
Implementation Characteristics

of Current SPARC-V9 -based Products

V9
SPARC INTERNATIONAL

Version: 2-9-99

© 1998 SPARC International Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of
the copyright owners.

Any comments relating to the material contained herein may be submitted to:

SPARC International Inc.

3333 Bowers Ave., Suite 280

Santa Clara, CA 95054-2913

TEL (408) 748-9111

FAX (408) 748-9777

ATTN: Ghassan Abbas (abbas@sparc.com)

Trademarks

SPARC® is a registered trademark of SPARC International, Inc.

SPARCstation™, UltraSPARC, SPARC 64 are trademark of SPARC International, Inc.

Products bearing SPARC® trademarks are based on an architecture developed by Sun Microsystems, Inc.

ONC™, Solaris and SunOS™ are trademarks of Sun Microsystems, Inc.

NFS® is a registered trademark of Sun Microsystems, Inc.

All other products or services mentioned in this document are identified by the trademarks or service marks of their
respective companies or organizations. SPARC International, Inc. disclaims any responsibility for specifying which
trademarks are owned by which companies or organizations.

SPARC International TABLE OF CONTENTS

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 5

Preface 19

Audience and Purpose 19

Organization and Content 19

CHAPTER 1: HAL SPARC64 23

0. Introduction 23

1. Software emulated instructions 23

2. Number of IU registers 24

3. Incorrect IEEE Std 754-1985 results 24

4-5. Reserved 25

6. I/O registers privileged status 25

7. I/O register definitions 25

8-9. RDASR/WRASR target registers and privileged status 25

10-12 Reserved 25

13. VER.impl 26

14-15 Reserved 26

16. IU deferred-trap queue 26

17. Reserved 26

18. Nonstandard IEEE 754-1985 results 26

19. FPU version, FSR.ver 26

20-21. Reserved 26

22. FPU TEM, cexc, and aexc 26

23. Floating-point traps 27

24. FPU deferred-trap queue (FQ) 27

25. RDPR of FQ with nonexistent FQ 27

26-28. Reserved 27

29,30. Address space identifier (ASI) definitions and ASI address decoding 27

31. Catastrophic error exceptions 29

32. Deferred traps 29

33. Trap precision 29

34. Interrupt clearing 29

35,36. Implementation-dependent traps and priorities 30

37. Reset trap 31

38. Effect of reset trap on implementation-dependent registers 31

 39. Entering error_state on implementation-dependent errors 31

40. Error_state processor state 31

41. Reserved 31

42. FLUSH instruction 31

43. Reserved 32

44. Data access FPU trap 32

45-46. Reserved 32

47. RDASR 32

6 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International TABLE OF CONTENTS

48. WRASR 32

49-54 Reserved 33

55. Floating-point underflow detection 33

56-100. Reserved 33

101. Maximum trap level 33

102. Clean window trap 33

103. Prefetch instructions 33

104. VER.manuf 34

105. TICK register 34

106. IMPDEPn instructions 35

107. Unimplemented LDD trap 35

108. Unimplemented STD trap 35

109. LDDF_mem_address_not_aligned 35

110. STDF_mem_address_not_aligned 36

111. LDQF_mem_address_not_aligned 36

112. STQF_mem_address_not_aligned 36

113. Implemented memory models 36

114. RED_state trap vector address (RSTVaddr) 36

115. RED_state processor state 37

116. SIR_enable control flag 37

117. MMU disabled prefetch behavior 37

118. Identifying I/O locations 38

119. Unimplemented values for PSTATE.MM 38

120. Coherence and atomicity of memory operations 38

121. Implementation-dependent memory model 38

122. FLUSH latency 38

123. Input/output (I/O) semantics 39

124. Implicit ASI when TL>0 39

125. Address masking 39

126. TSTATE bits 19:18 39

127. PSTATE bits 11:10 39

128. CLEANWIN register update 40

CHAPTER 2: SUN ULTRASPARC 43

1. Software emulation of instructions 43

2. Number of IU registers 44

3. Incorrect IEEE Std 754-1985 results 44

6. I/O registers privileged status 45

7. I/O register definitions 45

8. RDASR/WRASR target registers 46

9. RDASR/WRASR privileged status 46

10 - 12. Reserved 47

SPARC International TABLE OF CONTENTS

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 7

13. VER.impl 47

14 - 15. Reserved 47

16. IU deferred-trap queue 47

17. Reserved 48

18. Nonstandard IEEE 754-1985 results 48

19. FPU version, FSR.ver 48

20 - 21. Reserved 48

22. FPU TEM. cexc. and aexc 48

23. Floating-point traps 48

24. FPU deferred-trap queue (FQ) 49

25. RDPR of FQ with nonexistent FQ 49

26 - 28. Reserved 49

29 Address space identifier (ASI) definitions 49

30. ASI address decoding 50

31. Catastrophic error exceptions 50

32. Deferred traps 50

33. Trap precision 51

34. Interrupt clearing 51

35. Implementation-dependent traps 51

36. Trap priorities 52

37. Reset trap 52

38. Effect of reset trap on implementation-dependent registers 52

39. Entering error_state on implementation-dependent errors 52

40. Error_state processor state 53

41. Reserved 53

42. FLUSH instruction 53

43. Reserved 53

44. Data access FPU trap 53

45-46. Reserved 54

47. RDASR 54

48. WRASR 54

49-54. Reserved 54

55. Floating-point underflow detection 54

56 - 100. Reserved 55

101. Maximum trap level 55

102. Clean window trap 55

103. Prefetch instructions 55

104. VER.manuf 55

105. TICK register 56

106. IMPDEP1 instructions 56

107. Unimplemented LDD trap 58

108. Unimplemented STD trap 58

8 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International TABLE OF CONTENTS

109. LDDF_mem_address_not_aligned 59

110. STDF_mem_address_not_aligned 59

111. LDQF_mem_address_not_aligned 59

112. STQF_mem_address_not_aligned 59

113. Implemented memory models 60

114. RED_state trap vector address (RSTVaddr) 60

115. RED_state processor state 60

116. SIR_enable control flag 60

117. MMU disabled prefetch behavior 61

118. Identifying I/O locations 61

119. Unimplemented values for PSTATE.MM 61

120. Coherence and atomicity of memory operations 61

121. Implementation-dependent memory model 62

122. FLUSH latency 62

123. Input/output (I/O) semantics 62

124. Implicit ASI when TL>0 62

125. Address masking 63

126. TSTATE bits 19:18 63

127. PSTATE bits 11:10 63

CHAPTER 3: HAL SPARC64-II 67

0. Introduction 67

1. Software emulated instructions 67

2. Number of IU registers 68

3. Incorrect IEEE Std 754-1985 results 68

4-5. Reserved 68

6. I/O registers privileged status 68

7. I/O register definitions 69

8,9. RDASR/WRASR target registers and privileged status 69

10-12 Reserved 70

13. VER.impl 70

14-15 Reserved 70

16. IU deferred-trap queue 70

17. Reserved 70

18. Nonstandard IEEE 754-1985 results 70

19. FPU version, FSR.ver 71

20-21. Reserved 71

22. FPU TEM, cexc, and aexc 71

23. Floating-point traps 71

24. FPU deferred-trap queue (FQ) 71

25. RDPR of FQ with nonexistent FQ 72

26-28. Reserved 72

SPARC International TABLE OF CONTENTS

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 9

29,30. Address space identifier (ASI) definitions and ASI address decoding 72

31. Catastrophic error exceptions 73

32. Deferred traps 73

33. Trap precision 74

34. Interrupt clearing 74

35,36. Implementation-dependent traps and priorities 74

37. Reset trap 75

38. Effect of reset trap on implementation-dependent registers 75

 39. Entering error_state on implementation-dependent errors 75

40. Error_state processor state 76

41. Reserved 76

42. FLUSH instruction 76

43. Reserved 76

44. Data access FPU trap 76

45-46. Reserved 77

47. RDASR 77

48. WRASR 77

49-54 Reserved 77

55. Floating-point underflow detection 77

56-100. Reserved 78

101. Maximum trap level 78

102. Clean window trap 78

103. Prefetch instructions 78

104. VER.manuf 79

105. TICK register 79

106. IMPDEPn instructions 80

107. Unimplemented LDD trap 80

108. Unimplemented STD trap 80

109. LDDF_mem_address_not_aligned 81

110. STDF_mem_address_not_aligned 81

111. LDQF_mem_address_not_aligned 81

112. STQF_mem_address_not_aligned 81

113. Implemented memory models 82

114. RED_state trap vector address (RSTVaddr) 82

115. RED_state processor state 82

116. SIR_enable control flag 83

117. MMU disabled prefetch behavior 83

118. Identifying I/O locations 83

119. Unimplemented values for PSTATE.MM 83

120. Coherence and atomicity of memory operations 83

121. Implementation-dependent memory model 84

122. FLUSH latency 84

10 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International TABLE OF CONTENTS

123. Input/output (I/O) semantics 84

124. Implicit ASI when TL>0 84

125. Address masking 85

126. TSTATE bits 19:18 85

127. PSTATE bits 11:10 85

128. CLEANWIN register update 85

CHAPTER 4: SUN ULTRASPARC II 89

1. Software emulation of instructions 89

2. Number of IU registers 90

3. Incorrect IEEE Std 754-1985 results 91

4-5. Reserved 92

6. I/O registers privileged status 92

7. I/O register definitions 92

8. RDASR/WRASR target registers 92

9. RDASR/WRASR privileged status 93

10-12. Reserved 93

13. VER.impl 93

14-15. Reserved 94

16. IU deferred-trap queue 94

17. Reserved 94

18. Nonstandard IEEE 754-1985 results 94

19. FPU version, FSR.ver 94

20-21. Reserved 94

22. FPU TEM, cexc, and aexc 95

23. Floating-point traps 95

24. FPU deferred-trap queue (FQ) 95

25. RDPR of FQ with nonexistent FQ 95

26-28. Reserved 95

29. Address space identifier (ASI) definitions 96

30. ASI address decoding 96

31. Catastrophic error exceptions 97

32. Deferred traps 97

33. Trap precision 97

34. Interrupt clearing 97

35. Implementation-dependent traps 98

36. Trap priorities 98

37. Reset trap 98

38. Effect of reset trap on implementation-dependent registers 99

39. Entering error_state on implementation-dependent errors 99

40. Error_state processor state 99

41. Reserved 99

SPARC International TABLE OF CONTENTS

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 11

42. FLUSH instruction 99

43. Reserved 100

44. Data access FPU trap 100

45-46. Reserved 100

47. RDASR 100

48. WRASR 100

49-54. Reserved 101

55. Floating-point underflow detection 101

56-100. Reserved 101

101. Maximum trap level 101

102. Clean window trap 101

103. Prefetch instructions 102

104. VER.manuf 102

105. TICK register 102

106. IMPDEPn instructions 103

107. Unimplemented LDD trap 105

108. Unimplemented STD trap 105

109. LDDF_mem_address_not_aligned 105

110. STDF_mem_address_not_aligned 105

111. LDQF_mem_address_not_aligned 106

112. STQF_mem_address_not_aligned 106

113. Implemented memory models 106

114. RED_state trap vector address (RSTVaddr) 106

115. RED_state processor state 107

116. SIR_enable control flag 107

117. MMU disabled prefetch behavior 107

118. Identifying I/O locations 107

119. Unimplemented values for PSTATE.MM 108

120. Coherence and atomicity of memory operations 108

121. Implementation-dependent memory model 108

122. FLUSH latency 108

123. Input/output (I/O) semantics 109

124. Implicit ASI when TL > 0 109

125. Address masking 109

126. TSTATE bits 19:18 109

127. PSTATE bits 11:10 110

CHAPTER 5: SUN ULTRASPARC IIi 113

1. Software emulation of instructions 113

2. Number of IU registers 114

3. Incorrect IEEE Std 754-1985 results 115

4-5. Reserved 116

12 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International TABLE OF CONTENTS

6. I/O registers privileged status 116

7. I/O register definitions 116

8. RDASR/WRASR target registers 116

9. RDASR/WRASR privileged status 117

10-12. Reserved 117

13. VER.impl 117

14-15. Reserved 118

16. IU deferred-trap queue 118

17. Reserved 118

18. Nonstandard IEEE 754-1985 results 118

19. FPU version, FSR.ver 118

20-21. Reserved 118

22. FPU TEM, cexc, and aexc 119

23. Floating-point traps 119

24. FPU deferred-trap queue (FQ) 119

25. RDPR of FQ with nonexistent FQ 119

26-28. Reserved 119

29. Address space identifier (ASI) definitions 120

30. ASI address decoding 120

31. Catastrophic error exceptions 120

32. Deferred traps 121

33. Trap precision 121

34. Interrupt clearing 121

35. Implementation-dependent traps 122

36. Trap priorities 122

37. Reset trap 122

38. Effect of reset trap on implementation-dependent registers 123

39. Entering error_state on implementation-dependent errors 123

40. Error_state processor state 123

41. Reserved 123

42. FLUSH instruction 123

43. Reserved 124

44. Data access FPU trap 124

45-46. Reserved 124

47. RDASR 124

48. WRASR 124

49-54. Reserved 125

55. Floating-point underflow detection 125

56-100. Reserved 125

101. Maximum trap level 125

102. Clean window trap 125

103. Prefetch instructions 125

SPARC International TABLE OF CONTENTS

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 13

104. VER.manuf 126

105. TICK register 127

106. IMPDEPn instructions 127

107. Unimplemented LDD trap 129

108. Unimplemented STD trap 129

109. LDDF_mem_address_not_aligned 129

110. STDF_mem_address_not_aligned 130

111. LDQF_mem_address_not_aligned 130

112. STQF_mem_address_not_aligned 130

113. Implemented memory models 131

114. RED_state trap vector address (RSTVaddr) 131

115. RED_state processor state 131

116. SIR_enable control flag 131

117. MMU disabled prefetch behavior 131

118. Identifying I/O locations 132

119. Unimplemented values for PSTATE.MM 132

120. Coherence and atomicity of memory operations 132

121. Implementation-dependent memory model 132

122. FLUSH latency 133

123. Input/output (I/O) semantics 133

124. Implicit ASI when TL > 0 133

125. Address masking 133

126. TSTATE bits 19:18 134

127. PSTATE bits 11:10 134

CHAPTER 6: HAL SPARC64-III 137

0. Introduction 137

1. Software emulated instructions 137

2. Number of IU registers 137

3. Incorrect IEEE Std 754-1985 results 138

4-5. Reserved 138

6. I/O registers privileged status 138

7. I/O register definitions 138

8,9. RDASR/WRASR target registers and privileged status 139

10-12 Reserved 139

13. VER.impl 139

14-15 Reserved 140

16. IU deferred-trap queue 140

17. Reserved 140

18. Nonstandard IEEE 754-1985 results 140

19. FPU version, FSR.ver 140

20-21. Reserved 140

14 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International TABLE OF CONTENTS

22. FPU TEM, cexc, and aexc 140

23. Floating-point traps 141

24. FPU deferred-trap queue (FQ) 141

25. RDPR of FQ with nonexistent FQ 141

26-28. Reserved 141

29,30. Address space identifier (ASI) definitions and ASI address decoding 141

31. Catastrophic error exceptions 142

32. Deferred traps 142

33. Trap precision 142

34. Interrupt clearing 143

35,36. Implementation-dependent traps and priorities 143

37. Reset trap 143

38. Effect of reset trap on implementation-dependent registers 144

 39. Entering error_state on implementation-dependent errors 144

40. Error_state processor state 144

41. Reserved 144

42. FLUSH instruction 144

43. Reserved 145

44. Data access FPU trap 145

45-46. Reserved 145

47. RDASR 145

48. WRASR 145

49-54 Reserved 146

55. Floating-point underflow detection 146

56-100. Reserved 146

101. Maximum trap level 146

102. Clean window trap 146

103. Prefetch instructions 146

104. VER.manuf 147

105. TICK register 148

106. IMPDEPn instructions 148

107. Unimplemented LDD trap 148

108. Unimplemented STD trap 148

109. LDDF_mem_address_not_aligned 149

110. STDF_mem_address_not_aligned 149

111. LDQF_mem_address_not_aligned 149

112. STQF_mem_address_not_aligned 149

113. Implemented memory models 150

114. RED_state trap vector address (RSTVaddr) 150

115. RED_state processor state 150

116. SIR_enable control flag 150

117. MMU disabled prefetch behavior 151

SPARC International TABLE OF CONTENTS

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 15

118. Identifying I/O locations 151

119. Unimplemented values for PSTATE.MM 151

120. Coherence and atomicity of memory operations 151

121. Implementation-dependent memory model 151

122. FLUSH latency 152

123. Input/output (I/O) semantics 152

124. Implicit ASI when TL>0 152

125. Address masking 152

126. TSTATE bits 19:18 153

127. PSTATE bits 11:10 153

128. CLEANWIN register update 153

APPENDIX A: VER.impl/VER.manuf 157

APPENDIX B: SPARC V9 Arch Book Changes 161

Change to page 13 161

Change to page 21(r142) 161

Change to page 28(r142) 161

Change to page 30(r142) 161

Change to page 40(r142), 161

Change to page 51 162

Change to page 52(r142) 162

Change to page 55(r142) 162

Change to page 56(r142) 162

Change to page 57(r142) 163

Change to page 58-9(r142) 163

Change to page 76, 163

Change to page 80(r142), 6.3.6.4(r142) 163

Change to page 81(r141/r142): 163

Change to page 81(r141/r142): 163

Change to page 121(r141/r142): 163

Change to page 151(r142), A.9(r142), 164

Change to page 171 164

Change to page 181(r141/r142): 164

Change to page 191(r141/r142): 164

Change to page 195(r141/r142): 164

Change to page 212(r14[123]) A.43(r14[12])/A.44(r143), 164

Change to page 216(r142), A.46(r142), 164

Change to page 220(r142)/A.49(r142) 165

Change to page 228(r141/r142): 165

Change to page 229(r142)/A.55(r142), 165

16 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International TABLE OF CONTENTS

Change to page 231(r142)/233(r143), 165

Change to page 234, A.58(r14[12])/A.59(r143) 165

Change to page 241(r142), A.62(r142), 165

Change to page 242(r142), A.62(r142) 166

Change to page 253(r142) 166

Change to page 253(4142) 166

Change to page 255(r142) 166

Change to page 258(r142) 166

Change to page 268(r142) 167

Change to page 290(r142) 167

Change to page 312(r142) 167

Preface

V9

SPARC International PREFACE

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 19

Preface

Audience and Purpose

The SPARC International Implementation Characateristics of Current SPARC-V9-based Prod-

ucts is intended as companion to the SPARC Architecture Book Version 9.

Organization and Content

This document has been divided as follows

Table of Content

Preface

Chapter 1: HAL SPARC64

Chapter 2: SUN ULTRASPARC

Chapter 3: HAL SPARC64-II

APPENDIX A: VER.impl/VER.manuf

APPENDIX B: SPARC V9 Arch Book Changes

Index

20 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International PREFACE

Chapter 1: HAL Implementation of V9 Architecture

SPARC 64

V9
SPARC INTERNATIONAL

SPARC International SPARC 64

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 23

CHAPTER 1: HAL SPARC64

0. Introduction

This document describes the implementation details of the SPARC64TM processor developed

by HAL Computer Systems. The items listed below correspond to the implementation depen-

dencies as listed in the text and by number in Appendix C of “The SPARC Architecture Man-

ual - Version 9” by SPARC International, along with the description of the implementation

dependency. The “Implementation” section for each item describes the implementation on the

SPARC64 processor.

1. Software emulated instructions

Description: Whether an instruction is implemented directly by hardware, simulated by

software, or emulated by firmware is implementation-dependent.

Implementation: SPARC64 does not implement the following instructions in hardware:

All floating point instructions with quad operands or results

These operations will take an fp_exception_other trap with FSR.ftt =

unimplemented_FPop. The kernel will then emulate the quad operation and

store the result into a quad-aligned set of floating-point registers as defined

by SPARC-V9 manual.

fsqrtd, fsqrts: Executing these instructions will cause a fp_exception_other

exception with FSR.ftt = unimplemented_FPop. In this case kernel emula-

tion routines are provided to complete the instructions.

flush: This instruction will cause an illegal_instruction trap if executed.

Kernel emulation routines will be provided to flush the cache line from the

data cache and invalidate any matching cache lines in the instruction cache.

ldd, ldda, std, stda: Executing these instructions in normal mode would

generate unimplemented_LDD and unimplemented_STD trap. Kernel emu-

lation routines will be provided to complete the instructions. SPARC64

also implements a special accelerated emulation trap handling for certain

LDD and STD instructions, if a special mode is chosen.

popc: This instruction will cause an illegal_instruction trap if executed.

SPARC International SPARC 64

24 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Kernel emulation routines will be provided to complete the action.

2. Number of IU registers

Description: An implementation of the IU may contain from 64 to 258 general purpose

64 bit r registers. This corresponds to a grouping of the registers into two

sets of eight global r registers, plus a circular stack of from three to 32 sets

of 16 registers each, known as register windows. Since the number of regis-

ter windows present (NWINDOWS) is implementation-dependent, the

total number of registers is also implementation-dependent.

Implementation: SPARC64 implements 4 16-register sets (windows) in hardware. Thus

there are a total of 80 integer registers visible to software. They are:

8 global registers

8 alternate global registers

4 windows of 16 registers each (=64 registers)

3. Incorrect IEEE Std 754-1985 results

Description: An implementation may indicate that a floating-point instruction did not

produce a correct ANSI/IEEE Standard 754-1985 result by generating a

special floating-point unfinished or unimplemented exception. In this case,

privileged mode software shall emulate any functionality not present in the

hardware.

Implementation: SPARC64 in conjunction with the kernel emulation code produces the cor-

rect IEEE 754 results required in this section.

1)Traps Inhibit Results

SPARC64 in conjunction with the kernel emulation code produces results

required.

2)Trapped Underflow Definition (UFM=1)

SPARC64 detects “tininess” before rounding as recommended.

3) Untrapped Underflow Definition (UFM=0)

SPARC64 meets these requirements with some help from the kernel divide

fixup code.

4) Floating-Point Non standard Mode

SPARC64 FPU is “standard”, and therefore does not support a nonstandard

mode.

SPARC International SPARC 64

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 25

4-5. Reserved

6. I/O registers privileged status

Description: Whether I/O registers can be accessed by non privileged code is implemen-

tation-dependent.

Implementation: In SPARC64 some I/O registers can be accessed by non privileged code.

7. I/O register definitions

Description: The contents and addresses of I/O registers are implementation-dependent.

Implementation: Please contact HAL for details of I/O registers.

8-9. RDASR/WRASR target registers and privileged status

Description: Software can use read/write ancillary state register instructions to read/

write implementation-dependent processor registers (ASRs 16-31).

Whether each of the implementation-dependent read/write ancillary state

register instructions (for ASRs 16-31) is privileged is implementation

dependent.

Implementation: SPARC64 implements 7 implementation-dependent ASR registers. LDD

Trap Base Address (ASR24) This privileged read/write register specifies a

special trap base address for some unimplemented_LDD and

unimplemented_STD traps. Instruction Emulation Register (ASR25) This

read only register is written by CPU on a trap for a LDD/STD that uses the

LDD Trap Base Address described above. Data Breakpoint Register

(ASR26) This privileged write-only register is used to trap any data

accesses to a double word aligned breakpoint address. Software Initiated

Reset (ASR27) A write to this register with a WRASR instruction will

cause a software initiated reset (SIR). An SIR is a precise trap. ASR27 is

privileged and write-only. Fault Address Register (ASR28) and Fault

Access Type (ASR29) These registers facilitate the handling of traps that

involve a data memory access. The registers are privileged and read-only.

System software must take care to read these registers on entry to a fault

handler before any other fault can occur that would overwrite them. State

Control Register (ASR31) ASR31 is a 16bit implementation specific regis-

ter that contains a set of flags for controlling the state of the CPU, MMU

and Caches. The register is privileged and can be read/written.

10-12 Reserved

SPARC International SPARC 64

26 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

13. VER.impl

Description: VER.impl uniquely identifies an implementation or class of software-com-

patible implementations of the architecture. Values FFF0(hex)..FFFF(hex)

are reserved and are not available for assignment.

Implementation: SPARC64 uses a version number of 1.

14-15 Reserved

16. IU deferred-trap queue

Description: The existence, contents, and operation of an IU deferred-trap queue are

implementation-dependent; it is not visible to user application programs

under normal operating conditions

Implementation: SPARC64 does not need and therefore does not implement an IU deferred-

trap queue.

17. Reserved

18. Nonstandard IEEE 754-1985 results

Description: Bit 22 of the FSR, FSR_nonstandard_fp (NS), when set to 1, causes the

FPU to produce implementation-defined results that may not correspond to

IEEE Standard 754-1985.

Implementation: SPARC64 FPU is “standard”, and therefore does not support a nonstandard

mode.

19. FPU version, FSR.ver

Description: Bits 19:17 of the FSR, FSR.ver, identify one or more implementations of

the FPU architecture.

Implementation: SPARC64 uses the value of 0 for this field.

20-21. Reserved

22. FPU TEM, cexc, and aexc

Description: An implementation may choose to implement the TEM, cexc, and aexc

fields in hardware in either of two ways (see section 5.1.7.11 of SPARC-V9

SPARC International SPARC 64

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 27

Architecture Manual for details).

Implementation: SPARC64 implements TEM, cexc and aexc fields of FSR conforming to

IEEE Std. 754-1985.

23. Floating-point traps

Description:

Floating point traps may be precise or deferred. If deferred, a floating point deferred-trap

queue (FQ) must be present.

Implementation: The only deferred traps in SPARC64 are: fp_exception_other (ftt =

unfinished_FPop) for FDIV with unusual arguments and the

data_breakpoint trap. SPARC64 does not need a floating-point deferred-

trap queue because the FDIV that caused the trap is the only deferred

instruction.

24. FPU deferred-trap queue (FQ)

Description: The presence, contents of, and operations on the floating-point deferred-

trap queue (FQ) are implementation-dependent.

Implementation: SPARC64 does not have or need a floating-point deferred-trap queue.

25. RDPR of FQ with nonexistent FQ

Description: On implementations without a floating-point queue, an attempt to read the

FQ with an RDPR instruction shall cause either an illegal_instruction

exception or an fp_exception_other exception with FSR.ftt set to 4

(sequence_error).

Implementation: A RDPR of %FPQ instruction will cause an illegal_instruction trap.

