AXIS ETRAX 100LX
Programmer’s Manual

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

Axis Communications AB cannot be held responsible for any technical or
typographical errors, and reserves the right to make changes to this manual and to the
product without prior notice. If you do detect any inaccuracies or omissions, please
inform us at:

E-mail: technology@axis.com

Axis Communications AB
Scheelevagen 34

SE-223 63 Lund, Sweden
Phone: +46 46 272 1800
Fax: +46 46 13 61 30

Copyright © Axis Communications AB

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

Table of Contents

Table of Contents

INEFOAUCTION.....cciiiie e vii
Preface ... vii
1 Architectural Descriptionccoovveen.. 1-1
1.1 ST 0 1) = SRS
1.2 Flags and condition COAEScccooiuieiiiiiiiieiiiieee e
1.3 Data organization in MEemMOIrYcccccceviieiieiiiiie e
14 INSErUCEION FOrMAL ..o
15 AdAressing MOUEScueiiiaiiiiiie et
151 GBNEIAL .ottt
152 Quick immediate addressing MOGEcvrerreineenseneirese e iene
153 Register addressing MOUE ...t
154 Indirect addressing MOUE ...t eenes
155 Autoincrement addressing MOGE ..ot essees
156 Immediate addressing MOGE ..ot seeees
157 Indexed addressing MOE ...t
158 Indexed with assign addressing MOdE ...
159 Offset addressing MOUE ...t
15.10 Offset with assign addressing mode ...
1511 Double indirect addressing mode
15.12 Absolute addressing modeccccceevneenne
15.13 Multiple addressing mode prefix words ...
1.6 Branches, jumps and subroutines
16.1 Conditional BranCh ...
16.2 JUMP INSEFUCTIONS .ottt
163 IMPLCIE JUMPS oottt
164 Switches and table JUMPS ... s
165 SUDFOULINES ..ottt et
1.6.6 The JBRC, JIRC and JSRC subrouting inStructionscc.ccoeevresssneevenee 1-22
1.7 MMU support
171 OVEIVIEW .ottt st
172 Protected registers and flags ... 1-24
173 Transition between operation MOAESc.cccvveeiererieies e enes 1-24
174 BUS faUIt SEQUENCE ...oocvviiricir ettt 1-25
175 Format of the CPU Status reCOrd ... 1-26
176 Programming €XaMPIESccvinriiisiesissies st sssssssessnns 1-28
1.8 Interrupts
181 NMI e,
1.9 Software breakpoints
1.10 Hardware breakpoint mechanismcccccooevveeviieec e, 1-31
1.11 Multiply and divide ... 1-32
1111 GBNEIAL .ottt bbbt 1-32
1112 Multiply using MULS and MULU ... 1-32
1113 MUILIPlY USING MSTEP ...ttt 1-32
1114 DIVIAR .ottt bbb 1-33
1.12 Extended arithmeticccooiviii 1-35

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) i

Table of Contents

1.13 Integral read-write operationsccccoceeveivviivecvnn e e, 1-36
1.14 RESET .. 1-37
1.15 Version identificationcccocciiiii e, 1-38

2 Instruction Set Description 2-1

21 DEfiNItiONS ..o 2 -
2.2 INStruction Set SUMIMANYc.eiiiiiiiiieiiiee et 2-

1
2
221 SIZ€ MOUITIEIS ..o s 2-2
222 AdAresSiNG MOUESouvereriieie ettt 2-4
223 Data traNSTEIS ..o s 2-4
224 AFthMETIC INSTFUCTIONS ..o s 2-5
225 LOGICAl INSEFUCTIONSevniieiieieeieecee et 2-6
226 SHIFt INSTFUCTIONS ..o 2-6
227 Bit test instructions 6
228 Condition code manipulation iNSLFUCLIONSccoccnrereereinrneerneneeneeeeeeeneees 2-7
229 Jump and branch INSEFUCTIONS ..o 2-7
2.2.10 NO 0peration INSEIUCTION ..ot 2-8

8

8

9

2.3 Instruction format sumMmMaryccccccecveee e 2-

231 Summary of quick immediate mode iNStruCtionscccooeeveiiieererneienenns 2-
232 Summary of register instructions with variable Sizec..ccocovreiniinciniinns 2-
233 Summary of register instructions with fixed Sizeccccoovivrieiecririscinnns 2-10
234 Summary of indirect instructions with variable Sizecccocvvveeiriiiinn. 2-11
235 Summary of indirect instructions with fixed Sizeccccoeovvrivrriiecreiicnnn. 2-12

2.4 Addressing mode prefix formatsccccoceeviiniice e, 2-13

3 Instructions in Alphabetical Order 3-1

AABS RSB R
ADD 2-0PEFANG ...oooreveeeeeeesisseeeeesissseeessssssssessssssesssssssssessssssssesssssssssesssess
ADD 3-0PEFANG ...covrveeeiereeeeresseeeeessssseeesssssssssssssssessssssseesssssssssessssssssesssens
ADDI e
ADDIQ e R
ADDS 2-operand ...
ADDS 3-operand
ADDU 2-operand
ADDU 3-0PEFANAcveeoieeeeiereeeeesiseeeesssseessssssseesssssssseessssssssesssessseseees
AND 2-0PEFANA ..o eeesss e eesssssssessssssseessssssssesssssssssesssssssneseees
AND 3-0PEIANG ...oooreveeireeeeesssseeeeestnseeesssssseesssss s sssss e ssssssesssessseseees
AN] L 0000000000000 00000

Bce
BOUND 2-0PEFaNGcovveeirreceeenrreeeeseseeesessssseesesssssssssssssssssssssssssssesssses 3-19
BOUND 2-0PEFaNGcovveeirreceeenrreeeeseseeesessssseesesssssssssssssssssssssssssssesssses 3-21
BREAK

CIMP s

i AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

Table of Contents

MOVE from Rs to memory
MOVE 10 PO ... ssssssss s sssssssss s ssssssssnns
MOVE from PS ...,
MOVEM from memory
MOVEM to memory ...

OR 2-0PEFANG ..ot sseeesess s sesss e sssss st sssssees
OR 3-operand ...
ORQ ...
POP to Rd.......

POP 0 Pooooiomiiiissssiss s s ssssssssssssssssssseees
PUSH frOM RS ..ot ceessssseesssssssesssss s sssssssssssesssssssssssssssnns
PUSH from Ps ...

SUB 2-0PEFANMcooorreeeerreereciiieeeceessssseeeees s ssseessssssssesssssssssssssssssssssssssns
SUB 3-0PBFaANMcooorreeereerceiimsneeceessssseeees s ssssessssssssesssssssssssssssssssssssssns
SUBQ
SUBS 2-operand
SUBS 3-operand
SUBU 2-operand
SUBU 3-operand

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) iii

Table of Contents

SWWVAP et s 3-90
TEST e 3-92
XOR ittt 3-94
4 CRIS Execution TIMESociiiiiiiiiiiiiienann. 4-1
4.1 INEFOAUCTION ... 4-1
4.2 Instruction execution tIMEeSccccceviiiiiien e 4-1
4.3 Complex addressing modes execution timescccec...... 4-1
4.4 Interrupt acknowledge execution timeccccoccceeiiiineens 4-1
5 Assembly Language Syntaxcccooo.... 5-1
5.1 GENEIAL .ot s 5-1
5.2 DEfINITIONS ...eeiiiiiiieiie s 5-1
5.3 Files, lines and fields ... 5-2
5.4 Labels and symbolsccccceiiiiiii i1 5-2
55 L@ o ToTo o [PSR 5-3
5.6 @] 01=] =1 oo [PR RRR 5-3
5.6.1 GBNEIAL .ottt bbb 5-3
5.6.2 EXPIESSIONS ...ooeeiiirceeii ettt sttt 5-4
5.7 AdAressing MOUESocueeiieiiiiiiee it 5-5
5.8 Assembler direCtiVeS ... 5-9
5.8.1 Directives controlling the storage of Valuescccecvenncininrnsissseinns 5-9
5.8.2 Directives controlling storage allocation ..., 5-9
583 SYMBOL hANAIING ...oouvivii s 5-11
5.9 AlIGNMENT e 5-11
6 CRIS Compiler SpecifiCScooiiiiiiiiiiiiiiaa. 6-1
6.1 CRIS compiler OptioNnsc.coeeviiiiieeier e
6.2 CRIS PreproCessSOr MACKOScoovviiivirieieeaeasaariiiiereeeeaaeseaennes
6.3 The CRIS ABI ..ot
6.3.1 INEFOAUCTION ..oooiii s
6.3.2 CRIS GCC Fundamental Data Types
6.3.3 CRIS GCC Object Memory Layout
6.3.4 CRIS GCC Calling Convention
6.3.5 Stack Frame LaYOULccccovvvieieiiiseeiesiss s enss
7 The ETRAX 4 e
7.1 INEFOAUCTION ...eiiiiii e 7-1
7.2 Special FEQISTEISoviiiiiiii e 7-1
7.3 Flags and condition COAESccovvuiiiiiiiiiiieiieee e 7-2
7.4 Data organization in MemMOTrYccccccoiiiieiiiiiiee e 7-3
7.5 Branches, jumps and subroutingscccccccvevveeeviiieeesinenennn 7-4
7.6 Interrupts and breakpoints in the ETRAX 4ccocceiiiinens 7-5
7.7 Reset in the ETRAX 4 ..t 7-5

iv AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

Table of Contents

7.7.1 ROM DOOT ...t e e s e 7-5
7.7.2 Automatic program doOWNIOAd ... 7-6
7.8 DM A 7-8
781 The ETRAX A DMA ..ottt sss st sss b s s ss s s 7-10
7.9 INSErUCTION SET .o 7-7
79.1 Differences in the INSLFUCTIONSc.ccviiceeee e sssesens 7-10
7.10 Execution times for the ETRAX 4 ...vvvviiiiiiiiiiieeeee e, 7-8
7.10.1 Introductioncccevervinnee . 7-8
7.10.2 INSEruction EXECULION TIMESc.cccoeviiireeieeeseses e 7-8
7.10.3 Complex addressing modes eXecution times ... 7-10
7.104 Interrupt acknowledge execution time ... 7-10
7.105 DMA transfer XeCULION tIMEcc.coueierieeee e sssessns 7-10

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) v

Table of Contents

Vi

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

Introduction

INTRODUCTION

Preface

Our goal in developing the ETRAX 100LX is to have a single chip solution for
peripheral server applications on a Fast Ethernet. It is used in the AXIS
ThinServerTechnology, but also enables designers to build embedded servers with an
excellent price/performance ratio required by the growing market of network and
web appliances.

About AXxis

Axis Communications is dedicated to providing innovative solutions for network-
connected computer peripherals. Since the company started in 1984, Axis has been
one of the fastest growing companies in the market, and is now a leader in its field.

ThinServer™ Technology - The core of all Axis’ products, ThinServer™
technology enables our products to act as intelligent file server independent
ThinServer™ devices. A ThinServer™ device is a network server which includes
“thin” embedded server software capable of simultaneous multiprotocol
communication, scalable RISC hardware, and a built-in Web server which allows
easy access and management via any standard Web browser. ThinServer™
technology makes it possible to connect any electronic device to the network, thus
providing “Access to everything”.

Today, Axis Communications is offering ThinServer™ technology as well as six
major ThinServer™ product lines consisting of:

Network Print Servers - offer you a powerful and cost-efficient method for sharing
printer resources in your network. They connect to any standard printer, featuring
high performance, simple management, and easy upgrading across the network. The
print servers are available in Ethernet, Fast Ethernet and Token Ring versions.

IBM Mainframe and S/3x - AS/400 Print Servers and Protocol Converters -

includes a wide range of LAN, coax and twinax attached print servers for the IBM
host environment. By emulating IBM devices, these servers provide conversion of the
IPDS, SCS, and 3270DS data streams to the major ASCII printer languages.

Network Attached Optical Media Servers - provide you with a flexible and cost-
efficient solution for sharing CD-ROMs, DVD-ROMs, and other optical media

across the network. They are available in Ethernet, Fast Ethernet and Token Ring
versions.

Network Attached Storage Servers - offer network connectivity for re-writable
media such as hard disks and lomega Jaz cartridges, which via the storage server, can
be backed up on DAT tapes. They are only available in Ethernet versions.

Network Camera Servers - provide live images using standard Internet technology,
thus enabling access to live cameras via any standard Web browser. They offer a
perfect solution for remote surveillance over the Internet, and their sharp images can
bring life into any web site. These servers support Ethernet as well as PSTN and
GSM phone lines.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) vii

Introduction

viii

Network Scan Servers - enable easy distribution of paper-based information across
workgroups and the enterprise. By sending the scanned documents to your
destination via the Internet/intranet, you will reduce your faxing/mailing costs, as
well as save time, thus improving your organization efficiency.

Support Services

Should you require any technical assistance, please contact your Axis dealer. If they
can not answer you questions immediately, your Axis dealer will forward your queries
through the appropriate channels to ensure you a rapid response.

If you are connected to the Internet, you will find on-line manuals, technical support,
firmware updates, application software, company information, on the addresses listed
below.

http://www.axis.com
WWW: http://www.se.axis.com

http://developer.axis.com

Support email address: technology@axis.com

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

1 Architectural Description

1 ARCHITECTURAL DESCRIPTION

1.1 Registers

The processor contains fourteen 32-bit general registers (RO - R13), one 32-bit Stack
Pointer (R14 or SP), and one 32-bit Program Counter (R15 or PC).

The processor architecture also defines 16 special registers (PO - P15), ten of which are
implemented. The special registers are:

Mnemonic Reg. no. Description Width
PO Constant zero register 8 bits
VR P1 \ersion Register 8 bits
P4 Constant zero register 16 bits
CCR P5 Condition Code Register 16 bits
MOF P7 Multiply Overflow register 32 bits
P8 Constant zero register 32 bits
IBR P9 Interrupt Base Register 32 bits
The upper 16 bits are implemented. The lower 16 bits are
always zero.
IRP P10 Interrupt Return Pointer 32 bits
SRP P11 Subroutine Return Pointer 32 bits
BAR P12 Breakpoint Address Register 32 bits

This register contains an address for a hardware breakpoint. The
breakpoint is enabled with the B flag.

DCCR P13 Dword Condition Code Register 32 bits
The lower 16 bits are the same as the CCR. The upper 16 bits
are always zero.

BRP P14 Breakpoint Return Pointer 32 bits
This register contains the return address after a breakpoint,
NMI instruction, or a hardware breakpoint.

USP P15 User mode Stack Pointer 32 bits

Table 1-1 Special registers

Three of the unimplemented special registers (PO, P4 and P8) are reserved as “zero
registers”. A read from any of those “registers” returns zero. A write to them has no
effect. The zero registers are used implicitly by some instructions (e.g. CLEAR). You
will never need to use the zero registers explicitly.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 1-1

1 Architectural Description

General registers:

31 16 15 87 0

RO - R13: General registers

SP or R14: Stack Pointer

PC or R15: Program Counter

Figure 1-1 General Registers

Special registers:

T ! (PO) Constant zero register
‘:l VR (P1) Version Register

| (P2) Reserved

| (P3) Reserved

: (P4) Constant zero register

| CCR (P5) Condition Code Register
|
|
1

31 16; (P6) Reserved
MOF (P7) Multiply Overflow register

(P8) Constant zero register

IBR (P9) Interrupt Base Register

IRP (P10) Interrupt Return Pointer

SRP (P11) Subroutine Return Pointer

BAR (P12) Breakpoint Address Register
DCCR (P13) Dword Condition Code Register
BRP (P14) Breakpoint Return Pointer

USP (P15) User mode Stack Pointer

Figure 1-2 Special registers

1-2 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

1 Architectural Description

1.2 Flags and condition codes

The Condition Code Register (CCR) and Dword Condition Code Register (DCCR)
for the ETRAX 100LX contain eleven different flags. The remaining bits are always
zero:

msb 10 0

0 FIP|UM|B|I |X|N|Z]|V]|C

Interrupt acknowledge flag J

Write failed flag

User mode flag

NMI flag

Breakpoint enable flag

Interrupt enable flag

Extended arithmetic flag

Negative flag

Zero flag

Overflow flag

Carry flag

Figure 1-3 The Condition Code Register (CCR)/ Dword Condition Code Register (DCCR)

These flags can be tested using one of thel6 condition codes specified below:

Code Alt Condition Encoding Boolean function
ccC HS Carry Clear 0000 [}

€S LO Carry Set 0001 C

NE Not Equal 0010 z

EQ Equal 0011 A

vC Overflow Clear 0100 Y

VS Overflow Set 0101 \Y

PL Plus 0110 N

Ml Minus 0111 N

LS Low or Same 1000 C+Z

HI High 1001 Cs+Z

GE Greater or Equal 1010 N+V+Nx+V

LT Less Than 1011 N+«V+N«V

GT Greater Than 1100 N+*V+Z+Nx«V+Z
LE Less or Equal 1101 Z+N+V+N«V
A Always true 1110 1

WF Write Failed 1111 P

Table 1-2 Condition codes

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 1-3

1 Architectural Description

The behavior of the flags for different instructions is described in chapter 2. In those
cases where the new value of the flag is not specified explicitly, the following applies:

General case:
N = Rmgp
Z =Rpgp * o * Rigp * (Z + X)
Addition: (ADD, ADDQ, ADDS and ADDU)
N = Rpngy
Z =Rpgp * o * Rigp * (Z + X)
V = Sist * Dimsh * Rimsb + Smsb * Dimsh * Rmsb
C = S * Dinsy * Dimst * Rensb + Ssto * Rmst
Subtraction: (CMP, CMPQ, CMPS, CMPU, NEG, SUB, SUBQ, SUBS and SUBU)
N = Rep
Z =Ripgp * - * Rigp * (Z + X)
V = Sisb * Dimgh * Rmsb * Smsp * Dimsb * Rmsp
C = Sish * Dimsb * Dimsb * Rmsb + Smmsb * Rmsb
Multiply: (MULS and MULU)
N = MOF 5
Z =MOFp * .- + MOFIsb * Rmsb * ... * Rlsb * (Z + X)
MULS: V = MOF g + + MOF,
MULU: V = (MOFpygp + .. + MOFisp) « Rpsp) + ((MOFppgp + ... + MOFygp) # Ringp)
Bit test: (BTST and BTSTQ)
N=D,
Z=Dp# ...« Digy x (Z+X)
Move to memory:
P=FxX
Move to CCR: (MOVE s, CCR and POP CCR)
F P U,B, I, N,Z,V, C are set according to source data.
X always cleared.
M not affected.
Condition code manipulation: (SETF and CLEARF)
B, I, X, N, V, C are set or cleared according to mask bits in the instruction.
M can be set by SETF, but not be cleared.
If X is not on the list, it is cleared.
F, P are cleared by CLEARF, but are not affected by SETF.
U is not affected.
Table 1-3 flag behavior

Explanations:

Smsb = Most significant bit of source operand
Dpnsp = Most significant bit of destination operand
D,, = Selected bit in the destination operand

Djsp = Least significant bit of destination operand
Rmsb = Most significant bit of result operand

Risp = Least significant bit of result operand

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

1 Architectural Description

Data organization in memory

Data types supported by the CRIS are:

Name Description Size Modifier
Byte 8-bit integer .B
Word 16-bit integer W
Dword 32-bit integer or address .D

Table 1-4 Data types supported by the CRIS

Each address location contains one byte of data. Data is stored in memory with the
least significant byte at the lowest address (“little endian”). The CRIS CPU in the
ETRAX 100LX has a 32-bit wide data bus. A conversion from 32 bits to 16 bits is
performed by the bus interface in the case of an external 16-bit data bus mode.

Data can be aligned to any address. If the data crosses a 32-bit boundary, the CPU
will split the data access into two separate accesses. So, the use of unaligned word and
dword data will degrade performance.

The figures below show examples of data organization with a 16-bit bus and a 32-bit
bus:

Example of a structure layout:

struct exanple

{

byte a;
byte b;
word c;
dword d;
byte e;
word f;
dword g;
b
Odd address Even address Address
115 0,
| | | | | | | | | | | | | |
Byte b Byte a An
msb Wo}d c Isb| An+2
T
I Isb| An+4
———————————————— Dwordd ———=—————=—=—————1
msb ‘ An +6
Word f Isb Byte e An + 8
_________________ Isb | msb Word f An + 10
Dword g An +12
msb An + 14

Figure 1-4 Data organization with a 16-bit bus

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 1-5

1 Architectural Description

1.4

| An+3 | An+2 | An+1 | An | Address
31 24 23 16 15 8,7 0
msb Word ¢ Isb Byte b Byte a An
msb ! Dword d Isb An + 4
Dword g Isb | msb Ward f Isb Byte e An+8
fomm oo msb : Dword g X An + 12

Figure 1-5 Data Organization with a 32-bit bus

Instruction format

The basic instruction word is 16 bits long, and instructions must be word (16 bits)
aligned.

When the CPU fetches 32 bits, containing two 16-bit aligned instructions, it saves
the upper two bytes in an internal prefetch register. Thus, the CPU will only perform
one read for every second instruction when running consecutive code.

The most common instructions follow the same general instruction format:

15 0
T T T T T T T T T T T
Operand2 Mode Opcode Size Operand1
| | | | | | | | |

Figure 1-6 General instruction format

The basic instruction word can be combined with immediate data and/or Addressing
mode prefix words to form more complex instructions, see section 1.5 Addressing
modes.

The Opcode field selects which instruction should be executed. For some opcodes, the
meaning of the opcode is different depending on its Size and/or Mode field.

The Operand1 field selects one of the operands for the instruction, usually the source
operand. Depending on the Mode field, the selected operand is either a general
register or a memory location pointed to by the selected register.

The Operand2 field selects the other operand for the instruction, usually the
destination operand. The selected operand can be a general or special register, or a
condition code.

The Mode field specifies the addressing mode of the instruction. The Mode field
affects only the operand of the Operand1 field. The following addressing modes can
be specified within the basic instruction word:

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

1 Architectural Description

Code Mode
00 Quick immediate mode
01 Register mode
10 Indirect mode
11 Autoincrement mode

Table 1-5 The Mode Field of the Instruction Format

The Size field selects the size of the operation. For most of the instructions, the rest of
the register is unaffected by the operation. Three different sizes are available:

Code Size
00 Byte (8 bits)
01 Word (16 bits)
10 Dword (32 bits)
Table 1-6

The Size code 11 is used in conjunction with the Opcode field to encode special
instructions that do not need different sizes.

1.5 Addressing modes

151 General
The CRIS CPU has four basic addressing modes, which are encoded in the Mode
field of the instruction word. The basic addressing modes are:
e Quick immediate mode
e Register mode
e Indirect mode
e Autoincrement mode (with Immediate mode as a special case)

More complex addressing modes can be achieved by combining the basic instruction
word with an Addressing mode prefix word. The complex addressing modes are:

e Indexed

e Indexed with assign
e Offset

e Offset with assign

e Double indirect

e Absolute

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 1-7

1 Architectural Description

15.2

153

154

Quick immediate addressing mode

In the Quick immediate addressing mode, the size and Operand1 fields of the
instruction are combined into a 6-bit Immediate value, extended to 32 bits, or
interpreted as a 5-bit shift count.

The 6-bit immediate value may be sign or zero extended depending on the
instruction.

15 0
I I I I I I I I I I I I
Operand2 Mode Opcode Immediate value
| | | | | | | | | | | |

Figure 1-7 Quick immediate addressing mode instruction format

Assembler syntax: <expressi on>
Example: 12

Register addressing mode

In the Register addressing mode, the operand is contained in the register specified by
the Operandl or Operand?2 field. The register can be a general register or a special
register depending on the instruction.

General register addressing mode

Assembler syntax: Rn
Example: R6

Special register addressing mode

Assembler syntax: Pn
Example: SRP

Indirect addressing mode

In the Indirect addressing mode, the operand is contained in the memory location
pointed to by the register specified by the Operand1 field.

Assembler syntax: [Rn]
Example: [R6]

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

1 Architectural Description

155

156

General register Rn Memory address

Memory address Operand

Figure 1-8 Indirect addressing mode

Autoincrement addressing mode

In the Autoincrement addressing mode, the operand is contained in the memory
location pointed to by the register specified by the Operand1 field. After the operand
address is used, the specified register is incremented by 1, 2 or 4, depending upon the
size of the operand.

Assembler syntax: [Rn+]
Example: [R6+]
31 0
General register Rn Memory address

Operand size (1,2 or 4) é

Memory address Operand

Figure 1-9 Autoincrement addressing mode
Immediate addressing mode

The Immediate addressing mode is a special case of the Autoincrement addressing
mode, with PC as the address register. The immediate value follows directly after the
instruction word. When the immediate data size is byte, PC will be incremented by 2
to maintain word alignment of instructions.

Assembler syntax: <expressi on>
Example: 325

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 1-9

1 Architectural Description

1.5.7

158

1-10

Indexed addressing mode

This addressing mode requires the basic instruction word to be preceded by one
Addressing mode prefix word, formatted as shown below:

15 0
T T T T T T T T T T T T
Index register 0 1 0 1 0 1 Size Base register

| | | | |

Figure 1-10 Indexed addressing mode prefix format

The address of the operand is the sum of the contents of the Base register and the
shifted contents of the Index register. The contents of the Index register is shifted left
0, 1 or 2 steps depending upon the Size field of the Addressing mode prefix.

Note that the Size field of the Addressing mode prefix only affects the shift of the
index value, not the size of the operand. The size of the operand is selected by the
Size field of the basic instruction word.

When PC is used as the Base register, the value used will be the address of the
instruction following the modified instruction. When PC is used as the Index
Register, the value used will be the address of the modified instruction.

Assembler syntax: [Rn + Rm nj
Example: [R6 + R7.B]
31 0
Base register Rn Base address
Index register Rm Index

Operand size (1,2 or 4) /L <.|>

&/

Memory address Operand

Figure 1-11 Indexed addressing mode

Indexed with assign addressing mode

The Indexed with assign addressing mode is similar to the Indexed addressing mode.
The difference is that the resulting address not only selects the operand, but is also
stored to a general register.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

1 Architectural Description

15.9

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

The Indexed with assign addressing mode requires a prefix word of the same format
as the Indexed mode. The selection between Indexed and Indexed with assign
addressing mode is made by the mode field of the basic instruction word:

Code

10
11

Table 1-7

Assembler syntax:

Example:

Figure 1-12

Base register Rn

Index register Rm

Addressing mode

Indexed

Indexed with assign

Operand size (1, 2 or 4)

General register Rp

Memory address

31

p— p—

88

= Rn + Rmnj
R6 + R7.B]

Base address

Index

J
©

Result address

Operand

T 1 4

Indexed with assign addressing mode

Offset addressing mode

This addressing mode requires the basic instruction word to be preceded by one
Addressing mode prefix word. The general format for the prefix word is shown

below:

15

I I I
Base register
| | |

md

Figure 1-13 Offset addressing mode prefix format

The address of the operand is the sum of the contents of the Base register and a
signed offset. In the general case, the offset is referenced with the indirect (md = 0) or
autoincrement (md = 1) mode. The size of the offset can be byte, word or dword.

