
AXIS ETRAX 100LX
Programmer’s Manual
AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

Axis Communications AB cannot be held responsible for any technical or
typographical errors, and reserves the right to make changes to this manual and to the
product without prior notice. If you do detect any inaccuracies or omissions, please
inform us at:

E-mail: technology@axis.com

Axis Communications AB
Scheelevägen 34
SE-223 63 Lund, Sweden
Phone: +46 46 272 1800
Fax: +46 46 13 61 30

Copyright © Axis Communications AB
AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

 Table of Contents
Table of Contents
Introduction... vii
Preface .. vii

1 Architectural Description 1 - 1

1.1 Registers ...1 - 1

1.2 Flags and condition codes .. 1 - 3

1.3 Data organization in memory ... 1 - 5

1.4 Instruction format ... 1 - 6

1.5 Addressing modes ... 1 - 7

1.5.1 General .. 1 - 7
1.5.2 Quick immediate addressing mode ... 1 - 8
1.5.3 Register addressing mode ... 1 - 8
1.5.4 Indirect addressing mode .. 1 - 8
1.5.5 Autoincrement addressing mode .. 1 - 9
1.5.6 Immediate addressing mode ... 1 - 9
1.5.7 Indexed addressing mode .. 1 - 10
1.5.8 Indexed with assign addressing mode .. 1 - 10
1.5.9 Offset addressing mode ... 1 - 11
1.5.10 Offset with assign addressing mode ... 1 - 13
1.5.11 Double indirect addressing mode ... 1 - 14
1.5.12 Absolute addressing mode .. 1 - 15
1.5.13 Multiple addressing mode prefix words .. 1 - 15

1.6 Branches, jumps and subroutines .. 1 - 16

1.6.1 Conditional branch ... 1 - 16
1.6.2 Jump instructions .. 1 - 17
1.6.3 Implicit jumps ... 1 - 17
1.6.4 Switches and table jumps .. 1 - 18
1.6.5 Subroutines ... 1 - 21
1.6.6 The JBRC, JIRC and JSRC subroutine instructions 1 - 22

1.7 MMU support ... 1 - 23

1.7.1 Overview .. 1 - 23
1.7.2 Protected registers and flags .. 1 - 24
1.7.3 Transition between operation modes .. 1 - 24
1.7.4 Bus fault sequence .. 1 - 25
1.7.5 Format of the CPU status record ... 1 - 26
1.7.6 Programming examples .. 1 - 28

1.8 Interrupts ... 1 - 29

1.8.1 NMI .. 1 - 31

1.9 Software breakpoints .. 1 - 31

1.10 Hardware breakpoint mechanism ... 1 - 31

1.11 Multiply and divide .. 1 - 32

1.11.1 General .. 1 - 32
1.11.2 Multiply using MULS and MULU .. 1 - 32
1.11.3 Multiply Using MSTEP .. 1 - 32
1.11.4 Divide ... 1 - 33

1.12 Extended arithmetic ... 1 - 35
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) i

 Table of Contents
1.13 Integral read-write operations .. 1 - 36

1.14 Reset ... 1 - 37

1.15 Version identification .. 1 - 38

2 Instruction Set Description 2 - 1

2.1 Definitions .. 2 - 1

2.2 Instruction set summary .. 2 - 2

2.2.1 Size modifiers ... 2 - 2
2.2.2 Addressing modes ... 2 - 4
2.2.3 Data transfers .. 2 - 4
2.2.4 Arithmetic Instructions .. 2 - 5
2.2.5 Logical instructions ... 2 - 6
2.2.6 Shift instructions .. 2 - 6
2.2.7 Bit test instructions .. 2 - 6
2.2.8 Condition code manipulation instructions .. 2 - 7
2.2.9 Jump and branch instructions ... 2 - 7
2.2.10 No operation instruction .. 2 - 8

2.3 Instruction format summary ... 2 - 8

2.3.1 Summary of quick immediate mode instructions .. 2 - 8
2.3.2 Summary of register instructions with variable size 2 - 9
2.3.3 Summary of register instructions with fixed size .. 2 - 10
2.3.4 Summary of indirect instructions with variable size 2 - 11
2.3.5 Summary of indirect instructions with fixed size ... 2 - 12

2.4 Addressing mode prefix formats ...2 - 13

3 Instructions in Alphabetical Order 3 - 1

ABS .. 3 - 2
ADD 2-operand ... 3 - 3
ADD 3-operand ... 3 - 4
ADDI .. 3 - 5
ADDQ ... 3 - 6
ADDS 2-operand ... 3 - 7
ADDS 3-operand ... 3 - 8
ADDU 2-operand ... 3 - 9
ADDU 3-operand ... 3 - 10
AND 2-operand ... 3 - 11
AND 3-operand ... 3 - 12
ANDQ ... 3 - 13
ASR .. 3 - 14
ASRQ .. 3 - 15
AX .. 3 - 16
Bcc ... 3 - 17
BOUND 2-operand ... 3 - 19
BOUND 2-operand ... 3 - 21
BREAK ... 3 - 22
BTST ... 3 - 23
BTSTQ ... 3 - 24
CLEAR ... 3 - 25
CLEARF ... 3 - 27
CMP .. 3 - 28
 ii A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

 Table of Contents
CMPQ .. 3 - 29
CMPS .. 3 - 30
CMPU ... 3 - 31
DI ... 3 - 32
DSTEP .. 3 - 33
EI ... 3 - 34
JBRC .. 3 - 35
JIR ... 3 - 37
JIRC ... 3 - 39
JMPU ... 3 - 41
JSR .. 3 - 42
JSRC .. 3 - 44
JUMP ... 3 - 46
LSL ... 3 - 47
LSLQ ... 3 - 48
LSR ... 3 - 49
LSRQ ... 3 - 50
LZ ... 3 - 51
MOVE from s to Rd ... 3 - 52
MOVE from Rs to memory .. 3 - 53
MOVE to Pd .. 3 - 54
MOVE from Ps ... 3 - 55
MOVEM from memory ... 3 - 56
MOVEM to memory .. 3 - 57
MOVEQ ... 3 - 58
MOVS ... 3 - 59
MOVU .. 3 - 60
MSTEP .. 3 - 61
MULS .. 3 - 62
MULU ... 3 - 63
NEG .. 3 - 64
NOP .. 3 - 65
NOT ... 3 - 66
OR 2-operand ... 3 - 67
OR 3-operand ... 3 - 68
ORQ ... 3 - 69
POP to Rd.. 3 - 70
POP to Pd .. 3 - 71
PUSH from Rs ... 3 - 72
PUSH from Ps ... 3 - 73
RBF .. 3 - 74
RET .. 3 - 76
RETB ... 3 - 77
RETI ... 3 - 78
SBFS ... 3 - 79
Scc .. 3 - 80
SETF .. 3 - 82
SUB 2-operand ... 3 - 83
SUB 3-operand ... 3 - 84
SUBQ .. 3 - 85
SUBS 2-operand ... 3 - 86
SUBS 3-operand ... 3 - 87
SUBU 2-operand .. 3 - 88
SUBU 3-operand .. 3 - 89
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) iii

 Table of Contents
SWAP ... 3 - 90
TEST .. 3 - 92
XOR .. 3 - 94

4 CRIS Execution Times 4 - 1

4.1 Introduction ... 4 - 1

4.2 Instruction execution times ... 4 - 1

4.3 Complex addressing modes execution times4 - 1

4.4 Interrupt acknowledge execution time 4 - 1

5 Assembly Language Syntax 5 - 1

5.1 General ... 5 - 1

5.2 Definitions .. 5 - 1

5.3 Files, lines and fields ..5 - 2

5.4 Labels and symbols ... 5 - 2

5.5 Opcodes ...5 - 3

5.6 Operands .. 5 - 3

5.6.1 General .. 5 - 3
5.6.2 Expressions ... 5 - 4

5.7 Addressing modes ... 5 - 5

5.8 Assembler directives .. 5 - 9

5.8.1 Directives controlling the storage of values ... 5 - 9
5.8.2 Directives controlling storage allocation ... 5 - 9
5.8.3 Symbol handling ... 5 - 11

5.9 Alignment .. 5 - 11

6 CRIS Compiler Specifics 6 - 1

6.1 CRIS compiler options .. 6 - 1

6.2 CRIS preprocessor macros .. 6 - 3

6.3 The CRIS ABI .. 6 - 3

6.3.1 Introduction ... 6 - 3
6.3.2 CRIS GCC Fundamental Data Types ... 6 - 3
6.3.3 CRIS GCC Object Memory Layout .. 6 - 4
6.3.4 CRIS GCC Calling Convention .. 6 - 5
6.3.5 Stack Frame Layout .. 6 - 6

7 The ETRAX 4 .. 7 - 1

7.1 Introduction ... 7 - 1

7.2 Special registers .. 7 - 1

7.3 Flags and condition codes .. 7 - 2

7.4 Data organization in memory ... 7 - 3

7.5 Branches, jumps and subroutines .. 7 - 4

7.6 Interrupts and breakpoints in the ETRAX 4 7 - 5

7.7 Reset in the ETRAX 4 ... 7 - 5
 iv A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

 Table of Contents
7.7.1 ROM boot ... 7 - 5
7.7.2 Automatic program download ... 7 - 6

7.8 DMA ... 7 - 8

7.8.1 The ETRAX 4 DMA ... 7 - 10

7.9 Instruction set ... 7 - 7

7.9.1 Differences in the instructions ... 7 - 10

7.10 Execution times for the ETRAX 4 .. 7 - 8

7.10.1 Introduction ... 7 - 8
7.10.2 Instruction execution times .. 7 - 8
7.10.3 Complex addressing modes execution times ... 7 - 10
7.10.4 Interrupt acknowledge execution time .. 7 - 10
7.10.5 DMA transfer execution time .. 7 - 10
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) v

 Table of Contents
 vi A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

 Introduction
INTRODUCTION

Preface

Our goal in developing the ETRAX 100LX is to have a single chip solution for
peripheral server applications on a Fast Ethernet. It is used in the AXIS
ThinServerTechnology, but also enables designers to build embedded servers with an
excellent price/performance ratio required by the growing market of network and
web appliances.

About Axis

Axis Communications is dedicated to providing innovative solutions for network-
connected computer peripherals. Since the company started in 1984, Axis has been
one of the fastest growing companies in the market, and is now a leader in its field.

ThinServer™ Technology - The core of all Axis’ products, ThinServer™
technology enables our products to act as intelligent file server independent
ThinServer™ devices. A ThinServer™ device is a network server which includes
“thin” embedded server software capable of simultaneous multiprotocol
communication, scalable RISC hardware, and a built-in Web server which allows
easy access and management via any standard Web browser. ThinServer™
technology makes it possible to connect any electronic device to the network, thus
providing “Access to everything”.

Today, Axis Communications is offering ThinServer™ technology as well as six
major ThinServer™ product lines consisting of:

Network Print Servers - offer you a powerful and cost-efficient method for sharing
printer resources in your network. They connect to any standard printer, featuring
high performance, simple management, and easy upgrading across the network. The
print servers are available in Ethernet, Fast Ethernet and Token Ring versions.

IBM Mainframe and S/3x - AS/400 Print Servers and Protocol Converters -

includes a wide range of LAN, coax and twinax attached print servers for the IBM
host environment. By emulating IBM devices, these servers provide conversion of the
IPDS, SCS, and 3270DS data streams to the major ASCII printer languages.

Network Attached Optical Media Servers - provide you with a flexible and cost-
efficient solution for sharing CD-ROMs, DVD-ROMs, and other optical media
across the network. They are available in Ethernet, Fast Ethernet and Token Ring
versions.

Network Attached Storage Servers - offer network connectivity for re-writable
media such as hard disks and Iomega Jaz cartridges, which via the storage server, can
be backed up on DAT tapes. They are only available in Ethernet versions.

Network Camera Servers - provide live images using standard Internet technology,
thus enabling access to live cameras via any standard Web browser. They offer a
perfect solution for remote surveillance over the Internet, and their sharp images can
bring life into any web site. These servers support Ethernet as well as PSTN and
GSM phone lines.
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) vii

 Introduction
Network Scan Servers - enable easy distribution of paper-based information across
workgroups and the enterprise. By sending the scanned documents to your
destination via the Internet/intranet, you will reduce your faxing/mailing costs, as
well as save time, thus improving your organization efficiency.

Support Services

Should you require any technical assistance, please contact your Axis dealer. If they
can not answer you questions immediately, your Axis dealer will forward your queries
through the appropriate channels to ensure you a rapid response.

If you are connected to the Internet, you will find on-line manuals, technical support,
firmware updates, application software, company information, on the addresses listed
below.

WWW:

http://www.axis.com

http://www.se.axis.com

http://developer.axis.com

Support email address: technology@axis.com
viii A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

1 Architectural Description
1 ARCHITECTURAL DESCRIPTION

1.1 Registers

The processor contains fourteen 32-bit general registers (R0 - R13), one 32-bit Stack
Pointer (R14 or SP), and one 32-bit Program Counter (R15 or PC).

The processor architecture also defines 16 special registers (P0 - P15), ten of which are
implemented. The special registers are:

Three of the unimplemented special registers (P0, P4 and P8) are reserved as “zero
registers”. A read from any of those “registers” returns zero. A write to them has no
effect. The zero registers are used implicitly by some instructions (e.g. CLEAR). You
will never need to use the zero registers explicitly.

Mnemonic Reg. no. Description Width

P0 Constant zero register 8 bits

VR P1 Version Register 8 bits

P4 Constant zero register 16 bits

CCR P5 Condition Code Register 16 bits

MOF P7 Multiply Overflow register 32 bits

P8 Constant zero register 32 bits

IBR P9 Interrupt Base Register
The upper 16 bits are implemented. The lower 16 bits are
always zero.

32 bits

IRP P10 Interrupt Return Pointer 32 bits

SRP P11 Subroutine Return Pointer 32 bits

BAR P12 Breakpoint Address Register
This register contains an address for a hardware breakpoint. The
breakpoint is enabled with the B flag.

32 bits

DCCR P13 Dword Condition Code Register
The lower 16 bits are the same as the CCR. The upper 16 bits
are always zero.

32 bits

BRP P14 Breakpoint Return Pointer
This register contains the return address after a breakpoint,
NMI instruction, or a hardware breakpoint.

32 bits

USP P15 User mode Stack Pointer 32 bits

Table 1-1 Special registers
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 1 - 1

1 Architectural Description
General registers:

Figure 1-1 General Registers

Special registers:

Figure 1-2 Special registers

31 16 15 8 7 0

R0 - R13: General registers

SP or R14: Stack Pointer

PC or R15: Program Counter

31 16

15 8

7 0

VR

CCR

IBR

IRP

SRP

BAR

DCCR

BRP

(P0)

(P1)

(P2)

(P3)

(P4)

(P5)

(P6)

(P7)

(P8)

(P9)

(P10)

(P11)

(P12)

(P13)

(P14)

(P15)

Constant zero register

Version Register

Reserved

Reserved

Constant zero register

Condition Code Register

Reserved

Multiply Overflow register

Constant zero register

Interrupt Base Register

Interrupt Return Pointer

Subroutine Return Pointer

Breakpoint Address Register

Dword Condition Code Register

Breakpoint Return Pointer

User mode Stack PointerUSP

MOF
1 - 2 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

1 Architectural Description
1.2 Flags and condition codes

The Condition Code Register (CCR) and Dword Condition Code Register (DCCR)
for the ETRAX 100LX contain eleven different flags. The remaining bits are always
zero:

Figure 1-3 The Condition Code Register (CCR)/ Dword Condition Code Register (DCCR)

These flags can be tested using one of the16 condition codes specified below:

Code Alt Condition Encoding Boolean function

CC HS Carry Clear 0000 C

CS LO Carry Set 0001 C

NE Not Equal 0010 Z

EQ Equal 0011 Z

VC Overflow Clear 0100 V

VS Overflow Set 0101 V

PL Plus 0110 N

MI Minus 0111 N

LS Low or Same 1000 C + Z

HI High 1001 C * Z

GE Greater or Equal 1010 N * V + N * V

LT Less Than 1011 N * V + N * V

GT Greater Than 1100 N * V * Z + N * V * Z

LE Less or Equal 1101 Z + N * V + N * V

A Always true 1110 1

WF Write Failed 1111 P

Table 1-2 Condition codes

0 U I X N Z V C

msb 0

User mode flag

Breakpoint enable flag

Interrupt enable flag

Extended arithmetic flag

Negative flag

Zero flag

Overflow flag

Carry flag

BPF

Write failed flag

Interrupt acknowledge flag

M

NMI flag

10
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 1 - 3

1 Architectural Description
The behavior of the flags for different instructions is described in chapter 2. In those
cases where the new value of the flag is not specified explicitly, the following applies:

General case:

N = Rmsb

Z = Rmsb * ... * Rlsb * (Z + X)

Addition: (ADD, ADDQ, ADDS and ADDU)

N = Rmsb

Z = Rmsb * ... * Rlsb * (Z + X)

V = Smsb * Dmsb * Rmsb + Smsb * Dmsb * Rmsb

C = Smsb * Dmsb + Dmsb * Rmsb + Smsb * Rmsb

Subtraction: (CMP, CMPQ, CMPS, CMPU, NEG, SUB, SUBQ, SUBS and SUBU)

N = Rmsb

Z = Rmsb * ... * Rlsb * (Z + X)

V = Smsb * Dmsb * Rmsb + Smsb * Dmsb * Rmsb

C = Smsb * Dmsb + Dmsb * Rmsb + Smsb * Rmsb

Multiply: (MULS and MULU)

N = MOFmsb

Z = MOFmsb * ... * MOFlsb * Rmsb * ... * Rlsb * (Z + X)

MULS: V = MOFmsb + + MOFlsb

MULU: V = ((MOFmsb + ... + MOFlsb) * Rmsb) + ((MOFmsb + ... + MOFlsb) * Rmsb)

Bit test: (BTST and BTSTQ)

N = Dn

Z = Dn * ... * Dlsb * (Z + X)

Move to memory:

P = F * X

Move to CCR: (MOVE s, CCR and POP CCR)

F, P, U, B, I, N, Z, V, C are set according to source data.

X always cleared.

M not affected.

Condition code manipulation: (SETF and CLEARF)

B, I, X, N, V, C are set or cleared according to mask bits in the instruction.

M can be set by SETF, but not be cleared.

If X is not on the list, it is cleared.

F, P are cleared by CLEARF, but are not affected by SETF.

U is not affected.

Table 1-3 flag behavior

Explanations:

Smsb = Most significant bit of source operand

Dmsb = Most significant bit of destination operand

Dn = Selected bit in the destination operand

Dlsb = Least significant bit of destination operand

Rmsb = Most significant bit of result operand

Rlsb = Least significant bit of result operand
1 - 4 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

1 Architectural Description
1.3 Data organization in memory

Data types supported by the CRIS are:

Each address location contains one byte of data. Data is stored in memory with the
least significant byte at the lowest address (“little endian”). The CRIS CPU in the
ETRAX 100LX has a 32-bit wide data bus. A conversion from 32 bits to 16 bits is
performed by the bus interface in the case of an external 16-bit data bus mode.

Data can be aligned to any address. If the data crosses a 32-bit boundary, the CPU
will split the data access into two separate accesses. So, the use of unaligned word and
dword data will degrade performance.

The figures below show examples of data organization with a 16-bit bus and a 32-bit
bus:

Example of a structure layout:
struct example

{

byte a;

byte b;

word c;

dword d;

byte e;

word f;

dword g;

};

Figure 1-4 Data organization with a 16-bit bus

Name Description Size Modifier

Byte 8-bit integer .B

Word 16-bit integer .W

Dword 32-bit integer or address .D

Table 1-4 Data types supported by the CRIS

Byte a

Address

Byte b

Word c

An

An + 2

An + 4

An + 6

0

lsbmsb

Dword d
lsb

msb

Dword g

lsb

msblsb

msb

An + 8

An + 10

An + 12

An + 14

15

Byte eWord f

Word f

Even addressOdd address
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 1 - 5

1 Architectural Description
Figure 1-5 Data Organization with a 32-bit bus

1.4 Instruction format

The basic instruction word is 16 bits long, and instructions must be word (16 bits)
aligned.

When the CPU fetches 32 bits, containing two 16-bit aligned instructions, it saves
the upper two bytes in an internal prefetch register. Thus, the CPU will only perform
one read for every second instruction when running consecutive code.

The most common instructions follow the same general instruction format:

Figure 1-6 General instruction format

The basic instruction word can be combined with immediate data and/or Addressing
mode prefix words to form more complex instructions, see section 1.5 Addressing
modes.

The Opcode field selects which instruction should be executed. For some opcodes, the
meaning of the opcode is different depending on its Size and/or Mode field.

The Operand1 field selects one of the operands for the instruction, usually the source
operand. Depending on the Mode field, the selected operand is either a general
register or a memory location pointed to by the selected register.

The Operand2 field selects the other operand for the instruction, usually the
destination operand. The selected operand can be a general or special register, or a
condition code.

The Mode field specifies the addressing mode of the instruction. The Mode field
affects only the operand of the Operand1 field. The following addressing modes can
be specified within the basic instruction word:

31 24 23 16 15 8 7 0
An + 3 An + 2 An + 1 An Address

An

An + 4

An + 8

An + 12

Word c Byte b Byte a

Dword d

Dword g Word f Byte e

Dword g

msb lsb

msb lsb

lsb msb lsb

msb

015

Mode SizeOperand2 Opcode Operand1

015

Mode SizeOperand2 Opcode Operand1
1 - 6 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

1 Architectural Description
The Size field selects the size of the operation. For most of the instructions, the rest of
the register is unaffected by the operation. Three different sizes are available:

The Size code 11 is used in conjunction with the Opcode field to encode special
instructions that do not need different sizes.

1.5 Addressing modes

1.5.1 General

The CRIS CPU has four basic addressing modes, which are encoded in the Mode
field of the instruction word. The basic addressing modes are:

• Quick immediate mode

• Register mode

• Indirect mode

• Autoincrement mode (with Immediate mode as a special case)

More complex addressing modes can be achieved by combining the basic instruction
word with an Addressing mode prefix word. The complex addressing modes are:

• Indexed

• Indexed with assign

• Offset

• Offset with assign

• Double indirect

• Absolute

Code Mode

00 Quick immediate mode

01 Register mode

10 Indirect mode

11 Autoincrement mode

Table 1-5 The Mode Field of the Instruction Format

Code Size

00 Byte (8 bits)

01 Word (16 bits)

10 Dword (32 bits)

Table 1-6
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 1 - 7

1 Architectural Description
1.5.2 Quick immediate addressing mode

In the Quick immediate addressing mode, the size and Operand1 fields of the
instruction are combined into a 6-bit Immediate value, extended to 32 bits, or
interpreted as a 5-bit shift count.

The 6-bit immediate value may be sign or zero extended depending on the
instruction.

Figure 1-7 Quick immediate addressing mode instruction format

1.5.3 Register addressing mode

In the Register addressing mode, the operand is contained in the register specified by
the Operand1 or Operand2 field. The register can be a general register or a special
register depending on the instruction.

General register addressing mode

Special register addressing mode

1.5.4 Indirect addressing mode

In the Indirect addressing mode, the operand is contained in the memory location
pointed to by the register specified by the Operand1 field.

Assembler syntax: <expression>
Example: 12

015

Mode Operand2 Opcode Immediate value

Assembler syntax: Rn
Example: R6

Assembler syntax: Pn
Example: SRP

Assembler syntax: [Rn]
Example: [R6]
1 - 8 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

1 Architectural Description
Figure 1-8 Indirect addressing mode

1.5.5 Autoincrement addressing mode

In the Autoincrement addressing mode, the operand is contained in the memory
location pointed to by the register specified by the Operand1 field. After the operand
address is used, the specified register is incremented by 1, 2 or 4, depending upon the
size of the operand.

Figure 1-9 Autoincrement addressing mode

1.5.6 Immediate addressing mode

The Immediate addressing mode is a special case of the Autoincrement addressing
mode, with PC as the address register. The immediate value follows directly after the
instruction word. When the immediate data size is byte, PC will be incremented by 2
to maintain word alignment of instructions.

Memory address

Operand

General register Rn

Memory address

Assembler syntax: [Rn+]
Example: [R6+]

031

Memory address

Operand

General register Rn

Operand size (1,2 or 4)

Memory address

Assembler syntax: <expression>
Example: 325
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 1 - 9

1 Architectural Description
1.5.7 Indexed addressing mode

This addressing mode requires the basic instruction word to be preceded by one
Addressing mode prefix word, formatted as shown below:

Figure 1-10 Indexed addressing mode prefix format

The address of the operand is the sum of the contents of the Base register and the
shifted contents of the Index register. The contents of the Index register is shifted left
0, 1 or 2 steps depending upon the Size field of the Addressing mode prefix.

Note that the Size field of the Addressing mode prefix only affects the shift of the
index value, not the size of the operand. The size of the operand is selected by the
Size field of the basic instruction word.

When PC is used as the Base register, the value used will be the address of the
instruction following the modified instruction. When PC is used as the Index
Register, the value used will be the address of the modified instruction.

Figure 1-11 Indexed addressing mode

1.5.8 Indexed with assign addressing mode

The Indexed with assign addressing mode is similar to the Indexed addressing mode.
The difference is that the resulting address not only selects the operand, but is also
stored to a general register.