26-28. Reserved

29,30. Address space identifier (ASI) definitions and ASI address decoding

Description: The following ASI assignments are implementation-dependent: restricted

ASIs (all values hex) 00..03, 05..0B, 0D..0F, 12..17, and 1A..7F; and unre-

stricted ASIs C0..FF.

An implementation may choose to decode only a subset of the 8-bit ASI

specifier; however, it shall decode at least enough of the ASI to distinguish

ASI_PRIMARY, ASI_PRIMARY_LITTLE,

ASI_AS_IF_USER_PRIMARY,

ASI_AS_IF_USER_PRIMARY_LITTLE, ASI_PRIMARY_NOFAULT,

SPARC International SPARC 64

28 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

ASI_PRIMARY_NOFAULT_LITTLE, ASI_SECONDARY,

ASI_SECONDARY_LITTLE, ASI_AS_IF_USER_SECONDARY,

ASI_AS_IF_USER_SECONDARY_LITTLE,

ASI_SECONDARY_NOFAULT, and

ASI_SECONDARY_NOFAULT_LITTLE. If ASI_NUCLEUS and

ASI_NUCLEUS_LITTLE are supported (impl. dep. #124), they must be

decoded also. Finally, an implementation must always decode ASI bit<7>

while PSTATE.PRIV = 0, so that an attempt by nonprivileged software to

access a restricted ASI will always cause a privileged_action exception.

Implementation: The encoding of ASIs in the SPARC64 processor is shown below:

 NR (Non-Restricted). This bit conforms to SPARC-V9 definition. An

attempt to use a restricted ASI in non-privileged mode results in a

privileged_action trap.

V (Vendor-specific). This bit conforms to SPARC-V9 definition for non-

restricted ASIs that are implementation-dependent (0xc0 - 0xff). This bit

will be set in all ASIs that are specific to SPARC64.

PO (Program Order). An instruction using an ASI with this bit set is exe-

cuted by SPARC64 strictly in program order.

AS_IF. This bit conforms to SPARC-V9 requirement that there be an

implementation specific ASI encoding that allows the corresponding access

to be made as if the CPU were executing in non-privileged mode, indepen-

dent of PSTATE.PRIV.

LE. This bit conforms to SPARC-V9 definition of ASIs that specify little-

endian byte ordering. If this bit is set to zero, the access is done using big-

endian byte ordering.

M2..M0. These bits are interpreted by the SPARC64 MMU.

SPARC64 does not support a nucleus context and hence does not decode

ASI_NUCLEUS and ASI_NUCLEUS_LITTLE.

NR V (M3) PO AS_IF LE M2 M1 M0

 7 6 5 4 3 2 1 0

SPARC International SPARC 64

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 29

31. Catastrophic error exceptions

Description: The causes and effects of catastrophic error exceptions are implementation-

dependent. They may cause precise, deferred or disrupting traps.

Implementation: An internal CPU watchdog time-out occurs after no instruction has been

committed for 2**n cycles (n can be scan initialized to one of

{12,14,16,18,19,20,21,22,24}, with 24 being the default value). This would

take the processor into error state.

32. Deferred traps

Description: Whether any deferred traps (and associated deferred-trap queues) are

present is implementation-dependent.

Implementation: SPARC64 implements a deferred trap for the following trap types:

fp_exception_other (when FSR.ftt = unfinished_FPop).

data_breakpoint.

Deferred trap queues are not necessary, since the trapping instruction is the

only deferred instruction.

33. Trap precision

Description: Exceptions that occur as the result of program execution may be precise or

deferred, although it is recommended that such exceptions be precise.

Examples include mem_address_not_aligned and division_by_zero.

Implementation: SPARC64 will generate a precise trap for all traps induced by instruction

execution, except for unfinished_FPop, data_breakpoint and

Chip_crossing_errors (CPU_xing).

34. Interrupt clearing

Description: How quickly a processor responds to an interrupt request and the method

by which an interrupt request is removed are implementation-dependent.

Implementation: When SPARC64 is ready to accept an interrupt signal (based on

PSTATE.IE and the PIL), it stops issuing instructions and waits for the

CPU to quiesce. It then issues instructions from the corresponding trap

handler if the interrupt condition is still valid. The TPC points to the

instruction that would have executed in the absence of the interrupt. All

instructions prior to the TPC have completed and all instructions including

and subsequent to TPC remain unexecuted.

SPARC International SPARC 64

30 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

35,36. Implementation-dependent traps and priorities

Description: Trap type (TT) values 060(hex)..07f(hex) are reserved for implementation-

dependent exceptions. The existence of implementation_dependent_n traps

and whether any that do exist are precise, deferred, or disrupting is imple-

mentation-dependent.

The priorities of the particular traps are relative and are implementation-

dependent, because a future version of the architecture may define new

traps, and implementations may define implementation-dependent traps

that establish new relative priorities.

Implementation: The following trap types defined by SPARC-V9 are not used in SPARC64.

SPARC64 defines the following implementation-dependent trap types.

trap not used in SPARC64

instruction_access_MMU_miss

internal_processor_error

data_access_MMU_miss

LDQF_mem_address_not_aligned

STQD_mem_address_not_aligned

async_data_error

tt (in Hex) Trap priority type

0x60 prgorammed_emulation_trap 6 precise

0x61 data_breakpoint 14 deferred

0x62 IO_parity 2 precise

0x63 RED_alert 2 disrupting

0x64 CPU_xing 2 disrupting

0x65 Watchdog 1 disrupting

0x66 ECC_trap 2 precise

SPARC International SPARC 64

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 31

SPARC64 implements a special accelerated emulation trap for certain LDD

and STD instructions.

37. Reset trap

Description: Some of a processor’s behavior during a reset trap is implementation-

dependent.

Implementation: Power-on Reset (POR) and Watchdog reset (WDR) are implemented by

scanning in the reset state on SPARC64.

38. Effect of reset trap on implementation-dependent registers

Description: Implementation-dependent registers may or may not be affected by the var-

ious reset traps.

Implementation: None of the implementation-dependent registers are affected by reset traps

in SPARC64.

39. Entering error_state on implementation-dependent errors

Description: The processor may enter error_state when an implementation-dependent

error condition occurs.

Implementation: An internal CPU watchdog time-out occurs after no instruction has been

committed for 2**n cycles (n can be scan initialized to one of

{12,14,16,18,19,20,21,22,24}, with 24 being the default value). This would

take the processor into error state.

40. Error_state processor state

Description: What occurs after error_state is entered is implementation-dependent, but it

is recommended that as much processor state as possible be preserved upon

entry to error_state.

Implementation: On entry to error state, SPARC64 asserts the output signal CPU_HALTED.

The clock chip in the HAL system stops the clocks to the CPU in response

to this signal. A scan out of processor state could be performed at this stage

for diagnosis.

41. Reserved

42. FLUSH instruction

Description: If flush is not implemented in hardware, it causes an illegal_instruction

SPARC International SPARC 64

32 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

exception and its function is performed by system software. Whether

FLUSH traps is implementation-dependent.

Implementation: SPARC64 takes an illegal_instruction trap when a FLUSH instruction is

executed.

43. Reserved

44. Data access FPU trap

Description: If a load floating-point instruction traps with any type of access error

exception, the contents of the destination floating-point register(s) either

remain unchanged or are undefined.

Implementation: Contents of destination floating-point register(s) remain unchanged.

45-46. Reserved

47. RDASR

Description: RDASR instructions with rd in the range 16..31 are available for imple-

mentation-dependent uses (impl. dep #8).For an RDASR instruction with

rs1 in the range 16..31, the following are implementation-dependent: the

interpretation of bits 13:0 and 29:25 in the instruction, whether the instruc-

tion is privileged (impl. dep. #9), and whether it causes an

illegal_instruction trap.

Implementation: See items 8,9 for details. SPARC64 causes an illegal_instruction trap for

reads of the unused ASR values.

48. WRASR

Description: WRASR instructions with rd in the range 16..31 are available for imple-

mentation-dependent uses (impl. dep. #8). For a WRASR instruction with

rd in the range 16..31, the following are implementation-dependent: the

interpretation of bits 18:0 in the instruction, the operation(s) performed (for

example, xor) to generate the value written to the ASR, whether the

instruction is privileged (impl. dep. #9), and whether it causes an

illegal_instruction trap.

Implementation: See items 8,9 for details. SPARC64 causes an illegal_instruction trap for

writes of the unused ASR values.

SPARC International SPARC 64

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 33

49-54 Reserved

55. Floating-point underflow detection

Description: Whether “tininess” (in IEEE 754 terms) is detected before or after round-

ing is implementation-dependent. It is recommended that tininess be

detected before rounding.

Implementation: SPARC64 detects “tininess” before rounding.

56-100. Reserved

101. Maximum trap level

Description: It is implementation-dependent how many additional levels, if any, past

level 4 are supported.

Implementation: SPARC64 implements 4 levels of traps.

102. Clean window trap

Description: An implementation may choose either to implement automatic “cleaning”

of register windows in hardware, or generate a clean_window trap, when

needed, for window(s) to be cleaned by software.

Implementation: SPARC64 generates a clean_window trap, when needed, for windows to be

cleaned by software.

103. Prefetch instructions

Description: The following aspects of the PREFETCH and PREFETCHA instructions

are implementation-dependent: (1) whether they have an observable effect

in privileged code; (2) whether they can cause a data_access_MMU_miss

exception; (3) the attributes of the block of memory prefetched: its size

(minimum = 64 bytes) and its alignment (minimum = 64-byte alignment);

(4) whether each variant is implemented as a NOP, with its full semantics,

or with common-case prefetching semantics; (5) whether and how variants

16..31 are implemented.

Implementation: (1) PREFETCH and PREFETCHA have identical affects in privileged or

non-privileged code.

(2) Can not cause a data_access_MMU_miss exception

(3) Size and alignments are 128-bytes

SPARC International SPARC 64

34 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

(4),(5) See table-1

104. VER.manuf

Description: VER.manuf contains a 16-bit semiconductor manufacturer code. This field

is optional, and if not present reads as zero. VER.manuf may indicate the

original supplier of a second-sourced chip in cases involving mask-level

second-sourcing. It is intended that the contents of VER.manuf track the

JEDEC semiconductor manufacturer code as closely as possible. If the

manufacturer does not have a JEDEC semiconductor manufacturer code,

SPARC International will assign a VER.manuf value.

Implementation: SPARC64 uses a code of 4 for this field. This is Fujitsu’s JEDEC code.

105. TICK register

Description: The difference between the values read from the TICK register on two

reads should reflect the number of processor cycles executed between the

reads. If an accurate count cannot always be returned, an inaccuracy should

be small, bounded, and documented. An implementation my implement

fewer than 63 bits in TICK.counter; however, the counter as implemented

must be able to count for at least 10 years without overflowing. Any upper

bits not implemented must be read as zero.

Implementation: SPARC64 implements all the bits of TICK register and returns accurate

count of the processor cycles, in response to reads from TICK register.

Table 1: Prefetch Data

fcn V9 Prefetch Function SPARC64 Function

 0 Prefetch for several reads Prefetch for read

 1 Prefetch for one read Prefetch for read

 2 Prefetch for several writes Prefetch for write

 3 Prefetch for one write Prefetch for write

 4 Prefetch page Prefetch for read

 5-15 Reserved illegal_instruction trap

 16-31 Implementation dependent NOP

SPARC International SPARC 64

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 35

106. IMPDEPn instructions

Description: The IMPDEP1 and IMPDEP2 instructions are completely implementation-

dependent. Implementation-dependent aspects include their operation, the

interpretation of bits 29:25 and 18:0 in their encoding, and which (if any)

exceptions they may cause.

Implementation: SPARC64 uses IMPDEP2 to encode the HAL specific Floating Point Mul-

tiply-Add/Subtract instructions. IMPDEP1 is not used and will cause an

illegal_instruction trap if such an opcode is encountered. Please refer to

SPARC64 Processor User Guide for more details.

107. Unimplemented LDD trap

Description: It is implementation-dependent whether LDD and LDDA are implemented

in hardware. If not, an attempt to execute either will cause an

unimplemented_LDD trap.

Implementation: SPARC64 does not implement LDD and LDDA is hardware. It uses the

unimplemented_LDD trap. However in a special mode, there is partial sup-

port in hardware for these instructions. Please refer to SPARC64 Processor

User Guide for more details.

108. Unimplemented STD trap

Description: It is implementation-dependent whether STD and STDA are implemented

in hardware. If not, an attempt to execute either will cause an

unimplemented_STD trap.

Implementation: SPARC64 does not implement STD and STDA is hardware. It uses the

unimplemented_STD trap. However in a special mode, there is partial sup-

port in hardware for these instructions. Please refer to SPARC64 Processor

User Guide for more details.

109. LDDF_mem_address_not_aligned

Description: LDDF and LDDFA require only word alignment. However, if the effective

address is word-aligned but not doubleword-aligned, either may cause an

LDDF_mem_address_not_aligned trap, in which case the trap handler soft-

ware shalll emulate the LDDF (or LDDFA) instruction and return.

Implementation: SPARC64 causes LDDF_mem_address_not_aligned trap for both word

and double-word misaligned addresses.

SPARC International SPARC 64

36 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

110. STDF_mem_address_not_aligned

Description: STDF and STDFA require only word alignment. However, if the effective

address is word-aligned but not doubleword-aligned, either may cause an

STDF_mem_address_not_aligned trap, in which case the trap handler soft-

ware shall emulate the STDF (or STDFA) instruction and return.

Implementation: SPARC64 causes STDF_mem_address_not_aligned trap for both word and

double-word misaligned addresses.

111. LDQF_mem_address_not_aligned

Description: LDQF and LDQFA require only word alignment. However, if the effective

address is word-aligned but not quadword-aligned, either may cause an

LDQF_mem_address_not_aligned trap, in which case the trap handler soft-

ware shall emulate the LDQF (or LDQFA) instruction and return.

Implementation: SPARC64 generates fp_exception_other trap for LDQF, LDQFA instruc-

tions and kernel provides emulation routines to complete the load. It does

not generate LDQF_mem_address_not_aligned trap.

112. STQF_mem_address_not_aligned

Description: STQF and STQFA require only word alignment. However, if the effective

address is word-aligned but not quadword-aligned, either may cause an

STQF_mem_address_not_aligned trap, in which case the trap handler soft-

ware shall emulate the STQF (or STQFA) instruction and return.

Implementation: SPARC64 generates fp_exception_other trap for STQF, STQFA instruc-

tions and kernel provides emulation routines to complete the load. It does

not generate STQF_mem_address_not_aligned trap.

113. Implemented memory models

Description: Whether the Partial Store Order (PSO) or Relaxed Memory Order (RMO)

models are supported is implementation-dependent.

Implementation: SPARC64 supports Load/Store ordering (LSO) and Store ordering (STO).

Partial Store Order (PSO) is implemented using LSO and Relaxed Memory

Order (RMO) is implemented using STO.

114. RED_state trap vector address (RSTVaddr)

Description: The RED_state trap vector is located at an implementation-dependent

SPARC International SPARC 64

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 37

address referred to as RSTVaddr.

Implementation: SPARC64 has a scan only register that holds RSTVaddr.

115. RED_state processor state

Description: What occurs after the processor enters RED_state is implementation-

dependent.

Implementation: SPARC64 has the following behavior in RED_state.

1) The output signal RED_MODE is asserted indicating CPU is in

RED_state.

2) The CPU executes in sequential mode.

3) On entry into and exit from RED_state, the CPU invalidates the on-chip

instruction cache and prefetch buffers.

4) Off chip data and instruction caches are disabled.

5) The MMU uses a special translation mechanism.

6) All I/O accesses are disabled.

7) Further red state errors are ignored.

8) XIR, and Chip Crossing Errors are not masked and could cause a trap.

116. SIR_enable control flag

Description: The location of and the means of accessing the SIR_enable control flag are

implementation-dependent. In some implementations, it may be perma-

nently zero.

Implementation: SIR_enable control flag is permanently zero in SPARC64.

117. MMU disabled prefetch behavior

Description: Whether Prefetch and Non-faulting Load always succeed when the MMU

is disabled is implementation-dependent.

Implementation: In SPARC64, Prefetch and Non-faulting Loads will have undefined behav-

ior if the MMU is disabled.

SPARC International SPARC 64

38 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

118. Identifying I/O locations

Description: The manner in which I/O locations are identified is implementation-depen-

dent.

Implementation: Please contact HAL Computer Systems for details of I/O operation.

119. Unimplemented values for PSTATE.MM

Description: The effect of writing an unimplemented memory-mode designation into

PSTATE.MM is implementation-dependent

Implementation: SPARC64 only the most significant bit of MM is used to determine the

memory model; the least significant bit is ignored. However, the system

software should not use the encoding ‘11’ since it is reserved for future

SPARC-V9 extensions.

120. Coherence and atomicity of memory operations

Description: The coherence and atomicity of memory operations between processors

and I/O DMA memory accesses are implementation-dependent.

Implementation: In SPARC64, coherence and atomicity of memory operations between pro-

cessors and I/O DMA memory accesses are variable and depend on the I/O

device. Please contact HAL Computer Systems for details.

121. Implementation-dependent memory model

Description: An implementation may choose to identify certain addresses and use an

implementation dependent memory model for references to them.

Implementation: In SPARC64, certain addresses use implementation dependent memory

models for references to them. Please contact HAL Computer Systems for

details.

122. FLUSH latency

Description: Latency between the execution of FLUSH on one processor and the point

at which the modified instructions have replaced out-dated instructions in a

multiprocessor is implementation-dependent.

Implementation: Not applicable since, SPARC64 does not support a multi-processor config-

uration.

SPARC International SPARC 64

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 39

123. Input/output (I/O) semantics

Description: The semantic effect of accessing input/output (I/O) registers is implemen-

tation-dependent.

Implementation: In SPARC64, the semantic effect of accessing input/output (I/O) registers

is undefined.

124. Implicit ASI when TL>0

Description: When TL > 0, the implicit ASI for instruction fetches, loads, and stores is

implementation-dependent. See SPARC-V9 Architecture Manual section

F.4.4, “Contexts,” for more information.

Implementation: SPARC64 uses ASI_PRIMARY or ASI_PRIMARY_LITTLE for instruction

fetches, loads and stores when TL>0

125. Address masking

Description: When PSTATE.AM = 1, the value of the high-order 32-bits of the PC trans-

mitted to the specified destination registers(s) by CALL, JMPL, RDPC,

and on a trap is implementation-dependent.

Implementation: When PSTATE.AM bit is set on SPARC64, a full 64-bit address is trans-

mitted to the specified destination registers by CALL, JMPL, RDPC and

traps transmit all 64-bits to TPC[n] and TNPC[n].

126. TSTATE bits 19:18

Description: If PSTATE bit 11 (10) is implemented, TSTATE bit 19 (18) shall be imple-

mented and contain the state of PSTATE bit 11 (10) from the previous trap

level. If PSTATE bit 11 (10) is not implemented, TSTATE bit 19 (18) shall

read as zero. Software intended to run on multiple implementations should

only write these bits to values previously read from PSTATE, or to zeroes.

Implementation: SPARC64 does not implement PSTATE bits 10 & 11 and they are read as

zeroes. TSTATE bits 19 and 18 are read as zeroes.

127. PSTATE bits 11:10

Description: The presence and semantics of PSTATE.PID1 and PSTATE.PID0 are

implementation-dependent. The presence of TSTATE bits 19 and 18 is

implementation-dependent. If PSTATE bit 11 (10) is implemented,

TSTATE bit 19 (18) shall be implemented and contain the state of PSTATE

bit 11 (10) from the previous trap level. If PSTATE bit 11 (10) is not imple-

mented, TSTATE bit 19 (18) shall read as zero. Software intended to run on

multiple implementations should only write these bits to values previously

SPARC International SPARC 64

40 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

read from PSTATE, or to zeroes.

Implementation: SPARC64 does not implement PSTATE bits 10 & 11 and they are read as

zeroes. TSTATE bits 19 and 18 are read as zeroes.

128. CLEANWIN register update

Earlier implementations of SPARC chips implemented the SPARC-V9

specification for RESTORED using the following equation to update

CLEANWIN register:

 if (CLEANWIN != NWINDOWS) CLEANWIN++;

Subsequently V9 definition changed to modify the equation as:

 if (CLEANWIN < NWINDOWS-1) CLEANWIN++;

SPARC64 implements the RESTORED using the earlier definition. The

SPARC64 Kernel will ensure that CLEANWIN does not have a value

beyond NWINDOWS-1.

Chapter 2: SUN Implementation of V9 Architecture

UltraSPARC - I

V9
SPARC INTERNATIONAL

SPARC International STP1030BGA-UltraSPARC-I

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 43

CHAPTER 2: SUN ULTRASPARC

0. Introduction

This document describes the implementation-dependencies of Sun’s STP 1030BGA-UltraS-

PARC-1 processor as put forth in “The SPARC Architecture Manual - Version 9” by SPARC

International. The items listed below correspond to the implementation dependencies as listed in

the text and by number in Appendix C of the manual along with the description of the implemen-

tation dependency from the manual. The “Implementation” section for each item describes the

implementation on the UltraSPARC-I processor.

1. Software emulation of instructions

Description: whether an instruction is implemented directly by hardware, simulated by

software, or emulated by firmware is implementation-dependent.

Implementation: all instructions are implemented in hardware except the following, which

must be simulated by software.

POPC Population count

LDQF Load quad-precision FP register

LDQFA Load quad-precision FP register from alternate space

STQF Store quad-precision FP register

STQFA Store quad-precision FP register to alternate space

F{s,d}TOq Convert single-/double- to quad precision FP

F{i,x}TOq Convert 32-/64-bit integer to quad-precision FP

FqTO{s,d} Convert quad- to single-/double-precision FP

FqTO{i.x} Convert quad-precision FP to 32-/64-bit integer

FADDq Quad-precision FP add

FSUBq Quad-precision FP subtraction

FCMP{E}q Quad-precision FP compares

FMOVqcc Move quad-precision FP register on condition

FMOVqr Move quad-precision FP register on integer register condition

FMOVq Move quad-precision FP register

FABSq Quad-precision FP absolute value

FNEGq Quad-precision FP negate

FdMULq Double- to quad-precision FP multiply

FNULq Quad-precision FP multiply

SPARC International STP1030BGA-UltraSPARC-I

44 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

FDIV Quad-precision FP divide

FSQRTq Quad-precision FP divide

2. Number of IU registers

Description: an implementation of the IU may contain from 64 to 258 general purpose

64 bit registers. This corresponds to a grouping of the registers into two

sets of eight global r registers, plus a circular stack of from three to 32 sets

of 16 registers each, known as register windows. Since the number of reg-

ister windows present (NWINDOWS) is implementation-dependent, the

total number of registers is also implementation-dependent.

Implementation: UltraSPARC-I implements eight register windows plus four sets of eight

global r registers, for a total of 160 64-bit r registers.

3. Incorrect IEEE Std 754-1985 results

Description: an implementation may indicate that a floating-point instruction did not

produce a correct ANSI/IEEE Standard 754-1985 result by generating a

special floating-point unfinished or unimplemented exception. In this case,

privileged mode software shall emulate any functionality not present in the

hardware.

Implementation: the quad-precision floating-point instructions listed in implementation

dependency #1 above all generate floating-point unimplemented excep-

tions.

UltraSPARC-I generates floating-point unimplemented exceptions for the

following cases of subnormal operands or results.

Subnormal Operand Unimplemented Exception Cases:

F{s,d}TO{i,x} one subnormal operand

F{s,d}TO{i,x} one subnormal operand

FSQRT{s,d} one subnormal operand

FADD{s,d} one or two subnormal operand

FMUL{s,d} -25 <Er <255 (SP) one subnormal operand

-54 <Er <2047 (DP) one subnormal operand

two subnormal operands

SPARC International STP1030BGA-UltraSPARC-I

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 45

FDIV{s,d} -25 <Er <255 (SP) one subnormal operand

-54 <Er <2047 (DP) one subnormal operand

two subnormal operands

Subnormal Result Unimplemented Exception Cases:

FdTOs -25 <Er < 1 (SP)

-54 <Er < 1 (DP)

FADD{s,d} -25 <Er < 1 (SP)

-54 <Er < 1 (DP)

FMUL{s,d} -25 <Er < 1 (SP)

-54 <Er < 1 (DP)

FDIV{s,d} -25 <Er < 1 (SP)

-54 <Er < 1 (DP)

Prediction of overflow, underflow and inexact traps for divide and square

roots is used. For divide, pessimistic prediction occurs when underflow/

overflow cannot be determined from examining the source operand expo-

nents. For divide and square root, pessimistic prediction of inexact occurs

unless one of the operands is a zero, NSN or infinity. When pessimistic

prediction occurs and the exception is enabled, a floating-point unfinished

exception is generated.

4 - 5. Reserved

6. I/O registers privileged status

Description: whether I/O registers can be accessed by non-privileged code is implemen-

tation-dependent.

Implementation: For systems using UltraSPARC-I, I/O register locations are memory

mapped to non-cacheable address space. The location, access, contents,

and side effects of the I/O registers are dependent on the system implemen-

tation, not the processor implementation.

7. I/O register definitions

Descriptions: the contents and addresses of I/O registers are implementation-dependent

SPARC International STP1030BGA-UltraSPARC-I

46 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Implementation: For systems using UltraSPARC-I, I/O register locations are memory

mapped to non-cacheable address space. The location, access, contents,

and side effects of the I/O registers are dependent on the system implemen-

tation, not the processor implementation.

8. RDASR/WRASR target registers

Description: software can use read/write ancillary state register instructions to read/

write implementation-dependent processor registers (ASRs 16-31).

Implementation: UltraSPARC-I implements the following implementation-dependent

ASRs.

9. RDASR/WRASR privileged status

Description: whether each of the implementation-dependent read/write ancillary state

register instructions (for ASRs 16-31) is privileged is implementation

dependent.

Implementation: The privileged status of UltraSPARC-I’s implementation-dependent regis-

ters is as follows:

rd name access

16 PERFA_CONTROL_REG RW

17 PERF_COUNTER RW

18 DISPATCH_CONTROL_REG RW

19 GRAPHICS_STATUS_REG RW

20 SET_SOFTINT W

21 CLEAR_SOFTINT W

22 SOFTINT_REG RW

23 TICK_CMPR_REG RW

SPARC International STP1030BGA-UltraSPARC-I

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 47

 * If PERF_CONTROL_REG. PRIV =1)

10 - 12. Reserved

13. VER.impl

Description: VER.impl uniquely identifies an implementation or class of software-com-

patible implementations of the architecture. Values FFF0 (hex)..FFFF(hex)

are reserved and are not available for assignment.