1 Architectural Description

A special format is used for byte-sized immediate offsets. In this case, the offset is
included in the prefix word:

15 0
I I I I I I I I I I I I I
Base register 0 0 0 1 Signed offset
| | | | | | | | | | | | |

Figure 1-14 Immediate byte offset addressing mode prefix format

Word or dword sized immediate offsets use the general prefix format, with md = 1
and offset = PC. In this case, the immediate offset word(s) will be placed between the
Prefix word and the Basic instruction word, see example below:

Address
15 0
Prefix word An
Isb An + 2
------------------------ Offset-----------------------1
msb An+4
Basic instruction word An+6

Figure 1-15 Instruction with dword sized immediate offset

When PC is used as the Base register, the value used will be the address of the Basic
instruction word.

Immediate offset addressing mode

+

Assembler syntax: [Rn <expressi on>]
Example: [R6 + 27]

Indirect offset addressing mode

Assembler syntax: [Rn + .m
Example: [R6 + [R7]. B]
Autoincrement offset addressing mode

Assembler syntax: [Rn + [RM] . nj
Example: [R6 + [R7+]. B]

1-12 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

1 Architectural Description

1.5.10

31

Base register Rn |

Base address

Offset address register Rm |

Offset address |

Offsetsize (1,20r4) --——- .,'\"-F‘;‘

(If Autoincrement mode)

Offset memory address |

Signed offset

Operand memory address |

Operand

Figure 1-16 Offset addressing mode (general case)

Offset with assign addressing mode

The Offset with assign addressing mode is similar to the Offset addressing mode. The
difference is that the resulting address not only selects the operand, but is also stored

to a general register.

The Offset with assign mode requires a prefix word of the same format as for the
Offset mode. The selection between the Offset and the Offset with assign addressing
mode is made by the Mode field of the basic instruction word:

Code Addressing mode

10 Offset
11 Offset with assign
Table 1-8

Immediate offset with assign addressing mode

Assembler syntax: [Rp =
Example: [R8 =
Indirect offset with assign addressing mode

Assembler syntax: [Rp =
Example: [R8 =

Rn
R6

Rn + <expressi on>]
R6 + 27]

+ +
23
=3

Autoincrement offset with assign addressing mode

Assembler syntax: [Rp
Example: [R8

Rn + [Rm+]. nj
R6 + [R7+].B]

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 1-13

1 Architectural Description

1511

Figure 1-17

31 0
Base register Rn | Base address
Offset address register Rm | Offset address |
Offset size (1,2 0r4) ----- -+]
(If Autoincrement mode) -
Offset memory sddress | Signed offset
General register Rp | Result address
Operand memory address | Operand

)
|__
|__

Offset with assigned addressing mode (general case)

Double indirect addressing mode

The Double indirect addressing mode requires the basic instruction word to be

preceded by one Addressing mode prefix word, formatted as shown below:

0 0 0 1 |md| O 1 0 1 1 1

Figure 1-18

In the Double indirect addressing mode, the register specified by the Source field of
the prefix word points to a memory address that contains the address of the operand.
The specified register may be left unchanged (md = 0) or incremented by 4 after it is

used (md =

Double indirect addressing mode prefix Format

1).

Double indirect addressing mode

Assembler syntax:

Example:

[[Rn]]
[[Re]]

Double indirect with autoincrement addressing mode

Assembler syntax: [[Rn+]]

Example:

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

[[R6+]]

1 Architectural Description

1512

1.5.13

31 0
General tegister Rn | Memory address
1
4 (If Autoincrement mode) ----- N+M
Memory address | Memory address
Memory address Operand

Figure 1-19 Double indirect addressing mode

Absolute addressing mode

The Absolute addressing mode is a special case of the Double indirect with
autoincrement mode, with PC as the source register. The Absolute address will be
placed between the Prefix word and the Basic instruction word:

Address
15 0
Prefix word An
Isb An+2
-------------------- Absolute address-------------------1
msb An+4
Basic instruction word An + 6

Figure 1-20 Instruction with absolute address

Assembler syntax: [<expressi on>]
Example: [3245]

Multiple addressing mode prefix words

The CRIS CPU is designed to accept multiple consecutive Addressing mode prefix
words, where the calculated address from the first Prefix word replaces the Operandl
field of the second Prefix word. This can be done in an unlimited number of levels.

The addressing modes resulting from consecutive prefix words are not supported by
the assembler or the disassembler.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 1-15

1 Architectural Description

1.6

16.1

Branches, jumps and subroutines
Conditional branch

The Bcc instruction (where cc represents one of the 16 condition codes described in
section 1.2) is a conditional relative branch instruction. If the specified condition is
true, a signed immediate offset is added to the PC.

The Bcc instruction exists in two forms, one with an 8-bit offset contained within the
basic instruction word, and one with a 16-bit immediate offset following directly
after the instruction word. The assembler automatically selects between the 8-bit
offset and the 16-bit offset form.

The Bcc instruction is a delayed branch instruction. This means that the instruction
following directly after the Bcc instruction will always be executed, even if the branch
is taken. The instruction position following the Bcc instruction is called a delay slot.

Example:
MOVEQ 4, RO
LOCP:
BNE LOOoP
SUBQ 1, R0 ; Delay slot instruction, executed

; even if the branch is taken.

The branch to LOOP will be taken 4 times, and register RO decremented by 1 after
each turn. After leaving the loop, RO will have the value -1.

There are some restrictions as to which instructions can be placed in the delay slot.
Valid instructions for the delay slots are all instructions except:

e Bce

e BREAK/IBRC/JIR/JIIRC/IMPU/JSR/ISRC/JUMP
e RET/RETB/RETI

e Instructions using Addressing mode prefix words.

e Immediate addressing other than Quick Immediate

The maximum offset range that can be reached by the Bcc instruction directly is
-32768 - +32766. If a larger offset is needed, the branch must be combined with a
jump to reach the branch target. The assembler resolves this situation automatically,
and inserts the necessary code. The assembler can optionally give a warning message
each time it makes this adjustment.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

1 Architectural Description

1.6.2

1.6.3

Jump instructions

The JUMP instruction is an unconditional absolute jump instruction. This
instruction can be used with all different addressing modes described in section 1.5
Addressing modes, except Quick Immediate. The resulting operand is taken as the
jump target address, and is stored to PC.

Examples:

JUWP R3 ; Junp target is the address contained
; in register R3.

JUWP 346 ; Junp to address 346.

JUWP [346] ; Read junp target address from menory
; address 346.

JUWP [SP+] ; Pop junp target address from stack.
; This is useful as a subroutine
; return instruction, see 1.6.5.

JUWP [PC+R3. O] ; Junp via junp table. The contents of

. DWORD LO ; register R3 is used as an index for

. DWORD L1 ; the table.

. DWORD Ln

The JMPU instruction is similar to JUMP except that JMPU causes a transition to
user mode if the U flag is set, while JUMP never affects the operation mode. IMPU
can not be used with the register addressing mode.

In contrast to the Bcc instruction, the JIMPU and JUMP instructions take action
immediately.

Implicit jumps

For many of the instructions in the CRIS instruction set, PC can be specified as the
destination operand. When PC is used in this way, the result of the instruction will
act as a jump target address.

The CPU will, in this case, require an extra execution cycle to compute the new
address, but the instruction following the implicit jump instruction will not be
executed.

The most useful instructions for implicit jumps are ADD, ADDS, ADDU, SUB,
SUBS and SUBU, which result in unconditional relative jumps, see example in 1.6.4.

The following instructions do not support PC as the destination operand:

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 1-17

1 Architectural Description

16.4

ADDI, BOUND, DSTEP, LSL, LSLQ, LSR,
LSRQ, MSTEP, MULS, MULU, NEG, NOT,
Scc, SWAP

Switches and table jumps

A common element in many high level languages is the switch statement. A typical
switch construct in C can look like this:

switch (sel _val)

{
case 6:
=b+c
br eak
case 7.
=a* (c- b +2
br eak
case 8:
—a+c+d
br eak
defaul t:
c=a+hb
break;
}

A switch construct in the CRIS assembler can be implemented in several different
ways. Two examples based on jump tables are shown below. The first example uses a
table of absolute addresses, the second example one uses relative addressing.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

1 Architectural Description

Example of a switch construct with a table of absolute addresses:

MOVE [sel _val],R0
SUBQ 6, RO

BOUND. D 3, R0

JUWP [PC+RO. D]
. DWORD L6
. DWORD L7
. DWORD L8
. DWORD L_DEF
L6:
(Perform case 6)
BA L_END
O or NCP
L7:
(Performcase 7)
BA L_END
O or NCP
L8:
(Perform case 8)
BA L_END
O or NCP
L_DEF:
(Performdefault case)
L_END:

Load sel ector value to RO.

Adj ust table index by subtracting
the | owest sel ector val ue.

Adj ust index to point to the default
case if it is out of range.

Tabl e junp:

Address to case 6

Address to case 7

Address to case 8

Address to default case

Br eak
Del ay sl ot

Br eak
Del ay sl ot

Br eak
Del ay sl ot

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 1-19

1 Architectural Description

Example of a switch construct with a table of relative addresses (this is the model used
by the CRIS GNU C Compiler):

MOVE [sel _val],R0 ; Load selector value to RO.

SUBQ 6, RO ; Adjust table index by subtracting
BOUND. D 3, R0 ; the lowest selector val ue.

ADDS. W [PC+RO. W, PC ; Adjust index to point to the default

; case if it is out of range.
; Inplicit relative table junp:

L_TABLE:

. WORD L6 - L TABLE : Address to case 6

. \ORD L7 - L_TABLE ; Address to case 7

. WORD L8 - L TABLE : Address to case 8

. V\ORD L_DEF - L_TABLE ; Address to default case
L6:

(Perform case 6)

BA L_END . Break

Qo or NOP ; Delay sl ot
L7:

(Perform case 7)

BA L_END . Break

Qo or NOP ; Delay sl ot
L8:

(Perform case 8)

BA L_END . Break

O or NOP ; Delay sl ot
L_DEF:

(Perform default case)
L_END:

1-20 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

1 Architectural Description

1.6.5

Subroutines

The JSR instruction of the CRIS CPU does not automatically push the return
address for a subroutine on the stack. Instead, the return address is stored in a special
register called the Subroutine Return Pointer (SRP).

For terminal subroutines (subroutines that do not call other subroutines), the return
address can be kept in the SRP throughout the subroutine. In this way, the overhead
for a subroutine call can be reduced to two single-cycle instructions.

For non-terminal subroutines, the contents of the SRP must be explicitly pushed on
the stack. It is preferred that this is done as the first instruction of the subroutine.

This method results in two different ways of returning from a subroutine. Note that
the RET instruction is a delayed jump with one delay slot, but the JUMP instruction
is performed immediately. See examples below:

Terminal subroutine

SUB_ENTRY:
: ; Pushing of SRP is not needed.

(Performdesired function)

RET ; Return: Take address from SRP.
Op or NOP ; Delay slot after return.

Non-terminal subroutine

SUB_ENTRY:
PUSH SRP ; Pushing of SRP on to the stack.

(Performdesired function)

JUWP [SP+] ; Return: Take address from stack.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 1-21

1 Architectural Description

1.6.6 The JBRC, JIRC and JSRC subroutine instructions

The subroutine instruction, Jump to Subroutine with Context (JSRC), adds 4 to the
return address stored to the SRP register. This leaves four bytes unused between the
JSRC instruction and the return point. These four bytes can, for example, be used for
C++ exception handling information.

JSR instruction A JSRC instruction A
Return to here A+2
Unused A+2
Return to here A+6

Figure 1-21 The JSRC instruction

In the case of immediate addressing, the unused bytes are placed after the immediate
value:

JSR instruction A JSRC instruction A
Immediate jump Immediate jump
target address A2 target address At+2
Ret toh A+6
eturn to here Unused A+6
Return to here A+10

Figure 1-22 Immediate addressing of JSRC

The Jump to Breakpoint Routine with Context (JBRC) instruction, and the Jump to
Interrupt Routine with Context (JIRC) instruction act just like JSRC except that
instead of storing the return address to the SRP register, JBRC stores the return
address to the BRP register, and JIRC stores the return address to the IRP register.

1-22 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

1 Architectural Description

1.7

171

MMU support
Overview

To support the Memory management unit (MMU) incorporated with the ETRAX
100LX, a number of features have been included in the CRIS architecture:

e The CPU can be in one of two different operation modes: User mode and
Supervisor mode. The MMU uses the operation mode to select the appropriate
mapping between logical and physical addresses.

e The Bus fault is a mechanism that can interrupt the CPU in any cycle, not only
at instruction boundaries. This is needed because the MMU can get a page miss
in any cycle. The bus fault mechanism also gives a straightforward way to include
single step capability.

e With the introduction of the bus fault mechanism, integral read-write operations
can not be achieved by just disabling the interrupt. Instead, another method is
used, see 1.13 Integral read-write operations.

The user and supervisor modes have different stack pointers. In both modes, the user
mode stack pointer can be referenced as USP, while the currently active stack pointer
is referenced as SP (or R14). Thus, in user mode, SP and USP refer to the same
register while in supervisor mode, they are separate registers.

Note that the U flag does not indicate the current mode. The U flag is set by bus
faults, interrupts, and BREAK instructions depending on the preceding mode. It is
used by the instructions that affect the operation mode (JMPU, RBF, RETB, and
RET]I) to determine which mode will be selected.

The following CRIS instructions are included specifically for MMU support:
e SBFS (Save Bus Fault Status)

e RBF (Return from Bus Fault)

e JMPU (Jump, set user mode if U flag is set)

The SBFS and RBF instructions are used at the entry and exit of the bus fault
interrupt routine. They save and restore a 16 byte CPU status record containing the
information necessary to resume the operation that was interrupted by the bus fault.

JMPU is intended for return from ordinary interrupt routines where the IRP (or
BRP) has been pushed on the stack. By looking at the U flag, JIMPU can return to the
operation mode that was valid before the interrupt occurred. In the case where the
return address from the interrupt routine is kept in the IRP or BRP register, the
RETI or RETB instructions will, in the same way, return to the correct operation
mode.

This document only describes the CRIS CPU architecture features for MMU
support. For information about the ETRAX 100LX Memory Management Unit
itself, and for the single step capability, see the ETRAX 100LX Designer’s Reference
Manual.

These MMU support features are not available in CRIS implementations prior to the
ETRAX 100LX.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 1-23

1 Architectural Description

1.7.2

1.7.3

1-24

Protected registers and flags

A few registers and flags need to be protected from being modified while the CPU is
in user mode. The protected registers and flags are:

e IBR (Interrupt Base Register)

e BAR (Breakpoint Address Register)

« M flag (NMI enable flag)

e B flag (HW Breakpoint enable flag)

e | flag (Interrupt enable flag)

An attempt to modify a protected register while in user mode will just be silently
denied. It will not cause any exception. The protected registers are readable in both
user and supervisor modes.

Transition between operation modes

A transition between the user and supervisor modes can take place for the following
reasons:

Transition to user mode:

e JMPU with the U flag set
¢ RBF with the U flag set

e RETI with the U flag set
e RETB with the U flag set

Transition to supervisor mode:

e System reset

e BREAK instruction

e Interrupt (including NMI and HW break)
e Bus fault

The stack pointers will be automatically exchanged at a transition between the user
and supervisor modes.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

1 Architectural Description

1.7.4 Bus fault sequence

When an external unit (e.g. MMU) signals a Bus Fault, the CPU will interrupt
immediately at the end of the CPU clock cycle and enter a Bus Fault sequence.

The Bus Fault sequence is similar to the ordinary interrupt sequence, see section 1.8

Interrupts. The steps in the sequence are:

1 Bus Fault INTA cycle. This cycle will be an idle bus cycle. The following is a

pseudo code description of the bus fault INTA cycle operations:
if (current nmode == user node)

{
Uflag = 1;
Exchange stack pointers;
}
el se
{
Uflag = 0;
}
current node = supervi sor node;
Fflag = 1;

hi dden CPU status registers = current CPU status;

Interrupt vector read cycle. In this cycle the CPU will read the interrupt vector for
the Bus Fault interrupt routine. If the bus fault was caused by the single step unit,
the interrupt vector number will be 0x20, otherwise it will be 0x2e. If both the
MMU and single step bus fault occur at the same time, single step will have
priority.

Start execution of the Bus Fault interrupt routine at the address given by the
interrupt vector.

When entering into the Bus Fault interrupt routine, the internal CPU status is
present in hidden CPU status registers. This status has to be saved to the memory
using the SBFS instruction as the first instruction in the interrupt routine.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 1-25

1 Architectural Description

1.75

Format of the CPU status record

The format of the CPU status record is as follows:

Figure 1-23

PC field

31 0
PC An
Instruction Execution state An+4
Interrupted address An+8
Data An + 12

First, the PC field contains the value of PC immediately after the interrupted cycle.
For example, if the bus fault occurs on an instruction fetch at address A in a linear
instruction stream, the PC field will contain the value A + 2.

Execution state field

The Execution state field contains a number of flags that enables the CPU to restart in
the correct execution state. The flags are:

Bit number

15-9

0

Table 1-9 Execution state field flags

Flag name

Reserved

Old F flag

User mode flag

Arithmetic extend flag

Unaligned flag

Data cycle flag

RETI/RETB delay slot
flag

Delay slot flag

Address prefix flag

Interrupt vector flag

Description

These bits are written as 0's by SBFS. To ensure compatibility with
future implementations, these bits should not be modified by the
SW. If you generate the CPU status record by the SW (not using a
status record saved with SBFS), these bits should be set to 0’s. The
bits are ignored by the current implementation of the RBF
instruction.

This bit is set according to the status of the F flag immediately
after the interrupted cycle (i.e. before it was set by the bus fault).
This bit is ignored by the RBF instruction.

This bit is set according to the status of the U flag immediately
after the interrupted cycle (i.e. before it was modified by the bus
fault).

This bit is set according to the status of the X flag immediately
after the interrupted cycle.

Set if the interrupted cycle was the second cycle of an unaligned
data read or write.

Set if the interrupted cycle was a data read or write (as opposed to
an instruction fetch).

Set if the interrupted cycle was a delay slot of a RETI or RETB
instruction that should take effect.

Set if the interrupted cycle was a delay slot of a taken branch, or a
delay slot of a RET, RETI or RETB instruction that should take
effect.

Set if the interrupted instruction was preceded by an address
prefix.

Set if the interrupted cycle was an interrupt vector read cycle. This
bit is ignored by the RBF instruction.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

1 Architectural Description

Instruction field

If the interrupted cycle was a data read or write (i.e. not an instruction fetch), the
Instruction field contains the opcode of the interrupted instruction. In case the
interrupted instruction was a MOVEM, the destination field (bit 15-12) of the
instruction will hold the register number currently in transfer when the instruction
was interrupted.

If the interrupted cycle was an instruction fetch, the instruction field will contain the
invalid data that was fetched during the interrupted cycle. In this case, the field will
be ignored by the RBF instruction.

Interrupted address field

The Interrupted address field contains the address of the data entity in transfer during
the interrupted cycle. For instruction fetches and for aligned data read/write cycles,
this is always the same as the address output from the CPU during the interrupted
cycle. But for the second cycle of an unaligned data transfer, this field will contain the
address that was output from the CPU during the cycle that came before the
interrupted cycle.

Example:
Address of the data entity in

transfer during the interrupted cycle
(i.e. the interrupted address).

| An+3 | An+2 | | An |

This value will be used regardless
of whether the bus fault occurs at
either An or An + 4.

Data entity in transfer

Figure 1-24

Data field

Finally, the Data field will have different meaning depending on the type of cycle that
was interrupted:

Type of interrupted cycle

Instruction fetch cycle, not preceded
by an address prefix

Instruction fetch cycle preceded by
an address prefix

Aligned data read cycle, or first cycle
of an unaligned data read

Second cycle of an unaligned data
read

Data write cycle

Table 1-10 Data field

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

Definition of the data field

The data field contains the ALU result of the previous instruction. This
data is ignored by the RBF instruction.

The data field contains the address that was calculated by the address
prefix.

The data field contains the invalid data that was read in the interrupted
cycle. This data is ignored by the RBF instruction.

The lower part of the data field contains the valid data that was read in
the first cycle of the data read. The upper part of the data field will
contain the invalid data read in the interrupted cycle. The RBF
instruction will use the lower part and ignore the upper part of the data
field.

The data field will contain the data that was going to be written in the
interrupted cycle.

1 Architectural Description

1.7.6 Programming examples

Go to user mode for the first time:

MOVE CCR, Rn

OR'W 0x100, Rn

MOVE Rn, CCR ; Set Uflag
MOVE user _stack_pointer, USP

JWPU user _nmode_program entry

Bus fault routine:

SBFS [SP=SP- 16]
PUSH DCCR
PUSH regi sters

POP registers
POP DCCR
RBF [SP+]

Disabling interrupt from user mode programs:

In user mode, the I flag is prevented from being changed. This is in general desired to
avoid that user mode programs lock out interrupts. If a user mode program needs to
disable interrupts, this can be achieved by using the BREAK instruction. You can for
example reserve BREAK 0 for this purpose. (The same mechanism can also be used
for other more complicated system calls.)

User mode program:

BREAK 0 ; Junp to breakpointO_entry
: ; and save return address in BRP.

Breakpoint code:
br eakpoi nt 0_entry:

RETB ; Return immediately
DI ; Disable interrupts in the delay slot.

1-28 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

1 Architectural Description

1.8 Interrupts

The CRIS CPU uses vectorized interrupts that are generated either externally to, or
internally by, the ETRAX 100LX. The interrupt acknowledge sequence consists of
the following steps:

1 Perform an INTA cycle, where the 8-bit vector number is read from the bus.

2 Store the contents of PC to the Interrupt Return Pointer (IRP). Note that the
return address is not automatically pushed on the stack.

3 Read the interrupt vector from the address [IBR + <vector number> « 4].
4 Start the execution at the address pointed to by the interrupt vector.

The Interrupt base register (IBR) has bits 31-16 implemented. The remaining bits
are always zero.

Interrupt base register

31 16 0
IBR o[ofo]o]o]o]o]o]o]o]o]o]o]o]o]0]

7 0
| Vector number |0|0|

®
Interrupt vector address

31 0
| IBR O|O|0|0|0|0| Vector number |0|0|

Figure 1-25 Interrupt vector address calculation

The interrupt acknowledge sequence of the CRIS CPU does not automatically push
the condition codes and the interrupt return address on the stack. The interrupt
return address is stored in the Interrupt return pointer (IRP). If nested interrupts are
used, the IRP must be pushed on the stack as the first instruction of the interrupt
routine. The Condition code register (CCR) must always be pushed at the start of an
interrupt routine, and restored at the end.

The Interrupt enable flag is unaffected by the interrupt sequence. However a new
interrupt will not be enabled until after the first instruction of the interrupt routine.
Also, all transfers to and from Special Registers will disable interrupts until the next
instruction is executed. In this way, the IRP and CCR or DCCR can always be
pushed on the stack before a new interrupt is allowed, see examples on the next page.

Note that the RET]I instruction is a delayed jump with one delay slot, but the IMPU
instruction is performed directly. See examples below:

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 1-29

1 Architectural Description

Single level interrupts

| NT_ENTRY:
PUSH DCCR ; Push condition codes onto the stack.
DI ; Disable interrupts.
SUBQ stack of fset, SP ; Reserve stack for used registers.

MOVEM Rn, [SP] ; Save registers.
(Performdesired function)

MOVEM [SP+], Rn ; Restore registers.

RETI ; Return: Take address from | RP.
PoP DCCR ; Restore condition codes (this is

; placed in the delay slot of the
; RETI instruction).

Nested interrupts

I NT_ENTRY:
PUSH | RP ; Push return address onto the stack.
PUSH DCCR : Push condition codes onto the stack.
SUBQ stack_of fset, SP ; Reserve stack for used registers.
; < Interrupts are enabl ed here.

MOVEM Rn, [SP] ; Save registers.
(Performdesired function)

MOVEM [SP+], Rn ; Restore registers.
pPoP DCCR : Restore condition codes.
~ Interrupts are disabled here
cuntil after the return from
; interrupt.
JMPU [SP+] ; Return frominterrupt.

Interrupts (including NMI and HW break) update the U flag according to the
current operating mode, and perform a transition to supervisor mode. The transition
will take place in the INTA cycle so that the interrupt vector is read in supervisor
mode. An interrupt will also set the F flag.

A special case occurs if there is a bus fault in the interrupt vector read cycle. The CPU
can handle the bus fault, and a separate bit is set in the CPU status record. The
interrupt sequence can, however, not be automatically restarted by the RBF
instruction. This case does not have to be considered for MMU functionality because
a bus fault on the interrupt vector table would make it impossible to reach the bus

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

1 Architectural Description

fault interrupt routine anyway. For single step, this case has to be checked for and
taken care of by the single step SW.

181 NMI

The Non Maskable Interrupt (NMI) is handled in the same way as the normal
interrupt except for the following three differences:

1 The return address is stored in the Breakpoint Return Pointer (BRP) instead of the
IRP.

2 The NMI is enabled/disabled by the M flag instead of the I flag. The M flag can
be set with the SETF M instruction. Move to CCR/DCCR has no effect. Once
set, the M flag can only be cleared by an NMI acknowledge cycle or system reset.

3 The INTA cycle will be an idle bus cycle, and the vector number 0x21 is generated
internally in the CPU.

1.9 Software breakpoints

The CRIS CPU has a breakpoint instruction (BREAK n). This instruction saves the
current value of PC in the Breakpoint Return Pointer (BRP) register, and performs a
jump to address (IBR + 8*n).

Interrupt base register

31 0
IBR o[ofo]o]o]o]o]o]o]o]o]o]o]o]o]0]

3 0
[n Jofo]o]

@
Breakpoint routine entry

31 0
| IBR oJoJoJoo]o]o]o]o] n Jo]o]o]

Figure 1-26 Software breakpoint address calculation

1.10 Hardware breakpoint mechanism

The CPU contains a hardware breakpoint mechanism. The hardware breakpoint
address is loaded in the Breakpoint Address Register (BAR), and the hardware
breakpoint mechanism is enabled by setting the Breakpoint enable flag B (see table 1-
1 and figure 1-3).

For each CPU read or write cycle, the address is compared with the contents of the
BAR register. In order to detect a read or write in the dword (and not just a single
byte) of the address location, bit 1 and O are ignored in the comparison. Bit 31 is also
ignored in the comparison since that bit handles the cache in the ETRAX
100LX(address bit 31 set will bypass the cache and directly access the main memory).

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 1-31

1 Architectural Description

1.11

1111

1.11.2

1.11.3

An address hit is handled in the same way as an NMI with interrupt vector number
0x20, except that a breakpoint hit is not affected by the M flag.

The hardware breakpoint mechanism is disabled after reset.

