Implementation Characteristics

of Current SPARC-V9 -based Products

Version: 2-9-99

SPARC INTERNATIONAL

© 1998 SPARC International Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of
the copyright owners.

Any comments relating to the material contained herein may be submitted to:
SPARC International Inc.

3333 Bowers Ave., Suite 280

Santa Clara, CA 95054-2913

TEL (408) 748-9111

FAX (408) 748-9777

ATTN: Ghassan Abbas (abbas@sparc.com)

Trademarks

SPARC® is a registered trademark of SPARC International, Inc.

SPARCstation™, UltraSPARC, SPARC 64 are trademark of SPARC International, Inc.

Products bearing SPARC® trademarks are based on an architecture developed by Sun Microsystems, Inc.
ONC™, Solaris and SunOS™ are trademarks of Sun Microsystems, Inc.

NFS® is a registered trademark of Sun Microsystems, Inc.

All other products or services mentioned in this document are identified by the trademarks or service marks of their
respective companies or organizations. SPARC International, Inc. disclaims any responsibility for specifying which
trademarks are owned by which companies or organizations.

SPARC International TABLE OF CONTENTS

Preface 19
Audience and Purpose 19
Organization and Content 19

CHAPTER 1: HAL SPARC64 23
0. Introduction 23
1. Software emulated instructions 23
2. Number of IU registers 24
3. Incorrect IEEE Std 754-1985 results 24
4-5. Reserved 25
6. I/0O registers privileged status 25
7. 1/O register definitions 25
8-9. RDASR/WRASR target registers and privileged status 25
10-12 Reserved 25
13. VER.impl 26
14-15 Reserved 26
16. IU deferred-trap queue 26
17. Reserved 26
18. Nonstandard IEEE 754-1985 results 26
19. FPU version, FSR.ver 26
20-21. Reserved 26
22. FPU TEM, cexc, and aexc 26
23. Floating-point traps 27
24. FPU deferred-trap queue (FQ) 27
25. RDPR of FQ with nonexistent FQ 27
26-28. Reserved 27
29,30. Address space identifier (ASI) definitions and ASI address decoding 27
31. Catastrophic error exceptions 29
32. Deferred traps 29
33. Trap precision 29
34. Interrupt clearing 29
35,36. Implementation-dependent traps and priorities 30
37. Reset trap 31
38. Effect of reset trap on implementation-dependent registers 31

39. Entering error_state on implementation-dependent errors 31
40. Error_state processor state 31
41. Reserved 31
42. FLUSH instruction 31
43. Reserved 32
44. Data access FPU trap 32
45-46. Reserved 32
47. RDASR 32

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 5

SPARC International TABLE OF CONTENTS
48. WRASR 32
49-54 Reserved 33
55. Floating-point underflow detection 33
56-100. Reserved 33
101. Maximum trap level 33
102. Clean window trap 33
103. Prefetch instructions 33
104. VER.manuf 34
105. TICK register 34
106. IMPDEPn instructions 35
107. Unimplemented LDD trap 35
108. Unimplemented STD trap 35
109. LDDF_mem_address_not_aligned 35
110. STDF_mem_address_not_aligned 36
111. LDQF_mem_address_not_aligned 36
112. STQF_mem_address_not_aligned 36
113. Implemented memory models 36
114. RED_state trap vector address (RSTVaddr) 36
115. RED_state processor state 37
116. SIR_enable control flag 37
117. MMU disabled prefetch behavior 37
118. Identifying I/O locations 38
119. Unimplemented values for PSTATE.MM 38
120. Coherence and atomicity of memory operations 38
121. Implementation-dependent memory model 38
122. FLUSH latency 38
123. Input/output (I/O) semantics 39
124. Implicit ASI when TL>0 39
125. Address masking 39
126. TSTATE bits 19:18 39
127. PSTATE bits 11:10 39
128. CLEANWIN register update 40

CHAPTER 2: SUN ULTRASPARC 43
1. Software emulation of instructions 43
2. Number of TU registers 44
3. Incorrect IEEE Std 754-1985 results 44
6. I/O registers privileged status 45
7. /O register definitions 45
8. RDASR/WRASR target registers 46
9. RDASR/WRASR privileged status 46
10 - 12. Reserved 47

Implementation Characteristics of Current SPARC-V9-Based Products

2/9/99

SPARC International TABLE OF CONTENTS

13. VER.impl 47
14 - 15. Reserved 47
16. IU deferred-trap queue 47
17. Reserved 48
18. Nonstandard IEEE 754-1985 results 48
19. FPU version, FSR.ver 48
20 - 21. Reserved 48
22. FPU TEM. cexc. and aexc 48
23. Floating-point traps 48
24. FPU deferred-trap queue (FQ) 49
25. RDPR of FQ with nonexistent FQ 49
26 - 28. Reserved 49
29 Address space identifier (ASI) definitions 49
30. ASI address decoding 50
31. Catastrophic error exceptions 50
32. Deferred traps 50
33. Trap precision 51
34. Interrupt clearing 51
35. Implementation-dependent traps 51
36. Trap priorities 52
37. Reset trap 52
38. Effect of reset trap on implementation-dependent registers 52
39. Entering error_state on implementation-dependent errors 52
40. Error_state processor state 53
41. Reserved 53
42. FLUSH instruction 53
43. Reserved 53
44. Data access FPU trap 53
45-46. Reserved 54
47. RDASR 54
48. WRASR 54
49-54. Reserved 54
55. Floating-point underflow detection 54
56 - 100. Reserved 55
101. Maximum trap level 55
102. Clean window trap 55
103. Prefetch instructions 55
104. VER.manuf 55
105. TICK register 56
106. IMPDEP1 instructions 56
107. Unimplemented LDD trap 58
108. Unimplemented STD trap 58

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 7

SPARC International TABLE OF CONTENTS
109. LDDF_mem_address_not_aligned 59
110. STDF_mem_address_not_aligned 59
111. LDQF_mem_address_not_aligned 59
112. STQF_mem_address_not_aligned 59
113. Implemented memory models 60
114. RED_state trap vector address (RSTVaddr) 60
115. RED_state processor state 60
116. SIR_enable control flag 60
117. MMU disabled prefetch behavior 61
118. Identifying I/O locations 61
119. Unimplemented values for PSTATE.MM 61
120. Coherence and atomicity of memory operations 61
121. Implementation-dependent memory model 62
122. FLUSH latency 62
123. Input/output (I/O) semantics 62
124. Implicit ASI when TL>0 62
125. Address masking 63
126. TSTATE bits 19:18 63
127. PSTATE bits 11:10 63

CHAPTER 3: HAL SPARC64-11 67
0. Introduction 67
1. Software emulated instructions 67
2. Number of IU registers 68
3. Incorrect IEEE Std 754-1985 results 68
4-5. Reserved 68
6. I/O registers privileged status 68
7. 1/O register definitions 69
8,9. RDASR/WRASR target registers and privileged status 69
10-12 Reserved 70
13. VER.impl 70
14-15 Reserved 70
16. IU deferred-trap queue 70
17. Reserved 70
18. Nonstandard IEEE 754-1985 results 70
19. FPU version, FSR.ver 71
20-21. Reserved 71
22. FPU TEM, cexc, and aexc 71
23. Floating-point traps 71
24. FPU deferred-trap queue (FQ) 71
25. RDPR of FQ with nonexistent FQ 72
26-28. Reserved 72

8 Implementation Characteristics of Current SPARC-V9-Based Products

2/9/99

SPARC International TABLE OF CONTENTS

29,30. Address space identifier (ASI) definitions and ASI address decoding 72

31. Catastrophic error exceptions 73
32. Deferred traps 73
33. Trap precision 74
34. Interrupt clearing 74
35,36. Implementation-dependent traps and priorities 74
37. Reset trap 75
38. Effect of reset trap on implementation-dependent registers 75
39. Entering error_state on implementation-dependent errors 75
40. Error_state processor state 76
41. Reserved 76
42. FLUSH instruction 76
43. Reserved 76
44. Data access FPU trap 76
45-46. Reserved 77
47. RDASR 77
48. WRASR 77
49-54 Reserved 77
55. Floating-point underflow detection 77
56-100. Reserved 78
101. Maximum trap level 78
102. Clean window trap 78
103. Prefetch instructions 78
104. VER.manuf 79
105. TICK register 79
106. IMPDEPn instructions 80
107. Unimplemented LDD trap 80
108. Unimplemented STD trap 80
109. LDDF_mem_address_not_aligned 81
110. STDF_mem_address_not_aligned 81
111. LDQF_mem_address_not_aligned 81
112. STQF_mem_address_not_aligned 81
113. Implemented memory models 82
114. RED_state trap vector address (RSTVaddr) 82
115. RED_state processor state 82
116. SIR_enable control flag 83
117. MMU disabled prefetch behavior 83
118. Identifying I/O locations 83
119. Unimplemented values for PSTATE.MM 83
120. Coherence and atomicity of memory operations 83
121. Implementation-dependent memory model 84
122. FLUSH latency 84

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 9

SPARC International TABLE OF CONTENTS
123. Input/output (I/O) semantics 84
124. Implicit ASI when TL>0 84
125. Address masking 85
126. TSTATE bits 19:18 85
127. PSTATE bits 11:10 85
128. CLEANWIN register update 85

CHAPTER 4: SUN ULTRASPARCII 89
1. Software emulation of instructions 89
2. Number of IU registers 90
3. Incorrect IEEE Std 754-1985 results 91
4-5. Reserved 92
6. I/O registers privileged status 92
7. 1/O register definitions 92
8. RDASR/WRASR target registers 92
9. RDASR/WRASR privileged status 93
10-12. Reserved 93
13. VER.impl 93
14-15. Reserved 94
16. IU deferred-trap queue 94
17. Reserved 94
18. Nonstandard IEEE 754-1985 results 94
19. FPU version, FSR.ver 94
20-21. Reserved 94
22. FPU TEM, cexc, and aexc 95
23. Floating-point traps 95
24. FPU deferred-trap queue (FQ) 95
25. RDPR of FQ with nonexistent FQ 95
26-28. Reserved 95
29. Address space identifier (ASI) definitions 96
30. ASI address decoding 96
31. Catastrophic error exceptions 97
32. Deferred traps 97
33. Trap precision 97
34. Interrupt clearing 97
35. Implementation-dependent traps 98
36. Trap priorities 98
37. Reset trap 98
38. Effect of reset trap on implementation-dependent registers 99
39. Entering error_state on implementation-dependent errors 99
40. Error_state processor state 99
41. Reserved 99

10 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International TABLE OF CONTENTS

42. FLUSH instruction 99
43. Reserved 100
44. Data access FPU trap 100
45-46. Reserved 100
47. RDASR 100
48. WRASR 100
49-54. Reserved 101
55. Floating-point underflow detection 101
56-100. Reserved 101
101. Maximum trap level 101
102. Clean window trap 101
103. Prefetch instructions 102
104. VER.manuf 102
105. TICK register 102
106. IMPDEPn instructions 103
107. Unimplemented LDD trap 105
108. Unimplemented STD trap 105
109. LDDF_mem_address_not_aligned 105
110. STDF_mem_address_not_aligned 105
111. LDQF_mem_address_not_aligned 106
112. STQF_mem_address_not_aligned 106
113. Implemented memory models 106
114. RED_state trap vector address (RSTVaddr) 106
115. RED_state processor state 107
116. SIR_enable control flag 107
117. MMU disabled prefetch behavior 107
118. Identifying I/O locations 107
119. Unimplemented values for PSTATE.MM 108
120. Coherence and atomicity of memory operations 108
121. Implementation-dependent memory model 108
122. FLUSH latency 108
123. Input/output (I/O) semantics 109
124. Implicit ASI when TL > 0 109
125. Address masking 109
126. TSTATE bits 19:18 109
127. PSTATE bits 11:10 110
CHAPTER 5: SUN ULTRASPARC IIi 113
1. Software emulation of instructions 113
2. Number of 1U registers 114
3. Incorrect IEEE Std 754-1985 results 115
4-5. Reserved 116

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 11

SPARC International TABLE OF CONTENTS
6. I/O registers privileged status 116
7. 1/O register definitions 116
8. RDASR/WRASR target registers 116
9. RDASR/WRASR privileged status 117
10-12. Reserved 117
13. VER.impl 117
14-15. Reserved 118
16. IU deferred-trap queue 118
17. Reserved 118
18. Nonstandard IEEE 754-1985 results 118
19. FPU version, FSR.ver 118
20-21. Reserved 118
22. FPU TEM, cexc, and aexc 119
23. Floating-point traps 119
24. FPU deferred-trap queue (FQ) 119
25. RDPR of FQ with nonexistent FQ 119
26-28. Reserved 119
29. Address space identifier (ASI) definitions 120
30. ASI address decoding 120
31. Catastrophic error exceptions 120
32. Deferred traps 121
33. Trap precision 121
34. Interrupt clearing 121
35. Implementation-dependent traps 122
36. Trap priorities 122
37. Reset trap 122
38. Effect of reset trap on implementation-dependent registers 123
39. Entering error_state on implementation-dependent errors 123
40. Error_state processor state 123
41. Reserved 123
42. FLUSH instruction 123
43. Reserved 124
44. Data access FPU trap 124
45-46. Reserved 124
47. RDASR 124
48. WRASR 124
49-54. Reserved 125
55. Floating-point underflow detection 125
56-100. Reserved 125
101. Maximum trap level 125
102. Clean window trap 125
103. Prefetch instructions 125

12 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International TABLE OF CONTENTS

104. VER.manuf 126
105. TICK register 127
106. IMPDEPn instructions 127
107. Unimplemented LDD trap 129
108. Unimplemented STD trap 129
109. LDDF_mem_address_not_aligned 129
110. STDF_mem_address_not_aligned 130
111. LDQF_mem_address_not_aligned 130
112. STQF_mem_address_not_aligned 130
113. Implemented memory models 131
114. RED_state trap vector address (RSTVaddr) 131
115. RED_state processor state 131
116. SIR_enable control flag 131
117. MMU disabled prefetch behavior 131
118. Identifying I/O locations 132
119. Unimplemented values for PSTATE.MM 132
120. Coherence and atomicity of memory operations 132
121. Implementation-dependent memory model 132
122. FLUSH latency 133
123. Input/output (I/O) semantics 133
124. Implicit ASI when TL > 0 133
125. Address masking 133
126. TSTATE bits 19:18 134
127. PSTATE bits 11:10 134

CHAPTER 6: HAL SPARC64-11I 137

0. Introduction 137
1. Software emulated instructions 137
2. Number of IU registers 137
3. Incorrect IEEE Std 754-1985 results 138
4-5. Reserved 138
6. I/O registers privileged status 138
7. /O register definitions 138
8,9. RDASR/WRASR target registers and privileged status 139
10-12 Reserved 139
13. VER.impl 139
14-15 Reserved 140
16. IU deferred-trap queue 140
17. Reserved 140
18. Nonstandard IEEE 754-1985 results 140
19. FPU version, FSR.ver 140
20-21. Reserved 140

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 13

SPARC International TABLE OF CONTENTS
22. FPU TEM, cexc, and aexc 140
23. Floating-point traps 141
24. FPU deferred-trap queue (FQ) 141
25. RDPR of FQ with nonexistent FQ 141
26-28. Reserved 141
29,30. Address space identifier (ASI) definitions and ASI address decoding 141
31. Catastrophic error exceptions 142
32. Deferred traps 142
33. Trap precision 142
34. Interrupt clearing 143
35,36. Implementation-dependent traps and priorities 143
37. Reset trap 143
38. Effect of reset trap on implementation-dependent registers 144

39. Entering error_state on implementation-dependent errors 144

40. Error_state processor state 144
41. Reserved 144
42. FLUSH instruction 144
43. Reserved 145
44. Data access FPU trap 145
45-46. Reserved 145
47. RDASR 145
48. WRASR 145
49-54 Reserved 146
55. Floating-point underflow detection 146
56-100. Reserved 146
101. Maximum trap level 146
102. Clean window trap 146
103. Prefetch instructions 146
104. VER.manuf 147
105. TICK register 148
106. IMPDEPn instructions 148
107. Unimplemented LDD trap 148
108. Unimplemented STD trap 148
109. LDDF_mem_address_not_aligned 149
110. STDF_mem_address_not_aligned 149
111. LDQF_mem_address_not_aligned 149
112. STQF_mem_address_not_aligned 149
113. Implemented memory models 150
114. RED_state trap vector address (RSTVaddr) 150
115. RED_state processor state 150
116. SIR_enable control flag 150
117. MMU disabled prefetch behavior 151

14 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International TABLE OF CONTENTS

118. Identifying I/O locations 151
119. Unimplemented values for PSTATE.MM 151
120. Coherence and atomicity of memory operations 151
121. Implementation-dependent memory model 151
122. FLUSH latency 152
123. Input/output (I/O) semantics 152
124. Implicit ASI when TL>0 152
125. Address masking 152
126. TSTATE bits 19:18 153
127. PSTATE bits 11:10 153
128. CLEANWIN register update 153
APPENDIX A: VER.impl/VER.manuf 157
APPENDIX B: SPARC V9 Arch Book Changes 161
Change to page 13 161
Change to page 21(r142) 161
Change to page 28(r142) 161
Change to page 30(r142) 161
Change to page 40(r142), 161
Change to page 51 162
Change to page 52(r142) 162
Change to page 55(r142) 162
Change to page 56(r142) 162
Change to page 57(r142) 163
Change to page 58-9(r142) 163
Change to page 76, 163
Change to page 80(r142), 6.3.6.4(r142) 163
Change to page 81(r141/r142): 163
Change to page 81(r141/r142): 163
Change to page 121(r141/r142): 163
Change to page 151(r142), A.9(r142), 164
Change to page 171 164
Change to page 181(r141/r142): 164
Change to page 191(r141/r142): 164
Change to page 195(r141/r142): 164
Change to page 212(r14[123]) A.43(r14[12])/A.44(r143), 164
Change to page 216(r142), A.46(r142), 164
Change to page 220(r142)/A.49(r142) 165
Change to page 228(r141/r142): 165
Change to page 229(r142)/A.55(r142), 165

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 15

SPARC International TABLE OF CONTENTS

Change to page 231(r142)/233(r143), 165
Change to page 234, A.58(r14[12])/A.59(r143) 165
Change to page 241(r142), A.62(r142), 165
Change to page 242(r142), A.62(r142) 166
Change to page 253(r142) 166
Change to page 253(4142) 166
Change to page 255(r142) 166
Change to page 258(r142) 166
Change to page 268(r142) 167
Change to page 290(r142) 167
Change to page 312(r142) 167

16 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Preface

SPARC International PREFACE

Preface

Audience and Purpose

The SPARC International Implementation Characateristics of Current SPARC-V9-based Prod-
ucts is intended as companion to the SPARC Architecture Book Version 9.

Organization and Content

This document has been divided as follows

Table of Content

Preface

Chapter 1: HAL SPARC64

Chapter 2: SUN ULTRASPARC

Chapter 3: HAL SPARC64-11

APPENDIX A: VER.impl/VER.manuf
APPENDIX B: SPARC V9 Arch Book Changes
Index

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 19

SPARC International PREFACE

20 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Chapter 1: HAL Implementation of V9 Architecture

SPARC 64

SPARC INTERNATIONAL

SPARC International SPARC 64

CHAPTER 1: HAL SPARC64

0. Introduction

This document describes the implementation details of the SPARC64™ processor developed
by HAL Computer Systems. The items listed below correspond to the implementation depen-
dencies as listed in the text and by number in Appendix C of “The SPARC Architecture Man-
ual - Version 9° by SPARC International, along with the description of the implementation

dependency. The “Implementation” section for each item describes the implementation on the
SPARC64 processor.

1. Software emulated instructions

Description: Whether an instruction is implemented directly by hardware, simulated by
software, or emulated by firmware is implementation-dependent.

Implementation: SPARC64 does not implement the following instructions in hardware:
All floating point instructions with quad operands or results

These operations will take an fp_exception_other trap with FSR.ftt =
unimplemented_FPop. The kernel will then emulate the quad operation and
store the result into a quad-aligned set of floating-point registers as defined
by SPARC-V9 manual.

Jfsqrtd, fsqrts: Executing these instructions will cause a fp_exception_other
exception with FSR.ftt = unimplemented_FPop. In this case kernel emula-
tion routines are provided to complete the instructions.

flush: This instruction will cause an illegal_instruction trap if executed.
Kernel emulation routines will be provided to flush the cache line from the
data cache and invalidate any matching cache lines in the instruction cache.

1dd, 1dda, std, stda: Executing these instructions in normal mode would
generate unimplemented_LDD and unimplemented_STD trap. Kernel emu-
lation routines will be provided to complete the instructions. SPARC64
also implements a special accelerated emulation trap handling for certain
LDD and STD instructions, if a special mode is chosen.

popc: This instruction will cause an illegal_instruction trap if executed.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 23

SPARC International

SPARC 64

Kernel emulation routines will be provided to complete the action.

2. Number of IU registers

Description:

Implementation:

An implementation of the IU may contain from 64 to 258 general purpose
64 bit r registers. This corresponds to a grouping of the registers into two
sets of eight global r registers, plus a circular stack of from three to 32 sets
of 16 registers each, known as register windows. Since the number of regis-
ter windows present (NWINDOWS) is implementation-dependent, the
total number of registers is also implementation-dependent.

SPARC64 implements 4 16-register sets (windows) in hardware. Thus
there are a total of 80 integer registers visible to software. They are:

8 global registers

8 alternate global registers

4 windows of 16 registers each (=64 registers)

3. Incorrect IEEE Std 754-1985 results

Description:

Implementation:

An implementation may indicate that a floating-point instruction did not
produce a correct ANSI/IEEE Standard 754-1985 result by generating a
special floating-point unfinished or unimplemented exception. In this case,
privileged mode software shall emulate any functionality not present in the
hardware.

SPARC64 in conjunction with the kernel emulation code produces the cor-
rect IEEE 754 results required in this section.

1)Traps Inhibit Results
SPARC64 in conjunction with the kernel emulation code produces results
required.

2)Trapped Underflow Definition (UFM=1)
SPARC64 detects “tininess” before rounding as recommended.

3) Untrapped Underflow Definition (UFM=0)
SPARC64 meets these requirements with some help from the kernel divide
fixup code.

4) Floating-Point Non standard Mode
SPARC64 FPU is “standard”, and therefore does not support a nonstandard
mode.

24 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International SPARC 64

4-5. Reserved

6. I/0 registers privileged status

Description: Whether I/O registers can be accessed by non privileged code is implemen-
tation-dependent.

Implementation: In SPARC64 some I/O registers can be accessed by non privileged code.

7. /O register definitions

Description: The contents and addresses of I/O registers are implementation-dependent.
Implementation: Please contact HAL for details of 1/O registers.

8-9. RDASR/WRASR target registers and privileged status

Description: Software can use read/write ancillary state register instructions to read/
write implementation-dependent processor registers (ASRs 16-31).
Whether each of the implementation-dependent read/write ancillary state
register instructions (for ASRs 16-31) is privileged is implementation
dependent.

Implementation: SPARC64 implements 7 implementation-dependent ASR registers. LDD
Trap Base Address (ASR24) This privileged read/write register specifies a
special trap base address for some unimplemented_LDD and
unimplemented_STD traps. Instruction Emulation Register (ASR25) This
read only register is written by CPU on a trap for a LDD/STD that uses the
LDD Trap Base Address described above. Data Breakpoint Register
(ASR26) This privileged write-only register is used to trap any data
accesses to a double word aligned breakpoint address. Software Initiated
Reset (ASR27) A write to this register with a WRASR instruction will
cause a software initiated reset (SIR). An SIR is a precise trap. ASR27 is
privileged and write-only. Fault Address Register (ASR28) and Fault
Access Type (ASR29) These registers facilitate the handling of traps that
involve a data memory access. The registers are privileged and read-only.
System software must take care to read these registers on entry to a fault
handler before any other fault can occur that would overwrite them. State
Control Register (ASR31) ASR31 is a 16bit implementation specific regis-
ter that contains a set of flags for controlling the state of the CPU, MMU
and Caches. The register is privileged and can be read/written.

10-12 Reserved

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 25

SPARC International SPARC 64

13. VER.impl

Description: VER.impl uniquely identifies an implementation or class of software-com-
patible implementations of the architecture. Values FFFO(hex)..FFFF(hex)
are reserved and are not available for assignment.

Implementation: SPARC64 uses a version number of 1.
14-15 Reserved

16. IU deferred-trap queue

Description: The existence, contents, and operation of an IU deferred-trap queue are
implementation-dependent; it is not visible to user application programs
under normal operating conditions

Implementation: SPARC64 does not need and therefore does not implement an IU deferred-
trap queue.

17. Reserved

18. Nonstandard IEEE 754-1985 results

Description: Bit 22 of the FSR, FSR_nonstandard_fp (NS), when set to 1, causes the
FPU to produce implementation-defined results that may not correspond to
IEEE Standard 754-1985.

Implementation: SPARC64 FPU is “standard”, and therefore does not support a nonstandard
mode.

19. FPU version, FSR.ver

Description: Bits 19:17 of the FSR, FSR.ver, identify one or more implementations of
the FPU architecture.

Implementation: SPARC64 uses the value of O for this field.

20-21. Reserved

22. FPU TEM, cexc, and aexc

Description: An implementation may choose to implement the TEM, cexc, and aexc
fields in hardware in either of two ways (see section 5.1.7.11 of SPARC-V9

26 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International SPARC 64

Architecture Manual for details).

Implementation: SPARC64 implements TEM, cexc and aexc fields of FSR conforming to
IEEE Std. 754-1985.

23. Floating-point traps

Description:
Floating point traps may be precise or deferred. If deferred, a floating point deferred-trap
queue (FQ) must be present.

Implementation: The only deferred traps in SPARC64 are: fp_exception_other (ftt =
unfinished_FPop) for FDIV with unusual arguments and the
data_breakpoint trap. SPARC64 does not need a floating-point deferred-
trap queue because the FDIV that caused the trap is the only deferred
instruction.

24. FPU deferred-trap queue (FQ)

Description: The presence, contents of, and operations on the floating-point deferred-
trap queue (FQ) are implementation-dependent.