Implementation: UltraSPARC-I uses the implementation code 0010 (hex).

14 - 15. Reserved

16. IU deferred-trap queue

Description: the existence, contents, and operation of an IU deferred-trap queue are

implementation-dependent; it is not visible to user application programs

under normal operating conditions.

rd name access

16 PERFA_CONTROL_REG PRIVILEGED

17 PERF_COUNTER PRIVILEGED*

18 DISPATCH_CONTROL_REG PRIVILEGED

19 GRAPHICS_STATUS_REG NONPRIVILEGED

20 SET_SOFTINT PRIVILEGED

21 CLEAR_SOFTINT PRIVILEGED

22 SOFTINT_REG PRIVILEGED

23 TICK_CMPR_REG PRIVILEGED

SPARC International STP1030BGA-UltraSPARC-I

48 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Implementation: UltraSPARC-I does not implement a deferred-trap queue.

17. Reserved

18. Nonstandard IEEE 754-1985 results

Description: bit 22 of the FSR, RSR_nonstandard_fp (NS), when set to 1, causes the

FPU to produce implementation-defined results that may not correspond

to IEEE Standard 754-1985.

Implementation: if FSR.NS is set to one, the subnormal operand and results cases identified

for implementation dependency #3 above, are flushed to zero.

19. FPU version, FSR.ver

Description: bits 19:17 of the FSR, FSR.ver, identify one or more implementations of

the FPU architecture.

Implementation: on UltraSPARC-I the FSR.VER field is set to zero.

20 - 21. Reserved

22. FPU TEM. cexc. and aexc

Description: an implementation may choose to implement the TEM, cexc, and aexc

fields in hardware in either of two ways (see section 5.1.7.11 of SPARC-

V9 Architecture Manual for details).

Implementation: UltraSPARC-I implements the TEM, cexc and aexc fields in conformance

to IEEE Std 754-1985.

23. Floating-point traps

Description: floating point traps may be precise or deferred. If deferred, a floating point

deferred-trap queue (FQ) must be present.

Implementation: UltraSPARC-I floating-point traps are precise and it does not implement

SPARC International STP1030BGA-UltraSPARC-I

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 49

an FQ.

24. FPU deferred-trap queue (FQ)

Description: the presence, contents of, and operations on the floating-point deferred-trap

queue (FQ) are implementation-dependent.

Implementation: UltraSPARC-I does not implement an FQ.

25. RDPR of FQ with nonexistent FQ

Description: on implementations without a floating-point queue, an attempt to read the

FQ with an RDPR instruction shall cause either an illegal_instruction

exception or an fp_exception_other exception with FSR.Ftt set to 4

(sequence_error).

Implementation: attempting to read the FQ with a RDPR instruction causes an

illegal_instruction exception.

26 - 28. Reserved

29 Address space identifier (ASI) definitions

Description: the following ASI assignments are implementation-dependent: restricted

ASIs (all values hex) 00..03.05..0B. 0D..0F, 12..17, and 1A..7F; and unre-

stricted ASIs C0..FF..

Implementation: UltraSPARC-I ssigns the following implementation-dependent ASI

values.

restricted ASI values (all values hex):

14, 15, 1C, 1D, 24, 2C, 45, 46, 47, 48, 49, 4A, 4B, 4C, 4D, 4E, 50, 51, 52,

53, 54, 55, 56, 57, 58, 59, 5A, 5B, 5C, 5D, 5E, 5F, 66, 67, 6E, 6F, 70, 71,

76, 77, 78, 79, 7E, 7F

restricted ASI values (all values hex):

SPARC International STP1030BGA-UltraSPARC-I

50 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

C0, C1, C2, C3, C4, C5, C8, C9, CA, CB, CC, CD, D0, D1, D2, D3, D8,

D9, DA, DB, E0, E1, F0, F1, F8, F9

30. ASI address decoding

Description: an implementation may choose to decode only a subset of the 8-bit ASI

specifier; however, it shall decode at least enough of the ASI to distinguish

ASI_PRIMARY, ASI_PRIMARY_LITTLE,

ASI_AS_IF_USER_PRIMARY,ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_PRIMARY_NOFAULT, ASI_PRIMARY_NOFAULT_LITTLE,

ASI_SECONDARY, ASI_SECONDARY_LITTLE,

ASI_AS_IF_USER_SECONDARY,

ASI_AS_IF_USER_SECONDARY_LITTLE,

ASI_SECONDARY_NOFAULT_LITTLE. If AFI_NUCLEUS and

ASI_NUCLEUS_LITTLE are supported (impl. dep. #124), they must be

decoded also. Finally, an implementation must always decode ASI bit<7>

while PSTATE.PRIV = 0, S0 so that an attempt by nonprivileged software

to access a restricted ASI will always cause a privileged_action exception.

Implementation: UltraSPARC-I decodes the entire 8-bit ASI specifier.

31. Catastrophic error exceptions

Description: the causes and effects of catastrophic error exceptions are implementation-

dependent. They may cause precise, deferred or disrupting traps.

Implementation: UltraSPARC-I catastrophic error exceptions cause deferred traps. The

PSTATE.RED bit is not automatically set in hardware for any catastrophic

error exceptions other than when trapping to MAXTL-1.

32. Deferred traps

Description: whether any deferred traps (and associated deferred-trap queues) are

present is implementation-dependent.

Implementation: UltraSPARC-I may encounter deferred traps during memory accesses.

Such errors lead to termination of the currently executing process or result

in a system reset if system state has been corrupted. Error logging inform-

ation allows software to determine if the system state has been corrupted.

SPARC International STP1030BGA-UltraSPARC-I

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 51

33. Trap precision

Description: exceptions that occur as the result of program execution may be precise or

deferred, although it is recommended that such exceptions be precise.

Examples include mem_address_not_aligned and division_by_zero.

Implementation: all of the exceptions listed in the SPARC-V9 Architecture Manual section

7.3.5, item (2) are precise with the exception of instruction_access_erreor,

which is deferred.

34. Interrupt clearing

Description: how quickly a processor responds to an interrupt request and the method by

which an interrupt request is removed are implementation-dependent.

Implementation: The response time to interrupt is dependent the activity the processor is

is executing at the time the interrupt is received (e.g., whether executing a

trap handler with PSTATE.IE=0, etc.). The interrupt request is removed by

clearing a bit in the implementation-dependent interrupt vector receive reg-

ister.

35. Implementation-dependent traps

Description: trap type (TT) values 060 (hex)..07f(hex)are reserved for implementation-

dependent exceptions. The existence of implementation_dependent_n traps

and whether any that do exist are precise, deferred, or disrupting is imple-

mentation-dependent.

Implementation: the following implementation-dependent trap types are implemented on

UltraSPARC-I.

TT (hex) Exception Category

060 interrupt_vector disrupting

061 PA_watchpoint disrupting

062 VA_watchpoint disrupting

SPARC International STP1030BGA-UltraSPARC-I

52 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

36. Trap priorities

Description: the priorities of the particular traps are relative and are implementation-

dependent, because a future version of the architecture may define new

traps, and implementations may define implementation-dependent traps

that establish new relative priorities.

Implementation: UltraSPARC-I traps are prioritized relative to each other according to the

relative priorities in the SPARC-V9 Manual.

37. Reset trap

Description: some of a processor’s behavior during a reset trap is implementation-

dependent.

Implementation: UltraSPARC-I conforms to the required behavior during a reset trap.

Unspecified behavior is either defined during reset or specified as requiring

initialization.

38. Effect of reset trap on implementation-dependent registers

Description: implementation-dependent registers may or may not be affected by the var-

ious reset traps.

Implementation: Implementation-dependent registers on UltraSPARC-I either have defined

behavior during reset traps or are specified as requiring initialization.

39. Entering error_state on implementation-dependent errors

063 corrected_ECC_error disrupting

064...067 fast_instruction_access_MMU_miss precise

068..06B fast_data_access_MMU_miss precise

06C..06F fast_data_access_protection precise

TT (hex) Exception Category

SPARC International STP1030BGA-UltraSPARC-I

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 53

Description: the processor may enter error_state when an implementation-dependent

error condition occurs.

Implementation: UltraSPARC-I enters error_state only by trapping when TL = MAXTL.

Any type of trap may cause this.

40. Error_state processor state

Description: what occurs after error_state is entered in implementation-dependent, but it

is recommended that as much processor state as possible be preserved upon

entry to error_state.

Implementation: Entering error_state causes UltraSPARC-I to trigger a watchdog_reset trap.

As much state as possible is preserved during this action.

41. Reserved

42. FLUSH instruction

Description: if flush is not implemented in hardware, it causes an illegal_instruction

exception and its function is performed by system software. Whether

FLUSH traps is implementation-dependent.

Implementation: UltraSPARC-I implements FLUSH in hardware and it can cause a

data_access_exception if the page is mapped with side effects or no-fault-

only bits set, virtual address out of range, privilege violation, or a

data_access_MMU_miss trap.

43. Reserved

44. Data access FPU trap

Description: if a load floating-point instruction traps with any type of access error

exception, the contents of the destination floating-point register(s0 either

remain unchanged or are undefined.

Implementation: access error exceptions on floating-point load instructions leave the desti-

nation floating-point register contents unchanged.

SPARC International STP1030BGA-UltraSPARC-I

54 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

45-46. Reserved

47. RDASR

Description: RDASR instructions with rd in the range 16..31 are available for imple-

mentation-dependent uses (impl. dep #8). For an RDASR instruction with

rs1 in the range 16..31, the following are implementation-dependent: the

interpretation of bits 13:0 and 29:25 in the instruction, whether the instruc-

tion is privileged (impl. dep. #9), and whether the instruction is privileged

(impl. dep. #9), and whether it causes and illegal_instruction trap.

Implementation: the bit fields specified above are not used for UltraSPARC-I implementa-

tion-dependent RDASR instructions. Reads of unused rs1 values and reads

of write-only implementation-dependent ASRs cause illegal_instruction

traps

48. WRASR

Description: WRASR instructions with rd in the range 16..31 are available for imple-

mentation-dependent uses (impl.dep.#8). For a WRASR instruction with

rd in the range 16..31, the following are implementation-dependent: the

interpretation of bits 18:0 in the instruction, the operation(s) performed (for

example, xor) to generate the value written to the ASR, whether the

instruction is privileged (impl. dep.#9), and whether it causes an

illegal_instruction trap.

Implementation: UltraSPARC-I does not interpret bits 18:0 of the WRASR instruction.

Using WRASR to the SET_SOFTINT and CLEAR_SOFTINT ASRs will

set and clear (respectively) bits in the SOFTINT_REG ASR. Writes of the

unused ASR values cause illegal_instruction traps.

49-54. Reserved

55. Floating-point underflow detection

Description: whether “tininess” (in IEEE 754 terms) is detected before or after rounding

is implementation-dependent. It is recommended that tininess be detected

before rounding.

Implementation: UltraSPARC-I detects underflow before rounding.

SPARC International STP1030BGA-UltraSPARC-I

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 55

56 - 100. Reserved

101. Maximum trap level

Description: it is implementation-dependent how many additional levels, if any, past

level 4 are supported.

Implementation: UltraSPARC-I implements 5 trap levels.

102. Clean window trap

Description: an implementation may choose either to implement automatic “cleaning”

of register windows in hardware, or generate a clean_window trap, when

needed, for window(s) to be cleaned by software.

Implementation: UltraSPARC-I cleans register windows by generating a clean_window trap

for windows to be cleaned by software.

103. Prefetch instructions

Description: the following aspects of the PREFETCH and PREFETCHA instructions

are implementation-dependent: (1) whether they have an observable effect

in privileged code; (2) whether they can cause a data_access_MMU_miss

exception; (3) the attributes of the block of memory prefetched: its size

(minimum = 64 bytes) and its alignment (minimum = 64 byte alignment);

(4) whether each variant is implemented as NOP, with its full semantics,

or with common-case prefetching semantics; (5) whether and how variants

16..31 are implemented.

Implementation: on UltraSPARC-I, PREFETCH and PREFETCHA have the same observ-

able effect as a NOP in both privileged and nonprivileged modes.

104. VER.manuf

Description: VER.manuf contains a 16-bit semiconductor manufacturer code. This field

is optional, and if not present reads a zero. VER.manuf may indicate the

original supplier of a second-sourced chip in cases involving mask-level

SPARC International STP1030BGA-UltraSPARC-I

56 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

second-sourcing. It is intended that the contents of VER.manuf track the

JEDEC semiconductor manufacturer code as closely as possible. If the

manufacturer does not have a JEDEC semiconductor manufacturer code,

SPARC International will assign a VER.manuf value.

Implementation: UltraSPARC-I uses the manufacturer code 0017(hex)

105. TICK register

Description: the difference between the values read from the TICK register on two reads

should reflect the number of processor cycles executed between the reads.

If an accurate count cannot always be returned, an inaccuracy should be

small, bounded, and documented. An implementation may implement

fewer than 63 bits in TICK.counter; however, the counter as implemented

must be able to count for at least 10 years without overflowing. Any upper

bits not implemented must be read as zero.

Implementation: UltraSPARC-I implements 63 bits of TICK.counter and reflects the number

of processor clocks between reads.

106. IMPDEP1 instructions

Description: the IMPDEP1 and IMPDEP2 instructions are completely implementation-

dependent. Implementation-dependent aspects include their operation, the

interpretation of bits 29:25 and 18:0 in their encodings, and which (if any)

exceptions they may cause.

Implementation: UltraSPARC-I implements implementation-dependent instructions using

the following field values:

op op3 opf

10 110110 010000000

10 110110 001010000

10 110110 001010001

10 110110 001010010

10 110110 001010011

10 110110 001010100

10 110110 001010101

10 110110 001010110

SPARC International STP1030BGA-UltraSPARC-I

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 57

10 110110 001010111

10 110110 000111011

10 110110 000111010

10 110110 000111101

10 110110 001001101

10 110110 001001011

10 110110 000110001

10 110110 000110011

10 110110 000110101

10 110110 000110110

10 110110 000110111

10 110110 000111000

10 110110 000111001

10 110110 000011000

10 110110 000011010

10 110110 001001000

10 110110 001100000

10 110110 001100001

10 110110 001111110

10 110110 001111111

10 110110 001110100

10 110110 001110101

10 110110 001111000

10 110110 001111001

10 110110 001101010

10 110110 001101011

10 110110 001100110

10 110110 001100111

10 110110 001111100

10 110110 001111101

10 110110 001100010

10 110110 001100011

10 110110 001110000

10 110110 001110001

10 110110 001101110

10 110110 001101111

10 110110 001101100

10 110110 001101101

10 110110 001110010

10 110110 001111010

10 110110 001111011

SPARC International STP1030BGA-UltraSPARC-I

58 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

10 110110 001110110

10 110110 001110110

10 110110 001110111

10 110110 001101000

10 110110 001101001

10 110110 001100100

10 110110 001100101

10 110110 000101000

10 110110 000101100

10 110110 000100000

10 110110 000100100

10 110110 000100010

10 110110 000100110

10 110110 000101010

10 110110 000101110

10 110110 000000000

10 110110 000000010

10 110110 000000100

10 110110 000000110

10 110110 000001000

10 110110 000001010

10 110110 000111110

10 110110 000010000

10 110110 000010010

10 110110 000010100

107. Unimplemented LDD trap

Description: it is implementation-dependent whether LDD and LDDA are implemented

in hardware. If not, an attempt to execute either will cause an

unimplemented_LDD trap.

Implementation: UltraSPARC-I implements LDD and LDDA in hardware.

108. Unimplemented STD trap

Description: it is implementation-dependent whether STD and STDA are implemented

in hardware. If not, an attempt to execute either will cause an

SPARC International STP1030BGA-UltraSPARC-I

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 59

unimplemented_STD trap.

Implementation: UltraSPARC-I implements STD and STDA in hardware.

109. LDDF_mem_address_not_aligned

Description: LDDF and LDDFA require only word alignment. However, if the effective

address is word-aligned but not doubleword-aligned, either may cause an

LDDF_mem_address_not_aligned trap, in which case the trap handler soft-

ware shall emulate the LDDF (or LDDFA) instruction and return.

Implementation: UltraSPARC-I generates an LDDF_mem_address_not_aligned exception

if an LDDF or LDDFA effective address is word-aligned but not double-

word-aligned.

110. STDF_mem_address_not_aligned

Description: STDF and STDFA require only word alignment. However, if the effective

address is word-aligned but not doubleword-aligned, either may cause an

STDF_mem_address_not_aligned trap, in which case the trap handler soft-

ware shall emulate the STDF (or STDFA) instruction and return.

Implementation: UltraSPARC-I generates an STDF_mem_address_not_aligned exception if

an STDF or STDFA effective address is word-aligned but not doubleword-

aligned.

111. LDQF_mem_address_not_aligned

Description: LDQF and LDQFA require only word alignment. However, if the effective

address is word-aligned but not quadword-aligned, either may cause an

LDQF_mem_address_not_aligned trap, in which case the trap handler soft-

ware shall emulate the LDQF (or LDQFA) instruction and return.

Implementation: UltraSPARC-I does not implement the LDQF and LDQFA in hardware,

they must be emulated in software using other instructions.

112. STQF_mem_address_not_aligned

SPARC International STP1030BGA-UltraSPARC-I

60 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Description: STQF and STQFA require only word alignment. However, if the effective

address is word-aligned but not quadword-aligned, either may cause an

STQF_mem_address_not_aligned trap, in which case the trap handler soft-

ware shall emulate the STQF (or STQFA) instruction and return.

113. Implemented memory models

Description: whether the Partial Store Order (PSO) or Relaxed Memory Order (RMO)

models are supported is implementation-dependent.

Implementation: UltraSPARC-I supports the Partial Store Order and Relaxed Memory Order

models.

114. RED_state trap vector address (RSTVaddr)

Description: the RED_state trap vector is located at an implementation-dependent

address referred to as RSTVaddr.

Implementation: RSTVaddr = 1fff0000000 (hex)

115. RED_state processor state

Description: what occurs after the processor enters RED_state is implementation-

dependent.

Implementation: On UltraSPARC-I some register contents are forced to specified values

and some hardware functions are disabled upon entering RED_state to

avoid as much as possible any additional traps which would cause the

processor to enter error_state.

116. SIR_enable control flag

Description: the location of and the means of accessing the SIR_enable control flag are

implementation-dependent. In some implementations, it may be perma-

nently zero.

Implementation: the SIR_enable in UltraSPARC-I is permanently zero.

SPARC International STP1030BGA-UltraSPARC-I

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 61

117. MMU disabled prefetch behavior

Description: whether Prefetch and Non-faulting Load always succeed when the MMU is

disabled is implementation-dependent.

Implementation: prefetch instructions behave as NOP instructions. Non-faulting Load

instructions may or may not succeed when the MMU is disabled depending

on the state of an implementation-dependent register determining

whether the cache is enabled.

118. Identifying I/O locations

Description: the manner in which I/O locations are identified is implementation- depen-

dent.

Implementation: For systems using UltraSPARC-I, I/O register locations are memory

mapped to non-cacheable address space. The location, access, contents,

and side effects of the I/O registers are dependent on the system implem-

entation, not the processor implementation.

119. Unimplemented values for PSTATE.MM

Description: the effect of writing an unimplemented memory-mode designation into

PSTATE.MM is implementation-dependent.

Implementation: UltraSPARC-I implements all three memory modes specified in the

SPARC Architecture Manual Version 9. If the reserved PSTATE.MM value

(3) were written, UltraSPARC-I would interpret it as RMO.

120. Coherence and atomicity of memory operations

Description: the coherence and atomicity of memory operations between processors and

I/O DMA memory accesses are implementation-dependent.

Implementation: This is dependent on the system implementation rather than the processor

SPARC International STP1030BGA-UltraSPARC-I

62 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

implementation for systems that use UltraSPARC-I.

121. Implementation-dependent memory model

Description: an implementation may choose to identify certain addresses and use an

implementation-dependent memory model for references to them.

Implementation: UltraSPARC-I does not use any implementation-dependent memory

models.

122. FLUSH latency

Description: latency between the execution of FLUSH on one processor and the point at

which the modified instructions have replaces out-dated instructions in a

multiprocessor is implementation-dependent.

Implementation: This is dependent on the system implementation rather than the processor

implementation for systems that use UltraSPARC-I.

123. Input/output (I/O) semantics

Description: the semantic effect of accessing input/output (I/O) registers is implement-

ation-dependent.

Implementation: For systems using UltraSPARC-I,I/O register locations are memory

mapped to non-cacheable address space. The location, access, contents,

and side effects of the I/O registers are dependent on the system implemen-

tation, not the processor implementation.

124. Implicit ASI when TL>0

Description: when TL>0, the implicit ASI for instruction fetches, loads, and stores is

implementation-dependent. See SPARC-V9 Architecture Manual section

F.4.4, “Contexts,” for more information.

Implementation: the implicit ASI for instruction fetches, loads, and stores when TL>0 is

ASI_PRIMARY.

SPARC International STP1030BGA-UltraSPARC-I

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 63

125. Address masking

Description: when PSTATE.AM = 1, the value of the high-order 32-bits of the PC trans-

mitted to the specified destination register(s) by CALL, JMPL, RDPC, and

on a trap is implementation-dependent.

Implementation: when PSTATE.AM = 1, the value of the high-order 32-bits of the PC trans-

mitted to the specified destination register(s) by CALL, IMPL, RDPC, and

on a trap is zero.

126. TSTATE bits 19:18

Description: If PSTATE bit 11 (10) is implemented, TSTATE bit 9 (18) shall be imple-

mented and contain the state of PSTATE bit 11 (10) from the previous

trap level. If PSTATE bit 11 (10) is not implemented, TSTATE bit 19 (18)

shall read as zero. Software intended to run on multiple implementations

should only write these bits to values previously read from PSTATE, or

to zeros.

Implementation: UltraSPARC-I implements TSTATE bits 19:18 to hold the state of PSTATE

bits 11:10 for each previous trap level.

127. PSTATE bits 11:10

Description: The presence an semantics of PSTATE.PID1 and PSTATE.PID0 are

implementation-dependent. The presence of TSTATE bits 19 and 18 is

implementation-dependent. If PSTATE bit 11 (10) is implemented,

TSTATE bit 19 (18) shall be implemented and contain the state of PSTATE

bit 11 (10) from the previous trap level. If PSTATE bit 11 (10) is not imple-

mented, TSTATE bit 19 (18) shall read as zero. Software intended to run on

multiple implementations should only write these bits to values previously

read from PSTATE, or to zeros.

Implementation: PSTATE.PID1 and PSTATE.PID0 are implemented on UltraSPARC-I as

selects for two additional sets of eight trap global registers. The corre-

sponding bits in the TSTATE register are implemented to store these bits

for the previous trap level.

SPARC International STP1030BGA-UltraSPARC-I

64 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Chapter 3: HAL Implementation of V9 Architecture

SPARC 64-II

V9
SPARC INTERNATIONAL

SPARC International SPARC 64-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 67

CHAPTER 3: HAL SPARC64-II

0. Introduction

This document describes the implementation details of the SPARC64-II processor developed

by HAL Computer Systems. The items listed below correspond to the implementation depen-

dencies as listed in the text and by number in Appendix C of “The SPARC Architecture Man-

ual - Version 9” by SPARC International, along with the description of the implementation

dependency. The “Implementation” section for each item describes the implementation on the

SPARC64 processor.

1. Software emulated instructions

Description:

Whether an instruction is implemented directly by hardware, simulated by software, or emu-

lated by firmware is implementation-dependent.

Implementation:

Sparc64 does not implement the following instructions in hardware:

• All floating point instructions with quad operands or results

These operations will take an fp_exception_other trap with FSR.ftt = unimplemented_FPop.

The kernel will then emulate the quad operation and store the result into a quad-aligned set of

floating-point registers as defined by Sparc-V9 manual.

• fsqrtd, fsqrts

Executing these instructions will cause a fp_exception_other exception with FSR.ftt =

unimplemented_FPop. In this case kernel emulation routines are provided to complete the

instructions.

• flush

This instruction will cause an illegal_instruction trap if executed. Kernel emulation routines

will be provided to flush the cache line from the data cache and invalidate any matching cache

lines in the instruction cache.

• ldd, ldda, std, stda

Executing these instructions in normal mode would generate unimplemented_LDD and

unimplemented_STD trap. Kernel emulation routines will be provided to complete the instruc-

tions. Sparc64 also implements a special accelerated emulation trap handling for certain LDD

and STD instructions, if a special mode is chosen.

• popc

This instruction will cause an illegal_instruction trap if executed. Kernel emulation routines

will be provided to complete the action.

SPARC International SPARC 64-II

68 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

2. Number of IU registers

Description:

An implementation of the IU may contain from 64 to 528 general purpose 64 bit r registers.

This corresponds to a grouping of the registers into two sets of eight global

r registers, plus a circular stack of from 3 to 32 sets of 16 registers each,

known as register windows. Since the number of register windows present

(NWINDOWS) is implementation-dependent, the total number of registers

is also implementation-dependent.

Implementation:

Sparc64 implements 5 16-register sets (windows) in hardware. Thus there are a total of 96

integer registers visible to software. They are:

• 8 global registers

• 8 alternate global registers

• 5 windows of 16 registers each (=80 registers)

3. Incorrect IEEE Std 754-1985 results

Description:

An implementation may indicate that a floating-point instruction did not produce a correct

ANSI/IEEE Standard 754-1985 result by generating a special floating-

point unfinished or unimplemented exception. In this case, privileged mode

software shall emulate any functionality not present in the hardware.

Implementation:

Sparc64 in conjunction with the kernel emulation code produces the correct IEEE 754 results

required in this section.

• Traps Inhibit Results

Sparc64 in conjunction with the kernel emulation code produces results required.

• Trapped Underflow Definition (UFM=1)

Sparc64 detects “tininess” before rounding as recommended.

• Untrapped Underflow Definition (UFM=0)

Sparc64 meets these requirements with some help from the kernel divide fixup code.

• Floating-Point Nonstandard Mode

Sparc64 FPU is “standard”, and therefore does not support a nonstandard mode.

4-5. Reserved

6. I/O registers privileged status

Description:

Whether I/O registers can be accessed by non privileged code is implementation-dependent.