Multiply and divide
General

The ETRAX 100LX implementation of the CRIS CPU has two multiply
instructions: Signed Multiply (MULS) and Unsigned Multiply (MULU). For
compatibility with CRIS implementations not supporting multiply instructions,
multiply operations can also be performed using a sequence of Multiply Step
(MSTEP) instructions.

There are no divide instructions, so divide operations are performed by a sequence of
Divide Step (DSTEP) instructions.

Multiply using MULS and MULU

The MULS and MULU instructions are fast (2 cycle) multiply operations. The
multiply is performed on 32 by 32 bits, giving a 64-bit result. The lower 32 bits are
stored to the destination register specified with the instruction, while the upper 32
bits are stored in the Multiply Overflow (MOF) register.

For multiply with byte or word sized operands, the operands are extended to 32 bits
before the multiply. Sign extend is used with Signed Multiply (MULS), while zero
extend is used with Unsigned Multiply (MULU).

Multiply Using MSTEP

In addition to the MULS and MULU instructions, multiply operations can be
performed using the MSTEP instruction. The MSTEP instruction does the
following:

1 Shifts the destination register one step to the left.

2 If the N flag is set, adds the source operand.

3 Updates the flags.

The example below shows a 16-bit by 16-bit unsigned multiply with 32-bit result.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

1 Architectural Description

16-bit by 16-bit unsigned multiply example:

MJUL_BEG N:

MOVU. W [val uel] ,RO ; Move first operand to a register,
; and clear the upper 16 bits.

MOVU. W [value?] ,R1 ; Move second operand to a register.

LSLQ 16, R1 ; Shift left, clear the lower 16 bits
; of the result register, and set the
; Nflag according to nsb of val ue2.

MSTEP RO, R1 ; Perform 16 iterations of the MSTEP

MSTEP RO, RL ; instruction. Each iteration sets

MSTEP RO, R1 ; the Nflag for next step.

MSTEP RO, RL

MSTEP RO, RL

MSTEP RO, RL

MSTEP RO, RL

MSTEP RO, RL

MSTEP RO, RL

MSTEP RO, RL

MSTEP RO, RL

MSTEP RO, RL

MSTEP RO, RL

MSTEP RO, RL

MSTEP RO, RL

MSTEP RO, RL ; The last iteration. The result is in RL.

1.11.4 Divide

Divide operations can be performed using the DSTEP instruction. The DSTEP
instruction does the following:

1 Shifts the destination register one step to the left.

2 If the destination register is unsigned-greater-than or equal to the source operand,
the source operand is subtracted from the destination register.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 1-33

1 Architectural Description

16-bit by 16-bit unsigned divide example:

Dl V_BEG N:

MOVU. W [nun], R1 ; Move nunmerator to a register,
; and clear the upper 16 bits.

MOVU. W [denoni, RO ; Move denominator to a register.

LSLQ 16, RO ; Shift left, clear the lower 16 bits
; of the denominator register.

SUBQ 1,RO ; Subtract one fromthe denom nator.

DSTEP RO, R1 ; Perform 16 iterations of the DSTEP

DSTEP RO, RL ; instruction.

DSTEP RO, RL

DSTEP RO, RL

DSTEP RO, RL

DSTEP RO, RL

DSTEP RO, RL

DSTEP RO, RL

DSTEP RO, RL

DSTEP RO, RL

DSTEP RO, RL

DSTEP RO, RL

DSTEP RO, RL

DSTEP RO, RL

DSTEP RO, RL

DSTEP RO, R1 ; The last iteration. The quotient is

cin the lower half of RlL, and the
; remainder is in the upper half of of RI.

1-34 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

1 Architectural Description

1.12 Extended arithmetic

Extended arithmetic (arithmetic with more than 32 bits) is supported by using the X
flag. The X flag is set by the AX (SETF X) instruction, and is cleared by all other
instructions.

When the X flag is set, instructions involving an addition or subtraction are modified
in the following ways:

1 The C flag is added to the result of an addition, and subtracted from the result of a
subtraction. This is valid even if the addition/subtraction result is not the result
operand of the instruction.

2 If the result operand is zero, the Z flag will maintain its old value instead of being
set.

3 The change of the Z flag behaviour is valid for all instructions that affect the Z flag
except:

CLEARF,

MOVE to CCR/DCCR,
POP CCR/DCCR,
SETF

The addition/subtraction of the C flag affects the following instructions:

ABS, ADD, ADDI, ADDQ, ADDS,
ADDU, BOUND, CMP, CMPQ, CMPS,
CMPU, DSTEP, MSTEP, NEG, SUB,
SUBQ, SUBS, SUBU

The address calculation in addressing mode prefixes is not affected. The AX
instruction disables the interrupts until the next instruction to ensure that the X flag
is not cleared by an interrupt routine before it is used. Below are two examples of
extended arithmetic.

Add a 48-bit signed value contained in R3:R2 to a 64 bit value stored in R1:RO:

EXT_ADD:
ADD. D R2, RO ; Add the | ow dwords.
AX ; Set the X flag.
ADDS. W R3, R1 ; Add the upper 16 source bits.

Test if a 40-bit value contained in R1:R0 is zero:

EXT_TEST:
TEST. D RO ; Test the lower 32 bits.
AX
TEST. B R1 ; Test upper 8 bhits.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 1-35

1 Architectural Description

1.13

Integral read-write operations

Since a bus fault can interrupt the CPU in any bus cycle (except INTA), it is not
possible to ensure the integrity of a piece of code just by disabling the interrupts or by
only using instructions that lock out interrupts between them. Instead, integral read-
write operations can be implemented by using the Load-locked, Store-conditional
principle:

Start:

Initialize |ock;

Read vari abl e;

Modi fy vari abl e;

Wite back variable if and only if the sequence hasn’'t been interrupted,
Co to Start if wite failed;

The F and P flags, and the branch instruction Branch on Write Failed (BWF), are
used to test whether the write succeeded or failed. See section 1.2 Flags and condition
codes, on page 3.

The F flag is set by the BREAK instruction, when the CPU performs an interrupt
acknowledge, or when a bus fault sequence occurs. The P flag is set when a write to
memory fails because of broken integrity.

The F and P flags are cleared by the CLEARF instruction regardless of the list of
flags. F and P are not affected by the SETF instruction.

A write to memory can be made conditional by setting the X flag in the instruction
before the write. This will affect all instructions that write to memory, except SBFS.

Pseudo code for instructions that write to memory will be:

if (F&X
{

P =1,
}
el se
{

wite to menory;

The BWF instruction has the action: Branch if P is set. It has the same opcodes as the
normal branch instruction, and the condition field of the instruction (bits 15 - 12) is
1111 (binary).

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

1 Architectural Description

A code example of how the features can be used to implement a test-and-clear
function is shown below:

START_LOCK: CLEARF ; CLEARF with an enpty list wll
LOCK_LOOP: MOVE. b [menory_l ocation], RO; clear F, P and X fl ags.
AX ; Save data in RO for future analysis.
CLEAR b [nenory_l ocati on] ; Make the clear conditional.
BWF LOCK_LOCP ; Loop back if clear failed.
CLEARF ; Use delay slot to

; reinitialize Fand P flags.

Still, more complicated things can be done in the loop, as long as the data can be
written in one single CPU cycle. With some extra care about where the MMU page
boundaries are placed, it is also possible to use write instructions that need several
CPU cycles (e.g. unaligned dword writes, or MOVEM instructions).

1.14 Reset

The following registers are initialized after reset:

Register Value (hex)

VR <version number>
CCR 0000

DCCR 00000000

IBR 00000000

Table 1-11 Registers initialized after reset

All other registers have unknown values after reset.

After reset, the ETRAX 100LX CPU starts execution at a particular address
depending on the boot method:

Register Value (hex)
PROM 80000002
Net 380000f0

Parallel port ~ 380000f0
Serial port 380000f4
Table 1-12 Boot methods

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 1-37

1 Architectural Description

1.15

Version identification

Different versions of the CRIS CPU can be identified by reading the Version Register
(VR). The version register is an 8-bit read-only register that contains the CPU
version number. The contents of the CRIS VR Register are:

Value Chip Name

0 ETRAX-1

1 ETRAX-2

2 ETRAX-3

3 ETRAX-4

4,5,6,7

8 ETRAX 100 version 1
9 ETRAX 100 version 2
10 ETRAX 100LX

11, 12, 13,

14, 15

16 - 255

Table 1-13 CRIS VR register

Part No

13425
13576
13873
14517

15822
16284
17511

Note

Reserved for future chips in the ETRAX-1 family.

Reserved for future chips in the ETRAX 100LX
family.

Not assigned.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

2 Instruction Set Description

2 INSTRUCTION SET DESCRIPTION

2.1 Definitions

The following definitions apply to the instruction descriptions:

Syntax

m
z

Rm
Rn
Rp
Rs
[Rs]
[Rs+]

si
se
Pn
Ps

Rd
[Rd]
[Rd+]

di
Pd

XX

XXXX

uu
uuuu
cC

n

Table 2-1

Definition

Size modifier, byte, word or dword

Size modifier, byte or word

General register

General register

General register

Source operand, register addressing mode

Source operand, indirect addressing mode

Source operand, autoincrement addressing mode (see note 1 below)
Source operand, any addressing mode except quick immediate
Source operand, any mode except register or quick immediate
Source operand, indexed, offset, double indirect or absolute mode
Special register

Source operand, special register

6-bit signed immediate operand

6-bit unsigned immediate operand

5-bit immediate shift value

Destination operand, register addressing mode

Destination operand, indirect addressing mode

Destination operand, autoincrement addressing mode
Destination operand, any addressing mode except quick immediate
Destination operand, any mode except register or quick immediate
Destination operand, special register

8-bit branch offset, bit 0 is the sign bit

8-bit signed immediate value

16-bit signed immediate value

32-hit signed immediate value

8-bit unsigned immediate value

16-bit unsigned immediate value

32-bit unsigned immediate value

Condition code

4-bit breakpoint entry number

Instruction set term definitions

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 2-1

2 Instruction Set Description

Note 1:

Note 2:

2.2

2.2.1

The immediate addressing mode is implemented as autoincrement with PC as the address register. In
all places where the autoincrement addressing mode is used for the source operand, an immediate
operand could be applied as well.

For a description of how the flags are affected, the following definitions apply:

flag not affected

0 flag cleared
1 flag set
* flag affected according to the result of the operation (see note)

Table 2-2 Definitions for how flags are affected

See section 1.2 Flags and condition codes for details.

Instructions, register specifications, condition code specifications, and size modifiers
may be written in upper or lower case. Upper case is used throughout this manual to

distinguish instructions from normal text.

Instruction set summary
Size modifiers

Many of the CRIS instructions can operate on the three different data types byte

(8 bits), word (16 bits) and dword (32 bits). The size of the operation or operand is

indicated by a size modifier added to the instruction. The size modifiers are:

Name Description Size modifier
Byte 8-bit integer .B
Word 16-bit integer W
Dword 32-bit integer or address .D

Table 2-3 Size modifiers

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

2 Instruction Set Description

2.2.2 Addressing modes

The addressing modes of the CRIS CPU are described in table 2-4 below. For a
detailed description of each addressing mode, refer to section 1.5 Addressing modes.

Assembler syntax Addressing mode

i,j Quick immediate

Rn Register

Pn Special register

[RN] Indirect

[Rn+] Autoincrement

X, U Byte immediate

XX, Uu Word immediate

XXXX , Uuuu Dword immediate

[Rn+Rm.s] Indexed

[Rp=Rn+Rm.s] Indexed with assign

[Rn+[Rm].m] Indirect offset

[Rn+[Rm+].m] Autoincrement offset

[Rn+x] Immediate byte offset

[Rn+xx] Immediate word offset

[Rn+xxxx] Immediate dword offset
[Rp=Rn+[Rm].m] Indirect offset with assign
[Rp=Rn+[Rm+].m] Autoincrement offset with assign
[Rp=Rn+x] Immediate Byte offset with assign
[Rp=Rn+xx] Immediate Word offset with assign
[Rp=Rn+xxxx] Immediate dword offset with assign
[[Rn]] Double indirect

[[Rn+]] Double indirect with autoincrement
[uuuu] Absolute

Table 2-4 Addressing modes

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 2-3

2 Instruction Set Description

2.2.3 Data transfers

The data transfer instructions for the CRIS CPU are shown in table 2-5 below. The
two predefined assembler macros POP and PUSH are also shown in the table.

Instruction flag operation Description
FPUMBI XN2ZVC

CLEAR.m d - - - - - - 0 - - - - Cleardestination operand

MOVE.m s,Rd - - - - - - 0 * * 0 0 Movefrom source to general register

MOVE.m Rs,di - - - - - - 0 - - - - Movefrom general register to
memory

MOVE s,Pd ¥ ok ox . x % Qg * * % x |Move from source to special register

(Pd == CCR/DCCR)

MOVE s,Pd - - - - - - 0 - - - - Movefrom source to special register

(Pd = CCR/DCCR)

MOVE Ps,d - - - - - - 0 - - - - Movefrom special register to
destination

MOVEM Rs,di - - - - - - 0 - - - - Movemultiple registers to memory

MOVEM si,Rd - - - - - - 0 - - - - Movefrommemory to multiple
registers

MOVEQ i,Rd - - - - - - 0 * * 0 0 Move®6-bitsigned immediate

MOVS.z s,Rd - - - - - - 0 * * 0 0 Movewithsign extend

MOVU.z s,Rd - - - - - - 00 * 0 O Movewithzeroextend

POP Rd - - - - - - 0 * * 0 0 Popregister from stack

POP Pd - - - - - -0 - - - Pop special register from stack

PUSH Rs - - - - - - 0 - - - - Pushregister onto stack

PUSH Ps - - - - - - 0 - - - - Pushspecial register onto stack

SBFS di - - - - - - 0 - - - - Savebus fault status

SWAP <opt.> Rd - - - - - - 0 * * 0 0 Swapoperand bits

Table 2-5 Data transfer instructions

2-4 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

2 Instruction Set Description

2.2.4

Arithmetic Instructions

The arithmetic instructions for the CRIS CPU are described in table 2-6 below. Note
that the TEST instruction is a predefined assembler macro for register operands, but

is a real instruction with other addressing modes.

With Indexed and Offset addressing modes, instructions that normally have two
operands exist in a 2-operand and a 3-operand form:

Example:
ADD. W [SP+8], R4
ADD. W [SP+8], R4, RS
Instruction

FPU
ABS Rs,Rd =1-=1-=
ADD.m s,Rd - - -
ADDI Rs.m,Rd =1-=1-=
ADDQ i,Rs -] =1 -
ADDS.z s,Rd - - -
ADDU.z s,Rd - - -
BOUND.m s,Rd - - -
CMP.m s,Rd -1 -1]-
CMPQ i,Rd -] =1 -
CMPS.z si,Rd - - -
CMPU.z si,Rd - - -
DSTEP Rs,Rd =1-=1-=
MSTEP Rs,Rd =1-=1-=
MULS.m Rs,Rd - - -
MULU.m Rs,Rd =1-=1-=
NEG.m Rs,Rd - - -
SUB.m s,Rd - - -
SUBQ j,Rd -] =1 -
SUBS.z s,Rd - - -
SUBU .z s,Rd - - -
TEST.m S - - -

Table 2-6 Arithmetic instructions

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

; Add [SP+8] to R4 and store the result in R4
; Add [SP+8] to R4 and store the result in R5.

; R4 is not changed

flag operation

M B

X N Z

0

o O O O O O O O O O o o o o o o o o o

*

*

<

Description

Absolute value

Add source to destination register
Add scaled index to base

Add 6-bit unsigned immediate

Add sign extended source to register
Add zero extended source to register
Adjust table index (unsigned min)
Compare source to register
Compare with 6-bit signed immediate
Compare with sign extended source
Compare with zero extended source
Divide step

Multiply step

Signed multiply

Unsigned multiply

Negate (2's complement)

Subtract source from register
Subtract 6-bit unsigned immediate
Subtract with sign extended source
Subtract with zero extended source

Compare operand with 0

2 Instruction Set Description

2.2.5

2.2.6

2.2.7

Logical instructions

The logical instructions for the CRIS CPU are described in table 2-7 below. With
Indexed and Offset addressing modes, instructions that normally have two operands
exist in a 2-operand and a 3-operand form.

Instruction flag operation Description
FPUMBI XN2ZVC

AND.m s,Rd - - - - - - 0 * * 0 0 Bitwiselogical AND
ANDQ i,Rd 0 * * 0 0 AND with 6-bit signed immediate
NOT Rd 0 * * 0 0 Logical NOT (1's complement)
OR.m s,Rd 0 * * 0 0 Bitwise logical OR
ORQ i,Rd 0 * * 0 0 ORwith 6-bitsigned immediate
XOR Rs,Rd 0 * * 0 0 BitwiseExclusive OR

Table 2-7 Logical instructions
Shift instructions

The shift instructions for the CRIS CPU are shown in table 2-8 below. When the
shift count is contained in a register, the 6 least significant bits of the register are used
as an unsigned shift count.

Instruction flag operation Description
FPUMBI XN2ZVC

ASR.m Rs,Rd - - - - - - 0 * * 0 0 Rightshift Rd with sign fill
ASRQ c,Rd 0 * * 0 0 Rightshift Rd with sign fill
LSL.m Rs,Rd 0 * * 0 0 Leftshift Rd with zero fill
LSLQ ¢,Rd 0 * * 0 0 Leftshift Rd with zero fill
LSR.m Rs,Rd 0 * * 0 0 Rightshift Rd with zero fill
LSRQ c,Rd 0 * * 0 0 Rightshift Rd with zero fill

Table 2-8 Shift instructions
Bit test instructions

The bit test instructions for the CRIS CPU are shown in table 2-9 below. The BTST
and BTSTQ instructions set the N flag according to the selected bit in the
destination register. The Z flag is set if the selected bit and all bits to the right of the
destination register are zero. When the bit number is contained in a register, the 6
least significant bits of the register are used as an unsigned bit number.

Instruction flag operation Description
FPUMBI XNZVZC

BTST Rs,Rd - - - - - - 0 * * 0 0 TestbhitRsin register Rd
BTSTQ c,Rd - - - - - - 0 * * 0 0 Testbhitcinregister Rd
LZ Rs,Rd - - - - - - 0 0 * 0 0 Numberof leading zeroes

Table 2-9 Bit test instructions

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

2 Instruction Set Description

2.2.8 Condition code manipulation instructions

The condition code manipulation instructions for the CRIS CPU are shown in table
2-10 below. The predefined assembler macros El, DI, and AX are also shown.

Instruction flag operation Description
FPUMBI XNZVC

AX - - - - - -1 - - - - Arithmetic extend (SETF X)
CLEARF <list> o0 - - * * 0 * * * * Clearflags in list
DI 00 - - - 00 - - - - Disableinterrupts (CLEARF I)
El - - - - -1 0 - - - - Enableinterrupts (SETFI)
Scc Rd - - - - - - 0 - - - - Setregister according to cc
SETF <list> - - - x % ox ok ox ok x % Getflagsin list

Table 2-10 Condition code manipulation instructions
2.2.9 Jump and branch instructions

The jump and branch instructions of the CRIS CPU are shown in table 2-11 below.
The predefined assembler macros RET and RET] are also shown. Note that the Bcec,
RET and RETI instructions have a delayed effect, see section 1.6.1 Conditional

branch.
Instruction flag operation Description
FPUMBI XN2ZVC
Bec 0 - - - - - -0 - - - - Conditional relative branch
Bec XX - - - - - - 0 - - - - Branchwith 16-bit offset
BREAK n 1 - * - - - 0 - - - - Breakpoint
JBRC S - - - - - - 0 - - - - Jump to breakpoint routine, see note 3
JIR S - - - - - - 0 - - - - Jumpto interrupt routine
JIRC s - - - - - - 0 - - - - Jumptointerrupt routine, see note 3
JMPU si - - - - - - 0 - - - - Jumpand set operation mode
JSR S - - - - - - 0 - - - - Jump tosubroutine
JSRC s - - - - - - 0 - - - - Jump tosubroutine, see note 3
JUMP S - - - - - -0 - - - - Jump
RBF si - - * - - - * - - - - Returnfrom bus fault
RET - - - - - -0 - - - - Returnfrom subroutine
RETB - - - - - - 0 - - - - Returnfrom breakpoint routine
RETI - - - - - - 0 - - - - Returnfrom interrupt routine

Table 2-11 Jump and branch instructions
Note 3: The JBRC, JIRC and JSRC instructions will add four bytes to the return address stored to either SRP,

IRP or BRP. This leaves four Bytes unused between the JSSRC/JIIRC/JBRC instruction and the return
point. This can be used to enhance C++ exception support.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 2-7

2 Instruction Set Description

2.2.10

2.3

23.1

Note 4:

Note 5:

No operation instruction

The CRIS CPU also has a no operation instruction, NOP.

Instruction flag operation Description
FPUMBI XNZVC
NOP - - - - - - 0 - - - - Nooperation

Table 2-12 No operation instruction

Instruction format summary

Summary of quick immediate mode instructions

Operation Operand 2 Mode Opcode Operand1 Note
Bcc 0 Condition 0 0 0 O Offset (7 bits) . 4
(BDAP 0,Rs) Base 0 0 0 1 Signed displacement (8 bits) 5
ADDQ j,Rd Dest. reg. 0 0 1 0 0 O Unsignedimmediate (6 bits)
MOVEQ i,Rd Dest. reg. 0O 0 1 0 0 1 Signed immediate (6 bits)
SUBQ J,Rd Dest. reg. 0 0 1 0 1 0 Unsignedimmediate (6 bits)
CMPQ i,Rd Dest. reg. 0O 0 1 0 1 1 Signed immediate (6 bits)
ANDQ i,Rd Dest. reg. 0O 0 1 1 0 O Signed immediate (6 bits)
ORQ i,Rd Dest. reg. o 0 1 1 0 1 Signed immediate (6 bits)
BTSTQ c¢,Rd Dest. reg. 0O 0 1 1 1 0 O Bit number (5 bits)
ASRQ c,Rd Dest. reg. 0o 0 1 1 1 0 1 Shift value (5 bits)
LSLQ c,Rd Dest. reg. o 0 1 1 1 1 O Shift value (5 bits)
LSRQ ¢,Rd Dest. reg. o 0 1 1 1 1 1 Shift value (5 bits)

Table 2-13 Quick immediate mode instructions
The (s.) field is the sign bit of the offset.

BDAP is the base + offset addressing mode prefix.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

2 Instruction Set Description

2.3.2 Summary of register instructions with variable size
0 Byte 00 Byte
z:size: 1 Word zz:size: 01 Word
10 Dword

Table 2-14 Variable size

Operand 2
Dest. reg.
Dest. reg.
Dest. reg.
Dest. reg.
Dest. reg.
Dest. reg.
Dest. reg.
Index
Dest. reg.
Dest. reg.
Index
Dest. reg.
Index
Dest. reg.
Dest. reg.
Dest. reg.
Dest. reg.
Dest. reg.
Dest. reg.
Dest. reg.

Dest. reg.

Mode

P O O O o o o o o

O O O O O o o o o o ¥

0

[=

1
1

O O O O O O o o o o o o o

[N

1
1

Register instructions with variable size

Operation
ADDU.z Rs,Rd
ADDS.z Rs,Rd
MOVU.z Rs,Rd
MOVS.z Rs,Rd
SUBU.z Rs,Rd
SUBS.z Rs,Rd
LSL.m Rs,Rd
ADDI Rs.m,Rd
MULS.m Rs,Rd
MULU.m Rs,Rd
(BIAP Rs.m,Rd)
NEG.m Rs,Rd
BOUND.m Rs,Rd
ADD.m Rs,Rd
MOVE.m Rs,Rd
SUB.m Rs,Rd
CMPm Rs,Rd
AND.m Rs,Rd
OR.m Rs,Rd
ASR.m Rs,Rd
LSR.m Rs,Rd

Table 2-15
Note 6: ADDI cannot have PC as base.
Note 7:

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

BIAP is the base + index addressing mode prefix.

Opcode
0 0
0 0
0 0
0 1
0 1
0 1
1 0

0
1 0
1 0
1 1
1 1
0 0
0 0
0 1
0 1
1 0
1 0
1 1
1

o B O B O B O O O B O O Bk~ P~

» O K

Size
0 z
1 z
0 z
1 z

z
1 z
z7 2
z7 2
z7 2
z7 2
z7 2
z7 2
z7 2
z7 2
z7 2
z7 2
z7 2
z7 2
z7 2
z7 2
z7 2

Operand 1
Source reg.
Source reg.
Source reg.
Source reg.
Source reg.
Source reg.
Source reg.

Base
Source reg.
Source reg.

Base
Source reg.

Bound
Source reg.
Source reg.
Source reg.
Source reg.
Source reg.
Source reg.
Source reg.

Source reg.

Note

2 Instruction Set Description

2.3.3 Summary of register instructions with fixed size
Operation Operand 2 Mode Opcode Size Operand 1 Note
BTST Rs,Rd Dest. reg. 0 1 0 0 1 1 1 1 Source reg.
NOP 0 0 00 01 01 00 0O T1 1 1 1
Scc Rd Condition 0 1 0 1 0 0 1 1 Dest. reg.
(Reserved) Dest. reg. 0 1 0 1 0 1 1 1 Source reg.
SETF <list> MBI X 0 1 0 1 1 0 1 1 N Z V C
CLEARF <list> - B 1 X 0 1 0 1 1 1 1 1 N zZ V C
MOVE Rs,Pd Special reg. 0 1 1 0 0 0 1 1 Source reg.
MOVE Ps,Rd Special reg. 0 1 1 0 0 1 1 1 Dest. reg. 8
ABS Rs,Rd Dest. reg. 0 1 1 0 1 0 1 1 Source reg.
DSTEP Rs,Rd Dest. reg. 0 1 1 0 1 1 1 1 Source reg.
Lz Dest. reg 0 1 1 1 0 0 1 1 Source reg.
SWAP<opt.> Rd N WBR O0 1 1 1 0 1 1 1 Dest. reg.
NOT Rd 10 0 0 0 2 1 1 0 1 1 1 Dest. reg.
XOR Rs,Rd Dest. reg. 0 1 1 1 1 0 1 1 Source reg.
MSTEP Rs,Rd Dest. reg. 0 1 1 1 1 1 1 1 Source reg.

Table 2-16 Register instructions with fixed size
Note 8: When destination is PC, and source is SRP, BRP or IRP, this instruction implements the RET, RETB

or RETI instruction. MOVE from special registers p0, p4 and p8 are used as CLEAR. The size of the
clear depends of the specified number for the special register.

2-10 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

2 Instruction Set Description

m: mode:

z:size:

1

Indirect mode

Autoincrement mode

Byte

Word

zz: size:

Table 2-17 Mode and variable size

Operand 2

Dest.
Dest.
Dest.
Dest.
Dest.
Dest.
Dest.
Dest.

Base

reg.

reg.

