0x0F

LD{GT/LE}.W, ST{GT/LE}.W,

LD[X].D, ST[X].D,

LDPTR.W, STPTR.W,

138

AM{SWAP/ADD/AND/OR/XOR/MAX/MIN}[_DB].W,

LDPTR.D, STPTR.D,

LD[X].B[U], ST[X].B,

LD{GT/LE}.D, ST{GT/LE}.D,

0x30
LD[X].H[U], ST[X].H

LD{GT/LE}.B, ST{GT/LE}.B

0x01 0x02 0x04 0x08

0x03

FLD[X].S, FST[X].S,

0xFF

FLD[X].D, FST[X].D,

AM{MAX/MIN}[_DB].WU,

Table 7-58 Load/Store Monitoring Point Judgment Process (mbyten Definition)

0x0C

FLD{GT/LE}.D, FST{GT/LE}.D

`mbyten` represents the bytes involved in the operation. It is an 8-bit bit vector whose value corresponds to the type of the load/store operation and the low-order address value.

Otherwise, go to 6;

maddr[2:0]

5. If the LCL bit in MWPCFG3 is equal to 1, but CSR.ASID.ASID is not equal to the ASID in MWPCFG4, the judgment terminates.

1 2 6

1. If CSR.CRMD.WE=0, terminate the process; otherwise, go to step 2.

4

4. If the operation is a load operation but the LoadEn bit in MWPCFG3 is equal to 0, or if the operation is a store operation but...

7. If (~bytemask[7:0] & mbyten[7:0]) equals all 0, the judgment terminates; otherwise, the watch point is considered to have been hit.

2. If the current state is not debug mode but the DSOnly bit of MWPCFG3 is equal to 1, terminate the process; otherwise, proceed to step 3.

If the StoreEn bit in MWPCFG3 is equal to 0, the judgment terminates; otherwise, go to step 5.

Dragon Architecture Reference Manual Volume 1: Infrastructure

The following section provides further explanation of the concepts of mbyten and bytemask that appeared in the above judgment process description.

3. If the bit corresponding to the current privilege level in PLV0~PLV3 of MWPCFG3 is equal to 0, the judgment ends; otherwise, go to 4.

3

6. If (maddr & (~MWPCFG2.Mask)) != (MWPCFG1.VAaddr & (~MWPCFG2.Mask)), meaning the addresses are not comparable.

5

The address being operated on is maddr, and the byte range is mbyten. The hit determination process for each monitoring point is as follows:

Wait, determine if to terminate; otherwise, go to step 7.

The specific definitions are shown in Table 7-58:

Command Name

0 7

Machine Translated by Google

0b11

RW This monitor point enables monitor point exceptions under the PLV2 privilege level. 1 - Enable, 0 - Disable.

Mask

7

RW

RW This monitor point enables monitor point exceptions under PLV3 privilege level. 1 - Enable, 0 - Disable.

0

RW This monitor point enables monitor point exceptions under PLV1 privilege level. 1 - Enable, 0 - Disable.

LCL

0x00

0xF0

GRLEN-1:0

DSOnly

31:12

0x0F

PLV3

The (positional machine) software has priority access to the monitoring points.

RW This monitor point enables monitor point exceptions at the PLV0 privilege level. 1 - Enable, 0 - Disable.

0

4

0xFC

The i-th bit is not included in the comparison.

This bit can only be modified in debug mode (CSR.DBG.DS=1). This means that when running in debug mode (on...

6:5

139

0

The mask bit for comparing the load/store monitoring point address. If the i-th bit (0ÿi<GRLEN) is 1, it indicates that the address is...

0xF3

When RW performs a watchpoint check, it determines which bytes fall within the comparison range.

3

Only in this mode will the watchpoint exception be triggered and the watchpoint status be marked.

0xCF

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

StoreEn

PLV1

0x3F

Table 7-61 Load/Store Monitoring Point Configuration 2 Register Definitions

11:10

First, the configuration register of the monitoring point can be modified by software in this mode. Second, after the monitoring point checks for a hit...

A value of 1 for RW indicates that a watchpoint check is performed on the store operation; otherwise, no check is performed.

Size

A value of 1 indicates that this load/store watchpoint is only available in debug mode. Here, "available" has two meanings:

PLV2

0xFE 0xFD 0xFB 0xF7 0xEF 0xDF 0xBF 0x7F

Table 7-59 Load/Store Monitoring Point bytemask Definition

PLV0

GRLEN-1:0

A value of 1 for RW indicates that this is a local monitoring point.

LoadEn

0b00

RW = 1 indicates that the load operation is checked by a watchpoint; otherwise, it is not checked.

VAddr RW is the virtual address to be compared at the load/store monitoring point.

Table 7-60 Load/Store Watchpoint Configuration 1 Register Definitions

8

1

Table 7-62 Load/Store Watchpoint Configuration 3 Register Definitions

If virtualization extensions are not implemented in R, the read-only value of this field will always be 0, and writes will be ignored.

2

9

RW

0b01

0b10

4

Name reading and writing

MWPCFG3.Size

The lower bits of VAddr are related to Size in MWPCFG3, as shown in the specific definition.

0

Bit

Bit

Bit

describe

Name reading and writing

1 6

describe

bytemask represents a mask that excludes bytes from the comparison during the watchpoint comparison. It is an 8-bit bit vector whose value is the same as MWPCFG1.

Name reading and writing

5 7

Dragon Architecture Reference Manual Volume 1: Infrastructure

describe

2 3

MWPCFG1.VAddr[2:0]

Machine Translated by Google

7.9.5 Overall Status of the Command Watchpoint (FWPS)

7.9.4 Overall Configuration of Command-Based Monitoring Point (FWPC)

Name reading and writingBit

Dragon Architecture Reference Manual Volume 1: Infrastructure

describe

describe

describeName reading and writingBit

Bit

The configuration information contained in this register is used to inform the software of the exact number of instruction fetch watchpoints.

It is worth noting that the global enable control signal for all monitoring points is the WE bit in CSR.CRMD.

Name reading and writing

If virtualization extensions are not implemented in R, the read-only value of this field will always be 0, and writes will be ignored.

31:20

16

By canceling a watchpoint, the endless re-triggering of the same watchpoint is avoided, thus simplifying the handling of watchpoint exceptions.

R represents the number of monitoring points.

R is always 0 when read-only, and writes are ignored.

0

19:16

Table 7-64 Overall Configuration Register Definitions for Instruction Fetch Watchpoint

R is always 0 when read-only, and writes are ignored.

15:n

0

0

If virtualization extensions are not implemented in R, the read-only value of this field will always be 0, and writes will be ignored.

In

Table 7-65 Definition of the Overall Status Register for the Instruction Fetch Watchpoint

Clear the bits in this field to 0.

This means neither setting the corresponding bit in the Stauts field of this register to 1 nor triggering a watchpoint exception. This function can be used without...

Skip

9:0

0

31:17

The software can only clear it to 0 by comparing it to close-up 1; close-up 0 will be ignored.

Table 7-63 Load/Store Watchpoint Configuration 4 Register Definitions

reason.

When the Skip bit is 1, if the hardware encounters a fetch watchpoint hit, it will ignore the hit result.

0

R is always 0 when read-only, and writes are ignored.

ACID RW is compared to ASID

0

5:0

31:24

This indicates the hit status of the watchpoints. Each watchpoint corresponds one-to-one with the watchpoint, with bit i corresponding to the i-th watchpoint.