Implementation: SPARC64 does not have or need a floating-point deferred-trap queue.

25. RDPR of FQ with nonexistent FQ

Description: On implementations without a floating-point queue, an attempt to read the
FQ with an RDPR instruction shall cause either an illegal_instruction
exception or an fp_exception_other exception with FSR.ftt set to 4
(sequence_error).

Implementation: A RDPR of %FPQ instruction will cause an illegal_instruction trap.

26-28. Reserved

29,30. Address space identifier (ASI) definitions and ASI address decoding

Description: The following ASI assignments are implementation-dependent: restricted
ASIs (all values hex) 00..03, 05..0B, OD..0OF, 12..17, and 1A..7F; and unre-
stricted ASIs CO..FF.

An implementation may choose to decode only a subset of the 8-bit ASI
specifier; however, it shall decode at least enough of the ASI to distinguish
ASI_PRIMARY, ASI_PRIMARY_LITTLE,
ASI_AS_IF_USER_PRIMARY,
ASI_AS_IF_USER_PRIMARY_LITTLE, ASI_PRIMARY_NOFAULT,

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 27

SPARC International

SPARC 64

Implementation:

ASI_PRIMARY_NOFAULT_LITTLE, ASI_SECONDARY,
ASI_SECONDARY_LITTLE, ASI_AS_IF_USER_SECONDARY,
ASI_AS_IF_USER_SECONDARY_LITTLE,
ASI_SECONDARY_NOFAULT, and
ASI_SECONDARY_NOFAULT_LITTLE. If ASI_NUCLEUS and
ASI_NUCLEUS_LITTLE are supported (impl. dep. #124), they must be
decoded also. Finally, an implementation must always decode ASI bit<7>
while PSTATE.PRIV = 0, so that an attempt by nonprivileged software to
access a restricted ASI will always cause a privileged_action exception.

The encoding of ASIs in the SPARC64 processor is shown below:

NR V(M3) PO AS_IF LE M2 M1 MO

NR (Non-Restricted). This bit conforms to SPARC-V9 definition. An
attempt to use a restricted ASI in non-privileged mode results in a
privileged_action trap.

V (Vendor-specific). This bit conforms to SPARC-V9 definition for non-
restricted ASIs that are implementation-dependent (0xcO - Oxff). This bit
will be set in all ASIs that are specific to SPARC64.

PO (Program Order). An instruction using an ASI with this bit set is exe-
cuted by SPARC64 strictly in program order.

AS_IF. This bit conforms to SPARC-V9 requirement that there be an
implementation specific ASI encoding that allows the corresponding access

to be made as if the CPU were executing in non-privileged mode, indepen-
dent of PSTATE.PRIV.

LE. This bit conforms to SPARC-V9 definition of ASIs that specify little-
endian byte ordering. If this bit is set to zero, the access is done using big-
endian byte ordering.

M?2..MO. These bits are interpreted by the SPARC64 MMU.

SPARC64 does not support a nucleus context and hence does not decode
ASI_NUCLEUS and ASI_NUCLEUS_LITTLE.

28

Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International SPARC 64

31. Catastrophic error exceptions

Description: The causes and effects of catastrophic error exceptions are implementation-
dependent. They may cause precise, deferred or disrupting traps.

Implementation: An internal CPU watchdog time-out occurs after no instruction has been
committed for 2**n cycles (n can be scan initialized to one of
{12,14,16,18,19,20,21,22,24}, with 24 being the default value). This would
take the processor into error state.

32. Deferred traps

Description: Whether any deferred traps (and associated deferred-trap queues) are
present is implementation-dependent.

Implementation: SPARC64 implements a deferred trap for the following trap types:
fp_exception_other (when FSR.ftt = unfinished_FPop).
data_breakpoint.

Deferred trap queues are not necessary, since the trapping instruction is the
only deferred instruction.

33. Trap precision

Description: Exceptions that occur as the result of program execution may be precise or
deferred, although it is recommended that such exceptions be precise.
Examples include mem_address_not_aligned and division_by_zero.

Implementation: SPARC64 will generate a precise trap for all traps induced by instruction
execution, except for unfinished_FPop, data_breakpoint and
Chip_crossing_errors (CPU_xing).

34. Interrupt clearing

Description: How quickly a processor responds to an interrupt request and the method
by which an interrupt request is removed are implementation-dependent.

Implementation: When SPARC64 is ready to accept an interrupt signal (based on
PSTATE.IE and the PIL), it stops issuing instructions and waits for the
CPU to quiesce. It then issues instructions from the corresponding trap
handler if the interrupt condition is still valid. The TPC points to the
instruction that would have executed in the absence of the interrupt. All
instructions prior to the TPC have completed and all instructions including
and subsequent to TPC remain unexecuted.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 29

SPARC International

SPARC 64

35,36. Implementation-dependent traps and priorities

Description: Trap type (TT) values 060(hex)..07f(hex) are reserved for implementation-
dependent exceptions. The existence of implementation_dependent_n traps
and whether any that do exist are precise, deferred, or disrupting is imple-
mentation-dependent.

The priorities of the particular traps are relative and are implementation-
dependent, because a future version of the architecture may define new
traps, and implementations may define implementation-dependent traps
that establish new relative priorities.

Implementation: The following trap types defined by SPARC-V9 are not used in SPARC64.

trap not used in SPARC64

instruction_access_MMU _miss

internal_processor_error

data_access_MMU _miss

LDQF _mem_address_not_aligned

STQD_mem_address_not_aligned

async_data_error

SPARC64 defines the following implementation-dependent trap types.
tt (in Hex) Trap priority type

0x60 prgorammed_emulation_trap 6 precise
0x61 data_breakpoint 14 deferred
0x62 10_parity 2 precise
0x63 RED_alert 2 disrupting
0x64 CPU_xing 2 disrupting
O0x65 Watchdog 1 disrupting
Ox66 ECC_trap 2 precise

30 Implementation Characteristics of Current SPARC-V9-Based Products

2/9/99

SPARC International SPARC 64

SPARC64 implements a special accelerated emulation trap for certain LDD
and STD instructions.

37. Reset trap

Description: Some of a processor’s behavior during a reset trap is implementation-
dependent.

Implementation: Power-on Reset (POR) and Watchdog reset (WDR) are implemented by
scanning in the reset state on SPARC64.

38. Effect of reset trap on implementation-dependent registers

Description: Implementation-dependent registers may or may not be affected by the var-
ious reset traps.

Implementation: None of the implementation-dependent registers are affected by reset traps
in SPARC64.

39. Entering error_state on implementation-dependent errors

Description: The processor may enter error_state when an implementation-dependent
error condition occurs.

Implementation: An internal CPU watchdog time-out occurs after no instruction has been
committed for 2**n cycles (n can be scan initialized to one of
{12,14,16,18,19,20,21,22,24}, with 24 being the default value). This would
take the processor into error state.

40. Error_state processor state

Description: What occurs after error_state is entered is implementation-dependent, but it
is recommended that as much processor state as possible be preserved upon
entry to error_state.

Implementation: On entry to error state, SPARC64 asserts the output signal CPU_HALTED.
The clock chip in the HAL system stops the clocks to the CPU in response
to this signal. A scan out of processor state could be performed at this stage
for diagnosis.

41. Reserved
42. FLUSH instruction
Description: If flush is not implemented in hardware, it causes an illegal_instruction

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 31

SPARC International

SPARC 64

exception and its function is performed by system software. Whether
FLUSH traps is implementation-dependent.

Implementation: SPARC64 takes an illegal_instruction trap when a FLUSH instruction is
executed.
43. Reserved
44. Data access FPU trap
Description: If a load floating-point instruction traps with any type of access error
exception, the contents of the destination floating-point register(s) either
remain unchanged or are undefined.
Implementation: Contents of destination floating-point register(s) remain unchanged.

45-46. Reserved

47. RDASR

Description:

Implementation:

48. WRASR

Description:

Implementation:

RDASR instructions with rd in the range 16..31 are available for imple-
mentation-dependent uses (impl. dep #8).For an RDASR instruction with
rs1 in the range 16..31, the following are implementation-dependent: the
interpretation of bits 13:0 and 29:25 in the instruction, whether the instruc-
tion is privileged (impl. dep. #9), and whether it causes an
illegal_instruction trap.

See items 8,9 for details. SPARC64 causes an illegal_instruction trap for
reads of the unused ASR values.

WRASR instructions with rd in the range 16..31 are available for imple-
mentation-dependent uses (impl. dep. #8). For a WRASR instruction with
rd in the range 16..31, the following are implementation-dependent: the
interpretation of bits 18:0 in the instruction, the operation(s) performed (for
example, xor) to generate the value written to the ASR, whether the
instruction is privileged (impl. dep. #9), and whether it causes an
illegal_instruction trap.

See items 8,9 for details. SPARC64 causes an illegal_instruction trap for
writes of the unused ASR values.

32 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International SPARC 64

49-54 Reserved

55. Floating-point underflow detection

Description: Whether “tininess” (in IEEE 754 terms) is detected before or after round-
ing is implementation-dependent. It is recommended that tininess be
detected before rounding.

Implementation: SPARC64 detects “tininess” before rounding.

56-100. Reserved

101. Maximum trap level

Description: It is implementation-dependent how many additional levels, if any, past
level 4 are supported.

Implementation: SPARC64 implements 4 levels of traps.

102. Clean window trap

Description: An implementation may choose either to implement automatic “cleaning”
of register windows in hardware, or generate a clean_window trap, when
needed, for window(s) to be cleaned by software.

Implementation: SPARC64 generates a clean_window trap, when needed, for windows to be
cleaned by software.

103. Prefetch instructions

Description: The following aspects of the PREFETCH and PREFETCHA instructions
are implementation-dependent: (1) whether they have an observable effect
in privileged code; (2) whether they can cause a data_access_ MMU_miss
exception; (3) the attributes of the block of memory prefetched: its size
(minimum = 64 bytes) and its alignment (minimum = 64-byte alignment);
(4) whether each variant is implemented as a NOP, with its full semantics,
or with common-case prefetching semantics; (5) whether and how variants
16..31 are implemented.

Implementation: (1) PREFETCH and PREFETCHA have identical affects in privileged or
non-privileged code.
(2) Can not cause a data_access_MMU _miss exception
(3) Size and alignments are 128-bytes

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 33

SPARC International SPARC 64

4),(5) See table-1

Table 1: Prefetch Data

fcn V9 Prefetch Function SPARC64 Function

0 Prefetch for several reads Prefetch for read

1 Prefetch for one read Prefetch for read

2 Prefetch for several writes Prefetch for write
3 Prefetch for one write Prefetch for write
4 Prefetch page Prefetch for read

5-15 Reserved illegal_instruction trap
16-31 Implementation dependent NOP
104. VER.manuf
Description: VER.manuf contains a 16-bit semiconductor manufacturer code. This field

is optional, and if not present reads as zero. VER.manuf may indicate the
original supplier of a second-sourced chip in cases involving mask-level
second-sourcing. It is intended that the contents of VER.manuf track the
JEDEC semiconductor manufacturer code as closely as possible. If the
manufacturer does not have a JEDEC semiconductor manufacturer code,
SPARC International will assign a VER.manuf value.

Implementation: SPARC64 uses a code of 4 for this field. This is Fujitsu’s JEDEC code.

105. TICK register

Description: The difference between the values read from the TICK register on two
reads should reflect the number of processor cycles executed between the
reads. If an accurate count cannot always be returned, an inaccuracy should
be small, bounded, and documented. An implementation my implement
fewer than 63 bits in TICK.counter; however, the counter as implemented
must be able to count for at least 10 years without overflowing. Any upper
bits not implemented must be read as zero.

Implementation: SPARC64 implements all the bits of TICK register and returns accurate
count of the processor cycles, in response to reads from TICK register.

34 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International

SPARC 64

106. IMPDEPn instructions

Description:

Implementation:

The IMPDEPI1 and IMPDEP?2 instructions are completely implementation-
dependent. Implementation-dependent aspects include their operation, the
interpretation of bits 29:25 and 18:0 in their encoding, and which (if any)
exceptions they may cause.

SPARC64 uses IMPDEP2 to encode the HAL specific Floating Point Mul-
tiply-Add/Subtract instructions. IMPDEPI is not used and will cause an

illegal_instruction trap if such an opcode is encountered. Please refer to
SPARC64 Processor User Guide for more details.

107. Unimplemented LDD trap

Description:

Implementation:

It is implementation-dependent whether LDD and LDDA are implemented
in hardware. If not, an attempt to execute either will cause an
unimplemented_LDD trap.

SPARC64 does not implement LDD and LDDA is hardware. It uses the
unimplemented_LDD trap. However in a special mode, there is partial sup-
port in hardware for these instructions. Please refer to SPARC64 Processor
User Guide for more details.

108. Unimplemented STD trap

Description:

Implementation:

It is implementation-dependent whether STD and STDA are implemented
in hardware. If not, an attempt to execute either will cause an
unimplemented_STD trap.

SPARC64 does not implement STD and STDA is hardware. It uses the
unimplemented_STD trap. However in a special mode, there is partial sup-
port in hardware for these instructions. Please refer to SPARC64 Processor
User Guide for more details.

109. LDDF_mem_address_not_aligned

Description:

Implementation:

LDDF and LDDFA require only word alignment. However, if the effective
address is word-aligned but not doubleword-aligned, either may cause an
LDDF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shalll emulate the LDDF (or LDDFA) instruction and return.

SPARC64 causes LDDF_mem_address_not_aligned trap for both word
and double-word misaligned addresses.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 35

SPARC International SPARC 64

110. STDF_mem_address_not_aligned

Description: STDF and STDFA require only word alignment. However, if the effective
address is word-aligned but not doubleword-aligned, either may cause an
STDF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the STDF (or STDFA) instruction and return.

Implementation: SPARC64 causes STDF_mem_address_not_aligned trap for both word and
double-word misaligned addresses.

111. LDQF_mem_address_not_aligned

Description: LDQF and LDQFA require only word alignment. However, if the effective
address is word-aligned but not quadword-aligned, either may cause an
LDQF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the LDQF (or LDQFA) instruction and return.

Implementation: SPARC64 generates fp_exception_other trap for LDQF, LDQFA instruc-
tions and kernel provides emulation routines to complete the load. It does
not generate LDQF_mem_address_not_aligned trap.

112. STQF_mem_address_not_aligned

Description: STQF and STQFA require only word alignment. However, if the effective
address is word-aligned but not quadword-aligned, either may cause an
STQF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the STQF (or STQFA) instruction and return.

Implementation: SPARC64 generates fp_exception_other trap for STQF, STQFA instruc-
tions and kernel provides emulation routines to complete the load. It does
not generate STQF_mem_address_not_aligned trap.

113. Implemented memory models
Description: Whether the Partial Store Order (PSO) or Relaxed Memory Order (RMO)
models are supported is implementation-dependent.

Implementation: SPARC64 supports Load/Store ordering (LSO) and Store ordering (STO).
Partial Store Order (PSO) is implemented using LSO and Relaxed Memory
Order (RMO) is implemented using S7O.

114. RED_state trap vector address (RSTVaddr)

Description: The RED_state trap vector is located at an implementation-dependent

36 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International SPARC 64

address referred to as RSTVaddr.
Implementation: SPARC64 has a scan only register that holds RSTVaddr.

115. RED_state processor state

Description: What occurs after the processor enters RED_state is implementation-
dependent.

Implementation: SPARC64 has the following behavior in RED_state.

1) The output signal RED_MODE is asserted indicating CPU is in
RED_state.

2) The CPU executes in sequential mode.

3) On entry into and exit from RED_state, the CPU invalidates the on-chip
instruction cache and prefetch buffers.

4) Off chip data and instruction caches are disabled.

5) The MMU uses a special translation mechanism.

6) All I/O accesses are disabled.

7) Further red state errors are ignored.

8) XIR, and Chip Crossing Errors are not masked and could cause a trap.

116. SIR_enable control flag

Description: The location of and the means of accessing the SIR_enable control flag are
implementation-dependent. In some implementations, it may be perma-
nently zero.

Implementation: SIR_enable control flag is permanently zero in SPARC64.

117. MMU disabled prefetch behavior

Description: Whether Prefetch and Non-faulting Load always succeed when the MMU
is disabled is implementation-dependent.

Implementation: In SPARC64, Prefetch and Non-faulting Loads will have undefined behav-
ior if the MMU is disabled.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 37

SPARC International SPARC 64

118. Identifying 1/0 locations
Description: The manner in which I/O locations are identified is implementation-depen-
dent.

Implementation: Please contact HAL Computer Systems for details of I/O operation.

119. Unimplemented values for PSTATE.MM

Description: The effect of writing an unimplemented memory-mode designation into
PSTATE.MM is implementation-dependent

Implementation: SPARC64 only the most significant bit of MM is used to determine the
memory model; the least significant bit is ignored. However, the system
software should not use the encoding ‘11 since it is reserved for future
SPARC-V9 extensions.

120. Coherence and atomicity of memory operations

Description: The coherence and atomicity of memory operations between processors
and I/O DMA memory accesses are implementation-dependent.

Implementation: In SPARC64, coherence and atomicity of memory operations between pro-
cessors and I/O DMA memory accesses are variable and depend on the I/0O
device. Please contact HAL Computer Systems for details.

121. Implementation-dependent memory model
Description: An implementation may choose to identify certain addresses and use an

implementation dependent memory model for references to them.

Implementation: In SPARC64, certain addresses use implementation dependent memory
models for references to them. Please contact HAL Computer Systems for

details.
122. FLUSH latency
Description: Latency between the execution of FLUSH on one processor and the point

at which the modified instructions have replaced out-dated instructions in a
multiprocessor is implementation-dependent.

Implementation: Not applicable since, SPARC64 does not support a multi-processor config-
uration.

38 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International

SPARC 64

123. Input/output (I/0) semantics

Description:

Implementation:

The semantic effect of accessing input/output (I/O) registers is implemen-
tation-dependent.

In SPARC64, the semantic effect of accessing input/output (I/O) registers
is undefined.

124. Implicit ASI when TL>0

Description: When TL > 0, the implicit ASI for instruction fetches, loads, and stores is
implementation-dependent. See SPARC-V9 Architecture Manual section
F.4.4, “Contexts,” for more information.

Implementation: SPARC64 uses ASI_PRIMARY or ASI_PRIMARY_LITTLE for instruction
fetches, loads and stores when TL>0

125. Address masking

Description: When PSTATE.AM = 1, the value of the high-order 32-bits of the PC trans-
mitted to the specified destination registers(s) by CALL, JMPL, RDPC,
and on a trap is implementation-dependent.

Implementation: When PSTATE.AM bit is set on SPARC64, a full 64-bit address is trans-

mitted to the specified destination registers by CALL, JMPL, RDPC and
traps transmit all 64-bits to TPC[n] and TNPC|[n].

126. TSTATE bits 19:18

Description:

Implementation:

If PSTATE bit 11 (10) is implemented, TSTATE bit 19 (18) shall be imple-
mented and contain the state of PSTATE bit 11 (10) from the previous trap
level. If PSTATE bit 11 (10) is not implemented, TSTATE bit 19 (18) shall
read as zero. Software intended to run on multiple implementations should
only write these bits to values previously read from PSTATE, or to zeroes.

SPARC64 does not implement PSTATE bits 10 & 11 and they are read as
zeroes. TSTATE bits 19 and 18 are read as zeroes.

127. PSTATE bits 11:10

Description:

The presence and semantics of PSTATE.PID1 and PSTATE.PIDO are
implementation-dependent. The presence of TSTATE bits 19 and 18 is
implementation-dependent. If PSTATE bit 11 (10) is implemented,
TSTATE bit 19 (18) shall be implemented and contain the state of PSTATE
bit 11 (10) from the previous trap level. If PSTATE bit 11 (10) is not imple-
mented, TSTATE bit 19 (18) shall read as zero. Software intended to run on
multiple implementations should only write these bits to values previously

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 39

SPARC International SPARC 64

read from PSTATE, or to zeroes.

Implementation: SPARC64 does not implement PSTATE bits 10 & 11 and they are read as
zeroes. TSTATE bits 19 and 18 are read as zeroes.

128. CLEANWIN register update

Earlier implementations of SPARC chips implemented the SPARC-V9
specification for RESTORED using the following equation to update
CLEANWIN register:

if (CLEANWIN != NWINDOWS) CLEANWIN++;
Subsequently V9 definition changed to modify the equation as:

if (CLEANWIN < NWINDOWS-1) CLEANWIN++;

SPARC64 implements the RESTORED using the earlier definition. The
SPARC64 Kernel will ensure that CLEANWIN does not have a value
beyond NWINDOWS-1.

40

Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Chapter 2: SUN Implementation of V9 Architecture

UltraSPARC - |

SPARC INTERNATIONAL

SPARC International

STP1030BGA-UltraSPARC-I

CHAPTER 2: SUN ULTRASPARC

0. Introduction

This document describes the implementation-dependencies of Sun’s STP 1030BGA-UltraS-
PARC-1 processor as put forth in “The SPARC Architecture Manual - Version 9” by SPARC
International. The items listed below correspond to the implementation dependencies as listed in
the text and by number in Appendix C of the manual along with the description of the implemen-
tation dependency from the manual. The “Implementation” section for each item describes the
implementation on the UltraSPARC-I processor.

1. Software emulation of instructions

Description: whether an instruction is implemented directly by hardware, simulated by
software, or emulated by firmware is implementation-dependent.

Implementation: all instructions are implemented in hardware except the following, which
must be simulated by software.

POPC
LDQF
LDQFA
STQF
STQFA
F{s,d}TOq
F{i,x}TOq
FqTO{s,d}
FqTO{i.x}
FADDq
FSUBq
FCMP{E}q
FMOVqcc
FMOVqr
FMOVq
FABSq
FNEGq
FdMULq
FNULq

Population count

Load quad-precision FP register

Load quad-precision FP register from alternate space
Store quad-precision FP register

Store quad-precision FP register to alternate space
Convert single-/double- to quad precision FP
Convert 32-/64-bit integer to quad-precision FP
Convert quad- to single-/double-precision FP
Convert quad-precision FP to 32-/64-bit integer
Quad-precision FP add

Quad-precision FP subtraction

Quad-precision FP compares

Move quad-precision FP register on condition

Move quad-precision FP register on integer register condition
Move quad-precision FP register

Quad-precision FP absolute value

Quad-precision FP negate

Double- to quad-precision FP multiply
Quad-precision FP multiply

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 43

SPARC International

STP1030BGA-UltraSPARC-I

FDIV

Quad-precision FP divide

FSQRTq Quad-precision FP divide

2. Number of IU registers

Description:

Implementation:

an implementation of the IU may contain from 64 to 258 general purpose
64 bit registers. This corresponds to a grouping of the registers into two
sets of eight global r registers, plus a circular stack of from three to 32 sets
of 16 registers each, known as register windows. Since the number of reg-
ister windows present (NWINDOWS) is implementation-dependent, the
total number of registers is also implementation-dependent.

UltraSPARC-I implements eight register windows plus four sets of eight
global r registers, for a total of 160 64-bit r registers.

3. Incorrect IEEE Std 754-1985 results

Description:

Implementation:

an implementation may indicate that a floating-point instruction did not
produce a correct ANSI/IEEE Standard 754-1985 result by generating a
special floating-point unfinished or unimplemented exception. In this case,
privileged mode software shall emulate any functionality not present in the
hardware.

the quad-precision floating-point instructions listed in implementation
dependency #1 above all generate floating-point unimplemented excep-

tions.

UltraSPARC-I generates floating-point unimplemented exceptions for the
following cases of subnormal operands or results.

Subnormal Operand Unimplemented Exception Cases:

F{s,d}TO{i,x} one subnormal operand

F{s,d}TO{i,x} one subnormal operand

FSQRT{s,d} one subnormal operand

FADD({s,d} one or two subnormal operand
FMUL({s,d} -25 <Er <255 (SP) one subnormal operand

-54 <Er <2047 (DP) one subnormal operand
two subnormal operands

44 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International

STP1030BGA-UltraSPARC-I

4 - 5. Reserved

FDIV {s,d} -25 <Er <255 (SP) one subnormal operand
-54 <Er <2047 (DP) one subnormal operand
two subnormal operands

Subnormal Result Unimplemented Exception Cases:

FdTOs -25 <Er <1 (SP)
-54 <Er <1 (DP)
FADD({s,d} -25 <Er <1 (SP)
-54 <Er <1 (DP)
FMUL{s,d} -25 <Er <1 (SP)
-54 <Er <1 (DP)
FDIV({s,d} -25<Er< 1 (SP)

-54 <Er <1 (DP)

Prediction of overflow, underflow and inexact traps for divide and square
roots is used. For divide, pessimistic prediction occurs when underflow/
overflow cannot be determined from examining the source operand expo-
nents. For divide and square root, pessimistic prediction of inexact occurs
unless one of the operands is a zero, NSN or infinity. When pessimistic
prediction occurs and the exception is enabled, a floating-point unfinished
exception is generated.

6. I/0 registers privileged status

Description:

Implementation:

whether 1/0O registers can be accessed by non-privileged code is implemen-
tation-dependent.

For systems using UltraSPARC-I, I/O register locations are memory
mapped to non-cacheable address space. The location, access, contents,
and side effects of the I/O registers are dependent on the system implemen-
tation, not the processor implementation.

7. 1/0 register definitions

Descriptions:

the contents and addresses of I/O registers are implementation-dependent

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 45

SPARC International

STP1030BGA-UltraSPARC-I

Implementation:

For systems using UltraSPARC-I, I/O register locations are memory
mapped to non-cacheable address space. The location, access, contents,
and side effects of the I/O registers are dependent on the system implemen-
tation, not the processor implementation.

8. RDASR/WRASR target registers

Description: software can use read/write ancillary state register instructions to read/
write implementation-dependent processor registers (ASRs 16-31).
Implementation: UltraSPARC-I implements the following implementation-dependent
ASRs.
rd name access
16 PERFA_CONTROL_REG RW
17 PERF_COUNTER RW
18 DISPATCH_CONTROL_REG RW
19 GRAPHICS_STATUS_REG RW
20 SET_SOFTINT w
21 CLEAR_SOFTINT W
22 SOFTINT_REG RW
23 TICK_CMPR_REG RW

9. RDASR/WRASR privileged status

Description:

Implementation:

whether each of the implementation-dependent read/write ancillary state
register instructions (for ASRs 16-31) is privileged is implementation
dependent.