Assembler syntax: [Rn + Rm.m]
Example: [R6 + R7.B]

015

0 SizeIndex register 1 1 0 Base register1 0

Base address

Index

Operand

Base register Rn

Operand size (1,2 or 4)

Memory address

Index register Rm

* +

031
1 - 10 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

1 Architectural Description
The Indexed with assign addressing mode requires a prefix word of the same format
as the Indexed mode. The selection between Indexed and Indexed with assign
addressing mode is made by the mode field of the basic instruction word:

Figure 1-12 Indexed with assign addressing mode

1.5.9 Offset addressing mode

This addressing mode requires the basic instruction word to be preceded by one
Addressing mode prefix word. The general format for the prefix word is shown
below:

Figure 1-13 Offset addressing mode prefix format

The address of the operand is the sum of the contents of the Base register and a
signed offset. In the general case, the offset is referenced with the indirect (md = 0) or
autoincrement (md = 1) mode. The size of the offset can be byte, word or dword.

Code Addressing mode

10 Indexed

11 Indexed with assign

Table 1-7

Assembler syntax: [Rp = Rn + Rm.m]
Example: [R8 = R6 + R7.B]

Base address

Index

Result address

Operand

* +

Base register Rn

Index register Rm

Operand size (1, 2 or 4)

General register Rp

Memory address

31 0

015

1 SizeBase register 1 md 0 Offset1 0
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 1 - 11

1 Architectural Description
A special format is used for byte-sized immediate offsets. In this case, the offset is
included in the prefix word:

Figure 1-14 Immediate byte offset addressing mode prefix format

Word or dword sized immediate offsets use the general prefix format, with md = 1
and offset = PC. In this case, the immediate offset word(s) will be placed between the
Prefix word and the Basic instruction word, see example below:

Figure 1-15 Instruction with dword sized immediate offset

When PC is used as the Base register, the value used will be the address of the Basic
instruction word.

Immediate offset addressing mode

Indirect offset addressing mode

Autoincrement offset addressing mode

Assembler syntax: [Rn + <expression>]
Example: [R6 + 27]

Assembler syntax: [Rn + [Rm].m]
Example: [R6 + [R7].B]

Assembler syntax: [Rn + [Rm+].m]
Example: [R6 + [R7+].B]

015

0 Base register 1 0 0 Signed offset

Prefix word

Offset

Basic instruction word

lsb

msb

15 0
Address

An

An + 2

An + 4

An + 6
1 - 12 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

1 Architectural Description
Figure 1-16 Offset addressing mode (general case)

1.5.10 Offset with assign addressing mode

The Offset with assign addressing mode is similar to the Offset addressing mode. The
difference is that the resulting address not only selects the operand, but is also stored
to a general register.

The Offset with assign mode requires a prefix word of the same format as for the
Offset mode. The selection between the Offset and the Offset with assign addressing
mode is made by the Mode field of the basic instruction word:

Immediate offset with assign addressing mode

Indirect offset with assign addressing mode

Autoincrement offset with assign addressing mode

Base register Rn

Offset address register Rm

Offset size (1,2 or 4)
(If Autoincrement mode)

Offset memory address

Operand memory address Operand

Signed offset

Offset address

Base address

+

+

31 0

Code Addressing mode

10 Offset

11 Offset with assign

Table 1-8

Assembler syntax: [Rp = Rn + <expression>]
Example: [R8 = R6 + 27]

Assembler syntax: [Rp = Rn + [Rm].m]
Example: [R8 = R6 + [R7].B]

Assembler syntax: [Rp = Rn + [Rm+].m]
Example: [R8 = R6 + [R7+].B]
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 1 - 13

1 Architectural Description
Figure 1-17 Offset with assigned addressing mode (general case)

1.5.11 Double indirect addressing mode

The Double indirect addressing mode requires the basic instruction word to be
preceded by one Addressing mode prefix word, formatted as shown below:

Figure 1-18 Double indirect addressing mode prefix Format

In the Double indirect addressing mode, the register specified by the Source field of
the prefix word points to a memory address that contains the address of the operand.
The specified register may be left unchanged (md = 0) or incremented by 4 after it is
used (md = 1).

Double indirect addressing mode

Double indirect with autoincrement addressing mode

Base register Rn

Offset address register Rm

Offset size (1,2 or 4)
(If Autoincrement mode)

Offset memory sddress

Operand memory address Operand

Signed offset

Offset address

Base address

+

+

31 0

Result addressGeneral register Rp

Assembler syntax: [[Rn]]
Example: [[R6]]

Assembler syntax: [[Rn+]]
Example: [[R6+]]

015

1 11 md 0 Source1 0 1 0 0 0 0
1 - 14 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

1 Architectural Description
Figure 1-19 Double indirect addressing mode

1.5.12 Absolute addressing mode

The Absolute addressing mode is a special case of the Double indirect with
autoincrement mode, with PC as the source register. The Absolute address will be
placed between the Prefix word and the Basic instruction word:

Figure 1-20 Instruction with absolute address

1.5.13 Multiple addressing mode prefix words

The CRIS CPU is designed to accept multiple consecutive Addressing mode prefix
words, where the calculated address from the first Prefix word replaces the Operand1
field of the second Prefix word. This can be done in an unlimited number of levels.

The addressing modes resulting from consecutive prefix words are not supported by
the assembler or the disassembler.

Memory address

Memory address

Operand

General tegister Rn

4 (If Autoincrement mode)

Memory address

Memory address

+

31 0

Assembler syntax: [<expression>]
Example: [3245]

Address

An

An + 2

An + 4

An + 6

lsb

15

msb

Prefix word

Absolute address

Basic instruction word

0

A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 1 - 15

1 Architectural Description
1.6 Branches, jumps and subroutines

1.6.1 Conditional branch

The Bcc instruction (where cc represents one of the 16 condition codes described in
section 1.2) is a conditional relative branch instruction. If the specified condition is
true, a signed immediate offset is added to the PC.

The Bcc instruction exists in two forms, one with an 8-bit offset contained within the
basic instruction word, and one with a 16-bit immediate offset following directly
after the instruction word. The assembler automatically selects between the 8-bit
offset and the 16-bit offset form.

The Bcc instruction is a delayed branch instruction. This means that the instruction
following directly after the Bcc instruction will always be executed, even if the branch
is taken. The instruction position following the Bcc instruction is called a delay slot.

Example:

The branch to LOOP will be taken 4 times, and register R0 decremented by 1 after
each turn. After leaving the loop, R0 will have the value -1.

There are some restrictions as to which instructions can be placed in the delay slot.
Valid instructions for the delay slots are all instructions except:

• Bcc

• BREAK/JBRC/JIR/JIRC/JMPU/JSR/JSRC/JUMP

• RET/RETB/RETI

• Instructions using Addressing mode prefix words.

• Immediate addressing other than Quick Immediate

The maximum offset range that can be reached by the Bcc instruction directly is
-32768 - +32766. If a larger offset is needed, the branch must be combined with a
jump to reach the branch target. The assembler resolves this situation automatically,
and inserts the necessary code. The assembler can optionally give a warning message
each time it makes this adjustment.

:

MOVEQ 4,R0

LOOP:

BNE LOOP

SUBQ 1,R0 ; Delay slot instruction, executed

; even if the branch is taken.

:

1 - 16 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

1 Architectural Description
1.6.2 Jump instructions

The JUMP instruction is an unconditional absolute jump instruction. This
instruction can be used with all different addressing modes described in section 1.5
Addressing modes, except Quick Immediate. The resulting operand is taken as the
jump target address, and is stored to PC.

Examples:

The JMPU instruction is similar to JUMP except that JMPU causes a transition to
user mode if the U flag is set, while JUMP never affects the operation mode. JMPU
can not be used with the register addressing mode.

In contrast to the Bcc instruction, the JMPU and JUMP instructions take action
immediately.

1.6.3 Implicit jumps

For many of the instructions in the CRIS instruction set, PC can be specified as the
destination operand. When PC is used in this way, the result of the instruction will
act as a jump target address.

The CPU will, in this case, require an extra execution cycle to compute the new
address, but the instruction following the implicit jump instruction will not be
executed.

The most useful instructions for implicit jumps are ADD, ADDS, ADDU, SUB,
SUBS and SUBU, which result in unconditional relative jumps, see example in 1.6.4.

The following instructions do not support PC as the destination operand:

JUMP R3 ; Jump target is the address contained

; in register R3.

JUMP 346 ; Jump to address 346.

JUMP [346] ; Read jump target address from memory

; address 346.

JUMP [SP+] ; Pop jump target address from stack.

; This is useful as a subroutine

; return instruction, see 1.6.5.

JUMP [PC+R3.D] ; Jump via jump table. The contents of

.DWORD L0 ; register R3 is used as an index for

.DWORD L1 ; the table.

:

.DWORD Ln
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 1 - 17

1 Architectural Description
1.6.4 Switches and table jumps

A common element in many high level languages is the switch statement. A typical
switch construct in C can look like this:

switch (sel_val)

A switch construct in the CRIS assembler can be implemented in several different
ways. Two examples based on jump tables are shown below. The first example uses a
table of absolute addresses, the second example one uses relative addressing.

ADDI, BOUND, DSTEP, LSL, LSLQ, LSR,
LSRQ, MSTEP, MULS, MULU, NEG, NOT,
Scc, SWAP

{

case 6:

a = b + c;

break;

case 7:

d = a * (c - b) + 2;

break;

case 8:

b = a + c + d;

break;

default:

c = a + b;

break;

}

1 - 18 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

1 Architectural Description
Example of a switch construct with a table of absolute addresses:

MOVE [sel_val],R0 ; Load selector value to R0.

SUBQ 6,R0 ; Adjust table index by subtracting

; the lowest selector value.

BOUND.D 3,R0 ; Adjust index to point to the default

; case if it is out of range.

JUMP [PC+R0.D] ; Table jump:

.DWORD L6 ; Address to case 6

.DWORD L7 ; Address to case 7

.DWORD L8 ; Address to case 8

.DWORD L_DEF ; Address to default case

L6:

:

(Perform case 6)

:

BA L_END ; Break

Op or NOP ; Delay slot

L7:

:

(Perform case 7)

:

BA L_END ; Break

Op or NOP ; Delay slot

L8:

:

(Perform case 8)

:

BA L_END ; Break

Op or NOP ; Delay slot

L_DEF:

:

(Perform default case)

:

L_END:
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 1 - 19

1 Architectural Description
Example of a switch construct with a table of relative addresses (this is the model used
by the CRIS GNU C Compiler):

MOVE [sel_val],R0 ; Load selector value to R0.

SUBQ 6,R0 ; Adjust table index by subtracting

BOUND.D 3,R0 ; the lowest selector value.

ADDS.W [PC+R0.W],PC ; Adjust index to point to the default

; case if it is out of range.

; Implicit relative table jump:

L_TABLE:

.WORD L6 - L_TABLE ; Address to case 6

.WORD L7 - L_TABLE ; Address to case 7

.WORD L8 - L_TABLE ; Address to case 8

.WORD L_DEF - L_TABLE ; Address to default case

L6:

:

(Perform case 6)

:

BA L_END ; Break

Op or NOP ; Delay slot

L7:

:

(Perform case 7)

:

BA L_END ; Break

Op or NOP ; Delay slot

L8:

:

(Perform case 8)

:

BA L_END ; Break

Op or NOP ; Delay slot

L_DEF:

:

(Perform default case)

:

L_END:
1 - 20 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

1 Architectural Description
1.6.5 Subroutines

The JSR instruction of the CRIS CPU does not automatically push the return
address for a subroutine on the stack. Instead, the return address is stored in a special
register called the Subroutine Return Pointer (SRP).

For terminal subroutines (subroutines that do not call other subroutines), the return
address can be kept in the SRP throughout the subroutine. In this way, the overhead
for a subroutine call can be reduced to two single-cycle instructions.

For non-terminal subroutines, the contents of the SRP must be explicitly pushed on
the stack. It is preferred that this is done as the first instruction of the subroutine.

This method results in two different ways of returning from a subroutine. Note that
the RET instruction is a delayed jump with one delay slot, but the JUMP instruction
is performed immediately. See examples below:

Terminal subroutine

Non-terminal subroutine

SUB_ENTRY:

: ; Pushing of SRP is not needed.

:

(Perform desired function)

:

:

RET ; Return: Take address from SRP.

Op or NOP ; Delay slot after return.

SUB_ENTRY:

PUSH SRP ; Pushing of SRP on to the stack.

:

(Perform desired function)

:

:

JUMP [SP+] ; Return: Take address from stack.
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 1 - 21

1 Architectural Description
1.6.6 The JBRC, JIRC and JSRC subroutine instructions

The subroutine instruction, Jump to Subroutine with Context (JSRC), adds 4 to the
return address stored to the SRP register. This leaves four bytes unused between the
JSRC instruction and the return point. These four bytes can, for example, be used for
C++ exception handling information.

Figure 1-21 The JSRC instruction

In the case of immediate addressing, the unused bytes are placed after the immediate
value:

Figure 1-22 Immediate addressing of JSRC

The Jump to Breakpoint Routine with Context (JBRC) instruction, and the Jump to
Interrupt Routine with Context (JIRC) instruction act just like JSRC except that
instead of storing the return address to the SRP register, JBRC stores the return
address to the BRP register, and JIRC stores the return address to the IRP register.

Return to here

JSR instruction A

A + 2

Return to here

JSRC instruction

Unused

A

A + 2

A + 6

A

A + 2

A + 6Return to here

JSR instruction

Immediate jump
target address

Return to here

JSRC instruction

Unused

A

A + 2

A + 6

Immediate jump
target address

A + 10
1 - 22 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

1 Architectural Description
1.7 MMU support

1.7.1 Overview

To support the Memory management unit (MMU) incorporated with the ETRAX
100LX, a number of features have been included in the CRIS architecture:

• The CPU can be in one of two different operation modes: User mode and
Supervisor mode. The MMU uses the operation mode to select the appropriate
mapping between logical and physical addresses.

• The Bus fault is a mechanism that can interrupt the CPU in any cycle, not only
at instruction boundaries. This is needed because the MMU can get a page miss
in any cycle. The bus fault mechanism also gives a straightforward way to include
single step capability.

• With the introduction of the bus fault mechanism, integral read-write operations
can not be achieved by just disabling the interrupt. Instead, another method is
used, see 1.13 Integral read-write operations.

The user and supervisor modes have different stack pointers. In both modes, the user
mode stack pointer can be referenced as USP, while the currently active stack pointer
is referenced as SP (or R14). Thus, in user mode, SP and USP refer to the same
register while in supervisor mode, they are separate registers.

Note that the U flag does not indicate the current mode. The U flag is set by bus
faults, interrupts, and BREAK instructions depending on the preceding mode. It is
used by the instructions that affect the operation mode (JMPU, RBF, RETB, and
RETI) to determine which mode will be selected.

The following CRIS instructions are included specifically for MMU support:

• SBFS (Save Bus Fault Status)

• RBF (Return from Bus Fault)

• JMPU (Jump, set user mode if U flag is set)

The SBFS and RBF instructions are used at the entry and exit of the bus fault
interrupt routine. They save and restore a 16 byte CPU status record containing the
information necessary to resume the operation that was interrupted by the bus fault.

JMPU is intended for return from ordinary interrupt routines where the IRP (or
BRP) has been pushed on the stack. By looking at the U flag, JMPU can return to the
operation mode that was valid before the interrupt occurred. In the case where the
return address from the interrupt routine is kept in the IRP or BRP register, the
RETI or RETB instructions will, in the same way, return to the correct operation
mode.

This document only describes the CRIS CPU architecture features for MMU
support. For information about the ETRAX 100LX Memory Management Unit
itself, and for the single step capability, see the ETRAX 100LX Designer’s Reference
Manual.

These MMU support features are not available in CRIS implementations prior to the
ETRAX 100LX.
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 1 - 23

1 Architectural Description
1.7.2 Protected registers and flags

A few registers and flags need to be protected from being modified while the CPU is
in user mode. The protected registers and flags are:

• IBR (Interrupt Base Register)

• BAR (Breakpoint Address Register)

• M flag (NMI enable flag)

• B flag (HW Breakpoint enable flag)

• I flag (Interrupt enable flag)

An attempt to modify a protected register while in user mode will just be silently
denied. It will not cause any exception. The protected registers are readable in both
user and supervisor modes.

1.7.3 Transition between operation modes

A transition between the user and supervisor modes can take place for the following
reasons:

Transition to user mode:

• JMPU with the U flag set

• RBF with the U flag set

• RETI with the U flag set

• RETB with the U flag set

Transition to supervisor mode:

• System reset

• BREAK instruction

• Interrupt (including NMI and HW break)

• Bus fault

The stack pointers will be automatically exchanged at a transition between the user
and supervisor modes.
1 - 24 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

1 Architectural Description
1.7.4 Bus fault sequence

When an external unit (e.g. MMU) signals a Bus Fault, the CPU will interrupt
immediately at the end of the CPU clock cycle and enter a Bus Fault sequence.

The Bus Fault sequence is similar to the ordinary interrupt sequence, see section 1.8
Interrupts.The steps in the sequence are:

1 Bus Fault INTA cycle. This cycle will be an idle bus cycle. The following is a
pseudo code description of the bus fault INTA cycle operations:
if (current mode == user mode)

{

U flag = 1;

Exchange stack pointers;

}

else

{

U flag = 0;

}

current mode = supervisor mode;

F flag = 1;

hidden CPU status registers = current CPU status;

2 Interrupt vector read cycle. In this cycle the CPU will read the interrupt vector for
the Bus Fault interrupt routine. If the bus fault was caused by the single step unit,
the interrupt vector number will be 0x20, otherwise it will be 0x2e. If both the
MMU and single step bus fault occur at the same time, single step will have
priority.

3 Start execution of the Bus Fault interrupt routine at the address given by the
interrupt vector.

When entering into the Bus Fault interrupt routine, the internal CPU status is
present in hidden CPU status registers. This status has to be saved to the memory
using the SBFS instruction as the first instruction in the interrupt routine.
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 1 - 25

1 Architectural Description
1.7.5 Format of the CPU status record

The format of the CPU status record is as follows:

Figure 1-23

PC field

First, the PC field contains the value of PC immediately after the interrupted cycle.
For example, if the bus fault occurs on an instruction fetch at address A in a linear
instruction stream, the PC field will contain the value A + 2.

Execution state field

The Execution state field contains a number of flags that enables the CPU to restart in
the correct execution state. The flags are:

Bit number Flag name Description

15 - 9 Reserved

These bits are written as 0’s by SBFS. To ensure compatibility with
future implementations, these bits should not be modified by the
SW. If you generate the CPU status record by the SW (not using a
status record saved with SBFS), these bits should be set to 0’s. The
bits are ignored by the current implementation of the RBF
instruction.

8 Old F flag
This bit is set according to the status of the F flag immediately
after the interrupted cycle (i.e. before it was set by the bus fault).
This bit is ignored by the RBF instruction.

7 User mode flag
This bit is set according to the status of the U flag immediately
after the interrupted cycle (i.e. before it was modified by the bus
fault).

6 Arithmetic extend flag
This bit is set according to the status of the X flag immediately
after the interrupted cycle.

5 Unaligned flag
Set if the interrupted cycle was the second cycle of an unaligned
data read or write.

4 Data cycle flag
Set if the interrupted cycle was a data read or write (as opposed to
an instruction fetch).

3
RETI/RETB delay slot
flag

Set if the interrupted cycle was a delay slot of a RETI or RETB
instruction that should take effect.

2 Delay slot flag
Set if the interrupted cycle was a delay slot of a taken branch, or a
delay slot of a RET, RETI or RETB instruction that should take
effect.

1 Address prefix flag
Set if the interrupted instruction was preceded by an address
prefix.

0 Interrupt vector flag
Set if the interrupted cycle was an interrupt vector read cycle. This
bit is ignored by the RBF instruction.

Table 1-9 Execution state field flags

031

An + 4

An + 8

An + 12

An

Interrupted address

PC

Instruction Execution state

Data
1 - 26 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

1 Architectural Description
Instruction field

If the interrupted cycle was a data read or write (i.e. not an instruction fetch), the
Instruction field contains the opcode of the interrupted instruction. In case the
interrupted instruction was a MOVEM, the destination field (bit 15-12) of the
instruction will hold the register number currently in transfer when the instruction
was interrupted.

If the interrupted cycle was an instruction fetch, the instruction field will contain the
invalid data that was fetched during the interrupted cycle. In this case, the field will
be ignored by the RBF instruction.

Interrupted address field

The Interrupted address field contains the address of the data entity in transfer during
the interrupted cycle. For instruction fetches and for aligned data read/write cycles,
this is always the same as the address output from the CPU during the interrupted
cycle. But for the second cycle of an unaligned data transfer, this field will contain the
address that was output from the CPU during the cycle that came before the
interrupted cycle.

Example:

Figure 1-24

Data field

Finally, the Data field will have different meaning depending on the type of cycle that
was interrupted:

Type of interrupted cycle Definition of the data field

Instruction fetch cycle, not preceded
by an address prefix

The data field contains the ALU result of the previous instruction. This
data is ignored by the RBF instruction.

Instruction fetch cycle preceded by
an address prefix

The data field contains the address that was calculated by the address
prefix.

Aligned data read cycle, or first cycle
of an unaligned data read

The data field contains the invalid data that was read in the interrupted
cycle. This data is ignored by the RBF instruction.

Second cycle of an unaligned data
read

The lower part of the data field contains the valid data that was read in
the first cycle of the data read. The upper part of the data field will
contain the invalid data read in the interrupted cycle. The RBF
instruction will use the lower part and ignore the upper part of the data
field.

Data write cycle The data field will contain the data that was going to be written in the
interrupted cycle.

Table 1-10 Data field

An + 3

An + 4

An

AnAn + 1An + 2

Address of the data entity in
transfer during the interrupted cycle
(i.e. the interrupted address).

This value will be used regardless
of whether the bus fault occurs at
either An or An + 4.

= Data entity in transfer
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 1 - 27

1 Architectural Description
1.7.6 Programming examples

Go to user mode for the first time:

Bus fault routine:

Disabling interrupt from user mode programs:

In user mode, the I flag is prevented from being changed. This is in general desired to
avoid that user mode programs lock out interrupts. If a user mode program needs to
disable interrupts, this can be achieved by using the BREAK instruction. You can for
example reserve BREAK 0 for this purpose. (The same mechanism can also be used
for other more complicated system calls.)

User mode program:

Breakpoint code:

MOVE CCR, Rn

OR.W 0x100, Rn

MOVE Rn, CCR ; Set U flag

MOVE user_stack_pointer, USP

JMPU user_mode_program_entry

SBFS [SP=SP-16]

PUSH DCCR

PUSH registers

:

:

POP registers

POP DCCR

RBF [SP+]

:

BREAK 0 ; Jump to breakpoint0_entry

: ; and save return address in BRP.

breakpoint0_entry:

RETB ; Return immediately

DI ; Disable interrupts in the delay slot.
1 - 28 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

1 Architectural Description
1.8 Interrupts

The CRIS CPU uses vectorized interrupts that are generated either externally to, or
internally by, the ETRAX 100LX. The interrupt acknowledge sequence consists of
the following steps:

1 Perform an INTA cycle, where the 8-bit vector number is read from the bus.

2 Store the contents of PC to the Interrupt Return Pointer (IRP). Note that the
return address is not automatically pushed on the stack.

3 Read the interrupt vector from the address [IBR + <vector number> * 4].

4 Start the execution at the address pointed to by the interrupt vector.

The Interrupt base register (IBR) has bits 31-16 implemented. The remaining bits
are always zero.

Figure 1-25 Interrupt vector address calculation

The interrupt acknowledge sequence of the CRIS CPU does not automatically push
the condition codes and the interrupt return address on the stack. The interrupt
return address is stored in the Interrupt return pointer (IRP). If nested interrupts are
used, the IRP must be pushed on the stack as the first instruction of the interrupt
routine. The Condition code register (CCR) must always be pushed at the start of an
interrupt routine, and restored at the end.

The Interrupt enable flag is unaffected by the interrupt sequence. However a new
interrupt will not be enabled until after the first instruction of the interrupt routine.
Also, all transfers to and from Special Registers will disable interrupts until the next
instruction is executed. In this way, the IRP and CCR or DCCR can always be
pushed on the stack before a new interrupt is allowed, see examples on the next page.

Note that the RETI instruction is a delayed jump with one delay slot, but the JMPU
instruction is performed directly. See examples below:

+

31 16 0

7 0

031

IBR

IBR

Vector number

Vector number

Interrupt base register

Interrupt vector address

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

00

00000000
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 1 - 29

1 Architectural Description
Single level interrupts

Nested interrupts

Interrupts (including NMI and HW break) update the U flag according to the
current operating mode, and perform a transition to supervisor mode. The transition
will take place in the INTA cycle so that the interrupt vector is read in supervisor
mode. An interrupt will also set the F flag.

A special case occurs if there is a bus fault in the interrupt vector read cycle. The CPU
can handle the bus fault, and a separate bit is set in the CPU status record. The
interrupt sequence can, however, not be automatically restarted by the RBF
instruction. This case does not have to be considered for MMU functionality because
a bus fault on the interrupt vector table would make it impossible to reach the bus

INT_ENTRY:

PUSH DCCR ; Push condition codes onto the stack.

DI ; Disable interrupts.

SUBQ stack_offset,SP ; Reserve stack for used registers.

MOVEM Rn,[SP] ; Save registers.

:

(Perform desired function)

:

MOVEM [SP+],Rn ; Restore registers.

RETI ; Return: Take address from IRP.

POP DCCR ; Restore condition codes (this is

; placed in the delay slot of the

; RETI instruction).

INT_ENTRY:

PUSH IRP ; Push return address onto the stack.

PUSH DCCR ; Push condition codes onto the stack.