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

The software sets this bit to 1 to instruct the hardware to ignore the next fetch watchpoint hit result. Ignoring means...

At the same time, the Skip bit is cleared to 0. This means that each time the software sets the Skip bit to 1, the hardware will ignore the monitoring at most once.

15:10

RW

140

0

When a pointer fetching PC hits a watchpoint, its corresponding bit is set to 1. Except during reset, the hardware will not...

n-1:0 Status

Viewpoint hit. This characteristic also means that if the software writes a 1 to this bit, the value read back may not be 1.

This Skip bit corresponds to all instruction fetch watchpoints. If the software modifies the breakpoint configuration or changes the breakpoint, then...

RW1

R is always 0 when read-only, and writes are ignored.

To set this bit, or even to clear it by writing 0 for safety, you need to do so.

23:16

Machine Translated by Google

7.9.6 Configure 1~3 (FWPnCFG1~3) for the command monitoring point n .

1. If CSR.CRMD.WE=0, terminate the process; otherwise, go to step 2.

The information contained in registers 1-3 of each instruction fetch watchpoint is directly used for comparison and judgment during watchpoint checks. The hit rate of each watchpoint...

Bit

5. If (pc & (~FWPCFG2.Mask)) != (FWPCFG1.VAddr & (~FWPCFG2.Mask)), meaning the addresses are not equal, then determine...

describe

describe

4. If the LCL bit in FWPCFG3 is equal to 1, but CSR.ASID.ASID is not equal to the ASID in FWPCFG4, the process terminates.

Bit

The judgment process is as follows:

If the connection is broken, the operation terminates; otherwise, the monitoring point is considered to have been hit.

Name reading and writing

Otherwise, go to 6;

2. If the current state is not debug mode but the DSOnly bit of FWPCFG3 is equal to 1, terminate the process; otherwise, proceed to step 3.

3. If the bit corresponding to the current privilege level in PLV0~PLV3 of FWPCFG3 is equal to 0, the judgment ends; otherwise, go to 4.

Name reading and writing

Bit

describe

Dragon Architecture Reference Manual Volume 1: Infrastructure

Name reading and writing

Mask

31:8

PLV3

VAddr RW indicates the virtual address to be compared at the monitoring point.

RW This monitor point enables monitor point exceptions under PLV1 privilege level. 1 - Enable, 0 - Disable.

R0 is a reserved field. Reading it returns 0, and the software is not allowed to change its value.

4

GRLEN-1:0

Only in this mode will the watchpoint exception be triggered and the watchpoint status be marked.

PLV2

LCL

RW This monitor point enables monitor point exceptions under the PLV2 privilege level. 1 - Enable, 0 - Disable.

7

Table 7-68 Instruction Fetch Watchpoint Configuration 3 Register Definitions

A value of 1 indicates that this fetch watchpoint is only available in debug mode. Here, "available" has two meanings: one...

The (positional machine) software has priority access to the monitoring points.

PLV0

141

Table 7-67 Instruction Fetch Watchpoint Configuration 2 Register Definitions

This bit can only be modified in debug mode (CSR.DBG.DS=1). This means that when running in debug mode (on...

Table 7-66 Instruction Fetch Watchpoint Configuration 1 Register Definitions

2

RW This monitor point enables monitor point exceptions at the PLV0 privilege level. 1 - Enable, 0 - Disable.

GRLEN-1:0

0

0

First, the configuration register of the monitoring point can be modified by software in this mode; second, after the monitoring point checks for a hit, only...

3

If virtualization extensions are not implemented in R, the read-only value of this field will always be 0, and writes will be ignored.

A value of 1 for RW indicates that this is a local monitoring point.

RW

0 DSOnly

This refers to the mask bit used for comparing the address of the reference monitoring point. If the i-th bit (0ÿi<GRLEN) is 1, it indicates that the i-th bit of the address is...

RW

PLV1

6:5

RW This monitor point enables monitor point exceptions under PLV3 privilege level. 1 - Enable, 0 - Disable.

1

Not included in the comparison.

Machine Translated by Google

7.10.1 Debug Register (DBG)

7.10.2 Debug Exception Return Address (DERA)

15:10

Table 7-69 Instruction Fetch Watchpoint Configuration 4 Register Definitions

DS

Table 7-70 Debug Register Definitions

The version number of R's debugging mechanism. 1 is the initial version.

0

R is always 0 when read-only, and writes are ignored.0

R = 1 indicates that the debug exception type for entering debug mode is debug external interrupt exception (DEI).

R = 1 indicates that the debug exception type that enters debug mode is the debug call exception (DCL).

The TLB refill exception reused exception code 0x7;

ACID

R

9

Ecode

The machine error exception reused exception code 0xE.

R = 1 indicates that the debug exception type for entering debug mode is the Debug Fetch Watchpoint Exception (DFW).

DCL

11

31:24

0

If virtualization extensions are not implemented in R, the read-only value of this field will always be 0, and writes will be ignored.

31:22

7:1

RW is compared to ASID

DFW

When a debug exception is triggered in non-debug mode, the hardware sets this bit to 1.

142

When the bit is 1, the ERTN instruction is executed to clear the bit to 0.

0

When a non-debug exception occurs in debug mode, the exception type code is recorded here. The meaning of the codes here is the same as in the table.

A value of 1 indicates that the system is currently in debug mode.

10

15:12

9:0

R = 1 indicates that the debug exception type that caused the user to enter debug mode is the debug load/store watchpoint exception (DMW).

The definitions in 7-8 are basically the same, with only three differences:

8

DMW

21:16

R is always 0 when read-only, and writes are ignored.

The debug call exception reused exception code 0xC;

0

0 R0 is read-only (0)

OF THE

R

23:16

DRev

R0 is read-only (0)

Dragon Architecture Reference Manual Volume 1: Infrastructure

Bit

Bit Name reading and writing describe

Name reading and writing describe

7.10 Debugging related control status registers

Machine Translated by Google

7.11 Message Interrupt Related Control Status Register

Data

IS

Table 7-72 Definitions of Debug Data Storage Registers

Table 7-73 Definition of Message Interrupt Status Register 0

R records the interrupt status of messages 0 to 63 sequentially from bit 0 to bit 63. A value of 1 indicates that the interrupt for that message has been enabled.

R records the interrupt status of messages 128 to 191 sequentially from bits 0 to 63. A value of 1 indicates that the interrupt for that message has been enabled.

IS R records the interrupt status of messages 64 to 127 sequentially from bits 0 to 63. A value of 1 indicates that the interrupt for that message has been enabled.

63:0

63:0

Table 7-76 Definition of Message Interrupt Status Register 3

63:0

RW

IS

When a debug exception is triggered in non-debug mode, the hardware will record the PC that triggered the exception here.

63:0

R records the interrupt status of messages 192 to 255 sequentially from bits 0 to 63. A value of 1 indicates that the interrupt for that message has been enabled.

63:0

Table 7-74 Definition of Message Interrupt Status Register 1

IS

PC

143

Table 7-71 Definition of Debug Exception Return Address Register

When CSR.DBG.DS=1, the return address is retrieved from here when the ERTN instruction is executed.

Table 7-75 Definitions of Message Interrupt Status Register 2

RW is data that is only available for software to read and write. The hardware will not modify the contents of this field except when executing CSR instructions.