The privileged status of UltraSPARC-I’s implementation-dependent regis-
ters is as follows:

46

Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International STP1030BGA-UltraSPARC-I

rd name access
16 PERFA_CONTROL_REG PRIVILEGED
17 PERF_COUNTER PRIVILEGED*
18 DISPATCH_CONTROL_REG PRIVILEGED
19 GRAPHICS_STATUS_REG NONPRIVILEGED
20 SET_SOFTINT PRIVILEGED
21 CLEAR_SOFTINT PRIVILEGED
22 SOFTINT_REG PRIVILEGED
23 TICK_CMPR_REG PRIVILEGED

* If PERF_CONTROL_REG. PRIV =1)

10 - 12. Reserved

13. VER.impl

Description: VER.impl uniquely identifies an implementation or class of software-com-
patible implementations of the architecture. Values FFFO (hex)..FFFF(hex)
are reserved and are not available for assignment.

Implementation: UltraSPARC-I uses the implementation code 0010 (hex).

14 - 15. Reserved

16. IU deferred-trap queue

Description: the existence, contents, and operation of an IU deferred-trap queue are
implementation-dependent; it is not visible to user application programs
under normal operating conditions.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 47

SPARC International STP1030BGA-UltraSPARC-I

Implementation: UltraSPARC-I does not implement a deferred-trap queue.

17. Reserved

18. Nonstandard IEEE 754-1985 results

Description: bit 22 of the FSR, RSR_nonstandard_fp (NS), when set to 1, causes the
FPU to produce implementation-defined results that may not correspond
to IEEE Standard 754-1985.

Implementation: if FSR.NS is set to one, the subnormal operand and results cases identified
for implementation dependency #3 above, are flushed to zero.

19. FPU version, FSR.ver

Description: bits 19:17 of the FSR, FSR.ver, identify one or more implementations of
the FPU architecture.

Implementation: on UltraSPARC-I the FSR.VER field is set to zero.

20 - 21. Reserved

22. FPU TEM. cexc. and aexc

Description: an implementation may choose to implement the TEM, cexc, and aexc
fields in hardware in either of two ways (see section 5.1.7.11 of SPARC-
V9 Architecture Manual for details).

Implementation: UltraSPARC-I implements the TEM, cexc and aexc fields in conformance
to IEEE Std 754-1985.

23. Floating-point traps

Description: floating point traps may be precise or deferred. If deferred, a floating point
deferred-trap queue (FQ) must be present.

Implementation: UltraSPARC-I floating-point traps are precise and it does not implement

48 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International STP1030BGA-UltraSPARC-I

an FQ.

24. FPU deferred-trap queue (FQ)

Description: the presence, contents of, and operations on the floating-point deferred-trap
queue (FQ) are implementation-dependent.

Implementation: UltraSPARC-I does not implement an FQ.

25. RDPR of FQ with nonexistent FQ

Description: on implementations without a floating-point queue, an attempt to read the
FQ with an RDPR instruction shall cause either an illegal_instruction
exception or an fp_exception_other exception with FSR.Ftt set to 4
(sequence_error).

Implementation: attempting to read the FQ with a RDPR instruction causes an
illegal_instruction exception.

26 - 28. Reserved

29 Address space identifier (ASI) definitions

Description: the following ASI assignments are implementation-dependent: restricted
ASIs (all values hex) 00..03.05..0B. 0D..0OF, 12..17, and 1A..7F; and unre-
stricted ASIs CO..FF..

Implementation: UltraSPARC-I ssigns the following implementation-dependent ASI
values.

restricted ASI values (all values hex):

14, 15, 1C, 1D, 24, 2C, 45, 46, 47, 48, 49, 4A, 4B, 4C, 4D, 4E, 50, 51, 52,
53,54, 55, 56, 57, 58, 59, 5A, 5B, 5C, 5D, 5E, 5F, 66, 67, 6E, 6F, 70, 71,
76,77,78,79, 7TE, TF

restricted ASI values (all values hex):

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 49

SPARC International

STP1030BGA-UltraSPARC-I

C0, C1, C2, C3, C4, C5, C8, C9, CA, CB, CC, CD, D0, D1, D2, D3, D8,
D9, DA, DB, EO, El, FO, F1, F8, F9

30. ASI address decoding

Description:

Implementation:

an implementation may choose to decode only a subset of the 8-bit ASI
specifier; however, it shall decode at least enough of the ASI to distinguish
ASI_PRIMARY, ASI_PRIMARY_LITTLE,
ASI_AS_IF_USER_PRIMARY,ASI_AS_IF_USER_PRIMARY_LITTLE
ASI_PRIMARY_NOFAULT, ASI_PRIMARY_NOFAULT_LITTLE,
ASI_SECONDARY, ASI_SECONDARY_LITTLE,
ASI_AS_IF_USER_SECONDARY,
ASI_AS_IF_USER_SECONDARY_LITTLE,
ASI_SECONDARY_NOFAULT_LITTLE. If AFI_NUCLEUS and
ASI_NUCLEUS_LITTLE are supported (impl. dep. #124), they must be
decoded also. Finally, an implementation must always decode ASI bit<7>
while PSTATE.PRIV = 0, SO so that an attempt by nonprivileged software
to access a restricted ASI will always cause a privileged_action exception.

UltraSPARC-I decodes the entire 8-bit ASI specifier.

31. Catastrophic error exceptions

Description: the causes and effects of catastrophic error exceptions are implementation-
dependent. They may cause precise, deferred or disrupting traps.

Implementation: UltraSPARC-I catastrophic error exceptions cause deferred traps. The
PSTATE.RED bit is not automatically set in hardware for any catastrophic
error exceptions other than when trapping to MAXTL-1.

32. Deferred traps

Description: whether any deferred traps (and associated deferred-trap queues) are
present is implementation-dependent.

Implementation: UltraSPARC-I may encounter deferred traps during memory accesses.

Such errors lead to termination of the currently executing process or result
in a system reset if system state has been corrupted. Error logging inform-
ation allows software to determine if the system state has been corrupted.

50 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International

STP1030BGA-UltraSPARC-I

33. Trap precision

Description:

Implementation:

exceptions that occur as the result of program execution may be precise or
deferred, although it is recommended that such exceptions be precise.
Examples include mem_address_not_aligned and division_by_zero.

all of the exceptions listed in the SPARC-V9 Architecture Manual section
7.3.5, item (2) are precise with the exception of instruction_access_erreor,
which is deferred.

34. Interrupt clearing

Description:

Implementation:

how quickly a processor responds to an interrupt request and the method by
which an interrupt request is removed are implementation-dependent.

The response time to interrupt is dependent the activity the processor is

is executing at the time the interrupt is received (e.g., whether executing a
trap handler with PSTATE.IE=0, etc.). The interrupt request is removed by
clearing a bit in the implementation-dependent interrupt vector receive reg-
ister.

35. Implementation-dependent traps

Description: trap type (TT) values 060 (hex)..07f(hex)are reserved for implementation-
dependent exceptions. The existence of implementation_dependent_n traps
and whether any that do exist are precise, deferred, or disrupting is imple-
mentation-dependent.

Implementation: the following implementation-dependent trap types are implemented on
UltraSPARC-I.

TT (hex) Exception Category
060 interrupt_vector disrupting
061 PA_watchpoint disrupting
062 VA_watchpoint disrupting

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 51

SPARC International STP1030BGA-UltraSPARC-I
TT (hex) Exception Category
063 corrected_ECC_error disrupting
064...067 fast_instruction_access_ MMU_miss precise
068..06B fast_data_access_ MMU_miss precise
06C..06F fast_data_access_protection precise

36. Trap priorities

Description:

Implementation:

37. Reset trap

Description:

Implementation:

the priorities of the particular traps are relative and are implementation-
dependent, because a future version of the architecture may define new
traps, and implementations may define implementation-dependent traps
that establish new relative priorities.

UltraSPARC-I traps are prioritized relative to each other according to the
relative priorities in the SPARC-V9 Manual.

some of a processor’s behavior during a reset trap is implementation-
dependent.

UltraSPARC-I conforms to the required behavior during a reset trap.
Unspecified behavior is either defined during reset or specified as requiring
initialization.

38. Effect of reset trap on implementation-dependent registers

Description:

Implementation:

implementation-dependent registers may or may not be affected by the var-
ious reset traps.

Implementation-dependent registers on UltraSPARC-I either have defined
behavior during reset traps or are specified as requiring initialization.

39. Entering error_state on implementation-dependent errors

52 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International

STP1030BGA-UltraSPARC-I

Description:

Implementation:

the processor may enter error_state when an implementation-dependent
error condition occurs.

UltraSPARC-I enters error_state only by trapping when TL = MAXTL.
Any type of trap may cause this.

40. Error_state processor state

Description: what occurs after error_state is entered in implementation-dependent, but it
i1s recommended that as much processor state as possible be preserved upon
entry to error_state.

Implementation: Entering error_state causes UltraSPARC-I to trigger a watchdog_reset trap.
As much state as possible is preserved during this action.

41. Reserved
42. FLUSH instruction

Description: if flush is not implemented in hardware, it causes an illegal_instruction
exception and its function is performed by system software. Whether
FLUSH traps is implementation-dependent.

Implementation: UltraSPARC-I implements FLUSH in hardware and it can cause a
data_access_exception if the page is mapped with side effects or no-fault-
only bits set, virtual address out of range, privilege violation, or a
data_access_MMU_miss trap.

43. Reserved
44. Data access FPU trap

Description: if a load floating-point instruction traps with any type of access error
exception, the contents of the destination floating-point register(sO either
remain unchanged or are undefined.

Implementation: access error exceptions on floating-point load instructions leave the desti-

nation floating-point register contents unchanged.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 53

SPARC International

STP1030BGA-UltraSPARC-I

45-46. Reserved

47. RDASR

Description:

Implementation:

48. WRASR

Description:

Implementation:

49-54. Reserved

RDASR instructions with rd in the range 16..31 are available for imple-
mentation-dependent uses (impl. dep #8). For an RDASR instruction with
rs1 in the range 16..31, the following are implementation-dependent: the
interpretation of bits 13:0 and 29:25 in the instruction, whether the instruc-
tion is privileged (impl. dep. #9), and whether the instruction is privileged
(impl. dep. #9), and whether it causes and illegal_instruction trap.

the bit fields specified above are not used for UltraSPARC-I implementa-
tion-dependent RDASR instructions. Reads of unused rs1 values and reads
of write-only implementation-dependent ASRs cause illegal_instruction
traps

WRASR instructions with rd in the range 16..31 are available for imple-
mentation-dependent uses (impl.dep.#8). For a WRASR instruction with
rd in the range 16..31, the following are implementation-dependent: the
interpretation of bits 18:0 in the instruction, the operation(s) performed (for
example, xor) to generate the value written to the ASR, whether the
instruction is privileged (impl. dep.#9), and whether it causes an
illegal_instruction trap.

UltraSPARC-I does not interpret bits 18:0 of the WRASR instruction.
Using WRASR to the SET_SOFTINT and CLEAR_SOFTINT ASRs will
set and clear (respectively) bits in the SOFTINT_REG ASR. Writes of the
unused ASR values cause illegal_instruction traps.

55. Floating-point underflow detection

Description:

Implementation:

whether “tininess” (in IEEE 754 terms) is detected before or after rounding
is implementation-dependent. It is recommended that tininess be detected
before rounding.

UltraSPARC-I detects underflow before rounding.

54 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International STP1030BGA-UltraSPARC-I

56 - 100. Reserved

101. Maximum trap level

Description: it is implementation-dependent how many additional levels, if any, past
level 4 are supported.

Implementation: UltraSPARC-I implements 5 trap levels.

102. Clean window trap

Description: an implementation may choose either to implement automatic “cleaning”
of register windows in hardware, or generate a clean_window trap, when
needed, for window(s) to be cleaned by software.

Implementation: UltraSPARC-I cleans register windows by generating a clean_window trap
for windows to be cleaned by software.

103. Prefetch instructions

Description: the following aspects of the PREFETCH and PREFETCHA instructions
are implementation-dependent: (1) whether they have an observable effect
in privileged code; (2) whether they can cause a data_access_ MMU_miss
exception; (3) the attributes of the block of memory prefetched: its size
(minimum = 64 bytes) and its alignment (minimum = 64 byte alignment);
(4) whether each variant is implemented as NOP, with its full semantics,
or with common-case prefetching semantics; (5) whether and how variants
16..31 are implemented.

Implementation: on UltraSPARC-I, PREFETCH and PREFETCHA have the same observ-
able effect as a NOP in both privileged and nonprivileged modes.

104. VER.manuf

Description: VER.manuf contains a 16-bit semiconductor manufacturer code. This field
is optional, and if not present reads a zero. VER.manuf may indicate the
original supplier of a second-sourced chip in cases involving mask-level

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 55

SPARC International

STP1030BGA-UltraSPARC-I

Implementation:

second-sourcing. It is intended that the contents of VER.manuf track the
JEDEC semiconductor manufacturer code as closely as possible. If the
manufacturer does not have a JEDEC semiconductor manufacturer code,
SPARC International will assign a VER.manuf value.

UltraSPARC-I uses the manufacturer code 0017(hex)

105. TICK register

Description:

Implementation:

the difference between the values read from the TICK register on two reads
should reflect the number of processor cycles executed between the reads.
If an accurate count cannot always be returned, an inaccuracy should be
small, bounded, and documented. An implementation may implement
fewer than 63 bits in TICK.counter; however, the counter as implemented
must be able to count for at least 10 years without overflowing. Any upper
bits not implemented must be read as zero.

UltraSPARC-I implements 63 bits of TICK.counter and reflects the number
of processor clocks between reads.

106. IMPDEP1 instructions

Description:

Implementation:

the IMPDEP1 and IMPDEP?2 instructions are completely implementation-
dependent. Implementation-dependent aspects include their operation, the
interpretation of bits 29:25 and 18:0 in their encodings, and which (if any)
exceptions they may cause.

UltraSPARC-I implements implementation-dependent instructions using
the following field values:

op op3 opf

10 110110 010000000
10 110110 001010000
10 110110 001010001
10 110110 001010010
10 110110 001010011
10 110110 001010100
10 110110 001010101
10 110110 001010110

56 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International

STP1030BGA-UltraSPARC-I

10

10
10
10
10
10

10
10
10
10
10
10
10

10
10
10

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

110110

110110
110110
110110
110110
110110

110110
110110
110110
110110
110110
110110
110110

110110
110110
110110

110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110

001010111

000111011
000111010
000111101
001001101
001001011

000110001
000110011
000110101
000110110
000110111
000111000
000111001

000011000
000011010
001001000

001100000
001100001
001111110
001111111
001110100
001110101
001111000
001111001
001101010
001101011
001100110
001100111
001111100
001111101
001100010
001100011
001110000
001110001
001101110
001101111
001101100
001101101
001110010
001111010
001111011

2/9/99

Implementation Characteristics of Current SPARC-V9-Based Products 57

SPARC International

STP1030BGA-UltraSPARC-I

10
10
10
10
10
10
10

10
10
10
10
10
10
10
10

10
10
10
10
10
10

10
10

10
10

110110
110110
110110
110110
110110
110110
110110

110110
110110
110110
110110
110110
110110
110110
110110

110110
110110
110110
110110
110110
110110

110110
110110

110110
110110

107. Unimplemented LDD trap

Description:

Implementation:

001110110
001110110
001110111
001101000
001101001
001100100
001100101

000101000
000101100
000100000
000100100
000100010
000100110
000101010
000101110

000000000
000000010
000000100
000000110
000001000
000001010

000111110
000010000

000010010
000010100

it is implementation-dependent whether LDD and LDDA are implemented
in hardware. If not, an attempt to execute either will cause an

unimplemented_LDD trap.

108. Unimplemented STD trap

Description:

UltraSPARC-I implements LDD and LDDA in hardware.

it is implementation-dependent whether STD and STDA are implemented
in hardware. If not, an attempt to execute either will cause an

58

Implementation Characteristics of Current SPARC-V9-Based Products

2/9/99

SPARC International

STP1030BGA-UltraSPARC-I

Implementation:

unimplemented_STD trap.

UltraSPARC-I implements STD and STDA in hardware.

109. LDDF_mem_address_not_aligned

Description:

Implementation:

LDDF and LDDFA require only word alignment. However, if the effective
address is word-aligned but not doubleword-aligned, either may cause an
LDDF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the LDDF (or LDDFA) instruction and return.

UltraSPARC-I generates an LDDF_mem_address_not_aligned exception
if an LDDF or LDDFA effective address is word-aligned but not double-
word-aligned.

110. STDF_mem_address_not_aligned

Description:

Implementation:

STDF and STDFA require only word alignment. However, if the effective
address is word-aligned but not doubleword-aligned, either may cause an
STDF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the STDF (or STDFA) instruction and return.

UltraSPARC-I generates an STDF_mem_address_not_aligned exception if
an STDF or STDFA effective address is word-aligned but not doubleword-
aligned.

111. LDQF_mem_address_not_aligned

Description:

Implementation:

LDQF and LDQFA require only word alignment. However, if the effective
address is word-aligned but not quadword-aligned, either may cause an
LDQF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the LDQF (or LDQFA) instruction and return.

UltraSPARC-I does not implement the LDQF and LDQFA in hardware,
they must be emulated in software using other instructions.

112. STQF_mem_address_not_aligned

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 59

SPARC International STP1030BGA-UltraSPARC-I

Description: STQF and STQFA require only word alignment. However, if the effective
address is word-aligned but not quadword-aligned, either may cause an
STQF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the STQF (or STQFA) instruction and return.

113. Implemented memory models

Description: whether the Partial Store Order (PSO) or Relaxed Memory Order (RMO)
models are supported is implementation-dependent.

Implementation: UltraSPARC-I supports the Partial Store Order and Relaxed Memory Order

models.

114. RED_state trap vector address (RSTVaddr)

Description: the RED_state trap vector is located at an implementation-dependent
address referred to as RSTVaddr.

Implementation: RSTVaddr = 1{ff0000000 (hex)

115. RED_state processor state

Description: what occurs after the processor enters RED_state is implementation-
dependent.

Implementation: On UltraSPARC-I some register contents are forced to specified values
and some hardware functions are disabled upon entering RED_state to
avoid as much as possible any additional traps which would cause the
processor to enter error_state.

116. SIR_enable control flag

Description: the location of and the means of accessing the SIR_enable control flag are
implementation-dependent. In some implementations, it may be perma-
nently zero.

Implementation: the SIR_enable in UltraSPARC-I is permanently zero.

60 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International STP1030BGA-UltraSPARC-I

117. MMU disabled prefetch behavior

Description: whether Prefetch and Non-faulting Load always succeed when the MMU is
disabled is implementation-dependent.

Implementation: prefetch instructions behave as NOP instructions. Non-faulting Load
instructions may or may not succeed when the MMU is disabled depending
on the state of an implementation-dependent register determining
whether the cache is enabled.

118. Identifying 1/0 locations

Description: the manner in which I/O locations are identified is implementation- depen-
dent.

Implementation: For systems using UltraSPARC-I, I/O register locations are memory
mapped to non-cacheable address space. The location, access, contents,

and side effects of the I/O registers are dependent on the system implem-
entation, not the processor implementation.

119. Unimplemented values for PSTATE.MM

Description: the effect of writing an unimplemented memory-mode designation into
PSTATE.MM is implementation-dependent.

Implementation: UltraSPARC-I implements all three memory modes specified in the

SPARC Architecture Manual Version 9. If the reserved PSTATE.MM value
(3) were written, UltraSPARC-I would interpret it as RMO.

120. Coherence and atomicity of memory operations

Description: the coherence and atomicity of memory operations between processors and
I/O DMA memory accesses are implementation-dependent.

Implementation: This is dependent on the system implementation rather than the processor

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 61

SPARC International

STP1030BGA-UltraSPARC-I

implementation for systems that use UltraSPARC-I.

121. Implementation-dependent memory model

Description: an implementation may choose to identify certain addresses and use an
implementation-dependent memory model for references to them.

Implementation: UltraSPARC-I does not use any implementation-dependent memory
models.

122. FLUSH latency

Description: latency between the execution of FLUSH on one processor and the point at
which the modified instructions have replaces out-dated instructions in a
multiprocessor is implementation-dependent.

Implementation: This is dependent on the system implementation rather than the processor

implementation for systems that use UltraSPARC-I.

123. Input/output (I/0) semantics

Description:

Implementation:

the semantic effect of accessing input/output (I/O) registers is implement-
ation-dependent.

For systems using UltraSPARC-LI/O register locations are memory
mapped to non-cacheable address space. The location, access, contents,
and side effects of the I/O registers are dependent on the system implemen-
tation, not the processor implementation.

124. Implicit ASI when TL>0

Description:

Implementation:

when TL>0, the implicit ASI for instruction fetches, loads, and stores is
implementation-dependent. See SPARC-V9 Architecture Manual section
F.4.4, “Contexts,” for more information.

the implicit ASI for instruction fetches, loads, and stores when TL>O0 is
ASI_PRIMARY.

62 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International STP1030BGA-UltraSPARC-I
125. Address masking
Description: when PSTATE.AM = 1, the value of the high-order 32-bits of the PC trans-

Implementation:

mitted to the specified destination register(s) by CALL, JMPL, RDPC, and
on a trap is implementation-dependent.

when PSTATE.AM = 1, the value of the high-order 32-bits of the PC trans-
mitted to the specified destination register(s) by CALL, IMPL, RDPC, and
on a trap is zero.

126. TSTATE bits 19:18

Description:

Implementation:

If PSTATE bit 11 (10) is implemented, TSTATE bit 9 (18) shall be imple-
mented and contain the state of PSTATE bit 11 (10) from the previous
trap level. If PSTATE bit 11 (10) is not implemented, TSTATE bit 19 (18)
shall read as zero. Software intended to run on multiple implementations
should only write these bits to values previously read from PSTATE, or
to zeros.

UltraSPARC-I implements TSTATE bits 19:18 to hold the state of PSTATE
bits 11:10 for each previous trap level.

127. PSTATE bits 11:10

Description:

Implementation:

The presence an semantics of PSTATE.PID1 and PSTATE.PIDO are
implementation-dependent. The presence of TSTATE bits 19 and 18 is
implementation-dependent. If PSTATE bit 11 (10) is implemented,
TSTATE bit 19 (18) shall be implemented and contain the state of PSTATE
bit 11 (10) from the previous trap level. If PSTATE bit 11 (10) is not imple-
mented, TSTATE bit 19 (18) shall read as zero. Software intended to run on
multiple implementations should only write these bits to values previously
read from PSTATE, or to zeros.

PSTATE.PID1 and PSTATE.PIDO are implemented on UltraSPARC-I as
selects for two additional sets of eight trap global registers. The corre-
sponding bits in the TSTATE register are implemented to store these bits
for the previous trap level.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 63

SPARC International STP1030BGA-UltraSPARC-I

64 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Chapter 3: HAL Implementation of V9 Architecture

SPARC 64-Ii

SPARC INTERNATIONAL

SPARC International SPARC 64-11

CHAPTER 3: HAL SPARC64-11

0. Introduction

This document describes the implementation details of the SPARC64-11 processor developed
by HAL Computer Systems. The items listed below correspond to the implementation depen-
dencies as listed in the text and by number in Appendix C of “The SPARC Architecture Man-
ual - Version 9° by SPARC International, along with the description of the implementation
dependency. The “Implementation” section for each item describes the implementation on the
SPARC64 processor.

1. Software emulated instructions

Description:

Whether an instruction is implemented directly by hardware, simulated by software, or emu-
lated by firmware is implementation-dependent.

Implementation:

Sparc64 does not implement the following instructions in hardware:

* All floating point instructions with quad operands or results
These operations will take an fp_exception_other trap with FSR.ftt = unimplemented_F Pop.
The kernel will then emulate the quad operation and store the result into a quad-aligned set of
floating-point registers as defined by Sparc-V9 manual.

* fsqrid, fsqrts
Executing these instructions will cause a fp_exception_other exception with FSR.ftt =
unimplemented_FPop. In this case kernel emulation routines are provided to complete the
instructions.

o flush
This instruction will cause an illegal_instruction trap if executed. Kernel emulation routines
will be provided to flush the cache line from the data cache and invalidate any matching cache
lines in the instruction cache.

* ldd, ldda, std, stda
Executing these instructions in normal mode would generate unimplemented_LDD and
unimplemented_STD trap. Kernel emulation routines will be provided to complete the instruc-
tions. Sparc64 also implements a special accelerated emulation trap handling for certain LDD
and STD instructions, if a special mode is chosen.

* popc
This instruction will cause an illegal_instruction trap if executed. Kernel emulation routines
will be provided to complete the action.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 67

SPARC International SPARC 64-11

2. Number of IU registers

Description:

An implementation of the IU may contain from 64 to 528 general purpose 64 bit r registers.
This corresponds to a grouping of the registers into two sets of eight global
r registers, plus a circular stack of from 3 to 32 sets of 16 registers each,
known as register windows. Since the number of register windows present
(NWINDOWS) is implementation-dependent, the total number of registers
is also implementation-dependent.

Implementation:

Sparc64 implements 5 16-register sets (windows) in hardware. Thus there are a total of 96
integer registers visible to software. They are:
* 8 global registers
» 8 alternate global registers
* 5 windows of 16 registers each (=80 registers)

3. Incorrect IEEE Std 754-1985 results

Description:

An implementation may indicate that a floating-point instruction did not produce a correct
ANSI/IEEE Standard 754-1985 result by generating a special floating-
point unfinished or unimplemented exception. In this case, privileged mode
software shall emulate any functionality not present in the hardware.

Implementation:

Sparc64 in conjunction with the kernel emulation code produces the correct IEEE 754 results
required in this section.
* Traps Inhibit Results
Sparc64 in conjunction with the kernel emulation code produces results required.
* Trapped Underflow Definition (UFM=1)
Sparc64 detects “tininess” before rounding as recommended.
* Untrapped Underflow Definition (UFM=0)
Sparc64 meets these requirements with some help from the kernel divide fixup code.
* Floating-Point Nonstandard Mode
Sparc64 FPU is “standard”, and therefore does not support a nonstandard mode.