SPARC International SPARC 64-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 69

Implementation:

In Sparc64 some I/O registers can be accessed by non privileged code.

7. I/O register definitions

Description:

The contents and addresses of I/O registers are implementation-dependent.

Implementation:

Please contact HaL for details of I/O registers.

8,9. RDASR/WRASR target registers and privileged status

Description:

Software can use read/write ancillary state register instructions to read/write implementation-

dependent processor registers (ASRs 16-31).

Whether each of the implementation-dependent read/write ancillary state register instructions

(for ASRs 16-31) is privileged is implementation dependent.

Implementation:

Sparc64 implements 9 implementation-dependent ASR registers.

• PIO Address Match Register (ASR23)

This privileged read/write register is used to specify a range of addresses which

force program ordering for all LD and ST instructions which are within this range.

• LDD Trap Base Address (ASR24)

This privileged read/write register specifies a special trap base address for some

unimplemented_LDD and unimplemented_STD traps.

• Instruction Emulation Register (ASR25)

This read only register is written by CPU on a trap for a LDD/STD that uses the LDD Trap

Base Address described above.

• Data Breakpoint Register (ASR26)

This privileged write-only register is used to trap any data accesses to a double word aligned

breakpoint address.

• Software Initiated Reset (ASR27)

A write to this register with a WRASR instruction will cause a software initiated reset (SIR).

An SIR is a precise trap. ASR27 is privileged and write-only.

• Fault Address Register (ASR28) and Fault Access Type (ASR29)

These registers facilitate the handling of traps that involve a data memory access. The registers

are privileged and read-only. System software must take care to read these registers on entry to

a fault handler before any other fault can occur that would overwrite them.

• Performance Monitor Register (ASR30)

This privilege read/write register is used to evaluate processor performance.

• State Control Register (ASR31)

SPARC International SPARC 64-II

70 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

ASR31 is a 16bit implementation specific register that contains a set of flags for controlling

the state of the CPU, MMU and Caches. The register is privileged and can be read/written.

10-12 Reserved

13. VER.impl

Description:

VER.impl uniquely identifies an implementation or class of software-compatible implementa-

tions of the architecture. Values FFF0(hex)..FFFF(hex) are reserved and

are not available for assignment.

Implementation:

Sparc64 uses a version number of 2.

14-15 Reserved

16. IU deferred-trap queue

Description:

The existence, contents, and operation of an IU deferred-trap queue are implementation-

dependent; it is not visible to user application programs under normal oper-

ating conditions

Implementation:

Sparc64 does not need and therefore does not implement an IU deferred-trap queue.

17. Reserved

18. Nonstandard IEEE 754-1985 results

Description:

Bit 22 of the FSR, FSR_nonstandard_fp (NS), when set to 1, causes the FPU to produce

implementation-defined results that may not correspond to IEEE Standard

754-1985.

Implementation:

Sparc64 FPU is “standard”, and therefore does not support a nonstandard mode.

SPARC International SPARC 64-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 71

19. FPU version, FSR.ver

Description:

Bits 19:17 of the FSR, FSR.ver, identify one or more implementations of the FPU architec-

ture.

Implementation:

Sparc64 uses the value of 0 for this field.

20-21. Reserved

22. FPU TEM, cexc, and aexc

Description:

An implementation may choose to implement the TEM, cexc, and aexc fields in hardware in

either of two ways (see section 5.1.7.11 of SPARC-V9 Architecture Man-

ual for details).

Implementation:

Sparc64 implements TEM, cexc and aexc fields of FSR conforming to IEEE Std. 754-1985.

23. Floating-point traps

Description:

Floating point traps may be precise or deferred. If deferred, a floating point deferred-trap

queue (FQ) must be present.

Implementation:

The only deferred traps in Sparc64 are: fp_exception_other (ftt = unfinished_FPop) for FDIV

with unusual arguments and the data_breakpoint trap. Sparc64 does not

need a floating-point deferred-trap queue because the FDIV that caused the

trap is the only deferred instruction.

24. FPU deferred-trap queue (FQ)

Description:

The presence, contents of, and operations on the floating-point deferred-trap queue (FQ) are

implementation-dependent.

Implementation:

Sparc64 does not have or need a floating-point deferred-trap queue.

SPARC International SPARC 64-II

72 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

25. RDPR of FQ with nonexistent FQ

Description:

On implementations without a floating-point queue, an attempt to read the FQ with an RDPR

instruction shall cause either an illegal_instruction exception or an

fp_exception_other exception with FSR.ftt set to 4 (sequence_error).

Implementation:

A RDPR of %FPQ instruction will cause an illegal_instruction trap.

26-28. Reserved

29,30. Address space identifier (ASI) definitions and ASI address decoding

Description:

The following ASI assignments are implementation-dependent: restricted ASIs (all values

hex) 00..03, 05..0B, 0D..0F, 12..17, and 1A..7F; and unrestricted ASIs

C0..FF.

An implementation may choose to decode only a subset of the 8-bit ASI specifier; however, it

shall decode at least enough of the ASI to distinguish ASI_PRIMARY,

ASI_PRIMARY_LITTLE, ASI_AS_IF_USER_PRIMARY,

ASI_AS_IF_USER_PRIMARY_LITTLE, ASI_PRIMARY_NOFAULT,

ASI_PRIMARY_NOFAULT_LITTLE, ASI_SECONDARY,

ASI_SECONDARY_LITTLE, ASI_AS_IF_USER_SECONDARY,

ASI_AS_IF_USER_SECONDARY_LITTLE,

ASI_SECONDARY_NOFAULT, and

ASI_SECONDARY_NOFAULT_LITTLE. If ASI_NUCLEUS and

ASI_NUCLEUS_LITTLE are supported (impl. dep. #124), they must be

decoded also. Finally, an implementation must always decode ASI bit<7>

while PSTATE.PRIV = 0, so that an attempt by nonprivileged software to

access a restricted ASI will always cause a privileged_action exception.

Implementation:

The encoding of ASIs in the Sparc64 processor is shown below:

NR V (M3) PO AS_IF LE M2 M1 M0

 7 6 5 4 3 2 1 0

SPARC International SPARC 64-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 73

• NR (Non-Restricted). This bit conforms to Sparc V9 definition. An attempt to use a restricted

ASI in non-privileged mode results in a privileged_action trap.

• V (Vendor-specific). This bit conforms to Sparc V9 definition for non-restricted ASIs that are

implementation-dependent (0xc0 - 0xff). This bit will be set in all ASIs that are specific to

Sparc64.

• PO (Program Order). An instruction using an ASI with this bit set is executed by Sparc64

strictly in program order.

• AS_IF. This bit conforms to Sparc V9 requirement that there be an implementation specific

ASI encoding that allows the corresponding access to be made as if the CPU were executing

in non-privileged mode, independent of PSTATE.PRIV.

• LE. This bit conforms to Sparc V9 definition of ASIs that specify little-endian byte ordering.

If this bit is set to zero, the access is done using big-endian byte ordering.

• M2..M0. These bits are interpreted by the Sparc64 MMU.

Sparc64 does not support a nucleus context and hence does not decode ASI_NUCLEUS and

ASI_NUCLEUS_LITTLE.

31. Catastrophic error exceptions

Description:

The causes and effects of catastrophic error exceptions are implementation-dependent. They

may cause precise, deferred or disrupting traps.

Implementation:

An internal CPU watchdog time-out occurs after no instruction has been committed for 2**n

cycles (n can be scan initialized to one of {12,14,16,18,19,20,21,22,24},

with 24 being the default value). This would take the processor into error

state.

32. Deferred traps

Description:

Whether any deferred traps (and associated deferred-trap queues) are present is implementa-

tion-dependent.

Implementation:

Sparc64 implements a deferred trap for the following trap types:

• fp_exception_other (when FSR.ftt = unfinished_FPop).

• data_breakpoint.

Deferred trap queues are not necessary, since the trapping instruction is the only deferred

instruction.

SPARC International SPARC 64-II

74 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

33. Trap precision

Description:

Exceptions that occur as the result of program execution may be precise or deferred, although

it is recommended that such exceptions be precise. Examples include

mem_address_not_aligned and division_by_zero.

Implementation:

Sparc64 will generate a precise trap for all traps induced by instruction execution, except for

unfinished_FPop, data_breakpoint and Chip_crossing_errors (CPU_xing).

34. Interrupt clearing

Description:

How quickly a processor responds to an interrupt request and the method by which an inter-

rupt request is removed are implementation-dependent.

Implementation:

When Sparc64 is ready to accept an interrupt signal (based on PSTATE.IE and the PIL), it

stops issuing instructions and waits for the CPU to quiesce. It then issues

instructions from the corresponding trap handler if the interrupt condition

is still valid. The TPC points to the instruction that would have executed in

the absence of the interrupt. All instructions prior to the TPC have com-

pleted and all instructions including and subsequent to TPC remain unexe-

cuted.

35,36. Implementation-dependent traps and priorities

Description:

Trap type (TT) values 060(hex)..07f(hex) are reserved for implementation-dependent excep-

tions. The existence of implementation_dependent_n traps and whether

any that do exist are precise, deferred, or disrupting is implementation-

dependent.

The priorities of the particular traps are relative and are implementation-dependent, because a

future version of the architecture may define new traps, and implementa-

tions may define implementation-dependent traps that establish new rela-

tive priorities.

Implementation:

The following trap types defined by Sparc-V9 are not used in Sparc64.

• instruction_access_MMU_miss.

• internal_processor_error

SPARC International SPARC 64-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 75

• data_access_MMU_miss.

• LDQF_mem_address_not_aligned.

• STQD_mem_address_not_aligned.

• async_data_error.

Sparc64 defines the following implementation-dependent trap types.

• programmed_emulation_trap (tt=0x60, priority = 6, precise).

• data_breakpoint (tt=0x61, priority = 14, deferred).

• IO_parity (tt=0x62, priority = 2, precise).

• RED_alert (tt=0x63, priority = 2, disrupting).

• CPU_xing (tt=0x64, priority = 2, disrupting).

• Watchdog (tt=0x65, priority = 1, disrupting).

• ECC_trap (tt=0x66, priority = 2, precise).

Sparc64 implements a special accelerated emulation trap for certain LDD and STD instruc-

tions.

37. Reset trap

Description:

Some of a processor’s behavior during a reset trap is implementation-dependent.

Implementation:

Power-on Reset (POR) and Watchdog reset (WDR) are implemented by scanning in the reset

state on Sparc64.

38. Effect of reset trap on implementation-dependent registers

Description:

Implementation-dependent registers may or may not be affected by the various reset traps.

Implementation:

None of the implementation-dependent registers are affected by reset traps in Sparc64.

39. Entering error_state on implementation-dependent errors

Description:

The processor may enter error_state when an implementation-dependent error condition

occurs.

Implementation:

An internal CPU watchdog time-out occurs after no instruction has been committed for 2**n

cycles (n can be scan initialized to one of {12,14,16,18,19,20,21,22,24},

SPARC International SPARC 64-II

76 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

with 24 being the default value). This would take the processor into error

state.

40. Error_state processor state

Description:

What occurs after error_state is entered is implementation-dependent, but it is recommended

that as much processor state as possible be preserved upon entry to

error_state.

Implementation:

On entry to error state, Sparc64 asserts the output signal CPU_HALTED. The clock chip in

the HaL system stops the clocks to the CPU in response to this signal. A

scan out of processor state could be performed at this stage for diagnosis.

41. Reserved

42. FLUSH instruction

Description:

If flush is not implemented in hardware, it causes an illegal_instruction exception and its func-

tion is performed by system software. Whether FLUSH traps is implemen-

tation-dependent.

Implementation:

Sparc64 takes an illegal_instruction trap when a FLUSH instruction is executed.

43. Reserved

44. Data access FPU trap

Description:

If a load floating-point instruction traps with any type of access error exception, the contents

of the destination floating-point register(s) either remain unchanged or are

undefined.

Implementation:

Contents of destination floating-point register(s) remain unchanged.

SPARC International SPARC 64-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 77

45-46. Reserved

47. RDASR

Description:

RDASR instructions with rd in the range 16..31 are available for implementation-dependent

uses (impl. dep #8). For an RDASR instruction with rs1 in the range 16..31,

the following are implementation-dependent: the interpretation of bits 13:0

and 29:25 in the instruction, whether the instruction is privileged (impl.

dep. #9), and whether it causes an illegal_instruction trap.

Implementation:

See items 8,9 for details. Sparc64 causes an illegal_instruction trap for reads of the unused

ASR values.

48. WRASR

Description:

WRASR instructions with rd in the range 16..31 are available for implementation-dependent

uses (impl. dep. #8). For a WRASR instruction with rd in the range 16..31,

the following are implementation-dependent: the interpretation of bits 18:0

in the instruction, the operation(s) performed (for example, xor) to generate

the value written to the ASR, whether the instruction is privileged (impl.

dep. #9), and whether it causes an illegal_instruction trap.

Implementation:

 See items 8,9 for details. Sparc64 causes an illegal_instruction trap for writes of the unused

ASR values.

49-54 Reserved

55. Floating-point underflow detection

Description:

Whether “tininess” (in IEEE 754 terms) is detected before or after rounding is implementa-

tion-dependent. It is recommended that tininess be detected before round-

ing.

Implementation:

Sparc64 detects “tininess” before rounding.

SPARC International SPARC 64-II

78 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

56-100. Reserved

101. Maximum trap level

Description:

It is implementation-dependent how many additional levels, if any, past level 4 are supported.

Implementation:

Sparc64 implements 4 levels of traps.

102. Clean window trap

Description:

An implementation may choose either to implement automatic “cleaning” of register windows

in hardware, or generate a clean_window trap, when needed, for window(s)

to be cleaned by software.

Implementation:

Sparc64 generates a clean_window trap, when needed, for windows to be cleaned by software.

103. Prefetch instructions

Description:

The following aspects of the PREFETCH and PREFETCHA instructions are implementation-

dependent: (1) whether they have an observable effect in privileged code;

(2) whether they can cause a data_access_MMU_miss exception; (3) the

attributes of the block of memory prefetched: its size (minimum = 64

bytes) and its alignment (minimum = 64-byte alignment); (4) whether each

variant is implemented as a NOP, with its full semantics, or with common-

case prefetching semantics; (5) whether and how variants 16..31 are imple-

mented.

Implementation:

(1) PREFETCH and PREFETCHA have identical affects in privileged or non-privileged code.

(2) Can not cause a data_access_MMU_miss exception

(3) Size and alignments are 128-bytes

(4),(5) See table-1

SPARC International SPARC 64-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 79

104. VER.manuf

Description:

VER.manuf contains a 16-bit semiconductor manufacturer code. This field is optional, and if

not present reads as zero. VER.manuf may indicate the original supplier of

a second-sourced chip in cases involving mask-level second-sourcing. It is

intended that the contents of VER.manuf track the JEDEC semiconductor

manufacturer code as closely as possible. If the manufacturer does not have

a JEDEC semiconductor manufacturer code, SPARC International will

assign a VER.manuf value.

Implementation:

Sparc64 uses a code of 4 for this field. This is Fujitsu’s JEDEC code.

105. TICK register

Description:

The difference between the values read from the TICK register on two reads should reflect the

number of processor cycles executed between the reads. If an accurate

count cannot always be returned, an inaccuracy should be small, bounded,

and documented. An implementation my implement fewer than 63 bits in

TICK.counter; however, the counter as implemented must be able to count

Table 2: Prefetch Data

fcn
V9 Prefetch

Function

Sparc64

Function

 0 Prefetch for

several reads

Prefetch for

read

 1 Prefetch for

one read

Prefetch for

read

 2 Prefetch for

several writes

Prefetch for

write

 3 Prefetch for

one write

Prefetch for

write

 4 Prefetch page Prefetch for

read

 5-15 Reserved illegal_instru

ction trap

 16-31 Implementa-

tion depen-

dent

NOP

SPARC International SPARC 64-II

80 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

for at least 10 years without overflowing. Any upper bits not implemented

must be read as zero.

Implementation:

Sparc64 implements all the bits of TICK register and returns accurate count of the processor

cycles, in response to reads from TICK register.

106. IMPDEPn instructions

Description:

The IMPDEP1 and IMPDEP2 instructions are completely implementation-dependent. Imple-

mentation-dependent aspects include their operation, the interpretation of

bits 29:25 and 18:0 in their encoding, and which (if any) exceptions they

may cause.

Implementation:

Sparc64 uses IMPDEP2 to encode the HaL specific Floating Point Multiply-Add/Subtract

instructions. IMPDEP1 is not used and will cause an illegal_instruction

trap if such an opcode is encountered. Please refer to Sparc64 Processor

User Guide for more details.

107. Unimplemented LDD trap

Description:

It is implementation-dependent whether LDD and LDDA are implemented in hardware. If

not, an attempt to execute either will cause an unimplemented_LDD trap.

Implementation:

Sparc64 does not implement LDD and LDDA in hardware. It uses the unimplemented_LDD

trap. However in a special mode, there is partial support in hardware for

these instructions. Please refer to Sparc64 Processor User Guide for more

details.

108. Unimplemented STD trap

Description:

It is implementation-dependent whether STD and STDA are implemented in hardware. If not,

an attempt to execute either will cause an unimplemented_STD trap.

Implementation:

Sparc64 does not implement STD and STDA in hardware. It uses the unimplemented_STD

trap. However in a special mode, there is partial support in hardware for

these instructions. Please refer to Sparc64 Processor User Guide for more

details.

SPARC International SPARC 64-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 81

109. LDDF_mem_address_not_aligned

Description:

LDDF and LDDFA require only word alignment. However, if the effective address is word-

aligned but not doubleword-aligned, either may cause an

LDDF_mem_address_not_aligned trap, in which case the trap handler soft-

ware shall emulate the LDDF (or LDDFA) instruction and return.

Implementation:

Sparc64 causes LDDF_mem_address_not_aligned trap for both word and double-word mis-

aligned addresses.

110. STDF_mem_address_not_aligned

Description:

STDF and STDFA require only word alignment. However, if the effective address is word-

aligned but not doubleword-aligned, either may cause an

STDF_mem_address_not_aligned trap, in which case the trap handler soft-

ware shall emulate the STDF (or STDFA) instruction and return.

Implementation:

Sparc64 causes STDF_mem_address_not_aligned trap for both word and double-word mis-

aligned addresses.

111. LDQF_mem_address_not_aligned

Description:

LDQF and LDQFA require only word alignment. However, if the effective address is word-

aligned but not quadword-aligned, either may cause an

LDQF_mem_address_not_aligned trap, in which case the trap handler soft-

ware shall emulate the LDQF (or LDQFA) instruction and return.

Implementation:

Sparc64 generates fp_exception_other trap for LDQF, LDQFA instructions and kernel pro-

vides emulation routines to complete the load. It does not generate

LDQF_mem_address_not_aligned trap.

112. STQF_mem_address_not_aligned

Description:

STQF and STQFA require only word alignment. However, if the effective address is word-

aligned but not quadword-aligned, either may cause an

STQF_mem_address_not_aligned trap, in which case the trap handler soft-

ware shall emulate the STQF (or STQFA) instruction and return.

SPARC International SPARC 64-II

82 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Implementation:

Sparc64 generates fp_exception_other trap for STQF, STQFA instructions and kernel pro-

vides emulation routines to complete the load. It does not generate

STQF_mem_address_not_aligned trap.

113. Implemented memory models

Description:

Whether the Partial Store Order (PSO) or Relaxed Memory Order (RMO) models are sup-

ported is implementation-dependent.

Implementation:

Sparc64 supports Load/Store ordering (LSO) and Store ordering (STO). Partial Store Order

(PSO) is implemented using LSO and Relaxed Memory Order (RMO) is

implemented using STO.

114. RED_state trap vector address (RSTVaddr)

Description:

The RED_state trap vector is located at an implementation-dependent address referred to as

RSTVaddr.

Implementation:

Sparc64 has a scan only register that holds RSTVaddr.

115. RED_state processor state

Description:

What occurs after the processor enters RED_state is implementation-dependent.

Implementation:

Sparc64 has the following behavior in RED_state.

• The output signal RED_MODE is asserted indicating CPU is in RED_state.

• The CPU executes in sequential mode.

• On entry into and exit from RED_state, the CPU invalidates the on-chip instruction cache and

prefetch buffers.

• Off chip data and instruction caches are disabled.

• The MMU uses a special translation mechanism.

• All I/O accesses are disabled.

• Further red state errors are ignored.

• XIR, and Chip Crossing Errors are not masked and could cause a trap.

SPARC International SPARC 64-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 83

116. SIR_enable control flag

Description:

The location of and the means of accessing the SIR_enable control flag are implementation-

dependent. In some implementations, it may be permanently zero.

Implementation:

SIR_enable control flag is permanently zero in Sparc64.

117. MMU disabled prefetch behavior

Description:

Whether Prefetch and Non-faulting Load always succeed when the MMU is disabled is imple-

mentation-dependent.

Implementation:

In Sparc64, Prefetch and Non-faulting Loads will have undefined behavior if the MMU is dis-

abled.

118. Identifying I/O locations

Description:

The manner in which I/O locations are identified is implementation-dependent.

Implementation:

Please contact HaL Computer Systems for details of I/O operation.

119. Unimplemented values for PSTATE.MM

Description:

The effect of writing an unimplemented memory-mode designation into PSTATE.MM is

implementation-dependent

Implementation:

Sparc64 only the most significant bit of MM is used to determine the memory model; the least

significant bit is ignored. However, the system software should not use the

encoding ‘11’ since it is reserved for future SPARC-V9 extensions.

120. Coherence and atomicity of memory operations

Description:

The coherence and atomicity of memory operations between processors and I/O DMA mem-

ory accesses are implementation-dependent.

SPARC International SPARC 64-II

84 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Implementation:

In Sparc64, coherence and atomicity of memory operations between processors and I/O DMA

memory accesses are variable and depend on the I/O device. Please contact

HaL Computer Systems for details.

121. Implementation-dependent memory model

Description:

An implementation may choose to identify certain addresses and use an implementation

dependent memory model for references to them.

Implementation:

In Sparc64, certain addresses use implementation dependent memory models for references to

them. Please contact HaL Computer Systems for details.

122. FLUSH latency

Description:

Latency between the execution of FLUSH on one processor and the point at which the modi-

fied instructions have replaced out-dated instructions in a multiprocessor is

implementation-dependent.

Implementation:

Not applicable since, Sparc64 does not support a multi-processor configuration.

123. Input/output (I/O) semantics

Description:

The semantic effect of accessing input/output (I/O) registers is implementation-dependent.

Implementation:

In Sparc64, the semantic effect of accessing input/output (I/O) registers is undefined.

124. Implicit ASI when TL>0

Description:

When TL > 0, the implicit ASI for instruction fetches, loads, and stores is implementation-

dependent. See SPARC-V9 Architecture Manual section F.4.4, “Contexts,”

for more information.

Implementation:

Sparc64 uses ASI_PRIMARY or ASI_PRIMARY_LITTLE for instruction fetches, loads and

stores when TL>0

SPARC International SPARC 64-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 85

125. Address masking

Description:

When PSTATE.AM = 1, the value of the high-order 32-bits of the PC transmitted to the speci-

fied destination registers(s) by CALL, JMPL, RDPC, and on a trap is

implementation-dependent.

Implementation:

When PSTATE.AM bit is set on Sparc64, a full 64-bit address is transmitted to the specified

destination registers by CALL, JMPL, RDPC and traps transmit all 64-bits

to TPC[n] and TNPC[n].

126. TSTATE bits 19:18

Description:

If PSTATE bit 11 (10) is implemented, TSTATE bit 19 (18) shall be implemented and contain

the state of PSTATE bit 11 (10) from the previous trap level. If PSTATE bit

11 (10) is not implemented, TSTATE bit 19 (18) shall read as zero. Soft-

ware intended to run on multiple implementations should only write these

bits to values previously read from PSTATE, or to zeroes.

Implementation:

Sparc64 does not implement PSTATE bits 10 & 11 and they are read as zeroes. TSTATE bits

19 and 18 are read as zeroes.

127. PSTATE bits 11:10

Description:

The presence and semantics of PSTATE.PID1 and PSTATE.PID0 are implementation-depen-

dent. The presence of TSTATE bits 19 and 18 is implementation-depen-

dent. If PSTATE bit 11 (10) is implemented, TSTATE bit 19 (18) shall be

implemented and contain the state of PSTATE bit 11 (10) from the previous

trap level. If PSTATE bit 11 (10) is not implemented, TSTATE bit 19 (18)

shall read as zero. Software intended to run on multiple implementations

should only write these bits to values previously read from PSTATE, or to

zeroes.

Implementation:

Sparc64 does not implement PSTATE bits 10 & 11 and they are read as zeroes. TSTATE bits

19 and 18 are read as zeroes.

128. CLEANWIN register update

Earlier implementations of Sparc chips implemented the V9 specification for RESTORED

SPARC International SPARC 64-II

86 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

using the following equation to update CLEANWIN register:

 if (CLEANWIN != NWINDOWS) CLEANWIN++;

Subsequently V9 definition changed to modify the equation as:

 if (CLEANWIN < NWINDOWS-1) CLEANWIN++;

Sparc64 implements the RESTORED using the current definition. The Sparc64 Kernel will

ensure that CLEANWIN does not have a value beyond NWINDOWS-1.

Chapter 4: SUN Implementation of V9 Architecture

UltraSPARC - II

V9
SPARC INTERNATIONAL

SPARC International STP1031LGA-UltraSPARC-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 89

CHAPTER 4: SUN ULTRASPARC II

0. Introduction

This document describes the implementation on the UltraSPARC-II processor developed by Sun

Microelectronics, a business unit of Sun Microsystems, Inc., of the implementation dependen-

cies as put forth in “The SPARC Architecture Manual - Version 9” by SPARC International. The

items listed below correspond to the implementation dependencies as listed in the text and by

number in Appendix C of the manual along with the description of the implementation depen-

dency from the manual. The “Implementation” section for each item describes the implementa-

tion on the UltraSPARC-II processor.

1. Software emulation of instructions

Description: whether an instruction is implemented directly by hardware, simulated by

software, or emulated by firmware is implementation-dependent.

Implementation: all instructions are implemented in hardware except the following, which

must be simulated by software.