63:0

Bit

describe

Dragon Architecture Reference Manual Volume 1: Infrastructure

Name reading and writing

describe

The reason for setting up an additional SAVE register for the debug exception handler is that debug exceptions can occur in any scenario.

describe

describe

describe

Bit

Bit

This register is used to temporarily store data for system software. Each data storage register can hold the data of one general-purpose register.

Name reading and writing

Name reading and writing

Name reading and writing

Bit

Name reading and writing describe

Bit

Furthermore, the handling of debugging exceptions should be transparent to the software on the host being debugged.

Bit

Name reading and writing

7.11.1 Message interruption status 0ÿ3 (MSGIS0~3)

7.10.3 Debug Data Saving (DSAVE)

Machine Translated by Google

R = 1 indicates that there is no valid message interruption request at present, otherwise it is 0.

R0 is read-only (0)

Null

R/W Priority Threshold. Enables the lower priority threshold for message interruption.

30:8

7:0

R is the message interrupt number that initiated the message interrupt request. This field is only meaningful when the Null bit of this register is 0.

31

0

31:8

R0 is read-only (0)

Table 7-77 Message Interrupt Request Register Definitions

PT

7:0 IntNum

Table 7-78 Message Interrupt Enable Register Definitions

0

144

Name reading and writing

Bit Name reading and writing

Regardless of whether it is an LA32 or LA64 architecture, a negative return value indicates that there is no valid message interrupt request in the register.

Dragon Architecture Reference Manual Volume 1: Infrastructure

This register is a 32-bit CSR. When accessed using the CSR instruction in the LA64 architecture, it is sign-extended to 64 bits before being returned, therefore...

describe

describeBit

7.11.2 Message Interruption Request (MSGIR)

7.11.3 Message Interrupt Enable (MSGIE)

Machine Translated by Google

8.1 Operator Interpretation in Pseudocode

Operators

Dragon Architecture Reference Manual Volume 1: Infrastructure

Bit;

meaning

ÿ Use the prefix "'h" or "##'h" to represent hexadecimal numbers, where the prefix "##'h" indicates that the bit width of this hexadecimal number is ## bits.

ÿ Decimal numbers are represented without a prefix or with a prefix of "'d" or "##'d", where the prefix "##'d" indicates that the bit width of this decimal number is ##.

This section lists the meanings of statement keywords and various operators involved in pseudocode, as well as the operator precedence relationships.

In addition, the common conventions for representing numerical values in pseudocode are as follows:

In hexadecimal numbers, A through F are written in uppercase.

ÿ Use the prefix "'b" or "##'b" to represent binary numbers, where the prefix "##'b" indicates that the bit width of this binary number is ## bits;

8 Appendix A Functional Definition Pseudocode Description

case

:

Value 1

)

Execute statement 2

return

default:

…

…

signed(

Execute statement 1

,

:

of:

Judgment condition 2

:

…

)

break

case conditional statement

Condition 1 Execute

Statement 1

FALSE statement

(,

Elif

Execute statement 2

:

?

fp32(

…

TRUE executes the statement.

)

fp64(

Conditional statements

unsigned integers

for loop statement

145

Function definition

Judgment conditions

Value 2

A sequence of integers from 0 to N-1 with a step size of 1.

if

…

function body

N

sequencefor

variable

half-precision floating-point number

A sequence of specified step values from the start value (inclusive) to the end value (exclusive).

unsigned(

fp16(

):

Double-precision floating-point numbers

Return value

Abort the current loop

Default execution statement

Return type function name

Single-precision floating-point number

loop variable

Signed integers

Execution statement

)

…

conditional statements

Execute statement 3

Determine the variable

range()

:

)

in

range(

)

else:

Table 8-1 Explanation of Key Words in Statements

:

, Start value End value Step value

Machine Translated by Google

Assignment

146

M

)

variable

equal

N

variable

power

Triggering exceptions

N to M bits of the bit string

Bit string M is copied N times and concatenated

)

Greater than

N

remove

The value is TRUE if the variable is a signaling NaN number, and FALSE otherwise.

The bit strings N, M, ... are concatenated in sequence

}}

Table 8-3 Definitions of Arithmetic Operators

The value is TRUE if the variable is a quiet NaN, otherwise it is FALSE.

ZeroExtend(

exception

Mold taking

)

Not equal to

M

Table 8-2 Explanation of String Operators

Less than

*

Variable sign extended to N bits

N

+

Less than or equal to

variable

bits()

{

Variable zero-extended to N bits

-

N-bit type

Greater than or equal to

isQNaN(

bit

Integer type

N

…

]

)

,

}

**

integer

,

==

{

boolean

isSNaN(

:

/

!=

>

Boolean type

=

%

variable

Bit type

{

take

<

SignExtend(

[

SignalException()

,

M

N

,

add

Table 8-4 Explanation of Comparison Operators

<=

Single-line comment

N

reduce

>=

Operators

Dragon Architecture Reference Manual Volume 1: Infrastructure

Operators

meaning

Operators meaning

meaning

Operators meaning

Machine Translated by Google

8.2 Pseudocode Description of Functions

Operators

Operators meaning

meaning

Operators meaning

Dragon Architecture Reference Manual Volume 1: Infrastructure

The operator precedence in pseudocode, from highest to lowest, is listed in Table 8-7:

The pseudocode definitions used in the instruction descriptions in this manual are as follows.

bitwise XOR

Bitwise or

>>>

&

Logical OR

Table 8-7 Operator Precedence

Table 8-5 : Definitions of Bitwise Operators

Arithmetic right shift

Logical AND, Logical OR

Bitwise XOR, Bitwise OR

Logical NOT

&

>, <, >=, <=

Logical left shift, logical right shift, arithmetic right shift

Invert bitwise

Logic AND

<<, >>, >>>

Bitwise AND

+, -

^, |

|

and

~

Equal to, not equal to

or

==, !=

Bitwise AND

147

Logical left shift

^

power

Add, subtract

Greater than, less than, greater than or equal to, less than or equal to

not

*, /, %

and, or

~

Table 8-6 Explanation of Logical Operators

<<

>>

Invert bitwise

Multiplication, division, modulo

**

not

Logical NOT

Logical right shift

Machine Translated by Google

if sa==0 :

return result

else :

return result

bits(N) SLL(bits(N) x, integer sa):

result = x

result = x

result = {{sa{1'b0}}, x[N-1:sa]}

result = {{in{x[N-1]}}, x[N-1:in]}

bits(N) ROTR(bits(N) x, integer sa):

else :

if sa==0 :

result = x

result = {x[N-sa-1:0], {sa{1'b0}}}

bits(N) SRL(bits(N) x, integer sa):

bits(N) SRA(bits(N) x, integer sa):

return result

if sa==0 :

if sa==0 :

return result

result = x

else :

else :

result = {x[sa-1:0], x[N-1:sa]}

Dragon Architecture Reference Manual Volume 1: Infrastructure

8.2.4 Cyclic Right Shift

8.2.3 Arithmetic right shift

8.2.1 Logical Left Shift

8.2.2 Logical Right Shift

148

Machine Translated by Google

8.2.6 Count the number of consecutive zeros starting from the highest digit.

8.2.5 Count the number of consecutive 1s starting from the highest digit.

8.2.7 Count the number of consecutive 1s starting from the least significant digit.

8.2.8 Count the number of consecutive zeros starting from the least significant bit .

Dragon Architecture Reference Manual Volume 1: Infrastructure

if x[i]==1'b1 :

cnt = 0

for i in range(N) :

return cnt

return cnt

for i in range(N) :

if x[N-1-i]==1'b0 :

cnt = 0

if x[N-1-i]==1'b1 :

else :