4-5. Reserved

6. I/0 registers privileged status

Description:
Whether /0 registers can be accessed by non privileged code is implementation-dependent.

68 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International SPARC 64-11

Implementation:
In Sparc64 some I/O registers can be accessed by non privileged code.

7. 1/0 register definitions

Description:
The contents and addresses of I/O registers are implementation-dependent.

Implementation:
Please contact HaL. for details of I/O registers.

8,9. RDASR/WRASR target registers and privileged status

Description:

Software can use read/write ancillary state register instructions to read/write implementation-
dependent processor registers (ASRs 16-31).

Whether each of the implementation-dependent read/write ancillary state register instructions
(for ASRs 16-31) is privileged is implementation dependent.

Implementation:

Sparc64 implements 9 implementation-dependent ASR registers.

* PIO Address Match Register (ASR23)
This privileged read/write register is used to specify a range of addresses which
force program ordering for all LD and ST instructions which are within this range.

e LDD Trap Base Address (ASR24)
This privileged read/write register specifies a special trap base address for some
unimplemented_LDD and unimplemented_STD traps.

* Instruction Emulation Register (ASR25)
This read only register is written by CPU on a trap for a LDD/STD that uses the LDD Trap
Base Address described above.

* Data Breakpoint Register (ASR26)
This privileged write-only register is used to trap any data accesses to a double word aligned
breakpoint address.

e Software Initiated Reset (ASR27)
A write to this register with a WRASR instruction will cause a software initiated reset (SIR).
An SIR is a precise trap. ASR27 is privileged and write-only.

* Fault Address Register (ASR28) and Fault Access Type (ASR29)
These registers facilitate the handling of traps that involve a data memory access. The registers
are privileged and read-only. System software must take care to read these registers on entry to
a fault handler before any other fault can occur that would overwrite them.

* Performance Monitor Register (ASR30)
This privilege read/write register is used to evaluate processor performance.

» State Control Register (ASR31)

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 69

SPARC International SPARC 64-11

ASR31 is a 16bit implementation specific register that contains a set of flags for controlling
the state of the CPU, MMU and Caches. The register is privileged and can be read/written.

10-12 Reserved

13. VER.impl

Description:

VER.impl uniquely identifies an implementation or class of software-compatible implementa-
tions of the architecture. Values FFFO(hex)..FFFF(hex) are reserved and
are not available for assignment.

Implementation:
Sparc64 uses a version number of 2.

14-15 Reserved

16. IU deferred-trap queue

Description:

The existence, contents, and operation of an IU deferred-trap queue are implementation-
dependent; it is not visible to user application programs under normal oper-
ating conditions

Implementation:
Sparc64 does not need and therefore does not implement an IU deferred-trap queue.

17. Reserved

18. Nonstandard IEEE 754-1985 results

Description:

Bit 22 of the FSR, FSR_nonstandard_fp (NS), when set to 1, causes the FPU to produce
implementation-defined results that may not correspond to IEEE Standard
754-1985.

Implementation:
Sparc64 FPU is “standard”, and therefore does not support a nonstandard mode.

70 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International SPARC 64-11

19. FPU version, FSR.ver

Description:
Bits 19:17 of the FSR, FSR.ver, identify one or more implementations of the FPU architec-
ture.
Implementation:

Sparc64 uses the value of O for this field.

20-21. Reserved

22. FPU TEM, cexc, and aexc

Description:

An implementation may choose to implement the TEM, cexc, and aexc fields in hardware in
either of two ways (see section 5.1.7.11 of SPARC-V9 Architecture Man-
ual for details).

Implementation:
Sparc64 implements TEM, cexc and aexc fields of FSR conforming to IEEE Std. 754-1985.

23. Floating-point traps

Description:

Floating point traps may be precise or deferred. If deferred, a floating point deferred-trap
queue (FQ) must be present.

Implementation:

The only deferred traps in Sparc64 are: fp_exception_other (ftt = unfinished_FPop) for FDIV
with unusual arguments and the data_breakpoint trap. Sparc64 does not
need a floating-point deferred-trap queue because the FDIV that caused the
trap is the only deferred instruction.

24. FPU deferred-trap queue (FQ)

Description:

The presence, contents of, and operations on the floating-point deferred-trap queue (FQ) are
implementation-dependent.

Implementation:
Sparc64 does not have or need a floating-point deferred-trap queue.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 71

SPARC International SPARC 64-11

25. RDPR of FQ with nonexistent FQ

Description:

On implementations without a floating-point queue, an attempt to read the FQ with an RDPR
instruction shall cause either an illegal_instruction exception or an
fp_exception_other exception with FSR.ftt set to 4 (sequence_error).

Implementation:

A RDPR of %FPQ instruction will cause an illegal_instruction trap.

26-28. Reserved

29,30. Address space identifier (ASI) definitions and ASI address decoding

Description:

The following ASI assignments are implementation-dependent: restricted ASIs (all values
hex) 00..03, 05..0B, OD..0OF, 12..17, and 1A..7F; and unrestricted ASIs
CO..FE.

An implementation may choose to decode only a subset of the 8-bit ASI specifier; however, it
shall decode at least enough of the ASI to distinguish ASI_PRIMARY,
ASI_PRIMARY_LITTLE, ASI_AS_IF_USER_PRIMARY,
ASI_AS_IF_USER_PRIMARY_LITTLE, ASI_PRIMARY_NOFAULT,
ASI_PRIMARY_NOFAULT_LITTLE, ASI_SECONDARY,
ASI_SECONDARY_LITTLE, ASI_AS_IF_USER_SECONDARY,
ASI_AS_IF_USER_SECONDARY_LITTLE,
ASI_SECONDARY_NOFAULT, and
ASI_SECONDARY_NOFAULT_LITTLE. If ASI_NUCLEUS and
ASI_NUCLEUS_LITTLE are supported (impl. dep. #124), they must be
decoded also. Finally, an implementation must always decode ASI bit<7>
while PSTATE.PRIV = 0, so that an attempt by nonprivileged software to
access a restricted ASI will always cause a privileged_action exception.

Implementation:

The encoding of ASIs in the Sparc64 processor is shown below:

NR V(M3) PO AS_IF LE M2 M1 MO

72 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International SPARC 64-11

* NR (Non-Restricted). This bit conforms to Sparc V9 definition. An attempt to use a restricted
ASI in non-privileged mode results in a privileged_action trap.

* V (Vendor-specific). This bit conforms to Sparc V9 definition for non-restricted ASIs that are
implementation-dependent (0xcO - Oxff). This bit will be set in all ASIs that are specific to
Sparc64.

* PO (Program Order). An instruction using an ASI with this bit set is executed by Sparc64
strictly in program order.

* AS_IF. This bit conforms to Sparc V9 requirement that there be an implementation specific
ASI encoding that allows the corresponding access to be made as if the CPU were executing
in non-privileged mode, independent of PSTATE.PRIV.

* LE. This bit conforms to Sparc V9 definition of ASIs that specify little-endian byte ordering.
If this bit is set to zero, the access is done using big-endian byte ordering.

e M2..MO. These bits are interpreted by the Sparc64 MMU.

Sparc64 does not support a nucleus context and hence does not decode ASI_NUCLEUS and
ASI_NUCLEUS_LITTLE.

31. Catastrophic error exceptions

Description:

The causes and effects of catastrophic error exceptions are implementation-dependent. They
may cause precise, deferred or disrupting traps.

Implementation:

An internal CPU watchdog time-out occurs after no instruction has been committed for 2**n
cycles (n can be scan initialized to one of {12,14,16,18,19,20,21,22,24},
with 24 being the default value). This would take the processor into error
state.

32. Deferred traps

Description:

Whether any deferred traps (and associated deferred-trap queues) are present is implementa-
tion-dependent.

Implementation:

Sparc64 implements a deferred trap for the following trap types:
» fp_exception_other (when FSR.ftt = unfinished_FPop).
* data_breakpoint.

Deferred trap queues are not necessary, since the trapping instruction is the only deferred
instruction.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 73

SPARC International SPARC 64-11

33. Trap precision

Description:
Exceptions that occur as the result of program execution may be precise or deferred, although
it is recommended that such exceptions be precise. Examples include
mem_address_not_aligned and division_by_zero.

Implementation:

Sparc64 will generate a precise trap for all traps induced by instruction execution, except for
unfinished_FPop, data_breakpoint and Chip_crossing_errors (CPU_xing).

34. Interrupt clearing

Description:

How quickly a processor responds to an interrupt request and the method by which an inter-
rupt request is removed are implementation-dependent.

Implementation:

When Sparc64 is ready to accept an interrupt signal (based on PSTATE.IE and the PIL), it
stops issuing instructions and waits for the CPU to quiesce. It then issues
instructions from the corresponding trap handler if the interrupt condition
1s still valid. The TPC points to the instruction that would have executed in
the absence of the interrupt. All instructions prior to the TPC have com-
pleted and all instructions including and subsequent to TPC remain unexe-
cuted.

35,36. Implementation-dependent traps and priorities

Description:

Trap type (TT) values 060(hex)..07f(hex) are reserved for implementation-dependent excep-
tions. The existence of implementation_dependent_n traps and whether
any that do exist are precise, deferred, or disrupting is implementation-
dependent.

The priorities of the particular traps are relative and are implementation-dependent, because a
future version of the architecture may define new traps, and implementa-
tions may define implementation-dependent traps that establish new rela-
tive priorities.

Implementation:
The following trap types defined by Sparc-V9 are not used in Sparc64.

e instruction_access. MMU_miss.
* internal_processor_error

74 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International SPARC 64-11

e data_access MMU_miss.

* LDQF_mem_address_not_aligned.
* STQD_mem_address_not_aligned.
* async_data_error.

Sparc64 defines the following implementation-dependent trap types.

* programmed_emulation_trap (tt=0x60, priority = 6, precise).
» data_breakpoint (tt=0x61, priority = 14, deferred).

* IO_parity (tt=0x62, priority = 2, precise).

» RED_alert (tt=0x63, priority = 2, disrupting).

* CPU_xing (tt=0x64, priority = 2, disrupting).

* Watchdog (tt=0x63, priority = 1, disrupting).

* ECC_trap (tt=0x66, priority = 2, precise).

Sparc64 implements a special accelerated emulation trap for certain LDD and STD instruc-
tions.

37. Reset trap

Description:
Some of a processor’s behavior during a reset trap is implementation-dependent.

Implementation:

Power-on Reset (POR) and Watchdog reset (WDR) are implemented by scanning in the reset
state on Sparc64.

38. Effect of reset trap on implementation-dependent registers

Description:
Implementation-dependent registers may or may not be affected by the various reset traps.

Implementation:
None of the implementation-dependent registers are affected by reset traps in Sparc64.

39. Entering error_state on implementation-dependent errors

Description:

The processor may enter error_state when an implementation-dependent error condition
occurs.

Implementation:

An internal CPU watchdog time-out occurs after no instruction has been committed for 2**n
cycles (n can be scan initialized to one of {12,14,16,18,19,20,21,22,24},

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 75

SPARC International SPARC 64-11

with 24 being the default value). This would take the processor into error
State.

40. Error_state processor state

Description:

What occurs after error_state is entered is implementation-dependent, but it is recommended
that as much processor state as possible be preserved upon entry to
error_state.

Implementation:

On entry to error state, Sparc64 asserts the output signal CPU_HALTED. The clock chip in
the HaL system stops the clocks to the CPU in response to this signal. A
scan out of processor state could be performed at this stage for diagnosis.

41. Reserved

42. FLUSH instruction

Description:

If flush is not implemented in hardware, it causes an illegal_instruction exception and its func-
tion is performed by system software. Whether FLUSH traps is implemen-
tation-dependent.

Implementation:
Sparc64 takes an illegal_instruction trap when a FLUSH instruction is executed.

43. Reserved

44. Data access FPU trap

Description:

If a load floating-point instruction traps with any type of access error exception, the contents
of the destination floating-point register(s) either remain unchanged or are
undefined.

Implementation:
Contents of destination floating-point register(s) remain unchanged.

76 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International SPARC 64-11

45-46. Reserved

47. RDASR

Description:

RDASR instructions with rd in the range 16..31 are available for implementation-dependent
uses (impl. dep #8). For an RDASR instruction with rs1 in the range 16..31,
the following are implementation-dependent: the interpretation of bits 13:0
and 29:25 in the instruction, whether the instruction is privileged (impl.
dep. #9), and whether it causes an illegal_instruction trap.

Implementation:
See items 8,9 for details. Sparc64 causes an illegal_instruction trap for reads of the unused
ASR values.
48. WRASR
Description:

WRASR instructions with rd in the range 16..31 are available for implementation-dependent
uses (impl. dep. #8). For a WRASR instruction with rd in the range 16..31,
the following are implementation-dependent: the interpretation of bits 18:0
in the instruction, the operation(s) performed (for example, xor) to generate
the value written to the ASR, whether the instruction is privileged (impl.
dep. #9), and whether it causes an illegal_instruction trap.

Implementation:

See items 8,9 for details. Sparc64 causes an illegal_instruction trap for writes of the unused
ASR values.

49-54 Reserved

55. Floating-point underflow detection

Description:

Whether “tininess” (in IEEE 754 terms) is detected before or after rounding is implementa-
tion-dependent. It is recommended that tininess be detected before round-
ing.

Implementation:
Sparc64 detects “tininess’ before rounding.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 77

SPARC International SPARC 64-11

56-100. Reserved

101. Maximum trap level

Description:
It is implementation-dependent how many additional levels, if any, past level 4 are supported.

Implementation:
Sparc64 implements 4 levels of traps.

102. Clean window trap

Description:

An implementation may choose either to implement automatic “cleaning” of register windows
in hardware, or generate a clean_window trap, when needed, for window(s)
to be cleaned by software.

Implementation:
Sparc64 generates a clean_window trap, when needed, for windows to be cleaned by software.

103. Prefetch instructions

Description:

The following aspects of the PREFETCH and PREFETCHA instructions are implementation-
dependent: (1) whether they have an observable effect in privileged code;
(2) whether they can cause a data_access_ MMU_miss exception; (3) the
attributes of the block of memory prefetched: its size (minimum = 64
bytes) and its alignment (minimum = 64-byte alignment); (4) whether each
variant is implemented as a NOP, with its full semantics, or with common-
case prefetching semantics; (5) whether and how variants 16..31 are imple-
mented.

Implementation:

(1) PREFETCH and PREFETCHA have identical affects in privileged or non-privileged code.
(2) Can not cause a data_access_MMU _miss exception

(3) Size and alignments are 128-bytes

(4),(5) See table-1

78 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International

Table 2: Prefetch Data

SPARC 64-11

VO Prefetch Sparc64
fcn . :
Function Function
0 Prefetch for |Prefetch for
several reads |read
1 Prefetch for |Prefetch for
one read read
2 Prefetch for |Prefetch for
several writes |write
3 Prefetch for |Prefetch for
one write write
4 Prefetch page |Prefetch for
read
5-15 Reserved illegal_instru
ction trap
16-31 Implementa- |[NOP
tion depen-
dent
104. VER.manuf
Description:

VER.manuf contains a 16-bit semiconductor manufacturer code. This field is optional, and if
not present reads as zero. VER.manuf may indicate the original supplier of
a second-sourced chip in cases involving mask-level second-sourcing. It is
intended that the contents of VER.manuf track the JEDEC semiconductor
manufacturer code as closely as possible. If the manufacturer does not have
a JEDEC semiconductor manufacturer code, SPARC International will
assign a VER.manuf value.

Implementation:
Sparc64 uses a code of 4 for this field. This is Fujitsu’s JEDEC code.

105. TICK register

Description:

The difference between the values read from the TICK register on two reads should reflect the
number of processor cycles executed between the reads. If an accurate
count cannot always be returned, an inaccuracy should be small, bounded,
and documented. An implementation my implement fewer than 63 bits in
TICK.counter; however, the counter as implemented must be able to count

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 79

SPARC International SPARC 64-11

for at least 10 years without overflowing. Any upper bits not implemented
must be read as zero.

Implementation:

Sparc64 implements all the bits of TICK register and returns accurate count of the processor
cycles, in response to reads from TICK register.

106. IMPDEPn instructions

Description:

The IMPDEP1 and IMPDEP?2 instructions are completely implementation-dependent. Imple-
mentation-dependent aspects include their operation, the interpretation of
bits 29:25 and 18:0 in their encoding, and which (if any) exceptions they
may cause.

Implementation:

Sparc64 uses IMPDEP2 to encode the HaL specific Floating Point Multiply-Add/Subtract
instructions. IMPDEPI is not used and will cause an illegal_instruction
trap if such an opcode is encountered. Please refer to Sparc64 Processor
User Guide for more details.

107. Unimplemented LDD trap

Description:

It is implementation-dependent whether LDD and LDDA are implemented in hardware. If
not, an attempt to execute either will cause an unimplemented_LDD trap.

Implementation:

Sparc64 does not implement LDD and LDDA in hardware. It uses the unimplemented_LDD
trap. However in a special mode, there is partial support in hardware for
these instructions. Please refer to Sparc64 Processor User Guide for more
details.

108. Unimplemented STD trap

Description:

It is implementation-dependent whether STD and STDA are implemented in hardware. If not,
an attempt to execute either will cause an unimplemented_STD trap.

Implementation:

Sparc64 does not implement STD and STDA in hardware. It uses the unimplemented_STD
trap. However in a special mode, there is partial support in hardware for
these instructions. Please refer to Sparc64 Processor User Guide for more
details.

80 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International SPARC 64-11

109. LDDF_mem_address_not_aligned

Description:

LDDF and LDDFA require only word alignment. However, if the effective address is word-
aligned but not doubleword-aligned, either may cause an
LDDF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the LDDF (or LDDFA) instruction and return.

Implementation:

Sparc64 causes LDDF_mem_address_not_aligned trap for both word and double-word mis-
aligned addresses.

110. STDF_mem_address_not_aligned

Description:

STDF and STDFA require only word alignment. However, if the effective address is word-
aligned but not doubleword-aligned, either may cause an
STDF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the STDF (or STDFA) instruction and return.

Implementation:

Sparc64 causes STDF_mem_address_not_aligned trap for both word and double-word mis-
aligned addresses.

111. LDQF_mem_address_not_aligned

Description:

LDQF and LDQFA require only word alignment. However, if the effective address is word-
aligned but not quadword-aligned, either may cause an
LDQF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the LDQF (or LDQFA) instruction and return.

Implementation:

Sparc64 generates fp_exception_other trap for LDQF, LDQFA instructions and kernel pro-
vides emulation routines to complete the load. It does not generate
LDQF_mem_address_not_aligned trap.

112. STQF_mem_address_not_aligned

Description:

STQF and STQFA require only word alignment. However, if the effective address is word-
aligned but not quadword-aligned, either may cause an
STQF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the STQF (or STQFA) instruction and return.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 81

SPARC International SPARC 64-11

Implementation:

Sparc64 generates fp_exception_other trap for STQF, STQFA instructions and kernel pro-
vides emulation routines to complete the load. It does not generate
STQF_mem_address_not_aligned trap.

113. Implemented memory models

Description:

Whether the Partial Store Order (PSO) or Relaxed Memory Order (RMO) models are sup-
ported is implementation-dependent.

Implementation:

Sparc64 supports Load/Store ordering (LSO) and Store ordering (STO). Partial Store Order
(PSO) is implemented using LSO and Relaxed Memory Order (RMO) is
implemented using STO.

114. RED_state trap vector address (RSTVaddr)

Description:

The RED_state trap vector is located at an implementation-dependent address referred to as
RSTVaddr.

Implementation:
Sparc64 has a scan only register that holds RST Vaddr.

115. RED_state processor state

Description:
What occurs after the processor enters RED_state is implementation-dependent.

Implementation:

Sparc64 has the following behavior in RED_state.

* The output signal RED_MODE is asserted indicating CPU is in RED_state.

* The CPU executes in sequential mode.

* On entry into and exit from RED_state, the CPU invalidates the on-chip instruction cache and
prefetch buffers.

* Off chip data and instruction caches are disabled.

* The MMU uses a special translation mechanism.

e All I/O accesses are disabled.

* Further red state errors are ignored.

* XIR, and Chip Crossing Errors are not masked and could cause a trap.

82 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International SPARC 64-11

116. SIR_enable control flag

Description:

The location of and the means of accessing the SIR_enable control flag are implementation-
dependent. In some implementations, it may be permanently zero.

Implementation:
SIR_enable control flag is permanently zero in Sparc64.

117. MMU disabled prefetch behavior

Description:

Whether Prefetch and Non-faulting Load always succeed when the MMU is disabled is imple-
mentation-dependent.

Implementation:

In Sparc64, Prefetch and Non-faulting Loads will have undefined behavior if the MMU is dis-
abled.

118. Identifying 1/0 locations

Description:
The manner in which I/O locations are identified is implementation-dependent.

Implementation:
Please contact HaL. Computer Systems for details of I/O operation.

119. Unimplemented values for PSTATE.MM

Description:

The effect of writing an unimplemented memory-mode designation into PSTATE.MM is
implementation-dependent

Implementation:

Sparc64 only the most significant bit of MM is used to determine the memory model; the least
significant bit is ignored. However, the system software should not use the
encoding ‘11’ since it is reserved for future SPARC-V9 extensions.

120. Coherence and atomicity of memory operations

Description:

The coherence and atomicity of memory operations between processors and /O DMA mem-
ory accesses are implementation-dependent.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 83

SPARC International SPARC 64-11

Implementation:

In Sparc64, coherence and atomicity of memory operations between processors and [/O DMA
memory accesses are variable and depend on the I/O device. Please contact
HaLL Computer Systems for details.

121. Implementation-dependent memory model

Description:

An implementation may choose to identify certain addresses and use an implementation
dependent memory model for references to them.

Implementation:

In Sparc64, certain addresses use implementation dependent memory models for references to
them. Please contact Hal. Computer Systems for details.

122. FLUSH latency

Description:

Latency between the execution of FLUSH on one processor and the point at which the modi-
fied instructions have replaced out-dated instructions in a multiprocessor is
implementation-dependent.

Implementation:
Not applicable since, Sparc64 does not support a multi-processor configuration.

123. Input/output (I/0) semantics

Description:
The semantic effect of accessing input/output (I/O) registers is implementation-dependent.

Implementation:
In Sparc64, the semantic effect of accessing input/output (I/O) registers is undefined.

124. Implicit ASI when TL>0

Description:

When TL > 0, the implicit ASI for instruction fetches, loads, and stores is implementation-
dependent. See SPARC-V9 Architecture Manual section F.4.4, “Contexts,”
for more information.

Implementation:

Sparc64 uses ASI_PRIMARY or ASI_PRIMARY_LITTLE for instruction fetches, loads and
stores when TL>0

84 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International SPARC 64-11

125. Address masking

Description:

When PSTATE.AM = 1, the value of the high-order 32-bits of the PC transmitted to the speci-
fied destination registers(s) by CALL, JMPL, RDPC, and on a trap is
implementation-dependent.

Implementation:

When PSTATE.AM bit is set on Sparc64, a full 64-bit address is transmitted to the specified
destination registers by CALL, JMPL, RDPC and traps transmit all 64-bits
to TPC[n] and TNPC]|n].

126. TSTATE bits 19:18

Description:

If PSTATE bit 11 (10) is implemented, TSTATE bit 19 (18) shall be implemented and contain
the state of PSTATE bit 11 (10) from the previous trap level. If PSTATE bit
11 (10) is not implemented, TSTATE bit 19 (18) shall read as zero. Soft-
ware intended to run on multiple implementations should only write these
bits to values previously read from PSTATE, or to zeroes.

Implementation:

Sparc64 does not implement PSTATE bits 10 & 11 and they are read as zeroes. TSTATE bits
19 and 18 are read as zeroes.

127. PSTATE bits 11:10

Description:

The presence and semantics of PSTATE.PID1 and PSTATE.PIDO are implementation-depen-
dent. The presence of TSTATE bits 19 and 18 is implementation-depen-
dent. If PSTATE bit 11 (10) is implemented, TSTATE bit 19 (18) shall be
implemented and contain the state of PSTATE bit 11 (10) from the previous
trap level. If PSTATE bit 11 (10) is not implemented, TSTATE bit 19 (18)
shall read as zero. Software intended to run on multiple implementations
should only write these bits to values previously read from PSTATE, or to
Zeroes.

Implementation:

Sparc64 does not implement PSTATE bits 10 & 11 and they are read as zeroes. TSTATE bits
19 and 18 are read as zeroes.

128. CLEANWIN register update
Earlier implementations of Sparc chips implemented the V9 specification for RESTORED

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 85

SPARC International SPARC 64-11

using the following equation to update CLEANWIN register:
if (CLEANWIN != NWINDOWS) CLEANWIN++;
Subsequently V9 definition changed to modify the equation as:
if (CLEANWIN < NWINDOWS-1) CLEANWIN++;

Sparc64 implements the RESTORED using the current definition. The Sparc64 Kernel will
ensure that CLEANWIN does not have a value beyond NWINDOWS-1.

86 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Chapter 4: SUN Implementation of V9 Architecture

UltraSPARC - I

SPARC INTERNATIONAL

SPARC International STP1031LGA-UltraSPARC-II

CHAPTER 4: SUN ULTRASPARC II

0. Introduction

This document describes the implementation on the UltraSPARC-II processor developed by Sun
Microelectronics, a business unit of Sun Microsystems, Inc., of the implementation dependen-
cies as put forth in “The SPARC Architecture Manual - Version 9” by SPARC International. The
items listed below correspond to the implementation dependencies as listed in the text and by
number in Appendix C of the manual along with the description of the implementation depen-
dency from the manual. The “Implementation” section for each item describes the implementa-
tion on the UltraSPARC-II processor.

1. Software emulation of instructions

Description:

whether an instruction is implemented directly by hardware, simulated by
software, or emulated by firmware is implementation-dependent.

Implementation: all instructions are implemented in hardware except the following, which

must be simulated by software.