POPC Population count

LDQF Load quad-precision FP register

LDQFA Load quad-precision FP register from alternate space

STQF Store quad-precision FP register

STQFA Store quad-precision FP register to alternate space

F{s,d}TOq Convert single-/double- to quad-precision FP

F{i,x}TOq Convert 32-/64-bit integer to quad-precision FP

FqTO{s,d} Convert quad- to single-/double-precision FP

FqTO{i,x} Convert quad-precision FP to 32-/64-bit integer

FADDq Quad-precision FP add

FSUBq Quad-precision FP subtraction

FCMP{E}q Quad-precision FP compares

FMOVqcc Move quad-precision FP register on condition

FMOVqr Move quad-precision FP register on integer register condition

FMOVq Move quad-precision FP register

FABSq Quad-precision FP absolute value

FNEGq Quad-precision FP negate

FdMULq Double- to quad-precision FP multiply

FMULq Quad-precision FP multiply

SPARC International STP1031LGA-UltraSPARC-II

90 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

FDIVq Quad-precision FP divide

FSQRTq Quad-precision FP square root

DONE for fcn = 2..31 executed in nonprivileged mode

RETRY for fcn = 2..31 executed in nonprivileged mode

SAVED for fcn = 2..31 executed in nonprivileged mode

RESTORED for fcn = 2..31 executed in nonprivileged mode

The DONE/RETRY/SAVED/RESTORED instructions with fcn = 2..31 executed in nonprivileged

mode will take a privileged_opcode trap rather than an illegal_instruction trap. The opcode can be

recognized by software to emulate the proper illegal_instruction behavior. This can be done with

SPARC code in the privileged_opcode trap handler that does the following

PRIVILEGED_OPCODE_HANDLER:

 rdpr %tpc, %g1

 ld [%g1], %g2

 setx 0xc1f80000, %g3, %g4

 and %g4, %g2, %g4 ! %g4 has op/op3 of trapping instr.

 setx 0x3e000000, %g3, %g6

 and %g6, %g2, %g6

 srl %g6, 25, %g6 ! %g6 has fcn of trapping instr.

check_illegal_saved_restored:

 setx 0x81880000, %g3, %g5

 subcc %g4, %g5, %g0 ! saved/restored opcode?

 bne check_illegal_done_retry

 subcc %g6, 2, %g0 ! illegal fcn value?

 bge ILLEGAL_HANDLER

 nop

check_illegal_done_retry:

 setx 0x81f00000, %g3, %g5

 subcc %g4, %g5, %g0 ! done/retry opcode?

 bne not_illegal

 subcc %g6, 2, %g0 ! illegal fcn value?

 bge ILLEGAL_HANDLER

 nop

not_illegal:

 <handle privileged_opcode exception as desired here>

2. Number of IU registers

Description: an implementation of the IU may contain from 64 to 258 general purpose

64 bit r registers. This corresponds to a grouping of the registers into two

sets of eight global r registers, plus a circular stack of from three to 32 sets

of 16 registers each, known as register windows. Since the number of regis-

ter windows present (NWINDOWS) is implementation-dependent, the

total number of registers is also implementation-dependent.

SPARC International STP1031LGA-UltraSPARC-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 91

Implementation: UltraSPARC-II implements eight register windows plus four sets of eight

global r registers, for a total of 160 64 bit r registers.

3. Incorrect IEEE Std 754-1985 results

Description: an implementation may indicate that a floating-point instruction did not

produce a correct ANSI/IEEE Standard 754-1985 result by generating a

special floating-point unfinished or unimplemented exception. In this case,

privileged mode software shall emulate any functionality not present in the

hardware.

Implementation: the quad-precision floating-point instructions listed in implementation

dependency #1 above all generate floating-point unimplemented excep-

tions.

UltraSPARC-II generates floating-point unimplemented exceptions for the

following cases of subnormal operands or results.

Subnormal Operand Unimplemented Exception Cases:

F{s,d}TO{i,x} one subnormal operand

F{s,d}TO{i,x} one subnormal operand

FSQRT{s,d} one subnormal operand

FADD{s,d} one or two subnormal operands

FMUL{s,d}-25 < Er < 255 (SP) one subnormal operand -54 < Er < 2047 (DP) one subnor-

mal operand two subnormal operands

FDIV{s,d}-25 < Er < 255 (SP) one subnormal operand

-54 < Er < 2047 (DP) one subnormal operand

two subnormal operands

Subnormal Result Unimplemented Exception Cases:

FdTOs -25 < Er < 1 (SP)

-54 < Er < 1 (DP)

FADD{s,d}-25 < Er < 1 (SP)

-54 < Er < 1 (DP)

SPARC International STP1031LGA-UltraSPARC-II

92 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

FMUL{s,d}-25 < Er < 1 (SP)

-54 < Er < 1 (DP)

FDIV{s,d}-25 < Er <= 1 (SP)

-54 < Er <= 1 (DP)

Prediction of overflow, underflow and inexact traps for divide and square roots is

used. For divide, pessimistic prediction occurs when underflow/overflow cannot be

determined from examining the source operand exponents. For divide and square

root, pessimistic prediction of inexact occurs unless one of the operands is a zero,

NAN or infinity. When pessimistic prediction occurs and the exception is enabled,

a floating-point unfinished exception is generated.

4-5. Reserved

6. I/O registers privileged status

Description: whether I/O registers can be accessed by nonprivileged code is implemen-

tation-dependent.

Implementation: For systems using UltraSPARC-II, I/O register locations are memory

mapped to non-cacheable address space. The location, access, contents,

and side effects of the I/O registers are dependent on the system implemen-

tation, not the processor implementation.

7. I/O register definitions

Description: the contents and addresses of I/O registers are implementation-dependent

Implementation: For systems using UltraSPARC-II, I/O register locations are memory

mapped to non-cacheable address space. The location, access, contents,

and side effects of the I/O registers are dependent on the system implemen-

tation, not the processor implementation

8. RDASR/WRASR target registers

Description: software can use read/write ancillary state register instructions to read/

write implementation-dependent processor registers (ASRs 16-31).

SPARC International STP1031LGA-UltraSPARC-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 93

Implementation: UltraSPARC-II implements the following implementation-dependent

ASRs.

rd name access

16 PERF_CONTROL_REG RW

17 PERF_COUNTER RW

18 DISPATCH_CONTROL_REG RW

19 GRAPHICS_STATUS_REG RW

20 SET_SOFTINT W

21 CLEAR_SOFTINT W

22 SOFTINT_REG RW

23 TICK_CMPR_REG RW

9. RDASR/WRASR privileged status

Description: whether each of the implementation-dependent read/write ancillary state

register instructions (for ASRs 16-31) is privileged is implementation

dependent.

Implementation: The privileged status of UltraSPARC-II’s implementation-dependent regis-

ters is as follows:

rd name access

16 PERF_CONTROL_REG PRIVILEGED

17 PERF_COUNTER PRIVILEGED (if PERF_CONTROL_REG. PRIV = 1)

18 DISPATCH_CONTROL_REG PRIVILEGED

19 GRAPHICS_STATUS_REG NONPRIVILEGED

20 SET_SOFTINT PRIVILEGED

21 CLEAR_SOFTINT PRIVILEGED

22 SOFTINT_REG PRIVILEGED

23 TICK_CMPR_REG PRIVILEGED

10-12. Reserved

13. VER.impl

Description: VER.impl uniquely identifies an implementation or class of software-com-

SPARC International STP1031LGA-UltraSPARC-II

94 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

patible implementations of the architecture. Values FFF0(hex)..FFFF(hex)

are reserved and are not available for assignment.

Implementation: UltraSPARC-II uses the implementation code 0011 (hex)

14-15. Reserved

16. IU deferred-trap queue

Description: the existence, contents, and operation of an IU deferred-trap queue are

implementation-dependent; it is not visible to user application programs

under normal operating conditions.

Implementation: UltraSPARC-II does not implement a deferred-trap queue.

17. Reserved

18. Nonstandard IEEE 754-1985 results

Description: bit 22 of the FSR, FSR_nonstandard_fp (NS), when set to 1, causes the

FPU to produce implementation-defined results that may not correspond to

IEEE Standard 754-1985.

Implementation: if FSR.NS is set to one, the subnormal operand and results cases identified

for implementation dependency #3 above, are flushed to zero.

19. FPU version, FSR.ver

Description: bits 19:17 of the FSR, FSR.ver, identify one or more implementations of

the FPU architecture.

Implementation: on UltraSPARC-II the FSR.VER field is set to zero.

20-21. Reserved

SPARC International STP1031LGA-UltraSPARC-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 95

22. FPU TEM, cexc, and aexc

Description: an implementation may choose to implement the TEM, cexc, and aexc

fields in hardware in either of two ways (see section 5.1.7.11 of SPARC-V9

Architecture Manual for details).

Implementation: UltraSPARC-II implements the TEM, cexc and aexc fields in conformance

to IEEE Std 754-1985.

23. Floating-point traps

Description: floating point traps may be precise or deferred. If deferred, a floating point

deferred-trap queue (FQ) must be present.

Implementation: UltraSPARC-II floating-point traps are precise and it does not implement

an FQ.

24. FPU deferred-trap queue (FQ)

Description: the presence, contents of, and operations on the floating-point deferred-trap

queue (FQ) are implementation-dependent.

Implementation: UltraSPARC-II does not implement an FQ.

25. RDPR of FQ with nonexistent FQ

Description: on implementations without a floating-point queue, an attempt to read the

FQ with an RDPR instruction shall cause either an illegal_instruction

exception or an fp_exception_other exception with FSR.ftt set to 4

(sequence_error).

Implementation: attempting to read the FQ with a RDPR instruction causes an

illegal_instruction exception.

26-28. Reserved

SPARC International STP1031LGA-UltraSPARC-II

96 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

29. Address space identifier (ASI) definitions

Description: the following ASI assignments are implementation-dependent: restricted

ASIs (all values hex) 00..03, 05..0B, 0D..0F, 12..17, and 1A..7F; and unre-

stricted ASIs C0..FF.

Implementation: UltraSPARC-II assigns the following implementation-dependent ASI val-

ues.

restricted ASI values (all values hex):

14, 15, 1C, 1D, 24, 2C, 45, 46, 47, 48, 49, 4A, 4B, 4C, 4D, 4E, 50, 51, 52, 53, 54, 55, 56, 57,

58, 59, 5A, 5B, 5C, 5D, 5E, 5F, 66, 67, 6E, 6F, 70, 71, 76, 77, 78, 79, 7E,

7F

unrestricted ASI values (all values hex):

C0, C1, C2, C3, C4, C5, C8, C9, CA, CB, CC, CD, D0, D1, D2, D3, D8, D9, DA, DB, E0, E1,

F0, F1, F8, F9

30. ASI address decoding

Description: an implementation may choose to decode only a subset of the 8-bit ASI

specifier; however, it shall decode at least enough of the ASI to distinguish

ASI_PRIMARY,

 ASI_PRIMARY_LITTLE,

ASI_AS_IF_USER_PRIMARY,

ASI_AS_IF_USER_PRIMARY_LITTLE,

ASI_PRIMARY_NOFAULT,

ASI_PRIMARY_NOFAULT_LITTLE,

ASI_SECONDARY,

ASI_SECONDARY_LITTLE,

ASI_AS_IF_USER_SECONDARY,

ASI_AS_IF_USER_SECONDARY_LITTLE,

ASI_SECONDARY_NOFAULT, and

ASI_SECONDARY_NOFAULT_LITTLE.

If ASI_NUCLEUS and ASI_NUCLEUS_LITTLE are supported (impl.

dep. #124), they must be decoded also. Finally, an implementation must

always decode ASI bit<7> while PSTATE.PRIV = 0, so that an attempt by

nonprivileged software to access a restricted ASI will always cause a

privileged_action exception.

Implementation: UltraSPARC-II decodes the entire 8-bit ASI specifier.

SPARC International STP1031LGA-UltraSPARC-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 97

31. Catastrophic error exceptions

Description: the causes and effects of catastrophic error exceptions are implementation-

dependent. They may cause precise, deferred or disrupting traps.

Implementation: UltraSPARC-II catastrophic error exceptions cause deferred traps. The

PSTATE.RED bit is not automatically set in hardware for any catastrophic

error exceptions other than when trapping to MAXTL-1.

32. Deferred traps

Description: whether any deferred traps (and associated deferred-trap queues) are

present is implementation-dependent.

Implementation: UltraSPARC-II may encounter deferred traps during memory accesses.

Such errors lead to termination of the currently executing process or result

in a system reset if system state has been corrupted. Error logging informa-

tion allows software to determine if the system state has been corrupted.

33. Trap precision

Description: exceptions that occur as the result of program execution may be precise or

deferred, although it is recommended that such exceptions be precise.

Examples include mem_address_not_aligned and division_by_zero.

Implementation: all of the exceptions listed in the SPARC-V9 Architecture Manual section

7.3.5, item (2) are precise with the exception of instruction_access_error,

which is deferred.

34. Interrupt clearing

Description: how quickly a processor responds to an interrupt request and the method by

which an interrupt request is removed are implementation-dependent.

Implementation: The response time to interrupt is dependent the activity the processor is

executing at the time the interrupt is received (e.g., whether executing a

trap handler with PSTATE.IE=0, etc.). The interrupt request is removed by

SPARC International STP1031LGA-UltraSPARC-II

98 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

clearing a bit in the implementation-dependent interrupt vector receive reg-

ister.

35. Implementation-dependent traps

Description: trap type (TT) values 060(hex)..07f(hex) are reserved for implementation-

dependent exceptions. The existence of implementation_dependent_n traps

and whether any that do exist are precise, deferred, or disrupting is imple-

mentation-dependent.

Implementation: the following implementation-dependent trap types are implemented on

UltraSPARC-II.

TT (hex) Exception Category

060 interrupt_vector disrupting

061 PA_watchpoint disrupting

062 VA_watchpoint disrupting

063 corrected_ECC_error disrupting

064..067 fast_instruction_access_MMU_miss precise

068..06B fast_data_access_MMU_miss precise

06C..06F fast_data_access_protection precise

36. Trap priorities

Description: the priorities of the particular traps are relative and are implementation-

dependent, because a future version of the architecture may define new

traps, and implementations may define implementation-dependent traps

that establish new relative priorities.

Implementation: UltraSPARC-II traps are prioritized relative to each other according to the

relative priorities in the SPARC-V9 Manual.

37. Reset trap

Description: some of a processor’s behavior during a reset trap is implementation-

dependent.

Implementation: UltraSPARC-II conforms to the required behavior during a reset trap.

Unspecified behavior is either defined during reset or specified as requiring

SPARC International STP1031LGA-UltraSPARC-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 99

initialization.

38. Effect of reset trap on implementation-dependent registers

Description: implementation-dependent registers may or may not be affected by the var-

ious reset traps.

Implementation: Implementation-dependent registers on UltraSPARC-II either have defined

behavior during reset traps or are specified as requiring initialization.

39. Entering error_state on implementation-dependent errors

Description: the processor may enter error_state when an implementation-dependent

error condition occurs.

Implementation: UltraSPARC-II enters error_state only by trapping when TL = MAXTL.

Any type of trap may cause this.

40. Error_state processor state

Description: what occurs after error_state is entered is implementation-dependent, but it

is recommended that as much processor state as possible be preserved upon

entry to error_state.

Implementation: Entering error_state causes UltraSPARC-II to trigger a watchdog_reset

trap. As much state as possible is preserved during this action.

41. Reserved

42. FLUSH instruction

Description: if flush is not implemented in hardware, it causes an illegal_instruction

exception and its function is performed by system software. Whether

FLUSH traps is implementation-dependent.

Implementation: UltraSPARC-II implements FLUSH in hardware and it can cause a

data_access_exception if the page is mapped with side effects or no-fault-

SPARC International STP1031LGA-UltraSPARC-II

100 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

only bits set, virtual address out of range, privilege violation, or a

data_access_MMU_miss trap.

43. Reserved

44. Data access FPU trap

Description: if a load floating-point instruction traps with any type of access error

exception, the contents of the destination floating-point register(s) either

remain unchanged or are undefined.

Implementation: access error exceptions on floating-point load instructions leave the desti-

nation floating-point register contents unchanged.

45-46. Reserved

47. RDASR

Description: RDASR instructions with rd in the range 16..31 are available for imple-

mentation-dependent uses (impl. dep #8). For an RDASR instruction with

rs1 in the range 16..31, the following are implementation-dependent: the

interpretation of bits 13:0 and 29:25 in the instruction, whether the instruc-

tion is privileged (impl. dep. #9), and whether it causes an

illegal_instruction trap.

Implementation: the bit fields specified above are not used for UltraSPARC-II implementa-

tion-dependent RDASR instructions. Reads of unused rs1 values and reads

of write-only implementation-dependent ASRs cause illegal_instruction

traps.

48. WRASR

Description: WRASR instructions with rd in the range 16..31 are available for imple-

mentation-dependent uses (impl. dep. #8). For a WRASR instruction with

rd in the range 16..31, the following are implementation-dependent: the

interpretation of bits 18:0 in the instruction, the operation(s) performed (for

example, xor) to generate the value written to the ASR, whether the

SPARC International STP1031LGA-UltraSPARC-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 101

instruction is privileged (impl. dep. #9), and whether it causes an

illegal_instruction trap.

Implementation: UltraSPARC-II does not interpret bits 18:0 of the WRASR instruction.

Using WRASR to the SET_SOFTINT and CLEAR_SOFTINT ASRs will

set and clear (respectively) bits in the SOFTINT_REG ASR. Writes of the

unused ASR values cause illegal_instruction traps.

49-54. Reserved

55. Floating-point underflow detection

Description: whether “tininess” (in IEEE 754 terms) is detected before or after rounding

is implementation-dependent. It is recommended that tininess be detected

before rounding.

Implementation: UltraSPARC-II detects underflow before rounding.

56-100. Reserved

101. Maximum trap level

Description: it is implementation-dependent how many additional levels, if any, past

level 4 are supported.

Implementation: UltraSPARC-II implements 5 trap levels.

102. Clean window trap

Description: an implementation may choose either to implement automatic “cleaning”

of register windows in hardware, or generate a clean_window trap, when

needed, for window(s) to be cleaned by software.

Implementation: UltraSPARC-II cleans register windows by generating a clean_window

trap for windows to be cleaned by software.

SPARC International STP1031LGA-UltraSPARC-II

102 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

103. Prefetch instructions

Description: the following aspects of the PREFETCH and PREFETCHA instructions

are implementation-dependent: (1) whether they have an observable effect

in privileged code; (2) whether they can cause a data_access_MMU_miss

exception; (3) the attributes of the block of memory prefetched: its size

(minimum = 64 bytes) and its alignment (minimum = 64-byte alignment);

(4) whether each variant is implemented as a NOP, with its full semantics,

or with common-case prefetching semantics; (5) whether and how variants

16..31 are implemented.

Implementation: on UltraSPARC-II, PREFETCH and PREFETCHA have the same observ-

able effect as a NOP in both privileged and nonprivileged modes.

104. VER.manuf

Description: VER.manuf contains a 16-bit semiconductor manufacturer code. This field

is optional, and if not present reads as zero. VER.manuf may indicate the

original supplier of a second-sourced chip in cases involving mask-level

second-sourcing. It is intended that the contents of VER.manuf track the

JEDEC semiconductor manufacturer code as closely as possible. If the

manufacturer does not have a JEDEC semiconductor manufacturer code,

SPARC International will assign a VER.manuf value.

Implementation: UltraSPARC-II uses the manufacturer code 0017(hex)

105. TICK register

Description: the difference between the values read from the TICK register on two reads

should reflect the number of processor cycles executed between the reads.

If an accurate count cannot always be returned, an inaccuracy should be

small, bounded, and documented. An implementation my implement fewer

than 63 bits in TICK.counter; however, the counter as implemented must

be able to count for at least 10 years without overflowing. Any upper bits

not implemented must be read as zero.

Implementation: UltraSPARC-II implements 63 bits of TICK.counter and reflects the num-

ber of processor clocks between reads.

SPARC International STP1031LGA-UltraSPARC-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 103

106. IMPDEPn instructions

Description: the IMPDEP1 and IMPDEP2 instructions are completely implementation-

dependent. Implementation-dependent aspects include their operation, the

interpretation of bits 29:25 and 18:0 in their encodings, and which (if any)

exceptions they may cause.

Implementation: UltraSPARC-II implements implementation-dependent instructions using

the following field values:

op op3 opf

10 110110 010000000

10 110110 001010000

10 110110 001010001

10 110110 001010010

10 110110 001010011

10 110110 001010100

10 110110 001010101

10 110110 001010110

10 110110 001010111

10 110110 000111011

10 110110 000111010

10 110110 000111101

10 110110 001001101

10 110110 001001011

10 110110 000110001

10 110110 000110011

10 110110 000110101

10 110110 000110110

10 110110 000110111

10 110110 000111000

10 110110 000111001

10 110110 000011000

10 110110 000011010

10 110110 001001000

10 110110 001100000

10 110110 001100001

10 110110 001111110

SPARC International STP1031LGA-UltraSPARC-II

104 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

10 110110 001111111

10 110110 001110100

10 110110 001110101

10 110110 001111000

10 110110 001111001

10 110110 001101010

10 110110 001101011

10 110110 001100110

10 110110 001100111

10 110110 001111100

10 110110 001111101

10 110110 001100010

10 110110 001100011

10 110110 001110000

10 110110 001110001

10 110110 001101110

10 110110 001101111

10 110110 001101100

10 110110 001101101

10 110110 001110010

10 110110 001110011

10 110110 001111010

10 110110 001111011

10 110110 001110110

10 110110 001110111

10 110110 001101000

10 110110 001101001

10 110110 001100100

10 110110 001100101

10 110110 000101000

10 110110 000101100

10 110110 000100000

10 110110 000100100

10 110110 000100010

10 110110 000100110

10 110110 000101010

10 110110 000101110

10 110110 000000000

10 110110 000000010

10 110110 000000100

10 110110 000000110

10 110110 000001000

10 110110 000001010

SPARC International STP1031LGA-UltraSPARC-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 105

10 110110 000111110

10 110110 000010000

10 110110 000010010

10 110110 000010100

107. Unimplemented LDD trap

Description: it is implementation-dependent whether LDD and LDDA are implemented

in hardware. If not, an attempt to execute either will cause an

unimplemented_LDD trap.

Implementation: UltraSPARC-II implements LDD and LDDA in hardware.

108. Unimplemented STD trap

Description: it is implementation-dependent whether STD and STDA are implemented

in hardware. If not, an attempt to execute either will cause an

unimplemented_STD trap.

Implementation: UltraSPARC-II implements STD and STDA in hardware.

109. LDDF_mem_address_not_aligned

Description: LDDF and LDDFA require only word alignment. However, if the effective

address is word-aligned but not doubleword-aligned, either may cause an

LDDF_mem_address_not_aligned trap, in which case the trap handler soft-

ware shall emulate the LDDF (or LDDFA) instruction and return.

Implementation: UltraSPARC-II generates an LDDF_mem_address_not_aligned exception

if an LDDF or LDDFA effective address is word-aligned but not double-

word-aligned.

110. STDF_mem_address_not_aligned

Description: STDF and STDFA require only word alignment. However, if the effective

SPARC International STP1031LGA-UltraSPARC-II

106 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

address is word-aligned but not doubleword-aligned, either may cause an

STDF_mem_address_not_aligned trap, in which case the trap handler soft-

ware shall emulate the STDF (or STDFA) instruction and return.

Implementation: UltraSPARC-II generates an STDF_mem_address_not_aligned exception

if an STDF or STDFA effective address is word-aligned but not double-

word-aligned.

111. LDQF_mem_address_not_aligned

Description: LDQF and LDQFA require only word alignment. However, if the effective

address is word-aligned but not quadword-aligned, either may cause an

LDQF_mem_address_not_aligned trap, in which case the trap handler soft-

ware shall emulate the LDQF (or LDQFA) instruction and return.

Implementation: UltraSPARC-II does not implement the LDQF and LDQFA in hardware,

they must be emulated in software using other instructions.

112. STQF_mem_address_not_aligned

Description: STQF and STQFA require only word alignment. However, if the effective

address is word-aligned but not quadword-aligned, either may cause an

STQF_mem_address_not_aligned trap, in which case the trap handler soft-

ware shall emulate the STQF (or STQFA) instruction and return.

Implementation: UltraSPARC-II does not implement the STQF and STQFA in hardware,

they must be emulated in software using other instructions.

113. Implemented memory models

Description: whether the Partial Store Order (PSO) or Relaxed Memory Order (RMO)

models are supported is implementation-dependent.

Implementation: UltraSPARC-II supports the Partial Store Order and Relaxed Memory

Order models.

114. RED_state trap vector address (RSTVaddr)

SPARC International STP1031LGA-UltraSPARC-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 107

Description: the RED_state trap vector is located at an implementation-dependent

address referred to as RSTVaddr.

Implementation: RSTVaddr = 1fff0000000 (hex)

115. RED_state processor state

Description: what occurs after the processor enters RED_state is implementation-depen-

dent.

Implementation: On UltraSPARC-II some register contents are forced to specified values

and some hardware functions are disabled upon entering RED_state to

avoid as much as possible any additional traps which would cause the pro-

cessor to enter error_state.

116. SIR_enable control flag

Description: the location of and the means of accessing the SIR_enable control flag are

implementation-dependent. In some implementations, it may be perma-

nently zero.

Implementation: the SIR_enable in UltraSPARC-II is permanently zero.

117. MMU disabled prefetch behavior

Description: whether Prefetch and Non-faulting Load always succeed when the MMU is

disabled is implementation-dependent.

Implementation: prefetch instructions behave as NOP instructions. Non-faulting Load

instructions may or may not succeed when the MMU is disabled depending

on the state of the an implementation-dependent register determining

whether the cache is enabled.

118. Identifying I/O locations

Description: the manner in which I/O locations are identified is implementation-depen-

dent.

SPARC International STP1031LGA-UltraSPARC-II

108 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Implementation: For systems using UltraSPARC-II, I/O register locations are memory

mapped to non-cacheable address space. The location, access, contents,

and side effects of the I/O registers are dependent on the system implemen-

tation, not the processor implementation

119. Unimplemented values for PSTATE.MM

Description: the effect of writing an unimplemented memory-mode designation into

PSTATE.MM is implementation-dependent

Implementation: UltraSPARC-II implements all three memory modes specified in the

SPARC-V9 manual. If the reserved PSTATE.MM value (3) were written,

UltraSPARC-II would interpret it as RMO.