{bits(N) } CTZ(bits(N) x):

cnt = 0

return cnt

cnt = cnt + 1

cnt = cnt + 1

{bits(N) } CLO(bits(N) x):

else :

cnt = cnt + 1

else :

{bits(N) } CLZ(bits(N) x):

if x[i]==1'b0 :

{bits(N) } CTO(bits(N) x):

else :

return cnt

for i in range(N) :

cnt = cnt + 1

cnt = 0

for i in range(N) :

149

Machine Translated by Google

150

8.2.11 Converting Single-Precision Floating-Point Numbers to Signed Word Integers

8.2.9 Bit string reversal

8.2.10 CRC-32 checksum calculation

8.2.12 Converting Single-Precision Floating-Point Numbers to Signed Double-Word Integers

Dragon Architecture Reference Manual Volume 1: Infrastructure

for i in range(N) :

{bits(N) } BITREV(bits(N) x):

res[i] = x[N-1-i]

bits(32) CRC32(old_chksum, msg, width, poly):

{2'd0}: return Sint64_convertToIntegerExactTiesToEven(x)

if (new_chksum & 1'b1):

for i in range(width):

^

case {rm} of:

new_chksum = (new_chksum >> 1)

else:

{2'd0}: return Sint32_convertToIntegerExactTiesToEven(x)

{2'd2}: return Sint32_convertToIntegerExactTowardPositive(x)

{bits(64) } FP32convertToSint64(bits(32) x, bits(2) rm):

case {rm} of:

return res

poly

{2'd1}: return Sint32_convertToIntegerExactTowardZero(x)

return new_chksum

{2'd2}: return Sint64_convertToIntegerExactTowardPositive(x)

{2'd3}: return Sint64_convertToIntegerExactTowardNegative(x)

{2'd3}: return Sint32_convertToIntegerExactTowardNegative(x)

{bits(32) } FP32convertToSint32(bits(32) x, bits(2) rm):

{2'd1}: return Sint64_convertToIntegerExactTowardZero(x)

new_chksum = (old_chksum & 0xFFFFFFFF) ̂ {{(64-width){1'b0}}, msg}

new_chksum = ((new_chksum >> 1)

Machine Translated by Google

8.2.16 Rounding Double-Precision Floating-Point Numbers

8.2.14 Converting Double-Precision Floating-Point Numbers to Signed Double-Word Integers

8.2.13 Converting Double-Precision Floating-Point Numbers to Signed Word Integers

8.2.15 Rounding Single-Precision Floating-Point Numbers

Dragon Architecture Reference Manual Volume 1: Infrastructure

{2'd1}: return Sint64_convertToIntegerExactTowardZero(x)

case {rm} of:

{bits(64) } FP64convertToSint64(bits(64) x, bits(2) rm):

{bits(32) } FP32_roundToInteger(bits(N) x):

case {rm} of:

{bits(32) } FP64convertToSint32(bits(64) x, bits(2) rm):

{2'd0}: return Sint32_convertToIntegerExactTiesToEven(x)

return FP64_roundToIntegralExact(x)

{2'd3}: return Sint32_convertToIntegerExactTowardNegative(x)

{bits(64) } FP64_roundToInteger(bits(N) x):

{2'd2}: return Sint64_convertToIntegerExactTowardPositive(x)

{2'd3}: return Sint64_convertToIntegerExactTowardNegative(x)

{2'd1}: return Sint32_convertToIntegerExactTowardZero(x)

return FP32_roundToIntegralExact(x)

{2'd2}: return Sint32_convertToIntegerExactTowardPositive(x)

{2'd0}: return Sint64_convertToIntegerExactTiesToEven(x)

151

Machine Translated by Google

Machine Translated by Google

1

rj

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 sa2

rj

5 0

rj

rj

rj

rd

rk

rd

3

rj

rj

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 sa2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