Operand 2

index
Dest.
Dest.
Dest.
Dest.
Dest.

Dest.

0 0 0 O

reg.
reg.
reg.
reg.
reg.

reg.

Source reg.

Mod

1
1
1

SH BN ER B B ER ER ERERERERERENELELEREE

m

O O O O O o o o o o o

1
1

Opcode

, O O O O o o o o

o O o©Oo O Bk B

[N

Indirect instructions with variable size

234
Operand
ADDU.z [1,Rd
ADDS.z [1.Rd
MOVU.z [1,Rd
MOVS.z [1Rd
SUBU.z [1.Rd
SUBS.z [1Rd
CMPU z [1,Rd
CMPS.z [1.Rd
(BDAP [1,Rd)
(Reserved)
BOUND.m [],Rd
ADD.m [1,Rd
MOVE.m [1,Rd
SUB.m [1.Rd
CMPm [1Rd
AND.m [1,Rd
OR.m [1.Rd
TEST.m [1
MOVE.m Rs[]
Table 2-18
Note 9:

BDAP is the base + offset addressing mode prefix.

O ©O +»r P o +»r + + P O o o o

o O

©O B O kP O P P kB O O K

o B O

Summary of indirect instructions with variable size

00 Byte

01 Word

10 Dword

Size Operand 1

0 z Source
1 z Source
0 z Source
1 z Source
0 z Source
1 z Source
0 z Source
1 z Source
Z z Source
z z Operand 1
z 2 Bound
Z z Source
Z z Source
z 2 Source
Z z Source
Z z Source
z 2 Source
Z z Source
7z Dest.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

Note

2 Instruction Set Description

2.35

Note 10:

Note 11:

Summary of indirect instructions with fixed size

0 Indirect mode
m: mode:
1 Autoincrement mode

Table 2-19 Mode

Operation Operand 2 Mode Opcode Size Operand 1 Note
JBRC/JSRC/ [1 Specialreg.-8 1 m 0 1 0 0 1 1 Source
JIRC
JUMP [1 0 0 002 mO 1 0 0 1 1 Source
JMPU [1 10 0 01 m O 1 0 0 1 1 Source
JSRAIR [1 Special reg. 1 m 0 1 0 0 1 1 Source
BREAK n 11 1 0 1 0 0 1 0 O 1 1 n
(DIP [D 0 0 002 mO 1 0 1 1 1 Source 10
JBRC/JSRC/ Rs Specialreg.-8 1 0 0 1 1 0 1 1 Source reg.
JIRC
JUMP/JSR/JIR Rs 0 0 00 2 0 0 1 1 0 1 1 Source reg.
Bcc [PC+] Condition ST TN O T T O T 1 T A
MOVE [1,Pd Special reg. 1 m 1 0 0 0 1 1 Source
MOVE Ps,[] Special reg. 1 m 1 0 0 1 1 1 Dest. 11
(Reserved) Dest. reg. 1 m 1 0 1 0 1 1 Source
(Reserved) Dest. reg. 1 m 1 0 1 1 1 1 Source
RBF [1 0 0 1 1.1 m 1 1 0 0 1 1 Source
SBFS [1 0 0 11 1 m 1 1 0O 1 1 1 Dest.
MOVEM [1.Rd Dest. reg. 1 m 1 1 1 0 1 1 Source
MOVEM Rs,[] Source reg. 1 m 1 1 1 1 1 1 Dest.

Table 2-20 Indirect instructions with fixed size
DIP is the double indirection addressing mode prefix

MOVE from special registers p0, p4 and p8 are used as CLEAR. The size of the clear depends of the
specified number for the special register.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

2 Instruction Set Description

2.4 Addressing mode prefix formats

The instruction format of the Addressing mode prefix words are shown below.

Indexed addressing mode prefix word:

15 0
I I I I I I I I I I I I

Index register 0 1 0 1 0 1 Base register
| | | | | | | | | | | |

00 Index register is pointer to byte

Size: 01 Index register is pointer to word

10 Index register is pointer to dword

Table 2-21 Size for Indexed addressing mode prefix word

Offset addressing mode prefix word, immediate byte offset:

15 0
T T T T T T T T T I T T T
Base register 0 o o 1 Signed offset
| | | | | | | | | | | | |

Offset addressing mode prefix word, general case:

15 0

I I I I I I I I I I
Base register 1 |md| O 1 0 1
| | |

0 Indirect offset addressing mode

Double indirect and Absolute addressing mode prefix word

15

Mode (md):
Autoincrement or immediate offset addressing modes.
00 Offset is byte
Size: 01 Offset is word
10 Offset is dword

Table 2-22 Mode and size for offset Addressing mode prefix word

0

md| O 1

I I I
1 Source
| | |

0
Mode (md): ¢

Double indirect addressing mode

Double indirect with autoincrement, or Absolute

addressing mode.

Table 2-23 Mode for double indirect and absolute Addressing mode prefix word

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

2 Instruction Set Description

2-14 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

3 INSTRUCTIONS IN ALPHABETICAL
ORDER

In this section, all the instructions of the CRIS CPU are described in alphabetical
order. Each description contains the following information:

Assembler syntax:

Size:

Operation:

Description:

Flags affected:

Instruction format:

Shows the assembler syntax for the instruction. Operands, addressing
modes and size modifiers are described using the definitions shown in
section 2.1. Note that instructions, operands etc. may be written in
upper or lower case.

Lists the different data sizes for the instruction.

Describes the instruction in a form similar to the C programming
language. Different data sizes are shown with the “type cast” method
used in the C language. The behavior of the flags is usually not shown.

A text description of the instruction.

Shows which flags that are affected by the instruction. The detailed
behavior of the flags is shown insection 1.2 Flags and condition codes.

Shows the instruction format. The format of the Addressing mode prefix
word for the complex addressing modes is not shown here. This can be
found in section 1.5 Addressing modes, and in section 2.4 Addressing
mode prefix formats.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-1

3 Instructions in Alphabetical Order

A B S Absolute Value A B S

Assembler syntax: ABS Rs, Rd

Size: Dword

Operation: if (Rs < 0)
{
Rd = -Rs;
}
el se
{
Rd = Rs;
}

Description: The absolute value of the contents of the source register is stored in the
destination register. The size of the operation is dword.

flags affected: F P UMBI1I XNZVC
O** 00

Instruction format:

15 0
I I I I I I I I I I I I I
Destination (Rd) 0 1 1 0 1 0 1 1 Source (Rs)
| | | | | | | | | | | | |

Note 1: If the source operand is 0x80000000, the result of the operation will be 0x80000000

3-2 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

ADD

2-operand
Assembler syntax:
Size:

Operation:

Description:

flags affected:

Instruction format:
(register, indirect, or auto-
increment addressing modes)

Instruction format:

(complex addressing modes)

ADD. m s, Rd

Byte, word, or dword

(MR += (ms;

Add

ADD

2-operand

The source data is added to the destination register. The size of the
operation is m. The rest of the destination register is not affected.

FPUMBI XNZVC
- - - - - - 0 * * * *
15 0
I I I I I I I I I I I
Destination (Rd) Mode 1 0 0 0 Size Source (Rs)
| | | | | | | | | | |
01 Register addressing mode
Mode: 10 Indirect addressing mode
11 Autoincrement addressing mode
00 Byte
Size: 01 Word
10 Dword
15 0
T T T T T T T T T T T T T
Addressing mode prefix word (s)
| | | | | | | | | |
I I I I I I I I I I
Destination (Rd) 1 |md| 1 0 0 0 Size Operandl
| | | | | | | | | |
0 Indexed, offset, double indirect, absolute addressing
modes. The Operand1 field must be the same as
destination field (Rd).
Mode (md):
Indexed with assign, offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.
00 Byte
Size: 01 Word
10 Dword
(November 28, 2000) 3-3

AXIS ETRAX 100LX Programmer’s Manual

3 Instructions in Alphabetical Order

ADD

3-operand

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:

Add ADD

3-operand

ADD. m se, Rn, Rd

Byte, word, or dword

(mRd = (mse + (mRn;

The memory source data is added to the contents of a general register,
and the result is stored in the destination register. The size of the
operation is m. The rest of the destination register is not affected.

FPUMBI XNZVC
0****

15 0
I I I I I I I I I I I I I I I
Addressing mode prefix word (se)

Register (Rn) 1 0 1 0 0 0 Size Destination (Rd)
| | | | | | | | | | |

00 Byte
Size: 01 Word
10 Dword

3-4 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

ADDI

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:

Note 2:

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

Add index A D D I

ADDI Rs. m Rd

Rs is a pointer to byte, word or dword. The size of the operation is
dword.

Rd += Rs * sizeof(m;

Add a scaled index to a base. The contents of the source register is
shifted left 0, 1 or 2 positions, depending on the size modifier m, and is
then added to the destination register. The size of the operation is
dword.

FPUMBI XNZVC
e o

15 0
I I I I I I I I I I I I
Index (Rs) 0 1 0 1 0 0 Size Base (Rd)
| | | | | | | | | | |

00 Rsis pointer to Byte
Size: 01 Rsis pointer to Word

10 Rsis pointer to Dword

PC is not allowed to be the base register.

3 Instructions in Alphabetical Order

ADDQ

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:

Add quick A D D Q

ADDQ | , Rd

Source data is 6-bit. The size of the operation is dword

Rd +=j;

A 6-bit immediate value, zero extended to dword, is added to the
destination register.

FPUMBI XNZVC
0****

15 0
I I I I I I I I I I I I I
Destination (Rd) 0 0 1 0 0 0 Unsigned immediate
| | | | | | | | | | | | |

3-6 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

ADDS

2-operand

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:
(register, indirect, or auto-
increment addressing
modes)

Instruction format:
(complex addressing modes)

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

Add with sign extend

ADDS. z s, Rd

Source size is byte or word. Operation size is dword

Rd += (2)s;

ADDS

2-operand

The source data is sign extended from z to dword, and then added to the

destination register.

FPUMBI XNZVC
- - - - - - 0 * * * *
15 0
I I I I I I I I I I I
Destination (Rd) Mode 0 0 0 0 1 Source (s)
| | | | | | | | | | |
01 Register addressing mode
Mode: 10 Indirect addressing mode
11 Autoincrement addressing mode
0 Byte source operand
Size (2):
1 Word source operand
15 0
T T T T T T T T T T T T T
Addressing mode prefix word (s)
| | | | | | | | | |
I I I I I I I I I I
Destination (Rd) 1 |md| O 0 0 0 1 Operandl
| | | | | | | | | |
0 Indexed, offset, double indirect, or absolute addressing
modes. The Operand1 field must be the same as the
Destination field (Rd).
Mode (md):
1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.
0 Byte source operand
Size (2):
1 Word source operand
3-7

3 Instructions in Alphabetical Order

ADDS

3-operand

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:

Add with sign extend A D D S

3-operand

ADDS. z se,Rn, Rd

Source size is byte or word. Operation size is dword

Rd = (z)se + Rn;

The source data is sign extended from z to dword, and then added to the
contents of a general register. The result is stored in the destination
register.

FPUMBI XNZVC
0****

15 0
I I I I I I I I I I I I I I I
Addressing mode prefix word (se)

Register (Rn) 1 0 0 0 0 0 1 z Destination (Rd)
| | | | | | | | | | | |

Byte source operand
Size (2):
Word source operand

3-8 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

ADDU

2-operand

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:
(register, indirect, or auto-
increment addressing
modes)

Instruction format:
(complex addressing modes)

Add with zero extend

ADDU. z s, Rd

ADDU

2-operand

Source size is byte or word. Operation size is dword

Rd += (unsigned z)s;

The source data is zero extended from z to dword, and then added to the

destination register.

FPUMBI XNZVC
- - - - - - 0 * * * *
15 0
I I I I I I I I I I I
Destination (Rd) Mode 0 0 0 0 0 z Source (s)
| | | | | | | | | | |
01 Register addressing mode
Mode: 10 Indirect addressing mode
11 Autoincrement addressing mode
0 Byte source operand
Size (2):
1 Word source operand
15 0
I I I I I I I I I I I I I I
Addressing mode prefix word (s)
| | | | | | | | | |
I I I I I I I I I I
Destination (Rd) 1 |md| O 0 0 0 0 z Operandl
| | | | | | | | | |
0 Indexed, offset, double indirect, or absolute addressing
modes. The Operand1 field must be the same as the
Destination field (Rd).
Mode (md):
1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.
0 Byte source operand
Size (2):
1 Word source operand
AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-9

3 Instructions in Alphabetical Order

ADDU

3-operand

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:

Add with sign extend A D D U

3-operand

ADDU. z se, Rn, Rd

Source size is byte or word. Operation size is dword

Rd = (unsigned z)se + Rn;

The source data is zero extended from z to dword, and is then added to
the contents of a general register. The result is stored in the destination
register.

FPUMBI XNZVC
0****

15 0
I I I I I I I I I I I I I I I
Addressing mode prefix word (se)

Register (Rn) 1 0 0 0 0 0 0 z Destination (Rd)
| | | | | | | | | | | |

0 Byte source operand
Size (2):
1 Word source operand

3-10 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

AND

2-operand

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:
(register, indirect, or auto-
increment addressing
modes)

Instruction format:
(complex addressing modes)

Logical AND

AND. m s, Rd

Byte, word, or dword

(MRd & (ms;

AND

2-operand

A logical AND is performed between the source operand and the
destination register. The size of the operation is m. The rest of the
destination register is not affected.

FPUMBI

15

XNzVC
0**00

0

I I I
Destination (Rd)
| | |

Size

I I
Source (s)
| |

Mode:

Size:

15

01
10
11
00
01
10

Register addressing mode
Indirect addressing mode
Autoincrement addressing mode
Byte

Word

Dword

T T T T T T
Addressing mode prefix word (s)
| | | |

Destination (Rd)

| | | |
md| 1 1 0 0 Size
| | | |

Operandl
|

Mode (md):

Size:

00
01
10

AXIS ETRAX 100LX Programmer’s Manual

Indexed, offset, double indirect, or absolute addressing
modes. The Operand1 field must be the same as the

Destination field (Rd).

Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which

to store the address of the source operand.

Byte
Word
Dword

(November 28, 2000)

3 Instructions in Alphabetical Order

AND

3-operand

Assembler syntax:

Size:
Operation:

Description:

flags affected:

Instruction format:

3-12

Logical AND

AND

3-operand

AND. m se, Rn, Rd

Byte, word, or dword
(MRd = (mMse & (M Rn;

A logical AND is performed between the source operand and the
contents of a general register. The result is stored in the destination
register. The size of the operation is m. The rest of the destination
register is not affected.

FPUMBI XNZVC
- - - - - -0**00
15 0
I I I I I I I I I I I I I I
Addressing mode prefix word (se)
| | | | | | | | | | | |
I I I I I I I I I I I I
Register (Rn) 1 0 Size Destination (Rd)
| | | | | | | | | | | |
00 Byte
Size: 01 Word
10 Dword

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

ANDQ

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:

Logical AND quick A N D Q

ANDQ i, Rd

Source data is 6-bit. Operation size is dword.

Rd &= i;

A logical AND is performed between a 6-bit immediate value, sign
extended to dword, and the destination register.

FPUMBI XNZVC
0O0**00

15 0
I I I I I I I I I I I I I
Destination (Rd) 0 0 1 1 0 0 Signed immediate
| | | | | | | | | | | | |

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-13

3 Instructions in Alphabetical Order

ASR

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:

Note 3:

Arithmetic shift right A S R

ASR m Rs, Rd

Byte, word, or dword

(mMRd >>= (Rs & 63);

The destination register is right shifted the number of steps specified by
the 6 least significant bits of the source register. The shift is performed
with sign extend. The size of the operation is m. The rest of the
destination register is not affected.

FPUMBI XNZVC
0**00

15 0
I I I I I I I I I I I I
Destination (Rd) 0 1 1 1 1 0 Size Source (Rs)
| | | | | | | | | | | |

00 Byte
Size: 01 Word
10 Dword

A shift of 32 bits or more will produce the same result as shifting the destination
register 31 bits.

3-14 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

ASRQ

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:

Arithmetic shift right quick A S R Q

ASRQ ¢, Rd

Dword

Rd >>= c;

The destination register is right shifted the number of steps specified by
the 5-bit immediate value. The shift is performed with sign extend. The
size of the operation is dword.

FPUMBI XNZVC
0**00

15 0
I I I I I I I I I I I I I
Destination (Rd) 0 0 1 1 1 0 1 Shift value
| | | | | | | | | | | | |

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-15

3 Instructions in Alphabetical Order

AX

Assembler syntax:
Size:
Operation:

Description:

flags affected:

Instruction format:

Arithmetic extension A X

X =1;

Arithmetic extension prefix. Set X flag. Disable interrupts until next
instruction. This is a predefined assembler macro equivalent to SETF X.

FPUMBI XNZVC
. A

3-16 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

Bcc

Assembler syntax:

Size:

Operation:

Description:

Branch conditionally B C C

Bcc o
Bcc xx

Byte, Word

if (cc)
{

PC += offset;offset = 0o or xx

}

If the condition cc is true, the offset is sign extended to dword and is
added to PC. Interrupts are disabled until next the instruction. The Bcc
instruction is a delayed branch instruction, with one delay slot. Valid
instructions for the delay slot are all instructions except:

e Bcc

e BREAK/JBRC/JIR/JIRC/IMPU/JSR/ISRC/JUMP

e RET/RETB/RETI

e Instructions using addressing prefixes

e Immediate addressing other than Quick Immediate

The value of PC used for the address calculation is the address of the
instruction after the branch instruction.Condition Codes:

(continued)

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-17

3 Instructions in Alphabetical Order

flags affected:

Instruction format:

(8-bit offset)

Offset:

Instruction format:

(16-bit offset)

Offset:

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

Code Alt Condition Encoding Boolean function
CcC HS Carry Clear 0000 ©
CS LO Carry Set 0001 C
NE Not Equal 0010 z
EQ Equal 0011 Zz
vC Overflow Clear 0100 \Y;
VS Overflow Set 0101 \Y,
PL Plus 0110 N
Mi Minus 0111 N
LS Low or Same 1000 C+z
HI High 1001 C*Z
GE Greater or Equal 1010 N*V+N*V
LT Less Than 1011 N*V+N*V
GT Greater Than 1100 N*V*Z+N*V*Z
LE Less or Equal 1101 Z+N*V+N*V
A Always True 1110 1
WF Write Failed 1111 P
Table 3-1 Condition Codes
FPUMBI XNZVC
Y o I
15
1 1 1 1 1 1 1 1 1 1 1
Condition 0 0 0 0 Offset (0)
| | | | | | | | | | |

Bits 7 - 1 of the offset represent bits 7 - 1 in the actual address

increment/decrement. Bit O in the offset field is used as a sign bit in the
computed offset. Bit 0 of the computed offset is either zero or one.

15

I I I
Condition

Bits 15 - 1 make up the actual address increment/decrement. Bit 0 must

always be 0 because of the word alignment of instructions.

3 Instructions in Alphabetical Order

Adjust index to bound

BOUND

2-operand

Assembler syntax: BOUND. m s, Rd

Size: Source is byte, word or dword. Operation is dword

Operation: if ((unsigned)Rd > (unsigned nms)
{

Rd = (unsigned ms;
}

BOUND

2-operand

Description: This is a bounding instruction for adjusting branch indexes in switch
statements. If the unsigned contents of the dword index (destination)
register is greater than the unsigned bound (source) data, the bound data
(zero extended to dword) is loaded to the index register. Otherwise, the

index register is unaffected.

flags affected: F P UMB 1 XNZVC
O** 00

Instruction format:

(register, indirect, or auto- 15 0
increment addressing T T T T T T T T T T T
modes) Index (Rd) Mode 0 1 1 1 Size Bound (s)
| | | | | | | | | | |
01 Register addressing mode
Mode: 10 Indirect addressing mode
11 Autoincrement addressing mode
00 Byte
Size: 01 Word
10 Dword
Note 4: PC is not allowed to be the Index (Rd) operand.
(continued)
AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-19

3 Instructions in Alphabetical Order

Instruction format:

(complex addressing modes) 15 0
I I I I I I I I I I I I I I I
Addressing mode prefix word (se)

Index (Rd) 1 [{md| O 1 1 1 Size Operandl
| | | | | | | | |

0 Indexed, offset, double indirect, or absolute addressing
modes. The Operand1 field must be the same as index
field (Rd).

Mode (md):
Indexed with assign, or offset with assign addressing

modes. The Operand1 field selects the register in which
to store the address of the source operand.

00 Byte
Size: 01 Word
10 Dword

Note 5: PC is not allowed to be the Index (Rd) operand.

3-20 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

BOUND

3-operand

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:

Note 6:

Adjust index to bound B O U N D

3-operand

BOUND. m se, Rn, Rd

Source is byte, word or dword. Operation is dword

if ((unsigned) Rn > (unsigned nse)
{

Rd = (unsigned n)se;
}
el se
{
Rd = Rn
}

This is a bounding instruction for adjusting branch indexes in switch
statements. If the unsigned contents of the dword index (Rn) register is
greater than the unsigned bound (source) data, the bound data (zero
extended to dword) is loaded to the destination register. Otherwise, the
contents of the index register are loaded to the destination register.

FPUMBI XNZVC
0**00

15 0
I I I I I I I I I I I I I I I
Addressing mode prefix word (se)

Index (Rn) 1 0 0 1 1 1 Size Destination (Rd)
| | | | | | | | | | |

00 Byte
Size: 01 Word
10 Dword

PC is not allowed to be the Destination (Rd) operand.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-21

3 Instructions in Alphabetical Order

BREAK

Assembler syntax:
Size:

Operation:

Description:

flags affected:

Instruction format:

Breakpoint B R E A K

BREAK n

BRP = PC,
PC = IBR + (8*n);

Breakpoint. This instruction saves PC to the Breakpoint Return Pointer
(BRP), and then performs a jump to address:
(IBR + (8 * n)).

BREAK updates the U flag according to the current operating mode,
and performs a transition to supervisor mode. It also sets the F flag.

FPUMBI XNZVC
1-*%-«-0--- -

3-22 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

BTST

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:

Bit test B TST

BTST Rs, Rd

Dword

N
Z

Bit nunber (Rs & 31) of Rd;
((Bit nunbers 0 to (Rs & 31) of Rd) == 0);

The N flag is set according to the selected bit in the destination register.
The Z flag is set if the selected bit and all bits to the right of it are zero.
The bit number is selected by the 5 least significant bits of the source
register. The destination register is not affected.

FPUMBI XNZVC
0**00

15 0
I I I I I I I I I I I I I
Destination (Rd) 0 1 0 0 1 1 1 1 Source (Rs)
| | | | | | | | | | | | |

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-23

3 Instructions in Alphabetical Order

BTSTQ Bit test quick BTSTQ

Assembler syntax: BTSTQ ¢, Rd

Size: Dword

Bit nunmber c of Rd;
((Bit nunbers 0 to ¢ of Rd) == 0);

Operation: N
z

Description: The N flag is set according to the selected bit in the destination register.
The Z flag is set if the selected bit and all bits to the right of it are zero.
The bit number is selected by the 5-bit immediate value. The
destination register is not affected.

flags affected: F P UMB I XNZVC
O** 00

Instruction format:
15 0
[[[[[[[[[[[[[

Destination (Rd) 0 0 1 1 1 1 0 Bit number (c)
| | | | | | | | | | | | |

3-24 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

CLEAR e CLEAR

Assembler syntax: CLEAR md
Size: Byte, word, or dword

Operation: (md = 0;

Description: The destination is cleared to all zeroes. The size of the operation is m.
Interrupts are disabled until the next instruction has been executed.

flags affected: F P UMB I XNZVC

T o N
Instruction format:
(register, indirect, or auto- 15 0
increment addressing I f f T T T T T T T T
modes) Size 0 0 Mode 1 0 0 1 1 1 Destination (d)
| | | | | | | | | | |
01 Register addressing mode
Mode: 10 Indirect addressing mode
11 Autoincrement addressing mode
00 Byte
Size: 01 Word
10 Dword
Note 7: If PC is used as the destination operand, the resulting jump will have a delayed effect

with one delay slot.

(continued)

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-25

3 Instructions in Alphabetical Order

Instruction format:
(complex addressing modes) 15 0

I I I I I I I I I I I I I I I
Addressing mode prefix word (d)
| |

Size 0 0 1 [md| 1 0 0 1 1 1 Operandl
| | | | | | | | | |

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

Mode (md): 1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

00 Byte
Size: 01 Word
10 Dword

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

CLEARF Heriess CLEARF

Assembler syntax: CLEARF <list of flags>

Size: -
Operation: Sel ected flags = 0;
X =0;
F =0
P =0;

Description: The specified flags are cleared to 0. The F, P, and X flags are always
cleared even if they are not in the list supplied with CLEARF. The M
and U flags are not affected. Interrupts are disabled until the next
instruction has been executed.

When the list of flags contains more than one flag, the flags may be
written in any order. The CLEARF instruction accepts an empty list of

flags.
Examples:
CLEARF CVX ; Qear F, P, C V and X fl ags.
CLEARF ; Qear F, P, and X flags.
CLEARF BI ; ear F, P, B, | and X fl ags.
CLEARF FP ; Qear F, P and X flags.
flags affected: F PUMB 1 XNZVC
00 - - ** (Q * x * *
Instruction format:
15 0
T T T T T 1
M| B X|o 1 0o 1 1 1 1 1|N|Z|V]|C
Lo

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-27

3 Instructions in Alphabetical Order

CMP

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:
(register, indirect, or auto-
increment addressing
modes)

Instruction format:
(complex addressing modes)

Compare

CW.ms,Rd

Byte, word, or dword

(MRd - (ms;

CMP

The source data is subtracted from the destination register, and the flags
are set accordingly. The size of the operation is m. The destination
register is not updated.

FPUMBI XNZVC
- - - - - - 0 * * * *
15 0
I I I I I I I I I I I
Destination (Rd) Mode 1 0 1 1 Size Source (Rs)
| | | | | | | | | | |
01 Register addressing mode
Mode: 10 Indirect addressing mode
11 Autoincrement addressing mode
00 Byte
Size: 01 Word
10 Dword
15 0

I I I I I I I
Addressing mode prefix word (s)
| | | |

Destination (Rd)

1 | md

|
Size

Operandl

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

Mode (md): 1

Indexed with assign, or offset with assign addressing

modes. The Operand1 field selects the register in which
to store the address of the source operand in.

00 Byte
Size: 01 Word
10 Dword

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

CMPQ

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:

Compare quick C M P Q

OWPQ i, Rd

Dword

Rd - i;

A 6-bit immediate value, sign extended to dword, is subtracted from the
destination register, and the flags are set accordingly. The destination
register is not updated.