POPC Population count
LDQF Load quad-precision FP register
LDQFA Load quad-precision FP register from alternate space
STQF Store quad-precision FP register
STQFA Store quad-precision FP register to alternate space
F{s,d}TOq Convert single-/double- to quad-precision FP
F{1,x}TOq Convert 32-/64-bit integer to quad-precision FP
FqTO({s,d} Convert quad- to single-/double-precision FP
FqTO({i,x} Convert quad-precision FP to 32-/64-bit integer
FADDq Quad-precision FP add
FSUBq Quad-precision FP subtraction
FCMP{E}q Quad-precision FP compares
FMOVqcc Move quad-precision FP register on condition
FMOVqr Move quad-precision FP register on integer register condition
FMOVq Move quad-precision FP register
FABSq Quad-precision FP absolute value
FNEGq Quad-precision FP negate
FdMULq Double- to quad-precision FP multiply
FMULq Quad-precision FP multiply
2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 89

SPARC International STP1031LGA-UltraSPARC-II

FDIVq
FSQRTq

DONE
RETRY
SAVED

RESTORED

Quad-precision FP divide
Quad-precision FP square root

for fcn = 2..31 executed in nonprivileged mode
for fcn = 2..31 executed in nonprivileged mode
for fcn = 2..31 executed in nonprivileged mode
for fcn = 2..31 executed in nonprivileged mode

The DONE/RETRY/SAVED/RESTORED instructions with fcn = 2..31 executed in nonprivileged
mode will take a privileged_opcode trap rather than an illegal_instruction trap. The opcode can be
recognized by software to emulate the proper illegal_instruction behavior. This can be done with
SPARC code in the privileged_opcode trap handler that does the following

PRIVILEGED_OPCODE_HANDLER:

rdpr $tpc, %gl

1d [%g9l], %92

setx 0xclf80000, %g3, %g4

and %$g4, %92, %g4 ! $g4 has op/op3 of trapping instr.
setx 0x3e000000, %93, %g6

and %$g6, %92, %96

srl %$g6, 25, %96 ! g6 has fcn of trapping instr.

check_illegal_saved_restored:

setx 0x81880000, %93, %g5

subcc %$g4, %95, %90 ! saved/restored opcode?
bne check_illegal_done_retry

subcc %$g6, 2, %g0 ! illegal fcn value?

bge ILLEGAL_HANDLER

nop

check_illegal_done_retry:

setx 0x81£00000, %93, %g5

subcc %$g4, %95, %90 ! done/retry opcode?
bne not_illegal

subcc %g6, 2, %g0 ! illegal fcn value?
bge ILLEGAL_HANDLER

nop

not_illegal:

<handle privileged_opcode exception as desired here>

2. Number of IU registers

Description:

an implementation of the IU may contain from 64 to 258 general purpose
64 bit r registers. This corresponds to a grouping of the registers into two
sets of eight global r registers, plus a circular stack of from three to 32 sets
of 16 registers each, known as register windows. Since the number of regis-
ter windows present (NWINDOWS) is implementation-dependent, the
total number of registers is also implementation-dependent.

90

Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International STP1031LGA-UltraSPARC-II

Implementation: UltraSPARC-II implements eight register windows plus four sets of eight

global r registers, for a total of 160 64 bit r registers.

3. Incorrect IEEE Std 754-1985 results

Description: an implementation may indicate that a floating-point instruction did not

produce a correct ANSI/IEEE Standard 754-1985 result by generating a
special floating-point unfinished or unimplemented exception. In this case,
privileged mode software shall emulate any functionality not present in the
hardware.

Implementation: the quad-precision floating-point instructions listed in implementation

dependency #1 above all generate floating-point unimplemented excep-
tions.

UltraSPARC-II generates floating-point unimplemented exceptions for the
following cases of subnormal operands or results.

Subnormal Operand Unimplemented Exception Cases:

F{s,d}TO{i,x} one subnormal operand
F{s,d}TO{i,x} one subnormal operand
FSQRT{s,d} one subnormal operand
FADD({s,d} one or two subnormal operands

FMUL{s,d}-25 < Er <255 (SP) one subnormal operand -54 < Er < 2047 (DP) one subnor-
mal operand two subnormal operands

FDIV{s,d}-25 < Er < 255 (SP) one subnormal operand
-54 < Er <2047 (DP) one subnormal operand
two subnormal operands

Subnormal Result Unimplemented Exception Cases:

FdTOs -25 <Er< 1 (SP)
-54 <Er<1 (DP)

FADD({s,d}-25 <Er<1 (SP)
-54 <Er<1 (DP)

2/9/99

Implementation Characteristics of Current SPARC-V9-Based Products 91

SPARC International STP1031LGA-UltraSPARC-II

FMUL({s,d}-25 <Er <1 (SP)
-54 <Er<1 (DP)

FDIV{s,d}-25 < Er <=1 (SP)
-54 <Er<=1 (DP)

Prediction of overflow, underflow and inexact traps for divide and square roots is
used. For divide, pessimistic prediction occurs when underflow/overflow cannot be
determined from examining the source operand exponents. For divide and square
root, pessimistic prediction of inexact occurs unless one of the operands is a zero,
NAN or infinity. When pessimistic prediction occurs and the exception is enabled,
a floating-point unfinished exception is generated.

4-5. Reserved

6. I/0 registers privileged status

Description: whether I/0O registers can be accessed by nonprivileged code is implemen-
tation-dependent.

Implementation: For systems using UltraSPARC-II, I/O register locations are memory
mapped to non-cacheable address space. The location, access, contents,
and side effects of the I/O registers are dependent on the system implemen-
tation, not the processor implementation.

7. 1/0 register definitions

Description: the contents and addresses of I/O registers are implementation-dependent

Implementation: For systems using UltraSPARC-II, I/O register locations are memory
mapped to non-cacheable address space. The location, access, contents,
and side effects of the I/O registers are dependent on the system implemen-
tation, not the processor implementation

8. RDASR/WRASR target registers

Description: software can use read/write ancillary state register instructions to read/
write implementation-dependent processor registers (ASRs 16-31).

92 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International STP1031LGA-UltraSPARC-II

Implementation: UltraSPARC-II implements the following implementation-dependent

ASRs.

rd name access
16 PERF_CONTROL_REG RW
17 PERF_COUNTER RW
18 DISPATCH_CONTROL_REG RW
19 GRAPHICS_STATUS_REG RW
20 SET_SOFTINT W

21 CLEAR_SOFTINT w

22 SOFTINT_REG RW
23 TICK_CMPR_REG RW

9. RDASR/WRASR privileged status

Description: whether each of the implementation-dependent read/write ancillary state
register instructions (for ASRs 16-31) is privileged is implementation
dependent.

Implementation: The privileged status of UltraSPARC-II’s implementation-dependent regis-
ters is as follows:

rd name access

16 PERF_CONTROL_REG PRIVILEGED

17 PERF_COUNTER PRIVILEGED (if PERF_CONTROL_REG. PRIV = 1)
18 DISPATCH_CONTROL_REG PRIVILEGED

19 GRAPHICS_STATUS_REG NONPRIVILEGED

20 SET_SOFTINT PRIVILEGED

21 CLEAR_SOFTINT PRIVILEGED

22 SOFTINT_REG PRIVILEGED

23 TICK_CMPR_REG PRIVILEGED

10-12. Reserved

13. VER.impl

Description: VER.impl uniquely identifies an implementation or class of software-com-

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 93

SPARC International STP1031LGA-UltraSPARC-II

patible implementations of the architecture. Values FFFO(hex)..FFFF(hex)
are reserved and are not available for assignment.

Implementation: UltraSPARC-II uses the implementation code 0011 (hex)

14-15. Reserved

16. IU deferred-trap queue

Description: the existence, contents, and operation of an IU deferred-trap queue are
implementation-dependent; it is not visible to user application programs
under normal operating conditions.

Implementation: UltraSPARC-II does not implement a deferred-trap queue.

17. Reserved

18. Nonstandard IEEE 754-1985 results

Description: bit 22 of the FSR, FSR_nonstandard_fp (NS), when set to 1, causes the
FPU to produce implementation-defined results that may not correspond to
IEEE Standard 754-1985.

Implementation: if FSR.NS is set to one, the subnormal operand and results cases identified
for implementation dependency #3 above, are flushed to zero.

19. FPU version, FSR.ver

Description: bits 19:17 of the FSR, FSR.ver, identify one or more implementations of
the FPU architecture.

Implementation: on UltraSPARC-II the FSR.VER field is set to zero.

20-21. Reserved

94 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International STP1031LGA-UltraSPARC-II

22. FPU TEM, cexc, and aexc

Description: an implementation may choose to implement the TEM, cexc, and aexc
fields in hardware in either of two ways (see section 5.1.7.11 of SPARC-V9
Architecture Manual for details).

Implementation: UltraSPARC-II implements the TEM, cexc and aexc fields in conformance
to IEEE Std 754-1985.

23. Floating-point traps

Description: floating point traps may be precise or deferred. If deferred, a floating point
deferred-trap queue (FQ) must be present.

Implementation: UltraSPARC-II floating-point traps are precise and it does not implement

an FQ.

24. FPU deferred-trap queue (FQ)

Description: the presence, contents of, and operations on the floating-point deferred-trap
queue (FQ) are implementation-dependent.

Implementation: UltraSPARC-II does not implement an FQ.

25. RDPR of FQ with nonexistent FQ

Description: on implementations without a floating-point queue, an attempt to read the
FQ with an RDPR instruction shall cause either an illegal_instruction
exception or an fp_exception_other exception with FSR.ftt set to 4
(sequence_error).

Implementation: attempting to read the FQ with a RDPR instruction causes an
illegal_instruction exception.

26-28. Reserved

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 95

SPARC International

STP1031LGA-UltraSPARC-II

29. Address space identifier (ASI) definitions

Description:

Implementation:

the following ASI assignments are implementation-dependent: restricted
ASIs (all values hex) 00..03, 05..0B, OD..OF, 12..17, and 1A..7F; and unre-
stricted ASIs CO..FF.

UltraSPARC-II assigns the following implementation-dependent ASI val-
ues.

restricted ASI values (all values hex):

14, 15, 1C, 1D, 24, 2C, 45, 46, 47, 48, 49, 4A, 4B, 4C, 4D, 4E, 50, 51, 52, 53, 54, 55, 56, 57,

58,59, 5A, 5B, 5C, 5D, SE, SF, 66, 67, 6E, 6F, 70, 71, 76, 77, 78, 79, 7E,
TF

unrestricted ASI values (all values hex):

Co0, C1, C2,C3,(C4, C5, C8,C9, CA, CB, CC, CD, D0, D1, D2, D3, D8, D9, DA, DB, EO, E1,

FO, F1, F8, F9

30. ASI address decoding

Description:

Implementation:

an implementation may choose to decode only a subset of the 8-bit ASI
specifier; however, it shall decode at least enough of the ASI to distinguish
ASI_PRIMARY,

ASI_PRIMARY_LITTLE,

ASI_AS_IF_USER_PRIMARY,
ASI_AS_IF_USER_PRIMARY_LITTLE,

ASI_PRIMARY_NOFAULT,

ASI_PRIMARY_NOFAULT_LITTLE,

ASI_SECONDARY,

ASI_SECONDARY_LITTLE,

ASI_AS_IF_USER_SECONDARY,
ASI_AS_IF_USER_SECONDARY_LITTLE,
ASI_SECONDARY_NOFAULT, and
ASI_SECONDARY_NOFAULT_LITTLE.

If ASI_NUCLEUS and ASI_NUCLEUS_LITTLE are supported (impl.
dep. #124), they must be decoded also. Finally, an implementation must
always decode ASI bit<7> while PSTATE.PRIV = 0, so that an attempt by
nonprivileged software to access a restricted ASI will always cause a
privileged_action exception.

UltraSPARC-II decodes the entire 8-bit ASI specifier.

96 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International STP1031LGA-UltraSPARC-II

31. Catastrophic error exceptions

Description: the causes and effects of catastrophic error exceptions are implementation-
dependent. They may cause precise, deferred or disrupting traps.

Implementation: UltraSPARC-II catastrophic error exceptions cause deferred traps. The
PSTATE.RED bit is not automatically set in hardware for any catastrophic
error exceptions other than when trapping to MAXTL-1.

32. Deferred traps

Description: whether any deferred traps (and associated deferred-trap queues) are
present is implementation-dependent.

Implementation: UltraSPARC-II may encounter deferred traps during memory accesses.
Such errors lead to termination of the currently executing process or result
in a system reset if system state has been corrupted. Error logging informa-
tion allows software to determine if the system state has been corrupted.

33. Trap precision

Description: exceptions that occur as the result of program execution may be precise or
deferred, although it is recommended that such exceptions be precise.
Examples include mem_address_not_aligned and division_by_zero.

Implementation: all of the exceptions listed in the SPARC-V9 Architecture Manual section
7.3.5, item (2) are precise with the exception of instruction_access_error,
which is deferred.

34. Interrupt clearing

Description: how quickly a processor responds to an interrupt request and the method by
which an interrupt request is removed are implementation-dependent.

Implementation: The response time to interrupt is dependent the activity the processor is
executing at the time the interrupt is received (e.g., whether executing a
trap handler with PSTATE.IE=0, etc.). The interrupt request is removed by

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 97

SPARC International

STP1031LGA-UltraSPARC-II

clearing a bit in the implementation-dependent interrupt vector receive reg-
ister.

35. Implementation-dependent traps

Description: trap type (TT) values 060(hex)..07f(hex) are reserved for implementation-
dependent exceptions. The existence of implementation_dependent_n traps
and whether any that do exist are precise, deferred, or disrupting is imple-
mentation-dependent.

Implementation: the following implementation-dependent trap types are implemented on
UltraSPARC-II.

TT (hex) Exception Category
060 interrupt_vector disrupting
061 PA_watchpoint disrupting
062 VA_watchpoint disrupting
063 corrected_ECC_error disrupting
064..067 fast_instruction_access_MMU_miss precise
068..06B fast_data_access. MMU_miss precise
06C..06F fast_data_access_protection precise

36. Trap priorities

Description:

Implementation:

37. Reset trap

Description:

Implementation:

the priorities of the particular traps are relative and are implementation-
dependent, because a future version of the architecture may define new
traps, and implementations may define implementation-dependent traps
that establish new relative priorities.

UltraSPARC-II traps are prioritized relative to each other according to the
relative priorities in the SPARC-V9 Manual.

some of a processor’s behavior during a reset trap is implementation-
dependent.

UltraSPARC-II conforms to the required behavior during a reset trap.
Unspecified behavior is either defined during reset or specified as requiring

98 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International STP1031LGA-UltraSPARC-II

initialization.

38. Effect of reset trap on implementation-dependent registers

Description: implementation-dependent registers may or may not be affected by the var-
10us reset traps.

Implementation: Implementation-dependent registers on UltraSPARC-II either have defined

behavior during reset traps or are specified as requiring initialization.

39. Entering error_state on implementation-dependent errors

Description: the processor may enter error_state when an implementation-dependent
error condition occurs.

Implementation: UltraSPARC-II enters error_state only by trapping when TL = MAXTL.
Any type of trap may cause this.

40. Error_state processor state

Description: what occurs after error_state is entered is implementation-dependent, but it
is recommended that as much processor state as possible be preserved upon
entry to error_state.

Implementation: Entering error_state causes UltraSPARC-II to trigger a watchdog_reset
trap. As much state as possible is preserved during this action.

41. Reserved
42. FLUSH instruction
Description: if flush is not implemented in hardware, it causes an illegal_instruction

exception and its function is performed by system software. Whether
FLUSH traps is implementation-dependent.

Implementation: UltraSPARC-II implements FLUSH in hardware and it can cause a
data_access_exception if the page is mapped with side effects or no-fault-

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 99

SPARC International

STP1031LGA-UltraSPARC-II

only bits set, virtual address out of range, privilege violation, or a
data_access_MMU_miss trap.

43. Reserved
44. Data access FPU trap
Description: if a load floating-point instruction traps with any type of access error
exception, the contents of the destination floating-point register(s) either
remain unchanged or are undefined.
Implementation: access error exceptions on floating-point load instructions leave the desti-

45-46. Reserved

47. RDASR

Description:

Implementation:

48. WRASR

Description:

nation floating-point register contents unchanged.

RDASR instructions with rd in the range 16..31 are available for imple-
mentation-dependent uses (impl. dep #8). For an RDASR instruction with
rs1 in the range 16..31, the following are implementation-dependent: the
interpretation of bits 13:0 and 29:25 in the instruction, whether the instruc-
tion is privileged (impl. dep. #9), and whether it causes an
illegal_instruction trap.

the bit fields specified above are not used for UltraSPARC-II implementa-
tion-dependent RDASR instructions. Reads of unused rs1 values and reads
of write-only implementation-dependent ASRs cause illegal_instruction
traps.

WRASR instructions with rd in the range 16..31 are available for imple-
mentation-dependent uses (impl. dep. #8). For a WRASR instruction with
rd in the range 16..31, the following are implementation-dependent: the
interpretation of bits 18:0 in the instruction, the operation(s) performed (for
example, xor) to generate the value written to the ASR, whether the

100 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International STP1031LGA-UltraSPARC-II

instruction is privileged (impl. dep. #9), and whether it causes an
illegal_instruction trap.

Implementation: UltraSPARC-II does not interpret bits 18:0 of the WRASR instruction.
Using WRASR to the SET_SOFTINT and CLEAR_SOFTINT ASRs will

set and clear (respectively) bits in the SOFTINT_REG ASR. Writes of the
unused ASR values cause illegal_instruction traps.

49-54. Reserved

55. Floating-point underflow detection

Description: whether “tininess” (in IEEE 754 terms) is detected before or after rounding
is implementation-dependent. It is recommended that tininess be detected
before rounding.

Implementation: UltraSPARC-II detects underflow before rounding.

56-100. Reserved

101. Maximum trap level

Description: it is implementation-dependent how many additional levels, if any, past
level 4 are supported.

Implementation: UltraSPARC-II implements 5 trap levels.

102. Clean window trap

Description: an implementation may choose either to implement automatic “cleaning”
of register windows in hardware, or generate a clean_window trap, when
needed, for window(s) to be cleaned by software.

Implementation: UltraSPARC-II cleans register windows by generating a clean_window
trap for windows to be cleaned by software.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 101

SPARC International STP1031LGA-UltraSPARC-II

103. Prefetch instructions

Description: the following aspects of the PREFETCH and PREFETCHA instructions
are implementation-dependent: (1) whether they have an observable effect
in privileged code; (2) whether they can cause a data_access_MMU_miss
exception; (3) the attributes of the block of memory prefetched: its size
(minimum = 64 bytes) and its alignment (minimum = 64-byte alignment);
(4) whether each variant is implemented as a NOP, with its full semantics,
or with common-case prefetching semantics; (5) whether and how variants
16..31 are implemented.

Implementation: on UltraSPARC-II, PREFETCH and PREFETCHA have the same observ-
able effect as a NOP in both privileged and nonprivileged modes.

104. VER.manuf

Description: VER.manuf contains a 16-bit semiconductor manufacturer code. This field
is optional, and if not present reads as zero. VER.manuf may indicate the
original supplier of a second-sourced chip in cases involving mask-level
second-sourcing. It is intended that the contents of VER.manuf track the
JEDEC semiconductor manufacturer code as closely as possible. If the
manufacturer does not have a JEDEC semiconductor manufacturer code,
SPARC International will assign a VER.manuf value.

Implementation: UltraSPARC-II uses the manufacturer code 0017(hex)

105. TICK register

Description: the difference between the values read from the TICK register on two reads
should reflect the number of processor cycles executed between the reads.
If an accurate count cannot always be returned, an inaccuracy should be
small, bounded, and documented. An implementation my implement fewer
than 63 bits in TICK.counter; however, the counter as implemented must
be able to count for at least 10 years without overflowing. Any upper bits
not implemented must be read as zero.

Implementation: UltraSPARC-II implements 63 bits of TICK.counter and reflects the num-
ber of processor clocks between reads.

102 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International STP1031LGA-UltraSPARC-II

106. IMPDEPn instructions

Description: the IMPDEP1 and IMPDEP?2 instructions are completely implementation-
dependent. Implementation-dependent aspects include their operation, the
interpretation of bits 29:25 and 18:0 in their encodings, and which (if any)
exceptions they may cause.

Implementation: UltraSPARC-II implements implementation-dependent instructions using
the following field values:

op op3 opf

10 110110 010000000
10 110110 001010000
10 110110 001010001
10 110110 001010010
10 110110 001010011
10 110110 001010100
10 110110 001010101
10 110110 001010110
10 110110 001010111
10 110110 000111011
10 110110 000111010
10 110110 000111101
10 110110 001001101
10 110110 001001011
10 110110 000110001
10 110110 000110011
10 110110 000110101
10 110110 000110110
10 110110 000110111
10 110110 000111000
10 110110 000111001
10 110110 000011000
10 110110 000011010
10 110110 001001000
10 110110 001100000
10 110110 001100001
10 110110 001111110

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 103

SPARC International STP1031LGA-UltraSPARC-II

10 110110 001111111
10 110110 001110100
10 110110 001110101
10 110110 001111000
10 110110 001111001
10 110110 001101010
10 110110 001101011
10 110110 001100110
10 110110 001100111
10 110110 001111100
10 110110 001111101
10 110110 001100010
10 110110 001100011
10 110110 001110000
10 110110 001110001
10 110110 001101110
10 110110 001101111
10 110110 001101100
10 110110 001101101
10 110110 001110010
10 110110 001110011
10 110110 001111010
10 110110 001111011
10 110110 001110110
10 110110 001110111
10 110110 001101000
10 110110 001101001
10 110110 001100100
10 110110 001100101
10 110110 000101000
10 110110 000101100
10 110110 000100000
10 110110 000100100
10 110110 000100010
10 110110 000100110
10 110110 000101010
10 110110 000101110
10 110110 000000000
10 110110 000000010
10 110110 000000100
10 110110 000000110
10 110110 000001000
10 110110 000001010

104 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International

STP1031LGA-UltraSPARC-II

10

10
10
10

110110

110110
110110
110110

000111110

000010000
000010010
000010100

107. Unimplemented LDD trap

Description:

Implementation:

it is implementation-dependent whether LDD and LDDA are implemented
in hardware. If not, an attempt to execute either will cause an
unimplemented_LDD trap.

UltraSPARC-II implements LDD and LDDA 1in hardware.

108. Unimplemented STD trap

Description:

Implementation:

it is implementation-dependent whether STD and STDA are implemented
in hardware. If not, an attempt to execute either will cause an
unimplemented_STD trap.

UltraSPARC-II implements STD and STDA in hardware.

109. LDDF_mem_address_not_aligned

Description:

Implementation:

LDDF and LDDFA require only word alignment. However, if the effective
address is word-aligned but not doubleword-aligned, either may cause an
LDDF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the LDDF (or LDDFA) instruction and return.

UltraSPARC-II generates an LDDF_mem_address_not_aligned exception
if an LDDF or LDDFA effective address is word-aligned but not double-
word-aligned.

110. STDF_mem_address_not_aligned

Description:

STDF and STDFA require only word alignment. However, if the effective

2/9/99

Implementation Characteristics of Current SPARC-V9-Based Products 105

SPARC International

STP1031LGA-UltraSPARC-II

Implementation:

address is word-aligned but not doubleword-aligned, either may cause an
STDF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the STDF (or STDFA) instruction and return.

UltraSPARC-II generates an STDF_mem_address_not_aligned exception
if an STDF or STDFA effective address is word-aligned but not double-
word-aligned.

111. LDQF_mem_address_not_aligned

Description:

Implementation:

LDQF and LDQFA require only word alignment. However, if the effective
address is word-aligned but not quadword-aligned, either may cause an
LDQF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the LDQF (or LDQFA) instruction and return.

UltraSPARC-II does not implement the LDQF and LDQFA in hardware,
they must be emulated in software using other instructions.

112. STQF_mem_address_not_aligned

Description:

Implementation:

STQF and STQFA require only word alignment. However, if the effective
address is word-aligned but not quadword-aligned, either may cause an
STQF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the STQF (or STQFA) instruction and return.

UltraSPARC-II does not implement the STQF and STQFA in hardware,
they must be emulated in software using other instructions.

113. Implemented memory models

Description:

Implementation:

whether the Partial Store Order (PSO) or Relaxed Memory Order (RMO)
models are supported is implementation-dependent.

UltraSPARC-II supports the Partial Store Order and Relaxed Memory
Order models.

114. RED_state trap vector address (RSTVaddr)

106 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International STP1031LGA-UltraSPARC-II

Description: the RED_state trap vector is located at an implementation-dependent
address referred to as RSTVaddr.

Implementation: RSTVaddr = 1{ff0000000 (hex)

115. RED_state processor state

Description: what occurs after the processor enters RED_state is implementation-depen-
dent.

Implementation: On UltraSPARC-II some register contents are forced to specified values
and some hardware functions are disabled upon entering RED_state to
avoid as much as possible any additional traps which would cause the pro-
cessor to enter error_state.

116. SIR_enable control flag

Description: the location of and the means of accessing the SIR_enable control flag are
implementation-dependent. In some implementations, it may be perma-
nently zero.

Implementation: the SIR_enable in UltraSPARC-II is permanently zero.

117. MMU disabled prefetch behavior

Description: whether Prefetch and Non-faulting Load always succeed when the MMU is
disabled is implementation-dependent.

Implementation: prefetch instructions behave as NOP instructions. Non-faulting Load
instructions may or may not succeed when the MMU is disabled depending
on the state of the an implementation-dependent register determining
whether the cache is enabled.

118. Identifying 1/0 locations

Description: the manner in which I/O locations are identified is implementation-depen-
dent.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 107

SPARC International STP1031LGA-UltraSPARC-II

Implementation: For systems using UltraSPARC-II, I/O register locations are memory
mapped to non-cacheable address space. The location, access, contents,
and side effects of the I/O registers are dependent on the system implemen-
tation, not the processor implementation

119. Unimplemented values for PSTATE.MM

Description: the effect of writing an unimplemented memory-mode designation into
PSTATE.MM is implementation-dependent

Implementation: UltraSPARC-II implements all three memory modes specified in the

SPARC-V9 manual. If the reserved PSTATE.MM value (3) were written,
UltraSPARC-II would interpret it as RMO.