120. Coherence and atomicity of memory operations

Description: the coherence and atomicity of memory operations between processors and

I/O DMA memory accesses are implementation-dependent.

Implementation: This is dependent on the system implementation rather than the processor

implementation for systems that use UltraSPARC-II

121. Implementation-dependent memory model

Description: an implementation may choose to identify certain addresses and use an

implementation-dependent memory model for references to them.

Implementation: UltraSPARC-II does not use any implementation-dependent memory mod-

els.

122. FLUSH latency

Description: latency between the execution of FLUSH on one processor and the point at

which the modified instructions have replaced out-dated instructions in a

multiprocessor is implementation-dependent.

Implementation: This is dependent on the system implementation rather than the processor

SPARC International STP1031LGA-UltraSPARC-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 109

implementation for systems that use UltraSPARC-II

123. Input/output (I/O) semantics

Description: the semantic effect of accessing input/output (I/O) registers is implementa-

tion-dependent.

Implementation: For systems using UltraSPARC-II, I/O register locations are memory

mapped to non-cacheable address space. The location, access, contents,

and side effects of the I/O registers are dependent on the system implemen-

tation, not the processor implementation

124. Implicit ASI when TL > 0

Description: when TL > 0, the implicit ASI for instruction fetches, loads, and stores is

implementation-dependent. See SPARC-V9 Architecture Manual section

F.4.4, “Contexts,” for more information.

Implementation: the implicit ASI for instruction fetches, loads, and stores when TL > 0 is

ASI_PRIMARY

125. Address masking

Description: when PSTATE.AM = 1, the value of the high-order 32-bits of the PC trans-

mitted to the specified destination registers(s) by CALL, JMPL, RDPC,

and on a trap is implementation-dependent.

Implementation: when PSTATE.AM = 1, the value of the high-order 32-bits of the PC trans-

mitted to the specified destination register(s) by CALL, JMPL, RDPC, and

on a trap is zero.

126. TSTATE bits 19:18

Description: If PSTATE bit 11 (10) is implemented, TSTATE bit 19 (18) shall be imple-

mented and contain the state of PSTATE bit 11 (10) from the previous trap

level. If PSTATE bit 11 (10) is not implemented, TSTATE bit 19 (18) shall

read as zero. Software intended to run on multiple implementations should

only write these bits to values previously read from PSTATE, or to zeroes.

SPARC International STP1031LGA-UltraSPARC-II

110 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Implementation: UltraSPARC-II implements TSTATE bits 19:18 to hold the state of

PSTATE bits 11:10 for each previous trap level.

127. PSTATE bits 11:10

Description: The presence and semantics of PSTATE.PID1 and PSTATE.PID0 are implemen-

tation-dependent. The presence of TSTATE bits 19 and 18 is implementa-

tion-dependent. If PSTATE bit 11 (10) is implemented, TSTATE bit 19 (18)

shall be implemented and contain the state of PSTATE bit 11 (10) from the

previous trap level. If PSTATE bit 11 (10) is not implemented, TSTATE bit

19 (18) shall read as zero. Software intended to run on multiple implemen-

tations should only write these bits to values previously read from

PSTATE, or to zeroes.

Implementation: PSTATE.PID1 and PSTATE.PID0 are implemented on UltraSPARC-II as

selects for two additional sets of eight trap global registers. The corre-

sponding bits in the TSTATE register are implemented to store these bits

for the previous trap level.

Chapter 5: SUN Implementation of V9 Architecture

UltraSPARC - IIi

V9
SPARC INTERNATIONAL

SPARC International UltraSPARC-IIi

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 113

CHAPTER 5: SUN ULTRASPARC IIi

0. Introduction

This document describes the implementation on the UltraSPARC-IIi processor developed by Sun

Microelectronics, a business unit of Sun Microsystems, Inc., of the implementation dependen-

cies as put forth in “The SPARC Architecture Manual - Version 9” by SPARC International. The

items listed below correspond to the implementation dependencies as listed in the text and by

number in Appendix C of the manual along with the description of the implementation depen-

dency from the manual. The “Implementation” section for each item describes the implementa-

tion on the UltraSPARC-IIi processor.

1. Software emulation of instructions

Description: whether an instruction is implemented directly by hardware, simulated by

software, or emulated by firmware is implementation-dependent.

Implementation: all instructions are implemented in hardware except the following, which

must be simulated by software.

POPC Population count

LDQF Load quad-precision FP register

LDQFA Load quad-precision FP register from alternate space

STQF Store quad-precision FP register

STQFA Store quad-precision FP register to alternate space

F{s,d}TOq Convert single-/double- to quad-precision FP

F{i,x}TOq Convert 32-/64-bit integer to quad-precision FP

FqTO{s,d} Convert quad- to single-/double-precision FP

FqTO{i,x} Convert quad-precision FP to 32-/64-bit integer

FADDq Quad-precision FP add

FSUBq Quad-precision FP subtraction

FCMP{E}q Quad-precision FP compares

FMOVqcc Move quad-precision FP register on condition

FMOVqr Move quad-precision FP register on integer register condition

FMOVq Move quad-precision FP register

FABSq Quad-precision FP absolute value

FNEGq Quad-precision FP negate

FdMULq Double- to quad-precision FP multiply

FMULq Quad-precision FP multiply

FDIVq Quad-precision FP divide

FSQRTq Quad-precision FP square root

DONE for fcn = 2..31 executed in nonprivileged mode

SPARC International UltraSPARC-IIi

114 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

RETRY for fcn = 2..31 executed in nonprivileged mode

SAVED for fcn = 2..31 executed in nonprivileged mode

RESTORED for fcn = 2..31 executed in nonprivileged mode

The DONE/RETRY/SAVED/RESTORED instructions with fcn = 2..31 executed in nonprivileged

mode will take a privileged_opcode trap rather than an illegal_instruction trap. The opcode can be

recognized by software to emulate the proper illegal_instruction behavior. This can be done with

SPARC code in the privileged_opcode trap handler that does the following

PRIVILEGED_OPCODE_HANDLER:

 rdpr %tpc, %g1

 ld [%g1], %g2

 setx 0xc1f80000, %g3, %g4

 and %g4, %g2, %g4 ! %g4 has op/op3 of trapping instr.

 setx 0x3e000000, %g3, %g6

 and %g6, %g2, %g6

 srl %g6, 25, %g6 ! %g6 has fcn of trapping instr.

check_illegal_saved_restored:

 setx 0x81880000, %g3, %g5

 subcc %g4, %g5, %g0 ! saved/restored opcode?

 bne check_illegal_done_retry

 subcc %g6, 2, %g0 ! illegal fcn value?

 bge ILLEGAL_HANDLER

 nop

check_illegal_done_retry:

 setx 0x81f00000, %g3, %g5

 subcc %g4, %g5, %g0 ! done/retry opcode?

 bne not_illegal

 subcc %g6, 2, %g0 ! illegal fcn value?

 bge ILLEGAL_HANDLER

 nop

not_illegal:

 <handle privileged_opcode exception as desired here>

2. Number of IU registers

Description: an implementation of the IU may contain from 64 to 258 general purpose

64 bit r registers. This corresponds to a grouping of the registers into two

sets of eight global r registers, plus a circular stack of from three to 32 sets

of 16 registers each, known as register windows. Since the number of regis-

ter windows present (NWINDOWS) is implementation-dependent, the

total number of registers is also implementation-dependent.

Implementation: UltraSPARC-IIi implements eight register windows plus four sets of eight

global r registers, for a total of 160 64 bit r registers.

SPARC International UltraSPARC-IIi

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 115

3. Incorrect IEEE Std 754-1985 results

Description: an implementation may indicate that a floating-point instruction did not

produce a correct ANSI/IEEE Standard 754-1985 result by generating a

special floating-point unfinished or unimplemented exception. In this case,

privileged mode software shall emulate any functionality not present in the

hardware.

Implementation: the quad-precision floating-point instructions listed in implementation

dependency #1 above all generate floating-point unimplemented excep-

tions.

UltraSPARC-IIi generates floating-point unimplemented exceptions for the

following cases of subnormal operands or results.

Subnormal Operand Unimplemented Exception Cases:

F{s,d}TO{i,x} one subnormal operand

F{s,d}TO{i,x} one subnormal operand

FSQRT{s,d} one subnormal operand

FADD{s,d} one or two subnormal operands

FMUL{s,d} -25 < Er < 255 (SP) one subnormal operand

-54 < Er < 2047 (DP) one subnormal operand

two subnormal operands

FDIV{s,d} -25 < Er < 255 (SP) one subnormal operand

-54 < Er < 2047 (DP) one subnormal operand

two subnormal operands

Subnormal Result Unimplemented Exception Cases:

FdTOs -25 < Er < 1 (SP)

-54 < Er < 1 (DP)

FADD{s,d} -25 < Er < 1 (SP)

-54 < Er < 1 (DP)

FMUL{s,d} -25 < Er < 1 (SP)

-54 < Er < 1 (DP)

SPARC International UltraSPARC-IIi

116 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

FDIV{s,d} -25 < Er <= 1 (SP)

-54 < Er <= 1 (DP)

Prediction of overflow, underflow and inexact traps for divide and square

roots is used. For divide, pessimistic prediction occurs when underflow/

overflow cannot be determined from examining the source operand expo-

nents. For divide and square root, pessimistic prediction of inexact occurs

unless one of the operands is a zero, NAN or infinity. When pessimistic

prediction occurs and the exception is enabled, a floating-point unfinished

exception is generated.

4-5. Reserved

6. I/O registers privileged status

Description: whether I/O registers can be accessed by nonprivileged code is implemen-

tation-dependent.

Implementation: For systems using UltraSPARC-IIi, I/O register locations are memory

mapped to non-cacheable address space. The location, access, contents,

and side effects of the I/O registers are dependent on the system implemen-

tation, not the processor implementation.

7. I/O register definitions

Description: the contents and addresses of I/O registers are implementation-dependent

Implementation: For systems using UltraSPARC-IIi, I/O register locations are memory

mapped to non-cacheable address space. The location, access, contents,

and side effects of the I/O registers are dependent on the system implemen-

tation, not the processor implementation

8. RDASR/WRASR target registers

Description: software can use read/write ancillary state register instructions to read/

write implementation-dependent processor registers (ASRs 16-31).

Implementation: UltraSPARC-IIi implements the following implementation-dependent

SPARC International UltraSPARC-IIi

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 117

ASRs.

rd name access

16 PERF_CONTROL_REG RW

17 PERF_COUNTER RW

18 DISPATCH_CONTROL_REG RW

19 GRAPHICS_STATUS_REG RW

20 SET_SOFTINT W

21 CLEAR_SOFTINT W

22 SOFTINT_REG RW

23 TICK_CMPR_REG RW

9. RDASR/WRASR privileged status

Description: whether each of the implementation-dependent read/write ancillary state

register instructions (for ASRs 16-31) is privileged is implementation

dependent.

Implementation: The privileged status of UltraSPARC-IIi’s implementation-dependent reg-

isters is as follows:

rd name access

16 PERF_CONTROL_REG PRIVILEGED

17 PERF_COUNTER PRIVILEGED (if

 PERF_CONTROL_REG. PRIV = 1)

18 DISPATCH_CONTROL_REG PRIVILEGED

19 GRAPHICS_STATUS_REG NONPRIVILEGED

20 SET_SOFTINT PRIVILEGED

21 CLEAR_SOFTINT PRIVILEGED

22 SOFTINT_REG PRIVILEGED

23 TICK_CMPR_REG PRIVILEGED

10-12. Reserved

13. VER.impl

Description: VER.impl uniquely identifies an implementation or class of software-com-

patible implementations of the architecture. Values FFF0(hex)..FFFF(hex)

SPARC International UltraSPARC-IIi

118 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

are reserved and are not available for assignment.

Implementation: UltraSPARC-IIi uses the implementation code 0012 (hex) [0x12]

14-15. Reserved

16. IU deferred-trap queue

Description: the existence, contents, and operation of an IU deferred-trap queue are

implementation-dependent; it is not visible to user application programs

under normal operating conditions.

Implementation: UltraSPARC-IIi does not implement a deferred-trap queue.

17. Reserved

18. Nonstandard IEEE 754-1985 results

Description: bit 22 of the FSR, FSR_nonstandard_fp (NS), when set to 1, causes the

FPU to produce implementation-defined results that may not correspond to

IEEE Standard 754-1985.

Implementation: if FSR.NS is set to one, the subnormal operand and results cases identified

for implementation dependency #3 above, are flushed to zero.

19. FPU version, FSR.ver

Description: bits 19:17 of the FSR, FSR.ver, identify one or more implementations of

the FPU architecture.

Implementation: on UltraSPARC-IIi the FSR.VER field is set to zero.

20-21. Reserved

SPARC International UltraSPARC-IIi

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 119

22. FPU TEM, cexc, and aexc

Description: an implementation may choose to implement the TEM, cexc, and aexc

fields in hardware in either of two ways (see section 5.1.7.11 of SPARC-V9

Architecture Manual for details).

Implementation: UltraSPARC-IIi implements the TEM, cexc and aexc fields in conformance

to IEEE Std 754-1985.

23. Floating-point traps

Description: floating point traps may be precise or deferred. If deferred, a floating point

deferred-trap queue (FQ) must be present.

Implementation: UltraSPARC-IIi floating-point traps are precise and it does not implement

an FQ.

24. FPU deferred-trap queue (FQ)

Description: the presence, contents of, and operations on the floating-point deferred-trap

queue (FQ) are implementation-dependent.

Implementation: UltraSPARC-IIi does not implement an FQ.

25. RDPR of FQ with nonexistent FQ

Description: on implementations without a floating-point queue, an attempt to read the

FQ with an RDPR instruction shall cause either an illegal_instruction

exception or an fp_exception_other exception with FSR.ftt set to 4

(sequence_error).

Implementation: attempting to read the FQ with a RDPR instruction causes an

illegal_instruction exception.

26-28. Reserved

SPARC International UltraSPARC-IIi

120 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

29. Address space identifier (ASI) definitions

Description: the following ASI assignments are implementation-dependent: restricted

ASIs (all values hex) 00..03, 05..0B, 0D..0F, 12..17, and 1A..7F; and unre-

stricted ASIs C0..FF.

Implementation: UltraSPARC-IIi assigns the following implementation-dependent ASI val-

ues.

restricted ASI values (all values hex):

14, 15, 1C, 1D, 24, 2C, 45, 46, 47, 48, 49, 4A, 4B, 4C, 4D, 4E, 50, 51, 52,

53, 54, 55, 56, 57, 58, 59, 5A, 5B, 5C, 5D, 5E, 5F, 66, 67, 6E, 6F, 70, 71,

76, 77, 78, 79, 7E, 7F

unrestricted ASI values (all values hex):

C0, C1, C2, C3, C4, C5, C8, C9, CA, CB, CC, CD, D0, D1, D2, D3, D8,

D9, DA, DB, E0, E1, F0, F1, F8, F9

30. ASI address decoding

Description: an implementation may choose to decode only a subset of the 8-bit ASI

specifier; however, it shall decode at least enough of the ASI to distinguish

ASI_PRIMARY, ASI_PRIMARY_LITTLE,

ASI_AS_IF_USER_PRIMARY,ASI_AS_IF_USER_PRIMARY_LITTLE,

ASI_PRIMARY_NOFAULT, ASI_PRIMARY_NOFAULT_LITTLE,

ASI_SECONDARY, ASI_SECONDARY_LITTLE,

ASI_AS_IF_USER_SECONDARY,

ASI_AS_IF_USER_SECONDARY_LITTLE,

ASI_SECONDARY_NOFAULT, and

ASI_SECONDARY_NOFAULT_LITTLE. If ASI_NUCLEUS and

ASI_NUCLEUS_LITTLE are supported (impl. dep. #124), they must be

decoded also. Finally, an implementation must always decode ASI bit<7>

while PSTATE.PRIV = 0, so that an attempt by nonprivileged software to

access a restricted ASI will always cause a privileged_action exception.

Implementation: UltraSPARC-IIi decodes the entire 8-bit ASI specifier.

31. Catastrophic error exceptions

SPARC International UltraSPARC-IIi

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 121

Description: the causes and effects of catastrophic error exceptions are implementation-

dependent. They may cause precise, deferred or disrupting traps.

Implementation: UltraSPARC-IIi catastrophic error exceptions cause deferred traps. The

PSTATE.RED bit is not automatically set in hardware for any catastrophic

error exceptions other than when trapping to MAXTL-1.

32. Deferred traps

Description: whether any deferred traps (and associated deferred-trap queues) are

present is implementation-dependent.

Implementation: UltraSPARC-IIi may encounter deferred traps during memory accesses.

Such errors lead to termination of the currently executing process or result

in a system reset if system state has been corrupted. Error logging informa-

tion allows software to determine if the system state has been corrupted.

33. Trap precision

Description: exceptions that occur as the result of program execution may be precise or

deferred, although it is recommended that such exceptions be precise.

Examples include mem_address_not_aligned and division_by_zero.

Implementation: all of the exceptions listed in the SPARC-V9 Architecture Manual section

7.3.5, item (2) are precise with the exception of instruction_access_error,

which is deferred.

34. Interrupt clearing

Description: how quickly a processor responds to an interrupt request and the method by

which an interrupt request is removed are implementation-dependent.

Implementation: The response time to interrupt is dependent the activity the processor is

executing at the time the interrupt is received (e.g., whether executing a

trap handler with PSTATE.IE=0, etc.). The interrupt request is removed by

clearing a bit in the implementation-dependent interrupt vector receive reg-

ister.

SPARC International UltraSPARC-IIi

122 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

35. Implementation-dependent traps

Description: trap type (TT) values 060(hex)..07f(hex) are reserved for implementation-

dependent exceptions. The existence of implementation_dependent_n traps

and whether any that do exist are precise, deferred, or disrupting is imple-

mentation-dependent.

Implementation: the following implementation-dependent trap types are implemented on

UltraSPARC-IIi.

TT (hex) Exception Category

060 interrupt_vector disrupting

061 PA_watchpoint disrupting

062 VA_watchpoint disrupting

063 corrected_ECC_error disrupting

064..067 fast_instruction_access_MMU_miss precise

068..06B fast_data_access_MMU_miss precise

06C..06F fast_data_access_protection precise

36. Trap priorities

Description: the priorities of the particular traps are relative and are implementation-

dependent, because a future version of the architecture may define new

traps, and implementations may define implementation-dependent traps

that establish new relative priorities.

Implementation: UltraSPARC-IIi traps are prioritized relative to each other according to the

relative priorities in the SPARC-V9 Manual.

37. Reset trap

Description: some of a processor’s behavior during a reset trap is implementation-

dependent.

Implementation: UltraSPARC-IIi conforms to the required behavior during a reset trap.

Unspecified behavior is either defined during reset or specified as requiring

initialization.

SPARC International UltraSPARC-IIi

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 123

38. Effect of reset trap on implementation-dependent registers

Description: implementation-dependent registers may or may not be affected by the var-

ious reset traps.

Implementation: Implementation-dependent registers on UltraSPARC-IIi either have defined

behavior during reset traps or are specified as requiring initialization.

39. Entering error_state on implementation-dependent errors

Description: the processor may enter error_state when an implementation-dependent

error condition occurs.

Implementation: UltraSPARC-IIi enters error_state only by trapping when TL = MAXTL.

Any type of trap may cause this.

40. Error_state processor state

Description: what occurs after error_state is entered is implementation-dependent, but it

is recommended that as much processor state as possible be preserved upon

entry to error_state.

Implementation: Entering error_state causes UltraSPARC-IIi to trigger a watchdog_reset

trap. As much state as possible is preserved during this action.

41. Reserved

42. FLUSH instruction

Description: if flush is not implemented in hardware, it causes an illegal_instruction

exception and its function is performed by system software. Whether

FLUSH traps is implementation-dependent.

Implementation: UltraSPARC-IIi implements FLUSH in hardware and it can cause a

data_access_exception if the page is mapped with side effects or no-fault-

only bits set, virtual address out of range, privilege violation, or a

data_access_MMU_miss trap.

SPARC International UltraSPARC-IIi

124 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

43. Reserved

44. Data access FPU trap

Description: if a load floating-point instruction traps with any type of access error

exception, the contents of the destination floating-point register(s) either

remain unchanged or are undefined.

Implementation: access error exceptions on floating-point load instructions leave the desti-

nation floating-point register contents unchanged.

45-46. Reserved

47. RDASR

Description: RDASR instructions with rd in the range 16..31 are available for imple-

mentation-dependent uses (impl. dep #8). For an RDASR instruction with

rs1 in the range 16..31, the following are implementation-dependent: the

interpretation of bits 13:0 and 29:25 in the instruction, whether the instruc-

tion is privileged (impl. dep. #9), and whether it causes an

illegal_instruction trap.

Implementation: the bit fields specified above are not used for UltraSPARC-IIi implementa-

tion-dependent RDASR instructions. Reads of unused rs1 values and reads

of write-only implementation-dependent ASRs cause illegal_instruction

traps.

48. WRASR

Description: WRASR instructions with rd in the range 16..31 are available for imple-

mentation-dependent uses (impl. dep. #8). For a WRASR instruction with

rd in the range 16..31, the following are implementation-dependent: the

interpretation of bits 18:0 in the instruction, the operation(s) performed (for

example, xor) to generate the value written to the ASR, whether the

instruction is privileged (impl. dep. #9), and whether it causes an

illegal_instruction trap.

Implementation: UltraSPARC-IIi does not interpret bits 18:0 of the WRASR instruction.

SPARC International UltraSPARC-IIi

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 125

Using WRASR to the SET_SOFTINT and CLEAR_SOFTINT ASRs will

set and clear (respectively) bits in the SOFTINT_REG ASR. Writes of the

unused ASR values cause illegal_instruction traps.

49-54. Reserved

55. Floating-point underflow detection

Description: whether “tininess” (in IEEE 754 terms) is detected before or after rounding

is implementation-dependent. It is recommended that tininess be detected

before rounding.

Implementation: UltraSPARC-IIi detects underflow before rounding.

56-100. Reserved

101. Maximum trap level

Description: it is implementation-dependent how many additional levels, if any, past

level 4 are supported.

Implementation: UltraSPARC-IIi implements 5 trap levels.

102. Clean window trap

Description: an implementation may choose either to implement automatic “cleaning”

of register windows in hardware, or generate a clean_window trap, when

needed, for window(s) to be cleaned by software.

Implementation: UltraSPARC-IIi cleans register windows by generating a clean_window

trap for windows to be cleaned by software.

103. Prefetch instructions

Description: the following aspects of the PREFETCH and PREFETCHA instructions

SPARC International UltraSPARC-IIi

126 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

are implementation-dependent: (1) whether they have an observable effect

in privileged code; (2) whether they can cause a data_access_MMU_miss

exception; (3) the attributes of the block of memory prefetched: its size

(minimum = 64 bytes) and its alignment (minimum = 64-byte alignment);

(4) whether each variant is implemented as a NOP, with its full semantics,

or with common-case prefetching semantics; (5) whether and how variants

16..31 are implemented.

Implementation: on UltraSPARC-IIi, PREFETCH and PREFETCHA instuctions with the

fcn=0..4 have the following meanings:

FCN Function Action

0 Prefetch for several reads generate read_to_share request if desired

line is not present in E-cache

1 Prefetch for one read generate read_to_share request if desired

line is not present in E-cache

2 Prefetch page generate read_to_share request if desired

line is not present in E-cache

FCN Function Action

3 Prefetch for several writes generate read_to_own request if desired line

is not present in E-cache in either E or M

state

4 Prefetch for one write generate read_to_own request if desired line

is not present in E-cache in either E or M

state

104. VER.manuf

Description: VER.manuf contains a 16-bit semiconductor manufacturer code. This field

is optional, and if not present reads as zero. VER.manuf may indicate the

original supplier of a second-sourced chip in cases involving mask-level

second-sourcing. It is intended that the contents of VER.manuf track the

JEDEC semiconductor manufacturer code as closely as possible. If the

manufacturer does not have a JEDEC semiconductor manufacturer code,

SPARC International will assign a VER.manuf value.

Implementation: UltraSPARC-IIi uses the manufacturer code 0017(hex)

SPARC International UltraSPARC-IIi

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 127

105. TICK register

Description: the difference between the values read from the TICK register on two reads

should reflect the number of processor cycles executed between the reads.

If an accurate count cannot always be returned, an inaccuracy should be

small, bounded, and documented. An implementation my implement fewer

than 63 bits in TICK.counter; however, the counter as implemented must

be able to count for at least 10 years without overflowing. Any upper bits

not implemented must be read as zero.

Implementation: UltraSPARC-IIi implements 63 bits of TICK.counter and reflects the num-

ber of processor clocks between reads.

106. IMPDEPn instructions

Description: the IMPDEP1 and IMPDEP2 instructions are completely implementation-

dependent. Implementation-dependent aspects include their operation, the

interpretation of bits 29:25 and 18:0 in their encodings, and which (if any)

exceptions they may cause.

Implementation: UltraSPARC-IIi implements implementation-dependent instructions using

the following field values:

op op3 opf

10 110110 010000000

10 110110 001010000

10 110110 001010001

10 110110 001010010

10 110110 001010011

10 110110 001010100

10 110110 001010101

10 110110 001010110

10 110110 001010111

10 110110 000111011

10 110110 000111010

10 110110 000111101

10 110110 001001101

10 110110 001001011

10 110110 000110001

SPARC International UltraSPARC-IIi

128 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

10 110110 000110011

10 110110 000110101

10 110110 000110110

10 110110 000110111

10 110110 000111000

10 110110 000111001

10 110110 000011000

10 110110 000011010

10 110110 001001000

10 110110 001100000

10 110110 001100001

10 110110 001111110

10 110110 001111111

10 110110 001110100

10 110110 001110101

10 110110 001111000

10 110110 001111001

10 110110 001101010

10 110110 001101011

10 110110 001100110

10 110110 001100111

10 110110 001111100

10 110110 001111101

10 110110 001100010

10 110110 001100011

10 110110 001110000

10 110110 001110001

10 110110 001101110

10 110110 001101111

10 110110 001101100

10 110110 001101101

10 110110 001110010

10 110110 001110011

10 110110 001111010

10 110110 001111011

10 110110 001110110

10 110110 001110111

10 110110 001101000

10 110110 001101001

10 110110 001100100

10 110110 001100101

10 110110 000101000

SPARC International UltraSPARC-IIi

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 129

10 110110 000101100

10 110110 000100000

10 110110 000100100

10 110110 000100010

10 110110 000100110

10 110110 000101010

10 110110 000101110

10 110110 000000000

10 110110 000000010

10 110110 000000100

10 110110 000000110

10 110110 000001000

10 110110 000001010

10 110110 000111110

10 110110 000010000

10 110110 000010010

10 110110 000010100

107. Unimplemented LDD trap

Description: it is implementation-dependent whether LDD and LDDA are implemented

in hardware. If not, an attempt to execute either will cause an

unimplemented_LDD trap.