4

rd

rk

rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

0

rk

rj

rd

rj

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

rd

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 sa2

9

rj

8

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

rd

rd

rd

1

rj

rj

rd

rk

1

2

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

7

rk

rj

rj

2

3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

rj

0 0 0 0 0 0 0 0 0 0 0 0 1 1

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

rd

6

rj

rj

rd

9

rd

0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0

rd

rk

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

5

1

2

rj

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

rd

rj

rd

9

rd

rj

2

rj

4

rd

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

rd

2

8

rk

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

2

rj

rd

rd

rj

1 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1

2

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

rk

1

rj

2 0

rk

rk

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

sa3

rj

rd

rd

2

rj

rd

rj

7

rd

rd

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1

0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1

8

rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

rk

6

rd

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

2

rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 rd

2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1

0

rd

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1

2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

rk

5

0 0 0 0 0

0

rd

rj

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

rj

2

4

rj

rk

rd

0

rd

0 0 0 0 0

1

rd

0

rd

0

7

rd

rj

rj

rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1

3

rd

0

6

rj

Dragon Architecture Reference Manual Volume 1: Infrastructure

9. Appendix B : List of Instruction Codes

153

ASRTLE.D

EXT.W.H

CLO.W

rd, rj

rd, rj, rk

rd, rj

SLTU

rd, rj

rd, rj, rk, sa2

rd, rj

ADD.D

rd, rj

rd, rj

ALSL.W

SLT

rd, rj, rk

rd, rj

rd, rj, rk

BITREV.4B

BYTEPICK.W rd, rj, rk, sa2

rd, rj

RDTIME.D

CLZ.D

rd, rj, rk

REVH.D

CPUCFG

CLZ.W

rd, rj, rk

rd, rj, rk

CTO.D

CTO.W

SUB.D

rd, rj

ADD.W

ALSL.WU

BITREV.8B

rd, rj

CTZ.W

RDTIMEL.W rd, rj

rj, rk

RDTIMEH.W rd, rj

REVB.2W

rd, rj

CTZ.D

rd, rj CLO.D

rd, rj

BITREV.W

rd, rj

REVB.2H

BYTEPICK.D rd, rj, rk, sa3

rd, rj, rk, sa2

MASKEQZ

rd, rj

REVB.D

BITREV.D

rd, rj

rd, rj

rd, rj

rd, rj

SUB.W

ASRTGT.D

rj, rk

rd, rj

rd, rj, rk

REVH.2W

REVB.4H

EXT.W.B

rd, rj

rd, rj

Machine Translated by Google

DIV.YOU

rd, rj, rk

OR

rd, rj, rk

CRCC.W.D.W rd, rj, rk

MOD.W

MULH.DU

rd, rj, rk

rd, rj, rk

rd, rj, rk

rd, rj, rk

rd, rj, rk

DBCL

rd, rj, rk

rd, rj, rk

MOD.YOU

SLL.W

BREAK

ROTR.W

rd, rj, rk

MUL.W

rd, rj, rk

CRCC.W.W.W rd, rj, rk

rd, rj, rk

FREE

rd, rj, rk

DIV.WU

rd, rj, rk

CRCC.WHW rd, rj, rk

SRA.W

ORN

ROTR.D

MULH.W

rd, rj, rk

MOD.WU

SRL.W

rd, rj, rk

rd, rj, rk

rd, rj, rk

rd, rj, rk

rd, rj, rk

MASKNEZ

CRC.W.W.W rd, rj, rk

rd, rj, rk

MULH.WU

DIV.D

MULW.D.WU rd, rj, rk

CRCC.W.B.W rd, rj, rk

code

rd, rj, rk

rd, rj, rk

rd, rj, rk

CRC.WDW

SLL.D

rd, rj, rk

ANDN

rd, rj, rk

MUL.D

MULW.DW

rd, rj, rk

MOD.D

rd, rj, rk

code

rd, rj, rk

rd, rj, rk

CRC.WHW

rd, rj, rk

AND

rd, rj, rk

SRA.D

MULH.D

CRC.WBW

NOR

DIV.W

rd, rj, rk

SRL.D

Dragon Architecture Reference Manual Volume 1: Infrastructure

rj

0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1

1

rd

rk

1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 rk

2

2

rk

rk

rd

rd

6

rd

1

rk

rj

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0

rd

0

code

8 5

rj

rd

rd

2

rk

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

rd

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1

0

rd

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1

rd

1

rd

rk

rd

rj

7

rj

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0

rd

3

rd

rd

4

rk

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1

rj

rk

rk

8

1

3

0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0

rk

rj

rk

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

rk

rk

1

rd

rk

rd

rd

rj

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0

6

rd

rk

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1

0 1

rk

code

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

rd

5

rk

4

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1

rk

rd

2

rk

rj

rd

rj

2

rk

0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0

0

rk

rk

rj

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

rd

rk

2

1 9

rk

rj

0

rj

1

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

rj

rk

0 3

rj

rj

rd

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1

rk

rj

rd

2

0

2

rj

rk 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1

rd

1

rj

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1

rd

0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1

0

rk

0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1

2

rk

4

rj

7

rd

2 2

rj

rk

rk

3

rd

rj

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1

3

rj

rd

0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0

0

rd

rd

rk

5 9

rk

rd

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

rj

rd

rj

1

rj

rd

2 1

rj

rj

0

rj rd

8

rj

2

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

rk

rd

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1

rj

rj

rj

rd

1

rj

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0

rj

0 0

7 0

rk

rk

1

rk

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0

rj

rj

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1

rd

9 6

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

rj

rk

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0

rj

154

Machine Translated by Google

FMAX.S

fd, fj

fd, fj

FCLASS.S

ROTRI.W

rd, rj, ui6

fd, fj, fk

SRAI.W

BSTRINS.D

FMUL.D

fd, fj, fk

fd, fj

fd, fj, fk

FMIN.S

BSTRPICK.W rd, rj, msbw, lsbw

ROTRI.D

fd, fj, fk

SLLI.W

FCOPYSIGN.D fd, fj, fk

fd, fj, fk

rd, rj, ui6

FMUL.S

SRAI.D rd, rj, ui6

FDIV.D

rd, rj, ui5

FDIV.S

SRLI.D

FABS.S

FABS.D

FMINA.D

fd, fj, fk

FSCALEB.D fd, fj, fk

fd, fj

SLLI.D

rd, rj, ui5

FMAXA.D

rd, rj, rk, sa2

fd, fj, fk

FADD.S

fd, fj, fk

FNEG.S

FCOPYSIGN.S fd, fj, fk

fd, fj, fk

FADD.D

fd, fj, fk

fd, fj

fd, fj, fk

rd, rj, ui5

fd, fj, fk

FLOGB.D

FSCALEB.S fd, fj, fk

FNEG.D

FSUB.D

SRLI.W

fd, fj, fk

rd, rj, msbd, lsbd

rd, rj, msbw, lsbw

fd, fj

code

rd, rj, ui5

FMINA.S

FSUB.S

fd, fj

BSTRPICK.D rd, rj, msbd, lsbd

FMIN.D

FMAXA.S

BSTRINS.W

fd, fj, fk

FLOGB.S

ALSL.D

SYSCALL

FMAX.D

fd, fj, fk

fd, fj, fk

rd, rj, ui6

Dragon Architecture Reference Manual Volume 1: Infrastructure

6

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0

fd

0 0 0 0 0 0 0 0 0 1 1

1

fj

2

9

rk

ui6

fk

2

rj

0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1

8

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1

fj

1

ui5

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1

2

fj

fk

rd

fj

fj

2

fj

fj

fd

3

rj

6

fk

fk

3

0

0

rd

fj

fd

fj

1

rd

fk

0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0

fj

rj

lsbd

fd

0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0

7

0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1

rd

4

fd

rj ui6

0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0

fj

fj

fj

lsbw

fj

rd

0

rd

0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1

rj

fd

fd

0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1

3

0

8

fd

0

0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1

fd

0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1

0

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1

fj

6 0 4

2

0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1

ui6

msbw

fk

fk

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0

1

fk

0

0

fd

fd

0

msbw

2

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

rd

1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0

fd

2

0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1

fd

rj

fd

7 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

fd

fk

fj

rd

fd

fj

2

fj

rj

0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0

1

msbd

fd

2

fk

fj

2 1

5

rj

fj

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

fj

1

fd

fd

fj

fd

2

fd

fj

fk

rj

rj

9

fj

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1

fk

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

fj

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

2

8

rj

msbd

2

rj

4 5

fk

fd

3

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 rd

ui5

lsbd

5

fk

rd

fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1

fd

0

rj

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1

1

0

0

ui6

0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0

fj

7

ui5

rd

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1

fk

fk

fk

0 1

ui5

lsbw

fk

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1

9

rd

code

1 1

fd

fd

fd

rd

1

1

fk

0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 sa2

fd

0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0

3

fk

1

155

Machine Translated by Google

156

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0

fj

rj

1 1

fd

0

7

fd

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1

1

fd

fd

rj

fd

2

fd

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1

fd

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1

1

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0

2

8

fj

1

5

fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 1 0 fd

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 1 0

1

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 0 0 0 1 fj

3

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 1

1

fd

8

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 1

fd

3

fj

fd

fj

6

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 1

1

6

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 0

fd

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 1 1 0

0

fj

0

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 1 1 0

5

rd

fd

fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 1 0 0 1

cj

fd

fj

cj

7

fj

fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 1 0

fj

0

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0

fj

0

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0

fj

cd

0

fd

fj

fd

0 0

fd

fd

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 1 0

fj

0

fd

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 0 1

fd

0

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0

cd

1

rd

fj

fj

fd

0

9

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1

0 0

1

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0

fj

2

0

9

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 1 1 0

fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 1 0

fj

rd

fj

2

fj

fd

fd

0 8

fj

6

2

fd

fd

rj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0

fj

2

4

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 0

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 1 0 1 0

7

0 0

0 9

2 2

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 1 0 1 fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 0 0