SUBQ stack_offset,SP ; Reserve stack for used registers.

; ← Interrupts are enabled here.

MOVEM Rn,[SP] ; Save registers.

:

(Perform desired function)

:

MOVEM [SP+],Rn ; Restore registers.

POP DCCR ; Restore condition codes.

; ← Interrupts are disabled here

; until after the return from

; interrupt.

JMPU [SP+] ; Return from interrupt.
1 - 30 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

1 Architectural Description
fault interrupt routine anyway. For single step, this case has to be checked for and
taken care of by the single step SW.

1.8.1 NMI

The Non Maskable Interrupt (NMI) is handled in the same way as the normal
interrupt except for the following three differences:

1 The return address is stored in the Breakpoint Return Pointer (BRP) instead of the
IRP.

2 The NMI is enabled/disabled by the M flag instead of the I flag. The M flag can
be set with the SETF M instruction. Move to CCR/DCCR has no effect. Once
set, the M flag can only be cleared by an NMI acknowledge cycle or system reset.

3 The INTA cycle will be an idle bus cycle, and the vector number 0x21 is generated
internally in the CPU.

1.9 Software breakpoints

The CRIS CPU has a breakpoint instruction (BREAK n). This instruction saves the
current value of PC in the Breakpoint Return Pointer (BRP) register, and performs a
jump to address (IBR + 8*n).

Figure 1-26 Software breakpoint address calculation

1.10 Hardware breakpoint mechanism

The CPU contains a hardware breakpoint mechanism. The hardware breakpoint
address is loaded in the Breakpoint Address Register (BAR), and the hardware
breakpoint mechanism is enabled by setting the Breakpoint enable flag B (see table 1-
1 and figure 1-3).

For each CPU read or write cycle, the address is compared with the contents of the
BAR register. In order to detect a read or write in the dword (and not just a single
byte) of the address location, bit 1 and 0 are ignored in the comparison. Bit 31 is also
ignored in the comparison since that bit handles the cache in the ETRAX
100LX(address bit 31 set will bypass the cache and directly access the main memory).

+

31 0

0

031

IBR

IBR

Interrupt base register

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

00

00000000

Breakpoint routine entry

0

0000

3

n

n

A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 1 - 31

1 Architectural Description
An address hit is handled in the same way as an NMI with interrupt vector number
0x20, except that a breakpoint hit is not affected by the M flag.

The hardware breakpoint mechanism is disabled after reset.

1.11 Multiply and divide

1.11.1 General

The ETRAX 100LX implementation of the CRIS CPU has two multiply
instructions: Signed Multiply (MULS) and Unsigned Multiply (MULU). For
compatibility with CRIS implementations not supporting multiply instructions,
multiply operations can also be performed using a sequence of Multiply Step
(MSTEP) instructions.

There are no divide instructions, so divide operations are performed by a sequence of
Divide Step (DSTEP) instructions.

1.11.2 Multiply using MULS and MULU

The MULS and MULU instructions are fast (2 cycle) multiply operations. The
multiply is performed on 32 by 32 bits, giving a 64-bit result. The lower 32 bits are
stored to the destination register specified with the instruction, while the upper 32
bits are stored in the Multiply Overflow (MOF) register.

For multiply with byte or word sized operands, the operands are extended to 32 bits
before the multiply. Sign extend is used with Signed Multiply (MULS), while zero
extend is used with Unsigned Multiply (MULU).

1.11.3 Multiply Using MSTEP

In addition to the MULS and MULU instructions, multiply operations can be
performed using the MSTEP instruction. The MSTEP instruction does the
following:

1 Shifts the destination register one step to the left.

2 If the N flag is set, adds the source operand.

3 Updates the flags.

The example below shows a 16-bit by 16-bit unsigned multiply with 32-bit result.
1 - 32 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

1 Architectural Description
16-bit by 16-bit unsigned multiply example:

1.11.4 Divide

Divide operations can be performed using the DSTEP instruction. The DSTEP
instruction does the following:

1 Shifts the destination register one step to the left.

2 If the destination register is unsigned-greater-than or equal to the source operand,
the source operand is subtracted from the destination register.

MUL_BEGIN:

MOVU.W [value1],R0 ; Move first operand to a register,

; and clear the upper 16 bits.

MOVU.W [value2],R1 ; Move second operand to a register.

LSLQ 16,R1 ; Shift left, clear the lower 16 bits

; of the result register, and set the

; N flag according to msb of value2.

MSTEP R0,R1 ; Perform 16 iterations of the MSTEP

MSTEP R0,R1 ; instruction. Each iteration sets

MSTEP R0,R1 ; the N flag for next step.

MSTEP R0,R1

MSTEP R0,R1

MSTEP R0,R1

MSTEP R0,R1

MSTEP R0,R1

MSTEP R0,R1

MSTEP R0,R1

MSTEP R0,R1

MSTEP R0,R1

MSTEP R0,R1

MSTEP R0,R1

MSTEP R0,R1

MSTEP R0,R1 ; The last iteration. The result is in R1.
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 1 - 33

1 Architectural Description
16-bit by 16-bit unsigned divide example:

DIV_BEGIN:

MOVU.W [num],R1 ; Move numerator to a register,

; and clear the upper 16 bits.

MOVU.W [denom],R0 ; Move denominator to a register.

LSLQ 16,R0 ; Shift left, clear the lower 16 bits

; of the denominator register.

SUBQ 1,R0 ; Subtract one from the denominator.

DSTEP R0,R1 ; Perform 16 iterations of the DSTEP

DSTEP R0,R1 ; instruction.

DSTEP R0,R1

DSTEP R0,R1

DSTEP R0,R1

DSTEP R0,R1

DSTEP R0,R1

DSTEP R0,R1

DSTEP R0,R1

DSTEP R0,R1

DSTEP R0,R1

DSTEP R0,R1

DSTEP R0,R1

DSTEP R0,R1

DSTEP R0,R1

DSTEP R0,R1 ; The last iteration. The quotient is

; in the lower half of R1, and the

; remainder is in the upper half of of R1.
1 - 34 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

1 Architectural Description
1.12 Extended arithmetic

Extended arithmetic (arithmetic with more than 32 bits) is supported by using the X
flag. The X flag is set by the AX (SETF X) instruction, and is cleared by all other
instructions.

When the X flag is set, instructions involving an addition or subtraction are modified
in the following ways:

1 The C flag is added to the result of an addition, and subtracted from the result of a
subtraction. This is valid even if the addition/subtraction result is not the result
operand of the instruction.

2 If the result operand is zero, the Z flag will maintain its old value instead of being
set.

3 The change of the Z flag behaviour is valid for all instructions that affect the Z flag
except:

The addition/subtraction of the C flag affects the following instructions:

The address calculation in addressing mode prefixes is not affected.The AX
instruction disables the interrupts until the next instruction to ensure that the X flag
is not cleared by an interrupt routine before it is used. Below are two examples of
extended arithmetic.

Add a 48-bit signed value contained in R3:R2 to a 64 bit value stored in R1:R0:

Test if a 40-bit value contained in R1:R0 is zero:

CLEARF,
MOVE to CCR/DCCR,
POP CCR/DCCR,
SETF

ABS, ADD, ADDI, ADDQ, ADDS,
ADDU, BOUND, CMP, CMPQ, CMPS,
CMPU, DSTEP, MSTEP, NEG, SUB,
SUBQ, SUBS, SUBU

EXT_ADD:

ADD.D R2,R0 ; Add the low dwords.

AX ; Set the X flag.

ADDS.W R3,R1 ; Add the upper 16 source bits.

EXT_TEST:

TEST.D R0 ; Test the lower 32 bits.

AX

TEST.B R1 ; Test upper 8 bits.
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 1 - 35

1 Architectural Description
1.13 Integral read-write operations

Since a bus fault can interrupt the CPU in any bus cycle (except INTA), it is not
possible to ensure the integrity of a piece of code just by disabling the interrupts or by
only using instructions that lock out interrupts between them. Instead, integral read-
write operations can be implemented by using the Load-locked, Store-conditional
principle:

Start:

Initialize lock;

Read variable;

Modify variable;

Write back variable if and only if the sequence hasn’t been interrupted;

Go to Start if write failed;

The F and P flags, and the branch instruction Branch on Write Failed (BWF), are
used to test whether the write succeeded or failed. See section 1.2 Flags and condition
codes, on page 3.

The F flag is set by the BREAK instruction, when the CPU performs an interrupt
acknowledge, or when a bus fault sequence occurs. The P flag is set when a write to
memory fails because of broken integrity.

The F and P flags are cleared by the CLEARF instruction regardless of the list of
flags. F and P are not affected by the SETF instruction.

A write to memory can be made conditional by setting the X flag in the instruction
before the write. This will affect all instructions that write to memory, except SBFS.

Pseudo code for instructions that write to memory will be:
if (F & X)

{

P = 1;

}

else

{

write to memory;

}

The BWF instruction has the action: Branch if P is set. It has the same opcodes as the
normal branch instruction, and the condition field of the instruction (bits 15 - 12) is
1111 (binary).
1 - 36 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

1 Architectural Description

.

A code example of how the features can be used to implement a test-and-clear
function is shown below:

Still, more complicated things can be done in the loop, as long as the data can be
written in one single CPU cycle. With some extra care about where the MMU page
boundaries are placed, it is also possible to use write instructions that need several
CPU cycles (e.g. unaligned dword writes, or MOVEM instructions).

1.14 Reset

The following registers are initialized after reset:

All other registers have unknown values after reset.

After reset, the ETRAX 100LX CPU starts execution at a particular address
depending on the boot method:

START_LOCK:CLEARF ; CLEARF with an empty list will

LOCK_LOOP: MOVE.b [memory_location], R0 ; clear F, P and X flags.

AX ; Save data in R0 for future analysis

CLEAR.b [memory_location] ; Make the clear conditional.

BWF LOCK_LOOP ; Loop back if clear failed.

CLEARF ; Use delay slot to

; reinitialize F and P flags.

Register Value (hex)

VR <version number>

CCR 0000

DCCR 00000000

IBR 00000000

Table 1-11 Registers initialized after reset

Register Value (hex)

PROM 80000002

Net 380000f0

Parallel port 380000f0

Serial port 380000f4

Table 1-12 Boot methods
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 1 - 37

1 Architectural Description
1.15 Version identification

Different versions of the CRIS CPU can be identified by reading the Version Register
(VR). The version register is an 8-bit read-only register that contains the CPU
version number. The contents of the CRIS VR Register are:

Value Chip Name Part No Note

0 ETRAX-1 13425

1 ETRAX-2 13576

2 ETRAX-3 13873

3 ETRAX-4 14517

4, 5, 6, 7 Reserved for future chips in the ETRAX-1 family.

8 ETRAX 100 version 1 15822

9 ETRAX 100 version 2 16284

10 ETRAX 100LX 17511

11, 12, 13,
14, 15

Reserved for future chips in the ETRAX 100LX
family.

16 - 255 Not assigned.

Table 1-13 CRIS VR register
1 - 38 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

2 Instruction Set Description
2 INSTRUCTION SET DESCRIPTION

2.1 Definitions

The following definitions apply to the instruction descriptions:

Syntax Definition

m Size modifier, byte, word or dword

z Size modifier, byte or word

Rm General register

Rn General register

Rp General register

Rs Source operand, register addressing mode

[Rs] Source operand, indirect addressing mode

[Rs+] Source operand, autoincrement addressing mode (see note 1 below)

s Source operand, any addressing mode except quick immediate

si Source operand, any mode except register or quick immediate

se Source operand, indexed, offset, double indirect or absolute mode

Pn Special register

Ps Source operand, special register

i 6-bit signed immediate operand

j 6-bit unsigned immediate operand

c 5-bit immediate shift value

Rd Destination operand, register addressing mode

[Rd] Destination operand, indirect addressing mode

[Rd+] Destination operand, autoincrement addressing mode

d Destination operand, any addressing mode except quick immediate

di Destination operand, any mode except register or quick immediate

Pd Destination operand, special register

o 8-bit branch offset, bit 0 is the sign bit

x 8-bit signed immediate value

xx 16-bit signed immediate value

xxxx 32-bit signed immediate value

u 8-bit unsigned immediate value

uu 16-bit unsigned immediate value

uuuu 32-bit unsigned immediate value

cc Condition code

n 4-bit breakpoint entry number

Table 2-1 Instruction set term definitions
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 2 - 1

2 Instruction Set Description
 Note 1: The immediate addressing mode is implemented as autoincrement with PC as the address register. In
all places where the autoincrement addressing mode is used for the source operand, an immediate
operand could be applied as well.

For a description of how the flags are affected, the following definitions apply:

Note 2: See section 1.2 Flags and condition codes for details.

Instructions, register specifications, condition code specifications, and size modifiers
may be written in upper or lower case. Upper case is used throughout this manual to
distinguish instructions from normal text.

2.2 Instruction set summary

2.2.1 Size modifiers

Many of the CRIS instructions can operate on the three different data types byte
(8 bits), word (16 bits) and dword (32 bits). The size of the operation or operand is
indicated by a size modifier added to the instruction. The size modifiers are:

- flag not affected

0 flag cleared

1 flag set

* flag affected according to the result of the operation (see note)

Table 2-2 Definitions for how flags are affected

Name Description Size modifier

Byte 8-bit integer .B

Word 16-bit integer .W

Dword 32-bit integer or address .D

Table 2-3 Size modifiers
2 - 2 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

2 Instruction Set Description
2.2.2 Addressing modes

The addressing modes of the CRIS CPU are described in table 2-4 below. For a
detailed description of each addressing mode, refer to section 1.5 Addressing modes.

Assembler syntax Addressing mode

i , j Quick immediate

Rn Register

Pn Special register

[Rn] Indirect

[Rn+] Autoincrement

x , u Byte immediate

xx , uu Word immediate

xxxx , uuuu Dword immediate

[Rn+Rm.s] Indexed

[Rp=Rn+Rm.s] Indexed with assign

[Rn+[Rm].m] Indirect offset

[Rn+[Rm+].m] Autoincrement offset

[Rn+x] Immediate byte offset

[Rn+xx] Immediate word offset

[Rn+xxxx] Immediate dword offset

[Rp=Rn+[Rm].m] Indirect offset with assign

[Rp=Rn+[Rm+].m] Autoincrement offset with assign

[Rp=Rn+x] Immediate Byte offset with assign

[Rp=Rn+xx] Immediate Word offset with assign

[Rp=Rn+xxxx] Immediate dword offset with assign

[[Rn]] Double indirect

[[Rn+]] Double indirect with autoincrement

[uuuu] Absolute

Table 2-4 Addressing modes
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 2 - 3

2 Instruction Set Description
2.2.3 Data transfers

The data transfer instructions for the CRIS CPU are shown in table 2-5 below. The
two predefined assembler macros POP and PUSH are also shown in the table.

Instruction flag operation Description

F P U M B I X N Z V C

CLEAR.m d - - - - - - 0 - - - - Clear destination operand

MOVE.m s,Rd - - - - - - 0 * * 0 0 Move from source to general register

MOVE.m Rs,di - - - - - - 0 - - - - Move from general register to
memory

MOVE
(Pd == CCR/DCCR)

s,Pd * * * - * * 0 * * * * Move from source to special register

MOVE
(Pd != CCR/DCCR)

s,Pd - - - - - - 0 - - - - Move from source to special register

MOVE Ps,d - - - - - - 0 - - - - Move from special register to
destination

MOVEM Rs,di - - - - - - 0 - - - - Move multiple registers to memory

MOVEM si,Rd - - - - - - 0 - - - - Move from memory to multiple
registers

MOVEQ i,Rd - - - - - - 0 * * 0 0 Move 6-bit signed immediate

MOVS.z s,Rd - - - - - - 0 * * 0 0 Move with sign extend

MOVU.z s,Rd - - - - - - 0 0 * 0 0 Move with zero extend

POP Rd - - - - - - 0 * * 0 0 Pop register from stack

POP Pd - - - - - - 0 - - - - Pop special register from stack

PUSH Rs - - - - - - 0 - - - - Push register onto stack

PUSH Ps - - - - - - 0 - - - - Push special register onto stack

SBFS di - - - - - - 0 - - - - Save bus fault status

SWAP <opt.> Rd - - - - - - 0 * * 0 0 Swap operand bits

Table 2-5 Data transfer instructions
2 - 4 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

2 Instruction Set Description
2.2.4 Arithmetic Instructions

The arithmetic instructions for the CRIS CPU are described in table 2-6 below. Note
that the TEST instruction is a predefined assembler macro for register operands, but
is a real instruction with other addressing modes.

With Indexed and Offset addressing modes, instructions that normally have two
operands exist in a 2-operand and a 3-operand form:

Example:

ADD.W [SP+8],R4 ; Add [SP+8] to R4 and store the result in R4.

ADD.W [SP+8],R4,R5 ; Add [SP+8] to R4 and store the result in R5.

; R4 is not changed

Instruction flag operation Description

F P U M B I X N Z V C

ABS Rs,Rd - - - - - - 0 * * 0 0 Absolute value

ADD.m s,Rd - - - - - - 0 * * * * Add source to destination register

ADDI Rs.m,Rd - - - - - - 0 - - - - Add scaled index to base

ADDQ j,Rs - - - - - - 0 * * * * Add 6-bit unsigned immediate

ADDS.z s,Rd - - - - - - 0 * * * * Add sign extended source to register

ADDU.z s,Rd - - - - - - 0 * * * * Add zero extended source to register

BOUND.m s,Rd - - - - - - 0 * * 0 0 Adjust table index (unsigned min)

CMP.m s,Rd - - - - - - 0 * * * * Compare source to register

CMPQ i,Rd - - - - - - 0 * * * * Compare with 6-bit signed immediate

CMPS.z si,Rd - - - - - - 0 * * * * Compare with sign extended source

CMPU.z si,Rd - - - - - - 0 * * * * Compare with zero extended source

DSTEP Rs,Rd - - - - - - 0 * * 0 0 Divide step

MSTEP Rs,Rd - - - - - - 0 * * 0 0 Multiply step

MULS.m Rs,Rd - - - - - - 0 * * * 0 Signed multiply

MULU.m Rs,Rd - - - - - - 0 * * * 0 Unsigned multiply

NEG.m Rs,Rd - - - - - - 0 * * * * Negate (2’s complement)

SUB.m s,Rd - - - - - - 0 * * * * Subtract source from register

SUBQ j,Rd - - - - - - 0 * * * * Subtract 6-bit unsigned immediate

SUBS.z s,Rd - - - - - - 0 * * * * Subtract with sign extended source

SUBU.z s,Rd - - - - - - 0 * * * * Subtract with zero extended source

TEST.m s - - - - - - 0 * * 0 0 Compare operand with 0

Table 2-6 Arithmetic instructions
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 2 - 5

2 Instruction Set Description
2.2.5 Logical instructions

The logical instructions for the CRIS CPU are described in table 2-7 below. With
Indexed and Offset addressing modes, instructions that normally have two operands
exist in a 2-operand and a 3-operand form.

2.2.6 Shift instructions

The shift instructions for the CRIS CPU are shown in table 2-8 below. When the
shift count is contained in a register, the 6 least significant bits of the register are used
as an unsigned shift count.

2.2.7 Bit test instructions

The bit test instructions for the CRIS CPU are shown in table 2-9 below. The BTST
and BTSTQ instructions set the N flag according to the selected bit in the
destination register. The Z flag is set if the selected bit and all bits to the right of the
destination register are zero. When the bit number is contained in a register, the 6
least significant bits of the register are used as an unsigned bit number.

Instruction flag operation Description

F P U M B I X N Z V C

AND.m s,Rd - - - - - - 0 * * 0 0 Bitwise logical AND

ANDQ i,Rd - - - - - - 0 * * 0 0 AND with 6-bit signed immediate

NOT Rd - - - - - - 0 * * 0 0 Logical NOT (1’s complement)

OR.m s,Rd - - - - - - 0 * * 0 0 Bitwise logical OR

ORQ i,Rd - - - - - - 0 * * 0 0 OR with 6-bit signed immediate

XOR Rs,Rd - - - - - - 0 * * 0 0 Bitwise Exclusive OR

Table 2-7 Logical instructions

Instruction flag operation Description

F P U M B I X N Z V C

ASR.m Rs,Rd - - - - - - 0 * * 0 0 Right shift Rd with sign fill

ASRQ c,Rd - - - - - - 0 * * 0 0 Right shift Rd with sign fill

LSL.m Rs,Rd - - - - - - 0 * * 0 0 Left shift Rd with zero fill

LSLQ c,Rd - - - - - - 0 * * 0 0 Left shift Rd with zero fill

LSR.m Rs,Rd - - - - - - 0 * * 0 0 Right shift Rd with zero fill

LSRQ c,Rd - - - - - - 0 * * 0 0 Right shift Rd with zero fill

Table 2-8 Shift instructions

Instruction flag operation Description

F P U M B I X N Z V C

BTST Rs,Rd - - - - - - 0 * * 0 0 Test bit Rs in register Rd

BTSTQ c,Rd - - - - - - 0 * * 0 0 Test bit c in register Rd

LZ Rs,Rd - - - - - - 0 0 * 0 0 Number of leading zeroes

Table 2-9 Bit test instructions
2 - 6 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

2 Instruction Set Description
2.2.8 Condition code manipulation instructions

The condition code manipulation instructions for the CRIS CPU are shown in table
2-10 below. The predefined assembler macros EI, DI, and AX are also shown.

2.2.9 Jump and branch instructions

The jump and branch instructions of the CRIS CPU are shown in table 2-11 below.
The predefined assembler macros RET and RETI are also shown. Note that the Bcc,
RET and RETI instructions have a delayed effect, see section 1.6.1 Conditional
branch.

Note 3: The JBRC, JIRC and JSRC instructions will add four bytes to the return address stored to either SRP,
IRP or BRP. This leaves four Bytes unused between the JSRC/JIRC/JBRC instruction and the return
point. This can be used to enhance C++ exception support.

Instruction flag operation Description

F P U M B I X N Z V C

AX - - - - - - 1 - - - - Arithmetic extend (SETF X)

CLEARF <list> 0 0 - - * * 0 * * * * Clear flags in list

DI 0 0 - - - 0 0 - - - - Disable interrupts (CLEARF I)

EI - - - - - 1 0 - - - - Enable interrupts (SETF I)

Scc Rd - - - - - - 0 - - - - Set register according to cc

SETF <list> - - - * * * * * * * * Set flags in list

Table 2-10 Condition code manipulation instructions

Instruction flag operation Description

F P U M B I X N Z V C

Bcc o - - - - - - 0 - - - - Conditional relative branch

Bcc xx - - - - - - 0 - - - - Branch with 16-bit offset

BREAK n 1 - * - - - 0 - - - - Breakpoint

JBRC s - - - - - - 0 - - - - Jump to breakpoint routine, see note 3

JIR s - - - - - - 0 - - - - Jump to interrupt routine

JIRC s - - - - - - 0 - - - - Jump to interrupt routine, see note 3

JMPU si - - - - - - 0 - - - - Jump and set operation mode

JSR s - - - - - - 0 - - - - Jump to subroutine

JSRC s - - - - - - 0 - - - - Jump to subroutine, see note 3

JUMP s - - - - - - 0 - - - - Jump

RBF si - - * - - - * - - - - Return from bus fault

RET - - - - - - 0 - - - - Return from subroutine

RETB - - - - - - 0 - - - - Return from breakpoint routine

RETI - - - - - - 0 - - - - Return from interrupt routine

Table 2-11 Jump and branch instructions
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 2 - 7

2 Instruction Set Description
2.2.10 No operation instruction

The CRIS CPU also has a no operation instruction, NOP.

2.3 Instruction format summary

2.3.1 Summary of quick immediate mode instructions

Note 4: The (s.) field is the sign bit of the offset.

Note 5: BDAP is the base + offset addressing mode prefix.

Instruction flag operation Description

F P U M B I X N Z V C

NOP - - - - - - 0 - - - - No operation

Table 2-12 No operation instruction

Operation Operand 2 Mode Opcode Operand 1 Note

Bcc o Condition 0 0 0 0 Offset (7 bits) s. 4

(BDAP o,Rs) Base 0 0 0 1 Signed displacement (8 bits) 5

ADDQ j,Rd Dest. reg. 0 0 1 0 0 0 Unsigned immediate (6 bits)

MOVEQ i,Rd Dest. reg. 0 0 1 0 0 1 Signed immediate (6 bits)

SUBQ j,Rd Dest. reg. 0 0 1 0 1 0 Unsigned immediate (6 bits)

CMPQ i,Rd Dest. reg. 0 0 1 0 1 1 Signed immediate (6 bits)

ANDQ i,Rd Dest. reg. 0 0 1 1 0 0 Signed immediate (6 bits)

ORQ i,Rd Dest. reg. 0 0 1 1 0 1 Signed immediate (6 bits)

BTSTQ c,Rd Dest. reg. 0 0 1 1 1 0 0 Bit number (5 bits)

ASRQ c,Rd Dest. reg. 0 0 1 1 1 0 1 Shift value (5 bits)

LSLQ c,Rd Dest. reg. 0 0 1 1 1 1 0 Shift value (5 bits)

LSRQ c,Rd Dest. reg. 0 0 1 1 1 1 1 Shift value (5 bits)

Table 2-13 Quick immediate mode instructions
2 - 8 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

2 Instruction Set Description
2.3.2 Summary of register instructions with variable size

Note 6: ADDI cannot have PC as base.

Note 7: BIAP is the base + index addressing mode prefix.

z:size:

0 Byte

zz: size:

00 Byte

1 Word 01 Word

10 Dword

Table 2-14 Variable size

Operation Operand 2 Mode Opcode Size Operand 1 Note

ADDU.z Rs,Rd Dest. reg. 0 1 0 0 0 0 0 z Source reg.