Implementation: UltraSPARC-IIi implements LDD and LDDA in hardware.

108. Unimplemented STD trap

Description: it is implementation-dependent whether STD and STDA are implemented

in hardware. If not, an attempt to execute either will cause an

unimplemented_STD trap.

Implementation: UltraSPARC-IIi implements STD and STDA in hardware.

109. LDDF_mem_address_not_aligned

SPARC International UltraSPARC-IIi

130 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Description: LDDF and LDDFA require only word alignment. However, if the effective

address is word-aligned but not doubleword-aligned, either may cause an

LDDF_mem_address_not_aligned trap, in which case the trap handler soft-

ware shall emulate the LDDF (or LDDFA) instruction and return.

Implementation: UltraSPARC-IIi generates an LDDF_mem_address_not_aligned exception

if an LDDF or LDDFA effective address is word-aligned but not double-

word-aligned.

110. STDF_mem_address_not_aligned

Description: STDF and STDFA require only word alignment. However, if the effective

address is word-aligned but not doubleword-aligned, either may cause an

STDF_mem_address_not_aligned trap, in which case the trap handler soft-

ware shall emulate the STDF (or STDFA) instruction and return.

Implementation: UltraSPARC-IIi generates an STDF_mem_address_not_aligned exception

if an STDF or STDFA effective address is word-aligned but not double-

word-aligned.

111. LDQF_mem_address_not_aligned

Description: LDQF and LDQFA require only word alignment. However, if the effective

address is word-aligned but not quadword-aligned, either may cause an

LDQF_mem_address_not_aligned trap, in which case the trap handler soft-

ware shall emulate the LDQF (or LDQFA) instruction and return.

Implementation: UltraSPARC-IIi does not implement the LDQF and LDQFA in hardware,

they must be emulated in software using other instructions.

112. STQF_mem_address_not_aligned

Description: STQF and STQFA require only word alignment. However, if the effective

address is word-aligned but not quadword-aligned, either may cause an

STQF_mem_address_not_aligned trap, in which case the trap handler soft-

ware shall emulate the STQF (or STQFA) instruction and return.

Implementation: UltraSPARC-IIi does not implement the STQF and STQFA in hardware,

they must be emulated in software using other instructions.

SPARC International UltraSPARC-IIi

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 131

113. Implemented memory models

Description: whether the Partial Store Order (PSO) or Relaxed Memory Order (RMO)

models are supported is implementation-dependent.

Implementation: UltraSPARC-IIi supports the Partial Store Order and Relaxed Memory

Order models.

114. RED_state trap vector address (RSTVaddr)

Description: the RED_state trap vector is located at an implementation-dependent

address referred to as RSTVaddr.

Implementation: RSTVaddr = 1fff0000000 (hex)

115. RED_state processor state

Description: what occurs after the processor enters RED_state is implementation-depen-

dent.

Implementation: On UltraSPARC-IIi some register contents are forced to specified values

and some hardware functions are disabled upon entering RED_state to

avoid as much as possible any additional traps which would cause the pro-

cessor to enter error_state.

116. SIR_enable control flag

Description: the location of and the means of accessing the SIR_enable control flag are

implementation-dependent. In some implementations, it may be perma-

nently zero.

Implementation: the SIR_enable in UltraSPARC-IIi is permanently zero.

117. MMU disabled prefetch behavior

Description: whether Prefetch and Non-faulting Load always succeed when the MMU is

disabled is implementation-dependent.

SPARC International UltraSPARC-IIi

132 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Implementation: When the data MMU is disabled, accesses are assumed to be non-cache-

able and with side-effect. Non-faulting loads encountered with the MMU

is disabled cause a data_access_exception trap with SFSR.FT-2 (specula-

tive load to page with side-effect attribute). Prefetch behaves as a NOP

when the MMU is disabled.

118. Identifying I/O locations

Description: the manner in which I/O locations are identified is implementation-depen-

dent.

Implementation: For systems using UltraSPARC-IIi, I/O register locations are memory

mapped to non-cacheable address space. In generatl, the location, access,

contents, and side effects of the I/O registers are dependent on the system

implementation, not the processor implementation. PCI bus I/O Space is

hard-wired to locations PA[40:0] = 1FE02000000(hex) through PA[40:0] =

1FE0201FFFF(hex).

119. Unimplemented values for PSTATE.MM

Description: the effect of writing an unimplemented memory-mode designation into

PSTATE.MM is implementation-dependent

Implementation: UltraSPARC-IIi implements all three memory modes specified in the

SPARC-V9 manual. If the reserved PSTATE.MM value (3) were written,

UltraSPARC-IIi would interpret it as RMO.

120. Coherence and atomicity of memory operations

Description: the coherence and atomicity of memory operations between processors and

I/O DMA memory accesses are implementation-dependent.

Implementation: This is dependent on the system implementation rather than the processor

implementation for systems that use UltraSPARC-IIi

121. Implementation-dependent memory model

Description: an implementation may choose to identify certain addresses and use an

SPARC International UltraSPARC-IIi

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 133

implementation-dependent memory model for references to them.

Implementation: UltraSPARC-IIi does not use any implementation-dependent memory

models.

122. FLUSH latency

Description: latency between the execution of FLUSH on one processor and the point at

which the modified instructions have replaced out-dated instructions in a

multiprocessor is implementation-dependent.

Implementation: This is dependent on the system implementation rather than the processor

implementation for systems that use UltraSPARC-IIi

123. Input/output (I/O) semantics

Description: the semantic effect of accessing input/output (I/O) registers is implementa-

tion-dependent.

Implementation: For systems using UltraSPARC-IIi, the location, access, contents, and side

effects of the I/O registers are dependent on the system implementation,

not the processor implementation

124. Implicit ASI when TL > 0

Description: when TL > 0, the implicit ASI for instruction fetches, loads, and stores is

implementation-dependent. See SPARC-V9 Architecture Manual section

F.4.4, “Contexts,” for more information.

Implementation: the implicit ASI for instruction fetches, loads, and stores when TL > 0 is

ASI_PRIMARY

125. Address masking

Description: when PSTATE.AM = 1, the value of the high-order 32-bits of the PC trans-

mitted to the specified destination registers(s) by CALL, JMPL, RDPC,

and on a trap is implementation-dependent.

SPARC International UltraSPARC-IIi

134 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Implementation: when PSTATE.AM = 1, the value of the high-order 32-bits of the PC trans-

mitted to the specified destination register(s) by CALL, JMPL, RDPC, and

on a trap is zero.

126. TSTATE bits 19:18

Description: If PSTATE bit 11 (10) is implemented, TSTATE bit 19 (18) shall be imple-

mented and contain the state of PSTATE bit 11 (10) from the previous trap

level. If PSTATE bit 11 (10) is not implemented, TSTATE bit 19 (18) shall

read as zero. Software intended to run on multiple implementations should

only write these bits to values previously read from PSTATE, or to zeroes.

Implementation: UltraSPARC-IIi implements TSTATE bits 19:18 to hold the state of

PSTATE bits 11:10 for each previous trap level.

127. PSTATE bits 11:10

Description: The presence and semantics of PSTATE.PID1 and PSTATE.PID0 are

implementation-dependent. The presence of TSTATE bits 19 and 18 is

implementation-dependent. If PSTATE bit 11 (10) is implemented,

TSTATE bit 19 (18) shall be implemented and contain the state of PSTATE

bit 11 (10) from the previous trap level. If PSTATE bit 11 (10) is not imple-

mented, TSTATE bit 19 (18) shall read as zero. Software intended to run on

multiple implementations should only write these bits to values previously

read from PSTATE, or to zeroes.

Implementation: PSTATE.PID1 and PSTATE.PID0 are implemented on UltraSPARC-IIi as

selects for two additional sets of eight trap global registers. The corre-

sponding bits in the TSTATE register are implemented to store these bits

for the previous trap level.

Chapter 6: HAL Implementation of V9 Architecture

SPARC 64-III

V9
SPARC INTERNATIONAL

SPARC International SPARC 64-III

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 137

CHAPTER 6: HAL SPARC64-III

0. Introduction

This document describes the implementation details of the SPARC64-III processor developed

by HAL Computer Systems. The items listed below correspond to the implementation depen-

dencies as listed in the text and by number in Appendix C of “The SPARC Architecture Man-

ual - Version 9” by SPARC International, along with the description of the implementation

dependency. The “Implementation” section for each item describes the

SPARC64-III processor.

1. Software emulated instructions

Description:

Whether an instruction is implemented directly by hardware, simulated by software,lated by

firmware is implementation-dependent.

Implementation:

SPARC64-III does not implement the following instructions in hardware:

• All floating point instructions with quad operands or results

These operations will take an fp_exception_other trap with FSR.ftt = unimplemented_FPop.

The kernel will then emulate the quad operation and store the result into afloating-point regis-

ters as defined by Sparc-V9 manual.

• popc

This instruction will cause an illegal_instruction trap if executed. Kernel emulation routines

will be provided to complete the action.

2. Number of IU registers

Description:

An implementation of the IU may contain from 64 to 528 general purpose 64 bit rThis corre-

sponds to a grouping of the registers into two sets of eight global r regis-

ters, plus a circular stack of from 3 to 32 sets of 16 registers each, known as

register windows. Since the number of register windows present (NWIN-

DOWS) is implementation-dependent, the total number of registers is also

implementation-dependent.

Implementation:

SPARC64-III implements 5 16-register sets (windows) in hardware. Thus there are a96 inte-

ger registers visible to software. They are:

SPARC International SPARC 64-III

138 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

• 8 global registers

• 8 alternate global registers

• 5 windows of 16 registers each (=80 registers)

3. Incorrect IEEE Std 754-1985 results

Description:

An implementation may indicate that a floating-point instruction did not produce aANSI/

IEEE Standard 754-1985 result by generating a special floating-point

unfinished or unimplemented exception. In this case, privileged mode soft-

ware shall emulate any functionality not present in the hardware.

Implementation:

SPARC64-III in conjunction with the kernel emulation code produces the correct IEEEresults

required in this section.

• Traps Inhibit Results

SPARC64-IIII in conjunction with the kernel emulation code produces results

• Trapped Underflow Definition (UFM=1)

SPARC64-III detects “tininess” before rounding as recommended.

• Untrapped Underflow Definition (UFM=0)

SPARC64-III meets these requirements with some help from the kernel divide/squarefixup

code.

• Floating-Point Nonstandard Mode

SPARC64-III FPU is “standard”, and therefore does not support a nonstandard

4-5. Reserved

6. I/O registers privileged status

Description:

Whether I/O registers can be accessed by non privileged code is

Implementation:

In SPARC64-III some I/O registers can be accessed by non privileged code.

7. I/O register definitions

Description:

The contents and addresses of I/O registers are implementation-dependent.

Implementation:

Please contact HaL for details of I/O registers.

SPARC International SPARC 64-III

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 139

8,9. RDASR/WRASR target registers and privileged status

Description:

Software can use read/write ancillary state register instructions to read/writedependent proces-

sor registers (ASRs 16-31).

Whether each of the implementation-dependent read/write ancillary state register(for ASRs

16-31) is privileged is implementation dependent.

Implementation:

SPARC64-III implements 9 implementation-dependent ASR registers.

• Hardware mode Register(ASR18): These register controls, Branch prediction mode andHard-

ware memory models.

• Graphic Status Register(ASR19): Access to this register will cause fp_disabledeither

PSTATE.PER or FPRS.FER is 0.

• Schedule Interrupt(SCHED_INT) Register (ASR22): The OS kernel uses this privileged,write

register to schedule interrupts.

• TICK match Register(ASR23): Privileged read/write register.

• Instruction Access Fault Type Register(ASR24): Privileged , read only register isthe hardware

on instruction_access_error traps.

• Software Scratch Registers 0 through 3(ASR25): These registers are privileged,

• Data Breakpoint Registers(ASR26A): These privileged read/write registers are usedany data

accesses to a double word aligned breakpoint address. ASR26B: privilegedwrite register spec-

ifies the double-word aligned virtual address of the data

• Fault Address Register (ASR28) and Fault Access Type (ASR29)

These registers facilitate the handling of traps that involve a data memory access.are privi-

leged and read-only. System software must take care to read thesea fault handler before any

other fault can occur that would overwrite them.

• Performance Monitor Register (ASR30)

This privilege read/write register is used to evaluate processor performance.

• State Control Register (ASR31)

ASR31 is a 16bit implementation specific register that contains a set of flags forthe state of the

CPU, MMU and Caches. The register is privileged and can be

10-12 Reserved

13. VER.impl

Description:

VER.impl uniquely identifies an implementation or class of software-compatibletions of the

architecture. Values FFF0(hex)..FFFF(hex) are reserved and are not avail-

able for assignment.

SPARC International SPARC 64-III

140 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Implementation:

SPARC64-III uses a version number of 3.

14-15 Reserved

16. IU deferred-trap queue

Description:

The existence, contents, and operation of an IU deferred-trap queue aredependent; it is not

visible to user application programs under normal operating conditions

Implementation:

SPARC64-III does not need and therefore does not implement an IU deferred-trap

17. Reserved

18. Nonstandard IEEE 754-1985 results

Description:

Bit 22 of the FSR, FSR_nonstandard_fp (NS), when set to 1, causes the FPU toimplementa-

tion-defined results that may not correspond to IEEE Standard 754-1985.

Implementation:

SPARC64-III FPU is “standard”, and therefore does not support a nonstandard

19. FPU version, FSR.ver

Description:

Bits 19:17 of the FSR, FSR.ver, identify one or more implementations of the FPUture.

Implementation:

SPARC64-III uses the value of 0 for this field.

20-21. Reserved

22. FPU TEM, cexc, and aexc

Description:

An implementation may choose to implement the TEM, cexc, and aexc fields ineither of two

SPARC International SPARC 64-III

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 141

ways (see section 5.1.7.11 of SPARC-V9 Architecture Manual for details).

Implementation:

SPARC64-III implements TEM, cexc and aexc fields of FSR conforming to IEEE Std.1985.

23. Floating-point traps

Description:

Floating point traps may be precise or deferred. If deferred, a floating pointqueue (FQ) must

be present.

Implementation:

Floating point traps are always precise.

24. FPU deferred-trap queue (FQ)

Description:

The presence, contents of, and operations on the floating-point deferred-trap queueimplemen-

tation-dependent.

Implementation:

SPARC64-III does not have or need a floating-point deferred-trap queue.

25. RDPR of FQ with nonexistent FQ

Description:

On implementations without a floating-point queue, an attempt to read the FQ withinstruction

shall cause either an illegal_instruction exception or an fp_exception_other

exception with FSR.ftt set to 4 (sequence_error).

Implementation:

A RDPR of %FPQ instruction will cause an illegal_instruction trap.

26-28. Reserved

29,30. Address space identifier (ASI) definitions and ASI address decoding

Description:

The following ASI assignments are implementation-dependent: restricted ASIs (allhex)

00..03, 05..0B, 0D..0F, 12..17, and 1A..7F; and unrestricted ASIs C0..FF.

An implementation may choose to decode only a subset of the 8-bit ASI specifier;shall decode

SPARC International SPARC 64-III

142 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

at least enough of the ASI to distinguish ASI_PRIMARY,

ASI_PRIMARY_LITTLE, ASI_AS_IF_USER_PRIMARY,

ASI_AS_IF_USER_PRIMARY_LITTLE, ASI_PRIMARY_NOFAULT,

ASI_PRIMARY_NOFAULT_LITTLE, ASI_SECONDARY,

ASI_SECONDARY_LITTLE, ASI_AS_IF_USER_SECONDARY,

ASI_AS_IF_USER_SECONDARY_LITTLE,

ASI_SECONDARY_NOFAULT, and

ASI_SECONDARY_NOFAULT_LITTLE. If ASI_NUCLEUS and

ASI_NUCLEUS_LITTLE are supported (impl. dep. #124), they must be

decoded also. Finally, an implementation must always decode ASI bit<7>

while PSTATE.PRIV = 0, so that an attempt by nonprivileged software to

access a restricted ASI will always cause a privileged_action exception.

Implementation:

Please See pg 409 of SPARC64-III user Guide.(L ASR Assignments).

31. Catastrophic error exceptions

Description:

The causes and effects of catastrophic error exceptions aremay cause precise, deferred or dis-

rupting traps.

Implementation:

An internal CPU watchdog time-out occurs after no instruction has been committedcycles (n

can be scan initialized to one of {12,16,18,20,22,24,28,30}). This would

take the processor into error state.

32. Deferred traps

Description:

Whether any deferred traps (and associated deferred-trap queues) are present istion-depen-

dent.

Implementation:

SPARC64-III implements a deferred trap for the following trap types:

• data_breakpoint.

Deferred trap queues are not necessary, since the trapping instruction is the onlyinstruction.

33. Trap precision

Description:

Exceptions that occur as the result of program execution may be precise orit is recommended

that such exceptions be precise. Examples include

SPARC International SPARC 64-III

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 143

mem_address_not_aligned and division_by_zero.

Implementation:

SPARC64-III will generate a precise trap for all traps induced by instructiondata_breakpoint.

34. Interrupt clearing

Description:

How quickly a processor responds to an interrupt request and the method by which anrupt

request is removed are implementation-dependent.

Implementation:

Please See SPARC64-III user guide pg. 427 (N Interrupt Handling)

35,36. Implementation-dependent traps and priorities

Description:

Trap type (TT) values 060(hex)..07f(hex) are reserved for implementation-dependenttions.

The existence of implementation_dependent_n traps and whether any that

do exist are precise, deferred, or disrupting is implementation-dependent.

The priorities of the particular traps are relative and arefuture version of the architecture may

define new traps, and implementations may define implementation-depen-

dent traps that establish new relative priorities.

Implementation:

The following trap types defined by Sparc-V9 are not used in SPARC64-III.

Please See SPARC64-III user guide pg. 152 (7.5.3.3 Unimplemented Traps in SPARC64-III)

SPARC64-III defines the following implementation-dependent trap types.

Please See SPARC64-III user guide pg. 341 (B IEEE Std 754-1985 Requirements for

SPARC-V9)

37. Reset trap

Description:

Some of a processor’s behavior during a reset trap is

Implementation:

Power-on Reset (POR) are implemented by scanning in the reset state on

SPARC International SPARC 64-III

144 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

38. Effect of reset trap on implementation-dependent registers

Description:

Implementation-dependent registers may or may not be affected by the various reset

Implementation:

All register gets affected on POR

XIR all register except ASR31 gets affected..

39. Entering error_state on implementation-dependent errors

Description:

The processor may enter error_state when an implementation-dependent erroroccurs.

Implementation:

An internal CPU watchdog time-out occurs after no instruction has been committedcycles (n

can be scan initialized to one of {12,16,18,20,22,24,28,30}). This would

take the processor into error state.

40. Error_state processor state

Description:

What occurs after error_state is entered is implementation-dependent, but it isthat as much

processor state as possible be preserved upon entry to error_state.

Implementation:

On entry to error state, SPARC64-III asserts the output signal P_FERR. . Most errorregister

state will be preserved and can be read after a power on reset.

41. Reserved

42. FLUSH instruction

Description:

If flush is not implemented in hardware, it causes an illegal_instruction exceptiontion is per-

formed by system software. Whether FLUSH traps is implementation-

dependent.

Implementation:

SPARC64-III implements a FLUSH instruction.

SPARC International SPARC 64-III

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 145

43. Reserved

44. Data access FPU trap

Description:

If a load floating-point instruction traps with any type of access error exception,of the destina-

tion floating-point register(s) either remain unchanged or are undefined.

Implementation:

Contents of destination floating-point register(s) remain unchanged.

45-46. Reserved

47. RDASR

Description:

RDASR instructions with rd in the range 16..31 are available foruses (impl. dep #8). For an

RDASR instruction with rs1 in the range 16..31, the following are imple-

mentation-dependent: the interpretation of bits 13:0 and 29:25 in the

instruction, whether the instruction is privileged (impl. dep. #9), and

whether it causes an illegal_instruction trap.

Implementation:

See items 8,9 for details. SPARC64-III causes an illegal_instruction trap for reads of the

unused ASR values.

48. WRASR

Description:

WRASR instructions with rd in the range 16..31 are available foruses (impl. dep. #8). For a

WRASR instruction with rd in the range 16..31, the following are imple-

mentation-dependent: the interpretation of bits 18:0 in the instruction, the

operation(s) performed (for example, xor) to generate the value written to

the ASR, whether the instruction is privileged (impl. dep. #9), and whether

it causes an illegal_instruction trap.

Implementation:

 See items 8,9 for details. SPARC64-III causes an illegal_instruction trap for writes of the

unused ASR values.

SPARC International SPARC 64-III

146 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

49-54 Reserved

55. Floating-point underflow detection

Description:

Whether “tininess” (in IEEE 754 terms) is detected before or after roundingtion-dependent. It

is recommended that tininess be detected before rounding.

Implementation:

SPARC64-III detects “tininess” before rounding.

56-100. Reserved

101. Maximum trap level

Description:

It is implementation-dependent how many additional levels, if any, past level 4 are

Implementation:

SPARC64-III implements 4 levels of traps.

102. Clean window trap

Description:

An implementation may choose either to implement automatic “cleaning” ofin hardware, or

generate a clean_window trap, when needed, for window(s) to be cleaned

by software.

Implementation:

SPARC64-III generates a clean_window trap, when needed, for windows to be cleanedsoft-

ware.

103. Prefetch instructions

Description:

The following aspects of the PREFETCH and PREFETCHA instructions aredependent: (1)

whether they have an observable effect in privileged code; (2) whether they

can cause a data_access_MMU_miss exception; (3) the attributes of the

block of memory prefetched: its size (minimum = 64 bytes) and its align-

ment (minimum = 64-byte alignment); (4) whether each variant is imple-

SPARC International SPARC 64-III

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 147

mented as a NOP, with its full semantics, or with common-case prefetching

semantics; (5) whether and how variants 16..31 are implemented.

Implementation:

(1) PREFETCH and PREFETCHA have identical affects in privileged or non-privileged

(2) Can not cause a data_access_MMU_miss exception

(3) Size and alignments are 64-bytes

(4),(5) See table-1

104. VER.manuf

Description:

VER.manuf contains a 16-bit semiconductor manufacturer code. This field isnot present reads

as zero. VER.manuf may indicate the original supplier of a second-sourced

chip in cases involving mask-level second-sourcing. It is intended that the

contents of VER.manuf track the JEDEC semiconductor manufacturer

code as closely as possible. If the manufacturer does not have a JEDEC

semiconductor manufacturer code, SPARC International will assign a

VER.manuf value.

Implementation:

SPARC64-III uses a code of 4 for this field. This is Fujitsu’s JEDEC code.

Table 3: Prefetch Data

fcn
V9 Prefetch

Function

SPARC64-III

Function

 0 Prefetch for

several reads

Prefetch for

several reads

 1 Prefetch for

one read

Prefetch for

several reads

 2 Prefetch for

several writes

Prefetch for

several writes

 3 Prefetch for

one write

Prefetch for

several writes

 4 Prefetch page Prefetch for

several reads

 5-15 Reserved illegal_instru

ction trap

 16-31 Implementa-

tion depen-

dent

NOP

SPARC International SPARC 64-III

148 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

105. TICK register

Description:

The difference between the values read from the TICK register on two reads shouldnumber of

processor cycles executed between the reads. If an accurate count cannot

always be returned, an inaccuracy should be small, bounded, and docu-

mented. An implementation my implement fewer than 63 bits in

TICK.counter; however, the counter as implemented must be able to count

for at least 10 years without overflowing. Any upper bits not implemented

must be read as zero.

Implementation:

SPARC64-III implements all the bits of TICK register and returns accurate count ofcessor

cycles, in response to reads from TICK register.

106. IMPDEPn instructions

Description:

The IMPDEP1 and IMPDEP2 instructions are completely implementation-dependent.menta-

tion-dependent aspects include their operation, the interpretation of bits

29:25 and 18:0 in their encoding, and which (if any) exceptions they may

cause.

Implementation:

SPARC64-III uses IMPDEP2 to encode the HaL specific Floating Pointtract instructions.

IMPDEP1 is not used and will cause an illegal_instruction trap if such an

opcode is encountered. Please refer to SPARC64-III Processor User Guide

for more details.

107. Unimplemented LDD trap

Description:

It is implementation-dependent whether LDD and LDDA are implemented in hardware. Ifnot,

an attempt to execute either will cause an unimplemented_LDD trap.

Implementation:

SPARC64-III implements LDD and LDDA in hardware.

108. Unimplemented STD trap

Description:

It is implementation-dependent whether STD and STDA are implemented in hardware. Ifan

attempt to execute either will cause an unimplemented_STD trap.

SPARC International SPARC 64-III

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 149

Implementation:

SPARC64-III implements STD and STDA in hardware.

109. LDDF_mem_address_not_aligned

Description:

LDDF and LDDFA require only word alignment. However, if the effective address isaligned

but not doubleword-aligned, either may cause an

LDDF_mem_address_not_aligned trap, in which case the trap handler soft-

ware shall emulate the LDDF (or LDDFA) instruction and return.

Implementation:

SPARC64-III causes LDDF_mem_address_not_aligned trap for both word and double-word

misaligned addresses.

110. STDF_mem_address_not_aligned

Description:

STDF and STDFA require only word alignment. However, if the effective address isaligned

but not doubleword-aligned, either may cause an

STDF_mem_address_not_aligned trap, in which case the trap handler soft-

ware shall emulate the STDF (or STDFA) instruction and return.

Implementation:

SPARC64-III causes STDF_mem_address_not_aligned trap for both word and double-word

misaligned addresses.

111. LDQF_mem_address_not_aligned

Description:

LDQF and LDQFA require only word alignment. However, if the effective address isaligned

but not quadword-aligned, either may cause an

LDQF_mem_address_not_aligned trap, in which case the trap handler soft-

ware shall emulate the LDQF (or LDQFA) instruction and return.