rj

fj

3

fd

fcsr

fd

fd

fj

rd

3

fd

2

0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1

fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1

5

2

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 1 1 1

fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0

rj

4

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1

2

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 1

1 2

fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 1

1

rd

fd

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 1 0 1

2 1

fj

fd

4

1

fcsr

0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0

3

fd

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 0 0

fd

fj

Dragon Architecture Reference Manual Volume 1: Infrastructure

cd, fj

fd, fj

FTINTRM.L.D fd, fj

FTINTRP.W.S fd, fj

FTINTRNE.W.S fd, fj

MOVGR2FR.D fd, rj

MOVCF2FR

FTINTRM.W.D fd, fj

FSQRT.S

FRECIPE.S

MOVFCSR2GR rd, fcsr

FRECIPE.D

FSQRT.D

fd, fj

MOVFR2GR.D rd, fj

FTINTRNE.W.D fd, fj

MOVFR2CF

fd, fj

FTINTRM.L.S fd, fj

FTINTRZ.LD fd, fj

fd, fj

MOVGR2FR.W fd, rj

fd, fj

fd, fj

fd, fj

fd, fj

FTINTRM.W.S fd, fj

FRSQRT.D

MOVGR2FRH.W fd, rj

fd, fj

FTINTRZ.W.D fd, fj

fd, fj

FCLASS.D

FCVT.D.S

FTINTRP.L.D fd, fj

FRECIP.D

fd, fj

FTINTRZ.L.S

MOVGR2FCSR fcsr, rj

fd, fj

FTINTRZ.W.S fd, fj

MOVCF2GR rd, cj

FMOV.D

FRSQRT.S

MOVFRH2GR.S rd, fj

fd, fj

FCVT.S.D

FRSQRTE.D

MOVFR2GR.S rd, fj

FRECIP.S

fd, cj

FTINTRP.L.S fd, fj

FTINTRP.W.D fd, fj

fd, fj

MOVGR2CF cd, rj

fd, fj

FRSQRTE.S fd, fj

FMOV.S

Machine Translated by Google

157

rj

fd

1

rd

csr

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

1 1

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

si12

2

fj

0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 0 0 1

rd

0

fj

rd

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0

1

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 1 0 0 1

0 0 0 0 0

2

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0

0 0 0 0 0 0 1 0 1 1

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0

6

fd

rd

rd

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

2

9

si12

rj!=0,1

code

rd

2

fd

5

rj

0 0 0 0 0 1 0 0

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1

fj

rj

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

rj

rd

6 2 0

1

0 0 0 0 0 0 1 1 1 0

fd

rj

0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0

5

1

si12

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0

0

seq

0

8

rj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 1 0

rj

ui12

rj

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1

1

6 1

0 0 0 0 0 0 1 0 1 0

2

7

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 1

rd

1

5

rj

0

fd

rd

level

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0

9

rj

rd

4

0

si12

fj

0 0 0 0 0 0 1 1 1 1

3

fd

0 0 0 0 0 1 1 0 0 1 0 0 0 0

fj

0 0 0 0 0 0 1 1 0 1

0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 0

rj

rd

rj

0 0 0 0 0 0 1 0 0 1

0

3

ui12

rj

0

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0

2

3 1

ui12

4

si12

fj

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0

1

rj

rd

fj

8

2

rj

fd

rj

rj

0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 0

1 1

3

fd 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1

7

csr

fd

0 0 0 0 0 1 0 0

4

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1

rd

rd

2

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 1 0 1 0

rd

0

rd

2

fd

si12

rd

0

fd

fj

2

3

rj

0

0 0 0 0 0 1 1 0 0 1 0 0 0 1

rd

fj

0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 0

2

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1

9

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1

rd

rd

0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 0 1 0

0

csr

0

fj

0 0 0 0 0 1 0 0

rj

8

fj

fj

fd

7

2 0

0 0 0 0 0 0 1 1 0 0

Dragon Architecture Reference Manual Volume 1: Infrastructure

CHORUS

FTINTRNE.L.S fd, fj

CSRRD

IOCSRWR.D rd, rj

TLBSRCH

rd, rj, si12

ADDI.W

TLBFLUSH

fd, fj FTINT.LS

ANDI

OR

LDDIR

FRINT.D

rd, rj, level

TLBWR

rd, csr

rd, rj, ui12

SLTUI

rd, rj, si12

fd, fj

fd, fj

rd, rj, ui12

IOCSRWR.W rd, rj

IOCSRRD.H

rd, rj, si12

FTINT.LD

rd, rj, si12

TLBCLR

fd, fj

IOCSRWR.H rd, rj

FRINT.S

SLTI

LU52I.D

FFINT.S.W

rd, rj, si12

ERTN

fd, fj

IOCSRRD.B

CAP

FFINT.D.L

IOCSRRD.W rd, rj

fd, fj

FTINT.WD

CSRXCHG

fd, fj

rd, rj

rd, rj

FFINT.S.L

fd, fj

IOCSRWR.B rd, rj

TLBRD

code, rj, si12

rd, rj, csr

rj, seq

FFINT.D.W

FTINT.W.S

fd, fj

rd, rj, ui12

ADDI.D

rd, csr

IOCSRRD.D

fd, fj

CSRWR

rd, rj

TLBFILL

FTINTRNE.L.D fd, fj

LDPTE

Machine Translated by Google

158

rd

2

fd

cond

1

rj

rj

rj

4

0

8

but

fd

rd

si12

rd

2

fj

5

but fj

rd

0

that

0 0 1 0 0 0 0 0

0

si12

0 0 0 0 1 0 0 0 1 0 0 1

rd

but

rj

si12

cd

3

hint

fj

0 7

0 0 1 0 1 0 0 1 0 0

fj

0 0 0 1 0 1 1

0 0 1 0 0 0 1 1

1

si20

0 0 1 0 1 0 1 0 1 1

0

but

si12

2

fd

1

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1

si20

0 0 1 0 0 0 1 0

fj

rd

0 0 1 0 1 0 0 0 1 0

rd

6

yes14

si12

rj

2

3

0 0 0 0 1 0 0 0 0 1 0 1

rd

rj

fj

8

rd

cd

si20

3

fk

rd

si12

0 0 0 0 1 1 0 1 0 0 0 0 0 0

5

2

rd

rd

fj

0

rd

si12

but

rd

rj

1 0

but

yes14

rd

9

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1

fd

rd

1

1

fd

si20

rd

0 0 1 0 1 0 0 0 0 1

si12

1

rd

si16

1

but

si12

fk

rj

rj

0 0 0 0 1 0 0 0 0 0 0 1

0 0 1 0 0 1 0 1

1

fd

yes14

rj

rj

fk

3

si20

rd

0

0 0 0 0 1 0 0 0 0 1 1 0

0 0 0 1 1 0 0

rd

rj

0

2

7

0 0 0 0 1 1 0 0 0 0 0 1

rj

fd

fk

yes14

2

0 0 1 0 1 0 1 0 1 0

0

fk

fd

0 0 1 0 1 0 0 1 1 1

rd

9

0 0 1 0 0 0 0 1

si12

9

0 0 1 0 1 0 1 1 0 0