ADDS.z Rs,Rd Dest. reg. 0 1 0 0 0 0 1 z Source reg.

MOVU.z Rs,Rd Dest. reg. 0 1 0 0 0 1 0 z Source reg.

MOVS.z Rs,Rd Dest. reg. 0 1 0 0 0 1 1 z Source reg.

SUBU.z Rs,Rd Dest. reg. 0 1 0 0 1 0 0 z Source reg.

SUBS.z Rs,Rd Dest. reg. 0 1 0 0 1 0 1 z Source reg.

LSL.m Rs,Rd Dest. reg. 0 1 0 0 1 1 z z Source reg.

ADDI Rs.m,Rd Index 0 1 0 1 0 0 z z Base 6

MULS.m Rs,Rd Dest. reg. 1 0 0 1 0 0 z z Source reg.

MULU.m Rs,Rd Dest. reg. 1 1 0 1 0 0 z z Source reg.

(BIAP Rs.m,Rd) Index 0 1 0 1 0 1 z z Base 7

NEG.m Rs,Rd Dest. reg. 0 1 0 1 1 0 z z Source reg.

BOUND.m Rs,Rd Index 0 1 0 1 1 1 z z Bound

ADD.m Rs,Rd Dest. reg. 0 1 1 0 0 0 z z Source reg.

MOVE.m Rs,Rd Dest. reg. 0 1 1 0 0 1 z z Source reg.

SUB.m Rs,Rd Dest. reg. 0 1 1 0 1 0 z z Source reg.

CMP.m Rs,Rd Dest. reg. 0 1 1 0 1 1 z z Source reg.

AND.m Rs,Rd Dest. reg. 0 1 1 1 0 0 z z Source reg.

OR.m Rs,Rd Dest. reg. 0 1 1 1 0 1 z z Source reg.

ASR.m Rs,Rd Dest. reg. 0 1 1 1 1 0 z z Source reg.

LSR.m Rs,Rd Dest. reg. 0 1 1 1 1 1 z z Source reg.

Table 2-15 Register instructions with variable size
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 2 - 9

2 Instruction Set Description
2.3.3 Summary of register instructions with fixed size

Note 8: When destination is PC, and source is SRP, BRP or IRP, this instruction implements the RET, RETB
or RETI instruction. MOVE from special registers p0, p4 and p8 are used as CLEAR. The size of the
clear depends of the specified number for the special register.

Operation Operand 2 Mode Opcode Size Operand 1 Note

BTST Rs,Rd Dest. reg. 0 1 0 0 1 1 1 1 Source reg.

NOP 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1

Scc Rd Condition 0 1 0 1 0 0 1 1 Dest. reg.

(Reserved) Dest. reg. 0 1 0 1 0 1 1 1 Source reg.

SETF <list> M B I X 0 1 0 1 1 0 1 1 N Z V C

CLEARF <list> - B I X 0 1 0 1 1 1 1 1 N Z V C

MOVE Rs,Pd Special reg. 0 1 1 0 0 0 1 1 Source reg.

MOVE Ps,Rd Special reg. 0 1 1 0 0 1 1 1 Dest. reg. 8

ABS Rs,Rd Dest. reg. 0 1 1 0 1 0 1 1 Source reg.

DSTEP Rs,Rd Dest. reg. 0 1 1 0 1 1 1 1 Source reg.

LZ Dest. reg 0 1 1 1 0 0 1 1 Source reg.

SWAP<opt.> Rd N W B R 0 1 1 1 0 1 1 1 Dest. reg.

NOT Rd 1 0 0 0 0 1 1 1 0 1 1 1 Dest. reg.

XOR Rs,Rd Dest. reg. 0 1 1 1 1 0 1 1 Source reg.

MSTEP Rs,Rd Dest. reg. 0 1 1 1 1 1 1 1 Source reg.

Table 2-16 Register instructions with fixed size
2 - 10 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

2 Instruction Set Description
2.3.4 Summary of indirect instructions with variable size

Note 9: BDAP is the base + offset addressing mode prefix.

m: mode:
0 Indirect mode

1 Autoincrement mode

z:size:

0 Byte

zz: size:

00 Byte

1 Word 01 Word

10 Dword

Table 2-17 Mode and variable size

Operand Operand 2
Mod

e
Opcode Size Operand 1 Note

ADDU.z [],Rd Dest. reg. 1 m 0 0 0 0 0 z Source

ADDS.z [],Rd Dest. reg. 1 m 0 0 0 0 1 z Source

MOVU.z [],Rd Dest. reg. 1 m 0 0 0 1 0 z Source

MOVS.z [],Rd Dest. reg. 1 m 0 0 0 1 1 z Source

SUBU.z [],Rd Dest. reg. 1 m 0 0 1 0 0 z Source

SUBS.z [],Rd Dest. reg. 1 m 0 0 1 0 1 z Source

CMPU.z [],Rd Dest. reg. 1 m 0 0 1 1 0 z Source

CMPS.z [],Rd Dest. reg. 1 m 0 0 1 1 1 z Source

(BDAP [],Rd) Base 1 m 0 1 0 1 z z Source 9

(Reserved) Operand 2 1 m 0 1 1 0 z z Operand 1

BOUND.m [],Rd index 1 m 0 1 1 1 z z Bound

ADD.m [],Rd Dest. reg. 1 m 1 0 0 0 z z Source

MOVE.m [],Rd Dest. reg. 1 m 1 0 0 1 z z Source

SUB.m [],Rd Dest. reg. 1 m 1 0 1 0 z z Source

CMP.m [],Rd Dest. reg. 1 m 1 0 1 1 z z Source

AND.m [],Rd Dest. reg. 1 m 1 1 0 0 z z Source

OR.m [],Rd Dest. reg. 1 m 1 1 0 1 z z Source

TEST.m [] 0 0 0 0 1 m 1 1 1 0 z z Source

MOVE.m Rs,[] Source reg. 1 m 1 1 1 1 z z Dest.

Table 2-18 Indirect instructions with variable size
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 2 - 11

2 Instruction Set Description
2.3.5 Summary of indirect instructions with fixed size

Note 10: DIP is the double indirection addressing mode prefix

Note 11: MOVE from special registers p0, p4 and p8 are used as CLEAR. The size of the clear depends of the
specified number for the special register.

m: mode:
0 Indirect mode

1 Autoincrement mode

Table 2-19 Mode

Operation Operand 2 Mode Opcode Size Operand 1 Note

JBRC/JSRC/
JIRC

[] Special reg. - 8 1 m 0 1 0 0 1 1 Source

JUMP [] 0 0 0 0 1 m 0 1 0 0 1 1 Source

JMPU [] 1 0 0 0 1 m 0 1 0 0 1 1 Source

JSR/JIR [] Special reg. 1 m 0 1 0 0 1 1 Source

BREAK n 1 1 1 0 1 0 0 1 0 0 1 1 n

(DIP []) 0 0 0 0 1 m 0 1 0 1 1 1 Source 10

JBRC/JSRC/
JIRC

Rs Special reg. - 8 1 0 0 1 1 0 1 1 Source reg.

JUMP/JSR/JIR Rs 0 0 0 0 1 0 0 1 1 0 1 1 Source reg.

Bcc [PC+] Condition 1 m 0 1 1 1 1 1 1 1 1 1

MOVE [],Pd Special reg. 1 m 1 0 0 0 1 1 Source

MOVE Ps,[] Special reg. 1 m 1 0 0 1 1 1 Dest. 11

(Reserved) Dest. reg. 1 m 1 0 1 0 1 1 Source

(Reserved) Dest. reg. 1 m 1 0 1 1 1 1 Source

RBF [] 0 0 1 1 1 m 1 1 0 0 1 1 Source

SBFS [] 0 0 1 1 1 m 1 1 0 1 1 1 Dest.

MOVEM [],Rd Dest. reg. 1 m 1 1 1 0 1 1 Source

MOVEM Rs,[] Source reg. 1 m 1 1 1 1 1 1 Dest.

Table 2-20 Indirect instructions with fixed size
2 - 12 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

2 Instruction Set Description
2.4 Addressing mode prefix formats

The instruction format of the Addressing mode prefix words are shown below.

Indexed addressing mode prefix word:

Offset addressing mode prefix word, immediate byte offset:

Offset addressing mode prefix word, general case:

Double indirect and Absolute addressing mode prefix word

Size:

00 Index register is pointer to byte

01 Index register is pointer to word

10 Index register is pointer to dword

Table 2-21 Size for Indexed addressing mode prefix word

Mode (md):
0 Indirect offset addressing mode

1 Autoincrement or immediate offset addressing modes.

Size:

00 Offset is byte

01 Offset is word

10 Offset is dword

Table 2-22 Mode and size for offset Addressing mode prefix word

Mode (md):

0 Double indirect addressing mode

1 Double indirect with autoincrement, or Absolute
addressing mode.

Table 2-23 Mode for double indirect and absolute Addressing mode prefix word

015

0 SizeIndex register 1 1 0 Base register1 0

015

0 Signed offsetBase register 1 0 0

015

1 SizeBase register 1 md 0 Offset1 0

015

1 1 md 0 Source1 0 00 00 1 1
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 2 - 13

2 Instruction Set Description
2 - 14 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
3 INSTRUCTIONS IN ALPHABETICAL
ORDER

In this section, all the instructions of the CRIS CPU are described in alphabetical
order. Each description contains the following information:

Assembler syntax: Shows the assembler syntax for the instruction. Operands, addressing
modes and size modifiers are described using the definitions shown in
section 2.1. Note that instructions, operands etc. may be written in
upper or lower case.

Size: Lists the different data sizes for the instruction.

Operation: Describes the instruction in a form similar to the C programming
language. Different data sizes are shown with the “type cast” method
used in the C language. The behavior of the flags is usually not shown.

Description: A text description of the instruction.

Flags affected: Shows which flags that are affected by the instruction. The detailed
behavior of the flags is shown insection 1.2 Flags and condition codes.

Instruction format: Shows the instruction format. The format of the Addressing mode prefix
word for the complex addressing modes is not shown here. This can be
found in section 1.5 Addressing modes, and in section 2.4 Addressing
mode prefix formats.
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 1

3 Instructions in Alphabetical Order
Assembler syntax: ABS Rs,Rd

Size: Dword

Operation: if (Rs < 0)

{

Rd = -Rs;

}

else

{

Rd = Rs;

}

Description: The absolute value of the contents of the source register is stored in the
destination register. The size of the operation is dword.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:

Note 1: If the source operand is 0x80000000, the result of the operation will be 0x80000000

ABS Absolute Value ABS

015

0 1Destination (Rd) 0 1 1 Source (Rs)0 1 1
3 - 2 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: ADD.m s,Rd

Size: Byte, word, or dword

Operation: (m)Rd += (m)s;

Description: The source data is added to the destination register. The size of the
operation is m. The rest of the destination register is not affected.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * * *

Instruction format:
(register, indirect, or auto-

increment addressing modes)

Instruction format:
(complex addressing modes)

ADD Add ADD
2-operand 2-operand

Mode:

01 Register addressing mode

10 Indirect addressing mode

11 Autoincrement addressing mode

Size:

00 Byte

01 Word

10 Dword

015

Mode SizeDestination (Rd) 0 1 Source (Rs)0 0

Mode (md):

0 Indexed, offset, double indirect, absolute addressing
modes. The Operand1 field must be the same as
destination field (Rd).

1 Indexed with assign, offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

Size:

00 Byte

01 Word

10 Dword

015

Addressing mode prefix word (s)

1 SizeDestination (Rd) 0 md 1 Operand10 0
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 3

3 Instructions in Alphabetical Order
Assembler syntax: ADD.m se,Rn,Rd

Size: Byte, word, or dword

Operation: (m)Rd = (m)se + (m)Rn;

Description: The memory source data is added to the contents of a general register,
and the result is stored in the destination register. The size of the
operation is m. The rest of the destination register is not affected.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * * *

Instruction format:

ADD Add ADD
3-operand 3-operand

Size:

00 Byte

01 Word

10 Dword

015

Addressing mode prefix word (se)

1 SizeRegister (Rn) 00 1 Destination (Rd)0 0
3 - 4 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: ADDI Rs.m,Rd

Size: Rs is a pointer to byte, word or dword. The size of the operation is
dword.

Operation: Rd += Rs * sizeof(m);

Description: Add a scaled index to a base. The contents of the source register is
shifted left 0, 1 or 2 positions, depending on the size modifier m, and is
then added to the destination register. The size of the operation is
dword.

flags affected: F P U M B I X N Z V C
- - - - - - 0 - - - -

Instruction format:

Note 2: PC is not allowed to be the base register.

ADDI Add index ADDI

Size:

00 Rs is pointer to Byte

01 Rs is pointer to Word

10 Rs is pointer to Dword

015

0 SizeIndex (Rs) 1 1 0 Base (Rd)0 0
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 5

3 Instructions in Alphabetical Order
Assembler syntax: ADDQ j,Rd

Size: Source data is 6-bit. The size of the operation is dword

Operation: Rd += j;

Description: A 6-bit immediate value, zero extended to dword, is added to the
destination register.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * * *

Instruction format:

ADDQ Add quick ADDQ

015

0 Destination (Rd) 0 0 1 Unsigned immediate0 0
3 - 6 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: ADDS.z s,Rd

Size: Source size is byte or word. Operation size is dword

Operation: Rd += (z)s;

Description: The source data is sign extended from z to dword, and then added to the
destination register.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * * *

Instruction format:
(register, indirect, or auto-

increment addressing
modes)

Instruction format:
(complex addressing modes)

ADDS Add with sign extend ADDS
2-operand 2-operand

Mode:

01 Register addressing mode

10 Indirect addressing mode

11 Autoincrement addressing mode

Size (z):
0 Byte source operand

1 Word source operand

015

Mode 1Destination (Rd) 0 0 Source (s)0 0 z

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The Operand1 field must be the same as the
Destination field (Rd).

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

Size (z):
0 Byte source operand

1 Word source operand

015

Addressing mode prefix word (s)

1 1Destination (Rd) 0 md 0 Operand10 0 z
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 7

3 Instructions in Alphabetical Order
Assembler syntax: ADDS.z se,Rn,Rd

Size: Source size is byte or word. Operation size is dword

Operation: Rd = (z)se + Rn;

Description: The source data is sign extended from z to dword, and then added to the
contents of a general register. The result is stored in the destination
register.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * * *

Instruction format:

ADDS Add with sign extend ADDS
3-operand 3-operand

Size (z):
0 Byte source operand

1 Word source operand

015

Addressing mode prefix word (se)

1 1Register (Rn) 0 0 0 Destination (Rd)0 0 z
3 - 8 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: ADDU.z s,Rd

Size: Source size is byte or word. Operation size is dword

Operation: Rd += (unsigned z)s;

Description: The source data is zero extended from z to dword, and then added to the
destination register.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * * *

Instruction format:
(register, indirect, or auto-

increment addressing
modes)

Instruction format:
(complex addressing modes)

ADDU Add with zero extend ADDU
2-operand 2-operand

Mode:

01 Register addressing mode

10 Indirect addressing mode

11 Autoincrement addressing mode

Size (z):
0 Byte source operand

1 Word source operand

015

Mode 0Destination (Rd) 0 0 Source (s)0 0 z

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The Operand1 field must be the same as the
Destination field (Rd).

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

Size (z):
0 Byte source operand

1 Word source operand

015

Addressing mode prefix word (s)

1 0Destination (Rd) 0 md 0 Operand10 0 z
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 9

3 Instructions in Alphabetical Order
Assembler syntax: ADDU.z se,Rn,Rd

Size: Source size is byte or word. Operation size is dword

Operation: Rd = (unsigned z)se + Rn;

Description: The source data is zero extended from z to dword, and is then added to
the contents of a general register. The result is stored in the destination
register.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * * *

Instruction format:

ADDU Add with sign extend ADDU
3-operand 3-operand

Size (z):
0 Byte source operand

1 Word source operand

015

Addressing mode prefix word (se)

1 0Register (Rn) 0 0 0 Destination (Rd)0 0 z
3 - 10 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: AND.m s,Rd

Size: Byte, word, or dword

Operation: (m)Rd &= (m)s;

Description: A logical AND is performed between the source operand and the
destination register. The size of the operation is m. The rest of the
destination register is not affected.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:
(register, indirect, or auto-

increment addressing
modes)

Instruction format:
(complex addressing modes)

AND Logical AND AND
2-operand 2-operand

Mode:

01 Register addressing mode

10 Indirect addressing mode

11 Autoincrement addressing mode

Size:

00 Byte

01 Word

10 Dword

015

Mode SizeDestination (Rd) 1 1 Source (s)0 0

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The Operand1 field must be the same as the
Destination field (Rd).

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

Size:

00 Byte

01 Word

10 Dword

015

Addressing mode prefix word (s)

1 SizeDestination (Rd) 1 md 1 Operand10 0
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 11

3 Instructions in Alphabetical Order
Assembler syntax: AND.m se,Rn,Rd

Size: Byte, word, or dword

Operation: (m)Rd = (m)se & (m)Rn;

Description: A logical AND is performed between the source operand and the
contents of a general register. The result is stored in the destination
register. The size of the operation is m. The rest of the destination
register is not affected.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:

AND Logical AND AND
3-operand 3-operand

Size:

00 Byte

01 Word

10 Dword

015

Addressing mode prefix word (se)

1 SizeRegister (Rn) 1 0 1 Destination (Rd)0 0
3 - 12 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: ANDQ i,Rd

Size: Source data is 6-bit. Operation size is dword.

Operation: Rd &= i;

Description: A logical AND is performed between a 6-bit immediate value, sign
extended to dword, and the destination register.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:

ANDQ Logical AND quick ANDQ

015

0 Destination (Rd) 1 0 1 Signed immediate0 0
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 13

3 Instructions in Alphabetical Order
Assembler syntax: ASR.m Rs,Rd

Size: Byte, word, or dword

Operation: (m)Rd >>= (Rs & 63);

Description: The destination register is right shifted the number of steps specified by
the 6 least significant bits of the source register. The shift is performed
with sign extend. The size of the operation is m. The rest of the
destination register is not affected.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:

Note 3: A shift of 32 bits or more will produce the same result as shifting the destination
register 31 bits.

ASR Arithmetic shift right ASR

Size:

00 Byte

01 Word

10 Dword

015

0 SizeDestination (Rd) 1 1 1 Source (Rs)0 1
3 - 14 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: ASRQ c,Rd

Size: Dword

Operation: Rd >>= c;

Description: The destination register is right shifted the number of steps specified by
the 5-bit immediate value. The shift is performed with sign extend. The
size of the operation is dword.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:

ASRQ Arithmetic shift right quick ASRQ

015

0 1Destination (Rd) 1 0 1 Shift value0 1
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 15

3 Instructions in Alphabetical Order
Assembler syntax: AX

Size: -

Operation: X = 1;

Description: Arithmetic extension prefix. Set X flag. Disable interrupts until next
instruction. This is a predefined assembler macro equivalent to SETF X.

flags affected: F P U M B I X N Z V C
- - - - - - 1 - - - -

Instruction format:

AX Arithmetic extension AX

015

0 10 11 0 00 1 1 0 0 0 0 1 0
3 - 16 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: Bcc o
Bcc xx

Size: Byte, Word

Operation: if (cc)

{

PC += offset;offset = o or xx

}

Description: If the condition cc is true, the offset is sign extended to dword and is
added to PC. Interrupts are disabled until next the instruction. The Bcc
instruction is a delayed branch instruction, with one delay slot. Valid
instructions for the delay slot are all instructions except:

• Bcc

• BREAK/JBRC/JIR/JIRC/JMPU/JSR/JSRC/JUMP

• RET/RETB/RETI

• Instructions using addressing prefixes

• Immediate addressing other than Quick Immediate

The value of PC used for the address calculation is the address of the
instruction after the branch instruction.Condition Codes:

(continued)

Bcc Branch conditionally Bcc
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 17

3 Instructions in Alphabetical Order
flags affected: F P U M B I X N Z V C
- - - - - - 0 - - - -

Instruction format:
(8-bit offset)

Offset: Bits 7 - 1 of the offset represent bits 7 - 1 in the actual address
increment/decrement. Bit 0 in the offset field is used as a sign bit in the
computed offset. Bit 0 of the computed offset is either zero or one.

Instruction format:
(16-bit offset)

Offset: Bits 15 - 1 make up the actual address increment/decrement. Bit 0 must
always be 0 because of the word alignment of instructions.

Code Alt Condition Encoding Boolean function

CC HS Carry Clear 0000 C

CS LO Carry Set 0001 C

NE Not Equal 0010 Z

EQ Equal 0011 Z

VC Overflow Clear 0100 V

VS Overflow Set 0101 V

PL Plus 0110 N

MI Minus 0111 N

LS Low or Same 1000 C + Z

HI High 1001 C * Z

GE Greater or Equal 1010 N * V + N * V

LT Less Than 1011 N * V + N * V

GT Greater Than 1100 N * V * Z + N * V * Z

LE Less or Equal 1101 Z + N * V + N * V

A Always True 1110 1

WF Write Failed 1111 P

Table 3-1 Condition Codes

015

0 Condition 0 0 0 Offset (o)

015

1 1Condition 1 1 0 1 1 1 1

Offset 0

1 1 1
3 - 18 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: BOUND.m s,Rd

Size: Source is byte, word or dword. Operation is dword

Operation: if ((unsigned)Rd > (unsigned m)s)
{

Rd = (unsigned m)s;
}

Description: This is a bounding instruction for adjusting branch indexes in switch
statements. If the unsigned contents of the dword index (destination)
register is greater than the unsigned bound (source) data, the bound data
(zero extended to dword) is loaded to the index register. Otherwise, the
index register is unaffected.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:
(register, indirect, or auto-

increment addressing
modes)

Note 4: PC is not allowed to be the Index (Rd) operand.

(continued)

BOUND Adjust index to bound BOUND
2-operand 2-operand

Mode:

01 Register addressing mode

10 Indirect addressing mode

11 Autoincrement addressing mode

Size:

00 Byte

01 Word

10 Dword

015

Mode SizeIndex (Rd) 1 0 Bound (s)1 1
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 19

3 Instructions in Alphabetical Order
Instruction format:
(complex addressing modes)

Note 5: PC is not allowed to be the Index (Rd) operand.

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The Operand1 field must be the same as index
field (Rd).

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

Size:

00 Byte

01 Word

10 Dword

015

Addressing mode prefix word (se)

1 SizeIndex (Rd) 1 md 0 Operand111
3 - 20 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: BOUND.m se,Rn,Rd

Size: Source is byte, word or dword. Operation is dword

Operation: if ((unsigned) Rn > (unsigned m)se)
{

Rd = (unsigned m)se;
}
else
{

Rd = Rn;
}

Description: This is a bounding instruction for adjusting branch indexes in switch
statements. If the unsigned contents of the dword index (Rn) register is
greater than the unsigned bound (source) data, the bound data (zero
extended to dword) is loaded to the destination register. Otherwise, the
contents of the index register are loaded to the destination register.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:

Note 6: PC is not allowed to be the Destination (Rd) operand.

BOUND Adjust index to bound BOUND
3-operand 3-operand

Size:

00 Byte

01 Word

10 Dword

015

Addressing mode prefix word (se)

1 SizeIndex (Rn) 1 0 0 Destination (Rd)1 1
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 21

3 Instructions in Alphabetical Order
Assembler syntax: BREAK n

Size: -

Operation: BRP = PC;
PC = IBR + (8*n);

Description: Breakpoint. This instruction saves PC to the Breakpoint Return Pointer
(BRP), and then performs a jump to address:

(IBR + (8 * n)).

BREAK updates the U flag according to the current operating mode,
and performs a transition to supervisor mode. It also sets the F flag.

flags affected: F P U M B I X N Z V C
1 - * - - - 0 - - - -

Instruction format:

BREAK Breakpoint BREAK

015

1 11 1 0 0 n0 0 1 1 1 0
3 - 22 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: BTST Rs,Rd

Size: Dword

Operation: N = Bit number (Rs & 31) of Rd;
Z = ((Bit numbers 0 to (Rs & 31) of Rd) == 0);

Description: The N flag is set according to the selected bit in the destination register.
The Z flag is set if the selected bit and all bits to the right of it are zero.
The bit number is selected by the 5 least significant bits of the source
register. The destination register is not affected.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:

BTST Bit test BTST

015

0 1Destination (Rd) 0 1 0 Source (Rs)1 1 1
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 23

3 Instructions in Alphabetical Order
Assembler syntax: BTSTQ c,Rd

Size: Dword

Operation: N = Bit number c of Rd;
Z = ((Bit numbers 0 to c of Rd) == 0);

Description: The N flag is set according to the selected bit in the destination register.
The Z flag is set if the selected bit and all bits to the right of it are zero.
The bit number is selected by the 5-bit immediate value. The
destination register is not affected.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:

BTSTQ Bit test quick BTSTQ

015

0 0Destination (Rd) 1 0 1 Bit number (c)1 1
3 - 24 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: CLEAR.m d

Size: Byte, word, or dword

Operation: (m)d = 0;

Description: The destination is cleared to all zeroes. The size of the operation is m.
Interrupts are disabled until the next instruction has been executed.

flags affected: F P U M B I X N Z V C
- - - - - - 0 - - - -

Instruction format:
(register, indirect, or auto-

increment addressing
modes)

Note 7: If PC is used as the destination operand, the resulting jump will have a delayed effect
with one delay slot.