FPUMBI XNZVC
0****

15 0
T T T T T T T T T T T T T
Destination (Rd) 0 0 1 0 1 1 Signed immediate
| | | | | | | | | | | |

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-29

3 Instructions in Alphabetical Order

CMPS

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:
(indirect or autoincrement
addressing modes)

Instruction format:
(complex addressing modes)

Compare with sign extend C M P S

CWS. z si, Rd

Source size is byte or word. Operation size is dword

Rd - (z)si;

The source data, sign extended to dword, is subtracted from the
destination register, and the flags are set accordingly. The destination
register is not updated.

FPUMBI XNZVC
0****

15 0
T T T T T T T T T T
Destination (Rd) 1 {md| O 0 1 1 1 z Source (si)
| | | | | |

0 Indirect addressing mode

Mode (md):
Autoincrement addressing mode
Byte source operand
Size (2):
Word source operand
15 0
I I I I I I I I I I I I I I I
Addressing mode prefix word (si)
| | | | | | | | | |
I I I I I I I I I I
Destination (Rd) 1 {md| O 0 1 1 1 z Operandl
| | | | | | | | | |

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

Mode (md): 1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

Byte source operand
Size (2):
Word source operand

3-30 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

C M P U Compare with zero extend C M P U

Assembler syntax: OwU.z si,Rd

Size: Source size is byte or word. Operation size is dword

Operation: Rd - (unsigned z)si;

Description: The source data, zero extended to dword, is subtracted from the
destination register, and the flags are set accordingly. The destination
register is not updated.

flags affected: F P UMBI1 XNZVC
0* * * *

Instruction format:
(indirect or autoincrement 15 0

addressing modes) I I f T T T T T T T
Destination (Rd) 1 |md| O 0 1 1 0 z Source (si)
| | | | | |

0 Indirect addressing mode

Mode (md): _ .
Autoincrement addressing mode
Byte source operand
Size (2):
Word source operand
Instruction format:
(complex addressing modes) 15 0

I I I I I I I I I I I I I I I
Addressing mode prefix word (si)

| | | | | | | | | |

I I I I I I I I I I

Destination (Rd) 1 |md| O 0 1 1 0 z Operandl
| | | | | | | | | |

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

Mode (md): 1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

Byte source operand
Size (2):
Word source operand

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-31

3 Instructions in Alphabetical Order

D I Disable interrupts D I

Assembler syntax: D
Size: -

Operation:

oo
eeee

|

X
E
P

Description: Disable interrupts. This is a predefined assembler macro equivalent to

CLEARF 1.
flags affected: F P UMB I XNZVC
oo0---00- - - -
Instruction format:
15 0

3-32 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

DSTEP

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:

Note 8:

Divide step D ST E P

DSTEP Rs, Rd

Dword

Rd <<= 1,
i f ((unsigned)Rd >= (unsigned)Rs)
{

}

Rd -= Rs;

This is a divide-step operation, which performs one iteration of an
iterative divide operation. The destination operand is shifted one step to
the left. If the shifted destination operand is unsigned-greater-than or
equal to the source operand, the source operand is subtracted from the
shifted destination operand. The size of the operation is dword.

FPUMBI XNZVC
0**00

15 0
I I I I I I I I I I I I I
Destination (Rd) 0 1 1 0 1 1 1 1 Source (Rs)
| | | | | | | | | | | | |

PC is not allowed to be the destination operand (Rd).

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-33

3 Instructions in Alphabetical Order

E I Enable interrupts E I

Assembler syntax: El
Size: -

Operation: |
X

1
0;

Description: Enable interrupts after the next instruction. This is a predefined
assembler macro equivalent to SETF I.

flags affected: F P UMB I XNZVC
- - - - - 10 - - - -

Instruction format:

3-34 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

JBRC

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:
(register addressing mode)

Jump to beakpoint routine, J B RC
with context information

JBRC s

Dword

BRP = PC + 4;
PC = s;

Jump to interrupt routine. The Breakpoint Return Pointer (BRP) is
loaded with the contents of the program counter (PC). PC is then
loaded with the contents of the source operand. Interrupts are disabled
until the next instruction has been executed. The size of the operation is
dword.

The JBRC instruction skips one dword at the PC and thus reserves one
dword for context information, see section 1.6.6 The JBRC, JIRC and
JSRC subroutine instructions. The context information is not used by the
instruction.

The jump takes place immediately after the JBRC instruction.

The value of PC loaded to BRP is the address of the instruction after the
JBRC instruction.

FPUMBI XNZVC
e o

15 0
I I I I I I I I I I I I I I
0 1 1 0 1 0 0 1 1 0 1 1 Source (s)

Context information (low)

Context information (high)
| | | | | | | | | | | | | | |

(continued)

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-35

3 Instructions in Alphabetical Order

Instruction format:

(indirect or autoincrement 15 0

addressing modes) T T T T T T T T T T T T
0 1 1 0 1 |md| O 1 0 0 1 1 Source (s)
| | |

Context information (low)

Context information (high)
| | | | | | | | | | | | | | |

0 Indirect addressing mode

Mode (md):
1 Autoincrement addressing mode
Note 9: In immediate addressing mode, the immediate address is placed before the context
information.
Instruction format:
(complex addressing modes) 15 0

1 1 [1 1 1 1 1 1 1 1 1 1 1

Addressing mode prefix word (s)
| | [| | | | | | | |
1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 1 |md| O 1 0 0 1 1 Source (s)
| | [| | | | | | | |
1 1 1 1 1 1 1 1 1 1 1

Context information (low)

Context information (high)
| | | | | | | | | |

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

Mode (md): 1 |ndexed with assign, offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

3-36 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

JIR

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:
(register addressing mode)

Instruction format:

(indirect or autoincrement
addressing modes)

Jump to interrupt routine J I R

JIR s

Dword

IRP = PC,
PC = s;

Jump to interrupt routine. The interrupt return pointer (IRP) is loaded
with the contents of the program counter (PC). PC is then loaded with
the contents of the source operand. Interrupts are disabled until the next
instruction has been executed. The size of the operation is dword.

The jump takes place immediately after the JIR instruction.

The value of PC loaded to IRP is the address of the instruction after the
JIR instruction.

FPUMBI XNZVC

- - = = = =0 - - - -
15 0
I I I I I I I I I I I I I I
1 0 1 0 1 0 0 1 1 0 1 1 Source (s)
| | | | | | | | | | | | | |
15 0
I I I I I I I I I I I I
1 0 1 0 1 |md| O 1 0 0 1 1 Source (s)
| | | | | | | | | | | |

0 Indirect addressing mode
Mode (md):
1 Autoincrement addressing mode

(continued)

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-37

3 Instructions in Alphabetical Order

Instruction format:

(complex addressing modes) 15 0
I I I I I I I I I I I I I I I
Addressing mode prefix word (s)

| | | | |

1 0 1 0 1 |md| O 1 0 0 1 1 Operandl
| | |

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

Mode (Md): 1 |ndexed with assign, offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

3-38 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

J I RC Jump to interrupt routine, with J I RC
context information

Assembler syntax: JIRC s

Size: Dword

Operation: IRP = PC
PC = s;

Description: Jump to interrupt routine. The interrupt return pointer (IRP) is loaded
with the contents of the program counter (PC). PC is then loaded with
the contents of the source operand. Interrupts are disabled until the next
instruction has been executed. The size of the operation is dword.

The JIRC instruction skips one dword at the PC and thus reserves one
dword for context information, see section 1.6.6 The JBRC, JIRC and
JSRC subroutine instructions. The context information is not used by the
instruction.

The jump takes place immediately after the JIRC instruction.

The value of PC loaded to IRP is the address of the instruction after the
JIRC instruction.

flags affected: F P UMB I XNZVC
e o D

Instruction format:

(register addressing mode) 15 0
T T T T T T T T T T T T T T
0 0 1 0 1 0 0 1 1 0 1 1 Source (s)
| | |

Context information (low)

Context information (high)
| | | | | | | | | | | | | | |

(continued)

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-39

3 Instructions in Alphabetical Order

Instruction format:
(indirect or autoincrement 15 0

addressing modes) T T T T T T T T T T T T
0 ©O 1 0 1 |md| O 1 0 0 1 1 Source (s)

Context information (low)

Context information (high)
| | | | | | | | | | | | | | |

0 Indirect addressing mode

Mode (md):
1 Autoincrement addressing mode
Note 10: In immediate addressing mode, the immediate address is placed before the context
information.
Instruction format:
(complex addressing modes) 15 0
I I I I I I I I I I I I I I I
Addressing mode prefix word (s)
| | | | | | | | | | | |
I I I I I I I I I I I I
0 0 1 0 1 |md| O 1 0 0 1 1 Source (S)
| | | | | | | | | | | |
I I I I I I I I I I I I
Context information (low)
| | | | | | | | | | | | | | |
I I I I I I I I I I I I I I I
Context information (high)
| | | | | | | | | | | | | | |
0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.
Mode (md): 1 |ndexed with assign, or offset with assign addressing

modes. The Operand1 field selects the register in which
to store the address of the source operand.

3-40 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

JMPU

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:
(indirect, or auto-
increment addressing
modes)

Instruction format:
(complex addressing modes)

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

Jump, set user mode if U flag
is set

JMPU

JMPU si

Dword

PC = si;

The JMPU instruction is similar to the normal JUMP instruction. The
difference is that IMPU will look at the U flag, and make a transition to
user mode if U is set. If U is not set, the CPU will stay in the current
mode. JMPU is intended to be used instead of JUMP when returning
from interrupt routines where IRP (or BRP) have been pushed on to the
stack. Interrupts are disabled until the next instruction has been
executed.

JMPU only supports indirect and complex addressing modes. Register
addressing mode is not supported.

FPUMBI XNZVC
T o N
15 0
I I I I I I I I I I I I
1 0 0 0 1 |md| O 1 0 0 1 1 Source
| | | | | | | | | | | |
0 Indirect addressing mode
Mode (md):
1 Autoincrement addressing mode
15 0
I I I I I I I I I I I I I I I
Addressing mode prefix word (s)
| | | | | | | | | | | |
I I I I I I I I I I I I
1 0 0 0 1 |md| O 1 0 0 1 1 Operandl
| | | | | | | | | | | |

0 Indexed, offset, double indirect, and absolute
addressing modes. Operand1 field should be 0011
(binary).
Mode (md):
1 Indexed with assign, and offset with assign addressing
modes. Operand1 field selects the register in which to
store the source address.

3 Instructions in Alphabetical Order

J S R Jump to subroutine J S R

Assembler syntax: JSR's

Size: Dword

Operation: SRP = PC
PC = s;

Description: Jump to subroutine. The subroutine return pointer (SRP) is loaded with
the contents of the program counter (PC). PC is then loaded with the
contents of the source operand. Interrupts are disabled until the next
instruction has been executed. The size of the operation is dword.

The jump takes place immediately after the JSR instruction.

The value of PC loaded to SRP is the address of the instruction after the
JSR instruction.

flags affected: F P UMB I XNZVC
e o D

Instruction format:

(register addressing mode) 15 0
T T T T T T T T T T T T T T

1 0 1 1 1 0 0 1 1 0 1 1 Source (s)
| | | | | | | | | | | | | |

Instruction format:

(indirect or autoincrement 15 0

addressing modes) T T T T T T T T T T T T
1 0 1 1 1 |md| O 1 0 0 1 1 Source (s)
| | |

0 Indirect addressing mode
Mode (md):
1 Autoincrement addressing mode

(continued)

3-42 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

Instruction format:
(complex addressing modes) 15 0

I I I I I I I I I I I I I I I
Addressing mode prefix word (s)
| | | |

1 0 1 1 1 |md| O 1 0 0 1 1 Destination (Rd)
| | |

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

Mode (Mmd): 1 |ndexed with assign, or offset with assign addressing

modes. The Operand1 field selects the register in which
to store the address of the source operand.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-43

3 Instructions in Alphabetical Order

JSRC

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:
(register addressing mode)

Jump to subroutine, with J S R C
context information

JSRC s

Dword

SRP = PC,
PC = s;

Jump to subroutine. The subroutine return pointer (SRP) is loaded with
the contents of the program counter (PC). PC is then loaded with the
contents of the source operand. Interrupts are disabled until the next
instruction has been executed. The size of the operation is dword.

The JSRC instruction skips one dword at the PC and thus reserves one
dword for context information, see section 1.6.6 The JBRC, JIRC and
JSRC subroutine instructions. The context information is not used by the
instruction.

The jump takes place immediately after the JSRC instruction.

The value of PC loaded to SRP is the address of the instruction after the
JSRC instruction.

FPUMBI XNZVC
e o

15 0
T T T T T T T T T T T T T T
0 0 1 1 1 0 0 1 1 0 1 1 Source (s)
| | | | | | | | | | | | | |
I I I I I I I I I I I I I I
Context information (low)
| | | | | | | | | | | | | | |
I I I I I I I I I I I I I I I
Context information (high)
| | | | | | | | | | | | | | |

(continued)

3-44 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

Instruction format:

(indirect or autoincrement
addressing modes)

Note 11:

Instruction format:
(complex addressing modes)

15 0
I I I I I I I I I I I I
0 0 1 1 1 |md| O 1 0 0 1 1 Source (s)

Context information (low)

Context information (high)
| | | | | | | | | | | | | | |

0 Indirect addressing mode
Mode (md):
1 Autoincrement addressing mode

In immediate addressing mode, the immediate address is placed before the context
information.

15 0
I I I I I I I I I I I I I I I
Addressing mode prefix word (s)

| | |

|
| | | | | | | | | | | |
0 0 1 1 1 |md| O 1 0 0 1 1 Source (s)
| |

Context information (low)

Context information (high)
| | | | | | | | | |

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

Mode (md): 1 |ndexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-45

3 Instructions in Alphabetical Order

JUMP

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:
(register addressing mode)

Instruction format:

(indirect or autoincrement
addressing modes)

Instruction format:
(complex addressing modes)

JUW s

Dword

PC = s;

Jump

JUMP

PC is loaded with the contents of the source operand. The size of the
operation is dword. The jump takes place immediately after the JUMP
instruction. Interrupts are disabled until the next instruction has been

executed.
FPUMBI XNZVC
15 0
T T T T T T T T T T T T T
0 0 0 0 1 0 0 1 1 0 1 Source (s)
| | | | | | | | | | |
15 0
I I I I I I I I I I I
0 0 0 0 1 |md| O 1 0 0 1 Source (s)
| | | | | | | | | | |
0 Indirect addressing mode
Mode (md):
1 Autoincrement addressing mode
15 0
I I I I I I I I I I I I I I
Addressing mode prefix word (s)
| | | | | | | | | | |
I I I I I I I I I I I
0 0 0 0 1 |md| O 1 0 0 1 Operandl
| | | | | | | | | | |
0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.
Mode (md): 1 |ndexed with assign, or offset with assign addressing

modes. The Operand1 field selects the register in which
to store the address of the source operand.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

LSL

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:

Note 12:

Note 13:

Logical shift left

LSL. mRs, Rd

Byte, word, or dword

(mMRd <<= (Rs & 63);

LSL

The destination register is left shifted the number of steps specified by
the 6 least significant bits of the source register. The size of the operation
is m. The rest of the destination register is not affected.

FPUMBI XNZVC
- - - - - -0**00
15 0
T 1 T T T T T 1 T T 1
Destination (Rd) 0 1 0 0 1 1 Size Source (Rs)
| | | | | | | | | | |
00 Byte
Size: 01 Word
10 Dword
PC is not allowed to be the destination operand (Rd).
A shift of 32 bits or more will give a zero result.
3-47

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

L S L Q Logical shift left quick L S L Q

Assembler syntax: LSLQc¢, Rd

Size: Dword

Operation: Rd <<= c;

Description: The destination register is left shifted the number of steps specified by
the 5-bit immediate value. The size of the operation is dword.

flags affected: F P UMB I XNZVC
O** 00

Instruction format:
15 0
[[[[[[[[[[[[[

Destination (Rd) 0 0 1 1 1 1 0 Shift value (c)
| | | | | | | | | | | | |

Note 14: PC is not allowed to be the destination operand (Rd).

3-48 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

LSR

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:

Note 15:

Note 16:

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

Logical shift right

LSR mRs, Rd

Byte, word, or dword

(unsigned M Rd >>= (Rs & 63);

LSR

The destination register is right shifted the number of steps specified by
the 6 least significant bits of the source register. The shift is performed

with zero extend. The size of the operation is m. The rest of the
destination register is not affected.

FPUMBI

15

XNzVC
0**00

0

T T T
Destination (Rd)
| | |

T T T
Source (Rs)
| | |

Size:

00
01
10

Byte
Word
Dword

PC is not allowed to be the destination operand (Rd).

A shift with 32 bits or more will give a zero result.

3 Instructions in Alphabetical Order

LSRQ

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:

Note 17:

Logical shift right quick L S R Q

LSRQ ¢, Rd

Dword

(unsi gned) Rd >>= c;

The destination register is right shifted the number of steps specified by
the 5-bit immediate value. The shift is performed with zero extend. The
size of the operation is dword.

FPUMBI XNZVC
0**00

15 0
T T T T T T T T T T I T T
Destination (Rd) 0 0 1 1 1 1 1 Shift value (c)
| | | | | | | | | | | | |

PC is not allowed as the destination operand (Rd).

3-50 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

L Z Leading Zeroes L Z

Assembler syntax: LZ Rs,Rd

Size: Dword

Operation: Rd = 32;
while (((unsigned)Rs >> (32 - Rd)) !=0)
{

}

Rd--;

Description: The destination is loaded with the number of leading zeroes in Rs. The
size of the operation is dword.

flags affected: F PUMB 1 XNZVC
00*00O0

Instruction format:

15 0
T T T T T T T T T T T T T
Destination (Rd) 0 1 1 1 0 0 1 1 Source (Rs)
| | | | | | | | | | | | |

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-51

3 Instructions in Alphabetical Order

MOVE

from s to Rd

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:
(register, indirect, or auto-
increment addressing
modes)

Instruction format:
(complex addressing modes)

Move from source to register

Move. m s, Rd

Byte, word, or dword

(MRd = (ms;

MOVE

from s to Rd

Move data from source to the destination register. The size of the
operation is m. The rest of the destination register is not affected.

FPUMBI XNZVC
- - - - - -0**00
15 0
I I I I I I I I I I I
Destination (Rd) Mode 1 0 0 1 Size Source (s)
| | | | | | | | | | |
01 Register addressing mode
Mode: 10 Indirect addressing mode
11 Autoincrement addressing mode
00 Byte
Size: 01 Word
10 Dword
15 0
I I I I I I I I I I I I I I
Addressing mode prefix word (s)
| | | | | | | | | |
I I I I I I I I I I
Destination (Rd) 1 |md| 1 0 0 1 Size Operandl
| | | | | | | | | |

Mode (md):

Size:

0 Indexed, offset, double indirect, or absolute addressing
modes. The Operand1 field must be the same as the

Destination field.

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

00 Byte
01 Word
10 Dword

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

MOVE "smmz=* MOVE

from Rs to memory from Rs to memory

Assembler syntax: MOVE. m Rs, di

Size: Byte, word, or dword

Operation: (mdi = (MRs;

Description: Move data from the source register to the destination. The size of the
operation is m.

flags affected: F P UMB I XNZVC
e o D

Instruction format:
(indirect or autoincrement 15 0

addressing modes) T T T T T T T T T T
Source (Rs) 1 |md| 1 1 1 1 Size Destination (di)
| | | | | |

Indirect addressing mode
Mode (md):
Autoincrement addressing mode

00 Byte

Size: 01 Word
10 Dword

Instruction format:

(complex addressing modes) 15 0
I I I I I I I I I I I I I I I
Addressing mode prefix word (s)

Source (Rs) 1 |md| 1 1 1 1 Size Operandl
| | | | | | | | | |

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

Mode (md): 1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

00 Byte
Size: 01 Word
10 Dword

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-53

3 Instructions in Alphabetical Order

MOVE

to Pd

Assembler syntax:

Size:

Operation:

Description:

flags affected:
(Pd !'= CCR, DCCR)

flags affected:
(Pd == CCR, DCCR)

Instruction format:
(register, indirect, or auto-
increment addressing
modes)

Instruction format:
(complex addressing modes)

Move to special register

MOVE s, Pd

MOVE

Byte, word or dword depending on the size of register Pd.

Pd = s;

to Pd

Move data from source to the destination special register. The size of the
operation is the same as the size of the special register involved.
Interrupts are disabled until the next instruction has been executed.

FPUMBI XNZVC
FPUMBI XNZVC
* *x * _ * % 0 * * * *
15 0
I I I I I I I I I I I
Destination (Pd) Mode 1 0 0 0 1 Source (s)
| | | | | | | | | | |
01 Register adressing mode
Mode: 10 Indirect addressing mode
11 Autoincrement addressing mode
15 0
I I I I I I I I I I I I I
Addressing mode prefix word (se)
| | | | | | | | | |
I I I I I I I I I I
Destination (Pd) 1 |md| 1 0 0 0 1 Operandl
| | | | | | | | | |

Mode (md):

Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

MOVE

from Ps

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:
(register, indirect, or auto-
increment addressing
modes)

Note 18:

Instruction format:
(complex addressing modes)

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

Move from special register

MOVE

from Ps

MOVE Ps, d

Byte, word or dword depending on the size of register Ps.

(size)d = Ps;

Move data from the source special register to the destination. The size of
the operation is the same as the size of the special register involved. The
rest of the destination register is not affected. Interrupts are disabled
until the next instruction has been executed.

FPUMBI XNZVC
e 0

The X flag is cleared after the instruction. If the X flag was set before a
MOVE CCR,d instruction, the destination will have the bit
corresponding to the X flag set.

15

0

Destination (d)

Source (Ps)
| | | | | | | | | | | |

01 Register addressing mode
Mode: 10 Indirect addressing mode

11 Autoincrement addressing mode

If PC is used as the destination operand, the resulting jump will have delayed effect,
with one delay slot.

I I I I I I I I I I I I I I I
Addressing mode prefix word (d)

Source (Ps) 1 (md| 1 0 0 1 1 1 Operandl
| | | | | | | | | | |

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

Mode (md): 1 |ndexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which

to store the address of the source operand.

3 Instructions in Alphabetical Order

MOVEM

from memory

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:
(indirect or autoincrement
addressing modes)

Instruction format:
(complex addressing modes)

Move to multiple registers
from memory

MOVEM si , Rd

Dword

n = rnunber;
while (n >= 0)
{

Rn = si[rnunber - n];

n--;

}

MOVEM

from memory

where rnumber is the register number of Rd, n is an integer and Rn the
general register with register number n.

The registers RO to Rd are loaded from memory, starting at the memory
location given by si. The size of each register transfer is dword. Rd is
loaded from the lowest address (si), and RO is loaded from the highest

address: (si + 4 * (<number of stored registers> - 1)).

FPUMBI XNZVC
S 0 - - -
15 0
I I I I I I I I I I I
Destination (Rd) 1 |md| 1 1 1 0 1 Source (si)
| | | | | | | | | | |
0 Indirect addressing mode
Mode (md):
1 Autoincrement addressing mode
15 0
I I I I I I I I I I I I I I
Addressing mode prefix word (si)
| | | | | | | | | | |
I I I I I I I I I I I
Destination (Rd) 1 |md| 1 1 1 0 1 Operandl
| | | | | | | | | | |

Mode (md): ¢

Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.

Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which

to store the address of the source operand.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

MOVEM

to memory

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:
(indirect or autoincrement
addressing modes)

Instruction format:
(complex addressing modes)

Move from multiple registers

MOVEM

to memory
to memory
MOVEM Rs, di
Dword
n = rnunber;
while (n >= 0)
{

di [rnunber - n] = Rn;

n--;
}
where rnumber is the register number of Rd, n is an integer and Rn the
general register with register number n.

The contents of registers RO to Rs are stored to memory, starting at the
memory location given by di. The size of each register transfer is dword.
Rs is stored at the lowest address: (di), and RO is stored at the highest
address: (di + 4 * (<number of stored registers> - 1)).

FPUMBI XNZVC
S ¢

15

0

Source (Rs)

md| 1 1 1 1 1

I I
Destination (di)
| |

0 Indirect addressing mode
Mode (md):
1 Autoincrement addressing mode
15 0
I I I I I I I I I I I I I
Addressing mode prefix word (di)
| | | | | | | | | | |
I I I I I I I I I I I
Source (Rs) 1 |md| 1 1 1 1 1 Operandl
| | | | | | | | | | |
0 Indexed, offset, double indirect, or absolute addressing
modes. The contents of the Operand1 field are ignored.
Mode (md): 1 |ndexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.
AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-57

3 Instructions in Alphabetical Order

MOVEQ pove auet MOVEQ

Assembler syntax: MOWVEQi,Rd

Size: Source data is 6-bit. Operation size is dword.

Operation: Rd =1i;

Description: The destination register is loaded with a 6-bit immediate value, sign
extended to dword.

flags affected: F P UMB I XNZVC
O** 00

Instruction format:
15 0
[[[[[[[[[[[[[

Destination (Rd) 0 0 1 0 0 1 Signed immediate
| | | | | | | | | | | | |

3-58 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

M OV S Move with sign extend M OV S

Assembler syntax: MWVS.z s, Rd

Size: Source size is byte or word. Operation size is dword.

Operation: Rd = (2)s;

Description: Move data from source to the destination register. The source data is
sign extended from z to dword.

flags affected: F P UMB I XNZVC
O** 00

Instruction format:

(register, indirect, or auto- 15 0
increment addressing f f I T T T T T T T T
modes) Destination (Rd) mode 0 © o 1 1 z Source (s)
| | | | | | | | | | |

01 Register addressing mode
Mode: 10 Indirect addressing mode

11 Autoincrement addressing mode

Byte source operand

Size (2):
Word source operand
Instruction format:
(complex addressing modes) 15 0
T T T T T T T T T T T T T T T
Addressing mode prefix word (s)
| | | | | | | | | |
l l l l l l l l l l
Destination (Rd) 1 |md| O 0 0 1 1 z Operandl
| | | | | | | | |

0 Indexed, offset, double indirect, or absolute addressing
modes. The Operand1 field must be the same as the
Destination field.

Mode (md):

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

0 Byte source operand

Size (2):

Word source operand

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-59

3 Instructions in Alphabetical Order

MOVU

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:

(register, indirect or auto-
increment addressing
modes)

Instruction format:
(complex addressing modes)

Move with zero extend

MOWVU. z s, Rd

Source size is byte or word. Operation size is dword.

Rd = (unsigned z)s;

MOVU

Move data from source to the destination register. The source data is
zero extended from z to dword.

FPUMBI XNZVC
- - - ---00*00
15 0
I I I I I I I I I I I
Destination (Rd) mode 0 0 0 1 0 z Source (s)
| | | | | | | | | | |
01 Register addressing mode
Mode: 10 Indirect addressing mode
11 Autoincrement addressing mode
0 Byte source operand
Size (2):
1 Word source operand
15 0
I I I I I I I I I I I I I I
Addressing mode prefix word (s)
| | | | | | | | | |
I I I I I I I I I I
Destination (Rd) 1 |md| O 0 0 1 1 z Operandl
| | | | | | | | | |

Mode (md):

Size (2):

0 Indexed, offset, double indirect, or absolute addressing
modes. The Operand1 field must be the same as the
Destination field.