Implementation:

SPARC64-III generates an illegal instruction exception for LDQF, LDQFA instructionskernel

provides emulation routines to complete the load.

112. STQF_mem_address_not_aligned

Description:

STQF and STQFA require only word alignment. However, if the effective address isaligned

SPARC International SPARC 64-III

150 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

but not quadword-aligned, either may cause an

STQF_mem_address_not_aligned trap, in which case the trap handler soft-

ware shall emulate the STQF (or STQFA) instruction and return.

Implementation:

SPARC64-III generates an illegal instruction exception for STQF, STQFA instructionskernel

provides emulation routines to complete the load.

113. Implemented memory models

Description:

Whether the Partial Store Order (PSO) or Relaxed Memory Order (RMO) models areported is

implementation-dependent.

Implementation:

SPARC64-III supports Load/Store ordering (LSO), Total store Ordering(TSO)and Store

ordering (STO). Partial Store Order (PSO) is implemented using TSO and

Relaxed Memory Order (RMO) is implemented using STO.

114. RED_state trap vector address (RSTVaddr)

Description:

The RED_state trap vector is located at an implementation-dependent addressRSTVaddr.

Implementation:

RSTVaddr is a Constant when VA = FFFF FFFF F000 0000 and PA = 1FF F000 0000.

115. RED_state processor state

Description:

What occurs after the processor enters RED_state is implementation-dependent.

Implementation:

Plese See SPARC64-III user guide pg.139 (7.2.1.2 RED_state Execution Environment).

116. SIR_enable control flag

Description:

The location of and the means of accessing the SIR_enable control flag aredependent. In some

implementations, it may be permanently zero.

Implementation:

SIR_enable control flag is permanently zero in SPARC64-III.

SPARC International SPARC 64-III

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 151

117. MMU disabled prefetch behavior

Description:

Whether Prefetch and Non-faulting Load always succeed when the MMU is disabled ismenta-

tion-dependent.

Implementation:

In SPARC64-III, Prefetch and Non-faulting Loads always succeed if the MMU is

118. Identifying I/O locations

Description:

The manner in which I/O locations are identified is implementation-dependent.

Implementation:

Please contact HaL Computer Systems for details of I/O operation.

119. Unimplemented values for PSTATE.MM

Description:

The effect of writing an unimplemented memory-mode designation into PSTATE.MM is

implementation-dependent

Implementation:

Writing ‘11’ into PSTATE.MM causes the machine to use the STO Memoryever, the system

software should not use the encoding ‘11’ since it is reserved for future

SPARC-V9 extensions.

120. Coherence and atomicity of memory operations

Description:

The coherence and atomicity of memory operations between processors and I/O DMAory

accesses are implementation-dependent.

Implementation:

Plese See SPARC64-III user guide pg.355 (Nbr 121)

121. Implementation-dependent memory model

Description:

An implementation may choose to identify certain addresses and use andependent memory

model for references to them.

SPARC International SPARC 64-III

152 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Implementation:

In SPARC64-III, certain addresses use implementation dependent memory models forences to

them. Please contact HaL Computer Systems for details.

122. FLUSH latency

Description:

Latency between the execution of FLUSH on one processor and the point at which thefied

instructions have replaced out-dated instructions in a multiprocessor is

implementation-dependent.

Implementation:

Please contact HaL for FLUSH latency

123. Input/output (I/O) semantics

Description:

The semantic effect of accessing input/output (I/O) registers is

Implementation:

Please contact HaL for I/O semantics..

124. Implicit ASI when TL>0

Description:

When TL > 0, the implicit ASI for instruction fetches, loads, and stores isdependent. See

SPARC-V9 Architecture Manual section F.4.4, “Contexts,” for more infor-

mation.

Implementation:

SPARC64-III uses ASI_NUCLEUS for instruction fetches and ASI_NUCLEUS{_LITTLE},

loads and stores when TL>0

125. Address masking

Description:

When PSTATE.AM = 1, the value of the high-order 32-bits of the PC transmitted tofied desti-

nation registers(s) by CALL, JMPL, RDPC, and on a trap is implementa-

tion-dependent.

Implementation:

When PSTATE.AM bit is set on SPARC64-III, a full 64-bit address is transmitted toified des-

tination registers by CALL, JMPL, RDPC and traps transmit all 64-bits to

SPARC International SPARC 64-III

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 153

TPC[n] and TNPC[n].

126. TSTATE bits 19:18

Description:

If PSTATE bit 11 (10) is implemented, TSTATE bit 19 (18) shall be implemented andthe state

of PSTATE bit 11 (10) from the previous trap level. If PSTATE bit 11 (10)

is not implemented, TSTATE bit 19 (18) shall read as zero. Software

intended to run on multiple implementations should only write these bits to

values previously read from PSTATE, or to zeroes.

Implementation:

SPARC64-III does not implement PSTATE bits 10 & 11 and they are read as zeroes.bits 19

and 18 are read as zeroes.

127. PSTATE bits 11:10

Description:

The presence and semantics of PSTATE.PID1 and PSTATE.PID0 aredent. The presence of

TSTATE bits 19 and 18 is implementation-dependent. If PSTATE bit 11

(10) is implemented, TSTATE bit 19 (18) shall be implemented and contain

the state of PSTATE bit 11 (10) from the previous trap level. If PSTATE bit

11 (10) is not implemented, TSTATE bit 19 (18) shall read as zero. Soft-

ware intended to run on multiple implementations should only write these

bits to values previously read from PSTATE, or to zeroes.

Implementation:

SPARC64-III does not implement PSTATE bits 10 & 11 and they are read as zeroes.bits 19

and 18 are read as zeroes.

128. CLEANWIN register update

Earlier implementations of Sparc chips implemented the V9 specification forusing the follow-

ing equation to update CLEANWIN register:

 if (CLEANWIN != NWINDOWS) CLEANWIN++;

Subsequently V9 definition changed to modify the equation as:

 if (CLEANWIN < NWINDOWS-1) CLEANWIN++;

SPARC64-III implements the RESTORED using the current definition. The SPARC64-III

Kernel will ensure that CLEANWIN does not have a value beyond NWIN-

DOWS-1.

SPARC International SPARC 64-III

154 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Appendix A: Assgined VER.manuf and VER.impl

V9
SPARC INTERNATIONAL

SPARC International APPENDIX A

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 157

APPENDIX A: VER.impl/VER.manuf

The table 1 below includes all the V9 VER.impl and VER.manuf assigned by SPARC Interna-

tional as stated by the V9 Architecture Book (page 57). From Section 5.2.9: “If the manufacturer

does not have a JEDEC semiconductor manufacturer code, SPARC International will assign a

value of VER.manuf”.

To assign new number please contact:

Ghassan Abbas

abbas@sparc.com

Tel: 415-321-8692 x228.

Table 4: assigned VER.impl and VER.manuf by SI

COMPANY CPU VER.impl VER.manuf

HAL SPARC64 0x0001 0x0004

Sun Microsystems UltraSPARC (TI) 0x0010 0x0017

Sun Microsystems UltraSPARC (NEC) 0x0010 0x0022

Sun Microsystems UltraSPARC II 0x0011 0x0017

Sun Microsystems UltraSPARC IIi 0x0012 0x0017

Sun Microsystems UltraSPARC-e 0x0013 0x0017

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 158

SPARC International APPENDIX A

Appendix B: V9 Architecture Errata

as of 17 Jul 1995

V9
SPARC INTERNATIONAL

SPARC International Appendix B

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 161

APPENDIX B: SPARC V9 Arch Book Changes

r141 = R1.4.1 = distrib draft

r142 = R1.4.2 = book first printing;doc dated 15 Sep 93

r143 = R1.4.3 = revision (not used);

r144 = R1.4.4 = current revision;doc dated 17 Jul 95

All changes below are those since R1.4.2, incorporated in R1.4.4.

Change to page 13

subsection 2.57:

definition of “reserved”: “...intended to run on future version of” was corrected to read:

“...intended to run on future versions of”.

The sentence beginning “Reserved register fields” was amend to read: “Reserved register

fields should always be written by software with values of those fields previously read from

that register, or with zeroes; they should read as zero in hardware.”

Change to page 21(r142)

Editor's Notes: Added Les Kohn's name to the Acknowledgments.

Change to page 28(r142)

Tables 3,4,5: Made use of hyphens & dashes made consistent, and easier to read.

Change to page 30(r142)

paragraph just above subsection 5.1: Changed end of sentence to read:

“...should be written with the values of those bits previously read from that register, or with

zeroes.”

Change to page 40(r142),

Table 7: Added lines for 32-bit and 64-bit signed integers in f.p. registers, for clarity.

SPARC International Appendix B

162 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Change to page 51

In figure 17, added bits 11 and 10 to the figure, so it looks like:

Change to page 52(r142)

inserted new subsection 5.2.1.1 before old one: “IMPL. DEP. #127: The presence and seman-

tics of PSTATE.PID1 and PSTATE.PID0 are implementation- dependent. Software intended

to run on multiple implementations should only write these bits to values previously read from

PSTATE, or to zeroes. See also TSTATE bits 19 and 18."

Change to page 55(r142)

In Figure 22, (TSTATE register): Extended the “saved PSTATE” field up through bit 19 of

TSTATE; changed the diagram to look like:

Change to page 56(r142)

Added a new paragraph to the end of subsection 5.2.6: “TSTATE bits 19 and 18 are imple-

mentation-dependent. ImplDep#126: If PSTATE bit 11 (10) is implemented, TSTATE bit

19 (18) shall be implemented and contain the state of PSTATE bit 11 (10) from the previ-

ous trap level. If PSTATE bit 11 (10) is not implemented, TSTATE bit 19 (18) shall read as

PID1 PID0 CLE TLE MM RED PEF AM PRIV IE AG

11 10 9 8 7 6 5 4 3 2 1 0

TSTATE 1 CCR from

TL=0

ASI from

TL = 0

- PSTATE

from TL=0

- CWP from

TL = 0

TSTATE 2 CCR from

TL=1

ASI from

TL = 1

- PSTATE

from TL=1

- CWP from

TL = 1

TSTATE 3 CCR from

TL=2

ASI from

TL = 2

- PSTATE

from TL=2

- CWP from

TL = 2

TSTATE 4 CCR from

TL=3

ASI from

TL = 3

- PSTATE

from TL=3

- CWP from

TL = 3

39 32 31 24 23 20 19 8 7 5 4 0

SPARC International Appendix B

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 163

zero. Software intended to run on multiple implementations should only write these bits to

values previously read from PSTATE, or to zeroes.”

Change to page 57(r142)

subsection 5.2.10 (Register-Window State Registers): Added implementation dependency

#126.

Change to page 58-9(r142)

In subsection 5.2.10 (Register-Window State Registers): Added note to descriptions of CWP,

CANSAVE, CANRESTORE, OTHERWIN, and CLEANWIN registers that the effect of writ-

ing a value to them greater than NWINDOWS-1 is undefined.

Change to page 76,

In Section 6, last sentence in 6.3.4.1, “Conditional Branches” changed to: Note that the annul

behavior of a taken conditional branch is different from that of an unconditional branch. And

the last sentence in 6.3.4.2, “Unconditional Branches” changed to: Note that the annul behav-

ior of a unconditional branch is different from that of a taken conditional branch.

Change to page 80(r142), 6.3.6.4(r142)

RESTORED: correct the equation with CLEANWIN to read “(CLEANWIN < (NWIN-

DOWS-1))”. and correct the text above it.

Change to page 81(r141/r142):

In section 6.3.9, “FMOVc” was corrected to read “FMOVr”.

Change to page 81(r141/r142):

In section 6.3.9, a sentence was added stating that FSR.cexc and FSR.ftt are cleared by

FMOVcc and FMOVr whether or not the move occurs.

Change to page 121(r141/r142):

An index entry for “non-faulting loads” was fixed in section 8.3.

SPARC International Appendix B

164 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Change to page 151(r142), A.9(r142),

In Compare and Swap page: Added mention of CASL and CASXL to the Programming Note.

Change to page 171

In Annex A, sentence added specifying that LDFSR does not affect the upper 32 bits of FSR.

Change to page 181(r141/r142):

“A.31” number was fixed so it now increments to A.32. All following section numbers and

odd page headers in Annex A have changed.

Change to page 191(r141/r142):

Page heading: “Condition” --> “Condition”

Change to page 195(r141/r142):

Order of instructions in Suggested Assembly Language Syntax was rearranged to correspond

to order of the instructions in the Opcode/op3/Operation table above it.

“more” and “movrz”, as the assembly-language mnemonic and its synonym, were exchanged

to correspond with the instruction name of MOVRZ.

“movrne” and “movrnz”, as the assembly-language mnemonic and its synonym, were

exchanged to correspond with the instruction name of MOVRNZ.

Change to page 212(r14[123]) A.43(r14[12])/A.44(r143),

In second page of the Read State Register instruction description, 4th paragraph SHOULD

read: “RDFPRS waits for all pending FPops ** and loads of floating-point registers** to com-

plete before reading the FPRS register.”

Change to page 216(r142), A.46(r142),

RESTORED page: correct the equation with CLEANWIN to read “(CLEANWIN < (NWIN-

DOWS-1))”

SPARC International Appendix B

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 165

Change to page 220(r142)/A.49(r142)

In the third Paragraph, the words “the” and “and” were transposed in the implementation

dependency description. It now reads: “The location of the SIR_enable control flag and the

means of accessing the SIR_enable control flag...”

Change to page 228(r141/r142):

Order of instructions in Suggested Assembly Language Syntax was rearranged to correspond

to order of the instructions in the Opcode/op3/Operation table above it.

Change to page 229(r142)/A.55(r142),

paragraph beginning “Store integer...: load” changed to “store”

Change to page 231(r142)/233(r143),

In Annex A, corrected SWAP deprecation note to recommend use of “CASA” or “CASXA”

(not “CASX”) in place of SWAP.

Change to page 234, A.58(r14[12])/A.59(r143)

Tagged Add: op3 opcodes are wrong. Both should have “0” for low-order bit (as correctly

given in Appendix E).

Change to page 241(r142), A.62(r142),

In “Write State Register” page, added footnote to Suggested Assembly Language Syntax

table, noting that the suggested syntax for WRASR with rd=16..31 may vary, citing reference

to implementation dependency #48. (Suggested Assembly Language Syntax is just that --

suggested -- so isn't part of the architecture specification anyway, but this makes it clearer

that if bits are interpreted differently in the instruction, one should expect its assembly-lan-

guage syntax to change, as well)

SPARC International Appendix B

166 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Change to page 242(r142), A.62(r142)

In “Write State Register” page: In the Exceptions section, “WRASR with rs1=16..31” now

reads “WRASR with rd=16..31”.

Change to page 253(r142)

In Annex C, fixed 6 incorrect index entries.

Change to page 253(4142)

In annex C, added a new Implementation Dependency:

Change to page 255(r142)

In Annex C, added implementation dependency #126.

Change to page 258(r142)

In D.3.3., rule (1), the text was clarified, to read: “(1) The execution of Y is conditional on X,

and S(Y) is true.”

Number Category
Def/Ref

page #
Description

127 f 52,56 The presence and semantics of PSTATE.PID1 and

PSTATE.PID0 are implementation-dependent. The

presence of TSTATE bits 19 and 18isimplementation-dependent.

If PSTATE bit 11 (10) is implemented,TSTATEbit19(18)

shall be implemented and contain the state of PSTATE

bit 11 (10) from the previous trap level.

If PSTATE bit 11 (10) is not implemented, TSTATE bit

19 (18) shall read as zero. Software intended to

run on multiple implementations should only write

these bits to values previously read from PSTATE, orto

zeroes.

SPARC International Appendix B

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 167

Change to page 268(r142)

In table 32, as a privileged instruction, “RDPR” should be listed with a superscript “P”.

Change to page 290(r142)

In section G, Table 43: insert “#” before the “ASI” in the compare-and-swap synthetic instruc-

tion entries

Change to page 312(r142)

In Annex I, Missing word “not” added to Compatibility Note.

SPARC International Appendix B

168 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Index

V9
SPARC INTERNATIONAL

SPARC International INDEX

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 171

Symbols

, LDQ 36

Numerics

16bit implementation 25

A

Address space identifier 27

aex 26

aexc 95

AG 162

AM 162

and 90

ANSI/IEEE 24

ANSI/IEEE Standard 754-1985 44, 91

AS_IF 28

ASI 27, 28, 39, 96, 109, 162, 167

ASI_AS_IF_USER_PRIMARY 27, 96

ASI_AS_IF_USER_PRIMARY_LITTLE 27, 96

ASI_AS_IF_USER_SECONDARY 28, 96

ASI_AS_IF_USER_SECONDARY_LITTLE

28, 96

ASI_NUCLEUS 28, 96

ASI_NUCLEUS_LITTLE 28, 96

ASI_PRIMARY 27, 39, 96, 109

ASI_PRIMARY_LITTLE 27, 39, 96

ASI_PRIMARY_NOFAULT 27, 96

ASI_PRIMARY_NOFAULT_LITTLE 28, 96

ASI_SECONDARY 28, 96

ASI_SECONDARY_LITTLE 28, 96

ASI_SECONDARY_NOFAULT 28, 96

ASI_SECONDARY_NOFAULT_LITTLE 28,

96

ASR 25, 32, 93, 100, 101

ASR24 25

ASR25 25

ASR26 25

ASR27 25

ASR28 25

ASR29 25

ASR31 25

ASRs 92, 93, 100

Assembly Language Syntax 165

associated deferred-trap queues 29

async_data_error 30

audience 19

B

bge 90

bne 90

C

CALL 39, 109

CANRESTORE 163

CANSAVE 163

CASA 165

CASX 165

CASXA 165

ccelerated emulation trap 31

CCR 162

cex 95

cexc 26, 95

check_illegal_done_retry 90

check_illegal_saved_restored 90

Chip_crossing_errors 29

circular stack 24

CLE 162

clean_window 101

cleaning 33

CLEANWIN 40

CLEANWIN register 40

CLEAR_SOFTINT 93, 101

contents of SCD 2.2 19

corrected_ECC_error 98

CPU 25, 28, 29, 31, 37, 157

CPU_HALTED 31

CPU_xing 29, 30

D

d LDD 35

Data access 100

data_access_exception 99

data_access_MMU_miss 30, 33, 100, 102

data_breakpoin 30

data_breakpoint 27, 29

deferred 30

Deferred trap queues 29

deferred-trap queue 27

definition of audience 19

definition of purpose 19

DISPATCH_CONTROL_REG 93

Index

SPARC International INDEX

172 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

disrupting 30

division_by_zero 29, 97

DMA 38, 108

DONE 90

doubleword-aligned 36

E

ECC_trap 30

error 97

Error logging 97

error state 31

Error_state 31, 99

error_state 31, 99, 107

F

F{i,x}TOq 43, 89

F{s,d} 91

F{s,d}TOq 43, 89

FABSq 43, 89

FADD 91

FADDq 43, 89

fast_data_access_MMU_miss 98

fast_data_access_protection 98

fast_instruction_access_MMU_miss 98

Fault Address Register 25

FCMP{E}q 43, 89

FDIV 27, 44, 91, 92

FDIVq 90

FdMULq 43, 89

FdTOs 91

fetches 109

FFF0 94

FFFF 94

Floating-Point 24

floating-point 32, 91

Floating-point underflow 33

FLUSH 31, 32, 38, 99, 108

flush 31

FMOVc 163

FMOVcc 163

FMOVq 43, 89

FMOVqcc 43, 89

FMOVqr 43, 89

FMOVr 163

FMUL 91, 92

FMULq 89

FNEGq 43, 89

FNULq 43

FP 44, 89

fp_exception_othe 36

fp_exception_other 23, 27, 29, 36, 95

FPQ 27

FPU 24, 26, 27, 94, 95, 100

FPU TEM 95

FPU trap 32

FQ 27, 95

FqTO 43

FqTO{i,x} 89

FqTO{s,d} 89

FSQRT 91

fsqrtd 23

FSQRTq 44, 90

fsqrts 23

FSR 26, 27, 94

FSR.cexc 163

FSR.ft 23

FSR.ftt 23, 27, 29, 95, 163

FSR.NS 94

FSR.VER 94

FSR.ver 26, 94

FSR_nonstandard_fp 26, 94

FSUBq 43, 89

Fujitsu 34

G

GRAPHICS_STATUS_REG 93

H

HAL 25, 31, 35, 38, 157

HAL Computer Systems 23, 38, 67, 137

hex 102

I

I/O register 92

I/O registers 25, 92

IE 162

IEEE 94

IEEE 754 24, 33, 101

IEEE 754-1985 26

IEEE Standard 754-1985 26, 94

IEEE Std 754-1985 24, 91, 95

IEEE Std. 754-1985 27

illegal_instructio 32

illegal_instruction 23, 27, 31, 32, 34, 95, 99

IMPDEP1 35, 103

IMPDEP2 35, 103

IMPL. DEP 162

SPARC International INDEX

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 173

impl. dep 96

implementation-dependent 108

Index 19

instruction_access_error 97

instruction_access_MMU_miss 30

internal_processor_error 30

Interrupt 97

interrupt 98

interrupt_vector 98

Introduction 19

IO_parity 30

IU 24, 26, 90, 94

IU registers 24

J

JEDEC 34, 102, 157

JMPL 39, 109

K

Kernel 23

kernel 24

L

Latency 38

ld 90

LDD 23, 25, 31, 105

LDDA 35, 105

ldda 23

LDDF 35, 105

LDDF_mem_address_not_aligned 35, 105

LDDFA 35, 105

LDQF 36, 43, 89, 106

LDQF_mem_address_not_aligned 30, 36, 106

LDQFA 36, 43, 89, 106

LE 28

Load/Store ordering 36

loads 109

LSO 36

M

M 38

mask-level 34

MAXTL 97, 99

mem_address_not_aligned 29, 97

MM 37, 162

MMU 25, 28, 37, 107

multiprocessor 38

N

no-fault-only 99

non-cacheable 92, 109

Non-faulting 37

Non-faulting Load 107

non-faulting loads 163

non-privileged mode 28

Non-Restricted 28

nonstandard mode 24

NOP 33, 34, 102, 107

nop 90

not_illegal 90

NR 28

NS 26, 94

NWINDOW 40

NWINDOWS 24, 90, 163

NWINDOWS-1 40, 163

O

Opcode 165

organization 19

OTHERWIN 163

overflowing 34

P

PA_watchpoint 98

Partial Store Order 36, 106

PC 109

PEF 162

PERF_CONTROL_REG 93

PERF_COUNTER 93

PID0 162

PID1 162

PIL 29

PO 28

POPC 43, 89

popc 23

POR 31

Power-on Reset 31

precise 30

Preface 19

PREFETCH 33, 102

Prefetch 34, 37, 107

PREFETCHA 33, 102

prgorammed_emulation_trap 30

PRIV 162

privileged status 25

privileged_action 28

privileged_opcode 90

processor cycles 34

Program Order 28

SPARC International INDEX

174 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

PSO 36, 106

PSTATE 39, 40, 109, 110, 162, 163, 166

PSTATE.AM 39, 109

PSTATE.IE 29, 97

PSTATE.MM 38, 108

PSTATE.PID 39

PSTATE.PID0 110, 162

PSTATE.PID1 39, 110, 162

PSTATE.PRIV 28, 96

PSTATE.RED 97

purpose 19

Q

quad operands 23

quadword-aligned 36

R

r LDD 35

r Relaxed Memory Orde 36

RDASR 32, 100

RDPC 39, 109

RDPR 27, 95, 167

rdpr 90

RED 162

RED_alert 30

RED_MODE 37

RED_state 36, 37, 106, 107

Relaxed Memory Order 36, 106

Reset trap 98

reset trap 98

RESTORED 40, 90, 163

RETRY 90

RIVILEGED_OPCODE_HANDLER 90

RMO 36, 106, 108

rounding 33

RSTVaddr 37, 106, 107

S

SAVED 90

second-sourced chip 34

sequence_error 27

SET_SOFTIN 101

SET_SOFTINT 93

setx 90

SIR 25

SIR_enable 37, 107, 165

SOFTINT_REG 93, 101

Software 25

Software Installation 19

SP 91, 92

SPARC 89, 90

SPARC International 23, 34, 67, 89, 102, 137,

157

Sparc6 28

SPARC64 25, 27, 28, 30, 31, 35, 38, 157

Sparc64 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 67, 137

Sparc64 Processor User Guide 35

SPARC-V9 26, 28, 30, 38, 39, 40, 97, 98, 109

Sparc-V9 23, 28

srl 90

State Control Register 25

STD 23, 25, 31, 35, 105

std 23

STDA 35, 105

stda 23

STDF 36, 105, 106

STDF_mem_address_not_aligned 36, 105, 106

STDFA 36, 105, 106

STO 36

store 109

Store ordering 36

STP 1030BGA 43

STQD_mem_address_not_aligned 30

STQF 36, 43, 89, 106

STQF_mem_address_not_aligned 36, 106

STQFA 36, 43, 89, 106

subcc 90

SUN 89, 113

Sun Microsystems 157

Sun Microsystems, Inc 89

SWAP 165

T

TEM 26, 27, 95

TICK 34, 102

TICK.counter 102

TICK_CMPR_REG 93

tininess 24, 33

TL 39, 99, 109, 162

TLE 162

TNPC 39

TPC 29, 39

Trap precision 97

Trapped Underflow 24

TSTAT 162

SPARC International INDEX

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 175

TSTATE 39, 40, 109, 110, 162

TT 30, 98

U

UFM=0 24

UFM=1 24

UltraSPARC 157

ULTRASPARC II 89, 113

UltraSPARC II 157

Ultra-SPARC-I 43

UltraSPARC-I 43

UltraSPARC-II 89, 91, 92, 93, 94, 95, 96, 97, 98,

99, 100, 101, 102, 103, 105, 106, 107,

108, 109, 110

unfinished_FPop 27, 29

unimplemented exception 24

unimplemented_FPop 23

unimplemented_LDD 23, 25, 35, 105

unimplemented_STD 23, 25, 35, 105

Untrapped Underflow 24

V

V (Vendor-specific) 28

VA_watchpoint 98

Vendor-specific 28

VER.impl 26, 93, 157

VER.manuf 34, 102, 157

W

watchdog 31

Watchdog reset 31

watchdog_reset 99

WDR 31

Window State Registers 163

WRASR 25, 32, 100, 101, 165, 166

Write State Register 165, 166

write-only register 25

X

XIR 37

xor 32, 100