(continued)

CLEAR Clear CLEAR

Mode:

01 Register addressing mode

10 Indirect addressing mode

11 Autoincrement addressing mode

Size:

00 Byte

01 Word

10 Dword

015

0 1Size 0 0 1 Destination (d)1 0 1 Mode
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 25

3 Instructions in Alphabetical Order
Instruction format:
(complex addressing modes)

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

Size:

00 Byte

01 Word

10 Dword

015

Addressing mode prefix word (d)

1 1Size 0 md 1 Operand11 0 0 0 1
3 - 26 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: CLEARF <list of flags>

Size: -

Operation: Selected flags = 0;
X = 0;
F = 0;
P = 0;

Description: The specified flags are cleared to 0. The F, P, and X flags are always
cleared even if they are not in the list supplied with CLEARF. The M
and U flags are not affected. Interrupts are disabled until the next
instruction has been executed.

When the list of flags contains more than one flag, the flags may be
written in any order. The CLEARF instruction accepts an empty list of
flags.

Examples:

flags affected: F P U M B I X N Z V C
0 0 - - * * 0 * * * *

Instruction format:

CLEARF Clear flags CLEARF

CLEARF CVX ; Clear F, P, C, V and X flags.

CLEARF ; Clear F, P, and X flags.

CLEARF BI ; Clear F, P, B, I and X flags.

CLEARF FP ; Clear F, P and X flags.

015

0 1M 1 1 0 N1 1 1 V Z B I X C
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 27

3 Instructions in Alphabetical Order
Assembler syntax: CMP.m s,Rd

Size: Byte, word, or dword

Operation: (m)Rd - (m)s;

Description: The source data is subtracted from the destination register, and the flags
are set accordingly. The size of the operation is m. The destination
register is not updated.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * * *

Instruction format:
(register, indirect, or auto-

increment addressing
modes)

Instruction format:
(complex addressing modes)

CMP Compare CMP

Mode:

01 Register addressing mode

10 Indirect addressing mode

11 Autoincrement addressing mode

Size:

00 Byte

01 Word

10 Dword

015

Mode SizeDestination (Rd) 0 1 Source (Rs)1 1

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand in.

Size:

00 Byte

01 Word

10 Dword

015

Addressing mode prefix word (s)

1 SizeDestination (Rd) 0 md 1 Operand11 1
3 - 28 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: CMPQ i,Rd

Size: Dword

Operation: Rd - i;

Description: A 6-bit immediate value, sign extended to dword, is subtracted from the
destination register, and the flags are set accordingly. The destination
register is not updated.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * * *

Instruction format:

CMPQ Compare quick CMPQ

015

0 Destination (Rd) 0 0 1 Signed immediate1 1
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 29

3 Instructions in Alphabetical Order
Assembler syntax: CMPS.z si,Rd

Size: Source size is byte or word. Operation size is dword

Operation: Rd - (z)si;

Description: The source data, sign extended to dword, is subtracted from the
destination register, and the flags are set accordingly. The destination
register is not updated.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * * *

Instruction format:
(indirect or autoincrement

addressing modes)

Instruction format:
(complex addressing modes)

CMPS Compare with sign extend CMPS

Mode (md):
0 Indirect addressing mode

1 Autoincrement addressing mode

Size (z):
0 Byte source operand

1 Word source operand

015

1 1Destination (Rd) 0 md 0 Source (si)1 1 z

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

Size (z):
0 Byte source operand

1 Word source operand

015

Addressing mode prefix word (si)

1 zDestination (Rd) 0 md 0 Operand11 1 1
3 - 30 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: CMPU.z si,Rd

Size: Source size is byte or word. Operation size is dword

Operation: Rd - (unsigned z)si;

Description: The source data, zero extended to dword, is subtracted from the
destination register, and the flags are set accordingly. The destination
register is not updated.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * * *

Instruction format:
(indirect or autoincrement

addressing modes)

Instruction format:
(complex addressing modes)

CMPU Compare with zero extend CMPU

Mode (md):
0 Indirect addressing mode

1 Autoincrement addressing mode

Size (z):
0 Byte source operand

1 Word source operand

015

1 0Destination (Rd) 0 md 0 Source (si)1 1 z

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

Size (z):
0 Byte source operand

1 Word source operand

015

Addressing mode prefix word (si)

1 zDestination (Rd) 0 md 0 Operand11 1 0
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 31

3 Instructions in Alphabetical Order
Assembler syntax: DI

Size: -

Operation: I = 0;
X = 0;
F = 0;
P = 0;

Description: Disable interrupts. This is a predefined assembler macro equivalent to
CLEARF I.

flags affected: F P U M B I X N Z V C
0 0 - - - 0 0 - - - -

Instruction format:

DI Disable interrupts DI

015

0 10 1 1 0 01 1 1 0 0 0 1 0 0
3 - 32 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: DSTEP Rs,Rd

Size: Dword

Operation: Rd <<= 1;
if ((unsigned)Rd >= (unsigned)Rs)
{

Rd -= Rs;
}

Description: This is a divide-step operation, which performs one iteration of an
iterative divide operation. The destination operand is shifted one step to
the left. If the shifted destination operand is unsigned-greater-than or
equal to the source operand, the source operand is subtracted from the
shifted destination operand. The size of the operation is dword.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:

Note 8: PC is not allowed to be the destination operand (Rd).

DSTEP Divide step DSTEP

015

0 1Destination (Rd) 0 1 1 Source (Rs)1 1 1
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 33

3 Instructions in Alphabetical Order
Assembler syntax: EI

Size: -

Operation: I = 1;
X = 0;

Description: Enable interrupts after the next instruction. This is a predefined
assembler macro equivalent to SETF I.

flags affected: F P U M B I X N Z V C
- - - - - 1 0 - - - -

Instruction format:

EI Enable interrupts EI

015

0 10 1 1 0 00 1 1 0 0 0 1 0 0
3 - 34 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: JBRC s

Size: Dword

Operation: BRP = PC + 4;
PC = s;

Description: Jump to interrupt routine. The Breakpoint Return Pointer (BRP) is
loaded with the contents of the program counter (PC). PC is then
loaded with the contents of the source operand. Interrupts are disabled
until the next instruction has been executed. The size of the operation is
dword.

The JBRC instruction skips one dword at the PC and thus reserves one
dword for context information, see section 1.6.6 The JBRC, JIRC and
JSRC subroutine instructions. The context information is not used by the
instruction.

The jump takes place immediately after the JBRC instruction.

The value of PC loaded to BRP is the address of the instruction after the
JBRC instruction.

flags affected: F P U M B I X N Z V C
- - - - - - 0 - - - -

Instruction format:
(register addressing mode)

(continued)

JBRC Jump to beakpoint routine,
with context information JBRC

015

1 110 0 Source (s)0 1 1

Context information (low)

Context information (high)

0 0 1 1
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 35

3 Instructions in Alphabetical Order
Instruction format:
(indirect or autoincrement

addressing modes)

Note 9: In immediate addressing mode, the immediate address is placed before the context
information.

Instruction format:
(complex addressing modes)

Mode (md):
0 Indirect addressing mode

1 Autoincrement addressing mode

015

1 11 md 0 Source (s)0 0 1

Context information (low)

Context information (high)

0 0 1 1

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

1 Indexed with assign, offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

Context information (high)

015

Addressing mode prefix word (s)

1 11 md 0 Source (s)0 0 1

Context information (low)

10 1 0
3 - 36 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: JIR s

Size: Dword

Operation: IRP = PC;
PC = s;

Description: Jump to interrupt routine. The interrupt return pointer (IRP) is loaded
with the contents of the program counter (PC). PC is then loaded with
the contents of the source operand. Interrupts are disabled until the next
instruction has been executed. The size of the operation is dword.

The jump takes place immediately after the JIR instruction.

The value of PC loaded to IRP is the address of the instruction after the
JIR instruction.

flags affected: F P U M B I X N Z V C
- - - - - - 0 - - - -

Instruction format:
(register addressing mode)

Instruction format:
(indirect or autoincrement

addressing modes)

(continued)

JIR Jump to interrupt routine JIR

015

1 11 1 0 0 Source (s)0 1 1 0 1 0

Mode (md):
0 Indirect addressing mode

1 Autoincrement addressing mode

015

1 11 1 md 0 Source (s)0 0 1 0 1 0
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 37

3 Instructions in Alphabetical Order
Instruction format:
(complex addressing modes)

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

1 Indexed with assign, offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

015

Addressing mode prefix word (s)

1 11 0 md 0 Operand10 1 0 1 0 1
3 - 38 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: JIRC s

Size: Dword

Operation: IRP = PC;
PC = s;

Description: Jump to interrupt routine. The interrupt return pointer (IRP) is loaded
with the contents of the program counter (PC). PC is then loaded with
the contents of the source operand. Interrupts are disabled until the next
instruction has been executed. The size of the operation is dword.

The JIRC instruction skips one dword at the PC and thus reserves one
dword for context information, see section 1.6.6 The JBRC, JIRC and
JSRC subroutine instructions. The context information is not used by the
instruction.

The jump takes place immediately after the JIRC instruction.

The value of PC loaded to IRP is the address of the instruction after the
JIRC instruction.

flags affected: F P U M B I X N Z V C
- - - - - - 0 - - - -

Instruction format:
(register addressing mode)

(continued)

JIRC Jump to interrupt routine, with
context information JIRC

015

1 11 0 0 Source (s)0 1 1 0

Context information (low)

0 0 1

Context information (high)
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 39

3 Instructions in Alphabetical Order
Instruction format:
(indirect or autoincrement

addressing modes)

Note 10: In immediate addressing mode, the immediate address is placed before the context
information.

Instruction format:
(complex addressing modes)

Mode (md):
0 Indirect addressing mode

1 Autoincrement addressing mode

015

1 11 md 0 Source (s)0 0 1 0

Context information (low)

0 0 1

Context information (high)

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

Context information (high)

015

Addressing mode prefix word (s)

1 11 md 0 Source (s)0 0 1

Context information (low)

0 0 0 1
3 - 40 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: JMPU si

Size: Dword

Operation: PC = si;

Description: The JMPU instruction is similar to the normal JUMP instruction. The
difference is that JMPU will look at the U flag, and make a transition to
user mode if U is set. If U is not set, the CPU will stay in the current
mode. JMPU is intended to be used instead of JUMP when returning
from interrupt routines where IRP (or BRP) have been pushed on to the
stack. Interrupts are disabled until the next instruction has been
executed.

JMPU only supports indirect and complex addressing modes. Register
addressing mode is not supported.

flags affected: F P U M B I X N Z V C
- - - - - - 0 - - - -

Instruction format:
(indirect, or auto-

increment addressing
modes)

Instruction format:
(complex addressing modes)

JMPU Jump, set user mode if U flag
is set JMPU

Mode (md):
0 Indirect addressing mode

1 Autoincrement addressing mode

015

1 11 1 md 0 Source00 1 0 0 0

Mode (md):

0 Indexed, offset, double indirect, and absolute
addressing modes. Operand1 field should be 0011
(binary).

1 Indexed with assign, and offset with assign addressing
modes. Operand1 field selects the register in which to
store the source address.

015

Addressing mode prefix word (s)

1 1 md 0 Operand100 1 00 0 1 1
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 41

3 Instructions in Alphabetical Order
Assembler syntax: JSR s

Size: Dword

Operation: SRP = PC;
PC = s;

Description: Jump to subroutine. The subroutine return pointer (SRP) is loaded with
the contents of the program counter (PC). PC is then loaded with the
contents of the source operand. Interrupts are disabled until the next
instruction has been executed. The size of the operation is dword.

The jump takes place immediately after the JSR instruction.

The value of PC loaded to SRP is the address of the instruction after the
JSR instruction.

flags affected: F P U M B I X N Z V C
- - - - - - 0 - - - -

Instruction format:
(register addressing mode)

Instruction format:
(indirect or autoincrement

addressing modes)

(continued)

JSR Jump to subroutine JSR

015

1 11 10 0 Source (s)0 1 1 0 1 1

Mode (md):
0 Indirect addressing mode

1 Autoincrement addressing mode

015

1 11 1md 0 Source (s)0 0 1 0 1 1
3 - 42 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Instruction format:
(complex addressing modes)

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

015

Addressing mode prefix word (s)

1 11 md 0 Destination (Rd)0 0 101 11
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 43

3 Instructions in Alphabetical Order
Assembler syntax: JSRC s

Size: Dword

Operation: SRP = PC;
PC = s;

Description: Jump to subroutine. The subroutine return pointer (SRP) is loaded with
the contents of the program counter (PC). PC is then loaded with the
contents of the source operand. Interrupts are disabled until the next
instruction has been executed. The size of the operation is dword.

The JSRC instruction skips one dword at the PC and thus reserves one
dword for context information, see section 1.6.6 The JBRC, JIRC and
JSRC subroutine instructions. The context information is not used by the
instruction.

The jump takes place immediately after the JSRC instruction.

The value of PC loaded to SRP is the address of the instruction after the
JSRC instruction.

flags affected: F P U M B I X N Z V C
- - - - - - 0 - - - -

Instruction format:
(register addressing mode)

(continued)

JSRC Jump to subroutine, with
context information JSRC

015

1 110 0 Source (s)0 1 1

Context information (low)

Context information (high)

0 10 1
3 - 44 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Instruction format:
(indirect or autoincrement

addressing modes)

Note 11: In immediate addressing mode, the immediate address is placed before the context
information.

Instruction format:
(complex addressing modes)

Mode (md):
0 Indirect addressing mode

1 Autoincrement addressing mode

015

1 11md 0 Source (s)0 0 1

Context information (low)

Context information (high)

0 10 1

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

Context information (high)

015

Addressing mode prefix word (s)

1 11md 0 Source (s)0 0 1 0

Context information (low)

10 1
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 45

3 Instructions in Alphabetical Order
Assembler syntax: JUMP s

Size: Dword

Operation: PC = s;

Description: PC is loaded with the contents of the source operand. The size of the
operation is dword. The jump takes place immediately after the JUMP
instruction. Interrupts are disabled until the next instruction has been
executed.

flags affected: F P U M B I X N Z V C
- - - - - - 0 - - - -

Instruction format:
(register addressing mode)

Instruction format:
(indirect or autoincrement

addressing modes)

Instruction format:
(complex addressing modes)

JUMP Jump JUMP

015

1 10 10 0 Source (s)0 1 1 0 0 0

Mode (md):
0 Indirect addressing mode

1 Autoincrement addressing mode

015

1 10 1md 0 Source (s)0 0 1 0 0 0

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

015

Addressing mode prefix word (s)

1 1 md 0 Operand10 0 110 0 0 0
3 - 46 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: LSL.m Rs,Rd

Size: Byte, word, or dword

Operation: (m)Rd <<= (Rs & 63);

Description: The destination register is left shifted the number of steps specified by
the 6 least significant bits of the source register. The size of the operation
is m. The rest of the destination register is not affected.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:

Note 12: PC is not allowed to be the destination operand (Rd).

Note 13: A shift of 32 bits or more will give a zero result.

LSL Logical shift left LSL

Size:

00 Byte

01 Word

10 Dword

015

0 SizeDestination (Rd) 0 1 0 Source (Rs)11
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 47

3 Instructions in Alphabetical Order
Assembler syntax: LSLQ c,Rd

Size: Dword

Operation: Rd <<= c;

Description: The destination register is left shifted the number of steps specified by
the 5-bit immediate value. The size of the operation is dword.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:

Note 14: PC is not allowed to be the destination operand (Rd).

LSLQ Logical shift left quick LSLQ

015

0 Destination (Rd) 10 1 Shift value (c)11 0
3 - 48 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: LSR.m Rs,Rd

Size: Byte, word, or dword

Operation: (unsigned m)Rd >>= (Rs & 63);

Description: The destination register is right shifted the number of steps specified by
the 6 least significant bits of the source register. The shift is performed
with zero extend. The size of the operation is m. The rest of the
destination register is not affected.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:

Note 15: PC is not allowed to be the destination operand (Rd).

Note 16: A shift with 32 bits or more will give a zero result.

LSR Logical shift right LSR

Size:

00 Byte

01 Word

10 Dword

015

0 SizeDestination (Rd) 11 1 Source (Rs)11
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 49

3 Instructions in Alphabetical Order
Assembler syntax: LSRQ c,Rd

Size: Dword

Operation: (unsigned)Rd >>= c;

Description: The destination register is right shifted the number of steps specified by
the 5-bit immediate value. The shift is performed with zero extend. The
size of the operation is dword.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:

Note 17: PC is not allowed as the destination operand (Rd).

LSRQ Logical shift right quick LSRQ

015

0 1Destination (Rd) 10 1 Shift value (c)11
3 - 50 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: LZ Rs,Rd

Size: Dword

Operation: Rd = 32;
while (((unsigned)Rs >> (32 - Rd)) != 0)
{

Rd--;
}

Description: The destination is loaded with the number of leading zeroes in Rs. The
size of the operation is dword.

flags affected: F P U M B I X N Z V C
- - - - - - 0 0 * 0 0

Instruction format:

LZ Leading Zeroes LZ

015

0 1Destination (Rd) 11 1 Source (Rs)0 0 1
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 51

3 Instructions in Alphabetical Order
Assembler syntax: Move.m s,Rd

Size: Byte, word, or dword

Operation: (m)Rd = (m)s;

Description: Move data from source to the destination register. The size of the
operation is m. The rest of the destination register is not affected.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:
(register, indirect, or auto-

increment addressing
modes)

Instruction format:
(complex addressing modes)

MOVE Move from source to register MOVE
from s to Rd from s to Rd

Mode:

01 Register addressing mode

10 Indirect addressing mode

11 Autoincrement addressing mode

Size:

00 Byte

01 Word

10 Dword

015

Mode SizeDestination (Rd) 0 1 Source (s)10

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The Operand1 field must be the same as the
Destination field.

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

Size:

00 Byte

01 Word

10 Dword

015

Addressing mode prefix word (s)

1 SizeDestination (Rd) 0md 1 Operand110
3 - 52 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: MOVE.m Rs,di

Size: Byte, word, or dword

Operation: (m)di = (m)Rs;

Description: Move data from the source register to the destination. The size of the
operation is m.

flags affected: F P U M B I X N Z V C
- - - - - - 0 - - - -

Instruction format:
(indirect or autoincrement

addressing modes)

Instruction format:
(complex addressing modes)

MOVE Move from register to
memory MOVE

from Rs to memory from Rs to memory

Mode (md):
0 Indirect addressing mode

1 Autoincrement addressing mode

Size:

00 Byte

01 Word

10 Dword

015

1 SizeSource (Rs) 1md 1 Destination (di)1 1

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

Size:

00 Byte

01 Word

10 Dword

015

Addressing mode prefix word (s)

1 SizeSource (Rs) 1 md 1 Operand111
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 53

3 Instructions in Alphabetical Order
Assembler syntax: MOVE s,Pd

Size: Byte, word or dword depending on the size of register Pd.

Operation: Pd = s;

Description: Move data from source to the destination special register. The size of the
operation is the same as the size of the special register involved.
Interrupts are disabled until the next instruction has been executed.

flags affected:
(Pd != CCR, DCCR)

F P U M B I X N Z V C
- - - - - - 0 - - - -

flags affected:
(Pd == CCR, DCCR)

F P U M B I X N Z V C
* * * - * * 0 * * * *

Instruction format:
(register, indirect, or auto-

increment addressing
modes)

Instruction format:
(complex addressing modes)

MOVE Move to special register MOVE
to Pd to Pd

Mode:

01 Register adressing mode

10 Indirect addressing mode

11 Autoincrement addressing mode

015

Mode 1Destination (Pd) 0 1 Source (s)0 0 1

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

015

Addressing mode prefix word (se)

1 Destination (Pd) 0md 1 Operand10 0 1 1
3 - 54 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: MOVE Ps,d

Size: Byte, word or dword depending on the size of register Ps.

Operation: (size)d = Ps;

Description: Move data from the source special register to the destination. The size of
the operation is the same as the size of the special register involved. The
rest of the destination register is not affected. Interrupts are disabled
until the next instruction has been executed.

flags affected: F P U M B I X N Z V C
- - - - - - 0 - - - -

The X flag is cleared after the instruction. If the X flag was set before a
MOVE CCR,d instruction, the destination will have the bit
corresponding to the X flag set.

Instruction format:
(register, indirect, or auto-

increment addressing
modes)

Note 18: If PC is used as the destination operand, the resulting jump will have delayed effect,
with one delay slot.

Instruction format:
(complex addressing modes)

MOVE Move from special register MOVE
from Ps from Ps

Mode:

01 Register addressing mode

10 Indirect addressing mode

11 Autoincrement addressing mode

015

Mode 1Source (Ps) 0 1 Destination (d)10 1

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

015

Addressing mode prefix word (d)

1 Source (Ps) 0md 1 Operand110 1 1
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 55

3 Instructions in Alphabetical Order
Assembler syntax: MOVEM si,Rd

Size: Dword

Operation: n = rnumber;
while (n >= 0)
{

Rn = si[rnumber - n];
n--;

}

where rnumber is the register number of Rd, n is an integer and Rn the
general register with register number n.

Description: The registers R0 to Rd are loaded from memory, starting at the memory
location given by si. The size of each register transfer is dword. Rd is
loaded from the lowest address (si), and R0 is loaded from the highest
address: (si + 4 * (<number of stored registers> - 1)).

flags affected: F P U M B I X N Z V C
- - - - - - 0 - - - -

Instruction format:
(indirect or autoincrement

addressing modes)

Instruction format:
(complex addressing modes)

MOVEM Move to multiple registers
from memory MOVEM

from memory from memory

Mode (md):
0 Indirect addressing mode

1 Autoincrement addressing mode

015

1 1Destination (Rd) 1md 1 Source (si)0 1 1

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

015

Addressing mode prefix word (si)

1 Destination (Rd) 1 md 1 Operand10 1 1 1
3 - 56 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: MOVEM Rs,di

Size: Dword

Operation: n = rnumber;
while (n >= 0)
{

di[rnumber - n] = Rn;
n--;

}

where rnumber is the register number of Rd, n is an integer and Rn the
general register with register number n.

Description: The contents of registers R0 to Rs are stored to memory, starting at the
memory location given by di. The size of each register transfer is dword.
Rs is stored at the lowest address: (di), and R0 is stored at the highest
address: (di + 4 * (<number of stored registers> - 1)).

flags affected: F P U M B I X N Z V C
- - - - - - 0 - - - -

Instruction format:
(indirect or autoincrement

addressing modes)

Instruction format:
(complex addressing modes)

MOVEM Move from multiple registers
to memory MOVEM

to memory to memory

Mode (md):
0 Indirect addressing mode

1 Autoincrement addressing mode

015

1 1Source (Rs) 1md 1 Destination (di)11 1

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

015

Addressing mode prefix word (di)

1 Source (Rs) 1 md 1 Operand111 1 1
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 57

3 Instructions in Alphabetical Order
Assembler syntax: MOVEQ i,Rd

Size: Source data is 6-bit. Operation size is dword.

Operation: Rd = i;

Description: The destination register is loaded with a 6-bit immediate value, sign
extended to dword.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:

MOVEQ Move quick MOVEQ

015

0 Destination (Rd) 0 0 1 Signed immediate10
3 - 58 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: MOVS.z s,Rd

Size: Source size is byte or word. Operation size is dword.

Operation: Rd = (z)s;

Description: Move data from source to the destination register. The source data is
sign extended from z to dword.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:
(register, indirect, or auto-

increment addressing
modes)

Instruction format:
(complex addressing modes)

MOVS Move with sign extend MOVS

Mode:

01 Register addressing mode

10 Indirect addressing mode

11 Autoincrement addressing mode

Size (z):
0 Byte source operand

1 Word source operand

015

mode 1Destination (Rd) 0 0 Source (s)10 z

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The Operand1 field must be the same as the
Destination field.

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

Size (z):
0 Byte source operand

1 Word source operand

015

Addressing mode prefix word (s)

1 zDestination (Rd) 0md 0 Operand110 1
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 59

3 Instructions in Alphabetical Order
Assembler syntax: MOVU.z s,Rd

Size: Source size is byte or word. Operation size is dword.

Operation: Rd = (unsigned z)s;

Description: Move data from source to the destination register. The source data is
zero extended from z to dword.

flags affected: F P U M B I X N Z V C
- - - - - - 0 0 * 0 0

Instruction format:
(register, indirect or auto-

increment addressing
modes)

Instruction format:
(complex addressing modes)

MOVU Move with zero extend MOVU

Mode:

01 Register addressing mode

10 Indirect addressing mode

11 Autoincrement addressing mode

Size (z):
0 Byte source operand

1 Word source operand

015

mode 0Destination (Rd) 0 0 Source (s)10 z

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The Operand1 field must be the same as the
Destination field.

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

Size (z):
0 Byte source operand

1 Word source operand

015

Addressing mode prefix word (s)

1 zDestination (Rd) 0md 0 Operand110 1
3 - 60 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: MSTEP Rs,Rd

Size: Dword

Operation: Rd <<= 1;
if (N)
{

Rd += Rs;
}

Description: This is a multiply-step instruction, which performs one iteration of an
iterative multiply operation. The destination operand is shifted one step
to the left, and if the N flag is set before the instruction, the source
operand is added to the shifted destination. The size of the operation is
dword.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:

Note 19: PC is not allowed to be the destination operand (Rd).

MSTEP Multiply step MSTEP

015

0 1Destination (Rd) 11 1 Source (Rs)11 1
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 61

3 Instructions in Alphabetical Order
Assembler syntax: MULS.m Rs,Rd

Size: The operands are byte, word, or dword. The result is 64 bits.