3

0 0 0 0 1 1 0 0 0 0 1 0

0 0 1 0 0 1 1 0

rd

0 0 1 0 1 0 0 0 1 1

0 0 0 1 1 1 0

2

fk

si12

1

si12

6

fk

0 0 1 0 1 0 0 0 0 0

rd

rk

0 0 0 1 0 1 0

0 0 0 0 1 0 0 0 1 1 1 0

1

yes14

fj

0 0 1 0 1 0 1 0 0 0

yes14

8 5 2

rd

fj

4

1

rj

fj cond

7

rj

0 0 1 0 0 1 1 1

0 0 0 1 1 0 1

but

rj

fj

2 0

rj

0 0 0 0 1 0 0 0 0 0 1 0

0 0 1 0 1 0 1 0 0 1

0 0

4

si20

0 0 1 0 1 0 0 1 1 0

fk

0 0 0 1 1 1 1

2 0

rj

6

fk

0 0

rj

0 0 0 0 1 0 0 0 1 0 1 0

1

rd

0

rj

si12

0 0 1 0 1 0 0 1 0 1

rj

yes14

0

fk

fd

0 0 1 0 0 1 0 0

fk

yes14

on

2

level

rd

rj

1

0 0 0 0 1 0 0 0 1 1 0 1

2

fd

0 0 0 1 0 0

rj

Dragon Architecture Reference Manual Volume 1: Infrastructure

rd, rj, si12

LDPTR.W

INVTLB

rd, rj, si12

rd, si20

FLD.S

rd, rj, si14

LD.B

fd, fj, fk, fa

rd, rj, si16

FNMADD.S

PCADDU12I

LL.D

up, rj, rk

FSEL

LD.HU

rd, si20

rd, rj, si12

fd, fj, fk, ca

LD.H

fd, fj, fk, fa

PCADDI

rd, rj, si14

ST.D

fd, rj, si12

LDPTR.D

LD.WU

FMADD.D

FNMADD.D

LU12I.W

rd, si20

ADDU16I.D

fd, fj, fk, fa

rd, si20

FMADD.S

SC.D

LD.BU

STPTR.D

PCALAU12I

LL.W

rd, rj, si12

hint, rj, si12

LU32I.D

STPTR.W

fd, fj, fk, fa

ST.W

rd, rj, si12

ST.H

rd, rj, si14

rd, rj, si14

fd, fj, fk, fa

rd, si20

fd, fj, fk, fa

rd, rj, si12

rd, rj, si12

FNMSUB.S

rd, si20

FMSUB.S

fd, fj, fk, fa

LD.D

rd, rj, si14

FCMP.cond.S cd, fj, fk

rd, rj, si12

rd, rj, si14

rd, rj, si14

rd, rj, si12

FMSUB.D

PCADDU18I

level

SC.W

rd, rj, si12 ST.B

LD.W

PRELD

IDLE

FCMP.cond.D cd, fj, fk

rd, rj, si12

rd, rj, si14

fd, fj, fk, fa

FNMSUB.D

Machine Translated by Google

159

rd

rj

0

rj

rd

si12

0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0

7

rd

rd

0

2

0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1

rj

rj

8

rj

rj

0 0 1 1 1 0 0 0 0 1 0 1 1 0 0 0 1

rj

rj

rj

0

rj

9

rj

rk

4

rd

0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 1 0 rk

6

rj

3

0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 0

rd

rd

rj

fd

rd

rj

hint

0 0

rj

5

rk

rj

0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0

rk

rk

rk

rk

0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0

0 0 1 1 1 0 0 0 0 1 0 1 1 0 0 0 0

2

0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0

9

rd

0

0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 1

rd

0

0 0 1 1 1 0 0 0 0 0 1 0 1 1 0 0 0

1

0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 1 1

8

rk

rk

2

rj

rj

fd

fd

rd

rj

0 0 1 1 1 0 0 0 0 1 0 1 1 1 1 1 1

rd

rk

rk

rj

0 0 1 1 1 0 0 0 0 1 0 1 1 1 1 1 0

1

0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0

2

0 0 1 1 1 0 0 0 0 1 0 1 1 0 0 1 0

7

rj

6

rk

rj

rk

rj

rd

0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

rd

2

0 0 1 0 1 0 1 1 1 1

3

rd

0 0 1 0 1 0 1 1 0 1

rj

rk

0 0 1 1 1 0 0 0 0 1 0 1 1 1 1 0 0

rd

0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 1 0

rd

rd

rd

3

0 0 1 1 1 0 0 0 0 1 0 1 1 0 0 1 1

si12

rj

rj

rj

2

rj

rj

1

0 0 1 0 1 0 1 1 1 0

rj

rd

fd

rj

fd

2 0

rk

rj

2

rk

1

0

0 0 1 1 1 0 0 0 0 1 0 1 1 0 1 0 1

0 0 1 1 1 0 0 0 0 1 0 1 1 0 1 1 0

rd

1

4

0 0 1 1 1 0 0 0 0 0 1 0 0 1 0 0 0

rj

si12

rk rd

9

0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0

1 1

rk

rk

rk

0 0 1 1 1 0 0 0 0 1 0 1 1 1 1 0 1

0 2 1

0 0 1 1 1 0 0 0 0 0 1 1 0 1 0 0 0

rd

rk

5

rk

1

rd

rd

2

rk

1

0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0

2

0 0 1 1 1 0 0 0 0 1 0 1 1 0 1 0 0

0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0

rk

3

0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 1 0

7

rj

0 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0

rd

0

rk

rk

2

fd

0 0

8

rd

0 0 1 1 1 0 0 0 0 0 0 1 0 1 0 0 0

rk

6

rj

rj

rj

1

rd

rj

rd

rk

0 0 1 1 1 0 0 0 0 1 0 1 1 0 1 1 1

rk

rj

2

rj

1

rk

5

rd

0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0

1

rd

3

rj

rd

0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0

1 4

rd

rk

rk

0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 rk

0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 1 1

rk

0

fd

Dragon Architecture Reference Manual Volume 1: Infrastructure

rd, rj

rd, rj, rk

SC.Q

fd, rj, rk

rd, rk, rj

FST.S

AMCAS_DB.W rd, rk, rj

FSTX.S

STX.D

rd, rk, rj

LDX.HU

AMSWAP_DB.H rd, rk, rj

AMADD_DB.H rd, rk, rj

LDX.B

AMSWAP_DB.B rd, rk, rj

rd, rj, rk

AMSWAP.W rd, rk, rj

rd, rk, rj

LDX.WU

FLDX.D

AMCAS_DB.B rd, rk, rj

AMCAS.W

FLD.D

LDX.BU

AMCAS_DB.D rd, rk, rj

rd, rk, rj

STX.W

FSTX.D

LLACQ.W

rd,rk,rj

rd, rj, rk

rd, rj, rk

AMSWAP.B

rd, rj, rk

fd, rj, rk

rd, rj, rk

AMCAS_DB.H rd, rk, rj

fd, rj, rk

LDX.W

AMCAS.B

rd, rj

rd, rj, rk

fd, rj, si12

STX.B

LLACQ.D

AMCAS.D

SCREL.W

fd, rj, rk

STX.H

rd, rj

AMSWAP.H

rd, rk, rj

rd, rj, rk

rd, rk, rj

LDX.D

SCREL.D

rd, rk, rj

PRELDX

fd, rj, si12

FLDX.S

hint, rj, rk

AMADD.B

rd, rj, rk

fd, rj, si12

rd, rk, rj

AMADD_DB.B rd, rk, rj

FST.D

rd, rj, rk

AMCAS.H

LDX.H

rd, rj, rk

AMADD.H

rd, rj

Machine Translated by Google

160

2

rk

1

rd

rk

2

rd

0

rj

1

rj

0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 0 1

rk

2

rd

rk

rj

0

1

0

rk

rj

rd

rd

rj

0

rj

rj

rk

0

rd

0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 1 1

0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 rk

0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0

rd

9

rj

1

0

0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0

rd

rk

2

rk

1

0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 1 0

9

rk

2

rd

rj

rk

rj

rd

rj

0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1

1

0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 1 0

rd

rk

0 0 1 1 1 0 0 0 0 1 1 0 0 1 0 1 0

rk

5