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

0 Byte source operand

Word source operand

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

MSTEP ey sier MSTEP

Assembler syntax: MSTEP Rs, Rd

Size: Dword

Operation: Rd <<= 1;
if (N
{

}

Rd += Rs;

Description: This is a multiply-step instruction, which performs one iteration of an
iterative multiply operation. The destination operand is shifted one step
to the left, and if the N flag is set before the instruction, the source
operand is added to the shifted destination. The size of the operation is
dword.

flags affected: F PUMB 1 XNZ VC
0O** 00

Instruction format:
15 0
I I I I I I I I I I I I I

Destination (Rd) 0 1 1 1 1 1 1 1 Source (Rs)
| | | | | | | | | | | | |

Note 19: PC is not allowed to be the destination operand (Rd).

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-61

3 Instructions in Alphabetical Order

MULS

Assembler syntax:

Size:
Operation:

Description:

flags affected:

Instruction format:

Note 20:

Signed multiply

MULS. m Rs, Rd

MULS

The operands are byte, word, or dword. The result is 64 bits.

MOF = ((MRs * (mRd) >> 32;
Rd = (dword) ((mRs * (mRd);

Both operands are sign extended from the size (m) to dword, and the
extended operands are multiplied, generating a 64-bit result.

The lower 32 bits of the result are written to Rd, and the upper 32 bits

are written to the multiply overflow register (MOF).
N and Z flags are set depending on the 64-bit result.

The V flag is set if the result is more than 32 bits:

V-flag =

((Rd >=0) & (MOF 1=10)) ||

((Rd < 0) && (MOF 1= -1))

FPUMBI

15

XNzVC
0 * * *

0

I I I
Destination (Rd)
| | |

I I I
Source (Rs)
| | |

Size:

PC is not allowed to be the destination operand (Rd).

00 Byte
01 Word
10 Dword

AXIS ETRAX 100LX Programmer’s Manual (November 28,

2000)

3 Instructions in Alphabetical Order

MULU

Assembler syntax:

Size:
Operation:

Description:

flags affected:

Instruction format:

Note 21:

Unsigned multiply

MJULU. m Rs, Rd

Byte, word, or dword. The result is 64 bits.

MOF = ((unsigned mMRs * (unsigned mRd) >> 32;
Rd = (dword)((unsigned mRs * (unsigned mRd);

Both operands are zero extended from the size (m) to dword, and the
extended operands are multiplied, generating a 64-bit result.

The lower 32 bits of the result are written to Rd, and the upper 32 bits
are written to the multiply overflow register (MOF).

N and Z flags are set depending on the 64-bit result.
The V flag is set if the result is more than 32 bits:

V-flag =

(MF 1= 0))

FPUMBI XNZVC
0***0

15

0

T T T
Destination (Rd) 1
| | |

T T T T
Source (Rs)
| | | | | | | |

00
Size: 01
10

Byte
Word

Dword

PC is not allowed to be the destination operand (Rd).

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-

MULU

63

3 Instructions in Alphabetical Order

NEG

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:

Note 22:

Negate

NEG m Rs, Rd

Byte, word, or dword

(MRd = -(mRs;

NEG

The contents of the source register is negated (2’s complement), and
stored in the destination register. The size of the operation is m.

FPUMBI

15

XNzVC
0 * Kk K

0

T T T
Destination (Rd)
| | |

T T T
Source (Rs)
| | |

Size:

PC is not allowed to be the destination operand (Rd).

00
01
10

Byte
Word

Dword

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

N O P No operation N O P

Assembler syntax: NP
Size: -
Operation:

Description: No operation.

flags affected: F PUMB 1 XNZ VC
e o N

Instruction format:

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-65

3 Instructions in Alphabetical Order

NOT

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:

Note 23:

Logical complement N OT

NOT Rd

Dword

Rd = ~Rd;

The contents of the source register is bitwise inverted (1's complement).
The size of the operation is dword.

FPUMBI XNZVC
0O0**00

15 0
I I I I I I I I I I I I I I
1 0 0 0 0 1 1 1 0 1 1 1 Destination (Rd)
| | | | | | | | | | | | | |

PC is not allowed to be the destination operand (Rd).

3-66 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

OR

2-operand

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:
(register, indirect, or auto-
increment addressing
modes)

Instruction format:
(complex addressing modes)

Logical OR

OR ms, Rd

Byte, word, or dword

(MRd [=(ms;

OR

2-operand

A logical OR is performed between the source operand and the
destination register. The size of the operation is m. The rest of the
destination register is not affected.

FPUMBI XNZVC
- - - - - -0**00
15 0
I I I I I I I I I I I
Destination (Rd) Mode 1 1 0 1 Size Source (s)
| | | | | | | | | | |
01 Register addressing mode
Mode: 10 Indirect addressing mode
11 Autoincrement addressing mode
00 Byte
Size: 01 Word
10 Dword
15 0
I I I I I I I I I I I I I
Addressing mode prefix word (s)
| | | | | | | | | |
I I I I I I I I I I
Destination (Rd) 1 |md| 1 1 0 1 Size Operandl
| | | | | | | | | |
0 Indexed, offset, double indirect, or absolute addressing
modes. The Operand1 field must be the same as the
Destination field.
Mode (md):
Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.
00 Byte
Size: 01 Word
10 Dword
(November 28, 2000) 3- 67

AXIS ETRAX 100LX Programmer’s Manual

3 Instructions in Alphabetical Order

OR

3-operand

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:

Logical OR

OR

3-operand

OR m se, Rn, Rd

Byte, word, or dword

(MRd = (mse | (mRn;

A logical OR is performed between the source operand and the contents
of a general register. The result is stored in the destination register. The
size of the operation is m. The rest of the destination register is not
affected.

ZV_C
*0O0

15

0

I I I I I I
Addressing mode prefix word (se)
| | | | |

I I I
Register (Rn)
| | |

I I I I I
Size
| | | | |

I I I
Destination (Rd)
| | |

Size:

00
01
10

Byte
Word
Dword

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

O R Q Logical OR quick O R Q

Assembler syntax: ORQi,Rd

Size: Source data is 6-bit. Operation size is dword.

Operation: Rd |=i;

Description: Alogical OR is performed between a 6-bit immediate value, sign
extended to dword, and the destination register.

flags affected: F P UMB I XNZVC
O** 00

Instruction format:
15 0
[[[[[[[[[[[[[

Destination (Rd) 0 0 1 1 0 1 Signed immediate
| | | | | | | | | | | | |

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-69

3 Instructions in Alphabetical Order

POP

to Rd

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:

POP Rd

Dword

Pop register from stack

Rd = *(SP++);

POP

to Rd

The entire destination register is popped from the stack, assuming SP as
stack pointer. This is a predefined assembler macro equivalent to

MOVE.D [SP+],Rd.

15

Destination (Rd)

3-70 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

POP

to Pd

Assembler syntax:

Size:

Operation:

Description:

flags affected:

(Pd !'= CCR DCCR)

flags affected:

(Pd = CCR DCCR)

Instruction format:

Pop special register from P O P
stack

to Pd

POP Pd

Byte, word or dword depending on the size of register Pd

Pd = *(size *)SP++;

The entire destination special register is popped from the stack,
assuming SP as stack pointer. Interrupts are disabled until the next
instruction has been executed. This is a predefined assembler macro
equivalent to MOVE [SP+],Pd.

FPUMBI XNZVC
e 0

FPUMB
* x x _ %

XNzZzVC
Q * * * *

I
*

15 0
I I I I I I I I I I I I I I
Destination (Pd) 1 1 1 0 0 0 1 1 1 1 1 0
| | | | | | | | | | | | | |

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-71

3 Instructions in Alphabetical Order

P U S H Push register onto stack P U S H

from Rs from Rs

Assembler syntax: PUSH Rs

Size: Dword

Operation: *(--SP) = Rs;
Description: The entire source register is pushed on the stack, assuming SP as stack

pointer. This is a predefined assembler macro equivalent to
MOVE.D Rs,[SP=SP- 4].

flags affected: F P UMB I XNZVC
e o D

Instruction format:

Source (Rs) 1 1 1 1 1 1 1 0 1 1 1 0
| | | | | | | | | | | | | |

3-72 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

PUSH

from Ps

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:

Push special register onto P U S H
stack

from Ps

PUSH Ps

Byte, word, or dword depending on the size of register Ps

*(--(size *)SP) = Ps;

The entire source special register is pushed on the stack, assuming SP as
stack pointer. Interrupts are disabled until the next instruction has been
executed. This is a predefined assembler macro equivalent to

MOVE Ps,[SP=SP- sizeof(Ps)], where sizeof(Ps) is the size of the source
special register in Bytes.

FPUMBI XNZVC
e 0

Source (Ps) 1 1 1 0 0 1 1 1 1 1 1 0
| | | | | | | | | | | | | |

Size is set according to the size of the pushed register.

11 Byte (Ps=VR)
10 Word (Ps = CCR)

00 Dword (Ps = BAR, BRP, DCCR, IBR, IRP, MOF, SRP,
or USP)

Size:

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-73

3 Instructions in Alphabetical Order

RBF

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:
(indirect, or auto-
increment addressing
modes)

Return from Bus Fault R B F

RBF si

The RBF instruction uses a 16 byte CPU status record to restore the
internal CPU state, and to resume the execution that was interrupted by
a previous bus fault. If the U flag is set before the instruction, the CPU
will go to user mode, otherwise it will stay in its current mode.

RBF restarts execution from the latest instruction boundary before the
interrupted instruction. (In this case, addressing prefixes are considered
as separate instructions.) The cycles between the latest instruction
boundary and the point where the instruction was interrupted will be
run internally in the CPU, without causing bus request. Any data that
the CPU reads in these cycles is taken from the restored CPU status
record. MOVEM instructions are handled specially. They will be
restarted with the register number that was in transfer when the bus fault
occurred.

The X and U flags will be set or cleared depending on bits in the CPU
status record.

FPUMBI XNZVC

* *

15 0
I I I I I I I I I I I I

0 0 1 1 1 |[md| 1 1 0 0 1 1 Source
| | | | | | | | | | | |

Indirect addressing mode
Mode (md):
Autoincrement addressing mode

(continued)

3-74 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

Instruction format:

(complex addressing modes) 15 0

I I I I I I I I I I I I I I I

Addressing mode prefix word (s)
| | | | |

0 0 1 1 1 |md| 1 1 0 0 1 1 Operandl
| | |

0 Indexed, offset, double indirect, and absolute
addressing modes. Operand1 field should be 0000
(binary).
Mode (md):
Indexed with assign, and offset with assign addressing
modes. Operand1 field selects the register in which to
store the source address.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-75

3 Instructions in Alphabetical Order

R ET Return from subroutine R ET

Assembler syntax: RET

Size: Dword

Operation: PC = SRP,

Description: Return from subroutine (see note). The contents of the subroutine
return pointer (SRP) is loaded to PC. The size of the operation is dword.
Interrupts are disabled until the next instruction has been executed.

The RET instruction is a delayed jump instruction, with one delay slot.
Valid instructions for the delay slot are all instructions except:

e Bcc

e BREAK/IBRC/JIR/JIRC//ISR/ISRC/JUMP

e RET/RETB/RETI

e Instructions using addressing prefixes

e Immediate addressing other than Quick Immediate

The RET instruction is a predefined assembler macro equivalent to
MOVE SRP,PC.

Note 24: The RET instruction is only used for returns from terminal subroutines (subroutines

that do not call other subroutines). For non-terminal subroutines, where the return
address is saved on the stack, it is more efficient to use the JUMP [SP+] instruction.

flags affected: F P UMB I XNZVC
e o D

Instruction format:

3-76 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

R ET B Return from breakpoint R ET B

Assembler syntax: RETB

Size: Dword

Operation: PC = BRP,

Description: Return from breakpoint routine (see note). The contents of the
breakpoint return pointer (BRP) is loaded to PC. The size of the
operation is dword. Interrupts are disabled until the next instruction has
been executed.

The RETB instruction is a delayed jump instruction, with one delay
slot. Normally the delay slot after RETB should be used to pop the flags,
and the jump is performed after the instruction that follows RETB.

RETB performs a transition to user mode if the U flag is set. If the U
flag is not set, the CPU stays in its current mode. The transition to user
mode is delayed until after the delay slot so that the delay slot is run in
the current mode. The transition to user mode will depend on the value
of the U flag after the delay slot instruction.

A special case occurs if you get a bus fault in the delay slot of the RETB
instruction. The bus fault sequence will, in this case, set the U flag
corresponding to the operating mode that was valid in the delay slot so
that the interrupted instruction can be restarted in the correct mode. A
separate bit in the CPU status record will be set to tell the RBF
instruction to set operating mode according to the U flag once more
after the restarted instruction.

If RETB is placed in a delay slot of a branch, RET, RETI or RETB that
is taken, the RETB in the delay slot will not be performed.
Consequently, the operating mode of the CPU will not be altered in
that case.

The RETB instruction is a predefined assembler macro equivalent to
MOVE BRP,PC.

Note 25: The RETB instruction is only used for returns from interrupt routines that are not
nested. For nested interrupt routines, where the return address is saved on the stack, it
is more efficient to use the IMPU [SP+] instruction.

flags affected: F P UMB I XNZVC
e o D

Instruction format:

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-77

3 Instructions in Alphabetical Order

RETI

Assembler syntax:

Size:

Operation:

Description:

Note 26:

flags affected:

Instruction format:

Return from interrupt R ET I

RETI

Dword

PC = IRP,

Return from interrupt (see note). The contents of the interrupt return
pointer (IRP) is loaded to PC. The size of the operation is dword.
Interrupts are disabled until the next instruction has been executed.

The RETI instruction is a delayed jump instruction, with one delay slot.
Normally the delay slot after RETI should be used to pop the flags. The
jump is performed after the instruction that follows RETI.

RETI performs a transition to user mode if the U flag is set. If the U flag
is not set, the CPU stays in its current mode. The transition to user
mode is delayed until after the delay slot so that the delay slot is run in
the current mode. The transition to user mode will depend on the value
of the U flag after the delay slot instruction.

A special case occurs if you get a bus fault in the delay slot of the RETI
instruction. The bus fault sequence will, in this case, set the U flag
corresponding to the operating mode that was valid in the delay slot so
that the interrupted instruction can be restarted in the correct mode. A
separate bit in the CPU status record will be set to tell the RBF
instruction to set operating mode according to the U flag once more
after the restarted instruction.

If RETI is placed in a delay slot of a branch, RET, RETI or RETB that
is taken, the RETI in the delay slot will not be performed.
Consequently, the operating mode of the CPU will not be altered in
that case.

The RETI instruction is a predefined assembler macro equivalent to
MOVE IRP,PC.

The RET I instruction is only used for returns from interrupt routines that are not
nested. For nested interrupt routines, where the return address is saved on the stack, it
is more efficient to use the IMPU [SP+] instruction.

FPUMBI XNZVC
e 0

3-78 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

SBFS

Assembler syntax:
Size:
Operation:

Description:

flags affected:

Instruction format:
(indirect, or auto-
increment addressing
modes)

Instruction format:
(complex addressing modes)

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

SBFS di

Save Bus Fault Status

SBFS

The SBFS instruction stores to memory the 16 byte CPU status record
that is saved in hidden registers during a bus fault. SBFS should be the
first instruction in the Bus Fault interrupt routine, since the internally
saved CPU status will be overwritten by the first instruction that writes
to memory, or by a new interrupt or bus fault. Interrupts are disabled
until the next instruction has been executed.

FPUMBI

15

XNzZzVC

0

md| 1 1 0 1 1

I I I
Destination

15

Mode (md):

Indirect addressing mode

Autoincrement addressing mode

I I I I I I
Addressing mode prefix word (s)

md | 1 1 0 1 1

Operandl
| | |

Mode (md):

Indexed, offset, double indirect, and absolute
addressing modes. Operand1 field should be 0000

(binary).

Indexed with assign, and offset with assign addressing
modes. Operand1 field selects the register in which to

store the destination address.

3 Instructions in Alphabetical Order

Scc

Set according to condition

Assembler syntax: Scc Rd

Size: Dword

Operation: if (cc)

I
=

1l
<

Scc

Description: The destination register is loaded with 1 if the condition cc is true, and
with 0 otherwise. The size of the operation is dword. Interrupts are
disabled until the next instruction has been executed.

Condition Codes:

Code Alt Condition
CcC HS Carry Clear
CS LO Carry Set
NE Not Equal
EQ Equal
VvC Overflow Clear
VS Overflow Set
PL Plus
Ml Minus
LS Low or Same
HI High
GE Greater or Equal
LT Less Than
GT Greater Than
LE Less or Equal
A Always True
WF Write Failed

Table 3-2

flags affected: F P UMB Il X NZ V

- - - -0 - - -

(continued)

Encoding

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

C

Boolean function

N*V*Z+N*V*Z
Z+N*V+N*V

1

P

3-80 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

Instruction format:

15 0
T T T T T T T T T T T T T
Condition 0 1 0 1 0 0 1 1 Destination (Rd)
| | | | |

Note 27: PC is not allowed to be the destination operand (Rd).

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-81

3 Instructions in Alphabetical Order

SETF oo SETF

Assembler syntax: SETF <list of flags>
Size: -

Operation: X =0;
Selected flags = 1;

Description: The specified flags are set to 1. If the X flag is not in the list, it will be
cleared. Interrupts are disabled until the next instruction has been
executed.

When the list of flags contains more than one flag, the flags may be
written in any order. The SETF instruction accepts an empty list of

flags.
Examples:
SETF CVX ; Set C, V and X flags.
SETF ; Clear X flag.
SETF MBI ; ;Set M, B and | flags, and clear X flag.

flags affected: F P U M B
* %

XNzZzVC
* Kk Kk Kk %

I
*

Instruction format:
15 0

3-82 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

SUB

2-operand

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:
(register, indirect, or auto-
increment addressing
modes)

Instruction format:
(complex addressing modes)

Subtract

SUB.ms, Rd

Byte, word, or dword

(MRd -=(ms;

SUB

2-operand

The source data is subtracted from the destination register. The size of
the operation is m. The rest of the destination register is not affected.

FPUMBI XNZVC
- - - - - - 0 * * * *
15 0
I I I I I I I I I I I
Destination (Rd) Mode 1 0 1 0 Size Source (s)
| | | | | | | | | | |
01 Register addressing mode
Mode: 10 Indirect addressing mode
11 Autoincrement addressing mode
00 Byte
Size: 01 Word
10 Dword
15 0
I I I I I I I I I I I I I
Addressing mode prefix word (s)
| | | | | | | | | |
I I I I I I I I I I
Destination (Rd) 1 |md| 1 0 1 0 Size Operandl
| | | | | | | | | |
0 Indexed, offset, double indirect, or absolute addressing
modes. The Operand1 field must be the same as the
Destination field (Rd).
Mode (md):
Indexed with assign, or offset with assign addressing
modes. The OperandL field selects the register to store
the address of the source operand in.
00 Byte
Size: 01 Word
10 Dword
(November 28, 2000) 3-83

AXIS ETRAX 100LX Programmer’s Manual

3 Instructions in Alphabetical Order

SUB

3-operand

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:

Subtract

SUB. m se, Rn, Rd

Byte, word, or dword

(MRd = (MR - (mse;

SUB

3-operand

The memory source data is subtracted from the contents of a general
register, and the result is stored in the destination register. The size of
the operation is m. The rest of the destination register is not affected.

FPUMBI XNZVC
- - - - - - 0 * * * %
15 0
I I I I I I I I I I I I I I I
Addressing mode prefix word (se)
| | | | | | | | | | | |
I I I I I I I I I I I I
Register (Rn) 1 0 Size Destination (Rd)
| | | | | | | | | | | |

00
Size: 01

Byte
Word
Dword

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

S U B Q Subtract quick S U B Q

Assembler syntax: SUBQ |, Rd

Size: Source data is 6-bit. Operation size is dword

Operation: Rd -=j;

Description: A 6-bit immediate value, zero extended to dword, is subtracted from the
destination register.

flags affected: F P UMB I XNZVC
0* * * *

Instruction format:
15 0
[[[[[[[[[[[[[

Destination (Rd) 0 0 1 0 1 0 Unsigned immediate
| | | | | | | | | | | | |

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-85

3 Instructions in Alphabetical Order

SUBS

2-operand

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:
(register, indirect, or auto-
increment addressing
modes)

Instruction format:
(complex addressing modes)

Subtract with sign extend

SUBS.z s, Rd

Source size is byte or word. Operation size is dword.

Rd -= (2)s;

SUBS

2-operand

The source data is sign extended from z to dword, and then subtracted
from the destination register.

FPUMBI XNZVC
- - - - - - 0 * * * *
15 0
I I I I I I I I
Destination (Rd) Mode 0 0 1 0 1
| | | | | | | |
01 Register addressing mode
Mode: 10 Indirect addressing mode
11 Autoincrement addressing mode
0 Byte source operand
Size (2):
1 Word source operand
15 0

I I I I I I
Addressing mode prefix word (s)

I I I
Destination (Rd)
| | |

1 (md| O 0 1 0 1

Mode (md):

Size (2):

0 Indexed, offset, double indirect, or absolute addressing
modes. The Operand1 field must be same as the

Destination field (Rd).

1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in which
to store the address of the source operand.

0 Byte source operand

1 Word source operand

3-86 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

SUBS

3-operand

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:

Subtract with sign extend S U B S

3-operand

SUBS. z se, Rn, Rd

Source size is byte or word. Operation size is dword.

Rd = Rn - (2)se;

The source data is sign extended from z to dword, and then subtracted
from the contents of a general register. The result is stored in the
destination register.

FPUMBI XNZVC
0****

15 0
I I I I I I I I I I I I I I I
Addressing mode prefix word (se)

Register (Rn) 1 0 0 0 1 0 1 z Destination (Rd)
| | | | | | | | | | | |

0 Byte source operand
Size (2):
1 Word source operand

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-87

3 Instructions in Alphabetical Order

SUBU

2-operand

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:
(register, indirect, or auto-
increment addressing
modes)

Instruction format:
(complex addressing modes)

Subtract with zero extend

SUBU. z s, Rd

Source size is byte or word. Operation size is dword.

Rd -= (unsigned z)s;

SUBU

2-operand

The source data is zero extended from z to dword, and then subtracted
from the destination register.

FPUMBI XNZVC
- - - - - - 0 * * * *
15 0
I I I I I I I I I I I
Destination (Rd) Mode 0 0 1 0 0 Source (s)
| | | | | | | | | | |
01 Register addressing mode
Mode: 10 Indirect addressing mode
11 Autoincrement addressing mode
0 Byte source operand
Size (2):
1 Word source operand
15 0
I I I I I I I I I I I I I I I
Addressing mode prefix word (s)
| | | | | | | | | |
I I I I I I I I I I
Destination (Rd) 1 |md| O 0 1 0 0 Operandl
| | | | | | | | | |

0
Mode (md):
1
0
Size (2):
1

Indexed, offset, double indirect, or absolute addressing
modes. The Operand1 field must be same as the

Destination field (Rd).

Indexed with assign, or offset with assign addressing
modes. The OperandL field selects the register to store

the address of the source operand in.

Byte source operand

Word source operand

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

SUBU

3-operand

Subtract with zero extend

SUBU

3-operand

Assembler syntax: SUBU.z se, Rn, Rd

Size: Source size is byte or word. Operation size is dword.
Operation: Rd = Rn - (unsigned z)se;
Description: The source data is zero extended from z to dword, and then subtracted

from the contents of a general register. The result is stored in the
destination register.

FPUMBI

flags affected: XNzZzVC
0 * * * *

Instruction format:
15 0

Addressing mode prefix word (se)

Register (Rn)

Destination (Rd)

0 Byte source operand
Size (2):
1 Word source operand

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

SWAP

Assembler syntax:

Size:

Operation:

Description:

Swap bits SW A P

SWAP<option list> Rd

Dword

if (option N
{

Rd = ~Rd;

}
if (option W
{
Rd = (Rd << 16) | ((Rd >> 16) & Oxffff);

if (option B)

{
Rd = ((Rd << 8) & Oxff00ff00) |
((Rd >> 8) & 0x00ff00ff);

}
if (option R

Rd = ((Rd << 7) & 0x80808080) |
((Rd << 5) & 0x40404040) |
((Rd << 3) & 0x20202020) |
((Rd << 1) & 0x10101010) |
((Rd >> 1) & 0x08080808) |
((Rd >> 3) & 0x04040404) |
((Rd >> 5) & 0x02020202) |
((Rd >> 7) & 0x01010101);

}

The bits in the destination register are reorganized according to the
specified option(s). The following options apply:

N Invert all bits in the operand.

W Swap the words of the operand.

B Swap the two bytes within each word of the operand.
R Reverse the bit order within each byte of the operand.

Any combination of the four options is allowed. If more than one
option is specified, they must be given in the order NWBR. The size of
the operation is dword.

The SWAPN instruction is a synonym for the NOT instruction.

(continued)

3-90 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

flags affected: F PUMBI1 XNZ VC
O** 00

Instruction format:

15 0
I I I I I I I I I I

N| W| B R| O 1 1 1 0 1 1 1 Destination (Rd)

| | | | | | | | | |

Note 28: PC is not allowed to be the destination operand (Rd).

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-91

3 Instructions in Alphabetical Order

TEST

Assembler syntax: TEST.ms

Compare with zero

TEST

Size: Byte, word, or dword
Operation: (ms - 0;
Description: Zero is subtracted from the source data, and the flags are set accordingly.
For a register operand, this is a predefined assembler macro equivalent to
MOVE.m Rs,Rs.
flags affected: F P UMBI1 XNZVC
- - ----0**00
Instruction format:
(register addressing mode) 15 0
I I I I I I I I I I
Source (s) 0 1 1 0 0 1 Size Source (s)
| | | | | | | | | |
00 Byte
Size: 01 Word
10 Dword
Instruction format:
(indirect or autoincrement 15 0
addressing modes) T T T T T T T T T T
0 0 0 0 1 |md| 1 1 1 0 Size Source (s)
| | | | | | | | | |

Mode (md):

00
Size: 01
10

Indirect addressing mode
Autoincrement addressing mode
Byte

Word

Dword

(Continued)

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

3 Instructions in Alphabetical Order

Instruction format:

(complex addressing modes) 15 0

I I I I I I I I I I I I I I I

Addressing mode prefix word (s)
| |

| |
I I I I I I I I I I I
0 0 0 0 1 |md| 1 1 1 0 Size Operandl
| | | | | | | | | |

0 Indexed, offset, double indirect, or absolute addressing
modes. The contents the Operand1 field are ignored.

Mode (md): 1 Indexed with assign, or offset with assign addressing
modes. The Operand1 field selects the register in
which to store the address of the source operand.