Operation: MOF = ((m)Rs * (m)Rd) >> 32;

Rd = (dword)((m)Rs * (m)Rd);

Description: Both operands are sign extended from the size (m) to dword, and the
extended operands are multiplied, generating a 64-bit result.

The lower 32 bits of the result are written to Rd, and the upper 32 bits
are written to the multiply overflow register (MOF).

N and Z flags are set depending on the 64-bit result.

The V flag is set if the result is more than 32 bits:

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * * 0

Instruction format:

Note 20: PC is not allowed to be the destination operand (Rd).

MULS Signed multiply MULS

V-flag = ((Rd >= 0) && (MOF != 0)) ||

((Rd < 0) && (MOF != -1))

Size:

00 Byte

01 Word

10 Dword

015

1Destination (Rd) 11 0 Source (Rs)00 Size
3 - 62 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: MULU.m Rs,Rd

Size: Byte, word, or dword. The result is 64 bits.

Operation: MOF = ((unsigned m)Rs * (unsigned m)Rd) >> 32;
Rd = (dword)((unsigned m)Rs * (unsigned m)Rd);

Description: Both operands are zero extended from the size (m) to dword, and the
extended operands are multiplied, generating a 64-bit result.

The lower 32 bits of the result are written to Rd, and the upper 32 bits
are written to the multiply overflow register (MOF).

N and Z flags are set depending on the 64-bit result.

The V flag is set if the result is more than 32 bits:

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * * 0

Instruction format:

Note 21: PC is not allowed to be the destination operand (Rd).

MULU Unsigned multiply MULU

V-flag = (MOF != 0))

Size:

00 Byte

01 Word

10 Dword

015

1Destination (Rd) 10 0 Source (Rs)00 Size
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 63

3 Instructions in Alphabetical Order
Assembler syntax: NEG.m Rs,Rd

Size: Byte, word, or dword

Operation: (m)Rd = -(m)Rs;

Description: The contents of the source register is negated (2’s complement), and
stored in the destination register. The size of the operation is m.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * * *

Instruction format:

Note 22: PC is not allowed to be the destination operand (Rd).

NEG Negate NEG

Size:

00 Byte

01 Word

10 Dword

015

0 SizeDestination (Rd) 11 0 Source (Rs)0 1
3 - 64 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: NOP

Size: -

Operation: ;

Description: No operation.

flags affected: F P U M B I X N Z V C
- - - - - - 0 - - - -

Instruction format:

NOP No operation NOP

015

0 00 11 0 10 0 0 110 0 0 1
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 65

3 Instructions in Alphabetical Order
Assembler syntax: NOT Rd

Size: Dword

Operation: Rd = ~Rd;

Description: The contents of the source register is bitwise inverted (1’s complement).
The size of the operation is dword.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:

Note 23: PC is not allowed to be the destination operand (Rd).

NOT Logical complement NOT

015

0 11 11 1 Destination (Rd)10 1 0 0 0
3 - 66 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: OR.m s,Rd

Size: Byte, word, or dword

Operation: (m)Rd |= (m)s;

Description: A logical OR is performed between the source operand and the
destination register. The size of the operation is m. The rest of the
destination register is not affected.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:
(register, indirect, or auto-

increment addressing
modes)

Instruction format:
(complex addressing modes)

OR Logical OR OR
2-operand 2-operand

Mode:

01 Register addressing mode

10 Indirect addressing mode

11 Autoincrement addressing mode

Size:

00 Byte

01 Word

10 Dword

015

Mode SizeDestination (Rd) 11 Source (s)10

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The Operand1 field must be the same as the
Destination field.

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

Size:

00 Byte

01 Word

10 Dword

015

Addressing mode prefix word (s)

1 SizeDestination (Rd) 1 md 1 Operand110
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 67

3 Instructions in Alphabetical Order
Assembler syntax: OR.m se,Rn,Rd

Size: Byte, word, or dword

Operation: (m)Rd = (m)se | (m)Rn;

Description: A logical OR is performed between the source operand and the contents
of a general register. The result is stored in the destination register. The
size of the operation is m. The rest of the destination register is not
affected.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:

OR Logical OR OR
3-operand 3-operand

Size:

00 Byte

01 Word

10 Dword

015

Addressing mode prefix word (se)

1 SizeRegister (Rn) 1 0 1 Destination (Rd)10
3 - 68 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: ORQ i,Rd

Size: Source data is 6-bit. Operation size is dword.

Operation: Rd |= i;

Description: A logical OR is performed between a 6-bit immediate value, sign
extended to dword, and the destination register.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:

ORQ Logical OR quick ORQ

015

0 Destination (Rd) 10 1 Signed immediate10
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 69

3 Instructions in Alphabetical Order
Assembler syntax: POP Rd

Size: Dword

Operation: Rd = *(SP++);

Description: The entire destination register is popped from the stack, assuming SP as
stack pointer. This is a predefined assembler macro equivalent to
MOVE.D [SP+],Rd.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:

POP Pop register from stack POP
to Rd to Rd

015

1 1Destination (Rd) 0 1 1 110 0 11 0
3 - 70 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: POP Pd

Size: Byte, word or dword depending on the size of register Pd

Operation: Pd = *(size *)SP++;

Description: The entire destination special register is popped from the stack,
assuming SP as stack pointer. Interrupts are disabled until the next
instruction has been executed. This is a predefined assembler macro
equivalent to MOVE [SP+],Pd.

flags affected:
(Pd != CCR, DCCR)

F P U M B I X N Z V C
- - - - - - 0 - - - -

flags affected:
(Pd = CCR, DCCR)

F P U M B I X N Z V C
* * * - * * 0 * * * *

Instruction format:

POP Pop special register from
stack POP

to Pd to Pd

015

1 1Destination (Pd) 0 1 1 10 0 1 11 0
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 71

3 Instructions in Alphabetical Order
Assembler syntax: PUSH Rs

Size: Dword

Operation: *(--SP) = Rs;

Description: The entire source register is pushed on the stack, assuming SP as stack
pointer. This is a predefined assembler macro equivalent to
MOVE.D Rs,[SP=SP-4].

flags affected: F P U M B I X N Z V C
- - - - - - 0 - - - -

Instruction format:

PUSH Push register onto stack PUSH
from Rs from Rs

015

0 110 0 11 1

1 1Source (Rs) 11 1 11 0

1 0 1 1 1 0 1 0

1 0 1 1
3 - 72 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: PUSH Ps

Size: Byte, word, or dword depending on the size of register Ps

Operation: *(--(size *)SP) = Ps;

Description: The entire source special register is pushed on the stack, assuming SP as
stack pointer. Interrupts are disabled until the next instruction has been
executed. This is a predefined assembler macro equivalent to
MOVE Ps,[SP=SP-sizeof(Ps)], where sizeof(Ps) is the size of the source
special register in Bytes.

flags affected: F P U M B I X N Z V C
- - - - - - 0 - - - -

Instruction format:

Size is set according to the size of the pushed register.

PUSH Push special register onto
stack PUSH

from Ps from Ps

Size:

11 Byte (Ps = VR)

10 Word (Ps = CCR)

00 Dword (Ps = BAR, BRP, DCCR, IBR, IRP, MOF, SRP,
or USP)

015

0 110 0 Size11 1

1 1Source (Ps) 0 1 1 10 1

1 0 1 1

1 0 1 1

1 1
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 73

3 Instructions in Alphabetical Order
Assembler syntax: RBF si

Size: -

Operation: -

Description: The RBF instruction uses a 16 byte CPU status record to restore the
internal CPU state, and to resume the execution that was interrupted by
a previous bus fault. If the U flag is set before the instruction, the CPU
will go to user mode, otherwise it will stay in its current mode.

RBF restarts execution from the latest instruction boundary before the
interrupted instruction. (In this case, addressing prefixes are considered
as separate instructions.) The cycles between the latest instruction
boundary and the point where the instruction was interrupted will be
run internally in the CPU, without causing bus request. Any data that
the CPU reads in these cycles is taken from the restored CPU status
record. MOVEM instructions are handled specially. They will be
restarted with the register number that was in transfer when the bus fault
occurred.

The X and U flags will be set or cleared depending on bits in the CPU
status record.

flags affected: F P U M B I X N Z V C
- - * - - - * - - - -

Instruction format:
(indirect, or auto-

increment addressing
modes)

(continued)

RBF Return from Bus Fault RBF

Mode (md):
0 Indirect addressing mode

1 Autoincrement addressing mode

015

1 10 1 md 1 Source00 1 0 1 1
3 - 74 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Instruction format:
(complex addressing modes)

Mode (md):

0 Indexed, offset, double indirect, and absolute
addressing modes. Operand1 field should be 0000
(binary).

1 Indexed with assign, and offset with assign addressing
modes. Operand1 field selects the register in which to
store the source address.

015

Addressing mode prefix word (s)

1 1 md 1 Operand100 0 1 0 1 1 1
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 75

3 Instructions in Alphabetical Order
Assembler syntax: RET

Size: Dword

Operation: PC = SRP;

Description: Return from subroutine (see note). The contents of the subroutine
return pointer (SRP) is loaded to PC. The size of the operation is dword.
Interrupts are disabled until the next instruction has been executed.

The RET instruction is a delayed jump instruction, with one delay slot.
Valid instructions for the delay slot are all instructions except:

• Bcc

• BREAK/JBRC/JIR/JIRC//JSR/JSRC/JUMP

• RET/RETB/RETI

• Instructions using addressing prefixes

• Immediate addressing other than Quick Immediate

The RET instruction is a predefined assembler macro equivalent to
MOVE SRP,PC.

Note 24: The RET instruction is only used for returns from terminal subroutines (subroutines
that do not call other subroutines). For non-terminal subroutines, where the return
address is saved on the stack, it is more efficient to use the JUMP [SP+] instruction.

flags affected: F P U M B I X N Z V C
- - - - - - 0 - - - -

Instruction format:

RET Return from subroutine RET

015

0 11 0 1 1 110 1 110 1 1 1
3 - 76 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: RETB

Size: Dword

Operation: PC = BRP;

Description: Return from breakpoint routine (see note). The contents of the
breakpoint return pointer (BRP) is loaded to PC. The size of the
operation is dword. Interrupts are disabled until the next instruction has
been executed.

The RETB instruction is a delayed jump instruction, with one delay
slot. Normally the delay slot after RETB should be used to pop the flags,
and the jump is performed after the instruction that follows RETB.

RETB performs a transition to user mode if the U flag is set. If the U
flag is not set, the CPU stays in its current mode. The transition to user
mode is delayed until after the delay slot so that the delay slot is run in
the current mode. The transition to user mode will depend on the value
of the U flag after the delay slot instruction.

A special case occurs if you get a bus fault in the delay slot of the RETB
instruction. The bus fault sequence will, in this case, set the U flag
corresponding to the operating mode that was valid in the delay slot so
that the interrupted instruction can be restarted in the correct mode. A
separate bit in the CPU status record will be set to tell the RBF
instruction to set operating mode according to the U flag once more
after the restarted instruction.

If RETB is placed in a delay slot of a branch, RET, RETI or RETB that
is taken, the RETB in the delay slot will not be performed.
Consequently, the operating mode of the CPU will not be altered in
that case.

The RETB instruction is a predefined assembler macro equivalent to
MOVE BRP,PC.

Note 25: The RETB instruction is only used for returns from interrupt routines that are not
nested. For nested interrupt routines, where the return address is saved on the stack, it
is more efficient to use the JMPU [SP+] instruction.

flags affected: F P U M B I X N Z V C
- - - - - - 0 - - - -

Instruction format:

RETB Return from breakpoint RETB

015

0 11 0 1 1 110 1 111 1 0 1
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 77

3 Instructions in Alphabetical Order
Assembler syntax: RETI

Size: Dword

Operation: PC = IRP;

Description: Return from interrupt (see note). The contents of the interrupt return
pointer (IRP) is loaded to PC. The size of the operation is dword.
Interrupts are disabled until the next instruction has been executed.

The RETI instruction is a delayed jump instruction, with one delay slot.
Normally the delay slot after RETI should be used to pop the flags. The
jump is performed after the instruction that follows RETI.

RETI performs a transition to user mode if the U flag is set. If the U flag
is not set, the CPU stays in its current mode. The transition to user
mode is delayed until after the delay slot so that the delay slot is run in
the current mode. The transition to user mode will depend on the value
of the U flag after the delay slot instruction.

A special case occurs if you get a bus fault in the delay slot of the RETI
instruction. The bus fault sequence will, in this case, set the U flag
corresponding to the operating mode that was valid in the delay slot so
that the interrupted instruction can be restarted in the correct mode. A
separate bit in the CPU status record will be set to tell the RBF
instruction to set operating mode according to the U flag once more
after the restarted instruction.

If RETI is placed in a delay slot of a branch, RET, RETI or RETB that
is taken, the RETI in the delay slot will not be performed.
Consequently, the operating mode of the CPU will not be altered in
that case.

The RETI instruction is a predefined assembler macro equivalent to
MOVE IRP,PC.

Note 26: The RETI instruction is only used for returns from interrupt routines that are not
nested. For nested interrupt routines, where the return address is saved on the stack, it
is more efficient to use the JMPU [SP+] instruction.

flags affected: F P U M B I X N Z V C
- - - - - - 0 - - - -

Instruction format:

RETI Return from interrupt RETI

015

0 11 0 1 1 110 1 110 1 0 1
3 - 78 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: SBFS di

Size: -

Operation:

Description: The SBFS instruction stores to memory the 16 byte CPU status record
that is saved in hidden registers during a bus fault. SBFS should be the
first instruction in the Bus Fault interrupt routine, since the internally
saved CPU status will be overwritten by the first instruction that writes
to memory, or by a new interrupt or bus fault. Interrupts are disabled
until the next instruction has been executed.

flags affected: F P U M B I X N Z V C
- - - - - - 0 - - - -

Instruction format:
(indirect, or auto-

increment addressing
modes)

Instruction format:
(complex addressing modes)

SBFS Save Bus Fault Status SBFS

Mode (md):
0 Indirect addressing mode

1 Autoincrement addressing mode

015

1 10 1 md 1 Destination10 1 0 1 1

Mode (md):

0 Indexed, offset, double indirect, and absolute
addressing modes. Operand1 field should be 0000
(binary).

1 Indexed with assign, and offset with assign addressing
modes. Operand1 field selects the register in which to
store the destination address.

015

Addressing mode prefix word (s)

1 1 md 1 Operand110 0 1 0 1 1 1
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 79

3 Instructions in Alphabetical Order
Assembler syntax: Scc Rd

Size: Dword

Operation: if (cc)
{

Rd = 1;
}
else
{

Rd = 0;
}

Description: The destination register is loaded with 1 if the condition cc is true, and
with 0 otherwise. The size of the operation is dword. Interrupts are
disabled until the next instruction has been executed.

Condition Codes:

flags affected: F P U M B I X N Z V C
- - - - - - 0 - - - -

(continued)

Scc Set according to condition Scc

Code Alt Condition Encoding Boolean function

CC HS Carry Clear 0000 C

CS LO Carry Set 0001 C

NE Not Equal 0010 Z

EQ Equal 0011 Z

VC Overflow Clear 0100 V

VS Overflow Set 0101 V

PL Plus 0110 N

MI Minus 0111 N

LS Low or Same 1000 C + Z

HI High 1001 C * Z

GE Greater or Equal 1010 N * V + N * V

LT Less Than 1011 N * V + N * V

GT Greater Than 1100 N * V * Z + N * V * Z

LE Less or Equal 1101 Z + N * V + N * V

A Always True 1110 1

WF Write Failed 1111 P

Table 3-2
3 - 80 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Instruction format:

Note 27: PC is not allowed to be the destination operand (Rd).

015

0 1Condition 11 0 Destination (Rd)0 0 1
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 81

3 Instructions in Alphabetical Order
Assembler syntax: SETF <list of flags>

Size: -

Operation: X = 0;
Selected flags = 1;

Description: The specified flags are set to 1. If the X flag is not in the list, it will be
cleared. Interrupts are disabled until the next instruction has been
executed.

When the list of flags contains more than one flag, the flags may be
written in any order. The SETF instruction accepts an empty list of
flags.

Examples:

flags affected: F P U M B I X N Z V C
- - - * * * * * * * *

Instruction format:

SETF Set flags SETF

SETF CVX ; Set C, V and X flags.

SETF ; Clear X flag.

SETF MBI ; ;Set M, B and I flags, and clear X flag.

015

0 1M 11 0 N0 1 1 VZB I X C
3 - 82 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: SUB.m s,Rd

Size: Byte, word, or dword

Operation: (m)Rd -= (m)s;

Description: The source data is subtracted from the destination register. The size of
the operation is m. The rest of the destination register is not affected.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * * *

Instruction format:
(register, indirect, or auto-

increment addressing
modes)

Instruction format:
(complex addressing modes)

SUB Subtract SUB
2-operand 2-operand

Mode:

01 Register addressing mode

10 Indirect addressing mode

11 Autoincrement addressing mode

Size:

00 Byte

01 Word

10 Dword

015

Mode SizeDestination (Rd) 0 1 Source (s)0 1

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The Operand1 field must be the same as the
Destination field (Rd).

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register to store
the address of the source operand in.

Size:

00 Byte

01 Word

10 Dword

015

Addressing mode prefix word (s)

1 SizeDestination (Rd) 0md 1 Operand10 1
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 83

3 Instructions in Alphabetical Order
Assembler syntax: SUB.m se,Rn,Rd

Size: Byte, word, or dword

Operation: (m)Rd = (m)Rn - (m)se;

Description: The memory source data is subtracted from the contents of a general
register, and the result is stored in the destination register. The size of
the operation is m. The rest of the destination register is not affected.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * * *

Instruction format:

SUB Subtract SUB
3-operand 3-operand

Size:

00 Byte

01 Word

10 Dword

015

Addressing mode prefix word (se)

1 SizeRegister (Rn) 00 1 Destination (Rd)0 1
3 - 84 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: SUBQ j,Rd

Size: Source data is 6-bit. Operation size is dword

Operation: Rd -= j;

Description: A 6-bit immediate value, zero extended to dword, is subtracted from the
destination register.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * * *

Instruction format:

SUBQ Subtract quick SUBQ

015

0 Destination (Rd) 0 0 1 Unsigned immediate0 1
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 85

3 Instructions in Alphabetical Order
Assembler syntax: SUBS.z s,Rd

Size: Source size is byte or word. Operation size is dword.

Operation: Rd -= (z)s;

Description: The source data is sign extended from z to dword, and then subtracted
from the destination register.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * * *

Instruction format:
(register, indirect, or auto-

increment addressing
modes)

Instruction format:
(complex addressing modes)

SUBS Subtract with sign extend SUBS
2-operand 2-operand

Mode:

01 Register addressing mode

10 Indirect addressing mode

11 Autoincrement addressing mode

Size (z):
0 Byte source operand

1 Word source operand

015

Mode 1Destination (Rd) 0 0 Source (s)0 1 z

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The Operand1 field must be same as the
Destination field (Rd).

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

Size (z):
0 Byte source operand

1 Word source operand

015

Addressing mode prefix word (s)

1 zDestination (Rd) 0md 0 Operand10 1 1
3 - 86 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: SUBS.z se,Rn,Rd

Size: Source size is byte or word. Operation size is dword.

Operation: Rd = Rn - (z)se;

Description: The source data is sign extended from z to dword, and then subtracted
from the contents of a general register. The result is stored in the
destination register.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * * *

Instruction format:

SUBS Subtract with sign extend SUBS
3-operand 3-operand

Size (z):
0 Byte source operand

1 Word source operand

015

Addressing mode prefix word (se)

1 zRegister (Rn) 00 0 Destination (Rd)0 1 1
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 87

3 Instructions in Alphabetical Order
Assembler syntax: SUBU.z s,Rd

Size: Source size is byte or word. Operation size is dword.

Operation: Rd -= (unsigned z)s;

Description: The source data is zero extended from z to dword, and then subtracted
from the destination register.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * * *

Instruction format:
(register, indirect, or auto-

increment addressing
modes)

Instruction format:
(complex addressing modes)

SUBU Subtract with zero extend SUBU
2-operand 2-operand

Mode:

01 Register addressing mode

10 Indirect addressing mode

11 Autoincrement addressing mode

Size (z):
0 Byte source operand

1 Word source operand

015

Mode 0Destination (Rd) 0 0 Source (s)0 1 z

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The Operand1 field must be same as the
Destination field (Rd).

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register to store
the address of the source operand in.

Size (z):
0 Byte source operand

1 Word source operand

015

Addressing mode prefix word (s)

1 zDestination (Rd) 0md 0 Operand10 1 0
3 - 88 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Assembler syntax: SUBU.z se,Rn,Rd

Size: Source size is byte or word. Operation size is dword.

Operation: Rd = Rn - (unsigned z)se;

Description: The source data is zero extended from z to dword, and then subtracted
from the contents of a general register. The result is stored in the
destination register.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * * *

Instruction format:

SUBU Subtract with zero extend SUBU
3-operand 3-operand

Size (z):
0 Byte source operand

1 Word source operand

015

Addressing mode prefix word (se)

1 zRegister (Rn) 00 0 Destination (Rd)0 1 0
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 89

3 Instructions in Alphabetical Order
Assembler syntax: SWAP<option list> Rd

Size: Dword

Operation: if (option N)
{

Rd = ~Rd;
}
if (option W)
{

Rd = (Rd << 16) | ((Rd >> 16) & 0xffff);
}
if (option B)
{

Rd = ((Rd << 8) & 0xff00ff00) |
((Rd >> 8) & 0x00ff00ff);

}
if (option R)
{

Rd = ((Rd << 7) & 0x80808080) |
((Rd << 5) & 0x40404040) |
((Rd << 3) & 0x20202020) |
((Rd << 1) & 0x10101010) |
((Rd >> 1) & 0x08080808) |
((Rd >> 3) & 0x04040404) |
((Rd >> 5) & 0x02020202) |
((Rd >> 7) & 0x01010101);

}

Description: The bits in the destination register are reorganized according to the
specified option(s). The following options apply:

N Invert all bits in the operand.

W Swap the words of the operand.

B Swap the two bytes within each word of the operand.

R Reverse the bit order within each byte of the operand.

Any combination of the four options is allowed. If more than one
option is specified, they must be given in the order NWBR. The size of
the operation is dword.

The SWAPN instruction is a synonym for the NOT instruction.

(continued)

SWAP Swap bits SWAP
3 - 90 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:

Note 28: PC is not allowed to be the destination operand (Rd).

015

0 1N 11 1 Destination (Rd)10 1 W B R
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 91

3 Instructions in Alphabetical Order
Assembler syntax: TEST.m s

Size: Byte, word, or dword

Operation: (m)s - 0;

Description: Zero is subtracted from the source data, and the flags are set accordingly.
For a register operand, this is a predefined assembler macro equivalent to
MOVE.m Rs,Rs.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:
(register addressing mode)

Instruction format:
(indirect or autoincrement

addressing modes)

(Continued)

TEST Compare with zero TEST

Size:

00 Byte

01 Word

10 Dword

015

0 SizeSource (s) 0 1 1 Source (s)10

Mode (md):
0 Indirect addressing mode

1 Autoincrement addressing mode

Size:

00 Byte

01 Word

10 Dword

015

1 Size0 1md 1 Source (s)0 1 0 0 0
3 - 92 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

3 Instructions in Alphabetical Order
Instruction format:
(complex addressing modes)

Mode (md):

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents the Operand1 field are ignored.

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in
which to store the address of the source operand.

Size:

00 Byte

01 Word

10 Dword

015

Addressing mode prefix word (s)

1 Size1 md 1 Operand10 100 0 0
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 3 - 93

3 Instructions in Alphabetical Order
Assembler syntax: XOR Rs,Rd

Size: Dword

Operation: Rd ^= Rs;

Description: A logical exclusive OR is performed between the contents of the source
register and the destination register. The size of the operation is dword.

flags affected: F P U M B I X N Z V C
- - - - - - 0 * * 0 0

Instruction format:

XOR Exclusive logical OR XOR

015

0 1Destination (Rd) 1 1 Source (Rs)0 1 1 1
3 - 94 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

4 CRIS Execution Times
4 CRIS EXECUTION TIMES

4.1 Introduction

Instruction execution times for all CRIS instructions and addressing modes are given
below in numbers of CPU cycles. Optimal cache performance (i.e. no cache misses)
is assumed.

4.2 Instruction execution times

This section gives the execution times for instructions with the four basic addressing
modes Quick immediate, Register, Indirect and Autoincrement. Except for the
following seven special cases, the execution time is the same for all instructions with
the same addressing mode and data size.

General case:

Special case 1:

Bcc instruction

Special case 2:

MULS and MULU instructions

The MULS and MULU instructions require two clock cycles.

Addressing mode Data size Data alignment Execution time

Quick immediate 6-bit N/A 1

Register Any N/A 1

Indirect, Auto inc. Byte Any 2

Indirect, Auto inc. Word Address <1:0> != 3 2

Indirect, Auto inc. Word Address <1:0> == 3 3

Indirect, Auto inc. Dword Address <1:0> == 0 2

Indirect, Auto inc. Dword Address <1:0> != 0 3

Table 4-1 General instruction execution times

Branch offset size Execution time

Byte 1

Word 2

Table 4-2 Bcc instruction execution times
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 4 - 1

4 CRIS Execution Times
Special case 3:

MOVEM instruction

(Where n is the number of registers moved.)

Special case 4:

PC operand

One idle bus cycle is added to the execution times given above, if PC is used as the
destination operand in any of the following instructions:

One idle bus cycle is also added for the TEST.m PC instruction.