120. Coherence and atomicity of memory operations

Description: the coherence and atomicity of memory operations between processors and
I/O DMA memory accesses are implementation-dependent.

Implementation: This is dependent on the system implementation rather than the processor

implementation for systems that use UltraSPARC-II

121. Implementation-dependent memory model

Description: an implementation may choose to identify certain addresses and use an
implementation-dependent memory model for references to them.

Implementation: UltraSPARC-II does not use any implementation-dependent memory mod-

els.
122. FLUSH latency
Description: latency between the execution of FLUSH on one processor and the point at

which the modified instructions have replaced out-dated instructions in a
multiprocessor is implementation-dependent.

Implementation: This is dependent on the system implementation rather than the processor

108 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International

STP1031LGA-UltraSPARC-II

implementation for systems that use UltraSPARC-II

123. Input/output (I/0) semantics

Description:

Implementation:

the semantic effect of accessing input/output (I/O) registers is implementa-
tion-dependent.

For systems using UltraSPARC-II, I/O register locations are memory
mapped to non-cacheable address space. The location, access, contents,
and side effects of the I/O registers are dependent on the system implemen-
tation, not the processor implementation

124. Implicit ASI when TL >0

Description: when TL > 0, the implicit ASI for instruction fetches, loads, and stores is
implementation-dependent. See SPARC-V9 Architecture Manual section
F.4.4, “Contexts,” for more information.

Implementation: the implicit ASI for instruction fetches, loads, and stores when TL > 0 is
ASI_PRIMARY

125. Address masking

Description: when PSTATE.AM = 1, the value of the high-order 32-bits of the PC trans-
mitted to the specified destination registers(s) by CALL, JMPL, RDPC,
and on a trap is implementation-dependent.

Implementation: when PSTATE.AM = 1, the value of the high-order 32-bits of the PC trans-

mitted to the specified destination register(s) by CALL, JMPL, RDPC, and
on a trap is zero.

126. TSTATE bits 19:18

Description:

If PSTATE bit 11 (10) is implemented, TSTATE bit 19 (18) shall be imple-
mented and contain the state of PSTATE bit 11 (10) from the previous trap
level. If PSTATE bit 11 (10) is not implemented, TSTATE bit 19 (18) shall
read as zero. Software intended to run on multiple implementations should
only write these bits to values previously read from PSTATE, or to zeroes.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 109

SPARC International STP1031LGA-UltraSPARC-II

Implementation: UltraSPARC-II implements TSTATE bits 19:18 to hold the state of
PSTATE bits 11:10 for each previous trap level.

127. PSTATE bits 11:10

Description: The presence and semantics of PSTATE.PID1 and PSTATE.PIDO are implemen-
tation-dependent. The presence of TSTATE bits 19 and 18 is implementa-
tion-dependent. If PSTATE bit 11 (10) is implemented, TSTATE bit 19 (18)
shall be implemented and contain the state of PSTATE bit 11 (10) from the
previous trap level. If PSTATE bit 11 (10) is not implemented, TSTATE bit
19 (18) shall read as zero. Software intended to run on multiple implemen-
tations should only write these bits to values previously read from
PSTATE, or to zeroes.

Implementation: PSTATE.PID1 and PSTATE.PIDO are implemented on UltraSPARC-II as
selects for two additional sets of eight trap global registers. The corre-
sponding bits in the TSTATE register are implemented to store these bits
for the previous trap level.

110 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Chapter 5: SUN Implementation of V9 Architecture

UltraSPARC - lli

SPARC INTERNATIONAL

SPARC International UltraSPARC-IIi

CHAPTER 5: SUN ULTRASPARC IIi

0. Introduction
This document describes the implementation on the UltraSPARC-IIi processor developed by Sun

Microelectronics, a business unit of Sun Microsystems, Inc., of the implementation dependen-
cies as put forth in “The SPARC Architecture Manual - Version 9” by SPARC International. The

items listed below correspond to the implementation dependencies as listed in the text and by
number in Appendix C of the manual along with the description of the implementation depen-
dency from the manual. The “Implementation” section for each item describes the implementa-
tion on the UltraSPARC-IIi processor.

1. Software emulation of instructions

Description: whether an instruction is implemented directly by hardware, simulated by
software, or emulated by firmware is implementation-dependent.
Implementation: all instructions are implemented in hardware except the following, which
must be simulated by software.
POPC Population count
LDQF Load quad-precision FP register
LDQFA Load quad-precision FP register from alternate space
STQF Store quad-precision FP register
STQFA Store quad-precision FP register to alternate space
F{s,d}TOq Convert single-/double- to quad-precision FP
F{1,x}TOq Convert 32-/64-bit integer to quad-precision FP
FqTO{s,d} Convert quad- to single-/double-precision FP
FqTO{i,x} = Convert quad-precision FP to 32-/64-bit integer
FADDq Quad-precision FP add
FSUBq Quad-precision FP subtraction
FCMP{E}q Quad-precision FP compares
FMOVqcc Move quad-precision FP register on condition
FMOVqr Move quad-precision FP register on integer register condition
FMOVq Move quad-precision FP register
FABSq Quad-precision FP absolute value
FNEGq Quad-precision FP negate
FdMULq Double- to quad-precision FP multiply
FMULq Quad-precision FP multiply
FDIVq Quad-precision FP divide
FSQRTq Quad-precision FP square root
DONE for fcn = 2..31 executed in nonprivileged mode
2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 113

SPARC International UltraSPARC-IIi

RETRY for fcn = 2..31 executed in nonprivileged mode
SAVED for fcn = 2..31 executed in nonprivileged mode
RESTORED for fcn = 2..31 executed in nonprivileged mode

The DONE/RETRY/SAVED/RESTORED instructions with fcn = 2..31 executed in nonprivileged
mode will take a privileged_opcode trap rather than an illegal_instruction trap. The opcode can be
recognized by software to emulate the proper illegal_instruction behavior. This can be done with
SPARC code in the privileged_opcode trap handler that does the following

PRIVILEGED_OPCODE_HANDLER:

rdpr $tpc, %gl

1d [39l], %92

setx Oxclf80000, %93, %g4

and %94, %92, %g4 ! $g4 has op/op3 of trapping instr.

setx 0x3e000000, %93, %g6b

and %g6, %92, %96

srl %96, 25, %g6 ! %g6 has fcn of trapping instr.
check_illegal_saved_restored:

setx 0x81880000, %93, %gb

subcc %94, %95, %g0 ! saved/restored opcode?

bne check_illegal_done_retry

subcc %96, 2, %90 ! illegal fcn value?

bge ILLEGAL_HANDLER

nop
check_illegal_done_retry:

setx 0x81£00000, %93, %g5

subcc %94, %95, %g0 ! done/retry opcode?

bne not_illegal

subcc %96, 2, %90 ! illegal fcn value?

bge ILLEGAL_HANDLER

nop

not_illegal:
<handle privileged_opcode exception as desired here>

2. Number of IU registers

Description: an implementation of the IU may contain from 64 to 258 general purpose
64 bit r registers. This corresponds to a grouping of the registers into two
sets of eight global r registers, plus a circular stack of from three to 32 sets
of 16 registers each, known as register windows. Since the number of regis-
ter windows present (NWINDOWS) is implementation-dependent, the
total number of registers is also implementation-dependent.

Implementation: UltraSPARC-IIi implements eight register windows plus four sets of eight
global r registers, for a total of 160 64 bit r registers.

114 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International

UltraSPARC-IIi

3. Incorrect IEEE Std 754-1985 results

Description:

Implementation:

an implementation may indicate that a floating-point instruction did not
produce a correct ANSI/IEEE Standard 754-1985 result by generating a
special floating-point unfinished or unimplemented exception. In this case,
privileged mode software shall emulate any functionality not present in the
hardware.

the quad-precision floating-point instructions listed in implementation
dependency #1 above all generate floating-point unimplemented excep-

tions.

UltraSPARC-IIi generates floating-point unimplemented exceptions for the
following cases of subnormal operands or results.

Subnormal Operand Unimplemented Exception Cases:

F{s,d}TO{i,x} one subnormal operand

F{s,d}TO{i,x} one subnormal operand

FSQRT{s,d} one subnormal operand

FADD({s,d} one or two subnormal operands
FMUL({s,d} -25 < Er <255 (SP) one subnormal operand

-54 < Er <2047 (DP) one subnormal operand
two subnormal operands

FDIV{s,d} -25 < Er <255 (SP) one subnormal operand
-54 < Er <2047 (DP) one subnormal operand
two subnormal operands

Subnormal Result Unimplemented Exception Cases:

FdTOs -25<Er<1 (SP)
-54 <Er<1 (DP)

FADD{s,d} -25<Er<1 (SP)
-54 <Er<1 (DP)

FMUL({s,d} -25<Er<1 (SP)
-54 <Er<1 (DP)

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 115

SPARC International UltraSPARC-IIi

FDIV {s,d} -25<Er<=1(SP)
-54 <Er<=1 (DP)

Prediction of overflow, underflow and inexact traps for divide and square
roots is used. For divide, pessimistic prediction occurs when underflow/
overflow cannot be determined from examining the source operand expo-
nents. For divide and square root, pessimistic prediction of inexact occurs
unless one of the operands is a zero, NAN or infinity. When pessimistic
prediction occurs and the exception is enabled, a floating-point unfinished
exception is generated.

4-5. Reserved

6. I/0 registers privileged status

Description: whether 1/0 registers can be accessed by nonprivileged code is implemen-
tation-dependent.

Implementation: For systems using UltraSPARC-IIi, I/O register locations are memory
mapped to non-cacheable address space. The location, access, contents,

and side effects of the I/O registers are dependent on the system implemen-
tation, not the processor implementation.

7. I/0 register definitions

Description: the contents and addresses of I/O registers are implementation-dependent
Implementation: For systems using UltraSPARC-IIi, I/O register locations are memory
mapped to non-cacheable address space. The location, access, contents,

and side effects of the I/O registers are dependent on the system implemen-
tation, not the processor implementation

8. RDASR/WRASR target registers

Description: software can use read/write ancillary state register instructions to read/
write implementation-dependent processor registers (ASRs 16-31).

Implementation: UltraSPARC-IIi implements the following implementation-dependent

116 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International UltraSPARC-IIi

ASRs.

rd name access
16 PERF_CONTROL_REG RW
17 PERF_COUNTER RW
18 DISPATCH_CONTROL_REG RW
19 GRAPHICS_STATUS_REG RW
20 SET_SOFTINT W

21 CLEAR_SOFTINT W

22 SOFTINT_REG RW
23 TICK_CMPR_REG RW

9. RDASR/WRASR privileged status

Description: whether each of the implementation-dependent read/write ancillary state
register instructions (for ASRs 16-31) is privileged is implementation
dependent.

Implementation: The privileged status of UltraSPARC-IIi’s implementation-dependent reg-
isters is as follows:

rd name access
16 PERF_CONTROL_REG PRIVILEGED
17 PERF_COUNTER PRIVILEGED (if
PERF_CONTROL_REG. PRIV = 1)
18 DISPATCH_CONTROL_REG PRIVILEGED
19 GRAPHICS_STATUS_REG NONPRIVILEGED
20 SET_SOFTINT PRIVILEGED
21 CLEAR_SOFTINT PRIVILEGED
22 SOFTINT_REG PRIVILEGED
23 TICK_CMPR_REG PRIVILEGED
10-12. Reserved
13. VER.impl
Description: VER.impl uniquely identifies an implementation or class of software-com-

patible implementations of the architecture. Values FFFO(hex)..FFFF(hex)

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 117

SPARC International UltraSPARC-IIi

are reserved and are not available for assignment.

Implementation: UltraSPARC-IIi uses the implementation code 0012 (hex) [0x12]

14-15. Reserved

16. IU deferred-trap queue

Description: the existence, contents, and operation of an IU deferred-trap queue are
implementation-dependent; it is not visible to user application programs
under normal operating conditions.

Implementation: UltraSPARC-IIi does not implement a deferred-trap queue.

17. Reserved

18. Nonstandard IEEE 754-1985 results

Description: bit 22 of the FSR, FSR_nonstandard_fp (NS), when set to 1, causes the
FPU to produce implementation-defined results that may not correspond to
IEEE Standard 754-1985.

Implementation: if FSR.NS is set to one, the subnormal operand and results cases identified
for implementation dependency #3 above, are flushed to zero.

19. FPU version, FSR.ver

Description: bits 19:17 of the FSR, FSR.ver, identify one or more implementations of
the FPU architecture.

Implementation: on UltraSPARC-IIi the FSR.VER field is set to zero.

20-21. Reserved

118 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International

UltraSPARC-IIi

22. FPU TEM, cexc, and aexc

Description:

Implementation:

an implementation may choose to implement the TEM, cexc, and aexc
fields in hardware in either of two ways (see section 5.1.7.11 of SPARC-V9
Architecture Manual for details).

UltraSPARC-IIi implements the TEM, cexc and aexc fields in conformance
to IEEE Std 754-1985.

23. Floating-point traps

Description:

Implementation:

floating point traps may be precise or deferred. If deferred, a floating point
deferred-trap queue (FQ) must be present.

UltraSPARC-II1 floating-point traps are precise and it does not implement
an FQ.

24. FPU deferred-trap queue (FQ)

Description:

Implementation:

the presence, contents of, and operations on the floating-point deferred-trap
queue (FQ) are implementation-dependent.

UltraSPARC-IIi does not implement an FQ.

25. RDPR of FQ with nonexistent FQ

Description:

Implementation:

26-28. Reserved

on implementations without a floating-point queue, an attempt to read the
FQ with an RDPR instruction shall cause either an illegal_instruction
exception or an fp_exception_other exception with FSR.ftt set to 4
(sequence_error).

attempting to read the FQ with a RDPR instruction causes an
illegal_instruction exception.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 119

SPARC International

UltraSPARC-IIi

29. Address space identifier (ASI) definitions

Description:

Implementation:

the following ASI assignments are implementation-dependent: restricted
ASIs (all values hex) 00..03, 05..0B, OD..OF, 12..17, and 1A..7F; and unre-
stricted ASIs CO..FF.

UltraSPARC-II1 assigns the following implementation-dependent ASI val-
ues.

restricted ASI values (all values hex):

14, 15, 1C, 1D, 24, 2C, 45, 46, 47, 48, 49, 4A, 4B, 4C, 4D, 4E, 50, 51, 52,
53,54, 55, 56, 57, 58, 59, 5A, 5B, 5C, 5D, 5E, 5F, 66, 67, 6E, 6F, 70, 71,
76,77,78,79, 7TE, TF

unrestricted ASI values (all values hex):

Co, C1, C2,C3,C4, C5, C8, C9, CA, CB, CC, CD, DO, D1, D2, D3, D8,
D9, DA, DB, EO, El, FO, F1, F8, F9

30. ASI address decoding

Description:

Implementation:

an implementation may choose to decode only a subset of the 8-bit ASI
specifier; however, it shall decode at least enough of the ASI to distinguish
ASI_PRIMARY, ASI_PRIMARY_LITTLE,
ASI_AS_IF_USER_PRIMARY,ASI_AS_IF_USER_PRIMARY_LITTLE,
ASI_PRIMARY_NOFAULT, ASI_PRIMARY_NOFAULT_LITTLE,
ASI_SECONDARY, ASI_SECONDARY_LITTLE,
ASI_AS_IF_USER_SECONDARY,
ASI_AS_IF_USER_SECONDARY_LITTLE,
ASI_SECONDARY_NOFAULT, and
ASI_SECONDARY_NOFAULT_LITTLE. If ASI_NUCLEUS and
ASI_NUCLEUS_LITTLE are supported (impl. dep. #124), they must be
decoded also. Finally, an implementation must always decode ASI bit<7>
while PSTATE.PRIV = 0, so that an attempt by nonprivileged software to
access a restricted ASI will always cause a privileged_action exception.

UltraSPARC-IIi decodes the entire 8-bit ASI specifier.

31. Catastrophic error exceptions

120

Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International

UltraSPARC-IIi

Description: the causes and effects of catastrophic error exceptions are implementation-
dependent. They may cause precise, deferred or disrupting traps.

Implementation: UltraSPARC-IIi catastrophic error exceptions cause deferred traps. The
PSTATE.RED bit is not automatically set in hardware for any catastrophic
error exceptions other than when trapping to MAXTL-1.

32. Deferred traps

Description: whether any deferred traps (and associated deferred-trap queues) are
present is implementation-dependent.

Implementation: UltraSPARC-IIi may encounter deferred traps during memory accesses.

Such errors lead to termination of the currently executing process or result
in a system reset if system state has been corrupted. Error logging informa-
tion allows software to determine if the system state has been corrupted.

33. Trap precision

Description:

Implementation:

exceptions that occur as the result of program execution may be precise or
deferred, although it is recommended that such exceptions be precise.
Examples include mem_address_not_aligned and division_by_zero.

all of the exceptions listed in the SPARC-V9 Architecture Manual section
7.3.5, item (2) are precise with the exception of instruction_access_error,
which is deferred.

34. Interrupt clearing

Description:

Implementation:

how quickly a processor responds to an interrupt request and the method by
which an interrupt request is removed are implementation-dependent.

The response time to interrupt is dependent the activity the processor is
executing at the time the interrupt is received (e.g., whether executing a
trap handler with PSTATE.IE=0, etc.). The interrupt request is removed by
clearing a bit in the implementation-dependent interrupt vector receive reg-
ister.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 121

SPARC International

UltraSPARC-IIi

35. Implementation-dependent traps

Description:

Implementation:

trap type (TT) values 060(hex)..07f(hex) are reserved for implementation-
dependent exceptions. The existence of implementation_dependent_n traps
and whether any that do exist are precise, deferred, or disrupting is imple-
mentation-dependent.

the following implementation-dependent trap types are implemented on
UltraSPARC-IIi.

TT (hex) Exception Category
060 interrupt_vector disrupting
061 PA_watchpoint disrupting
062 VA _watchpoint disrupting
063 corrected_ ECC_error disrupting
064..067 fast_instruction_access_MMU_miss precise
068..06B fast_data_access. MMU_miss precise
06C..06F fast_data_access_protection precise

36. Trap priorities

Description:

Implementation:

37. Reset trap

Description:

Implementation:

the priorities of the particular traps are relative and are implementation-
dependent, because a future version of the architecture may define new
traps, and implementations may define implementation-dependent traps
that establish new relative priorities.

UltraSPARC-IIi traps are prioritized relative to each other according to the
relative priorities in the SPARC-V9 Manual.

some of a processor’s behavior during a reset trap is implementation-
dependent.

UltraSPARC-IIi conforms to the required behavior during a reset trap.
Unspecified behavior is either defined during reset or specified as requiring
initialization.

122 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International UltraSPARC-IIi

38. Effect of reset trap on implementation-dependent registers

Description: implementation-dependent registers may or may not be affected by the var-
10us reset traps.

Implementation: Implementation-dependent registers on UltraSPARC-I1i either have defined

behavior during reset traps or are specified as requiring initialization.

39. Entering error_state on implementation-dependent errors

Description: the processor may enter error_state when an implementation-dependent
error condition occurs.

Implementation: UltraSPARC-I1i enters error_state only by trapping when TL = MAXTL.
Any type of trap may cause this.

40. Error_state processor state

Description: what occurs after error_state is entered is implementation-dependent, but it
is recommended that as much processor state as possible be preserved upon
entry to error_state.

Implementation: Entering error_state causes UltraSPARC-IIi to trigger a watchdog_reset
trap. As much state as possible is preserved during this action.

41. Reserved
42. FLUSH instruction
Description: if flush is not implemented in hardware, it causes an illegal_instruction

exception and its function is performed by system software. Whether
FLUSH traps is implementation-dependent.

Implementation: UltraSPARC-IIi implements FLUSH in hardware and it can cause a
data_access_exception if the page is mapped with side effects or no-fault-
only bits set, virtual address out of range, privilege violation, or a
data_access_MMU_miss trap.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 123

SPARC International UltraSPARC-IIi

43. Reserved
44. Data access FPU trap
Description: if a load floating-point instruction traps with any type of access error

exception, the contents of the destination floating-point register(s) either
remain unchanged or are undefined.

Implementation: access error exceptions on floating-point load instructions leave the desti-
nation floating-point register contents unchanged.

45-46. Reserved

47. RDASR

Description: RDASR instructions with rd in the range 16..31 are available for imple-
mentation-dependent uses (impl. dep #8). For an RDASR instruction with
rs1 in the range 16..31, the following are implementation-dependent: the
interpretation of bits 13:0 and 29:25 in the instruction, whether the instruc-
tion is privileged (impl. dep. #9), and whether it causes an
illegal_instruction trap.

Implementation: the bit fields specified above are not used for UltraSPARC-IIi implementa-
tion-dependent RDASR instructions. Reads of unused rs1 values and reads
of write-only implementation-dependent ASRs cause illegal_instruction
traps.

48. WRASR

Description: WRASR instructions with rd in the range 16..31 are available for imple-
mentation-dependent uses (impl. dep. #8). For a WRASR instruction with
rd in the range 16..31, the following are implementation-dependent: the
interpretation of bits 18:0 in the instruction, the operation(s) performed (for
example, xor) to generate the value written to the ASR, whether the
instruction is privileged (impl. dep. #9), and whether it causes an
illegal_instruction trap.

Implementation: UltraSPARC-IIi does not interpret bits 18:0 of the WRASR instruction.

124 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International UltraSPARC-IIi

Using WRASR to the SET_SOFTINT and CLEAR_SOFTINT ASRs will
set and clear (respectively) bits in the SOFTINT_REG ASR. Writes of the
unused ASR values cause illegal_instruction traps.

49-54. Reserved

55. Floating-point underflow detection

Description: whether “tininess” (in IEEE 754 terms) is detected before or after rounding
is implementation-dependent. It is recommended that tininess be detected
before rounding.

Implementation: UltraSPARC-IIi detects underflow before rounding.

56-100. Reserved

101. Maximum trap level

Description: it is implementation-dependent how many additional levels, if any, past
level 4 are supported.

Implementation: UltraSPARC-IIi implements 5 trap levels.

102. Clean window trap

Description: an implementation may choose either to implement automatic “cleaning”
of register windows in hardware, or generate a clean_window trap, when
needed, for window(s) to be cleaned by software.

Implementation: UltraSPARC-IIi cleans register windows by generating a clean_window

trap for windows to be cleaned by software.

103. Prefetch instructions

Description: the following aspects of the PREFETCH and PREFETCHA instructions

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 125

SPARC International

UltraSPARC-IIi

are implementation-dependent: (1) whether they have an observable effect
in privileged code; (2) whether they can cause a data_access_ MMU_miss
exception; (3) the attributes of the block of memory prefetched: its size
(minimum = 64 bytes) and its alignment (minimum = 64-byte alignment);
(4) whether each variant is implemented as a NOP, with its full semantics,
or with common-case prefetching semantics; (5) whether and how variants
16..31 are implemented.

Implementation: on UltraSPARC-IIi, PREFETCH and PREFETCHA instuctions with the
fcn=0..4 have the following meanings:
FCN Function Action
0 Prefetch for several reads generate read_to_share request if desired
line is not present in E-cache
1 Prefetch for one read generate read_to_share request if desired
line is not present in E-cache
2 Prefetch page generate read_to_share request if desired
line is not present in E-cache
FCN Function Action
3 Prefetch for several writes generate read_to_own request if desired line
is not present in E-cache in either E or M
state
4 Prefetch for one write generate read_to_own request if desired line
is not present in E-cache in either E or M
state
104. VER.manuf
Description: VER.manuf contains a 16-bit semiconductor manufacturer code. This field
is optional, and if not present reads as zero. VER.manuf may indicate the
original supplier of a second-sourced chip in cases involving mask-level
second-sourcing. It is intended that the contents of VER.manuf track the
JEDEC semiconductor manufacturer code as closely as possible. If the
manufacturer does not have a JEDEC semiconductor manufacturer code,
SPARC International will assign a VER.manuf value.
Implementation: UltraSPARC-IIi uses the manufacturer code 0017(hex)
126 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International UltraSPARC-IIi

105. TICK register

Description: the difference between the values read from the TICK register on two reads
should reflect the number of processor cycles executed between the reads.
If an accurate count cannot always be returned, an inaccuracy should be
small, bounded, and documented. An implementation my implement fewer
than 63 bits in TICK.counter; however, the counter as implemented must
be able to count for at least 10 years without overflowing. Any upper bits
not implemented must be read as zero.

Implementation: UltraSPARC-IIi implements 63 bits of TICK.counter and reflects the num-
ber of processor clocks between reads.

106. IMPDEPn instructions

Description: the IMPDEP1 and IMPDEP?2 instructions are completely implementation-
dependent. Implementation-dependent aspects include their operation, the
interpretation of bits 29:25 and 18:0 in their encodings, and which (if any)
exceptions they may cause.

Implementation: UltraSPARC-IIi implements implementation-dependent instructions using
the following field values:

op op3 opf

10 110110 010000000
10 110110 001010000
10 110110 001010001
10 110110 001010010
10 110110 001010011
10 110110 001010100
10 110110 001010101
10 110110 001010110
10 110110 001010111
10 110110 000111011
10 110110 000111010
10 110110 000111101
10 110110 001001101
10 110110 001001011
10 110110 000110001

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 127

SPARC International

UltraSPARC-IIi

10
10
10
10
10
10

10
10
10

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

10

110110
110110
110110
110110
110110
110110

110110
110110
110110

110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110
110110

110110

000110011
000110101
000110110
000110111
000111000
000111001

000011000
000011010
001001000

001100000
001100001
001111110
001111111
001110100
001110101
001111000
001111001
001101010
001101011
001100110
001100111
001111100
001111101
001100010
001100011
001110000
001110001
001101110
001101111
001101100
001101101
001110010
001110011
001111010
001111011
001110110
001110111
001101000
001101001
001100100
001100101

000101000

128

Implementation Characteristics of Current SPARC-V9-Based Products

2/9/99

SPARC International UltraSPARC-IIi

10 110110 000101100
10 110110 000100000
10 110110 000100100
10 110110 000100010
10 110110 000100110
10 110110 000101010
10 110110 000101110
10 110110 000000000
10 110110 000000010
10 110110 000000100
10 110110 000000110
10 110110 000001000
10 110110 000001010
10 110110 000111110
10 110110 000010000
10 110110 000010010
10 110110 000010100

107. Unimplemented LDD trap

Description: it is implementation-dependent whether LDD and LDDA are implemented
in hardware. If not, an attempt to execute either will cause an
unimplemented_LDD trap.