00 Byte
Size: 01 Word
10 Dword

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 3-93

3 Instructions in Alphabetical Order

XOR

Assembler syntax:

Size:

Operation:

Description:

flags affected:

Instruction format:

XOR Rs, Rd

Dword

Rd ~= Rs;

Exclusive logical OR

XOR

A logical exclusive OR is performed between the contents of the source
register and the destination register. The size of the operation is dword.

FPUMBI

15

XNzVC
0O0**00

0

Destination (Rd)

Source (Rs)

3-94 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

4 CRIS Execution Times

4.1

4.2

CRIS EXECUTION TIMES

Introduction

Instruction execution times for all CRIS instructions and addressing modes are given
below in numbers of CPU cycles. Optimal cache performance (i.e. no cache misses)
is assumed.

Instruction execution times

This section gives the execution times for instructions with the four basic addressing
modes Quick immediate, Register, Indirect and Autoincrement. Except for the
following seven special cases, the execution time is the same for all instructions with
the same addressing mode and data size.

General case:

Addressing mode Data size Data alignment Execution time
Quick immediate 6-bit N/A 1
Register Any N/A 1
Indirect, Auto inc. Byte Any 2
Indirect, Auto inc. Word Address <1:0> 1= 3 2
Indirect, Auto inc. Word Address <1:0> == 3
Indirect, Auto inc. Dword Address <1:0> == 2
Indirect, Auto inc. Dword Address <1:0> 1= 0 3

Table 4-1 General instruction execution times

Special case 1:

Bcc instruction

Branch offset size Execution time
Byte 1
Word 2

Table 4-2 Bcc instruction execution times

Special case 2:
MULS and MULU instructions

The MULS and MULU instructions require two clock cycles.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 4-1

4 CRIS Execution Times

Special case 3:
MOVEM instruction

Data size Data alignment Execution time
Dword Address <1:0>==0 n+1
Dword Address <1:0> =0 2xn + 1

Table 4-3 MOVEM instruction execution times
(Where n is the number of registers moved.)

Special case 4:
PC operand

One idle bus cycle is added to the execution times given above, if PC is used as the
destination operand in any of the following instructions:

ABS ADD ADDQ ADDS ADDU AND
ANDQ ASR ASRQ BTSTQ MOVEM MOVEQ
MOVE (except from a special register) MOVS MOVU OR
ORQ POP SUB SUBQ SUBS SUBU
XOR

One idle bus cycle is also added for the TEST.m PC instruction.

Special case 5:
Break instruction

The BREAK instruction takes two cycles to execute.

Special case 6:

SBFS instruction

Data alignment Execution time
Address <1:0>==0 5
Address <1:0> =0 9

Table 4-4 SBFS instruction execution times

4-2 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

4 CRIS Execution Times

Special case 7:

RBF instruction

The RBF execution time includes the time for the restarted cycle.

Data alighment
Address <1:0>==0
Address <1:0> ==
Address <1:0> ==

Address <1:0> =0
Address <1:0> =0
Address <1:0> =0

Type of restarted cycle
Instruction fetch
First cycle of data read or write

Second cycle of data read or write

Instruction fetch
First cycle of data read or write

Second cycle of data read or write

Table 4-5 RBF instruction execution times

Execution time
6
7
8

10
11
12

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

4 CRIS Execution Times

4.3 Complex addressing modes execution times

The table below gives the extra execution time required to calculate the effective
address in complex addressing modes. The effective address calculation time is added
to the Indirect/Autoincrement execution time given in section 4.2 Instruction
execution times to give the total execution time of the instruction.

Data alignment refers to the alignment of data involved in the effective address
calculation.

Addressing mode

Data alignment

Execution time

Indexed N/A 1
Indexed with assigned N/A 1
Immediate Byte offset N/A 1
Indirect Byte offset any 2
Word offset address <1:0> =3 2
Word offset address <1:0> == 3
Dword offset address <1:0> == 2
Dword offset address <1:0> =0 3
Immediate Byte offset with assign N/A 1
Indirect Byte offset with assign any 2
Word offset with assign address <1:0> =3 2
Word offset with assign address <1:0> == 3
Dword offset with assign address <1:0> == 2
Dword offset with assign address <1:0> 1= 0 3
Double indirect address <1:0> == 2
Double indirect address <1:0> =0 3
Double indirect with autoincrement address <1:0> == 2
Double indirect with autoincrement address <1:0> =0 3
Absolute address <1:0> == 2
Absolute address <1:0> =0 3

Table 4-3 Complex addressing modes execution times

4.4 Interrupt acknowledge execution time

The interrupt acknowledge sequence, including the interrupt acknowledge cycle and
the interrupt vector read following it, requires 2 bus cycles. However, if the interrupt
vector number is read from the mode register or externally, a number of wait states is
added which increases the length of the CPU cycle.

4-4 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

5 Assembly Language Syntax

5 ASSEMBLY LANGUAGE SYNTAX

51 General

This chapter describes the syntax for the assembly language used by the assembler,
which is derived from the GNU assembler. For topics that are not covered here,
please see the GNU assembler manual.

52 Definitions

Throughout this chapter, whitespace means any number and combination of spaces
(ASCII 32) and tabs (ASCII 9).

A simple, descriptive form of syntax notation will be used:

Any item written without surrounding { } (braces) or < > (brackets) must be written
exactly as it stands.

Case is irrelevant when writing instructions.

An item enclosed in < > (brackets) does not have its literal meaning, which is defined
elsewhere. For example,

MOVE. <si ze nodifier>
<si ze nodifi er> is described elsewhere, and may be one of B, W, D.

In some instances, the item may be followed by a number as in <oper and1>. This
means that there are several operands, numbered incrementally, but that there is only
one definition for <oper and>. Generally, an operand may, in this context, be
specified as <oper andn>.

An item enclosed in { } (braces) is optional and may be left out:

{<l abel > :} Indicates that a label is optional. Please note, however, that a label
must be followed by a : (colon).

The symbol ... (three periods) indicates that any number of the previous item may
follow. For example:

{<operand1> {, <operand2> {,...}}} means that any number of
<oper ands> are valid.

A range of characters is indicated by using .. (two periods) inside { } (braces):
R{0..15} indicates RO, R1, ... R15

The symbol ;= (colon, equal sign) indicates a definition;
<reg> := R{0..15}

Location counter refers to the position within the current section (i.e. .text, .data)
where an assembly instruction is emitted. For example:

.dword .-4 ; Emt 4 bytes at current location with the value of
; current location mnus 4.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 5-1

5 Assembly Language Syntax

5.3

54

The symbol | (“or”) indicates that only one of the items may follow:
e <size modifier>:=B |W | D
« Size modifier may be one of B, W, D.

In many cases, where it is easier to write a description in plain English, the
description will be written in plain English.

Files, lines and fields

An assembly program may be made up of several files. The assembler assembles each
file separately. The linker, derived from the GNU Id, resolves relocations and cross-
references, and produces an executable file in a variant of the a.out object format.

Each file may contain zero or more lines of assembly code. Each line consists of a
number of characters, followed by a line-feed character (ASCII LF, 0x0a).

Each line of assembly code is made up of several fields. There may be up to four fields
on a line: The label field, the opcode field, the operands field, and the comment
field.

{<l abel >:}{ <opcode>{ <operandl>{, <operand2>{,...}}}{; <coment >}

The label field starts in the first column. The label is comprised of symbol characters
(as described in section 5.4 Labels and symbols), and ends with a : (colon).

The opcode field is exactly one opcode or assembler directive such as MOVE.D or
.BYTE. An opcode must be preceded by at least one white space character.

The operands field may contain any number of operands separated by commas, and
there may be whitespace on either side of the commas. The first operand must be
preceded by at least one whitespace character.

The comment field starts with a ; (semi-colon), and ends at the end of the line.

The symbol # (hash) is a special prefix character used as a semi-directive such as
#APP and #NO_APP and line number specification.

Labels and symbols

A symbol is a set of characters associated with a value, which may be a number or a
location counter. A label is a symbol. The value of symbols other than labels may be
set using the .SET directive.

<l abel > : = <synbol >

A symbol is made up of any number of the characters: {0..9} {A..Z} {a.z} . $ _(i.e.
a period, dollar sign, or underline space). However, the first character of a symbol
may not be a $ (dollar sign) or a digit (i.e. {0..9}).

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

5 Assembly Language Syntax

55

5.6

5.6.1

It is recommended that symbols that start with the letter ‘r’ or ‘R’, followed by a
number in the range from {0 ... 15} be avoided, as well as the mnemonic names and
register numbers of the special registers (see section 1.1 Registers) since they may be
interpreted as a register.

Symbols are case sensitive. All characters are significant.

Opcodes

An opcode has the form:
<opcode> : = <op>{.<size_nodifier>}

where <op> is one of the instructions described in chapter 2 Instruction Set
Description”, and <size_modifier>:=B | W | D

The size modifier indicates whether the operation should be performed as a byte,
word or dword operation where a byte is 8 bits, a word is 16 bits, and a dword is 32
bits in length.

Note that only operations which support variable size have the size modifier, and that
in this case it is mandatory. On the other hand, the size modifier must not be used
for operations that do not support variable size.

The opcode field is not case sensitive. For example, the no-operation instruction may
be written “NOP” or “nop” or even “noP”.

In some cases, the assembler may have aliases for opcodes meaning that two
syntactically different assembly statements may produce the exact same code. For
instance, the Branch on Lower (BLO) instruction is implemented as Branch on Carry
Set and has, therefore, the acronym (BCS).

Also, although the CRIS has no explicit PUSH or POP instructions, the assembler
provides these mnemonics as alternatives for the instructions that perform these
operations. For example:

PUSH Rn == MOVE. D Rn, [SP=SP-4]
POP Rn == MOVE. D [SP+], Rn
Operands

General

The following syntax applies:
<operand> : = <addressi ng_node> | <expression>

<expression> is defined in the GAS manual and will only be outlined here.
<addressing_mode> is described in section 5.7 Addressing modes.
Register names are not case-sensitive.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 5-3

5 Assembly Language Syntax

5.6.2

56.2.1

Expressions

The expression syntax is the same as defined by the GAS, except that some
simplifications are in order.

Expression evaluation can only handle integers. The compiler uses integer constants
for the bit patterns of floating point numbers as given in the IEEE 754 standard for
32 and 64 bit representation.

White space is allowed in expressions but not in constants or symbols.

All expression evaluation takes place at full precision (32 bits); in other words, there
are no different data types (word, byte, etc.). If the result of an expression is too large
for the selected mode, (e.g. MOVE. B 0xAB3, RO), it is an error which will be
indicated by the assembler. If it is smaller than the indicated size, it will be padded
with zeroes.

One must be careful when performing operations on symbols belonging to different
segments since the absolute address of the segments is not known at assembly time.
Normally, expressions are used to provide the difference between a jump table and its
destination (offsets into structs etc.). Expressions involving more than one segment,
and which can not be reduced to only one segment at assembly time, are not allowed.

Expression operands
The following expression operands are supported:

Name Comment
<hexadecimal_constant>
<decimal_constant>
<octal_constant>
<symbol>
Current location counter

’<character_constant>

Table 5-1 Supported operands

<hexadecimal_constants> are hexadecimal numbers prefixed with 0x or 0X (i.e.
OxFF80 = 65408). Either upper or lower case may be used. <octal_constants> are
octal numbers prefixed with 0 (zero) (i.e. 017 = 15). <decimal_constants> begin with
{1..9}. 5633 is a valid <decimal_constant>; 083 is not. <symbols> have already been
described in section 5.4 Labels and symbols.

<character_constant> : = ‘{any_printable_ascii_car} |

“\<speci al _char>

<any_printable_ascii_char> is an ASCII character in the range from 33 to 126 (0x21
to OX7E). The complete list of <special_char> is:

\'t (HT), \n (LF), \r (CR, \b (BS), \f (FF), V'), \" (M)

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

5 Assembly Language Syntax

5.6.2.2

5.6.2.3

5.7

The following are examples of legal <character_constants>:

'a "A "% "3 "\t "\n

Any character backslashed that is not a special_char, is treated “as itself” (i.e. \y ==y).

Neither <hexadecimal_constants> nor <octal_constants> are supported as
<character_constants>.

Expression operations

The following binary operations are supported:

* [, %, +, - (times, divide, remainder, plus, minus)
&, |, ™ (bitwise and, or, xor)

<<, >> (shift left and right)

The following unary are supported:

- (minus)
~ (logical (bitwise) not)

String expressions

A string expression is a special type of expression which may only appear in an .ASCII
directive. It has the following form.

<string> := "{<any_char1>{<any_char2>{...}}}"
where:
<any_char> := <any_printable_ascii _char> | \<octal constant> |

\ <speci al _char> | \"

Thus, a string expression is made up of zero or more characters. Every character is
similar to the character_constant described above, with the addition that \” means
the quote character. For example:

"This is a\040string with a \"newine\" at the end\n"

Addressing modes

In order to describe what actually happens in each description below, a form of
pseudo-code which is very similar to C is used.

<size_modifier> refers to the size modifier of the opcode:
<reg> := R{0..15} | PC| SP
where PC is R15 and SP is R14.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 5-5

5 Assembly Language Syntax

There is also a series of special registers used for such things as storing the return
address from a subroutine, etc. However, since these registers can be explicitly
referred to only in special MOVE instructions, and then only in the Register
addressing mode, they will not be dealt with here.

Mode: | mredi at e

Written as <expr essi on>

Example: 34404

Explanation: 34404;

Mode: Quick i nmedi ate

Written as: <expr essi on>

Example: 12

Explanation: 12;

Mode: Absol ut e

Written as: [<expr essi on>]

Example: [34404] ;

Explanation: *(size_nodifier*) 34404;
Mode: Regi st er

Written as: <reg>

Example: RS

Explanation: r5;

Mode: I ndi r ect

Written as: [<reg>]

Example: [R5]

Explanation: * (size_nodifier *) r5;
Mode: Aut oi ncr enent

Written as: [<reg>+]

Example: [R5+]

Explanation: * (size_nodifier *) r5++

(Note: R5 is incremented by a value corresponding to the <size_maodifier> in the opcode.)

5-6 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

5 Assembly Language Syntax

Mode:
Written as:
Example:
Explanation:

(Note: The value of R6 is shifted one step left for .W and two steps left for .D)

Mode:
Written as:
Example:
Explanation:

Mode:
Written as:
Example:
Explanation:

Mode:
Written as:
Example:
Explanation:

Mode:
Written as:
Example:
Explanation:

Mode:
Written as:
Example:
Explanation:

Mode:
Written as:
Example:
Explanation:

| ndexed
[<regl>+<reg2>. <size_nodifi er 2>]

[R5+R6. D]

(size_modifier) (r5 + (r6<<log2(<size_nodifier2>)));

I ndexed with assign
[<regl>=<reg2>+<reg3>. <si ze_nodi fi er 2>]

[R4=R5+R6. D|

(size_nodifier) (rd4 =r5 + (r6<<log2(<size_nodifier2>)));

I medi ate of f set

[<reg>+<expressi on>]
[R5 + TABLE]

*(r5 + TABLE);

Indirect offset
[<regl>+[<reg2>].<si ze_nodifi er2>]
[R5 + [R6]. Dl

*(r5 + *(size_nodifier2*) r6);

Aut oi ncrerent of fset
[<regl>+[<reg2>+] . <si ze_nodifier2>]
[R5 + [R6+4].D]

*(r5 + *(size_nmodifier2*) r6++);

I'medi ate offset with assign
[<regl>=<reg2>+<expressi on>]
[R4 = R5 + TABLE]

* (r4 = r5 + TABLE);

Indirect offset with assign
[<regl>=<reg2>+[<reg3>].<si ze_nodi fi er 2>]
[R4 = R5 + [R6].D]

*(rd =15 + *(size_modifier2*) re);

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

5 Assembly Language Syntax

Mode: Autoincrement offset with assign
Written as: [<regl>=<reg2>+[<reg3>+] . <si ze_nodi f i er 2>]
Example: [R4 = R5 + [R6+].D]

Explanation: *(r4 = r5 + *(size_nodifier2*) ré++);
Mode: Doubl e i ndi rect

Written as: [[<reg>]]

Example: [[R]]

Explanation: *(size_nodifier*) (*(dword*) r5);
Mode; Doubl e indirect w th autoincrenent
Written as: [[<reg>+]]

Example: [[R5+]]

Explanation: *(size_nodifier*) (*(dword*) r5++);

Note 1: The difference between the Quick immediate addressing mode and the Immediate addressing mode is
that the Quick immediate mode is valid only for certain instructions (such as ADDQ) where one of
the operands is a small integer. The range of values for this mode varies according to the instruction.
Immediate values, on the other hand, can be anything that fits in the size indicated by the instruction.

Note 2: The assembler implements the Immediate and Absolute modes in the following ways:

« The Immediate mode is actually the Autoincrement mode using PC
» The Absolute mode is actually the Double indirect with autoincrement mode using PC

Note 3: The double Indirect (with or without autoincrement), Offset (with or without assign), Indexed (with

or without assign) and Absolute addressing modes are implemented using special addressing mode
prefixes.

5-8 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

5 Assembly Language Syntax

5.8

5.8.1

5.8.2

Assembler directives

Directives controlling the storage of values

. BYTE <expressionl> {, <expression2> {, ...}}

Example:
. BYTE 0x41, 0x42, 0x43, 0x38, 0x30

Insert a byte at the current location, incrementing the location counter by one.
Repeat this until the list of expressions has been exhausted.

.WWORD <expressionl> {, <expression2> {, ...}}

Example:
. WORD 34404, 0x2040

Insert a word at the current location, incrementing the location counter by two.
Repeat this until the list of expressions has been exhausted.

. DWORD <expressionl> {, <expression2> {, ...}}

Example:
. DWORD 0xbf 96a739

Insert a dword at the current location, incrementing the location counter by four.
Repeat this until the list of expressions has been exhausted.

.ASCI | <stringl> {, <string2>{, ...}}

Example:
LASCI I "Megatroidin", "AX-Foo\r\n"

Insert a string of ASCII characters, and increment the location counter by the size of
the string. Repeat this until the list of strings has been exhausted.

Directives controlling storage allocation

The assembler supports, for example, text data and bss segments. Values can not be
stored in the bss segment per definition, but space can be reserved in this segment.

TEXT
Select the text location counter (used for the program text).

. DATA
Select the data location counter (used for initialized data).

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 5-9

5 Assembly Language Syntax

Note 4:

Note 5:

.BSS
Select the bss location counter (used for uninitialized data).

. ORG <expressi on>

Example:
.ORG 0

Set the current location counter to <expression>.

. LCOW <synbol >, <expressi on>

Example:

.LCOW _screen width, 2

Reserve the indicated number of bytes in the bss segment, and assign the indicated
symbol to the start of the area. This is used by the GCC compiler when a default-zero
initialized variable is defined. The location counter is increased by <expression>.

Note that symbols defined by .LCOMM are default local and need a .GLOBAL
directive to be available for other files.

. SPACE <expressi onl>, <expression2>

Example:

. SPACE 10, '\r

Put the number of bytes indicated by the first expression into the current segment.
Each byte has the value indicated by the second expression. The location counter is

advanced by one for each byte inserted. The example above puts 10 carriage returns
at the current location.

. ALI GN <expressi on>

Example:
CALIGN 1

Align the location counter so that the <expression> least significant bits of the
location counter are zero, or to put it another way, so that the location counter is an
even multiple of 2 **<expression>. If the location counter is already aligned, nothing
happens, otherwise it is incremented until it is aligned.

In the example .ALIGN 1 above, the location counter is to be word aligned.
Program code in the text segment must always be word aligned. This means that after data has been
inserted into the text segment that might result in an odd number of bytes, such as the result of a

.BYTE or .ASCII directive, an .ALIGN 1 should be performed before the next instruction. However,
note that data itself may start at odd or even addresses in the text segment.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

5 Assembly Language Syntax

5.8.3

5.9

Symbol handling

.GLOBAL <symbol>
Example:
.GLOBAL _start_gate

Make the <symbol> available to other modules. Used for global functions and
variables.

SET <symbol>, <value>

Example:

. SET ACI A_DATA, 0x80003a

Give the <symbol> a value. Note that writing
LABEL:

on a line is equivalent to writing

. SET LABEL, .

A symbol assigned a value by the .SET directive may be changed at any time. (The
value of a label may not be changed, however).

Alighnment

Program code must always be word aligned. However, it is up to the programmer to
ensure that this is done by performing .ALIGN 1 before code that may potentially
end up on an odd address. This could happen after a .BYTE, .ASCII, or .SPACE
directive.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 5-11

5 Assembly Language Syntax

5-12 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

6 CRIS Compiler Specifics

6.1

CRIS COMPILER SPECIFICS

CRIS compiler options

This document is a portion of the GNU C Compiler documentation, which
describes compiler '-m’ options for different target processors (as for instance: Using
and Porting GNU CC, by Richard M. Stallman, published by Free Software
Foundation, Inc. 1998).

These specifications may be subject to changes with future revisions of the CRIS
GCC.

The following '- m’ options are defined for the CRIS architecture family:

- ncpu=CPU_MCDEL

- mar ch=CPU_MODEL

These options produce code that runs on CPU_MODEL. Values 'et r ax4’,
"etrax100’,’ etrax100l x’ ,and’ vN , where N is in the range from 0...10
are recognized. When’ vIN' s specified, N denotes the version-register contents of
the targeted CPU model.

- nt une=CPU_MODEL

is like ’- mcpu=CPU_MODEL'’ but does not affect the instruction set, only the
applicable scheduling parameters.

-netrax4
-mo- et rax4

Set (unset) ’- mcpu=v3’ additions to the base instruction set.

-met rax100
-mo- et rax100

Set (unset) ’- mcpu=v8’ additions to the base instruction set and 32-bit general
alignment.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 6-1

6 CRIS Compiler Specifics

-nconst-align

-mdat a-al i gn
-mst ack-align
- mL6bi t
-B2bi t
-nm8bi t

-mo- const -al i gn
-mo- dat a-al i gn
-mo- st ack-al i gn

Align constants, data and stack respectively, to 16-bit (two bytes) data boundary by
alignment directives, or by rounding up the size of the stack-frame. Only individual
variables are affected; the (unaligned) ABI is unaffected. Saying ‘- m16bit’ is
equivalent to all of - mconst-align2, ’- mdata-align’, and ’- mstack-align’. This is the
default when the base ('v0’) instruction set is specified. Saying - m32bit’ means
rounding them up to a 32-bit data boundary. This is the default for the 'v8’
instruction set and up. Specifying '-m8bit’ means do not align anything. The 'no-’
counterpart disables alignment of that entity.

- max- st ack-frane=S| ZE

Warn when the stack-frame exceeds SIZE bytes.

- pr ol ogue- epi | ogue
- rmo- pr ol ogue- epi | ogue
Do (do not) output a prologue and epilogue for any function. For code compiled

with the "-mno-prologue-epilogue’ option, it is necessary to add a function prologue
and epilogue through "asm’ statements.

6-2 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

6 CRIS Compiler Specifics

6.2 CRIS preprocessor macros

The GCC port sets the following preprocessor macros:

_cris__
_CRIS
_ONUCRS

These three macros are always set to '1’.

__arch_X

This macro is set to "1’ for the options *-mcpu=X' and ’-march=X" (where the variable
"X" is the value entered for CPU_MODEL). See section 6.1 CRIS compiler options for
an explanation of these options.

The macro’__tune_X’ is set for the option -mtune=X’ in the same way as the macro
" _arch_X'is for -march=X".

Note: The underlining at the beginning and end of the macros above represents two underline spaces.
6.3 The CRIS ABI
6.3.1 Introduction

This is a description of the CRIS GCC (GNU C Compiler) ABI (Application Binary
Interface), the binary-level conventions for the ETRAX 100 processor. An
application binary interface defines a system interface for executing compiled
programs. Among the conventions that an ABI establishes are register usage, calling
conventions, parameter passing, and layout of data.

These specifications may be subject to changes with future revisions of the CRIS
GCC ABI.

6.3.2 CRIS GCC Fundamental Data Types

This is how C and C++ data types correspond to CRIS GCC data types, see tablel-
4.

A signed, unsigned, or plain (in C++) char is a signed or unsigned byte (or 8-bit
integer).

A signed or unsigned short int is a signed or unsigned word (or 16-bit integer).

A signed or unsigned int and long is a signed or unsigned dword (or 32-bit
integer).

Pointers to any type are represented as 32-bit integer entities.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 6-3

6 CRIS Compiler Specifics

6.3.3

Enumerated types in C and C++, enum, are represented as integer objects, 32-bit
dwords.

The floating point types float and double are represented as 32-bit IEEE-754 floating
point numbers:

31 0
rr 1o 117 r1r 110111 1T 1T 1T 17T 1T 17T 17T T T T T T T T

Exponent bits Mantissa bits

sign,
bit

Figure 6-1 32-hit floating point number

The type long double is represented as a 64-bit IEEE-754 floating point number,
with the lower part of the mantissa in the dword at the lower address.

31 0
rrrrrrrrrr1r1r1rr1r 1 1 10 17T 1T 1T 1T T T T T T T T T

Mantissa bits Isb

63 32
rrrrrrr7rrrr1rrr1r 11t 1T 1T 1T 1T 1T T T T T T T T

Exponent bits msh Mantissa bits

sign)
bit

Figure 6-2 64-bit floating point number

CRIS GCC Object Memory Layout

The memory layout of a structure has each member at increasing addresses, without
any alignment padding in between members. The size of the structure is, therefore,
the sum of each of the sizes of the elements (with the exception of zero bitfields,
which align to the next byte boundary).

Example of the structure layout of the CRIS ABI:

struct exanple

{
char c; /* 1 Byte, offset 0 */
short s; /* 2 Bytes, offset 1 */
int i; /* 4 Bytes, offset 3 */
long I; /* 4 Bytes, offset 7 */
float f; /* 4 Bytes, offset 11 */
doubl e d; /* 4 Bytes, offset 15 */
| ong doubl e Id; /* 8 Bytes, offset 19 */
char s[6]; /* 6 Bytes, offset 27 */

b

The size of the st ruct exanpl e is 33 Bytes.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

6 CRIS Compiler Specifics

6.3.4

Bitfields span over any byte, word or dword boundaries. The first declared field is in
the lowest bits of the lowest address at the starting address.

Compiler options specify whether objects have byte, word or dword alignment. Code
must not assume that objects are laid out at stricter alignments than bytes. Compiler
options specify the actual alignment. For example, -m8bit specifies that objects are
always byte-aligned, while the default is 16-bit alignment. Note that options
specifying a processor-version also implicitly control the alignment of objects.

CRIS GCC Calling Convention

Arguments shorter than or equal to 32 bits are passed by value. Integral types smaller
than 32 bits are promoted to the corresponding 32-bit types by the same rules as in
1ISO C 1998-1999. Larger entities are passed by reference by passing a pointer to a
read-only value. This means that the callee has to copy that value if it wants to
modify it. The first four parameters (by value or reference) to a function are passed in
registers R10..R13, starting with the first parameter in R10. Starting with the fifth
parameter, parameters are passed on the stack, starting with offset zero upon entry to
the called function (not including any return address).