Special case 5:

Break instruction

The BREAK instruction takes two cycles to execute.

Special case 6:

SBFS instruction

Data size Data alignment Execution time

Dword Address <1:0> == 0 n + 1

Dword Address <1:0> != 0 2*n + 1

Table 4-3 MOVEM instruction execution times

ABS ADD ADDQ ADDS ADDU AND

ANDQ ASR ASRQ BTSTQ MOVEM MOVEQ

MOVE (except from a special register) MOVS MOVU OR

ORQ POP SUB SUBQ SUBS SUBU

XOR

Data alignment Execution time

Address <1:0> == 0 5

Address <1:0> != 0 9

Table 4-4 SBFS instruction execution times
4 - 2 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

4 CRIS Execution Times
Special case 7:

RBF instruction

The RBF execution time includes the time for the restarted cycle.

Data alignment Type of restarted cycle Execution time

Address <1:0> == 0 Instruction fetch 6

Address <1:0> == 0 First cycle of data read or write 7

Address <1:0> == 0 Second cycle of data read or write 8

Address <1:0> != 0 Instruction fetch 10

Address <1:0> != 0 First cycle of data read or write 11

Address <1:0> != 0 Second cycle of data read or write 12

Table 4-5 RBF instruction execution times
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 4 - 3

4 CRIS Execution Times
4.3 Complex addressing modes execution times

The table below gives the extra execution time required to calculate the effective
address in complex addressing modes. The effective address calculation time is added
to the Indirect/Autoincrement execution time given in section 4.2 Instruction
execution times to give the total execution time of the instruction.

Data alignment refers to the alignment of data involved in the effective address
calculation.

4.4 Interrupt acknowledge execution time

The interrupt acknowledge sequence, including the interrupt acknowledge cycle and
the interrupt vector read following it, requires 2 bus cycles. However, if the interrupt
vector number is read from the mode register or externally, a number of wait states is
added which increases the length of the CPU cycle.

Addressing mode Data alignment Execution time

Indexed N/A 1

Indexed with assigned N/A 1

Immediate Byte offset N/A 1

Indirect Byte offset any 2

Word offset address <1:0> != 3 2

Word offset address <1:0> == 3 3

Dword offset address <1:0> == 0 2

Dword offset address <1:0> != 0 3

Immediate Byte offset with assign N/A 1

Indirect Byte offset with assign any 2

Word offset with assign address <1:0> != 3 2

Word offset with assign address <1:0> == 3 3

Dword offset with assign address <1:0> == 0 2

Dword offset with assign address <1:0> != 0 3

Double indirect address <1:0> == 0 2

Double indirect address <1:0> != 0 3

Double indirect with autoincrement address <1:0> == 0 2

Double indirect with autoincrement address <1:0> != 0 3

Absolute address <1:0> == 0 2

Absolute address <1:0> != 0 3

Table 4-3 Complex addressing modes execution times
4 - 4 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

5 Assembly Language Syntax
5 ASSEMBLY LANGUAGE SYNTAX

5.1 General

This chapter describes the syntax for the assembly language used by the assembler,
which is derived from the GNU assembler. For topics that are not covered here,
please see the GNU assembler manual.

5.2 Definitions

Throughout this chapter, whitespace means any number and combination of spaces
(ASCII 32) and tabs (ASCII 9).

A simple, descriptive form of syntax notation will be used:

Any item written without surrounding { } (braces) or < > (brackets) must be written
exactly as it stands.

Case is irrelevant when writing instructions.

An item enclosed in < > (brackets) does not have its literal meaning, which is defined
elsewhere. For example,

MOVE.<size modifier>

<size modifier> is described elsewhere, and may be one of B, W, D.

In some instances, the item may be followed by a number as in <operand1>. This
means that there are several operands, numbered incrementally, but that there is only
one definition for <operand>. Generally, an operand may, in this context, be
specified as <operandn>.

An item enclosed in { } (braces) is optional and may be left out:

{<label> :} Indicates that a label is optional. Please note, however, that a label
must be followed by a : (colon).

The symbol ... (three periods) indicates that any number of the previous item may
follow. For example:

{<operand1> {,<operand2> {,...}}} means that any number of
<operands> are valid.

A range of characters is indicated by using .. (two periods) inside { } (braces):

R{0..15} indicates R0, R1, ... R15

The symbol := (colon, equal sign) indicates a definition:
<reg> := R{0..15}

Location counter refers to the position within the current section (i.e. .text, .data)
where an assembly instruction is emitted. For example:

.dword .-4 ; Emit 4 bytes at current location with the value of

; current location minus 4.
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 5 - 1

5 Assembly Language Syntax
The symbol | (“or”) indicates that only one of the items may follow:

• <size modifier> := B | W | D

• Size modifier may be one of B, W, D.

In many cases, where it is easier to write a description in plain English, the
description will be written in plain English.

5.3 Files, lines and fields

An assembly program may be made up of several files. The assembler assembles each
file separately. The linker, derived from the GNU ld, resolves relocations and cross-
references, and produces an executable file in a variant of the a.out object format.

Each file may contain zero or more lines of assembly code. Each line consists of a
number of characters, followed by a line-feed character (ASCII LF, 0x0a).

Each line of assembly code is made up of several fields. There may be up to four fields
on a line: The label field, the opcode field, the operands field, and the comment
field.
{<label>:}{ <opcode>{ <operand1>{,<operand2>{,...}}}{;<comment>}

The label field starts in the first column. The label is comprised of symbol characters
(as described in section 5.4 Labels and symbols), and ends with a : (colon).

The opcode field is exactly one opcode or assembler directive such as MOVE.D or
.BYTE. An opcode must be preceded by at least one white space character.

The operands field may contain any number of operands separated by commas, and
there may be whitespace on either side of the commas. The first operand must be
preceded by at least one whitespace character.

The comment field starts with a ; (semi-colon), and ends at the end of the line.

The symbol # (hash) is a special prefix character used as a semi-directive such as
#APP and #NO_APP and line number specification.

5.4 Labels and symbols

A symbol is a set of characters associated with a value, which may be a number or a
location counter. A label is a symbol. The value of symbols other than labels may be
set using the .SET directive.
<label> := <symbol>

A symbol is made up of any number of the characters: {0..9} {A..Z} {a..z} . $ _ (i.e.
a period, dollar sign, or underline space). However, the first character of a symbol
may not be a $ (dollar sign) or a digit (i.e. {0..9}).
5 - 2 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

5 Assembly Language Syntax
It is recommended that symbols that start with the letter ‘r’ or ‘R’, followed by a
number in the range from {0 ... 15} be avoided, as well as the mnemonic names and
register numbers of the special registers (see section 1.1 Registers) since they may be
interpreted as a register.

Symbols are case sensitive. All characters are significant.

5.5 Opcodes

An opcode has the form:
<opcode> := <op>{.<size_modifier>}

where <op> is one of the instructions described in chapter 2 ”Instruction Set
Description”, and <size_modifier> := B | W | D

The size modifier indicates whether the operation should be performed as a byte,
word or dword operation where a byte is 8 bits, a word is 16 bits, and a dword is 32
bits in length.

Note that only operations which support variable size have the size modifier, and that
in this case it is mandatory. On the other hand, the size modifier must not be used
for operations that do not support variable size.

The opcode field is not case sensitive. For example, the no-operation instruction may
be written “NOP” or “nop” or even “noP”.

In some cases, the assembler may have aliases for opcodes meaning that two
syntactically different assembly statements may produce the exact same code. For
instance, the Branch on Lower (BLO) instruction is implemented as Branch on Carry
Set and has, therefore, the acronym (BCS).

Also, although the CRIS has no explicit PUSH or POP instructions, the assembler
provides these mnemonics as alternatives for the instructions that perform these
operations. For example:

5.6 Operands

5.6.1 General

The following syntax applies:
<operand> := <addressing_mode> | <expression>

<expression> is defined in the GAS manual and will only be outlined here.

<addressing_mode> is described in section 5.7 Addressing modes.

Register names are not case-sensitive.

PUSH Rn == MOVE.D Rn, [SP=SP-4]

POP Rn == MOVE.D [SP+], Rn
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 5 - 3

5 Assembly Language Syntax
5.6.2 Expressions

The expression syntax is the same as defined by the GAS, except that some
simplifications are in order.

Expression evaluation can only handle integers. The compiler uses integer constants
for the bit patterns of floating point numbers as given in the IEEE 754 standard for
32 and 64 bit representation.

White space is allowed in expressions but not in constants or symbols.

All expression evaluation takes place at full precision (32 bits); in other words, there
are no different data types (word, byte, etc.). If the result of an expression is too large
for the selected mode, (e.g. MOVE.B 0xAB3, R0), it is an error which will be
indicated by the assembler. If it is smaller than the indicated size, it will be padded
with zeroes.

One must be careful when performing operations on symbols belonging to different
segments since the absolute address of the segments is not known at assembly time.
Normally, expressions are used to provide the difference between a jump table and its
destination (offsets into structs etc.). Expressions involving more than one segment,
and which can not be reduced to only one segment at assembly time, are not allowed.

5.6.2.1 Expression operands

The following expression operands are supported:

<hexadecimal_constants> are hexadecimal numbers prefixed with 0x or 0X (i.e.
0xFF80 = 65408). Either upper or lower case may be used. <octal_constants> are
octal numbers prefixed with 0 (zero) (i.e. 017 = 15). <decimal_constants> begin with
{1..9}. 5633 is a valid <decimal_constant>; 083 is not. <symbols> have already been
described in section 5.4 Labels and symbols.

<any_printable_ascii_char> is an ASCII character in the range from 33 to 126 (0x21
to 0x7E). The complete list of <special_char> is:

Name Comment

<hexadecimal_constant>

<decimal_constant>

<octal_constant>

<symbol>

. Current location counter

’<character_constant>

Table 5-1 Supported operands

<character_constant> := ‘{any_printable_ascii_car} |

‘\<special_char>

\t (HT), \n (LF), \r (CR), \b (BS), \f (FF), \’ (’), \" (")
5 - 4 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

5 Assembly Language Syntax
The following are examples of legal <character_constants>:

Any character backslashed that is not a special_char, is treated “as itself” (i.e. \y == y).

Neither <hexadecimal_constants> nor <octal_constants> are supported as
<character_constants>.

5.6.2.2 Expression operations

The following binary operations are supported:

*, /, %, +, - (times, divide, remainder, plus, minus)
&, |, ^ (bitwise and, or, xor)

<<, >> (shift left and right)

The following unary are supported:

- (minus)
~ (logical (bitwise) not)

5.6.2.3 String expressions

A string expression is a special type of expression which may only appear in an .ASCII
directive. It has the following form.
 <string> := "{<any_char1>{<any_char2>{...}}}"

where:
 <any_char> := <any_printable_ascii_char> | \<octal_constant> |

 \<special_char> | \"

Thus, a string expression is made up of zero or more characters. Every character is
similar to the character_constant described above, with the addition that \” means
the quote character. For example:
 "This is a\040string with a \"newline\" at the end\n"

5.7 Addressing modes

In order to describe what actually happens in each description below, a form of
pseudo-code which is very similar to C is used.

<size_modifier> refers to the size modifier of the opcode:
 <reg> := R{0..15} | PC | SP

where PC is R15 and SP is R14.

’a ’A ’% ’3 ’\t ’\n
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 5 - 5

5 Assembly Language Syntax
There is also a series of special registers used for such things as storing the return
address from a subroutine, etc. However, since these registers can be explicitly
referred to only in special MOVE instructions, and then only in the Register
addressing mode, they will not be dealt with here.

(Note: R5 is incremented by a value corresponding to the <size_modifier> in the opcode.)

Mode: Immediate

Written as <expression>

Example: 34404

Explanation: 34404;

Mode: Quick immediate

Written as: <expression>

Example: 12

Explanation: 12;

Mode: Absolute

Written as: [<expression>]

Example: [34404];

Explanation: *(size_modifier*) 34404;

Mode: Register

Written as: <reg>

Example: R5

Explanation: r5;

Mode: Indirect

Written as: [<reg>]

Example: [R5]

Explanation: * (size_modifier *) r5;

Mode: Autoincrement

Written as: [<reg>+]

Example: [R5+]

Explanation: * (size_modifier *) r5++;
5 - 6 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

5 Assembly Language Syntax
(Note: The value of R6 is shifted one step left for .W and two steps left for .D)

Mode: Indexed

Written as: [<reg1>+<reg2>.<size_modifier2>]

Example: [R5+R6.D]

Explanation: *(size_modifier*) (r5 + (r6<<log2(<size_modifier2>)));

Mode: Indexed with assign

Written as: [<reg1>=<reg2>+<reg3>.<size_modifier2>]

Example: [R4=R5+R6.D]

Explanation: *(size_modifier*) (r4 = r5 + (r6<<log2(<size_modifier2>)));

Mode: Immediate offset

Written as: [<reg>+<expression>]

Example: [R5 + TABLE]

Explanation: *(r5 + TABLE);

Mode: Indirect offset

Written as: [<reg1>+[<reg2>].<size_modifier2>]

Example: [R5 + [R6].D]

Explanation: *(r5 + *(size_modifier2*) r6);

Mode: Autoincrement offset

Written as: [<reg1>+[<reg2>+].<size_modifier2>]

Example: [R5 + [R6+].D]

Explanation: *(r5 + *(size_modifier2*) r6++);

Mode: Immediate offset with assign

Written as: [<reg1>=<reg2>+<expression>]

Example: [R4 = R5 + TABLE]

Explanation: * (r4 = r5 + TABLE);

Mode: Indirect offset with assign

Written as: [<reg1>=<reg2>+[<reg3>].<size_modifier2>]

Example: [R4 = R5 + [R6].D]

Explanation: *(r4 = r5 + *(size_modifier2*) r6);
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 5 - 7

5 Assembly Language Syntax
Note 1: The difference between the Quick immediate addressing mode and the Immediate addressing mode is
that the Quick immediate mode is valid only for certain instructions (such as ADDQ) where one of
the operands is a small integer. The range of values for this mode varies according to the instruction.
Immediate values, on the other hand, can be anything that fits in the size indicated by the instruction.

Note 2: The assembler implements the Immediate and Absolute modes in the following ways:

• The Immediate mode is actually the Autoincrement mode using PC

• The Absolute mode is actually the Double indirect with autoincrement mode using PC

Note 3: The double Indirect (with or without autoincrement), Offset (with or without assign), Indexed (with
or without assign) and Absolute addressing modes are implemented using special addressing mode
prefixes.

Mode: Autoincrement offset with assign

Written as: [<reg1>=<reg2>+[<reg3>+].<size_modifier2>]

Example: [R4 = R5 + [R6+].D]

Explanation: *(r4 = r5 + *(size_modifier2*) r6++);

Mode: Double indirect

Written as: [[<reg>]]

Example: [[R5]]

Explanation: *(size_modifier*) (*(dword*) r5);

Mode: Double indirect with autoincrement

Written as: [[<reg>+]]

Example: [[R5+]]

Explanation: *(size_modifier*) (*(dword*) r5++);
5 - 8 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

5 Assembly Language Syntax
5.8 Assembler directives

5.8.1 Directives controlling the storage of values

.BYTE <expression1> {, <expression2> {, ...}}

Example:
.BYTE 0x41, 0x42, 0x43, 0x38, 0x30

Insert a byte at the current location, incrementing the location counter by one.
Repeat this until the list of expressions has been exhausted.
.WORD <expression1> {, <expression2> {, ...}}

Example:
.WORD 34404, 0x2040

Insert a word at the current location, incrementing the location counter by two.
Repeat this until the list of expressions has been exhausted.

.DWORD <expression1> {, <expression2> {, ...}}

Example:
.DWORD 0xbf96a739

Insert a dword at the current location, incrementing the location counter by four.
Repeat this until the list of expressions has been exhausted.

.ASCII <string1> {, <string2> {, ...}}

Example:
.ASCII "Megatroid\n", "AX-Foo\r\n"

Insert a string of ASCII characters, and increment the location counter by the size of
the string. Repeat this until the list of strings has been exhausted.

5.8.2 Directives controlling storage allocation

The assembler supports, for example, text data and bss segments. Values can not be
stored in the bss segment per definition, but space can be reserved in this segment.

.TEXT

Select the text location counter (used for the program text).

.DATA

Select the data location counter (used for initialized data).
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 5 - 9

5 Assembly Language Syntax
.BSS

Select the bss location counter (used for uninitialized data).

.ORG <expression>

Example:
.ORG 0

Set the current location counter to <expression>.

.LCOMM <symbol>, <expression>

Example:
.LCOMM _screen_width, 2

Reserve the indicated number of bytes in the bss segment, and assign the indicated
symbol to the start of the area. This is used by the GCC compiler when a default-zero
initialized variable is defined. The location counter is increased by <expression>.
Note that symbols defined by .LCOMM are default local and need a .GLOBAL
directive to be available for other files.

.SPACE <expression1>, <expression2>

Example:
.SPACE 10, ’\r

Put the number of bytes indicated by the first expression into the current segment.
Each byte has the value indicated by the second expression. The location counter is
advanced by one for each byte inserted. The example above puts 10 carriage returns
at the current location.

.ALIGN <expression>

Example:
.ALIGN 1

Align the location counter so that the <expression> least significant bits of the
location counter are zero, or to put it another way, so that the location counter is an
even multiple of 2 **<expression>. If the location counter is already aligned, nothing
happens, otherwise it is incremented until it is aligned.

Note 4: In the example .ALIGN 1 above, the location counter is to be word aligned.

Note 5: Program code in the text segment must always be word aligned. This means that after data has been
inserted into the text segment that might result in an odd number of bytes, such as the result of a
.BYTE or .ASCII directive, an .ALIGN 1 should be performed before the next instruction. However,
note that data itself may start at odd or even addresses in the text segment.
5 - 10 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

5 Assembly Language Syntax
5.8.3 Symbol handling

.GLOBAL <symbol>

Example:
.GLOBAL _start_gate

Make the <symbol> available to other modules. Used for global functions and
variables.

.SET <symbol>, <value>

Example:
.SET ACIA_DATA, 0x80003a

Give the <symbol> a value. Note that writing
LABEL:

on a line is equivalent to writing
.SET LABEL, .

A symbol assigned a value by the .SET directive may be changed at any time. (The
value of a label may not be changed, however).

5.9 Alignment

Program code must always be word aligned. However, it is up to the programmer to
ensure that this is done by performing .ALIGN 1 before code that may potentially
end up on an odd address. This could happen after a .BYTE, .ASCII, or .SPACE
directive.
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 5 - 11

5 Assembly Language Syntax
5 - 12 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

6 CRIS Compiler Specifics
6 CRIS COMPILER SPECIFICS

6.1 CRIS compiler options

This document is a portion of the GNU C Compiler documentation, which
describes compiler ’-m’ options for different target processors (as for instance: Using
and Porting GNU CC, by Richard M. Stallman, published by Free Software
Foundation, Inc. 1998).

These specifications may be subject to changes with future revisions of the CRIS
GCC.

The following ’-m’ options are defined for the CRIS architecture family:

-mcpu=CPU_MODEL

-march=CPU_MODEL

These options produce code that runs on CPU_MODEL. Values ’etrax4’,
’etrax100’, ’etrax100lx’, and ’vN’, where N is in the range from 0...10
are recognized. When ’vN’ is specified, N denotes the version-register contents of
the targeted CPU model.

-mtune=CPU_MODEL

is like ’-mcpu=CPU_MODEL’ but does not affect the instruction set, only the
applicable scheduling parameters.

-metrax4

-mno-etrax4

Set (unset) ’-mcpu=v3’ additions to the base instruction set.

-metrax100

-mno-etrax100

Set (unset) ’-mcpu=v8’ additions to the base instruction set and 32-bit general
alignment.
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 6 - 1

6 CRIS Compiler Specifics
-mconst-align

-mdata-align

-mstack-align

-m16bit

-m32bit

-m8bit

-mno-const-align

-mno-data-align

-mno-stack-align

Align constants, data and stack respectively, to 16-bit (two bytes) data boundary by
alignment directives, or by rounding up the size of the stack-frame. Only individual
variables are affected; the (unaligned) ABI is unaffected. Saying ‘-m16bit’ is
equivalent to all of ’-mconst-align2, ’-mdata-align’, and ’-mstack-align’. This is the
default when the base (’v0’) instruction set is specified. Saying ’-m32bit’ means
rounding them up to a 32-bit data boundary. This is the default for the ’v8’
instruction set and up. Specifying ’-m8bit’ means do not align anything. The ’no-’
counterpart disables alignment of that entity.

-mmax-stack-frame=SIZE

Warn when the stack-frame exceeds SIZE bytes.

-mprologue-epilogue

-mno-prologue-epilogue

Do (do not) output a prologue and epilogue for any function. For code compiled
with the ’-mno-prologue-epilogue’ option, it is necessary to add a function prologue
and epilogue through ’asm’ statements.
6 - 2 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

6 CRIS Compiler Specifics
6.2 CRIS preprocessor macros

The GCC port sets the following preprocessor macros:

__cris__

__CRIS__

__GNU_CRIS__

These three macros are always set to ’1’.

__arch_X

This macro is set to ’1’ for the options ’-mcpu=X’ and ’-march=X’ (where the variable
’X’ is the value entered for CPU_MODEL). See section 6.1 CRIS compiler options for
an explanation of these options.

The macro ’__tune_X’ is set for the option ’-mtune=X’ in the same way as the macro
’__arch_X’ is for ’-march=X’.

Note: The underlining at the beginning and end of the macros above represents two underline spaces.

6.3 The CRIS ABI

6.3.1 Introduction

This is a description of the CRIS GCC (GNU C Compiler) ABI (Application Binary
Interface), the binary-level conventions for the ETRAX 100 processor. An
application binary interface defines a system interface for executing compiled
programs. Among the conventions that an ABI establishes are register usage, calling
conventions, parameter passing, and layout of data.

These specifications may be subject to changes with future revisions of the CRIS
GCC ABI.

6.3.2 CRIS GCC Fundamental Data Types

This is how C and C++ data types correspond to CRIS GCC data types, see table1-
4 .

A signed, unsigned, or plain (in C++) char is a signed or unsigned byte (or 8-bit
integer).

A signed or unsigned short int is a signed or unsigned word (or 16-bit integer).

A signed or unsigned int and long is a signed or unsigned dword (or 32-bit
integer).

Pointers to any type are represented as 32-bit integer entities.
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 6 - 3

6 CRIS Compiler Specifics
Enumerated types in C and C++, enum, are represented as integer objects, 32-bit
dwords.

The floating point types float and double are represented as 32-bit IEEE-754 floating
point numbers:

Figure 6-1 32-bit floating point number

The type long double is represented as a 64-bit IEEE-754 floating point number,
with the lower part of the mantissa in the dword at the lower address.

Figure 6-2 64-bit floating point number

6.3.3 CRIS GCC Object Memory Layout

The memory layout of a structure has each member at increasing addresses, without
any alignment padding in between members. The size of the structure is, therefore,
the sum of each of the sizes of the elements (with the exception of zero bitfields,
which align to the next byte boundary).

Example of the structure layout of the CRIS ABI:

The size of the struct example is 33 Bytes.

031

sign
bit

Exponent bits Mantissa bits

031

Mantissa bits

3263

sign
bit

Exponent bits Mantissa bitsmsb

lsb

struct example

{

char c; /* 1 Byte, offset 0 */

short s; /* 2 Bytes, offset 1 */

int i; /* 4 Bytes, offset 3 */

long l; /* 4 Bytes, offset 7 */

float f; /* 4 Bytes, offset 11 */

double d; /* 4 Bytes, offset 15 */

long double ld; /* 8 Bytes, offset 19 */

char s[6]; /* 6 Bytes, offset 27 */

};
6 - 4 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

6 CRIS Compiler Specifics
Bitfields span over any byte, word or dword boundaries. The first declared field is in
the lowest bits of the lowest address at the starting address.

Compiler options specify whether objects have byte, word or dword alignment. Code
must not assume that objects are laid out at stricter alignments than bytes. Compiler
options specify the actual alignment. For example, -m8bit specifies that objects are
always byte-aligned, while the default is 16-bit alignment. Note that options
specifying a processor-version also implicitly control the alignment of objects.

6.3.4 CRIS GCC Calling Convention

Arguments shorter than or equal to 32 bits are passed by value. Integral types smaller
than 32 bits are promoted to the corresponding 32-bit types by the same rules as in
ISO C 1998-1999. Larger entities are passed by reference by passing a pointer to a
read-only value. This means that the callee has to copy that value if it wants to
modify it. The first four parameters (by value or reference) to a function are passed in
registers R10..R13, starting with the first parameter in R10. Starting with the fifth
parameter, parameters are passed on the stack, starting with offset zero upon entry to
the called function (not including any return address).

Return values shorter than or equal to 32 bits are returned in register R10. Structure
return values are passed (to the called function) by reference in register R9 to a caller-
allocated area. The this pointer in C++ is passed as an invisible first argument in R10
(i.e. the first argument to a non-static member function ends up in register R11 and
so on).

Registers R9..R13, SRP and MOF (except any return values in register R10) are
assumed to be clobbered upon return from the function. Registers R0..R8 must have
the same contents upon return from, as before the call to the function.
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 6 - 5

6 CRIS Compiler Specifics
6.3.5 Stack Frame Layout

As can be seen below, the stack does not have a static layout except for the order of its
components. It may, in fact, be collapsed and empty (not even a return address);

Figure 6-3 Stack frame layout

Very few functions need a frame pointer. When a frame pointer is needed, the called
register R8 is used. The frame pointer value is derived from the stack pointer value at
the beginning of the function.