Implementation: UltraSPARC-IIi implements LDD and LDDA in hardware.

108. Unimplemented STD trap

Description: it is implementation-dependent whether STD and STDA are implemented
in hardware. If not, an attempt to execute either will cause an
unimplemented_STD trap.

Implementation: UltraSPARC-IIi implements STD and STDA in hardware.

109. LDDF_mem_address_not_aligned

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 129

SPARC International

UltraSPARC-IIi

Description:

Implementation:

LDDF and LDDFA require only word alignment. However, if the effective
address is word-aligned but not doubleword-aligned, either may cause an
LDDF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the LDDF (or LDDFA) instruction and return.

UltraSPARC-IIi generates an LDDF_mem_address_not_aligned exception
if an LDDF or LDDFA effective address is word-aligned but not double-
word-aligned.

110. STDF_mem_address_not_aligned

Description:

Implementation:

STDF and STDFA require only word alignment. However, if the effective
address is word-aligned but not doubleword-aligned, either may cause an
STDF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the STDF (or STDFA) instruction and return.

UltraSPARC-IIi generates an STDF_mem_address_not_aligned exception
if an STDF or STDFA effective address is word-aligned but not double-
word-aligned.

111. LDQF_mem_address_not_aligned

Description:

Implementation:

LDQF and LDQFA require only word alignment. However, if the effective
address is word-aligned but not quadword-aligned, either may cause an
LDQF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the LDQF (or LDQFA) instruction and return.

UltraSPARC-IIi does not implement the LDQF and LDQFA in hardware,
they must be emulated in software using other instructions.

112. STQF_mem_address_not_aligned

Description:

Implementation:

STQF and STQFA require only word alignment. However, if the effective
address is word-aligned but not quadword-aligned, either may cause an
STQF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the STQF (or STQFA) instruction and return.

UltraSPARC-IIi does not implement the STQF and STQFA in hardware,
they must be emulated in software using other instructions.

130 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International UltraSPARC-IIi

113. Implemented memory models

Description: whether the Partial Store Order (PSO) or Relaxed Memory Order (RMO)
models are supported is implementation-dependent.

Implementation: UltraSPARC-IIi supports the Partial Store Order and Relaxed Memory

Order models.

114. RED_state trap vector address (RSTVaddr)

Description: the RED_state trap vector is located at an implementation-dependent
address referred to as RSTVaddr.

Implementation: RSTVaddr = 1{ff0000000 (hex)

115. RED_state processor state

Description: what occurs after the processor enters RED_state is implementation-depen-
dent.

Implementation: On UltraSPARC-IIi some register contents are forced to specified values
and some hardware functions are disabled upon entering RED_state to

avoid as much as possible any additional traps which would cause the pro-
cessor to enter error_state.

116. SIR_enable control flag

Description: the location of and the means of accessing the SIR_enable control flag are
implementation-dependent. In some implementations, it may be perma-
nently zero.

Implementation: the SIR_enable in UltraSPARC-IIi is permanently zero.

117. MMU disabled prefetch behavior

Description: whether Prefetch and Non-faulting Load always succeed when the MMU is
disabled is implementation-dependent.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 131

SPARC International UltraSPARC-IIi

Implementation: When the data MMU is disabled, accesses are assumed to be non-cache-
able and with side-effect. Non-faulting loads encountered with the MMU
is disabled cause a data_access_exception trap with SFSR.FT-2 (specula-
tive load to page with side-effect attribute). Prefetch behaves as a NOP
when the MMU is disabled.

118. Identifying 1/0 locations

Description: the manner in which I/O locations are identified is implementation-depen-
dent.

Implementation: For systems using UltraSPARC-IIi, I/O register locations are memory
mapped to non-cacheable address space. In generatl, the location, access,
contents, and side effects of the I/O registers are dependent on the system
implementation, not the processor implementation. PCI bus I/O Space is
hard-wired to locations PA[40:0] = 1FE02000000(hex) through PA[40:0] =
1FE0201FFFF(hex).

119. Unimplemented values for PSTATE.MM

Description: the effect of writing an unimplemented memory-mode designation into
PSTATE.MM is implementation-dependent

Implementation: UltraSPARC-IIi implements all three memory modes specified in the

SPARC-V9 manual. If the reserved PSTATE.MM value (3) were written,
UltraSPARC-IIi would interpret it as RMO.

120. Coherence and atomicity of memory operations

Description: the coherence and atomicity of memory operations between processors and
I/O DMA memory accesses are implementation-dependent.

Implementation: This is dependent on the system implementation rather than the processor
implementation for systems that use UltraSPARC-IIi

121. Implementation-dependent memory model

Description: an implementation may choose to identify certain addresses and use an

132 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International UltraSPARC-IIi

implementation-dependent memory model for references to them.

Implementation: UltraSPARC-IIi does not use any implementation-dependent memory

models.
122. FLUSH latency
Description: latency between the execution of FLUSH on one processor and the point at

which the modified instructions have replaced out-dated instructions in a
multiprocessor is implementation-dependent.

Implementation: This is dependent on the system implementation rather than the processor

implementation for systems that use UltraSPARC-1Ii

123. Input/output (I/0) semantics

Description: the semantic effect of accessing input/output (I/O) registers is implementa-
tion-dependent.

Implementation: For systems using UltraSPARC-1Ii, the location, access, contents, and side
effects of the I/O registers are dependent on the system implementation,
not the processor implementation

124. Implicit ASI when TL >0

Description: when TL > 0, the implicit ASI for instruction fetches, loads, and stores is
implementation-dependent. See SPARC-V9 Architecture Manual section
F.4.4, “Contexts,” for more information.

Implementation: the implicit ASI for instruction fetches, loads, and stores when TL > 0 is

ASI_PRIMARY

125. Address masking

Description: when PSTATE.AM = 1, the value of the high-order 32-bits of the PC trans-
mitted to the specified destination registers(s) by CALL, JMPL, RDPC,
and on a trap is implementation-dependent.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 133

SPARC International

UltraSPARC-IIi

Implementation:

when PSTATE.AM = 1, the value of the high-order 32-bits of the PC trans-
mitted to the specified destination register(s) by CALL, JMPL, RDPC, and
on a trap is zero.

126. TSTATE bits 19:18

Description:

Implementation:

If PSTATE bit 11 (10) is implemented, TSTATE bit 19 (18) shall be imple-
mented and contain the state of PSTATE bit 11 (10) from the previous trap
level. If PSTATE bit 11 (10) is not implemented, TSTATE bit 19 (18) shall
read as zero. Software intended to run on multiple implementations should
only write these bits to values previously read from PSTATE, or to zeroes.

UltraSPARC-IIi implements TSTATE bits 19:18 to hold the state of
PSTATE bits 11:10 for each previous trap level.

127. PSTATE bits 11:10

Description:

Implementation:

The presence and semantics of PSTATE.PID1 and PSTATE.PIDO are
implementation-dependent. The presence of TSTATE bits 19 and 18 is
implementation-dependent. If PSTATE bit 11 (10) is implemented,
TSTATE bit 19 (18) shall be implemented and contain the state of PSTATE
bit 11 (10) from the previous trap level. If PSTATE bit 11 (10) is not imple-
mented, TSTATE bit 19 (18) shall read as zero. Software intended to run on
multiple implementations should only write these bits to values previously
read from PSTATE, or to zeroes.

PSTATE.PID1 and PSTATE.PIDO are implemented on UltraSPARC-IIi as
selects for two additional sets of eight trap global registers. The corre-
sponding bits in the TSTATE register are implemented to store these bits
for the previous trap level.

134

Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Chapter 6: HAL Implementation of V9 Architecture

SPARC 64-lii

SPARC INTERNATIONAL

SPARC International SPARC 64-111

CHAPTER 6: HAL SPARC64-111

0. Introduction

This document describes the implementation details of the SPARC64-111 processor developed
by HAL Computer Systems. The items listed below correspond to the implementation depen-
dencies as listed in the text and by number in Appendix C of “The SPARC Architecture Man-
ual - Version 9° by SPARC International, along with the description of the implementation
dependency. The “Implementation” section for each item describes the

SPARC64-I11 processor.

1. Software emulated instructions

Description:

Whether an instruction is implemented directly by hardware, simulated by software,lated by
firmware is implementation-dependent.

Implementation:

SPARC64-I11 does not implement the following instructions in hardware:

* All floating point instructions with quad operands or results
These operations will take an fp_exception_other trap with FSR.ftt = unimplemented_FPop.
The kernel will then emulate the quad operation and store the result into afloating-point regis-
ters as defined by Sparc-V9 manual.

* popc
This instruction will cause an illegal_instruction trap if executed. Kernel emulation routines
will be provided to complete the action.

2. Number of IU registers

Description:

An implementation of the IU may contain from 64 to 528 general purpose 64 bit rThis corre-
sponds to a grouping of the registers into two sets of eight global r regis-
ters, plus a circular stack of from 3 to 32 sets of 16 registers each, known as
register windows. Since the number of register windows present (NWIN-
DOWS) is implementation-dependent, the total number of registers is also
implementation-dependent.

Implementation:

SPARC64-I1I implements 5 16-register sets (windows) in hardware. Thus there are a96 inte-
ger registers visible to software. They are:

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 137

SPARC International SPARC 64-111

* 8 global registers
» 8 alternate global registers
* 5 windows of 16 registers each (=80 registers)

3. Incorrect IEEE Std 754-1985 results

Description:

An implementation may indicate that a floating-point instruction did not produce aANSI/
IEEE Standard 754-1985 result by generating a special floating-point
unfinished or unimplemented exception. In this case, privileged mode soft-
ware shall emulate any functionality not present in the hardware.

Implementation:

SPARC64-I11 in conjunction with the kernel emulation code produces the correct IEEEresults
required in this section.
* Traps Inhibit Results
SPARC64-I11I in conjunction with the kernel emulation code produces results
* Trapped Underflow Definition (UFM=1)
SPARC64-I11 detects “tininess” before rounding as recommended.
* Untrapped Underflow Definition (UFM=0)
SPARC64-I11 meets these requirements with some help from the kernel divide/squarefixup
code.
* Floating-Point Nonstandard Mode
SPARC64-I11 FPU is “standard”, and therefore does not support a nonstandard

4-5. Reserved

6. I/0 registers privileged status

Description:
Whether I/0O registers can be accessed by non privileged code is

Implementation:
In SPARC64-I1I some I/O registers can be accessed by non privileged code.

7. /O register definitions

Description:
The contents and addresses of I/O registers are implementation-dependent.

Implementation:
Please contact HaL. for details of I/O registers.

138 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International SPARC 64-111

8,9. RDASR/WRASR target registers and privileged status

Description:

Software can use read/write ancillary state register instructions to read/writedependent proces-
sor registers (ASRs 16-31).

Whether each of the implementation-dependent read/write ancillary state register(for ASRs
16-31) is privileged is implementation dependent.

Implementation:

SPARC64-I11 implements 9 implementation-dependent ASR registers.

* Hardware mode Register(ASR18): These register controls, Branch prediction mode andHard-
ware memory models.

* Graphic Status Register(ASR19): Access to this register will cause fp_disabledeither
PSTATE.PER or FPRS.FER is 0.

* Schedule Interrupt(SCHED_INT) Register (ASR22): The OS kernel uses this privileged,write
register to schedule interrupts.

* TICK match Register(ASR23): Privileged read/write register.

* Instruction Access Fault Type Register(ASR24): Privileged , read only register isthe hardware
on instruction_access_error traps.

* Software Scratch Registers 0 through 3(ASR25): These registers are privileged,

* Data Breakpoint Registers(ASR26A): These privileged read/write registers are usedany data
accesses to a double word aligned breakpoint address. ASR26B: privilegedwrite register spec-
ifies the double-word aligned virtual address of the data

* Fault Address Register (ASR28) and Fault Access Type (ASR29)

These registers facilitate the handling of traps that involve a data memory access.are privi-
leged and read-only. System software must take care to read thesea fault handler before any
other fault can occur that would overwrite them.

* Performance Monitor Register (ASR30)

This privilege read/write register is used to evaluate processor performance.

» State Control Register (ASR31)

ASR31 is a 16bit implementation specific register that contains a set of flags forthe state of the
CPU, MMU and Caches. The register is privileged and can be

10-12 Reserved

13. VER.impl

Description:

VER.impl uniquely identifies an implementation or class of software-compatibletions of the
architecture. Values FFFO(hex)..FFFF(hex) are reserved and are not avail-
able for assignment.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 139

SPARC International SPARC 64-111

Implementation:
SPARCO64-I1I uses a version number of 3.

14-15 Reserved

16. IU deferred-trap queue

Description:

The existence, contents, and operation of an IU deferred-trap queue aredependent; it is not
visible to user application programs under normal operating conditions

Implementation:
SPARC64-I11 does not need and therefore does not implement an IU deferred-trap

17. Reserved

18. Nonstandard IEEE 754-1985 results

Description:

Bit 22 of the FSR, FSR_nonstandard_fp (NS), when set to 1, causes the FPU toimplementa-
tion-defined results that may not correspond to IEEE Standard 754-1985.

Implementation:
SPARC64-111 FPU is “standard”, and therefore does not support a nonstandard

19. FPU version, FSR.ver

Description:
Bits 19:17 of the FSR, FSR.ver, identify one or more implementations of the FPUture.

Implementation:
SPARC64-I1I uses the value of O for this field.

20-21. Reserved

22. FPU TEM, cexc, and aexc

Description:
An implementation may choose to implement the TEM, cexc, and aexc fields ineither of two

140 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International SPARC 64-111

ways (see section 5.1.7.11 of SPARC-V9 Architecture Manual for details).

Implementation:
SPARC64-II1 implements TEM, cexc and aexc fields of FSR conforming to IEEE Std.1985.

23. Floating-point traps

Description:

Floating point traps may be precise or deferred. If deferred, a floating pointqueue (FQ) must
be present.

Implementation:
Floating point traps are always precise.

24. FPU deferred-trap queue (FQ)

Description:

The presence, contents of, and operations on the floating-point deferred-trap queueimplemen-
tation-dependent.

Implementation:
SPARC64-I1I does not have or need a floating-point deferred-trap queue.

25. RDPR of FQ with nonexistent FQ

Description:

On implementations without a floating-point queue, an attempt to read the FQ withinstruction
shall cause either an illegal_instruction exception or an fp_exception_other
exception with FSR.ftt set to 4 (sequence_error).

Implementation:
A RDPR of %FPQ instruction will cause an illegal_instruction trap.

26-28. Reserved

29,30. Address space identifier (ASI) definitions and ASI address decoding

Description:

The following ASI assignments are implementation-dependent: restricted ASIs (allhex)
00..03, 05..0B, OD..OF, 12..17, and 1A..7F; and unrestricted ASIs CO..FF.

An implementation may choose to decode only a subset of the 8-bit ASI specifier;shall decode

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 141

SPARC International SPARC 64-111

at least enough of the ASI to distinguish ASI_PRIMARY,
ASI_PRIMARY_LITTLE, ASI_AS_IF_USER_PRIMARY,
ASI_AS_IF_USER_PRIMARY_LITTLE, ASI_PRIMARY_NOFAULT,
ASI_PRIMARY_NOFAULT_LITTLE, ASI_SECONDARY,
ASI_SECONDARY_LITTLE, ASI_AS_IF_USER_SECONDARY,
ASI_AS_IF_USER_SECONDARY_LITTLE,
ASI_SECONDARY_NOFAULT, and
ASI_SECONDARY_NOFAULT_LITTLE. If ASI_NUCLEUS and
ASI_NUCLEUS_LITTLE are supported (impl. dep. #124), they must be
decoded also. Finally, an implementation must always decode ASI bit<7>
while PSTATE.PRIV = 0, so that an attempt by nonprivileged software to
access a restricted ASI will always cause a privileged_action exception.

Implementation:
Please See pg 409 of SPARC64-11I user Guide.(L. ASR Assignments).

31. Catastrophic error exceptions

Description:

The causes and effects of catastrophic error exceptions aremay cause precise, deferred or dis-
rupting traps.

Implementation:

An internal CPU watchdog time-out occurs after no instruction has been committedcycles (n
can be scan initialized to one of {12,16,18,20,22,24,28,30}). This would
take the processor into error state.

32. Deferred traps

Description:

Whether any deferred traps (and associated deferred-trap queues) are present istion-depen-
dent.

Implementation:

SPARC64-I11 implements a deferred trap for the following trap types:
e data_breakpoint.

Deferred trap queues are not necessary, since the trapping instruction is the onlyinstruction.

33. Trap precision

Description:

Exceptions that occur as the result of program execution may be precise orit is recommended
that such exceptions be precise. Examples include

142 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International SPARC 64-111

mem_address_not_aligned and division_by_zero.

Implementation:
SPARC64-II1 will generate a precise trap for all traps induced by instructiondata_breakpoint.

34. Interrupt clearing

Description:

How quickly a processor responds to an interrupt request and the method by which anrupt
request is removed are implementation-dependent.

Implementation:
Please See SPARC64-I11 user guide pg. 427 (N Interrupt Handling)

35,36. Implementation-dependent traps and priorities

Description:

Trap type (TT) values 060(hex)..07f(hex) are reserved for implementation-dependenttions.
The existence of implementation_dependent_n traps and whether any that
do exist are precise, deferred, or disrupting is implementation-dependent.

The priorities of the particular traps are relative and arefuture version of the architecture may
define new traps, and implementations may define implementation-depen-
dent traps that establish new relative priorities.

Implementation:

The following trap types defined by Sparc-V9 are not used in SPARC64-I11.
Please See SPARC64-111 user guide pg. 152 (7.5.3.3 Unimplemented Traps in SPARC64-I1I)

SPARC64-I11 defines the following implementation-dependent trap types.
Please See SPARC64-111 user guide pg. 341 (B IEEE Std 754-1985 Requirements for
SPARC-V9)

37. Reset trap

Description:
Some of a processor’s behavior during a reset trap is

Implementation:

Power-on Reset (POR) are implemented by scanning in the reset state on

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 143

SPARC International SPARC 64-111

38. Effect of reset trap on implementation-dependent registers

Description:
Implementation-dependent registers may or may not be affected by the various reset

Implementation:

All register gets affected on POR
XIR all register except ASR31 gets affected..

39. Entering error_state on implementation-dependent errors

Description:
The processor may enter error_state when an implementation-dependent erroroccurs.

Implementation:

An internal CPU watchdog time-out occurs after no instruction has been committedcycles (n
can be scan initialized to one of {12,16,18,20,22,24,28,30}). This would
take the processor into error state.

40. Error_state processor state

Description:

What occurs after error_state is entered is implementation-dependent, but it isthat as much
processor state as possible be preserved upon entry to error_state.

Implementation:

On entry to error state, SPARC64-I1I asserts the output signal P_FERR. . Most errorregister
state will be preserved and can be read after a power on reset.

41. Reserved

42. FLUSH instruction

Description:

If flush is not implemented in hardware, it causes an illegal_instruction exceptiontion is per-
formed by system software. Whether FLUSH traps is implementation-
dependent.

Implementation:
SPARC64-I11 implements a FLUSH instruction.

144 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International SPARC 64-111

43. Reserved

44. Data access FPU trap

Description:

If a load floating-point instruction traps with any type of access error exception,of the destina-
tion floating-point register(s) either remain unchanged or are undefined.

Implementation:

Contents of destination floating-point register(s) remain unchanged.

45-46. Reserved

47. RDASR

Description:

RDASR instructions with rd in the range 16..31 are available foruses (impl. dep #8). For an
RDASR instruction with rs1 in the range 16..31, the following are imple-
mentation-dependent: the interpretation of bits 13:0 and 29:25 in the
instruction, whether the instruction is privileged (impl. dep. #9), and
whether it causes an illegal_instruction trap.

Implementation:

See items 8,9 for details. SPARC64-111 causes an illegal_instruction trap for reads of the
unused ASR values.

48. WRASR

Description:

WRASR instructions with rd in the range 16..31 are available foruses (impl. dep. #8). For a
WRASR instruction with rd in the range 16..31, the following are imple-
mentation-dependent: the interpretation of bits 18:0 in the instruction, the
operation(s) performed (for example, xor) to generate the value written to
the ASR, whether the instruction is privileged (impl. dep. #9), and whether
it causes an illegal_instruction trap.

Implementation:

See items 8,9 for details. SPARC64-I1I causes an illegal_instruction trap for writes of the
unused ASR values.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 145

SPARC International SPARC 64-111

49-54 Reserved

55. Floating-point underflow detection

Description:

Whether “tininess” (in IEEE 754 terms) is detected before or after roundingtion-dependent. It
is recommended that tininess be detected before rounding.

Implementation:
SPARC64-I11 detects “tininess” before rounding.

56-100. Reserved

101. Maximum trap level

Description:
It is implementation-dependent how many additional levels, if any, past level 4 are

Implementation:
SPARC64-I11 implements 4 levels of traps.

102. Clean window trap

Description:
An implementation may choose either to implement automatic “cleaning” ofin hardware, or
generate a clean_window trap, when needed, for window(s) to be cleaned
by software.

Implementation:

SPARC64-I11 generates a clean_window trap, when needed, for windows to be cleanedsoft-
ware.

103. Prefetch instructions

Description:

The following aspects of the PREFETCH and PREFETCHA instructions aredependent: (1)
whether they have an observable effect in privileged code; (2) whether they
can cause a data_access_MMU_miss exception; (3) the attributes of the
block of memory prefetched: its size (minimum = 64 bytes) and its align-
ment (minimum = 64-byte alignment); (4) whether each variant is imple-

146 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International

mented as a NOP, with its full semantics, or with common-case prefetching
semantics; (5) whether and how variants 16..31 are implemented.

Implementation:

(1) PREFETCH and PREFETCHA have identical affects in privileged or non-privileged

(2) Can not cause a data_access_MMU _miss exception

(3) Size and alignments are 64-bytes

(4),(5) See table-1

Table 3: Prefetch Data

SPARC 64-111

VO Prefetch | SPARC64-111
fcn .)
Function Function
0 Prefetch for |Prefetch for
several reads |several reads
1 Prefetch for |Prefetch for
one read several reads
2 Prefetch for |Prefetch for
several writes |several writes
3 Prefetch for |Prefetch for
one write several writes
4 Prefetch page |Prefetch for
several reads
5-15 Reserved illegal_instru
ction trap
16-31 Implementa- |[NOP
tion depen-
dent
104. VER.manuf
Description:

VER.manuf contains a 16-bit semiconductor manufacturer code. This field isnot present reads
as zero. VER.manuf may indicate the original supplier of a second-sourced
chip in cases involving mask-level second-sourcing. It is intended that the
contents of VER.manuf track the JEDEC semiconductor manufacturer
code as closely as possible. If the manufacturer does not have a JEDEC
semiconductor manufacturer code, SPARC International will assign a
VER.manuf value.

Implementation:
SPARC64-II1 uses a code of 4 for this field. This is Fujitsu’s JEDEC code.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 147

SPARC International SPARC 64-111

105. TICK register

Description:

The difference between the values read from the TICK register on two reads shouldnumber of
processor cycles executed between the reads. If an accurate count cannot
always be returned, an inaccuracy should be small, bounded, and docu-
mented. An implementation my implement fewer than 63 bits in
TICK.counter; however, the counter as implemented must be able to count
for at least 10 years without overflowing. Any upper bits not implemented
must be read as zero.

Implementation:

SPARC64-I11 implements all the bits of TICK register and returns accurate count ofcessor
cycles, in response to reads from TICK register.

106. IMPDEPn instructions

Description:

The IMPDEP1 and IMPDEP?2 instructions are completely implementation-dependent.menta-
tion-dependent aspects include their operation, the interpretation of bits
29:25 and 18:0 in their encoding, and which (if any) exceptions they may
cause.

Implementation:

SPARC64-I11 uses IMPDEP2 to encode the HaL specific Floating Pointtract instructions.
IMPDEP1 is not used and will cause an illegal_instruction trap if such an
opcode is encountered. Please refer to SPARC64-111 Processor User Guide
for more details.

107. Unimplemented LDD trap

Description:

It is implementation-dependent whether LDD and LDDA are implemented in hardware. Ifnot,
an attempt to execute either will cause an unimplemented_LDD trap.

Implementation:
SPARC64-1I11 implements LDD and LDDA in hardware.

108. Unimplemented STD trap

Description:

It is implementation-dependent whether STD and STDA are implemented in hardware. Ifan
attempt to execute either will cause an unimplemented_STD trap.

148 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International SPARC 64-111

Implementation:
SPARC64-111 implements STD and STDA in hardware.

109. LDDF_mem_address_not_aligned

Description:

LDDF and LDDFA require only word alignment. However, if the effective address isaligned
but not doubleword-aligned, either may cause an
LDDF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the LDDF (or LDDFA) instruction and return.

Implementation:

SPARC64-111 causes LDDF_mem_address_not_aligned trap for both word and double-word
misaligned addresses.

110. STDF_mem_address_not_aligned

Description:

STDF and STDFA require only word alignment. However, if the effective address isaligned
but not doubleword-aligned, either may cause an
STDF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the STDF (or STDFA) instruction and return.

Implementation:

SPARC64-111 causes STDF_mem_address_not_aligned trap for both word and double-word
misaligned addresses.

111. LDQF_mem_address_not_aligned

Description:

LDQF and LDQFA require only word alignment. However, if the effective address isaligned
but not quadword-aligned, either may cause an
LDQF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the LDQF (or LDQFA) instruction and return.

Implementation:

SPARC64-I11I generates an illegal instruction exception for LDQF, LDQFA instructionskernel
provides emulation routines to complete the load.

112. STQF_mem_address_not_aligned

Description:
STQF and STQFA require only word alignment. However, if the effective address isaligned

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 149

SPARC International SPARC 64-111

but not quadword-aligned, either may cause an
STQF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the STQF (or STQFA) instruction and return.