Return values shorter than or equal to 32 bits are returned in register R10. Structure
return values are passed (to the called function) by reference in register R9 to a caller-
allocated area. The this pointer in C++ is passed as an invisible first argument in R10
(i.e. the first argument to a non-static member function ends up in register R11 and

S0 on).

Registers R9..R13, SRP and MOF (except any return values in register R10) are
assumed to be clobbered upon return from the function. Registers R0..R8 must have
the same contents upon return from, as before the call to the function.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 6-5

6 CRIS Compiler Specifics

6.3.5 Stack Frame Layout
As can be seen below, the stack does not have a static layout except for the order of its
components. It may, in fact, be collapsed and empty (not even a return address);
(higher address)
[
Parameter #7
If more than four parameters.
Parameter #6
Stack pointer value Parameter #5
gumnctoniemtny Parameter #4 (R13)
Parameter #3 (R12) Only if variable-arguments
function, and if the parameters are
Parameter #2 (R11) not named.
Parameter #1 (R10)
Return address Only if non-leaf function.
Saved fp (R8) Only in a function needing a
; frame pointer.
Frame pointer
value b
Local variables and internal
; If used.
temporaries
Preserved register values, R0..R7/ If modified, and R8 only when
R8 no frame pointer is needed.
Variables of variable size and
If used.
alloca() storage
Parameter storage when calling
for parameter #5 and up Irese,
Stack pointer
value »
(lower address)
Figure 6-3 Stack frame layout
Very few functions need a frame pointer. When a frame pointer is needed, the called
register R8 is used. The frame pointer value is derived from the stack pointer value at
the beginning of the function.
If functions with more than four parameters are called, the memory room for the
parameters from the fifth and up is allocated in the stack frame of this function.
For functions with a variable number of parameters the function itself is responsible
for storing any necessary portion of registers R10..R13 as indicated in Figure 6-3
above. The “va_list” type is a pointer to an array of parameters or (by reference)
pointers to parameters.
6-6 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

7 The ETRAX 4

7.1

Introduction

THE ETRAX 4

The ETRAX 4 is an earlier processor in the ETRAX family. The differences between
the CRIS implementation in the ETRAX 100LX and the ETRAX 4 are presented in
this chapter.

7.2

Special registers

The processor architecture defines 16 special registers (PO - P15), ten of which are
implemented in the ETRAX 4. The special registers in the ETRAX 4 are:

MNEM
VR
CCR
DCRO
DCR1
IBR
IRP
SRP
DTPO
DTP1
BRP

Table 7-1

Reg.No.

P1
P5
P6
P7
P9
P10
P11
P12
P13
P14

Description
\ersion register

Condition Code Register

DMA Channel 0 Count Register
DMA Channel 1 Count Register

Interrupt Base Register
Interrupt Return Pointer

Subroutine Return Pointer

DMA Channel 0 Transfer Pointer
DMA Channel 1 Transfer Pointer

Breakpoint Return Pointer

Special registers

Special registers for the ETRAX 4.

T (PO)
VR
G
NG
- P (P4)
CCR
DCRO
DCR1

' (P8)

IBR
IRP
SRP
DTPO
DTP1
BRP

(P15)

Figure 7-1 Special registers

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

Width
8 bits
16 bits
16 bits
16 bits
32 bits
32 bits
32 bits
32 bits
32 bits
32 bits

Constant zero register

(P1) Version Register

(not implemented)

(not implemented)

Constant zero register

(P5) Condition Code Register
(P6) DMA 0 Count Register
(P7) DMA 1 Count Register
Constant zero register

(P9) Interrupt Base Register
(P10) Interrupt Return Pointer
(P11) Subroutine Return Pointer
(P12) DMA 0 Transfer Pointer
(P13) DMA 1 Transfer Pointer
(P14) Breakpoint Return Pointer
(not implemented)

7 The ETRAX 4

7.3 Flags and condition codes

The ETRAX 4 condition code register (CCR) has no F, P, U, M or B flags. Instead
of the M and B flags, the ETRAX 4 has a D and E flag:

15 0

DMA 1 enable
DMA 0 enable
Interrupt enable
Extend
Negative

Zero

Overflow

Carry

Figure 7-2 The ETRAX 4 condition code register (CCR)

The DCCR register is not available in the ETRAX 4 (this affects the MOVE (to Pd)
and POP (to Pd) instructions).

The only difference in the 16 condition codes in table table 7-2 below is the EXT
(external pin); all other condition codes are the same.

Code Alt Condition Encoding Boolean function
ccC HS Carry Clear 0000 (e}

CS LO Carry Set 0001 C

NE Not Equal 0010 z

EQ Equal 0011 VA

\Ye Overflow Clear 0100 \Y

VS Overflow Set 0101 \Y,

PL Plus 0110 N

Ml Minus 0111 N

LS Low or Same 1000 C+z

HI High 1001 C+Z

GE Greater or Equal 1010 N+V+N«V

LT Less Than 1011 N+«V+NxV

GT Greater Than 1100 N+*V+Z+Nx«VxZ
LE Less or Equal 1101 Z+N«V+N«V
A Always True 1110 1

EXT External Pin 1111 External input

Table 7-2 The ETRAX 4 condition codes

7-2 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

7 The ETRAX 4

This is the order in which the flags are listed in chapter section 2 Instruction Set
Description (see section section 3 Instructions in Alphabetical Order):
ETRAX 100LX: FPUMBI XNZVC

ETRAX 4: ---DEI XNzZzVC

Except for there being no F, P or U flags in the instruction set for the ETRAX 4, and
that the M and B flags are flags D and E respectively, the list of what flags are affected
in the ETRAX 4 is the same except for the instructions in the table below:

Instruction flags affected
D E
CLEARF * *
(Pd = CCR) - -
MOVE to Pd
(Pd == CCR) - -
POP = =

Table 7-3 Changes in affected flags for the ETRAX 4

7.4 Data organization in memory

The ETRAX 4 CPU can operate with an 8-bit or 16-bit wide data bus. Figure figure
7-3 shows an example of data organization with an 8-bit bus. The same example, but
with a 16-bit bus, is shown in figure 7-4.

Example of a structure layout:

struct exanple

{
byte a
byte b
word c;
dword d;
byte e;
word f
dword g

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 7-3

7 The ETRAX 4

. , Address
Vg Y
Byte a An
Byte b An+1
Isb| An+2
——————— Word ¢ S
msb An+3
- .} An+4
An+5
——————— Dword d - =—===—-
___________________ An + 6
msb An+7
Byte e An+8
Isb| An+9
——————— Word f -——————+
msb An + 10
R -) An + 11
An + 12
——————— Dword g-—-————-
___________________ An + 13
msb An + 14
| |
| |
Figure 7-3 Data organization with an 8-bit bus
Odd address Even address Address
115 0
I I N S | [I I I |
Byte b Byte a An
msb Word ¢ Isb| An+2
T
I Isb| An+4
———————————————— Dwordd ———————————————+
msb ‘ An+6
Word f Isb Byte e An +8
_________________ Isb | msb Word f An + 10
Dword g An + 12
msb An + 14

Figure 7-4 Data organization with a 16-bit bus

When a word or a dword is placed at odd addresses in a 16-bit memory (like word f
and dword g in figure figure 7-4), each access to the data will require extra bus cycles.
For maximum performance in 16-bit systems, it is recommended to keep word and

dword data aligned to even addresses as much as possible.

7.5 Branches, jumps and subroutines

The EXT condition is not available in the ETRAX 100LX (see table Table 7-2, “The
ETRAX 4 condition codes,” on page 2).

7-4 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

7 The ETRAX 4

7.6 Interrupts and breakpoints in the ETRAX 4

Only bits 29 and 30 of the Interrupt Base Register (IBR) are implemented in the
ETRAX 4, the remaining bits are always zero.

Interrupt Base Register
31 29 0

[o] BR][0/0/0/0/00/0/0/0,0,0/0,00.0,00,0,0,0,00,0,0000,0,0]

7 0
S
Vector number |O_,_O_
@ |
Interrupt Vector Address

31 29 10 0

T T T T T T T T T T T T T T T T T T
[o] BR[0/0/0/0/0,0/0,0/0,0,0,00.0,0,00.0,0] Vector number [0 0]

Figure 7-5 Interrupt Vector Address Calculation in the ETRAX 4

Interrupt Base Register
31 0

[0o]BR]0]070,0]0/0/00,0,0,000,0,00.0,0,0,00.0,0,00,0,0,0.0]

3 0
NN
04_0491
@
Breakpoint Routine Entry
31 0
[0o]BrR]0]070,0]0/0/00,0,0/000,0000,0,0000 n Jololo]

Figure 7-6 Software breakpoint address calculation in the ETRAX 4

Hardware beakpoints are not implemented in the ETRAX 4.

7.7 Reset in the ETRAX 4

7.7.1 ROM boot

After reset, the ETRAX 4 CPU starts the execution at address 00000002. The
following registers are initialized after reset:

Register Value (hex)
VR 3
CCR 0000
DCRO 1000
IBR 00000000
DTPO 00000002

Table 7-4 Initialization values of registers after reset in the ETRAX 4

All other registers have unknown values after reset.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 7-5

7 The ETRAX 4

7.7.2

7.8

7.8.1

Automatic program download

When the automatic program download (“flash-load”) is enabled, the initial values of
DCRO and DTPO change. After the completion of the program download, the
registers have the following values:

Register Value (hex)
VR 3
CCR 0000
DCRO 0000
IBR 00000000
DTPO 40001002

Table 7-5 Initialization values of registers after automatic program download in the ETRAX 4

After the automatic program download, the ETRAX 4 CPU starts to execute at
address 40000002 (hex) instead of 00000002.

DMA

In the ETRAX 100LX, the DMA is not a part of the CPU but a separate module on
the chip. In the ETRAX 4, however, the DMA is an integrated part of the CPU.

The ETRAX 4 DMA

The ETRAX 4 CPU contains two DMA channels. Each channel has a 32-bit DMA
Transfer Pointer (DTP), a 16-bit DMA Count Register (DCR), and a DMA enable
flag (D or E). The connection of each channel to a physical 1/0 channel is described
in the ETRAX Data Sheet.

To start a DMA transfer, the DTP of the channel is loaded with the start address of
the data block to be transferred, and the DCR of the channel is loaded with the
number of transfers. (Loading the DCR with zero will give 65 536 transfers). The
DMA enable flag of the channel is then set with the SETF instruction.

For each transfer, the DTP is incremented by one (byte transfer) or two (word
transfers), and the DCR is decremented by one. When the DCR counts down to
zero, the DMA enable flag is set to zero and the transfers stop.

The DMA can be stopped and started at any time by clearing the DMA enable flag.
Note that the SETF and CLEARF instructions are the only instructions that will
affect the D and E flags. When CCR is updated using the MOVE instruction, the D
and E flags are left unchanged.

DMA channel 0 is designed to be able to automatically load a program (“flash-load™)
to the system RAM after power up. This feature is enabled by keeping the external
FLASH_ input low during reset. In this case, 4096 Bytes (1000 hex) are transferred
to the system RAM area with start at address 40000002 hex, before the CPU starts to
execute.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

7 The ETRAX 4

7.9

7.9.1

Instruction set

The ETRAX 4 CPU has a few less instructions than the ETRAX 100LX CPU. The
instructions which are not available in the ETRAX 4 are:

BWF, JBRC, JIRC, JMPU, JSRC,MULS, MULU, RBF, SBFS, SWAP
Differences in the instructions

The following instructions are different in the ETRAX 4 compared to the same
instructions in the ETRAX 100LX:

MOVEM (from memory) Move to multiple registers page 3 - 56
from memory

MOVEM (to memory) Move from multiple registers page 3 - 57
to memory

In autoincrement addressing mode, the address (si + 4 * <number of loaded
registers>) is loaded to the specified register. For the ETRAX 4 this also applies to the
indexed with assign and offset with assign addressing modes. This is different from
the ETRAX 100LX and from other instructions where the address is stored before
the increment.

PUSH (from Ps) Push special register onto page 3- 73
stack

The following size information applies to the ETRAX 4:
« Size is set according to the size of the pushed register:

11 Byte (Ps=VR)
Size: 10 Word (Ps=CCR, DCRO or DCR1)
00 Dword (Ps=BRP, IBR, IRP, SRP, DTPO or DTP1)

CLEARF Clear flags page 3 - 27

SETF Set flags page 3 - 82

e The two most significant bits are Dand E:
15 0

D E | X |0 1 0 1 1 0 1 1 N | Z v |C

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 7-7

7 The ETRAX 4

7.10 Execution times for the ETRAX 4
7.10.1 Introduction

Instruction execution times for all CRIS instructions and addressing modes are given
below in numbers of CPU cycles. With no wait states, each bus cycle requires two
system clock cycles. One system clock cycle is added for each wait state.

7.10.2 Instruction execution times

This section gives the execution times for instructions with the four basic addressing
modes: Quick immediate, Register, Indirect, and Autoincrement. Except for the
following four special cases, the execution time is the same for all instructions with
the same addressing mode and data size.

General case:

Addressing mode Datasize Dataalignment Execution time
16-bit bus 8-bit bus

Quick immediate 6-bit N/A 1 2
Register Any N/A 1 2
Indirect, Autoinc. Byte Any 2 3
Indirect, Autoinc. Word Even address 2 4
Indirect, Autoinc. Word Odd address 3 4
Indirect, Autoinc. Dword Even address 3 6
Indirect, Autoinc. Dword Odd address 5 6
Table 7-6

7-8 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

7 The ETRAX 4

Special case 1:

Bcc instruction

Branch offset size Execution time
16-bit bus 8-bit bus
Byte 1 2
Word 2 4
Table 7-7

Special case 2:

MOVEM instruction

Addressing mode Datasize Dataalignment Execution time
16-bit bus 8-bit bus

Indirect, Autoinc. Dword Even address 2n+1 4n +2
Indirect, Autoinc. Dword Odd address 4n+1 4n +2
Table 7-8

(Where n is the number of registers moved.)

Special case 3:
PC operand

One idle bus cycle is added to the execution times given above, if PC is used as the
destination operand in any of the following instructions:

ABS ADD ADDQ ADDS ADDU AND
ANDQ ASR ASRQ BTSTQ MOVEM MOVEQ
MOVE (except from a special register) MOVS MOVU OR
ORQ POP SUB SUBQ SUBS SUBU
XOR

One idle bus cycle is also added for the TEST.m PC instruction.

Special case 4:
Break instruction

The BREAK instruction takes two cycles to execute on a 16-bit data bus, and three
cycles on an 8-bit data bus.

AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000) 7-9

7 The ETRAX 4

7.10.3 Complex addressing modes execution times

The table below gives the extra execution time required to calculate the effective
address in complex addressing modes. The effective address calculation time is added
to the Indirect/Autoincrement execution time given in section 7.10.2 Instruction
execution times to give the total execution time of the instruction.

Addressing mode Data alignment Execution time
16-bit bus 8-bit bus

Indexed N/A 1 2
Indexed with assigned N/A 1 2
Immediate Byte offset N/A 1 2
Indirect Byte offset any 2 3
Word offset even address 2 4
Word offset odd address 3 4
Dword offset even address 3 6
Dword offset odd address 5 6
Immediate Byte offset with assign N/A 1 2
Indirect Byte offset with assign any 2 3
Word offset with assign even address 2 4
Word offset with assign odd address 3 4
Dword offset with assign even address 3 6
Dword offset with assign odd address 5 6
Double indirect even address 3 6
Double indirect odd address 5 6
Double indirect with autoincrement even address 3 6
Double indirect with autoincrement odd address 5 6
Absolute N/A 3 6
Table 7-9
Note 1: Data alignment refers to the alignment of data involved in the effective address calculation.
7.10.4 Interrupt acknowledge execution time

The interrupt acknowledge sequence, including the interrupt acknowledge cycle and
the interrupt vector read following it, requires 3 bus cycles on a 16-bit bus, and 5 bus
cycles on an 8-bit bus.

7.10.5 DMA transfer execution time

Each DMA transfer requires one bus cycle.

7-10 AXIS ETRAX 100LX Programmer’s Manual (November 28, 2000)

	AXIS ETRAX 100LX Programmer’s Manual
	Table of Contents
	Introduction
	1 Architectural Description
	1.1 Registers
	Table 1-1 Special registers
	Figure 1-1 General Registers
	Figure 1-2 Special registers

	1.2 Flags and condition codes
	Figure 1-3 The Condition Code Register (CCR)/ Dword Condition Code Register (DCCR)
	Table 1-2 Condition codes
	Table 1-3 flag behavior

	1.3 Data organization in memory
	Table 1-4 Data types supported by the CRIS
	Figure 1-4 Data organization with a 16-bit bus
	Figure 1-5 Data Organization with a 32-bit bus

	1.4 Instruction format
	Figure 1-6 General instruction format
	Table 1-5 The Mode Field of the Instruction Format
	Table 1-6

	1.5 Addressing modes
	1.5.1 General
	1.5.2 Quick immediate addressing mode
	Figure 1-7 Quick immediate addressing mode instruction format

	1.5.3 Register addressing mode
	1.5.4 Indirect addressing mode
	Figure 1-8 Indirect addressing mode

	1.5.5 Autoincrement addressing mode
	Figure 1-9 Autoincrement addressing mode

	1.5.6 Immediate addressing mode
	1.5.7 Indexed addressing mode
	Figure 1-10 Indexed addressing mode prefix format
	Figure 1-11 Indexed addressing mode

	1.5.8 Indexed with assign addressing mode
	Table 1-7
	Figure 1-12 Indexed with assign addressing mode

	1.5.9 Offset addressing mode
	Figure 1-13 Offset addressing mode prefix format
	Figure 1-14 Immediate byte offset addressing mode prefix format
	Figure 1-15 Instruction with dword sized immediate offset
	Figure 1-16 Offset addressing mode (general case)

	1.5.10 Offset with assign addressing mode
	Table 1-8
	Figure 1-17 Offset with assigned addressing mode (general case)

	1.5.11 Double indirect addressing mode
	Figure 1-18 Double indirect addressing mode prefix Format
	Figure 1-19 Double indirect addressing mode

	1.5.12 Absolute addressing mode
	Figure 1-20 Instruction with absolute address

	1.5.13 Multiple addressing mode prefix words

	1.6 Branches, jumps and subroutines
	1.6.1 Conditional branch
	1.6.2 Jump instructions
	1.6.3 Implicit jumps
	1.6.4 Switches and table jumps
	1.6.5 Subroutines
	1.6.6 The JBRC, JIRC and JSRC subroutine instructions
	Figure 1-21 The JSRC instruction
	Figure 1-22 Immediate addressing of JSRC

	1.7 MMU support
	1.7.1 Overview
	1.7.2 Protected registers and flags
	1.7.3 Transition between operation modes
	1.7.4 Bus fault sequence
	1.7.5 Format of the CPU status record
	Figure 1-23
	Table 1-9 Execution state field flags
	Figure 1-24
	Table 1-10 Data field

	1.7.6 Programming examples

	1.8 Interrupts
	Figure 1-25 Interrupt vector address calculation
	1.8.1 NMI

	1.9 Software breakpoints
	Figure 1-26 Software breakpoint address calculation

	1.10 Hardware breakpoint mechanism
	1.11 Multiply and divide
	1.11.1 General
	1.11.2 Multiply using MULS and MULU
	1.11.3 Multiply Using MSTEP
	1.11.4 Divide

	1.12 Extended arithmetic
	1.13 Integral read-write operations
	1.14 Reset
	Table 1-11 Registers initialized after reset
	Table 1-12 Boot methods

	1.15 Version identification
	Table 1-13 CRIS VR register

	2 Instruction Set Description
	2.1 Definitions
	Table 2-1 Instruction set term definitions
	Table 2-2 Definitions for how flags are affected

	2.2 Instruction set summary
	2.2.1 Size modifiers
	Table 2-3 Size modifiers

	2.2.2 Addressing modes
	Table 2-4 Addressing modes

	2.2.3 Data transfers
	Table 2-5 Data transfer instructions

	2.2.4 Arithmetic Instructions
	Table 2-6 Arithmetic instructions

	2.2.5 Logical instructions
	Table 2-7 Logical instructions

	2.2.6 Shift instructions
	Table 2-8 Shift instructions

	2.2.7 Bit test instructions
	Table 2-9 Bit test instructions

	2.2.8 Condition code manipulation instructions
	Table 2-10 Condition code manipulation instructions

	2.2.9 Jump and branch instructions
	Table 2-11 Jump and branch instructions

	2.2.10 No operation instruction
	Table 2-12 No operation instruction

	2.3 Instruction format summary
	2.3.1 Summary of quick immediate mode instructions
	Table 2-13 Quick immediate mode instructions

	2.3.2 Summary of register instructions with variable size
	Table 2-14 Variable size
	Table 2-15 Register instructions with variable size

	2.3.3 Summary of register instructions with fixed size
	Table 2-16 Register instructions with fixed size

	2.3.4 Summary of indirect instructions with variable size
	Table 2-17 Mode and variable size
	Table 2-18 Indirect instructions with variable size

	2.3.5 Summary of indirect instructions with fixed size
	Table 2-19 Mode
	Table 2-20 Indirect instructions with fixed size

	2.4 Addressing mode prefix formats
	Table 2-21 Size for Indexed addressing mode prefix word
	Table 2-22 Mode and size for offset Addressing mode prefix word
	Table 2-23 Mode for double indirect and absolute Addressing mode prefix word

	3 Instructions in Alphabetical Order
	ABS
	Absolute Value

	ADD
	Add
	2-operand

	ADD
	Add
	3-operand

	ADDI
	Add index

	ADDQ
	Add quick

	ADDS
	Add with sign extend
	2-operand

	ADDS
	Add with sign extend
	3-operand

	ADDU
	Add with zero extend
	2-operand

	ADDU
	Add with sign extend
	3-operand

	AND
	Logical AND
	2-operand

	AND
	Logical AND
	3-operand

	ANDQ
	Logical AND quick

	ASR
	Arithmetic shift right

	ASRQ
	Arithmetic shift right quick

	AX
	Arithmetic extension

	Bcc
	Branch conditionally
	Table 3-1 Condition Codes

	BOUND
	Adjust index to bound
	2-operand

	BOUND
	Adjust index to bound
	3-operand

	BREAK
	Breakpoint

	BTST
	Bit test

	BTSTQ
	Bit test quick

	CLEAR
	Clear

	CLEARF
	Clear flags

	CMP
	Compare

	CMPQ
	Compare quick

	CMPS
	Compare with sign extend

	CMPU
	Compare with zero extend

	DI
	Disable interrupts

	DSTEP
	Divide step

	EI
	Enable interrupts

	JBRC
	Jump to beakpoint routine, with context information

	JIR
	Jump to interrupt routine

	JIRC
	Jump to interrupt routine, with context information

	JMPU
	JSR
	Jump to subroutine

	JSRC
	Jump to subroutine, with context information

	JUMP
	Jump

	LSL
	Logical shift left

	LSLQ
	Logical shift left quick

	LSR
	Logical shift right

	LSRQ
	Logical shift right quick

	LZ
	Leading Zeroes

	MOVE
	Move from source to register
	from s to Rd

	MOVE
	from Rs to memory

	MOVE
	to Pd

	MOVE
	from Ps

	MOVEM
	from memory

	MOVEM
	to memory

	MOVEQ
	MOVS
	MOVU
	MSTEP
	MULS
	MULU
	NEG
	NOP
	NOT
	OR
	2-operand

	OR
	3-operand

	ORQ
	POP
	to Rd

	POP
	to Pd

	PUSH
	from Rs

	PUSH
	from Ps

	RBF
	RET
	RETB
	RETI
	SBFS
	Scc
	Table 3-2

	SETF
	SUB
	2-operand

	SUB
	3-operand

	SUBQ
	SUBS
	2-operand

	SUBS
	3-operand

	SUBU
	2-operand

	SUBU
	3-operand

	SWAP
	TEST
	XOR

	4 CRIS Execution Times
	4.1 Introduction
	4.2 Instruction execution times
	Table 4-1 General instruction execution times
	Table 4-2 Bcc instruction execution times
	Table 4-3 MOVEM instruction execution times
	Table 4-4 SBFS instruction execution times
	Table 4-5 RBF instruction execution times

	4.3 Complex addressing modes execution times
	Table 4-3 Complex addressing modes execution times

	4.4 Interrupt acknowledge execution time

	5 Assembly Language Syntax
	5.1 General
	5.2 Definitions
	5.3 Files, lines and fields
	5.4 Labels and symbols
	5.5 Opcodes
	5.6 Operands
	5.6.1 General
	5.6.2 Expressions
	Table 5-1 Supported operands

	5.7 Addressing modes
	5.8 Assembler directives
	5.8.1 Directives controlling the storage of values
	5.8.2 Directives controlling storage allocation
	5.8.3 Symbol handling

	5.9 Alignment

	6 CRIS Compiler Specifics
	6.1 CRIS compiler options
	6.2 CRIS preprocessor macros
	6.3 The CRIS ABI
	6.3.1 Introduction
	6.3.2 CRIS GCC Fundamental Data Types
	Figure 6-1 32-bit floating point number
	Figure 6-2 64-bit floating point number

	6.3.3 CRIS GCC Object Memory Layout
	6.3.4 CRIS GCC Calling Convention
	6.3.5 Stack Frame Layout
	Figure 6-3 Stack frame layout

	7 The ETRAX 4
	7.1 Introduction
	7.2 Special registers
	Table 7-1 Special registers
	Figure 7-1 Special registers

	7.3 Flags and condition codes
	Figure 7-2 The ETRAX 4 condition code register (CCR)
	Table 7-2 The ETRAX 4 condition codes
	Table 7-3 Changes in affected flags for the ETRAX 4

	7.4 Data organization in memory
	Figure 7-3 Data organization with an 8-bit bus
	Figure 7-4 Data organization with a 16-bit bus

	7.5 Branches, jumps and subroutines
	7.6 Interrupts and breakpoints in the ETRAX 4
	Figure 7-5 Interrupt Vector Address Calculation in the ETRAX 4
	Figure 7-6 Software breakpoint address calculation in the ETRAX 4

	7.7 Reset in the ETRAX 4
	7.7.1 ROM boot
	Table 7-4 Initialization values of registers after reset in the ETRAX 4

	7.7.2 Automatic program download
	Table 7-5 Initialization values of registers after automatic program download in the ETRAX 4

	7.8 DMA
	7.8.1 The ETRAX 4 DMA

	7.9 Instruction set
	7.9.1 Differences in the instructions

	7.10 Execution times for the ETRAX 4
	7.10.1 Introduction
	7.10.2 Instruction execution times
	Table 7-6
	Table 7-7
	Table 7-8

	7.10.3 Complex addressing modes execution times
	Table 7-9

	7.10.4 Interrupt acknowledge execution time
	7.10.5 DMA transfer execution time