If functions with more than four parameters are called, the memory room for the
parameters from the fifth and up is allocated in the stack frame of this function.

For functions with a variable number of parameters the function itself is responsible
for storing any necessary portion of registers R10..R13 as indicated in Figure 6-3
above. The “va_list” type is a pointer to an array of parameters or (by reference)
pointers to parameters.

(higher address)
[...]

 If more than four parameters.
Parameter #7

Parameter #6

Parameter #5

Parameter #4 (R13)

 Only if variable-arguments
function, and if the parameters are
not named.

Parameter #3 (R12)

Parameter #2 (R11)

Parameter #1 (R10)

Return address Only if non-leaf function.

Saved fp (R8) Only in a function needing a
frame pointer.

Local variables and internal
temporaries

 If used.

Preserved register values, R0..R7/
R8

 If modified, and R8 only when
no frame pointer is needed.

Variables of variable size and
alloca() storage

 If used.

Parameter storage when calling
for parameter #5 and up

 If used.

(lower address)

Stack pointer value
at function entry

Frame pointer
value

Stack pointer
value
6 - 6 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

7 The ETRAX 4
7 THE ETRAX 4

7.1 Introduction

The ETRAX 4 is an earlier processor in the ETRAX family. The differences between
the CRIS implementation in the ETRAX 100LX and the ETRAX 4 are presented in
this chapter.

7.2 Special registers

The processor architecture defines 16 special registers (P0 - P15), ten of which are
implemented in the ETRAX 4. The special registers in the ETRAX 4 are:

Special registers for the ETRAX 4:

Figure 7-1 Special registers

MNEM Reg.No. Description Width

VR P1 Version register 8 bits

CCR P5 Condition Code Register 16 bits

DCR0 P6 DMA Channel 0 Count Register 16 bits

DCR1 P7 DMA Channel 1 Count Register 16 bits

IBR P9 Interrupt Base Register 32 bits

IRP P10 Interrupt Return Pointer 32 bits

SRP P11 Subroutine Return Pointer 32 bits

DTP0 P12 DMA Channel 0 Transfer Pointer 32 bits

DTP1 P13 DMA Channel 1 Transfer Pointer 32 bits

BRP P14 Breakpoint Return Pointer 32 bits

Table 7-1 Special registers

(P0) Constant zero register
VR (P1) Version Register
(P2) (not implemented)
(P3) (not implemented)
(P4) Constant zero register
CCR (P5) Condition Code Register
DCR0 (P6) DMA 0 Count Register
DCR1 (P7) DMA 1 Count Register
(P8) Constant zero register
IBR (P9) Interrupt Base Register
IRP (P10) Interrupt Return Pointer
SRP (P11) Subroutine Return Pointer
DTP0 (P12) DMA 0 Transfer Pointer
DTP1 (P13) DMA 1 Transfer Pointer
BRP (P14) Breakpoint Return Pointer
(P15) (not implemented)

31 16

15 8

7 0
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 7 - 1

7 The ETRAX 4
7.3 Flags and condition codes

The ETRAX 4 condition code register (CCR) has no F, P, U, M or B flags. Instead
of the M and B flags, the ETRAX 4 has a D and E flag:

Figure 7-2 The ETRAX 4 condition code register (CCR)

The DCCR register is not available in the ETRAX 4 (this affects the MOVE (to Pd)
and POP (to Pd) instructions).

The only difference in the 16 condition codes in table table 7-2 below is the EXT
(external pin); all other condition codes are the same.

Code Alt Condition Encoding Boolean function

CC HS Carry Clear 0000 C

CS LO Carry Set 0001 C

NE Not Equal 0010 Z

EQ Equal 0011 Z

VC Overflow Clear 0100 V

VS Overflow Set 0101 V

PL Plus 0110 N

MI Minus 0111 N

LS Low or Same 1000 C + Z

HI High 1001 C * Z

GE Greater or Equal 1010 N * V + N * V

LT Less Than 1011 N * V + N * V

GT Greater Than 1100 N * V * Z + N * V * Z

LE Less or Equal 1101 Z + N * V + N * V

A Always True 1110 1

EXT External Pin 1111 External input

Table 7-2 The ETRAX 4 condition codes

15 0

0 000000 0 D E I X N Z V C

Overflow
Zero

Negative
Extend

Interrupt enable
DMA 0 enable

DMA 1 enable

Carry
7 - 2 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

7 The ETRAX 4
This is the order in which the flags are listed in chapter section 2 Instruction Set
Description (see section section 3 Instructions in Alphabetical Order):

Except for there being no F, P or U flags in the instruction set for the ETRAX 4, and
that the M and B flags are flags D and E respectively, the list of what flags are affected
in the ETRAX 4 is the same except for the instructions in the table below:

7.4 Data organization in memory

The ETRAX 4 CPU can operate with an 8-bit or 16-bit wide data bus. Figure figure
7-3 shows an example of data organization with an 8-bit bus. The same example, but
with a 16-bit bus, is shown in figure 7-4.

Example of a structure layout:

struct example
{

byte a;
byte b;
word c;
dword d;
byte e;
word f;
dword g;

};

ETRAX 100LX: F P U M B I X N Z V C

ETRAX 4: - - - D E I X N Z V C

Instruction flags affected

D E

CLEARF * *

MOVE to Pd
(Pd != CCR) - -

(Pd == CCR) - -

POP - -

Table 7-3 Changes in affected flags for the ETRAX 4
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 7 - 3

7 The ETRAX 4
Figure 7-3 Data organization with an 8-bit bus

Figure 7-4 Data organization with a 16-bit bus

When a word or a dword is placed at odd addresses in a 16-bit memory (like word f
and dword g in figure figure 7-4), each access to the data will require extra bus cycles.
For maximum performance in 16-bit systems, it is recommended to keep word and
dword data aligned to even addresses as much as possible.

7.5 Branches, jumps and subroutines

The EXT condition is not available in the ETRAX 100LX (see table Table 7-2, “The
ETRAX 4 condition codes,” on page 2).

Byte a

Address

Byte b

Word c

An

An + 1

An + 2

An + 3

07

lsb

msb

Dword d

lsb

msb

Byte e

Word f

Dword g

lsb

msb

lsb

msb

An + 4

An + 5

An + 6

An + 7

An + 8

An + 9

An + 10

An + 11

An + 12

An + 13

An + 14

Byte a

Address

Byte b

Word c

An

An + 2

An + 4

An + 6

0

lsbmsb

Dword d
lsb

msb

Dword g

lsb

msblsb

msb

An + 8

An + 10

An + 12

An + 14

15

Byte eWord f

Word f

Even addressOdd address
7 - 4 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

7 The ETRAX 4
7.6 Interrupts and breakpoints in the ETRAX 4

Only bits 29 and 30 of the Interrupt Base Register (IBR) are implemented in the
ETRAX 4, the remaining bits are always zero.

Figure 7-5 Interrupt Vector Address Calculation in the ETRAX 4

Figure 7-6 Software breakpoint address calculation in the ETRAX 4

Hardware beakpoints are not implemented in the ETRAX 4.

7.7 Reset in the ETRAX 4

7.7.1 ROM boot

After reset, the ETRAX 4 CPU starts the execution at address 00000002. The
following registers are initialized after reset:

All other registers have unknown values after reset.

31 0

7 0

031

IBR

Vector number

Vector number

Interrupt Base Register

Interrupt Vector Address

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

00

00000000

29 10

29

IBR 0000000000000

0000000000000

+

0

0

+

31 0

0

031

Interrupt Base Register

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

00

00000000

Breakpoint Routine Entry

0

0000

3

n

n

00000000000000 IBR

00000000 000000 IBR

Register Value (hex)

VR 3

CCR 0000

DCR0 1000

IBR 00000000

DTP0 00000002

Table 7-4 Initialization values of registers after reset in the ETRAX 4
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 7 - 5

7 The ETRAX 4
7.7.2 Automatic program download

When the automatic program download (“flash-load”) is enabled, the initial values of
DCR0 and DTP0 change. After the completion of the program download, the
registers have the following values:

After the automatic program download, the ETRAX 4 CPU starts to execute at
address 40000002 (hex) instead of 00000002.

7.8 DMA

In the ETRAX 100LX, the DMA is not a part of the CPU but a separate module on
the chip. In the ETRAX 4, however, the DMA is an integrated part of the CPU.

7.8.1 The ETRAX 4 DMA

The ETRAX 4 CPU contains two DMA channels. Each channel has a 32-bit DMA
Transfer Pointer (DTP), a 16-bit DMA Count Register (DCR), and a DMA enable
flag (D or E). The connection of each channel to a physical I/O channel is described
in the ETRAX Data Sheet.

To start a DMA transfer, the DTP of the channel is loaded with the start address of
the data block to be transferred, and the DCR of the channel is loaded with the
number of transfers. (Loading the DCR with zero will give 65 536 transfers). The
DMA enable flag of the channel is then set with the SETF instruction.

For each transfer, the DTP is incremented by one (byte transfer) or two (word
transfers), and the DCR is decremented by one. When the DCR counts down to
zero, the DMA enable flag is set to zero and the transfers stop.

The DMA can be stopped and started at any time by clearing the DMA enable flag.
Note that the SETF and CLEARF instructions are the only instructions that will
affect the D and E flags. When CCR is updated using the MOVE instruction, the D
and E flags are left unchanged.

DMA channel 0 is designed to be able to automatically load a program (“flash-load”)
to the system RAM after power up. This feature is enabled by keeping the external
FLASH_ input low during reset. In this case, 4096 Bytes (1000 hex) are transferred
to the system RAM area with start at address 40000002 hex, before the CPU starts to
execute.

Register Value (hex)

VR 3

CCR 0000

DCR0 0000

IBR 00000000

DTP0 40001002

Table 7-5 Initialization values of registers after automatic program download in the ETRAX 4
7 - 6 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

7 The ETRAX 4
7.9 Instruction set

The ETRAX 4 CPU has a few less instructions than the ETRAX 100LX CPU. The
instructions which are not available in the ETRAX 4 are:

 BWF, JBRC, JIRC, JMPU, JSRC,MULS, MULU, RBF, SBFS, SWAP

7.9.1 Differences in the instructions

The following instructions are different in the ETRAX 4 compared to the same
instructions in the ETRAX 100LX:

In autoincrement addressing mode, the address (si + 4 * <number of loaded
registers>) is loaded to the specified register. For the ETRAX 4 this also applies to the
indexed with assign and offset with assign addressing modes. This is different from
the ETRAX 100LX and from other instructions where the address is stored before
the increment.

The following size information applies to the ETRAX 4:

• Size is set according to the size of the pushed register:

• The two most significant bits are D and E:

MOVEM (from memory) Move to multiple registers
from memory

page 3 - 56

MOVEM (to memory) Move from multiple registers
to memory

page 3 - 57

PUSH (from Ps) Push special register onto
stack

page 3 - 73

Size:

11 Byte (Ps = VR)

10 Word (Ps = CCR, DCR0 or DCR1)

00 Dword (Ps = BRP, IBR, IRP, SRP, DTP0 or DTP1)

CLEARF Clear flags page 3 - 27

SETF Set flags page 3 - 82

015

0 1D 11 0 N0 1 1 VZE I X C
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 7 - 7

7 The ETRAX 4
7.10 Execution times for the ETRAX 4

7.10.1 Introduction

Instruction execution times for all CRIS instructions and addressing modes are given
below in numbers of CPU cycles. With no wait states, each bus cycle requires two
system clock cycles. One system clock cycle is added for each wait state.

7.10.2 Instruction execution times

This section gives the execution times for instructions with the four basic addressing
modes: Quick immediate, Register, Indirect, and Autoincrement. Except for the
following four special cases, the execution time is the same for all instructions with
the same addressing mode and data size.

General case:

Addressing mode Data size Data alignment Execution time

16-bit bus 8-bit bus

Quick immediate 6-bit N/A 1 2

Register Any N/A 1 2

Indirect, Autoinc. Byte Any 2 3

Indirect, Autoinc. Word Even address 2 4

Indirect, Autoinc. Word Odd address 3 4

Indirect, Autoinc. Dword Even address 3 6

Indirect, Autoinc. Dword Odd address 5 6

Table 7-6
7 - 8 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

7 The ETRAX 4
Special case 1:

Bcc instruction

Special case 2:

MOVEM instruction

(Where n is the number of registers moved.)

Special case 3:

PC operand

One idle bus cycle is added to the execution times given above, if PC is used as the
destination operand in any of the following instructions:

One idle bus cycle is also added for the TEST.m PC instruction.

Special case 4:

Break instruction

The BREAK instruction takes two cycles to execute on a 16-bit data bus, and three
cycles on an 8-bit data bus.

Branch offset size Execution time

16-bit bus 8-bit bus

Byte 1 2

Word 2 4

Table 7-7

Addressing mode Data size Data alignment Execution time

16-bit bus 8-bit bus

Indirect, Autoinc. Dword Even address 2n + 1 4n + 2

Indirect, Autoinc. Dword Odd address 4n + 1 4n + 2

Table 7-8

ABS ADD ADDQ ADDS ADDU AND

ANDQ ASR ASRQ BTSTQ MOVEM MOVEQ

MOVE (except from a special register) MOVS MOVU OR

ORQ POP SUB SUBQ SUBS SUBU

XOR
A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0) 7 - 9

7 The ETRAX 4
7.10.3 Complex addressing modes execution times

The table below gives the extra execution time required to calculate the effective
address in complex addressing modes. The effective address calculation time is added
to the Indirect/Autoincrement execution time given in section 7.10.2 Instruction
execution times to give the total execution time of the instruction.

Note 1: Data alignment refers to the alignment of data involved in the effective address calculation.

7.10.4 Interrupt acknowledge execution time

The interrupt acknowledge sequence, including the interrupt acknowledge cycle and
the interrupt vector read following it, requires 3 bus cycles on a 16-bit bus, and 5 bus
cycles on an 8-bit bus.

7.10.5 DMA transfer execution time

Each DMA transfer requires one bus cycle.

Addressing mode Data alignment Execution time

16-bit bus 8-bit bus

Indexed N/A 1 2

Indexed with assigned N/A 1 2

Immediate Byte offset N/A 1 2

Indirect Byte offset any 2 3

Word offset even address 2 4

Word offset odd address 3 4

Dword offset even address 3 6

Dword offset odd address 5 6

Immediate Byte offset with assign N/A 1 2

Indirect Byte offset with assign any 2 3

Word offset with assign even address 2 4

Word offset with assign odd address 3 4

Dword offset with assign even address 3 6

Dword offset with assign odd address 5 6

Double indirect even address 3 6

Double indirect odd address 5 6

Double indirect with autoincrement even address 3 6

Double indirect with autoincrement odd address 5 6

Absolute N/A 3 6

Table 7-9
7 - 10 A X I S E T R A X 1 0 0 L X P r o g r a m m e r ’ s M a n u a l (N o v e m b e r 2 8 , 2 0 0 0)

	AXIS ETRAX 100LX Programmer’s Manual
	Table of Contents
	Introduction
	1 Architectural Description
	1.1 Registers
	Table 1-1 Special registers
	Figure 1-1 General Registers
	Figure 1-2 Special registers

	1.2 Flags and condition codes
	Figure 1-3 The Condition Code Register (CCR)/ Dword Condition Code Register (DCCR)
	Table 1-2 Condition codes
	Table 1-3 flag behavior

	1.3 Data organization in memory
	Table 1-4 Data types supported by the CRIS
	Figure 1-4 Data organization with a 16-bit bus
	Figure 1-5 Data Organization with a 32-bit bus

	1.4 Instruction format
	Figure 1-6 General instruction format
	Table 1-5 The Mode Field of the Instruction Format
	Table 1-6

	1.5 Addressing modes
	1.5.1 General
	1.5.2 Quick immediate addressing mode
	Figure 1-7 Quick immediate addressing mode instruction format

	1.5.3 Register addressing mode
	1.5.4 Indirect addressing mode
	Figure 1-8 Indirect addressing mode

	1.5.5 Autoincrement addressing mode
	Figure 1-9 Autoincrement addressing mode

	1.5.6 Immediate addressing mode
	1.5.7 Indexed addressing mode
	Figure 1-10 Indexed addressing mode prefix format
	Figure 1-11 Indexed addressing mode

	1.5.8 Indexed with assign addressing mode
	Table 1-7
	Figure 1-12 Indexed with assign addressing mode

	1.5.9 Offset addressing mode
	Figure 1-13 Offset addressing mode prefix format
	Figure 1-14 Immediate byte offset addressing mode prefix format
	Figure 1-15 Instruction with dword sized immediate offset
	Figure 1-16 Offset addressing mode (general case)

	1.5.10 Offset with assign addressing mode
	Table 1-8
	Figure 1-17 Offset with assigned addressing mode (general case)

	1.5.11 Double indirect addressing mode
	Figure 1-18 Double indirect addressing mode prefix Format
	Figure 1-19 Double indirect addressing mode

	1.5.12 Absolute addressing mode
	Figure 1-20 Instruction with absolute address

	1.5.13 Multiple addressing mode prefix words

	1.6 Branches, jumps and subroutines
	1.6.1 Conditional branch
	1.6.2 Jump instructions
	1.6.3 Implicit jumps
	1.6.4 Switches and table jumps
	1.6.5 Subroutines
	1.6.6 The JBRC, JIRC and JSRC subroutine instructions
	Figure 1-21 The JSRC instruction
	Figure 1-22 Immediate addressing of JSRC

	1.7 MMU support
	1.7.1 Overview
	1.7.2 Protected registers and flags
	1.7.3 Transition between operation modes
	1.7.4 Bus fault sequence
	1.7.5 Format of the CPU status record
	Figure 1-23
	Table 1-9 Execution state field flags
	Figure 1-24
	Table 1-10 Data field

	1.7.6 Programming examples

	1.8 Interrupts
	Figure 1-25 Interrupt vector address calculation
	1.8.1 NMI

	1.9 Software breakpoints
	Figure 1-26 Software breakpoint address calculation

	1.10 Hardware breakpoint mechanism
	1.11 Multiply and divide
	1.11.1 General
	1.11.2 Multiply using MULS and MULU
	1.11.3 Multiply Using MSTEP
	1.11.4 Divide

	1.12 Extended arithmetic
	1.13 Integral read-write operations
	1.14 Reset
	Table 1-11 Registers initialized after reset
	Table 1-12 Boot methods

	1.15 Version identification
	Table 1-13 CRIS VR register

	2 Instruction Set Description
	2.1 Definitions
	Table 2-1 Instruction set term definitions
	Table 2-2 Definitions for how flags are affected

	2.2 Instruction set summary
	2.2.1 Size modifiers
	Table 2-3 Size modifiers

	2.2.2 Addressing modes
	Table 2-4 Addressing modes

	2.2.3 Data transfers
	Table 2-5 Data transfer instructions

	2.2.4 Arithmetic Instructions
	Table 2-6 Arithmetic instructions

	2.2.5 Logical instructions
	Table 2-7 Logical instructions

	2.2.6 Shift instructions
	Table 2-8 Shift instructions

	2.2.7 Bit test instructions
	Table 2-9 Bit test instructions

	2.2.8 Condition code manipulation instructions
	Table 2-10 Condition code manipulation instructions

	2.2.9 Jump and branch instructions
	Table 2-11 Jump and branch instructions

	2.2.10 No operation instruction
	Table 2-12 No operation instruction

	2.3 Instruction format summary
	2.3.1 Summary of quick immediate mode instructions
	Table 2-13 Quick immediate mode instructions

	2.3.2 Summary of register instructions with variable size
	Table 2-14 Variable size
	Table 2-15 Register instructions with variable size

	2.3.3 Summary of register instructions with fixed size
	Table 2-16 Register instructions with fixed size

	2.3.4 Summary of indirect instructions with variable size
	Table 2-17 Mode and variable size
	Table 2-18 Indirect instructions with variable size

	2.3.5 Summary of indirect instructions with fixed size
	Table 2-19 Mode
	Table 2-20 Indirect instructions with fixed size

	2.4 Addressing mode prefix formats
	Table 2-21 Size for Indexed addressing mode prefix word
	Table 2-22 Mode and size for offset Addressing mode prefix word
	Table 2-23 Mode for double indirect and absolute Addressing mode prefix word

	3 Instructions in Alphabetical Order
	ABS
	Absolute Value

	ADD
	Add
	2-operand

	ADD
	Add
	3-operand

	ADDI
	Add index

	ADDQ
	Add quick

	ADDS
	Add with sign extend
	2-operand

	ADDS
	Add with sign extend
	3-operand

	ADDU
	Add with zero extend
	2-operand

	ADDU
	Add with sign extend
	3-operand

	AND
	Logical AND
	2-operand

	AND
	Logical AND
	3-operand

	ANDQ
	Logical AND quick

	ASR
	Arithmetic shift right

	ASRQ
	Arithmetic shift right quick

	AX
	Arithmetic extension

	Bcc
	Branch conditionally
	Table 3-1 Condition Codes

	BOUND
	Adjust index to bound
	2-operand

	BOUND
	Adjust index to bound
	3-operand

	BREAK
	Breakpoint

	BTST
	Bit test

	BTSTQ
	Bit test quick

	CLEAR
	Clear

	CLEARF
	Clear flags

	CMP
	Compare

	CMPQ
	Compare quick

	CMPS
	Compare with sign extend

	CMPU
	Compare with zero extend

	DI
	Disable interrupts

	DSTEP
	Divide step

	EI
	Enable interrupts

	JBRC
	Jump to beakpoint routine, with context information

	JIR
	Jump to interrupt routine

	JIRC
	Jump to interrupt routine, with context information

	JMPU
	JSR
	Jump to subroutine

	JSRC
	Jump to subroutine, with context information

	JUMP
	Jump

	LSL
	Logical shift left

	LSLQ
	Logical shift left quick

	LSR
	Logical shift right

	LSRQ
	Logical shift right quick

	LZ
	Leading Zeroes

	MOVE
	Move from source to register
	from s to Rd

	MOVE
	from Rs to memory

	MOVE
	to Pd

	MOVE
	from Ps

	MOVEM
	from memory

	MOVEM
	to memory

	MOVEQ
	MOVS
	MOVU
	MSTEP
	MULS
	MULU
	NEG
	NOP
	NOT
	OR
	2-operand

	OR
	3-operand

	ORQ
	POP
	to Rd

	POP
	to Pd

	PUSH
	from Rs

	PUSH
	from Ps

	RBF
	RET
	RETB
	RETI
	SBFS
	Scc
	Table 3-2

	SETF
	SUB
	2-operand

	SUB
	3-operand

	SUBQ
	SUBS
	2-operand

	SUBS
	3-operand

	SUBU
	2-operand

	SUBU
	3-operand

	SWAP
	TEST
	XOR

	4 CRIS Execution Times
	4.1 Introduction
	4.2 Instruction execution times
	Table 4-1 General instruction execution times
	Table 4-2 Bcc instruction execution times
	Table 4-3 MOVEM instruction execution times
	Table 4-4 SBFS instruction execution times
	Table 4-5 RBF instruction execution times

	4.3 Complex addressing modes execution times
	Table 4-3 Complex addressing modes execution times

	4.4 Interrupt acknowledge execution time

	5 Assembly Language Syntax
	5.1 General
	5.2 Definitions
	5.3 Files, lines and fields
	5.4 Labels and symbols
	5.5 Opcodes
	5.6 Operands
	5.6.1 General
	5.6.2 Expressions
	Table 5-1 Supported operands

	5.7 Addressing modes
	5.8 Assembler directives
	5.8.1 Directives controlling the storage of values
	5.8.2 Directives controlling storage allocation
	5.8.3 Symbol handling

	5.9 Alignment

	6 CRIS Compiler Specifics
	6.1 CRIS compiler options
	6.2 CRIS preprocessor macros
	6.3 The CRIS ABI
	6.3.1 Introduction
	6.3.2 CRIS GCC Fundamental Data Types
	Figure 6-1 32-bit floating point number
	Figure 6-2 64-bit floating point number

	6.3.3 CRIS GCC Object Memory Layout
	6.3.4 CRIS GCC Calling Convention
	6.3.5 Stack Frame Layout
	Figure 6-3 Stack frame layout

	7 The ETRAX 4
	7.1 Introduction
	7.2 Special registers
	Table 7-1 Special registers
	Figure 7-1 Special registers

	7.3 Flags and condition codes
	Figure 7-2 The ETRAX 4 condition code register (CCR)
	Table 7-2 The ETRAX 4 condition codes
	Table 7-3 Changes in affected flags for the ETRAX 4

	7.4 Data organization in memory
	Figure 7-3 Data organization with an 8-bit bus
	Figure 7-4 Data organization with a 16-bit bus

	7.5 Branches, jumps and subroutines
	7.6 Interrupts and breakpoints in the ETRAX 4
	Figure 7-5 Interrupt Vector Address Calculation in the ETRAX 4
	Figure 7-6 Software breakpoint address calculation in the ETRAX 4

	7.7 Reset in the ETRAX 4
	7.7.1 ROM boot
	Table 7-4 Initialization values of registers after reset in the ETRAX 4

	7.7.2 Automatic program download
	Table 7-5 Initialization values of registers after automatic program download in the ETRAX 4

	7.8 DMA
	7.8.1 The ETRAX 4 DMA

	7.9 Instruction set
	7.9.1 Differences in the instructions

	7.10 Execution times for the ETRAX 4
	7.10.1 Introduction
	7.10.2 Instruction execution times
	Table 7-6
	Table 7-7
	Table 7-8

	7.10.3 Complex addressing modes execution times
	Table 7-9

	7.10.4 Interrupt acknowledge execution time
	7.10.5 DMA transfer execution time