Implementation:

SPARC64-I11I generates an illegal instruction exception for STQF, STQFA instructionskernel
provides emulation routines to complete the load.

113. Implemented memory models

Description:

Whether the Partial Store Order (PSO) or Relaxed Memory Order (RMO) models areported is
implementation-dependent.

Implementation:

SPARC64-111 supports Load/Store ordering (LSO), Total store Ordering(TSO)and Store
ordering (STO). Partial Store Order (PSO) is implemented using 7SO and
Relaxed Memory Order (RMO) is implemented using STO.

114. RED_state trap vector address (RSTVaddr)

Description:
The RED_state trap vector is located at an implementation-dependent addressRST Vaddr.

Implementation:
RSTVaddr is a Constant when VA = FFFF FFFF FO00 0000 and PA = 1FF FO00 0000.

115. RED_state processor state

Description:
What occurs after the processor enters RED_state is implementation-dependent.

Implementation:
Plese See SPARC64-111 user guide pg.139 (7.2.1.2 RED_state Execution Environment).

116. SIR_enable control flag

Description:

The location of and the means of accessing the SIR_enable control flag aredependent. In some
implementations, it may be permanently zero.

Implementation:
SIR_enable control flag is permanently zero in SPARC64-I11.

150 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International SPARC 64-111

117. MMU disabled prefetch behavior

Description:

Whether Prefetch and Non-faulting Load always succeed when the MMU is disabled ismenta-
tion-dependent.

Implementation:
In SPARC64-11I, Prefetch and Non-faulting Loads always succeed if the MMU is

118. Identifying 1/0 locations

Description:
The manner in which I/O locations are identified is implementation-dependent.

Implementation:
Please contact Hal. Computer Systems for details of I/O operation.

119. Unimplemented values for PSTATE.MM

Description:

The effect of writing an unimplemented memory-mode designation into PSTATE.MM is
implementation-dependent

Implementation:

Writing ‘117 into PSTATE.MM causes the machine to use the STO Memoryever, the system

software should not use the encoding ‘11’ since it is reserved for future
SPARC-VO extensions.

120. Coherence and atomicity of memory operations

Description:

The coherence and atomicity of memory operations between processors and /O DMAory
accesses are implementation-dependent.

Implementation:
Plese See SPARC64-II1 user guide pg.355 (Nbr 121)

121. Implementation-dependent memory model

Description:

An implementation may choose to identify certain addresses and use andependent memory
model for references to them.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 151

SPARC International SPARC 64-111

Implementation:

In SPARC64-I11, certain addresses use implementation dependent memory models forences to
them. Please contact HalL. Computer Systems for details.

122. FLUSH latency

Description:

Latency between the execution of FLUSH on one processor and the point at which thefied
instructions have replaced out-dated instructions in a multiprocessor is
implementation-dependent.

Implementation:
Please contact Hal. for FLUSH latency

123. Input/output (I/0) semantics

Description:
The semantic effect of accessing input/output (I/O) registers is

Implementation:
Please contact HaL. for I/O semantics..

124. Implicit AST when TL>0

Description:

When TL > 0, the implicit ASI for instruction fetches, loads, and stores isdependent. See
SPARC-V9 Architecture Manual section F.4.4, “Contexts,” for more infor-
mation.

Implementation:

SPARCO64-I1I uses ASI_NUCLEUS for instruction fetches and ASI_ NUCLEUS{_LITTLE},
loads and stores when TL>0

125. Address masking

Description:

When PSTATE.AM = 1, the value of the high-order 32-bits of the PC transmitted tofied desti-
nation registers(s) by CALL, JMPL, RDPC, and on a trap is implementa-
tion-dependent.

Implementation:

When PSTATE.AM bit is set on SPARC64-111, a full 64-bit address is transmitted toified des-
tination registers by CALL, JMPL, RDPC and traps transmit all 64-bits to

152 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International SPARC 64-111

TPC[n] and TNPC|n].

126. TSTATE bits 19:18

Description:

If PSTATE bit 11 (10) is implemented, TSTATE bit 19 (18) shall be implemented andthe state
of PSTATE bit 11 (10) from the previous trap level. If PSTATE bit 11 (10)
is not implemented, TSTATE bit 19 (18) shall read as zero. Software
intended to run on multiple implementations should only write these bits to
values previously read from PSTATE, or to zeroes.

Implementation:

SPARC64-I11 does not implement PSTATE bits 10 & 11 and they are read as zeroes.bits 19
and 18 are read as zeroes.

127. PSTATE bits 11:10

Description:

The presence and semantics of PSTATE.PID1 and PSTATE.PIDO aredent. The presence of
TSTATE bits 19 and 18 is implementation-dependent. If PSTATE bit 11
(10) is implemented, TSTATE bit 19 (18) shall be implemented and contain
the state of PSTATE bit 11 (10) from the previous trap level. If PSTATE bit
11 (10) is not implemented, TSTATE bit 19 (18) shall read as zero. Soft-
ware intended to run on multiple implementations should only write these
bits to values previously read from PSTATE, or to zeroes.

Implementation:

SPARCO64-I11I does not implement PSTATE bits 10 & 11 and they are read as zeroes.bits 19
and 18 are read as zeroes.

128. CLEANWIN register update

Earlier implementations of Sparc chips implemented the V9 specification forusing the follow-
ing equation to update CLEANWIN register:
if (CLEANWIN != NWINDOWS) CLEANWIN++;
Subsequently V9 definition changed to modify the equation as:
if (CLEANWIN < NWINDOWS-1) CLEANWIN++;

SPARC64-I11 implements the RESTORED using the current definition. The SPARC64-111
Kernel will ensure that CLEANWIN does not have a value beyond NWIN-
DOWS-1.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 153

SPARC International SPARC 64-111

154 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Appendix A: Assgined VER.manuf and VER.impl

SPARC INTERNATIONAL

SPARC International

APPENDIX A

APPENDIX A: VER.impl/VER.manuf

The table 1 below includes all the V9 VER.impl and VER.manuf assigned by SPARC Interna-
tional as stated by the V9 Architecture Book (page 57). From Section 5.2.9: “If the manufacturer
does not have a JEDEC semiconductor manufacturer code, SPARC International will assign a
value of VER.manuf”.

To assign new number please contact:
Ghassan Abbas
abbas(@sparc.com
Tel: 415-321-8692 x228.

Table 4: assigned VER.impl and VER.manuf by SI

COMPANY CPU VER.impl VER.manuf
HAL SPARC64 0x0001 0x0004
Sun Microsystems UltraSPARC (TI) 0x0010 0x0017
Sun Microsystems UltraSPARC (NEC) 0x0010 0x0022
Sun Microsystems UltraSPARC II 0x0011 0x0017
Sun Microsystems UltraSPARC IIi 0x0012 0x0017
Sun Microsystems UltraSPARC-e 0x0013 0x0017

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 157

SPARC International APPENDIX A

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 158

Appendix B: V9 Architecture Errata

as of 17 Jul 1995

SPARC INTERNATIONAL

SPARC International Appendix B

APPENDIX B: SPARC V9 Arch Book Changes

rl41 = R1.4.1 = distrib draft

rl42 = R1.4.2 = book first printing;doc dated 15 Sep 93
ri43 = R1.4.3 = revision (not used);

rl44 = R1.4.4 = current revision;doc dated 17 Jul 95

All changes below are those since R1.4.2, incorporated in R1.4.4.

Change to page 13

subsection 2.57:
definition of “reserved”: *...intended to run on future version of”’ was corrected to read:
¢...intended to run on future versions of”.

The sentence beginning “Reserved register fields” was amend to read: “Reserved register
fields should always be written by software with values of those fields previously read from
that register, or with zeroes; they should read as zero in hardware.”

Change to page 21(r142)
Editor's Notes: Added Les Kohn's name to the Acknowledgments.

Change to page 28(r142)

Tables 3,4,5: Made use of hyphens & dashes made consistent, and easier to read.

Change to page 30(r142)

paragraph just above subsection 5.1: Changed end of sentence to read:
“...should be written with the values of those bits previously read from that register, or with
zeroes.”

Change to page 40(r142),
Table 7: Added lines for 32-bit and 64-bit signed integers in f.p. registers, for clarity.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 161

SPARC International Appendix B

Change to page 51
In figure 17, added bits 11 and 10 to the figure, so it looks like:

IPIDI IPIDO ICLE TLE| MM |RED|PEF | AM | PRIV |IE | AG
|11 |10 |9 8 7 6 |5 4 3 2 1 |0
Change to page 52(r142)

inserted new subsection 5.2.1.1 before old one: “IMPL. DEP. #127: The presence and seman-
tics of PSTATE.PID1 and PSTATE.PIDO are implementation- dependent. Software intended
to run on multiple implementations should only write these bits to values previously read from
PSTATE, or to zeroes. See also TSTATE bits 19 and 18."

Change to page 55(r142)

In Figure 22, (TSTATE register): Extended the “saved PSTATE” field up through bit 19 of
TSTATE; changed the diagram to look like:

TSTATE 1 CCR from ASI from - PSTATE - CWP from
TL=0 TL=0 from TL=0 TL=0
TSTATE 2 CCR from ASI from - PSTATE - CWP from
TL=1 TL =1 from TL=1 TL =1
TSTATE 3 CCR from ASI from - PSTATE - CWP from
TL=2 TL=2 from TL=2 TL =2
TSTATE 4 CCR from ASI from - PSTATE - CWP from
TL=3 TL =3 from TL=3 TL =3
39 32| 31 244123 209119 817 5|4 0
Change to page 56(r142)

Added a new paragraph to the end of subsection 5.2.6: “TSTATE bits 19 and 18 are imple-
mentation-dependent. ImplDep#126: If PSTATE bit 11 (10) is implemented, TSTATE bit
19 (18) shall be implemented and contain the state of PSTATE bit 11 (10) from the previ-
ous trap level. If PSTATE bit 11 (10) is not implemented, TSTATE bit 19 (18) shall read as

162 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International Appendix B

zero. Software intended to run on multiple implementations should only write these bits to
values previously read from PSTATE, or to zeroes.”

Change to page 57(r142)

subsection 5.2.10 (Register-Window State Registers): Added implementation dependency
#126.

Change to page 58-9(r142)

In subsection 5.2.10 (Register-Window State Registers): Added note to descriptions of CWP,
CANSAVE, CANRESTORE, OTHERWIN, and CLEANWIN registers that the effect of writ-
ing a value to them greater than NWINDOWS-1 is undefined.

Change to page 76,

In Section 6, last sentence in 6.3.4.1, “Conditional Branches” changed to: Note that the annul
behavior of a taken conditional branch is different from that of an unconditional branch. And
the last sentence in 6.3.4.2, “Unconditional Branches” changed to: Note that the annul behav-
ior of a unconditional branch is different from that of a taken conditional branch.

Change to page 80(r142), 6.3.6.4(r142)

RESTORED: correct the equation with CLEANWIN to read “(CLEANWIN < (NWIN-
DOWS-1))”. and correct the text above it.

Change to page 81(r141/r142):
In section 6.3.9, “FMOVc¢” was corrected to read “FMOVTr”.

Change to page 81(r141/r142):

In section 6.3.9, a sentence was added stating that FSR.cexc and FSR.ftt are cleared by
FMOVcc and FMOVr whether or not the move occurs.

Change to page 121(r141/r142):

An index entry for “non-faulting loads” was fixed in section 8.3.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 163

SPARC International Appendix B

Change to page 151(r142), A.9(r142),
In Compare and Swap page: Added mention of CASL and CASXL to the Programming Note.

Change to page 171
In Annex A, sentence added specifying that LDFSR does not affect the upper 32 bits of FSR.

Change to page 181(r141/r142):

“A.31” number was fixed so it now increments to A.32. All following section numbers and
odd page headers in Annex A have changed.

Change to page 191(r141/r142):

Page heading: “Condition” --> “Condition”

Change to page 195(r141/r142):
Order of instructions in Suggested Assembly Language Syntax was rearranged to correspond

to order of the instructions in the Opcode/op3/Operation table above it.

“more” and “movrz”, as the assembly-language mnemonic and its synonym, were exchanged
to correspond with the instruction name of MOVRZ.

“movrne” and “movrnz”, as the assembly-language mnemonic and its synonym, were
exchanged to correspond with the instruction name of MOVRNZ.

Change to page 212(r14[123]) A.43(r14[12])/A.44(r143),

In second page of the Read State Register instruction description, 4th paragraph SHOULD
read: “RDFPRS waits for all pending FPops ** and loads of floating-point registers** to com-
plete before reading the FPRS register.”

Change to page 216(r142), A.46(r142),

RESTORED page: correct the equation with CLEANWIN to read “(CLEANWIN < (NWIN-
DOWS-1))”

164 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International Appendix B

Change to page 220(r142)/A.49(r142)

In the third Paragraph, the words “the” and “and” were transposed in the implementation
dependency description. It now reads: “The location of the SIR_enable control flag and the
means of accessing the SIR_enable control flag...”

Change to page 228(r141/r142):

Order of instructions in Suggested Assembly Language Syntax was rearranged to correspond
to order of the instructions in the Opcode/op3/Operation table above it.

Change to page 229(r142)/A.55(r142),

paragraph beginning ‘“Store integer...: load” changed to “store”

Change to page 231(r142)/233(r143),

In Annex A, corrected SWAP deprecation note to recommend use of “CASA” or “CASXA”
(not “CASX”) in place of SWAP.

Change to page 234, A.58(r14[12])/A.59(r143)

Tagged Add: op3 opcodes are wrong. Both should have “0” for low-order bit (as correctly
given in Appendix E).

Change to page 241(r142), A.62(r142),

In “Write State Register” page, added footnote to Suggested Assembly Language Syntax
table, noting that the suggested syntax for WRASR with rd=16..31 may vary, citing reference
to implementation dependency #48. (Suggested Assembly Language Syntax is just that --
*suggested™® -- so isn't part of the architecture specification anyway, but this makes it clearer
that if bits are interpreted differently in the instruction, one should expect its assembly-lan-
guage syntax to change, as well)

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 165

SPARC International

Appendix B

Change to page 242(r142), A.62(r142)

In “Write State Register” page: In the Exceptions section, “WRASR with rs1=16..31” now
reads “WRASR with rd=16..31".

Change to page 253(r142)

In Annex C, fixed 6 incorrect index entries.

Change to page 253(4142)

In annex C, added a new Implementation Dependency:

Def/Ref . L.
Number | Category page # Description
127 f 52,56 The presence and semantics of PSTATE.PID1 and

PSTATE.PIDO are implementation-dependent. The
presence of TSTATE bits 19 andip&mentation-depender
If PSTATE bit 11 (10) is implemented,TSTATEbitl A(18)
shall be implemented and contain the state of PSTATE
bit 11 (10) from the previous trap level.

If PSTATE bit 11 (10) is not implemented, TSTATE bit
19 (18) shall read as zero. Software intended to
run on multiple implementations should only write
these bits to values previously read from PSTATE, orto
zZeroes.

Change to page 255(r142)
In Annex C, added implementation dependency #126.

Change to page 258(r142)

In D.3.3., rule (1), the text was clarified, to read: “(1) The execution of Y is conditional on X,
and S(Y) is true.”

166

Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

It.

—

SPARC International Appendix B

Change to page 268(r142)
In table 32, as a privileged instruction, “RDPR” should be listed with a superscript “P”.

Change to page 290(r142)

In section G, Table 43: insert “#” before the “ASI” in the compare-and-swap synthetic instruc-
tion entries

Change to page 312(r142)
In Annex I, Missing word “not” added to Compatibility Note.

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 167

SPARC International Appendix B

168 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Index

SPARC INTERNATIONAL

SPARC International INDEX

Index

Symbols audience 19

,LDQ 36 B

Numerics bge 90

16bit implementation 25 bne 90

A C

Address space identifier 27 CALL 39, 109

aex 26 CANRESTORE 163

aexc 95 CANSAVE 163

AG 162 CASA 165

AM 162 CASX 165

and 90 CASXA 165

ANSI/IEEE 24 ccelerated emulation trap 31
ANSI/IEEE Standard 754-1985 44, 91 CCR 162

AS_IF 28 cex 95

ASI 27, 28, 39, 96, 109, 162, 167 cexc 26, 95
ASI_AS_IF_USER_PRIMARY 27, 96 check_illegal_done_retry 90

ASI_AS_IF_USER_PRIMARY_LITTLE 27, 96check_illegal_saved_restored 90
ASI_AS_IF_USER_SECONDARY 28, 96 Chip_crossing_errors 29
ASI_AS_IF_USER_SECONDARY_LITTLE circular stack 24

28, 96 CLE 162
ASI_NUCLEUS 28, 96 clean_window 101
ASI_NUCLEUS_LITTLE 28, 96 cleaning 33
ASI_PRIMARY 27, 39, 96, 109 CLEANWIN 40
ASI_PRIMARY_LITTLE 27, 39, 96 CLEANWIN register 40
ASI_PRIMARY_NOFAULT 27, 96 CLEAR_SOFTINT 93, 101
ASI_PRIMARY_NOFAULT_LITTLE 28,96 contents of SCD 2.2 19
ASI_SECONDARY 28, 96 corrected_ECC_error 98
ASI_SECONDARY_LITTLE 28, 96 CPU 25, 28, 29, 31, 37, 157
ASI_SECONDARY_NOFAULT 28, 96 CPU_HALTED 31
ASI_SECONDARY_NOFAULT_LITTLE 28,CPU_xing 29, 30

96 D
ASR 25, 32, 93, 100, 101 d LDD 35
ASR24 25 Data access 100
ASR?25 25 data_access_exception 99
ASR26 25 data_access. MMU_miss 30, 33, 100, 102
ASR27 25 data_breakpoin 30
ASR28 25 data_breakpoint 27, 29
ASR29 25 deferred 30
ASR31 25 Deferred trap queues 29
ASRs 92, 93, 100 deferred-trap queue 27
Assembly Language Syntax 165 definition of audience 19
associated deferred-trap queues 29 definition of purpose 19
async_data_error 30 DISPATCH_CONTROL_REG 93

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 171

SPARC International

INDEX

disrupting 30
division_by_zero 29, 97
DMA 38, 108

DONE 90
doubleword-aligned 36

E

ECC_trap 30

error 97

Error logging 97

error state 31

Error_state 31, 99
error_state 31, 99, 107

F

F{i,x}TOq 43, 89

F{s,d} 91

F{s,d}TOq 43, 89

FABSq 43, 89

FADD 91

FADDq 43, 89
fast_data_access. MMU_miss 98
fast_data_access_protection 98
fast_instruction_access. MMU_miss 98
Fault Address Register 25
FCMP{E}q 43, 89

FDIV 27, 44,91, 92
FDIVq 90

FdMULq 43, 89

FdTOs 91

fetches 109

FFFO 94

FFFF 94

Floating-Point 24
floating-point 32, 91
Floating-point underflow 33
FLUSH 31, 32, 38, 99, 108
flush 31

FMOVc 163

FMOVcc 163

FMOVq 43, 89

FMOVqcc 43, 89
FMOVqr 43, 89

FMOVr 163

FMUL 91, 92

FMULq 89

FNEGq 43, 89

FNULq 43

FP 44, 89

fp_exception_othe 36
fp_exception_other 23, 27, 29, 36, 95
FPQ 27

FPU 24, 26, 27, 94, 95, 100
FPU TEM 95

FPU trap 32

FQ 27, 95

FqTO 43

FqTO({i,x} 89

FqTO({s,d} 89

FSQRT 91

fsqrtd 23

FSQRTq 44, 90

fsqrts 23

FSR 26, 27, 94

FSR.cexc 163

FSR.ft 23

FSR.ftt 23, 27, 29, 95, 163
FSR.NS 94

FSR.VER 9%4

FSR.ver 26, 94
FSR_nonstandard_fp 26, 94
FSUBq 43, 89

Fujitsu 34

G
GRAPHICS_STATUS_REG 93
H

HAL 25, 31, 35, 38, 157
HAL Computer Systems 23, 38, 67, 137
hex 102

I

I/O register 92

I/O registers 25, 92

IE 162

IEEE 94

IEEE 754 24, 33, 101

IEEE 754-1985 26

IEEE Standard 754-1985 26, 94
IEEE Std 754-1985 24, 91, 95
IEEE Std. 754-1985 27
illegal_instructio 32

illegal_instruction 23, 27, 31, 32, 34, 95, 99

IMPDEP1 35, 103
IMPDEP2 35, 103
IMPL. DEP 162

172 Implementation Characteristics of Current SPARC-V9-Based Products

2/9/99

SPARC International INDEX
impl. dep 96 Non-faulting 37
implementation-dependent 108 Non-faulting Load 107
Index 19 non-faulting loads 163
instruction_access_error 97 non-privileged mode 28
instruction_access. MMU_miss 30 Non-Restricted 28
internal_processor_error 30 nonstandard mode 24
Interrupt 97 NOP 33, 34, 102, 107
interrupt 98 nop 90

interrupt_vector 98 not_illegal 90

Introduction 19 NR 28

10_parity 30 NS 26, 94

IU 24, 26, 90, 94 NWINDOW 40

IU registers 24 NWINDOWS 24, 90, 163
J NWINDOWS-1 40, 163
JEDEC 34, 102, 157 O

JMPL 39, 109 Opcode 165

K organization 19

Kernel 23 OTHERWIN 163

kernel 24 overflowing 34

L P

Latency 38 PA_watchpoint 98

1d 90 Partial Store Order 36, 106
LDD 23, 25, 31, 105 PC 109

LDDA 35, 105 PEF 162

ldda 23 PERF_CONTROL_REG 93
LDDF 35, 105 PERF_COUNTER 93
LDDF_mem_address_not_aligned 35, 105 PIDO 162

LDDFA 35, 105 PID1 162

LDQF 36, 43, 89, 106 PIL 29
LDQF_mem_address_not_aligned 30, 36, 106 PO 28

LDQFA 36, 43, 89, 106 POPC 43, 89

LE 28 popc 23

Load/Store ordering 36 POR 31

loads 109 Power-on Reset 31

LSO 36 precise 30

M Preface 19

M 38 PREFETCH 33, 102
mask-level 34 Prefetch 34, 37, 107
MAXTL 97, 99 PREFETCHA 33, 102
mem_address_not_aligned 29, 97 prgorammed_emulation_trap 30
MM 37, 162 PRIV 162

MMU 25, 28, 37, 107 privileged status 25
multiprocessor 38 privileged_action 28

N privileged_opcode 90
no-fault-only 99 processor cycles 34
non-cacheable 92, 109 Program Order 28

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 173

SPARC International

INDEX

PSO 36, 106

PSTATE 39, 40, 109, 110, 162, 163, 166
PSTATE.AM 39, 109
PSTATE.IE 29, 97
PSTATE.MM 38, 108
PSTATE.PID 39
PSTATE.PIDO 110, 162
PSTATE.PID1 39, 110, 162
PSTATE.PRIV 28, 96
PSTATE.RED 97

purpose 19

Q

quad operands 23
quadword-aligned 36

R

r LDD 35

r Relaxed Memory Orde 36
RDASR 32, 100

RDPC 39, 109

RDPR 27, 95, 167

rdpr 90

RED 162

RED_alert 30
RED_MODE 37
RED_state 36, 37, 106, 107
Relaxed Memory Order 36, 106
Reset trap 98

reset trap 98

RESTORED 40, 90, 163
RETRY 90
RIVILEGED_OPCODE_HANDLER 90
RMO 36, 106, 108
rounding 33

RSTVaddr 37, 106, 107

S

SAVED 90

second-sourced chip 34
sequence_error 27
SET_SOFTIN 101
SET_SOFTINT 93

setx 90

SIR 25

SIR_enable 37, 107, 165
SOFTINT_REG 93, 101
Software 25

Software Installation 19

SP 91,92
SPARC 89, 90

SPARC International 23, 34, 67, 89, 102, 137,

157
Sparc6 28
SPARC64 25, 27, 28, 30, 31, 35, 38, 157

Sparc64 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 67, 137
Sparc64 Processor User Guide 35

SPARC-V9 26, 28, 30, 38, 39, 40, 97, 98, 109

Sparc-V9 23, 28

srl 90

State Control Register 25
STD 23, 25, 31, 35, 105
std 23

STDA 35, 105

stda 23

STDF 36, 105, 106

STDF_mem_address_not_aligned 36, 105, 106

STDFA 36, 105, 106

STO 36

store 109

Store ordering 36

STP 1030BGA 43
STQD_mem_address_not_aligned 30
STQF 36, 43, 89, 106

STQF_mem_address_not_aligned 36, 106

STQFA 36, 43, 89, 106
subcc 90

SUN 89, 113

Sun Microsystems 157
Sun Microsystems, Inc 89
SWAP 165

T

TEM 26, 27, 95

TICK 34, 102
TICK.counter 102
TICK_CMPR_REG 93
tininess 24, 33

TL 39, 99, 109, 162
TLE 162

TNPC 39

TPC 29, 39

Trap precision 97
Trapped Underflow 24
TSTAT 162

174 Implementation Characteristics of Current SPARC-V9-Based Products

2/9/99

SPARC International

INDEX

TSTATE 39, 40, 109, 110, 162

TT 30, 98

U

UFM=0 24

UFM=1 24

UltraSPARC 157

ULTRASPARCII 89, 113

UltraSPARC II 157

Ultra-SPARC-1 43

UltraSPARC-I 43

UltraSPARC-II 89, 91, 92, 93, 94, 95, 96, 97, 98,
99, 100, 101, 102, 103, 105, 106, 107,
108, 109, 110

unfinished_FPop 27, 29

unimplemented exception 24

unimplemented_FPop 23

unimplemented_LDD 23, 25, 35, 105

unimplemented_STD 23, 25, 35, 105

Untrapped Underflow 24

A%

V (Vendor-specific) 28

VA_watchpoint 98

Vendor-specific 28

VER.impl 26, 93, 157

VER.manuf 34, 102, 157

W

watchdog 31

Watchdog reset 31

watchdog_reset 99

WDR 31

Window State Registers 163

WRASR 25, 32, 100, 101, 165, 166

Write State Register 165, 166

write-only register 25

X

XIR 37

xor 32, 100

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products

175