rj

0 0 1 1 1 0 0 0 0 1 1 0 1 1 1 0 1

0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0

rk

hint

4

0

7 4 8

rj

rj

0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 1

rd

rj

rd

rd

2

rd

0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1

rd

rk

3

0

rj

rk

0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 1 1

2

0 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 0

0 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 1

0

rj

rj

0

rd

0 0 1 1 1 0 0 0 0 1 1 0 1 1 1 0 0

0

rj

rk

0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 0

9

0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 0

rk rd

rk

rk

0

rd

rk

6

0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1

rj

0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 1

hint

rk

3

0 0 1 1 1 0 0 0 0 1 1 0 1 1 1 1 0

rk

0 0 1 1 1 0 0 0 0 1 1 0 0 1 1 0 1 rj

1

rk

rd

fd

rk

rj

0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 1

0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 0

0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 0 1

rj

rj

rd

fd

rj

0 0 1 1 1 0 0 0 0 1 1 1 0 1 0 1 1

1

rk

3 3

rj

rd

0 0 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0

rd

rk

4

rj

7

rj

0 0 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0

rj

0 0 1 1 1 0 0 0 0 1 1 0 0 1 0 0 0

2

0 0 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1

rd

3

rk

8

rj

0

rd

rd

rd

2

rk

2

0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 0 0

rk

rd

2

rj

rj

1

rk

0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1

rk

0 0 1 1 1 0 0 0 0 1 1 0 0 1 0 1 1

1

rj

8

rk

0 0 1 1 1 0 0 0 0 1 1 0 0 1 0 0 1

rj

rj

rd

5

rk

fd rk

1 1

0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 rd

rj

rk

2

6

rd

rj

0

rk

5

rj

2 1

rj

0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 1 0

rk

rd

rd

0 0 1 1 1 0 0 0 0 1 1 0 1 1 1 1 1

6

rd

0 0 1 1 1 0 0 0 0 1 1 1 0 1 0 1 0

rd

1

0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 0 0

0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0

rk

7

fd

Dragon Architecture Reference Manual Volume 1: Infrastructure

hint

AMSWAP.D rd, rk, rj

FLDLE.D

rd, rk, rj

AMOR_DB.W rd, rk, rj

rd, rk, rj

APPENDIX.D

AMXOR.D

AMOR_DB.D rd, rk, rj

AMXOR.W

AMXOR_DB.D rd, rk, rj

rd, rk, rj

DBAR

hint

AMMAX.DU

AMADD.W

rd, rk, rj

AMMAX_DB.D rd, rk, rj

AMMAX.W

AMMAX.D

VALLEY

ADMIN.W

AMXOR_DB.W rd, rk, rj

rd, rk, rj

AMAND.W

AMEN.ME

AMMAX_DB.W rd, rk, rj

fd, rj, rk

rd, rk, rj

ADMIN.YOU

FLDGT.S

rd, rk, rj

AMMIN.D

AMSWAP_DB.W rd, rk, rj

AMOR.W

fd, rj, rk

ADMIN_DB.D rd, rk, rj

AMSWAP_DB.D rd, rk, rj

rd, rk, rj

AMMAX_DB.DU rd, rk, rj

rd, rk, rj

AMMIN_DB.W rd, rk, rj

AMADD_DB.D rd, rk, rj

rd, rk, rj

FLDGT.D

AMAND.D

fd, rj, rk

AMAND_DB.D rd, rk, rj

AMMAX_DB.WU rd, rk, rj

rd, rk, rj

FLDLE.S

LOVE.D

rd, rk, rj

rd, rk, rj

AMADD_DB.W rd, rk, rj

rd, rk, rj

AMAND_DB.W rd, rk, rj

fd, rj, rk

AMMIN_DB.DU rd, rk, rj

AMMAX.WU rd, rk, rj

rd, rk, rj

ADMIN_DB.WU rd, rk, rj

Machine Translated by Google

161

offs[15:0]

0 1 0 1 1 1

0

2

rk

0

0 0 1 1 1 0 0 0 0 1 1 1 0 1 1 0 1

rj

0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 1 1

rd

0

0 1 0 0 1 0

5

rd

0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0

2

rj

rd

offs[15:0]

0 2

9

fd

0 1 0 0 0 0

rk

rk

6 3

offs[25:16]

0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1

2

0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0

offs[20:16]

rk

rj

0 2

offs[20:16]

fd

0

0 1 0 1 0 1

0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0

0

0 1 0 0 0 1

4

offs[25:16]

rj

rk

2

0 0 1 1 1 0 0 0 0 1 1 1 0 1 1 0 0

fd

0

0 1 1 0 1 1

rk

1

rd

offs[15:0]

1 1

9

rd

1

rj

rj

0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0

offs[20:16]

7

0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1

0 0 1 1 1 0 0 0 0 1 1 1 0 1 1 1 0

rd

rk

1

rk

rk

offs[15:0]

8

rk

rd

0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1

offs[15:0]

offs[15:0]

rk

0 1

4

fd

2

rd

rd

offs[15:0]

rk

offs[15:0]

0 1 1 0 0 0

offs[15:0]

1

rd

rj

rj

rj

rk

0 0 1 1 1 0 0 0 0 1 1 1 0 1 1 1 1

3 3

1

0 1 0 0 1 0

1

rj

0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0

rd

offs[15:0]

rd

rj

rd

rd

1

7

rj

rj rd

4

2

0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1 0

8

rj

rj

6

0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0

8

0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1

offs[15:0]

0 1 0 0 1 1

1

rj 0 1 1 0 0 1

rd

rk

rd

rk

rk

0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

rj

0

2

rk rj

1

2

offs[15:0]

0 1 1 0 1 0

rd

5

rj

rj

rd

rj

cj

1

0 0

rj

5

0 1 0 1 0 0

rj

3 3

rj

0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1

offs[20:16]

7

rd

6 0

rj

0

0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1

cj

rk

9 0

rj

0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1

0 1

rk

rj

0 2

rd

2

rk

2

rj

rj

rd

0 1 0 1 1 0

offs[15:0]

1

rd

Dragon Architecture Reference Manual Volume 1: Infrastructure

BGEU

rj, rd, offs

rd, rj, rk

fd, rj, rk

rd, rj, rk

offs

rj, rd, offs

B

BNEZ

LDLE.H

rj, rd, offs

rd, rj, rk

fd, rj, rk

rd, rj, rk

BL

BCEQZ

rd, rj, rk

STLE.D

offs

rj, rd, offs

BLTU

LDGT.D

cj, offs BCNEZ

rj, rd, offs

rd, rj, rk

LDGT.B

BGE

LDLE.B

BEQ

JIRL

rd, rj, rk

rj, rd, offs

STGT.B

rd, rj, offs

rd, rj, rk

fd, rj, rk

LDLE.D

rj, offs

FSTLE.D

BNE

rd, rj, rk

cj, offs

LDGT.W

LDLE.W

STGT.W

FSTLE.S

rd, rj, rk

BLT

STGT.H

rd, rj, rk

rd, rj, rk

FSTGT.D

rj, offs

fd, rj, rk

LDGT.H

rd, rj, rk

STLE.B

BEQZ

rd, rj, rk

STGT.D

FSTGT.S

rd, rj, rk

rd, rj, rk STLE.W

STLE.H

Machine Translated by Google

